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Abstract

In this thesis, we model the impact of fire sales and the mitigation of systemic losses

from policy interventions using tools from the theory of financial networks and complex

systems. A fire sales event occurs when banks sell a large quantity of assets at discounted

prices. There is a mark-to-market adjustment on assets sold, leading to a depreciation

in the asset value and fuelling further fire sales. This channel of systemic risk can be

a large contributor to losses, as observed in systemic events like the Great Financial

Crisis. The impact of these events spurred a range of policy interventions to enhance

financial stability. We use network models to analyse fire sales and policy interventions

in interconnected systems.

Our first main result shows that under a partial information setting, policy interventions

for mitigating fire sales losses using matrix reconstruction methods outperform policy

interventions that do not account for institutions overlapping portfolios. We focus on

optimising policy interventions when only the partial information is known, and how

this compares with the fully observed data. Using matrix reconstruction methods, we

find policy interventions under partial information can be similar to policy interventions

under fully observed data. The similarity in performance under partial information highly

depends on the chosen matrix reconstruction method.

The second main result is developing a new reverse stress test approach for a multi-stage

fire sales event. Under this new approach, we find losses under these derived scenarios

are larger than benchmark scenarios used in other stress tests. A reverse stress testing

approach is taken, as the scenario reflects the largest losses of banks from the input data

and given fire sales mechanism. We find the losses from these derived scenarios are large

and have not been observed in previous studies.

Our third main result develops a clearing model for banks that post collateral as part

of their financial obligations, where we account for two distinctive channels of fire sales.

In this clearing situation, we consider the counterparty losses between banks, fire sales

losses from assets used as collateral and fire sales losses from externally held assets. In

this new collateral model, the inclusion of external asset holdings towards fire sales losses

in a clearing situation can result in larger losses, compared to banks holding no external

assets. We find the total losses depend on the overlap between both fire sale channels,

and the network topology of the interbank network.
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Chapter 1

Introduction

Systemic risk is the risk which poses a severe threat to the functionality of a financial

system. In a systemic event, the losses from a small group of banks can cascade to

other banks, resulting in widespread defaults and substantial losses. These losses are

important as they are not solely contained within the financial system, but also have

negative implications for the real economy. Because of the damaging effects arising from

a systemic event, modelling, assessing and mitigating losses is important for maintaining

financial stability.

Multiple channels can contribute to the total losses banks are exposed to. The main

channel of losses we focus on is from a fire sale. A fire sale occurs when a large quantity

of assets are sold at a discounted value. The assets sold cause a price impact and a

decrease in the value of common assets held by other banks. These affected banks may

react and sell a proportion of their asset holdings, further depreciating the value of assets

sold. The losses compound from each round of fire sales and lead to large bank losses.

A fire sale represents an indirect loss for banks, where losses in one bank can result in

losses for another bank, even if these two banks do not have a direct relation.

A fire sale may arise for different reasons. In one setting, the bank may be required to

sell a proportion of its asset holdings to meet a given target leverage. The target leverage

increases the volume of assets sold and the price impact decreases the value of commonly

denoted assets e.g., Greenwood et al. (2015), Cont and Schaanning (2017) and Duarte

and Eisenbach (2021).

Another reason for the bank to sell a proportion of its assets holding is that these assets

are required to meet its outstanding obligations with other banks. The work by Cifuentes

et al. (2005) and Feinstein and El-Masri (2017) integrates the fire sales effect on the bank’s

illiquid asset holdings with the clearing mechanism on the interbank network by Eisenberg

and Noe (2001).

We use methods in the theory of financial networks and complex systems to model the

losses from a systemic event. We can create a framework using financial networks that

account for a range of risks e.g., solvency, liquidity and operational risks. Using financial
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Chapter 1: Introduction

networks, we can capture the interconnectedness between banks, and how losses are

propagated throughout the system. Also, the non-linear dynamics arising from the higher-

order effects of the contagion mechanism are accounted for, which can form a large

proportion of the bank’s total losses.

Our approach to evaluating losses lies in the area of stress testing. These stress tests are

scenario-driven risk management tools, where we assume an initial scenario representing

a shock to assets and simulate the spread of losses. Using stress tests, we can incorporate

the feedback and cascade of losses that banks are exposed to through a financial network.

We contribute to modelling fire sales and how these results can be used to inform policy

intervention in this thesis. We consider the individual impact of fire sales and the impli-

cations of this channel of systemic risk when banks have interbank assets and liabilities.

Secondly, we focus on how financial networks can be used to design policy interventions.

Using financial networks helps in modelling the consequences of different policy interven-

tions, and creating regulatory frameworks which increase the resilience of the financial

system to future shocks.

Our first main result shows policy interventions for fire sales under partial information

can lead to a similar performance in the reduction of losses as using the fully observed

data. While there have been several studies that analyse the connection between partial

information and fire sales losses, there are no studies to our knowledge which empirically

analyse the effect of policy interventions informed by partial information for fire sales.

We believe this is an important research direction, as it confirms if these methods which

use partial information (which may not be necessarily financially motivated) are valid for

informing how policies and regulations can mitigate fire sales losses. These results are in

Chapter 2 of the thesis.

We explore policy interventions under partial information because of the potential con-

straints to obtaining the fully observed data. In several jurisdictions, the financial data is

not available or is aggregated such that the individual positions of the bank are not known

i.e., we use the European Banking Authority (EBA) data, where the full information is

known, but from the Federal Reserve, only the partial information is publicly known. In

our case, the fully observed information for fire sales is represented by an asset holdings

matrix, where the partial information is represented by the row and column sums of the

matrix. While partial information can be used for some risk management measures, we

cannot infer the financial network nor the complexity of the contagion purely from the

partial information. We, therefore, use matrix reconstruction methods, where the partial

information is used to construct an asset holdings matrix to analyse fire sales.

We specifically focus on matrix reconstruction methods by Upper and Worms (2004)

(Entropy method), Anand et al. (2015) (Minimum Density method), Squartini et al.

(2017) (Statistical Physics method) and Gandy and Veraart (2017) (Bayesian method).

8
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These methods use the partial information to form an asset holdings matrix, where this

matrix is consistent with the partial information. We consider these methods in their

suitability for evaluating fire sales and how close fire sales losses are to those based on

the fully observed data.

We use the fire sales measures to quantify fire sales losses by Greenwood et al. (2015).

These measures assume banks sell assets to maintain fixed target leverage, where selling

these assets has a fire sales impact. We use these measures because they incorporate the

key features of fire sales contagion e.g., the overlap in bank portfolios and the associated

price impact when assets are sold.

We focus on two types of policy interventions: capital injections and leverage caps. Ap-

plied in any form, these policies will always decrease the magnitude of fire sales. This is

because these policies decrease banks’ target leverages, which from the fire sales mecha-

nism decreases the total assets which banks need to sell. We consider how to optimise

these policies using matrix reconstruction methods under partial information, and how

this compares if the fully observed data was used.

We compare the performance of policy interventions under different matrix reconstruc-

tion methods for fire sales losses to policy interventions informed by the fully observed

data. We find the reduction in fire sales losses from policy interventions under partial

information is close to the results under the fully observed data. The results from policy

interventions under partial information were closest for sample-based matrix reconstruc-

tion methods (methods in which multiple reconstructed matrices are generated). This

shows considering methods, where a larger number of reconstructed matrices are included,

can decrease fire sales losses from policy interventions.

While there are suitable matrix reconstruction methods which can be used for policy

interventions, there are other matrix reconstruction methods that perform poorly. In

some cases, not using matrix reconstruction methods and adopting a “naive” approach

(one that does not use a reconstruction method) can result in a policy intervention that

is closer to the size of the intervention under the fully observed data. One type of naive

capital injection policy could assign an equal quantity of capital to all banks, where this

allocation of capital does not depend on the assumed partial information. Compared

with this naive approach, there may be a matrix reconstruction method which is further

away from the individual fire sales losses of banks under the fully observed data.

The optional use of matrix reconstruction methods for policy interventions is one of

the key differences in both assessing and mitigating fire sales losses. In assessing fire

losses, matrix reconstruction methods are always used, because the contagion dynamics

of fire sales cannot be considered without reconstructing the matrix. In comparison,

policy interventions can be conducted without any knowledge of the financial network.

Therefore, using a matrix reconstruction method is not enough to mitigate fire sales losses,

additionally, the performance of the method for the given policy intervention should be

9



Chapter 1: Introduction

accounted for.

The closest papers to this work are by Di Gangi et al. (2018), Squartini et al. (2017) and

Ramadiah et al. (2020). In Di Gangi et al. (2018), they also analyse fire sales under partial

information, where they use variations of the maximum entropy method for the matrix

reconstruction. In Squartini et al. (2017), they introduce the Statistical Physics method

and conduct a first-round analysis of fire sales. Our work is different from these two

papers because we explore the area of policy interventions in our fire sales analysis. We

also introduce the matrix reconstruction method by Gandy and Veraart (2017) to analyse

fire sales, which contrasts with the physics-motivated approaches used by Di Gangi et al.

(2018) and Squartini et al. (2017). The work by Ramadiah et al. (2020) does explore pol-

icy interventions under partial information, but these policy interventions only compare

the change of matrices under partial information e.g., bank mergers and splits. This is

different to our work, as we consider policy interventions which are informed by partial

information on the fully observed data. All our results on policy interventions capture the

real effects of fire sales, as we assess the reduction in losses only on the fully observed data.

Our second main contribution is to develop a reverse stress testing framework to derive

scenarios which reflect the largest losses banks are exposed to. Rather than simulating

losses based on a given scenario, the losses are assumed and a scenario is derived which is

consistent with those assumed losses. Each scenario derived from this approach accounts

for the input data and assumed fire sales mechanism. We believe these scenarios are

informative in identifying shocks to assets that have not been observed. These results

are in Chapter 3 of the thesis.

The motivation for a reverse stress test is to derive scenarios that do not rely on previous

assumptions about other datasets or historic events (there may be other motivations

in choosing a stress testing scenario). While other datasets can be informative in how

current stress tests are conducted, they might be biased by the policymaker choosing the

scenario. Therefore, a reverse stress test is useful in identifying extreme losses, which is

relevant given the potential nature of fire sales.

Our reverse stress test method is for the fire sales mechanism by Greenwood et al. (2015),

as in Chapter 2. This reverse stress testing approach accounts for multiple rounds of

deleveraging that may occur in fire sales.

For the initial round of fire sales, we find assets shocked are concentrated in banks with

high target leverages. The focus on leverage comes from the fire sales mechanism, where

banks with higher target leverages sell a larger proportion of assets, leading to higher

price impacts and further asset sales. These leverage-driven scenarios account for the

systematic way in which banks liquidate their assets, under the fire sales mechanism.

Reverse stress tests in other studies do not show these scenarios, as they are not target

leverage-driven in their approach.
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We find that for scenarios derived from a reverse stress test, the total fire sales losses are

larger than other benchmark stress tests and higher in the number of banks which suffer

large losses. This is because scenarios from a reverse stress test are focused on banks with

high target leverages, which is reflected in the target leverage approach of asset shocks.

While the reverse stress tests are formulated to account for the largest total bank losses,

the number of banks with severe losses is an additional consequence of this approach.

We conduct a sensitivity analysis for how scenarios derived from a reverse stress test

change when different bounds on the magnitude of shocks are assumed. We find that

derived scenarios under different bounded shocks result in a similar level of losses. The

difference between reverse stress testing scenarios under different bounds is reflected in

the number of assets that are initially shocked in the fire sales scenario. Our results show

losses from scenarios, with small-magnitude shocks across a high number of assets are

similar to losses from scenarios, with high-magnitude shocks across a small number of

assets.

The papers closest to this work are by Baes and Schaanning (2023) and Grigat and Cac-

cioli (2017). The work by Baes and Schaanning (2023) considers a reverse stress testing

approach using the fire sales mechanism by Cont and Schaanning (2017). They account

for assets sold which depend not on a specific target leverage, but a prescribed target

leverage region for which the bank sells its assets. From the reverse stress test, they

generate multiple scenarios and evaluate this collection of scenarios using clustering algo-

rithms. In our work, we assume banks sell assets to a fixed target leverage, and therefore,

we can optimise the shock under this systematic behaviour. The work by Grigat and

Caccioli (2017) is similar to our reverse stress testing approach, where an optimisation

problem is formulated and a constraint of the total losses is given. However, this work

is on counterparty losses under the DebtRank measure by Battiston et al. (2012c), com-

pared with our work in the channel of fire sales. We also only assume the initial losses

are known from a fire sale (as in Baes and Schaanning (2023)), compared with assuming

the total fire sales losses. Therefore, we reduce the margin of error in estimating fire sales

losses while factoring in losses based on future rounds of fire sales.

Our third main result is developing a collateral-based model with the inclusion of two

channels of fire sales. Under this collateral-based model, we find losses are amplified

when there is a high overlap between assets externally held by banks and assets used as

collateral. Furthermore, the size of losses from the overlap in these assets can be larger

than if the bank held no illiquid external asset holdings. These additional losses come

from the inclusion of two channels of fire sales, in addition to the interbank network.

We account for these channels in a new collateral-based clearing model, where losses are

simulated using random network models. These results are in Chapter 4 of the thesis.

We provide a brief description of the role of externally held assets and assets used as
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collateral in a clearing situation. A clearing event can occur because the bank is unable

to meet its obligations in full. As a result, the bank sells a proportion of its external

asset holdings to meet its remaining obligations. If the bank is unable to fully cover its

obligations by selling all its external asset holdings, the assets used as collateral are then

seized by the associated counterparty and sold. There is a mark-to-market adjustment

on illiquid assets sold, leading to a price impact and a decrease in the asset price. The

depreciation in the asset value from fire sales can lead to further rounds of fire sales, where

a larger quantity of assets are sold. The inability of banks to meet their obligations and the

decrease in the price of illiquid assets sold can increase the shortfall of bank payments and

increase bank defaults. While only two of the following aspects have been incorporated

into a systemic risk model: fire sales on the bank’s external asset holdings, fire sales for

assets used as collateral and counterparty losses between banks with interbank assets and

liabilities, there has been no previous model which considers all three.

We build on the collateral-based clearing model as proposed by Ghamami et al. (2022),

in which banks with obligations also post assets as collateral. The model by Ghamami

et al. (2022) assumes banks only hold liquid assets in their external asset holdings, and

therefore, this model only accounts for one channel of fire sales, represented by illiquid

assets used as collateral. We include a portfolio of assets where banks can hold multiple

illiquid and liquid assets in a clearing event, as considered by Feinstein and El-Masri

(2017). Assets used as collateral are not accounted for by Feinstein and El-Masri (2017),

and neither are the illiquid external assets by Ghamami et al. (2022). Leaving out one of

these fire sales channels can lead to underestimating losses. Therefore, incorporating both

aspects into a single clearing model results in a new clearing model with two channels of

fire sales.

We consider a combination of different external asset holdings, and how this interacts

with assets used as collateral. We assume the case where assets used as collateral are

liquid as in Ghamami et al. (2022) and the case where illiquid assets are used. With the

fire sales channel from collateral assets, we consider a variation of external asset holdings

portfolios representing different levels of commonality with the overlap of assets used for

collateral. We examine how the incorporation of assets under two channels of fire sales

can amplify or dampen systemic losses in a clearing event.

Our results show a high overlap with collateral assets and externally held assets can

result in losses larger than if the bank held no external illiquid assets. These larger losses

depend on how liquid banks’ external assets and assets used as collateral are. If assets

are highly illiquid, then losses can be larger than if banks held no external asset holdings.

We find the increase in losses with additional external asset holdings only comes from the

fact that there is some level of commonality with assets used as collateral. If the groups

of assets used for collateral and the bank’s external asset holdings were independent of

each other, then holding external assets will always reduce losses under a clearing event.

12



Chapter 1: Introduction

This is because the independence between these groups of assets means there is no direct

feedback between both channels of fire sales. Losses can still be transmitted through the

interbank network, but this would be lower than losses in the same financial network

where banks held no external assets.

We examine how the change in network topology affects losses under the collateral model.

Our results show an increase in network density decreases the shortfall of bank payments

and decreases the total number of bank defaults. Even when there is a high commonality

between external asset holdings and assets used as collateral, banks with no external

asset holdings in general result in larger bank losses. In the presence of two channels of

fire sales, a change in the network topology can reduce bank losses.

The collateral-based models by Chang (2019) and Chang and Chuan (2023) are closest to

the new collateral-based model in this work. In Chang (2019), they introduce a clearing

mechanism and consider the rehypothecation of assets used as collateral. The work by

Chang and Chuan (2023) builds on the work from Chang (2019) and studies network

topologies and resilience of banks under the clearing process, in a similar way to the

work by Acemoglu et al. (2015) i.e., specific network structures such as ring networks

and complete networks. The work by Chang and Chuan (2023) also accounts for the

fire sales impact on illiquid assets. Our work is different to these models as we extend

the model from Ghamami et al. (2022), which deals with collateral payments using two

defined rounds of clearing. We analyse these two rounds in our extended model and

determine cases where the number of defaults either increases or decreases, depending on

various network parameters.

We highlight another result in this thesis in the areas of policy interventions and financial

networks. We build a framework evaluating the policy of ring-fencing, which is a separa-

tion of a bank’s balance sheet into two separate entities: a ring-fenced bank (RFB) and

a non-ring-fenced bank (nRFB). The RFB holds external assets which are independent

of the interbank network. The nRFB holds all remaining assets and is still part of the

interbank network. To our knowledge, this work is the first to define the operations of

ring-fencing for banks in a financial network.

Our results show ring-fencing can increase or decrease the total re-evaluated equity of the

RFB and nRFB, compared with the bank before ring-fencing. Secondly, accounting for

the financial network, the change in equity after re-evaluation can affect the nRFB and

banks which do not ring-fence. These results are in Chapter 5 of the thesis.

We mainly focus on ring-fencing that was implemented in the UK for some of the largest

retail banks in 2019. The regulatory motivation of ring-fencing is to separate assets

associated with the real economy i.e., domestic deposits and retail assets from the riskier

assets the bank holds. These safer assets would be allocated to an RFB, where all other

assets would remain with the nRFB. As we assume only external assets would be allocated
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to the RFB, the losses incurred with the nRFB from other banks in the interbank network

do not spill over to assets associated with the RFB. While this does partially protect the

assets of the RFB (only partially because the RFB could still be exposed to other market

shocks), it has been argued this makes the nRFB riskier. Hence, the wider financial

system could suffer large losses from the ring-fencing policy, at the expense of protecting

a smaller subset of assets associated with the real economy.

We find ring-fencing can increase or decrease the total equity, compared with the total

equity before ring-fencing. The total equity of the system can change from ring-fencing

because the valuation model we consider is based on leverage. Using leverage, ring-

fencing can either increase or decrease the leverage component of the RFB and nRFB.

The changes in leverage are then reflected in each bank under the valuation model, which

can then impact the equity of other banks under re-evaluation.

The valuation model is based on leverage to account for the asset adjustment that occurs

before a bank defaults. If we considered the valuation of ring-fencing based only on

equity, then ring-fencing would always decrease the equity of the financial system. This

is because in all cases, we are taking away a proportion of equity to the RFB, which could

be considered as a shock to the financial network. This type of modelling may be suitable

in a clearing event, but in this case, we are not assuming banks default from ring-fencing.

Therefore, the change in equity is considered relative to the bank’s asset holdings, where

a decrease in equity from ring-fencing can either increase or decrease the leverage of the

RFB and nRFB.

We use a general valuation framework to capture the changes from ring-fencing in a

financial network. We use the network valuation model by Barucca et al. (2020), which

can account for a variety of clearing and valuation models i.e., clearing models introduced

by Eisenberg and Noe (2001) and Rogers and Veraart (2013). As we do not consider ring-

fencing to be a systemic event, and model changes in equity before banks default, we use

valuation frameworks similar to the work by Bardoscia et al. (2019). The valuation

models by Bardoscia et al. (2019) are motivated by the credit risk literature and account

for the valuation of assets before a bank has defaulted.

While ring-fencing in financial networks has not been explored, there has been significant

empirical work on ring-fencing. The work by Erten et al. (2022) focuses on the access

to funding for RFBs and nRFBs, and finds the costs to access funding for RFBs are

lower than nRFBs. This can be explained as part of our framework, where the individual

riskiness of banks is associated with their leverage. If ring-fencing is performed such that

the leverage of the RFB is smaller than the bank before ring-fencing, then the RFB is

safer, and therefore, the RFB incurs a lower cost for funding. The work by Caprio et al.

(2007) and Laeven and Levine (2007) finds countries which impose ring-fencing lead to

lower valuations on the bank’s assets. In our model, the decrease in the valuation of the

nRFB’s assets comes from ring-fencing where the RFB is safer.
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Our work on ring-fencing uses a valuation framework, accounting for the topology of the

network. The work by Allen and Gale (2000), Gai and Kapadia (2010) and Battiston

et al. (2012a) show how different structures impact bank losses under the valuation and

clearing frameworks. While we discuss the impact of the network on ring-fencing, the

type of ring-fencing conducted means there is no change in the financial network. The

only change from ring-fencing is the quantity of external assets and liabilities banks hold.

There are similarities in ring-fencing to other structural policy changes in financial net-

works in works by Rogers and Veraart (2013) on bank mergers and Veraart (2022) on

portfolio compression. The underlying message in Rogers and Veraart (2013) and Ver-

aart (2022), along with our work on ring-fencing is that while the policy is intended to

increase financial stability, depending on the network, this could increase bank losses.

The last result we highlight is the application of financial networks as an illustrative tool

to understand trends between assets. During the COVID-19 period, we found a high

positive average correlation between sovereign bond yields compared with the average

correlation in the last decade. When using network filtering methods, we see the increase

in positive correlation reflected in different subsets of sovereign bonds. We believe this is

a significant result because it demonstrates the peak financial and economic impacts of

COVID-19 from sovereign bonds. These results are in Chapter 6 of the thesis.

The application of financial networks to understanding asset trends is focused on the

COVID-19 period. This period had a significant impact on a range of financial markets,

which had not experienced a health crisis in recent years e.g., Europe and the USA.

The scale of COVID-19 caused governments to react in drastic ways, and these actions

were reflected in the financial markets. We consider the trends of sovereign bond yields

because it is an indicator of the economic state of the associated country. Using the data

on this asset, we can observe the local changes between countries with large economies

i.e., we focus on 17 European sovereign bonds.

We use network filtering methods in the area of Econophysics to understand trends in

sovereign bond yields. A network is formed from network filtering methods by selecting

a subset of correlations from a correlations matrix. The number of correlations selected

is determined by the desired topological properties of the filtered network. By consider-

ing a subset of correlations under a network filtering method, we can analyse different

relationships between assets under an associated network structure.

As there are multiple ways to form a filtered network, we consider methods by Kruskal

(1956) (Minimum Spanning Tree), Qian et al. (2010) (Maximal Spanning Tree), Onnela

et al. (2003b) (Asset Graph) and Tumminello et al. (2005) (Triangulated Maximal Filter-

ing Graph). We selected these methods because we can analyse the correlations matrix in

a given time window, which is of interest when focusing on the period of COVID-19. An

array of methods are used because, in several papers, only the Minimum Spanning Tree
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method is used. We argue the Minimum Spanning Tree misses key network features, par-

ticularly in the event of COVID-19, where these missing network features are included in

other approaches. We believe we are one of the first studies to consider network filtering

methods to analyse the financial markets during COVID-19.

While there is a distinctive peak in the period of COVID-19 for the magnitude of av-

erage correlations, the trends in network centrality are similar to previous years. More

specifically, the centrality of nodes in networks reflecting more negative correlations is

more volatile compared with networks reflecting more positive correlations. As we fo-

cus on European sovereign bonds, we see the level of stability from positive correlations

associated with assets which adopt the Euro, compared with networks of negative corre-

lations which are associated with assets that are non-Euro denominated. These trends

are no different during the COVID-19 period where there is a greater observation of these

groups. We argue a level of fragmentation during COVID-19 between sovereign bonds

that have not been observed since the 2008 Great Financial Crisis or 2012 Euro Debt

Crisis e.g., groups of similar countries between GIIPS (Greece, Ireland, Italy, Portugal

and Spain) and ABFN (Austria, Belgium, Finland and the Netherlands).

Different network filtering methods are used for DAX30 stocks by Birch et al. (2016). A

combination of both network filtering methods and entropy measures have been used for

the S&P500 by Kukreti et al. (2020). A comparison of network filtering methods where

associated network centrality measures are applied for the US equity data is considered

by Aste et al. (2010). Our study differs from these papers in a comparison of filtering

methods because we evaluate both positive and negative correlations. We, therefore,

examine a large selection of correlations, which we believe is relevant given the impact of

COVID-19.

There has been a wide application of Econophysics approaches to study trends in the

financial markets. Laloux et al. (2000) and Junior and Franca (2012) have used random

matrix methods to study the distribution of eigenvalues of a financial correlations matrix.

Information theory to assess the uncertainty of financial markets using entropy has been

used by Huang et al. (2012) and Darbellay and Wuertz (2000). Community analysis

has been used by Vodenska et al. (2016) to identify groups between assets, where this

technique is useful when including a large number of assets. The advantage of using

network filtering methods compared to other approaches is the output of a network,

allowing a visual representation of a subset of correlations between nodes.
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Chapter 2

Assessing and mitigating fire sales

risk under partial information

2.1 Introduction

Fire sales pose a key threat to financial stability since they can significantly amplify

initial losses. They are one of the main channels of systemic risk. During the 2007-2008

Global Financial Crisis (GFC) amplification mechanisms played a major role. It was

estimated that $ 300 bn of subprime mortgage-related losses were turned into over $ 2.5

trillion of potential write-downs in the global banking sector within a year (Brazier, 2017).

Therefore it is a key concern for financial regulators to identify any potential channels of

systemic risk and find tools and mechanisms to mitigate their impact. In this chapter,

we will focus on fire sales.

While significant progress on modelling fire sales has been made, the models proposed

usually assume that the asset holdings of the financial institutions are observable, see

e.g., Shleifer and Vishny (2010); Cont and Wagalath (2013); Greenwood et al. (2015);

Cont and Schaanning (2017, 2019). In practice, however, often only partial information

about the asset holdings is available. Usually, regulators have only detailed information

on the banks that they regulate and not beyond.

In this chapter, we show how one can both assess and mitigate fire sales risk under partial

information. We consider a matrix X, where each element Xnk represents the amount

of asset k that bank n holds (in EUR). We are interested in situations in which these

individual positions are not observable but the corresponding column and row sums of

X representing the total market capitalisation of asset k and the total assets of bank

n are observable. To conduct stress testing under partial information, we use matrix

reconstruction methods by (Upper and Worms, 2004; Anand et al., 2015; Cimini et al.,

2015; Gandy and Veraart, 2017, 2019) to reconstruct the asset holding matrix X from

the observed row and column sums.
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This chapter makes two main contributions: First, it conducts a horse race between dif-

ferent network reconstruction methods and compares their performance in quantifying

fire sales risk in financial stress tests under partial information. Second, we show that

there are clear benefits of using suitable network reconstruction techniques not just for

quantifying fire sales risk but also for mitigating it. In particular, we show that policy

interventions based on suitable network reconstruction methods can significantly out-

perform ad hoc policy interventions that do not account for the interconnectedness of

financial institutions. We identify which network reconstruction methods are best suited

to use for policy interventions to mitigate fire sales risk. To the best of our knowledge,

our analysis is the first that considers the mitigation of fire sales risk under partial infor-

mation.

We consider the modelling framework and risk measures developed by Greenwood et al.

(2015) to assess fire sales risk. Their key assumption is that banks aim to maintain their

target leverage, i.e., the ratio of debt to equity. 1 Empirical evidence for this behaviour

has been provided by Adrian and Shin (2010). We conduct a stress testing exercise using

empirical data from the European Banking Authority (EBA) that they used in their 2011

and 2016 EBA stress tests. The EBA has collected full information on the asset holdings

of the banks that participated in these stress tests. This allows us to compare results

under partial information to results under full information.

We find that all matrix reconstruction methods considered are able to reproduce the

general trend, namely, that fire sales risk was lower in 2016 than in 2011. We show how the

performance of the different network reconstruction methods applied to quantifying fire

sales risk depends on the stress scenarios. Overall, we find that reconstruction methods

attempting to approximate the distribution of the underlying network such as Cimini

et al. (2015); Gandy and Veraart (2017, 2019) are better suited to assess fire sales risk

from partial information than optimisation-based network reconstruction methods such

as the ones by Upper and Worms (2004); Anand et al. (2015).

Next, we consider several policy interventions to reduce fire sales risk. In particular,

we are interested in evaluating whether it is possible to conduct policy interventions at

an early stage of a fire sales cascade to mitigate losses. At such an early stage, it is

unlikely that full information on the underlying asset holdings is available. We therefore

again conduct two types of analyses: First, we assume that full information on the

underlying asset holding network is available and use this full information to decide on

1To see the effect of leverage targeting, consider a bank with a stylised balance sheet whose asset side
consists of securities and whose liabilities side consists of debt and equity. So, if market stress leads to a
decrease in the value of securities, i.e., the assets, then on the liabilities side of the balance sheet the value
of the equity decreases, and hence the leverage increases. To move back to the target leverage a bank
can now sell assets to pay off some of its debt. Hence, a decrease in asset values can trigger (fire) sales. If
large quantities of assets are liquidated, this creates a price impact, i.e., their prices decrease. This forces
other institutions to re-evaluate their portfolios, which might lead to further rounds of deleveraging and
price impacts.
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policy interventions. Second, we base all policy intervention decisions on asset holding

networks that were reconstructed from partial information and we compare the outcome

of the system to the outcome under full information. We compare ad hoc strategies

that do not use network reconstruction to strategies that use network reconstruction to

decide on policy interventions. We find that there are clear benefits of using network

reconstruction over ad hoc methods. In particular, we find that the Bayesian approach

to network reconstruction by Gandy and Veraart (2017, 2019) is particularly successful

when used for policy interventions to mitigate fire sales risk.

Another contribution of our analysis is to show theoretically how the fire sales risk mea-

sures introduced by Greenwood et al. (2015) depend on the individual entries of the asset

holdings matrix and how much they only depend on the aggregate information, i.e., the

row and column sums of the asset holding matrix. We provide theoretical results that

show that for some stress scenarios, only very limited information on the underlying as-

set holdings matrix is required to either assess the related fire sales risk or to make a

meaningful intervention to mitigate these risks. In particular, we show that determining

the initial spread of losses via connected portfolios requires far less information than de-

termining who is eventually negatively affected by fire sales. This explains why policies

aimed at mitigating the initial round of fire-sales losses can still be successfully applied

under partial information.

We emphasise that these theoretical results are not only for the matrix reconstruction

methods used in this study, but are applicable to a wide range of matrix reconstruction

methods. Furthermore, they provide an analytical framework to study the sensitivities

of the fire sales measures, with respect to various model parameters.

The structure of this chapter is as follows. In Section 2.2, we describe the modelling

framework by Greenwood et al. (2015) for quantifying fire sales. In Section 2.3, we provide

theoretical results on how the fire sales measure depended on the asset holding matrices.

Furthermore, we provide some background on the network reconstruction methods used.

In addition, we describe the stress testing data by the European Banking Authority

(EBA) that we use in our empirical analysis. We compare the performance of different

matrix reconstruction methods in replicating fire sales measures by Greenwood et al.

(2015) for the EBA data. In Section 2.4, we present our results on the performance

of policy interventions based on both full and partial information. Finally, Section 2.5

concludes.

2.1.1 Related literature

Our analysis is based on the framework for quantifying fire sales risk by Greenwood

et al. (2015). In contrast to Greenwood et al. (2015) who assume full knowledge of the

asset holdings, we assume that only partial information of the asset holdings is available.
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Hence, we conduct a two-step analysis. In the first step, we reconstruct the network

of asset holdings from partial information. In a second step, we apply the measures by

Greenwood et al. (2015) to the reconstructed networks and compare the results to those

obtained under full information.

We will consider a range of reconstruction methods to obtain an estimate of the asset

holding matrix based on partial information. The goal of all these methods is to re-

construct the individual entries of the matrix from given row and column sums. We

will consider the network reconstruction methods proposed by Upper and Worms (2004),

Anand et al. (2015), Cimini et al. (2015), and Gandy and Veraart (2017, 2019) in our

analysis and compare their performance. We provide more details on them in Appendix

8.A.

Several papers have compared the performance of different matrix reconstruction meth-

ods. Gandy and Veraart (2019) have compared the Bayesian method by Gandy and

Veraart (2017) (and some extensions) to the approaches by Cimini et al. (2015) and

Upper and Worms (2004) using network data of Credit Default Swaps exposures where

the reference entity was a UK institution. They found that the Bayesian method out-

performed alternative reconstruction methods using a wide range of matrix comparison

measures. Anand et al. (2018) compares a wide range of methods (not including the

Bayesian approach by Gandy and Veraart (2017, 2019)) by applying them to data from

25 different markets from 13 jurisdictions. They find that it depends on the charac-

teristics of the networks which method works best for its reconstruction. Among the

probabilistic methods, they found that the method by Cimini et al. (2015) worked best.

Lebacher et al. (2019) compare several network reconstruction methods including, e.g.,

entropy, Bayesian and gravity (a regularised entropy method with a penalising factor)

type reconstruction methods using SWIFT data. Their paper finds that the performance

of the reconstruction methods is dependent on the type of network being reconstructed,

arriving at a similar conclusion as in Anand et al. (2018).

The papers Di Gangi et al. (2018), Squartini et al. (2017) and Ramadiah et al. (2020)

conduct a similar analysis as we do - in the sense that they apply network reconstruction

methods for assessing fire sales. Di Gangi et al. (2018) focuses on variations of the

maximum entropy method for the network reconstruction and uses the Greenwood et al.

(2015) measures to quantify fire sales risk using data from the USA. Squartini et al.

(2017) apply the model by Cimini et al. (2015) to reconstruct bipartite networks of asset

holdings. They use data on security holdings by the European Central Bank and use

the fire sales measure by Greenwood et al. (2015) to consider a relative systemicness

index in evaluating the reconstructed matrices. Ramadiah et al. (2020) evaluate a range

of reconstruction methods with systemic risk indicators for fire sales risk. They use

data from bank-firm interactions in Japan and analyse the effect of aggregation on the

performance of reconstructed matrices.
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This work deviates from the existing literature by first analysing the Bayesian reconstruc-

tion methods by Gandy and Veraart (2017, 2019) in the context of fire sales risk and by

comparing them to other approaches. But second and most importantly, we also analyse

the effect of different policy interventions under both full and partial information.

So far policy interventions have only been studied under full information. Shleifer and

Vishny (2010) considers the effect of credit easing on fire sales risk in comparison with

other policies. Capponi and Larsson (2015) builds on the systemic measures from Green-

wood et al. (2015) and Duarte and Eisenbach (2021) propose a liquidation strategy to

reduce the systemic risk of the network. Greenwood et al. (2015) consider a wide selection

of policy interventions to mitigate fire sales risk. But all these papers have not considered

such interventions in only partially observed financial networks which is what we do here.

2.2 Fire sales in financial networks

We now describe the modelling framework for stress testing and assessing fire sales risk

by Greenwood et al. (2015).

2.2.1 The financial market

The financial market consists of N ∈ N banks and K ∈ N assets, the set of banks is

denoted by N = {1, . . . , N} and the set of assets is denoted by S = {1, . . . , K}. The

main model considers two periods with time indices t = 1, 2. 2

We denote by X = (Xnk)n∈N ,k∈S ∈ [0,∞)N×K the asset holdings matrix at time t = 1,

where Xnk represents the amount of asset k ∈ {1 . . . , K} that bank n ∈ {1, . . . , N} holds

in million EUR. Furthermore, we consider the row and column sums of X given by

αn1 =
K∑
k=1

Xnk ∀n ∈ N , ck =
N∑

n=1

Xnk ∀k ∈ S, (2.1)

and refer to αn1 as the total assets of bank n at time t = 1 and to ck as the total

capitalisation of asset k. (Strictly speaking, ck is the total capitalisation of asset k among

the nodes N , but since we do not consider other financial institutions beyond those in

N we will not make this distinction.)

We also define the matrix of portfolio weights denoted by M = (mnk)n∈N ,k∈S ∈ RN×K ,

where mnk = Xnk/αn1 i.e., mnk describes the weight of asset k within the total asset

portfolio of bank n. In particular, for all n ∈ N ,
∑K

k=1mnk = 1.

2Extension to more than two periods have been discussed in Greenwood et al. (2015) as well, but we
will not consider these extensions here. Multiple rounds of deleveraging have also been considered in
Cont and Schaanning (2017) and Huang et al. (2013). To account for higher order effects, fire sales have
also been modelled directly as fixed point problems, see e.g., Cifuentes et al. (2005) and Amini et al.
(2016).
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Assets Liabilities
assets αnt debt dnt

equity ent

Table 2.1: Balance sheet of bank n ∈ N at time t.

We consider a stylised balance sheet, see Table 2.1, in which for each bank n ∈ N its time

t debt is denoted by dnt and its time t equity is denoted by ent. Then, its total assets at

time t are given by αnt = ent + dnt and the time t leverage of bank n is given by

bnt =
dnt
ent

=
αnt − ent

ent
. (2.2)

2.2.2 The stress test and fire sale mechanism

As part of a stress testing exercise, Greenwood et al. (2015) assume that at time t = 1

there is a negative shock to (some of the) assets. We denote by F1 = (f11, . . . , fK1)
⊤,

with fk1 ≤ 0 for all k ∈ S, the shock vector which is a vector of non-positive net

asset returns. The unlevered return on the portfolios of the N banks, denoted by R1 =

(R11, . . . , RN1)
⊤ ∈ RN , is then given by R1 = MF1. In particular, Rn1 =

∑K
k=1mnkfk1

for all n ∈ N .

Greenwood et al. (2015) assume that, in response to such a negative shock, banks will

sell assets to return to their target (original) leverage bn1.
3

Furthermore, they assume that banks sell assets proportionally to their existing holdings

determined by the matrix of portfolio weights M .4 In addition, they assume that the sale

of assets will have a linear price impact, modelled by K parameters l1, . . . , lK ∈ [0,∞).

In particular, the parameter −lk ≤ 0 models the negative shock to asset k ∈ S per million

EUR of asset k sold.5 In particular, the fire sale in one specific asset does not affect prices

in any other assets. This price impact represents a second shock to the market which

could in principle lead to further deleveraging, but we do not consider later rounds of

deleveraging in this chapter.

3For a bank directly affected by the shock it holds that αn1Rn1 < 0. Hence, its leverage increases
from bn1 = dn1/en1 to dn1/(en1 + αn1Rn1). It therefore sells yn1 = −αn1bn1Rn1 > 0 assets, if it has
enough assets still available, i.e., if −αn1bn1Rn1 < αn1(1 + Rn1). It then pays back parts of its debt
leading to a new leverage of (dn1 − yn1)/(en1 + αn1Rn1) = bn1, which is indeed the original (target)
leverage. (Since a bank can never sell more assets than it has, to be precise one would need to set
yn1 = (min{−αn1bn1Rn1, αn1(1 +Rn1)})+. In our case studies, this cap was never reached, therefore we
ignore it in the following to keep the notation simpler.

4This means, that bank n sells −mnkyn1 ≥ 0 of asset k (in million EUR). In our empirical analysis,
all nodes had enough assets left to sell according to this rule.

5The total amount of asset k sold is ϕk1 = −
∑N

n=1 mnkαn1bn1Rn1 and the resulting time 2 shock to
asset k is then f2k = −lkϕk1.
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2.2.3 Measuring fire sales risk

We now define the measures for quantifying fire sales risk proposed by Greenwood et al.

(2015) using slightly different notations in some places.

The aggregate vulnerability, denoted by AV , is the total banks’ equity lost due to

deleveraging following an initial shock F1 divided by the total equity in the system before

the shock. Mathematically it is defined as

AV =
N∑

n=1

SYS(n), (2.3)

where SYS(n) ∈ [0,∞) denotes the systemicness of bank n ∈ N . Hence, the systemicness

of a bank quantifies the effect that an individual bank n ∈ N has on the aggregate

vulnerability.

For each bank n ∈ N , the systemicness SYS(n) ∈ [0,∞) measures the contributed

relative equity loss from an individual bank n (relative to the total equity of banks in the

network). The systemicness of a bank n ∈ N is defined as

SYS(n) = γn1
αn1∑N
ν=1 eν1

bn1(−Rn1), (2.4)

γn1 =
K∑
k=1

(
N∑
p=1

αp1mpk

)
lkmnk =

K∑
k=1

cklkmnk. (2.5)

From this representation, one can see that systemicness is a product of four factors which

all have an economic interpretation. In particular, as discussed in Greenwood et al.

(2015), the systemicness of a bank is larger if: γn1, referred to as “connectedness” in

Greenwood et al. (2015), is larger meaning that it is more connected in the sense that it

holds assets with a large market capitalisation ck, or whose sale has a large price impact

lk; the size measured by αn1∑N
ν=1 eν1

is larger since banks with larger total assets will liquidate

more assets in a fire sale; the leverage bn1 is larger since the leverage amplifies the volume

of assets sold in order to maintain the target leverage; (−Rn1) is larger, i.e., it is hit by

a larger shock.

The direct vulnerability of bank n ∈ N , denoted by DV(n) ∈ [0,∞), is the fraction of

its equity lost directly due to the initial shock F1. It is given by

DV(n) =
αn1(−Rn1)

en1
. (2.6)

The indirect vulnerability for a bank n ∈ N , denoted by IV(n) ∈ [0,∞), measures

the fraction of its equity that is lost due to the deleveraging of the banks. It is defined

as follows

23



Chapter 2: Assessing and mitigating fire sales risk under partial information

IV(n) =
αn1

en1

K∑
k=1

[
lkmnk

(
(−1)

N∑
j=1

mjkαj1bj1Rj1

)]
. (2.7)

The intuition behind the formula (2.7) is as follows. The first factor αn1/en1 measures the

effect of the leverage of a bank. Higher leverage will result in higher indirect vulnerability.

The second term of interest is lkmnk and as shown in Greenwood et al. (2015) it can

be interpreted as an illiquidity-weighted exposure measure to asset k. Finally, the total

volume of asset k sold is −
∑N

j=1mjkαj1bj1Rj1 ≥ 0. Hence, nodes that hold a large amount

of illiquid assets that are sold in large quantities have a high indirect vulnerability.

Although the systemicness and the indirect vulnerability share common factors, a bank

n may have a high IV(n) and a low SYS(n) or vice versa, as noted in Greenwood et al.

(2015).

2.2.4 Observability and choice of model parameters

The financial market is characterised by a matrix of asset holdings X and the equity of

the institutions en1, n ∈ N . The equities en1 are in principle observable from balance

sheet data. The asset holding matrix is not necessarily fully observable.

Definition 2.2.1 (Full and partial information). We refer to a stress test as being under

full information if the asset holding matrix X is fully observed, i.e., if for all n ∈ N , k ∈ S,
the individual entries Xnk are known.

We refer to a stress test as being under partial information if only the row and column

sums of the asset holding matrix X given in (2.1) are known, but for all n ∈ N , k ∈ S,
the individual entries Xnk are unknown.

In both situations, we assume that the equity en1 is known for all n ∈ N .

In practice, detailed information on individual asset holdings Xnk is often not available,

in particular when one considers financial institutions operating in different jurisdictions.

The row and column sums of the asset holding matrix are more widely available (from

balance sheet and market data).

To conduct the stress testing exercise we will need to specify the shocks fk1, k ∈ K and

the price impact parameters lk, k ∈ S. We will consider different choices for the shocks

fk, k ∈ S.

Definition 2.2.2 (K̃-asset shock and all asset shock). We refer to a situation in which

only 0 < K̃ ≤ K assets are shocked as a K̃-asset shock. We denote the indices of shocked

assets by IK̃ ⊆ S. Then, |IK̃ | = K̃. Furthermore, fi < 0 for all i ∈ IK̃ and fi = 0 for

all i ∈ S \ IK̃.

If all assets are shocked equally, i.e., f1 = . . . = fK = f < 0, we will refer to such a shock

as an all asset shock.
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Note that according to our definition, every all asset shock is a K-asset shock, but not

every K-asset shock is an all asset shock since an all asset shock has the additional feature

that all assets are shocked equally.

We will distinguish between two different parametric choices for the price impact param-

eters lk.

Definition 2.2.3 (Constant and capitalisation-dependent price impact). We will refer

to a price impact given by l1 = . . . = lK = l ∈ [0,∞), as a constant price impact.

We will refer to a price impact given by lk = ρ
ck

∀k ∈ S, where ρ > 0 and ck > 0 is the

capitalisation of asset k defined in (2.1), as the capitalisation-dependent price impact.

If, ck = 0, we set lk = 0.

A constant price impact was assumed in the empirical analysis in Greenwood et al. (2015).

Since it has been argued that a constant price impact can overestimate the losses for liquid

assets and underestimate the losses for illiquid assets (Cont and Schaanning, 2017, p. 19),

we additionally consider a capitalisation-dependent price impact which assumes that the

sale of assets with larger market capitalisation leads to a smaller price impact. This

implicitly assumes that assets with a larger market capitalisation are more liquid and

therefore cause a smaller price impact when sold. 6 One could adjust the definition of a

capitalisation-dependent price impact if one wanted to allow for the existence of external

investors in the model.7

2.3 Assessing fire sales risk under full and partial

information

Next, we conduct stress testing to analyse fire sales risk under both full and partial

information.

2.3.1 Dependence of fire sales risks on the asset holding matrix

We start by presenting our theoretical results on the dependence of the systemicness, the

aggregate vulnerability, and the direct vulnerability on the asset holding matrix X. We

6In our empirical analysis we will set ρ = − log(0.1). This parametric assumption is inspired by
models such as Cifuentes et al. (2005), which use an exponential function to describe the inverse demand
function that maps the quantities being sold to a price. In our case, we do not consider the quantities
being sold, but the total market capitalisation and therefore our definition is slightly different from the
classical characterisation in terms of an inverse demand function. One could also consider other inverse
demand functions in this setting, see e.g., Bichuch and Feinstein (2022).

7These external investors would hold (some of) the assets but would not engage in the leverage
targeting/fire sales mechanisms. The total market capitalisation of an asset k would then consist of

ck + c
(e)
k , where ck is the market capitalisation of asset k among the nodes in N and c

(e)
k is the market

capitalisation of asset k held by external investors. Then a capitalisation-dependent price impact could
be defined as lek = ρ

ck+c
(e)
k

for a fixed ρ > 0. We will not consider this generalisation in the following.
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assume that the row and column sums of X, given in Definition 2.1, are known and we

determine how much these three risk measures (AV , SYS(n) and DV(n)) depend on the

individual entries of X (beyond the information contained in the row and column sums).

We show that there are several situations in which some of these risk measures do not

depend on the individual entries of the asset holdings matrix X at all but only on its row

and column sums.

Proposition 2.3.1. Let X ∈ [0,∞)N×K be an asset holdings matrix. Suppose that its

row and column sums αn1, n ∈ N and ck, k ∈ S, defined in (2.1), are known.

1. for each n ∈ N , the systemicness SYS(n) can depend on the individual entries of

X only via γn1 and Rn1;

2. the aggregate vulnerability AV can depend on the individual entries of X only via

γn1 and Rn1, where n ∈ N ;

3. the direct vulnerability DV1(n) of an institution n can depend on the individual

entries of X only via Rn1;

4. For a constant price impact, γn1 can depend on the individual entries of X only via

its nth row; for a capitalisation dependent price impact, γn1 does not depend on X.

5. Rn1 can depend on the individual entries of X only via its nth row; furthermore,

(a) for an all asset shock, Rn1 and hence DV(n) do not depend on the individual

entries of X.

(b) for a K̃-asset shock, Rn1 and hence DV(n) only depend on the columns with

indices in IK̃ within the nth row, but not on the full nth row of X.

Corollary 2.3.2. In addition to the assumptions of Proposition 2.3.1, let the price impact

be capitalisation-dependent and let n ∈ N . Then,

1. for an all asset shock, the systemicness SYS(n), the direct vulnerability DV(n) and

the aggregate vulnerability AV do not depend on the individual entries of X.

2. for a K̃-asset shock, both the systemicness SYS(n) and the direct vulnerability

DV(n) only depend on the columns with indices in IK̃ of the nth row, but not on

the full nth row of X. Furthermore, the aggregate vulnerability AV only depends on

X via its columns with indices in IK̃.

The proofs of Proposition 2.3.1 and Corollary 2.3.2 are in Appendix 8.G. Note that the

indirect vulnerability often depends on the individual entries of X. In the following, we

will focus our analysis on situations in which the risk measures do indeed depend on (parts

of) the underlying matrix X and assess the effect of using different matrix reconstruction

methods to estimate the individual entries of the matrix X.
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Remark 2.3.3 (Notation). To make it clear which matrix is used to compute the cor-

responding risk measures, we will sometimes write SYSX(n), AVX , DVX(n), IVX(n) to

show explicitly that these risk measures are computed based on the matrix X. In our

analysis we will later allow the matrix X to be random, i.e., each element of X is a ran-

dom variable, in which case then the corresponding systemic risk measures also become

random variables.

We will also later use the notation γn1 = γn1(X) and Rn1 = Rn1(X), where n ∈ N , to

indicate that both γn1 and Rn1 can depend on X.

We have seen that the asset holding matrix X enters the different risk measures only via

Rn1 and γn1, where n ∈ N . It plays a different role in these two quantities.

In Rn1, the asset holding matrix directly influences the magnitude of the original shock.

In particular, the loss of bank n’s equity after the initial shock is given by

αn1Rn1 = αn1

K∑
k=1

mnkfk1 = αn1

K∑
k=1

Xnk

αn1

fk1 =
K∑
k=1

Xnkfk1 ≤ 0. (2.8)

For an all asset shock, equation (2.8) simplifies further to αn1Rn1 = f
∑K

k=1Xnk = fαn1.

Hence, for an all asset shock, one only needs to know the row sum αn1 rather than the

individual entries of X to determine the magnitude of the shock.

In γn1, the asset holding matrix enters through the rule of how assets are sold following

a stress. Greenwood et al. (2015) assume that stressed banks sell assets according to the

proportion of their original portfolio positions, i.e., if bank n sells a total of yn1 assets (in

EUR), it sells mnkyn1 = Xnk

αn1
yn1 of asset k (in EUR).

One can generalise the selling rule by assuming that banks no longer sell according to the

matrix m but according to a matrix µ ∈ [0, 1]N×K , where
∑K

k=1 µnk = 1 for all n ∈ N .8

Then, for a general selling rule characterised by the matrix µ we use

γ
(µ)
n1 =

K∑
k=1

cklkµnk,

rather than γn1 =
∑K

k=1 cklk
Xnk

αn1
in the formulae for the different fire sale risk measures.

Such a formulation allows us to capture situations in which the actual selling rule that

banks use under stress is unknown, which would often be the case in practice.

8The general selling rule does not exclude short-selling. If one wanted to exclude short-selling for the
general selling rule one would need to require that µnkyn1 ≤ Xnk(1 + fk1), where the left-hand side is
the total amount of asset k sold by bank n, and the right-hand side is the amount of asset k that bank
n has after the shock. This implies the following additional condition on µ, namely

µnk ≤ Xnk(1 + fk1)

yn1
∀k ∈ S, (2.9)

for all n ∈ N with yn1 > 0. (We set µnk = 0 for all n ∈ N with yn1 = 0 and ∀k ∈ S.)
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We can then compute bounds on the influence of the selling rule by considering for each

n ∈ N

max
µ∈[0,1]N×K

γ
(µ)
n1

subject to
K∑
k=1

µnk = 1.
(2.10)

or the corresponding minimisation problem. These linear optimisation problems can be

solved analytically. The maximum of the objective function is maxk∈S{cklk} which is

attained by setting µnk = 1 at the index k where the maximum maxk∈S{cklk} is attained

and µnk = 0 for all remaining indices k. In particular, the optimal solution does not

depend on n. The corresponding result in which max is replaced by min holds for the

minimum. The optimal strategy corresponding to the maximisation problem selects the

asset with the highest capitalisation-weighted price impact. 9

These results hold for general price impact parameters l1, . . . , lK . For a capitalisation-

dependent price impact, however, the connectedness simplifies to

γ
(µ)
n1 =

K∑
k=1

cklkµnk =
K∑
k=1

ck
ρ

ck
µnk = ρ

and hence it does not depend on the selling rule µ.

Furthermore, we find that if γ
(µ)
n1 = γ̃ for all n ∈ N , i.e., if all banks n have the same

connectedness, then the network effect arising from γ
(µ)
n1 only becomes a scaling factor in

the aggregate vulnerability, in particular,

AV =
N∑

n=1

γn1
αn1∑N
ν=1 eν1

bn1(−Rn1) =
−γ̃∑N
ν=1 eν1

N∑
n=1

bn1

K∑
k=1

Xnkfk1. (2.11)

This situation arises, as discussed for a capitalisation-dependent price impact. It also

arises for all selling strategies µ that are not bank specific, i.e., for which µnk = µ̃k for all

n ∈ N and for µ̃1, . . . , µ̃K ∈ [0, 1] with
∑K

k=1 µ̃k = 1.10

These considerations show that in order to have a more involved interaction between

the two network effects γ
(µ)
n1 and Rn1, one needs to consider shocks that are not an all

asset shock, selling strategies that vary between banks (as e.g., the strategy considered

in Greenwood et al. (2015)) and a price impact that is not capitalisation-dependent.

In the following, we will therefore focus on the selling strategy assumed by Greenwood

9The solution to the optimisation problem (2.10) and the corresponding minimisation problem are
useful as upper and lower bounds on the potential influence of the selling rule. It is possible, that banks
do not hold the amount of assets that need to be sold according to these optimal strategies. To exclude
short-selling one would need to include the additional condition (2.9) in the optimisation problems.

10An example of such a selling strategy would be to sell according to equal proportions µnk = 1/K for
all n ∈ N and for all k ∈ S.
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et al. (2015), where µ = m and we will not consider other strategies any further. To anal-

yse the different effects of Rn1 and γn1, we will include an all asset shock in our analysis,

to isolate the effect of γn1 for fixed (meaning that they do not depend on the individual

entries of the asset holding matrix) Rn1. Similarly, we will also include a capitalisation-

dependent price impact to isolate the effect of Rn1 for fixed γn1. Furthermore, we will

consider shocks that affect only some assets and use a constant-price impact to study the

interaction between γn1 and Rn1.

2.3.2 Reconstructing matrices

We consider five existing methods for reconstructing the asset holding matrix X from

the given row and column sums. We briefly summarise them below. More details can be

found in Appendix 8.A.

We consider two optimisation-based methods: the Entropy method by Upper and Worms

(2004) and the minimum density method by Anand et al. (2015) (MinDen). The optimisation-

based matrix reconstruction methods consist of a suitably chosen objective function that

is optimised over the set of matrices that satisfies the given constraints on the row and

column sums. The result of the reconstruction problem is one matrix that satisfies the

constraints. Other possible characteristics that this matrix might have depend on the

chosen objective function. For the Entropy method, the resulting matrix is usually com-

plete, i.e., all entries are non-zero as long as all the row and column sums are non-zero.

This means that the banks then have a fully diversified portfolio since they hold posi-

tions in each asset. For the MinDen method, the resulting matrix is usually very sparse,

i.e., most of the entries are equal to zero. This means that the banks have more diverse

positions.11 For the Entropy method, the matrix that solves the corresponding optimi-

sation problem is available analytically. Therefore, it is possible to characterise all fire

sales measures, i.e., the direct and indirect vulnerability, the systemicness, and the ag-

gregate vulnerability, derived from the reconstructed matrix using the Entropy method

analytically. We provide the corresponding formulae in Appendix 8.A, Proposition 8.A.1.

We also consider three probabilistic methods: the statistical physics method by Cimini

et al. (2015) (StatPhys) (and extended to bipartite networks by Squartini et al. (2017))

and the Bayesian approach by Gandy and Veraart (2017), where we assume two differ-

ent priors within the Bayesian framework, an Erdős-Rényi-type prior (BayeER) and an

empirical fitness type prior (BayeEF) as in Gandy and Veraart (2019). All probabilistic

models assume that the matrix of asset holdings is random, i.e., all its elements are ran-

dom variables. They provide methodologies to generate samples from the distribution

of this random asset holding matrix. Therefore, the result of a network reconstruction

11For further discussion and results on the relationship between fire sales risk and diversification versus
diversity in asset portfolios we refer to Capponi and Weber (2022) and Detering et al. (2022).
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method using any of the probabilistic methods is a sample of matrices and not just one

matrix. All three probabilistic models are calibrated to match the (true) density of the

network. For all three probabilistic methods, our analysis uses a sample size of 10,000.12

The StatPhys method is related to the Entropy method and it is possible to compute the

expectation of the fire sale measures applied to the random matrix that is used in the

StatPhys method analytically. We provided the details in Appendix 8.A.2.

We will now illustrate how the choice of the reconstruction methods affects the risk

measures to assess fire sales risk. First, we consider a toy example.

True X Entropy MinDen2 2 0
2 0 2
0 2 2

 4
3

4
3

4
3

4
3

4
3

4
3

4
3

4
3

4
3

 4 0 0
0 4 0
0 0 4


True X Entropy MinDen

SYS(1) 1.2% 0.8% 2.4%
SYS(2) 1.2% 0.8% 0.0%
SYS(3) 0.0% 0.8% 0.0%
AV 2.4% 2.4% 2.4%

True X Entropy MinDen True X Entropy MinDen

DV(1) 30.0% 20.0% 60.0% IV(1) 2.7% 2.4% 7.2%
DV(2) 30.0% 20.0% 0.0% IV(2) 2.7% 2.4% 0.0%
DV(3) 0.0% 20.0% 0.0% IV(3) 1.8% 2.4% 0.0%

Table 2.2: The three matrices on the left in the first row represent the true asset holding
matrix X and the two reconstructed matrices using the Entropy and MinDen methods,
respectively. The table on the right in the first row shows the systemicness SYS(n)
and AV , and the tables in the second row show the direct vulnerability DV(n) and the
indirect vulnerability IV(n) for each bank n corresponding to the shock F1, specified in
Example 2.3.4, and applied to the true and the two reconstructed matrices.

Example 2.3.4 (Toy example: Assessing fire sale losses on reconstructed matrices).

We consider the asset holdings matrix X ∈ [0,∞)3×3 reported in Table 2.2, and two

reconstructions of X from its row and column sums using the Entropy method and the

MinDen method, respectively. According to the true matrix X each institution holds two

assets and each asset is held by two institutions. The Entropy method distributes the

weights evenly across the different cells of the matrix resulting in a complete network,

meaning all institutions hold all assets, whereas the MinDen method finds the sparsest

possible solution in which each institution only holds one asset and this asset is not held

by anyone else.

The total assets are αn1 = 4 for all n ∈ {1, 2, 3}. We assume that all three banks have

the same equity, namely en1 = 1 which results in a leverage of bn1 = 3 for all n ∈ {1, 2, 3}.

12For the Bayesian approach (in which the distribution of interest is approximated using a Gibbs
sampler) we choose thinning and burn-in parameters as 10% of the total number of samples as
in Gandy and Veraart (2017). We use the R-package systemicrisk available at https://CRAN.R-
project.org/package=systemicrisk that implements the methods by Gandy and Veraart (2017, 2019).
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We consider a constant price impact of lk = 10−2 for all assets k ∈ {1, 2, 3}. We consider

a 1-asset shock given by F1 = (−0.15, 0, 0)⊤ which only affects the first asset directly.

We report the AV ,SYS(n),DV(n) and IV(n) for the true and the two reconstructed

matrices for all three institutions n ∈ {1, 2, 3} in Table 2.2. We find that under this

1-asset shock, the systemicness, the direct and the indirect vulnerability can change

significantly with respect to the network that is used as input.

In particular, we find that the Entropy method underestimates the systemicness, the di-

rect vulnerability, and the indirect vulnerability of banks 1 and 2 (which have the highest

systemicness and direct and indirect vulnerability in this example), and overestimates the

systemicness, the direct and indirect vulnerability of bank 3 (which is the lowest among

all banks in this example).

The MinDen method only attributes a positive systemicness, and direct and indirect

vulnerability to bank 1 (and significantly overestimates the true values), and otherwise

provides estimates of zero for all three measures for banks 2 and 3.

For the aggregate vulnerability, however, we see that it is correctly estimated by both

the Entropy and the MinDen method in this example.

2.3.3 Data

In our empirical analysis, we consider data13 collected by the European Banking Authority

(EBA)14 for their stress tests of EU banks in 2011 and 2016. The data consists of balance

sheets of some of the largest banks in the EU. The data include N = 90 banks in 2011

and N = 51 banks in 2016 covering the EU countries (which includes the UK in these

years).

We aggregate the asset classes such that all asset classes are consistent across both years.

There are K = 36 asset classes which include corporate, retail, 30 EEA sovereign loans,

US, Japan, Latin America, and other sovereign loans (an aggregated class of remaining

sovereign loans). Hence the asset holding matrix is a 90×36 matrix in 2011 and a 51×36

matrix in 2016. All other assets which are not recorded in both years are not included

in the asset holdings matrix.15 We assume that all assets are marketable and can be

liquidated, i.e., we apply the framework by Greenwood et al. (2015) directly to the full

asset holding matrix as in the empirical case study provided in Greenwood et al. (2015).16

13The data are publicly available from https://eba.europa.eu/risk-analysis-and-data/eu-wide-stress-
testing/2011 and https://eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2016.

14The EBA is an independent EU authority whose objective is to maintain financial stability in the
EU. It has been established to develop consistent prudential regulation and supervision of the EU’s
banking sector. Together with the European Systemic Risk Board (ESRB), the EBA conducts stress
testing of the EU banking sector to assess its resilience to adverse shocks.

15This is done for consistency purposes so that we can apply the same initial shock to both datasets.
16In practice, only a part of a bank’s assets can be liquidated, see e.g., Cont and Schaanning (2017)

for discussion and more details on this. It would be possible to restrict the modelling framework so that
only a subset of the available assets are marketable. Related work that considers both marketable and
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Table 2.3 provides some descriptive statistics for the EBA data used in our empirical

analysis. We see that the network densities (defined as 1
NK

∑N
n=1

∑K
k=1 I{Xyear

nk >0}, where

Xyear represents either the observed assets holding matrix in 2011 or in 2016) is almost

the same in both years (0.44 in 2011 and 0.48 in 2016). With almost half of the entries

being positive in the asset holding matrix, we expect that there is indeed scope for serious

contagion effects if fire sales are triggered.

The leverage values that we report in this table corresponds to bn1 = dn1/en1, where the

equity en1 was set to be equal to the common equity Tier 1 capital reported for each bank

n ∈ N and the debt dn1 was set to be equal to αn1 − en1. We see that leverages were

generally significantly higher in 2011 than in 2016. In the empirical analysis we will cap

the leverage at 30 as in Greenwood et al. (2015), this means that we set

bn1 = min{30, observed leverage of bank n at time 1} to avoid having to deal with a small

number of banks which have very high leverages (such as, e.g., maximum leverage of

540.68 in 2011).

Table 2.3 also shows the range of banks’ total assets αn1, n ∈ N , with the lowest total

assets at 329 million EUR in 2011, compared with the largest bank at 1.39tn EUR in 2016.

The assets which form the largest total capitalisation in both networks are corporate and

retail, comprising 82% of the total assets in 2011 and 80% in 2016. The highest sovereign

loans in 2011 are German (2.89%), other sovereign (1.98%), and Italian (1.93%) compared

with French (2.68%), German (2.64%), and US (2.13%) sovereign assets in 2016. Asset

classes with a large capitalisation which are held by a large number of banks are German,

French, Spanish, UK, and Italian sovereign assets.

Year Number Network Leverage Total assets (EUR)
of banks density Min Mean Max Min Mean Max

- - - - - (bn) (tn) (tn)

2011 90 0.44 3.56 33.60 540.68 0.33 0.19 1.21
2016 51 0.48 7.48 19.68 43.15 2.93 0.28 1.39

Table 2.3: Summary statistics for the EBA data.

We provide heatmaps and further discussions on the structure of the empirically observed

asset holding matrix and the performance of its reconstruction using different methods

for the 2016 EBA data in Appendix 8.B.1.

2.3.4 Empirical results

Next, we consider the fire sales risk measures for the EBA data for three different stress

scenarios and compare the results obtained by using the fully observed matrix of asset

holdings to the results derived based on reconstructed asset holding matrices.

non-marketable assets includes Braouezec and Wagalath (2019), Feinstein (2020), Banerjee and Feinstein
(2021).
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The three stress scenarios are as follows:

GIIPS shock: This is a 5-asset shock. We consider a 5% shock to the sovereign loans

of Greece, Italy, Ireland, Portugal and Spain (GIIPS), which were countries highly

impacted by the 2008 financial crisis. This shock has also been considered in Green-

wood et al. (2015). Mathematically, this corresponds to setting fk = −0.05 for each

index k ∈ S that corresponds to a GIIPS asset and setting fk = 0 for all remaining

k ∈ S in the initial shock vector.

Bad Brexit shock: This is a 1-asset shock. We consider an economic shock of 10% to

UK sovereign loans as a possible scenario for negative consequences arising from

Brexit. Mathematically this is captured by setting fk = −0.1 for the index k ∈ S
that corresponds to the UK asset class and setting fk = 0 for all remaining |K| − 1

assets.

All asset shock: We consider a 0.1% shock to all assets. This corresponds to setting

fk = −0.001 for all k ∈ S in the initial shock vector. This type of shock is

widespread and affects all assets in the same way.

For the optimisation-based reconstruction methods, i.e., for MinDen and Entropy, we can

apply the different fire sales measures directly to the reconstructed matrix returned by

these methods since we only evaluate one matrix. As mentioned before, for the Entropy

method we have analytical expressions for all fire sale measures, see Proposition 8.A.1

in Appendix 8.A. Since, there are three bank specific measures, namely the systemicness

SYS(n), the direct vulnerability DV(n), and the indirect vulnerability IV(n), we consider

the average of these measures across all institutions. For example, instead of N measures

for the direct vulnerability of the individual institutions, we report the average direct

vulnerability over all institutions given by 1
N

∑N
n=1DV(n). Table 2.4 reports the results

and DV11 then corresponds to the average direct vulnerability across the N banks in

2011 and DV16 represents the average direct vulnerability in 2016. The same notation

is used for the indirect vulnerability. Since the aggregate vulnerability is a measure for

the whole system we can report it directly. Note that the aggregate vulnerability is

equal to N times the average systemicness and therefore we do not report the average

systemicness.17

17We also considered other measures for bank specific quantities. We investigated the L1-error between
the fire sales measures of reconstructed matrices and the true matrix, e.g., for systemicness we consider∑N

n=1 |SYSTrue(n)−SYSX(n)| for the Entropy and the MinDen method, and for the sampling methods,

we average the L1-error across all samples, i.e., we consider 1
d

∑d
ν=1

∑N
n=1 |SYSTrue(n) − SYSX(ν)

(n)|.
For the three different bank-specific fire sale measures we find a larger deviation for systemicness and in-
direct vulnerability compared to the direct vulnerability. Generally, the MinDen reconstruction methods
results in the largest L1 error due to the sparsity of the reconstructed matrix and the concentration of
asset losses from a few banks. Entropy and StatPhys have the greatest similarity, and the performance
of the Bayesian approach depends on the measures considered. Overall, the results are similar to those
reported in Table 2.4.
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For the probabilistic reconstruction measures, i.e., for StatPhys, BayeER, and BayeEF, we

obtain a sample of networks denoted by X(1), . . . , X(d), i.e., the sample size is d = 10, 000.

For each reconstructed network X(ν), we compute the direct vulnerability of each bank

and consider the mean direct vulnerability of all banks for this given network X(ν). We

then average this mean direct vulnerability over the full sample. More precisely, in the

two rows corresponding to DV11, we show the following two numbers (sample mean of

the average direct vulnerability and corresponding standard deviation in italic):

µ̄DV
d = µd

(
1

N

N∑
n=1

DV11X(ν)

(n)

)
=

1

d

d∑
ν=1

(
1

N

N∑
n=1

DV11X(ν)

(n)

)
,

σd

(
1

N

N∑
n=1

DV11X(ν)

(n)

)
=

√√√√ 1

d− 1

d∑
ν=1

(
1

N

N∑
n=1

DV11X(ν)(n) − µ̄DV
d

)2

for the probabilistic methods using the 2011 data. The same methodology is applied to the

reporting of indirect vulnerability. The aggregate vulnerability in the table corresponds

to the average aggregate vulnerability computed over the d elements of the sample, i.e.,

µ̄AV
d = µd

(
AV11X(ν)

)
=

1

d

d∑
ν=1

AV11X(ν)

,

σd

(
AV11X(ν)

)
=

√√√√ 1

d− 1

d∑
ν=1

(
AV11X(ν) − µ̄AV

d

)2
,

where again the second quantity is the corresponding standard deviation.

For the StatPhys method, we have derived analytical expressions for the expected fire

sale measures in Appendix 8.A.2. In the following, we report the Monte Carlo estimates

such as µ̄AV
d of these expectations which are very close to the analytical results.

Table 2.4 reports the averaged fire sale risk measures. Values highlighted in bold indicate

the best-performing reconstruction method per row and per price impact. The direct

vulnerabilities are reported only for the capitalisation-dependent price impact since they

coincide with those for the constant price impact, see Definition 2.6. For the all asset

shock, several risk measures do not depend on the individual entries of X (see Corol-

lary 2.3.2) which we indicate by writing true in the corresponding entry in the table to

highlight, that this value is identical to the value in the column True.

We first consider the fire sales measures based on the fully observed matrix (the columns

named True in Table 2.4). We observe that all but one fire sales measure corresponding

to the 2011 data are consistently higher than the corresponding measures for the 2016

data. This means that overall the fire sales risk has decreased from 2011 to 2016. This

observation holds true under both constant and capitalisation-dependent price impact.

The only exception, where we observe an increase from 2011 to 2016, is the aggregate
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vulnerability under a constant price impact for the Bad Brexit shock. A high contributing

factor for the general tendency for the fire sales risk measures to decrease from 2011 to

2016 is the difference between the leverages and the target leverages (which is observed

leverage capped at 30) which both decrease substantially from 2011 to 2016. In 2011,

several banks held low equity levels compared with 2016 which resulted in high leverages

in 2011. The average leverage of banks also decreased from 2011 to 2016, because of the

banks included in each dataset. The higher leverage in 2011 was largely driven by a small

number of banks, which were not all part of the 2016 data. For example, Greek banks

were not part of the 2016 data but included a bank with the second-highest leverage.

Therefore, the change in capital requirements and the types of banks included in the

EBA stress tests contributed to a decreased leverage.

Furthermore, we consider the effect of the two different choices for the price impact on the

fire-sales measures under complete information. First, note that the direct vulnerability

DV(n) does not depend on the price impact, i.e., it does not depend on the parameters

l1, . . . , lK , and hence the direct vulnerabilities corresponding to different price impacts

coincide. In contrast, the other fire-sales measures do depend on the price impact. In

the 2011 data, we find that the constant price impact results in higher risks associated

with fire sales than the capitalisation-dependent price impact, but for the 2016 data this

is not necessarily the case. Overall, the key features of the stress tests remain consistent

for both choices of price impact, namely that risks from fire sales in 2016 were smaller

than in 2011.

Next, we consider the fire sales measures obtained by using five different matrix recon-

struction methods. The entry shown in bold represents the best-performing method for

this particular row indicating the fire sales measure and a given price impact. Overall, we

see there is no clear winner in the sense that one of the methods would consistently out-

perform all other methods across all fire sales measures and for different types of shocks

and price impacts.
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Capitalisation-dependent Price Impact Constant Price Impact
(lk = ρ/ck ∀k) (lk = 5 × 10−13 ∀k )
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GIIPS (%)
DV11 15.58 3.23 7.81 7.81 20.21 17.68 same results as for capitalisation-dependent price impact

- - - (0 .53 ) (3 .06 ) (3 .07 )
IV11 460.79 296.96 416.80 417.58 612.49 544.98 506.76 304.77 523.63 523.68 274.71 325.00

- - - (10 .67 ) (38 .58 ) (30 .92 ) - - - (13 .36 ) (16 .91 ) (18 .00 )
AV11 291.70 238.77 288.49 288.96 292.38 294.24 357.49 178.63 362.43 362.43 275.36 293.40

- - - (6 .15 ) (5 .26 ) (5 .12 ) - - - (7 .41 ) (11 .41 ) (10 .23 )
DV16 5.64 5.33 4.42 4.42 8.24 7.57 same results as for capitalisation-dependent price impact

- - - (0 .18 ) (0 .78 ) (0 .82 )
IV16 187.19 254.15 214.86 215.22 240.26 228.39 151.35 51.69 221.46 221.47 139.97 153.33

- - - (5 .87 ) (10 .34 ) (8 .73 ) - - - (5 .90 ) (7 .91 ) (7 .99 )
AV16 189.29 244.47 220.83 221.20 209.70 210.34 174.81 52.08 227.62 227.63 179.05 186.32

- - - (5 .79 ) (5 .08 ) (5 .05 ) - - - (5 .75 ) (9 .37 ) (8 .69 )
Bad Brexit (%)

DV11 1.47 0.85 3.01 3.01 8.39 6.46 same results as for capitalisation-dependent price impact

- - - (0.47) (2.55) (2.43)
IV11 120.19 140.82 160.85 161.21 240.11 207.43 155.05 183.76 202.08 202.17 103.70 126.37

- - - (7.25) (23.28) (17.30) - - - (9.13) (8.82) (9.63)
AV11 90.23 144.07 111.34 111.55 112.09 113.62 109.02 135.01 139.87 139.92 104.02 114.58

- - - (4.74) (4.03) (3.87) - - - (5.92) (8.02) (7.40)
DV16 1.59 1.92 2.87 2.87 5.50 4.82 same results as for capitalisation-dependent price impact

- - - (0 .21 ) (0 .90 ) (0 .90 )
IV16 130.07 126.60 139.24 139.53 156.38 147.43 136.35 105.51 143.53 143.59 90.33 99.77

- - - (5 .92 ) (10 .07 ) (08 .30 ) - - - (6 .08 ) (7 .25 ) (7 .46 )
AV16 149.58 152.24 143.11 143.41 135.77 136.34 159.82 106.67 147.51 147.58 115.61 121.39

- - - (6 .00 ) (5 .24 ) (5 .31 ) - - - (6 .14 ) (9 .27 ) (8 .87 )
All Asset (%)

DV11 3.46 true true 3.46 true true same results as for capitalisation-dependent price impact

- - - (0.05) - -
IV11 185.51 185.95 184.72 185.07 185.60 185.89 228.63 255.63 232.07 232.38 153.11 172.48

- - - (3.24) (0.68) (0.60) - - - (4.32) (7.81) (7.99)
AV11 127.86 true true 128.07 true true 160.87 161.00 160.63 160.82 160.24 159.99

- - - (1.32) - - - - - (1.68) (0.30) (0.30)
DV16 2.07 true true 2.07 true true same results as for capitalisation-dependent price impact

- - - (0.02) - -
IV16 100.62 99.58 100.47 100.64 99.33 99.66 92.06 103.63 103.56 103.66 82.60 87.37

- - - (1.45) (0.23) (0.20) - - - (1 .54 ) (1 .45 ) (1 .69 )
AV16 103.26 true true 103.43 true true 106.59 105.72 106.43 106.55 107.69 107.59

- - - (1.28) - - - - - (1 .34 ) (0 .25 ) (0 .25 )
Bold - 6 2 2 3 1 - 0 3 4 2 3

Table 2.4: The table presents average fire sales risk measures (averaged over the banks
and additionally averaged over the samples) for the 2011 and 2016 EBA data for three
different shock scenarios for the true and reconstructed matrices. All numbers are given
in percent.
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So, we will look more specifically at the different fire sales measures. To get an overview,

we compare the performance of three model classes: the MinDen, Entropy & StatPhys,

BayeER & BayeEF. We provide more details in Appendix 8.A.2 on how the Entropy

and the StatPhys are indeed related. It is no coincidence that the estimates derived from

using the Entropy or the StatPhys methods are very similar. We start with the aggregate

vulnerability since this is the only measure that provides a holistic view of the whole

network. We find that the Entropy, StatPhys, BayeER, and BayeEF methods provide

estimates for the aggregate vulnerability that is often rather close to the true value.

Indeed, out of the 10 cases (corresponding to 4 cases for the capitalisation-dependent price

impact and 6 cases for the constant price impact) for which we compute an aggregate

vulnerability the Entropy & StatPhys method is the best-performing method in 5 cases

and the BayeER & BayeEF are the best-performing methods in the remaining 5 cases.

The MinDen performs best in only one scenario for estimating aggregate vulnerability.

In most cases, it overestimates or underestimates the aggregate vulnerability.

For the bank specific measures that we have just averaged over all banks in the network,

i.e., direct and indirect vulnerability we find the following. For the indirect vulnerability,

we have 12 different cases (3 stress scenarios × 2 price impacts × 2 years). The MinDen

performed based in 3 cases, the Entropy & StatPhys method performed best in 5 cases

and the BayeER & BayeEF performed best in 4 cases. For the direct vulnerability, we

observed 4 cases (2 stress scenarios × 2 years; note that the price impact does not affect

the direct vulnerability). The MinDen performed best in 3 cases and BayeER & BayeEF

performed best in 1 case.18

Hence, to summarise, the best method for estimating the direct vulnerability across

all types of shocks considered here is the MinDen, for the indirect vulnerability the

performance of the three classes of methods are very similar, and for estimating the

aggregate vulnerability the best methods are the Entropy & StatPhys method and the

BayeER & BayeEF.

When distinguished by the type of shock, we find that the Entropy, StatPhys, BayeER,

and BayeEF methods tend to be the preferred methods for the GIIPS shock (which

affects 5 columns of the asset holding matrix), whereas the MinDen method seems to

be the preferred method for the Bad Brexit shock which only affects one column of

the asset holding matrix. For the All Asset shock, we know from Corollary 2.3.2 that

under a capitalisation-dependent price impact SYS(n), AV , DV(n) do not depend on the

individual entries of X. Hence, if one was interested in such a situation, there is no need

to reconstruct the network. If we ignore this result and compute the corresponding risk

measures from the reconstructed networks, then we indeed recover the true values exactly

(indicated by true in the entry in the table) for all methods except for the StatPhys

18The fact that the direct vulnerabilities for the Entropy and the StatPhys methods coincide in ex-
pectation, is not a coincidence, but it follows from the theoretical results derived in Appendix 8.A.2.
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method. The matrices reconstructed using the StatPhys method do not individually

satisfy the constraints on the row and column sums but only in expectation and therefore

they do not reproduce the true value when plugged into the general formula for the risk

measures that have not been simplified in line with the results of Corollary 2.3.2. To

indicate this effect, we have reported the values computed from the matrices returned

by the StatPhys method in the table. As discussed this is no contradiction to Corollary

2.3.2.

Finally, we investigate what the best and worst aggregate vulnerabilities are that are

consistent with the given row and column sums of the asset holding matrix. Hence, we

consider an additional (optimisation-based) network reconstruction method that max-

imises (or minimises) the aggregate vulnerability over all (non-negative) matrices that

satisfy the row and column constraints. We provide more details on this in Appendix

8.B.2. Table 2.5 shows the results.

We find that in general there is quite a large difference between the minimum and the

maximum aggregate vulnerabilities. Furthermore, the true aggregate vulnerability, i.e.,

the aggregate vulnerability derived from the true network, is quite centred between the

minimum and the maximum aggregate vulnerability. Given this wide range of possi-

ble aggregate vulnerabilities, the aggregate vulnerabilities obtained from the different

reconstruction methods are remarkably close to the true aggregate vulnerabilities.

Furthermore, we find that the difference between the minimum and maximum aggregate

vulnerabilities is generally larger for a constant price impact compared to a capitalisation-

dependent price impact. This is in line with our theoretical results (Proposition 2.3.1 and

Corollary 2.3.2). Also in line with these theoretical results, is the fact that the GIIPS

shock scenario in which 5 assets are shocked, has a larger difference between the minimum

and maximum aggregate vulnerability than the Bad Brexit shock in which only one asset

is shocked.

As discussed before, for an all asset shock and a capitalisation-dependent price impact, the

aggregate vulnerability only depends on the asset holding matrix via its row and column

sums and therefore the minimum and maximum aggregate vulnerabilities coincide with

the true aggregate vulnerability. For an all asset shock with constant price impact, the

individual entries of the asset holding matrix do matter, but we find the range of aggregate

vulnerabilities to be rather small.
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Capitalisation-dependent Constant
(lk = ρ/ck ∀k) (lk = 5 × 10−13 ∀k )

GIIPS (%)
True Min Max True Min Max

AV11 291.70 172.18 373.30 357.49 6.26 494.91
AV16 189.29 131.88 294.12 174.81 4.95 311.53

Bad Brexit (%)
True Min Max True Min Max

AV11 90.23 49.16 144.07 109.02 1.00 216.65
AV16 149.58 60.08 195.02 159.82 1.59 220.78

All Asset (%)
True Min Max True Min Max

AV11 127.86 true true 160.87 150.19 171.73
AV16 103.26 true true 106.59 99.93 113.69

Table 2.5: True aggregate vulnerability and minimum and maximum of aggregate vul-
nerabilities derived from asset holding matrices that satisfy the given row and column
sums. Two different price impacts and three shock scenarios are considered.
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2.3.5 Sensitivity analysis and robustness checks

We have seen so far that the sampling-based reconstruction methods (StatPhys, BayeER

and BayeEF) provide superior results for several measures of fire sale risk. One might

think that this result is purely driven by the fact that these sampling-based methods can

be (and in Table 2.4 have been) calibrated to the true density of the network which was

not the case for the MinDen and the Entropy method. In the following, we show that

this result remains robust even if the underlying assumption on the network density is

changed.

Figure 2.1 shows how the aggregate vulnerability computed using the StatPhys, BayeER

and BayeEF network reconstruction methods depends on the choice of the target den-

sity of the network. It shows the aggregate vulnerabilities as a function of the network

density for three sampling-based reconstruction methods (StatPhys (top), BayeER (mid-

dle), BayeEF (bottom)). The aggregate vulnerabilities are computed as the mean over

a sample of 10,000 reconstructed networks. Additionally, we show the range (labelled

“Range”) of the aggregate vulnerabilities from this sample and the minimum and max-

imum (labelled “Optim Range”) of aggregate vulnerabilities obtained by minimising or

maximising the aggregate vulnerability over all asset holding matrices consistent with the

row and column sums. The horizontal line (labelled “True”) shows the aggregate vul-

nerability computed based on the true network, and the dashed horizontal line (labelled

“Recon”) shows the reconstructed aggregate vulnerability using the true density for the

reconstruction.

We find that even if the networks are reconstructed using a target density that does not

coincide with the true density of the network, the aggregate vulnerabilities remain close

to the true aggregate vulnerabilities.

We find that the range of the aggregate vulnerabilities computed using the StatPhys

method exceeds the range of aggregate vulnerabilities derived by solving the optimisation

problem that maximises or minimises the aggregate vulnerability for small densities. This

is not a mistake, but a consequence of the StatPhys method not satisfying the row and

column constraints exactly, but only in expectation.

We provide more empirical results (for a constant price impact) and further discussions

on the sensitivity of the results with respect to additional information (such as the density

of the network) in Appendix 8.B.3. We also discuss there how additional information can

be included in the MinDen and Entropy method.
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(a) StatPhys under GIIPS 2011.
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(b) StatPhys under Bad Brexit 2011.
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(c) BayeER under GIIPS 2011.
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(d) BayeER under Bad Brexit 2011.
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(e) BayeEF under GIIPS 2011.
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(f) BayeEF under Bad Brexit 2011.

Figure 2.1: Aggregate vulnerabilities as a function of the network density for three
sampling-based reconstruction methods (StatPhys (top), BayeER (middle), BayeEF (bot-
tom)). The results are for the 2011 data and a capitalisation-dependent price impact.
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Furthermore, we conduct a robustness check with respect to the main inputs into the

network reconstruction: the row and column sums of the asset holding matrix. To do

this we add a noise term to the row and column sums and reconstruct the networks based

on the perturbed row and column sums. We find that the reconstructed direct, indirect,

and aggregate vulnerabilities remain reasonably close to the true quantities in most cases

even for noisy observation. The MinDen method seems to be the most sensitive with

respect to the parameter inputs compared to the other reconstruction methods. Hence,

the Entropy method and the sampling-based methods seem to be more robust in our

case studies and one might therefore use those rather than the MinDen method if there

is uncertainty about the input parameters. We report the detailed empirical results in

Appendix 8.B.3 (see specifically Table 8.1).

Finally, we analyse the sensitivity of our results with respect to the selling rule µ for a

constant price impact.19 As discussed before, for a capitalisation-dependent price impact

the selling rule does not matter. We solve the maximisation problem (2.10) and the

corresponding minimisation problem that determines upper and lower bounds on γn1.

Figure 2.2 reports the results for the 2011 and 2016 data. It shows boxplots (and violin

plots, i.e., the corresponding densities) of γ11, . . . , γN1 corresponding to the proportional

selling rule by Greenwood et al. (2015) together with the upper and lower bound from the

optimisation problem and the constant γEntropy = γn1(X
Entropy) (see Proposition 8.A.1))

derived from using the Entropy reconstruction method. We see that the γn1, n ∈ N that

correspond to the proportional selling rule by Greenwood et al. (2015) are rather similar

for most of the banks and overall rather close to the upper bound. Only for 2016, we

find a small number of banks whose parameters γn1 are close to the lower bound. We

also find that the estimate γEntropy = γn1(X
Entropy), n ∈ N that is obtained from using

the Entropy reconstruction method (indicated by the dotted line in Figure 2.2) is close

to the median of the true γn1, n ∈ N . Furthermore, we show in Appendix 8.A.2 that the

expected connectivity using the StatPhys method coincides with the connectivity derived

using the Entropy method, formally γEntropy = E[γn1(X
StatPhys)] for all n ∈ N .

2.4 Assessing the effect of policy interventions under

full and partial information

We now investigate how fire sales risk can be mitigated through policy interventions.

In contrast to Greenwood et al. (2015), we investigate how well fire sales risk can be

mitigated if a policymaker decides on an intervention without the full knowledge of the

asset holding network. We focus on two types of interventions: leverage caps and capital

19In the fire sale literature, a wide range of liquidation strategies has been considered. Some are
exogenous and some are the result of an optimisation problem, see e.g., Caballero and Simsek (2013),
Feinstein (2017), Braouezec and Wagalath (2019), Banerjee and Feinstein (2021).
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Figure 2.2: The box and violin plots of (γn1)n∈N are based on the full informa-
tion and a constant price impact. There are three horizontal lines: The solid line
is at maxµ∈[0,1]N×K ,

∑K
k=1 µnk=1 γ

(µ)
n1 (which is the same for all n), the dashed line is at

minµ∈[0,1]N×K ,
∑K

k=1 µnk=1 γ
(µ)
n1 (which again is the same for all n), and the dotted line is at

γEntropy = γn1(X
Entropy).

injections.

2.4.1 Leverage caps

Greenwood et al. (2015) have analysed a range of policy interventions to mitigate the

effects of fire sales. In particular, for a GIIPS shock, they consider the effect of debt

renationalisation, an introduction of Eurobonds, ring-fencing risky assets, merging ex-

posed banks with unexposed ones and leverage caps. They find that “capping leverage

is the only policy that delivers a sizeable reduction in AV [aggregate vulnerability]”,

(Greenwood et al., 2015, p. 481). We will therefore focus on a leverage cap first.

The leverage cap policy in Greenwood et al. (2015) can be defined as follows.

Definition 2.4.1 (Policy intervention: Leverage cap). For each bank n ∈ N with leverage

dn1/en1, the leverage cap policy sets the target leverage to bn1 = min
{
B, dn1

en1

}
for a

constant B > 0. It is assumed that all banks n ∈ N for which dn1/en1 > B, are able

to raise equity to reach the new lower leverage of B without changing the size of their

balance sheet.

In our empirical analysis, we set the leverage cap to be B = 15. Recall that all banks in

the sample had leverage of at most 30 (after an initial cap had been applied).

A reduction in target leverage automatically reduces the need to fire-sell assets as shown

in Greenwood et al. (2015) and hence such a strategy reduces the aggregate vulnerability.
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(a) Changes in SYS(n) for n ∈ N in 2011.
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(b) Changes in SYS(n) for n ∈ N in 2016.

Figure 2.3: The scatter plots represent the changes in the SYS between capping target
leverage at 30 and at 15, relative to the total amount of equity raised for 2011 (left) and
2016 (right). The displayed points are for banks whose target leverage is higher than the
leverage cap of 15.

The potential problem with such a strategy is that banks might need to raise a significant

amount of equity to satisfy a leverage cap that significantly reduces fire sales risk, “The

cost of the policy is large [...], and the action is drastic”, (Greenwood et al., 2015, p. 481).

To illustrate the cost of this strategy, we present Figure 2.3. For each bank n, it shows

the change in the SYS(n) between a target leverage at 30 and at 15, relative to the raised

equity for each individual bank. In this example, we consider the capitalisation-dependent

price impact (ρ = − log(0.1)) and an all asset shock (fk = f = −0.001,∀k ∈ S), see

Section 2.3.4. We observe a linear relationship between the change in SYS(n) values and

the equity raised. For both plots (i.e., for both years 2011 and 2016), there is a cluster

of banks where a smaller increase in equity results in small decreases in the contributed

equity loss. The effect of a leverage cap only becomes distinctive between banks when

larger equity values are considered, in this case past 10bn EUR. We also see that in 2011,

a larger amount of equity needs to be raised by some banks to reach the same target

leverage compared to 2016.

Overall, we find that banks would need to raise 357.2 billion EUR in 2011 and 233.85

billion EUR in 2016 to satisfy a leverage cap of 15.

Remark 2.4.2 (Leverage cap under partial information). The leverage cap policy does

not depend on the asset holding matrix X. Therefore, implementing a leverage cap is

equally successful with or without full information on the asset holding matrix.

2.4.2 Capital injections

Since reducing fire sales externalities via leverage caps is expensive, Greenwood et al.

(2015) considered optimal equity injection as an alternative and the most cost-effective
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way to reduce aggregate vulnerability. The assumption is that a regulator has a fixed

amount of cash I > 0 that can be distributed among the N banks. We first define a

capital injection policy.

Definition 2.4.3 (Policy intervention: Capital injection). Let 0 < I ≤
∑N

n=1 dn1 be the

total amount of cash that a regulator is willing to invest in banks’ equity at time 1. Then,

a capital injection policy is characterised by a vector i = (i1, . . . , in)⊤, where 0 ≤ in ≤ dn1

∀n ∈ N and
∑N

n=1 in = I. Each bank n uses its capital injection in to repay parts of its

debt, leading to a new leverage after the capital injection of

b∗n1 =
dn1 − in
en1 + in

. (2.12)

We assume that capital injections would occur in time period t = 1. One could extend

the analysis to multiple rounds of deleveraging and multiple rounds of capital injections.

Now, the goal is to find an optimal capital injection policy, i.e., an optimal choice of

i = (i1, . . . , iN)⊤. Greenwood et al. (2015) considered the objective to minimise the

systemicness of each bank under a GIIPS shock subject to some budget constraints. We

consider the aggregate vulnerability as the objective function, which is just the sum of

the systemicness of each bank. This allows us to consider the key system-wide measure

developed in Greenwood et al. (2015) not just for measuring fire sale risk but also for

mitigating it. We define an optimal capital injection as follows.

Definition 2.4.4 (Policy intervention: Optimal capital injection). Let 0 < I ≤
∑N

n=1 dn1.

Let AVI : [0, d11] × . . .× [0, dN1] → [0,∞) be given by

AVI(i;X) =
N∑

n=1

γn1(X)(−Rn1(X))
αn1∑N
ν=1 eν1

dn1 − in
en1 + in

,

where X denotes the asset holding matrix. Consider the optimisation problem

min
i=(i11,...,iN1)⊤

AVI(i;X),

subject to

0 ≤ in ≤ dn1 ∀n ∈ N ,

N∑
n=1

in = I.

(2.13)

We refer to a solution iOpt(X) = (iOpt
1 (X), . . . , iOpt

N (X))⊤ of (2.13) as an optimal capital

injection policy.

Greenwood et al. (2015) find that the optimal capital injections are strongly positively

correlated with systemicness, i.e., the optimal iOpt
n are positively correlated with SYS(n).
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We therefore also consider a simplified capital injection strategy, in which the injected

capital is chosen to be proportional to the systemicness.

Definition 2.4.5 (Policy intervention: Proportional capital injection). Let X be an asset

holding matrix. We refer to a capital injection iProp = (iProp1 (X), . . . , iPropN (X))⊤, where

iPropn (X) = I
SYS(n)(X)

AV(X)
(2.14)

for all n ∈ N as a proportional capital injection policy.

As a benchmark strategy for capital injections, we consider a “naive” strategy, that

allocates capital relative to the total asset holdings of banks. This strategy is independent

of the network topology.

Definition 2.4.6 (Policy intervention: Naive capital injection). We refer to a capital

injection iNaive = (iNaive
1 , . . . , iNaive

N )⊤, where

iNaive
n = I

αn1∑N
ν=1 αν1

(2.15)

for all n ∈ N as a naive capital injection policy.

Remark 2.4.7 (Choice of total capital I). For our empirical analysis, we assume that

the total allocation of capital I is set to 10% of the total equity of the banks, i.e.,

I = 0.1
∑N

n=1 en1. This means that in 2011 we have I = 70.55 billion EUR and in 2016

I = 68.21 billion EUR.

Finally, to be able to compare capital injections to leverage caps, we consider a capital

injection strategy that injects capital such that all institutions have leverage of at most

B̃ > 0. We define it formally as follows.

Definition 2.4.8 (Policy intervention: Leverage cap capital injection). We refer to the

capital injection ilev = (ilev1 , . . . , ilevN )⊤, where

ilevn = max

{
αn1

1 + B̃
− en1, 0

}
(2.16)

as the leverage cap capital injection policy with leverage cap B̃ > 0.

Indeed, for an n ∈ N it holds that

ilevn =
αn1

1 + B̃
− en1 > 0 ⇔ αn1

1 + B̃
> en1 ⇔ bn1 =

αn1 − en1
en1

> B̃.

Hence, the leverage cap capital injection policy injects capital in exactly those institutions

that exceed the leverage cap B̃. Furthermore, for all n ∈ N with bn1 > B̃, it follows
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directly from the definition of ilevn that dn1−ilevn

en1+ilevn
= B̃, i.e., those institutions that previously

exceeded the leverage cap get a capital injection to reach the leverage of B̃.

Remark 2.4.9 (Choice of leverage cap B̃ in leverage cap capital injection). In our em-

pirical analysis, we determine the leverage cap B̃, by solving

N∑
n=1

ilevn =
N∑

n=1

max

{
αn1

1 + B̃
− en1, 0

}
= I

for B̃ for a given total capital of I that is chosen as in Remark 2.4.7. Then, the total

amount of capital used in the leverage cap capital injection strategies coincides with the

total capital used in the other capital injection strategies. This allows us to compare

these strategies directly.

We find that injecting a total amount of I = 70.55 billion EUR in 2011 corresponds to a

leverage cap of B̃ = 26.77 for the leverage cap capital injection method in 2011; injecting

a total amount of I = 68.21 billion EUR in 2016 corresponds to a leverage cap of 21.68

in 2016.

Remark 2.4.10 (Capital injection under partial information). By construction, the naive

capital injection policy and the leverage cap capital injection strategy do not depend

on the individual entries of the asset holding matrix X. The optimal capital injection

policy and the proportional capital injection policy, however, will usually depend on the

individual entries of the asset holding matrix X.

2.4.3 Empirical results on policy interventions

We will now analyse how well leverage caps and the different capital injection strategies

work in the 2011 and 2016 data, under both full and partial information. To do so, we

compute the relative reduction in aggregate vulnerability between the network without

intervention and the network with intervention. We analyse these policies for a GIIPS

shock of 5% that we have already considered in the previous section.

Empirical results - leverage cap

First, we consider the intervention of capping the leverage. As already discussed, the

leverage cap intervention is independent of the underlying network. Hence, the relative

reduction in aggregate vulnerability between the network without a leverage cap and the

network with a leverage cap relative to the network without a leverage cap is given by

∆AVLeverage cap =
AV −AVLeverage cap

AV
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under both full and partial information. Here, AVLeverage cap refers to the aggregate

vulnerability that is obtained by setting the target leverage to bn1 = min{B, dn1

en1
}, where

we consider two choices of B: B = 15 and B = B̃, where B̃ = 26.77 in 2011 and

B̃ = 21.68 in 2016. The choices of B̃ correspond to the leverage caps derived in Remark

2.4.9, i.e., the amount of equity that needs to be raised to achieve this cap, corresponds

to the total amount of capital used in the capital injection strategies. In this sense, the

costs of the leverage cap strategy with the target leverage of bn1 = min{B̃, dn1

en1
} coincides

with the cost of the capital injection policies.

Table 2.6 reports the results. When capping the leverage at 15, we see that the leverage

cap in 2011 yields a much larger relative reduction in aggregate vulnerability compared to

2016. This is not surprising, since the leverages and the target leverages were generally

higher in 2011 than in 2016 and therefore capping the leverage at 15 (from 30) has a

much larger effect in 2011 than in 2016.

Capping the leverage at B̃, which in both years is significantly larger than 15, yields

smaller relative decreases in aggregate vulnerability than capping at 15, which was to

be expected. Of course, less equity needs to be raised to reach a higher cap at B̃ than

reaching the lower cap of 15, but then one does not obtain the same benefit from it.

More interesting is the comparison between capping the leverage at B̃ and the capital

injection strategies, since these strategies have comparable costs. We find that in both

years, even the naive capital injection strategy outperforms the leverage cap strategy at

a cap of B̃. More sophisticated capital injection strategies do generally outperform the

leverage cap strategy at a cap of B̃ by a larger amount (even if they are used with a

network reconstruction method rather than under full information).

Empirical results - capital injection

Second, we consider intervention via capital injection. We set the total capital I that

is injected in the network to be equal to 10% of the total equity in the given network.

We consider different capital injection strategies i and compute the relative reduction

in aggregate vulnerability in the true financial network corresponding to such a capital

injection strategy. In particular, for a given capital injection strategy i the corresponding

relative reduction in aggregate vulnerability is given by

∆AV Injection(i) =
AVI(0;Xtrue) −AVI(i;Xtrue)

AVI(0;Xtrue)
, (2.17)

where 0 is the N -dimensional zero vector, and therefore AVI(0;Xtrue) represents the

aggregate vulnerability in the fully observed financial network with zero capital injection.

Again, Table 2.6 shows the results. We first look at the results under full information,

i.e., the columns labelled True, meaning that the strategy i = i(Xtrue) is computed based
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Capitalisation-Dependent Price Impact Constant Price Impact
(− log(0.1)/ck ∀k) (5 × 10−13 ∀k)
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GIIPS (%)
2011 Naive capital injection 7.29 - - - - - 7.43 - - - - -

- Proportional capital injection 16.11 3.52 7.47 7.28 8.99 9.88 15.94 3.66 7.64 7.82 8.55 8.31
- Proportional capital injection (Average) - - - 7.47 9.48 9.32 - - - 7.63 8.77 8.71
- Optimal capital injection 19.81 2.95 10.56 7.54 8.44 9.95 19.51 3.09 10.52 7.93 9.16 9.56

- Optimal capital injection (Average) - - - 10.31 11.98 11.80 - - - 10.38 11.27 11.44

- Leverage Cap (B̃ = 26.77) 3.53 - - - - - 3.41 - - - - -
- Leverage Cap (B = 15) 36.51 - - - - - 36.44 - - - - -

2016 Naive capital injection 8.97 - - - - - 9.06 - - - - -

- Proportional capital injection 23.67 3.10 8.33 8.35 10.60 7.98 22.53 3.82 8.47 8.46 10.41 6.85
- Proportional capital injection (Average) - - - 8.34 10.17 10.16 - - - 8.47 9.57 9.50

- Optimal capital injection 27.03 3.42 5.57 8.17 10.47 10.66 25.66 3.96 5.65 8.46 8.53 8.30
- Optimal capital injection (Average) - - - 5.99 9.46 9.56 - - - 6.07 8.69 8.61

- Leverage Cap (B̃ = 21.68) 2.96 - - - - - 2.79 - - - - -
- Leverage Cap (B = 15) 18.39 - - - - - 19.07 - - - - -

Table 2.6: Relative decrease (in percent) in aggregate vulnerability for the EBA 2011 and
2016 data for different policies (capital injections and leverage caps) and for two different
price impacts (capitalisation-dependent and constant). Values in bold indicate which
network reconstruction method performed best when used for a given capital injection
strategy. Values in a box represent the best capital injection method in a given year and
for a given price impact. Entries labelled “−” indicate that these values coincide with
the value reported in the column labelled True.
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(a) SYS under capital injections for 2011
data.
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(b) SYS under capital injections for 2016
data.

Figure 2.4: The plot of the optimal capital injection strategy against the proportional cap-
ital injection strategy under full information for a 5% GIIPS shock and a capitalisation-
dependent price impact.

on the fully observed asset holding matrix X. They show the relative reduction in ag-

gregate vulnerability when the capital injection i was computed from the fully observed

asset holding matrix Xtrue. The optimal capital injection policy performs best through-

out which it should do. What is interesting, is that the proportional capital injection

strategy still performs only slightly worse than the optimal injection strategy. This im-

plies that injecting capital proportional to the systemicness of the nodes seems to be a

good approximation to the optimal strategy derived from solving (2.13). This is further
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confirmed by Figure 2.4 which shows a scatter plot of the optimal capital injection strat-

egy under full information plotted against the proportional capital injection policy under

full information. We see that these two strategies are indeed very similar.

The naive capital injection strategy performs worst throughout with a relative reduction

of aggregate vulnerability of around 7% in 2011 and 9% in 2016, respectively, which is

significantly lower than e.g., the 19% and 25-27% reductions achieved by using the optimal

capital injection policy. Hence, we see that there is a clear benefit of using an optimal

strategy (or an approximation of the optimal strategy) in the case of full information.

Next, we consider the potential benefits of the different capital injection strategies if the

vector i representing the capital injections is determined under partial information by

using matrix reconstruction. Any type of capital injection improves aggregate vulnera-

bility. Therefore, even under partial information, capital injections will still reduce the

overall aggregate vulnerability. It is not clear, however, how much reduction in aggregate

vulnerability can be achieved and this is what we investigate here.

Since the naive capital injection policy is independent of the network, the relative reduc-

tion in aggregate vulnerability under full and partial information is the same. Hence, we

only consider the optimal and the proportional capital injection strategy under partial

information.

For the optimisation-based matrix reconstruction methods MinDen and Entropy, de-

termining the capital injections based on partial information means that we compute

iOpt(X̂), iProp(X̂), where X̂ is the reconstructed matrix that is either derived using

the MinDen or the Entropy method. Both optimisation-based reconstruction methods

only return one matrix, therefore the corresponding strategies are well defined.20 Then,

we consider the relative reduction in aggregate vulnerabilities ∆AV Injection(iOpt(X̂)) and

∆AV Injection(iProp(X̂)) as given in (2.17).

Since the sample-based reconstruction methods StatPhys, BayeER, and BayeEF return

not just one reconstructed network but a sample of reconstructed networks, there are

different ways how we can compute the proportional and optimal capital injection strategy

under partial information. We will consider two approaches: the first approach will just

average the strategies derived from the different reconstructed networks. The second

approach will choose a strategy associated with the tail of the distribution of aggregate

vulnerabilities.

Consider a sample of asset holding matrices X(1), . . . , X(d) and denote by Xtrue the true

asset holding matrix. One possible approach is to compute the proportional or optimal

20Since the reconstructed matrix obtained from the Entropy method is available in closed form, we
can also express iProp(XEntropy) analytically. In particular, we show in Corollary 8.A.3 that

iProp
n (XEntropy) = I

SYSXEntropy

(n)

AVXEntropy = I
αn1bn1∑N
ν=1 αν1bν1

.
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injection strategy on every network X(ν) of the sample, i.e., determine iProp(X(ν)) and

iOpt(X(ν)) and then consider the sample averages of these strategies given by

iProp, average =
1

d

d∑
ν=1

iProp(X(ν)), iOpt, average =
1

d

d∑
ν=1

iOpt(X(ν)).

We will refer to these strategies as proportional capital injection (average) and optimal

capital injection (average) in Table 2.6.

In addition to these average strategies, we are also interested in the tails of the distri-

bution of aggregate vulnerabilities under capital injection. For the proportional capital

injection strategy we determine the injection strategy that corresponds to the 95% per-

centile of the empirical distribution function of the sample of aggregate vulnerabilities

under proportional capital injection, i.e., we determine the index ν̃ ∈ {1, . . . , N} such

that

AVI(iProp(X(ν̃));X(ν̃)) = inf

{
x ∈ R | 1

d

d∑
ν=1

I{AVI(iProp(X(ν));X(ν))≤x} ≥ 0.95

}

and we denote this index by ν(0.95). 21 Hence, this corresponds to one of the highest

aggregate vulnerabilities observed in the sample in which proportional capital injection

was used. We then compute the relative reduction in aggregate vulnerability that corre-

sponds to the strategy iProp(X(ν(0.95)) and report this in Table 2.6 (in the row Proportional

capital injection).

For the optimal capital injection policy we consider the optimisation problem which aims

to find the capital injection strategy that minimises the 0.95-Percentile of the empirical

cumulative distribution function of the aggregate vulnerabilities derived from the d sample

networks with capital injection. Formally, we consider

min
i

inf

{
x ∈ R | 1

d

d∑
ν=1

I{AVI(i;X(ν))≤x} ≥ 0.95

}
,

subject to

0 ≤ in ≤ dn1 ∀n ∈ N ,

N∑
n=1

in = I.

(2.18)

We then consider the strategy that is a solution to (2.18) and report the corresponding

relative reduction in aggregate vulnerability in Table 2.6.

When considering the performance of the proportional and optimal capital injection poli-

cies under partial information in Table 2.6 we see that the reduction in relative aggregate

21If there is more than one index ν̃ satisfying the equation we select one suitable index randomly.
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vulnerability is significantly lower under partial information than under full information

for all types of reconstruction methods. Furthermore, we see that under partial informa-

tion, sometimes the proportional capital injection policy performs better than the optimal

capital injection strategy. For example, for the 2016 data and a constant price impact,

the proportional capital injection strategy based on the Entropy method gives a relative

reduction of the aggregate vulnerability of 8.47%, compared to a relative reduction of

5.65% achieved by the optimal capital injection strategy. The reason for this is that the

optimal capital injection is optimal for the reconstructed asset holding matrix XEntropy

and not necessarily optimal for the true matrix Xtrue. When evaluating the performance

of the different strategies, however, we use the true matrix Xtrue to compute the relative

reduction of aggregate vulnerability (2.17). Under full information, the optimal capital

injection strategy cannot perform worse than the proportional capital injection strat-

egy. Still, we overall find that in our four test cases (2 years and 2 price impacts), the

best-performing capital injection strategy (indicated by a box in Table 2.6) is an optimal

capital injection strategy in three cases22 and a proportional capital injection strategy in

only one case23.

Among the different reconstruction methods, the MinDen method performs worst in

both years and for both choices of price impact. Capital injection strategies that rely

on the MinDen method only reduce the relative aggregate vulnerability by around 3%.

This level of reduction is therefore much lower than the reduction of around 7-9% that

can be achieved with the naive capital injection strategy that does not even attempt to

reconstruct the underlying network.

The other network reconstruction methods, i.e., Entropy, StatPhys, BayeER, and Bay-

eEF perform generally better when used to decide on capital injections. Out of these

four methods, the Bayesian methods seem to perform best overall. For the four test cases

(2 years and 2 price impacts), the best capital injection strategy (indicated by a box

in Table 2.6) is always one that uses a Bayesian network reconstruction. For the 2011

data, the best capital injection strategy is the optimal capital injection (average) using

the BayeER method under the capitalisation-dependent price impact and the BayeEF

method under the constant price impact. They reduce the aggregate vulnerability by

11.98% and 11.44% respectively, which is better than the naive strategy which achieves

a relative reduction between 7.24 - 7.43%.

For the 2016 data, the optimal capital injection method using the BayeER method is

best under the capitalisation-dependent price impact assumption (10.66% relative reduc-

tion in aggregate vulnerability compared to 8.97% achieved by the naive capital injection

strategy). For the constant price impact assumption, the proportional capital injection

strategy using the BayeER method performs best (achieving a relative reduction in ag-

22for both price impacts in 2011 and for the capitalisation-dependent price impact in 2016
23for a constant price impact in 2016
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gregate vulnerability of 10.41% compared to 9.06% achieved by the naive strategy).

When fixing the type of capital injection strategy (proportional capital injection, pro-

portional capital injection (average), optimal capital injection, optimal capital injection

(average)), and then checking which network reconstruction method performs best in

a given year and for a given price impact, then we find that out of the 16 cases, the

BayeER performs best in 10 cases, BayeEF performs best in 4 cases and the Entropy

method performs best in 2 cases. The StatPhys is never the best-performing method in

our examples but still performs reasonably well.

Overall the best-performing capital injection methods using network reconstruction meth-

ods reduce the relative aggregate vulnerability in the range between 10 - 11% and are

therefore better than the naive capital injection strategy which achieves a reduction be-

tween 7 - 9%. In particular, in each of the two years and for both types of price impact

we see that all capital injection strategies that use the BayeER network reconstruction al-

ways outperform the naive capital injection strategy and the BayeER is the only network

reconstruction method considered here for which this is the case.

Hence, we see that using suitable network reconstruction methods to decide on risk

mitigation mechanisms in financial networks is indeed beneficial and can achieve better

outcomes than using naive intervention strategies.

2.5 Conclusion

We have investigated how well fire sales risk can be measured and mitigated under par-

tial information. We used the fire sales measures (systemicness, aggregate vulnerability,

direct vulnerability and indirect vulnerability) developed by Greenwood et al. (2015) and

analysed their dependence on the asset holdings matrix. We then investigated how well

these four different measures quantifying risk associated with fire sales can be estimated

when the individual entries of the underlying asset holdings matrix are not observable

but its row and column sums are. We considered two empirical asset holding matrices,

available in the data published by the EBA for their 2011 and 2016 stress tests, and as-

sumed that they were not fully observable. We estimated the asset holding matrix using

five different network reconstruction methods available in the literature and found that

in general these fire sales measures could be estimated reasonably accurately for a range

of shock scenarios.

We then analysed how well risk from fire sales can be mitigated if policy interventions are

based on partial information and network reconstruction techniques are used to decide

on policies. We considered two policies that were highly effective in the analysis under

full information in Greenwood et al. (2015), namely leverage caps and capital injections.

Leverage caps are generally independent of the underlying network and therefore do not

require network reconstruction techniques to implement them. In 2011 leverage caps
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lead to better outcomes than capital injections, but in 2016 when banks’ leverages were

generally lower, intervention via capital injections lead to better outcomes than leverage

caps. Therefore, in the more recent data, capital injections appear more beneficial.

Capital injections can be done using ad hoc methods that do not rely on the asset holding

matrix or can be done in a more targeted approach that would account for characteristics

of the asset holding matrix. We considered a naive capital injection strategy in which

capital is injected in proportion to the size of a bank (measured in terms of the total

assets on its balance sheet); no information on the individual entries of the asset holding

matrix is needed for this approach. We compare this to capital injection strategies that

inject capital in proportion to the systemicness of an institution or in an optimal way

(with the objective of reducing the aggregate vulnerability) and these methods then rely

on the (reconstructed) asset holding matrix.

We find that it is possible to achieve a significant relative reduction in aggregate vulner-

ability even under partial information. While the naive capital injection strategy, which

does not require network reconstruction, achieves relative reductions in aggregate vulner-

ability in the range of 7 - 9% in our study, the best-performing capital injection strategies

that rely on network reconstruction methods achieved a relative reduction of aggregate

vulnerability between 10 - 11%. We found that the Bayesian method (Gandy and Ver-

aart, 2017, 2019) for network reconstruction was the best overall method when used for

deciding on capital injections. In particular, we found that any capital injection strategy

that we considered that was based on the Bayesian network reconstruction method with

an Erdős-Rényi-type prior, always outperformed the naive capital injection strategy.

Hence, we see that network reconstruction techniques are not just useful for measuring

risk, but also for managing it. As we have already discussed, the intervention strategies

considered here can never do any harm (in the sense that using them cannot increase

the aggregate vulnerability of the network). So it was clear that even using them in a

non-optimal way can bring potential benefits. What is interesting, however, is to see how

much better some of them perform in comparison to naive strategies that do not attempt

to reconstruct the underlying network.
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Reverse stress testing for fire sales

risk

3.1 Introduction

Stress tests are used to evaluate banks’ losses under explanatory scenarios, to which banks

may be exposed. These scenarios show if the financial system can continue performing

its daily financial operations even if banks suffer significant losses. In one type of stress

test, a forward approach is conducted where the scenario is chosen and the losses are

simulated under this scenario. The formulation of the scenario can come from a range of

different motivations e.g., historical or economic motivations. In all cases, scenarios used

for a forward stress testing approach can reveal the losses of banks under various shocks.

The problem with choosing the scenario for the stress test is the scenario is subjective

and the losses from this scenario may underestimate the bank’s potential losses in future

events. Designing stress tests where the largest losses of banks are known is important

for evaluating financial stability and systemic risk in the worst-case situations.

We focus on a stress testing approach known as a reverse stress test. In a reverse stress

test, we ask “What scenario can cause X amount of losses ?”. The total losses banks are

exposed to are assumed and a scenario is derived which is consistent with such losses.

An advantage of a reverse stress test is identifying scenarios not observed in previous

financial events. Historically motivated scenarios used in forward stress tests are less

likely to reoccur, because of the change in financial regulation since the event took place.

A scenario with an economic motivation involves factoring in various indicators, and

justifying how these indicators correspond to a specific choice and size of the asset shock.

For all motivations of the given scenario, a forward stress test adds a level of bias, where

the individual size of asset shocks can vary depending on the regulator or policymaker

overseeing the stress test.

The need for reverse stress tests addresses a concern highlighted in a speech from the
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deputy governor of financial stability for The Bank of England “financial stability author-

ities must focus on what could happen rather than just what is most likely to happen”1

(Jon Cunliffe, March 2022). In this respect, a reverse stress test can provide scenarios

and losses not previously observed in a systemic event. 2

Developing tools for stress testing is important for assessing financial stability. This

was highlighted by Anderson (2016), particularly since the Great Financial Crisis. The

importance of stress testing was discussed by Daniel Tarullo 3, a member of the Federal

Reserve Board of Governors from 2004 to 2017 who categorised stress testing as “the

single most important advance in prudential regulation since the crisis”. Many central

banks and monetary institutions employ stress testing approaches with further detail on

supervisory stress tests provided by Duffie (2018).

There are different channels of systemic risk which can be modelled using stress testing.

We focus on stress tests for fire sales. A fire sales event occurs if assets are sold at

a discounted value in large volumes. The selling of assets triggers a mark-to-market

adjustment and a price impact for common asset holdings, resulting in further sales.

Multiple rounds of fire sales can continue to occur, where losses increase at each round.

We specifically consider the fire sales mechanism by Greenwood et al. (2015), where banks

sell assets to meet their target leverage. Assuming banks maintain their target leverage

increases the quantity of assets sold in a fire sale and fuels further losses to itself and

other banks.

We develop an optimisation-based macro-prudential reverse stress testing approach. This

optimisation method accounts for the multiple rounds of fire sales and the heterogeneity

of the bank balance sheet. This heterogeneity is reflected in the bank balance sheet and

the commonality of the bank’s asset holdings with other banks. We assume an initial

scenario and optimise the scenario resulting in a reverse stress test scenario, reflecting

the largest total losses to banks. We compare the losses from the reverse stress test to

other scenarios that could be used in a stress test.

Using the 2016 EBA data, we find the size of shocks allocated to assets under a reverse

stress test is sparse. This sparsity is represented by shocks of high magnitude for a few

asset holdings, where all other shocks are negligible or small in size. The shocks to assets

1Recollections of Financial Stability, Oxford union, 2nd March 2022,
https://www.bankofengland.co.uk/speech/2022/march/jon-cunliffe-speech-at-the-oxford-union-current-
financial-stability-environment.

2The Bank of England has published a report for 2021-2022 providing a descriptive analysis of
the supervision of CCPs for stress testing 2021–22 CCP Supervisory Stress Test: results report,
https://www.bankofengland.co.uk/stress-testing/2022/ccp-supervisory-stress-test-results-2021-22. The
recent prevalence of CCPs means few historic scenarios can be drawn to assess bank losses and so a reverse
stress test approach is adopted. Other reports have also been commissioned considering a reverse stress
test analysis i.e., the European Securities and Market Authority (ESMA) in 2022 4th ESMA Stress Test
Exercise for Central Counterparties, https://www.esma.europa.eu/sites/default/files/library/esma91-
372-2060 4th esma ccp stress test report.pdf.

3Stress Testing after Five Years: a speech at the Federal Reserve Third Annual Stress Test Modelling
Symposium, Boston, Massachusetts, June 25, 2014.
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correspond to asset-holding portfolios of banks with high target leverages. As shocks

result in losses to banks with high target leverages, a larger quantity of assets is sold

which leads to larger losses to other banks.

Under different constraints on the size of asset shocks, we find losses on the total asset

holdings of banks from a scenario under a reverse stress test are not unique. Multiple

scenarios with different magnitudes of asset shock size result in the same total losses

for banks. As the magnitude of the potential shock size to assets decreases, there is a

decrease in the magnitude of losses for banks with large losses and an increase in losses

for banks with small losses.

We consider the losses of banks relative to their equity holdings. Under the systemicness

and indirect vulnerability fire sales measures by Greenwood et al. (2015), we find a small

number of banks contribute to the total equity losses. From scenarios under a reverse

stress test, the equity losses which banks contribute to a fire sale highly vary and equity

losses incurred by banks in a fire sale are similar on average. These findings provide

further insights into the 2016 EBA stress testing data and banks of systemic importance

in a fire sales event.

Another contribution in this chapter is the theoretical results on fire sales measures when

banks can meet their target leverages, which we provide in the appendix. We state

conditions for which all banks can meet their target leverages, across a range of stress-

testing scenarios. As a consequence of these conditions, we formulate various inequalities

relating to the size of a bank’s cumulative returns in connection to its connectivity. These

results are important for the implementation of the new reverse stress testing method,

but also in the understanding of fire sale measures by Greenwood et al. (2015).

We organise this chapter as follows. In Section 3.2, we introduce the multiple period

fire sales measures by Greenwood et al. (2015). We formulate the optimisation problem

and introduce the algorithm for the reverse stress tests in Section 3.3. In Section 3.4,

we consider reverse stress tests for the 2016 EBA data. We conclude in Section 3.5. We

provide further detail on fire sales measures and proofs in the appendix.

3.1.1 Related literature

We consider the contagion mechanism of fire sales, where banks sell assets with consider-

ation to their leverage. The leveraged-focused fire sales build on the evidence by Adrian

and Shin (2010) that leverage is a driver of asset mark-to-market changes. The papers by

Duarte and Eisenbach (2021), Cont and Schaanning (2017) and Ramadiah et al. (2022)

focus on leverage-driven fire sales mechanisms. Other works which consider fire sales

but do not leverage targeting include Huang et al. (2013). These papers acknowledge

fire sales are a larger contributor to bank losses in a systemic event. As the losses from

fire sales can be significant in a systemic event, it is of interest to apply a reverse stress
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testing approach.

The area of fire sales is also of interest because of how incorporated it is into other types of

financial mechanisms. The work by Capponi et al. (2020) considers swing pricing, which

mitigates the operational costs passed to shareholders from first movers. In Cont et al.

(2020), they consider multiple sources of funding i.e., repo markets, collateral, and how

this is affected by liquidity and solvency risks. The work by Cont et al. (2020) provides

an application of their model to reverse stress testing.

We believe the papers by Baes and Schaanning (2023) and Grigat and Caccioli (2017)

are the closest to our approach for reverse stress testing. They use an optimisation-based

method for reverse stress testing and incorporate the contagion modelling of systemic

risk. In Baes and Schaanning (2023), they consider a reverse stress testing approach

using the fire sales mechanism presented by Cont and Schaanning (2017). The paper by

Grigat and Caccioli (2017) focuses on a reverse stress test for banks under DebtRank.

This is a solvency contagion mechanism representing the losses which propagate through

a network of banks, with interbank assets and liabilities Battiston et al. (2012c).

Our work differs from Baes and Schaanning (2023), as we do not assume a probabilistic

distribution for which the initial scenario is drawn, where the corresponding losses and

then aggregated. In our approach, we only assume the initial total losses of banks where

the output from the reverse stress testing scenario shows small changes from the initial

scenario assumed for the optimisation. We also differ from the reverse stress testing

approach by Grigat and Caccioli (2017), as the total losses after the clearing mechanism

are assumed for all banks. In this regard, one could categorise our approach as a “partial”

reverse stress test, partial in the sense that only the initial total losses of banks are

assumed. Assuming only the initial losses reduces the margin in the magnitude of losses

while incorporating the dynamics of the fire sale.

Other papers consider approaches where a distribution (a probabilistic approach) or a

set of scenarios are derived. The work by Flood and Korenko (2015) uses a grid search

approach incorporating a mix of stress testing and reverse stress testing. In Glasserman

et al. (2015), they consider a statistical approach using an empirical likelihood estimator

of incorporated risk factors. The work by Breuer and Summer (2020) approaches reverse

stress testing from extreme value theory and generates a probability distribution of losses

using the EBA stress testing data. A set of risk measures is considered by McNeil and

Smith (2012), where they derive scenarios resulting in losses equivalent to losses under the

VaR measure. Our approach is different from these papers, as we generate one scenario

from the reverse stress test. We find our results are still informative for assessing fire sales

as we outperform the largest total losses compared with other scenarios used in stress

testing.
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3.2 Fire sales mechanism

We describe a market setting by Greenwood et al. (2015). The setup is similar to the

setup in Chapter 2 but extended to multiple rounds of fire sales where required.

The setup of the bank balance sheet is identical to Chapter 2. We define the number

of financial institutions in the system as N with indices in a set N = {1, . . . , N}. We

assume that the bank can hold K assets with indices in a set S = {1, . . . , K}.

We define the asset holdings matrix X = (Xnk)n∈N ,k∈S ∈ [0,∞)N×K , where each entry

Xnk represents the asset holdings of bank n ∈ {1, . . . , N} in the asset k ∈ {1, . . . , K}
holds in million Euros.

We deviate from Chapter 2 by incorporating multiple rounds of fire sales. The total

number of rounds of fire sales is defined as T ∈ N where t ∈ {1, . . . , T}.

The total assets of the bank are defined as αt ∈ [0,∞)N , where αnt represents the total

assets of the bank n at time-t. The total capitalisation is defined as ct ∈ [0,∞)K , where

ckt represents the total capitalisation of the asset k at time-t. At t = 1, the initial total

assets of the bank and asset capitalisation represent the row and column sums of the

asset holdings matrix i.e.,

αn1 =
K∑
k=1

Xnk ∀n ∈ N , ck1 =
N∑

n=1

Xnk ∀k ∈ S.

We assume the total asset holdings of all banks at t = 1 is non-negative i.e., αn1 ≥
0 ∀n ∈ N and the initial total capitalisation of all assets is positive i.e., ck1 > 0 ∀k ∈ S.

The total asset holdings of the bank can be represented by the sum of its debt and

equity. We refer to dt ∈ [0,∞)N and et ∈ [0,∞)N as the debt and equity, where dnt and

ent represents the debt and equity of the bank n at time-t, in particular

αnt = dnt + ent ∀n ∈ N . (3.1)

The asset holdings at time-t are represented by (3.1). The initial debt and equity are

denoted as dn1 and en1.

As part of the fire sales mechanism, we introduce the target leverage of the bank, repre-

senting the ratio of the bank’s debt relative to its equity. We define b ∈ [0,∞)N as the

target leverage, where bn represents the target leverage of bank n:

bn = min

{
dn1
en1

, bmax

}
∀n ∈ N (3.2)

and bmax ≥ 1 is the maximum target leverage for any given bank. The maximum target

leverage represents a regulatory constraint imposed on the bank. Under the assumptions

by Greenwood et al. (2015), the target leverage remains the same in all rounds of fire
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sales.

We define the matrix of portfolio weights as m = (mnk)n∈N ,k∈S ∈ RN×K , where mnk =

Xnk/αn1 and each entry mnk represents the weight of asset k within the total asset

portfolio of bank n. From the definition of the matrix,
∑K

k=1mnk = 1 ∀n ∈ N .

We assume an initial negative shock of the bank’s asset holdings as part of the fire sales.

We define the shock as ft ∈ (−∞, 0]K , where fkt represents the shock to asset k at time-t.

The initial shock is denoted as f1. The initial net returns, which represent the relative

shock to the asset holdings of the bank are denoted as Rt ∈ (−∞, 0]N , where at time-t:

Rnt =
K∑
k=1

mnkfkt ∀n ∈ N .

The shock to the bank results in the bank selling a proportion of its asset holdings.

This triggers a price impact within the respective asset k. We define the price impact

l ∈ [0,∞)K , where lk represents the price impact to asset k. This incorporates the

mark-to-market adjustment for assets in a fire sale.

We introduce the fire sales mechanism by Greenwood et al. (2015). The following is

assumed about the fire sales:

– Banks sell assets to meet their target leverage where possible.

– Banks proportionally sell their asset holdings.

– Assets sold trigger a price impact on the asset.

These assumptions on the fire sale hold in the first round (as in Chapter 2) and subsequent

rounds of fire sales. Incorporating the dynamics of the fire sale, we introduce the total

assets of the bank and the shock to assets for multiple rounds of fire sales as follows:

αn(t+1) = αnt

(
1 + bn

K∑
k=1

mnkfkt

)+

,

fk(t+1) = −lk
N∑
p=1

mpkαptδ (Rpt) ,

where δ(xn) = (min (−bnxn, 1 + xn))+ ∀n ∈ N and t ≥ 1.

(3.3)

The time-dependent total assets of the bank and shock to assets in (3.3) incorporates the

fire sales feedback effect between banks and assets.

We describe the interaction between the asset shock and the bank’s total asset holdings

in a fire sale: First, a shock (the initial shock f1) is applied to the bank’s asset holdings

decreasing the total asset holdings of banks. The losses in its assets lead to the bank

proportionally selling its asset holdings to meet its target leverage. The total sales of the

asset trigger a mark-to-market valuation and a price impact which decreases the asset’s
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value. This creates an indirect shock and results in additional losses for banks. If the

bank is unable to sell its asset holdings to maintain its target leverage then the bank sells

all its asset holdings. Further rounds of fire sales occur leading to continued losses in the

total asset holdings of banks.

The function δ : R → R represents the quantity of assets sold (the same as in Chapter

2) and the ability of the bank to meet its target leverage. If its remaining asset holdings

are larger than its leveraged net returns, then the bank sells all its remaining assets.

A studied metric in fire sales contagion by Greenwood et al. (2015) is the connectivity

component of the bank. This is a measure of losses from a bank to all other banks in the

network. The discussion on connectivity for t = 1 and the price impact on assets follows

in the same way as in Chapter 2. The connectivity is defined as γt ∈ [0,∞)N , where γnt

represents the connectivity of bank n at time-t:

γnt =
K∑
k=1

lkmnk

(
N∑
p=1

mpkαpt

)
∀n ∈ N and t ≥ 1.

The connectivity represents a measure of the commonality of the bank’s asset holdings

with other banks, with the inclusion of the price impact. As the total asset holdings

of the bank are non-increasing in each stage of the fire sales, the connectivity is also

non-increasing in each stage of fire sales.

The choice of price impact can have different functional forms. In Greenwood et al.

(2015), a constant price impact is assumed for all assets i.e., l = l1 = . . . = lk ∀k ∈ S,

where l ≥ 0 represents the magnitude of the constant price impact. We consider a

capitalisation-dependent price impact motivated by Cifuentes et al. (2005), as in Chapter

2. The capitalisation-dependent price impact is defined as follows:

lk =
ρ

ck1
∀k ∈ S,

where ρ ≥ 0 and ck1 > 0. The larger the capitalisation of the asset, the smaller the

price impact of selling the asset. Assuming that the price impact is capitalisation-

dependent, then the connectivity component ρ is constant. As shown in Chapter 2,

under the capitalisation-dependent price impact, then the connectivity of all banks is

equal to the connectivity constant i.e., γn1 = ρ ∀n ∈ N .

3.3 Reverse stress test formulation

We introduce the optimisation problem for the reverse stress test. We consider a scenario

from the reverse stress test which maximises the total losses of banks from a fire sale. As

the number of rounds under the optimisation can differ from the number of simulated

61



Chapter 3: Reverse stress testing for fire sales risk

fire sales rounds, we denote the rounds under the optimisation as Q ≤ T .

We compare scenarios under a reverse stress test to another scenario if the initial losses

of both scenarios are bounded by the same value. The constraint on the initial losses

removes reverse stress testing scenarios where losses are only larger than another scenario

because the size of shocks has been scaled i.e., the losses from a scenario under a reverse

stress test are larger than another scenario only because the magnitude of shocks has

been multiplied by a value > 1. With this constraint, a scenario is more severe than

another scenario if the total losses from the fire sale are larger and the bound on the total

initial losses is the same in both scenarios. We denote the total initial losses assumed in

the optimisation problem as W ≥ 0.

We denote fmin ∈ (−∞, 0]K as a lower bound to the shock on assets, where each fmin
k

represents the lower bound shock of the asset k. This constraint on the optimisation

problem represents the largest negative initial shock to an asset.

We now formulate the optimisation problem that identifies a scenario (in our case a vector

f1 that minimises the total asset holdings of all banks after Q rounds of fire sales). It is

given as follows:

min
f1∈(−∞,0]K

:
N∑

n=1

αn(Q+1) ∀Q ≥ 1,

subject to :

−W ≤
K∑
k=1

ck1fk1,

− 1

1 + bn
≤

K∑
k=1

mnkfk1 ∀n ∈ N and ρ ≤ 1

1 + bmax
,

fmin
k ≤ fk1 ≤ 0 ∀k ∈ S.

(3.4)

Other objectives could also be considered to measure the severity of the scenario i.e., the

objective function for minimising the smallest fluctuation between shocks is considered

by Grigat and Caccioli (2017).4

The first constraint is on the initial total losses from the scenario under a reverse stress

test. The second constraint represents a condition on the initial inputs in which the

bank is always able to meet its target leverage. Further details about this condition are

provided in Appendix 8. The last constraint is the severity of the shock size to assets.

We assume that the shock is non-positive and the lower bound of shocks can vary for

different assets.

The constraint space of the scenario is defined under the set of inequalities from the

optimisation problem (3.4), which we denote as C. The inequalities for the initial scenario

4An objective function which can be considered as a measure of the fluctuation of the total asset

holdings of banks after Q rounds under the fire sales mechanism is
∑Q

t=1

∑N
n=1

(
αn(t) − αn(t+1)

)2
.
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represent a convex and compact space for the fire sales scenario (satisfied under the

linearity of the shock under the optimisation constraints) and are feasible for all parameter

choices. As the constraint space is compact, convex, non-empty (there always exists a

scenario satisfying the constraint space i.e., ∃f̃1 in which f̃1 ∈ C) and bounded, then

the set of optimal solutions to (3.4) is non-empty, convex and compact. From these

conditions, provided that the initial input to the optimisation is in C there is an output

from the reverse stress test scenario. Further details for the set of optimal solutions to

constrained optimisation problems can be found in Bertsekas et al. (2003). The objective

function of the optimisation problem is non-convex, as a result, there may be no unique

minimiser to the optimisation problem under the constraints of the optimisation problem.

3.3.1 Frank-Wolfe algorithm

We focus on the approach to solve the optimisation problem (3.4). There is a wide

application of constrained optimisation-based approaches to study financial networks and

systemic risk. In Pichler et al. (2021), they minimise the Markowitz mean-variance under

a QCQP (quadratically constrained quadratic program), in the context of fire sales. They

solve the portfolio optimisation problem using different branch and bound methods e.g.,

KNITRO Byrd et al. (2006) and BARON Sahinidis (1996).

The work by Diem et al. (2020) minimises the losses from solvency contagion on the inter-

bank network between banks. A mixed integer linear programming problem is formulated

under the DebtRank measure.

We consider the Frank-Wolfe algorithm for the optimisation problem, which accounts for

multiple rounds of fire sales. Introduced in the paper by Frank and Wolfe (1956), the

Frank-Wolfe method falls under the class of convex-constrained optimisation methods.

Stochastic variants of the Frank-Wolfe method incorporating stochastic gradient descent

have been developed by Hazan and Luo (2016). Further detail on these types of ap-

proaches in the context of machine learning is provided by Lan (2020). Other known

constrained optimisation methods include the projection gradient descent Rosen (1961).

The difference between the Frank-Wolfe method with the projection gradient descent

is that the Frank-Wolfe method is projection-free, where the optimisation stays in the

feasible set.

The idea of the Frank-Wolfe algorithm is to transform one non-linear optimisation into

multiple linear programming problems. Each linear program is a linear combination of

the shocks with associated weights, where weights are dependent on the inputs of the

fire sale mechanism. From the optimised scenario, convex combinations of the previous

input and optimised scenario are taken, resulting in an updated scenario. The updated

scenario is used as input in the next iteration step. Each sublinear optimisation can

be considered as a linear approximation to the non-linear problem, represented by the
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Fire Sales

Input
Scenario

Round
1
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Objective
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Initial
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Figure 3.1: The figure represents a combination of the Frank-Wolfe algorithm with the
fire sales mechanism. Partial derivatives terms correspond to links between two nodes.
The algorithm starts with an initial input and derivative terms under the initial input.
These terms are used in the constrained optimisation problem for computing the oracle
(a linear minimiser of the optimisation problem). The updated scenario is then formed
from a convex combination of the previous input and the oracle. Multiple iterations of
the optimisation problem are taken where the last updated scenario represents the reverse
stress testing scenario.

first-order expression of a Taylor expansion.

The advantage of the Frank-Wolfe method is the calibration of hyperparameters and

computational speed to achieve a solution. For the step size, simple functions (those which

only depend on the number of iterations) can be used for the method. The transformation

to a linear program is also easier to solve than a nonlinear optimisation problem.

The constraint space is convex and compact. The objective function is differentiable

under the target leverage condition. The objective function is non-convex, so the output

solution may only be a local optimiser. If the global optimiser is reached, then this is only

an approximate solution under the gradient descent type approach. There has been work

on using the Frank-Wolfe method for non-convex optimisation problems i.e., network flow

optimisation Chari et al. (2015).

Algorithm 1 Frank-Wolfe algorithm (1956)

Let f 0
1 ∈ C

for τ = 0 . . . T do

Compute s = arg min
s∈C

∑K
k=1 sk

∂F (fτ
1 )

∂fτ
k1

Update f τ+1
1 = (1 − η) f τ

1 + ηs for η(τ) := 2
τ+2

end for
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We introduce the Frank-Wolfe algorithm. We define the number of iterations (or epochs)

as T ≥ 1. This represents the total number of updates we consider for the algorithm.

The constraint space of the optimisation problem is denoted by C. The initial input that

denotes the initial shock is denoted as f 0
t , with updated values of the shock as f τ

t at

time-t, where each f τ
kt represents the shock to asset k at time-t, from the initial shock f τ

1

under the iteration τ .

The linear minimisation oracle is defined as s, and the objective function is denoted as

F : RK → R. The step size at each iteration period is defined as η ∈ [0, 1], where η(τ)

depends on the iteration τ .

There can be different functions for the choice in step size, provided that the step size is

η ≤ 1. The step size chosen is a non-increasing function of the total number of iterations

from the Frank-Wolfe method. The objective function is equal to the total asset holdings

of all banks after Q rounds of fire sales, under the initial scenario at iteration τ :

F (f τ
1 ) =

N∑
n=1

ατ
n(Q+1) ∀n ∈ N and Q ≥ 1,

where ατ
nt denotes the total asset holdings of the bank n at time-t, from the initial shock

f τ
1 at iteration τ . To use the Frank-Wolfe method, we calculate the derivative terms,

which depend on the updated total assets of the bank, shock and previous derivative

terms. The gradient terms represent the change of the total assets of the bank w.r.t the

initial shock. Calculating the partial derivatives of the total asset holdings of all banks

and the shock to assets at time-t:

∂F (f τ
1 )

∂f τ
k1

=
N∑

n=1

∂ατ
nt

∂f τ
k1

∂ατ
nt

∂f τ
k1

= αn1

t−1∑
j=1

(
t−1∏
i ̸=j

(
1 + bn

K∑
k=1

mnkf
τ
ki

))
bn

K∑
k=1

mnk

∂f τ
kj

∂f τ
k1

∀n ∈ N ,

∂f τ
kt

∂fk1
= lk

N∑
n=1

mnk

(
∂ατ

n(t−1)

∂f τ
k1

bn

K∑
k=1

mnkf
τ
k(t−1) + ατ

n(t−1)bn

K∑
k=1

mnk

∂f τ
k(t−1)

∂f τ
k1

)
∀k, ∀t ≥ 2.

The partial derivative expressions are used in the linear program optimisation, which

updates the output scenario.

3.3.2 Fractional Knapsack Problem

To gain an intuition on the solution arising from the optimisation method, we consider

one round of fire sales. We assume there is no lower bound on the magnitude of each

shock, simplifying the number of constraints on the optimisation. We define the simplified

one-round optimisation as follows:
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min
f1∈(−∞,0]K

:
N∑

n=1

αn2,

subject to :

−W ≤
K∑
k=1

ck1fk1,

− 1

1 + bn
≤

K∑
k=1

mnkfk1 ≤ 0 ∀n ∈ N and ρ ≤ 1

1 + bmax
.

Using the expression of the total assets of the bank after one round of fire sales and the

definition of the initial asset capitalisation, then:

min
f1∈(−∞,0]K

:
N∑

n=1

αn1

(
1 + bn

K∑
k=1

mnkfk1

)
,

subject to :

−W ≤
N∑

n=1

αn1

(
K∑
k=1

mnkfk1

)
,

− 1

1 + bn
≤

K∑
k=1

mnkfk1 ≤ 0 ∀n ∈ N and ρ ≤ 1

1 + bmax
.

(3.5)

In the following, we show that the optimisation problem (3.5) is a fractional knapsack

problem. We assume that the connectivity constant is chosen such that it satisfies the

inequality on the maximum target leverage. By only considering the component that is

dependent on the scenario in the objective, and taking the negative for the inequalities

in the constraints, we state a general formulation for a similar corresponding problem.

For p, w ∈ Rn
++ and W ∈ R and p1

w1
≥ . . . ≥ pn

wn
wlog:

max
un∈RN

:
N∑

n=1

pnun,

subject to :

N∑
n=1

wnun ≤ W,

0 ≤ un ≤ umax
n ∀n ∈ N .

For the corresponding one round fire sales optimisation, then un =
∑K

k=1mnk(−fk1), pn =

αn1bn, wn = αn1 and umax
n = 1

1+bn
∀n ∈ N .
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The formulation of the optimisation problem is known as the fractional knapsack problem

(or continuous knapsack problem). The algorithm was introduced by Dantzig (1957), with

further detail on the knapsack approach provided by Korte et al. (2011). A knapsack

problem is an optimisation when the objective is maximising the profit value of each

variable while respecting the capacity available. We state the general proposition used by

Baes and Schaanning (2023) Proposition 7 in the appendix. The proposition is modified

to reflect the different upper bounds assumed in the optimisation.

Proposition 3.3.1. If
∑N

n=1wnu
max
n ≤ W , the solution to the fractional knapsack prob-

lem is u∗ = umax
n ∀n, and if W ≤ 0, then u∗ = 0. Otherwise, the solution u∗ is

u∗1 = umax
1 , . . . , u∗p−1 = umax

p−1 , u
∗
p =

W−
∑p−1

n=1 wnumax
n

wp
, u∗p+1 = . . . = u∗N = 0 for the only

n ∈ {1, . . . , N} for which
∑p−1

n=1wnu
max
n < W ≤

∑p
n=1wnu

max
n .

Proposition 3.3.1 represents a greedy algorithm for the maximisation of the objective.

The value of each un is based on the relative metric pn/wn, where pn is part of the

objective function with an associated capacity wn.

In the context of the fire sales, as we assume that initial losses are non-negative, there

will always be an associated corresponding shock from the optimisation problem. With

un representing the net returns of each bank, as the total assets of the bank are in the

numerator and denominator of pn/wn, the losses are solely allocated to banks depending

on their target leverage. The banks with higher target leverages lead to an increase in

asset sales and further losses to other banks.

For the scenario itself, the assets shocked will correspond to banks with high target

leverages. As the optimisation problem (3.4) constrains the size of the shock and accounts

for multiple rounds of fire sales, the scenario from the reverse stress test will not fully

represent a fractional knapsack solution.

3.4 Reverse stress test results

We consider the reverse stress testing approach for the 2016 EBA stress testing data.

This is the same dataset used in Chapter 2, which consists of 51 banks and 36 different

asset holdings. As we only consider assets with positive total capitalisation, we do not

include the sovereign loans of Liechtenstein.5 We have in total 51 banks with 35 different

asset holdings.

We assume that all assets are marketable and can be sold in a fire sales event. We

introduce the stress testing scenarios for fire sales as follows:

5This asset was included in Chapter 2 because banks in the 2011 EBA dataset did hold sovereign
loans in Liechtenstein.
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Reverse stress test shock (RVTshock): The scenario of shocks to assets is deter-

mined by the reverse stress test under the optimisation problem (3.4) for Q rounds

of fire sales.

All asset shock (Allshock): All assets are shocked by an equal value f , where f =

fk1 ∀k ∈ S. In our case, the scenario corresponds to a 1% shock (f = 0.01) to all

assets.

Dual asset shock (Dualshock): We define S ′ as the set of shocked assets and S̄ ∈
S \ S ′ as assets not shocked. The assets shocked in S ′ where f = fk′1 ∀k′ ∈ S ′

and fk1 = 0 ∀k ∈ S̄ otherwise. We consider a shock to retail and corporate

assets S ′ = {1, 2} of 1.24% (f = 0.0124). These two assets form 80% of the total

capitalisation of all asset holdings.

As an additional metric to assess the severity of fire sales, we introduce the notion of a

bank being under stress. Banks will always be able to meet their target leverages under

the target leverage condition. However, there may be additional regulatory thresholds

that the bank does not meet. As part of the 2016 EBA requirements, only banks with

€30bn participate in the bank’s annual stress testing exercise. We define the notion of a

stressed bank as follows.

Definition 3.4.1. A bank n ∈ N is under stress at time-t if the bank’s total asset holdings

at time-t relative to its initial total asset holdings is below the threshold Θ ∈ (0, 1],

αnt < αn1Θ ∀t ≥ 1.

If Θ = 1 the bank is stressed before the fire sale. If Θ ∈ (0, 1), this represents a state

of stress when the total asset holdings of the bank decrease during the fire sale. In this

setting, we set the threshold Θ = 0.1, representing that a bank is stressed if the total

asset holdings of the bank are below 10% of its initial total asset holdings.

Input Numerical Value

Initial total losses (W ) 0.01
∑N

n=1 αn1

Max shock
(
−fmin

)
1

Capitalisation-dependent constant (ρ) 10−2

Fire sales maturity (T) 8
Rounds for optimisation (Q) 4

Total number of iterations (T ) 200
Max target leverage (bmax) 30

Stress threshold (Θ) 0.1

Table 3.1: Input values for the RVTshock and associated measures.

We consider the inputs in Table 3.1 for the reverse stress test and associated measures.

We assume a capitalisation-dependent price impact and set the capitalisation-dependent
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constant such that it satisfies the upper bound, as in the optimisation problem (3.4). We

consider an initial loss equal to 1% of the total assets (equivalent to 146bn euros). In

total, we simulate 8 rounds of fire sales and optimise over 4 rounds. The Allshock and

Dualshock satisfy the constraints of the optimisation problem for the values in Table 3.1.

We show that for different initial inputs of the reverse stress test, there is only a small

difference in the updated scenario under perturbed scenarios of both the Allshock and

Dualshock. We sample from a perturbed Allshock and Dualshock, in which perturbations

follow a normal distribution. We only consider a perturbation of the initial scenario if it

satisfies the constraints of the optimisation in (3.3).

We consider D number of samples where d ∈ {1, . . . , D} for each initial scenario. We

denote f τ,d
1 as the initial input and shock for sample d, under the iteration τ . The

perturbed Allshock for the initial input is f 0,d
k1 = f 0

k1 + N
(

0,
(
σall
)2) ∀k ∈ S. The

perturbed Dualshock f 0,d
k1 = f 0

k1 + N
(

0,
(
σdual

)2)
k ∈ {1, 2} and f 0,d

k1 = f 0
k1 ∀k ∈

S \ {1, 2}. The normal distribution has a mean of 0 and a standard deviation of σall for

the Allshock and σdual for the Dualshock. The perturbations are only applied to assets

which are shocked under each scenario i.e., fk1 > 0.

As a metric representing the similarity of updated scenarios, we define Error(fT
1 ) as the

mean range between the smallest and largest shocks from all updated perturbed scenarios,

where:

Error(fT
1 ) =

1

K

K∑
k=1

(
max

d
fT ,d
k1 − min

d
fT ,d
k1

)
.

This is a measure of the deviation across all shocks, where the perturbed Allshock and

Dualshock are used.

We consider D = 1000 for each input scenario, with σall = 0.01 and σdual = 0.1 under the

values in Table 3.1. In total, we compute the error for 2,000 different samples, with 1,000

samples for the Allshock and 1,000 for the Dualshock. We find the mean range across the

Allshock and Dualshock is around 7×10−4. This shows that the values on average under

perturbation have a small difference, and the output from scenarios under the reverse

stress test is similar in magnitude. As the difference in the error range of values is small,

we aggregate all updated generated scenarios from the reverse stress test f̄T
1 , where:

f̄T
k1 =

1

D

D∑
d=1

fT ,d
k1 ∀k ∈ S.

We now present the results of our case study in Figure 3.2. We find a similar Knapsack

solution for the RVTshock for the allocation of shocks under the reverse stress test.

The scenario consists of large shocks to assets of different capitalisations i.e., the shocks

applied to Denmark and Luxembourg sovereign loans have small capitalisations while the

UK and the US sovereign loans have large asset capitalisations. Interestingly, retail and
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Figure 3.2: For the RVTshock under the parameters in Table 3.1, the plots in the top
row represent the initial shock (−f) for assets (top left) and the initial net returns (−R)
for banks (top right). The plots in the row below represent the total losses from the fire
sale (bottom left) and the total number of stressed banks (bottom right), across 8 rounds
of fire sales. We compare the total losses and number of stressed banks across all three
scenarios. The dashed line (blue circle) represents the RVTshock, the solid line (green
circle) the Dualshock and the dotted (red triangle) represents the Allshock.

corporate assets are not shocked under the reverse stress testing scenario, even though

these assets have the highest total capitalisation and are the most held assets by banks.

This could be from the total capacity of sovereign loans, which is smaller than retail

and corporate assets. From the optimisation formulation, larger shocks can be applied

to sovereign loans, leading to larger losses for banks. Because of the similarity of asset

holdings of sovereign loans for corresponding located countries, the assets shocked under

the reverse stress test are targeted towards groups of banks with high target leverages

i.e., these groups are represented by Greek, Swedish, and UK banks.

The shock to Greek assets is associated with the high target leverages of Greek banks,

and UK assets towards UK banks with large total asset holdings and asset holdings in

multiple assets. The shock to Nordic sovereign loans is less apparent. From the EBA

2016 stress testing data, the largest Nordic banks have similar portfolios and small capital

holdings. This commonality is shown by the shock of Swedish sovereign loans, in which
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Danish banks have a large proportion of asset holdings. The overlapping portfolios of

Nordic banks with high target leverages are part of the RVTshock, having a larger effect

on losses than shocks to other assets e.g., Spain or Italy.

On the initial returns in Figure 3.2, the largest returns are for French and German banks.

Even though the sovereign loans of these countries were not shocked, these banks held

assets from other countries resulting in larger net returns. The net returns from these

banks are higher than the net returns of some UK banks, whose corresponding sovereign

loans were shocked under the reverse stress test. The net returns under the reverse stress

test for Italian and Spanish banks remain low, even though banks from these countries

were highly affected during the Great Financial Crisis. For the magnitude of initial net

returns under the reverse stress test, there are banks which have a net return of around

0.1. Compared with the AllShock, this is a ×10 increase in the magnitude of initial net

returns to which the bank is exposed.

For the second row of plots in Figure 3.2, we consider the losses of banks across T fire sales

periods, for all three scenarios. The results show that considering additional rounds of fire

sales does contribute to the total losses of banks. This is the case across all three scenarios,

where there is a 27% decrease in the total capitalisation of banks after T periods. After

the 4th round of fire sales, the total losses of banks converge and remain unchanged.

From the RVTshock, the largest proportion of losses and the total number of stressed

banks are concentrated in the first round of fire sales. We find the RVTshock to result in

the largest losses, which is 3% higher than other scenarios. Comparing the Allshock and

Dualshock (where the lines in Figure 3.2 overlap with each other), the aggregate losses

and the number of stressed banks are similar compared with the RVTshock.

Figure 3.3 are plots of the total assets of the bank and the asset capitalisation after

T periods of fire sales. We find the largest losses for the total assets of the bank to be

concentrated in France and the UK, and relative losses within Germany and the UK. The

largest group of losses is from UK banks, followed by French banks. From the total assets

of the bank, these groups of banks have the largest total asset holdings, which scales the

volume of losses from the given shock. Other prominent banks with large bank losses are

Nordic banks (DK1, SE1) and German banks (DE4). Banks from the Netherlands have

small losses, but all these banks from the Netherlands are affected by the RVTshock.

Losses are overall clustered in specific groups denominated by the country.

For the relative bank losses, we find no singular group of banks with the largest relative

losses. This reflects a different picture than the losses on the bank’s asset holdings, where

the losses were reflected by the country. The relative total asset losses for German, French

and Dutch banks are the highest, resulting in > 90% relative bank losses for two banks

from the fire sales. These relative losses are high for banks with high capitalisation,

whereas relative losses are small for other banks with a larger presence in the dataset.

The asset capitalisation of corporate and retail have the largest losses in Figure 3.3 be-
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cause 80% of the total capitalisation of assets is concentrated in both these assets. Other

prominent sovereign asset losses include large economically sized countries i.e., France,

Germany, the UK and the US. For the relative losses in the total capitalisation of the

asset, the range of the losses between asset groups is similar, with no one asset having a

significantly higher relative loss than another asset. This may arise from the proportional

selling assumption on asset holdings in the fire sale, where a quantity of each asset is sold

from the fire sales.
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Figure 3.3: For the RVTshock using the parameters in Table 3.1, the plots in the top
row represent the bank’s losses across all rounds of fire sales (top left) and losses relative
to its initial total asset holdings (top right). The plots in the bottom row represent the
losses in each asset class (bottom left) and the losses in each asset class relative to its
initial capitalisation (bottom right).
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3.4.1 Systemicness and Vulnerability

We consider the equity losses from the perspective of systemicness and indirect vulner-

ability. We use the measures by Greenwood et al. (2015), which are the same measures

used in Chapter 2. Compared with Chapter 2, we extend the definition of systemicness

for multiple rounds of fire sales. Further details can be found in the Appendix 8.

The systemicness SYSt ∈ [0,∞)N is a measure of equity losses, where SYSt(n) is the

contributed equity losses of bank n ∈ N at time-t. The indirect vulnerability IV t ∈
[0,∞)N is a measure of equity losses incurred by the bank, where IV t(n) is the incurred

equity loss of bank n ∈ N at time-t. Both these measures reflect different aspects of fire

sales losses. We define these measures, assuming banks can meet their target leverages:

SYST (n) =
T∑
t=1

γnt
αnt∑N
n=1 en1

bn(−Rnt),

IVT (n) =
T∑
t=1

(
αnt

en1

K∑
k=1

mnk(−fk(t+1))

)
∀n ∈ N T ≥ 1.

The systemicness comprises of four bank components: connectivity (γ), size ( α∑
e
), target

leverage (b), and net returns (−R). The indirect vulnerability is a measure of the net

returns from the updated shock and the target leverage component, represented by the

total assets of the bank divided by the equity.

As stated by Greenwood et al. (2015), these two measures represent two independent ways

of evaluating the losses to and from banks. For example, a bank with a high indirect

vulnerability may have a low systemicness, and vice versa. We consider these measures

for the RVTshock.
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Figure 3.4: For the RVTshock, the plots represent the systemicness (SYS) and indirect
vulnerability (IV) after all rounds of fire sales. The shaded grey represents the systemic-
ness and indirect vulnerability for the first round and black areas represent losses for all
subsequent higher-order rounds.
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Figure 3.4 shows contributions from systemicness and indirect vulnerability, where losses

are differentiated between the first round and higher-order rounds. We find large dif-

ferences in equity losses contributed by banks under systemicness i.e., UK banks have a

higher systemciness than Italian banks on average. For the indirect vulnerability, there

is a similarity in equity losses incurred by banks, where the majority of equity losses are

between 0%−10%. For systemicness, banks with the largest equity losses are from France

and the UK. There are also individual banks in Germany and the Netherlands with a

high systemicness. We find the systemicness of banks is similar to a scaled version of the

bank’s losses. The similarity is reflected in the contribution of the first round, where the

connectivity is constant and all other terms represent the change in the bank’s total asset

holdings in the first round.

For the indirect vulnerability, there are some banks with higher indirect values i.e., banks

from the Netherlands but values overall remain consistent. This shows that relative to

the equity losses, the RVTshock has a wider effect on all banks. In the plots, we highlight

the systemicness and indirect vulnerability between the first round and later stages of

the fire sale. For all banks, the largest proportion of losses is concentrated in the first

round. As reflected in the total largest losses, there is a larger concentration in the first

round of fire sales that is observed on the individual bank level.

3.4.2 Sensitivity

We evaluate the RVTshock for different initial losses and lower bounds on the shock. We

assume all other parameters are the same as in Table 3.1 and calculate the scenarios from

the reverse stress test. For the change in the total initial losses, we scale the shocks of

the Allshock and Dualshock, relative to the change in the initial loss.

For each of the optimisation problems for different initial losses, the scenarios are con-

sistent with the constraints in the optimisation problem. For the sensitivity of the lower

bound shock, we compute the scenario from the reverse stress test of different lower

bounds and the total losses from the scenario. We only consider the sensitivity of the

shock with the reverse stress test approach, as the Allshock and Dualshock cannot be

adjusted such that it is consistent with the assumed initial losses.

From Figure 3.5, we find an overall monotonic relation between the initial and total losses

from the fire sale. Between all scenarios, the total losses from the RVTshock are higher

than the Allshock and Dualshock in all cases. As the initial losses increase, this amplifies

the total losses banks are exposed to i.e., 70% total fire sales loss from a scenario from

3% in initial total losses. Even with no bank defaults, banks can suffer large losses on

their asset holdings triggering a state of stress.

The increase in losses also results in a higher number of stressed banks under the RVT-

shock, compared with other scenarios. As the shock to assets under the RVTshock is
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sparse and shocks of high magnitude are allocated to few assets, this results in higher

losses for a few banks and increases the number of stressed banks. The increase in the

number of stressed banks reflects another consequence of scenarios generated from the

reverse stress test.

For different lower bounds on the shock scenario, we find small changes in the total losses

and the number of stressed banks in Figure 3.5. There is no observable difference in

the number of stressed banks under the set threshold. For a smaller subset of possible

shocks, the variation in the losses of banks and the number of stressed banks is small.

While the aggregate metric remains the same, there are deviations in the level of losses

for each bank. This shows multiple reverse stress testing scenarios can cause larger losses

to banks than other benchmark stress testing cases.

In Figure 3.6, we plot the initial shock, initial net returns and losses for banks for a lower

bound of fmin = −0.1 for all assets. The decrease in the magnitude of shock decreases the

largest shocks to assets and increases shocks to other asset holdings. This is shown by an

increase in shocks to other Nordic countries e.g., Finland and Norway and shocks applied

to previously shocked assets of large asset capitalisation. There is also a decrease in the

size of net returns with the largest value. The initial net returns of other banks have

increased compared with other scenarios. The adjustment in the size of shocks shows for

the fire sales losses with this dataset, large shocks to a few assets result in the same total

losses as small shocks to several asset holdings.

The losses of the bank from Figure 3.6 also show a change in the allocation of bank

losses. The relative asset losses of Spanish and Italian banks have increased, whereas

German losses have decreased. While the losses of banks remain similar (because of the

large exposure of French and UK banks), there is a change in the relative bank losses. A

widespread shock overall increases the relative net returns of other banks.
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Figure 3.5: The plots in the top row represent the total losses (top left) and number of
stressed banks (top right) for different initial losses (W ), represented by a percentage
of the total asset holdings. The plots in the row below represent the total initial losses
assuming the same parameters in Table 3.1, for different lower bound shocks (−fmin). The
plots (bottom left) represent the total losses and (bottom right) the number of stressed
banks. The dashed line (blue circle) represents the RVTshock, the solid line (green circle)
the two scenario shocks and the dotted (red triangle) represents the all-asset scenario.
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Figure 3.6: For the RVTshock, we consider the parameters in Table 3.1, with a lower
bound of

(
−fmin = 0.1

)
on the shock to all assets. The plots represent the initial shock

to assets (top left), initial returns to banks (top right), the bank’s losses across all rounds
(bottom left) and the bank’s losses relative to its initial total asset holdings (bottom
right).
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3.5 Conclusion

We introduced an optimisation reverse stress testing approach, accounting for multi-

periods of fire sales. We applied the Frank-Wolfe algorithm under the target leverage

condition, where we optimise for the initial scenario resulting in the largest losses for a

fire sale. We considered an optimisation for only one round of fire sales, which resembled

a fractional knapsack problem. In this setup, the net returns were highest for banks with

high target leverages, reflecting the leverage targeting mechanism from the fire sales.

From the reverse stress test, the output scenario allocated shocks of high magnitude to few

assets, where all other shocks were negligible or small in size. Our results show that the

reverse stress test scenario resulted in higher bank losses and a higher number of stressed

banks than other stress testing scenarios. We find the largest losses were for banks with

larger total asset holdings, where several of these banks were not initially affected by the

fire sale. For the equity losses of banks, the results showed that contributed equity losses

were overall heterogeneous (highly varying between different banks) and incurred losses

were homogeneous (on average similar in size across all banks) from the reverse stress

tests. We showed the largest proportion of losses was concentrated in the first round,

where these results were similar for different bounds on the shock size.
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Collateralized networks with two

channels of fire sales

4.1 Introduction

The Great Financial Crisis (GFC) showed the lack of liquidity available to banks to

meet their obligations. The shortfall in the banks’ obligations resulted in a run on their

liquidity reserves and widespread losses to banks.1

From the consequences of the GFC, one reform was the introduction of initial margin

requirements for banks, with other reforms discussed by Duffie (2018). This reform

was one of the recommendations from the Financial Stability Board (2017) and was

implemented as a coordinated response by G20 countries. With the introduction of Basel

3, a large volume of OTC derivatives that were non-centrally cleared as well as derivatives

cleared through central counterparties (CCPs) were required to post initial margins.

We consider a network of banks with interbank assets and liabilities, where banks post

assets as collateral as part of their initial margin requirements. The initial margin re-

quirement is allocating assets to cover a proportion of the bank’s obligations to another

bank. This is a bilateral relationship where the debtor, the bank borrowing assets has an

interbank liability with another bank, represented as the lender. The debtor posts assets

used as collateral to the lender, representing an interbank asset for the lender.

Assets used as collateral are only considered if the debtor defaults on its obligations. If

the debtor can meet its obligations then the assets as part of its initial margin are not

utilised. If the debtor cannot meet its obligations, the bank enters a state of default and

1The collapse in the collateralized debt market contributed to the scarce supply of liquidity. This was
explored by Gorton and Metrick (2012) for the US repo markets during the GFC. There were concerns
about the liquidity in the US bond market which was used as collateral for repo transactions. The
uncertainty resulted in large haircuts on these assets, where banks were unable to access short-term
funding. This fuelled the insolvency of banks in the US, where the losses spilt over to other countries.
The run on the repo market and the extent to which it impacted the GFC was studied by Krishnamurthy
et al. (2014).
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a fraction of the assets that the bank has allocated to cover its obligation would be seized

by the lender. The fraction of assets recovered by the lender may affect its ability to

meet its obligations to other banks. This can result in a liquidity contagion scenario and

a cascade of losses if multiple banks are unable to fully meet their short-term obligations.

The effectiveness of assets used as collateral to cover the bank’s outstanding obligations

may be affected by the effects of a fire sale. In the situation where the debtor defaults,

the lender sells assets used as collateral to meet its outstanding obligations. If illiquid

assets are used, the assets sold result in a mark-to-market adjustment, decreasing the

asset value and other commonly denoted assets used as collateral by banks. This can

lead to a larger shortfall in the obligations of other banks, and induce further rounds of

sales. 2

We build on the collateral model introduced by Ghamami et al. (2022). This model incor-

porates the interbank network of assets and liabilities, where banks can post collateral to

other banks in the network. The market value of assets used as collateral is also affected

by a fire sale, representing the mark-to-market adjustment from the quantity of assets

sold. The clearing scenario is represented by a two-stage process:

– Stage 1: If the bank is in default, the assets used as collateral are seized by

the counterparty to meet its outstanding obligations. The counterparty sells these

assets which are then used to meet its outstanding obligations to other banks.

– Stage 2: After all payments have been settled using designated collateral assets,

banks in default can use their remaining collateral from Stage 1 to meet their

outstanding obligations.

The key contribution of our work is the integration of an additional channel of fire sales

into the collateral model by Ghamami et al. (2022). This additional channel of fire sales

arises because we assume banks externally hold illiquid assets i.e., retail or corporate

assets. These external assets are not used as part of the bank’s collateral requirements

but can be sold by the bank to meet its total obligations. Selling these illiquid assets

triggers a mark-to-market adjustment and a fire sales impact on the assets sold.

These illiquid asset holdings are not considered in the model by Ghamami et al. (2022),

where banks are assumed only to hold liquid assets. Our extension of the model by

Ghamami et al. (2022) where banks hold illiquid assets holdings results in two distinct

channels of fire sales. The commonality between the assets the bank externally holds and

assets used as collateral can lead to a feedback effect between both channels of fire sales,

amplifying the losses of banks.

2Considering the impact of fire sales, the volume of assets required for the use of collateral may not
be sufficient to meet liquidity demands. As discussed by Cont (2018), the guidelines recommend the
initial margin to meet 99% quantile losses under VaR over 10 days. This however does not account for
the liquidity sensitivity or the market depth of the asset posted.
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We first formulate the new collateral clearing model with the inclusion of external asset

holdings, representing the additional channel of fire sales. We show in a clearing event,

there exists a state of equilibrium represented by the fixed point, where specifically, we

provide further details on how the greatest fixed point can be obtained. The proof of

the existence of a fixed point is obtained in a similar way to Ghamami et al. (2022) and

Veraart and Aldasoro (2022), where further details can be found in the appendix. This

existence result is important as the fixed point is used to determine banks’ losses in a

clearing event.

We then study how the effects of a fire sale impact the total payments of the bank under a

collateral model with two channels of fire sales. We differentiate the ordering of the bank’s

total payments across both rounds of clearing. We consider how the ability of the bank

to meet its total obligations depends on other financial factors i.e., bankruptcy costs, the

size of its liquid assets and the price impact on illiquid asset holdings. These financial

factors have implications for the shortfall in the bank’s obligations and the number of

banks unable to meet their outstanding obligations.

Using simulations of networks generated from a random graph model, we show that the

additional channel of fire sales increases the bank’s outstanding obligations. We find the

losses from this additional channel of fire sales to be significant for banks, across both

rounds of clearing. The magnitude of losses increases when there is a higher commonality

between the bank’s external asset holdings and assets used as collateral.

The inclusion of external illiquid asset holdings not only increases losses, but in some

cases, these losses are higher compared with networks if banks do not hold any external

illiquid assets. This is from the interaction of fire sales between assets sold as collateral

and external asset holdings sold. Selling a proportion of external asset holdings triggers a

mark-to-market adjustment which decreases the value of common assets used as collateral.

The decrease in assets used as collateral increases the shortfall in the bank’s obligations,

requiring a larger proportion of external illiquid assets to be sold. In some cases, the

losses from a fire sale are larger than the losses from the interbank network.

Between the different stages of clearing, we find the second stage for the bank to meet

its remaining obligations contributes highly to the bank’s total payment when the total

losses for all banks are high. The larger bank losses increase the number of banks unable

to meet their outstanding obligations in the first round. This increases the number of

banks with outstanding obligations, which can mutually settle their remaining obligations

with other banks in the second round.

This chapter is structured as follows. In Section 4.2, we introduce the extended collateral

model that incorporates two channels of fire sales. We establish ordering relations in

Section 4.3 for the payments of banks in the first and second rounds of clearing. In

Section 4.4, we illustrate the clearing process under a small network and generate large

networks under a random graph model. We conclude our results in Section 4.5. We
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provide proofs in the appendix.

4.1.1 Related literature

The collateral model by Ghamami et al. (2022) builds on the clearing mechanism by

Eisenberg and Noe (2001). The model by Eisenberg and Noe (2001) establishes a set of

payments in which banks fully meet their obligations or make partial payments propor-

tionally. The clearing mechanism assumes banks make payments were possible, the same

assumption used by Ghamami et al. (2022). The model by Ghamami et al. (2022) extends

the clearing model with the inclusion of collateral assets, where the value of these assets

is affected by fire sales. The incorporation of the mark-to-market adjustment from fire

sales for assets used as collateral is motivated by Cifuentes et al. (2005). There is further

work by Ghamami et al. (2022) exploring different contract termination mechanisms and

the bank’s implications for meeting its obligations.

Our main contribution is the additional channel of fire sales to the collateral model,

where banks hold external illiquid asset holdings. The inclusion of fire sales for external

illiquid assets holdings to the clearing mechanism is developed by Feinstein and El-Masri

(2017) and Feinstein (2017). They consider the clearing mechanism by Eisenberg and

Noe (2001), where banks can additionally hold multiple illiquid asset holdings. They

explore different selling rules where banks are required to sell a proportion of their asset

holdings i.e., selling assets to meet a leverage target or a waterfall approach to assets

sold. The model by Feinstein and El-Masri (2017) does not include assets for the use of

collateral and therefore excludes this channel of fire sales. In the setting by Feinstein and

El-Masri (2017), Amini et al. (2016) shows under certain conditions that the set of bank

payments in a clearing model with multiple illiquid asset holdings is unique. We assume

a proportional selling rule under the minimal liquidation condition, where banks only sell

the minimum quantity of assets required to meet their outstanding obligations.

We include different channels of losses as this incorporates the compounding effect of

losses in a systemic event. The work by Weber and Weske (2017) also considers the

clearing mechanism by Eisenberg and Noe (2001) and the following channels of systemic

risk: bankruptcy costs by Rogers and Veraart (2013) and Glasserman and Young (2015),

fire sales on the bank’s external asset holdings by Cifuentes et al. (2005) and the losses

from bank’s cross-holdings by Elsinger (2011) and Elliott et al. (2014). In Weber and

Weske (2017), they investigate the contribution of losses from different channels using

simulations of networks generated from random graph models. This chapter follows

similarly to this type of analysis, where we generate networks from a random graph

model and simulate the clearing mechanism under the collateral model. The model we

use is however different, as we consider assets that are used as collateral, which is a

channel of systemic risk not included in the model by Weber and Weske (2017).
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The use of collateral in a clearing event has been explored for banks and CCPs. The work

by Veraart and Aldasoro (2022) considers the collateral model Ghamami et al. (2022), for

the cascade of losses between different CCPs. They also build on the work by Ghamami

et al. (2022), where they include the losses from bankruptcy costs in a clearing event

as considered by Rogers and Veraart (2013). Our work also factors in the losses from

bankruptcy costs as by Veraart and Aldasoro (2022), where banks can additionally hold

multiple external illiquid assets.

A collateral model that deviates from the mechanism by Ghamami et al. (2022) is the

work by Chang (2019). They model the rehypothecation of collateral assets, where banks

are unable to seize collateral from banks in default because these collateral assets have

been allocated to other banks. The work by Chang and Chuan (2023) does not focus on

endogenous effects as by Chang (2019) but on the robustness and resilience of networks in

the clearing setting with collateral. 3 The work by Bichuch and Feinstein (2019) also ac-

counts for collateral and the fire sales effect in a clearing scenario. The bank strategically

borrows collateral depending on its solvency state, resulting in a Nash equilibrium.

4.2 Multi asset model

We consider a financial network of N different financial institutions (referred to as banks)

denoted by N = {1, . . . , N}. For the first round of clearing (R1), we define the obligations

matrix as p̄R1 ∈ [0,∞)N×N . Here, p̄R1
ij represents the obligations that bank i has to bank

j. We denote the total obligations of bank i in the interbank network as p̄R1
i , where:

p̄R1
i =

N∑
j=1

p̄R1
ij

and p̄R1
ii = 0 ∀i ∈ N . The diagonal of zeroes represents that banks do not have obliga-

tions to themselves.

As part of the assets of the bank balance sheet, the bank holds interbank assets, liquid

and illiquid assets. The bank holds assets that it uses as collateral and other liquid or

illiquid asset holdings. We denote the assets that the bank does not use as collateral and

are not interbank assets as the bank’s external asset holdings.

We assume there are K illiquid assets and one liquid asset the bank holds denoted by

S = {1, . . . , K,K + 1}. The liquid asset that the bank externally holds is denoted as the

3The losses from a clearing event have been studied on how the network topology amplifies or dampens
contagion. The work by Acemoglu et al. (2015) studies different network structures i.e., complete or ring
networks, and the resilience of such networks depending on the size of the shock. This leads to conclusions
as by Gai et al. (2011), Caccioli et al. (2012) and Bardoscia et al. (2017) in which diversification can
increase instability because the increased connections amplify losses. This forms part of the analysis of
the impact of collateral on the resilience of banks in an interbank network with fire sales risk from the
model by Chang and Chuan (2023).
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liquidity buffer b ∈ [0,∞)N . Assets that would be part of a bank’s liquidity buffer would

be cash holdings for example.

We consider the bank’s external illiquid asset holdings, which is an extension to the model

by Ghamami et al. (2022). We define the illiquid asset holdings in terms of the matrix

S ∈ [0,∞)N×K . Each entry Sik represents the number of shares the bank i holds of the

illiquid asset k.

The bank additionally posts collateral to other banks. We define the matrix ζ ∈ [0,∞)N×N

as the collateral matrix, in which ζij represents the amount of collateral that the bank i

posts to bank j. As in the obligations matrix, the bank does not post collateral to itself

i.e., ζii = 0 ∀i ∈ N .

We distinguish between the types of assets that can be posted as collateral. In Ghamami

et al. (2022), they consider only one type of illiquid asset. In our setting, the collateral

that each bank posts can be a different kind of asset.4

We define the matrix T ∈ {0, 1, . . . , K + 1}N×N , where each entry Tij > 0 represents the

type of asset k that the bank i posts to bank j. If ζij = 0, then we set Tij = 0. The index

denoting the type of asset used as collateral is the same as the illiquid asset holdings of

the bank. If k = 0, this represents no asset is posted as collateral, k = K + 1 denotes

a liquid asset used as collateral and an entry k = {1, . . . , K} is an illiquid asset used as

collateral.

In the first round of clearing, we denote the total assets AR1
i of the bank i as follows:

AR1
i (π, p) = bi +

K∑
k=1

Sikπk +
N∑
j=1

pji,

where π ∈ [0,∞)K+1 is the market price of the assets. As a measure of the state of

solvency of the bank, we define the equity of the bank in the first round eR1
i as follows:

eR1
i (π, p) = AR1

i (π, p) − p̄R1
i .

This represents the difference between the bank’s total asset holdings and total obliga-

tions. The assets used as collateral are not accounted for in the bank’s equity, as these

assets are already posted to other banks. Assets used as collateral are only accounted for

by their counterparties if the bank is in default.

4One could further generalise this assumption by assuming banks post a portfolio of assets as part of
their initial margin requirements. However, we focus on only one type of illiquid asset used as collateral
which still captures the fire sales dynamics of this channel.
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4.2.1 First round of clearing

We consider the fixed point equilibrium of bank payments and the market price of assets

in R1. This establishes the set of values in which banks settle their payments to other

banks, at the current market price.

We define the payments of banks in R1 as pR1 and the market price of collateral and

illiquid assets in R1 as πR1. We are interested in the fixed point of the clearing process,

representing the position in which all banks have settled their total payments. We assume

the fixed point problem in R1 of the function ΦR1 : [0, 1] ×
[
0, p̄R1

]
→ [0, 1] ×

[
0, p̄R1

]
.

We denote
(
π̂R1, p̂R1

)
as a fixed point of the clearing function if:

(
π̂R1, p̂R1

)
= ΦR1

(
π̂R1, p̂R1

)
.

There may be multiple fixed points that satisfy the fixed point property for the R1 clearing

function. We define the first round clearing function as follows:

ΦR1
1,(k) (π, p) = exp (−lk∆k (π, p)) ,

ΦR1
2,(ij) (π, p)

=



min

{
p̄R1
ij , πTij

ζij

+aR1
ij (π)

(
γ1i

(
bi +

∑K
k=1 Sikπk

)
+ γ2i

∑N
j=1 pji

)}
if i ∈ DR1(π, p),

p̄R1
ij if i ∈ N\DR1(π, p).

The clearing function consists of two parts: the first component ΦR1
1,(k) represents the

market price of the asset k. It depends on the total number of shares that the bank

sells ∆k of the asset, and the change in the market price depending on the price impact

l ∈ [0,∞)K+1. A price impact lk > 0 is the associated price impact for an illiquid asset,

otherwise lk = 0 for a liquid asset.

The second component ΦR1
2,(ij) represents the payments from bank i to bank j. If the bank

is unable to meet its obligations, then the bank is in default. We define DR1 as the set

of first-round bank defaults as follows:

DR1(π̂, p̂) = {i ∈ N|eR1
i (π̂, p̂) < 0}.

The bank is in default if it has negative equity, representing that its asset holdings are

smaller than its total obligations. We distinguish defaults which occur initially and

defaults from the contagion process. We define the set of defaults FR1 as fundamental
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defaults in R1 from the banks obligations and initial market price:

FR1 = DR1
(
1, p̄R1

)
= {i ∈ N|eR1

i

(
1, p̄R1

)
< 0}.

We consider the set of contagious defaults DR1
(
π̂R1, p̂R1

)
\FR1 as defaults that are not

fundamental defaults.

As part of the clearing process, if the bank is unable to meet its obligations in full, then

the bank allocates its remaining assets to other banks in a proportional way. We define

the relative proportional obligations matrix as aR1(π) ∈ [0, 1]N×N , where each entry aR1
ij

represents the relative proportion of the bank’s total obligations from bank i to bank j.

As the collateral is only accounted for when the bank is unable to meet its obligations,

this is factored in the proportional allocation between banks:

aR1
ij (π) =

max
{
p̄R1
ij − πTij

ζij, 0
}∑N

l=1 max {p̄R1
il − πTil

ζil, 0}
.

The row sums of the matrix is such that
∑N

j=1 a
R1
ij (π) = 1 ∀i ∈ N . This implies that the

bank’s total obligations are to all banks within the network. The relative asset holdings

matrix also depends on the market price of illiquid assets.

The total shares of assets sold in ∆k in the asset k are the total shares the bank sells in

its external asset holdings and shares of assets used as collateral:

∆k (π, p) =
N∑
i=1

min {Sik,Ωik(π, p)} +
N∑
i=1

N∑
j=1

Υij (π, p)1 (Tij = k) . (4.1)

Here, we define Ω : [0, 1] × [0, p̄R1] → [0,∞) as a function of the number of shares of

illiquid assets sold. The Ωik represents bank i selling the number of shares in asset k.

This is an extension to Ghamami et al. (2022), in which only the assets used as collateral

in (4.1) contribute to the price impact of illiquid assets.

We consider the proportion of assets sold by each bank as in Feinstein (2017) and Feinstein

and El-Masri (2017). They consider the number of shares that the bank sells to meet

its outstanding obligations. They assume that banks will only sell a minimum number

of shares, which meet the outstanding obligations of the bank. This is referred to as

the minimal liquidation condition. We define the minimal liquidation condition as in

Assumption 3.1 by Feinstein (2017).

Definition 4.2.1 (Minimal liquidation condition). The matrix of the number of shares

sold Ω(π, p) satisfies the minimal liquidation condition, if:

K∑
k=1

min {Sik,Ωik (π, p)} πk = min


K∑
k=1

Sikπk,

(
p̄R1
i − bi −

N∑
j=1

pji

)+
 .
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The economic interpretation is that the terms on the left-hand side represent the sale of

shares which the bank holds. This excludes the cases in which the bank can short-sell.

The right-hand side represents that banks only sell shares of assets to meet outstanding

obligations. If the required payment that the bank needs to make is larger than its asset

holdings, then the bank sells all shares of its asset holdings, at the current market price.

We consider the matrix of illiquid assets sold under a proportional selling rule, as in

Example 3.3 by Feinstein (2017). The bank sells a proportional amount of shares in each

of its asset holdings, under the current market price. The matrix of assets sold by banks

under proportional selling is defined as follows:

Ωik (π, p) =
Sik∑K

k=1 Sikπk

(
p̄R1
i − bi −

N∑
j=1

pji

)+

. (4.2)

Here, the bank sells a proportion of each of its asset holdings, that depend on outstanding

obligations. The matrix is non-increasing in the market price of assets and bank pay-

ments. The smaller the payments and market price of assets, the larger the quantity of

assets the bank needs to sell.

Other types of selling functions can also be considered i.e., ordered selling function, where

the bank sells assets first which have the lowest price impact for example. We assume

the proportional selling matrix as the matrix of illiquid asset holdings sold.

The second type of assets the bank sells is the assets used as collateral defined as Υ :

[0, 1] × [0, p̄R1] → [0,∞), as in Ghamami et al. (2022). The term Υij represents the

number of shares of collateral that the bank j seizes and sells from bank i. The quantity

of collateral sold depends on the collateral posted, and the obligations of the bank at the

current market price:

Υij (π, p) =

min
{
ζij,

p̄R1
ij

πTij

}
if i ∈ DR1(π, p),

0 if i ∈ N\DR1(π, p),

for πk > 0 ∀k ∈ S. If the market price is πk = 0, then the collateral seized by bank j

from i is defined as follows:

Υij (π, p) =

ζij if i ∈ DR1(π, p) and p̄R1
ij > 0,

0 if i ∈ N\DR1(π, p).

If the bank is in default, there may be additional costs that the bank incurs. These

costs are accounted for by the decrease in the bank’s interbank and external assets. We

characterise these costs as bankruptcy costs, similar to the bankruptcy costs under the

clearing model by Rogers and Veraart (2013). These bankruptcy costs were also included

as part of the collateral model by Veraart and Aldasoro (2022), which builds on the
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collateral model introduced by Ghamami et al. (2022).

We define γ1 ∈ [0, 1]N as the bankruptcy costs on the bank’s external assets and γ2 ∈
[0, 1]N as the bankruptcy costs on its interbank assets. Each term γ1i and γ2i represents

the external and interbank bankruptcy costs on bank i. We consider these parameters as

the operational risk associated with the bank in a clearing event.

The potential existence of multiple fixed points leads to various characterisations of bank

payments. We specifically characterise two fixed points of the clearing function in R1.

We denote
(
πR1
∗ , pR1

∗
)

as the least fixed point and
(
π∗,R1, p∗,R1

)
as the greatest fixed point,

where for all fixed points
(
π̂R1, p̂R1

)
then:

(
πR1
∗ , pR1

∗
)
≤
(
π̂R1, p̂R1

)
≤
(
π∗,R1, p∗,R1

)
.

The fixed points represent bounds on the payment of banks and the market price of

assets. Intuitively, banks with larger payments sell a smaller number of shares of external

asset holdings and collateral assets. The decrease in the number of shares of assets sold

leads to a higher market price for assets.

We focus on the greatest fixed point, which represents the largest payment of banks and

the largest market price of assets. This is considered the best scenario for the bank, as

this represents the largest equity holdings of the bank and the highest payments that

banks can make under the clearing scenario.

We denote the asset holdings of the bank in R1 under the greatest fixed point as A∗,R1 =

AR1
(
π∗,R1, p∗,R1

)
and equity e∗,R1 = eR1

(
π∗,R1, p∗,R1

)
. Unless specified, the results from

the fixed points are represented by the greatest fixed point.

Further details and proofs about the existence and convergence to the greatest fixed point

can be found in Theorem 8.E.2 in Appendix 8. The proof for the existence of the greatest

solution is a generalisation of the existence result by Veraart and Aldasoro (2022), where

we consider the inclusion of external illiquid asset holdings.

4.2.2 Second round of clearing

We consider the second round of clearing (R2) where banks redistribute collateral not

used in R1. The remaining collateral assets are used to meet outstanding payments the

bank has from R1. We denote the outstanding payments of bank in R2 as p̄R2 ∈
[
0, p̄R1

]
where p̄R2

ij represents the outstanding obligation which bank i has to bank j:

p̄R2
ij = p̄R1

ij − p∗,R1
ij ∀i, j ∈ N .

If the bank can fully meet its obligations in R1 i.e., pR1 = p̄R1, then it does not take part

in the second round of clearing. Only banks that do not fully meet their obligations in

R1 participate in R2.
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We define the matrix of reallocated collateral as r
(
π∗,R1, p∗,R1

)
∈ [0,∞)N×(K+1), where

rik
(
π∗,R1, p∗,R1

)
represents the remaining collateral that bank i holds of asset k, under

the R1 greatest fixed point:

rik
(
π∗,R1, p∗,R1

)
=


∑N

j=1

(
ζij − Υij

(
π∗,R1, p∗,R1

))
1 (Tij = k) if i ∈ DR1(π∗,R1, p∗,R1),∑

j∈DR1(π∗,R1,p∗,R1) ζij1 (Tij = k) if i ∈ N\DR1(π∗,R1, p∗,R1).

The assets included are illiquid and liquid, as both types of assets can be used as collat-

eral. The reallocated collateral assets are assets that were not used to cover the bank’s

outstanding obligations in default in R1. If the bank is not in default in R1, its remaining

assets are the total collateral assets that it seized from defaulted banks in R1.

We define the fixed point function for the second round ΦR2 :
[
0, π∗,R1

]
×
[
0, p̄R2

]
→[

0, π∗,R1
]
×
[
0, p̄R2

]
. We denote

(
π̂R2, p̂R2

)
as a fixed point of R2 clearing function if:

(
π̂R2, p̂R2

)
= ΦR2

(
π̂R2, p̂R2

)
.

As in R1 of clearing, there can be multiple values that satisfy the fixed point condition

in R2. We define the second round clearing function as follows:

ΦR2
1,(k) (π, p) = π∗,R1

k exp (−lkΓk (π, p)) ,

ΦR2
2,(ij) (π, p) = min

{
p̄R2
ij , a

R2
ij

(
c∗,R1
i +

K∑
k=1

rik
(
π∗,R1, p∗,R1

)
πk +

N∑
j=1

pji

)}
,

where

c∗,R1
i = ri(K+1)(π

∗,R1, p∗,R1).

For remaining collateral assets which are liquid c∗,R1, this is not affected by the mark-

to-market adjustment as πK+1 = 1. This can be considered as the associated liquidity

buffer for banks in R2. We distinguish liquid assets used as collateral separately from

other illiquid assets.

The relative outstanding obligations matrix in the second round of clearing is denoted

as aR2 ∈ [0, 1]N×N , where each entry aR2
ij represents the relative outstanding obligations

that bank i has to bank j:

aR2
ij =

p̄R2
ij∑N

l=1 p̄
R2
il

.

The total outstanding obligations
∑N

j=1 a
R2
ij = 1 ∀i ∈ N represents that banks only

have outstanding obligations to banks in the network, as in R1.

The clearing mechanism for the second round is the same one introduced by Ghamami

et al. (2022). The difference is that the asset holdings and the market price depend on
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the values of R1, which incorporates the fire sales effect by Cifuentes et al. (2005). The

total number of shares of collateral that banks sell Γk in R2 in the asset k is defined as

follows:

Γk (π, p) =
N∑
i=1

Γik (π, p) ,

where

Γik (π, p)

= min

 rik
(
π∗,R1, p∗,R1

)∑K
k=1 rik (π∗,R1, p∗,R1) πk

(
N∑
j=1

p̄R2
ij − c∗,R1

i −
N∑
j=1

pji

)+

, rik
(
π∗,R1, p∗,R1

) .

Here, the Γik term represents the number of shares the bank i sells of the remaining

collateral assets in the asset class k. As in R1, the bank first uses its remaining liquid

collateral assets and interbank assets before selling its illiquid asset holdings. We denote

the equity eR2
i of the bank i in the second round of clearing as follows:

eR2
i (π, p) = c∗,R1

i +
K∑
k=1

rik
(
π∗,R1, p∗,R1

)
πk +

N∑
j=1

pji − p̄R2
i .

The equity represents the difference in the bank’s remaining asset holdings and outstand-

ing obligations in R2. The assets used for collateral are considered in the bank’s asset

holdings in R2 because these assets are used by the bank to meet its outstanding obliga-

tions. We denote DR2 as the set of banks that are unable to meet their total obligations

across two rounds of clearing:

DR2(π̂R2, p̂R2) = {i ∈ N|eR2
i (π̂R2, p̂R2) < 0}.

Even if the bank can meet its remaining obligations in R2, it is still considered to be in

default because it was unable to fully meet its obligations in R1.

As in R1, we consider the greatest fixed point of the second clearing round, which we

denote as
(
π∗,R2, p∗,R2

)
where (π̂R2, p̂R2) ≤

(
π∗,R2, p∗,R2

)
. Furthermore, we denote the

total assets of the bank in R2 under the greatest fixed point A∗,R2 = AR2
(
π∗,R2, p∗,R2

)
and equity e∗,R2 = eR2

(
π∗,R2, p∗,R2

)
.

The existence of the greatest fixed point and the iterative sequence to obtain the greatest

fixed point is given by Ghamami et al. (2022). This still holds in our setting for the

second round of clearing, in which the bank holds multiple illiquid external assets.
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4.2.3 Systemic risk metrics

We introduce measures representing the losses for the first and second rounds of clearing.

We define the relative shortfall as a measure of obligations not fulfilled, as by Glasserman

and Young (2015).

We define h ∈ [0, 1]N as the difference between the bank’s total obligations and its total

payments under the greatest fixed points, where hi represents the relative shortfall of

bank i, after two rounds of clearing:

hi =

∑N
j=1 max

{
p̄R1
ij − p∗,R1

ij − p∗,R2
ij , 0

}
∑N

i=1

∑N
j=1 p̄

R1
ij

.

For the shortfall across all banks, we define the relative total shortfall H ∈ [0, 1] as the

total relative shortfall in the bank’s obligations:

H =
N∑
i=1

hi.

We secondly evaluate the number of defaults and banks with outstanding obligations,

across two rounds of clearing. We define the total number of bank defaults in the first

round ΛR1, and the total number of banks that do not fulfil outstanding obligations in

the second round ΛR2, under the greatest fixed point:

ΛR1 =
N∑
i=1

1
(
e∗,R1
i < 0

)
and

ΛR2 =
N∑
i=1

1
(
e∗,R2
i < 0

)
.

From the definition of the equity of banks, the number of banks in default is larger than

the number of banks that do not fulfil outstanding obligations:

ΛR2 ≤ ΛR1. (4.3)

This is because banks with outstanding obligations in R2 were in default in R1. However,

if the bank is in default, then the bank may be able to meet its total obligations in both

the first and second rounds.

We consider metrics to differentiate the losses between the first and second rounds of

clearing. We define the relative first-round payments P ∈ [0, 1] as the total payments of

the bank in the first round of clearing relative to the total payments of all banks:
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P =

∑N
i=1 p

∗,R1
i∑N

i=1

(
p∗,R1
i + p∗,R2

i

) .
A larger P represents banks with a larger proportion of total obligations in R1. As a

measure between banks that default and do not meet outstanding obligations, we define

V ∈ [0, 1] as the relative number of banks with outstanding obligations in the second

round:

V =
ΛR2

ΛR1
.

From the inequality in (4.3), the relative number of banks with outstanding obligations

is less than 1. If V = 1, then all banks in default in the first round also have outstanding

obligations across two rounds. If V = 0, then all banks in default in the first round can

meet outstanding obligations across both rounds of clearing.

4.3 Fixed point ordering

We consider the monotonic property of the fixed point, under different parameterizations

of the clearing function. This is to establish the factors that can change the magnitude

of the greatest fixed point. The parameters we consider are the liquidity buffer (b),

bankruptcy costs (γ1, γ2), and the price impact of illiquid asset holdings (l).

We show an ordering of payments and the market price of illiquid assets under the fixed

point, in the first round of clearing.

Theorem 4.3.1. For the first round clearing function ΦR1,ν that depends on the following

parameters: (
lν , γ1,ν , γ2,ν , bν

)
,

where ν = {A,B}. If the parameters between two R1 clearing functions are such that:

lAk ≥ lBk ∀k ∈ S

and (
γ1,Ai , γ2,Ai , bAi

)
≤
(
γ1,Bi , γ2,Bi , bBi

)
∀i ∈ N ,

then the corresponding greatest fixed point
(
π∗,R1,ν , p∗,R1,ν

)
under the clearing function

satisfies: (
π∗,R1,A, p∗,R1,A

)
≤
(
π∗,R1,B, p∗,R1,B

)
.

As the bank increases the price impact, this further decreases the market price of illiquid

assets and decreases the magnitude of the fixed points. If there are larger bankruptcy

costs and the bank holds a smaller liquidity buffer, this also decreases the fixed payment
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of banks and the market price of illiquid assets. For R1, a larger fire sales effect and

smaller liquid asset holdings decrease the value of assets and the payments of banks.

For the assumption of illiquid assets sold, the matrix of illiquid assets sold satisfies the

ordering of R1 clearing function parameters. This ordering only considers the fixed points

from R1. Across two rounds of clearing, we consider the total payment of the bank in R1

and R2.

Theorem 4.3.2. For the first and second round clearing functions ΦR1,ν and ΦR2,ν, we

define the clearing process that depends on the following parameters:

(
lν , γ1,ν , γ2,ν , bν

)
where ν = {A,B}. For the corresponding greatest fixed point

(
π∗,R1,ν , p∗,R1,ν

)
under the

clearing function ΦR1,ν and
(
π∗,R2,ν , p∗,R2,ν

)
under ΦR2,ν. Assuming the collateral posted

by all banks is smaller than its obligations, and the absence of interbank bankruptcy costs

i.e.,

p̄R1
ij ≥ ζij ∀i, j ∈ N

and

γ2,Ai = γ2,Bi = 1 ∀i ∈ N .

If the parameters between two clearing functions are such that

lAk ≥ lBk ∀k ∈ S

and (
γ1,Ai , bAi

)
≤
(
γ1,Bi , bBi

)
∀i ∈ N

then

π∗,R2,A ≤ π∗,R2,B

and

p∗,R2,A + p∗,R1,A ≤ p∗,R2,B + p∗,R1,B.

For an ordering on the total payments after two rounds of clearing, we assume that

the collateral posted is smaller than its obligations. If the assets used as collateral are

larger than the corresponding obligation, there can be remaining collateral assets not

seized in R1 and used in R2. As the remaining collateral assets in R2 are not subject to

bankruptcy costs, the payments of the bank using these remaining collateral assets can

be higher across both rounds of clearing. Hence, banks that post collateral assets higher

than the obligation can lead to higher payments across both rounds of clearing, even if

more banks default in R1.

If interbank bankruptcy costs are present, interbank assets are subject to larger discounts
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in R1 compared with R2. Therefore, the interbank assets may be higher in R2 than in R1

and lead to a higher fixed payment of the bank. From these assumptions, the payments

of banks are always larger if banks settle their total obligations where possible.

We showed that the first round of payments and total payments across two rounds of

clearing have the same ordering. We consider the ordering of the greatest fixed point, for

payments that only occur in the second round of clearing.

Proposition 4.3.3. For the second round clearing function ΦR2,ν with ν = {A,B}.
If the greatest fixed points in the first round of clearing between two different systems(
π∗,R1,ν , p∗,R1,ν

)
satisfies:

(π∗,R1,A, p∗,R1,A) ≤ (π∗,R1,B, p∗,R1,B)

and the obligations of all banks are larger than the collateral posted i.e.,

p̄R1
ij ≥ ζij ∀i, j ∈ N

then

p∗,R2,A ≥ p∗,R2,B.

Only in the second round, the payments in the system A are larger than in B. This

comes from the higher bankruptcy costs and a smaller liquidity buffer, in which the bank

has a higher magnitude of outstanding obligations, from the first round. From the total

payments across two rounds of clearing, the bank still makes smaller payments because

of R1, and the total payment is smaller as established in Theorem 4.3.2.

The ordering of bank payments and the market price of assets can be applied to the

systemic risk metrics, as in Section 4.2.3. We show that the ordering of the first and

second round payments on the market price and bank payments leads to an ordering of

systemic risk metrics.

Theorem 4.3.4. For the first and second round clearing functions ΦR1,ν and ΦR2,ν where

ν = {A,B}. If there is an ordering between two systems such that

lAk ≥ lBk ∀k ∈ S

and (
γ1,Ai , γ2,Ai , bAi

)
≤
(
γ1,Bi , γ2,Bi , bBi

)
∀i ∈ N .

For ΛR1,ν ,Pν , hν and ΛR2,ν representing the systemic risk metrics under the parameters

ν, then:

ΛR1,A ≥ ΛR1,B.
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Additionally, if p̄R1
ij ≥ ζij ∀i, j ∈ N , then:

PA ≤ PB.

Furthermore, in the absence of interbank bankruptcy costs γ2,Ai = γ2,Bi = 1 ∀i ∈ N .

Then,

hAi ≥ hBi ∀i ∈ N ,

and

HA ≥ HB,

and

ΛR2,A ≥ ΛR2,B.

The change in parameters leads to a change in systemic risk measures. This is amplified

by the asset holdings of the bank if they are illiquid. For the relative number of defaults

V , there is no ordering between the different systems under the assumptions of collateral

assets posted and the absence of interbank bankruptcy costs. The relative number of

defaults can either increase or decrease from the change in the equity of banks in R2.

4.4 Network simulations

We illustrate the interaction of the clearing process with two channels of fire sales risk

for different networks. For a small network, we consider several portfolios of the bank’s

external asset holdings under a clearing event. We analyse the commonality of these

assets with collateral posted. We expand this analysis to networks generated under a

large random graph model. We analyse the sensitivity of losses under different systemic

risk metrics for different parameterisations across both clearing rounds.

4.4.1 Small example network

We consider a network with N = 4 banks and K = 2 illiquid asset holdings, where

assets include a liquidity buffer and two illiquid asset holdings. We assume the absence

of bankruptcy costs on the bank’s assets i.e., γ1i = γ2i = 1 ∀i ∈ N .

We characterise the asset type used as collateral under the matrix T for the small network

as follows: if Tij = {1, 2}, then the bank posts collateral assets ζij > 0 in illiquid asset 1

(k = 1) or illiquid asset 2 (k = 2). If Tij = 3, then the bank posts collateral assets ζij > 0

that are liquid. We consider two types of assets that banks can post as collateral.

– Liquid collateral (A1): The bank only posts collateral assets that are liquid i.e.,

Tij = 3 ∀ζij > 0. The collateral is not subject to any price impact when sold.
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– Illiquid collateral (A2): The bank only posts collateral assets that are illiquid

asset 1 i.e., Tij = 1 ∀ζij > 0. This represents illiquid assets used as collateral and

subject to a price impact when sold.

p̄R1 =


0 20 0 0
0 0 20 0
0 0 0 20
0 0 0 0

 , ζ =


0 5 0 0
0 0 5 0
0 0 0 5
0 0 0 0

 , l = 0.01 ×

1.8
2.5
0

 .

Table 4.1: The parameters for the network for the bank’s obligations, collateral posted
and the price impact of illiquid assets. The price impact is for liquid and illiquid collateral
(in total three assets). All other parameters are defined in the different types of collateral
assets and network configurations.

We specify the obligations matrix, collateral matrix, and price impact of assets in Table

4.1. All banks have an interbank asset or an obligation with another bank. We consider

a higher price impact of illiquid asset 2 than illiquid asset 1, to differentiate the risks

from different types of illiquid assets. In total, there are three different types of external

assets the bank can hold and assets for collateral the bank can post.

From the interbank network, we define the asset holdings of banks which we denote as

the network configuration. We consider a combination of both liquid and illiquid asset

holdings, for the external asset holdings of the bank.

– Configuration 1 (C1): No bank holds a liquidity buffer or illiquid asset i.e.,

bi = 0 and Si1 = Si2 = 0 ∀i ∈ N . The equity of each bank is the difference

between its interbank assets and interbank liabilities.

– Configuration 2 (C2): All banks only hold a liquidity buffer bi = 10 ∀i ∈ N
and no illiquid assets i.e., Si1 = Si2 = 0 ∀i ∈ N . This corresponds to external

asset holdings as considered in Ghamami et al. (2022), where the fire sales impact

has no impact on the bank’s external asset holdings.

– Configuration 3 (C3): All banks do not hold a liquidity buffer bi = 0 ∀i ∈ N ,

and only hold illiquid asset 1 i.e., Si1 = 10 and Si2 = 0 ∀i ∈ N . This corresponds

to the same asset that banks externally hold and use as collateral.

– Configuration 4 (C4): All banks do not hold a liquidity buffer bi = 0 ∀i ∈ N ,

and only hold illiquid asset 2 i.e., Si1 = 0 and Si2 = 10 ∀i ∈ N . The asset holdings

of the bank and collateral posted represent two channels of independent fire sales

risk.

– Configuration 5 (C5): All banks do not hold a liquidity buffer bi = 0 ∀i ∈ N
and hold equal quantities of both illiquid assets 1 and 2 i.e., Si1 = Si2 = 5 ∀i ∈ N .
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The configuration represents a diversification of the external asset holdings with

partial commonality with assets used as collateral.

B1

20 (5)

10 0

20 (5)

20 (5)

b = 0

B2

b = 0

B3

b = 0

B4

b = 0

10 0 10 0

10 0

Figure 4.1: The figure represents the network configuration C3 and illiquid collateral A2.
Each node represents a bank and its external asset holdings, in two different illiquid assets
and a liquidity buffer. The assets used as collateral are represented in brackets, with the
associated obligations between banks. The colours represent the type of illiquid asset the
bank holds or uses as collateral with illiquid asset 1 = blue (left entry) and illiquid asset
2 = green (right entry).

Each of the configurations represents the asset holdings of the bank and the outcome of

the shortfall position. The liquidity of the asset determines the market value of the asset

and how it is used to meet the bank’s obligations, given changes in further iterations of

the clearing process.

In total, we have 10 different network structures that compromise 2 types of collateral

posted and 5 network configurations. We calculate the bank’s shortfall and the number

of defaults for all combinations.

We illustrate the clearing process for the network as in Figure 4.1. From the network

structure, we consider the payments for {B1, B2, B3}, and the corresponding losses. The

total assets sold consist of only assets in illiquid asset 1:

p∗,R1 =


0 min

{
20, 15π∗,R1

1

}
0 0

0 0 min
{

20, 15π∗,R1
1 + p∗12

}
0

0 0 0 min
{

20, 15π∗,R1
1 + p∗23

}
0 0 0 0

 .

(4.4)

The matrix (4.4) represents the fixed point payments of banks. As both illiquid asset
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holdings and collateral are of the same asset, this gives a total value of 15 to all banks.

We secondly define the total assets sold under the fixed point ∆∗ as follows:


∑3

i=1 min
{
Sik,Ωik(π∗,R1, p∗,R1)

}
0

0



+

Υ12

(
π∗,R1, p∗,R1

)
+ Υ23

(
π∗,R1, p∗,R1

)
+ Υ34

(
π∗,R1, p∗,R1

)
0

0

 .

As banks only hold illiquid asset 1, there is only a price impact in the first entry of the

total assets and collateral sold. For the first round of clearing, the initial equity of banks

is:

e
(
π0, p0

)
=


−10

10

10

30

 .

As the initial equity of B1 is negative, it is in fundamental default selling all its illiquid

assets. As the asset holdings of B1 do not fully cover its total obligations, the collateral

asset posted is seized by B2, which the bank uses to cover its obligations. As the collateral

is illiquid, B2 selling the asset results in a mark-to-market adjustment and price impact

on the asset value. With the illiquid assets sold by B1 and collateral assets sold by B2,

the market price on the illiquid asset 1 is updated:

∆
(
π0, p0

)
=

15

0

0

 =⇒ π1 ≈

0.76

1

1

 .

Under the current market price and the proportional allocation of the bank’s asset hold-

ings, the equity after one iteration in the first round of clearing:

e
(
π1, p1

)
≈


−12.37

2.63

7.63

27.63

 .

The decrease in the market price of illiquid asset 1 requires B2 to sell a proportion of

its external asset holdings to meet its obligations to B3. This results in a second update

to the market price of illiquid asset 1 and an update to the fixed point payments from

banks,
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∆
(
π1, p1

)
=

21.5

0

0

 =⇒ π2 ≈

0.68

1

1

 .

The change in the market price leads to the following update on its equity holdings

e
(
π2, p2

)
≈


−13.22

−1.76

6.78

26.78

 .

Under this second iteration, the equity of B1 is lower because of the additional assets

sold by B2, which are the same type of asset B1 holds. This further decreases the market

value of illiquid asset 1 requiring B2 to sell a larger proportion of its asset holdings. As

Bank B2 is in default, it sells all its illiquid asset holdings and the collateral posted to

B3 is seized. B3 sells the seized collateral asset to meet its obligations and this further

contributes to the decrease in the market value of illiquid asset 1.

Iterative updates continue to occur resulting in all external asset holdings and assets

posted as collateral in illiquid asset 1 being sold by banks B1, B2 and B3. As B4 has no

obligations, it does not sell any shares of its asset holdings. The resulting fixed point for

the market value of assets:

∆ (π∗, p∗) =

45

0

0

 =⇒ π∗ ≈

0.445

1

1


and the equity under the fixed point:

e (π∗, p∗) ≈


−15.55

−8.88

−2.21

24.45

 .

The clearing process leads to three defaults {B1, B2, B3}, in which one is fundamental

default {B1} and {B2, B3} are contagious defaults. We analyse the losses of banks by

considering systemic risk measures. We calculate the relative shortfall of banks in R1.

The total obligations between banks in the small network,

N∑
i=1

N∑
j=1

p̄R1
ij = 60.
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The relative shortfall for B1 in the first round of clearing:

h1 =
1

60

N∑
j=1

max
{
p̄R1
1j − p∗,R1

1j , 0
}

=
max {20 − (0.445 × 15), 0}

60
≈ 0.22. (4.5)

The shortfall in B1’s total obligations is 22% of the total obligations in R1. For B2, as

the bank has interbank assets from B1, this is accounted for in the shortfall

h2 =
1

60

N∑
j=1

max
{
p̄R1
2j − p∗,R1

2j , 0
}

=
max {20 − (0.445 × 30), 0}

60
≈ 0.11. (4.6)

As B2 has interbank assets from B1, this increases its interbank assets and decreases

outstanding payments. This subsequently decreases the relative shortfall of B2 (4.6)

compared with B1 (4.5). For the relative shortfall of bank B3,

h3 =
1

60

N∑
j=1

max
{
p̄R1
3j − p∗,R1

3j , 0
}

=
max {20 − (0.445 × 45), 0}

60
= 0. (4.7)

The collateral seized and the interbank assets coming from B1 and B2 result in no shortfall

for B3 (4.7). As B4 has no obligations to any bank than h4 = 0. From the shortfall of B3,

although the bank is still in default, the bank was able to meet its obligations. This is

because the bank was able to seize collateral from B2, which defaulted on its obligations

to B3.

We consider the changes that occur in the second round of clearing. At this stage, banks

that have outstanding obligations participate in the clearing process. We define the

matrix of outstanding obligations and reallocated assets in Table 4.2.

p̄R2 =


0 13.33 0 0
0 0 6.65 0
0 0 0 0
0 0 0 0

 , r
(
π∗,R1, p∗,R1

)
=


0 0 0
0 0 0
0 0 0
0 0 0

 .

Table 4.2: The parameters represent the bank’s outstanding obligations and the reallo-
cated collateral of banks in R1.

From the assumptions of posted collateral, there is no reallocated collateral for banks

that are in default. The clearing process in the second round is that of Eisenberg and

Noe (2001). The result leads to no change in the shortfall or banks meeting outstanding

obligations. This is because B1 is unable to meet its outstanding obligations, as it has

no interbank assets or external asset holdings. This leads to B2 also having outstanding

obligations because there are no interbank assets from B1. Hence, the relative shortfall

across two rounds of clearing is the same as the shortfall in the first round.

The small network illustrates both clearing rounds. In R1, there is feedback from the
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B1

13.33

0 0

6.65

0

b = 0

B2

b = 0

B3

b = 0

B4

b = 0

0 0 0 0

0 0

Figure 4.2: The figure represents the network configuration C3 and illiquid collateral
A2, in the second round of clearing. Each node represents a bank and its external asset
holdings, in two different illiquid assets and a liquidity buffer. The assets used as collateral
are represented in brackets, with the associated obligations between banks. The colours
represent the type of illiquid asset the bank holds or uses as collateral with illiquid asset
1 = blue (left entry) and illiquid asset 2 = green (right entry).

fire sales effect that contributes to illiquid assets and collateral losses. Because of these

updates, the fire sales losses result in a contagious default for B3. As no bank can meet

its outstanding obligations, there is no change in the relative shortfall of banks.

We illustrate the relative shortfall and the number of defaults in Table 4.3, for different

network configurations and collateral assets posted. Our result shows that the asset

holdings of the bank do influence the shortfall and number of defaults. We find the

largest losses correspond to C3 when the collateral assets are the same asset as the

external asset holdings. Although the associated price impact is smaller for illiquid asset

1, the combined price impact when banks sell this asset leads to further decreases in the

market price. This is higher than the bank’s asset holdings, in which it holds an illiquid

asset with a higher price impact factor. By assuming the collateral is liquid, there is a

smaller price impact from collateral and values in A1 compared with A2. The smallest

losses for banks that hold illiquid assets are in C5, under a diversified portfolio. This

shows a situation where diversifying assets with different price impacts does reduce losses

to the bank.

For an amplified price impact, we find the losses also increase for all banks. The increase

in the price impact results in larger losses when the collateral is illiquid (×4 higher in

the total shortfall compared with ×2 when collateral is illiquid). From the increase in

the price impact, there is a higher number of defaults for all configurations that hold

illiquid assets. Comparing C1 and C4 metrics, there is a small decrease in losses under

C4 compared to banks holding no illiquid assets. This shows with the increased fire sales

effect, the effectiveness of collateral decreases to reduce losses to banks. We consider the
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Measure Asset holdings of network
C1 C2 C3 C4 C5

A1 collateral

Shortfall (l) (0.25, 0.17, 0.08, 0)T (0.08, 0, 0, 0)T (0.13, 0, 0, 0)T (0.15, 0, 0, 0)T (0.11, 0, 0, 0)T

(l × 4) (0.25, 0.17, 0.08, 0)T (0.08, 0, 0, 0)T (0.23, 0.13, 0.03, 0)T (0.24, 0.15, 0.06, 0)T (0.20, 0.07, 0, 0)T

Defaults (D) (1, 1, 1, 0)T (1, 0, 0, 0)T (1, 1, 0, 0)T (1, 1, 0, 0)T (1, 0, 0, 0)T

(l × 4) (1, 1, 1, 0)T (1, 0, 0, 0)T (1, 1, 1, 0)T (1, 1, 1, 0)T (1, 1, 0, 0)T

A2 collateral

Shortfall (l) (0.27, 0.21, 0.14, 0)T (0.09, 0, 0, 0)T (0.22, 0.11, 0, 0)T (0.16, 0, 0, 0)T (0.15, 0, 0, 0)T

(l × 4) (0.31, 0.28, 0.25, 0)T (0.11, 0, 0, 0)T (0.32, 0.31, 0.30, 0)T (0.30, 0.26, 0.22, 0)T (0.30, 0.26, 0.22, 0)T

Defaults (D) (1, 1, 1, 0)T (1, 0, 0, 0)T (1, 1, 1, 0)T (1, 1, 0, 0)T (1, 1, 0, 0)T

(l × 4) (1, 1, 1, 0)T (1, 0, 0, 0)T (1, 1, 1, 0)T (1, 1, 1, 0)T (1, 1, 1, 0)T

Table 4.3: The table represents the shortfall and defaults of banks for different configu-
rations. The rows in grey represent the shortfall and number of defaults when the price
impact is amplified l × 4. For bank defaults, an entry of 1 represents a bank defaulting
in the first round of clearing with 0 representing no default.
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Figure 4.3: The plots represent the equity of banks under the greatest fixed point, for
different configurations and price impact factors: A1 with price impact l (left), A2 with
price impact l (middle left), A1 with price impact l× 4 (middle right) and A2 with price
impact l × 4 (right).

equity losses of banks for different configurations and collateral posted under heat plots in

Figure 4.3. The smallest equity values are under C1, in which the bank holds no illiquid

assets or capital buffer. For other configurations, the equity losses as in the shortfall and

number of defaults are higher when collateral is illiquid, and the price impact is high.

The smallest changes to the equity are for B4, in which the bank has no obligations and

C2 when banks only hold a liquidity buffer. Even though the banks have no shortfall and

are not in default, the equity of banks does change depending on the price impact and

its asset holdings.

4.4.2 Large random network

We generate a sample of random networks for the banks’ obligations. We bilaterally

net obligations and assign collateral assets on the netted obligations. We consider the

clearing scenario from banks with outstanding obligations, that are generated from the

random network.

We define the N × N random matrices for banks obligations p̃ER,τ , where τ represents

a sample of the total number of generated matrices D ∈ N. We denote the matrices
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by ER to represent the assumption of an Erdős-Rényi graph, in which the probability

a link forms between two banks is equal. We define λ ∈ [0, 1] as the probability that a

link forms between two banks. Each entry of the obligations matrix is generated from a

discrete Bernoulli distribution:

P
(
p̃ER,τ
ij =

W (1)

λN(N − 1)

)
= λ,

P
(
p̃ER,τ
ij = 0

)
= 1 − λ ∀i ̸= j,

P
(
p̃ER,τ
ii = 0

)
= 1 ∀i ∈ N ,

and W (1) ∈ [0,∞) denotes the total obligations of all banks. As there are no links on

the diagonal, we account for this in the weight distribution, in which N(N − 1) links can

only be present.

We bilaterally net obligations in the generated matrices. We define the bilaterally net-

ted matrices p̄ER,τ , where each entry p̄ER,τ
ij represents the bilaterally netted obligations

between banks i and j:

p̄ER,τ
ij = max

{
p̃ER,τ
ij − p̃ER,τ

ji , 0
}

∀i, j ∈ N .

As the links are bilaterally netted and the weights assigned to each link are equal if

λ = 1 the netted matrix has no links. The collateral is assigned to banks from the netted

obligations between banks

mER,τ
ij =

C

W (1)
p̄ER,τ
ij ∀i, j ∈ N

and C ∈ [0,∞) denotes the total collateral posted. For a network with N = 20 nodes,

we define the total link weights W (1) = 60 and C = 15. This represents the same total

obligations and collateral as in Section 4.4.1. We consider D = 1000 for the total number

of generated random networks.

We assume banks have a liquidity buffer and two illiquid asset holdings for different

collateral and network configurations, as in Section 4.4.1. The total shares of liquid and

illiquid assets for each bank are adjusted by the total number of banks in the network

i.e., for each configuration (except for Configuration 1 where banks hold no external asset

holdings). The total shares of external assets which the bank has for each configuration

are equal to:

bi +
K∑
k=1

Sik =
W (2)

N
∀i ∈ N ,

where W (2) ∈ [0,∞) represents the total quantity of shares of external assets for all
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Figure 4.4: The plot represents one network from the sample of bilaterally netted random
graphs for a density of λ = 0.1 (left) and λ = 0.3 (right).

banks. We assume W (2) = 40 as the total number of shares of external assets for all

banks. The total number of shares determines the number of shares allocated to each

asset for different configurations of asset holdings.

We evaluate the change in the systemic risk metrics, for different price impact factors.

We assume no bankruptcy costs for external and interbank assets γ1i = γ2i = 1 ∀i ∈ N .

We denote the change in the price impact l(β) under different exponents β ∈ R as follows:

l(β) = l0 × 2(β−5),

and l0 represents the initial price impact. The change in the price impact l(β) depends

on the exponent β, relative to the constant factor. Under the chosen constant, if β < 5,

there is a decrease in the price impact, if β > 5 the price impact increases and for β = 5

there is no change in the price impact.5

We assume that l0 values are the same as in the small network in Section 4.4.1, and

consider different values of β in the clearing process.

We define the systemic metrics for a sample of networks. We define the average total

relative shortfall and number of defaults for a sample of D networks as follows:

H̄ =
1

D

D∑
τ=1

N∑
i=1

hτi ,

and

hτi =

∑N
j=1 max

{
p̄R1,τ
ij − p∗,R1,τ

ij − p∗,R2,τ
ij , 0

}
∑N

i=1

∑N
j=1 p̄

R1,τ
ij

.

The p∗,R1,τ and p∗,R2,τ represent the greatest fixed point payments in R1 and R2 from the

5The factor of 5 was chosen because of the values from networks generated under the random graph
model. Other values can be considered for the change in price impact.
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randomly generated obligations matrix p̄R1,τ = p̄ER,τ , of sample τ . Across all samples,

we define the average total number of banks that are in the default Λ̄R1 and the average

total number of banks with outstanding obligations Λ̄R2 as follows:

Λ̄ι =
1

D

D∑
τ=1

Λι,τ ,

where

Λι,τ =
N∑
i=1

1 (e∗,ι,τi < 0) ι ∈ {R1, R2} .

The term e∗,ι,τ represents the equity of the bank under the greatest fixed point in the

round ι, for sample τ . We define the average relative proportion of payments in the first

round compared with total payments as:

P̄ =
1

D

D∑
τ=1

Pτ ,

where

Pτ =

∑N
i=1 p

∗,R1,τ
i∑N

i=1

(
p∗,R1,τ
i + p∗,R2,τ

i

) .
We define the average proportion of banks with outstanding payments compared with

the total number of bank defaults as follows:

V̄ =
1

d

d∑
τ=1

Vτ ,

where

Vτ =
ΛR2,τ

ΛR1,τ
.

Provided that payments satisfy the conditions on the parameters and assets posted as

collateral in Theorem 4.3.4, then the ordering of systemic risk measures for the average

across all sample networks still holds.

Obligations and Defaults: In Figure 4.5, we find the configuration of the network

does impact the shortfall and banks with outstanding obligations. For β < 5, there are

small differences between the asset losses of different configurations, with C1 representing

the largest losses to banks. As β > 5, there is a higher mark-to-market adjustment and

larger losses for configurations with a higher commonality of C3 and C5. Furthermore,

the total shortfall and outstanding obligations exceed those of C1, in which the bank

holds no external assets. This shows the combined fire sales effect can result in higher

losses for banks with illiquid assets than those without.
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The smallest loss is for C2 when the bank holds only a liquid buffer. This is not affected

by the price impact and hence results in smaller losses compared to other configurations.

The losses of banks are still affected by the change in price impact, because of the illiquid

assets used as collateral.

Initially, C4 losses are smaller than C5, when the collateral and illiquid assets are of the

same type with a small price impact. As the price exponent increases, the commonality

leads to larger losses compared with the diversification represented in C5. The magnitude

of the price impact determines how susceptible different configurations are to the effects

of the fire sale.

The shortfall and number of banks with outstanding obligations are smaller in C5 than in

C1. This is because two different types of assets are used for external asset holdings and

posted collateral assets. The decrease in external asset holdings from the fire sales does

not decrease the market price of assets used as collateral. This means the losses of banks

are lower holding external assets which are different to the assets used as collateral, even

if these assets are subject to the fire sales effect. Hence, holding external assets under

this configuration always decreases the losses of banks compared to holding no quantity

of external asset holdings.

Relative Obligations and Defaults: From the relative contribution of different rounds,

we find the shortfall is largely concentrated in the first round. The changes in the relative

contribution are for configurations in which the bank holds external assets, where the

overall values in C1 remain similar. As banks in default do not have collateral to reallocate

in the second round, this reduces the total payments banks make in R2.

The R2 does affect the total payments of banks only when the price impact exponent

is high. This comes from an increase in bank defaults from the first round and leads to

networks in which banks can multilateral meet outstanding obligations. This increases

the payments in R2 and hence reduces the total contribution of payments in R1. We only

find a contribution of R2 for configurations resulting in the largest losses, which are in

C3 and C5.

We find a large proportion of banks that default do not meet outstanding obligations in

R2. For β = 5, this results in the smallest value of V̄ , in which the largest proportion

of banks can meet outstanding obligations in R2. This may be from the magnitude of

the price impact, which is small enough such that there are banks with outstanding obli-

gations, but not large enough to substantially decrease the market price of assets used

for collateral. The trajectory of losses is not monotonic, so we cannot characterise the

ordering of this metric as with other systemic metrics from Theorem 4.3.4. We find C4

has the smallest number of relative banks with outstanding obligations, and these values

correspond to the trajectory of banks with outstanding obligations.
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Network density: We consider an increase in the network density of λ = 0.3. We

generate a sample of networks from an Erdős-Rényi random graph model and bilaterally

net obligations.

We find the total shortfall and the total number of banks with outstanding obligations

are smaller under a higher network density. As the density of the network increases, this

decreases the associated weight of each formed link between bank payments and collateral.

This decreases the variation in the difference between interbank assets and obligations,

and results in a smaller number of banks in fundamental default, and subsequently a

smaller number of contagious defaults.

Under this network, C1 mostly has the largest losses across all other types of configu-

rations, in which the bank holds external assets. In this regard, holding illiquid assets

even with a high commonality with collateral posted does reduce the shortfall number of

banks with outstanding obligations.

For different price impact exponents, the relative number of banks that cannot meet total

obligations across both rounds is < 30%. This represents a significant decrease in bank

losses compared to networks generated under the random graph model with a network

density of λ = 0.1. For different configurations of asset holdings, the plots in Figure 4.6

show C5 asset holdings have the largest losses, for a high price impact exponent. As the

losses are smaller under a higher network density, there are smaller differences between

the different configurations. This shows the diversification of the bank’s obligations can

decrease the shortfall and number of banks with outstanding obligations.

Bankruptcy costs: We include bankruptcy costs for banks in the first round of clearing.

We consider external and interbank bankruptcy costs for different network densities. As

C1 holds no external assets, there is no change in its relative first-round contribution

under external bankruptcy costs.

From Figure 4.7, we find that interbank bankruptcy costs largely decrease the relative

total payments of the first round, compared with external bankruptcy costs. As there is a

decrease in total first-round payments, this increases the bank’s outstanding obligations

in R2. A larger proportion of banks can meet outstanding obligations from R2 compared

with R1. We find the largest impact of bankruptcy costs is for C3 and C5 configurations.

The network density has an impact on the proportion of first-round total payments. When

external bankruptcy costs are present, the first round proportion is smaller for λ = 0.3.

This is different in the presence of interbank bankruptcy costs, which show a larger pro-

portion of first-round payments in R1 for λ = 0.3. This shows that while a higher network

density reduces the dependence on the second round for external bankruptcy costs, it also

amplifies the dependence on interbank bankruptcy costs. This provides further consider-

ations in assessing the resilience of a network of higher density when additional financial

factors are included in the clearing process.
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Figure 4.5: The plots represent the following metrics: Relative total shortfall H̄ (top left),
relative total obligations from the first round P̄ (top right), the total number of banks
with outstanding obligations Λ̄R2 (bottom left) and the relative total number of banks
with outstanding obligations V̄ (bottom right) for λ = 0.1. The dashed line represents
C1 and the colours represent different configurations with external asset holdings: black
= C2, red = C3, blue = C4 and green = C5.
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Figure 4.6: The plots represent the following metrics: Relative total shortfall H̄ (top left),
relative total obligations from the first round P̄ (top right), the total number of banks
with outstanding obligations Λ̄R2 (bottom left) and the relative total number of banks
with outstanding obligations V̄ (bottom right) for λ = 0.3. The dashed line represents
C1 and the colours represent different configurations with external asset holdings: black
= C2, red = C3, blue = C4 and green = C5.
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Figure 4.7: The plots represent the total relative first round payment P̄ with external
bankruptcy costs γ1i = 0.1 ∀i ∈ N (left) and interbank bankruptcy costs γ2i = 0.1 ∀i ∈
N (right) for λ = 0.1 (top) and λ = 0.3 (bottom). The dashed line represents C1 and
the colours represent different configurations with external asset holdings: black = C2,
red = C3, blue = C4 and green = C5.
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4.5 Conclusion

We extend the collateral model by Ghamami et al. (2022) and accounted for an additional

channel of fire sales, incorporating two channels of fire sales. We established the fixed

point of the clearing process and studied the changes for both clearing rounds. We were

able to establish an ordering between the payments under different systems, and how this

was reflected in the systemic risk metrics.

From the small network example, we illustrated that banks’ losses are sensitive to the

price impact. This was particularly the case when assets used as collateral were illiquid

and banks held the same type of asset. This shows the compounding effect of fire sales,

even if the illiquid asset used has a smaller price impact than other illiquid assets.

We extended our analysis to networks generated from a random graph model and dis-

tinguished losses between different clearing rounds. Our results showed configurations

of banks’ asset holdings with a high commonality between external asset holdings and

assets used as collateral resulted in larger losses, compared with networks in which the

bank held no external assets. This was evident for a high price impact and networks

with a small density. Increasing the density and diversifying the obligations of banks in

the network reduces the initial loss of banks, and decreases the fire sales impact on the

bank’s asset holdings.

From analysing the different stages of clearing, we find the importance of R2 when losses

are large. If bankruptcy costs are present, the total payments from R2 in some cases

contributed to < 80% of the total payments from banks. From the generated random

networks and when the bank’s losses are large, the R2 represents a significant contribution

for banks to meet outstanding obligations in both clearing rounds.
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Ring-fencing banks in financial

networks

5.1 Introduction

After the Global Financial Crisis, several reforms have been put in place worldwide to

limit the propagation of shocks between financial institutions and between those and the

real economy. Ring-fencing refers to separating retail services provided by banks, such as

taking deposits from households and small businesses, from investment and international

banking. According to the Independent Commission on Banking (ICB), which recom-

mended its introduction, ring-fencing would (ICB, 2011): protect the provision of core

financial services to retail customers — deposit-taking, making and receiving payments —

from shocks that might impact riskier activities; make it easier to resolve banks without

taxpayer support; reduce excessive risk-taking driven by the expectation of government

guarantees. For example, ICB argues that (ICB, 2011) for the Royal Bank of Scotland:

The ring-fence would have isolated its EEA banking operations from its global

markets activities where most of its losses arose. Together with more loss-

absorbent debt, this would have given the authorities credible alternative op-

tions to injecting £45bn of taxpayer funds into the group — e.g. isolating

the ring-fenced bank for sale or temporary public ownership and an orderly

wind-down of the rest of the group at no public cost.

Ring-fencing has been introduced in the UK legislation with the Financial Services (Bank-

ing Reform) Act 2013 and it came into effect at the beginning of 2019, affecting banks

with more than £25 billion in retail deposits.1

We propose a theoretical model to analyse the implications of ring-fencing for systemic

risk. In particular, we focus on one channel through which shocks can spread across

1A full list of banking groups that have implemented ring-fencing is available in Bank of England
(2022).
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banks: solvency contagion. When one bank’s assets are hit by an exogenous shock, other

banks re-evaluate the assets corresponding to their investment in that bank because they

expect to recover a smaller proportion of their investment. As a consequence, the value of

their own assets diminishes, triggering a second round of re-evaluations. Banks continue

to adjust their asset valuations in subsequent rounds until the equilibrium valuation is

reached (Bardoscia et al., 2019; Barucca et al., 2020). As a result, shocks propagate from

one bank to another when their creditworthiness changes, even in the absence of defaults.

This channel was especially active during the Global Financial Crisis. In fact, according

to the Basel Committee on Banking Supervision, “roughly two-thirds of losses attributed

to counterparty credit risk were due to CVA losses2 and only about one-third were due

to actual defaults” (BIS, 2011).

We treat the implementation of ring-fencing as an exogenous shock. In fact, ring-fencing

requires some banking groups to split their activities between ring-fenced bodies (RFBs)

and non-ring-fenced bodies (nRFBs). In our model, this means that the groups that

implement ring-fencing allocate some of their assets and liabilities to their RFB and the

remainder to their nRFB. Consistently with the spirit of the reform, RFBs can only hold

external assets, corresponding for example to mortgages and corporate credit, and ex-

ternal liabilities, corresponding to deposits. In addition to those, nRFBs can also hold

interbank assets, corresponding to investments in other banks, and interbank liabilities,

corresponding to funding from other banks.3 In reality, the allocations of assets and

liabilities are partly determined by law and regulations and partly by banks’ individual

choices. In fact, while some activities must sit within RFBs and some other activities are

“prohibited” and must sit within nRFBs, there are activities that banking groups can

assign either to their RFB or to their nRFB, such as lending to large corporates. Within

the context of our model, such allocation of assets and liabilities impacts the creditwor-

thiness of RFBs and nRFBs in two ways. First, RFBs are insulated from counterparty

credit risk because they do not hold interbank assets. Instead, nRFBs hold interbank

assets and are exposed to counterparty credit risk, like banks before ring-fencing. Second,

if external assets are allocated to RFBs and nRFBs in different proportions, also their

leverage might change. We stress that these effects are mechanical, in the sense that they

occur when assets and liabilities are allocated to RFBs and nRFBs, and no further action

is taken to change either the size or the composition of the balance sheet of RFBs and

nRFBs.

We now summarise our main results. First, we find conditions on the allocation of assets

and liabilities that lead to a safer RFB, i.e. that make its probability of default smaller

2Credit Valuation Adjustment (CVA) losses originate from incorporating counterparty credit risk into
asset valuations.

3As a consequence, RFBs cannot invest or receive funding from any nRFB, including the nRFB
within their own group. Therefore, as in Farhi and Tirole (2021), any RFB is not exposed to the nRFB
belonging to the same group.
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than to its group prior to ring-fencing. When the net interbank lending of a bank is zero,

this happens when a larger proportion of assets than liabilities is allocated to its RFB,

so that its leverage decreases with respect to the external leverage of its group prior to

ring-fencing. However, when a bank is a net lender (borrower) in the interbank market,

in order to decrease the external leverage of its RFB and therefore make it safer, it needs

to allocate proportionally more (fewer) assets or fewer (more) liabilities to their RFB

compared to the case in which their net interbank lending is zero.

Second, we find conditions that lead to a less safe nRFB with respect to its group prior

to ring-fencing. Since nRFBs can hold interbank assets of other nRFBs, their creditwor-

thiness depends on the creditworthiness of other nRFBs. Indeed, a nRFB becomes less

safe than its group prior to ring-fencing when both that group and all the groups to which

that group is directly or indirectly exposed implement ring-fencing so that the leverage of

their RFBs is sufficiently below the external leverage of their groups prior to ring-fencing.

As a consequence, while those RFBs have a smaller probability of default with respect to

their groups prior to ring-fencing, the corresponding nRFBs have larger external leverage

than their groups prior to ring-fencing, and therefore also a larger probability of default.

Third, we compare the equity of the group after the introduction of ring-fencing (i.e. the

equity of the RFB plus the equity of the nRFB) with the equity of the group prior to

ring-fencing. Interestingly, we find that the equity of the group after the introduction

of ring-fencing does not depend on whether that group actually implements ring-fencing

(and how), but only on whether the groups to which that group is directly or indirectly

exposed implement ring-fencing (and how). We find that when all the groups to which

that group is directly or indirectly exposed bring the leverage of their RFBs sufficiently

below the external leverage of their groups prior to ring-fencing, then the equity of that

group is smaller after the implementation of ring-fencing. Intuitively, when sufficiently

more assets are allocated to a RFB to lower its external leverage, making it safer, fewer

assets are allocated to the corresponding nRFB, thereby increasing its external leverage

and making it less safe. However, a riskier nRFB has downstream effects on the other

nRFBs exposed to it. The lost equity corresponds precisely to the loss in the value of

interbank assets held by the nRFB that is exposed to these other riskier nRFBs. We stress

that this result does not apply to a group if, for example, one of the groups to which that

group is directly or indirectly exposed implements ring-fencing by increasing the external

leverage of its RFB, or by not decreasing it sufficiently. In this case, the equity of that

group would not necessarily be smaller after the implementation of ring-fencing.

Finally, we point out that the equity lost by one banking group after the implementation

of ring-fencing is not gained by other banking groups. Indeed, if all groups implement

ring-fencing so that their RFBs have a leverage sufficiently smaller than the external

leverage of their groups prior to ring-fencing, then the aggregate equity of the banking

system will be smaller after the implementation of ring-fencing.
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Our model is necessarily stylised and therefore subject to some limitations. First, after

the assets and liabilities of banking groups are allocated to RFBs and nRFBs, no further

action is taken on the size or composition of their balance sheets. However, banking

groups can react to the outcome of this allocation — either directly, or by responding

to regulation — in several ways. One possibility is to deleverage the nRFB. Another

possibility is to narrow the scope for solvency contagion, for example by reducing the

exposure of the nRFB to other banks by converting some of its interbank assets into

external assets, which corresponds to divesting from other banks and investing in the

real economy. The alternative is to reallocate some external assets from the RFB to the

nRFB. This reduces the external leverage of the nRFB, but it also increases the external

leverage of the RFB, and therefore its probability of default. Second, while we make the

simplifying assumption that RFBs cannot hold interbank assets, in reality, they could

still be exposed to other RFBs. Those exposures could, everything else equal, lower their

creditworthiness. Third, we assume that the intrinsic riskiness of external assets held by

RFBs and nRFB is safe. In reality, by holding intrinsically safer assets, RFBs could be

made safer when their leverages are larger than the external leverages of their groups

prior to ring-fencing.

Empirical research on ring-fencing in the UK focused on a few key aspects. Erten et al.

(2022) find that RFBs face lower funding costs than prior to the implementation of

the reform, whereas nRFBs funding costs do not change significantly. To the extent

that probabilities of default can be taken as a proxy for funding costs, our model can

accommodate that outcome. This could happen, for example, if a RFB had a smaller

external leverage than the group prior to ring-fencing, and if banks to which the nRFB is

exposed had also reduced their external leverage. This could occur either mechanically,

as a result of the external assets and liabilities allocated to those nRFBs, or because

those nRFBs decided to deleverage after the implementation of ring-fencing. Chavaz

and Elliott (2020) find that groups affected by ring-fencing substantially reduce their

investment banking activities prior to the implementation of ring-fencing. Moreover,

RFBs are able to offer lower interest rates on deposits than prior to ring-fencing due to

the change in their funding mix. In contrast, while our model captures the change in

liabilities due to the implementation of ring-fencing, it does not capture any difference in

banks’ funding mix.

A larger literature explores the broader implications of separating retail and investment

banking. Caprio et al. (2007) find that banks in countries that impose greater restric-

tions on bank activities tend to have lower valuations than in countries that impose fewer

restrictions. Laeven and Levine (2007) find that valuations of groups that engage both

in lending and non-lending activities are lower than if the groups were broken down into

specialised entities. Indeed, our model predicts that, when all banking groups implement

ring-fencing so that the external leverage (and therefore the riskiness) of RFBs decreases,
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the equity valuation of banking groups decreases. Cornett et al. (2002) find that commer-

cial banks with an investment subsidiary have larger cash returns on their assets, without

being riskier. A number of studies (Kroszner and Rajan, 1994; Puri, 1994, 1996; Gande

et al., 1997; Drucker and Puri, 2005) focuses on whether bundling retail and investment

banking leads to synergies or conflicts of interest, and on the implications for their clients

(Neuhann and Saidi, 2018; Akiyoshi, 2019). Theoretical studies suggest that separating

retail and investment banking could reduce moral hazard and risk-taking (Boyd et al.,

1998; Freixas et al., 2007; Farhi and Tirole, 2021).

We model solvency contagion due to the re-evaluation of interbank assets as in Bardoscia

et al. (2019) and Barucca et al. (2020).4 This means that in contrast with models of con-

tagion on default (Eisenberg and Noe, 2001; Rogers and Veraart, 2013), shocks propagate

to counterparties even in the absence of defaults. Risks stemming from this channel ap-

pear to have peaked during the GFC and sharply decreased since (Bardoscia et al., 2019),

but to be concentrated (Fink et al., 2016). Several studies have investigated how struc-

tural features of the financial network impact its stability and resilience to shocks (Allen

and Gale, 2000; Freixas et al., 2007; Nier et al., 2007; Gai and Kapadia, 2010; Battiston

et al., 2012a,b; Elliott et al., 2014; Acemoglu et al., 2015; Bardoscia et al., 2017). Here,

even though the implementation of ring-fencing changes affects banks’ balance sheets,

it does not change the underlying structure of the financial network. In fact, RFBs are

fully isolated from the rest of the network and the network of nRFBs is identical to the

network of banking groups prior to ring-fencing.

This chapter is organised as follows. In Section 5.2 we discuss the institutional details

of ring-fencing in the UK and briefly compare it to some other jurisdictions, in Section

5.3 we introduce a simple model of ring-fencing for one bank, whereas in Section 5.4 we

extend the model to the case of multiple banks interconnected in a financial network and

derive our main results. We draw our conclusions in Section 5.5.

5.2 Institutional details

The UK ring-fencing regime has required banks with more than £25 billion in retail

deposits to separate their retail and investment activities by the beginning of 2019. In

practice, this means that such banks must create a new legal entity, the ring-fenced

bank (RFB). The legislation specifies “core activities”, which can be provided only by

RFBs, and “prohibited activities”, which cannot be provided by RFBs. The following

lists closely follow Britton et al. (2016). Core activities include taking deposits from

retail and SMEs in the UK. whereas prohibited activities include: Trading and selling

securities, commodities and derivatives; having exposures to financial institutions other

4For alternative valuation frameworks, see Elsinger et al. (2006); Fischer (2014); Veraart (2020). For
earlier work on pre-default contagion, see Bardoscia et al. (2015, 2016); Fink et al. (2016).
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than other RFBs; having operations outside the EEA; underwriting securities; buying

securitisations of other financial institutions. Prohibited activities can be provided by

other entities within the same banking group. For convenience, we collectively refer to

those entities as the non-ring-fenced bank (nRFB). Some other activities can be provided

both by RFBs and by nRFBs: deposit-taking activities for large corporates and other

RFBs; lending to individuals and corporates; transactions with central banks; holding own

securitisations; trade finance; payment services; hedging liquidity, interest rate, currency,

commodity and credit risks; selling simple derivatives to corporates and other RFBs.

Importantly, the RFB is required to be independent of the nRFB within the same banking

group. This means, for example, that the RFB governance and management should allow

the RFB to make decisions in its own interest, independently of the rest of the group.

It also means that the RFB is subject to capital and liquidity requirements separately

from other entities within the banking group. Finally, the financial relationships between

the RFB and the nRFB within the same group, if any, should not be privileged when

compared to those between the RFB and other financial institutions.

An independent review of the ring-fencing regime in the UK has been recently published

(Ring-fencing and Proprietary Trading Independent Review, 2022). The final report ac-

knowledges that the regime has made the UK banking system safer because RFBs are

easier to supervise. However, it also recognises that the definition of critical functions

provided by banks has broadened since the original recommendation by the ICB to in-

clude activities that fall within nRFBs (see PRA (2014)). Moreover, it suggests that the

resolution regime might be sufficient for implicit government guarantees to too-big-to-fail

banks and that ring-fencing might be redundant in this respect. The report includes

several recommendations, on which the UK government has announced the intention to

consult (HMT, 2022; HMT, 2023).

A similar structural separation was initially proposed (Liikanen, 2012) and then rejected

in the EU. In the US the 1933 Glass-Stegall Act prohibited banks that took insured

deposits from providing investment banking activities. This separation was stronger

than the current UK ring-fencing regime, as the deposit-taker and the entity providing

investment banking activities could not be part of the same banking group. The provisions

of the 1933 Glass-Stegall Act were gradually relaxed over time, eventually allowing those

entities to be part of the same group (for more details, see Appendix A in Chavaz and

Elliott (2020)). This remains the case after the GFC when the Dodd-Frank Act imposed

further restrictions on the relationships between the two entities.
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5.3 Ring-fencing one bank

We start by discussing the mechanics of ring-fencing one bank. We consider one bank

that, prior to ring-fencing, has assets A and liabilities (debt) L.5 After ring-fencing,

the bank is split into two separate entities: the ring-fenced bank (RFB) with assets

ARF and liabilities LRF, and the non-ring-fenced bank (nRFB) with assets AnRF and

liabilities LnRF. Total assets and liabilities of the bank prior to ring-fencing are simply

A = ARF +AnRF and L = LRF +LnRF. A and L can be also interpreted as the total assets

and liabilities of the banking group that consolidates the balance sheets of the RFB and

nRFB after the implementation of ring-fencing.

Let ψA ∈ [0, 1] and ψL ∈ [0, 1] be respectively the fraction of total assets and liabilities of

the RFB. Therefore, 1−ψA and 1−ψL are the fraction of the total assets and liabilities

of the nRFB:

ARF = ψAA, AnRF = (1 − ψA)A, (5.1a)

LRF = ψLL, LnRF = (1 − ψL)L . (5.1b)

For all entities, equities are defined as the difference between assets and liabilities:

E = A− L, (5.2a)

ERF = ARF − LRF = ψAA− ψLL, (5.2b)

EnRF = AnRF − LnRF = (1 − ψA)A− (1 − ψL)L . (5.2c)

Therefore, we have that the equity of the bank prior to ring-fencing (or of the consolidated

group) is equal to the sum of the equities of the RFB and of the nRFB:

E = ERF + EnRF . (5.3)

Eq. (5.3) may seem very intuitive, but we anticipate that this identity will not necessarily

hold for banks embedded in a financial network.

The corner cases ψA = 0 and ψA = 1 correspond to transferring all assets to the RFB

or to the nRFB. ψL = 0 means that the RFB is fully funded by equity (ERF = ψAA),

whereas ψL = 1 means that the nRFB is fully funded by equity (EnRF = (1 − ψA)A).

Starting from a solvent bank (E > 0) it is certainly possible to implement ring-fencing,

i.e. to pick ψA and ψL so that either the RFB or the nRFB are not solvent. We rule

out those cases as there would be no point in implementing ring-fencing if one of the two

entities were not solvent. More precisely, we say that ring-fencing with the pair (ψA, ψL)

is feasible or that the bank implements ring-fencing feasibly if ERF > 0 and EnRF > 0.

5We refer to the entity prior to the implementation of ring-fencing as to the “bank” or to the “banking
group” interchangeably.
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In the following, we will assume that (ψA, ψL) is feasible. We note that if (ψA, ψL) is

feasible, also the bank prior to ring-fencing is solvent (E > 0).

We now introduce the leverage of the bank prior to ring-fencing and of the RFB and

nRFB. Provided that they are solvent (i.e. that their equities are strictly positive), the

leverages of the bank prior to ring-fencing, the RFB, and the nRFB are the ratios between

their assets and equity:

λ =
A

E
(5.4a)

λRF =
ARF

ERF
=
ψAA

ERF
(5.4b)

λnRF =
AnRF

EnRF
=

(1 − ψA)A

EnRF
. (5.4c)

The relationship between the leverages of the RFB and the nRFB depends on ψA and

ψL. We have the following result.

Proposition 5.3.1. Let the bank implement ring-fencing feasibly, i.e. let the RFB and

nRFB be solvent. The following statements are equivalent:

– A larger proportion of assets than liabilities is allocated to the RFB:

ψA ≥ ψL ,

– The leverage of the RFB is smaller than the leverage of the bank prior to ring-

fencing:

λRF ≤ λ ,

– The leverage of the nRFB bank is larger than the leverage of the bank prior to

ring-fencing:

λ ≤ λnRF .

Similar equivalences hold with reversed inequalities.

One immediate implication of Proposition 5.3.1 is that there are three possibilities. First,

ψA > ψL, in which case we have that λRF < λ < λnRF. Second, ψA < ψL, in which case we

have that λRF > λ > λnRF. Third, ψA = ψL, in which case we have that λRF = λ = λnRF.

As a consequence, if the RFB has a smaller leverage than the bank prior to ring-fencing,

the nRFB must necessarily have a larger leverage.

So far we have made no explicit assumptions on the intrinsic riskiness of the assets.

Let us assume that assets A follow a geometric Brownian motion: dA(t) = µA(t)dt +

σA(t)dW (t), where µ is the drift and σ the volatility. In order to introduce probabilities

of default, we assume that investors are risk-neutral. In this context, the probability
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of default in the interval [t, T ] is defined as the probability that the equity of the bank

is negative at time T , conditional on the information available at time t. When there

are no arbitrage opportunities and the market is complete, it can be computed as the

conditional risk-neutral expectation p[t,T ] = EQ
[
1E(T )<0|A(t)

]
, where A(t) is the value

of assets observed at time t. By further assuming that no dividends are distributed and

that the risk-free rate is equal to zero, we have (Merton, 1974):

p[t,T ] = 1 −N

 log A(t)
A(t)−E(t)

− σ2(T−t)
2

σ
√
T − t

 , (5.5)

where N is the cumulative distribution function of the normal distribution. For conve-

nience, in the following, we drop the dependence on time, as we consider all quantities to

be observed at time t. Eq. (5.5) can be re-written as:

p[t,T ] = 1 −N

[
log λ

λ−1
− σ2(T−t)

2

σ
√
T − t

]
,

which is a function only of the leverage λ and the volatility σ. More precisely, p[t,T ] is

an increasing function of both λ and σ. This property is shared also by other credit

structural models, such as Black and Cox (1976), in which banks default as soon as their

equity becomes negative.

By multiplying both sides of dA(t) by ψA and 1 − ψA, we have that: dARF(t) =

µARF(t)dt + σARF(t)dW (t) and that dAnRF(t) = µAnRF(t)dt + σAnRF(t)dW (t), mean-

ing that both ARF and AnRF follow the same geometric Brownian motion as A. By

combining Proposition 5.3.1 with the fact that p[t,T ] is increasing with λ we have the

following result.

Corollary 5.3.2. Let the bank implement ring-fencing feasibly, i.e. let the RFB and

nRFB be solvent, and let probabilities of default be increasing functions of leverage.

If a larger proportion of external assets than external liabilities is allocated to the RFB:

ψA ≥ ψL ,

then the probability of default of the RFB is smaller than or equal to the probability of

default of the bank prior to ring-fencing, which is, in turn, smaller than or equal to the

probability of default of the nRFB:

pRF
[t,T ] ≤ p[t,T ] ≤ pnRF

[t,T ] .

Vice versa, if a smaller proportion of external assets than external liabilities is allocated
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to the RFB:

ψA ≤ ψL ,

then the probability of default of the RFB is larger than or equal to the probability of

default of the bank prior to ring-fencing, which is, in turn, larger than or equal to the

probability of default of the nRFB:

pRF
[t,T ] ≥ p[t,T ] ≥ pnRF

[t,T ] .

This result is intuitive: if ψA ≥ ψL the RFB is less leveraged than the bank prior to

ring-fencing, which is less leveraged than the nRFB. Therefore, the probability of default

of the RFB is smaller than the probability of default of the bank prior to ring-fencing,

which is, in turn, smaller than the probability of default of the nRFB. Corollary 5.3.2

will serve as the blueprint of similar results in the case in which banks are embedded in

a financial network.

5.4 Ring-fencing banks in a financial network

Now we consider a set of N banks, prior to the implementation of ring-fencing, denoted

with N = {1, . . . , N}. In this framework, we assume banks are able to lend to each

other. When bank i lends to bank j, bank i holds an interbank asset Aij and bank j

holds a matching interbank liability Lji = Aij. We denote the total interbank assets and

liabilities of bank i with Āi =
∑N

j=1Aij and L̄i =
∑N

j=1 Lij respectively. The matrices of

interbank assets A (or equivalently of interbank liabilities L) can be thought of as the

weighted adjacency matrix of the interbank network. It will be useful to denote with GA

and GL respectively the graphs defined by the weighted adjacency matrices A and L. In

addition to interbank assets and liabilities, each bank i also holds external assets Ae
i and

external liabilities Le
i . In order to avoid corner cases we assume that Ae

i > 0 for all i, that

is that all banks prior to ring-fencing hold some (possibly very small amount of) external

assets.

Ring-fencing is implemented similarly to Section 5.3, with the additional assumption that

RFBs can only hold external assets and liabilities, or equivalently that only nRFBs can

hold interbank assets and liabilities. Indeed, interbank assets and liabilities appear to

constitute a negligible proportion of RFBs balance sheets at the end of 2020 (see Figures

3.3 and 3.4 in RFPT, 2022). External assets are investments in entities outside the

financial network, such as mortgages or corporate lending. External liabilities correspond

to funding provided by entities outside the financial network, such as deposits or bonds.

In practice, deposit-taking from households and SMEs must be carried out by RFBs, but

deposit-taking from large corporates and lending to households and corporates can be

carried out either by RFBs or by nRFBs. Therefore, external assets and liabilities can
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be held both by RFBs and nRFBs.6

Let ΨA and ΨL, with ψA
i ∈ [0, 1] and ψL

i ∈ [0, 1], for i = 1, . . . , N be respectively the

vectors of the fractions of external assets and liabilities of the RFB. External assets and

liabilities of the RFB i are equal to ψA
i A

e
i and ψL

i L
e
i , whereas external assets and liabilities

of the nRFB i are equal to (1 − ψA
i )Ae

i and (1 − ψL
i )Le

i . If ψA
i = 0 = ψL

i no assets or

liabilities are transferred to the RFB i, meaning that in practice no ring-fenced entity

is created from bank i. Formally, in our model, this corresponds to the nRFB i being

equal to bank i prior to the implementation of ring-fencing. For this reason, we also

refer to banks that after the implementation of ring-fencing have not actually created

any ring-fenced entity as nRFBs. As a consequence, we can split banks into two sets.

Let:

R =
{
i ∈ N : ψA

i = 0 and ψL
i = 0

}
, (5.6)

be the set of banks that do not implement ring-fencing i.e. that do not transfer any assets

or liabilities to a RFB. Let:

R = N \R (5.7)

be a set of banks that implement ring-fencing, i.e. that transfer some assets or liabilities

to a RFB. Clearly, R ∪R = N . In order to avoid corner cases, we assume that ψA
i < 1

for all i, that is all nRFBs hold some (possibly very small amount of) external assets.

As already mentioned, in reality, ψA
i and ψL

i are partly determined by law and regulation

and partly by banks’ choices. For example, banks that are not required to implement

ring-fencing are unlikely to implement it purely by choice and will therefore be part of

R. Banks that are required to implement ring-fencing must allocate assets and liabilities

corresponding to core activities to their RFB and assets and liabilities corresponding to

prohibited activities to their nRFB but can choose where to allocate assets and liabilities

corresponding to neither core nor prohibited activities. Therefore, banks that implement

ring-fencing can choose, to a certain extent, both ψA
i and ψL

i .

5.4.1 Naive equity and external leverage

Banks that hold interbank assets (i.e. banks prior to ring-fencing and nRFBs) perform a

valuation of their interbank assets based on the creditworthiness of their counterparties.

As explained in Section 5.4.2, these valuations will impact their equity. For the moment,

we introduce naive equities, which do not incorporate valuations of interbank assets.

Therefore, they are defined as the difference between total assets and liabilities computed

6Because we assume RFBs cannot hold interbank assets or liabilities, they are completely disconnected
from the financial network, including from the nRFB within their own group. In reality, while RFBs
cannot be exposed to nRFBs, they could still be exposed to other RFBs, and they could be funded by
nRFBs. In other words, RFBs could still hold interbank assets (towards other RFBs) and interbank
liabilities (from other RFBs and nRFBs). Accounting for this possibility would, however, considerably
complicate the analysis.
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by taking interbank assets at their face value and are denoted with the superscript 0. For

banks prior to ring-fencing and nRFBs, we have, for all i:

E0
i = Ae

i + Āi − Le
i − L̄i (5.8a)

= Ae
i +

N∑
j=1

Aij − Le
i −

N∑
j=1

Lij (5.8b)

EnRF,0
i = (1 − ψA

i )Ae
i + Āi − (1 − ψL

i )Le
i − L̄i, (5.8c)

= (1 − ψA
i )Ae

i +
N∑
j=1

Aij − (1 − ψL
i )Le

i −
N∑
j=1

Lij . (5.8d)

RFBs do not hold interbank assets, and therefore we do not distinguish between their

naive equities (ERF,0
i ) and the equities that incorporate the valuation of interbank assets

(ERF
i ). For all i:

ERF,0
i = ERF

i = ψA
i A

e
i − ψL

i L
e
i . (5.8e)

Analogously to Section 5.3, we have that the naive equity of the bank i prior to ring-

fencing (or of the consolidated group) is equal to the sum of the equity of the RFB and

of the naive equity of the nRFB:

E0
i = ERF

i + EnRF,0
i . (5.9)

Similarly to Section 5.3, we rule out cases in which either at least one RFB is not solvent

(there exists i such that ERF
i ≤ 0) or in which at least one nRFB is not naively solvent

(there exists i such that EnRF,0
i ≤ 0). We define the pair (ΨA,ΨL) to be feasible if

all pairs (ψA
i , ψ

L
i ) are feasible, i.e. if ERF

i > 0 and EnRF,0
i > 0, for all i. When the pair

(ψA
i , ψ

L
i ) is feasible we also say that bank i implements ring-fencing feasibly and when the

pair (ΨA,ΨL) is feasible that all banks implement ring-fencing feasibly. In the following

we will assume that (ΨA,ΨL) is always feasible. If (ΨA,ΨL) is feasible, also all banks

prior to ring-fencing are naively solvent (E0
i > 0, for all i).

When banks are embedded in a financial network an important role is played by the

external leverage, that is the leverage restricted to external assets. More precisely, we

introduce the naive external leverage, which is computed with naive equities. Provided

that they are naively solvent (i.e. that their naive equities alter strictly positive), the

naive external leverages of bank i prior to ring-fencing and of RFB i and nRFB i are the
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ratios between their external assets and naive equity:

B0
i =

Ae
i

E0
i

(5.10a)

BRF,0
i =

ψA
i A

e
i

ERF,0
i

(5.10b)

BnRF,0
i =

(1 − ψA
i )Ae

i

EnRF,0
i

. (5.10c)

As RFBs do not hold interbank assets, their assets are only external and their equities

are equal to their naive equities. Hence, the naive external leverage of a RFB is equal to

its leverage, i.e. for all i:

BRF,0
i =

ψA
i A

e
i

ERF,0
i

=
ψA
i A

e
i

ERF
i

= λRF
i .

It is possible to extend Proposition 5.3.1 to the case in which banks are embedded in a

financial network.

Proposition 5.4.1. Let bank i implement ring-fencing feasibly, i.e. let RFB i and nRFB

i be naively solvent. The following statements are equivalent:

– The allocation of assets and liabilities to the RFB is such that:

ψA
i

(
Le
i − (Āi − L̄i)

)
≥ ψL

i L
e
i .

– The leverage of the RFB is smaller than the naive external leverage of the bank

prior to ring-fencing:

λRF
i ≤ B0

i .

– The naive external leverage of the nRFB bank is larger than the naive external

leverage of the bank prior to ring-fencing:

B0
i ≤ BnRF,0

i .

Similar equivalences hold with reversed inequalities.

Proposition 5.3.1 means that, in the case of one bank, the knowledge ψA and ψL is

sufficient to determine whether implementing ring-fencing decreases the leverage of the

RFB and increases the leverage of the nRFB with respect to the bank prior to ring-

fencing. Instead, when bank i is embedded in a financial network, the knowledge ψA
i and

ψL
i is not sufficient anymore, and one needs to know also net interbank assets Āi − L̄i

and external liabilities Le
i . In particular, we have that:
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Corollary 5.4.2. Let bank i implement ring-fencing feasibly, i.e. let RFB i and nRFB i

be naively solvent. If:

Āi − L̄i ≥ Le
i ,

then:

λRF
i ≥ B0

i ≥ BnRF,0
i .

If net interbank assets of bank i are larger than (or equal to) its external liabilities, then

implementing ring-fencing increases the leverage of the RFB i and decreases the naive

external leverage of the nRFB i with respect to bank i prior to ring-fencing.

By comparing Proposition 5.4.1 with Proposition 5.3.1 we can assess the impact of inter-

bank lending and borrowing on naive external leverage. Let us recall from Proposition

5.3.1 that, when a bank is not embedded in a financial network, that is when that bank

does not lend or borrow from other banks, then allocating a larger proportion of assets

than liabilities to the RFB (ψA > ψL) has the effect of lowering the leverage of the RFB

(λRF < λ). When the net interbank lending of bank i is equal to zero (Āi = L̄i), then

the condition to lower the naive external leverage of the RFB is the same as when bank

i does not lend to and borrow from other banks (ψA
i > ψL

i ).

However, when bank i is a net lender to other banks (Āi > L̄i), in order to lower the

leverage of its RFB (λRF
i < B0

i ), bank i needs to allocate proportionally more assets (or

fewer liabilities) to the RFB with respect to the case in which its net interbank lending

is zero. Similarly, when bank i is a net borrower from other banks (Āi < L̄i) in order to

lower the leverage of its RFB (λRF
i < B0

i ), bank i needs to allocate proportionally fewer

assets (or more liabilities) to the RFB with respect to the case in which its net interbank

lending is zero.

5.4.2 Valuation framework

Banks that hold interbank assets perform the valuation of their interbank assets by

applying a discount factor known as valuation function.7 Intuitively, valuation functions

quantify banks’ creditworthiness. When the valuation function of bank i is equal to one,

other banks that have invested in it expect to recover their investment fully and therefore

take their investment at face value. Conversely, when the valuation function of bank i

is equal to zero, other banks expect to recover nothing, and therefore fully write off the

corresponding asset.

Following Barucca et al. (2020), it is convenient to introduce valuation functions by

isolating their dependence on equity (E) from their dependence on additional quantities

(C).8

7Clearly such valuation is performed only by banks that hold interbank assets, that is by banks prior
to ring-fencing or by nRFBs.

8In Barucca et al. (2020) the valuation function of bank i can in principle depend on the vector
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Definition 5.4.3 (Valuation function, Barucca et al. (2020)). A function V : R → [0, 1]

is called a feasible valuation function if and only if:

– It is non-decreasing E ≤ E ′ =⇒ V (E|C) ≤ V (E ′|C) ∀E,E ′ ∈ R

– It is continuous from above.

Valuation functions decrease with the equity because all other things being equal, a

smaller equity indicates a deterioration of the creditworthiness and therefore a smaller

discount factor. Continuity from above is a technical requirement and its usefulness will

be clarified later.

The valuation of interbank assets feeds into equity valuations. The equity valuation

of bank i will depend on the valuation of bank i’s interbank assets and, via valuation

functions, on the equity valuations of bank i’s counterparties. In equilibrium, equity

valuations E∗ of all banks are self-consistent and, for all i, satisfy:

E∗
i = Ae

i +
N∑
j=1

AijV(E∗
j |Cj) − Le

i −
N∑
j=1

Lij, (5.11a)

EnRF,∗
i = (1 − ψA

i )Ae
i +

N∑
j=1

AijV(EnRF,∗
j |CnRF

j ) − (1 − ψL
i )Le

i −
N∑
j=1

Lij , (5.11b)

which is analogous to (5.8), but with valuation functions. As anticipated, with Cj and

CnRF
j we denote quantities on which valuation functions depend, in addition to equity.

We note that E∗ can be negative. Therefore, those should be interpreted as valuations

of banks’ net worth and the valuations of shares held by investors that enjoy limited

liability.

In general, the set of equations (5.11a) and (5.11b) admit more than one solution, but

in Barucca et al. (2020) it is shown that they always admit one greatest solution, i.e.

one solution in which the equity of each bank is not smaller than its equity in any other

solution. In other words, there are no solutions in which any bank is better off than

the greatest solution. Moreover, the greatest solution can be easily computed iteratively

by starting from naive equities E0 and EnRF,0 and by iterating (5.11a) and (5.11b) until

convergence. Further details on the existence and convergence of the greatest solution is

provided in Appendix 8.F. From this point onwards we will focus on equities correspond-

ing to the greatest solution, which we will denote with E∗ for banks prior to ring-fencing

and with EnRF,∗ for nRFBs.

We define the (non-naive) external leverage of each bank prior to ring-fencing and nRFB

as the ratio between their external assets and their equity valuations. Since the greatest

of equities of all banks. Here we simplify the exposition by focusing on the case in which it depends
explicitly only on the quantities relative to bank i.

126



Chapter 5: Ring-fencing banks in financial networks

solution for equities is smaller than or equal to naive equities (both for banks prior to ring-

fencing and for nRFBs), assuming that (ψA
i , ψ

L
i ) is feasible does not ensure that E∗

i > 0

or that EnRF∗
i > 0. Therefore, in order to introduce the external leverage, we need to

explicitly assume that the equity valuations banks prior to ring-fencing and of nRFBs

are strictly positive. Provided that they are solvent (i.e. that their equity valuations are

strictly positive), the external leverages of bank i prior to ring-fencing and of nRFB i are

the ratios between their external assets and equity valuations:

B∗
i =

Ae
i

E∗
i

(5.12a)

BnRF,∗
i =

(1 − ψA
i )Ae

i

EnRF,∗
i

. (5.12b)

In the following, we will consider valuation functions that depend explicitly only on

external leverage and on the volatility of external assets. Before introducing formally

such a class of valuation functions, we motivate this choice by following the approach in

Bardoscia et al. (2019). In order to keep the notation light, let us focus for a moment on

banks prior to ring-fencing. The same line of reasoning applies to nRFBs.

Bardoscia et al. (2019) derive the functional form for valuation functions under the fol-

lowing assumptions: (i) the recovery rate on defaulted interbank assets is equal to zero9;

(ii) the external assets of banks follow independent geometric Brownian motions with

drifts µ and volatilities σ; (iii) banks perform a risk-neutral valuation of interbank as-

sets; (iv) there are no arbitrage opportunities and the market is complete; (iv) banks do

not distribute dividends; (v) the risk-free rate is equal to zero. Bardoscia et al. (2019)

consider, two different definitions of banks’ default. If banks default when their equities

are smaller than or equal to zero at time T (as in Merton (1974)), then the valuation

functions at time t ≤ T are:

V (E(t)|C(t)) =


1 if E(t) ≥ Ae(t),

N
[
log

Ae(t)
Ae(t)−E(t)

−σ2(T−t)
2

σ
√
T−t

]
if E(t) < Ae(t).

(5.13a)

If banks default as soon as their equities become smaller than or equal to zero between

times t and T (as in Black and Cox (1976)), then the valuation functions at time t ≤ T

9Valuation functions can still be larger than zero because there is uncertainty on whether defaults
will occur or not in the future.
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are:

V (E(t)|C(t)) =



1 if E(t) ≥ Ae(t),

N
[
log

Ae(t)
Ae(t)−E(t)

−σ2(T−t)
2

σ
√
T−t

]
− Ae(t)

Ae(t)−E(t)
N
[
− log

Ae(t)
Ae(t)−E(t)

−σ2(T−t)
2

σ
√
T−t

]
if 0 ≤ E(t) < Ae(t),

0 if E(t) < 0.

(5.13b)

In both cases, Bardoscia et al. (2019) show that probabilities of default at time t are:

p[t,T ] = 1 − V (E(t)|C(t)) . (5.14)

We note that valuation functions (5.13) depend explicitly only on Ae(t)/E(t), which is

the external leverage at time t, and on σ
√
T − t, which is the volatility of external assets

over a period T − t. As one would expect, those are decreasing functions of the external

leverage and of the volatility of external assets. Intuitively, if one bank has a smaller

external leverage or if the volatility of its external assets is smaller, its counterparties will

deem it to be safer. Therefore, they will expect to recover a larger proposition of their

investments in that bank, which corresponds to a larger valuation function for that bank.

We can use (5.13) and (5.14) also to compute valuation functions and probabilities of

default for nRFBs, simply by plugging in the appropriate quantities: CnRF
i (t) = {(1 −

ψA
i )Ae

i (t), σi
√
T − t}. We point out that it makes sense to compute (5.13) and (5.14)

also in the case in which banks do not hold any interbank assets or interbank liabilities.

In this case, external assets are equal to total assets and the volatility of external assets

is equal to the volatility of total assets, and indeed one recovers the original results in

Merton (1974) and Black and Cox (1976). In particular, this means that one can use

(5.13) and (5.14) to compute the probability of default of RFBs, again by plugging in the

appropriate quantities: CRF
i (t) = {ψA

i A
e
i (t), σi

√
T − t}.

For the sake of brevity, and with a slight abuse of notation, in the following, we drop the

dependence of all quantities on t and denote the volatility of external assets over a period

T − t simply with σ. Let us now introduce the following class of valuation functions.

Definition 5.4.4 (Simple ex-ante valuation functions). A function V(E|C) with C =

{Ae, σ}, Ae > 0, σ > 0 is a simple ex-ante valuation function if it depends explicitly only

on the inverse of external leverage B̃ = E/Ae and on the volatility of external assets σ:

V(E|C) = f(B̃, σ) ,

where f : R× R+ → [0, 1] satisfies the following properties:
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– it is non-decreasing in B̃,

– it is right-continuous in B̃.

One can check that simple ex-ante valuation functions satisfy the hypotheses of Definition

5.4.3, and therefore are also feasible valuation functions. Moreover, it is easy to see that

both valuation functions in (5.13) are simple ex-ante valuation functions and are also

non-increasing in σ.10 Having assumed that Ae
i > 0 and ψA

i < 1 for all i ensures that

simple ex-ante valuation functions are well-defined for all banks prior to ring-fencing and

for all nRFBs.

All our results apply to simple ex-ante valuation functions, to the extent that one inter-

prets valuation functions to be equal to one minus probabilities of default, as in equilib-

rium — that is at the greatest solution — for banks prior to ring-fencing and for nRFBs:

p∗i,[t,T ] = 1 − V(E∗
i |Ci), (5.15a)

pnRF,∗
i,[t,T ] = 1 − V(EnRF,∗

i |CnRF
i ) , (5.15b)

whereas for RFBs:

pRF
i,[t,T ] = 1 − V(ERF

i |CRF
i ) . (5.15c)

5.4.3 Results on RFBs

In Proposition 5.4.1 we derive necessary and sufficient conditions so that leverage of RFBs

and naive external leverage of nRFBs decrease or increase when compared with the bank

prior to ring-fencing. The situation is less clear-cut for external leverages (i.e. for external

leverages compute with fixed-point equities rather than with book-value equities).

We start by deriving sufficient conditions so that the leverage of RFBs decreases when

compared with the external leverage of the bank prior to ring-fencing. For valuation

functions that are non-decreasing with the external leverage (as in (5.15)), this naturally

implies that the RFB is safer than the bank prior to ring-fencing.

Corollary 5.4.5. Let bank i implement ring-fencing feasibly, i.e. let RFB i and nRFB i

be naively solvent. If the allocation of assets and liabilities to the RFB is such that:

ψA
i

(
Le
i − (Āi − L̄i)

)
≥ ψL

i L
e
i ,

then the leverage of RFB i is smaller than the external leverage of bank i prior to ring-

fencing:

λRF
i ≤ B∗

i .

10Simple ex-ante valuation functions are non-increasing in the external leverage 1/B̃ = Ae/E, but are
defined as functions of B̃ to avoid the discontinuity at E = 0.
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Moreover, if probabilities of default are computed with simple ex-ante valuation functions

(as in (5.15)), then the probability of RFB i is smaller than or equal to the probability of

default of bank i prior to ring-fencing:

pRF
i,[t,T ] ≤ p∗i,[t,T ] .

By comparing Corollary 5.4.5 with Proposition 5.3.1, we can now assess the impact

of interbank lending and borrowing on (non-naive) external leverage. Corollary 5.4.5

implies that, when the net interbank lending of bank i is equal to zero (Āi = L̄i), then

the condition to make the leverage of RFB i smaller than the external leverage of bank i

prior to ring-fencing is the same as when bank i does not lend to and borrow from other

banks (ψA
i > ψL

i , under the mild assumption that Le
i > 0). When bank i is a net lender

to other banks (Āi > L̄i), in order to lower the leverage of its RFB (λRF
i ≤ B∗

i ), bank i

needs to allocate proportionally more assets (or fewer liabilities) to the RFB with respect

to the case in which its net interbank lending is zero. When bank i is a net borrower

to other banks (Āi < L̄i), in order to lower the leverage of its RFB (λRF
i ≤ B∗

i ), bank i

needs to allocate proportionally fewer assets (or more liabilities) to the RFB with respect

to the case in which its net interbank lending is zero.

The reason why the condition ψA
i

(
Le
i − (Āi − L̄i)

)
≥ ψL

i L
e
i is only sufficient, but not

necessary, for λRF
i ≤ B∗

i is that B∗
i depends on the greatest solution E∗

i , which accounts

for the valuation of interbank assets. In fact, B∗
i can be larger than λRF

i if the valuation

of the interbank assets of bank i, and therefore E∗
i , is sufficiently small. This cannot

happen if B∗
i is smaller than λRF

i regardless of the valuation of the interbank assets of

bank i, that is if B∗
i is smaller than λRF

i even when the interbank assets of bank i are

worth nothing. This intuition is formalised in the following proposition.

Proposition 5.4.6. If the allocation of assets than liabilities to the RFB is such that:

ψA
i

(
Le
i + L̄i

)
≤ ψL

i L
e
i ,

then the leverage of RFB i is greater than the external leverage of bank i prior to ring-

fencing:

λRF
i ≥ B∗

i .

Moreover, if probabilities of default are computed with simple ex-ante valuation functions

(as in (5.15)), then the probability of RFB i is larger than or equal to the probability of

default of bank i prior to ring-fencing:

pRF
i,[t,T ] ≥ p∗i,[t,T ] .

We can now put together the results in Proposition 5.4.1, Corollary 5.4.5, and Proposition
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5.4.6 and classify banks that implement ring-fencing in three groups. If bank i implements

ring-fencing so that ψL
i L

e
i ≤ ψA

i

(
Le
i − (Āi − L̄i)

)
, we have that λRF

i ≤ B0
i ≤ B∗

i , i.e. the

RFB has smaller leverage than the external leverage of the bank prior to ring-fencing.

As a consequence, the probability of default of the RFB is smaller than the probability

of default of the bank prior to ring-fencing. If bank i implements ring-fencing so that

ψA
i

(
Le
i + L̄i

)
≤ ψL

i L
e
i , we have that λRF

i ≥ B∗
i ≥ B0

i , i.e. the RFB has larger leverage than

the external leverage of the bank prior to ring-fencing. As a consequence, the probability

of default of the RFB is larger than the probability of default of the bank prior to

ring-fencing. However, if banks i implements ring-fencing so that ψA
i

(
Le
i − (Āi − L̄i)

)
<

ψL
i L

e
i < ψA

i

(
Le
i + L̄i

)
, we can still say that λRF

i ≥ B0
i , but we cannot make any statement

on the relationship between the leverage of RFB and the external leverage of the bank

prior to ring-fencing.

Importantly, Corollary 5.4.5 and Proposition 5.4.6 allow us to make statements about

whether the probability of default of the RFB has decreased or increased with respect

to the bank prior to ring-fencing using only on quantities (ψA
i , ψL

i , Āi, L̄i, L
e
i ) that refer

to those two banks. Even if the bank prior to ring-fencing is embedded in a financial

network, and therefore its equity depends on other banks, Corollary 5.4.5 and Proposition

5.4.6 do not require the knowledge of any of these quantities, not even of the detailed

breakdown of interbank assets (Aij, for all banks j to which i is exposed) and liabilities

(Lij, for all banks j that are exposed to i) of bank i.

By comparing Corollaries 5.3.2 and 5.4.5 we can assess the impact of interbank lending

and borrowing on the probability of default of the RFB. As long as the RFB has a smaller

leverage than the external leverage of the bank prior to ring-fencing, it has also a smaller

probability of default. From Corollary 5.4.5 we know that when bank i is a net lender

(borrower) to other banks, in order to make the leverage of the RFB smaller than the

external leverage of the bank prior to ring-fencing, bank i needs to allocate proportionally

more (fewer) assets or fewer (more) liabilities to the RFB with respect to the case in which

its net interbank lending is zero.

5.4.4 Results on nRFBs and banking groups

In contrast, we will see that in order to make statements about the probability of default

of a nRFB, at least some knowledge of the topology of the financial network is required.

We start by introducing the concept of asset risk orbit. Let i ∈ N and let A be a matrix

of interbank assets. The asset risk orbit of i is11:

OA(i) =
{
j ∈ N : there exists a directed path from i to j in GA

}
.

11The liability risk orbit has an analogous definition, but it is based on the matrix of interbank
liabilities L: OL(i) =

{
j ∈ N : there exists a directed path from i to j in GL

}
. It has been introduced

in Eisenberg and Noe (2001) simply as risk orbit.
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For example, if i has invested in j, then Aij > 0, i.e. i has an interbank asset towards j.

This means that in GA there is a directed path (consisting only of the edge i→ j) from i

to j, and therefore that j is in the asset risk orbit of i. In fact, i holds an interbank asset

corresponding to the investment made in j, and therefore it is exposed to changes in the

creditworthiness of j. Now let us imagine that j has invested in k, i.e. that Ajk > 0. Also

in this case there is a directed path from i to k (i → j → k), and therefore k is in the

asset risk orbit of i. Indeed, j is exposed directly to changes in the creditworthiness of k,

but, since i is exposed directly to changes in the creditworthiness of j, also i is exposed

to changes in the creditworthiness of k, but indirectly.

Similarly to the case of one bank, ERF
i + EnRF,∗

i can be interpreted as the equity of the

banking group that consolidates the RFB i and the nRFB i. When banks are embedded

in a financial network (5.3) does not necessarily hold, i.e. in general it is not true that the

equity of the banking group is equal to E∗
i the equity of the bank prior to ring-fencing.

However, as long as a bank is not exposed (either directly or indirectly) to any bank that

has implemented ring-fencing, then the equity of the consolidated group is still equal to

the equity of the bank prior to ring-fencing.

Proposition 5.4.7. Let equity valuations of banks prior to ring-fencing and of nRFBs

be the greatest solutions in a network valuation framework with simple ex-ante valuation

functions.

If no bank in the asset risk orbit of bank i implements ring-fencing:

OA(i) ∩R = ∅ ,

then the sum of the equities of RFB i and nRFB i are equal to the equity of the bank

prior to ring-fencing:

ERF
i + EnRF,∗

i = E∗
i .

Intuitively, this happens because, after the implementation of ring-fencing, nothing has

changed for any of the banks that could have a downstream impact on the nRFB bank

i. What happens in the more general case in which banks that implement ring-fencing

have a downstream impact on other banks? In the case in which all banks in one asset

risk orbit implement ring-fencing consistently, i.e. when the leverage of all their RBFs is

smaller than the naive external leverage (or larger than the external leverage) of their

banks prior to ring-fencing, it is possible to prove the following result.

Theorem 5.4.8. Let equity valuations of banks prior to ring-fencing and of nRFBs be

the greatest solutions in a network valuation framework with simple ex-ante valuation

functions.

If all banks in the asset risk orbit of bank i either do not ring-fence or implement ring-

fencing feasibly so that the leverage of their RFB is smaller than the naive external
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leverage of their bank prior to ring-fencing:

∀j ∈ OA(i) ∩R : λRF
j ≤ B0

j ,

then the sum of the equities of RFB i and nRFB i is smaller than or equal to the equity

of the bank prior to ring-fencing:

ERF
i + EnRF,∗

i ≤ E∗
i .

Vice versa, if all banks in the asset risk orbit of bank i either do not ring-fence or ring-

fence feasibly so that the leverage of their RFB is larger than the external leverage of their

bank prior to ring-fencing:

∀j ∈ OA(i) ∩R : λRF
j ≥ B∗

j ,

then the sum of the equities of RFB i and nRFB i is larger than or equal to the equity of

the bank prior to ring-fencing:

ERF
i + EnRF,∗

i ≥ E∗
i .

An important implication of Theorem 5.4.8 is that there cases in which ERF
i +EnRF,∗

i ̸= E∗
i

i.e. in which the equity of the group that consolidates RFB and nRFB is different from

the equity of the bank prior to ring-fencing. In other words, the implementation of ring-

fencing can either decrease or increase the equity of a banking group. This happens

because, when banks are embedded in a financial network, equities are the product of

a collective (self-consistent) valuation, and allocating assets and liabilities to RFBs and

nRFBs can alter the valuation process. More precisely, equity valuations of nRFBs and

of banks prior to ring-fencing depend on how much their interbank assets are worth, and

therefore on how risky their counterparties are.

Intuitively, if enough assets are allocated to a RFB to lower its leverage and make it

safer, fewer assets will be available to the corresponding nRFB. Everything else equal,

this will make the nRFB riskier. A riskier nRFB will have a downstream impact on the

other nRFBs exposed to it, lowering the valuation of the corresponding interbank assets.

This will ultimately lead to smaller equities for those nRFBs exposed to the riskier nRFB

and for their groups. According to Theorem 5.4.8, this happens when banks in the asset

risk orbit of bank i implement ring-fencing by decreasing the leverage of their RFBs with

respect to their naive external leverage prior to ring-fencing. Since the naive external

leverage is always smaller than the external leverage, we have that those RFBs are safer

than their banks prior to ring-fencing. However, the converse is not true. In fact, one

bank in the asset risk orbit of bank i can make its RFB safer than its bank prior to
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ring-fencing (by making the leverage of its RFB smaller than the external leverage of its

bank prior to ring-fencing), but the leverage of its RFB can be still larger than its naive

external leverage prior to ring-fencing, making Theorem 5.4.8 not applicable.

Theorem 5.4.8 also tells us that, when banks in the asset risk orbit of bank i implement

ring-fencing by increasing the leverage of their RFBs with respect to their external lever-

age prior to ring-fencing, thereby making them less safe, the equity of the group that

consolidates RFB and nRFB is larger than or equal to the equity of the bank prior to

ring-fencing.

We also observe that the hypotheses of Theorem 5.4.8 are only about banks in the asset

risk orbit of bank i, not about bank i itself. In fact, it is irrelevant whether bank i

implements ring-fencing at all. How bank i implements ring-fencing is relevant only if

bank i is in its own asset risk orbit, i.e. if i ∈ OA(i). At the same time, we stress that

Theorem 5.4.8 applies only if all banks in the asset risk orbit of bank i either do not

implement ring-fencing, or implement ring-fencing consistently. For example, if all banks

in the asset risk orbit of bank i implement ring-fencing by making the leverage of their

RFBs smaller than the naive external leverage of their banks prior to ring-fencing, except

for one bank that makes the leverage of their RFB larger, then Theorem 5.4.8 does not

apply.

An immediate consequence of Theorem 5.4.8 is that, if all banks implement ring-fencing

consistently, the inequalities of Theorem 5.4.8 hold also for the aggregate equity. For

example, if all RFBs have a smaller leverage than the naive external leverage of their banks

prior to ring-fencing, then the aggregate equity after ring-fencing has been implemented is

smaller than or equal to the aggregate equity prior to ring-fencing. Vice versa, if all RFBs

have a larger leverage than the external leverage of their banks prior to ring-fencing, then

the aggregate equity after ring-fencing has been implemented is larger than or equal to

the aggregate equity prior to ring-fencing.

Corollary 5.4.9. Let equity valuations of banks prior to ring-fencing and of nRFBs be

the greatest solutions in a network valuation framework with simple ex-ante valuation

functions.

If all banks either do not ring-fence or implement ring-fencing feasibly so that the leverage

of their RFB is smaller than the naive external leverage of their bank prior to ring-fencing:

∀j ∈ N ∩R : λRF
j ≤ B0

j ,

then the sum of the equities of RFB i and nRFB i is smaller than or equal to the equity

of the bank prior to ring-fencing:∑
i

ERF
i +

∑
i

EnRF,∗
i ≤

∑
i

E∗
i .
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Vice versa, if all banks either do not ring-fence or ring-fence feasibly so that the leverage

of their RFB is larger than the external leverage of their bank prior to ring-fencing:

∀j ∈ N ∩R : λRF
j ≥ B∗

j ,

then the sum of the equities of RFB i and nRFB i is larger than or equal to the equity of

the bank prior to ring-fencing:∑
i

ERF
i +

∑
i

EnRF,∗
i ≥

∑
i

E∗
i .

We have already pointed out that Theorem 5.4.8 requires only banks in the asset risk

orbit of bank i to ring-fence in a certain way, and not bank i itself. However, if also

bank i implements ring-fencing consistently with the banks in its asset risk orbit, then

the external leverage of its nRFB increases (decreases) with respect to the bank prior

to ring-fencing. More specifically, when the leverage of RFB i decreases with respect to

the naive external leverage of bank i prior to ring-fencing, then the external leverage of

nRFB i increases with respect to the external leverage of bank i prior to ring-fencing.

Therefore, the probability of default of RFB i will be smaller than (or equal to) the

probability of default of bank i prior to ring-fencing, which in turn will be smaller than

(or equal to) the probability of default of the nRFB i. Similarly, when the leverage of

RFB i increases with respect to the external leverage of bank i prior to ring-fencing, then

the external leverage of nRFB i decreases with respect to the external leverage of bank

i prior to ring-fencing. Therefore, the probability of default of RFB i will be larger than

(or equal to) the probability of default of bank i prior to ring-fencing, which in turn will

be larger than (or equal to) the probability of default of the nRFB i.

Proposition 5.4.10. Let external leverages of banks prior to ring-fencing and of nRFBs

be computed with equity valuations corresponding to the greatest solutions in a network

valuation framework with simple ex-ante valuation functions.

If:

– all banks in the asset risk orbit of bank i either do not ring-fence or implement ring-

fencing feasibly so that the leverage of their RFB is smaller than the naive external

leverage of their bank prior to ring-fencing:

∀j ∈ OA(i) ∩R : λRF
j ≤ B0

j ,

– bank i implements ring-fencing feasibly so that the leverage of its RFB is smaller

than the naive external leverage of its bank prior to ring-fencing:

λRF
i ≤ B0

i ,
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then the external leverage of bank i prior to ring-fencing is smaller than or equal to the

external leverage of nRFB i:

B∗
i ≤ BnRF,∗

i .

Moreover, if probabilities of default are computed with simple ex-ante valuation functions

(as in (5.15)), then the probability of default of RFB i is smaller than or equal to that of

bank i prior to ring-fencing, which in turn is smaller than or equal to that of nRFB i:

pRF
i,[t,T ] ≤ p∗i,[t,T ] ≤ pnRF,∗

i,[t,T ] .

Vice versa if:

– all banks in the asset risk orbit of bank i either do not ring-fence or implement

ring-fencing feasibly so that the leverage of their RFB is larger than the external

leverage of their bank prior to ring-fencing:

∀j ∈ OA(i) ∩R : λRF
j ≥ B∗

j ,

– bank i implements ring-fencing feasibly so that the leverage of its RFB is smaller

than the naive external leverage of its bank prior to ring-fencing:

λRF
i ≥ B∗

i ,

then the external leverage of bank i prior to ring-fencing is larger than or equal to the

external leverage of nRFB i:

B∗
i ≥ BnRF,∗

i .

Moreover, if probabilities of default are computed with simple ex-ante valuation functions

(as in (5.15)), then the probability of default of RFB i is larger than or equal to that of

bank i prior to ring-fencing, which in turn is larger than or equal to that of nRFB i:

pRF
i,[t,T ] ≥ p∗i,[t,T ] ≥ pnRF,∗

i,[t,T ] .
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5.5 Conclusion

We build a simple framework to think about the impact of ring-fencing on banks intercon-

nected in a financial network of mutual investments. To summarise, we find that, making

RFBs safer with respect to their banking group prior to ring-fencing can make nRFBs

riskier and reduce the overall equity valuation of banking groups exposed to those riskier

nRFB. In particular, this happens when all groups to which one group is directly or in-

directly exposed implement ring-fencing so that the leverage of their RFBs is sufficiently

below the external leverage of their groups prior to ring-fencing.

In our model risks for banks’ balance sheets come from two sources. First, from external

assets, that is from investments in the real economy. The larger the external leverage, the

larger the risk. Second, from interbank assets, that is from investments in other banks.

The larger the exposures to other banks or their probability of default, the larger this risk.

While nRFBs and banks prior to ring-fencing are subject to both risks, implementing ring-

fencing insulates RFBs from risks arising from interbank assets, leaving them exposed

only to risks from external assets. In order to make those risks sufficiently small, one

can allocate a sufficiently large amount of external assets to RFBs to make their leverage

sufficiently small. By doing so, fewer or riskier assets will be allocated to nRFBs, exposing

them more to risks from external assets. However, because nRFB also holds interbank

assets, this increased riskiness has a downstream impact on other nRFBs. If a nRFB is

exposed to other riskier nRFBs, its interbank assets will be worth less. This will make

the equity of that nRFB and of the group to which it belongs smaller.

nRFBs can react in several ways. First, they can reduce their interbank assets, and

therefore their exposure to other nRFBs. Second, they can reduce their exposure to risks

from external assets. This can be achieved either by deleveraging — selling some external

assets to repay liabilities — or by rebalancing their portfolio, by divesting from riskier

assets and investing in safer assets. Third, they could improve their resilience by raising

additional capital that would act as an additional buffer to withstand shocks to assets

and therefore to equity. Finally, reallocating some external assets from RFBs to nRFBs

would reduce the external leverage of nRFBs, but it would do so at the expense of RFBs,

whose leverage and therefore their probability of default would increase.

Some current limitations of our model naturally outline possible directions for future

research. First, our results descend purely from allocating assets and liabilities of the

banking group into two different entities. Even though we can suggest actions that

individual banking groups could implement to counter some adverse effects of ring-fencing,

we do not approach this point quantitatively. For example, how much does a nRFB need

to deleverage to become as risky as the banking group prior to ring-fencing? Second, we

assume that RFBs are fully insulated from the financial network, on the asset side —

they can only invest in the real economy — and on the liability side — they cannot be
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funded by other banks. In practice, RFBs could still invest and be funded by other RFBs.

This means that also RFBs could hold interbank assets and liabilities, albeit safer than

those helped by nRFBs, and therefore they would be part of a parallel financial network.

Third, we assume that the intrinsic riskiness (i.e. the volatility) of assets held by RFBs

and nRFBs is the same. In reality, it is reasonable to expect that RFBs would hold safer

assets than nRFBs. We leave the case in which RFBs and nRFBs hold different assets

to future extensions of this work, as it would considerably complicate the analysis.
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Chapter 6

An analysis of network filtering

methods to sovereign bond yields

during COVID-19

6.1 Introduction

The novel coronavirus disease 2019 (COVID-19) epidemic caused by SARS-CoV-2 began

in China in December 2019 and rapidly spread around the world. The confirmed cases

increased in different cities in China, Japan, and South Korea in a few days of early

January 2020, but spread globally with new cases in Iran, Spain, and Italy within the

middle of February.

We focus on sovereign bonds during the COVID-19 period to highlight the extent to

which the pandemic has influenced the financial markets. A sovereign bond is a bond

that is issued by sovereign entities or administrative regions. The yield of these bonds

is the interest rate which is paid to the buyer of the bond by the issuer. Each issued

sovereign bond has an associated maturity date and is considered risk-free. However, the

yields of sovereign bonds can depend highly on factors such as inflation, political stability,

and the debt of the issuing country.

In the last few years, bond yields across the Euro-zone were decreasing under a range of

European Central Bank (ECB) interventions and overall remained stable compared with

the German Bund, a benchmark used for European sovereign bonds. These movements

were disrupted during the COVID-19 pandemic, which has affected the future trajectory

of bond yields from highly impacted countries, e.g., Spain and Italy. However, in the

last months, the European central banks intervened in financial and monetary markets

to consolidate stability through an adequate supply of liquidity countering the possible

margin calls and the risks of different markets and payment systems. These interventions

played a specific role in sovereign bonds because, on the one side, supported the stability
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of financial markets and, on the other side, supported the governments’ financial stability

and developed a global reference interest rate scheme. Understanding how correlations

now differ and similarities observed in previous financial events is important in dealing

with the future economic effects of COVID-19.

We consider an analysis of sovereign bonds by using network filtering methods, which is

part of a growing literature within the area of Econophysics Li et al. (2019); Stavroglou

et al. (2016); Maeng et al. (2012); Leon et al. (2014); Gilmore et al. (2010). The ad-

vantage of using filtering methods is the extraction of a network-type structure from the

financial correlations between sovereign bonds. Hence, the correlation-based networks

and hierarchical clustering methodologies allow us to understand the nature of financial

markets and some sovereign bond features. It is not clear which approach should be

used in analysing sovereign bond yields, so we implement various filtering methods to

the sovereign bond yield data and compare the resulting structure of different networks.

Through this analysis, we can evaluate the impact which the topological structure of

filtered networks has on the economic and health relations between nodes.

We consider different network filtering methods because there are connections between

assets which may be missed by only using one method. A commonly used method is

the Minimum Spanning Tree method by Kruskal (1956), which is widely used in areas

of social science, computer science and mathematics. A key property of a Minimum

Spanning Tree is that only the minimum number of edges are included such that all

nodes are connected.

The Triangular Maximal Filtering Graph by Massara et al. (2016) is an alternative

method, which assumes more information about the filtered network by increasing the

number of included edges. In comparison to the Minimum Spanning Tree, the construc-

tion of a connected planar graph adds additional information, while still maintaining a

level of sparsity between nodes. The construction of a planar graph is also considered

by Tumminello et al. (2005), but the difference in this method compared with Massara

et al. (2016) is that the computational time to construct the network is longer. Including

this method along with the Minimum Spanning Tree provides a more extensive analysis,

where we can then compare various financial aspects during the COVID-19 period using

different filtered networks. In addition, we also include Asset Graphs by Onnela et al.

(2003b) and Maximum Spanning Trees by Qian et al. (2010), and how these networks

compare to the Minimum Spanning Tree.

Our results show that the mean correlation peaks in October 2019 and then decreases

during the 2020 period, when COVID-19 is most active in Europe. These dynamics are

reflected across all network filtering methods and represent the wide impact of COVID-19

on the spectrum of correlations, compared to previous financial events. We also find a

clustering of Euro-area countries and a disintegration with non-Euro countries during the

COVID-19 period. These network structures reflect the financial state of sovereign bonds
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observed within previous financial events but are also related by exogenous variables,

e.g., death rates of countries, which we can analyse under an exponential random graph

model.

Previous studies have used different methods to analyse historic correlations as random

matrix theory to identify the distribution of eigenvalues concerning financial correlations

Laloux et al. (2000); Plerou et al. (2002); Junior and Franca (2012), the partial transfer

entropy to quantify the indirect influence that stock indices have on one another San-

doval Junior et al. (2015), the approaches from information theory in exploring the un-

certainty within the financial system Huang et al. (2012); Darbellay and Wuertz (2000),

community structure analysis Vodenska et al. (2016), multilayer network methods Alda-

soro and Alves (2018); Bargigli et al. (2016); Tonzer (2015); Montagna and Kok (2016);

Guleva et al. (2015); Poledna et al. (2015), and filtering methods.

Several authors have used network filtering methods to explain financial structures Man-

tegna (1999); Onnela et al. (2003b), hierarchy and networks in financial markets Tum-

minello et al. (2010), relations between financial markets and real economy Musmeci

et al. (2015), volatility Verma et al. (2019), interest rates Di Matteo et al. (2005), stock

markets Isogai (2017); Wang et al. (2017); Wu et al. (2018); Alqaryouti et al. (2019),

future markets Bartolozzi et al. (2007) or topological dynamics Tang et al. (2018) to

list a few. Also, the comparison of filtering methods to market data has been used for

financial instruments. Birch et al. (2016) consider a comparison of filtering methods of

the DAX30 stocks. Musmeci et al. (2017) propose a multiplex visual network approach

and consider data of multiple stock indexes. Kukreti et al. (2020) use the S&P500 mar-

ket data and incorporate entropy measures with a range of network filtering methods.

Aste et al. (2010) apply a comparison of network filtering methods on the US equity

market data and assess the dynamics using network measures, Schwendner et al. (2015)

applied a correlation influence approach and constructed noise-filtered influence networks

to understand the collective yield dynamics of the Euro area sovereign bonds.

To evaluate the European sovereign bonds based on filtering methods, this work is organ-

ised as follows. In Section 6.2, we describe the network filtering methods and present the

data sets with some preliminary empirical analyses. We apply in Section 6.3 the filtering

methods to sovereign bond yields analyse the trend of financial correlations over the last

decade and consider aspects of the network topology. We construct plots in Section 6.4

representing the COVID-19 period and consider an analysis using the exponential ran-

dom graph model for each filtering method. In Section 6.5, we discuss the results and

future directions.

141



Chapter 6: An analysis of network filtering methods to sovereign bond yields during
COVID-19

6.2 Materials and methods

We introduce a range of network filtering methods and consider a framework as in Man-

tegna (1999) for sovereign bond yields. We define n ∈ N to be the number of sovereign

bonds and bond yields Yi(t) of the ith sovereign bond at time-t, where i ∈ {1, ..., n}. The

correlation coefficients rij(t) ∈ [−1, 1] are defined using Pearson correlation as

rij =
⟨YiYj⟩ − ⟨Yi⟩⟨Yj⟩√

(⟨Y 2
i ⟩ − ⟨Yi⟩2)

(
⟨Y 2

j ⟩ − ⟨Yj⟩2
) , (6.1)

with ⟨·⟩ denoting the average yield values. The classical approach in using the Pearson

correlation is well established, but it does not take into account the increases in correlation

from market volatility. We can account for these changes by considering the conditional

Pearson correlation approach as in Forbes and Rigobon (2002). We define an adjustment

factor βij(t) ∈ [0,∞) and the conditional correlation r∗ij at time-t as follows:

r∗ij = rij

√
1 + βij

1 + βijr2ij
, where βij =

σh
ij

σl
ij

− 1. (6.2)

This adjustment factor is represented by the relative difference between two subgroups

of high covariance σh
ij(t) ∈ [0,∞) and low covariance σl

ij(t) ∈ [0,∞) of bond yields at

time-t. As the relative difference in covariance increases, this increases the adjustment

factor βij(t) and the magnitude of the conditional Pearson correlation. This adjustment

preserves the symmetry of correlation values between sovereign bonds i and j while taking

into account market conditions. We form both subgroups by equally dividing yield values,

where the high variance σh
ij group consists of the 25% lowest and highest yield values,

with the remaining values allocated within the low variance σl
ij group. This allocation is

applied individually to each sovereign bond in which the covariance is computed.

Under the conditional Pearson correlation, we establish the notion of distance dij ∈ [0, 2].

We consider the values of the entries r∗ij on the conditional correlation matrix R∗ ∈
[−1, 1]n×n, with dij =

√
2(1 − r∗ij). A distance of dij = 0 represents perfectly positive

correlations and dij = 2 represents bonds with negative correlations. The network filtering

methods are then applied to the distance matrix D ∈ [0, 2]n×n, where a subset of links

(or edges) are chosen under each filtering method. The set of edges is indicated by

{(i, j) ∈ E(t) : nodes i and j are connected} at time-t, defined for each filtering method.

We define the time frames of financial correlations as X for the set of observations, with

n different columns and T rows. From the set of observations X, we consider windows of

length 120, which is equal to six months of data values. We then displace δ windows by 10

data points, which is equal to two weeks of data values, and discard previous observations

until all data points are used. By displacing the data in this way, we can examine a time

series trend between each window X.
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6.2.1 Network filtering methods

We consider multiple network filtering methods to analyse the dynamics from multiple

perspectives. We introduce the commonly used minimum spanning tree (MST) method,

which has been used within currency markets Jang et al. (2011), stock market Sandoval Jr

(2012); Situngkir and Surya (2005) and sovereign bond yields Dias (2012). The MST from

Table 6.1 considers the smallest edges and prioritises connections of high correlation to

form a connected and undirected tree network. These networks can be constructed from

a greedy type algorithm e.g. Kruskal’s and Prim’s algorithm and satisfies the properties

of subdominant ultrametric distance e.g. dij ≤ max{dik, dkj} ∀i, j, k ∈ {1, ..., n}.

This approach is used as it establishes three key properties within a subset of correla-

tions. We argue these properties are relevant within filtering methods but can also be

individually constrained when applied in conjunction (as within the MST) for topological

and economic reasons. By considering four methods, we can analyse the influence of each

feature on the properties of the network:

– Connectivity: Under the MST, all nodes are connected within the network. As

there has been a broad impact from COVID-19, many sovereign bonds have expe-

rienced a comovement in yield trends under market conditions. This criterion in

which the network structure is connected also excludes some highly positive links

and decreases the information between positively correlated sovereign bonds. There-

fore, we consider the Asset Graph (AG), which includes all positive correlations of

interest while maintaining the network density.

– Sparsity: The key motivation in filtering methods is the decrease in links, in which

we can establish network properties of interest, e.g., network centrality. As observed

in the 2012 Euro debt crisis, specific sovereign bonds are large contributors to the

spillover effects observed in other bond yield trends. The fixed number of links

within the MST can be also argued to oversimplify the network and reduce con-

nectivity. Hence, we consider the Triangulated Maximal Filtering Graph (TMFG),

which establishes a planar graph and increases the total number of links compared

with the MST.

– Positivity: From an economic perspective, positive correlations are relevant in

identifying the trends in different financial instruments and periods of high volatil-

ity. However, focusing on this subset of correlations may exclude sovereign bonds

that act differently, i.e., although the majority of bond yields increased within the

COVID-19 period, several bond yields like Germany and Switzerland decreased. To

account for these dynamics, we consider a Maximum Spanning Tree (MaST), which

prioritises negative correlations within the network.
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Network
Filtering
Methods

Number of
links

(edges)
Reference Description

Minimum
Spanning Tree

(MST)
n− 1

Kruskal
(1956)

A connected and undirected net-
work for n nodes which minimises
the total edge weight.

Maximum
Spanning Tree

(MaST)
n− 1

Qian et al.
(2010)

A connected and undirected net-
work for n nodes which maximises
the total edge weight.

Asset Graph (AG) n− 1
Onnela
et al.

(2003a)

Choose the smallest n − 1 edges
from the distance matrix.

Triangulated
Maximal Filtering
Graph (TMFG)

3(n− 2)
Massara

et al.
(2016)

A planar filtered graph under an
assigned objective function.

Table 6.1: List of network filtering methods.

We provide further descriptions of the methods described above. An AG considers pos-

itive correlations between nodes of a given threshold. All n − 1 highest correlations are

considered in an AG, allowing for the formation of cliques not observed within an MST

network. The use of AG has been considered by Onnela et al. (2004), which identifies

clustering within stock market data. As the method only considers n−1 links, some nodes

within the AG may not be connected for the given threshold. Therefore, the connection

of unconnected nodes is unknown, relative to connected components.

The TMFG constructs a network of 3(n − 2) fixed edges for n nodes, similar to the

planar maximal filtered graph (PMFG) Tumminello et al. (2005), which has been used to

analyse US stock trends Musmeci et al. (2017). The algorithm initially chooses a clique of

4 nodes, where edges are then added sequentially, to optimise the objective function e.g.,

the total edge weight of the network, until all nodes are connected. This approach is non-

greedy in choosing edges and incorporates the formation of cliques within the network

structure. A TMFG is also an approximate solution to the weighted planar maximal

graph problem and is computationally faster than the PMFG. The resulting network

includes more information about the correlation matrix compared with spanning tree

approaches.

The MaST constructs a connected and undirected tree network with n− 1 edges in max-

imising the total edge weight. Analyses involving MaST have been used as comparisons

to results observed within MST approaches Dias (2013); Heimo et al. (2009). A MaST

approach is informative for connections of perfectly anti-correlation between nodes, which

are not displayed within the MST.
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6.2.2 Sovereign bond data

The European sovereign debt has evolved in the last ten years, with some situations

affecting the convergence between bond yields. After the 2008 crisis, European countries

experienced a financial stress situation starting in 2010 that affected bond yields. Thus,

the investors saw an excessive amount of sovereign debt and demanded higher interest

rates in low economic growth situations and high fiscal deficit levels. During 2010-2012,

several European countries suffered downgrades in their bond ratings to junk status that

affected investors’ trust and fears of sovereign risk contagion resulting, in some cases, a

differential of over 1,000 basis points in several sovereign bonds. After the introduction

of austerity measures in GIIPS (Greece, Ireland, Italy, Portugal, and Spain) countries,

the bond markets returned to normality in 2015.

The 2012 European debt crisis revealed spillover effects between different sovereign bonds,

which have been studied using various time series models, e.g., VAR by Claeys and

Vaš́ıček (2014); Antonakakis and Vergos (2013) and GARCH by Balli (2009). The results

showed that Portugal, Greece, and Ireland have a greater domestic effect, with Italy

and Spain contributing to the spillover effects in other European bond markets. A core

group of ABFN (Austria, Belgium, France, and the Netherlands) countries had a lower

contribution to the spillover effects, with some of the least impacted countries residing

outside of the Eurozone.

Country Min Max Mean Variance Skewness Kurtosis AC(1) AC2(1)
Austria -0.47 3.90 1.30 1.45 0.55 2.11 0.05 0.14
Belgium -0.43 5.83 1.58 2.01 0.61 2.13 0.17 0.41
Czech 0.24 4.55 1.88 1.32 0.61 2.33 -0.07 0.11
France -0.44 3.79 1.40 1.37 0.40 1.91 0.06 0.18

Germany -0.85 3.50 0.95 1.13 0.57 2.42 -0.01 0.21
Greece 0.56 39.85 9.16 51.02 1.74 6.31 0.07 0.01

Hungary 1.55 10.73 4.67 4.62 0.55 1.90 0.01 0.22
Iceland 2.19 8.15 5.72 1.73 -0.88 3.14 0.04 0.17
Ireland -0.32 14.45 2.82 9.17 1.23 3.65 -0.36 0.50
Italy 0.48 7.31 2.96 2.40 0.55 2.28 0.07 0.08

Netherlands -0.64 3.78 1.16 1.28 0.50 2.16 0.01 0.20
Poland 1.15 6.40 3.68 1.87 0.34 2.23 0.05 0.16

Portugal -0.05 17.36 4.30 11.94 1.10 3.54 -0.28 0.32
Romania 2.56 10.80 4.91 2.20 0.73 2.60 -0.37 0.30

Spain -0.01 7.56 2.70 3.60 0.52 1.91 0.13 0.14
Switzerland -1.11 2.14 0.33 0.57 0.64 2.42 0.02 0.08

UK 0.07 4.28 1.81 0.91 0.42 2.61 -0.04 0.17

Table 6.2: Summary statistics of the 10Y sovereign bond yield data of 17 European
countries from January 2010 to December 2020. AC(1) represents the first-order auto-
correlation of the difference between yield values and AC2(1) represents the first-order
autocorrelation of the squared series.

During the sovereign debt crisis, public indebtedness increased after Greece had to correct
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the public finance falsified data, and other countries created schemes to solve their public

finance problems, especially, bank bailouts. In consequence, the average debt-to-GDP

ratio across the Euro-zone countries rose from 72% in 2006 to 119.5% in 2014, as well as

the increase in sovereign credit risk Alter and Beyer (2014); Beck et al. (2016).

After the Fiscal Compact Treaty went into effect at the start of 2013, the yield of sovereign

bonds started a correction. This treaty defined that fiscal principles had to be embed-

ded in the national legislation of each country that signed the treaty. Although some

investors and institutions pushed for financial and monetary authorities to introduce an

additional decision, that permitted them to include sovereign bonds in their portfolios.

The interest rate policy of the European Central Bank helped to consolidate the trust in

this kind of asset; the bonds confirmed their adjustment especially in Germany, France

and Spain, during the fourth quarter of 2013, while countries like Greece and Italy started

in 2014 with variations of over 500 basis points during the following months. By 2015,

all European bonds increased their yields as a result of an adjustment of the market rally

of 2014.

We analyse the sovereign bond yield data for the following countries Austria (AUT),

Belgium (BEL), Czech Republic (CZE), France (FRA), Germany (DEU), Greece (GRC),

Hungary (HUN), Iceland (ISL), Ireland (IRL), Italy (ITA), Netherlands (NLD), Poland

(POL), Portugal (PRT), Romania (ROU), Spain (ESP), Switzerland (CHE), and the UK

(GBR). We consider sovereign bond yields with a 10-year maturity between January 2010

and Dec 2020. This data is taken from the financial news platform Investing 1. In total,

there are 2,615 data values for each country with an average of 238 data points within 1

year.

Table 6.2 provides summary statistics of the 10Y bond yield data. The data shows that

the lowest recorded yields for many countries were within 2020, during the COVID-19

period and highest in 2011, before the 2012 European debt crisis. The lowest yield

values are Germany and Switzerland, which both record yield values lower than −0.80.

In contrast, Greece has the highest yield value of 39.85 and a variance of 51.02. The

left skewed yield distributions (except for Iceland) represent an average decrease in yield

values and are high for GIIPS countries compared with the UK, France, and Germany,

with flattening yield trends. If we examine the autocorrelation, we find this to be small

overall but high for some countries e.g., Belgium, Ireland and Portugal within the squared

series.

1Investing.com, World Government Bonds, https://www.investing.com/rates-bonds/world-
government-bonds
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Figure 6.1: The plots represent the mean and variance of the conditional Pearson corre-
lation matrix. The length of windows is 120 with a displacement value of δ = 10 days.

6.3 Network measures

We compute the correlation matrix for each window X with a displacement of δ between

windows and consider the mean and variance for the correlation matrix. We define the

mean correlation r(t) given the conditional correlation values r∗ij for n sovereign bonds

r(t) =
2

n(n− 1)

∑
i<j

r∗ij(t), (6.3)

and the variance of correlations u(t) at time-t

u(t) =
2

n(n− 1)

∑
i<j

(r∗ij(t) − r(t))2. (6.4)

From Figure 6.1, we find that the mean correlation r(t) is highest at 0.99 in Oct 2019.

This suggests that a COVID-19 impact was a continuation of the decrease of the mean

correlation and throughout the punitive lockdown measures introduced by the majority

of European countries in Feb-Mar 2020. The decreases in mean correlation are observed

within the 2012 period during the European debt crisis, in which several European coun-

tries received EU-IMF bailouts to cope with government debt. Within 2016, there was

a combination of political uncertainty which followed from the UK and the increased
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Figure 6.2: The plots represent the normalised and variance of the network length for
MST, TMFG, MaST, and AG networks, with windows of length 120 and δ = 10 days.

debt accumulation by Italian banks. The variance u(t) also follows a trend similar to

the mean correlation, with the smallest variance of 4.48 × 10−5 in October 2019. Within

2020, the variance increases between sovereign bonds and reflects the differences between

the correlations of low and high yield.

6.3.1 Network length

We consider the normalised network length L(t), which is introduced in Onnela et al.

(2003a) as the normalised tree length. We define the measure as the normalised network

length, as this measure is considered for AG and TMFG non-tree networks. The network

length is a measure of the mean link weights on the subset of links E(t), which are present

within the filtered network on the distance matrix at time-t

L(t) =
1

#{(i, j) ∈ E(t)}
∑

(i,j)∈E(t)

dij(t), (6.5)

with the variance V (t) defined on network links

V (t) =
1

#{(i, j) ∈ E(t)}
∑

(i,j)∈E(t)

(dij(t) − L(t))2. (6.6)
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Figure 6.3: The plots represent the degree centrality and mean occupation layer for MST,
TMFG, MaST and AG networks, with windows of length 120 and δ = 10 days.

The plots in Figure 6.2 represent the mean and variance of the network length. As

each filtering method considers a subset of weighted links, the normalised length L(t) is

monotonic between all methods and decreases with the increased proportion of positively

correlated links within the network. We highlight movements in the normalised network

length during the COVID-19 period, which is reflected across all filtering methods. This

movement was also observed within 2016, but only towards a subset of correlations within

the MaST and TMFG compared with the MST and AG. The relative difference between

the normalised network lengths is least evident in periods of low variance; this is observed

in the 2019-2020 period, where the difference between all methods decreases.

We find the variance is highest within the TMFG and lowest with the AG approach.

Compared with the mean and variance of the correlation values in Figure 6.1, the differ-

ence between values within the equivalent network measures is overall higher, particularly

within the MaST. There appears to be an overall reciprocal relation between the variance

trends of spanning-tree approaches, where both values are small for some periods. When

we consider the variance of the AG, the concentration of links, and the adjustment in the

conditional correlation result in a flattened trend.
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6.3.2 Network centrality

We define the degree centrality for the node of maximum degree C(t) at time-t. This

measure considers the number of direct links

C(t) = max
i∈{1,...,n}

n∑
j∈E(t)

1(dij > 0). (6.7)

The mean occupation layer η(t) (MOL) introduced in Onnela et al. (2003a) is a measure

of the centrality of the network, relative to the central node υ(t). We define levi(t) as

the level of the node, which is the distance of the node relative to υ(t), where the central

node and nodes unconnected relative to the central node have a level value of 0,

η(t) =
1

n

n∑
i=1

levi(υ(t)). (6.8)

We use the betweenness centrality to define the central node υ(t) for the MOL. Introduced

in Freeman (1977), the betweenness B(t) considers the number of shortest paths sij(k)

between i and j which pass through the node k, relative to the total number of shortest

paths sij between i and j, where i ̸= j ̸= k

Bk(t) =
∑
i ̸=k

∑
j ̸=k,j ̸=i

sij(k)

sij
. (6.9)

Within the MST, the majority of degree centrality ranges between 3 to 5 but can be

as high as 9 for some periods. The trend within the MST remains stable, where the

central node under degree centrality is associated with multiple sovereign bonds, e.g.,

Netherlands 11%, Portugal 10%, and Italy 10% across all periods. The MaST has the

highest variation, with a centralised network structure in some periods, e.g., C(t) of 16,

forming a star-shaped network structure. This is usually associated with Greece 27%,

Iceland 25%, and Romania 18%, which are identified as the central node 70% of the time.

The degree centrality on average is naturally highest with the TMFG, under a higher

network density, where the central nodes are identified as Iceland and Romania, similar

to the MaST. The AG identifies the Netherlands and France within the degree centrality,

under a higher proportion of 30% and 13% compared with the MST.

Within Figure 6.3, the MOL on average is smallest for the AG because of the 0 level values

from unconnected nodes, in which an unconnected node is present within all considered

windows. We find that all nodes within the TMFG have a maximum path length of

3 between any two nodes, across all periods. Between the MST and MaST, the MOL

is higher within the MaST, where the degree centrality of nodes within the network is

higher.

150



Chapter 6: An analysis of network filtering methods to sovereign bond yields during
COVID-19

6.4 COVID-19 networks

We analyse the temporal changes in sovereign bond yields between Jan 2020 and Dec

2020. This interval establishes a period in which COVID-19 was highly active across

multiple European countries.

We first construct networks under each of the filtering methods and relate the network

topology to economic trends. Then, we implement an exponential random graph model

(ERGM) to verify the significance of these explanatory variables within each constructed

network. We consider analysis as in Deev and Lyócsa (2020), in which they use an ERGM

to analyse the interconnectedness of financial institutions across Europe under different

node variables.

6.4.1 Network plots

Under the MST for the COVID-19 period, we find France has the highest degree centrality

of 3. The network also exhibits clusters between a subset of southern European countries,

as observed within the connected component of Italy, Portugal and Spain. Within the

network, there is a connection between all ABFN countries, but countries within this

group also facilitate the connecting component within GIIPS countries, where Belgium is

connected with Greek sovereign bonds. The UK and Eastern European countries remain

on the periphery, with ABFN countries occupying the core of the network structure.

For the MaST in Figure 6.4, there exists a high degree centrality for Icelandic bond

yields. This contrasts with the observed regional hub structure within the MST, where

the degree centrality is similar between all nodes. The UK remains within the periphery

of the MaST structure when considering anti-correlations, and shows UK bond yields

fluctuate less with movements of other European bonds, compared with previous years.

This is also observed for sovereign bonds for other countries with non-Euro currencies

e.g., the Czech Republic and Hungary.

We find nodes within the TMFG to have the highest degree in Iceland at 13 and the Czech

Republic at 11. This resembles the links within the MaST, where 75% of links are present

within both networks. There is also the associated degree centrality of the MaST, which

is observed within the TMFG-connected nodes. Under the TMFG, nodes have a higher

degree of connectivity when considering an increased number of links. This is the case for

the UK, which has a degree value of 10 compared with other filtered networks. We find

the AG exhibits one large component which consists of ABFN and GIIPS countries, where

the majority of remaining nodes are non-Euro countries and are unconnected within the

network. By solely considering the most positive correlations, we include the formation

of cliques between countries, which is prevalent within the Western European group of 6

nodes. This level of disintegration which is observed during COVID-19 is supported by

previous studies of the 2012 Eurozone debt crisis Baur (2020).
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Figure 6.4: The plots represent the minimum spanning tree (left) and maximum spanning
tree (right) for the Jan 2020 - Dec 2020 period.
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Figure 6.5: The plots represent the triangulated filtering maximal graph (left) and asset
graph (right) for the Jan 2020 - Dec 2020 period.

Under various constraints, there is a commonality between sovereign bonds across network

filtering methods. We find for positive correlations, that Euro-zone countries have a high

degree centrality, with non-Euro countries predominately located within the periphery of

the network. This is distinctive within the AG, where cliques are only formed between

GIIPS and ABFN countries. The anti-correlations within the MaST inform the trends

between non-Euro countries and the remaining Euro-area countries. This structure is

supported within the TMFG, with the planar graph presenting similarities with the MaST

on the degree centrality of nodes i.e., particularly for Iceland.
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6.4.2 Exponential Random Graph Model for COVID-19 net-

works

We analyse the filtered networks as in Section 6.4 under an ERGM. In this approach,

we consider a family of random unweighted networks W on the observed network w. We

define the function of network statistics z(w) and can computationally use the Maximum

Likelihood Estimator (MLE) to consider this space of networks. We define the general

model for p number of parameters with coefficient values θ as follows:

P(W = w) =
exp

{
θT z(w)

}
κ(θ)

, (6.10)

log
(
exp{θT z(w)}

)
= θ1z1(w) + θ2z2(w) + . . .+ θpzp(w) (6.11)

and κ(θ) as the normalising constant. Although these computations can be expensive for

a large number of nodes n, we can address these issues by using Markov Chain Monte

Carlo (MCMC) methods. We analyse the local interactions between nodes and generate

10, 000 random networks for each filtering method.

For the ERGM, we define the ”intercept” of the model as the number of links observed

within each filtered network. We then consider node-level variables under a discrete clas-

sification for different economic groups. If the node is within the economic group, we

assign a value of ”1”, otherwise the node has a ”0” value. We also incorporate continuous

variables which are represented by economic and health data for all nodes. The data

is provided by the International Monetary Fund (IMF) 2 and the European Centre for

Disease Prevention and Control (ECDC) 3 within the 2020 year. As we consider the coef-

ficient values for different parameters, we further discuss the global model adequacy and

fit under the ERGM. We consider the Akaike information criterion (AIC) and Bayesian

information criterion (BIC) for the model adequacy, which are measures of the goodness

of fit compared with the number of parameters used. We then use the log-likelihood value

LL(θ), and consider the relative difference between the log-likelihood of the ERGM and

null model as a measure of the model fit.

Within Table 6.3, we define two economic groups of GIIPS and ABFN countries. All of

these countries have adopted the Euro and represent the core of connected nodes within

the different filtering methods. We use the country’s debt relative to the GDP, inflation

rate, and account balance for 2020 as known economic indicators within the ERGM. As a

health indicator of COVID-19, we consider the total number of COVID-19 deaths relative

to the size of the country’s population recorded within the 2020 year. If we compare the

relative number of COVID-19 deaths with the debt of countries within Table 6.3, we find

2IMF.org, IMFWorld Economic Outlook, https://www.imf.org/external/datamapper/datasets/WEO
3ecdc.europa.eu, COVID-19 Death Statistics, https://www.ecdc.europa.eu/en/geographical-

distribution-2019-ncov-cases

153



Chapter 6: An analysis of network filtering methods to sovereign bond yields during
COVID-19

Country GIIPS ABFN Euro COVID-19 Debt Inflation Account
Deaths (%) to GDP Rate Balance

Austria ✓ ✓ 0.07 84.30 1.80 2.50
Belgium ✓ ✓ 0.17 117.10 1.20 -0.80
Czech 0.11 41.40 2.40 -0.50
France ✓ ✓ 0.10 118.60 0.60 -1.80

Germany ✓ 0.04 72.20 1.10 6.80
Greece ✓ ✓ 0.05 200.50 0.70 -4.50

Hungary 0.10 75.90 3.40 -0.90
Iceland 0.01 52.50 2.80 0.20
Ireland ✓ ✓ 0.05 61.30 0.60 5.50
Italy ✓ ✓ 0.12 158.30 0.60 3.00

Netherlands ✓ ✓ 0.07 61.10 1.50 9.00
Poland 0.08 60.20 2.30 1.80

Portugal ✓ ✓ 0.07 130.00 1.10 -3.50
Romania 0.08 49.60 2.50 -4.50

Spain ✓ ✓ 0.11 121.30 0.80 0.90
Switzerland 0.08 48.50 0.00 9.00

UK 0.11 111.50 1.20 -3.80

Table 6.3: The following table represents health and economic attributes for countries
within the ERGM. The debt is defined as the gross amount relative to the GDP, the
inflation rate is recorded for the average consumer prices and the current account balance
is the volume of recorded transactions relative to the country’s GDP within 2020. We
consider the total number of COVID-19 deaths which occurred in 2020 relative to the
population size of each country.

several countries have high levels of COVID-19 deaths and debt to GDP, e.g., Belgium,

Italy, and the UK. For other economic indicators, we find an overall negative relationship

between inflation and debt, however, some countries, i.e., both Switzerland and Ireland

have low inflation and debt value. The account balance of countries is highest with the

Netherlands and Switzerland, with Greece and Romania having the most negative values.

We find the AG to have the highest model fit under the ERGM and the MST with

the lowest fit (see Table 6.4). We observe that the GIIPS and ABFN coefficient values

are high within the AG, which mainly describes the large component of Euro countries.

Under the MST, nodes within the Euro establish links with other Euro countries because

of positive correlations and non-Euro countries to satisfy the topological constraints. As

the interpreted co-movement is concentrated within Euro countries, the MST removes

the representative cliques between nodes, which decreases the coefficient values of GIIPS

and ABFN.

The coefficient of COVID-19 deaths is highly significant within the MaST. Because of

the centralised structure around Iceland COVID-19 deaths in Iceland are low compared

with all other nodes (the death rate of the next lowest value is four times higher than in

Iceland). As there is a centralised structure when considering negative correlations, we

find compatibility of the topological requirement with the ERGM, which is not observed
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Panel A Parameters MST TMFG MaST AG
Edges -2.36 0.82 0.43 -36.14
GIIPS 0.60 -0.23 1.22 20.59
ABFN 0.70 -0.19 1.76 22.17
Euro -0.27 -1.75∗ -3.50∗ -0.62
COVID-19 Deaths 1.77 -4.93 -39.20∗∗∗ -6.95
Debt to GDP -0.00 0.01 0.02 -0.01
Inflation 0.01 0.12 0.71 -1.14
Account Balance -0.04 0.02 0.11 0.00

Panel B Diagnostics
Goodness of Fit Test: AIC 112.92 155.20 69.38 58.41
Goodness of Fit Test: BIC 136.22 178.50 92.69 81.71
Log Likelihood (LLM(θ)) -48.46 -69.60 -26.69 -21.21
Log Likelihood (LL0(θ)) -49.26 -86.33 -49.26 -49.26
Model Fit 1.62% 19.38% 45.82% 56.94%

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 6.4: The table represents filtered networks under the ERGM. The goodness of fit
is defined under the AIC and BIC, a smaller value represents higher model adequacy. We
define the model fit as 100×

[
1 −

(
LLM(θ)/LL0(θ)

)]
, where LLM(θ) is the log-likelihood

of ERGM and LL0(θ) is the log-likelihood of the null model. The LLM(θ) includes the
link and node level parameters, whereas the null model LL0(θ) only includes the link
parameter.

under positive correlations. When the density of the network increases within the TMFG,

the network structure decreases the model fit and the model adequacy of the ERGM. We

still observe a coefficient value where there is a formation of links between non-Euro

countries, i.e., the Czech Republic and Iceland with Euro area countries.

If we consider economic indicators, there is a smaller coefficient value across all parameters

compared with COVID-19 deaths. The inflation rate under the MaST is positive between

the two nodes and represents the links with other countries with high inflation rates.

This contrasts with the coefficient value within the AG, which has a negative coefficient

between locally connected nodes. Overall, we find altering any one of the conditions

within the MST increases the model fitness to the ERGM. This also results in a decrease in

the model adequacy in some networks compared with the MST. For negative correlations,

we find higher compatibility between the topological structure and model fit under the

MaST compared with the MST for positive correlations. Through these approaches, we

can capture the core interactions observed between Euro countries and their links with

non-Euro countries. We can also factor in economic and health node variables, in which

we find COVID-19 deaths to be highly significant.
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6.5 Conclusion

As a response to the COVID-19 pandemic, most countries implemented various socio-

economic policies and business restrictions almost simultaneously. An immediate conse-

quence was an increase in yield rates for these nations. The resulting upward co-movement

and upward movements in other yield rates explain the decrease in the mean correlation

in bond dynamics, coinciding with the pandemic outbreak. Thus, understanding the

dynamics of financial instruments in the Euro area is relevant to assessing the increased

economic strain from events seen in the last decade.

We consider the movements of European sovereign bond yields for network filtering meth-

ods, where we focus on the COVID-19 period. We find that the impact of COVID-19

decreased the mean correlation, which was reflected within the normalised network length

of all filtering methods. The network topology remained consistent with previous years,

in which the trends between approaches were distinctive. The degree centrality was

highest for GIIPS and ABFN countries when considering positive correlations and non-

Euro countries within negatively correlated type networks. We identified the network

structures of filtering methods within the COVID-19 period, which showed one large

component consisting of GIIPS and ABFN countries for positive correlations. We were

able to verify several of these relationships under an ERGM, in which we find COVID-19

deaths to be significant within negatively correlated networks.

However, depending on the terms of each bond, the European bond market reacted posi-

tively after central banks (e.g., Bank of England, European Central Bank, Swiss National

Bank) increased their financial programs directed at alleviating the financial pressure on

markets and providing financial liquidity to issuers. Namely, the bond purchase programs

had aimed to consolidate market recovery and help displace investors toward other finan-

cial assets. As a result, prices recovered and remain close to the high levels of the 2020

second quarter, but not at the same level before March’s stress situation, especially in 10Y

bonds. Additionally, if liquidity provided by central banks starts to drop off, the market

dynamics could adjust to economic performance and not its financial performance. In

other words, the resulting dynamics could explain an increase in mean correlation in bond

dynamics coinciding with the economic dynamics after the pandemic and the increment

in yield rates.

Although we consider the sovereign bond yields with a 10Y maturity as a benchmark, this

research can be extended to sovereign bonds with different maturities (e.g., short-term

1Y, 2Y or 5Y, and long-term 20Y or 30Y) because these bonds could reveal interesting

effects and confirm that sovereign bonds are a good indicator to identify the economic

impact of COVID-19. As each sovereign bond has different yield and volatility trends,

we considered using the zero-coupon curve to evaluate the full extent of COVID-19 on

sovereign bonds.
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Conclusion and Discussion

In this thesis, we contribute to the understanding of fire sales and policy interventions

using tools in financial networks and complex systems. Fire sales are a larger contributor

to systemic risk, which we empirically show using regulatory data and theoretically show

using new valuation models. Allowing these losses to spread can have a lingering impact

on the financial system, and therefore different policy interventions are explored. As the

implementation of the policy can change its effectiveness, we use financial networks to

consider how policies reduce losses, by accounting for all the individual characteristics

of banks. The use of networks has been the underlying theme of this thesis, where we

explore financial networks for assessing fire sales and in the design of policy interventions.

We introduce the main messages of the thesis, provide conclusions of thesis chapters and

discuss future research directions.

Fire sales and financial networks: One of the key themes of this thesis was the

connections between fire sales and financial networks. We explored the application of

financial networks through the incorporation of data in the contagion of fire sales. We

considered situations where the full information cannot be fully obtained and cases where

there is uncertainty on the severity of fire sale losses.

We explored the application of financial networks through the use of matrix reconstruction

methods for partial information and the introduction of a new reverse stress testing

approach for fire sales risk. In both cases, we made assumptions on the construction of

the financial network and how the financial network can be used to derive scenarios that

maximised the total assets losses of banks in a fire sale. The context of financial networks

was important because this showed the extent to which banks’ losses come from fire sales.

We made contributions to the area of fire sales and financial networks in both the appli-

cation of fire sales under partial information and in the consideration of a new reverse

stress testing approach. In the area of fire sales under partial information, there have

been no previous empirical studies to our knowledge where policy interventions have been

considered under partial information for the fully observed data in fire sales. Secondly,
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we formulate a new reverse stress testing approach that has not been considered for the

fire sales measures by Greenwood et al. (2015), and show how these results compare to

other benchmark scenarios.

Using financial network-motivated tools, it was clear multiple methods could be used

to assess or mitigate the scale of fire sales. This was shown in the similarity of fire

sales losses and the closeness of policy interventions from matrix reconstruction methods

under partial information, compared with the full observed data. This was also shown

in deriving several scenarios from reverse stress tests, where losses from each of these

scenarios were larger than other benchmark scenarios. Therefore, other benchmarks

could be considered to further evaluate the performance of each method for modelling

fire sales.

While there can be several methods to address the absence or uncertainty in the data,

methods that accounted for the features in the data, in general, showed a better perfor-

mance for modelling fire sales. This was observed in the use of policy interventions which

were informed by sampling-based matrix reconstruction methods under partial informa-

tion. This consideration is also one of the main reasons why we introduced a new reverse

stress testing approach for fire sales. As the financial network is reflected in the data, this

data can then be used in the consideration of policy interventions and the formulation of

scenarios.

Policy interventions and financial networks: The second theme of the thesis was

focused on policy interventions towards financial networks. We explored policy interven-

tions which had structural changes in the financial network. One policy focused on assets

used as collateral as part of the bank’s initial margin requirements, and how this could

amplify the losses of fire sales for banks’ external asset holdings and counterparty losses

for banks with interbank assets and liabilities. We also explored the influence of the

financial network from the policy of ring-fencing, representing a separation of the bank’s

balance sheet into two separate entities.

We provide contributions in both areas regarding the interaction of policy interventions

and financial networks. With the addition of two channels of fire sales in a collateral-

based model, we formulated a new extended collateral-based clearing model and showed

the extent to which fire sales amplify losses. For ring-fencing, we provide the first frame-

work to our knowledge of how the direction of ring-fencing can be fully evaluated, with

consideration of the financial network.

From both works, we find unintended consequences of how the policy can negatively im-

pact banks. While initially, these policies decrease systemic risk, with the consideration of

the contagion mechanism, these policies can increase losses. This is because the consider-

ation of assets as collateral and the ring-fencing policy represent structural changes to the

network. A decrease in losses for one bank can increase the losses which other banks are
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exposed to. The increase in losses for these banks can amplify losses to their associated

counterparties, causing larger losses than the initial decrease from the intended policy. In

this respect, there is an associated trade-off in these types of policies. Because we are real-

locating and rewiring the network, we are increasing and decreasing the exposure of banks

to systemic risks. This is not the case for policy interventions explored in Chapter 2, as

additional capital provided in any form always decreases losses. The questions in these

types of policies are not about its benefits, but how to optimise the effectiveness of this

policy in the reduction of fire sales. Hence, we show how financial networks can be used

to inform a range of policy interventions and model the consequences towards the system.

In Chapter 2, we considered fire sales under partial information and how this can inform

policy interventions. We find that for different matrix reconstruction methods, the mag-

nitude of losses under a fire sale from partial information is similar to the fully observed

data. Across all matrix reconstruction methods, there was a mixed performance in the

similarity of matrix reconstruction methods to fire sale losses, which was dependent on

the fire sale scenario and data used.

For policy interventions, there is a similarity in the decrease in losses from capital in-

jections informed by matrix reconstruction methods under partial information compared

with the fully observed data. The decrease in losses from capital injections is larger

compared with a leverage cap (assuming the same quantity of additional capital), as the

reduction in losses from capital injections accounts for the financial network and initial

losses of banks. The similarity in the reduction of fire sales for capital injections was

closest to Bayesian methods under the GIIPS shock. In other cases, the use of matrix

reconstruction methods resulted in fire sales losses which were further away than capital

injections which do not use matrix reconstruction methods i.e., using the MinDen matrix

reconstruction method compared with an allocation based on the total asset holdings of

banks. Hence, the suitability of the reconstruction method for both the overall fit of

the data and the type of policy implemented is important for modelling fire sales under

partial information.

In Chapter 3, we considered a reverse stress testing approach to fire sales. This assumed

the total losses of banks and derived a scenario that corresponds to these losses. Un-

der the multi-stage fire sales mechanism by Greenwood et al. (2015), we formulated an

optimisation-based approach to reverse stress testing.

Our results show the total losses and the number of stressed banks were the largest from

a reverse stress test, compared to other benchmark scenarios. Even when banks can

maintain their target leverages, some scenarios from reverse stress tests resulted in 90%

losses of the banks’ total asset holdings. This shows the extent to which banks can be

affected by a fire sales scenario.
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When we considered the distribution of the scenario in the initial stages of fire sales, we

showed the allocation of shocks in fire sales resembled a fractional knapsack problem. In

these scenarios, shocks were allocated to assets that were held by banks of high target

leverage. This reflects the nature of the fire sales mechanism, in which the assets of banks

of high leverage are targeted because losses incurred by these banks would sell a larger

volume of assets.

In Chapter 4, we extended the collateral model by Ghamami et al. (2022), where banks

with an interbank obligation also post assets used as collateral. We incorporated banks’

external illiquid asset holdings into the clearing mechanism by Feinstein (2017) and for-

mulated a new collateral-based clearing model with two channels of fire sales. We analysed

the total payments of banks using this extended collateral clearing model, and how this

was affected by different financial factors.

Using networks generated from a random graph model, we find that illiquid assets that

were used as collateral and held by banks’ external asset holdings can increase total losses.

This is because the assets sold have a high price impact, which further decreases the value

of the asset from the fire sales. This affects the ability of the bank to meet its obligations,

triggering further losses and an increase in defaults. The losses from illiquid assets in a

fire sale can be higher than banks which hold no external assets, as there is no overlap

in assets and no increase in assets sold from a fire sale.

We also considered bank payments under different network densities, and how this im-

pacts the clearing scenario. We find the losses to banks were smaller from the clearing

mechanism as the network density increased. The increase in the number of links de-

creases the losses that any one bank incurs from the clearing scenario, where losses are

dispersed to other banks in the network.

In Chapter 5, we focus on the UK policy of ring-fencing. This involved separating the

bank’s retail and investment assets into two separate entities: a RFB and nRFB. This

policy aims to protect the assets of the RFB associated with the real economy from the

riskier investment assets of the nRFB.

From ring-fencing, we compared the change in external leverage which we associated with

a probability of default for banks before and after ring-fencing. We find the change from

ring-fencing for banks in the network can result in an increase or decrease in the total

equity of the bank. In the case of ring-fencing where the RFB is safer (riskier), there

is a decrease (increase) in the total re-evaluated equity, because there was an increase

(decrease) in the external leverage of the nRFB. The change in equity only occurs if there

is a bank which is exposed to bank ring-fencing. For the bank ring-fencing, it is only

affected by ring-fencing if it is indirectly exposed to itself or to another bank which per-

forms ring-fencing. In this regard, the operation of ring-fencing does not cause a change
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in equity, but only when the bank ring-fencing has liabilities with other banks in the

network.

In Chapter 6, we analyse the period of COVID-19 and the trends of sovereign bond yields

using network filtering methods. Different network filtering methods were used to reflect

different subgroups of correlations between assets, which were represented as part of a

network structure. We can then analyse these filtered networks using network measures

to consider the centrality and community of sovereign bond yields, across various years.

We find the average correlations were highest during the COVID-19 period. This was re-

flected in the average of the correlation matrix, and the correlations of filtered networks.

This showed the extent of COVID-19, which had an impact across a range of sovereign

bond yields. During the COVID-19 period, two distinct communities from network fil-

tering methods represented Euro and non-Euro-denominated assets. Within the group of

Euro assets, there were two sub-communities of GIIPS and ABFN countries, where these

groups represented Euro countries that were both highly and less impacted by previous

systemic events. These network structures showed a level of fragmentation that has not

been observed since the 2008 financial crisis and the 2012 Euro debt crisis.

There are several extensions which can be considered from the work presented in this

thesis. From the data aspect, there can be further investigations into the inclusion of

information to form a reconstructed matrix. This was explored to some degree in Chap-

ter 2 in the appendix, where a subset of the information from the fully observed data

was included in the Entropy method. Only when the information from the fully observed

data which included the asset holdings of shocked assets was there an increase in the

similarity of fire sales losses to the fully observed data. Further work can explore how

to include other financial variables into the reconstructed matrix i.e., volatility of assets

and different maturities of the bank’s asset holdings, while not decreasing the accuracy

of fire sales from matrix reconstruction methods.

Another direction is an economic approach to how ring-fencing should be conducted.

In Chapter 5, we considered all types of feasible ring-fencing and how this affected the

RFB and nRFB. But from the context of the policy in the UK, there are some types

of ring-fencing which are more favourable i.e., decreasing the probability of default for

the RFB (making the RFB safer) to decrease the riskiness of banks holding retail assets.

Therefore, obtaining the optimal allocations of external assets and liabilities for banks

ring-fencing that minimises the probability of default while factoring in the decrease in

equity for nRFBs could be another direction of interest.
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Chapter 8

Appendix

8.A Chapter 2: Background information on matrix

reconstruction methods

The matrix reconstruction methods considered can be classified into optimisation-based

reconstruction methods, i.e., they determine a matrix that is consistent with given row

and column sums by solving a deterministic optimisation problem, and sampling-based

reconstruction methods, which assume that the matrix of interest is random and they

develop tools to generate a sample from the distribution of the matrix.

8.A.1 Optimisation-based reconstruction methods

We consider two matrix reconstruction methods, the Entropy method and the MinDen

method. Both solve suitable optimisation problems to identify a matrix that is consistent

with given row and column sums.

Entropy method

The method that we refer to as the Entropy method in this paper, is also known under

several other names, such as iterative proportional fitting procedure, or RAS algorithm,

to name a few and has been used in several fields, e.g., in mathematics, economics,

computer science etc. To the best of our knowledge it has first been applied to financial

networks by Upper and Worms (2004) who used the method to reconstruct a network

of interbank liabilities from row and column sums. It has also been considered in the

context of reconstructing networks of asset holding matrices in Di Gangi et al. (2018). The

Entropy method is an optimisation-based method that minimises the Kullback-Leibler

(KL) divergence between a matrix X and a target matrix XEntropy. Applied to our setting

it consists of solving the following optimisation problem
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min
X

N∑
n=1

K∑
k=1

Xnk log

(
Xnk

XEntropy
nk

)
,

subject to: αn1 =
K∑
k=1

Xnk ∀n ∈ {1, . . . , N},

ck =
N∑

n=1

Xnk ∀k ∈ {1, . . . , K},

Xnk ≥ 0 ∀n ∈ {1, . . . , N},∀k ∈ {1, . . . , K},

(8.1)

where the initial matrix is defined as

XEntropy
nk =

αn1ck
A

∀n ∈ {1, . . . , N},∀k ∈ {1, . . . , K}, (8.2)

where A =
∑N

n=1 αn1 =
∑K

k=1 ck.

One can easily check that XEntropy solves this optimisation problem. The reason why this

reconstruction problem simplifies so significantly in our situation is that since we consider

an asset holdings matrix we only need to require the non-negativity of the matrix and

that it satisfies the given row and column sums. We are not in a situation in which

the diagonal entries of the matrix that solves the optimisation problem are required to

be zero. This additional constraint occurs, for example, in Upper and Worms (2004), in

which the network represents interbank lending. Since a bank does not borrow from itself

the additional constraint, that the entries on the diagonal are zero, is necessary there.

As one can see from the definition of XEntropy, the reconstructed matrix usually contains

only non-zero entries (an entry XEntropy
nk in the matrix can only be zero if the corresponding

row αn1 or column ck aggregate is zero).

It has been discussed in Di Gangi et al. (2018) how the specific form of XEntropy here

can be interpreted as reflecting investors’ preference in line with the capital asset pricing

model (CAPM) (Sharpe, 1964).

Since the Entropy method provides a closed-form expression for the reconstructed asset

holding matrix, all fire sale measures by Greenwood et al. (2015) applied to this recon-

structed matrix can be expressed in closed form. Therefore, one immediately obtains the

following results.

Proposition 8.A.1. Suppose the asset holding matrix is estimated using XEntropy given

in (8.2). Let n ∈ N and k ∈ S. Then,

1. the elements of the portfolio weights matrix are given by mnk(XEntropy) =
XEntropy

nk

αn1
=

ck
A
;

2. the unlevered return is REntropy = Rn1(X
Entropy) =

∑K
k=1 ckfk1

A
;

179



Chapter 8: Appendix

3. the connectivity is γEntropy = γn1(X
Entropy) =

∑K
k=1 cklk

XEntropy
nk

αn1
=

∑K
k=1 c

2
klk

A
;

4. the direct vulnerability is DVXEntropy

(n) = −αn1

en1
REntropy;

5. the systemicness is SYSXEntropy

(n) = −γEntropyREntropy∑N
ν=1 eν1

αn1bn1;

6. the aggregate vulnerability is AVXEntropy

=
∑N

n=1 SYSXEntropy

(n) = −γEntropyREntropy∑N
ν=1 eν1

∑N
n=1 αn1bn1;

7. the indirect vulnerability is IVXEntropy

(n) = −γEntropyREntropy
∑N

ν=1 αν1bν1
A

αn1

en1
.

Proof of Proposition 8.A.1. 1. The statement follows directly from the definition of

XEntropy, since mnk(XEntropy) =
XEntropy

nk

αn1
= αn1ck

αn1A
= ck

A
.

2.-7. The statements follow directly from part 1. and the definitions of the risk measures.

Hence, we find that for the Entropy reconstruction method, the two quantities that

depend on the network Rn1(X
Entropy) and γn1(X

Entropy) do not depend on n, which means

they are not specific to a given institution. For an all asset shock fk1 = f for all k ∈ S,

REntropy = f in line with Proposition 2.3.1.

Remark 8.A.2 (Comparison of systemicness and indirect vulnerability using the En-

tropy method). These results show that under the Entropy method, the systemicness is

a product of an institution-specific factor αn1bn1 (representing total assets times lever-

age) and a common factor −γEntropyREntropy∑N
ν=1 eν1

. The indirect vulnerability also consists of an

institution-specific factor αn1

en1
(representing total asset holdings divided by equity) and

a common factor −γEntropyREntropy
∑N

ν=1 αν1bν1
A

. Hence, we see that institutions with high

total asset holdings times leverage will have a high systemicness, i.e., will play a major

role in causing fire sale losses, whereas institutions with large total asset holdings divided

by their equity will have a large indirect vulnerability, i.e., they will be susceptible to

fire sale losses. So leverage influences systemicness, whereas equity influences indirect

vulnerability.

Proposition 8.A.1 also allows us to provide an analytical expression for the proportional

capital injection strategy.

Corollary 8.A.3. Suppose the asset holding matrix is estimated using XEntropy given

in (8.2). Let n ∈ N and k ∈ S. Then, the proportional capital injection defined in

Definition 2.4.5, reduces to

iPropn (XEntropy) = I
SYSXEntropy

(n)

AVXEntropy = I
αn1bn1∑N
ν=1 αν1bν1

.
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This means that capital is injected relative to a measure in which the total assets are

weighted by leverage. Therefore, iPropn (XEntropy) differs from the naive capital injection

strategy iNaive
n = I αn1∑N

ν=1 αν1
in which only the total asset holdings are considered.

Minimum density method

The minimum density method for network reconstruction was introduced in Anand et al.

(2015) in the context of a matrix representing interbank lending. We apply it here to a

matrix with a different economic interpretation, namely asset holdings between different

banks. It solves an optimisation problem with the objective of finding a matrix with

the minimum number of edges that is consistent with given row and column sums. The

resulting network is therefore usually very sparse. Formally, the optimisation problem in

our setting is as follows.

min
X

N∑
n=1

K∑
k=1

I{Xnk>0},

subject to: αn1 =
K∑
k=1

Xnk ∀n ∈ {1, . . . , N},

ck =
N∑

n=1

Xnk ∀k ∈ {1, . . . , K},

Xnk ≥ 0 ∀n ∈ {1, . . . , N},∀k ∈ {1, . . . , K}.

Anand et al. (2015) provide an algorithm to solve this optimisation problem and also

consider generalisations that result in less sparse matrices. We will mainly consider one

matrix in our analysis that represents the sparsest solution. As part of our sensitivity

analysis, we also consider the generalisation by Anand et al. (2015) that constructs less

sparse matrices.

8.A.2 Sampling-based reconstruction methods

We also consider two matrix reconstruction methods that assume that the matrix itself

is random and provide methodologies to sample from the appropriate distribution.

Statistical physics method

The method that we refer to as the Statistical Physics method, due to its modelling ideas

coming from this area, was developed by Cimini et al. (2015). It was originally proposed

to reconstruct a network of interbank lending. It has then been applied to the case of

bipartite networks of asset holding networks by Squartini et al. (2017) which is what we

do here. Applied to our setting, it is characterised by an N × K-dimensional random
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matrix XStatPhys, whose individual entries Xnk, n ∈ N , k ∈ S are independent random

variables from the following discrete distributions.

P
(
XStatPhys

nk =
αn1ck
pnkA

)
= pnk,

P(XStatPhys
nk = 0) = 1 − pnk,

where again A =
∑N

ν=1 αν1. Furthermore, pnk = ϕαn1ck
1+ϕαn1ck

∀n ∈ N , ∀k ∈ S, and αn1 >

0∀n ∈ N , ck > 0 ∀k ∈ S, are the given row and column sums, respectively and ϕ > 0 is

a parameter that can be used to calibrate the model1. One can check that pnk ∈ [0, 1]

∀n ∈ N ,∀k ∈ S. Hence, we see that each entry in the random matrix can only take two

possible values - zero or another non-negative value.

It follows directly from the definition that

E

[
N∑

n=1

XStatPhys
nk

]
= ck, ∀k ∈ S and E

[
K∑
k=1

XStatPhys
nk

]
= αn1, ∀n ∈ N .

This means, that the random matrix XStatPhys satisfies the row and column sums in

expectation. If one generates a sample of matrices from this probability distribution,

then the individual matrices in the sample will usually not satisfy the row and column

sums.

To calibrate the model to a given target density δtarget ∈ (0, 1) of a network one can use

the fact that the expected density of XStatPhys is given by

f(θ) =
1

NK
E

[
N∑

n=1

K∑
k=1

I{XStatPhys
nk >0}

]
=

1

NK

N∑
n=1

K∑
k=1

pnk =
1

NK

N∑
n=1

K∑
k=1

ϕαn1ck
1 + ϕαn1ck

and solve f(θ) = δtarget for θ. Note that f is a continuous and non-decreasing function

satisfying f(0) = 0. Furthermore, limθ→∞ f(θ) = 1 if αn1ck > 0 for all n ∈ N and for

all k ∈ S. Hence, we see that if all row and column sums are non-zero, the model can

be calibrated to any target density δtarget ∈ (0, 1). If some row or column sums are zero,

then the underlying network cannot have a density of 1 or a similarly large value and this

is indeed reflected by the function f .

Some fire sales measures evaluated using the StatPhys method are related to those eval-

uated under the Entropy method.

For example, the expected portfolio weights matrix using the StatPhys method satisfies

E[mnk(XStatPhys)] =
1

αn1

E[XStatPhys
nk ] =

1

αn1

αn1ck
pnkA

pnk =
ck
A

= mnk(XEntropy) ∀n ∈ N , ∀k ∈ S

1This has also already been discussed in Gandy and Veraart (2019)
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and hence coincide with the portfolio weights using the Entropy method.

This implies that the quantities that depend on the network are given by

E[Rn1(X
StatPhys)] =

K∑
k=1

E[mnk(XStatPhys)]fk1 = Rn1(X
Entropy) = REntropy,

E[γn1(X
StatPhys)] =

K∑
k=1

cklkE[mnk(XStatPhys)] = γn1(X
Entropy) = γEntropy,

for all n ∈ N .

It follows directly that the expected direct vulnerability using the StatPhys method co-

incides with the direct vulnerability using the Entropy method, formally

E[DVXStatPhys

(n)] = −αn1

en1
E[Rn1(X

StatPhys)] = −αn1

en1
REntropy = DVXEntropy

(n).

For the other fire sale measure, however, the expectation of the measure applied to

the random matrix XStatPhys does not generally coincide with the measure applied to the

deterministic matrix XEntropy. For example, systemicness, follows from direct calculations

that

E[SYSXStatPhys

(n)] =
−αn1bn1∑N

ν=1 eν1
E[γn1(X

StatPhys)Rn1(X
StatPhys)],

where

E[γn1(X
StatPhys)Rn1(X

StatPhys)] = γEntropyREntropy +
1

αn1

∑K
k=1 c

2
klkfk1

ϕA2
.

Since, 1
αn1

∑K
k=1 c

2
klkfk1

ϕA2 ≤ 0, this implies that the expected systemicness and the expected

aggregate vulnerability under the StatPhys method is greater or equal than the corre-

sponding quantities derived using the Entropy method. This is indeed what we find in

Table 2.4.

Bayesian methods

The reconstruction method developed in Gandy and Veraart (2017) takes a Bayesian

perspective. Gandy and Veraart (2017) specify a generative model for the network matrix

and then condition on the observations, i.e., the row and column sums (and possibly

additional known entries of the matrix). Hence, the network reconstruction is achieved

through the posterior distribution in the Bayesian setting.

For the generative model several a-priori distributions have been considered in Gandy

and Veraart (2017, 2019). We consider two special choices developed in these papers.

The model assumes a generalisation of the Erdős-Rényi random graph model, see Erdős
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and Rényi (1959), by assuming that directed edges from n to k are generated using

independent Bernoulli trials with success probability pnk and weights from an exponential

distribution are assigned to existing edges. Formally, the a-priori model assumes that for

all n ∈ N and for all k ∈ S

P (Xnk > 0) = pnk,

Xnk | Xnk > 0 ∼ Exp(λnk),

where p = (pnk) ∈ [0, 1]N×K , λ = (λnk) ∈ [0,∞)N×K .

We are then interested in the distribution of the random matrix X conditional on the

given row and column sums. Since this distribution is not available in closed form,

Gandy and Veraart (2017) have developed an MCMC sampler to generate samples from

this distribution.

In the following, we will assume that all parameters of the exponential distributions

governing the weights are identical, i.e., λnk = λ̃ ∈ [0,∞) for all n ∈ N , k ∈ S.

We will now consider two different choices for p = (pnk). First, we assume that all a-priori

link existence probabilities are identical, i.e., we set pnk = p̃ ∈ [0, 1] for all n ∈ N , k ∈ S.

We will refer to the Bayesian model with this a-priori assumption as the BayeER model

(where ER stands for Erdős-Rényi ). As discussed in Gandy and Veraart (2019), this

model can be calibrated to a given network density by choosing appropriate values for p̃

and λ̃ and this is what we do in this paper.

Second, we assume that the a-priori link existence probabilities have the same structure

as in the StatPhys model. In particular, they are given by pnk = ϕαn1ck
1+ϕαn1ck

for all n ∈ N ,

k ∈ S. Here again αn1 and ck represent the row and column sums and ϕ > 0 is a

constant used to calibrate the model. We refer to this Bayesian model as the BayeEF

model (where EF stands for Empirical Fitness). This is (as the StatPhys model) a fitness

model for the underlying network. Fitness network models assume that the link existence

probability between a pair of nodes is a function of characteristics of the nodes, so-called

fitnesses. In our setting, the row and column sums can be interpreted as fitnesses and

the link existence probabilities are indeed functions of the row and column sums. Note,

however, that the pnk in the BayeEF model are a-priori link existence probabilities. They

do usually not correspond to the posterior link existence probabilities. The StatPhys

and the BayeEF are fundamentally different models despite having some similarities in

the choice of model inputs. As shown in Gandy and Veraart (2019) the BayeEF can be

calibrated to a given network density and this is what we will do for this second type

of Bayesian model as well. The calibration is described in detail in Gandy and Veraart

(2019).
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8.B Chapter 2: Additional empirical results and sen-

sitivity analysis

8.B.1 Observed and reconstructed asset holding matrices

To provide some intuition on the empirical asset holding matrix and the performance

of different reconstruction methods, we illustrate their performance when applied to the

EBA data from 2016. Figure 8.1 shows a heatmap of the true asset holdings matrix

X (top left) and five heatmaps corresponding to reconstructed asset holding matrices

that only used partial information. For methods that generate a sample of matrices,

i.e., the StatPhys method and the Bayesian methods we only show one realisation of a

reconstructed asset holding matrix.

Figure 8.1 shows that the matrix obtained using the Entropy method corresponds to a

network in which all institutions hold positions in all but one asset. This one asset has a

market capitalisation of 0 and corresponds to Liechtenstein sovereign loans.
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(a) Observed asset holdings matrix.
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(b) Reconstruction based on Entropy method.
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(c) Reconstruction based on MinDen method.
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(d) One reconstruction based on StatPhys
method.
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(e) One reconstruction based on BayeER
method.
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(f) One reconstruction based on BayeEF
method.

Figure 8.1: Asset holdings matrix for the true matrix (top left) and five reconstructed
networks based on different methods for the EBA 2016 data.
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For the reconstructed matrix based on the MinDen method, the asset holdings appear

scattered where the largest assets holdings are in corporate, retail, German, US, and

other sovereign assets. The MinDen matrix does assign zero weights to some of the

largest positions observed in the true network i.e., several UK banks hold large positions

in retail assets in 2016, but the corresponding entries in the reconstructed matrix based

on the MinDen methods are zero.

The sample matrix generated by the StatPhys method shows that according to this

reconstruction, all banks invest in the two asset classes corporate and retail (the lower two

rows). The weights are consistent with the corresponding two rows in the matrix obtained

from using the Entropy method. According to the reconstruction based on the Entropy

method and this one sample from the StatPhys method, the bank with label UK1 has the

largest holdings in the two asset classes corporate and retail. In contrast, to the Entropy

method, the reconstructed matrix based on the StatPhys method is much sparser - it has

been calibrated to match the density of the true network. When looking at the samples

generated by the Bayesian method we observe that the overall density of the network

matches the density of the true network, as was the case for the StatPhys method, since

these methods are flexible enough that they can easily be calibrated to a given density.

Throughout our empirical analysis, we calibrate the StatPhys and the Bayesian methods

to the true density of the network unless stated otherwise. The density remains almost

the same in both years (0.44 in 2011 and 0.48 in 2016), so our sampling-based methods

are calibrated such that almost half the entries of the asset holding matrices are filled.

Furthermore, we see that the reconstructed samples from the Bayesian methods assign

weights that are very different from weights obtained by the Entropy or the StatPhys

method. In particular, we do observe several high weights and also some zero weights

within the lower two rows that represent the holdings in corporate and retail assets.

This is not surprising given the greater flexibility of the Bayesian method when it comes

to modelling the weight and not just the existence of edges compared to the StatPhys

method.
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8.B.2 Computing the maximum and minimum aggregate vul-

nerability for given row and column sums

In our partial information setting, we assume that only the row and column sums of

the asset holding matrix are given. Throughout the paper, we study various network

reconstruction methods that reconstruct the asset holding matrix from this partial infor-

mation. These reconstructed networks can then be plugged into any measure of fire sale

risk of interest, such as the aggregate vulnerability, the systemicness, the direct and the

indirect vulnerability.

For a fixed measure of fire sale risk, however, one can also try to find an asset holding

matrix that maximises (or minimises) this measure over all matrices that satisfy the

given constraints on the row and column sums. This is what we do next for the aggregate

vulnerability. This optimisation approach will be useful as a benchmark.

We consider the following optimisation problem for finding the maximum aggregate vul-

nerability:

max
X

AV (X) ,

subject to: αn1 =
K∑
k=1

Xnk ∀n ∈ {1, . . . , N},

ck =
N∑

n=1

Xnk ∀k ∈ {1, . . . , K},

Xnk ≥ 0 ∀n ∈ {1, . . . , N}, ∀k ∈ {1, . . . , K}.

(8.3)

The corresponding optimisation problem that determines the minimum aggregate vulner-

ability can be defined in the same way by minimising the aggregate vulnerability rather

than maximising it.

Figure 8.2 shows examples of asset holding matrices that correspond to the minimum

or maximum aggregate vulnerability for different shocks. We find that the matrices are

generally very sparse. We observe large positions in corporate and retail assets, which

correspond to 80% of the total value of asset holdings across all banks. It is striking to

see how similar the two matrices are that correspond to the minimum and the maximum

aggregate vulnerability for a given stress scenario. This shows the large influence of a

small number of positions on aggregate vulnerability. There may be other matrices with

different levels of sparsity that result in similarly small or large aggregate vulnerabilities.
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(a) Min AV under the GIIPS scenario.
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(b) Max AV under the GIIPS scenario.
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(c) Min AV under the Bad Brexit scenario.
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(d) Max AV under the Bad Brexit scenario.

Figure 8.2: Examples of asset holdings matrices that maximise or minimise the aggregate
vulnerability while respecting the non-negativity and marginal sums of the true matrix.
We use the 2011 EBA data for the GIIPS and Bad Brexit scenarios. The aggregate
vulnerability are as follows a) 172%, b) 373%, c) 49%, and d) 144%.
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8.B.3 Additional sensitivity analysis

Network reconstruction for different densities

In the following, we provide further details on the sensitivity of different network recon-

struction methods concerning the assumed density of the network.

In Section 2.3.5 we have already discussed how the aggregate vulnerability computed

using the StatPhys, BayeER, and BayeEF network reconstruction methods depends on

the choice of the target density of the network for the 2011 data and a capitalisation-

dependent price impact, see Figure 2.1. In particular, we find that the aggregate vul-

nerability can be estimated reasonably precisely even if the true density of the network

is not available. Further analysis of these sensitivities for constant price impact and the

data from 2016 confirm these conclusions. We do not report the details here.

Next, we analyse how additional information can be included in the Entropy and MinDen

methods.

For the Entropy method, we cannot just assume a target density but we will need to

provide a suitable target matrix X̃ instead. We do this by replacing some columns in

the target matrix with the true asset holding matrix. In particular, first, we assume that

the first column of the target matrix consists of the true asset holdings and the remain-

ing entries correspond to those in the Entropy method matrix i.e., X̃n1 = Xn1 ∀n ∈
N and X̃nk = XEntropy

nk , k ∈ [2, . . . , K]. The column sums remain the same but the row

sums are no longer consistent with the partial information. We, therefore, re-balance the

matrix such that marginal sums are equal to the true matrix. We repeat this process for

each column sequentially until the target matrix consists only of the true entries. We do

this column by column.

Our results in Figure 8.3 show that the aggregate vulnerabilities are similar under the

additional information for the Entropy method. For several points, incorporating ad-

ditional information can result in a worse performance of the aggregate vulnerability.

Although more information is known about the true matrix, the proportional scaling

from the re-balancing method alters other entries. This leads to changes in other assets

with high influence, for example, changes in position in UK assets within the Bad Brexit

scenario. Only when the information about the shocked asset is included, we observe

that the estimated aggregate vulnerability becomes closer to the true one.

For the MinDen method, it is possible to consider a generalisation, see Anand et al.

(2015) for details, that can be calibrated to a target density. We find that the aggregate

vulnerabilities, computed from the MinDen method that have been calibrated to different

densities, can vary and different densities can lead to similar aggregate vulnerabilities.

We have also conducted the same sensitivity checks for a constant price impact and also

for the 2016 data and come to the same conclusions, therefore we do not report them

here.
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(a) Entropy under GIIPS 2011.
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(b) Entropy under Bad Brexit 2011.
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(c) MinDen under GIIPS 2011.
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(d) MinDen under Bad Brexit 2011.

Figure 8.3: Aggregate vulnerabilities as a function of the number of known columns in the
target matrix of the Entropy method (top), and aggregate vulnerabilities as a function
of the network density for the MinDen method (bottom). This is for the 2011 data and
a capitalisation-dependent price impact.
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Network reconstruction for noisy observations

Finally, we investigate how sensitive our results are, if the row and column sums of the

asset holding matrix are not observed directly but with noise. To do so we add a noise

term to the row and column sums of the true asset holding matrix, i.e., we consider the

new row and column sums

αnoise
n1 = αn1 + ϵ(α)n , ∀n ∈ N ,

cnoisek = ck + ϵ
(c)
k , ∀k ∈ S,

where ϵ
(α)
1 , . . . , ϵ

(α)
N and ϵ

(c)
1 , . . . , ϵ

(c)
K are i.i.d. normally distributed random variables with

mean 0 and variance σ2. We chose a realisation of the noise in which all new row

and column sums are non-negative. We consider two different choices of the parameter

σ ∈ {100, 1000} (million EUR). Finally, we normalise row and column sums of the data

with noise such that the new row sums α̃noise
n1 and column sums c̃noisek with noise satisfy

N∑
n=1

α̃noise
n1 =

K∑
k=1

c̃noisek =
N∑

n=1

K∑
k=1

Xnk.

For the network reconstruction with noise, we use the normalised row and column sums

with noise as the available partial information.

Table 8.1 reports the results. Overall, we observe only a small or no deviation from the

results without noise for all reconstruction methods except the MinDen method. The

results of the MinDen method are sensitive to noisy observation. The mean equity losses

for reconstructed matrices under 1bn standard deviation of the noise are further away

than for 100mn but with a similar standard deviation for the sampling methods. This

shows that our results are robust under noise and across different fire-sales measures.

Overall we find that the addition of noise does not lead to any different conclusion in

terms of the relative ranking of the different network reconstruction methods, see Table

2.4 for comparison.
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Capitalisation-dependent price impact
(lk = ρ/ck ∀k)

Matrix True MinDen Entropy StatPhy BayeER BayeEF
σ 0 100 1000 100 1000 100 1000 100 1000 100 1000

GIIPS(%)
DV11 15.58 32.74 2.60 7.81 7.80 7.80 7.81 20.20 20.17 17.69 17.53

- - - - - (0.54) (0.53) (3.09) (3.05) (3.01) (3.01)
IV11 460.79 1075.10 293.85 416.77 416.17 417.42 416.99 611.87 610.83 544.72 542.05

- - - - - (10.66) (10.71) (38.63) (38.49) (30.36) (30.46)
AV11 291.70 289.01 316.26 288.21 287.85 288.98 288.42 292.41 291.48 294.22 293.44

- - - - - (6.02) (6.15) (5.27) (5.28) (5.01) (5.03)
Bad Brexit(%)

DV11 1.47 0.85 4.03 3.01 3.01 3.02 3.01 8.37 8.36 6.47 8.36
- - - - - (0.47) (0.46) (02.50) (2.54) (2.43) (2.39)

IV11 120.19 175.99 225.61 160.90 160.71 161.18 160.91 239.96 239.41 207.53 206.42
- - - - - (7.31) (7.37) (22.66) (22.96) (17.30) (17.04)

AV11 90.23 144.05 119.90 111.27 111.16 111.59 111.30 112.14 111.91 113.67 113.47
- - - - - (4.77) (4.83) (3.95) (4.04) (3.90) (3.92)

Constant price Impact
(lk = 5 × 10−13 ∀k)

GIIPS(%)
DV11 Same results as for capitalisation-dependent price impact

IV11 506.76 312.90 321.79 523.55 522.83 523.48 522.85 275.16 274.39 325.14 325.60
- - - - - (13.51) (13.50) (16.68) (16.81) (17.83) (17.85)

AV11 357.49 226.56 204.36 362.05 361.62 362.43 361.73 275.50 274.60 293.51 293.20
- - - - - (7.24) (7.41) (11.35) (11.42) (10.11) (10.21)

Bad Brexit(%)
DV11 Same results as for capitalisation-dependent price impact

IV11 155.05 251.16 119.47 202.13 201.90 202.13 201.76 103.91 103.81 126.40 126.83
- - - - - (9.24) (9.30) (8.87) (8.98) (9.53) (9.59)

AV11 109.02 165.48 67.01 139.78 139.65 139.94 139.59 104.08 103.99 114.60 114.72
- - - - - (5.95) (6.03) (8.09) (8.19) (7.38) (7.39)

Bold - 1 0 3 4 2 2 2 2 2 2

Table 8.1: The table presents average fire sale risk measures (averaged over the banks
and additionally averaged over the reconstructed samples) for the 2011 EBA data for two
different shock scenarios for the true matrix and for reconstructed matrices that were
reconstructed from noisy observations of the row and column sums.
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8.C Chapter 3: Target leverage condition

We consider a subset of scenarios in which all banks can meet their target leverages in

each stage of fire sales. Under the target leverage condition, we obtain a differentiable

objective function of the bank’s total asset holdings.

Definition 8.C.1 (Target leverage condition). A bank n ∈ N satisfies the target leverage

condition if it can sell a proportion of its asset holdings to meet its target leverage in each

round of fire sales i.e.,

δ(Rnt) = −bnRnt ∀t ≥ 1.

The equality of the selling function to the leveraged net returns represents one of the two

terms in the selling function.

Let us consider the inputs of the selling function. The bank can meet its target leverage

if its leveraged net returns are smaller than the value of its remaining asset holdings for

all periods. Hence, a condition which satisfies the target leverage condition is if the net

returns are bounded above by the bank’s target leverage component.

Lemma 8.C.2. The bank n ∈ N satisfies the target leverage condition if its net returns

at each stage of fire sales are bounded by its target leverage component i.e.,

−Rnt ≤
1

1 + bn
∀t ≥ 1.

Proof of Lemma 8.C.2. The bound on the net returns on the leverage component is equiv-

alent to the leveraged net returns being smaller than the remaining value of the bank’s

asset holdings. This inequality implies the selling function is equal to the leveraged

net returns, where the selling function is positive because the leveraged net returns are

negative:

−Rnt ≤
1

1 + bn
⇐⇒ −bnRnt ≤ 1 +Rnt =⇒ δ(Rnt) = −bnRnt.

We require the bank to be able to meet its target leverage in all rounds of fire sales. 2

We show for conditions on the initial net returns and the connectivity of banks, all banks

can meet their target leverages in all rounds of fire sales.

Proposition 8.C.3. If the initial net returns and connectivity component of all banks

are bounded above by the target leverage i.e.,

−Rn1 ≤
1

1 + bn
and γn1 ≤

1

1 + bn
∀n ∈ N

2With the inequality in Lemma 8.C.2, the selling function δ(Rn) ≤ 1 represents the bank is always
able to sell a proportion of its total assets to meet its target leverage.
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then all banks are able to meet their target leverage in each round of fire sales i.e.,

δ(Rnt) = −bnRnt ∀n ∈ N , ∀t ≥ 1.

Proof of Proposition 8.C.3. We use proof by induction to show the net returns are bounded

by the leverage of the bank. We show the base case in which t = 1 and the inductive step

in which t implies t+ 1.

From the assumption of the initial net returns and connectivity, this holds for the base

case. For the inductive step, we assume (−Rnt) ≤ 1
1+bn

and γn1 ≤ 1
1+bn

∀n ∈ N t ≥ 1

holds, then

(
−Rn(t+1)

)
=

K∑
k=1

mnk(−fk(t+1))

=
K∑
k=1

mnklk

(
N∑
p=1

mpkαptδ(Rpt)

)

=
K∑
k=1

mnklk

(
N∑
p=1

mpkαptbp(−Rpt)

)

≤
K∑
k=1

mnklk

(
N∑
p=1

mpkαpt
bp

1 + bp

)
(*)

<
K∑
k=1

mnklk

(
N∑
p=1

mpkαpt

)
= γnt

≤ γn1 ≤
1

1 + bn
. (**)

The (*) comes from the inductive assumption on the net returns for all banks. The (**)

is from the non-decreasing property of the total assets of the bank. From Lemma 8.C.2,

all banks satisfy the target leverage condition.

The bound on the initial net returns and connectivity only depends on the target leverage

of the bank. These two quantities form part of the fire sales measures introduced by

Greenwood et al. (2015).

For one bank to meet its target leverage, it must hold for all banks. If only one bank

is initially able to meet its target leverage, then the bank could still be affected by the

losses of other banks which were not able to maintain their target leverages. Also, only

considering a bound on the net returns is not sufficient, as the fire sales losses from the

indirect shock can be larger than the initial shock assumed for assets.

Under the capitalisation-dependent assumption on the price impact, the connectivity of

all banks is represented by the connectivity constant. As the maximum leverage of the
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bank is bounded by the regulatory constraint, then the connectivity is bounded above by

the maximum leverage component:

ρ ≤ 1

1 + bmax
. (8.4)

For this choice of price impact, if the connectivity constant is bounded by the maximum

leverage, then the target leverage condition only depends on a bound for the initial net

returns. In general, Proposition 8.C.3 holds for different choices of the price impact.3

The bound on the initial net returns and connectivity of banks also leads to a bound on

the cumulative net returns, across all rounds of fire sales.

Corollary 8.C.4. If the initial net returns and connectivity component of all banks are

bounded above by the target leverage i.e.,

−Rn1 ≤
1

1 + bn
and γn1 ≤

1

1 + bn
∀n ∈ N

then the cumulative net returns are bounded above by the connectivity of the bank i.e.,

T−1∑
t=1

−Rn(t+1) ≤ γn1 ∀n ∈ N and T ≥ 2.

Proof of Corollary 8.C.4. Assuming the initial conditions from Proposition 8.C.3, we can

substitute the total assets of the bank into the multi-period asset shock,

fkt+1 = lk

N∑
p=1

mpk

(
αp(t+1) − αpt

)
.

By summing over t ≥ 2, the right-hand side becomes a telescoping sum

T∑
t=2

fkt = lk

N∑
p=1

mpk (αpT+1 − αp1) ≥ −lk
N∑
p=1

mpkαp1.

Using the definition of the connectivity component and
∑K

k=1mnk = 1 ∀n ∈ N for the

RHS, we arrive at the inequality.

The inequality shows that the losses to other banks are higher than the losses on itself.

This represents the interconnections from other banks and the restriction on the net

returns from the target leverage condition. From the assumptions on the initial input

from Proposition 8.C.3 on the target leverage condition, the total assets of banks are

always non-negative without the positive indicator.

3For a constant price, an equivalent constraint as in (8.4) for the capitalisation-dependent price impact
is given by l ≤ 1

maxn((1+bn)
∑K

k=1 mnk(
∑N

p=1 mpkαp1))
.

196



Chapter 8: Appendix

Corollary 8.C.5. If the initial net returns and connectivity component of all banks are

bounded above by the target leverage i.e.,

−Rn1 ≤
1

1 + bn
and γn1 ≤

1

1 + bn
∀n ∈ N

then the total asset holdings with the leveraged net returns component are non-negative

for all banks:

αn(t+1) = αnt

(
1 + bn

K∑
k=1

mnkfkt

)
≥ 0 ∀n ∈ N and ∀t ≥ 1.

Proof of Corollary 8.C.5. The total assets of the bank at time-t can be represented by

the bank’s initial asset holdings and the leveraged net returns at each round of fire sales:

αn(t+1) = αn1

t∏
j=1

(
1 + bn

K∑
k=1

mnkfkj

)
∀t ≥ 1.

The initial total assets holdings of banks are non-negative and each component of the

leveraged net returns is positive from Proposition 8.C.3. Hence, the total asset holdings

of all banks at time-t without the positive indicator are non-negative.

The bank always has non-negative total assets without a positive indicator from Corollary

8.C.5. The objective function representing the total assets of all banks is differentiable

w.r.t to the fire sales scenario. From the target leverage condition, the fire sales mecha-

nism with Lemma 8.C.2 and Corollary 8.C.5 is defined as follows:

αn(t+1) = αnt

(
1 + bn

K∑
k=1

mnkfkt

)
∀n ∈ N ,

fk(t+1) = lk

N∑
p=1

mpkαptbpRpt ∀k ∈ S ∀t ≥ 1,

where −Rn1 ≤
1

1 + bn
∀n ∈ N and ρ ≤ 1

1 + bmax
.

(8.5)

As all banks can meet their target leverages, the indirect shocks depend on the leveraged

net returns of the bank. The constraint on the net returns and the connectivity constant

in (8.5) is the same condition for the optimisation problem (3.4).

8.D Chapter 3: Multi-period fire sales measures

The change in the total assets of the bank and shocks representing the fire sales contagion

can be represented relative to the equity holdings. This captures the leverage targeting
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behaviour from the fire sales measures, in which banks maintain their target leverage.

From Greenwood et al. (2015), two measures were introduced for evaluating the fire sales

risk. The first was systemicness SYSt ∈ [0,∞) ∀t ≥ 0, which represents the equity loss

a bank contributes at time-t. We define the fire sales measures for multiple rounds:

SYSt(n) = SYSt−1(n) + γnt
αnt∑N
n=1 en1

(−δ(Rnt))

where

γnt =
K∑
k=1

mnklk

(
N∑
p=1

αptmpk

)
, ∀t ≥ 1

and

δ(xp) = (min (−bpxp, 1 + xp))
+ ,

and

SYS0(n) = 0.

The γnt is defined as a time-dependent connectivity component. As the above is a recur-

sive formula, we can rewrite the expression as follows:

SYSt(n) =
T∑
t=1

γnt
αnt∑N
n=1 en1

(−δ (Rnt)) .

The total equity contribution of equity losses at time-t is defined as AV t ∈ [0,∞), which

is the sum of systemicness values of all banks:

AV t =
N∑

n=1

SYSt(n) ∀t ≥ 0.

The second measure represents the equity losses incurred by the bank. This aspect can

be considered in two parts: the direct and indirect losses of the fire sales. The direct

vulnerability is denoted as DV(n) ∈ [0,∞). This is a measure of the initial losses and so

remains unchanged in the multi-period case,

DV(n) =
αn1

en1
(−Rn1) ∀n ∈ N .

The indirect measure which accounts for losses at multiple periods is defined as IV t(n) ∈
[0,∞) for all banks. The indirect losses can be represented by the recursive formula of

losses at each fire sales round:

IV t(n) = IV t−1(n) +
αnt

en1

K∑
k=1

mnklk

(
N∑
p=1

mpkαpt (−δ (Rpt))

)
∀t ≥ 1,
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with

IV0(n) = 0 ∀n ∈ N .

The above formula can be rewritten as follows

IV t(n) =
T∑
t=1

αnt

en1

K∑
k=1

mnklk

(
N∑
p=1

mpkαpt (−δ (Rpt))

)
.

One of the properties to denote both measures is that the total losses are conserved. The

only difference between both measures is the perspective of equity losses in the system.

We define this identity for time t and for the direct losses in the fire sale:

Lemma 8.D.1. For the initial equity of banks en1 ≥ 0, the initial losses of the bank

DV(n) are equal to the initial shock of the asset capitalisation:

N∑
n=1

en1DV(n) =
K∑
k=1

ck1 (−fk1) .

For all time periods t ≥ 1, the aggregate vulnerability of the total equity is equal to the

total indirect vulnerability of the bank’s equity:

AV t

N∑
n=1

en1 =
N∑

n=1

en1IV t(n) ∀t ≥ 1.

Proof of Lemma 8.D.1: For the direct vulnerability, we rewrite the returns on the assets

w.r.t to the shock on the asset capitalisation:

N∑
n=1

en1DV(n) =
N∑

n=1

en1

(
αn1 (−Rn1)

en1

)

=
N∑

n=1

αn1 (−Rn1)

=
N∑

n=1

αn1

(
K∑
k=1

mnk (−fk1)

)

=
K∑
k=1

N∑
n=1

αn1mnk (−fk) =
K∑
k=1

ck1 (−fk1) .

Using the recursive relation of the aggregate and indirect vulnerability. We can equiva-

lently show: (
N∑

n=1

en1

)
N∑

n=1

SYSt(n) =
N∑

n=1

en1IV t(n) ∀t ≥ 1.
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Then,(
N∑

n=1

en1

)
N∑

n=1

SYSt(n) =
N∑

n=1

[
K∑
k=1

(
N∑
p=1

αptmpk

)
lkmnk

]
αnt

(
−δ
(
Rn(t−1)

))
=

[
K∑
k=1

(
N∑
p=1

αptmpk

)
lk

]
N∑

n=1

mnkαnt

(
−δ
(
Rn(t−1)

))
=

N∑
p=1

αpt

K∑
k=1

lkmpk

[
N∑

n=1

mnkαnt

(
−δ
(
Rn(t−1)

))]

=
N∑
p=1

ep1

(
αpt

ep1

K∑
k=1

lkmpk

[
N∑

n=1

mnkαnt

(
−δ
(
Rn(t−1)

))])

=
N∑
p=1

ep1IV t(p).

These identities above show that the total direct losses are independent of the network

topology. This would hold for all asset holdings matrices which respect the column sums.

Secondly, the identity of the fire sales measures is a two-way perspective on the asset

losses of banks, relative to the equity.

8.E Chapter 4: Collateral clearing model: Existence

of and convergence to the greatest solution

To prove the existence and convergence of the collateral clearing model to the greatest

solution, in the first round of clearing, we show the monotonicity of the first round

clearing function with Lemma 8.E.1. The proofs for Lemma 8.E.1 follow in the same way

as in Veraart and Aldasoro (2022), where we additionally account for the bank’s external

illiquid asset holdings.

Lemma 8.E.1. For the first round function ΦR1 : [0, 1]×
[
0, p̄R1

]
→ [0, 1]×

[
0, p̄R1

]
. The

first round clearing function is order-preserving i.e., for the price impact of collateral and

illiquid assets π, π̃ ∈ [0,∞) where π ≤ π̃ and the obligations matrix p, p̃ ∈ [0, p̄] where

p ≤ p̃, then

ΦR1
1,(k) (π, p) ≤ ΦR1

1,(k) (π̃, p̃) ∀k ∈ S,

ΦR1
2,(ij) (π, p) ≤ ΦR1

2,(ij) (π̃, p̃) ∀i, j ∈ N .

Proof. We assume that π ≤ π̃ and p ≤ p̃. Let π, π̃ ∈ [0, 1] and p, p̃ ∈ [0, p̄R1], we show
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that ΦR1 is an order-preserving function. If the term for the collateral sold is such that

Υij (π, p) ≥ Υij (π̃, p̃) .

Then, for all assets sold and as Ω(π, p) is non-increasing in both components by definition,

∆k (π, p) =
N∑
i=1

min {Sik,Ωik(π, p)} +
N∑
i=1

N∑
j=1

Υij (π, p)1 (Tij = k)

≥
N∑
i=1

min {Sik,Ωik(π̃, p̃)} +
N∑
i=1

N∑
j=1

Υij (π̃, p̃)1 (Tij = k)

=∆k (π̃, p̃) ∀k ∈ S.

Hence,

ΦR1
1,(k) (π, p) = exp (−lk∆k (π, p)) ≤ exp (−lk∆k (π̃, p̃)) = ΦR1

1,(k) (π̃, p̃) .

Under the ordering of (π̃, p̃) and (π, p), the total assets in the first round of clearing are

such that

AR1
i (π, p) = bi +

K∑
k=1

Sikπk +
N∑
j=1

pji ≤ bi +
K∑
k=1

Sikπ̃k +
N∑
j=1

p̃ji = AR1
i (π̃, p̃).

From the definition of the set of defaults,

DR1 (π̃, p̃) ⊆ DR1 (π, p) .

For the order-preservation of the collateral sold Υ (π, p) under the matrix T , we consider

the following cases:

1. If i ∈ N\DR1 (π̃, p̃), then

Υij (π, p) ≥ 0 = Υij (π̃, p̃) .

2. If i ∈ DR1 (π̃, p̃), then i ∈ DR1 (π, p). Then we define the terms of the collateral

sold as follows:

– If π > 0, then π̃ > 0. This implies on the second term
p̄R1
ij

πTij
≥ p̄R1

ij

π̃Tij
. Hence

Υij (π̃, p̃) = min

{
ζij,

p̄R1
ij

π̃Tij

}
≤ min

{
ζij,

p̄R1
ij

πTij

}
= Υij (π, p) .
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– If π̃ > π = 0 and p̄R1 > 0, then Υk (π, p) = ζij and Υk (π̃, p̃) = min
{
ζij,

p̄R1
ij

π̃Tij

}
.

Hence

Υij (π̃, p̃) = min

{
ζij,

p̄R1
ij

π̃Tij

}
≤ ζij = Υij (π, p) .

If p̄R1 = 0, then Υk (π, p) = 0 and Υk (π̃, p̃) = min
{
ζij,

p̄R1
ij

π̃Tij

}
. Hence

Υk (π̃, p̃) = min

{
ζij,

p̄R1
ij

π̃Tij

}
= 0 = Υk (π, p) .

– If π̃ = 0 and π = 0, and p̄R1 > 0 then

Υij (π̃, p̃) = ζij = Υij (π, p)

else, if p̄R1 = 0

Υij (π̃, p̃) = 0 = Υij (π, p) .

In all cases, the assets used as collateral sold in the first round are order-preserving in

both components. Hence, the ordering of the total assets and collateral assets sold under

both components is preserved.

We consider the order-preservation of the second component ΦR1
2 of the fixed point func-

tion. We show ΦR1
2 is an order-preserving function for π and p. We consider the order

preservation for p. We consider two cases for the bank:

1. i ∈ N\DR1 (π̃, p̃), then

ΦR1
2,(ij) (π̃, p̃) = p̄R1

ij ≥ ΦR1
2,(ij) (π, p) .

2. i ∈ DR1 (π̃, p̃) then i ∈ DR1 (π, p) and

ΦR1
2,(ij) (π, p) = min

{
p̄R1
ij , πTij

ζij + aR1
ij (π)

(
γ1i

(
bi +

K∑
k=1

Sikπk

)
+ γ2i

N∑
j=1

pji

)}
,

ΦR1
2,(ij) (π̃, p̃) = min

{
p̄R1
ij , π̃Tij

ζij + aR1
ij (π̃)

(
γ1i

(
bi +

K∑
k=1

Sikπ̃k

)
+ γ2i

N∑
j=1

p̃ji

)}
.

First, if ΦR1
2,(ij) (π̃, p̃) = p̄R1

ij , then

ΦR1
2,(ij) (π̃, p̃) = p̄R1

ij ≥ ΦR1
2,(ij) (π, p) .
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If ΦR1
2,(ij) (π̃, p̃) < p̄R1

ij , then

p̄R1
ij > π̃Tij

ζij + aR1
ij (π̃)

(
γ1i

(
bi +

K∑
k=1

Sikπ̃k

)
+ γ2i

N∑
j=1

p̃ji

)
.

Using the definition of the relative payment matrix aR1 and rearranging the terms,

then

1 >
γ1i

(
bi +

∑K
k=1 Sikπ̃k

)
+ γ2i

∑N
j=1 p̃ji∑N

l=1 max {0, p̄R1
il − π̃Til

ζil}
. (8.6)

If ΦR1
2,(ij) (π̃, p̃) < p̄R1

ij , we show

ΦR1
2,(ij) (π, p) = πTij

ζij + aR1
ij (π)

(
γ1i

(
bi +

K∑
k=1

Sikπk

)
+ γ2i

N∑
j=1

pji

)
.

From the second component of the clearing function, for a bank in default

πTij
ζij + aR1

ij (π)

(
γ1i

(
bi +

K∑
k=1

Sikπk

)
+ γ2i

N∑
j=1

pji

)

=πTij
ζij + max

{
0, p̄R1

ij − πTij
ζij
}γ1i

(
bi +

∑K
k=1 Sikπk

)
+ γ2i

∑N
j=1 pji∑N

l=1 max {0, p̄R1
il − πTil

ζil}


≤πTij

ζij + max
{

0, p̄R1
ij − πTij

ζij
}γ1i

(
bi +

∑K
k=1 Sikπ̃k

)
+ γ2i

∑N
j=1 p̃ji∑N

l=1 max {0, p̄R1
il − π̃Til

ζil}


︸ ︷︷ ︸

<1

<πTij
ζij + max

{
0, p̄R1

ij − πTij
ζij
}
,

We consider two cases of the relative payment matrix if aR1(π) = 0, then 0 =

aR1(π) ≤ aR1(π̃) and

πTij
ζij + aR1

ij (π)

(
γ1i

(
bi +

K∑
k=1

Sikπk

)
+ γ2i

N∑
j=1

pji

)

≤π̃Tij
ζij + aR1

ij (π̃)

(
γ1i

(
bi +

K∑
k=1

Sikπ̃k

)
+ γ2i

N∑
j=1

p̃ji

)
=ΦR1 (π̃, p̃) < p̄R1.
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In the second case in which aR1(π) > 0, then p̄R1
ij > πTij

ζij and

πTij
ζij + aR1

ij (π)

(
γ1i

(
bi +

K∑
k=1

Sikπk

)
+ γ2i

N∑
j=1

pji

)
≤πTij

ζij + max
{

0, p̄R1
ij − πTij

ζij
}

= p̄R1
ij ,

and therefore

ΦR1
2,(ij) (π, p) = πTij

ζij + aR1
ij (π)

(
γ1i

(
bi +

K∑
k=1

Sikπk

)
+ γ2i

N∑
j=1

pji

)
. (8.7)

We show that the function (8.7) is order-preserving under both components. We observe

in the case for p, this holds. We show ΦR1
2,(ij) is order-preserving in π. We define the

function f : [0, 1] → [0,∞), where

f(π) = πTij
ζij + aR1

ij (π)

(
γ1i

(
bi +

K∑
k=1

Sikπk

)
+ γ2i

N∑
j=1

pji

)
︸ ︷︷ ︸

B(π,p:γ1,γ2)

.

Similarly to the arguments by Ghamami et al. (2022) and Veraart and Aldasoro (2022),

then:

∂f

∂π
= ζij +

∂aR1
ij (π)

∂π
B
(
π, p : γ1, γ2

)
+ aR1

ij (π)
∂B(π, p : γ1, γ2)

∂π
,

where

∂aR1
ij (π)

∂π
=

∑N
l=1 max

{
0, p̄R1

il − πTil
ζil
}

(−ζij) +
(
p̄R1
ij − πTij

ζij
)+∑N

l=1 ζil1
(
p̄R1
il > πTil

ζil
)(∑N

l=1 max {0, p̄R1
il − πTil

ζil}
)2 ,

and
∂B(π, p : γ1, γ2)

∂π
= γ1i Sik.

Substituting the derivative of the relative asset holdings to the derivative of the function,

∂f

∂πT
= ζij

(
1 − Bi (π, p : γ1, γ2)∑N

l=1 max {0, p̄R1
il − πTil

ζil}

)
︸ ︷︷ ︸

≥0

+Bi(π, p : γ1, γ2)
(
p̄R1
ij − πTil

ζil
)+ ∑N

l=1 ζil1
(
p̄R1
il > πTil

ζil
)(∑N

l=1 max {0, p̄R1
il − πTil

ζil}
)2 + aR1

ij (π)
(
γ1i Sik

)
.

The first term is positive from the inequality (8.6), with the second and last terms only
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comprising positive terms. Therefore, the function ΦR1
2,(ij) is order-preserving in π. Hence,

ΦR1 is an order-preserving function.

We present the existence of and convergence to the greatest solution, in the first round

of clearing under Theorem 8.E.2. The proof follows in the same way as in Veraart and

Aldasoro (2022), where we additionally account for the bank’s external illiquid asset

holdings.

Theorem 8.E.2 (Existence of the greatest fixed point in the first round of clearing). For

ΦR1 : [0, 1] ×
[
0, p̄R1

]
→ [0, 1] ×

[
0, p̄R1

]
is the function for the first round of clearing. If

Ω (π, p) is non-increasing in (π, p), then the following holds:

– The set of fixed points ΦR1 is a complete lattice, with a least and greatest fixed point.

– For (π0, p0) = (1, p̄) and under the recursive relation κ ∈ N0, where(
πκ+1, pκ+1

)
= ΦR1 (πκ, pκ)

it holds that

1. (πκ, pκ) is a monotonically decreasing sequence for κ ∈ N0.

2. The limit limκ→∞ (πκ, pκ) exists and admits the greatest solution of the function

ΦR1.

Proof of Theorem 8.E.2. 1. Firstly, the mapping ΦR1 is a complete lattice for [0, 1] ×
[0, p̄R1]. From the definition, the function is a mapping from [0, 1] ×

[
0, p̄R1

]
→

[0, 1] ×
[
0, p̄R1

]
and from Lemma 8.E.1, the function is order-preserving in both

components. By Tarski’s fixed point theorem Tarski (1955), the set of fixed points

is a complete lattice, for which there exists a least and greatest fixed point.

2. We show (πκ, pκ) is a monotonically decreasing sequence. We use induction to show

the following statement. For κ = 0, from the definitions of each component in the

mapping then

– π1
k = ΦR1

1,(k) (π0, p0) = exp (−lk∆k (π0, p0)) ≤ 1 = π0
k ∀k ∈ S.

– p1ij = ΦR1
2,(ij) (π0, p0) ≤ p̄R1

ij = p0ij ∀i, j ∈ N .

We assume for the induction step, (πκ, pκ) ≤ (πκ+1, pκ+1) is true for κ ∈ N0. Then,

(
πκ+1, pκ+1

)
= ΦR1 (πκ, pκ) ≤ ΦR1

(
πκ+1, pκ+1

)
=
(
πκ+2, pκ+2

)
.

This follows from the induction step and the order-preservation of the mapping ΦR1.

As the clearing function is bounded (0, 0) below in each component (0 represents
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a K + 1 dimensional vector and 0 a N ×N matrix, with zero in all entries), there

exists a monotone limit (π̂, p̂) = limκ→∞ (πκ, pκ), which is also a fixed point,

ΦR1 (π̂, p̂) = ΦR1
(

lim
κ→∞

(πκ, pκ)
)

= lim
κ→∞

ΦR1 (πκ, pκ) (*)

= lim
κ→∞

(
πκ+1, pκ+1

)
= (π̂, p̂) .

The (*) comes from the fact the function is continuous from above. We show the

greatest fixed point is the monotone limit of ΦR1. We use a proof by induction to

show that (πκ, pκ) ≥ (π∗, p∗) ∀κ ∈ N0. For κ = 0,

(
π0, p0

)
=
(
1, p̄R1

)
≥ (π∗, p∗) .

For the induction step, where we assume (πκ, pκ) ≥ (π∗, p∗) to be true, then

(
πκ+1, pκ+1

)
= ΦR1 (πκ, pκ) ≥ ΦR1 (π∗, p∗) = (π∗, p∗) .

We use the fact that the mapping is order-preserving as in Lemma 8.E.1 and the

properties of the fixed point. Taking the limit of the sequence, then

(π̂, p̂) = lim
κ→∞

(πκ, pκ) ≥ (π∗, p∗) .

As (π̂, p̂) = ΦR1 (π̂, p̂), then (π̂, p̂) = (π∗, p∗).

The iterative method in which the greatest fixed point is computed economically reflects

that banks fulfil their obligations to other banks when possible.

8.F Chapter 5: Valuation framework: Existence of

and convergence to the greatest solution

We adapt Theorems 3.1 and 3.2 in Barucca et al. (2020) to banks prior to ring-fencing

and to nRFBs.

Theorem 8.F.1 (Existence of and convergence to the greatest solution). If all valuation

functions are feasible, the set of equations (5.11a) and (5.11b) admit the greatest solutions
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E+ and EnRF,+. Moreover, the sequences {Eκ} and {EnRF,κ}, defined, for all i, as follows:

E0
i = Ae

i +
N∑
j=1

Aij − Le
i −

N∑
j=1

Lij

EnRF,0
i = (1 − ψA

i )Ae
i +

N∑
j=1

Aij − (1 − ψL
i )Le

i −
N∑
j=1

Lij ,

and for κ ≥ 1:

Eκ+1
i = Ae

i +
N∑
j=1

AijV(Eκ
j |Cj) − Le

i −
N∑
j=1

Lij

EnRF,κ+1
i = (1 − ψA

i )Ae
i +

N∑
j=1

AijV(EnRF,κ
j |CnRF

j ) − (1 − ψL
i )Le

i −
N∑
j=1

Lij ,

are monotonically non-increasing and convergent to the greatest solutions:

lim
κ→∞

Eκ = E+

lim
κ→∞

EnRF,κ = EnRF,+ .

One consequence of Theorem 8.F.1 is that we can interpret the sequences {Eκ} and

{EnRF,κ} as incremental adjustments to equity valuations. In the beginning, equities are

naive, in the sense that they incorporate a naive valuation of interbank assets, which are

taken at face value. In the first iteration, {E1} and {EnRF,1} incorporate the valuation

of interbank assets only of their direct counterparties. In the second iteration, {E2} and

{EnRF,2} incorporate the valuation of interbank assets of their direct counterparties and of

the direct counterparties of their counterparties, and so on, until convergence. Since the

{Eκ} and {EnRF,κ} are non-increasing, all incremental adjustments to equity valuations

are downwards, i.e. E+ ≤ E0 and EnRF,+ ≤ EnRF,0.

8.G Proofs

8.G.1 Chapter 2 proofs

Proof of Proposition 2.3.1. 1.-3. From the definition of the systemicness of bank n ∈ N
in (2.4), it is clear that SYS(n) = γn1

αn1∑N
ν=1 eν1

bn1(−Rn1) depends on the network

matrix X only via the two factors γn1 and Rn1, since all other factors appearing in

the formula are aggregate information that is available from the balance sheets of

the banks.

This implies that the aggregate vulnerability, as the sum of all individual systemic-
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nesses, depends on the network matrix X only via γn1 and Rn1, where n ∈ N . We

also see directly from the definition, that the direct vulnerability of a bank n ∈ N
depends on the network matrix X only via the factor Rn1.

4. To see that γn1 depends on the individual entries of X only via its nth row, we

rewrite γn1 given in (2.5) as follows

γn1 =
K∑
k=1

(
N∑
p=1

αp1mpk

)
lkmnk =

K∑
k=1

(
N∑
p=1

αp1
Xpk

αp1

)
lk
Xnk

αn1

=
K∑
k=1

cklk
Xnk

αn1

. (8.8)

Hence, we see that γn1 only depends on Xn1, . . . , XnK . To make the dependence of

γn1 on X explicit, we will sometimes write γn1(X).

First, if one assumes a constant price impact, then formula (8.8) reduces to

γn1 =
l

αn1

K∑
k=1

ckXnk. (8.9)

Indeed, γn1 depends on the individual entries in the nth row of the matrix X since

it is proportional to a capitalisation-weighted aggregate of the positions of node

n in the K assets. If additionally their market capitalisation was identical, i.e., if

c1 = . . . cK = c (which would be unlikely in practice), then (8.9) would simplify

even further to γn1 = l
αn1

c
∑K

k=1Xnk = lc, which then no longer depends on the

individual entries of X.

Second, if one assumes a capitalisation-dependent price impact, then cklk = ρ for

all k ∈ S and hence γn1 = ρ
αn1

∑K
k=1Xnk = ρ ∀n ∈ N , which does not depend on

X.

5. We find that

Rn1 =
K∑
k=1

mnkfk =
K∑
k=1

Xnk

αn1

fk =
1

αn1

K∑
k=1

Xnkfk, (8.10)

which again only depends on the matrix X via its nth row. To make the dependence

of Rn1 on X explicit, we will sometimes write Rn1(X).

First, if we consider an all asset shock with f1 = . . . fK = f , expression (8.10)

simplifies to Rn1 = f
αn1

∑K
k=1Xnk = f and hence does not depend on the matrix X.

Second, we consider a shock that only affects K̃ < K assets with indices in IK̃ .
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Then,

Rn1 =
K∑
k=1

mnkfk =
K∑
k=1

Xnk

αn1

fk =
1

αn1

K∑
k=1

Xnkfk =
1

αn1

∑
k∈IK̃

Xnkfk.

Hence, Rn1 only depends on the columns with indices in IK̃ within the nth row,

but not the full nth row of X.

Since DV(n) depends on X only via Rn1 the results for DV(n) follow directly from

the results on Rn1.

Proof of Corollary 2.3.2. 1. Under an all asset shock and a capitalisation-dependent

price impact, we know from the proof of Proposition 2.3.1 that Rn1 = f and γn1 = ρ.

Hence,

SYS(n) = −fρ αn1∑N
ν=1 eν1

bn1,

AV =
N∑

n=1

SYS(n) =
−fρ∑N
ν=1 eν1

N∑
n=1

αn1bn1,

DV(n) =
−fαn1

en1
,

which do not depend on the individual entries of X.

2. This statement follows directly from Proposition 2.3.1 and the analytical formulae

of γn1 and Rn1 provided in its proof.

8.G.2 Chapter 4 proofs

To show Theorem 4.3.1 and Theorem 4.3.2, we first state Lemma 8.G.1 which is Lemma

2.1 in Ghamami et al. (2022). This lemma still holds in our setting where banks can hold

multiple external asset holdings. We then introduce Proposition 8.G.2, where Proposition

8.G.2 is an extension of Proposition 3.2 in Ghamami et al. (2022), where banks can hold

multiple external asset holdings.

Lemma 8.G.1. If aR2
ij ̸= 0, then aR2

ij = aR1
ij ∀i, j ∈ N .

Proposition 8.G.2. Under the fixed point values in the first round of clearing
(
π∗,R1, p∗,R1

)
.

For the bank payments and market value of assets under the second round of clearing(
πR2, pR2

)
, then:

p∗,R1
ij + ΦR2

2,(ij)

(
πR2, pR2

)
= min

{
p̄R1
ij , ζijπ

∗,R1
Tij

+ aR1
ij

(
π∗,R1

)
Ci

(
πR2, pR2

)}
, (8.11)
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where ∀i ∈ N :

Ci (π, p)

=γ1i

(
bi +

K∑
k=1

Sikπ
∗,R1
k

)
+ c∗,R1

i +
K∑
k=1

rik
(
π∗,R1, p∗,R1

)
πk + γ2i

N∑
j=1

p∗,R1
ji +

N∑
j=1

pji.

Proof of Proposition 8.G.2. The proof follows in a similar way as in Ghamami et al.

(2022), where we account for the bank’s illiquid asset holdings and bankruptcy costs. We

show the total payment expression for all bank payments and the market price of assets,

in the second round of clearing. We consider the different states of default for the bank,

and how this corresponds to the total clearing payment:

1. If i ∈ N\DR1
(
π∗,R1, p∗,R1

)
, then the bank can meet its obligations in full p∗,R1 =

p̄R1. Hence

p̄R2
ij = 0 =⇒ i ∈ N\DR2

(
πR2, pR2

)
.

2. If i ∈ DR1
(
π∗,R1, p∗,R1

)
, the fixed point of the first round is defined as follows

p∗,R1
ij = min

{
p̄R1
ij , π

∗,R1
Tij

ζij + aR1
ij

(
π∗,R1

)(
γ1i

(
bi +

K∑
k=1

Sikπ
∗,R1
k

)
+ γ2i

N∑
j=1

p∗,R1
ji

)}
.

We consider two cases of the fixed point, for which i ∈ DR1
(
π∗,R1, p∗,R1

)
.

– If p∗,R1 = p̄R1, then the bank is able to meet its obligations. Hence

p̄R2
ij = 0 =⇒ i ∈ N\DR2

(
πR2, pR2

)
.

– If p∗,R1 < p̄R1, then

p̄R2
ij = p̄R1

ij − p∗,R1
ij

and

ΦR2
2,(ij)

(
πR2, pR2

)
= min

{
p̄R2
ij , a

R2
ij

(
c∗,R1
i +

K∑
k=1

rik
(
π∗,R1, p∗,R1

)
πR2
k +

N∑
j=1

pR2
ji

)}
.

We consider two cases of the clearing payment in the second round. In the case

pR2 = p̄R2, then

p∗,R1
ij + ΦR2

2,(ij)

(
πR2, pR2

)
= p∗,R1

ij +
(
p̄R1
ij − p∗,R1

ij

)
= p̄R1

ij ,
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and i ∈ N\DR2
(
πR2, pR2

)
. For the case pR2 < p̄R2, then

p∗,R1
ij + ΦR2

2,(ij)

(
πR2, pR2

)
=π∗,R1

Tij
ζij + aR1

ij

(
π∗,R1

)(
γ1i

(
bi +

K∑
k=1

Sikπ
∗,R1
k

)
+ γ2i

N∑
j=1

p∗,R1
ji

)

+aR2
ij

(
c∗,R1
i +

K∑
k=1

rik
(
π∗,R1, p∗,R1

)
πR2
k +

N∑
j=1

pR2
ji

)
(*)

=π∗,R1
Tij

ζij + aR1
ij

(
π∗,R1

)
Ci

(
πR2, pR2

)
,

where

Ci (π, p)

=γ1i

(
bi +

K∑
k=1

Sikπ
∗,R1
k

)
+ c∗,R1

i +
K∑
k=1

rik
(
π∗,R1, p∗,R1

)
πk + γ2i

N∑
j=1

p∗,R1
ji +

N∑
j=1

pji.

The change in the relative proportion obligations matrix (*) comes from Lemma

8.G.1, for which the bank is in default in the first round of clearing. As pR2 < p̄R2

then p∗,R1 + pR2 < p̄R1 and hence i ∈ DR2
(
πR2, pR2

)
.

In all cases, the value of the total payments after both rounds takes the following values:

p∗,R1
ij + ΦR2

2,(ij)

(
πR2, pR2

)
=

p̄R1
ij if i ∈ N\DR2(πR2, pR2),

π∗,R1
Tij

ζij + aR1
ij

(
π∗,R1

)
Ci

(
πR2, pR2

)
if i ∈ DR2(πR2, pR2).

The only case for which i ∈ DR2(πR2, pR2) is if

π∗,R1
Tij

ζij + aR1
ij

(
π∗,R1

)
Ci

(
πR2, pR2

)
< p̄R1

ij .

The conditional statement is equivalent to the statement in the proposition.

Proof of Theorem 4.3.1. We define the clearing function Φν,R1 under the different selling
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strategies ν = {A,B} as follows:

ΦR1,ν
1,(k) (π, p) = exp (−lνk∆ν

k (π, p)) ,

ΦR1,ν
2,(ij) (π, p)

=



min

{
p̄R1
ij , πTij

ζij

+aR1
ij (π)

(
γ1,νi

(
bνi +

∑K
k=1 Sikπk

)
+ γ2,νi

∑N
j=1 pji

)}
if i ∈ DR1,ν(π, p),

p̄R1
ij if i ∈ N\DR1,ν(π, p).

where

DR1,ν(π, p) = {i ∈ N|eR1,ν
i (π, p) < 0}

and

eR1,ν
i (π, p) = bνi +

K∑
k=1

Sikπk +
N∑
j=1

pji − p̄R1
i ∀i ∈ N .

By the previous Theorem 4.3.1, the greatest solution can be considered under a recursive

relation of the fixed point, for κ ∈ N0:(
πκ+1,R1,ν , pκ+1,R1,ν

)
= ΦR1,ν

(
πκ,R1,ν , pκ,R1,ν

)
,

for which there exists the greatest fixed point limκ→∞
(
πκ,R1,ν , pκ,R1,ν

)
=
(
π∗,R1,ν , p∗,R1,ν

)
.

We show the following statement for the first round of clearing by proof by induction.

For κ = 0, then

π0,R1,A
k = 1 = π0,R1,B

k ∀k ∈ S

and

p0,R1,A
ij = p̄R1

ij = p0,R1,B
ij .

For the induction step, we assume πκ,R1,B ≥ πκ,R1,A and pκ,R1,B ≥ pκ,R1,B. We define the

total assets sold under each system as:

∆ν
k (π, p) =

K∑
k=1

min {Sik,Ω
ν
ik (π, p)} +

N∑
i=1

N∑
j=1

Υν
ij (π, p)

where

Ων
ik (π, p) =

Sik∑K
k=1 Sikπk

(
p̄R1
i − bνi −

N∑
j=1

pji

)+
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and

Υν
ij (π, p) =

min
{
ζij,

p̄R1
ij

πTij

}
if i ∈ DR1,ν(π, p),

0 if i ∈ N\DR1,ν(π, p),

for πk > 0 ∀k ∈ S. In the other case in which πk = 0:

Υν
ij (π, p) =

ζij if i ∈ DR1,ν(π, p) and p̄R1
ij > 0,

0 if i ∈ N\DR1,ν(π, p).

From the non-increasing property of collateral sold, as the ordering preserves the ordering

on bank defaults, where

DR1,B (π, p) ⊆ DR1,A (π, p)

then using the non-increasing property of collateral sold in both (π, p):

ΥA
ij

(
πκ,R1,A, pκ,R1,A

)
≥ ΥB

ij

(
πκ,R1,A, pκ,R1,A

)
≥ ΥB

ij

(
πκ,R1,B, pκ,R1,B

)
.

As the proportion selling function is non-increasing in both the liquidity buffer and (π, p):

ΩA
ik

(
πκ,R1,A, pκ,R1,A

)
≥ ΩB

ik

(
πκ,R1,A, pκ,R1,A

)
≥ ΩB

ik

(
πκ,R1,B, pκ,R1,B

)
and

∆A
k

(
πκ,R1,A, pκ,R1,A

)
=

K∑
k=1

min
{
Sik,Ω

A
ik

(
πκ,R1,A, pκ,R1,A

)}
+

N∑
i=1

N∑
j=1

ΥA
ij

(
πκ,R1,A, pκ,R1,A

)
≥

K∑
k=1

min
{
Sik,Ω

B
ik

(
πκ,R1,B, pκ,R1,B

)}
+

N∑
i=1

N∑
j=1

ΥB
ij

(
πκ,R1,B, pκ,R1,B

)
=∆B

k

(
πκ,R1,B, pκ,R1,B

)
.

Hence,

πκ+1,R1,A
k = exp

(
−lAk ∆A

k

(
πκ,R1,A, pκ,R1,A

))
≤ exp

(
−lAk ∆B

k

(
πκ,R1,B, pκ,R1,B

))
≤ exp

(
−lBk ∆B

k

(
πκ,R1,B, pκ,R1,B

))
= πκ+1,R1,B

k ∀k ∈ S.

We secondly show the induction step for the first round clearing function ΦR1,ν
2 . We

assume pκ,R1,A ≤ pκ,R1,B and πκ,R1,A ≤ πκ,R1,B hold. Establishing the monotonic rela-

tion of the second component in the first round clearing function follows similarly as

in Lemma 8.E.1. As the ordering is preserved from the assumptions on the ordering of

(lν , bν , γ1,ν , γ2,ν), then:

pκ+1,R1,B
ij ≥ pκ+1,R1,A

ij .
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Hence, taking the limit of both points:

π∗,1,A = lim
κ→∞

πκ,1,A ≤ lim
κ→∞

πκ,1,B = π∗,1,B

and

p∗,1,A = lim
κ→∞

pκ,1,A ≤ lim
κ→∞

pκ,1,B = p∗,1,B.

We introduce Lemma 8.G.3 which is needed to show Theorem 4.3.2.

Lemma 8.G.3. For i ∈ DR1
(
π∗,R1, p∗,R1

)
, if the collateral assets and corresponding

obligations for all banks are such that

p̄R1
ij ≥ ζij ∀i, j ∈ N

then

N∑
j=1

Υij

(
π∗,R1, p∗,R1

)
1 (Tij = k) + Γik (π, p) =

N∑
j=1

ζij1 (Tij = k) ∀i ∈ N , ∀k ∈ S.

Proof. As the bank is in default in the first round and p̄R1
ij ≥ ζij ≥ π∗,R1

Tij
ζij ∀i, j ∈ N :

Υij

(
π∗,R1, p∗,R1

)
= ζij.

For the remaining collateral, as the bank is in default in the first round:

rik
(
π∗,R1, p∗,R1

)
=

N∑
j=1

(
ζij − Υij

(
π∗,R1, p∗,R1

))
1 (Tij = k) = 0.

From the definition of the remaining collateral in the second round clearing function, this

implies Γik(π, p) = 0.

Proof of Theorem 4.3.2. From Theorem 4.3.1, for an ordering of different parameterisa-

tions (lν , bν , γ1,ν , γ2,ν) then

π∗,R1,A ≤ π∗,R1,B

and

p∗,R1,A ≤ p∗,R1,B.

From the combined payment obligations in Proposition 8.G.2, and assuming the absence

of interbank bankruptcy costs γ2,Ai = γ2,Bi = 1 ∀i ∈ N then

p∗,R1,ν
ij + ΦR2,ν

2,(ij)(π, p) = min
{
p̄R1
ij , π

∗,R1,ν
Tij

ζij + aR1
ij

(
π∗,R1,ν

)
Cν

i (π, p)
}

(8.12)
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where

Cν
i (π, p)

=γ1,νi

(
bνi +

K∑
k=1

Sikπ
∗,R1,ν
k

)
+ c∗,R1,ν

i +
K∑
k=1

rνik
(
π∗,R1,ν , p∗,R1,ν

)
πk +

N∑
j=1

(
p∗,R1,ν
ji + pji

)
,

and

c∗,R1,ν
i = rνi(K+1)

(
π∗,R1,ν , p∗,R1,ν

)
and

rνik
(
π∗,R1,ν , p∗,R1,ν

)
=


∑N

j=1

(
ζij − Υν

ij

(
π∗,R1,ν , p∗,R1,ν

))
1 (Tij = k) if i ∈ DR1,ν(π∗,R1,ν , p∗,R1,ν),∑

j∈DR1,ν(π∗,R1,ν ,p∗,R1,ν) ζij1 (Tij = k) if i ∈ N\DR1,ν(π∗,R1,ν , p∗,R1,ν).

The total collateral assets sold in R2 for different systems ν = {A,B} is denoted as

Γν
k(π, p) =

N∑
i=1

Γν
ik(π, p)

where

Γν
ik (π, p)

= min

 rνik
(
π∗,R1,ν , p∗,R1,ν

)∑K
k=1 r

ν
ik (π∗,R1,ν , p∗,R1,ν)πk

(
N∑
j=1

p̄R2,ν
ij − c∗,R1,ν

i −
N∑
j=1

pji

)+

, rνik
(
π∗,R1,ν , p∗,R1,ν

) .

We consider the different cases for which collateral assets are sold as follows:

– If i ∈ DR1,ν
(
π∗,R1,ν , p∗,R1,ν

)
, then by assumption on the collateral posted

rνik
(
π∗,R1, p∗,R1

)
= 0 and Γν

ik (π, p) = 0.

– If i ∈ N\DR1,ν
(
π∗,R1,ν , p∗,R1,ν

)
, then the bank has no outstanding obligations

p̄R2,ν
ij = p̄R1

ij − p∗,R1,ν
ij = 0 ∀j ∈ N . Hence, the bank has no outstanding obli-

gations and Γν
ik (π, p) = 0.

For all banks, there is no change in the reallocated collateral sold in the second round,

under the assumptions on collateral posted. Then,

π∗,R2,A
k = π∗,R1,A

k ≤ π∗,R1,B
k = π∗,R2,B

k ∀k ∈ S.
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This leads to a simplification of the payment in the clearing process:

p∗,R1,ν
ij + ΦR2,ν

2,(ij)(π, p)

= min

{
p̄R1
ij , ζijπ

∗,R1,ν
Tij

+ aR1,ν
ij

(
π∗,R1,ν

)(
γ1,νi

(
bνi +

K∑
k=1

Sikπ
∗,R1,ν
k

)
+

N∑
j=1

(
p∗,R1,ν
ji + pji

))}
.

Under the ordering of the given parameters, the ordering at each iteration can be shown

using proof by induction, similar to Lemma 8.E.1.

The limit of the inductive points exists from Theorem 8.E.2, hence showing the inequality

for the greatest fixed point.

Proof of Proposition 4.3.3. We show the ordering on the fixed point on outstanding pay-

ments using proof by induction. We consider the second round clearing function. We

define the clearing function for ν ∈ {A,B} as follows:

ΦR2,ν
1,(k) (π, p) = π∗,R1,ν

k exp(−lνkΓν
k (π, p))

ΦR2,ν
2,(ij) (π, p) = min

{
p̄R2,ν
ij , aR2,ν

ij

(
c∗,R1,ν
i +

K∑
k=1

rνik
(
π∗,R1,ν , p∗,R1,ν

)
πk +

N∑
j=1

pji

)}

where

aR2,ν
ij =

p̄R2,ν
ij∑N

l=1 p̄
R2,ν
il

.

As in arguments in the proof of Theorem 4.3.2, the assumptions of collateral lead to no

change in market price, between the first and second rounds. Hence,

π∗,R2,A ≤ π∗,R2,B.

For bank payments, if the bank has no outstanding obligations, then p∗,R2,ν = p̄R2,ν and

the inequality holds. If the bank has outstanding obligations in the first round, in the

absence of fire sales in R2 this leads to the simplified clearing function for R2:

ΦR2,ν
2,(ij) (p) = min

{
p̄R2,ν
ij , aR2,ν

ij

N∑
j=1

pji

}
.

We show the ordering of the R2 using proof by induction. For the base case, from the

outstanding obligations and the inequality on R1 fixed point payments under Theorem
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4.3.1, then

p̄R2,A = p̄R1 − p∗,R1,A ≥ p̄R1 − p∗,R1,B = p̄R2,B.

Next, we assume pκ,R2,A ≥ pκ,R2,B. We compare the following cases between the fixed

point outstanding payments in R2, between both financial systems:

– If pκ+1,R2,A
i = p̄R2,A

i , then

pκ+1,R2,A = p̄R2,A ≥ p̄R2,B ≥ pκ+1,R2,B.

– If pκ+1,R2,A < p̄R2,A, we show that pκ+1,R2,B < p̄R2,B. From the inequality on the

outstanding obligations for ν = A, then:

p̄R2,A
ij > aR2,A

ij

N∑
j=1

pκ,R2,A
ji .

Using the definition of the relative outstanding obligations matrix, then

N∑
j=1

pκ,R2,A
ji <

N∑
l=1

p̄R2,A
il . (8.13)

Hence,

aR2,B
ij

N∑
j=1

pκ,R2,B
ji ≤ aR2,B

ij

N∑
j=1

pκ,R2,A
ji

(∗)
< aR2,B

ij

N∑
l=1

p̄R2,A
il = p̄R2,B

ij

(∑N
l=1 p̄

R2,A
il∑N

l=1 p̄
R2,B
il

)
.

The (*) comes from (8.13). As the total relative remaining obligations in the system A

is higher than B, then:

pκ+1,R2,B = min

{
p̄R2,B
ij , aR2,B

ij

N∑
j=1

pκ,R2,B
ji

}
< p̄R2,B

ij min

{
1,

∑N
l=1 p̄

R2,A
il∑N

l=1 p̄
R2,B
il

}
= p̄R2,B

ij .

For the case in which pκ+1,R2,A < p̄R2,A, we show that the clearing function is non-

decreasing in the second round.

For the second round component of interbank assets, the function is non-decreasing. As

the relative outstanding obligations matrix relies only on R1, we show that the function

is non-increasing in p∗,R1. We define the function J : [0, p̄R1] → [0, 1] as follows:

J(p) =
p̄R1
ij − pij∑N

l=1 (p̄R1
il − pil)

.
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Then, taking the derivative of the function:

∂J

∂p
=

(
p̄R1
ij − pij

)
−
∑N

l=1

(
p̄R1
il − pil

)(∑N
l=1 (p̄R1

il − pil)
)2 .

As the derivative is negative, then the function is non-increasing in the R1 fixed point

payment. Hence,

pκ+1,R2,A = aR2,A
ij

N∑
j=1

pκ,R2,A
ji ≥ aR2,B

ij

N∑
j=1

pκ,R2,A
ji ≥ aR2,B

ij

N∑
j=1

pκ,R2,B
ji = pκ+1,R2,B

and function is ordered under the different systems. Taking the limit of the inductive

components then

p∗,R2,A = lim
κ→∞

pκ,R2,A ≥ lim
κ→∞

pκ,R2,B = p∗,R2,B.

Proof of Theorem 4.3.4. From the fixed point relation in Theorem 4.3.1, where

e∗,R1,ν
i = eR1,ν

i

(
π∗,R1,ν , p∗,R1,ν

)
ν ∈ {A,B} and ∀i ∈ N ,

then

e∗,R1,A
i = bAi +

K∑
k=1

Sikπ
∗,R1,A
k +

N∑
j=1

p∗,R1,A
ji − p̄R1

i

≤ bBi +
K∑
k=1

Sikπ
∗,R1,B
k +

N∑
j=1

p∗,R1,B
ji − p̄R1

i

= e∗,R1,B
i .

For the total number of defaults in the first round:

ΛR1,A =
N∑
i=1

1
(
e∗,R1,A
i < 0

)
≥

N∑
i=1

1
(
e∗,R1,B
i < 0

)
= ΛR1,B.

For the relative obligations in the first round obligations measure, under the assumptions

of collateral posted in Theorem 4.3.1 and Proposition 4.3.3, then:

PA =

∑N
j=1 p

∗,R1,A
ij∑N

j=1 p
∗,R1,A
ij +

∑N
j=1 p

∗,R2,A
ij

=
1

1 +
∑N

j=1 p
∗,R2,A
ij∑N

j=1 p
∗,R1,A
ij

≤ 1

1 +
∑N

j=1 p
∗,R2,B
ij∑N

j=1 p
∗,R1,B
ij

= PB.

For the relative shortfall of banks and relative total shortfall, then under the assumptions
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of collateral posted and interbank bankruptcy costs in Theorem 4.3.2,

hAi =

∑N
j=1 max

{
p̄R1
ij − p∗,R1,A

ij − p∗,R2,A
ij , 0

}
∑N

i=1

∑N
j=1 p̄

R1
ij

≥

∑N
j=1 max

{
p̄R1
ij − p∗,R1,B

ij − p∗,R2,B
ij , 0

}
∑N

i=1

∑N
j=1 p̄

R1
ij

= hBi

and

HA =
N∑
i=1

hAi ≥
N∑
i=1

hBi = HB.

For the number of banks with outstanding obligations in R2, then for the R2 equity

e∗,R2,ν
i =eR2,ν

i

(
π∗,R2,ν , p∗,R2,ν

)
=c∗,R1,ν

i +
K∑
k=1

rνik
(
π∗,R1,ν , p∗,R1,ν

)
π∗,R2,ν
k +

N∑
j=1

p∗,R2,ν
ji − p̄R2,ν

i

for ν = {A,B}, we show that if i ∈ DR2
(
π∗,R2,A, p∗,R2,A

)
, then

e∗,R2,A
i ≤ e∗,R2,B

i . (8.14)

Using the inequality from Theorem 4.3.2, then

p∗,R2,B
ij + p∗,R1,B

ij ≥ p∗,R2,A
ij + p∗,R1,A

ij .

From the definition of the fixed points in R2,

min

{
p̄R2,B
ij , aR2,B

ij

(
c∗,R1,B
i +

K∑
k=1

rBik
(
π∗,R1,B, p∗,R1,B

)
π∗,R2,B
k +

N∑
j=1

p∗,R2,B
ji

)}
+ p∗,R1,B

ij

≥min

{
p̄R2,A
ij , aR2,A

ij

(
c∗,R1,A
i +

K∑
k=1

rAik
(
π∗,R1,A, p∗,R1,A

)
π∗,R2,A
k +

N∑
j=1

p∗,R2,A
ji

)}
+ p∗,R1,A

ij .

As we only consider banks for which i ∈ DR2
(
π∗,R2,A, p∗,R2,A

)
, we take the second com-

ponent of the fixed term on the RHS. For the LHS, we take the second component as an

upper bound of total payments, then:

aR2,B
ij

(
c∗,R1,B
i +

K∑
k=1

rBik
(
π∗,R1,B, p∗,R1,B

)
π∗,R2,B
k +

N∑
j=1

p∗,R2,B
ji

)
+ p∗,R1,B

ij

≥aR2,A
ij

(
c∗,R1,A
i +

K∑
k=1

rAik
(
π∗,R1,A, p∗,R1,A

)
π∗,R2,A
k +

N∑
j=1

p∗,R2,A
ji

)
+ p∗,R1,A

ij .
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Taking the summation over ∀j ∈ N and the definition of the equity at the fixed point,

then

e∗,R2,B
i + p̄R2,B

i + p∗,R1,B
i ≥ e∗,R2,A

i + p̄R2,A
i + p∗,R1,A

i .

From the definition of the outstanding obligations in R2 under both systems, we have the

inequality for the equity as in (8.14). Hence, for the number of banks with outstanding

obligations across two rounds of clearing:

ΛR2,A =
N∑
j=1

1
(
e∗,R2,A
i < 0

)
≥

N∑
j=1

1
(
e∗,R2,B
i < 0

)
= ΛR2,B.

8.G.3 Chapter 5 proofs

Proof of Proposition 5.3.1. We also prove that ψA ≥ ψL is equivalent to the following

two statements:

– The equity of the RFB is bounded from below by:

ψAE ≤ ERF

– The equity of the nRFB bank is bounded from above by:

EnRF ≤ (1 − ψA)E .

Analogous inequalities hold when ψA < ψL.

We have that:

ψAE ≤ ERF ⇐⇒ ψAA− ψAL ≤ ψAA− ψLL

⇐⇒ −ψAL ≤ −ψLL

⇐⇒ ψA ≥ ψL ,

and analogously for EnRF ≤ (1 − ψA)E. Moreover, since (ψA, ψL) is feasible:

ψAE ≤ ERF ⇐⇒ ψA

ERF
≤ 1

E

⇐⇒ ψAA

ERF
≤ A

E

⇐⇒ λRF ≤ λ ,

and analogously for EnRF ≤ (1 − ψA)E ⇐⇒ λ ≤ λnRF.
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Proof of Corollary 5.3.2. The proof follows immediately from Proposition 5.3.1 and from

the fact that the probability of default is a non-increasing function of the leverage.

Proof of Proposition 5.4.1. We also prove that ψA
i

(
Le
i − (Āi − L̄i)

)
≥ ψL

i L
e
i is equivalent

to the following two statements:

– The equity of the RFB is bounded from below by:

ψA
i E

0
i ≤ ERF

i .

– The naive equity of the nRFB bank is bounded from above by:

EnRF,0
i ≤ (1 − ψA

i )E0
i .

Analogous inequalities hold when ψA
i

(
Le
i − (Āi − L̄i)

)
< ψL

i L
e
i .

The proof is analogous to the proof of Proposition 5.3.1. We have that:

ψA
i E

0
i ≤ ERF

i ⇐⇒ ψA
i

(
Ae

i − Le
i + Āi − L̄i

)
≤ ψA

i A
e
i − ψL

i L
e
i

⇐⇒ ψA
i

(
−Le

i + Āi − L̄i

)
≤ −ψL

i L
e
i

⇐⇒ ψA
i

(
Le
i − (Āi − L̄i)

)
≥ ψL

i L
e
i .

Moreover, by using (5.9):

ψA
i E

0
i ≤ ERF

i ⇐⇒ −ψA
i E

0
i ≥ −ERF

i

⇐⇒ E0
i − ψA

i E
0
i ≥ E0

i − ERF
i

⇐⇒ (1 − ψA
i )E0

i ≥ EnRF,0
i .

Since (ψA
i , ψ

L
i ) is feasible:

ψA
i E

0
i ≤ ERF

i ⇐⇒ ψA
i

ERF
i

≤ 1

E0
i

⇐⇒ ψA
i A

e
i

ERF
i

≤ Ae
i

E0
i

⇐⇒ λRF
i ≤ B0

i ,

and analogously for EnRF,0
i ≤ (1 − ψA

i )E0
i ⇐⇒ B0

i ≤ BnRF,0
i .

Proof of Corollary 5.4.2. This is a straightforward consequence of Proposition 5.4.1.

Proof of Corollary 5.4.5. From Proposition 5.4.1 and from the fact that the greatest so-

lution is smaller than or equal to the naive equity (E∗ ≤ E0) it follows that:

ψA
i E

∗
i ≤ ERF

i .
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Therefore, we immediately have also that: λRF
i ≤ B∗

i . The result on probabilities of de-

fault comes from the fact that simple ex-ante valuation functions are non-decreasing with

external leverage (see Definition 5.4.4) and therefore the probability of default computed

as in (5.15) are non-increasing with external leverage.

Proof of Proposition 5.4.6. Under the hypotheses, we also prove that:

ERF
i ≤ ψA

i E
∗
i .

We have that:

ψA
i

(
Le
i + L̄i

)
≤ ψL

i L
e
i ⇐⇒ −ψA

i

(
Le
i + L̄i

)
≥ −ψL

i L
e
i

⇐⇒ ψA
i

(
Ae

i − Le
i − L̄i

)
≥ ψA

i A
e
i − ψL

i L
e
i

⇐⇒ ψA
i

(
Ae

i − Le
i − L̄i

)
≥ ERF

i .

At the same time:

E∗
i = Ae

i +
N∑
j=1

AijV
(
E∗

j |Cj
)
− Le

i − L̄i =⇒ E∗
i ≥ Ae

i − Le
i − L̄i

⇐⇒ ψA
i E

∗
i ≥ ψA

i

(
Ae

i − Le
i − L̄i

)
,

therefore, if ψA
i

(
Le
i + L̄i

)
≤ ψL

i L
e
i :

ψA
i E

∗
i ≥ ψA

i

(
Ae

i − Le
i − L̄i

)
≥ ERF

i .

If E∗
i > 0 and since (ψA

i , ψ
L
i ) is feasible we have:

ψA
i E

∗
i ≥ ERF

i ⇐⇒ ψA
i

ERF
i

≥ 1

E∗
i

⇐⇒ ψA
i A

e
i

ERF
i

≥ Ae
i

E∗
i

⇐⇒ λRF
i ≥ B∗

i .

The result on probabilities of default comes from the fact that simple ex-ante valuation

functions are non-decreasing with external leverage (see Definition 5.4.4) and therefore the

probability of default computed as in (5.15) are non-increasing with external leverage.

Proof of Proposition 5.4.7. To prove that:

EnRF,∗
i + ERF

i = E∗
i , (8.15)
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it is sufficient to prove that:∑
j∈N (i)

Aij

[
V(EnRF,∗

j |CnRF
j ) − V(E∗

j |Cj)
]

= 0 , (8.16)

where we denote with N (i) the neighbours of i.

Let us prove that:

EnRF,κ
p = Eκ

p ∀p ∈ OA(i) ,∀κ . (8.17)

We proceed by induction. Eq. (8.17) holds for κ = 0 because:

EnRF,0 + ERF = E0

and ERF
p = 0, for all ∀p ∈ OA(i). Let us now assume that (8.17) holds for κ > 0, proving

that holds (8.17) for κ+ 1 is equivalent to proving that:∑
s∈N (p)

Aps

[
V(EnRF,κ

s |CnRF
s ) − V(Eκ

s |Cs)
]

= 0 . (8.18)

Our induction hypothesis holds for all nodes in the asset risk orbit of i, and therefore

also for all the nodes in the asset risk orbit of one of the nodes in the asset risk orbit of i:

EnRF,κ
s = Eκ

s , for all s ∈ N (p), for all p ∈ OA(i). Moreover, since all banks in the asset

risk orbit of i do not ring-fence, then Cs = CnRF
s , for all s ∈ N (p), for all p ∈ OA(i). As

a consequence, (8.18) holds and therefore also (8.17). By plugging (8.17) into (8.16) and

since Cj = CnRF
j also for all j ∈ N (i), we have that (8.16), and therefore (8.15) holds.

The following result relates valuation functions for nRFBs to valuation functions for

banks prior to ring-fencing, and it is needed to prove Theorem 5.4.8.

Lemma 8.G.4. Let V be a simple ex-ante valuation function and let C = {Ae, σ} and

CnRF = {(1 − ψA)Ae, σ}, with Ae > 0, σ > 0, and ψA ∈ [0, 1). Then:

V
(
E|CnRF

)
= V

(
E

1 − ψA

∣∣∣∣C) .

Proof. We have:

V
(
E|CnRF

)
= f

(
E

(1 − ψA)Ae
, σ

)
= V

(
E

1 − ψA

∣∣∣∣C) .
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Proof of Theorem 5.4.8. We start with the first statement. To prove that:

EnRF,∗
i + ERF

i ≤ E∗
i , (8.19)

it is sufficient to prove that a similar inequality holds for every iteration κ:

EnRF,κ
i + ERF

i ≤ Eκ
i , (8.20)

which in turn is equivalent to:∑
j∈N (i)

Aij

[
V(EnRF,κ

j |CnRF
j ) − V(Eκ

j |Cj)
]
≤ 0 , (8.21)

where we denote with N (i) the neighbours of i.

Let us prove that:

EnRF,κ
p + ERF

p ≤ Eκ
p ∀p ∈ OA(i) ,∀κ . (8.22)

We proceed by induction. Eq. (8.22) obviously holds for κ = 0, simply because:

EnRF,0 + ERF = E0 .

Let us now assume that (8.22) holds for κ > 0, proving that holds (8.22) for κ + 1 is

equivalent to proving that:∑
s∈N (p)

Aps

[
V(EnRF,κ

s |CnRF
s ) − V(Eκ

s |Cs)
]
≤ 0 . (8.23)

For all banks s that are neighbours of a node p in the asset risk orbit of i that do not

ring-fence we have that:

V(EnRF,κ
s |CnRF

s ) ≤ V(Eκ
s − ERF

s |CnRF
s )

≤ V (Eκ
s |Cs) ,

where the second line comes from the fact that for banks that do not ring-fence ERF
s = 0

and CnRF
s = Cs. Instead, for all other banks s that are neighbours of a node p in the asset

risk orbit of i we have that:

V(EnRF,κ
s |CnRF

s ) ≤ V(Eκ
s − ERF

s |CnRF
s )

= V
(
Eκ

s − ERF
s

1 − ψA
s

|Cs
)

≤ V (Eκ
s |Cs)

where the first line comes from our induction hypothesis (8.22), which holds for all nodes
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in the asset risk orbit of i, and therefore for all neighbours of all nodes in the asset risk

orbit of i (which are also part of the asset risk orbit of i), and the second step from

Lemma 8.G.4. The third step comes from the fact that for all nodes in the asset risk

orbit of i that do ring-fence, we have that λRF
s ≤ B0

s . In fact:

Eκ
s − ERF

s

1 − ψA
s

≤ Eκ
s ⇐⇒

Eκ
s − ERF

s ≤ Eκ
s − ψA

s E
κ
s ⇐⇒

ERF
s ≥ ψA

s E
κ
s ,

but Proposition 5.4.1 implies that ERF
s ≥ ψA

s E
0
s ≥ ψA

s E
κ
s . We have proved (8.23), and

thus also (8.22). In particular, (8.22) holds for all neighbours of i. Therefore, one can

easily prove (8.21) by reproducing the same steps used to prove (8.23).

The proof proceeds analogously in the second case. In this case, instead of Proposition

5.4.1 one uses Proposition 5.4.6, according to which, for all banks s for which λRF
s ≥ B∗

s ,

we have that ERF
s ≤ ψA

s E
∗
s ≤ ψA

s E
κ
s .

Proof of Corollary 5.4.9. For the first statement, all banks satisfy the conditions of the

first case of Theorem 5.4.8, and therefore EnRF,∗
i +ERF

i ≤ E∗
i , for all i. The proof follows

by summing on both sides of the equation overall i. Analogously for the second case.

Proof of Proposition 5.4.10. Let us start with the first statement. Since λRF
i ≤ B0

i , using

Proposition 5.4.1 and Corollary 5.4.5 we have that: ψA
i E

∗
i ≤ ERF

i . At the same time the

first statement of Theorem 5.4.8 is applicable: EnRF,∗
i + ERF

i ≤ E∗
i . Combining the two

we have:

EnRF,∗
i + ERF

i ≤ E∗
i ≤ ERF

i

ψA
i

.

We note that assuming that ERF
i > 0 implies that some external assets must have been

allocated to the RFB, i.e. ψA
i > 0. Combining the two inequalities above also yields:

ψA
i

(
EnRF,∗

i + ERF
i

)
≤ ERF

i ⇐⇒

−ψA
i

(
EnRF,∗

i + ERF
i

)
≥ −ERF

i ⇐⇒

EnRF,∗
i + ERF

i − ψA
i

(
EnRF,∗

i + ERF
i

)
≥ EnRF,∗

i + ERF
i − ERF

i ⇐⇒

(1 − ψA
i )
(
EnRF,∗

i + ERF
i

)
≥ EnRF,∗

i ⇐⇒

EnRF,∗
i + ERF

i ≥ EnRF,∗
i

1 − ψA
i

.

Putting all inequalities together we have:

EnRF,∗
i

1 − ψA
i

≤ EnRF,∗
i + ERF

i ≤ E∗
i ≤ ERF

i

ψA
i

,
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from which the inequality of external leverages easily follows.

The second statement is analogous when noting that, since λRF
i ≥ B∗

i , by using Proposi-

tion 5.4.6 we have that ψA
i E

∗
i ≥ ERF

i . In this case, we have:

EnRF,∗
i

1 − ψA
i

≥ EnRF,∗
i + ERF

i ≥ E∗
i ≥ ERF

i

ψA
i

.

The results on probabilities of default come from the fact that simple ex-ante valuation

functions are non-decreasing with external leverage (see Definition 5.4.4) and therefore the

probability of default computed as in (5.15) are non-increasing with external leverage.
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