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Abstract

This thesis comprises three chapters on macroeconomics.

Chapter 1 studies over/under-reaction and judgment noise in expectations for-

mation. In forecast surveys of aggregate macroeconomic and financial variables, the

correlation between forecast errors and forecast revisions is positive at the consensus

level, but negative at the individual level. I argue that noise in predictive judgment

can account for the difference. Using forecast survey data, I provide evidence that

judgment noise is large enough to reconcile the difference between the two coeffi-

cients. The structural parameter measuring over-/underreaction mainly points to

underreaction, regardless of whether the model matches correlation coefficients at

the individual or aggregate level.

Chapter 2 looks at adaptive expectations and over-/under-reaction to new infor-

mation. It is shown that the occurrence of over- or under-reaction using adaptive

expectations is contingent on both the weighting parameter used in forecasts and the

persistence of the associated actual variable. Furthermore, compared to the general-

ized diagnostic expectations model, the adaptive expectations framework can better

match the under-reaction to new information for several variables, as measured by

the correlations between forecast errors and forecast revisions. This advantage stems

from the capacity of adaptive expectations to allow varying degrees of stickiness in

expectations.

Chapter 3 explores the effects of an earnings-based borrowing constraint on long-

term productivity growth and employment within an economy characterized by en-

dogenous growth, nominal rigidities, and the presence of a zero lower bound on the

nominal interest rate. My findings indicate a bifurcated impact from the tightening

of the borrowing constraint, contingent upon the position of the nominal interest

rate. Particularly, when the nominal interest rate is at the zero lower bound, the

tightening of borrowing constraints displays a neutral impact on growth but sur-

prisingly leads to a rise in employment.
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Chapter 1

Over/Under-reaction and

Judgment Noise in Expectations

Formation

1.1 Introduction

To understand error in judgment, we must understand both bias and

noise. Sometimes, as we will see, noise is the more important problem.

But in public conversations about human error and in organizations all

over the world, noise is rarely recognized. Bias is the star of the show.

Noise is a bit player, usually offstage.

—Noise: A Flaw in Human Judgment

By Daniel Kahneman, Olivier Sibony and Cass R. Sunstein.

Are people overreacting or underreacting to new information when forming ex-

pectations about aggregate macroeconomic and financial variables? Researchers

have found mixed evidence and have come up with different models featuring ei-

ther overreaction or underreaction. Early models introduce costs in information

acquisition or processing (Sims (2003), Woodford (2003)), leading to underreaction

to new information and sluggish price movements (Mankiw and Reis (2002)). A

series of recent papers (e.g., Bordalo, Gennaioli, Ma, and Shleifer (2020)) develop

the diagnostic expectation theory, a pyschologically founded non-Bayesian model of

belief formation featuring overreaction. They find that overreaction helps explain

long-standing empirical puzzles in macroeconomics and finance, such as the large

volatility of stock prices and bond yields, and return predictability.

This chapter revisits two pieces of crucial but puzzling empirical facts. Start-

ing from Coibion and Gorodnichenko (2015), henceforth CG, the “forecast error

on forecast revision” regression has been the off-the-shelf methodology to identify

over-/underreaction to new information in expectation formation using survey data

of aggregate macroeconomic and financial variables. The forecast error is defined
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as the future realization minus the current forecast. The forecast revision is defined

as the current forecast minus the forecast made in the last period about the same

realization. Under Full Information Rational Expectation (FIRE) hypothesis, cur-

rent information has no predictive power of future forecast errors. The correlation

between forecast errors and forecast revisions should be zero. Positive correlations

mean that upward forecast revisions predict higher realizations relative to current

forecasts. When there is upward revision, the revision is on average not large enough.

Thus, there is underreaction. Similarly, negative correlations mean that upward fore-

cast revisions predict lower realizations relative to current forecasts. Thus, there is

overreaction. Researchers run the regression at the consensus level and individual

forecaster level using several forecast surveys of aggregate macroeconomic and finan-

cial variables.1 The consensus forecast is the average across all individual forecasts.

Mostly, correlations at the consensus level are positive, which is interpreted as un-

derreaction at the aggregate level. Correlations at the individual level are usually

negative, which is regarded as evidence of overreaction at the individual level.2 An-

geletos, Huo, and Sastry (2021), henceforth AHS, and Bordalo, Gennaioli, Ma, and

Shleifer (2020), henceforth BGMS, show that incorporating individual level overre-

action modeling elements (overextrapolation for the former, diagnostic expectation

for the latter) into a noisy information environment can simultaneously match those

two pieces of evidence.

I take a step back and challenge the previous interpretation of the signs of those

correlations. First, I ask the question: do negative regression coefficients at the

individual level necessarily imply overreactions in individual level expectation for-

mation? By formally examining how judgment noise in forecast impacts the correla-

tion coefficients in a stylized model of expectation formation, my answer is no. The

current forecast appears both in forecast errors and in forecast revisions, but with

opposite signs. Due to the existence of idiosyncratic noise in individual forecasts,

it is mechanical that the correlation coefficients at the consensus level are greater

than those at the individual level.

“Judgment noise” is a terminology inherited from the book Noise: A Flaw in

Human Judgment (2021) by Kahneman et al. Judgment noise is the disagreement

among people making judgments using the same information. Making a forecast is

predictive judgment. This noise is further decomposed into individual fixed hetero-

geneity and idiosyncratic random noise.3 Individual fixed heterogeneity is forecaster

specific: some forecasters might always be more optimistic, while others are always

more pessimistic. Idiosyncratic random noise varies over time: it can be due to

forecasters’ unique interpretation of the current economy at that particular time,

1See Coibion and Gorodnichenko (2015), Bordalo, Gennaioli, Ma, and Shleifer (2020), Reis
(2020), Angeletos, Huo, and Sastry (2021), Fuhrer (2018), etc.

2For example, see Reis (2020).
3In Noise: A Flaw in Human Judgment, individual fixed heterogeneity is called level noise and

idiosyncratic random noise is called pattern noise.
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their different forecasting models , or simply their mood, etc.4 The noise part can

be pretty large. There can be many reasons behind such idiosyncratic random noise.

No matter what the reason is, the gap between the correlation coefficients at the

consensus level and the individual level is mechanical.

Before diving into a parsimonious model of expectation formation, I show that

the gap between correlations at the consensus and individual level can be due to

idiosyncratic random noise, using a simple econometric example. The intuition is the

following: since the current forecast appears in both the forecast revisions and the

forecast errors with opposite signs, the stochastic idiosyncratic random noise drives

correlation coefficients at the individual level downward. However, the idiosyncratic

random noise component is averaged out when calculating the consensus forecast,

assuming the number of forecasters is large enough. Thus, the correlation coefficient

at the consensus level is always larger than at the individual level.

To fully understand what those two correlation coefficients reveal about expec-

tation formation, a parsimonious model of expectation formation with the following

features is presented: First, the key target of this chapter, a structural parameter, θ,

measures degree of systematic overreaction or underreaction. The modeling element

is very similar to diagnostic expectation theory (Bordalo, Gennaioli, and Shleifer

(2018), Bordalo, Gennaioli, Porta, and Shleifer (2019), etc.). However, I allow over-

reaction (θ > 0), underreaction (−1 < θ < 0) and neither over- nor underreaction

(θ = 0) during estimation. Second, there is judgment noise across different forecast-

ers. The judgment noise consists of individual fixed heterogeneity and idiosyncratic

random noise. There is no information friction, so two types of judgment noise are

the reason behind forecast dispersion in the model.

Under this framework, analytic expressions for “forecast error on forecast re-

vision” regression coefficients at both consensus and individual levels are derived.

Individual fixed effect controls the individual fixed heterogeneity in the panel regres-

sion. However, idiosyncratic random noise pushes individual correlation coefficients

downward while having no impact on consensus correlation coefficients, as argued

above. The literature has interpreted positive consensus correlation coefficients and

negative individual correlation coefficients as underreaction to new information at

the aggregate level and overreaction at the individual level. According to my the-

ory, however, the discrepancies are simply due to the idiosyncratic random noise. If

the number of forecasters is large, consensus correlation coefficients are not affected

by idiosyncratic random noise. They can be directly used to infer the degree of

over-/underreactions: when agents exhibit overreactions (underreactions), consen-

sus correlation coefficients are negative (positive).

4The idiosyncratic random noise is conceptually different from measurement error. Measure-
ment error is the deviation from the true value that econometricians try to observe. Nevertheless,
noise plays a vital role in forecasters’ beliefs when making a forecast. In the model, idiosyncratic
random noise can be seen as including classic measurement error.
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In professional forecaster surveys, the number of forecasters is limited rather

than very large. As a result, in practice, the idiosyncratic random noise may not

be averaged out when generating the consensus forecast. I show quantitatively that

the negative impact of idiosyncratic random noise on correlation coefficients at the

consensus level is non-trivial in some cases, and my estimation considers this.

In summary, seeing forecast dispersion as judgment noise changes our interpreta-

tion of the two correlation coefficients: First, negative correlation coefficients at the

individual level do not reveal overreactions. Second, positive correlation coefficients

at the consensus level underestimate the degree of underreaction.

Using seven macroeconomic and financial variables of the Survey of Professional

Forecasters from the Federal Reserve Bank of Philadelphia, I identify individual

fixed heterogeneity and idiosyncratic random noise by exploiting their nature: out

of disagreement among forecasters, individual fixed heterogeneity stays constant over

time, and the rest of this disagreement is due to random noise. In the data, individual

fixed effect explains 16% to 24% of variation in disagreement across forecasters. In

other words, idiosyncratic random noise explains 76% to 84% of forecast disagree-

ment. Then I show quantitatively that the estimated magnitude of idiosyncratic

random noise is large enough to reconcile the gap between correlation coefficients at

the consensus and individual level.

Then I turn to the estimation of the critical parameter θ measuring the degree of

over-/underreaction. Much less impacted by idiosyncratic random noise, correlation

coefficients at the consensus level being positive reveals that most variables yield

negative θ. By matching the empirically estimated and model implied correlation

coefficients, I obtain the degree of over-/underreaction: out of seven macroeconomic

and financial variables, five show negative θs. θs for the other two variables are very

close to zero. More importantly, estimation results for θs are similar whether we

match correlation coefficients at the individual level or the consensus level. The re-

sult starkly contrasts the estimation result of the diagnosticity parameter in BGMS,

which obtain mostly positive values. The reason behind this difference is that their

paper identifies this parameter by matching individual-level correlation coefficients

without considering the role of judgment noise.5 Naturally, negative correlation

coefficients would have yielded positive θs. It is worth emphasizing that neat esti-

mation of θs is crucial for the literature. Papers either borrow existing estimation

of θs or use them as priors, to study the implication of over-/underreactions in

macroeconomic and financial models.

I perform various robustness checks and show: different correlation coefficients

across variables are not due to different time coverage for different variables; allowing

for serial correlated idiosyncratic random noise doesn’t affect the results; there are

similar patterns in ECB’s Survey of Professional Forecasters, etc.

5They also use another method: estimating θs by matching variance of forecast errors and
forecast revisions. However, in this method, they restrict that θ ≥ 0.
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The chapter proceeds as follows. First, I illustrate how the idiosyncratic random

noise generates the gap between consensus and individual correlation coefficients

using a general econometric example. Second, a parsimonious model of expecta-

tion formation is described and estimated from the data. The model reconciles

the empirical patterns while yielding negative θs. In the end, further discussion is

presented.

Literature Review

This chapter is related to recent literature about people’s overreaction and un-

derreaction to new information. Specifically, it contributes to the literature that

uses “forecast error on forecast revision” regressions to study over-/underreactions

to new information in survey data. CG utilizes the method for a wide range of

macroeconomic and financial variables in different forecast surveys but only at the

consensus level. BGMS runs the regression at both consensus and individual-level

data. Bordalo, Gennaioli, La Porta, and Shleifer (2019) use the method in long-

term stock earnings growth forecast data. Wang (2021) and D’Arienzo (2020) apply

the methodology to bond market data. Bouchaud, Kruger, Landier, and Thesmar

(2019) apply the methodology to earnings per share forecasts. Fuhrer (2018) uses

this methodology in several surveys covering professional forecasters and households.

Angeletos, Huo, and Sastry (2021) and Reis (2020) point out the general pattern

of regression coefficients being positive at the consensus level and negative at the

individual level. Since an increasing number of papers rely on this methodology, we

must understand what those two correlation coefficients tell us about people’s expec-

tation formation process. First, this chapter challenges the traditional interpretation

of forecast errors/revisions correlation coefficients. Second, I obtain different values

for the critical parameter, θ.

Moreover, this chapter is closely related to the literature discussing the large mag-

nitude of disagreement among forecasters in all kinds of forecast surveys (Mankiw,

Reis, and Wolfers (2003), Giglio, Maggiori, Stroebel, and Utkus (2021), etc.). Many

papers rely on information friction to generate disagreement. In this chapter, I turn

to judgment noise instead of the traditional wisdom of information friction. Nu-

merous experiments have identified large magnitude of judgment noise (Kahneman,

Olivier, and Cass R. (2021)).

Third, this chapter is generally related to the literature about how people’s expec-

tation formation deviates from the Full Information Rational Expectation hypothe-

sis (FIRE). FIRE consists of two parts: full information and rational expectations.

Deviations from the first half, the full information hypothesis, have been explored

by many, including Mankiw, Reis, and Wolfers (2003), Reis (2006a), Reis (2006b),

and Sims (2003). The literature focusing on deviations from rational expectations
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is also huge, with various modeling assumptions that capture people’s cognitive bias

from rationality in expectation formation, notably Barberis, Shleifer, and Vishny

(1998), Daniel, Hirshleifer, and Subrahmanyam (1998), etc. More recent papers in-

clude Adam, Marcet, and Nicolini (2016), Adam, Marcet, and Beutel (2017), Gabaix

(2020), etc. This chapter focuses on over-/underreaction to new information and

noise in forecasts.

1.2 An Econometric Illustration

Before diving into a model of expectation formation, I illustrate why the correlation

coefficients between individual forecast errors and forecast revisions should not be

used as evidence of overreaction to new information at the individual level, using a

simple econometric example. Denote the macroeconomic state variable as wt, e.g.,

inflation. The following two equations are the “forecast errors on forecast revisions”,

henceforth Error-on-revision, regressions:

wt+h − F̄twt+h = βC0 + βC(F̄twt+h − F̄t−1wt+h) + ut,t+h, (1.1)

wt+h −Fi,twt+h = βI0 + βI(Fi,twt+h −Fi,t−1wt+h) + ui,t,t+h. (1.2)

Equation 1.1 is the consensus level regression, and 1.2 is the individual level regres-

sion. The difference is that in equation 1.1, F̄twt+h is the average forecast across all

forecasters, while in equation 1.2, Fi,twt+h is the individual forecast. On the left-

hand side of equations 1.1 and 1.2 are forecast errors at the consensus and individual

level. On the right-hand side of equations 1.1 and 1.2 are the forecast revisions at

the consensus and individual level, respectively. Researchers interpret a positive βC

as underreaction: when there is a positive forecast revision, the subsequent forecast

error tends to be positive, which means that the upward forecast revision is not

large enough compared to the true realization of wt+h. A negative βC is seen as

overreaction: when there is a positive forecast revision, forecast error tends to be

negative, which means that the upward forecast revision is too large compared to the

true realization of wt+h. Similar intuition applies to why βI < 0 and βI > 0 are in-

terpreted as overreaction and underreaction on the individual level separately. Most

of the literature finds: β̂C > 0 and β̂I < 0. To illustrate the role of idiosyncratic

random noise on the estimation of βI , let us assume for now that the idiosyncratic

random noise is an idiosyncratic shock i.i.d. across forecasters and time, denoted by

ηi,t. Consider h = 1 specifically. Assume individual forecast is given by:

Fi,twt+1 = Ētwt+1 + ηi,t, (1.3)
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Fi,t−1wt+1 = Ēt−1wt+1 + ηi,t−1, (1.4)

where ηi,t ∼ N(0, σ2
η) is i.i.d. across forecasters and time.6 We can think of Ētwt+1

and Ēt−1wt+1 as the common component of all forecasters’ forecasts. There have

not been any assumptions imposed on the structure of this common component.

Assume the number of forecasters N is huge. By the law of large numbers, the

consensus forecast is given by

F̄twt+1 =

∑N
i=1Fi,twt+1

N

N→∞−−−→ Ētwt+1,

F̄t−1wt+1 =

∑N
i=1Fi,t−1wt+1

N

N→∞−−−→ Ēt−1wt+1,

By the OLS coefficients formula, the estimation of βC is equal to

βCOLS =
cov(Ētwt+1 − Ēt−1wt+1, wt+1 − Ētwt+1)

var(Ētwt+1 − Ēt−1wt+1)
. (1.5)

At the same time, we can express the estimation of βI as follows:

βIOLS =
cov(Ētwt+1 + ηi,t − Ēi,t−1wt+1 − ηi,t−1, wt+1 − Ētwt+1 − ηi,t)

var(Ētwt+1 + ηi,t − Ēt−1wt+1 − ηi,t−1)

=
cov(Ētwt+1 − Ēt−1wt+1, wt+1 − Ētwt+1)− σ2

η

var(Ētwt+1 − Ēt−1wt+1) + 2σ2
η

.

(1.6)

When the covariance in equation 1.5 is positive, and the variance of idiosyn-

cratic random noise σ2
η is large enough, we have βCOLS > 0 and βIOLS < 0. σ2

η has two

impacts on βIOLS: first, it appears in the numerator and pushes βIOLS downward;

second, it appears in the denominator and attenuates βIOLS towards zero. It can

be verified that, when cov(Ētwt+1 − Ēt−1wt+1, wt+1 − Ētwt+1) > 0, or equivalently,

βCOLS > 0, βIOLS is monotonically decreasing in σ2
η.

7 In other words, σ2
η drives βIOLS

downwards. A negative βIOLS can be purely a result of a large variance of idiosyn-

cratic random noise instead of overreaction to new information on the individual

level. Those results are summarized in lemma 1

Lemma 1 When σ2
η > cov(Ētwt+1 − Ēt−1wt+1, wt+1 − Ētwt+1) > 0, we have

1.

βCOLS > 0 > βIOLS.

6In the extension of the full model, I show that allowing for serially correlated ηi,t does not
affect the results of this chapter quantitatively.

7This is obvious by looking at the first order derivative of βIOLS with respect to σ2
η:

∂βIOLS
∂σ2

η

=
−var(Ētwt+1 − Ēt−1wt+1)− 2cov(Ētwt+1 − Ēt−1wt+1, wt+1 − Ētwt+1)

[var(Ētwt+1 − Ēt−1wt+1) + 2σ2
η]2
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2.
∂βIOLS
∂σ2

η

< 0

Note that the formulation in equation 1.3 and 1.4 is general. It can capture fore-

cast dispersion due to noise in judgment, which is the focus of this chapter. It can

also capture forecast dispersion resulted from dispersed information. Dispersed in-

formation is the reason behind forecast dispersion in many other papers, including

BGMS and AHS. No matter what the reason is behind ηi,t, the fact βCOLS > βIOLS is

mechanical. When σ2
η is large enough, βCOLS and βIOLS can have opposite signs.

1.3 A Parsimonious Model of Expectation Forma-

tion

In this section, I first present a parsimonious model of expectation formation. The

model allows both overreaction to new information and underreaction. It captures

the two types of judgment noise in the spirit of Kahneman et al. (2021). Second I

discuss how the degree of over-/underreaction and two types of judgment noise in

the model can be identified. Third, the regression coefficients of the error-on-revision

regression are derived analytically. We can see in the analytic expressions how the

regression coefficients are determined and how judgment noise might confound our

inference on the degree of over-/underreaction in expectation formation.

1.3.1 Model Setup

For simplicity, assume the state variable, e.g., inflation, follows an AR(1) process.

In the appendix I derive the model under an AR(2) process. The model implication

is the same under an AR(2) process.

wt = ρwt−1 + et, et ∼ N(0, σ2
e). (1.7)

This model of expectation formation consists of three components: one capturing

over/under-reaction, one denoting idiosyncratic noise, and one capturing individual

fixed heterogeneity. Let me first introduce the diagnostic expectation theory, which

the component capturing over/under-reaction in the model will be based on. The

diagnostic expectation theory is a theory of overreaction. However, my model allows

for both overreaction and underreaction. The idea of diagnostic expectation is that,

while forming expectations, people attach higher conditional density to those states

whose probability increases the most upon observing the current state wt. In other

words, people oversample those more representative states in their minds. Represen-

tativeness is measured by the increase in conditional density before and after seeing

the current state. When wt follows AR(1) process, the distorted conditional density
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of a specific state ŵt+1, upon seeing the most recent realization ŵt is given by

hθt (ŵt+1) = h(ŵt+1|wt = ŵt)

[
h(ŵt+1|wt = ŵt)

h(ŵt+1|wt = ρŵt−1)

]θ
1

Z
(1.8)

hθt (∗) is the perceived density function under diagnostic expectation, ht(∗) is the

objective density function. θ is the key structural parameter that measures how

much the expectations formation deviates from rational expectations systematically.

θ is restricted to be positive, consistent with the idea that representative states are

overweighted. Z is the normalization to ensure that the density function integrates

to 1 in the whole domain of wt. Bordalo, Gennaioli, and Shleifer (2018) show

that when the state variable wt follows an AR(1) process with normally distributed

innovations, the diagnostic expectation is given by

EDiagnosticwt+1 = Etwt+1 + θ(Etwt+1 − Et−1wt+1) = ρwt + ρθet. (1.9)

The expression for EDiagnosticwt+1 above results from this representativeness heuris-

tic and reflects the “kernel of truth” logic: on top of rational expectation, people

overreact to new information they observe in period t by the term Etwt+1−Et−1wt+1.

θ gauges this degree of overreaction. I use the same reduced form expression in the

model. Instead of restricting θ > 0, I generalize it and allow for overreaction,

underreaction and neither over- nor underreaction, by allowing θ to be from the

domain [−1,∞).8 Such underreaction can be justified by the phenomenon docu-

mented by psychologists: conservatism. Conservatism means that individuals are

slow to change their beliefs in the face of new evidence.9 Edwards (1968) documents

such a phenomenon in his experiments, where he compares a subject’s reaction to

new evidence against that of an idealized rational Bayesian agent. He finds that

individuals update their posteriors too little compared with the rational Bayesian

benchmark: “It turns out that opinion change is very orderly, and usually propor-

tional to numbers calculated from the Bayes Theorem — but it is insufficient in

amount. A conventional first approximation to the data would say that it takes

anywhere from two to five observations to do one observation’s worth of work in

inducing a subject to change his opinions.”

Having introduced the reduced form expression to capture over-/underreaction

to new information, I can present the parsimonious model of expectation formation.

Forecasters form expectations of the next period’s outcome following the parsimo-

8Bordalo, Gennaioli, Ma, and Shleifer (2020) point out “Diagnostic expectations are a theory
of overreaction and thus require θ > 0... can also be used as a parsimonious general formalization
of distorted beliefs, including underreaction to news for θ ∈ [−1, 0).” (p. 2764)

9See the discussion in Barberis, Shleifer, and Vishny (1998)
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nious model as:10

Eθ
i,twt+1 = ρwt + ρθet + ηi,t + φi (1.10)

where wt is the underlying state variable (e.g., inflation) which is assumed to follow

an AR(1) process as in equation 1.7. In equation 1.10, ρwt + ρθet is inherited

from equation 1.9. ρwt is the rational expectation of wt+1 given the AR(1) process.

ρθet captures the systematic over/under-reaction to the current innovation et while

forming expectations, and θ measures the degree of over- and under-reaction. θ > 0,

θ = 0, and −1 ≤ θ < 0 mean overreaction, neither overreaction nor underreaction,

and underreaction, respectively.11 The last two terms ηi,t+φi captures the judgment

noise in forecast. ηi,t is the idiosyncratic random noise. I assume it to be i.i.d.

distributed across forecasters and time for now, E(ηi,t) = 0, V ar(ηi,t) = σ2
η. In

the extension of the model, I allow serial correlation for the idiosyncratic random

noise ηi,t, and it does not affect the chapter’s results. φi is the individual fixed

heterogeneity, fixed over time for each individual, Eφ(φi) = 0.

Kahneman et al. (2021) classify judgment noise, the disagreement among people

when forming judgment, into pattern noise and level noise. Level noise, in the con-

text of forecasting, is the variability in how an individual forecaster deviates from

the consensus forecast on average: some forecasters are consistently more optimistic

about the economy in the future, while others are more pessimistic. People exhibit

such an individual fixed deviation from the consensus while making all kinds of judg-

ment: some judges are more lenient than others facing the same legal cases; some

orthopedists are more aggressive than others when providing recommendations for

back surgeries, etc. To make the terminology closer to the economic literature, I

call “level noise” individual fixed heterogeneity. The pattern noise is defined as the

residual disagreement except for the level noise. It can be due to entirely random

factors like mood, or it can be due to “the persistent personal reactions of particular

individuals to a multitude of features, which determine their reactions to specific

cases.” If we think about how forecasters develop forecasts about inflation: after

observing a broad range of economic indicators/ policy reports released by the Fed

over time, they might use different models either in their minds or on computers

that attach different coefficients/weights to different ingredients of these informa-

tion. So forecasters would disagree with each other. Individual forecast deviation

from consensus varies over time. I call this “pattern noise” idiosyncratic random

noise.12 In the literature, people argue that both components are critical in cap-

10I also consider an aggregate shock to over-/underreaction parameter θ in equation (2): θ+ εt.
εt ∼ N(0, σ2

ε). εt captures the changes in aggregate over-/under-reaction over time. However, the
structural estimation nearly always yields a zero σ2

ε , except for the ten-year Tbond yield. So I
eliminate the discussion of εt in the main body of the chapter.

11I make the restriction that −1 ≤ θ. When θ < −1, conceptually, forecasters are not just
underreacting to new information. Instead, people are adjusting their forecast in the opposite
direction of new information, which does not have any behavioral science support.

12Note that, although randomness is a substantial part, “pattern noise” is not mere chance: if
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turing the variation in forecast survey data. One recent example is Giglio et al.

(2021). Kahneman and his coauthors point out that the noise part is crucial in

understanding forecast error, and its size is more significant than people would have

expected. ηi,t can also include other factors that add random errors to individually

reported forecasts except for forecasters’ true belief, for example, measurement error.

1.3.2 Identification of Over-/Underreaction and Judgment

Noise

One key goal of this chapter is to identify the degree of over-/underreaction θ from

the data. In the following subsection, I show analytically and numerically how the

existence of judgment noise confounds our identification of θ. First, I discuss how

ηi,t, φi and θ can be separately identified from the data. I run a regression from

individual forecasts on time and individual fixed effect.

Fi,twt+3 = αt + φi + ηi,t (1.11)

The time fixed effect αt captures the common component across individual forecast-

ers. In the context of the model, it captures the term ρwt + ρθet. The individual

fixed effect accounts for the individual fixed heterogeneity. The residual of the

regression ηi,t represents the idiosyncratic noise. Identifying the key parameter θ

relies on establishing the link between the structural coefficient θ and the regression

coefficients, which is discussed in the following subsection.

1.3.3 Error-on-revision Regression Coefficients

In this section, I derive the model implied regression coefficients βCOLS and βIOLS,

under the expectation formation framework laid out in section 1.3.1.

I assume in equation 1.10 that people know the true persistence ρ. As a result,

it is natural to write down the subjective expectation of the h-period ahead forecast

as

Eθ
i,twt+h = Etwt+h + ρhθet + ρh−1(ηi,t + φi) (1.12)

Implicitly in equation 1.12, I make a simplifying assumption that at time t, the

judgment noise across adjacent forecast horizons diminishes at rate ρ. Relaxing this

assumption does not affect the main idea of the chapter. The following derivation

takes h = 1 for simplicity. In the empirical results in section 1.5.1, I focus on h = 3

to be consistent with BGMS so that the results are comparable.

the same macroeconomic condition arises again we would expect the individual forecaster to make
the same forecast (controlling for real random factor like mood). However, the economy is such a
complex system. The same economic condition never appears twice. For now I see “pattern noise”
as “random”.
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The forecast error of forecaster i made at period t is

wt+1 − Eθ
i,twt+1 = et+1 − ρθet − ηi,t − φi (1.13)

The forecast revision of i at period t is

Eθ
i,twt+1 − Eθ

i,t−1wt+1 = ρ(θ + 1)et + ηi,t + φi − ρ2θet−1 − ρηi,t−1 − ρφi (1.14)

Looking at expressions 1.13 and 1.14, ηi,t shows up in both the forecast error and

the forecast revision with opposite signs. So the idiosyncratic random noise pushes

the correlation between forecast error and forecast revision on the individual level

downward. φi stays constant over time for each forecaster, so it doesn’t enter into

the individual level covariance of forecast errors and revisions. In a panel regression,

φi can be controlled by an individual fixed effect.

cov(wt+1 − Eθ
i,twt+1, E

θ
i,twt+1 − Eθ

i,t−1wt+1) = −ρ2θ(1 + θ)σ2
e − σ2

η (1.15)

When the number of forecasters N is large enough, the average forecast error, or

forecast error at the consensus level, at period t is

wt+1 − Eθ
twt+1 = et+1 − ρθet −

∑N
i ηi,t
N

−
∑N

i φi
N

N→∞−−−→ et+1 − ρθet (1.16)

The average forecast revision is

Eθ
twt+1 − Eθ

t−1wt+1 = ρ(θ + 1)et +

∑N
i ηi,t
N

+

∑N
i φi
N

− ρ2θet−1 − ρ
∑N

i ηi,t−1

N
− ρ

∑N
i φi
N

N→∞−−−→ ρ(θ + 1)et − ρ2θet−1

limN→+∞

∑N
i ηi,t
N

= 0 and limN→+∞

∑N
i φi
N

= 0 by law of large number. When the

number of forecasters is huge, idiosyncratic random noise is averaged out when we

calculate the consensus forecast. In this case, idiosyncratic random noise drives

downward βIOLS but has no impact on βCOLS.

cov(wt+1 − Eθ
twt+1, E

θ
twt+1 − Eθ

t−1wt+1) = −ρ2θ(1 + θ)σ2
e (1.17)

Now we can derive the “forecast error on forecast revision” regression coefficients:

Proposition 1 When the number of forecasters in the sample is large, the OLS co-

efficients of consensus level regression and individual level regression with individual

fixed effect are given by

βCOLS =
cov(wt+h − Eθ

twt+h, E
θ
twt+h − Eθ

t−1wt+h)

var(Eθ
twt+h − Eθ

t−1wt+h)
=

−θ(1 + θ)

(1 + θ)2 + ρ2θ2
(1.18)
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βIOLS =
cov(wt+h − Eθ

i,twt+h, E
θ
i,twt+h − Eθ

i,t−1wt+h)

var(Eθ
i,twt+h − Eθ

i,t−1wt+h)
=

−(1 + θ)θ − σ2
η

ρ2σ2
e

(1 + θ)2 + ρ2θ2 + (1 + ρ2)
σ2
η

ρ2σ2
e

(1.19)

When −(1 + θ)θ <
σ2
η

ρ2σ2
e

and −1 < θ < 0, we have βIOLS < 0 and βCOLS > 0.

The difference between βIOLS and βCOLS is due to σ2
η. In equation 1.19, σ2

η has two

impacts: first, it appears in the numerator and pushes βIOLS downward; second, it

appears in the denominator and attenuates βIOLS towards zero.

Proposition 1 conveys two pieces of information. First, βIOLS is not a reliable

indicator of the degree of over-/underreaction on the individual level. Equation 1.19

tells us that idiosyncratic random noise plays a role in pushing βIOLS downward.

The reason is that Eθ
i,twt+h appears in both forecast error and forecast revision with

opposite signs. The stochastic idiosyncratic random noise pushes this correlation

downward. Even if agents underreact to new information while forming expecta-

tions, −1 < θ < 0, as long as the variance of idiosyncratic random noise is large

enough, βIOLS would be negative. If we do not consider the role of judgment noise

in βIOLS, or equivalently σ2
η = 0, we get the expression in BGMS:

βIBGMS =
−(1 + θ)θ

(1 + θ)2 + ρ2θ2
(1.20)

βIBGMS < 0 when θ > 0, namely overreaction; βIBGMS = 0 when θ = 0, namely

neither overreaction nor underreaction; βIBGMS > 0 when θ < 0, namely under-

reaction. Without fully acknowledging the role of idiosyncratic random noise and

its magnitude, we cannot make inferences on θ by looking at βIBGMS. Since most

empirically estimated βIOLSs are negative, the implied θs are mostly positive. Peo-

ple would conclude that there is overreaction in expectation on the individual level.

Second, opposite signs of βCOLS > 0 and βIOLS < 0 do not imply different degrees of

over-/underreaction on the consensus level and individual level. In proposition 1,

we can infer the signs of θ directly from βCOLS since βCOLS is not affected by σ2
η. In

summary, in forecast surveys with judgment noise, βCOLS should be the statistic to

look at when we try to understand over-/underreactions in expectations.

In the derivation of βCOLS in proposition 1, I assume a large enough number of

forecasters N in the survey so that the sampling error can be ignored. That is

why idiosyncratic random noise doesn’t impact βCOLS. However, in commonly used

forecast survey data like Survey of Professional Forecasters and Bluechip Financial

Forecast, the number of forecasters is limited, on average around 30. The negative

impact of idiosyncratic random noise on βCOLS is non-trivial. The case with limited

N is formally formulated in the following corollary:
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Corollary 1 When the number of forecasters in the sample is N < +∞, the esti-

mated coefficients of consensus level regression and individual level regression with

individual fixed effect are given by

βCOLS =
cov(wt+h − Eθ

twt+h, E
θ
twt+h − Eθ

t−1wt+h)

var(Eθ
twt+h − Eθ

t−1wt+h)
=

−θ(1 + θ)− σ2
η

Nρ2σ2
e

(1 + θ)2 + ρ2θ2 + (1 + ρ2)
σ2
η

Nρ2σ2
e

(1.21)

βIOLS =
cov(wt+h − Eθ

i,twt+h, E
θ
i,twt+h − Eθ

i,t−1wt+h)

var(Eθ
i,twt+h − Eθ

i,t−1wt+h)
=

−(1 + θ)θ − σ2
η

ρ2σ2
e

(1 + θ)2 + ρ2θ2 + (1 + ρ2)
σ2
η

ρ2σ2
e

(1.22)

When
σ2
η

Nρ2σ2
e
< −(1 + θ)θ <

σ2
η

ρ2σ2
e
, we have βIOLS < 0 and βCOLS > 0.

When the number of forecasters is limited, and the impact of the ηi,t is not

completely averaged out, then the existence of ηi,t would push both βCOLS and βIOLS
downward, but push βIOLS downward by more. When there is systematic underreac-

tion, i.e., θ < 0, then as long as σ2
η and N are large enough, βIOLS will be negative and

βCOLS will be positive. The intuition for the term
σ2
η

Nρ2σ2
e

in βCOLS is clear by looking

at the covariance between forecast error and forecast revision at the consensus level:

cov(wt+1 − Eθ
twt+1, E

θ
twt+1 − Eθ

t−1wt+1) = −ρ2θ(1 + θ)σ2
e −

σ2
η

N
(1.23)

Since
∑N
i ηi,t
N

appears in both forecast errors and forecast revisions at the consensus

level, its variance will show up in the correlation coefficient. Note that in the fol-

lowing parts of the chapter, I will focus on the expression for βCOLS in corollary 1. In

figure 1.11 of the appendix, I plot how βCOLS in equation 1.21 changes as we increase

N. From the graph, when the number of forecasters is fewer than around ten, an

additional forecaster makes a big difference in attenuating the effect of idiosyncratic

noise. The impact of one more forecaster is marginal when the number of forecasters

exceeds 15.

To have an idea of the magnitude of the impact ηi,t has on βCOLS and βIOLS, I

show numerically how much impact idiosyncratic random noise can have on βCOLS
and βIOLS, for σ2

η and θ in an empirically reasonable range. As an example, I use

the parameters estimated below for the AAA corporate bond yield. The following

figure shows that, as the variance of idiosyncratic random noise increases, how βCOLS
and βIOLS change given different values of θ.
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Figure 1.1: The effect of idiosyncratic random noise on βCOLS and βIOLS

Notes: This figure plots a numerical example showing how βIOLS and βCOLS change
while the variance of the idiosyncratic noise ση increases. I use the parameters from
AAA corporate bond in this exercise. ρ = 0.99. σe = 0.38. N = 27.

There are three main takeaways we can learn from the numeral exercise. First,

the downward sloping lines tell us that both βCOLS and βIOLS are driven downward as

ση increases. βIOLS drops quickly as ση increases. The impact of ση on βCOLS is not

trivial. When ση increases from 0 to the empirically estimated value 0.4 for AAA

corporate bond, βCOLS decreases from 0.5 to 0.3 when θ = −0.5, and it decreases

from 0.2 to 0.1 when θ = −0.2. Second, the gap between βCOLS and βIOLS can be

sizable. When ση = 0, βCOLS = βIOLS. As the magnitude of idiosyncratic random

noise increases, the gap increases. Let ση = 0.4, βCOLS = 0.3 and βIOLS = −0.4 when

θ = −0.5; βCOLS = 0.1 and βIOLS = −0.4 when θ = −0.2. In both cases, we have

the common empirical finding βCOLS > 0 and βIOLS < 0. In this particular numerical

example, idiosyncratic random noise can reconcile the difference between the two

βOLSs. As ση increases to very large, the gap between two βOLSs tends to close. The

reason is that when ση is very large, both βCOLS(when N is finite) and βIOLS converge

to −1
1+ρ2

, as we can see from the expressions in corollary 1.

Given the analytical framework, we have learned that idiosyncratic random noise

confounds our inference on the degree of over-/underreaction in expectation forma-

tion. Below I will identify the magnitude of judgment noise in the data and quanti-

tatively investigate how much it affects βCOLS and βIOLS. Can the size of idiosyncratic

random noise reconcile the gap between the estimated β̂C and β̂I in the data? How

much does idiosyncratic random noise affect our inference on the critical parameter
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θ?

1.4 Data

The primary forecast data I use is the Survey of Professional Forecasters (SPF) from

the Federal Reserve Bank of Philadelphia. SPF is a quarterly survey of professional

forecasters on various macroeconomic and financial variables dating back to 1968.

It is conducted around the end of the second month of each quarter. Given the

timing of filling the survey, when forecasters are making a forecast at quarter t, they

know the actual realization of various macroeconomic variables up until quarter t-1.

Not every variable has a historical record dating back to 1968. In this chapter,

not all variables in SPF are included in the empirical exercise. Instead, for the

time being, I focus on seven popular variables: real GDP growth rate (RGDP),

nominal GDP growth rate (NGDP), GDP price index inflation (GDP Price Index),

CPI inflation (CPI), 3-month Tbill yield (Tbill), AAA corporate bond yield (AAA),

Tbond corporate bond yield (Tbond). Forecasts are made for the current quarter

and the next four quarters. SPF identifies individual forecasters anonymously by

assigning them a unique ID.13 The average number of forecasters in each survey

wave ranges from 27 to 36, depending on which variable we look at. The total

number of forecasters in the survey is 446 - 448. The mean number of quarters that

each panelist participated in the survey is about 23. So SPF is an unbalanced panel

dataset.

Because the release of macroeconomic statistics is subject to subsequent revision,

I use vintage data for actual realization of key economic variables. This is to match

forecasters’ observation of economic statistics at the time of making forecasts. The

initial release of macroeconomic statistics comes from the real-time dataset of the

Federal Reserve Bank of Philadelphia. For financial variables like bond yields, they

are never revised. The historical data on bond yields can be obtained from the

Federal Reserve Bank of St. Louis.

Forecasts about macroeconomic variables in SPF focus mainly on the level rather

than the growth rate, and I transform all levels (except for bond yields) into growth

rates. For the majority of empirical exercises in this chapter, I focus on the forecast

horizon, which is three quarters ahead. Then the growth rate is the yearly growth

rate from quarter t − 1 to quarter t + 3. For example, when calculating the actual

growth rate for real GDP from quarter t − 1 to quarter t + 3, real GDP data in

the respective two quarters is obtained from the vintage data released at quarter

13However, the forecaster identification is not entirely accurate. In the documentation of SPF, it
mentions: “In these surveys, we have noticed some occurrences in which an individual participates,
suddenly drops out of the panel for a large number of periods, and suddenly re-enters, suggesting
that the same identifier might have been assigned to different forecasters,” and “it can be difficult
to assign an identification number to an individual who changes his place of employment but
remains in the survey.”
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t+ 4. For calculating the real GDP growth rate forecasts from t− 1 to t+ 3, I use

the forecast made at t and the initial release of real GDP at t − 1 published at t.

I follow the methods in BGMS (2020) in order to replicate their results. I drop all

forecasters that appear fewer than ten times in the survey. The summary statistics

for individual forecast errors and forecast revisions about t+3 are presented in table

1.1.

The standard deviation in table 1.1 is defined as the standard deviation of in-

dividual forecast errors/revisions when pooled across quarters and forecasters. The

average standard deviation is obtained by first calculating the standard deviation

for each quarter and then averaging across quarters. From the summary statistics,

we can see a large number of observations for individual forecast errors and revisions

for each variable. This is due to the survey’s long time series and panel structure.

The reason why the number of observations for forecast errors is larger than the

number of forecast revisions is the following: to calculate forecast revisions, I need

both the forecast for t + 3 and the lagged t + 4 forecast. But in SPF, some fore-

casters provide forecasts for t + 3 without providing those for t + 4. This results

in more empty cells for t + 4 relative to t + 3. Another pattern is that the mean

forecast errors and revisions14 are mostly indistinguishable from zero. This means

there is no evidence for either of the following: first, forecasts are systematically

biased; second, forecast revisions are asymmetric. The average standard deviation

tells us that there is systematic disagreement among forecasters, which supports the

existence of judgment noise in the spirit of Kahneman et al. (2021). The periods

covered for each variable vary: for RGDP, NGDP, and GDP price index inflation,

the survey started as early as 1968, while the survey started much later for Tbond,

in 1991.

14The mean is calculated across forecasters and time.
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Table 1.1: Summary Statistics

RGDP NGDP GDP Price Index CPI Tbill AAA Tbond

Individual Forecast Error of t+ 3

Number of Obs. 7505 7523 7455 5258 5054 4305 4039
Mean -0.37 -0.24 0.12 -0.22 -0.56 -0.48 -0.53
Standard Dev. 2.31 2.48 1.59 2.41 1.18 0.97 0.81
Average Standard Dev. 1 1.19 0.77 0.73 0.48 0.53 0.4

Individual Forecast Revision of t+ 3

Number of Obs. 5696 5710 5712 4224 4055 3409 3311
Mean -0.14 -0.11 0.03 -0.07 -0.2 -0.13 -0.14
Standard Dev. 1.37 1.52 0.98 0.77 0.67 0.6 0.51
Average Standard Dev. 0.91 1.09 0.72 0.66 0.44 0.48 0.36
Number of Forecasters 36 36 36 33 32 27 35

Time Periods 1968-2022 1981-2022 1991-2022

Notes: This table reports the summary statistics of individual forecast errors and
forecast revisions. Standard Dev. is the standard deviation after pooling all the
observations. Average Standard Dev. is obtained by first calculating the standard
deviation for each quarter and then averaging across quarters. Number of forecasters
is the average number of forecasters across different waves of survey. All forecast
errors and revisions are calculated at horizon t+ 3.

1.5 Estimation

This section first reports the “forecast error on forecast revision” regression re-

sults across various macroeconomic and financial variables. Second, I provide some

evidence for the relative magnitude of idiosyncratic random noise and fixed hetero-

geneity. Third, after accounting for judgment noise, I formally identify two types of

judgment noise and uncover the critical parameter of interest, namely the degree of

over-/underreaction θ.

1.5.1 Error-on-revision Regression Results

In the benchmark “forecast error on forecast revision” regression, I use t+ 3 as the

forecast horizon. The reason for choosing this specific forecast horizon is that BGMS

uses this forecast horizon, so regression results will be comparable to theirs. Table

1.2 reports regression results for both consensus level and individual level regression.

For consensus time series regressions, standard errors are corrected following Newey-

West (1994) with automatic bandwidth selection. For individual panel regressions,

standard errors are clustered by forecaster and time. Most estimations for βI are

significantly negative except for the three-month Tbill yield, which is significantly

positive. The point estimations for βC vary across different variables. For long-

maturity bonds, including the ten-year Tbond and the AAA corporate bond yields,

β̂Cs are insignificant. For inflation and the Tbill yield, β̂C is significantly positive.

β̂C is positive but insignificant for nominal and real GDP growth. Those regression

results are mostly similar to those in BGMS, with some differences. For example,
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one difference is that in BGMS, β̂C is significant for both real and nominal GDP.

Such difference is due to the extra six years of data I have: their data coverage

is until 2016, but the empirical exercises include data until 2022. When running

regressions on data covering the same periods, I obtain nearly identical results as

BGMS. To be consistent with the discussion of the literature, the general case I will

be focusing on in this chapter is that β̂C > 0 and β̂I < 0.

Under the Full Information Rational Expectation(FIRE) hypothesis, both βC

and βI should be zero. βC > 0 and βI < 0 are both strong evidence rejecting FIRE.

BGMS argues that βC > 0 could be a result of a combination of the information

friction and a violation of rationality, whereas βI < 0 indicates overreaction to

information in expectation formation at the individual level. One of the goals of

this chapter is to show that βIOLS < 0 should not be seen as evidence of overreaction

on the individual forecaster level, since the idiosyncratic random noise component

could drive it.

As we can see in table 1.1, surveys for different variables in SPF started in

different years, which results in different time coverage for different variables. Does

the variation in β̂C and β̂I across different variables result from this different time

coverage? Indeed, in the 70s and 80s, several historical episodes of economic and

financial turmoil might structurally affect how people react to information. Table

1.13 in the appendix reports the results of this robustness test. For those variables

whose initial forecast release was in 1968, I rerun the regressions, first dropping

1968 to 1980 and then dropping 1968 to 1990. Similarly, for those variables whose

initial forecast release was in 1981, the regressions are rerun while dropping 1981

to 1990. As we can see from the table, quantitatively β̂C and β̂I do differ but not

much. Qualitatively, β̂C and β̂I for each variable are consistent when time coverage

is different. For example, β̂C is always significantly positive for the GDP deflator,

while its β̂I is always significantly negative. The only exception is β̂C of CPI:

dropping 1981-1990 switches its sign, although both estimates are insignificant.

1.5.2 Evidence on Two Types of Judgment Noise

Before formally identifying the importance of idiosyncratic random noise and fixed

heterogeneity, I provide evidence on the relative magnitude of these two types of

judgment noise by running the following two regressions. To know how much of the

variation of disagreement in forecast surveys can be explained by individual fixed

heterogeneity, and how much of the variation can be explained by idiosyncratic

random noise, I run the regression

Fi,twt+h − F̄twt+h = fi + ui,t, (1.24)
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Table 1.2: Error-on-revision Regression Coefficients

β̂C β̂I

Point Estimate SE p-value Point Estimate SE p-value

RGDP 0.11 0.31 0.73 -0.28 0.12 0.02
GDP Price Index 1.26 0.41 0.00 -0.15 0.07 0.04

NGDP 0.14 0.25 0.56 -0.32 0.12 0.01
CPI 1.04 0.76 0.17 -0.38 0.09 0.00
Tbill 0.69 0.11 0.00 0.21 0.09 0.03
AAA -0.02 0.16 0.92 -0.27 0.07 0.00

Tbond -0.06 0.09 0.46 -0.23 0.02 0.00

Notes: This table reports the Error-on-revision regression results at both the con-
sensus and individual level. For consensus time-series regressions, standard errors
are calculated using the Newey-West method, with the automatic bandwidth selection
procedure as proposed by Newey and West (1994). For individual-level panel regres-
sions, standard errors are clustered by both the forecaster and time.

where the left hand side is the deviation of forecaster i at time t, Fi,twt+h, from

the consensus forecast, F̄twt+h, or the disagreement of forecaster i at t from the

consensus. The right-hand side is the individual fixed effect which captures the

individual fixed heterogeneity φi.
15 Again, I choose h = 3 in this exercise. R2

measures how much variation of individual deviation from the consensus forecast is

due to individual fixed heterogeneity. Another regression to give us a sense of the

existence of ηi,t and φi is the following:

Fi,twt+h − F̄twt+h = ρ̂(Fi,t−1wt+h−1 − F̄t−1wt+h−1) + ui,t (1.26)

This regression gives us the persistence ρ̂ for individual deviation from the consensus

forecast. When the individual deviation from consensus is solely due to individual

fixed heterogeneity, φi is time-invariant and ρ̂ = 1. When the individual deviation

from consensus is solely due to idiosyncratic random noise, ρ̂ = 0 if idiosyncratic

random noise is independent across time.16 And the results are in the table 1.3.

We can see from the table that the individual fixed effect explains a fair amount

of the variation in forecast disagreement, between 16% and 24%. In other words,

there is significant persistence in forecast disagreement. However, the larger portion

of disagreement is due to idiosyncratic random noise, accounting for 76% to 84%

of all the variation in individual deviation from consensus. These two empirical

exercises tell us that in SPF across different macroeconomic and financial variables,

15Strictly speaking, fi captures the demeaned individual fixed heterogeneity φi −
∑

i φi

N . This
can be seen from plugging equation 1.12 into Fi,twt+h on the left-hand-side of equation 1.24:

Fi,twt+h − F̄twt+h = ρh−1(ηi,t −
∑
i ηi,t
N

+ φi −
∑
i φi
N

) (1.25)

16In further discussion, I show that actually idiosyncratic random noise is serially correlated.
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Table 1.3: R2 of Individual Fixed Effect and Persistence of Individual Noise
RGDP GDP Price Index NGDP CPI Tbill Tbond AAA

R2 of Individual
Fixed Effect

0.19 0.16 0.19 0.24 0.18 0.22 0.24

Persistence of
Deviation

0.48∗∗∗

(0.01)
0.47∗∗∗

(0.01)
0.56∗∗∗

(0.01)
0.33∗∗∗

(0.01)
0.59∗∗∗

(0.01)
0.52∗∗∗

(0.01)
0.6∗∗∗

(0.02)

Notes: This table reports the R2 of individual fixed effect in regression 1.24, and
estimates of persistence in regression 1.26.

individual fixed effects account for a significant fraction of the disagreement across

forecasters. However, the more substantial source of disagreement is idiosyncratic

random noise.

1.5.3 Estimation Strategy

There are four parameters to be estimated for each variable in the survey: the

persistence of actual realizations of the variable ρ, the standard deviation of the

innovations σe, the standard deviation of idiosyncratic random noise ση, and the

degree of over- or underreaction θ. The steps to estimate this set of parameters

{ρ, σe, ση, θ} for each variable are the following:

1. The parameters ρ and σ2
e can be obtained by fitting an AR(1) process to the

historical time series for each variable.

2. The idiosyncratic noise can be identified as the residual of the regression 1.11.

The estimation of ση can be obtained by calculating the standard deviation of

the residual η̂i,t, using the following equation:

σ̂2
η =

1

n− k

n∑
i=1

η̂2
i,t (1.27)

where k is the total number of free coefficients in regression equation 1.11.

3. After obtaining the estimation for {ρ, σ2
e , σ

2
η}, I can estimate θ by matching the

model implied βCOLS and βIOLS as in equation 1.18 and 1.19 with the estimated

β̂C and β̂I from the data. I obtain estimation for θ using two methods:

(a) The first method, θs are estimated by minimizing the Euclidean distance

between the model implied βOLSs and estimated β̂s from data:

(β̂C − βCOLS β̂I − βIOLS)W (β̂C − βCOLS β̂I − βIOLS)T

I evaluate the empirical covariance of β̂C and β̂I by bootstrapping from

the panel of forecasters with replacement, and invert it to obtain the

optimal weighting matrix W .
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(b) The second method, θs are estimated by matching β̂C with βCOLS, β̂I with

βIOLS separately. This method produces two θs, which should be close to

each other.

In the second method, I match βs at the individual and consensus level sepa-

rately, and obtain two θs. The two θs should be close to each other. Comparing

results from the first and second method serves as a robustness check. The

grid for θ is restricted on the model implied range: θ > −1. Standard errors

for the estimation of θs can be obtained by bootstrapping, during estimation,

from the panel of forecasters with replacement

While attempting to match the implied regression coefficients, βOLS, of the model

with the estimated regression coefficients, β̂, derived from the data, two potential

issues arise. Firstly, when β̂ is excessively large, it may not be possible to find a θ

value that aligns β̂ with βOLS. Secondly, even when β̂ and βOLS can be perfectly

aligned, there might be two possible solutions for θ. These issues arise due to the

hump-shaped nature of βOLS as a function of θ. Figure 1.2 illustrates the plot of

βCOLS defined in equation 1.18 as a function of θ. In this particular example, ρ is set

to 1. Historical time series for variables such as GDP Price Index inflation, 3-month

Tbill yield, AAA corporate bond yield, and 10-year Tbond yield exhibit behaviors

close to a random walk, with ρ values near 1.

Figure 1.2: βCOLS as a function of θ

:
Notes: This figure plots βCOLS in equation 1.18 as a function of θ in blue line. The

red dots are two potential values of empirically estimated β̂C.
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From the observations in Figure 1.2, it is evident that when θ > 0, βCOLS decreases

with increasing θ, and it remains negative. When −1 < θ < 0, βCOLS is consistently

positive but exhibits a hump-shaped pattern. As θ decreases from 0 to -1, βCOLS
initially increases and then decreases. In other words, a positive βCOLS indicates

an under-reaction to new information, whereas a negative βCOLS suggests an over-

reaction. However, when βCOLS > 0, a higher value does not imply a more significant

degree of under-reaction to new information. The intuition behind the hump-shaped

pattern of βCOLS within the interval [−1, 0] is as follows: when θ is zero, expectation

formation adheres to rational expectations, meaning there is neither over- nor under-

reaction to new information, resulting in βCOLS = 0. When θ is set to -1, forecasters

do not react to new information at all, making forecast revisions uncorrelated with

forecast errors. As θ decreases from 0 to -1, the value of βCOLS is primarily driven

by the under-reaction to new information, until a certain threshold is reached, after

which the value is determined by the little reaction to new information.

When the empirical value of β̂C exceeds the maximum value of the function

βCOLS, such as in the case of 0.8 in the graph, I identify the corresponding θ as the

one yielding the highest βCOLS. However, if β̂C is positive but not excessively large,

as shown by the value of 0.2 in the graph, there are two potential θ values that

can match βCOLS with β̂C . In such instances, I report the θ that is closer to 0. By

selecting the θ value closer to zero, I adopt a more conservative value regarding the

degree of under-reaction observed in the data.

In Chapter 2 of my PhD thesis, I demonstrate that when expectation formation

follows the more conventional adaptive expectations framework, a monotonic rela-

tionship exists between βC and the weighting parameter in the adaptive expectations

model. And there are no issues in aligning the data-estimated and model-implied β

coefficients.

1.5.4 Estimation Results

In the following tables, I report the estimated parameters for each variable: the per-

sistence of the variable ρ, the standard deviation of the innovation σe, the standard

deviation of the idiosyncratic random noise ση, and the degree of under/over-reaction

θ.

For the estimation of ρ and σe, the fitted results are similar to those in BGMS.

The difference is that I have additional 2017-2022 data included in the analysis. The

economic disturbances of Covid-19 pandemic reduce the persistence of variables,

including real and nominal GDP growth. CPI inflation is much less persistent and

more volatile than GDP price index inflation.17

17CPI inflation is the annualized quarterly growth rate of CPI, while GDP price index inflation
is the yearly growth rate of GDP price index. Hence, the persistence and innovation volatility of

33



Table 1.4: Estimation Results for Model Parameters

RGDP GDP Price Index NGDP CPI Tbill AAA Tbond

ρ 0.77 0.98 0.84 0.46 0.99 0.99 0.99
σe 1.57 0.5 1.71 2.16 0.57 0.38 0.37
ση 1.07 0.85 1.21 0.71 0.46 0.48 0.35

Note: This table reports the estimation results for parameters of the model across
different macroeconomic variables: the persistence of the variable ρ, the standard
deviation of the innovation σe, the standard deviation of the idiosyncratic random
noise ση.

Table 1.5: Estimation Results for the Degrees of Over/Under-reaction, Method 1

RGDP GDP Price Index NGDP CPI Tbill AAA Tbond

θ -0.06
(0.07)

−0.51∗∗∗

(0.02)
−0.17∗∗

(0.07)
−0.74∗∗

(0.34)
−0.31∗∗∗

(0.04)
0.08
(0.08)

0.08∗∗

(0.04)

Notes: This table reports θ estimation results from method 1. Standard errors are
displayed in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01.

I plot the distributions of η̂i,t and φ̂i for different variables to explore their proper-

ties further. In figure 1.3 and 1.4, a fitted normal distribution curve is also included

to let us have a sense of the distribution of η̂i,t and φ̂i. The distribution of η̂i,t can be

fitted reasonably well by a normal distribution centered around zero, except for that

η̂i,t tends to center around the mean zero much more than a normal distribution.

Or η̂i,t tends to have a thinner tail. The normal distribution fits not as well for φ̂i.

Considering there are much fewer observations for φ̂i compared with η̂i,t, the poor

fit of the normal distribution could also be a result of the limited sample of φ̂i. The

goal of estimating ση, η̂i,t and φ̂i is twofold: first, to have a sense of the distribution

and magnitude of idiosyncratic random noise and fixed heterogeneity. Second, the

estimated ση will be used to see whether it is large enough to reconcile the difference

between the gap between β̂C and β̂I as we see in the data.

The estimation yields different outcomes for the estimation of θ. If we look at the

estimation results from method 1 in table 1.5, for CPI inflation, GDP price index

inflation, and the three-month Tbill yield, θs are significantly negative, around −0.5.

There is strong evidence that people are underreacting to new information when

Table 1.6: Estimation Results for the Degrees of Over/Under-reaction, Method 2
RGDP GDP Price Index NGDP CPI Tbill AAA Tbond

θ
Match βI −0.38∗∗∗

(0.1)
−0.45∗∗∗

(0.00)
−0.003
(0.22)

0.27
(0.32)

−0.5∗∗∗

(0.00)
−0.48∗∗∗

(0.00)
−0.5∗∗∗

(0.02)
Match βC −0.13

(0.09)
−0.5∗∗∗

(0.00)
−0.15∗∗

(0.07)
−0.68∗∗

(0.22)
−0.5∗∗∗

(0.00)
-0.06
(0.08)

0.05
(0.04)

Notes: This table reports θ estimation results from method 2. Standard errors are
displayed in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01.

the two variables differ. This arises from the fact that, in SPF, the forecast about CPI inflation
is the annualized quarterly growth rate, while the forecast about GDP Price Index is the level.
When calculating the inflation from the GDP price index, I calculate the yearly growth rate.
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Figure 1.3: Distribution of ηi,t for Different Variables

(a) AAA (b) CPI

(c) NGDP (d) RGDP

(e) Tbill (f) Tbond

(g) GDP Price Index

Notes: This figure plots for each variable the distribution of empirically estimated
idiosyncratic noise η̂i,t.
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Figure 1.4: Distribution of φi for Different Variables

(a) AAA (b) CPI

(c) NGDP (d) RGDP

(e) Tbill (f) Tbond

(g) GDP Price Index

Notes: This figure plots for each variable the distribution of empirically estimated
individual fixed heterogeneity φ̂i.
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forming expectations about inflation. For real GDP, nominal GDP, θs are closer to

zero but still negative. The evidence for underreaction is not as strong as for the

previous three variables. For the ten-year Tbond and AAA corporate bond, θs are

around zero. So there is no significant evidence of overreaction nor underreaction

for those two variables. The estimation results of θs are not surprising given our

previous analysis: βCOLS > 0 is the better statistics to make an inference on θ, while

βIOLS < 0 is the pure result of the large magnitude of idiosyncratic random noise.

Table 1.6 reports the estimation of θs using method 2. The key takeaway from table

1.6 is that, no matter whether we estimate θs from β̂C or β̂I , we almost always obtain

negative θs. In other words, once we consider the idiosyncratic random noise in the

data, negative β̂Is and positive β̂Cs all imply underreaction to new information

in expectation formation. In Table 1.6, there are instances where the estimation

results for θ display zero standard errors. As explained in the earlier section on

the ”Estimation Strategy,” this occurs when the empirical value of β̂ surpasses the

maximum value of the functional βiOLS, where i ∈ {C, I}. The standard errors

are calculated through bootstrapping, which involves resampling from the panel

of forecasters with replacement. However, in nearly all bootstrapped samples, the

estimated β̂ values exceed the maximum functional value of βiOLS. Consequently,

the standard errors in those cases approach zero.

I compare these results with the estimated values for θ if we do not consider the

existence of judgment noise. In BGMS, without formally accounting for the role of

idiosyncratic noise, βIOLS is given by equation 1.20. After obtaining the estimation

for ρ by fitting an AR(1) process on the actual historical time series of the forecasted

variable, the estimation of θ can be obtained by matching equation 1.20 with the

estimated β̂I in the data. The estimated θs using this method are plotted as “x”

in black in figure 1.5, with 95% confidence intervals. The results are reported in

table 1.14 in the appendix. Consistent with the estimation results in BGMS, except

for the 3-month Tbill yields, θs for the other variables are positive, interpreted as

over-reaction to new information at the individual level. In comparison, I plot the

estimation results from table 1.6 in the same figure. θs obtained from matching

β̂I with βIOLS are plotted as the red “*”. θs estimated by matching β̂C with βCOLS
are plotted as the blue dots. 95% confidence intervals are included. After taking

into account the idiosyncratic noise in the data, θs implied by β̂C > 0 and β̂I < 0

are very similar in terms of signs: θs across different variables are mostly negative,

meaning underreaction to new information.

In table 1.15 and figure 1.9 presented in the appendix, I provide the estimation

results for θ when matching βC between the model and the data. Specifically, I

compare the estimation outcomes when considering a finite number of forecasters to

the scenario where the number of forecasters is assumed to be infinite. This analysis

aims to address the concern highlighted in Corollary 1. The results demonstrate that
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Figure 1.5: θ Estimation for Different Variables

Notes: This figure plots the θ estimation from method 2 for each variable. θs
estimated by matching βI from the model and data are plotted as red stars. θs
estimated by matching βC from the model and data are plotted as blue dots. θs
estimated by using the methodology from BGMS 2020 are plotted with black crosses.
95% confidence intervals are included.
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the difference stemming from the consideration of a finite number of forecasters is

not statistically significant.

In table 1.7, I report the model implied βCOLS and βIOLS, and the difference be-

tween βC and βI in both model and data to see whether the variance of idiosyncratic

random noise ση can reconcile such difference. Here the estimation results are from

the first method. In step 3 of the estimation strategy, θ is obtained by matching the

model implied and empirically estimated βC and βI . However, whether the model

can match estimations of βC and βI depends on the value of ση, estimated before-

hand in step 2. If ση = 0, βCOLS = βIOLS in the model. Only when the estimated

ση is large enough in step 2 is it possible for the model to match the gap between

β̂C and β̂I in the data. We can see from the second row to the fourth row in table

1.7that the model can match the β̂I and β̂C fairly well. From the last two rows,

we can see that the size of idiosyncratic random noise can satisfactorily reconcile

the gap between β̂C and β̂I . The two variables that the model does not do a good

job at matching are GDP price index and the three-month Tbill. There are at least

two possible reasons why the model does not always perfectly fit the estimated β̂C

and β̂I in the data. First, many of the point estimates for β̂C are insignificant. The

model can easily fit the 95% confidence interval of β̂C for those variables. Second,

the estimated β̂C and β̂I from the data do not lie in the range of which expression

1.19 and 1.21 can attain for those variables, given the estimated values for {σ2
η, ρ, σ

2
e}

and N . In figure 1.12 in the appendix, the relationship between βCOLS, βIOLS and θ is

plotted. The parameters used in the exercise are those of GDP price index. In the

figure, as θ varies, βCOLS and βIOLS are varying between [−0.5, 0.25] and [−0.5,−0.4]

respectively. However, the estimated β̂C and β̂I for GDP price index inflation are

1.26 and −0.15, which are both out of the range that the model can fit.

Table 1.7: Matched βC and βI

RGDP GDP Price Index NGDP CPI Tbill Tbond AAA

βIOLS -0.33 -0.43 -0.3 -0.36 -0.23 -0.33 -0.38

β̂I -0.28 -0.15 -0.32 -0.38 0.21 -0.23 -0.27
βCOLS 0.12 0.25 0.14 0.92 0.43 -0.05 -0.01

β̂C 0.11 1.26 0.14 1.04 0.69 -0.06 -0.02
βCOLS − βIOLS 0.45 0.68 0.44 1.28 0.66 0.28 0.37

β̂C − β̂I 0.39 1.41 0.46 1.42 0.48 0.17 0.25

Notes: This table reports the data estimated β̂I and β̂C, the model implied βIOLS
and βCOLS. The gap between the data and model is reported in the last two rows.
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1.6 Further Discussion

1.6.1 Dispersed Information or Judgment Noise?

A large literature about over-/underreaction to new information is centered around

dispersed information models, where agents receive noisy signals about the underly-

ing economic variable. In such models, agents underreact to new information on the

consensus level since they do not know whether the new information reflects noise or

real innovations to the forecasted variables. See Coibion and Gorodnichenko (2015),

Bordalo, Gennaioli, Ma and Shleifer (2020), etc. The judgment noise approach pro-

posed in this chapter and dispersed information are two distinct ways to generate

disagreement in forecasts. Forecasters in dispersed information models are fed ex-

ogenous signals, so they make different forecasts, even though in their minds they

are following the same rule. In my model, people have the same information but still

make different forecasts due to “noise in judgment”, as Kahneman and his coauthors

emphasized. Combined with over/under-reaction in expectation formation, both ap-

proaches can reconcile the positive correlation coefficients at the consensus level and

the negative ones at the individual level. In my model, forecasters underreact to new

information. Such new information is common. Positive correlation coefficients at

the consensus level reflect such systematic underreaction in expectation formation.

The idiosyncratic random noise in expectations pushes the correlation coefficients at

the individual level downward. When such noise is large enough, correlation coeffi-

cients at the individual level are negative. In AHS and BGMS, forecasters overreact

to their private information (their signals), resulting in negative correlation coeffi-

cients at the individual level. However, since information is dispersed, forecasters

do not respond to each other’s information. This leads to underreaction to new

information at the consensus level, meaning positive correlation coefficients at the

consensus level. Although both approaches can reconcile the crucial correlation co-

efficients that we are interested in, they yield completely different implications on

forecasters’ degree of over/under-reaction to new information, or the key structural

parameter θ.

In reality, both noisy information and judgment noise are likely to exist. Concep-

tually, however, several arguments favor judgment noise as the source of disagree-

ment: first, the commonly used data, the Survey of Professional Forecasters and

Bluechip Financial Survey in this strand of literature, are both surveys conducted

among professional financial forecasters, whose job it is to watch economic statis-

tics and financial markets closely every day and get paid well for it. Information

friction concerns, e.g., costs in acquiring the latest information, might not be a se-

rious problem for those professional forecasters. This is compared to surveys filled

by other population groups, including households. Secondly, such surveys examine

aggregate macroeconomic variables like inflation, GDP growth rate, or index rates
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like the AAA corporate rate. Financial forecasters are less likely to have private in-

formation about those aggregate variables. The argument supporting disagreement

resulting from private information is more valid if the survey asks professional fore-

casters about their forecasts on individual stocks or corporate bond yields. Third,

the judgment noise, in Kahneman’s words, is an essential feature of all kinds of

human judgment processes. This is even for those judgment processes that people

expect to be less noisy, e.g., doctors evaluating patients’ medical conditions. When

presented with the same information, disagreement in judgment can result from

completely random factors, mood, or more complex reason: “the persistent per-

sonal reactions of particular individuals to a multitude of features, which determine

their reactions to specific cases”. Kahneman and his coauthors provide an astonish-

ing example of humans’ judgment noise:“when the same software developers were

asked on two separate days to estimate the completion time for the same task, the

hours they projected differed by 71%, on average.” Suppose due to the way that

our brain works when making judgment, people can disagree with themselves on the

same thing by such a large margin on different days. In that case, it is natural to

model forecasters’ disagreement with each other as judgment noise.

1.6.2 Serially Correlated Idiosyncratic Random Noise

In the baseline framework, I assume for simplicity that the idiosyncratic random

noise is i.i.d. across forecasters and time. In the data, such idiosyncratic random

noise might also be serially correlated. Factors behind idiosyncratic random noise

might be serially correlated over time. For example, when Jack, the forecaster, gets

a promotion, he will likely be happier than average for the following months ahead.

So even “mood” itself won’t be entirely random over time. Now I want to obtain

the serial correlation of idiosyncratic random noise:

η̂i,t = ρηη̂i,t−1 + ui,t (1.28)

where η̂i,t is the idiosyncratic random noise estimated from SPF in section 1.5. ρη

is the persistence of η̂i,t over time. In order to do this, I run the following dynamic

panel regression:18

Fi,twt+h = ρηFi,t−1wt−1+h + ft + fi + ui,t (1.30)

The regression results are reported in table 1.8. The model is estimated using the

Arellano-Bond (1991) estimator with 15 lags. As we can see, there is significant

18The regression equation can be obtained by plugging

Fi,twt+h = αt + φi + ηi,t (1.29)

into equation 1.28
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evidence for the persistence of idiosyncratic random noise across all variables. It

turns out ηi,t is not random over time. Does it affect the result in proposition 1 that

idiosyncratic random noise is the reason behind the gap between βCOLS and βIOLS?

In corollary 2, proposition 1 is extended to consider the persistence in idiosyncratic

random noise.

Table 1.8: Persistence of Idiosyncratic Random Noise
RGDP GDP Price Index NGDP CPI Tbill AAA Tbond

ρη 0.15∗∗∗

(0.05)
0.11∗∗

(0.04)
0.14∗∗∗

(0.04)
0.04
(0.03)

0.14∗∗∗

(0.04)
0.15∗∗∗

(0.03)
0.07∗

(0.04)

Notes: This table reports the estimates of persistence in regression 1.30. Standard
errors are displayed in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01.

Corollary 2 Assume the number of forecasters in the sample is large. When ηi,t is

serially correlated over time with persistence ρη, the estimated coefficients of con-

sensus level regression and individual level regression with individual fixed effect are

given by

βIOLS =
cov(FEi,t, FRi,t)

var(FRi,t)
=

−θ(1 + θ)− σ2
η

ρ2σ2
e

+
ρησ2

η

ρσ2
e

ρ2θ2 + (1 + θ)2 + (ρ2 + 1)
σ2
η

ρ2σ2
e
− 2ρησ2

η

ρσ2
e

(1.31)

βCOLS =
cov(wt+h − Eθ

twt+h, E
θ
twt+h − Eθ

t−1wt+h)

var(Eθ
twt+h − Eθ

t−1wt+h)
=

−θ(1 + θ)

(1 + θ)2 + ρ2θ2

When −1 < θ < 0 and −θ(1 + θ) <
σ2
η

ρ2σ2
e
− ρησ2

η

ρσ2
e

, βIOLS < 0 and βCOLS > 0.

From equation 1.31, the persistence in ηi,t has two effects. First, the downward

force of idiosyncratic random noise in the numerator is attenuated by
ρησ2

η

ρσ2
e

. Second,

the denominator is lowered by the amount
2ρησ2

η

ρσ2
e

. The intuition for those two effects

is the following: if idiosyncratic random noise is serially correlated, the two adjacent

idiosyncratic random noises partly offset each other in forecast revision (look at the

term ηi,t − ρηi,t−1 in equation 1.14). This serial correlation reduces the impact of

σ2
η on the covariance between forecast error and forecast revision on the individual

level. It also reduces the impact of σ2
η on the variance of forecast revision on the

individual level. The first force narrows the gap between βIOLS and βCOLS, while the

second force is likely to increase the gap between those two coefficients.

Regardless of whether the idiosyncratic noise is serially correlated or not, when

we have the value of ρ, βCOLS serves as the sufficient statistic for identifying θ. Im-

portantly, the serial correlation of the idiosyncratic noise does not affect βCOLS, as

stated in Corollary 2. Consequently, the inference on θ remains unaffected by the

serial correlation if we match βC between the data and the model.

Furthermore, in Table 1.9, I provide the estimation results for θ considering

the presence of serial correlation in the idiosyncratic noise using Method 1. As
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observed, the estimation results are very similar to those presented in Table 1.5. A

plot for comparison is provided in figure 1.10 in the appendix. This further supports

the notion that the inclusion of serial correlation does not significantly impact the

estimation outcomes for θ.

Table 1.9: θ Estimation Results from Method 1, Considering the Serial Correlation
of Idiosyncratic Noise

RGDP GDP Price Index NGDP CPI Tbill AAA Tbond

θ −0.06∗

(0.03)
−0.5∗∗∗

(0.08)
−0.15∗∗

(0.07)
−0.71∗∗∗

(0.14)
−0.29∗∗∗

(0.04)
0.08
(0.08)

0.09∗∗

(0.04)

Notes: This table reports the θ estimates from method 1 after considering the
serial correlation of idiosyncratic noise for each variable. Standard errors are dis-
played in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01.

1.6.3 Different Time Coverage for Variables

One valid concern regarding the heterogeneous θ values for different variables is

the varying time coverage of the variables included in the Survey of Professional

Forecasters. As presented in Table 1.1, real GDP growth and nominal GDP growth

forecasts have data available from as early as 1968, whereas 10-year Tbond yield

forecasts commence from a later period, specifically 1991. Economic conditions in

the 1970s, 1980s, and 1990s were notably distinct, characterized by stagflation in

the 1970s, a severe recession in the early 1980s, and the longest period of peace-

time economic expansion in American history during the 1990s. It is plausible that

forecasters’ reactions to information were influenced by these varying economic con-

ditions. Hence, it raises the question of whether the heterogeneous β̂ and θ values

for different variables result from the differences in time coverage.

To address this concern, I conduct the Error-on-revision regression separately

for each variable using different time periods. For example, for real GDP growth, I

performed the regression for the periods 1968-2022, 1982-2022, and 1991-2022. All

estimations for θ are obtained by matching βC between the data and the model.

The regression results are reported in table 1.10, and the estimated θ values are

visualized in figure 1.6. For a comprehensive overview of the parameter estimations,

please refer to table 1.16 in the appendix.

Based on the findings in table 1.10, it is evident that the heterogeneity of β̂

values across variables is not solely attributed to the different time periods covered

by each variable. The significantly positive β̂I for 3-month Tbill yields remains

consistent regardless of whether the 1980s are included in the analysis. Similarly, the

significantly positive β̂C for GDP Price Index holds across all three sample periods.

However, the sign of β̂C for CPI changes after excluding the 1980s, although neither

estimate is statistically significant.

Importantly, the implication derived from table 1.10 is that the θ values depicted
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in figure 1.6 are relatively consistent for each variable across different time periods.

This suggests that the heterogeneity observed in β̂ values is not solely driven by the

varying time coverage of the variables.

Table 1.10: Empirical β̂ from Different Time Periods

βCensus βIndividual

Periods
Point Estimate SE p-value Point Estimate SE p-value

RGDP

0.11 0.31 0.73 -0.28 0.12 0.02 1968-2022
0.03 0.36 0.93 -0.3 0.23 0.2 1981-2022
-0.16 0.3 0.59 -0.37 0.26 0.16 1991-2022

GDP Price Index

1.26 0.41 0.00 -0.15 0.07 0.04 1968-2022
0.54 0.23 0.02 -0.36 0.06 0.00 1981-2022
0.94 0.41 0.02 -0.3 0.08 0.00 1991-2022

NGDP

0.14 0.25 0.56 -0.32 0.12 0.01 1968-2022
0.24 0.37 0.51 -0.25 0.19 0.19 1981-2022
-0.02 0.26 0.94 -0.29 0.25 0.24 1991-2022

CPI
1.04 0.76 0.17 -0.38 0.09 0.00 1981-2022
-0.29 1.12 0.79 -0.5 0.11 0.00 1991-2022

Tbill
0.69 0.11 0.00 0.21 0.09 0.03 1981-2022
0.8 0.11 0.00 0.33 0.1 0.00 1991-2022

AAA
-0.02 0.16 0.92 -0.27 0.07 0.00 1981-2022
-0.01 0.14 0.92 -0.31 0.07 0.00 1991-2022

Notes: This table reports the empirical β̂C and β̂I for different time periods. The
standard errors and p-value are reported for each variable.

1.6.4 ECB Survey of Professional Forecasters

Survey of Professional Forecasters from the Federal Reserve Bank of Philadelphia is

a survey of professional forecasters in the United States. A similar survey was con-

ducted by the European Central Bank (ECB). Since 1999, the ECB has conducted

a quarterly survey of expectations for some of the euro area’s key macroeconomic

variables. It is known as the ECB’s Survey of Professional Forecasters. The survey

participants are anonymous experts affiliated with financial or non-financial insti-

tutions within the European Union. The SPF questionnaire includes questions on

HICP inflation, the real GDP growth rate, and the unemployment rate in the euro

area over different horizons. The survey currently takes place in the first month of

each quarter. The questionnaire is sent out to the participants immediately after the

macroeconomic data for the last month of the previous quarter is released. Among

all the forecast horizons in the questionnaire, forecasters are requested to provide

their expectations for two specific months (quarters for the real GDP growth rate)

that are set one and two years ahead of the latest available data for the respec-

tive variables. This feature enables us to run the error-on-revision regression using

this data. In terms of applying the error-on-revision methodology, there are three

main disadvantages of the ECB’s SPF compared with SPF from the Philadelphia
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Figure 1.6: θs for Different Time Periods

Notes: This figure plots the θ estimates for different time periods. θs estimated
from 1968-2022 are plotted as black crosses. θs estimated from 1981-2022 are plotted
as blue dots. θs estimated from 1991-2022 are plotted as red squares. 95% confidence
intervals are included.

Fed: first, it covers a shorter time span. ECB’s SPF started in 1999 while the SPF

from the Philadelphia Fed started in 1968; second, ECB’s SPF has fewer variables;

third, ECB’s SPF has fewer rolling horizons.19 That is, ECB’s SPF only asks people

about their forecast for one year and two years ahead. The Philadelphia Fed’s SPF

asks about the current quarter, as well as one, two, three, and four quarters ahead.

Because of this feature of the ECB’s Survey of Professional Forecasters, forecast

revision can only be computed from a comparison to the previous year. Yet, the

survey of tens of professional forecasters in the European Union over the past 20

years makes the ECB’s SPF a valuable source of information about overreaction or

underreaction in expectation formation. Does the pattern that we have observed in

US’s SPF exist in Europe’s SPF?

The Error-on-revision regression results are reported in table 1.11. Similar to table

1.2, for real GDP growth rate and inflation, β̂Cs are positive but β̂Is are negative.

For unemployment rate, both β̂C and β̂I are positive. However, none of the coeffi-

19For HICP inflation, the surveys sent out in the first, second, third, and fourth quarter of the
year respectively inquire about the coming December, March, June, and September, within one
year and two years ahead. For real GDP growth rate, the surveys sent out in the first, second,
third, and fourth quarter of the year respectively inquire about the coming third, fourth, first and
second quarter, within one year and two years ahead. For the unemployment rate, the surveys sent
out in the first, second, third, and fourth quarter of the year ask about forecast for the coming
December, March, June and September, within one year and two years ahead.
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cients in table 1.11 is significant. Given our main arguments that βCOLS is the better

statistic for making inferences on the degree of over-/underreaction to new informa-

tion, expectation formation for inflation exhibits underreaction to new information

across different measures of inflation and different surveys. One thing worth notic-

ing is that in table 1.11 we restrict the period to 1999 - 2019, excluding the recent

period. The reason for excluding the recent period is that, starting from 2020, there

have been many historical episodes of turmoil: the global pandemic, the Russian

invasion of Ukraine, etc., which might affect the estimation results of β̂C and β̂I .

The regression results for the full sample are reported in table 1.17 in the appendix.

We can see that β̂C and β̂I of real GDP growth rate change drastically when the

periods starting from 2020 are added. While for inflation and unemployment rate,

β̂C and β̂I do not exhibit much difference whether the period after 2019 is included.

The respective θ values are plotted in Figure 1.7. Firstly, all three variables yield

negative θ values. Secondly, in the case of CPI inflation, θ exhibits a large magnitude,

regardless of whether it is estimated from matching βC or βI . This observation

aligns with the findings obtained from the Fed’s Survey of Professional Forecasters,

where both the GDP price index and CPI inflation demonstrate significant degrees

of under-reaction. The model parameters using the ECB’s Survey of Professional

Forecasters are reported in table 1.18 in the appendix.

Table 1.11: Error-on-revision Regression Results for ECB’s SPF
β̂C β̂I

Periods Number of Forecasters
Point Estimate SE p-value Point Estimate SE p-value

Inflation 0.72 0.69 0.30 -0.11 0.15 0.43

1999-2019

44
RGDP 0.09 0.17 0.58 -0.09 0.22 0.67 44

Unemployment 0.12 0.11 0.26 0.02 0.06 0.73 40

Notes: This table reports the Error-on-revision regression results for ECB’s Sur-
vey of Professional Forecasters. I report the point estimates, standard errors, p-
value. The number of forecasters is the average number of forecasters across all
waves of survey.

1.6.5 Expansions and Contractions

In this section, I explore the varying magnitude of idiosyncratic random noise, β̂C

and β̂I across expansions and contractions. When applying the forecast error on

forecast revision regression, we note that both β̂C and β̂I vary across expansions and

contractions: β̂C and β̂I are much more negative in contractions than in expansions.

The consensus and individual regressions that we run now are as follows:

wt+1 − F̄twt+1 = βC0 + βC1 (F̄twt+1 − F̄t−1wt+1)1t∈Bust

+βC2 (F̄twt+1 − F̄t−1wt+1) + βC3 1t∈Bust + ut

46



Figure 1.7: θ Estimates for ECB Survey of Professional Forecasters

Notes: This figure plots θ estimates for different variables in ECB’s Survey of
Professional Forecasters. θs are estimated using method 2. θs estimated by matching
βI are plotted as red stars. θs estimated by matching βC are plotted as blue dots.
95% confidence intervals are included.

wt+1 −Fi,twt+1 = βI0 + βI1(Fi,twt+1 −Fi,t−1wt+1)1t∈Bust

+βI2(Fi,twt+1 −Fi,t−1wt+1) + βI31t∈Bust + ui,t

where 1t∈Bust = 1 if t is in an economic contraction. βd1 , d ∈ {C, I}, captures the

difference of forecast error and forecast revision correlation coefficient in expansions

and contractions in both equations. βd1 < 0 means that βd is lower in contractions

than in expansions. Regression results are reported in the following table. The

boom and bust are classified according to NBER business cycle expansions and

contractions.20 The forecast in the table is for quarter t+ 3.

For five out of seven variables, β̂C1 and β̂I1 are negative, meaning there is ev-

idence that β̂C and β̂I are more negative in contractions than in expansions. It

might mean there is stronger overreaction to information in contractions than ex-

pansions. However, when we divide the survey into expansions and contractions, the

underlying economic parameters in two subsamples can be very different: the statis-

tical processes generating those state variables, captured by ρ and σe, are different

in expansions and contractions; the variance of idiosyncratic random noise σ2
η is dif-

20Since 1968, the NBER contractions include December 1969 to November 1970, November
1973 to March 1975, January 1980 to July 1980, July 1981 to November 1982, July 1990 to March
1991, March 2001 to November 2001, December 2007 to June 2009, February 2020 to April 2020.
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Table 1.12: Over-/Underreaction in Expansion and Contraction
NGDP RGDP GDP Price Index CPI Tbill Tbond AAA

βC1 −1.43∗∗∗

(0.51)
−1.59∗∗∗

(0.39)
0.37
(0.47)

0.11
(1.39)

−1.3∗∗∗

(0.5)
−0.56
(0.41)

−1.2∗∗∗

(0.44)
βI1 −0.51∗∗∗

(0.19)
−0.21∗∗

(0.09)
0.22
(0.09)

−0.12
(0.23)

−0.59∗∗∗

(0.17)
−0.34∗

(0.2)
−0.45∗∗∗

(0.15)
∆σ 45% 33% 31% 71% 63% −6% 36%

Notes: This table reports the difference in regression coefficients during economic
contractions and expansions, as the regression equations in section 1.6.5. Results
from both the individual level and consensus level regressions are reported. ∆σ is
the difference of ση between economic contractions(bust) and expansions(boom),

∆σ =
σbustη −σboomη

σboomη
. Standard errors are displayed in parenthesis. * p < 0.10, **

p < 0.05, *** p < 0.01.

ferent; and of course, it might be due to the different degrees of over-/under-reaction

to new information θ in expansions and contractions.

Now that we know the importance of identifying the magnitude of idiosyncratic

random noise, we identify this variance as we do in section 1.5, but separately for

expansions and contractions. First, idiosyncratic random noise η̂i,t is obtained for

each variable. Second, I pool η̂i,t separately for expansions and contractions to

calculate the variance of idiosyncratic random noise. The difference in the standard

deviation of idiosyncratic noise between economic expansions and contractions is

presented in the third row of Table 1.12.

We can see that, mostly, the variance of idiosyncratic noise in contractions is

much more significant than that in expansions, consistent with previous findings

that forecast dispersion is higher in crisis periods (e.g., Mankiw, Reis, and Wolfers

(2003)).

To compare θ values between economic expansions and contractions, I conducted

the Error-on-revision regression solely for economic expansions and estimated θ using

βC values derived from the expansion periods. I then compared these obtained θ

values with the θ values estimated from the full sample. The rationale behind

focusing on economic expansions only is that these periods have longer time series

data, leading to increased statistical power in the regression analysis. Conversely,

economic contractions have relatively shorter time series data.

The comparison between θ values from economic expansions and the full sample

is illustrated in figure 1.8. Detailed estimates of βC and θ values are reported in table

1.19 in the appendix. The results indicate some evidence that, for nominal GDP

growth rate and 10-year Tbond, θ values tend to be larger in absolute value during

economic expansions. However, it is crucial to interpret this finding considering

the approach of reporting the θ value closer to zero when there are two θ values

(¡0) that can match the βC values from the data and the model. For GDP price

index inflation and 3-month Tbill yield, the θ values are consistently around -0.5.

As previously discussed, this indicates that the β̂C values from the data are too

large for the model to match accurately. In these cases, I report the θ value that
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Figure 1.8: θs in Expansions and the Full Sample

Notes: This table plots the θ estimates from economic expansions, as red stars.
θs estimated from the full sample are plotted as blue dots. 95% confidence intervals
are included.

minimizes the distance between β̂C and βCOLS.

1.6.6 Additional Test of Coefficient Restrictions

Coibion and Gorodnichenko (2015) conducted several tests regarding the coefficient

restrictions in model-implied regression 1.1. Their model suggests three main param-

eter restrictions, no matter whether under sticky information or noisy information

environment: first, the constant term in regression 1.1 should be zero. Second, on

the right hand side of the regression equation, the coefficients for the current forecast

and forecast made in the last period should be of equal magnitude but possess oppo-

site signs. Third, there should not be any additional variables with predictive power

on forecast errors. Instead, forecast revisions should hold all the predictive power

over these errors. Their investigations primarily centered around inflation forecasts,

with tests for other variables not being conducted. In the case of the inflation rate,

the regression specification passed most of the tests for parameter restrictions. In

this chapter, I repeat their tests for other variables under consideration. My focus

is on the same forecast horizons, h = 3, as was done by Coibion and Gorodnichenko

(2015). To verify the first coefficient restriction, I present the constant term in equa-

tion 1.1. For the second coefficient restriction, a new regression is run as follows:

wt+3 − F̄twt+3 = βC0 + βC1 F̄twt+3 + βC2 F̄t−1wt+3 + ut,t+3, (1.32)
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If the regression in equation 1.1 is the correct specification, estimation results from

regression 1.32 should fulfill the condition: βC1 + βC1 = 0. To test the third model

restriction, a further regression is conducted as follows:

wt+3 − F̄twt+3 = βC0 + βC(F̄twt+3 − F̄t−1wt+3) + δzt−1 + ut,t+3, (1.33)

where zt−1 can be any other variables that might have predictive power on fore-

cast errors. Lagged variable is used in the regression, since when forecasters make

their forecast at the beginning of a quarter, only the lagged information is fully

observed. In my test, I use the lagged quarterly inflation rate and quarterly average

3-month Tbill rate, which are also used in Coibion and Gorodnichenko (2015). As

a comparison, I run the following regression:

wt+h − F̄twt+h = βC0 + δzt−1 + ut,t+h, (1.34)

Tests of coefficient restrictions are conducted at both the consensus and individual

levels. The results for the first two tests are reported in table 1.20 and 1.21. The

outcomes for the third test are presented in table 1.22 and 1.23. Panel A in both

table 1.20 and 1.21 reveals that the intercepts for bond yields, including the 3-

month Tbill, 10-year Tbond, and AAA corporate bond, are significantly negative.

For other variables, the intercepts are generally not significant. This suggests that

forecasters consistently over-predict future yields for bond yields, potentially due to

an oversight of the declining trend in yields over the past four decades during their

forecasting process.

To evaluate whether the coefficient restriction βC1 +βC1 = 0 is rejected or not, we

examine the p-value in panel B of table 1.20 and 1.21. This restriction cannot be

rejected at the consensus level for the majority of variables. However, it is rejected

for CPI inflation and the 3-month Tbill. Conversely, at the individual level, this

restriction is rejected for nearly all variables, with the exception of the real GDP

growth rate.

Regarding the third coefficient restriction, we turn our attention to δs in table

1.22. Despite the inclusion of forecast revisions on the right-hand side of the regres-

sion equation, the lagged inflation rate and 3-month Tbill rate still exhibit significant

explanatory power over forecast errors. For instance, the lagged inflation rate signif-

icantly negatively predicts forecast errors at the consensus level across all variables.

When inflation is high, forecasters tend to make negative forecast errors, indicating

an over-prediction of future growth rate, inflation rate, and bond yields based on

the last observed quarterly inflation. As expected, without forecast revisions on the

right-hand side, the lagged inflation rate and 3-month Tbill rate continue to have

significant predictive power on forecast errors, as demonstrated in table 1.23.
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1.7 Conclusion

Are people underreacting or overreacting to new information? This chapter revisits

two pertinent empirical facts: the correlation coefficients between forecast errors and

forecast revisions being positive at the consensus level and negative at the individual

level. The literature interprets these facts as overreaction at the individual level and

underreaction at the consensus level. I challenge this common interpretation by an-

alyzing how those two coefficients are determined under a parsimonious framework

of expectation formation. The expectation formation model deviates from the ratio-

nal expectation hypothesis in two ways: first, it allows over-/underreaction to new

information; second, there are two types of judgment noise, idiosyncratic random

noise, and individual fixed heterogeneity. In the model, positive correlation coef-

ficients at the consensus level imply underreactions to new information. However,

negative correlation coefficients result from idiosyncratic random noise. This yields

an entirely different interpretation of the discrepancies between consensus and in-

dividual correlation coefficients. The identified magnitude of idiosyncratic random

noise in forecast survey data is large enough to reconcile the gap between those two

correlation coefficients. The critical parameter measuring over-/underreaction to

new information mostly shows underreaction, different from the results in Bordalo,

Gennaioli, Ma, and Shleifer (2020).

There are many more intriguing questions to explore in this strand of literature.

For example, what explains the heterogeneous degrees of over-/under-reaction to

new information across different variables? This has been noted and investigated

by Wang (2021) and d’Arienzo (2020) for bond yields of different maturities. In

the data, bonds with shorter maturities exhibit underreactions, while bonds with

longer maturities exhibit overreactions. Are there more general patterns that are

not specific to the bond yield forecast? What are the possible explanations?

1.8 Appendix

Proof 1 (Proposition 1 and Corollary 1) To derive the coefficient for individ-

ual regression, we can first derive the coefficient for an individual forecaster i:

βiOLS =
cov(et+1 − ρθet − ηi,t − φi, ρ(1 + θ)et + ηi,t + φi − ρ2θet−1 − ρ(ηi,t−1 + φi))

var(ρ(1 + θ)et + ηi,t + φi − ρ2θet−1 − ρ(ηi,t−1 + φi))

=
−(1 + θ)θ − σ2

η

ρ2σ2
e

(1 + θ)2 + ρ2θ2 + (1 + ρ2)
σ2
η

ρ2σ2
e

(1.35)

Since φi is constant for individual i, it does not enter into the variance nor covari-

ance term for βiOLS, so βiOLS is not affected by σ2
φ. βiOLS is the same for all i, but

the intercepts for different forecasters are distinct (since φi is unique for different
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forecasters). When pooling all forecasters together and running the panel regression

with individual fixed effect, I allow different forecasters to have their own intercepts.

The regression coefficient is equal to the common coefficient βiOLS

βIOLS = βiOLS

To derive βCOLS, first note that

var(

∑N
i ηi,t
N

) =
σ2
η

N

Then

βCOLS =
cov(wt+1 − Eθ

twt+1, E
θ
twt+1 − Eθ

t−1wt+1)

var(Eθ
twt+1 − Eθ

t−1wt+1)

=
cov(et+1 − ρθet −

∑N
i ηi,t
N
−

∑N
i φi
N

, ρ(1 + θ)et +
∑N
i ηi,t
N

+
∑N
i φi
N
− ρ2θet−1 − ρ(

∑N
i ηi,t
N

+
∑N
i φi
N

))

var(ρ(1 + θ)et +
∑N
i ηi,t
N

+
∑N
i φi
N
− ρ2θet−1 − ρ(

∑N
i ηi,t
N

+
∑N
i φi
N

))

=
−θ(1 + θ)− σ2

η

Nρ2σ2
e

(1 + θ)2 + ρ2θ2 + (1 + ρ2)
σ2
η

Nρ2σ2
e

(1.36)

When the number of forecasters is large, βCOLS
n→∞−−−→ −θ(1+θ)

(1+θ)2+ρ2θ2

Q.E.D.

Proof 2 (Corollary 2) Similar to proof 1,

βiOLS =
cov(et+1 − ρθet − ηi,t − φi, ρ(1 + θ)et + ηi,t + φi − ρ2θet−1 − ρ(ηi,t−1 + φi))

var(ρ(1 + θ)et + ηi,t + φi − ρ2θet−1 − ρ(ηi,t−1 + φi))

Now since ηi,t is serially correlated as

ηi,t = ρηηi,t−1 + ui,t

Since cov(ηi,t, ηi,t−1) = ρησ
2
η,

βiOLS =
−θ(1 + θ)− σ2

η

ρ2σ2
e

+
ρησ2

η

ρσ2
e

ρ2θ2 + (1 + θ)2 + (ρ2 + 1)
σ2
η

ρ2σ2
e
− 2ρησ2

η

ρσ2
e

Similar to proof 1, when pooling all forecasters together and running the panel re-

gression with individual fixed effect, the panel regression coefficient is equal to the

common coefficient βiOLS
βIOLS = βiOLS

When N → ∞, judgment noise is averaged out during the calculation of consensus

52



forecast, so consensus forecast is given by

βCOLS =
−θ(1 + θ)

(1 + θ)2 + ρ2θ2

Corollary 3 (CG Regression Coefficients under AR(2)) When the state vari-

able follows an AR(2) process,

wt = ρ1wt−1 + ρ2wt−2 + εt

and individual forecast is given by

Eθ
i,twt+T = Eθ

twt+T + (ηi,t + φi)ρ
T
η

where Eθ
twt+T is the generalized diagnostic expectation, and (ηi,t + φi)ρ

T
η is the id-

iosyncratic noise and individual fixed heterogeneity. ρη captures the correlation of

the noise component across different forecast horizons. With individual fixed effect

in the panel regression, the CG regression coefficients at two levels would be given

by:

βC =
−θ(1 + θ)

(1 + θ)2 + θ2[
f
(T+1)
11

f
(T )
11

]2

βI =
−(θ + 1)θ − [

ρTη

f
(T )
11

]2
σ2
η

σ2
ε

(1 + θ)2 + θ2[
f
(T+1)
11

f
(T )
11

]2 + [
ρTη

f
(T )
11

]2(1 + ρ2
η)
σ2
η

σ2
ε

f
(j)
11 is the (1, 1) element of F j, F =

(
ρ1 ρ2

1 0

)
.

Proof 3 (Corollary 3) Assume the state variable follows the following AR(2) pro-

cess:

wt = ρ1wt−1 + ρ2wt−2 + εt. (1.37)

The forecast by the diagnostic expectations with forecast horizon T is given by:

Eθ
twt+T = Etwt+T + θ (Etwt+T − Et−1wt+T ) . (1.38)

where

Etwt+T = f
(T )
11 wt + f

(T )
12 wt−1.

f
(j)
11 is the (1, 1) element of F j, where F =

[
ρ1 ρ2

1 0

]
. f

(j)
12 is the (1, 2) element of

F j.

To derive Eθ
twt+T , first we derive Et−1wt+T :

Et−1wt+T = f
(T+1)
11 wt−1 + f

(T+1)
12 wt−2 (1.39)
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where f
(T+1)
11 = ρ1f

(T )
11 + f

(T )
12 , f

(T+1)
12 = ρ2f

(T )
11 .

Now,

Eθ
twt+T = f

(T )
11 wt+f

(T )
12 wt−1 +θ[f

(T )
11 wt+f

(T )
12 wt−1−f (T+1)

11 wt−1−f (T+1)
12 wt−2] (1.40)

It can be verified that the terms in the bracket sum to f
(T )
11 εt.

So

Eθ
twt+T = f

(T )
11 wt + f

(T )
12 wt−1 + θf

(T )
11 εt (1.41)

Eθ
t−1wt+T = f

(T+1)
11 wt−1 + f

(T+1)
12 wt−2 + θf

(T+1)
11 εt−1 (1.42)

Now we can derive the forecast errors and forecast revisions.

Forecast error = wt+T − Eθ
twt+T

= f
(T )
11 wt + f

(T )
12 wt−1 +

T∑
j=1

ψjεt+j − f (T )
11 wt − f (T )

12 wt−1 − θf (T )
11 εt

=
T∑
j=1

φjεt+j − θf (T )
11 εt

Forecast revision = Eθ
twt+T − Eθ

t−1wt+T = f
(T )
11 wt + f

(T )
12 wt−1 + θf

(T )
11 εt

− f (T+1)
11 wt−1 − f (T+1)

12 wt−2 − θf (T+1)
11 εt−1

= f
(T )
11 [ρ1 · wt−1 + ρ2 · wt−2 + εt] + f

(T )
12 wt−1 + θf

(T )
11 εt

− f (T+1)
11 wt−1 − f (T+1)

12 wt−2 − θ · f (T+1)
11 εt−1

= f
(T )
11 εt + θ · f (T )

11 εt − θ · f (T+1)
11 εt−1

So

βc =
cov

(∑T
j=1 ψjεt+j − θ · f

(T )
11 · ε, f

(T )
11 εt + θ · f (T )

11 εt − θ · f (T+1)
11 εt−1

)
Var(FR)

=
−
[
f

(T )
11

]2

θ(1 + θ)

(1 + θ)2
[
f

(T )
11

]2

+ θ2
[
f

(T+1)
11

]2 =
−θ(1 + θ)

[
f

(T )
11

]2

(1 + θ)2
[
f

(T )
11

]2

+ θ2
[
f

(T+1)
11

]2

Now we turn to the derivation of βI . Assume the individual level forecast is given

by the following:

Eθ
i,twt+T = f

(T )
11 wt + f

(T )
12 wt−1 + θ · f (T )

11 · εt + ηi,t · ρTη , (1.43)

where ρη captures the correlation of the noise component across different forecast
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horizons. Similarly, the previous forecast is given by:

Eθ
i,t−1wt+T = f

(T+1)
11 wt−1 + f

(T+1)
12 wt−2 + θ · f (T+1)

11 · εt−1 + ηi,t−1 · ρT+1
η . (1.44)

Similar to the derivation at the consensus level, the forecast error is given by:

Forecast error =
T∑
j=1

ψjεt+j − θ · f (T )
11 · εt − ηi,t · ρTη . (1.45)

The forecast revision is given by:

Forecast revision = f
(T )
11 εt + θf

(T )
11 εt + ρTη · ηi,t − θ · f

(T+1)
11 εt−1 − ρT+1

η · ηi,t−1. (1.46)

As a result:

βI =
−
[
f

(T )
11

]2

θ(1 + θ)σ2
ε − ρη2Tσ2

η

(1 + θ)2
[
f

(T )
11

]2

σ2
ε + σ2

η

[
ρη2T + ρ2T+2

η

]
+ θ2

[
f

(T+1)
11

]2

σ2
ε

=
−
[
f

(T )
11

]2

θ(1 + θ)− ρ2T
η

σ2
η

σ2
ε

(1 + θ)2
[
f

(T )
11

]2

+ ρ2T
η

(
1 + ρ2

η

) σ2
η

σ2
ε

+ θ2
[
f

(T+1)
11

]2

=

−θ(1 + θ)−
[

ρTη

f
(
11T )

]2
σ2
η

σ2
ε

(1 + θ)2 +

[
ρTη

f
(T )
11

]2 (
1 + ρ2

η

) σ2
η

σε2
+ θ2

[
f
(T+1)
11

f
(T )
11

]2 .

Q.E.D.
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Table 1.13: Error-on-revision Regression Results for Different Time Periods

β̂C β̂I

Periods
Point Estimate SE p-value Point Estimate SE p-value

RGDP

0.11 0.31 0.73 -0.28 0.12 0.02 1968-2022
0.03 0.36 0.93 -0.3 0.23 0.2 1981-2022
-0.16 0.3 0.59 -0.37 0.26 0.16 1991-2022

GDP Price Index

1.26 0.41 0.00 -0.15 0.07 0.04 1968-2022
0.54 0.23 0.02 -0.36 0.06 0.00 1981-2022
0.94 0.41 0.02 -0.3 0.08 0.00 1991-2022

NGDP

0.14 0.25 0.56 -0.32 0.12 0.01 1968-2022
0.24 0.37 0.51 -0.25 0.19 0.19 1981-2022
-0.02 0.26 0.94 -0.29 0.25 0.24 1991-2022

CPI
1.04 0.76 0.17 -0.38 0.09 0.00 1981-2022
-0.29 1.12 0.79 -0.5 0.11 0.00 1991-2022

Tbill
0.69 0.11 0.00 0.21 0.09 0.03 1981-2022
0.8 0.11 0.00 0.33 0.1 0.00 1991-2022

AAA
-0.02 0.16 0.92 -0.27 0.07 0.00 1981-2022
-0.01 0.14 0.92 -0.31 0.07 0.00 1991-2022

Notes: This table reports the robustness check for whether β̂C and β̂I vary across
different time periods. For consensus time series regressions, standard errors
are Newey-West (1994) with automatic bandwidth selection. For individual panel
regressions, standard errors are clustered by forecaster and time.

Table 1.14: Inference on θ without Considering Idiosyncratic Noise
RGDP GDP Price Index NGDP CPI Tbill AAA Tbond

θ from
matching βI

0.41∗∗∗

(0.08)
0.18∗∗∗

(0.06)
0.54∗∗∗

(0.1)
0.64∗∗∗

(0.22)
−0.18∗∗∗

(0.03)
0.41∗∗∗

(0.08)
0.33∗∗∗

(0.05)

Notes: This table displays the estimated θs from matching βIBGMS with empirically

estimated β̂I as in BGMS. Standard errors are displayed in parenthesis. * p < 0.10,
** p < 0.05, *** p < 0.01.

Table 1.15: Inference on θ from β̂C with Finite and Infinite N
RGDP GDP Price Index NGDP CPI Tbill AAA Tbond

θ frommatching βC
Infinite N -0.1

(0.08)
−0.5∗∗∗

(0.00)
−0.11∗

(0.07)
−0.62∗∗

(0.23)
−0.5∗∗∗

(0.01)
0.01
(0.07)

0.06
(0.04)

Finite N −0.13
(0.09)

−0.5∗∗∗

(0.00)
−0.15∗∗

(0.07)
−0.68∗∗

(0.22)
−0.5∗∗∗

(0.00)
-0.06
(0.08)

0.05
(0.04)

Number of Forecasters 36 36 36 33 35 30 35

Notes: This table displays the estimated θs from matching βCOLS with empirically

estimated β̂C, with and without considering the finite number of forecasters N . The
number of forecasters N for each variable is also reported. Standard errors are
displayed in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 1.16: Estimation Results for Each Variable in Different Time Periods

ρ σe ση θ Periods

RGDP

0.77 1.57 1.05 -0.14
(0.25)

1968-2022

0.69 1.55 0.74 -0.05
(0.11)

1981-2022

0.64 1.66 0.69 0.16
(0.15)

1991-2022

NGDP
0.84 1.71 1.24 −0.17∗∗

(0.07)
1968-2022

0.77 1.79 1.01 −0.23∗∗∗

(0.06)
1981-2022

0.69 1.89 0.91 -0.003
(0.07)

1991-2022

GDP Price Index
0.98 0.5 0.88 −0.51∗∗∗

(0.02)
1968-2022

0.99 0.42 0.64 −0.5∗∗∗

(0.12)
1981-2022

0.98 0.39 0.53 −0.5∗∗∗

(0.07)
1991-2022

CPI
0.46 2.16 0.73 −0.74∗∗

(0.34)
1981-2022

0.3 2.07 0.61 0.35
(0.34)

1991-2022

Tbill
0.99 0.57 0.48 −0.31∗∗∗

(0.04)
1981-2022

0.99 0.38 0.36 −0.5∗∗∗

(0.02)
1991-2022

AAA
0.99 0.38 0.48 0.08

(0.08)
1981-2022

0.99 0.28 0.5 0.07
(0.09)

1991-2022

Notes: This table displays the estimation results for parameters covering different
time periods.

Table 1.17: Error-on-revision Regression Results for ECB’s SPF Full Sample
β̂C β̂I

Periods Number ofForecasters
Point Estimate SE p-value Point Estimate SE p-value

Inflation 1.71 1.18 0.15 0.30 0.33 0.38

1999-2021

44
RGDP -0.69 0.23 0.00 -0.66 0.16 0.00 44

Unemployment 0.02 0.10 0.81 -0.07 0.06 0.30 40

Notes: This table reports the Error-on-revision regression results when, additionally,
the pandemic period is also included.
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Figure 1.9: Inference on θ from β̂C with Finite and Infinite N

Notes: This figure plots θs estimation from table 1.15. θs estimated with N →∞
are plotted as black crosses. θs estimated with the actual number of forecasters are
plotted as blue dots. 95% confidence intervals are included.

Table 1.18: Model Parameters Using ECB’s SPF

Inflation RGDP Unemployment

ρ 0.88 0.86 0.99
σe 0.42 0.73 0.23
ση 0.27 0.37 0.3

Notes: This table reports the model parameters using ECB’s Survey of Professional
Forecasters. ρ is the persistence of the variables as AR(1) processes. σe is the stan-
dard deviation of the innovations. ση is the standard deviation of the idiosyncratic
noise.

Table 1.19: βC and θ in Economic Expansions
NGDP RGDP GDP Price Index CPI Tbill Tbond AAA

βC 0.79∗

(0.41)
0.53∗

(0.31)
1.08∗∗∗

(0.24)
0.78
(0.63)

0.66∗∗∗

(0.22)
0.08
(0.25)

0.25
(0.21)

θ −0.54∗∗∗

(0.1)
−0.48∗∗

(0.23)
−0.51∗∗∗

(0.00)
−0.8∗∗

(0.3)
−0.5∗∗∗

(0.02)
−0.11∗∗∗

(0.04)
−0.33∗∗∗

(0.09)

Notes: This table reports βCs estimated using economic expansions and the respec-
tive θs. Standard errors are displayed in parenthesis. * p < 0.10, ** p < 0.05, ***
p < 0.01.
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Figure 1.10: Inference on θ from Method 1 Considering and Not Considering Serial
Correlation in Idiosyncratic Noise

Notes: This figure plots θs estimation from table 1.9 considering serial correlation
in idiosyncratic noise, alongside with results from table 1.5, without considering
serial correlation in idiosyncratic noise, as comparison. 95% confidence intervals
are included.
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Figure 1.11: βCOLS varies with N

Note: This figure reports how βCOLS in equation 1.21 changes while the number of
forecasters N increases.
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Figure 1.12: The effect of θ on βCOLS and βIOLS

Notes: This figure plots how βIOLS and βCOLS change while θ changes using the
parameters of GDP price index inflation.
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Table 1.20: Two Coefficient Restriction Tests at the Individual Level
RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

Panel A: wt+h −Fi,twt+h = βI0 + βI(Fi,twt+h −Fi,t−1wt+h) + ui,t,t+h

Constant −0.33∗∗

(0.14)
−0.25∗

(0.14)
0.07
(0.08)

−0.21
(0.19)

−0.45∗∗∗

(0.07)
−0.56∗∗∗

(0.06)
−0.52∗∗∗

(0.06)
Obs. 4504 5619 5576 4124 3935 3228 3348
R2 0.1 0.09 0.17 0.05 0.06 0.08 0.13

Panel B: wt+h −Fi,twt+h = βI0 + βI1Fi,twt+h + βI2Fi,t−1wt+h + ui,t,t+h

Constant 0.09
(0.39)

1.91∗∗∗

(0.58)
1.38∗∗∗

(0.27)
2.05∗∗∗

(0.42)
0.34∗∗∗

(0.11)
0.15
(0.2)

1.24∗∗∗

(0.27)
βI1 −0.32∗∗

(0.15)
−0.44∗∗∗

(0.12)
−0.35∗∗∗

(0.1)
−0.81∗∗∗

(0.1)
0.13
(0.1)

−0.29∗∗∗

(0.09)
−0.4∗∗∗

(0.07)
βI2 0.18∗

(0.11)
0.09
(0.08)

−0.06
(0.07)

−0.004
(0.08)

−0.35∗∗∗

(0.09)
0.12
(0.09)

0.15∗∗

(0.06)
p-value 0.21 0.00 0.00 0.00 0.00 0.00 0.00
Obs. 4504 5619 5576 4124 3935 3228 3348
R2 0.11 0.15 0.27 0.12 0.18 0.13 0.25

Notes: This table reports the regression results of the first two tests of coefficient
restrictions at the individual level. Panel A reports the constant term in Error-on-
revision regression. Panel B reports regression results on testing βI1 + βI2 = 0.

Table 1.21: Two Coefficient Restriction Tests at the Consensus Level
RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

Panel A: wt+h − F̄twt+h = βC0 + βC(F̄twt+h − F̄t−1wt+h) + ut,t+h

Constant 0.23
(0.21)

−0.22
(0.17)

−0.02
(0.12)

−0.13
(0.23)

−0.38∗∗∗

(0.08)
−0.52∗∗∗

(0.09)
−0.5∗∗∗

(0.09)
Obs. 203 205 203 159 154 114 156
R2 0.001 0.004 0.24 0.02 0.09 0.0001 0.0001

Panel B: wt+h − F̄twt+h = βC0 + βC1 F̄twt+h + βC2 F̄t−1wt+h + ut,t+h

Constant −0.53
(0.89)

−0.28
(0.8)

0.06
(0.21)

1.18∗

(0.62)
−0.08
(0.12)

−0.46∗∗

(0.2)
0.002
(0.31)

βC1 0.02
(0.4)

0.17
(0.3)

1.2∗∗∗

(0.44)
0.11
(0.43)

0.53∗∗∗

(0.19)
−0.06
(0.12)

−0.03
(0.16)

βC2 0.08
(0.6)

−0.16
(0.39)

−1.22∗∗∗

(0.44)
−0.56
(0.43)

−0.61∗∗∗

(0.19)
0.05
(0.12)

−0.04
(0.16)

p-value 0.69 0.93 0.60 0.01 0.00 0.71 0.05
Obs. 203 205 203 159 154 115 156
R2 0.003 0.005 0.2 0.06 0.12 0.002 0.05

Notes: This table reports the regression results of the first two tests of coefficient
restrictions at the consensus level. Panel A reports the constant term in Error-on-
revision regression. Panel B reports regression results on testing βC1 + βC2 = 0.
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Table 1.22: Coefficient Restriction Test: the Predictive Power of Variables other
than Forecast Revisions

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

Panel A: wt+h −Fi,twt+h = βI0 + βI(Fi,twt+h −Fi,t−1wt+h) + δzt−1 + ui,t,t+h

inflation
βI −0.35

(0.22)
−0.13
(0.13)

−0.38∗∗∗

(0.07)
−0.32∗∗∗

(0.07)
0.23∗∗

(0.09)
−0.19∗∗

(0.08)
−0.26∗∗∗

(0.07)
δ −0.23∗∗∗

(0.08)
−0.25∗∗∗

(0.1)
−0.01
(0.04)

−0.15
(0.1)

−0.06∗

(0.03)
−0.07∗∗∗

(0.02)
−0.05∗∗

(0.02)
R2 0.14 0.09 0.24 0.07 0.07 0.12 0.14

3M T-bill rate
βI −0.18∗∗∗

(0.06)
−0.18∗∗

(0.08)
−0.17∗∗

(0.08)
−0.38∗∗∗

(0.08)
0.23∗∗

(0.09)
−0.23∗∗∗

(0.09)
−0.27∗∗∗

(0.07)
δ −0.18∗∗∗

(0.06)
−0.22∗∗∗

(0.06)
−0.02
(0.04)

−0.12
(0.09)

−0.19∗∗∗

(0.04)
−0.001
(0.03)

−0.01
(0.03)

R2 0.12 0.11 0.18 0.06 0.16 0.08 0.12

Panel B: wt+h − F̄twt+h = βC0 + βC(F̄twt+h − F̄t−1wt+h) + δzt−1 + ut,t+h

inflation
βC −0.07

(0.33)
0.21
(0.29)

0.47∗

(0.28)
1.47∗∗

(0.68)
0.65∗∗∗

(0.15)
0.05
(0.16)

0.05
(0.18)

δ −0.23∗∗∗

(0.07)
−0.32∗∗∗

(0.08)
−0.09∗∗∗

(0.03)
−0.26∗∗∗

(0.08)
−0.07∗∗∗

(0.02)
−0.08∗∗∗

(0.03)
−0.07∗∗∗

(0.03)
R2 0.08 0.12 0.09 0.08 0.11 0.04 0.04

3M T-bill rate
βC 0.04

(0.31)
−0.01
(0.13)

1.24∗∗∗

(0.45)
3.41∗∗∗

(1.00)
0.62∗∗∗

(0.16)
−0.04
(0.09)

−0.01
(0.16)

δ −0.04
(0.05)

−0.07
(0.07)

−0.02
(0.03)

−0.36∗∗∗

(0.12)
−0.08∗∗∗

(0.02)
0.02
(0.02)

−0.03
(0.03)

R2 0.01 0.01 0.23 0.49 0.14 0.004 0.01

Notes: This table reports the predictive power of lagged inflation rate, 3-month Tbill
rate and forecast revisions on forecast errors. Inflation rate is the lagged quarterly
CPI inflation rate. 3M Tbill rate is the lagged quarterly average 3-month Tbill rate.

Table 1.23: Predictive Power of Lagged Inflation Rate and 3-Month Tbill Rate on
Forecast Errors

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

Panel A: wt+h −Fi,twt+h = βC0 + δzt−1 + ui,t,t+h

inflation −0.23∗∗∗

(0.06)
−0.26∗∗∗

(0.09)
−0.02
(0.04)

−0.16
(0.1)

−0.08∗∗

(0.04)
−0.08∗∗∗

(0.02)
−0.06∗∗

(0.02)
R2 0.11 0.08 0.19 0.07 0.04 0.09 0.11

3M T-
bill rate

−0.16∗∗∗

(0.06)
−0.21∗∗∗

(0.06)
−0.03
(0.04)

−0.13
(0.09)

−0.21∗∗∗

(0.04)
−0.006
(0.03)

−0.02
(0.03)

R2 0.08 0.08 0.17 0.05 0.14 0.05 0.1

Panel B: wt+h − F̄twt+h = βC0 + δzt−1 + ut,t+h

inflation −0.22∗∗∗

(0.07)
−0.31∗∗∗

(0.1)
−0.09∗∗

(0.04)
−0.22∗∗∗

(0.07)
−0.07∗∗∗

(0.02)
−0.08∗∗∗

(0.02)
−0.06∗∗∗

(0.02)
R2 0.08 0.11 0.06 0.05 0.02 0.04 0.03

3M T-
bill rate

−0.05
(0.05)

−0.07
(0.07)

−0.01
(0.05)

−0.34∗∗

(0.14)
−0.08∗∗∗

(0.02)
0.02
(0.02)

−0.02
(0.03)

R2 0.01 0.01 0.001 0.3 0.06 0.004 0.007

Notes: Inflation rate is the lagged quarterly CPI inflation rate. 3M Tbill rate is the
lagged quarterly average 3-month Tbill rate.
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1.9 Data Appendix

1.9.1 Construction of Variables

For the construction of forecast errors and forecast revisions using variables from

SPF and the real time macro data, over the forecast horizon of one year, the method

is similar to that of BGMS (2020). Here I include the instructions for the set of

variables used in this chapter for the completeness of the chapter. The time of

survey is included. For some variables, SPF asks forecasters to forecast in terms of

levels of those variables. In such cases, I transform levels into growth rates.

1. NGDP

� Time: During the third week of the second month of the quarter.

� Question: The level of the current quarter’s nominal GDP and for the

upcoming four quarters.

� Forecast: The nominal GDP growth from the end of quarter t− 1 to the

end of quarter t + 3 is given by Ftxt+3

xt−1
− 1. In this formula, t represents

the quarter for which the forecast is being made, and x is the GDP level

for a specified quarter. The xt−1 term refers to the initial release of the

actual value from quarter t − 1, which is accessible by the time of the

forecast in quarter t.

� Revision: Ftxt+3

xt−1
− Ft−1xt+3

Ft−1xt−1

� Actual forecast: xt+3

xt−1
−1, utilizing real-time macroeconomic data released

during quarter (t+4).

2. RGDP

� Time: During the third week of the second month of the quarter.

� Question: The level of the current quarter’s real GDP and for the up-

coming four quarters.

� Forecast: The real GDP growth from the end of quarter t− 1 to the end

of quarter t + 3 is given by Ftxt+3

xt−1
− 1. In this formula, t represents the

quarter for which the forecast is being made, and x is the GDP level for a

specified quarter. The xt−1 term refers to the initial release of the actual

value from quarter t − 1, which is accessible by the time of the forecast

in quarter t.

� Revision: Ftxt+3

xt−1
− Ft−1xt+3

Ft−1xt−1

� Actual forecast: xt+3

xt−1
−1, utilizing real-time macroeconomic data released

during quarter (t+4).

3. GDP Price Index
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� Time: During the third week of the second month of the quarter.

� Question: The level of the current quarter’s GDP price index and for the

upcoming four quarters.

� Forecast: The real GDP growth from the end of quarter t− 1 to the end

of quarter t + 3 is given by Ftxt+3

xt−1
− 1. In this formula, t represents the

quarter for which the forecast is being made, and x is the GDP level for a

specified quarter. The xt−1 term refers to the initial release of the actual

value from quarter t − 1, which is accessible by the time of the forecast

in quarter t.

� Revision: Ftxt+3

xt−1
− Ft−1xt+3

Ft−1xt−1

� Actual forecast: xt+3

xt−1
−1, utilizing real-time macroeconomic data released

during quarter (t+4).

4. CPI

� Time: During the third week of the second month of the quarter.

� Question: Current quarter’s CPI growth rate and for the upcoming four

quarters.

� Forecast: Ftxt+3, where t is the quarter of forecast and x is the CPI

growth rate.

� Revision: Ftxt+3 −Ft−1xt+3.

� Actual forecast: xt+3.

5. AAA

� Time: During the third week of the second month of the quarter.

� Question: Current quarter’s AAA corporate bond yield and for the up-

coming four quarters.

� Forecast: Ftxt+3, where t is the quarter of forecast and x is the level of

AAA corporate bond yield.

� Revision: Ftxt+3 −Ft−1xt+3.

� Actual forecast: xt+3.

6. TBILL

� Time: Around the 3rd week of the middle month in the quarter.

� Question: Current quarter’s 3-month treasury yield and for the upcoming

four quarters.

� Forecast: Ftxt+3, where t is the quarter of forecast and x is the level of

3-month treasury yield.
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� Revision: Ftxt+3 −Ft−1xt+3.

� Actual forecast: xt+3.

7. TBOND

� Time: Around the 3rd week of the middle month in the quarter.

� Question: Current quarter’s 10-year treasury yield and for the upcoming

four quarters.

� Forecast: Ftxt+3, where t is the quarter of forecast and x is the level of

10-year treasury yield.

� Revision: Ftxt+3 −Ft−1xt+3.

� Actual forecast: xt+3.
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Chapter 2

Adaptive Expectations and

Over-/Under-reaction to New

Information

2.1 Introduction

The Rational Expectations Hypothesis has been the workhorse model of macroeco-

nomic expectations. Nevertheless, contemporary studies, rich in empirical evidence

drawn from diverse survey data, have challenged its supremacy. A line of work re-

veals the predictability of forecast errors using different forecast surveys (Coibion

and Gorodnichenko 2012, 2015; Fuhrer 2019; Bordalo, Gennaioli, Ma and Shleifer

2020; Adam, Marcet and Beutel 2017, etc). This surge in data has given birth to

innovative models of expectation formation, aiming to better align theories with

observed empirical patterns. Among those models, diagnostic expectations model

has gathered substantial attention among researchers. Grounded in psychological

principles, the diagnostic expectations model is able to explain the predictability of

forecast errors in the survey data, and elucidate other empirical puzzles in finance

and macro, such as the excess volatility of stock prices, credit, and investment

(Gennaioli, Ma and Shleifer 2016; Bordalo, Gennaioli and Shleifer 2018; Bordalo,

Gennaioli, La Porta and Shleifer 2019).

This chapter underscores a limitation of the generalized diagnostic expectations

model: its inability to capture the stickiness exhibited by certain variables in survey

data, notably the inflation rate and the 3-month Tbill. Stickiness here is quan-

tified using the regression coefficients of Error-on-revision regressions (commonly

known as the CG regression) introduced by Coibion and Gorodnichenko (2015).

This method is the standard approach for determining over- or under-reactions to

new information in survey-based observations. In contrast to the diagnostic expec-

tations model’s shortcomings, this research demonstrates the adaptive expectations

model’s versatility in aligning with this dimension of forecast surveys. Additionally,
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I also illustrate that adaptive expectations’ backward-looking feature can explain

two other phenomena discussed in the literature: horizon-increasing over-reaction

(Afrouzi et al. 2021; Bordalo et al. 2019; Bouchaud et al. 2019; Giglio and Kelly

2018), and dynamic responses of outcomes and forecasts: forecasts initially under-

react to shocks compared with outcome but over-shoot later on (Angeletos, Huo and

Sastry 2021).

Starting from the 1950s, the adaptive expectations model (Cagan 1956; Fried-

man 1957) became the standard approach to model macroeconomic expectations.

Adaptive expectations are backward-looking, positing that the current forecast is a

weighted average of the current observation and the previous forecast. Over time, it

faced criticism primarily because of its inability to respond quickly to clearly under-

stood regime shifts, a shortcoming highlighted by Lucas (1976).1 Consequently, the

adaptive expectations model was gradually overshadowed by the Rational Expecta-

tions Hypothesis. Yet, this chapter endeavors to argue that, despite its criticisms,

the inherent backward-looking nature of adaptive expectations can effectively ex-

plain several patterns presented in survey data, where the rational expectations

model clearly can not.

Central to this chapter is an exploration of how the CG regression coefficient

behaves under the adaptive expectations framework. If we assume the underlying

variable follows an AR(1) process, then the CG regression coefficients are deter-

mined by the persistence of the underlying variable and the weighting parameter

under adaptive expectations. The weighting parameter gauges the weight put on

the current observation. The CG coefficient is decreasing in the weighting parame-

ter and increasing in the persistence of the underlying variable. In other words, the

higher the weighting parameter, the lower the persistence, the more overreaction

there is in expectations formation. Interestingly, with a sufficiently low weighting

parameter, the adaptive expectations model can achieve arbitrary levels of forecast

stickiness. This high degree of flexibility is absent in the diagnostic expectations

model. The reason is that, under diagnostic expectations model, the forecasts are

the weighted average of two adjacent rational forecasts, which limits the stickiness.

The previous insights apply to the consensus level regressions without considering

idiosyncratic noise.2Relying on the same argument in chapter 1, the gap between

the consensus and individual level regression coefficients can be explained by the

presence of idiosyncratic noise in individual forecasts. The CG equation features

the current forecast on both its left and right sides, but with contrasting signs.

Any idiosyncratic noise in individual forecasts, regardless of their cause, explain the

difference between the consensus and individual regression coefficients.

1For example, when the central bank adopts a more aggressive inflation-fighting monetary
policy after a prolonged period of high inflation, the inflation expectation of the public could very
well fall quickly, whereas under adaptive expectations, inflation expectations only fall gradually.

2In this chapter, I assume the number of forecasters are large, so idiosyncratic noise does not
impact the consensus level regression coefficients.
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I match the model implied regression coefficients with the empirical counterpart,

separately for the consensus and individual level. The adaptive expectations model

performs commendably, matching twelve out of fourteen coefficient estimates, as

opposed to the generalized diagnostic expectations model which can only reconcile

six. The weighting parameter is heterogeneous across different variables. Variables

with higher consensus level CG coefficients, including the CPI, the GDP Price Index

inflation and the 3-month Tbill yield, exhibit lower weighting parameter, meaning

forecasts react less to the current observation.

Further examination reveals the adaptive expectations model’s ability to account

for two additional sets of empirical evidence. First, I study whether the CG coeffi-

cients decrease over the forecast horizon under adaptive expectations, meaning there

is more over-reaction as the forecast horizon extends. Under the assumption of hor-

izontal term structure of forecasts, the CG coefficients are indeed decreasing over

horizon under adaptive expectations. The reason is that forecasters do not take into

account that the impact of shocks diminishes over time. Second, I investigate the

implications of adaptive expectations on the dynamic response of forecast errors.

It turns out that the initial under-reaction and later over-shooting documented in

Angeletos, Huo and Sastry (2021) is a natural implication of adaptive expectations

model. Upon a shock, forecasts adjust in the direction of the actual outcome. But

forecasts can never adjust too much, as they are always anchored by the previous

forecasts.

This chapter is an extension of chapter one, focusing on adaptive expectations

model, which were overshadowed by the rational expectations hypothesis. A sig-

nificant critique against adaptive expectations, termed the Lucas Critique, arises

due to its exogenously set weighting parameter, which remains fixed regardless of

policy shifts. However, Evans and Ramey (2006) show that, there are regimes where

the weighting parameter is invariant. To further advocate for the adaptive expecta-

tions model, this chapter shows that the model’s backward-looking feature provides

valuable insights in understanding empirical puzzles in forecast surveys.

2.2 Adaptive Expectations

The adaptive expectations hypothesis can be traced back to 1930s, and was formally

introduced in the 1950s (see Cagan (1956), Friedman (1957)). Adaptive expectations

were widely used in macroeconomics in the 1960s and 1970s. For example, inflation

expectations were usually modeled as adaptive expectations.3 Denote the variable

of interest as wt, and people’s period t forecast for the period t + 1 outcome as

3See Evans and Honkaphohja (2001).
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Ftwt+1. The adaptive expectations forecast is given by

Ftwt+1 = γwt + (1− γ)Ft−1wt (2.1)

The current forecast of future variable wt+1 is a weighted average of the current

observation and the previous forecast. γ is the (adaptive) weighting parameter.

According to adaptive expectations, people form expectations of the future accord-

ing to what they observe in the current period and past expectations. Since past

expectations also depend on observations in the further past, current expectations

depends on all the historical observations. This can be illustrated by the following

equation, which is obtained by iterating equation (2.1) backward.

Ftwt+1 = γ
∞∑
i=0

(1− γ)iwt−1−i (2.2)

By the equation above, γ has to be between (0, 2) so that Ftwt+1 is not explosive. For

values of γ within the interval [0,1], equation (2.2) can be interpreted in the following

manner: the current expectation is a weighted average of past observations, with

forecasters assigning lower weights to observations that are further in the past.

2.3 CG Regressions

Since the seminal work of Coibion and Gorodnichenko (2015), many researchers have

run regressions with forecast errors as dependent variables, and forecast revisions as

the explanatory variables to detect the existence of over-/under-reaction in expec-

tations formation. Denote the macroeconomic variable as wt, e.g., inflation. The

following two equations are the “forecast errors on forecast revisions”, henceforth

Error-on-revision, or CG, regressions:

wt+1 − F̄twt+1 = βC0 + βC(F̄twt+1 − F̄t−1wt+1) + ut,t+1, (2.3)

wt+1 −Fi,twt+1 = βI0 + βI(Fi,twt+1 −Fi,t−1wt+1) + ui,t,t+1. (2.4)

The consensus level regression is given by equation (2.3), while the individual

level regression is represented by equation (2.4). A key distinction between these two

equations is that in equation (2.3), F̄twt+1 is the mean forecast across all forecasters,

whereas in Equation (2.4), Fi,twt+1 denotes an individual’s forecast. Both equations

(2.3) and (2.4) have forecast errors as the dependent variable. The right-hand sides

of the equations correspond to forecast revisions at the consensus and individual

levels. A positive βC is interpreted as under-reaction in the literature, meaning that

when a forecast revision is positive, the subsequent forecast error also tends to be
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positive. This implies that the upward forecast revision is insufficient compared to

the true realization of wt+1. Conversely, a negative βC indicates over-reaction, as a

positive forecast revision generally leads to a negative forecast error, suggesting that

the upward revision is excessive compared to the true realization of wt+1. Similar

interpretations apply to βI < 0 and βI > 0, which are viewed as over-reaction and

under-reaction at the individual level, respectively. In most empirical studies, it

is found that β̂C > 0 and β̂I < 0 (Coibion and Gorodnichenko (2015), Bordalo,

Gennaioli, Ma and Shleifer (2020), Fuhrer (2018)).

To compute forecast revisions in CG regressions, we require two periods ahead

forecasts, denoted by Ftwt+2. However, adaptive expectations do not provide an

explicit structure for Ftwt+2 or forecasts of varying horizons. In the primary exercise,

I assume that the term structure of adaptive expectations is horizontal, as made

explicit in Assumption 1.

Assumption 1 Throughout the analysis below, I assume the term structure of ex-

pectations is horizontal:

Ftwt+1 = Ftwt+i, i ≥ 2 (2.5)

This assumption can be justified in two ways. First, if a “Law of Iterated Expec-

tation” for adaptive expectations were to exist, assumption 1 would be an immediate

implication.4 Second, when γ remains consistent across different forecast horizons,

Assumption 1 holds true. This can be observed from equation (2.2).

Assumption 1 is used in the calculation of forecast revisions in CG regressions

using the simulated data, which will be discussed later. To test the assumption’s

validity, we substitute F̄t−1wt+1 and Fi,t−1wt+1 in equations (2.3) and (2.4) with

F̄t−1wt and Fi,t−1wt, respectively, and then compare the resulting regression coeffi-

cients. That is, we simply calculate the forecast revision as the revision in forecasts

of the same forecast horizon. The robustness check in section 2.8.5 reveals that the

regression coefficients are quantitatively quite similar, even when we compute the

forecast revision as Fi,twt+1−Fi,t−1wt instead of Fi,twt+1−Fi,t−1wt+1 in the regres-

sion. This holds true for the consensus level regression as well. Hence, assumption

1 is not critical to our analysis of CG regression coefficients under adaptive expec-

tations

2.4 Adaptive Expectations and Over-/Under-reaction

Do adaptive expectations result in over- or under-reaction to new information, as

indicated by the Error-on-revision regression coefficients? To address this question,

4Assume there is a version of “Law of Iterated Expectations” under adaptive expectations,

Ftwt+2 = Ft(Ft+1wt+2) = Ft(γwt+1 + (1− γ)Ftwt+1) = Ftwt+1,

where the first equation follows from the assumed “Law of Iterated Expectations” under adaptive
expectations.
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let’s start with a straightforward example. Suppose the variable follows an AR(1)

process:

wt = ρwt−1 + et, (2.6)

where et follows a normal distribution, et ∼ N(0, σ2
e). This section will demon-

strate that whether adaptive expectations result in over- or under-reaction to new

information depends on the relative magnitude of the adaptive parameter, γ, and

the persistence of the AR(1) process, ρ. With a fixed γ, a higher persistence in ρ

yields stronger under-reaction to new information; conversely, a lower persistence in

ρ prompts stronger over-reaction.

2.4.1 The Case of Single Transitory Shock

In this section, I depict the impulse response function of the variable, along with

forecasts formulated using adaptive expectations, the associated forecast errors, and

forecast revisions, all in response to a single shock to the variable at period 1. Sub-

sequently, I will discuss the determinants of over- or under-reaction under adaptive

expectations.

When ρ = 0

When ρ = 0, the variable has zero persistence, meaning that the influence of a

shock does not carry forward into subsequent periods. In this case, regardless of

the specific value of γ in the range of (0, 2), expectation formation will exhibit over-

reaction to new information. This is because any adjustment of forecasts in response

to the shock is an overreaction, given that the shock does not affect future periods.

This concept is illustrated in Figure 2.1, where γ is set to be 3
5
. In this section, while

plotting the impulse response functions, the timing of variables is as follows: For

period t, I plot the actual variable wt alongside the forecasts for the next period,

represented as Ftwt+1. The forecast errors at period t are computed as wt+1−Ftwt+1,

and the forecast revisions at period t are calculated as Ftwt+1 −Ft−1wt.

The left panel of the figure shows that the forecasts rise in response to the

shock. The increase in the forecasts is not as substantial as the actual shock, but

the effect on the forecasts persists. Despite the fact that the shock is a one-time

event, the forecasts decrease gradually over time due to the inherent stickiness in the

adaptive expectations framework. This means that even though the actual variable

has returned to its steady state level (which is zero in this numerical example), the

forecasts still remain positive.

In the right panel, it’s shown that forecast revisions and forecast errors are

negatively correlated for the first three periods following the shock, but then they

start moving together. When we run an Error-on-revision regression, the initial

period of negative correlation is what dominates the results. As shown in Lemma
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Figure 2.1: IRFs of the Actual Variable, Forecasts, Forecast Errors and Forecast
Revisions

Notes: This figure illustrates the impulse response function of the actual variable,
forecasts, forecast errors, and forecast revisions in response to a single shock. The
forecasts at period t are designated for the next period and represented as Ftwt+1.
The forecast errors at period t are calculated as wt+1 − Ftwt+1. The forecast
revisions at period t are computed as Ftwt+1−Ft−1wt. Here, the parameter γ is set
to 3

5
. The persistence of the AR(1) process is zero.

2, β is indeed negative, and is not affected by the value of γ.5 The proof of Lemma

2 is in the appendix.

Lemma 2 If t = 0, 1, 2, ..., and the time series are sufficiently long, and given that

the persistence of the actual variable is zero (i.e., ρ = 0), then in the case of a one-

time shock to the actual variable at period 1, the coefficient β obtained from running

the Error-on-revision regression is equal to −1/2 for any value of γ within the range

(0,2).

The negative correlation between forecast errors and revisions indeed indicates an

over-reaction to new information under adaptive expectations. The intuition behind

this over-reaction is as follows: when there is a one-time shock that only affects the

first period, any adjustment of expectations in this period can be deemed as an

over-reaction, because the shock does not impact the actual variable in subsequent

periods. However, agents who form expectations adaptively are not aware that the

shock’s influence is limited to the first period only, and as a result, they overreact

to this shock.

5The Error-on-revision regression in this scenario, featuring a single shock and a long time
series, results in many forecast errors and forecast revisions being close to zero. This means that
the regression coefficient is predominantly determined by the observations from the initial few
periods following the shock. During these initial periods, we see a strong negative correlation
between forecast errors and forecast revisions. This leads to the conclusion of over-reaction in the
adaptive expectations model in the face of a single, non-persistent shock.
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In Figure 2.2, when γ is in the interval (1, 2) (specifically, γ = 1.2), we observe

that the forecasts rise more than the magnitude of the shock itself. This pattern

exhibits a form of “extrapolation,” as characterized in works such as Barberis, Green-

wood, Jin, and Shleifer (2018), Liao, Peng, and Zhu (2022).

What is particularly interesting is the oscillatory behavior of the forecasts. This

occurs because, when γ > 1, forecasts tend to over-adjust in the direction of past

forecast errors. Essentially, forecasters are attributing too much weight to recent

changes, causing them to overshoot the actual variable in their forecasts. This leads

to corrections in subsequent periods, resulting in a pattern of oscillation around the

steady state. This is easier to see by rewriting equation (2.1) as follows:

Ftwt+1 = wt + α(wt −Ft−1wt), (2.7)

where γ = 1 + α. The forecast about next period’s outcome is equal to the current

observation adjusted in the direction of the last forecast error.

Figure 2.2: IRFs of the Actual Variable, Forecasts, Forecast Errors and Forecast
Revisions

Notes: This figure illustrates the impulse response function of the actual variable,
forecasts, forecast errors, and forecast revisions in response to a single shock. The
forecasts at period t are designated for the next period and represented as Ftwt+1.
The forecast errors at period t are calculated as wt+1 − Ftwt+1. The forecast
revisions at period t are computed as Ftwt+1−Ft−1wt. Here, the parameter γ is set
to 1.2.

When ρ > 0

When the variable of interest exhibits persistence, i.e., ρ > 0, the behavior of adap-

tive expectations — whether they exhibit over- or under-reaction to new information

— depends on the relative magnitudes of the adaptive parameter γ and the persis-

tence parameter ρ. If we fix γ, the following patterns emerge: As ρ increases, there
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is stronger evidence of under-reaction. As ρ decreases, there is stronger evidence of

over-reaction. Similarly, if we fix ρ: As γ increases, there is stronger evidence of

over-reaction. As γ decreases, there is stronger evidence of under-reaction.

Figure 2.3 illustrates a scenario with γ = 0.1 and ρ = 0.5. Here, the implied

value of β is equal to 4.1. By contrast, Figure 2.4 depicts a situation where γ = 0.9

and ρ = 0.5. In this instance, the implied value of β is −0.19. A comparison of these

two graphs unveils some insightful dynamics. When γ is large, forecast errors and

forecast revisions exhibit stronger negative correlation in the first few periods: when

forecasters see a large wt, they aggressively revise their forecasts upward, at the same

time making the most negative forecast errors. This strong negative correlation in

the first few periods determines the negative β when γ is large.

Figure 2.3: IRFs of the Actual Variable, Forecasts, Forecast Errors and Forecast
Revisions

Notes: This figure illustrates the impulse response function of the actual variable,
forecasts, forecast errors, and forecast revisions in response to a single shock. The
forecasts at period t are designated for the next period and represented as Ftwt+1.
The forecast errors at period t are calculated as wt+1 − Ftwt+1. The forecast
revisions at period t are computed as Ftwt+1−Ft−1wt. Here, the parameter γ is set
to 1

10
. ρ is set to 1

2
.

To understand why a lower ρ value, given a fixed γ, tends to imply over-reaction,

we need to draw a parallel with the scenario where ρ = 0. In this situation, people

generally fail to recognize that a shock has only a transitory impact on future periods.

As a consequence, they place excessive weight on their current observations when

formulating forecasts, leading to over-reaction. Conversely, when ρ is large, the

shock in period one exerts a more prolonged influence on the actual variable in

subsequent periods. In response to this, individuals relatively underweight their

current observations when making forecasts. This tendency results in under-reaction

to new information, explaining why a large ρ can induce under-reaction. This same

line of reasoning can help clarify why a larger γ is likely to lead to over-reaction. An
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Figure 2.4: IRFs of the Actual Variable, Forecasts, Forecast Errors and Forecast
Revisions

Notes: This figure illustrates the impulse response function of the actual variable,
forecasts, forecast errors, and forecast revisions in response to a single shock. The
forecasts at period t are designated for the next period and represented as Ftwt+1.
The forecast errors at period t are calculated as wt+1 − Ftwt+1. The forecast
revisions at period t are computed as Ftwt+1−Ft−1wt. Here, the parameter γ is set
to 9

10
. ρ is set to 1

2
.

increased γ value essentially implies that individuals put a higher weight on their

most recent observation while adjusting their forecasts. As a result, they are more

reactive to changes, often leading to over-adjustment of their forecasts in response

to new information, hence the over-reaction.

Figure 2.5 displays the relationship between β and γ, while also considering the

effect of ρ. In panel (a), the plot covers the range (0, 2) for γ. Panel (b), on the other

hand, offers a zoomed-in version around the range (0.5, 2) for γ. The plots indicate

that β is a downward sloping function of γ. Keeping γ constant, β is increasing

in ρ. As γ approaches zero, β tends to infinity. Conversely, when γ gets closer to

2, β descends towards −1
2
. Importantly, note that the value of β is not influenced

by the value of ρ when ρ = 2. That is, ρ is equal to −1
2

no matter the value of ρ.

Therefore, the range for β when 0 < ρ ≤ 1 and 0 < γ ≤ 2 is always [−1
2
,+∞). The

reason why β tends towards positive infinity as γ approaches zero is that when γ

is very small, forecasts become exceedingly sticky. This leads to minimal forecast

revisions in terms of magnitude. Given that forecast revisions form the right-hand

side of the regression equations, the regression coefficient tends to be large under

these circumstances.

The key findings of this section are summarized in the following lemma and

conjecture. The proof of Lemma 3 is in the appendix. Conjecture 1 has not been

proved analytically due to the complex expression of β in terms of ρ and γ, but it

is confirmed in figure 2.6 under various values of ρ and γ.
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Figure 2.5: β as a Function of γ. One single shock.

(a)

(b)

Notes: This figure depicts β as a function of γ under adaptive expectations,
specifically in the context of a single shock, for varying values of ρ. Panel (b) offers
a more detailed view around γ = 1, zooming in on the region in panel (a).

Lemma 3 Let t = 0, 1, 2, . . . , and assume the time series is sufficiently long. The

persistence of the actual variable is positive, denoted by ρ > 0. When there is a one-

time shock to the variable at period 1, β resulted from running the Error-on-revision

regression is characterized by:

� limγ→2 β = −1
2
.

� limγ→0 β = +∞.

Conjecture 1 The β obtained in Lemma 3 is monotonically decreasing in γ and

monotonically increasing in ρ.
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2.4.2 The Case of A Series of Shocks

The case of a series of shocks closely resembles that of a single shock. For a given set

of values for ρ and γ, I simulate the actual variables and forecasts following adaptive

expectations for 20, 000 periods, and obtain the CG regression coefficients using the

simulated data. As depicted in Panel (a) figure 2.6, the relationship between β

and γ mirrors the relationship observed in the case of a single shock (as shown in

figure 2.5). β decreases with increasing γ. When γ approaches zero, β becomes

exceedingly large, whereas when γ approaches 2, β nears −1
2
. In Panel (b), I plot

the relationship between β and ρ. When γ is fixed, β is increasing in ρ. The crucial

takeaway is that when {ρ, γ} is within the range [0, 1]x(0, 2], β has a lower limit

of −1
2

but can attain substantially high values, particularly if γ is sufficiently small

and ρ is not too low.

Next, I present two examples that demonstrate the evolution of the actual vari-

able and forecasts when γ assumes different values. In figure 2.7, I chart the time

series of the actual outcomes and forecasts according to adaptive expectations, using

γ values of 1
2

and 3
2
, respectively. When γ equals 1

2
, as in Panel (a), the forecasts

appear less volatile, or more persistent, when compared to the actual realizations.

Conversely, when γ equals 3
2
, as in Panel (b), the forecasts are more volatile, ex-

hibiting stronger extrapolative behavior, compared to the actual variables.

2.4.3 Individual Level Regression Coefficients

In this section, I investigate how the individual level regression coefficient is different

from the consensus level regression coefficient. As argued in chapter one, idiosyn-

cratic noise accounts for the gap between the regression coefficients at the consensus

level and individual level from an econometric perspective, no matter what the rea-

son is behind such idiosyncratic noise. In the sections above, I have unpacked how

CG regression coefficients are determined under adaptive expectations model with-

out noise. Here I provide numerical examples of how the individual level regression

coefficients are determined considering the existence of idiosyncratic noise.

I simulate 30 forecasters indexed by i using the following forecasting rule for

10000 periods:

Fi,twt+1 = γwt + (1− γ)Fi,t−1wt + ηi,t (2.8)

where ηi,t ∼ N(0, σ2
η), and is i.i.d across forecasters and time. Each period, on top of

the usual adaptive expectations rule, forecasts are subject to random idiosyncratic

noise, which can result from lots of reasons: mood, different forecasting models,

statistical measure errors, judgment noise in the sense of Sunstein, Kahneman and

Sibony (2021). Here it is a reduced way of modeling such noise, no matter what

the reason is behind such noise. By the nature of the adaptive expectations model,

the impact of the idiosyncratic noise on forecasts is not transitory. The impact of
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Figure 2.6: β as a Function of γ. A series of shocks.

(a)

(b)

Notes: Panel (a) depicts β as a function of γ under adaptive expectations, specif-
ically in the context of a series of shocks, for varying values of ρ. Panel (b) depicts β
as a function of ρ under adaptive expectations, specifically in the context of a series
of shocks, for varying values of γ.

noise on forecasts persists into the future through the backward-looking feature of

adaptive expectations. In Figure 2.8, we plot β as a function of γ, with different

variances of idiosyncratic noise, σe. First, it is noticeable that β no longer decreases

monotonically with γ. Rather, β demonstrates a hump-shaped relationship with

increasing γ. The downward-sloping segment shares the same reasoning as the

case without idiosyncratic noise: higher γ values lead forecasters to extrapolate

current observations into the future, resulting in more significant over-reaction to

new information. However, when γ is small and approaches zero, β is primarily

driven downwards by the idiosyncratic noise term. When γ = 1, the OLS estimator

of βI ceases to be a consistent estimator. This can be demonstrated by rearranging
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Figure 2.7: Time Series of Actual Variable and Forecasts.

(a)

(b)

Notes: This figure illustrates the time series of the actual variable, following
an AR(1) process, and forecasts, following adaptive expectations. The persistence
parameter of the AR(1) process is set at ρ = 0.6. The weighting parameter in
adaptive expectations is γ = 0.5 in Panel (a), and γ = 1.5 in Panel (b).

equation (2.8) and representing the forecast revision as follows:

Fi,twt+1 −Fi,t−1wt = γwt − γFi,t−1wt + ηi,t (2.9)

when γ is close to zero, the first two terms on the right-hand-side is negligible and

forecast revisions mainly capture the idiosyncratic noise term. As argued in chapter

one, this idiosyncratic noise term pushes β towards negative. This is why there is a

steep drop of β when γ is close to zero. Another pattern, which is consistent with

our prior, is that β decreases as the variance of the idiosyncratic noise goes up.
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Figure 2.8: βI as a function of γ. ρ = 1. σe = 1.

Notes: This figure plots individual level CG coefficients under adaptive expecta-
tions, with varying variance of the idiosyncratic noise σ2

η. In this numerical example,
the AR(1) process for the actual variable has persistence ρ = 1, and innovation stan-
dard deviation of σe = 1. I simulate forecasts for 30 forecasters over a span of 10000
periods.

2.5 Diagnostic Expectations and CG Coefficients:

A Comparison

In their 2018 study, Bordalo, Gennaioli, and Shleifer demonstrated that when the

actual variable wt follows an AR(1) process with normally distributed innovations,

the diagnostic expectations forecast is given by:

Eθwt+1 = Etwt+1 + θ(Etwt+1 − Et−1wt+1) = ρwt + ρθet (2.10)

The “representativeness heuristic” leads to the derivation of the expression for

Eθwt+1, which incorporates the kernel of truth logic: relative to rational expectation,

individuals tend to over-react to new information they encounter in period t by a

factor of θ(Etwt+1 − Et−1wt+1). The degree of this overreaction is measured by

the parameter θ. Diagnostic expectations is a model of over-reaction with θ > 0.

However, I allow θ to be from the domain [−1,+∞) so that over-reaction, under-

reaction and rational expectations are all allowed.

Adaptive expectations yields a wider range of model-implied β, compared with

diagnostic expectations. The reason is that when γ gets close to zero, forecasts

according to adaptive expectations can reach any level of stickiness, resulting in β

of arbitrary magnitude. In the extreme case of γ = 0, where there is no adjustment

of forecasts and forecasts stay constant over time, forecast revisions are almost zero.

Forecast revisions being on the right hand side of the equation and close to zero can

lead to arbitrarily large β.
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However, the generalized diagnostic expectations does not allow for such high

degrees of stickiness in the forecast data. As we can see from figure 2.9, under diag-

nostic expectations, β is not monotonic in θ. It is hump-shaped with the maximum

value obtained for a value of θ between -1 and 0.

Figure 2.9: β as a function of θ.

Notes: This figure plots β as a function of the diagnosticity parameter θ from
the diagnostic expectations model, for varying values of rho. ρ is the persistence of
the AR(1) process of the actual variable.

The reason for the hump shape can be better explained by looking at the equa-

tions of forecast errors and forecast revisions. Under generalized diagnostic expec-

tations model, the forecast error is given by:

wt+1 − Eθ
twt+1 = et+1 − ρθet. (2.11)

The forecast revision is

Eθ
twt+1 − Eθ

t−1wt+1 = ρ(θ + 1)et − ρ2θet−1. (2.12)

The rationale behind the hump-shaped relationship can be understood as follows:

The ability to predict forecast errors using forecast revisions arises from the fact

that the current news, et, plays a role in both forecast errors and forecast revisions.

When θ = 0, the formation of expectations aligns with rational expectations. The

forecast errors in equation (2.11) are dictated solely by future innovations, et+1. In

this context, forecast revisions—which comprise current and past innovations—are

unable to predict forecast errors, leading to β = 0. However, when θ decreases,

there is an under-reaction to the new information, which makes β turn positive.

Mathematically speaking, this transition stems from the fact that et begins to emerge

in equation (2.11). As θ continues to decrease, the magnitude of β increases because

et increasingly influences forecast errors. Nevertheless, as θ further decreases, the
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forecast begins to respond less to the current news, et. This causes et to impact

forecast revisions to a lesser degree, thereby reducing the predictability of forecast

errors based on forecast revisions. In the extreme case where θ = −1, forecast

revisions do not incorporate et at all, making it impossible to predict forecast errors

from forecast revisions. From figure 2.9, the range β under diagnostic expectations

can cover varies with ρ. The lower the ρ, the wider the range for β.

Why does the adaptive expectations model yield a monotonic relationship be-

tween β and γ, while diagnostic expectations lead to a hump-shaped relationship be-

tween β and θ? The primary reason lies in the difference in the degree of “stickiness”

permitted by the two expectation models. Examining the adaptive expectations

equation (2.1), we find that when γ = 0, forecasts based on adaptive expectations

remain at the initial value of forecasts, F0w1. As previously argued, β can reach

arbitrarily high values when we adjust the γ parameter. However, the generalized

diagnostic expectations model does not allow for this level of stickiness in forecasts.

Upon rewriting equation (2.10) as follows:

Eθwt+1 = (1 + θ)Etwt+1 − θEt−1wt+1, (2.13)

we observe that, when θ is within the range (0,1), the generalized diagnostic expec-

tations model forms a weighted average of the current rational expectations and the

previous rational expectations, limiting the degree of stickiness. Since rational ex-

pectations are never sticky, a weighted average of the current and previous rational

expectations also cannot be sticky. Thus, the difference in the degree of stickiness

allowed in the two models accounts for the contrasting behavior of β in relation to

γ in adaptive expectations and θ in diagnostic expectations.

In the pursuit of matching negative β, the contrast between adaptive expecta-

tions and diagnostic expectations is somewhat nuanced. As θ approaches positive

infinity, β tends toward − 1
1+ρ2

. On the other hand, as γ approaches 2, β tends

toward −1
2
.6 Given ρ < 1, − 1

1+ρ2
is less than −1

2
. Thus, compared to adaptive ex-

pectations, diagnostic expectations can match a broader range of negative β values.

However, the possibility of γ exceeding 2 allows adaptive expectations to match an

even wider range of negative β, as β can fall below −1
2
. This greater flexibility comes

with the trade-off of potentially creating explosive trajectories for forecasts.

In Figure 2.10, I illustrate β as a function of θ given different variances of idiosyn-

cratic noise, denoted as σ2
η. As is evident, idiosyncratic noise applies a downward

pressure on βI .

6Again γ is restricted to be below 2 to ensure that the forecasts are not explosive over time.

83



Figure 2.10: βI as a function of θ

Notes: This figure plots βI as a function of the diagnosticity parameter θ from
the diagnostic expectations model, for varying values of ση. The persistence of the
AR(1) process is ρ = 1, and the standard deviation of the innovation is σe = 1.

2.6 Data

The main data set used in this chapter is the Survey of Professional Forecasters,

the same as the one used in Chapter 1. For completeness, a brief introduction

of this data set is included here. The Survey of Professional Forecasters (SPF),

facilitated by the Federal Reserve Bank of Philadelphia, represents a robust source of

expert predictions pertaining to a range of macroeconomic and financial indicators,

with data available from 1968 onwards. Administered on a quarterly basis, the

survey is typically conducted near the conclusion of each quarter’s second month.

This scheduling enables forecasters to account for the most recent developments in

macroeconomic variables up to and including quarter t−1 when making predictions

for quarter t.

It is crucial to note that not all variables possess historical records dating back

to the survey’s inception in 1968. This study does not incorporate every variable

available within the SPF dataset. Instead, the present analysis centers on seven

key variables, namely: real GDP growth rate (RGDP), nominal GDP growth rate

(NGDP), GDP price index inflation (GDP Price Index), Consumer Price Index infla-

tion (CPI), 3-month Treasury bill yield (Tbill), AAA corporate bond yield (AAA),

and Treasury bond corporate bond yield (Tbond). Forecasts are formulated for both

the current and subsequent four quarters. To maintain anonymity, the SPF assigns

unique identification codes to each participating forecaster.7 In each survey wave,

7However, the forecaster identification is not entirely accurate. In the documentation of SPF, it
mentions: “In these surveys, we have noticed some occurrences in which an individual participates,
suddenly drops out of the panel for a large number of periods, and suddenly re-enters, suggesting
that the same identifier might have been assigned to different forecasters,” and “it can be difficult
to assign an identification number to an individual who changes his place of employment but
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the mean number of participating forecasters varies between 27 and 36, contingent

upon the specific variable under examination. The aggregate count of forecasters

contributing to the survey ranges from 446 to 448. On average, individual panelists

partake in approximately 23 waves of survey. As such, the Survey of Professional

Forecasters constitutes an unbalanced panel dataset.

Owing to the potential subsequent revisions in the dissemination of macroeco-

nomic statistics, this study employs vintage data to represent the observed realiza-

tions of economic variables. This approach ensures alignment with the forecasters’

observations of economic indicators at the time of formulating their predictions. The

initial release of macroeconomic statistics is sourced from the real-time dataset pro-

vided by the Federal Reserve Bank of Philadelphia. In contrast, financial variables

such as bond yields are not subject to revisions. Historical data on bond yields can

be obtained from the Federal Reserve Bank of St. Louis.

The Survey of Professional Forecasters predominantly emphasizes the levels of

macroeconomic variables rather than growth rates. All levels are transformed into

growth rates for the purposes of this study (except for bond yields). The majority of

empirical analyses in this chapter is on a forecast horizon extending three quarters

ahead. As such, the growth rate represents the annual growth rate between quarter

t − 1 and quarter t + 3. For instance, when determining the actual growth rate of

real GDP from quarter t− 1 to quarter t+ 3, real GDP data for the corresponding

quarters is derived from the vintage data released during quarter t+ 4. To compute

the real GDP growth rate forecasts from t − 1 to t + 3, the forecast generated at t

and the initial release of real GDP at t− 1, published at t, are utilized. Forecasters

with fewer than ten appearances in the survey are excluded. Those steps are mostly

the same as BGMS (2020) in order to replicate their results. The summary statistics

on individual forecast errors and forecast revisions for t + 3 are presented in Table

2.1.

Table 2.1 presents the standard deviation, which is defined as the standard de-

viation of individual forecast errors or revisions when pooled across quarters and

forecasters. The average standard deviation is derived by initially calculating the

standard deviation for each quarter, followed by computing the average across quar-

ters. The summary statistics reveal a substantial number of observations for indi-

vidual forecast errors and revisions across each variable, attributable to the survey’s

extensive time series and panel structure.

The higher quantity of observations for forecast errors compared to forecast

revisions can be explained as follows: to compute forecast revisions, both the t+3 and

the lagged t+ 4 forecasts are required. However, within the SPF, certain forecasters

offer forecasts for t+ 3 without providing corresponding t+ 4 forecasts, resulting in

a greater number of empty cells for t+ 4 relative to t+ 3. Another notable pattern

remains in the survey.”
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Table 2.1: Summary Statistics

RGDP NGDP GDP Price Index CPI Tbill AAA Tbond

Individual Forecast Error of t+ 3

Number of Obs. 7505 7523 7455 5258 5054 4305 4039
Mean -0.37 -0.24 0.12 -0.22 -0.56 -0.48 -0.53
Standard Dev. 2.31 2.48 1.59 2.41 1.18 0.97 0.81
Average Standard Dev. 1 1.19 0.77 0.73 0.48 0.53 0.4

Individual Forecast Revision of t+ 3

Number of Obs. 5696 5710 5712 4224 4055 3409 3311
Mean -0.14 -0.11 0.03 -0.07 -0.2 -0.13 -0.14
Standard Dev. 1.37 1.52 0.98 0.77 0.67 0.6 0.51
Average Standard Dev. 0.91 1.09 0.72 0.66 0.44 0.48 0.36
Number of Forecasters 36 36 36 33 32 27 35

Time Periods 1968-2022 1981-2022 1991-2022

Notes: This table reports the summary statistics of individual forecast errors and
forecast revisions. Standard Dev. is the standard deviation after pooling all the
observations. Average Standard Dev. is obtained by first calculating the standard
deviation for each quarter and then averaging across quarters. Number of forecasters
is the average number of forecasters across different waves of survey. All forecast
errors and revisions are calculated at horizon t+ 3.

is that the mean forecast errors and revisions are mostly indistinguishable from

zero.8 This absence of discernible discrepancy indicates that there is no evidence of

systematic bias in forecasts or asymmetry in forecast revisions.

The average standard deviation highlights the presence of systematic disagree-

ment among forecasters, which aligns with the concept of judgment noise as de-

scribed by Kahneman et al. (2021). The periods covered for each variable differ:

for RGDP, NGDP, and GDP price index inflation, the survey commenced as early

as 1968, whereas the survey for Tbond began more recently in 1991.

2.7 Estimation

In this section, I first present the Error-on-revision regression results. Second, I

report the evidence on the existence of two types of judgment noise. After that, the

estimation strategy and estimation results are discussed.

2.7.1 Error-on-revision Regression Results

In the “forecast error on forecast revision” benchmark regression, I employ a t + 3

forecast horizon to align with the BGMS study, enabling a comparison of regression

outcomes. Table 2.2 presents both consensus and individual level regression results.

Consensus time series regression standard errors are adjusted using Newey-West

(1994) automatic bandwidth selection, while individual panel regression standard

8The mean is calculated across forecasters and across time.
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errors are clustered by forecaster and time. Most βI estimations are significantly

negative, except for the three-month T-bill yield, which is significantly positive. The

βC point estimations differ across variables. For long-maturity bonds, such as the

ten-year T-bond and the AAA corporate bond yield, β̂C values are insignificant.

In contrast, for inflation and the T-bill yield, β̂C is significantly positive. Nominal

and real GDP growth exhibit positive but insignificant β̂C values. The regression

outcomes mostly resemble those in the BGMS study, with minor deviations. For

instance, BGMS reports significant β̂C values for both real and nominal GDP. This

discrepancy stems from the additional six years of data in this study, extending to

2022, while BGMS data ends in 2016. Regressions using the same data periods yield

nearly identical results to BGMS. To maintain consistency with the literature, this

chapter focuses on the general case where β̂C > 0 and β̂I < 0.

Under the Full Information Rational Expectation (FIRE) hypothesis, both βC

and βI are expected to be zero. However, evidence of βC > 0 and βI < 0 contradicts

the FIRE hypothesis. BGMS suggests that βC > 0 may result from a combination of

an information friction and a rationality violation, while βI < 0 implies overreaction

to information during individual expectation formation.

Table 2.2: Error-on-revision Regression Coefficients

β̂C β̂I

Point Estimate SE p-value Point Estimate SE p-value

RGDP 0.11 0.31 0.73 -0.28 0.12 0.02
GDP Price Index 1.26 0.41 0.00 -0.15 0.07 0.04

NGDP 0.14 0.25 0.56 -0.32 0.12 0.01
CPI 1.04 0.76 0.17 -0.38 0.09 0.00
Tbill 0.69 0.11 0.00 0.21 0.09 0.03
AAA -0.02 0.16 0.92 -0.27 0.07 0.00

Tbond -0.06 0.09 0.46 -0.23 0.02 0.00

Notes: This table reports the Error-on-revision regression results at both the con-
sensus and individual level. For consensus time-series regressions, standard errors
are calculated using the Newey-West method, with the automatic bandwidth selection
procedure as proposed by Newey and West (1994). For individual-level panel regres-
sions, standard errors are clustered by both the forecaster and time.

2.7.2 Estimation Strategy for Model with Adaptive Expec-

tations

The goal of this estimation exercise is to estimate the crucial adaptive weighting

parameter γ within the adaptive expectations model. For this task, I employ the

Simulated Method of Moments (SMM) estimation methodology. The estimation of

γ is achieved by aligning the model-implied regression coefficients with the data-

estimated regression coefficients. Specifically, I match the regression coefficients at
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the consensus level and individual level separately to derive two distinct sets of

estimations for γ. Other parameters to be estimated are: ρ, ση
σe

. The steps to obtain

the estimation for this set of parameters for each variable are as follows:

� Fit an AR(1) process to the historical time series to obtain estimates of ρ and

σe for each variable.

� {ση} is obtained by running the following regression:

Fi,twt+3 = αt + φi + ηi,t (2.14)

where αt captures the consensus opinion on forecasting and φi captures the

individual heterogeneity. The estimation of ση, the standard deviation of these

noise terms, can be achieved by calculating the standard deviation of these

residuals.

� With the given γ, and utilizing previously estimated values of ρ and σe, the

time series for the actual variable can be simulated over 10,000 periods, using

an AR(1) process. We then simulate individual-level forecasts for 30 fore-

casters, adhering to equation (2.9). By averaging the forecasts across these

individual forecasters, we are able to compute the consensus-level adaptive

expectations forecasts.

� After simulating the data, we conduct a CG regression and calculate the model-

implied βCOLS and βIOLS. We then separately identify the γ value that aligns

with βCOLS and βIOLS. In instances where the model fails to match the data, we

report the γ value which results in a model-implied βOLS closest to the data.

We calculate standard errors via bootstrap: conducting random resampling

from the panel of forecasters with replacement.

2.7.3 Estimation Results

Table 2.3 provides the estimation results, adhering to the aforementioned proce-

dure.9 Firstly, the estimated γ value differs across distinct variables. Inflation rates

for the GDP price index and CPI, as well as the 3-month T-bill yield, are associated

with lower γ values, while the growth rates for real and nominal GDP, AAA corpo-

rate bond yield, and the 10-year T-bond yield exhibit higher γ values. This implies

that the forecasts for GDP price index inflation, CPI inflation, and the 3-month

T-bill yield are stickier, and the forecasts for the other variables are more prone to

extrapolation. This aligns with the findings from the first chapter that the former

9During the estimation of γI , each value of βIdata might correspond to two values of γ that
align the model with the data. In the primary body of this chapter, I concentrate on the higher
value. In figure 2.8 in the appendix, I report the point estimate for the lower value.
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three variables display a stronger under-reaction to new information, while the lat-

ter three show more over-reaction. It might be inferred that forecasters employing

adaptive expectations have identified the optimal adaptive parameter for different

variables. Secondly, the γC and γI values do not consistently correspond with each

other in most instances. This is not unexpected. Considering the simplicity of the

current model, it is unrealistic to expect it to perfectly fit the data.

Table 2.3: Estimation Results for γ.

RGDP GDP Price Index NGDP CPI Tbill AAA Tbond

γC 0.78∗∗∗

(0.08)
0.43∗∗∗

(0.03)
0.79∗∗∗

(0.06)
0.26∗∗∗

(0.08)
0.59∗∗∗

(0.03)
1∗∗∗

(0.07)
1.06∗∗∗

(0.04)
γI 0.98∗∗∗

(0.11)
0.16∗∗∗

(0.00)
1.12∗∗∗

(0.11)
1.26∗∗∗

(0.29)
0.08∗∗∗

(0.00)
0.3∗∗∗

(0.08)
0.65∗∗∗

(0.08)
γInoiseless 1.28∗∗∗

(0.43)
1.17∗∗∗

(0.39)
1.4∗∗∗

(0.47)
1.3∗∗∗

(0.44)
0.82∗∗∗

(0.25)
1.37∗∗∗

(0.46)
1.29∗∗∗

(0.43)

Notes: This table reports the γ estimation results. The first row presents γC by
matching consensus level regression coefficients. The second row shows γI by
matching individual level regression coefficients. The third row reports γInoiseless by
matching individual level regression coefficients without considering the idiosyncratic
noise component. Standard errors are displayed in parenthesis. * p < 0.1, **
p < 0.05, ***p < 0.01.

The third row of the table reports the results of the γ estimation, achieved

by aligning the model-implied and data-estimated βI without accounting for the

idiosyncratic noise component. Omitting the idiosyncratic noise component, we

consistently obtain a higher estimate for the γ parameter. For variables such as bond

yields and the GDP price index, this discrepancy is considerable. This observation

aligns with the point made in chapter one: drawing conclusions about forecasters’

overreaction or underreaction (in this case, the γ parameter) from the individual

level regression coefficients can be misleading.

Table 2.4 presents how well the model can replicate the two regression coefficients

β̂C and β̂I . As we can see, the model nearly perfectly matches 12 out of the 14

point estimates of βC or βI . However, the model fails to perfectly match two of

them: βI for the GDP price index and the 3-month T-bill yield. For the latter,

although the model doesn’t perfectly align with the data, βImodel does fall within

the 95% confidence interval. For the GDP price index, βImodel is not within the

95% confidence interval of βIdata. However, this current estimation exercise holds

ρ, ση
σe
, θ constant, thereby ignoring the sampling variation in these estimates. If we

simultaneously match all moments, we will have more degrees of freedom to align

with βI .

2.7.4 Graphic Illustration

Figures 2.11 to 2.13 illustrate how βs are matched between the model and data

under adaptive expectations, while figures 2.14 and 2.15 do the same for diagnostic
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Table 2.4: Model Regression Coefficients and Data Estimated Regression Coeffi-
cients

RGDP GDP Price Index NGDP CPI Tbill AAA Tbond

βCmodel 0.1101 1.2575 0.1403 1.0397 0.6899 -0.021 -0.058
βCdata 0.11 1.26 0.14 1.04 0.69 -0.02 -0.06
βImodel -0.2802 -0.3616 -0.32 -0.3801 0.13 -0.27 -0.23
βIdata -0.28 -0.15 -0.32 -0.38 0.21 -0.27 -0.23

Notes: This table reports the β values from the data for each variable, as well
as the corresponding β values from the model, at both the individual and consensus
levels.

expectations. In these figures, βC and βI from the model are plotted as functions

of the adaptive parameter γ for adaptive expectations. For diagnostic expectations,

βC and βI from the model are plotted as functions of the diagnosticity parameter

θ. Assuming a large number of forecasters, for the model-implied βC , the impact of

idiosyncratic noise is averaged out. The point estimates of empirical βC and βI (β̂C

and β̂I) are depicted as horizontal dotted lines. To the left of the figures, the one

standard error bands of β̂C and β̂I are provided for reference, these standard errors

are derived from the OLS estimators of β̂C and β̂I . There are several key takeaways

from this exercise: First, it’s clear that the adaptive expectations model offers more

flexibility in matching the data and the model, specifically for βC . For instance, with

the GDP price index inflation, βC under diagnostic expectations (shown in figure

2.14) is hump-shaped and fails to match the empirical β̂C at its maximum value.

Conversely, under adaptive expectations, the model can accommodate arbitrarily

large βC provided the γ parameter is sufficiently small. This arises from the ability of

the adaptive expectations model to accommodate arbitrary degrees of stickiness, an

attribute lacking in the diagnostic expectations model. Second, due to the broader

value coverage of βC under adaptive expectations, βI under adaptive expectations

also spans a wider range of values. This is clearly evidenced when comparing βI

of AAA corporate bond yield, GDP Price Index inflation, and 10-year Tbond yield

under both adaptive expectations and diagnostic expectations. In summary, the

adaptive expectations model, by allowing for larger degrees of stickiness, is better

equipped to match the empirically estimated β̂C and β̂I .

90



Figure 2.11: Adaptive Expectation β from the Model and Data

(a) CPI (b) CPI Zoom-in

(c) GDP Price Index (d) GDP Price Index Zoom-in

(e) Nominal GDP (f) Nominal GDP Zoom-in

Notes: This figure graphically illustrates the matching of βs between the model and
data under adaptive expectations. Variables under consideration are CPI inflation,
GDP price index inflation, nominal GDP growth rate. The dotted lines in the figure
represent the empirically estimated values of β̂C and β̂I . To the left of the figure,
the yellow and purple rectangles indicate the one standard error band of the OLS
estimations for β̂C and β̂I , respectively.
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Figure 2.12: Adaptive Expectation β from the Model and Data Part 2

(a) Real GDP (b) Real GDP Zoom-in

(c) AAA (d) AAA Zoom-in

(e) Tbill (f) Tbill Zoom-in

Notes: This figure graphically illustrates the matching of βs between the model
and data under adaptive expectations. Variables under consideration are real GDP
growth rate, AAA corporate bond yield and 3-month Tbill yield. The dotted lines in
the figure represent the empirically estimated values of β̂C and β̂I . To the left of
the figure, the yellow and purple rectangles indicate the one standard error band of
the OLS estimations for β̂C and β̂I , respectively.
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Figure 2.13: Adaptive Expectation β from the Model and Data Part 3

(a) Tbond (b) Tbond Zoom-in

Notes: This figure graphically illustrates the matching of βs between the model and
data under adaptive expectations. Variable under consideration is 10-year Tbond
yield. The dotted lines in the figure represent the empirically estimated values of
β̂C and β̂I . To the left of the figure, the yellow and purple rectangles indicate the
one standard error band of the OLS estimations for β̂C and β̂I , respectively.
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Figure 2.14: Diagnostic Expectation β from the Model and Data

(a) CPI (b) GDP Price Index

(c) AAA (d) Tbond

Notes: This figure graphically illustrate the matching of βs between the model and
data under diagnostic expectations. Variables under consideration are CPI and
GDP price index inflation, AAA corporate bond yield and 10-year Tbond yield. The
dotted lines in the figure represent the empirically estimated values of β̂C and β̂I .
To the left of the figure, the yellow and purple rectangles indicate the one standard
error band of the OLS estimations for β̂C and β̂I , respectively.
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Figure 2.15: Diagnostic Expectation β from the Model and Data Part 2

(a) Tbill (b) Nominal GDP

(c) Real GDP

Notes: This figure graphically illustrate the matching of βs between the model and
data under diagnostic expectations. Variables under consideration are 3-month
Tbill, nominal and real GDP growth rate. The dotted lines in the figure represent
the empirically estimated values of β̂C and β̂I . To the left of the figure, the yellow
and purple rectangles indicate the one standard error band of the OLS estimations
for β̂C and β̂I , respectively.
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2.8 Further Discussion

In this section, I will undertake several analyses related to the adaptive expectations

model.

2.8.1 Over-/Under-reaction to New Information across Fore-

cast Horizons

Recent literature provides evidence suggesting that the degree of over-/under-reaction

varies across forecast horizons: the longer the forecast horizons, the stronger the de-

gree of over-reaction. This pattern has been documented in experimental evidence

such as Afrouzi et al. (2021), equity analysts’ forecasts of long-term and short-term

earnings growth as seen in Bordalo et al. (2019) and Bouchaud et al. (2019), as

well as in asset prices as per Giglio and Kelly (2018).

In this section, I explore the implications of adaptive expectations on Error-on-

revision regression coefficients across different forecast horizons. Under Assumption

1, I obtain Error-on-revision regression coefficients under the adaptive expectations

model by running simulations. I simulate a representative agent forming adaptive

expectations, devoid of idiosyncratic noise, across various forecast horizons for 10,000

periods. I use various weighting parameters, γs, in the simulation and calculate the

Error-on-revision regression coefficients. The underlying variable follows an AR(1)

process with a persistence of ρ = 0.5. Figure 2.16 plots βs for various forecast

horizons under different weighting parameters. From Figure 2.16, we observe that

the further into the future the forecasts are made, the more negative the βs become,

indicating stronger evidence of over-reaction. When the underlying variable follows

an AR(1) process, the impact of shocks diminishes over time. However, under

adaptive expectations, forecasters do not account for this diminishing impact while

making forecasts. This neglect of the diminishing impact of shocks is partly due

to Assumption 1: the term structure of forecasts is horizontal even though the

underlying variable follows an AR(1) process.

2.8.2 Dynamic Responses of Outcomes and Forecasts

Beyond the Error-on-revision regressions, researchers have also applied regression

models to forecast errors based on current observational levels, as suggested by

Kohlhas and Walther (2021). Angeletos, Huo, and Sastry (2021), in their efforts to

characterize forecasters’ errors in a more dynamic manner, document a novel set of

facts. They note that, in response to two key shocks—one that accounts for most

business-cycle variations in unemployment and other macroeconomic quantities, and

another primarily responsible for the business-cycle variations in inflation—the im-

pulse response functions of average unemployment and inflation forecasts initially
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Figure 2.16: β for Different Forecast Horizons and Various γs. ρ = 0.5.

Notes: This figure plots βs for different forecast horizons and various weighting
parameter γs. The persistence of the underyling variable is set to be 0.5.

display an under-reaction, but subsequently overshoot.

The researchers account for this empirical phenomenon by integrating the el-

ements of noisy information and over-extrapolation into their expectations frame-

work. At the onset of a shock, noisy information takes precedence, causing forecast-

ers to under-react since they lack full confidence in the information they observe.

However, over time, over-extrapolation comes into play, leading to an overshooting

of forecasts.

However, such an impulse response function could be a natural outcome of adap-

tive expectations, a framework that is considerably simpler than the one proposed

by Angeletos, Huo, and Sastry (2021). In figures 2.17 and 2.18, I have plotted the

impulse response functions of both the actual outcome and the forecasts in response

to an unexpected shock occurring in the first period, under both rational and adap-

tive expectations. To maintain consistency with the approach of Angeletos, Huo,

and Sastry (2021), the forecasts utilize the value from the previous period, Et−1wt

under rational expectations and Ft−1wt under adaptive expectations. This approach

to timing forecasts is distinct from the one employed in previous figures, specifically

from figure 2.1 to 2.4.

Under rational expectations, forecasters do not react to an unexpected shock

upon its occurrence, as they are not aware of it. However, after the shock is rec-

ognized, forecasters generate accurate predictions since rational forecasters under-

stand the shock’s impact on the underlying variable. In contrast, under adaptive

expectations, forecasts initially under-react and subsequently overshoot. This can

be explained by the fact that when γ < 1, forecasts tend to adjust in the direc-

tion of the observed outcome from previous forecasts, yet they never fully catch

up. Consequently, when a shock occurs and the observed outcome surpasses the
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previous forecast, forecasts rise but are marked by an initial under-reaction. As the

shock fades and the observed outcome drops below the previous forecast, forecasts

decrease, but they tend to overshoot.

Figure 2.17: Impulse Response Function of Outcomes and Forecasts

Notes: This figure presents the impulse response function of the actual variable
and forecasts in reaction to an unexpected shock, when forecasts follow rational ex-
pectations. The actual variable is denoted by its period t value, wt. Forecasts under
the rational expectations model utilize the value from the preceding period, Et−1wt.
The forecast errors are computed as the difference between the actual variable and
the previous period’s forecast, represented by wt − Et−1wt.

Figure 2.18: Impulse Response Function of Outcomes and Forecasts

Notes: This figure presents the impulse response function of the actual variable
and forecasts in reaction to an unexpected shock, when forecasts follow adaptive
expectations. The actual variable is denoted by its period t value, wt. Forecasts under
the adaptive expectations model utilize the value from the preceding period, Ft−1wt.
The forecast errors are computed as the difference between the actual variable and
the previous period’s forecast, represented by wt −Ft−1wt.
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2.8.3 Model Implied Regression

Coibion and Gorodnichenko (2015) proposed the Error-on-revision regression to test

the implication of noisy information and sticky information frameworks. This chap-

ter, however, concentrates on studying the implications of adaptive expectations on

Error-on-revision regression coefficients. I estimate the weighting coefficient γ by

matching the regression coefficients derived from the model under adaptive expecta-

tions, and from the data. Instead of matching the regression coefficients from Error-

on-revision regression, I run the following regression equation implied by adaptive

expectations model. Let’s start by examining adaptive expectations across different

forecast horizons:

Ftwt+h = γhwt + (1− γh)Ft−1wt+h−1, h = 0, 1, 2, 3,

where the current forecast of quarter h in the future is formed as a weighted average

of current observation and past forecasts. Notably, when forecasters complete the

survey, they can only access data from the previous quarter. Rather than observing

wt, forecasters observe wt−1. As a result, the actual model under consideration is

the following:

Ftwt+h = γhwt−1 + (1− γh)Ft−1wt+h−1, h = 0, 1, 2, 3, (2.15)

After rearranging the terms, we derive the following regression equation implied by

the model:

Ftwt+h −Ft−1wt+h−1 = γh,0 + γh(wt−1 −Ft−1wt+h−1) + εh,t, h = 0, 1, 2, 3. (2.16)

I run the regression at both the individual and consensus levels, with the re-

sults presented in tables 2.5 and 2.6. The individual level regression should be

estimated with Arellano-Bond (1991) estimator. When γ is close to 0, forecasts

are sticky—forecasters do not significantly adjust their forecasts according to their

most recent observations. As γ increases, forecasters place more weight on the most

recent observations while making their forecasts.

There are several patterns discernible from tables 2.5 and 2.6. First, the estimates

for γ are predominantly positive and range between 0 and 1, regardless of whether

they’re at the consensus or individual level and irrespective of the forecast horizons.

This corroborates the assumption that γ is between 0 and 1, and the forecast is a

weighted average of the latest observation and the last forecast.

Second, γ decreases as forecast horizons extend. The shorter the forecast hori-

zon, the greater the weight placed on the most recent observation of the respective

variable. As the forecast horizon lengthens, the forecasts become stickier, with fore-

casters making fewer adjustments when they observe the latest data. This contrasts
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with the previously mentioned evidence in the literature, which shows that the de-

gree of over-reaction increases with longer forecast horizons.

Third, γ varies across different variables. For the GDP Price Index and the

CPI inflation rate, γ is relatively lower, particularly from the perspective of the

consensus-level regression. For the CPI inflation, γ is close to zero, regardless of the

forecast horizons, and whether it’s considered at the consensus or individual level.

For the 3-month Tbill rate, real GDP growth rate, and nominal GDP growth rate,

γ is quite large with shorter forecast horizons, implying that forecasters put all the

weight on current observations or even extrapolate based on current observations.

However, with larger forecast horizons, all weight shifts to past forecasts, implying

a high degree of stickiness in forecasts.

The patterns outlined above are qualitatively consistent at both the consensus

and individual levels, albeit with some quantitative differences. For instance, at the

individual level, γ for the 3-month Tbill yield is smaller in magnitude at horizon

t, but larger in magnitude at longer horizons, compared to the consensus level.

Robustness checks utilizing wt instead of wt−1 are reported in table 2.9 and 2.10 in

the appendix. The majority of patterns noted earlier regarding the model-implied

regression remain consistent, irrespective of whether we use wt or wt−1. The only

difference observed in tables 2.9 and 2.10 is that for the 3-month Tbill yield, 10-year

Tbond yield, and AAA corporate bond yield, the γ value are much more uniform

across forecast horizons.

Comparing the γ estimation results from Table 2.3 (where γ is estimated by

matching the empirically observed regression coefficients with those implied by the

model) reveals differences in γ estimation between the two methods. Specifically,

when making these comparisons, we should focus on the forecast horizon t + 3

presented in Tables 2.5 and 2.6. Estimations from Table 2.3 are predominantly larger

than those in Tables 2.5 and 2.6. One potential explanation for this discrepancy

could be that the benchmark adaptive expectations model doesn’t perfectly capture

the true process of expectation formations.

Table 2.5: Adaptive Expectations Model Implied Regression Results: Consensus
Level

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

γh

t 1.07∗∗∗

(0.33)
1.1∗∗∗

(0.3)
0.35∗∗∗

(0.08)
0.16
0.11

2.11∗∗∗

(0.24)
1.81∗∗∗

(0.18)
1.1∗∗∗

(0.13)
t+ 1 0.42∗∗

(0.17)
0.28
(0.21)

0.14∗∗∗

(0.05)
0.01
(0.03)

0.03
(0.3)

1.32∗∗∗

(0.25)
0.84∗∗∗

(0.19)
t+ 2 0.12∗

(0.07)
−0.01
(0.05)

0.07∗

(0.04)
0.04∗∗

(0.02)
−0.09
(0.2)

0.96∗∗∗

(0.21)
0.55∗∗∗

(0.15)
t+ 3 0.01

(0.08)
−0.09∗∗∗

(0.02)
0.06∗

(0.03)
0.07∗∗∗

(0.01)
−0.05
(0.12)

0.65∗∗∗

(0.16)
0.35∗∗∗

(0.11)

Notes: This table reports the regression results from equation (2.16) at the con-
sensus level, for different variables and various forecast horizons. Standard errors
are displayed in parenthesis. * p < 0.1, ** p < 0.05, ***p < 0.01.
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Table 2.6: Adaptive Expectations Model Implied Regression Results: Individual
Level

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

γh

t 1.03∗∗∗

(0.34)
1.05∗∗∗

(0.3)
0.7∗∗∗

(0.05)
0.42∗∗∗

(0.07)
1.40∗∗∗

(0.11)
1.34∗∗∗

(0.09)
0.92∗∗∗

(0.06)
t+ 1 0.26

(0.23)
0.44∗∗∗

(0.13)
0.47∗∗∗

(0.05)
0.1∗∗∗

(0.03)
0.66∗∗∗

(0.10)
0.99∗∗∗

(0.07)
0.75∗∗∗

(0.05)
t+ 2 −0.03

(0.08)
0.17∗∗∗

(0.06)
0.34∗∗∗

(0.04)
0.1∗∗∗

(0.03)
0.43∗∗∗

(0.08)
0.75∗∗∗

(0.06)
0.61∗∗∗

(0.05)
t+ 3 −0.1∗∗

(0.04)
0.07
(0.07)

0.29∗∗∗

(0.04)
0.12∗∗∗

(0.02)
0.32∗∗∗

(0.06)
0.6∗∗∗

(0.06)
0.49∗∗∗

(0.04)

Notes: This table reports the regression results from equation (2.16) at the in-
dividual level, for different variables and various forecast horizons. Standard errors
are displayed in parenthesis. * p < 0.1, ** p < 0.05, ***p < 0.01.

2.8.4 Test on Parameter Restrictions

There are certain parameter restrictions imposed on the benchmark adaptive expec-

tations model that may not necessarily hold when compared with empirical data. To

characterize actual expectation formation processes more closely, I conduct tests on

two parameter restrictions related to the benchmark adaptive expectations model

using the following regression equation:

Ftwt+h−Ft−1wt+h−1 = αh,0 +αh,1wt−1 +αh,2Ft−1wt+h−1 + εh,t, h = 0, 1, 2, 3. (2.17)

Instead of following the original CG regression, this equation originates from the

benchmark adaptive expectations model as described in the section above. The first

parameter restriction is, the benchmark adaptive expectations model assumes a zero

constant term, αh,0 = 0. In other words, there is no constant component beyond the

latest observation and past forecasts. The second restriction is, the coefficients in

front of the latest observation and past forecasts have the same magnitude but with

opposite signs, αh,1 + αh,2 = 0. I present the regression results for various forecast

horizons and variables in tables 2.11 and 2.12.

Let’s start by analyzing the test at the consensus level. Firstly, in most in-

stances, the constant term is significantly positive. In only three out of the 28

variable-horizon pairs is the constant term not significant at the 90% confidence

level. Secondly, the p-value for the test αh,1 + αh,2 = 0 is generally small, imply-

ing that the parameter restriction in the benchmark adaptive expectations model

is largely refuted by the data. In 20 out of the 28 variable-horizon pairs, the pa-

rameter restriction is rejected at the 95% confidence level. The coefficient preceding

the latest observation αh,1 decreases over forecast horizons, while the coefficient in

front of the last forecasts αh,2 increases over these horizons. As the forecast horizon

extends, the revision in forecast becomes less influenced by the most recent observa-

tion. Instead, forecasts become increasingly sticky, and depend more heavily on past
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forecasts. In some instances, for example Panel A in table 2.11 for the 3-month Tbill

yield, 10-year Tbond yield and AAA corporate bond yield, αh,1 > 1 and γh,2 < −1.

This suggests that in these scenarios, forecasters over-extrapolate from their latest

observation, and adjust in the opposite direction of past forecasts. Thirdly, the R2

value decreases over forecast horizon. This is consistent with the finding that fore-

casts become stickier when forecast horizon extends. The right-hand-side variables

have smaller explanatory power for the revision in forecasts. The empirical patterns

at the consensus level are also consistent at the individual level, as shown in table

2.12. The individual level regression should be estimated with Arellano-Bond (1991)

estimator.

I conduct the robustness test in which forecasters update their forecasts according

to wt instead of wt−1. I present the regression results for various forecast horizons and

variables in tables 2.13 and 2.14. The results generally hold with some quantitative

difference. For example, the R2 is higher when wt is used instead of wt−1. This

is intuitive since wt should have more explanatory power than wt−1 for current

forecasts.

2.8.5 A Robustness Test on Regression Specification

Throughout the prior computations of Error-on-revision regression coefficients using

the simulated data, forecast revisions are determined under Assumption 1. This

assumption was primarily introduced for simplification purposes. Nonetheless, it

may raise concerns that our analysis of Error-on-revision regression coefficients under

adaptive expectations could be overly reliant on this assumption. To determine

whether the prior results rely on this assumption, we can easily test its influence.

For this, I conduct the following regression:

wt+h − F̄twt+h = βC0 + βC(F̄twt+h − F̄t−1wt+h−1) + ut,t+h, (2.18)

wt+h −Fi,twt+h = βI0 + βI(Fi,twt+h −Fi,t−1wt+h−1) + ui,t,t+h. (2.19)

Here, the concept of forecast revision is slightly altered compared to its traditional

definition. The “modified forecast revision” refers to the adjustment between two

consecutive one-period forecasts, replacing Fi,t−1wt+h with Fi,t−1wt+h−1. If the re-

gression coefficients estimated from equations (2.18) and (2.19) align with those from

the original regression, it would suggest that Assumption 1 does not significantly

influence our results. In other words, it does not substantially affect our findings

regarding the implications of adaptive expectations on Error-on-revision regression

coefficients.

In Table 2.7, the results of the regression are presented. The column titled “CG”

reports the original Error-on-revision regression coefficients, while the “Modified”
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column shows the adjusted regression coefficients. Regardless of whether Fi,t−1wt+h

or Fi,t−1wt+h−1 is employed, the quantitative difference between the regression coef-

ficients is negligible. There isn’t a single case where the coefficients from the two re-

gression specifications are statistically distinguishable. Hence, the Error-on-revision

regression coefficients remain robust, irrespective of how the forecast revisions are

calculated. As such, Assumption 1 is not important with respect to the Error-on-

revision regression coefficients.

Table 2.7: Modified Error-on-revision Regression Results
βCensus βIndividual

CG R2 Modified R2 CG Adj R2 Modified Adj R2

RGDP 0.11
(0.31)

0.0009 0.17
(0.1)

0.012 −0.28∗∗∗

(0.12)
0.098 −0.08

(0.18)
0.086

GDP Price Index 1.26∗∗∗

(0.41)
0.24 0.93∗∗∗

(0.33)
0.103 −0.15∗∗∗

(0.07)
0.169 −0.26∗∗∗

(0.06)
0.183

NGDP 0.14
(0.25)

0.004 0.19∗∗∗

(0.07)
0.015 −0.32∗∗∗

(0.12)
0.094 −0.14

(0.21)
0.066

CPI 1.04
(0.76)

0.018 0.69
(0.72)

0.009 −0.38∗∗∗

(0.09)
0.054 −0.41∗∗∗

(0.08)
0.057

Tbill 0.69∗∗∗

(0.11)
0.098 0.73∗∗∗

(0.16)
0.111 0.21∗∗∗

(0.09)
0.064 0.17∗

(0.1)
0.059

Tbond -0.06
(0.09)

0.0001 -0.03
(0.09)

0.0002 −0.23∗∗∗

(0.02)
0.078 −0.29∗∗∗

(0.09)
0.086

AAA -0.02
(0.16)

0.0001 0.003
(0.15)

0.0000 −0.27∗∗∗

(0.07)
0.125 −0.34∗∗∗

(0.06)
0.140

Notes: This table reports the regression results from equation (2.18) and (2.19).
Column “CG” reports the original Error-on-revision regression coefficients. Column
“Modified” reports the modified regression coefficients. Standard errors are displayed
in parenthesis. * p < 0.1, ** p < 0.05, ***p < 0.01.

2.9 Conclusion

While the Rational Expectations Hypothesis has long been the cornerstone of model-

ing macroeconomic expectations, contemporary empirical data from forecast surveys

challenges its dominance. The diagnostic expectations model, when generalized to

allow for under-reaction to new information, struggles to capture the observed stick-

iness in specific variables. Conversely, the adaptive expectations model, rooted in

mid-20th century thought, displays the ability to account for recently documented

empirical patterns in survey data, particularly in terms of matching the CG regres-

sion coefficients. This chapter shows that the model’s backward-looking feature is

useful in understanding forecast survey data. Thus, the adaptive expectations model

should still be a valuable tool in the evolving landscape of modeling macroeconomic

expectations.
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2.10 Appendix

2.10.1 Proofs

Proof 4 (Lemma 1) When there is a one-time shock at period 1, the time series

for the actual variable for t = 0, 1, 2, 3..., T... is given by

0, σe, 0, 0... (2.20)

The time series of forecasts is given by

0, γσe, (1− γ)γσe, (1− γ)2γσe..., (1− γ)T−1γσe... (2.21)

From the time series above, we see that γ < 2 is required so that forecasts eventually

converge to zero. The time series of forecast errors is given by

σe,−γσe,−(1− γ)γσe,−(1− γ)2γσe...,−(1− γ)T−1γσe... (2.22)

The time series of forecast revisions is given by

0, γσe,−γ2σe,−(1− γ)γ2σe...,−(1− γ)T−2γ2σe... (2.23)

The Error-on-revision regression coefficient is given by

β =

∑
t(FEt − FEt)(FRt − FRt)∑

t(FRt − FRt)2
(2.24)

when T is large enough, mean forecast revisions are given by the following

FRt = lim
T→∞

1

T
(γσe − γ2σe − (1− γ)γ2σe − ...− (1− γ)T−2γ2σe − ...)

= lim
T→∞

1

T
(γσe − γ2σe

1− (1− γ)T

1− (1− γ)
) = lim

T→∞

1

T
(γσe − γσe) = 0

Similarly, we can show that FEt = 0. Now the denominator is given by∑
t

(FRt − FRt)
2 = γ2σ2

e + γ4σ2
e + (1− γ)2γ4σ2

e + ...+ (1− γ)2T−4γ4σ2
e + ...

= γ2σ2
e + γ4σ2

e

1− (1− γ)2T

1− (1− γ)2

when T is large, denominator is given by γ2σ2
e + γ4σ2

e

1−(1−γ)2
Similarly, the numerator

is given by

∑
t

(FEt − FEt)(FRt − FRt) = −γ2σ2
e +

(1− γ)γ3σ2
e

1− (1− γ)2
(2.25)
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After some tedious algebra, we arrive at the expression β = −1
2

Q.E.D.

Proof 5 (Lemma 2) When there is a one-time shock at period 1, the time series

for the actual variable for t = 0, 1, 2, 3..., T... is given by

0, σe, ρσe, ρ
2σe... (2.26)

The time series of forecasts is given by

0, γσe, (1− γ + ρ)γσe, [(1− γ)2 + ρ2 + ρ(1− γ)]γσe..., γσe
ρT − (1− γ)T

ρ− 1 + γ
... (2.27)

From the time series above, we see that γ < 2 is required so that forecasts do not

explode. The time series of forecast errors is given by

σe, σe(ρ− γ), σe[ρ
2 − γ(1− γ + ρ)], ...,

σe
ρ− 1 + γ

[(ρ− 1)ρT + γ(1− γ)T ], ... (2.28)

The time series of forecast revisions is given by

0, γσe, γσe(ρ− γ), ...,
γσe

ρ− 1 + γ
[ρT−1(ρ− 1) + (1− γ)T−1γ], ... (2.29)

The Error-on-revision regression coefficient is given by

β =

∑
t(FEt − FEt)(FRt − FRt)∑

t(FRt − FRt)2
(2.30)

when T is large enough, mean forecast revisions are given by the following

FRt = lim
T→∞

1

T
(F1 −F0 + F2 −F1 + ...+ FT −FT−1) = lim

T→∞

1

T
γσe

ρT − (1− γ)T

ρ− 1 + γ
= 0

Similarly, we can show that FEt = 0. Now when T is large enough, after some

algebra the denominator is given by

∑
t

(FRt − FRt)
2 =

γ2σ2
e

(ρ− 1 + γ)2
[
(ρ− 1)2

1− ρ2
+

γ2

1− (1− γ)2
+

2(ρ− 1)γ

1− ρ(1− γ)
]

Similarly, when T is large enough, the numerator is given by

∑
t

(FEt−FEt)(FRt−FRt) =
γσ2

e

(ρ− 1 + γ)2
[(ρ−1)

ρ

−1− ρ
+

(ρ− 1)γ(ρ+ 1− γ)

1− (1− γ)ρ
+

γ2(1− γ)

1− (1− γ)2
]

(2.31)

It is straightforward to check that limγ→0 β = +∞.

By L’Hôpital’s rule, limγ→2 β = −1
2
.

Q.E.D.
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2.10.2 Extra Tables and Figures

Figure 2.19: β as a Function of γ and ρ.

Notes: This figure plots β as a function of ρ and γ. The persistence parameter
ρ is within [0, 1]. The adaptive parameter γ is within [0.3, 2].

Table 2.8: Lower Values of γ Estimation.

RGDP GDP Price Index NGDP CPI Tbill AAA Tbond

γI 0.07 only one 0.038 0.02 only one 0.05 0.01

Notes: This table presents the lower value of γ when two solutions for γ are
available in matching βI between the model and data.

Table 2.9: Robustness Test: Adaptive Expectations Model Implied Regression Re-
sults, Consensus Level

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

γh

t+ 1 1.29∗∗∗

(0.16)
1.3∗∗∗

(0.14)
0.53∗∗∗

(0.09)
0.51∗∗∗

(0.03)
0.83∗∗∗

(0.02)
0.77∗∗∗

(0.01)
0.7∗∗∗

(0.02)
t+ 2 0.76∗∗∗

(0.28)
0.76∗∗∗

(0.25)
0.28∗∗∗

(0.05)
0.11∗∗∗

(0.02)
0.93∗∗∗

(0.05)
0.75∗∗∗

(0.02)
0.73∗∗∗

(0.05)
t+ 3 0.33

(0.23)
0.37∗∗

(0.18)
0.18∗

(0.03)
0.06∗∗∗

(0.02)
0.85∗∗∗

(0.06)
0.69∗∗∗

(0.03)
0.66∗∗∗

(0.06)
t+ 4 0.14

(0.16)
0.19
(0.12)

0.14∗

(0.02)
0.04∗∗

(0.02)
0.72∗∗∗

(0.04)
0.61∗∗∗

(0.04)
0.57∗∗∗

(0.05)

Notes: This table reports the regression results from equation (2.16) at the consensus
level, with wt instead of wt−1, for different variables and various forecast horizons.
Standard errors are displayed in parenthesis. * p < 0.1, ** p < 0.05, ***p < 0.01.

106



Table 2.10: Robustness Test: Adaptive Expectations Model Implied Regression
Results, Individual Level

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

γh

t+ 1 1.27∗∗∗

(0.21)
1.26∗∗∗

(0.21)
0.76∗∗∗

(0.05)
0.57∗∗∗

(0.03)
0.83∗∗∗

(0.03)
0.78∗∗∗

(0.09)
0.74∗∗∗

(0.03)
t+ 2 0.82∗∗∗

(0.22)
0.81∗∗∗

(0.2)
0.52∗∗∗

(0.05)
0.16∗∗∗

(0.02)
0.90∗∗∗

(0.03)
0.75∗∗∗

(0.03)
0.71∗∗∗

(0.03)
t+ 3 0.46∗∗∗

(0.13)
0.48∗∗∗

(0.12)
0.39∗∗∗

(0.04)
0.11∗∗∗

(0.02)
0.79∗∗∗

(0.04)
0.67∗∗∗

(0.03)
0.64∗∗∗

(0.04)
t+ 4 0.26∗∗∗

(0.08)
0.3∗∗∗

(0.08)
0.32∗∗∗

(0.03)
0.08∗∗∗

(0.03)
0.65∗∗∗

(0.04)
0.59∗∗∗

(0.03)
0.55∗∗∗

(0.03)

Notes: This table reports the regression results from equation (2.16) at the individual
level, with wt instead of wt−1, for different variables and various forecast horizons.
Standard errors are displayed in parenthesis. * p < 0.1, ** p < 0.05, ***p < 0.01.
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Table 2.11: Consensus Level Coefficient Restriction Test Equation (2.17)

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

Forecast horizon: t

α0 1.55∗∗∗

(0.47)
2.9∗∗

(0.81)
0.28∗∗∗

(0.1)
1.29∗∗∗

(0.17)
0.18∗∗∗

(0.05)
0.19∗∗∗

(0.03)
−0.03∗∗∗

(0.07)
α1 0.39∗∗∗

(0.11)
0.63∗∗∗

(0.1)
0.38∗∗∗

(0.06)
0.3∗∗∗

(0.05)
2.23∗∗∗

(0.29)
1.8∗∗∗

(0.18)
1.17∗∗∗

(0.15)
α2 −1.11∗∗∗

(0.23)
−1.16∗∗∗

(0.21)
−0.46∗∗∗

(0.08)
−0.78∗∗∗

(0.07)
−2.26∗∗∗

(0.27)
−1.83∗∗∗

(0.18)
−1.16∗∗∗

(0.15)
p-value 0.00 0.00 0.00 0.00 0.03 0.002 0.26
Obs. 210 212 211 162 157 117 159
R2 0.49 0.24 0.16 0.3 0.54 0.65 0.41

Forecast horizon: t+ 1

α0 1.52∗∗

(0.71)
2.51∗∗

(1.25)
0.18∗∗∗

(0.07)
0.34∗∗∗

(0.06)
0.13∗

(0.07)
0.41∗∗∗

(0.08)
0.24∗∗∗

(0.07)
α1 0.01

(0.05)
0.2∗∗

(0.1)
0.19∗∗∗

(0.06)
0.01
(0.03)

0.39
(0.28)

1.38∗∗∗

(0.28)
0.83∗∗∗

(0.2)
α2 −0.62∗

(0.32)
−0.62∗∗

(0.31)
−0.25∗∗

(0.07)
−0.14∗∗∗

(0.03)
−0.43
(0.28)

−1.42∗∗∗

(0.28)
−0.86∗∗∗

(0.2)
p-value 0.02 0.05 0.02 0.00 0.01 0.0003 0.004
Obs. 210 212 211 162 157 117 159
R2 0.3 0.24 0.08 0.12 0.07 0.52 0.27

Forecast horizon: t+ 2

α0 1.19∗∗∗

(0.64)
1.59∗

(0.95)
0.12∗∗

(0.05)
0.17∗∗∗

(0.04)
0.13
(0.1)

0.55∗∗∗

(0.14)
0.34∗∗∗

(0.1)
α1 −0.11∗∗

(0.05)
−0.00
(0.05)

0.11∗∗

(0.04)
0.04∗∗

(0.02)
0.24
(0.24)

1.09∗∗∗

(0.27)
0.61∗∗∗

(0.17)
α2 −0.35

(0.26)
−0.26
(0.2)

−0.14∗∗

(0.05)
−0.1∗∗∗

(0.03)
−0.28
(0.25)

−1.16∗∗∗

(0.29)
−0.65∗∗∗

(0.17)
p-value 0.05 0.11 0.06 0.00 0.02 0.002 0.004
Obs. 210 212 211 162 157 117 159
R2 0.23 0.13 0.04 0.13 0.06 0.45 0.21

Forecast horizon: t+ 3

α0 0.96∗

(0.56)
1.00
(0.63)

0.10∗

(0.05)
0.17∗∗∗

(0.06)
0.12
(0.1)

0.61∗∗∗

(0.2)
0.32∗∗∗

(0.1)
α1 −0.13∗∗∗

(0.04)
−0.08∗∗∗

(0.03)
0.08∗∗

(0.04)
0.06∗∗∗

(0.01)
0.13
(0.16)

0.83∗∗∗

(0.25)
0.43∗∗∗

(0.11)
α2 −0.24

(0.21)
−0.09
(0.11)

−0.11∗∗

(0.05)
−0.12∗∗∗

(0.02)
−0.17
(0.17)

−0.91∗∗∗

(0.28)
−0.47∗∗∗

(0.12)
p-value 0.07 0.12 0.13 0.01 0.02 0.01 0.005
Obs. 210 212 211 162 157 117 159
R2 0.21 0.1 0.04 0.28 0.05 0.36 0.15

Notes: This table reports the regression results from equation (2.17) at the consensus
level for each variable and for multiple forecast horizons. The p-value is from the
Wald test of the coefficient restriction γ1 + γ2 = 1. Standard errors are displayed in
parenthesis. * p < 0.1, ** p < 0.05, ***p < 0.01.
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Table 2.12: Individual Level Coefficient Restriction Test Equation (2.17)

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

Forecast horizon: t

α0 1.78∗∗

(0.72)
4.46∗∗∗

(1.45)
1.02∗∗∗

(0.19)
1.7∗∗∗

(0.19)
0.16∗∗∗

(0.05)
0.15∗∗∗

(0.05)
0.1
(0.09)

α1 0.36∗∗

(0.14)
0.32∗∗

(0.15)
0.39∗∗∗

(0.06)
0.36∗∗∗

(0.05)
0.63∗∗∗

(0.09)
1.32∗∗∗

(0.09)
0.9∗∗∗

(0.06)
α2 −1.1∗∗∗

(0.22)
−1.13∗∗∗

(0.19)
−0.82∗∗∗

(0.04)
−1.04∗∗∗

(0.06)
−0.68∗∗∗

(0.09)
−1.35∗∗∗

(0.09)
−0.92∗∗∗

(0.06)
p-value 0.006 0.00 0.00 0.00 0.02 0.06 0.35
Obs. 4962 4971 4954 4327 4116 3440 3473
R2 0.47 0.49 0.37 0.44 0.18 0.53 0.4

Forecast horizon: t+ 1

α0 1.81∗∗∗

(0.73)
4.22∗∗∗

(1.52)
0.85∗∗∗

(0.14)
1.41∗∗∗

(0.10)
0.2∗∗∗

(0.05)
0.29∗∗∗

(0.06)
0.34∗∗∗

(0.1)
α1 0.04

(0.98)
−0.05
(0.10)

0.36∗∗∗

(0.04)
0.06∗∗∗

(0.02)
0.44∗∗∗

(0.07)
0.97∗∗∗

(0.07)
0.71∗∗∗

(0.05)
α2 −0.72∗∗∗

(0.2)
−0.77∗∗∗

(0.18)
−0.64∗∗∗

(0.04)
−0.61∗∗∗

(0.04)
−0.49∗∗∗

(0.07)
−1.01∗∗∗

(0.07)
−0.76∗∗∗

(0.05)
p-value 0.005 0.00 0.00 0.00 0.003 0.0054 0.006
Obs. 4960 4973 4953 4329 4116 3441 3475
R2 0.32 0.35 0.29 0.3 0.15 0.41 0.33

Forecast horizon: t+ 2

α0 1.59∗∗∗

(0.59)
3.55∗∗∗

(1.26)
0.73∗∗∗

(0.14)
1.29∗∗∗

(0.15)
0.25∗∗∗

(0.05)
0.39∗∗∗

(0.07)
0.48∗∗∗

(0.13)
α1 −0.06

(0.98)
−0.05
(0.10)

0.28∗∗∗

(0.03)
0.06∗∗∗

(0.02)
0.32∗∗∗

(0.06)
0.73∗∗∗

(0.06)
0.57∗∗∗

(0.04)
α2 −0.52∗∗∗

(0.14)
−0.55∗∗∗

(0.13)
−0.51∗∗∗

(0.04)
−0.55∗∗∗

(0.05)
−0.38∗∗∗

(0.06)
−0.78∗∗∗

(0.06)
−0.63∗∗∗

(0.05)
p-value 0.003 0.00 0.00 0.00 0.003 0.0008 0.001
Obs. 4953 4961 4949 4331 4116 3439 3471
R2 0.26 0.27 0.23 0.27 0.14 0.33 0.28

Forecast horizon: t+ 3

α0 1.43∗∗∗

(0.48)
3.02∗∗∗

(1.00)
0.67∗∗∗

(0.12)
1.18∗∗∗

(0.14)
0.25∗∗∗

(0.05)
0.46∗∗∗

(0.08)
0.55∗∗∗

(0.11)
α1 −0.09

(0.08)
−0.07
(0.09)

0.23∗∗∗

(0.03)
0.08∗∗∗

(0.01)
0.32∗∗∗

(0.06)
0.58∗∗∗

(0.06)
0.45∗∗∗

(0.04)
α2 −0.43∗∗∗

(0.11)
−0.43∗∗∗

(0.1)
−0.45∗∗∗

(0.04)
−0.51∗∗∗

(0.05)
−0.38∗∗∗

(0.06)
−0.64∗∗∗

(0.06)
−0.52∗∗∗

(0.04)
p-value 0.001 0.00 0.00 0.00 0.0004 0.0001 0.0001
Obs. 4923 4932 4918 4296 4116 3408 3453
R2 0.23 0.22 0.21 0.29 0.14 0.28 0.23

Notes: This table reports the regression results from equation (2.17) at the individual
level for each variable and for multiple forecast horizons. The p-value is from the
Wald test of the coefficient restriction γ1 + γ2 = 1. Standard errors are displayed in
parenthesis. * p < 0.1, ** p < 0.05, ***p < 0.01.
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Table 2.13: Robustness: Consensus Level Coefficient Restriction Test Equation
(2.17)

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

Forecast horizon: t

α0 0.29
(0.47)

0.97
(0.62)

0.29∗∗

(0.12)
0.33∗∗∗

(0.09)
0.05∗∗∗

(0.01)
0.04∗∗∗

(0.01)
−0.07
(0.06)

α1 1.12∗∗∗

(0.25)
1.14∗∗∗

(0.2)
0.53∗∗∗

(0.1)
0.48∗∗∗

(0.03)
0.82∗∗∗

(0.02)
0.77∗∗∗

(0.01)
0.74∗∗∗

(0.03)
α2 −1.33∗∗∗

(0.14)
−1.36∗∗∗

(0.13)
−0.62∗∗∗

(0.12)
−0.61∗∗∗

(0.03)
−0.83∗∗∗

(0.02)
−0.77∗∗∗

(0.01)
−0.72∗∗∗

(0.02)
p-value 0.14 0.03 0.00 0.00 0.47 0.46 0.02
Obs. 209 212 209 162 157 117 159
R2 0.7 0.72 0.29 0.78 0.95 0.88 0.8

Forecast horizon: t+ 1

α0 1.1∗∗

(0.44)
1.99∗∗∗

(0.73)
0.21∗∗∗

(0.08)
0.26∗∗∗

(0.05)
0.16∗∗∗

(0.04)
0.17∗∗∗

(0.03)
0.13∗∗

(0.05)
α1 0.59∗∗∗

(0.19)
0.69∗∗∗

(0.16)
0.32∗∗∗

(0.06)
0.1∗∗∗

(0.02)
0.92∗∗∗

(0.06)
0.74∗∗∗

(0.02)
0.73∗∗∗

(0.06)
α2 −1.01∗∗∗

(0.31)
−1.02∗∗∗

(0.27)
−0.38∗∗∗

(0.07)
−0.2∗∗∗

(0.02)
−0.93∗∗∗

(0.05)
−0.75∗∗∗

(0.02)
−0.73∗∗∗

(0.06)
p-value 0.002 0.01 0.00 0.00 0.04 0.04 0.41
Obs. 209 212 209 162 157 117 159
R2 0.5 0.53 0.21 0.33 0.88 0.83 0.72

Forecast horizon: t+ 2

α0 1.12∗

(0.58)
1.63∗

(0.85)
0.15∗∗

(0.06)
0.12∗∗∗

(0.04)
0.24∗∗∗

(0.06)
0.29∗∗∗

(0.04)
0.26∗∗∗

(0.07)
α1 0.28

(0.18)
0.37∗∗

(0.16)
0.2∗∗∗

(0.03)
0.06∗

(0.01)
0.84∗∗∗

(0.07)
0.69∗∗∗

(0.03)
0.65∗∗∗

(0.06)
α2 −0.68∗

(0.36)
−0.63∗∗

(0.3)
−0.25∗∗∗

(0.04)
−0.11∗∗∗

(0.02)
−0.86∗∗∗

(0.07)
−0.71∗∗∗

(0.02)
−0.68∗∗∗

(0.06)
p-value 0.03 0.07 0.01 0.00 0.02 0.003 0.04
Obs. 209 212 209 162 157 117 159
R2 0.31 0.31 0.15 0.24 0.79 0.79 0.65

Forecast horizon: t+ 3

α0 1.03∗

(0.61)
1.16
(0.71)

0.13∗∗

(0.05)
0.15∗∗∗

(0.04)
0.32∗∗∗

(0.07)
0.4∗∗∗

(0.06)
0.32∗∗∗

(0.08)
α1 0.14

(0.14)
0.2
(0.13)

0.16∗∗∗

(0.03)
0.04∗

(0.02)
0.71∗∗∗

(0.04)
0.62∗∗∗

(0.04)
0.57∗∗∗

(0.05)
α2 −0.5

(0.34)
−0.37
(0.24)

−0.19∗∗∗

(0.04)
−0.09∗∗∗

(0.02)
−0.74∗∗∗

(0.05)
−0.66∗∗∗

(0.06)
−0.6∗∗∗

(0.05)
p-value 0.07 0.11 0.02 0.01 0.01 0.001 0.03
Obs. 209 212 209 162 157 117 159
R2 0.21 0.17 0.13 0.14 0.69 0.76 0.58

Notes: This table reports the regression results from equation (2.17) at the consensus
level for each variable and for multiple forecast horizons. The p-value is from the
Wald test of the coefficient restriction γ1 + γ2 = 1. In this test, forecasters update
their forecasts according to wt instead of wt−1. Standard errors are displayed in
parenthesis. * p < 0.1, ** p < 0.05, ***p < 0.01.
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Table 2.14: Robustness: Individual Level Coefficient Restriction Test Equation
(2.17)

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

Forecast horizon: t

α0 0.31
(0.89)

0.88
(2.04)

0.89∗∗∗

(0.16)
0.76∗∗∗

(0.13)
0.00∗∗∗

(0.01)
0.02
(0.03)

−0.07
(0.07)

α1 1.14∗∗∗

(0.39)
1.1∗∗∗

(0.41)
0.56∗∗∗

(0.06)
0.46∗∗∗

(0.03)
0.84∗∗∗

(0.02)
0.79∗∗∗

(0.03)
0.76∗∗∗

(0.03)
α2 −1.29∗∗∗

(0.19)
−1.28∗∗∗

(0.19)
−0.86∗∗∗

(0.05)
−0.78∗∗∗

(0.03)
−0.83∗∗∗

(0.03)
−0.78∗∗∗

(0.03)
−0.74∗∗∗

(0.03)
p-value 0.62 0.58 0.00 0.00 0.01 0.19 0.08
Obs. 4929 4971 4895 4327 4144 3440 3473
R2 0.65 0.66 0.41 0.64 0.86 0.76 0.62

Forecast horizon: t+ 1

α0 1.2∗∗

(0.54)
2.58∗∗

(1.19)
0.78∗∗∗

(0.12)
1.28∗∗∗

(0.1)
0.08∗∗∗

(0.02)
0.13∗∗∗

(0.04)
0.12
(0.08)

α1 0.59∗∗∗

(0.19)
0.58∗∗∗

(0.19)
0.41∗∗∗

(0.04)
0.1∗∗∗

(0.02)
0.91∗∗∗

(0.03)
0.74∗∗∗

(0.03)
0.71∗∗∗

(0.04)
α2 −1.01∗∗∗

(0.23)
−1.01∗∗∗

(0.22)
−0.67∗∗∗

(0.05)
−0.6∗∗∗

(0.04)
−0.9∗∗∗

(0.03)
−0.74∗∗∗

(0.03)
−0.71∗∗∗

(0.03)
p-value 0.02 0.02 0.00 0.00 0.42 0.77 0.57
Obs. 4926 4973 4894 4329 4146 3441 3475
R2 0.49 0.51 0.33 0.33 0.74 0.66 0.54

Forecast horizon: t+ 2

α0 1.34∗∗∗

(0.5)
2.68∗∗

(1.05)
0.63∗∗∗

(0.11)
1.24∗∗∗

(0.15)
0.16∗∗∗

(0.03)
0.24∗∗∗

(0.05)
0.27∗∗∗

(0.1)
α1 0.32∗∗∗

(0.12)
0.33∗∗∗

(0.12)
0.26∗∗∗

(0.03)
0.06∗∗∗

(0.01)
0.78∗∗∗

(0.04)
0.66∗∗∗

(0.03)
0.62∗∗∗

(0.04)
α2 −0.77∗∗∗

(0.19)
−0.77∗∗∗

(0.18)
−0.47∗∗∗

(0.04)
−0.53∗∗∗

(0.05)
−0.79∗∗∗

(0.04)
−0.68∗∗∗

(0.03)
−0.64∗∗∗

(0.04)
p-value 0.005 0.01 0.00 0.00 0.76 0.15 0.1
Obs. 4919 4961 4859 4331 4141 3439 3471
R2 0.36 0.37 0.24 0.27 0.6 0.57 0.46

Forecast horizon: t+ 3

α0 1.32∗∗∗

(0.45)
2.48∗∗∗

(0.9)
0.63∗∗∗

(0.11)
1.23∗∗∗

(0.16)
0.25∗∗∗

(0.04)
0.33∗∗∗

(0.05)
0.36∗∗∗

(0.09)
α1 0.19∗∗

(0.08)
0.2∗∗

(0.09)
0.26∗∗∗

(0.03)
0.03∗∗

(0.02)
0.63∗∗∗

(0.04)
0.58∗∗∗

(0.03)
0.52∗∗∗

(0.03)
α2 −0.63∗∗∗

(0.16)
−0.6∗∗∗

(0.14)
−0.47∗∗∗

(0.04)
−0.49∗∗∗

(0.05)
−0.65∗∗∗

(0.04)
−0.61∗∗∗

(0.03)
−0.56∗∗∗

(0.03)
p-value 0.002 0.01 0.00 0.00 0.04 0.01 0.01
Obs. 4889 4932 4859 4296 4116 3408 3453
R2 0.28 0.28 0.24 0.26 0.49 0.49 0.38

Notes: This table reports the regression results from equation (2.17) at the individual
level for each variable and for multiple forecast horizons. The p-value is from the
Wald test of the coefficient restriction γ1 + γ2 = 1. In this test, forecasters update
their forecasts according to wt instead of wt−1. Standard errors are displayed in
parenthesis. * p < 0.1, ** p < 0.05, ***p < 0.01.
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2.10.3 Extra Test of Parameter Restriction

To characterize actual expectation formation processes more closely, I conduct tests

on two parameter restrictions related to the benchmark adaptive expectations model

using the following regression equation:

Ftwt+h = γ0,h + γ1,hwt−1 + γ2,hFt−1wt+h−1 + ut,h, h = 0, 1, 2, 3, (2.32)

The first parameter restriction is, the benchmark adaptive expectations model as-

sumes a zero constant term, γ0,h = 0. In other words, there is no constant com-

ponent beyond the latest observation and past forecasts. The second restriction is,

the model assumes the current forecast is the weighted average of the latest obser-

vation and past forecasts, with the sum of these two coefficients equating to one,

γ1,h + γ2,h = 1. I present the regression results for various forecast horizons and

variables in tables 2.15 and 2.16.

There are several patterns in table 2.15. Firstly, in most instances, the constant

term is significantly positive. In only four out of the 28 variable-horizon pairs is the

constant term not significant at the 90% confidence level. Secondly, the p-value for

the test γ1,h + γ2,h = 1 is generally small, implying that the parameter restriction

in the benchmark adaptive expectations model is largely refuted by the data. In

23 out of the 28 variable-horizon pairs, the parameter restriction is rejected at the

95% confidence level. The coefficient preceding the latest observation γ1 decreases

over forecast horizons, while the coefficient in front of the last forecasts γ2 increases

over these horizons. As the forecast horizon expands, forecasters assign less weight

to the latest observation. Instead, forecasts become increasingly sticky, and depend

more heavily on past forecasts. In some instances, for example Panel A in table

2.15 for the 3-month Tbill yield and the 10-year Tbond yield, γ1 > 1 and γ2 < 0.

This suggests that in these scenarios, forecasters over-extrapolate from their latest

observation, and adjust in the opposite direction of past forecasts. Thirdly, the R2

value is substantial in many cases. For instance, for the 3-month Tbill yield, 10-year

Tbond yield, and AAA corporate bond yield, the R2 value approaches 1. For real

and nominal GDP growth rates, and the CPI inflation rate, R2 is small at forecast

horizon t, but increases over forecast horizons. The R2 value of the CPI inflation

rate doubles from 0.46 at forecast horizon t to 0.95 at forecast horizon t+ 3.

The patterns outlined above are qualitatively consistent at both the consensus

and individual levels, albeit with some quantitative differences. Robustness tests

using wt as the latest observation instead of wt−1 are reported in table 2.17 and

2.18. Most of the patterns described above are robust, with some quantitative

difference. For example, for 3-month Tbill yield and 10-year Tbond yield, at the

consensus level, γ1 > 1 and γ2 < 0 are not robust depending on whether wt or wt−1

is used as the latest observation.
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Table 2.15: Consensus Level Coefficient Restriction Test Equation (2.32)

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

Panel A: Forecast horizon: t

γ0 1.56∗∗∗

(0.48)
2.87∗∗∗

(0.81)
0.29∗∗∗

(0.1)
1.25∗∗∗

(0.17)
0.18∗∗∗

(0.05)
0.2∗∗∗

(0.03)
−0.04
(0.07)

γ1 0.39∗∗∗

(0.11)
0.62∗∗∗

(0.1)
0.37∗∗∗

(0.06)
0.29∗∗∗

(0.04)
2.31∗∗∗

(0.26)
1.83∗∗∗

(0.17)
1.2∗∗∗

(0.15)
γ2 −0.1

(0.23)
−0.15
(0.21)

0.55∗∗∗

(0.08)
0.25∗∗∗

(0.07)
−1.34∗∗∗

(0.25)
−0.86∗∗∗

(0.17)
−0.19
(0.14)

p-value 0.00 0.0008 0.003 0.00 0.03 0.001 0.22
Obs. 210 212 211 162 157 117 159
R2 0.05 0.16 0.87 0.46 0.99 0.98 0.99

Panel B: Forecast horizon: t+ 1

γ0 1.51∗∗

(0.67)
2.47∗∗

(1.21)
0.19∗∗∗

(0.07)
0.34∗∗∗

(0.06)
0.13∗

(0.07)
0.42∗∗∗

(0.08)
0.24∗∗∗

(0.06)
γ1 0.01

(0.07)
0.18∗

(0.09)
0.19∗∗∗

(0.06)
0.01
(0.03)

0.43
(0.28)

1.41∗∗∗

(0.27)
0.86∗∗∗

(0.2)
γ2 0.39

(0.3)
0.4
(0.3)

0.75∗∗∗

(0.07)
0.86∗∗∗

(0.04)
0.53∗

(0.29)
−0.46∗

(0.28)
0.11
(0.2)

p-value 0.02 0.05 0.01 0.00 0.01 0.0002 0.002
Obs. 210 212 211 162 157 117 159
R2 0.15 0.33 0.93 0.85 0.97 0.98 0.98

Panel C: Forecast horizon: t+ 2

γ0 1.19∗∗

(0.6)
1.57∗

(0.91)
0.13∗∗

(0.05)
0.23∗∗∗

(0.06)
0.13
(0.1)

0.57∗∗∗

(0.14)
0.33∗∗∗

(0.09)
γ1 −0.11∗∗

(0.04)
−0.01
(0.04)

0.11∗∗

(0.05)
0.03
(0.02)

0.25
(0.27)

1.1∗∗∗

(0.27)
0.64∗∗∗

(0.17)
γ2 0.64∗∗∗

(0.6)
0.76∗∗∗

(0.19)
0.85∗∗∗

(0.05)
0.89∗∗∗

(0.03)
0.7∗∗

(0.28)
−0.18
(0.29)

0.32∗

(0.18)
p-value 0.03 0.1 0.04 0.0002 0.01 0.001 0.001
Obs. 210 212 211 162 157 117 159
R2 0.33 0.55 0.95 0.93 0.97 0.97 0.98

Panel D: Forecast horizon: t+ 3

γ0 0.98∗

(0.51)
0.97
(0.6)

0.12∗∗

(0.05)
0.2∗∗∗

(0.06)
0.13
(0.11)

0.64∗∗∗

(0.2)
0.35∗∗∗

(0.09)
γ1 −0.12∗∗∗

(0.03)
−0.08∗∗∗

(0.02)
0.09∗∗

(0.04)
0.06∗∗∗

(0.007)
0.16
(0.19)

0.84∗∗∗

(0.25)
0.48∗∗∗

(0.12)
γ2 0.75∗∗∗

(0.18)
0.92∗∗∗

(0.1)
0.88∗∗∗

(0.05)
0.87∗∗∗

(0.02)
0.8∗∗∗

(0.2)
0.07
(0.27)

0.48∗∗∗

(0.13)
p-value 0.04 0.11 0.07 0.002 0.01 0.01 0.001
Obs. 210 212 211 162 157 117 159
R2 0.43 0.71 0.96 0.95 0.97 0.97 0.98

Notes: This table reports the regression results from equation (2.32) at the consensus
level for each variable and for multiple forecast horizons. The p-value is from the
Wald test of the coefficient restriction γ1 + γ2 = 1. Standard errors are displayed in
parenthesis. * p < 0.1, ** p < 0.05, ***p < 0.01.
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Table 2.16: Individual Level Coefficient Restriction Test Equation (2.32)

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

Panel A: Forecast horizon: t

γ0 1.78∗∗

(0.72)
4.46∗∗∗

(1.45)
0.85∗∗∗

(0.14)
1.7∗∗∗

(0.19)
0.09∗∗

(0.04)
0.15∗∗

(0.05)
0.1
(0.09)

γ1 0.36∗∗

(0.14)
0.32∗∗

(0.15)
0.36∗∗∗

(0.04)
0.36∗∗∗

(0.05)
1.44∗∗∗

(0.12)
1.32∗∗∗

(0.09)
0.9∗∗∗

(0.06)
γ2 −0.1

(0.22)
−0.13
(0.19)

0.36∗∗∗

(0.04)
−0.04
(0.06)

−0.46∗∗∗

(0.11)
−0.35∗∗∗

(0.09)
0.08
(0.06)

p-value 0.0006 0.0005 0.00 0.00 0.17 0.06 0.35
Obs. 4962 4971 4953 4327 4144 3440 3473
R2 0.04 0.17 0.78 0.35 0.98 0.97 0.98

Panel B: Forecast horizon: t+ 1

γ0 1.81∗∗

(0.73)
4.22∗∗

(1.52)
0.73∗∗∗

(0.14)
1.41∗∗∗

(0.1)
0.16∗∗∗

(0.05)
0.29∗∗∗

(0.06)
0.34∗∗∗

(0.1)
γ1 0.04

(0.09)
0.05
(0.10)

0.28∗∗∗

(0.03)
0.06∗∗∗

(0.02)
0.63∗∗∗

(0.09)
0.97∗∗∗

(0.07)
0.71∗∗∗

(0.05)
γ2 0.28

(0.2)
0.23
(0.18)

0.49∗∗∗

(0.04)
0.39∗∗∗

(0.04)
0.32∗∗∗

(0.09)
−0.006
(0.07)

0.24∗∗∗

(0.05)
p-value 0.005 0.004 0.00 0.00 0.02 0.005 0.006
Obs. 4960 4973 4949 4329 4146 3441 3475
R2 0.14 0.35 0.82 0.55 0.96 0.95 0.97

Panel C: Forecast horizon: t+ 2

γ0 1.59∗∗∗

(0.59)
3.55∗∗∗

(1.26)
0.73∗∗∗

(0.14)
1.29∗∗∗

(0.15)
0.2∗∗∗

(0.05)
0.39∗∗∗

(0.07)
0.48∗∗∗

(0.13)
γ1 −0.06

(0.09)
−0.05
(0.10)

0.28∗∗∗

(0.03)
0.06∗∗∗

(0.02)
0.43∗∗∗

(0.07)
0.73∗∗∗

(0.06)
0.57∗∗∗

(0.04)
γ2 0.48∗∗∗

(0.14)
0.45∗∗∗

(0.13)
0.49∗∗∗

(0.04)
0.45∗∗∗

(0.05)
0.51∗∗∗

(0.07)
0.22∗∗∗

(0.06)
0.37∗∗∗

(0.05)
p-value 0.003 0.004 0.00 0.00 0.003 0.0008 0.001
Obs. 4963 4961 4949 4331 4141 3439 3471
R2 0.26 0.51 0.82 0.63 0.96 0.94 0.96

Panel D: Forecast horizon: t+ 3

γ0 1.43∗∗∗

(0.48)
3.02∗∗∗

(1.00)
0.67∗∗∗

(0.12)
1.18∗∗∗

(0.14)
0.25∗∗∗

(0.05)
0.46∗∗∗

(0.08)
0.55∗∗∗

(0.11)
γ1 −0.09

(0.08)
−0.07
(0.09)

0.23∗∗∗

(0.03)
0.08∗∗∗

(0.01)
0.32∗∗∗

(0.06)
0.58∗∗∗

(0.06)
0.45∗∗∗

(0.04)
γ2 0.57∗∗∗

(0.11)
0.57∗∗∗

(0.1)
0.55∗∗∗

(0.04)
0.49∗∗∗

(0.05)
0.62∗∗∗

(0.06)
0.36∗∗∗

(0.06)
0.48∗∗∗

(0.04)
p-value 0.001 0.002 0.00 0.00 0.0004 0.0001 0.0001
Obs. 4923 4932 4918 4296 4116 3408 3453
R2 0.35 0.62 0.83 0.69 0.95 0.93 0.96

Notes: This table reports the regression results from equation (2.32) at the individual
level for each variable and for multiple forecast horizons. The p-value is from the
Wald test of the coefficient restriction γ1 + γ2 = 1. Standard errors are displayed in
parenthesis. * p < 0.1, ** p < 0.05, ***p < 0.01.
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Table 2.17: Robustness Check: Consensus Level Coefficient Restriction Test Equa-
tion (2.32)

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

Panel A: Forecast horizon: t

γ0 0.3
(0.5)

0.94∗

(0.57)
0.3∗∗

(0.12)
0.3∗∗∗

(0.07)
0.04∗∗∗

(0.01)
0.05∗∗∗

(0.01)
−0.08
(0.06)

γ1 1.12∗∗∗

(0.27)
1.13∗∗∗

(0.19)
0.5∗∗∗

(0.09)
0.47∗∗∗

(0.03)
0.82∗∗∗

(0.02)
0.77∗∗∗

(0.01)
0.76∗∗∗

(0.03)
γ2 −0.33∗∗

(0.15)
−0.34∗∗∗

(0.12)
0.41∗∗∗

(0.11)
0.41∗∗∗

(0.02)
0.17∗∗∗

(0.02)
0.23∗∗∗

(0.01)
0.26∗∗∗

(0.02)
p-value 0.15 0.02 0.003 0.001 0.59 0.88 0.01
Obs. 209 212 209 162 157 117 159
R2 0.44 0.53 0.89 0.85 0.99 0.99 0.99

Panel B: Forecast horizon: t+ 1

γ0 1.1∗∗∗

(0.4)
1.96∗∗∗

(0.7)
0.22∗∗∗

(0.08)
0.26∗∗∗

(0.04)
0.15∗∗∗

(0.04)
0.18∗∗∗

(0.03)
0.13∗∗

(0.05)
γ1 0.58∗∗∗

(0.18)
0.67∗∗∗

(0.15)
0.3∗∗∗

(0.05)
0.1∗∗∗

(0.02)
0.92∗∗∗

(0.06)
0.75∗∗∗

(0.02)
0.74∗∗∗

(0.05)
γ2 −0.002

(0.29)
−0.007
(0.26)

0.63∗∗∗

(0.08)
0.8∗∗∗

(0.02)
0.07
(0.06)

0.24∗∗∗

(0.02)
0.25∗∗∗

(0.05)
p-value 0.0005 0.006 0.002 0.00 0.03 0.01 0.38
Obs. 209 212 209 162 157 117 159
R2 0.4 0.58 0.94 0.89 0.97 0.99 0.99

Panel C: Forecast horizon: t+ 2

γ0 1.12∗∗

(0.53)
1.6∗∗

(0.82)
0.16∗∗∗

(0.06)
0.18∗∗∗

(0.05)
0.24∗∗∗

(0.06)
0.31∗∗∗

(0.04)
0.25∗∗∗

(0.06)
γ1 0.27

(0.17)
0.36∗∗

(0.15)
0.19∗∗∗

(0.03)
0.05∗∗∗

(0.01)
0.85∗∗∗

(0.07)
0.69∗∗∗

(0.03)
0.68∗∗∗

(0.06)
γ2 0.32

(0.33)
0.38
(0.28)

0.76∗∗∗

(0.04)
0.88∗∗∗

(0.02)
0.13∗

(0.07)
0.28∗∗∗

(0.02)
0.3∗∗∗

(0.06)
p-value 0.02 0.06 0.003 0.0001 0.02 0.002 0.04
Obs. 209 212 209 162 157 117 159
R2 0.4 0.64 0.96 0.94 0.99 0.99 0.99

Panel D: Forecast horizon: t+ 3

γ0 1.05∗

(0.55)
1.12∗

(0.68)
0.14∗∗∗

(0.05)
0.18∗∗∗

(0.04)
0.33∗∗∗

(0.08)
0.41∗∗∗

(0.06)
0.33∗∗∗

(0.07)
γ1 0.14

(0.13)
0.19
(0.12)

0.15∗∗∗

(0.03)
0.03∗∗∗

(0.01)
0.72∗∗∗

(0.04)
0.62∗∗∗

(0.04)
0.61∗∗∗

(0.06)
γ2 0.49

(0.31)
0.63∗∗∗

(0.23)
0.81∗∗∗

(0.04)
0.9∗∗∗

(0.02)
0.25∗∗∗

(0.04)
0.34∗∗∗

(0.04)
0.37∗∗∗

(0.06)
p-value 0.04 0.11 0.01 0.0001 0.01 0.0006 0.009
Obs. 209 212 209 162 157 117 159
R2 0.44 0.73 0.97 0.94 0.99 0.99 0.99

Notes: This table reports the regression results from equation (2.32) at the consensus
level for each variable and for multiple forecast horizons. The p-value is from the
Wald test of the coefficient restriction γ1 + γ2 = 1. In this test, forecasters update
their forecasts according to wt instead of wt−1. Standard errors are displayed in
parenthesis. * p < 0.1, ** p < 0.05, ***p < 0.01.
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Table 2.18: Robustness Check: Individual Level Coefficient Restriction Test Equa-
tion (2.32)

RGDP NGDP GDP Price Index CPI Tbill Tbond AAA

Panel A: Forecast horizon: t

γ0 0.31
(0.89)

0.88
(2.04)

0.89∗∗∗

(0.16)
0.76∗∗∗

(0.13)
0.00
(0.01)

0.02
(0.03)

−0.07
(0.07)

γ1 1.14∗∗∗

(0.39)
1.1∗∗∗

(0.41)
0.56∗∗∗

(0.06)
0.46∗∗∗

(0.03)
0.84∗∗∗

(0.02)
0.78∗∗∗

(0.03)
0.76∗∗∗

(0.03)
γ2 −0.29

(0.19)
−0.28
(0.19)

0.14∗∗∗

(0.05)
0.22∗∗∗

(0.03)
0.17∗∗∗

(0.03)
0.22∗∗∗

(0.03)
0.26∗∗∗

(0.03)
p-value 0.62 0.58 0.00 0.00 0.01 0.19 0.08
Obs. 4929 4971 4895 4327 4144 3440 3473
R2 0.37 0.44 0.67 0.58 0.99 0.98 0.99

Panel B: Forecast horizon: t+ 1

γ0 1.2∗∗

(0.54)
2.57∗∗

(1.19)
0.78∗∗∗

(0.12)
1.28∗∗∗

(0.1)
0.08∗∗∗

(0.02)
0.13∗∗∗

(0.04)
0.13
(0.08)

γ1 0.59∗∗

(0.19)
0.58∗∗∗

(0.19)
0.41∗∗∗

(0.04)
0.1∗∗∗

(0.02)
0.91∗∗∗

(0.03)
0.74∗∗∗

(0.03)
0.71∗∗∗

(0.04)
γ2 −0.006

(0.23)
−0.01
(0.22)

0.33∗∗∗

(0.05)
0.4∗∗∗

(0.04)
0.1∗∗∗

(0.03)
0.25∗∗∗

(0.03)
0.29∗∗∗

(0.03)
p-value 0.02 0.02 0.00 0.00 0.42 0.77 0.57
Obs. 4926 4973 4894 4329 4146 3441 3475
R2 0.36 0.51 0.79 0.57 0.99 0.97 0.98

Panel C: Forecast horizon: t+ 2

γ0 1.34∗∗∗

(0.5)
2.68∗∗

(1.05)
0.68∗∗∗

(0.13)
1.24∗∗∗

(0.15)
0.16∗∗∗

(0.03)
0.24∗∗∗

(0.05)
0.27∗∗∗

(0.1)
γ1 0.32∗∗∗

(0.12)
0.33∗∗∗

(0.12)
0.32∗∗∗

(0.03)
0.06∗∗∗

(0.01)
0.78∗∗∗

(0.04)
0.66∗∗∗

(0.03)
0.62∗∗∗

(0.04)
γ2 0.23

(0.19)
0.23
(0.18)

0.46∗∗∗

(0.05)
0.47∗∗∗

(0.05)
0.21∗∗∗

(0.04)
0.24∗∗∗

(0.05)
0.36∗∗∗

(0.04)
p-value 0.005 0.009 0.00 0.00 0.76 0.15 0.1
Obs. 4919 4961 4890 4331 4141 3439 3471
R2 0.36 0.58 0.83 0.63 0.98 0.96 0.97

Panel D: Forecast horizon: t+ 3

γ0 1.32∗∗∗

(0.45)
2.48∗∗∗

(0.9)
0.63∗∗∗

(0.11)
1.23∗∗∗

(0.16)
0.25∗∗∗

(0.04)
0.33∗∗∗

(0.05)
0.36∗∗∗

(0.09)
γ1 0.19∗∗

(0.08)
0.2∗∗

(0.09)
0.26∗∗∗

(0.03)
0.03∗∗

(0.02)
0.63∗∗∗

(0.04)
0.58∗∗∗

(0.03)
0.52∗∗∗

(0.03)
γ2 0.37∗∗

(0.16)
0.4∗∗∗

(0.14)
0.53∗∗∗

(0.04)
0.51∗∗∗

(0.05)
0.35∗∗∗

(0.04)
0.39∗∗∗

(0.03)
0.44∗∗∗

(0.03)
p-value 0.002 0.005 0.00 0.00 0.04 0.01 0.01
Obs. 4889 4932 4859 4296 4116 3408 3453
R2 0.39 0.65 0.84 0.67 0.97 0.95 0.97

Notes: This table reports the regression results from equation (2.32) at the individual
level for each variable and for multiple forecast horizons. The p-value is from the
Wald test of the coefficient restriction γ1 + γ2 = 1. In this test, forecasters update
their forecasts according to wt instead of wt−1. Standard errors are displayed in
parenthesis. * p < 0.1, ** p < 0.05, ***p < 0.01.
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2.11 Data Appendix

2.11.1 Construction of Variables

For the construction of forecast errors and forecast revisions using variables from

SPF and the real time macro data, over the forecast horizon of one year, the method

is similar to that of BGMS (2020). The instructions are documented in the data

appendix of chapter 1. In section 2.8.3, various forecast horizons are used. The

construction of forecasts varies slightly depending on how forecasts are reported in

SPF. The details are documented as following:

1. NGDP:

� Forecast for t+ h(h ∈ {1, 2, 3, 4}):

� Current observation: xt−1, when forecasters making forecasts in period t,

they can only observe the macroeconomic data released in t− 1.

2. RGDP:

� Forecast for t+h(h ∈ {1, 2, 3, 4}): (Ftxt+h−1

xt−1
−1)∗ 4

h
. The forecast on level

is transformed into the growth rate, and the factor 4
h

is to annualize the

growth rate.

� Current observation: xt−1, when forecasters making forecasts in period t,

they can only observe the macroeconomic data released in t− 1.

3. GDP Price Index:

� Forecast for t+ h(h ∈ {1, 2, 3, 4}):

� Current observation: xt−1, when forecasters making forecasts in period t,

they can only observe the macroeconomic data released in t− 1.

4. CPI:

� Forecast for t + h(h ∈ {1, 2, 3, 4}): Ftxt+h−1, where t is the quarter of

forecast and x is the CPI inflation.

� Current observation: xt−1, when forecasters making forecasts in period t,

they can only observe the macroeconomic data released in t− 1.

5. AAA:

� Forecast for t + h(h ∈ {1, 2, 3, 4}): Ftxt+h−1, where t is the quarter of

forecast and x is the level of AAA corporate bond yield.

� Current observation: xt−1, when forecasters making forecasts in period t,

they can only observe the macroeconomic data released in t− 1.
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6. TBILL:

� Forecast for t + h(h ∈ {1, 2, 3, 4}): Ftxt+h−1, where t is the quarter of

forecast and x is the level of 3-month treasury yield.

� Current observation: xt−1, when forecasters making forecasts in period t,

they can only observe the macroeconomic data released in t− 1.

7. TBOND:

� Forecast for t + h(h ∈ {1, 2, 3, 4}): Ftxt+h−1, where t is the quarter of

forecast and x is the level of 10-year treasury yield.

� Current observation: xt−1, when forecasters making forecasts in period t,

they can only observe the macroeconomic data released in t− 1.
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Chapter 3

Consequences of Financial

Constraints on Economic Growth

and Employment: the Role of the

Zero Lower Bound

3.1 Introduction

What impact do financial frictions have on economic growth and employment? The

literature largely agrees that increased financial frictions negatively affect both. This

position is fortified by theoretical models from Aghion, Angeletos, Banerjee and

Manova (2010), Moll (2014), Midrigan and Xu (2014), and empirical findings from

Siemer (2019), Duygan-Bump, Levkov and Montoriol-Garriga (2015), Chodorow-

Reich (2014), Benmelech, Frydman and Papanikolaou (2019), and Duval, Hong and

Timmer (2020).

This chapter contributes to this discussion by examining the role of the nominal

interest rate, particularly when it hits the zero lower bound. Our findings offer

a surprising contrast to conventional wisdom, suggesting that, at the zero lower

bound, tightening funding constraints can potentially increase employment without

negatively impacting growth.

This research builds upon the innovative model by Benigno and Fornaro (2018)

that combines endogenous growth and nominal rigidities, resulting in two possible

steady states. The “good” steady state exhibits full employment, a high growth rate

and a positive nominal interest rate. The “bad” steady state, called the stagnation

trap, has low employment, slow growth, and the nominal interest rate is at the zero

lower bound.

I introduce an earnings-based funding constraint into this model, exploring its

impact on the economic steady states. This specification of financial frictions departs

from the collateral-based constraint traditionally discussed in literature (Kiyotaki
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and Moore (1997), Bernanke, Gertler and Gilchrist (1999)), instead aligning with

recent research demonstrating evidence of earnings-based constraints (Lian and Ma

(2021), Drechsel (2023)).

My analysis focuses on steady states, and then studies how a tightening of the

constraint affects the steady state outcome. As the constraint tightens, it first im-

pacts the full employment state, limiting the potential for investment in innovations

and subsequently leading to slower growth and reduced aggregate demand. This

decline necessitates a lower nominal interest rate to align with decreased employ-

ment, thus creating what I refer to as the “constrained high growth” steady state.

Further tightening of the constraint will at some point also affect the “stagnation

trap”, resulting in a “constrained low growth” steady state.

Interestingly, when the nominal interest rate hits the zero lower bound, continued

tightening of the constraint does not decrease the growth rate, but instead leads to

an increase in employment. The reason is that, at the zero lower bound the credit

constraint can be relaxed if the production activity, or employment, increases. Since

the zero lower bound is binding, the expansion will not be undone by an increase in

the nominal interest rate.

However, too much constraint tightness is untenable, at which point no steady

state can be maintained due to insufficient funds for maintaining the minimum

growth rate dictated by the zero lower bound.

Literature

This chapter integrates two primary threads of literature. The first strand con-

cerns the impact of financial constraints on economic outcomes. Traditionally, the

discourse over the last two decades has revolved around asset-based borrowing con-

straints as posited by Kiyotaki and Moore (1997), Bernanke, Gertler and Gilchrist

(1999), Hart and Moore (1994). However, recent micro-level data supports the con-

cept of earnings-based borrowing constraints, challenging the conventional asset-

based perspective. Lian and Ma (2021) delineate that in U.S. non-financial firms,

only 20% of debt value relies on physical assets, while a significant 80% hinges on

cash flows from firms’ operations. Complementarily, Drechsel (2023) illustrates that

the response of credit to investment shocks at both aggregate and firm levels aligns

with the predictions of earnings-based constraints. This chapter studies a funding

constraint following the earnings-based borrowing constraint literature.

The second strand of the literature this chapter engages with the interaction

between financial frictions and economic growth, focusing on productivity growth

and employment. Empirical evidence from Duval, Hong and Timmer (2020) estab-

lishes that firms with weaker balance sheets prior to the Global Financial Crisis

(GFC) experienced a larger decline in total factor productivity post-GFC, particu-

larly those confronting severe credit condition tightening. This drop was amplified
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by a reduction in innovation activities, a crucial pathway through which financial

frictions undermined productivity growth post-GFC.

Employment also bears the cost of financial frictions. Benmelech, Frydman and

Papanikolaou (2019) provide empirical evidence demonstrating a significant and

negative causal impact of financing frictions on firm employment during the Great

Depression. This pattern is echoed in more recent financial crises: Siemer (2019),

Duygan-Bump, Levkov and Montoriol-Garriga (2015), and Chodorow-Reich (2014)

all highlight the role of financial constraints in exacerbating employment losses.

A theoretical model from Aghion, Angeletos, Banerjee and Manova (2010) rein-

forces this negative link, suggesting that tighter credit can elevate economic volatil-

ity while depressing growth. Other theoretical work discussing the negative impact

of credit frictions on productivity and economic growth include Moll (2014), Hsieh

and Klenow (2009), etc.

The remainder of this chapter is organized as follows, first, I describe the model

environment and the funding constraint. Second, I characterize the steady states

when the constraint is (not) binding both graphically and analytically. I also sum-

marize how the steady states change when the constraint keeps tightening.

3.2 Model

This model’s environment is based on the structure presented by Benigno and

Fornaro (2018), and a brief outline is offered here. The aim of this study is to inte-

grate a funding constraint into the model and evaluate its impact on the economy.

For a more comprehensive understanding of the model, please refer to the detailed

explanation in Benigno and Fornaro (2018). An illustrative graph summarizing the

economy is provided in figure 3.1.

The households’ utility function is given by the standard CRRA utility:

E0

[∑
t=0

βt
(
C1−σ
t − 1

1− σ

)]
, (3.1)

where β is the discount factor, Ct is the households’ consumption and σ measures

the risk aversion. The budget constraint of the households is given by

PtCt +
bt+1

1 + it
= wtLt + bt + dt, (3.2)

where Pt is the price level of the final good, it is the nominal interest rate, bt is the

risk-free bond, wtLt represents labor income, dt comprises repayments and dividends

from firms. If we denote the Lagrange multiplier of the budget constraint as λt, then

the first-order conditions with respect to the choice of consumption Ct and bt+1 are
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Figure 3.1: An Illustration of the Model
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given by

λt =
C−σt
Pt

, (3.3)

λt = β (1 + it)Et [λt+1] . (3.4)

The final good Yt is produced with intermediate goods and labor according to the

following production function:

Yt = L1−α
t

∫ 1

0

A1−α
jt xαjtdj. (3.5)

There is a continuum of intermediate good producers, indexed by j ∈ [0, 1]. Ajt is

the quality of the intermediate good produced by producer j, xjt is the amount of

intermediate good j used in production, and 0 < α < 1. The final good sector is

competitive. The optimal conditions for choosing labor, Lt, and intermediate good

xjt are given by

Pt(1− α)L−αt

∫ 1

0

A1−α
jt xαjtdj = Wt, (3.6)

PtαL
1−α
t A1−α

jt xα−1
jt = Pjt, (3.7)

where Pjt is the price of intermediate good j.

One unit of the intermediate good is produced using one unit of the final good.

Intermediate good producers in each industry j compete in an oligopolistic market.

In each industry j, there is a leader with product quality Ajt. Each follower possesses

a product quality of
Ajt
γ

, where γ quantifies the gap between the leader and the

followers with γ > 1. Under this market structure, the optimal price-setting rule for
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the leader in industry j is given by

Pjt = ξPt, where ξ = min
{
γ1−α, 1/α

}
> 1. (3.8)

The proof of the price-setting rule can be found in the appendix. Combining equa-

tions 3.7 and 3.8, the demand for intermediate input j is given by

xjt =

(
α

ξ

) 1
1−α

AjtLt. (3.9)

After substituting equation 3.9 into the production function, we get

Yt =

(
α

ξ

) α
1−α

AtLt, (3.10)

where At ≡
∫ 1

0
Ajtdj is the average quality of the intermediate inputs. The profit of

the leader in industry j is given by

Pjtxjt − Ptxjt = Ptω̄AjtLt, (3.11)

where ω̄ ≡ (ξ − 1)(α/ξ)1/(1−α).

The R&D activities undertaken by entrepreneurs in the intermediate goods sector

lead to productivity growth. With probability µjt, the entrepreneur in industry j

succeeds in R&D and improves the quality from Ajt to γAjt. µjt is given by:

µjt = min

(
χIjt
Ajt

, 1

)
, (3.12)

where χ measures the difficulty of innovations, Ijt is the investment into innovations.

The successful entrepreneur becomes the leader in the industry for the next period.

Entrepreneurs obtain funds for the investment from households, and repay all the

profits to households. The value of becoming the leader in the next period is given

by:

Vt (γAjt) = βEt

[
λt+1

λt
Pt+1ω̄γAjtLt+1

]
, (3.13)

where the right hand side is the expected profit discounted using households’ dis-

count factor βλt+1/λt. Assuming there is a large number of entrepreneurs, the

free-entry condition for entrepreneurs is equal to

PtIjt ≥
χIjt
Ajt

Vt (γAjt) , (3.14)

where the left hand side is the innovation investment cost and the right hand side

is the expected payoff. We can substitute 3.13 into the inequality above, and sum-

marize the R&D decision with the following complementary slackness condition:
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µt

(
Pt
χ
− βEt

[
λt+1

λt
Pt+1γω̄Lt+1

])
= 0. (3.15)

This condition ensures that the expected payoff of research investment is non-

negative, otherwise the research investment is zero.

Benigno and Fornaro (2018) assumes an exogenous growth rate for wages, specif-

ically,

Wt = π̄wWt−1, (3.16)

where π̄w is constant over time. By combining equation 3.6 and equation 3.9, we

get the following expression for the price level,

Pt =
1

1− α

(
ξ

α

) α
1−α Wt

At
. (3.17)

By the law of large number, aggregate productivity evolves as follows:

At+1 = µtγAt + (1− µt)At (3.18)

The rate of productivity growth is given by

gt+1 =
At+1

At
= µt(γ − 1) + 1. (3.19)

By combining equations 3.16 and 3.17, we get that the inflation rate is given by

πt =
π̄w

gt
. (3.20)

Higher productivity growth corresponds to lower inflation. The central bank sets

the nominal interest rate as follows:

1 + it = max
(

(1 + ī)Lφt , 1
)
, (3.21)

where ī ≥ 0 and φ > 0. The central bank aims to stabilize output under this interest

rate rule.

Funding Constraint

The above is a brief description of the environment in Benigno and Fornaro (2018).

In Benigno and Fornaro’s 2018 study, entrepreneurs face no financial friction when

attempting to secure funds. As described below, I add an earnings-based funding

constraint on entrepreneurs’ investment in R&D. The existing literature has under-

scored the significance of financial constraints from both theoretical and empirical

perspectives. Over the past two decades, the focus has largely been on “asset-based”

constraints, wherein the borrowing capacity of agents is restricted by the liquidation
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value of physical assets they can offer as collateral (Hart and Moore (1994); Kiyotaki

and Moore (1997); Bernanke, Gertler, and Gilchrist (1999)).

Recently, however, microeconomic data has indicated a widespread adoption of

loan covenants that curtail a company’s ability to secure financing when its current

earnings are low. More specifically, Lian and Ma (2021) discovered that for non-

financial U.S. firms, 20% of debt by value is based on assets, whereas 80% is cash

flow-based lending. Furthermore, Drechsel (2023) has found that the earnings-based

constraint holds more relevance in both macro and micro data.

In the study by Benigno and Fornaro (2018), the financing structure is based on

an equity contract between entrepreneurs and households. I retain this structure

in my model, but introduce an additional earnings-based funding constraint to the

financing process. This approach is adopted to maintain the simplicity inherent in

their model. In the spirit of Lian and Ma (2021) and Drechsel (2023), I consider a

funding constraint which applies when entrepreneurs are attempting to secure funds

from households. This constraint is based on the profits for the industry leader in

the current period:

PtIjt ≤ ηPtω̄AjtLt, (3.22)

where η is the stringency coefficient and Ptω̄AjtLt is the profit made by the leader in

the intermediate sector in that period. The amount of funds that entrepreneurs can

obtain is constrained by firms’ profits in the intermediate sector in the current period.

There are two primary reasons I’ve chosen the earnings-based funding constraint

over the more conventional asset-based constraint. Firstly, research investment in

this model doesn’t use physical capital, and the model lacks capital as collateral.

Secondly, there is likely a strong correlation between current profit and firm value.

Thus, outcomes under earnings-based or asset-based constraints might closely align.

Exploring this similarity is a potential avenue for future research. By the equation

above, we get

µjt ≤ ηχω̄Lt. (3.23)

By the Law of Large Numbers, on aggregate, we get the following expression for the

growth rate:

gt+1 = At+1/At = µtγ + 1− µt = µt(γ − 1) + 1 ≤ χηω̄Lt(γ − 1) + 1. (3.24)

This equation indicates that, for a specified level of employment, the growth rate is

bound by the funding constraint. In this model, the driver of growth stems from

productivity innovation. Therefore, limiting investments in innovation equates to

constraining the growth rate. Given a certain employment level, the growth rate

cap will be higher if either the productivity from research χ is higher, the funding

constraint η is less stringent, or the increase in productivity for each innovation γ is

greater.
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When the funding constraint is not binding, the optimal investment decision is

dictated by equation 3.15. Under this condition, entrepreneurs have ample access

to funds, enabling them to continue investing until they can no longer profit from

such investments. Conversely, when the funding constraint becomes so severe that

entrepreneurs cannot secure the funds as suggested by equation 3.15, then the funds

invested is defined by the binding funding constraint 3.22. In situations where they

can’t obtain the optimal amount of funds, entrepreneurs resort to obtaining the

maximum amount possible.

Aggregation and Market Clearing

For simplicity, I assume that entrepreneurs in the intermediate goods sector dis-

tribute all their income back to households, including both funds repayments and

earnings. Market clearing for the final good implies:

Yt −
∫ 1

0

xjtdj = Ct +

∫ 1

0

Ijtdj, (3.25)

Using equations 3.9 and 3.10, we can write Yt as:

Yt −
∫ 1

0

xjtdj = ΨAtLt, (3.26)

where Ψ = (α/ξ)
α

1−α (1− α/ξ).

3.3 Equilibrium

The equilibrium of this model can be summarized by four equations and one funding

constraint. In describing the steady state equilibrium, the funding constraint is

omitted if it isn’t restrictive. However, when it is binding, it replaces the equation

that defines optimal investment in scenarios devoid of financial friction.

If we combine the two household optimality conditions 3.3 and 3.4, with At+1

At
=

gt+1 and πt+1 = π̄w/gt+1, we can obtain the following Euler equation, which is the

first key relationship:

cσt =
gσ−1
t+1 π̄

w

β (1 + it)Et
[
c−σt+1

] , (3.27)

where we define ct = Ct/At. Assuming that σ > 1, a positive correlation exists

between productivity growth and current consumption. This arises because the

wealth effect, spurred by increased income, outweighs the substitution effect that

would prompt deferred consumption. The second key relationship is obtained by
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combining equations 3.3 and 3.15:

(gt+1 − 1)

(
1− βEt

[(
ct
ct+1

)σ
g−σt+1χγω̄Lt+1

])
= 0. (3.28)

When gt+1 > 1, there is a positive correlation between expected productivity growth

and expected employment. The rationale is that increased employment boosts

profits in the intermediate sector. This, in turn, drives greater investment in

R&D, leading to enhanced productivity growth. The third key equation combines

market clearing condition equation 3.25, output equation 3.26 and the fact that∫ 1

0
Ijtdj = At (gt+1 − 1) /(χ(γ − 1)):

ct = ΨLt −
gt+1 − 1

χ(γ − 1)
. (3.29)

Household consumption is calculated as GDP minus the investment in innovations.

The fourth key equation is the monetary policy rule:

1 + it = max
(

(1 + ī)Lφt , 1
)
. (3.30)

And finally the funding constraint, which is equivalent to a constraint on growth

rate:

gt+1 ≤ χηω̄Lt(γ − 1) + 1. (3.31)

The funding constraint sets a cap on the growth rate relative to a given employ-

ment level. As financial conditions deteriorate (with a smaller η), the growth

rate decreases. When the constraint 3.31 is not binding, the investment in in-

novations is dictated by the complementary slackness condition, equation 3.28.

When the constraint is binding, the investment in innovations is determined by

the binding constraint 3.31. The equilibrium in this model is that a set of processes

{gt+1, Lt, ct, it}+∞
t=0 satisfying equations 3.27 - 3.29 and the binding constraint, that

is, 3.31 when the equality holds, as well as Lt ≤ 1.

3.4 Non-stochastic Steady States

The work of Benigno and Fornaro (2018) suggests the existence of two non-stochastic

steady states, when the funding constraint is not a restriction. The first, referred

to here as the “unconstrained full employment steady state,” is characterized by

full employment Lt = 1, a high growth rate, and a positive interest rate. The

second, termed the “unconstrained stagnation trap,” is marked by a slower growth

rate, heightened unemployment, and a nominal interest rate that hits the zero lower

bound. When the funding constraint is sufficiently stringent, it starts to influence

these two steady states. The two steady states under these stringent funding con-
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ditions are called the “constrained high growth steady state” and “constrained low

growth steady state”. The result is that the effect of a stricter funding constraint on

economic results varies drastically depending on whether the steady state nominal

interest rate has hit the zero lower bound or not.

The non-stochastic steady state equilibria are characterized by the following

equations with constant values of growth rate g, normalized consumption c, em-

ployment L and nominal interest rate i.

gσ−1 =
β(1 + i)

π̄w
(3.32)

gσ = max(βχγω̄L, 1) (3.33)

c = ΨL− g − 1

χ(γ − 1)
(3.34)

1 + i = max
(
(1 + ī)Lφ, 1

)
(3.35)

g ≤ χηω̄L(γ − 1) + 1 (3.36)

When the funding constraint is slack enough, the financial friction does not

impact the investment decision of the entrepreneurs. In this situation, the steady

state is characterized by equation 3.32 to equation 3.35. When the funding constraint

is tight enough and prevents the entrepreneurs from investing at the level according

to equation 3.33, investment decision is dictated by the binding constraint 3.36. In

the following part of this section, I characterize the four different types of steady

states mentioned above.

3.4.1 Graphic Illustration

The model’s steady states can be depicted graphically through the intersection of

two curves on the {L, g} plane. The assumptions underlying the slopes of displayed

relationships are described in section 3.5. The first curve, GG curve, corresponds to

the growth equation 3.33. The “G” stands for “growth”. As displayed in figure 3.2,

the horizontal section of GG curve represents the scenario where research investment

is not profitable, thus no investment in research takes place. The upwardly sloping

section illustrates that, when L is sufficiently large, increased employment gener-

ates more profit through the standard market size effect. This in turn motivates

entrepreneurs to invest in research, resulting in a higher growth rate. The second

curve, referred to as the AD curve, corresponds to the combination of the Euler

Equation 3.32 and the interest rate rule 3.35. AD curve characterizes the aggregate
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demand of the economy. That is,

gσ−1 =
β

π̄w
max

(
(1 + ī)Lφ, 1

)
. (3.37)

The horizontal section of the AD curve corresponds to the employment level at which

the zero lower bound is binding. The growth rate maintains constant in consistency

with the Euler Equation. The upward sloping part represents the employment level

where the zero lower bound isn’t binding. In these cases, the central bank raises the

interest rate in response to increased employment levels, causing the growth rate to

rise, as determined by the Euler Equation. The CC line, meanwhile, represents the

funding constraint when it is binding. Its expression is given by

g = χηω̄L(γ − 1) + 1. (3.38)

The CC line delineates the upper limit of the growth rate for a given level of employ-

ment. Any combination of L−g above the CC line is unattainable, as entrepreneurs

face constraints based on their current profit when they seek to obtain funds for in-

novation investments. Please note that the upward sloping portions of both the GG

and AD lines aren’t technically straight lines. However, for the sake of simplicity,

we represent them as straight lines in the graph instead of curves.

Case 1: When the Funding Constraint Is Not Binding

Figure 3.2 illustrates a scenario where the funding constraint is sufficiently relaxed,

allowing for the existence of both a full employment and a liquidity trap steady

states as outlined in Benigno and Fornaro (2018).1 The shaded area represents

the {L, g} combinations that are excluded by the constraint. For a given level of

employment, the growth rate within the shaded area is unachievable as entrepreneurs

cannot obtain sufficient funds for investment in the research sector. In figure 3.2, the

available funds for entrepreneurs permit the occurrence of both the full employment

steady state and the stagnation trap. In figure 3.2, the GG and AD curves intersect

at two points. The intersection with a higher growth rate and employment level

represents the full employment steady state. Conversely, the intersection with a

lower growth rate and employment level corresponds to the stagnation trap. This

coexistence of the two steady states in Benigno and Fornaro (2018) necessitates a

sufficiently large stringency coefficient for the funding constraint.

1In this particular scenario, assumptions 2, 3, 4, and 5 to be described in section 3.5 hold true.
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Figure 3.2: Both Full Employment and Liquidity Trap Steady States as in Benigno
and Fornaro (2018) Exist

Case 2: When the Funding Constraint Rules Out the Full Employment

Steady State

Figure 3.3 presents a scenario where the stringency coefficient is significantly lower

than in figure 3.2, resulting in insufficient funds for entrepreneurs to support the full

employment steady state, as illustrated in figure 3.3.2 We maintain the same param-

eters as in figure 3.2 but decrease η. Consequently, the GG and AD curves remain

unchanged, while the slope of the CC line diminishes. In this scenario, entrepreneurs

lack the necessary funds for research investment to reach the full employment steady

state. The intersection of the AD curve and CC line now denotes the high growth

steady state. The stagnation trap steady state remains unaffected by the tightened

funding constraint, meaning entrepreneurs still have access to the funds needed to

sustain this steady state. The high growth steady state, characterized by Lh and

gh, exhibits growth and employment levels that sit between the full employment

steady state and stagnation trap (Lu < Lh < 1, gu < gh < gf ). The more stringent

the constraint, or equivalently, the lower η is, the slower the growth and lower the

employment levels in the economy. The underlying rationale is that less available

funds lead to decreased investment in innovations, which in turn results in a lower

growth rate. This reduced growth rate translates to a lower nominal interest rate,

as dictated by the Euler equation. Consequently, the employment level must also

decrease, as per the monetary policy rule. This underlines the crucial role of suffi-

2In this case, assumptions 2, 4, and 7 in section 3.5 are satisfied, while assumption 8 is strictly
violated.
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cient funding source for entrepreneurs in this economy: ample funding source makes

full employment steady state attainable. When the full employment steady state is

out of reach, the growth rate and employment level in the high growth steady state

are determined by the binding funding constraint.

Figure 3.3: Full Employment Steady State in Benigno and Fornaro (2018) Is Ruled
Out

Case 3: When the Funding Constraint Rules Out the Full Employment

Steady State and Affects the Stagnation Trap

When assumption 8 is met, the funding constraint becomes so stringent that it rules

out both the full employment steady state and affects the stagnation trap.3 This is

illustrated in figure 3.4. However, the constraint determines two new steady states:

the high growth steady state and the low growth steady state. As the constraint

continues to tighten, both the growth rate and employment level in the high growth

steady state decline. The intersection of the horizontal part of the AD curve and

the CC line represents the low growth steady state. As the constraint intensifies,

the growth rate remains constant. This is because the zero interest rate anchors the

fixed growth rate gu through the Euler Equation. Interestingly, as the constraint

tightens, employment levels actually increase. The reason is that at the zero lower

bound, the constraint can be relaxed if real activity, or employment, increases. And

this won’t be undone by the increase in nominal interest rate due to the binding

zero lower bound.

3The exact condition is given in assumption 8.
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Whenever there are two possible steady state equilibria, one with high growth

and another with low growth, the determination of which particular steady state

the economy settles into is dictated by the expectations of the agents. As discussed

in section 3.5.2, in this economy, expectations of economic growth are self-fulfilling.

Figure 3.4: Both Full Employment and Stagnation Trap Steady States in Benigno
and Fornaro (2018) Are Ruled Out

Case 4: When the Funding Constraint Rules Out Any Steady States

Finally, at some point, the value of η is so low that entrepreneurs can not obtain

enough funds to even sustain the lowest possible growth rate gu.4 gu is the growth

rate corresponding to the zero lower bound of nominal interest rate. In figure 3.5,

there is no intersection between the CC line and AD curve.

Effects of the Funding Constraint η

Next, I provide a summary of how the change in funding constraint parameter η

affects the steady state growth rate and employment level, as illustrated in figures

3.6 and 3.7. For simplicity of notation, let

η1 =
(βχγω̄)1/σ − 1

χω̄(γ − 1)
,

η2 =

[
π̄w

β
− π̄w

β

σ
σ−1

]
βγ

γ − 1
, and

4The exact condition is given in assumption 9.
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Figure 3.5: When No Steady State Exists

η3 =
(βχγw̄)

1
σ − 1

χw̄(γ − 1)( β
π̄w

)
1
φ (βχγw̄)

1−σ
φσ

.

The determination of η1, η2 and η3 is discussed in section 3.5. When the funding

constraints are sufficiently relaxed, specifically when η > η1, the constraint does not

affect the full employment steady state and stagnation trap steady state: the funds

are ample to maintain both steady states. In this scenario, the economy behaves as

if there are no financial frictions at all.

As the funding restrictions become more strict, and the value of η drops, the

growth rate in the high growth rate steady state starts to decrease. η1 is the con-

straint parameter that just supports the full employment steady state in Benigno

and Fornaro (2018). If η falls below η1, in the full employment steady state, investors

can not obtain enough funds to invest in innovations, leading to a direct negative

impact the growth rate of the economy. g in the good steady state decreases as η

decreases. As a result, Euler equation 3.32 indicates a decrease in i, consequently

implying a decline in L in the good steady state.

η2 is the constraint parameter that just sustains the stagnation trap steady state

in Benigno and Fornaro (2018). When η2 < η < η1, η is still large enough to

support the stagnation trap steady state. However, if η drops below η2, the financial

friction in the economy is so severe that the stagnation trap steady state can not

be maintained either. Yet, the growth rate within this steady state must remain

constant to align with the zero nominal interest rate, as expressed through the

Euler equation 3.32. In order to achieve the same growth rate amidst deteriorating
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financial conditions, it becomes necessary to boost employment.

Finally, when η drops below η3, the financial restrictions become so severe that

they can’t even support the lowest possible steady state growth rate. Under this

condition, no steady state can exist any longer.

Figure 3.6: Effects of η on Steady State Productivity Growth Rate g

Figure 3.7: Effects of η on Steady State Productivity Growth Rate L
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3.5 Analytical Characterisation

In this section, I characterize different steady states shown in the section above

analytically.

3.5.1 Unconstrained Full Employment Steady State

When the funding constraint is sufficiently lax, or in other terms, when the coefficient

η is significantly large, the full employment steady state as outlined in Benigno and

Fornaro (2018) can be achieved. Let’s represent the variables at the full employment

steady state with the superscript f . Let Lf = 1, plug it into equation 3.33 above,

we can get:

gf = max
(

(βχγω̄)
1
σ , 1
)

(3.39)

We plug in g = gf in equation 3.32 to get the nominal interest rate in the full

employment steady state if =
(gf)

σ−1
π̄w

β
− 1. By equation 3.35 we can see that,

ī = if . Finally we can calculate steady state consumption cf = Ψ− gf−1
χ(γ−1)

by setting

L = 1 and g = gf in equation 3.34.

Assumption 2 The parameters satisfy:

σ > 1 (3.40)

ī =
(βχγω̄)1− 1

σ π̄w

β
− 1 > 0 (3.41)

1 < (βχγω̄)
1
σ < min(1 + Ψχ(γ − 1), γ) (3.42)

Assumption 3 The parameters satisfy:

η ≥ (βχγω̄)1/σ − 1

χω̄(γ − 1)
(3.43)

Here is a proposition similar to proposition 1 in Benigno and Fornaro (2018).

Proposition 2 Suppose assumption 2 and 3 hold. There exists a unique full em-

ployment steady state with Lf = 1. The full employment steady state is characterized

by positive growth gf > 1 and by a positive nominal interest rate if > 0.

Proof 6 When assumption 3 is met, we have ηχω̄(γ − 1) + 1 ≥ (βχγω)1/σ = gf .

This implies that if the constraint is relaxed enough, the full employment steady state

with Lf = 1 is attainable. If the growth rate at the full employment steady state does

not surpass the growth rate limit required by the constraint, the full employment

steady state remains unaffected by the constraint. In such a scenario, the proof of
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the existence and uniqueness of the full employment steady state mirrors exactly the

proof provided in Benigno and Fornaro (2018).

Inequality 3.40, meaning low levels of intertemporal substitution, ensures the posi-

tive relationship between growth rate and interest rate in the Euler Equation. Under

equation 3.41, the nominal interest rate at the full employment steady state is pos-

itive. Under condition 3.42, households’ steady state consumption is positive and

the innovation probability µ ranges between 0 and 1.

Intuitively, if the stringency coefficient of the constraint exceeds the right-hand

side value in inequality 3.43, the amount of money that entrepreneurs can obtain

(and consequently invest in research) is sufficient to sustain the growth rate at the

full employment steady state.

3.5.2 Unconstrained Stagnation Trap

Under slack enough funding constraints, let’s examine the unemployment steady

state, or stagnation trap, denoted by the superscript u. Assume that η is substantial

enough to satisfy assumption 5 below. Consider the situation when the nominal

interest rate is at the zero lower bound i = 0. By equation 3.32, we get gu =
(
β
π̄w

) 1
σ−1 .

Since at the full employment steady state if = ī > 0, we deduce gu < gf from

equation 3.32. The real interest rate (1 + i)/π = gσ/β is increasing in the growth

rate g, hence the real interest rate is lower in the stagnation trap. In the stagnation

trap, labor supply Lu < 1 is also less than in the full employment steady state. We

summarize our findings about the stagnation trap in proposition 3.

Assumption 4 The parameters satisfy:

1 <

(
β

π̄w

) 1
σ−1

(3.44)

(
β

π̄w

) 1
σ−1

< 1 +
ξ
α
− 1

ξ − 1

(
β

(π̄w)σ

) 1
σ−1 γ − 1

γ
(3.45)

φ > 1− 1

σ
(3.46)

Assumption 5 The parameters satisfy that:[
π̄w

β
− π̄w

β

σ
σ−1

]
βγ

γ − 1
≤ η (3.47)
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Please note that when assumptions 2 and 3 are satisfied, then assumption 5 is also

fulfilled. To put it differently, when assumption 2 holds, we observe:5[
π̄w

β
− π̄w

β

σ
σ−1

]
βγ

γ − 1
<

(βχγω̄)1/σ − 1

χω̄(γ − 1)
(3.48)

Proposition 3 Under assumptions 2, 4, 5, there exists a unique stagnation trap.

At the stagnation trap, the economy is in a liquidity trap (iu = 0), Lu < 1, as

well as a growth trap gu < gf . The real interest rate is also lower than in the full

employment steady state 1/πu <
(
1 + if

)
/πf .

Proof 7 By integrating gu =
(
β
π̄w

) 1
σ−1 with equation 3.33, we derive the stagnation

trap’s employment level as Lu =
(
β
π̄w

) σ
σ−1 /(βχγω̄). Upon fulfilling assumption 5, it

results in ηχω̄Lu(γ − 1) + 1 ≥
(
β
π̄w

) 1
σ−1 = gu. Thus, under the condition of assump-

tion 5, the growth rate at the stagnation trap’s steady state does not go beyond the

growth rate threshold dictated by the funding limitation. Consequently, the constraint

doesn’t impact the stagnation trap’s steady state. In this scenario, the verification

of existence and uniqueness of the stagnation trap steady state is exactly the same

as the proof provided in Benigno and Fornaro (2018).

Inequality 3.44 guarantees that gu remains positive in the stagnation trap. Given

that patents do not depreciate in this economy, growth rate has a lower bound of

zero. Inequality 3.45 assures that consumption maintains positive. Inequality 3.46

rules out the existence of unemployment steady states with positive nominal interest

rate.

The intuition of proposition 3 is similar to that of proposition 2: the constraint

needs to be slack enough to support the existence of the stagnation trap steady

state. The difference is that for stagnation trap steady state to exist, the threshold

of η is lower. Compared with the stagnation trap, the full employment steady state

requires better financial condition to exist.

The way in which agents settle into one of the two steady states described above

is driven by their expectations. If agents hold an optimistic outlook about future

economic growth, this stimulates aggregate demand. A positive nominal interest

rate aligns with high employment. High aggregate demand and employment bolsters

production profits, which then results in further investment into innovations, thereby

validating the initial high economic growth expectations.

Conversely, if agents are pessimistic about future economic growth, this curtails

aggregate demand and results in low employment. The nominal interest rate hits the

zero lower bound due to this low level of employment. Consequently, profits derived

5It’s straightforward to use inequality 3.41 to prove it.
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from the production process diminish, leading to a reduced level of investment in

innovations. This sequence of events justifies the initial expectations of low economic

growth.

3.5.3 Constrained High Growth Steady State

The preceding two sections demonstrate that given sufficiently lax constraints, the

existence of the two steady states - full employment and stagnation trap, as per

Benigno and Fornaro (2018), is not impacted by the constraint. The full employment

steady state demands better financial circumstances relative to the stagnation trap.

However, if assumption 3 is violated, a steady state exists with a growth rate and

employment level surpassing that of the stagnation trap, alongside a positive nominal

interest rate. But the growth rate, employment level and the nominal interest rate

are all lower than the levels in the unconstrained full employment steady state. This

particular steady state is referred to as the high growth steady state, denoted by

superscript h.

Assumption 6

φ > σ − 1 (3.49)

Assumption 7 The parameters satisfy:

(βχγw̄)
1
σ − 1

χw̄(γ − 1)( β
π̄w

)
1
φ (βχγw̄)

1−σ
φσ

< η <
(βχγω̄)1/σ − 1

χω̄(γ − 1)
(3.50)

Proposition 4 Suppose assumption 2, 4, 6 and 7 hold. Then, there exists a unique

constrained high growth steady state with Lu < Lh < 1. The constrained high growth

steady state is characterized by positive growth gu < gh < gf and by a positive

nominal interest rate ih < if .

The proof can be found in the appendix. Assumption 6 ensures the uniqueness of the

high growth steady state given a fixed η. Assumption 7 eliminates the possibility of

the full employment steady state while permitting enough funds to support the high

growth steady state. The finding from proposition 4 is expected: the constraint

hinders investment into innovations, which drive growth. The more constrained

entrepreneurs are, the less they invest in innovations, leading to slower growth.

This lower growth aligns with a lower nominal interest rate via the Euler Equation.

And this lower nominal interest rate, in turn, results in lower employment levels.

3.5.4 Constrained Low Growth Steady State

Similar to the constrained high growth steady state, when assumption 5 is breached,

there exists a low growth steady state denoted by the superscript l, characterized in

the following proposition:
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Assumption 8 The parameters satisfy:

(βχγw̄)
1
σ − 1

χw̄(γ − 1)( β
π̄w

)
1
φ (βχγw̄)

1−σ
φσ

< η <

[
π̄w

β
− π̄w

β

σ
σ−1

]
βγ

γ − 1
(3.51)

Proposition 5 Suppose assumption 2, 4 and 8 hold. There exists a unique low

growth steady state with Lu < Ll < Lh. The constrained low growth steady state is

characterized by positive growth gu = gl < gh and by a zero nominal interest rate.

The proof can be found in the appendix. At the low growth steady state, the

nominal interest rate is zero, leading to a growth rate fixed at the level in the

stagnation trap gl = gu. Intriguingly, in order to maintain the same growth rate

under deteriorated funding conditions (lower η), employment in the economy should

rise to relax the credit constraint so that entrepreneurs can obtain the funds to

sustain gu. Consequently, the impact of a lower η is counterbalanced by increased

employment. Since the zero lower bound is binding, the expansion will not be

undone by an increase in the nominal interest rate. Thus, poorer funding conditions

contribute to a rise in the employment level in the economy.

3.5.5 No Steady State Exists

In the two sections above, we see that when the constraint is stringent enough, it

rules out the original steady states in Benigno and Fornaro (2018), while giving rise

to two constrained steady states, one with high growth and one with low growth.

However, when the constraint keeps tightening, there are scenarios where no steady

state exists any more.

Assumption 9 The parameters satisfy:

η <
(βχγw̄)

1
σ − 1

χw̄(γ − 1)( β
π̄w

)
1
φ (βχγw̄)

1−σ
φσ

(3.52)

Proposition 6 Suppose assumption 2, 4 and 9 hold. Then, no steady state exists.

When the funding environment is extremely bad, it becomes impossible for en-

trepreneurs to secure sufficient funds needed to maintain the corresponding growth

rate for a given level of employment. Thus no steady state exists.

3.6 Conclusion

Built on Benigno and Fornaro (2018), this chapter explores the influence of an

earnings-based funding constraint on productivity growth and employment. Our

model integrates elements of endogenous growth, nominal rigidities, and the zero
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lower bound on nominal interest rates. The study reveals that the effects of a

tightened constraint differ based on the status of the nominal interest rate’s zero

lower bound. If the steady state nominal interest rate is positive and the constraint is

active, a tighter constraint negatively affects both economic growth and employment.

This outcome arises as increased financial frictions inhibit investment in innovation,

thereby reducing the growth rate. The subsequent decline in aggregate demand leads

to a lower employment level. Conversely, when the steady state nominal interest

rate is bound at zero and the constraint is in effect, tightening the constraint does

not influence the economy’s growth rate, yet it prompts an increase in employment

levels. This counter-intuitive result stems from the need for a constant growth rate

to align with the fixed nominal interest rate. Therefore, the level of employment

rises to ensure that entrepreneurs can obtain sufficient funds to maintain the steady

growth rate. In summary, the implications of financial constraints are multifaceted

and closely intertwined with the conditions of the nominal interest rate and the

broader economy.

3.7 Appendix

Price-setting Rule of Oligopolists

The following is a proof for the price-setting rule of oligopolists in the intermediate

goods sector:

Proof 8 Suppose there are no other competitors, price-setting oligopolists choose

prices to solve the following profit maximization problem:

max
Pjt

(Pjt − Pt)xjt (3.53)

subject to the demand function 3.7. The demand function can be rearranged as

xjt =
Pjt
Pt

1
α−1

M (3.54)

where M is a function of the parameter α, variables Lt and Ajt. Plug xjt into the

profit function and take first order condition, we get the optimal price as

Pjt =
Pt
α
. (3.55)

Now consider the competitors in intermediate goods sector j with productivity
Ajt
γ

.

If the leader charges more than γ1−αPt, then the competitors can capture the whole

market by charging price Pt. So leaders never charge more than γ1−αPt.
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Proof for Proposition 4

Proof 9 To prove the existence and uniqueness of the high growth steady state, it

is equivalent to prove that the CC line intersects with the upward sloping part of the

AD curve once and only once. And we need to check that at the intersection, the

consumption is positive. Denote the employment level at the intersection between the

horizontal part and upward sloping part of AD curve as L∗. When assumption 7 is

satisfied, the CC line is above gu at L = L∗ and lower than gf at L = 1. Since both

AD curve and CC line are continuous, there must be at least one intersection. Under

assumption 6, the gradient of the AD curve is always higher than the slope of the

CC line in the [L∗, 1] interval. It is straightforward to check that, under assumption

6, the gradient of AD curve is the lowest at L∗, and it is larger than the gradient of

the largest possible gradient for the CC line, the one that goes through (1, gf ). As a

result, there is at most one intersection between CC line and AD curve when L is

in the interval [L∗, 1]. In summary, there is one and only one intersection between

the CC line and AD curve at the interval [L∗, 1]. Now we need to check whether

the consumption at those high growth steady states is positive or not. By the market

clearing condition 3.34, the consumption at the steady state with L∗, denoted as c∗,

should be higher than the consumption at the stagnation trap cu. The reason is that

consumption is increasing in L. Thus c∗ > 0. At the same time, the consumption

at the full employment steady state cf is also positive. If we plug the AD curve 3.37

into the consumption function 3.34, and derive the derivative of c with respect to L:

∂c

∂L
= Ψ−

β
π̄w

(1 + ī) φ
σ−1

L
φ
σ−1
−1

χ(γ − 1)
(3.56)

Since φ > σ − 1, ∂c
∂L

decreases in L. It means that when L increases from L∗ to

1, consumption either first increases then decreases, or keeps increasing. Combined

with the fact that both c∗ and cu are positive, consumption at steady states along

[L∗, 1] must be positive.

Proof for Proposition 5

Proof 10 To prove the existence and uniqueness of the low growth steady state, we

need to demonstrate that the CC line intersects the horizontal segment of the AD

curve precisely once. Under assumption 8, it’s easy to see that at Lu the CC line

is below the horizontal AD curve, while at L∗ the CC line is above the horizontal

AD curve. Given that both the CC line and AD curve in this region are continuous

straight lines, for any η that satisfies assumption 8, there must be exactly one inter-

section between the CC line and the horizontal AD curve. According to the market

clearing condition 3.34, consumption is a function that increases with employment

L. Compared to the stagnation trap, the other low growth steady states maintain the
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same growth rate but exhibit higher employment. Therefore, consumption at these

low growth steady states cl, must exceed cu, and consequently, it must be positive.

Proof for Proposition 6

Proof 11 To demonstrate that no steady state exists in the economy, we need to

show that there’s no intersection between the CC line and the AD curve. When η

equals the right-hand side of inequality 3.52, the CC line passes through the point

(L∗, gu). If η decreases even further, the CC line doesn’t intersect either the hori-

zontal or the upward sloping part of the AD curve. Consequently, there’s no steady

state solution.
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