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Abstract

Latent Variable Models (LVM) are widely used in social, behavioural, and educational sciences to

uncover underlying associations in multivariate data using a smaller number of latent variables.

However, the classical LVM framework has certain assumptions that can be restrictive in empirical

applications. In particular, the distribution of the observed variables being from the exponential

family and the latent variables influencing only the conditional mean of the observed variables.

This thesis addresses these limitations and contributes to the current literature in two ways.

First, we propose a novel class of models called Generalised Latent Variable Models for Location,

Scale, and Shape parameters (GLVM-LSS). These models use linear functions of latent factors to

model location, scale, and shape parameters of the items’ conditional distributions. By doing so,

we model higher order moments such as variance, skewness, and kurtosis in terms of the latent

variables, providing a more flexible framework compared to classical factor models. The model

parameters are estimated using maximum likelihood estimation.

Second, we address the challenge of interpreting the GLVM-LSS, which can be complex due

to its increased number of parameters. We propose a penalised maximum likelihood estimation

approach with automatic selection of tuning parameters. This extends previous work on penalised

estimation in the LVM literature to cases without closed-form solutions.

Our findings suggest that modelling the entire distribution of items, not just the conditional

mean, leads to improved model fit and deeper insights into how the items reflect the latent con-

structs they are intended to measure. To assess the performance of the proposed methods, we

conduct extensive simulation studies and apply it to real-world data from educational testing and

public opinion research. The results highlight the efficacy of the GLVM-LSS framework in captur-

ing complex relationships between observed variables and latent factors, providing valuable insights

for researchers in various fields.



Contents

1 Background: A short introduction to Latent Variable Models 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Model Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Analytical identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Identification via restrictions on the model parameters . . . . . . . . . . . . 7

1.2.3 Empirical identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Factor Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Summary and Outline of this dissertation . . . . . . . . . . . . . . . . . . . . . . . 18

2 Generalised Latent Variable Models for Location, Scale, and Shape parameters 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Motivation: A distributional approach to LVM . . . . . . . . . . . . . . . . 22

2.2 Latent Variable Models for Location, Scale and Shape parameters (GLVM-LSS) . . 24

2.2.1 Some examples of GLVM-LSS . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Estimation, Inference, and Model Selection . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Asymptotic Properties of the Maximum Likelihood Estimator . . . . . . . . 37

i



2.3.3 Goodness of fit and Model Selection . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Simulation Study I: Exploratory LVM-LSS models . . . . . . . . . . . . . . 39

2.4.2 Simulation Study II: A Confirmatory GLVM-LSS model with Binary and

Skew-Normal items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Empirical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.1 PISA 2018: A joint model for item response and response times . . . . . . . 45

2.5.2 ANES 2020: Thermometer items . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Penalised Marginal Maximum Likelihood Estimation with Automatic Selection

of Tuning Parameters for Generalised Latent Variable Models for Location,

Scale, and Shape parameters 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.1 Sparsity Inducing Penalties . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Goodness-of-fit and Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Selection of Tuning Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.1 Influence factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6.1 Performance Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6.2 Simulation Study I: Normal linear factor model with heteroscedastic items . 81

3.6.3 Simulation Study II: Heteroscedastic Beta factor model . . . . . . . . . . . 85

3.7 Empirical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

ii



3.7.1 PISA 2018: A semi-confirmatory joint model for item response and response

times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.7.2 The Holzinger and Swineford (1939) dataset . . . . . . . . . . . . . . . . . . 92

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Conclusions and Future Research 98

4.1 Extension 1: Generalised Additive Latent Variable Model for Location, Scale, and

Shape parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Extension 2: Single- and Multiple-Index IRT models . . . . . . . . . . . . . . . . . 104

A Appendix for Chapter 2 110

A1 Parametric Distributions and related quantities . . . . . . . . . . . . . . . . . . . . 110

A1.1 Continuous distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A1.2 Discrete distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A2 Derivations for the score vectors, information matrices, and link functions . . . . . 121

A3 A note on trust-region algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A4 Numerical Integration: The Gaussian-Hermite quadrature . . . . . . . . . . . . . . 128

A5 Asymptotic properties of the MML estimator . . . . . . . . . . . . . . . . . . . . . 129

A6 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B Appendix for Chapter 3 136

B1 Non-convex Penalty Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B2 Local Approximations to Penalty Functions . . . . . . . . . . . . . . . . . . . . . . 137

B3 Generalised Information Criterion (GIC) . . . . . . . . . . . . . . . . . . . . . . . . 140

B4 Automatic Selection of the Tuning Parameter Vector . . . . . . . . . . . . . . . . . 147

B4.1 Estimation and Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B4.2 Equivalence between the UBRE and the AIC . . . . . . . . . . . . . . . . . 150

iii



B4.3 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B5 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B5.1 Parameter initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B5.2 Generating Sparse Factor Loading Matrices . . . . . . . . . . . . . . . . . . 156

B6 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

iv



List of Figures

2.1 Path Diagram of Confirmatory GLVM-LSS simulation study. . . . . . . . . . . . . 44

2.2 PISA 2018: Empirical and model-implied marginal distributions for response times

(in log-minutes). The solid line ( ) is the SN model and the dashed line ( ) the

Normal model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 PISA 2018: Fitted conditional expected values (solid line, ), median (dashed line,

), and percentiles (dotted lines, ) for IR and log-RT for items 2 and 3. . . . 52

2.4 PISA 2018: Fitted conditional expected values (solid line, ), median (dashed line,

), and percentiles (dotted lines, ) for IR and log-RT for items 5 and 8. . . . 53

2.5 ANES 2020: Empirical cumulative distribution function (ECDF). Highlighted items:

Feminists (solid line, ), Gay men and Lesbians (dashed line, ), Christian

fundamentalists (dotted line, ), and Scientists (dash-dot line, ) . . . . . . . . 54

2.6 ANES 2020: Fitted conditional expected values (solid line, ), median (dashed

line, ), and percentiles (dotted lines, ). . . . . . . . . . . . . . . . . . . . . . 57

2.7 ANES 2020: Empirical QQ-plots of (standardised) political orientation scales against

Empirical Bayes factor scores (sign reversed). . . . . . . . . . . . . . . . . . . . . . 58

3.1 PISA 2018: Fitted conditional expected values (solid line, ), median (dashed line,

), and percentiles (dotted lines, ) for log-RTs of items 8 and 9. . . . . . . . . 92

v



List of Tables

2.1 Simulation Study I, Case I: Average Mean Squared Error (AvMSE) and Average

Absolute Bias (AvAB) for the MLE of a linear factor model with heteroscedastic

items, by number of items and sample size. The performance measures are computed

for the estimated parameters α̂k in the location loading matrix (Âµ) and scale loading
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Chapter 1

Background: A short introduction to

Latent Variable Models

In this chapter, we provide a comprehensive introduction to the Generalised Linear Latent Variable

Model (GLLVM) framework. This Chapter provides an overview of the basic concepts that will be

explored in this dissertation. In Section 1.2 we present a thorough discussion of model identification,

and in Section 1.3 we discuss maximum likelihood estimation of the model parameters. Finally,

in Section 1.4, we provide a brief introduction to factor scoring, which involves assigning values

of the latent variables to observations in our sample. In Section 1.5 we conclude and provide an

outline of this dissertation.

1.1. Introduction

Research questions in the social and behavioural sciences often involve analysing large and complex

datasets that have measures on binary, categorical (nominal or ordinal), and/or metric (discrete

or continuous) scales. Multivariate data analysis aims to identify common patterns and simplify

complex structures in either an exploratory (i.e., data-driven) or confirmatory (i.e., hypothesis-

driven) manner. Latent variable models (LVM) are a general class of statistical models that are

commonly used to reduce the dimensionality of observed variables by explaining their associations

through a set of lower-dimensional latent variables.

Formally, let y = (y1, ..., yp)
⊺ be a vector of p observed variables, also known as items, and

z = (z1, ..., zq)
⊺ a vector of q latent variables, also known as latent factors or latent traits, with

1



q ≪ p. The joint probability distribution of (y, z) can be expressed as

f(y, z) = f(y | z) p(z). (1.1)

Here, the multivariate conditional probability function f(y | z), known as the measurement

model, describes the relationship between the observed variables given the latent variables. In

other words, it captures the associations between items in y resulting from the set of factors z.

Similarly, the multivariate density function p(z) corresponds to the structural model and specifies

the joint distribution of the latent variables.

It is commonly assumed that the data generating process f(y, z; Θ) = f(y | z; Θy) p(z; Θz)

follows a parametric probability function characterised by a vector of parameters Θ⊺ = (Θ⊺
y,Θ

⊺
z).

Here, Θy and Θz are the vectors of parameters characterising the measurement and structural

models, respectively. In some settings, it is convenient to assume that the observed variables are

independent from each other conditional on the latent variables. This assumption, known as local

(or conditional) independence, allows for expressing the measurement model as f(y | z; Θy) =∏p
i=1 fi(yi | z; Θyi), where Θyi are the parameters in the measurement model for item i. The

conditional independence assumption is not a necessary assumption and can be relaxed in some

settings (e.g., longitudinal data). Moreover, measurement models for individual items do not

necessarily have to follow the same parametric form.

The LVM framework encompasses several statistical models such as the generalised random

effects model (Laird and Ware, 1982; Zeger and Karim, 1991; Lee and Nelder, 1996, 2001, 2006),

models for longitudinal data (Hedeker and Gibbons, 2006), latent class analysis models (LCA,

Lazarsfeld and Henry, 1968), the factor analysis model (Lawley and Maxwell, 1962, 1971), the

structural equation model (LISREL, Jöreskog, 1970a,b, 1973, and SEM, Bollen, 1989), and the

class of item response theory models (IRT, Lord and Novick, 1968; Bartholomew, 1980; Bock and

Aitkin, 1981; Bartholomew et al., 2011). These statistical models were originally created to answer

different research questions, but they all serve similar purposes such as dimensionality reduction

or measurement of latent constructs. They differ on the specific distributional assumptions on

imposed on f(y | z; Θy) and p(z; Θz). Most of the above models can be considered as particular

cases of the generalised linear latent variable model (GLLVM, see, e.g., Bartholomew et al., 2011

or Skrondal and Rabe-Hesketh, 2004, 2007).

The GLLVM framework builds upon the generalised linear model framework (GLM, see, e.g.,

Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989). Each of the items i = 1, ..., p has a
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measurement model fi(yi | z) that follows a distribution from the exponential family:

fi(yi | z; ζi, ϕi) = exp

{
yiζi(z)− bi(ζi(z))

ϕi
+ ci(yi;ϕi)

}
, (1.2)

where ζi(z) is the canonical parameter and the functional dependence on z denotes that is mod-

elled in terms of the latent variables, ϕi is a dispersion parameter, and bi and ci are pre-specified

distribution-specific functions. Moreover, for each item we assume a systematic component, de-

noted by ηi, which results from a linear combination of a set of covariates, in this case, the latent

variables z:

ηi = αi0 +

q∑
j=1

αijzj (1.3)

This linear equation is known as the measurement equation in the LVM literature. In the GLLVM,

the relationship between items and factors is linear through the canonical parameter: ζi(z) = ηi.

The focus in the GLLVM is on modelling the conditional mean of the items as linear functions

of the latent variables, that is µi(z) := E(yi | z). Naturally, if fi is from the exponential family, we

have that µi(z) = b′i(ηi), where b′i = dbi/dζi. The mapping υ−1
i := b′i is known as the canonical

link function, a monotonic differentiable function that connects the conditional mean of yi with

the latent variables, and thus

υi(µi(z)) = ηi

The link function υi depends on the distribution assumed for yi. The conditional variance of

an item is Var(yi | z) = ϕib
′′
i (ηi) = ϕiµ

′
i(z). For some distributions in the exponential family, the

scale parameter is ϕi = 1, and it is only of interest in the continuous case. Higher order moments

of the manifest variables, like the kurtosis and the skewness, are not modelled explicitly in terms

of the latent variables z (or any set of covariates).

We use matrix notation to represent the measurement equations more concisely. Let µ =

(µ1, . . . , µp)
⊺ be a vector of conditional means. Also, let α0 = (α10, . . . , αp0)

⊺ be a vector of

intercepts and Aµ be a matrix of model parameters (also known as the factor loading matrix)

with p rows corresponding to the q-dimensional vectors αi = (αi1, . . . , αiq)
⊺, for items i = 1, . . . , p.

Lastly, let υ(·) be the vector function that applies the corresponding link function υi(·) to each

entry of µ. The measurement equations can be expressed in matrix notation as:

υ(µ) = α0 +Aµz, (1.4)

Regarding the structural model for the latent variables, in this dissertation we focus on the
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case of continuous latent variables. In particular, we assume z ∼ N(0,Φ), where Φ is a covariance

(or correlation) matrix.

Finally, let K = dim(Θ) and define Ξ ⊆ RK as the parameter space. Since the latent variables

z are unobserved, we can only infer the model parameters Θ ∈ Ξ from the marginal (observed

data) distribution, given by:

f(y; Θ) =

∫
Rq

[
p∏

i=1

fi(yi | z; Θyi)

]
p(z; Θz) dz (1.5)

In the following sections we discuss identification and estimation of the model parameters.

1.2. Model Identification

A parametric statistical model is identified if a point Θ ∈ Ξ generates a unique value for the

marginal distribution f(y; Θ) for the observed data. If the model is not identified, there could be

multiple sets of parameters that could have produced the same observed data distribution, in that

sense making the model parameters arbitrary and invalid for substantive scientific inference. The

following definitions from Skrondal and Rabe-Hesketh (2004, Chapter 5) are useful:

Definition 1.2.1 (Observationally equivalent points). Two distinct points Θ∗ and Θ† in the para-

meter space Ξ are observationally equivalent if they generate the same marginal probability dis-

tribution for the observed variables, f(y; Θ∗) = f(y; Θ†), for all y ∈ Rp.

Definition 1.2.2 (Globally identified parameter point). The parameters of a statistical model are

globally identified if for any given point Θ∗ ∈ Ξ there is no other observationally equivalent point

Θ† ∈ Ξ.

Definition 1.2.3 (Locally identified parameter point). A point Θ∗ ∈ Ξ is locally identified if there

exists an open neighbourhood around Θ∗ containing no other point, say Θ†, that is observationally

equivalent to Θ∗.

Often conditions for global identification depend on the specifics of the model at hand and

are difficult to verify (Shapiro, 1985). Thus, for general models, it is common practice to rely

on the weaker notion of local identification. Local identification is usually achieved by imposing

restrictions on the parameters in a mathematically structured (but sometimes arbitrary) manner.

It is important to note that local identification throughout the parameter space Ξ is a necessary

but not sufficient condition for global identification (Bentler and Weeks, 1980; McDonald, 1982).
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Additionally, local identification at one point in Ξ does not guarantee local identification through-

out Ξ, and in some cases, certain points in Ξ may not be locally identified even after imposing

restrictions (McDonald, 1982).

1.2.1 Analytical identification

Under standard regularity assumptions for the marginal probability function f(y; Θ), a necessary

and sufficient condition for local identification at a given point Θ∗ ∈ Ξ is that the (theoretical)

information matrix is non-singular when evaluated at that point (Rothenberg, 1971). That is,

E[∇Θ log f(y; Θ)∇Θ log f(y; Θ)⊺]|Θ=Θ∗ , must be non-singular. However, in practice, this approach

is often unfeasible due to the analytical intractability of the information matrix in complex models.

An alternative approach for assessing local identifiability was proposed by Wald (1950), but it

only applies to cases where the marginal distribution of the observed data is completely character-

ised by reduced-form parameters, typically related to the items’ first- and second-order moments.

In Wald’s approach, we determine local identifiability of a point Θ∗ ∈ Ξ by studying the functional

relationship between the model parameters Θ and the reduced-form parameters.

Let m be a S-dimensional vector of reduced-form parameters in the parameter space M ⊂ RS .

Assume there exist S continuously differentiable known functions ms = hs(Θ) (s = 1, . . . , S)

mapping Ξ into M such that the vector of reduced-form parameters is m = (m1, . . . ,mS)
⊺. For

brevity, let h(·) denote the vector function that applies the corresponding mapping hs(·) to each

entry of Θ, i.e., m = h(Θ). Moreover let f̃(y;h(Θ)) be the (marginal) distribution function for the

observed data y parameterised by the reduced-form parameters, such that f̃(y;h(Θ)) = f̃(y;m) =

f(y; Θ).

As a clarifying example, consider the Normal linear factor model (NLFM) with one latent

variable and p items, where the items have been mean-centred for simplicity. The NLFM can be

expressed as yi = αi1z1 + ϵi, where z ∼ N(0, ψz), the error terms ϵi = N(0, σ2i ), and Cov(ϵi, ϵi′) =

0 for i ̸= i′. On one hand, the model parameters are Θ = (α⊺
1, vech(Σϵ)

⊺, ψz)
⊺, where α1 =

(α11, . . . , αp1)
⊺ is a vector of factor loadings, Σϵ = diag(σ21, . . . , σ2p) is the diagonal covariance

matrix of the error terms, and ‘vech’ denotes the half-vectorisation operator. Thus, f(y; Θ) =

N(0, ψzα1α
⊺
1 +Σϵ). On the other hand, the reduced-form parameters m consist of the p(p+ 1)/2

non-redundant elements of the covariance matrix of y, denoted by Σy. That is, m = vech(Σy).

The marginal distribution of the observed data parameterised by the reduced-form parameters

is f̃(y;m) = N(0,Σy). Note how the reduced-form parameters can be expressed in terms of

the model parameters: Σy = ψzα1α
⊺
1 + Σϵ. Specifically, the diagonal elements of diag(Σy)[i] =
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Var(yi) = α2
i1ψz + σ2i , where the sub-index [i] denotes the ith entry of the vector; and the off-

diagonal elements of Σy being Cov(yi, yi′) = αi1αi′1ψz for i ̸= i′. Thus, for the NLFM we have

f̃(y;m) = f(y; Θ), for all y ∈ Rp. Other examples of ‘simple’ GLLVMs completely characterised

by reduced-form parameters include the factor model with dichotomous or ordinal items (e.g.,

Muthén, 1984), and the Structural Equation Model (SEM, Bollen, 1989).

For a point Θ∗ ∈ Ξ that generates the reduced-form parameters m∗ = h(Θ∗), Θ∗ is identifiable

if and only if Θ∗ is the unique solution to the system of equations m∗ = h(Θ). Therefore, identi-

fication of the model parameters Θ depends on the characteristics of the mapping h : Ξ → M. A

necessary, but not sufficient, condition for identification is that there are at least as many reduced-

form parameters as there are model parameters, that is K ≤ S. General parameter identification

rules of this type have been long established in the LVM literature, such as the restrictions on the

model parameters in Confirmatory Factor Analysis (CFA, Jöreskog, 1969) or the ‘t-rule’ in SEM

(Bollen, 1989). However, stronger identification results can be derived from the characteristics of

the Jacobian matrix:

J(Θ) =

[
∂hs
∂Θ[k]

, 1 ≤ s ≤ S; 1 ≤ k ≤ K

]
,

where the sub-index [k] refers to the kth entry in the parameter vector Θ. The following definition

is required:

Definition 1.2.4 (Regular point, Skrondal and Rabe-Hesketh, 2004, Chapter 5). A point Θ∗ ∈ Ξ

is a regular point if there is an open neighbourhood of Θ∗ in which the Jacobian matrix has constant

rank.

If Θ∗ is a regular point, then the system of equations m∗ = h(Θ) has a unique solution Θ∗ if

and only if rank(J(Θ∗)) = K. Therefore, local identification can be analytically assessed based on

the following Lemma (Skrondal and Rabe-Hesketh, 2004, Chapter 5):

Lemma 1.2.1. Let Θ∗ ∈ Ξ be a regular point of J(Θ). Then, Θ∗ is locally identified if and only

if rank(J(Θ∗)) = K.

As discussed above, the approach proposed by Wald (1950) for assessing local identification is

limited to ‘simple’ models in which i) there are reduced-form parameters that fully characterise the

marginal distribution of the observed data, and ii) the functional forms of the mapping functions

hs(·) are known so that the analytical Jacobian matrix J(Θ) can be computed. Despite this

limitation, the condition in Lemma 1.2.1 can be achieved in practice by imposing constrains on the

model parameters Θ. These constraints are rank restrictions on J(Θ), which limit the number of

free parameters in the model and ensure that the constrained point is a regular point of J(Θ). In the
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next subsection, we discuss common restrictions on Θ used in the LVM literature. Throughout the

rest of this dissertation, when we use the term ‘identification’ we are referring to local identification,

unless otherwise stated.

1.2.2 Identification via restrictions on the model parameters

The model parameters Θ⊺ = (Θ⊺
y,Θ

⊺
z) ∈ Ξ in the GLLVM are not identified, partly due to the

arbitrariness of the location and the scale of the latent variables. To achieve local identification,

it is necessary (but not sufficient) to impose restrictions on Θ. Using simple examples, below we

illustrate how the GLLVM parameters are not identifiable without additional constraints.

Scale and location indeterminacy: the unidimensional case (q = 1)

As a starting example, consider a GLLVM with only one latent variable and p items. In this

case, the distributional assumption on the structural model is z1 ∼ N(0, ψz). The measurement

equations are:

υi(µi(z)) = αi0 + αi1z1, i = 1, ..., p

The model parameters are Θ⊺ = (α⊺
0,α

⊺
1,ϕ

⊺, 0, ψz), where α0 = (α10, . . . , αp0)
⊺ is the vector

of intercepts, α1 = (α11, . . . , αp1)
⊺ is the vector of factor loadings, and ϕ = (ϕ1, . . . , ϕp)

⊺ is the

vector of scale parameters. Note that some entries in ϕ could be fixed to 1 for some items following

certain distributions (e.g., Poisson, Binomial, etc.), and thus are not estimated. For pedagogical

reasons we include the mean of the latent variable (0) in Θ, to show how the identification problem

is related to the location and scale of the factor z1. However, it’s important to note that this is a

fixed parameter and is not estimated.

Consider a linear transformation of the latent variable, z̃1 = az1+c, where a and c are arbitrary

constants. This transformation results in a different structural model, as z̃1 ∼ N(c, a2ψz). This

change is compensated in the measurement part of the model:

υi(µi(z̃)) = (αi0 − αi1c/a) + (αi1/a)z̃1

= α̃i0 + α̃i1z̃1 ,

where α̃i0 = αi0 − αi1c/a and α̃i1 = αi1/a, for i = 1, ..., p. After this transformation, the model

parameters can be expressed as Θ̃⊺ = (α̃⊺
0, α̃

⊺
1,ϕ

⊺, c, a2ψz), where the vectors α̃0 and α̃1 are defined

similarly as above. Note how the conditional mean of the observed items are equivalent between
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parametrisations: µ(z) ≡ µ(z̃). Moreover, f(y; Θ) ≡ f(y; Θ̃). Thus, the linear transformation of

the latent variables leaves the distribution of the observed data unchanged.

Without further assumptions on the values for the model parameters, the unidimensional

GLLVM is not identified, meaning that we cannot determine a unique point for the paramet-

ers that produces a unique value for the marginal distribution of the observed data. The latter is

a good example of how the measurement model f(y | z) and the structural model p(z) must be

considered as a pair. Any change in one is balanced out by a compensating change in the other,

and thus we are often required to ‘fix’ some parts of either the measurement or the structural

model (or both) before estimating the model parameters. In other words, the parameters in the

measurement model (intercepts α0 and factor loadings Aµ) and the parameters in the structural

model (factor covariance matrix Φ) are not independent of one another. In the unidimensional

example above, we potentially rectify the indeterminacy of the location and the scale of the latent

variable by fixing the values for the parameters in the structural model, say z1 ∼ N(0, 1). If there

is a compelling reason to estimate the variance of the latent variable ψz, we can fix αi′1 = 1 in the

measurement equation for a chosen item i′.

Rotation indeterminacy: the multidimensional case (q > 1)

The issue of parameter identification for the multidimensional case (q > 1) has been long studied

in the LVM literature. The seminal work of Anderson and Rubin (1956) is one such contribution

that addresses this issue. In their work, the authors provide a comprehensive explanation of the

indeterminacies that are inherent in the classical Normal linear factor model. In the context of

multidimensional LVM, the indeterminacy pertaining to the latent variables’ scale is commonly

referred to as the rotational indeterminacy problem.

Let z ∈ Rq, where q > 1, and assume z ∼ N(0,Φz). For simplicity, assume the mean of the

latent variables is fixed. Recall the measurement equations in matrix notation: υ(µ) = α0 +Aµz.

Now, consider an arbitrary rotation of the latent variable vector, denoted by z̃ = Mz, where M is a

non-singular (q× q) matrix. This rotation results in a different distribution of the latent variables

in the structural model, z̃ ∼ N(0,Φz̃), where Φz̃ = MΦzM⊺. Similar to the unidimensional case

described above (q = 1), the compensating change in the measurement model is

υ(µ) = α0 +AµM−1Mz

= α0 + Ãµz̃
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Following the rotation of the latent variables, the model that involves Aµ and z is empirically

indistinguishable from the model that involves Ãµ and z̃, where Ãµ = AµM−1 and z̃ = Mz. In

contrast to the unidimensional case (q = 1), simply ‘fixing’ the scale of the latent variables as

Φz = Iq (where Iq represents the identity matrix of order q) does not solve the indeterminacy

issue. Indeed, if the rotation matrix M is orthogonal, then MM⊺ = Iq and thus we have two

indistinguishable models sharing the same specification of the structural model, that is, Φz = Φz̃ =

Iq, but with different factor loading matrices, as Aµ ̸= Ãµ. The GLLVM is still ill-identified if the

rotation is oblique (i.e., MM⊺ = Φz̃ ̸= Iq), as we will have two models with different specifications

for the structural model and different factor loadings that generate the same marginal distribution

of the observed data. Thus, achieving identification requires not only anchoring the scale of the

latent variables but also providing them with an associated ‘direction’. This is accomplished by

imposing additional constraints on the factor loading matrix Aµ, typically in the form of fixed

zero-coefficients in selected positions and sign restrictions.

Before discussing common ways of imposing restrictions on model parameters, it is worth

noting the benefits of assuming a multivariate Normal distribution for the latent variables. As

Bartholomew et al. (2011) point out, this assumption is mainly for mathematical and computational

convenience. By assuming a multivariate Normal distribution for the unrotated latent variables,

we ensure that after rotation, the new latent variables follow a distribution p(z̃) that belongs

to the same class as the initial distribution p(z). However, this is only true for the class of

spherically symmetric distributions, which includes the (multivariate) Normal distribution (Ali,

1980). According to Maxwell’s theorem (see, e.g., Feller, 1966, page 97), we can conclude that if

z ∼ N(0, Iq), then the rotated factors z̃ = Mz are also independent and Normally distributed for

any orthogonal matrix M. Normality and independence are interdependent, and therefore assuming

a Normal distribution for the structural model protects against invariance under rotation.

Fixing rotational indeterminacy

We have demonstrated that the vector of parameters Θ that generates the marginal distribution

of the observed data f(y; Θ) is not unique due to the rotational indeterminacy described earlier.

The orthogonal rotation matrix M has q2 elements, and thus, a similar number of restrictions

on the parameter vector should be imposed in a structured and consistent way to ensure the

identifiability of the GLLVM. These restrictions yield necessary (but not sufficient) conditions for

a unique solution for the parameter vector. As described by Anderson and Rubin (1956), two

types of sets of (sometimes arbitrary) restrictions can be distinguished, depending on whether the

GLLVM is used for exploratory or confirmatory purposes. Exploratory restrictions on Aµ and Φ
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have no inherent interpretation, whereas confirmatory restrictions may have intrinsic meaning and

are often informed by substantive knowledge or theoretical considerations of the researcher. The

most common type of restrictions are factor loadings or latent variable covariances/correlations

assumed to be zero, and factor variances assumed to be 1. Equality constraints among subsets of

parameters can also be used.

In the LVM literature, common identification restrictions on the factor loading matrix Aµ and

the factor covariance matrix Φ include:

a) Let Φ = Iq; and A⊺
µAµ is a diagonal matrix where all its diagonal elements are positive,

distinct, and arranged in decreasing order.

b) Let Φ = Iq; and partition the factor loading matrix as Aµ =
[
A⊺

µ,1,A
⊺
µ,2

]⊺
, where Aµ,1 is a

lower triangular matrix with non-zero values in its diagonal.

c) Let Φ be a covariance matrix; and partition the factor loading matrix as Aµ =
[
Iq,A⊺

µ,2

]⊺
.

d) Let Φ be a correlation matrix (i.e., diag(Φ) = Iq); and partition the factor loading matrix as

Aµ =
[
A⊺

µ,1,A
⊺
µ,2

]⊺
, where Aµ,1 is a diagonal with non-negative values in its diagonal.

e) Let Aµ have a ‘simple structure’ (Thurstone, 1947, page 335. See also, e.g., Browne, 2001);

and impose q normalisation restrictions on either the latent variables (i.e., Φ is a correlation

matrix) or on the columns of the factor loadings matrices, as well as an ordering of the

columns of Aµ.

f) Let Φ be a covariance or correlation matrix, with possibly some restricted parameters (cor-

relations to zero, variances to 1); and fix at least q − 1 parameters in each column of Aµ to

zero, based on substantive knowledge or theory.

Restrictions a)-d) are mathematically equivalent (Sagner, 2019), and they only differ on the

interpretation of the model parameters. Restrictions a) and b) are commonly used in exploratory

GLLVM, and they do not hold any inherent interpretation. Restriction a) is implicitly used in

principal component analysis (PCA). Restriction b) is referred to as a ‘recursive rotation’, due to

its similarity with a triangular system of simultaneous equations. This is the default identification

restriction used in this dissertation when the latent variables are assumed to be independent.

Moreover, we implicitly assume independent latent variables. However, there are no reasons in

advance to expect latent variables to be independent (Bartholomew et al., 2011, p.214). After

imposing appropriate restrictions on Aµ, the assumption of independent latent variables is a matter

of convenience to address rotational indeterminacy in the structural part of the model (as presented
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in the previous subsection). Yet, in the Social Sciences latent constructs are often correlated.

Moreover, letting the LVM to have a structure that allows for the estimation of Φ can be useful

when determining the existence of redundant factors in the structural model (Brown, 2015).

Restrictions c) and d) allow for better interpretation of the factor loadings and for correlated

latent variables. In these cases, we combine elements from exploratory and confirmatory LVMs.

Restriction c) is known in the LVM literature as the error-in-variables formulation, and it is

inspired on the measurement error literature (see, e.g., Fuller, 1987). In restriction c), the first

q items are interpreted as noisy measures of the latent variables, and the variances of the latent

variables (i.e., the entries in diag(Φ)) are defined by the metrics of their corresponding item (i.e.,

the factor loadings for the first q items are fixed to 1). Restriction d) is very similar, but instead

of fixing the factor loadings, we assume Φ to be a correlation matrix (i.e., diag(Φ) = 1). If we

further restrict the factor loadings in the diagonal matrix Aµ,1 to be positive, we also address the

column sign-flip indeterminacy. Restriction d) is the default restriction used in this dissertation

when the latent variables are assumed to be correlated.

Lastly, and restrictions e) and f) are often used in confirmatory GLLVM (Jöreskog, 1969; Brown,

2015), as they usually reflect substantive theory, qualitative prior information, or hypotheses re-

garding the phenomenon of study. Here, we fix (at least) q2 parameters either in the factor loading

matrices and/or the factor covariance (correlation) matrix to solve the rotational indeterminacy.

Restrictions of the type in e) are referred to ‘simple structures’. In this case we fix entries in Aµ

to zero such that most items load on at most one factor. By doing so, we are effectively imposing

a rank restriction on the factor loading matrix. Let A
(q′)
µ be the sub-matrix of Aµ obtained by

deleting rows until A(q′)
µ has only zero elements in the q′th column, for q′ = 1, ..., q. Formally, Aµ

is identified if the sub-matrices A
(q′)
µ are of rank q − 1 (see, e.g., Reiersøl, 1950; Anderson and

Rubin, 1956 for further details). Under a simple structure restriction, A⊺
µAµ is a diagonal matrix.

In this sense, if the normalisation is through the latent factors (i.e., Φ = Iq), we end up satisfying

the same conditions as in restriction a). On the other hand, if the normalisation is through the

factor loading matrix, we have that A⊺
µAµ = Iq and also consistent with identification restrictions

above. The main limitation of a simple structure restriction in the factor loading matrix is that,

in practice, it might be unrealistic as items can reflect multiple latent constructs in many applied

research areas. In restriction f), it is the researcher who fixes (at least) q2 entries in Aµ and Φ

based on substantive theory or prior knowledge. Furthermore, we can address sign-flip if we require

the first non-zero element in each column of Aµ to be non-negative.

Note, however, that the restrictions discussed above only identify the model parameters up to

column permutation and column sign-flip. As such, imposing any restriction of the type a)-f) on
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Θ only ensures local identifiability of the GLLVM.

1.2.3 Empirical identification

Analytical identification strategies are based on the unknown model parameters Θ. Empirical

identification is an alternative that is based on the estimated parameters, Θ̂, which are introduced

in the next Section. Empirical identification is verified by evaluating the estimated expected

information matrix at the estimated solution, Ê[∇Θ log f(y; Θ)∇Θ log f(y; Θ)⊺]|Θ=Θ̂. A model is

empirically (locally) identified for a sample if the estimated expected information matrix is non-

singular at the maximum likelihood estimate Θ̂ (McDonald and Krane, 1977). It should be noted

that this empirical condition is a counterpart of the identification condition based on the theoretical

information matrix (Rothenberg, 1971) mentioned earlier.

According to Skrondal and Rabe-Hesketh (2004, Chapter 5), empirical identification offers sev-

eral practical advantages over analytical identification. Firstly, the estimated information matrix

is a byproduct of maximum likelihood estimation. Secondly, empirical identification is more gen-

eral as it does not require reduced-form parameters to characterise the marginal distribution of

the observed data. Thirdly, empirical identification assesses identification at a specific point of

important interest, namely the maximum likelihood estimate. Finally, empirical identification ad-

dresses problems that may be specific to the sample used for estimation and inference. For complex

models, we recommend verifying empirical identification at the estimated parameters, even after

imposing restrictions on the model parameters.

Parameter identification is a fundamental issue in statistical modelling because of its close

relationship with the existence of a consistent estimator Θ̂ of the true model parameters Θ∗ ∈ Ξ

generating the marginal distribution of the observed data. Estimation is discussed in the next

Section. The following Theorem shows the connection between identification and consistency:

Theorem 1.2.1 (Theorem 2.2.1 in Bekker et al., 1994). Let f(y; Θ) be a continuous function of

Θ ∈ Ξ for all y ∈ Rp. The true parameter generating the marginal distribution of the observed

data Θ∗ ∈ Ξ is locally identified if and only if there exists an open neighbourhood OΘ∗ of Θ∗ such

that any sequence Θe, e = 1, 2, ..., in Ξ ∩ OΘ∗ for which f(y; Θe) → f(y; Θ∗), for all y ∈ Rp, also

satisfies Θe
[k] → Θ∗

[k], for k = 1, . . . ,K.

Proof: See Bekker et al. (1994, page 18). □
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1.3. Estimation

In line with standard statistical modelling practice, we draw a random sample of n independent

units to estimate the model parameters Θ⊺ = (Θ⊺
y,Θ

⊺
z) that parameterise the GLLVM, as described

by (1.5). Let ym = (y1m, . . . , ypm)⊺ denote the vector of items and zm = (z1m, . . . , zqm)⊺ the vector

of latent variables for the mth observation in the sample, m = 1, . . . , n. In the GLLVM framework,

the objective function of the estimation problem is the marginal likelihood:

L(Θ;y) =
n∏

m=1

∫
Rq

[
p∏

i=1

fi(yim | z; Θyi)

]
p(z; Θz) dz

The model parameters characterising the GLLVM include the intercepts and factor loadings in

Θ⊺
y = (α⊺

0, vec(Aµ)
⊺), with item specific parameters Θyi = (αi0, αi1, . . . , αiq)

⊺; and the correlations

among latent variables in Θz = vech(Φ), where ‘vec’ and ‘vech’ denote the vectorisation and half-

vectorisation operators, respectively. The estimation procedure involves finding a vector Θ̂ ∈ Ξ

that yields the largest possible likelihood for a given observed dataset. In practice, the objective

function of the estimation problem is the marginal log-likelihood

ℓ(Θ;y) := logL(Θ;y) =
n∑

m=1

log

[∫
Rq

p∏
i=1

fi(yim | z; Θyi) p(z; Θz) dz
]

(1.6)

The maximum likelihood estimate (MLE), denoted as Θ̂, is the value of the parameter vector

that maximises the marginal log-likelihood, i.e.,:

Θ̂ = arg max
Θ ∈ Ξ

ℓ(Θ;y)

The theory and the associated computational methodologies for the marginal maximum like-

lihood (MML) estimation of latent factor models with continuous and discrete data are well es-

tablished in the LVM literature. There are two main MML estimation methods for LVMs: full-

information (FI-) and limited-information (LI-) procedures. In FI-MML methods, the model para-

meters are estimated using all the items and units contributions to the log-likelihood function in

(1.6). This approach can be computationally expensive, as it usually involves numerical evaluation

of high-dimensional integrals. In LI-MML methods (e.g., Jöreskog and Moustaki, 2001; Katsikatsou

et al., 2012), the parameters are estimated only using partial information from the lower-order mar-

gins of the observed data (e.g., univariate and/or bivariate distributions of the manifest variables)

and therefore, the integrals involved in the estimation process are of lower dimensionality. This

13



results in lower computational complexity. Both FI-MML and LI-MML estimators are consistent

and asymptotically normal. However, FI-MML estimators will be more efficient than LI-MML.

The decision regarding the estimation strategy should be made on a case-by-case basis, depending

on the characteristics of the problem at hand. We do not intend to present an exhaustive list of

references on this aspect, and refer the readers to Chen and Zhang (2021); Chen et al. (in press,

2023) for a comprehensive overview. In this dissertation we focus on the FI-MML estimation, but

it is worth mentioning that alternative estimation approaches have been proposed in the LVM

literature, such as least-squared-based estimators (e.g., Jöreskog and Golberger, 1972; Browne,

1984), Bayesian estimation methods (e.g., Lee, 2007a), and joint maximum likelihood estimation

methods (e.g., Chen et al., 2019).

Computation

Finding the MLE via FI-MML requires solving the score equations ∇Θℓ = 0. However, in most

cases, the solution for Θ̂ is not available in a closed form and iterative optimisation algorithms are

required to solve the estimation problem. Let αi = (αi0, αi1, . . . , αiq)
⊺. The score vector for the

intercepts and factor loadings in the measurement equation for item i is given by

∂ℓ(Θ;y)

∂αi
=

n∑
m=1

∫
Rq

[
∂ log fi(yim | z)

∂αi

]
p(z |ym) dz (1.7)

=

n∑
m=1

∫
Rq

1

ϕi

[
yim

∂ηi
∂αi

− ∂bi(ηi)

∂αi

]
p(z |ym) dz ,

which depends on the functional form of bi in fi for item i. Let the covariance (correlation) between

latent variables j and j′ (j < j′) be denoted by ψj,j′ = Φ[j,j′], where the sub-script refers to the

entry in the [j, j′]th position of Φ. Individual entries in the score vector for Φ are

∂ℓ(Θ;y)

∂ψj,j′
=

n∑
m=1

∫
Rq

[
∂ log p(z)

∂ψj,j′

]
p(z |ym) dz (1.8)

= −n
2

tr
(
Φ−1Djj′

)
+

1

2

n∑
m=1

[
tr
(
Gjj′Vm

)
+ z̆mGjj′ z̆m

]
where tr(·) denotes the trace of a matrix, Djj′ = ∂Φ/∂ψj,j′ is a matrix of zeroes except in the [j, j′]th

entry, where it takes the value of 1, and Gjj′ = Φ−1Djj′Φ
−1. The conditional mean, z̆m = E(z|ym),

and the conditional variance Vm = E [(z− z̆m)(z− z̆m)⊺ |ym] of the latent variables for unit m

in our sample, are computed using the properties of the trace operator and the linearity of the

conditional expectation.
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We resort to iterative optimisation algorithms to compute the MLE. Popular alternatives for

the direct maximisation of the log-likelihood are the gradient descent (GD) or the family of (quasi-

)Newton algorithms. These algorithms iteratively search for a new value of the parameter vector in

the direction determined by the score vectors, and then update this vector by a magnitude defined

by a step size (learning rate), until convergence. In the GD, the step size is a positive number (which

can be adaptive), while the (quasi-)Newton algorithms use the observed or expected information

(i.e., the matrix of (expected values of) second-order derivatives of the marginal log-likelihood),

or an approximation using the score vectors, to determine an optimal step size at each iteration.

Some advantages of these algorithms are their fast (super-linear) convergence rate (Broyden et al.,

1973) and estimates of the information matrix as a byproduct, which can be later used for the

computation of standard errors for the parameter estimates. Possible limitations include sensitivity

to starting values and heavy computational operations involving the inversion and computation of

the information matrices.

Alternatively, we can treat the latent variables as missing data and then estimate the model

parameters using the Expectation-Maximisation (EM) algorithm (Dempster et al., 1977). MML

estimation using the EM algorithm was introduced for the case of LVM with binary items in Bock

and Aitkin (1981), and later formulated within a FI-MML framework independently by Moustaki

(1996); Moustaki and Knott (2000) and Sammel et al. (1997) for items following a distribution

from the exponential family. The EM algorithm is an iterative procedure that alternates between

the E-step, where the approximation to the marginal log-likelihood is computed, and the M-step,

where the parameters are updated, until convergence.

Let (y, z) denote the complete data, where the items y are the observed data and the latent

variables z the missing data. The complete-data log-likelihood function is:

ℓc(Θ;y, z) =

n∑
m=1

log f(ym, zm; Θ)

=

n∑
m=1

[log f(ym | zm; Θy) + log p(zm; Θz)] (1.9)

The E-step involves computing and approximation function Q(Θ;Θ[t]), which is the expected

value of the complete-data log-likelihood in (1.9) over the distribution of z conditional on y,

evaluated at the (current) estimates for the model parameters at the tth iteration, Θ[t]:

Q(Θ;Θ[t]) = Ez | y,Θ[t] [ ℓc(Θ;y, z) ]

15



=

∫
Rq

n∑
m=1

[ log f(ym | zm; Θy) + log p(zm; Θz) ] p(z |ym; Θ[t]) dz

=

n∑
m=1

∫
Rq

p∑
i=1

log fi(yim | z; Θy,i) p(z |ym; Θ[t]) dz

+

n∑
m=1

∫
Rq

log p(zm; Θz) p(z |ym; Θ[t]) dz (1.10)

In the M-step, we update the parameter vector as Θ[t+1] = arg maxQ(Θ;Θ[t]). In prac-

tice, it suffices to find a solution that results in an increase of the approximation function, i.e.,

Q(Θ[t+1]; Θ[t]) ≥ Q(Θ[t]; Θ[t]). The optimisation problem involved in the M-step can be solved

using any of the gradient-based algorithms described above. However, the observed and expected

information matrices are easier to compute for the approximation function Q(Θ;Θ[t]) than for the

marginal log-likelihood ℓ(Θ;y), and thus a Newton-Raphson update scheme is usually preferred.

The E-step and M-step are repeated until convergence. The score vectors for the approximation

function in the EM-algorithm and the marginal log-likelihood are equivalent (Louis, 1982), and

thus the solutions obtained through the EM-algorithm or the direct optimisation are the same

(provided we use the same starting point). The main advantage of the EM-algorithm is its relat-

ively simple implementation. However, due to its (sub-)linear convergence rate (McLachlan and

Krishnan, 2008), the EM-algorithm can be slow to reach the mode.

Lastly, it is common practice to perform rotations on the estimated factor loading matrix to

obtain more interpretable and/or sparse solutions (see, e.g., Browne, 2001; Jennrich, 2001, 2002,

2004, 2006, 2007; Liu et al., 2023, for a relevant and thorough explanation on rotation techniques).

1.4. Factor Scores

Factor scoring, also known as scoring, involves assigning values to the latent variables for individuals

in a sample. In many applied contexts, such as educational and psychological testing, scoring is

the primary objective of latent variable modelling. In this dissertation, we assume that the latent

variables are continuous and normally distributed, z ∼ N(0,Φ), and therefore we expect the factor

scores to have similar characteristics.

In factor scoring, the parameter estimates Θ̂ are treated as known. As discussed in Skron-

dal and Rabe-Hesketh (2004, Chapter 7) and Bartholomew et al. (2011, Chapters 2 and 4), all

the information about the latent variables is contained in the posterior distribution of the latent

variables, which is the distribution of the latent variables conditional on the observed data and

16



evaluated at the maximum likelihood estimate, p(z |y; Θ̂). Following Bayes’ theorem, this posterior

distribution is

p(z |y; Θ̂) =
f(y | z; Θ̂y) p(z; Θ̂z)∫

Rq f(y | z′; Θ̂y) p(z′; Θ̂z) dz′
(1.11)

From (1.11) above, we can obtain information about the factors zm for individuals m = 1, . . . , n

in our sample. A popular scoring method is the empirical Bayes (EB) approach, which allows us

to compute factor scores for unit m = 1, ..., n as follows:

z̃EB
m = E(z |ym; Θ̂) =

∫
Rq

z · p(z |ym; Θ̂) dz

For the classical Normal linear factor model, the EB scores z̃EB
m can be obtained analytically

by using a linear combination of the manifest item values in ym (see Skrondal and Rabe-Hesketh

(2004, Section 7.3) for a detailed explanation). This approach is often referred to as the ‘regression

method’ for factor scoring. However, when dealing with non-normal items, numerical integration

methods are necessary to compute the conditional expected value.

An alternative to using the posterior mean as the factor scores, as in EB, is to use the (log-)

posterior mode instead. The maximum a-posteriori (MAP) factor scores for unit m = 1, ..., n are

given by:

z̃MAP
m = arg max

z ∈ Rq
log p(z |ym; Θ̂)

Generally, closed form solutions for the MAP scoring problem are not available, and iterative

methods must be used to solve the optimisation problem. The MAP scores, denoted by z̃MAP
m , are

obtained by solving the following set of equations for m = 1, . . . , n:

∂

∂z
log p(z |ym; Θ̂) =

∂

∂z
log p(z; Θ̂z) +

p∑
i=1

∂

∂z
log fi(yim | z; Θ̂y,i) = 0.

Compared to the EB scoring method, the MAP scoring method does not require numerical integ-

ration.

Some scoring methods rely on simple aggregates of the responses from the test and are con-

sidered more heuristic in nature. An example is the sum score (also known as raw score) method,

which assumes that all manifest variables measure the same latent construct similarly (with some

measurement error), or, in other words, that all factor loadings are equal, as in congeneric tests

(see, e.g., Jöreskog, 1971). The sum score for factor j = 1, . . . , q in unit m = 1, . . . , n can be calcu-

lated as z̃SS1
jm =

∑p
i=1 yim, where yim is the response of unit m to item i. Another version of the sum
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score uses the estimated factor loadings, denoted by α̂ij , and is defined as z̃SS2
jm =

∑p
i=1 α̂ijyim for

binary items and z̃SS2
jm =

∑p
i=1(α̂ijyim)/σ̂i for continuous items, where σ̂i is the estimated standard

deviation of item i. For distributions in the exponential family, z̃CS2
jm corresponds to a minimal suf-

ficient statistic of the latent variable (in a Bayesian sense), assuming a linear relationship between

the latent variables and the observed variables in the measurement equations (see, e.g., Bartho-

lomew, 1984; Bartholomew et al., 2011, Sections 2.5 and 2.15). Sum scores are attractive because

they are easy to compute and account for the relative contribution of each item to the common

factor.

In the unidimensional case, the scoring methods discussed above generally produce similar

results and will usually rank individuals with the same response patterns in the same order. Knott

and Albanese (1993) provide a general framework for scoring binary items and show that, under

certain conditions, the methods above are equivalent. Moustaki and Knott (2000) extended this

framework to the GLLVM with items in the exponential family. For more information on this

equivalence, we refer readers to the aforementioned references and to Bartholomew et al. (2011,

Section 2.15). Regardless of the scoring method used, the measurement model f(y | z; Θ̂y) plays a

central role in the scoring process.

1.5. Summary and Outline of this dissertation

In this chapter, we have provided a comprehensive overview of the Generalised Linear Latent

Variable Model (GLLVM) framework proposed by Bartholomew et al. (2011) and Skrondal and

Rabe-Hesketh (2004). We began by introducing the model structure and the fundamental concepts

of latent variable models in Section 1.1. The GLLVM assumes that observed variables follow

distributions from the exponential family, given the latent variables. The relationship between the

observed and latent variables is linear, up to a conditional mean, where the mean of the items results

from a linear combination of the latent variables through a possibly nonlinear transformation. To

simplify the model, we assume that the latent variables follow a Normal distribution. However,

this assumption can be relaxed to allow for discrete latent variables (as in LCA), or for an explicit

modelling of the relationships between latent factors (as in SEM).

In Section 1.2, we provide a comprehensive discussion of model identification. In general, a

model is considered identified if two distinct parameter values produce unique marginal probability

distributions for any given observed data. For LVMs, identifying a model often requires imposing

restrictions on the model parameters, such as fixing factor loadings and/or factor covariances/-

correlations. We outline several strategies for imposing these restrictions in a structured manner.
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Achieving model identification is crucial for ensuring the consistency of the maximum likelihood

estimator, which we introduce in Section 1.3. Here, we discuss common computational techniques

used in the LVM literature, including the EM algorithm, which is an iterative approach treating

the latent variables as missing data, and direct optimization of the marginal log-likelihood using

(quasi-)Newton solvers. While both methods yield an equivalent maximum likelihood solution,

their implementation and convergence speeds differ. Finally, in Section 1.4, we delve into factor

scoring, the process of assigning values to the latent variables for the observations in our sample.

In Chapter 2, we address the limitations of the GLLVM framework, specifically the assumption

of items following a distribution from the exponential family, which can be restrictive in many

applications. To overcome this, we propose a new class of Latent Variable Models for Location,

Scale, and Shape parameters (GLVM-LSS). This model employs linear functions of latent variables

to model the location, scale, and shape parameters of observed items’ conditional distributions,

enabling a more effective way to model the mean, variance, skewness, and kurtosis of items in

terms of the latent variables. However, the increased flexibility of this model also results in more

complexity, making it difficult to interpret. In Chapter 3, we introduce a penalised maximum

likelihood estimation of the GLVM-LSS to obtain factor loadings matrices that are sparse and

easier to interpret. We also discuss an automatic, data-driven method for selecting the tuning

parameters that determine the amount of penalisation, which simplifies the estimation process

and avoids computationally intensive techniques such as grid-search or cross-validation. Lastly, in

Chapter 4, we conclude by suggesting future research directions.
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Chapter 2

Generalised Latent Variable Models

for Location, Scale, and Shape

parameters

In this Chapter, we introduce a novel class of Generalised Latent Variable Models for Location,

Scale, and Shape parameters (GLVM-LSS). These models use linear functions of latent factors

to model the location, scale, and shape parameters of the items’ conditional distributions. By

doing so, we model higher order moments such as variance, skewness, and kurtosis in terms of the

latent variables, providing a more flexible framework compared to classical factor models. The

model parameters are estimated using maximum likelihood estimation. Our findings suggest that

modelling the entire distribution of items, not just the conditional mean, leads to improved model

fit and deeper insights into how the items reflect the latent constructs they are intended to measure.

To assess the performance of the proposed methods, we conduct extensive simulation studies and

apply it to real-world data from educational testing and public opinion research. The results

highlight the efficacy of the GLVM-LSS framework in capturing complex relationships between

observed variables and latent factors, providing valuable insights for researchers in various fields.

2.1. Introduction

Latent Variable Models (LVM) are widely used in social, behavioural, and educational sciences

to measure unobserved constructs and reduce dimensionality. These models explain the associ-

ations between a set of observed variables (also known as items) through a much smaller set of
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latent variables (also known as factors). Many probabilistic, parametric LVMs fall within the Gen-

eralised Linear Latent Variable Model framework (GLLVM, Skrondal and Rabe-Hesketh, 2004;

Bartholomew et al., 2011), as discussed in Section 1.1. In the GLLVM, we assume that i) condi-

tional on the latent variables, items follow a distribution from the exponential family, and ii) the

relationship between an item and the latent variables is linear through the (conditional) mean,

treating other distributional parameters as nuisance parameters. For further details on estimation

and applications of GLLVMs, we refer the readers to Moustaki and Knott (2000); Skrondal and

Rabe-Hesketh (2004); Bartholomew et al. (2011).

To some extent, the GLLVM can be seen as a case of independent and simultaneous generalised

linear models (GLM, McCullagh and Nelder, 1989) where the conditional mean of the outcome

variables is modelled in terms of latent predictors. However, in many cases, we are interested

not only in the conditional mean, but also in how higher order moments of the outcome variable

(such as variance, skewness, and kurtosis) relate to the predictors. In regression analysis, where

all variables are observed, there has been a growing interest in modelling the entire conditional

distribution of the response variable given one or more predictors, rather than just the conditional

mean. This approach leads to a more flexible modelling framework and a more comprehensive

understanding of the relationship between the response variable and the predictors.

A popular distributional regression framework is the Generalised Additive Model for Location,

Scale and Shape (GAMLSS) Rigby and Stasinopoulos, 2005; Klein et al., 2015; Umlauf et al.,

2018). In the GAMLSS framework, we model the conditional distribution of the outcome variable

(given the covariates) by expressing the distributional parameters that characterise such condi-

tional distribution as functions of the explanatory variables. GAMLSS offers several advantages

over traditional GLMs, including greater flexibility and less restrictive assumptions on the response

variable’s distribution, better estimation of the relationships between dependent and independent

variables, modelling of extreme events and outcomes, and improved forecasting. Moreover, in

GAMLSS the likelihood is available due to the parametric distributional assumption, enabling

likelihood-based inferences on the parameter estimates. The GAMLSS framework is especially

useful when covariate effects on higher order moments are of substantive interest. For a compre-

hensive review of this topic, see Stasinopoulos et al. (2017); Kneib (2013); Kneib et al. (2023);

Fahrmeir et al. (2021).
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2.1.1 Motivation: A distributional approach to LVM

A distributional approach to latent variable modelling offers numerous potential advantages over

the classic GLLVM. We present some examples where such an approach would be beneficial.

Going beyond the exponential family assumption: The most relevant application of a dis-

tributional approach to LVM is when real-world data do not meet the distributional assumptions

required by the GLLVM framework. Various issues related to this have been addressed separately

and independently in the LVM literature by many authors who have proposed methodological con-

tributions with varying estimation and inference approaches. For example, continuous items often

exhibit heteroscedasticity (Meijer and Mooijaart, 1996; Lewin-Koh and Amemiya, 2003; Hessen

and Dolan, 2009), skewness (Montanari and Viroli, 2010; Lin et al., 2015), and/or kurtosis (As-

parouhov and Muthén, 2016); discrete, count, and bounded continuous (e.g., in the unit interval)

items often display zero/one/maximum value inflation and/or heaping due to respondents round-

ing their numerical answers to the nearest five or ten (Wang, 2010; Wall et al., 2015b; Magnus

and Thissen, 2017; Molenaar et al., 2022), and data can be censored or truncated (Moustaki and

Steele, 2005). Although limited information and robust estimation methods exist to control for

deviations from the distributional assumptions under the GLLVM framework (e.g., Browne, 1984;

Bollen, 1996; Moustaki and Victoria-Feser, 2006), these features of the items are crucial and ig-

noring them can result in underestimated standard errors or biased parameter estimates. Despite

being an active line of research in the LVM literature, these contributions are not part of a gen-

eral parametric-based distributional LVM framework, but rather independent models that address

separate problems in applied research.

Substantive interest in higher order moments: A distributional approach to latent variable

modelling may also be of interest when examining the effects of latent variables on higher order

moments of items. For example, in studies involving clustered data or repeated measures obtained

through experience sampling methods, researchers focus not only on the conditional mean of an

item, but also on how its variance is related to the level of a latent factor. This is particularly

common in psychopathology studies, where researchers are interested in the intra-individual vari-

ability or stability of emotional responses, in addition to deviations from an individual’s baseline

mood, to have a more nuanced understanding of the underlying phenomena. Examples of works

in this area include Hedecker et al. (2006, 2008, 2012), and Wang et al. (2012).
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Assessing item quality: Distributional LVMs could also be applied in the item quality control

literature. In this context, discrimination refers to an item’s ability to distinguish between indi-

viduals with different levels of the latent construct being measured, and it is crucial when assessing

the psychometric properties of an item or a test. Items with low discrimination power may not be

contributing to the test’s accuracy and may need to be revised or removed. The slope coefficient

in the equation describing the linear relationship between the latent factor and the item observed

score is often used to assess item discrimination. However, poor discrimination can occur if the

linear relationship does not hold, or if the item exhibits conditional heteroscedasticity or skewness.

In the latter case, different values of the conditional variance or higher order moments along the

latent scale can lower the item’s discrimination power (Hessen and Dolan, 2009). Heteroscedastic

items, for example, will have respondents with different levels of the latent factor responding similar

values for the item score. It is therefore important to take into account such item characteristics

when evaluating its quality.

While distributional modelling techniques have the potential to yield numerous advantages,

they have not been widely explored within the LVM framework. Some authors have proposed

quantile-based factor models (see e.g., Sagner, 2019; Chen et al., 2021). However, to the best of

our knowledge, there is currently no unified parametric-based distributional framework for LVM

analysis. The existing developments consist of independent, disconnected methods with no com-

mon estimation or inferential frameworks. In response, this paper introduces a flexible class of

parametric distributional latent variable models to fill that gap. Specifically, we present a Gen-

eralised Latent Variable model for Location, Scale, and Shape parameters (GLVM-LSS), which

adapts the GAMLSS distributional regression framework (Rigby and Stasinopoulos, 2005; Klein

et al., 2015) to models with latent variables. In the GLVM-LSS, the location, scale, and shape

parameters of the items’ conditional distributions are assumed to be linear functions of latent vari-

ables. This allows the modelling of the entire conditional distribution of the item, including the

mean and higher order moments, in terms of the latent variables. To an extent, the GLVM-LSS

serves as an umbrella class of LVMs that includes previous works as particular cases. We present

the GLVM-LSS model in detail in Section 2.2, followed by a discussion of the full-information

marginal maximum likelihood estimation procedure in Section 2.3. We conduct simulation studies

in Section 2.4 to demonstrate the properties of the proposed method under finite sample settings

and then, in Section 2.5, apply it to real-world settings using educational data from the PISA

2018 mathematics exam and data on public opinion research from the American National Election

Study 2020.
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2.2. Latent Variable Models for Location, Scale and Shape para-

meters (GLVM-LSS)

Let y = (y1, ..., yp)
⊺ ∈ Rp be a vector of items and z = (z1, ..., zq)

⊺ ∈ Rq a vector of latent variables,

with q ≪ p. The density for the observed data is written as f(y) =
∫
Rq
f(y | z)p(z) dz, where the

conditional distribution f(y |z), also known as the measurement component of the LVM, describes

the relationship between y and z; while p(z), the structural component, specifies the relationships

among the latent variables. In the LVM framework, the correlations among the manifest variables

are fully accounted for by the latent variables, and thus we assume the items are conditionally

independent given z. We further assume that the conditional distributions of the items follow a

known parametric form indexed by a (vector of) distributional parameter(s) θi. For the structural

model, we adopt the multivariate Normal distribution, z ∼ N(0,Φ), which is a common choice in

the LVM literature due to its mathematical and computational convenience (see, e.g., Bartholomew

et al., 2011, Chapter 2). However, this assumption can be relaxed to allow for greater flexibility

in the structural component of the LVM, as demonstrated by several studies (e.g., Woods and

Thissen, 2006; Ma and Genton, 2010; Irincheeva et al., 2012; Wall et al., 2015a).

The marginal density of the observed variables can be written as

f(y) =

∫
Rq

[
p∏

i=1

fi(yi | z;θi)

]
p(z;Φ) dz (2.1)

The GLLVM assumes that the conditional distribution of each item i = 1, ..., p is from the

exponential family (although not necessarily the same distribution for all items). Specifically,

we have fi(yi | z) = exp
{
ϕ−1
i [yiζi − bi(ζi)] + ci(yi;ϕi)

}
, where ζi is the canonical parameter, ϕi

is a dispersion parameter, and bi and ci are pre-specified distribution-specific functions. In the

exponential family case, we can write θi = (ζi, ϕi)
⊺. For some distributions in the exponential

family, the scale parameter is ϕi = 1, and it is only of interest in the continuous case.

Denote the linear combination of the latent variables, also referred to as the systematic com-

ponent or measurement equation, as

ηi(z) = αi0 +

q∑
j=1

αijzj (2.2)

In the above, we use the notation ηi(z) to emphasise the functional dependence on the latent

variables. We will drop the dependence on z for notational convenience, but it should be clear
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from context. In the GLLVM, the relationship between the items and the latent variables is linear

through the canonical parameter: ζi = ηi. The focus in the GLLVM is on modelling the conditional

mean of the items as linear functions of the latent variables, that is, E(yi |z) = b′i(ηi). The mapping

υ−1
i := b′i is known as the (canonical) link function, a monotonic differentiable function that

connects the conditional mean of yi with the latent variables. Note that the dispersion parameter

does not depend on z (see Moustaki and Knott (2000); Skrondal and Rabe-Hesketh (2004) for

more details).

In our proposed framework, we relax the exponential family assumption in the measurement

part of the LVM, allowing fi(yi |z;θi) to be any parametric distribution indexed by a D-dimensional

vector of distributional parameters θi = (θ
(1)
i , ..., θ

(D)
i )⊺. Additionally, we express the distributional

parameters θ(d)i as linear functions of the latent variables. We use the sub-index (i, θd) to indicate

that the corresponding function or regression parameter is defined for θ(d)i ∈ θi. The measurement

equation for θ(d)i is then given by:

υi,θd(θ
(d)
i ) = ηi,θd := αi0,θd +

q∑
j=1

αij,θdzj , for i = 1, ..., p, and d = 1, ..., D; (2.3)

Here, υi,θd is a distributional parameter-specific link function (e.g., identity, log, logit, etc.)

chosen to ensure appropriate restrictions on the distributional parameters. As before, ηi,θd is

defined as a linear combination of latent variables. Coefficients αi0,θd are intercepts, and slopes

(also called factor loadings) in (2.3) form the q-dimensional vector αi,θd = (αi1,θd , ..., αiq,θd)
⊺. While

this measurement equation can be extended to include higher order polynomials (e.g., McDonald,

1967; Yalcin and Amemiya, 2001) or interaction and non-linear terms (Rizopoulos and Moustaki,

2008), we leave these for future consideration.

The distributional parameters in θi can be categorised as location, scale, or shape parameters,

depending on their role in the parameterization of fi. Location parameters generally relate to

the first-order moment of the distribution, scale parameters to the second-order moment, and

shape parameters (if any) to higher-order moments1. To simplify notation, we denote the location

parameter as µ := θ
(1)
i , the scale parameter as σi := θ

(2)
i , and the shape parameters as νi := θ

(3)
i

and τi := θ
(4)
i . For many families of distributions, a maximum of four parameters (one location,

one scale, and two shape parameters) is sufficient, but the model can be extended to include cases

1Some distributions might have alternative parametrisations with different definitions for the scale and shape
parameters (see, e.g., Yee (2020) for an example of different parametrisations of the negative binomial distribution).
It is recommended to work with a parameterisation that allows for easy and direct interpretation of the effects
of the explanatory variables (in this case, the latent variables), where the scale and shape parameters have direct
relationship with the conditional variance, skewness, and kurtosis of the observed variable.
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with multiple location, scale, or shape parameters. For the remainder of the paper, we refer to

the distributional parameter vector as θi = (µi, σi, νi, τi)
⊺, and use φi ∈ θi to denote any location,

scale, or shape parameter in the (conditional) distribution of item i.

Matrix notation can be convenient in some cases. Let φ = (φ1, ..., φp)
⊺ be the vector of the

same distributional parameter φ for all items. Denote α0,φ = (α10,φ, ..., αp0,φ)
⊺ as a vector of

intercept terms, and let Aφ be a (q × p) factor loadings matrix with rows corresponding to the

vectors αi,φ. Finally, let υφ be the vector function that applies the corresponding link function

υi,φ to each entry of φ. With this notation, we can describe the set of measurement equations for

a distributional parameter φ as υφ(φ) = α0,φ +Aφz.

To further simplify notation, we can write a vector of parameters θ⊺ = (µ⊺,σ⊺,ν⊺, τ ⊺), a vector

of intercepts α⊺
0 = (α⊺

0,µ,α
⊺
0,σ,α

⊺
0,ν ,α

⊺
0,τ ), and a factor loading matrix A⊺ = [A⊺

µ,A
⊺
σ,A

⊺
ν ,A

⊺
τ ]. Then,

we can compactly write the measurement equations of a GLVM-LSS model as

υ(θ) = α0 +Az (2.4)

The GLVM-LSS is the result of combining the model in (2.1) with the measurement equations

for the distributional parameters in (2.4). One can easily see that many cases of the GLLVM can

be derived by modelling the location parameter as a linear function of the latent variables while

assuming the scale parameters are constant. This approach is also applicable to many models

proposed in the LVM for specific applications. In the following section, we provide examples of

how the GLVM-LSS can be used to accommodate these cases and, more importantly, extend them.

2.2.1 Some examples of GLVM-LSS

Example 1. Heteroscedastic Linear Factor Models: Heteroscedasticity can be of sub-

stantive interest. An example is the hypothesis of ‘ability differentiation’, which suggests that the

strength of correlations between items varies with the level of latent ability (Detterman and Daniel,

1989; Deary et al., 1996). This phenomenon has been studied (e.g., Tucker-Drob, 2009; Molenaar

et al., 2011), and has been linked to heteroscedastic errors in the factor model (Hessen and Dolan,

2009). Item quality control is another scenario where heteroscedasticity is important, as we expect

the precision of an item to be independent of an individual’s ability.

The heteroscedastic factor model (Meijer and Mooijaart, 1996; Lewin-Koh and Amemiya, 2003;

Hessen and Dolan, 2009) assumes Normal distributions for items i = 1, ..., p, with distributional

parameters θi = (µi, σi)
⊺ as functions of the latent variables, yi | z ∼ N(µi(z), σ2i (z)). By choosing
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the identity and the log link functions, the measurement equations are given by

µi(z) = αi0,µ +

q∑
j=1

αij,µzj ,

log(σi(z)) = αi0,σ +

q∑
j=1

αij,σzj .

Thus, the GLVM-LSS framework extends existing heteroscedastic factor models in the LVM liter-

ature to accommodate multiple latent variables.

Example 2. Skew-Normal Linear Factor Models: The Skew-Normal (SN) distribution

(Azzalini, 1985; Azzalini and Dalla Valle, 1996; Azzalini and Capitanio, 1999) has received recent

attention in the LVM literature. While multivariate SN factor models have been proposed previ-

ously (Montanari and Viroli, 2010; Liu and Lin, 2015; Asparouhov and Muthén, 2016), existing

approaches only model the location parameter in terms of the latent variables. However, in the

GLVM-LSS framework, we can extend the model to include the scale and shape parameters of the

SN distribution. In addition, the SN distribution has been used to model skewed latent variables

with both continuous and categorical items (Molenaar et al., 2010, 2011; Molenaar, 2015; Molenaar

and Bolsinova, 2017).

Assume that items i = 1, ..., p follow a conditional SN distribution, yi |z ∼ SN(µi(z), σ
2
i (z), νi(z)),

in which the location (µi ∈ R), scale (σi ∈ R+), and shape (νi ∈ (0, 1)) parameters are linear

functions of the latent variables. The measurement equations for the distributional parameters

θi = (µi, σi, νi)
⊺ are given by

µi(z) = αi0,µ +

q∑
j=1

αij,µzj ,

log(σi(z)) = αi0,σ +

q∑
j=1

αij,σzj ,

logit(νi(z)) = αi0,ν +

q∑
j=1

αij,νzj .

We use an alternative parameterisation of the SN distribution that is similar to the one intro-

duced in Azzalini (1985). We refer the readers to Appendix A1.1 for further details.

Example 3. Zero-Inflated Poisson Factor Models: Excess zero responses (zero-inflation,

ZI) are very common in count data collected for research in psychology and ecology. Factor models
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for zero-inflated count data in the LVM literature can be classified into two classes. The first

approach considers ZI as the result of having a non-susceptible or non-pathological sub-population

(latent class) of individuals who respond with zero to all items (e.g., Wall et al., 2015b; Magnus

and Thissen, 2017 for count data; Magnus and Liu, 2022 for ordinal items). The second approach,

which we follow in this paper, is more flexible and considers ZI to be a phenomenon observed at

the item level (e.g., Wang, 2010; Niku et al., 2017, 2019 for count data; Magnus and Garnier-

Villarreal, 2021 for ordinal items). Regardless of the approach, ignoring ZI can lead to biased

parameter estimates when fitting LVMs (Wall et al., 2015b; Magnus and Garnier-Villarreal, 2021).

In the GLVM-LSS framework, factor models for count data with excess zeros result from as-

suming a Zero-Inflated Poisson (ZIP) distribution for the observed items, yi |z ∼ ZIP(λi(z), πi(z)).

Here, both the probability of a person responding a ‘structural zero’ for item i (πi), and the

rate parameter in the Poisson distribution (λi) are functions of the latent variables. Further de-

tails are found in Appendix A1.2. The measurement equations for the distributional parameters

θi = (λi, πi)
⊺ are

log(λi(z)) = αi0,λ +

q∑
j=1

αij,λzj ,

logit(πi(z)) = αi0,π +

q∑
j=1

αij,πzj .

The GLVM-LSS resulting from combining the model in (2.1) and the measurement equations

above is a generalisation of Wang (2010) to the multidimensional factor case. This framework

can be extended to model items with excess response in other values (e.g., zero-one-inflation in

Molenaar et al., 2022) or heaping around particular values of the response scale (Wall et al., 2015b).

However, these examples are left for future implementation, and are not part of this Chapter.

Example 4. Beta Factor Models: Continuous data that are measured in the (0, 1) interval,

such as proportions, continuous response format (CRF) items, scaled Likert items, and visual

analogue response scales, are of interest to quantitative social scientists. The Beta distribution is a

natural distribution to model these types of items. Beta factor models have been proposed in the

literature to model these items, where only the conditional mean of the items is modelled in terms

of a unidimensional latent factor (Noel and Dauvier, 2007; Noel, 2014; Revuelta et al., 2022).

In this paper, we follow the location-scale parameterization of the Beta distribution proposed

by Rigby et al. (2020) (see Appendix A1.1 for further details). Conditional on the latent vari-
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ables, we assume that the items follow a Beta distribution, yi | z ∼ Beta(µi(z), σi(z)). Under this

parameterisation, E(yi | z) = µi, and Var(yi | z) = σ2i µi(1 − µi), which means that µi ∈ (0, 1) acts

as the location parameter, and σi ∈ (0, 1) as the scale parameter. The distributional parameters

θi = (µi, σi)
⊺ are functions of the latent variables, with measurement equations given by

logit(µi(z)) = αi0,µ +

q∑
j=1

αij,µzj ,

logit(σi(z)) = αi0,σ +

q∑
j=1

αij,σzj .

This GLVM-LSS model extends existing models in the Beta factor models literature in two ways.

First, it allows for modelling heteroscedastic items in the (0, 1) interval, which is not commonly

done in the literature. An exception is Verkuilen and Smithson (2012), where the authors consider

random effects on the scale parameter in a Beta mixed-model. Modelling higher-order moments

of Beta-distributed items is also of interest given the reasons discussed above for continuous items

in the real line. Second, it generalises to the multidimensional factor case.

To summarise, the GLVM-LSS encompasses different LVMs proposed in the literature to ad-

dress specific types of items or violations to the distributional assumptions in the GLLVM frame-

work. The GLVM-LSS provides greater flexibility to applied researchers by allowing them to assume

any parametric distribution for the items. The GLVM-LSS has close connections and shares similar

a parameterisation with well-established regression-type models for observed variables, such as the

Generalised Additive Model for Location, Scale, and Shape (Rigby and Stasinopoulos, 2005; Klein

et al., 2015), and Vector Generalised Additive Models (Yee and Wild, 1996; Yee, 2015).

In the following section, we present a unified maximum marginal likelihood estimation frame-

work, discuss inferential aspects of the GLVM-LSS, identify restrictions to avoid the rotational

indeterminacy of LVMs, and introduce model selection and comparison criteria.

Model Identification

As discussed in Section 1.2, LVMs are not identified, partially because of the arbitrariness of the

location and scale of the latent variables. The same is true for the GLVM-LSS framework proposed

in this chapter. Assessing analytical identification for the GLVM-LSS context is a challenging task

since there are few simple GLVM-LSS models with marginal log-likelihoods entirely characterised

by reduced-form parameters. Additionally, analytical identification is possible only on a case-by-

case basis, which precludes establishing general identification rules for the GLVM-LSS. As a result,
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we rely on general rules involving restrictions on the model parameters to solve for the rotational

indeterminacy. It is worth noting that these restrictions are necessary but not sufficient conditions

for local identification of the model parameters, emphasising the importance of future research to

establish stronger and more general conditions for the identifiability of complex models such as the

GLVM-LSS.

In the unidimensional case (q = 1), we can assume that z1 follows a standard Normal distri-

bution (z1 ∼ N(0, 1)) to address the rotational indeterminacy. However, if there is a substantial

interest in estimating the variance of the latent variable, we can assume that z1 follows a Normal

distribution with variance ψz, which is estimated freely. In this case, we need to fix the factor

loading in the measurement equation for the location parameter of the first item to be equal to

one (α11,µ = 1).

In the case of multiple latent variables (q > 1), the factor loadings matrix in (2.4) is not identi-

fiable due to rotational indeterminacy, unless q2 restrictions are imposed on the model parameters

(Anderson and Rubin, 1956). In exploratory GLVM-LSS, it is often assumed that the latent vari-

ables are uncorrelated. In this case, the factor loadings matrix can be partitioned as A⊺ = [A⊺
1,A

⊺
2],

where A1 is a (q× q) matrix with entries above the diagonal fixed to zero (and thus not estimated

at all), and A2 is usually dense. In confirmatory GLVM-LSS, it is usually assumed that the latent

variables are correlated. If Φ is assumed to be a correlation matrix (i.e., diag(Φ) = 1), then A1

is fixed to be diagonal. It can be the case that we don’t impose restrictions on Φ (i.e., the latent

variables variances/covariances are freely estimated: diag(Φ) ̸= 1), and thus A1 is fixed an identity

matrix Iq.

For better interpretability, in both exploratory and confirmatory settings we suggest imposing

these restrictions on the factor loading matrix corresponding to the measurement equations for

the location parameters (i.e., Aµ). However, given the structure of the ‘aggregate’ factor loading

matrix and the rotation of the latent variable space, the q2 restrictions can be imposed anywhere

in A or Φ. For further details on identification in LVMs, see Anderson and Rubin (1956) and the

discussion in Section 1.2.

2.3. Estimation, Inference, and Model Selection

To estimate the GLVM-LSS model described by (2.1) and measurement equations of the type in

(2.3), we use a full information marginal maximum likelihood (FIMML) estimation method (Bock

and Aitkin, 1981). FIMML has been extensively used in the literature, and it has became the
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norm for estimating GLLVMs (see, e.g., Bartholomew et al., 2011; Skrondal and Rabe-Hesketh,

2004). The estimation procedure involves maximising the marginal log-likelihood function which,

for a random sample of size n, is given by:

ℓ(Θ;y) =

n∑
m=1

log

(∫
Rq

[
p∏

i=1

fi(yim | z;θi(z))

]
p(z;Φ) dz

)
, (2.5)

Here, y is the observed data, and Θ is a K-dimensional vector of unknown model parameters.

When the latent variables are assumed to be uncorrelated (i.e., Φ = Iq), a common setting in

exploratory analyses, the parameter vector Θ only includes intercepts and factor loadings, i.e.,

Θ⊺ = (α⊺
0, vec(A)⊺), where ‘vec’ is the vectorisation operator. If the latent variables are assumed

to be correlated, as it is common in confirmatory analyses, then Θ⊺ = (α⊺
0, vec(A)⊺, vech(Φ)⊺),

where ‘vech’ is the half-vectorisation operator. Let Ξ ⊆ RK be the parameter space, i.e., Θ ∈ Ξ.

The maximum likelihood estimate (MLE), denoted as Θ̂, is the point in the parameter space that

maximises the marginal log-likelihood function:

Θ̂ = arg max
Θ∈Ξ

ℓ(Θ;y)

2.3.1 Computation

In most cases, the solution for Θ̂ is not available in a closed form, and a combination of numerical

integration and iterative optimisation algorithms is required to solve the equations ∇Θℓ = 0. To

address this challenge, we propose a sequential implementation of two optimisation algorithms:

the EM-algorithm (Dempster et al., 1977), in which the latent variables are treated as ‘missing

data’; and a (quasi-)Newton algorithm.

We propose this computational approach mostly for practical reasons. The EM-algorithm has

a number of convenient properties, including a low computation cost per iteration, relative ease of

implementation, guaranteed monotonic increase in the value of the objective function, and stability,

particularly when the initial values are far from the mode of the log-likelihood. However, due to its

(sub-)linear convergence rate (McLachlan and Krishnan, 2008), it can be slow to reach the mode. In

contrast, (quasi-)Newton methods are faster due to their super-linear convergence rate and yield

estimates of the information matrix as a byproduct, which can be used for the computation of

standard errors. Nevertheless, these algorithms may fail to converge if initiated far from the mode

and often require more intensive computational operations, such as matrix inversion. Therefore,

we propose an optimisation strategy that involves using the EM-algorithm for a fixed number of
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iterations and then using the resulting intermediate estimates as ‘refined’ starting values for the

(quasi-)Newton algorithm, which is used in the direct maximisation of ℓ(Θ;y). We provide more

details about our proposed approach below.

First step: Parameter computation via the EM-algorithm

The EM-algorithm is a widely used iterative procedure for estimating LVMs. It alternates between

two steps: the E-step, in which we approximate the expected value of the complete-data log-

likelihood with respect to the posterior distribution of the latent variables, and the M-step, in

which we optimise the expected log-likelihood obtained from the E-step. The EM-algorithm is

particularly useful when the maximum likelihood estimator is not available in closed form.

Let f(y, z; Θ) be the joint probability function of the complete data (y, z). The complete-data

log-likelihood is:

ℓc(Θ;y, z) =
n∑

m=1

log f(ym, zm; Θ)

=
n∑

m=1

[{
p∑

i=1

log fi(yim | z;θi)

}
+ log p(zm;Φ)

]
(2.6)

In what follows, we use the superscript [t] to indicate an estimate, gradient vector, or matrix

at iteration t.

E-step: Compute the expected value of (2.6) with respect to the posterior distribution of z given

y, evaluated at the current parameter estimates Θ[t]:

Q(Θ;Θ[t]) = Ez | y;Θ[t] [ ℓc(Θ;y, z) ]

=
n∑

m=1

∫
Rq

p∑
i=1

log fi(yim | z;θi) p(z |ym; Θ[t]) dz

+
n∑

m=1

∫
Rq

log p(zm;Φ) p(z |ym; Θ[t]) dz (2.7)

M-step: Update the parameter vector to Θ[t+1] = arg maxQ(Θ;Θ[t]). In practice, we find Θ[t+1]

that increases the value of the objective function, i.e., Q(Θ[t+1]; Θ[t]) ≥ Q(Θ[t]; Θ[t]). The M-step

requires solving for the complete-data score vector S[t], which is defined as the gradient of the

expected complete-data log-likelihood with respect to the parameter vector, evaluated at Θ[t], i.e.,
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S[t] := ∇ΘQ(Θ;Θ[t]) = 0.

Gradient descent (GD) is a simple yet robust update scheme used for updating parameter

estimates. The parameter estimates are updated as Θ[t+1] = Θ[t] − ω[t] S[t], where ω[t] ∈ R+ is

the learning rate, which can be adaptive. The score vector contains entries for the intercepts and

factor loadings and is given by:

S[t]
[k̄i,φ]

=

n∑
m=1

∫
Rq

[
∂ log fi(yim | z)

∂φi
· ∂φi

∂ηi,φ
· ∂ηi,φ
∂αi,φ

]
p(z |ym; Θ[t]) dz (2.8)

where k̄i,φ = {k : αk ∈ α⊺
i,φ, k = 1, ...,K} is the index set of intercepts and factor loadings in the

measurement equation for the distributional parameter φi ∈ θi.

An update scheme that is more efficient (but slower in terms of computation time) is the

Newton-Raphson (NR) update: Θ[t+1] = Θ[t] − (H[t])−1 S[t], where H[t] := ∇Θ∇Θ⊺Q(Θ;Θ[t]) is

the complete-data observed information matrix. Because the items are conditionally independent,

the complete-data observed information matrix is block-diagonal. For the intercepts and factor

loadings in the measurement equations of the distributional parameters φi, φ̃i ∈ θi, the block

matrices have entries following a general form:

H[t]

[k̄i,φ,k̄i,φ̃]
=

n∑
m=1

∫
Rq

[
∂2 log fi(yim | z)
∂αi,φ∂α

⊺
i,φ̃

]
p(z |ym; Θ[t]) dz (2.9)

Instead of the observed information matrix, we can also use the expected information matrix,

I[t] = −Ey(H[t]), or its score-based approximation, I[t] = Ey(S[t]S[t]⊺), to determine the length of

the update in the direction given by S[t]. The choice between these options is problem-dependent

and should be selected based on the model complexity and the available computational resources.

When selecting the update scheme, the computational intensity of score vectors and information

matrices for models with complex log-likelihoods must be considered. Thus, the choice of update

scheme should be determined based on the specific problem at hand. The partial derivatives in

equations (2.8) and (2.9) depend on the parametric distribution assumed for the item, the choice

of link function, and the specification of the measurement equation. Analytical expressions for

derivatives of the distributions and the link functions implemented in this paper are provided in

Appendix A2. We run the EM-algorithm step for a user-defined number of iterations (e.g., 30) or

until convergence of the objective function (whichever comes first). We then use the intermediate

estimates as ‘refined’ starting values in the direct maximisation step.
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Second step: Parameter computation via direct maximisation

In the direct maximisation step, we update the parameter vector obtained in the EM-step and

continue to refine the search for Θ̂. We solve for ∇Θℓ(Θ;y) = 0. In most cases, closed-form

solutions are not available, and thus we use iterative numerical optimisation solvers to compute

the MLE, such as (quasi-)Newton and trust-region algorithms2 (see, e.g., Nocedal and Wright,

2006).

Quasi-Newton line-search methods use first-order information from the gradient of the objective

function to determine the direction of the update step, and they compute an approximation of the

information matrix (which would otherwise be computationally expensive to compute) to define

the step size in that direction. This type of algorithm is fast but can be unstable with complex

objective functions, such as non-concave functions or functions with regions that are close to flat.

The score vector for the marginal log-likelihood is equivalent to the score vector for the complete-

data log-likelihood in (2.8), i.e., ∇Θℓ(Θ;y)|Θ=Θ[t] ≡ ∇ΘQ(Θ;Θ[t]) = S[t] (Louis, 1982). This is an

important result because it shows the inherent connection between the EM-algorithm step and the

direct maximisation step. There is no computational overhead in the calculation of the gradients.

Alternatively, trust-region algorithms (Nocedal and Wright, 2006, Chapter 4) use both first-

and second-order information to iteratively create a quadratic approximation of ℓ(Θ;y) around Θ[t]

and search for a local optimum within a certain radius from that point. These algorithms incorpor-

ate second-order information to provide a better approximation of the curvature of the marginal

log-likelihood at a given point, leading to faster convergence and greater stability compared to

line-search methods. However, the computation of the marginal observed information matrix, de-

noted as H[t] = ∇Θ∇Θ⊺ℓ(Θ;y)|Θ=Θ[t] , is more computationally expensive than the complete-data

information matrix in (2.9). For pairs of items (i, i′), and distributional parameters φi ∈ θi and

φ̃i′ ∈ θi′ , the matrix H[t] is made of sub-matrices of the form:

H[t]

[k̄i,φ,k̄i′,φ̃]
=

n∑
m=1

∫
Rq

p(z |ym) · ∂
2 log fi(yim | z)
∂αi,φ∂α

⊺
i′,φ̃

dz

+
n∑

m=1

∫
Rq

p(z |ym) · ∂ log fi(yim | z)
∂αi,φ

· ∂ log fi
′(yi′m | z)

∂α⊺
i′,φ̃

dz

−
n∑

m=1

∫
Rq

p(z |ym) · ∂ log fi(yim | z)
∂αi,φ

dz ·
∫
Rq

p(z |ym)
∂ log fi′(yi′m | z)

∂α⊺
i′,φ̃

dz (2.10)

Note that for items i ̸= i′, the first term in (2.10) is a null matrix. An alternative to using
2In our computational implementation, the analyst can choose one of the built-in R functions optim or nlminb

(the default option), or the trust function from the package with the same name (Geyer, 2020).
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the complete-data information matrix is to use the marginal expected information matrix, denoted

as I [t] = −Ey(H[t]), or its score approximation. The choice of which matrix to use should be

decided on a case-by-case basis. An introductory note on the trust-region algorithm is included in

Appendix A3, while further details can be found in Radice et al. (2016), Marra et al. (2017), and

Nocedal and Wright (2006, Chapter 4).

Because the gradient vector for the complete-data and marginal log-likelihoods are equivalent,

the MLE obtained under both algorithms are nearly identical, differing only in computational

accuracy. Thus, the two-step estimation algorithm proposed in this paper is mainly a matter of

computational efficiency. In practice, the analyst can choose to estimate Θ only through the EM-

algorithm (by setting the number of iterations of the EM-step to a reasonably large number, e.g.,

5000, and limiting the number of iterations of the optimisation solver to zero), or only through

the direct maximisation of the marginal log-likelihood (by fixing the number of iterations in the

EM-step to zero). A similar two-stage computational strategy is implemented in the popular

commercial software Mplus (Muthén and Muthén, 1998 2017). The difference is that Mplus relies

mostly on EM updates, and only performs a single quasi-Newton update wen consecutive EM

iterations fail to result in insufficient increase of the marginal log-likelihood.

An additional benefit of using a FIMML estimation method is that it protects against potential

bias in the presence of item non-response arising from ignorable missing data mechanisms. To

address missing values, we use an indicator matrix with binary entries that indicate whether an

observation is missing from the data or not. In such cases, the likelihood is computed based on

the observed data corresponding to the non-null entries in the missing data indicator matrix (see,

e.g., O’Muircheartaigh and Moustaki, 1999).

For computational simplicity, we use a Gauss-Hermite (GH) rule with fixed quadrature points

(e.g., Moustaki and Knott, 2000) to numerically evaluate the integrals in (2.8), (2.9), and (2.10).

The use of a fixed-point GH quadrature rule is possible due to the asymptotic normality of p(z |y)

(see, e.g., Chang and Stout, 1993; Chang, 1996; Kornely and Kateri, 2022). See Appendix A4

for further details. Alternative methods include adaptive GH quadratures (e.g., Schilling and

Bock, 2005; Skrondal and Rabe-Hesketh, 2004), Laplace approximations (e.g., Huber et al., 2004;

Bianconcini and Cagnone, 2012), or Monte Carlo approximations (e.g., Sammel et al., 1997; Shi

and Lee, 2000; Cai, 2010). These methods lead to approximate MLE solutions, with approximation

bias decreasing with sample size, test length, and number of quadrature points (see, e.g., Cagnone

et al., 2009; Bianconcini, 2014; Jin and Andersson, 2020).

Once we have obtained an MLE for the factor loading matrix, Â, we can apply an orthogonal
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or oblique rotation to obtain a more interpretable or sparse solution, if needed (see, e.g., Jennrich,

2004, 2006, 2007; Liu et al., 2023).

Computation of factor correlations

When the latent variables are of substantive interest, the estimation of the relationships between

latent variables is often of interest. If we assume that Φ is a correlation matrix, the estimation

of the correlation coefficients requires special consideration to ensure positive semi-definiteness

and diagonal entries equal to one. To handle these constraints, we can reparameterise the factor

correlation matrix through a Cholesky decomposition, Φ = LL⊺, where L is a lower triangular

matrix with a fixed entry L[1,1] = 1. This approach allows us to include the q × (q + 1)/2 − 1

elements of L in the parameter vector Θ, instead of the q × (q − 1)/2 non-redundant correlation

coefficients in Φ.

Let Lj be the jth row of L, and Lj,[k] be the kth element of Lj . Since Φ is a correlation matrix,

we have ||Lj || = 1, for j = 1, ..., q. Therefore, solving for L becomes a constrained optimisation

problem, which can be easily handled by a (quasi-)Newton proximal algorithm (Parikh and Boyd,

2014; Lee et al., 2014; Zhang and Chen, 2022) in both the M-step of the EM-algorithm and in the

direct maximisation problem.

The gradients of the complete-data log-likelihood function and the marginal log-likelihood with

respect to Lj are equivalent, i.e., ∇LjQ(Θ;Θ[t]) ≡ ∇Ljℓ(Θ;y)|Θ=Θ[t] = S[t]Lj
. Consequently, the two

algorithms yield identical solutions, making the two-step estimation algorithm computationally

efficient. The vector S[t]Lj
at iteration t of the EM-algorithm or the (quasi-)Newton solver has

entries that follow a general format:

S[t]Lj,[k]
=

n∑
m=1

∫
Rq

[
∂

∂Lj,[k]
log p(zm; L)

]
p(z |ym; Θ[t]) dz

= −n · tr
(
L⊺(LL⊺)−1Djk

)
+

n∑
m=1

[
tr
(
GjkV[t]

m

)
+ z̆[t]

⊺
m Gjkz̆

[t]
m

]
(2.11)

Here, Djk = ∂L/∂Lj,[k] is a square matrix of dimension q, with a value of 1 in the [j, k]

position and zero elsewhere. The matrix Gjk = (LL⊺)−1DjkL
⊺(LL⊺)−1, the conditional mean z̆

[t]
m =

E(z|ym; Θ[t]), and conditional variance V[t]
m = E((z−z̆

[t]
m)(z−z̆

[t]
m)⊺ |ym; Θ[t]), are computed using the

properties of the trace operator and the linearity of the conditional expectation. The derivations for

(2.11) and the equivalence of S between the EM-algorithm and the direct maximisation approach

are detailed in Appendix A2. To simplify the computation of the matrix in the NR update rule
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in the M-step of the EM-algorithm and in the direct maximisation, we use the BFGS updating

formula (Nocedal and Wright, 2006, Chapter 6).

We denote the updated value for column Lj obtained from either the EM-algorithm or direct

optimisation solver at iteration t + 1 as L̃
[t+1]
j . To ensure that L

[t+1]
j is a unit-norm vector, we

project L̃
[t+1]
j onto the feasible region of the constrained optimisation problem:

L
[t+1]
j = arg min

Lj :||Lj ||=1
||Lj − L̃

[t+1]
j || = 1

||L̃[t+1]
j ||

L̃
[t+1]
j , for j = 1, ..., q

Zhang and Chen (2022) present a thorough explanation of proximal (quasi-)Newton algorithms

in the context of estimation in LVMs.

It is important to note that the trust-region implementation trust is unsuitable for constrained

maximisation problems and that the L-BFGS-B solver in optim does not produce an estimate Φ̂

that satisfies the positive semi-definite requirement of the correlation matrix. Thus, we propose

an alternating procedure in the direct maximisation step. First, we obtain (α̂⊺
0, vec(Â)⊺) using

any of the implemented algorithms, treating Φ̂ = L̂L̂⊺ (either from the EM-step or previous direct

maximisation steps) as fixed. Second, we update Φ̂ while treating (α̂⊺
0, vec(Â)⊺) from the direct

maximisation as fixed. We repeat these steps until the marginal log-likelihood converges.

2.3.2 Asymptotic Properties of the Maximum Likelihood Estimator

Assuming suitable regularity conditions and a correct specification of the GLVM-LSS model, the

maximum likelihood estimator is asymptotically unbiased, maximally efficient, and normally dis-

tributed with variance given by the inverse of the expected information matrix (see, e.g., van der

Vaart, 1998):
√
n(Θ̂−Θ∗)

d−→ N(0, nI(Θ∗)−1),

where Θ∗ denotes the true value of the parameter vector and I(Θ∗) is the expected information

matrix evaluated at Θ∗. Proofs are included in Appendix A5.

2.3.3 Goodness of fit and Model Selection

Model selection and assessing goodness of fit in GLVM-LSS models require careful consideration

of and comparison between several different scenarios: i) nested models with the same number of

latent variables, ii) models with different numbers of latent variables, and iii) models with different
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parametric distributions for the manifest variables. These scenarios may also be combined in

various ways.

Formally, let M = {Θ, z, F} denote an GLVM-LSS model, with Θ ∈ Ξ representing the

model parameters, z ∈ Rq the latent variables, and F = {f1(· | z;θ1), ..., fp(· | z;θp)} the set of p

parametric distributions assumed for the observed variables. Comparison between nested models

(scenario i), such as M0 = {Θ ∈ Ξ0, z,F} and M1 = {Θ ∈ Ξ1, z,F}, where Ξ1 is obtained

by imposing restrictions on Ξ0 (usually in the form of fixed values), can be evaluated using the

likelihood-ratio test (LRT) for normal linear factor models, and the Pearson-χ2-test or G2-test for

binary and/or polytomous items. However, one should proceed with caution when using these

tests because they are sensitive to departures from distributional assumptions and may suggest

selecting an overly complex model, as there is no penalty for over-parametrisation (Akaike, 1987).

Additionally, comparing non-nested LVMs via LRT can result in inflated type-I errors for the test

statistic, as some of the regularity conditions necessary for the correct asymptotic distribution of

the LRT statistic are not satisfied in this case (see Chen et al., 2020).

For comparison between non-nested modes (scenarios ii and iii), such as M0 = {Θ ∈ Ξ0, z ∈

Rq0 ,F0} and M1 = {Θ ∈ Ξ1, z ∈ Rq1 ,F1}, where Ξ0 ̸= Ξ1, q0 ̸= q1, and/or F0 ̸= F1, we

recommend using information criteria. Information criteria involve adding a penalty term that is

proportional to the number of parameters to the fitted deviance, which is defined as −2ℓ(Θ;y).

In general, information criteria can be expressed as IC(Θ̂) = −2ℓ(Θ;y) + κK, where κ > 0 is a

constant that defines the weight assigned to the penalty on model complexity. Two popular criteria

are the Akaike Information Criterion (AIC, Akaike, 1974) and the Bayesian Information Criterion

(BIC, Schwarz, 1978). AIC uses a penalty of 2K to select the model with the most accurate

prediction, while BIC uses a penalty of log(n)K, where n is the sample size, to achieve consistent

model selection. The model with the lowest information criteria provides the best fit and is thus

preferred.

2.4. Simulation Studies

In this section, we conduct simulation studies to evaluate the performance of the proposed GLVM-

LSS framework under finite sample settings. To assess the accuracy of the proposed two-step ML

estimator, we compute the mean squared error (MSE) and absolute bias (AB) for each parameter in

the model. For ease of comparison, we report the average MSE (AvMSE) and average AB (AvAB)

for intercepts and factor loadings, separately for each distributional parameter in the corresponding

distribution. We also calculate similar measures for the factor correlations, if they are included in
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the model. All simulations were conducted using R version 4.2.2 (R Core Team, 2022), and the code

and replication files are available at https://github.com/ccardehu/GLVM-LSS. See Appendix A6

for details on the software implementation.

2.4.1 Simulation Study I: Exploratory LVM-LSS models

In the first simulation study, we aim to evaluate the performance of the proposed GLVM-LSS

framework in various exploratory settings. To this end, we consider four different sample sizes,

namely n = {200, 500, 1000, 5000}, and three different test lengths, with p = {5, 10, 20} items,

resulting in a total of 12 conditions. We simulate L = 1000 independent datasets and compute the

AvMSE and AvAB for the estimated parameters.

Case I: Heteroscedastic Factor Model: We first consider a heteroscedastic factor model,

where the location (µi) and scale (σi) parameters of Normal items are modelled as linear functions

of the latent variables z, i.e., yi |z ∼ N(µi(z), σ2i (z)). We assume two uncorrelated latent variables,

(z1, z2)
⊺ ∼ N(0, I2). This GLVM-LSS is a multidimensional extension of the model proposed in

Hessen and Dolan (2009).

For the location measurement equations, we sampled the intercepts and slopes from αi0,µ ∼

Unif(1.0, 2.0) and αij,µ ∼ Unif(0.5, 1.5), respectively. The sign of the αij,µ’s was randomly as-

signed with a probability of 0.5. The scale measurement equation parameters were generated from

(αi0,σ, α
⊺
ij,σ)

⊺ ∼ Unif(0.1, 0.4). We impose appropriate restrictions on the factor loading matrix to

avoid rotational indeterminacy. The L = 1000 datasets were randomly generated using the same

set of factor loadings. We used the GH rule with 25 quadrature points in each latent dimension

(625 in total) for numerical integration. Table 2.1 summarises the results, which show that both

the AvMSE and AvAB decrease as the sample size increases, consistent with ML theory.

Case II: Zero-Inflated Poisson Items: In the second setting, we examine a GLVM-LSS model

for count data with zero-inflation. Estimating the zero-inflated Poisson (ZIP) GLVM-LSS model re-

quires additional considerations, which are discussed in Appendix A1.2. The mixing probability and

rate parameter of the items depend linearly on the latent variables, i.e., yi | z ∼ ZIP(λi(z), πi(z)).

For simplicity, we consider two uncorrelated latent variables, making this GLVM-LSS a multidi-

mensional extension of the model proposed by Wang (2010).

The parameters in the rate measurement equation were drawn from αi0,λ ∼ Unif(2, 3), and
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Average MSE (AvMSE) Average AB (AvAB)

Inter.
(α̂i0,µ)

Load.
(α̂i,µ)

Inter.
(α̂i0,σ)

Load.
(α̂i,σ)

Inter.
(α̂i0,µ)

Load.
(α̂i,µ)

Inter.
(α̂i0,σ)

Load.
(α̂i,σ)p n

5

200 0.0176 0.0991 0.0465 0.0312 0.0047 0.0391 0.0813 0.0204
500 0.0056 0.0068 0.0037 0.0033 0.0023 0.0026 0.0129 0.0019
1000 0.0023 0.0070 0.0048 0.0030 0.0010 0.0028 0.0126 0.0040
5000 0.0007 0.0015 0.0004 0.0004 0.0006 0.0007 0.0011 0.0006

10

200 0.0166 0.0196 0.0067 0.0068 0.0054 0.0088 0.0232 0.0044
500 0.0059 0.0057 0.0021 0.0024 0.0025 0.0048 0.0095 0.0018
1000 0.0033 0.0031 0.0009 0.0010 0.0008 0.0013 0.0038 0.0010
5000 0.0006 0.0005 0.0002 0.0002 0.0004 0.0012 0.0008 0.0003

20

200 0.0162 0.0115 0.0044 0.0045 0.0039 0.0058 0.0189 0.0058
500 0.0079 0.0060 0.0016 0.0016 0.0027 0.0062 0.0072 0.0011
1000 0.0040 0.0036 0.0008 0.0008 0.0022 0.0056 0.0035 0.0010
5000 0.0007 0.0010 0.0002 0.0002 0.0006 0.0030 0.0006 0.0012

Table 2.1: Simulation Study I, Case I: Average Mean Squared Error (AvMSE) and Average Absolute
Bias (AvAB) for the MLE of a linear factor model with heteroscedastic items, by number of items
and sample size. The performance measures are computed for the estimated parameters α̂k in the
location loading matrix (Âµ) and scale loading matrix (Âσ).

αij,λ ∼ Unif(0.2, 0.6). We assign the signs of αij,λ’s at random with a probability of 0.5. For

the mixing probability, the parameters were sampled from αi0,π ∼ Unif(−2,−1) and αij,π ∼

Unif(1.5, 2.5). Appropriate parameter restrictions are imposed to avoid rotational indeterminacy.

The L = 1000 datasets were randomly generated using the same set of factor loadings. We use

the GH rule for numerical integration with 25 quadrature points for each latent dimension (625

in total). Table 2.2 shows the AvMSE and AvAB for this model. As expected, the AvMSE and

AvAB decrease with the sample size.

Case III: Items on the (0, 1) Interval: In the third setting, we consider a GLVM-LSS model

with items that follow a location-scale parameterization of the Beta distribution, conditioned on

a unidimensional latent variable. In this model, the location and scale parameters are linearly

dependent on the latent factor, i.e., yi | z ∼ Beta(µi(z), σi(z)).

The population values for the parameters in the location measurement equation are drawn from

(αi0,µ, αi1,µ)
⊺ ∼ Unif(0, 1). The signs of the αi1,µ’s are randomly determined with a probability

of 0.5. The parameters in the scale measurement equation are sampled from (αi0,σ, αi1,µ)
⊺ ∼

Unif(−1, 0.2). We generate the true parameters in this way to ensure that the conditional densities

40



Average MSE (AvMSE) Average AB (AvAB)

Inter.
(α̂i0,λ)

Load.
(α̂i,λ)

Inter.
(α̂i0,π)

Load.
(α̂i,π)

Inter.
(α̂i0,λ)

Load.
(α̂i,λ)

Inter.
(α̂i0,π)

Load.
(α̂i,π)p n

5

200 0.0024 0.0033 0.2299 0.4826 0.0034 0.0050 0.1212 0.1457
500 0.0009 0.0008 0.0602 0.0969 0.0006 0.0012 0.0410 0.0582
1000 0.0004 0.0004 0.0277 0.0459 0.0007 0.0007 0.0131 0.0206
5000 0.0001 0.0001 0.0048 0.0093 0.0001 0.0005 0.0025 0.0048

10

200 0.0022 0.0018 0.1158 0.1783 0.0021 0.0021 0.0566 0.0856
500 0.0008 0.0007 0.0478 0.0754 0.0009 0.0007 0.0277 0.0446
1000 0.0005 0.0004 0.0212 0.0307 0.0006 0.0006 0.0074 0.0153
5000 0.0001 0.0001 0.0048 0.0063 0.0003 0.0009 0.0037 0.0018

20†

200 0.0024 0.0016 0.1305 0.1707 0.0078 0.0026 0.0343 0.0832
500 0.0012 0.0009 0.0564 0.0639 0.0041 0.0035 0.0556 0.0347
1000 0.0006 0.0004 0.0233 0.0298 0.0013 0.0024 0.0165 0.0185
5000 0.0001 0.0001 0.0057 0.0065 0.0010 0.0024 0.0053 0.0073

Table 2.2: Simulation Study I, Case II: Average Mean Squared Error (AvMSE) and Average Ab-
solute Bias (AvAB) for the MLE of a LVM with ZIP items, by number of items and sample size.
These performance measures are computed for the estimated parameters α̂k in the loading matrices
Âλ and Âπ. † Note: For computational reasons, we ran L = 100 simulations in this setting.

fi(yi |z) are uni-modal. The L = 1000 datasets were randomly generated using the same set of factor

loadings. Although the Beta distribution allows for bimodal densities for certain combinations of

µi and σi, this is not common in the applications of interest (see Noel, 2014 for a unidimensional

Beta factor model that handles the bi-modality of items). We use 50 quadrature points in the GH

rule for numerical integration. The simulation results are presented in Table 2.3. As expected, the

AvMSE and the AvAB for the factor loadings in the measurement equations for the location and

scale parameters decrease with the sample size.

Case IV: Skew-Normal items: In our final setting, we consider a GLVM-LSS model with con-

tinuous items that follow a reparameterization of the Skew-Normal (SN) distribution (see Appendix

A1.1), conditional on a single latent variable. The location (µ ∈ R), scale (σ ∈ R+), and shape

(ν ∈ (0, 1)) parameters depend linearly on the latent factor, i.e., yi | z ∼ SN(µi(z), σ
2
i (z), νi(z)).

The true values for the parameters in the location measurement equation are drawn from

α0i,µ ∼ Unif(−1, 1) and αi1,µ ∼ Unif(0.5, 1.5). The signs of the slope parameters are randomly

defined with probability 0.5. The parameters in the scale measurement equation are sampled from

(αi0,σ, αi1,σ)
⊺ ∼ Unif(0.2, 0.4), while the parameters in the shape measurement equation are drawn
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Average MSE (AvMSE) Average AB (AvAB)

Inter.
(α̂i0,µ)

Load.
(α̂i1,µ)

Inter.
(α̂i0,σ)

Load.
(α̂i1,σ)

Inter.
(α̂i0,µ)

Load.
(α̂i1,µ)

Inter.
(α̂i0,σ)

Load.
(α̂i1,σ)p n

5

200 0.0045 0.0042 0.0088 0.0079 0.0035 0.0036 0.0165 0.0079
500 0.0022 0.0024 0.0036 0.0029 0.0014 0.0015 0.0078 0.0017
1000 0.0009 0.0007 0.0016 0.0015 0.0010 0.0007 0.0030 0.0012
5000 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0010 0.0005

10

200 0.0051 0.0043 0.0067 0.0063 0.0030 0.0047 0.0143 0.0034
500 0.0017 0.0013 0.0026 0.0024 0.0020 0.0038 0.0065 0.0053
1000 0.0012 0.0009 0.0013 0.0011 0.0017 0.0022 0.0020 0.0030
5000 0.0003 0.0002 0.0003 0.0002 0.0010 0.0014 0.0012 0.0021

20

200 0.0045 0.0029 0.0065 0.0055 0.0018 0.0064 0.0111 0.0048
500 0.0026 0.0019 0.0026 0.0022 0.0022 0.0033 0.0065 0.0030
1000 0.0011 0.0008 0.0013 0.0015 0.0030 0.0040 0.0040 0.0072
5000 0.0002 0.0002 0.0003 0.0003 0.0013 0.0022 0.0013 0.0038

Table 2.3: Simulation Study I, Case III: Average Mean Squared Error (AvMSE) and Average
Absolute Bias (AvAB) for the MLE of a LVM with Beta distributed items, by number of items
and sample size. These performance measures are computed for the estimated parameters α̂k in
the location loading matrix (Âµ) and scale loading matrix (Âσ).

from α0,ν ∼ Unif(−2, 2) and αi1,ν ∼ Unif(0.2, 0.5), with the slope signs treated similarly as before.

The L = 1000 datasets were randomly generated using the same set of factor loadings. We use 100

quadrature points in the GH rule for numerical integration. The simulation results are presented

in Table 2.4.

Based on the simulation results presented in Table 2.4, we observe a high variance in the

parameter estimates of the shape parameter measurement equation, particularly for low sample

sizes and number of observed variables. This is consistent with the slow convergence of the skewness

parameter reported in Chiogna (2005). Our analysis reveals that the maximum likelihood estimate

of the reparameterised skewness parameter (ν̂) has an asymptotic variance proportional to 23.77 ·

n−1 in a neighbourhood of zero (see Appendix A1.1). To ensure numerical stability and obtain

accurate results, in simulations and real-world applications we recommend fitting the model when

the sample size is large, as this is when the asymptotic properties of the estimates hold (see, e.g.,

Monti, 2003; Eberl and Klar, 2020; Jiang and Xu, 2022).
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2.4.2 Simulation Study II: A Confirmatory GLVM-LSS model with Binary and
Skew-Normal items

In the second study, we consider a confirmatory GLVM-LSS model based on the first example in

the applications section. The model assumes two latent variables (q = 2) and 12 items, with the

first six items distributed Bernoulli, conditional on the first factor, yi | z1 ∼ Bernoulli(πi(z1)) for

i = 1, ..., 6, and the remaining items distributed Skew-Normal, conditional on the second factor,

yi | z2 ∼ SN(µi(z2), σi(z2), νi(z2)) for i = 7, ..., 12. The latent variables follow a multivariate

standard Normal distribution, (z1, z2)⊺ ∼ N(0,Φ), with Φ a correlation matrix (i.e., diag(Φ) = 1)

with off-diagonal entries denoted by ϕ12 = ϕ21 = ϕz. A path diagram representation of the model

is shown in Figure 2.1.

z1 z2

Bernoulli

π1 (z1)

y1
Bernoulli

π6 (z1)

y6
Skew-Normal

y7 y12

⋯
Skew-Normal

µ7 (z2)

σ7 (z2)

ν7 (z2)

µ12 (z2)

σ12 (z2)

ν12 (z2)

⋯

ϕz

Figure 2.1: Path Diagram of Confirmatory GLVM-LSS simulation study.

The sample sizes considered are n = {500, 1000, 5000}, which are common in psychometrics

research. All the intercepts and factor loadings in the model were randomly generated by sampling

from uniform distributions. For each item i, the parameters in the location measurement equations

were sampled from (α0i,π, α0i,µ)
⊺ ∼ Unif(−1.5, 1.5), αi1,π ∼ Unif(1, 2), and αi2,µ ∼ Unif(0.5, 1.5).

The scale measurement equation parameters for SN items were generated by sampling αi0,σ ∼

Unif(−1.5,−0.5), and αi2,σ ∼ Unif(0.3, 0.6). The shape measurement equation parameters for SN

items were generated by sampling αi0,ν ∼ Unif(−1.5,−0.5), and αi2,ν ∼ Unif(0.3, 1). The signs for

αi2,σ’s, αi0,ν ’s, and αi2,ν ’s were set at random with a probability of 0.5. The correlation between

latent variables was set at ϕz = 0.3, and 300 independent datasets were simulated to compute the

AvMSE and AvAB for the estimated parameters. The L = 300 datasets were randomly generated

using the same set of factor loadings and the same factor correlation. The true parameter vector
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was used as the starting point for estimation in the EM-algorithm for simplicity, but it is important

to note that different starting points should be used in practical applications. The results by sample

size are presented in Table 2.5.

Average MSE (AvMSE) Average AB (AvAB)

n Âπ Âµ Âσ Âν ϕ̂z Âπ Âµ Âσ Âν ϕ̂z

500 0.0294 0.0018 0.0021 0.3431 0.0030 0.1301 0.0314 0.0355 0.4081 0.0432
1000 0.0138 0.0010 0.0010 0.1162 0.0013 0.0900 0.0228 0.0246 0.2514 0.0295
3000 0.0044 0.0005 0.0004 0.0290 0.0005 0.0509 0.0159 0.0151 0.1303 0.0176

Table 2.5: Simulation Study II: Average Mean Squared Error (AvMSE) and Average Absolute Bias
(AvAB) for the MLE of a confirmatory GLVM-LSS with Bernoulli and Skew-Normal distributed
items, by sample size.

For simplicity, we present the aggregate results for intercepts and factor loadings in each matrix

Âφ, φ ∈ θ. In all cases, the AvMSE and AvAB decrease with sample size, as expected3. This

simulation study shows that, under confirmatory settings, the factor correlation ϕz is consistently

estimated.

2.5. Empirical Applications

2.5.1 PISA 2018: A joint model for item response and response times

We present an empirical example of a confirmatory GLVM-LSS model for binary item responses and

continuous response times. This type of joint analysis has been extensively studied in educational

testing literature, and is particularly valuable because response times provide information about

a student’s ability and test-taking strategies, as well as aiding item calibration and test design

(van der Linden, 2007, 2008; van der Linden and Guo, 2008; van der Linden et al., 2010). A

comprehensive framework for this type of analysis is the hierarchical model for speed and accuracy

on test items, originally proposed by van der Linden (2007, 2009), and subsequently extended by

others (Molenaar et al., 2015; Bolsinova et al., 2017; Bolsinova and Molenaar, 2018). For a review

of models involving items and response times, see De Boeck and Jeon (2019).

3The shape parameter factor loadings for the Skew-Normal items show higher AvMSE and AvAB than those for
the location and scale parameters. The higher AvMSE is expected, due to the asymptotic behaviour of the MLEs
for the Skew-Normal distribution explained in Appendix A1.1. We expect lower figures for the AvAB by increasing
the accuracy of the numerical integration using a higher number of quadrature points in the Gaussian Hermite
quadrature. We do not pursue this further here, due to the increased computational demand of this simulation
study. In spite of this, it should be noted that both the AvMSE and AvAB for the factor loadings in the shape
parameter measurement equations decrease as the sample size increases, as expected.

45



The hierarchical model proposed by van der Linden (2007, 2009) consists of two connected

models: (i) an IRT model for the observed items, where the probability of responding correctly

depends on the individual’s latent ability; and (ii) a normal linear factor model for the logarithm

of the response times (log-RT), where individuals with a higher latent speed factor will tend to

respond more quickly. The precision parameter, defined as the reciprocal of the standard deviation

of the log-RT, plays an important role in identifying items with high (or low) heterogeneity in

their (log-)RTs. Items with high log-RT precision (i.e., low variance, homogeneous log-RTs) will

discriminate better between individuals with different levels of the speed factor better than items

with low log-RT precision (i.e., high variance, heterogeneous log-RTs). However, in this model,

the precision (i.e., scale parameter) does not depend on the latent speed factor. The latent ability

and latent speed factors are jointly assumed to be normal and correlated, in order to capture what

is referred to in the literature as the ‘speed-accuracy trade-off’ (Zimmerman, 2011). Appropriate

restrictions are imposed to ensure identifiability and interpretability. The author proposes a fully

Bayesian estimation approach using a Gibbs sampler.

To showcase the proposed modelling framework, we elaborate on the baseline model discussed

above by assuming that the log-RT follows a Skew-Normal (SN) distribution conditional on the

speed factor. The SN distribution allows for modelling not only varying heterogeneity (variance),

but also varying skewness in the log-RTs along the latent speed trait scale. Higher order moments

of RTs can give valuable insight on students’ test-taking strategies and thought processing during

high-stakes standardised tests, as well as information on item quality.

We employ data from the 2018 PISA computer-based mathematics exam and focus on a sample

of Brazilian students who answered 9 binary items from the first testing cluster. For simplicity, we

only consider individuals who provided complete answers, yielding a sample size of 1280 students.

However, as discussed in Section 2.3.1, the FIMML estimation procedure can deal with units with

partially incomplete responses. The response times (in milliseconds) were transformed into log-

minutes. The empirical marginal distributions of the response times in log-minutes are displayed

in Figure 2.2. A majority of the log-RT exhibit some degree of skewness, and we observe improved

model fit when we assume the log-RT to follow a SN distribution instead of a Normal distribution.

The solid lines represent marginal distributions assuming SN-distributed log-RT, while the dashed

ones correspond to the marginals under a Normal distribution.

Formally, the proposed GLVM-LSS model posits that item responses (IR), denoted by y1, . . . , y9,

follow a conditional Bernoulli distribution, with the probability of answering correctly (location

parameter) represented as a function of the latent ability (z1). That is, yi | z1 ∼ Bernoulli(πi(z1))
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Figure 2.2: PISA 2018: Empirical and model-implied marginal distributions for response times (in
log-minutes). The solid line ( ) is the SN model and the dashed line ( ) the Normal model.

for items i = 1, . . . , 9. The measurement equations for the IRs are expressed as:

logit(πi) = αi0,π + αi1,πz1 i = 1, . . . , 9 (2.12)

where αi0,π and αi1,π denote item i’s difficulty and discrimination parameters, respectively. The log-

RT follow a conditional Skew-Normal (SN) distribution, with location, scale, and shape parameters

potentially modelled in terms of the speed factor (z2), i.e., log(ti) | z2 ∼ SN(µi(z2), σ
2
i (z2), νi(z2)),

with t1, . . . , t9 representing the RTs in minutes. We assume that (z1, z2)
⊺ ∼ N2(0,Φ), where Φ is

a correlation matrix. The measurement equations for the distributional parameters of log-RT are:

µi = αi0,µ + αi1,µz2 (2.13)

log(σi) = αi0,σ + αi1,σz2 (2.14)

logit(νi) = αi0,ν + αi1,νz2 (2.15)
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We estimated seven models of incremental complexity on our PISA 2018 dataset using the two-

step full-information maximum likelihood procedure described in Section 2.3. To ensure robustness,

we tested different starting values to check that the solution did not correspond to a local minimum.

The initial parameter values resulted from a warm start, in which we first performed PCA on the

matrix of observed variables, retained q = 2 principal components, and used them as explanatory

variables in a series of independent GAMLSS regressions where the items are the response variables.

In all cases, the IRT model for the IR is the same as described above, with the measurement

equation given in (2.12). For the log-RT model, the baseline model (Model 1) is similar to the

hierarchical model in van der Linden (2007). In Model 1, we assume that the log-RT follow Normal

distributions conditional on the speed factor, with factor loadings fixed to a value of -1 (as in van der

Linden’s paper). This means that an individual with higher values of the speed factor will tend to

have shorter response times. We freely estimated the variance of the speed factor, and assumed

the scale parameter to depend only on the constant term. Model 2 results from freely estimating

the factor loadings in the log-RT model (as in the ‘unrestricted model’ in Molenaar et al. 2015),

but fixing var(z2) = 1 for identification purposes. Finally, Model 3 is the heteroscedastic version

of Model 2.

Model 4 corresponds to a homoscedastic SN model, where the log-RT follow a SN distribution

with a location parameter (µ) that depends on the speed factor, and with constant scale (σ)

and shape (ν) parameters. In Models 5 and 6, we model (µ, σ)⊺ and (µ, ν)⊺ as functions of z2,

respectively. Model 7, the full-SN model, allows all distributional parameters to depend on the

speed factor. Results are presented in Table 2.6. Notably, all models that consider a SN distribution

for the log-RT outperform the models with Normal distributions in terms of model fit. Model 7

provides the best fit based on its AIC and BIC values.

Table 2.7 presents the estimated intercepts, loadings, and factor correlation of Model 7. The

interpretation of the intercepts and slopes in the measurement equations for the location parameter

of the IR (πi’s) and log-RT (µi’s) is straightforward. Specifically, the α̂i0,π’s and α̂i1,π’s represent

the difficulty and discrimination parameters for the IR, respectively. More difficult items are those

with more negative α̂i0,π’s, and items with more discrimination power are those with higher α̂i1,π’s.

Thus, individuals with higher latent ability (i.e., higher values of z1) will tend to have a higher

probability of responding correctly to any given item.

For the response times, the α̂i0,µ’s represent the average response times (also known as the

item intensity, as described in van der Linden, 2007), and the α̂i1,µ’s define the linear relationship

between the speed factor and the log-RT. Note how all of the slopes in the measurement equation for
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Model AIC BIC K

1. Bernoulli (π) + Normal (µ, fixed αi1,µ) 26173.08 26368.96 38
2. Bernoulli (π) + Normal (µ) 25908.67 26145.79 46
3. Bernoulli (π) + Normal (µ, σ) 25754.91 26038.42 55
4. Bernoulli (π) + Skew-Normal (µ) 25326.02 25609.53 55
5. Bernoulli (π) + Skew-Normal (µ, σ) 25281.41 25611.30 64
6. Bernoulli (π) + Skew-Normal (µ, ν) 25232.80 25562.70 64
7. Bernoulli (π) + Skew-Normal (µ, σ, ν) 25171.90 25548.18 73

Table 2.6: PISA 2018: AIC and BIC for GLVM-LSS for the joint modelling of item responses
and response times. In parenthesis: the distributional parameters modelled in terms of the latent
variables, e.g., Bernoulli (π) + Skew-Normal (µ, σ, ν) means the probability of answering correctly
depends on z1; while the location, scale, and shape parameters of the SN distribution depend on
z2. K = dim(Θ̂) is the number of parameters in the corresponding model.

the location parameter of the log-RTs are negative. In that sense, individuals with higher (positive)

latent speed trait will have a tendency to respond faster to any given item, while individuals with

lower (negative) latent speed trait will, on average, take longer to respond.

The estimated correlation between the latent ability and the speed factor is -0.28 (SE 0.025)4,

suggesting that test takers with higher latent ability generally take longer times to respond. This

result aligns with previous studies on the speed-accuracy trade-off, which indicates that individuals

who respond slowly make fewer mistakes compared to those who respond quickly and make more

mistakes (see, e.g., van der Linden (2007), and Heitz (2014) for a general overview on the subject).

Indeed, the estimated correlation coefficient between the total (sum) score and the average response

times (in log-minutes) is 0.192 (95% confidence interval: 0.14, 0.24). Previous studies have found

correlations between the latent ability and the latent speed trait of similar magnitude in the context

of large scale educational testing of quantitative subjects (see, e.g., van der Linden and Guo, 2008).

The GLVM-LSS framework includes measurement equations for the scale (standard deviation)

and shape (skewness) parameters of the log-RT. The estimates α̂i1,σ and α̂i1,ν reveal that some items

exhibit heteroscedasticity (items 2, 3, 4, 5, 8) and/or varying skewness (items 2, 3, 4, 6, 7, 8, 9) in

their log-RT along the speed factor dimension. Figures 2.3 and 2.4 display the item characteristic

curves (ICC) for the item responses and the fitted Skew-Normal conditional distributions for the

log-RT (parameterized by the coefficients in Table 2.7) for selected items. For the log-RTs, we

plot the (conditional) mean, median, and percentiles (0.025, 0.10, 0.25, 0.75, 0.90, and 0.975) to

4The estimated correlation and estimated standard error are similar for all 7 models: -0.28 (transformed from a
covariance of -0.09 with SE equal to 0.008) for Model 1, -0.31 (SE 0.024) for Model 2, -0.29 (SE 0.024) for Model 3,
-0.28 (SE 0.025) for Model 4, -0.29 (SE 0.025) for Model 5, and -0.28 (SE 0.025) for Model 6.
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demonstrate how the distribution’s shape changes across the speed factor dimension.

Figures 2.3a and 2.3b for item 2, and Figures 2.3c and 2.3d for item 3, show how the (condi-

tional) variance of log(t2) and log(t3) drops as we move along the latent speed factor dimension.

However, the conditional skewness changes in opposite directions. Specifically, log(t2) is positively

(right) skewed for individuals in the left tail of the latent speed factor, while log(t3) is negat-

ively (left) skewed for the same group of students. This might suggest differences on the items’

characteristics (e.g., wording, task, difficulty) and/or the cognitive processes required for their

completion. On the other hand, the distributions for the response times are very much symmetric

for individuals on the right tail of the speed factor dimension.

For Items 5 (Figures 2.4a and 2.4b) and 8 (Figures 2.4c and 2.4d), the estimated positive slope

for the scale parameter suggests that response times will be more heterogeneous for individuals on

the upper tail of the latent speed factor distribution. These items are among the most difficult ones

(higher α̂i0,π’s) and also require more time on average (higher α̂i0,µ’s). Moreover, they also exhibit

varying skewness parameters. For example, for Item 8, the direction of the skewness changes

depending on the location along the latent speed factor scale.

2.5.2 ANES 2020: Thermometer items

In our second empirical example, we use data from the American National Election Study (ANES)5.

The data set includes thirteen post-election feeling thermometer items from the ANES 2020 survey.

Participants were asked to rate their feelings towards different social, religious, gender and sexuality,

and economic groups or collectives on a scale of 0 to 100 (degrees). Higher ratings indicate more

favourable attitudes towards the group, while lower ratings correspond to an unfavourable position.

Ratings around 50 are indicative of more neutral attitudes. The selected items cover a broad range

of topics, including religious groups (Christian fundamentalists, Christians, Muslims, Jews), sexual

orientation and gender identity groups (Gay men and Lesbians, Transgender people), social and

political movements (Feminists, #MeToo and BLM movements), and groups related to economic

matters and professions (labour unions, big businesses, journalists, scientists).

While ANES thermometer items have been used in the literature as proxy variables for polit-

ical orientation and measures of personal and societal values (see, e.g., Abelson et al., 1982; Krasa

and Polborn, 2014; Guth, 2019), we emphasise that these items were not part of a psychomet-

5American National Election Studies, 2021. (www.electionstudies.org). Full Release (dataset and documentation).
July 19, 2021 version. These materials are based on work supported by the National Science Foundation under grant
numbers SES-1444721, 2014-2017, the University of Michigan, and Stanford University.
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(a) (b)

(c) (d)

Figure 2.3: PISA 2018: Fitted conditional expected values (solid line, ), median (dashed line,
), and percentiles (dotted lines, ) for IR and log-RT for items 2 and 3.

rics test and are not intended to measure any specific latent construct(s). Nonetheless, we be-

lieve that these questions can provide valuable information about an individual’s position on a

conservative-progressive scale. Therefore, we only present results for unidimensional Beta latent

variable models6.

Given the nature of the data, we assume a Beta distribution for the items, conditional on the

latent factor: yi | z ∼ Beta(µi(z), σi(z)). We scale the items by a factor of 1/100. As is customary

in the literature (e.g., Noel, 2014), we replace extreme responses on the boundaries of the interval

with numerical values arbitrarily close to 0 and 1 (e.g., 1−3 and (1− 1−3), respectively) to ensure

that the values are within the interval (0, 1). We exclude individuals with no post-election data,

6We also explored two-dimensional Beta factor models, but careful analysis of the expected information matrix
(evaluated at the MLE) reveals that the heteroscedastic Beta factor model with q = 2 is not of full rank, and thus,
following the results in Section 1.2, the model is not identified.
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(a) (b)

(c) (d)

Figure 2.4: PISA 2018: Fitted conditional expected values (solid line, ), median (dashed line,
), and percentiles (dotted lines, ) for IR and log-RT for items 5 and 8.

incomplete interviews, or technical errors in their answers from the analysis. Moreover, we treat

responses of Don’t know’, Don’t recognise’, and ‘Refuse’ as missing data. After applying these

criteria, the resulting sample consists of 7253 respondents.

Item descriptive statistics for the ANES 2020 dataset are presented in Table 2.8. Most items

have negatively skewed marginal empirical distributions and negative excess kurtosis, with the

exception of item Scientists. The empirical cumulative distribution functions (ECDF) for the items

are displayed in Figure 2.5. Although the thermometer ratings are measured on a continuous scale,

respondents tend to round their answers to the nearest 5 or 10, resulting in a stepped appearance

in the ECDFs. We observe no substantial inflation of extreme responses, but some items exhibit

a higher proportion of responses around the middle point of the thermometer (around 0.5). This

could be due to respondents being unwilling to commit to an opinion that places them on either
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Item Count Mean SD SK KU

Christian fundamentalists 7040 0.46 0.29 0.00 -0.73
Christians 7175 0.72 0.25 -0.69 -0.11
Muslims 7126 0.59 0.25 -0.26 0.03
Jews 7127 0.74 0.22 -0.47 -0.24
Gay men and Lesbians 7149 0.66 0.27 -0.51 -0.17
Transgender people 7139 0.60 0.28 -0.34 -0.34
Feminists 7159 0.59 0.27 -0.35 -0.40
#MeToo movement 6030 0.59 0.30 -0.45 -0.63
BLM movement 7176 0.53 0.36 -0.26 -1.30
Labour unions 7148 0.58 0.24 -0.29 -0.09
Big businesses 7168 0.48 0.23 -0.18 -0.13
Journalists 7196 0.51 0.29 -0.26 -0.92
Scientists 7193 0.79 0.20 -1.01 0.94

Table 2.8: ANES 2020: Item descriptive statistics. Count is the number of observed responses for
each item, SD is the standard deviation, SK is the skewness, and KU is the excess kurtosis.

Figure 2.5: ANES 2020: Empirical cumulative distribution function (ECDF). Highlighted items:
Feminists (solid line, ), Gay men and Lesbians (dashed line, ), Christian fundamentalists
(dotted line, ), and Scientists (dash-dot line, )
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side of the conservative-progressive scale, or because the items relate to sensitive topics, such as

religion or politics. In such cases, respondents may choose to respond 50%’ instead of selecting

an uninformative option, such as ‘Don’t know’ or ‘Refuse’. A potential avenue for future research

could be the incorporation of latent classes associated with different response strategies, building

on approaches proposed for latent variable models with binary items (e.g., Moustaki and Knott,

2014).

We estimated two Beta factor models to compare their performance. The starting values for

the parameters in the estimation algorithm were set using the warm start strategy described in

the previous section. We tried different starting values (warm start strategy plus noise coming

from Unif(−1, 1)) to explore if the solution corresponded to a local minimum, but obtained similar

results in each case (up to numerical precision). In the baseline (homoscedastic) model, we assumed

a constant scale parameter, while in the alternative (heteroscedastic) model, we allowed the scale

parameter to depend on the latent factor. We assessed model fit using both AIC and BIC, and the

results are presented in Table 2.9. The heteroscedastic model showed better model fit, suggesting

that modelling heteroscedasticity is important in this dataset. Table 2.10 provides parameter

estimates and their standard errors for the heteroscedastic model. These results confirm that

thermometer items measure individuals’ beliefs along a ‘conservative-progressive’ scale.

Model AIC BIC K

Beta (µ) -95075.12 -94806.44 39
Beta (µ, σ) -96805.52 -96447.28 52

Table 2.9: ANES 2020: AIC and BIC for the Beta factor models. In parenthesis: the distributional
parameters modelled in terms of the latent variables, e.g., Beta (µ, σ) means both the location and
scale parameters depend on the latent conservative-progressive factor. K = dim(Θ̂) is the number
of parameters in the corresponding model.

The estimated factor loadings on the location measurement equation, α̂i1,µ, indicate that most

items have positive loadings, suggesting that individuals who are more progressive (conservative)

tend to rate these groups higher (lower) on average. However, items related to Christian funda-

mentalists, Christians, and Big businesses have negative loadings with lower magnitudes. Thus,

more progressive (conservative) individuals tend to rate them lower (higher) on average. However,

the discrimination power of these negative items is lower than that of other items, as indicated by

the absolute value of their factor loadings. This implies that individuals with different positions on

the latent dimension could still report similar ratings for these items. Furthermore, the intercepts

for the location parameter (α̂i0,µ’s) have the same interpretation as an IRT difficulty parameter.
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Location parameter (µ)
measurement equation

Scale parameter (σ)
measurement equation

Item αi0,µ αi1,µ αi0,σ αi1,σ

Est. SE Est. SE Est. SE Est. SE

Christian fundament. -0.19 (0.02) -0.47 (0.02) 0.67 (0.01) 0.05 (0.01)
Christians 0.96 (0.02) -0.26 (0.02) 0.59 (0.01) 0.07 (0.01)
Muslims 0.41 (0.01) 0.98 (0.02) 0.01 (0.01) -0.10 (0.01)
Jews 1.15 (0.02) 0.51 (0.02) 0.29 (0.01) -0.16 (0.01)
Gay men and Lesbians 0.90 (0.02) 1.31 (0.02) -0.06 (0.01) -0.27 (0.01)
Transgender people 0.55 (0.01) 1.37 (0.02) -0.12 (0.02) -0.17 (0.01)
Feminists 0.45 (0.01) 1.21 (0.02) -0.10 (0.01) -0.16 (0.01)
#MeeToo movement 0.41 (0.02) 1.26 (0.02) 0.15 (0.02) -0.28 (0.01)
BLM movement 0.21 (0.02) 1.23 (0.02) 0.53 (0.01) -0.33 (0.01)
Labour Unions 0.39 (0.01) 0.62 (0.01) 0.21 (0.01) -0.13 (0.01)
Big Businesses -0.17 (0.01) -0.14 (0.01) 0.26 (0.01) 0.05 (0.01)
Journalists 0.02 (0.01) 0.93 (0.02) 0.23 (0.01) -0.17 (0.01)
Scientists 1.58 (0.02) 0.82 (0.02) 0.02 (0.01) -0.25 (0.01)

Table 2.10: ANES 2020: Estimated (Est.) coefficients and their standard errors (SE) for the
heteroscedastic Beta factor model.

An important feature of this dataset is that the scale parameter σi, which is related to the

conditional variance of the item, also varies along the latent scale. Items with positive αi1,µ’s have

negative αi1,σ’s, indicating that individuals on the ‘progressive’ side of the latent scale will tend to

show less variance in their ratings when compared to individuals on the ‘conservative’ side of the

scale, for these items. This is an interesting result, suggesting that individuals on the ‘conservative’

side may be more diverse in their views, attitudes, or beliefs, when it comes to certain topics, while

individuals on the ‘progressive’ side may hold more homogeneous views, at least for some items.

For the ‘negative’ items, the factor loadings for the scale parameter are much lower (in absolute

value), suggesting very low (to no) heteroscedasticity.

Figure 2.6 compares the fitted (conditional) Beta distribution implied by the homoscedastic

and heteroscedastic models for selected items. Apart from the fitted mean, note how the median

and percentiles (0.10, 0.25, 0.75, 0.90) of the items distributions change along the latent scale. The

homoscedastic Beta factor model (Figures 2.6a and 2.6c) does not capture the asymmetries in the

items’ conditional distributions along the latent scale that the heteroscedastic model does (Figures

2.6b and 2.6d). For items that tend to be homoscedastic the differences between the two fitted

models are not significant (e.g, ratings for Christians, Figures 2.6e and 2.6f).

Using the estimated parameters, we also calculate factor scores using the empirical Bayes (EB)
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(a) Item: BLM (homoscedastic model) (b) Item: BLM (heteroscedastic model)

(c) Item: Scientists (homoscedastic model) (d) Item: Scientists (heteroscedastic model)

(e) Item: Christians (homoscedastic model) (f) Item: Christians (heteroscedastic model)

Figure 2.6: ANES 2020: Fitted conditional expected values (solid line, ), median (dashed line,
), and percentiles (dotted lines, ).
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(a) Liberal-Conservative scale (b) Left-Right scale

Figure 2.7: ANES 2020: Empirical QQ-plots of (standardised) political orientation scales against
Empirical Bayes factor scores (sign reversed).

method described in Section 1.4. To ensure the consistency of the factor scores, we cross-examine

them with two self-reported measures of individuals’ political orientation. The first measure is

a 7-point liberal-conservative scale, which reads: “We hear [...] about liberals and conservatives.

Here is a seven-point scale on [...] political views. Where would you place yourself on this scale, or

haven’t you thought much about this?”. The scale ranges from 1 (extremely liberal) to 7 (extremely

conservative), and we consider the ‘haven’t thought about this’ response as missing values, resulting

in 985 observations. The second measure is an 11-point left-right scale, which reads: “In politics

people sometimes talk of left and right. Where would you place yourself on a scale from 0 to 10 where

0 means the left and 10 means the right?”. Technical errors in the interview cause 17 missing values

for this measure. For better comparison, we switch the sign of the factor scores in the subsequent

analysis. The Pearson correlations between the factor scores and the liberal-conservative and left-

right scales are 0.65 (95% confidence interval: 0.64, 0.67) and 0.56 (95% confidence interval: 0.54,

0.57), respectively. The empirical QQ-plots for these scales and the factor scores are displayed in

Figure 2.7. The plots indicate that the factor scores obtained from the heteroscedastic Beta factor

model are consistent with the (standardised) self-reported measures of political orientation.

2.6. Discussion

In this Chapter, we propose a distributional approach to latent variable modelling. We present a

class of Generalised Latent Variable Models for Location, Scale, and Shape parameters (GLVM-
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LSS). In this framework, we model the distributional parameters characterising the items’ condi-

tional distributions as linear functions of the latent variables. By modelling the whole conditional

distribution in terms of the latent variables, rather than just the conditional mean, the GLVM-LSS

framework captures a wider range of characteristics of the data, making it more flexible and com-

prehensive than traditional LVMs. Our approach allows for modelling distributions beyond the

exponential family and is useful in real-world applications where the items display heteroscedasti-

city, skewness, kurtosis, zero/one/maximum value inflation, and heaping, truncation or censoring.

The GLVM-LSS class can be viewed as an umbrella class of LVMs that includes previous works

addressing these issues as particular cases.

The parameters of the GLVM-LSS model are estimated via full information maximum likeli-

hood using a computationally efficient two-stage optimisation procedure that combines the EM-

algorithm with a direct maximisation of the marginal log-likelihood through (quasi-)Newton meth-

ods. To demonstrate the effectiveness of our approach, we present simulation studies and empirical

analyses of real-world data in psychometrics and public opinion research. Our proposed method

is implemented in R, with code and replication files available online. Our current software imple-

mentation allows the analyst to estimate GLVM-LSS with mixed data from the Bernoulli, Poisson,

Normal, Log-Normal, Skew-Normal, Gamma, Beta, and Zero-Inflated Poisson distributions. Fu-

ture extensions will include distributions for categorical items (e.g., Moustaki, 2003), survival data

(e.g., Moustaki and Steele, 2005), and continuous and discrete items displaying heaping or trun-

cation/censoring (see, e.g., Dolan et al., 2002; Wall et al., 2015b; Magnus and Thissen, 2017).

Furthermore, we could include covariate effects on the manifest and/or latent variables, as this

would help to explore how the distributional parameters vary with observed covariates and links

with important concepts in psychometrics such as differential item functioning and measurement

invariance.

While the GLVM-LSS provides greater flexibility and generalisability compared to previous

models, there are still some aspects that can be improved in future research. One challenge of the

proposed framework is that as the models become more complex, they can be harder to interpret.

The increased flexibility of modelling distributional parameters in terms of latent variables also

leads to a significant increase in the number of parameters to be estimated, which can pose a prob-

lem in exploratory settings. To address this, we suggest exploring regularised maximum likelihood

estimation of the GLVM-LSS to produce more sparse and interpretable factor loading matrices.

This approach can also perform model selection by appropriately selecting the regularisation para-

meter (see, e.g., Geminiani et al., 2021).

Another limitation is the numerical integration method used. While the Gauss-Hermite (GH)
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rule with fixed quadrature points is easy to implement and works well for problems with a few latent

variables, it may not be adequate for higher dimensional settings. Adaptive GH rules (Schilling

and Bock, 2005; Skrondal and Rabe-Hesketh, 2004) or Laplace approximations (Huber et al., 2004;

Bianconcini and Cagnone, 2012) can be considered as alternatives, as they have been shown to

produce fast and accurate solutions.

Lastly, local model misfit is an important issue that needs to be addressed in future research.

This is particularly relevant as assumptions about the items’ distributions and the linearity in the

measurement equations can be easily violated. To identify local misfit, developing residual-based

diagnostic tools can be a reasonable approach (see, e.g., Pan and Lin, 2005; Sánchez et al., 2009).
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Chapter 3

Penalised Marginal Maximum

Likelihood Estimation with

Automatic Selection of Tuning

Parameters for Generalised Latent

Variable Models for Location, Scale,

and Shape parameters

In this chapter, we propose a penalised marginal maximum likelihood estimation procedure for the

Generalised Latent Variable Model for Location, Scale, and Shape parameters (GLVM-LSS). In

some applications, the GLVM-LSS can be unnecessarily complex and end up over-fitting observed

data. For example, in a given test, some items might have scale and shape parameters that depend

on the latent variables, while other items might not. Without addressing this issue, these factor

loadings would be estimated regardless, unnecessarily adding to the model complexity and com-

plicating interpretation. To address these issues and achieve simpler and more interpretable factor

loading matrices, we estimate the model parameters via penalised marginal maximum likelihood.

The amount of penalisation is determined by a tuning parameter, which controls the sparsity level

of the penalised maximum likelihood solution. Typically, selecting the optimal value for the tun-

ing parameter involves computationally intensive techniques like grid-search or cross-validation,

followed by choosing the value that yields the lowest information criteria. In the GLVM-LSS we
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penalise the location, scale, and shape measurement equations separately, and thus the tuning

parameter becomes a vector rather than a scalar. Consequently, conventional approaches such

as grid-search or cross-validation become impractical. We propose an automatic and data-driven

procedure that gives the optimal value for the tuning parameter vector by minimising an approx-

imation of an information criteria with a theoretically grounded definition of model complexity.

The properties of the proposed estimation framework are demonstrated through simulation studies

and empirical applications in educational testing.

3.1. Introduction

In Chapter 2, we introduced the Generalised Latent Variable Model for Location, Scale, and Shape

parameters (GLVM-LSS). The proposed framework extends the traditional Generalised Linear Lat-

ent Variable Model (GLLVM, Skrondal and Rabe-Hesketh, 2004; Bartholomew et al., 2011) by

explicitly modelling the location, scale, and shape parameters characterising the items’ conditional

distributions as linear functions of the latent variables. By modelling the whole conditional dis-

tribution in terms of the latent variables, rather than just the conditional mean, the GLVM-LSS

captures a wider range of characteristics of the data, making it more flexible and comprehensive

than traditional LVMs. The GLVM-LSS allows for modelling distributions beyond the exponential

family and is useful in real-world applications where the items exhibit characteristics such as het-

eroscedasticity, skewness, kurtosis, inflation at specific values (e.g., zeros, ones, or maximums), and

phenomena like heaping, truncation or censoring. The GLVM-LSS can be viewed as an umbrella

class of LVMs that includes previous works addressing these issues as particular cases.

In most LVM applications, it is important to obtain sparse factor loading matrices that exhibit

a ‘simple structure’ (Thurstone, 1947). This means that observed items should primarily load on

one or a few latent factors with high absolute values, known as primary loadings. The remaining

loadings on other latent variables, referred to as cross-loadings, should be close to zero or very small.

Latent variables are ideally measured by distinct subsets of observed variables with high primary

loadings and low cross-loadings. Solutions following a simple structure make the interpretation of

the latent variables easier and are preferred when aiming for a concise explanation of the substantive

hypothesis under study.

There are two main approaches for obtaining sparse factor loading matrices in the LVM liter-

ature: rotation methods and penalised estimation methods. Rotation methods involve a two-step

process. First, an estimate of the factor loading matrix is obtained, typically using maximum

likelihood estimation, while imposing appropriate identification constraints to address rotational
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indeterminacy (discussed in Section 1.2). In the second step, the estimated factor loading matrix

is rotated to minimise a loss function related to sparsity. A lower value of the loss function in-

dicates a more interpretable solution. Various loss functions have been proposed in the literature

(Mulaik, 2009, Chapters 10-12). Rotation methods can be classified as orthogonal when latent

variables are required to be uncorrelated (e.g., Jennrich, 2001, 2004), or as oblique when latent

variables are allowed to be correlated (e.g., Jennrich, 2002, 2006; Liu et al., 2023). It has been

proven that rotation methods with L1-norm loss functions can produce perfect simple structures

if they exist in the true factor loading matrix (Jennrich, 2006, Theorem 1). However, in practice,

the rotated solutions often end up being dense and it is then left to the analyst to decide which

parameters should be considered as zero based on a subjective thresholding criterion. For example,

factor loadings below a fixed threshold (usually set between ± 0.1 or ± 0.3) are set to zero using a

hard-thresholding approach (Hair et al., 2010). This approach is not only subjective in nature, but

also affects the effective degrees of freedom of the model, which are used to evaluate model fit. Ad-

ditionally, different rotation techniques employ different objective functions in their optimisation

problems, leading to different factor structures that may not always be directly comparable.

The second approach for obtaining sparse factor loading matrices involves penalised estimation

methods. In these methods, a sparsity-inducing L1-penalty term is introduced into the objective

function of the estimation problem. Penalised methods simultaneously estimate the model para-

meters and generate a sparse solution. Unlike rotation methods, simple structures are not imposed

on the factor loading matrix and are only obtained if supported by the data. For multivariate Nor-

mal items, penalised factor models have been proposed by Choi et al. (2010); Hirose and Yamamoto

(2014, 2015); Trendafilov et al. (2017) and Jin et al. (2018). Penalised Structural Equation Models

(PSEM) have been studied by Jacobucci et al. (2016); Huang et al. (2017) and Huang (2018).

For binary and categorical items, related works include Chen et al. (2015); Sun et al. (2017) and

Battauz (2020). Huang (2020) extended the PSEM to ordinal responses. Count data has been

addressed in the works of Hui et al. (2018) and Lee and Park (2021). The level of sparsity is

determined by a non-negative tuning (or regularisation) parameter, which serves as the weight of

the penalty term in the estimation objective function. A higher tuning parameter produces sparser

solutions but leads to a loss of model fit due to the introduction of an asymptotically decaying

bias term. The optimal penalised solution is obtained by fitting a sequence of candidate models

with different values of the tuning parameter, typically selected from a predefined grid. The final

model is chosen based on information criteria or cross-validation error assessment. However, for

complex models with multiple tuning parameters, this process can be computationally expensive

and time-consuming, which limits the practicality of these methods in applied research. Therefore,

more efficient alternatives are needed to determine the appropriate value of the tuning parameter
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that balances fidelity to the data (goodness of fit) and interpretability (sparsity).

The issue of selecting optimal tuning parameters has been addressed by Geminiani et al. (2021).

They proposed a penalised estimation framework for single- and multiple-group Normal linear

factor models and introduced an efficient data-driven procedure for selecting the optimal value

of the tuning parameter. This procedure is based on minimising an approximate unbiased risk

estimate (Stein, 1981), which is proportional to the AIC. See also Wood (2004); Marra et al. (2017).

To solve the optimisation problems required by the procedure, Geminiani et al. (2021) employed

smooth approximations of the L1-penalty functions. These approximations behave locally as the

original L1-norm penalties, and as a result, there is minimal loss in the sparsity-inducing properties

of the approximate penalty functions. Their framework provides a unified estimation and inferential

framework for penalised estimation of Normal linear factor models.

In the GLVM-LSS framework, achieving sparse factor loading matrices and having an efficient

method for selecting the optimal tuning parameters are two crucial methodological aspects to bear

in mind due to the following reasons. Firstly, sparse solutions with ‘simple structures’ enhance the

interpretation of factor loading matrices by capturing the relationship between the latent factors

and the higher order moments of observed items. Secondly, incorporating a penalty term helps

prevent over-fitting in the GLVM-LSS, which is important considering the increased complexity

resulting from modelling the entire conditional distribution rather than just the conditional mean.

Following the logic of the bias-variance trade-off (Hastie et al., 2009), the penalised estimates

lead to a more ‘generalisable’ model for prediction and assigning factor scores to new samples.

Moreover, the penalised estimation can be interpreted as a model selection technique, and thus the

penalised solution will distinguish between items with constant scale and shape parameters, and

items whose distributional parameters and higher order moments vary with the latent variables.

Lastly, it is desirable to have independent control over the amount of penalisation for the location,

scale, and shape factor loading matrices in the items’ conditional distributions. This requires a

vector of tuning parameters, unlike the scalar approach commonly used in penalised estimation in

the LVM literature. Consequently, grid-search methods become impractical for determining the

optimal tuning parameters in practice.

In this chapter, we introduce a penalised estimation framework with automatic tuning para-

meter selection for the class of Generalised Latent Variable Models for Location, Scale, and Shape

parameters (GLVM-LSS). Our framework can be seen as an extension of the approach in Geminiani

et al. (2021) to LVMs that do not have closed-form solutions. Specifically, we propose a penalised

marginal maximum likelihood estimation method using locally approximated L1 penalties. The

optimal tuning parameter vector, which controls the level of sparsity in the model parameters, is

64



selected by minimising an approximate AIC criterion. The remainder of this chapter is organised

as follows. In Section 3.2 we present a brief description of the GLVM-LSS framework, previously

introduced in Chapter 2. In Section 3.3 we discuss the penalised estimation framework. In partic-

ular, Section 3.3.1 describes common convex L1-norm based penalty functions, and Section 3.3.2

discusses how by using local approximations of the penalty terms, we are able to adapt the two-step

maximum likelihood estimation strategy introduced in Section 2.3 to the penalised case. Section

3.4 presents a Generalised Information Criterion for model selection and assessing goodness-of-fit.

Section 3.5 discusses the automatic, data-driven procedure for estimating the optimal value of the

tuning parameter vector. We finish by presenting simulation studies in Section 3.6 and empirical

applications to educational testing in Section 3.7.

3.2. Model description

Consider the Generalised Latent Variable Model for Location, Scale, and Shape parameters (GLVM-

LSS) framework introduced in Chapter 2. We denote the vector of observed variables as y =

(y1, ..., yp)
⊺ ∈ Rp, and the vector of latent variables as z = (z1, ..., zq)

⊺ ∈ Rq, where q ≪ p. The

density of the observed data is f(y) =
∫
Rq
f(y | z)p(z) dz. The conditional distribution f(y | z),

referred to as the measurement component of the LVM, describes the relationship between the

observed variables y and the latent variables z. The structural component p(z) specifies the

relationships among the latent variables. Assuming conditional independence, we consider the

observed variables to be conditionally independent given z. We also assume that the conditional

distributions of the items follow a known parametric form parameterised by θi = (µi, σi, νi, τi)
⊺,

representing the location, scale, and shape parameters for item i. For the structural model, we

adopt a multivariate Normal distribution, z ∼ N(0,Φ), which is commonly used in the LVM lit-

erature due to its mathematical and computational convenience (see Bartholomew et al., 2011,

Chapter 2). The marginal density of the observed data follows is (as in eq. 2.1):

f(y) =

∫
Rq

[
p∏

i=1

fi(yi | z;θi)

]
p(z;Φ) dz

In the GLVM-LSS framework, the distributional parameters φi in θi are modelled as linear

functions of the latent variables. Specifically, for an arbitrary location, scale, or shape parameter,

we define a corresponding measurement equation:

υi,φ(φi) = αi0,φ +

q∑
j=1

αij,φzj ,
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where υi,φ represents a parameter-specific link function (e.g., identity, log, logit, etc.) chosen to en-

sure appropriate restrictions on the distributional parameters. The intercepts in the measurement

equation are denoted by αi0,φ, and the factor loadings (slopes) by αij,φ, where j = 1, ..., q. The

vector of factor loadings for parameter φi is denoted as αi,φ = (αi1,φ, ..., αiq,φ)
⊺. The sub-index

(i, φ) indicates that the corresponding function or regression parameter is defined for φi ∈ θi. It is

important to note that, in sparse settings, some of the factor loadings in αi,φ can be equal to zero.

In matrix notation, the set of measurement equations for φ ∈ θ can be written as υφ(φ) =

α0,φ + Aφz, where φ = (φ1, ..., φp)
⊺ is the vector containing the same distributional parameter φ

for all items, α0,φ = (α10,φ, ..., αp0,φ)
⊺ is a vector of intercept terms, Aφ is a sparse (q × p) matrix

with rows corresponding to the factor loading vectors αi,φ, and υφ is the vector function that

applies the corresponding link function υi,φ to each entry of φ.

To further simplify notation, we can express the system of all location, scale, and shape

measurement equations as υ(θ) = α0 + Az, where θ⊺ = (µ⊺,σ⊺,ν⊺, τ ⊺) represents the vector

of all distributional parameters, α⊺
0 = (α⊺

0,µ,α
⊺
0,σ,α

⊺
0,ν ,α

⊺
0,τ ) is the vector of intercepts, and

A⊺ = [A⊺
µ,A

⊺
σ,A

⊺
ν ,A

⊺
τ ] represents the sparse factor loadings matrix. This notation allows for a

more compact representation of the measurement equations describing the relationships between

the latent variables and the distributional parameters in the GLVM-LSS framework.

3.3. Estimation

In the GLVM-LSS framework, the model complexity depends not only on the number of items and

latent factors, but also on the number of location, scale, and shape parameters characterising the

items distributions in the measurement model. We propose a penalised full-information marginal

maximum likelihood (PMML) estimation method to estimate the model parameters in a way that

promotes sparsity and interpretability of the estimated factor loading matrices. PMML has been

extensively used in the literature of penalised estimation for LVMs (see, e.g., Chen et al., 2015;

Battauz, 2020). The penalised estimation procedure involves maximising the penalised marginal

log-likelihood function, which is given by:

ℓp(Θ;y) =

n∑
m=1

log

(∫
Rq

[
p∏

i=1

fi(yim | z;θi(z))

]
p(z; Φ) dz− Pλ(Θ;λ,w)

)

= ℓ(Θ;y)− nPλ(Θ;λ,w) (3.1)
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where ℓ(Θ;y) is the marginal log-likelihood as defined in equation (2.5). The vector Θ⊺ =

(α⊺
0, vec(A)⊺, vech(Φ)⊺) represents the unknown model parameters, and K is the total number

of model parameters. The term Pλ(Θ;λ,w) is a non-negative scalar-valued function that intro-

duces sparsity in the factor loadings. The levels of sparsity in the location, scale, and shape

measurement equations are controlled independently by their corresponding non-negative tuning

parameter in λ = (λµ, λσ, λτ , λν)
⊺. The sub-index λ is just to emphasise the dependence of the

penalty term on the tuning parameter vector. Additionally, the penalty term can depend on a

vector of loading-specific weights w = (w1, ...,wK)⊺, where higher (lower) weights indicate stronger

(weaker) penalisation and more (less) sparsity. Weights are useful, for example, when we want large

parameters (in absolute value) to be subject to weak penalty and small parameters, around zero,

to be penalised heavier. Moreover, weights are usually pre-specified and depend on the specific

functional form of the penalty term, as described in Section 3.3.1.

For a fixed value of the tuning parameter vector λ, the penalised maximum likelihood estimate

(PMLE), denoted by Θ̂ = Θ̂(λ), is the value that maximises the penalised marginal log-likelihood

function:

Θ̂ = arg max
Θ∈Ξ

ℓp(Θ;y)

where Ξ ⊆ RK represents the parameter space. The tuning parameter vector λ controls the level

of sparsity in the estimated parameters Θ̂. When λ = 0, the penalty term is effectively removed,

and the estimation reduces to the marginal maximum likelihood estimation presented in Chapter

2. The components of the penalised marginal log-likelihood function, ℓ(Θ;y) and Pλ(Θ;λ,w),

serve different purposes in the estimation process. The log-likelihood ℓ(Θ;y) controls model fit,

while the penalty term Pλ(Θ;λ,w) controls for model complexity. By adjusting the values of the

tuning parameter vector λ, we can control the trade-off between model fit and model complexity.

3.3.1 Sparsity Inducing Penalties

The mapping Pλ : Ξ → (R+ ∪ {0}) is used to introduce sparsity in the estimated parameters.

However, not all parameters in Θ are penalised equally, and it is often the case that only a subset

of parameters is subject to penalisation. For example, it is common that intercept terms are not

penalised, as and it is only the factor loadings (which give information about the relationship

between the observed items and the latent variables) that are subject to penalisation. To describe

this, we modify the notation as follows. Let Θ = (α1, ..., αk∗ , αk∗+1, ..., αK)⊺ be the vector of all

model parameters. Denote Θp = (α1, ..., αk∗)
⊺ as the Kp-dimensional vector of model parameters

subject to penalisation (e.g., factor loadings), and Θu = (αk∗+1, ..., αK)⊺ as the Ku-dimensional
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vector of model parameters that are not penalised (e.g., intercepts, free factor loadings, factor

correlations). Note that Kp +Ku = K.

Moreover, define the index set A = {k : αk = 0, αk ∈ Θ∗}, which represents the indices of model

parameters that are zero in the true parameter vector Θ∗. Correspondingly, Θ∗
A = 0 represents

the vector of true model parameters indexed by A. Conversely, we define Ac as the indices of true

non-zero parameters in Θ∗, and Θ∗
Ac as the vector containing the true non-zero parameters.

The penalty term Pλ(Θ;λ,w) in (3.1) can be expressed in a general form as the sum of K

individual L1-norm-based penalties:

Pλ(Θ;λ,w) =
K∑
k=1

Pλ,k(||RkΘ||1;λφ,k,wk)

Here, || · ||1 denotes the L1-norm, and Rk is a K × K matrix. For k = 1, ..., k∗ (i.e., model

parameters subject to penalisation), the diagonal elements of Rk are zero except for the [k, k]th

element, which is equal to 1, and thus ||RkΘ||1 = |αk|. For k = k∗ + 1, . . . ,K (i.e., unpenalised

parameters), Rk = 0, and thus ||RkΘ||1 = 0. The amount of shrinkage on the parameters αk ∈ Θp is

controlled by the corresponding tuning parameter λφ,k, which depends on whether the parameter

belongs to a location, scale, or shape measurement equation. For example, if αk belongs to a

location measurement equation, then λφ,k = λµ. Similarly, for other scale and shape parameters,

the corresponding tuning parameters are used (i.e., λσ and λτ , respectively). For parameters

αk ∈ Θu, λφ,k = 0, meaning no penalty is imposed on those parameters.

In the context of model selection, two popular convex L1-penalties are commonly used1: the

Lasso (Tibshirani, 1996) and the adaptive Lasso (Alasso, Zou, 2006). Under certain conditions,

these penalties have been shown to provide consistent variable selection (Zhao and Yu, 2006; Zou,

2006). Under the general notation above, the Lasso can be expressed as:

Pλ(Θ;λ,w) =
k∗∑
k=1

λφ,k · |αk| (3.2)

The Lasso has an important limitation in that it penalises all parameters equally, with wk = 1

for k = 1, . . . , k∗. This penalisation scheme can lead to biased estimates for large coefficients,

making the Lasso sub-optimal in terms of estimation risk. In contrast, the Alasso addresses this

limitation by incorporating parameter-specific weights. By assigning different weights to each
1Non-convex alternatives, such as the SCAD (Fan and Li, 2001) and the MCP (Zhang, 2010) are also considered

in Appendix B1.
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parameter, the Alasso introduces lower penalisation for larger coefficients and higher penalisation

for weaker effects. The Alasso in general notation is:

Pλ(Θ;λ,w) =

k∗∑
k=1

λφ,k · wk · |αk| =
k∗∑
k=1

λφ,k|αk|
|α̂k|a

, for a > 0. (3.3)

where α̂k represents a consistent estimate of the parameter αk ∈ Θp, such as the (potentially

rotated) maximum likelihood estimate (MLE) of the factor loading. The parameter-specific Alasso

weight is wk = |α̂k|−a. The additional parameter a > 0 controls the influence of wk on the

penalty, and it is typically fixed at a value not exceeding 2. The Alasso is preferred over the

Lasso due to its ‘oracle property’ (Fan and Li, 2001). This property implies two key asymptotic

characteristics: i) sparsity, which means Θ̂A = 0, indicating that the estimated parameters are

exactly zero for the true zero parameters; and ii) asymptotic Normality of the true non-zero

parameter estimates,
√
n(Θ̂Ac −Θ∗

Ac)
d→ N(0, IAc). Here, the asymptotic covariance of the model

parameters IAc = I(Θ∗
Ac ; Θ∗

A = 0) is the expected information matrix for the true non-zero

parameters knowing that Θ∗
A = 0.

3.3.2 Computation

The presence of the non-differentiable L1-penalty term in equation (3.1) poses challenges for

gradient-based iterative optimisation algorithms that use up to second-order information to com-

pute the MLE, such as the ones presented in Section 2.3. These algorithms cannot be directly

applied to compute the PMLE due to the non-differentiability of the penalty term. Several al-

gorithms have been proposed in the literature (Efron et al., 2004; Friedman et al., 2007, 2010)

to solve penalised estimation problems efficiently. However, these algorithms may encounter diffi-

culties when dealing with correlated covariates (latent factors in our case) and can face convergence

issues when the objective function is non-smooth. Proximal algorithms (Parikh and Boyd, 2014;

Lee et al., 2014) also provide computationally efficient and theoretically solid ways of dealing with

optimisation problems with non-smooth objective functions. Stochastic proximal algorithms have

been explored in Zhang and Chen (2022) for the estimation of LVM.

In this study, we address this challenge by using local approximations of the Lasso and Alasso

penalties. These approximations result in quadratic functions that are twice-differentiable every-

where. This enables us to adapt computational framework introduced in Section 2.3 to the pen-

alised estimation problem. For the computation of the model parameters, we propose a two-step

iterative estimation procedure that combines the flexibility and simplicity of the EM-algorithm

with the robustness of (quasi-)Newton algorithms used for the direct maximisation of the marginal
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penalised log-likelihood.

Local Approximations of Sparsity Inducing Penalties

Local approximations for L1-penalties have been widely used to reduce the computational burden

associated with penalised estimation problems (see, e.g., Ulbricht, 2010; Fan and Li, 2001; Filippou

et al., 2017 in the regression context; and Battauz, 2020; Geminiani et al., 2021 in the LVM context).

One popular approximation is (Koch, 1996):

|x| ≈ ec̄(x) := (x2 + c̄)1/2 , x ∈ R , c̄ > 0

where ec̄(x) is a twice-continuously differentiable function for a fixed constant c̄ that controls the

approximation’s closeness to the L1-norm. Note that limc̄→0 ec̄(x) → |x|. In the current context,

this approximation yields ||RkΘ||1 ≈ ((RkΘ)⊺(RkΘ)+ c̄)1/2. Let ξk = RkΘ, where the k-th element

in ξk = (0, . . . , 0, αk, 0, . . . , 0)
⊺ corresponds to the k-th parameter in Θ. It is important to note

that ∇ξk ||ξk||1 =
∂||ξk||1
∂ξk

= (ξ⊺kξk + c̄)−1/2ξk is defined and well-behaved everywhere.

To simplify notation, we write Pλ := Pλ(Θ;λ,w). Assume Θ̃ is a point in the neighbourhood

of Θ. The penalty function in (3.1) can be approximated by a first-order Taylor expansion around

Θ̃

Pλ(Θ) ≈ Pλ(Θ̃) +∇ΘPλ(Θ̃)⊺(Θ− Θ̃) ,

After some manipulation (Appendix B2), the approximation above can be expressed as:

Pλ(Θ) ≈ 1

2
Θ⊺
[

k∗∑
k=1

∂Pλ,k(||RkΘ̃||1)
∂||RkΘ̃||1

[
(RkΘ̃)⊺(RkΘ̃) + c̄

]−1/2
R⊺

kRk

]
Θ =

1

2
Θ⊺Sλ(Θ̃)Θ , (3.4)

where Sλ(Θ̃) is a K ×K block diagonal matrix of the form

Sλ(Θ̃) =

Sλ(Θ̃) 0

0 0

 ,
with null sub-matrices 0 of dimension (K − k∗)× (K − k∗), and a k∗ × k∗ diagonal Sλ(Θ̃) matrix

with entries

Sλ(Θ̃)[k,k] =
∂Pλ,k(||RkΘ̃||1)

∂||RkΘ̃||1

[
(RkΘ̃)⊺(RkΘ̃) + c̄

]−1/2
for k = 1, ..., k∗

that define the amount of penalisation on αk given (λφ,k,wk), and are determined by the functional
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form of the local approximations of the Lasso in (3.2) and the Alasso in (3.3). These approxima-

tions, derived in Appendix B2, take the form

Lasso: Sλ(Θ̃)[k,k] = λφ,k · (α̃2
k + c̄)−1/2;

Alasso: Sλ(Θ̃)[k,k] = λφ,k · (|α̂k|a · (α̃2
k + c̄)1/2)−1;

By using the approximation of the penalty term in (3.4), the penalised marginal log-likelihood

in (3.1) can be expressed as:

ℓp(Θ;y, λ) = ℓ(Θ;y)− n

2
Θ⊺Sλ(Θ̃)Θ (3.5)

The selection of the penalty function is not trivial. Penalties that possess the oracle property,

such as the Alasso, are generally preferred over the more biased Lasso (see, e.g., Choi et al.,

2010; Hirose and Yamamoto, 2014; Huang et al., 2017). However, simulation results presented in

Geminiani et al. (2021) suggest that once an optimal tuning vector is chosen, the specific choice

of penalty has little impact on the true sparsity recovery. Moreover, these differences become even

smaller as sample sizes increase. The practical importance lies in selecting an estimated λ̂ vector

that minimises an information or cross-validation criterion, rather than focusing solely on the

choice of the penalty function, in order to achieve consistent model selection and optimal sparsity

recovery. The problem of tuning parameter selection is addressed in Section 3.5.

Computation of the Penalised Parameter Estimates

The introduction of the twice-differentiable local approximation to the penalty term allows for

adapting the two-step maximum likelihood estimation strategy introduced in Section 2.3 to the

penalised case. Specifically, for a given vector of tuning parameters λ, we compute the PMLE

Θ̂ = arg maxΘ ℓp(Θ;y) by sequentially applying an EM-algorithm and a direct maximisation of

the penalised marginal log-likelihood using a (quasi-)Newton solver.

This implementation is based on purely practical considerations, as it aims to capitalise on

the advantages of both methods. On one hand, the EM-algorithm has low computation cost per

iteration and it is relatively easy to implement. It is also robust to starting values far from the

mode and it guarantees monotone increments of the objective function at each iteration. The EM-

algorithm has been extensively used in the LVM literature for penalised estimation problems with

no closed-form solutions (see, e.g., Sun et al., 2017). However, it is also known for its (sub-)linear

convergence rate, which makes it slow to reach a local mode (McLachlan and Krishnan, 2008).
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On the other hand, (quasi-)Newton algorithms exhibit (super-)linear convergence rates, making

them faster in reaching a local mode compared to the EM-algorithm. Furthermore, these methods

often provide estimates of the information matrix, which is essential for computing standard errors.

However, (quasi-)Newton algorithms can encounter convergence issues when initialised far from the

mode and typically require more computationally intensive operations, such as matrix inversions.

In our approach, we propose an optimisation strategy that combines the advantages of both

methods. We first use the EM-algorithm for a fixed number of iterations to obtain intermediate

estimates. These estimates serve as refined starting values for the (quasi-)Newton algorithm,

which performs the direct maximisation of ℓp(Θ;y). This sequential implementation leverages

the computational efficiency and robustness of the EM-algorithm while benefiting from the faster

convergence of (quasi-)Newton algorithms. Our proposed framework can be seen as a generalisation

of the estimation strategy presented in Geminiani et al. (2021) to LVMs with no closed-form

solutions. In the following sub-sections, we provide further details and elaboration on our approach.

First Step: Parameter computation via penalised EM-algorithm

The EM-algorithm (Dempster et al., 1977) is an iterative procedure that consists of two main

steps: the E-step and the M-step. In the E-step, we compute the expected value of the complete-

data penalised log-likelihood with respect to the posterior distribution of the latent factors. In the

M-step, we maximise the expected penalised log-likelihood obtained in the E-step.

Let f(y, z; Θ) denote the joint probability function of the complete data (y, z). Building

upon Equation (2.6) and utilising the approximate penalty term introduced in Equation (3.4),

the complete-data penalised log-likelihood for a given tuning parameter vector λ is:

ℓcp(Θ;y, z) =

n∑
m=1

[{
p∑

i=1

log fi(yim | z;θi(z))

}
+ log p(zm; Φ)

]
− n

2
Θ⊺Sλ(Θ̃)Θ

= ℓc(Θ;y, z)− n

2
Θ⊺Sλ(Θ̃)Θ (3.6)

E-step: In the E-step, we compute the expected value of (3.6) with respect to the posterior

distribution of z given y and the current estimates Θ[t]. The locally approximated penalty term is

evaluated at Θ[t]. The objective function in the E-step, denoted as Qp(Θ;Θ[t]), is given by:

Qp(Θ;Θ[t]) = Ez | y;Θ[t] [ ℓcp(Θ;y, z) ] = Q(Θ;Θ[t])− n

2
Θ⊺Sλ(Θ

[t])Θ (3.7)
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where Q(Θ;Θ[t]) = Ez | y;Θ[t] [ℓc(Θ;y, z)]. In practice, the posterior expectation is often not available

in closed form and thus numerical techniques, such as the Gaussian-Hermite quadrature or other

methods, are used to evaluate the multivariate integrals (see further details in Appendix A4).

M-step: In the M-step, we update the parameter vector to Θ[t+1] = arg maxQp(Θ;Θ[t]). In

practice, it suffices to find Θ[t+1] such that Qp(Θ
[t+1]; Θ[t]) ≥ Qp(Θ

[t]; Θ[t]). We can achieve this

update by solving for the complete-data penalised score vector S[t]p := ∇ΘQp(Θ;Θ[t]) = 0. There

are different update rules that can be used, such as a gradient descent (GD) type update with a

(possibly adaptive) step size ω[t], Θ[t+1] = Θ[t] − ω[t]S[t]p ; or a Newton-Raphson (NR) type update,

Θ[t+1] = Θ[t] − (H[t]
p )−1 S[t]p , where the penalised score and the penalised observed and expected

information matrices are:

S[t]p := ∇ΘQp(Θ;Θ[t]) = S[t] − nSλ(Θ
[t])Θ (3.8)

H[t]
p := ∇Θ∇Θ⊺Qp(Θ;Θ[t]) = H[t] − nSλ(Θ

[t]) (3.9)

I[t]p := −Ey

(
H[t]

p

)
= I[t] + nSλ(Θ

[t]) (3.10)

which are derived from the score vector with entries described by (2.8), and the observed (or

expected) information matrix with entries given by (2.9). We repeat the E-step and M-step it-

eratively until convergence or until a predefined number of iterations is reached. It is important

to note that the EM-algorithm may terminate earlier if the complete-data penalised observed (or

information) matrix evaluated at the current parameter value is not semi-definite positive due to

the approximation error from the numerical integration.

Second Step: Parameter computation via penalised direct maximisation

In the direct maximisation step, we refine the parameter estimates obtained from the EM-step by

solving for ∇Θℓp(Θ;y) = 0, where ℓp(Θ;y) is the penalised marginal log-likelihood. However, since

closed-form solutions are often not available, iterative numerical optimisation solvers are used to

compute the PMLE.

Quasi-Newton and trust-region algorithms use first- and second-order information from the

penalised marginal log-likelihood. The score vector for the penalised marginal-likelihood, which is

used to determine the search direction in the parameter space, is equivalent to the score vector

of the complete-data penalised log-likelihood, ∇Θℓp(Θ;y)|Θ=Θ[t] ≡ ∇ΘQp(Θ;Θ[t]) = S[t]p . The

second-order information in the observed and/or expected information matrices is used to better
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approximate of the curvature of the penalised marginal log-likelihood evaluated at Θ[t]. These

matrices are given by:

H[t]
p := ∇Θ∇Θ⊺ℓp(Θ;y)|Θ=Θ[t] = H[t] − nSλ(Θ

[t]) (3.11)

I [t]
p := −Ey

(
H[t]

p

)
= I [t] + nSλ(Θ

[t]) (3.12)

which follow from the expression in (2.10). The factor correlations are not penalised, and thus

their computation is through the (quasi-)Newton proximal algorithm described in Section 2.3.1.

3.4. Goodness-of-fit and Model selection

Selecting the best model requires finding the right balance between two competing objectives:

model fit and model complexity. This balance becomes particularly important within a PMML

estimation framework, as the tuning vector λ influences both goals. Less complex models tend to

favour sparsity and offer better interpretability, but may fit the data worse. On the other hand,

more complex models may fit the data better but are often less interpretable. To address this

trade-off, information criteria, such as the Akaike Information Criterion (AIC, Akaike, 1974) or

the Bayesian Information Criterion (BIC, Schwarz, 1978), balance a measure of model fit, typically

the log-likelihood, with a measure of model complexity represented by the degrees of freedom (dof),

which is the number of uniquely estimated parameters in the model. These information criteria

have been extensively used in the LVM literature for model selection and assessing goodness-of-fit.

However, the AIC and BIC are derived under the assumption that model parameters are estimated

via maximum likelihood, which is not the case in our current setting. Consequently, the dof are

no longer an appropriate measure of model complexity, and relying on the number of non-zero

parameters as an indicator of model complexity can significantly affect the assessment of model fit

(Jacobucci et al., 2016).

We use the Generalised Information Criterion (GIC, Konishi and Kitagawa, 1996, 2008) as our

model selection criterion and to assess model fit. The model complexity term in the GIC is a

theoretically founded definition for the effective degrees of freedom (edf hereafter) of the penalised

GLVM-LSS model. Given a vector of parameter estimates Θ̂ = Θ̂(λ) obtained through PMML

estimation with a fixed tuning vector λ, the GIC is defined as:

GIC(Θ̂,λ) = −2ℓ(Θ̂) + 2 · tr
(
Hp(Θ̂)−1H(Θ̂)

)
(3.13)

74



where ℓ(Θ̂) represents the log-likelihood, and the observed information matrix evaluated at the

PMLE, H(Θ̂), is given in (2.10). The theoretical derivations of the GIC and of the edf can be found

in Appendix B3. The GIC extends the AIC and shares its tendency to favour overly complex models

(Shao, 1997). An approximate Generalised Bayesian Information Criterion (GBIC) is obtained by

giving a weight of log(n) to the complexity term in (3.13):

GBIC(Θ̂,λ) = −2ℓ(Θ̂) + log(n) · tr
(
Hp(Θ̂)−1H(Θ̂)

)
(3.14)

It is worth noting that for an unpenalised model (λ = 0), the observed penalised information

matrix Hp(Θ̂) is equal to H(Θ̂), resulting in the edf being equal to the number of estimated

parameters in the model, K. In this case, the complexity term in the GIC corresponds to the

number of parameters.

For the penalised case, the complexity term is given by edf = tr(Hp(Θ̂)−1H(Θ̂)). As λ → 0, the

edf tends to K, indicating that the model becomes less penalised and resembles the unpenalised

case. On the other hand, as λ → ∞, the edf tends to K − k∗, where k∗ is the number of penalised

parameters in the model. Thus, the edf ranges between K − k∗ and K for 0 < λ < ∞. The edf

can be interpreted as the sum of individual contributions from each parameter α̂k ∈ Θ̂ for which

|α̂k| > 0. Each estimated parameter adds a contribution to the edf in the range of [0, 1], inversely

related to the amount of penalisation the parameter has been subject to.

Many works on penalised estimation of LVMs compute the degrees of freedom as the count of

estimated non-zero parameters, based on results that show that, for lasso-penalised linear models,

this number is an unbiased estimate of the total degrees of freedom (Zou et al., 2007). However,

the edf provides a better-calibrated measure of model complexity. The edf is theoretically related

to the estimated bias term in the GIC and offers a more accurate assessment of the complexity of

the penalised model.

3.5. Selection of Tuning Parameters

Selecting the optimal value for λ = (λµ, λσ, λν , λτ )
⊺ can be viewed as a model selection problem,

where we compare candidate models estimated using different tuning parameter vectors. The BIC,

known for its consistency in model selection (Davison, 2003, Chapter 4.7), guides the choice of the
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optimal tuning parameter vector λ̂ by minimising the GBIC value:

λ̂ = arg min
λ∈[0,∞)S

GBIC(Θ̂,λ) (3.15)

where S = dim(λ) represents the number of different tuning parameters for the location, scale, or

shape parameters indexing the conditional distributions in the measurement part of the GLVM-

LSS. Typically, λ̂ is chosen from a set of candidate values through a grid-search procedure in

[0,∞)S . However, in the GLVM-LSS case this approach can be time-consuming and computation-

ally expensive due to the high dimensionality of the grid.

An alternative method is to estimate λ̂ using an automatic, data-driven procedure as proposed

by Geminiani et al. (2021) for the case of the Normal linear factor model2. The procedure draws

upon the literature from generalised additive models (Wood, 2004; Marra et al., 2017) and involves

minimising the mean squared error (MSE) of the estimated model parameters. This quantity

serves as an approximate unbiased risk estimate (UBRE) and an approximate AIC. Further details

are presented in Appendix B4. Simulation results in Geminiani et al. (2021) demonstrate that

the automatic procedure yields lower GBIC values compared to grid-search for various convex and

non-convex penalties, including Lasso and Alasso. A brief explanation of the methods is discussed

below.

Let λ0 represent the (initial) fixed value for the tuning parameter vector. In the neighbourhood

of the (local) mode, the update rules of the quasi-Newton and/or trust-region algorithms behave

similarly to the classic unconstrained Newton-Raphson update rule (Nocedal and Wright, 2006,

Chapter 4). Specifically, at iteration t + 1, the score vector S[t+1]
p is close to zero, allowing us to

express the NR update step as:

0 ≈ S[t+1]
p ≈ S[t]p +H[t]

p (Θ[t+1] −Θ[t])

Solving for Θ[t+1] yields (see Appendix B4.1):

Θ[t+1] =
[
J[t] + nS [t]

λ0

]−1√
J[t]

⊺
K[t]

where J[t] = −H[t], the vector K[t] = µ
[t]
K + ε[t], with µ

[t]
K =

√
J[t]Θ[t], and ε[t] =

√
J[t]

−⊺
S[t].

For brevity, let S [t]
λ0

= Sλ0(Θ
[t];λ,w). The squared root

√
J and its inverse can be obtained

2This procedure is only valid for Lasso and Alasso penalties, as the local approximations from the vector λ are
separable (see Appendix B2). The local approximations for SCAD and MCP penalties are non-separable and require
a grid-search approach for selecting the optimal tuning parameter λ̂.
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through an eigenvalue decomposition of H. According to standard likelihood theory, we know that

ε ∼ N(0, IK). Therefore, K ∼ N(µK, IK), where µK =
√
JΘ∗ and Θ∗ represents the true parameter

vector.

At convergence, the PMLE can be written as

Θ̂(λ0) ≡ Θ̂ =
[
Ĵ+ nŜλ0

]−1
√

Ĵ
⊺
K̂ (3.16)

where the ‘hat’ notation denotes the corresponding matrix evaluated at the PMLE, e.g., Ĵ = J(Θ̂),

etc. Using (3.16), we have that:

µ̂K =

√
Ĵ
[
Ĵ+ nŜλ0

]−1
√

Ĵ
⊺
K̂ = Âλ0K̂

where Âλ0 =

√
Ĵ
[
Ĵ+ nŜλ0

]−1
√
Ĵ
⊺

is the projection matrix of the fitting problem, and depends

on the tuning parameter vector through Ŝλ0 . The matrix K̂ is linked to the unpenalised part of

the model.

When updating the tuning parameter vector, our objective is to reduce the model complexity

(in terms of edf) that is not supported by the data. The tuning parameter vector λ0 is updated

by minimising the mean squared error (MSE) of µ̂K (see Appendix B4.1):

V(λ; Θ̂) := E
(
||µK − µ̂K||22

)
= E

(
||K− ÂλK̂||22

)
+ 2tr(Âλ)−K (3.17)

where tr(Aλ) = tr([J+ nSλ]
−1J) = tr(H−1

p H) corresponds to the edf and is also equivalent to the

bias term of the GIC in (3.13). However, the MSE in (3.17) depends on the unknown Θ∗ (through

K), so we compute an estimate of it using the available PMLE Θ̂(λ0):

V̂(λ; Θ̂) ∝ ||K̂− ÂλK̂||22 + 2tr(Âλ) (3.18)

This expression approximates an unbiased risk estimator (UBRE, Wood, 2017, Chapter 6) and

serves as an approximate AIC (see Appendix B4.2). For a given Θ̂(λ0), the optimal λ̂ is given by:

λ̂ = arg min
λ∈[0,∞)S

V̂(λ; Θ̂) = arg min
λ∈[0,∞)S

{
||K̂− ÂλK̂||22 + 2tr(Âλ)

}
(3.19)

To solve this optimisation problem, we resort to iterative numerical methods such as the quasi-

Newton or trust-region algorithms, which are also employed in the estimation step. The analytical

expressions for the first- and second-order derivatives of (3.19) are provided in Appendix B4.3.
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Once we obtain an updated value for the tuning parameter vector, denoted as λ̂1, we update the

model parameters to Θ̂(λ̂1). This two-step procedure of model parameter estimation and tuning

parameter update is repeated iteratively until convergence is achieved. Ultimately, we obtain

the model parameters and the optimal tuning parameter vector as (Θ̂(λ∗),λ∗)⊺. In practice, we

initialise the initial tuning parameter vector with a value arbitrarily close to zero (e.g., 10−8).

3.5.1 Influence factor

The tuning parameter vector λ̂ obtained by minimising the approximate UBRE (and approximate

AIC), as by equation (3.19), will often differ from the one obtained by minimising the GBIC in

the [0,∞)S-dimensional grid, as given by equation (3.15). In certain situations, the final model

obtained through (3.19) can be overly dense. To address this issue, we introduce an additional

parameter γ ≥ 1, referred to as the influence factor (Wood, 2017). This factor multiplies the term

2tr(Âλ) in equation (3.18), thereby increasing the importance of the edf (model complexity) in the

UBRE. By increasing γ, we encourage sparser models. Consequently, the modified UBRE in the

optimisation problem (3.19) becomes:

V̂(λ; Θ̂) ∝ ||K̂− ÂλK̂||22 + γ · 2tr(Âλ) (3.20)

The sparsity-inducing influence factor plays an important role in achieving a better balance

between model fit and model complexity. It allows for sensitivity analysis to examine how the

sparsity of the factor loading matrices changes with different values of γ. In the literature on

regression splines it has been observed that choosing γ ≈ 1.4 corrects the tendency of over-fitting

when using prediction error criteria (Kim and Gu, 2004). A value of γ ≈ 1.5 finds a justification

from the viewpoint of double cross-validation (Wood, 2017, Chapter 6). However, in the current

context of model selection, higher values of γ tend to produce sparser solutions by increasing the

relative importance of the bias term in the GIC. From a practical standpoint, we recommend

adopting a sensitivity analysis approach by exploring various candidate values for γ within a user-

defined range. Subsequently, the fitted model with the lowest GBIC can be selected as the preferred

choice.

It should be noted that, in some way, the influence factor acts as a tuning parameter that

influences the resulting sparsity of the factor loading matrix solution. However, the automatic

selection procedure described in this section simplifies the problem by reducing the amount of

‘tuning parameters’ in the penalised estimation problem. A promising future research avenue
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includes exploring ways of automatically selecting the value of γ, for example, in the spirit of Gu

(1992) with ‘performance’ (oriented) iterations.

3.6. Simulation Studies

In this section, we assess the parameter recovery properties of the proposed PMML estimation

framework with automatic selection of tuning parameters across various simulation designs. Previ-

ous studies have indicated that penalised LVMs tend to exhibit better model fit compared to their

unpenalised counterparts when the true data generating factor loading matrices are sparse (see,

e.g., Choi et al., 2010; Hirose and Yamamoto, 2014; Jin et al., 2018 and Geminiani et al., 2021

for continuous items; and Sun et al., 2017; Battauz, 2020 and Huang, 2020 for categorical data).

To demonstrate the effectiveness of the automatic selection procedure outlined in Section 3.5, we

use the Alasso penalty, which possesses the oracle property. In our analysis, we employ the MLEs

as weights in the Alasso penalty and as a benchmark for comparative analysis on performance

measures. The MLEs are obtained following the (unpenalised) estimation procedure described in

Chapter 2.

We consider different combinations of test lengths (p = 10, 20), sample sizes (n = 200, 500, 1000),

and influence factor values (γ = 1, 2, 3, 4, 5), resulting in a total of 30 distinct simulation settings.

For each setting, we generate L = 300 datasets. All simulations are performed in R v.4.2.2 (R

Core Team, 2022). The code can be accessed at https://github.com/ccardehu/GLVM-LSS. See

Appendix B6 for details on the software implementation.

3.6.1 Performance Evaluation Criteria

To evaluate the overall performance and estimation quality of the proposed penalised estimation

framework, we compute the mean squared error (MSE) and absolute bias (AB) for the estimated

model parameters. Let αk ∈ Θ∗ be the true value for the model parameter, and α̂
(l)
k ∈ Θ̂(l) be its

estimate using the lth generated sample, where l = 1, . . . , L. The mean squared error (MSE) of α̂k

is calculated as:

MSE(α̂k) =
1

L

L∑
l=1

(α̂
(l)
k − αk)

2, k = 1, ...,K

Similarly, the absolute bias (AB) of α̂k is given by:

AB(α̂k) = | ¯̂αk − αk| =

∣∣∣∣∣ 1L
L∑
l=1

α̂
(l)
k − αk

∣∣∣∣∣ , k = 1, ...,K
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For comparison purposes, we compute the average MSE (AvMSE) and average AB (AvAB)

across the estimated parameters. We compute these measures separately for the penalised para-

meters (factor loadings) and the unpenalised parameters (intercepts, free loadings, and factor

correlations) for different location, scale, and shape measurement equations.

Let Kp,φ = {k : α̂k,φ ∈ Θ̂p,φ, φ ∈ θ} be the index set for the penalised parameters in the

measurement equations for the distributional parameter φ ∈ θ. Similarly, Ku,φ = {k : α̂k,φ ∈

Θ̂u,φ, φ ∈ θ} is the index set for the unpenalised parameters in the measurement equations for

distributional parameter φ ∈ θ. The number of elements in these index sets are denoted as

card(Kp,φ) = Kp,φ and card(Ku,φ) = Ku,φ, respectively, with
∑

x∈{p,u}
∑

φ∈θKx,φ = dim(Θ̂) = K.

For each location, scale, or shape parameter φ ∈ θ, we compute the average MSE (AvMSE) for

the penalised (Θ̂p,φ) and unpenalised (Θ̂u,φ) parameter estimates as:

AvMSE(Θ̂x,φ) =
1

Kx,φ

∑
k∈Kx,φ

MSE(α̂k), for x = {p, u}, φ ∈ {µ, σ, τ, ν},

Similarly, we compute the average absolute bias (AvAB) as:

AvAB(Θ̂x,φ) =
1

Kx,φ

∑
k∈Kx,φ

AB(α̂k), for x = {p, u}, φ ∈ {µ, σ, τ, ν}.

We also evaluate the performance of the proposed method in terms of sparsity recovery. For

each distributional parameter φ ∈ θ, define an indicator vector T of dimension Kp,φ with entries

given by tk = 1(αk ̸= 0) for k ∈ Kp,φ. This vector indicates whether the kth penalised factor

loading in Θp,φ is different from zero (tk = 1) or equal to zero (tk = 0). Similarly, for each

generated sample l = 1, ..., L, define the corresponding indicator vector T̂(l) for the estimated

penalised factor loadings Θ̂
(l)
p,φ, with entries t̂(l)k = 1(α̂

(l)
k ̸= 0) for k ∈ Kp,φ.

To assess sparsity recovery, we compute the correct estimation rate (CER):

CER(Θ̂(l)
p,φ) =

 1

Kp,φ

∑
k∈Kp,φ

1(t̂
(l)
k = tk)

 , for l = 1, ..., L and φ ∈ {µ, σ, τ, ν}.

The CER(Θ̂
(l)
p,φ) represents the proportion of estimated factor loadings subject to penalisation that

are correctly identified as being either different from, or equal to zero. Values closer to 1.0 suggest

better recovery of the true sparsity. For comparison across simulations, we compute the average

CER (AvCER) :

AvCER(Θ̂p,φ) =
1

L

L∑
l=1

CER(Θ̂(l)
p,φ), for φ ∈ {µ, σ, τ, ν}
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Additionally, we aim for the proposed method to accurately recover the true sparsity structure

by effectively preserving the non-zero parameters and penalising the zero parameters. To evaluate

this, we compute the true positive rate (TPR) and the false positive rate (FPR).

For each distributional parameter φ ∈ θ, define Tφ as the index set for the ‘true non-zero’

parameters in Θp,φ, that is Tφ = {k : αk ̸= 0, k ∈ Kp,φ}. Note that card(Tφ) ≤ Kp, and that

Tφ is a subset of Kp,φ. Similarly, define T c
φ as the index set for the ‘true zero’ parameters in

Θp,φ, i.e., T c
φ = {k : αk = 0, k ∈ Kp,φ}. It follows that Tφ ∪ T c

φ = Kp,φ and, consequently,

card(Tφ) + card(T c
φ ) = Kp,φ. The TPR is computed as follows:

TPR(Θ̂p,φ) =
1

L

L∑
l=1

 1

card(Tφ)
∑
k∈Tφ

1(α̂
(l)
k ̸= 0)

 , for φ ∈ {µ, σ, τ, ν}

The TPR measures the proportion of correctly identified non-zero parameters. Values closer to 1.0

are desired. The FPR is computed as:

FPR(Θ̂p,φ) =
1

L

L∑
l=1

 1

card(T c
φ )

∑
k∈T c

φ

1(α̂
(l)
k ̸= 0)

 , for φ ∈ {µ, σ, τ, ν}

The FPR, on the other hand, quantifies the proportion of true zero parameters that are incor-

rectly identified as non-zero. Lower values of FPR are desirable as they indicate a more accurate

identification of zero parameters. When computing the AvCER, TPR, and FPR, we round the

estimated parameter values to the nearest decimal point. For comparison purposes, we also cal-

culate these performance measures for the unpenalised model. In the unpenalised case, we apply

a hard threshold of 0.1 and set all estimated factor loadings with absolute values smaller than

this threshold to zero. This thresholding procedure is commonly employed in the LVM literature

to obtain sparse factor loading matrices (Hair et al., 2010). For more detailed information on

parameter initialisation, factor loading identification strategy, and the generation of sparse factor

loading matrices, please refer to Appendix B5.

3.6.2 Simulation Study I: Normal linear factor model with heteroscedastic
items

In our first simulation study, we consider a heteroscedastic Normal factor model with sparsity in

both the location and scale factor loading matrices. Formally, we assume a GLVM-LSS with Nor-

mally distributed items conditional on the latent variables, yi | z ∼ N(µi(z), σ2i (z)). For simplicity,
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the latent variables are uncorrelated. The measurement equations are of the form:

µi(z) = αi0,µ +
2∑

j=1

αij,µzj

log(σi(z)) = αi0,σ +

2∑
j=1

αij,σzj

In the measurement equations for the location parameter (µ), the intercept parameters are

generated from a uniform distribution as αi0,µ ∼ Unif(1.0, 2.0), while the factor loadings are drawn

from αij,µ ∼ Unif(0.5, 1.5). The sign of the factor loadings for µ is randomly determined with a

probability of 0.5. To ensure identifiability, we fix α12,µ = 0. For the scale parameter (σ), the

parameters (intercepts and slopes) in the measurement equations are generated from a uniform

distribution, as αi,σ = (αi0,σ, αij,σ)
⊺ ∼ Unif(0.1, 0.4).

We induce sparsity in the factor loading matrices Aµ and Aσ by following the procedure de-

scribed in Appendix B5. Homoscedastic items, where the variances are constant, are obtained

when αij,σ = 0 for j = 1, 2. On the other hand, items exhibiting heteroscedasticity have one or

both non-zero factor loadings in the scale measurement equation. The L = 300 datasets were

randomly generated using the same set of factor loadings.

Table 3.1 shows the simulation results for L = 300 replications, by test length (p), sample size

(n), and five different penalised estimations corresponding to various values of the influence factor

γ = {1, 2, 3, 4, 5}. In each case, the tuning parameters λ̂ = (λ̂µ, λ̂σ)
⊺ were automatically estimated

using the procedure outlined in Section 3.5. For comparison, the results of the unpenalised MML

estimation are also included (first row in each case). Several conclusions can be drawn from the

results:

• As expected, the proposed PMML estimation framework consistently yields lower average

GBIC values compared to the (unpenalised) MMLE in all scenarios.

• The PMLEs exhibit slightly higher average absolute bias (AvAB) than the MLEs. However,

this bias diminishes as the sample size increases.

• Conversely, the PMLEs display lower average mean squared error (AvMSE) compared to

the MLEs. This difference is particularly pronounced for the factor loadings in the location

measurement equations (matrix Aµ), where the non-zero entries are larger in absolute value

and the matrix is denser. For the factor loadings in the scale measurement equations (matrix

Aσ), especially in smaller sample size scenarios (200, 500), the MSE is predominantly influ-
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enced by the bias term, resulting in higher AvMSE for the PMLEs. However, this difference

diminishes as the sample size increases.

• Across all cases, higher values of γ consistently lead to better results and more consistent

model selection. For small sample sizes (n = 200), a value of γ = 2 yields the lowest GBIC,

while for medium and large sample sizes (n = 500, 1000), the lowest GBIC corresponds to

γ = 3.

• In terms of sparsity recovery, the correct estimation rate (CER) and true positive rate (TPR)

approach 1.0, while the false positive rate (FPR) approaches 0.0 for the PMLEs as the sample

size increases. Conversely, these measures are considerably worse for the MLEs when using

a threshold of ±0.1 for sparsity recovery.

• Within a given sample size and test length, the average optimal values of the tuning para-

meters λ̂ = (λ̂µ, λ̂σ)
⊺ increase with γ.

This framework provides flexibility for model selection and testing, particularly when the pres-

ence of heteroscedasticity is unknown in advance. It allows us to evaluate the performance of the

proposed method in terms of correctly identifying the sparsity structure and estimating the factor

loadings accurately.
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Location Parameter (µ) Scale Parameter (σ)

p n Influence
factor (γ)

Avg.
GBIC

Intercepts (α̂0,µ) Loadings (α̂i,µ) Intercepts (α̂0,σ) Loadings (α̂i,σ)

AvMSE AvAB AvMSE AvAB AvCER TPR FPR Avg. λµ AvMSE AvAB AvMSE AvAB AvCER TPR FPR Avg. λσ

10

200

- 7529.97 0.0144 0.0065 0.0193 0.0094 0.7960 1.000 0.485 - 0.0074 0.0259 0.0065 0.0046 0.816 0.834 0.208 -
1.0 7456.88 0.0139 0.0064 0.0122 0.0162 0.9263 0.999 0.174 0.0026 0.0072 0.0202 0.0057 0.0140 0.848 0.848 0.153 0.0017
2.0 7450.73 0.0139 0.0079 0.0121 0.0254 0.9632 0.998 0.085 0.0047 0.0070 0.0174 0.0055 0.0181 0.866 0.831 0.087 0.0023
3.0 7451.67 0.0141 0.0081 0.0136 0.0356 0.9785 0.996 0.046 0.0080 0.0070 0.0141 0.0065 0.0286 0.855 0.778 0.039 0.0036
4.0 7451.17 0.0143 0.0094 0.0146 0.0377 0.9805 0.996 0.040 0.0125 0.0070 0.0132 0.0073 0.0349 0.838 0.741 0.029 0.0054
5.0 7453.33 0.0145 0.0115 0.0168 0.0462 0.9866 0.994 0.023 0.0166 0.0071 0.0125 0.0082 0.0410 0.827 0.715 0.019 0.0078

500

- 18510.84 0.0052 0.0026 0.0070 0.0069 0.8970 1.000 0.245 - 0.0020 0.0097 0.0022 0.0020 0.907 0.871 0.043 -
1.0 18428.25 0.0051 0.0025 0.0043 0.0073 0.9526 1.000 0.113 0.0009 0.0020 0.0078 0.0017 0.0044 0.936 0.953 0.088 0.0004
2.0 18421.82 0.0050 0.0031 0.0041 0.0102 0.9811 1.000 0.045 0.0019 0.0020 0.0069 0.0016 0.0061 0.949 0.944 0.045 0.0006
3.0 18420.50 0.0051 0.0039 0.0043 0.0156 0.9926 1.000 0.018 0.0030 0.0019 0.0058 0.0017 0.0097 0.948 0.926 0.023 0.0011
4.0 18421.96 0.0051 0.0045 0.0046 0.0189 0.9960 1.000 0.010 0.0044 0.0020 0.0056 0.0021 0.0145 0.938 0.899 0.007 0.0015
5.0 18422.25 0.0051 0.0046 0.0045 0.0169 0.9967 1.000 0.008 0.0058 0.0020 0.0054 0.0024 0.0177 0.927 0.877 0.003 0.0020

1000

- 36763.82 0.0027 0.0030 0.0035 0.0029 0.9511 1.000 0.116 - 0.0010 0.0047 0.0010 0.0015 0.936 0.893 0.005 -
1.0 36672.87 0.0027 0.0023 0.0020 0.0035 0.9635 1.000 0.087 0.0004 0.0009 0.0037 0.0007 0.0024 0.976 0.986 0.038 0.0002
2.0 36667.16 0.0026 0.0025 0.0019 0.0053 0.9804 1.000 0.047 0.0009 0.0009 0.0033 0.0007 0.0030 0.984 0.988 0.021 0.0003
3.0 36665.37 0.0026 0.0028 0.0018 0.0078 0.9914 1.000 0.020 0.0014 0.0009 0.0028 0.0007 0.0046 0.986 0.983 0.010 0.0004
4.0 36665.58 0.0026 0.0031 0.0019 0.0105 0.9967 1.000 0.008 0.0021 0.0009 0.0026 0.0008 0.0064 0.985 0.978 0.005 0.0006
5.0 36666.89 0.0026 0.0033 0.0020 0.0119 0.9981 1.000 0.005 0.0028 0.0009 0.0028 0.0009 0.0087 0.977 0.961 0.001 0.0008

20

200

- 14652.08 0.0169 0.0159 0.2552 0.2030 0.6435 0.970 0.826 - 0.0050 0.0228 0.0241 0.0678 0.752 0.871 0.516 -
1.0 14551.39 0.0166 0.0119 0.1940 0.1695 0.7518 0.934 0.510 0.0038 0.0047 0.0165 0.0184 0.0592 0.793 0.839 0.309 0.0028
2.0 14542.33 0.0161 0.0129 0.1946 0.1750 0.7769 0.927 0.439 0.0058 0.0047 0.0164 0.0182 0.0610 0.799 0.843 0.300 0.0029
3.0 14544.49 0.0167 0.0201 0.1869 0.1852 0.7825 0.915 0.408 0.0093 0.0047 0.0159 0.0184 0.0656 0.793 0.817 0.260 0.0038
4.0 14548.25 0.0173 0.0247 0.1895 0.1870 0.7786 0.910 0.410 0.0146 0.0048 0.0140 0.0193 0.0711 0.776 0.780 0.234 0.0054
5.0 14552.60 0.0178 0.0274 0.1885 0.1866 0.7836 0.907 0.393 0.0194 0.0048 0.0120 0.0199 0.0760 0.769 0.762 0.216 0.0078

500

- 35920.40 0.0065 0.0125 0.0932 0.1050 0.7362 0.983 0.618 - 0.0019 0.0109 0.0079 0.0334 0.909 0.951 0.186 -
1.0 35801.68 0.0063 0.0043 0.0592 0.0531 0.9032 0.978 0.205 0.0013 0.0018 0.0069 0.0051 0.0170 0.939 0.965 0.120 0.0005
2.0 35788.92 0.0062 0.0057 0.0588 0.0608 0.9320 0.976 0.132 0.0025 0.0018 0.0069 0.0051 0.0189 0.948 0.965 0.090 0.0008
3.0 35787.43 0.0061 0.0088 0.0583 0.0679 0.9401 0.976 0.112 0.0037 0.0018 0.0073 0.0052 0.0230 0.948 0.960 0.079 0.0012
4.0 35790.11 0.0062 0.0122 0.0600 0.0733 0.9432 0.975 0.103 0.0051 0.0018 0.0077 0.0055 0.0273 0.945 0.951 0.070 0.0016
5.0 35792.85 0.0063 0.0141 0.0599 0.0759 0.9415 0.971 0.101 0.0068 0.0018 0.0075 0.0057 0.0302 0.938 0.939 0.066 0.0021

1000

- 71359.53 0.0032 0.0073 0.0323 0.0591 0.8111 0.997 0.456 - 0.0009 0.0045 0.0031 0.0181 0.971 0.979 0.049 -
1.0 71183.06 0.0030 0.0036 0.0156 0.0187 0.9553 0.993 0.099 0.0006 0.0008 0.0029 0.0016 0.0056 0.985 0.993 0.034 0.0002
2.0 71170.20 0.0030 0.0033 0.0154 0.0222 0.9757 0.993 0.049 0.0012 0.0008 0.0028 0.0015 0.0071 0.989 0.994 0.022 0.0003
3.0 71167.77 0.0030 0.0048 0.0155 0.0263 0.9837 0.993 0.029 0.0019 0.0008 0.0031 0.0016 0.0096 0.989 0.993 0.019 0.0005
4.0 71168.79 0.0030 0.0061 0.0156 0.0294 0.9859 0.992 0.024 0.0026 0.0008 0.0034 0.0016 0.0117 0.989 0.992 0.018 0.0007
5.0 71170.29 0.0030 0.0072 0.0156 0.0308 0.9865 0.992 0.022 0.0033 0.0008 0.0035 0.0017 0.0134 0.986 0.988 0.017 0.0009

Table 3.1: Simulation Study I: Performance measures for the MML (first row for each combination of number of items and sample size) and the PMML
estimation of a heteroscedastic Normal linear factor model with sparse factor loadings matrices for the location (µ) and scale (σ) parameters. Results by
number of items (p), sample size (n), and influence factor (γ). AvMSE stands for the average Mean Squared Error across simulations, AvAB for the average
Absolute Bias across simulations, AvCER for average Correct Estimation Rate across simulations, TPR for True Positive Rate, and FPR for False Positive
Rate. Results for the Alasso penalty with automatic selection of the tuning parameter vector λ = (λµ, λσ), with additional parameter a = 2.
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3.6.3 Simulation Study II: Heteroscedastic Beta factor model

In our second simulation study, we focus on a one-factor model with continuous items in the

interval (0, 1). Some of these items exhibit heteroscedasticity along with the latent variable. A

related framework was proposed by Verkuilen and Smithson (2012), who introduced a model with

random effects on the scale parameter. In our approach, we generate items that, conditional on

the latent variable z, follow a location-scale parameterization of the Beta distribution: yi | z ∼

Beta(µi(z), σi(z)). Here, µi ∈ (0, 1) is a location parameter, and σi ∈ (0, 1) is a scale parameter

(refer to Section 2.4.1 and Appendix A1.1 for more details). Under this parameterization, E(yi |z) =

µi, and the conditional variance is var(yi | z) = σ2i µi(1 − µi). While this model can be extended

to include multiple factors, for computational simplicity, we maintain it as unidimensional in the

latent variable space. The measurement equations for µi and σi are given by:

logit(µi(z)) = αi0,µ + αi1,µz1

logit(σi(z)) = αi0,σ + αi1,σz1

The population intercepts and slopes in the measurement equation for µi are randomly drawn

from uniform distributions: αi0,µ ∼ Unif(−1.5, 1.5) and αi1,µ ∼ Unif(0.5, 1.5), respectively. The

signs of the factor loadings αi1,µ are assigned at random with probability 0.5. Similarly, the

population intercepts and slopes in the measurement equation for σi are generated from uniform

distributions: αi0,σ ∼ Unif(−2.5,−0.5) and αi1,σ ∼ Unif(0.3, 0.6). To create homoscedastic items,

where the scale parameter remains constant along the latent scale, we randomly set some factor

loadings in the measurement equation for the scale parameter to zero. The signs of the non-zero

factor loadings are assigned randomly as described earlier. We generate the true parameters in this

way to ensure that the conditional densities fi(yi | z) are uni-modal. The L = 300 datasets were

randomly generated using the same set of factor loadings. While the Beta distribution allows for

bimodal densities under certain combinations of µi and σi, this is not common in the applications

of interest for this study. Noel (2014) proposed a unidimensional Beta factor model that can handle

the bi-modality of items if necessary, but the scale parameter is assumed to be constant along the

latent scale.

The simulation results are summarised in Table 3.2, and the first row of each section presents the

results of the (unpenalised) MML estimation for comparison. Based on the results, the following

conclusions are drawn:

• The proposed penalised estimation framework consistently outperforms the MML estimation
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benchmark in terms of model selection. In all cases, the penalised estimation yields lower

GBIC values compared to the unpenalised estimation.

• Generally, higher values of the influence factor lead to better estimation results. This is

supported by the lower GBIC values, higher CERs and TPRs, and lower FPRs for γ = 4

with small sample sizes and γ = 5 for medium and large sample sizes.

• Regarding sparsity recovery, the automatic selection of tuning parameters λ leads to TPR

values close to 1.0, indicating that the non-zero factor loadings in the scale measurement

equation are correctly estimated in most cases. The FPR decreases and converges to zero

as the sample size increases, as expected. However, for the MLEs, the FPR is considerably

worse for n = 200 (computed using a threshold of ± 0.1) but improves with larger sample

sizes.

• For a given sample size and test length, the average optimal value of λ̂σ increases with γ.

This can be attributed to the higher importance of the effective degrees of freedom (edf)

term, which captures the model complexity, in the optimisation problem (3.19).
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Location Parameter (µ) Scale Parameter (σ)

p n Influence
factor (γ)

Avg.
GBIC

Intercepts (α̂0,µ) Loadings (α̂i,µ) Intercepts (α̂0,σ) Loadings (α̂i,σ)

AvMSE AvAB AvMSE AvAB AvCER TPR FPR Avg. λµ AvMSE AvAB AvMSE AvAB AvCER TPR FPR Avg. λσ

10

200

- -3405.47 0.0060 0.0051 0.0040 0.0081 1.0000 1.000 0.000 - 0.0056 0.0140 0.0051 0.0042 0.949 0.999 0.126 -
1.0 -3423.68 0.0060 0.0023 0.0047 0.0282 1.0000 1.000 0.000 0.0045 0.0055 0.0138 0.0043 0.0145 0.986 0.999 0.033 0.0027
2.0 -3423.97 0.0059 0.0013 0.0053 0.0366 1.0000 1.000 0.000 0.0084 0.0055 0.0138 0.0044 0.0182 0.985 0.999 0.035 0.0036
3.0 -3424.26 0.0060 0.0019 0.0054 0.0356 1.0000 1.000 0.000 0.0128 0.0055 0.0139 0.0050 0.0220 0.992 0.998 0.018 0.0056
4.0 -3424.98 0.0060 0.0027 0.0050 0.0305 1.0000 1.000 0.000 0.0170 0.0055 0.0139 0.0052 0.0222 0.993 0.996 0.010 0.0080
5.0 -3424.91 0.0060 0.0024 0.0056 0.0370 1.0000 1.000 0.000 0.0214 0.0055 0.0138 0.0057 0.0264 0.993 0.992 0.005 0.0107

500

- -8726.63 0.0025 0.0012 0.0017 0.0053 1.0000 1.000 0.000 - 0.0023 0.0063 0.0019 0.0051 0.995 1.000 0.012 -
1.0 -8755.22 0.0024 0.0011 0.0019 0.0140 1.0000 1.000 0.000 0.0018 0.0022 0.0064 0.0014 0.0079 0.995 1.000 0.013 0.0011
2.0 -8755.37 0.0024 0.0013 0.0020 0.0166 1.0000 1.000 0.000 0.0033 0.0022 0.0063 0.0015 0.0093 0.994 1.000 0.016 0.0015
3.0 -8755.66 0.0024 0.0010 0.0019 0.0154 1.0000 1.000 0.000 0.0051 0.0022 0.0065 0.0015 0.0103 0.996 1.000 0.011 0.0023
4.0 -8756.02 0.0024 0.0010 0.0019 0.0146 1.0000 1.000 0.000 0.0068 0.0022 0.0065 0.0015 0.0104 0.998 1.000 0.005 0.0031
5.0 -8756.26 0.0024 0.0010 0.0019 0.0152 1.0000 1.000 0.000 0.0085 0.0022 0.0065 0.0015 0.0109 0.999 1.000 0.002 0.0040

1000

- -17630.13 0.0012 0.0015 0.0009 0.0035 1.0000 1.000 0.000 - 0.0010 0.0039 0.0009 0.0037 1.000 1.000 0.000 -
1.0 -17662.45 0.0012 0.0017 0.0009 0.0076 1.0000 1.000 0.000 0.0009 0.0010 0.0040 0.0007 0.0053 0.994 1.000 0.014 0.0006
2.0 -17662.73 0.0012 0.0018 0.0010 0.0089 1.0000 1.000 0.000 0.0017 0.0010 0.0040 0.0007 0.0059 0.998 1.000 0.006 0.0008
3.0 -17662.92 0.0012 0.0016 0.0010 0.0079 1.0000 1.000 0.000 0.0025 0.0010 0.0041 0.0007 0.0063 0.999 1.000 0.003 0.0011
4.0 -17663.14 0.0012 0.0015 0.0009 0.0077 1.0000 1.000 0.000 0.0034 0.0010 0.0041 0.0007 0.0063 0.999 1.000 0.003 0.0015
5.0 -17663.29 0.0012 0.0015 0.0009 0.0080 1.0000 1.000 0.000 0.0043 0.0010 0.0041 0.0007 0.0064 1.000 1.000 0.000 0.0019

20

200

- -8372.39 0.0084 0.0042 0.0044 0.0082 1.0000 1.000 0.000 - 0.0050 0.0133 0.0044 0.0038 0.952 1.000 0.107 -
1.0 -8398.24 0.0084 0.0037 0.0056 0.0279 1.0000 1.000 0.000 0.0043 0.0050 0.0119 0.0035 0.0103 0.961 1.000 0.087 0.0020
2.0 -8400.53 0.0082 0.0028 0.0065 0.0373 1.0000 1.000 0.000 0.0085 0.0049 0.0115 0.0036 0.0148 0.981 0.999 0.041 0.0032
3.0 -8400.41 0.0082 0.0033 0.0076 0.0410 1.0000 1.000 0.000 0.0128 0.0049 0.0112 0.0042 0.0198 0.994 0.999 0.012 0.0052
4.0 -8402.15 0.0085 0.0044 0.0057 0.0294 1.0000 1.000 0.000 0.0169 0.0049 0.0115 0.0041 0.0188 0.995 0.999 0.010 0.0074
5.0 -8401.62 0.0084 0.0046 0.0072 0.0412 1.0000 1.000 0.000 0.0213 0.0049 0.0111 0.0047 0.0232 0.995 0.995 0.006 0.0099

500

- -21380.25 0.0038 0.0076 0.0022 0.0083 1.0000 1.000 0.000 - 0.0020 0.0064 0.0017 0.0037 0.998 1.000 0.005 -
1.0 -21420.12 0.0042 0.0051 0.0025 0.0192 1.0000 1.000 0.000 0.0018 0.0020 0.0057 0.0012 0.0074 0.991 1.000 0.021 0.0010
2.0 -21420.95 0.0041 0.0056 0.0027 0.0223 1.0000 1.000 0.000 0.0034 0.0020 0.0056 0.0012 0.0089 0.995 1.000 0.012 0.0014
3.0 -21421.37 0.0041 0.0052 0.0028 0.0226 1.0000 1.000 0.000 0.0051 0.0020 0.0056 0.0013 0.0103 0.997 1.000 0.006 0.0021
4.0 -21422.06 0.0041 0.0051 0.0026 0.0200 1.0000 1.000 0.000 0.0068 0.0020 0.0056 0.0013 0.0100 0.999 1.000 0.003 0.0029
5.0 -21422.43 0.0041 0.0051 0.0027 0.0215 1.0000 1.000 0.000 0.0086 0.0020 0.0056 0.0013 0.0106 0.999 1.000 0.002 0.0037

1000

- -43182.16 0.0022 0.0017 0.0012 0.0020 1.0000 1.000 0.000 - 0.0010 0.0027 0.0008 0.0026 1.000 1.000 0.001 -
1.0 -43138.76 0.0026 0.0010 0.0015 0.0181 1.0000 1.000 0.000 0.0009 0.0011 0.0023 0.0006 0.0063 0.993 1.000 0.016 0.0005
2.0 -43140.25 0.0026 0.0012 0.0015 0.0199 1.0000 1.000 0.000 0.0017 0.0011 0.0023 0.0006 0.0071 0.998 1.000 0.004 0.0007
3.0 -43140.55 0.0026 0.0011 0.0016 0.0195 1.0000 1.000 0.000 0.0026 0.0011 0.0024 0.0007 0.0077 0.999 1.000 0.002 0.0011
4.0 -43140.92 0.0026 0.0011 0.0015 0.0188 1.0000 1.000 0.000 0.0034 0.0011 0.0024 0.0007 0.0076 0.999 1.000 0.003 0.0014
5.0 -43141.15 0.0026 0.0012 0.0015 0.0192 1.0000 1.000 0.000 0.0043 0.0011 0.0024 0.0007 0.0078 1.000 1.000 0.001 0.0018

Table 3.2: Simulation Study II: Performance measures for the MML (first row for each combination of number of items and sample size) and the
PMML estimates of a Beta factor model with unknown heteroscedastic items. Results by number of items (p), sample size (n), and influence factor
(γ). AvMSE stands for the average Mean Squared Error across simulations, AvAB for the average Absolute Bias across simulations, AvCER for
average Correct Estimation Rate across simulations, TPR for True Positive Rate, and FPR for False Positive Rate. Results for the Alasso penalty
with automatic selection of the tuning parameter for the scale parameter λσ, with additional parameter a = 2.
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3.7. Empirical Applications

3.7.1 PISA 2018: A semi-confirmatory joint model for item response and re-
sponse times

In Section 2.5.1, we presented a confirmatory GLVM-LSS model for item responses (IR) and re-

sponse times (RT), using data from the 2018 PISA computer-based mathematics exam. Our study

focused on a sample of Brazilian students, consisting of n = 1280 individuals. For our analysis,

we selected nine binary items from the first testlet, along with their corresponding response times.

The purpose was to explore the relationship between IR and RT, which has received significant

attention in educational research literature because it provides valuable insights into students’

abilities, test-taking strategies, and also helps in item calibration and test design (van der Linden,

2007, 2008; van der Linden and Guo, 2008; van der Linden et al., 2010). The relationship between

IR and RT is often associated with the concept of the ‘speed-accuracy trade-off’ (Zimmerman,

2011). This trade-off suggests that individuals who take more time and respond slowly tend to

achieve higher scores on exams compared to their peers who respond quickly but make more errors.

The model consists of, on one hand, IR that follow a Bernoulli distribution conditional on

the latent ability (z1), yi | z ∼ Bernoulli(πi(z1)). The measurement equations for the location

parameter of the IR (the probability of responding correctly) are:

logit(πi) = αi0,π + αi1,πz1 (3.21)

Here, αi0,π and αi1,π represent item i’s difficulty and discrimination parameters, respectively.

On the other hand, the logarithm of RT (log-RT) are assumed to follow a Skew-Normal distribution

conditional on the latent speed trait (z2), log(ti) | z ∼ SN(µi(z2), σi(z2), νi(z2)). The location

(µi ∈ R), scale (σi ∈ R+), and shape (νi ∈ (0, 1)) parameters characterising this re-parameterised

version of the SN distribution (see Appendix A1.1) are modelled as linear functions of z2. After

choosing appropriate link functions for the distributional parameters, the measurement equations

for the distributional parameters of the log-RT are given by:

µi = αi0,µ + αi1,µz2 (3.22)

log(σi) = αi0,σ + αi1,σz2 (3.23)

logit(νi) = αi0,ν + αi1,νz2 (3.24)
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Furthermore, the latent ability and the latent speed trait are correlated and assumed to follow

a multivariate Normal distribution, (z1, z2)⊺ ∼ N(0,Φ). For identifiability purposes, we assume Φ

is a correlation matrix (i.e., diag(Φ) = 1), with diagonal elements denoted by ϕ12 = ϕ21 = ϕz.

We fit the GLVM-LSS model described above using the penalised estimation framework out-

lined in Section 3.3. We refer to this model as a ’semi-confirmatory’ GLVM-LSS since i) we inform

the model structure by assuming that IRs only depend on the latent ability and the log-RTs only

depend on the latent speed trait, but ii) we also allow all the distributional parameters character-

ising the log-RTs to be functions of z2. In reality, some items may not exhibit heteroscedasticity

and/or varying skewness across the latent speed trait. The penalised estimation deals with this by

effectively shrinking unnecessary factor loadings in the scale and shape measurement equations for

log-RT towards zero. The proposed penalised estimation framework strikes a balance between a

confirmatory model structure, where specific relationships between latent variables and the IR and

RT are pre-specified, and an exploratory model that incorporates data-driven insights regarding

the presence of heteroscedasticity and varying skewness.

We use the Alasso penalty due to its oracle property, and the additional parameter in the

penalty term is set to a = 2, which is a common practice in the literature for model selection (Zou,

2006). In this context, only the factor loadings are penalised, Θ⊺
p = vec(A), while the intercepts and

factor correlations remain unpenalised, Θ⊺
u = (α⊺

0, vech(Φ)⊺). Six different models are estimated,

each corresponding to a different value of the influence factor, γ = {1, . . . , 6}. These varying

values allow for different weights on the model complexity term of the approximate UBRE in the

automatic model selection procedure. The initial parameter values and the weights in the Alasso

penalty are based on the unpenalised model parameter estimates, specifically the MLEs for Model

7 in Section 2.5.1. The results of this analysis are summarised in Table 3.3.

The model with the best fit, as indicated by the GBIC, is achieved by setting the influence

factor to γ = 5. The effective degrees of freedom (edf) measure the complexity of the selected

model. In this case, the edf is calculated to be 61.31, which is substantially lower than the number

of estimated parameters in the full model (73). The estimated parameters for the selected model

are presented in Table 3.4. The factor loadings in the measurement equations for the location

parameters characterising the IRs (α̂i1,π’s) and the log-RTs (α̂i1,µ’s) are similar to those obtained

from the unpenalised solution (Table 2.7).

However, some of the factor loadings in the measurement equations for the scale (α̂i1,σ’s) and

shape (α̂i1,ν ’s) parameters have been shrunk towards zero due to the penalisation. These findings

highlight the presence of heteroscedasticity and varying skewness in the log-RT of certain items,
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Model GBIC EDF λ̂µ λ̂σ λ̂ν

Unpenalised 25548.18 73.00 - - -

Penalised
γ = 1 25509.28 67.14 2.55e-04 5.34e-05 3.80e-04
γ = 2 25499.03 65.05 5.14e-04 1.40e-04 9.65e-04
γ = 3 25491.53 63.26 8.00e-04 2.63e-04 1.91e-03
γ = 4 25492.64 61.89 1.05e-03 2.86e-04 2.94e-03
γ = 5 25491.32 61.31 1.38e-03 4.03e-04 3.99e-03
γ = 6 25492.27 60.60 1.65e-03 5.35e-04 5.36e-03

Table 3.3: PISA 2018: Model fit and model complexity results for the MML and PMML estimation
of the joint model for item responses and response times. The influence factor γ controls the relative
importance of the model complexity term, given by the effective degrees of freedom (EDF). λ̂µ is
the estimated tuning parameter for the location parameter, λ̂σ the estimated tuning parameter for
the scale parameter, and λ̂ν the estimated tuning parameter for the shape parameter.

indicating that the whole conditional distribution of the log-RTs, and not only their conditional

means, are influenced by the latent speed trait. In particular, from the penalised solution it can

be observed that the log-RT for Items 2, 3, 5, and 8 display some degree of heteroscedasticity,

although not to a significant extent. The factor loadings in the scale measurement equations for

the rest of the items have been penalised towards zero, indicating homoscedasticity. In terms of

the shape parameter, we observe varying skewness along the latent speed trait for the log-RT of

Items 2, 3, 6, 7, and 8.

As an example, Figure 3.1 shows the response times (in log scale) and the associated fitted

SN distributions parameterised by the factor loading in Table 3.4 for items 8 and 9. Item 8 has

full effects of the latent speed trait on the location (µ8), scale (σ8) and scale (ν8) parameters.

Figure 3.1a shows how the conditional distribution of log(t8) changes for different levels of the

the latent speed trait. On the contrary, item 9 (Figure 3.1b) has constant variance and skewness.

Indeed, the implied value of the skeweness parameter (logit(0.39) = 0.6) suggests that the marginal

distribution of log(t9) is almost symmetrical (as ν ≈ logit(0) = 0.5, the reparameterised SN

distribution discussed in Appendix A1.1 tends to the Normal distribution).

The estimated correlation between the latent ability and the latent speed trait is ϕ̂z = −0.29

for the selected model3. This suggest that, for this test and sample, the speed-accuracy trade-off

hypothesis holds. Previous studies have found correlations between the latent ability and the latent

speed trait of similar magnitude in the context of large scale educational testing of quantitative
3The estimated correlation between the latent ability and the latent speed trait was -0.28 for the penalised models

with influence factor γ = {1, 2, 3} and -0.29 for γ = {4, 5, 6}.
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Parameters for
item responses (IR) Parameters for response times (log-RT)

Item α̂i0,π α̂i1,π α̂i0,µ α̂i1,µ α̂i0,σ α̂i1,σ α̂i0,ν α̂i1,ν

Item 1 0.64 0.77 0.19 -0.16 -0.95 0.65
Item 2 -0.46 1.02 0.30 -0.22 -0.89 -0.06 1.59 -0.68
Item 3 -0.04 1.94 0.43 -0.24 -0.60 -0.04 -1.04 0.73
Item 4 -0.69 0.96 0.45 -0.34 -0.86 -1.27
Item 5 -2.84 2.28 1.00 -0.35 -0.68 0.11 -1.01
Item 6 -0.90 0.27 0.16 -0.35 -0.97 0.11 -0.78
Item 7 -4.79 2.48 0.65 -0.32 -1.15 0.43 -0.39
Item 8 -3.67 2.39 1.02 -0.38 -1.03 0.09 -1.20 -1.59
Item 9 -2.73 1.45 0.58 -0.29 -0.90 0.39

Estimated latent correlation (z1, z2): ϕ̂z = −0.29

Table 3.4: PISA 2018: Estimated coefficients of the penalised model for joint model of item
responses and response times (full model). Alasso penalty with additional parameter a = 2,
influence factor γ = 5. Blank spaces correspond to factor loadings that have been shrunk to zero
in the estimation process.

subjects (see, e.g., van der Linden and Guo, 2008).

Further investigation by researchers with substantive knowledge in the field is necessary to

explore potential explanations for why certain items display heteroscedasticity and/or varying

skewness along the latent speed trait dimension in the log-RT. It would be valuable to consider

factors such as the wording or content of the exam questions, as they may influence how students

with different latent abilities process information, leading to heterogeneous response times across

different levels of the latent speed trait. Future research should also aim to explore the implications

of items displaying heteroscedasticity or varying skewness in relation to important psychometric

concepts such as measurement invariance or differential item functioning. Additionally, investig-

ating whether these findings reflect poor item quality would be beneficial.

Overall, the main advantage of the proposed penalised estimation framework is its ability to

efficiently and rapidly identify items that exhibit higher order moments depending on the latent

variables. This allows researchers to gain insights into the underlying structure of the data and

potentially identify areas for further investigation.
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(a) (b)

Figure 3.1: PISA 2018: Fitted conditional expected values (solid line, ), median (dashed line,
), and percentiles (dotted lines, ) for log-RTs of items 8 and 9.

3.7.2 The Holzinger and Swineford (1939) dataset

The Holzinger and Swineford dataset (Holzinger and Swineford, 1939) is a classical example in

Psychometrics containing measures of mental ability test scores of a sample of n = 301 seventh-

and eighth-grade children from two different schools. This dataset (or subsets of it) has been used

in applications of CFA (Jöreskog, 1969), EFA (Browne, 2001), and several applications of penalised

Normal linear factor model (Trendafilov et al., 2017; Jacobucci et al., 2016; Huang et al., 2017;

Jin et al., 2018). We focus on nine mental ability tests measuring three correlated latent traits:

spatial visualisation (Items 1, 2, 3), verbal intelligence (Items 4, 5, 6), and speed (Items 7, 8, 9).

We estimate the model parameters for a series of GLVM-LSS models with Normally distributed

items, including homoscedastic and heteroscedastic models, using the proposed penalised marginal

maximum likelihood procedure with automatic selection of the tuning parameters. The model

structure is similar to that in Simulation Study I.

Due to its oracle property, we choose the Alasso penalty (with additional parameter a = 2).

Moreover, we tried a sequence of values for the influence factor γ = {1, ..., 6}. The data set was

mean-centred, so no intercept is included in the measurement equations for the location parameter4.

We penalise the factor loadings in the location and scale measurement equations, Θ⊺
p = vec(A),

while the intercepts and factor correlations are unpenalised, Θ⊺
u = (α⊺

0, vech(Φ)⊺). For comparison

purposes, we also fit unpenalised exploratory models (EFA), where we impose the minimum number

4Previous papers using this dataset (e.g., Jin et al., 2018) also divide each column by its corresponding standard
deviation. We avoid this practice to better show how the scale parameter varies along the latent variable scale. The
standard deviations of the 9 items range between 1.01 and 1.29, thus we do not expect scaling to affect the results
significantly.
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of restrictions on the model parameters for identification purposes allowing the latent variables to

be correlated; and confirmatory models (CFA) with correlated latent variables, where we impose

restrictions on the model parameters such that the factor loading matrices for the location and

scale parameters, Aµ and Aσ, have simple structures. Results are summarised in Table 3.5.

Homoscedastic Model Heteroscedastic Model

Model GBIC EDF λ̂µ GBIC EDF λ̂µ λ̂σ

Unpenalised
EFA 7601.12 33.00 - 7621.80 60.00 - -
CFA 7595.20 21.00 - 7559.00 30.00 - -

Penalised
γ = 1 7570.24 26.95 6.13e-04 7522.71 41.01 6.13e-04 1.84e-12
γ = 2 7562.53 24.96 1.75e-03 7502.75 32.11 1.75e-03 2.21e-06
γ = 3 7562.77 22.98 6.07e-03 7498.59 28.96 6.07e-03 2.73e-10
γ = 4 7564.17 22.31 8.89e-03 7500.60 26.97 8.89e-03 6.17e-16
γ = 5 7565.60 21.75 1.04e-02 7507.30 29.41 1.04e-02 6.59e-03
γ = 6 7568.25 21.29 1.49e-02 7541.99 40.41 1.49e-02 2.21e-06

Table 3.5: Holzinger and Swineford dataset: Model fit and model complexity results for the MML
and PMML estimation of homoscedastic and heteroscedastic Normal linear factor models. The
influence factor γ controls the relative importance of the model complexity term, given by the
effective degrees of freedom (EDF). λ̂µ is the estimated tuning parameter for the location parameter
and λ̂σ the estimated tuning parameter for the scale parameter.

Several important conclusions are derived from the results in Table 3.5. Firstly, notice that for

the homoscedastic and heteroscedastic models, both the unpenalised EFA and the CFA models had

worse fit than the penalised models as judged by their corresponding GBICs. This is probably due

to the unnecessary complexity of the former, and the strict assumption of no cross-loadings of the

latter. This result shows that the introduction of sparsity via the penalised estimation benefited the

analysis, and, as argued by Huang et al. (2017), that complex models do not necessarily outperform

simpler ones when complexity is also taken into account in the model selection criterion.

Secondly, in all cases but the EFA, the heteroscedastic model provides a better fit than the

homoscedastic model. This means that some items in this data set display heteroscedasticity along

the latent variables scale. In particular, the penalised heteroscedastic model with influence factor

γ = 3 yields the best fit as suggested by its GBIC value (7498.59). Model parameter estimates

are reported in Table 3.6. Thirdly, a closer inspection of the effective degrees of freedom (edf)

shows that, for γ = 3, the heteroscedastic model (edf = 28.96) is only slightly more complex than

its homoscedastic counterpart (edf = 22.98). However, for the unpenalised EFA, the edf (i.e., the

total number of estimated parameters) go from 33 to 60 in the homoscedastic and heteroscedastic
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Measurement model

Location parameter (µi) Scale parameter (σi)

α̂ij,µ α̂i0,σ α̂ij,σ

Item Spatial Verbal Speed Intercept Spatial Verbal Speed

Item 1 0.808 0 0 -0.207
Item 2 0.486 0.021 0.141 -0.048
Item 3 0.783 -0.182 -0.215 0.215
Item 4 0 0.943 0 -0.449
Item 5 -0.003 1.050 -0.431 -0.019 -0.082 0.038
Item 6 0.808 -0.593 0.288
Item 7 0 0 0.721 -0.243 0.119
Item 8 0.062 0.705 -0.467 -0.120 0.242
Item 9 0.395 0.427 -0.314 0.150

Structural model

Spatial 1
Verbal 0.472 1
Speed 0.215 0.183 1

Table 3.6: Holzinger and Swineford dataset: Estimated coefficients for the penalised heteroscedastic
Normal linear factor model. Alasso penalty with additional parameter a = 2, influence factor γ = 3.
Underlined parameters are fixed to their respective values for identification purposes. Blank spaces
correspond to factor loadings that were shrunk to zero in the estimation process.

models, respectively. This suggests that including latent variable effects on the scale parameter,

but also fitting the model via the proposed PMML estimation framework, improves model fit while

keeping model complexity at levels only supported by the data.

From the parameter estimates in Table 3.6, we see that the penalised solution recovered a

nearly perfect structure in the factor loading matrix for the location parameter, except for four

cross-loadings (α̂51,µ, α̂81,µ, α̂91,µ, α̂32,µ) which were identified as non-zero. This result is consistent

to with previous results in the penalised LVM literature using this dataset (e.g., Jin et al., 2018;

Geminiani et al., 2021). The factor loading matrix for the scale parameter tells a similar story.

Most items display some degree of heteroscedasticity along the latent dimension that they were

originally designed to measure. This suggests heterogeneity in the responses of the tests across

different levels of the latent trait. However, we see that α̂ij,σ’s for Items 1 and 4 were shrunk to

zero, meaning that these items are homoscedastic.
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3.8. Discussion

In this Chapter, we present a penalised marginal maximum likelihood estimation with automatic

selection of tuning parameters for the class of Generalised Latent Variable Models for Location,

Scale, and Shape parameters (GLVM-LSS) introduced in Chapter 2. The GLVM-LSS framework

extends the traditional Generalised Linear Latent Variable Model (GLLVM, Skrondal and Rabe-

Hesketh, 2004; Bartholomew et al., 2011) by explicitly modelling the location, scale, and shape

parameters parameters characterising the items’ conditional distributions as linear functions of the

latent variables. This also allows for exploring the relationships between the latent variables and

the items’ higher order moments.

In most applications, it is of interest to obtain sparse factor loading matrices where most

items load on a few latent variables and the cross loadings are close to zero. While rotation

techniques help to produce factor loading matrices with simple structures (Mulaik, 2009, Chapters

10-12), in practice, the rotated solutions often end up being overly dense. Moreover, most rotation

methods resort to hard-thresholding of estimated factor loadings when deciding which parameters

are sufficiently close to zero (Hair et al., 2010). This approach is not only subjective in nature, but

also affects the effective degrees of freedom of the model, which are used to evaluate model fit.

An alternative is to fit the model via penalised estimation. By introducing a sparsity-inducing

term in the objective function of the estimation problem, we simultaneously estimate the model

parameters and obtain a sparse solution. Unlike rotation methods, ‘simple structures’ are only

obtained if supported by the data. Penalised maximum likelihood estimation has recently gained

traction in the LVM literature (see, e.g. Hirose and Yamamoto, 2014; Chen et al., 2015; Sun et al.,

2017; Trendafilov et al., 2017; Huang et al., 2017; Jin et al., 2018; Battauz, 2020, to name but a few).

The level of sparsity is determined by a non-negative tuning parameter, which is typically selected

by fitting a sequence of candidate models with different values of the tuning parameter defined

over a (usually one-dimensional) grid, and then picking the optimal value that yields the lowest

information criteria. However, for models with multiple tuning parameters defined over a multi-

dimensional grid, this process can be computationally expensive and time-consuming, which limits

the application of these methods in applied research. Recently, Geminiani et al. (2021) proposed

a penalised estimation for the Normal linear factor model that uses an automatic procedure for

selecting the optimal value of the tuning parameter. The selection of the tuning parameter is is

based on minimising an approximate unbiased risk estimate, which is proportional to the AIC.

This minimisation problem requires smooth approximations of the L1-penalty functions. Their

framework provides a unified estimation and inferential framework for penalised estimation of
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Normal linear factor models.

Our proposed penalised framework is an extension of the approach in Geminiani et al. (2021) to

LVMs that do not have closed-form solutions. By using local approximations of the L1 penalties, we

are able to implement a two-step penalised marginal maximum likelihood estimation strategy that

combines the advantages of the EM-algorithm and (quasi-)Newton algorithms. In the GLVM-LSS

framework, the level of sparsity in the factor loadings for the location, scale, and shape parameters

are determined independently by a vector tuning parameters. As such, the automatic procedure

provides an efficient and computationally convenient way of selecting the optimal value of the

tuning parameter. We demonstrate the properties of the proposed estimation method through

simulation studies and empirical applications in educational testing. The code and replication files

are available online.

While the penalised estimation with automatic selection of the tuning parameter provides a

computationally efficient and theoretically grounded way of obtaining sparse factor loading matrices

in the GLVM-LSS context, there are still some aspects that can be improved in future research.

One important challenge of the proposed framework is to obtain standard errors for the penalised

parameter estimates using the locally approximated penalty term. The asymptotic properties of the

penalised estimator with L1-norm based penalties have been extensively studied in the regression

context (see, e.g., Fan and Li, 2001; Zou, 2006). However, to the best of our knowledge, no work

has addressed how (and/or if) the asymptotic properties of the penalised estimator are influenced

by the local approximation of the L1-norm penalty term. We conjecture that the oracle property of

the Alasso is not affected by the local approximation, and that potentially depends on the constant

c̄ that determines the closeness between the local approximation and the L1-norm. Formally, this

would imply that limn→∞ limc̄→0 P(||Θ̂A(λ)− 0||1 < ϵ) = 1, for any ϵ > 0 and appropriate tuning

parameter vector λ. This claim requires further research and thus we leave this as an open problem

to explore in the future.

The proposed penalised framework can also be extended to other types of penalties, such as

the elastic net (Zou and Hastie, 2005), the grouped Lasso (Yuan and Lin, 2006), or the fused

Lasso (Tibshirani et al., 2006), to accommodate for different interests in the estimation of the

GLVM-LSS. For example, the elastic net or the grouped Lasso can be used for inducing cross-

group equality of loadings and intercepts when assessing measurement invariance in multiple group

settings or differential item functioning (DIF) (Huang, 2018; Geminiani et al., 2021; Bauer et al.,

2020). Likewise, the fused Lasso can be used for collapsing redundant categories in factor models

with categorical data Battauz (2020). Furthermore, the ridge penalty (a L2-norm based penalty)

can be used to avoid over-fitting in LVMs with non-linear effects of the latent variables on the
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distributional parameters of interest (Falk and Cai, 2016a,b; Rizopoulos and Moustaki, 2008).
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Chapter 4

Conclusions and Future Research

In this concluding chapter, we summarise the main contributions of this dissertation and discuss

potential avenues for future extensions of the GLVM-LSS framework introduced in Chapter 2

and the penalised marginal maximum likelihood estimation framework with automatic tuning

parameter selection presented in Chapter 3.

In Chapter 2, we present a class of Generalised Latent Variable Models for Location, Scale, and

Shape parameters (GLVM-LSS). This framework expands upon traditional LVMs by modelling the

distributional parameters characterising the observed variables’ conditional distributions as linear

functions of the latent variables. This also allows for exploring the relationships between the latent

variables and the items’ higher order moments, which are often expressed in terms of the distribu-

tional parameters. By modelling the whole conditional distribution in terms of the latent variables,

rather than just the conditional mean, the GLVM-LSS offers a more comprehensive understanding

of the data. This approach proves valuable in real-world applications where the observed vari-

ables do not necessarily satisfy the exponential family distributional assumption, or where there

is substantive interest in studying the relationship between the manifest variables and the latent

variables beyond the mean. The model parameters are estimated via a full information maximum

likelihood. We use a computationally efficient two-stage optimisation procedure that combines

the EM-algorithm with direct maximisation of the marginal log-likelihood using (quasi-)Newton

methods. Simulation studies and empirical analyses of real-world data are also presented to illus-

trate the effectiveness of our proposed method. The GLVM-LSS opens up exciting possibilities for

applied researchers to gain deeper insights into the relationships between manifest variables and

latent variables of interest.

The GLVM-LSS framework is applicable to both confirmatory and exploratory settings. In
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confirmatory settings, researchers impose restrictions on the measurement and structural models

based on substantive theory to guide their hypotheses. The main focus is on the estimation

and inference of the model parameters. On the other hand, in exploratory settings, the model

parameters are estimated without imposing any restrictions, except for those necessary for model

identification.

In many applications, obtaining sparse factor loading matrices is of interest, where most items

are expected to load heavily on a few latent variables, while cross-loadings are close to zero.

Traditional rotation methods often yield overly dense solutions, requiring subjective thresholding

procedures to determine which parameters are ‘substantively’ different from zero. This can impact

the effective degrees of freedom of the model, which are important for evaluating model fit. An

alternative approach is to employ penalised maximum likelihood (PML) estimation. By introducing

a sparsity-inducing penalty term in the objective function, the resulting estimation procedure yields

sparse solutions for the model parameters.

Penalised maximum likelihood estimation has gained popularity in the LVM literature. How-

ever, determining the optimal value of the tuning parameters that control the level of sparsity in

the PML estimates can be computationally expensive and time-consuming. The choice of these

tuning parameters is crucial in obtaining an appropriate balance between model complexity and

parsimony. In Chapter 3, we introduce a penalised marginal maximum likelihood estimation ap-

proach with automatic selection of tuning parameters for the GLVM-LSS framework. This meth-

odology builds upon the previous work of Geminiani et al. (2021), adapting it to LVMs that lack

closed-form solutions. The selection of the tuning parameter is accomplished by minimising an

approximate unbiased risk estimate, which is proportional to the AIC. To solve this minimisation

problem, we employ smooth approximations of the L1-penalty functions. Our estimation strategy

combines the benefits of the EM-algorithm and (quasi-)Newton algorithms, resulting in a two-step

penalised marginal maximum likelihood estimation procedure. In the GLVM-LSS framework, the

level of sparsity in the factor loadings for the location, scale, and shape parameters is determined

independently by a vector of tuning parameters. The automatic procedure allows for a flexible

and efficient selection of the optimal tuning parameter vector. We validate the properties of our

proposed estimation method through extensive simulation studies and empirical applications in

the field of educational testing.

Moving forward, we envision several potential extensions of the research in this dissertation.

In Section 4.1, we outline a framework for the GLVM-LSS model with non-linear measurement

equations. This extension would broaden the applicability of the GLVM-LSS framework to capture

more complex data patterns. In Section 4.2, we discuss the potential application of the penalised
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estimation with automatic selection of tuning parameters to LVMs with ordinal items.

4.1. Extension 1: Generalised Additive Latent Variable Model for

Location, Scale, and Shape parameters

In many real-world applications, assuming a linear structure in the measurement equations may

not adequately capture the complex relationships between the distributional parameters of the

observed variables and the latent variables. For example, in educational testing, the discrimination

power of items can vary for different levels of latent ability: easier (harder) items might have poor

discrimination among high-ability (low-ability) subjects. This suggests the presence of nonlinear

relationships between the items and the respondents’ ability (see, e.g., McDonald, 1965, 1967;

Molenaar et al., 2010).

In addition to the location parameter measurement equation, which is typically associated

with the conditional mean of the items, non-linearities can also be present in the measurement

equations for the scale and shape parameters. Higher-order moments of the observed variables can

be influenced by nonlinear effects originating from the latent variables. This is an open research

question in the LVM literature.

Using the same notation as in previous chapters, let y = (y1, ..., yp)
⊺ ∈ Rp be a vector of

observed variables and z = (z1, ..., zq)
⊺ ∈ Rq a vector of latent variables, with q ≪ p. Let gi(z;αi,φ)

denote a general function of the latent variables parameterised by αi,φ. This notation allows us to

express the measurement equations in a more general form. Equation 2.3 can be expressed as

υi,φ(φi) = gi,φ(z;αi,φ) (4.1)

where υi,φ is a parameter-specific link function (e.g., identity, log, logit, etc.), and gi,φ : Rq → R is

a (non-linear) multivariate smooth function of the latent variables for a general location, scale, or

shape parameter φi ∈ θi. Assume the mapping gi belongs to a simple class of functions that can

be decomposed as the sum of q independent functions:

gi,φ(z;αi,φ) := αi0,φ +

q∑
j=1

hij,φ(zj) (4.2)

where, for each j = 1, ..., q, hij,φ is a smooth unidimensional function of the latent variable zj .

This formulation corresponds to a Generalised Additive Model (GAM, Hastie and Tibshirani, 1990;

Wood, 2017) structure on the location, scale, and shape measurement equations of the GLVM-LSS.
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We refer to this model as the Generalised Additive Latent Variable Model for Location, Scale, and

Shape parameters (GaLVM-LSS) framework. The functions hij,φ can be approximated through

basis splines (B-splines) functions (Eilers and Marx, 1996; de Boor, 2001). The measurement

models can be expressed as:

υi,φ(φi) = αi0,φ +

q∑
j=1

α⊺
ij,φBj,φ(zj) (4.3)

In the above, Bj,φ(zj) is a design vector of size dj that results from evaluating B-splines on a

set of dj knots (fixed points) along the domain of zj , denoted by z̃1, . . . , z̃dj ; and αij,φ is its cor-

responding dj-dimensional vector of ‘factor loadings’ defining the shape of the nonlinear function.

For simplicity, assume the same number of knots d = d1 = · · · = dq ≪ n for all j = 1, ..., q. Lastly,

denote B(i)
j,φ(zj) = α⊺

ij,φBj,φ(zj) as the linear combination of the B-splines for item i.

The measurement equations of the type in (4.3) are a general case of the non-linear factor

model in Yalcin and Amemiya (2001); Rizopoulos and Moustaki (2008) and, to some extent, Sardy

and Victoria-Feser (2012). While GAM-type formulations have been extensively used to model

non-linear relationships between latent variables in the structural part of the LVM (see, e.g. Song

and Lu, 2010; Song et al., 2013; Finch, 2015), their application in the measurement part has

been more limited. Some earlier exceptions include the works of Ramsay (1991); Ramsay and

Winsberg (1991), where monotonic splines were used to model the conditional probability of a

correct response (location parameter) in the context of Item Response Theory (IRT).

However, to the best of our knowledge, there have been few instances where splines or similar

techniques have been applied to model other distributional parameters or higher order moments of

observed variables as non-linear functions of the latent variables. This highlights the novelty and

potential of the GaLVM-LSS framework in extending the application of non-linear models to the

measurement part of LVMs.

For more compact notation, we introduce the following matrix formulation:

υφ(φ) = α0,φ + AφBφ(z), (4.4)

where υφ(·) is a vector valued link function, φ = (φ1, . . . , φp)
⊺ is a p-dimensional vector of the

same location, scale, or shape distributional parameters for all items, α0 = (α10,φ, . . . , αp0,φ)
⊺ is a

p-dimensional vector of intercept terms in the measurement equations for φ ∈ θ. The matrix Aφ

is a p× qd matrix of ‘factor loadings’ with rows given by αi,φ = (αi1,φ, . . . ,αiq,φ)
⊺ for i = 1, . . . , p;

and Bφ(z) is a qd-dimensional vector defined as Bφ(z) = (B1,φ(z1), . . . , Bq,φ(zq))
⊺.
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To further simplify notation, we can compactly write the system of all measurement equations

above, following equation (2.4):

υφ(θ) = α0 + AB(z), (4.5)

where θ⊺ = (µ⊺,σ⊺,ν⊺, τ ⊺) is a vector of distributional parameters; α⊺
0 = (α⊺

0,µ,α
⊺
0,σ,α

⊺
0,ν ,α

⊺
0,τ ) is

a vector of intercepts; A⊺ = [A⊺
µ,A

⊺
σ,A

⊺
ν ,A

⊺
τ ] is matrix of ‘factor loadings’ that determine the shape

of the B-spline approximation; and B⊺(z) = (B⊺
µ(z),B

⊺
σ(z),B

⊺
ν(z),B

⊺
τ (z))⊺ a stacked vector of B-

spline vectors. For simplicity, the latent variables are assumed to be independent and distributed

standard Normal, z ∼ N(0, Iq).

Estimation and parameter computation

To estimate the model parameters in the GaLVM-LSS framework, Θ = (α0, vec(A)), we can adapt

the penalised marginal maximum likelihood estimation framework presented in Chapter 3. The

combination of B-splines with difference penalties on the model parameters is called the P-splines

framework (Eilers and Marx, 1996; Wood, 2017). The penalty term is introduced to avoid over-

fitting and to control the smoothness of the fitted function ĝi. The penalty is applied to the

second derivative of the B-spline functions to ensure that the rate of change of the fitted function

between knots is smooth. A penalty is imposed for each item i = 1, . . . , p. The vector of penalised

parameters is Θp = vec(A). The intercept terms are not penalised.

For computational convenience, cubic B-splines are commonly used, as their second-order de-

rivatives result in a penalty function that penalises the squared difference between factor loadings

of adjacent basis expansions. Therefore, the objective function of the estimation problem for the

GaLVM-LSS model is the penalised marginal log-likelihood, similar to the equation (3.5):

ℓp(Θ;y,λ) = ℓ(Θ;y)− Pλ(Θ)

= ℓ(Θ;y)−
∑
φ∈θ

λφ

p∑
i=1

q∑
j=1

∫ z̃d

z̃1

B
(i)′′

j,φ (zj) dzj

= ℓ(Θ;y)−
∑
φ∈θ

λφ

p∑
i=1

q∑
j=1

α⊺
ij,φP

⊺ Pαij,φ (4.6)

where ℓ(Θ;y) is the log-likelihood function in (2.5) with distributional parameters modelled through
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the non-linear measurement equations of the type in (4.3). The matrix P is

P =



−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

... . . . ...

0 · · · 0 −1 1


, such that Pαij,φ =



αij(2),φ − αij(1),φ

αij(3),φ − αij(2),φ

...

αij(d),φ − αij(d−1),φ


(4.7)

and hence

α⊺
ij,φP

⊺ Pαij,φ = α⊺
ij,φ



1 −1 0 0 · · · 0

−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0

... . . . ...

0 · · · 1 −1


αij,φ (4.8)

The penalty term in equation (4.6) is twice-differentiable and does not involve the L1-norm.

Therefore, there is no need to approximate the penalty term using the techniques discussed in

Chapter 3. This implies that the two-step penalised marginal maximum likelihood estimation

strategy, which combines the advantages of the EM-algorithm and (quasi-)Newton algorithms,

can be directly implemented. However, careful attention should be given to the computational

implementation of the estimation procedure, as the use of B-splines can introduce additional com-

putational complexity compared to linear models. Efficient algorithms and numerical techniques

specific to B-splines estimation should be used to ensure computational feasibility.

Furthermore, due to the separability between the penalty terms and the tuning parameters,

it is possible to adapt the automatic selection procedure of the tuning parameters vector. This

aspect is discussed in Wood (2017) for GAMs with observed covariates. The automatic selection of

tuning parameters can help determine the appropriate level of penalisation and achieve a balance

between model complexity and goodness of fit.

It is important to note that while the proposed framework is theoretically feasible, further

considerations regarding model identifiability should be explored on a case-by-case basis. Non-

linear LVMs with a large number of parameters, such as those involving B-splines, may require

careful model specification and regularisation techniques to ensure identifiability and prevent over-

fitting.
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4.2. Extension 2: Single- and Multiple-Index IRT models

Item response theory (IRT) models are used in educational and psychological testing to measure

latent constructs of interest and to explore psychometric properties of test items.

Consider a test with dichotomous items y = (y1, . . . , yp)
⊺ ∈ {0, 1}p, measuring latent variables

z = (z1, . . . , zq)
⊺ ∈ Rq, with q ≪ p. Latent variables are often assumed to follow a multivariate

Normal distribution, z ∼ N(0,Φ). For simplicity, very often it is assumed that Φ = Iq, so

that latent variables are uncorrelated and have unit variance. However, in many applications in

educational testing, tests are assumed to measure a single, unidimensional construct (i.e., q = 1),

and thus z ≡ z ∼ N(0, 1).

‘Simple’ unidimensional IRT models1, such as the Rasch model (Rasch, 1960) (also know as

the one-parameter logistic (1PL) model) or the two-parameter logistic model (2PL, Lord and

Novick, 1968; Reckase, 2009), can be expressed in the GLVM-LSS framework by assuming yi | z ∼

Bernoulli(πi(z)), along with logit link functions in the measurement equations for the location

parameter, i.e., υi,π(π(z)) = logit(π(z)), for all i = 1, . . . , p. The normal-ogive IRT model (Lord

and Novick, 1968) is equivalent to using probit link functions, i.e., υi,π(π(z)) = Φ−1(π(z)), where

Φ−1(·) is the inverse of the CDF for the standard Normal distribution (see Table A1 in Appendix

A2).

In the context of analysing test data, psychometricians have special interest in the item response

function (IRF), also called item characteristic curve (ICC) in the educational testing literature.

This function gives the probability that an individual with a latent ability level z′ answers correctly

to item i: P(yi = 1 | z′) = πi(z
′). Let Pi(z) denote the IRF for item i. For the ‘simple’ IRT models

mentioned above, the IRFs for items i = 1, . . . , p, are given by:

Pi(z) = υ−1
i,π (αi0,π + αi1,π · z) , (4.9)

where υ−1
i,π (·) is the inverse link function (i.e., the inverse of the logit or probit functions), and the

vector αi,π = (αi0,π, αi1,π)
⊺ contains the difficulty and discrimination parameters, respectively. In

this context, Pi(z) is said to be parametric, as it is fully characterised by the functional form of

the link function, υi,π, and the model parameters in αi,π.

However, IRFs cannot always be modelled well with ‘simple’ parametric IRT models, and the
1Other IRT models, such as the three parameter (3PL, Birnbaum, 1968) and the four parameter logistic IRT

models (4PL, Barton and Lord, 1981), are not covered by the GLVM-LSS framework without introducing new
parameters and assuming different functional forms for the link functions.
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resulting parametric IRFs are sometimes too restrictive to capture the shape of the true underlying

IRFs. Some works on asymmetric IRFs have been proposed in Samejima (1997, 2000); Bazán et al.

(2006, 2014); Bolfarine and Bazán (2010), but are still parametric in the sense that depend on the

functional forms of the link functions and the model parameters.

A vast body of literature on non-parametric (N-) and semi-parametric (Sp-) IRT models has

been developed over the past few decades as an alternative to parametric IRT models. NIRT and

SpIRT models are more flexible and are particularly useful when: i) there is limited knowledge

about the functional form of the items’ IRFs; ii) the researcher wants to explore whether a given

parametric IRT model fits the data correctly; and iii) some of the fundamental assumptions in

IRT models (i.e., unidimensionality, local independence, monotonicity, etc.) need to be tested for

individual or groups of items (see, e.g., Douglas and Cohen, 2001; Junker and Sijtsma, 2001; Stout,

2001; Lee, 2007b).

Despite sharing common methodological and theoretical background, NIRT and SpIRT models

are different in a number of ways. On one hand, NIRT models estimate IRFs using either de-

scriptive statistics (e.g., Mokken (1971); Mokken and Lewis (1982); see Sijtsma (2005), Sijtsma

and van der Ark (2020, Chapter 3) for an overview) or kernel smoothing techniques (e.g., Ramsay,

1991; Douglas, 1997; Douglas and Cohen, 2001). In the latter, for each item i = 1, ..., p, Pi(z)

is estimated via local averaging of a surrogate ability value, z̃, which usually corresponds to the

total/sum test score. It is common practice that IRFs in unidimensional NIRT models are restric-

ted to be monotone non-decreasing functions (i.e., Pi(za) < Pi(zb) whenever za < zb and for all

i = 1, ..., p), but it is not always the case (see, e.g., Lee, 2007b).

On the other hand, SpIRT models use splines to approximate Pi(z). Some works include Wins-

berg et al. (1984); Ramsay (1988); Ramsay and Abrahamowicz (1989), where IRFs are modelled

using splines with (non-decreasing) monotonicity constraints (I-splines,Ramsay, 1988). Similar to

the kernel smoothing technique in the NIRT framework, the n-dimensional vector of values for the

latent variable is not observed, and thus the smooth regressions of yi are fitted on a (monotonic)

transformation of the total/sum score. Alternatively, Ramsay and Winsberg (1991) proposed a

MML estimation where the latent variable is treated as a nuisance parameter and is integrated out

in the estimation process. SpIRT models are also related to non-linear IRT models that use high

order polynomials of the latent variable to estimate the IRFs (e.g., Liang and Browne, 2015; Falk

and Cai, 2016a,b). However, in these cases, the link function is known.

Despite their flexibility, NIRT and SpIRT models face some limitations. The most important

is, perhaps, that are limited to the unidimensionality assumption of the latent space (i.e., q = 1).
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Empirical applications and substantive theory often suggest that unidimensionality is unrealistic

in psychological, social, behavioural, and health sciences. Additionally, NIRT and SpIRT models

often require large sample sizes and test lengths to produce accurate estimates of the IRFs.

In this section, we propose a more general model for SpIRT models with multiple latent vari-

ables. We draw inspiration from the projection pursuit regression (PPR) model (Friedman and

Stuetzle, 1981), a popular technique used for non-linear dimensionality reduction. In the PPR

framework, we are interested in modelling a (univariate) regression of the type:

E(y |x) := µy(x) = β0 +
K∑
k=1

gk(β
⊺
kx) (4.10)

where y is a continuous outcome variable, x is a (large) p-dimensional vector of observed covariates,

K ≤ p is an unknown integer, βk are regression parameters satisfying ||βk||1 = 1 for all k, and

gk : R → R are arbitrary (unknown) non-linear functions satisfying E(gk(β⊺
kx)) = 0 for all k. Some

additional technical constraints are needed for identifiability (Friedman and Stuetzle, 1981; Chen,

1991). Note that, when β⊺
kx = xk and K = p, the PPR regression in (4.10) reduces to an additive

model (Hastie and Tibshirani, 1990; Wood, 2017). A generalised PPR framework for outcome

variables with restricted domains (binary, count, positive, etc.) was proposed in Lingjærde and

Liestøl (1998). The PPR framework is often labelled as an universal approximator, because, if K is

sufficiently large, for an appropriate choice of gk the PPR model can approximate any continuous

function in Rp at an arbitrary level of accuracy (Hastie et al., 2009). This generality comes with

challenges in model interpretation. A special case of the PPR is when K = 1, which is known as

the single-index model (SIM) in the econometrics literature (Ichimura, 1993; Härdle et al., 1993).

The SIM framework still offers good prediction power, similar to the PPR model, but with a lower

toll on interpretability.

In the LVM context, our proposal includes modelling the IRFs following a SIM framework.

We call this model a single-index IRT model (SI-IRT). Formally, for each item i = 1, ..., p, let the

probability of answering correctly (conditional on the latent variables) be given by:

P(yi = 1 | z) := Pi(z) = gi,π(α
⊺
i,πz) , (4.11)

where gi,π : R → [0, 1] is an unknown monotone (non-decreasing) function, and αi,π ∈ Rq is a

vector of parameters that can be interpreted as factor loadings, with the identification constraint

||αi,π||1 = 1. Indeed, the individual entries in αi,π give the direction (i.e., the relative import-

ance) of the corresponding latent variable in the projection α⊺
i,πz ∈ R. If an intercept term αi0,π

is included in (4.11), it can be interpreted as a guessing parameter, but further exploration of
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the identifiability of this IRT model is required. The SI-IRT framework overcomes some of the

limitations of the SpIRT models when q > 1. Moreover, if 1 < K ≪ q, then the IRFs of the type

in (4.11) can be expressed as:

P(yi = 1 | z) := Pi(z) =
K∑
k=1

βik · gik,π(α⊺
ik,πz) , (4.12)

where βi = (βi1, . . . , βiK)⊺ is the vector of parameters that serve as ‘weights’ for the corresponding

gik,π’s. In this case, we impose the additional restriction β⊺
i 1K = 1, where 1K is a K-dimensional

vector of ones, for i = 1, . . . , p. This model, which we call a multiple-index IRT model (MI-IRT),

would be useful when complex interactions between the latent variables are of substantive interest

(see, e.g., Kenny and Judd (1984); Jöreskog and Yang (1996); Klein and Moosbrugger (2000);

Marsh et al. (2004); Kelava et al. (2011) for LVMs with continuous items that include interactions

between latent variables).

To account for the monotonicity of the IRFs, the functions gi,π : R → [0, 1] can be approximated

using I-splines (Ramsay, 1988). Similar to the measurement equations in (4.3) involving B-splines,

the gik,π’s in (4.12) (and gi,π in 4.11) can be written as:

gik,π(α
⊺
ik,πz) = ᾰ⊺

ik,πIik,π(α
⊺
ik,πz) , k = 1, . . . ,K , i = 1, . . . , p (4.13)

where Iik,π(α⊺
ik,πz) is a d-dimensional design vector resulting from evaluating the I-splines basis

functions on a set of d knots (fixed points) along the domain of α⊺
ik,πz ∈ R; and ᾰik,π is the

corresponding vector of coefficients defining the shape of the approximation. The entries of ᾰik,π

satisfy the restrictions ᾰ⊺
ik,π1d ≤ 1 and min(ᾰik,π) ≥ 0.

Estimation and parameter computation

We propose a penalised marginal maximum likelihood estimation of the parameters in the SI-

IRT and MI-IRT models. The vector of model parameters include the ‘weight’ parameters βi =

(βi1, . . . , βiK)⊺, the factor loadings α⊺
i = (α⊺

i1,π, . . . ,α
⊺
iK,π), and the coefficients associated with the

monotone spline approximations to the functions gi1,π, . . . , giK,π, ᾰ⊺
i = (ᾰ⊺

i1,π, . . . , ᾰ
⊺
iK,π), for all

items i = 1, . . . , p. Define ω⊺
i = (β⊺

i ,α
⊺
i , ᾰ

⊺
i ) as the vector of model parameters for item i. Moreover,

assume the latent variables follow a multivariate standard Normal distribution, z ∼ N(0, Iq). Then,

the model parameters in the SI/MI-IRT are Θ = (ω1, . . . , ωp)
⊺. The objective function is similar

to that in equation (4.6), with the smoothness penalty applied on the I-splines coefficients, i.e.,

Θ⊺
p = (ᾰ⊺

1, . . . , ᾰ
⊺
p).
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For a sample of n independent and identically distributed observations, the penalised marginal

log-likelihood for the MI-IRT model is given by

ℓp(Θ;y, λπ) = ℓ(Θ;y, λπ)− Pλπ(Θ)

=
n∑

m=1

log

[∫
Rq

p∏
i=1

[Pi(z)
yi Qi(z)

1−yi ] p(z; Θz) dz
]
− λπ

p∑
i=1

K∑
k=1

ᾰ⊺
ik,πP

⊺ Pᾰik,π (4.14)

where, for simplicity, Qi(z) = 1 − Pi(z), the IRFs denoted by Pi(z) are given in (4.12) (or 4.11

for the SI-IRT model) with approximated functions parameterised as in (4.13); P is the difference

penalty matrix in (4.7), and thus the penalty term is similar to that in (4.8). The PMML estimate is

then given by Θ̂ = arg max ℓp(Θ;y, λπ), subject to the additional parameter constraints described

earlier for model identifiability.

The solution for Θ̂ is not available in a closed form. Therefore, we compute the estimates of

the model parameters in the SI-IRT and MI-IRT models using a procedure that combines high-

dimensional numerical integration techniques and iterative optimisation algorithms, similar to the

that introduced in Chapters 2 and 3.

Compared to the estimation framework for the GLVM-LSS model, the estimation of SI-IRT and

MI-IRT models can be significantly more computationally intensive. This increased complexity

arises from the need to iteratively evaluate numerical integrals involving latent variables, while

simultaneously exploring a relatively high-dimensional space of model parameters. To address

these challenges, stochastic approximation methods have been proposed to efficiently handle high-

dimensional latent variables and reduce computation time (see, e.g., Gu and Kong, 1998; Cai, 2010).

However, the estimation of SI-IRT and MI-IRT models also involves considerations of the penalty

term and constraints on the model parameters within the optimisation problem. In the context

LVMs, Zhang and Chen (2022) proposed a stochastic proximal algorithm that handles constraints

on the model parameters, including penalty terms. In this case, the automatic selection procedure

for the smoothing parameter described in Chapter 3 can be used to compute the optimal value of

the smoothness parameter, denoted as λ̂π.

Given the complexity of the proposed model, we believe that adapting the estimation framework

developed by Zhang and Chen (2022) to the current context, while incorporating the automatic

selection of the smoothing parameter procedure from Geminiani et al. (2021), would provide a

promising avenue for further research in the field of complex IRT models.

In light of the strong connection between the PPR framework and neural networks (NN), an

interesting question arises regarding whether the SI-IRT and MI-IRT models presented here can be
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considered as ‘vanilla’ or preliminary versions of a more comprehensive NN-IRT model. This raises

the possibility of exploring the power and flexibility of neural networks to enhance the modelling

of item response data. Lastly, it is worth noting that the PPR structure assumed in (4.3) for the

IRF can be potentially extended to the measurement models for the location, scale, and shape

parameters in the GLVM-LSS.

We raise a cautionary note, though, similar to the one for the GaLVM-LSS in Section 4.1. The

proposed SI-IRT and MI-IRT models are theoretically feasible, but require further exploration of

(both necessary and sufficient) conditions to ensure model identifiability.

Concluding remarks

Although several methodological developments are possible under the GLVM-LSS framework, these

need to be motivated by applications in real-world problems that require more complex models

with latent variables. The proposed methodology offers opportunities to explore how the condi-

tional distribution of observed variables relate to latent variables that often play key roles when

formulating and testing hypothesis in substantive research of related disciplines. We believe that

new methodologies should have practical applications and be developed with applied users in mind.

Likewise, the development of complex statistical models often reveals gaps in the literature

that require new estimation algorithms, new sampling/imputing techniques, new approaches of

dealing with latent variables, etc. We anticipate that the proposed GLVM-LSS, and the extensions

discussed in this Chapter, will continue to foster research in these areas.
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Chapter A

Appendix for Chapter 2

A1. Parametric Distributions and related quantities

In this Appendix we present analytical expressions for the log-likelihood of the distributions im-

plemented in this work, along with the first- and second-order derivatives.

A1.1 Continuous distributions

Normal Distribution: We denote a random variable following a Normal (or Gaussian) distri-

bution as Y ∼ N(µ, σ2). The Normal distribution is parameterised by θ = (µ, σ)⊺, where µ ∈ R

is the location parameter, and σ ∈ R+ is the scale parameter. If y is a value sampled from Y , its

contribution to the log-likelihood function is given by:

log f(θ; y) = −1

2
log(2π)− log(σ)− 1

2

(
y − µ

σ

)2

The mean and variance of a Normally distributed random variable can be expressed directly

in terms of the location and scale parameters as E(Y ) = µ and Var(Y ) = σ2, respectively. The

default link function for µ is the identity link and for σ the log link. The first-order derivatives

are:

∂ log f(θ; y)

∂µ
=
y − µ

σ2

∂ log f(θ; y)

∂σ
=

(y − µ)2

σ3
− 1

σ
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The second-order derivatives in the observed information matrix are:

∂2 log f(θ; y)

(∂µ)2
= − 1

σ2

∂2 log f(θ; y)

∂µ ∂σ
= −2(y − µ)

σ3

∂2 log f(θ; y)

(∂σ)2
= −3(y − µ)2

σ4
+

1

σ2

By taking the expectation of the expressions above with respect to Y , the second-order derivatives

in the expected information matrix are:

E
[
∂2 log f(θ; y)

(∂µ)2

]
= − 1

σ2

E
[
∂2 log f(θ; y)

∂µ ∂σ

]
= 0

E
[
∂2 log f(θ; y)

(∂σ)2

]
= − 2

σ2

Implementation: An object of class dist_glvmlss, given by an element in the list family

defined for item i as family[[i]] = Normal(mu.link = "identity", sg.link = "log"). The

Normal distribution is the default distribution of the family list argument of the glvmlss()

function.

Skew-Normal Distribution: Consider the Skew-Normal distribution introduced in Azzalini

(1985, 2005). Here we follow the material and notation in Azzalini (2013, Chapters 1-3). In its

original parameterisation (also called direct parameterisation, DP), a random variable following a

Skew-Normal distribution (SN) is denoted as Y ∼ SNDP(ξ, ω2, α). The SN distribution is para-

meterised by θDP = (ξ, ω, α)⊺, where ξ ∈ R is a location parameter, ω ∈ R+ is a scale parameter,

and α ∈ R is a shape (or slant) parameter. If y is a valued sampled from Y , its contribution to

the log-likelihood function is given by

log f(θDP; y) = −1

2
log(2π)− log(ω)− (y − ξ)2

2ω2
+ ζ0

(
α
y − ξ

ω

)

where ζ0(·) is defined as ζ0(x) = log{2Φ(x)}, and Φ(·) is the standard Normal distribution function.

The mean, variance, and skewness of a SN random variable are given by

E(Y ) := µ = ξ + bωδ

Var(Y ) := σ2 = ω2(1− b2δ2) (A1.1)

111



Skewness(Y ) := γ1 =
4− π

2

b3α3

(1 + (1− b2)α2)3/2

where b =
√
2/π and δ = α(1+α2)−1/2. From the above, we see that parameters in θDP do not have

a direct interpretation in terms of the random variable’s moments. Let z = (y−ξ)/ω be a realisation

of a SN random variable Z ∼ SN(0, 1, α). Moreover, define ζ1(x) = dζ0(x)/dx = ϕ(x)/Φ(x), where

ϕ(·) is the standard Normal density function. The first-order derivatives of the SN log-density

function are:

∂ log f(θDP; y)

∂ξ
=
z

ω
− α

ω
ζ1(αz)

∂ log f(θDP; y)

∂ω
= − 1

ω
+
z2

ω
− α

ω
ζ1(αz) z (A1.2)

∂ log f(θDP; y)

∂α
= ζ1(αz) z

To simplify notation, let SθDP = ∇θDP log f(θDP; y) be the vector of first-order derivatives

with entries in (A1.2). Moreover, define ζ2(·) as ζ2(x) = d2ζ0(x)/(dx)2 = −ζ1(x)2 − xζ1(x). The

second-order derivatives in the observed information matrix are:

∂2 log f(θDP; y)

(∂ξ)2
= − 1

ω2
+
(α
ω

)2
ζ2(αz)

∂2 log f(θDP; y)

∂ξ ∂ω
=

1

ω2

(
−2z + αζ1(αz) + α2ζ2(αz) z

)
∂2 log f(θDP; y)

∂ξ ∂α
= − 1

ω
(ζ1(αz) + αζ2(αz) z) (A1.3)

∂2 log f(θDP; y)

(∂ω)2
=

1

ω2

(
1− 3z2 + 2αζ1(αz) z + α2ζ2(αz) z

2
)

∂2 log f(θDP; y)

∂ω ∂α
= − 1

ω

(
ζ1(αz) z + αζ2(αz) z

2
)

∂2 log f(θDP; y)

(∂α)2
= z2 ζ2(αz)

In matrix notation, let HθDP = ∇θDP∇θ⊺
DP

log f(θDP; y) be the symmetric matrix of second-

order derivatives with entries given by (A1.3). Taking the expectation of the expressions above

involves expectations of some non-linear functions of Z ∼ SN(0, 1, α). Particularly,

E(Zkζ1(αZ)) =


b

(1 + α2)(k+1)/2
× {1× 3× · · · × (k − 1)}, for k = 0, 2, 4, . . .

0, for k = 1, 3, 5, . . .
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and E(Zkζ1(αZ)
2), which are evaluated numerically:

Ê(Zkζ1(αZ)
2) =

1

n

n∑
m=1

(
zkmζ1(α̂zm)2

)
, for k = 0, 1, ...

With the above, the second-order derivatives in the expected information matrix are:

E
[
∂2 log f(θDP; y)

(∂ξ)2

]
= − 1

ω2
−
(α
ω

)2
E
(
ζ1(αZ)

2
)

E
[
∂2 log f(θDP; y)

∂ξ ∂ω

]
=

1

ω2

(
−bα(1 + 2α2)

(1 + α2)3/2
− α2E

(
Zζ1(αZ)

2
))

E
[
∂2 log f(θDP; y)

∂ξ ∂α

]
= − 1

ω

(
b

(1 + α2)3/2
− αE

(
Zζ1(αZ)

2
))

E
[
∂2 log f(θDP; y)

(∂ω)2

]
=

1

ω2

(
−2− α2E

(
Z2 ζ1(αZ)

2
))

(A1.4)

E
[
∂2 log f(θDP; y)

∂ω ∂α

]
= αE

(
Z2ζ1(αZ)

2
)

E
[
∂2 log f(θDP; y)

(∂α)2

]
= E

(
Z2 ζ1(αZ)

2
)

In matrix notation, let IθDP = E[∇θDP∇θ⊺
DP

log f(θDP; y)] be the symmetric matrix of expected

second-order derivatives with entries given by (A1.4). One important limitation of the DP is that

IθDP becomes singular for values of, and within a neighbourhood of, α = 0. This issue has been

discussed in previous works (e.g., Pewsey, 2000; Chiogna, 2005; Di Ciccio and Monti, 2011, and

Chapter 3 of Azzalini, 2013). The singularity prevents the application of standard asymptotic

theory of ML estimation and yields non-normal asymptotic distribution of the MLE. Moreover, it

can lead to computational issues during the estimation process. While a comprehensive treatment

of the theoretical properties of the ML estimates of the SN distribution is beyond the scope of this

paper, interested readers can refer to the aforementioned citations.

To overcome this limitation, we adopt the centred parameterisation (CP) of the SN distribution.

The CP enables us to express the SN distribution directly in terms of the parameters θCP =

(µ, σ, γ1)
⊺. The relationship between the CP and DP parametrisations is given by (A1.1) and the

inverse mappings:

ξ = µ− bωδ

ω =
σ

(1− b2δ2)1/2
(A1.5)

α =
R

(b2 − (1− b2)R2)1/2
, with R =

3

√
2|γ1|
4− π

× sign(γ1)
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The admissible set for the parameters θCP is R×R+×(−γmax
1 , γmax

1 ), where γmax
1 =

√
2(4−π) ·

(π− 2)−3/2 ≈ 0.9953 represents the upper bound for the index of skewness. Since the components

of θCP are smooth functions of θDP, we can expect that the CP MLE exhibit regular asymptotic

properties. Moreover, the CP offers the advantage of interpreting µ directly as a location parameter,

which is not the case for ξ. Similarly, (σ, γ1)⊺ are preferred over (ω, α)⊺, as σ and γ1 are scale and

shape parameters, respectively.

To model γ1 as a function of the latent factors, we apply an additional monotone transformation

to the index of skewness parameter. Since there is no natural link function υγ1 : R → (−γmax
1 , γmax

1 ),

we instead model a scaled skewness parameter ν ∈ (0, 1), such that:

ν =
γ1 + γmax

1

2γmax
1

The admissible set for θ = (µ, σ, ν)⊺ is R×R+ × (0, 1). As this is a one-to-one transformation,

the invariance property of the MLE implies that θ̂ will also be the MLE under the DP and CP.

The default link function for µ is the identity link, for σ the log link, and for ν the logit link.

Let D be the Jacobian matrix with entries D[r,s] = ∂θDP[r]/∂θ[s]:

D =


∂ξ

∂µ

∂ξ

∂σ

∂ξ

∂γ1

dγ1
dν

0
∂ω

∂σ

∂ω

∂γ1

dγ1
dν

0 0
dα
dγ1

dγ1
dν


The terms in D are:

∂ξ

∂µ
= 1

∂ξ

∂σ
= −b δ(1− b2δ2)−1/2

∂ξ

∂γ1
=

−σ b δ
3(1− b2δ2)1/2 γ1

∂ω

∂σ
= (1− b2δ2)−1/2

∂ω

∂γ1
=

σb2δ

(1− b2δ2)3/2 · (1 + α2)3/2
dα
dγ1

dα
dγ1

=
2

3(4− π)

(
1

TR2
+

1− b2

T 3

)
dγ1
dν = 2γmax

1
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where T =
[
b2 − (1− b2)R2

]1/2 and R is defined in (A1.5).

The first-order derivatives of the SN distribution parameterised by θ = (µ, σ, ν)⊺ are given by

Sθ = D⊺SθDP , the matrix of second-order derivatives is given by Hθ = D⊺HθDPD, and the matrix of

expected second-order derivatives by Iθ = D⊺IθDPD. The individual entries in Sθ, Hθ, Iθ are used

in the score vectors and observed- and expected-information matrices in the estimation procedure.

A note on inference: If γ1 → 0, then
√
n(θ̂CP − θCP)

d−→ N(0,diag(σ2, σ2

2 , 6)) (Chiogna, 2005),

where the third term is the asymptotic variance of the sample coefficient of skewness (see, e.g.,

DasGupta, 2008, Theorem 3.8). The scaled skewness parameter ν results from the continuous and

differentiable mapping h : (−γmax
1 , γmax

1 ) → (0, 1), defined above. Application of the Delta theorem

yields:
√
n(θ̂ − θ)

d−→ N
(
0,diag(σ2, σ

2

2
, [h′(γ1)]

26)

)
≈ N

(
0,diag(σ2, σ

2

2
, 23.77)

)

Implementation: An object of class dist_glvmlss, given by an element in the list family

defined for item i as family[[i]] = SkewNormal(mu.link = "identity", sg.link = "log",

nu.link = "logit").

Beta Distribution: We denote a continuous random variable in the (0, 1) interval following a

Beta distribution as Y ∼ Beta(α, β). In its original form, the Beta distribution is parameterised

by θo = (α, β)⊺, with shape parameters (α, β) > 0. If y is a value sampled from Y , its contribution

to the log-likelihood function is given by:

log f(θo; y) = log Γ(α+ β)− log Γ(α)− log Γ(β) + (α− 1) log(y) + (β − 1) log(1− y)

where Γ(·) is the gamma function. The first-order derivatives of the Beta log-density function are:

∂ log f(θo; y)

∂α
= ψ0(α+ β)− ψ0(α) + log(y)

∂ log f(θo; y)

∂β
= ψ0(α+ β)− ψ0(β) + log(1− y)

where ψ0(x) = d log Γ(x)/dx is the digamma function. To simplify notation, let Sθo = ∇θo log f(θo; y)

be the vector of first-order derivatives with entries described above. The second-order derivatives

in the observed information matrix are:

∂2 log f(θo; y)

(∂α)2
= ψ1(α+ β)− ψ1(α)

∂2 log f(θo; y)

∂α ∂β
= ψ1(α+ β)
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∂2 log f(θo; y)

(∂β)2
= ψ1(α+ β)− ψ1(β)

where ψ1(x) = d2 log Γ(x)/(dx)2 is the trigamma function. Let Hθo = ∇θo∇θ⊺
o
log f(θo; y) be the

symmetric matrix of second-order derivatives with entries given by the expressions above. Note

how the entries for the expected information matrix are the same, i.e., Iθo = Hθo . The mean and

variance of a Beta distributed random variable are

E(Y ) =
α

α+ β
and Var(Y ) =

αβ

(α+ β)2(α+ β + 1)
.

Note how the parameters θo cannot be interpreted directly as location or scale parameters.

The location-scale parameterisation in Rigby et al. (2020) suggests using the parameter vector

θ = (µ, σ)⊺, where µ ∈ (0, 1) is a location parameter and σ ∈ (0, 1) is a scale parameter. The

relationship between θo = (α, β)⊺ and θ = (µ, σ)⊺ is given by

µ =
α

α+ β
and σ = (α+ β + 1)−1/2;

and the inverse mappings

α =
µ(1− σ2)

σ2
and β =

(1− µ)(1− σ2)

σ2
.

Under this parametrisation, E(Y ) = µ and Var(Y ) = σ2µ(1− µ). The default link function for

µ and σ is the logit link.

Let D be the Jacobian matrix with entries D[r,s] = ∂θo[r]/∂θ[s]:

D =


∂α

∂µ

∂α

∂σ
∂β

∂µ

∂β

∂σ


The terms in D are:

∂α

∂µ
=

1

σ2
− 1

∂α

∂σ
=

−2µ

σ3

∂β

∂µ
= 1− 1

σ2

∂β

∂σ
=

2µ− 2

σ3
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The first-order derivatives of the Beta distribution parameterised by θ = (µ, σ)⊺ are given by

Sθ = D⊺Sθo , and the matrix of second-order derivatives is given by Hθ = D⊺HθoD. The matrix of

expected second-order derivatives is Iθ = Hθ. The individual entries in Sθ, Hθ, Iθ are used in the

score vectors and observed- and expected-information matrices in the estimation procedure.

Implementation: An object of class dist_glvmlss, given by an element in the list family

defined for item i as family[[i]] = Beta(mu.link = "logit", sg.link = "logit").

Gamma Distribution: We denote a continuous random variable following a Gamma distri-

bution as Y ∼ Gamma(α, β). The Gamma distribution is parameterised by θ = (α, β)⊺, where

α ∈ R+ is a shape parameter and β ∈ R+ is a scale parameter. If y is drawn from a Gamma

distribution, its contribution to the log-likelihood function is

log f(θ; y) = (α− 1) · log(y)− y

β
− log Γ(α)− α log(β)

where, Γ(·) is the Gamma function. For a Gamma distributed random variable, we have E(Y ) = αβ

and Var(Y ) = αβ2. The first-order derivatives of the log-density function with respect to θ are

∂ log f(θ; y)

∂α
= log(y)− ψ0(α)− log(β)

∂ log f(θ; y)

∂β
=

y

β2
− α

β

The second-order derivatives of the log-density function with respect to θ are

∂2 log f(θ; y)

(∂α)2
= −ψ1(α)

∂2 log f(θ; y)

∂α∂β
= − 1

β

∂2 log f(θ; y)

(∂β)2
=
αβ − 2y

β3

and taking the expectation with respect to Y yields

E
[
∂2 log f(θ; y)

(∂α)2

]
= −ψ1(α)

E
[
∂2 log f(θ; y)

∂α∂β

]
= − 1

β

E
[
∂2 log f(θ; y)

(∂β)2

]
= − α

β2
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where ψ0(x) = d log Γ(x)/dx is the digamma function and ψ1(x) = d2 log Γ(x)/(dx)2 is the tri-

gamma function.

Implementation: An object of class dist_glvmlss, given by an element in the list family

defined for item i as family[[i]] = Gamma(mu.link = "log", sg.link = "log").

A1.2 Discrete distributions

Bernoulli Distribution: We denote a binary random variable following a Bernoulli distribution

as Y ∼ Bernoulli(π). The Bernoulli distribution is parameterised by θ = π ∈ (0, 1), which

represents the probability of ‘success’, i.e., P(Y = 1) = π. If y is a realisation of Y , its contribution

to the log-likelihood function is given by

log f(θ; y) = y · log(π) + (1− y) · log(1− π)

For a Bernoulli distributed random variable, we have E(Y ) = π and Var(Y ) = π (1− π). The

first-order derivative of the log-density function with respect to π is

∂ log f(θ; y)

∂π
=

y − π

π · (1− π)

The second-order derivative of the log-density function with respect to π is

∂2 log f(θ; y)

(∂π)2
= −π

2 − 2yπ + y

(π − 1)2π2

and taking the expectation with respect to Y yields

E
[
∂2 log f(θ; y)

(∂π)2

]
= − 1

π(1− π)

Implementation: An object of class dist_glvmlss, given by an element in the list family

defined for item i as family[[i]] = Binomial(n = 1, mu.link = "logit").

Poisson Distribution: We denote a discrete random variable following a Poisson distribution

as Y ∼ Poisson(λ). The Poisson distribution is parameterised by θ = λ ∈ R+, representing the

rate of occurrence. If y is a realisation of Y , its contribution to the log-likelihood function is given
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by

log f(θ; y) = y · log(λ)− λ− log(y!)

For a Poisson distributed random variable, we have E(Y ) = Var(Y ) = λ. The first-order derivative

of the log-density function with respect to λ is

∂ log f(θ; y)

∂λ
=
y

λ
− 1

The second-order derivative of the log-density function with respect to π is

∂2 log f(θ; y)

(∂λ)2
= − y

λ2

and taking the expectation with respect to Y yields

E
[
∂2 log f(θ; y)

(∂λ)2

]
= − 1

λ

Implementation: An object of class dist_glvmlss, given by an element in the list family

defined for item i as family[[i]] = Poisson(mu.link = "log").

Zero-Inflated Poisson Distribution: We denote a discrete random variable following a Zero-

Inflated Poisson (ZIP) distribution as Y ∼ ZIP(π, λ). The ZIP distribution is parameterised by

θ = (π, λ)⊺, which define the two-component mixture:

Y ∼


0, with probability π

Poisson(λ), with probability 1− π

If y is a value sampled from Y , its contribution to the likelihood function is given by:

f(θ; y) =


π + (1− π) · e−λ, if y = 0

(1− π) · λ
y · e−λ

y!
, if y > 0

which can be expressed more succinctly as

f(θ; y) =
(
π + (1− π) · e−λ

)
10(y)

×
(
(1− π) · λ

y · e−λ

y!

)(1−10(y))

,

where 10(y) is an indicator function that takes the value of 1 if y = 0 and 0 if y > 0. The
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contribution to the log-likelihood function is thus:

log f(θ; y) = 10(y) log
(
π + (1− π) · e−λ

)
+ (1− 10(y)) log

(
(1− π) · λ

y · e−λ

y!

)

For ZIP random variables, E(Y ) = (1−π)λ and Var(Y ) = (1−π)λ+π(1−π)λ2. For simplicity

we will refer to λ as the location parameter and π as the scale parameter.

An important limitation, however, is that we do not know whether an observation y = 0 was

sampled from the ‘perfect zero’ state or from the Poisson process. Following Hall (2000); Wang

(2010), to account for this uncertainty we introduce an auxiliary binary latent variable b, such that

b = 1 if y = 0 is from the ‘perfect zero’ state, and b = 0 otherwise. The joint distribution of (y, b)

can be factorised as f(y, b) = f(y | b)f(b), with

f(y | b;θ) =
(
λy · e−λ

y!

)(1−b)

f(b;θ) = πb · (1− π)(1−b)

and thus, the complete-data log-density is log f(θ; y, b) = log f(y | b;θ)+ log f(b;θ). In the estima-

tion of θ, we treat b as missing data, as in the EM-algorithm. Let log f̃(θ; y) = Eb | y [log f(θ; y, b)]

be the expectation of log f(θ; y, b) taken over the conditional distribution f(b | y). Given the

linearity of log f̃(θ; y) on b, we have that:

log f̃(θ; y) = Eb | y [log f(y | b;θ)) + log f(b;θ)]

= (1− b̂) · (y · log(λ)− λ− log(y!)) + b̂ log(π) + (1− b̂) log(1− π)

where b̂ is the expected value of b, conditional on y:

b̂ = Eb(b | y;θ) = P(b = 1 | y;θ)

=
f(y | b = 1,θ) · f(b = 1;θ)

f(y | b = 1;θ) · f(b = 1;θ) + f(y | b = 0;θ) · f(b = 0;θ)

=
π

π + e−λ(1− π)

=


[1 + exp(−logit(π)− λ)]−1 , if y = 0

0, if y > 0
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The first-order derivatives of log f̃(θ; y) with respect to the parameters in θ are:

∂ log f̃(θ; y)

∂λ
= (1− b̂)

(y
λ
− 1
)

∂ log f̃(θ; y)

∂π
=

b̂− π

π · (1− π)

The second-order derivatives in the observed information matrix are:

∂2 log f̃(θ; y)

(∂λ)2
= −(1− b̂)

y

λ2

∂2 log f̃(θ; y)

∂λ ∂π
= 0

∂2 log f̃(θ; y)

(∂π)2
= −π

2 − 2b̂π + b̂

(π − 1)2π2

By taking the expectation of the expressions above with respect to Y | b ∼ Poisson(λ), the second-

order derivatives in the expected information matrix are:

E

[
∂2 log f̃(θ; y)

(∂λ)2

]
=

−(1− b̂)

λ

E

[
∂2 log f̃(θ; y)

∂λ ∂π

]
= 0

E

[
∂2 log f̃(θ; y)

(∂π)2

]
= −π

2 − 2b̂π + b̂

(π − 1)2π2

Implementation: An object of class dist_glvmlss, given by an element in the list family

defined for item i as family[[i]] = ZIpoisson(mu.link = "log", sg.link = "logit").

A2. Derivations for the score vectors, information matrices, and

link functions

In the following, we refer the readers to the the corresponding sections in Chapter 2 and Chapter

3 for the corresponding notation.
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Score vectors for intercepts and factor loadings

The score vectors used in tth iteration of the EM-algorithm are given by:

S[t]
[k̄i,φ]

=
∂Q(Θ;Θ[t])

∂αi,φ

=
∂

∂αi,φ

[
n∑

m=1

∫
Rq

p∑
i=1

log fi(yim | z;θi) p(z |ym; Θ[t]) dz
]

=
n∑

m=1

∫
Rq

∂ log fi(yim | z;θi)
∂αi,φ

p(z |ym; Θ[t]) dz

=

n∑
m=1

∫
Rq

[
∂ log fi(yim | z)

∂φi
· ∂φi

∂ηi,φ
· ∂ηi,φ
∂αi,φ

]
p(z |ym; Θ[t]) dz

The score vectors used in the direct optimisation algorithm are given by:

S[k̄i,φ](Θ) =
∂ℓ(Θ;y)

∂αi,φ

=
∂

∂αi,φ

[
n∑

m=1

log

(∫
Rq

[
p∏

i=1

fi(yim | z;θi)

]
p(z; Φ) dz

)]

=
n∑

m=1

1

f(ym)

∫
Rq

∏
i′ ̸=i

fi′(yi′m | z;θi′)
∂fi(yim | z;θi)

∂αi,φ

 p(z; Φ) dz

=
n∑

m=1

∏p
i=1 fi(yim | z;θi)

f(ym)

∫
Rq

∂ log fi(yim | z;θi)
∂αi,φ

p(z; Φ) dz

=
n∑

m=1

∫
Rq

∂ log fi(yim | z;θi)
∂αi,φ

p(z |ym; Θ) dz

evaluated at the value of the parameter estimates at iteration t, i.e, S[t]
[k̄i,φ]

:= S[k̄i,φ](Θ
[t]). Note the

equivalence between the score vector under the complete data specification in the EM-algorithm

and the score vector for the marginal log-likelihood, i.e., ∇Θℓ(Θ;y) ≡ ∇ΘQ(Θ;Θ[t]) (Louis, 1982).

Score vector for factor correlations

Recall that the factor correlation matrix is reparameterised through a Cholesky decomposition as

Φ = LL⊺, where L is a lower triangular matrix, and that we denote Lj as the jth row of L, with

Lj,[k] being the kth element of Lj .

The score vectors for the factor correlations used in tth iteration of the EM-algorithm have
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entries of the form:

S[t]Lj,[k]
=
∂Q(Θ;Θ[t])

∂Lj,[k]

=
n∑

m=1

∫
Rq

[
∂ log p(z; L)

∂Lj,[k]

]
p(z |ym; Θ[t]) dz

= −1

2

n∑
m=1

∫
Rq

[
∂ log det(LL⊺)

∂L

∂L

∂Lj,[k]
+
∂ z⊺(LL⊺)−1z

∂L

∂L

∂Lj,[k]

]
p(z |ym; Θ[t]) dz

= −1

2

n∑
m=1

∫
Rq

[
2 tr

(
L⊺(LL⊺)−1Djk

)
− 2 tr

(
L⊺(LL⊺)−1zz⊺(LL⊺)−1Djk

)]
p(z |ym; Θ[t]) dz

= −n tr
(
L⊺(LL⊺)−1Djk

)
+

n∑
m=1

∫
Rq

[
z⊺(LL⊺)−1DjkL

⊺(LL⊺)−1z
]
p(z |ym; Θ[t]) dz

= −n tr
(
L⊺(LL⊺)−1Djk

)
+

n∑
m=1

∫
Rq

[z⊺Gjkz] p(z |ym; Θ[t]) dz

= −n tr
(
L⊺(LL⊺)−1Djk

)
+

n∑
m=1

[
tr
(
GjkV[t]

m

)
+ z̆[t]

⊺
m Gjkz̆

[t]
m

]

where Djk = ∂L/∂Lj,[k] is a square matrix of dimension q, with a value of 1 in the [j, k] position

and zero elsewhere; Gjk = (LL⊺)−1DjkL
⊺(LL⊺)−1; and the conditional mean z̆

[t]
m = E(z | ym; Θ[t])

and conditional variance V[t]
m = E((z− z̆

[t]
m)(z− z̆

[t]
m)⊺ |ym; Θ[t]) are computed using the properties

of the trace operator and the linearity of the conditional expectation.

As before, the score vectors for the factor correlations from the marginal log-likelihood are

equivalent to those from the complete data log-likelihood. For simplicity, we derive this equivalence

using the derivatives with respect to the covariance/correlation matrix Φ, but the results can be

easily extended to the Cholesky parameterisation Φ = LL⊺. Indeed:

SΦ(Θ) =
∂ℓ(Θ;y)

∂Φ

=
∂

∂Φ

[
n∑

m=1

log

(∫
Rq

[
p∏

i=1

fi(yim | z;θi)

]
p(z;Φ) dz

)]

=
n∑

m=1

1

f(ym)

∫
Rq

[
p∏

i=1

fi(yim | z;θi)

]
∂p(z;Φ)

∂Φ
dz

=
n∑

m=1

∫
Rq

[
∂p(z;Φ)

∂Φ

] ∏p
i=1 fi(yim | z;θi)

f(ym)
dz

=
n∑

m=1

∫
Rq

[
∂ log p(z;Φ)

∂Φ

]
p(z |ym; Θ) dz
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The above is equivalent to the second line in the derivation of the score vector for the factor

correlations for the complete-data log-likelihood presented above.

Observed information matrix (marginal log-likelihood)

The marginal log-likelihood observed information matrix has matrix entries given by:

H[k̄i,φ,k̄i′,φ̃]
=

∂2ℓ(Θ;y)

∂αi,φ∂α
⊺
i′,φ̃

=
∂Si,φ(Θ;y)

∂α⊺
i′,φ̃

=

n∑
m=1

∫
Rq

∂
2 log fi(yim | z)
∂αi,φ∂α

⊺
i′,φ̃

· p(z |ym) +
∂ log fi(yim | z)

∂αi,φ
· ∂p(z |ym)

∂α⊺
i′,φ̃︸ ︷︷ ︸

H⊺
0

 dz; (A2.1)

The vector H0 in the integrand above is

H0 =
∂p(z |ym)

∂αi′,φ̃
=

∂

∂αj,φ̃

[
f(ym | z)p(z)

f(ym)

]

=
∂

∂αi′,φ̃

[
f(ym | z)p(z)∫

Rq f(ym | z)p(z) dz

]

=

[
∂f(ym | z)p(z)

∂αi′,φ̃
·
∫
Rq f(ym | z)p(z) dz

]
−

[
∂
(∫

Rq f(ym | z)p(z) dz
)

∂αi′,φ̃
· f(ym | z)p(z)

]
[∫

Rq f(ym | z)p(z) dz
]2

=
f(ym | z)p(z)∫

Rq f(ym | z)p(z) dz ·
[
∂f(ym | z)p(z)

∂αi′,φ̃

1

f(ym | z)p(z)

]

− f(ym | z)p(z)∫
Rq f(ym | z)p(z) dz ·

[∫
Rq

∂f(ym | z)p(z)
∂αi′,φ̃

1

f(ym | z)p(z)
dz · f(ym | z)p(z)∫

Rq f(ym | z)p(z) dz

]

= p(z |ym) · ∂

∂αi′,φ̃
log f(ym | z)− p(z |ym) ·

[∫
Rq

p(z |ym)
∂

∂αi′,φ̃
log f(ym | z) dz

]

= p(z |ym) · ∂

∂αi′,φ̃
log fi′(yi′m | z)− p(z |ym) ·

[∫
Rq

p(z |ym)
∂

∂αi′,φ̃
log fi′(yi′m | z) dz

]

With the above, equation (A2.1) becomes

H[k̄i,φ,k̄i′,φ̃]
=

n∑
m=1

∫
Rq

p(z |ym) · ∂
2 log fi(yim | z)
∂αi,φ∂α

⊺
i′,φ̃

dz

124



+
n∑

m=1

∫
Rq

p(z |ym) · ∂ log fi(yim | z)
∂αi,φ

· ∂ log fi
′(yi′m | z)

∂α⊺
i′,φ̃

dz (A2.2)

−
n∑

m=1

∫
Rq

p(z |ym) · ∂ log fi(yim | z)
∂αi,φ

dz ·
∫
Rq

p(z |ym)
∂ log fi′(yi′m | z)

∂α⊺
i′,φ̃

dz

Note that, when i ̸= i′, the first summand in (A2.2) matrix of second derivatives in the first

summation is a null matrix, i.e.,

∂2 log fi(yim | z)
∂αi,φ∂α

⊺
i′,φ̃

=
∂ηi,φ
∂αi,φ

· ∂φi

∂ηi,φ
· ∂

2 log fi(yim | z)
∂φi∂φ̃i′

· ∂φ̃i′

∂ηi′,φ̃
·
∂ηi′,φ̃
∂α⊺

i′,φ̃

= 0 ,

but when i = i′, it becomes

=
∂

∂α⊺
i,φ̃

[
∂ log fi(yim | z)

∂αi,φ

]
=

∂

∂α⊺
i,φ̃

[
∂ log fi(yim | z)

∂φi
· ∂φi

∂ηi,φ
· ∂ηi,φ
∂αi,φ

]
=

∂

∂φ̃i

[
∂ log fi(yim | z)

∂φi
· ∂φi

∂ηi,φ
· ∂ηi,φ
∂αi,φ

]
· ∂φ̃i

∂ηi,φ̃
· ∂ηi,φ̃
∂α⊺

i,φ̃

=
∂ηi,φ
∂αi,φ

· ∂

∂φ̃i

[
∂ log fi(yim | z)

∂φi
· ∂φi

∂ηi,φ

]
· ∂φ̃i

∂ηi,φ̃
· ∂ηi,φ̃
∂α⊺

i,φ̃

=
∂ηi,φ
∂αi,φ

·
[
∂2 log fi(yim | z)

∂φi∂φ̃i
· ∂φi

∂ηi,φ
+

∂

∂φ̃i

(
∂φi

∂ηi,φ

)
· ∂ log fi(yim | z)

∂φi

]
· ∂φ̃i

∂ηi,φ̃
· ∂ηi,φ̃
∂α⊺

i,φ̃

which for φi = φ̃i is:

=
∂ηi,φ
∂αi,φ

·

[
∂2 log fi(yim | z)

∂φ2
i

·
(
∂φi

∂ηi,φ

)2

+
∂

∂φi

(
∂φi

∂ηi,φ

)
· ∂ log fi(yim | z)

∂φi
· ∂φi

∂ηi,φ

]
· ∂ηi,φ
∂α⊺

i,φ

, (A2.3)

but for φi ̸= φ̃i simplifies to:

=
∂ηi,φ
∂αi,φ

·
[
∂2 log fi(yim | z)

∂φi∂φ̃i
· ∂φi

∂ηi,φ
· ∂φ̃i

∂ηi,φ̃

]
· ∂ηi,φ̃
∂α⊺

i,φ̃

(A2.4)

Expected information matrix (marginal log-likelihood)

The matrix entries in the expected information matrix are given by

I[k̄i,φ,k̄i′,φ̃] = −Ey

[
H[k̄i,φ,k̄i′,φ̃]

]
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Taking the expectation of (A2.2) with respect to y yields:

I[k̄i,φ,k̄i′,φ̃] =
n∑

m=1

∫
Rq

Ey

[
∂2 log fi(yim | z)
∂αi,φ∂α

⊺
i′,φ̃

]
p(z |ym) dz

as the second and third summand in (A2.2) become null matrices (the expected value of the score

vector is zero). Moreover, note that I[k̄i,φ,k̄i′,φ̃] = 0 for i ̸= i′, and as such I is block diagonal.

Link functions

We present some analytical expressions for the partial derivatives involved in the score and Hessian

functions. For entries in the parameter vector θi = (µi, σi, τi, νi)
⊺, i = 1, ..., p, the link functions

are monotonic, measurable, and differentiable mappings υi : R → R, that relate the system-

atic component (or predictor) to the corresponding location, shape, or scale parameters φi ∈ θi,

υi(φi) = ηi,φ. Note that
∂φi

∂ηi,φ
=

(
∂ηi,φ
∂φi

)−1

The link functions currently implemented are:

Link function Parameter range υi(φi) = ηi,φ

(
∂

∂φ
ηi,φ

)−1

Identity link φi ∈ (−∞,∞) φi = ηi,φ 1
Log link φi ∈ (0,∞) log(φi) = ηi,φ φi

Logit link φi ∈ (0, 1) log

(
φi

1− φi

)
= ηi,φ φi · (1− φi)

Probit link φi ∈ (0, 1) Φ−1 (φi) = ηi,φ 1/ϕ−1(φi)

Table A1: Link functions and their derivatives

A3. A note on trust-region algorithms

Let the negative of the marginal log-likelihood in (2.1), −ℓ(Θ;y), be the objective function to be

minimised in the direct optimisation step of the estimation procedure discussed in Chapter 2. At

iteration t of the trust-region algorithm, we construct a model function ℓ̆[t] that acts as a local

approximation of −ℓ when evaluated at the current point Θ[t], i.e., −ℓ(Θ[t];y) ≈ ℓ̆[t]. To protect

against bad approximations of −ℓ, the algorithm restricts the search for a solution within a region
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around Θ[t], bounded by the trial step in the search process, e. The model function is usually a

quadratic approximation of the objective function about Θ[t],

ℓ̆(e; Θ[t]) = −
{
ℓ(Θ[t];y) + e⊺S[t] +

1

2
e⊺H[t]e

}

The trust-region algorithm restricts the search for the minimiser of ℓ̆[t](e; Θ[t]) to a region

defined by K-dimensional ball around Θ[t] with radius ||e||2 ≤ ∆[t], where || · ||2 is the Euclidean

norm, and the scalar ∆[t] > 0 denotes the trust-region radius at iteration t. The trust-region

algorithm iteratively solves the following optimisation sub-problem: First, it chooses the trial step

size e such that ℓ̆[t](e; Θ[t]) becomes a good local approximation of ℓ(Θ[t]), such that

e[t] = arg min
e ∈ RK

ℓ̆[t](e; Θ[t]) subject to ||e||2 ≤ ∆[t] (A3.1)

and, secondly, updates the parameter vector as

Θ[t+1] = Θ[t] + e[t]

The size of the trust-region is critical, as the update happens only if the trial step produces an

improvement over the objective function. This is measured by the agreement between the model

function ℓ̆[t](e; Θ[t]) and the objective function ℓ(Θ[t]), as:

r[t] =
−
{
ℓ(Θ[t])− ℓ(Θ[t] + e[t])

}
ℓ̆[t](0; Θ[t])− ℓ̆[t](e[t]; Θ[t])

The numerator measures the actual reduction (agreement) in the objective function, and the

denominator the predicted reduction. If r[t] is negative, the model function is not a good approx-

imation of the objective function, thus the trial step e[t] is rejected and we proceed to solve the

sub-problem in equation (A3.1) for a smaller trust-region (i.e., smaller ∆[t] and repeat search).

If r[t] is close to 1, the model function is an adequate approximation of the objective function,

thus the parameter vector is update and the trust-region is enlarged for the next iteration (i.e.,

∆[t+1] > ∆[t]). If r[t] is positive but not close to 1, the parameters are updated but the trust

region is unaltered (i.e., ∆[t+1] = ∆[t]). If r[t] is positive and close to zero, the parameters are

updated and the trust-region is shrunken (i.e., ∆[t+1] < ∆[t]). We iterate until convergence, which

is assessed by the stopping criteria | ℓ(Θ[t+1])− ℓ(Θ[t]) | < ϵ for a sufficiently small ϵ > 0. We use

the trust-region algorithm implementation in the R package trust (Geyer, 2020). Further details

on the trust-region algorithm are found in Radice et al. (2016); Marra et al. (2017), and Nocedal
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and Wright (2006, Chapter 4).

A4. Numerical Integration: The Gaussian-Hermite quadrature

The Gaussian-Hermite quadrature (GHQ) is a popular numerical integration technique in statistics,

known for its numerical and computational efficiency. GHQ approximates a univariate integral of

the form

I(f) =

∞∫
−∞

exp(−z2)f(z)dz

where f(z) is an integrable function on (−∞,∞). The integral is approximated as a discrete sum

of R components:

I(f) ≈ IGH(f ; {zr, wr}Rr=1) =

R∑
r=1

wr · f(zr) +RR

where the quadrature points zr (also known as nodes) correspond to the rth zero of the Hermite

polynomial of degree R, HR(z), and the weights wr are given by:

wi =
2R−1R!

√
π

R2(HR−1(zr))2
(r = 1, 2, ..., R)

The remainder term RR takes the form

RR =
R!

√
π

2R(2R)!
f (2R)(z)

for some z, where f (2R)(z) denotes the 2Rth-order derivative of f(z). The nodes {zr}r = 1R are

symmetrical around zero. Under standard regularity conditions, the accuracy of GHQ improves as

the number of quadrature points increases, as the remainder term RR implies that the approxima-

tion is exact if f(z) is a polynomial of degree at most R−1. Further details on Hermite polynomials

can be found in Davis and Rabinowitz (1975, Chapter 2), and tables of nodes and weights can be

found in Stroud and Secrest (1966).

The GHQ can be extended to multivariate integrals in q dimensions. The approximation takes

the form:

∫
Rq

exp(−z′z)f(z) dz ≈
R1∑

r1=1

· · ·
Rq∑

rq=1

wr1 · · ·wrqf(zr1 , ..., zrq) =

R∑
r=1

wrf(zr)

where zr = (zr1, ..., zrq)
′ ∈ Rq is the rth (out of R =

∏q
l=1Rl) quadrature point, and wr =

∏q
l=1wrl

is its corresponding weight. If the integrand does not include the Gauss function exp(−z2) as
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a factor, we can still use GHQ by multiplying and dividing the integrand by this factor. The

GHQ approximation works well when the function exp(−z2)g(z) is smooth enough. This is the

case when computing the multivariate integrals of the score vectors and observed and expected

information matrices in Chapters 2 and 3. In this case, the weights are adjusted by a factor of

(2π)−1/2 · exp(z2rl/2) to obtain the posterior distribution p(z | y) in the integrand. Therefore, we

can compute the score vectors as:

S[k̄i,φ] =
n∑

m=1

∫
Rq

p(z |ym) · ∂ log fi(yim | z)
∂αi,φ

dz

=

n∑
m=1

∫
Rq

p(z) · f(ym | z)
f(ym)

· ∂ log fi(yim | z)
∂αi,φ

dz

≈
n∑

m=1

R∑
r=1

(2π)−q/2 · exp(z2r/2) · wr ·
f(ym | zr)
f(ym)

· ∂ log fi(yim | zr)
∂αi,φ

≈
n∑

m=1

R∑
r=1

w̃r ·
∂ log fi(yim | zr)

∂αi,φ
,

where, w̃r = (2π)−q/2 · exp(z2r/2) · wr · f(ym | zr)/f(ym), and, similarly, the observed information

matrices as

H[k̄i,φ,k̄i,φ̃]
≈

n∑
m=1

R∑
r=1

w̃r ·
∂2 log fi(yim | zr)
∂αi,φ∂α

⊺
i,φ̃

and the expected information matrices as

H[k̄i,φ,k̄i′,φ̃]
≈

n∑
m=1

R∑
r=1

w̃r ·
∂2 log fi(yim | zr)
∂αi,φ∂α

⊺
i′,φ̃

+
n∑

m=1

R∑
r=1

w̃r ·
∂ log fi(yim | zr)

∂αi,φ
· ∂ log fi

′(yi′m | zr)
∂α⊺

i′,φ̃

−
n∑

m=1

[
R∑

r=1

w̃r ·
∂ log fi(yim | zr)

∂αi,φ
·

R∑
r=1

w̃r ·
∂ log fi′(yi′m | zr)

∂α⊺
i′,φ̃

]

A5. Asymptotic properties of the MML estimator

We derive the asymptotic properties of the MML estimator introduced in Section 2.3. Let Θ∗ ∈ Ξ

be the true population parameters, with Ξ ⊆ RK the parameter space. Consider the assumptions:

(A1) Θ∗ is an interior point of Ξ.

(A2) Within a neighbourhood of Θ∗, the first three derivatives of the marginal log-likelihood exist

and are bounded.
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(A3) Θ∗ ∈ Ξ is identified. That is, the marginal distribution generated by Θ∗, f(y; Θ∗), is unique.

Consequently, the marginal log-likelihood evaluated at Θ∗, ℓ(Θ∗;y), is unique too.

Assumptions (A1)-(A3) are standard regularity conditions (e.g., Barndorff-Nielsen and Cox, 1994).

Specifically, assumptions (A1) and (A2) are necessary to approximate the marginal log-likelihood

by a Taylor expansion about Θ∗. Assumption (A3) is a requirement for the consistency of the

MLE. From assumptions (A1)-(A3) we can further derive the following assumptions:

(A4) E[S(Θ∗)] = 0, where S(Θ∗) = ∇Θℓ(y; Θ)|Θ=Θ∗ . Moreover, assume S(Θ∗) = OP (n), where

the big-O notation in probability means that for any ϵ > 0, exists a finite M(ϵ) > 0 such

that P( ||S(Θ∗)/n||1 ≥M(ϵ)) < ϵ, for sufficiently large n.

(A5) Var[S(Θ∗)] = E[S(Θ∗)S(Θ∗)⊺] = I(Θ∗) = −E[H(Θ∗)], where H(Θ∗) = ∇Θ∇Θ⊺ℓ(y; Θ)|Θ=Θ∗ .

(A6) The observed information matrix the sum of n individual contributions from the inde-

pendent and identically distributed observations in the sample, H(Θ∗) =
∑n

m=1Hm(Θ∗),

with Hm(Θ∗) = ∇Θ∇Θ⊺ log f(ym; Θ)|Θ=Θ∗ . Likewise, the expected information matrix

is I(Θ∗) =
∑n

m=1 Im(Θ∗), with Im(Θ∗) = −E[Hm(Θ∗)]. Assume Im(Θ∗) is constant,

i.e., −Im(Θ∗) = O(1) for all m = 1, . . . , n. Thus, I(Θ∗) = n Im(Θ∗). It follows that

−I(Θ∗) = O(n), that is, I(Θ∗) is constant in the limit n→ ∞.

(A7) Similarly, S(Θ∗) =
∑n

m=1 Sm(Θ∗), with ∇Θ log f(ym; Θ)|Θ=Θ∗ . Moreover, E[Sm(Θ∗)] = 0

and Var[Sm(Θ∗)] = −E[Hm(Θ∗)] = Im(Θ∗).

(A8) The observed information matrix can be decomposed into its mean and a stochastic part,

H(Θ∗) = E[H(Θ∗)] + ϵH, where ϵH = OP (
√
n) is a negligible error term (Kauermann, 2005).

We now present the asymptotic distribution of the MLE:

Theorem A5.1. (Asymptotic distribution of the MLE) Under assumptions (A1)-(A6), the max-

imum likelihood estimator (MLE), denoted by Θ̂, has the following asymptotic distribution:

√
n(Θ̂−Θ∗)

d−→ N(0, nI(Θ∗)−1)

Proof : Start by performing a Taylor expansion of the score vector S(Θ̂) about Θ∗. For sim-

plicity, all the orders higher than the first order are omitted. The first-order expansion of S(Θ̂)

about Θ∗ is approximately

S(Θ̂) ≈ S(Θ∗) +H(Θ∗)(Θ̂−Θ∗)
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By definition, the left-hand-side (LHS) of the above approximation is S(Θ̂) = 0. Multiplying on

both sides by
√
n and re-arranging gives

√
n(Θ̂−Θ∗) = −H(Θ∗)−1√nS(Θ∗)

and further dividing and multiplying by n on the right-hand-side (RHS) yields:

√
n(Θ̂−Θ∗) = −

[
H(Θ∗)

n

]−1 √
n
S(Θ∗)

n
(A5.1)

The term S(Θ∗)/n in (A5.1) is the sample mean of {Sm(Θ∗) : m = 1, . . . n}. Thus, by the

central limit theorem and assumptions (A5)-(A7):

√
n
S(Θ∗)

n

d→ N
(
0,

I(Θ∗)

n

)

Moreover, by the law of large numbers and assumption (A8):

−
[
H(Θ∗)

n

]−1

→ −
[
I(Θ∗)

n

]−1

Therefore,

√
n(Θ̂−Θ∗)

d→ N

(
0,

[
I(Θ∗)

n

]−1 I(Θ∗)

n

[
I(Θ∗)

n

]−1
)

d
= N

(
0,

[
I(Θ∗)

n

]−1
)

□

A6. Software Implementation

In this Appendix, we present the implementation of the GLVM-LSS in the statistical software R to

contribute to reproducible research practices and transparent dissemination of results. We discuss

the estimation of the GLVM-LSS in the PISA 2018 empirical application (Section 2.5.1).

Data preparation

Here, we present the code for data preparation using the original PISA 2018 files. We select the 9

items from the first testlet (see
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1 rm(list = ls())

2 set.seed(1234)

3

4 source("R/prep.R") # Code for pre-fitting prepration

5 source("R/fams.R") # Code with distributions

6 source("R/glvmlss.R") # Code for fitting and simulating GLVM-LSS models

7 source("R/misc.R") # Code with miscellaneous functions

8

9 library(dplyr)

10

11 # Original datafiles from PISA

12 itemfile <- haven::read_sav("Data/PISA/CY6_MS_CMB_STU_COG.sav")

13 timefile <- haven::read_sas("Data/PISA/cy6_ms_cmb_stu_ttm.sas7bdat")

14

15 # Data cleaning

16 BR_item <- itemfile %>%

17 filter(CNTRYID == 76) %>%

18 select(CNTSTUID , starts_with("CM")) %>%

19 select(CNTSTUID , ends_with("S")) %>%

20 rename_with(~ stringr::str_remove(., 'S'), .cols = starts_with("CM")) %>%

21 select(CNTSTUID , CM033Q01 , CM474Q01 , CM155Q01, CM155Q04,

22 CM411Q01, CM411Q02, CM803Q01, CM442Q02, CM034Q01) %>%

23 arrange(CNTSTUID) %>%

24 rename(ID = CNTSTUID)

25

26 BR_time <- itemfile %>%

27 filter(CNTRYID == 76) %>%

28 select(CNTSTUID , starts_with("CM")) %>% select(CNTSTUID , ends_with("T")) %>%

29 rename_with(~ stringr::str_remove(., 'T'), .cols = starts_with("CM")) %>%

30 arrange(CNTSTUID) %>%

31 rename(ID = CNTSTUID) %>%

32 select(colnames(UK_item))

33

34 BR_item <- BR_item %>% rename_with(~ paste0("Y", 1:9), .cols = starts_with("CM"))

35 BR_time <- BR_time %>% rename_with(~ paste0("T", 1:9), .cols = starts_with("CM"))

36

37 data <- full_join(BR_time, BR_item, "ID") %>% select(!ID)

38

39 # log-RT in minutes

40 data[,paste0("T",1:9)] <- log(data[,paste0("T",1:9)]/(1000*60))

41 # Complete cases

42 data <- data[complete.cases(data),]
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Confirmatory restrictions

Restrictions on the model parameters should be defined in a list that is included as an additional

control option in the main function.

1 iRes <- list(c("mu","Y1","Z2",0), c("mu","Y2","Z2",0), c("mu","Y3","Z2",0),

2 c("mu","Y4","Z2",0), c("mu","Y5","Z2",0), c("mu","Y6","Z2",0),

3 c("mu","Y7","Z2",0), c("mu","Y8","Z2",0), c("mu","Y9","Z2",0),

4 c("mu","T1","Z1",0), c("mu","T2","Z1",0), c("mu","T3","Z1",0),

5 c("mu","T4","Z1",0), c("mu","T5","Z1",0), c("mu","T6","Z1",0),

6 c("mu","T7","Z1",0), c("mu","T8","Z1",0), c("mu","T9","Z1",0),

7 c("sigma","Y1","Z2",0), c("sigma","Y2","Z2",0), c("sigma","Y3","Z2",0),

8 c("sigma","Y4","Z2",0), c("sigma","Y5","Z2",0), c("sigma","Y6","Z2",0),

9 c("sigma","Y7","Z2",0), c("sigma","Y8","Z2",0), c("sigma","Y9","Z2",0),

10 c("sigma","T1","Z1",0), c("sigma","T2","Z1",0), c("sigma","T3","Z1",0),

11 c("sigma","T4","Z1",0), c("sigma","T5","Z1",0), c("sigma","T6","Z1",0),

12 c("sigma","T7","Z1",0), c("sigma","T8","Z1",0), c("sigma","T9","Z1",0),

13 c("nu","Y1","Z2",0), c("nu","Y2","Z2",0), c("nu","Y3","Z2",0),

14 c("nu","Y4","Z2",0), c("nu","Y5","Z2",0), c("nu","Y6","Z2",0),

15 c("nu","Y7","Z2",0), c("nu","Y8","Z2",0), c("nu","Y9","Z2",0),

16 c("nu","T1","Z1",0), c("nu","T2","Z1",0), c("nu","T3","Z1",0),

17 c("nu","T4","Z1",0), c("nu","T5","Z1",0), c("nu","T6","Z1",0),

18 c("nu","T7","Z1",0), c("nu","T8","Z1",0), c("nu","T9","Z1",0))

In confirmatory models, the users must specify each restriction in the form c("parameter",

"item", "latent variable", "value"). In the example above, the restriction of the form

c("mu","Y1","Z2",0) means that the factor loading of the item Y1 on the latent speed trait

is set in the measurement equation for the location parameter is set to α12,µ = 0.

Distributions

The distributions for each item (in this case, item responses and response times) should be included

in a list with elements of the class dist_glvmlss. In this case, the first 9 observed variables, the

log-RT, are assumed to follow a Skew-Normal distribution, and items 10 to 18, the observed IR,

are assumed to follow a Bernoulli distribution.

1 famSN <- vector("list", ncol(data))

2 for(i in 1:9){ famSN[[i]] <- SkewNormal()}

3 for(i in 10:18){ famSN[[i]] <- Binomial()}
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Estimation

To estimate the GLVM-LSS, we use the function glvmlss. Model 7 in Section 2.5.1 results from:

1 mod_SN_comp <- glvmlss(data = data, family = famSN,

2 mu.eq = ~ Z1+Z2, sg.eq = ~ Z1+Z2, nu.eq = ~ Z1+Z2,

3 f.scores = T,

4 verbose = T, iden.res = iRes, corr.lv = T,

5 solver = "nlminb", EM_use2d = F, EM_iter = 5000,

6 iter.lim = 1000,

7 est.ci = "Approximate")

8

9 names(mod_SN_comp)

The glvmlss has three main components: i) data, which corresponds to the n × p matrix of

observed variables, ii) family, which corresponds to list with elements of the class dist_glvmlss

created earlier, and iii) the formulas corresponding to the location (mu.eq), scale (sg.eq) and

shape (nu.eq/ta.eq) parameters. The formula object follows the conventional notation in R, with

Z1, ..., Zp denoting the number of latent variables in the model (for computational simplicity,

we do not recommend using more than 3).

Control variables can be included directly, or in a list with the name control. The following

options, along with their default values, are available for the user:

1 control <- list(

2 EM_iter = 30, # Number of user-defined EM iterations

3 EM_use2d = T, # Use GD (FALSE) or NR (TRUE) update

4 iter.lim = 300, # Limit for iterations (quasi-Newton algorithm)

5 DirectMaxFlag = T, # Skip (FALSE) or Keep (TRUE) quasi-Newton maximisation

6 EM_appHess = F, # Use score product to approximate Hessian in EM (TRUE)

7 EM_lrate = 0.001, # Learning rate when using GD update rule in EM

8 est.ci = "Approximate", # Options: "Standard, "Approximate"

9 solver = "nlminb", # Options: "trust", "L-BGFS-B", (any other in "optim")

10 start.val = NULL, # Starting values, options a list or "random"

11 mat.info = "Hessian", # Options: "Hessian", "Fisher" for info. matrix

12 iden.res = NULL, # Identification restrictions

13 tol = sqrt(.Machine$double.eps) # Stopping criteria tolerance

14 corr.lv = FALSE, # Correlated latent variables (LVs)?

15 Rz = NULL, # Covariance for LVs (if corr.lv == T, estimated , else fixed)

16 var.lv = rep(1,q), # Estimate variances of LVs? (if 1, fixed, else NA)

17 nQP = if(q == 1) 40 else { if(q == 2) 25 else 10 }, # Quadrature points

18 verbose = FALSE, # Display steps in console (TRUE)?
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19 f.scores = F, # Compute factor scores (TRUE)?

20 seed = 1234) # Seed when start.val == "random"
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Chapter B

Appendix for Chapter 3

B1. Non-convex Penalty Functions

The Lasso and Alasso are known for their variable selection capabilities, but they are consistent

for model selection only under certain restricted conditions (Zhao and Yu, 2006; Zou, 2006). Addi-

tionally, the Lasso lacks the oracle property. To address these limitations, non-convex alternatives

have been proposed. Two popular non-convex L1-type penalties are the smoothly clipped absolute

deviation (SCAD) penalty (Fan and Li, 2001) and the Minimax Concave Penalty (MCP, Zhang,

2010). Following the general formulation of the penalty term in Section 3.3, the parameter-specific

penalty contributions to Pλ(Θ;λ;w) for the SCAD are:

Pλ,k(αk;λφ,k,wk) =



λφ,k|αk| if |αk| ≤ λφ,k

2aλφ,k|αk| − α2
k − (λφ,k)

2

2(a− 1)
if λφ,k < |αk| ≤ aλφ,k

(λφ,k)
2(a+ 1)

2
if |αk| > λφ,k

with implicit weights wk depending on the value of αk relative to λφ,k. The SCAD penalty coincides

with the Lasso until |αk| = λφ,k, then becomes a quadratic function until |αk| = aλφ,k, and then

remains constant for |αk| > λφ,k. In essence, the SCAD penalty can be seen as a quadratic spline

function with knots at λφ,k and aλφ,k. The choice of the additional tuning parameter a typically

falls between 2.5 and 4.5 (Huang et al., 2017), with 3.7 being a commonly used value in the

literature (Fan and Li, 2001).
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For the MCP, the the parameter-specific penalty contributions are:

Pλ,k(αk;λφ,k,wk) =


λφ,k|αk| −

α2
k

2a
if |αk| ≤ aλφ,k

a(λφ,k)
2

2
if |αk| > aλφ,k

The MCP, like the SCAD, incorporates a penalisation rate similar to that of the Lasso. How-

ever, the MCP relaxes this rate towards zero as the absolute value of the coefficient approaches

aλφ,k. The choice of the additional tuning parameter a typically falls between 1.5 and 3.5 (Huang,

2018). Increasing the value of a results in stronger penalisation for small values of αk and weaker

penalisation for large values. Notably, both the SCAD and the MCP approach the Lasso when a

tends towards infinity.

B2. Local Approximations to Penalty Functions

Define the function e0(x) = |x|. The idea is to construct a family of convex C2-functions (i.e.,

functions that have both a continuous first derivative and a continuous second derivative), denoted

by ec(x), such that ec → e0 as c → 0. Koch (1996) proposed the family of functions ec : R → R

defined by

ec(x) = (x2 + c2)1/2 , c > 0 , x ∈ R (B2.1)

From (B2.1), it follows that lim
c→0

ec(x) → e0(x).

In the current context, the approximation above is ||RkΘ||1 ≈ ((RkΘ)⊺(RkΘ)+ c̄)1/2. Let Θ̃ be

a vector in the neighbourhood of Θ. In the following, we drop the notational dependence on the

tuning parameters and weights (λ,w) from the penalty function. A first-order Taylor expansion

of Pλ(Θ) about Θ̃ is

Pλ(Θ) ≈ Pλ(Θ̃) +∇ΘPλ(Θ̃)⊺(Θ− Θ̃)

= Pλ(Θ̃) +

[
k∗∑
k=1

∇ΘPλ,k(||RkΘ̃||1)⊺
]
(Θ− Θ̃)

= Pλ(Θ̃) +

[
k∗∑
k=1

(
∂Pλ,k(||RkΘ̃||1)

∂||RkΘ̃||1

) (
∂||RkΘ̃||1
∂RkΘ̃

)⊺ (
∂RkΘ̃

∂Θ̃

)⊺]
(Θ− Θ̃) (B2.2)

The first term in the summation indexed by k, the scalar ∂Pλ,k(||RkΘ̃||1)/∂||RkΘ̃||1, depends

on the specific functional form of the penalty term Pλ,k(·). Approximating the second term in the
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summation gives:

∂||RkΘ̃||1
∂RkΘ̃

≈ ∂

∂RkΘ̃

[
(RkΘ̃)⊺(RkΘ̃) + c̄

]1/2
=
[
(RkΘ̃)⊺(RkΘ̃) + c̄

]−1/2
RkΘ̃;

The third term in the summation equals ∂RkΘ̃/∂Θ̃ = Rk. Including the vector (Θ̃−Θ) inside

the square brackets results in:

Pλ(Θ) ≈ Pλ(Θ̃) +

k∗∑
k=1

[
∂Pλ,k(||RkΘ̃||1)

∂||RkΘ̃||1

[
(RkΘ̃)⊺(RkΘ̃) + c̄

]−1/2
(RkΘ̃)⊺Rk(Θ− Θ̃)

]

= Pλ(Θ̃) +
k∗∑
k=1

Dk

with Dk denoting the product inside the squared brackets. Letting RkΘ̃ ≈ RkΘ (Fan and Li, 2001),

the last term in Dk can be approximated as (Ulbricht, 2010):

(RkΘ̃)⊺Rk(Θ− Θ̃) ≈ (RkΘ)⊺Rk(Θ− Θ̃)

= (RkΘ)⊺RkΘ− (RkΘ)⊺RkΘ̃

=
1

2

[
(RkΘ)⊺RkΘ− 2(RkΘ)⊺RkΘ̃ + (RkΘ̃)⊺RkΘ̃

]
+

1

2

[
(RkΘ)⊺RkΘ− (RkΘ̃)⊺RkΘ̃

]
=

1

2

[
(Θ− Θ̃)⊺R⊺

kRk(Θ− Θ̃)
]
+

1

2

[
(RkΘ)⊺RkΘ− (RkΘ̃)⊺RkΘ̃

]
≈ 1

2

[
(RkΘ)⊺RkΘ− (RkΘ̃)⊺RkΘ̃

]
,

where the last step is justified because the quadratic form of (Θ̃−Θ) can be neglected due to the

proximity between the two vectors. With the above, Dk becomes

Dk =
∂Pλ,k(||RkΘ̃||1)

∂||RkΘ̃||1

[
(RkΘ̃)⊺(RkΘ̃) + c̄

]−1/2
(RkΘ̃)⊺Rk(Θ− Θ̃)

≈
∂Pλ,k(||RkΘ̃||1)

∂||RkΘ̃||1

[
(RkΘ̃)⊺(RkΘ̃) + c̄

]−1/2
· 1
2

[
(RkΘ)⊺RkΘ− (RkΘ̃)⊺RkΘ̃

]
=

1

2
Θ⊺
[
∂Pλ,k(||RkΘ̃||1)

∂||RkΘ̃||1

[
(RkΘ̃)⊺(RkΘ̃) + c̄

]−1/2
R⊺

kRk

]
Θ

− 1

2
Θ̃⊺
[
∂Pλ,k(||RkΘ̃||1)

∂||RkΘ̃||1

[
(RkΘ̃)⊺(RkΘ̃) + c̄

]−1/2
R⊺

kRk

]
Θ̃
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=
1

2

[
Θ⊺Sk(Θ̃)Θ− Θ̃⊺Sk(Θ̃)Θ̃

]

with Sk(Θ̃) =
(
∂Pλ,k(||RkΘ̃||1)/∂||RkΘ̃||1

) [
(RkΘ̃)⊺(RkΘ̃) + c̄

]−1/2
Rk, and because Rk is an idem-

potent matrix (i.e., R⊺
kRk = RkRk = Rk). Define S(Θ̃) =

∑k∗

k=1 Sk(Θ̃). Also, given that the penalty

term only depends on Θ and all the terms depending only on Θ̃ are constant, the penalty term

can be expressed as:

Pλ(Θ) ≈ Pλ(Θ̃) +
1

2

[
Θ⊺S(Θ̃)Θ

]
− 1

2

[
Θ̃⊺S(Θ̃)Θ̃

]
≈ 1

2

[
Θ⊺S(Θ̃)Θ

]
(B2.3)

The resulting approximated penalty matrix Sλ(Θ̃) is a K × K block diagonal matrix of the

form

Sλ(Θ̃) =

Sλ(Θ̃) 0

0 0

 (B2.4)

where Sλ(Θ̃) is a diagonal k∗ × k∗ matrix with entries

Sλ(Θ̃)[k,k] =
∂Pλ,k(||RkΘ̃||1)

∂||RkΘ̃||1

[
(RkΘ̃)⊺(RkΘ̃) + c̄

]−1/2
for k = 1, ..., k∗

and the sub-matrices 0 are the null matrices of dimension (K − k∗)× (K − k∗). The local approx-

imations of the Lasso, Alasso, SCAD, and MCP penalties are:

Lasso penalty: The derivative of the Lasso penalty with respect to the L1-norm of its argument

is: [
∂Pλ,k(||RkΘ̃||1)

∂||RkΘ̃||1

]
[k]

=
∂ (λφ,k|α̃k|)

∂|α̃k|
= λφ,k

and thus:

Sλ(Θ̃)[k,k] =
∂ (λφ,k|α̃k|)

∂|α̃k|
[
α̃2
k + c̄

]−1/2
= λφ,k

[
α̃2
k + c̄

]−1/2 for k = 1, ..., k∗

Adaptive Lasso (Alasso): The derivative of the Alasso with respect to the L1-norm of its

argument is: [
∂Pλ,k(||RkΘ̃||1)

∂||RkΘ̃||1

]
[k]

=
∂ (λφ,k|α̃k| ÷ |α̂k|a)

∂|α̃k|
=

λφ,k
|α̂k|a

and therefore,

Sλ(Θ̃)[k,k] =
∂ (λφ,k|α̃k| ÷ |α̂k|a)

∂|α̃k|
[
α̃2
k + c̄

]−1/2
=

λφ,k
|α̂k|a

[
α̃2
k + c̄

]−1/2 for k = 1, ..., k∗
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SCAD: For the Smoothly Clipped Absolute Deviation (SCAD) penalty, the derivative with

respect to the L1-norm of its argument is (Fan and Li, 2001):

[
∂Pλ,k(||RkΘ̃||1)

∂||RkΘ̃||1

]
[k]

= λφ,k

[
1(|α̃k| ≤ λφ,k) +

max(aλφ,k − |α̃k|, 0)
(a− 1)λφ,k

· 1(|α̃k| > λφ,k)

]

=



λφ,k if |α̃k| ≤ λφ,k

aλφ,k − |α̃k|
a− 1

if λφ,k < |α̃k| ≤ aλφ,k

0 if |α̃k| > aλφ,k

and therefore, for k = 1, ..., k∗:

Sλ(Θ̃)[k,k] = λφ,k

[
1(|α̃k| ≤ λφ,k) +

max(aλφ,k − |α̃k|, 0)
(a− 1)λφ,k

· 1(|α̃k| > λφ,k)

]
·
[
α̃2
k + c̄

]−1/2

MCP: For the Minimax Concave Penalty (MCP), the derivative with respect to the L1-norm of

its argument is: [
∂Pλ,k(||RkΘ̃||1)

∂||RkΘ̃||1

]
[k]

=

[
λφ,k −

|α̃k|
a

]
· 1(|α̃k| < aλφ,k)

=


λφ,k −

|α̃k|
a

if |α̃k| ≤ aλφ,k

0 if |α̃k| > aλφ,k

and therefore,

Sλ(Θ̃)[k,k] =

(
λφ,k −

|α̃k|
a

)
· 1(|α̃k| < aλφ,k) ·

[
α̃2
k + c̄

]−1/2 for k = 1, ..., k∗

B3. Generalised Information Criterion (GIC)

In this Appendix, we present the main derivations from Konishi and Kitagawa (2008) adapted to

the GLVM-LSS model. To facilitate the notation, we use Lebesgue integral notation for expected

values. Consider a set of n observations y = {y1, ...,yn}, where each observation is generated

from the same unknown true p-variate distribution function G(y) with the associated multivariate

density function g(y). These observations can be seen as realisations of the random vector Y =

(Y1, ...,Yn)
⊺ consisting of independent and identically distributed random variables. Next, define

a collection of parametric multivariate distributions {f(y; Θ) : Θ ∈ Ξ ⊆ RK}, where Θ is a K-
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dimensional vector of parameters and Ξ is the parameter space. Furthermore, we assume that the

true density g(y) belongs to this collection, which means that there exists a Θ0 ∈ Ξ such that

g(y) = f(y; Θ0). A statistical model is obtained by evaluating the parametric distribution at a

vector of estimated parameters, f(y; Θ̂).

We assume that each parameter αk in Θ can be expressed as a real-valued function of the true

distribution G, denoted as αk = Tk(G). Here, Tk(G) is defined over the set of all distributions on

the sample space and does not depend on the sample size n. In practice, we do not have access

to the true distribution G, but we can estimate it using the empirical distribution based on the

observed sample, denoted by Ĝ. As a result, the estimator α̂k can be written as:

α̂k = α̂k(y1, ...,yn) = Tk(Ĝ), for k = 1, ...,K = dim(Θ)

where Ĝ represents the empirical distribution function with a probability mass function ĝ(ym) =

1/n for any m = 1, ..., n. Since α̂k = Tk(Ĝ) depends on the observed data through the empirical

distribution, it is commonly referred to as a statistical functional. We define the K-dimensional

statistical functional vector as T(G) = (T1(G), ..., TK(G))⊺, where T(G) represents the solution to

the equations:

Eg(y)(ω(y,T(G))) =

∫
ω(y,T(G)) dG(y) = 0, (B3.1)

where the vector-valued function ω = (ω1, ..., ωK)⊺ collect the real-valued mappings ωk(y,T(G))

defined over (Rn × Rp)× Ξ. For example, for the MML estimation problem described in Chapter

2, the functional takes the form:

ω(y,T(G)) =
∂ℓ(Θ;y)

∂Θ

∣∣∣
Θ=T(G)

= S(Θ;y)
∣∣
Θ=T(G)

,

and for the penalised MML estimation problem described in Section 3.3.2, ω(y,T(G)) is

ω(y,T(G)) =
∂ℓp(Θ;y)

∂Θ

∣∣∣
Θ=T(G)

=
{
S(Θ;y)− nSλ(Θ̃)Θ

} ∣∣∣
Θ=T(G)

(B3.2)

Thus, the penalised MML estimate can be expressed as Θ̂ = T(Ĝ) = (T1(Ĝ), ..., TK(Ĝ))⊺,

where T(Ĝ) is the solution to the system of penalised marginal log-likelihood equations:

ω(y,T(Ĝ)) =
n∑

m=1

ω(ym,T(Ĝ)) =
n∑

m=1

ω(ym, Θ̂) =

{
n∑

m=1

∂ log f(ym; Θ̂)

∂Θ
− nSλ(Θ̂)Θ̂

}
= 0

It is common for the model selection problem to prioritise accurate predictions on independent
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new data that were not used for estimating Θ̂. Let y̆ denote such data, generated from the unknown

true distribution g(y̆). In this context, the performance of a statistical model f(y̆; Θ̂) can be

assessed by measuring the Kullback-Leibler distance between the model and the true distribution,

evaluated at the new data points. This distance is given by:

DKL(g(y̆); f(y̆; Θ̂)) := Eg(y̆)

[
log

(
g(y̆)

f(y̆; Θ̂)

)]
=

∫
log

(
g(y̆)

f(y̆; Θ̂)

)
dG(y̆)

=

∫
log g(y̆) dG(y̆)−

∫
log f(y̆; Θ̂) dG(y̆) (B3.3)

In equation (B3.3), the first term involves the true but unknown model, which is not available for

direct comparison. Therefore, for the purpose of assessing goodness-of-fit and prediction, we focus

on the second term, referred to as the expected (marginal) log-likelihood: Eg(y̆)[log f(y̆; Θ̂)] =∫
log f(y̆; Θ̂) dG(y̆). A larger value of the expected (marginal) log-likelihood indicates a closer

similarity between g(y̆) and f(y̆; Θ̂), suggesting a better fit of the proposed model to the true

model in terms of information. However, it is important to note that the expected (marginal)

log-likelihood still depends on g(y̆), and the key challenge lies in obtaining a good estimator. To

address this, we replace the unknown probability distribution G with the empirical distribution

function Ĝ, yielding:

Eĝ(y̆)

[
log f(y̆; Θ̂)

]
=

∫
log f(y̆; Θ̂) dĜ(y̆) =

n∑
m=1

log f(ym; Θ̂) · ĝ(y̆)

=
1

n

n∑
m=1

log f(ym; Θ̂) =
1

n
ℓ(Θ̂;y)

It is worth noting the relationship between Eĝ(y̆)[log f(y̆; Θ̂)] and the maximum marginal log-

likelihood, with a scaling factor proportional to the sample size, n−1ℓ(Θ̂;y). This relationship sup-

ports the use of the maximum marginal log-likelihood as a natural estimator of n·Eg(y̆)[log f(y̆; Θ̂)].

According to the law of large numbers, as the sample size n approaches infinity, the estimated ex-

pected marginal log-likelihood converges to its true expectation:

Eĝ(y̆)

[
log f(y̆; Θ̂)

]
=

1

n

n∑
m=1

log f(ym; Θ̂)
n→∞−−−→ Eg(y̆)

[
log f(y̆; Θ̂)

]

Hence, one can argue that ℓ(Θ̂;y)
n→∞−−−→ n·Eg(y̆)[log f(y̆; Θ̂)]. This implies that the goodness-of-

fit or predictive accuracy of a set of competing models can be determined by comparing the values

of their maximum (marginal) log-likelihood, ℓ(Θ̂;y). However, using the same data points y to
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estimate both Eg(y̆)[log f(y̆; Θ̂)] and Θ̂ introduces bias into ℓ(Θ̂;y). Furthermore, the magnitude

of this bias varies with the dimension of the parameter vector. Evaluating and correcting this

bias allows for a fair comparison between competing models. This is precisely why Konishi and

Kitagawa (2008) define information criteria as bias-corrected log-likelihood-based measures of the

goodness-of-fit of a statistical model.

The bias of the marginal log-likelihood as an estimator of the expected marginal log-likelihood

can be defined as:

b(G) := Eg(y)

[
n∑

m=1

log f(ym; Θ̂)− n · Eg(y̆)[log f(y̆; Θ̂)]

]

where the outer expectation is evaluated with respect to the joint distribution of the sample,

g(y) =
∏n

m=1 g(ym), and the inner expectation is taken with respect to the true distribution, g(y̆).

After some derivations (refer to Konishi and Kitagawa, 2008, Chapter 3), it can be shown that the

bias term for a model estimated through MML is asymptotically equivalent to

b(G) = tr
([

−
∫
∂2ℓ(Θ;y)

∂Θ∂Θ⊺

∣∣∣
Θ=T(G)

dG(y)
]−1 [∫

∂ℓ(Θ;y)

∂Θ

∂ℓ(Θ;y)

∂Θ⊺

∣∣∣
Θ=T(G)

dG(y)
])

+ o(1)

= tr
([

−
∫
∂ω(y,T(G))

∂Θ⊺ dG(y)
]−1 [∫

ω(y,T(G)) ω(y,T(G))⊺ dG(y)
])

+ o(1)

= tr
(
Eg(y)

[
−H(Θ;y)|Θ=T(G)

]−1 Eg(y)

[
S(Θ;y) S(Θ;y)⊺|Θ=T(G)

])
+ o(1) (B3.4)

where tr(·) is the matrix trace operator, and o(1) describes an error term of the approxima-

tion that goes to zero asymptotically. Define the K × K positive semi-definite matrices J(G) =

Eg(y)

[
−H(Θ;y)|Θ=T(G)

]
and I(G) = Eg(y)

[
S(Θ;y) S(Θ;y)⊺|Θ=T(G)

]
, corresponding to the expec-

ted information matrix and the product of the scores, respectively, evaluated with respect to the

true distribution g(y). According to asymptotic maximum likelihood theory, if the true distribu-

tion is included in the class of parametric models being compared, we have J(G) = I(G) for the

MML estimator. Therefore, the bias term can be expressed as tr(J(G)−1I(G)) = tr(IK) = K,

which represents the degrees of freedom of the model estimated by MML..

Since the bias term depends on the unknown true distribution g(y), it must be estimated using

observed data and the empirical distribution ĝ(y). Let Ĵ(Ĝ) and Î(Ĝ) be consistent estimators

of J(G) and I(G). An estimator for the bias term is b̂(Ĝ) = tr(Ĵ(Ĝ)−1Î(Ĝ)). The Generalised

Information Criterion (GIC, Konishi and Kitagawa, 1996, 2008) is formulated by evaluating and
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correcting for the bias of the marginal log-likelihood:

GIC(Θ̂) = −2

(
n∑

m=1

log f(ym; Θ̂)− b̂(Ĝ)

)
= −2ℓ(Θ̂;y) + 2 · b̂(Ĝ) (B3.5)

The relationship between the Generalised Information Criterion (GIC) and other model selec-

tion criteria is immediate. The GIC serves as an extension of the Akaike Information Criterion

(AIC) when the estimated bias term reflects the degrees of freedom of the model, corresponding

to the number of estimated parameters. Similarly, it extends the Bayesian Information Criterion

(BIC) by replacing the weight assigned to the penalty term of 2 with log(n). However, the specific

form of the estimated bias term, denoted as b̂(Ĝ), can vary depending not only on the relationship

between the true distribution that generates the data and the proposed model but also on the

method used to estimate the parameters.

In a penalised maximum likelihood framework, the bias term differs from the total number of

parameters utilised in the AIC and BIC. Notably, when employing the BIC to choose the tuning

parameter in a PMML setting, as observed in much of the literature on penalised factor models

(excluding Geminiani et al., 2021), the BIC tends to over-correct for the bias in the log-likelihood.

Consequently, there is a risk of selecting a tuning parameter that leads to a model that does not

adequately approximate the true data generating process.

In Konishi and Kitagawa (1996, 2008, Chapters 3, 5, and 7), it is demonstrated that the bias

term can be expressed in terms of statistical functionals, as defined earlier in this section. This

formulation enables the evaluation, estimation, and correction of the bias in the marginal log-

likelihood for various estimators, including the penalised maximum marginal likelihood approach.

To begin, consider a functional T(G) and define the directional derivative with respect to the dis-

tribution G as the vector-valued function T(1)(y̆;G) = (T
(1)
1 (y̆;G), . . . , T

(1)
K (y̆;G))⊺, which satisfies

the following equation for any distribution function H(y̆):

lim
ϵ→0

T((1− ϵ)G+ ϵH)−T(G)

ϵ
=

∂

∂ϵ
{T((1− ϵ)G+ ϵH)−T(G)}

∣∣∣
ϵ=0

=

∫
T(1)(y̆;G) d {H(y̆)−G(y̆)}

To ensure uniqueness, the following condition must hold:
∫
T(1)(y̆;G) dG(y̆) = 0. Additionally,

consider H(y̆) = δy̆, where δy̆ represents a probability mass of 1 at y̆ and zero elsewhere. Under
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these conditions, the aforementioned equality required for defining T(1)(y̆;G) becomes:

∂

∂ϵ

{
T((1− ϵ)G+ ϵδy̆)−T(G)

} ∣∣∣
ϵ=0

=

∫
T(1)(y̆;G) dδy̆ = T(1)(y̆;G)

This expression, called the influence function, describes the effect of an infinitesimal contam-

ination at the point y̆ on the true distribution G. To derive the influence function, we need to

compute the derivative of the functional. We begin by substituting (1− ϵ)G+ ϵδy̆ for G and, for

the PMML estimator, the functional in (B3.2) for ω(y,T(G)) in (B3.1). This yields the following

expression:

0 =

∫
ω(y,T(G)) dG(y)

=

∫ {
S(Θ;y)− nSλ(Θ̃)Θ

} ∣∣∣
Θ=T((1−ϵ)G+ϵδy̆)

d
{
(1− ϵ)G(y) + ϵδy̆(y)

}

Differentiating on both sides with respect to ϵ yields:

0 =

∫
∂

∂ϵ

[{
S(Θ;y)− nSλ(Θ̃)Θ

} ∣∣∣
Θ=T((1−ϵ)G+ϵδy̆)

d
{
(1− ϵ)G(y) + ϵδy̆(y)

}]
=

∫ {
S(Θ;y)− nSλ(Θ̃)Θ

} ∣∣∣
Θ=T((1−ϵ)G+ϵδy̆)

∂

∂ϵ
d
{
(1− ϵ)G(y) + ϵδy̆(y)

}
+

∫
∂

∂ϵ

[{
S(Θ;y)− nSλ(Θ̃)Θ

} ∣∣∣
Θ=T((1−ϵ)G+ϵδy̆)

]
d
{
(1− ϵ)G(y) + ϵδy̆(y)

}
=

∫ {
S(Θ;y)− nSλ(Θ̃)Θ

} ∣∣∣
Θ=T((1−ϵ)G+ϵδy̆)

d
{
−G(y) + δy̆(y)

}
+

∫
∂

∂Θ⊺

[{
S(Θ;y)− nSλ(Θ̃)Θ

} ∣∣∣
Θ=T((1−ϵ)G+ϵδy̆)

]
× ∂

∂ϵ

[
T((1− ϵ)G+ ϵδy̆)

]
d
{
(1− ϵ)G(y) + ϵδy̆(y)

}
(B3.6)

Evaluating the expression in (B3.6) at ϵ = 0, and considering the result in equation (B3.1) gives:

0 =

∫ {
S(Θ;y)− nSλ(Θ̃)Θ

} ∣∣∣
Θ=T(G)

d
{
−G(y) + δy̆(y)

}
+

∫
∂

∂Θ⊺

[{
S(Θ;y)− nSλ(Θ̃)Θ

} ∣∣∣
Θ=T(G)

]
× ∂

∂ϵ

[
T((1− ϵ)G+ ϵδy̆)

] ∣∣∣
ϵ=0

dG(y)

=

∫ {
S(Θ;y)− nSλ(Θ̃)Θ

} ∣∣∣
Θ=T(G)

dδy̆(y)−
((((((((((((((((((((∫ {

S(Θ;y)− nSλ(Θ̃)Θ
} ∣∣∣

Θ=T(G)
dG(y)

+

∫ [
H(Θ;y)− nSλ(Θ̃)

] ∣∣∣
Θ=T(G)

dG(y)× ∂

∂ϵ

[
T((1− ϵ)G+ ϵδy̆)

] ∣∣∣
ϵ=0
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With the above, the influence function can be written as:

T(1)(y̆;G) :=
∂

∂ϵ

[
T((1− ϵ)G+ ϵδy̆)

] ∣∣∣
ϵ=0

=

[∫
−Hp(Θ;y)

∣∣∣
Θ=T(G)

dG(y)
]−1 [∫

Sp(Θ;y)
∣∣∣
Θ=T(G)

dδy̆(y)
]

=

[∫
−Hp(Θ;y)

∣∣∣
Θ=T(G)

dG(y)
]−1 [

Sp(Θ; y̆)
∣∣∣
Θ=T(G)

]
= Eg(y)

[
−Hp(Θ;y)|Θ=T(G)

]−1 [Sp(Θ; y̆)|Θ=T(G)

]
= R(ω, G)−1ω(y̆,T(G)) (B3.7)

With the influence function T(1)(y̆;G), Konishi and Kitagawa (2008, Chapter 7) show that the

asymptotic bias term for the PMML estimator can be expressed in terms of the influence function

as:

b(G) = tr
(∫

T(1)(y̆;G)
∂ℓ(Θ; y̆)

∂Θ⊺

∣∣∣
Θ=T(G)

dG(y̆)
)
+ o(1)

= tr
(∫

R(ω, G)−1ω(y̆,T(G))
∂ℓ(Θ; y̆)

∂Θ⊺

∣∣∣
Θ=T(G)

dG(y̆)
)
+ o(1)

= tr
(
R(ω, G)−1

∫
ω(y̆,T(G))

∂ℓ(Θ; y̆)

∂Θ⊺

∣∣∣
Θ=T(G)

dG(y̆)
)
+ o(1)

= tr
(
R(ω, G)−1 W(ω, G)

)
+ o(1) (B3.8)

which is similar to the asymptotic MML bias in (B3.4). The K ×K matrix W(ω, G) is defined as:

W(ω, G) =

∫
ω(y̆,T(G))

∂ℓ(Θ; y̆)

∂Θ⊺

∣∣∣
Θ=T(G)

dG(y̆)

=

∫
∂ℓp(Θ; y̆)

∂Θ

∂ℓ(Θ; y̆)

∂Θ⊺

∣∣∣
Θ=T(G)

dG(y̆)

=

∫
∂ℓ(Θ; y̆)

∂Θ

∂ℓ(Θ; y̆)

∂Θ⊺

∣∣∣
Θ=T(G)

dG(y̆)−
∫
nSλ(Θ̃)Θ

∂ℓ(Θ; y̆)

∂Θ⊺

∣∣∣
Θ=T(G)

dG(y̆)

= −
∫
∂2ℓ(Θ; y̆)

∂Θ∂Θ⊺

∣∣∣
Θ=T(G)

dG(y̆) ≡ W(G)

with the last line following from standard asymptotic likelihood theory and the fact that the

penalty function is independent of the true distribution G. In addition, the dependence on ω is

dropped because the functional is no longer part of the expression. The estimated bias is obtained

by replacing the unknown true distribution G with the empirical distribution Ĝ, resulting in
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b̂(Ĝ) = tr(R(ω, Ĝ)−1 W(Ĝ)). In more detail, this can be expressed as follows:

R(ω, Ĝ) = −
∫ ( n∑

m=1

∂2 log f(ym; Θ)

∂Θ∂Θ⊺ − nSλ(Θ)

)∣∣∣
Θ=T(Ĝ)

dĜ(y)

= − 1

n

n∑
m=1

(
∂2 log f(ym; Θ)

∂Θ∂Θ⊺ − nSλ(Θ)

) ∣∣∣
Θ=T(Ĝ)

= − 1

n

(
∂2ℓ(Θ̂;y)

∂Θ∂Θ⊺ − nSλ(Θ̂)

)
= − 1

n
Hp(Θ̂)

and

W(Ĝ) = −
∫ ( n∑

m=1

∂2 log f(ym; Θ)

∂Θ∂Θ⊺

)∣∣∣
Θ=T(Ĝ)

dĜ(y)

= − 1

n

n∑
m=1

(
∂2 log f(ym; Θ)

∂Θ∂Θ⊺

) ∣∣∣
Θ=T(Ĝ)

= − 1

n

(
∂2ℓ(Θ̂;y)

∂Θ∂Θ⊺

)
= − 1

n
H(Θ̂)

With the above, and following (B3.8), the estimated bias term for the PMML estimator is

b̂(Ĝ) = tr
(
Hp(Θ̂)−1H(Θ̂)

)
. Thus, for a given GLVM-LSS model with parameters Θ̂ estimated via

PMML, the GIC is defined as

GIC(Θ̂, λ) = −2ℓ(Θ̂) + 2 · tr
(
Hp(Θ̂)−1H(Θ̂)

)
(B3.9)

and an approximate Generalised Bayesian Information Criterion (GBIC, Konishi et al., 2004) as:

GBIC(Θ̂, λ) = −2ℓ(Θ̂) + log(n) · tr
(
Hp(Θ̂)−1H(Θ̂)

)
(B3.10)

B4. Automatic Selection of the Tuning Parameter Vector

B4.1 Estimation and Computation

The optimal value for λ = (λµ, λσ, λν , λτ )
⊺ is determined by minimising the GBIC value (due to

the consistency in model selection property of the BIC):

λ̂ = arg min
λ∈[0,∞)S

GBIC(Θ̂,λ)

where S is the dimension of the vector λ, indicating the number of different tuning parameters as-

sociated with the location, scale, or shape parameters indexing the items’ conditional distributions

within the measurement part of the GLVM-LSS model. In this section of the Appendix, we outline
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an automatic and data-driven procedure for estimating λ̂, based on the statistical properties of the

MLEs and the relationship between an unbiased risk estimate (UBRE) and the AIC.

To simplify the notation, we omit the specific point at which the score vector is evaluated,

denoting it as S = S(Θ). We introduce special notation to indicate the evaluation of the score vector

at a particular point during iteration t, denoted as S[t] = S(Θ[t]). Similarly, Ŝ = S(Θ̂) represents the

score vector evaluated at the PMLE. The same convention is applied to the information matrices:

H, H[t], and Ĥ denote the observed information matrix, while I, I [t], and Î denote the expected

information matrix, respectively. We adopt a similar notation for the approximate penalty term,

where we omit the dependence on the parameter vector, tuning parameters, and weights. Thus,

we have Sλ = Sλ(Θ;λ,w), S [t]
λ = Sλ(Θ

[t];λ,w), and Ŝλ = Sλ(Θ̂;λ,w). Furthermore, we define

J = −H.

Let λ0 be the (initial) fixed value for the tuning parameter vector. In a neighbourhood of the

(local) mode, the quasi-Newton and/or trust-region algorithm update rules behave like a classic

unconstrained Newton-Raphson algorithm (Nocedal and Wright, 2006). Consequently, at iteration

t+ 1, we have S[t+1]
p ≈ 0, allowing us to express the Newton-Raphson update step as follows:

0 ≈ S[t+1]
p

≈ S[t]p +H[t]
p (Θ[t+1] −Θ[t])

S[t] − nS [t]
λ0
Θ[t] =

[
J[t] + nS [t]

λ0

]
Θ[t+1] − J[t]Θ[t] − nS [t]

λ0
Θ[t]

[
J[t] + nS [t]

λ0

]
Θ[t+1] = J[t]Θ[t] + S[t][

J[t] + nS [t]
λ0

]
Θ[t+1] =

√
J[t]

⊺ [√
J[t]Θ[t] +

√
J[t]

−⊺
S[t]
]

Θ[t+1] =
[
J[t] + nS [t]

λ0

]−1√
J[t]

⊺
K[t] (B4.1)

where we use the notation A−⊺ = (A⊺)−1 for any matrix A, and
√
B denotes the unique squared

root of a positive semi-definite matrix B, i.e., B =
√
B

⊺√
B. This matrix is obtained through an

eigenvalue (or Cholesky) decomposition. In (B4.1), we can rewrite K[t] as K[t] = µ
[t]
K + ε[t], where

µ
[t]
K =

√
J[t]Θ[t] represents a vector of ‘standardised’ model parameters, and ε[t] =

√
J[t]

−⊺
S[t]

represents a ‘standardised’ score vector. Note that, according to standard likelihood theory,

ε ∼ N(0, IK), with K = dim(Θ). Consequently, K is a random variable that follows a normal

distribution K ∼ N(µK, IK), where the expected value E(K) is given by µK =
√
JΘ∗, with Θ∗

representing the true parameter vector.
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From (B4.1), at convergence we can write the PMLE as:

Θ̂(λ0) = Θ̂ =
[
Ĵ+ nŜλ0

]−1
√

Ĵ
⊺
K̂ (B4.2)

and thus

E(K̂) = µ̂K =

√
Ĵ
[
Ĵ+ nŜλ0

]−1
√
Ĵ
⊺
K̂ = Âλ0K̂

where Âλ0 =

√
Ĵ
[
Ĵ+ nŜλ0

]−1
√
Ĵ
⊺

is the projection (or influence) matrix of the fitting problem,

depending on the tuning parameter vector λ0 through Ŝλ0 .

The goal is to update λ0 to a new value such that i) given Θ̂(λ0), the model complexity, given

by the level of sparseness of the factor loading matrices, is guided by the evidence in the observed

data, and ii) we ensure that the penalised estimates are as close as possible to the true model

parameters. In order to achieve these goals, we seek to minimise the mean squared error (MSE)

of the standardised parameters, which is influenced by λ through Âλ:

E
(
||µK − µ̂K||22

)
= E

(
||(K− ε)− ÂλK̂||22

)
= E

(
||(K− ÂλK̂)− ε||22

)
= E

(
||K− ÂλK̂||22 − 2ε⊺(K− ÂλK̂) + ε⊺ε

)
= E

(
||K− ÂλK̂||22

)
+ E(ε⊺ε)− 2E

[
ε⊺(µK + ε− Âλµ̂K − Âλε)

]
= E

(
||K− ÂλK̂||22

)
+ 2tr(Âλ)−K (B4.3)

where ||x||22 = x⊺x for a column vector x is the squared Euclidean norm, and the last line on

equation (B4.3) results from applying the following identities in Wood (2017, p.53):

E(ε⊺ε) =
K∑
i=1

E(ε2i ) =
K∑
i=1

var(εi) = K

E(ε⊺µK) = E(ε⊺)µK = 0

E(ε⊺Âλµ̂K) = E(ε⊺)Âλµ̂K = 0

E(ε⊺Âλε) = E(tr(ε⊺Âλε)) = E(tr(Âλεε
⊺))

= tr(E(Âλεε
⊺)) = tr(ÂλE(εε⊺))

= tr(ÂλIK) = tr(Âλ)

Note that tr(Aλ) = tr([J + nSλ]
−1J) = tr(H−1

p H), which can be interpreted as the effective
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degrees of freedom (edf) of the penalised model. This quantity is also equivalent to the bias term

in the GBIC expression given in equation (B3.10). Since Θ∗ is unknown, we use an estimate of the

mean squared error (MSE) in equation (B4.3):

V̂(λ; Θ̂) = ||K̂− ÂλK̂||22 + 2tr(Âλ)−K (B4.4)

which is an (approximate) unbiased risk estimator (UBRE, Wood, 2017, Chapter 6) and an ap-

proximate AIC (Appendix B4.2). Thus, for a given PMLE Θ̂(λ0) = Θ̂, we estimate λ as

λ̂ = arg min
λ∈[0,∞)S

V̂(λ; Θ̂)

= arg min
λ∈[0,∞)S

{
||K̂− ÂλK̂||22 + 2tr(Âλ)−K

}
(B4.5)

This optimisation problem can be solved by using iterative methods such as (quasi-)Newton or

trust-region solvers, as described in Wood (2004, 2017) and Geminiani et al. (2021). Consider a

Taylor approximation of V(λ; Θ̂) in (B4.4) about the current value of the tuning parameter vector

λ0 (we omit the dependence on Θ̂ for notational convenience):

V(λ) ≈ V(λ0) + (λ− λ0)V̇ +
1

2
(λ− λ0)

⊺V̈(λ− λ0)

with V̇ = ∇λV(λ) and V̈ = ∇λ∇λ⊺V(λ). A (local) minimum obtained by solving for V̇ = 0. Let

λ[0] = λ0 be the starting value. A NR-type update role for the value of the tuning parameter

vector is

λ[r+1] = λ[r] − V̈(λ[r])−1V̇(λ[r]) (B4.6)

which is repeated until convergence. With the updated vector of tuning parameters, say λ̂1 =

arg minV(λ; Θ̂(λ0)), we continue to update the model parameters to Θ̂(λ1), and repeat iteratively

until convergence of both Θ̂(λ̂∗) and λ̂∗.

B4.2 Equivalence between the UBRE and the AIC

The Akaike Information Criterion (AIC, Akaike, 1974) is defined as:

AIC(Θ̂) := −2ℓ(Θ̂;y) + 2K
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where dim(Θ̂) = K are the number of model parameters. Consider a second-order Taylor expansion

of −2ℓ(Θ̂) around Θ:

−2ℓ(Θ̂;y) ≈ −2ℓ(Θ;y)− 2(Θ̂−Θ)⊺∇Θℓ(Θ;y)− (Θ̂−Θ)⊺∇Θ∇Θ⊺ℓ(Θ;y)(Θ̂−Θ)

= −2ℓ(Θ;y)− 2(Θ̂−Θ)⊺S− (Θ̂−Θ)⊺H(Θ̂−Θ) (B4.7)

As before, let J = −H. Recall that K =
√
JΘ+

√
J−⊺S, and note that

√
J is symmetric. Thus,

we write the second term in equation (B4.7) as:

(Θ̂−Θ)⊺S = (Θ̂−Θ)⊺
√

J
√
J
−1

S =
[√

J(Θ̂−Θ)
]⊺√

J
−1

S

= (
√

JΘ̂−
√
JΘ)⊺

√
J
−1

S = (
√

JΘ̂−K+
√
J
−⊺

S)⊺
√
J
−1

S

= −(K−
√

JΘ̂)⊺
√
J
−1

S+ S⊺
√
J
−1√

J
−⊺

S

= −⟨K−
√
JΘ̂,

√
J
−1

S⟩+ ||
√

J
−⊺

S||22 (B4.8)

where ⟨x,y⟩ = x⊺y represents the inner product between two column vectors x and y. Similarly,

after using the identity ||x||22 ≡ || − x||22 for any column vector x, we can express the last term in

(B4.7) as:

−(Θ̂−Θ)⊺H(Θ̂−Θ) = (Θ̂−Θ)⊺J(Θ̂−Θ) = ||
√
J(Θ̂−Θ)||22

= ||
√

JΘ̂−
√
JΘ||22 = ||

√
JΘ̂−K+

√
J
−⊺

S||22

= ||(K−
√

JΘ̂)−
√

J
−⊺

S||22

= ||K−
√
JΘ̂||22 + ||

√
J
−⊺

S||22 − 2⟨K−
√
JΘ̂,

√
J
−⊺

S⟩ (B4.9)

By substituting equations (B4.8) and (B4.9) into equation (B4.7), we obtain:

−2ℓ(Θ̂) ≈− 2ℓ(Θ) + 2⟨K−
√
JΘ̂,

√
J
−1

S⟩ − 2||
√

J
−⊺

S||22

+ ||K−
√

JΘ̂||22 + ||
√
J
−⊺

S||22 − 2⟨K−
√

JΘ̂,
√

J
−⊺

S⟩

=− 2ℓ(Θ)− ||
√

J
−⊺

S||22 + ||K−
√
JΘ̂||22

thus, it follows that

AIC(Θ̂) = −2ℓ(Θ̂) + 2K ≈ −2ℓ(Θ)− ||
√
J
−⊺

S||22 + ||K−
√

JΘ̂||22 + 2K

= −2ℓ(Θ)− ||
√
J
−⊺

S||22 + ||K−
√
JΘ̂||22 + 2tr(Aλ)
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= −2ℓ(Θ)− ||
√
J
−⊺

S||22 + ||K− AλK||22 + 2tr(Aλ) (B4.10)

where K = tr(Aλ) denotes the number of estimated parameters in the model (i.e., the effective

degrees of freedom). Since we want to minimise the approximate AIC in (B4.10) with respect

to the tuning parameter vector λ, we can ignore the terms that are not affected by it, −2ℓ(Θ)

and −||
√
J−⊺S||22, and therefore the approximate AIC in (B4.10) becomes proportional to the

(estimated) UBRE criterion in equation (B4.4):

AIC(Θ̂) ≈ ||K− AλK||22 + 2tr(Aλ) ∝ V(λ; Θ̂)

In this sense, ||K − AλK||22 is a quadratic approximation of −2ℓ(Θ̂) and tr(Aλ) represents the

effective degrees of freedom of the GLVM-LSS model.

B4.3 Computational details

In order to minimise V, the approximate UBRE, there are some computational considerations to

take into account. In this section, we provide the computational details that assist in the automatic

estimation of the tuning parameter vector. The notation used in this section is consistent with the

notation used in previous sections.

To simplify the evaluation of tr(Aλ) = tr(
√
J[J+ nSλ]

−1
√
J⊺) in (B4.4), we can perform a QR

decomposition of
√
J,

√
J = QR, where Q is an matrix with orthogonal column vectors and R

is an upper triangular matrix. For numerical stability, a pivoted QR decomposition can be used

(Wood, 2017). We define B as the square root of nSλ, such that B⊺B = nSλ. The matrix B

can be obtained through an eigenvalue or Cholesky decomposition. To address potential rank

deficiency in the fitting problem, we stack the column matrices R and B and perform a singular

value decomposition (SVD): R
B

 = UDV⊺,

Matrix U in the SVD has columns that are orthogonal, D is a diagonal matrix containing the

singular values, and V is an orthogonal matrix. To address rank deficiency, we remove from D

the rows and columns corresponding to singular values that are considered ”too small” relative to

the largest singular value. Specifically, we remove the rows and columns associated with singular

values that are less than the largest singular value multiplied by the square root of the machine

precision (approximately 1.5e-8).
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Let U1 and U2 be sub-matrices of U, i.e., U⊺ = [U⊺
1 U⊺

2], such that R = U1DV⊺ and

B = U2DV⊺. This means that
√
J = QU1DV⊺, and thus J + nSλ = VDU⊺

1Q
⊺QU1DV⊺ +

VDU⊺
2U2DV⊺ = VD2V⊺, since U⊺

1U1 +U⊺
2U2 = U⊺U = IK. With this result, we have that

Aλ =
√

J[J+ nSλ]
−1
√
J
⊺

= QU1DV⊺VD−2V⊺VDU⊺
1Q

⊺

= QU1U
⊺
1Q

⊺

and thus, tr(Aλ) = tr(QU1U
⊺
1Q

⊺) = tr(U1U
⊺
1Q

⊺Q) = tr(U1U
⊺
1), which is relatively easy to

compute for new values of λ.

Second, to compute λ̂ in equation (B4.6), we need to evaluate the vector of first-order derivatives

V̇ and the matrix of second-order derivatives V̈. We derive expressions that are useful for computing

these quantities. Write Aλ =
√
JG−1

√
J⊺, where G−1 = [J + nSλ]

−1 = VD−2V⊺. Note that

G−1 is the only matrix that depends on λ through Sλ. To avoid imposing restrictions on the

optimisation problem and to ensure that the tuning parameters remain non-negative, we introduce

a transformation by defining ρi = log(λi), where λi is the i-th component of the vector λ. With

this transformation, the optimisation problem in equation (B4.5) becomes:

∂G−1

∂ρi
= −G−1∂G

∂ρi
G−1 = −λi · n ·VD−2V⊺Sλi

VD−2V⊺

where the matrix Sλi
is a block diagonal matrix similar to the one in (3.3.2), but with zero entries

along the diagonal except for the entries involving λi. If there is only one tuning parameter, Sλi
is

equal to the penalty matrix in equation (3.3.2). Denote λ̃i = λi · n. The first-order derivatives of

the influence matrix with respect to ρi are:

∂Aλ

∂ρi
=
√

J
∂G−1

∂ρi

√
J
⊺
= −λ̃i ·QU1DV⊺VD−2V⊺Sλi

VD−2V⊺VDU⊺
1Q

⊺

= −λ̃i ·QU1D
−1V⊺Sλi

VD−1U⊺
1Q

⊺ (B4.11)

The second-order derivatives are:

∂2G−1

∂ρi∂ρj
= −

(
∂G−1

∂ρj

)
∂G

∂ρi
G−1 −G−1 ∂2G

∂ρi∂ρj
G−1 −G−1∂G

∂ρi

(
∂G−1

∂ρj

)
= G−1 ∂G

∂ρj
G−1∂G

∂ρi
G−1 −G−1 ∂2G

∂ρi∂ρj
G−1 +G−1∂G

∂ρi
G−1 ∂G

∂ρj
G−1
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= G−1

(
∂G

∂ρj
G−1∂G

∂ρi
− ∂2G

∂ρi∂ρj
+
∂G

∂ρi
G−1 ∂G

∂ρj

)
G−1

and thus, after some matrix algebra, for i ̸= j:

∂2Aλ

∂ρi∂ρj
=
√
J
∂2G−1

∂ρi∂ρj

√
J
⊺

=
√
JG−1

(
∂G

∂ρj
G−1∂G

∂ρi
− ∂2G

∂ρi∂ρj
+
∂G

∂ρi
G−1 ∂G

∂ρj

)
G−1

√
J
⊺

= QU1DV⊺VD−2V⊺ (λjλiSλj
VD−2V⊺Sλi

+ λiλjSλi
VD−2V⊺Sλj

)
VD−2V⊺VDU⊺

1Q
⊺

= λ̃iλ̃j ·QU1D
−1V⊺ (Sλj

VD−2V⊺Sλi

)‡
VD−1U⊺

1Q
⊺

where (B)‡ = B +B⊺ for a matrix B and, if i = j:

∂2Aλ

(∂ρi)2
= λ̃2i ·QU1D

−1V⊺ (Sλi
VD−2V⊺Sλi

)‡
VD−1U⊺

1Q
⊺ − λi ·QU1D

−1V⊺Sλi
VD−1U⊺

1Q
⊺

= λ̃2i ·QU1D
−1V⊺ (Sλi

VD−2V⊺Sλi

)‡
VD−1U⊺

1Q
⊺ +

∂Aλ

∂ρi

These results can be further expressed using an indicator function 1(i = j) that takes the value

of 1 if i = j and 0 otherwise, as

∂2Aλ

∂ρi∂ρj
= λ̃iλ̃j ·QU1D

−1V⊺ (Sλj
VD−2V⊺Sλi

)‡
VD−1U⊺

1Q
⊺ + 1(i = j) · ∂Aλ

∂ρi
(B4.12)

Given the expressions in (B4.11) and (B4.12), we can now compute the expressions for V̇

and V̈. We simplify the notation by writing B = ||K − AλK||22, and by defining the expressions

K1 = U⊺
1Q

⊺K, Zλi
= D−1V⊺Sλi

VD−1 and Cλi
= Zλi

U⊺
1U1. Using the trace properties tr(AB) =

tr(BA), tr(A) = tr(A⊺), and ∂tr(A) = tr(∂A), as well as the fact that for a column vector a,

∂||a||22 = 2a, we have that:

∂tr(Aλ)

∂ρi
= tr

(
∂Aλ

∂ρi

)
= −λ̃itr(Cλi

),

∂2tr(Aλ)

∂ρi∂ρj
= tr

(
∂2Aλ

∂ρi∂ρj

)
= 2λ̃iλ̃j · tr(Zλj

Cλi
)− λ̃i · 1(i = j) · tr(Cλi

),

∂B
∂ρi

= 2λ̃i · (K⊺
1Zλi

K1 −K⊺
1Cλi

K1) ,

∂2B
∂ρi∂ρj

= 2λ̃iλ̃j · K⊺
1

(
Zλi

Cλj
+ Zλj

Cλi
−Zλi

Zλj
−Zλj

Zλi
+ Cλi

Zλj

)
K1 + 1(i = j) · ∂B

∂ρi
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These derivatives are part of the desired quantities V̇ and V̈, as the ith component of the first-

order derivative vector and the [i, j]th entry of the matrix of second-order derivatives which are

used in the NR update step in equation (B4.6) are

V̇[i] =
∂V(λ)
∂ρi

=
∂B
∂ρi

+ 2 · ∂tr(Aλ)

∂ρi
(B4.13)

V̈[i,j] =
∂2V(λ)
∂ρi∂ρj

=
∂2B
∂ρi∂ρj

+ 2 · ∂
2tr(Aλ)

∂ρi∂ρj
(B4.14)

B5. Simulation Studies

B5.1 Parameter initialisation

We propose a warm-start strategy for the initial values of the factor loadings in the EM-step of

the estimation procedure involves the following steps:

1. Perform a Principal Component Analysis (PCA) on the matrix of observed items. Retain

the first q component scores, where q is the number of factors, in a n× q matrix denoted by

ZPCA.

2. For each item i = 1, . . . , p, use ZPCA as a design matrix of observed covariates in a GAMLSS

regression (Rigby and Stasinopoulos, 2005). Estimate the intercepts and slopes using the

gamlss function in the R package of the same name. These estimated parameters serve as

the initial values for the factor loadings in two-step iterative estimation of the GLVM-LSS

model.

For continuous items, the estimated initial values obtained from the GAMLSS regression typ-

ically provide good starting points, and the algorithm converges in a reasonable number of steps.

However, for count and categorical items, the initial values obtained through PCA and GAMLSS

may be further away from the population parameters, resulting in a longer convergence time. Nev-

ertheless, this is not a concern as the EM-algorithm is robust to initial points that are far from

the mode. A second alternative in the proposed PMML estimation framework is to set the initial

values to the rotated MLEs. In practice we recommend using an Lp-rotation (Liu et al., 2023),

but any rotation would do just fine. Lastly, random initial values can be used, particularly when

testing for multiple local maxima.
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B5.2 Generating Sparse Factor Loading Matrices

We follow the procedure described in each example of Section 3.6 to generate initial dense factor

loading matrices for the location, scale, and shape parameters. After generating these matrices, we

impose adequate identifiability restrictions on the model parameters Θ⊺ = (α⊺
0, vec(A)⊺, vech(Φ)⊺).

If we assume independent latent variables, we impose a recursive restriction (type b, described in

Section 1.2), and if we assume correlated latent variables, we impose errors-in-variables restrictions

on the factor loadings (type d, described in Section 1.2). In both cases, identification restrictions

on the stacked factor loading matrix A⊺ = [A⊺
1,A

⊺
2] are imposed on the q × q squared matrix A1.

These restrictions ensure that the model parameters are identifiable and that we can estimate them

accurately.

We introduce sparsity in the factor loading matrices column-by-column, following the procedure

described below:

1. Start with the factor loading matrix corresponding to the location parameter, Aµ, and impose

identification restrictions on the first q rows and columns (which form the matrix A1).

2. From the remaining a = (p− q) rows, select at random b = ⌊(p− q)/2⌋.

3. Set the factor loading for the first latent variable (αi1,µ) to zero for the selected b items. This

ensures that these items do not load on the first latent variable.

4. For the second latent variable, select the remaining a− b items that have non-zero loadings

in αi1,µ.

5. With a probability of 0.5, assign a value of zero to αi2,µ for the selected items. . This ensures

that these items do not load on the second latent variable (but do load on the first latent

variable).

6. Repeat this process for the remaining columns of Aµ if q > 2.

By applying this procedure, we ensure that each item loads on at least one latent variable in

the measurement equation for the location parameter (µ). The sparsity is introduced column by

column, randomly selecting a subset of items and then setting their factor loadings to zero for that

specific column (latent factor). Intercepts are not set to zero unless explicitly required.

If the conditional distribution fi(yi|z) also has scale or shape parameters, a similar procedure

can be applied to introduce sparsity in the corresponding factor loading matrices Aσ, Aν , and/or

Aτ . The procedure is slightly modified and continues as follows:
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1. For the factor loading matrix Aσ (or Aν , Aτ ), we do not have to impose identification

restrictions and thus we can select from the available p items.

2. To ensure that some items have constant scale (or shape) parameters (i.e., not depending on

the latent factors), we randomly select items for which αi1,σ = 0. These items will have a

fixed loading of zero for the first factor.

3. For the remaining factors (j = 2, ..., q), we set the factor loadings αij,σ to zero for the selected

items. This introduces sparsity by randomly setting the loadings to zero for certain factors

and items.

We introduce sparsity in the factor loading matrices for scale or shape parameters while also

ensuring that some items have constant scale (or shape) parameters that do not depend on the

latent factors. This is useful, for example, when we want to model homoscedastic items in the

Gaussian case, where the scale parameter does not vary with the latent factors.

B6. Software Implementation

In this Appendix, we present the implementation of the penalised estimation with automatic

selection of tuning parameter vector for the GLVM-LSS framework. The code is written in the

statistical software R to contribute to reproducible research practices and transparent dissemination

of results. We discuss the penalised estimation of the GLVM-LSS in the PISA 2018 empirical

application (Section 3.7.1). We refer to Appendix A6 for data preparation and the MLE estimation.

Estimation

The penalised estimation of the GLVM-LSS also makes use of the function glvmlss. The selected

model model in Section 3.7.1, with additional influence factor γ = 5, is estimated using the following

the code:

1 mod_SN_comp.PENg5 <- glvmlss(data = data, family = famSN,

2 mu.eq = ~ Z1+Z2, sg.eq = ~ Z1+Z2, nu.eq = ~ Z1+Z2,

3 f.scores = T,

4 verbose = T, iden.res = iRes, corr.lv = T,

5 solver = "nlminb", EM_use2d = F, EM_iter = 5000,

6 iter.lim = 1000,

7 est.ci = "Approximate",

8 start.val = mod_SN_comp$b,
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9 Rz = mod_SN_comp$Rz,

10 penalty = "alasso",

11 w.alasso = mod_SN_comp$b,

12 lambda = "auto",

13 gamma = 5)

14

15 names(mod_SN_comp)

Apart from the main components of the glvmlss function, we include starting values for the

model parameters (set to be the MLE estimates obtained in Appendix A6), given by the argument

start.val = mod_SN_comp$b; and starting values for the latent variables covariance matrix, Rz

= mod_SN_comp$Rz. The functional form of the penalty term is given by the argument penalty

= "alasso", with Alasso weights given by w.alasso = mod_SN_comp$b, i.e., the MLEs. The

argument lambda defines the value of the tuning parameter vector. If the user decides to use fixed

values (as opposed to the automatic selection procedure described in this dissertation), it should

correspond to a vector with as many entries as location, scale, or shape parameters in the model.

If a scalar is provided, it is repeated to match the latter. Finally, the argument gamma fixes the

value of the influence factor. Higher values in this argument imply higher penalty on the model

parameter (more sparsity).

Additional control variables in the penalised framework can be included directly, or in a list

under the name control. The following options, along with their default values, are available for

the user:

1 control <- list(

2 lamnda = NULL, # Tuning parameters. Option "auto" or c(v1,v2,...,vD)

3 penalty = "none", # Options: "ridge", "lasso", "alasso", "scad", "mcp"

4 w.alasso = NULL, # A list of factor loadings

5 a = NULL, # Additional parameter a in the Alasso, SCAD, and MCP

6 gamma = NULL, # Influence factor.

7 tolb = 1e-4) # Tolerance level for factor loadings = 0.
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