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Abstract

This thesis explores two primary themes across five scientific papers: Integer-value

time series and their relationship with classical point processes.

The first part of the thesis focuses on the development and application of Integer-
valued autoregressive (INAR) models, extending from univariate to multivariate
cases, with applications in financial and insurance count data. In Paper A, we intro-
duce a new family of binomial-mixed Poisson INAR model of order one, INAR(1), by
incorporating a mixed Poisson component to the innovation of the classical Poisson
INAR(1). This allows for the capture of overdispersion and serial correlation evident
in financial count data. Furthermore, we explore its distributional properties, esti-
mation procedure and asymptotic properties and apply the model to iceberg count
data from financial system. In Paper B, we extending beyond univariate case, intro-
ducing a novel family of multivariate mixed Poisson-Generalized Inverse Gaussian
INAR(1), MMPGIG-INAR(1), regression models for modelling multivariate count
time series. This family of models can accommodate a wide range of dispersion
and cross-sectional correlation structures due to the flexibility in the parameter
setting of the Generalized Inverse Gaussian. We then illustrate different members
of the MMPGIG-INAR(1) through applying the model to Local Government Prop-
erty Insurance Fund data from the state of Wisconsin. In Paper C, we develop novel
Expectation-Maximization estimation algorithm for maximum likelihood estimation
of bivariate mixed Poisson INAR(1) model. This method is readily extensible to the
multivariate case. We examine three different mixing densities, univariate gamma,
bivariate Lognormal and bivariate copula and demonstrate the algorithm through

fitting the same used in Paper B.

The second part of the thesis shifts focus to integer-valued approximation of clas-
sical point processes and applications of point process on covid data modelling. In
Paper D, we represent the Cox process and the dynamic contagion process, which
is a Hawkes process whose immigration part is a Cox process, as limit of time-

series based point processes, namely integer-valued moving average model (INMA)



and Integer-valued Autoregressive Moving Average model (INARMA). This would
potentially facilitate the statistical inference of classical point processes. In Paper
E, we propose a new type of univariate and bivariate Integer-valued autoregressive
model of order one, INAR(1), to approximate univariate and bivariate linear birth
and death process with constant rates. Due to the simplicity of Markov structure
of INAR model, we demonstrate through simulation study that the parameters of
linear birth and death process can be estimated through Quasi-likelihood function
of INAR model.
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CHAPTER 1

Introduction

1.1 Integer-Valued Time series

Modelling the integer-valued count time-series has attracted a lot of attention over
last few years in a plethora of different scientific field such as social sciences, health-
care, insurance, economics and financial industry. The standard ARMA model will
inevitably introduce real-valued results, and so is not appropriate for modelling count
data. As a result, many alternative classes of count time series models have been
introduced and explored in the applied statistical literature. An early contribution
has been done by Jacobs and Lewis (1978a,b, 1983), who introduced the discrete
Autoregressive and Moving average model (DARMA) for stationary discrete time
series. However, the correlation structure of DARMA is quite different from the
standard time series model. Later, regarding the univariate case Al-Osh and Alzaid
(1987) and McKenzie (1985) were the first to consider an INAR(1) model based on
the so-called binomial thinning operator. This is introduced as counterpart to the
Gaussian AR(1) model for Poisson counts. The idea here is to manipulate the op-
eration between coefficients and variables, as well as innovation term, in such a way
that the values are always integers. The relationship of coefficients and variables is
defined as a0 X = Zfil B; such taht B; are i.i.d Bernoulli random variables with
success probability a and o denote the thinning operator. The binomial thinning
straightforward to interpret, the probability of survival from the last state. More
importantly, compared to DARMA, INAR(1) has the same autocorrelation struc-
ture as the standard AR(1) model. One of the popular choices is the INAR(1) with
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binomial thinning and Poisson as innovation. The model constructed in this way

has Poisson marginal distribution.

In practice, however, the Poisson assumption (variance equals to mean) will be
violated for most of the time as the data could be over or under dispersion, could have
excessive number of zeros, etc. Consequently, many articles focused on extending
this setup by applying different thinning operators or by varying the distribution of
innovations to accommodate different features exhibited by count data. Common
choices are Bernoulli, Geometric, Poisson, Mixture Poisson, Generalized Inverse
Gaussian. For more details, the interested reader can refer to Weif (2018, 2008b),
Davis et al. (2016b),Scotto et al. (2015), among many more.

On the other hand, the literature which focuses on the multivariate case is less
developed. In particular, Latour (1997) introduced a multivariate GINAR(p) model
with a generalized thinning operator. Karlis and Pedeli (2013) and Pedeli and Karlis
(2011, 2013a,b) focused on the diagonal case under which the thinning operators do
not introduce cross correlation among different counts. In this case, the dependence
structure introduced by innovations. Additionally, Risti¢ et al. (2012), Popovi¢
(2016), Popovié et al. (2016) and Nasti¢ et al. (2016)constructed multivariate INAR
distributions with cross correlations among counts and random coefficients thinning.
Finally, Karlis and Pedeli (2013) extended the setup of the previous articles by
allowing for negative cross correlation via a copula-based approach for modelling

the innovations.

In count data modelling, mixed Poisson distribution is a common choice as it can
accommodate different features arising from data (dispersion, skewness, excess of
zeros). However, the autocorrelation for such data is usually ignored as there is
no proper model for integer-valued data. Our first three papers (A,B,C) propose
models on combining integer-valued time series and mixed Poisson random variables

to obtain a more generic framework to model count data.

In Paper A, we develop a new family of binomial-mixed Poisson INAR(1) (BMP
INAR(1)) processes by adding a mixed Poisson component to the innovations of
the classical Poisson INAR(1) process. Due to the flexibility of the mixed Poisson
component, the model includes a large class of INAR(1) processes with different
transition probabilities. Moreover, it can capture overdispersion features coming
from the data while keeping the innovations serially dependent. We discuss its sta-
tistical properties, stationarity conditions and transition probabilities for different
mixing densities (Exponential, Lindley). Then, we derive the maximum likelihood
estimation method and its asymptotic properties for this model. Finally, we demon-
strate our approach using a real data example of iceberg count data from a financial

system.
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In Paper B, In this paper, we present a novel family of multivariate mixed Poisson-
Generalized Inverse Gaussian INAR(1), MMPGIG-INAR(1), regression models for
modelling time series of overdispersed count response variables in a versatile man-
ner. The statistical properties associated with the proposed family of models are
discussed and we derive the joint distribution of innovations across all the sequences.
Finally, for illustrative purposes different members of the MMPGIG-INAR(1) class
are fitted to Local Government Property Insurance Fund data from the state of

Wisconsin via maximum likelihood estimation.

In Paper C, This article considers bivariate mixed Poisson INAR(1) regression mod-
els with correlated random effects for modelling correlations of different signs and
magnitude among time series of different types of claim counts. This is the first
time that the proposed family of INAR(1) models is used in a statistical or actuarial
context. For expository purposes, the bivariate mixed Poisson INAR(1) claim count
regression models with correlated Lognormal and Gamma random effects paired via
a GGaussian copula are presented as competitive alternatives to the classical bivari-
ate Negative Binomial INAR(1) claim count regression model which only allows for
positive dependence between the time series of claim count responses. Our main
achievement is that we develop novel alternative Expectation-Maximization type al-
gorithms for maximum likelihood estimation of the parameters of the models which
are demonstrated to perform satisfactory when the models are fitted to Local Gov-

ernment Property Insurance Fund data from the state of Wisconsin.

Paper A focus on univariate sequence modelling while Paper B considers a simple,
parsimony multivariate integer-valued model for correlated multivariate count data.
As the distribution function as well as the log likelihood function becomes more
complicated in multivariate INAR model, Expectation-Maximization algorithm is

developed for statistical inference for such model which is demonstrated in paper C.

In addition to integer-valued models, there are other classical stochastic process
modelling count data as well, e.g. Poisson point process, birth-and-death process.
Motivated by Kirchner (2016, 2017), one can carefully construct integer-valued mod-
els to approximate Hawkes point processes, and so as other point processes. The
rationale and necessity behind this is straightforward: continuous measurement of
observations is rare in practice while maximum likelihood estimation method for
these stochastic processes rely on continuous observations. Integer-valued time se-
ries, by construction, model discrete observations and hence offer an alternative
estimation method for these point processes. More importantly, I truly believe that
a nice discrete approximation could promote the usage of classical stochastic mod-
els (Stochastic volatility model and ARCH model). Before approximating them,
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we carefully investigate their mathematical formulation and properties. They are

introduced in the following:

1.2 Cluster Point Processes

In insurance modelling, the Poisson process has been used to as a claim arrival
process. However, the homogeneous intensity assumption is not realistic in practice.
Therefore, an alternative point process was introduced as Cox process, also called
doubly stochastic Poisson Processes. For detailed review, see Cox (1955) Bartlett
(1963) Serfozo (1972) Bening and Korolev (2012). For application on reinsurance,
see Dassios and Jang (2003, 2005, 2008).

The Hawkes Process, which was first introduced by in Hawkes (1971a,b), is a self-
exciting point process that its intensity depends on the past of the point process
itself. The Hawkes process can be viewed as a contagion (cluster) process in the sense
that immigrants arrive as a stationary Poisson process and each immigrant acts as
a branching process and generate its offspring (cluster). Due to its simplicity and
flexibility, the Hawkes process is applied in different areas, for example seismology
in Ogata (1988), epidemiology in Kim (2011), sociology in Mohler et al. (2011), and

finance.

However, in some context such as modelling the credit contagion in Jarrow and Yu
(2001), the clustering of default is consistent with the Hawkes process, but the de-
fault intensity could be impacted exogenously by other factors, which indicates the
inappropriateness of homogeneous assumption on immigrant processes. To address
this, Dassios and Zhao (2011) introduced the dynamic contagion process by gener-
alizing the Hawkes process with immigrant process as the Cox process, which allows

the cluster centers act as a stochastic process.

1.3 Birth and Death Processes

The simple linear birth and death process, which was first introduced by Feller
(1939), is a widely used Markov model with applications in population growth, epi-
demiology, genetics and so on. The basic idea of this process is that the probabilities
of any individual giving birth to a new individual, or any individual dying, are con-
stant at any moment in time and all individuals are independent of each other. Many
statistical properties, including moments, distribution function, extinction probabil-

ity, or some other cumulative distribution of interests, are explicitly derived in the
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literature; see for example, Kendall (1949). The statistical inference for simple birth
and death processes is then developed by Keiding (1975), where maximum likeli-
hood estimators and other asymptotic results are discussed. Since the distribution
function of simple birth and death processes is explicit, the construction of the like-
lihood function is straightforward. However, it is pointed out in the literature that
the transition probability is actually cumbersome and numerically unstable when
the size of population is large over time. At the same time, a variety of alternative
estimation methods have been proposed. For example, quasi- and pseudo - likeli-
hood estimators Chen and Hyrien (2011) Crawford et al. (2014) addressed it as a
missing data problem and apply an EM algorithm to maximize it. Tavaré (2018)
found those transition probabilities by numerical inversion of the probability gener-
ating function and then applied Bayesian methods to perform estimation. Davison
et al. (2021) adopted a saddle point approximation method to further improve the

accuracy of transition probabilities.

The remaining two papers (D E) carefully construct integer-valued models to ap-
proximate classical point processes. We proved that the proposed integer-valued
models converge weakly to these point processes. They are summarised in the fol-

lowing:

In Paper D, we consider Poisson thinning Integer-valued time series models, namely
integer-valued moving average model (INMA) and Integer-valued Autoregressive
Moving Average model (INARMA), and their relationship with cluster point pro-
cesses, the Cox point process and the dynamic contagion process. We derive the
probability generating functionals of INARMA models and compare to that of clus-
ter point processes. The main aim of this paper is to prove that, under a spe-
cific parametric setting, INMA and INARMA models are just discrete versions of
continuous cluster point processes and hence converge weakly when the length of

subintervals goes to zero.

In Paper E, we propose a new type of univariate and bivariate Integer-valued autore-
gressive model of order one (INAR(1)) to approximate univariate and bivariate linear
birth and death process with constant rates. Under a specific parametric setting, the
dynamic of transition probabilities and probability generating function of INAR(1)
will converge to that of birth and death process as the length of subintervals goes
to 0. Due to the simplicity of Markov structure, maximum likelihood estimation is
feasible for INAR(1) model, which is not the case for bivariate and multivariate birth
and death process. This means that the statistical inference of bivariate birth and
death process can be achieved via the maximum likelihood estimation of a bivariate
INAR(1) model.

14



The thesis is organized as follows: in Chapter 2, we show detail definitions of Integer-
valued models and our main contributions on this field. In Chapter 3, definitions of
point processes are given and we show the way to approximate these point processes
by manipulating operators and different discrete random variables in integer-valued
models. In the following chapters 4-8 are accompanying papers (A, B, C, D, E, F).
The final chapter summarises the overall thesis, discussing potential applications

and perspectives for future research.
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CHAPTER 2

Integer-value time series

Statistical data arising from many areas are expressed in terms of discrete values,
mostly non-negative, e.g. patients in a hospital, employees of a company, item sold
from a grocery, insurance claims, trading volume from a finance sector. These data
are recorded on a regular basis, for example number of item sold is recorded everyday
for a grocery while number of insurance claims are recorded on monthly basis or even
yearly basis. Then we have a data set that tracks the sample over time and it forms
a time series X;. If X; are independent, one can find a discrete random variable
to model it and popular choices are Poisson and negative binomial distribution.
However, in many cases, these data exhibits autocorrelation and standard time series

model (ARIMA) will inevitably introduce real-values and even negative values.

To overcome this, integer-valued time series model was introduced in 1980s and the
classical Inter-valued model of order-one (INAR(1)) is defined as:

Definition 2.1. Let X; be a non-negative integer-valued time series and €, be i.i.d
discrete random variable with mean p and finite variance o®. The INAR(1) model
15 defined as

Xi=aoX; 1+¢, acl0,1] (2.1)

The o s a binomial thinning operator such that ao X = Zfil B; where B; are i.1.d
Bernoulli random variable with success probability oo. Then oo X as a whole is a

binomial random variable.

The INAR(1) model defined in this way simply states that the components of the

process X; are either the survivals from previous time X; or new 'immigrants’ from
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the innovations. The binomial thinning operator shares several properties with the

multiplication operators,

e Commutativity: changing the order will not change the distribution, i.e.

a1o(moX)Laso(aoX) 2 ammoX, arase(0,1]

e Linear with respect to expectation:

E[la; 0 X] = o E[X]

e Distributive property,

alo(X—l—Y)ialoX—i—aloY, X, Y eNyand X 1Y

2.1 Distributional and Statistical Properties

These nice properties of binomial thinning operator enable us to express autoregres-

sive form into moving average form:

-1
X,=aoX, 1+6=0’0X; 046 +aoe 4 = atoXo—i-Zozjoet_j (2.2)
7=0

It implies that the dependence of X; on the sequence ¢; has exponential decay which
matches the real-valued AR(1) model. On the other hand, the limiting distribution
of X, is also given by the equation (2.2). Denote the probability generating function
of a random variable X as ®x(0) = E[0*]. Conditional on the initial variable Xy,

the distribution of X, can be characterized as:

t—1

x, (0) = E[9™ %] [ [E[6*" ]

j=0
t—1 ‘ )
= Ox,(1—a' +a'0) [ [ (1 - o + o’0)
j=0

As t goes to infinity, the convergence of this product sequence is guaranteed by two
conditions: o < 1 and E[e] < co. The convergence indicates existence of limiting

distribution of ®x = lim;_,o Px,. Together with the irreducible and aperiodic of Xy,
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we can say that the limiting distribution is the unique stationary distribution of X;.
Instead of using infinity product, the recursive relationship in (2.2) leads to another

simple expression for probability generating function of stationary distribution of X
Ox(0) =Px(1 —a+ al)P(0) (2.3)

This equation is related to the definition of a self-decomposable distribution. For
example, if € is a Poisson random variable with rate A, the probability generating

function of X is given by
By (6) = expd —2—(1—0) (2.4)
X = %P 11—« ’

It is again a Poisson random variable with rate ﬁ Many other well-known discrete
distributions belong to the this class, e.g. negative binomial, generalized Poisson,

discrete stable distribution.

It is then straightforwardly to derive unconditional moments and stationary mo-

ments via above distributional properties.

e Unconditional mean E[X;] = aE[X, ;] + p = o'E[X,] + MZJ o

e Unconditional variance

Var(X;) = a*Var(X;_1) + a(l — o)E[X, 1] + &

t ¢
= a*Var(Xy) + (1 — « Z YE[X, ] + o® Z a?0=b)
7j=1 Jj=1

au+02

1—a?

e Stationary mean E[X] = {#-. Stationary Variance Var(X) =

e Unconditional covariance function v(k) = Cov(X;_, Xt)

k—1
v(k) = Cov(X,_y,a" o X;_;) + Cov (th, Z ol o Etj)

=0
k=1

= o*Var(X,_;) + Z o’ Cov( Xk, €—5)
=0

= o*~(0)
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2.2 Parameter estimation and Forecasting

There are a lot of research papers covering the topic on estimating the INAR-type
models. For the first order INAR model, the estimation is usually straightforward
as X, is a Markov process and the transition probability is the convolution of inno-
vations and binomial random variable. The likelihood function ¢(©), where © is the

parameters set of the INAR model, is given by

min{X;,X; 1}
(o) =1] ( D Prlao X,y = Xy —s|X,) Pr(e = s)> (2.5)

t=1 s=0

Therefore, maximum likelihood estimation method would be convenient to apply.
Apart from that, other classical estimation methods: conditional least square es-
timation, moments estimation (Yule-Walker equations) as well as their asymptotic
properties are also available in literature. It shows that for small value of « e.g.
a < 0.2, these methods have little difference in terms of bias and MSE while maxi-

mum likelihood method yields the best result when a > 0.5.

On the other hand, the forecast procedure of INAR model have also been well

explored in the literature. The conditional distribution of X, given X is

k—1
X =afo X, + Z o o€k (2.6)

J=0

The classical way to make a prediction is to minimising the L? norm which yields a

conditional expectation E[X; x| X;] as k-step ahead prediction

k—1
Xivk = B[Xp k] Xi] = 65X, + ) @Bl s ] (2.7)
j=0

The major concern for this prediction is that it will hardly generate integer-value
response which is not a coherent prediction. To maintain the integer-valued nature

of this type of model, one can instead minimise the L' norm,

Xt+h = argmin E[|Xt+h - Xt||Xt] (28)

Xt+}L

i.e. the median of conditional distribution, to obtain a integer-valued prediction. As

pointing out by Freeland and McCabe (2004), one need to be careful on this point
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estimate, as it may be misleading when the support of the X;,, is small.

2.3 INAR model with correlated innovations (Pa-

per A)

Before constructing the model, we need to introduce a special random variable,
mixed Poisson random variable. Most of the time, assuming that the count data are
generated from Poisson distribution seems unrealistic as the variance and mean of
the data are different from each other significantly. Then a new family of Poisson
distribution is purposed by introducing another random variable to model the rate

of Poisson distribution.

Formally speaking, there are two definitions and they are different in the way intro-

ducing the mixing random variable to the rate parameter.

Definition 2.2. X is said to follow mized Poisson distribution if it has following

probability mass function

Pr(X =) = J Ce oy (2.9)

o !

That is X ~ Poi(0) where 0 is called mizing random variable with non-negative

support and g(0) is called mizing density function of 6.

Definition 2.3. Suppose 0 is a non-negative support random wvariable with unit
expectation and density function g(6), X is said to follow mized Poisson distribution

iof it has following probability mass function

Pr(X — z) = foo e 00" v (2.10)

0 x!

That is X ~ Poi(\0). The constraint on expectation of the mizing random variable

18 to avoid identification problem when it comes to statistical inference of .

The role of mixing random variable looks a bit more clear in the second definition as
it controls only the variation of X and A is always the mean of X. Well-known dis-
crete distribution can be recovered by suitable choice of mixing density, for example

geometric, negative binomial random variable are mixed Poisson with exponential
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and gamma as mixing density, respectively. Due to its flexibility, mixed Poisson dis-
tribution is widely used in count data modelling and one can choose a suitable choice

mixing density to adapt the feature of the real data, e.g. under or over dispersion.

In Weik (2015), the classical Poisson INAR(1) was extended by allowing the inno-
vations € to depend on the current state of the process X;_1, i.e. € ~ Po(aX;_; +b)
where a and b are some positive constants. The innovation with this definition is
separable in the sense that ¢, = a » X; | + ¢, where a + X; | = Zfﬁ{l U;, with
U, "L Po(a) and ¢, ~ Po(b). To introduce further heterogeneity while maintaining
the model structure, we extend this by allowing U; to be a mixed Poisson random

variable.

Definition 2.4. The Binomial Mized Poisson integer-valued Autoregressive model
(BMP INAR(1)) is defined by the following equations

Xiy1 =p1o Xy + &1

:ploXt—i_SO*gXt—i_ZtJrl

X, X, (2.11)
plothZVk, (P*gXt:ZUi
k=1 i1
* eige
P =)= [ atblo)e,
o !

e o is a binomial thinning operator such that V; are i.4.d Bernoulli random vari-

ables with parameter p; € [0, 1]
o {Z;}1-12.. are i.i.d Poisson random variables with rate Ay > 0

e =, 15 a reproduction operator such that U; are independent Mized Poisson dis-

tributed with mizing density function g(6;|p)

e +, and o are independent of each other so that U; and Vi, are independent of

each other.

We extend the classical definition of binomial thinning operator to as a reproduction
operator #,. The model can be seen as a population model where binomial part indi-
cates the survivors from the last state, the mixed Poisson part is the total offspring
and the innovation part are new immigrants. From statistical inference point of view,
it would be nice that each component in equation (2.11) has a explicit distribution

function, i.e. we want to make sure the random variable Y; 1 = ¢ #;, X; has explicit
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distribution rather than something expressed in integral form. Its distribution is

given by

s 9. n
emzi=Yi(y " 0;)Y

S (a2 J

where the expectation is taken over all the independent #;. We let 6; be random

variable from exponential family so that many of them have the ’additivity’ prop-

erty, i.e. the distribution ), 6, is known given the distribution of #;. For example,

Gaussian, exponential, Gamma, Geometric, Bernoulli and so forth. In paper, we

explore two mixing density, exponential and Lindley density.

e In the exponential case, g(0) = %, the distribution of U; and Yi41 are

1,
4p
given by

1 xT
Pr(U; = x) = Ld , x=0,1,...
1+ 1+
N ) ] n y (2.13)
yr—n— 2
Wi =yl = n) ( y )(Hs&) (1+s0)

e In Lindley case where g(f) = 0+ 1)e %% | the distribution of U; and Y;,,

1+¢(
are given by

2
e (p+2+x)
PI’(UZ:I):W, lL':O,l,...
Pr(}/;+1 = y|Xt) = (1 n 99) Z n n+k+y 1 1 +@)7(n+k+y) (214)
k=0
5= 1—p++4/(p—1)2+8p
2¢

In general, the stationary condition for this model given by p + p, < 1 where

1y = E[U;] and the moments are given by following proposition

Proposition 2.1. Assume p, + g < 1. The stationary moments of X, is given by

At
E[X,] =y = — L
K] = I—p1—py
1—p?+02
Var(X,) = 02 = plp— 120 (2.15)
1 — (p1 + pg)

Cov(Xy, Xoi) = (k) = (p1 + p1g)* 0.

From statistical inference point of view, we adopt the maximum likelihood estima-

tion method as all the components in equation (2.11) has precise distribution func-
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tions and likelihood function can be constructed straightforwardly. The asymptotic

property of the estimator are given by another proposition

Proposition 2.2. Suppose we have a random sample {X1,Xo,...,X,}. Let p =
(p1, 0, A1) denote the parameters vector for the stationary BMP INAR(1) model.

The mazimum likelihood estimator p has the following asymptotic distribution:

V(P —p) ~ N(O,I7), (2.16)
where
Cpip: gmw Cpi,
H=170, (lo lon I =-E[H] (2.17)
€>\1p1 gmw O
Those £,, = ;x—?y are second partial derivatives of the log likelihood function of Xj.

A simulation study on asymptotic property as well as application on financial count

data is conducted in paper and we observed an improvement compared to the model
from Weif (2008a).

2.4 Multivariate INAR model with GIG family (Pa-

per B)

In insurance claim modelling, it is usually the case that one would have a single
policy that covers different types of claim. In such case, a multivariate count data
modelling is needed to model the joint dynamic. By extending univariate setting,

we have the following definition

Definition 2.5. Let X and R be non-negative integer-valued random vectors in R™.
Let P be a diagonal matriz in R™*™ with elements p; € (0,1). The multivariate
Poisson-Generalized Inverse Gaussian INAR(1) is defined as

P1 0 ... 0 0 X17t_1 Rl,t
0O po ... 0 O Xogo R

X, =PoX,_; +R; = ? S i I B (2.18)
0 0 ce Pm Xm,t—l Rm,t
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e o s binomial thinning operator

Conditional on the last state, p; o X;; and p; o X;; are independent of each
other, ¥i # 7.

{Ri+}ic1...m are mized Poisson random variables Po(0:\; ) with the random
effect 0, and distribution function G(0)

The rate \;; is characterized by its observed covariate z;; € Re>Y for some

positive integer a; and they are connected through a log link function such that

log ()\i,t) = thﬁz'

Note that {R;;}i—1
G(#), which means the dependent structure among X;; can be controlled by the

77777 m share the same random effect 6, with mixing distribution
choice of distribution and its corresponding size of parameters. In this case, the
correlation is mainly characterized by mixed Poisson random variable. The choice
of 0, is Generalized inverse Gaussian distribution (GIG) as includes a wide range of
distribution like gamma, inverse (Gaussian and inverse gamma and it can be useful
to capture different level of over dispersion presented in the data. The density of

GIG is given by:

g(0) = %9”1 exp {—% (2/19 + %)} , (2.19)

where —o0 < v < 00,9 > 0,x > 0 and K, (w) is the modified Bessel function of the

third kind of order v and argument w such that

© 1 1
K (w)=] 2" "expi—zw(z+ -)pdz
0 2 z
The simple structure of X; ensure the feasibility of maximum likelihood estimation
method. To evaluate the transition probability of X; given X; i, it is not straight-
forward to find out the joint distribution of R;_; as they are correlated of each other.

The joint distribution is given by

f¢(k, t) == P(Rl’t == ]{71, e 7Rmt == km)

)

E[P(Ris = ki,..., Ry = kml0)] (2.20)

m
j=1

>

ki oo
J’r J 6—92?;1 Az;th?;l kldG(@)

7+ J0

=~
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In the paper, we investigate following distributions and their moments property

which are summarize in the following tables

Table 2.1: Parametrization of mixing density based on GIG density

Mixing density (PI% v Range of parameter
Gamma, 20 0 10) ¢ >0
GIG with unit mean c¢ % fixed constant in R ¢ = Kl”gz;f)l),aﬁ >0
Inverse Gamma 0 20 —p—1 p>1

Table 2.2: Moments for the random effect 6;. Ex.Kurtosis = Kurtosis - 3

Mixing density g(¢#) Variance Skenwness Ex.Kurtosis

Gamma é \% %
Inverse Gaussian # 3% 1 %

GIG v = —% é ¢§¢+2d>7 3+12?;;r15¢2

Inverse Gamma ﬁ 45 (;E;b(?bli)?’)

We then further explores the probability functions, maximum likelihood estimation

of MINAR-GIG model, prediction as well as application on insurance claim data.

2.5 EM algorithm for Multivariate INAR model (Pa-

per C)

The flexibility of mixed Poisson distribution enable the MINAR(1) to be adaptive to
practical data. However, the estimation of such model would not be trivial in some
cases. For example, log-normal mixing density. In the paper, we investigate differ-
ent types of mixing densities and derive their corresponding expectation maximum

algorithm. For illustrations, we examine the following bivariate mixing densities.

(a) Univariate Gamma density
In this case, the bivariate mixed Poisson regression model shares the same
random effect N\ ~ Pois(\;0) i = 1,2. Denote the mixing density function
as fs(0) = f»(0) and it has following expression

o
fs(0) = %9‘“6‘”, (2.21)
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which has unit mean and variance 1. Then the unconditional probability mass
function fpg(k,t) of N, := (Nlt(l)7 Nt(2)) can be written down in a closed form

A dos [
fra(k,t) = ﬁﬁ e et fgkitha £ (0)dg
b (2.22)
D(6 + Ky + ks) BNV

(@) (ky + D (ka + 1) (6 + Ary + Agg) bt

Bivariate Lognormal density
Suppose now the random vector € = (€1, €3) follows bivariate normal distribu-

tion, with mean vector (—ﬁ —@) and covariance matrix Y

2
v _ o5 PP1P2 (2'23)

Pcbl o5 ¢§

Then the random effect vector @ = e€ = (!, e®?) has Lognormal distribution
with unit mean. Denote the density function of € as f& and f& for Lognormal
density. Then they have the following expressions
1

2

2wo1094/1 —p

/3 (e) =

2
X exp 4 — 1 €1+ 0.50% _9p €+ 0.50% € + 0.5(7% n € + 0.503
2(1 - p?) o1 o1 o9 o9
fo(0) = fz (log8) = f£M(6).

The unconditional distribution fprn(k,t) of Ny is expressed as a double inte-

gral

o * /\]flt /\]2% —A1,t01 ,—A2,:02 pk1 pk2 LN
frin(k,t) = Tyl Ty € € 010> [ (6)dordb,
0 Jo 2:

AT A5
:J J kllt o eXp{ )\1t€ —>\2t€ + kieq +k2€2}fz( )d€1d62.
1+ Ro:

(2.24)

All the double integrals with respect to Lognormal density fZ¥ can be trans-
formed into double integrals with respect to normal density f& so that they

can be evaluated by Gauss-Hermite quadrature.

Gaussian copula paired with Gamma marginals
Suppose now the random vector @ is distributed as a meta Gaussian cop-

ula such that its marginals are two independent Gamma random variables
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with parameter (¢q, @) respectively. Define uniform random vector u =
(Fy,(01), Fp,(0)). The distribution function Fge(@) and density function
fac(0) can be written as

FGC(H) = Cp(u) = Fp(@il(ul)a (I)il(uQ))

S (@7 (), @7 (u))
16(6) = Jao(6) = 7 G0 @ 1 (ur))

1= () fo, (01) fo,(62),

f¢1 (01)f¢2(62) (2'25)

where f,(.,.), F,(.,.) are the density function and cumulative distribution of

bivariate normal random variable with the following expression

1 122 -2 2
Fo 1, 22) = —exp{——””l ”*} (2.26)

24/ 1 — p? 2 1 — p?

The ®(z) is the cdf of standard normal random variable with ®1(z) as its
quantile function and fg,(z) is the density function of the standard normal
random variable. Finally, f,,(z) and Fjy,(z) are the pdf and cdf of Gamma
density function, for i = 1,2. Then a bivariate Poisson Gamma random vector
is constructed as Nt(i)

frae(k,t) such that

~ Pois(\;40;),1 = 1,2 with probability mass function

A A5
k,t) = —= =
_ A A

k1! kol

v el 0
f f eXP{—/\l,t91 - /\2,t92}9]f19}2€2fGC(91,92)d91d92
o Jo

101
=X Fy (ua) = Ao o FL - -
4[) J;) e Fgy (W) =22 Fy, (u2)F¢11(Ul)k1F¢21(U2)k26p(U1,UQ)dUldUQ

Then the double integral can be evaluated by Gauss-Legendre quadrature.

In bivariate case of equation (2.18) where m = 2, the log likelihood function is
defined as:

(©) = log (Z D fon (i, Xa) f (Ko, Xog) fr( X gn — by, Xopar — @))
t=1

k1=0 ko=0

s = min{ X, X, },for i = 1,2
Given the observed bivariate sequence {X;};=1, . Let Y;; = p; o X;;_; and © =

{p1,p2, By, By, ¢} be the parameter space for this model. Suppose now we observe

the latent variable {Y;}:—1 ., and {6;};_1._n, then the complete log likelihood function
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becomes

n 2
((©]Y,0) OCZZ Yitlogp; + (Xiy — Yiy)log(1 — pi))

t=11:i=1

n 2 n
S oe() ~ ) + 3 (0
t=1

t=1i=1

(2.27)

Define the following posterior density functions

' X1~ 2— ; i7Xi —
Wl(y|®(J)7Xt,Xt ) = frR(Xi1 g()}ggi%;(y t 1)

1(0| A, Ry) fo(@) (2.25)
So So (O|A, Ry) f(O )df,dfy’

_ _ k.t gl
N0 A k) = e iRz gineg 2

7T2(0|@ Rt)

Define the posterior expectations with respect to real-value functions h(.,.)

S1,t—1 S2,t—1

E(J Z Z h(y |@(]) X, X 1)
y1=0 y2=0 (2.29)

0)R,] = JJ 0)m(0]09), Ry)db; db,.

¢ E-step: Evaluating the Q function Q(0;0)) given the the parameters esti-

mated in the j-th iteration,

Q(O;09) = 3 Ny log pi + (X1 — 7)) log(1 — p;)

t=111=1
n 2
+ 3320 Tog(Nig) — Xifb) +2E“ J[log f4(6)|R,]]
t=11=1
y) =BV %) =X, -y, 69 = EDEY6IR].

(2.30)

After breaking down the log likelihood function, it is obvious that except for
the log likelihood contributed by binomial distribution, the rest of the terms are
almost the same as that of the Q-function of bivariate mixed Poisson regression
model discussed in the last session, which means the updating procedure for
B;, ¢ will be exactly the same, but we need to evaluate different posterior

expectations in this case.
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e M-step: Similarly, we apply the Newton-Raphson algorithm to update the
parameters. Based on the structure of Q(0;00)), the parameters can be

updated separately for binomial part p, Poisson part 3, and random effect
part ¢

— The binomial part can be updated simply as the following gradient func-

tion has a unique solution

S S e )

g\Pi =0
p(j+1) _ 2;1 yi(,jt) iZ19
’ 2?21 ‘Xi,t—l7 ’
2 (2.31)
P X1 P(Xe—14| X 1—1y) ' ‘
3 PXXi—1) ; Xit#0and X;p—1 #0
Yir =
0, otherwise
1, = (1,007 1, =(0,1)T.

— For the Poisson part, the updating equations are the same with different

posterior expectation

By =Y — H ' (B)g(BY), i=1,2

9(87) =2V H(B”) =2/ D"z

(]

et (2.32)
v o ({0, )

H 1 )0\
o — e ({00}, )

Note that when the mixing density f,(6@) is univariate Gamma, the pos-

terior expectation for @ has a simple expression

— Similarly, for the random effect part ¢,
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(a) Univariate Gamma density
o) — g _ 9(0Y)
h(¢@)’
g(¢(j)) = n(log oY) — (b(]) )+ 1) Z (E(a) E(J) [log 0| R,]] — égj)>

t=1

o) = (@) = W (")),

(2.33)
(b) Bivariate Lognormal
Pl = o) — H—1(¢(j)) (¢(j))
- = Olog fY
g((:b(]))r = ZlEg,)t lEej,g [ 6¢Z ( )|Rt:|] (234)
t=
2
0y Nl [ [ log £ (€)
e ;E” [E“ [ 2p00, ]
(c) Gaussian copula paired with Gamma marginals
¢(J+1) ¢(J) H—1(¢(J))g(¢(a))
, G v | dlog fac (O
(@), - Y e | TR | |
= 09,
" i 62 log ch(O)
H(¢(]))rs _ EY) [E(J) [ |Rf”
; v 0,00,

Remark This model as well as the EM algorithm can be extent to multivariate
case straightforwardly. All the steps and the general form of the formula of the EM
algorithm in the multivariate case are exactly the same. The only problem is that
it would become cumbersome to evaluate the transition probability P(X;|X; 1) as

dimension of X; increases. In that case, we need to turn Monte Carlo EM algorithm.

The rest of paper implement the above proposed method on insurance data and

compared their predictive performance.
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CHAPTER 3

Point Processes

A point process models the occurrences of some events of interest over time. We
consider the point process on a real half time R, which usually refers to the time
t. From counting measure prospective, a point process N on the state space R, is a
measurable mapping from probability space (2, F,P) into (Nﬁ,l’)’(/\/’ﬁ))

N:Q l—>./\/’1§i (3.1)

such that N(A) is an integer-valued random variable for each bounded A € B(R,).
/\/ﬂfi is the family of all boundedly finite integer-valued measures ;o € M;{Q For
example, let A = (a,b], a,b € R, then the mapping N(A) : (2, F) — Ny defines
a random variables that counts the number of events that happen during the time
interval (a,b]. The distribution of the such point process is actually defined by the
joint distribution of finite number of such random variables N(A;),... N(A;) for

some k > 0. Usually, it is convenient to assume that the following

1. The point process is stationary. Mathematically speaking, the joint distribu-
tion of
N(A; +1t),...,N(Ap + 1) (3.2)

does not depend on t > 0 but only depends on the size of the set Ay,..., Ay
(length of the interval). In other words, the event occurrence pattern will not

change over time.
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2. The point process is simple and crude. This is characterized by the following

probabilities:

Pr(N({t}) € {0,1}) =1, V¢ > 0.
(3.3)

Pr(N((0,A]) =2 2) =o(A), A0

That is, there won’t be any chance to observe more than one event at any
instant time and the probability that more than 1 event occur in interval that

is negligibly small.

One important characterization of a point process is its intensity process A;. For
a stationary point process, the existence of ), is guaranteed by the (Khinchin’s
Existence Theorem, proposition 3.3.1 Daley and Vere-Jones (2003)) and it is usually

defined as EN((t.t 4 A
A = lim ZNUEEF AD

lim A (3.4)

It represents the expected number of event occurrence in an unit length interval. In
particular, we focus on a family of point processes, called Poisson point processes

which is defined by a set of probabilities:

Pr(N((t,t + A]) =1) = XA + o(A)

Pr(N((t,t + A]) = 0) = 1 — MA + 0(A) (3.5)

Pr(N((t,t + A]) = 2) = o(A)
When A\, = p where p is a fixed constant, the above probabilities yield a well-known
homogeneous Poisson process and N((a,b]) is a Poisson random variable with rate
SZ Adt = (b — a)p. One interesting property of this Poisson process is that if there

are n events generated by this process, these n points are uniformly distributed over

the interval (a,b]. This is usually not the case in practice. Here are some examples:

1. When counting the number of passengers in tube station over weekday, it will

be more crowded during the peak hours.

2. The relevant insurance claims are more intense in a certain area when it suffers

from severe weathers or natural hazards.

3. The volatility of a financial instrument persists over a certain period.
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When the counting data shows a obvious seasonal pattern, or other patterns that can
be described by a deterministic function, one can use such function to formulating
A, €.8. Ay = bsin(t) + ¢. In other cases, by generalizing the idea from mixed Poisson
distribution, one can introduce a random variable or random process into the inten-
sity process to accommodate different features shown from data. In other words, It

is usually straightforward to construct a Poisson point process by formulating the
At

3.1 Cluster Point Process

In the following, we are going to briefly introduce Cox process, Hawkes process, and
dynamic contagion process. The term ’cluster’ is a way to represent these processes,

which can help better understand how these processes work.

Definition 3.1. The (Marked) Cox process with shot-noise intensity, also called
doubly stochastic process, is a cluster point process N© with stochastic intensity
N such that

A9 = JTf(t—cl )JAN*(t Z T f(t—c). (3.6)

iici<<t

o N/ ={c;}i—12.. are the arrival times of the Poisson process with the constant

rate p > 0

e {T;} are i.i.d externally excited jump sizes, realised at times {¢;}, with distri-

bution H(x), mean puy and Laplace transform h(u)

e f(u) is an Riemann integrable function for any bounded interval in R,

The general definition of Cox process is given by Definition 6.2.1 in Daley and Vere-
Jones (2003) where the stochastic part is driven by another random measure. We are
particularly interested in this shot-noise version (for the following point processes
as well) because we believe that the exogenous random shock T; triggered from N*
are temporary and controlled by f(.). For example, a hail N* weather happens in a
certain area, the severity of this is described by T, and property related insurance
claim intensity A§C> will increase but decay over time f() as the hail will stop an

after a time period.

The cluster representation of this point process is somehow obvious: the cluster

centers ¢; are generated by N* which will not be counted into N(©). Then clusters
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are then formed by inhomogeneous Poisson processes with intensity T, Sé f(t—cpdt

foralle:¢ <t
Definition 3.2. The (Marked) Hawkes process is a self-exciting point process NH)

with stochastic intensity N\ such that

; N
NCIR—. J Xt — AN @) = v+ Y xn(t - 7), (3.7)
0 BT <<t

e v is a positive constant.

° Nt(H) = {7;}i—12,.. are the event arrival times of the Hawkes process itself.

{x:} are i.i.d self-exciting jump sizes, realised at times {7;}, with distribution

G(y), mean p, and Laplace transform g(u). They are independent of {Y;}

e f(u) is an Riemann integrable function for any bounded interval in R,

From the integral form of intensity process, this is a clearly ’autoregressive’ point
process such that the intensity process depends on the trajectory of the point process
itself. Apart from that, the likelihood function of this point process is straightfor-
ward to construct and there is no latent variable. These features popularize the use

of the Hawkes process in practice.

On the other hand, this is a well-known cluster point processes discussed in Hawkes
and Oakes (1974). It is easier to understand in terms of a population models. The
immigrants (cluster centers) arrive as a homogeneous Poisson process with fixed
rate v. Each immigrant generates a Galton-Waston type branching process with
expected branching ratio i, SSO n(u)du. A cluster is then formed by including all the

generations (and the immigrant) from the branching process.

Definition 3.3. The generalized dynamic contagion process is a cluster point process
NPCP) “with stochastic intensity XPCY) such that

N Nt(DCP)
C
1:c; <t 1T <t

where

o N ={c;}ic12... are the arrival times of the Poisson process with the constant

rate p > 0
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° Nt(DCP) = {7;}i=12... are the arrival times of the generalized dynamic contagion

process

{Y;} are i.i.d externally excited jump sizes, realised at times {c;}, with distri-

bution H(z), mean py and Laplace transform h(u)

{x:} are i.i.d self-exciting jump sizes, realised at times {1;}, with distribution

G(y), mean p,, and Laplace transform g(u). They are independent of {Y;}
e f(u) is an Riemann integrable function for any bounded interval in R,

e n(u) is another Riemann integrable function for any bounded interval in R

This is obviously a combination of Hawkes process and Cox process where immi-
grants no longer arrive uniformly on a fixed interval. Instead, it is driven by a
exogenous process and arrive accordingly, for example, financial contagion, credit
default events. When a event happens, it will spread like a epidemic models or au-
toregressive model such that the number of new infections depends proportionally

on previous infections.

With the help of piece-wise deterministic Markov theory in Davis (1984), we can find
out, at least in a differential equation form, the expectation of f(¢, \;, IV;) for some

differentiable function f, e.g. moments, probabilities. For example, the infinitesi-

)

mal generator of generalized dynamic contagion process Nt(DCP acting on function

f (t, )\EDCP)7 Nt(DCP)) within its domain Q(A) is given by

Af (t, )\EDCP)7 Nt(DCP))

L <J P (EAPD 42, NPEPY arr (@) — 1 (82D, NfDC”))
R

N /\gpcp) <J f (t, )\EDCP) +y, Nt(DCP) N 1) dG(y) — f (t, )\gDCP)’Nt(DCP)>)
R

where we need to make sure that

< o0

J 7 (t, APEP) | x’Nt(DCP)) Al () — f (t, )\IgDCP)7Nt(DCP)>
R

J 7 (t, MPCP) ) N(DOP) 1) Gy — f (t, APOP) Nt(DCP))‘ o
R

k
To derive moments of AEDCP) and Nt(DCP), we can simply set f = ()\ED or )) or

[P\ F .
f=1{N; , apply the generator and solve the equations.
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3.2 Birth and Death Process

Strictly speaking, birth and death process is not a Poisson point process as the
sample path can decrease. However, the way to define such a process is closely
related to system of probability equations (3.5). A simple birth and death process
is to model the evolution of population Z;, with a homogeneous birth rate A\, death
rate p and initial population Zy. At any infinitesimal time A, the probabilities that

give a new birth, new death, nothing happens and more than one birth or death are

Pr(Zisa =n+1|Z; = n) = AnA + o(A)
Pr(Ziian =n—11Z; = n) = unA + o(A)

(3.9)
Pr(Ziin =n|Z; =n) =1— (A + p)nA + o(A)

Pr(|Zt+A — Zt| = 2|Zt = n) = O(A)

For convenience, denote Pr(Z; = n) as P,(t) and the process is a typical continuous
Markov process with above transition probabilities. The transition probabilities is

expressed as

P,(t+A)=An—1)AP,_1(t) + p(n + 1)AP,11(t)
(3.10)

+ (1 = (A4 pw)nA)P,(t) + o(A)

Once we rearrange one of them P,(t) from the right hand side to the left hand side,
divide both sides by A and take the limit, we can obtain an ordinary differential

equation (ODE) to characterize the simple birth and death process

Pl = N — 1) Py (8) + pu(n + 1) Poga (t) — (A + p)nPo(t)

(3.11)
Pz, (0) =1

From equations 3.9 and 3.11, it is not clear that what the distribution looks like
for the whole process, although it is straightforward to implement simulation. To
explore its distributional property, one can apply a linear transform >, 6" on both

sides and define (t,0) = > 6"P,(t), we can get a partial differential equation
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(PDE) whose solution ¢ is the probability generating function of Z;.

0p | o 0p op op
o Mg Thgg ~ A

~ -0 -1 (312)

0(0,6) = 6%

This linear PDE can be solved explicitly

ot 0) = (1 —aft) + alt) B(t)e(t))e) D

1—(1-5
(A= p)ermr 3
Oé(t) - /\6()‘_#)75 — ) 5(t) - /\6()\_#)15 —

(3.13)

1. When p = 0, this will be a pure birth process, which is formally a point
process as the sample path is non-decreasing now. The pure birth process
followed negative binomial distribution with size Z, and success probability

e~ at any time ¢

-1
P,(t) = <§0 B 1) M1 - n = 7 (3.14)

2. When A\ = 0, this will be a pure death process which follows binomial distri-

bution with size Z; and survival probability e #* at any time t.

Z
n

P,(t) = ( )e”"t(l —e M 0<n< 2 (3.15)

3. The simple birth and death process is defined when these two rates are strictly
positively and it follows a mixture distribution, i.e. zero-modified geometric

random variables.

Z~ 3 Bla)CAAD), (3.16)

where B; are i.i.d Bernoulli random variables and G; are i.i.d Geometric ran-

dom variables with mean a(t) and %, respectively.
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3.3 Integer-valued approximation of point processes

(Paper D,E)

Motivated by Kirchner (2016), integer-valued model can be a good approximation
for those complicated stochastic process and potentially facilitate the statistical in-
ference (non parametric estimation, quasi-likelihood estimation). We show in paper
D and E that integer-valued time series model are just discrete version of those
cluster point processes and bivariate birth and death process. The approximation
made by integer-valued time series in fact improves the interpretability of corre-
sponding stochastic process, e.g. ARCH, GARCH models and stochastic volatility
model. More importantly, we usually observe bin-sized count (daily, weekly, monthly

counts) in practice rather than exact arrival times for each events,

In the cluster point processes case (Paper D), we extend the work from Kirchner
(2016) and construct so-called Integer-valued moving average model Y, (INMA)
and integer-valued autoregressive moving average model Z,, (INARMA), both with
infinite orders. The main idea of the approximation is that we utilize the additivity
property of independent Poisson random variables: If X; ~ Poi()\;) and Xy ~
Poi()\2), then X; + X5 ~ Poi(A; + Ag).

Take the Cox process and INMA for example: at any bin-sized interval Ay = ((k —
DAKA] k= 1,A = %, Y}, reports the number of count within the interval and the
aggregated process Y., Y, will approximate N;C) for a fixed time T.

Definition 3.4. The stationary Possion thinning INMA (c0) model is defined as

Yn = Z ﬁk © gnfk
k=0 (3.17)

:6005n+5106n71+"'+5n71051a

where

e [Br = 0 are some non-neqative coefficients
e & are i.i.d and follow Pois(p) with >0

o {&ktie..—2-10=0 as the process is defined on positive state space R
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e The thinning operator o is defined as
Sn—k -
5]6 o fnfk = Z u§n7k)a Ugmk) Zi"d POiS(ﬁk)a
i=1

On the other hand, the aggregated process S, = >'Y} is a cluster point process
such that

n n t— n n—t
S =2 Vi 22 DI L
t=1 t=1k=0 t=1k=0
_ (t 0) t+1 1) I uz(n,nft))’ ugtvk) ~ Pois(f) (3.18)

d
= u ~ Pozs

i M: ||.M:

gMi
sy
ol

The last equality follows from the independence of the Poisson random variables. It

is now clear that the aggregated process S, is a cluster process such that

e & generates the cluster centres independently.

e u! is a cluster generated by one of the cluster centre from &, with the size of

cluster (exclude the cluster centre) following Pois(Y1_( 51)

It is clearly that one can approximate Cox process by INMA model via specifying

parameter 3; to match intensity process A§C>.

o u=pAt, B =T,f(JA)A,j =0

e T, are i.i.d random variables corresponding to each cluster centre ;o arriving
at i/, with the Laplace transform h(u) = E[e=Yi]

Similar approximation procedure applies to N and N(P¢P). The main results are

shown below.

Definition 3.5. For n > 0, let {X;}io1 n, AYitio1, 0 and {Zi}i21, . be the INAR

sequence, the INMA sequence and the INARMA sequence with the parametric setting
A = %, ap = VA, a = xin(kA)A for k>0, B; = T, f(JA)A for j =0 and pn = pA.
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Define the following three families of point processes,

NOA) = > v (3.19)

where A is a bounded set in B(R,) and T is a constant such that T = sup A. The
joint distribution of these point processes are uniquely determined by their p.g.fl.s

derived in the section 3.

Theorem 3.1. Let N N NPCP) pe the Hawkes process, the Cox process and

the generalized dynamic contagion process. For n > 0, let N,SH), N,(LC) and NTSDCP)

be the point processes defined above. Then we have the following weak convergence

resulls

N’r(LH) o NH)
N© 5 N©) (3.20)

N,(LDCP) 5 NPCP) s — o0,

On the other case (Paper E), the story is slightly different. The parametrization of
integer-valued model is actually quite straightforward in the univariate case as the
probability generating function (3.13) already indicates the way to construct such

process. The corresponding INAR model is defined as followed

Definition 3.6. A birth and death INAR(1) model with survival probability o € [0, 1]
and birth probability p € [0, 1] is defined as

Xy =p+aoXq, (3.21)

where

e o is the binomial operator

e =y is a geometric (reproduction) operator such that p+; X = Zfil gz(1> with gZ(1>

being i.1.d geomelric random variable with success probability p whose proba-
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bility mass function is given by

PV =k) =pl—pF ', k=12...,

° p*laonzioingl)

The last bullet point shows that X;|X; ; is a mixture random variable corresponding
to 3.16. The interpretation is also clear, i.e. individuals who survive up to time t
will give birth to some new individuals. The parametrization of the corresponding
INAR model is given by

(A — p)erma A—p

/\e(A—H)A — P )\e(A—H)A — U (322)

o =

Moving beyond univariate case, we are interested in approximating the bivariate
linear birth and death process. Similar definition to the univariate case, there are two
populations who have their own birth and death rates (A1, Aao, p1, o). Furthermore,
a newborn of one population can be triggered by the other population. For example
the transmission of an infected disease, one population will be healthy people and
the other one will be infected people. The increment of a population is given by the
other population (one get infected or get recovered). Denote the cross birth rates
A12, Ao1. This process is characterized by the following ODE

-

diz?n = (AMi(m = 1)+ don) Pp1 o + pa(m + 1) Py

+ ()\mm + /\22(71 — 1)) Pm,n—l + [LQ(TZ + 1)Pm7n+1
X (3.23)

— (M1 + A2 + p)m + (Aag + Ao + po)n) Py,

Pu,(0) = 1, Mg, Myoe Ny
\

After applying linear transform ), >, 6™¢" on both sides, one can obtain a PDE
of the joint probability generating function W(t,60,¢) = >, >, 0"¢" P, (%)

o ov
e (M16% + M200 + p1 — (A1 + Mz + pa)) 00
ov

+ (A2 + X106 + g — ¢( Ny + Agp + Mz))% (3.24)

(0,0, ) = 0*M0pMe
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However, the resulting PDE has no closed form solution. A bivariate INAR model,
on the other hand, can give a clear representation of the whole process. We define

a new bivariate INAR model as follows:

Definition 3.7. A bivariate birth and death INAR(1) model Y, = (Y14, Yo,)" with
survival probability aq,an € [0,1] and birth probability (511, Bi2, B21, P22 € [0,1] is
defined as

Yie=0FusiaroYi g+ Bor %2 Yo
(3.25)

Yo = Praxa Yip1+ Paavi g0 Yoy q,
where

e o is the binomial operator

e =y is another geometric (reproduction) operator different from =1 such that
B X = Zfil gZ(2> with gl@ being i.1.d geometric random variable whose success

probability s 6 . The probability mass function is given by

P(g® =k)=p1-pB)F, k=012,

e Conditional on Y,_1, the random variables S11+1 01 0Y1 41, Bar#2Yay 1, Bia*o

Yiio1 and Bag #1 ag 0 Y141 are all independent of each other.

The main contribution (Definition 3 and Theorem 7 in Paper E) is that we man-
aged to find out a parameterization of above bivariate INAR to represent bivariate
birth and death process and show that the INAR model converges weakly to the

corresponding birth and death process.
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CHAPTER 4

Paper A. A First Order Binomial Mixed Poisson
Integer-valued Autoregressive Model with Serially

Dependent innovations

Abstract

Motivated by the extended Poisson INAR(1), which allows innovations to be seri-
ally dependent, we develop a new family of binomial-mixed Poisson INAR(1) (BMP
INAR(1)) processes by adding a mixed Poisson component to the innovations of
the classical Poisson INAR(1) process. Due to the flexibility of the mixed Poisson
component, the model includes a large class of INAR(1) processes with different
transition probabilities. Moreover, it can capture some overdispersion features com-
ing from the data while keeping the innovations serially dependent. We discuss its
statistical properties, stationarity conditions and transition probabilities for different
mixing densities (Exponential, Lindley). Then, we derive the maximum likelihood
estimation method and its asymptotic properties for this model. Finally, we demon-
strate our approach using a real data example of iceberg count data from a financial

system.
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4.1 Introduction

Modelling the integer-valued count time series has attracted a lot of attention over
the last few years in a plethora of different scientific fields such as the social sciences,
healthcare, insurance, economics and the financial industry. The standard ARMA
model will inevitably introduce real-valued results, and so is not appropriate for
modelling this type of data. As a result, many alternative classes of integer-valued
time series models have been introduced and explored in the applied statistical
literature. The Integer-valued autoregressive process of order one, abbreviated as
INAR(1), was proposed by McKenzie (1985) and Al-Osh and Alzaid (1987) as a
counterpart to the Gaussian AR(1) model for Poisson counts. This model was
derived by manipulating the operation between coefficients and variables, as well
as the innovation term, in such a way that the values are always integers. The
relationship of coefficients and variables is defined as av o X; = Zle V; such that V;
are 1.i.d Bernoulli random variables with parameter o and o denotes the binomial
thinning operator. The binomial thinning is very easy to interpret, and binomial
INAR(1) has the same autocorrelation structure as the standard AR(1) model and
hence can be applied to fit the count data. For a general review, please see Weif}
(2008b) and Scotto et al. (2015).

Later on, in order to accommodate different features exhibited by count data, for
example, under-dispersion, overdispersion, probability of observing zero and dif-
ferent dependent structures, many research studies introduced alternative thinning
operators or varied the distribution of V; for different needs. The case where V; are
i.i.d geometric random variables is analyzed by Risti¢ et al. (2009), which is called
NGINAR(1). Kirchner (2016) introduced reproduction operators so that V; are i.i.d
Poisson random variables to explore the relationship between Hawkes process and
integer-valued time series. For further variation, random coefficients thinning is
introduced so that Vi are i.i.d Bernoulli with the parameter a being a random vari-
able. This type of thinning operator was proposed by McKenzie (1985, 1986) and
Zheng et al. (2007); they applied this to a generalized INAR(1) model. In particu-
lar, to accommodate the overdispersion feature, one way is to change the thinning
operators from binomial to other types as discussed above.Another way is to replace
the innovation distribution by some other overdispersed distribution; for example,
see Bourguignon et al. (2019). A third approach would be to keep the structure of
binomial INAR(1) but to allow the innovation terms to be serially dependent; see
Weifs (2015).

In this study, motivated by Weif (2015), we develop a new family of binomial-mixed
Poisson INAR(1) (BMP INAR(1)) processes by adding a mixed Poisson component
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to the innovations term of the classical Poisson INAR(1) process. The proposed class
of BMP INAR(1) processes is ideally suited for modelling heterogeneity in count time
series data since, due to the mixed Poisson component which we introduce herein, it
includes many members with different transition probabilities that can adequately
capture different levels of overdispersion in the data while keeping the innovation as

independent Poisson.

The rest paper is organized as follows. Section 4.2 defines the Binomial mixed Pois-
son INAR(1) model by adding a mixed Poisson component in the Poisson INAR(1)
model. Statistical properties and the stationarity condition are derived in Section
4.3. Section 4.4 derives the distribution of the mixed Poisson component based on
two different mixing density functions from the exponential family, namely the Ex-
ponential and Lindley distributions. In Section 4.5, maximum likelihood estimation
is discussed as well as its asymptotic properties for the estimators. In Section 4.6,
the model is fitted to financial data (iceberg count) and discuss numerical results.

Finally, concluding remarks are provided in Section 4.7.

4.2 Construction of Binomial Mixed Poisson INAR(1)

In Weifs (2015), the classical Poisson INAR(1) was extended by allowing the innova-
tions € to depend on the current state of the model X; such that &, ~ Po(aX;_1+)
where a and b are some positive constants. The innovation with this definition is
separable in the sense that ¢, = a » X; 1 + ¢, where a « X; 1 = Zi{t{l U;, with
U, " Po(a) and ¢; ~ Po(b). To introduce further heterogeneity while maintaining
serially dependent innovations structure in this model, we extend this by allowing

U, to be a mixed Poisson random variable.

Starting from a Poisson random variable U with parameter 6, we may obtain a large
class of random variables by allowing # to be another random variable which follows
some classes of density function g(6|¢) where ¢ can be a scalar or a vector; see
Karlis (2005). The random variable U follows a Mixed Poisson distribution with ¢

as a mixing density. The distribution function of U is defined as

* e~ligy
PU =u) = J " g(0|p)db. (4.1)
0 .

We now construct our model.
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Definition 4.1. The Binomial Mixed Poisson integer-valued Autoregressive model
(BMP INAR(1)) is defined by the following equations

Xiy1=pr1o X+

=p1oXy+ g Xy + Zip

Xt Xi (42)
proX, =Y Vi, @2 Xi=) U
k=1 =1
e 0] 6792‘01
PU =) = | g(0le)ds
0

where

e o is a binomial thinning operator such that V; are i.1.d Bernoulli random vari-

ables with parameter p, € [0, 1]
o {Zi}i12.. are i.i.d Poisson random variables with rate Ay > 0

o +, is a reproduction operator such that U; are independent Mized Poisson dis-

tributed with mizing density function g(6;|p)

o +, and o are independent of each other so that U; and Vi, are independent of

each other.

As we will see shortly, the stationarity condition for this model is simply p; +p, < 1
where 1, is the first moment of U;. When it comes to interpretation, this model
can be seen as the evolution of a population where the binomial part indicates the
survivors from the previous period, the mixed Poisson part is the total offspring and
the innovation part indicates immigrants. Obviously, this model is a Markov Chain
and its transition probability can be found easily once we know the mixing density

g(0]¢). The probability mass function of Y; 11 = ¢ #, X; is given by

=2 0SS 6.\Y
€ = (2
PY,;1=ylX;=n)=E ;'ZZ_I ) ] , (4.3)
where the expectation is taken over #q,0,,...,6,. In order to evaluate the expecta-

tion explicitly, it would be desirable that the random variables #; have an ’additivity’
property such that density (or probability mass function) of the sum >’ 6; is either
itself with different parameters or can be written in a closed form. Many members

of the exponential family have this kind of property. In general, we let g(x|p) be of
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an exponential family form such that

9(zlp) = h(z) exp{n(p)T(x) + £(p)}- (4.4)

Denote the density of the sum S, = >7" | 6; as g,(s|p), where 6; are i.i.d random

variables with density g(6|¢). The expectation above can be expressed as

e %sY
PV = ol =) = | Fu(el)as. (1.5)
R+ Y

The density g,(s|p) is explicitly known in many cases, for example, it can be an
Inverse Gaussian, Exponential, Gamma, Geometric, Bernoulli or Lindley. For the
sake of parsimony, we use distributions with a single parameter. In other words, we
assume that ¢ is scalar. Note that, if we let g(f|¢) = 6,(f) - a Dirac delta function
concentrating at ¢, the model will recover to the Extended Poisson INAR(1) in Weifs
(2015).

4.3 Statistical properties of BMP INAR(1)

4.3.1 Moments and correlation structure

We first need to derive the moments of U;

Lemma 4.1. The first moment and second central moment of U; with density g(x|p)
are given by
E[Uz] = [y, VCL?”(Ul) = g + 0—37 (46)

where p1g = Eq[0;] = §, xg(x|p)dr and o7 = Vary(6;).
Proof. By the conditional expectation argument
E[Ui] = Eg[E[U:]0:]] = Eg[0:] = pg

E[U7] = E,[E[U710:]] = E,y[07 + 6:]

Var(U;) = E[U7] — (E[U;])* = o + .
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Proposition 4.1. Assume p; + py < 1. The stationary moments of X, is given by

At
E[X,] = 1y — —-
[Xi] = p [——
1—p2+ 02
Var(X,) = o2 = sz;g? (4.7)
L= (p1+ 1)

Cov(Xy, Xi 1) = (k) = (p1 + pg)*o.

Proof. For the first moment, we have

E[X;] = E[p1 0 Xi1] + Elp #, X; 1] + E[Z]

fo = Pifbe + fgflz + A1
A

Mo =77
L —p1— py

Since the operators o and #, are independent of each other, for the second central

moment, we have

Var(X;) = Var(pro Xio1 + @y Xy1) + Var(Zy)
Xt Xt-1

= Var(E[ Y (Vi + UD)|Xi1]) + E[Var( Y. (Vi + U Xi—1)] + M

i=1 i=1

= (p1 + 1g)*02 + (01(1 — p1) + 0} + f1g) e + M1
2 2
02:/% 1—p1—|—crg .
* 1— (pl + ,ug)2

Let F; = o(Xy, Xy 1,...,) be the o-algebra generated by the model X; up to time

t, the covariance of the model is given by
Cov(Xy, Xi—k) = Cov(pr o X1, Xy—i) + Cov(p #g Xi1, Xy—i) + Cov(Zy, Xy ).
Again by using conditional expectations, we have

Cov(pr o Xi—1, Xy—i) = Cov(E[py 0 Xy—1|Fi1], E[Xi—g|Fi1]) + E[Cov(pr 0 Xi—1, Xi—k| Fi1)]
X1

= Cov(p1 Xi—1, Xi—k) + E[Cov( Y| Vi, Xi_4| Fici)]

=1

=py(k—1)+0.
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Obviously, Cov(Xy, X; &) = (k) = (p1 + pg)y(k — 1) = (p1 + py)*7(0) . O

From the results above, it is clear that this model follows the same correlation

structure as that of standard AR(1) model. Furthermore, unlike equal-dispersed

Poisson INAR(1), BMP INAR(1) is in general an overdispersed model with Fisher

index of dispersion

PI, = %y Mot 2 Oy
fha 1 —(p1 + pg)?

Q

(4.8)

4.3.2 Existence of Stationary Solution

Proposition 4.2. Given that P(U; = 0) > 0 and py + p, < 1 the following infinite

sequerice

fi(0) = (1 —p1 + p1fic(0) o (fica(0), =1

fo0) =6, 6¢€]0,1]

(4.9)

where ®,(0) is the probability generating function (p.g.f) of U;, and lim f;(0) = 1
1—00
Proof. Define the increment of the sequence
fi(0) = fi-1(0) = (L — p1 + p1fi-1(0)) Pu(fi-1(0)) — fi-1(0)

=(1—=p +p2)0yu(z) —x z = fi(0)

= Q(z)

By the definition of p.g.f, x € [0, 1], the monotonicity of this function is shown by

its first and second derivatives

Q'(r) = pi®@u(z) + (1 = p1 + pr2) Py (x) — 1

"

Q' (2) = 201 @, () + (1 = p1 + p12) @, (2)

By the definition of p.g.f, ®(x) > 0 and ®"(z) = 0. So Q"(z) = 0, which implies

Q)'(x) is non-decreasing function. Then we have

Q) <Q'(1)=p1+pu,—1<0
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Notice that Q(0) = (1 —p1)P(U; = 0) > 0, Q(1) = 0. Hence we can conclude that
() is a monotonic decreasing function ranging from 0 to Q(0). In order words, for
any ¢ = 1,..., and 6 € [0, 1], the sequence f;(0) = fi_1(0) + Q(fi—1(#)) is increasing
with respect to i. Finally, lli_)rgfi(ﬁ) =1 O

Proposition 4.3. Let X, be the BMP INAR(1) model defined in 4.1. If the condi-
tion P(U;) > 0 and py + py < 1 holds, then the process X; has a proper stationary

distribution and X, is an ergodic Markov Chain. The stationary distribution is

©,(0) = [T:Zo ®=(£i(0))

Proof. Denote the p.g.f of X,, and the innovation Z,, as ®x, (6) and ®,(f)respectively,

then @ (0) can be expressed as following product

Oy, (0) = E[E[0¥ X, 1]]X]
_ E[E[QploXn_1+<p*an_1+Zt |Xn71]|XO]

= E[£1(0)%" | Xo]®.(f5(0))

n—1

= E[£.(0)*] [ [ -(£i(9)).

1=0

To show the existence of the limiting distribution is equivalent to show the limit of
the product as n goes to infinity is something other than 0, which means that we

have to show that the series

n—1

LP, =log ®x,(0) = logE[f,()*°] + Z log ®.(f:(0)),

1=0

is convergent as n — 0. The convergence of the infinite series > .- log ®.(f;(6))

can be shown by the ratio test

lim

1—00

log ®.(fi—1(0))
:hmlog O.((1 —p1 + pra)P,(2))
e o1 log @.(z) (4.10)

=lim P (2) DL = p1 + pr2)0u(2)) (1 Pu(z) + (1 —py +P137)(D;(x))

m—»l(I)’Z((E) (I)Z((l — D1 +p1517)q)u(x))

=p1 + pg <1
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Hence lim LP, > —oo, from which we can infer that lim ®x, (6) > 0 exists and the
limitingacix;tribution of X,, exists. Furthermore, by thg Z(;onstruction of X,,, the chain
is defined on a countable state space S = {0,1,2,...}. The positivity of transition
probability P(X,, = j|X, 1 = 1) > 0, ¥V i,j € S implies that X,, is irreducible
and aperiodic. Hence the limiting distribution ®,(0) = T}grolo ®x (6) is the unique

stationary distribution for X,,. O]

In general, P(U; = 0) = §,, e ?g(0]¢)df > 0 as long as g(f|¢) > 0, so we just need
to ensure the existence of the first moment to achieve the stationarity of X,,. The
infinite product ®,(0) = [°, ®.(fi(6)) is the p.g.f of the stationary distribution,

which also satisfies

B,(0) = D, (1 — p1 + p10)@u(0)) . (0). (4.11)

4.4 Distribution function of the Mixed Poisson Com-

ponent

In order to apply maximum likelihood estimation for the statistical inference of this
model, we need to derive the distribution of Y; 1, = ¢ #, X; according to different
density functions g. As mentioned before, we focus on the density g coming from
the exponential family. For expository purposes, we will derive the distribution of

Y;+1 based on exponential and Lindley densities.

4.4.1 Mixed by Exponential density

If g(8]¢) = éeiée, then the distribution of U; is given by

©e=tigr 1 4,
P(Ulzl')zf ¢ Z—e 05 dGZ
0 !
1 ®© 1
= —J e~ 2% gz qp, (4.12)
L Jo

1 %)
g —_— —.'L” 1'2071,...
(1+g0)(1—|-g0)
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which is a geometric distribution with parameter ﬁ. Then, the distribution func-

tion f,(m, X;) of ¢ =, X; as well as its first and second derivatives are given by

1
ol 20 = Caxe- 1(1+90)Xt(1f90)m
of,(m, Xt
Lp ( 1 + gp) f@(m Xt)
an m Xt Xt 2 Xt m(1 N 2@)
‘P ( 1 + gp) + (1 + @)2 - @2(1 +S0)2 f¢(m,Xt)

Note that X; will recover to the NGINAR(1) in Risti¢ et al. (2009) if we further let
p1 = 0. In general, the stationarity condition becomes p; +¢ < 1 and the probability

generating function of X; satisfies the equation

B, (0) — , <%) B.(0). (4.14)

We will now relax the assumption of the innovation term being Poisson and let the

marginal distribution of X be a geometric random variable with parameter o >

1+oz’
0. Using the relationship of the p.g.f, we can infer the required distribution of Z.

Proposition 4.4. If p1 > p,a > ¢ or p1 < @,a < ¢ and the distribution of

{Zi}i-10.... follows a mized geometric distribution such that

Geom(-2-), W.p. (o«

Z, = e a , (4.15)
Geom( Ww.p 11— e

1+a) T a—p

then the marginal distribution of X follows a Geom(l%a) distribution.

Proof. By utilizing equation 4.14, we assume the X has a geometric distribution
such that ®,(0) =

following form,

m. Then, the probability generating function of Z has the

@, (6)
e ()
_d+eo—wf)(d+a)—all —pi+pi0) (4.16)
(14+a—ad)(1+p—pb)
_ (p1 — p)a 1 n (1 _ (p1 — 90)04> 1

a—¢ 14+ ¢@— b a— l+a—af

2.(6) =
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4.4.2 Mixed by Lindley density

Suppose now the density g(6|¢) = fi%(@ +1)e~#? is a Lindley density function. The

distribution of U; is the so-called Poisson-Lindley distribution, see Karlis (2005),

which has the following probability mass function

P(U; = z) = f RO (g, 4 1)e e dp,

o zl 1+
2 o0 0
- f o7t e= (et 0dp; + f Ore= (e ap,
(1 + gp)x! o 0 !
@2 ['(z +2) N [(x+1)
(I + @)zt \(1+p)et2 (14 p)**!
o +2+ )

:W, I':O,]_,...

(4.17)

Under this parameter setting, E[U;] = p, = 52%21) which makes the parameter ¢ less

interpretable. So we adopt the following parameter setting for the mixing density
9(0le)

P? 1-p+A

De ™ ¢ = A = —1)2 4.1
1+¢(9+)e @ 2% (p—1)2+8p (4.18)

9(0]p) =

Then, p, = ¢, 0, = p? — m. On the other hand, the additivity of U; is

not that clear. In order to evaluate the expectation 4.3, we need to find out the
distribution of S,, = >", 6;.

Proposition 4.5. Suppose 0; are i.i.d Lindley distributed. The density of the sum
Sp =2, 0; is given by

@2 n } n Ck b
_ —sosz—n n+k—1 4.1
gn(s]) <1+¢> © A F(n+k)$ (4.19)

=0

Proof. We can prove this by inverting the Laplace transform. The Laplace transform

of 0; is

o0 @2 .
E[e %] = J —(0; + 1)e T9Yiqp,
o L+
P p+v+1
1+ (p+v)?
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Then the Laplace transform of S, is simply the product of E[e™%], which is

E[e”sﬂ]z( 7 )"(95+u+1)n.

1+¢ (p+rv)

Using a binomial expansion, we have

)
_ ' n—k (n—k)
- ~ ~ Cn (()0 + V)
<1+90> (s0+1/)”,;)
S52 n n i (n )
= = Cr(@+v)™""
<1 + w) ,;
~92 n n o0 Ok _
_ < 2 ~> Z J n Sn+k—16—4pse—usds
1+¢) =)o Tn+k)
o0 ~92 n ~ n Ck
_ J VS ( ¥ ~> e~ P8 Z n Sn+k_1d8.
0 1+¢ = D(n+ k)
Obviously, the density function of .S,, is the integrand except e™"*. n

Then, the distribution of Y;,1 = 0+, X, is given by the following proposition.

Proposition 4.6. The probability mass function of Yiy1 = ¢ #g Xy as well as its

derwatives are given by

foly:m) = P(Yirr = y|Xi = n) = ( ) Z CECY, oy 1 (14 §) )

ofelym) _ <Z _ L) Folyin) — (y + 1) fo(y +1,n)

0P o 14+
2 f(y, 2 1\’ 2 1
S ( (3-5) ‘”(E‘W))My’”)
~2u(y+1) (2= 1) Jelo+ L) + 0 D+ Dl + 200)
0folyn) _ 0fply,n) 20 *foly,n) _ Pfoly,n) (@)2 | Ofelym) %
0p op  0p’ 0p? 0p? op 0p  0p?’

(4.20)
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where

@__iJrgoJrS_ 1—p+A
do 20 20A 22
@ZLJF 1 +1—<p+A_(g0+3)2_g0+3
e TAN @3 200° @A
Proof.
?19 Qz)y
PY,1=ylX;=n)=E [ ]
f 678 ( )neips i CS SnJrkfldS
0 + ¢ ~T(n+k)

gﬁ n k I(TL k y) —(n+k+y)
1 %) )

k —(n+k+y)
(14_()0) ZCn n+k+y— 1 +(10) Y

4.5 Maximum likelihood estimation and its asymp-
totic property

In general, the transition probability can be written down explicitly as

min(i,5)
P(Xpn =ilX,=j4) = >, Croi'(L—p1)’ PV + Zioa =i —m)
m=0
mln(lj)z m
= Fpl m ])fso(x ])FM(Z - —513)
m=0 z=0

(4.21)

675813
fuled) = | atslo
R+
e—>\1>\imx
Fy(i—m—zx) = 1
i —m =) (i —m—z)!

The log likelihood function is simply £(p1, ¢, @) = D log P(X;41|X0).

Proposition 4.7. Suppose we have a random sample {X1,Xs,...,X,}. Let p =
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(p1, 0, A1) denote the parameters vector for the stationary BMP INAR(1) model.

The mazimum likelihood estimator p has the following asymptotic distribution:

where
gmm €p1<p €p1>\1
H = lopy Lo Lo, I=—-E[H] (4.23)
€>\1P1 f’pw €A1>\1
mm X X X —-m
0P (X 1| X 1 Xe) Xepy oF, (m, X
% - Z Z : opy t)f (2, Xo) o, (Xep1 —m — )
O2P(X1|X)) mm&“&ﬂ“lm#@(mxg
2o AR Z o\ ) XV (X1 —m —
o)? 2 4y PR
2P(Xp|X) OGN OR (m, Xy) 0f H(x, Xy)
_— = LR ’ B (Xjoi—m—2x
&plﬁw mzlo JZ;] apl agp >\1( t+1 )
_ Z 82P (Xi11|Xe) 1 _ OP(Xy1|Xy) 0P (X 11| X3) 1
=0 dzoy P(Xp41|X3) 0x dy P(Xpq1|X3)?

(4.24)

where x,y € {p1, 0, \1}. The first and second derivatives of each distribution function

1S given by

5Fp1(m, Xt) _ m — p1 Xy

F, (m, X
op1 pl(l—p1) pl(m t)
Of,(m, Xy) _ij e 55"
agp - 580 R+ I gXt(S|@)
OF,,(m) _(m
e —<)\1 1)F (m)

?F,, (m, X;) _ (m(m —1-(X—Dp)  (Xi—m)(m — (X, — 1)191)) F,, (m, X,)

0(p1)? pi(l—p1) pi(l = p1)?
Pf,(m, X 0? e 5s”
SD@((,O? D _ = f g (sle)ds
PFy (z) 2r  x(zr—1)
o = (3 ) B
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Proof. From proposition 4.3, we know that the X, is stationary and ergodic and its
stationary distribution is characterized by the p.g.f ®,(6) = [[;c, ®.(fi(6)). Then
score functions and information matrix I are also stationary and ergodic. Then the
proof for asymptotic normality is similar to the proof of theorem 4 in Appendix A
of Bu et al. (2008) O

The expectation of information matrix I can be calculated numerically by finding
out unconditional distribution P(X;) and joint distribution P(X,_q, X;). However,
this would be computational intensive when the sample size n is large. In practice,

since the process X; is stationary and ergodic, I ~ —H when n is large.

To verify the asymptotic normality of the maximum likelihood estimators, we con-
duct a Monte Carlo experiment. This experiment is based on 2000 replications. For
each replication, a time series of BMP-INAR(1) with chosen mixing density, either
Exponential or Lindley , of size n = 100, 200, ..., 500 is generated. The parameters
are set as p; = ¢ = 0.3, \; = 2 for both mixing densities and they are estimated via
the maximum likelihood method. The biases and standard errors of the estimated
parameters are shown in tables 1 and 2. We observe that the biases of the estimators
are either reasonably small or decreasing with respect to the sample size n. And it
is clear that the standard error is also decreasing with respect to n. Finally, in order
to graphically inspect the distribution of estimators, normal quantile-quantile plots

are provided below.

Table 4.1: The bias of Maximum likelihood estimators of BMP-INAR(1) model with
respect to different sample size n

Bias(p) n =100 n=200 n =300 n=400 n =500
D1 0.0022  -0.0021  0.0019  -0.0003 -0.0003

Exponential [0) -0.0284 -0.0104 -0.0110 -0.0072  -0.0059
A1 0.1089  0.0526  0.0384  0.0366  0.0279

D1 -0.0008  0.0004  -0.0015 -0.0020 -0.0011

Lindley 0] -0.0209 -0.0143 -0.0085 -0.0050 -0.0039

A1 0.0387  0.0227  0.0141  0.0144  0.0101
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Table 4.2: The standard error of Maximum likelihood estimators of BMP-INAR(1)
model with respect to different sample size n

SE.(p) n=100 n=200 n=300 n=400 n =500

D1 0.1303  0.0965  0.0752  0.0663  0.0576
Exponential [0) 0.1384  0.0970  0.0783  0.0670  0.0581
A1 0.3982  0.2858  0.2276  0.2012  0.1764

D1 0.1319  0.0991 0.0854  0.0711  0.0630
Lindley 0] 0.1432  0.1054  0.0880  0.0729  0.0661
A1 0.2050  0.1515  0.1166  0.0999  0.0911
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Figure 4.1: Quantile-Quantile plots for maximum likelihood estimators of BMP-INAR(1)
model. The left panel shows plots for the Exponential mixing density, while the right panel
depicts the plots for the Lindley mixing density.

4.6 Real data example: iceberg order data

The iceberg order counts concern the Deutsche Telekom shares traded in the XETRA
system of Deutsche Borse, and the concrete time series gives the number of iceberg
orders (for the ask side) per 20 min for 32 consecutive trading days in the first
quarter of 2004. The special feature of iceberg orders is that only a small part of
the order (tip of the iceberg) is visible in the order book and the main part of the
order is hidden. For detail description, please see the Jung and Tremayne (2011)
and Frey and Sandas (2009). This dataset is also analysed in Weifs (2015), where
the Extended Poisson INAR(1) is applied to fit the data.

A table of descriptive statistics, a time series, as well as the ACF and PACF plots
are shown below. The variance of the iceberg count is higher than its mean, which
indicates the data is overdispersed. The level of dispersion is described by the
Fisher index of dispersion FI > 1. Evidence of the applicability of a first order
autoregressive model is indicated by the empirical ACF and PACF graphs. They
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illustrate a clear decay for ACF and cut-off at lag =1 for PACF.

Table 4.3: Descriptive statistics of iceberg count

minimum maximum median mean variance FI
0 9 1 1.407 2.184 1.552
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Figure 4.2: Time series plot of iceberg data and its emprical ACF PACF plots. The blue
dash lines are the 95% confident bands by assuming the series to be a white noise process

The following table records the estimated parameters through the maximum likeli-
hood method. The likelihood function is constructed as in 4.21 with different f,,(x, j)
(mixed by Exponential or Lindley). It is then maximised through ’optim’ in R with
'method = BFGS’ (quasi-Newton method) while the standard deviations of MLEs
are calculated through inverting the negative observed information matrix in propo-
sition 4.7 based on MLEs. To access the goodness of fit, we adopt the information
criteria AIC and BIC as well as the (standardized) Pearson residuals. If the model
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is correctly specified, Pearson residuals for BMP-INAR(1) are expected to have a
mean and variance close to 0 and 1 respectively, with no significant autocorrelation.

The Pearson residuals are calculated by the following formula:

Ty — E[Xt|xt,1]

€t = 9
v Var( Xz 1)

where z; denotes the observed value.

(4.25)

Table 4.4: The results for the BMP INAR(1) model mixed by different density
functions. The results of Dirac delta case are from Table 2 of Weifs (2015). The
estimated standard deviations for all models are in brackets.

Mixing density 7 @ X AIC BIC Pearson residuals  FI,
mean  variance

Dirac delta  0.410  0.188  0.567 2212 2226 -0.001  1.159  1.295
(0.058)  (0.059) (0.040)

Exponential ~ 0434 0167 0563 2208 2222 -0.002 1154 1.315
(0.044)  (0.044) (0.040)

Lindley 0434  0.167 0563 2208 2222 -0.002 1.154 1.314
(0.043)  (0.043) (0.040)
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Figure 4.3: Autocorrelation of Standardized Pearson residuals for three different mixing
densities

The results shown in Table 2 and the ACF plots of the Pearson residuals indicate
that the BMP-INAR(1) models are appropriate for fitting the iceberg data. The
estimated parameters are significantly different from 0, which is indicated by their
estimated standard deviation. Compared to the Dirac delta case, which is actually
the Extended Poisson INAR(1) of Weifs (2015), the other two cases do show some
improvement with smaller AIC, BIC values and larger fitted Fisher index of dis-
persion FI, which, however, is slightly smaller than the empirical FI. On the other
hand, it seems that there is little difference between the other two cases as they have
very similar AIC and BIC values. This is due to the fact that the value of ¢ is iden-
tical for both densities. Finally, it should be noted that the variance of the Pearson
residuals is visibly larger than 1. As it was previously mentioned, the exponential
and Lindley mixing densities were considered for expository purposes. Therefore,
since the proposed family of BMP INAR(1) models is quite general, another mix-
ing distribution could potentially more efficiently capture the observed dispersion

structure for this data.
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Overall, the mixed Poison component in the BMP INAR(1) model efficiently cap-

tures the overdispersion in this type of financial data.

4.7 Concluding remarks

The BMP INAR(1) is an extension of the classical Poisson INAR(1) model obtained
by adding an additional mixed Poisson component and hence it can capture the level
of overdispersion coming from the data. The exponential family is a desired choice
for the mixing density due to its 'additivity’ property. The choice of the mixing
density can control the dispersion level to some extent, although the BMP INAR(1)
X, is always overdispersed in general. Furthermore, due to its simplicity, X; is
actually a Markov chain and the maximum likelihood estimation method can be
applied easily. The real data analysis shows that BMP INAR(1) can be a potential
choice for modelling financial count data which exhibit standard AR(1) structure

and overdispersion.
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CHAPTER 5

Paper B. Multivariate Mixed Poisson Generalized

Inverse Gaussian INAR(1) Regression

Abstract

In this paper, we present a novel family of multivariate mixed Poisson-Generalized
Inverse Gaussian INAR(1), MMPGIG-INAR(1), regression models for modelling
time series of overdispersed count response variables in a versatile manner. The
statistical properties associated with the proposed family of models are discussed
and we derive the joint distribution of innovations across all the sequences. Finally,
for illustrative purposes different members of the MMPGIG-INAR(1) class are fitted
to Local Government Property Insurance Fund data fromthe state of Wisconsin via

maximum likelihood estimation.

5.1 Introduction

In recent years, there has been a growing interest in modelling integer-valued time
series of univariate and multivariate count data in a plethora of different scientific
fields such as sociology, econometrics, manufacturing, engineering, agriculture, biol-
ogy, biometrics, genetics, medicine, sports, marketing, and insurance. In particular,
regarding the univariate case Al-Osh and Alzaid (1987) and McKenzie (1985) were
the first to consider an INAR(1) model based on the so-called binomial thinning
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operator. Subsequently, many articles focused on extending this setup by applying
different thinning operators or by varying the distribution of innovations. For more
details, the interested reader can refer to Weif (2018) Davis et al. (2016a), Scotto
et al. (2015), Weifs (2008b) among many more. The INAR(1) model with Poisson
marginal distribution (Poisson INAR(1)) has been the most popular choice due to
the simplicity of its log-likelihood function that implies that the formality of param-
eter estimation via maximum likelihood (ML) estimation is straightforward. Also,
Freeland and McCabe (2004) considered an extension of the model by allowing for
regression specifications on the mean of the Poisson innovation as well as parame-
ter of binomial thinning operator. On the other hand, the literature which focuses
on the multivariate case is less developed. In particular, Latour (1997) introduced
a multivariate GINAR(p) model with a generalized thinning operator. Karlis and
Pedeli (2013) and Pedeli and Karlis (2011, 2013a,b) focused on the diagonal case
under which the thinning operators do not introduce cross correlation among dif-
ferent counts. In this case, the dependence structure introduced by innovations.
Additionally, Risti¢ et al. (2012), Popovi¢ (2016), Popovi¢ et al. (2016) and Nasti¢
et al. (2016) constructed multivariate INAR distributions with cross correlations
among counts and random coefficients thinning. Finally, Karlis and Pedeli (2013)
extended the setup of the previous articles by allowing for negative cross correlation

via a copula-based approach for modelling the innovations.

In this paper, we extend the model proposed by Pedeli and Karlis (2011) by in-
troducing the multivariate mixed Poisson-Generalized Inverse Gaussian INAR(1),
MMPGIG-INAR(1), regression model for multivariate count time series data. The
MMPGIG-INAR(1) is a general three parameter distribution family of INAR(1)
models driven by mixed Poisson regression innovations where the mixing densities
are chosen from the Generalized Inverse Gaussian class of distributions. Thus, the
proposed modelling framework can provide the appropriate level of flexibility for
modelling positive correlations of different magnitudes among time series of differ-
ent types of overdispersed count response variables. In particular, depending on
the values taken by the shape parameter, the MMPGIG-INAR(1) family includes
many members, such as the mixed Poisson-Inverse Gaussian (PIG), as special cases
and several others as limiting cases, such as the Negative Binomial, or Poisson-
Gamma, the Poisson-Inverse Gamma (PIGA), the Poisson-Inverse Exponential, the
Poisson-Inverse Chi Squared and the Poisson-Scaled Inverse Chi Squared distribu-
tions. Therefore, it can accommodate different levels of overdispersion depending
on the chosen parametric form of the mixing density. Furthermore, the MMPGIG-
INAR(1) family of models is constructed by assuming that the probability mass

function (pmf) of the MMPGIG innovations is parameterized in terms of the mean
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parameter which results in a more orthogonal parameterization that facilitates max-
imum likelihood (ML) estimation when regression specifications are allowed for the
mean parameters of the MMPGIG-INAR(1) regression model. For expository pur-
poses, we derive the joint probability mass functions and the derivatives of several
special cases of the MMPGIG-INAR(1) family which are used as innovations. These
models are fitted to time series of claim count data from the Local Government
Property Insurance Fund (LGPIF) data in the state of Wisconsin. At this point
it is worth noting that modelling the correlation between different types of claims
from the same and /or different types of coverage it is very important from a practical
business standpoint. Many articles have been devoted to this topic, see for example,
Bermudez and Karlis (2011), Bermudez and Karlis (2012), Shi and Valdez (2014a),
Shi and Valdez (2014b), Abdallah et al. (2016), Bermudez and Karlis (2017), Pe-
chon et al. (2018), Pechon et al. (2019), Bolancé and Vernic (2019), Denuit et al.
(2019), Fung et al. (2019), Bolancé et al. (2020), Pechon et al. (2021), Jeong and Dey
(2021), Gomez-Déniz and Calderin-Ojeda (2021), Tzougas and di Cerchiara (2023)
and Tzougas and di Cerchiara (2021).

However, with the exception of very few articles, such as Bermudez et al. (2018) and
Bermidez and Karlis (2021), the construction of bivariate INAR(1) models which
can capture the serial correlation between the observations of the same policyholder
over time and the correlation between different claim types remains a largely un-

charted territory. This is an additional contribution of this study.

The rest of the paper proceeds as follows. Section 2 presents the derivation of the
MMPGIG-INAR(1) model. Statistical properties of the MMPGIG innovations are
discussed in Section 3. In Section 4, we present a description of the alternative
special cases of the MMPGIG-INAR(1) family. Section 5 discusses the parameter
estimation for these models based on the maximum likelihood method and integer-
valued prediction. Section 6 contains our empirical analysis for the LGPIF data set.

Finally, concluding remarks are given in Section 7.

5.2 Generalized Setting

Let X and R be non-negative integer-valued random vectors in R™. Let P be

a diagonal matrix in R™*™ with elements p; € (0,1). The multivariate Poisson-
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Generalized Inverse Gaussian INAR(1) is defined as

P1 0O ... 0 0 X17t_1 Rl,t
0 P2 ... 0 0 X27t71 R27t

Xt =Po Xt—l + Rt = 0 + (51)
0O 0 ... Pm Xmt—1 Rt

where the thinning operator o is the widely used binomial thinning operator such
that p; o X;; = 2(:1 Ui where Uy, are independent identically distributed Bernoulli
random variables with success probability p;, i.e. P(Up = 1) = p;. Hence p; o
X is binomially distributed with size X;; and success probability p;. Then the

distribution function f,(x, X;+) can be easily written down as

Xt .
e i) = (5 Yo -y (5.2

Note that given X;;, X;; ¢ # j, p; o X;; and p; o X;,, are independent of each

other. To adapt the heteroscedasticity arising from the data, {R;;};—1.__mn are mixed

Poisson random variables Po(6;);;) with the random effect 6;. The rate \;; is
characterized by its observed covariate z;; € R%>*! for some positive integer a; and
they are connected through a log link function such that log(\;;) = Zij:tﬂi where
distribution G(#), which means the dependent structure among X; ; can be controlled
by the choice of distribution and its corresponding size of parameters. The joint

distribution of R; is

f(]ﬁ(kv t) = P(Rl,t = kla cee 7Rm,t = km)

E[P(Riy = ki,..., Ry = kml|6))] (5.3)

m ki
[15%
j=1

o8}
, f e 0T M gE ki G (9)
kil Jo

We let 0, be a continuous random variable from the Generalized Inverse Gaussian

distribution with density function g(f)

g(0) = mg’*l exp {—% (zﬁ@ + %)} , (5.4)
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where —o0 < v < 0,19 > 0,x > 0 and K, (w) is the modified Bessel function of the

third kind of order v and argument w such that

« 1 1
K, (w) = f 2 Lexp {——w(z + —)} dz
0 2 z
The Generalized Inverse Gaussian distribution is a widely used family. For example,
it includes the Inverse Gaussian as special case and the Gamma and Inverse Gamma,
as limiting cases. To avoid identification problems for mixed Poisson regression
random variable Ry, the mean of 6; is restricted to one, i.e. E[f;] = 1, and all the
parameters v, 1, x will be either fixed or a function of another parameter ¢. With
these two constraints, there is only one parameter that is free to vary. (e.g. for
1

Inverse Gaussian distribution, v = —3 and ¢ = x = ¢). The joint distribution of
R; becomes an MPGIG distribution

. 1
fo(k,t) = W/X f e IR Mgt kigr—l exp {—5 (zpe + %) } do

B (w/x)z Ku+2k -
@t R H

(5.5)

where A = ¢ + 22;’;1 Ait. In section 5, we will discuss in detail the distribution
function f,(k,t) for some special cases. Finally, it should be noted that several
articles discuss multivariate versions of MPGIG distribution and/or the MPIG dis-
tribution which is a special case for v = —0.5, see, for instance, Barndorff-Nielsen
et al. (1992), Ghitany et al. (2012) Amalia et al. (2017), Mardalena et al. (2020),
Tzougas and di Cerchiara (2023) and Mardalena et al. (2021). However, this is the
first time that the MMPGIG-INAR(1) distribution family of INAR(1) models driven
by mixed Poisson regression innovations are considered for modelling time series of

count response variables.
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5.3 Properties of innovations R;

Proposition 5.1. (The moments of Ri) The mean, variance of R; and covariance

between Ry, Rj.,1 # j are given by

E[Ri:] = E[E[R;¢|0:]] = Aie
Var(R;;) = Var(E[R;+|6:]) + E[Var(R;.|0:)]
= 09)\% + Ay (5.6)
Cov(R;t, Rji) = Cov(E[R;¢|0:], E[R;+]0:]) + E[Cov(R;+, R;+|0:)]

2
= Ait\j10g

where o} is the variance for the random effect 0, and i,5 = 1,...,m.

Proposition 5.2. (Marginal property) The joint distribution function fs(k,t) is
closed to marginalization, i.e. the marginal distribution for R;; is given by fs(ki,t)
such that

e )\ff
fd)(k?“t) = JO k 'tgk 7)\2 t@dG(e)

(¥/x)? Ko (W (W0 4+ Nid)x) )\f:zt (5.7)

Tt KWK

which s a univariate mized Poisson regression random variable. In general, this
result is valid for any m'-variate mized Poisson regression random variable with

m' < m

Proof. We will show the result for univariate case. The m/-variate case can be

derived similarly by reducing the number of following sum to m — m’

Jolkit) = D, oo D3 35 o D) folk?)

kl 0 ’L 1= 0k1+1 0 km—o

)\],t)kj 679)\” (9A17t)kl
f IED) j! B dG(0)

J#Ft \kj=

oS )\k
— Zt k 7A1 te
_L e M dG(o)

[l [l
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The marginalization property can enable, for example insurers, to easily price those
policyholders who only engage in some but not all lines of business. The last property

is about the identifiability of R;, which will ensure the uniqueness of the model.

Proposition 5.3. (Identifiability of joint distribution R;) Assume that the covariate
space zy = (214, ..., 2mz) 1S of full rank. Denote the parameter set O = {B;, ¢|i =
1,...,m} and Of = {BN“ q3|7, =1,...,m}, the joint distribution fs(k,t) is identifiable
such that

fok,t) = f3(k, )

if and only if O = Op.

Proof. With the assumption that the covariate z is of full rank and the log-link
function is monotonic such that log(\;¢) = z/,5;, it is obvious that the identifi-
cation problem for the mixed Poisson regression random variable R; reduces to
identification for mixed Poisson random variable (without regression), which means
the set of parameter can be re-parametrized as 05 = {\, ¢li = 1,...,m} and
0% = {Nin,dli =1,...,m}.

Then the ’if” statement is obvious since the same set of parameters will definitely
lead to the same joint distribution function. For the ’only if’ statement, to match
two distribution functions, all the moments (mean,variance, covariance) must recon-
cile. From the moment properties above, matching the E[R; ;] will lead to \;; = 5\”
Likewise, given that the first moment is matched, only ¢ = qg will lead to the same
Var(R;;). Matching these moments already leads to ©% = ©%, then the covariance

Cov(R; 4, R;;) must match with each other. O

5.4 Model specification

The distributional properties of X;, in particular the correlation structure and
‘tailedness’ of the distribution, are mainly determined by the innovation R;, more
specifically, the mixing density g(¢). On the other hand, the explicit form of the
derivatives of fy(k,t) can significantly accelerate the computational speed when per-
forming estimation. Hence, the distribution function f,(k,t) as well as its derivatives
are derived for two limiting cases (Gamma, Inverse Gamma) and some other special

cases (GIG with unit mean and different values of v). Throughout this session, we
define S} = Y7 A and SF =>7" k.
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5.4.1 Mixing by Gamma distribution

If R; is univariate, the resulting distribution is known as the negative binomial
distribution and this result can be easily extended to the multivariate case which is
called the multivariate negative binomial distribution (see e.g. Marshall and Olkin
(1990) Boucher et al. (2008) Cheon et al. (2009)). The gamma density is obtained
by letting v = ¢,9 = 2¢ and x = 0 in generalized Inverse Gaussian density in 5.4.

The resulting mixing density has the following form:

6 =¢—¢0¢*1e*¢9 5.8
9(0) () (5.8)

with unit mean and variance é Then the expectation 5.3 can be evaluated explicitly

i

s*)eesk]

0=

T'(¢+ S*) o0 T, AL
T(¢) [T, D(k; + 1) (¢ + Sp)ors

Proposition 5.4. The derivatives of the distribution function fs(k,t) with respect
to Or ={¢,0:; | i =1,...,m} when 0, ~ Gamma(p, p) are given by

Sk

dfe(k,t) 1 ¢ Yint (N — ki)
Iy _f¢(k’t)(;—n+¢—1+10g(¢+53)+ <1b+St* ) 510

=1

Ofs(k, 1) ki o+ SMN
aﬁz - fqi)(kat) /\i,t ¢ n St)\ )\z,tzz,t )

where the sum Z = 0 when S* = 0.

n= 1n+¢ 1

Proof. The derivatives o ‘15( D can be figured out easily except %;:’t) which involves
the gamma function. The derivative of the gamma function can be derived by

utilizing the alternative Weierstrass’s definition such that

Dz 4+1) = e [ [(1+ ) "er,

nzl n

which is valid for all complex number z except non-positive integers and v is Eu-

ler—-Mascheroni constant. Then the derivative can be derived by differentiating its

71



log transform log I'(z + 1), which leads to the series expansion of digamma function

m(z+1)=%=—7+2(%—niz)

nx=1

Then the derivative %;:’t) can be derived steps by steps. First let us simplify the

expression of fs(k,t) such that

The derivative is then

ofs(k,t) _ N'(¢)D(¢) — N(¢)D'(¢)
' D(¢)

_ N(9) 1 1 ¢+ S*
~ Do) (Z (n+¢—1_n+¢+5k—1) +1+10g¢_10g(¢+5?)_¢+53>

n=1

[l [l

5.4.2 Mixing by Inverse Gamma

The Inverse gamma distribution, which is another limiting case of generalized Inverse
Gaussian distribution, is discussed in section 9.3 Johnson et al. (1995). Inverse
gamma random variable has a relatively thicker right tail and a low probability in
taking the values closed to 0. In this case, the density function g(6) is obtained by
letting ¥ = 0, x = 2¢ and v = —¢ — 1 such that

¢¢+1
=T+

025 (5.11)

Y

with mean 1 and variance ﬁ for ¢ > 1. Tt is also called the reciprocal gamma

distribution such that § = 1/x where x ~ Gamma(¢ + 1,¢). The distribution
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function fy(k,t) becomes

7,

o[

2K, () RSN | KDY
ST+ DI Dk +1) (S)2 ’

wo-11

Z‘

(5.12)

where v = S* — ¢ — 1 and w = 24/¢S}. The derivatives of fy(k,t) with respect to
the parameter set O = {¢,5; | i = 1,...,m} are given by

Of,(k,t Sk 1 JlogK,
Aol ) _ (g SH0H L Mg Ky (@) st 1)) pk )

18l0) 2 2¢ 0p (5.13)
Ofs(k,t) k; k +1 '
s~ U, fo(k,t) — f¢(k +1i,0) | Nizia

In this case, numerical differentiation is applied to calculate aloga—ﬁ”(w) since the

parameter ¢ appears both in the order v and argument w of the modified Bessel
function K, (w).

5.4.3 Mixing by Generalized Inverse Gaussian

Likewise, if R; is univariate, the distribution of R; is known as the Poisson General-
ized Inverse Gaussian distribution. To comply with constraints we made in section

2, the mixing density function has following form

c’ ) 1
0) = 0! —— | 0 5.14
00) = 5o =5 (04 )| (5.14)
with unit mean and variance var(6;) = 5 + 2(”1) — 1, where ¢ = K[g(lx), ¢ >0 and

v € R. Then the distribution function f,(k,?) becomes

folk,t,v) = n
=l (5.15)
Kp

where a = ¢c + 25, b = % and p = S* + v. Furthermore, we let v be constant
and fixed in order to avoid potential identification problems which may appear when

performing estimation. In general, however, the derivative with respect to ¢ is really
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hard to find since the constant ¢ involves the Bessel function. On the other hand, it
is worth noting that var(6;) is roughly unbounded when v € [—2, 0] and the skewness

and kurtosis are decreasing with respect to v, which can be easily verified by some
1 3 _3

2 T2 T 1
two of which have ’explicit’ distributions in the sense that the constant ¢ can be

statistical software on computer. So, we will discuss cases where v =

evaluated in closed form.

5.4.3.1 Generalized Inverse Gaussian with v = —%

In this case, the resulting distribution known as the Poisson Inverse Gaussian distri-
bution is investigated by many authors (see,e.g Sichel (1974); STCHKL (1982),Atkin-
son and Yeh (1982), Stein and Juritz (1988) among others). When v = —1, ¢ =1
and the distribution function f becomes

m)‘fft 2 ¢ %
) =TT Sotemfoorasn (5 ) 69

For convenience, we reparametrize the above density by squaring the parameter ¢
such that

kt—m)\f’it\/i K (ALY 5.17
fulet) =1y 30 Koo (5.17

where p = S¥ — L and A = \/¢? + 25*. The derivatives of f4(k,t) with respect to
different parameters can be derived by making use of the derivative of K, (w) with

respect to its argument such that

ORND) _ ¥ e () = Kpir (), (5.18)

w w

then it leads to the following derivatives

ofollst) _ <2¢ L 2”) Folk, 1) — (d) - A—Q) S i+ 11,0,

0 A
of (i H [k ’ ki + 1 o (5.19)
P\ i i
bt k) — k+15,0) ) Az
aﬁz (Ai,t f¢( ) ) /\i,t f¢( + ¢)) 7tZ )t
where 1; = (0,...,0,1,0,...,0)T € R™*! is vector with i-th element being one and

0 elsewhere.
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5.4.3.2 Generalized Inverse Gaussian with v = —%

In this case, the constant ¢ = and the variance var(6;) = é which is exactly

b
1+¢
the same as the variance of Inverse Gaussian case but the random effect 6; will in

general have larger skewness and kurtosis. The resulting distribution function is

m k;
folt) =] %ﬁ (6 + )7 P I (w). (5.20)
i=1 v

where p = S* — 3 and w = V2 +2(¢+1)S). The derivatives with respect to

different parameters can be derived similar to that of Inverse Gaussian case

k A
aﬁ&ﬁ)=(¢+s)fﬂkﬂ—(h+l¢+&>fﬂk+hi)

15/0) o+1 My ¢o+1 (5.21)
Ofs(k,t) k; ki +1 '
Hetb?) _ k,f) — k+1;,6) ) Aiyz
aﬂl Al‘7t f¢( ) ) )\Z"t f¢( + gb) ,tZ N
The remaining case where v = —3 cannot be simplified since the ¢ = 22% cannot

be written down in terms of basic functions. Hence numerical differentiation has to
0fs(k,t) 0f4(k,t)

2% and o
parametrization of all mixing densities and Table 5.2 shows the moments formula

be applied when evaluating Finally, Table 5.1 summarise the

for each mixing density.

Table 5.1: Parametrization of mixing density based on GIG density 5.4

Mixing density (PR v Range of parameter
Gamma 20 0 10) ¢ >0
GIG with unit mean c¢ % fixed constant in R ¢ = %, ¢ >0
Inverse Gamma 0 2¢ —p—1 o >1

Table 5.2: Moments for the random effect 0;. Ex.Kurtosis = Kurtosis - 3

Mixing density g(¢#) Variance Skenwness Ex.Kurtosis

Gamma, é \% g

Inverse Gaussian # 5% 1 %
GIGv=-3 é M(;—;bf 3+12<§);r15¢>2
Inverse Gamma ﬁ 42@?1 (¢67(52><)i>(;17)3)

Although the formula for variances is slightly different due to its parametrization,

they can be easily reparameterized and compared with each other. It turns out
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that the Inverse Gamma has the largest skewness and kurtosis while the Gamma
density has the smallest, which means the ’tailedness’ of those density increases in
a 'top-down’ order according to the Table. Hence, one can choose different density

to accommodate different tail structure encountered in real data.

5.5 Model fitting and Prediction

5.5.1 Maximum likelihood estimation for the MMPGIG-INAR(1)

model

In this section, we derive the log likelihood function and score function of the
MMPGIG-INAR(1) model defined above for the general case. Let the whole pa-
rameter set be © = {p;, B;,¢|li = 1,...,m} and then the log likelihood function ¢(©)
for this discrete Markov chain is just the product of their conditional probability
function such that ¢(©) = [[, Pe(X|X;—1), where the conditional probability is the

convolution of m--1 distribution functions such that

[ 2
P(X:X;1) =E np(pi 0 X1+ Riy = Xip1| X1, et)]
| i=1

=E n Z foi (ks Xi1) fr, (Xiy — k,t)] ;s =min{ X, o, X}
[ i=1 k=0
= Z Z f¢>(k,t)nfpi(Xz’,t — ki, Xip1),
=0 km—0 i1

(5.22)

where the expectation is taken with respect to the random variable 6;,. The following

proposition gives ¢(0) and its score functions.

Proposition 5.5. Suppose there is a multivariate random sequence (X1, Xs, ... X,)
generated from the MMPGIG-INAR(1) model, the log likelihood function £(©) and

76



score functions are given by

(0) = Y log P(X,[X, )

t=1
n S1 Sm
= Z Z Z fo(k,t) n (X — ki, Xip1) (5.23)
t=1  k1=0  kpu=0
oAO) _ 1 IP (X |Xi-1)
— = , UVEO
o0 ; P(X¢|Xi—1) o0
The derivatives inside the sum are given by
OP (XX = il Ofp (Xije — k, X
%: Z Z fd’(kvt) pj( ]tﬁ - 1 prj it kazt 1)
Pj k1=0 km=0 Pj 1#£]

P(X,|X Ofs(k, t)
R P ey | EACTE R

th € {b1, B2, ¢}
(5.24)

afpj ("J?va —

where the derivative Ry ) has the same form for all j =1,...,m.
J

afpj (w, Xj, t)
op;

w _ijj,t
= Juslw )pj(l — D))

The derivatives %I‘vt)

are already discussed in Section 4 for different cases. Hence,
the maximum likelihood estimators can be obtained through numerical algorithms,
for example Newton-raphson, Quasi-Newton and so on. However, optimization will
be computational intensive as m increases. One can solve this issue by adopting
the composite likelihood method introduced in Pedeli and Karlis (2013a), where the

high dimensional likelihood function was reduced to a sum of bivariate cases.

5.5.2 Integer-valued Prediction

Based on the estimates obtained by maximum likelihood and the random sequence

(X4, ...,X,), the h-steps ahead distribution of X,,.; conditional on X,, is given by

Xoon 2P o X, + 2 P "o Ryup, (5.25)

k=1
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where P is obtained from above estimation procedure. In the classical time series
model, one would minimise MSE(h) = E[(X, 1+ — Xn41)%|X,] to obtain the optimal
linear predictor such that Xn+h = E[X,41|X,]. However, this would inevitably
introduce real value for Xn+h, which is not coherent to the integer-valued nature of
MMPGIG-INAR(1) model. To solve this, one can instead use the median X, of
X,4n , the 50% quantile, as prediction value for the model, which is also discussed
by Pavlopoulos and Karlis (2008) and Homburg et al. (2019). In the univariate
case, the median is obtained by minimising the mean absolute error MAE(h) =
E[| Xn+n — Xnsn||Xn]. The idea here can be extended to the multivariate case so
that the median X, is called geometric median, which is calculated by minimising

the expected Euclidean distance
MAE(h) = E[||Xnin — Xonsn||2|X0] (5.26)

On the other hand, the expectation can be evaluated numerically by simulating the

random samples of X, .

5.6 Empirical analysis

The data used in this section come from the Local Government Property Insurance
Fund (LGPIF) from the state of Wisconsin. This fund provides property insurance
to different types of government units, which includes villages, cities, counties, towns
and schools. The LGPIF contains three major groups of property insurance cov-
erage, namely building and contents (BC), inland marine (IM) and motor vehicles
(PN, PO, CN, CO). For exploratory purposes, we focus on modelling jointly the
claim frequency of IM, denoted as X;;, and comprehensive new vehicles collision
(CN), denoted as X5;. The insurance data cover the period over 2006 - 2011 with
1234 policyholder records in total. Only n; = 1048 of them have complete data
over the period 2006-2010 which will be used as the training data set. The last year
2011 with ny = 1025 policyholders out of 1048 in the data set will be the test data
set. Denote the IM type and CN type claim frequency for a particular policyholder
as Xf]t),XQ(]t) respectively, where j is the identifier for each policyholder. Then the
relationship between X, and Xi(é) is simply X;; = Z?;l Xi(ﬁ) with ¢ = 1,2 while ¢
would take the values from 1 to 5 corresponding to the year 2006 to 2010.

In what follows, basic statistical analysis is shown in Table 5.3 and figures 5.1 and
5.2. The proportion of zeros for the two types of claims is higher than 90% during
the period 2006-2010. Also, both types of claims exhibit overdispersion, since their
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variances exceeds their means during this period. Furthermore, the overdispersion
for X5, is even stronger than that of X, which indicates the need to employ an
overdispersed distribution for this data. Additionally, the correlation tests for X,
and Xy, show a positive correlation between the two claim types. At this point it is
worth noting that modelling positively correlated claims has been explored by many
articles. See for example, Bermudez and Karlis (2011), Bermiidez and Karlis (2012),
Shi and Valdez (2014a), Shi and Valdez (2014b), Abdallah et al. (2016), Bermtudez
and Karlis (2017), Bermudez et al. (2018), Bermudez et al. (2018), Pechon et al.
(2018), Pechon et al. (2019), Bolancé and Vernic (2019), Denuit et al. (2019), Fung
et al. (2019), Bolancé et al. (2020), Pechon et al. (2021), Jeong and Dey (2021),
Gomez-Déniz and Calderin-Ojeda (2021), Tzougas and di Cerchiara (2023), Tzougas
and di Cerchiara (2021) and Bermudez and Karlis (2021). Finally, the proportion
of zeros and kurtosis show that the marginal distributions of X; ;, Xy, are positively
skewed and exhibit a fat-tailed structure which indicates the appropriateness of

adopting a positive skewed and fat-tailed distribution (GIG distribution).

Table 5.3: Summary statistics of two types of claims over years. The correlations
test is a one-sided test where the alternative hypothesis is "The sample correlation
is greater than 0"

2006 2007 2008 2009 2010

Proportion of zeros Xj ; 0.9685 0.9542 0.9552 0.9504 0.9590

Proportion of zeros X5 ; 0.9342 0.9332 0.9399 0.9370 0.9323
Kurtosis of X7 ; 85.75009 86.64794  41.84915 43.01832  126.68793
Kurtosis of X5 ; 53.91835 61.77408 111.28108 184.13950 133.92283

P-value of correlation test 0.0000 0.0000 0.0000 0.0000 0.0000
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Figure 5.1: summary statistics (mean, variance and correlation) for each type of claims
across all the policyholders over years.

The description and some summary statistics for all the explanatory variables (co-

variates zi4,22,) that are relevant to X, Xo,; are shown in Table 5.4. Variables
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1- 5 including "TypeVillage’” are categorical variables to indicate the entity types of
a policyholder. Due to the strongly heavy-tailed structure appearing in variables
6 and 9 which can drastically distort the model fitting, those variables are trans-
formed by means of the 'rank’ function in R software and then standardized, which
can mitigate the effect of outliers. Variables 6-8 are relevant to IM claim X, ; while
variables 9,10 provide information for CN claims X5;. The covariate z;; includes
variables 1-8 and 25, contains variables 1-5 and variables 9,10. These covariates act
as the regression part for A; ; mentioned in section 2, which may help explained part

of the heterogeneity between X;; and Xo .

Table 5.4: summary statistics for the explanatory variables

Variable index Variable name Type Description Proportion /Mean
1 TypeCity Categorical Indicator for city entity 0.1400
2 TypeCounty  Categorical Indicator for county entity 0.0578
3 TypeMisc Categorical Indicator for miscellaneous entity 0.1104
4 TypeSchool  Categorical Indicator for school entity 0.2817
5 TypeTown Categorical Indicator for town entity 0.1728
- TypeVillage  Categorical Indicator for village entity (reference category) 0.2373
6 CoverageIM  Continuous Coverage amount of IM (transformed) 0
7 InDeductIM  Continuous Log deductible amount for inland marine 5.3400
8 NoClaimCreditIM  Binary Indicator for no IM claims in prior year 0.4210
9 CoverageCN  Countinuous  Coverage amount of CN (transformed) 0
10 NoClaimCreditCN  Binary Indicator for no CN claims in prior year 0.0897

The MMPGIG-INAR(1) with m = 2, is applied to model the joint behaviour of
th), th) across all the policyholders. Note that when Gamma mixing density is
used in MPGIG INAR(1), the resulting model will be the "BINAR(1) Process with
BVNB Innovations” in Pedeli and Karlis (2011), which we will used as comparison
benchmark for other choices of mixing density. The the likelihood function would

simply become

ni

ny 4
0(0) =Y 6;(0) = X2 3 log Pr(X V), ,, X1 X0, X3)).
j=1

j=1t=1

(5.27)

where ¢;(©) is the likelihood function for policyholder j. Note that all the poli-
cyholders with the same type of claim X, will share the same set of parameters
pi, B; and ¢ will be same for both claim types. In addition, it is necessary to show

the appropriateness of introducing correlation and time-series component (binomial
thinning) in MPGIG INAR(1). Then we also fit the data to following models.

1. The joint distribution of Xl(’jt) and Xé?‘t) are assumed to be bivariate mixed

Poisson distribution (BMP) with probability mass function fy(k,t) which we

already discussed in section 4.
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2. The joint distribution of X fjt) and Xéft) are characterized by two independent
INAR(1) models (TINAR)

X =pio Xf,jt)q + Rig

where R;; ~ Pois(A\;40;+),7 = 1,2 and random effect 6, is independent of i.

Similarly, the likelihood functions for these models will have the same form as equa-
tion 5.27 but different joint distribution Pr(XVY),,, X, | X, X{)). For compari-
son purposes, we fit the bivariate Poisson mixture regression model with the training

data starting from 2007 because BMP model does not need to consider lag responses.

All the estimations is implemented in R software by the ’optim’ function with
method 'BFGS’ (quasi-Newton method). The gradient functions with respect to
all the parameters are derived in section 4 and section 5 and they can be input as
gradient argument in ’optim’ function, which will significantly decrease the amount

of computational time compared to numerical gradient function in default setting.

Table 5.5: The AIC and BIC when fitting as two independent INAR model with
different combination. row = Gamma, column = Inverse Gaussian means that
gamma mixing density for X;,; and Inverse Gaussian mixing density for Xy,;. For
each entry, the number on the left is AIC and the other one is BIC.

Mixing density Gamma, Inverse Gaussian GIGv=-3 GIGv=-3 Inverse Gamma
AIC | BIC AIC | BIC AIC | BIC AIC | BIC AIC | BIC
Gamma 2999.957 | 3133.117  2999.433 | 3132.592  2999.590 | 3132.749 3000.48 | 3133.64 3002.352 | 3135.512
Inverse Gaussian  2998.876 | 3132.036 2998.351 | 3131.511 2998.508 | 3131.668 2999.399 | 3132.558 3001.271 | 3134.430
GIG v = f% 2998.661 | 3131.820 2998.136 | 3131.296  2998.293 | 3131.453 2999.184 | 3132.343 3001.056 | 3134.215
GIG v = —% 3004.415 | 3137.574  3003.890 | 3137.050  3004.047 | 3137.207 3004.938 | 3138.097  3006.810 | 3139.969
Inverse Gamma  2998.778 | 3131.938  2998.254 | 3131.413  2998.410 | 3131.570  2999.301 | 3132.461  3001.173 | 3134.333

Table 5.6: The AIC and BIC when fitting bivariate sequence as bivarate mixed
Poisson regression model and BINAR model. For each entry, the number on the left
is AIC and the other one is BIC.

Mixine densit Gamma Inverse Gaussian GIG v = —% GIG v = —% Inverse Gamma
& y AIC | BIC AIC | BIC AIC | BIC AIC | BIC AIC | BIC
BMP 3073.149 | 3187.285 3061.892 | 3176.028  3060.961 | 3175.098  3079.179 | 3193.315  3059.374 | 3173.510

BINAR(1) 2996.291 | 3123.109  2992.953 | 3119.771 2992.854 | 3119.672  3008.458 | 3135.277  2995.348 | 3122.167

Model fitting results are shown in Tables 5.5 and 5.6. All the results show a great
improvement by adopting a time series model compared to BMP results in Table
5.6. When focusing on the results of BINAR in Table 5.6, except the case where the

mixing density is GIG v = —%, there is an significant improvement by introducing
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the fat-tailed distribution as mixing density in R; compared to Gamma case. On the
other hand, the improvement from the optimal TINAR to the optimal BINAR (cells
are in grey color) is obvious, which is indicated by lower AIC and BIC of BINAR
with GIG v = —% compared to TINAR with GIG v = —% and Inverse Gaussian. It
implies that there is significant correlation between two claim sequences. Maximum
likelihood estimates for three cases are given in Table 5.7 as well as their standard
deviations. The standard derivations are estimated by inverting the numerical Hes-
sian matrix. From Table 5.7 we see that the estimates for p;, 5; are very close to
each other while the estimated ¢ is significantly different among three mixing densi-
ties, which is expected because ¢ influences the tail and correlation structure of the
bivariate sequence X, X,. Furthermore, we see that the explanatory variables
have a similar effect (positive and/or negative) and are almost identical for both
response variables in the case of of all three models. Finally, the variables which
are statistically significant at a 5 % threshold for X;; are TypeCounty, TypeMisc,
TypeVillage, NoClaimCreditIM, and those which are statistically significant at a
5 % threshold for X,,; are TypeCity, TypeCounty, TypeVillage, CoverageIM, and
CoverageCN.

The Figure 5.2 below presents prediction for both types of claims at t = 2011 with
ny = 1025 policyholders based on geometric median equation 5.26. It seems that
the prediction for number of policyholders who make no claims are reasonably good
while the prediction for X ; are generally underestimated at tail and the prediction
for Xy, are overestimated at the tail. On the other hand, Table 5.8 shows the
prediction sum of squared error (PSSE) and frequency of some basic combination of
observations, namely (0,0), (1,0), (0,1), (1, 1) for the best fitted models within three
classes, bivariate mixed Poisson regression, Two independent INAR(1) and bivariate
INAR(1). It is again clear that the introduction of autoregressive part makes sense
as it greatly reduce the prediction error. Although the best TINAR model has the
closet frequency of (0,0), the best BINAR model has the lowest overall prediction

error.
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Table 5.7: Maximum likelihood estimation for MMPGIG-INAR(1) of insurance’s
claim frequency data when m = 2. For each entry, the upper one is the estimate
and the estimated standard deviations are indicated in square brackets

Mixing density Gamma Inverse Gaussian GIG v =-3
Estimate X1 Xot X1t Xo 4 X1t Xo i
i 0.1238 0.2904 0.1200 0.2768 0.1194 0.2750
(0.0373)  (0.0378) | (0.0376) (0.0388) | (0.0376) (0.0388)
10) 0.9495 0.8885 0.7944
(0.1662) (0.0931) (0.0136)
Intercept -3.7980 -5.9744 -3.8228 -5.9967 -3.8287  -6.0029
(0.5158)  (0.4428) | (0.5206) (0.4503) | (0.5213) (0.4489)
TypeCity -0.2242 0.6673 -0.2316 0.6510 -0.2337 0.6480
(0.2555)  (0.2823) | (0.2577) (0..2861) | (0.2586) (0.2866)
TypeCounty 05682  1.3200 | 05784 13019 | 0.5814  1.2053
(0.2811)  (0.2643) | (0.2836) (0.2674) | (0.2794) (0.2673)
TypeMisc -2.0110 -0.1141 -2.0213 -0.1313 -2.0226 -0.1342
(1.0210)  (0.6567) | (1.0223) ( 0.6592) | (1.0244) (0.6577)
TypeSchool -0.0387 0.1559 -0.0638 0.1323 -0.0692 0.1279
(0.3587)  (0.2811) | (0.3570) (0.2837) | (0.3534) (0.2841)
TypeTown -0.3565 -0.8941 -0.3661 -0.9155 -0.3680  -0.9195
(0.3037)  (0.4794) | (0.3048) (0.4816) | (0.3054) (0.4820)
CoverageIM 1.4543 1.4309 1.4259
(0.2126) (0.2115) (0.2080)
InDeductIM 0.0170 0.0243 0.0259
(0.0788) (0.0795) (0.0792)
NoClaimCreaditIM -0.4569 -0.4501 -0.4482
(0.1570) (0.1579) (0.1579)
CoverageCN 2.4227 2.4596 2.4675
( 0.2210) (0.2260) (0.2249)
NoClaimCreaditCN -0.3047 -0.3231 -0.3261
(0.1811) (0.1814) (0.1801)
X1 GIG v=-0.75 X2 GIG v=-0.75
° - - - ] -
0 1 2 3 5 7 8 1 2 3 4 6 7 8

Figure 5.2: Observed (dark) and Predicted(grey) frequency of the test data set based on
estimated BINAR with GIG v = —% as mixing density
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Table 5.8: Summary of prediction on test data

Model PSSE Frequency
X, Xo X1+ X (0,00 (1,00 (0,1) (1,1)
BMP Inverse gamma 264 221 485 970 0 24 0
TINAR GIG v = —0.75 & Inverse gamma | 212 164 376 964 4 33 0
BINAR GIG v = —0.75 212 156 368 966 3 32 0
Observed 940 20 26 6

5.7 Concluding remarks

In this paper we proposed the MMPGIG-INAR(1) regression model for modelling
multiple time series of different types of count response variables. The proposed
model, which is an extension of BINAR(1) regression model that was introduced
by Pedeli and Karlis (2011), can accommodate positive correlation and multivariate
overdispersion in a flexible manner. In particular, the Generalized Inverse Gaus-
sian class includes many distributions as its special and limiting cases that can be
used for modelling the innovations R;. Thus, the proposed modelling framework
can efficiently capture the stylized characteristics of alternative complex data sets.
Furthermore, due to the simple form of its density function, statistical inference
for the MMPGIG-INAR(1) model is straightforward via the ML method, whereas
other models that have been proposed in the literature, such as copula-based mod-
els, may result in numerical instability during the ML estimation procedure. For
demonstration purposes different members of the proposed famly of models were
fitted to LGPIF data from the state of Wisconsin. Finally, it is worth mentioning
that a possible line of further research could be to also consider cross correlation,

meaning that the non-diagonal elements of P can take positive values.
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CHAPTER 0

Paper C. EM Estimation for Bivariate Mixed
Poisson INAR(1) Claim Count Regression Models

with Correlated Random Effects

Abstract

This article considers bivariate mixed Poisson INAR(1) regression models with cor-
related random effects for modelling correlations of different signs and magnitude
among time series of different types of claim counts. This is the first time that the
proposed family of INAR(1) models is used in a statistical or actuarial context. For
expository purposes, the bivariate mixed Poisson INAR(1) claim count regression
models with correlated Lognormal and Gamma random effects paired via a Gaussian
copula are presented as competitive alternatives to the classical bivariate Negative
Binomial INAR(1) claim count regression model which only allows for positive de-
pendence between the time series of claim count responses. Our main achievement
is that we develop novel alternative Expectation-Maximization type algorithms for
maximum likelihood estimation of the parameters of the models which are demon-
strated to perform satisfactory when the models are fitted to Local Government

Property Insurance Fund data from the state of Wisconsin.
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6.1 Introduction

Over the past decade, there has been a growing literature on bivariate (and /or multi-
variate) claim count regression models which can efficiently capture the dependence
between claims from the same policy and/or different coverages bundled into a single
policy. The interested reader is referred to Abdallah et al. (2016), Bermtdez and
Karlis (2011), Bermudez and Karlis (2012), Bermudez and Karlis (2021), Bermidez
et al. (2018), Bolancé et al. (2020), Bolancé and Vernic (2019), Denuit et al. (2019),
Fung et al. (2019), Gomez-Déniz and Calderin-Ojeda (2021), Jeong and Dey (2021),
Pechon et al. (2019), Pechon et al. (2021), Pechon et al. (2018), Shi and Valdez
(2014a), and Shi and Valdez (2014b) among many others.

Pechon et al. (2018) proposed the use of bivariate mixed Poisson count regression
models, with correlated random effects for capturing the interactions between the
different coverages purchased by members of the same household. In particular,
Pechon et al. (2018) considered the bivariate Poisson-Gamma (BPGGA) regression
model with Gaussian copula and the bivariate Poisson-Lognormal (BPLN) regres-
sion model. In the former model the random effects are distributed according to
two Gamma distributions with unit means and the dependence between the random
effects is introduced by means of a Gaussian bivariate copula whereas in the lat-
ter model these random effects are distributed according to the bivariate Lognormal
mixing distribution. Bermudez et al. (2018), following the setup of Pedeli and Karlis
(Pedeli and Karlis (2011) and Pedeli and Karlis (2013a)), were the first to derive a
bivariate Poisson integer-valued autoregressive process of order 1 (BINAR(1)) claim
count regression model which can account both for cross-sectional and temporal de-
pendence between multiple claim types. The model they developed was employed
for addressing the ratemaking problem of pricing an insurance contract in the case
of positively correlated claims from different types of coverage in non-life insurance.
Finally, Bermtdez and Karlis (2021) built on the previous paper by using a mul-
tivariate INAR(1) (MINAR(1)) regression model based on the Sarmanov family of
distributions. The MINAR(1) regression models based on the Sarmanov family of
distributions are also restricted to a positive correlation structure between the claim
count response variables. However, it enjoys some advantages compared to a differ-
ent approach which can allow for both positive and negative correlations by using
copulas for the specification of the joint distribution of the innovations. See, for in-
stance, Cameron et al. (2004), Karlis and Pedeli (2013), Lee (1999), Nikoloulopoulos
(2013), Nikoloulopoulos (2016) and Nikoloulopoulos and Karlis (2010) among oth-
ers. Firstly, it avoids identifiability issues which may arise when a continuous copula

distribution is paired with discrete marginals, see Genest and Neslehova (2007). As
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is well known, the lack of identifiability means that it cannot be guaranteed that
model fitting is unique and this may lead to problems in statistical inference, for
example, one might receive no meaningful values for the standard errors of the pa-
rameters. Secondly, the computational intensity for discrete copula-based models
increases as the dimension of the model increases and hence, as is also mentioned
by the authors, their approach, which relies on the use of the Sarmanov family,
provides models that are less computationally intensive to estimate and can still
have a reasonable range for positive dependence structure between the claim count

responses.

In this study, we introduce a family of bivariate mixed Poisson INAR(1) claim count
regression models with correlated random effects for modelling the dependence struc-
ture between times series of different types of claim counts from the same and/or
different types of coverage. The bivariate mixed Poisson INAR(1) regression models
with correlated random effects are a broad class of models which can accommodate
overdispersion, which is a direct consequence of unobserved heterogeneity due to sys-
tematic effects in the data, and correlations of different signs and magnitude. For
demonstration purposes, we consider the bivariate mixed Poisson INAR(1) claim
count regression models which are derived by using the bivariate Lognormal and
Gaussian copula paired with gamma marginals as mixing densities, which we refer
to as BINAR(1)-LN and BINAR(1)-GGA claim count regression models respec-
tively. Both models can be regarded as extensions of the classical bivariate Negative
Binomial INAR(1) claim count regression model with a shared gamma random ef-
fect, which we refer to as BINAR(1)-GA claim count regression model, in the sense
that they provide more flexibility for modelling overdispersed bivariate time series of
count data compared to the BINAR(1)-GA model which is derived by pre-imposing
the restrictive positive correlation assumption between time series of different claim
types of claim counts, since in some cases negative correlations may be of interest as
well. Furthermore, unlike previous copula-based count regression models for which
identifiability issues can arise when a continuous copula distribution is paired with
discrete marginals, in the proposed family of models identifiability of the bivariate
distribution of the innovations is guaranteed by imposing a unit mean constraint for

the Gamma continuous mixing densities which are paired with a Gaussian copula.

The main contributions we make are as follows:

e Firstly, before we introduce the time series components, we present a unified
framework for statistical inference via the Expectation-Maximization (EM)
algorithm for the BPGA, BPLN and BPGGA regression models!.

!Note that EM estimation for the parameters of the BPGA regression model with a shared
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e Secondly, we develop novel EM type algorithms for maximum likelihood (ML)
estimation of the BINAR(1)-GA, BINAR(1)-LN and BINAR(1)-GGA regres-
sion models, which has not been explored in the literature so far. The main
reason for this is because the joint distribution of the innovations cannot be
written in closed form in either model and hence its maximization is not possi-
ble via standard numerical optimization as is done in Bermudez et al. (2018),
Bermiudez and Karlis (2021), Karlis and Pedeli (2013), Pedeli and Karlis (2011)
and Pedeli and Karlis (2013a)

The rest of the paper is organized as follows. Section 2 presents the model specifi-
cations for the bivariate mixed Poisson regression models we consider and describes
their ML estimation via the EM algorithm. Section 3 presents the derivation of
their INAR(1) extensions that we first proposed herein and outlines the EM type
algorithms we developed for statistical inference. Section 4 presents our empirical
analysis which is based on the LGPIF dataset. Concluding remarks are given in
Section 5. The interpretation of abbreviations used in the paper and some other

technical details are provided in appendix 6.A.

6.2 The bivariate mixed Poisson regression model

6.2.1 Model specifications

The bivariate Poisson mixture is constructed by two independent Poisson random
variables conditional on a random effect vector (or scalar) @ = (6y,65) such that
N® ~ Pois(A\i0;), i = 1,2. The bivariate mixed Poisson regression is then con-
structed by further allowing the rate \; to be modelled as functions of explanatory
variables z;; such that \;; = exp{zztﬁi}. Denote the mixing density function of the
random effect as f4(0) parametrized by ¢. To avoid the identifiability issue, we have
to restrict the expectation E[6;] to be a fixed constant. One usually lets E[f;] = 1
so that Ay := (A1, Aa¢) will fully explain the frequency of a event and ¢ will ex-
plain the variation and correlation of the whole bivariate sequence. In the following,
we will discuss three different mixing densities, univariate gamma (shared random

effect), bivariate Lognormal and Gaussian copula paired with Gamma marginals.

random effect and the BPLN regression model has been discussed in Gurmu and Elder (2000) and
Silva et al. (2019) respectively. However, this is the first time that the EM algorithm is used for
estimating the parameters of the BPGA regression model with Gaussian copula.
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(2)

Univariate Gamma density
In this case, the bivariate mixed Poisson regression model shares the same
random effect N ~ Pois();40) i = 1,2. Denote the mixing density function
as fy(0) = f»(0) and it has following expression

¢¢

fs(0) = mw‘le‘w, (6.1)

which has unit mean and variance 1. Then the unconditional probability mass

function fpg(k,t) of N, := (Nt(l), Nt(2)) can be written down in a closed form

At A ©
fpg(k, t) = ﬁﬁ e*(/\l,tJr)\z,t)@Q/m+k2f¢(9)d9
! "Jo
6.2
F(¢ + kl + kz) ¢¢/\]1€,1t)‘l2€,2t ( )

- F(¢)F(k1 + 1)F(k2 + 1) (¢ + )\1,t + )\27t)¢+k1+k2 '

Bivariate Lognormal density
Suppose now the random vector € = (1, €5) follows bivariate normal distribu-
¢7 3

tion, with mean vector (—3, —%) and covariance matrix ¥

2
v _ o5 PD1P2 (6.3)

PP1O2 Qb%

Then the random effect vector @ = e€ = (e, e®?) has Lognormal distribution
with unit mean. Denote the density function of € as f& and f&V for Lognormal

density. Then they have the following expressions

2 (e) !

_27r0102q/1 — p?

2
< oxpd 1 i (61 + 0.50%> 9 <€1 + O.5crf> <€2 + O.5a§> N <62 +0.503
2(1 = p?) o1 o1 02 02

f4(6) %%fg (log) = XN ().

The unconditional distribution fpyn(k,t) of N; is expressed as a double inte-

gral
=X

fron(k,t) = T DR oAb g hanba g ghe (LN (99, 6,
o Jo k! k!

ATy A5
= j j ’ " - " eXp{_)\Lteel — )\27te€2 + ke + k2€2}fév(€)d€1d62,
RJR M1: 2

(6.4)
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All the double integrals with respect to Lognormal density f&V can be trans-
formed into double integrals with respect to normal density f& so that they

can be evaluated by Gauss-Hermite quadrature. See details in the appendix
6.B .

Gaussian copula paired with Gamma marginals

Suppose now the random vector @ is distributed as a meta Gaussian cop-
ula such that its marginals are two independent Gamma random variables
with parameter (¢q,@s) respectively. Define uniform random vector u =
(Fy,(01), F,(02)). The distribution function Fge (@) and density function

fac(0) can be written as

FGC(9> = Cp(u) = Fp(cb_l(ul)’ (I)_I(UQ))
B _ fp(@ 7 (w), @7 (u2))
f¢>(0) = fGC(O) - fsn(q)_l(ul) fsn(q)_1(u1))f¢>1 (91)f¢2(62) (6~5)

= Cp(u)fdn (91)f¢2 (62)7

where f,(.,.), F,(.,.) are the density function and cumulative distribution of

bivariate normal random variable with the following expression

fo(w1,29) =

1 1a3—2 2
b { xr] — 2px1T9 + T3 } | (6.6)

o/l P2

2 1—p?
The ®(z) is the cdf of standard normal random variable with ®~'(z) as its
quantile function and fy,(z) is the density function of the standard normal
random variable. Finally, fy,(x) and Fy,(z) are the pdf and cdf of Gamma
density function defined in 6.1 for ¢ = 1,2. Then a bivariate Poisson Gamma
random vector is constructed as Nt(i) ~ Pois(A\;40;),i = 1,2 with probability

mass function fpgo(k,t) such that

)\kl /\kz L po0
1,t 2.t k1 k2
frac(k,t) = Ty /42" exp{—A1,:01 — A2,:02}607" 052 fac (61, 02)d01d0
*R2: Jo Jo
)‘lflt /\]5215 trt A1 FE Ao Fi
= kl’! k2~,! L JO o Mt Fg (w) =X P (uZ)F,;ll(Ul)leq?Ql(Uﬂszp(Ul,Uz)qudUQ

Then the double integral can be evaluated by Gauss-Legendre quadrature. See

details in appendix 6.C.
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6.2.2 The EM algorithm

For statistical inference of above model, the classical maximum likelihood estimation

is not straightforward to apply because the log likelihood function

klt kot
ltA

=D log f J 0y 0" e N2l £ (), db (6.7)
= Fralko

is not computational tractable and its maximum likelihood estimators are not straight-
forward to achieve. Alternatively, we can apply the EM algorithm to estimate the
parameters © = {3, B,, ¢}. For given random samples (k, ...k, ), suppose now we
observe the random effect (01,...,80,), then the complete likelihood function ¢.(©)
is given by

=2

t=1

[ (Z k; tlog i tezt) Niiliy — log(ki,t!)> + log fqb(et)] (6-8)

Compared to ¢(0), the complete log likelihood function ¢.(©) are simplified in the
sense that there is no integration and mixture likelihood are decomposed into Poisson
likelihood and the likelihood for mixing density.

However, to evaluate £.(©) we need to find out the conditional (posterior) distribu-
tion of @ given the random samples. Then we define n(B| Ay, k;) = e M1 Azeb2gliegha

and posterior density

(0|@(]) ) ( )Hz 1fP ( zt|)\it6')

§o 50 fo(O) TTEy £5) (Fial N 16:)d01 6 (6.9)

10| A, ki) f(0)
So So (0| A, k) f(0)dO,db;
Then posterior expectation for any real value function h(0) is given by
E[h(0)[0Y k] = J J 7(810Y), k,)db,db,
(6.10)
= Eé%i[hw)],

where fp,(k|\) =

with rate A and the condition ©U) means that the posterior density function is

evaluated with the parameters estimated at j-th iteration. The subscript @ of Egi

©is the probability mass function of a Poisson random variable

means that the expectation is taken with respect to the 8 for t-th observation.
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¢ E-step: Evaluating the Q function Q(0;04) given the the parameters esti-

mated at j-th iteration

n 2 n
©;09)ac 3 ki log(Nig) — A E[0:109), k] + > E[log f4(6)|0Y), k]
t=1i=1 t=1

2
S ki log(har) — AdELO] + T Elog f5(0)].

t=1:=1 t=1

(6.11)

o M-step: After finding out the ) function, we update the parameters for the

next iteration, @Y+, which can be achieved by finding the gradient functions

g(.) and the Hessian matrix H(.) of Q functions and then apply the Newton-

Raphson algorithm to maximize the QQ function for the next iteration. The

parameters can be updated separately as Poisson part 3,3, and random
effect part ¢.

— For the Poisson part

Bl =7 — 1B e(8Y), i=1,2

9(B87) = ZIV? H(BY) = 2Dz,
o (6.12)
v = (s}, )

DE ) _ diag ({_)‘z(',jt)Et(‘)]ﬂ)f[gi]}t:1 n)

— For the random effect part, we need to derive the first and second or-

der derivatives of log f4(6@) and then the take posterior expectation to
construct its gradient functions and Hessian matrix. In the following,
we derive the derivatives for those three mixing densities defined in the
last session. Different mixing densities will affect the way we calculate
the posterior expectation, and in many cases, we have to rely on numer-
ical evaluation. However, some posterior expectations can be simplified
to reduce computational cost when implementing the EM algorithm in

practice.

Univariate Gamma density
This can be regarded as a special case because the posterior density is

known in closed form as another univariate Gamma density with different
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parameters.
9|0V, k;, ~ Gamma (¢<J'> kg + ko, 09 4 20) 12y >) (6.13)
Then, the posterior expectation when updating 3, can be simplified as

Cb(j)‘i‘klt‘f‘kht

Mg 1 — 1)
Ee,t [01] - Eet[e ] - ¢(j) o+ /\(j) o+ )\(])~ (6'14)
Finally, to update ¢
S0+ — g _ 9(07)
h(6D)
9(69) = n(log ¢ — w(o") +1) + Y (EF)flog 0] - EF[6]) ~ (6.15)

where U(z) = 1“(( )) and U'(x) are digamma and trigamma functions re-

spectively. The posterior expectation IE((,JE [log #] is given by

E§)log0] = W (69 + kyy + ko) — log <¢(j) AT+ Agt)) (6.16)

(b) Bivariate Lognormal density
In this case, there is no analytic expression for the posterior density.

However, it can be transformed in the following way

n(0 A, k) £V (6)

So So n(0| A, ki) 5V (6)d0,db
(e ki) 5 (€)

So So n(e€| A, ki) 13 (€)derdey

= 7T(€|@ J), kt)

(8]0, k) =

(6.17)

Then, all posterior expectations with respect to € can be transformed into
expectations with respect to € such that Egi[h(@)] = IESE [h(e€)]. Under
this transformation, all the posterior expectations can be evaluated by

Gauss-Hermite quadrature. Furthermore,
Eg,llog f£"(8)] = B [log /3 (€) — e1 — ea]oE[log £ (€)].
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To update ¢ = {¢1, o2, p},

Pt = pU) — g (pW) g ()

' () [ 0log £ (€)
(@), = ;Egt) [Tj] (6.18)
Oy _ NG 5210%_1%]
H(¢ )T,S ;Ee,t |: a¢ra¢s )

where the subscript r denotes the r-th element of a vector and r,s de-
notes r-th row s-th column entry of a matrix. The first and second order

derivatives are given by

- (gt e e e ) -5
610%‘5(6) -5 ppz) (;2 2y 12 2+(1_%) 1+(1_%1) ot Qﬁzcﬁ% _paﬁ;aﬁz)
p2 (%1 at 275262 " ¢>11¢2€162 " ¢14¢2> 1 —pp2

z logqséz - <¢4 R 1) 5
02105;2( ©) _ (14:3;») (;2 e + 1% ﬁ(k%) 1+(1’:f;)62>

1t3p <_ 20, o 4 P9 _p¢1¢>2>

EVSANYS 1 1 2

" (1_47;)) <2¢;621 Z; * gt ¢14¢2> " (11 o

.
: éﬁﬁif) e ( 2;2 ' 2¢2 @ <z>21¢2“62+ 1)
: lgiéfg S (_;363 + e~ panit et (6 ¢‘°"i)>

1 (;53_1 1 1 ¢3—1
T ( 207 26 T e T Ta )
Notice that all the derivatives are in the linear form of €3, €3, €}, €, €; €.

Hence, we can evaluate these posterior expectations in each iteration once

to avoid repeating calculations.

(c) Gaussian copula paired with Gamma marginals
In this case, there is no simplification either for the posterior density or

for the posterior expectation. To update ¢ = {¢1, 2, p}, we have almost
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the same procedure as for the bivariate Lognormal case.

U = o) — H*1<¢(j))g(¢(j))

9(¢), = ;Egi [Tic] (6.19)
Oy Ol 5210gfcc(9)]
ey | S|

where the first and second order partial derivatives are given by

w = v (z)?l y@*le*@'ydy
o LI'()
olog fao(6) _ (_ p> N (wy) L P D (uz ) ) Ju;
a¢z 1-—- ,02 fsn(q)il(ui)) 1- PQ fsn(éil(ui)) 5(251
+ 1+ log(¢) — V(o) + log(0) — 0
0l 0 _ _ 1+ 2
Oggf();C( ) _ 1_pp2 -5 _Pp2)2 (@ Hwr) + 27 (ug)) + a _;)2

0% log fao(0) ( P 1+<I>_1(ul-)2+ p <1>—1(u1)<1>—1(uQ)) (aui)2

007 1= fan(@T @) T 1= fan(@7N(w) ) \ 06
510gfgc(9)52ui 1 '
A

&2 log faco(0 1+ p? 1430 - 2p° + 6
Og&pg';C( - (1- pg)2 (- p§)3 (&7 ) + &7 () + (1p— pQ)g

Plog foc(8) _ p Sox 065
01002 L= p? fon (@71 (u1)) fon (71 (u2))

02 log fcc(e) _ (_ 2p <I>’1(ul-) 1 +,02 (I)fl(ngfi) ) ou;
Ipod; (1=p?)? fon(@ (w)) (1= p?)? fon(@ Hwi)) ) 00

6.3 The bivariate mixed Poisson INAR(1) regres-

sion model
6.3.1 Model specifications

Let X and R be non-negative integer-valued random vectors in R?. Let P be a

diagonal matrix in R?*? with elements p; € (0,1). The bivariate first-order integer-
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valued autoregressive model (Bivariate INAR(1)) is defined as

0| |Xu R
X,=PoX, 1 +Ri = | % el I et (6.20)

0 po X2,t71 Rz,t

where the thinning operator o is the widely used binomial thinning operator such
that p; o X;; = 2(:; Ur and U} are independent identically distributed Bernoulli
random variables with success probability p;, i.e. P(Up = 1) = p;. Hence p; o
X, is binomially distributed with size X;; and success probability p;. Then the

distribution function f,(x, X;+) can be easily written down as

X o
ot i) = (ot =¥t (6.21)

Note that p; o X;; and pj o X;,7 # j are independent of each other. To adapt the
heteroscedasticity arising from the data, R; is bivariate mixed Poisson regression
model such that R;; ~ Po(\;+0;) defined in the last session. The joint distribution

of the bivariate sequence X, conditional on the last state X; is given by

S1,t  S2.t

PXesa|Xe) = D0 X5 o Uk, X10) fi (kay Xo) fr(Xn g1 — bty Xopyr — ko)
k1= Okg 0
ATy A

'k2 J f (0| A, ki) f(0)dO,dO, (6.22)

frk,t) =

Sit = min{Xi,t+1; Xz',t}a

where fr(k,t) is a probability mass function of a bivariate mixed Poisson regression
model with mixing density fs(@). Under this construction, the bivariate sequence
X, is correlated with each other and its correlation structure mainly depends on the

correlation structure of innovation Rj.

6.3.2 The EM algorithm

Similarly, the maximum likelihood estimation is not straightforward to apply as the

log likelihood function

©) = ) log (Z D Lo (kry X1.0) foo (i, Xog) fr(X a1 — by, Xopi1 — kz))
t=1

k1=0 ko=0
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has discrete convolution and double integrals. Then we can use similar techniques

to decompose the log likelihood function as we did in section 2.

Given the observed bivariate sequence {X;};—; . Let Y;; = p; 0 X;; 1 and © =
{p1,p2, B1, By, ¢} be the parameter space for this model. Suppose now we observe

the latent variable {Y;};—1 ., then the log likelihood function becomes

n 2 n
(B]Y ) 22 Yielogp; + (Xis — Yig) log(1 — p;)) + Y log fr(Ry, 1)
i—1i—1 =1 (6.23)

Riy = X5 —Yiy.

Notice that there are still unobserved random variables 8 in R;. In some of the
examples we discuss in the last section, fr(k,t) may not have analytic expression
and hence we would like to further break down the likelihood function. Suppose
further that we observe the random effect {6;};_1 ., then the complete log likelihood

becomes

n 2
(OIY,8)oc Y Y (Vislog p; + (Xiy — Vi) log(1 = py))
m1im ) (6.24)

n 2
+ ZZ R;ilog(Nit) — Nitbie) + Z log f4(6)
t=1

t=11i=1

Define the following posterior density functions

R(Xiz1 —y) H?:l Ipi (s, Xi,t—l)
P(Xy|Xi-1)
n(0| A, Ry) fo(b)
§o §o (81X, Ry) f(0)db:1db;’

7T1(’y|@(j)7Xt7Xt—1) =

(6.25)
’7T2(0|@ Rt)

Define the posterior expectations with respect to real-value functions h(.,.)
S1,t—1 S2,t—1

EO@)] = Y. Y hy)m e, X, X, 1)
y1=0 y2=0 (626)

|Rt f f 7T2 0|®J Rt)deldeg

e E-step: Evaluating the Q function Q(©;©V) given the the parameters esti-
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mated in the j-th iteration,

n 2
Q(O;0 J) ZZ yzt logpi + (X1 — yz(?)log(l — i)

t=1i=1

+i2 9 log(X +Z]E $llog f4(0)|R]]

=1
Y, W =X -, 09 = EDED6,R]).

(6.27)

After breaking down the log likelihood function, it is obvious that except for
the log likelihood contributed by binomial distribution, the rest of the terms are
almost the same as that of the Q-function of bivariate mixed Poisson regression
model discussed in the last session, which means the updating procedure for
B;, ¢ will be exactly the same, but we need to evaluate different posterior

expectations in this case.

e M-step: Similarly, we apply the Newton-Raphson algorithm to update the
parameters. Based on the structure of Q(©;00)), the parameters can be

updated separately for binomial part p, Poisson part 3, and random effect
part ¢

— The binomial part can be updated simply as the following gradient func-

tion has a unique solution
Z?:l yz(]t) Z?:l(Xi,t 1 yz(Jt))
9(pi) = -

Di 1 — Di

(4
p(]-i—l) Zt 1yj
' Zt 1 Zt 1

=0

i=1,2

2 (6.28)
P Xi -1 P(Xy =14 Xy —1—-14)
G _ ek Xie#0and Xipy # 0
yzt'_
0, otherwise
1, = (1,007 1,=(0,1)".

See appendix 6.D for the derivation of yf”t)

— For the Poisson part, the updating equations are the same with different
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posterior expectation

(6.29)
Vi _ < {kss - A/M?}t:l >

-----

,,,,,

Note that when the mixing density f,(6@) is univariate Gamma, the pos-
terior expectation for @ has a simple expression

6D + ) + 1]}

00 + XY + A}

— Similarly, for the random effect part ¢,

(a) Univariate Gamma density

g(¢(j)) — n(log Qb( ¢(J) + 1 + Z (E(J) E(J) 10g0|Rt]] . égﬂ)
t=1

M) = (V)" = W (")),

(6.30)
(b) Bivariate Lognormal
U+ = ¢ _ g1 (D) g(oD)
9(@), = gEgﬁ lEeﬁ) [moif & )|RtH (6.31)
H(¢W),s = ZE” [EE{E [%@” ,
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(c) Gaussian copula paired with Gamma marginals

P = pU) — g (pW)g(p))

0 NG =) [ 10g fac(6) H

9(67): = YL} [Ee{t [—5 ocOg, 632
0y NG o) [ 02 1og fac(8) ”

A7) = 2 B [E"[ 06,06, ]

The partial derivatives inside expectations are derived in the last section.

Remark This model as well as the EM algorithm can be extent to multivariate
case straightforwardly. All the steps and the general form of the formula of the EM
algorithm in the multivariate case are exactly the same. The only problem is that
it would become cumbersome to evaluate the transition probability P(X;|X;_1) as

dimension of X, increases.

6.4 Empirical analysis

6.4.1 Data description and model fitting

The data used in this section come from the Local Government Property Insurance
Fund (LGPIF) from the state of Wisconsin. On previous application on this dataset,
interested reader can refer to Frees et al. (2016), Lee and Shi (2019) and Jeong et al.
(2023). This fund provides property insurance to different types of government units,
which includes villages, cities, counties, towns and schools. The LGPIF contains
three major groups of property insurance coverage, namely building and contents
(BC), contractors’ equipment (IM) and motor vehicles (PN, PO, CN, CO). For
exploratory purposes, we focus on modelling jointly the claim frequency of IM,
denoted as X;, and comprehensive new vehicles collision (CN), denoted as X5 as
they are both related to land transport. The insurance data cover the period over
2006 - 2010 with 1234 policyholders in total. Only n; = 1048 of them have complete
data over the period 2006-2010, which will be the training dataset. The last year
2011 with ny = 1025 policyholders, which is the same set of policyholders as in
the training dataset, out of 1098 policyholders will be the test dataset. Denote the
IM type and CN type claim frequency for a particular policyholder as Xf,}??XZ(Z)
respectively, where h is the identifier for each policyholder and t is the year. Then
the relationship between X;; and Xi(’?) is simply X;; = >, Xi(? with ¢ = 1,2.
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Some basic statistical analysis is shown in the following Table 6.1 and Figure 6.1.
The proportion of zeros for two types of claims are all over 90% during 2006-2010.
Both types of claim shows overdispersion as the variance are all higher than their
mean over years and the overdispersion for X, is even stronger than that of X, 4,
which indicate the need to apply overdispersed distribution model for the data.
The correlation tests over years imply that it is reasonable to introduce correlation
structure between X, and X5 ,. The proportion of zeros and kurtosis show that the
marginal distributions of X ;, Xy, are all positively skewed and exhibit a fat-tailed
structure which indicates the appropriateness of adopting a positive skewed and fat-
tailed distribution (Log Normal distribution). Last but not least, the correlation
tests illustrated in Table 6.2 do support the appropriateness of introduction of time

series term in modelling the claim sequence.

Table 6.1: Summary statistics of two types of claims over years. The correlations
test is a one-sided test where the alternative hypothesis is “The sample correlation
is greater than ("

2006 2007 2008 2009 2010

Proportion of zeros X ; 0.9685 0.9542 0.9552 0.9504 0.9590

Proportion of zeros X ¢ 0.9342 0.9332 0.9399 0.9370 0.9323
Kurtosis of X ¢ 85.7500 86.6479  41.8491 43.0183  126.6879
Kurtosis of X5 ; 53.9183 61.7740 111.2810 184.1395 133.9228

P-value of correlation test  0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.2: Correlation test for X;; and X;;_;. The test is a one-sided test where
the alternative hypothesis is “T'he sample correlation is greater than 0”

X, X,
correlation 0.4062 (.7478
p-value 0.0000 0.0000

The description and some summary statistics for all the explanatory variables (co-
variates 24, zo,) that are relevant to X, X, are shown in Table 6.3. Variables
1- 5 including ‘TypeVillage’ are categorical variables to indicate the entity types of
a policyholder. Due to the strongly heavy-tailed structure appearing in variables
6 and 9, which can drastically distort the model fitting, those variables are trans-
formed by means of the ‘rank’ function in R software and then standardized, which
can mitigate the effect of outliers. Variables 6-8 are relevant to IM claim X ;, while
variables 9,10 provide information for CN claims Xy;. The covariate z;, includes
variables 1-8, and 2z, contains variables 1-5 and variables 9,10. These covariates
act as the regression part for A;; mentioned in section 2, which may help to explain

part of the heterogeneity within X;; and Xy ;.
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Figure 6.1: Summary statistics
across all the policyholders over the years.
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Table 6.3: summary statistics for the explanatory variables

(mean, variance and correlation) for each type of claims

Variable index Variable name Type Description Proportion /Mean
1 TypeCity Categorical Indicator for city entity 0.1400
2 TypeCounty  Categorical Indicator for county entity 0.0578
3 TypeMisc Categorical Indicator for miscellaneous entity 0.1104
4 TypeSchool  Categorical Indicator for school entity 0.2817
5 TypeTown Categorical Indicator for town entity 0.1728
- TypeVillage  Categorical Indicator for village entity (reference category) 0.2373
6 CoverageIM  Continuous Coverage amount of IM(transformed) 0
7 InDeductIM  Continuous Log deductible amount for inland marine 5.3400
8 NoClaimCreditIM  Binary Indicator for no IM claims in prior year 0.4210
9 CoverageCN  Countinuous  Coverage amount of CN (transformed) 0
10 NoClaimCreditCN  Binary Indicator for no CN claims in prior year 0.0897

Due to the large computational cost for evaluating the partial derivatives of copula
case (large sample size), all the models except the copula case discussed in Section
2 and Section 3 are applied to model the joint behaviour of Xg?, Xg? across all the
policyholders. Instead, a simulation study in the appendix 6.E shows that the EM

algorithm does work for copula case.

Since we would like to model the whole behaviour rather than the individual one,

the the likelihood function would simply become

ni ny 4
h h h h
(0) = Y10,(0) = Dllog Pr(X (), X1 x ™ x . (6.33)
h=1

h=1t=1

where £,(0) is the log likelihood function for policyholder h. Note that all the pol-
icyholders with the same type of claim X; will share the same set of parameters
{p1,p2, By, By, ¢} In addition, it is necessary to show the appropriateness of intro-
ducing crosscorrelation and autocorrelation in BINAR(1) model. Then we also fit

the data to following models.
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1. The joint distribution of X f]? and Xg’t’) are characterized by two independent
mixed Poisson (TMP)

XM < Pois(n1), XS ~ Pois(Nabs), (6.34)

where 6; and 6y are independent random variables, either Gamma or Log

Normal.

2. The joint distribution of Xl(f? and Xg;) are assumed to be bivariate mixed
Poisson distribution (BMP) with different probability mass function according

to the choice of mixing densities, see equations (6.2) and (6.4).

3. The joint distribution of X f}? and Xg? are characterized by two independent
INAR(1) models (TINAR)

Xffi) =P1° Xf,}:t)—l + Riy

X5 =pro X+ Roy,

where R;; ~ Pois(\;:0;+),7 = 1,2 and random effect 6;; is independent of i
and t.

For comparison purpose, we fit these univariate and bivariate Poisson mixture mod-
els with training dataset starting from 2007 because they do not need to consider
the lag responses. When it comes to the initial values, we use the following. Lag
one correlation of each sequence serves as the initial value of p;. We fit a Poisson
generalized linear model for each sequence to obtain the initial values of 3,. Finally,
we used the moment estimates of the bivariate Poisson mixture model (without re-
gression) for initial values of ¢ = {¢1, P2, p}. All the estimation is performed in R
software where we implement the EM algorithms derived in previous sections. The
standard deviations of the estimators are calculated by inverting the observed in-
formation of matrix from the incomplete log-likelihood function (the log likelihood

function without unobserved latent variables).

Model fitting results are shown in Table 6.4. Within the same class of models,
compared to univariate Gamma as mixing density, the Log Normal case allows more
flexible structures to capture different distributional behaviour within two types of
claims. Hence we can observe the improvement of AIC from univariate Gamma case
to Log Normal case and hence it is no surprise that the Log Normal is always the
best choice within the same class of model. Among different classes of models, it

is clear that the adoption of autocorrelation component significantly improves the
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model fitting. Finally, the significant improvement in terms of AIC from TINAR to
BINAR, as well as from TMP to BMP, indicates that it is appropriate to introduce
cross correlation between two sequences X1, X5. The estimated parameters via EM

algorithm are shown in Table 6.5.

Table 6.4: Goodness of fit for different models with different choices of mixing
densities. For the class TMP and TINAR, row and column stand for mixing density
of 01, 05, respectively. The grey cells indicate the best one within the same class of
models.

. . (Gamma Log Normal

Mixing density 10 pycy AIC | BIC
TMP Gamma 3073.332 | 3193.810 3067.119 | 3187.596
Log Normal  3072.287 | 3192.765 = 3066.074 | 3186.551
TINAR Gamma 2999.957 | 3133.117 2999.843 | 3133.003
Log Normal  2998.326 | 3131.485 = 2998.212 | 3131.371
BMP / 3073.176 | 3191.329 « 3055.066 | 3181.885
BINAR / 2996.291 | 3123.109 ' 2990.744 | 3130.245

6.4.2 Predictive performance

In insurance claims modelling, it is more useful to check the overall distribution for
all policyholders rather than prediction of the claim frequency for each policyholder,
which can be used for premium calculation, risk management, and so forth. To eval-
uate the predictive performance, we then calculate the predicted claim frequencies
Freq(Xy|X,_1,©), which are the sum of individual probabilities P(Xgh)|X7@1, O) of
joint events (th), Xéh)) €{(1,7),0 <i,j < 10} based on the estimated parameters,
and compare these to the observed frequencies from the test sample (X 2011, X2.2011)
(year 2011). In addition to our proposed BINAR model with Log Normal mix-
ing density, we also compute predictive performance of the best TMP, TINAR,
BMP models from Table 6.4 as the benchmark for comparison purposes. Based on
the predictive claim frequencies, one can also compute expected number of claims
marginally (E[X;], E[X2]),

10 10
E[X,] = Z Z k1Freq(kq, k2| Xa010, ©)
k1=0 k2=0
10 10 .
E[Xz] = Z Z ngreq(kfl,k2|X2010,@)
k1=0 ko=0

(6.35)
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Table 6.5: Parameter estimation for the Bivariate mixed Poisson regression model
and the bivariate INAR model of insurance claim frequency data with EM algorithm.
For each entry, the upper one is the estimate and the estimated standard deviations
are indicated in round brackets.

Model
Estimate BMP BINAR
BPGA BPLN BINAR(1)-GA | BINAR(1)-LN
X1t Xo ¢ X1t Xo ¢ X1t Xot X1t Xo g
i 0.1238 0.2904 | 0.1118 0.2761
(0.0373) (0.0378) | (0.0384) (0.03950)
o] 1.1742 1.0668 0.8408 0.9495 1.0559  0.9403
(0.1656)  |(0.1167) (0.0696) (0.1662) (0.1274) (0.0931)
p 0.5895 0.6063
(0.1485) (0.1782)

Intercept -3.7300 -5.4277 |-3.6811 -5.4836 |-3.7980 -5.9744 | -3.7966 -6.0363
(0.4835) (0.3612) |(0.5175) (0.3743) |(0.5158) (0.4428) | (0.5412) (0.4607)
TypeCity -0.2183 0.5354 [-0.2830 0.5234 |-0.2242 0.6673 | -0.2735 0.6625
(0.2405) (0.2259) |(0.2565) (0.2306) |(0.2823) (0.2577) | (0.2657) (0.2888)
TypeCounty 0.5269 1.2034 | 0.6190 1.1312 | 0.5682 1.3290 | 0.6200 1.2744
(0.2605) (0.2074) [(0.2809) (0.2119){(0.2811) (0.2643) | (0.2930) (0.2698)
TypeMisc -2.0565 -0.4822 |-2.0968 -0.4916 |-2.0110 -0.1141 | -2.0360 -0.1279
(1.0192) (0.6349) [(1.0251) ( 0.6355)|(1.0210) (0.6567) | (1.0253) (0.6604)
TypeSchool 0.0678 -0.0068 [-0.0768 -0.0190 |-0.0387 0.1559 | -0.0945 0.1367
(0.3242) (0.2291) |(0.3401) (0.2318) |(0.3587) (0.2811) |(0.36074) (0.2852)
TypeTown -0.4060 -1.1058 [-0.4427 -1.1294 |-0.3565 -0.8941 | -0.3830 -0.9257
(0.2992) (0.4289) |(0.3064) (0.4309) |(0.3037) (0.4794) | (0.3091) (0.4832)

CoveragelM 1.5299 1.4519 1.4543 1.4219

(0.1971) (0.2062) (0.2126) (0.2163)

InDeductIM 0.0241 0.0274 0.0170 0.0233

(0.0730) (0.0799) (0.0788) (0.0835)

NoClaimCreaditIM |-0.6557 -0.6053 -0.4569 -0.4382

(0.1421) (0.1552) (0.1570) (0.1665)
CoverageCN 2.3947 2.4422 2.4227 2.4818
( 0.1819) (0.1903) ( 0.2210) ( 0.2210)
NoClaimCreaditCN -0.6752 -0.6786 -0.3047 -0.3139
(0.1652) (0.1663) (0.1811) (0.1811)

and measure the Predictive Sum of Square error:
PSSE = (E[X,] — X12011)* + (E[X2] — Xo9011)° (6.36)

On the other hand, the log likelihood on test samples (TLL) can also be a measure

of predictive performance for each model.

n2
TLL = log P(X{V|X{",, 6). (6.37)
h

All the results are summarised in Table 6.6 and 6.7 and it is clear that our proposed

model, bivariate INAR(1), has the best predictive performance with the smallest
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PSSE among all other models. Furthermore, TLL result shows that the bivariate
INAR outperforms all other models, which is consistent with the model fitting result
in Table 6.4.

Table 6.6: Predictive and observed joint frequencies for each models

(0,00 (0,1) (0,2) (1,00 (1,1) (1,2) (2,0) (2,1) (2,2)

TMP 901.40 36.53 11.95 38.30 4.03 220 5.37 097 0.62
TINAR 903.99 3747 11.70 37.42 4.16 230 4.87 0.93 0.61

BMP 904.09 36.87 11.75 36.91 4.09 241 481 081 0.63
BINAR 906.03 37.67 11.55 36.31 4.16 245 445 0.79 0.61
Observed 940 26 6 20 6 2 4 1 1

Table 6.7: predictive Marginal claim frequency

TMP TINAR BMP BINAR  Observed

E[X,]  79.18 74.17 77.06 72.55 78
E[X,] 15889 15328  157.34  152.68 117
PSSE 1756164 1330.907 1628.199 1302.765 /
TLL -348.3537 -340.4619 -345.9555 -338.4115 /

6.4.3 Application to ratemaking

In this subsection, the analysis of best fitted models from Table 6.4 for ratemaking
is conducted. We select three representative risk profiles under different models,
named Good, Average and Bad, illustrated in Table 6.8. These three risk profiles
are selected according to the sign and size of the coefficients in Table 6.5 and those
variables are not mentioned in the following table are taken to be 0. Note that
CoverageIM and CoverageCN are selected according to their empirical distribution

on test data.

Table 6.8: The risk profiles for two claim sequences

TypeCounty TypeMisc CoveragelM

Good 0 1 -1.43
Z, Average 1 0 0
Bad 1 0 1
TypeCounty TypeMisc CoverageCN
Good 0 1 -0.56
Z, Average 1 0 1.6
Bad 1 0 2.15
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We then evaluate the mean and variance of Xff? + Xg? under each best TMP,
TINAR, BMP and BINAR according to Table 6.4. The mean and variance for
one policyholder is given by two quantity, i.e. E[th) + Xéh)|@,Xt,1, Z,,7Z,] and
Var(th) + Xéh)|(:), Xi-1,21,Zy). They have following explicit formulae
E[Rl,t + R21t|é, Zl, ZQ] = 5\1 + ;\2 = 62131 + 62232
Var(Rys + Ro4|©,Zy1,Zy) = M2(e7 — 1) + A2(e® — 1) + A + Ay
+ 25\15\2(6'&71&2 — 1)
E[X{" + X0, X, 1,21, Zo) = ;i XY, + 52 X3 (6.38)
+E[Riy + Royl©, Z1, Zs]
Var(th) + Xéh)|é7 Xi1,2Z1,Zo) = pi (1 — pH)Xg?,l + pa(1l — ]f2)X2(Z),1

+ V&I‘(RLt + R2,t|éa Z17 ZQ)

Table 6.9 and 6.10 summarised the mean and variance under different risk profiles
and different claim history structure (Xl(f;ll,Xéf;ll). As TMP and BMP do not
depend on claim history, their mean and variance are all the same within the same
risk profiles. It is interesting to see that the variance of INAR models are smaller

than that of mixed Poisson models in many cases.

Table 6.9: Premium calculations from different models: Means.

Profile (X" . x{") ) TMP TINAR BMP BINAR

Good (0,0) 0.0010  0.0009 0.0010  0.0009
(0,1) 0.0010 0.2856 0.0010 0.2771
(1,0) 0.0010 0.1194 0.0010 0.1128
(1,1) 0.0010 0.4040 0.0010  0.3889
Average (0,0) 0.6361 0.4690 0.6877 0.4951
(0,1) 0.6361 0.7537 0.6877 0.7713
(1,0) 0.6361 0.5875 0.6877 0.6070
(1,1) 0.6361 0.8722 0.6877 0.8832
Bad (0,0) 2.4873 1.8631 2.6553 1.9484
(0,1) 24873  2.1478 2.6553 2.2246
(1,0) 24873 1.9816 2.6553 2.0603
(1,1) 24873 2.2663 2.6553 2.3364
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Table 6.10: Premium calculations from different models: Variances.

Profile  (X{",,X§" ) TMP TINAR BMP BINAR

Good (0,0) 0.0010  0.0009 0.0010 0.0009
(0,1) 0.0010 0.2045 0.0010 0.2008
(1,0) 0.0010 0.1053 0.0010 0.1003
(1,1) 0.0010  0.3090 0.0010 0.3001
Average (0,0) 0.8746 0.6869 1.1563 0.8221
(0,1) 0.8746 0.8905 1.1563 1.0220
(1,0) 0.8746 0.7914 1.1563 0.9215
(1,1) 0.8746 0.9950 1.1563 1.1214
Bad (0,0) 6.0635 5.2554 9.6217  6.9969
(0,1) 6.0635 5.4591 9.6217 7.1968
(1,0) 6.0635 5.3599 9.6217  7.0962
(1,1) 6.0635 5.5635 9.6217 7.2961

6.5 Concluding remarks

In this paper, we consider a new family of bivariate mixed Poisson INAR(1) regres-
sion models for modelling multiple time series of different types of claim counts.
The proposed family of models accounts for bivariate overdispersion and, similarly
to copula-based models, allows for interactions of different signs and magnitude
among the two count response variables without using the finite differences of the
copula representation which may result in numerical instability in the ML esti-
mation procedure. For illustrative purposes, we derived the BINAR(1)-LN and
BINAR(1)-GGA regression models which can be regarded as competitive alterna-
tives to the BINAR(1)-GA regression model for modelling time series of count data.
Furthermore, from a computational statistics standpoint, the EM type algorithms
we developed for ML estimation of the parameters of all the models were easily im-
plementable and were shown to perform well when we exemplified our approach on
LGPIF data from the state of Wisconsin. At this point, it should be noted that we
considered the bivariate case and the Gamma and Lognormal correlated random ef-
fects for expository purposes. Moreover, the EM estimation framework we proposed
is sufficiently flexible and can be used for other continuous mixing densities with
a unit mean and, unlike copula-based models, which also allow for both positive
and negative correlations, generalizations to any vector size response variables are
straightforward. However, in the latter case, EM estimation may be chronologically
demanding due to algebraic intractability. Nevertheless, in such cases, due to the

structure of the EM algorithm for multivariate INAR(1) models with correlated ran-
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dom effects, the E- and M-steps can be executed in parallel across multiple threads

to exploit the processing power available in multicore machines.

Finally, an interesting topic for further research would be to also take into account

cross autocorrelation, proceeding along similar lines as in Bermudez et al. (2018).
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6.A abbreviations

Here is a table for all the abbreviations used in this paper

Table 6.11: The explanation of the Abbreviations used in

Abbreviation Interpretation
BP... Bivariate Mixed Poisson regression model...
BPGA ~with univarite Gamma as mixing density
BPLN ~with bivariate log normal as mixing density
BPGGA ~with bivarite Gaussian Copula paried with univariate Gamma as mixing density
BINAR(1) - ... Bivariate Integer-valued autoregssive model ...
BINAR(1) - GA ~with BPGA as innovations
BINAR(1) - LN ~with BPLN as innovations
BINAR(1) - GGA ~with BPGGA as innovations

6.B The Gauss-Hermite quadrature in the high di-

mensional setting

In this session, we introduce how to transform an integral with respect to multivari-
ate normal density function into a multi-dimension Gauss-Hermite quadrature rule.

Starting from one dimensional case, the way we calculate the following integral

E[h(X)] = f OOOO h(z) ¢21?a exp{—%} dz,

where X ~ N(u,0?), is first to make a linear transformation of integrand and then

apply the quadrature rule directly:

0

Bl = [ 130y + )= exp {27} dy

~ %;mm £

where &; are the roots of Hermite polynomial of degree n, with a certain weight
w;. The quadrature rule approximation of integral will be accurate only when the
function h can be well-approximated by a polynomial of degree 2n—1 or less. Those
values can be found from the R function gauss.quad in the package statmod. The

idea to extend the result to high dimensional setting is straightforward. Specifically,
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we need to first transform the density function into the form exp{y’y}, where y €
RE*1 then the k-dimensional integral reduces to a k-fold Gauss-Hermit integral.
Suppose the k -dimensional random vector X ~ N(u,X), where p € R¥*! and ¥ €
R *F_ Then a linear transform for this random vector is through eigen decomposition
of 3 such that

X = V2QA%y + p,

where Q = (v, ..., ) is the matrix formed by eigen vectors and A is the diagonal
matrix with eigen values (A,..., Ax) such that ¥v; = N, i =1,.... k. Then

the exponent of multivariate normal density becomes

L x— )= (x - p)

2
=% (\@QA%y +p— u)T > (\@QA%y +p— u)
- (QAly) (@a'Q ) (Qaly)

—y"A? (Q"Q) A1 (Q'Q) Aty
—y"AZA" A%y

=y'y.

Since ¥ is symmetric, then Q7 = Q~!. Finally, the k-dimensional integral becomes
E00) = [ [0 e e = e
= e — —— €X — = — — e
o e 20)5 3 2 P
es} e} 1 k
= J J h (\@QAiy—Fu) T2 exp{—yTy} dyy . .. dys

%W—g znl an h(\@QAég—i-p) Wiy - .. Wiy,

1

6.C The Gauss-Legendre Quadrature in the high di-

mensional setting

The the extension of the Gauss-Legendre quadrature rule into high dimensional

situation is much more straightforward. The following m-dimensional integral can
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be approximated by

by bim
J J R(yr,y .. s yn)dys ... dyy

(i1

m

where £ are roots of Legendre polynomials of degree n and w, are the corresponding
weights. These can also be found easily in R by the ‘gauss.quad’ function in the
package ‘statmod’. Similarly, the h function should be well-approximated by a

polynomial of degree 2n — 1 or less to ensure accuracy of the approximation.

6.D Derivation of conditional expectation

The conditional expectation ]Eéjz [Y;] can be derived explicitly as follows. For sim-

plicity, we just write py, p, instead of pﬁ”),pg)

)] S Xlt 1 k1 X1,t-1—Fk1
Ey,t[Yl]—WZ > /ﬁ( ) (1=p1)

—0 ka0
X fpo (Y2, Xo1) fR(X 1 — k1, Xoy — ko)

S1,t S2,t
X (Xl,tl - 1) k1—1
0

1 — X1t-1—F1

X fpa (y27 X2,t71)fR(X1,t — ki, Xoy — k2)

P1X1-1 R <X1,t1—1) K, X1 1K
— p 1 _p 1,t—1 1
P(X¢[ X 1) Z Z K} ' )

k=0 k2=0

X fps (y27X2,t—1)fR(X1,t —-1- ki, Xot — kz)
P(Xt — 11|Xt,1 — 11)
P(X X 1)

= ple,tfl
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6.E  Simulation study for Gaussian copula paired

with Gamma marginals

This is to verify that the EM algorithms work for both the bivariate Poisson mixture
model and the bivariate INAR model when the random effect is characterized by
copula. Two random samples of size 500 are generated from these two models

separately with pre-specified parameters, which are listed in the following table

Table 6.12: Parameter setting for simulation

parameters ‘ p ‘ B4 ‘ Bs ‘ o1, 02 ‘ P ‘ Z, ‘ Zy
values | 0.4,0.5 | -2,0.8,0.5 [ -1.5,0.5,03 | 2,3 [ 0.5 | MVN(p;,D) | MVN(p,, D)

where p, = (1,0.3,0.5), puy = (1,0.2,0.4)T, D = diag{0, 1,1} and MVN stands for
multivariate normal distribution. Then each model is fitted by two methods: max-
imising the incomplete likelihood and EM algorithms. These two methods should
give almost the same results for p, 3,, 3, which determine the mean of the model
and hence have a relatively large contribution to likelihood. On the other hand, this
may not be the case for other parameters ¢y, ¢9, p which determine the variation and
correlation of the model, and only contribute relative small part of the likelihood.
The final log likelihood values would normally be larger than the log likelihood value

evaluated at pre-specific parameters. The estimated results are given in Table 6.13

The difference between estimated parameters ¢, @9, p and their true values seems
larger than others. This is reasonable because these parameters control the variation

of distribution and the log likelihood would be less sensitive to them.
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CHAPTER 7

Paper D. Cluster point processes and Poisson

thinning INARMA

Abstract

In this paper, we consider Poisson thinning Integer-valued time series models, namely
integer-valued moving average model (INMA) and Integer-valued Autoregressive
Moving Average model (INARMA), and their relationship with cluster point pro-
cesses, the Cox point process and the dynamic contagion process. We derive the
probability generating functionals of INARMA models and compare to that of clus-
ter point processes. The main aim of this paper is to prove that, under a spe-
cific parametric setting, INMA and INARMA models are just discrete versions of
continuous cluster point processes and hence converge weakly when the length of

subintervals goes to zero.

7.1 Introduction

The Hawkes process, which was first introduced in Hawkes (1971a,b), is a self-
exciting point process such that its intensity depends on the past of the point pro-
cess itself. Due to its simplicity and flexibility, the Hawkes process can be viewed as
a contagion process and applied in different areas, for example seismology in Ogata
(1988), epidemiology in Kim (2011), and sociology in Mohler et al. (2011). It has
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gained in popularity in recent years. Finance in particular, is a very popular area to
apply Hawkes processes, see Bowsher (2007), Large (2007), Embrechts et al. (2011),
Bacry et al. (2012, 2013a,b, 2015), Ait-Sahalia et al. (2015), and Dassios and Zhao
(2017a,b). However, in some context such as modelling the credit contagion in Jar-
row and Yu (2001), the clustering of defaults is consistent with the Hawkes process,
but the default intensity could be impacted exogenously by other factors, which
means the distribution of cluster centres may not act as a homogeneous Poisson
process in the real financial data. In order to address this, Dassios and Zhao (2011)
introduced the dynamic contagion process by generalizing the Hawkes process (with
exponential decay kernel) and the Cox process with shot noise intensity (exponential
decay kernel) used in Dassios and Jang (2003), which allows the cluster centres act

as a stochastic process.

The standard time series models (AR, MA, ARMA, etc.), on the other hand, are
used for sequences of real-valued data. A natural question would be whether we
can use time series models for count data. An early contribution has been done
by Jacobs and Lewis (1978a,b, 1983), who introduced the discrete Autoregressive
and Moving average model (DARMA) for stationary discrete time series. However,
the correlation structure of DARMA is quite different from the standard time series
model. Later, a new model called Integer-valued autoregressive (INAR) time series
was defined and examined by McKenzie (1985) and Al-Osh and Alzaid (1987). The
idea here is to manipulate the operation between coefficients and variables as well
as the innovation terms in a way that the values are always integer. The properties
of the INAR model are explored by Al-Osh and Alzaid (1988a), Jin-Guan and Yuan
(1991), and McKenzie (1988). The Integer-valued Moving Average model (INMA)
was introduced and developed by Al-Osh and Alzaid (1988b), Briannis and Hall
(2001), and Bréannis et al. (2002). They apply the similar idea of the INAR model
to a standard MA model.

It seems that no one had studied the connection between point processes and integer-
valued time series until Kirchner (2016), who showed that Hawkes point processes
are continuous-time versions of Poisson thinning INAR time series with infinite order
and vice versa. The author also mentioned that one can introduce the INARMA
model by adding the moving average part into the INAR model and hence make a
connection to the dynamic contagion process, which is the main motivation of this
paper. Basically, we formally define the INMA model in a similar way to Kirchner
and prove that the INMA model with infinite order is actually a discrete version
of a Cox point process. We then define the INARMA and prove that it is also a

discrete version of the dynamic contagion process, as Kirchner expected.
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The paper is organized as follows: Section 2 specifies the terminology and reviews the
definitions of three cluster point processes, namely the dynamic contagion process,
the Cox process and the Hawkes process, and their probability generating function-
als. Section 3 reviews the definition of INAR model, defines the INMA model and
INARMA model, and derives their probability generating functionals. Section 4
provides further details on the convergence of probability generating functionals be-
tween the INARMA models and the cluster point processes. Section 5 establishes the
weak convergence result from the INARMA models to their corresponding cluster
point processes. Section 6 verifies the convergence theorem by calculating the joint
probability generating functions numerically through simulation. A few concluding

remarks are in the final section.

7.2 Cluster point processes

In this section, we will first define the space we are working on and provide some
terminology and notation concerning the integer-valued random measure. Then, we
recall the definitions of three cluster point processes, namely the dynamic contagion
process, the Cox process and the Hawkes process. Finally, we derive their probability

generating functionals by taking advantage of their cluster representation.

7.2.1 Preliminaries

We will use most of the notation and terminology from Daley and Vere-Jones (2007).
Throughout this paper, we work on the probability space (2, F,P), where F is the
o—algebra generating by €2. A measure p on the half-line R, , a complete separable
metric space, is boundedly finite if u(A) < oo for every bounded Borel set A € B(R, ).
Hence denote Mﬁé as the space of all boundedly finite measures and B(./\/lﬂi) as

its o—algebra.

Definition 7.1. A point process N on the state space Ry is a measurable mapping
from a probability space (2, F,P) into (N&,B(N;i)), N :Q ./\/'ﬂi, such that
N(A) is a integer-valued random variable for each bounded A € B(R. ). Nﬂi is the
famaly of all boundedly finite integer-valued measure p € Mnt

For a point process (random measure) N € Nﬁi, they are well-defined only on
some bounded area. Consequently, the distribution of a point process is completely
determined by the finite dimensional distributions, see Proposition 9.2 II in Daley
and Vere-Jones (2007)
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Definition 7.2. The finite dimensional distributions of a random measure N are
the joint distributions for all finite families of bounded Borel sets Ay, ..., A, of
N(Ay),...,N(Ag)

Fk;(A17 Ce ,Ak;l’l, e 751;19) = P{N(AZ) < II(Z = ]_, .. ,]f)} (71)

Usually, for a non-negative random measure, one would use the Laplace functional
to describe the joint distribution of the random measure. As we work on the space
(Nﬂfi, B(Nﬂi)), there are advantages in moving from the Laplace functional to the
probability generating functional (p.g.fl)

Definition 7.3. The probability generating functional (p.g.fl) of a point process N

on the complete separable metric space Ry is defined by
Glh] = E [exp { f log h(:c)N(d:c)H  heV(R,), (7.2)
Ry

where V(R ) is the class of all real-valued Borel functions h defined on R, with 1—h
vanishing outside some bounded set and satisfying 0 < h(zx) < 1,Vx € R,. Later,
we will use Vo(R,), the subset of V(R,) satisfying inf,er, h(zx) > 0

One can always use G[h] to describe F}, by setting h(x) = h;,z € A;, where h; is

a constant. Then the G[h] will reduce to the joint probability generating function
(joint p.g.f).

Glh] = E :exp { J& log h(x)N(dx)}]

=K |exp (J

i k
) hZN(Ai)]
1

.....

In other words, the p.g.fl G[h] is the limit version of the joint p.g.f where the set A;
has the length dr — 0 and k& — co. When describing the finite dimensional distri-
butions F}, the p.g.fl and the joint p.g.f are therefore equivalent. For convenience,
we will also use the term "p.g.fl” for those INARMA models to describe their joint

p.g.f in section 3.
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7.2.2 The dynamic contagion process

We first define a generalized version of the dynamic contagion process as in Dassios
and Zhao (2011)

Definition 7.4. The generalized dynamic contagion process is a cluster point process

NPCP) with stochastic intensity N\PCP) such that

Nt(DCP)
PP Z T f(t Z xin(t — 1), (7.3)
Bic; <t 1<t

where

o N = {c;}ic12,.. are the arrival times of the Poisson process with the constant

rate p > 0

Nt(DCP) = {7, }iz12,... are the arrival times of the generalized dynamic contagion

process

o {Y;} are i.i.d externally excited jump sizes, realised at times {c;}, with distri-

bution H(x), mean py and Laplace transform h(u)

o {xi} are i.i.d self-exciting jump sizes, realised at times {7;}, with distribution

G(y), mean p,, and Laplace transform g(u). They are independent of {Y;}
e f(u) is an Riemann integrable function for any bounded interval in R,

e n(u) is another Riemann integrable function for any bounded interval in R

Note that the stationary condition for this point process would be SSO (u)du < o
and fi, So u)du < 1. Following from this definition, we define the other two cluster

point processes — the Cox process and the Hawkes process as special cases.

Definition 7.5. The (Marked) Cox process with shot-noise intensity, also called
doubly stochastic process, is a cluster point process N© with stochastic intensity
MO such that

3T ). (7.4

iic;<t

It is clear that this is a special case of the dynamic contagion process by letting
n(u) = 0,Yu € Ry. On a bounded area [0,7] where 7" > 0 , the process can be

considered as a cluster process in which the cluster centres ¢; arrive as a homogeneous
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Poisson process N* ~ Pois(p). Conditional on the arrival of ¢;, we then have a
cluster whose size follows N} ~ Pois(Y,;f(t — ¢;)) with ¢; <t < T. Theses clusters
are mutually independent and cluster centres are not included in N(©). In order
words, the arrivals of cluster centres are indicators that some events will happen

around them.

Definition 7.6. The (Marked) Hawkes process is a self-exciting point process NH)

with stochastic intensity N\ such that

N

AN =v+ 3 xan(t—m), (7.5)

1T <t
where v is a positive constant.

Similarly, this is another special case of the dynamic contagion process by replac-

gD cp) by a positive constant v. From Hawkes and

ing the ’Cox component’ in A
Oakes (1974), the Hawkes process can also be interpreted as a cluster point pro-
cess. The immigrants (cluster centres) arrive as a homogeneous Poisson process
Pois(v). Each immigrant generates a Galton-Watson type branching process with
expected branching ratio p, Sgo n(u)du. A cluster is then formed by including all the

generations (include the immigrant) from the branching process.

Back to the dynamic contagion process, it is actually a Hawkes process with immi-
grants arriving as a Cox process rather than a homogeneous Poisson process. Here

are the probability generating functionals for these cluster point processes.

Proposition 7.1. Let z(.) € Vo(R.) such that 1 — z(.) vanishes outside [0,T],
where T > 0. The probability generating functional (p.g.fl) of the Cox process N(©)
on [0,T] is given by

GO = exp {pLT(F<c>(z(.)|c) — 1)d0} (7.6)

FOGO)e) = h (- %f(u)(z(c +u) — 1)du> .

0

Proof. See appendix 7.A n

Proposition 7.2. Let z(.) € Vo(R,) such that 1 —z(.) vanishes outside [0, T], where
T > 0. The probability generating functional (p.g.fl) of the generalized dynamic
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contagion process NPCP) on 0,T] is given by

cﬂDCPch»:=exp{pJ:1(ﬁ(}-

FO GO = (= [ FEDEO ) = oo )

0

JvTu(F(H)(z(.)|U +) - 1)f(v)dv) B 1) du}

0

(7.7)

where FUD(z(.)|u) is the p.g.fl of a cluster generated by an immigrant (cluster centre)
arriving at time u, and including that immigrant. While F(z(.)|u) = F(z.(.)) and
2u(.) = z(u + .) is simply the translation of z().

Proof. See appendix 7.B O

Corollary 7.2.1. Let z(.) € Vo(R,) such that 1 — z(.) vanishes outside |0, T]|, where
T > 0. The probability generating functional (p.g.fl) of the Hawkes process N on
[0,T] is given by

G (2(.)) = exp {VLT (FUD(z()|u) = 1) d“} (78)

FWMANw=zwm(—jT7F@@W+w»—mmwm).

0

Proof. This result generally follows from Theorem 2 in Hawkes and Oakes (1974).
We can also derive it from Proposition 7.2 by simply letting M9 = vin equation
7.34. O

7.3 Poisson thinning Integer-valued time series model

In this section, we will review the Poisson thinning INAR model from Kirchner
(2016). Then we will define the INMA and INARMA models in a similar way to
the INAR model, and derive their probability generating functionals.

7.3.1 Integer-valued Autoregressive Model - INAR(0)

We refer to the results of Kirchner (2016) .
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Definition 7.7. The stationary INAR () is defined as

RgE

Xn = Qg © Xn—k: +é&n

x>
Il

1

(7.9)

Xn—k
n,k
el( ) + En,

[
M8

x>
Il

1 1=

—_

where

e ;= 0 (reproduction coefficients) and the stationary condition > 5. oy < 1
o &, "X Pois(ag), with ag > 0 (immigration parameter)
e The thinning operator o is defined as

ank
k k) idid o
op o Xk = Z egn ) egn ) i Pois(ay),

i=1

where el(n’k) are independent over ne€ Z, ke N, i e N

e o operates independently over n € Z, k € N

In the early study of the integer-valued time series models, the operator o is defined
as a binomial thinning operator, which means ¢; are Bernoulli random variables.
However, Kirchner defines it as a Poisson operator, which will lead to the simpler
formulas of probability generating functional. In addition, the p.g.fl derived later
can be compared directly to that of the Hawkes process. The following proposition

gives the branching representation of the INAR model.

Proposition 7.3. The INAR(w) process X,, has the following representation

X, 23 Z F{9). (7.10)

€7 j=1

where F™) are independent over i, ] and they are the copies of a branching process

n—i

F,, which is defined by

e}
F,=)GY nelk (7.11)

g=0
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The generation G, are constructed recursively by

-1
G1(1g k)

GS,LO) = 1{n:0} G,Elg) = Z (0770% Gglg:kl) = Z 61(727'%79)7 ne Za g€ N’ (712)
k=1

k=1 =1

3

with 5,(;”‘”“9) are independent over n, k, g, m and also independent of €;, © € Z. Fur-

thermore, we have the following distributional equality for the generic family-process

(Fn)

n GV
(Fn)nEZ i 1{71,:0} + Z Z FT(Ll,’]l) . (713)

i=1 j=1

n be a sequence of constants such that 0 < z; <

-----

1. The probability generating functional (p.g.fl) of the INAR sequence {Xi}i—1.. n is
given by
GX)(z) = exp {Z ag(F(z i) — 1)}
— (7.14)

FOO(z i) = 2 oxp {2 o (F(z i+ k) - 1>} ,

where FXn) (2 |t) = FXn)(2,, ) is the p.g.fl of the cluster generated by an immigrant

(cluster centre) arriving at time .

Proof. The (discrete) p.g.fl is given by

The sum Y Ft(i’f ) can be interpreted as the cluster, which includes all the genera-
tion from time i to time n, generated by one of the immigrants in ;. Conditionally

on the immigration sequence ¢; and exploiting its independence from the family
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process F\7. we have

GE(z E

HEexp {Zlogzt 0 }]

E [FX) (2 [i)%]
{fein o}

where the p.g.fl of the cluster F(X»)(z |i) satisfies the following recursive equation

fom Ml e

@
I
—

PO (2 i) = Eexp{zlogztﬂ }

t=1
' G(l)

= Eexp Zlogzlﬂ L= 0}—|—ZZF

k=1 j=1

wi [
—Zan HEeXp{Zlongt ]}
J
zziexp{nzj FEa)( |2'+k:)—1)}.

O

Since the sequence {X;};—1 ., takes only integer values, if we fix a bounded area

[0, 7] and let X; count the number of points for the equal-length area ((t —1)A, tA]
where A = %, the p.g.fl of {X;}i1

of the Hawkes process.

» will look like the discrete version of the p.g.fl

-----

Proposition 7.5. Consider the following parametric setting.

o Fliz the bounded area [0,T], T < o0
e Choose n > 0, the number of all subintervals over |0, T

e Set the length of subintervals A = %, the immigrant parameter ag = vA and
the reproduction coefficient oy = x;n(kA)A k>0

e \; are i.i.d random variables corresponding to the cluster centre X;n arriving
at 1A, with Laplace transform §(u) = E[e”"Xi]

o Let z; = z(iA), where z(.) € Vo(R,)
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Then the probability generating functional of {X;}i—1.. . becomes

77777

GE)A(S‘)( = exp {1/2 ()]iA) — 1)A}

o (7.15)
FXD) (z()]iA) = 2(iA)g ( Z (i + k)A) — )n(kA)A>.

Proof. By substituting oy, = x;n(kA)A, k > 0 into Proposition 7.4, the p.g.fl of the
cluster FX%)(2.]3) = FXn)(z(.)]iA) becomes

= 2(iA)g (— (FE ()| + k)A) = 1) (kA)A>
k=1
By substituting ap = vA, the whole p.g.fl of the INAR sequence {X;}i—1 becomes

GE)A(S‘) = exp {Z ag(F — 1)}
— exp {VZ(F@@O(Z(.)MA) - 1)A} .

i=1

7.3.2 Integer-valued Moving Average model

Definition 7.8. The stationary Poisson thinning INMA (c0) model is defined as

Yn = Z Bk o gn—k
k=0 (7.16)

:Boofn"i_ﬁlognfl+"'+5n710517

where

e B, =0 are some non-negative coefficients, >, Bx < 00 and limg e B = 0
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o & are i.i.d and follow Pois(p) with p >0

e The thinning operator o is defined as

En—k

ﬂk o gnfk = Z Uz(n’k), UEMC) Z}\'d POiS(ﬁk)a
i=1

(n,k)

where u, are independent over n e N, ke N, 1€ N.

The parameters (3, and p have a similar interpretation to those in the INAR model.
B are reproduction coefficients while p is the arrival intensity of cluster centre rather
than 'immigrants’ because it is not counted by the system Y,,. From this model point
of view, we can regard &, as the cluster centres. They enter the system starting at
time n and trigger other events at each time period (n — Zfﬁlu(n’o),n +1 —
Sen n“ v ..). Y, is then a counting variable to report the total number of the
trlggered events from &,,&,_1,...,& over the current time period n. Here are two

assumptions we need before proceeding to its probability generating functional.

Assumption 7.3.1. The thinning operations By o&,_i. are mutually independent for
neN, keN.

(n.k)

Assumption 7.3.2. v, " are mutually independent of each other forn e N, ke N.

(t.k)

The second assumption means that the number of events u; ™, triggered by one of

the cluster centre in &_; and counted by the system Y;, will not affect the number

(t+4,k+35)

of events u; , triggered by the same cluster centre and counted by the system

Yi.; of any future time j > 0.

Proposition 7.6. Let z. = {z;}i—1.._» be a sequence of constants such that 0 < z; <
1. The probability generating functional (p.g.fl) of the INMA sequence {Y;}1—1,..n is
given by

GU(z) —exp{uz (=]0) —1)}
F ( |t _eXp{nZ Br—1 Zt+k 1—1)}

(7.17)

Proof. The aggregated process S, = >.i | Y} is actually a cluster point process such
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that

(7.18)
_ Z (ugt,o) + ugt-‘rl,l) 4t ugn,n—t))’ ugt,k) - POZS(ﬁk)

&t n—t

Il
1=
s:u-
<
l
Y,
S
2
i
@
N

The last equality follows from the independence of the Poisson random variables. Tt

is now clear that the aggregated process S, is a cluster process such that

e & generates the cluster centres independently.

e u! is a cluster generated by one of the cluster centre from &, with the size of

cluster (exclude the cluster centre) following Pois(Y.1—( 51)

The (discrete) p.g.fl of Y; is defined as

zE[ﬁzJY]

Now we can derive the p.g.fl of this process by following the similar argument in
Proposition 7.1. Conditionally on the arrivals of cluster centres generated by &, the

p.g.fl of cluster u} is

(t+k k)

as H sz = €xp {Z 5k(zt+k - 1)} .
k=0

The cluster centres generated by & are mutually independent. Then the p.g.fl of

Zz Lubis
Gi(z) = E[FY) (2 ]t)"] = exp {u(F™) (2 ]t) — 1)} .

Clusters centres generated by {&; }=1.., are also mutually independent. Finally the

:::::

p.gfl of Y} is

G (2 ]‘[Gt —exp{ D UFO(z |t)—1)}
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]

Similar to the INAR model, due to the integer-valued nature of the INMA model, if
we fix an bounded area [0, 7] and let Y; counts the number of points for the equal-
length area ((t — 1)A,tA] with A =, the p.g.fl of the INMA sequence {Y;},—;

will look like the discrete version of the p.g.fl of the Cox process under some specific

:::::

parametric setting.

Proposition 7.7. Consider the following parametric setting.

e Fix the bounded area [0,T], T < o

e Choose n > 0, the number of all subintervals over [0, T]

Set the length of subintervals A =L 1= pA and By, = T f(kA)A k=0

T, are i.i.d random variables corresponding to the cluster centre &a arriving
at tA, with the Laplace transform h(u) = E[e 1]

Let z, = z(kA) where z(.) € Vo(R)

Then the probability generating functional of the sequence {Yi},—1. ., becomes

.....

GEX) (2(.)) = exp {pz ()|tA) — 1)A}
n—t+1

(7.19)
FO(z()]tA) —h< Z IGINIE t+k—1)A)—1)A>.

Proof. By substituting g, = T, f(EA)A, k = 0 into Proposition 7.6, the p.g.fl of the
cluster part FO)(z|t) = FO)(z())|tA) becomes

(t+k k)

FOR(()[tA) = n Ltk

=E [exp {Z Yo f(RA)A(z 4k — 1)}]

( _Z (kAL)( t+k—1)A)—1)A>.

I
o>
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Then substituting p = pA, the p.g.fl of the INMA sequence {Y;};—1.. , becomes

.....

7.3.3 Integer-valued Autoregressive Moving Average model

Definition 7.9. The stationary Poisson thinning INARMA (c0,00) model is defined

as
o8]
Zn = D 0k0Zn i+ Y,
k=1
o8]
= Z koZn k+25g gnj (720)
=1 j= 0
= oy i+ tag 1001+ Poo&+ -+ P10,
where

o & " Pois(p).

o «; and f3; are positive coefficients, and >0 a; < 1. D70 B < 00, lim; 0 B; =
0.

e The thinning operator o is defined as

O © Lyt = Z EETL’k) egn’k) S Pois(ay)
i=1
En—k

Bro&n = Z uSmP ML pois ().
i=1

(n,k) (n,k)

o ¢, " and u;

3 are mutually independent over ne N;1e N, ke N,

The INARMA model simply combines the INAR components and the INMA com-
ponents from previous sections. It is a generalized INAR model whose immigrants
process €, 1s replaced by the INMA model Y,,.
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-----

(7.21)

where F) (2 |t) is the p.g.fl of the cluster generated by an immigrant (cluster cen-
tre) arriving at time t, and including that immigrant. While FXn) (2 [t) = F&n) ()

18 simply the translation of z..

Proof. The F(Xn)(z i) is exactly the same as the one in INAR model, because this
is the cluster generated by the autoregressive structure in the INARMA model and

it is irrelevant to Y;. Hence we can apply the result directly from Proposition 7.4

FXn) (4] '—zexp{z (F&) (2 |’i+/€)—1)}.

Then we can apply a similar argument to the INAR model such that

ﬁ E []_[ E exp {Z log 2 F" 3>}

i=1

E[FY) (2 ]i)Y].

Il

~
Il
—

Now apply the p.g.fl of the INMA model from Proposition 7.6

G(%n )( :ﬁEF() ]

||
z~/\——\
=
i
P
@
>
gl
z~/\——\
H :\
o <.
”ij
=N
+
2y
N—r
|
—_
SN—r
———
—_
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Similar to the INAR model, due to the integer-valued nature of INARMA model,
if we fix a bounded area [0,T] and let Z; counts the number of points for the
equal-length area ((t — 1)A,tA] with A = %, the p.g.fl of the INARMA sequence
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{Z}+-1...n will look like the discrete version of the p.g.fl of the generalized dynamic

contagion process.

Theorem 7.1. Consider the following parametric setting.

o [Fized the terminal time T, T < oo
e Choose n > 0, the number of all subintervals over |0, T

e Set the length of subintervals A = %, the parameters of INAR part o =
i (EA)A, k > 0 and the parameters of INMA part n = pAt, B; = T, f(JA)A, j =
0

e Y, are i.i.d random variables corresponding to each cluster centre §a arriving
at i\, with the Laplace transform h(u) = E[e Y]

e \; are i.i.d random variables corresponding to each INAR cluster centre Z;a

arriving at i, with the Laplace transform g(u) = E[e™"Xi]

o Let zy = z(tA) with z(.) € Vo(R ).

The probability generating functional of the INARMA sequence {Z;}1—1. . becomes

.....

(- n_i(F(X")(z(.)Ki +k)A) — 1)f(k:A)A> - 1) A}

FX(2()]iA) = 2(iA)g (- (FE ()| + k)A) — 1) n(kA)A) :

(7.22)

Proof. By substituting o, = y;n(kA)A into Proposition 7.8, the p.g.fl F(Xn)(z]i) =
F(z(.)]iA) is exactly the same as the one in Proposition 7.5

FED(2()iA) = z(iA)E

exp {”Zz (FED ()] + k)A) — 1) }]

( HZZFW )G+ E)A) — )n(k:A)A>.

By substituting 8, = Y, f(kA)A, the p.g.fl of the whole INARMA sequence {Z;};—1
becomes the p.g.fl of INMA sequence {Y;};—1

-----

.....
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G%%4»=G“%ﬂ&NAWA»

(A)
zexp{pz <iL< Z N+ k)A) — )f(k:A)A) —1) A},
i=1 k=0
where the z(.) is replaced by FX#)(z(.)[iA) in GEX”)). O

7.4 Convergence of probability generating function-

als

In this section, we will prove the convergence results of the p.g.fl.s between the

INARMA models and the cluster point processes.

7.4.1 Dynamic contagion process and INARMA model

The p.g.fl of the generalized dynamic contagion process is given by

GPCPY(2()) = exp {pLT (h (_ LT_U(F<H>(Z(.)|U o)1) f(v)dv) _ 1) du}

FOOGO) = 2@ (= [ OGO 0 = i)

(7.23)

The p.g.fl of the INARMA model with specific parametric setting in theorem 7.1 is

Q@M»wm&z<<

FED(2()iA) = 2(iA)§ ( HZZ FED ()]G + k)A) — )n(kA)A) :

given by

>

HM3

IO+ k)A) — 1)f(kA)A> - 1) A}

b

=1

(7.24)

Lemma 7.1. If r(u) is an Riemann integrable function over an interval [a,b] such

that r(u) is bounded and the set D, the discontinuities of r(u), has Lebesgue measure
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0, then there exist positive constants M and k satisfy the following inequality

b
J r(u)du — R,| < MA* ~ O(AF), n >0, (7.25)

a

where

e n - number of subintervals over [a,b] which has the partition {xo,1,...,x,}

suchthata=xp <) <+ < Tp1 <Tp=2>0

o R, =" r(ti)A;, wherex; € [x;_1, 7], N; = x;—xi1 and A = max;—y,_, A

Proof. From the definition of Riemann integral, for every € > 0, there exists § > 0
such that

b
J r(u)du — R,| <€, for A <.

a

Then conversely, for every choice of d, there exists € such that the above inequality
holds and it converges to 0 when 6 — 0 from which we can infer that the € is the
function of A with a positive power. Then we let § = A and let ¢ = MA* > 0
for some positive M and k such that the above inequality also holds for the case of

equality . O

Proposition 7.9. Let © be the parameter space to specify the generalized dynamic
contagion process and the INARMA model and z() € Vo(R,). There exist a positive
constant k such that the rate of convergence for the absolute difference of the log
p.g.fl.s between the generalized dynamic contagion process and the INARMA model

18 given by

DPPI(5(.), A|O) = |log GPP)(2(.)) — log G5 (2()| ~ O(AF)

(7.26)
lim DPCP)(z(.), A|©) = 0.
n—o0
Proof. See the appendix 7.C. n

Corollary 7.4.1. Let © be the parameter space to specify the Cox process and the
INMA model and z(.) € Vo(R, ). There ezist a positive constant k such that the rate
of convergence for the absolute difference of the log p.g.fl.s between the Cox process
and the INMA model is given by

D (2(.), Al®) = [log GO (2(.) = log G{X} ((.))| ~ O(A%)
(7.27)
lim D@ (z(.),A|0) = 0.

n—o0

133



Proof. See appendix 7.D. m

Corollary 7.4.2. Let © be the parameter space to specify the Hawkes process and
the INAR model and z() € Vo(R,). There exist a positive constant k such that the
rate of convergence for the absolute difference of the log p.g.fl.s between the Hawkes
process and the INAR model is given by

DU(=(), AO) = [log G (=(.)) ~ log G (2() | ~ O(A")

(7.28)
lim DY) (z(.), A|©) = 0.
n—o0
Proof. See appendix 7.E. O

7.5 Links between the INARMA models and the

cluster point processes

In this section, we will construct a family of random measures {N,,},,—=12. on B(Nﬂh)
by aggregating the integer-valued time series and explain how the discrete time
models can mimic the behaviour of those continuous time cluster point processes N.
We prove that, under the weak convergence theorem, V,, will converge weakly to NV

as n — «O.

7.5.1 Preliminaries and definition

As discussed in the previous section, we can always fix a bounded area [0,7] and

choose a number n > 0, large enough. Then a continuous point process N ((0,7]) can

-----

7777

measures for the bin-size count {N((t — 1)A,tA])}i—1.. ., . Hence if we specify the
parameters in integer-valued time series models carefully and if n is large enough,
we would expect the aggregation of the integer-valued time series can approximate

the continuous cluster point process.

Definition 7.10. Forn > 0, let {X:}iz1, n{Yi}tz1,..n and {Zi}io1,, be the INAR
sequence, the INMA sequence and the INARMA sequence defined in section 8 with
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the parametric setting A = %, ap = VA, a = xin(EA)A for k>0, 8; = T, f(JA)A
for 7 =0 and p = pA. Define the following three families of point processes,

N{(A) = 3 X

t:tAcA
NOA) = > v (7.29)
t:itAeA
N7(LDCP)(A): Z 7,
t:tAcA

where A is a bounded set in B(R.) and T is a constant such that T = sup A. The
joint distribution of these point processes are uniquely determined by their p.g.fl.s

derived in the section 3.

The idea here is basically followed from Kirchner (2016). To prove the weak con-
vergence, he defined the INAR model and construct a family of point processes
N®) by aggregating the INAR sequence over A € B(R), the Borel o-algebra on R.
Then he proved the weak convergence of N® to the Hawkes process N from the
definition point of view, see definition 5 and Theorem 2 in Kirchner (2016). He
also mentioned this can be proved in a different way by showing the convergence
of the Laplace functional of N(®). In our case, we will use probability generating

functionals.

7.5.2 Weak convergence

From definition 7.1 in section 2 and Proposition 9.2.I1 in Daley and Vere-Jones
(2007), we can say that the distribution of a random measure (point process)
on (/\/ﬂz, B(/\/@j)) is completely determined by its finite-dimensional distributions.
Then for the weak convergence of random measure on J\/'ﬂ?i, it is sufficient to prove
the convergence of finite dimensional distributions, which is established by Theorem
11.1.VIT in Daley and Vere-Jones (2007).

Proposition 7.10. Let X be a complete separable metric space and let P, {P,}
be distributions on (M7%, B(M%)). Then P, — P weakly if and only if the finite-

dimensional distributions of P, converge weakly to those of P.

In our case, the state space is X = R,. Also, there is one-to-one mapping from
finite dimensional distributions to its probability generating functional. Hence it is

sufficient to prove the convergence of the p.g.fl.s between point processes. This is
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confirmed by another Proposition 11.1.VIII in Daley and Vere-Jones (2007). We

only write down part of it here.

Proposition 7.11. Fach of the following conditions is equivalent to the weak con-
vergence P, — P, assuming the function f ranges over the space of continuous

functions vanishing outside a bounded set.

o The distribution of SX fd¢ under P, converges weakly to its distribution under

P

e For point process, the p.g.fl.s G,|z] converge to G[z] for each continuous z €

Vo(X)

Before establishing the convergence theorem, we need to first show the probability
measures of those point processes defined in 7.10 are uniformly tight. Here we refer
and combine the results of Lemma 1 and 2 in Kirchner (2016). We also derive a

similar one for N,(LC) and N,(LDCP).

Lemma 7.2. For any bounded interval [a,b] on Ry, we can always find a constant
T > b and define A = % € (0,0) for some constant § > 0 as long as n > [%] Let

N7(1H) be the point process defined in 7.10 Then there exists a constant B such that

B[N ([a.b])] < (b — a + 28)vBUD

(1-K)™", if K <1

(7.30)
1+ K+K*+---+K™), otherwise

Proof. The coefficients (b—a+2d)v denote the upper bound of the expected number
of immigrants over the fixed time interval [a, b], whose derivation is given in Kirchner
(2016). In the stationary case where the branching ratio K < 1. The expected size
of a cluster for INAR(c0) over a long time horizon is evaluated as (1+ K +K?+...) =
(1 — K)~'. In the non-stationary case, since the offspring is produced by Poisson
distribution, there is a positive waiting time before a new generation is produced.
So over the bounded interval [a, b], there exists a constant m > 0 and the size of a
cluster is the sum of m generations (1 + K + K2 4+ --- + K™) O

Lemma 7.3. For any bounded interval [a,b] on Ry, we can always find a constant

T > b and define A = % € (0,0) for some constant § > 0 as long as n > [%] Let
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N,SC) and NéDCP)) be the point processes defined in 7.10. Then there exist constants
B and L(T) such that

E[N([a,0])] < (b—a+28)pL(T)
(7.31)
E[NPCP) ([a,b])] < (b— a + 28)pL(T)BY,
where L(T) = py So t)dt+c). The constant c is defined as ¢ = ‘So )t — 300 f(RA)A

Proof. From the definition of INMA model, the expectation is

EY,] =E[Boo& + -+ Br10&]

—EE] ) 5]

= pA Y pr f(RA)A

k=0

< pApx (LT F(#)dt + c)

< pL(T)A.

The number of subintervals over [a,b] is [55%] + 1 < 5% + 2. Finally we have

b—a
A

t,tA€[a,b]

(5]
< ("5t 2)onr

< (b—a+25)pL(T).

)

E[N([a,b])] = ), E[Y]
<

The upper bound for E[N,SDCP) (|a, b])] can be derived similarly as that ofE[NT(LH) ([a,0])]-
We need to replace v by pL(T) O

Lemma 7.4. The families of the probability measures P, P, PP on (NK,B(NK))

corresponding to the poinl processes Nﬁc),NT(LH), NP

tight.

respectively are uniformly

Proof. For any bounded interval [a,b] on R, , we can always find a constant T > b

and define A = L such that A € (0,4) for some constant J > 0 as long as n > [%].
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(H)

To show the tightness, for every € > 0, we can let ME = (b —a+ 25)2E—
M = (b—a+28)pL(T)L and MEPP) = (b—a-+ 25)’)L(T— such that

E[NS) ([a,0])] v BH)
(H) (H) n ? _ -z
P(N;"/([a,b]) > M) < VL < (b—a+ 26) VD =€
c
PINO([a.b]) > M©) < B (@ BD] _ (b=a+20)pL(T) _
n ) € ~ ME(H) ME(H)
E[N:""([a,b])] pL(T)B
P(NéDCP)([%b]) > ME(DCP)) < (H) < (b—a+29) (DCP)
M M
Here we apply the Markov inequality. O]

Theorem 7.2. Let N N NPCP) pe the Hawkes process, the Cox process and
the generalized dynamic contagion process defined in section 2. For n > 0, let N,gH),
N and NEPOP) be the point processes defined in 7.10. Then we have the following

weak convergence results

NUD 2 N
N©) ¥ N©) (7.32)

NTSDCP) 5 NPCP) s n— o0,

Proof. Uniform tightness of the three families of point processes is followed by
Lemma 7.4. From the preliminaries in section 2, the distribution of a random
measure N on ./\fﬂfi is completely determined by the finite dimensional distributions
see Proposition 9.2.III in Daley and Vere-Jones (2007), i.e. the joint distribution
for all finite families of bounded Borel sets A;, ..., A; on R, of the random variable
N(Ay),...,N(Ag). From the tightness lemma, it is clear that all finite dimensional
distribution for the point processes N restricted to [a,b] are uniformly tight. Con-
sequently, there always exist a constant 7" > b such that we can uniquely describe
the finite dimensional distributions by its probability generating functional on the
bounded area [0,7]. Combining the convergence results in Proposition 7.9, Corol-
lary 7.4.1 and 7.4.2 in section 4, i.e. the absolute difference of the log p.g.fl.s between

the point processes Nﬁ;) and NO) goes to 0 as A — 0, equivalently n — o

lim [log G¥)(=()) = log GX (=) = 0
lim [log G‘(z(.)) — log GEZTS)(Z())‘ =0
lim [log GPP)(=(.)) —log G (2()| =0,
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we can now apply Proposition 7.11 and state that the families of point processes
NN and NSPEP) converge weakly to NUD, N(©) and NPCP) pegpectively as

n — 0. O

7.6 Concluding Remarks

In this paper, we review the continuous cluster point process in a general parametric
setting. Then we review the Poisson thinning INAR model and introduce the Poisson
thinning INMA and the INARMA models. We prove that these integer-valued
time series models, under some specific parametric setting, are actually the discrete

) with continuous stochastic intensity /\g‘).

versions of the cluster point processes Nt('
We confirms Kirchner’s thought in Kirchner (2016) on the relationship between the
INARMA model and the dynamic contagion process. If there is a simple and effective
estimation procedure for the INARMA model, for example the one Kirchner did in
Kirchner (2017) for the INAR model, then the dynamic contagion process can be
applied to those Hawkes-based processes. However, there are some potential issues
left to be addressed. For example, can we make use of the structure standard ARMA
model to perform estimation for the integer-valued version?” How can we deal with
random variables in the coefficients of time series models (random coefficients)?

These are all proposed as topics for future research.
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7.A  Proof of Proposition 7.1

The Cox process is basically a cluster point process such that,

e The arrivals of cluster centres ¢; follow N* ~ Pois(p) a homogeneous Poisson

process

e Conditionally on ¢;, each cluster centre will generate a cluster, the size of which
follows Nt ~ Pois(T;f(T — ¢;)).

Vere-Jones (1970) gives the p.g.fl of a cluster process as
G(2(.)) = Go(F(()It)), (7.33)

where Go() is the p.g.fl of the process of cluster centres and F'(z(.)[t) is the p.g.fl
for a cluster given that the cluster centre occurs at time t. Combining the second

bullet point, we have

FO()|e) = E[expj log 2(s)N7(ds)]

= Eexp {T+ LT f(s=0o)(z(s) = 1)d8}
— Eexp {'rl- OTC Flu)(=(c + u) — 1)du}
_j (- JT_Cf(u)(z(c ) — 1)du) |

0

Hence the p.g.fl of the Cox process is

GO%()=E [exp J& log F(C>(2(.)|C)N*(dc)]

_ exp {pf(ﬂ@(z(.nc) - 1)dc} |

0

7.B  Proof of Proposition 7.2

The generalized dynamic contagion process process is a cluster process,
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e The arrivals of immigrants follow the Cox process with intensity /\EC).

e Each immigrant generates a Galton—Watson type branching process with ex-
pected branching ratio i, SSO n(u)du < 1. The cluster is formed by including

all generations from the branching process.

Let ]—'t(c) be the filtration generated by )\EC). Conditionally on E(C), the p.g.fl of
the generalized dynamic contagion process is just the p.g.fl of the Hawkes process
with its immigration process being an inhomogeneous Poisson process. Then we can
apply Theorem 2 in Hawkes and Oakes (1974)

Gz()|F) = exp { f " (FOGO ) - 1) A;@du}

0

PO = 2 (= [ GO0 = i)

0
The underlying intensity function is \; = v + >}, _,7(t — 73) in Hawkes and Oakes
(1974). In our case, we are working on the bounded area [0, 7] and 1—h(u) = 0 when
u lies outside [0,7"]. By the definition of p.g.fl, F'(2(.)|u) = 1 when wu lies outside
[0, T]. The ranges of integrals for G(z(.)|]-"t(c)) and FU(z()|u) , therefore, reduce
to [0,7'] and [0, T — u] respectively. Then we substitute v(t — 7;) with x;f(t — 7;)
and take expectation with respect to x;. Finally, the unconditional p.g.fl of the

generalized dynamic contagion process is E[G(z()|.7—"§o))], which turns out to be the

p.g.fl of the Cox process. Then we can apply the results from Proposition 7.1

GPP) () =E [exp UOT (FU (z()|u) — 1) Ag@du}]

_ exp {pLT (ﬁ (— JTC(F<H>(Z(.)|U fo)— 1)f(u)du) - 1) dc} |

(7.34)

]
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7.C  Proof of Proposition 7.9

Let us define the following quantities

I - LT (hLa(w) ~ 1) du

B = [ 4= OO s
Rl=§¥Ma«r—nA»—nA

Rﬂw=HZ?G—FWN4N%+i—UADK%—JMMA

R = ) (1 FODGCOI0+ 5 - DANA(E - DA)A

k=1

fo T ED GO+ ) — Dn)de — S FEO O+ o)n(kA)A

=1

Jizﬂx

o

Then DPCP)(2(.), A|©) can be decomposed as

D(DCP)(Z(.),A|@) _ ‘log G(DCP)(Z(.)) — log GEi’;)(z())‘

=pL@@wwmm—mem%mA

=1

n

Ry — > (h(Rs(i)) — 1)A|.

i=1

+p

<pL(Mbwn—1Mu—R1

(7.35)

Here we add the inter-median term R; which is the Riemann sum of its corresponding

integral. Then apply Lemma 7.1 to the first part

L (W(I(w)) — Ddu— Ry | ~ O(AM).
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For the second part, we make use of the property of the convex function fz(u) such
that

n

(h(L((i = DA)) = DA = ¥ ((Ry(i)) — A

1 =1

[I((i = 1)A) = Rs(i)] pr A

M:

S
I

‘M:

@
Il
-

|L((1 = 1)A) = Ro(i)] pe A + Y |Ra(i) — Rs(i)| A,

i=1

‘Mz

@
Il
—_

(7.36)

which again separates into two parts. For the first part, apply Lemma 7.1
Dl DAL — R pr At ~ O(A"),
For the second part,

| Ry (i) — Ry(i |—Z\FH> Ik +9)A) — FEI )|k +)A)| f(RA)A

fmAZ\FW) Ik +)A) — FE)(2()|(k + 1) A)]

k=0

fAZ\FUf) IEA) — FED(z()]kA))|

For the absolute difference |FU)(z(\)[kA) — F&)(z(\)[kA)|, we can solve it back-

wardly. When @ = n,

|IFE (2()nA) — FED (z()|nA)| = 0.
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When ¢ =n — 1,

IF0)|(n = DA) = FE(z()](n — 1)A)],
< z2((n = 1)A) (|9(—Tn1) = G(=Ro-1)| + [§(—=Ru1) — §(=R%_))))

< Jumi + ) (RO FU (Ol = 1+ k)A) = FE ()] (n — 1+ k)A)|A

n—1,

where we use the condition z(.) € Vo(R,) and z(u) < 1,u € (0,7). Then when

1=n—2,

[FUD O] = 2)A) = FEI(()](n = 2)A)],

< Jumz + 3 (KA FU (Ol =2+ k)A) = FE ()] (n — 2 + k)A)|A

< Jn—Q + Jn—lMXU(A)A

— Jo_o + O(AFF1) < O(AR9).

Note that J; is the absolute difference between the Integral and its Riemann sum,

hence we can apply Lemma 7.1

Ji < MiA" < M'AFs ~ O(AR3)

Wheni=n—j,5=1,2,..n,

[P (Ol = 5)A) = FEI(=()](n = 5)A)],
< 2((n = J)A) (19(=Tu—5) = §(=Rup)| + |9(=Rny) — 5(=R,, ;)])

< Jney D (k) F ()0 — 5 + k)A) = FEI ()] (n = j + k) A)[A

k=1

= J,_j +jO(ART) ~ O(AR).
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Then the whole sum becomes

n

DIFIE()A) = FEI(2()fia)A

1=0

~ (7.37)
Z (Ji +i0(AF+1)) ~ O(AR),
Then the second part in equation 7.36 becomes
i |Ra(i) — Rs(i)| prr A < Z (fmA DLFI O kA) - F<Xn><z<->|m>\> prA ~ O(AR).
i=0 i=1 k=0
Finally, let k = min{ky, ko, k3}. ]

7.D Proof of Corollary 7.4.1

The results follows from Proposition 7.9. The p.g.fl of the Cox process G(©) can
be derived from the p.g.fl of the generalized dynamic contagion process G(P¢P) by
letting n(u) = 0 such that F)(z(.)) becomes

FU(2()|u) = 2(w)§(0) = =(u).

Similarly, GE ’S) can be derived from GEA’)‘) by letting FX%)(2(.)][iA) = z(iA). Then
D) (z(.), A|©) will have the same form as the equations 7.35 and 7.36 such that

DO (=(), Al8) = [log GO(=()) ~ log G5} (=()

— ||| (b)) = 1u = L (h(Ra(i) - DA

(M(I(u)) — 1)du — R, Ry = Y (h(Rs(i)) — 1)A

i=1

oSl — 1A = Bali)| e

i=1

N
=

+p

< || (a(Io(w) - 1)du — R,

JO

+PZ|R2 (0)] pr A

~ O(AR) + O(A™),
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where Ry(i) — R3(i) = 0 since FUH)(2()]iA) = 2(iA) = FE)(z())[iA). Finally, we
can take k = min{ky, ko}. O

7.E  Proof of Corollary 7.4.2

Similarly, this result follows from Proposition 7.9. From the p.g.fl.s point of view,

GU) can be recovered by replacing p and h (—S FEO)|u+v) — 1)f(v)dv)
by v and FUD(z(.)|u) in GPCP) respectively. GEAS’) can be derived from Ggi’)”) in a
similar way. Then DU becomes

2 (FE(()A) - DA

M:

D(z(.), Al0) = v J (FUD(()w) = 1)du —

0

[y

2 (FIE()A) = 1A

M:v

N
S

f (F (2 ) u) — 1)du —

0

@
Il
—

n

D EWDE(]iA) = 1)A ~

i=1

+ (FED (2()]iA) — 1)A| .

'M3

-
Il
—

Adopting the similar technique as in Proposition 7.9, we add the term Y, (FU (z(.)[iA)—
1)A which is the right Riemann sum of the integral. Then we can apply Lemma 7.1

f (FI (2()[u) — Ddu — S (FI(()]id) — DA| ~ O(AM), k> 0.

0 i=1

The second part is

n

D FW(())iA) - 1A i FEXD (2()iA) — 1)A

=1

Z|F<H> IiA) = FED(Z([iA)|A ~ O(AF2).

This result follows from the inequality 7.37. Finally, we can take k = min{k;, ko}. O
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CHAPTER 8

Paper E. INAR Approximation of Bivariate Linear

Birth and Death Process

Abstract

In this paper, we propose a new type of univariate and bivariate Integer-valued
autoregressive model of order one (INAR(1)) to approximate univariate and bivariate
linear birth and death process with constant rates. Under a specific parametric
setting, the dynamic of transition probabilities and probability generating function of
INAR(1) will converge to that of birth and death process as the length of subintervals
goes to 0. Due to the simplicity of Markov structure, maximum likelihood estimation
is feasible for INAR(1) model, which is not the case for bivariate and multivariate
birth and death process. This means that the statistical inference of bivariate birth
and death process can be achieved via the maximum likelihood estimation of a
bivariate INAR(1) model.

8.1 Introduction

The simple linear birth and death process, which was first introduced by Feller
(1939), is a widely used Markov model with applications in population growth, epi-

demiology, genetics and so on. The basic idea of this process is that the probabilities
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of any individual giving birth to a new individual, or any individual dying, are con-
stant at any moment in time and all individuals are independent of each other. Many
statistical properties, including moments, distribution function, extinction probabil-
ity, or some other cumulative distribution of interests, are explicitly derived in the
literature; see for example, Kendall (1949). The statistical inference for simple birth
and death processes is then developed by Keiding (1975), where maximum likeli-
hood estimators and other asymptotic results are discussed. Since the distribution
function of simple birth and death processes is explicit, the construction of the like-
lihood function is straightforward. However, it is pointed out in the literature that
the transition probability is actually cumbersome and numerically unstable when
the size of population is large over time. At the same time, a variety of alternative
estimation methods have been proposed. For example, quasi- and pseudo — likeli-
hood estimators Chen and Hyrien (2011), Crawford et al. (2014) addressed it as a
missing data problem and apply an EM algorithm to maximize it. Tavaré (2018)
found those transition probabilities by numerical inversion of the probability gener-
ating function and then applied Bayesian methods to perform estimation. Davison
et al. (2021) adopted a saddle point approximation method to further improve the

accuracy of transition probabilities.

The bivariate and multivariate birth and death process are developed in Griffiths
(1972, 1973). Griffiths (1972) described the transmission of malaria (so called host-
vector situation) as a bivariate birth and death process where there is no direct in-
fection between the same type of population. Then the author extended the model
to multivariate case Griffiths (1973) which can be regarded as an approximation of
general epidemic with several types of infective. However, due to the intractability
of the joint probability generating function, maximum likelihood estimation for pa-
rameters is not implementable. One possible way forward is to use integer-valued
time series to approximate the continuous birth and death process and maximum

likelihood estimation would then be feasible.

In recent years, there has been a growing interest in modelling integer-valued time
series due to the presence of count data from different scientific fields such as social
science, healthcare, insurance, economic and the financial industry. In particular,
regarding to the univariate case, Al-Osh and Alzaid (1987) and McKenzie (1985)
were the first to consider an INAR(1) model based on the so-called binomial thinning
operator. The idea here is to manipulate the operation between coefficients and
variables as well as the innovation terms in a way that the values are always integer.
One can apply different discrete random variables to describe this operation. For
more details, the interested reader can refer to Weik (2018) Davis et al. (2016a),
Scotto et al. (2015), Weifs (2008b) among many more.
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In this paper, we propose an integer-valued autoregressive model of order one
(INAR(1)) to approximate continuous birth and death process. In this way, the
continuous process is approximated by a discrete Markov chain so that transition
probabilities as well as likelihood function can be written down explicitly. As the
birth and death process in our setting does not consider any immigrant, the inno-
vation term is dropped in the proposed INAR(1) model. Similar to Nelson (1990),
Kirchner (2016), where they find out the relationship between discrete models and
their continuous counterparts, we also first need to make sure the our proposed dis-
crete INAR(1) model would converge to birth and death process in weak convergence
sense. Then we will explore how our proposed model would help facilitate the statis-
tical inference. According to the probability generating function of the simple birth
and death process, the death part can be described by binomial random variable
while the birth part corresponds to a negative binomial. Then one can construct
a bivariate INAR model based on these random variables to describe the bivariate
birth and death process and even the multivariate one. As the transition probabili-
ties and likelihood function of bivariate birth and death process cannot be written
down explicitly, the main contribution is that the proposed bivariate INAR(1) model
would provide a feasible way to estimate the parameters of bivariate birth and death

process (Maximum likelihood estimation).

The paper is organized as follows: Section 2 reviews some main results of univariate
and bivariate birth and death processes with constant rates. Section 3 introduces
Integer-valued autoregressive models as well as some distributional properties. Sec-
tion 4 constructs the discrete semimartingale using the proposed INAR models and
proves the weak convergence between constructed semimartingale and birth and
death processes. A simulation study is carried out in section 5 to illustrate the
estimation method via proposed INAR models an their corresponding properties of

estimators. Some concluding remarks are in section 6.

8.2 Univariate and bivariate birth and death pro-

cesses

In this section, we will review the essential elements of simple birth-and-death pro-
cesses, including moments and other distributional properties. These are well known
and extensively discussed in the literature. Then, we will discuss the bivariate case

where analytic expressions of the distribution function are not available.
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8.2.1 Simple univariate birth-and-death process

Suppose that we have a population whose total number is evolved as a simple birth
and death process Z;, with constant birth rate A > 0, death rate 1 > 0 and initial
population Zy € N. In other words, the probability that any individual gives birth
in time A is AA, and the probability that any individual dies in time A is pA.
Individuals are independent of each other. Let P,(t) = Pr(Z; = n) be the probability
that the total population is n at time t. Then the transition probability of the
simple birth and death process is characterized by the following ordinary differential
equation (ODE)

Pl = \(n = 1) Py 1(t) + p(n + 1) Payr(t) — (A + p)nPy(t), n =1

PZ() (O) =1

Applying a liner transform ) 6" on both sides and ¢(t,0) = >, 6" P,(t), we can get
a partial differential equation whose solution ¢ is the probability generating function
of 2\,

? dp @ 9
LSNPV R 5 A Rk

ot o0 Moo T o0

= (A0 — p)(6 — 1)2—2’ (8.2)

©(0,0) = 0°

This linear PDE can be solved explicitly

o(t,0) = (1 —af(t) + aft) . (f(f)g(t))H) 0

(A — pr)elmr A

aft) = RO = B(t) = pyCenr—

(8.3)

This probability generating function clearly gives the construction of Z; given Z,

i.e. the sum of i.i.d zero-modified geometric random variables

Zy ~ Y Bila()Gi(B(1)), (8.4)

i=1

where B; are 1.i.d Bernoulli random variables and G; are i.i.d Geometric random

variables with mean «(t) and ﬁ, respectively. Furthermore, from the definition of
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transition probability, the linear birth and death process is a pure-jump semimartin-

gale with following characteristic triplet:

Ch(Z) =1 ¢, =0
(8.5)

v(Zy;dt, dx) = dtK(Zy, dx) = dt(\Z,-61(dx) + uZ-6_1(dx))

\

J (2* A1) K(Zy,dx) = (A + p)Z < o0, given that Z;- is finite
R

With the help of piece-wise deterministic Markov process theory in Davis (1984), the
infinitesimal generator of the simple birth and death process Z; acting on a function
f(t, Z) within its domain Q(.A) is given by

0
Af.2) = L a2z v ) - 02) F a2 -1 - F2). (69
where Q(A) is the domain for the generator A such that f(t,7) is differentiable

with respect to t for all ¢, Z, and

f(t,Z +1) — f(t,2)| <0
(8.7)

f(t, 7 —1) — f(t,Z)| < .

The first and second moments can be derived by applying infinitesimal generator to
the functions f(t,2) = Z, Z* such that

AZ =NZ(Z+1-2)+pZ(Z —1—-2)

(8.8)
AZ? = NZ((Z + 1)2 — Z2) +uZ((Z - 1)2 _ Z2)’
which leads to two ODEs,
ElA]_ (A = wE[Z]
dEC[gQ] (8.9)
TH =20 E[Z]] + (A + pELZ)
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Then, we can solve them explicitly

E[Z] = Zye !

- Zo(\ + _ _
E[Z2] = Z2e*A—W1 ¢ —OA( — o )e(’\ W (eA=mt — 1) (8.10)
(A —n)
Zo(A+ 1) - -
=00 ( )

According to the analytic expression of the first moment, it is clear that the popu-

lation is bound to become extinct if A < p.

8.2.2 Bivariate birth-and-death process

Suppose there are two populations M = (M, M»)” with initial population M € N%.
The rate with which the population M, increases by one is A1 My + A1y M7 while the
same for the population M, would be Ao M; + Ao M. The subscript A; ; means that
the rate is from population ¢ contributed to population j. The death rate for two
populations would be puq, o respectively. The two population is not independent
as long as the cross birth rates \;; # 0, i # j. Then denote P, (t) = Pr(M;, =
m, My, = n). This satisfies the following ODE

-

dZ’Z‘" = (A1(m = 1) + Xan) Py + pa(m 4+ 1) Py

+ ()\mm + )\22(71 - 1)) Pm,n—l + Mg(n + 1)Pm7n+1
{ (8.11)

— (()\11 + A2 + ul)m + ()\21 + Ao + /l,g)n) ijn

Puv,(0) = 1, Mg, Mype Ny
\

Griffiths (1972) introduced this bivariate birth death process (A;; = Ay = 0) to
describe the host-vector epidemic situation where the birth probability of two popu-
lation depends on the size the other population only, e.g. transmission of malaria. To
get the joint probability generating function of W(t,0,¢) = > > 0™¢"P,,,(t), we
can apply a linear transform ), > 6™¢" on both sides of the ODE. The resulting
PDE is
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ov oV ov oV oV ov
Ez)\n@Q& +/\219¢6¢+M1 +>\129¢a + Ag2d? ¢+M26¢
oV oV
—0(A11 + A2 + Nl)% — d(Aa1 + Aao + o) — Fr
oV
= (A16% + Ai200 + p1 — 001 + Ao + 1)) — ~ (8.12)
ov
+ ()\22¢2 + X106 + po — d(Aa1 + Ao + o)) = 2
W(0,0,6) = 00 g
This is a semi-linear PDE. The subsidiary equations are defined as
av_dt _ ~d9
0 1 )\1192 + )\129(? + M1 — 9()\11 + )\12 + M1) (8 13)
—dé :

- A2 ®? + X100 + 1o — (A1 + Aog + p2)

The first fraction does not mean divide d¥ by 0 and combining with the second frac-
tion % infers that U = constant, according to chapter 8 of Bailey (1991). Matching

the thlrd and fourth differentials above, we have

d_@ _ )\1192 + )\12(9¢ + = (9()\11 + )\12 + ,Ul)
do  Aoo@? + X100 + p1o0 — P(Aa1 + Aao + f12)

(8.14)

It seems that there is no way to solve this non-linear ODE and therefore no explicit
solution is available for this PDE. However, it can be shown that this PDE gives
a unique solution by Existence-Uniqueness Theorem for Quasilinear First-Order

Equations. With regard to its characteristic, similar to the univariate case, this
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process is a pure-jump semimartingale with following characteristic triplets:

Ch(M;) = 1
v(My; dt, dr) = dt K (M, dv) =

kdt(ﬂld(l,o) (dx) + Xad(o.1y(d) + fa6—1,0y(d) + o800, 1) (dz)) M,

L (22 A 1) K(My,dz) = (A1 + Ao + 1, + f1,)M,- < o0, given that M,- is finite,
where

A= (), A= (o Am), By = (11,0), fiy = (0, p12)

(8.15)

The moments of this bivariate process can be derived by applying again infinitesimal

generator.

Proposition 8.1. The first and second moments of the bivariate birth and death
process My = (M4, Ms ;) defined in (8.11) are given by

A12¢ A€+ K1 — K
E[Ml,t] = Ml,O 12 e()\12671€2)t + 12 1 2 e*(A12C+N1)t
2\ 12¢ + K1 — Ka 2M19¢ + K1 — Ko

)\21 Ajoc— —
+ M (M2c—r2)t _ —(A12ctr1)t
20 2)\12C + K1 — Ro (6 € )
M (8.16)
E[M% t] = M1702)\ " (e(/\IQC_NQ)t _ 6—(/\1zc+m1)t)
12€ T K1 — K2
)\120 + K1 — Ko Aioc— )\120 _
+ M ( 12C HZ)t + (/\12€+/£1)t ,
20 (2)\120 + K1 — Iige 2)\120 + K1 — Iige

where

Ko — K1 + \/(Kl — H2)2 + 4)\21)\12

R1 = 1 11, K2 = U2 22, C M1

The second moments E[M? ], E[M3,] and E[M Ms,] are determined by the follow-
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g system of ODE,

d
EE[Mﬁt] = —2mE[M] ] + 2201 E[M1, Mo ] + At E[My,] + pn E[M; ]
d
EE[MQQ’J = _QK/QE[MQQJ] + 2)\12]E[M1,tM27t] + )\12E[M1,t] + /,LQ]E[MQ’t] (817)
d
T Mo ] = —(k1 + R B[ My M) + A1 E[M3 ] + ME[M ]
Proof. See appendix A.8.A m

Note that to ensure the bivariate process becomes extinct with probability one, we
need the (necessary and sufficient condition) (1 — A1) (e — A2) > A2 A9 according
to Griffiths (1973). Many interesting properties of the process have been investigated
by Griffiths (1972, 1973). In general, this bivariate birth and death process is not
straightforward to apply in practice because there are no explicit solutions to the
above PDE, and the second moments have to be evaluated by numerical methods.
The discrete integer-value model proposed in the next section would be a possible

solution.

8.3 Univariate and Bivariate INAR models

In this section, we will introduce integer-valued autoregressive models which will
serve as discrete approximations for continuous counterparts discussed in the last
section. The derivation of this approximation will demonstrate how to parameterize
the bivariate INAR case.

8.3.1 Univariate INAR model

The classical integer-value autoregressive (INAR) model is introduced by defining a
so-called binomial thinning operator o such that o X is the sum of X i.i.d Bernoulli

random variable with success probability «. i.e.
X . .
aoX = Z b, b Bernoulli(a) (8.18)
i=1

A well-known Poisson INAR(1) model X, is given by

Xt = O Xt—l + Rt, (819)
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where {R;};,—1__; are i.i.d Poisson variables with parameter p. The key idea of the
integer-value model would be the operator o. One can choose different discrete
random variables to construct different integer-valued models. Indicated by the
transition probability of continuous birth and death process, i.e. the sum of i.i.d
zero-modified geometric random variables shown in equation (8.4), INAR model can

be a good approximation by combining o and geometric operator as defined below.

Definition 8.1. A birth and death INAR(1) model with survival probability o € [0, 1]
and birth probability p € [0, 1] is defined as

Xi=p=rao X, (8.20)

where

e o is the binomial operator

o + is a geometric (reproduction) operator such that pw X = 3| gZ(1> with gZ(1>
being 1.1.d geometric random variable with success probability p whose proba-

bility mass function is given by

P(gM = k) =p(1—p)*', k=1,2,...

e priaoX =YN gl

Remark The innovation is dropped as there is no independent immigrant process

in the birth and death process investigated.

Proposition 8.2. The birth and death INAR(1) model has the following statistical

properties

1. The probability generating function of X; can be iterated backwardly such that

PD(t,0) =E[0*] = E [(1 ST %) ]

wpid X, (8.21)
—FEl({1=-q, + ——"" =1,...
[( al+1—(1—pi)0> ], 1 , ,t
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where

)”1 (8.22)

In order words, the birth and death operator p +1 ao as a whole is iterable.
Xi=pr#1a10Xy 1 =py*1 20Xy 9="-+=p*1 0 Xg (8.23)
2. Then the mean, variance and covariance are given by

E[X] = “E[X,]

2

p? p:

Cov(Xy, Xy ) = 2%Va?“(thi)

(3

Var(X,) = (O‘i(l A G O‘i)) E[X,_.] + Z—gVar(Xt_i) (8.24)

2

Proof. See appendix A.8.B. O

Note that if a/p < 1, the process X; will become extinct eventually. It is obvious
that the continuous birth and death process can be approximated by this discrete
INAR(1) model by directly matching the probability generating function ¢) to the
one ¢ in equation (8.3) as the p»; a0 X is the sum of X i.i.d zero-modified geometric

random variables.

8.3.2 Bivariate INAR model

Discrete approximation for univariate birth and death process is somehow simple
because the PDE(8.2) has an explicit solution and hence the distribution is already
known. In the case where the dynamic of two populations are characterized by
(8.11), no explicit solution for its PDE (8.12). However, from the birth and death
INAR(1) model, it is clear that birth and death probability are closely related to
binomial and negative binomial random variables. Based on the dynamic (8.11) and
linear form of the first moment (8.16), a bivariate INAR(1) model is proposed as

follows.
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Definition 8.2. A bivariate birth and death INAR(1) model Y, = (Y14, Ya,)" with
survival probability aq,an € [0,1] and birth probability (511, Bi2, B21, P22 € [0,1] is
defined as

Yie=Furrar0Yi g+ Por %2 Yo
(8.25)

You = Biaxa Y11 + Paz#1 g0 Yoy g,
where

e o is the binomial operator

e «y is another geometric (reproduction) operator different from =1 such that
Lo X = Zfil gZ@) with g§2) being 1.1.d geometric random variable whose success

probability is 5 . The probability mass function is given by

PP =k)=p1-8F k=012,

o Conditional on Y,_1, the random variables B11+1 01 0Y1 41, Bar#2Yo 1, Pia*s

Yii1 and Bag %1 ag 0 Y141 are all independent of each other.

Now it seems that the structure of bivariate INAR(1) matches the the dynamics of
(8.11), i.e. the birth probability depends on the size of both populations while death
probability depends on the size of its own population. We adopt another geometric
random variable ¢(® which is slightly different from ¢(!) because for example, if we

use g(l), Y1 = Y5, 1Vt which is not reasonable when Y7, < Y5, for a population.

Proposition 8.3. The first and second moments of the bivariate INAR(1) defined
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above are characterized by the following recursive formulas

(071
Bi1

E[Ys,] = ! ;EuE[Yl,tl] +

E[Yi.4] = E[Yi: 1]+

a2

B22

2
2 _ B4 —
Var(Yiy) = —;;1 Var(Yi-1) + o 5211 a1)
i1 i1

1 — Ba1 ai(1 = Ba1)
A A

—_ 2 —_
Var(Yay) = (1 ﬁjm) Var(Yii-1) + 152612
12

@2(2 — fa2 — a2) az(1 — Br2)
B3 E¥2 ]+ 2 B12B22

e L
ai(1— Pr2) az(l — fa1)
- B11512 Var(Yie-1) + B21/322

E[Y2+-1]

1 — B2y
Ba1

E[Yi ¢ 1]+ ( )2 Var(Yai—1)

+

Cov(Y1-1,Y24-1)

2
(6%
E[Yi1] + —FVar(Yoy 1)
522

+ Cov(Y1,-1,Y24-1)

VCLY’ (Y27t_1)

(8.26)

Proof. Similar to proposition 8.2, the moments can be derived by conditional ex-
2

pectation. The first and second moment for random variable g;”’ with parameter

are % and 1[;—2/3 Then the first moment for X; are

E[Y1|Yi 1] =E[f11 #1010 Y1 1Y 1] + E[for %2 Yo 1|Yor 1]

. 7 n 1-— 521
B Ba1

Youi-1
The second moments are given by

Var(Yir|Y:) = Var(Bin =1 a1 0 Yy 1|Y1,1) + Var(Ba #2 Yo, -1|Ya,-1)
. a1(2 — B — ay) 1 — By
1,
B %

Var(Yiy) = Var(E[Yii-1|Yi—1]) + E[Var(Yi4Yi—1)]

+ QCOU(EWH *1 Qi O Yl,t—1|Y1,t—1]a E[ﬂm *9 Y2,t—1|Y2,t—1])
+ 2E[Cov(B11 *1 a1 0 Y141, o1 #2 Yo 1| Yi1)]

= Var(E[Y1,|Y1]) + E[Var(Yi,Y,-1)]

I al(l - 521)

511 Fon Cov(Y14-1,Y24-1)
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COU(Y1,t7 Y2,t) = COU(BH *1 01 © Y1,t—1, Br2 *2 Yl,t—1) + 000(511 *1 01 © Yl,t—b Bag #1 (g © Yz,t—l)

+ Cov(Ba1 *2 Yai—1, P12 #2 Y1 4-1) + Cov(Bar *2 Yo i1, Pag #1 g 0 Yo ;1)

— —a1(1 _ 612)1/@7"(3/1,15,1) +

511512

0518

B11522
Cov(Ya, -1, Y14-1) +

COU(le,tfla Y2,t71)

+ (1 - 512)(1 - @21) (1 - 521062)
Br2521 B21B22

The first and second moments of Y5, can be derived in a similar way. O]

VC””(YQ,t—l)

Proposition 8.4. If the eigen-values 1y, ny of the following matrix

o1 1-Ba
A= B11 B21 (827)
1-Bi2o g
B12 B22

lie in the interval [—1,1], then the bivariate population Xy, Y; will become extinct

eventually.

Proof. The first moment can be expressed in a matrix form
E[Y:] = AE[Y; 1] = A'E[Y,] (8.28)

The t-th power of a matrix here is defined as ¢ times matrix multiplication. By

eigen-decomposition, power of a matrix can be expressed as

A" = Qdiag({ny,m5})Q ", (8.29)

where Q) = (14, 112) is eigen vector matrix with vy, v as eigen vectors for 1, 72. Now,

it is clear that E[Y/] is decreasing in ¢ when ny,79 € [—1, 1]. O

8.4 Weak Convergence to continuous Birth and Death

process

In this section, we will construct two continuous processes from the above pro-
posed INAR models. These processes, under a certain parametrization, will con-
verge weakly to the aforementioned continuous birth and death processes when the

length of sub-interval goes to 0.

160



8.4.1 Construction of continuous processes

Since the continuous birth and death processes are clearly semimartingale defined
in non-negative state spaces, to apply limit theorem of locally bounded semimartin-
gales, we need to construct ’continuous’ processes on a dense subsets of R, (will
take t € [0, 1] for convenience) and compute their characteristic triplets from the
discrete INAR models. Finally, when everything is set up nicely, we can apply weak
convergence of semimartingale theorem to prove the result. The construction mainly
follows from Jacod and Shiryaev (2013), Chapter II, section 3.

Starting with a discrete basis B = (Q, F, (F,,)nen, P), assume that he INAR models
X,, and Y, defined above are adapted to this discrete stochastic basis and so as the

increment processes

Up = X — Xim1, Uy =X
(8.30)

Vk:Yk—kal, VQZYo, k20,1,2,...

then we can construct 'continuous’ processes via time change.

Definition 8.3. Given a fized time interval |0,1], one can define a equal-length
grid with size n such that each subinterval with length A = % The following the

processes:

Z =30, MY =3V, (8.31)
k=0 k=0

where o, = |tn|, are adapted to the continuous-time basis B = (Q,F, G = (g;)=0, P).

The parameters setting for Zt(n) are

_ QAR Ay
= SRR o P =3 mma " (8.32)
The parameters setting for Mt(") are
_ A —m)wi(4) _ (A2 — mp)wr(4A)
! >\11w1(A) — M1 ’ ? )\22W2(A) — M2
By A1 — fa Byg = Agg — [ (8.33)

N )\llwl(A) - M1’ /\22w2(A) — M2
621 _ (1 + Cﬁl (eulA o euzA))—l, ﬁlz _ (1 + Cﬁz (eu1A o euzA))—I’
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where

Wi (A) = Coe™® + (1 = Cu)e™®,  wy(A) = (1 — Cp)e™® + Cpe2?

_ A1 _ Aot Co — A1z
2)\120 + H1 — ,UQ7 A 2)\126 + K1 — I€27 P2 2)\120 + K1 — Ko

up = Mo¢ — kg, tp = —(A2CF K1), i == iy 1= 1,2

Ko — K1 + \/(Fdl — 52)2 + 4)\21)\12
2)\12 '

C =

It is straightforward to derive the parameter setting for univariate case since we
only need to match the parameter via probability generating function between Ztm)
and Z;. However, in the other case where the closed form probability generating
function for M, is not available, we need to seek other ways to set up a; and §;; in
terms of A and p. The direct approach would be to match the first and second order
moments to see whether it works. It is clear that we can match moment equations
(8.26) to (8.16) and find out the mapping of 12, Bo1 in terms of \; ;, u;, 4,7 € {1,2}.
Unfortunately, only the ratio «;/f; is known. Nevertheless, the parameter setting
in univariate case shows us the way to distribute the ratio a/p to a and p. Then

«;, B can be set up in a similar way.

Proposition 8.5. With the above parameters setting and any non-negative integer

m, the transition probabilities for Zt(n) conditional on Zt(f)A =k are
k -1
Pr(Z" = k+m|Z") = k) = ( o )(m)m +o(A™)
(8.34)
Pr(Z™ = k—m|Z") = k) = ( )(MA)m +o(A™)
k—m
The above probabilities can be simplified as,
Pr (Z§”> — k41|27 = k) — MeA + o(A)
Pr (Zt(n) =k — 1|Zt(f)A = k:) = ukA + o(A) (8.35)

Pr (|Z§”) k=212, = k) — o(A)

On the other hand, the transition probabilities for Mg”) conditional on Mgf)A =k =
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(k1, k2) given by

Pr(M = k; + mM", = k)

ki+m . )

ki +k —j—1 A ,
- Z (k: — 1> ( a 2]:,_ le ’ )()‘iiA)]_ki()\i',iA)kier_] + o(A™)
Z (8.36)

ki

Pr(M{}) =k —m|M{", = k) = (k .

)+ o(am),

where 1 € {1,2} and ' = 3 —i. Due to the conditional independence of bivariate

INAR models, the joint transition probabilities for M§n) conditional on ME@A are

Pr(MY = ky £ my, MY = ko + mo| M, = k)

(8.37)
=Pr(M = ky 4 my M, = k) Pr(MY = ks + mo| M, = k)
Similarly, the above probabilities can be simplified as
Pr (Mz(?) = ki + 1|M A = K) = Nk A+ Ak A+ o(A)
Pr(M = k; — 1M, = k) = ki A + o(A) (8.38)
Pr (|M§ﬁ> kil = 2M®, = k) — o(A)
Proof. See Appendix A.8.C m

It is obvious that the above transition probabilities have exactly the same form as
continuous counterparts when m = 1. Consequently, the Lévy measures of Zt(n) and

ME") have similar structure to their continuous counterparts.

Proposition 8.6. The conlinuous processes an) and Mg") defined above are semi-
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martingales with following characteristics triplets.

ChZM) =§ ¢ =0

\

B, =0
! (8.39)
Ct == 0
ChM™) = { ([0.4] x g) = T (9(LOA + g(=1,0,) YA

where the g is a continuous, non-negative, bounded Borel function vanishing near 0

and Mg”) respectively, the truncation function is h = |z|Llyjz <1y and

A= Aa), Ao = oy A)y iy = (11,0),  fig = (0, o)

Proof. See appendix A.8.D m

Theorem 8.1. With the the definition and the parametrization above, and the initial
distribution condition:
7 = 7y, MY = My, (8.40)

the processes Zt(n) and M§“) converge weakly to the continuous birth and death pro-

cesses Zy and M.

lim Z™ % 7,
e (8.41)
lim M{™ % ML,

n—0eo

when the size of subinterval A goes to 0 or equivalently, n — 0.

Proof. Here we simply apply Theorem 3.39 from Jacod and Shiryaev (2013), chapter

IX ,section 3, the limit theorem of semimartingales for the locally bounded case.

i The local strong Majorization Hypothesis: For both cases Z; and M;, the
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first two terms of the characteristic triplets are 0 and stochastic integrals with

respect to the function is clearly finite on [0, 1]

Local Conditions on big jumps: For both cases Z; and M,, there is no jump

with absolute size greater than 1.

The local uniqueness: for every choices of initial distributions for Z; and My,
their Lévy measures are uniquely characterized by their (joint) probability

distribution functions.

Continuity Condition, the characteristic triplets By(w), Ci(w), v(w;dt,dz) of

Z; and M, are continuous with respect to w.

Weak convergence of initial distribution. This is stated at the beginning of

this theorem.

Convergence of characteristic triplet of discrete processes to that of their con-
tinuous counterparts. This can be proved by showing the uniform convergence
of Lévy measures. For every a > 0, define a stopping time for the population
process:

So(X) =inf {t: |X¢| > a, or | Xi-| > a} (8.42)

For the univariate case, the stochastic integral with respect to g * v for any Borel

function g is given by

(9% vins,) 0 20 = g = v(Z;[0,t A Su(Z™)], R)

tASa(Z(M)
[ [ swonn) + s 2as
0 R

t/\Su(Z("))

- f (DA + g(— 1)) 2" ds (8.43)
0
Tt nSa(z(m)

= 3 (gWA+g(-D)p) 2 A

k=1

+ (g(l))‘ + g(_l):u) Z(n) (t A Sa(Z(n)) - O-t/\Sa(Z("))A)

Tt nSa(z(n))

and the absolute difference of two stochastic integrals is given by,

=|0(A) + (g(DA + g(—=1)p) Z

<O(A) + [g()A + g(=)p|Z,

g+ V?Asa — (9% Vins,) © Z(n)|

(E A Su(Z7) = 05, zem)| - (8:44)

Tt aSq(z(n))

(t A Su(Z™) = 01,5,200)A)

taSq(z())
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It is clear that all the quantity inside |..| are finite and for every & > 0, and then

there exists a natural number N such that for n > N, we have

g% 5, = (9% Vins,) 0 27| < & (8.45)

and hence we have the uniform convergence for g « 7', ¢ to (g * v4.s,) © Z™. For
the bivariate case, the stochastic integral g = v, where v is the Lévy measure of M,

for any Borel function ¢ is given by

(g% Vins,) o MM = g y(M™;[0,¢ A S,(M™)], R)

t A Sa (M) _ 5
= J J g(l’) (Alé(l,O) (d![‘) + AQ(S(OJ) (dl’)
0 R

+ 1,600, 1y (d) + find0, 1y (da))M M ds

tA S (M) 5 B
= j (91,02 + g(0. )2z + g(~1,0)fa, + 9(0, ~1)fa,) MTds (8.6
0

tASq(M(™)
- (91,0021 + 90, )2z + g(~1,0)f, + 9(0, ~1)fay ) M, A

k=1
+ (9010} + (0, )X + g(=1,0)fa, +g(0, 1)z, )
x M

(n) (t A Sa(M(TL)) — O_t/\sa(M(n)))

Ut/\Sa(M(n))

Then the absolute difference of two stochastic integrals is given by

9 * Vins, vy — (G # Vins,) © M(")|

X Mgr:isa(lv[(n)) (t A Sa(M(n)) - UtASa(M(")))

Hence the uniform convergence holds using similar argument as in the univariate

case. Finally, the Z™, M™ converge weakly to Z, and M, respectively. O

8.5 Simulation Study

In this section, we outline the simulation algorithm for bivariate birth and death
processes. Then estimation method, properties of estimators are investigated in the

simulation study.
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8.5.1 Simulation of bivariate birth and death process

The simulation algorithm of bivariate birth and death process M, can be derived
straightforwardly according to its ODE (8.11). Given the current population My,
the waiting time that a event (birth or death in either population) will happen

follows exponential distribution with rate
pr = (A1 + M2 + ) May + (Ao + Aoz + o) Moy

Then the probability that this event will happen in population M, is

_ Aot Moy + (M1 + pa) My
Pt

(8.48)

b1

The probability that this event will happen in population M;; would simply be
p2 = 1 —p;. Suppose now an event happens in population M, ., the probability that

there is a new individual would be

pb _ My + Ao My,
! A1 Moy + (A1 + Nl)fwu7

(8.49)

and the probability that an individual dies is p¢ = 1 — pb. Likewise, if the event
happens in the population My, the birth probability would be

o= AMoaMy ¢ + Ao Mo
2 AaMy s+ (Aog + o) Moy

(8.50)

and death probability p¢ = 1 — p2. Overall, the simulation algorithm is shown in
the following algorithm 1.

On the other hand, the simulation procedure of bivariate INAR(1) model is straight-
forward because the distribution of Y, are indicated by the operator (o, =, #3) given
Y ;.
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Algorithm 1 Simulation of bivariate birth and death process with rates
{11, A2, Aar, Aog, i1, o}, initial population M o, Ma, a vector of cumulative time
t. where t.[1] = 0, a counter i and terminal time 7'

1. Simulate a waiting time ¢, ~ Exp(p;) and two independent uniform random
variable Uy, Uy ~ U(0, 1)

2. if Uy < p1,and U; < pl{, M iii, = My + 1 and Moy, = Moy

3. if Uy < p1,and U > Plf, M4, = Myy —1and Moy, = Moy

4. if Uy > py,and U, < pb, My yit, = Moy + 1 and My 44y, = My

5. if Uy > p1,and U; > pg, Ms i, = Moy — 1 and My 44y, = My

6. Append a new element to t., t.[i + 1] = t.[i] + ¢, and update counter ¢ = i +1
7. Repeat all the steps above until ¢.[i] > T or My, [ = May.q =0

8. Set Myr = My, [i—1 and My = My, ;—1) and return the trajectory M at
each element of t,.

8.5.2 Statistical inference of Univariate and bivariate birth

and death process

8.5.2.1 Quasi-MLE for univariate LBD

In the univariate case, parameters estimation and their asymptotic properties are
available in Keiding (1975). Suppose now we have the full information of the sample
path, the exact inter-arrival times for each birth and death events {7;};;_012,.} on
the sampling interval [0, 7] where 75 = 0, the maximum likelihood estimators for Z;

are
. BT DT Bpr+Drp n
A= =y Xrs kzl L | + T—;n Zr, (8.51)

where Br, D are total number of birth and death events respectively. The asymp-

totic properties are given by fixed T" and large population

AT _ 1)\ 2 /) — A0
lim (Z‘)(e 1)) (A A) BN <O>, (8.52)
Zo—00 A—p L= p 0 0
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In practice, one may not have exact information of inter-arrival time of the events.
Instead, we have records for populations sampling over a fixed-length interval A
such that Zy, Za, Zoa ... Zpa are available. Then to estimate the parameters \, u,
one can numerically maximize the Quasi log-likelihood function from the proposed
INAR(1) model X, = Zya, k=0,1,...,n. The log likelihood function is given by,

Z log Pr(Xy 1, Xj)

Pr(Xy_1, Xp) =

n X (8.53)
1 (=) Xr=0

Z?ziri{Xk_l’Xk} Fo (G5 Xo—1, @) frn (X — 53 5,p); - Xpm1 > 0 & X, > 0,

where f, and f,;, are probability mass function of binomial and negative binomial

random variables

piema-

X

>0f‘(1 — )" fup(zin, ) = (n Z o )B”(l — )

The simulation is conducted as follow: we generate 1000 sample paths of Z; using

Table 8.1: Parameter setting for univariate Case

parameters A u  Zy T
values 1.2 1 100 1

the parameters settings in Table 8.1. Since Z; are continuous sample paths, we
set up an equal-distance grid with sampling interval A. Then the equal-distance
observations X, are obtained by counting the total number of population up to each
discrete time (0, A, 2A, ..., nA) where n = %. The log likelihood function is then
maximized by ’optim’ function with method = 'BFGS’ in R programming. Finally,
we can recover the rate estimates by inverting the parametrization in equation (8.32)

such that )

. Ellogt - 1. @
A=-L_"P 5 —X—_log— 8.54
i fi Alos (8.54)

In the following, we will first explore how the size of A would affect properties esti-
mators, i.e. bias and mean square error (MSE), and how much more computational

time we need compared to true MLE method. Four different size of sampling inter-
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vals A = {0.1,0.05,0.025,0.01} is chosen and the results are presented in table 8.2.
The theoretical row shows the biased and MSE computed through equation (8.52).
There is no surprise that the True MLE method from equation (8.51) performs the
best, with lowest MSE and computational time. The Quasi-MLE method by con-
structing INAR model, on the other hand, becomes better as we decreasing the size
of sampling interval A but it still performs no better than the true MLE method
and require much more computational time. The empirical distribution of these
estimators are illustrated in figure 8.1 and since the general shape of distribution of
X and [ has little difference, we will only show the distribution of . It is clear that

only the case A = 0.01 has satisfactory normal shape compared to all other cases.

Table 8.2: Properties of different maximum likelihood estimators. The time column
is the total time of estimating 1000 sample paths.

Bias A MSE A Bias i MSE p | time (s)
Theoretical 0 0.000126 0 0.000116 -
MLE -0.000701 | 0.000124 | 0.015898 | 0.000396 0.09
A=0.1 -0.133845 | 0.075696 | -0.116943 | 0.072754 49
A =0.05 |-0.086435 | 0.023935 | -0.069513 | 0.021836 98.6
A =0.025 | -0.051234 | 0.007711 | -0.034323 | 0.006557 | 201.4
A =0.01 |-0.014178 | 0.001378 | 0.002721 | 0.001159 | 522.2

Distribution of :‘

| I

Frequency
100 150

50
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Distribution of % when A=0.1 Distribution of % when A=0.05

Frequency
Frequency

100 200 2300 400

i
|
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0.0 05 10 15 20 25 30 35 05 10 15 20 25

Distribution of % when A=0.025 Distribution of & when A=0.01

Frequency
150 250
100 150 200

Frequency

50

05 1.0 15 20 06 08 1.0 12 14 16 18

Figure 8.1: The empirical distribution of estimated parameters. The top panel is the MLE
from 8.51 and the rest of plots are MLE from INAR model. The solid lines are the true
values of the parameters listed in table 8.1 and the dash lines stand for empirical means.

To achieve asymptotic normality for Quasi-MLE method from INAR model, one
need not only large initial population, but also a small sampling interval A. In the
following simulation, we would fix the sampling interval A = 0.01 and investigate
how the size of initial population would affect the asymptotic distribution of esti-
mators and the computational time for estimation procedure. To explore the effect
of Zy for asymptotic distribution, we choose Zy € {5, 10,30,50} and it seems from
Figure 8.2 that to ensure asymptotic normality for both estimators, one need at

least Zy = 30 , which is a large sample size in statistical sense.
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Distribution of % when Z,=5 Distribution of [i when Z;=5
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value value

Distribution of & when Z,=30 Distribution of [1 when Z;= 30
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Distribution of . when Zy= 50 Distribution of [i when Z;= 50

Frequency

100 150 200
Frequency
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value value

Figure 8.2: Asymptotic distribution of A, i with different Z

The computational time with respect to Z, € {10, 50, 100, 150, . .., 500} clearly shows
a linear trend in 8.3. This is reasonable as the number of summation involved in

equation (8.53) increases linearly with respect to Z,
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Computational Time for INAR model

N
\

time (s)

\

500 1000 1500 2000

0 100 200 300 400 500
Zy

Figure 8.3: The computational time for INAR models of 1000 sample paths

In summary, the Quasi-MLE method constructed from INAR model can reach mod-
erate level of estimation accuracy and asymptotic normality with large initial pop-
ulation Z; > 30 and small sampling interval A < 0.01. However, it would require
much more computational time than the true MLE method. This method should
only be used in the case where we have no information on inter-arrival time of birth

and death events.

8.5.2.2 Quasi-MLE for bivariate LBD

Since the bivariate INAR(1) model is a bivariate Markov Chain, the log likelihood
function can be written as the sum of logarithm of transition probabilities. Denote
© = {1, a9, B11, P12, P21, Pa2} as the parameter space of bivariate INAR(1) model,

then the likelihood function can be written as

[]=

0(©) = Y log Pr(X,, Vi X, 1,Y; 1)

1

o~
Il

(log Pr(X,| X, 1, Yi 1) + log Pr(Y;| X1, Vi 1)) (8.55)

Il
RgE

~~
I
—

(:(02) + £,(0y),
where ©, = {ay, fi1, f21} and ©, = {9, Bi2, f2e}. Because X; and Y; are indepen-

dent of each other given the last state (X;_1,Y;_;), the likelihood function can be

separated into two parts, £, and ¢, respectively. Then transition probability for X,
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is given by
Pr(X; =Xy 1 =2,Y 1 =y)

-

1

(1 —a1)*B8,

fab(215y, B21)

SR g (i@, an) fn(z1 — 434, Br)

ik SO f (i, o) fn(z1 — 634, Bu) fan(z1 — 55, o)

(1 — a1)” fup(213 Y, Bo1)

The one for Y; is

Pr(Y; = 2|Xi 1 =2,Y;1 = y)

-

1

(1 — a2)"Biy

Juo(22; 2, B12)

SIRR) Gy, an) fun(z2 — 434, Ba2)

2 Z?ﬁ?{y’j} fo(33y, 2) frn(22 — 154, Ba2) frn(22 — 754, B12)

|
A

+(1 — a2)Y fup(22; 7, B12)

One can then numerically maximize the log likelihood function ¢,,¢, given the
random samples {(Xo, Yp), (X1,Y7),...,(X,,Y,)}. From the estimated parameters

~

O, we can solve the following system of equations to get the estimates O,y =

{11, A1, Ao, Aog, i1, o} for bivariate birth and death process.

a1(Opg, A) — a1 =0
a2(Opg, A) — Gy =0
B11(Opa, A) = By = 0
B12(Opa, A) — Bra = 0
Bo1(Opa, A) = B = 0

B22(Opay A) — fag = 0,
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2120
r=0&y>0
r>0&y=0
r>0&y>0
wn=r=y=0
2’2—0
r>0&y=
r=0&y>0
r>0&y>0

(8.56)



where the parametrization function .(Op4, A) are given in equation 8.33 and A is
chosen based on the interpretation of birth and death rates. For example, when
the random samples are collected on daily basis over a year ¢ = 1, one can define

A = t/365. Then these parameters Oy, are interpreted on an annual scale.

Table 8.3: Parameter setting for simulation

A1l
0.3

A1z
1.2

Mo
(40,50)

Aot Aop pn g T
1.3 04 1.1 1.2 1

parameters
values

In the following, we will simulate the o = 1000 sample paths of M, based on the pre-
specific parameters in table 8.3. Then equal-distance gird with sampling interval A
is set up and random samples (Yo, Y1,...,Y,) are obtained, like the way mentioned
in the univariate case. Then the likelihood functions /¢, ¢, are maximized by "optim’
in R with method being specified as 'BFGS’ and the maximum likelihood estimators
© are obtained. Finally, we can obtain the estimators Oy by numerically solving
the system of equations (8.56) via a root-finding algorithm (e.g. Newton-Raphson
method). Referring to the estimation results in univariate case, we focus on the
choices of A € {0.02,0.01,0.005} as well as large initial population (40,50), and
hopefully we can obtain asymptotic normality for each estimator. The empirical
distribution of these estimators O,y are illustrated in Figure 8.4 and their properties

are summarized in Table 8.4.

Table 8.4: Properties of different maximum likelihood estimators. The time column
is the total time of estimating 1 sample paths.

Bias )\11 )\12 Agl /\22 ,&1 ﬂg time (S)
A =0.02 | -0.031393 | 0.069314 | 0.031804 | -0.072310 | 0.025835 | 0.012040 | 25.46
A =0.01 |-0.026080 | 0.061711 | 0.019728 | -0.064421 | 0.018005 | 0.012375 46.7
A =0.005 | 0.002760 | 0.044764 | -0.004686 | -0.049816 | 0.019450 | 0.010779 | 82.32
MSE )\11 )\12 /\21 /\22 Ial ﬂQ
A =0.02 | 0.266179 | 0.401756 | 0.301175 | 0.296895 | 0.104222 | 0.104958
A =0.01 | 0.249248 | 0.359153 | 0.263573 | 0.270960 | 0.055740 | 0.058685
A =0.005 | 0.266925 | 0.351415 | 0.268431 | 0.286881 | 0.037742 | 0.036170
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Distribution of 71, when A=0.01
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Figure 8.4: Empirical distribution estimators from bivariate INAR model. The solid lines
are the true values of the parameters listed in table 8.3 and the dash lines stand for
empirical means.
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Distribution of ,; when A=0.01 Distribution of 3,, when A=0.01
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Figure 8.5: Empirical distribution estimators from bivariate INAR model.
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Figure 8.6: Empirical distribution for total birth rates. The solid lines are the true values
of the parameters listed in table 8.3 and the dash lines stand for empirical means.

The bias and MSE of most estimators are decreasing with respect to A as expected.
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However, the MSE of birth rates are much larger than the estimators of death rates.
Except the estimators for death rates, all other estimators for birth rate are skewed
to different directions and clearly non-normal distributed. This may caused by some
of non-normal estimators for proposed INAR model illustrated in Figure 8.5. In the
classical setting where the innovation term is included, one need stationary condition
to ensure asymptotic normality for all estimators of parameters, see Bu et al. (2008).
And in our case, INAR model itself is not stationary and hence some of the estimate

can be skewed.

Notice that the pair of birth rates that contributed to the same population, (A1, A1)
and (A2, Ago) are skewed in opposite directions. It is then worthwhile to see whether
the sum of these pair estimators has desired asymptotic properties and the results in
Figure 8.6 confirms our conjecture. Combining the simulation procedure of bivariate
birth and death processes, Quasi-MLE method may not be able to distinguish the
pair of birth rates contributed to the same population. Instead, it would provide

good estimators for the scale of total birth rates \; = ;\11rm + 5\21(1 — ry,) and
E[M; ]
IE[J\/flytﬁk]Wz’t] )

proof A.8.A, the relationship between first moment of two population is given by

Do = A\joTy, + 5\22(1 — rm) where 1, = Furthermore, according to the

E[My ] = E[My,] + (Mg — cMyg)e™Pizem2)t, (8.57)

As long as the whole process is not extinct with probability one, i.e. Kiks < Ao,
the exponential power (Ajac — ko) will always be positive and hence E[M;,] ~

cE[Ms,] when t is large. In other words, the ratio

]E[Ml,t] N C
E[M; + My;] 1+¢

(8.58)

T =

becomes a constant eventually. For the parameter setting in Table 8.3, ¢ = 1.040833,
Ty R % and hence 5\11 + 5\21 serves as an estimator for the total birth rate of M, ;. In
practice, the ¢ is unknown as true parameters need to be estimated. Then we can

use the values at the end of sampling period to approximate r,,, i.e.

M
M1+ My r

T'm

(8.59)
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Table 8.5: Properties for total birth rates estimators

bias A\;  MSE) Biashy  MSE )\,
A =0.02 0.012623 0.024232 -0.015039 0.028914
A =0.01 0.008386 0.013068 -0.014407 0.017563
A =0.005 0.009380 0.009286 -0.015613 0.011202

Distribution of 7., when A=0.01 Distribution of 7., when A=0.01
= | . ~
o | w
e 7 = A
- >
5 8- g 8-
3 3
o o
z z
(1N (1N
8 - B -
o - o 4 =
[ I I I 1 [ I [ I 1
04 06 0.8 1.0 1.2 04 06 08 10 12
value value

Figure 8.7: Empirical distribution for total birth rates. The solid lines are the true values
of the parameters listed in table 8.3 and the dash lines stand for empirical means.

The properties of A1, A\, and their empirical distribution are shown in Table 8.5 and
Figure 8.7. These new estimators benefits from nice properties, low bias and MSE
and they decreases as A decreases. Most importantly, they are not skewed anymore

and asymptotic normal.

Let us try another parameter setting in Table 8.6 to verify this conjecture. Same
simulation and estimation process as previous case and the results are shown in Table
8.7, 8.8 and Figure 8.8. This time the constant c is 0.576306 and r,, = 0.365605.
Similar to the last setting, the estimators for all birth rates are skewed and some
of them have large bias and MSE. The estimators for total birth rate, on the other

hand, are of low bias and MSE and they are again asymptotic normal.

Table 8.6: Parameter setting for simulation

parameters A1 Aja Aor Ao gy ps T M,
values 03 05 08 15 1.1 1.2 1 (30,60)
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Table 8.7: Properties of different maximum likelihood estimators.

20

Bias 5\11 5\12 5\21 ;\22 fiy flo
A =0.02 | -0.091964 | 1.633439 | 0.064837 | -0.891418 | 0.050226 | 0.008661
A =0.01 |-0.092042 | 1.613498 | 0.056800 | -0.863226 | 0.034508 | 0.02260
A = 0.005 | -0.063956 | 1.513447 | 0.036706 | -0.818343 | 0.024054 | 0.016939
MSE >\11 )\12 >\21 /\22 /:LI /12
A =0.02 | 0.243023 | 4.669929 | 0.108730 | 1.315634 | 0.115385 | 0.120301
A =0.01 | 0.225980 | 4.535412 | 0.090212 | 1.259920 | 0.062935 | 0.06831
A = 0.005 | 0.243969 | 4.186109 | 0.087121 | 1.177241 | 0.042955 | 0.036328
Table 8.8: Properties for total birth rates estimators
Bias A; MSE \; Bias Ay MSE )\,
A =0.02 0.013970 0.017193 0.007765 0.062907
A =0.01 0.008500 0.009268 0.017503 0.038616
A =0.005 0.004425 0.006884 0.012662 0.023027
Distribution of 7.y when A=0.02 Distribution of 7., when A=0.02
7 r I I I: I I I 1 ° - [ I I I I I I 1
00 02 04 06 08 10 12 14 0.0 10 20 3.0
value value
Distribution of 7.; when A=0.01 Distribution of 7, when A=0.01
. f T T 1 ° - [ T T T T 1
04 06 0.8 1.0 05 10 15 20 25 30
value value
Distribution of 7., when A=0.005 Distribution of 7, when A=0.005
E ‘% : —’_l—|7 1&6 @ :
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Let us finally try another parameter setting in Table 8.9 where the M, is going to
be extinct eventually. It means that the exponential function in equation (8.57) can
no longer be omitted. The results are illustrated in Table 8.10 and Figure 8.9 and
they look similar to the results of the first case. Nice properties for death rates’

estimators but skewed and non-normal for birth rates’ estimators.

Table 8.9: Parameter setting for simulation

A Az Ao Mg
03 05 08 0.3

o T My

1.2 1

parameters
values

M1
1.1

(30,60)

Table 8.10: Properties of different maximum likelihood estimators.

)\11

A12

/\21

/\22

Bias f1 flo
A =0.02 | 0.026802 | 0.071221 | -0.020855 | -0.064399 | 0.015807 | 0.007330
A =0.01 | 0.033741 | 0.063121 | -0.024328 | -0.056261 | 0.019261 | 0.008451
A =0.005 | 0.032433 | 0.061202 | -0.022955 | -0.046396 | 0.016784 | 0.011859
MSE )\11 /\12 /\21 /\22 ﬂl /12
A =0.02 | 0.245305 | 0.184363 | 0.165970 | 0.091334 | 0.088017 | 0.059102
A =0.01 | 0.226033 | 0.167176 | 0.150903 | 0.081478 | 0.052522 | 0.039980
A =0.005 | 0.211617 | 0.155803 | 0.139283 | 0.078867 | 0.042573 | 0.035270
Distribution of {1, when A=0.01 Distribution of {1, when A=0.01
0.5 1.0 1.5 1.0 1.5 2.0

value
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Distribution of 7.,; when A=0.01 Distribution of 7.1, when A=0.01
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Figure 8.9: Empirical distribution for individual birth and death rates. The solid lines are
the true values of the parameters listed in table 8.9 and the dash lines stand for empirical
means.

8.6 Concluding remarks

In this paper, we propose an integer-valued autoregressive model INAR(1) to ap-
proximate the continuous birth-and-death process. In univariate case, we propose a
birth-death operator p*; a o X which is the sum of zero-modified geometric random
variable. The parametrization of p and a can be determined by matching the first
and second moment of continuous process. Then we propose an bivariate INAR(1)
model to approximate bivariate birth and death process where birth probabilities
will also depend on the size of the other population. The parametrization of this
model can be obtained in a similar way. The convergence from discrete process to
continuous process is proved by apply weak convergence theorem of locally bounded
semimartingales. Due to the simple Markov structure of INAR(1) model, maximum

likelihood estimation would be feasible. It is however not the case for bivariate and
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multivariate birth and death process. Basically, one can extend the result here to
multivariate case, i.e. we can approximate multivariate birth and death process in
Griffiths (1973) by multivariate INAR(1) model using the these operators =y, o, 0
only as well as adding an immigrant process. However, the difficulty of expressing
the parameters of INAR(1) model in terms of the parameters of multivariate birth
and death process would be increasing and as we need to find out the first moment

of birth and process explicitly.
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8.A Proof of proposition 8.1

Similar to univariate case defined in (8.6), the infinitesimal generator of the bivariate
birth and death process (M, Ms;) acting on a function f(¢, My, M) within its
domain Q(A) is given by

Af(t, My, Ms) :aa_{ + (A1 My + Aot Mo) (f (¢, My + 1, M) — f(t, My, My))
+ i My (f (¢, My — 1, My) — f(t, My, Ms))
+ (M2 My + Ao Mo) (f(t, My, My + 1) — f(t, My, My))
+ pe Mo (f (¢, My, My — 1) = f(t, My, My)),

where (2(A) is the domain for the generator A such that f(¢, My, Ms) is differentiable
with respect to t for all ¢, My, My and

|f(t, M1 + ]_, MQ) — f(t, M1, M2)| < 00, |f(t, M1 — 1, M2> — f(t, Ml, M2)| < Q0
|f(t7 M17M2 + 1) - f(tv M17M2)| < 00, |f(t7M1aM2 - 1) - f(t7M1aM2)| < O
Apply infinitesimal generator A to functions f(t, My, My) = Ml,t,Mg,t,Mft,Mit
and M M, , respectively, we have
AM = ()\11M1 + )\21M2)(M1 +1— Ml) + ljllMl(Ml —1- Ml)

AN = ()\12M1 + )\ZQMQ)(MQ +1— MQ) + /LQMQ(MQ —1- Mg)

AME = (M1 My + Ao M) (M + 1) = M7) + i My (M — 1) — M)
AMZ = (Mg My + Ao Mo) ((My + 1)? — MZ) + pa N (Mo — 1) — M3)
AM My = (A1 My + Aot M) ((My + 1)N — My My) + (Mo My + Aoo M) (M (My + 1) — My M)
+ My (My — 1) My — My Ms) + po(Mi(Ma — 1) — My Ma)

The first two result in the following system of ODE

d
%E[Ml,t] = )\21E[M2,t] - HlE[Ml,t]
d
EE[MZt] = )\IQE[Ml,t] - HQE[MQ,t]

(8.60)
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The other three equations become (8.17), which is hard to solve explicitly as we
need to solve an inhomogeneous ordinary differential equation system. To solve the
system (8.60), we can first assume a linear relationship between E[M ;] and E[ My ]
such that E[M, ;| = cE[May:] + g(t) for some constant ¢ and a real value function g.
Applying this substitution, the first ODE in (8.60) becomes

C%E[Mzt] + ¢'(t) = MaE[Ma,] — k1 (cE[Ma,] + g(t))

Make use of the second the ODE in |, the first ODE can be rearranged into a ordinary
equation.

C()\lgE[MLt] — /igE[MZt]) + g,(t) = )\21E[M27t:| — "ilE[Ml,t]

()\120 + /ﬁl)]E[Ml’t] — (C/'ig + AQl)E[M2,t] + g'(t) =0

()\120 + lil)(CE[MQ’t] + g(t)) — (C:‘iz + )\QI)E[MQ’t] + g'(t) =0

(M2c® + (k1 — K2)e — Ao))E[Ma ] + ¢'(t) + (M2 + K1) g(t) =0

Then c is the solution of the quadratic equation

)\1202 + (lil - IQQ)C - /\21 =0

Ro — R + \/(/{1 — lig)z + 4)\21)\12
219

Both roots would result in the same moments, so just take the positive root. The

function g would be the solution of following ODE

g'(t) + (M2 + Kk1)g(t) =0
g(t) = g(0)e~Przeralt

g(O) = E[Ml’o] - C]E[Mg’o] = (CL - Cb)

Then E[M;;] is determined by the following ODE

d
%E[Mlt] = )\12]E[M1,t] — /‘izE[Mz,t] = (M2c — @)E[MQ,t] + A129(1)
and E[Ml,t] = CEI:MQJf] + g(t) ]
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8.B Proof of proposition 8.2

For the first property, we can verify in the following way.

When ¢ =1
do = p’ 1+(1—p)T

bpr=p, a =«

Suppose equation (8.22) holds for i = k. Then for i = k + 1, we have

i Xy
¢(I) (t, 9) -E (1 —ay + akpke ) k
1—(1—pg)b

—E :(1 —ap—(1 —ak—pk)e)xfk]

1—(1—pp)t
l—ak—(l—ak —[)k)@ )thl

_ l—a—(1—a-—p) =)0
1—ap—(1—ar—pg)o
A=
[/ 1-0—(1—a—p)(1—ay) _ ((lfkar(l*p)(ak*Pk*l)) . aay )0 Ki—k-1
_E 1-(1-p)(1—oy) 1-(1-p)(1—ay) 1-(1-p)(1—ay)
B 1 — Qepet(-p)(ar—pr—1))
1—(1-p)(1—ay)

It is then clear that

1= (- p)(1-ay = APl 20 A
T U —p (U —ar)
_ 0=+ (= p)ox —pe = 1))
Dk+1 1—(1—p)(1—ag)
:1_1_(1_p)(1—04k)—ppk _ PPk :pk+1
1—(1=p)(1 - a) - (1-p1—an)
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So equation (8.22) holds for all i = 1,2,.... For the second property, the moments

can be found by conditional expectation such that

aoX

E@*“wxmx]zE[EIEZQ”moxiLX] AEKaoX|X] E[ZﬂwX]
- aoX )
+ Var (E [Z g§])|aoX] |X>

aoX
Var(p#iao X|X) =E [Var (Z g§])|aoX) | X
j=1

j=1

1-— 1
==pfﬁmoxuj+ﬁvmmoxm)

(20on atow

p p

Var(p# ao X) =E[Var(p* ao X|X)] + Var(E[p *; a o X|X])
Cov(Xy, Xi—i) = Cov(p; #1 o 0 Xy, Xi—i)
= Cov (E|p; #1 a; 0 X3—i| Xi—i], B| Xp—i| X¢—i])
+ E[Cov(p; *1 o 0 Xy—i, Xy—i| Xi—i)]

= Y Cou(Xiei, Xii) + 0

Di

8.C Proof of Proposition 8.5

The transition probability of giving out m(m > 0) birth of from the process Zt(A)

given Zt(fi during an infinitesimal time interval A is given by

Pr(Z® = k+m|Z2) = k) = Pr(X, = k + m|[X,_, = k)

min{k,k+m}
Bt (B e

PRV j—1

(k) (k + ml_ 1) OB N g (A )2R2im ) 2
J J—

Il

1

J
% ()\e(A*#)A . u)f(Zk’er)
SR (kA m =1\ 4 |
X () (T - s o)
7j=1
1 A
A— L A 1

< (14 (A= p)A + o(A)) ( A+ o(A)) ) ,
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where all the exponential function are expressed as their corresponding Taylor ex-
pansion at A = 0. To make comparison with the continuous birth and death process,
we are interested in the coefficients in front of A. First we need to check the lowest

order of A in above probability. That is, we would like to minimize the sum

min 2k —2j +m =m
1<j<k

So for the transition probability is rearranged in the following way

Pr(Z% = k+m|Z2) = k)

:(12 (k P 1)”% — )P = A+ o(A)" (1 + (A — WA + o(A)"

. (A ! ——3 A A+ O(A))mm T o(A™)
(k ;T; 1) (AA)™ + o(A™),

Then it is clear that the there is no first order term in the case where m > 2 and

the probability that giving out exactly one birth is
Pr(Z™ = k+ 1|25, = k) = AkA + o(A)

On the other hand, we can derive the probability that m(l < m < k) individuals

die within infinitesimal time A in a similar way

Pr(Z\Y =k —m|Z5) = k) = Pr(X, =k —m| X, 1 = k)

min{k—m,k}

2 (§)ara—aro ("7 e

J
k—m

= (k> (k —m= 1) G(A*u)jﬁ)\k*m*j”kﬁ'(e(kfu)A _ 1)2k72jfm
1

J Jj—1

The minimum order of A is determined by

min 2k —2j—m=m (8.61)

1<j<k—m
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Then the probability is reduced to

Pr(Z® =k —m|Z2) = k)

() (T D) = 8+ o)+ (A= )+ o))

1 A 2k—m
— A A A™
x()\_u P + o )) + o(A™)

(5w otam

(8.62)

The transition probability that only one individual dies is
Pr(Z® =k — 1|22} = k) = pkA + o(A) (8.63)

the probability that more than one individuals die are o(A) As the birth rate and
death (A, ) are time-homogeneous, so as the parameters «, p, the transition proba-
bilities stay the same for all time ¢ € [t1,t3]. This means that the discrete birth and
death INAR(1) model would result in the the same dynamic (8.1) of simple birth

and death process when A is small enough.

Similar to the univariate case. It is necessary to find out the transition probabilities
before proceeding to the weak convergence. The transition probability of giving

out m(m = 1) births of population M) given Mt(fg = kq, Nt(fi = ko during an
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infinitesimal time A is given by

Pr(M™ = ky + m|M2) = ky, N2\ = ky) = Pr(X, = ky + m| X, 1 = k1, Yy = ks)

ki+m

= Z Pr(ﬁn #0000 X = j|Xs—1 = ]fl) Pf(ﬁm w9 Ys 1 =k +m — j|Y;—1 = kz)

j=0

k1+m min{klzj} .
kq eoif =1\ ko +ki+m—7—1
— 1 1—1? 7
jZl ( ; (Z)ou( 041) (i—l)ﬁn( 511) )( Joy — 1
_j ko+ ki +m—1 .
o T ] AR - CE o

ST (<ii;<“”““i>)
(

A)
« (ul(wl A ) A1l _,Ul ) ()\11 w1 )
)\le(A )\11011( )\11601
el u kl m—
y Cﬁl A —€ QA) e +0(A2k1+m 1)
1+ C,B eulA euzA) 1+ Cﬁ eulA €u2A)

Zm m{Z ’ COEZD) B D 0w i on - ma o)y

< (Aan = ) A+ oA (Aax — ) M (A — ) A + o(A))

1 A1 >’“1“
X — A+ o(A
()\11 — M A1 — ( )

x (1= Cp, (ur — ug) A + 0(A))"(Cp, (ur — ug) A + o(A))1777 4 o( AP+

k1+m min{k1,j} . .
=W\ (ka+ki+m—75—1 9\ jmi ki
Z Z ( )<1_1>( ky — 1 >()‘11_M1) M1 gt

=

X (M1 = ) A + o(A)) 72 (1 + (Mg — ) A + o(A))’
1 )\11 )k1+j
X — A+ oA
()\11 — M1 A1 — ( )
x (1 —Cp (ug —ug) A + O(A))k2(051 (g — ug) A + o A))FrTm=i  o(AZrEm=1y,

where all the exponential function are expressed in their corresponding Taylor expan-
sion at A = 0. The lowest order of A is determined by the power of ((Aj1—p1)+0(A))

and (Cg, (u1 — u2) A + o(A)),

min ki +j—2i+k+m—7j= min 2k — 21 +m =m,

1<i<min{k;,j} 1<i<min{ky,j}

where j =€ {1,...,ky+m}. Thisleadstoj =ky,i=k1—land j =k —1,i =k —1,
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respectively. Then the transition probability reduces to

Pr(M™) = ky +m|ME) = ki, N2, = ky)

ki+m . .

— A1 — 1) TR k1=
2 <k1> <k1 _ 1) ( ko — 1 >( 11— 1) 1 M
Jj=k1
x ((A11 — p1)A + O(A))kﬁj*%l(l + (M1 — p1)A + O(A))kl

1 A ki+j
X < - A+ O(A))
M1 — 1 A1 — M

X (1 — C,Bl (Ul - UQ)A + O(A))kz (Cﬁl (Ul — U2)A + O(A))kﬂrmfj + 0(A2k1+m*1)7

ki+m . .
—1\/(ko+ki+m—j—1 a o
B Z (ljl - 1) ( 2 lk'g -1 ’ )O‘HA)J kl(cﬂl (up —ug)A + 0(A))k1+ j
Jj=k1

+ 0(A2k1+m_1),

ki+m . .
A\ (ks +m—j—1 . o .
= 2 <151—1>( T o )QHA)J " Oa AT + oA,
Jj=k1

Then the probability when m = 1 is given by

Pr(M® = ky + 1M, = ki, N&)L = k)

A
ki1+1 . .
— 1\ (ko4 k1 — - s
-3 (L) (T ) onar pwar o), s
j=k1
:k’g)\zlA + kl)\llA + O(A)

By symmetry, the birth transition probability for the other population is given by

Pr(N = ko + m|ME) = ki, N2, = ky) = P(Va = ko| Xo 1 = k1, Y 1 = ko)

ko+m . .
-1 ki +ko+m—17—1 a o -
-2 (/;372—1>( 1 2k1 inl : >(/\22A)j "2 (A2 )T 4 o(AT),
j=ko

On the other hand, the probability that m individual die in population Mt(A) given
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that Mt(_Ag = kq, Nt(_Ag = ko during an infinitesimal time interval A is

Pr(M™ = ky —m|ME), = ky, N = k) = Pr(Xs = k1 — m|Xo1 = k1, Ya 1 = kp)

k1—m [ min{ky,j} .
k . N N
= ] ( zzzl ( il) ’Ll(l — Oél)hfz (Z ~ 1)511(1 o 511)_72)

—-7—1 . ko +ki—m—1
J )gf(l—ﬂzl)’“ 7+(1—a1)k1(2 k;_l )55(1-,@5&

ki—m J . .
kq 7j—1 kg-{-k‘l—m—]—l iNi—i Ky —i
= . Z(z)(z—l)( ko —1 )(All—ﬂl)2/\]11 Byt

x (A1 — p1)A + o(A))kr 7=

A1 — 1 Al —

4 k1tj
% (1+ (A1 — p1)A + o(A))! ( A+ O(A))

x (1 — Cg, (u1 — ug) A + 0(A))*2(Cp, (uy — ug) A + o(A))F1 =m0 4 o(AZF1 TR~

("o (e 2 (21 = = ) +oa)

X (1 + ()\11 — MI)A + O(A))kl

1 All 2k1+1
x ( - A+ O(A)) (1 — Cp, (u1 — u2)A + o(A))* + 0(A)
A1 —p1 A —m

=p1(k1 + 1A + o(A)
The lowest order of A is determined by the power of (A1 —p1)+0(A)) and (Cp, (u;—
ug)A + o(A)),which is

mink; +j5—2t+k; —m—7 = min2k; — 2t —m =m,
1<i<j 1<i<j

where j € {1,...,k; —m}. So the above probability reduces to

Pr(M™ = ki — m|M®) = ki, N2\ = k)

/{31 kl —m—1 k’Q —1 2 ky —
_ A1 — (k1—m), m
(]{71 — m) (kl —m — 1) (kz — 1)( 1 Iul) i

x (A1 = p)A + o(A))™

A1 — A1 — [

X (L (M = ) A+ o(A)) 7™ ( At O(A)) B
% (1= Gy (= u2)A + 0(A))* + o(A™)

~(, " oy - oam

kl—m
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It is not surprise that the transition probability only depends on its own size of pop-
ulation from the bivariate INAR construction. Then the death transition probability

for the other population is

ks

Pr(N{® = ky — m|M) = ki, N2, = ky) = <k .
-

)(MA)W +o(A™)  (8.65)

The it is clear that the probabilities for both population that there is only one death
would have the same form as in the univariate case. By conditional independence
of bivariate INAR model, the joint transition probability would be the product of
any of two transition probabilities shown above. For example, for any two integers

mi, o € 7,

Pr(Mt(A) — kl + ml,Nt(A) — k,2 4 m2|Mt(7Ag — k,l’ Nt(f) _ kg)
=Pr(M™ = ky + my|ME), = ki, N2\ = k) PN = ky + mo| M2, = ky, N&L = k)

(8.66)

Then it is straightforward to show that, to have a first order A term, the only
possible combinations of (my, my) are {(1,0), (0, 1), (—1,0), (0, —1)}, which under the
proposed parametrization, the joint process only allow one jump during infinitesimal

time which coincide with the bivariate continuous birth and death process.

As the birth rates \; ; and death rate are ;; time homogeneous, so as the parameters
a;, Bij, 1,7 € {1,2}, the transition probabilities stay the same for all time ¢ € [0, 1].
This means that this bivariate birth and death INAR(1) model would result in the
the same dynamic (8.11) when A is small enough. O

8.D Proof of Proposition 8.6

According to Theorem 3.11, Chapter 2 in Jacod and Shiryaev (2013). We need
to make sure the following two sum is finite for any truncation function h before

constructing their discrete Lévy measures.

S B[R0 Fer]] < o0

- (8.67)
SIE[UE A 1] [Fia] <o,

k=1
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where Uy, are increments of any underlying processes. This can be shown straight-

forwardly as the there are only finite number of terms for summation o; < n and

truncation functions are bounded. Then by The Theorem 3.11, the Lévy triplets for

ZM s

By = 23 B[ (Uk)| Fi]

v(Z;10,4] x g) = X0 Blg(Ui) L, 0) | Fir]

(8.68)

We can choose the truncation function h(z) = |z|1s)<1y such that B, is always 0 as

there is no jump with size smaller than 1 in Zt(")

integral:

E[g(Ur) 1, 20| Fr1]

[ ( )1{Uk 1}|-7:k 1] +E[g(_1)1{Uk=—1}|fk71]
Z 1{Uk =n} +9(= )1{Uk=—n}|Fk—1]
o(A?)

=g(DAX,1A + g(—1)uXk—1A + o(A) + T A

=g(D)AX;1A + g(—1)uXk—1A + o(A)

Then it is clear that

v(Z{7;10.] % g) = D (g(DA + g(=D)) Xp1 A + O(A)
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For the bivariate case, the proof is similar, the conditional expectation

E[g(Vi) v, 20,07y [ Fr1]
=Elg(1, O)l{Vk:(LO)T}|Fk*1] + E[g(0, 1)1{Vk:(0,1)T}|-7:k71]
+ E[g(_l’ O)I{Vk:(*l,O)T}LFk—l] + E[g(O, _1)1{V,€:(0771)T}|fk_1]

+ Z Elg(i, )1 iv=gyry [ Fe-1] + Elg(i, =) v, =—jyry [ Fr-1]

+ Z Elg(—i, ) 1iv, =i jyry [ Fe-1] + Elg(—i, =) Liv=(ijyry [ Fr-1]

li]+(j]>1
o(A?)

= <g(1> 0)5‘1 + g(_L 0)/]'1 + g(O, 1)5‘2 + g(ov _1)[1’2) Yk—lA + O(A) + m

= (9(1,0)A1 + g(=1,0)f1; + g(0, DAe + g(0,~1)f1s) Y 1A + 0(A)

(8.70)

Finally the discrete stochastic integral is given by
3 <g(1, 0)A1 + g(—1,0)f1, + g(0, )Xz + g(0, —1),12) Y, A+ 0(A)  (8.71)
k=1

O
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CHAPTER 9

Concluding Remarks and Future Research

This thesis primarily investigates the realm of integer-valued time series and their
linkage with classical point processes, specifically Poisson point processes, and birth-
and-death processes. Focusing on the autoregressive structure within integer-valued
time series, the first two papers (A, B) explore and develop different structure of
univariate and multivariate INAR(1) model and introduce mixed Poisson random
variables in innovations. This novel integration of mixed Poisson random variables
imparts enhanced flexibility to the model, allowing it to accommodate varying levels
of dispersion and correlation within and across count data sequences. Moreover,
paper C develops an expectation and maximization algorithm to facilitate maximum
likelihood estimation methods for previous proposed multivariate INAR(1) model.
This development addresses the complexities in the likelihood function arising from
the binomial thinning (autoregressive component) and diverse mixing densities of

the mixed Poisson variables.

Shifting focus to the classical point processes, Papers D and E endeavor to dis-
cover discrete analogs to continuous point processes. Paper D introduces so called
INARMA with infinity orders, aiming to approximate Poisson point processes The
adoption of infinite orders in this model serves to approximate the decay function
observed in the intensity of point processes. Similarly, Paper E proposes an integer-
valued model tailored to approximate birth-and-death process, where the ’birth’ and
‘death’ events are explicitly modelled through the interplay of Bernoulli and Geo-
metric random variables. In summary, the rationale behind these approximation are
three-folds: (i) Integer-valued models offer explicit formulations of point processes,

enhancing interpretability. (ii) Many datasets lack precise time records for each
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event, typically aggregating data at regular intervals instead. (iii) Integer-valued

models present an alternative methodology for estimating point processes.

9.1 Application of Point Processes

The last two papers focus on theoretical development. However, exploring the prac-
tical applications of these stochastic processes is equally significant. Consider the
Hawkes process, which can be conceptualized as an autoregressive Poisson point
process, enjoy popularity for a long time due to many available inference methods.
The Hawkes process finds diverse applications in finance, epidemiology, sociology
and seismology. In contrast, the dynamic contagion process, which can be regarded
as AMRA point process, received less attention, primarily due to the lack of robust
inference methods. Nevertheless, it’s important to highlight the distinct advantage
of the dynamic contagion process over the Hawkes process, whose immigrant inten-
sity v in equation 7.5 is fixed or deterministic over time. Dynamic contagion process
is useful when the underlying intensity is driven by another independent random
event stream. For example, it is reasonable to adopt dynamic contagion process in
epidemic (COVID-19) modelling Chen et al. (2021) as from general point of view,
the transmission of a disease within a certain area is likely caused by a external
event, e.g. virus carriers from overseas. In insurance modelling, Dassios and Zhao
(2017b) considered a risk process with the arrival of claims modelled by a dynamic
contagion process. Jang and Oh (2020) introduced a bivariate compound dynamic

contagion process for the modelling of aggregate losses from cyber events.

Birth and death processes is relatively simple process. It is a continuous-time Markov
chain that models a non-negative integer number of particles in a system. For the
univariate one, it has been used extensively in many applications including evolu-
tion biology, ecology, population genetics, epidemiology, and queueing theory. Many
applied models require the consideration of two or more interacting populations si-
multaneously to model behavior such as competition, predation, or infection and
so on. Griffiths (1972) proposed bivariate birth-death process to model infectious
disease Malaria. Xu et al. (2015) consider multi-typed birh-death-shift process to
model evolution of mobile genetic elements. More recently, DeWitt et al. (2023) con-
sider multi-typed birth and death process to model the phylodynamics and Azizi and
Salari (2023) applies bivariate birth /death process for condition-based maintenance

scheduling for a continuously monitored manufacturing system.
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9.2 Perspectives on Future Research

The ideas brought forward in this thesis open the door to further research projects

on integer-valued time series.

1. In the multivariate INAR(1) model, one can set some off-diagonal element of
the matrix to be non-zero in equation 5.1 to introduce further cross correla-
tion among the sequences. The challenge here will be the the evaluation of
likelihood function as the non-zero off-diagonal elements will introduce further
discrete convolution in probability transition functions. On the other hand,
one can explore EM algorithm by introducing further latent variables from

binomial parts.

2. On insurance claim regression modelling, based on the multivariate INAR(1)
model proposed in Paper B, one can introduce further heterogeneity by ap-
plying a regression structure on ¢ such that g(¢) = Z'8 where ¢(.) is a link
function and Z’ can be a subset of design matrix of Z = (21, 20, ...,2,)7, see
the description following the equation 5.2. The choice of link function will

depend on the range of parameter ¢.

3. The EM algorithm proposed in paper C still require evaluation of transition
probability in equation 6.22 which always involves discrete convolution and
integrals. One can regard the mixing density function f,(¢) as a prior for
6 and when f,(6) is not a conjugate prior for gamma density n(@|A; k) ,
the integrals inside the probability transition function have to be evaluated
through numerical methods. In multivariate setting, the probability transition
function need a stable and fast computation method for discrete convolutions
and multivariate integrals. One can address this challenge or find a way to
avoid the computation of transition probabilities, e.g. variational inference
method.

4. Unlike the autoregressive INAR(p), the likelihood functions for INMA and
INARMA are difficult to construct as they involve many unobserved vari-
ables, it is the same problem for Cox process and dynamic contagion pro-
cesses. It would be interesting to explore whether there are parametric or
non-parametric ways to estimate INMA(p) models and INARMA (p, ¢) models
so that these classical point process can be applied straightforwardly to the
real data. Non-parametric methods (conditional least square) for INAR(p)

model was purposed in Kirchner (2017).
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5. Similarly, it will be interesting to seek another inference method other than
maximum likelihood estimation for the birth-and-death INAR models pro-
posed in Paper E as the likelihood function is already cumbersome in bivariate
case. While I believe the INAR approximation can be well extent to multi-
variate linear birth and death models, fast inference methods are required to

ensure applicability for such models.
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