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Abstract

This thesis consists in four papers in spatial and environmental economics, in which
causal inference methods are employed to analyse two topics: carbon pricing and
deforestation. The dissertation is comprised of two parts. The first evaluates the
impacts of the 2008 carbon tax implemented in British Columbia, Canada; the second
analyses illegal deforestation in Colombia and REDD+ policies in Indonesia. Chapter
one studies the effect of British Columbia’s carbon tax on road transportation CO2

emissions and on carbon leakage due to cross-border fuel shopping in the USA.
Using the synthetic control method and its extensions, we find that the tax is
associated with a decrease in transportation CO2 emissions. However, this effect is
not statistically significant, with no role detected for cross-border fuel shopping. In
chapter two, we analyse the impact of the tax on PM2.5 concentrations arising from
transportation. We detect a statistically significant effect of the carbon tax on air
pollution co-benefits, which is heterogeneously distributed across metropolitan areas.
Less polluted, less dense and richer areas see greater reductions in air pollution,
identifying a post-tax increase in inequality with respect to pollution exposure.
Reductions are driven by a switch in commute mode towards low emissions means
of transport, principally public transit. Health gains from the tax are large, and
regressively co-vary with income. Chapter three focuses on the effects of Colombia’s
2020 Covid-19 lockdown on forest fires. We find that the lockdown is associated
with an upsurge in cumulative fires, which is correlated with the presence of armed
groups. Chapter four evaluates the effect of the 2011 Indonesian Moratorium on
oil palm, timber, and logging concessions. We find that dryland forest inside the
Moratorium experienced, at most, a 0.65% rate of forest cover retention compared
to non-Moratorium areas, while no effect is detected for carbon-rich peatland. The
implied effective carbon price is below US$ 5/tCO2-eq. Moreover, the Moratorium
only contributes 3-4% towards Indonesia’s 2015 Paris commitment of a 29% reduction
in deforestation by 2030.
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Introduction

This dissertation contains four independent empirical studies, which examine two
main topics: the impact of carbon pricing on emissions from the transportation
sector in a developed economy, and drivers and determinants of deforestation and
forest conservation in two tropical contexts.

All papers are characterised by the study of place-based policies and shocks, i.e.
discontinuities in institutional and regulatory frameworks with a precise geographical
scope. Furthermore, all chapters analyse the effects of these shocks with an explicit
spatial dimension: we leverage large, highly disaggregated data to enquire about
general impacts, but also carefully examine spatial spillovers, heterogeneous effect
across geographies and correlations with other geolocated features.

Across all chapters, there is certainly a methodological common denominator: the
thesis indeed draws from, and attempts to contribute to, the literature in applied
spatial and environmental economics, leveraging state of the art data and econometric
techniques in order to provide causal estimates of the phenomena under investigation.
The work contained in this dissertation is inspired by the “credibility revolution
in empirical economics” (Angrist and Pischke, 2010), and ultimately rooted in the
potential outcomes framework (Rubin, 2005; Athey and Imbens, 2017). All studies
consist indeed in natural experiments, which enquire about the effect of a treatment,
be it a policy or an exogenous shock, on the outcome of interest. Since the outcome
path of the observational unit(s) under investigation in the absence of a policy, or its
counterfactual outcome, is by definition unobservable1, all the analyses attempt to
reconstruct it using econometric techniques, in order to estimate the “true” causal
effect of the shock on the treated entities.

The shocks under investigation in this thesis are: (i) the introduction, in 2008, of a
Province-wide carbon tax in British Columbia, Canada (in the first two chapters); (ii)
the 2020 Covid-19 lockdown and consequent mobility restrictions in Colombia (in the
third chapter); (iii) the 2011 REDD+ agreement between the Government of Norway
and the Government of Indonesia in order to reduce emissions from deforestation and
forest degradation on the Indonesian territory (in the fourth chapter). We leverage
this array of sharp policy-induced and contextual changes in order to examine a set
of fundamental problems in empirical environmental economics, which is described
in detail in the following sections.

1A fact known as the “fundamental problem of causal inference” (Holland, 1986).
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Part I: The Impact of Carbon Pricing on Emissions

In the first chapter of the thesis, we primarily attempt to answer the question: is a
market-based instrument such as a carbon tax a sufficient condition to drive down
CO2 emissions from the transportation sector?

The past century has withstood the development of an enormous body of theoretical
work on the issue of carbon pricing, which has permeated the field since the 1920s
(Pigou, 1920) and gained traction in the 1970s with the work of Baumol (1972),
Weitzman (1974), and Nordhaus (1977). The two principal market-based instruments
devised by economists in order to introduce a price on carbon are carbon taxes,
or levies proportional to the amount of carbon contained in a marketed good, and
emission trading schemes (ETSs), i.e. systems where a target fixed quota of periodical
emissions is allocated or auctioned among emitters, who are then allowed to trade
permits between themselves.

Notwithstanding the economic consensus towards a preference for carbon taxes
(Weitzman, 2015; Nordhaus, 2008), ETSs have been more widely implemented and
have usually covered larger shares of the world’s total emission flows (World Bank,
2022). This is possibly due to the relative political infeasibility of imposing additional
taxation due to citizens’ beliefs and tax aversion (Douenne and Fabre, 2022). One of
the main strategies to gain public support for carbon taxes is domestic revenue recy-
cling (Carattini et al., 2019), which is the defining feature of the British Columbian
carbon tax (Murray and Rivers, 2015); however, recent research has shown that
the impact of tax and rebate programmes on carbon tax approval rates is low, and
that partisan politics plays a much more defining role in shaping citizens’ beliefs
(Mildenberger et al., 2022). To give an idea of the relative paucity of long-standing
carbon tax schemes, only 15 pricing mechanisms were already in place in 2008
(covering approximately 5% of the global GHG emission flows, and mostly through
the EU ETS) (World Bank, 2022).

It is thus unsurprising that, with a few stark exceptions (e.g. Andersson, 2019), the
ex post empirical evidence on the effectiveness of carbon taxes on CO2 emissions
flows is scattered. Furthermore, the case of Sweden examined by Andersson (2019) is
a peculiarity rather than the norm: the Swedish carbon tax, currently at $130/tCO2,
has indeed been the highest in the record from its implementation until the recent
introduction of Uruguay’s carbon tax in January 2022. While it is certainly of
utmost importance to assess the effectiveness of carbon taxation in general, the first
part of this paper is instead concerned with estimating the eventual environmental
benefits of a carbon tax levied at a much lower rate, which was lauded as the “grand
experiment in climate policy” (Murray and Rivers, 2015), and was the first carbon
tax to be introduced in North America. With the British Columbian carbon tax
having been rolled out on a Canadian federal basis in 2019, but still sitting well below
the recommended 2030 carbon price corridor 14 years after its implementation (World
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Bank, 2022; High-Level Commission on Carbon Prices, 2017), it is fundamental
to understand its short and medium-term impact on emissions, given that similar
schemes will need to proliferate across developed economies in the next decades
in order to attain decarbonisation. In the first part of the first chapter we thus
attempt to identify the causal impact of the 2008 British Columbian carbon tax on
road transportation CO2 emissions. We conduct the main analysis at the Provincial
aggregate level, using the synthetic control method for comparative case studies
(Abadie and Gardeazabal, 2003; Abadie et al., 2015), for which we carefully assess
robustness to contextual requirements (Abadie, 2021). Furthermore, we introduce
recent extensions to synthetic controls, such as the synthetic difference-in-differences
from Arkhangelsky et al. (2021), de-meaned synthetic controls (Doudchenko and
Imbens, 2016; Ferman and Pinto, 2021) and matrix completion methods (Athey et
al., 2021) for the first time in the literature on the empirical evaluation of carbon taxes.

A corollary to the main question is the investigation of eventual carbon leakage
arising from the tax: the possibility that, given the peculiar geographic location
of British Columbia2 and the attractive fuel price gradient at the US border, the
carbon tax wedge pushed BC residents to cross the US customs to shop for fuel. This
issue is only anecdotally mentioned in press articles, and in passing in peer reviewed
publications (Rivers and Schaufele, 2015; Lawley and Thivierge, 2018; Andersson,
2019), but has never been examined empirically in the context of carbon taxation.
We draw from the classic literature on product differentiation (Hotelling, 1929) and
from a recent literature in industrial organisation (e.g. Chandra et al., 2014; Friberg
et al., 2022) in order to first establish theoretical predictions of cross-border fuel
shopping, and then empirically calibrate them with a novel US county-level dataset
on retail trade revenues in the State of Washington, relying again on the synthetic
difference-in-differences estimator. This line of empirical analysis constitutes the
second part of Chapter 1.

Another feature of the introduction of carbon pricing is its ability to generate envi-
ronmental co-benefits, such as the reduction of local pollutants (particulate matter,
sulfur and nitrogen oxides, and black carbon) due to their complementarity with
GHGs (Timilsina, 2022). Indeed, this class of pollutants is often emitted via the
same channel as CO2, that is, through the combustion of fossil fuels (Li et al., 2018).
Therefore, the second chapter of Part I asks the following question: does a carbon tax
generate environmental co-benefits through the reduction of small-scale particulate
matter PM2.5?

While there is ample numerical evidence on the effect of carbon taxation on air pol-
lution co-benefits (e.g Li et al., 2018; Woollacott, 2018; Zhang et al., 2021; Vandyck
et al., 2018), this channel has never been examined in an observational setting using
ex post data. However, in order to correctly calibrate cost-benefit analyses of carbon
taxation, it is necessary to include both global benefits arising from reductions in
CO2 flows, and local benefits arising from improvements in air quality. In order to

2Whose population is mostly concentrated in a region with rapid access to the main metropolitan
areas of the US State of Washington (Chandra et al., 2014).
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do so, we exploit highly disaggregated satellite-derived data on PM2.5, in conjunction
with Canadian census geometries at a fine geographical scale3, and examine the
impact of the 2008 carbon tax on air pollution in the main metropolitan areas of
British Columbia, employing the synthetic difference-in-differences methodology. In
addition, we inspect the heterogeneity of this impact across space: it is indeed plau-
sible that areas with lower access to alternative means of transport bear the burden
of the carbon tax vis-à-vis areas with greater substitution options. Coupled with the
extensively documented pollution disparities within North American metropolitan
areas (e.g Jbaily et al., 2022; Currie et al., 2020; Sager and Singer, 2022), this
heterogeneity could give rise to a spatial dimension of carbon tax regressiveness, in
addition to the well-known vertical income regressiveness shown e.g. by Douenne
(2020). This enquiry constitutes the first part of Chapter 2.

An important exercise in order to understand the magnitude of the eventual gains
or losses from improving or deteriorating air quality is to convert the estimates
of pollution change into estimates of morbidity and mortality change. Here, we
rely on the insights of the environmental health and epidemiology literatures (e.g.
Krewski et al., 2009; Lepeule et al., 2012), summarised by Fowlie et al. (2019), and
obtain highly disaggregated maps of health benefits/costs by inter-relating mortality
change with the Value of a Statistical Life. Nevertheless, environmental co-benefits
have been shown to be multifaceted and extending far beyond the immediate effects
on mortality (see Aguilar-Gomez et al., 2022, for a review), suggesting that our
estimates will at most constitute a lower bound on the non-market impacts of a
carbon tax. Furthermore, the interaction of these estimates with the distribution of
the population of metropolitan areas can provide a picture of which social stratus
reaps the eventual health benefits due to carbon taxation. The quantification of
health effects constitutes the second part of Chapter 2 and closes Part I of this
dissertation.

Part II: Causal Analyses of Tropical Deforestation

The second part of this thesis consists in two empirical evaluations concerning defor-
estation and forest conservation in the tropical countries of Colombia and Indonesia.
The main motivation behind the search for causality in biodiversity economics is that
the discipline has lagged behind other fields of environmental economics in terms
of the evaluation of policy impacts and of shocks to forest ecosystems (Ferraro and
Pattanayak, 2006). However, especially but not only in light of the 2021-2030 UN
Decade on Ecosystem Restoration, it is fundamental to understand the drivers and
determinants of forest loss and to assess the impact of policies aimed at conserving
Earth’s largest reserves of terrestrial biodiversity and carbon sinks.

The third chapter of this thesis exploits one of the most salient worldwide exogenous
shocks of the past decades, the Covid-19 pandemic, in order to evaluate whether it has

3The Dissemination Area, corresponding to US census tracts.
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resulted in unintended consequences on the natural forests of Colombia’s major biotic
regions. Motivated by the presence of collaborating researchers in the field, who in-
formed us that the emergence of Covid-19 was accompanied by an unexpected increase
in forest fires, we asked the following question: are the mobility restrictions connected
to Colombia’s Covid-19 lockdown connected with the observed upsurge in forest fires?

In order to do so, we obtain near-real time, highly disaggregated data on the location
and intensity of fire hotspots observed by satellites in the Colombian territory for
2012-2020, and exploit techniques which, in 2020, were being used by epidemiologists
to track “excess mortality” due to the Covid-19 pandemic using historical death aver-
ages. We integrate these methods with cutting edge tools for policy evaluation used
in classical econometrics (Abadie and Gardeazabal, 2003; Ben-Michael et al., 2021),
so as to improve upon the historical counterfactuals and obtain closer measurements
of the potential outcome path of forest fires in the absence of the Covid-19 lockdown.

Moreover, aware of the strong interrelation between forest governance and militari-
sation of conflict areas in the Colombian context, we test whether the increase in
forest fires is correlated with the presence of paramilitary organisations in Colombian
municipalities. Indeed, the mobility restrictions imposed upon the civilian population
might have resulted in a negative shock on forest monitoring by government entities
and local communities which could have been exploited by organisations engaging in
illegal forest clearing.

In the conclusive chapter of the dissertation, we instead enquire about the cost-
effectiveness and environmental contribution of one of the largest REDD+4 schemes
worldwide, the 2011 Indonesian moratorium on new palm oil, timber and logging
concessions in primary and peatland forests.

Indonesia’s GHG emissions from deforestation, forest degradation, peatland decom-
position, and peat fires accounted for around a quarter of global emissions from the
forestry sector during 2000-2016 (Government of Indonesia, 2018; FAO, 2021). After
the establishment of the REDD+ framework at COP13 in 2007 (UNFCCC, 2008), the
country struck an agreement with the Government of Norway, one of the prominent
backers of REDD+ globally, in order to fund disbursements based on the achievement
of emissions reductions from deforestation, up to $1 billion (Government of Norway,
2010). One of the main policies resulting from the agreement is the aforementioned
moratorium, which intends to prevent Indonesian district governments from granting
new licenses for the conversion of primary forest and peatland into areas designated
for palm oil and timber production, and selective logging.

In 2017, Indonesia announced that it had reduced emissions from deforestation by
11.2 MtCO2-eq, compared to a 10-year historical baseline calculated by averaging de-
forestation emissions between 2006 and 2016. As a consequence, Norway announced
that a $56.2 million payment, based on a carbon price of $5/tCO2-eq, would be issued
to Indonesia within the two countries’ REDD+ partnership. However, the historical

4Reducing emissions from deforestation and forest degradation.
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counterfactual upon which Norway’s payment was based does not appropriately
reflect the causal impact of the Moratorium in reducing emissions, since it conflates
treatment and control areas (the baseline is calculated on all primary forest and
peatland, not only those within the moratorium’s remit) and treatment and control
periods (2011-2016 are included in the baseline but the moratorium was already in
place).

In order to address these concerns, we observe that the appropriate quantification
of a policy effect from the moratorium rests on the ability to identify a suitable
counterfactual, i.e. a control group which reproduces potential forest cover trends
in the absence of the moratorium. Since the moratorium area was not randomly
assigned, it is highly likely that its characteristics differ substantially from those of
non-moratorium forested areas. A simple difference in means between the rates of
deforestation observed within its boundaries and outside of them would thus produce
biased estimates of the policy’s impact. Therefore, we leverage a large literature in
causal inference in the social sciences (e.g. Heckman et al., 1997; Heckman et al.,
1998), which is steadily being introduced in biodiversity economics and conservation
biology (e.g. Andam et al., 2008; Joppa and Pfaff, 2010; Schleicher et al., 2020)
to perform statistical matching between moratorium and non-moratorium areas,
thereby obtaining comparable treatment and control cohorts, which can be analysed
in a difference-in-differences framework.

We augment the traditional difference-in-differences strategy with the inclusion of a
third difference (Gruber, 1994; Chabé-Ferret and Subervie, 2013), which removes
remaining divergences in pre-treatment deforestation trends after matching, in order
to obtain the most precise estimate of the moratorium’s impact at our avail5. The
spatial dimension of the policy impact is instead analysed by looking at whether
deforestation was displaced outside the fixed boundaries of the moratorium (a similar
type of carbon leakage to that examined in Chapter 1). Here, we exploit the fact that
the boundary between the moratorium and non-moratorium areas is unlikely to trace
a sharp discontinuity in forest and morphological characteristics: within a reasonable
distance from the border, moratorium and non-moratorium areas are expected to be
closely matched in terms of forest cover, deforestation trends, and terrain features
relevant to deforestation. We thus exploit the regression discontinuity estimator
(Lee and Lemieux, 2010; Calonico et al., 2014), in order to identify the effect of this
area-based programme on deforestation leakage.

Given that the performance of REDD+ initiatives is evaluated on the basis of their
ability to reduce GHG emissions, and not deforestation, we then convert our esti-
mates of policy impact (in terms of forest cover change) into CO2-equivalent changes,
and into monetary terms using the stated $5/tCO2-eq carbon price proposed by
Norway to Indonesia in their agreement. We are thus able to determine whether
the Norwegian government is getting carbon value for its payments, and whether

5At the time when the analysis was performed, the extensions of the synthetic control method to
multiple treated units and the synthetic difference-in-differences method were not yet peer-reviewed
nor were the statistical routines yet implemented.
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Indonesia is on track to meet its 2015 Paris Agreement commitments through the
2011 moratorium.

Methodological Considerations

During the writing of this thesis, there have been extraordinary developments in the
field of applied econometrics, which need to be taken into account when tackling
observational studies. In the first three chapters, we principally exploit the recent ex-
tensions to the category of estimators related to the synthetic control method (SCM)
of Abadie and Gardeazabal (2003): mainly, the synthetic difference-in-differences
estimator of Arkhangelsky et al. (2021), but also the augmented SCM by Ben-Michael
et al. (2021), de-meaned synthetic controls (Doudchenko and Imbens, 2016; Ferman
and Pinto, 2021), and matrix completion methods for programme evaluation intro-
duced by Athey et al. (2021). While the SCM was originally developed in order to
analyse treatments or shocks at an aggregate level, or imposed upon a single treated
unit, at a single point in time, its extension are more flexible and can accommodate
multiple treated units and staggered interventions.

An attractive feature of this class of estimators is certainly their ability to match
treatment and control cohorts on the basis of their pre-intervention outcome paths,
which is especially useful in the context of applied climate econometrics. In fact,
especially when dealing with outcome variables derived from satellite observations
(as in Chapters 2 and 3), but also with emissions estimates from governmental
bodies (Chapter 1), it is fundamental that the control units’ outcome paths closely
resemble those of treated units. It is indeed difficult to predict these trends with
accuracy using only socio-economic and morphological characteristics, as is the case
in standard observational studies in economics. By matching on lags of the outcome
variable in the estimation, synthetic methods can thus augment the confidence
in pre-treatment matching quality, thereby ensuring that the policy impacts are
estimated with precision. Nevertheless, given the relative ease with which these
methods can be rolled out, a high degree of rigour is required on the researcher in
order to avoid incurring in “perfunctory applications” of synthetic methods (Abadie,
2021). Appropriate falsification tests and pre-implementation checks need to be
conducted in order to ensure the feasibility and robustness of the estimators, and
avoid publishing misleading results which could wrongly inform the policymaker.

Chapter 4 takes a slightly different approach, motivated by the unavailability, at the
time6, of the extensions of synthetic controls introduced by Arkhangelsky et al. (2021).
Nonetheless, we rely on the latest advances in the field of biodiversity econometrics
(see Schleicher et al., 2020, for a review), and employ statistical matching in order
to obtain the best possible balance between treatment and control observations
on the basis of observable characteristics. We introduce matched triple differences
(Chabé-Ferret and Subervie, 2013) for the first time in an applied paper on forest

6Chapter 4 is chronologically the first to have been developed, in 2018. However, due to its large
supplementary information, we have decided to close the thesis with it to ensure more fluid reading.
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dynamics, in order to take into account the remaining unobservable factors which
may have influenced deforestation trends differently across the treated and control
groups. A potential re-evaluation of the moratorium could however exploit the
synthetic difference-in-differences methodology to assess its performance vis-à-vis
the matched triple difference estimator, and contribute to the burgeoning literature
on programme evaluation in the field of biodiversity economics and conservation
biology.

Causal inference in the field of biodiversity economics is possibly an even steeper
challenge than in standard socio-economic studies, due to the heavily interlinked
and complex nature of coupled human and natural systems (Ferraro et al., 2019).
Abiding to this stream of the literature, in Chapter 4 and in this thesis as a whole
we test hypotheses through multiple channels, confirm the robustness of findings by
adopting alternative methodologies, and try to maintain a generally conservative
attitude, highlighting the shortcomings and limitations of each estimation strategy.
We report several null results, which are informative about the uncertainty around
our causal estimates and about the specific subsets of our studies in which significant
findings arise. Only through careful practice in causal interpretation, indeed, can the
credibility of policy analysis be ameliorated (Athey and Imbens, 2017) and ultimately,
policymaking in human-environment systems improved.

Summary of Findings

In this section, we provide a brief summary of the main findings for each chapter in
the dissertation.

Chapter 1 essentially reports null results: while the synthetic control and its exten-
sions identify a negative effect of the BC carbon tax on road transportation emissions,
(i) the synthetic control result is not robust to traditional falsification procedures,
and (ii) its extensions fail to identify a statistically significant effect. It is highly
likely that the main analysis is substantially underpowered, and more investigation
at a finer geographical scale will be needed in order to assess its impact on CO2

emissions. Moreover, the tax has not lead to statistically significant levels of carbon
leakage, possibly due to a low signal-to-noise ratio which did not alter consumers’
perceptions of pump price changes.

In Chapter 2, we exploit a disaggregated dataset, which is able to pick up a small,
but statistically significant effect of the carbon tax on PM2.5 emissions, providing em-
pirical evidence about carbon tax co-benefits for the first time. However, the spatial
distribution of co-benefits is heterogeneous, with less dense, richer areas benefitting
disproportionately from the policy vis-à-vis denser and relatively poorer locations.
Coupled with the mechanism underlying the result, i.e. commute mode switching
towards public and active transport, the result highlights a secondary, spatial dimen-
sion of carbon tax regressiveness which needs to be taken into account when designing
environmental policy. Moreover, monetary health gains due to mortality reductions
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associated with the improve in air quality are also unevenly distributed across space,
and co-vary with income, reinforcing the spatial regressiveness hypothesis.

Chapter 3 identifies an unintended consequence of the Colombian Covid-19 lockdown
on the natural environment, manifesting through a statistically significant increase
in cumulative forest fires for the whole country. This increase is highly correlated
with the presence of armed groups on the Colombian territory, suggesting that the
reductions in mobility may have created a perverse incentive to clear forest due to
reduced governmental and community-based monitoring and enforcement.

Finally, Chapter 4 determines that the moratorium impact is variegated but small: on
dryland forest, the policy resulted in a retention of at most 0.65% higher forest cover
compared to comparable untreated dryland forest, while the effect is not statistically
significant on carbon-rich peatland. Carbon emissions reductions range from 67.8
to 86.9 MtCO2-eq, implying a lower effective carbon price than what Norway paid
Indonesia: at $5/tCO2-eq, the payment should have been in the $339-434.5 million
range, compared to the $56.2 million effectively disbursed. Moreover, the moratorium
is projected to only contribute 3-4% towards Indonesia’s Paris commitment of a 29%
emissions reduction before 2030.

Read in conjunction, these results suggest that the policies we analyse in this thesis
have been only mildly effective in obtaining their stated effect of mitigating global
pollutants. Moreover, unintended effects from climate policy or from regulatory
shocks are pervasive, and can manifest through perverse incentives: on the one
hand, a carbon tax can have doubly regressive effects, over income and pollution
distributions; on the other hand, a national security emergency can give rise to illegal
exploitation of natural resources due to a reduction in monitoring and enforcement.
In light of the necessity of preserving biodiversity during the 2021-2030 UN Decade
for Ecosystem Restoration and of getting global emissions on a feasible trajectory
to reach Net Zero in 2050, a greater level of ambition in climate policy and forest
conservation will be required. Only through rigorous impact evaluations can the
causal effect of regulation be identified. Policymakers will thus need to rely on
empirically sound research in order to be able to rank interventions in cost-benefit
analyses.
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Part I

The Impact of Carbon Pricing on
Emissions



Chapter 1

Carbon Pricing with Permeable Borders:
The Impact of British Columbia’s Carbon Tax on Road
Transportation CO2 Emissions

Abstract

This paper undertakes a quasi-experimental evaluation of British Columbia’s 2008 carbon
tax, with a focus on road transportation emissions. A naive application of the synthetic
control method identifies emissions reductions of 0.47 metric tons per capita in an aver-
age year, or 13.8%, compared to a counterfactual constructed using all other Canadian
provinces. A rigorous application of the synthetic control method finds instead a reduction
in transportation emissions of 0.22 metric tons per capita in an average year, or 6.8%;
however this result is not robust to traditional falsification procedures. Recent extensions
of the synthetic control, such as synthetic difference-in-differences, de-meaned and ridge
regularised synthetic controls, and matrix completion methods, all highlight a negative
effect of the tax on road transportation emissions, albeit with large standard errors, thus
not being able to identify a statistically significant estimate. The study also provides the
first analysis of the impact of carbon pricing on cross-border fuel shopping in the trans-
portation sector, estimating the impact of the 2008 carbon tax on retail sales in Whatcom
county, Washington State, USA. A synthetic difference-in-differences analysis is unable to
identify a positive shock on gasoline stations retail sales, decreasing the confidence on the
hypothesis that the tax has resulted in significant carbon leakage. Rigorous applications
of the synthetic control methodology and its extensions are essential in order to correctly
inform the policymaker about the effectiveness of carbon pricing initiatives.

For helpful discussions and comments we thank, in alphabetical order: Mook Bangalore, Andrea
Ciaccio, Eugenie Dugoua, Ben Groom, David Hendry, Charles Palmer, Elena Perra, Sefi Roth,
Filippo Santi and all participants to research seminars hosted by the Department of Geography and
Environment at the LSE in 2019, 2020 and 2021, and to the SASCA PhD Conference at Ca’Foscari
University of Venice, 2022. The author acknowledges funding from the UK Economic and Social
Research Council (ESRC). All remaining errors are my own.



Chapter 1 Carbon Pricing with Permeable Borders

1.1 Introduction

In 2019, the US Economists’ Statement on Carbon Dividends and the European
Economists’ Statement on Carbon Pricing have once again highlighted the necessity
to urgently correct the global market failure arising from carbon emissions, by ei-
ther introducing carbon pricing outright (in the US), or coupling existing emission
trading schemes (the EU ETS) with carbon taxes, targeted specifically towards the
transportation and housing sectors1. Yet, empirical evidence on the effectiveness of
carbon pricing is scarce, also due to their relative infrequency with respect to ETSs.
Carbon taxes have indeed proven difficult to implement, in primis due to a lack
of public support, which economists have proposed to overcome by redistributing
prospective revenues to citizens (Carattini et al., 2019). While this strategy has been
found to attain limited effectiveness in practice (Mildenberger et al., 2022), revenue
neutrality has been a distinguishing feature of one of the most publicised carbon
pricing schemes, Canadian province British Columbia’s 2008 carbon tax (Murray
and Rivers, 2015).

While recent research by Pretis (2022) has analysed the impact of the British
Columbian carbon tax on aggregate emissions, finding negligible effects of the scheme
in reducing CO2 levels, this paper is concerned with estimating the impact of the tax
on road transportation emissions. Notwithstanding the relatively broad coverage of
the 2008 carbon tax, amounting approximately to 70% of provincial emissions, the
most affected sector is indeed certainly transportation, which contributed to 43.9%
of the province’s total CO2 levels in 2007, the year preceding the tax roll-out, making
it an ideal candidate for an empirical evaluation. Road transportation has been
deemed one of the most challenging sectors to decarbonise, due to the slow turnover
of vehicle fleets and infrastructural and behavioural path dependency (IPCC, 2018).
Moreover, other segments of the transportation sector in British Columbia (maritime
shipping, air travel, locomotive fuel and fuel used in agricultural operations) were
exempted from the 2008 carbon tax upon its implementation.

Previous studies have attempted to estimate the reduction in emissions registered
in the BC transportation sector indirectly, by simulating emission reductions corre-
sponding to estimated gasoline demand reductions (Rivers and Schaufele, 2015). We
instead rely on the synthetic control method for comparative case studies (Abadie
and Gardeazabal, 2003; Abadie et al., 2010; Abadie et al., 2015; Abadie, 2021)
and on a set of recent extensions which enhance its robustness, such as synthetic
difference-in-differences (Arkhangelsky et al., 2021), demeaned synthetic controls
(Doudchenko and Imbens, 2016; Ferman and Pinto, 2021) and matrix completion
methods (Athey et al., 2021), which allow us to estimate the direct effect of the 2008
carbon tax on road transportation CO2 emissions, as pioneered in a recent paper by
Andersson (2019). By avoiding simulations, we are able to account for several factors
which are assumed away in estimates based on gasoline demand elasticities: fuel
substitution between gasoline and diesel, suggestive evidence of which is found in
Saberian (2017); long-term changes in fuel efficiency driven by vehicle fleet turnover

1These sectors are uncovered by the EU ETS.
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(Antweiler and Gulati, 2016); and behavioural changes such as the modal switch to
public transport, biking and walking. Moreover, with respect to the short-term anal-
ysis of Rivers and Schaufele (2015), with an endpoint in 2011, we augment the length
of the post-intervention series to 2016, therefore shedding light on the evolution of
the behavioural response to the carbon tax with a medium-term 8-year horizon. The
synthetic control approach allows us to overcome issues found in previous analyses
based on panel data and difference-in-differences (Metcalf, 2019), which are very
likely to be biased due to violations of the foundational parallel trends assumption: by
constructing a synthetic unit based on a weighted combination of untreated Canadian
provinces, the method identifies a counterfactual British Columbia which reproduces
the potential outcome that the actual unit would have experienced, had the carbon
tax not been implemented in 2008. With respect to Pretis (2022), who also inspects
the effect of the tax on transportation emissions in an ancillary analysis, we improve
by restricting the focus to road transportation emissions only, thereby avoiding to
include treated and untreated segments of the transportation sector in the evaluation
and respecting the assumptions underlying thorough causal inference (Andersson,
2019); moreover, we provide the full set of placebo tests for synthetic controls, as
prescribed by Abadie (2021), showing that a “naive implementation” of the synthetic
control method does not survive the standard falsification routines, raising concerns
about the lack of statistical power in this particular application. Through the in-
troduction of synthetic difference-in-differences, de-meaned synthetic controls and
matrix completion methods for the first time in the literature on programme evalua-
tion of carbon pricing, we confirm this hypothesis: placebo-based standard errors
around the point estimate of the emissions reductions are indeed large, and suggest
that while it is likely that transportation emissions reductions have arisen due to the
2008 carbon tax, neither the synthetic control method nor its extensions are able to
clearly identify them when using the remaining Canadian provinces as the control
pool. All methods produce negative estimates of transportation emissions effects
following the carbon tax: the most conservative is identified via synthetic difference-
in-differences and corresponds to an annual 6.1% reduction, or 0.21 tCO2 per capita,
in an average year. Notably, due to the large uncertainties connected with the lack
of power, these estimates ought not to be considered true causal impacts of the policy.

Aware of the concerns due to violations of the stable unit treatment value assumption
(SUTVA), arising due to potential carbon leakage towards the US state of Washing-
ton, as mentioned in Rivers and Schaufele (2015), Antweiler and Gulati (2016), and
Andersson (2019), in the second part of the paper we calibrate a variant of the Friberg
et al. (2022) model of cross-border shopping with parameters reflecting the British
Columbia-Washington State, USA geographical region and the price gradient ob-
served in their motor fuel markets. Theoretical predictions from the model assign to
population distributions, price (and tax) differentials and to idiosyncratic consumers’
fixed costs a relevant role in shaping cross-border trade, on one hand confirming the
possibility that cross-border fuelling may have arisen in response to the carbon tax,
but dispelling it on the other due to minimal differences in real gasoline prices and on
the high fixed costs of travelling across the border for refuelling. Empirically, we first
estimate the influence of gasoline prices and exchange rates in determining border
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crossings from British Columbia to Washington following Chandra et al. (2014),
and confirm that the real exchange rate is the principal determinant of cross-border
travel; secondly, we leverage taxable retail sales data from Washington’s Department
of Revenue to perform a second synthetic difference-in-differences analysis at the
Washington county level, in order to inspect whether retail sales in Whatcom county,
bordering the most densely populated region of British Columbia, have increased
following the 2008 carbon tax. With the exception of the food and beverage retail
sector, we find negligible effects on retail trade trends; most importantly, retail sales
within NAICS sector 447, corresponding to gasoline stations, do not seem affected
by cross-border shopping behaviour by British Columbians.

The present study thus contributes to the literature along several dimensions. First,
it provides a methodologically rigorous attempt at estimating the effect of the 2008
British Columbian carbon tax on road transportation emissions, expanding the
evidence base from European economies to North American jurisdictions, which
exhibit peculiarities in terms of higher average distances and heavier reliance on
gasoline vis-à-vis diesel fuel but also lower prices and fuel taxes. Secondly, it high-
lights the shortcomings in which researchers may incur when applying the synthetic
control method and its extensions without deploying the standard set of caveats and
falsification exercises: previous analyses of the British Columbian carbon tax have
indeed claimed to find a causal effect with respect to transportation emissions where
instead a rigorous empirical analysis cannot establish causality for the registered
6.1% decrease. Finally, this paper presents the first empirical analysis of international
carbon leakage in the transportation sector following the implementation of a carbon
pricing scheme: due to the high incidence of fixed costs for private consumers and
to the relatively low wedge in fuel prices introduced by the carbon tax in British
Columbia, significant carbon leakage has not arisen in response to the tax. This is a
reassuring result in light of the necessity of introducing carbon pricing in jurisdictions
where it is politically feasible, which due to their geographic location may share land
borders with countries whose fuel markets present an attractive price gradient.

The remainder of the paper proceeds as follows: Section 1.2 provides background on
the the 2008 British Columbian carbon tax, and reviews the burgeoning literature
on the “poster child” of carbon pricing applications; Section 1.3 describes the data
used in the empirical analyses; Section 1.4 introduces and explains the empirical
methodology, describing the synthetic control method and its recent extensions;
Section 1.5 presents the results from the synthetic control method and its extensions;
Section 1.6 models cross-border shopping behaviour between BC and Washington,
estimates the elasticity of cross-border travel to fuel prices and exchange rates and
analyses carbon leakage in the context of the 2008 carbon tax; results are discussed
and compared to the literature in Section 1.7, and Section 1.8 concludes the paper.
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1.2 The 2008 British Columbian carbon tax

1.2.1 Background

The Canadian province of British Columbia first announced the introduction of its
revenue-neutral carbon tax in February 2008, before eventually implementing it on
July 1st, 2008 (Rivers and Schaufele, 2015). The tax was initially introduced at
CAD 5/tCO2 and projected to rise by CAD 5 each year; in 2012, however, the tax
was frozen at CAD 30/tCO2 until 2018 upon a change in local government.

A prominent feature of BC’s carbon pricing scheme, at its onset, was revenue-
neutrality: during the first four years of its implementation, close to 100% of the
tax revenues were redistributed via personal income tax cuts for households in lower
income brackets, low income tax credits, and corporate income tax cuts. After 2012,
some of the revenues generated by the carbon price started to be earmarked for
corporate tax cuts and credits in specific sectors (Murray and Rivers, 2015), thus
departing from perfect neutrality and giving rise to a mixed system of redistribution.
Revenue neutrality was a central feature of the tax proposal, as a mechanism to
obtain public support and reduce hostility towards additional taxation, one of the
main obstacles to the implementation of carbon pricing schemes (Carattini et al.,
2017; Carattini et al., 2019); indeed, after the initial “Axe the tax” campaigns calling
for the abrogation of carbon pricing ahead of the 2009 provincial elections, polling
results showed a sustained increase in public approval of the tax until 2015 (Murray
and Rivers, 2015). A recently published study exploiting data on the only two
countries with ongoing tax and rebate schemes (Canada and Switzerland), however,
pins the rates of approval and disapproval of carbon pricing to partisan identities
rather than updated information about eventual rebates (Mildenberger et al., 2022).

British Columbia, however, was not the only Canadian province to have introduced
a tax on fossil fuel consumption at the time; indeed, in 2007 the province of Quebéc
imposed an annual duty payable to the Green Fund, at the minimal rate of CAD 3
per tonne of CO2 (Houle, 2013), or 0.8 cents per litre of gasoline. This levy fell on
energy producers, with no intended pass-through to consumers at the pump, and
received substantially less attention than its BC counterpart: it is not included as
a carbon pricing scheme in the World Bank’s State and Trends of Carbon Pricing
annual report (World Bank, 2022). The duty was later subsumed in Quebec’s ETS
system, which was approved in 2012 but became effective from 2013 onward, and only
covered transportation emissions from 2015 (World Bank, 2018). The BC carbon
tax had a substantially higher profile and received far more attention in the media,
thereby often obtaining recognition as the first scheme of its kind in North America
(Rivers and Schaufele, 2015).

1.2.2 Review of the literature

A handful of studies has attempted to estimate the impact of the BC carbon tax
in reducing gasoline demand. Using a 2000-2011 panel dataset at the provincial
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level, Rivers and Schaufele (2015) estimate that a five-cent increase in the carbon
price results in a 8.4% decrease in gasoline consumption, which roughly translates
to a 2.37 MtCO2 reduction in emissions from road transportation over the first
four years of the tax implementation. A similar aggregate analysis is performed
by Antweiler and Gulati (2016), who instead find gasoline demand reductions in
the 1-7% range between 2001 and 2014. Lawley and Thivierge (2018) employ a
2001-2012 panel of household-level data, finding 5-8% reductions in gasoline demand
stemming from geographically heterogeneous responses to the carbon tax: residents
of large cities exhibit a strong tax elasticity (around 10-12%), while inhabitants
of rural and northern areas do not significantly respond to the tax. A common
potential shortcoming across these studies is the shortness of the post-intervention
time series employed in the empirical analyses. While it is important to evaluate the
short-term behavioural response to carbon pricing, which translates into a reduction
in gasoline demand, consumers adjust to the introduction of a carbon tax on both
the intensive and extensive margin, as Antweiler and Gulati (2016) highlight; a
longer post-treatment time frame could then shed light on the effect of pricing on the
renewal of the car fleet and on fuel substitution strategies. Moreover, the impacts
found in the three aforementioned studies, with the possible exception of Antweiler
and Gulati (2016), who indeed find smaller and less precisely estimated effects,
could be contaminated by the aftermath of the 2007-2009 global financial crisis,
which may have had asymmetric repercussions across Canadian provinces. Another
inflection point is represented by the decrease in the global crude oil price after 2014,
which has entailed a consequent decrease in local gasoline prices in BC, and a re-
bound effect in terms of total gasoline consumption (Arcila Vasquez and Baker, 2022).

Two recently published studies relate to this investigation more directly, Pretis (2022)
and Arcila Vasquez and Baker (2022). Pretis (2022) primarily analyses the BC
carbon tax’s impact on the province’s aggregate emission levels, using traditional
difference-in-differences and synthetic control methods and a novel break-detection
approach, and failing to find an effect on BC’s total emissions. He then proceeds to
disaggregate the overall effect into its sectoral components, finding an average 5%
significant reduction in emissions in the transportation sector alone. The absence of
any effects in remaining sectors seems to be in contrast with Xiang and Lawley (2019)
who, employing synthetic controls, identify a significant reduction in natural gas
demand in BC following the introduction of the tax. However, given the imperfect fit
between BC and its synthetic control in both studies, and especially in the sectoral
analysis in Pretis (2022), it is difficult to establish a preferential order between
the two contrasting results. For what concerns transportation, given the primary
importance of the sector in BC’s emissions mix2, it is surprising that a significant
reduction in road CO2 emissions would not result in reductions in the province’s
aggregate trajectory; however it must be noted that the estimates contained in Pretis
(2022) are not robust to traditional inference for synthetic controls, including those
obtained for the transportation sector3. This result is partially confirmed in the

2In 2007, the year before the implementation of the carbon tax, transportation emission accounted
for 43.9% of the total CO2 emissions for the province.

3Limited robustness and significance are probably also an artifact of the small size of the control pool,
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recent paper by Arcila Vasquez and Baker (2022), which consists in a re-evaluation
of the effectiveness of the tax on aggregate CO2 emissions and gasoline consumption
employing the synthetic control method, finding effects which “stand out” with
respect to the existing literature, namely an increase in aggregate emissions and
gasoline consumption. While they also leverage the similarities between Canadian
provinces and US states by including the latter in their control pool, their estimations
are very likely flawed by the less-than-ideal fit between their synthetic controls and
BC, therefore failing to lend utmost credibility to their findings.

1.3 Data

1.3.1 Effect of the 2008 carbon tax on CO2 emissions

In order to analyse the effect of the implementation of the 2008 British Columbian
carbon tax on emissions, we construct an annual panel dataset spanning the years
1990-2019. we obtain road transportation, total transportation, and overall CO2

emissions data for all Canadian provinces from Statistics Canada (2021a). We then
calculate per capita emissions profiles by dividing gross emissions data by provincial
and state population, obtained from Statistics Canada (2021d), thereby making
emissions paths comparable across observational units.

Trends of per capita road transportation emissions (panel A) and total emissions
(panel B) for British Columbia and the rest of Canadian provinces are reported in
Figure 1.1, where the period of the implementation of the British Columbian carbon
tax is shaded in grey.

Noticeably, while BC’s road transport emissions follow a similar trajectory to the
average of other Canadian provinces up to 1998, it is evident how the trends start to
diverge thereafter. BC’s road transport CO2 experiences a sharp drop from 2008-
2011, coinciding with the first three years of the implementation of the carbon tax,
a decline which is not observed in other Canadian provinces. It it also noteworthy
to observe how, after 2011, the series of road transportation CO2 emissions for BC
starts growing again at a rate comparable to the pace observed between 1991 and
2005, perhaps owing to the post-financial crisis economic recovery.

The post-2005 divergence in trends between BC and the rest of Canadian provinces is
also observed in the paths of total CO2 emissions, although less markedly; moreover,
the drop in emissions registered after the implementation of the 2008 carbon tax
is less pronounced and seemingly parallel to that observed in the rest of Canada,
suggesting a modest incidence of the reductions in transportation emissions in driving
the overall emission profile for the province, notwithstanding the large share of total
emissions owed to the transportation sector in BC.

even though Pretis (2022) maximises it by including the provinces of Quebéc and Saskatchewan,
whose transportation emissions trends are likely affected by another carbon tax in the first case,
and an anomalous increase in high-emitting vehicles in the second - see Section 1.3.
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Figure 1.1: (A) Trends in road transportation and (B) total CO2 emissions for British
Columbia, an average of all other Canadian provinces and an average of all US States
between 1990 and 2017.

In order to aid the performance of the synthetic control estimator, we follow An-
dersson (2019) in obtaining data for a range of predictors that the literature deems
determinant for predicting emission trends of the transportation sector: (1) Annual
sales of transportation fuels, namely motor gasoline and diesel, from Statistics Canada
(2021e); (2) Size of the vehicle fleet, both in aggregate and by vehicle weight class4

from Statistics Canada (2021g); (3) Gross Domestic Product and GDP sectoral splits
at the NAICS-2 digit level, which allow me to account for the economic sectors more
likely to contribute to transportation and overall emissions (e.g. agriculture, mining,
construction, and manufacturing) from Statistics Canada (2021b); (4) Urban popula-
tion shares and population density from Statistics Canada (2021d). All variables are
aggregate at the annual and provincial/state level for the maximum possible length
of the available time series.

In Section 1.5, following Abadie and Gardeazabal (2003), Abadie et al. (2010),
Abadie et al. (2011), and Abadie et al. (2015), we exclude from the panel those
observational units which have experienced shocks to their emissions profiles, such
as the introduction of gasoline taxes, the participation in Emission Trading Schemes
or large idiosyncratic movements of their emission paths. We therefore exclude
from the Canadian province panel: (1) Quebéc, due to the introduction, in 2007, of
the “annual duty payable to the Green Fund”, albeit small in magnitude at CAD
3/tCO2 (approximately 0.8 cents per litre of fuel, see Section 1.2) and probably irrel-
evant in driving the province’s emission reductions (Houle, 2013); (2) Saskatchewan,
which experienced a sharp increase in road transportation emissions starting in 2006,

4Light vehicles < 4500 Kg, Medium vehicles > 4500 Kg and < 15000 Kg, and Heavy vehicles >
15000 Kg.
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possibly explained by a sudden spike in heavy vehicle registrations (Dolter, 2016);
(3) Yukon, Nunavut and the Northwest Territories, due to incomparably high and
unstable emissions profiles, given the relatively much lower population base and
density. Moreover, data series for Nunavut and the Northwest Territories are only
distinct from 1999 onward, curtailing the pre-treatment period to only 10 years.
Given Abadie and Gardeazabal (2003), Abadie et al. (2010), Abadie et al. (2011),
and Abadie et al. (2015)’s recommendations about the necessity of maximising the
length of the pre-intervention data series in order to augment the resemblance of the
synthetic control unit to its treated counterpart, we opt to lose in granularity what
we gain in terms of goodness of fit.

1.3.2 Carbon leakage to Washington State, USA

The determinants of eventual carbon leakage to the US state of Washington are
analysed using monthly data at the British Columbian province level. We define
border crossings as the monthly number of Canadian vehicles returning to Canada
from the US5, and we classify the data into four categories: total crossings, total
crossings made by automobiles, same-day trips and trips spanning two or more days.
Further, we obtain gasoline price data from Kalibrate (formerly Kent Group Ltd.)
at the monthly level for the city of Vancouver, which we consider representative
of the entire province; exchange rate data is retrieved from the Pacific Exchange
Rate Service at University of British Columbia’s Sauder School of Business. Monthly
income and unemployment rate data are extracted from Statistics Canada (2021f).
All data is collected for the 1990-2019 period. We also construct a yearly panel dataset
for the US state of Washington, employing data webscraped from the Washington
Department of Revenue. We obtain county-level information on taxable retail sales
between 1994 and 2019 for multiple industries, at the three-digit level defined by the
NAICS classification system. In particular, we retrieve data for NAICS sectors: 441
(gasoline stations and convenience stores with pumps); 447 (automobile dealers); 443
(food and beverage), and for the entire NAICS retail trade sector (codes 44-45 at the
two-digit level).

5Since Statistics Canada (Statistics Canada, 2021c) only records data for vehicles crossing the
Canada-US border in the inward direction.
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1.4 Empirical Strategy

1.4.1 Synthetic Control Method

Description

The synthetic control method (SCM) is a procedure that synthesises a control group
based on a weighted convex combination of outcomes and explanatory variables of
the “donor regions” which reproduces the variables of interest of the treated region
in the pre-treatment period. By construction, the comparison units’ outcome closely
match the treated unit’s outcome trend until the treatment, and if the intervention
is successful the two paths diverge in the expected direction from the moment the
treatment is implemented. In the following, we describe the SCM, drawing from
Abadie et al. (2010).

Let units j = {1, ..., J + 1} be the Canadian provinces. These units are observed
for a range of time that goes from t = 1 to t = T. To facilitate the exposition, we
consider the first region as the British Columbia, the one where the intervention is
implemented. Hence, j = 1 if j denotes British Columbia. All the other Canadian
provinces, j = {2, ..., J + 1} will be our control units, which contribute to construct
the synthetic control. Henceforth, we deem the set of control units “donor pool”.
Abadie et al. (2010) assume the treated unit is continuously affected by the interven-
tion after its implementation.

Denote the intervention period T0 + 1. Pre-intervention periods are then t =
{1, 2, ..., T0}, while post-intervention periods are t = {T0 + 1, ..., T}. In our model,
which spans from 1990 to 2017, t = 1990, ..., 2017, and T0 + 1 = 2008.

Let us define two outcomes of interest: (1) Y N
jt is the outcome that would be observed

for unit j at time t if unit j is not exposed to the intervention; (2) Y I
jt is the outcome

that would be observed if unit j is exposed to the treatment.

The model assumes that the treatment has no effect on the outcome variable of
interest before of the implementation of the intervention, meaning that the equality
Y N
jt = Y I

jt must hold for all t = {1, ..., T0} and for all the units j = {1, ..., N}. In other
words, we set two strong assumptions: (1) No temporal spillovers (e.g. anticipation
effect); (2) No spatial spillovers (i.e. no interference and indirect influences between
units).

Our objective is to estimate the effect of the intervention on the outcome variable
for the treated unit in the post-intervention period, comparing this result with the
outcome of the synthetic control. The magnitude of the effect is defined as the
estimated difference between the two potential outcomes α1t = Y I

jt − Y N
jt for all the

post-intervention periods, T0 + 1, ..., T , where 1 ≤ T0 ≤ T. For construction, Y N
jt

is unobservable for the treated unit in the post-intervention period, as the treated
unit has certainly received the treatment. The SCM aims to construct a synthetic
counterfactual which estimates this unobservable outcome for the period following
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the intervention (Abadie et al., 2011).

Implementation of the Model

The SCM constructs a synthetic British Columbia as a weighted combination of
donor Canadian provinces: for j = {2, ..., J + 1}, there exists a positive (Jx1) vec-
tor W of weights which sum to one, W = (w2, ..., wJ+1)

T with 0 ≤ wj ≤ 1 and
w2 + ...+ wJ+1 = 1. When the vector W varies, the weighted combination of control
countries varies, creating an unique synthetic control.

The SCM aims to find the optimal vector of weights, W ∗ such that the synthetic
control closely matches the treated units on several pre-treatment predictors of the
outcome variable. If Zj is the vector of predictors for each observational unit in
our sample, the SCM algorithm calculates W ∗ such that W ∗ = (w∗

2, w
∗
3, ..., w

∗
J+1)

equalises the following sums for t = 1, 2, ..., T0:

J+1∑
j=2

w∗
jYj1 = Y11,

J+1∑
j=2

w∗
jYj2 = Y12, ...,

J+1∑
j=2

w∗
jYjT0 = Y1T0 , and

J+1∑
j=2

w∗
jZj = Z1

i.e. the convex combination of the outcome variable for the control units (the Syn-
thetic Control) matches the outcome variable for the treated unit in every period
up to the intervention period, and that the convex combination of the predictors
for the control units matches the predictors for the treated units (Abadie et al.,
2010; Andersson, 2019). However, this procedure rests on a strong assumption: the
constraint on weights to be non-negative implies that exact balance may be achieved
if and only if the treated unit’s outcomes and predictors lie within the convex hull of
those for the control units (Ben-Michael et al., 2021; Abadie et al., 2010).

If this condition holds, Abadie et al. (2010) prove that α1t can be estimated for the
post-treatment period using the unbiased estimator:

α̂1t = Y1t −
J+1∑
j=2

w∗
jYjt

Where the first term on the right hand side is the outcome variable of the treated
region and the second term is the outcome variable of the synthetic control, expressed
as a convex combination of the outcome variables of the donor units.

To select the optimal vector of weights W ∗, we need to minimise the “pseudo-distance”
(Abadie et al., 2011) between British Columbia and the Synthetic British Columbia.
Let X1 be a (kx1) vector of pre-intervention predictors and outcomes for British

Columbia, defined as X1 = (ZT
1 , Y11, ..., Y1T0)

T
. Here, ZT

1 is a transposed vector of
predictors, as defined above, and Y1i, for i = 1, ..., T0 is the sequence of outcome
variables for British Columbia.
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Define X0 as a (kxJ) matrix which replicates X1 for all of the control regions. The
SCM selects W ∗ to minimise the distance ∥X1 −X0W∥ for the pre-intervention
period, subject to the constraints defined for the individual weights w2, ..., wJ+1.

Following Abadie et al. (2010); Abadie et al. (2011), let V be a (kxk) symmetric
and positive semidefinite matrix which measures the distance between X1 and X0W ,
defined by the following expression:

∥X1 −X0W∥ v =
√

(X1 −X0W )TV (X1 −X0W )

A matrix V defined as such6 minimises the mean square prediction error (MSPE)
(Abadie et al., 2015) of Yj over t = {1, ..., T0}, i.e.

MSPE =
1

T0

T0∑
t=1

(
Y1t −

J+1∑
j=2

w∗
jYjt

)2

1.4.2 Extensions of the Synthetic Control Method

We first introduce a recently developed estimation method for comparative case
studies where a single unit is exposed to treatment: the synthetic difference-in-
differences (hereafter, SDID) estimator proposed by Arkhangelsky et al. (2021). In
the BC context, the traditional synthetic control method (SCM), of which we have
discussed case-specific pitfalls and limitations, likely dominates traditional difference-
in-differences (DID) applications, due to the fact that a single observational unit
is “administered” the treatment, and that CO2 emissions trends prior to treatment
are not parallel among BC and control Canadian provinces (see Section 1.3). As it
is argued in Arkhangelsky et al. (2021), SDID also dominates DID in applications
of this kind, due to its reliance on the inclusion of unit and time weights in the
regression function, which effectively “localise” the two-way fixed effects (TWFE)
regression, by giving more importance to units whose pre-treatment outcomes are
more similar to the treated unit, and to time periods which are on average comparable
to the treated periods. SDID is also likely to dominate SCM in applications where
SCM has so far been considered the preferred strategy in recent empirical practice
(Athey and Imbens, 2017): by introducing time weights in the TWFE regression,
SDID is able to modulate the effect of pre-treatment time periods which are distant
from post-treatment time periods, thereby increasing precision and removing bias;
moreover, by accounting for unit fixed effects as in DID, the novel estimator can
remove some of the bias due to unexplained variation in outcomes unaccounted for
by the SCM7.

6The statistical package synth, developed by Abadie et al. (2011) estimates V through a data-driven
procedure, which allows to place non-identical weights on the predictors Zj in order to assess their
relative contribution to the evolution of the outcome variable Yjt over time.

7Notably, when the pre-treatment weighted average of the outcome for the control units is identical
to the outcome path of the treated unit, the SCM is able to account for the role of unit fixed
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More specifically, Arkhangelsky et al. (2021) consider a balanced panel of N units
and T time periods, where Yit is the outcome for unit i in time period t, and N is
partitioned such that (N1, ..., Nco) are units which never experience treatment during
all time periods (T0, ..., T ), and (Ntr, ..., N) are exposed to treatment after time Tpre,
with T0 < Tpre < T .

In the BC case, the SDID estimator, τ̂SDID is constructed by finding unit weights
ω̂SDID such that pre-2008 outcome trends for BC’s transportation CO2 emissions
are aligned with those of control units:

Nco∑
i=1

ω̂SDIDYit ≈ 1

Ntr

N∑
i=Ntr

Yit ∀t = 1, ..., Tpre (1.1)

And time weights, λ̂SDID
t , which align pre-2008 and post-2008 time periods. The

average causal effect of the 2008 carbon tax on transportation CO2 emissions, τtax,
is then estimated via the following TWFE regression:

(τ̂SDID
tax , µ̂, α̂, β̂) = argmin

τ,µ,α,β

{
N∑
i=1

T∑
t=1

(Yit − µ− αi − βt −Witτ)
2ω̂SDID

i λ̂SDID
t

}
(1.2)

Whereby, in comparison with standard TWFE-DID, the unit and time weights
ω̂SDID
i and λ̂SDID

t are added as a “localisation” procedure for the regression, and in
comparison with SCM, the unit fixed effects αi and the time weight λ̂SDID

t are added
in order to remove some of the bias remaining from the SCM procedure, as discussed
above. It is notable that the procedure in which the unit weights ω̂SDID

i are chosen8

differs from the one employed in Abadie et al. (2010) due to the presence of an
intercept term, ω0, and a regularisation parameter following Doudchenko and Imbens
(2016). In particular, the introduction of the intercept term allows for unit weights
to be less stringent than unit weights employed in traditional SCM applications,
since the SCM necessary condition of closely matched pre-treatment trends relaxes
to the SDID sufficient condition of parallel pre-treatment outcomes. This additional
flexibility is enabled by the introduction in the TWFE regressions of the unit fixed
effects αi, which sweep constant differences between units. In the BC context, where
the province has experienced a particularly idiosyncratic trend which is unlikely to
be perfectly reproduced by a combination of control units, also due to the relative
lack of available controls9, this improvement is likely to play a substantial role in
improving upon SCM; moreover, the use of relatively more disperse weights avoids
reliance on a very concentrated number of units chosen from a relatively small control
pool.

effects; however, this is rarely the case in practical applications, in which the pre-treatment paths
of the treated and control units are closely matched but not exactly equal, and specifically in the
BC case, where we will show (see Section 1.5) how the fit between the treated and synthetic unit
is probably plagued by problems of interpolation bias.

8In order not to be excessively redundant with Arkhangelsky et al. (2021), we omit the procedure
used to estimate unit and time weights for SDID.

9See the discussion of inclusion/exclusion of control Canadian provinces in Section 1.3.
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Furthermore, the implementation of SCM and SDID in Arkhangelsky et al. (2021)
allows to calculate confidence intervals around our estimates, by leveraging the
“placebo variance estimator” (Arkhangelsky et al., 2021, p. 4110). In each iteration
b = 1, ..., B, each control unit is sampled without replacement to receive the placebo
treatment, and the SCM and SDID estimator τ̂ (b) is calculated. The variance is then
defined as:

V̂ placebo
τ =

1

B

B∑
b=1

(
τ̂ (b) − 1

B

B∑
b=1

τ̂ (b)

)2

(1.3)

With a limited number of control units, and especially when the fit between the
placebo synthetic units and the placebo treated units is less than perfect, V̂ placebo

τ

will be large, due to an underpowered analysis.

In addition to SDID, we rely on other extensions of the synthetic control method
mentioned in Abadie (2021), such as the demeaned synthetic control by Doudchenko
and Imbens (2016) and Ferman and Pinto (2021), the matrix completion method
of Athey et al. (2021), and ridge-regularised version of the synthetic control and
demeaned synthetic control estimator, in order to provide a wider base on which to
evaluate the effect of the 2008 carbon tax on road transportation emissions.

1.5 Results

1.5.1 Synthetic control method: naive implementation

Assessment of Fit

The first requirement for correct identification of the synthetic control method is that
the outcome path of the synthetic control unit must be able to adhere to the outcome
path of the treated unit. In Figure 1.2, this condition seems to be respected: road
transportation CO2 emissions from the treated unit and the synthetic control differ
on average by 0.052 metric tons per capita in absolute value during 1990-2008, a 1.6%
average divergence. Nonetheless, due to the relative shortness of the pre-intervention
time series, which probably fails to smooth some of the outcome variable’s volatility,
the fit is less than ideal from 1996 onwards, an issue also observed, but not discussed,
in Pretis (2022). It is important to note, however, that Synthetic BC approximates
the treated unit well with respect to key predictors of road transportation CO2

emissions, as evidenced in Table 1.1. The predictors’ values, averaged in all cases
across all available years except for outcome variable lags10, all move closer to British
Columbia’s, underpinning a vastly ameliorated fit with respect to the standard aver-
age of donor pool provinces. The fit is slightly less ideal, albeit improved, for what
concerns gasoline consumption per capita, and the share of light and heavy vehicles
per thousand people. These predictors indeed receive less weight in the data-driven

101990-2008 for gasoline sales per capita; 1997-2008 for GDP; 1999-2008 for light and heavy vehicles
per thousand people; and 1990-2008 for population density.
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Figure 1.2: Path plot of road transportation CO2 emissions per capita in British Columbia
and synthetic British Columbia

estimation of the V matrix of covariates’ weights, which identifies GDP per capita
and CO2 emissions lags as the main determinants of British Columbia’s outcome path.

Table 1.1: Covariate balance between British Columbia and synthetic British Columbia

Variable British Columbia Synth BC Donor Pool V weight

Gasoline per capita 1081.72 1154.97 1321.39 0.00
GDP per capita 40302.13 40293.20 45736.34 0.20
Heavy vehicles (x1000) 23.85 19.50 33.41 0.00
Light vehicles (x1000) 563.47 531.85 587.40 0.00
Population density 4.15 4.17 7.58 0.04
Road CO2 per capita 1990 2.82 2.82 3.62 0.30
Road CO2 per capita 2000 3.26 3.26 4.01 0.21
Road CO2 per capita 2008 3.57 3.57 4.85 0.25

Table 1.2 reports instead the weights computed for the W matrix, i.e. pertaining to
donor provinces: BC is reproduced via a weighted combination of Manitoba, Ontario,
New Brunswick and Newfoundland and Labrador, which is strikingly different than
the one reported by Pretis (2022) for aggregate CO2 emissions. It is reassuring to
see that Quebéc, the other Canadian province with a carbon tax scheme in place
since 2007, obtains near-zero weight; however, it must be noted that its inclusion
could still give rise to interpolation biases (see Section 1.4). Reporting predictor
and unit weights is one of the characteristics of the traditional SCM which makes it
attractive for comparable case studies, since it allows for a transparent interpretation
of the counterfactual unit (Abadie, 2021); in this case, assessing the similarity of the
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Table 1.2: Composition of synthetic British Columbia

Province W Weight

Alberta 0.00
Manitoba 0.69
New Brunswick 0.06
Newfoundland and Labrador 0.04
Nova Scotia 0.00
Ontario 0.21
Prince Edward Island 0.00
Quebec 0.00
Saskatchewan 0.00
Yukon 0.00

positive-weighted control units to the treated unit is arguably less of a concern, since
the analysis is performed at a sub-national scale rather than at a cross-country level,
thus restricting inherent socio-economic and cultural differences to a minimum. A
potential remaining concern, if any, is the high weight assigned to Manitoba, which
constitutes almost 70% of the synthetic control (90% with Ontario): such a heavy
reliance on two donor provinces could be problematic if either of them is singularly
driving the results.

Results
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Figure 1.3: Gap plot of road transportation CO2 emissions per capita in British Columbia
and synthetic British Columbia

Figure 1.3 highlights the divergence between synthetic BC and the treated unit
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reported in Figure 1.2. In 2019, the last year in the sample11, the measured reduction
in road transportation emissions per capita amounts to 0.43 metric tons per capita,
11.8% lower than if the carbon tax had not been introduced. The end-of-sample effect
is smaller than the 0.47 metric tons per capita average effect (13.8%), probably due
to a post-2011 rebound in the trend of road transportation emissions, coinciding with
the period in which the tax was frozen at a rate of CAD 30/tCO2 due to political
reasons. Another possible reason for the levelling of emissions reductions is due to a
sharp decrease in crude oil prices starting in 2014, which more than compensated the
level of the carbon tax; notwithstanding the much higher tax salience vis-à-vis prices
(Rivers and Schaufele, 2015), crude oil price volatility might have dampened the
effect of the tax for consumers. It is also noteworthy that the measured effect is larger
than the results found by Andersson (2019) for Sweden with a much larger carbon
price; even though there exist large differences in gasoline and diesel prices between
North America and Europe, thereby making a lower tax in Canada similar in in-
cidence with respect to a higher levy in Europe, the magnitude of the result is striking.

Standard Placebo Tests

Rigorous implementations of the synthetic control method are often accompanied by
a suite of placebo tests, which assess the robustness of the results with respect to
relevant characteristics (e.g. the composition of the actual donor pool or the set of
predictors). Several recent studies fail to fully address the issue of the stability of
their results to these types of perturbations (Pretis, 2022) or violate the standard
requirements for causal effect identification using synthetic controls (Arcila Vasquez
and Baker, 2022), while others identify a credible estimate via a careful inspection
of potential biases in the study design (Andersson, 2019). Adhering to this latter
tradition, and aware of the methodological suggestions brought forward by synthetic
control proponents (Abadie, 2021), we discuss the robustness of the naive SCM
implementation via four standard placebo tests: (i) an “in-time placebo”, where the
carbon tax is backdated to 2002; (ii) an “in-space placebo”, also described in the
literature as an uniform permutation test; (iii) the mean squared prediction error
(MSPE) ratio test; (iv) a “leave-one-out” test.

Figure 1.4 provides the first: the carbon tax is assigned to British Columbia in 2002,
and the data-driven optimisation procedure to find V and W is also curtailed in
time. Notably, no divergence in trends between the synthetic and treated unit arises
right after the placebo treatment, but the two series only diverge post-2008 as in the
original implementation, consistently with Abadie (2021). The emergence of a large
placebo effect after 2002 would have cast doubts over the ability of the synthetic
control estimator to provide a robust counterfactual to the actual treated BC.

The uniform permutation “in-space” placebo, shown in Figure 1.5, consists in a
reassignment of the treatment to each unit in the donor pool (without replacement),

11As explained in Section 1.4, the sample must be restricted to 2016 if Alberta is kept in the control
pool, since the province implemented its CAD 20/tCO2 carbon tax in January 2017.
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Figure 1.4: Path plot of road transportation CO2 emissions per capita in British Columbia
and synthetic British Columbia, in-time placebo with treatment in 2002

and an estimation of the same synthetic control model for each control unit as if they
were treated. This procedure12 allows to evaluate whether the effect estimated by the
synthetic control method for the treated unit lies in a tail of the distribution of the
placebo effects estimated for control units, and to calculate p-values; however, it relies
on the ability of the synthetic control method to produce credible counterfactuals for
untreated as well as the treated units. In panel A, the gap between the treated and
synthetic unit is reported for all provinces in the panel; panel B prunes observation
whose pre-treatment RMSPE is 20 times higher than British Columbia’s. Nonethe-
less, the placebo synthetic controls almost never attain a similar pre-treatment fit to
that of BC: only the pre-treatment RMSPE for Manitoba and Nova Scotia have the
same order of magnitude, thereby highlighting potential issues in terms of specific
predictor or outcome lag choices (the V matrix) singularly determining the choice of
the synthetic control.

Moreover, the magnitude of the effect identified for BC does not appear to be a
particular outlier with respect to the other units, which also show explosive trends
(either positive or negative) after 2008, often higher in absolute terms. The MSPE
ratio test, visualised in Figure 1.6 identifies BC as the province with the highest
post-treatment to pre-treatment MSPE ratio, and hence a Fisher’s exact p-value
of 0.0909 (1/11, where 1 is BC’s MSPE ratio rank and 11 is the number of units
in the panel) associated with the probability of estimating a gap of this magnitude
between the treated and control unit. These seemingly contradictory results are
reconciliated by the fact that the MSPE ratio test inherently depends on the ability
of the synthetic control methodology to calculate a plausible placebo for the control

12Pretis (2022) only performs a uniform permutation test among the suite of available robustness
checks for synthetic controls.
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Figure 1.5: In-space placebo

provinces: indeed, a high pre-treatment MSPE, corresponding to an imperfect fit,
yields a low rank in the MSPE ratio test even when the estimated placebo effects are
large. Read in conjunction, these two robustness exercises cast some uncertainty over
the ability of the synthetic control method, as specified in Section 1.4, to carefully
identify the effect of the 2008 BC carbon tax.

Prince Edward Island
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Newfoundland and Labrador

Ontario

Quebec

New Brunswick

Alberta

Saskatchewan

Manitoba

British Columbia

0 20 40
Post−Period MSPE / Pre−Period MSPE

Donor Treated

Figure 1.6: MSPE ratio test

The uncertainty is reinforced by the results of the leave-one-out test, which itera-
tively removes one of the donor units with positive weight from the control pool and
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re-estimates the synthetic control in its absence. The test is reported in Figure 1.7,
where it is immediate to assess how the fit is worsened by the removal of critical
control units; only the synthetic unit excluding New Brunswick is almost identical
to the main synthetic control. In particular, the removal of Manitoba pushes the
average pre-treatment difference between treated and synthetic unit to 0.089 metric
tons per capita, while removing Ontario brings it up to 0.155: the procedure is
not stable with respect to the exclusion of these two provinces, as hypothesised in
Section 1.4. The end-of-sample effects also vary considerably, ranging from a 5.5 to a
18.9% reduction in emissions, while the average effect ranges between 11.3 and 20%.
The sensitivity of the procedure to the exclusion of either Manitoba or Ontario is
of particular concern, given that no such synthetic unit using the same V weights
is capable of reproducing the treated unit’s outcome path in their absence, thereby
pinning the identified effect to a particular model specification.
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Figure 1.7: Leave-one-out test

1.5.2 Implementation fulfilling contextual requirements

As outlined in detail in Abadie (2021), the traditional synthetic control method is an
appropriate tool for policy evaluation of a single (aggregate) treated unit if and only
if a set of contextual and data requirements is satisfied. In the context of the analysis
of the impact of carbon pricing on transportation emissions, the seminal paper
by Andersson (2019), analysing the case of Sweden, discusses data and contextual
requirements in detail, applying the relevant data modifications and inspecting the
robustness of the results to the full set of falsification exercises performed in the
previous paragraph. On the other hand, the case of Pretis (2022) is much more akin
to the “naive implementation” case described in Section 1.4, omitting a rigorous
analysis of the instances in which synthetic controls may fail to produce an adequate
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counterfactual for the treated unit. Accordingly, we proceed to examine a set of data
constraints and conditions which may invalidate the precision of the synthetic control
estimator in the case of British Columbia’s 2008 carbon tax and in the context of
transportation emissions.

First and foremost, any implementation of the traditional synthetic control method
should start with a careful inspection of the characteristics of the proposed donor pool.
While it is certainly true that, by restricting the analysis to the remaining Canadian
provinces, the risk of insurgence of interpolation bias is minimised (as the analysis is
confined to a set of observational units pertaining to the same federal nation), such
instances are not necessarily eliminated if large discrepancies between the treated
and synthetic units persist. Another concern is that of eliminating from the analysis
donors which have suffered from idiosyncratic shocks to their outcomes during the
period under investigation. Even though Quebéc’s 2007 duty has received far less
attention than British Columbia’s carbon tax and has since been absorbed in its
cap-and-trade scheme (see Section 1.2), both its implementation and the subsequent
implementation of the ETS are sufficient grounds for exclusion of the province from
BC’s control pool13. Before the eventual roll-out of the federal carbon tax in 2019,
another province had introduced a carbon pricing scheme: Alberta, whose carbon
tax started at CAD 20/tCO2 on January 1st, 2017. The model in Section 1.4. uses
data up to 2019, hence estimates for the last three years would overlap with the
Albertan carbon tax: the estimation period thus needs to be curtailed to 2016, as
rightfully done in Pretis (2022). Moreover, two other provinces need to be removed
from the donor pool due to concerns about their outcome paths: Yukon, whose road
emissions per capita are much higher than those of other provinces and suffer from a
spike from 2004 onwards, and Saskatchewan, due to a large positive shock from 2005
onwards, possibly due to a large increase in new heavy vehicle registrations (Dolter,
2016).

Removal of these donor provinces is sufficient to fundamentally worsen the fit be-
tween the synthetic and treated control unit when using the same set of predictors
V , as shown in Figure 1.8; the average absolute difference between the synthetic
and treated unit prior to treatment jumps to 0.083 metric tons per capita, a 37.7%
increase from the naive model. Even though the excluded provinces had received
a near-zero W -weight, their presence in the control pool was probably essential in
order to attain the fit shown in Figure 1.2: indeed, BC is at the left tail of the
distribution for what concerns road transportation emissions per capita during the
whole duration of the study sample, hence its outcome path is difficult to reproduce
when relying only on a limited number of control Canadian provinces. Moreover, the
weighting of the donor provinces changes substantially upon the exclusion of Quebéc,
Yukon and Saskatchewan; synthetic BC is indeed a combination of Ontario (W =
0.628), Nova Scotia (0.300) and Manitoba (0.072). The effect of the carbon tax is
also largely diminished: it is negligible at the end of the sample (2016) and amounts
to 0.22 metric tons per capita, or a 6.8% reduction, in an average post-treatment year.

13Even if Quebéc receives negligible weighting in the “naive model” of Section 1.4, its presence in
the donor pool could still be the cause of interpolation bias.
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Figure 1.8: Path plot of road transportation CO2 emissions per capita in British Columbia
and synthetic British Columbia, fulfilling contextual requirements
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1.5.3 Extensions of the synthetic control method

In Figure 1.9, we report the results of traditional TWFE DID, SCM and SDID
estimations of the average treatment effect of BC’s 2008 carbon tax on road trans-
portation emissions using the pool of Canadian provinces, excluding Quebéc, Yukon
and Saskatchewan as mentioned in Section 1.4, as controls14. It is immediate to
notice how the DID estimator may give rise to biased estimates: the outcome trends
of BC and control provinces prior to 2008 are only approximately parallel prior to
1998, diverging significantly thereafter; in contrast, both the SCM and the SDID
estimator appear to achieve significantly better balance in pre-treatment trends. In
this particular case, with the control pool limited to 7 Canadian provinces, it is
not straightforward to ascertain the eventual dominance of SDID on SCM; indeed,
the SDID procedure fails to impose perfectly parallel trends during the whole pre-
treatment period, while trends for SCM treated and control units appear instead
closely matched, as in Section 1.4. However, as is evident from the time weights
graph reported together with the outcome plots, SDID assigns a significant weight
to the very last periods preceding the carbon tax implementation in 2008, during
which the trends appear indeed to be parallel. This particular structure of time
weights is nonetheless potentially problematic: analyses putting 100% of the weight
on the period preceding treatment risk incurring into biases due to anticipatory
behaviour, as reported e.g. by Heckman and Smith (1999). As reported in Table 1.3,
all three methods identify a negative impact of the carbon tax on transportation CO2

emissions; however, both the 90% and the 95% confidence intervals always contain
zero, thereby failing to identify a statistically significant impact of the carbon tax on
transport emissions.

As a further check on the stability and significance of our estimates, we add a suite
of regressions performed using related methods, such as the de-meaned synthetic
control (DIFP) proposed by Doudchenko and Imbens (2016) and Ferman and Pinto
(2021), the matrix completion (MC) method introduced by Athey et al. (2021), and
penalised version of the traditional SCM and of the DIFP method, where a ridge
regularisation is added to the estimation of the synthetic control weights. Impor-
tantly, coefficients are consistently negative and similar in magnitude across methods,
suggesting that BC has indeed experienced a negative transportation emissions shock
after the 2008 carbon tax; however, no point estimate is statistically significant at
conventional levels, thereby failing to identify a causal effect of the tax in driving
down transportation emissions stably in the long run. Figure 1.10 reports the unit
weights assigned to each Canadian control province by DID, SCM and SDID: it is
straightforward to determine how SDID weights are more balanced on average than
DID weights and employ the full set of control provinces with respect to the 3 control
units receiving weights in the SCM estimation.

14In Section 1.A, we report all results with an extended control sample, including Quebéc and
Saskatchewan. The results are qualitatively unchanged.
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Table 1.3: Summary of τ̂ point estimates and relative standard errors from seven
different estimation methods, control pool restricted to Canadian provinces.

DID SCM SDID DIFP MC SCMridge DIFPridge

τ̂ -0.59 -0.32 -0.21 -0.34 -0.34 -0.42 -0.30

S.E. 0.63 1.01 0.33 0.51 0.55 1.00 0.55

Diff−in−Diff Synthetic Control Synthetic Diff−in−Diff

1990 2000 2010 1990 2000 2010 1990 2000 2010

3

4

Control British Columbia

Figure 1.9: DID, SCM and SDID estimates of the effect of the 2008 carbon tax on road
transportation CO2 emissions in British Columbia.

54



Chapter 1 Carbon Pricing with Permeable Borders

Diff−in−Diff Synthetic Control Synthetic Diff−in−Diff

A
lb

er
ta

M
an

ito
ba

N
ew

 B
ru

ns
w

ic
k

N
ew

fo
un

dl
an

d 
an

d 
La

br
ad

or

N
ov

a 
S

co
tia

O
nt

ar
io

P
rin

ce
 E

dw
ar

d 
Is

la
nd

A
lb

er
ta

M
an

ito
ba

N
ew

 B
ru

ns
w

ic
k

N
ew

fo
un

dl
an

d 
an

d 
La

br
ad

or

N
ov

a 
S

co
tia

O
nt

ar
io

P
rin

ce
 E

dw
ar

d 
Is

la
nd

A
lb

er
ta

M
an

ito
ba

N
ew

 B
ru

ns
w

ic
k

N
ew

fo
un

dl
an

d 
an

d 
La

br
ad

or

N
ov

a 
S

co
tia

O
nt

ar
io

P
rin

ce
 E

dw
ar

d 
Is

la
nd

−3

−2

−1

0

weight

0.0

0.1

0.2

0.3

0.4

0.5

Figure 1.10: DID, SCM and SDID units weights.

1.6 Potential confounder: carbon leakage from cross-border
travel

In this Section, we examine a potential violation of the Stable Unit Treatment Value
Assumption (SUTVA) in the context of synthetic controls and synthetic differences-
in-differences, consisting in carbon leakage from cross-border shopping for gasoline
and diesel fuel. The determinants of cross-border travel have been extensively studied
in the Canada-USA context by Chandra et al. (2014), who find that fluctuations
in the CAD-USD exchange rate are the dominant factor in driving consumers to
cross the border for shopping. Given that the distribution of US and Canadian
populations is unequally concentrated in close proximity of the Canada-USA border,
with Canadians living on average closer to the border than Americans, cross-border
shopping by Canadian residents is more responsive to swings in the exchange rate
than similar behaviour by American citizens. As discussed in Rivers and Schaufele
(2015), Antweiler and Gulati (2016), and Andersson (2019) and in Section 1.3, British
Columbia shares a land border with the Canadian provinces of Alberta, Yukon and
the Northwest Territories, and with the US states of Alaska, Washington, Idaho and
Montana. While the majority of these border regions are fundamentally depopulated,
there is substantial two-way traffic between BC and Washington State (WA), since a
large majority of BC’s population lives close to the WA border: there exists then
the possibility that, in response to the carbon tax, residents of BC have engaged in
cross-border fuel shopping, which would have reduced the registered levels of gasoline
sales in BC and therefore biased its road transportation emissions totals downwards.

Abadie (2021) warns about the possibility of violations of the SUTVA stemming
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from interference, i.e. spillover effects among treatment and donor units; however,
the possibility of spillovers outside the control pool is not discussed extensively.
Given the set of results reported in Section 1.5, an eventual downward bias due to
cross-border shopping would not change the essence of our insights: unlike Pretis
(2022), we do not claim that transportation emissions reductions registered in BC
after 2008 are significantly different from zero, even if there is suggestive evidence for
such an interpretation due to a reduction in per capita gasoline consumption (Rivers
and Schaufele, 2015)15. In order to analyse the determinants of cross-border travel in
the specific case of BC, we follow Chandra et al. (2014) in setting up a reduced-form
estimation of the joint effect of exchange rate swings and gasoline price fluctuations
on the monthly number of border crossings. In traditional models of cross-border
shopping, the domestic price of gasoline enters the estimation as a proxy for travel
costs, and the sign of its coefficient is expected to be negative, as higher travel costs
reduce consumers’ propensity to cross the border; however, if consumers cross the
border to buy a bundle of goods which includes foreign gasoline, domestic prices
play a more ambiguous role, since an increase in the domestic gasoline price vis-à-vis
the foreign one could also induce the marginal consumer to become more inclined to
travel across the border.

It is straightforward to show this in a simple extension of the Hotelling (1929) model
to continuous demand, as proposed by Friberg et al. (2022). Let xi1 and xi2 be
consumer i’s demand for product 1 (motor fuel) and product 2 (a bundle of all
other goods). Let individual i’s utility function be a Cobb-Douglas of the form
Ui = xα

i1x
1−α
i2 , and her income m. Product 1 can either be purchased in British

Columbia (B) or in the US state of Washington (W ), across the border; product
2 is always purchased domestically16. Assume that British Columbian consumers
are located at distance di from Washington state, and incur in travel costs t = κp1B
for each kilometre of distance, where p1B is the price of fuel in BC and κ is fuel
consumption per kilometre. Moreover, let Fi be the idiosyncratic fixed cost incurred
by BC consumers in travelling to Washington state, which may reflect opportunity
costs, or different preferences regarding waiting times at the BC-WA border stations.
p1W denotes the cost of fuel in Washington state, while p2 denotes the cost of product
2. The utility maximisation problem of consumer i can be expressed as:

U =

max
x1,x2

xα
1x

β
2 s.t. p1Bx1 + p2x2 + dκ(p1B) + F ≤ m when buying fuel in B.C.

max
x1,x2

xα
1x

β
2 s.t. p1Wx1 + p2x2 ≤ m when buying fuel in WA

(1.4)
Solving the utility maximisation problem yields two sets of demand functions, one
for the case in which the consumer shops for fuel locally and one in which she crosses
the border to buy fuel:

15Who, however, base their estimation on a short post-intervention period, spanning only 2008-2011.
16As shown in Chandra et al. (2014), this is unlikely to be the case, as cross-border travel between
Canada and the US involves shopping for multiple consumption goods and is thus heavily
influenced by the CAD-USD exchange rate
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(x∗
1B, x

∗
2) =

{
x1B = αm

p1B

x2 =
(1−α)m

p2

(x∗
1W , x∗

2) =

{
x1W = α(m−dκp1B−F )

p1W

x2 =
(1−α)(m−dκp1B−F )

p2

The role of domestic fuel prices p1B is thus ambiguous, as the consumer’s decision
to shop for foreign or local motor fuel depends on swings in the relative prices of
domestic and foreign fuel, on travel costs dκp1B (a combination of fuel prices, fuel
efficiency and distance from the border) and on idiosyncratic fixed costs F . In this
context, the BC carbon tax acts as a further wedge in the per litre price of domestic
fuel, thereby appearing in both the domestic and in the foreign demand functions.
Let τ be the per litre level of the carbon tax; demand functions stemming from the
same utility maximisation problem can now be expressed as:

(x∗
1B, x

∗
2) =

{
x1B = αm

p1B(1+τ)

x2 =
(1−α)m

p2

(x∗
1W , x∗

2) =

{
x1W = α(m−dκp1B(1+τ)−F )

p1W

x2 =
(1−α)(m−dκp1B(1+τ)−F )

p2

We parameterise these results in a similar fashion to that of Friberg et al. (2022),
that is, m = 1000, α = 0.05, t = d ∗ κ = 0.1, F ∼ N (9, 5). We slightly modify the
price ratio to reflect that observed between BC and Washington between both 2000
and 2007 and 2008 and 2016, where it’s 0.77. We keep p1B = 30, and therefore, p1W
= 23.33. We also assume that distance increases in increments of 1/6 and that 900
consumers inhabit each location on the unit line17. We consider two exercises in
comparative statics: (1) In a regime of low fixed costs F ∼ N (9, 5) (where the mean
of the individual-level fixed cost is much lower than the price of fuel), we let the price
of fuel in BC suffer a positive shock due to a carbon tax. The shock is either τlow =
USD 1.53/L (proportional to the maximum level of the ratio between the BC carbon
tax and BC’s gasoline price, registered in 2012-2013), or τhigh = USD 6/L (equal
to 20% of the prior gasoline price and similar to the Swedish carbon tax studied in
Andersson (2019)); (2) we repeat exercise (1) in a regime of higher and less dispersed
fixed costs, F ∼ N (18, 5). Indeed, imposing a mean of the fixed cost distribution at
9 USD would imply individual fixed costs lower than both the domestic and foreign
fuel prices; in practice, as e.g. shown by Chandra et al. (2014), travellers face a mean
26-minute wait to cross the Canada-US border in each direction, which implies an op-

17This latter assumption is important in order to determine the shape of the demand response
to price and tax increases, a fact which is unaddressed in Friberg et al. (2022). A uniform
population distribution is unlikely in practice: for this reason, in Figure 1.B.1 and Figure 1.B.2
in the Appendix, we replicate the same exercise but positing that consumers are distributed over
the d ∈ [0, 300] distance continuum according to a truncated Gaussian with µ = 50 and σ = 50,
which approximately reflects the distribution of Canadian residents in British Columbia. Results
are qualitatively unchanged, but the hump shape arises also in a high fixed costs regime.
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portunity cost of time that is likely to be much higher than the per litre price of fuel18.

Figure 1.11 and Figure 1.12 illustrate the results of exercise (1) and (2), respectively.
First of all, the level of fuel sales after the introduction of any carbon tax is lower at
any distance from the international border, as expected. Further, it is immediate
to notice how in a regime of relatively low fixed costs, the hump-shaped curved
elasticity of fuel sales to shocks in fuel prices appears even at low levels of carbon
taxation. This behaviour could give rise to substantial cross-border shopping, as
the most elastic locations are relatively inland with respect to the BC-Washington
border. Equally important is the role of the distribution of individual level fixed costs
in giving rise to hump-shaped elasticities. Indeed, in Figure 1.12, the bell shaped
part of the curve vanishes, and the change in domestic fuel sales consequent to an
impulse to the carbon price takes a more conventional upward-sloping form, with
higher elasticities found at lower distances from the international border. Moreover
(panel A), the level of domestic sales is much less dependent on distance than with
low fixed costs, as in Figure 1.11, and only consumers located in close proximity
to the border exhibit cross-border shopping behaviour, while for inland locations
fuel demand is practically inelastic with respect to distance. While in principle
swings in the fuel price difference between BC and Washington could give rise to
extensive cross-border carbon leakage due to hump-shaped elasticity responses, in
practice the average real price gap has been equal to 0.21 USD between 2000 and
2007 and to 0.27 USD between 2008 and 2016; up to a certain distance, cross-border
shopping for fuel has been rational for consumers before the introduction of the
BC carbon tax, and its low level is unlikely to have affected consumers located fur-
ther inland in presence of high fixed costs of travelling to the border for fuel shopping.

18The estimated compensation per hour of travel found by Chandra et al. (2014) is 29.69 USD.
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Figure 1.11: Model parameterisation with low individual fixed costs. Panel (A): Domestic
fuel sales with no carbon tax, low carbon price or high carbon price; Panel (B): Change in
domestic fuel sales with low carbon price and high carbon price.
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Figure 1.12: Model parameterisation with high individual fixed costs. Panel (A): Domestic
fuel sales with no carbon tax, low carbon price or high carbon price; Panel (B): Change in
domestic fuel sales with low carbon price and high carbon price.
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1.6.1 Empirics

Determinants of border crossings

In order to understand the relationship between fuel prices, exchange rates and
border crossings, and to uncover the determinants of cross-border travel between BC
and Washington, we set up a simple model in logarithms following Chandra et al.
(2014) and Friberg et al. (2022). In particular, we estimate the following regression:

ln(Crossingst) = α + β1ln(ϕt) + β2ln(et) + β3ln(et)× [e > 1.45] + (1.5)

+ β4ln(et)× [e < 1.11] + β5ln(Xt) + λt + δs + ϵt

Where Crossingst is the monthly number of vehicles returning to Canada from
the US, analysed separately as the total number of vehicles returning from any
trip (Total), the total number of automobiles returning from any trip (Cars), the
number of automobiles returning from same day trips (Daytrips) and the number
of automobiles returning from trips spanning multiple days (Overnight). ϕt is the
monthly price of gasoline in BC; et is the monthly real CAD-USD exchange rate. We
add interactions of et with its highest and lowest quartiles as in Chandra et al. (2014),
and control for monthly after tax income and unemployment rate (contained in the
vector of controls Xt). λt are month fixed effects and δs are year fixed effects, while
ϵt is the usual idiosyncratic error term. Since border crossings are serially autocorre-
lated, we compute standard errors using the Newey and West (1987) procedure, with
robustness up to 60 lags. The potential for cross-border trips to influence the price
of gasoline in BC and viceversa, may give rise to endogeneity concerns; we therefore
estimate the same model with two stage least squares (TSLS), instrumenting the
price of gasoline in BC with the crude oil price.

Table 1.4 reports the results from this exercise. While high gasoline prices seem to
have a significant influence on cross-border travel in the OLS specification, thereby
suggesting consumers behavioural choices compatible with carbon leakage, significance
vanishes once the gasoline price is instrumented with the crude oil price. On the
other hand, the magnitude and significance of the β2 coefficient measuring the role
of the real exchange rate are always consistent and fundamentally unaltered. A weak
Canadian dollar is associated with less frequent trips across the border; moreover,
this effect is stronger for same day trips, suggesting that purchasing power plays
a fundamental role in stimulating crossing behaviour for shopping motives by BC
residents.

Carbon tax impact on retail sales in Washington state

After having individuated the real exchange rate as the main factor pushing BC
residents to cross the US border, the effect of the 2008 BC carbon tax on eventual
carbon leakage remains unidentified. In this section, we aim to circumvent the lack
of data on BC fuel sales at the station level by exploiting tax revenue data from
Washington state’s Department of Revenue. The theoretical predictions from the
model described in Section 1.6 can indeed be interpreted diametrically from the other
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Table 1.4: Determinants of border crossings: log-log

Total Cars Daytrips Overnight Total Cars Daytrips Overnight

(OLS) (OLS) (OLS) (OLS) (IV) (IV) (IV) (IV)

ln Gas price, ϕ 0.3316∗∗∗ 0.3503∗∗∗ 0.3985∗∗∗ 0.0564 0.2172 0.1966 0.2491 -0.0402

(0.0561) (0.0664) (0.0703) (0.0904) (0.1891) (0.2016) (0.2244) (0.1537)

ln e -0.8153∗∗∗ -0.9296∗∗∗ -0.9251∗∗∗ -0.8756∗∗∗ -0.8636∗∗∗ -0.9944∗∗∗ -0.9881∗∗∗ -0.9163∗∗∗

(0.1506) (0.1658) (0.1781) (0.1164) (0.2034) (0.2196) (0.2326) (0.1408)

ln e× [e > 1.45] 0.0078 0.0105 0.0012 0.1588∗∗∗ 0.0148 0.0199 0.0104 0.1647∗∗∗

(0.0396) (0.0446) (0.0460) (0.0601) (0.0421) (0.0462) (0.0491) (0.0574)

ln e× [e < 1.11] 0.2430 0.2260 0.2626 -0.6484∗∗∗ 0.2727 0.2659 0.3014 -0.6233∗∗∗

(0.2508) (0.2911) (0.3552) (0.2174) (0.2841) (0.3293) (0.3932) (0.2363)

ln Income 1.459 0.9444 1.089 4.430∗∗∗ 0.6136 -0.1909 -0.0145 3.716∗∗

(1.641) (1.864) (1.945) (1.654) (1.861) (2.057) (2.147) (1.449)

ln Unemployment -0.1297 -0.1194 -0.1476 -0.0159 -0.1344 -0.1258 -0.1538 -0.0199

(0.1289) (0.1500) (0.1588) (0.0794) (0.1302) (0.1515) (0.1590) (0.0817)

Month FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 312 312 312 312 312 312 312 312

R2 0.97596 0.97573 0.97564 0.97235 0.97573 0.97541 0.97537 0.97222

Within R2 0.30683 0.29827 0.28787 0.18661 0.30028 0.28885 0.28020 0.18291

F-test 149.50 149.50 149.50 149.50

p-value 0.000 0.000 0.000 0.000

Notes: Newey-West (1987) SEs robust to serial autocorrelation with 60 lags in parentheses. The Stock-Yogo (2005)
test for weak IV is reported together with its p-value. ***: p < 0.01, **: p < 0.05, *: p < 0.1.

side of the border: rational behaviour by cross-border shoppers entails that, during
periods of high cross-border travel and high fuel price differentials, locations immedi-
ately beyond the BC-WA border should see their fuel sales increase by an amount
proportional to the domestic decrease in sales. It is plausible that fuel retailers in
the state of Washington would respond to the increase in foreign fuel demand by
adjusting their margins upwards by a measure low enough to keep attracting foreign
consumers and high enough to profit with respect to regular pricing. It is therefore
to be expected that the gradient of Washington fuel prices decreases with respect to
the inland distance to the Canadian border. On the extensive margin, Washington
fuel retailers could respond by increasing the number of service stations or fuelling
positions in order to accommodate the relative increase in demand. Nonetheless,
these responses are likely to be relatively localised with respect of the size of the
entire state of Washington. If the motive pushing BC consumers to cross the border
is purely related to shopping, it is reasonable to expect any increase in retail sales to
be concentrated in Washington cities located near the BC border, as any increase in
inland distance travelled increases the travel costs and the opportunity cost of time,
therefore lowering demand and thus utility from cross-border shopping.

These stylised facts motivate the analysis of cross-border retail trade that we report
in what follows. In order to identify the eventual causal effect of the 2008 BC carbon
tax on cross-border retail sales, we consider Whatcom county, which hosts the two
most trafficked border crossing stations between BC and Washington state, the
Blaine-Peace Arch and Blaine-Pacific Highway crossings, as the county “treated” by
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the tax-mediated border shopping shock, and estimate the effect of the carbon tax on
its retail sales revenues using the other 38 Washington state counties as the control
pool. It is plausible that eventual cross-border shopping behaviour by Canadians
would be concentrated in the proximity of the BC-WA border, especially considering
same day cross-border trips as the mechanism through which cross-border shopping
manifests. We consider retail sales at the NAICS 447 industrial classification (Gaso-
line stations and convenience stores with pumps) in order to directly account for
carbon leakage; we further examine NAICS 441 (Automobile dealers) grouped with
447, then NAICS 443 (Food and beverages) and all NAICS 44-45 codes (all retail
trade sectors) as a robustness check and a further inspection of general responses in
cross-border shopping arising from the carbon tax.

Results

In Figure 1.13, 1.14, 1.15, and 1.16 we report the results from TWFE, SCM and
SDID estimation on the effect of the 2008 BC carbon tax on per capita taxable retail
sales from gasoline stations (NAICS 447), gasoline stations coupled with auto dealers
(441+447), food and beverage retailers (443) and all retail trade sectors (44-45),
respectively. No effect is found for the first two categories, which is suggestive of the
lack of significance of cross-border shopping behaviour in driving carbon leakage from
BC into Whatcom County, WA. In particular, in Figure 1.13, it is immediate to notice
how there is indeed a hump in gasoline stations TRS between 2010/11 and 2014/15,
the period coinciding with a strong Canadian dollar; however, the registered increase
is not picked up by the models as a statistically significant anomaly with respect to
gasoline stations TRS in control counties. The entire automotive and fuel industry
shows a similar absence of effects due to the carbon tax, as does the retail trade sector
when considered in its entirety. On the contrary, a positive effect on TRS is found
in the retail food and beverage sector (which includes supermarkets and large food
retailers); however, as evidenced in Figure 1.15, the effect arises from 2010 onwards,
and it is thus more aptly attributed to the incidence of exchange rate swings and in-
creases in Canadian consumers’ purchasing power rather than to the 2008 carbon tax.

Overall, there does not appear to be an impact of the 2008 BC carbon tax in increas-
ing taxable retail sales in Whatcom county. While there is suggestive evidence that
the food and beverage retail sectors have indeed experienced an uptick in sales in the
post-intervention period, the increase seems related to exchange rate dynamics rather
than to a cross-border travelling incentive induced by higher fuel prices. Consistently,
no effects are found for the NAICS category pertaining to gasoline stations, hence
reducing confidence in the causal claim that the tax has resulted in significant levels
of carbon leakage.
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Figure 1.13: DID, SCM and SDID estimates of the effect of the 2008 carbon tax on
gasoline stations (NAICS 447) taxable retail sales in Whatcom County, WA.
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Figure 1.14: DID, SCM and SDID estimates of the effect of the 2008 carbon tax on auto
dealers and gasoline stations (NAICS 441-447) taxable retail sales in Whatcom County,
WA.
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Figure 1.15: DID, SCM and SDID estimates of the effect of the 2008 carbon tax on the
food sector (NAICS 445) taxable retail sales in Whatcom County, WA.
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Figure 1.16: DID, SCM and SDID estimates of the effect of the 2008 carbon tax on all
NAICS retail trade codes (44-45) taxable retail sales in Whatcom County, WA.
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1.7 Discussion

A highly publicised, globally relevant policy implemented at a relatively aggregate
administrative level such as the 2008 British Columbian carbon tax is a natural
candidate for a quasi-experimental evaluation using the synthetic control method and
its recent extensions. As noted in Abadie (2021), however, “mechanical applications”
that overlook the importance of the context in which the analysis is performed
or do not carefully assess the robustness of the methodology vis-à-vis a suite of
falsification exercises, are prone to yield misleading estimates, which could imply
important consequences when evaluation informs the policymaker. In this paper, we
provide evidence of the potential pitfalls of naively implementing the synthetic control
method in the context of the 2008 British Columbian carbon tax. A recent paper by
Arcila Vasquez and Baker (2022) has analysed, among other outcomes, the effect of
the 2008 carbon tax on BC’s gasoline consumption, finding a contradictory long-run
null/positive effect of the tax on gasoline demand. However, their synthetic control
units’ outcome path is far from identical to the treated unit’s, and they fail to provide
any of the traditional instruments for inference using synthetic controls besides a
leave-one-out test (which confirms that BC’s outcome path is difficult to reproduce
with their data)19. Much more thorough is the study performed in Pretis (2022),
who analyses the whole range of aggregate and sectoral emissions in BC and finds
a negative effect on transportation emissions ranging from 3 to 15%. Nonetheless,
the study violates several of the contextual requirements listed in Abadie (2021), by
including provinces in the donor pool which are treated or experience large shocks
to the outcome variable, grouping emissions from treated and untreated segments of
the transportation sector, and perhaps most importantly, claiming causality where a
less-than-perfect fit between the treated and synthetic unit is observed. By omitting
robustness checks and predictor weights, it is also impossible to verify whether the
SCM analysis stands up to scientific scrutiny: in Section 1.5, we have illustrated how
it is sufficient to exclude unsuitable donor provinces from the control pool to make a
credible synthetic unit unattainable in practice. Furthermore, none of these studies
examine an oft-cited “elephant in the room”: the possibility that BC’s transportation
emissions figures are biased in the first place due to carbon leakage arising from cross-
border fuel shopping, mentioned in Rivers and Schaufele (2015), Antweiler and Gulati
(2016), and Andersson (2019). Even though the analysis in Section 1.6 has shown
that this problem is likely to be overstated, its empirical relevance is undeniable and
a careful practitioner needs to take it into account when providing recommendations
to prospective policymakers. By avoiding to claim causality for SCM estimates,
given the instability of the synthetic control unit to standard falsification exercises,
and by extending the analysis via recent advances in the synthetic control literature,
in this paper we provide a set of estimates which confirm the negative direction of
the impact of the carbon tax on road transportation emissions. Results from the

19A synthetic control and synthetic difference-in-differences estimation for gasoline consumption
was also separately performed for this paper and is available on request. While SCM fails to
identify a credible control unit for BC, SDID does a slightly better job, even if the method fails to
impose perfectly parallel trends for 2006-2008. The results contradict Arcila Vasquez and Baker
(2022), pointing again towards a reduction of gasoline consumption in BC which is consistent
with the remaining literature.
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synthetic difference-in-differences method are at the lower bound of all estimators and
identify a 6.1% reductions, or 0.21 in terms of annual metric tons per capita, which
is almost identical to the 6% reduction found in Andersson (2019) for Sweden. While
the Swedish tax is much higher than BC’s, fuel prices and taxes in Canada are much
lower than in Europe, and thus a smaller tax represents a higher relative increase in
the price of gasoline: a smaller tax can then lead to similar emissions reductions given
the context (Andersson, 2019). However, it must be noted that the placebo-based
standard errors around the point estimates for emissions reductions are large for
every estimator considered in Section 1.4, and that standard confidence intervals
always include zero, thereby failing to identify a statistically significant result. Given
the relative unavailability of donor pool provinces and the large heterogeneities in
outcome paths among observational units, however, these concerns seem related to a
lack of statistical power more than to a lack of significant effects, also considering that
all of the related literature analysing the 2008 carbon tax has found reductions in
fuel consumption (Rivers and Schaufele, 2015; Antweiler and Gulati, 2016; Bernard
and Kichian, 2019; Lawley and Thivierge, 2018), or in emissions (Xiang and Lawley,
2019; Pretis, 2022; Ahmadi et al., 2022). Nonetheless, these same caveats highlight
a general naivety in synthetic control applications in this field which perhaps veil
attitudes related to publication bias. Given that no US state has enacted a carbon
tax so far, that sectoral emissions data for US at the state level are available from
1980 onwards, and that carbon taxation will be required in the US if the 2015 Paris
Agreement targets are to be fully or partially met, future research will undoubtedly
leverage the methodology employed in this paper in order to analyse the impact of
not-yet-implemented US carbon taxes: a great dose of scientific rigour will be needed
in order to avoid the proliferation of misleading estimates of their impact based
on “perfunctory applications” of comparative case study methodology (Abadie, 2021).
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1.8 Conclusion

As highlighted by the 2019 US and EU economists’ statment on carbon pricing,
schemes such as the 2008 British Columbian carbon tax will need to be widely
applied in the coming years in order to abide to the targets established in the 2015
Paris Agreement. The Canadian federal government itself has imposed a federal
backstop mechanism which prescribes that each province which had not implemented
its own carbon pricing scheme as of 2019 would be subject to a CAD 20/tCO2 federal
carbon tax. The widespread application of carbon taxes in different jurisdictions
calls for effective and rigorous evaluation of their performance, in order to inform
policymakers about the efficacy of such measures and to correctly calibrate tax
rates to the context in which they are rolled out. The British Columbian carbon
tax, hailed as the first North American “grand experiment” in climate policy, has
gained praise for its features of gradual ramp-up and revenue neutrality, which have
enabled it to overcome well-known obstacles due to public opposition and to persist
unrepealed for 14 years. In this paper, we first show that there is a good degree of
confidence about its effectiveness, with the most conservative estimate identifying
a 6.1% reduction in road transportation emissions in an average year, comparable
with higher taxes implemented in the 1990s in Sweden. Concerns about carbon
leakage to the neighbouring US State of Washington are likely overstated, having
taxable retail sales in the gasoline sector and in the whole retail trade economy
of Whatcom county not increased as a consequence of tax-induced cross-border
travel. Lastly, we show that methodological concerns are of primary importance
when analysing climate policies implemented at aggregate scales: our estimates of
emissions reductions are indeed not statistically significant, due primarily to a lack of
power and to BC being at the left tail of the emissions distribution, but also possibly
to a weak behavioural response to the tax signal. While it is encouraging that British
Columbia’s road transportation emissions have trended downwards with respect
to its synthetic counterfactuals, the level of emissions reductions is still not nearly
sufficient for the decarbonisation of the province’s most polluting sector; moreover,
these reductions seem to not have translated into “aggregate” emissions reductions,
calling for a stronger ramp-up of the tax rate and a coupling with additional policy
tools. Future analyses of carbon pricing schemes at the sub-national level ought to
adhere to the strictest empirical rigour in order to correctly inform the policymaker
about the advantages and shortcoming of carbon taxes, conscious that they represent
just one of the multiple tools at our avail in order to attain decarbonisation rather
than a “climate silver bullet”.
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Chapter 1 Carbon Pricing with Permeable Borders

1.A Full Sample Results

Table 1.A.1: Summary of τ̂ point estimates and relative standard errors from seven
different estimation methods, full control pool.

DID SCM SDID DIFP MC SCMridge DIFPridge

τ̂ -0.77 -0.33 -0.17 -0.34 -0.47 -0.28 -0.27

S.E. 0.96 0.78 0.48 0.44 0.77 0.88 0.63

Diff−in−Diff Synthetic Control Synthetic Diff−in−Diff

1990 2000 2010 1990 2000 2010 1990 2000 2010

3

4

Control British Columbia

Figure 1.A.1: DID, SCM and SDID estimates of the effect of the 2008 carbon tax on
road transportation CO2 emissions in British Columbia, full control pool.
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1.B Alternative specification of the demand model
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Figure 1.B.1: Model parameterisation with low individual fixed costs. Panel (A):
Domestic fuel sales with no carbon tax, low carbon price or high carbon price; Panel (B):
Change in domestic fuel sales with low carbon price and high carbon price.
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Figure 1.B.2: Model parameterisation with high individual fixed costs. Panel (A):
Domestic fuel sales with no carbon tax, low carbon price or high carbon price; Panel (B):
Change in domestic fuel sales with low carbon price and high carbon price.



Chapter 2

Carbon Pricing with Regressive Co-benefits:
Air Quality and Health Effects from British Columbia’s
Carbon Tax are Positive but Unequally Distributed

Abstract

Empirical estimates of realised co-benefits arising from carbon pricing, such as improvements
in local air pollution, are practically inexistent. In this paper, the 2008 carbon tax
implemented in British Columbia, Canada is exploited as a source of exogenous variation in
order to evaluate the effect of a carbon pricing scheme on air quality. Combining a granular
dataset at the census dissemination area level (corresponding to US census tracts), satellite
observations of local pollutants, and a synthetic difference-in-differences methodology,
we find that the carbon tax has reduced PM2.5 emissions by 0.36-0.89 µg/m3 in British
Columbian metropolitan areas compared to the rest of Canada, or 5.2-10.9% compared to
pre-tax levels. The result is heterogeneously distributed across census dissemination units:
areas which present lower levels of baseline pollution, less dense and in higher income
brackets experience greater reductions, suggesting a spatial dimension of the regressive
nature of climate policy. A mechanism underlying the results is the substitution of transport
mode from driving to public transit, cycling, and walking. Despite the regressive nature
of the carbon tax, its per capita co-benefits arising from the conversion of air pollution
hazard rates into monetary values are large, at $198 per capita.

For helpful discussions and comments we thank, in alphabetical order: Antonio Avila-Uribe,
Eugenie Dugoua, Glen Gostlow, Ben Groom, Beatriz Jambrina-Canseco, Charles Palmer, Alberto
Parmigiani, Elena Perra, Julien Picard, Capucine Riom, Sefi Roth, and all participants at research
seminars hosted by the Department of Geography and Environment at the LSE in 2022. The
author acknowledges funding from the UK Economic and Social Research Council (ESRC). All
remaining errors are my own.



Chapter 2 Carbon Pricing with Regressive Co-Benefits

2.1 Introduction

The major sources of CO2 emissions are the fossil fuel combustion processes which
also give rise to emissions of air pollutants. Climate change and air pollution can then
be categorised as complementary global and local externalities from fossil fuel use.
Therefore, efforts to control CO2 emissions by internalising the social cost of carbon
are bound to give rise to significant “co-benefits” in terms of air quality improvements.

The preferred economic policy instrument to achieve CO2 reductions is a carbon tax
(Nordhaus, 2008; Weitzman, 2015; Weitzman, 2016); however, the worldwide rate of
carbon tax adoption has been historically low, with sparse jurisdictions enacting this
form of regulation (World Bank, 2022). Given the relative scarcity of long-tenured
carbon pricing schemes, it is perhaps unsurprising that empirical evidence of their
causal impact on global pollutants is sporadic at best (Andersson, 2019), while at-
tempts to quantify the local co-benefits from carbon taxation from observational data
are practically inexistent. On the contrary, there is a large and growing literature
which, using theoretical insights (Parry et al., 2015) and simulation models (Zhang
et al., 2021; Knittel and Sandler, 2011), has attempted to calculate the monetary
value of air pollution improvements due to carbon taxation and compare them with
the cost of mitigation policies.

In particular, net health co-benefits arising from carbon taxation can reach a high
enough magnitude to partially or fully offset the mitigation costs for households at a
national (Li et al., 2018; Shindell et al., 2016) and global (West et al., 2013; Vandyck
et al., 2018) level, and may provide strong additional incentives for a swift transition
to a low-carbon economy. Moreover, reductions in morbidity and mortality due to
improvements in air quality are not likely to capture the full extent of the local
pollution externality: a large body of research has linked air pollution to negative
educational outcomes (Ebenstein et al., 2016; Wen and Burke, 2022), increase in
crime rates (Bondy et al., 2020), reductions in labour productivity (Graff Zivin and
Neidell, 2012), housing prices (Sager and Singer, 2022; Freeman et al., 2019) and
other non-health outcomes (Aguilar-Gomez et al., 2022), suggesting that any attempt
at quantifying the monetary impact of co-benefits based on health outcomes only
would, at best, provide a lower bound of the beneficial consequences of air quality
improvements.

It is therefore of fundamental importance to analyse, ex post, the eventual causal
effect of carbon pricing instruments in reducing local pollution, in order to estimate
the magnitude of co-benefits from carbon taxation; incorporating these estimates in
cost-benefit analyses of carbon pricing is indeed susceptible of raising the optimal
carbon price to reflect not only the social cost of carbon, but also the social cost
of complementary local pollutants (Parry et al., 2015). Furthermore, identifying
significant co-benefits from carbon pricing could incentivise policymakers to enact
mixed instruments for abatement, which appear to be the optimal choice when
pollutants are complements (Ambec and Coria, 2013), and to couple carbon pricing
with layered, spatially heterogeneous interventions specific to air quality (Zhang
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et al., 2021), in order to reap the benefits from policy additionality.

In this paper, we exploit the ideal policy setting of British Columbia, Canada, which
introduced a revenue-neutral carbon tax on July 1st, 2008, in order to empirically esti-
mate the impact of carbon taxation on PM2.5 concentrations in the Province’s Census
Metropolitan Areas. The tax, covering approximately 70% of British Columbian CO2

emissions, was initially introduced at a rate of $10/tCO2, and sequentially ramped up
by $5 per year until 2012, when it was frozen at $30/tCO2 until 2018. Importantly, no
other Canadian Province introduced relevant1 carbon pricing schemes between 2008
and 2018, when the tax was rolled out on a federal basis, which allows us to rely on
a control pool comprised of Census Metropolitan Areas in other Canadian Provinces.
We leverage high-resolution data on PM2.5, based on a combination of satellite obser-
vations, geo-chemical models and ground-based monitoring stations, from Meng et al.
(2019) and van Donkelaar et al. (2019), and combine them with highly disaggregated
socio-economic data at the Dissemination Area level2 retrieved from the Canadian
Census at 5-year intervals between 2001 and 2016, in order to assess whether the
tax has resulted in significant reductions in air pollution concentrations within
British Columbian cities. We contribute to the nascent literature on the econometric
evaluation of the effect of carbon pricing on atmospheric emissions (Andersson,
2019), and, to the best of our knowledge, provide the first empirical analysis and
quantification of the magnitude of air pollution co-benefits arising from a carbon tax3.

The central result of the paper is that the 2008 British Columbian carbon tax
has resulted in statistically significant reductions in PM2.5 concentrations, with a
lower bound average estimate of -0.36 µg/m3 (using the Meng et al. (2019) dataset
over 2000-2016) and an upper bound average estimate of -0.89 µg/m3 (using the
van Donkelaar et al. (2019) dataset over 2000-2018), corresponding to a 5.2-10.9%
reduction in particulate matter concentrations with respect to pre-treatment average
levels. Importantly, as in e.g. Andersson (2019) and Sager and Singer (2022), this
result is obtained by moving away from traditional two-way fixed effects difference-
in-differences (TWFE-DID) estimation, in light of a violation of the foundational
parallel trends assumption: particulate matter trends between British Columbian
and control Dissemination Areas diverge prior to the implementation of the carbon
tax, thereby biasing DID estimates. As in Andersson (2019), we rely on a family
of estimators related to the synthetic control method (SCM) for comparative case
studies (Abadie and Gardeazabal, 2003; Abadie, 2021), employing in particular the
synthetic difference-in-differences (SDID) estimator by Arkhangelsky et al. (2021)
as our preferred methodology. The estimator, which to the best of our knowledge

1As discussed in Chapter 1, Quebéc implemented a minimal fuel duty in 2007, at a rate of 0.8 cents
per litre of gasoline. Since this intervention is not regarded as a carbon pricing scheme (World
Bank, 2022), it amounts to a simple change in gasoline excise taxation.

2Corresponding roughly to US Census tracts.
3A precedent attempt, confined in geographical scope to the city of Vancouver and in the temporal
dimension to the year 2013, is the unpublished work by Saberian (2017). Our contribution
goes beyond the scope of that paper by extending the series to 2016-2018, exploiting high-
resolution rasters in order to avoid incurring in measurement error, inspecting the heterogeneity
and mechanisms underlying our results, and quantifying the impacts in terms of health gains.
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has not been utilised in any applied study in environmental economics to date,
has attractive features which combine the use of unit and time fixed effects from
TWFE-DID, unit weights from SCM, and novel time-specific weights in order to
construct a set of synthetic counterfactuals whose outcome path is approximately
parallel to that of treated units prior to the intervention. In our setting, with multiple
treated units and a large number of control units to draw synthetic counterfactuals
from, both the SCM and SDID perform well in addressing concerns about diverging
pre-treatment trends and appear to identify unbiased and robust estimates of the
impact of the carbon tax on PM2.5 levels.

We subsequently inspect whether these reductions arise heterogeneously within
British Columbian metropolitan areas. A substantial body of research has indeed
documented geographic and socio-economic disparities in pollution levels within cities
(e.g. Jbaily et al., 2022; Currie et al., 2020) and it is paramount to inspect whether
carbon taxation, which has been shown to be regressive over income levels (Douenne,
2020), presents similar characteristics with respect to other socio-demographic com-
ponents. We split the pool of treated units in quintiles of pre-existing pollution,
population and road density, night-time luminosity, median income levels and dwelling
values and estimate the impact of the tax on PM2.5 reductions for each quintile of
each baseline characteristics. The carbon tax appears to be doubly regressive, with
an additional spatial dimension: reductions are higher in previously less polluted,
better off areas, and lower in denser urban conglomerations. Pricing carbon, while
giving rise to co-benefits across the entirety of urban areas, may thus exacerbate
the pollution-income and the pollution-density gaps (see e.g. Carozzi and Roth,
2022), highlighting the need for spatially differentiated climate interventions (Nehiba,
2022) or for additional layered instruments aimed at internalising the congestion
externality in urban centres and reducing local pollution (e.g. Pestel and Wozny,
2021; Sarmiento et al., 2022; Gehrsitz, 2017). Other examples of incremental policies
to aid carbon pricing in providing co-benefits are incentives for alternative transport
modes: by exploiting information on commute modes contained in the Canadian
census data, we show that one underlying feature driving the reductions in PM2.5 in
British Columbia is the switch from high to low emission transport modes, principally
public transport.

Finally, drawing from the insights of Fowlie et al. (2019) and Carozzi and Roth
(2022), we convert our estimates of particle pollution reductions into mortality re-
ductions, based on the environmental health and epidemiology literature (Lepeule
et al., 2012; Krewski et al., 2009) and associated monetary gains, relying on the
concept of the Value of a Statistical Life. The median monetary health gains appear
to be large, in the order of $88-402 per capita depending on the specification; our
preferred estimate of $198 is 66% of the Low Income Climate Action Tax Credit, the
carbon tax governmental rebate accruing to low-income families to mitigate the cost
of carbon pricing. Health gains stemming from PM2.5 are similarly heterogeneous
over space, with greater benefits manifesting in peri-urban areas rather than in city
centres, and exhibit an inverse correlation with income within metropolitan areas,
corroborating the “spatial regressiveness” hypothesis.
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The remainder of the paper begins with a detailed description and graphical analysis
of the data sources in Section 2.2. In Section 2.3, we describe the empirical analysis,
highlighting the shortcomings of TWFE-DID in the context, outlining the SCM and
SDID methodologies, the heterogeneity analysis, and the inspection of underlying
mechanisms; we present all main and heterogeneous results in Section 2.4, while
the commute mode analysis is reported in Section 2.5. In Section 2.6, we describe
how we obtained estimates of mortality reductions and monetary health gains, and
visualise the results spatially. Section 2.7 concludes, and additional information is
reported in the Appendices.

2.2 Data and Descriptive Statistics

In order to analyse the effect of British Columbia’s 2008 carbon tax on air quality,
we assemble and process information on local pollutants’ concentrations, geographic
characteristics, and socio-economic dynamics from multiple sources. The observa-
tional units which we employ in the analysis are Dissemination Areas (DAs), the
smallest standard geographic areas for which Canadian census data are disseminated.
Since the paper is concerned with analysing the effect of carbon pricing on air quality
in cities, we restrict the geographic scope of the dataset to 26 Canadian Census
Metropolitan Areas (CMAs), thereby excluding rural areas and smaller towns4.
Canadian census data is obtained from von Bergmann et al. (2022), while DA census
boundaries are converted to common geographies based on von Bergmann (2021),
and using DA administrative boundaries from the 2016 Canadian census as the target
geography. Our final dataset is thus comprised of 25,479 DAs observed over 19 years,
from 2000 to 2018, across 26 CMAs.

The dependent variable employed in the main part of the paper is yearly average
PM2.5 concentration, for which we rely on the Meng et al. (2019) dataset, which
combines information from satellite-retrieved Aerosol Optical Depth with simulations
and ground-based observations obtained from monitoring stations readings. We
extract the mean value of yearly PM2.5, weighted by grid-cell level population counts
obtained from Rose et al. (2020), onto the 25,479 DAs which constitute our dataset
for every year between 2000 and 2018. The resolution of the PM2.5 raster data is
0.01°x 0.01°, while population data is available for grid cells of dimension 0.0083°
x 0.0083°, hence implying that the population raster had to be resampled at the
resolution of the PM2.5 raster in order to be viable for use in the weighted mean
calculation. Hence, for each DA, the dependent variable takes the form:

4The CMAs in the dataset are: St. John’s, Halifax, Saint John, Quebec, Trois Rivieres, Sherbrooke,
Montreal, Ottawa, Saguenay, Kingston, Toronto, Hamilton, St. Catharine’s, Kitchener, London,
Windsor, Sudbury, Thunder Bay, Winnipeg, Regina, Saskatoon, Calgary, Edmonton, Abbotsford,
Vancouver, and Victoria. While the number of Canadian CMAs is 35 in the latest available census
wave (2016), we only keep in the dataset those CMAs which were designated as such in the 2001
Census, in order to ensure compatibility across all waves.
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PM2.5it =
1

Nj

N∑
j=1

Popjt ∗ PM2.5jt (2.1)

Where j = 1, ..., N is the number of raster grid cells in a DA i, Popjt is the population
count in grid cell j at time t, and PM2.5jt is the value of the particulate matter raster
in grid cell j at time t.

The main advantage of this source compared to data obtained from monitoring
stations only (Saberian, 2017), is their much wider spatial and temporal coverage,
which also allows us to overcome the selection problem mentioned in Carozzi and
Roth (2022) relative to the endogenous location of monitoring stations within urban
areas5. The entity of data loss when using ground-based data is considerable: PM2.5

data from the National Atmospheric Surveillance Program (NAPS) is only available
for 61 DAs in 2000, growing to 230 in 2018 as new monitoring stations get added
every year (see Figure 2.A.1). Nonetheless, the satellite-retrieved measurements
from Meng et al. (2019), when restricted to the DAs with at least one PM2.5 ground
monitoring station, correlate well with the NAPS readings, as shown in Figure 2.2.1.

We rely on the Meng et al. (2019) PM2.5 estimates in order to produce our main
results. However, we also run the main analysis using PM2.5 concentration data
from van Donkelaar et al. (2019), as done e.g. in Sager and Singer (2022). While
the two estimates are highly related, with a Pearson correlation coefficient of 0.729
(see Figure 2.2.2), the concentrations from Meng et al. (2019) are generally lower
throughout the sample. Moreover, a closer inspection of the van Donkelaar et al.
(2019) rasters reveals that, beginning with the year 2004, much of the variability
of PM2.5 pixel values over Canadian CMAs is swept out, resulting in unrealistic
estimates of pollution concentrations, especially with respect to their distribution
over densely populated DAs. The choice of employing data from Meng et al. (2019)
is therefore conservative, as results using the van Donkelaar et al. (2019) dataset are
generally higher in magnitude, as Section 2.4 shows.

Aware of a burgeoning literature relating population density and air pollution (Carozzi
and Roth, 2022; Borck and Schrauth, 2021), we obtain population counts at the DA
level from Rose et al. (2020), which are available for all years between 2000-20186.
Road density is also likely to be a highly influential predictor of particulate pollution
from traffic congestion: therefore, we obtain data on the road network predating
the carbon tax from Statistics Canada (2006 Census Road Network) and calculate
baseline road density by dividing the total length of the network in each DA by its
surface. We complement these information with data on night-time luminosity, often
considered as a valuable proxy for economic activity (e.g. Henderson et al., 2012),
by extracting the harmonised version of the nighttime lights dataset from Xuecao
et al. (2020), from which we calculate the mean level of night lights (NTLs) at the

5Monitoring stations are likely to be located where air pollution is higher, thereby introducing
measurement error in an eventual empirical analysis.

6The dataset also contains population counts for all DAs extrapolated from Canadian censuses;
however, this data is only available in 5-years intervals between 2001 and 2016.
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Figure 2.2.1: Satellite PM2.5 (Meng et al., 2019) vs PM2.5 from NAPS monitoring
stations. Both measures are in µg/m3. The correlation coefficient is 0.597.

Figure 2.2.2: Satellite PM2.5 (Meng et al., 2019) vs Satellite PM2.5 (van Donkelaar et al.,
2019). Both measures are in µg/m3. The correlation coefficient is 0.729.
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DA level for 2000-2018. Moreover, we extract information about weather controls,
namely precipitation, maximum and minimum temperature, and wind speed, from
Abatzoglou et al. (2018). We convert monthly to annual averages and compute
the mean of each variable at the DA level between 2000 and 2018. If the carbon
tax was successful in producing a behavioural adjustment in BC residents, we are
likely to observe higher take up of alternative means of transport, especially within
metropolitan areas, as an economic coping mechanism. Therefore, we leverage the
detailed information contained in the four waves of Canadian census data between
2001-2016 to retrieve DA-level data on commute modes. We divide commute modes
in two different categories: (1) High emission (cars, taxis, and motorcycles); (2) Low
emission (public transport, bicycles, and walking). Furthermore, we divide up the
low emission category in (3) Public transport only and (4) Zero emission (cycling and
walking). Finally, we also employ the Canadian censuses to retrieve information on
average and median income, and average dwelling values at the DA level, in order to
inspect whether the tax has produced heterogeneous impacts along these dimensions.

Figure 2.2.3 plots the baseline spatial distribution of the dependent variable and the
main covariates over the Vancouver CMA, the most populated metropolitan area in
the treated province of British Columbia. Time-varying variables are averaged over
2005-2007, the three years preceding the implementation of the carbon tax, while
road density is time-invariant and all variables retrieved from the Canadian Census
are taken at their 2006 values, the last observation before the tax was instituted.
The spatial distibution of PM2.5 concentrations is as expected: values are indeed
higher in central areas rather than in the periphery, qualitatively adhering to the
traditional association with population density found e.g. in the US (Carozzi and
Roth, 2022) or Germany (Borck and Schrauth, 2021); moreover, road density and
night-time lights seem to be highly spatially correlated with air pollution at the
baseline, while the pattern is less clear with respect to dwelling values (taken as
a proxy of local wealth) and median income. On the contrary, baseline commute
mode seems to be inversely related with the spatial distribution of PM2.5: areas
whose inhabitants are less reliant on cars, taxis and motorbikes seem to be more
polluted on average, a result probably due to their centrality with respect to the
road networks and urban form. Summary statistics for the whole sample, split across
treatment and control CMAs, are presented in Table 2.A.1 and Table 2.A.2 for the
pre-treatment and post-treatment periods, respectively.
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Figure 2.2.3: Spatial distribution of PM2.5 and relevant covariates within the Vancouver
CMA. Top row: PM2.5, population density and road density; Middle row: NTLs, dwelling
value and median income; Bottom row: high emission commute mode %, public transport
% and cycling/walking %.
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2.3 Empirical Strategy

2.3.1 Two-way fixed effects difference-in-differences (TWFE-DID)

The core aim of our empirical strategy is to estimate the treatment effect of the 2008
British Columbian carbon tax on local air pollution, measured in terms of PM2.5

concentrations at the DA level. A first attempt at this exercise can be operationalised
in terms of a traditional two-way fixed effects difference-in-differences (TWFE-DID)
strategy. The estimating equation takes the form:

PM2.5it = τTAXit + θt + ηi + ϵit (2.2)

Where TAXit is the DID binary indicator, taking value 1 for all treated units after
the implementation of the carbon tax in 2008, and 0 for all other observations;
θt and ηi are respectively time and unit specific fixed effects, ϵit is a time-varying
idiosyncratic error term, and β is the coefficient of interest, i.e. the average effect of
being exposed to the carbon tax.

In order for β to be equal to the average treatment effect on the treated cohort (ATT),
the identifying assumption is that parallel outcome trends between the treated and
the control units hold, i.e. if the 2008 carbon tax had not been implemented in British
Columbia, PM2.5 levels in British Columbian DAs would have followed the same
trajectory as PM2.5 levels in DAs located in other Canadian provinces. The parallel
trends assumption is not testable; however, in empirical work, it is standard to plot
the outcome path for the variables of interest in order to assess whether treatment
and control units exhibit similar or diverging trends. Figure 2.3.1 and Figure 2.3.2
report the average PM2.5 trends for 2000-2016 and 2000-2018, respectively, for British
Columbian and control DAs; when using the van Donkelaar et al. (2019) data, it is
immediate to dispel the possibility that outcome paths are parallel prior to treatment,
while trends using the Meng et al. (2019) dataset are slightly less divergent, but
noisy, especially for what concerns the control observations. Nonetheless, in both
cases there is reason to suspect that a TWFE-DID regression would fail to identify
the correct ATT. By giving equal weight to all control observations, TWFE-DID
indeed will indeed include units whose pre and post-treatment outcome paths funda-
mentally differ from those of DAs in British Columbia, and with greater potential
for abatement.

It is also worth noting that in both cases, in addition to diverging trends, the level of
PM2.5 pollution is almost always7 lower for British Columbian vis-à-vis control DAs.
Province-specific factors such as city morphology, more progressive environmental
attitudes, different car fleet compositions and heterogeneous availability of alternative
means of transportation could be the reason why trends and levels diverge across
British Columbian CMAs and control Provinces. Treatment status in this instance
is place-based and dependent on the political choice of an individual province –
although sufficiently exogenous in timing (Rivers and Schaufele, 2015); nonetheless,
as in Sager and Singer (2022), bias in the TWFE-DID estimator introduced by the

7Except for the van Donkelaar et al. (2019) dataset in the very first year of the panel, 2000.
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failure of the parallel trends assumption needs to be acknowledged and a different
estimation strategy can give rise to more precise estimates. In particular, our two
alternative empirical methodologies are the synthetic control method for comparative
case studies (SCM) (Abadie and Gardeazabal, 2003; Abadie, 2021) and the newly
introduced synthetic difference-in-differences (SDID) methodology (Arkhangelsky
et al., 2021).
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Figure 2.3.1: Trends in satellite PM2.5 (Meng et al., 2019), British Columbia vs control
provinces, between 2000 and 2016. The implementation of the carbon tax in 2008 is
highlighted by the dashed vertical line.
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Figure 2.3.2: Trends in satellite PM2.5 (van Donkelaar et al., 2019), British Columbia vs
control provinces, between 2000 and 2018. The implementation of the carbon tax in 2008
is highlighted by the dashed vertical line.
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2.3.2 Synthetic control method and synthetic difference-in-differences

A traditional solution to diverging pre-treatment trends in empirical applications
(usually with a unique treated unit, but extensible to the case of multiple treated
units) is the SCM (Abadie and Gardeazabal, 2003; Abadie, 2021). In the BC carbon
tax case, the SCM constructs a set of synthetic DAs as a weighted combination of
control DAs by finding, for each treated unit i, a non-negative vector of weights
ωsc
i summing to one, which ensures that each convex combination of the outcome

variable for control units matches each outcome variable for the treated units for all
periods up to the intervention date. Through this procedure, reliance on the parallel
trends assumption, which is violated in our setting, is fundamentally weakened.

In order to combine the attractive features of both TWFE-DID (the inclusion of
additive unit-specific and time-specific fixed effects), and SCM (reducing the reliance
on the parallel trends assumption by weighting observations in order to ensure closely
matched pre-intervention trends), Arkhangelsky et al. (2021)8 have introduced a
new method, synthetic difference-in-differences (SDID), which employs time and unit
(two-way) fixed effects in the regression function (as in TWFE-DID), together with
unit-specific weights (as in SCM) and time-specific weights which lessen the role
of time periods that are largely divergent from post-treatment time periods. In a
nutshell, for each treated unit SDID estimates: (1) unit weights ωsdid

i which underpin
a synthetic control whose outcome is approximately parallel to the outcome for the
treated unit; (2) time weights λsdid

t which ensure that the average post-treatment
outcome for control units only differs by a constant from the weighted average of
pre-treatment outcome for the control units – a synthetic pre-treatment period using
controls. Once unit and time weights are calculated, SDID estimates a TWFE
regression on the resulting panel, identifying the SDID ATT.

In order to formally explain how SDID combines features from TWFE-DID and SCM,
let us consider a balanced panel with N observations and T time periods. In the
British Columbian case, the outcome variable is PM2.5it, and the binary treatment
is TAXit. Let i = 1, ..., Ntr be the treated DAs in BC, and i = Ntr + 1, ..., Nco be
the DAs in control provinces. The baseline TWFE-DID regression problem can be
expressed as:

(τ̂ didµ̂, η̂, θ̂) = argmin
τ,µ,η,θ

{
N∑
i=1

T∑
t=1

(PM2.5it − µ− ηi − θt − τTAXit)
2

}
(2.3)

Which is solved without the use of unit or time-specific weights, but with the inclusion
of unit and time-specific fixed effects ηi and θt as also illustrated in Equation 2.2.
The SCM estimator, instead, does not employ unit fixed effects, but includes time
fixed effects and unit-specific weights ωsc

i :

(τ̂ sc, µ̂, η̂, θ̂) = argmin
τ,µ,η,θ

{
N∑
i=1

T∑
t=1

(PM2.5it − µ− θt − τTAXit)ω̂
sc
i

}
(2.4)

8This Section draws heavily on the seminal work of Arkhangelsky et al. (2021). Omissions are in
the interest of avoiding redundancy.

84



Chapter 2 Carbon Pricing with Regressive Co-Benefits

Finally, the SDID estimator combines features from Equation 2.3 and Equation 2.4.
Unit weights ω̂sdid

i are chosen such that the pre-treatment outcome path of control
DAs are parallel to those of the treated units9:

ω0 +
Nco∑

i=Ntr+1

ω̂sdid
i PM2.5it ≈

1

Ntr

Ntr∑
i=1

PM2.5it (2.5)

Moreover, time weights λ̂sdid
t need to ensure that the pre-treatment levels for the

control units differs from the post-treatment levels for the same units only by a
constant. If we let t = 1, ..., T be the total length of the panel, Tpre be the number of
pre-intervention periods, and Tpost be the number of post-intervention periods, the
condition can be expressed as:

λ0 +

Tpre∑
t=1

λ̂sdid
t PM2.5it ≈

1

Tpost

T∑
t=Tpre+1

PM2.5it (2.6)

Thus, the regression problem for the SDID estimator can be expressed as a weighted
TWFE-DID problem which incorporates unit and time-specific fixed effects ηi and
θt, plus unit and time-specific weights ωi and λt, as illustrated in Equation 2.7:

(τ̂ sdid, µ̂, η̂, θ̂) = argmin
τ,µ,η,θ

{
N∑
i=1

T∑
t=1

(Yit − µ− ηi − θt − τTAXit)
2ω̂sdid

i λ̂sdid
t

}
(2.7)

In the remainder of the paper, we regard SDID as our preferred method in order to
estimate the effect of the 2008 BC carbon tax on air pollution co-benefits, as the
methodology allows us to overcome the apparent violation of the parallel trends as-
sumption in conventional TWFE-DID; nonetheless, we estimate our main regression
and robustness checks using all three of TWFE-DID, SCM and SDID, in order to
inspect the direction of the eventual bias.

We calculate standard errors for all methods using the bootstrap variance estimation
algorithm described in Arkhangelsky et al. (2021, p. 4109), with 200 replications.
The procedure constructs a bootstrap dataset by sampling a portion of the original
dataset with replacement, and computes the SDID estimator τ (b) on this subset for
each iteration b. The variance is then defined as:

V̂ b
τ =

1

B

B∑
b=1

(
τ̂ (b) − 1

B

B∑
b=1

τ̂ (b)

)2

(2.8)

9Unit-specific weights are found using a regularisation parameter ζ, as in Doudchenko and Imbens
(2016), which aids the estimation strategy by increasing the dispersion of the weights and ensuring
their uniqueness. When the intercept ω0 and the regularisation parameter are set to 0, the unit
weights ωi correspond to the SCM weights in Abadie et al. (2010). For further details on the
procedure used to estimate ζ, please refer to Arkhangelsky et al. (2021).
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2.3.3 Heterogeneous Treatment Effects

In Section 2.3.1 and Section 2.3.2, the parameter identifying the effect of the 2008
BC carbon tax on PM2.5 emissions has always been assumed as constant across
treated units. In essence, the methodology explained above computes a homogeneous
ATT across DAs. Nonetheless, when dealing with disaggregated data within Census
Metropolitan Areas, a homogeneously estimated ATT is likely to mask substantial
heterogeneities across DAs which could be highly informative about the performance
of different locations within metropolitan areas.

A first channel to examine is certainly that of pre-existing pollution levels: standard
economic theory would in fact predict that emission abatement would happen first
where the marginal cost of reducing emissions is lower, i.e. where pre-existing pollu-
tion is higher (that is, lower-hanging fruits would be picked earlier). This avenue
is explored by Sager and Singer (2022) and Auffhammer et al. (2009), who find
substantially higher reductions in PM2.5 and PM10 due to the Clean Air Act in
nonattainment US census tracts that are more polluted in the three years preceding
the implementation of the policy. In light of the results of Carozzi and Roth (2022)
and Borck and Schrauth (2021), it is also worth exploring whether heterogeneity
in air pollution reductions arises at different levels of the population density dis-
tribution: indeed, while densely populated areas have been shown to experience
higher concentrations of PM2.5 particulate, usually population density is higher in
city centres, where greater opportunities for substitution away from cars may arise.
Following the same logic, we also test whether results are heterogeneously distributed
according to road density and night-time lights. Lastly, an unexplored channel in
carbon pricing is that of “spatial regressiveness”. A large body of research has
shown that carbon pricing is regressive along income and wealth dimensions, but
the relationship between the geographic distribution of income and wealth and the
burden of carbon taxation is relatively underinvestigated. Therefore, we also inspect
the heterogeneity of PM2.5 reductions with respect to the geographic distribution of
mean dwelling value (as a proxy of wealth) and median income.

As the SDID methodology does not allow the inclusion of interactions in the estimation
procedure, we split the treatment sample into quintiles of baseline10 variables: PM2.5,
population density, road density, NTLs, average dwelling value and median income.
We then run SDID separately for each quintile and, in Section 2.4.3, we summarise
the results graphically. Moreover, we also inspect a slightly more extreme trimming of
the treated sample by dividing it in deciles of each baseline covariate and comparing
the 90th percentile with the 10th percentile, in order to analyse the ratio of the effect
at the top and bottom of the covariate distribution.

10For time-varying covariates we use the average of the three years prior to treatment as the baseline
value; for variables retrieved from the Canadian census, we use their 2006 values, i.e. the last
observation prior to the implementation of the carbon tax.
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2.3.4 Mechanisms

It is paramount to be able to understand the potential mechanisms that determine
the relationship between the carbon tax and PM2.5 concentrations. Ideally, when
concerned with the estimation of PM2.5 reductions arising from the implementation
of carbon pricing, we would look at DA-level reductions in motor fuel sales or in the
quantity of vehicle kilometres travelled; however, these data are not available at the
desired level of granularity for Canada between 2000 and 2018. The only precedent
of a paper studying the relationship between the 2008 BC carbon tax and air quality
in Canadian cities is the working paper of Saberian (2017), who restricts the analysis
to Vancouver and uses monitoring stations data in order to infer her result – pointing
to a worsening in air pollution following the carbon tax. The analysis of mechanisms
leading to the result in Saberian (2017) highlights gasoline-to-diesel fuel switching as
the potential causal driver of increased air pollution. However, the evidence is only
anecdotal, as no evidence supporting the claim is presented in the study. Moreover,
while Canadian province-level data on vehicle sales disaggregated by type of fuel is
only available from 2011 onwards, the post-2011 trends in sales of diesel vehicles
are relatively flat (See Figure 2.A.3), and the landscape seems to be dominated by
gasoline cars (See Figure 2.A.2), suggesting that an eventual gas-to-diesel switch
caused by the carbon tax incentive would have produced all of its results between
July 2008 and January 2011 before bottoming out; the evidence for this conclusion
is not very strong as a result. Another potential mechanism behind an increase in
air pollution could derive from an exceptionally high rate of replacement in BC’s car
fleet with respect to other Canadian provinces, caused by the willingness of BC’s
residents to increase their cars’ fuel efficiency and realise savings at the pump. If the
savings per each tank refuel were sufficient to offset the increase in gasoline prices
due to the carbon tax, British Columbian residents could have potentially travelled
more kilometres than prior to the tax, thereby increasing road congestion and hence
pollution due to a rebound effect. As shown in Figure 2.A.4 there has indeed been a
rapid increase in truck and SUV sales in British Columbia after 2008; however, this
increase is paralleled by similar jumps in truck sales in all large Canadian provinces11,
and it thus seems implausible to attribute it to the marginal effect of the carbon tax
in raising fuel prices.

In this paper, we instead exploit the information contained in the 2001, 2006, 2011
and 2016 waves of the Canadian census, which contains data on commute-to-work
modes at the DA level for all Canadian CMAs. While the information on commute
modes is not an exhaustive representation of all car trips made in each DA, the
granularity of the data may shed light on whether residents of DAs located in British
Columbia have adjusted their behaviour following the implementation of the carbon
tax, substituting public transport or active commuting modes such as cycling and
walking for car trips. Due to the structure of the data, collected at 5-year intervals, we
are prevented from using the SCM and SDID methodology in this exercise; We thus
resort to traditional TWFE-DID estimation of commute mode switching, analysing
the data separately for each category of commute mode. In particular, we estimate

11Namely, Alberta, Ontario and Quebec.
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the following equation:

Modeit = τTAXit + θt + ηi + ϵit (2.9)

WhereModeit is the share of each commute mode (high emission, low emission, public
transport and zero emission, as described in Section 2.2, Taxit is the carbon tax DID
binary variable also employed in Equation 2.2, θt and ηi are time and unit-specific
fixed effects, and ϵit is an idiosyncratic error term. In additional specifications, we
also add a vector of controls Xit which account for population density, median income,
and weather covariates (precipitation, maximum and minimum temperature, and
wind speed), hence the estimating equation becomes:

Modeit = τTAXit + βXit+ θt + ηi + ϵit (2.10)

We initially run the TWFE-DID regressions for the whole sample, without trimming
the control pool. In further specifications, we restrict the control sample to the units
which receive positive ωi weights in the SDID estimation of the main result, in order
to ensure comparability across treatment and control cohorts and reduce the reliance
on potentially violated parallel trends. Further, we retrieve the ωi weights from the
SDID estimation and weigh our restricted TWFE-DID regressions with the SDID
weights, assigning equal weights 1

Ntr
to the treatment cohort.

88



Chapter 2 Carbon Pricing with Regressive Co-Benefits

2.4 Results

2.4.1 Main Specification

With Meng et al. (2019) PM2.5 data

In Figure 2.4.1 and Table 2.4.1, we report the results of the TWFE-DID, SCM and
SDID regressions for the Meng et al. (2019) PM2.5 dataset. Looking at the first
panel of Figure 2.4.1, it is straightforward to infer how the baseline TWFE-DID
strategy suffers from a clear violation of its foundational parallel trends assumption,
as discussed in Section 2.3. The graphical representation of the regression analysis
aids this line of interpretation: the DID ATT is indeed estimated by assuming that
the outcome path of the treated units is parallel to the outcome path of the controls,
thus the coefficient, τ̂ did = 0.393 is biased. In the centre panel of Figure 2.4.1, we
plot the average outcome path for the treated units and the traditional synthetic
controls. The improvement in pre-treatment fit is dramatic, with minimal average
deviation between British Columbian DAs and their controls, implying that the SCM
performs well in giving positive weights to control units which best approximate
treated DAs’ outcome path and zero weight to control units which exhibit different
trends. The direction of bias from the TWFE-DID regression is positive: SCM
indeed identifies an effect of opposite sign to TWFE-DID, τ̂ sc = −0.142. In order to
further augment the precision of our estimates, we also rely on the SDID estimator,
graphically shown in the right-most panel of Figure 2.4.1. At the bottom of the panel,
pre-treatment time-weights are represented in pink. The estimator gives positive tem-
poral weights to periods for which the treated and control units exhibit similar trends.

Diff−in−Diff Synthetic Control Synthetic Diff−in−Diff

2000 2005 2010 2015 2000 2005 2010 2015 2000 2005 2010 2015
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8
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Control British Columbia

Figure 2.4.1: Graphical results from DID, SCM and SDID for PM2.5 concentrations,
with Meng et al. (2019) data.

The SDID estimator does a particularly good job in imposing pre-treatment parallel
trends in the years preceding the tax, even if weights λt are unevenly distributed over
the pre-intervention period. However, negligible weights in 2007-2008 are reassuring,
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given that a standard caveat in event-study methodologies is the excessive reliance on
the single period immediately preceding the intervention (Heckman and Smith, 1999).
The SDID procedure is able to select control units which exhibit pre-treatment trends
that are almost perfectly parallel to BC’s outcome path, especially in the four year
window preceding the intervention. The estimated ATT is τ̂ sdid = −0.363, therefore
higher than the SCM ATT, and corresponding to a 5.2% reduction with respect to
pre-intervention mean pollution levels. We regard SDID as the preferred methodology
due to its greater flexibility; furthermore, due to the selection of a different, sparser
set of control DAs. SDID selects indeed 6,258 control units among the untreated
DAs and then performs DID on the matched sample with the inclusion of unit and
time fixed effects to aid the estimation. On the contrary, SCM aggregates treated
DAs into a single treated unit and assigns positive weight to just 10 units among
21,979 available DAs in the donor pool. Therefore, while SCM obtains a near-perfect
fit pre-treatment, the outcome path of its synthetic unit heavily depends on the
particular set of units receiving positive weights, which in our highly disaggregated
setting is not ideal. In Figure B.1, we aggregate all 6,258 DAs which receive positive
weights to the CMA level, in order to obtain the composition of synthetic BC in
terms of percentages of other Canadian CMAs, in a similar vein to the traditional
SCM methodology of Abadie (2021).

Table 2.4.1: Summary of τ̂ point estimates and standard errors from
all estimation methods, dependent variable from Meng et al. (2019).

DID SCM SDID

τ̂ 0.3925 -0.1421 -0.3633
S.E. 0.0074 0.0809 0.0219

Nobs 432939 432939 432939

With van Donkelaar et al. (2019) PM2.5 data

In order to gauge the robustness of this exercise to an alternative particulate emis-
sions data source, we repeat the TWFE-DID, SCM and SDID estimation using the
van Donkelaar et al. (2019) PM2.5 dataset, which is available between 2000 and 2018.
Notwithstanding the high correlation between the two outcome variables, as outlined
in Figure 2.2.2, both the treatment and control pre-intervention trends exhibit some
differences with respect to the Meng et al. (2019) dataset; however, the temporal
location of peaks and troughs is generally respected, as is the relationship between
the BC and control units outcome path. Indeed, DAs located in British Columbia
always exhibit lower average annual concentrations of particulate pollution, and
their PM2.5 trend prior to 2008 appears to decline at an even faster pace than for
control observations, barring some peaks in concentrations typical of the control
provinces. The violation of the parallel trends assumption is once again highlighted
in the graphical representation of the TWFE-DID regression in Figure 2.4.2, which,
differently from the previous estimation, identifies a negative effect of the 2008 carbon
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tax on emissions of τ̂ did = −0.495 (see Table 2.4.2).

Diff−in−Diff Synthetic Control Synthetic Diff−in−Diff

2000 2005 2010 2015 2000 2005 2010 2015 2000 2005 2010 2015
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Control British Columbia

Figure 2.4.2: Graphical results from DID, SCM and SDID for PM2.5 concentrations,
with van Donkelaar et al. (2019) data. Time weights λt are represented in light red at the
bottom of the pre-intervention panel. The curved arrows graphically represent the ATT
over the post-intervention period.

The SCM, represented graphically in the middle panel of Figure 2.4.2, again obtains
a good pre-treatment fit in this instance, signalling that each British Columbian DA’s
outcome path is best approximated by a convex combination of control DAs rather
than equally weighted control units. Furthermore, as evidenced in Table 2.4.2, the
direction of the TWFE-DID bias is confirmed: the SCM estimates a negative ATT
of τ̂ sc = −0.709, therefore qualitatively reinforcing the SCM result of Table 2.4.1. A
similar conclusion can be drawn from the results of the SDID estimation, presented
in the right-most panel of Figure 2.4.2. The SDID procedure is able to select control
units which exhibit pre-treatment trends that are almost perfectly parallel to BC’s
outcome path, with the exception of outlying time periods which receive zero-weights
in the estimation. The estimated ATT is τ̂ sdid = −0.890, therefore slightly lower, but
qualitatively similar to the SCM ATT. The two estimators are probably equivalent
in this application. In terms of magnitude, both the SCM and SDID regressions
identify a substantial drop in PM2.5 concentrations with respect to 2000-2007 levels,
corresponding to a reduction of 10.9% from the pre-intervention PM2.5 mean for
British Columbia.

2.4.2 Robustness Checks

We test the consistency of the main results by performing three additional analyses
on sub-samples of the full dataset. First, we restrict the treated pool to DAs within
the Vancouver metropolitan area, therefore excluding all DAs in the Abbotsford and
Victoria CMAs. The resulting treatment cohort is comprised of 2874 DAs, vis-à-vis
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Table 2.4.2: Summary of τ̂ point estimates and standard errors from
all estimation methods, dependent variable from van Donkelaar et al.
(2019).

DID SCM SDID

τ̂ -0.4954 -0.7087 -0.8896
S.E. 0.0085 0.1540 0.0300

Nobs 483873 483873 483873

the 3490 DAs constituting the entire treatment unit pool; the control pool is kept
the same, with 21989 control DAs. We then run TWFE-DID, SCM and SDID on the
restricted sample, in order to be able to compare our results with those obtained by
Saberian (2017). Perhaps unsurprisingly, given the relatively small number of DAs
pertaining to the Abbotsford and Victoria CMAs, the results (reported in Figure B.3
and Table B.1) are qualitatively unchanged from the main regressions using the
Meng et al. (2019) dataset.

We subsequently restrict the dataset to those DAs corresponding to the location
of NAPS monitoring stations (see Figure 2.A.1), by spatially joining monitoring
stations’ locations to DAs12. Here, the size of the dataset is considerably restricted:
the cross-section of DAs kept in the treated pool counts just 25 observations, while
106 DAs are kept in the control pool. This exercise allows us to infer whether our
results also arise when considering just those locations in which pollution monitors
have been established, thereby restricting the analysis to areas in which pollution is
likely to be a greater concern. Once again, the results (presented in Figure B.4 and
Table B.2), are qualitatively similar to the main specifications, a first signal that
air pollution experiences greater reductions in places which exhibit greater levels
of pre-intervention concerns about air quality13. Notably, the performance of the
SDID estimator is not considerably worsened on this much smaller sample, with
both estimators achieving a reasonable pre-treatment fit, and therefore identifying
credible ATTs. On the contrary, the fit of the SCM seems to be substantially worse,
and the method identifies a much higher ATT than in other specifications.

Lastly, we restrict the estimation window to 2000-2013, for two main reasons: (i)
Checking whether the carbon tax ramp-up is the main mechanism behind the contin-
uous reductions (the carbon tax was frozen at $30/tCO2 as mentioned in Section 2.1),
and (ii) Comparing our results with Saberian (2017). The results, presented in
Figure B.5 and Table B.3 identify a much higher ATT of τ̂ sdid = −0.67, which
corroborates hypothesis (i) and is not comparable with the study by Saberian (2017),
which identified an increase in particulate pollution over the same temporal window,
possibly due to selection bias in the establishment of monitoring stations.

12We match DAs with all monitoring stations in the dataset, regardless of the date of establishment
of each monitoring station, in order to maximise observations.

13Heterogeneity with respect to pre-intervention pollution levels is explored in greater depth in
Section 2.4.3.
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2.4.3 Heterogeneous Treatment Effects

After establishing robustness of our main result, the analysis turns to an in-depth
evaluation of the heterogeneity of the findings with respect to a set of baseline
DA-level characteristics. In light of the findings by Sager and Singer (2022), we first
examine whether eventual reduction arise in locations which were more polluted at
the baseline, i.e. where low-hanging benefits are more likely to be reaped. This is
consistent with a long established tradition in the economics of pollution abatement,
which points to the fact that abatement is likely to be cheaper where the initial
level of pollution is higher. Moreover, in the context of air quality, and especially
with respect to British Columbia, where average PM2.5 concentrations were low even
before the introduction of carbon pricing, the left tail of the pollution distribution
is likely to coincide with geographical areas in which road transportation is sparser
and traffic levels are lower. Analysing whether the reductions arise at the right tail
of the distribution is then useful in order to understand whether more problematic
areas, with more potential for reaping higher benefits, see greater reductions.

In Figure 2.4.3, we graphically14 report the results from the quintile SDID regressions
described in Section 2.3, together with the 95% confidence interval around each
estimate. We use quintiles for the distribution of each covariate of interest; further,
we analyse the top and bottom of covariates’ distribution via splitting the dataset
in deciles, and calculating the 90th-10th decile ratio of ATTs (see Table 2.4.3).
Quintile-SDID results for baseline PM2.5 concentrations are presented in panel A.
It is immediate to infer that greater reductions arise in DAs with lower pollution
levels between 2005 and 2007. Nonetheless, the ATT is in the [-0.2,-0.6] range for
all quintiles; comparing the result with the baseline pollution levels reported in the
first panel of Figure 2.2.3, it is striking how most reductions appear to manifest in
more peripheral areas, perhaps a sign of the necessity of driving through the most
central locations within the urban network. The remaining panels analyse the results
across population density (panel B), road density (C), NTL (D), median income
(E) and dwelling value (F) quintiles. In panels B, C, and D, the ordering of ATT
magnitudes is consistent with panel A, with greater reductions arising monotonically
in less densely populated DAs, units with a lower concentration of road infrastructure,
and DAs with lower emitted night-time luminosity. Taken in conjunction, these
insights appear to confirm that the 2008 carbon tax was not effective in curtailing
traffic in more central areas within British Columbian metropolitan areas, but rather
had greater effect in peri-urban locations. More surprising is the result in panel E,
which highlights the fact that richer DAs within metropolitan areas have experienced
greater reductions, possibly reflecting an inverse relationship between density and
income, but more importantly signalling that the pollution-income gap has increased
as a result of the carbon tax. This result is a clear confirmation of the “spatial
regressiveness” hypothesis, i.e. that a carbon tax is not only regressive on the vertical

14Graphical representation is necessary in order to ensure a parsimonious representation of these
results. Tables are available on request.
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Figure 2.4.3: Graphical SDID results: heterogeneity by quintiles of baseline characteristics
for the treated sample. Panel A) Quintiles of baseline PM2.5; B) Quintiles of baseline
population density; C) Quintiles of road density; D) Quintiles of baseline nightlights values.
95% confidence intervals are shaded in grey.
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income dimension, but also geographically, with greater gains in better off areas. On
the contrary, the relationship with dwelling value is consistent with those for density,
possibly due to the association between centrality and land value.

In order to quantify the magnitude of the observed heterogeneity, in Table 2.4.3, we
report ATTs for the bottom 10% and the top 90% of baseline covariate distributions,
together with the 90-10 ratio of ATTs. With respect to baseline pollution, the ATT
for the 10th percentile is over 2 times greater than the ATT for the 90th percentile.
Similar ratios are observed for all other characteristics, with the exception of income,
for which reductions at the 90th percentile are 1.5 times stronger than at the 10th.

Table 2.4.3: SDID results for 10th and 90th percentiles, with 90-10 ratios.

PM2.5 Pop. Road NTL Income Dwellings

10th pct -0.5034 -0.6025 -0.5689 -0.6330 -0.3663 -0.5229
90th pct -0.2081 -0.2541 -0.3967 -0.3691 -0.5618 -0.4639

90-10 Ratio 0.4134 0.4218 0.6973 0.5831 1.5336 0.8872

2.5 Mechanisms

As outlined in Section 2.3, we analyse commute mode choices at the DA level as the
main mechanism driving the results obtained in Section 2.4. While commute mode is
an imperfect measure of the number and type of trips made by British Columbians,
we can rely on the same administrative level to the one used in the main analysis
by retrieving information from the 2001, 2006, 2011, and 2016 Canadian censuses,
thereby preserving granularity. In Table 2.5.1, Table 2.5.2, Table C.1, and Table C.2,
we report TWFE-DID regression results employing the share of commuters using
high-emissions, low-emissions, public transport, and zero-emissions commute modes,
respectively. As the low-emissions transport mode is the sum of public transport
and zero-emissions modes, we only report the results for low-emissions in the main
text and present the sub-splits in the Appendix.

In all tables, column (1) is the baseline specification, a simple TWFE-DID regression
with DA and year fixed effects and no controls, employing the full panel of DAs across
census years. In column (4), we add weather controls for precipitation, maximum and
minimum temperature, and wind speed, plus we control for the natural logarithm
of population and median income. When employing the full pool of control DAs,
the first result of note (Table 2.5.1) is that British Columbian DAs experience an
average 4.2% reduction in the use of cars, taxis, and motorcycles, which rises to
4.7% when adding controls. This reduction is almost specular to the increase in
the share of commuters using public transport, biking and walking to reach their
workplace (see Table 2.5.2); moreover, as evidenced in Table C.1 and Table C.2, most
of this increase (3.5-3.9%) is due to a higher reliance on public transport, while a
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residual share of 0.5-0.7% is due to a switch to active commuting. All results are
confirmed, and stronger in magnitude, when considering more restrictive specifica-
tions: columns (2) and (5) restrict the specifications in (1) and (4) to the DAs which
receive positive weights in the main SDID regressions, in order to establish whether
the mechanisms are effectively retrieved when employing the same set of observations
on which the main ATT is estimated. Results are higher in magnitude by about 1%,
jumping to a 5.3% reduction in high-emission commute modes in the case without
controls. Here, the inclusion of control variables slightly dampens the impact to
5.2%; nonetheless, the specularity with the increase in low-emission commute modes
is preserved. Finally, in columns (3) and (6) we further augment the TWFE-DID
regressions by retrieving an including the weights from the main SDID regressions;
we weigh all treatment observations equally and all control observations according to
the value of ωi they receive after the data-driven SDID procedure. The magnitude
of the increase in low-emission commute share increases further, to 5.5% in the case
without covariates and is again dampened to 5.2% in the case with covariates. The
hypothesis of a behavioural adjustment by BC citizens in response to the carbon tax
is thus confirmed; residents of BC’s DAs switch away from high-emissions commute
modes towards low-emissions ones, with public transport as the main container for
these substitutions.
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Table 2.5.1: TWFE-DID results for high emissions commute mode

High Emission Commute Mode

(1) (2) (3) (4) (5) (6)

DID -0.0417∗∗∗ -0.0527∗∗∗ -0.0549∗∗∗ -0.0466∗∗∗ -0.0519∗∗∗ -0.0516∗∗∗

(0.0105) (0.0095) (0.0103) (0.0102) (0.0106) (0.0109)

DA FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓
SDID control pool ✓ ✓ ✓ ✓
SDID weights ✓ ✓

R2 0.87184 0.83989 0.84360 0.87595 0.84508 0.84847

Adjusted R2 0.82896 0.78629 0.79124 0.83400 0.79267 0.79721

Observations 101,358 38,769 38,769 100,244 38,348 38,348

Notes: Standard errors clustered at the CMA level. ***: p < 0.01, **: p < 0.05, *: p < 0.1

Table 2.5.2: TWFE-DID results for low emissions commute mode

Low Emission Commute Mode

(1) (2) (3) (4) (5) (6)

DID 0.0408∗∗∗ 0.0516∗∗∗ 0.0535∗∗∗ 0.0457∗∗∗ 0.0510∗∗∗ 0.0506∗∗∗

(0.0111) (0.0103) (0.0110) (0.0109) (0.0113) (0.0114)

DA FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓
SDID control pool ✓ ✓ ✓ ✓
SDID weights ✓ ✓

R2 0.87321 0.84174 0.84532 0.87715 0.84674 0.84996

Adjusted R2 0.83078 0.78876 0.79354 0.83560 0.79490 0.79920

Observations 101,358 38,769 38,769 100,244 38,348 38,348

Notes: Standard error clustered at the CMA level. ***: p < 0.01, **: p < 0.05, *: p < 0.1
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2.6 Health Gains

In order to understand the magnitude of the economic co-benefits from air pollution
reductions arising due to the 2008 carbon tax, in this section we convert the PM2.5

estimates from Section 2.4 into a monetary quantification of the associated health
gains. Notwithstanding the relatively low concentrations of particle pollution in the
the British Columbian context, where pre-treatment air quality was of substantial
better quality than in other North American locations (e.g. in the USA), it is impor-
tant to note that the concept of “safe” thresholds for particle pollution concentrations
is more normative than positive. Indeed, some studies (e.g. Krewski et al., 2009)
have highlighted that the marginal benefits from abatement may be nonlinear in
baseline concentrations, with lower gains from abatement at higher levels of baseline
air pollution. Hence, any improvement in air quality is likely to carry significant
benefits in terms of reductions in mortality rates; moreover, the estimates reported
in this section are a lower bound of the gains from local pollution reductions, as
PM2.5 has been shown to have a multidimensional impact, ranging from health to
productivity, to cognition and to long-term impacts on the formation of human capital.

Drawing from Fowlie et al. (2019) and Carozzi and Roth (2022), our approach
consists of two steps. We first estimate the impact of a reduction in PM2.5 concen-
trations in terms of mortality reductions, using concentration-response (“hazard”)
functions derived from the environmental health literature. Second, we retrieve
the central estimate of the willingness to pay (WTP) to avoid a premature death
from Health Canada (2021) and Chestnut and De Civita (2009)15, and multiply
the mortality reductions estimated in the first step by the central estimate of the
Value of a Statistical Life (VSL), equal to $6.5 million in 2007 Canadian dollars,
for each DA in the census metropolitan areas of Vancouver, Victoria, and Abbotsford.

The traditional form of the Cox proportional hazard model used in the environmental
health literature is the log-linear regression reported in Fowlie et al. (2019):

ln(γ) = ζ + αPM2.5 (2.11)

Where ln(γ) is the natural logarithm of mortality risk, ζ = ln(Z) , and PM2.5 are the
local pollution concentrations. The term Z is a vector of covariates other than PM2.5

which impact mortality, and can be rewritten as Z = Z0 + exp(β1x1 + ...+ βnxn),
with Z0 being the mortality risk when all covariates are zero. Indicating γ0 as the
baseline mortality risk, and rearranging terms16, the change in mortality rate ∆γ

15It must be noted that the reported estimate for the Value of a Statistical Life does not reflect
directly the economic value of an individually identified person’s life, but rather the aggregation
of estimates of the WTP for a small reduction in mortality risk. Using the VSL central estimate
of $6,500,000, for example, the average Canadian would be willing to pay $65 to reduce the risk
of premature death by 1 out of 100,000.

16The derivation is as follows (Carozzi and Roth, 2022):

∆γ = Z(eαPM0
2.5 − eαPM1

2.5) → ∆γ = ZeαPM0
2.5

[
1− e−α(PM0

2.5−PM1
2.5)
]
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can be related to the change in pollution levels ∆PM2.5 with the following equation:

∆γ = γ0

(
1− 1

eα∆PM2.5

)
(2.12)

In order to find the total number of deaths for each DA associated with the above
change in mortality rate ∆γ, this quantity needs to be multiplied by the population
of each DA17:

∆Deathsi = Populationi

[
γ0

(
1− 1

eα∆PM2.5

)]
(2.13)

And finally, the monetary health gains in terms of mortality reductions at the DA
level, ∆Yi, are obtained by multiplying the above estimates by the VSL figure of
$6.5 million CAD obtained from Health Canada (2021):

∆Yi = V SL ∗∆Deathsi (2.14)

Hence, in order to estimate the model outlined in Equation 2.12, and thus obtain
mortality rate changes at the DA level, we first need to estimate the baseline mor-
tality rate γ0. Consistently with the literature, we obtain data for deaths due to
lung cancers, all circulatory diseases, and all respiratory diseases from the ICD.10
selected causes of death at the CMA level from Statistics Canada. We divide total
deaths due to the listed causes by total CMA population, and assign the resulting
(baseline) mortality rates to all DAs in a given CMA. The parameter α is usually
not directly indicated in epidemiology studies, which instead report the relative risk
(RR) increase due to a given increase in PM2.5. For instance, Lepeule et al. (2012)
report an all-cause RR of 1.14 associated with a ∆PM2.5 of 10 µg/m3, while Krewski
et al. (2009)’s estimate of RR is 1.06. However, it is straightforward to retrieve α
by exploiting the relationship between RR and ∆PM2.5, as reported in Carozzi and
Roth (2022): α = ln(RR)/∆PM2.5.

We employ these two estimates, in combination with the estimated PM2.5 reductions
for each quintile of the pre-intervention PM2.5 distribution, in order to calculate the
gains from mortality reductions at the DA level for the three CMAs included in the
treated sample: Vancouver, Victoria and Abbotsford. In Figure 2.6.1, we visually
report the results of this exercise for each CMA, using RR = 1.14 as estimated by
Lepeule et al. (2012) (visual results using the RR estimate from Krewski et al. (2009)
are reported in Figure D.1).

17We use the baseline population level, that is, the population of each DA in the year 2008.
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The left panel maps the estimated mortality reductions per 1000 people (estimated
according to Equation 2.13), while the right panel shows the associated per capita
health gains, estimated via Equation 2.14. The median monetary gains due to the
estimated reductions in PM2.5 are large: $198 when using the Lepeule et al. (2012)
RR and $88 with the RR from Krewski et al. (2009)18.

Mortality reductions (x1000), 

RR from Lepeule et al. (2012)

0 to 28
28 to 83
83 to 259
259 to 675
675 to 1,060

Health gains per capita (2007$), 
RR from Lepeule et al. (2012)

92.3 to 135.1
135.1 to 187.8
187.8 to 199.3
199.3 to 206.1
206.1 to 211.4

Mortality reductions (x1000), 

RR from Lepeule et al. (2012)

0.0 to 35.4
35.4 to 86.6
86.6 to 201.5
201.5 to 381.8
381.8 to 448.3

Health gains per capita (2007$), 
RR from Lepeule et al. (2012)

139.7 to 204.4
204.4 to 284.1
284.1 to 301.4
301.4 to 311.8
311.8 to 319.8

Mortality reductions (x1000), 

RR from Lepeule et al. (2012)

1.8 to 27.8
27.8 to 71.9
71.9 to 145.0
145.0 to 311.5
311.5 to 393.8

Health Gains per capita (2007$), 
RR from Lepeule et al. (2012)

112.4 to 164.5
164.5 to 228.6
228.6 to 242.5
242.5 to 250.8
250.8 to 257.3

Figure 2.6.1: Spatial distribution of mortality reductions per 1000 residents (left panel)
and health gains per capita (right panel) using the RR estimates from Lepeule et al. (2012),
for the Vancouver (top row), Victoria (middle row) and Abbotsford (bottom row) CMAs.

To put this in context, the monetary value of per capita air quality co-benefits from
the BC carbon tax amounts to 66% of the Low-income Climate Action Tax Credit,
i.e. the carbon tax rebate for low-income families, for a family of four in year 2011;
the total air quality co-benefit accruing to the same family would thus exceed the
carbon tax rebate in monetary terms. The spatial distribution of these gains shows
substantial heterogeneity: in particular, it is once again striking how air pollution
co-benefits seem to be concentrated in peri-urban areas and positively correlated
with income (see also Figure D.2). The results confirms that carbon taxation appears
to be spatially regressive over urban areas, with greater co-benefits arising in higher
income, low pollution tracts, and thus underpinning an increasing “pollution-income
gap”, as also evidenced in Section 2.4.

18The same gains are $402 and $178, respectively, if calculated using the ATT estimated with the
van Donkelaar et al. (2019) PM2.5 dataset instead of Meng et al. (2019).
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2.7 Conclusions

A large body of literature has long posited that co-benefits arising from carbon taxa-
tion are large in magnitude, and may partially or fully offset the costs of complying
with mitigation when converted to per capita monetary values. In order to gauge
the entity of the full benefits of carbon taxation, it is essential to incorporate the
monetary value of the reduction of local externalities in cost-benefit analyses, since
policies aimed at the reduction of CO2 emissions may imply substantial complemen-
tarities with reductions in local pollutants.

This paper undertakes the first rigorous empirical analysis of the impact of a carbon
tax on particulate matter concentrations, focussing on PM2.5, showing that the
introduction of carbon pricing can significantly improve local air quality. After the
implementation of the 2008 carbon tax, PM2.5 concentrations dropped by 5.2-10.9%
in British Columbian Dissemination Areas, compared to a counterfactual obtained
through the synthetic difference-in-differences estimator, which is able to produce a
parallel pre-treatment trajectory for the average treated unit and its synthetic control.
The estimated reductions are significantly heterogeneous across the geography of
British Columbian census metropolitan areas, with greater reductions found in less
polluted, less dense, peripheral areas and in richer neighbourhoods. These results
highlight a spatial dimension of the regressive nature of carbon pricing: a carbon tax
is indeed prone to exacerbate the pre-existing pollution gap, and the pollution-income
gap. A significant driver of the air quality improvement is found in transport mode
switching, with a 5.3% reduction in high-emission transport modes, mostly in favour
of public transport: this insight is a signal that complementary policies such as
an incentive for alternative transport mode may entail further reductions in air
pollution if rolled out contemporaneously to a carbon tax. Moreover, the integration
of multiple instruments aimed at multiple externalities may be able to give rise to
increased benefits stemming from policy additionality.

Finally, the analysis converts the improvements in air quality into reductions in
mortality rates and monetary health gains from co-benefits of carbon taxation.
With a median estimate of the health gains of $198 per capita, the health “savings”
are large and comparable to the rebates offered to low-income families in British
Columbia to mitigate the impact of the tax on their disposable income. Health bene-
fits are heterogeneously distributed across metropolitan areas and accrue primarily
to neighbourhoods in higher income brackets, once again highlighting the need for
redistribution in the design of climate policy.
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2.A Additional Descriptive Statistics

Figure 2.A.1: Availability of PM2.5 readings in the National Atmospheric Surveillance
Program database between 2000 and 2018. Lighter colours indicate higher availability of
readings, and hence, monitoring stations which were added earlier.
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Figure 2.A.2: Gasoline vs Other fuel car sales in BC 2011-2021.
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Figure 2.A.3: Minor fuel groups car sales in BC 2011-2021.
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Figure 2.A.4: Passenger cars vs Truck and SUV sales, large Canadian Provinces, 1990-
2021.
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Table 2.A.1: Summary Statistics, 2000-2007

Control Provinces British Columbia

Variable N Mean SD N Mean SD

PM2.5 (van Donkelaar et al., 2019) 175870 9.52 1.54 27920 8.06 1.19

PM2.5 (Meng et al., 2019) 175870 8.61 2.07 27920 6.95 1.39

Pop. Density (Rose et al., 2020) 175912 3358.26 3375.33 27920 3169.94 2136.98

Road Density 175800 12.07 4.71 27904 11.77 4.50

NTL (Xuecao et al., 2020) 175912 59.62 6.18 27920 53.00 17.38

Dwelling Value 43254 237314.81 196990.72 6885 417272.84 258798.32

Median Income 43978 26341.65 9088.59 6980 25055.65 8090.75

High Emission Commute % 43701 74.93 18.33 6926 77.64 16.37

Low Emission Commute % 43701 24.52 18.26 6926 21.62 16.26

Public Transport Commute % 43701 17.02 14.48 6926 13.06 10.68

Zero Emission Commute % 43701 7.50 9.43 6926 8.56 10.79

Precipitation (Abatzoglou et al., 2018) 175768 74.05 21.74 27920 131.20 37.06

Max Temperature (Abatzoglou et al., 2018) 175768 11.93 1.58 27920 14.55 0.66

Min Temperature (Abatzoglou et al., 2018) 175768 1.74 2.50 27920 6.46 0.62

Wind Speed (Abatzoglou et al., 2018) 175768 3.63 0.49 27920 2.98 0.16

Table 2.A.2: Summary Statistics, 2008-2018

Control Provinces British Columbia

Variable N Mean SD N Mean SD

PM2.5 (van Donkelaar et al., 2019) 241865 8.15 1.51 38390 6.09 0.95

PM2.5 (Meng et al., 2019) 197888 7.35 1.73 31410 6.07 1.10

Population Density (Rose et al., 2020) 241879 3614.39 3365.36 38390 3478.58 2305.69

Road Density 241725 12.07 4.71 38368 11.77 4.50

NTL (Xuecao et al., 2020) 241879 60.31 6.87 38390 58.34 7.74

Dwelling Value 42437 415834.83 269717.66 6818 886776.76 584340.83

Median Income 43978 33324.06 11718.48 6980 31772.63 9765.79

High Emission Commute % 43806 74.39 20.20 6955 72.94 18.75

Low Emission Commute % 43806 25.06 20.12 6955 26.25 18.61

Public Transport Commute % 43806 18.85 15.89 6955 18.38 13.38

Zero Emission Commute % 43806 6.21 10.15 6955 7.87 11.32

Precipitation (Abatzoglou et al., 2018) 241681 77.57 21.99 38390 134.58 37.33

Max Temperature (Abatzoglou et al., 2018) 241681 12.32 1.76 38390 14.58 0.86

Min Temperature (Abatzoglou et al., 2018) 241681 2.11 2.59 38390 6.56 0.80

Wind Speed (Abatzoglou et al., 2018) 241681 3.64 0.48 38390 3.00 0.19
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2.B Additional Regression Results

2.B.1 Composition of Main SDID Control
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Figure B.1: Composition of the synthetic unit of Figure 2.4.1.
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Figure B.2: Composition of the synthetic unit of Figure 2.4.2.
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2.B.2 DAs in the Vancouver CMA
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Figure B.3: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with
Meng et al. (2019) data, dataset restricted to DAs in the Vancouver CMA.

Table B.1: Summary of τ̂ point estimates and standard errors from all
estimation methods, dependent variable from Meng et al. (2019), dataset
restricted to DAs in the Vancouver CMA.

DID SCM SDID

τ̂ 0.4061 -0.1062 -0.3014
S.E. 0.0071 0.0702 0.0225

Nobs 422467 422467 422467
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2.B.3 DAs matching NAPS Monitoring Stations
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Figure B.4: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with
Meng et al. (2019) data, dataset restricted to DAs matching NAPS monitoring stations’
locations.

Table B.2: Summary of τ̂ point estimates and standard errors from all
estimation methods, dependent variable from Meng et al. (2019), dataset
restricted to DAs matching NAPS monitoring stations’ locations.

DID SCM SDID

τ̂ 0.132 -0.865 -0.288
S.E. 0.117 0.128 0.097

Nobs 2227 2227 2227
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2.B.4 Post-treatment period limited to 2013
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Figure B.5: Graphical results from DID, SCM and SDID for PM2.5 concentrations, with
Meng et al. (2019) data, dataset restricted to 2013.

Table B.3: Summary of τ̂ point estimates and standard errors from all
estimation methods, dependent variable from Meng et al. (2019), dataset
restricted to 2013.

DID SCM SDID

τ̂ 0.0547 -0.2723 -0.6703
S.E. 0.0081 0.0803 0.0341

Nobs 432939 432939 432939
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2.C Additional Mechanisms Tables

Table C.1: TWFE-DID results for public transport

Public Transport Commute Mode

(1) (2) (3) (4) (5) (6)

DID 0.0352∗∗∗ 0.0410∗∗∗ 0.0417∗∗∗ 0.0391∗∗∗ 0.0422∗∗∗ 0.0414∗∗∗

(0.0107) (0.0107) (0.0112) (0.0115) (0.0115) (0.0111)

DA FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓
SDID control pool ✓ ✓ ✓ ✓
SDID weights ✓ ✓

R2 0.83768 0.78668 0.78011 0.84196 0.79197 0.78571

Adjusted R2 0.78336 0.71526 0.70650 0.78851 0.72160 0.71322

Observations 101,358 38,769 38,769 100,244 38,348 38,348

Notes: Standard errors clustered at the CMA level. ***p < 0.01, **p < 0.05, *p < 0.1

Table C.2: TWFE-DID results for zero emissions commute mode

Zero Emission Commute Mode

(1) (2) (3) (4) (5) (6)

DID 0.0057∗∗ 0.0106∗∗∗ 0.0117∗∗∗ 0.0066∗∗∗ 0.0088∗∗∗ 0.0092∗∗∗

(0.0025) (0.0017) (0.0021) (0.0022) (0.0016) (0.0016)

DA FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓
SDID control pool ✓ ✓ ✓ ✓
SDID weights ✓ ✓

R2 0.80811 0.80808 0.81877 0.81200 0.81355 0.82463

Adjusted R2 0.74390 0.74383 0.75810 0.74841 0.75047 0.76531

Observations 101,358 38,769 38,769 100,244 38,348 38,348

Notes: Standard errors clustered at the CMA level. ***p < 0.01, **p < 0.05, *p < 0.1
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2.D Additional Health Results

2.D.1 Estimates using RR from Krewski et al. (2009)
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Figure D.1: Spatial distribution of mortality reductions per 1000 residents (left panel)
and health gains per capita (right panel) using the RR estimates from Krewski et al. (2009),
for the Vancouver (top row), Victoria (middle row) and Abbotsford (bottom row) CMAs.
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2.D.2 Health-income relationships
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Figure D.2: Bivariate distribution of health gains using the RR from Lepeule et al. (2012)
and median income for the Vancouver (top panel), Victoria (middle panel) and Abbotsford
(bottom panel) CMAs.
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Chapter 3

The Unintended Impact of Colombia’s Covid-19

Lockdown on Forest Fires

Abstract

The covid-19 pandemic led to rapid and large-scale government intervention in economies
and societies. A common policy response to covid-19 outbreaks has been the lockdown
or quarantine. Designed to slow the spread of the disease, lockdowns have unintended
consequences for the environment. This article examines the impact of Colombia’s lock-
down on forest fires, motivated by satellite data showing a particularly large upsurge of
fires at around the time of lockdown implementation. We find that Colombia’s lockdown is
associated with an increase in forest fires compared to three different counterfactuals, con-
structed to simulate the expected number of fires in the absence of the lockdown. To vary-
ing degrees across Colombia’s regions, the presence of armed groups is correlated with
this fire upsurge. Mechanisms through which the lockdown might influence fire rates are
discussed, including the mobilisation of armed groups and the reduction in the monitoring
capacity of state and conservation organisations during the covid-19 outbreak. Given the
fast-developing situation in Colombia, we conclude with some ideas for further research.

We thank the two reviewers at Environmental and Resource Economics for their helpful comments,
Ian Bateman for his editorial guidance, and Leonardo Correa of the Fundación Paz y Reconciliación
(PARES) for help in accessing data. Data used in the econometric analysis are available from the
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Andean Forests in Colombia’ research project, financed by NERC-UK.

Note: This chapter is available in print at Environmental and Resource Economics.
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3.1 Introduction

The global spread of Covid-19 in 2020 has had, and continues to have, a devastating
impact on our societies and economies. In response, governments have intervened
on a huge scale to try to slow and manage the spread of the disease, help those
who get infected, and support economies. With the aim of slowing the spread of
disease, mandatory ‘shelter-in-place’ restrictions on peoples’ movements, also known
as lockdowns or quarantines, typically prevent people from leaving their homes or
local areas for extended periods of time. By April 2020, lockdowns had become one
of the commonest policy responses to Covid-19, affecting up to two-thirds of the
global population (Bates et al., 2020).

Evidence is emerging that suggests lockdowns have unintended environmental con-
sequences, both negative and positive. For example, research undertaken in China
suggests that lockdowns are associated with improvements in local air quality, likely
due to sharp falls in road traffic and manufacturing activity (Liu et al., 2020; Le
et al., 2020), while a lockdown-induced collapse in ecotourism revenues may have
negatively affected local livelihoods, leading to an increase in wildlife poaching (The
Guardian, 2020). Yet, the evidence base and hence, our understanding of how
lockdowns might influence natural resource use, management and conservation, is
still relatively weak. Our paper is an early, exploratory contribution, motivated by
the release of satellite data showing a particularly large upsurge of forest fires in the
Colombian Amazon that coincided with the emergence of Covid-19 in Latin America,
in early-2020 (IDEAM, 2020; FCDS, 2020b).

We ask whether Colombia’s lockdown, which was implemented in stages between 14
March and 24 March 2020 and is projected to end on 15 July (at the time of writing
in early-July), is associated with this observed upsurge of forest fires. As detailed in
Section 3.2, forest governance and conservation in Colombia are intimately associated
with the country’s long history of internal conflict and the militarisation of conflict
areas. Thus, any analysis of forest change in Colombia needs to consider the role of
its numerous armed groups. This we do by first exploiting spatial variation in the
known locations of armed groups across Colombia in our econometric analysis, the
methods for which are described in Section 3.3.

The observed number of forest fires are compared with three different counterfactuals
(historical average, synthetic control, augmented synthetic control), constructed to
simulate the expected number of fires in the absence of Colombia’s lockdown. Our
results, presented in Section 3.4, suggest that the lockdown is associated with an
increase in the number of fires. To varying degrees across Colombia’s regions, the
presence of armed groups is found to be correlated with this increase. How and
why Colombia’s lockdown might influence forest fires are questions that cannot be
addressed by our econometric analysis. Therefore, in Section 3.5, we consider a
number of possible mechanisms, including the mobilisation of Colombia’s armed
groups and the monitoring capacity of state and conservation organisations, based
on information from local stakeholders in lowland and Andean Colombia and key
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informants connected with the Colombian Amazon, before and during the lockdown.
The final section of the paper, Section 3.6, concludes with some ideas for further work.

3.2 Background to Deforestation, Conflict and Covid-19 in
Colombia

Colombia is one of the most biodiverse countries in the world, with five major biotic
regions: Amazon, Andes, Caribbean, Orinoco and Pacific (see Figure 3.A.1). Be-
tween 1990 to 2016, more than six million hectares of natural forests were deforested
(IDEAM, 2018). There was a surge in deforestation after a peace agreement with
the guerrilla movement FARC-EP (The Revolutionary Armed Forces of Colombia —
People’s Army) was signed in 2016 (see e.g. Clerici et al., 2020). The joint efforts of
environmental organizations, state authorities, international cooperation, the media
and communities helped reduce the annual deforestation rate nationally, by 10.1% in
2018, a trend that continued into 2019 (IDEAM, 2018; IDEAM, 2020).

In common with many other parts of tropical Latin America, trees in Colombia are
felled before any remaining forest is cleared by fire in preparation for new areas
of crop cultivation and cattle pasture, although logging is not always followed by
forest clearance via fire. This procedure takes advantage of seasonal climates, with
felling often occurring in the wet season and fires subsequently started after weeks
or months of less rain in the dry season. Most forest fires in the Colombian Amazon
take place in the dry season, between November and April. When these dry season
fires are started they can spread in forest areas where logging has not taken place
previously. Forest fires are typically started by farmers or landless people seeking
land for crop cultivation in order to feed their families and generate income, although
other actors, such as armed groups, have also been implicated in forest fires.

Early estimates for 2020 suggest that rates of tree felling and deforestation in the
Colombian Amazon are likely to reverse the gains of 2018 and 2019 (MAAP, 2020;
SINCHI, 2020), while Colombia’s forest fire trends in the first half of 2020 imply
that the country is on course to record one of its largest numbers of forest fires in
recent years. As detailed in Section 3.3, a huge increase in the number of forest
fires was observed in March 2020 (12,953) compared to March 2019 (4,691) (Semana
Sostenible, 2020). One explanation is that more rain than usual fell in December
2019, with Colombia’s dry season starting later, in mid-January 2020 (FCDS, 2020b).

Forest governance and conservation in Colombia are associated with the militarisation
of conflict areas. The current internal armed conflict dates back to a period called
“the Violence”, which lasted from 1948 until 1958 (Guzmán Campos et al., 1962).
After this period, bitterness at the lack of attention from the government in dealing
with the conflict’s underlying causes (land distribution and political exclusion), led
to the rearming of guerrillas associated with the Liberal party and the conversion
of some of these guerrillas into FARC-EP. Paramilitary groups were legally formed
under the government’s auspices in opposition to the guerrillas. The emergence of the

120



Chapter 3 Colombia’s Covid-19 Lockdown and Forest Fires

paramilitary groups was closely connected to the geographies of drug trafficking in
Colombia (see e.g. Cubides, 1997; Gallego, 1990; Vargas, 1992). Areas under guerrilla
control were branded “red zones” while the areas controlled by the paramilitaries
were seen as zones of special control and military presence. People living in these
areas came under the rule of these armed groups and often endured terrible hardship.

After the peace agreement with FARC-EP in 2016, the ELN (National Liberation
Army) guerrillas, along with dissidents from FARC-EP, heavily-armed organized
criminal organizations and neo-paramilitary groups associated with the political far
right (see below1),expanded their territorial control in several forest areas, taking
over areas that were previously controlled by FARC-EP. In some parts of Colombia,
individual armed groups have secured full territorial control while in other parts
different groups have been disputing control.

Until 2018, there was a rise in coca cultivation and deforestation rates in the Amazon,
attributed to a lack of active government presence after the peace process (DeJusticia,
2018). The inability of the government in the post-conflict era to fill the power
vacuum in areas previously occupied by FARC-EP, gave rise to the emergence of
neo-paramilitary groups: the Urabeños, the Rastrojos and the Gulf Clan. Implicated
in drug trafficking in association (or dispute) with Mexican drug cartels (PARES,
2018; Fundación Ideas para la Paz - FIP, 2019), these groups tended to operate on
the Pacific coast and in some Inter-Andean areas.

Many areas contested by the armed groups were also priority areas for the govern-
ment’s military and conservation strategies. After 2016, the Colombian government
promoted sustainable development and ecotourism, in an attempt to transform areas
that were heavily affected by the armed conflict and previously under the full or
partial control of FARC-EP. Under these government- and NGO-led schemes, some
of which were implemented in National Natural Parks and areas of high biodiversity,
former guerrillas were encouraged and trained for new roles, e.g. as forest guardians,
tourist guides and organic farmers2.

The reduction in deforestation rates in 2018 and 2019 is partially attributed to
Operation Artemisa, an initiative to curb deforestation in protected areas, led by
the armed forces with the support of the Chief Prosecutor’s Office, the Ministry of
the Environment, and the Institute for Hydrology, Meteorology and Environmental
Studies. Using satellite data, Geographical Information Systems, drones and field
intelligence, some operations led to the arrest of actors, often local farmers and
the landless, caught deforesting and starting fires illegally. Yet, the militarisation
of the environmental agenda led to new rounds of conflict and protest. Peasant

1The “old” paramilitary groups were demobilized in 2004–2006 but some of the members of these
groups joined forces with paramilitaries that chose not to demobilize to create smaller and more
adaptable military organizations, known as neo-paramilitaries, BACRIM or Armed Organized
Groups (GAOs).

2There are different types of protected area in Colombia: National Natural Parks, Regional Natural
Parks, National Forest Reserves, Integrated Management Districts, Soil Protection Districts,
Natural Reserves and Indigenous Territories.
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organizations, environmental NGOs and human rights organizations have alleged
that excessive force was used against local farmers and the landless, who were
often treated as guerrilla collaborators. None of those financing and organizing
the deforestation and forest fires, namely members of the armed groups, have been
detained. Colombia’s first case of Covid-19 was reported on 6 March 2020. The
government’s response to the outbreak that ensued was to implement a number of
lockdown measures with the following timeline (Presidential Decree 749, 2020):

• 14 March: closure of border with Venezuela

• 15 March: suspension of all schools and universities

• 16 March: closure of all land and sea borders; curfews in several municipalities

• 17 March: declaration of state of emergency; mandatory isolation for all over-70s

• 20 March: announcement of nationwide quarantine, starting at midnight on 24
March

At the time of writing, Colombia’s quarantine for all of the country’s citizens was
extended until 15 July, one the world’s most prolonged. Colombia’s lockdown was
effective in reducing mobility at its onset, soon after the closing of its land border
with Venezuela (see Figure 3.A.2 and Figure 3.A.3). As of 7 July 2020, Colombia
reported 124,494 cases of Covid-19, of whom 4,359 have died.
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3.3 Data and Methods

3.3.1 Data Description

Our econometric analysis in Section 3.4 primarily utilises data for forest fires detected
by the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi NPP
satellite. The spatial resolution of VIIRS is 375 metres resolution per pixel, a higher
resolution than that of the Moderate Resolution Imaging Spectroradiometer (MODIS)
sensor (1000m resolution per pixel). Thus, VIIRS can detect fires that MODIS might
overlook, although fire data from the latter are used as an additional predictor in our
application of the synthetic control method (SCM; see below). Daily data for forest
fires detected by both VIIRS and MODIS are sourced from the National Aeronautics
and Space Administration (NASA)3.

While MODIS data are available from 2001 onwards, VIIRS began operating in
2012; therefore, our data cover all of Colombia over the period between 1 January
2012 and 28 May 2020. We use the daily count of VIIRS and MODIS fire hotspots,
a flow variable, and the daily cumulative sum of fire hotspots, a stock variable.
Additional analysis makes use of the sum of daily Fire Radiative Power (FRP), also
reported in the VIIRS and MODIS products, which accounts for heterogeneity in
fire hotspots’ size and intensity. Fire hotspots are aggregated at the country level
(for the analyses that cover all of Colombia), and the municipality level (allowing
us to examine regional heterogeneity). Given heterogeneity in the biophysical and
ecological characteristics of the country, including climatic conditions and forest
types, the municipalities are grouped by biotic region.

Figure 3.3.1 shows the location of fire hotspots during Colombia’s lockdown, up until
28 May 2020. Although fires can be observed across the country, in all biotic regions,
they are particularly concentrated in northern, central and south-western areas. The
northern and central zones are more seasonally dry, with large areas of dry forest
and savanna that are naturally more fire-prone, but there are also many fires in the
Andean valleys, and in and near the Amazon frontier. The lockdown restrictions
mandated that the entire population of Colombia should stay home yet the patterns
of fire hotspots in Figure 3.3.1 suggest that people, at least in some parts of the
country, were ignoring these restrictions.

Our 2012 to 2020 time-period, while motivated by data limitations, implies a reason-
able level of confidence in ruling out major climatic shocks as the sole drivers of
extreme fire seasons. We expect to observe some yearly fire variability in our sample,
although as shown in Figure 3.3.3 (daily count of fires) and Figure 3.3.2 (cumulative
daily number of fires), the dispersion of the time series is relatively contained. There
is, however, an unusual spike in fire hotspots in both the count and cumulative trends
starting from 14 March 2020, when the border with Venezuela was closed, the first
step in Colombia’s lockdown response to the Covid-19 pandemic.

3Available from NASA MODIS and NASA Earthdata.
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We are unable to augment the dataset with the inclusion of relevant climatic covariates
(temperature, rainfall, wind speed, etc.) as controls due to the near-real time nature
of our analysis.

Figure 3.3.1: Location of fire hotspots in Colombia, 14 March–28 May 2020. Sources:
Hansen et al. (2013), NASA Goddard Space Flight Center, Ocean Ecology Laboratory,
Ocean Biology Processing Group, 2020. Visible and Infrared Imager/Radiometer Suite
(VIIRS)

Thus, a major caveat of our analysis is the possibility that any effects we find are
mediated by extreme climatic shocks during the lockdown period or by an idiosyn-
cratic alteration in the timing of the start of the dry season. Visual inspection of
the trends in cumulative hotspots (Figure 3.3.2) and fire counts (Figure 3.3.3) does
not lend full support to these alternative explanations. Indeed, the patterns for the
2020 fire season indicate spikes similar to earlier years prior to mid-March and an
unusual upsurge in hotspots during the Covid-19 lockdown. Also, 2020 was already
the third-highest fire season in the record as of 14 March 2020, having deviated from
the long-run historical mean since early-February, thereby reducing the likelihood
that the observed increase in March was solely due to a late dry season.

Our discussion of how and why Colombia’s Covid-19 lockdown might influence
deforestation, presented in Section 3.5, is based on secondary sources, interview data
and information obtained from research networks and key informants associated
with the interdisciplinary research project “BioResilience: Biodiversity resilience and
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Figure 3.3.2: Cumulative number of forest fires by year in Colombia, 2012–2020. Note:
95% Confidence interval around the historical mean shaded in grey. Source: NASA Goddard
Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group, 2020.
Visible and Infrared Imager/Radiometer Suite (VIIRS)

Figure 3.3.3: Daily number of forest fires by year in Colombia, 2012–2020. Source:
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing
Group, 2020. Visible and Infrared Imager/ Radiometer Suite (VIIRS)
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ecosystem services in post-conflict socio-ecological systems in Colombia”4. Since 2018,
extensive socio-cultural fieldwork has been conducted in two areas representative of
two different socio-ecological systems in the central-eastern Andean mountain range:
the lowlands of the Middle Magdalena region (lowland rain forest merging with lower
montane (cloud) forest at higher altitudes, above 1500m) and the highlands of the
National Natural Park Chingaza.

3.3.2 Methodology

We first estimate “excess fires” over the lockdown period in Colombia covered in
this paper, that is, from 14 March 2020 until 28 May 2020. Our measure of excess
fires follows the methodology used to estimate excess mortality, a tool used in
epidemiology to describe the number of deaths exceeding what would have been
expected under “normal” conditions. Specifically, we use the methodology used
to calculate excess deaths due to Covid-19 by The Economist and the Financial
Times (for an overview, see Roser et al. (2020)), and adapt it to our purposes. Thus,
the number of excess forest fires, EF, during the lockdown period is calculated by
subtracting the mean number of fires, MF, during this same period between 2012 and
2019, i.e. 14 March–28 May, from the total number of fires observed, OF, between
14 March and 28 May, 2020:

EF14March-28May,2020 = OF14March-28May,2020 −MF14March-28May,2012-2019 (3.1)

Therefore, our first empirical approach simply compares the observed number of
fires against a historical average number of fires. As shown in Figure 3.3.2 and
Figure 3.3.3, however, 2020 deviated from the mean historical fire trend well before
the beginning of the lockdown, biasing this comparison upwards: cumulative fires
on 14 March 2020 were already in excess of the 95% confidence interval around
the long-run mean. Since this discrepancy could have been driven by idiosyncratic
climatic factors specific to 2020, such a comparison is only useful for descriptive
purposes, identifying this year’s fire season as anomalous with respect to prior ones.
Thus, the historical mean of fire trends is not a statistically-grounded counterfactual
for 2020 fire observations because it violates the foundational assumption of parallel
trends prior to treatment.

To account for this problem, we apply two further approaches, akin to difference-
in-differences, which compare the observed number of fires with a counterfactual
constructed to simulate the expected number of fires in the absence of Colombia’s
Covid-19 lockdown. Both methods have advantages over the use of the historical
average in terms of how the underlying distribution of the historical fire data is
treated and in accounting for pre-lockdown time trends in forest fires. Moreover,
both methods are geared towards the construction of a counterfactual that closely
tracks fire trends in 2020, thereby ensuring that fire trends for the treated and control
units are optimally matched for the whole pre-treatment period, conditional on the

4BioResilience Webpage.
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feasibility of said matching.

Our second approach is the SCM. First developed by Abadie and Gardeazabal
(2003), the SCM estimates an artificial counterfactual for the single treated unit
via a data-driven method that employs minimal assumptions on its underlying data
distribution. A synthetic control, our counterfactual, is a weighted average of the
available control units. The weights for these units are estimated by minimizing the
difference between the counterfactual and what was actually observed during the
pre-treatment period.

Following Modi et al. (2020), we construct the synthetic control unit for Colombia’s
2020 fire trends from a weighted average of fire trends in prior years. On the one hand,
by using historical time periods in a single country rather than multiple countries,
this procedure has the advantage of ruling out cross-country differences that cannot
be summarised by the predictors of choice (e.g. different structures of the forestry
sectors, differences in monitoring and enforcement, different timings of the wet and
dry seasons). On the other hand, it is possible that events specific to 2020, perhaps
not previously observed in the fire record, are entirely responsible for the deviation
of the actual trend from its synthetic counterfactual.

Another concern arises from the inspection of the time series used as outcome
variables. Indeed, as reported by Masini and Medeiros (2019), the SCM suffers
from issues of over-rejection of the null hypothesis of no effect when the data are
non-stationary, as is the case for the daily count of fire observations (Figure 3.3.3).
For this reason, we use the cumulative count of fire observations, rather than daily
fire counts, as our outcome variable.

To partially account for the issues connected to the data-generating process encoun-
tered with the SCM, we adopt the augmented SCM (ASCM, Ben-Michael et al.
(2021)). Our third approach addresses a concern about the SCM, namely that it
may not provide a meaningful estimate of excess forest fires if the trajectory of fires
in the synthetic control unit does not closely match the trajectory of the lockdown
treatment unit prior to the intervention (Abadie et al., 2015). In particular, we follow
Ben-Michael et al. (2021) and Cole et al. (2020) in implementing a ridge-regularised
outcome regression model to estimate and correct for the bias arising from discrepan-
cies in pre-intervention fit between the treated and synthetic units. Also, the ASCM
is able to describe dispersion around its point estimate by employing the “average
squared placebo gap”, which makes use of the standard leave-one-out SCM estimates
in calculating the SCM noise variance (Ben-Michael et al., 2021).

The synthetic and augmented synthetic controls are constructed by adapting the
methodology from Modi et al. (2020) and employ 2012–2019 data as the “donor pool”.
The number of pre-treatment days is T = 73. We employ MODIS fire observations,
VIIRS Fire Radiative Power (FRP) and four lags of the dependent variable (n =
6) as predictors. Both approaches transparently report the observations receiving
non-zero weights in the construction of the artificial counterfactuals. For the SCM,

127



Chapter 3 Colombia’s Covid-19 Lockdown and Forest Fires

the 2020 trends are reconstructed from a weighted combination of trends recorded in
2018, 2013 and 20165. The ASCM algorithm allows negative weights to be placed on
donor observations thus making them slightly less interpretable. Nonetheless, 2018
and 2013 are again the most important fire seasons used in the construction of the
counterfactual, followed by 2019 and 20166.

We perform two robustness checks on our country-level results. First, an in-time
placebo test (Abadie et al., 2010; Abadie et al., 2011; Abadie et al., 2015) for
both the SCM and ASCM, to check whether the optimisation algorithm provides
significant results in the absence of an intervention. If a test of no intervention
effects fails to reject the null hypothesis, then the method is poorly identified. We
impose a placebo lockdown on 19 February that ends on 13 March, letting the
matching procedure run up until 19 February. Second, we replicate the analysis
using Fire Radiative Power (FRP) as an alternative dependent variable. By mea-
suring the radiative intensity of fire hotspots, this outcome variable minimises the
possibility that our results stem from more frequent, but less intense, fire observations.

To test for the number of forest fires conditional on the presence of armed groups
in our regional analysis, data on the known locations of armed groups in Colombia
are digitally coded into our dataset from maps originally created in 2019 by the
Peace and Reconciliation Foundation (PARES). We focus on two of the main groups,
with broad geographic reach in Colombia: FARC-EP dissidents and the Gulf Clan
neo-paramilitaries (Figure 3.A.4).

Qualitative insights presented in Section 3.5 were generated from fieldwork involving
ethnographies, participant observation, interviews and workshops. Dialogue with the
inhabitants of the highlands as well as with those of the lowlands continued during
Colombia’s lockdown, via mobile phone and other electronic means. This dialogue,
though not initially motivated by our research question, gives clear local perspectives
on land-use change during the lockdown period, enabled by a high level of trust that
has been built between local people, including community leaders, and members
of the BioResilience research team. The BioResilience team is also embedded in
research and civil society networks across the country, which have generated insights
in other regions beyond the Andes, in particular, the Amazon. For security reasons,
key informants and stakeholders are not cited in the text unless their views have
already been made public, e.g. via NGO reports.

5This is reassuring because these three fire seasons have the largest numbers of fires in our dataset.
Hence, 2018, 2013 and 2016 are best-positioned to reproduce the 2020 season, respectively, receiving
weights of 0.508, 0.437 and 0.055. All the other years receive next-to-zero weights.

62019 is the fourth-highest fire year in the record, thereby validating the performance of the ASCM.
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3.4 Results

We provide exploratory, quantitative evidence for the unintended impact of Colom-
bia’s lockdown on forest fires, beginning with our results for all of Colombia. The
actual time series of cumulative fire observations in 2020 is examined vis-à-vis the
2012–2019 historical mean, the synthetic control counterfactual and an augmented
synthetic control estimated via a ridge regression in the pre-treatment period.

As noted in Section 3.3, the historical mean does not represent an adequate coun-
terfactual for 2020 fire trends. Indeed, even if the 2020 series is located in the 95%
confidence interval around the mean up until February (see Figure 3.3.2), the trends
diverge from January onwards, and exhibit fundamentally different slopes at the
start of the treatment in mid-March. Thus, any comparison that uses the historical
mean as a counterfactual substantially overestimates the upsurge in 2020 fires, as
evidenced in Figure 3.4.1, which shows the results of our country-level analysis.

The historical average is shown by the dotted line in Figure 3.4.1 while the counter-
factual fire trends generated by the SCM and ASCM are shown by the black and
blue dashed lines, respectively. The lines generated by the SCM and ASCM clearly
improve upon the simple historical mean. Indeed, these two fire trends are much
more closely matched to actual fire observations (line shaded red) in 2020, up until
14 March, than the historical average. After 14 March, they diverge dramatically
thus indicating evidence of a clear upsurge in cumulative daily fires. Note that
the 95% confidence interval around the augmented synthetic control, shaded grey
in Figure 3.4.1, does not overlap with the 2020 actual series, thus identifying a
statistically significant divergence of the 2020 fire season from weighted combinations
of previous years’ fire rates.

As of 28 May, the discrepancy between the actual 2020 fire season and its synthetic
counterfactual totals 35,212 fires, a number that falls to 13,019–52,781 (the point es-
timate is 32,900) with respect to the augmented synthetic control. Notably, 80.4% of
this difference (28,396 fires) is recorded within 1 month from the closure of the border
with Venezuela (58.6–84.6% or 7,631–44,661 fires when employing the ASCM, with a
point estimate of 78.7% or 25,894 fires), which indicates either that the lockdown
created particular incentives to start forest fires and/or that specific climatic condi-
tions have postponed the fire season to coincide precisely with the period of lockdown.

Our two robustness checks provide support for our country-level results. First, the
in-time placebo test results, shown in Figure 3.4.2, suggest that both the SCM and
ASCM fail to identify an upsurge in fires coinciding with the placebo lockdown
period, between 19 February and 13 March, thereby validating our SCM and ASCM
procedures. Second, results from replicating our analysis using Fire Radiative Power
(FRP) as an alternative dependent variable (Figure 3.B.1) are consistent with those
in Figure 3.4.1.

Figure 3.4.2 suggests that we are almost certainly capturing the pre-lockdown trend
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Figure 3.4.1: Actual series, historical mean, SCM and ASCM, for all of Colombia. Note:
95% Confidence Interval around the ASCM series shaded in grey.

Figure 3.4.2: In-time Placebo Test for SCM and ASCM, with lockdown beginning on 19
February 2020. Note: 95% Confidence Interval around the ASCM series shaded in grey.
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correctly. Yet, we remain somewhat cautious about our results in Figure 3.4.1 due
to the non-stationarity caveats raised by Masini and Medeiros (2019) and the un-
availability of climatic data. Thus, we cannot completely discount the possibility
that our results, while robust and significant, could be plagued by oversized tests
of no intervention effects or, unlikely as it may seem, mediated by extreme climatic
events coinciding with the lockdown.

Although the cumulative number of fires has increased across the whole of Colombia,
this fire surge is heterogeneous across regions and by presence or absence of armed
groups. Results are generated by region with a focus on the two of the most biodiverse
regions for which we also have qualitative insights: Amazon and Andes. Because
their national-level command structures are not known with certainty, we consider
the presence or absence of one or both of the FARC-EP dissidents and the Gulf
Clan neo-paramilitaries at the regional scale. Note that due to the possibility of
unobserved confounders, the following results should be interpreted as showing the
extent to which the presence or absence of armed groups is correlated with forest fires.

The Amazon region, which is not naturally fire-prone, experienced an upsurge in
forest fires during the process of lockdown (Figure 3.4.3). We observe militarised
municipalities controlled by FARC-EP dissidents and municipalities where no known
presence of FARC-EP dissidents or Gulf Clan neo-paramilitaries is recorded in our
dataset7. Municipalities controlled by FARC-EP dissidents exhibit significantly higher
fire trends during the lockdown with respect to the synthetic (3,163 more fires as
of 28 May) and augmented synthetic (3,078–3,493 more fires) controls (Figure 3.4.3a).

The contribution of the first month of lockdown to the fire upsurge in the Amazon
is even starker than that for the whole country, accounting for 93.8% and 94.7%
(the point estimate) with respect to the SCM and ASCM, respectively. Interestingly,
and in contrast to the whole country, the fire upsurge begins to manifest after the
government’s announcement of a national quarantine on March 20, and levels off
once the quarantine took effect, after 24 March. A significant upsurge in fires, even if
more contained, is also observed in municipalities where neither FARC-EP dissidents
nor Gulf Clan neo-paramilitaries are known to be present. From Figure 3.4.3b,
the lockdown resulted in 672 and 427–923 more fire hotspots with respect to the
SCM and ASCM, respectively, again primarily in the first month of lockdown and
especially after the announcement of the national quarantine.

In the Andes (Figure 3.4.4), both FARC-EP dissidents and the Gulf Clan are present
in some but not all municipalities, and sometimes together in the same municipali-
ties. Municipalities solely controlled by FARC-EP dissidents do not show significant
increases in fires (Figure 3.4.4a). Here, the improved performance of the SCM
and ASCM with respect to the simple historical mean is apparent and protects
us against a false positive result. The ASCM, in particular, shields us against a

7Two municipalities are controlled by the Gulf Clan, as can be seen in Appendix Figure 3.A.4,
but their cumulative fire count never exceeds 60 between January and June 2020. Therefore, we
exclude them from the dataset.
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(a) Areas with FARC-EP dissidents.

(b) Areas with no known presence of FARC-EP dissidents or Gulf Clan neo-
paramilitaries.

Figure 3.4.3: Results for the Amazon region, conditional on armed group presence. Note:
95% Confidence Interval around the ASCM series shaded in grey.
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biased interpretation of the differences in trends between the actual series and the
synthetic counterfactuals via the calculation of a 95% confidence interval. As shown
in Figure 3.4.4b, the 95% confidence interval does not overlap with the actual trend
during the first month of the lockdown, suggestive of a significant fire upsurge in
municipalities controlled by the Gulf Clan. By 28 May, however, the observed 2020
rates are comparable with weighted combinations of previous years’ fire seasons.

(a) Areas with FARC-EP dissidents. (b) Areas with Gulf Clan neo-paramilitaries.

(c) Areas with FARC-EP dissidents and Gulf
Clan neo-paramilitaries.

(d) Areas with no presence of FARC-EP dissi-
dents or Gulf Clan neo-paramilitaries.

Figure 3.4.4: Results for the Andes region, conditional on armed group presence. Note:
95% Confidence Interval around the ASCM series shaded in grey.

Andean municipalities that register the compresence of FARC-EP dissidents and the
Gulf Clan neo-paramilitaries experienced an upsurge in fires, which is both dramatic
and significant (Figure 3.4.4c), albeit on a much smaller scale than the increases
observed in the Amazon. Here, the null hypothesis of no lockdown effects is rejected
in favour of the alternative of an increase accounting for 412–658 more fires with
respect to the ASCM as of 28 May.

There are Andean municipalities that have no known presence of either the Gulf Clan
or the FARC-EP dissidents, at least according to our dataset (Figure 3.4.4d). The
ASCM improves significantly upon the SCM and guarantees a good pre-treatment
fit. We identify a zero effect from the lockdown in driving up fire rates, with the
actual series sitting within the 95% confidence interval around the ridge-augmented
synthetic counterfactual.

The other regions (Caribbean, Orinoco, Pacific), the results of which are shown in
Section 3.B, display heterogeneity in terms of forest fire trends. In the Caribbean
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region, the presence of either the Gulf Clan alone (Figure 3.B.2a), or in combina-
tion with FARC-EP dissidents (Figure 3.B.2b), is correlated with an upsurge of
forest fires during the lockdown, although the counterfactuals are subject to wide
uncertainty when we consider the 95% confidence interval around the ASCM fire
trends. Interestingly, the patterns observed in the Caribbean are, to some extent,
also observed in the Orinoco (Figure 3.B.3b). The presence of FARC-EP dissidents
alone is, similar to the Andes (Figure 3.4.4a), not associated with a fire upsurge
(Figure 3.B.3a). Yet, municipalities where neither FARC-EP dissidents nor the Gulf
Clan are known to be present (Figure 3.B.3d), appears to be associated with a huge
fire upsurge (4,712 to 6,501 fires with respect to the ASCM as of 28 May). The Gulf
Clan is omnipresent in the Pacific (Figure 3.B.4) and similar to the Caribbean and
Orinoco regions, this particular armed group is associated with an upsurge of fires
during the lockdown.
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3.5 Discussion

In this section, we discuss how and why the Covid-19 outbreak in Colombia and
its lockdown might relate to the particularly large and significant upsurge of fires
observed in early-2020. We begin with a number of general, possible mechanisms be-
fore exploring those that might help explain spatial heterogeneity in our econometric
results with respect to the Amazon and Andean regions, and the role of armed groups.

The Covid-19 outbreak is likely to have had the general effect of reducing individuals’
incentives to travel and interact with other people, thus changing behaviour. A
mandatory lockdown goes a step further by imposing a potential cost on individuals
if moving around and interacting with other people breaks any laws punishable by,
e.g. fines. In Colombia, people increasingly became less mobile after 14 March even
though the national, mandated lockdown (“national quarantine”) did not come into
effect until 25 March. After 24 March, mobility actually began picking up again.

Further costs are imposed when lockdowns reduce jobs and incomes. If this reduces
the ability or willingness to purchase commodities, such as timber and beef, at given
prices, then any resultant fall in demand could help alleviate pressure on forests. As
of June 2020, the effects of the Covid-19 pandemic on commodity markets appear to
have been mixed (Mongabay, 2020). If lockdowns prevent farmers and other actors
from clearing forests, e.g. for new cattle pastures, this may also reduce pressures on
forests, at least in the short term.

Our econometric results suggest that the opposite happened in Colombia, indeed
that the lockdown may have even increased incentives to start fires illegally. This
could occur if there is a fall in the cost of getting caught due to weaker forest law
enforcement, especially in forest areas where governance is already fragile. Reports
of weakening law enforcement in Latin America’s forests since the Covid-19 outbreak
began (e.g. British Broadcasting Company (BBC), 2020; FCDS, 2020a; El Páıs,
2020) suggests the possibility that the behaviour of Colombia’s enforcement agencies
might have changed in response to the outbreak and/or lockdown.

We found that Colombia’s lockdown is associated with an upsurge in forest fires
between 14 March and 24 March, that is, before the start of the national quarantine
yet during the period when people were less mobile. Just after the announcement
of the national quarantine on 20 March, both the Chief Prosecutor’s Office and
the regional environmental agencies strictly limited or stopped their officials’ field
visits, including to deforestation hotspots, not only to protect themselves but also to
shield local communities. The armed forces and other agencies involved in Operation
Artemisa partially suspended their operations against deforestation, although it is
likely that this suspension occurred before the Covid-19 outbreak given that the last
known, reported operation took place in October 2019. Also, the suspension was
apparently motivated by criticism of Operation Artemisa from civil society and the
media as well as a new focus on the forced eradication of coca in the Inter-Andean
forests (see below).
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Along with the possibility that the upsurge of forest fires occurred due to a slowdown
of state enforcement, there are a number of alternative explanations. First, forest
fires might have been started by farmers and landless people in anticipation of being
locked down under the national quarantine. Second, the period after 14 March
was already a time when the attention of the media (and government) was focused
exclusively on the pandemic. Although plausible, we have little further information
on these two explanations and hence, focus our discussion below on a third possible
explanation, namely the mobilization of armed groups. In parts of the Colombian
Amazon region, where the state already had a limited presence, armed groups and
criminal networks, described by local environmental organisations as “land grabbers”
and “mafias come bosque” (forest-devouring mafias) (Krause, 2019), took advantage
of the lockdown to strengthen their territorial control and expand their activities,
particularly forest-based ones (FCDS, 2020b). The underlying motivation of the
armed groups and criminal networks was to profit from deforestation and generate
income, e.g. from cattle ranching. Yet, our econometric analysis suggests that the
upsurge in fires in the Amazon, which occurred at around the same time as the
slowdown in state enforcement activities, was similar regardless of whether or not
municipalities were under the control of FARC-EP dissidents. But as we lack data
showing the location of municipalities controlled by criminal networks, we cannot
evaluate whether, in municipalities where FARC-EP dissidents were absent, the fire
upsurge might be correlated with any of these criminal networks.

That FARC-EP dissidents have strengthened their territorial control and influence
in the absence of effective government control in the Amazon region, have expanded
to new areas of the Amazon and have taken advantage of the lockdown to “burn the
jungle”, is increasingly well-documented (Semana Sostenible, 2020). The National
Natural Parks System temporarily closed all its parks on 16 March 2020 but in
February, before the lockdown, FARC-EP dissidents forced the government to remove
its rangers from a number of parks in the Amazon (FCDS, 2020a). Also, reports
suggest that, pre-lockdown, FARC-EP dissidents collaborated with other actors to
occupy and clear forest in La Macarena National Park, and local people in forest
reserve areas were coerced by FARC-EP to cut or burn down large forest areas for
the expansion of cattle ranching and coca production. Such activities are known to
have continued during the lockdown.

The tightening of control by armed non-state actors in the Colombian Amazon has
made it more difficult for civilian government agencies and NGOs to operate in the
region. For the first time, FARC-EP dissidents have threatened the Amazon Vision
programme – the Colombian government’s programme for sustainable development in
the Amazon – as well as a number of other developmental and environmental actors,
including NGOs and agencies affiliated with international development schemes.

Our econometric results for the Andes are heterogeneous. In some areas, the forests
were unaffected, either by logging or fire, particularly in municipalities where neither
the Gulf Clan nor the FARC-EP dissidents had control, for example, in the highland
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Andean forests of Cundinamarca. In this part of the high Andes, the local authorities
closed the inter-municipal roads during the lockdown thus interrupting the trans-
port of cargo products, except for food, fuels and medicines. Affected commodities
included timber, mined extractives such as sand, limestone, and coal, and other
resources pertaining to the construction sector, which often involve dredging or
grinding of the Andean mountains.

Municipalities in the Andes controlled by the Gulf Clan, particularly those controlled
by both the Clan neo-paramilitaries and FARC-EP dissidents, experienced a sharp
and significant increase in fires during the lockdown. Whether these two groups were
in conflict or working with one another is unclear. Beyond these two groups, there
are also other armed groups implicated in the starting of fires. For example, the
municipality of Puerto Boyacá (Figure 3.B.5) has a long history of being militarised8

and was partially abandoned by the government after 2016. Since 2016, organized
criminal networks, along with the Gulf Clan neo-paramilitaries, have been in dispute
over control of Puerto Boyacá. An important transit zone for drug trafficking in the
lowland Andean forests, the national army entered Puerto Boyacá in early-April 2020
to carry out operations to eradicate coca crops and dismantle cocaine laboratories9.
Forced eradication involved burning part of the surrounding forest, a process that
has occurred in other coca growing areas in the Inter-Andean forests.

8Puerto Boyacá hosted a government-sponsored experiment, a “laboratory of military operations”
during the 1980s, in an effort to deprive the FARC-EP of territorial control by using paramilitary
groups. This model was exported to other parts of the county, and is known as the Puerto Boyacá
paramilitary model. Throughout the 1990s, this model was expanded to other Colombian regions.
New paramilitary blocs were established, which incriminated civilians, accusing them of being
guerrilla collaborators, perpetuating massacres on this basis, and exercising control over the local
economy.

9This occurred without consultation with, or participation of, local people or their organizations.
Part of the 2016 peace agreement between the Colombian government and FARC-EP includes
a right granted to local people to participate in voluntary programmes to eradicate illicit crops.
However, during the lockdown the government preferred to focus its efforts on the forced eradication
of illicit crops without the involvement of local people.

137



Chapter 3 Colombia’s Covid-19 Lockdown and Forest Fires

3.6 Conclusion

In the context of what is a rapidly developing situation in Colombia, our study is
an early contribution regarding whether and how a common policy response to the
Covid-19 outbreak, namely the lockdown, influences forest fire rates. Our econometric
analysis clearly exposed the abnormality of the March–May 2020 fire season. Indeed,
the maximum spike in fire observations in Colombia is usually observed around
January–February, a trend from which 2020 does not diverge. Yet, as our results
show, the 2020 fire season exceeds the intensity of the fire seasons in the previous
8 years by a significant and alarming amount. Although fires occur naturally in
some of Colombia’s ecosystems, such as those in the Caribbean and Orinoco regions,
this upsurge generated additional carbon dioxide emissions and could be potentially
detrimental to biodiversity. Moreover, damaged and degraded forests are associated
with an increased risk of future virus spillovers (e.g. Olivero et al., 2017; Rulli et al.,
2017).

The public policy implications of the fire upsurge will become clearer as time passes.
That said, it is already clear that an increase in carbon dioxide emissions may make
it harder for Colombia to meet its ambitions to reduce emissions from deforestation
and forest degradation (REDD+). Other policy implications will emerge with further
research. First, future work should be able to confirm whether our results hold with
the inclusion of climatic data, as and when such data become available. Alternative
explanations for the upsurge could also be evaluated, including the fact that the
upsurge occurred while the country was preoccupied with the pandemic and the
possibility that forest fires were started in anticipation of being locked down. The
question then is who might have started these fires. We conjecture that it is likely
to have been the same actors who were implicated in activities that involved the
burning of forests prior to the Covid-19 outbreak. This includes poorer farmers and
the landless—whether they had agency or not—but also larger landowners, criminal
networks and armed groups.

From our regional analysis, territories controlled by the Gulf Clan neo-paramilitaries,
either alone or with FARC-EP dissidents, experienced a significant increase in fire
rates during the lockdown. This analysis could be improved with detailed data
on the Clan, along with other armed groups, criminal networks, assorted mafias,
and their activities. The involvement of some of these groups in the production of
high-value commodities, like beef and cocaine, is likely to be central to incentivising
forest clearing behaviour. Such incentives could be boosted by reduced government
capacity to monitor and enforce the rules against illegal fire-setting. The Colombian
government prior to the lockdown not only monitored fire hotspots and deforestation
but also the armed groups themselves. Thus, if lockdown-induced reductions in the
government’s monitoring and enforcement capacity has played a role in increasing
the incentives of armed groups to clear forest, it is imperative that such capacity is
reinstated when the Covid-19 outbreak recedes.
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Chapter 3 Colombia’s Covid-19 Lockdown and Forest Fires

3.A Additional Figures

Figure 3.A.1: Colombia’s biotic regions. Areas within regions denote the boundaries of
Colombian municipalities.

Figure 3.A.2: Mobility by destination in Colombia, 2020.
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Figure 3.A.3: Mobility, walking or driving, Colombia, 2020.

Figure 3.A.4: Known locations of FARC-EP dissidents and the Gulf Clan in Colombia
by municipality, 2019.
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3.B Additional Results

Figure 3.B.1: Alternative dependent variable, Fire Radiative Power (FRP). Note: 95%
Confidence Interval around the ASCM series shaded in grey.
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(a) Areas with Gulf Clan neo-paramilitaries.

(b) Areas with FARC-EP dissidents and Gulf Clan neo-paramilitaries.

(c) Areas with no presence of FARC-EP dissidents or Gulf Clan neo-paramilitaries.

Figure 3.B.2: Results for the Caribbean region, conditional on armed group presence.
Note: 95% Confidence Interval around the ASCM series shaded in grey.
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(a) Areas with FARC-EP dissidents. (b) Areas with Gulf Clan neo-paramilitaries.

(c) Areas with FARC-EP dissidents and Gulf
Clan neo-paramilitaries.

(d) Areas with no presence of FARC-EP dissi-
dents or Gulf Clan neo-paramilitaries.

Figure 3.B.3: Results for the Orinoco region, conditional on armed group presence. Note:
95% Confidence Interval around the ASCM series shaded in grey.

Figure 3.B.4: Results for the Pacific region, conditional on armed group presence. Only
areas with Gulf Clan neo-paramilitaries. Note: 95% Confidence Interval around the ASCM
series shaded in grey.
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Figure 3.B.5: Location of fire hotspots in Puerto Boyacá, 14 March–28 May 2020.
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Chapter 4

Carbon emissions reductions from Indonesia’s

Moratorium on forest concessions are cost-effective

yet contribute little to Paris pledges

Abstract

International initiatives for reducing carbon emissions from deforestation and forest degra-
dation (REDD+) could make critical, cost-effective contributions to tropical countries’
Nationally Determined Contributions. Norway, a key donor of such initiatives, had a
REDD+ partnership with Indonesia, offering results-based payments in exchange for emis-
sions reductions calculated against a historical baseline. Central to this partnership was
an area-based Moratorium on new oil palm, timber and logging concessions in primary
and peatland forests. We evaluate the effectiveness of the Moratorium between 2011
and 2018 by applying a matched triple difference strategy to a unique panel dataset.
Treated dryland forest inside Moratorium areas retained at most, an average of 0.65%
higher forest cover compared to untreated dryland forest outside the Moratorium. By
contrast, carbon-rich peatland forest was unaffected by the Moratorium. Cumulative
avoided dryland deforestation from 2011 until 2018 translates into 67.8-86.9 million tons
of emissions reductions, implying an effective carbon price below Norway’s US$5 per
ton price. Based on Norway’s price, our estimated cumulative emissions reductions are
equivalent to a payment of US$339-434.5 million. Annually, our estimates suggest a 3-4
percent contribution to Indonesia’s NDC commitment of a 29% emissions reduction by
2030. Despite the Indonesia-Norway partnership ending in 2021, reducing emissions from
deforestation remains critical for meeting this commitment. Future area-based REDD+
initiatives could build on the Moratorium’s outcomes by reforming its incentives and
institutional arrangements, particularly in peatland forest areas.
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Chapter 4 REDD+ in Indonesia

Significance Statement

More than a decade after the global adoption of REDD+ as a climate change mitigation
strategy, countries have started accessing results-based payments. However, the extent
to which payments are actually based on results is unknown, necessitating programme
evaluations to establish the contribution of REDD+ to the Paris NDCs. We undertake a
micro-econometric evaluation of one of the most globally-significant REDD+ initiatives,
Indonesia’s Moratorium on forest concessions, in which a payment has been awarded.
At the agreed US$5/tCO2-eq, the value of our estimated cumulative carbon emissions
far exceeds the proposed payment from the donor, Norway. Although cost-effective, the
emissions reductions only contribute 3-4% of Indonesia’s NDC. This contribution could be
increased in new initiatives with better-designed incentives and institutional arrangements.

4.1 Introduction

Deforestation and forest degradation account for approximately 10% of global green-
house gas emissions (IPCC, 2014). Recognising the importance of slowing deforesta-
tion in efforts to mitigate global warming, an international framework for Reducing
Emissions from Deforestation and Forest Degradation (REDD+) was established in
2007 at the 13th Conference of the Parties (COP) (UNFCCC, 2008). At this COP,
Norway’s government announced its International Climate and Forest Initiative,
pledging up to $300 million every year towards REDD+. Norway’s funds have been
channelled through a number of negotiated, bilateral deals with countries hosting
tropical forests. Countries include Brazil, Guyana, Tanzania and the setting for our
study, Indonesia, where between 2000 and 2010 lowland evergreen forests and peat
swamp forests were deforested by 1.2% and 2.2% per year, respectively (Miettinen
et al., 2011).

Indonesia is one of the world’s largest GHG emitters. Between 2000 and 2016, ap-
proximately 50% of Indonesia’s annual emissions were generated from deforestation,
forest degradation, peatland decomposition and peat fires, accounting for around
a quarter of global emissions from these sources (Government of Indonesia, 2018;
FAO, 2021). The country’s partnership with Norway, established in 2010, included
a pledge of US$1 billion to fund “results-based” REDD+ payments (Government
of Norway, 2010). Central to this partnership was a Moratorium on the granting
of new concession licenses by district governments for the conversion of primary
dryland and peatland forest into new palm oil, timber and logging concessions (Gov-
ernment of Indonesia, 2011; Purnomo, 2012). Such concessions, operating across
the archipelago (Figure 4.A.1), have been estimated to be responsible for almost
half of Indonesia’s forest loss (Abood et al., 2015; Austin et al., 2019). Implemented
in 2011, the Moratorium initially covered 69 million ha of forest across the country
(LTS International, 2018), most of Indonesia’s forest estate (SI Appendix, Fig. S2).
Additional restrictions on the conversion of peatland forest, affecting all concession
types, were implemented across Indonesia in 2017 (Alisjahbana and Busch, 2017),
and in late-2018, a new three-year Moratorium on new palm oil concessions was also
imposed nationally (Mongabay, 2019a).

149



Chapter 4 REDD+ in Indonesia

In 2017, Indonesia reportedly reduced emissions from deforestation and forest degra-
dation by 11.2 MtCO2-eq (Mongabay, 2019b). Norway subsequently announced that
it would pay Indonesia US$56.2 million (Mongabay, 2020b) based on a carbon price
of US$5/tCO2-eq. In this article, we ask whether Norway is getting carbon value for
its money, that is, whether this payment is actually based on results. The extent to
which the Moratorium has had any meaningful impact on deforestation has been
the subject of intense debate in Indonesia, particularly after it became permanent
in 2019 (Mongabay, 2019b). Although the REDD+ partnership was terminated by
Indonesia’s government in 2021 (Mongabay, 2021b), an effective Moratorium since
2011 could contribute to meeting Indonesia’s Nationally Determined Contribution
(NDC) commitment of reducing GHG emissions by 29% unconditionally (and up to
41% conditionally) by 2030 (Government of Indonesia, 2018). Indeed, large-scale
REDD+ initiatives play a potentially critical role in global climate change mitigation
efforts (Roopsind et al., 2019; Duchelle et al., 2018) and more than a decade after the
13th COP, Indonesia is among a number of countries that has begun moving towards
REDD+ implementation and accessing results-based payments (Maniatis et al., 2019).

Norway’s US$1 billion pledge to Indonesia emphasises the global role of Norway in
the design and funding of international REDD+ strategies (Angelsen, 2017). This
pledge acted as an incentive to Indonesia’s national government to enforce the Mora-
torium. A measurement, reporting and verification (MRV) system was developed and
although district governments had an enforcement role (Mongabay, 2019a), there was
little evidence of coordination, or of a plan to share benefits, between the national
and district governments (Austin et al., 2014; LTS International, 2018). Effective co-
ordination might have prevented, or at least influenced, changes in the Moratorium’s
boundaries due to the re-designation of forestland by district governments (Enrici
and Hubacek, 2016; Mongabay, 2019a). That re-designated forestland was often
subsequently licensed out to concessionaires has raised concerns about corruption
among government officials (Mongabay, 2019a). Long endemic in Indonesia’s forest
sector (Enrici and Hubacek, 2016; Palmer, 2005; Boer, 2020), corruption exacerbates
the country’s weak capacity to monitor and enforce forest regulations, characterised
by, e.g. limited budgets and personnel (Meehan and Tacconi, 2017; Tacconi et al.,
2019). In sum, we anticipate little or no impact of the Moratorium on deforestation.
A best-case scenario from previous research, an ex ante simulation of the Morato-
rium as the counterfactual to actual land uses between 2000 and 2010 (prior to the
implementation of the Moratorium) and assuming 100% compliance (or effectiveness)
(Busch et al., 2015), indicates a maximum 3.5% reduction in deforestation and a
7.2% reduction in emissions.

While this best-case scenario was based on econometric analysis, the payment for
the emissions reduction in 2017 was estimated by comparing, for the whole country,
the amount of deforestation observed in 2017 against a historical baseline based on
the average annual level of deforestation observed between 2006-16 (MoEF, 2019).
The use of a historical baseline as a counterfactual provides weak evidence that the
Moratorium has had a causal effect on REDD+ outcomes because deforestation in
any given year will vary due to stochastic natural processes (e.g. weather and fires)
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and economic factors (e.g. demand for commodities). Thus, it is highly unlikely that
observed deviations from the average deforestation rate can be meaningfully related
to the performance of the Moratorium and instead such deviations could be over- or
under-estimated by chance.

Our analysis begins with the observation that any measurable policy effect could
only have been generated by forest areas covered by the Moratorium. Estimating a
policy effect requires a comparison of forest areas covered by the Moratorium with a
counterfactual that mimics what would have happened in those areas had the Mora-
torium not been implemented. The intention of the counterfactual is to ensure that
all other (non-Moratorium) factors relevant for determining the economic viability
of palm oil and timber production in forest areas (Angelsen and Kaimowitz, 1999;
Geist and Lambin, 2002; Busch and Ferretti-Gallon, 2017) are the same. Similar to
networks of protected areas, Moratorium areas were not randomly assigned (Andam
et al., 2008; Joppa and Pfaff, 2010) and the small size of the reductions simulated by
Busch et al. (2015) imply relatively low returns from forest conversion in these areas.
Estimating the impact of the Moratorium on deforestation is therefore hampered by
pre-existing differences in levels and the likely trajectory of deforestation between
Moratorium and non-Moratorium areas. Furthermore, district governments could
continue to issue licenses for new concessions in forestland outside Moratorium areas.
One response to the Moratorium might be for licenses planned for Moratorium areas
to be granted in non-Moratorium areas instead. Such spatial spillovers (“leakage”),
a common concern in forest conservation (e.g. Andam et al., 2008; Joppa and Pfaff,
2010; Meyfroidt and Lambin, 2009; Meyfroidt et al., 2010; Ostwald and Henders,
2014), also confound estimates of Moratorium impact, potentially making it look
more successful compared to non-Moratorium areas, when in fact activities have just
been displaced. By testing for leakage, much can be learned about the processes
that govern successful – or poor – performances. None of these confounding effects
is specifically accounted for in the estimates of the payment offered by Norway’s
government (Section 4.A).

To address confounding factors and isolate the Moratorium’s impacts on defor-
estation and associated emissions, we undertake a programme evaluation using
quasi-experimental methods: a matched triple difference strategy (Chabé-Ferret and
Subervie, 2013) applied to Global Forest Change data (Hansen et al., 2013) at the
1.2km-by-1.2km scale between 2004 and 2018 (Section 4.4). A matched difference-in-
differences estimator controls for the different levels of forest cover in Moratorium
and non-Moratorium areas, and removes the deforestation trend in non-Moratorium
areas matched by 1.2km2 grid cells. Matching on, e.g. proximity to markets and
topography, means that Moratorium and non-Moratorium grid cells have similar
probabilities of concession-driven forest loss. The triple difference step removes any
remaining deviations in deforestation trends prior to the Moratorium commencing
in 2011, which otherwise would be attributed to the Moratorium (Chabé-Ferret,
2015; Chabé-Ferret, 2017). The impact that remains once these confounding factors
have been addressed can then be attributed to the Moratorium. In principle, only
estimates that have taken seriously the non-random assignment of the Moratorium
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should inform the Norwegian government’s results-based payments for emissions
reductions. We test the robustness of our estimates in several ways (Section 4.4). In
particular, the potential for leakage as a response to the Moratorium is tested with a
regression discontinuity analysis applied to the boundaries of Moratorium areas each
year between 2005-2018. Thus, we estimate the differences in deforestation rates
between each side of the Moratorium’s boundaries. By comparing these differences
from before to after the start of the Moratorium in 2011, our analysis provides
suggestive evidence for or against the presence of spillovers.

After evaluating the robustness of model estimates, we convert the Moratorium’s
impacts on forest cover change into carbon dioxide equivalents for comparison with
estimates generated by the Indonesia-Norway partnership. On the basis of our
programme evaluation approach, we conclude that Norway’s government would
be getting carbon value for money but the emissions reductions generated by the
Moratorium contribute relatively little to Indonesia’s NDC commitments.

4.2 Results

4.2.1 Forest cover trends in Indonesia

Our outcome variable is “forest cover”, either dryland or peatland, in hectares.
Concessions established within the Moratorium’s 2011 boundaries prior to the start
of the Moratorium were legally allowed to continue operating, business-as-usual,
after 2011. Thus, in Figure 4.2.1 we distinguish between forest cover trends observed
in forest areas located outside (panels A and B) and inside (C and D) concessions.
Overall, the proportion of forest cover has declined, both inside and outside the
Moratorium’s boundaries, by approximately 10-15 percentage points between 2000
and 2018. By comparing trends inside the Moratorium to those outside, we observe
that the rate of decline differs.

The extent of forest cover outside concessions is, on average, higher inside the
Moratorium compared to outside, and a steeper decline in forest cover is observed
outside the Moratorium compared to inside (Figure 4.2.1, A and B). These trends
suggest that the Moratorium’s impacts from 2011 onward can only realistically stem
from differences in the negative trends in forest cover between Moratorium and
non-Moratorium areas. A similar pattern of decline is also observed in the trends
for concessions. The extent of dryland forest cover is almost the same when we
compare concessions inside the Moratorium to those outside (Figure 4.2.1, C). By
contrast, the extent of peatland forest cover is higher in concessions outside the
Moratorium compared to concessions inside (Fig. Figure 4.2.1, D). Unaffected by
the Moratorium in principle, we use concessions as a placebo (falsification) test in
our empirical analysis (Section 4.4).
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Figure 4.2.1: Forest cover trends inside and outside the Moratorium, 2000-2018: non-
concession dryland grid cells (A); non-concession peatland grid cells (B); concession dryland
grid cells (C); concession peatland grid cells (D). Shaded areas denote treatment period.
Grid cells in (A) and (B) also exclude forest in protected areas.
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4.2.2 National-level effects of the Moratorium

Cumulative avoided forest loss and carbon emissions are estimated separately for
dryland forest (Figure 4.2.2, A and B) and peatland forest (Figure 4.2.2, C and D),
based on estimates of the average treatment effect on the treated (ATT). In the
spirit of Andam et al. (2008), two estimators are presented to show the range of
plausible results: the non-parametric difference-in-difference (“DD”: upper-bound
estimate) and triple difference approaches (“DDD”: lower-bound estimate). We
prefer the DDD estimator because it has a correction for non-parallel trends implied
by the partial failure of the DD estimator of our placebo tests (placebo treatments
prior to 2011), suggesting non-parallel trends even after matching. The differences
in estimates shown in Figure 4.2.2 demonstrate the importance of examining the
parallel trends assumption. Further placebo tests using concessions provide further
support for the DDD approach (Section 4.4).
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Figure 4.2.2: Cumulative avoided forest loss (’000 ha) and avoided carbon dioxide
emissions (MtCO2-eq): dryland forest DD, 2012-2018 (A); dryland forest DDD, 2012-2018
(B); peatland forest DD, 2012-2017 (C); peatland DDD, 2012-2017 (D). The blue columns
and left-hand y-axis in each panel shows the quantity of avoided forest loss while the
red columns and right-hand y-axis shows the quantity of carbon emissions avoided. All
quantities are aggregated up to the level of the whole Moratorium. Error bars denote the
95% CI.

Our ATT estimates are equivalent to the amount of forest loss, in hectares, avoided
in each grid cell of 144 ha. The ATT for dryland forest (Table 4.B.1, Table 4.B.2)
range between (with p≤0.000 where it is not reported): 0.108 (p=0.006) and 0.137 in
2011-12; 0.178 (p=0.002) and 0.237 in 2011-13; 0.229 (p=0.003) and 0.318 in 2011-14;
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0.354 and 0.472 in 2011-15; 0.571 and 0.718 in 2011-16; 0.637 and 0.813 in 2011-17;
and, 0.732 and 0.938 in 2011-18. Despite the magnitude of impact increasing steadily
since 2011, the Moratorium was effective in protecting no more than one hectare
of dryland forest in each grid cell by 2018, or about 0.651% of a cell. Our ATT
estimates for peatland forest (Table 4.B.3, Table 4.B.4) are close to zero and not
statistically significant at conventional levels.

The Moratorium has had a relatively small cumulative impact in preventing defor-
estation in dryland forest covered by the Moratorium relative to comparable forest
areas outside the Moratorium (Figure 4.2.2, A and B; Table 4.B.5, Table 4.B.6):
17,248-21,967 ha in 2011-12; 28,533-37,972 ha in 2011-13; 36,672-50,830 ha in 2011-
14; 56,725-75,603 ha in 2011-15; 91,303-114,901 ha in 2011-16; 101,851-130,168 ha
in 2011-17; and, 117,053-150,089 ha in 2011-18. Put in context, avoided dryland
forest loss represents, at most, 0.03% of all land covered by the Moratorium in 2012,
rising over seven-fold to 0.22% by 2018. Our estimates of avoided dryland forest
loss translate into cumulative carbon emission reductions of: 10.0-12.7 MtCO2-eq
in 2011-12; 16.5-22.0 MtCO2-eq in 2011-13; 21.2-29.4 MtCO2-eq in 2011-14; 32.9-
43.8 MtCO2-eq in 2011-15; 52.9-66.6 MtCO2-eq in 2011-16; 59.0-75.4 MtCO2-eq
in 2011-17; and, 67.8-86.9 MtCO2-eq in 2011-18 (SI Appendix, Table S5-S6). By
contrast, the Moratorium had null effects on peatland forest (Figure 4.2.2, C and D;
Table 4.B.7, Table 4.B.8), implying a high likelihood of few if any carbon emissions
savings, including those from peat drainage and peat fires.

Our results in Figure 4.2.2 are checked for their robustness (Section 4.4). First,
we trim the sample on the basis of forest cover extent at the grid-cell scale (DD
and DDD; Table 4.B.9-Table 4.B.12). Second, we apply Coarsened Exact Matching
models (DDD only; Table 4.B.13, Table 4.B.14). Third, we apply a wider caliper
(0.001) (DDD only; Table 4.B.15, Table 4.B.16) and 1:2, 1:3 and 1:5 nearest-neighbour
matching (DDD only; Table 4.B.17, Table 4.B.18). Fourth, we estimate the ATT
using only observations above an elevation of 1,000 metres, followed by all elevations
(DDD only; Table 4.B.19, Table 4.B.20). These four checks are shown for 2011-2017
only, although the results for other years are also consistent with those in Figure 4.2.2.
Our estimates of forest loss and carbon emissions avoided above an elevation of
1,000 metres are either very low (peatland) or not statistically significant (dryland)
(Figure 4.B.1). Finally, using forest cover data based on a tighter definition of forest
– “intact primary” forests with no detectable signs of human-caused alteration or
fragmentation (Margono et al., 2014; Turubanova et al., 2018) – we find patterns of
avoided forest loss and carbon emissions that are consistent with those in Figure 4.2.2
(Table 4.B.21-Table 4.C.2). Unsurprisingly, estimates of the extent of cumulative
avoided dryland forest loss and carbon emissions are lower, around 25-35% of our
2018 estimates in Figure 4.2.2 (see also Figure 4.B.2).

4.2.3 Testing for leakage

Our estimated effects in Figure 4.2.2 are relatively small, implying a low probability
of upward bias due to leakage. We report the results of a regression discontinuity
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analysis along the Moratorium’s boundaries, including the treatment effects at the
discontinuity each year, between 2005 and 2018 (Figure 4.2.3). The point estimate of
this Local Average Treatment Effect (LATE) is always positive after 2013, implying
higher deforestation outside the Moratorium. Yet, the point estimates are also
positive in 2008, 2009 and 2011, and hover around zero for the entire sample period,
excluding an upwards deviation in trend after the Moratorium was implemented.
The 95% confidence intervals for the LATE always include zero, thus failing to
identify significant leakage from the Moratorium to the surrounding areas, either
before or after 2011. Our analysis over various bandwidths suggests no evidence
of leakage even within some considerable distance from the Moratorium (Section 4.E).
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Figure 4.2.3: Regression discontinuity LATE (with Calonico et al. (2014) bandwidth),
2005-2018. Scatterplots of all the observations within and outside the Moratorium’s
boundaries are shown in Section 4.E. Error bars denote the 95% CI.

4.2.4 Meeting Indonesia’s NDC commitments and the effective carbon
price

We put our results into perspective by comparing our estimates of emissions reduc-
tions between 2011-17 with Indonesia’s aggregate emissions and its NDC emissions
reduction commitments (Table 4.2.1). Our estimated average annual emissions
reductions, of around 10.4-13.0 MtCO2-eq (including our peatland forest estimates
and factoring in below-ground carbon), at most, comprise only 0.38-0.47% of annual
aggregate emissions (all sectors), and 0.83-1.05% of emissions from the forest sector.
The emissions avoided due to the Moratorium comprise 10.3-12.9% and 3.1-3.8% of
the 29% (unconditional) NDC target in 2020 and 2030, respectively. These shares
fall to 7.8-9.8% (2020) and 2.0-2.5% (2030) when we consider the 41% (conditional)
NDC target.
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Norway agreed to pay Indonesia US$56.2 million for the Indonesia-Norway partner-
ship’s estimate of 11.2 MtCO2-eq of avoided emissions in 2017, including emissions
from avoided peat fires and peat decomposition. Dividing this payment by our esti-
mated average annual emissions reduction during the 2011-17 period gives effective
carbon price ranges of, respectively, US$4.3-5.4/tCO2-eq and US$1.8-2.3/tCO2-eq,
with and without the share of the payment for avoided peat fires and decomposi-
tion. All of these estimates are within range of Norway’s proposed carbon price,
US$5/tCO2-eq. Applied to our estimates of cumulative emissions reductions over
the entire 2011-17 period, Norway’s payment has effectively bought emissions reduc-
tions at less than US$1/tCO2-eq, thus representing value for money from Norway’s
perspective. Indeed, from a global perspective these are very cost-effective emissions
reductions.
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Table 4.2.1: The Moratorium’s contribution to Indonesia’s NDC commitments
and the effective carbon price, 2011-2017

Estimator DD DDD

Avoided emissions (above-ground carbon only, MtCO2-eq)

Dryland 75.4 59.0
Peatland -2.0 -0.6
Total 73.4 58.4
Annual average (2011-2017) 10.5 8.3

Avoided emissions (above- & below-ground carbon, MtCO2-eq)

Total 91.1 72.5
Annual average (2011-2017) 13.0 10.4

% of Indonesia’s emissions (above-ground carbon only)

% all emissions (2.2GtCO2/year) 0.47 0.38
% forest emissions (1.0GtCO2/year) 1.05 0.83

% of Indonesia’s emissions (above- & below-ground carbon)

% all emissions (2.2GtCO2/year) 0.59 0.47
% forest emissions (1.0GtCO2/year) 1.30 1.04

Comparison with Indonesia’s NDC 2030 commitments (%)

% unconditional (29%, 2020) 12.9 10.3
% conditional (41%, 2020) 9.8 7.8
% unconditional (29%, 2030) 3.8 3.1
% conditional (41%, 2030) 2.5 2.0

Effective carbon price (US$/tCO2)

With peatland payments (US$56m/total) $0.6 $0.8
With peatland payments (US$56m/annual average) $4.3 $5.4
No peatland payments (US$24m/total) $0.3 $0.3
No peatland payments (US$24m/annual average) $1.8 $2.3

Notes: “DD” denotes that the results are derived from the ATT esti-
mated using the non-parametric difference-in-difference approach. “DDD”
denotes that the results are derived from the ATT estimated using the
non-parametric triple difference approach. Underlying ATT estimates are
for 2011-2017; those for peatland are not significantly different from zero.
Details of all calculations in the table are in Section 4.4.
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4.3 Discussion

4.3.1 Impacts of Indonesia’s Moratorium on forest loss and emissions

The centerpiece of one of Norway’s pioneering REDD+ partnerships, Indonesia’s
Moratorium and the associated US$ 1 billion pledge, represented an ambitious
scaling-up of tropical forest conservation efforts. We found a relatively small effect
of the Moratorium in slowing deforestation. Our cumulative estimates to 2018,
using a quasi-experimental programme evaluation approach, are at the lower-bound
of estimates in previous research (Busch et al., 2015). We also found evidence of
a positive impact on dryland forest that materialised earlier, between 2012 and
2016 (Fig. 4.2.2), a period that has not been assessed for emissions reductions by
the Indonesia-Norway partnership. The magnitude of our estimated impacts, and
our regression discontinuity results, suggests either that Moratorium areas were
mostly economically marginal and, compared to matched control areas, unlikely to
experience a large effect from the Moratorium, or that deforestation has continued
largely unchecked by the Moratorium. The general secular decline in forest cover in
all areas (Fig. 4.2.1) suggests the latter explanation is more likely.

What matters for REDD+ is how these positive impacts on forest cover translate
into carbon emissions reductions. Our estimates in Table 4.2.1 are in line with a
projection that the Moratorium had the potential to cumulatively reduce emissions
by nearly 200 MtCO2-eq by 2030 (Wijaya et al., 2017), at an estimated annual
average of 9.4 MtCO2-eq. Note, however, that our impact estimates stem from
differences between two declining paths of forest cover over time. While straightfor-
ward to measure against a business-as-usual target, this just delays emissions from
deforestation. To stop emissions permanently, deforestation needs to be halted not
slowed. With this in mind, our estimates accounted for, at most, around 13% and
4% of Indonesia’s NDC (unconditional) commitment to reduce GHG emissions by
29% in 2020 and 41% in 2030, respectively. Our estimates suggest that Indonesia
is unlikely to meet this commitment given that most of it (17.2 percentage points,
or three-fifths of the 29% target) is supposed to be met via the country’s forest
sector (Government of Indonesia, 2018). Peatland forest loss and peat fires are key
contributors to Indonesia’s share of global, forest-based emissions yet our results
suggest that the Moratorium has had no meaningful impact on peatland forests.
Norway’s proposed payment of US$56.2 million included emissions reductions from
avoided peat decomposition and fires in 2017. Our peatland results imply that,
viewed purely in terms of performance, this share of the payment could be justifiably
withheld.

4.3.2 Comparing estimates of impact

That our estimates of impact differ from those calculated by the Indonesia-Norway
partnership is primarily due to the choice of baseline, or counterfactual, against which
impact was measured. For emissions reductions between 2018-2020, the Indonesia-
Norway partnership planned to adopt a historical baseline similar to the one the
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partnership used for estimating reductions in 2017 (MoEF, 2019). How this baseline
is estimated originates from the calculation of Indonesia’s arguably more generous
Forest Reference Emission Level (FREL). Submitted to the UNFCCC in 2016, the
FREL is based on the average annual deforestation rate between 1990 and 2012
(Government of Indonesia, 2016; Government of Indonesia, 2018). Indonesia’s FREL
provided the basis for a proposed US$103.8 million payment from the Green Climate
Fund (GCF) for an estimated 20.3 MtCO2-eq reduction in carbon emissions between
2014-2016 (Mongabay, 2020a).

Although both the Norwegian and GCF payments are supposed to be “results-based”,
the baselines used to estimate these emissions reductions emerged as a consequence
of political negotiations and are subject to precisely the biases that we attempted to
eliminate in our programme evaluation approach. Thus, they are arguably indepen-
dent of performance (West et al., 2020), that is, the counterfactuals constructed by
the Indonesia-Norway partnership and the GCF could be driven entirely by stochastic
shocks and economic factors unrelated to REDD+ efforts. Our causal framework ex-
plicitly attempted to balance these biases. On the basis of historical performance, our
results suggest that Indonesia could legitimately claim an even larger payment from
Norway, up to US$339-434.5 million on the basis of a US$5/tCO2-eq carbon price, for
cumulative emissions reductions between 2011 and 2018. Fig. 4.2.2 shows a predomi-
nantly steady cumulative effect of the Moratorium over time, particularly from 2016
onward. The Moratorium seems to have had a causal impact on avoided deforestation.

4.3.3 Beyond the Moratorium

The partnership underlying the Moratorium was unilaterally terminated by Indonesia
in 2021, apparently due, in part, to delays in release of the payment by Norway
(Mongabay, 2021b). Even though this implies that the Moratorium is unlikely to
continue, at least not in its current form, large-scale, area-based initiatives, in the
form of jurisdictional REDD+ schemes, are likely in the future. For example, the
Lowering Emissions by Accelerating Forest finance (LEAF) private-public coalition
was established in 2021 to mobilise at least US$1 billion for area-based tropical forest
conservation (Mongabay, 2020a). Such initiatives could usefully learn from how the
Moratorium performed with respect to emissions reductions.

First, the small size of the Moratorium’s impact suggests limited compliance. Im-
proving compliance might increase impact yet patronage linkages, between large-scale
industrial plantation companies and local politicians, ensured weak monitoring and
enforcement (Varkkey, 2013). Future REDD+ initiatives could help bolster local
monitoring and enforcement capabilities. The ongoing One Map process, to resolve
inconsistencies resulting from the use of different data and maps by creating a na-
tional standard of land cover and usage, could further help strengthen transparency
and improve forest governance (LTS International, 2018).

Second, future initiatives could also help incentivise reductions in emissions from
deforestation by local forest users not originally targeted by the Moratorium, such
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as smallholders engaged in logging and palm oil production (Clough et al., 2016;
Ferraro and Simorangkir, 2020), who reportedly contributed one-fifth of nationwide
forest loss between 2001 and 2016 (Austin et al., 2019) The forestland claims of
local forest users have been strengthened by the Village Law (6/2014) (Antlöv et al.,
2016), which, combined with the millions of hectares of forest pledged for “social
forestry” initiatives, suggest new conservation opportunities (Myers et al., 2017).
These opportunities could be aligned with the goals of future initiatives, although
there remains a risk that continued policy layering could exacerbate ambiguity with
respect to forest regulations and enforcement (Erbaugh and Nurrochmat, 2019).
Also, given ongoing uncertainties over forest users’ land rights, new initiatives should
pay careful attention to representation and recognition notions of justice as a means
of legitimising REDD+ at the local scale (Myers et al., 2018).

Third, the Moratorium lacked formal allocation and distributional mechanisms. Our
results are based on the aggregate ATT but the district-level ATT indicate where
the positive effects were likely generated (Figure 4.B.3). Consistent with calls from
forest-rich districts for an “ecological fiscal transfer” scheme based on ecological per-
formance (Jakarta Post, 2019), payments from future initiatives could be distributed
to districts that demonstrate emissions reductions. The Regional Governance Law
(23/2014), however, shifted control over forests from district to provincial govern-
ments and established a greater administrative role for forest management units
(Sahide et al., 2016). Thus, both provincial and district governments are likely to
play a role in any benefits transfer system, perhaps via intergovernmental fiscal
transfers (IFT) (Nurfatriani et al., 2015). Presently focused on timber production
revenues, Indonesia’s forest sector IFT could, in theory, be used to transfer REDD+
funds (Irawan et al., 2013).

4.3.4 Delivering carbon value for money and meeting the NDC commit-
ments

The value of estimated cumulative emissions reductions, even on the basis of a rela-
tively low carbon price of US$5/tCO2-eq, comfortably exceeds the amount Norway
agreed to pay for emissions reductions in 2017. From the perspective of Norway’s
government, and the global community, Norway’s payment could be characterised in
terms of abatement costs, that is, the sum that Indonesia’s government is willing to
accept (WTA) to reduce emissions from deforestation. However, the global benefit,
and in principle the willingness to pay (WTP) for emissions reductions, is the social
cost of carbon (SCC). The SCC is estimated to range between approximately US$40-
200/tCO2-eq, e.g. (Hänsel et al., 2020). The question of how the discrepancy between
WTP and WTA is shared between donor and recipient countries was resolved by
the Indonesia-Norway partnership, moving far closer to the WTA than to the WTP.
Thus, Norway, and indeed the global community, would be getting “good value” for
emissions reductions in Indonesia. The Moratorium appeared to be cost-effective but
with a very skewed share of the global surplus transferred to a carbon-rich yet poor
country. Although Indonesia accepted the US$5/tCO2-eq price offered by Norway,
this is arguably an unfair distribution of the surplus given estimates of the SCC.
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With the ending of the Indonesia-Norway partnership, Indonesia could negotiate a
higher price with, for example, an initiative like LEAF, which is offering a minimum
of US$10/tCO2-eq (Mongabay, 2021a).

Our analysis emphasises that emissions reductions, although cost-effective, still re-
quire large transfers, even at low carbon prices. Much steeper emissions reductions
are clearly needed to reach the NDC targets but the cost of these reductions is
unlikely to be met by a single country or initiative. Indeed, Indonesia estimates that
to meet its NDC commitments, around US$5.5 billion is required between 2018 and
2030 for the country’s forest sector alone (Government of Indonesia, 2018). When
REDD+ first emerged in the 2000s, there were initial calls for US$10-15 billion of
funding per year to cut global deforestation by half (Stern, 2006). These funding
needs were based on opportunity cost calculations, which will be higher for high-value
agricultural commodities such as palm oil. Yet, by the 2010s pledges to the value of
only US$10 billion had been made for REDD+ (Norman and Nakhooda, 2015).

It was hoped that a global climate agreement, incorporating a cap-and-trade system,
would generate sufficient and sustainable sources of finance for the protection of
tropical forest carbon stocks. Given that such a system has yet to materialise, it has
fallen upon individual countries to voluntarily finance REDD+ initiatives around
the world. Norway’s contribution to date exceeds that of all other countries but is
insufficient to protect tropical forest carbon stocks at a scale necessary to meaning-
fully contribute to global climate change mitigation efforts. As the world’s attention
moves beyond the COP26 in Glasgow, where an ambitious global commitment was
made to halt deforestation by 2030, the critical climate role of forests needs to be
matched by a global willingness to pay for it.

4.4 Materials and Methods

4.4.1 Data

Our outcome variable is forest cover in hectares, with data spanning the period
2000-2018 drawn from the Global Forest Change dataset (Hansen et al., 2013). The
2004-2018 period is selected for matching data in our analysis while data for the
2000-2004 period are used in separate placebo tests that determine whether there
are violations in the parallel trends assumption (see below). The forest cover data,
obtained for the whole of Indonesia, are spatially explicit and not defined according
to different forest classes. Our units of analysis are grid cells of 1.2km-by-1.2km (144
ha), which accommodate 1,600 pixels at a resolution of 30m-by-30m (i.e. Landsat8
pixel size). A scale of 1.2km-by-1.2km is chosen because it allows for a similar scale
across the different sources of data used in our analysis and minimises the risk of grid
cells overlapping treatment and control areas. For each grid cell and for each year of
our study period, we count the number of pixels where forest loss is recorded and
then convert pixels to hectares by multiplying by 0.09. We account for the precise
fraction of a pixel that falls within a grid cell.
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Tree cover in the year 2000, the base year of the Global Forest Change dataset
(Hansen et al., 2013), is defined as canopy closure for all vegetation taller than 5m
in height, and is encoded as a percentage per pixel, in the range 0–100. Forest
loss during the period 2001–2018 is defined as a stand-replacement disturbance, or
a change from a forest to non-forest state at the pixel scale. Encoded as either 0
(no loss) or else a value in the range 1–18, representing loss detected in the year
2001–2018, respectively. A pixel is categorised as forested if its canopy cover is greater
or equal to 25%, below which a pixel changes its state from forest to non-forest
(Hansen et al., 2010). We obtain peat depth data from Gumbricht et al. (2017),
which are used to subdivide grid cells into peatland and dryland forest types. These
two types are analysed separately due to their different ecological characteristics that
are relevant to changes in forest cover and carbon emissions.

Forest areas covered by the Moratorium supposedly included all of Indonesia’s pri-
mary and peatland forests, and are determined using Moratorium shapefiles obtained
from the Ministry of Forestry of the Republic of Indonesia (2011). Our treatment
group includes forest areas within the Moratorium boundaries that were established
in 2011 (Figure 4.A.2). Since 2011, the Moratorium’s boundaries have shifted due to
forestland being re-designated by Indonesia’s district governments and dropped out
of the Moratorium before typically being licensed out to concessionaires (Gaveau
et al., 2013; Marlier et al., 2015; Enrici and Hubacek, 2016)(Section 4.A). Although
legal, this re-designation of forestland is effectively a behavioural response to the
Moratorium and hence, should be included in estimates of impact. Thus, the 2011
Moratorium boundaries are assumed constant throughout our treatment periods.
Shapefiles for the location of palm oil, timber and logging concessions established
before the start of the Moratorium were originally obtained from the Ministry of
Forestry (2014). Digitised by Greenpeace, this was the most comprehensive source
of concessions data available.

We compile a matrix of control variables and time-invariant characteristics at the
grid-cell level by combining different sources of geo-referenced data: information
on altitude, slope, and distance from major roads from the WorldPop repository
(WorldPop, 2018); grid-cell level travel time to major cities (Nelson, 2008); and, a
population trend based on counts for the years 2004 and 2010 (Rose et al., 2020).
Grid-cell level above-ground carbon stock values are estimated by dividing data on
above-ground biomass density, from the Global Forest Watch dataset, by 0.5 (based
on Baccini et al. (2012)).

The cumulative impacts of the Moratorium on forest cover and carbon emissions are
estimated each year in the periods 2011-2018 and 2011-2017 for dryland and peatland
forest, respectively. The latter is estimated only up until 2017 due to the additional
restrictions on peatland forest conversion implemented in 2017 (Alisjahbana and
Busch, 2017).
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4.4.2 Empirical approach

The Moratorium mandated that district governments stop issuing new concession
licenses in forest areas covered by the Moratorium. Evaluating the causal impact of
the Moratorium is complicated by selection bias: forest areas covered by the Mora-
torium differ in their observable and unobservable characteristics. Any imbalance
in these characteristics implies that simply comparing the extent of forest cover in
the Moratorium and non-Moratorium areas will capture pre-existing imbalances in,
for example, their suitability for palm oil or timber production, thus confounding
the estimate of the treatment effect. Descriptive statistics illustrate the differences
between the Moratorium and non-Moratorium forest areas (Table 4.C.1-Table 4.C.8).
The values of several variables that determine the suitability of grid cells for new
concessions differ between Moratorium and non-Moratorium areas. For example, in
the unmatched data, Moratorium grid cells have, on average, a higher elevation and
are further away from roads and cities than non-Moratorium cells, making them less
suitable for concessions, other things equal. It is necessary to address the imbalance
of these observable characteristics to estimate the causal effect of the Moratorium on
forest cover.

We adopt a difference-in-differences (DD) research design to control for observable
and unobservable confounding characteristics in the estimation of the treatment
effect. Empirical testing leads us to prefer a matched triple difference estimator
(DDD). Via matching Moratorium and non-Moratorium cells on the basis of their
observable characteristics, we argue that the confounding effect of unobservable
characteristics is also controlled for, thus generating an unbiased estimate of the
treatment effect (Imbens, 2014; Wooldridge, 2010; Abadie and Imbens, 2008). Prior
to estimation, we adjust the Moratorium and non-Moratorium samples by excluding
cells which are unlikely to become concessions for agronomic or jurisdictional reasons.
We first exclude cells which are part of the Indonesian protected area network, both
within and outside the Moratorium, as conversion in these cells is already strictly
prohibited. Second, we focus on unconverted dryland and peatland forest outside
of concessions. We then remove all cells outside of concessions with an elevation
of 1,000m or more above sea level. The likelihood of these cells being a realistic
proposition for a concession in either Moratorium or non-Moratorium areas is close to
zero because above 1,000m land is unsuitable for palm oil cultivation (Austin et al.,
2015) and for Acacia mangium, the main tree species employed for the production
of wood pulp and paper (Krisnawati et al., 2011). These adjustments represent our
first attempt to balance the sample in terms of the likelihood of concessions being
granted. The resulting dataset has 567,634 cells, of which there are 160,012 treated
observations (28.2%). Next, we deploy a matching procedure to match individual
grid cells in Moratorium areas with counterfactual grid cells in non-Moratorium
areas, and vice versa. Our main results use propensity score, one-to-one caliper
matching for this purpose. After matching, we retain 152,118 treated cells (7,894
dropped cells), and 198,794 control cells, for a total of 358,806 cells. The dropped
cells represent a reduction of 2.2% (4.9% of the treated group) due to the exclusion
of imprecise (outside of the caliper) matches. This matched dataset is used for both
parametric and non-parametric estimators, to ensure balanced characteristics be-
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tween the treatment and control groups and to facilitate easier comparisons between
estimators (Imbens, 2014). When analysing the Moratorium’s impact on different
forest types (dryland, peatland) the propensity score is estimated separately and
different matched samples arise.

Having balanced the sample in this way, the identification of a causal estimate of
the Moratorium’s impact on forest cover stems from a DD research design. It is well-
known that under their identifying assumptions, DD estimators identify the Average
Treatment on the Treated (ATT) (e.g. Lee, 2005, Ch. 4), which can be understood
as the impact of the Moratorium on forest areas covered by the Moratorium and
hence, is a policy-relevant treatment effect. With the dropping of cells, we are no
longer identifying the ATT, although dropping fewer than 5% of treated observations
arguably results in a close approximation to the ATT. Where di indicates whether
an individual grid cell i is in the treatment group (=1) or not (=0), and Y1iT1 and
Y0iT1 are, respectively, the potential outcomes (forest cover) in the treated (=1) and
untreated (=0) states for grid cell i at post-treatment time T1, the ATT is defined as:

ATT = E [Y1iT1 − Y0iT1|di = 1] (4.1)

Following Lee (2005, p. 101), if the potential outcomes have the separable form
Ykit = µkit + λi + ukit for treatment states k = 0, 1, and individual, grid-level fixed
effect λi, the ATT is identified by a DD estimator of the form:

DD = E [∆T1,T0Yit|di = 1]− E [∆T1,T0Yit|di = 0] (4.2)

where Yit is the observed data and ∆T1,T0 is the change operator between the pre-
treatment period T0 and T1 (see also Section 4.D). The DD estimator controls for
individual fixed effects λi by taking differences at the individual level. A necessary
condition to identify the ATT in this way is the parallel trends assumption:

E[∆T1,T0u1it|di = 1]− E [∆T1,T0u0it|di = 0] = 0 (4.3)

meaning that the unobservable characteristics determining forest cover must be
identical in expectation, otherwise they will confound the estimate of impact.
The DD estimator in Equation 4.2 can be estimated parametrically or non-parametrically
(e.g. matching). The parametric DD estimator we use takes the following form, and
is estimated using a fixed-effects estimator:

Yit = α +
T∑

s=τ

β1sDsit +
n∑

k=2

βkXit + λi + θt + εit (4.4)

where Yit is forest cover in (non-concession) grid cell i in year t, Dit is the time-varying
Moratorium treatment indicator, Xkit are n potential time-varying control variables.
The β1s coefficients represent the DD estimates of ATT for each post-treatment year

165



Chapter 4 REDD+ in Indonesia

s between 2012 and 2018. This basic model controls for time-invariant characteristics
via the individual, grid-level fixed effects, λi, and time fixed effects, θt, which capture
shocks common to all grid cells, such as weather shocks.

We select among a number of different parametric and non-parametric (matched)
DD and triple difference (DDD) estimators through a four-step process of model
selection. In the first step, we estimate parametric DD models of the form described
in Equation 4.13, including district-by-year trends, pre-treatment forest cover-by-year
interactions, and both clustered (at the district level) and Conley standard errors
(this accounts for spatial autocorrelation using the fixest package in R), but no
further control variables (Xkit), before comparing these estimates to a propensity
score, one-to-one caliper, matched DD estimator (Table 4.D.1). Clustering and
Conley standard errors do not affect the results. To rule out the possibility that
the balance in the sample of observable characteristics between Moratorium and
non-Moratorium areas causes differences between the parametric and non-parametric
estimates, we use the same matched sample for the parametric DD estimation as is
used for matched DD estimators (see Imbens, 2014). We then undertake sensitivity
analysis on the non-parametric estimators by relaxing the precision of the matching
procedure in two ways: (i) widening the caliper; and, (ii) sampling matches without
replacement. The sensitivity analysis suggests that the matching estimates are
sensitive only to extreme reductions in precision of the matching (no replacement or
no caliper) (Table 4.D.1). Extreme sensitivity of the parametric estimator to the
inclusion of district-by-year trends suggests that heterogeneity across grid cells is a po-
tentially important confounding factor. Matching estimators deal more flexibly with
heterogeneity, and in matched DD estimators this can include heterogeneous trends
(Heckman et al., 1997). There is also empirical evidence to show that the parallel
trends assumption is more likely to hold with matched DD rather than parametric DD
(e.g. Ryan et al., 2018). To account for heterogeneous trends, our matching procedure
matches Moratorium and non-Moratorium grid-cells very precisely, and explicitly, on
pre-treatment trends. Given the sensitivity of the parametric estimator and the fact
that matching estimators are better equipped to deal with heterogeneity we opt for a
non-parametric DD approach, among which we include propensity score matched DD.

Our central estimates use propensity score, one-to-one, caliper matching. The match-
ing variables we use capture important differences between the Moratorium and
non-Moratorium grid cells, their dynamics and suitability for future concessions. We
use pre-treatment values of: distance to concessions (palm oil, timber and logging),
distance to roads and cities, population (2005 and 2010), forest cover for each year
from 2005 to 2010, elevation, slope, peat depth and above-ground carbon stock in
the year 2000. Matching on pre-treatment outcomes (forest cover) and population
in more than one pre-treatment year (2005-2010 for forest cover, 2005 and 2010 for
population) attempts to control for heterogeneous pre-treatment trends and levels
between Moratorium and non-Moratorium areas.

The matched DD estimator takes the following form and estimates ATTDD,T for
time horizon T using forest cover data Y M

it from the Moratorium grid cell i matched
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with data Y j,NM
it in cell j from the non-Moratorium grid cells:

ÂTTDD,T =

1

NM

∑
i

I0

[[
Y M
i,T − Y M

i,T1

]
−
[
Y j,NM
i,T − Y j,NM

i,T1

]]
(4.5)

where I0 is an indicator variable that is equal to 1 if a grid cell i in the Moratorium
has a counterfactual grid cell j in the non-Moratorium area whose propensity scores
pi and pj fall within the caliper:

|pi − pj| < ϵ

where ϵ is a predetermined distance in propensity score space. The caliper defines the
set of one-to-one matches from the non-Moratorium area, C (i) , such that j ∈ C (i).
Therefore, I0 = I (min |pi − pj| : |pi − pj| < ϵ). Our large sample allows us to choose
a very precise caliper (0.0001) without substantially reducing the sample size.

In the second step, we subject this matched DD estimator to two separate placebo
(falsification) tests in time, both of which model a placebo Moratorium implemented
in 2004. Placebo Test 1 retains the matches from the real pre-treatment phase
(2005-2010) while Placebo Test 2 re-estimates the propensity scores for the pre-
placebo-treatment phase (2000-2004) (see Table 4.D.2-Table 4.D.5 and Figure 4.D.1).
In some cases, the null hypothesis is rejected for the matched DD estimator, suggesting
a failure of the parallel trends assumption. For this reason, in the third step, we use a
matched triple differences (DDD) estimator inspired by (Chabé-Ferret and Subervie,
2013; Chabé-Ferret, 2017), which applies a correction for non-parallel trends. The
DDD estimator takes the following form:

ÂTTDDD,T =

1
NM

∑
i I0

{[[
Y M
i,T − Y M

i,T1

]
−
[
Y j,NM
i,T − Y j,NM

i,T1

]]

−
[[
Y M
i,T ′

1
− Y M

i,T0

]
−
[
Y j,NM
i,T ′

1
− Y j,NM

i,T0

]] (
T−T1

T ′
1−T0

)}
(4.6)

The third line reflects the correction for the non-parallel pre-treatment trends between

T0 and T ′
1 with a correction

(
T−T1

T ′
1−T0

)
to adjust the trend correction for potentially

different pre- and post-treatment time horizons. The matched DD results come
from the estimator in Equation 4.5, and the matched DDD results come from the
estimator in Equation 4.6. Finally, we subject the DDD estimator to a placebo
in time test of the parallel trends assumption, Placebo Test 3 (Table 4.D.6). The
years used to estimate Equation 4.5 and Equation 4.6 are T0 = 2004, T ′

1 = 2010,
T1 = 2011 and T = endpoint year. For the placebo tests the placebo treatment

167



Chapter 4 REDD+ in Indonesia

year is 2005 and the pre- and post-treatment periods considered are, respectively,
2000-2004 and 2005-2010, with sensitivity using 2005-2011. In each case, we use the
Matching routine in R (Sekhon, 2011).

Finally, in step four, we undertake a spatial placebo test to evaluate the robustness
of the matched DDD estimator. The spatial placebo test uses the DDD estimator in
Equation 4.6 and applies it to concession Moratorium and concession non-Moratorium
grid cells for dryland and peatland forest. In theory, the Moratorium has no effect on
forest cover in concession grid cells because conversion is still allowed on concessions
in Moratorium areas that were granted pre-Moratorium. This observation forms the
basis of the null hypothesis, with the alternative hypothesis that Moratorium and
non-Moratorium concession forest cover is evolving in different ways, hence falsifying
the parallel trends assumption. Results of the spatial placebo test suggest support
for the null hypothesis (Table 4.D.7-Table 4.D.8).

The resulting, preferred estimator is the propensity score, one-to-one caliper matched
DDD estimator. Covariate balance tables are reported for all specifications (Ta-
ble 4.D.11-Table 4.D.20). Standard errors are calculated according to the consistent
Abadie-Imbens procedure for matching (Abadie and Imbens, 2006).

We undertake several robustness checks on our estimates in Figure 4.2.2. These
estimates are based on untrimmed samples, so we first obtain estimates of the ATT
for a sample with a stricter definition of forest cover at the grid-cell level: 30% (or
more) and 60% (or more) forested pixels in a grid cell, in 2005. These samples are
obtained by estimating the mean forest cover of 2005 pixels in the grid cells. Second,
we conduct a robustness analysis on alternative approaches to matching which do not
rely on the propensity score, namely Coarsened Exact Matching (CEM) (King and
Zeng, 2006; Iacus et al., 2012). CEM addresses the possibility that propensity score
matching may introduce biases due to the way in which it reduces the dimensionality
of the matching problem to matching on a single dimension: the propensity score
(e.g. King and Nielsen, 2019). We undertake CEM using the same matching variables
as before. As with propensity score matching, sample sizes are also sensitive to
choices of matching variables, the coarseness of matching and other implementation
decisions in CEM. For this reason, following Iacus et al. (2009) and Iacus et al.
(2012), we undertake four separate CEM routines in which the control variables are
used either in the exact matching algorithm, or as control variables in a covariate
adjustment step after matching has occurred (Iacus et al., 2012). The DDD CEM
covariate-adjusted estimate of ATT over the period of the Moratorium from period
T1 and T , is the estimate of β1 in the following:

∆DDD
T1,T

Yi = α + β1di +
n∑

k=2

βkXki + ϵi (4.7)

The Xki are the pre-treatment control variables that provide covariate adjustment,
which we exclude from the matching algorithm. ∆DDD

T1,T
Yi is the individual-level

matched triple-difference (corrected for non-parallel trends) in forest cover that is
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constructed by the CEM matching algorithm. We use the cem routine in R to
undertake the matching, and the att routine in R to obtain this covariate-adjusted
estimate of the ATT.

Third, we conduct sensitivity analyses on the assumptions used in the central non-
parametric DDD propensity score matching estimates. These analyses focus on: (1)
caliper width choices, where calipers of 0.01 and 0.001 are used in one-to-one nearest
neighbour matching; and, (2) k > 1 nearest neighbours analysis, in which we test
the sensitivity of our results to matching on k = 2, 3, 5 nearest neighbours instead
of one-to-one. Fourth, we test the sensitivity of the sample being limited to grid
cells below an elevation of 1,000m. We estimate separate ATT for: (1) cells at all
elevations; and, (2) cells only found above 1,000m (covariate balancing reported in
Table 4.D.21-Table 4.D.24). Finally, we replicate the analysis in Figure 4.2.2 using a
tighter definition of forest, specifically, “intact primary” forest, with no detectable
signs of human-caused alteration or fragmentation (Margono et al., 2014; Turubanova
et al., 2018) (covariate balancing reported in Table 4.D.25 and Table 4.D.26).

A final identification assumption of the DD and DDD estimators is the Stable Unit
Treatment Value Assumption (SUTVA): the treatment should not cause leakage to
untreated forest areas. Such leakage/spillover effects are a common confounder in
the evaluation of area-based policies (e.g. Andam et al., 2008; Gaveau et al., 2009;
Joppa and Pfaff, 2010; Nelson and Chomitz, 2011). If protection via the Moratorium
induces the displacement of forest clearing to outside the Moratorium’s boundaries,
deforestation rates inside and outside these boundaries are contemporaneously af-
fected in opposite directions resulting in treatment effects of a higher magnitude
than the “true” effects. To check for leakage, we use a Regression Discontinuity
Design (RDD) (Lee and Lemieux, 2010; Calonico et al., 2014) with a sharp cut-off at
the Moratorium’s boundaries. RDD estimates the Local Average Treatment Effect
(LATE) of the Moratorium in the proximity of its boundaries with non-Moratorium
land.

We specify separate linear polynomials on both sides of the boundary cut-off following
Gelman and Imbens (2019) and Burgess et al. (2019), and estimate treatment effects
via OLS regressions with robust standard errors clustered at the district admin-
istrative level. Our preferred results are obtained via separate linear polynomials
and optimal bandwidth selection (through the Calonico et al. (2014) method). We
also examine an alternative bandwidth selection algorithm (Imbens and Kalyanara-
man, 2012), additional fixed bandwidths of 5, 10 and 20 km from the Moratorium’s
boundaries, and specifications using separate quadratic polynomials of distance
(Figure 4.E.1-Figure 4.E.7). Given the spatial configuration of the Moratorium
(Figure 4.A.2), our bandwidths cover a wide extent of non-Moratorium cells in which
leakage could feasibly occur.
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4.4.3 Estimating carbon emissions

We obtain grid cell-level CO2-eq estimates by multiplying the average carbon stock
(in tC/ha) per grid cell by our ATT estimates of avoided deforestation (ha). These
results are then extrapolated to the total number of Moratorium grid cells in the sam-
ple, and converted to tons of carbon equivalent, tCO2-eq, by applying a conversion
factor of 3.67 (Zarin et al., 2016). Below-ground carbon stocks in Table 4.2.1 are ap-
proximated by multiplying above-ground carbon by 1.24 following (Busch et al., 2015).

In Table 4.2.1, total emissions of 2.2 GtCO2-eq per year are based on the projected
business-as-usual (BAU) emissions for all sectors excluding LULUCF plus estimated
annual emissions from LULUCF (1.0 GtCO2-eq per year) according to Government
of Indonesia (2018) and reported by Climate Action Tracker. The estimate of 1.0
GtCO2-eq per year is an annual average over 2001-2018. Indonesia’s NDC commit-
ments involve an emissions reduction path which implies specific reductions against
the BAU in 2020: an unconditional (without overseas assistance) 29% reduction in
emissions compared to projected BAU emissions in 2030, and a 41% conditional
(with overseas assistance) emissions reduction.

We measure our estimated avoided deforestation against the 2030 commitment’s
implied emissions reduction for 2020. The BAU emissions (non-LULUCF) in 2020 is
projected to be 1.2 GtCO2-eq. The conditional (unconditional) emissions reduction
in 2020 represents a 8% (11%) reduction against 2020 BAU emissions. The 2030 29%
conditional (unconditional) NDC implies a target of 1.12 (1.09) GtCO2-eq in 2020,
a reduction of 100 (132.9) MtCO2-eq. The impact of the Moratorium is calculated
as a percentage of the 100 (132.9) MtCO2-eq reduction. BAU (non-LULUCF) and
unconditional (conditional) pledged emissions in 2030 are 2.2 GtCO2-eq and 1.8 (1.6)
GtCO2-eq, implying a reduction of 328 (527) MtCO2-eq in 2030. Our estimated
Moratorium impact is calculated as a percentage of these figures.

Norway’s agreed payment of US$ 56.2 million includes emissions reductions from
peatland forest in 2017. Without this the payment falls to US$ 37 million net of the
35% “set aside factor” (Section 4.A)1.

1All replication materials, including processed datasets, regression routines, and R scripts used to
generate our results are available in the Harvard Dataverse.

170

http://climateactiontracker.org
https://doi.org/10.7910/DVN/0EUW82


References

Abadie, Alberto and Imbens, Guido W (2006). “Large sample properties of matching
estimators”. Econometrica 74.1, pp. 235–267.

Abadie, Alberto and Imbens, Guido W (2008). “Notes and comments on the failure
of the bootstrap for matching estimators”. Econometrica 76.6, pp. 1537–1557.

Abood, Sinan A, Ser, Janice, Lee, Huay, Burivalova, Zuzana, Garcia-ulloa, John, and
Koh, Lian Pin (2015). “Relative contributions of the logging, fiber, oil palm, and
mining industries to forest loss in Indonesia”. Conservation Letters 8, pp. 58–67.

Alisjahbana, Armida S. and Busch, Jonah M. (2017). “Forestry, Forest Fires, and
Climate Change in Indonesia”. Bulletin of Indonesian Economic Studies 53,
pp. 111–136.

Andam, Kwaw S., Ferraro, Paul J., Pfaff, Alexander, Sanchez-Azofeifa, G. Arturo,
and Robalino, Juan A. (2008). “Measuring the effectiveness of protected area
networks in reducing deforestation”. Proceedings of the National Academy of
Sciences 105, pp. 16089–16094.

Angelsen, A. (2017). “REDD+ as Results-based Aid: General Lessons and Bilateral
Agreements of Norway”. Review of Development Economics 2, pp. 237–264.

Angelsen, Arild and Kaimowitz, David (1999). “Rethinking the causes of deforestation:
lessons from economic models.” The World Bank Research Observer 14, pp. 73–98.
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Chapter 4 REDD+ in Indonesia

4.A Background to the Moratorium

4.A.1 The Indonesia-Norway REDD+ partnership

On 26 May 2010, a Letter of Intent (LoI) was signed by the governments of Indonesia
and Norway, establishing the Indonesia-Norway REDD+ partnership. As a part of
this partnership, Norway pledged to provide US$1 billion to Indonesia in exchange for
verified reductions in GHG emissions from deforestation. Three phases were specified
in the LoI. The first aimed to establish the necessary institutions and capacity, the
second to transform managerial systems while verified emission reductions were to
be delivered in the third. Based on the Lol, Indonesia was supposed to be on track
to receive its first result-based payment in 2014 but the transition to phase three was
delayed due to various political and institutional changes in Indonesia (Mongabay,
2020).

To operationalise the three phases, various REDD+ Task Forces were appointed be-
tween 2010 and 2013 by the then President of Indonesia, Susilo Bambang Yudhoyono,
alongside a ministerial-level REDD+ Management Agency (BP REDD+) that was
created in 2013. In 2015, President Joko Widodo, who was elected in 2014, dissolved
BP REDD+ and a new Ministry of Environment and Forestry (KLHK) was formed
from the Ministry of Environment and the Ministry of Forestry. This new ministry
absorbed the National Council on Climate Change (DNPI) and BP REDD+. Thus,
the responsibility for delivering GHG emission reductions fell to KLHK, the capacity
of which has been supported through cooperation with Kemitraan (the Partnership
for Governance Reform in Indonesia) and the World Resources Institute Indonesia
(WRI).

Further delaying Indonesia’s transition into phase three was the long time that
was needed to create an integrated measurement, reporting and verification (MRV)
system sufficient to account for progress in reducing emissions from deforestation
(LTS International, 2018). As of 2018, there was no MRV system in place. A key
reason for the long gestation of this system was the context and purpose of national
MRV capacity, which has evolved since the LoI was signed in 2010. Specifically, a
divergence arose between the commitment to economy-wide emission reductions in
line with national policy, coordinated by the national planning agency (Bappenas),
and emissions reductions commitments as part of Indonesia’s Nationally Determined
Contribution (NDC). The latter is led by KLHK but is coordinated with other
agencies and sub-national entities that regulate or impact forest and peatland. In
addition, there were and continue to be uncertainties regarding forest definitions,
boundaries and baselines.

Similar to the MRV system, the Indonesia-Norway partnership has had to create
and develop other, critical institutional arrangements off the back of relatively weak,
pre-existing arrangements. The most-recent review of the partnership, published in
2018 (LTS International, 2018), makes clear that forest law enforcement remains
patchy at best. The partnership has been financing various capacity-building initia-
tives in KLHK. For example, it has been developing capacity to detect networks of
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individuals, holding companies and licensees who may have violated the Moratorium,
to track prosecutions, recover assets and detect corruption. The partnership has
also been involved in efforts to strengthen civil society capacity in the use of high
technology and fieldwork to support independent monitoring and reporting on forests.
To manage financial flows linked to REDD+, including the first payment announced
in 2019 for emissions reductions in 2017 (see below), the Indonesian Environmental
Estate Fund (BPDLH) has been established, overseen by the Ministry of Finance.

As of 2018, there has been relatively little progress on the implementation of sub-
national REDD+ strategies and the institutional arrangements of the Indonesia-
Norway REDD+ partnership remained highly centralised. Yet, at the local level
there are various planning and mapping initiatives in, for example, Central, West
and North Kalimantan, Aceh, South Sumatra and Riau. Central Kalimantan has a
jurisdictional REDD+ initiative. There is, however, a lack of coordination of these
sub-national efforts and little clarity on how REDD+ funds can be used in support
of such efforts, as well as investment in the capacity of sub-national governments to,
e.g. enforce the Moratorium.

In 2021, the Indonesian government formally and unexpectedly terminated its REDD+
partnership with Norway (Mongabay, 2021). One reason cited is a delay in the
delivery of the payment from Norway, although there are also reports of disagree-
ments between the two countries regarding the conditions required by Norway for
the payment to be disbursed (e.g. Climate Home News, 2021).

4.A.2 The 2011 Moratorium on palm oil, timber and logging concessions

The centrepiece of the Indonesia-Norway REDD+ partnership was a Moratorium
on new palm oil, timber and logging concession licences, instigated in 2011. Such
licences were issued by district governments, the third administrative tier (after
provincial governments), and conferred certain rights to firms. Palm oil concessions
refer to areas where industrial-scale oil palm plantations are established. A logging
concession refers to a forest area for managing and extracting timber, and are distinct
from timber concessions, where plantation forests are established for the production
of pulp and paper. After the timber has been extracted from logging concessions,
many of these concessions are re-designated as palm oil or timber concessions (Forest
Watch Indonesia, 2015). Figure 4.A.1 shows the district-level distribution of all
pre-2011 concessions, by share of the total area of the country’s land area designated
as concessions before 2011.
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Figure 4.A.1: Share of pre-2011 palm oil, timber and logging concessions (combined) by
district.

180



Chapter 4 REDD+ in Indonesia

Around 3% of land designated as concessions pre-2011 is located in forestland within
the Moratorium’s 2011 boundaries, which are shown in Figure 4.A.2. Covering a
substantial proportion of Indonesia’s primary forest estate, the 2011 Moratorium
was renewed every two years before being made permanent in 2019 (Presidential
Instruction No. 10/2011, extended under No. 6/2013, then No 8/2015, then No.
6/2017 regarding a Moratorium on the Granting of New Licences and Improvement
of Natural Primary Forest and Peatland Governance). The Moratorium boundaries
established in 2011 have been periodically updated since. Initially covering 69 million
hectares, the total area under the Moratorium has fluctuated since 2011, declining
to about 64 million ha before rising to 66 million by 2018. These fluctuations were
due to new spatial mapping inputs and surveys that changed the classification or
designation of land (LTS International, 2018).
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Figure 4.A.2: Extent of Moratorium in Indonesia, 2011. The 2011 Moratorium boundaries
denote the treatment areas for our empirical analysis, and are assumed constant throughout
our treatment periods. Sources: Authors’ elaboration on forest cover data (Hansen et al.,
2013). Moratorium shapefile from Ministry of Forestry of the Republic of Indonesia (2011).
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Some of the fluctuations in the Moratorium’s boundaries were likely to have occurred
due to changes in land classification that removed forestland from Moratorium areas
to the benefit of concessionaires seeking new concession licences. Although the Mora-
torium is administered by the national government, the Moratorium map is revised
by district governments, which then notify the national government of any changes
(Mongabay, 2019). Once approved, areas of forest protected by the Moratorium
are, in effect, dropped from the map. In particular, it has been documented that
forestland has been re-designated, by district governments, from “official forest” to
“non-institutionally recognized” forest, or land with forest cover that is designated as
land “for other use” (Areal Penggunaan Lain, APL) (Indrarto et al., 2012; Enrici
and Hubacek, 2016). Areas of forest re-designated as APL have been shown to be
highly susceptible to higher deforestation and degradation pressures (Margono et al.,
2012), because designation as APL land makes it easier to obtain concession licenses
in such areas (Enrici and Hubacek, 2016).

According to the FAO, the total amount of APL forest land was around 8.5-8.6 million
ha in 2009 and 2012 (FAO, 2015). It is difficult to precisely assess the extent to which
the stock of APL forest land changed due to the addition of newly-designated APL
land net of APL land being re-designated as new concessions, although Greenpeace
has reported that, on the basis of an analysis of satellite imagery, up to 4.5 million
ha of forest have been removed from the 2011 Moratorium map since 2011, of which
at least 1.6 million ha was subsequently licenced out to concessionaires (Mongabay,
2019).

Concession area data, collected by Greenpeace circa 2010 and reported in Abood
et al. (2015), suggest that logging, timber and palm oil concessions accounted for
approximately 24, 11 and 12 million ha of Indonesia’s land, respectively. When land
is allocated to a concessionaire, it is important to distinguish between the area of
land designated as a concession and the area of land that has been cleared and, in
the context of palm oil and timber concessions, planted. Indonesian government
data, reported by Forest Watch Indonesia to the European Union in 2015 (Forest
Watch Indonesia, 2015), suggests that total timber concession areas increased from
around 8-9 million ha in 2009-10 to around 10 million ha in 2011-13, of which 50%
was planted. Palm oil concession areas also increased, from around 8 million ha in
2009-10 to 9-10 million ha in 2011-12, before apparently more than doubling to over
22 million ha by 2018 (Steinweg et al., 2019). How much of this area was planted was
unreported. Forest clearance in concessions has been well-documented, accounting
for around half of Indonesia’s aggregate forest loss (Abood et al., 2015; Austin et al.,
2019).

In our empirical analysis, we retain the 2011 Moratorium boundaries for estimation
of the policy treatment effect and ignore subsequent changes to these boundaries
because of evidence that the Moratorium may have driven incentives to re-designate
land protected by the Moratorium into APL land before being re-designated as
concessions. Although not technically breaking the rules of the Moratorium, we
argue that this behaviour was not in the spirit of the Moratorium and indeed occurred
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in response to the Moratorium. Thus, any cells containing forestland within these
2011 boundaries that dropped out of the Moratorium map after 2011 are retained in
our treatment group.

Our treatment period, on the other hand, reflects changes in the sectors affected
by the Moratorium. Forest fires during the El Niño of 2015 damaged around 2.6
million ha of forest, releasing a billion tonnes of carbon dioxide equivalent (Glauber
et al., 2016). This led to new and enhanced regulations on peatland, a new Peatland
Restoration Agency (BRG) and increased policy priority for fire prevention, and the
expansion of the Moratorium to peatland forest to the whole country (Alisjahbana
and Busch, 2017). All three types of concession were similarly affected. Thus, the
treatment effect of the Moratorium on peatland forest, based on the 2011 boundaries,
is estimated for all periods between 2011 and 2017 while the effect on dryland forest
is also estimated for the period 2011-18. In September 2018, a new three-year Mora-
torium targeting new palm oil plantations across the whole country began but this is
not considered in our analysis due to coming into effect at the end of our study period.

4.A.3 How the Indonesia-Norway partnership estimated forest-based
emissions reductions in 2017

In 2017, Indonesia reportedly reduced emissions from deforestation and forest degra-
dation by 11.2 MtCO2-eq, the first reduction since the start of the Moratorium
(Mongabay, 2020). Norway subsequently announced that it would pay Indonesia US$
56.2 million. In this sub-section, we summarise how these emissions reductions were
estimated, drawing on a report produced by Indonesia’s Ministry of Environment
and Forestry (MoEF, 2019). This report was submitted to Norway’s government and
provides the evidence base for estimating payments from Norway’s government to
Indonesia’s government in the event of reductions of GHG emissions from deforesta-
tion and forest degradation, for the period 2017-2020.

The reference emission level adopted as a baseline for estimating changes in emissions
(in tons of carbon dioxide equivalent per year) and hence, Indonesia’s REDD+ per-
formance under the framework of Norway-Indonesia Partnership, is the Result Based
Payment (RBP) baseline. To be updated periodically every five years, the RBP
baseline has a different reference period (2006-2016) from Indonesia’s Forest Refer-
ence Emission Level (FREL) that was submitted to the UNFCCC in 2016 (1990-2012).

The RBP baseline covers all “natural forests” in Indonesia, defined as “a land area
of more than 6.25 hectares with trees higher than 5 meters at maturity and a canopy
cover of more than 30 percent”. These forests are classified according to land cover
maps produced by the National Forest Monitoring System (NFMS) and used by the
Ministry of Environment and Forestry. There are six natural forest classes that are
used to estimate the RBP: primary dryland forest, secondary dryland forest, primary
swamp forest, secondary swamp forest, primary mangrove forest, and secondary
mangrove forest. Map data for the years 2006, 2009, 2011, 2012, 2013, 2014, 2015
and 2016 are used to analyse historical land cover changes and calculate changes in
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emissions. Forest data were sourced from Landsat 5 Thematic Mapper (TM) and
Landsat 7 Enhanced Thematic Mapper Plus (ETM+).

Not all natural forests in Indonesia are included in the estimation of the RSB (or
the FREL) and although it is clear that land-use designation is a critical factor
determining which forest areas are included or excluded, there is little information
on precisely how designation has affected these estimates. In 2016, a forest estate
of 95.2 million ha was designated according to “permanent forest” (87.7 million ha)
and “forest area designated for conversion to other land uses” (7.5 million ha; APL -
see above) (Government of Indonesia, 2018). Permanent forest includes “protection
forest” (24.0 million ha), “conservation/fully protected forest and recreation forests”
(17.4 million ha), and “production forest” (46.2 million ha). The last, the biggest
forest category by area, contains forests designated for the exploitation of timber and
other forest products. According to Indonesia’s FREL submission to the UNFCCC
in 2016, up 20 million ha of permanent forest (specifically that which, by law, is
slated for conversion) and APL forest is excluded from the estimation of Indonesia’s
FREL (Government of Indonesia, 2016). Further inference is not possible due to the
focus of estimates of the RSB and the FREL on the levels of deforestation rather
than on levels of forest cover.

For both the RSB and FREL, annual forest cover change was estimated by overlaying
land cover maps of two subsequent periods. Deforestation is defined as the change
of natural forests from a forest class to a non-forest class at a given location in the
period 2006-2016, while degradation occurs when a change from a primary to a
secondary forest class is identified. Calculation of the RBP baseline used emission
factors for each forest class and are identical to those used in Indonesia’s first FREL.
These emission factors were estimated using data primarily collected by the National
Forest Inventory (NFI). Average annual emissions from deforestation and forest
degradation in the period 2006-2016 were estimated to be 236.9 MtCO2-eq/yr and
41.6 MtCO2-eq/yr, respectively. Actual emissions in 2017 were estimated to be 228.3
MtCO2-eq/yr and 42.7 MtCO2-eq/yr from deforestation and forest degradation,
respectively.

Against the 2006-2016 RBP baseline, Indonesia reduced emissions in 2017 by 7.4
MtCO2-eq/yr: 8.6 MtCO2-eq/yr from avoided deforestation (3.6% below the baseline)
net of an increase in emissions from forest degradation, 1.2 MtCO2-eq/yr (2.9%
above the baseline). Uncertainties related to the forest data and emissions factors
used were calculated following IPCC guidelines (2006). To account for statistical
uncertainty, the risk of carbon reversals and leakage, a “set aside factor” of 35%
was applied to the estimates of emissions reductions, giving a net reduction of 4.8
MtCO2-eq/yr.

Also estimated were emissions from changes in peatland (swamp) forest, both from
peat decomposition and peat fires. The former was defined as the changing process
of peat form as a result of a decline in water levels caused by deforestation and forest
degradation, and land utilization. When peat is drained and exposed, it oxidises thus
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generating carbon dioxide. Emission factors for peat decomposition also followed
IPCC guidelines, based on the assumption that all utilized areas are drained. The cal-
culation of emissions from peat decomposition was otherwise identical to the method
used for calculating emissions from deforestation and forest degradation but with the
inclusion of ‘inherited’ emissions from peat decomposition. In 2017, 256.7 MtCO2-
eq/yr was emitted from the decomposition of peat, which when compared to the RBP
baseline of 260.6 MtCO2-eq/yr, generated an emissions reduction of 3.9 MtCO2-eq/yr.

Emissions from peat fires were estimated using data on burn scar areas. Fire in-
cidence in peatland was 13,555 hectares in 2017. Combined with estimates of the
mass of fuel available for combustion, to generate emission factors for burned peat,
this amounted to 12.5 MtCO2-eq/yr. Against an annual emission baseline of 249
MtCO2-eq/yr between 2006 and 2016, there was an estimated emission reduction of
236.4 MtCO2-eq/yr, in 2017. In contrast to estimates of emissions from deforesta-
tion and forest degradation, these estimates of peat fire emissions were subject to
considerably more uncertainty, which was not possible to quantify.

Perhaps due to this uncertainty, Indonesia’s government initially excluded emissions
from peat fires in its calculations. However, Norway’s government factored in peat
fires, coming up with a total emissions reduction estimate of 11.2 MtCO2-eq/yr for
2017 (Mongabay, 2020). Multiplied by a carbon price of US$5 per ton, set by Norway,
this generated an estimated payment of $US 56.2 million to be paid by Norway to
Indonesia for emissions reductions from deforestation and forest degradation in 2017.
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4.B Main and Additional Results

4.B.1 ATT results: year-on-year

The ATT estimates in the following tables are our main results, which are used to
derive estimates of avoided forest cover loss and carbon emissions reductions.

Table 4.B.1: DD dryland forest ATT

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

2012 0.137*** 0.0380 3.641 0.000 160012 152118 7894

2013 0.237*** 0.0510 4.633 0.000 160012 152118 7894

2014 0.318*** 0.0670 4.762 0.000 160012 152118 7894

2015 0.472*** 0.0780 6.037 0.000 160012 152118 7894

2016 0.718*** 0.0940 7.674 0.000 160012 152118 7894

2017 0.813*** 0.0990 8.186 0.000 160012 152118 7894

2018 0.938*** 0.1050 8.892 0.000 160012 152118 7894

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4.B.2: DDD dryland forest ATT

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

2012 0.108*** 0.0390 2.761 0.006 160012 152118 7894

2013 0.178*** 0.0570 3.146 0.002 160012 152118 7894

2014 0.229*** 0.0760 2.998 0.003 160012 152118 7894

2015 0.354*** 0.0940 3.780 0.000 160012 152118 7894

2016 0.571*** 0.1140 4.991 0.000 160012 152118 7894

2017 0.637*** 0.1280 4.984 0.000 160012 152118 7894

2018 0.732*** 0.1420 5.150 0.000 160012 152118 7894

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4.B.3: DD peatland forest ATT

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

2012 -0.016 0.0390 -0.414 0.679 95154 91024 4130

2013 -0.052 0.0530 -0.979 0.328 95154 91024 4130

2014 -0.153** 0.0710 -2.163 0.031 95154 91024 4130

2015 -0.073 0.0820 -0.883 0.377 95154 91024 4130

2016 -0.032 0.0960 -0.333 0.739 95154 91024 4130

2017 -0.047 0.1010 -0.461 0.645 95154 91024 4130

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4.B.4: DDD peatland forest ATT

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

2012 -0.011 0.0410 -0.260 0.795 95154 91024 4130

2013 -0.041 0.0600 -0.680 0.496 95154 91024 4130

2014 -0.136* 0.0830 -1.651 0.099 95154 91024 4130

2015 -0.05 0.1010 -0.497 0.619 95154 91024 4130

2016 -0.004 0.1220 -0.033 0.974 95154 91024 4130

2017 -0.013 0.1370 -0.096 0.923 95154 91024 4130

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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4.B.2 Estimated avoided forest cover loss and carbon emissions reduc-
tions

The estimates of avoided forest cover loss and carbon emissions reductions in the
following tables can be seen graphically in Figure 4.A.2.

Table 4.B.5: DD dryland forest avoided forest cover loss and carbon emissions reductions

Endpoint Emissions reduction Avoided forest loss
(MtCO2-eq) (’000 ha)

2012 12.723 21.967
2013 21.993 37.972
2014 29.441 50.830
2015 43.789 75.603
2016 66.550 114.901
2017 75.393 130.168
2018 86.931 150.089

Table 4.B.6: DDD dryland forest avoided forest cover loss and carbon emissions reductions

Endpoint Emissions reduction Avoided forest loss
(MtCO2-eq) (’000 ha)

2012 9.990 17.248
2013 16.526 28.533
2014 21.240 36.672
2015 32.855 56.725
2016 52.883 91.303
2017 58.992 101.851
2018 67.797 117.053

Table 4.B.7: DD peatland forest avoided forest cover loss and carbon emissions reductions

Endpoint Emissions reduction Avoided forest loss
(MtCO2-eq) (’000 ha)

2012 -0.677 -1.541
2013 -2.165 -4.929
2014 -6.403 -14.578
2015 -3.041 -6.924
2016 -1.336 -3.042
2017 -1.954 -4.449
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Table 4.B.8: DDD peatland forest avoided forest cover loss and carbon emissions
reductions

Endpoint Emissions reduction Avoided forest loss
(MtCO2-eq) (’000 ha)

2012 -0.443 -1.009
2013 -1.698 -3.866
2014 -5.703 -12.983
2015 -2.107 -4.798
2016 -0.169 -0.384
2017 -0.553 -1.259

4.B.3 Robustness checks (2017 endpoint)

The following tables show the results from testing the robustness of our main results.

Table 4.B.9: DD dryland forest trimmed sample results (2017 endpoint)

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

Untrimmed 0.813*** 0.0990 8.186 0.000 160012 152118 7894

30% 0.659*** 0.1090 6.055 0.000 144501 136472 8029

60% 0.79*** 0.1210 6.558 0.000 127375 119284 8091

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4.B.10: DDD dryland forest trimmed sample results (2017 endpoint)

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

Untrimmed 0.637*** 0.1280 4.984 0.000 160012 152118 7894

30% 0.443*** 0.1390 3.193 0.001 144501 136472 8029

60% 0.593*** 0.1500 3.958 0.000 127375 119284 8091

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4.B.11: DD peatland forest trimmed sample results (2017 endpoint)

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

Untrimmed -0.047 0.1010 -0.461 0.645 95154 91024 4130

30% -0.097 0.1110 -0.876 0.381 86897 82832 4065

60% -0.186 0.1220 -1.532 0.126 77777 73554 4223

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4.B.12: DDD peatland forest trimmed sample results (2017 endpoint)

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

Untrimmed -0.013 0.1370 -0.096 0.923 95154 91024 4130

30% 0.025 0.1480 0.169 0.866 86897 82832 4065

60% -0.121 0.1580 -0.768 0.442 77777 73554 4223

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4.B.13: Coarsened Exact Matching dryland forest results (2017 endpoint)

SATT S.E. t-stat p-value Treated Matched Dropped

(treated)

Model 1 0.4868*** 0.06 8.12 0.000 160012 125458 34554

Model 2 0.4786*** 0.06 7.56 0.000 160012 141334 18678

Model 3 0.4664*** 0.06 7.38 0.000 160012 141362 18650

Model 4 0.5221*** 0.06 8.27 0.000 160012 141362 18650

Notes: *p < 0.05, **p < 0.01, ***p < 0.001.

Model 1 : 2005-2010 forest cover, slope, elevation and distance from roads included in the matching algorithm.

Distance from roads uses manually defined bins in lieu of the automated ones.

Distance from palm oil, timber and logging concessions are included in the linear outcome model.

Model 2 : 2005-2010 forest cover, slope, elevation, 2005 and 2010 population included in the matching algorithm.

Distance from roads and carbon stocks are included in the linear outcome model.

Model 3 : 2005-2010 forest cover, slope, elevation and distance from cities included in the matching algorithm.

Distance from palm oil, timber and logging concessions, distance from roads, carbon stocks and

2000, 2005 and 2010 population are included in the linear outcome model.

Model 4 : 2005-2010 forest cover, slope, and elevation included in the matching algorithm.

Distance from roads, carbon stocks, and 2000, 2005 and 2010 population

are included in the linear outcome model.

Table 4.B.14: Coarsened Exact Matching peatland forest results (2017 endpoint)

SATT S.E. t-stat p-value Treated Matched Dropped

(treated)

Model 1 -0.012 0.08 -0.15 0.884 95154 71378 23776

Model 2 0.2843*** 0.08 3.62 0.000 95154 78322 16832

Model 3 -0.2327* 0.09 -2.50 0.012 95154 56523 38631

Model 4 0.1185 0.08 1.50 0.135 95154 80365 14789

Notes: *p < 0.05, **p < 0.01, ***p < 0.001.

Model 1 : 2005-2010 forest cover, slope, elevation, 2005 and 2010 population. Moreover

Distance from roads, AGC and distance from palm oil use manually defined bins in lieu of the automated ones.

Model 2 : 2005-2010 forest cover, slope, elevation, 2005 and 2010 population. Moreover

Distance from roads and AGC use manually defined bins in lieu of the automated ones.

Model 3 : 2005-2010 forest cover, slope, elevation, 2005 and 2010 population. Moreover

Distance from roads and AGC use manually defined bins in lieu of the automated ones.

Distance from palm oil, timber and logging use manually defined bins in lieu of the automated ones.

Model 4 : 2005-2010 forest cover, slope, elevation and distance from roads included in the matching algorithm.

Distance from palm oil, timber and logging concessions are included in the linear outcome model.

Distance from roads uses manually defined bins in lieu of the automated ones.
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Table 4.B.15: DDD dryland forest ATT: caliper = 0.001

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

2012 0.115** 0.0450 2.568 0.010 160012 159975 37

2013 0.176*** 0.0650 2.724 0.006 160012 159975 37

2014 0.230*** 0.0870 2.652 0.008 160012 159975 37

2015 0.373*** 0.1070 3.492 0.000 160012 159975 37

2016 0.583*** 0.1300 4.489 0.000 160012 159975 37

2017 0.646*** 0.1450 4.454 0.000 160012 159975 37

2018 0.749*** 0.1610 4.649 0.000 160012 159975 37

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < .01.

Table 4.B.16: DDD peatland forest ATT: caliper = 0.001

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

2012 -0.008 0.0430 -0.194 0.846 95154 95004 150

2013 -0.035 0.0640 -0.550 0.582 95154 95004 150

2014 -0.121 0.0880 -1.374 0.170 95154 95004 150

2015 -0.047 0.1080 -0.440 0.660 95154 95004 150

2016 -0.013 0.1300 -0.100 0.920 95154 95004 150

2017 -0.021 0.1460 -0.147 0.883 95154 95004 150

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4.B.17: DDD dryland: robustness (2017 endpoint)

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

1:2 Matching 0.553*** 0.1020 5.446 0.000 160012 138635 21377

1:3 Matching 0.54*** 0.0850 6.346 0.000 160012 123432 36580

1:5 Matching 0.555*** 0.0640 8.663 0.000 160012 95821 64191

Above 1000 m 0.223 0.1870 1.192 0.233 67693 49782 17911

All elevation 0.611*** 0.1210 5.060 0.000 227705 224112 3593

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4.B.18: DDD peatland: robustness (2017 endpoint)

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

1:2 Matching -0.022 0.1160 -0.191 0.849 95154 82953 12201

1:3 Matching -0.052 0.1010 -0.509 0.611 95154 71764 23390

1:5 Matching -0.176** 0.0800 -2.200 0.028 95154 49637 45517

Above 1000 m 1.696*** 0.1690 10.044 0.000 1937 108 1829

All elevation -0.165 0.1350 -1.216 0.224 97091 93210 3881

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 4.B.1: Cumulative avoided forest loss (’000 ha) and avoided carbon dioxide
emissions (MtCO2-eq): Dryland forest > 1,000m DDD, 2012-2018 (A); Peatland > 1,000m
DDD, 2012-2017 (B). The blue columns and left-hand y-axis in each panel shows the
quantity of avoided forest loss while the red columns and right-hand y-axis shows the
quantity of carbon emissions avoided. All quantities are aggregated up to the level of the
whole Moratorium. Error bars denote the 95% CI.
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4.B.4 “Intact primary” forest results

The following tables show the results from using a tighter definition of “forest”
determined by extent of forest intactness and contiguity (Margono et al., 2014;
Turubanova et al., 2018).

Table 4.B.19: DD dryland “intact primary” forest ATT

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

2012 -0.018 0.0250 -0.743 0.457 160012 152252 7760

2013 0.043 0.0360 1.194 0.232 160012 152252 7760

2014 0.08* 0.0480 1.667 0.095 160012 152252 7760

2015 0.172*** 0.0560 3.070 0.002 160012 152252 7760

2016 0.285*** 0.0670 4.270 0.000 160012 152252 7760

2017 0.306*** 0.0700 4.370 0.000 160012 152252 7760

2018 0.325*** 0.0730 4.434 0.000 160012 152252 7760

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4.B.20: DDD dryland “intact primary” forest ATT

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

2012 -0.039 0.0260 -1.505 0.132 160012 152252 7760

2013 0.003 0.0390 0.067 0.947 160012 152252 7760

2014 0.019 0.0540 0.359 0.719 160012 152252 7760

2015 0.091 0.0650 1.407 0.159 160012 152252 7760

2016 0.184** 0.0780 2.343 0.019 160012 152252 7760

2017 0.185** 0.0860 2.138 0.033 160012 152252 7760

2018 0.184* 0.0950 1.936 0.053 160012 152252 7760

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4.B.21: DD peatland “intact primary” forest ATT

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

2012 0.007 0.0280 0.265 0.791 95154 91302 3852

2013 -0.038 0.0390 -0.970 0.332 95154 91302 3852

2014 -0.132** 0.0530 -2.508 0.012 95154 91302 3852

2015 -0.104* 0.0610 -1.703 0.089 95154 91302 3852

2016 -0.104 0.0710 -1.459 0.145 95154 91302 3852

2017 -0.094 0.0740 -1.274 0.203 95154 91302 3852

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4.B.22: DDD peatland “intact primary” forest ATT

Endpoint ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

2012 0.002 0.0290 0.078 0.938 95154 91302 3852

2013 -0.048 0.0430 -1.116 0.264 95154 91302 3852

2014 -0.148** 0.0600 -2.474 0.013 95154 91302 3852

2015 -0.124* 0.0720 -1.714 0.087 95154 91302 3852

2016 -0.129 0.0870 -1.486 0.137 95154 91302 3852

2017 -0.125 0.0970 -1.297 0.195 95154 91302 3852

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4.B.23: DD dryland “intact primary” forest, avoided forest cover loss and carbon
emissions reductions

Endpoint Emissions reduction Avoided forest loss
(MtCO2-eq) (’000 ha)

2012 -1.711 -2.955
2013 3.987 6.883
2014 7.397 12.771
2015 15.956 27.549
2016 26.398 45.577
2017 28.347 48.942
2018 30.120 52.003
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Table 4.B.24: DDD dryland “intact primary” forest, avoided forest cover loss and carbon
emissions reductions

Endpoint Emissions reduction Avoided forest loss
(MtCO2-eq) (’000 ha)

2012 -3.58 -6.186
2013 0.243 0.42
2014 1.782 3.076
2015 8.47 14.623
2016 17.04 29.42
2017 17.11 29.554
2018 17.01 29.383

Table 4.B.25: DD peatland “intact primary” forest, avoided forest cover loss and carbon
emissions reductions

Endpoint Emissions reduction Avoided forest loss
(MtCO2-eq) (’000 ha)

2012 0.310 0.706
2013 -1.569 -3.572
2014 -5.537 -12.607
2015 -4.328 -9.853
2016 -4.326 -9.848
2017 -3.942 -8.975

Table 4.B.26: DDD peatland “intact primary” forest, avoided forest cover loss and carbon
emissions reductions

Endpoint Emissions reduction Avoided forest loss
(MtCO2-eq) (’000 ha)

2012 0.095 0.216
2013 -2.00 -4.553
2014 -6.183 -14.078
2015 -5.189 -11.814
2016 -5.402 -12.299
2017 -5.234 -11.917
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Figure 4.B.2: Cumulative avoided “intact primary” forest loss (’000 ha) and avoided
carbon dioxide emissions (MtCO2-eq): dryland forest DD, 2012-2018 (A); dryland forest
DDD, 2012-2018 (B); peatland forest DD, 2012-2017 (C); peatland DDD, 2012-2017 (D).
The blue columns and left-hand y-axis in each panel shows the quantity of avoided forest
loss while the red columns and right-hand y-axis shows the quantity of carbon emissions
avoided. All quantities are aggregated up to the level of the whole Moratorium. Error bars
denote the 95% CI.
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4.B.5 Spatially heterogeneous effects of the Moratorium, 2011-17

Figure 4.B.3 shows the heterogeneous effects of the Moratorium on dryland for-
est cover using district-level ATT generated from the aggregate ATT. Relatively
large positive effects (shaded dark green) are revealed in the mountainous regions
of Sumatra, districts in East and South Kalimantan, as well as parts of Java and
Papua. Some of these districts are also the location of high shares of the total area
of Indonesia’s land designated as concessions pre-2011 (Figure 4.A.1) but this is not
a consistent pattern across the country. For example, there is little or no effect in
the lowlands of Sumatra, nor in parts of Central Kalimantan, where many palm oil
and timber concessions are located.

Avg.		Reduction	in	Deforestation
No	Reduction

0	-	1	ha

1	-	2	ha

2	-	3	ha

>	3	ha

Figure 4.B.3: Spatially heterogeneous effects of the Moratorium on dryland and peatland
forests, 2011-17
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4.C Summary Statistics

Table 4.C.1: Dryland forest non-concession grid cells, Moratorium

Statistic Mean S.D. Min Max Nobs

AGC 157.819 38.253 0.500 239.517 160012
Distance cities 1588.080 1340.752 2.000 6682.944 160012
Distance logging 87.257 172.887 0.00003 903.985 160012
Distance palm oil 102.348 141.246 0.00004 679.341 160012
Distance timber 123.843 143.885 0.00004 584.680 160012
Distance roads 35.148 32.350 0.056 220.476 160012
Elevation 470.037 271.519 −0.375 999.991 160012
Peat depth 0.000 0.000 0 0 160012
Slope 13.141 6.673 0.000 41.013 160012
Population 2005 17.298 135.354 0.000 10718.960 160012
Population 2010 14.925 126.867 0.000 10194.360 160012
Forest cover 2005 109.083 40.862 0.000 142.402 160012
Forest cover 2011 103.784 44.237 0.000 142.050 160012
Forest cover 2016 98.062 47.467 0.000 142.050 160012
Forest cover 2017 97.259 47.890 0.000 141.850 160012
Forest cover 2018 96.497 48.281 0.000 141.850 160012

Table 4.C.2: Dryland forest non-concession grid cells, non-Moratorium

Statistic Mean S.D. Min Max Nobs

AGC 92.168 52.597 0.500 239.803 407622
Distance cities 579.065 809.565 0.000 6155.591 407622
Distance logging 230.052 253.851 0.00000 911.465 407622
Distance palm oil 167.752 197.904 0.00002 685.338 407622
Distance timber 128.035 168.030 0.00003 584.152 407622
Distance roads 12.341 21.137 0.000 283.699 407622
Elevation 207.618 229.919 −3.000 999.982 407622
Peat depth 0.000 0.000 0 0 407622
Slope 6.146 5.456 0.000 39.215 407622
Population 2005 328.561 1595.480 0 107782 407622
Population 2010 328.886 1474.688 0 87358 407622
Forest cover 2005 95.494 44.674 0.000 143.305 407622
Forest cover 2011 87.948 46.892 0.000 143.215 407622
Forest cover 2016 79.604 49.271 0.000 143.215 407622
Forest cover 2017 78.393 49.590 0.000 143.215 407622
Forest cover 2018 77.283 49.902 0.000 143.215 407622
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Table 4.C.3: Dryland forest concession grid cells, Moratorium

Statistic Mean S.D. Min Max Nobs

AGC 156.486 37.495 6.432 225.012 8577
Distance cities 1534.415 1090.362 17 6389 8577
Distance logging 19.875 63.949 0.0001 754.726 8577
Distance palm oil 46.345 90.734 0.0005 634.679 8577
Distance timber 56.398 98.799 0.00002 535.576 8577
Distance roads 31.006 26.855 0.193 157.039 8577
Elevation 351.910 251.125 0.873 999.917 8577
Peat depth 0.000 0.000 0 0 8577
Slope 11.088 6.683 0.078 35.263 8577
Population 2005 7.406 50.199 0.000 2385.000 8577
Population 2010 6.910 50.805 0.000 2481.000 8577
Forest cover 2005 105.033 42.964 0.000 141.074 8577
Forest cover 2011 98.834 46.061 0.000 141.074 8577
Forest cover 2016 92.489 49.188 0.000 141.074 8577
Forest cover 2017 91.435 49.675 0.000 141.074 8577
Forest cover 2018 90.567 50.063 0.000 141.074 8577

Table 4.C.4: Dryland forest concession grid cells, non-Moratorium

Statistic Mean S.D. Min Max Nobs

AGC 139.703 46.721 0.500 242.199 254107
Distance cities 1422.768 1131.570 0.778 6257.167 254107
Distance logging 29.753 66.249 0.00002 757.565 254107
Distance palm oil 45.676 87.319 0.0001 638.973 254107
Distance timber 53.801 108.858 0.0001 568.691 254107
Distance roads 30.790 29.945 0.089 184.405 254107
Elevation 193.861 202.703 0.507 999.970 254107
Peat depth 0.000 0.000 0 0 254107
Slope 6.500 5.413 0.000 40.154 254107
Population 2005 15.568 131.062 0.000 29963.160 254107
Population 2010 15.141 104.916 0.000 12425.760 254107
Forest cover 2005 104.498 42.969 0.000 143.123 254107
Forest cover 2011 97.803 46.314 0.000 143.123 254107
Forest cover 2016 90.610 49.492 0.000 143.123 254107
Forest cover 2017 89.656 49.873 0.000 143.123 254107
Forest cover 2018 88.787 50.232 0.000 143.123 254107
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Table 4.C.5: Peatland forest non-concession grid cells, Moratorium

Statistic Mean S.D. Min Max Nobs

AGC 119.680 52.600 0.500 248.805 95154
Distance cities 1738.694 1250.135 1.000 6541.667 95154
Distance logging 49.646 63.999 0.0001 862.399 95154
Distance palm oil 59.646 60.120 0.0001 672.619 95154
Distance timber 134.295 143.310 0.0001 585.525 95154
Distance roads 54.333 43.582 0.022 231.603 95154
Elevation 87.082 162.877 −1.715 999.828 95154
Peat depth 5.018 3.314 1 10 95154
Slope 3.292 5.535 0.00000 44.659 95154
Population 2005 21.879 190.073 0.000 14271.050 95154
Population 2010 20.223 199.281 0.000 18457.200 95154
Forest cover 2005 111.444 39.854 0.000 143.530 95154
Forest cover 2011 106.188 43.791 0.000 143.530 95154
Forest cover 2016 100.822 47.414 0.000 143.530 95154
Forest cover 2017 100.116 47.855 0.000 143.530 95154
Forest cover 2018 99.418 48.270 0.000 143.530 95154
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Table 4.C.6: Peatland forest non-concession grid cells, non-Moratorium

Statistic Mean S.D. Min Max Nobs

AGC 68.444 48.624 0.500 230.178 191668
Distance cities 783.989 987.146 0 6110 191668
Distance logging 125.511 170.883 0.00001 909.426 191668
Distance palm oil 77.761 130.750 0.0001 669.294 191668
Distance timber 89.125 138.527 0.00002 584.481 191668
Distance roads 24.147 36.776 −0.096 240.210 191668
Elevation 48.089 109.444 −6.848 999.334 191668
Peat depth 4.234 2.959 1 10 191668
Slope 1.985 3.056 0.000 36.552 191668
Population 2005 429.286 2444.776 0.000 106258.800 191668
Population 2010 435.098 2318.126 0.000 85667.030 191668
Forest cover 2005 98.455 43.815 0.000 142.203 191668
Forest cover 2011 89.987 46.968 0.000 141.715 191668
Forest cover 2016 81.242 49.863 0.000 141.715 191668
Forest cover 2017 80.026 50.222 0.000 141.715 191668
Forest cover 2018 78.896 50.573 0.000 141.715 191668

Table 4.C.7: Peatland forest concession grid cells, Moratorium

Statistic Mean S.D. Min Max Nobs

AGC 108.714 52.756 0.897 226.424 6930
Distance cities 1219.530 984.166 13 5424 6930
Distance logging 46.441 53.984 0.0001 271.455 6930
Distance palm oil 17.699 36.409 0.0001 409.311 6930
Distance timber 63.798 91.195 0.00002 557.789 6930
Distance roads 34.717 35.464 0.146 189.795 6930
Elevation 54.809 100.569 1.411 890.440 6930
Peat depth 5.615 3.460 1.000 10.000 6930
Slope 2.586 4.481 0.016 32.867 6930
Population 2005 15.282 56.990 0.000 1632.000 6930
Population 2010 11.285 46.319 0.000 1945.800 6930
Forest cover 2005 100.037 45.993 0.000 141.297 6930
Forest cover 2011 93.515 48.552 0.000 141.297 6930
Forest cover 2016 86.579 51.578 0.000 141.297 6930
Forest cover 2017 85.614 51.923 0.000 141.297 6930
Forest cover 2018 84.581 52.327 0.000 141.297 6930
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Table 4.C.8: Peatland forest concession grid cells, non-Moratorium

Statistic Mean S.D. Min Max Nobs

AGC 112.349 55.941 0.595 240.324 113954
Distance cities 1519.586 1199.065 3.167 6291.000 113954
Distance logging 39.990 56.940 0.00002 732.571 113954
Distance palm oil 32.212 49.361 0.0001 636.106 113954
Distance timber 65.691 119.646 0.0003 571.354 113954
Distance roads 38.486 34.998 0.034 189.846 113954
Elevation 62.648 96.492 0.267 998.759 113954
Peat depth 4.837 3.439 1.000 10.000 113954
Slope 2.516 3.568 0.000 34.959 113954
Population 2005 19.275 99.717 0.000 9538.440 113954
Population 2010 17.854 87.030 0.000 9514.040 113954
Forest cover 2005 104.618 42.932 0.000 141.937 113954
Forest cover 2011 97.172 46.966 0.000 141.686 113954
Forest cover 2016 89.343 50.675 0.000 141.322 113954
Forest cover 2017 88.366 51.077 0.000 141.322 113954
Forest cover 2018 87.461 51.441 0.000 141.322 113954

4.D Methods

4.D.1 Summary of empirical approach

The impacts of the 2011 Moratorium on forest cover and carbon emissions are esti-
mated for the period starting in 2011 and ending variously in years 2012-2018. Up
until 2017, the estimates are undertaken separately for dryland and peatland forest
but for the period 2011-2018 the estimates are for dryland forest only due to the ad-
ditional restrictions on peatland implemented in 2017 (Alisjahbana and Busch, 2017).
Pre- and post-Moratorium panel data on forest cover spanning the period 2000-2018
are used. Identification of the causal effect stems from a difference-in-differences (DD)
research design, which allows for a comparison of the treated (Moratorium) grid cells
with untreated, control (non-Moratorium) grid cells, while controlling for pre-existing
differences and a secular counterfactual trend in forest cover. A matching approach
is taken so that counterfactual cells have the same or similar characteristics as the
treated cells. A key identification assumption is that of parallel trends in unobserv-
able cell characteristics between Moratorium and non-Moratorium cells. Although
impossible to test directly, we undertake several placebo tests in order to check this
assumption. The main analysis uses pre-treatment data from 2004. The placebo tests
require data from before the time horizon considered in the main analysis and so
also use data from 2000 to 2004. DD can be implemented in a number of ways, and
decisions have to be taken about the appropriate DD estimator to deploy. We select
among a number of different parametric and non-parametric (matched) DD and
triple difference (DDD) estimators through a process of empirical testing of typical
DD identification assumptions, and a sensitivity analysis of matching estimators and
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standard parametric (linear) models. This process of model selection culminates with
a preference for a matched triple differences estimator following Chabé-Ferret and
Subervie (2013) and Chabé-Ferret (2017). After outlining the identification problem,
the following sub-sections provide: an account of the estimators; our process of model
selection via empirical testing of their identification assumptions, including placebo
tests; and, the robustness checks applied to our main results, including sensitivity to
matching procedures and a test of the Standard Unit Treatment Value Assumption
(SUTVA), another identification assumption for DD.

The identification problem

The core empirical problem with evaluating the causal impact of the Moratorium
is one of selection bias: the forest areas treated by the Moratorium differ in their
observable and unobservable characteristics. Any imbalance in these characteris-
tics implies that a direct comparison of forest cover in Moratorium and untreated
non-Moratorium areas will capture pre-existing imbalances in, for example, their
suitability for palm oil or timber production, level of forest cover or susceptibility
to deforestation. These factors would then confound the estimate of the treatment
effect. This generic programme evaluation problem, and the associated imbalances
in underlying characteristics, is common in the analysis of area-based conservation
policies (Albers and Ferraro, 2006; Andam et al., 2008; Joppa and Pfaff, 2010b).
Protected areas, for instance, are often established in economically-marginal land
with “few profitable alternative uses” (Albers and Ferraro, 2006; Sloan et al., 2012).
Forest areas covered by the Moratorium are similarly distinctive from those not
covered by the Moratorium.

Figure 4.2.1 shows the average level of forest cover for grid cells outside concessions
and cells within concessions, for both Moratorium and non-Moratorium areas. Areas
under the Moratorium start with higher levels of forest cover in 2000, and this
remains true throughout the period of observation and for both peatland and dryland
forest, and for all concession types (palm oil, logging and timber). In all but one
within-concession case, there are clear differences in forest levels between the treated
and control cells. Figure 4.2.1 also illustrates forest cover trends over our observation
period. The general picture is one of steady decline, with forest cover declining by
at least 10 percentage points over the 18-year observation period. These trends are
steeper in concession cells than in non-concession cells irrespective of whether forest
is part of the Moratorium or not. Tables 4.C.1 - 4.C.8 present descriptive statistics
illustrating additional differences between the Moratorium and non-Moratorium
forest areas in terms of the key variables that determine the likelihood of forest areas
becoming new concessions.

The essence of the DD design is depicted in Figure 4.2.1. We have pre-and post-
Moratorium data, and spatially well-defined treatment (Moratorium) and control
(non-Moratorium) groups. A simple parametric DD would identify the impact of the
Moratorium by estimating the difference in forest cover before and after the Morato-
rium was implemented in areas covered by the Moratorium, and takes from this the

206



Chapter 4 REDD+ in Indonesia

difference in forest cover in the non-Moratorium areas. Under certain assumptions
DD approaches identify causal impacts, removing both the pre-existing differences
between Moratorium and non-Moratorium areas, which would confound a simple
comparison of treatment and control, and the trend in non-Moratorium areas under
the assumption that this trend would have continued in the post-implementation
period in Moratorium areas. Two key assumptions for the control area trend to act as
a counterfactual for the treatment and DD estimates to be interpreted as causal are:
(1) the unobservable trends in both Moratorium and non-Moratorium areas are the
same on average; and, (2) the Stable Unit Treatment Value Assumption (SUTVA),
that is, there are no spillovers (‘leakage’) from Moratorium areas to non-Moratorium
areas which would confound the estimated treatment effect. In what follows we
explain how we address these identification issues.

Two further issues are noteworthy for our empirical approach. First, the Moratorium
mandates that district governments stop issuing new concession licenses in forest areas
covered by the Moratorium. Yet, after 2011 licenses continued to be issued in forest
areas that dropped out of the Moratorium determined by boundaries established in
2011. Our measure of impact is based on a treatment group with boundaries that
were established in 2011, and we assume that any concession-driven deforestation
observed within these boundaries after 2011 violated the Moratorium. Second, our
empirical strategy must overcome the fact that after 2011 we do not observe where
new oil palm, timber and logging concessions would have located in the absence of
the Moratorium, in forest areas covered by the Moratorium. For this reason, the
empirical strategy must control for characteristics of grid cells that determine the
likelihood becoming a new concession, and ensure that these characteristics are the
same or similar between Moratorium and non-Moratorium areas. The hope is that
by balancing the observable characteristics, the confounding effect of unobservable
characteristics will also be balanced or controlled for (Imbens, 2014; Wooldridge,
2010; Abadie and Imbens, 2008).

We take several steps to ensure that the grid cells compared in the Moratorium and
non-Moratorium forest areas are similar in terms of their observable characteristics.
First, we exclude cells which are part of the Indonesian protected area network, both
within and outside the Moratorium, as conversion in these cells is already strictly
prohibited. Second, we remove all cells outside of concessions with an elevation of
1,000 metres or more above sea level. The likelihood of these cells being a realis-
tic proposition for a concession in either Moratorium or non-Moratorium areas is
close to zero because above 1,000 metres land is unsuitable for palm oil cultivation
(Austin et al., 2015) and for Acacia mangium, the main tree species employed for
the production of wood pulp and paper (Krisnawati et al., 2011). Robustness to this
choice of sample is discussed below, in the final sub-section. Third, as noted earlier,
we undertake separate analyses for dryland and peatland areas. These three steps
can be thought of as a type of “matching” on elevation and land types, whereby
Moratorium and non-Moratorium grid cells are constrained to be similar in these
dimensions. Lastly, we use a suite of matching approaches to ensure the analysis takes
place on a sample whose Moratorium grid cells can be matched to non-Moratorium
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grid-cells on the basis of a set of more specific grid-level characteristics. The main
analysis uses the sample arising from a one-to-one propensity score caliper matching
procedure. Other matching procedures are used to check robustness to this particular
procedure. In the propensity score estimates, the sample ensures common support
in the propensity score (Imbens, 2014). The matched dataset for the main analysis
is used for parametric and non-parametric estimators. For the analysis of the impact
of the Moratorium across forest types (peatland, dryland) and land uses (concession,
non-concession), matching approaches are applied separately. For instance, the
propensity score is estimated separately for each forest type, and the matched dataset
upon which the impact estimated differs from one forest type to another.

Our process of model selection involves a sequence of placebo and falsification tests,
which provide insights on the likelihood that the identification assumption of DD,
parallel trends, holds. Finally, we test the SUTVA assumption. This process leads
us to select a triple differences (DDD) estimator, which provides a correction for
non-parallel trends. The estimators and the process of model selection are now
explained in detail.

Estimators

We use a number of estimators to estimate the causal impact of the Moratorium.
We estimate the Average Treatment on the Treated (ATTDD) using a DD design,
using both parametric and a non-parametric propensity score matching estimator.

The observed data on the outcome variable, Yit, for individual grid-cell i at time t,
are generated via a switching process governed by the occurrence of the Moratorium,
which is indicated by the variable Dit :

Yit = Y0it +Dit (Y1it − Y0it)

where Dit is an indicator variable that interacts a variable for pre- and post- treatment
periods, rt, with an indicator for treatment status after the treatment period, di :
Dit = rtdi (Lee, 2005, p. 100-101). Y0it and Y1it are the potential outcomes for grid
cell i in the treated state (1) and untreated state (0) at time t. Potential outcomes
can be separated into their expected values, µ1it and µ0it, and a mean zero random
component, εkit:

Y0it = µ0it + ε0it

Y1it = µ1it + ε1it

where E [ε0it] = E [ε1it] = 0. Suppose that the εkit are comprised of an individual
fixed effect, λi, and a transitory component, ukit: εkit = λi+ukit. If the pre-treatment
period is T0 and the post-treatment period is T1, then the difference-in-differences
estimator uses the observed data from the switching equation to identify the Average
Treatment on the Treated (ATTDD) defined in terms of the potential outcomes as
follows:
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DD = E [∆T1,T0Yit|di = 1]− E [∆T1,T0Yit|di = 0] (4.8)

= {E [∆T1,T0µ1it|di = 1]− E [∆T1,T0µ0it|di = 1]}
+ {E[∆T1,T0u1it|di = 1]− E [∆T1,T0u0it|di = 0]} (4.9)

= E [∆T1,T0Y1it|di = 1]− E [∆T1,T0Y0it|di = 1] (4.10)

= E [Y1iT1 − Y0iT1|di = 1] = ATTDD (4.11)

where Eq. 4.8 uses the observed data, Eq. 4.9 reflects the potential outcomes, and
Eq. 4.11 is simply a definition. Eq. 4.9 follows because the individual fixed effects,
λi, drop out when first differences are taken. Eq. 4.10 follows under the assumption
of parallel trends in unobservables, that is if:

E[∆T1,T0u1it|di = 1]− E [∆T1,T0u0it|di = 0] = 0

and Eq. 4.11 is the definition of the Average Treatment Effect and follows because
by definition:

E [Y1iT0 − Y0iT0|di = 1] = 0

meaning that potential outcomes pre-treatment are identical for the treated group.
Identification of ATTDD using the DD estimator above does not rely on parametric
assumptions, and is in principle a non-parametric estimator. With the assumption
of a separable disturbance term: εkit = λi + ukit, with individual heterogeneity, λi,
fixed over time and between potential outcomes, the existence of panel data allows
us to take differences within each individual grid cell, i, remove these fixed effects
and effectively control for any endogeneity that might be associated with individual
heterogeneity of this type. A parametric fixed effects regression would use a linear
model to control for individual heterogeneity in a similar way. We use a range of
parametric and non-parametric matching DD estimators to estimate the treatment
effect of the Moratorium. The parametric DD estimator is specified as:

Yit = α + β1Dit +
n∑

k=2

βkXkit + λi + θt + εit (4.12)

where Yit is forest cover in (non-concession) grid cell i in year t, Dit is the time-varying
Moratorium treatment indicator, Xkit are n time-varying control variables, which
could include including climatic controls (minimum and maximum temperature,
precipitation). Other controls, such as slope, elevation, and distance from cities
and roads, are unnecessary for this particular estimation strategy because grid-cell
fixed effects adjust for time-invariant controls. Dit is the “policy” variable taking
the value 1 after 2010 for Moratorium areas, otherwise 0 and β1 is the ATT. This
basic model controls for time-invariant characteristics via the individual grid-level
fixed effects, λi, and time fixed effects, θt, which capture shocks common to all grid
cells such as weather shocks. The estimate of β1 in Eq. 4.12 provides an estimate of
ATT that reflects the average of the annual impacts over the post-treatment period
(from period T1 to T ). Also interesting is to estimate the impact year-by-year, which
requires the following specification (see e.g. Wooldridge, 2021):
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Yit = α +
T∑

s=τ

β1sDsit +
n∑

k=2

βkXit + λi + θt + εit (4.13)

In Eq. 4.13, the β1s coefficients represent the DD estimates of ATT for each year s.
The coefficients are comparable in interpretation to the estimates from our alternative
estimators, which belong to the non-parametric, matched DD family of estimators.

Matching DD methods have some advantages over parametric DD in that they do not
rely on parametric assumptions to control for differences in observable characteristics
(Imbens, 2014) and hence, are more likely to obtain like-for-like comparisons be-
tween treated grid cells and untreated ones. Matching estimators allow for arbitrary
heterogeneity in the treatment effect compared to parametric approaches where
the heterogeneity must be specified explicitly (Caliendo and Kopeinig, 2008). As
discussed in the following sub-section, while differencing accounts for unobservable
fixed effects in DD estimators, under the identifying assumptions matching ensures
that the heterogeneous trend in the transitory component, ϵit, is balanced between
treatment and control groups (see e.g. Chabé-Ferret and Subervie, 2013).

Matching methods have been used to evaluate other area-based conservation policies
due to these properties (Andam et al., 2008; Gaveau et al., 2009; Joppa and Pfaff,
2010b; Nelson and Chomitz, 2011). One typical matching approach matches on
the propensity score: the probability of a unit being in the treated or untreated
group. We use caliper one-to-one propensity score matching so that each Moratorium
cell is matched with a similar non-Moratorium cell on the basis of the likelihood of
being in the Moratorium. While propensity score matching does rely on parametric
assumptions in estimating the propensity score, the estimation of the treatment effect
is otherwise non-parametric, so we maintain the distinction between parametric and
non-parametric (matching) DD approaches in what follows.

Propensity score matching DD conditions the differences in forest cover on the
propensity score P (X) to remove bias in levels and trends from confounding variables
(Imbens, 2014; Chabé-Ferret and Subervie, 2013; Heckman et al., 1997) under the
assumption of selection on observables: di is independent of (Y0, Y1) when outcomes
are conditioned on P (X). Suppose that T is our final post treatment period, then
together with the parallel trends assumption:

ATTDD,T = EP (X) [E [Y1,T − Y1,T1|di = 1, P (XTm)]

− E [Y0,T − Y0,T1|di = 1, P (XTm)]

= E [Y1T − Y0T1|di = 1]

(4.14)

where T ranges from 2012-2018, reflecting the different time-horizons over which the
Moratorium’s impact is estimated, T1 = 2011 is the treatment year, and Tm < T1 is
the pre-treatment year(s) from which the matching variables’ data are taken. To
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estimate ATTDD,T we use one-to-one caliper propensity score matching on data

Y M
it from the Moratorium grid cell i, matched with data Y j,NM

it in cell j from the
non-Moratorium grid-cells:

ÂTTDD,T =
1

NM

∑
i

I0

[[
Y M
i,T − Y M

i,T1

]
−
[
Y j,NM
i,T − Y j,NM

i,T1

]]
(4.15)

where I0 is an indicator variable that is equal to 1 if a grid cell i in the Moratorium
has a counterfactual grid cell j in the non-Moratorium area whose propensity scores
pi and pj fall within the caliper:

|pi − pj| < ϵ

where ε is a predetermined distance in propensity score space. The caliper defines
the set of one-to-one matches from the non-Moratorium area, C (i) , such that
j ∈ C (i). Therefore, I0 = I (min |pi − pj| : |pi − pj| < ϵ). Our large dataset allows
us to overcome the chief concern in the literature on optimal caliper choice: the
loss of sample size with increased precision (Austin, 2009). We use a precise caliper
of 0.0001 which leads to a small percentage of observations being dropped where
Moratorium cells do not have matches within this caliper. These are relatively
low-quality matches and do not appear in C (i). In the process of model selection,
described in the following sub-section, we show the results are in any event insensitive
to the choice of a wider caliper of 0.01. The remaining matched sample is of size
NM . The average of the counterfactual matched outcome is taken in case of ties in
the non-Moratorium group. Our process of model selection suggests that the parallel
trends assumption, which underpins the identification of the treatment effect when
using the DD estimator, may not hold. Triple Difference estimators (DDD) are
argued to have weaker identification assumptions than DD estimators (e.g. Olden
and Møen, 2020, p.11), and can be used as a robustness check or corrective measure
(Olden and Møen, 2020; Chabé-Ferret, 2017). We use DDD as corrective measure
following Chabé-Ferret and Subervie (2013). Our DDD estimator takes the form:

ÂTTDDD,T =
1

NM

∑
i

I0

{[[
Y M
i,T − Y M

i,T1

]
−
[
Y j,NM
i,T − Y j,NM

i,T1

]]
−
([

Y M
i,T ′

1
− Y M

i,T0

]
−
[
Y j,NM
i,T ′

1
− Y j,NM

i,T0

])( T − T1

T ′
1 − T0

)}
(4.16)

where the second line reflects the correction for the non-parallel pre-treatment trends

between T0 and T ′
1 with a correction

(
T−T1

T ′
1−T0

)
to adjust the trend-correction for

potentially different pre- and post-treatment time horizons.

The additional adjustment in the DDD estimator identifies the treatment effect
in the event that the expected divergence of trends between the Moratorium and
non-Moratorium areas is linear in time and the conditioning variables include pre-
treatment outcomes including the year immediately prior to the treatment, in our
case 2010. To demonstrate, leaving the conditioning on observable characteristics
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implicit, in a typical DD framework the ATTDD is non-parametrically identified as
follows:

E [∆T,T1Yit|D = 1]− E [∆T,T1Yit|D = 0]

= ATTDD,T,T1 + E [∆T,T1u1it|di = 1]− E [∆T,T1u0it|di = 0] (4.17)

where Yit are the observable data, ∆T,T1 represents the change operator between the
period T and treatment period T1, ATTDD,T,T1 = E [∆T,T1Yi1t −∆T,T1Yi0t] (and as
above Yikt represent the potential outcomes for treated: k = 1, and untreated: k = 0
grid cells), and the last two terms in Eq. 4.17 are the trends in the unobservable
characteristics in the treated and untreated states, which sum to zero if the parallel
trends assumption holds.

Placebo tests are necessary to test whether or not the pre-trends are parallel in all
cases for the simple DD estimator even when matching on several pre-treatment
outcomes. If they are not parallel then this would imply that the DD estimator
over the time horizon T1 to T is potentially contaminated by a diverging trend in
unobservables: the difference between the last two terms of Eq. 4.17. To try and
resolve this issue, which could be problematic over long-time horizons, the DDD
approach (proposed by Chabé-Ferret and Subervie (2013)) could be adopted. The
main identification assumptions are twofold. First, the non-parallel trend is linear:
E [∆tu1it|di = 1] − E [∆tu0it|di = 0] = γt. Second, the trend holds for all t and is
unaffected by the treatment. With these assumptions, the confounding term in Eq.
4.17 becomes γ (T − T1). For pre-treatment time periods T0 to T ′

1 the DD estimator
in Eq. 4.17 becomes:

E
[
∆T ′

1,T0
Yit|di = 1

]
− E

[
∆T ′

1,T0
Yit|di = 0

]
= ATTDD,T ′

1,T0
+ E

[
∆T ′

1,T0
u1it|di = 1

]
− E

[
∆T ′

1,T0
u0it|di = 0

]
= γ (T ′

1 − T0) (4.18)

because ATTDD,T ′
1,T0

= 0 in the pre-treatment phase. This expression is estimated
using propensity score matching DD in the pre-treatment period for Moratorium
and non-Moratorium areas. Having conditioned on pre-treatment outcomes in the
matching routine, a trend correction is required for the period T1 to T , which requires

a conversion factor:
(

T−T1

T ′
1−T0

)
to relate the estimate in Eq. 4.18 to the required

treatment effect in Eq. 4.16. This is a minor augmentation of the DDD approach
proposed in Chabé-Ferret (2017). The years used in the main analysis were T0 = 2004,
T ′
1 = 2010, T1 = 2011 and T = endpoint year: 2012-2018. For the placebo tests the

placebo treatment year is 2005 and the pre- and post-treatment periods considered
are, respectively, 2000-2004 and 2005-2010, with sensitivity using 2005-2011.
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4.D.2 Model selection and balance tests

We now explain our empirical approach and the motivation for the choice of estimator.
Our model selection process has four steps: (1) a comparison of non-parametric and
parametric estimators; (2) placebo and falsification tests in time; (3) the response
to the placebo tests in time; and, (4) placebo and falsification tests in space, as a
final check on the selected estimator for parallel trends and the comparability of
treatment and control areas.

Step 1: Parametric versus non-parametric estimators

Although ATTDD is non-parametrically identified above, both parametric and non-
parametric estimators can be used to estimate ATTDD. Each controls for time
invariant unobservables and each shares the following identification assumptions:
(i) selection on observables; and, (ii) parallel trends in unobservable characteris-
tics. Parametric estimators are typically less well-suited to dealing with individual
heterogeneity in estimating treatment effects (Heckman et al., 1998). In the difference-
in-differences framework, the parallel trends assumption is often argued to be more
likely to hold when treated units are closely matched to non-treated (Heckman
et al., 1998) and experimental-empirical evidence often supports this view (e.g. Ryan
et al., 2018). Furthermore, parametric approaches to conditioning on observable
characteristics often place restrictive assumptions on functional forms of the relation-
ship between conditioning variables and outcome variables, which are absent from
non-parametric approaches and their estimation of treatment effects. Since these
shortcomings can introduce bias in the estimates, we have an a priori preference
for non-parametric estimates, among which we include propensity score matching.
Nevertheless, matching estimators can also be subject to biases of their own (see e.g.
Chabé-Ferret and Subervie, 2013; King and Nielsen, 2019).

To transparently investigate potential differences between estimators, we undertake
some exploratory sensitivity analysis of different estimators. We estimate parametric
DD models of the form described in Eq. 4.12 using a fixed-effects estimator. We
compare these estimates to a propensity score, one-to-one caliper, matched DD
estimator (NP-DD). To rule out the possibility that the balance in the sample of
observable characteristics between Moratorium and non-Moratorium areas causes
differences between the parametric and non-parametric estimates, we use the same
matched sample for the parametric DD estimation as is used for matched DD esti-
mators (see Imbens, 2014). We then undertake some basic sensitivity analysis on the
non-parametric estimators by relaxing the precision of the matching procedure in
two ways: (i) widening the caliper; and, (ii) sampling matches without replacement.
We then compare the results with the parametric estimates and draw tentative
conclusions.
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Results

Table 4.D.1 presents the results (the ATT for 2017) of this comparative analysis.
The results do not undermine, and rather strengthen, our a priori preference for
non-parametric matching estimators. The parametric estimators (P-1 to Conley-HAC
4) are based on Eq. 4.13. Table 4.D.1 reports the results of these specifications.
P-1 controls for grid-cell (λi) and year (θt) fixed effects. Model P-2 also controls
for district-by-year fixed effects. Standard errors are clustered at the district level.
These interaction effects capture heterogeneous trends by district. Models Conley 1
to Conley 4 are based on the same estimating equation as models P-1 and P-2, but
employ Conley standard errors with respectively 10, 20, 50 and 100km thresholds for
spatial autocorrelation decay. Specifications labelled Conley-HAC 1 to Conley-HAC
4 augment these latter models with Newey-West corrections for heteroskedasticity
and temporal autocorrelations (10 lags).

Comparing estimators P-1 and P-2, we find that the parametric DD is sensitive to
whether or not district-by-year interaction effects are included in the estimation.
The estimated ATT for P-1 is 3.76, whereas with district-by-year fixed effects the
estimate drops by almost 80% to 0.79. Models Conley 1 to Conley-HAC 4 differ
from P-2 exclusively with respect to the standard errors around the point estimates.
We find that for thresholds of spatial autocorrelation decay below 20Km, Conley and
Conley-HAC standard errors are smaller than those clustered at the district level;
these are similar in magnitude to Conley and Conley-HAC standard errors using a
50km radius around observational units, while employing a 100km radius results in
larger standard errors and slightly lower statistical significance. Nonetheless, the
parametric results remain strongly significant for any standard error specification we
deploy. The sensitivity of the ATT’s magnitude to the inclusion of district-by-year
interactions most likely reflects that concessions, and land uses in general, are licensed
and administered at the district level and these administrative processes may differ
across districts, causing trends to diverge in a way that is correlated with the location
of the Moratorium. This suggests that district-level trends should be controlled for
when estimating treatment effects.

Rather than control for this possibility in a parametric model, we use a matching
estimator which matches on grid-level characteristics. The matching variables explic-
itly capture important differences between the Moratorium and non-Moratorium grid
cells, their dynamics and suitability for future concessions. We use pre-treatment
values of: distance to concessions (palm oil, timber and logging), distance to roads
and cities, population (2005 and 2010), forest cover for each year from 2005 to 2010,
elevation, slope, peat depth and above-ground carbon stock in the year 2000. With
regard to the heterogeneous trends that were shown to be an important factor in the
parametric estimator, we control for heterogeneous pre-treatment trends by matching
on pre-treatment trends in forest cover and population for several pre-treatment
years: 2005-2010 for forest cover, 2005 and 2010 for population. We prefer this
approach to the simple inclusion of district-by-year fixed-effects since the approach
in principle controls for more sources of heterogeneous trends due to conditioning on
other matching variables.
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Comparing model P-2 with the propensity score matched result from the main
analysis, NP-DD (caliper = 0.0001), we find that the NP-DD estimates are almost
identical: NP-DD = 0.81 and P-2 = 0.79. Table 4.D.9 shows the extensive list of
matching variables that underpin the NP-DD estimate, which help to control for
heterogeneity.

When the matches are made less precise by obtaining matches without replacement
(NP-1), the matching ATT decreases significantly: NP-1 = 0.36. NP-1, however,
drops ten times the number of observations (> 70,000) in the process, and so is less
favourable. Widening the caliper from 0.0001 to 0.01 (NP-2) drops fewer observations
(2 in total), but this has little effect on the estimates: NP-2 = 0.81, as does removing
the caliper altogether (NP-3), which is equivalent to nearest neighbour matching:
NP-3 = 0.81. With no caliper and no replacement (NP-4), estimates increase towards
the potentially problematic parametric estimates that do not control for district-by-
year effects: NP-4 = 1.6. From these comparisons we conclude that the matching
estimates are sensitive only to extreme reductions in precision of the matching (no
replacement or no caliper), and there are some reasons to prefer the NP-DD estimator.

While these comparisons of estimators are exploratory, we prefer the propensity
score matching estimator because it allows arbitrary heterogeneity in the treatment
effect and closely matches treatment and control cells on the basis of pre-treatment
trends, thereby accommodating heterogeneous pre-trends at district or indeed other
levels, without imposing any additional structure on the estimation process. It is
possible that controlling for district-by-year fixed effects in the parametric model
may attenuate the estimate of the treatment effect by controlling for district level
post-treatment responses, which would be a legitimate channel for the Moratorium
being successful. Furthermore, linear parametric approaches to causal estimation
also have been shown to be problematic in some multi-period cases (Imai and Kim,
2021). We therefore pursue a variety of non-parametric matching estimators to
estimate the impact of the Moratorium while noting that the appropriate parametric
approaches (P-2 to Conley-HAC 4) provide estimates of essentially the same mag-
nitude, albeit slightly lower. We then subject our preferred estimator to rigorous
robustness testing of the matching approach algorithm and identification assumptions.

Step 2: Placebo tests in time

Our model selection approach turns to the identification assumptions of the DD
estimator, namely the parallel trends assumption. Using the preferred non-parametric
matched DD estimates of the treatment effect of the Moratorium for peatland and
dryland forest, we attempt to empirically falsify the parallel trends assumption. To
do this we undertake two distinct temporal placebo tests. The relevant time periods
for the placebo tests can be seen in Figure 4.D.1, which reproduces the trends for
non-concession dryland grid cells for the period 2000-2018, from Figure 4.2.1.

The first placebo test, Placebo Test 1, maintains the one-to-one matches between
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the Moratorium grid cells and the non-Moratorium grid cells that were used in the
original DD estimates shown in Figure 4.2.1 of the main text. In this case, matching
variables are drawn from the period between T0 to T1′ in Figure 4.D.1. These cells are
then subjected to a placebo Moratorium in 2005 rather than the actual Moratorium
in 2011. We use the difference in forest cover post- and pre-placebo treatment, respec-
tively, the period between 2000 and T0, and T0 to T1′ , in Figure 4.D.1, and estimate
the placebo treatment effect ATTDDP . This tests how successful the strategy of
matching on pre-treatment outcomes in 2005-2010 is in ensuring, on average, parallel
trends between Moratorium and non-Moratorium grid cells. The null hypothesis is
that these pre-treatment controls ensure that the parallel trends assumption cannot
be falsified and hence, we ought not to observe a significant effect of the placebo
treatment. The alternative hypothesis is that the parallel trends assumption can
be falsified despite conditioning on outcomes between 2005-2010. Placebo Test 1
is motivated by Chabé-Ferret and Subervie (2013) and Chabé-Ferret (2017), who
showed that matching on pre-treatment outcomes as a means of obtaining parallel
pre-trends can sometimes fail and actually introduce bias. We match on several
pre-treatment lags of the outcome variable, and so our expectation was that the test
would fail to reject the null and hence, fail to falsify the parallel trends assumption.
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Figure 4.D.1: Forest cover trends inside and outside the Moratorium, 2005-2018: non-
concession dryland grid cells.
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The second placebo test in time, Placebo Test 2, is a more traditional placebo test
which shifts the entire analysis in time. That is, matching takes place on pre-placebo
data (2000 to T0) rather than on pre-(real) treatment data (T0 to T1′) as in Placebo
Test 1. Again, the null hypothesis is that the parallel trends assumption of the
matching estimator is not falsified. Both placebo tests are undertaken on each
forest type. Together, these placebo tests can also be seen in light of the concerns
raised by Daw and Hatfield (2018) about regression to the mean when matching on
pre-treatment outcomes.

Results

The placebo/falsification tests indicate that the parallel trends assumption fails
in some cases for the DD estimator. Tables 4.D.2-4.D.7 report the results of all
temporal placebo tests for dryland and peatland. For dryland areas, Placebo Test 1
yields a positive treatment effect in some cases (See Table 4.D.2). For stringency we
undertake sensitivity on the definition of forested land, at the grid-cell scale, to be
included in the analysis ranging from all land (untrimmed) to 30% forest cover in the
base year, 2005, to 60% forest cover in 2005. Our central results use the unrestricted
definition. In all cases but the 60% definition, we reject the null of Placebo Test 1.
On the other hand, Placebo Test 2 is unable to falsify the parallel trends assumption,
with well-defined zero impacts estimated across all three of our definitions of forest
cover.

For peatland areas, Placebo Test 1 fails to reject the null hypothesis and falsify the
parallel trends assumption, suggesting that matching on pre-treatment outcomes
may be sufficient for identification. However, Placebo Test 2 rejects the null, with a
statistically significant and negative effect of the placebo in 2005. This suggests that
the parallel trends assumption may not hold in general for peatland. The failure
of either of the placebo tests for dryland and peatland suggests remedial action is
necessary.

Step 3: Response to placebo tests in time

We now argue that NP-DDD estimator shown in Eq. 4.16, which makes a cor-
rection in such cases, is therefore preferred. Rejection of the null hypothesis of
the Placebo Test 1 is a sign that controlling for pre-treatment variables may have
failed to ensure parallel pre-trends between Moratorium and non-Moratorium grid
cells. Trends in unobservables diverge post-placebo and therefore are likely to do so
post-treatment in the main analysis, when the real treatment happens in 2011 (T1).
Rejection of Placebo Test 2 has a similar implication: falsification of the parallel
trends assumption. While often framed as a test of the parallel trends assump-
tion, these tests are only indicative of unobservable phenomena. Failure to reject
the null is an encouraging sign, rejection is suggestive of a need for remedial measures.

Following Chabé-Ferret and Subervie (2013) and Chabé-Ferret (2017), falsification
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can be ameliorated by a triple differences (DDD) approach that removes the pre-
treatment difference in trends from the NP-DD estimate. Formally, this estimator
(NP-DDD) is given by Eq. 4.16, where the last terms in square brackets represents the
difference in the pre-trend between Moratorium and non-Moratorium areas between
2005 and 2010 at the matched grid-cell level. In Eq. 4.18, the assumption of a linear
trend in the divergence of parallel trends is assumed, and the effect of this trend is
corrected for the time horizon of the treatment effect being estimated (the choice of
T in Figure 4.D.1). This specification is an adaptation to the proposal by Chabé-
Ferret (2017) and its application to deforestation in Chabé-Ferret and Subervie (2013).

Results

In practice, the NP-DDD estimator in Eq. 4.16 requires estimating and removing
an adjusted (for time horizon) version the estimated ATT in the placebo test. For
instance, in Table 4.D.2 we see that 0.181 of the estimated effect in the main NP-
DD estimate (untrimmed) of effect of the Moratorium may well arise because of
non-parallel trends. The NP-DDD estimator simply removes this estimated effect,
adjusting for the different time-horizon, from the NP-DD estimate for each year T
in which it is estimated.

Finally, we perform a third placebo test in time, Placebo Test 3, which aims at estab-
lishing whether the DDD methodology identifies a positive effect of the Moratorium
on dryland cells when it is applied over the 2000-2010 (2011) placebo interval, with
placebo treatment set to start in 2005. For the DDD estimator, we fail to reject the
null of parallel trends in the cases where DD rejected the null. Our main results
are derived using the NP-DDD estimator implemented in this way, and Figure 4.2.2
compares the results from NP-DD and NP-DDD estimators graphically to illustrate
the differences.

Step 4: Placebo tests in space

Finally, as a final check of the robustness of the NP-DDD estimator, we undertake
another placebo-falsification test. We run spatial placebo tests using untreated
cells in the Moratorium (treated) area as the placebo treatment cells. This spatial
placebo test exploits a loophole in the Moratorium rules, which allows for continued
deforestation in pre-2011 (pre-Moratorium) concession areas irrespective of whether
the concessions are in the Moratorium or not. Since grid cells in concessions in
the Moratorium area should be unaffected by the Moratorium, they are obvious
candidates for Moratorium placebo treatment cells.

The null hypothesis of the spatial placebo test is that the NP-DDD estimator is well-
identified: the parallel trends assumption cannot be falsified and there is no impact
of the Moratorium on Moratorium concession cells compared to non-Moratorium
concession cells. The alternative hypothesis is that there remain some residual
unobservable differences between the Moratorium and non-Moratorium areas that
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confound the estimate of the impact of the Moratorium. This would be the implica-
tion of a non-zero estimate of the Moratorium in the spatial placebo test. If the null
hypothesis is rejected, it can be interpreted as a falsification of the parallel trends
assumption. In principle, rejection of the null can inform a spatial triple differences
DDD design to remove any deviation of parallel trends from the central NP-DDD
estimate (Lee, 2005; Ravallion et al., 2005; Gruber, 1994; Wooldridge, 2010). We run
the spatial placebo test for all concession types, and also investigate the placebo for
individual concession and forest types using the non-parametric (Chabé-Ferret, 2017)
NP-DDD matching estimator of the treatment effect in 2011 (T1). The empirical
model can be thought of as Eq. 4.16, with the exception that the treatment and con-
trol data come from the concession cells in the Moratorium and concession cells in the
non-Moratorium areas, instead of Moratorium and non-Moratorium non-concession
forested areas.

Results.

Tables 4.D.7-4.D.8 show the results of these spatial placebo tests, all of which apply
the NP-DDD estimator. Table 4.D.7 shows that for dryland areas, there are no
differences in forest cover between Moratorium and non-Moratorium concession cells.
Logging concessions show a negative effect, which is only statistically significant
at the 10% level. For peatland areas, a significantly positive effect is detected for
logging concessions only (Table 4.D.8), while for all concessions we fail to reject
the null of the placebo test. We take these results to mean that on average, the
NP-DDD is not susceptible to differences in trends due to unobserved differences
between Moratorium and non-Moratorium areas.

With the propensity score, one-to-one, caliper matching NP-DDD estimator shown to
satisfy the spatial placebo test, we undertake some additional checks and robustness
analyses. First, we illustrate the success of our propensity score matching procedure
at balancing the characteristics between Moratorium and non-Moratorium areas.
We then test the robustness of the results to different types of propensity score
matching approaches and a non-propensity score matching procedure, a series of
Coarsened Exact Matching estimates. Finally we test the Stable Unit Treatment
Value Assumption (SUTVA).
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Table 4.D.1: Results of model selection (endpoint 2017)

ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

Main Result 0.813*** 0.0990 8.186 0.000 160012 152118 7894

NP-1 0.357*** 0.0856 4.170 0.000 160012 88120 71892

NP-2 0.81*** 0.1130 7.166 0.000 160012 160010 2

NP-3 0.81*** 0.1130 7.166 0.000 160012 160012 0

NP-4 1.58*** 0.0629 25.126 0.000 160012 160012 0

P-1 3.760*** 0.2509 14.987 0.000 160012 152118 7894

P-2 0.7854*** 0.2612 3.007 0.003 160012 152118 7894

Conley 1 0.7854*** 0.1769 4.440 0.000 160012 152118 7894

Conley 2 0.7854*** 0.2106 3.729 0.000 160012 152118 7894

Conley 3 0.7854*** 0.2630 2.986 0.003 160012 152118 7894

Conley 4 0.7854** 0.3211 2.446 0.014 160012 152118 7894

Conley-HAC 1 0.7854*** 0.1803 4.356 0.000 160012 152118 7894

Conley-HAC 2 0.7854*** 0.2135 3.679 0.000 160012 152118 7894

Conley-HAC 3 0.7854*** 0.2653 2.960 0.003 160012 152118 7894

Conley-HAC 4 0.7854** 0.3230 2.432 0.015 160012 152118 7894

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors for all non-parametric specifications

(NP-1) No replacement, caliper width: 0.0001. 1-to-1 matching keeping ties.

(NP-2) Wider caliper width: 0.01. 1-to-1 matching with replacement, keeping ties.

(NP-3) No caliper, 1-to-1 matching with replacement, keeping ties.

(NP-4) No caliper, no replacement, 1-to-1 matching, keeping ties.

(P-1) Parametric DD, on matched sample from NP-1, year fixed effects, SEs clustered at the district level.

(P-2) Parametric DD, on matched sample from NP-1, year and district*year fixed effects, SEs clustered at the district level.

(Conley 1) Same as P-2, Conley SEs with 10km radius for spatial autocorrelation decay.

(Conley 2) Same as P-2, Conley SEs with 20km radius for spatial autocorrelation decay.

(Conley 3) Same as P-2, Conley SEs with 50km radius for spatial autocorrelation decay.

(Conley 4) Same as P-2, Conley SEs with 100km radius for spatial autocorrelation decay.

(Conley-HAC 1) Same as Conley 1, with Newey-West heteroskedasticity and autocovariance (HAC) correction (10 lags).

(Conley-HAC 2) Same as Conley 2, with Newey-West heteroskedasticity and autocovariance (HAC) correction (10 lags).

(Conley-HAC 3) Same as Conley 3, with Newey-West heteroskedasticity and autocovariance (HAC) correction (10 lags)

(Conley-HAC 4) Same as Conley 4, with Newey-West heteroskedasticity and autocovariance (HAC) correction (10 lags).

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4.D.2: Placebo test in time 1: DD dryland, 2005-2010 outcome, same matching

ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

Untrimmed 0.181** 0.0840 2.158 0.031 160012 152118 7894

30% 0.203** 0.0930 2.175 0.030 144501 136472 8029

60% 0.149 0.1010 1.468 0.142 127375 119284 8091

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4.D.3: Placebo test in time 2: DD dryland, 2005-2010 outcome, matching up to
2004

ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

Untrimmed -0.048 0.0820 -0.580 0.562 160012 152408 7604

30% -0.038 0.0920 -0.409 0.682 144501 136304 8197

60% -0.064 0.1000 -0.640 0.522 127375 119677 7698

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4.D.4: Placebo test in time 1: DD peatland, 2005-2010 outcome, same matching

ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

Untrimmed 0.05 0.0930 0.533 0.594 95154 91024 4130

30% -0.06 0.1010 -0.593 0.553 86897 82832 4065

60% -0.047 0.1090 -0.433 0.665 77777 73554 4223

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4.D.5: Placebo test in time 2: DD peatland, 2005-2010 outcome, matching up to
2004

ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

Untrimmed -0.39*** 0.0890 -4.367 0.000 95154 91132 4022

30% -0.486*** 0.0970 -4.998 0.000 86897 82852 4045

60% -0.496*** 0.1050 -4.741 0.000 77777 73430 4347

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4.D.6: Placebo test in time 3: DDD dryland, placebo treatment in 2005, same
matching

ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

2010 -0.018 0.0920 -0.191 0.848 160012 152118 7894

2011 0.049 0.1060 0.465 0.642 160012 152118 7894

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4.D.7: Spatial placebo: Dryland, 2011-2017 outcome

ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

All concessions -0.33 0.3000 -1.099 0.272 8577 7702 875

Palm Oil 0.909 0.7750 1.173 0.241 2318 2249 69

Timber 0.86 0.9650 0.890 0.373 1183 1176 7

Logging -0.68* 0.4000 -1.697 0.090 5193 5188 5

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 4.D.8: Spatial placebo: Peatland, 2011-2017 outcome

ATT AI SE t-stat p-value Treated Matched Dropped

(treated)

All concessions 0.485 0.4090 1.185 0.236 6930 6604 326

Palm Oil 0.156 0.5960 0.262 0.793 4553 4553 0

Timber 0.437 1.7480 0.250 0.803 643 640 3

Logging 1.067* 0.5490 1.943 0.052 1765 1762 3

Notes: Abadie-Imbens (Abadie and Imbens, 2006) standard errors.

Maximum caliper width: 0.0001. 1-to-1 matching with replacement, keeping ties.

* p < 0.1, ** p < 0.05, *** p < 0.01.
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Balance tests for one-to-one caliper matching

The descriptive statistics in Tables 4.C.1-4.C.8 show that in the raw data there are
large differences between the Moratorium and non-Moratorium areas. Matching
variables are selected on the basis of these differences, shown in Table 4.D.9-4.D.20
by forest type and land use. For example, Table 4.D.9 describes the successful results
of the matching procedure for dryland forest areas, and the success in balancing
the treatment and control grid cells is similar across all of the remaining matching
tables. In Table 4.D.9, forest cover in the six years prior to the treatment (2011)
in the matched sample has a mean difference of no more than 0.5 ha compared to
approximately 15 ha before matching. The standardised difference is no more than
0.55. These small mean differences are also complemented by two comparisons of
the distributions of these characteristics: the Kolmogorov Smirnov test and a test
of differences in the cumulative distribution function (eCDF). Both reveal highly
balanced control variables in the matched sample, with small differences in the CDFs
of the variables. Our conclusion is that the matching procedure performs well.

Table 4.D.9: Dryland forest, untrimmed, matching up to 2010

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2005 109.08 95.49 33.26 0.18 0.11 108.37 108.56 -0.44 0.03 0.02

Forest 2006 108.15 94.25 33.54 0.19 0.11 107.42 107.51 -0.22 0.04 0.02

Forest 2007 107.33 93.12 33.85 0.19 0.11 106.60 106.66 -0.16 0.03 0.02

Forest 2008 106.56 91.92 34.49 0.19 0.11 105.82 105.90 -0.19 0.04 0.02

Forest 2009 105.40 90.23 35.12 0.19 0.12 104.64 104.69 -0.11 0.04 0.02

Forest 2010 104.68 89.23 35.39 0.19 0.12 103.92 103.92 -0.00 0.04 0.02

Elevation 470.04 207.62 96.65 0.47 0.28 457.29 459.78 -0.93 0.07 0.03

Slope 13.14 6.15 104.81 0.47 0.29 12.85 13.12 -4.16 0.08 0.03

Distance roads 35.15 12.34 70.50 0.42 0.28 33.67 35.51 -5.79 0.09 0.05

Distance cities 1588.08 579.06 75.26 0.43 0.26 1512.51 1492.76 1.53 0.14 0.04

Distance palm oil 102.35 167.75 -46.31 0.20 0.07 103.94 102.26 1.16 0.06 0.04

Distance timber 123.84 128.03 -2.91 0.10 0.05 121.11 103.41 12.39 0.07 0.04

Distance logging 87.26 230.05 -82.59 0.32 0.20 90.53 92.81 -1.29 0.06 0.03

AGC 157.82 92.17 171.62 0.57 0.33 157.02 155.03 5.11 0.02 0.01

Population 2005 17.30 328.56 -229.96 0.49 0.28 18.06 21.38 -2.39 0.07 0.04

Population 2010 14.92 328.89 -247.47 0.50 0.29 15.60 18.91 -2.55 0.06 0.04

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.
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Table 4.D.10: Dryland forest, untrimmed, matching up to 2004

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2000 111.83 99.34 31.42 0.17 0.09 111.20 111.46 -0.65 0.03 0.01

Forest 2001 111.41 98.71 31.84 0.18 0.10 110.78 110.98 -0.51 0.03 0.01

Forest 2002 110.87 97.99 32.19 0.18 0.10 110.23 110.41 -0.46 0.03 0.01

Forest 2003 110.55 97.55 32.40 0.18 0.10 109.89 110.05 -0.39 0.03 0.02

Forest 2004 109.78 96.46 32.91 0.18 0.11 109.11 109.21 -0.25 0.03 0.02

Elevation 470.04 207.62 96.65 0.47 0.28 458.01 460.68 -0.99 0.07 0.03

Slope 13.14 6.15 104.81 0.47 0.29 12.86 13.14 -4.22 0.07 0.03

Distance roads 35.15 12.34 70.50 0.42 0.28 33.73 35.50 -5.56 0.09 0.05

Distance cities 1588.08 579.06 75.26 0.43 0.26 1514.88 1501.71 1.02 0.14 0.04

Distance palm oil 102.35 167.75 -46.31 0.20 0.07 103.89 102.83 0.74 0.07 0.04

Distance timber 123.84 128.03 -2.91 0.10 0.05 120.99 104.20 11.76 0.07 0.04

Distance logging 87.26 230.05 -82.59 0.32 0.20 90.38 93.30 -1.66 0.06 0.04

AGC 157.82 92.17 171.62 0.57 0.33 157.04 154.93 5.41 0.02 0.01

Population 2005 17.30 328.56 -229.96 0.49 0.28 18.04 21.40 -2.43 0.07 0.04

Population 2010 14.92 328.89 -247.47 0.50 0.29 15.58 19.08 -2.70 0.06 0.04

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.

Table 4.D.11: Dryland forest, > 30% forest cover in 2005, matching up to 2010

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2005 118.92 110.41 29.53 0.17 0.10 118.46 118.82 -1.22 0.03 0.01

Forest 2006 117.94 109.01 29.87 0.18 0.10 117.46 117.76 -1.01 0.03 0.01

Forest 2007 117.06 107.72 30.24 0.18 0.10 116.57 116.84 -0.86 0.03 0.02

Forest 2008 116.22 106.32 31.14 0.18 0.10 115.73 115.99 -0.82 0.03 0.02

Forest 2009 114.97 104.38 31.96 0.18 0.11 114.47 114.68 -0.63 0.03 0.02

Forest 2010 114.20 103.21 32.28 0.18 0.11 113.68 113.83 -0.44 0.03 0.02

Elevation 471.68 208.82 96.79 0.47 0.28 457.97 461.10 -1.16 0.06 0.03

Slope 13.12 6.21 103.49 0.46 0.29 12.80 13.07 -4.11 0.07 0.02

Distance roads 36.34 12.81 72.16 0.42 0.28 34.81 36.66 -5.76 0.08 0.04

Distance cities 1648.19 611.43 76.28 0.43 0.26 1568.10 1552.27 1.20 0.13 0.04

Distance palm oil 98.81 161.36 -46.28 0.20 0.07 100.44 98.33 1.53 0.06 0.03

Distance timber 127.91 123.30 3.17 0.12 0.05 124.45 106.56 12.44 0.06 0.03

Distance logging 81.38 221.39 -84.92 0.31 0.19 84.70 87.03 -1.38 0.06 0.03

AGC 159.12 94.00 174.17 0.56 0.33 158.25 156.31 5.08 0.03 0.01

Population 2005 16.50 318.27 -221.71 0.48 0.28 17.31 20.49 -2.27 0.07 0.04

Population 2010 14.30 319.18 -240.29 0.50 0.29 15.03 18.28 -2.49 0.06 0.04

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.
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Table 4.D.12: Dryland forest, > 30% forest cover in 2005, matching up to 2004

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2000 121.18 113.93 26.19 0.16 0.07 120.79 121.12 -1.20 0.03 0.01

Forest 2001 120.81 113.34 26.89 0.16 0.08 120.41 120.71 -1.05 0.03 0.01

Forest 2002 120.34 112.64 27.49 0.17 0.09 119.92 120.20 -0.98 0.03 0.01

Forest 2003 120.06 112.23 27.82 0.17 0.09 119.63 119.89 -0.91 0.03 0.01

Forest 2004 119.47 111.26 28.84 0.17 0.09 119.03 119.23 -0.72 0.03 0.02

Elevation 471.68 208.82 96.79 0.47 0.28 457.34 462.50 -1.92 0.06 0.03

Slope 13.12 6.21 103.49 0.46 0.29 12.78 13.04 -3.90 0.07 0.02

Distance roads 36.34 12.81 72.16 0.42 0.28 34.70 36.79 -6.53 0.08 0.04

Distance cities 1648.19 611.43 76.28 0.43 0.26 1566.34 1551.51 1.13 0.13 0.04

Distance palm oil 98.81 161.36 -46.28 0.20 0.07 100.47 98.99 1.07 0.06 0.03

Distance timber 127.91 123.30 3.17 0.12 0.05 124.30 106.51 12.38 0.06 0.04

Distance logging 81.38 221.39 -84.92 0.31 0.19 84.79 87.60 -1.67 0.06 0.03

AGC 159.12 94.00 174.17 0.56 0.33 158.25 156.07 5.71 0.03 0.01

Population 2005 16.50 318.27 -221.71 0.48 0.28 17.33 20.61 -2.34 0.07 0.04

Population 2010 14.30 319.18 -240.29 0.50 0.29 15.04 18.43 -2.60 0.06 0.04

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.

Table 4.D.13: Dryland forest, > 60% forest cover in 2005, matching up to 2010

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2005 126.61 121.58 25.40 0.16 0.09 126.37 126.41 -0.21 0.03 0.02

Forest 2006 125.74 120.27 25.92 0.16 0.09 125.48 125.45 0.12 0.03 0.02

Forest 2007 124.90 118.98 26.29 0.16 0.10 124.62 124.58 0.18 0.03 0.02

Forest 2008 124.08 117.55 27.39 0.16 0.10 123.78 123.71 0.28 0.03 0.02

Forest 2009 122.86 115.57 28.34 0.17 0.10 122.53 122.45 0.28 0.03 0.02

Forest 2010 122.09 114.34 28.80 0.17 0.10 121.74 121.64 0.40 0.03 0.02

Elevation 473.06 210.05 97.03 0.47 0.28 458.02 464.71 -2.49 0.05 0.02

Slope 13.11 6.28 102.41 0.46 0.29 12.76 13.00 -3.64 0.05 0.02

Distance roads 37.66 13.45 73.75 0.43 0.28 35.97 38.13 -6.68 0.07 0.04

Distance cities 1717.08 656.78 77.15 0.43 0.26 1634.30 1627.18 0.53 0.10 0.03

Distance palm oil 96.25 158.63 -47.90 0.20 0.07 97.88 95.02 2.14 0.05 0.02

Distance timber 133.23 120.82 8.43 0.13 0.06 129.22 110.48 12.86 0.05 0.02

Distance logging 76.03 214.49 -87.45 0.30 0.19 79.47 82.90 -2.11 0.05 0.02

AGC 160.50 95.94 176.78 0.56 0.33 159.58 157.33 6.03 0.03 0.01

Population 2005 15.77 303.70 -209.51 0.48 0.27 16.67 20.04 -2.37 0.07 0.04

Population 2010 13.75 305.33 -228.24 0.49 0.28 14.56 18.06 -2.66 0.06 0.04

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.
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Table 4.D.14: Dryland forest, > 60% forest cover in 2005, matching up to 2004

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2000 128.21 124.16 21.27 0.15 0.07 128.01 128.27 -1.38 0.02 0.01

Forest 2001 127.93 123.70 22.11 0.15 0.08 127.72 127.96 -1.25 0.02 0.01

Forest 2002 127.57 123.17 22.79 0.15 0.08 127.35 127.57 -1.15 0.02 0.01

Forest 2003 127.36 122.87 23.17 0.15 0.08 127.14 127.35 -1.08 0.03 0.01

Forest 2004 126.95 122.17 24.41 0.15 0.09 126.72 126.90 -0.94 0.03 0.01

Elevation 473.06 210.05 97.03 0.47 0.28 458.49 464.89 -2.39 0.05 0.02

Slope 13.11 6.28 102.41 0.46 0.29 12.76 13.05 -4.38 0.05 0.02

Distance roads 37.66 13.45 73.75 0.43 0.28 36.07 38.10 -6.26 0.07 0.04

Distance cities 1717.08 656.78 77.15 0.43 0.26 1639.50 1622.20 1.29 0.10 0.03

Distance palm oil 96.25 158.63 -47.90 0.20 0.07 97.79 94.64 2.36 0.05 0.02

Distance timber 133.23 120.82 8.43 0.13 0.06 129.49 108.89 14.13 0.05 0.02

Distance logging 76.03 214.49 -87.45 0.30 0.19 79.26 81.72 -1.52 0.05 0.02

AGC 160.50 95.94 176.78 0.56 0.33 159.64 157.50 5.73 0.03 0.01

Population 2005 15.77 303.70 -209.51 0.48 0.27 16.62 19.81 -2.26 0.07 0.04

Population 2010 13.75 305.33 -228.24 0.49 0.28 14.51 17.84 -2.53 0.06 0.04

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.

Table 4.D.15: Peatland forest, untrimmed, matching up to 2010

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2005 111.44 98.45 32.59 0.19 0.11 111.00 110.89 0.28 0.03 0.01

Forest 2006 110.66 97.15 33.45 0.19 0.11 110.20 110.09 0.27 0.03 0.02

Forest 2007 109.83 95.79 34.25 0.20 0.12 109.35 109.23 0.27 0.03 0.01

Forest 2008 108.98 94.38 35.08 0.20 0.12 108.47 108.37 0.25 0.03 0.01

Forest 2009 107.95 92.58 36.22 0.20 0.12 107.41 107.28 0.32 0.04 0.02

Forest 2010 107.09 91.37 36.48 0.20 0.12 106.53 106.37 0.38 0.04 0.02

Elevation 87.08 48.09 23.94 0.19 0.11 83.31 76.20 4.41 0.18 0.10

Slope 3.29 1.98 23.62 0.08 0.03 3.20 3.03 3.07 0.19 0.09

Distance roads 54.33 24.15 69.26 0.40 0.26 53.10 54.26 -2.67 0.15 0.09

Distance cities 1738.69 783.99 76.37 0.41 0.25 1693.34 1743.92 -4.08 0.13 0.04

Distance palm oil 59.65 77.76 -30.13 0.17 0.10 59.10 57.01 3.43 0.14 0.08

Distance timber 134.29 89.12 31.52 0.24 0.12 127.53 117.72 7.04 0.14 0.08

Distance logging 49.65 125.51 -118.54 0.24 0.13 50.68 49.37 2.00 0.12 0.06

AGC 119.68 68.44 97.41 0.43 0.26 117.36 118.00 -1.23 0.08 0.02

Population 2005 21.88 429.29 -214.34 0.41 0.25 22.79 26.85 -2.09 0.05 0.03

Population 2010 20.22 435.10 -208.19 0.42 0.26 21.07 25.34 -2.10 0.06 0.03

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.
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Table 4.D.16: Peatland forest, untrimmed, matching up to 2004

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2000 114.26 102.69 30.14 0.17 0.09 113.86 113.73 0.34 0.05 0.02

Forest 2001 113.81 102.00 30.60 0.18 0.10 113.40 113.26 0.35 0.05 0.02

Forest 2002 113.30 101.26 31.02 0.18 0.10 112.87 112.73 0.37 0.05 0.02

Forest 2003 113.00 100.80 31.32 0.18 0.10 112.57 112.40 0.44 0.06 0.02

Forest 2004 112.22 99.60 32.06 0.19 0.11 111.77 111.63 0.36 0.05 0.02

Elevation 87.08 48.09 23.94 0.19 0.11 83.50 76.31 4.44 0.18 0.10

Slope 3.29 1.98 23.62 0.08 0.03 3.21 3.07 2.43 0.19 0.10

Distance roads 54.33 24.15 69.26 0.40 0.26 53.05 54.03 -2.25 0.15 0.09

Distance cities 1738.69 783.99 76.37 0.41 0.25 1695.90 1744.58 -3.92 0.13 0.04

Distance palm oil 59.65 77.76 -30.13 0.17 0.10 59.12 56.79 3.84 0.13 0.08

Distance timber 134.29 89.12 31.52 0.24 0.12 127.75 118.00 6.99 0.14 0.08

Distance logging 49.65 125.51 -118.54 0.24 0.13 50.62 49.34 1.97 0.12 0.06

AGC 119.68 68.44 97.41 0.43 0.26 117.45 118.25 -1.53 0.08 0.02

Population 2005 21.88 429.29 -214.34 0.41 0.25 22.77 26.83 -2.09 0.05 0.03

Population 2010 20.22 435.10 -208.19 0.42 0.26 21.04 25.30 -2.09 0.06 0.04

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.

Table 4.D.17: Peatland forest, > 30% forest cover in 2005, matching up to 2010

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2005 120.39 112.14 29.15 0.18 0.10 120.12 119.96 0.55 0.05 0.02

Forest 2006 119.58 110.69 30.42 0.18 0.10 119.29 119.19 0.33 0.05 0.02

Forest 2007 118.71 109.15 31.58 0.19 0.11 118.39 118.31 0.27 0.05 0.02

Forest 2008 117.81 107.55 32.72 0.19 0.11 117.46 117.39 0.25 0.05 0.02

Forest 2009 116.72 105.52 34.27 0.19 0.12 116.34 116.25 0.28 0.05 0.02

Forest 2010 115.81 104.13 34.54 0.20 0.12 115.40 115.30 0.28 0.05 0.02

Elevation 90.29 48.98 24.89 0.20 0.11 86.65 80.08 3.99 0.17 0.10

Slope 3.38 2.02 24.20 0.09 0.04 3.29 3.16 2.38 0.19 0.10

Distance roads 56.35 25.50 69.90 0.41 0.26 55.09 55.87 -1.78 0.18 0.10

Distance cities 1800.73 830.62 77.52 0.41 0.25 1757.17 1798.41 -3.32 0.15 0.04

Distance palm oil 61.92 75.10 -22.25 0.19 0.11 61.42 58.80 4.37 0.13 0.07

Distance timber 141.70 88.66 36.58 0.26 0.13 134.88 126.11 6.20 0.13 0.08

Distance logging 48.35 120.26 -115.38 0.23 0.12 49.35 48.12 1.94 0.11 0.05

AGC 122.20 70.04 100.25 0.44 0.26 119.89 120.86 -1.86 0.08 0.02

Population 2005 19.57 414.06 -220.31 0.42 0.25 20.44 24.18 -2.04 0.06 0.03

Population 2010 18.33 419.06 -210.11 0.42 0.26 19.15 23.11 -2.03 0.06 0.03

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.
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Table 4.D.18: Peatland forest, > 30% forest cover in 2005, matching up to 2004

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2000 122.51 115.81 24.79 0.16 0.08 122.28 122.34 -0.22 0.05 0.02

Forest 2001 122.19 115.19 25.78 0.17 0.09 121.95 122.01 -0.22 0.05 0.02

Forest 2002 121.78 114.52 26.55 0.17 0.09 121.53 121.59 -0.22 0.06 0.02

Forest 2003 121.55 114.11 27.05 0.17 0.09 121.29 121.35 -0.20 0.06 0.02

Forest 2004 120.99 113.14 28.18 0.18 0.10 120.71 120.77 -0.20 0.06 0.02

Elevation 90.29 48.98 24.89 0.20 0.11 86.33 77.35 5.46 0.16 0.09

Slope 3.38 2.02 24.20 0.09 0.04 3.28 3.07 3.77 0.19 0.09

Distance roads 56.35 25.50 69.90 0.41 0.26 55.10 56.22 -2.53 0.18 0.10

Distance cities 1800.73 830.62 77.52 0.41 0.25 1757.06 1816.16 -4.75 0.15 0.04

Distance palm oil 61.92 75.10 -22.25 0.19 0.11 61.45 58.83 4.37 0.13 0.07

Distance timber 141.70 88.66 36.58 0.26 0.13 134.73 125.05 6.85 0.13 0.08

Distance logging 48.35 120.26 -115.38 0.23 0.12 49.33 48.09 1.95 0.11 0.05

AGC 122.20 70.04 100.25 0.44 0.26 119.86 120.56 -1.35 0.08 0.02

Population 2005 19.57 414.06 -220.31 0.42 0.25 20.44 24.22 -2.06 0.05 0.03

Population 2010 18.33 419.06 -210.11 0.42 0.26 19.14 23.18 -2.07 0.06 0.03

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.

Table 4.D.19: Peatland forest, > 60% forest cover in 2005, matching up to 2010

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2005 127.17 122.55 22.74 0.16 0.09 127.03 126.93 0.51 0.04 0.02

Forest 2006 126.46 121.21 24.59 0.16 0.10 126.30 126.22 0.37 0.05 0.02

Forest 2007 125.67 119.68 26.44 0.17 0.10 125.48 125.45 0.13 0.04 0.02

Forest 2008 124.83 118.05 28.16 0.17 0.10 124.61 124.60 0.03 0.04 0.02

Forest 2009 123.81 116.00 30.34 0.18 0.11 123.55 123.56 -0.03 0.04 0.02

Forest 2010 122.93 114.56 30.80 0.18 0.11 122.64 122.58 0.20 0.05 0.02

Elevation 92.96 49.41 25.89 0.21 0.12 88.79 82.32 3.88 0.17 0.09

Slope 3.44 2.06 24.49 0.09 0.04 3.34 3.21 2.35 0.19 0.09

Distance roads 58.53 27.42 69.53 0.41 0.25 57.24 58.04 -1.77 0.18 0.09

Distance cities 1873.79 898.77 78.12 0.41 0.25 1829.01 1867.37 -3.09 0.15 0.04

Distance palm oil 63.94 73.52 -16.40 0.20 0.12 63.45 60.67 4.71 0.12 0.07

Distance timber 150.56 89.51 41.61 0.29 0.15 142.98 133.61 6.55 0.13 0.07

Distance logging 46.85 114.19 -111.88 0.22 0.12 47.89 46.62 2.06 0.11 0.05

AGC 124.77 72.15 102.93 0.45 0.26 122.32 123.65 -2.60 0.09 0.02

Population 2005 17.09 397.29 -229.70 0.41 0.25 17.97 21.50 -2.07 0.07 0.03

Population 2010 16.27 399.93 -212.99 0.42 0.26 17.10 21.07 -2.14 0.06 0.03

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.
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Table 4.D.20: Peatland forest, > 60% forest cover in 2005, matching up to 2004

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2000 128.57 125.12 17.59 0.14 0.07 128.43 128.56 -0.63 0.03 0.01

Forest 2001 128.34 124.66 18.68 0.14 0.08 128.20 128.32 -0.64 0.03 0.01

Forest 2002 128.05 124.16 19.62 0.15 0.08 127.90 128.03 -0.63 0.03 0.01

Forest 2003 127.89 123.88 20.18 0.15 0.08 127.74 127.86 -0.59 0.04 0.01

Forest 2004 127.54 123.21 21.55 0.15 0.09 127.37 127.50 -0.65 0.04 0.02

Elevation 92.96 49.41 25.89 0.21 0.12 88.56 80.98 4.56 0.17 0.09

Slope 3.44 2.06 24.49 0.09 0.04 3.33 3.16 3.07 0.19 0.09

Distance roads 58.53 27.42 69.53 0.41 0.25 57.21 57.96 -1.67 0.18 0.09

Distance cities 1873.79 898.77 78.12 0.41 0.25 1829.60 1870.73 -3.31 0.15 0.04

Distance palm oil 63.94 73.52 -16.40 0.20 0.12 63.42 60.84 4.36 0.12 0.07

Distance timber 150.56 89.51 41.61 0.29 0.15 142.77 134.00 6.14 0.13 0.07

Distance logging 46.85 114.19 -111.88 0.22 0.12 47.96 46.17 2.91 0.11 0.05

AGC 124.77 72.15 102.93 0.45 0.26 122.21 123.40 -2.33 0.09 0.02

Population 2005 17.09 397.29 -229.70 0.41 0.25 17.99 21.55 -2.09 0.06 0.03

Population 2010 16.27 399.93 -212.99 0.42 0.26 17.13 21.08 -2.13 0.06 0.03

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.

Table 4.D.21: Dryland forest, cells above 1000m, matching up to 2010

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2005 109.30 103.29 14.64 0.10 0.06 109.44 108.79 1.59 0.02 0.01

Forest 2006 108.58 102.23 15.32 0.10 0.06 108.70 108.02 1.64 0.02 0.01

Forest 2007 108.02 101.31 16.06 0.11 0.06 108.13 107.49 1.54 0.02 0.01

Forest 2008 107.43 100.34 16.85 0.11 0.06 107.54 106.90 1.53 0.02 0.01

Forest 2009 106.43 98.69 18.11 0.11 0.07 106.52 105.99 1.24 0.02 0.01

Forest 2010 105.83 97.69 18.86 0.11 0.07 105.91 105.37 1.26 0.02 0.01

Elevation 1634.42 1421.82 36.25 0.21 0.12 1584.76 1644.43 -10.84 0.06 0.02

Slope 19.75 13.38 93.64 0.36 0.24 19.41 19.21 3.17 0.03 0.02

Distance roads 34.24 19.95 52.28 0.32 0.20 34.08 36.55 -9.12 0.06 0.02

Distance cities 1915.67 1120.87 51.68 0.41 0.21 1883.70 2111.55 -15.13 0.12 0.07

Distance palm oil 95.77 135.35 -37.14 0.14 0.07 92.14 91.42 0.69 0.07 0.03

Distance timber 154.93 147.36 5.04 0.10 0.06 144.37 132.79 7.93 0.07 0.04

Distance logging 76.62 157.52 -57.13 0.16 0.08 72.46 65.27 5.25 0.08 0.03

AGC 159.03 110.94 167.21 0.49 0.29 159.03 159.07 -0.13 0.04 0.02

Population 2005 14.66 180.94 -160.89 0.39 0.27 13.36 15.88 -2.82 0.08 0.04

Population 2010 12.61 192.48 -153.10 0.40 0.28 11.50 14.08 -2.43 0.08 0.04

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.
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Table 4.D.22: Peatland forest, cells above 1000m, matching up to 2010

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2005 115.92 118.13 -5.92 0.05 0.02 116.89 116.68 0.55 0.09 0.02

Forest 2006 115.65 117.77 -5.67 0.05 0.02 116.68 116.34 0.88 0.10 0.03

Forest 2007 115.43 117.44 -5.34 0.05 0.02 116.59 115.67 2.40 0.09 0.02

Forest 2008 115.27 117.09 -4.82 0.05 0.02 116.49 114.99 3.89 0.10 0.03

Forest 2009 114.96 116.58 -4.29 0.05 0.02 116.04 114.68 3.53 0.09 0.03

Forest 2010 114.65 116.27 -4.23 0.04 0.02 115.94 114.43 3.92 0.09 0.03

Elevation 1556.01 1568.82 -2.70 0.13 0.05 1505.52 1591.79 -17.44 0.19 0.09

Slope 22.45 13.72 99.12 0.37 0.24 20.92 21.39 -5.43 0.18 0.05

Distance roads 41.38 33.58 28.68 0.19 0.09 38.52 43.15 -16.53 0.19 0.05

Distance cities 2700.91 1808.45 49.44 0.30 0.16 2580.48 3082.23 -31.72 0.24 0.08

Distance palm oil 94.65 106.80 -19.80 0.13 0.04 97.98 97.90 0.13 0.19 0.07

Distance timber 251.93 246.14 4.68 0.17 0.06 257.39 242.91 11.92 0.16 0.06

Distance logging 45.27 71.69 -61.49 0.21 0.12 43.01 53.34 -37.60 0.30 0.14

AGC 150.48 109.44 116.33 0.47 0.29 149.33 144.63 12.80 0.22 0.09

Population 2005 9.07 88.07 -127.77 0.38 0.25 5.90 7.56 -12.73 0.17 0.07

Population 2010 8.90 116.32 -126.65 0.39 0.26 5.84 6.49 -4.78 0.12 0.05

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.

Table 4.D.23: Dryland forest, all-elevation cells, matching up to 2010

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2005 109.15 95.90 32.36 0.18 0.11 109.01 109.67 -1.60 0.01 0.01

Forest 2006 108.28 94.67 32.83 0.19 0.11 108.14 108.77 -1.53 0.02 0.01

Forest 2007 107.53 93.56 33.35 0.19 0.11 107.39 108.00 -1.47 0.02 0.01

Forest 2008 106.82 92.36 34.14 0.19 0.11 106.67 107.31 -1.50 0.02 0.01

Forest 2009 105.70 90.68 34.91 0.19 0.12 105.55 106.17 -1.46 0.02 0.01

Forest 2010 105.02 89.67 35.27 0.19 0.12 104.86 105.46 -1.38 0.02 0.01

Elevation 816.19 271.64 82.35 0.50 0.31 804.01 810.41 -0.98 0.06 0.03

Slope 15.10 6.53 116.55 0.51 0.32 14.99 15.00 -0.07 0.04 0.01

Distance roads 34.88 12.74 71.53 0.43 0.28 34.65 37.11 -7.95 0.07 0.04

Distance cities 1685.47 607.63 76.43 0.45 0.26 1668.69 1728.52 -4.27 0.09 0.03

Distance palm oil 100.39 166.04 -49.76 0.21 0.07 100.59 100.86 -0.21 0.04 0.02

Distance timber 133.08 129.05 2.75 0.12 0.06 132.00 115.03 11.61 0.05 0.02

Distance logging 84.10 226.23 -86.52 0.31 0.18 84.68 84.27 0.25 0.04 0.02

AGC 158.18 93.16 182.13 0.58 0.33 157.97 155.70 6.34 0.04 0.02

Population 2005 16.51 320.78 -240.16 0.47 0.28 16.67 18.72 -1.60 0.07 0.04

Population 2010 14.24 321.69 -247.64 0.49 0.29 14.39 16.65 -1.81 0.07 0.04

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.
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Table 4.D.24: Peatland forest, all-elevation cells, matching up to 2010

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Forest 2005 111.53 98.58 32.54 0.19 0.11 111.13 111.17 -0.10 0.03 0.01

Forest 2006 110.76 97.28 33.41 0.19 0.11 110.34 110.40 -0.16 0.03 0.02

Forest 2007 109.94 95.93 34.23 0.20 0.12 109.50 109.55 -0.13 0.03 0.01

Forest 2008 109.11 94.53 35.09 0.20 0.12 108.64 108.70 -0.12 0.03 0.01

Forest 2009 108.09 92.74 36.25 0.20 0.12 107.60 107.64 -0.08 0.04 0.02

Forest 2010 107.24 91.53 36.52 0.20 0.12 106.73 106.73 0.01 0.04 0.02

Elevation 116.39 57.84 21.72 0.19 0.11 112.14 101.69 3.92 0.18 0.10

Slope 3.67 2.06 25.93 0.10 0.04 3.56 3.31 4.04 0.19 0.09

Distance roads 54.08 24.21 68.89 0.40 0.26 52.93 54.08 -2.65 0.15 0.09

Distance cities 1757.89 790.56 76.12 0.41 0.25 1713.34 1763.31 -3.98 0.13 0.04

Distance palm oil 60.34 77.95 -29.17 0.17 0.10 59.81 57.08 4.48 0.13 0.08

Distance timber 136.64 90.13 32.32 0.24 0.12 130.31 120.73 6.83 0.14 0.08

Distance logging 49.56 125.17 -118.79 0.24 0.13 50.47 49.44 1.59 0.12 0.06

AGC 120.29 68.71 98.29 0.44 0.26 118.15 118.71 -1.07 0.08 0.02

Population 2005 21.62 427.10 -215.25 0.41 0.25 22.44 26.42 -2.07 0.05 0.03

Population 2010 20.00 433.05 -208.98 0.42 0.26 20.75 24.99 -2.10 0.06 0.03

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.

Table 4.D.25: Dryland “intact primary” forest, matching up to 2010

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Primary forest 2005 80.40 52.40 43.99 0.20 0.19 79.00 78.99 0.03 0.04 0.03

Primary forest 2006 80.09 52.06 44.02 0.20 0.19 78.68 78.64 0.07 0.04 0.03

Primary forest 2007 79.77 51.71 44.05 0.21 0.19 78.37 78.30 0.10 0.04 0.03

Primary forest 2008 79.49 51.37 44.14 0.21 0.19 78.08 78.00 0.13 0.03 0.03

Primary forest 2009 79.03 50.85 44.19 0.21 0.19 77.63 77.52 0.17 0.03 0.03

Primary forest 2010 78.73 50.48 44.28 0.21 0.19 77.32 77.18 0.22 0.03 0.03

Elevation 470.04 207.62 96.65 0.47 0.28 457.63 459.76 -0.79 0.07 0.03

Slope 13.14 6.15 104.81 0.47 0.29 12.85 13.14 -4.32 0.07 0.02

Distance roads 35.15 12.34 70.50 0.42 0.28 33.70 35.46 -5.56 0.09 0.05

Distance cities 1588.08 579.06 75.26 0.43 0.26 1512.67 1496.02 1.29 0.13 0.04

Distance palm oil 102.35 167.75 -46.31 0.20 0.07 103.96 102.84 0.78 0.07 0.04

Distance timber 123.84 128.03 -2.91 0.10 0.05 121.04 103.89 12.01 0.07 0.04

Distance logging 87.26 230.05 -82.59 0.32 0.20 90.49 93.82 -1.89 0.06 0.04

AGC 157.82 92.17 171.62 0.57 0.33 157.02 154.96 5.31 0.02 0.01

Population 2005 17.30 328.56 -229.96 0.49 0.28 18.05 21.23 -2.29 0.07 0.04

Population 2010 14.92 328.89 -247.47 0.50 0.29 15.59 18.89 -2.54 0.06 0.04

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.
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Table 4.D.26: Peatland “intact primary” forest, matching up to 2010

Unmatched Matched

T C Diff KS eCDF T C Diff KS eCDF

Primary forest 2005 87.07 57.25 47.97 0.22 0.20 86.12 85.76 0.59 0.02 0.01

Primary forest 2006 86.80 56.86 48.11 0.22 0.20 85.85 85.49 0.57 0.02 0.01

Primary forest 2007 86.46 56.36 48.33 0.22 0.20 85.50 85.15 0.57 0.02 0.01

Primary forest 2008 86.12 55.91 48.46 0.22 0.20 85.16 84.81 0.56 0.02 0.01

Primary forest 2009 85.67 55.32 48.63 0.23 0.20 84.70 84.33 0.60 0.02 0.01

Primary forest 2010 85.22 54.79 48.70 0.23 0.20 84.24 83.84 0.65 0.02 0.01

Elevation 87.08 48.09 23.94 0.19 0.11 83.72 75.37 5.17 0.18 0.10

Slope 3.29 1.98 23.62 0.08 0.03 3.22 3.03 3.44 0.19 0.09

Distance roads 54.33 24.15 69.26 0.40 0.26 53.10 54.31 -2.77 0.15 0.09

Distance cities 1738.69 783.99 76.37 0.41 0.25 1696.50 1741.37 -3.62 0.13 0.04

Distance palm oil 59.65 77.76 -30.13 0.17 0.10 59.18 56.66 4.15 0.13 0.08

Distance timber 134.29 89.12 31.52 0.24 0.12 127.92 118.59 6.69 0.14 0.09

Distance logging 49.65 125.51 -118.54 0.24 0.13 50.60 49.77 1.27 0.12 0.06

AGC 119.68 68.44 97.41 0.43 0.26 117.55 118.10 -1.05 0.08 0.02

Population 2005 21.88 429.29 -214.34 0.41 0.25 22.72 26.74 -2.07 0.05 0.03

Population 2010 20.22 435.10 -208.19 0.42 0.26 21.00 25.39 -2.16 0.06 0.03

Notes: 1000 bootstrap samples. T: treated group. C: control group. Diff: absolute standardised difference.

KS: Kolmogorov-Smirnov test statistic. eCDF: mean difference in empirical CDFs.
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4.E Robustness

4.E.1 Sensitivity to matching procedures

We conduct additional sensitivity analyses on the assumptions used in propensity
score matching estimates and a robustness analysis of the central NP-DDD on al-
ternative approaches to matching procedures that do not rely on the propensity
score. In part these test the possibility that propensity score matching may introduce
biases due to the way in which it reduces the dimensionality of the matching problem
to matching on a single dimension: the propensity score (e.g. King and Nielsen, 2019).

On the sensitivity of the propensity score estimates to the parameter choices in
implementation, the analyses are: (1) k > 1 nearest neighbours analysis in which we
test the sensitivity of our results to matching on k = 2, 3, 5 nearest neighbours; and,
(2) caliper choices, where we test calipers of 0.01 and 0.001 in one-to-one nearest
neighbour matching. With regard to alternative, non-propensity score, matching esti-
mators we undertake Coarsened Exact Matching (CEM) (King and Zeng, 2006; Iacus
et al., 2012). The use of CEM means that the sample sizes are slightly more sensitive
to particular choices of matching variables and the coarseness of the matching. For
this reason we undertake four separate CEM approaches with various degrees of
coarseness to understand these sensitivities. We use the STATA 16 cem routine and
default coarseness settings unless otherwise stated (See table notes).

Tables 4.B.13 and 4.B.14 shows the results of the sensitivity analyses on dryland
and peatland forests. The results show that the main results are not being driven by
the choice of the propensity score matching estimator over CEM. Tables 4.B.13 and
4.B.14 show that the CEM estimates do not differ to any great extent for peatland
and dryland forest. Furthermore, Tables 4.B.17 and 4.B.18 show that the main results
are robust to the number of nearest neighbours chosen for 2,3 and 5 neighbours.
Finally, our choice of sample removed areas above 1,000 m for agronomic reasons.
Tables 4.B.17 and 4.B.18 also show that this selection of the sample is not driving
the results either. Overall, these results are strongly supportive of our estimation
approach leading to our main results.

Testing the SUTVA assumption using Regression Discontinuity: ‘Leakage’?

A final identification assumption of the DD and DDD estimators is the Stable Unit
Treatment Value Assumption (SUTVA): the treatment causes leakage to untreated
forest areas via spatial, behavioural or general equilibrium effects, a common con-
founder in the evaluation of area-based policies (Gaveau et al., 2009; Nelson and
Chomitz, 2011; Andam et al., 2008; Joppa and Pfaff, 2010a; Joppa and Pfaff, 2010b).
If protection via the Moratorium induces the displacement of forest clearing to outside
the Moratorium’s boundaries, deforestation rates inside and outside these boundaries
are contemporaneously affected in opposite directions resulting in treatment effects of
a higher magnitude than the “true” effects. To check for leakage, we use a regression
discontinuity design (Lee and Lemieux, 2010; Calonico et al., 2014) with a sharp
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cut-off at the Moratorium’s boundaries. Regression discontinuity estimates the LATE
of the Moratorium in the proximity of its boundaries with non-Moratorium land. In
particular, we estimate the following equation (following Burgess et al. (2019)):

Di = α + β1Moratoriumi + β2Xi + f(Distancei) + ϵi

where Di is deforestation (in pixels) in grid cell i; Moratoriumi is a binary indicator
representing treatment assignment, Xi is a vector of cross-sectional control variables,
namely slope, elevation, distance from cities and roads, and above-ground biomass
content, and

f(Distancei) = Moratoriumi ∗ fMoratorium(Distancei)+

+ (1−Moratoriumi)fNon−Moratorium(Distancei)

is a polynomial term which weighs observations with respect to their distance from
the Moratorium’s boundaries.

We specify separate linear polynomials on both sides of the boundary cut-off (follow-
ing Gelman and Imbens (2019) and Burgess et al. (2019)), and estimate treatment
effects via OLS regressions with robust standard errors clustered at the district
level. Our preferred results are obtained via separate linear polynomials and optimal
bandwidth selection through the Calonico et al. (2014) method. In Fig. 4.E.1, we
also present results using the Imbens and Kalyanaraman (2012) bandwidth selection
algorithm (panel B).

In Fig. 4.E.2-4.E.6, we visualise the full dataset employed in the spatial regression
discontinuity designs, letting the bandwidth size vary according to either the Calonico
et al. (2014) or the Imbens and Kalyanaraman (2012) method. First, we report two
plots which relate the forcing variable, distance from the Moratorium border, to
forest cover in pixels, for 2004 and 2010 (Fig. 4.E.2). We treat 2004 as the “base
year” since we estimate regression discontinuity LATEs for 2005-2018. As shown in
Fig. 4.E.2 (left panel), forest cover is not distributed smoothly around the threshold
at the baseline, with Moratorium grid cells discontinuously more forested than the
surrounding areas. Fig. 4.E.2 (right panel) confirms the trend for 2010, the actual
baseline year prior to the implementation of the Moratorium. These descriptive
results are a confirmation of the economic marginality of Moratorium grid cells,
which tended to be cleared at a slower rate than non-Moratorium grid cells in the
immediate vicinity, even before the Moratorium was implemented.

In Fig. 4.E.3 and 4.E.4, we report the discontinuity in deforestation rates around
Moratorium boundaries, restricted to the bandwidth level calculated with our pre-
ferred Calonico et al. (2014) procedure. Fig. 4.E.3 examines pre-treatment years
while Fig. 4.E.4 visualises data for 2011-2018. Clearly, deforestation is persistently
higher outside of Moratorium boundaries, starting from 2005 and up until 2018, with
only slight changes in the underlying data distribution. In Fig. 4.E.5 and 4.E.6, we
report analogous regression discontinuity plots using the Imbens and Kalyanaraman
(2012) optimal bandwidth selection procedure, which yield similar results: deforesta-
tion rates are always higher outside the Moratorium, enhancing our confidence in
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ruling out the occurrence of spatial leakage.

We perform several robustness checks to assess the validity of our regression dis-
continuity estimates, which rule out the potential role of leakage in our results. In
particular, we first run regressions with alternative bandwidths, namely: a 5 km
fixed bandwidth; a 10 km fixed bandwidth; and, a 20 km fixed bandwidth (reported
in the top row of Fig. 4.E.7). Given the spatial configuration of the Moratorium
(Fig. 4.2.2), our bandwidths cover a large extent of non-Moratorium cells in which
leakage could feasibly occur. One reason why we might not observe a leakage effect
is because the Moratorium’s boundaries have changed after forest areas dropped out
of the Moratorium. This can be ruled out, at least partially, by the application of
these different bandwidths.

The sensitivity of our results is tested with respect to alternative polynomial specifi-
cations, employing a quadratic function of distance on both sides of the cut-off using:
the Imbens and Kalyanaraman (2012) optimal bandwidth; a 10 km fixed bandwidth;
and, the Calonico et al. (2014) optimal bandwidth. These results are reported in the
bottom row of Fig. 4.E.7. Notably, the 95% confidence interval for the regression
discontinuity LATE always includes zero, thereby reassuring us about the stability
of our estimates with respect to alternative specifications. We are therefore able to
rule out the role of leakage in affecting our main results.
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Figure 4.E.1: Regression discontinuity LATE with Calonico et al. (2014) bandwidth (A);
regression discontinuity LATE with Imbens and Kalyanaraman (2012) bandwidth (B).
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Figure 4.E.2: Forest cover in (A) 2004 and (B) 2010, with respect to distance from
Moratorium boundaries

238



Chapter 4 REDD+ in Indonesia

0

3

6

9

12

-3 0 3

Distance from Moratorium Border, Km

D
e

fo
re

s
ta

tio
n

, 
h

a

2005

0

2

4

6

-4 -2 0 2 4

Distance from Moratorium Border, Km

D
e

fo
re

s
ta

tio
n

, 
h

a

2006

0

2

4

6

-2 0 2

Distance from Moratorium Border, Km

D
e

fo
re

s
ta

tio
n

, 
h

a

2007

0

2

4

-2 0 2

Distance from Moratorium Border, Km

D
e

fo
re

s
ta

tio
n

, 
h

a

2008

0.0

2.5

5.0

7.5

10.0

-4 -2 0 2 4

Distance from Moratorium Border, Km

D
e

fo
re

s
ta

tio
n

, 
h

a

2009

0

5

10

15

-3 0 3

Distance from Moratorium Border, Km

D
e

fo
re

s
ta

tio
n

, 
h

a
2010

Legend Moratorium Non-Moratorium

Figure 4.E.3: Deforestation in the proximity of Moratorium boundaries, Calonico et al.
(2014) bandwidth, pre-treatment years.
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Figure 4.E.4: Deforestation in the proximity of Moratorium boundaries, Calonico et al.
(2014) bandwidth, post-treatment years.
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Figure 4.E.5: Deforestation in the proximity of Moratorium boundaries, Imbens and
Kalyanaraman (2012) bandwidth, pre-treatment years.
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Figure 4.E.6: Deforestation in the proximity of Moratorium boundaries, Imbens and
Kalyanaraman (2012) bandwidth, post-treatment years.
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Figure 4.E.7: Regression discontinuity robustness checks
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Chabé-Ferret, Sylvain (2017). Should We Combine Difference In Differences with
Conditioning on Pre-Treatment Outcomes? Tech. rep. Toulouse: Toulouse School
of Economics, INRA and IAST.

244
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