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Abstract

This thesis explores two primary themes across �ve scienti�c papers: Integer-value

time series and their relationship with classical point processes.

The �rst part of the thesis focuses on the development and application of Integer-

valued autoregressive (INAR) models, extending from univariate to multivariate

cases, with applications in �nancial and insurance count data. In Paper A, we intro-

duce a new family of binomial-mixed Poisson INAR model of order one, INAR(1), by

incorporating a mixed Poisson component to the innovation of the classical Poisson

INAR(1). This allows for the capture of overdispersion and serial correlation evident

in �nancial count data. Furthermore, we explore its distributional properties, esti-

mation procedure and asymptotic properties and apply the model to iceberg count

data from �nancial system. In Paper B, we extending beyond univariate case, intro-

ducing a novel family of multivariate mixed Poisson-Generalized Inverse Gaussian

INAR(1), MMPGIG-INAR(1), regression models for modelling multivariate count

time series. This family of models can accommodate a wide range of dispersion

and cross-sectional correlation structures due to the �exibility in the parameter

setting of the Generalized Inverse Gaussian. We then illustrate di�erent members

of the MMPGIG-INAR(1) through applying the model to Local Government Prop-

erty Insurance Fund data from the state of Wisconsin. In Paper C, we develop novel

Expectation-Maximization estimation algorithm for maximum likelihood estimation

of bivariate mixed Poisson INAR(1) model. This method is readily extensible to the

multivariate case. We examine three di�erent mixing densities, univariate gamma,

bivariate Lognormal and bivariate copula and demonstrate the algorithm through

�tting the same used in Paper B.

The second part of the thesis shifts focus to integer-valued approximation of clas-

sical point processes and applications of point process on covid data modelling. In

Paper D, we represent the Cox process and the dynamic contagion process, which

is a Hawkes process whose immigration part is a Cox process, as limit of time-

series based point processes, namely integer-valued moving average model (INMA)
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and Integer-valued Autoregressive Moving Average model (INARMA). This would

potentially facilitate the statistical inference of classical point processes. In Paper

E, we propose a new type of univariate and bivariate Integer-valued autoregressive

model of order one, INAR(1), to approximate univariate and bivariate linear birth

and death process with constant rates. Due to the simplicity of Markov structure

of INAR model, we demonstrate through simulation study that the parameters of

linear birth and death process can be estimated through Quasi-likelihood function

of INAR model.
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CHAPTER 1

Introduction

1.1 Integer-Valued Time series

Modelling the integer-valued count time-series has attracted a lot of attention over

last few years in a plethora of di�erent scienti�c �eld such as social sciences, health-

care, insurance, economics and �nancial industry. The standard ARMA model will

inevitably introduce real-valued results, and so is not appropriate for modelling count

data. As a result, many alternative classes of count time series models have been

introduced and explored in the applied statistical literature. An early contribution

has been done by Jacobs and Lewis (1978a,b, 1983), who introduced the discrete

Autoregressive and Moving average model (DARMA) for stationary discrete time

series. However, the correlation structure of DARMA is quite di�erent from the

standard time series model. Later, regarding the univariate case Al-Osh and Alzaid

(1987) and McKenzie (1985) were the �rst to consider an INAR(1) model based on

the so-called binomial thinning operator. This is introduced as counterpart to the

Gaussian AR(1) model for Poisson counts. The idea here is to manipulate the op-

eration between coe�cients and variables, as well as innovation term, in such a way

that the values are always integers. The relationship of coe�cients and variables is

de�ned as α � X � °X
i�1Bi such taht Bi are i.i.d Bernoulli random variables with

success probability α and � denote the thinning operator. The binomial thinning

straightforward to interpret, the probability of survival from the last state. More

importantly, compared to DARMA, INAR(1) has the same autocorrelation struc-

ture as the standard AR(1) model. One of the popular choices is the INAR(1) with
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binomial thinning and Poisson as innovation. The model constructed in this way

has Poisson marginal distribution.

In practice, however, the Poisson assumption (variance equals to mean) will be

violated for most of the time as the data could be over or under dispersion, could have

excessive number of zeros, etc. Consequently, many articles focused on extending

this setup by applying di�erent thinning operators or by varying the distribution of

innovations to accommodate di�erent features exhibited by count data. Common

choices are Bernoulli, Geometric, Poisson, Mixture Poisson, Generalized Inverse

Gaussian. For more details, the interested reader can refer to Weiÿ (2018, 2008b),

Davis et al. (2016b),Scotto et al. (2015), among many more.

On the other hand, the literature which focuses on the multivariate case is less

developed. In particular, Latour (1997) introduced a multivariate GINAR(p) model

with a generalized thinning operator. Karlis and Pedeli (2013) and Pedeli and Karlis

(2011, 2013a,b) focused on the diagonal case under which the thinning operators do

not introduce cross correlation among di�erent counts. In this case, the dependence

structure introduced by innovations. Additionally, Risti¢ et al. (2012), Popovi¢

(2016), Popovi¢ et al. (2016) and Nasti¢ et al. (2016)constructed multivariate INAR

distributions with cross correlations among counts and random coe�cients thinning.

Finally, Karlis and Pedeli (2013) extended the setup of the previous articles by

allowing for negative cross correlation via a copula-based approach for modelling

the innovations.

In count data modelling, mixed Poisson distribution is a common choice as it can

accommodate di�erent features arising from data (dispersion, skewness, excess of

zeros). However, the autocorrelation for such data is usually ignored as there is

no proper model for integer-valued data. Our �rst three papers (A,B,C) propose

models on combining integer-valued time series and mixed Poisson random variables

to obtain a more generic framework to model count data.

In Paper A, we develop a new family of binomial-mixed Poisson INAR(1) (BMP

INAR(1)) processes by adding a mixed Poisson component to the innovations of

the classical Poisson INAR(1) process. Due to the �exibility of the mixed Poisson

component, the model includes a large class of INAR(1) processes with di�erent

transition probabilities. Moreover, it can capture overdispersion features coming

from the data while keeping the innovations serially dependent. We discuss its sta-

tistical properties, stationarity conditions and transition probabilities for di�erent

mixing densities (Exponential, Lindley). Then, we derive the maximum likelihood

estimation method and its asymptotic properties for this model. Finally, we demon-

strate our approach using a real data example of iceberg count data from a �nancial

system.
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In Paper B, In this paper, we present a novel family of multivariate mixed Poisson-

Generalized Inverse Gaussian INAR(1), MMPGIG-INAR(1), regression models for

modelling time series of overdispersed count response variables in a versatile man-

ner. The statistical properties associated with the proposed family of models are

discussed and we derive the joint distribution of innovations across all the sequences.

Finally, for illustrative purposes di�erent members of the MMPGIG-INAR(1) class

are �tted to Local Government Property Insurance Fund data from the state of

Wisconsin via maximum likelihood estimation.

In Paper C, This article considers bivariate mixed Poisson INAR(1) regression mod-

els with correlated random e�ects for modelling correlations of di�erent signs and

magnitude among time series of di�erent types of claim counts. This is the �rst

time that the proposed family of INAR(1) models is used in a statistical or actuarial

context. For expository purposes, the bivariate mixed Poisson INAR(1) claim count

regression models with correlated Lognormal and Gamma random e�ects paired via

a Gaussian copula are presented as competitive alternatives to the classical bivari-

ate Negative Binomial INAR(1) claim count regression model which only allows for

positive dependence between the time series of claim count responses. Our main

achievement is that we develop novel alternative Expectation-Maximization type al-

gorithms for maximum likelihood estimation of the parameters of the models which

are demonstrated to perform satisfactory when the models are �tted to Local Gov-

ernment Property Insurance Fund data from the state of Wisconsin.

Paper A focus on univariate sequence modelling while Paper B considers a simple,

parsimony multivariate integer-valued model for correlated multivariate count data.

As the distribution function as well as the log likelihood function becomes more

complicated in multivariate INAR model, Expectation-Maximization algorithm is

developed for statistical inference for such model which is demonstrated in paper C.

In addition to integer-valued models, there are other classical stochastic process

modelling count data as well, e.g. Poisson point process, birth-and-death process.

Motivated by Kirchner (2016, 2017), one can carefully construct integer-valued mod-

els to approximate Hawkes point processes, and so as other point processes. The

rationale and necessity behind this is straightforward: continuous measurement of

observations is rare in practice while maximum likelihood estimation method for

these stochastic processes rely on continuous observations. Integer-valued time se-

ries, by construction, model discrete observations and hence o�er an alternative

estimation method for these point processes. More importantly, I truly believe that

a nice discrete approximation could promote the usage of classical stochastic mod-

els (Stochastic volatility model and ARCH model). Before approximating them,
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we carefully investigate their mathematical formulation and properties. They are

introduced in the following:

1.2 Cluster Point Processes

In insurance modelling, the Poisson process has been used to as a claim arrival

process. However, the homogeneous intensity assumption is not realistic in practice.

Therefore, an alternative point process was introduced as Cox process, also called

doubly stochastic Poisson Processes. For detailed review, see Cox (1955) Bartlett

(1963) Serfozo (1972) Bening and Korolev (2012). For application on reinsurance,

see Dassios and Jang (2003, 2005, 2008).

The Hawkes Process, which was �rst introduced by in Hawkes (1971a,b), is a self-

exciting point process that its intensity depends on the past of the point process

itself. The Hawkes process can be viewed as a contagion (cluster) process in the sense

that immigrants arrive as a stationary Poisson process and each immigrant acts as

a branching process and generate its o�spring (cluster). Due to its simplicity and

�exibility, the Hawkes process is applied in di�erent areas, for example seismology

in Ogata (1988), epidemiology in Kim (2011), sociology in Mohler et al. (2011), and

�nance.

However, in some context such as modelling the credit contagion in Jarrow and Yu

(2001), the clustering of default is consistent with the Hawkes process, but the de-

fault intensity could be impacted exogenously by other factors, which indicates the

inappropriateness of homogeneous assumption on immigrant processes. To address

this, Dassios and Zhao (2011) introduced the dynamic contagion process by gener-

alizing the Hawkes process with immigrant process as the Cox process, which allows

the cluster centers act as a stochastic process.

1.3 Birth and Death Processes

The simple linear birth and death process, which was �rst introduced by Feller

(1939), is a widely used Markov model with applications in population growth, epi-

demiology, genetics and so on. The basic idea of this process is that the probabilities

of any individual giving birth to a new individual, or any individual dying, are con-

stant at any moment in time and all individuals are independent of each other. Many

statistical properties, including moments, distribution function, extinction probabil-

ity, or some other cumulative distribution of interests, are explicitly derived in the
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literature; see for example, Kendall (1949). The statistical inference for simple birth

and death processes is then developed by Keiding (1975), where maximum likeli-

hood estimators and other asymptotic results are discussed. Since the distribution

function of simple birth and death processes is explicit, the construction of the like-

lihood function is straightforward. However, it is pointed out in the literature that

the transition probability is actually cumbersome and numerically unstable when

the size of population is large over time. At the same time, a variety of alternative

estimation methods have been proposed. For example, quasi- and pseudo - likeli-

hood estimators Chen and Hyrien (2011) Crawford et al. (2014) addressed it as a

missing data problem and apply an EM algorithm to maximize it. Tavaré (2018)

found those transition probabilities by numerical inversion of the probability gener-

ating function and then applied Bayesian methods to perform estimation. Davison

et al. (2021) adopted a saddle point approximation method to further improve the

accuracy of transition probabilities.

The remaining two papers (D E) carefully construct integer-valued models to ap-

proximate classical point processes. We proved that the proposed integer-valued

models converge weakly to these point processes. They are summarised in the fol-

lowing:

In Paper D, we consider Poisson thinning Integer-valued time series models, namely

integer-valued moving average model (INMA) and Integer-valued Autoregressive

Moving Average model (INARMA), and their relationship with cluster point pro-

cesses, the Cox point process and the dynamic contagion process. We derive the

probability generating functionals of INARMA models and compare to that of clus-

ter point processes. The main aim of this paper is to prove that, under a spe-

ci�c parametric setting, INMA and INARMA models are just discrete versions of

continuous cluster point processes and hence converge weakly when the length of

subintervals goes to zero.

In Paper E, we propose a new type of univariate and bivariate Integer-valued autore-

gressive model of order one (INAR(1)) to approximate univariate and bivariate linear

birth and death process with constant rates. Under a speci�c parametric setting, the

dynamic of transition probabilities and probability generating function of INAR(1)

will converge to that of birth and death process as the length of subintervals goes

to 0. Due to the simplicity of Markov structure, maximum likelihood estimation is

feasible for INAR(1) model, which is not the case for bivariate and multivariate birth

and death process. This means that the statistical inference of bivariate birth and

death process can be achieved via the maximum likelihood estimation of a bivariate

INAR(1) model.
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The thesis is organized as follows: in Chapter 2, we show detail de�nitions of Integer-

valued models and our main contributions on this �eld. In Chapter 3, de�nitions of

point processes are given and we show the way to approximate these point processes

by manipulating operators and di�erent discrete random variables in integer-valued

models. In the following chapters 4-8 are accompanying papers (A, B, C, D, E, F).

The �nal chapter summarises the overall thesis, discussing potential applications

and perspectives for future research.
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CHAPTER 2

Integer-value time series

Statistical data arising from many areas are expressed in terms of discrete values,

mostly non-negative, e.g. patients in a hospital, employees of a company, item sold

from a grocery, insurance claims, trading volume from a �nance sector. These data

are recorded on a regular basis, for example number of item sold is recorded everyday

for a grocery while number of insurance claims are recorded on monthly basis or even

yearly basis. Then we have a data set that tracks the sample over time and it forms

a time series Xt. If Xt are independent, one can �nd a discrete random variable

to model it and popular choices are Poisson and negative binomial distribution.

However, in many cases, these data exhibits autocorrelation and standard time series

model (ARIMA) will inevitably introduce real-values and even negative values.

To overcome this, integer-valued time series model was introduced in 1980s and the

classical Inter-valued model of order-one (INAR(1)) is de�ned as:

De�nition 2.1. Let Xt be a non-negative integer-valued time series and εt be i.i.d

discrete random variable with mean µ and �nite variance σ2. The INAR(1) model

is de�ned as

Xt � α �Xt�1 � εt, α P r0, 1s (2.1)

The � is a binomial thinning operator such that α �X � °X
i�1Bi where Bi are i.i.d

Bernoulli random variable with success probability α. Then α � X as a whole is a

binomial random variable.

The INAR(1) model de�ned in this way simply states that the components of the

process Xt are either the survivals from previous time Xt or new 'immigrants' from
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the innovations. The binomial thinning operator shares several properties with the

multiplication operators,

� Commutativity: changing the order will not change the distribution, i.e.

α1 � pα2 �Xq d� α2 � pα1 �Xq d� α1α2 �X, α1, α2 P r0, 1s

� Linear with respect to expectation:

Erα1 �Xs � α1ErXs

� Distributive property,

α1 � pX � Y q d� α1 �X � α1 � Y, X, Y P N0 and X |ù Y

2.1 Distributional and Statistical Properties

These nice properties of binomial thinning operator enable us to express autoregres-

sive form into moving average form:

Xt � α �Xt�1 � εt � α2 �Xt�2 � εt � α � εt�1 � αt �X0 �
t�1̧

j�0

αj � εt�j (2.2)

It implies that the dependence of Xt on the sequence εt has exponential decay which

matches the real-valued AR(1) model. On the other hand, the limiting distribution

of Xt is also given by the equation (2.2). Denote the probability generating function

of a random variable X as ΦXpθq � ErθXs. Conditional on the initial variable X0,

the distribution of Xt can be characterized as:

ΦXtpθq � Erθαt�X0s
t�1¹
j�0

Erθαj�εt�j s

� ΦX0p1� αt � αtθq
t�1¹
j�0

Φεp1� αj � αjθq

As t goes to in�nity, the convergence of this product sequence is guaranteed by two

conditions: α   1 and Erεs   8. The convergence indicates existence of limiting

distribution of ΦX � limtÑ8 ΦXt . Together with the irreducible and aperiodic of Xt,
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we can say that the limiting distribution is the unique stationary distribution of Xt.

Instead of using in�nity product, the recursive relationship in (2.2) leads to another

simple expression for probability generating function of stationary distribution of X

ΦXpθq � ΦXp1� α � αθqΦεpθq (2.3)

This equation is related to the de�nition of a self-decomposable distribution. For

example, if ε is a Poisson random variable with rate λ, the probability generating

function of X is given by

ΦXpθq � exp

"
λ

1� α
p1� θq

*
(2.4)

It is again a Poisson random variable with rate λ
1�α . Many other well-known discrete

distributions belong to the this class, e.g. negative binomial, generalized Poisson,

discrete stable distribution.

It is then straightforwardly to derive unconditional moments and stationary mo-

ments via above distributional properties.

� Unconditional mean ErXts � αErXt�1s � µ � αtErX0s � µ
°k�1
j�0 α

j

� Unconditional variance

VarpXtq � α2VarpXt�1q � αp1� αqErXt�1s � σ2

� α2tV arpX0q � p1� αq
ţ

j�1

α2j�1ErXt�js � σ2
ţ

j�1

α2pj�1q

� Stationary mean ErXs � µ
1�α . Stationary Variance VarpXq � αµ�σ2

1�α2

� Unconditional covariance function γpkq � CovpXt�k, Xtq

γpkq � CovpXt�k, αk �Xt�kq � Cov

�
Xt�k,

k�1̧

j�0

αj � εt�j
�

� αkVarpXt�kq �
k�1̧

j�0

αjCovpXt�k, εt�jq

� αkγp0q
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2.2 Parameter estimation and Forecasting

There are a lot of research papers covering the topic on estimating the INAR-type

models. For the �rst order INAR model, the estimation is usually straightforward

as Xt is a Markov process and the transition probability is the convolution of inno-

vations and binomial random variable. The likelihood function `pΘq, where Θ is the

parameters set of the INAR model, is given by

`pΘq �
¹
t�1

�
mintXt,Xt�1u¸

s�0

Prpα �Xt�1 � Xt � s|Xt�1qPrpεt � sq
�

(2.5)

Therefore, maximum likelihood estimation method would be convenient to apply.

Apart from that, other classical estimation methods: conditional least square es-

timation, moments estimation (Yule-Walker equations) as well as their asymptotic

properties are also available in literature. It shows that for small value of α e.g.

α   0.2, these methods have little di�erence in terms of bias and MSE while maxi-

mum likelihood method yields the best result when α ¡ 0.5.

On the other hand, the forecast procedure of INAR model have also been well

explored in the literature. The conditional distribution of Xt�k given Xt is

Xt�k � αk �Xt �
k�1̧

j�0

αj � εt�k�j (2.6)

The classical way to make a prediction is to minimising the L2 norm which yields a

conditional expectation ErXt�k|Xts as k-step ahead prediction

X̂t�k � ErXt�k|Xts � α̂kXt �
k�1̧

j�0

α̂jErεt�k�js (2.7)

The major concern for this prediction is that it will hardly generate integer-value

response which is not a coherent prediction. To maintain the integer-valued nature

of this type of model, one can instead minimise the L1 norm,

X̂t�h � argmin
Xt�h

Er|Xt�h �Xt||Xts (2.8)

i.e. the median of conditional distribution, to obtain a integer-valued prediction. As

pointing out by Freeland and McCabe (2004), one need to be careful on this point
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estimate, as it may be misleading when the support of the Xt�h is small.

2.3 INAR model with correlated innovations (Pa-

per A)

Before constructing the model, we need to introduce a special random variable,

mixed Poisson random variable. Most of the time, assuming that the count data are

generated from Poisson distribution seems unrealistic as the variance and mean of

the data are di�erent from each other signi�cantly. Then a new family of Poisson

distribution is purposed by introducing another random variable to model the rate

of Poisson distribution.

Formally speaking, there are two de�nitions and they are di�erent in the way intro-

ducing the mixing random variable to the rate parameter.

De�nition 2.2. X is said to follow mixed Poisson distribution if it has following

probability mass function

PrpX � xq �
» 8

0

e�θθx

x!
gpθqdθ (2.9)

That is X � Poipθq where θ is called mixing random variable with non-negative

support and gpθq is called mixing density function of θ.

De�nition 2.3. Suppose θ is a non-negative support random variable with unit

expectation and density function gpθq, X is said to follow mixed Poisson distribution

if it has following probability mass function

PrpX � xq �
» 8

0

e�λθpλθqx
x!

gpθqdθ (2.10)

That is X � Poipλθq. The constraint on expectation of the mixing random variable

is to avoid identi�cation problem when it comes to statistical inference of ε.

The role of mixing random variable looks a bit more clear in the second de�nition as

it controls only the variation of X and λ is always the mean of X. Well-known dis-

crete distribution can be recovered by suitable choice of mixing density, for example

geometric, negative binomial random variable are mixed Poisson with exponential
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and gamma as mixing density, respectively. Due to its �exibility, mixed Poisson dis-

tribution is widely used in count data modelling and one can choose a suitable choice

mixing density to adapt the feature of the real data, e.g. under or over dispersion.

In Weiÿ (2015), the classical Poisson INAR(1) was extended by allowing the inno-

vations ε to depend on the current state of the process Xt�1, i.e. ε � PopaXt�1 � bq
where a and b are some positive constants. The innovation with this de�nition is

separable in the sense that εt � a � Xt�1 � εt, where a � Xt�1 � °Xt�1

i�1 Ui, with

Ui
i.i.d� Popaq and εt � Popbq. To introduce further heterogeneity while maintaining

the model structure, we extend this by allowing Ui to be a mixed Poisson random

variable.

De�nition 2.4. The Binomial Mixed Poisson integer-valued Autoregressive model

(BMP INAR(1)) is de�ned by the following equations

Xt�1 � p1 �Xt � εt�1

� p1 �Xt � ϕ �g Xt � Zt�1

p1 �Xt �
Xţ

k�1

Vk, ϕ �g Xt �
Xţ

i�1

Ui

P pUi � xq �
» 8

0

e�θiθxi
x!

gpθi|ϕqdθi,

(2.11)

� � is a binomial thinning operator such that Vi are i.i.d Bernoulli random vari-

ables with parameter p1 P r0, 1s

� tZtut�1,2,... are i.i.d Poisson random variables with rate λ1 ¡ 0

� �g is a reproduction operator such that Ui are independent Mixed Poisson dis-

tributed with mixing density function gpθi|ϕq

� �g and � are independent of each other so that Ui and Vk are independent of

each other.

We extend the classical de�nition of binomial thinning operator to as a reproduction

operator �g. The model can be seen as a population model where binomial part indi-

cates the survivors from the last state, the mixed Poisson part is the total o�spring

and the innovation part are new immigrants. From statistical inference point of view,

it would be nice that each component in equation (2.11) has a explicit distribution

function, i.e. we want to make sure the random variable Yt�1 � ϕ �g Xt has explicit
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distribution rather than something expressed in integral form. Its distribution is

given by

PrpYt�1 � y|Xt � nq � E
�
e�
°n
i�1 θip°n

i�1 θiqy
y!

�
, (2.12)

where the expectation is taken over all the independent θi. We let θi be random

variable from exponential family so that many of them have the 'additivity' prop-

erty, i.e. the distribution
°
i θi is known given the distribution of θi. For example,

Gaussian, exponential, Gamma, Geometric, Bernoulli and so forth. In paper, we

explore two mixing density, exponential and Lindley density.

� In the exponential case, gpθq � 1
ϕ
e�

1
ϕ
θ, the distribution of Ui and Yt�1 are

given by

PrpUi � xq �
�

1

1� ϕ


�
ϕ

1� ϕ


x

, x � 0, 1, . . .

PrpYt�1 � y|Xt � nq �
�
y � n� 1

y


�
1

1� ϕ


n�
ϕ

1� ϕ


y (2.13)

� In Lindley case where gpθq � ϕ2

1�ϕpθ � 1qe�ϕθ , the distribution of Ui and Yt�1

are given by

PrpUi � xq � ϕ2pϕ� 2� xq
p1� ϕqx�3

, x � 0, 1, . . .

PrpYt�1 � y|Xtq �
�

ϕ̃2

1� ϕ̃


n ņ

k�0

Ck
nC

y
n�k�y�1p1� ϕ̃q�pn�k�yq

ϕ̃ � 1� ϕ�apϕ� 1q2 � 8ϕ

2ϕ

(2.14)

In general, the stationary condition for this model given by p � µg   1 where

µg � ErUis and the moments are given by following proposition

Proposition 2.1. Assume p1 � µg   1. The stationary moments of Xt is given by

ErXts � µx � λ1

1� p1 � µg

V arpXtq � σ2
x � µx

1� p2
1 � σ2

g

1� pp1 � µgq2

CovpXt, Xt�kq � γpkq � pp1 � µgqkσ2
x.

(2.15)

From statistical inference point of view, we adopt the maximum likelihood estima-

tion method as all the components in equation (2.11) has precise distribution func-
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tions and likelihood function can be constructed straightforwardly. The asymptotic

property of the estimator are given by another proposition

Proposition 2.2. Suppose we have a random sample tX1, X2, . . . , Xnu. Let p �
pp1, ϕ, λ1q denote the parameters vector for the stationary BMP INAR(1) model.

The maximum likelihood estimator p̂ has the following asymptotic distribution:

?
npp̂� pq � Np0, I�1q, (2.16)

where

H �

$''''&
''''%
`p1p1 `p1ϕ `p1λ1

`ϕp1 `ϕϕ `ϕλ1

`λ1p1 `p1ϕ `λ1λ1

,////.
////-

I � �ErHs (2.17)

Those `xy � B2`
BxBy are second partial derivatives of the log likelihood function of Xt.

A simulation study on asymptotic property as well as application on �nancial count

data is conducted in paper and we observed an improvement compared to the model

from Weiÿ (2008a).

2.4 Multivariate INAR model with GIG family (Pa-

per B)

In insurance claim modelling, it is usually the case that one would have a single

policy that covers di�erent types of claim. In such case, a multivariate count data

modelling is needed to model the joint dynamic. By extending univariate setting,

we have the following de�nition

De�nition 2.5. Let X and R be non-negative integer-valued random vectors in Rm.

Let P be a diagonal matrix in Rm�m with elements pi P p0, 1q. The multivariate

Poisson-Generalized Inverse Gaussian INAR(1) is de�ned as

Xt � P �Xt�1 �Rt �

�
��������

p1 0 . . . 0 0

0 p2 . . . 0 0

...
. . .

...

0 0 . . . pm

�
��������
�

�
��������

X1,t�1

X2,t�1

...

Xm,t�1

�
��������
�

�
��������

R1,t

R2,t

...

Rm,t

�
��������

(2.18)
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� � is binomial thinning operator

� Conditional on the last state, pi � Xi,t and pj � Xj,t are independent of each

other, @i � j.

� tRi,tui�1,...,m are mixed Poisson random variables Popθtλi,tq with the random

e�ect θt and distribution function Gpθq

� The rate λi,t is characterized by its observed covariate zi,t P Rai�1 for some

positive integer ai and they are connected through a log link function such that

logpλi,tq � zTi,tβi

Note that tRi,tui�1,...,m share the same random e�ect θt with mixing distribution

Gpθq, which means the dependent structure among Xi,t can be controlled by the

choice of distribution and its corresponding size of parameters. In this case, the

correlation is mainly characterized by mixed Poisson random variable. The choice

of θt is Generalized inverse Gaussian distribution (GIG) as includes a wide range of

distribution like gamma, inverse Gaussian and inverse gamma and it can be useful

to capture di�erent level of over dispersion presented in the data. The density of

GIG is given by:

gpθq � pψ{χq ν2
2Kνp

?
ψχqθ

ν�1 exp

"
�1

2

�
ψθ � χ

θ

	*
, (2.19)

where �8 ¤ ν ¤ 8, ψ ¡ 0, χ ¡ 0 and Kνpωq is the modi�ed Bessel function of the

third kind of order ν and argument ω such that

Kνpωq �
» 8

0

zν�1 exp

"
�1

2
ωpz � 1

z
q
*
dz

The simple structure of Xt ensure the feasibility of maximum likelihood estimation

method. To evaluate the transition probability of Xt given Xt�1, it is not straight-

forward to �nd out the joint distribution of Rt�1 as they are correlated of each other.

The joint distribution is given by

fφpk, tq � PpR1,t � k1, . . . , Rm,t � kmq

� E rPpR1,t � k1, . . . , Rm,t � km|θtqs

�
m¹
j�1

λ
kj
j,t

kj!

» 8

0

e�θ
°m
i�1 λi,tθ

°m
i�1 kidGpθq

(2.20)
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In the paper, we investigate following distributions and their moments property

which are summarize in the following tables

Table 2.1: Parametrization of mixing density based on GIG density

Mixing density ψ χ ν Range of parameter
Gamma 2φ 0 φ φ ¡ 0

GIG with unit mean cφ φ
c

�xed constant in R c � Kνpφ�1q
Kνpφq , φ ¡ 0

Inverse Gamma 0 2φ �φ� 1 φ ¡ 1

Table 2.2: Moments for the random e�ect θt. Ex.Kurtosis = Kurtosis - 3

Mixing density gpθq Variance Skenwness Ex.Kurtosis
Gamma 1

φ
2?
φ

6
φ

Inverse Gaussian 1
φ2

3
φ

15
φ2

GIG ν � �3
2

1
φ

φ
3
2�φ 1

2

φ2
3�12φ�15φ2

φ3

Inverse Gamma 1
φ�1

4
?
φ�1

φ�2
6p5φ�1q

pφ�2qpφ�3q

We then further explores the probability functions, maximum likelihood estimation

of MINAR-GIG model, prediction as well as application on insurance claim data.

2.5 EM algorithm for Multivariate INARmodel (Pa-

per C)

The �exibility of mixed Poisson distribution enable the MINAR(1) to be adaptive to

practical data. However, the estimation of such model would not be trivial in some

cases. For example, log-normal mixing density. In the paper, we investigate di�er-

ent types of mixing densities and derive their corresponding expectation maximum

algorithm. For illustrations, we examine the following bivariate mixing densities.

(a) Univariate Gamma density

In this case, the bivariate mixed Poisson regression model shares the same

random e�ect N
piq
t � Poispλi,tθq i � 1, 2. Denote the mixing density function

as fφpθq � fφpθq and it has following expression

fφpθq � φφ

Γpφqθ
φ�1e�φθ, (2.21)
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which has unit mean and variance 1
φ
. Then the unconditional probability mass

function fPGpk, tq of Nt :� pN p1q
t , N

p2q
t q can be written down in a closed form

fPGpk, tq � λ1,t

k1!

λ2,t

k2!

» 8

0

e�pλ1,t�λ2,tqθθk1�k2fφpθqdθ

� Γpφ� k1 � k2q
ΓpφqΓpk1 � 1qΓpk2 � 1q

φφλk11,tλ
k2
2,t

pφ� λ1,t � λ2,tqφ�k1�k2 .
(2.22)

(b) Bivariate Lognormal density

Suppose now the random vector ε � pε1, ε2q follows bivariate normal distribu-

tion, with mean vector p�φ21
2
,�φ22

2
q and covariance matrix Σ

Σ �

�
�� φ2

1 ρφ1φ2

ρφ1φ2 φ2
2

�
�� (2.23)

Then the random e�ect vector θ � eε � peε1 , eε2q has Lognormal distribution

with unit mean. Denote the density function of ε as fNΣ and fLNΣ for Lognormal

density. Then they have the following expressions

fNΣ pεq �
1

2πσ1σ2

a
1 � ρ2

� exp

#
�

1

2p1 � ρ2q

��
ε1 � 0.5σ2

1

σ1


2

� 2ρ

�
ε1 � 0.5σ2

1

σ1


�
ε2 � 0.5σ2

2

σ2



�

�
ε2 � 0.5σ2

2

σ2


2
�+

fφpθq �
1

θ1θ2
fNΣ plog θq � fLNΣ pθq.

The unconditional distribution fPLNpk, tq of Nt is expressed as a double inte-

gral

fPLNpk, tq �
» 8

0

» 8

0

λk11,t

k1!

λk22,t

k2!
e�λ1,tθ1e�λ2,tθ2θk11 θ

k2
2 f

LN
Σ pθqdθ1dθ2

�
»
R

»
R

λk11,t

k1!

λk22,t

k2!
expt�λ1,te

ε1 � λ2,te
ε2 � k1ε1 � k2ε2ufNΣ pεqdε1dε2.

(2.24)

All the double integrals with respect to Lognormal density fLNΣ can be trans-

formed into double integrals with respect to normal density fNΣ so that they

can be evaluated by Gauss-Hermite quadrature.

(c) Gaussian copula paired with Gamma marginals

Suppose now the random vector θ is distributed as a meta Gaussian cop-

ula such that its marginals are two independent Gamma random variables
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with parameter pφ1, φ2q respectively. De�ne uniform random vector u �
pFφ1pθ1q, Fφ2pθ2qq. The distribution function FGCpθq and density function

fGCpθq can be written as

FGCpθq � Cρpuq � FρpΦ�1pu1q,Φ�1pu2qq

fφpθq � fGCpθq � fρpΦ�1pu1q,Φ�1pu2qq
fsnpΦ�1pu1qqfsnpΦ�1pu1qqfφ1pθ1qfφ2pθ2q

:� cρpuqfφ1pθ1qfφ2pθ2q,

(2.25)

where fρp., .q, Fρp., .q are the density function and cumulative distribution of

bivariate normal random variable with the following expression

fρpx1, x2q � 1

2π
a

1� ρ2
exp

"
�1

2

x2
1 � 2ρx1x2 � x2

2

1� ρ2

*
. (2.26)

The Φpxq is the cdf of standard normal random variable with Φ�1pxq as its
quantile function and fsnpxq is the density function of the standard normal

random variable. Finally, fφipxq and Fφipxq are the pdf and cdf of Gamma

density function, for i � 1, 2. Then a bivariate Poisson Gamma random vector

is constructed as N
piq
t � Poispλi,tθiq, i � 1, 2 with probability mass function

fPGCpk, tq such that

fPGCpk, tq �
λk11,t

k1!

λk22,t

k2!

» 8
0

» 8
0

expt�λ1,tθ1 � λ2,tθ2uθ
k1
1 θk22 fGCpθ1, θ2qdθ1dθ2

�
λk11,t

k1!

λk22,t

k2!

» 1

0

» 1

0

e�λ1,tF
�1
φ1

pu1q�λ2,tF
�1
φ2

pu2qF�1
φ1
pu1q

k1F�1
φ2
pu2q

k2cρpu1, u2qdu1du2

Then the double integral can be evaluated by Gauss-Legendre quadrature.

In bivariate case of equation (2.18) where m � 2, the log likelihood function is

de�ned as:

`pΘq �
ņ

t�1

log

�
s1,t¸
k1�0

s2,t¸
k2�0

fp1pk1, X1,tqfp2pk2, X2,tqfRpX1,t�1 � k1, X2,t�1 � k2q
�

si,t � mintXi,t�1, Xi,tu, for i � 1, 2

Given the observed bivariate sequence tXtut�1,...,n. Let Yi,t � pi � Xi,t�1 and Θ �
tp1, p2,β1,β2,φu be the parameter space for this model. Suppose now we observe

the latent variable tYtut�1,...n and tθtut�1...n, then the complete log likelihood function
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becomes

`pΘ|Y,θq9
ņ

t�1

2̧

i�1

pYi,t log pi � pXi,t � Yi,tq logp1� piqq

�
ņ

t�1

2̧

i�1

pRi,t logpλi,tq � λi,tθi,tq �
ņ

t�1

log fφpθq.
(2.27)

De�ne the following posterior density functions

π1py|Θpjq,Xt,Xt�1q � fRpXt�1 � yq±2
i�1 fpipyi, Xi,t�1q

PpXt|Xt�1q
π2pθ|Θpjq,Rtq � ηpθ|λt,Rtqfθpφq³8

0

³8
0
ηpθ|λt,Rtqfφpθqdθ1dθ2

,

ηpθ|λt,ktq � e�λ1,tθ1�λ2,tθ2θk1,t1 θ
k2,t
2

(2.28)

De�ne the posterior expectations with respect to real-value functions hp., .q

Epjqy,trhpyqs �
s1,t�1¸
y1�0

s2,t�1¸
y2�0

hpyqπ1py|Θpjq,Xt,Xt�1q

Epjqθ,trhpθq|Rts �
» 8

0

» 8

0

hpθqπ2pθ|Θpjq,Rtqdθ1dθ2.

(2.29)

� E-step: Evaluating the Q function QpΘ; Θpjqq given the the parameters esti-

mated in the j-th iteration,

QpΘ; Θpjqq �
ņ

t�1

2̧

i�1

pypjqi,t log pi � pXi,t�1 � y
pjq
i,t q logp1� piqq

�
ņ

t�1

2̧

i�1

prpjqi,t logpλi,tq � λi,tθ̂
pjq
i,t q �

ņ

t�1

Epjqy,trEpjqθ,trlog fφpθq|Rtss

y
pjq
i,t � Epjqy,trYis, r

pjq
i,t � Xi,t � y

pjq
i,t , θ̂

pjq
i,t � Epjqy,trEpjqθ,trθi|Rtss.

(2.30)

After breaking down the log likelihood function, it is obvious that except for

the log likelihood contributed by binomial distribution, the rest of the terms are

almost the same as that of the Q-function of bivariate mixed Poisson regression

model discussed in the last session, which means the updating procedure for

βi,φ will be exactly the same, but we need to evaluate di�erent posterior

expectations in this case.
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� M-step: Similarly, we apply the Newton-Raphson algorithm to update the

parameters. Based on the structure of QpΘ; Θpjqq, the parameters can be

updated separately for binomial part p, Poisson part βi and random e�ect

part φ

� The binomial part can be updated simply as the following gradient func-

tion has a unique solution

gppiq �
°n
t�1 y

pjq
i,t

pi
�

°n
t�1pXi,t�1 � y

pjq
i,t q

1� pi
� 0

p
pj�1q
i �

°n
t�1 y

pjq
i,t°n

t�1Xi,t�1

, i � 1, 2

y
pjq
i,t �

$''&
''%

p
pjq
i Xi,t�1PpXt�1i|Xt�1�1iq

PpXt|Xt�1q , Xi,t � 0 and Xi,t�1 � 0

0, otherwise

11 � p1, 0qT 12 � p0, 1qT .

(2.31)

� For the Poisson part, the updating equations are the same with di�erent

posterior expectation

β
pj�1q
i � βpjqi �H�1pβpjqi qgpβpjqi q, i � 1, 2

gpβpjqi q � ZT
i V

pgq
i Hpβpjqi q � ZT

i D
pHq
i Zi

V
pgq
i �

�!
ki,t � λ

pjq
i,t θ̂

pjq
i,t

)
t�1,...,n




D
pHq
i � diag

�!
�λpjqi,t θ̂pjqi,t

)
t�1,...,n



.

(2.32)

Note that when the mixing density fφpθq is univariate Gamma, the pos-

terior expectation for θ has a simple expression

θ̂
pjq
t � θ̂

pjq
1,t � θ̂

pjq
2,t �

φpjq � r
pjq
1,t � r

pjq
2,t

φpjq � λ
pjq
1,t � λ

pjq
2,t

.

� Similarly, for the random e�ect part φ,
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(a) Univariate Gamma density

φpj�1q � φpjq � gpφpjqq
hpφpjqq ,

gpφpjqq � nplog φpjq �Ψpφpjqq � 1q �
ņ

t�1

�
Epjqy,trEpjqθ,t rlog θ|Rtss � θ̂

pjq
t

	

hpφpjqq � nppφpjqq�1 �Ψ
1pφpjqqq,

(2.33)

(b) Bivariate Lognormal

φpj�1q � φpjq �H�1pφpjqqgpφpjqq

gpφpjqqr �
ņ

t�1

Epjqy,t
�
Epjqε,t

�B log fNΣ pεq
Bφr

|Rt

��

Hpφpjqqr,s �
ņ

t�1

Epjqy,t
�
Epjqε,t

�B2 log fNΣ pεq
BφrBφs

|Rt

��
,

(2.34)

(c) Gaussian copula paired with Gamma marginals

φpj�1q � φpjq �H�1pφpjqqgpφpjqq

gpφpjqqr �
ņ

t�1

Epjqy,t
�
Epjqθ,t

�B log fGCpθq
Bφr

|Rt

��

Hpφpjqqr,s �
ņ

t�1

Epjqy,t
�
Epjqθ,t

�B2 log fGCpθq
BφrBφs

|Rt

��
.

(2.35)

Remark This model as well as the EM algorithm can be extent to multivariate

case straightforwardly. All the steps and the general form of the formula of the EM

algorithm in the multivariate case are exactly the same. The only problem is that

it would become cumbersome to evaluate the transition probability PpXt|Xt�1q as
dimension of Xt increases. In that case, we need to turn Monte Carlo EM algorithm.

The rest of paper implement the above proposed method on insurance data and

compared their predictive performance.
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CHAPTER 3

Point Processes

A point process models the occurrences of some events of interest over time. We

consider the point process on a real half time R� which usually refers to the time

t. From counting measure prospective, a point process N on the state space R� is a

measurable mapping from probability space pΩ,F ,Pq into pN#
R� ,BpN#

R�qq

N : Ω ÞÑ N#
R� (3.1)

such that NpAq is an integer-valued random variable for each bounded A P BpR�q.
N#

R� is the family of all boundedly �nite integer-valued measures µ P M#
R� . For

example, let A � pa, bs, a, b P R�, then the mapping NpAq : pΩ,Fq ÞÑ N0 de�nes

a random variables that counts the number of events that happen during the time

interval pa, bs. The distribution of the such point process is actually de�ned by the

joint distribution of �nite number of such random variables NpA1q, . . . NpAkq for
some k ¡ 0. Usually, it is convenient to assume that the following

1. The point process is stationary. Mathematically speaking, the joint distribu-

tion of

NpA1 � tq, . . . , NpAk � tq (3.2)

does not depend on t ¡ 0 but only depends on the size of the set A1, . . . , Ak

(length of the interval). In other words, the event occurrence pattern will not

change over time.
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2. The point process is simple and crude. This is characterized by the following

probabilities:

PrpNpttuq P t0, 1uq � 1, @t ¡ 0.

PrpNpp0,∆sq ¥ 2q � op∆q, ∆ Ó 0

(3.3)

That is, there won't be any chance to observe more than one event at any

instant time and the probability that more than 1 event occur in interval that

is negligibly small.

One important characterization of a point process is its intensity process λt. For

a stationary point process, the existence of λt is guaranteed by the (Khinchin's

Existence Theorem, proposition 3.3.I Daley and Vere-Jones (2003)) and it is usually

de�ned as

λt � lim
∆Ó0

ENppt, t�∆sq
∆

(3.4)

It represents the expected number of event occurrence in an unit length interval. In

particular, we focus on a family of point processes, called Poisson point processes

which is de�ned by a set of probabilities:

PrpNppt, t�∆sq � 1q � λt∆� op∆q

PrpNppt, t�∆sq � 0q � 1� λt∆� op∆q

PrpNppt, t�∆sq ¥ 2q � op∆q

(3.5)

When λt � µ where µ is a �xed constant, the above probabilities yield a well-known

homogeneous Poisson process and Nppa, bsq is a Poisson random variable with rate³b
a
λtdt � pb � aqµ. One interesting property of this Poisson process is that if there

are n events generated by this process, these n points are uniformly distributed over

the interval pa, bs. This is usually not the case in practice. Here are some examples:

1. When counting the number of passengers in tube station over weekday, it will

be more crowded during the peak hours.

2. The relevant insurance claims are more intense in a certain area when it su�ers

from severe weathers or natural hazards.

3. The volatility of a �nancial instrument persists over a certain period.
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When the counting data shows a obvious seasonal pattern, or other patterns that can

be described by a deterministic function, one can use such function to formulating

λt, e.g. λt � b sinptq� c. In other cases, by generalizing the idea from mixed Poisson

distribution, one can introduce a random variable or random process into the inten-

sity process to accommodate di�erent features shown from data. In other words, It

is usually straightforward to construct a Poisson point process by formulating the

λt.

3.1 Cluster Point Process

In the following, we are going to brie�y introduce Cox process, Hawkes process, and

dynamic contagion process. The term 'cluster' is a way to represent these processes,

which can help better understand how these processes work.

De�nition 3.1. The (Marked) Cox process with shot-noise intensity, also called

doubly stochastic process, is a cluster point process N pCq with stochastic intensity

λpCq such that

λ
pCq
t �

» t

0

Υifpt� ciqdN�ptq �
N�
ţ

i:ci t
Υifpt� ciq. (3.6)

� N�
t � tciui�1,2,... are the arrival times of the Poisson process with the constant

rate ρ ¡ 0

� tΥiu are i.i.d externally excited jump sizes, realised at times tciu, with distri-

bution Hpxq, mean µΥ and Laplace transform ĥpuq

� fpuq is an Riemann integrable function for any bounded interval in R�

The general de�nition of Cox process is given by De�nition 6.2.I in Daley and Vere-

Jones (2003) where the stochastic part is driven by another random measure. We are

particularly interested in this shot-noise version (for the following point processes

as well) because we believe that the exogenous random shock Υi triggered from N�

are temporary and controlled by fp.q. For example, a hail N� weather happens in a

certain area, the severity of this is described by Υi and property related insurance

claim intensity λ
pCq
t will increase but decay over time fpq as the hail will stop an

after a time period.

The cluster representation of this point process is somehow obvious: the cluster

centers ci are generated by N� which will not be counted into N pCq. Then clusters
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are then formed by inhomogeneous Poisson processes with intensity Υi

³t
0
fpt� ciqdt

for all i : ci   t.

De�nition 3.2. The (Marked) Hawkes process is a self-exciting point process N pHq

with stochastic intensity λpHq such that

λ
pHq
t � ν �

» t

0

χiηpt� τiqdN pHqptq � ν �
N
pHq
ţ

i:τi t
χiηpt� τiq, (3.7)

� ν is a positive constant.

� N
pHq
t � tτiui�1,2,... are the event arrival times of the Hawkes process itself.

� tχiu are i.i.d self-exciting jump sizes, realised at times tτiu, with distribution

Gpyq, mean µχ and Laplace transform ĝpuq. They are independent of tΥiu

� fpuq is an Riemann integrable function for any bounded interval in R�

From the integral form of intensity process, this is a clearly 'autoregressive' point

process such that the intensity process depends on the trajectory of the point process

itself. Apart from that, the likelihood function of this point process is straightfor-

ward to construct and there is no latent variable. These features popularize the use

of the Hawkes process in practice.

On the other hand, this is a well-known cluster point processes discussed in Hawkes

and Oakes (1974). It is easier to understand in terms of a population models. The

immigrants (cluster centers) arrive as a homogeneous Poisson process with �xed

rate ν. Each immigrant generates a Galton-Waston type branching process with

expected branching ratio µx
³8
0
ηpuqdu. A cluster is then formed by including all the

generations (and the immigrant) from the branching process.

De�nition 3.3. The generalized dynamic contagion process is a cluster point process

N pDCP q, with stochastic intensity λpDCP q such that

λ
pDCP q
t �

N�
ţ

i:ci t
Υifpt� ciq �

N
pDCP q
ţ

i:τi t
χiηpt� τiq, (3.8)

where

� N�
t � tciui�1,2,... are the arrival times of the Poisson process with the constant

rate ρ ¡ 0
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� N
pDCP q
t � tτiui�1,2,... are the arrival times of the generalized dynamic contagion

process

� tΥiu are i.i.d externally excited jump sizes, realised at times tciu, with distri-

bution Hpxq, mean µΥ and Laplace transform ĥpuq

� tχiu are i.i.d self-exciting jump sizes, realised at times tτiu, with distribution

Gpyq, mean µχ and Laplace transform ĝpuq. They are independent of tΥiu

� fpuq is an Riemann integrable function for any bounded interval in R�

� ηpuq is another Riemann integrable function for any bounded interval in R�

This is obviously a combination of Hawkes process and Cox process where immi-

grants no longer arrive uniformly on a �xed interval. Instead, it is driven by a

exogenous process and arrive accordingly, for example, �nancial contagion, credit

default events. When a event happens, it will spread like a epidemic models or au-

toregressive model such that the number of new infections depends proportionally

on previous infections.

With the help of piece-wise deterministic Markov theory in Davis (1984), we can �nd

out, at least in a di�erential equation form, the expectation of fpt, λt, Ntq for some

di�erentiable function f , e.g. moments, probabilities. For example, the in�nitesi-

mal generator of generalized dynamic contagion process N
pDCP q
t acting on function

f
�
t, λ

pDCP q
t , N

pDCP q
t

	
within its domain ΩpAq is given by

Af
�
t, λ

pDCP q
t , N

pDCP q
t

	
� Bf

Bt �
Bf
Bλ � ρ

�»
R

f
�
t, λ

pDCP q
t � x,N

pDCP q
t

	
dHpxq � f

�
t, λ

pDCP q
t , N

pDCP q
t

	


� λ
pDCP q
t

�»
R

f
�
t, λ

pDCP q
t � y,N

pDCP q
t � 1

	
dGpyq � f

�
t, λ

pDCP q
t , N

pDCP q
t

	


where we need to make sure that

����
»
R

f
�
t, λ

pDCP q
t � x,N

pDCP q
t

	
dHpxq � f

�
t, λ

pDCP q
t , N

pDCP q
t

	����   8����
»
R

f
�
t, λ

pDCP q
t � y,N

pDCP q
t � 1

	
dGpyq � f

�
t, λ

pDCP q
t , N

pDCP q
t

	����   8

To derive moments of λ
pDCP q
t and N

pDCP q
t , we can simply set f �

�
λ
pDCP q
t

	k
or

f �
�
N

pDCP q
t

	k
, apply the generator and solve the equations.
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3.2 Birth and Death Process

Strictly speaking, birth and death process is not a Poisson point process as the

sample path can decrease. However, the way to de�ne such a process is closely

related to system of probability equations (3.5). A simple birth and death process

is to model the evolution of population Zt, with a homogeneous birth rate λ, death

rate µ and initial population Z0. At any in�nitesimal time ∆, the probabilities that

give a new birth, new death, nothing happens and more than one birth or death are

PrpZt�∆ � n� 1|Zt � nq � λn∆� op∆q

PrpZt�∆ � n� 1|Zt � nq � µn∆� op∆q

PrpZt�∆ � n|Zt � nq � 1� pλ� µqn∆� op∆q

Prp|Zt�∆ � Zt| ¥ 2|Zt � nq � op∆q

(3.9)

For convenience, denote PrpZt � nq as Pnptq and the process is a typical continuous

Markov process with above transition probabilities. The transition probabilities is

expressed as

Pnpt�∆q � λpn� 1q∆Pn�1ptq � µpn� 1q∆Pn�1ptq

� p1� pλ� µqn∆qPnptq � op∆q
(3.10)

Once we rearrange one of them Pnptq from the right hand side to the left hand side,

divide both sides by ∆ and take the limit, we can obtain an ordinary di�erential

equation (ODE) to characterize the simple birth and death process

$''&
''%

dPnptq
dt

� λpn� 1qPn�1ptq � µpn� 1qPn�1ptq � pλ� µqnPnptq

PZ0p0q � 1

(3.11)

From equations 3.9 and 3.11, it is not clear that what the distribution looks like

for the whole process, although it is straightforward to implement simulation. To

explore its distributional property, one can apply a linear transform
°
n θ

n on both

sides and de�ne ϕpt, θq � °
n θ

nPnptq, we can get a partial di�erential equation
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(PDE) whose solution ϕ is the probability generating function of Zt.

Bϕ
Bt � λθ2Bϕ

Bθ � µ
Bϕ
Bθ � pλ� µqθBϕBθ

� pλθ � µqpθ � 1qBϕBθ
ϕp0, θq � θZ0

(3.12)

This linear PDE can be solved explicitly

ϕpt, θq �
�

1� αptq � αptq βptqθ
1� p1� βptqqθ


Z0

αptq � pλ� µqepλ�µqt
λepλ�µqt � µ

, βptq � λ� µ

λepλ�µqt � µ

(3.13)

1. When µ � 0, this will be a pure birth process, which is formally a point

process as the sample path is non-decreasing now. The pure birth process

followed negative binomial distribution with size Z0 and success probability

e�λt at any time t

Pnptq �
�
n� 1

Z0 � 1



e�nλtp1� e�λtqn, n ¥ Z0 (3.14)

2. When λ � 0, this will be a pure death process which follows binomial distri-

bution with size Z0 and survival probability e�µt at any time t.

Pnptq �
�
Z0

n



e�nµtp1� e�µtqn, 0 ¤ n ¤ Z0 (3.15)

3. The simple birth and death process is de�ned when these two rates are strictly

positively and it follows a mixture distribution, i.e. zero-modi�ed geometric

random variables.

Zt �
Z0̧

i�1

BipαptqqGipβptqq, (3.16)

where Bi are i.i.d Bernoulli random variables and Gi are i.i.d Geometric ran-

dom variables with mean αptq and 1
βptq , respectively.
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3.3 Integer-valued approximation of point processes

(Paper D,E)

Motivated by Kirchner (2016), integer-valued model can be a good approximation

for those complicated stochastic process and potentially facilitate the statistical in-

ference (non parametric estimation, quasi-likelihood estimation). We show in paper

D and E that integer-valued time series model are just discrete version of those

cluster point processes and bivariate birth and death process. The approximation

made by integer-valued time series in fact improves the interpretability of corre-

sponding stochastic process, e.g. ARCH, GARCH models and stochastic volatility

model. More importantly, we usually observe bin-sized count (daily, weekly, monthly

counts) in practice rather than exact arrival times for each events,

In the cluster point processes case (Paper D), we extend the work from Kirchner

(2016) and construct so-called Integer-valued moving average model Yn (INMA)

and integer-valued autoregressive moving average model Zn (INARMA), both with

in�nite orders. The main idea of the approximation is that we utilize the additivity

property of independent Poisson random variables: If X1 � Poipλ1q and X2 �
Poipλ2q, then X1 �X2 � Poipλ1 � λ2q.
Take the Cox process and INMA for example: at any bin-sized interval Ak � ppk �
1q∆, k∆s, k ¥ 1,∆ � T

n
, Yk reports the number of count within the interval and the

aggregated process
°
k Yk will approximate N

pCq
T for a �xed time T .

De�nition 3.4. The stationary Possion thinning INMA(8) model is de�ned as

Yn �
8̧

k�0

βk � ξn�k

� β0 � ξn � β1 � ξn�1 � � � � � βn�1 � ξ1,

(3.17)

where

� βk ¥ 0 are some non-negative coe�cients

� ξk are i.i.d and follow Poispµq with µ ¡ 0

� tξkuk�...,�2,�1,0 � 0 as the process is de�ned on positive state space R�
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� The thinning operator � is de�ned as

βk � ξn�k �
ξn�ķ

i�1

u
pn,kq
i , u

pn,kq
i

i.i.d� Poispβkq,

On the other hand, the aggregated process Sn �
°n
k Yk is a cluster point process

such that

Sn �
ņ

t�1

Yt �
ņ

t�1

t�1̧

k�0

βk � ξt�k �
ņ

t�1

n�ţ

k�0

βk � ξt

�
ņ

t�1

ξţ

i�1

pupt,0qi � u
pt�1,1q
i � � � � � u

pn,n�tq
i q, u

pt,kq
i � Poispβkq

d�
ņ

t�1

ξţ

i�1

uti, uti � Poisp
n�ţ

k�0

βkq.

(3.18)

The last equality follows from the independence of the Poisson random variables. It

is now clear that the aggregated process Sn is a cluster process such that

� ξt generates the cluster centres independently.

� uti is a cluster generated by one of the cluster centre from ξt, with the size of

cluster (exclude the cluster centre) following Poisp°n�t
k�0 βkq

It is clearly that one can approximate Cox process by INMA model via specifying

parameter βi to match intensity process λ
pCq
t .

� µ � ρ∆t , βj � Υifpj∆q∆, j ¥ 0

� Υi are i.i.d random variables corresponding to each cluster centre ξi∆ arriving

at i∆, with the Laplace transform ĥpuq � Ere�uΥis

Similar approximation procedure applies to N pHq and N pDCP q. The main results are

shown below.

De�nition 3.5. For n ¡ 0, let tXtut�1,...,n,tYtut�1,...,n and tZtut�1,...,n be the INAR

sequence, the INMA sequence and the INARMA sequence with the parametric setting

∆ � T
n
, α0 � ν∆, αk � χiηpk∆q∆ for k ¡ 0, βj � Υifpj∆q∆ for j ¥ 0 and µ � ρ∆.
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De�ne the following three families of point processes,

N pHq
n pAq �

¸
t:t∆PA

Xt

N pCq
n pAq �

¸
t:t∆PA

Yt

N pDCP q
n pAq �

¸
t:t∆PA

Zt

(3.19)

where A is a bounded set in BpR�q and T is a constant such that T ¥ supA. The

joint distribution of these point processes are uniquely determined by their p.g.�.s

derived in the section 3.

Theorem 3.1. Let N pHq, N pCq, N pDCP q be the Hawkes process, the Cox process and

the generalized dynamic contagion process. For n ¡ 0, let N
pHq
n , N

pCq
n and N

pDCP q
n

be the point processes de�ned above. Then we have the following weak convergence

results

N pHq
n

wÑ N pHq

N pCq
n

wÑ N pCq

N pDCP q
n

wÑ N pDCP q as nÑ 8.

(3.20)

On the other case (Paper E), the story is slightly di�erent. The parametrization of

integer-valued model is actually quite straightforward in the univariate case as the

probability generating function (3.13) already indicates the way to construct such

process. The corresponding INAR model is de�ned as followed

De�nition 3.6. A birth and death INAR(1) model with survival probability α P r0, 1s
and birth probability p P r0, 1s is de�ned as

Xt � p �1 α �Xt�1, (3.21)

where

� � is the binomial operator

� �1 is a geometric (reproduction) operator such that p �1X � °X
i�1 g

p1q
i with g

p1q
i

being i.i.d geometric random variable with success probability p whose proba-
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bility mass function is given by

P pgp1qi � kq � pp1� pqk�1, k � 1, 2, . . . ,

� p �1 α �X � °α�X
i�1 g

p1q
i

The last bullet point shows that Xt|Xt�1 is a mixture random variable corresponding

to 3.16. The interpretation is also clear, i.e. individuals who survive up to time t

will give birth to some new individuals. The parametrization of the corresponding

INAR model is given by

α � pλ� µqepλ�µq∆
λepλ�µq∆ � µ

, p � λ� µ

λepλ�µq∆ � µ
(3.22)

Moving beyond univariate case, we are interested in approximating the bivariate

linear birth and death process. Similar de�nition to the univariate case, there are two

populations who have their own birth and death rates pλ11, λ22, µ1, µ2q. Furthermore,

a newborn of one population can be triggered by the other population. For example

the transmission of an infected disease, one population will be healthy people and

the other one will be infected people. The increment of a population is given by the

other population (one get infected or get recovered). Denote the cross birth rates

λ12, λ21. This process is characterized by the following ODE

$''''''''''&
''''''''''%

dPm,n
dt

� pλ11pm� 1q � λ21nqPm�1,n � µ1pm� 1qPm�1,n

�pλ12m� λ22pn� 1qqPm,n�1 � µ2pn� 1qPm,n�1

�ppλ11 � λ12 � µ1qm� pλ21 � λ22 � µ2qnqPm,n

PM0p0q � 1, M1,0,M2,0 P N�

(3.23)

After applying linear transform
°
m

°
n θ

mφn on both sides, one can obtain a PDE

of the joint probability generating function Ψpt, θ, φq � °
m

°
n θ

mφnPmnptq

BΨ

Bt � pλ11θ
2 � λ12θφ� µ1 � θpλ11 � λ12 � µ1qqBΨ

Bθ
� pλ22φ

2 � λ21θφ� µ2 � φpλ21 � λ22 � µ2qqBΨ

Bφ
Ψp0, θ, φq � θM1,0φM2,0

(3.24)
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However, the resulting PDE has no closed form solution. A bivariate INAR model,

on the other hand, can give a clear representation of the whole process. We de�ne

a new bivariate INAR model as follows:

De�nition 3.7. A bivariate birth and death INAR(1) model Yt � pY1,t, Y2,tqT with

survival probability α1, α2 P r0, 1s and birth probability β11, β12, β21, β22 P r0, 1s is
de�ned as

Y1,t � β11 �1 α1 � Y1,t�1 � β21 �2 Y2,t�1

Y2,t � β12 �2 Y1,t�1 � β22 �1 α2 � Y2,t�1,

(3.25)

where

� � is the binomial operator

� �2 is another geometric (reproduction) operator di�erent from �1 such that

β�2X � °X
i�1 g

p2q
i with g

p2q
i being i.i.d geometric random variable whose success

probability is β . The probability mass function is given by

P pgp2qi � kq � βp1� βqk, k � 0, 1, 2, . . . ,

� Conditional on Yt�1, the random variables β11 �1α1�Y1,t�1, β21 �2Y2,t�1, β12 �2

Y1,t�1 and β22 �1 α2 � Y1,t�1 are all independent of each other.

The main contribution (De�nition 3 and Theorem 7 in Paper E) is that we man-

aged to �nd out a parameterization of above bivariate INAR to represent bivariate

birth and death process and show that the INAR model converges weakly to the

corresponding birth and death process.
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CHAPTER 4

Paper A. A First Order Binomial Mixed Poisson

Integer-valued Autoregressive Model with Serially

Dependent innovations

Abstract

Motivated by the extended Poisson INAR(1), which allows innovations to be seri-

ally dependent, we develop a new family of binomial-mixed Poisson INAR(1) (BMP

INAR(1)) processes by adding a mixed Poisson component to the innovations of

the classical Poisson INAR(1) process. Due to the �exibility of the mixed Poisson

component, the model includes a large class of INAR(1) processes with di�erent

transition probabilities. Moreover, it can capture some overdispersion features com-

ing from the data while keeping the innovations serially dependent. We discuss its

statistical properties, stationarity conditions and transition probabilities for di�erent

mixing densities (Exponential, Lindley). Then, we derive the maximum likelihood

estimation method and its asymptotic properties for this model. Finally, we demon-

strate our approach using a real data example of iceberg count data from a �nancial

system.
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4.1 Introduction

Modelling the integer-valued count time series has attracted a lot of attention over

the last few years in a plethora of di�erent scienti�c �elds such as the social sciences,

healthcare, insurance, economics and the �nancial industry. The standard ARMA

model will inevitably introduce real-valued results, and so is not appropriate for

modelling this type of data. As a result, many alternative classes of integer-valued

time series models have been introduced and explored in the applied statistical

literature. The Integer-valued autoregressive process of order one, abbreviated as

INAR(1), was proposed by McKenzie (1985) and Al-Osh and Alzaid (1987) as a

counterpart to the Gaussian AR(1) model for Poisson counts. This model was

derived by manipulating the operation between coe�cients and variables, as well

as the innovation term, in such a way that the values are always integers. The

relationship of coe�cients and variables is de�ned as α �Xt �
°k
i�1 Vi such that Vi

are i.i.d Bernoulli random variables with parameter α and � denotes the binomial

thinning operator. The binomial thinning is very easy to interpret, and binomial

INAR(1) has the same autocorrelation structure as the standard AR(1) model and

hence can be applied to �t the count data. For a general review, please see Weiÿ

(2008b) and Scotto et al. (2015).

Later on, in order to accommodate di�erent features exhibited by count data, for

example, under-dispersion, overdispersion, probability of observing zero and dif-

ferent dependent structures, many research studies introduced alternative thinning

operators or varied the distribution of Vi for di�erent needs. The case where Vi are

i.i.d geometric random variables is analyzed by Risti¢ et al. (2009), which is called

NGINAR(1). Kirchner (2016) introduced reproduction operators so that Vi are i.i.d

Poisson random variables to explore the relationship between Hawkes process and

integer-valued time series. For further variation, random coe�cients thinning is

introduced so that V i are i.i.d Bernoulli with the parameter α being a random vari-

able. This type of thinning operator was proposed by McKenzie (1985, 1986) and

Zheng et al. (2007); they applied this to a generalized INAR(1) model. In particu-

lar, to accommodate the overdispersion feature, one way is to change the thinning

operators from binomial to other types as discussed above.Another way is to replace

the innovation distribution by some other overdispersed distribution; for example,

see Bourguignon et al. (2019). A third approach would be to keep the structure of

binomial INAR(1) but to allow the innovation terms to be serially dependent; see

Weiÿ (2015).

In this study, motivated by Weiÿ (2015), we develop a new family of binomial-mixed

Poisson INAR(1) (BMP INAR(1)) processes by adding a mixed Poisson component
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to the innovations term of the classical Poisson INAR(1) process. The proposed class

of BMP INAR(1) processes is ideally suited for modelling heterogeneity in count time

series data since, due to the mixed Poisson component which we introduce herein, it

includes many members with di�erent transition probabilities that can adequately

capture di�erent levels of overdispersion in the data while keeping the innovation as

independent Poisson.

The rest paper is organized as follows. Section 4.2 de�nes the Binomial mixed Pois-

son INAR(1) model by adding a mixed Poisson component in the Poisson INAR(1)

model. Statistical properties and the stationarity condition are derived in Section

4.3. Section 4.4 derives the distribution of the mixed Poisson component based on

two di�erent mixing density functions from the exponential family, namely the Ex-

ponential and Lindley distributions. In Section 4.5, maximum likelihood estimation

is discussed as well as its asymptotic properties for the estimators. In Section 4.6,

the model is �tted to �nancial data (iceberg count) and discuss numerical results.

Finally, concluding remarks are provided in Section 4.7.

4.2 Construction of Binomial Mixed Poisson INAR(1)

In Weiÿ (2015), the classical Poisson INAR(1) was extended by allowing the innova-

tions ε to depend on the current state of the model Xt such that εt � PopaXt�1� bq
where a and b are some positive constants. The innovation with this de�nition is

separable in the sense that εt � a � Xt�1 � εt, where a � Xt�1 � °Xt�1

i�1 Ui, with

Ui
i.i.d� Popaq and εt � Popbq. To introduce further heterogeneity while maintaining

serially dependent innovations structure in this model, we extend this by allowing

Ui to be a mixed Poisson random variable.

Starting from a Poisson random variable U with parameter θ, we may obtain a large

class of random variables by allowing θ to be another random variable which follows

some classes of density function gpθ|ϕq where ϕ can be a scalar or a vector; see

Karlis (2005). The random variable U follows a Mixed Poisson distribution with g

as a mixing density. The distribution function of U is de�ned as

P pU � uq �
» 8

0

e�θiθui
u!

gpθ|ϕqdθ. (4.1)

We now construct our model.
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De�nition 4.1. The Binomial Mixed Poisson integer-valued Autoregressive model

(BMP INAR(1)) is de�ned by the following equations

Xt�1 � p1 �Xt � εt�1

� p1 �Xt � ϕ �g Xt � Zt�1

p1 �Xt �
Xţ

k�1

Vk, ϕ �g Xt �
Xţ

i�1

Ui

P pUi � xq �
» 8

0

e�θiθxi
x!

gpθi|ϕqdθi,

(4.2)

where

� � is a binomial thinning operator such that Vi are i.i.d Bernoulli random vari-

ables with parameter p1 P r0, 1s

� tZtut�1,2,... are i.i.d Poisson random variables with rate λ1 ¡ 0

� �g is a reproduction operator such that Ui are independent Mixed Poisson dis-

tributed with mixing density function gpθi|ϕq

� �g and � are independent of each other so that Ui and Vk are independent of

each other.

As we will see shortly, the stationarity condition for this model is simply p1�µg   1

where µg is the �rst moment of Ui. When it comes to interpretation, this model

can be seen as the evolution of a population where the binomial part indicates the

survivors from the previous period, the mixed Poisson part is the total o�spring and

the innovation part indicates immigrants. Obviously, this model is a Markov Chain

and its transition probability can be found easily once we know the mixing density

gpθ|ϕq. The probability mass function of Yt�1 � ϕ �g Xt is given by

P pYt�1 � y|Xt � nq � E
�
e�
°n
i�1 θip°n

i�1 θiqy
y!

�
, (4.3)

where the expectation is taken over θ1, θ2, . . . , θn. In order to evaluate the expecta-

tion explicitly, it would be desirable that the random variables θi have an 'additivity'

property such that density (or probability mass function) of the sum
°n
i�1 θi is either

itself with di�erent parameters or can be written in a closed form. Many members

of the exponential family have this kind of property. In general, we let gpx|ϕq be of
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an exponential family form such that

gpx|ϕq � hpxq exptηpϕqT pxq � ξpϕqu. (4.4)

Denote the density of the sum Sn �
°n
i�1 θi as gnps|ϕq, where θi are i.i.d random

variables with density gpθ|ϕq. The expectation above can be expressed as

P pYt�1 � y|Xt � nq �
»
R�

e�ssy

y!
gnps|ϕqds. (4.5)

The density gnps|ϕq is explicitly known in many cases, for example, it can be an

Inverse Gaussian, Exponential, Gamma, Geometric, Bernoulli or Lindley. For the

sake of parsimony, we use distributions with a single parameter. In other words, we

assume that ϕ is scalar. Note that, if we let gpθ|ϕq � δϕpθq - a Dirac delta function
concentrating at ϕ, the model will recover to the Extended Poisson INAR(1) in Weiÿ

(2015).

4.3 Statistical properties of BMP INAR(1)

4.3.1 Moments and correlation structure

We �rst need to derive the moments of Ui

Lemma 4.1. The �rst moment and second central moment of Ui with density gpx|ϕq
are given by

ErUis � µg, V arpUiq � µg � σ2
g , (4.6)

where µg � Egrθis �
³
R
xgpx|ϕqdx and σ2

g � V argpθiq.

Proof. By the conditional expectation argument

ErUis � EgrErUi|θiss � Egrθis � µg

ErU2
i s � EgrErU2

i |θiss � Egrθ2
i � θis

V arpUiq � ErU2
i s � pErUisq2 � σ2

g � µg.
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Proposition 4.1. Assume p1 � µg   1. The stationary moments of Xt is given by

ErXts � µx � λ1

1� p1 � µg

V arpXtq � σ2
x � µx

1� p2
1 � σ2

g

1� pp1 � µgq2

CovpXt, Xt�kq � γpkq � pp1 � µgqkσ2
x.

(4.7)

Proof. For the �rst moment, we have

ErXts � Erp1 �Xt�1s � Erϕ �g Xt�1s � ErZts

µx � p1µx � µgµx � λ1

µx � λ1

1� p1 � µg
.

Since the operators � and �g are independent of each other, for the second central

moment, we have

V arpXtq � V arpp1 �Xt�1 � ϕ �g Xt�1q � V arpZtq

� V arpEr
Xt�1̧

i�1

pVi � Uiq|Xt�1sq � ErV arp
Xt�1̧

i�1

pVi � Uiq|Xt�1qs � λ1

� pp1 � µgq2σ2
x � pp1p1� p1q � σ2

g � µgqµx � λ1

σ2
x � µx

1� p2
1 � σ2

g

1� pp1 � µgq2 .

Let Ft � σpXt, Xt�1, . . . , q be the σ-algebra generated by the model Xt up to time

t, the covariance of the model is given by

CovpXt, Xt�kq � Covpp1 �Xt�1, Xt�kq � Covpϕ �g Xt�1, Xt�kq � CovpZt, Xt�kq.

Again by using conditional expectations, we have

Covpp1 �Xt�1, Xt�kq � CovpErp1 �Xt�1|Ft�1s,ErXt�k|Ft�1sq � ErCovpp1 �Xt�1, Xt�k|Ft�1qs

� Covpp1Xt�1, Xt�kq � ErCovp
Xt�1̧

i�1

Vi, Xt�k|Ft�1qs

� p1γpk � 1q � 0.
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Obviously, CovpXt, Xt�kq � γpkq � pp1 � µgqγpk � 1q � pp1 � µgqkγp0q .

From the results above, it is clear that this model follows the same correlation

structure as that of standard AR(1) model. Furthermore, unlike equal-dispersed

Poisson INAR(1), BMP INAR(1) is in general an overdispersed model with Fisher

index of dispersion

FIx � σ2
x

µx
� 1� µ2

g � 2p1µg � σ2
g

1� pp1 � µgq2 . (4.8)

4.3.2 Existence of Stationary Solution

Proposition 4.2. Given that P pUi � 0q ¡ 0 and p1 � µg   1 the following in�nite

sequence

fipθq � p1� p1 � p1fi�1pθqqΦupfi�1pθqq, i ¥ 1

f0pθq � θ, θ P r0, 1s
(4.9)

where Φupθq is the probability generating function (p.g.f) of Ui, and lim
iÑ8

fipθq � 1

Proof. De�ne the increment of the sequence

fipθq � fi�1pθq � p1� p1 � p1fi�1pθqqΦupfi�1pθqq � fi�1pθq

� p1� p1 � p1xqΦupxq � x x � fipθq

�: Qpxq

By the de�nition of p.g.f, x P r0, 1s, the monotonicity of this function is shown by

its �rst and second derivatives

Q1pxq � p1Φupxq � p1� p1 � p1xqΦupxq � 1

Q
2pxq � 2p1Φ1

upxq � p1� p1 � p1xqΦ2

upxq

By the de�nition of p.g.f, Φ1pxq ¥ 0 and Φ
2pxq ¥ 0. So Q

2pxq ¥ 0, which implies

Q1pxq is non-decreasing function. Then we have

Q1pxq ¤ Q1p1q � p1 � µg � 1   0
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Notice that Qp0q � p1 � p1qP pUi � 0q ¡ 0, Qp1q � 0. Hence we can conclude that

Q is a monotonic decreasing function ranging from 0 to Qp0q. In order words, for

any i � 1, . . . , and θ P r0, 1s, the sequence fipθq � fi�1pθq �Qpfi�1pθqq is increasing
with respect to i. Finally, lim

iÑ8
fipθq � 1

Proposition 4.3. Let Xt be the BMP INAR(1) model de�ned in 4.1. If the condi-

tion P pUiq ¡ 0 and p1 � µg   1 holds, then the process Xt has a proper stationary

distribution and Xt is an ergodic Markov Chain. The stationary distribution is

Φxpθq �
±8

i�0 Φzpfipθqq

Proof. Denote the p.g.f ofXn and the innovation Zn as ΦXnpθq and Φzpθqrespectively,
then ΦXnpθq can be expressed as following product

ΦXnpθq � ErErθXn |Xn�1s|X0s

� ErErθp1�Xn�1�ϕ�gXn�1�Zt |Xn�1s|X0s

� Erf1pθqXn�1 |X0sΦzpf0pθqq

� ...
...

� ErfnpθqX0s
n�1¹
i�0

Φzpfipθqq,

To show the existence of the limiting distribution is equivalent to show the limit of

the product as n goes to in�nity is something other than 0, which means that we

have to show that the series

LPn � log ΦXnpθq � logErfnpθqX0s �
n�1̧

i�0

log Φzpfipθqq,

is convergent as n Ñ 8. The convergence of the in�nite series
°8
i�0 log Φzpfipθqq

can be shown by the ratio test

lim
iÑ8

���� log Φzpfipθqq
log Φzpfi�1pθqq

����
�lim
xÑ1

log Φzpp1� p1 � p1xqΦupxqq
log Φzpxq

�lim
xÑ1

Φzpxq
Φ1
zpxq

Φ1
zpp1� p1 � p1xqΦupxqq

Φzpp1� p1 � p1xqΦupxqq pp1Φupxq � p1� p1 � p1xqΦ1
upxqq

�p1 � µg   1

(4.10)
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Hence lim
nÑ8

LPn ¡ �8, from which we can infer that lim
nÑ8

ΦXnpθq ¡ 0 exists and the

limiting distribution of Xn exists. Furthermore, by the construction of Xn, the chain

is de�ned on a countable state space S � t0, 1, 2, . . . u. The positivity of transition

probability PpXn � j|Xn�1 � iq ¡ 0, @ i, j P S implies that Xn is irreducible

and aperiodic. Hence the limiting distribution Φxpθq � lim
nÑ8

ΦXnpθq is the unique

stationary distribution for Xn.

In general, P pUi � 0q � ³
R� e

�θgpθ|ϕqdθ ¡ 0 as long as gpθ|ϕq ¡ 0, so we just need

to ensure the existence of the �rst moment to achieve the stationarity of Xn. The

in�nite product Φxpθq �
±8

i�0 Φzpfipθqq is the p.g.f of the stationary distribution,

which also satis�es

Φxpθq � Φx pp1� p1 � p1θqΦupθqqΦzpθq. (4.11)

4.4 Distribution function of the Mixed Poisson Com-

ponent

In order to apply maximum likelihood estimation for the statistical inference of this

model, we need to derive the distribution of Yt�1 � ϕ �g Xt according to di�erent

density functions g. As mentioned before, we focus on the density g coming from

the exponential family. For expository purposes, we will derive the distribution of

Yt�1 based on exponential and Lindley densities.

4.4.1 Mixed by Exponential density

If gpθ|ϕq � 1
ϕ
e�

1
ϕ
θ, then the distribution of Ui is given by

P pUi � xq �
» 8

0

e�θiθxi
x!

1

ϕ
e
� 1
θi
x
dθi

� 1

ϕx!

» 8

0

e�p1�
1
ϕ
qθiθxi dθi

� p 1

1� ϕ
qp ϕ

1� ϕ
qx, x � 0, 1, . . .

(4.12)

51



which is a geometric distribution with parameter ϕ
1�ϕ . Then, the distribution func-

tion fϕpm,Xtq of ϕ �g Xt as well as its �rst and second derivatives are given by

fϕpm,Xtq � Cm
m�Xt�1p

1

1� ϕ
qXtp ϕ

1� ϕ
qm

Bfϕpm,Xtq
Bϕ �

�
m

ϕp1� ϕq �
Xt

1� ϕ



fϕpm,Xtq

B2fϕpm,Xtq
Bpϕq2 �

��
m

ϕp1� ϕq �
Xt

1� ϕ


2

� Xt

p1� ϕq2 �
mp1� 2ϕq
ϕ2p1� ϕq2

�
fϕpm,Xtq.

(4.13)

Note that Xt will recover to the NGINAR(1) in Risti¢ et al. (2009) if we further let

p1 � 0. In general, the stationarity condition becomes p1�ϕ   1 and the probability

generating function of Xt satis�es the equation

Φxpθq � Φx

�
1� p1 � p1θ

1� ϕ� ϕθ



Φzpθq. (4.14)

We will now relax the assumption of the innovation term being Poisson and let the

marginal distribution of X be a geometric random variable with parameter α
1�α , α ¡

0. Using the relationship of the p.g.f, we can infer the required distribution of Z.

Proposition 4.4. If p1 ¡ ϕ, α ¡ ϕ or p1   ϕ, α   ϕ and the distribution of

tZtut�1,2,... follows a mixed geometric distribution such that

Zt �

$''&
''%
Geomp ϕ

1�ϕq, W.P. pp1�ϕqα
α�ϕ

Geomp α
1�αq, W.P. 1� pp1�ϕqα

α�ϕ

, (4.15)

then the marginal distribution of X follows a Geomp α
1�αq distribution.

Proof. By utilizing equation 4.14, we assume the X has a geometric distribution

such that Φxpθq � 1
1�α�αθ . Then, the probability generating function of Z has the

following form,

Φzpθq � Φxpθq
Φx

�
1�p1�p1θ
1�ϕ�ϕθ

	
� p1� ϕ� ϕθqp1� αq � αp1� p1 � p1θq

p1� α � αθqp1� ϕ� ϕθq
� pp1 � ϕqα

α � ϕ

1

1� ϕ� ϕθ
�
�

1� pp1 � ϕqα
α � ϕ



1

1� α � αθ
.

(4.16)
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4.4.2 Mixed by Lindley density

Suppose now the density gpθ|ϕq � ϕ2

1�ϕpθ�1qe�ϕθ is a Lindley density function. The
distribution of Ui is the so-called Poisson-Lindley distribution, see Karlis (2005),

which has the following probability mass function

P pUi � xq �
» 8

0

e�θiθxi
x!

ϕ2

1� ϕ
pθi � 1qe�ϕθidθi

� ϕ2

p1� ϕqx!

�» 8

0

θx�1
i e�pϕ�1qθidθi �

» 8

0

θxi e
�pϕ�1qθidθi




� ϕ2

p1� ϕqx!

�
Γpx� 2q
p1� ϕqx�2

� Γpx� 1q
p1� ϕqx�1




� ϕ2pϕ� 2� xq
p1� ϕqx�3

, x � 0, 1, . . .

(4.17)

Under this parameter setting, ErUis � µg � ϕ�2
ϕpϕ�1q which makes the parameter ϕ less

interpretable. So we adopt the following parameter setting for the mixing density

gpθ|ϕq

gpθ|ϕq � ϕ̃2

1� ϕ̃
pθ � 1qe�ϕ̃θ ϕ̃ � 1� ϕ�∆

2ϕ
∆ �

a
pϕ� 1q2 � 8ϕ (4.18)

Then, µg � ϕ, σg � ϕ2 � 2
pϕ̃p1�ϕ̃qq2 . On the other hand, the additivity of Ui is

not that clear. In order to evaluate the expectation 4.3, we need to �nd out the

distribution of Sn �
°n
i�1 θi.

Proposition 4.5. Suppose θi are i.i.d Lindley distributed. The density of the sum

Sn �
°n
i�1 θi is given by

gnps|ϕq �
�

ϕ̃2

1� ϕ̃


n

e�ϕ̃s
ņ

k�0

Ck
n

Γpn� kqs
n�k�1. (4.19)

Proof. We can prove this by inverting the Laplace transform. The Laplace transform

of θi is

Ere�νθis �
» 8

0

ϕ̃2

1� ϕ̃
pθi � 1qe�pν�ϕ̃qθidθi

� ϕ̃2

1� ϕ̃

ϕ̃� ν � 1

pϕ̃� νq2 .

53



Then the Laplace transform of Sn is simply the product of Ere�νθis, which is

Ere�νSns �
�

ϕ̃2

1� ϕ̃


n pϕ̃� ν � 1qn
pϕ̃� νq2n .

Using a binomial expansion, we have

Ere�νSns �
�

ϕ̃2

1� ϕ̃


n
1

pϕ̃� νq2n
ņ

k�0

Ck
npϕ̃� νqk

�
�

ϕ̃2

1� ϕ̃


n
1

pϕ̃� νqn
ņ

k�0

Cn�k
n pϕ̃� νq�pn�kq

�
�

ϕ̃2

1� ϕ̃


n ņ

k�0

Ck
npϕ̃� νq�pn�kq

�
�

ϕ̃2

1� ϕ̃


n ņ

k�0

» 8

0

Ck
n

Γpn� kqs
n�k�1e�ϕ̃se�νsds

�
» 8

0

e�νs
�

ϕ̃2

1� ϕ̃


n

e�ϕ̃s
ņ

k�0

Ck
n

Γpn� kqs
n�k�1ds.

Obviously, the density function of Sn is the integrand except e�νs.

Then, the distribution of Yt�1 � θ �g Xt is given by the following proposition.

Proposition 4.6. The probability mass function of Yt�1 � ϕ �g Xt as well as its

derivatives are given by

fϕpy, nq � P pYt�1 � y|Xt � nq �
�

ϕ̃2

1� ϕ̃


n ņ

k�0

Ck
nC

y
n�k�y�1p1� ϕ̃q�pn�k�yq

Bfϕpy, nq
Bϕ̃ � n

�
2

ϕ̃
� 1

1� ϕ̃



fϕpy, nq � py � 1qfϕpy � 1, nq

B2fϕpy, nq
Bϕ̃2

�
�
n2

�
2

ϕ̃
� 1

1� ϕ̃


2

� n

�
2

ϕ̃2
� 1

p1� ϕ̃q2

�

fϕpy, nq

� 2npy � 1q
�

2

ϕ̃
� 1

1� ϕ̃



fϕpy � 1, nq � py � 1qpy � 2qfϕpy � 2, nq

Bfϕpy, nq
Bϕ � Bfϕpy, nq

Bϕ̃
Bϕ̃
Bϕ,

B2fϕpy, nq
Bϕ2

� B2fϕpy, nq
Bϕ̃2

�Bϕ̃
Bϕ


2

� Bfϕpy, nq
Bϕ̃

B2ϕ̃

Bϕ2
,

(4.20)
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where

Bϕ̃
Bϕ � � 1

2ϕ
� ϕ� 3

2ϕ∆
� 1� ϕ�∆

2ϕ2

B2ϕ̃

Bϕ2
� 1

ϕ2
� 1

2ϕ∆
� 1� ϕ�∆

ϕ3
� pϕ� 3q2

2ϕ∆3
� ϕ� 3

ϕ2∆

Proof.

P pYt�1 � y|Xt � nq � E
�
e�
°n
i�1 θip°n

i�1 θiqy
y!

�

�
» 8

0

e�ssy

y!

�
ϕ2

1� ϕ


n

e�ϕs
ņ

k�0

Ck
n

Γpn� kqs
n�k�1ds

�
�

ϕ2

1� ϕ


n ņ

k�0

Ck
n

Γpn� k � yq
Γpn� kqΓpy � 1qp1� ϕq�pn�k�yq

�
�

ϕ2

1� ϕ


n ņ

k�0

Ck
nC

y
n�k�y�1p1� ϕq�pn�k�yq

4.5 Maximum likelihood estimation and its asymp-

totic property

In general, the transition probability can be written down explicitly as

P pXt�1 � i|Xt � jq �
minpi,jq¸
m�0

Cm
j p

m
1 p1� p1qj�mP pYt�1 � Zt�1 � i�mq

�
minpi,jq¸
m�0

i�m̧

x�0

Fp1pm, jqfϕpx, jqFλ1pi�m� xq

Fp1pm, jq � Cm
j p

m
1 p1� p1qj�m

fϕpx, jq �
»
R�

e�ssx

x!
gjps|ϕqds

Fλ1pi�m� xq � e�λ1λi�m�x1

pi�m� xq! .

(4.21)

The log likelihood function is simply `pp1, ϕ, αq �
°n�1
t�0 logP pXt�1|Xtq.

Proposition 4.7. Suppose we have a random sample tX1, X2, . . . , Xnu. Let p �
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pp1, ϕ, λ1q denote the parameters vector for the stationary BMP INAR(1) model.

The maximum likelihood estimator p̂ has the following asymptotic distribution:

?
npp̂� pq � Np0, I�1q, (4.22)

where

H �

$''''&
''''%
`p1p1 `p1ϕ `p1λ1

`ϕp1 `ϕϕ `ϕλ1

`λ1p1 `p1ϕ `λ1λ1

,////.
////-

I � �ErHs (4.23)

BP pXt�1|Xtq
Bp1

�
minpXt�1,Xtq¸

m�0

Xt�1�m¸
x�0

BFp1pm,Xtq
Bp1

fϕpx,XtqFλ1pXt�1 �m� xq

B2P pXt�1|Xtq
Bpp1q2 �

minpXt�1,Xtq¸
m�0

Xt�1�m¸
x�0

B2Fp1pm,Xtq
Bpp1q2 fϕpx,XtqFλ1pXt�1 �m� xq

B2P pXt�1|Xtq
Bp1Bϕ �

minpXt�1,Xtq¸
m�0

Xt�1�m¸
x�0

BFp1pm,Xtq
Bp1

Bfϕpx,Xtq
Bϕ Fλ1pXt�1 �m� xq

`xy �
T�1̧

t�0

B2P pXt�1|Xtq
BxBy

1

P pXt�1|Xtq �
BP pXt�1|Xtq

Bx
BP pXt�1|Xtq

By
1

P pXt�1|Xtq2 ,

(4.24)

where x, y P tp1, ϕ, λ1u. The �rst and second derivatives of each distribution function
is given by

BFp1pm,Xtq
Bp1

� m� p1Xt

p1p1� p1qFp1pm,Xtq
Bfϕpm,Xtq

Bϕ � B
Bϕ

»
R�

e�ssx

x!
gXtps|ϕqds

BFλ1pmq
Bλ1

�
�
m

λ1

� 1



Fλ1pmq

B2Fp1pm,Xtq
Bpp1q2 �

�
mpm� 1� pXt � 1qp1q

p2
1p1� p1q � pXt �mqpm� pXt � 1qp1q

p1p1� p1q2


Fp1pm,Xtq

B2fϕpm,Xtq
Bϕ2

� B2

Bϕ2

»
R�

e�ssx

x!
gXtps|ϕqds

B2Fλ1pxq
Bpλ1q2 �

�
1� 2x

λ1

� xpx� 1q
λ2

1



Fλ1pxq
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Proof. From proposition 4.3, we know that the Xn is stationary and ergodic and its

stationary distribution is characterized by the p.g.f Φxpθq �
±8

i�0 Φzpfipθqq. Then

score functions and information matrix I are also stationary and ergodic. Then the

proof for asymptotic normality is similar to the proof of theorem 4 in Appendix A

of Bu et al. (2008)

The expectation of information matrix I can be calculated numerically by �nding

out unconditional distribution P pXtq and joint distribution P pXt�1, Xtq. However,
this would be computational intensive when the sample size n is large. In practice,

since the process Xt is stationary and ergodic, I � �H when n is large.

To verify the asymptotic normality of the maximum likelihood estimators, we con-

duct a Monte Carlo experiment. This experiment is based on 2000 replications. For

each replication, a time series of BMP-INAR(1) with chosen mixing density, either

Exponential or Lindley , of size n � 100, 200, . . . , 500 is generated. The parameters

are set as p1 � ϕ � 0.3, λ1 � 2 for both mixing densities and they are estimated via

the maximum likelihood method. The biases and standard errors of the estimated

parameters are shown in tables 1 and 2. We observe that the biases of the estimators

are either reasonably small or decreasing with respect to the sample size n. And it

is clear that the standard error is also decreasing with respect to n. Finally, in order

to graphically inspect the distribution of estimators, normal quantile-quantile plots

are provided below.

Table 4.1: The bias of Maximum likelihood estimators of BMP-INAR(1) model with
respect to di�erent sample size n

Bias(p̂) n � 100 n � 200 n � 300 n � 400 n � 500

Exponential
p1 0.0022 -0.0021 0.0019 -0.0003 -0.0003
φ -0.0284 -0.0104 -0.0110 -0.0072 -0.0059
λ1 0.1089 0.0526 0.0384 0.0366 0.0279

Lindley
p1 -0.0008 0.0004 -0.0015 -0.0020 -0.0011
φ -0.0209 -0.0143 -0.0085 -0.0050 -0.0039
λ1 0.0387 0.0227 0.0141 0.0144 0.0101
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Table 4.2: The standard error of Maximum likelihood estimators of BMP-INAR(1)
model with respect to di�erent sample size n

S.E.(p̂) n � 100 n � 200 n � 300 n � 400 n � 500

Exponential
p1 0.1303 0.0965 0.0752 0.0663 0.0576
φ 0.1384 0.0970 0.0783 0.0670 0.0581
λ1 0.3982 0.2858 0.2276 0.2012 0.1764

Lindley
p1 0.1319 0.0991 0.0854 0.0711 0.0630
φ 0.1432 0.1054 0.0880 0.0729 0.0661
λ1 0.2050 0.1515 0.1166 0.0999 0.0911

58



Figure 4.1: Quantile-Quantile plots for maximum likelihood estimators of BMP-INAR(1)

model. The left panel shows plots for the Exponential mixing density, while the right panel

depicts the plots for the Lindley mixing density.

4.6 Real data example: iceberg order data

The iceberg order counts concern the Deutsche Telekom shares traded in the XETRA

system of Deutsche Börse, and the concrete time series gives the number of iceberg

orders (for the ask side) per 20 min for 32 consecutive trading days in the �rst

quarter of 2004. The special feature of iceberg orders is that only a small part of

the order (tip of the iceberg) is visible in the order book and the main part of the

order is hidden. For detail description, please see the Jung and Tremayne (2011)

and Frey and Sandås (2009). This dataset is also analysed in Weiÿ (2015), where

the Extended Poisson INAR(1) is applied to �t the data.

A table of descriptive statistics, a time series, as well as the ACF and PACF plots

are shown below. The variance of the iceberg count is higher than its mean, which

indicates the data is overdispersed. The level of dispersion is described by the

Fisher index of dispersion FI ¡ 1. Evidence of the applicability of a �rst order

autoregressive model is indicated by the empirical ACF and PACF graphs. They
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illustrate a clear decay for ACF and cut-o� at lag =1 for PACF.

Table 4.3: Descriptive statistics of iceberg count

minimum maximum median mean variance FI

0 9 1 1.407 2.184 1.552
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Figure 4.2: Time series plot of iceberg data and its emprical ACF PACF plots. The blue

dash lines are the 95% con�dent bands by assuming the series to be a white noise process

The following table records the estimated parameters through the maximum likeli-

hood method. The likelihood function is constructed as in 4.21 with di�erent fϕpx, jq
(mixed by Exponential or Lindley). It is then maximised through 'optim' in R with

'method = BFGS' (quasi-Newton method) while the standard deviations of MLEs

are calculated through inverting the negative observed information matrix in propo-

sition 4.7 based on MLEs. To access the goodness of �t, we adopt the information

criteria AIC and BIC as well as the (standardized) Pearson residuals. If the model
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is correctly speci�ed, Pearson residuals for BMP-INAR(1) are expected to have a

mean and variance close to 0 and 1 respectively, with no signi�cant autocorrelation.

The Pearson residuals are calculated by the following formula:

et � xt � ErXt|xt�1sa
V arpXt|xt�1q

, (4.25)

where xt denotes the observed value.

Table 4.4: The results for the BMP INAR(1) model mixed by di�erent density
functions. The results of Dirac delta case are from Table 2 of Weiÿ (2015). The
estimated standard deviations for all models are in brackets.

Mixing density p̂1 ϕ̂ λ̂1 AIC BIC Pearson residuals F̂Ix
mean variance

Dirac delta 0.410 0.188 0.567 2212 2226 -0.001 1.159 1.295
(0.058) (0.059) (0.040)

Exponential 0.434 0.167 0.563 2208 2222 -0.002 1.154 1.315
(0.044) (0.044) (0.040)

Lindley 0.434 0.167 0.563 2208 2222 -0.002 1.154 1.314
(0.043) (0.043) (0.040)
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Figure 4.3: Autocorrelation of Standardized Pearson residuals for three di�erent mixing

densities

The results shown in Table 2 and the ACF plots of the Pearson residuals indicate

that the BMP-INAR(1) models are appropriate for �tting the iceberg data. The

estimated parameters are signi�cantly di�erent from 0, which is indicated by their

estimated standard deviation. Compared to the Dirac delta case, which is actually

the Extended Poisson INAR(1) of Weiÿ (2015), the other two cases do show some

improvement with smaller AIC, BIC values and larger �tted Fisher index of dis-

persion F̂Ix which, however, is slightly smaller than the empirical FI. On the other

hand, it seems that there is little di�erence between the other two cases as they have

very similar AIC and BIC values. This is due to the fact that the value of ϕ̂ is iden-

tical for both densities. Finally, it should be noted that the variance of the Pearson

residuals is visibly larger than 1. As it was previously mentioned, the exponential

and Lindley mixing densities were considered for expository purposes. Therefore,

since the proposed family of BMP INAR(1) models is quite general, another mix-

ing distribution could potentially more e�ciently capture the observed dispersion

structure for this data.
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Overall, the mixed Poison component in the BMP INAR(1) model e�ciently cap-

tures the overdispersion in this type of �nancial data.

4.7 Concluding remarks

The BMP INAR(1) is an extension of the classical Poisson INAR(1) model obtained

by adding an additional mixed Poisson component and hence it can capture the level

of overdispersion coming from the data. The exponential family is a desired choice

for the mixing density due to its 'additivity' property. The choice of the mixing

density can control the dispersion level to some extent, although the BMP INAR(1)

Xt is always overdispersed in general. Furthermore, due to its simplicity, Xt is

actually a Markov chain and the maximum likelihood estimation method can be

applied easily. The real data analysis shows that BMP INAR(1) can be a potential

choice for modelling �nancial count data which exhibit standard AR(1) structure

and overdispersion.
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CHAPTER 5

Paper B. Multivariate Mixed Poisson Generalized

Inverse Gaussian INAR(1) Regression

Abstract

In this paper, we present a novel family of multivariate mixed Poisson-Generalized

Inverse Gaussian INAR(1), MMPGIG-INAR(1), regression models for modelling

time series of overdispersed count response variables in a versatile manner. The

statistical properties associated with the proposed family of models are discussed

and we derive the joint distribution of innovations across all the sequences. Finally,

for illustrative purposes di�erent members of the MMPGIG-INAR(1) class are �tted

to Local Government Property Insurance Fund data fromthe state of Wisconsin via

maximum likelihood estimation.

5.1 Introduction

In recent years, there has been a growing interest in modelling integer-valued time

series of univariate and multivariate count data in a plethora of di�erent scienti�c

�elds such as sociology, econometrics, manufacturing, engineering, agriculture, biol-

ogy, biometrics, genetics, medicine, sports, marketing, and insurance. In particular,

regarding the univariate case Al-Osh and Alzaid (1987) and McKenzie (1985) were

the �rst to consider an INAR(1) model based on the so-called binomial thinning
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operator. Subsequently, many articles focused on extending this setup by applying

di�erent thinning operators or by varying the distribution of innovations. For more

details, the interested reader can refer to Weiÿ (2018) Davis et al. (2016a), Scotto

et al. (2015), Weiÿ (2008b) among many more. The INAR(1) model with Poisson

marginal distribution (Poisson INAR(1)) has been the most popular choice due to

the simplicity of its log-likelihood function that implies that the formality of param-

eter estimation via maximum likelihood (ML) estimation is straightforward. Also,

Freeland and McCabe (2004) considered an extension of the model by allowing for

regression speci�cations on the mean of the Poisson innovation as well as parame-

ter of binomial thinning operator. On the other hand, the literature which focuses

on the multivariate case is less developed. In particular, Latour (1997) introduced

a multivariate GINAR(p) model with a generalized thinning operator. Karlis and

Pedeli (2013) and Pedeli and Karlis (2011, 2013a,b) focused on the diagonal case

under which the thinning operators do not introduce cross correlation among dif-

ferent counts. In this case, the dependence structure introduced by innovations.

Additionally, Risti¢ et al. (2012), Popovi¢ (2016), Popovi¢ et al. (2016) and Nasti¢

et al. (2016) constructed multivariate INAR distributions with cross correlations

among counts and random coe�cients thinning. Finally, Karlis and Pedeli (2013)

extended the setup of the previous articles by allowing for negative cross correlation

via a copula-based approach for modelling the innovations.

In this paper, we extend the model proposed by Pedeli and Karlis (2011) by in-

troducing the multivariate mixed Poisson-Generalized Inverse Gaussian INAR(1),

MMPGIG-INAR(1), regression model for multivariate count time series data. The

MMPGIG-INAR(1) is a general three parameter distribution family of INAR(1)

models driven by mixed Poisson regression innovations where the mixing densities

are chosen from the Generalized Inverse Gaussian class of distributions. Thus, the

proposed modelling framework can provide the appropriate level of �exibility for

modelling positive correlations of di�erent magnitudes among time series of di�er-

ent types of overdispersed count response variables. In particular, depending on

the values taken by the shape parameter, the MMPGIG-INAR(1) family includes

many members, such as the mixed Poisson-Inverse Gaussian (PIG), as special cases

and several others as limiting cases, such as the Negative Binomial, or Poisson-

Gamma, the Poisson-Inverse Gamma (PIGA), the Poisson-Inverse Exponential, the

Poisson-Inverse Chi Squared and the Poisson-Scaled Inverse Chi Squared distribu-

tions. Therefore, it can accommodate di�erent levels of overdispersion depending

on the chosen parametric form of the mixing density. Furthermore, the MMPGIG-

INAR(1) family of models is constructed by assuming that the probability mass

function (pmf) of the MMPGIG innovations is parameterized in terms of the mean
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parameter which results in a more orthogonal parameterization that facilitates max-

imum likelihood (ML) estimation when regression speci�cations are allowed for the

mean parameters of the MMPGIG-INAR(1) regression model. For expository pur-

poses, we derive the joint probability mass functions and the derivatives of several

special cases of the MMPGIG-INAR(1) family which are used as innovations. These

models are �tted to time series of claim count data from the Local Government

Property Insurance Fund (LGPIF) data in the state of Wisconsin. At this point

it is worth noting that modelling the correlation between di�erent types of claims

from the same and/or di�erent types of coverage it is very important from a practical

business standpoint. Many articles have been devoted to this topic, see for example,

Bermúdez and Karlis (2011), Bermúdez and Karlis (2012), Shi and Valdez (2014a),

Shi and Valdez (2014b), Abdallah et al. (2016), Bermúdez and Karlis (2017), Pe-

chon et al. (2018), Pechon et al. (2019), Bolancé and Vernic (2019), Denuit et al.

(2019), Fung et al. (2019), Bolancé et al. (2020), Pechon et al. (2021), Jeong and Dey

(2021), Gómez-Déniz and Calderín-Ojeda (2021), Tzougas and di Cerchiara (2023)

and Tzougas and di Cerchiara (2021).

However, with the exception of very few articles, such as Bermúdez et al. (2018) and

Bermúdez and Karlis (2021), the construction of bivariate INAR(1) models which

can capture the serial correlation between the observations of the same policyholder

over time and the correlation between di�erent claim types remains a largely un-

charted territory. This is an additional contribution of this study.

The rest of the paper proceeds as follows. Section 2 presents the derivation of the

MMPGIG-INAR(1) model. Statistical properties of the MMPGIG innovations are

discussed in Section 3. In Section 4, we present a description of the alternative

special cases of the MMPGIG-INAR(1) family. Section 5 discusses the parameter

estimation for these models based on the maximum likelihood method and integer-

valued prediction. Section 6 contains our empirical analysis for the LGPIF data set.

Finally, concluding remarks are given in Section 7.

5.2 Generalized Setting

Let X and R be non-negative integer-valued random vectors in Rm. Let P be

a diagonal matrix in Rm�m with elements pi P p0, 1q. The multivariate Poisson-
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Generalized Inverse Gaussian INAR(1) is de�ned as

Xt � P �Xt�1 �Rt �

�
��������

p1 0 . . . 0 0

0 p2 . . . 0 0

...
. . .

...

0 0 . . . pm

�
��������
�

�
��������

X1,t�1

X2,t�1

...

Xm,t�1

�
��������
�

�
��������

R1,t

R2,t

...

Rm,t

�
��������

(5.1)

where the thinning operator � is the widely used binomial thinning operator such

that pi �Xi,t �
°Xi,t
k�1 Uk where Uk are independent identically distributed Bernoulli

random variables with success probability pi, i.e. PpUk � 1q � pi. Hence pi �
Xi,t is binomially distributed with size Xi,t and success probability pi. Then the

distribution function fpipx,Xi,tq can be easily written down as

fpipx,Xi,tq �
�
Xi,t

x



pxi p1� piqXi,t�x (5.2)

Note that given Xi,t, Xj,t i � j, pi � Xi,t and pj � Xj,t, are independent of each

other. To adapt the heteroscedasticity arising from the data, tRi,tui�1,...,m are mixed

Poisson random variables Popθtλi,tq with the random e�ect θt. The rate λi,t is

characterized by its observed covariate zi,t P Rai�1 for some positive integer ai and

they are connected through a log link function such that logpλi,tq � zTi,tβi where

βi P Rai�1. Furthermore, tRi,tui�1,...,m share the same random e�ect θt with mixing

distributionGpθq, which means the dependent structure amongXi,t can be controlled

by the choice of distribution and its corresponding size of parameters. The joint

distribution of Rt is

fφpk, tq � PpR1,t � k1, . . . , Rm,t � kmq

� E rPpR1,t � k1, . . . , Rm,t � km|θtqs

�
m¹
j�1

λ
kj
j,t

kj!

» 8

0

e�θ
°m
i�1 λi,tθ

°m
i�1 kidGpθq

(5.3)

We let θt be a continuous random variable from the Generalized Inverse Gaussian

distribution with density function gpθq

gpθq � pψ{χq ν2
2Kνp

?
ψχqθ

ν�1 exp

"
�1

2

�
ψθ � χ

θ

	*
, (5.4)
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where �8 ¤ ν ¤ 8, ψ ¡ 0, χ ¡ 0 and Kνpωq is the modi�ed Bessel function of the

third kind of order ν and argument ω such that

Kνpωq �
» 8

0

zν�1 exp

"
�1

2
ωpz � 1

z
q
*
dz

The Generalized Inverse Gaussian distribution is a widely used family. For example,

it includes the Inverse Gaussian as special case and the Gamma and Inverse Gamma

as limiting cases. To avoid identi�cation problems for mixed Poisson regression

random variable Rt, the mean of θt is restricted to one, i.e. Erθts � 1, and all the

parameters ν, ψ, χ will be either �xed or a function of another parameter φ. With

these two constraints, there is only one parameter that is free to vary. (e.g. for

Inverse Gaussian distribution, ν � �1
2
and ψ � χ � φ). The joint distribution of

Rt becomes an MPGIG distribution

fφpk, tq � pψ{χq ν2
2Kνp

?
ψχq

m¹
j�1

λ
kj
j,t

kj!

» 8

0

e�θ
°m
i�1 λi,tθ

°m
i�1 kiθν�1 exp

"
�1

2

�
ψθ � χ

θ

	*
dθ

� pψ{χq ν2
p∆{χq ν�

°
i ki

2

Kν�°i kip
?

∆χq
Kνp

?
ψχq

m¹
j�1

λ
kj
j,t

kj!
,

(5.5)

where ∆ � ψ � 2
°m
i�1 λi,t. In section 5, we will discuss in detail the distribution

function fφpk, tq for some special cases. Finally, it should be noted that several

articles discuss multivariate versions of MPGIG distribution and/or the MPIG dis-

tribution which is a special case for ν � �0.5, see, for instance, Barndor�-Nielsen

et al. (1992), Ghitany et al. (2012) Amalia et al. (2017), Mardalena et al. (2020),

Tzougas and di Cerchiara (2023) and Mardalena et al. (2021). However, this is the

�rst time that the MMPGIG-INAR(1) distribution family of INAR(1) models driven

by mixed Poisson regression innovations are considered for modelling time series of

count response variables.
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5.3 Properties of innovations Rt

Proposition 5.1. (The moments of Rt) The mean, variance of Ri,t and covariance

between Ri,t, Rj,t, i � j are given by

ErRi,ts � ErErRi,t|θtss � λi,t

V arpRi,tq � V arpErRi,t|θtsq � ErV arpRi,t|θtqs

� σ2
θλ

2
i,t � λi,t

CovpRi,t, Rj,tq � CovpErRi,t|θts,ErRj,t|θtsq � ErCovpRi,t, Rj,t|θtqs

� λi,tλj,tσ
2
θ

(5.6)

where σ2
θ is the variance for the random e�ect θt and i, j � 1, . . . ,m.

Proposition 5.2. (Marginal property) The joint distribution function fφpk, tq is

closed to marginalization, i.e. the marginal distribution for Ri,t is given by fφpki, tq
such that

fφpki, tq �
» 8

0

λkii,t
ki!

θkie�λi,tθdGpθq

� pψ{χq ν2
ppψ � λi,tq{χq

ν�ki
2

Kν�kip
apψ � λi,tqχq
Kνp

?
ψχq

λkii,t
ki!

(5.7)

which is a univariate mixed Poisson regression random variable. In general, this

result is valid for any m1-variate mixed Poisson regression random variable with

m1   m

Proof. We will show the result for univariate case. The m1-variate case can be

derived similarly by reducing the number of following sum to m�m1

fφpki, tq �
¸
k1�0

. . .
¸

ki�1�0

¸
ki�1�0

. . .
¸
km�0

fφpk, tq

�
» 8

0

¹
j�i

�
� 8̧

kj�0

e�θλj,tpθλj,tqkj
kj!

�
e�θλi,tpθλi,tqki

ki!
dGpθq

�
» 8

0

λkii,t
ki!

θkie�λi,tθdGpθq
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The marginalization property can enable, for example insurers, to easily price those

policyholders who only engage in some but not all lines of business. The last property

is about the identi�ability of Rt, which will ensure the uniqueness of the model.

Proposition 5.3. (Identi�ability of joint distribution Rt) Assume that the covariate

space zt � pz1,t, . . . , zm,tq is of full rank. Denote the parameter set ΘR � tβi, φ|i �
1, . . . ,mu and Θ̃R � tβ̃i, φ̃|i � 1, . . . ,mu, the joint distribution fφpk, tq is identi�able
such that

fφpk, tq � fφ̃pk, tq

if and only if ΘR � Θ̃R.

Proof. With the assumption that the covariate z is of full rank and the log-link

function is monotonic such that logpλi,tq � zTi,tβi, it is obvious that the identi�-

cation problem for the mixed Poisson regression random variable Rt reduces to

identi�cation for mixed Poisson random variable (without regression), which means

the set of parameter can be re-parametrized as Θ�
R � tλi,t, φ|i � 1, . . . ,mu and

Θ̃�
R � tλ̃i,t, φ̃|i � 1, . . . ,mu.

Then the 'if' statement is obvious since the same set of parameters will de�nitely

lead to the same joint distribution function. For the 'only if' statement, to match

two distribution functions, all the moments (mean,variance, covariance) must recon-

cile. From the moment properties above, matching the ErRi,ts will lead to λi,t � λ̃i,t.

Likewise, given that the �rst moment is matched, only φ � φ̃ will lead to the same

V arpRi,tq. Matching these moments already leads to Θ�
R � Θ̃�

R, then the covariance

CovpRi,t, Rj,tq must match with each other.

5.4 Model speci�cation

The distributional properties of Xt, in particular the correlation structure and

'tailedness' of the distribution, are mainly determined by the innovation Rt, more

speci�cally, the mixing density gpθq. On the other hand, the explicit form of the

derivatives of fφpk, tq can signi�cantly accelerate the computational speed when per-

forming estimation. Hence, the distribution function fφpk, tq as well as its derivatives
are derived for two limiting cases (Gamma, Inverse Gamma) and some other special

cases (GIG with unit mean and di�erent values of ν). Throughout this session, we

de�ne Sλt �
°m
i�1 λi,t and S

k � °m
i�1 ki.
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5.4.1 Mixing by Gamma distribution

If Rt is univariate, the resulting distribution is known as the negative binomial

distribution and this result can be easily extended to the multivariate case which is

called the multivariate negative binomial distribution (see e.g. Marshall and Olkin

(1990) Boucher et al. (2008) Cheon et al. (2009)). The gamma density is obtained

by letting ν � φ, ψ � 2φ and χ � 0 in generalized Inverse Gaussian density in 5.4.

The resulting mixing density has the following form:

gpθq � φφ

Γpφqθ
φ�1e�φθ (5.8)

with unit mean and variance 1
φ
. Then the expectation 5.3 can be evaluated explicitly

fφpk, tq �
m¹
i�1

λkii,t
ki!

Ere�pSλt qθθSks

� Γpφ� Skq
Γpφq±m

i�1 Γpki � 1q
φφ

±m
i�1 λ

ki
i,t

pφ� Sλt qφ�Sk
(5.9)

Proposition 5.4. The derivatives of the distribution function fφpk, tq with respect

to ΘR � tφ, βi | i � 1, . . . ,mu when θt � Gammapφ, φq are given by

Bfφpk, tq
Bφ � fφpk, tq

�
Sk¸
n�1

1

n� φ� 1
� log

�
φ

φ� Sλt



�

°m
i�1pλi,t � kiq
φ� Sλt

�

Bfφpk, tq
Bβi � fφpk, tq

�
ki
λi,t

� φ� Sk

φ� Sλt



λi,tzi,t ,

(5.10)

where the sum
°Sk

n�1
1

n�φ�1
� 0 when Sk � 0.

Proof. The derivatives
Bfφpk,tq
Bβi can be �gured out easily except

Bfφpk,tq
Bφ which involves

the gamma function. The derivative of the gamma function can be derived by

utilizing the alternative Weierstrass's de�nition such that

Γpz � 1q � e�γz
¹
n¥1

p1� z

n
q�1e

z
n ,

which is valid for all complex number z except non-positive integers and γ is Eu-

ler�Mascheroni constant. Then the derivative can be derived by di�erentiating its
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log transform log Γpz � 1q, which leads to the series expansion of digamma function

Ψpz � 1q � Γ1pz � 1q
Γpz � 1q � �γ �

¸
n¥1

�
1

n
� 1

n� z




Then the derivative
Bfφpk,tq

Bφ can be derived steps by steps. First let us simplify the

expression of fφpk, tq such that

fφpk, tq � c1
Npφq
Dpφq

c1 �
m¹
i�1

λkii,t
Γpki � 1q , Npφq � Γpφ�Skqφφ, Dpφq � Γpφq �φ� Sλt

�φ�Sk

The derivative is then

Bfφpk, tq
Bφ � c1

N 1pφqDpφq �NpφqD1pφq
D2pφq

� c1
Npφq
Dpφq

�¸
n¥1

�
1

n� φ� 1
� 1

n� φ� Sk � 1



� 1� log φ� logpφ� Sλt q �

φ� Sk

φ� Sλt

�

5.4.2 Mixing by Inverse Gamma

The Inverse gamma distribution, which is another limiting case of generalized Inverse

Gaussian distribution, is discussed in section 9.3 Johnson et al. (1995). Inverse

gamma random variable has a relatively thicker right tail and a low probability in

taking the values closed to 0. In this case, the density function gpθq is obtained by

letting ψ � 0, χ � 2φ and ν � �φ� 1 such that

gpθq � φφ�1

Γpφ� 1qθ
�φ�2e�

φ
θ , (5.11)

with mean 1 and variance 1
φ�1

for φ ¡ 1. It is also called the reciprocal gamma

distribution such that θ � 1{x where x � Gammapφ � 1, φq. The distribution
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function fφpk, tq becomes

fφpk, tq �
m¹
i�1

λkii,t
ki!

E
�
e�S

λ
t θtθS

k

t

�

� 2Kν pωq
Γpφ� 1q±m

i�1 Γpki � 1q
φ
ν
2
�φ�1

±m
i�1 λ

ki
i,t

pSλt q
ν
2

,

(5.12)

where ν � Sk � φ � 1 and ω � 2
a
φSλt . The derivatives of fφpk, tq with respect to

the parameter set ΘR � tφ, βi | i � 1, . . . ,mu are given by

Bfφpk, tq
Bφ �

�
log

ω

2
� Sk � φ� 1

2φ
� B logKν pωq

Bφ �Ψpφ� 1q


fφpk, tq

Bfφpk, tq
Bβi �

�
ki
λi,t

fφpk, tq � ki � 1

λi,t
fφpk� 1i, φq



λi,tzi,t

(5.13)

In this case, numerical di�erentiation is applied to calculate B logKνpωq
Bφ since the

parameter φ appears both in the order ν and argument ω of the modi�ed Bessel

function Kνpωq.

5.4.3 Mixing by Generalized Inverse Gaussian

Likewise, if Rt is univariate, the distribution of Rt is known as the Poisson General-

ized Inverse Gaussian distribution. To comply with constraints we made in section

2, the mixing density function has following form

gpθq � cν

2Kνpφqθ
ν�1 exp

"
�φ

2

�
cθ � 1

cθ


*
(5.14)

with unit mean and variance varpθtq � 1
c2
� 2pν�1q

cφ
� 1, where c � Kν�1pφq

Kνpφq , φ ¡ 0 and

ν P R. Then the distribution function fφpk, tq becomes

fφpk, t, νq �
m¹
i�1

λkii,t
ki!

E
�
e�θtS

λ
t θS

k

t

�

� Kpp
?
abq

Kνpφq cν
�
b

a


 p
2

m¹
i�1

λkii,t
ki!

(5.15)

where a � φc � 2Sλt , b � φ
c
and p � Sk � ν. Furthermore, we let ν be constant

and �xed in order to avoid potential identi�cation problems which may appear when

performing estimation. In general, however, the derivative with respect to φ is really
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hard to �nd since the constant c involves the Bessel function. On the other hand, it

is worth noting that varpθtq is roughly unbounded when ν P r�2, 0s and the skewness
and kurtosis are decreasing with respect to ν, which can be easily veri�ed by some

statistical software on computer. So, we will discuss cases where ν � �1
2
,�3

2
,�3

4
,

two of which have 'explicit' distributions in the sense that the constant c can be

evaluated in closed form.

5.4.3.1 Generalized Inverse Gaussian with ν � �1
2

In this case, the resulting distribution known as the Poisson Inverse Gaussian distri-

bution is investigated by many authors (see,e.g Sichel (1974); STCHKL (1982),Atkin-

son and Yeh (1982), Stein and Juritz (1988) among others). When ν � �1
2
, c � 1

and the distribution function f becomes

fφpk, tq �
m¹
i�1

λkii,t
ki!

c
2

π
φ

1
2 eφKpp

b
φpφ� 2Sλt qq

�
φ

φ� 2Sλt


 p
2

(5.16)

For convenience, we reparametrize the above density by squaring the parameter φ

such that

fφpk, tq �
m¹
i�1

λkii,t
ki!

c
2

π
φeφ

2

Kppφ∆qp φ
∆
qν (5.17)

where p � Sk � 1
2
and ∆ �

a
φ2 � 2Sλ. The derivatives of fφpk, tq with respect to

di�erent parameters can be derived by making use of the derivative of Kνpωq with
respect to its argument such that

BKνpωq
ω

� ν

ω
Kνpωq �Kν�1pωq, (5.18)

then it leads to the following derivatives

Bfφpk, tq
Bφ �

�
2φ� 1� 2ν

φ



fφpk, tq �

�
φ� ∆2

φ



k1 � 1

λ1,t

fφpk� 11, φq,
Bfφpk, tq
Bβi �

�
ki
λi,t

fφpk, tq � ki � 1

λi,t
fφpk� 1i, φq



λi,tzi,t

(5.19)

where 1i � p0, . . . , 0, 1, 0, . . . , 0qT P Rm�1 is vector with i-th element being one and

0 elsewhere.
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5.4.3.2 Generalized Inverse Gaussian with ν � �3
2

In this case, the constant c � φ
1�φ and the variance varpθtq � 1

φ
which is exactly

the same as the variance of Inverse Gaussian case but the random e�ect θt will in

general have larger skewness and kurtosis. The resulting distribution function is

fφpk, tq �
m¹
i�1

λkii,t
ki!

c
2

π
pφ� 1qSk�1eφω�pKppωq. (5.20)

where p � Sk � 3
2
and ω �

a
φ2 � 2pφ� 1qSλt . The derivatives with respect to

di�erent parameters can be derived similar to that of Inverse Gaussian case

Bfφpk, tq
Bφ �

�
φ� Sk

φ� 1



fφpk, tq �

�
k1 � 1

λ1,t

φ� Sλt
φ� 1



fφpk� 11, tq

Bfφpk, tq
Bβi �

�
ki
λi,t

fφpk, tq � ki � 1

λi,t
fφpk� 1i, φq



λi,tzi,t

(5.21)

The remaining case where ν � �3
4
cannot be simpli�ed since the c � K1{4pφq

K3{4pφq cannot

be written down in terms of basic functions. Hence numerical di�erentiation has to

be applied when evaluating
Bfφpk,tq

Bφ and
Bfφpk,tq
Bβi . Finally, Table 5.1 summarise the

parametrization of all mixing densities and Table 5.2 shows the moments formula

for each mixing density.

Table 5.1: Parametrization of mixing density based on GIG density 5.4

Mixing density ψ χ ν Range of parameter
Gamma 2φ 0 φ φ ¡ 0

GIG with unit mean cφ φ
c

�xed constant in R c � Kνpφ�1q
Kνpφq , φ ¡ 0

Inverse Gamma 0 2φ �φ� 1 φ ¡ 1

Table 5.2: Moments for the random e�ect θt. Ex.Kurtosis = Kurtosis - 3

Mixing density gpθq Variance Skenwness Ex.Kurtosis
Gamma 1

φ
2?
φ

6
φ

Inverse Gaussian 1
φ2

3
φ

15
φ2

GIG ν � �3
2

1
φ

φ
3
2�φ 1

2

φ2
3�12φ�15φ2

φ3

Inverse Gamma 1
φ�1

4
?
φ�1

φ�2
6p5φ�1q

pφ�2qpφ�3q

Although the formula for variances is slightly di�erent due to its parametrization,

they can be easily reparameterized and compared with each other. It turns out
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that the Inverse Gamma has the largest skewness and kurtosis while the Gamma

density has the smallest, which means the 'tailedness' of those density increases in

a 'top-down' order according to the Table. Hence, one can choose di�erent density

to accommodate di�erent tail structure encountered in real data.

5.5 Model �tting and Prediction

5.5.1 Maximum likelihood estimation for the MMPGIG-INAR(1)

model

In this section, we derive the log likelihood function and score function of the

MMPGIG-INAR(1) model de�ned above for the general case. Let the whole pa-

rameter set be Θ � tpi, βi, φ|i � 1, . . . ,mu and then the log likelihood function `pΘq
for this discrete Markov chain is just the product of their conditional probability

function such that `pΘq �±
tPΘpXt|Xt�1q, where the conditional probability is the

convolution of m+1 distribution functions such that

PpXt|Xt�1q � E

�
2¹
i�1

Pppi �Xi,t�1 �Ri,t � Xi,t�1|Xi,t�1, θtq
�

� E

�
m¹
i�1

si̧

k�0

fpipk,Xi,t�1qfRipXi,t � k, tq
�
, si � mintXi,t�1, Xi,tu

�
s1̧

k1�0

. . .
sm̧

km�0

fφpk, tq
m¹
i�1

fpipXi,t � ki, Xi,t�1q,

(5.22)

where the expectation is taken with respect to the random variable θt. The following

proposition gives `pΘq and its score functions.

Proposition 5.5. Suppose there is a multivariate random sequence pX1,X2, . . .Xnq
generated from the MMPGIG-INAR(1) model, the log likelihood function `pΘq and
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score functions are given by

`pΘq �
ņ

t�1

logPpXt|Xt�1q

�
ņ

t�1

log
s1̧

k1�0

. . .
sm̧

km�0

fφpk, tq
m¹
i�1

fpipXi,t � ki, Xi,t�1q

B`pΘq
Bϑ �

ņ

t�1

1

PpXt|Xt�1q
BPpXt|Xt�1q

Bϑ , ϑ P Θ

(5.23)

The derivatives inside the sum are given by

BPpXt|Xt�1q
Bpj �

s1̧

k1�0

. . .
sm̧

km�0

fφpk, tq
BfpjpXij,t � k,Xj,t�1q

Bpj
¹
i�j

fpjpXi,t � ki, Xi,t�1q

BPpXt|Xt�1q
Bϑ1

�
s1̧

k1�0

. . .
sm̧

km�0

Bfφpk, tq
ϑ1

m¹
i�1

fpipXi,t � ki, Xi,t�1q

ϑ1 P tβ1, β2, φu
(5.24)

where the derivative
Bfpj pω,Xj,t�1q

Bpj has the same form for all j � 1, ...,m.

Bfpjpω,Xj,tq
Bpj � fpjpω,Xj,tqω � pjXj,t

pjp1� pjq

The derivatives
Bfφpk,tq
ϑ1

are already discussed in Section 4 for di�erent cases. Hence,

the maximum likelihood estimators can be obtained through numerical algorithms,

for example Newton-raphson, Quasi-Newton and so on. However, optimization will

be computational intensive as m increases. One can solve this issue by adopting

the composite likelihood method introduced in Pedeli and Karlis (2013a), where the

high dimensional likelihood function was reduced to a sum of bivariate cases.

5.5.2 Integer-valued Prediction

Based on the estimates obtained by maximum likelihood and the random sequence

pX1, . . . ,Xnq, the h-steps ahead distribution of Xn�h conditional on Xn is given by

Xn�h
D� P̂h �Xn �

ḩ

k�1

P̂h�k �Rn�k, (5.25)

77



where P̂ is obtained from above estimation procedure. In the classical time series

model, one would minimise MSEphq � ErpX̂n�h�Xn�hq2|Xns to obtain the optimal

linear predictor such that X̂n�h � ErXn�h|Xns. However, this would inevitably

introduce real value for X̂n�h, which is not coherent to the integer-valued nature of

MMPGIG-INAR(1) model. To solve this, one can instead use the median X̃n�h of

Xn�h , the 50% quantile, as prediction value for the model, which is also discussed

by Pavlopoulos and Karlis (2008) and Homburg et al. (2019). In the univariate

case, the median is obtained by minimising the mean absolute error MAEphq �
Er|X̃n�h � Xn�h||Xns. The idea here can be extended to the multivariate case so

that the median X̃n�h is called geometric median, which is calculated by minimising

the expected Euclidean distance

MAEphq � Er||X̃n�h �Xn�h||2|Xns (5.26)

On the other hand, the expectation can be evaluated numerically by simulating the

random samples of Xn�h.

5.6 Empirical analysis

The data used in this section come from the Local Government Property Insurance

Fund (LGPIF) from the state of Wisconsin. This fund provides property insurance

to di�erent types of government units, which includes villages, cities, counties, towns

and schools. The LGPIF contains three major groups of property insurance cov-

erage, namely building and contents (BC), inland marine (IM) and motor vehicles

(PN, PO, CN, CO). For exploratory purposes, we focus on modelling jointly the

claim frequency of IM, denoted as X1,t, and comprehensive new vehicles collision

(CN), denoted as X2,t. The insurance data cover the period over 2006 - 2011 with

1234 policyholder records in total. Only n1 � 1048 of them have complete data

over the period 2006-2010 which will be used as the training data set. The last year

2011 with n2 � 1025 policyholders out of 1048 in the data set will be the test data

set. Denote the IM type and CN type claim frequency for a particular policyholder

as X
pjq
1,t , X

pjq
2,t respectively, where j is the identi�er for each policyholder. Then the

relationship between Xi,t and X
pjq
i,t is simply Xi,t �

°n1

j�1X
pjq
i,t with i � 1, 2 while t

would take the values from 1 to 5 corresponding to the year 2006 to 2010.

In what follows, basic statistical analysis is shown in Table 5.3 and �gures 5.1 and

5.2. The proportion of zeros for the two types of claims is higher than 90% during

the period 2006-2010. Also, both types of claims exhibit overdispersion, since their
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variances exceeds their means during this period. Furthermore, the overdispersion

for X2,t is even stronger than that of X1,t, which indicates the need to employ an

overdispersed distribution for this data. Additionally, the correlation tests for X1,t

and X2,t show a positive correlation between the two claim types. At this point it is

worth noting that modelling positively correlated claims has been explored by many

articles. See for example, Bermúdez and Karlis (2011), Bermúdez and Karlis (2012),

Shi and Valdez (2014a), Shi and Valdez (2014b), Abdallah et al. (2016), Bermúdez

and Karlis (2017), Bermúdez et al. (2018), Bermúdez et al. (2018), Pechon et al.

(2018), Pechon et al. (2019), Bolancé and Vernic (2019), Denuit et al. (2019), Fung

et al. (2019), Bolancé et al. (2020), Pechon et al. (2021), Jeong and Dey (2021),

Gómez-Déniz and Calderín-Ojeda (2021), Tzougas and di Cerchiara (2023), Tzougas

and di Cerchiara (2021) and Bermúdez and Karlis (2021). Finally, the proportion

of zeros and kurtosis show that the marginal distributions of X1,t, X2,t are positively

skewed and exhibit a fat-tailed structure which indicates the appropriateness of

adopting a positive skewed and fat-tailed distribution (GIG distribution).

Table 5.3: Summary statistics of two types of claims over years. The correlations
test is a one-sided test where the alternative hypothesis is "The sample correlation
is greater than 0"

2006 2007 2008 2009 2010
Proportion of zeros X1,t 0.9685 0.9542 0.9552 0.9504 0.9590
Proportion of zeros X2,t 0.9342 0.9332 0.9399 0.9370 0.9323

Kurtosis of X1,t 85.75009 86.64794 41.84915 43.01832 126.68793
Kurtosis of X2,t 53.91835 61.77408 111.28108 184.13950 133.92283

P-value of correlation test 0.0000 0.0000 0.0000 0.0000 0.0000

mean X1 var X1 mean X2 var X2 cor X1,X2

2006
2007
2008
2009
2010

0.
0

0.
1

0.
2

0.
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0.
4
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7

Figure 5.1: summary statistics (mean, variance and correlation) for each type of claims

across all the policyholders over years.

The description and some summary statistics for all the explanatory variables (co-

variates z1,t, z2,t) that are relevant to X1,t, X2,t are shown in Table 5.4. Variables
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1- 5 including 'TypeVillage' are categorical variables to indicate the entity types of

a policyholder. Due to the strongly heavy-tailed structure appearing in variables

6 and 9 which can drastically distort the model �tting, those variables are trans-

formed by means of the 'rank' function in R software and then standardized, which

can mitigate the e�ect of outliers. Variables 6-8 are relevant to IM claim X1,t while

variables 9,10 provide information for CN claims X2,t. The covariate z1,t includes

variables 1-8 and z2,t contains variables 1-5 and variables 9,10. These covariates act

as the regression part for λi,t mentioned in section 2, which may help explained part

of the heterogeneity between X1,t and X2,t.

Table 5.4: summary statistics for the explanatory variables

Variable index Variable name Type Description Proportion/Mean
1 TypeCity Categorical Indicator for city entity 0.1400
2 TypeCounty Categorical Indicator for county entity 0.0578
3 TypeMisc Categorical Indicator for miscellaneous entity 0.1104
4 TypeSchool Categorical Indicator for school entity 0.2817
5 TypeTown Categorical Indicator for town entity 0.1728
- TypeVillage Categorical Indicator for village entity (reference category) 0.2373
6 CoverageIM Continuous Coverage amount of IM(transformed) 0
7 InDeductIM Continuous Log deductible amount for inland marine 5.3400
8 NoClaimCreditIM Binary Indicator for no IM claims in prior year 0.4210
9 CoverageCN Countinuous Coverage amount of CN (transformed) 0
10 NoClaimCreditCN Binary Indicator for no CN claims in prior year 0.0897

The MMPGIG-INAR(1) with m � 2, is applied to model the joint behaviour of

X
pjq
1,t , X

pjq
2,t across all the policyholders. Note that when Gamma mixing density is

used in MPGIG INAR(1), the resulting model will be the �BINAR(1) Process with

BVNB Innovations� in Pedeli and Karlis (2011), which we will used as comparison

benchmark for other choices of mixing density. The the likelihood function would

simply become

`pΘq �
n1̧

j�1

`jpΘq �
n1̧

j�1

4̧

t�1

log PrpXpjq
1,t�1, X

pjq
2,t�1|Xpjq

1,t , X
pjq
2,t q, (5.27)

where `jpΘq is the likelihood function for policyholder j. Note that all the poli-

cyholders with the same type of claim Xi,. will share the same set of parameters

pi, βi and φ will be same for both claim types. In addition, it is necessary to show

the appropriateness of introducing correlation and time-series component (binomial

thinning) in MPGIG INAR(1). Then we also �t the data to following models.

1. The joint distribution of X
pjq
1,t and X

pjq
2,t are assumed to be bivariate mixed

Poisson distribution (BMP) with probability mass function fφpk, tq which we

already discussed in section 4.
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2. The joint distribution of X
pjq
1,t and X

pjq
2,t are characterized by two independent

INAR(1) models (TINAR)

X
pjq
1,t � p1 �Xpjq

1,t�1 �R1,t

X
pjq
2,t � p2 �Xpjq

2,t�1 �R2,t,

where Ri,t � Poispλi,tθi,tq, i � 1, 2 and random e�ect θi,t is independent of i.

Similarly, the likelihood functions for these models will have the same form as equa-

tion 5.27 but di�erent joint distribution PrpXpjq
1,t�1, X

pjq
2,t�1|Xpjq

1,t , X
pjq
2,t q. For compari-

son purposes, we �t the bivariate Poisson mixture regression model with the training

data starting from 2007 because BMP model does not need to consider lag responses.

All the estimations is implemented in R software by the 'optim' function with

method 'BFGS' (quasi-Newton method). The gradient functions with respect to

all the parameters are derived in section 4 and section 5 and they can be input as

gradient argument in 'optim' function, which will signi�cantly decrease the amount

of computational time compared to numerical gradient function in default setting.

Table 5.5: The AIC and BIC when �tting as two independent INAR model with
di�erent combination. row = Gamma, column = Inverse Gaussian means that
gamma mixing density for X1,t and Inverse Gaussian mixing density for X2,t. For
each entry, the number on the left is AIC and the other one is BIC.

Mixing density
Gamma

AIC | BIC
Inverse Gaussian

AIC | BIC
GIG ν � � 3

4
AIC | BIC

GIG ν � � 3
2

AIC | BIC
Inverse Gamma

AIC | BIC
Gamma 2999.957 | 3133.117 2999.433 | 3132.592 2999.590 | 3132.749 3000.48 | 3133.64 3002.352 | 3135.512

Inverse Gaussian 2998.876 | 3132.036 2998.351 | 3131.511 2998.508 | 3131.668 2999.399 | 3132.558 3001.271 | 3134.430
GIG ν � � 3

4
2998.661 | 3131.820 2998.136 | 3131.296 2998.293 | 3131.453 2999.184 | 3132.343 3001.056 | 3134.215

GIG ν � � 3
2

3004.415 | 3137.574 3003.890 | 3137.050 3004.047 | 3137.207 3004.938 | 3138.097 3006.810 | 3139.969
Inverse Gamma 2998.778 | 3131.938 2998.254 | 3131.413 2998.410 | 3131.570 2999.301 | 3132.461 3001.173 | 3134.333

Table 5.6: The AIC and BIC when �tting bivariate sequence as bivarate mixed
Poisson regression model and BINAR model. For each entry, the number on the left
is AIC and the other one is BIC.

Mixing density
Gamma

AIC | BIC
Inverse Gaussian

AIC | BIC
GIG ν � � 3

4
AIC | BIC

GIG ν � � 3
2

AIC | BIC
Inverse Gamma

AIC | BIC
BMP 3073.149 | 3187.285 3061.892 | 3176.028 3060.961 | 3175.098 3079.179 | 3193.315 3059.374 | 3173.510

BINAR(1) 2996.291 | 3123.109 2992.953 | 3119.771 2992.854 | 3119.672 3008.458 | 3135.277 2995.348 | 3122.167

Model �tting results are shown in Tables 5.5 and 5.6. All the results show a great

improvement by adopting a time series model compared to BMP results in Table

5.6. When focusing on the results of BINAR in Table 5.6, except the case where the

mixing density is GIG ν � �3
2
, there is an signi�cant improvement by introducing
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the fat-tailed distribution as mixing density in Rt compared to Gamma case. On the

other hand, the improvement from the optimal TINAR to the optimal BINAR (cells

are in grey color) is obvious, which is indicated by lower AIC and BIC of BINAR

with GIG ν � �3
4
compared to TINAR with GIG ν � �3

4
and Inverse Gaussian. It

implies that there is signi�cant correlation between two claim sequences. Maximum

likelihood estimates for three cases are given in Table 5.7 as well as their standard

deviations. The standard derivations are estimated by inverting the numerical Hes-

sian matrix. From Table 5.7 we see that the estimates for pi, βi are very close to

each other while the estimated φ is signi�cantly di�erent among three mixing densi-

ties, which is expected because φ in�uences the tail and correlation structure of the

bivariate sequence X1,t, X2,t. Furthermore, we see that the explanatory variables

have a similar e�ect (positive and/or negative) and are almost identical for both

response variables in the case of of all three models. Finally, the variables which

are statistically signi�cant at a 5 % threshold for X1,t are TypeCounty, TypeMisc,

TypeVillage, NoClaimCreditIM, and those which are statistically signi�cant at a

5 % threshold for X2,t are TypeCity, TypeCounty, TypeVillage, CoverageIM, and

CoverageCN.

The Figure 5.2 below presents prediction for both types of claims at t � 2011 with

n2 � 1025 policyholders based on geometric median equation 5.26. It seems that

the prediction for number of policyholders who make no claims are reasonably good

while the prediction for X1,t are generally underestimated at tail and the prediction

for X2,t are overestimated at the tail. On the other hand, Table 5.8 shows the

prediction sum of squared error (PSSE) and frequency of some basic combination of

observations, namely p0, 0q, p1, 0q, p0, 1q, p1, 1q for the best �tted models within three

classes, bivariate mixed Poisson regression, Two independent INAR(1) and bivariate

INAR(1). It is again clear that the introduction of autoregressive part makes sense

as it greatly reduce the prediction error. Although the best TINAR model has the

closet frequency of p0, 0q, the best BINAR model has the lowest overall prediction

error.
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Table 5.7: Maximum likelihood estimation for MMPGIG-INAR(1) of insurance's
claim frequency data when m � 2. For each entry, the upper one is the estimate
and the estimated standard deviations are indicated in square brackets

hhhhhhhhhhhhhhhEstimate

Mixing density Gamma Inverse Gaussian GIG ν � � 3
4

X1,t X2,t X1,t X2,t X1,t X2,t

pi 0.1238 0.2904 0.1200 0.2768 0.1194 0.2750
(0.0373) (0.0378) (0.0376) (0.0388) (0.0376) (0.0388)

φ 0.9495 0.8885 0.7944
(0.1662) (0.0931) (0.0136)

Intercept -3.7980 -5.9744 -3.8228 -5.9967 -3.8287 -6.0029
(0.5158) (0.4428) (0.5206) (0.4503) (0.5213) (0.4489)

TypeCity -0.2242 0.6673 -0.2316 0.6510 -0.2337 0.6480
(0.2555) (0.2823) (0.2577) (0..2861) (0.2586) (0.2866)

TypeCounty 0.5682 1.3290 0.5784 1.3019 0.5814 1.2953
(0.2811) (0.2643) (0.2836) (0.2674) (0.2794) (0.2673)

TypeMisc -2.0110 -0.1141 -2.0213 -0.1313 -2.0226 -0.1342
(1.0210) (0.6567) (1.0223) ( 0.6592) (1.0244) (0.6577)

TypeSchool -0.0387 0.1559 -0.0638 0.1323 -0.0692 0.1279
(0.3587) (0.2811) (0.3570) (0.2837) (0.3534) (0.2841)

TypeTown -0.3565 -0.8941 -0.3661 -0.9155 -0.3680 -0.9195
(0.3037) (0.4794) (0.3048) (0.4816) (0.3054) (0.4820)

CoverageIM 1.4543 1.4309 1.4259
(0.2126) (0.2115) (0.2080)

InDeductIM 0.0170 0.0243 0.0259
(0.0788) (0.0795) (0.0792)

NoClaimCreaditIM -0.4569 -0.4501 -0.4482
(0.1570) (0.1579) (0.1579)

CoverageCN 2.4227 2.4596 2.4675
( 0.2210) (0.2260) (0.2249)

NoClaimCreaditCN -0.3047 -0.3231 -0.3261
(0.1811) (0.1814) (0.1801)
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Figure 5.2: Observed (dark) and Predicted(grey) frequency of the test data set based on

estimated BINAR with GIG ν � �3
4 as mixing density
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Table 5.8: Summary of prediction on test data

Model PSSE Frequency
X1 X2 X1 �X2 (0,0) (1,0) (0,1) (1,1)

BMP Inverse gamma 264 221 485 970 0 24 0
TINAR GIG ν � �0.75 & Inverse gamma 212 164 376 964 4 33 0

BINAR GIG ν � �0.75 212 156 368 966 3 32 0

Observed 940 20 26 6

5.7 Concluding remarks

In this paper we proposed the MMPGIG-INAR(1) regression model for modelling

multiple time series of di�erent types of count response variables. The proposed

model, which is an extension of BINAR(1) regression model that was introduced

by Pedeli and Karlis (2011), can accommodate positive correlation and multivariate

overdispersion in a �exible manner. In particular, the Generalized Inverse Gaus-

sian class includes many distributions as its special and limiting cases that can be

used for modelling the innovations Rt. Thus, the proposed modelling framework

can e�ciently capture the stylized characteristics of alternative complex data sets.

Furthermore, due to the simple form of its density function, statistical inference

for the MMPGIG-INAR(1) model is straightforward via the ML method, whereas

other models that have been proposed in the literature, such as copula-based mod-

els, may result in numerical instability during the ML estimation procedure. For

demonstration purposes di�erent members of the proposed famly of models were

�tted to LGPIF data from the state of Wisconsin. Finally, it is worth mentioning

that a possible line of further research could be to also consider cross correlation,

meaning that the non-diagonal elements of P can take positive values.
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CHAPTER 6

Paper C. EM Estimation for Bivariate Mixed

Poisson INAR(1) Claim Count Regression Models

with Correlated Random E�ects

Abstract

This article considers bivariate mixed Poisson INAR(1) regression models with cor-

related random e�ects for modelling correlations of di�erent signs and magnitude

among time series of di�erent types of claim counts. This is the �rst time that the

proposed family of INAR(1) models is used in a statistical or actuarial context. For

expository purposes, the bivariate mixed Poisson INAR(1) claim count regression

models with correlated Lognormal and Gamma random e�ects paired via a Gaussian

copula are presented as competitive alternatives to the classical bivariate Negative

Binomial INAR(1) claim count regression model which only allows for positive de-

pendence between the time series of claim count responses. Our main achievement

is that we develop novel alternative Expectation-Maximization type algorithms for

maximum likelihood estimation of the parameters of the models which are demon-

strated to perform satisfactory when the models are �tted to Local Government

Property Insurance Fund data from the state of Wisconsin.
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6.1 Introduction

Over the past decade, there has been a growing literature on bivariate (and/or multi-

variate) claim count regression models which can e�ciently capture the dependence

between claims from the same policy and/or di�erent coverages bundled into a single

policy. The interested reader is referred to Abdallah et al. (2016), Bermúdez and

Karlis (2011), Bermúdez and Karlis (2012), Bermúdez and Karlis (2021), Bermúdez

et al. (2018), Bolancé et al. (2020), Bolancé and Vernic (2019), Denuit et al. (2019),

Fung et al. (2019), Gómez-Déniz and Calderín-Ojeda (2021), Jeong and Dey (2021),

Pechon et al. (2019), Pechon et al. (2021), Pechon et al. (2018), Shi and Valdez

(2014a), and Shi and Valdez (2014b) among many others.

Pechon et al. (2018) proposed the use of bivariate mixed Poisson count regression

models, with correlated random e�ects for capturing the interactions between the

di�erent coverages purchased by members of the same household. In particular,

Pechon et al. (2018) considered the bivariate Poisson-Gamma (BPGGA) regression

model with Gaussian copula and the bivariate Poisson-Lognormal (BPLN) regres-

sion model. In the former model the random e�ects are distributed according to

two Gamma distributions with unit means and the dependence between the random

e�ects is introduced by means of a Gaussian bivariate copula whereas in the lat-

ter model these random e�ects are distributed according to the bivariate Lognormal

mixing distribution. Bermúdez et al. (2018), following the setup of Pedeli and Karlis

(Pedeli and Karlis (2011) and Pedeli and Karlis (2013a)), were the �rst to derive a

bivariate Poisson integer-valued autoregressive process of order 1 (BINAR(1)) claim

count regression model which can account both for cross-sectional and temporal de-

pendence between multiple claim types. The model they developed was employed

for addressing the ratemaking problem of pricing an insurance contract in the case

of positively correlated claims from di�erent types of coverage in non-life insurance.

Finally, Bermúdez and Karlis (2021) built on the previous paper by using a mul-

tivariate INAR(1) (MINAR(1)) regression model based on the Sarmanov family of

distributions. The MINAR(1) regression models based on the Sarmanov family of

distributions are also restricted to a positive correlation structure between the claim

count response variables. However, it enjoys some advantages compared to a di�er-

ent approach which can allow for both positive and negative correlations by using

copulas for the speci�cation of the joint distribution of the innovations. See, for in-

stance, Cameron et al. (2004), Karlis and Pedeli (2013), Lee (1999), Nikoloulopoulos

(2013), Nikoloulopoulos (2016) and Nikoloulopoulos and Karlis (2010) among oth-

ers. Firstly, it avoids identi�ability issues which may arise when a continuous copula

distribution is paired with discrete marginals, see Genest and Ne²lehová (2007). As
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is well known, the lack of identi�ability means that it cannot be guaranteed that

model �tting is unique and this may lead to problems in statistical inference, for

example, one might receive no meaningful values for the standard errors of the pa-

rameters. Secondly, the computational intensity for discrete copula-based models

increases as the dimension of the model increases and hence, as is also mentioned

by the authors, their approach, which relies on the use of the Sarmanov family,

provides models that are less computationally intensive to estimate and can still

have a reasonable range for positive dependence structure between the claim count

responses.

In this study, we introduce a family of bivariate mixed Poisson INAR(1) claim count

regression models with correlated random e�ects for modelling the dependence struc-

ture between times series of di�erent types of claim counts from the same and/or

di�erent types of coverage. The bivariate mixed Poisson INAR(1) regression models

with correlated random e�ects are a broad class of models which can accommodate

overdispersion, which is a direct consequence of unobserved heterogeneity due to sys-

tematic e�ects in the data, and correlations of di�erent signs and magnitude. For

demonstration purposes, we consider the bivariate mixed Poisson INAR(1) claim

count regression models which are derived by using the bivariate Lognormal and

Gaussian copula paired with gamma marginals as mixing densities, which we refer

to as BINAR(1)-LN and BINAR(1)-GGA claim count regression models respec-

tively. Both models can be regarded as extensions of the classical bivariate Negative

Binomial INAR(1) claim count regression model with a shared gamma random ef-

fect, which we refer to as BINAR(1)-GA claim count regression model, in the sense

that they provide more �exibility for modelling overdispersed bivariate time series of

count data compared to the BINAR(1)-GA model which is derived by pre-imposing

the restrictive positive correlation assumption between time series of di�erent claim

types of claim counts, since in some cases negative correlations may be of interest as

well. Furthermore, unlike previous copula-based count regression models for which

identi�ability issues can arise when a continuous copula distribution is paired with

discrete marginals, in the proposed family of models identi�ability of the bivariate

distribution of the innovations is guaranteed by imposing a unit mean constraint for

the Gamma continuous mixing densities which are paired with a Gaussian copula.

The main contributions we make are as follows:

� Firstly, before we introduce the time series components, we present a uni�ed

framework for statistical inference via the Expectation-Maximization (EM)

algorithm for the BPGA, BPLN and BPGGA regression models1.

1Note that EM estimation for the parameters of the BPGA regression model with a shared
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� Secondly, we develop novel EM type algorithms for maximum likelihood (ML)

estimation of the BINAR(1)-GA, BINAR(1)-LN and BINAR(1)-GGA regres-

sion models, which has not been explored in the literature so far. The main

reason for this is because the joint distribution of the innovations cannot be

written in closed form in either model and hence its maximization is not possi-

ble via standard numerical optimization as is done in Bermúdez et al. (2018),

Bermúdez and Karlis (2021), Karlis and Pedeli (2013), Pedeli and Karlis (2011)

and Pedeli and Karlis (2013a)

The rest of the paper is organized as follows. Section 2 presents the model speci�-

cations for the bivariate mixed Poisson regression models we consider and describes

their ML estimation via the EM algorithm. Section 3 presents the derivation of

their INAR(1) extensions that we �rst proposed herein and outlines the EM type

algorithms we developed for statistical inference. Section 4 presents our empirical

analysis which is based on the LGPIF dataset. Concluding remarks are given in

Section 5. The interpretation of abbreviations used in the paper and some other

technical details are provided in appendix 6.A.

6.2 The bivariate mixed Poisson regression model

6.2.1 Model speci�cations

The bivariate Poisson mixture is constructed by two independent Poisson random

variables conditional on a random e�ect vector (or scalar) θ � pθ1, θ2q such that

N piq � Poispλi,tθiq, i � 1, 2. The bivariate mixed Poisson regression is then con-

structed by further allowing the rate λi to be modelled as functions of explanatory

variables zi,t such that λi,t � exptzTi,tβiu. Denote the mixing density function of the

random e�ect as fφpθq parametrized by φ. To avoid the identi�ability issue, we have

to restrict the expectation Erθis to be a �xed constant. One usually lets Erθis � 1

so that λt :� pλ1,t, λ2,tq will fully explain the frequency of a event and φ will ex-

plain the variation and correlation of the whole bivariate sequence. In the following,

we will discuss three di�erent mixing densities, univariate gamma (shared random

e�ect), bivariate Lognormal and Gaussian copula paired with Gamma marginals.

random e�ect and the BPLN regression model has been discussed in Gurmu and Elder (2000) and
Silva et al. (2019) respectively. However, this is the �rst time that the EM algorithm is used for
estimating the parameters of the BPGA regression model with Gaussian copula.

88



(a) Univariate Gamma density

In this case, the bivariate mixed Poisson regression model shares the same

random e�ect N
piq
t � Poispλi,tθq i � 1, 2. Denote the mixing density function

as fφpθq � fφpθq and it has following expression

fφpθq � φφ

Γpφqθ
φ�1e�φθ, (6.1)

which has unit mean and variance 1
φ
. Then the unconditional probability mass

function fPGpk, tq of Nt :� pN p1q
t , N

p2q
t q can be written down in a closed form

fPGpk, tq � λ1,t

k1!

λ2,t

k2!

» 8

0

e�pλ1,t�λ2,tqθθk1�k2fφpθqdθ

� Γpφ� k1 � k2q
ΓpφqΓpk1 � 1qΓpk2 � 1q

φφλk11,tλ
k2
2,t

pφ� λ1,t � λ2,tqφ�k1�k2 .
(6.2)

(b) Bivariate Lognormal density

Suppose now the random vector ε � pε1, ε2q follows bivariate normal distribu-

tion, with mean vector p�φ21
2
,�φ22

2
q and covariance matrix Σ

Σ �

�
�� φ2

1 ρφ1φ2

ρφ1φ2 φ2
2

�
�� (6.3)

Then the random e�ect vector θ � eε � peε1 , eε2q has Lognormal distribution

with unit mean. Denote the density function of ε as fNΣ and fLNΣ for Lognormal

density. Then they have the following expressions

fNΣ pεq �
1

2πσ1σ2

a
1 � ρ2

� exp

#
�

1

2p1 � ρ2q

��
ε1 � 0.5σ2

1

σ1


2

� 2ρ

�
ε1 � 0.5σ2

1

σ1


�
ε2 � 0.5σ2

2

σ2



�

�
ε2 � 0.5σ2

2

σ2


2
�+

fφpθq �
1

θ1θ2
fNΣ plog θq � fLNΣ pθq.

The unconditional distribution fPLNpk, tq of Nt is expressed as a double inte-

gral

fPLNpk, tq �
» 8

0

» 8

0

λk11,t

k1!

λk22,t

k2!
e�λ1,tθ1e�λ2,tθ2θk11 θ

k2
2 f

LN
Σ pθqdθ1dθ2

�
»
R

»
R

λk11,t

k1!

λk22,t

k2!
expt�λ1,te

ε1 � λ2,te
ε2 � k1ε1 � k2ε2ufNΣ pεqdε1dε2.

(6.4)
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All the double integrals with respect to Lognormal density fLNΣ can be trans-

formed into double integrals with respect to normal density fNΣ so that they

can be evaluated by Gauss-Hermite quadrature. See details in the appendix

6.B .

(c) Gaussian copula paired with Gamma marginals

Suppose now the random vector θ is distributed as a meta Gaussian cop-

ula such that its marginals are two independent Gamma random variables

with parameter pφ1, φ2q respectively. De�ne uniform random vector u �
pFφ1pθ1q, Fφ2pθ2qq. The distribution function FGCpθq and density function

fGCpθq can be written as

FGCpθq � Cρpuq � FρpΦ�1pu1q,Φ�1pu2qq

fφpθq � fGCpθq � fρpΦ�1pu1q,Φ�1pu2qq
fsnpΦ�1pu1qqfsnpΦ�1pu1qqfφ1pθ1qfφ2pθ2q

:� cρpuqfφ1pθ1qfφ2pθ2q,

(6.5)

where fρp., .q, Fρp., .q are the density function and cumulative distribution of

bivariate normal random variable with the following expression

fρpx1, x2q � 1

2π
a

1� ρ2
exp

"
�1

2

x2
1 � 2ρx1x2 � x2

2

1� ρ2

*
. (6.6)

The Φpxq is the cdf of standard normal random variable with Φ�1pxq as its
quantile function and fsnpxq is the density function of the standard normal

random variable. Finally, fφipxq and Fφipxq are the pdf and cdf of Gamma

density function de�ned in 6.1 for i � 1, 2. Then a bivariate Poisson Gamma

random vector is constructed as N
piq
t � Poispλi,tθiq, i � 1, 2 with probability

mass function fPGCpk, tq such that

fPGCpk, tq �
λk11,t

k1!

λk22,t

k2!

» 8
0

» 8
0

expt�λ1,tθ1 � λ2,tθ2uθ
k1
1 θk22 fGCpθ1, θ2qdθ1dθ2

�
λk11,t

k1!

λk22,t

k2!

» 1

0

» 1

0

e�λ1,tF
�1
φ1

pu1q�λ2,tF
�1
φ2

pu2qF�1
φ1
pu1q

k1F�1
φ2
pu2q

k2cρpu1, u2qdu1du2

Then the double integral can be evaluated by Gauss-Legendre quadrature. See

details in appendix 6.C.
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6.2.2 The EM algorithm

For statistical inference of above model, the classical maximum likelihood estimation

is not straightforward to apply because the log likelihood function

`pΘq �
ņ

t�1

log

�
λ
k1,t
1,t λ

k2,t
2,t

k1,t!k2,t!

» 8

0

» 8

0

θ
k1,t
1 θ

k2,t
2 e�λ1,tθ1�λ2,tθ2fφpθqdθ1dθ2

�
(6.7)

is not computational tractable and its maximum likelihood estimators are not straight-

forward to achieve. Alternatively, we can apply the EM algorithm to estimate the

parameters Θ � tβ1,β2,φu. For given random samples (k1, ...kn), suppose now we

observe the random e�ect pθ1, . . . ,θnq, then the complete likelihood function `cpΘq
is given by

`cpΘq �
ņ

t�1

��
2̧

i�1

ki,tlogpλi,tθi,tq � λi,tθi,t � logpki,t!q
�
� log fφpθtq

�
(6.8)

Compared to `pΘq, the complete log likelihood function `cpΘq are simpli�ed in the

sense that there is no integration and mixture likelihood are decomposed into Poisson

likelihood and the likelihood for mixing density.

However, to evaluate `cpΘq we need to �nd out the conditional (posterior) distribu-

tion of θ given the random samples. Then we de�ne ηpθ|λt,ktq � e�λ1,tθ1�λ2,tθ2θk1,t1 θ
k2,t
2

and posterior density

πpθ|Θpjq,ktq � fφpθq
±2

i�1 fPopki,t|λi,tθiq³8
0

³8
0
fφpθq

±2
i�1 f

pjq
Po pki,t|λi,tθiqdθ1dθ2

� ηpθ|λt,ktqfφpθq³8
0

³8
0
ηpθ|λt,ktqfφpθqdθ1dθ2

.

(6.9)

Then posterior expectation for any real value function hpθq is given by

Erhpθq|Θpjq,kts �
» 8

0

» 8

0

hpθqπpθ|Θpjq,ktqdθ1dθ2

�: Epjqθ,trhpθqs,
(6.10)

where fPopk|λq � e�λλk

k!
is the probability mass function of a Poisson random variable

with rate λ and the condition Θpjq means that the posterior density function is

evaluated with the parameters estimated at j-th iteration. The subscript θ of Epjqθ,t
means that the expectation is taken with respect to the θ for t-th observation.
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� E-step: Evaluating the Q function QpΘ; Θpjqq given the the parameters esti-

mated at j-th iteration

QpΘ; Θpjqq9
ņ

t�1

2̧

i�1

ki,t logpλi,tq � λi,tErθi|Θpjq,kts �
ņ

t�1

Erlog fφpθq|Θpjq,kts

�
ņ

t�1

2̧

i�1

ki,t logpλi,tq � λi,tEpjqθ,trθis �
ņ

t�1

Epjqθ,trlog fφpθqs.

(6.11)

� M-step: After �nding out the Q function, we update the parameters for the

next iteration, Θpj�1q, which can be achieved by �nding the gradient functions

gp.q and the Hessian matrix Hp.q of Q functions and then apply the Newton-

Raphson algorithm to maximize the Q function for the next iteration. The

parameters can be updated separately as Poisson part β1,β2 and random

e�ect part φ.

� For the Poisson part

β
pj�1q
i � βpjqi �H�1pβpjqi qgpβpjqi q, i � 1, 2

gpβpjqi q � ZT
i V

pgq
i Hpβpjqi q � ZT

i D
pHq
i Zi

V
pgq
i �

�!
ki,t � λ

pjq
i,t E

pjq
θ,trθis

)
t�1,...,n




D
pHq
i � diag

�!
�λpjqi,t Epjqθ,trθis

)
t�1,...,n



(6.12)

� For the random e�ect part, we need to derive the �rst and second or-

der derivatives of log fφpθq and then the take posterior expectation to

construct its gradient functions and Hessian matrix. In the following,

we derive the derivatives for those three mixing densities de�ned in the

last session. Di�erent mixing densities will a�ect the way we calculate

the posterior expectation, and in many cases, we have to rely on numer-

ical evaluation. However, some posterior expectations can be simpli�ed

to reduce computational cost when implementing the EM algorithm in

practice.

(a) Univariate Gamma density

This can be regarded as a special case because the posterior density is

known in closed form as another univariate Gamma density with di�erent
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parameters.

θ|Θpjq,kt � Gamma
�
φpjq � k1,t � k2,t, φ

pjq � λ
pjq
1,t � λ

pjq
2,t

	
(6.13)

Then, the posterior expectation when updating βi can be simpli�ed as

Epjqθ,t rθ1s � Epjqθ,t rθ2s � φpjq � k1,t � k2,t

φpjq � λ
pjq
1,t � λ

pjq
2,t

. (6.14)

Finally, to update φ

φpj�1q � φpjq � gpφpjqq
hpφpjqq ,

gpφpjqq � nplog φpjq �Ψpφpjqq � 1q �
ņ

t�1

�
Epjqθ,t rlog θs � Epjqθ,t rθs

	

hpφpjqq � nppφpjqq�1 �Ψ
1pφpjqqq,

(6.15)

where Ψpxq � Γ1pxq
Γpxq and Ψ1pxq are digamma and trigamma functions re-

spectively. The posterior expectation Epjqθ,t rlog θs is given by

Epjqθ,t rlog θs � Ψ
�
φpjq � k1,t � k2,t

�� log
�
φpjq � λ

pjq
1,t � λ

pjq
2,t

	
(6.16)

(b) Bivariate Lognormal density

In this case, there is no analytic expression for the posterior density.

However, it can be transformed in the following way

πpθ|Θpjq,ktq � ηpθ|λt,ktqfLNΣ pθq³8
0

³8
0
ηpθ|λt,ktqfLNΣ pθqdθ1dθ2

� ηpeε|λt,ktqfNΣ pεq³8
0

³8
0
ηpeε|λt,ktqfNΣ pεqdε1dε2

�: πpε|Θpjq,ktq.

(6.17)

Then, all posterior expectations with respect to θ can be transformed into

expectations with respect to ε such that Epjqθ,trhpθqs � Epjqε,t rhpeεqs. Under
this transformation, all the posterior expectations can be evaluated by

Gauss-Hermite quadrature. Furthermore,

Epjqθ,trlog fLNΣ pθqs � Epjqε,t rlog fNΣ pεq � ε1 � ε2s9Epjqε,t rlog fNΣ pεqs.
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To update φ � tφ1, φ2, ρu,

φpj�1q � φpjq �H�1pφpjqqgpφpjqq

gpφpjqqr �
ņ

t�1

Epjqε,t
�B log fNΣ pεq

Bφr

�

Hpφpjqqr,s �
ņ

t�1

Epjqε,t
�B2 log fNΣ pεq

BφrBφs

�
,

(6.18)

where the subscript r denotes the r-th element of a vector and r, s de-

notes r-th row s-th column entry of a matrix. The �rst and second order

derivatives are given by
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.

Notice that all the derivatives are in the linear form of ε21, ε
2
2, ε1, ε2, ε1ε2.

Hence, we can evaluate these posterior expectations in each iteration once

to avoid repeating calculations.

(c) Gaussian copula paired with Gamma marginals

In this case, there is no simpli�cation either for the posterior density or

for the posterior expectation. To update φ � tφ1, φ2, ρu, we have almost
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the same procedure as for the bivariate Lognormal case.

φpj�1q � φpjq �H�1pφpjqqgpφpjqq

gpφpjqqr �
ņ
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Epjqθ,t

�B log fGCpθq
Bφr

�
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ņ
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�
,

(6.19)

where the �rst and second order partial derivatives are given by
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6.3 The bivariate mixed Poisson INAR(1) regres-

sion model

6.3.1 Model speci�cations

Let X and R be non-negative integer-valued random vectors in R2. Let P be a

diagonal matrix in R2�2 with elements pi P p0, 1q. The bivariate �rst-order integer-
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valued autoregressive model (Bivariate INAR(1)) is de�ned as

Xt � P �Xt�1 �Rt �

�
��p1 0

0 p2

�
�� �

�
��X1,t�1

X2,t�1

�
���

�
��R1,t

R2,t

�
�� , (6.20)

where the thinning operator � is the widely used binomial thinning operator such

that pi � Xi,t �
°Xi,t
k�1 Uk and Uk are independent identically distributed Bernoulli

random variables with success probability pi, i.e. PpUk � 1q � pi. Hence pi �
Xi,t is binomially distributed with size Xi,t and success probability pi. Then the

distribution function fpipx,Xi,tq can be easily written down as

fpipk,Xi,tq �
�
Xi,t

k



pki p1� piqXi,t�k. (6.21)

Note that pi �Xi,t and pj �Xj,t, i � j are independent of each other. To adapt the

heteroscedasticity arising from the data, Rt is bivariate mixed Poisson regression

model such that Ri,t � Popλi,tθiq de�ned in the last session. The joint distribution

of the bivariate sequence Xt�1 conditional on the last state Xt is given by

PpXt�1|Xtq �
s1,t¸
k1�0

s2,t¸
k2�0

fp1pk1, X1,tqfp2pk2, X2,tqfRpX1,t�1 � k1, X2,t�1 � k2q

fRpk, tq �
λk11,t

k1!

λk22,t

k2!

» 8

0

» 8

0

ηpθ|λt,ktqfφpθqdθ1dθ2

si,t � mintXi,t�1, Xi,tu,

(6.22)

where fRpk, tq is a probability mass function of a bivariate mixed Poisson regression

model with mixing density fφpθq. Under this construction, the bivariate sequence

Xt is correlated with each other and its correlation structure mainly depends on the

correlation structure of innovation Rt.

6.3.2 The EM algorithm

Similarly, the maximum likelihood estimation is not straightforward to apply as the

log likelihood function

`pΘq �
ņ

t�1

log

�
s1,t¸
k1�0

s2,t¸
k2�0

fp1pk1, X1,tqfp2pk2, X2,tqfRpX1,t�1 � k1, X2,t�1 � k2q
�
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has discrete convolution and double integrals. Then we can use similar techniques

to decompose the log likelihood function as we did in section 2.

Given the observed bivariate sequence tXtut�1,...,n. Let Yi,t � pi � Xi,t�1 and Θ �
tp1, p2,β1,β2,φu be the parameter space for this model. Suppose now we observe

the latent variable tYtut�1,...n, then the log likelihood function becomes

`pΘ|Yq9
ņ

t�1

2̧

i�1

pYi,t log pi � pXi,t � Yi,tq logp1� piqq �
ņ

t�1

log fRpRt, tq

Ri,t � Xi,t � Yi,t.

(6.23)

Notice that there are still unobserved random variables θ in Rt. In some of the

examples we discuss in the last section, fRpk, tq may not have analytic expression

and hence we would like to further break down the likelihood function. Suppose

further that we observe the random e�ect tθtut�1...n, then the complete log likelihood

becomes

`pΘ|Y,θq9
ņ

t�1

2̧

i�1

pYi,t log pi � pXi,t � Yi,tq logp1� piqq

�
ņ

t�1

2̧

i�1

pRi,t logpλi,tq � λi,tθi,tq �
ņ

t�1

log fφpθq.
(6.24)

De�ne the following posterior density functions

π1py|Θpjq,Xt,Xt�1q � fRpXt�1 � yq±2
i�1 fpipyi, Xi,t�1q

PpXt|Xt�1q
π2pθ|Θpjq,Rtq � ηpθ|λt,Rtqfθpφq³8

0

³8
0
ηpθ|λt,Rtqfφpθqdθ1dθ2

,

(6.25)

De�ne the posterior expectations with respect to real-value functions hp., .q

Epjqy,trhpyqs �
s1,t�1¸
y1�0

s2,t�1¸
y2�0

hpyqπ1py|Θpjq,Xt,Xt�1q

Epjqθ,trhpθq|Rts �
» 8

0

» 8

0

hpθqπ2pθ|Θpjq,Rtqdθ1dθ2.

(6.26)

� E-step: Evaluating the Q function QpΘ; Θpjqq given the the parameters esti-
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mated in the j-th iteration,

QpΘ; Θpjqq �
ņ

t�1

2̧

i�1

pypjqi,t log pi � pXi,t�1 � y
pjq
i,t q logp1� piqq

�
ņ

t�1

2̧

i�1

prpjqi,t logpλi,tq � λi,tθ̂
pjq
i,t q �

ņ

t�1

Epjqy,trEpjqθ,trlog fφpθq|Rtss

y
pjq
i,t � Epjqy,trYis, r

pjq
i,t � Xi,t � y

pjq
i,t , θ̂

pjq
i,t � Epjqy,trEpjqθ,trθi|Rtss.

(6.27)

After breaking down the log likelihood function, it is obvious that except for

the log likelihood contributed by binomial distribution, the rest of the terms are

almost the same as that of the Q-function of bivariate mixed Poisson regression

model discussed in the last session, which means the updating procedure for

βi,φ will be exactly the same, but we need to evaluate di�erent posterior

expectations in this case.

� M-step: Similarly, we apply the Newton-Raphson algorithm to update the

parameters. Based on the structure of QpΘ; Θpjqq, the parameters can be

updated separately for binomial part p, Poisson part βi and random e�ect

part φ

� The binomial part can be updated simply as the following gradient func-

tion has a unique solution

gppiq �
°n
t�1 y

pjq
i,t

pi
�

°n
t�1pXi,t�1 � y

pjq
i,t q

1� pi
� 0

p
pj�1q
i �

°n
t�1 y

pjq
i,t°n

t�1Xi,t�1

, i � 1, 2

y
pjq
i,t �

$''&
''%

p
pjq
i Xi,t�1PpXt�1i|Xt�1�1iq

PpXt|Xt�1q , Xi,t � 0 and Xi,t�1 � 0

0, otherwise

11 � p1, 0qT 12 � p0, 1qT .

(6.28)

See appendix 6.D for the derivation of y
pjq
i,t .

� For the Poisson part, the updating equations are the same with di�erent
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posterior expectation

β
pj�1q
i � βpjqi �H�1pβpjqi qgpβpjqi q, i � 1, 2

gpβpjqi q � ZT
i V

pgq
i Hpβpjqi q � ZT

i D
pHq
i Zi

V
pgq
i �

�!
ki,t � λ

pjq
i,t θ̂

pjq
i,t

)
t�1,...,n




D
pHq
i � diag

�!
�λpjqi,t θ̂pjqi,t

)
t�1,...,n



.

(6.29)

Note that when the mixing density fφpθq is univariate Gamma, the pos-

terior expectation for θ has a simple expression

θ̂
pjq
t � θ̂

pjq
1,t � θ̂

pjq
2,t �

φpjq � r
pjq
1,t � r

pjq
2,t

φpjq � λ
pjq
1,t � λ

pjq
2,t

.

� Similarly, for the random e�ect part φ,

(a) Univariate Gamma density

φpj�1q � φpjq � gpφpjqq
hpφpjqq ,

gpφpjqq � nplog φpjq �Ψpφpjqq � 1q �
ņ

t�1

�
Epjqy,trEpjqθ,t rlog θ|Rtss � θ̂

pjq
t

	

hpφpjqq � nppφpjqq�1 �Ψ
1pφpjqqq,

(6.30)

(b) Bivariate Lognormal

φpj�1q � φpjq �H�1pφpjqqgpφpjqq

gpφpjqqr �
ņ

t�1

Epjqy,t
�
Epjqε,t

�B log fNΣ pεq
Bφr

|Rt

��

Hpφpjqqr,s �
ņ

t�1

Epjqy,t
�
Epjqε,t

�B2 log fNΣ pεq
BφrBφs

|Rt

��
,

(6.31)
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(c) Gaussian copula paired with Gamma marginals

φpj�1q � φpjq �H�1pφpjqqgpφpjqq

gpφpjqqr �
ņ

t�1

Epjqy,t
�
Epjqθ,t

�B log fGCpθq
Bφr

|Rt

��

Hpφpjqqr,s �
ņ

t�1

Epjqy,t
�
Epjqθ,t

�B2 log fGCpθq
BφrBφs

|Rt

��
.

(6.32)

The partial derivatives inside expectations are derived in the last section.

Remark This model as well as the EM algorithm can be extent to multivariate

case straightforwardly. All the steps and the general form of the formula of the EM

algorithm in the multivariate case are exactly the same. The only problem is that

it would become cumbersome to evaluate the transition probability PpXt|Xt�1q as
dimension of Xt increases.

6.4 Empirical analysis

6.4.1 Data description and model �tting

The data used in this section come from the Local Government Property Insurance

Fund (LGPIF) from the state of Wisconsin. On previous application on this dataset,

interested reader can refer to Frees et al. (2016), Lee and Shi (2019) and Jeong et al.

(2023). This fund provides property insurance to di�erent types of government units,

which includes villages, cities, counties, towns and schools. The LGPIF contains

three major groups of property insurance coverage, namely building and contents

(BC), contractors' equipment (IM) and motor vehicles (PN, PO, CN, CO). For

exploratory purposes, we focus on modelling jointly the claim frequency of IM,

denoted as X1, and comprehensive new vehicles collision (CN), denoted as X2 as

they are both related to land transport. The insurance data cover the period over

2006 - 2010 with 1234 policyholders in total. Only n1 � 1048 of them have complete

data over the period 2006-2010, which will be the training dataset. The last year

2011 with n2 � 1025 policyholders, which is the same set of policyholders as in

the training dataset, out of 1098 policyholders will be the test dataset. Denote the

IM type and CN type claim frequency for a particular policyholder as X
phq
1,t , X

phq
2,t

respectively, where h is the identi�er for each policyholder and t is the year. Then

the relationship between Xi,t and X
phq
i,t is simply Xi,t �

°
hX

phq
i,t with i � 1, 2.
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Some basic statistical analysis is shown in the following Table 6.1 and Figure 6.1.

The proportion of zeros for two types of claims are all over 90% during 2006-2010.

Both types of claim shows overdispersion as the variance are all higher than their

mean over years and the overdispersion for X2,t is even stronger than that of X1,t,

which indicate the need to apply overdispersed distribution model for the data.

The correlation tests over years imply that it is reasonable to introduce correlation

structure between X1,t and X2,t. The proportion of zeros and kurtosis show that the

marginal distributions of X1,t, X2,t are all positively skewed and exhibit a fat-tailed

structure which indicates the appropriateness of adopting a positive skewed and fat-

tailed distribution (Log Normal distribution). Last but not least, the correlation

tests illustrated in Table 6.2 do support the appropriateness of introduction of time

series term in modelling the claim sequence.

Table 6.1: Summary statistics of two types of claims over years. The correlations
test is a one-sided test where the alternative hypothesis is �The sample correlation
is greater than 0�

2006 2007 2008 2009 2010
Proportion of zeros X1,t 0.9685 0.9542 0.9552 0.9504 0.9590
Proportion of zeros X2,t 0.9342 0.9332 0.9399 0.9370 0.9323

Kurtosis of X1,t 85.7500 86.6479 41.8491 43.0183 126.6879
Kurtosis of X2,t 53.9183 61.7740 111.2810 184.1395 133.9228

P-value of correlation test 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.2: Correlation test for Xi,t and Xi,t�1. The test is a one-sided test where
the alternative hypothesis is �The sample correlation is greater than 0�

X1 X2

correlation 0.4062 0.7478
p-value 0.0000 0.0000

The description and some summary statistics for all the explanatory variables (co-

variates z1,t, z2,t) that are relevant to X1,t, X2,t are shown in Table 6.3. Variables

1- 5 including `TypeVillage' are categorical variables to indicate the entity types of

a policyholder. Due to the strongly heavy-tailed structure appearing in variables

6 and 9, which can drastically distort the model �tting, those variables are trans-

formed by means of the `rank' function in R software and then standardized, which

can mitigate the e�ect of outliers. Variables 6-8 are relevant to IM claim X1,t, while

variables 9,10 provide information for CN claims X2,t. The covariate z1,t includes

variables 1-8, and z2,t contains variables 1-5 and variables 9,10. These covariates

act as the regression part for λi,t mentioned in section 2, which may help to explain

part of the heterogeneity within X1,t and X2,t.
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Figure 6.1: Summary statistics (mean, variance and correlation) for each type of claims

across all the policyholders over the years.

Table 6.3: summary statistics for the explanatory variables

Variable index Variable name Type Description Proportion/Mean
1 TypeCity Categorical Indicator for city entity 0.1400
2 TypeCounty Categorical Indicator for county entity 0.0578
3 TypeMisc Categorical Indicator for miscellaneous entity 0.1104
4 TypeSchool Categorical Indicator for school entity 0.2817
5 TypeTown Categorical Indicator for town entity 0.1728
- TypeVillage Categorical Indicator for village entity (reference category) 0.2373
6 CoverageIM Continuous Coverage amount of IM(transformed) 0
7 InDeductIM Continuous Log deductible amount for inland marine 5.3400
8 NoClaimCreditIM Binary Indicator for no IM claims in prior year 0.4210
9 CoverageCN Countinuous Coverage amount of CN (transformed) 0
10 NoClaimCreditCN Binary Indicator for no CN claims in prior year 0.0897

Due to the large computational cost for evaluating the partial derivatives of copula

case (large sample size), all the models except the copula case discussed in Section

2 and Section 3 are applied to model the joint behaviour of X
phq
1,t , X

phq
2,t across all the

policyholders. Instead, a simulation study in the appendix 6.E shows that the EM

algorithm does work for copula case.

Since we would like to model the whole behaviour rather than the individual one,

the the likelihood function would simply become

`pΘq �
n1̧

h�1

`hpΘq �
n1̧

h�1

4̧

t�1

log PrpXphq
1,t�1, X

phq
2,t�1|Xphq

1,t , X
phq
2,t q, (6.33)

where `hpΘq is the log likelihood function for policyholder h. Note that all the pol-

icyholders with the same type of claim Xi, will share the same set of parameters

tp1, p2,β1,β2,φu. In addition, it is necessary to show the appropriateness of intro-

ducing crosscorrelation and autocorrelation in BINAR(1) model. Then we also �t

the data to following models.
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1. The joint distribution of X
phq
1,t and X

phq
2,t are characterized by two independent

mixed Poisson (TMP)

X
phq
1 � Poispλ1θ1q, X

phq
2 � Poispλ2θ2q, (6.34)

where θ1 and θ2 are independent random variables, either Gamma or Log

Normal.

2. The joint distribution of X
phq
1,t and X

phq
2,t are assumed to be bivariate mixed

Poisson distribution (BMP) with di�erent probability mass function according

to the choice of mixing densities, see equations (6.2) and (6.4).

3. The joint distribution of X
phq
1,t and X

phq
2,t are characterized by two independent

INAR(1) models (TINAR)

X
phq
1,t � p1 �Xphq

1,t�1 �R1,t

X
phq
2,t � p2 �Xphq

2,t�1 �R2,t,

where Ri,t � Poispλi,tθi,tq, i � 1, 2 and random e�ect θi,t is independent of i

and t.

For comparison purpose, we �t these univariate and bivariate Poisson mixture mod-

els with training dataset starting from 2007 because they do not need to consider

the lag responses. When it comes to the initial values, we use the following. Lag

one correlation of each sequence serves as the initial value of pi. We �t a Poisson

generalized linear model for each sequence to obtain the initial values of βi. Finally,

we used the moment estimates of the bivariate Poisson mixture model (without re-

gression) for initial values of φ � tφ1, φ2, ρu. All the estimation is performed in R

software where we implement the EM algorithms derived in previous sections. The

standard deviations of the estimators are calculated by inverting the observed in-

formation of matrix from the incomplete log-likelihood function (the log likelihood

function without unobserved latent variables).

Model �tting results are shown in Table 6.4. Within the same class of models,

compared to univariate Gamma as mixing density, the Log Normal case allows more

�exible structures to capture di�erent distributional behaviour within two types of

claims. Hence we can observe the improvement of AIC from univariate Gamma case

to Log Normal case and hence it is no surprise that the Log Normal is always the

best choice within the same class of model. Among di�erent classes of models, it

is clear that the adoption of autocorrelation component signi�cantly improves the
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model �tting. Finally, the signi�cant improvement in terms of AIC from TINAR to

BINAR, as well as from TMP to BMP, indicates that it is appropriate to introduce

cross correlation between two sequences X1, X2. The estimated parameters via EM

algorithm are shown in Table 6.5.

Table 6.4: Goodness of �t for di�erent models with di�erent choices of mixing
densities. For the class TMP and TINAR, row and column stand for mixing density
of θ1, θ2, respectively. The grey cells indicate the best one within the same class of
models.

Mixing density
Gamma

AIC | BIC
Log Normal
AIC | BIC

TMP
Gamma 3073.332 | 3193.810 3067.119 | 3187.596

Log Normal 3072.287 | 3192.765 3066.074 | 3186.551

TINAR
Gamma 2999.957 | 3133.117 2999.843 | 3133.003

Log Normal 2998.326 | 3131.485 2998.212 | 3131.371
BMP / 3073.176 | 3191.329 3055.066 | 3181.885
BINAR / 2996.291 | 3123.109 2990.744 | 3130.245

6.4.2 Predictive performance

In insurance claims modelling, it is more useful to check the overall distribution for

all policyholders rather than prediction of the claim frequency for each policyholder,

which can be used for premium calculation, risk management, and so forth. To eval-

uate the predictive performance, we then calculate the predicted claim frequencies

FreqpXt|Xt�1, Θ̂q, which are the sum of individual probabilities PpXphq
t |Xphq

t�1, Θ̂q of
joint events pXphq

1 , X
phq
2 q P tpi, jq, 0 ¤ i, j ¤ 10u based on the estimated parameters,

and compare these to the observed frequencies from the test sample pX1,2011, X2,2011q
(year 2011). In addition to our proposed BINAR model with Log Normal mix-

ing density, we also compute predictive performance of the best TMP, TINAR,

BMP models from Table 6.4 as the benchmark for comparison purposes. Based on

the predictive claim frequencies, one can also compute expected number of claims

marginally pErX1s,ErX2sq,

ErX1s �
10̧

k1�0

10̧

k2�0

k1Freqpk1, k2|X2010, Θ̂q

ErX2s �
10̧

k1�0

10̧

k2�0

k3Freqpk1, k2|X2010, Θ̂q
(6.35)
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Table 6.5: Parameter estimation for the Bivariate mixed Poisson regression model
and the bivariate INAR model of insurance claim frequency data with EM algorithm.
For each entry, the upper one is the estimate and the estimated standard deviations
are indicated in round brackets.

XXXXXXXXXXEstimate
Model

BMP BINAR

BPGA BPLN BINAR(1)-GA BINAR(1)-LN
X1,t X2,t X1,t X2,t X1,t X2,t X1,t X2,t

pi 0.1238 0.2904 0.1118 0.2761
(0.0373) (0.0378) (0.0384) (0.03950)

φi 1.1742 1.0668 0.8408 0.9495 1.0559 0.9403
(0.1656) (0.1167) (0.0696) (0.1662) (0.1274) (0.0931)

ρ 0.5895 0.6063
(0.1485) (0.1782)

Intercept -3.7300 -5.4277 -3.6811 -5.4836 -3.7980 -5.9744 -3.7966 -6.0363
(0.4835) (0.3612) (0.5175) (0.3743) (0.5158) (0.4428) (0.5412) (0.4607)

TypeCity -0.2183 0.5354 -0.2830 0.5234 -0.2242 0.6673 -0.2735 0.6625
(0.2405) (0.2259) (0.2565) (0.2306) (0.2823) (0.2577) (0.2657) (0.2888)

TypeCounty 0.5269 1.2034 0.6190 1.1312 0.5682 1.3290 0.6200 1.2744
(0.2605) (0.2074) (0.2809) (0.2119) (0.2811) (0.2643) (0.2930) (0.2698)

TypeMisc -2.0565 -0.4822 -2.0968 -0.4916 -2.0110 -0.1141 -2.0360 -0.1279
(1.0192) (0.6349) (1.0251) ( 0.6355) (1.0210) (0.6567) (1.0253) (0.6604)

TypeSchool 0.0678 -0.0068 -0.0768 -0.0190 -0.0387 0.1559 -0.0945 0.1367
(0.3242) (0.2291) (0.3401) (0.2318) (0.3587) (0.2811) (0.36074) (0.2852)

TypeTown -0.4060 -1.1058 -0.4427 -1.1294 -0.3565 -0.8941 -0.3830 -0.9257
(0.2992) (0.4289) (0.3064) (0.4309) (0.3037) (0.4794) (0.3091) (0.4832)

CoverageIM 1.5299 1.4519 1.4543 1.4219
(0.1971) (0.2062) (0.2126) (0.2163)

InDeductIM 0.0241 0.0274 0.0170 0.0233
(0.0730) (0.0799) (0.0788) (0.0835)

NoClaimCreaditIM -0.6557 �0.6053 -0.4569 -0.4382
(0.1421) (0.1552) (0.1570) (0.1665)

CoverageCN 2.3947 2.4422 2.4227 2.4818
( 0.1819) (0.1903) ( 0.2210) ( 0.2210)

NoClaimCreaditCN -0.6752 -0.6786 -0.3047 -0.3139
(0.1652) (0.1663) (0.1811) (0.1811)

and measure the Predictive Sum of Square error:

PSSE � pErX1s �X1,2011q2 � pErX2s �X2,2011q2 (6.36)

On the other hand, the log likelihood on test samples (TLL) can also be a measure

of predictive performance for each model.

TLL �
n2̧

h

logPpXphq
t |Xphq

t�1, Θ̂q. (6.37)

All the results are summarised in Table 6.6 and 6.7 and it is clear that our proposed

model, bivariate INAR(1), has the best predictive performance with the smallest
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PSSE among all other models. Furthermore, TLL result shows that the bivariate

INAR outperforms all other models, which is consistent with the model �tting result

in Table 6.4.

Table 6.6: Predictive and observed joint frequencies for each models

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

TMP 901.40 36.53 11.95 38.30 4.03 2.20 5.37 0.97 0.62
TINAR 903.99 37.47 11.70 37.42 4.16 2.30 4.87 0.93 0.61
BMP 904.09 36.87 11.75 36.91 4.09 2.41 4.81 0.81 0.63
BINAR 906.03 37.67 11.55 36.31 4.16 2.45 4.45 0.79 0.61
Observed 940 26 6 20 6 2 4 1 1

Table 6.7: predictive Marginal claim frequency

TMP TINAR BMP BINAR Observed

ErX1s 79.18 74.17 77.06 72.55 78
ErX2s 158.89 153.28 157.34 152.68 117
PSSE 1756.164 1330.907 1628.199 1302.765 /
TLL -348.3537 -340.4619 -345.9555 -338.4115 /

6.4.3 Application to ratemaking

In this subsection, the analysis of best �tted models from Table 6.4 for ratemaking

is conducted. We select three representative risk pro�les under di�erent models,

named Good, Average and Bad, illustrated in Table 6.8. These three risk pro�les

are selected according to the sign and size of the coe�cients in Table 6.5 and those

variables are not mentioned in the following table are taken to be 0. Note that

CoverageIM and CoverageCN are selected according to their empirical distribution

on test data.

Table 6.8: The risk pro�les for two claim sequences

TypeCounty TypeMisc CoverageIM
Good 0 1 -1.43

Z1 Average 1 0 0
Bad 1 0 1

TypeCounty TypeMisc CoverageCN
Good 0 1 -0.56

Z2 Average 1 0 1.6
Bad 1 0 2.15
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We then evaluate the mean and variance of X
phq
1,t � X

phq
2,t under each best TMP,

TINAR, BMP and BINAR according to Table 6.4. The mean and variance for

one policyholder is given by two quantity, i.e. ErXphq
1 � X

phq
2 |Θ̂,Xt�1,Z1,Z2s and

VarpXphq
1 �X

phq
2 |Θ̂,Xt�1,Z1,Z2q. They have following explicit formulae

ErR1,t �R2,t|Θ̂,Z1,Z2s � λ̂1 � λ̂2 � eZ1β̂1 � eZ2β̂2

VarpR1,t �R2,t|Θ̂,Z1,Z2q � λ̂2
1peσ̂1 � 1q � λ̂2

2peσ̂2 � 1q � λ̂1 � λ̂2

� 2λ̂1λ̂2peρ̂σ̂1σ̂2 � 1q

ErXphq
1 �X

phq
2 |Θ̂,Xt�1,Z1,Z2s � p̂1X

phq
1,t�1 � p̂2X

phq
2,t�1

� ErR1,t �R2,t|Θ̂,Z1,Z2s

VarpXphq
1 �X

phq
2 |Θ̂,Xt�1,Z1,Z2q � p̂1p1� p̂1qXphq

1,t�1 � p̂2p1� p̂2qXphq
2,t�1

� VarpR1,t �R2,t|Θ̂,Z1,Z2q

(6.38)

Table 6.9 and 6.10 summarised the mean and variance under di�erent risk pro�les

and di�erent claim history structure pXphq
1,t�1, X

phq
2,t�1q. As TMP and BMP do not

depend on claim history, their mean and variance are all the same within the same

risk pro�les. It is interesting to see that the variance of INAR models are smaller

than that of mixed Poisson models in many cases.

Table 6.9: Premium calculations from di�erent models: Means.

Pro�le pXphq
1,t�1, X

phq
2,t�1q TMP TINAR BMP BINAR

Good (0,0) 0.0010 0.0009 0.0010 0.0009
(0,1) 0.0010 0.2856 0.0010 0.2771
(1,0) 0.0010 0.1194 0.0010 0.1128
(1,1) 0.0010 0.4040 0.0010 0.3889

Average (0,0) 0.6361 0.4690 0.6877 0.4951
(0,1) 0.6361 0.7537 0.6877 0.7713
(1,0) 0.6361 0.5875 0.6877 0.6070
(1,1) 0.6361 0.8722 0.6877 0.8832

Bad (0,0) 2.4873 1.8631 2.6553 1.9484
(0,1) 2.4873 2.1478 2.6553 2.2246
(1,0) 2.4873 1.9816 2.6553 2.0603
(1,1) 2.4873 2.2663 2.6553 2.3364
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Table 6.10: Premium calculations from di�erent models: Variances.

Pro�le pXphq
1,t�1, X

phq
2,t�1q TMP TINAR BMP BINAR

Good (0,0) 0.0010 0.0009 0.0010 0.0009
(0,1) 0.0010 0.2045 0.0010 0.2008
(1,0) 0.0010 0.1053 0.0010 0.1003
(1,1) 0.0010 0.3090 0.0010 0.3001

Average (0,0) 0.8746 0.6869 1.1563 0.8221
(0,1) 0.8746 0.8905 1.1563 1.0220
(1,0) 0.8746 0.7914 1.1563 0.9215
(1,1) 0.8746 0.9950 1.1563 1.1214

Bad (0,0) 6.0635 5.2554 9.6217 6.9969
(0,1) 6.0635 5.4591 9.6217 7.1968
(1,0) 6.0635 5.3599 9.6217 7.0962
(1,1) 6.0635 5.5635 9.6217 7.2961

6.5 Concluding remarks

In this paper, we consider a new family of bivariate mixed Poisson INAR(1) regres-

sion models for modelling multiple time series of di�erent types of claim counts.

The proposed family of models accounts for bivariate overdispersion and, similarly

to copula-based models, allows for interactions of di�erent signs and magnitude

among the two count response variables without using the �nite di�erences of the

copula representation which may result in numerical instability in the ML esti-

mation procedure. For illustrative purposes, we derived the BINAR(1)-LN and

BINAR(1)-GGA regression models which can be regarded as competitive alterna-

tives to the BINAR(1)-GA regression model for modelling time series of count data.

Furthermore, from a computational statistics standpoint, the EM type algorithms

we developed for ML estimation of the parameters of all the models were easily im-

plementable and were shown to perform well when we exempli�ed our approach on

LGPIF data from the state of Wisconsin. At this point, it should be noted that we

considered the bivariate case and the Gamma and Lognormal correlated random ef-

fects for expository purposes. Moreover, the EM estimation framework we proposed

is su�ciently �exible and can be used for other continuous mixing densities with

a unit mean and, unlike copula-based models, which also allow for both positive

and negative correlations, generalizations to any vector size response variables are

straightforward. However, in the latter case, EM estimation may be chronologically

demanding due to algebraic intractability. Nevertheless, in such cases, due to the

structure of the EM algorithm for multivariate INAR(1) models with correlated ran-
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dom e�ects, the E- and M-steps can be executed in parallel across multiple threads

to exploit the processing power available in multicore machines.

Finally, an interesting topic for further research would be to also take into account

cross autocorrelation, proceeding along similar lines as in Bermúdez et al. (2018).
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6.A abbreviations

Here is a table for all the abbreviations used in this paper

Table 6.11: The explanation of the Abbreviations used in

Abbreviation Interpretation
BP... Bivariate Mixed Poisson regression model...
BPGA �with univarite Gamma as mixing density
BPLN �with bivariate log normal as mixing density
BPGGA �with bivarite Gaussian Copula paried with univariate Gamma as mixing density

BINAR(1) - ... Bivariate Integer-valued autoregssive model ...
BINAR(1) - GA �with BPGA as innovations
BINAR(1) - LN �with BPLN as innovations
BINAR(1) - GGA �with BPGGA as innovations

6.B The Gauss-Hermite quadrature in the high di-

mensional setting

In this session, we introduce how to transform an integral with respect to multivari-

ate normal density function into a multi-dimension Gauss-Hermite quadrature rule.

Starting from one dimensional case, the way we calculate the following integral

ErhpXqs �
» 8

�8
hpxq 1?

2πσ
exp

"
�px� µq2

2σ2

*
dx,

where X � Npµ, σ2q, is �rst to make a linear transformation of integrand and then

apply the quadrature rule directly:

Erhpxqs �
» 8

�8
hp
?

2σy � µq 1?
π

exp
 �y2

(
dy

� 1?
π

ņ

i�1

hp?σξi � µqwi

where ξi are the roots of Hermite polynomial of degree n, with a certain weight

wi. The quadrature rule approximation of integral will be accurate only when the

function h can be well-approximated by a polynomial of degree 2n�1 or less. Those

values can be found from the R function gauss.quad in the package statmod. The

idea to extend the result to high dimensional setting is straightforward. Speci�cally,
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we need to �rst transform the density function into the form exptyTyu, where y P
Rk�1, then the k-dimensional integral reduces to a k-fold Gauss-Hermit integral.

Suppose the k -dimensional random vector X � Npµ,Σq, where µ P Rk�1 and Σ P
Rk�k. Then a linear transform for this random vector is through eigen decomposition

of Σ such that

x �
?

2QΛ
1
2 y � µ,

where Q � pν1, ...,νkq is the matrix formed by eigen vectors and Λ is the diagonal

matrix with eigen values pλ1, . . . , λkq such that Σνi � λiνi, i � 1, . . . . , k. Then

the exponent of multivariate normal density becomes

1

2
px� µqT Σ�1 px� µq

�1

2

�?
2QΛ

1
2 y � µ� µ

	T
Σ�1

�?
2QΛ

1
2 y � µ� µ

	
�
�
QΛ

1
2 y

	T �
QΛ�1Q�1

� �
QΛ

1
2 y

	
�yTΛ

1
2

�
QTQ

�
Λ�1

�
Q�1Q

�
Λ

1
2 y

�yTΛ
1
2 Λ�1Λ

1
2 y

�yTy.

Since Σ is symmetric, then QT � Q�1. Finally, the k-dimensional integral becomes

ErhpXqs �
» 8

�8
. . .

» 8

�8
hpxq 1

p2πq k2 |Σ|
exp

"
�1

2
px� µqT Σ�1 px� µq

*
dx1 . . . dxk

�
» 8

�8
. . .

» 8

�8
h
�?

2QΛ
1
2 y � µ

	
π�

k
2 exp

 �yTy
(
dy1 . . . dyk

� π�
k
2

ņ

i1�1

. . .
ņ

ik�1

h
�?

2QΛ
1
2ξ � µ

	
wi1 . . . wik

6.C The Gauss-Legendre Quadrature in the high di-

mensional setting

The the extension of the Gauss-Legendre quadrature rule into high dimensional

situation is much more straightforward. The following m-dimensional integral can
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be approximated by

» b1

a1

. . .

» bm

am

hpy1, . . . , ynqdy1 . . . dyn

�
�

m¹
i�1

bi � ai
2

�
ņ

i1�1

. . .
ņ

im�1

h

�
b1 � a1

2
ξi1 �

b1 � a1

2
, . . . ,

bn � an
2

ξim �
bn � an

2



wi1 . . . wim

where ξ. are roots of Legendre polynomials of degree n and w. are the corresponding

weights. These can also be found easily in R by the `gauss.quad' function in the

package `statmod'. Similarly, the h function should be well-approximated by a

polynomial of degree 2n� 1 or less to ensure accuracy of the approximation.

6.D Derivation of conditional expectation

The conditional expectation Epjqy,trYis can be derived explicitly as follows. For sim-

plicity, we just write p1, p2 instead of p
pjq
1 , p

pjq
2

Epjqy,trY1s � 1

PpX t|X t�1q
s1,t¸
k1�0

s2,t¸
k2�0

k1

�
X1,t�1

k1



pk11 p1� p1qX1,t�1�k1

� fp2py2, X2,t�1qfRpX1,t � k1, X2,t � k2q

� p1X1,t�1

PpX t|X t�1q
s1,t¸
k1�1

s2,t¸
k2�0

�
X1,t�1 � 1

k1 � 1



pk1�1

1 p1� p1qX1,t�1�k1

� fp2py2, X2,t�1qfRpX1,t � k1, X2,t � k2q

� p1X1,t�1

PpX t|X t�1q
s11,t¸
k11�0

s2,t¸
k2�0

�
X1,t�1 � 1

k11



p
k11
1 p1� p1qX1,t�1�1�k11

� fp2py2, X2,t�1qfRpX1,t � 1� k11, X2,t � k2q

� p1X1,t�1
PpX t � 11|X t�1 � 11q

PpX t|X t�1q
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6.E Simulation study for Gaussian copula paired

with Gamma marginals

This is to verify that the EM algorithms work for both the bivariate Poisson mixture

model and the bivariate INAR model when the random e�ect is characterized by

copula. Two random samples of size 500 are generated from these two models

separately with pre-speci�ed parameters, which are listed in the following table

Table 6.12: Parameter setting for simulation

parameters p β1 β2 φ1, φ2 ρ Z1 Z2

values 0.4,0.5 -2,0.8,0.5 -1.5,0.5,0.3 2,3 0.5 MVNpµ1,Dq MVNpµ2,Dq

where µ1 � p1, 0.3, 0.5qT , µ2 � p1, 0.2, 0.4qT , D � diagt0, 1, 1u and MVN stands for

multivariate normal distribution. Then each model is �tted by two methods: max-

imising the incomplete likelihood and EM algorithms. These two methods should

give almost the same results for p,β1,β2 which determine the mean of the model

and hence have a relatively large contribution to likelihood. On the other hand, this

may not be the case for other parameters φ1, φ2, ρ which determine the variation and

correlation of the model, and only contribute relative small part of the likelihood.

The �nal log likelihood values would normally be larger than the log likelihood value

evaluated at pre-speci�c parameters. The estimated results are given in Table 6.13

The di�erence between estimated parameters φ1, φ2, ρ and their true values seems

larger than others. This is reasonable because these parameters control the variation

of distribution and the log likelihood would be less sensitive to them.
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CHAPTER 7

Paper D. Cluster point processes and Poisson

thinning INARMA

Abstract

In this paper, we consider Poisson thinning Integer-valued time series models, namely

integer-valued moving average model (INMA) and Integer-valued Autoregressive

Moving Average model (INARMA), and their relationship with cluster point pro-

cesses, the Cox point process and the dynamic contagion process. We derive the

probability generating functionals of INARMA models and compare to that of clus-

ter point processes. The main aim of this paper is to prove that, under a spe-

ci�c parametric setting, INMA and INARMA models are just discrete versions of

continuous cluster point processes and hence converge weakly when the length of

subintervals goes to zero.

7.1 Introduction

The Hawkes process, which was �rst introduced in Hawkes (1971a,b), is a self-

exciting point process such that its intensity depends on the past of the point pro-

cess itself. Due to its simplicity and �exibility, the Hawkes process can be viewed as

a contagion process and applied in di�erent areas, for example seismology in Ogata

(1988), epidemiology in Kim (2011), and sociology in Mohler et al. (2011). It has
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gained in popularity in recent years. Finance in particular, is a very popular area to

apply Hawkes processes, see Bowsher (2007), Large (2007), Embrechts et al. (2011),

Bacry et al. (2012, 2013a,b, 2015), Aït-Sahalia et al. (2015), and Dassios and Zhao

(2017a,b). However, in some context such as modelling the credit contagion in Jar-

row and Yu (2001), the clustering of defaults is consistent with the Hawkes process,

but the default intensity could be impacted exogenously by other factors, which

means the distribution of cluster centres may not act as a homogeneous Poisson

process in the real �nancial data. In order to address this, Dassios and Zhao (2011)

introduced the dynamic contagion process by generalizing the Hawkes process (with

exponential decay kernel) and the Cox process with shot noise intensity (exponential

decay kernel) used in Dassios and Jang (2003), which allows the cluster centres act

as a stochastic process.

The standard time series models (AR, MA, ARMA, etc.), on the other hand, are

used for sequences of real-valued data. A natural question would be whether we

can use time series models for count data. An early contribution has been done

by Jacobs and Lewis (1978a,b, 1983), who introduced the discrete Autoregressive

and Moving average model (DARMA) for stationary discrete time series. However,

the correlation structure of DARMA is quite di�erent from the standard time series

model. Later, a new model called Integer-valued autoregressive (INAR) time series

was de�ned and examined by McKenzie (1985) and Al-Osh and Alzaid (1987). The

idea here is to manipulate the operation between coe�cients and variables as well

as the innovation terms in a way that the values are always integer. The properties

of the INAR model are explored by Al-Osh and Alzaid (1988a), Jin-Guan and Yuan

(1991), and McKenzie (1988). The Integer-valued Moving Average model (INMA)

was introduced and developed by Al-Osh and Alzaid (1988b), Brännäs and Hall

(2001), and Brännäs et al. (2002). They apply the similar idea of the INAR model

to a standard MA model.

It seems that no one had studied the connection between point processes and integer-

valued time series until Kirchner (2016), who showed that Hawkes point processes

are continuous-time versions of Poisson thinning INAR time series with in�nite order

and vice versa. The author also mentioned that one can introduce the INARMA

model by adding the moving average part into the INAR model and hence make a

connection to the dynamic contagion process, which is the main motivation of this

paper. Basically, we formally de�ne the INMA model in a similar way to Kirchner

and prove that the INMA model with in�nite order is actually a discrete version

of a Cox point process. We then de�ne the INARMA and prove that it is also a

discrete version of the dynamic contagion process, as Kirchner expected.
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The paper is organized as follows: Section 2 speci�es the terminology and reviews the

de�nitions of three cluster point processes, namely the dynamic contagion process,

the Cox process and the Hawkes process, and their probability generating function-

als. Section 3 reviews the de�nition of INAR model, de�nes the INMA model and

INARMA model, and derives their probability generating functionals. Section 4

provides further details on the convergence of probability generating functionals be-

tween the INARMAmodels and the cluster point processes. Section 5 establishes the

weak convergence result from the INARMA models to their corresponding cluster

point processes. Section 6 veri�es the convergence theorem by calculating the joint

probability generating functions numerically through simulation. A few concluding

remarks are in the �nal section.

7.2 Cluster point processes

In this section, we will �rst de�ne the space we are working on and provide some

terminology and notation concerning the integer-valued random measure. Then, we

recall the de�nitions of three cluster point processes, namely the dynamic contagion

process, the Cox process and the Hawkes process. Finally, we derive their probability

generating functionals by taking advantage of their cluster representation.

7.2.1 Preliminaries

We will use most of the notation and terminology from Daley and Vere-Jones (2007).

Throughout this paper, we work on the probability space pΩ,F ,Pq, where F is the

σ�algebra generating by Ω. A measure µ on the half-line R�, a complete separable

metric space, is boundedly �nite if µpAq   8 for every bounded Borel set A P BpR�q.
Hence denote M#

R� as the space of all boundedly �nite measures and BpM#
R�q as

its σ�algebra.

De�nition 7.1. A point process N on the state space R� is a measurable mapping

from a probability space pΩ,F ,Pq into pN#
R� ,BpN#

R�qq, N : Ω ÞÑ N#
R�, such that

NpAq is a integer-valued random variable for each bounded A P BpR�q. N#
R� is the

family of all boundedly �nite integer-valued measure µ PM#
R�

For a point process (random measure) N P N#
R� , they are well-de�ned only on

some bounded area. Consequently, the distribution of a point process is completely

determined by the �nite dimensional distributions, see Proposition 9.2 II in Daley

and Vere-Jones (2007)
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De�nition 7.2. The �nite dimensional distributions of a random measure N are

the joint distributions for all �nite families of bounded Borel sets A1, . . . , Ak of

NpA1q, . . . , NpAkq

FkpA1, . . . , Ak;x1, . . . , xkq � PtNpAiq ¤ xipi � 1, . . . , kqu. (7.1)

Usually, for a non-negative random measure, one would use the Laplace functional

to describe the joint distribution of the random measure. As we work on the space

pN#
R� ,BpN#

R�qq, there are advantages in moving from the Laplace functional to the

probability generating functional (p.g.�)

De�nition 7.3. The probability generating functional (p.g.�) of a point process N

on the complete separable metric space R� is de�ned by

Grhs � E
�

exp

"»
R�

log hpxqNpdxq
*�

, h P VpR�q, (7.2)

where VpR�q is the class of all real-valued Borel functions h de�ned on R� with 1�h
vanishing outside some bounded set and satisfying 0 ¤ hpxq ¤ 1, @x P R�. Later,

we will use V0pR�q, the subset of VpR�q satisfying infxPR� hpxq ¡ 0

One can always use Grhs to describe Fk by setting hpxq � hi, x P Ai, where hi is
a constant. Then the Grhs will reduce to the joint probability generating function

(joint p.g.f).

Grhs � E
�

exp

"»
R�

log hpxqNpdxq
*�

� E

�
exp

�»
Yi�1,...,kAi

log hpxqNpdxq
��

� E

�
k¹
i�1

h
NpAiq
i

�

In other words, the p.g.� Grhs is the limit version of the joint p.g.f where the set Ai

has the length dx Ñ 0 and k Ñ 8. When describing the �nite dimensional distri-

butions Fk, the p.g.� and the joint p.g.f are therefore equivalent. For convenience,

we will also use the term 'p.g.�' for those INARMA models to describe their joint

p.g.f in section 3.
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7.2.2 The dynamic contagion process

We �rst de�ne a generalized version of the dynamic contagion process as in Dassios

and Zhao (2011)

De�nition 7.4. The generalized dynamic contagion process is a cluster point process

N pDCP q, with stochastic intensity λpDCP q such that

λ
pDCP q
t �

N�
ţ

i:ci t
Υifpt� ciq �

N
pDCP q
ţ

i:τi t
χiηpt� τiq, (7.3)

where

� N�
t � tciui�1,2,... are the arrival times of the Poisson process with the constant

rate ρ ¡ 0

� N
pDCP q
t � tτiui�1,2,... are the arrival times of the generalized dynamic contagion

process

� tΥiu are i.i.d externally excited jump sizes, realised at times tciu, with distri-

bution Hpxq, mean µΥ and Laplace transform ĥpuq

� tχiu are i.i.d self-exciting jump sizes, realised at times tτiu, with distribution

Gpyq, mean µχ and Laplace transform ĝpuq. They are independent of tΥiu

� fpuq is an Riemann integrable function for any bounded interval in R�

� ηpuq is another Riemann integrable function for any bounded interval in R�

Note that the stationary condition for this point process would be
³8
0
fpuqdu   8

and µχ
³8
0
ηpuqdu   1. Following from this de�nition, we de�ne the other two cluster

point processes � the Cox process and the Hawkes process as special cases.

De�nition 7.5. The (Marked) Cox process with shot-noise intensity, also called

doubly stochastic process, is a cluster point process N pCq with stochastic intensity

λpCq such that

λ
pCq
t �

N�
ţ

i:ci t
Υifpt� ciq. (7.4)

It is clear that this is a special case of the dynamic contagion process by letting

ηpuq � 0, @u P R�. On a bounded area r0, T s where T ¡ 0 , the process can be

considered as a cluster process in which the cluster centres ci arrive as a homogeneous

119



Poisson process N� � Poispρq. Conditional on the arrival of ci, we then have a

cluster whose size follows N1
t � PoispΥifpt � ciqq with ci ¤ t ¤ T . Theses clusters

are mutually independent and cluster centres are not included in N pCq. In order

words, the arrivals of cluster centres are indicators that some events will happen

around them.

De�nition 7.6. The (Marked) Hawkes process is a self-exciting point process N pHq

with stochastic intensity λpHq such that

λ
pHq
t � ν �

N
pHq
ţ

i:τi t
χiηpt� τiq, (7.5)

where ν is a positive constant.

Similarly, this is another special case of the dynamic contagion process by replac-

ing the 'Cox component' in λ
pDCP q
t by a positive constant ν. From Hawkes and

Oakes (1974), the Hawkes process can also be interpreted as a cluster point pro-

cess. The immigrants (cluster centres) arrive as a homogeneous Poisson process

Poispνq. Each immigrant generates a Galton�Watson type branching process with

expected branching ratio µχ
³8
0
ηpuqdu. A cluster is then formed by including all the

generations (include the immigrant) from the branching process.

Back to the dynamic contagion process, it is actually a Hawkes process with immi-

grants arriving as a Cox process rather than a homogeneous Poisson process. Here

are the probability generating functionals for these cluster point processes.

Proposition 7.1. Let zp.q P V0pR�q such that 1 � zp.q vanishes outside r0, T s,
where T ¡ 0. The probability generating functional (p.g.�) of the Cox process N pCq

on r0, T s is given by

GpCqpzp.qq � exp

"
ρ

» T

0

pF pCqpzp.q|cq � 1qdc
*

F pCqpzp.q|cq � ĥ

�
�
» T�c

0

fpuqpzpc� uq � 1qdu


.

(7.6)

Proof. See appendix 7.A

Proposition 7.2. Let zp.q P V0pR�q such that 1�zp.q vanishes outside r0, T s, where
T ¡ 0. The probability generating functional (p.g.�) of the generalized dynamic
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contagion process N pDCP q on r0, T s is given by

GpDCP qpzp.qq � exp

"
ρ

» T

0

�
ĥ

�
�
» T�u

0

pF pHqpzp.q|u� vq � 1qfpvqdv


� 1



du

*

F pHqpzp.q|uq � zpuqĝ
�
�
» T�u

0

pF pHqpzp.q|u� vq � 1qηpvqdv


,

(7.7)

where F pHqpzp.q|uq is the p.g.� of a cluster generated by an immigrant (cluster centre)

arriving at time u, and including that immigrant. While F pzp.q|uq � F pzup.qq and
zup.q � zpu� .q is simply the translation of zpq.

Proof. See appendix 7.B

Corollary 7.2.1. Let zp.q P V0pR�q such that 1�zp.q vanishes outside r0, T s, where
T ¡ 0. The probability generating functional (p.g.�) of the Hawkes process N pHq on

r0, T s is given by

GpHqpzp.qq � exp

"
ν

» T

0

�
F pHqpzp.q|uq � 1

�
du

*

F pHqpzp.q|uq � zpuqĝ
�
�
» T�u

0

pF pzp.q|u� vq � 1qηpvqdv


.

(7.8)

Proof. This result generally follows from Theorem 2 in Hawkes and Oakes (1974).

We can also derive it from Proposition 7.2 by simply letting λ
pCq
u � ν in equation

7.34.

7.3 Poisson thinning Integer-valued time series model

In this section, we will review the Poisson thinning INAR model from Kirchner

(2016). Then we will de�ne the INMA and INARMA models in a similar way to

the INAR model, and derive their probability generating functionals.

7.3.1 Integer-valued Autoregressive Model - INAR(8)

We refer to the results of Kirchner (2016) .
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De�nition 7.7. The stationary INAR(8) is de�ned as

Xn �
8̧

k�1

αk �Xn�k � εn

�
8̧

k�1

Xn�k¸
l�1

ε
pn,kq
l � εn,

(7.9)

where

� αk ¥ 0 (reproduction coe�cients) and the stationary condition
°8
k�1 αk   1

� εn
i.i.d� Poispα0q, with α0 ¡ 0 (immigration parameter)

� The thinning operator � is de�ned as

αk �Xn�k �
Zn�ķ

i�1

ε
pn,kq
i ε

pn,kq
i

i.i.d� Poispαkq,

where ε
pn,kq
l are independent over n P Z, k P N, i P N

� � operates independently over n P Z, k P N

In the early study of the integer-valued time series models, the operator � is de�ned
as a binomial thinning operator, which means εi are Bernoulli random variables.

However, Kirchner de�nes it as a Poisson operator, which will lead to the simpler

formulas of probability generating functional. In addition, the p.g.� derived later

can be compared directly to that of the Hawkes process. The following proposition

gives the branching representation of the INAR model.

Proposition 7.3. The INAR(8) process Xn has the following representation

Xn
d�
¸
iPZ

εi̧

j�1

F
pi,jq
n�i , (7.10)

where F
pi,jq
n�i are independent over i, j and they are the copies of a branching process

Fn which is de�ned by

Fn �
8̧

g�0

Gpgq
n , n P Z. (7.11)
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The generation Gn are constructed recursively by

Gp0q
n � 1tn�0u Gpgq

n �
ņ

k�1

αk �Gpg�1q
n�k �

ņ

k�1

G
pg�1q
n�ķ

m�1

εpn,k,gqm , n P Z, g P N, (7.12)

with ξ
pn,k,gq
m are independent over n, k, g,m and also independent of εi, i P Z. Fur-

thermore, we have the following distributional equality for the generic family-process

(Fn)

pFnqnPZ d�
�
�1tn�0u �

ņ

i�1

G
p1q
i̧

j�1

F
pi,jq
n�1

�
. (7.13)

Proposition 7.4. Let z. � tziui�1,...,n be a sequence of constants such that 0   zi ¤
1. The probability generating functional (p.g.�) of the INAR sequence tXtut�1,...,n is

given by

GpXnqpz.q � exp

#
ņ

i�1

α0pF pz.|iq � 1q
+

F pXnqpz.|iq � zi exp

#
n�i̧

k�1

αk pF pz.|i� kq � 1q
+
,

(7.14)

where F pXnqpz.|tq � F pXnqpzt�.q is the p.g.� of the cluster generated by an immigrant

(cluster centre) arriving at time t.

Proof. The (discrete) p.g.� is given by

GpXnqpz.q � Er
n¹
t�1

zXtt s � E exp

#
ņ

t�1

log zt

ţ

i�1

εi̧

j�1

F
pi,jq
t�i

+

� E exp

#
ņ

i�1

εi̧

j�1

ņ

t�i
log ztF

pi,jq
t�i

+
.

The sum
°n
t�i F

pi,jq
t�i can be interpreted as the cluster, which includes all the genera-

tion from time i to time n, generated by one of the immigrants in εi. Conditionally

on the immigration sequence εi and exploiting its independence from the family
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process F
pi,jq
n , we have

GpXnqpz.q �
n¹
i�1

E

�
εi¹
j�1

E exp

#
ņ

t�i
log ztF

pi,jq
t�i

+�

�
n¹
i�1

E
�
F pXnqpz.|iqεi

�

� exp

#
ņ

i�1

α0pF pXnqpz.|iq � 1q
+
,

where the p.g.� of the cluster F pXnqpz.|iq satis�es the following recursive equation

F pXnqpz.|iq � E exp

#
ņ

t�i
log ztFt�i

+

� E exp

$&
%
n�i̧

t�0

log zi�t

�
�1tt�0u �

ţ

k�1

G
p1q
ķ

j�1

F
pk,jq
t�k

�

,.
-

� zi

n�i¹
k�1

E

�
�G

p1q
k¹

j�1

E exp

#
n�i̧

t�k
log zi�tF

pk,jq
t�k

+��

� zi exp

#
n�i̧

k�1

αk
�
F pXnqpz.|i� kq � 1

�+
.

Since the sequence tXtut�1,...,n takes only integer values, if we �x a bounded area

r0, T s and let Xt count the number of points for the equal-length area ppt�1q∆, t∆s
where ∆ � T

n
, the p.g.� of tXtut�1,...,n will look like the discrete version of the p.g.�

of the Hawkes process.

Proposition 7.5. Consider the following parametric setting.

� Fix the bounded area r0, T s, T   8

� Choose n ¡ 0, the number of all subintervals over r0, T s

� Set the length of subintervals ∆ � T
n
, the immigrant parameter α0 � ν∆ and

the reproduction coe�cient αk � χiηpk∆q∆, k ¡ 0

� χi are i.i.d random variables corresponding to the cluster centre Xi∆ arriving

at i∆, with Laplace transform ĝpuq � Ere�uχis

� Let zi � zpi∆q, where zp.q P V0pR�q
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Then the probability generating functional of tXtut�1,...,n becomes

G
pXnq
p∆q pzp.qq � exp

#
ν

ņ

i�1

pF pzp.q|i∆q � 1q∆
+

F pXnqpzp.q|i∆q � zpi∆qĝ
�
�

n�i̧

k�1

pF pzp.q|pi� kq∆q � 1qηpk∆q∆
�
.

(7.15)

Proof. By substituting αk � χiηpk∆q∆, k ¡ 0 into Proposition 7.4, the p.g.� of the

cluster F pXnqpz.|iq � F pXnqpzp.q|i∆q becomes

F pXnqpzp.q|i∆q � zpi∆q
n�i¹
k�1

E

�
�G

p1q
k¹

j�1

E exp

#
n�i̧

t�k
log zppi� tq∆qF pk,jq

t�k

+��

� zpi∆qE
�

exp

#
n�i̧

k�1

χiηpk∆q∆ �
F pXnqpzp.q|pi� kq∆q � 1

�+�

� zpi∆qĝ
�
�

n�i̧

k�1

pF pXnqpzp.q|pi� kq∆q � 1qηpk∆q∆
�
.

By substituting α0 � ν∆, the whole p.g.� of the INAR sequence tXtut�1,...,n becomes

G
pXnq
p∆q pzp.qq � exp

#
ņ

i�1

α0pF pXnqpz.|iq � 1q
+

� exp

#
ν

ņ

i�1

pF pXnqpzp.q|i∆q � 1q∆
+
.

7.3.2 Integer-valued Moving Average model

De�nition 7.8. The stationary Poisson thinning INMA(8) model is de�ned as

Yn �
8̧

k�0

βk � ξn�k

� β0 � ξn � β1 � ξn�1 � � � � � βn�1 � ξ1,

(7.16)

where

� βk ¥ 0 are some non-negative coe�cients,
°8
k�0 βk   8 and limkÑ8 βk � 0
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� ξk are i.i.d and follow Poispµq with µ ¡ 0

� The thinning operator � is de�ned as

βk � ξn�k �
ξn�ķ

i�1

u
pn,kq
i , u

pn,kq
i

i.i.d� Poispβkq,

where u
pn,kq
i are independent over n P N, k P N, i P N.

The parameters βk and µ have a similar interpretation to those in the INAR model.

βk are reproduction coe�cients while µ is the arrival intensity of cluster centre rather

than 'immigrants' because it is not counted by the system Yn. From this model point

of view, we can regard ξn as the cluster centres. They enter the system starting at

time n and trigger other events at each time period (n Ñ °ξn
i�1 u

pn,0q
i , n � 1 Ñ°ξn

i�1 u
pn�1,1q
i , . . . ). Yn is then a counting variable to report the total number of the

triggered events from ξn, ξn�1, . . . , ξ1 over the current time period n. Here are two

assumptions we need before proceeding to its probability generating functional.

Assumption 7.3.1. The thinning operations βk �ξn�k are mutually independent for
n P N, k P N.

Assumption 7.3.2. u
pn,kq
i are mutually independent of each other for n P N, k P N.

The second assumption means that the number of events u
pt,kq
i , triggered by one of

the cluster centre in ξt�k and counted by the system Yt, will not a�ect the number

of events u
pt�j,k�jq
i , triggered by the same cluster centre and counted by the system

Yt�j of any future time j ¡ 0.

Proposition 7.6. Let z. � tziui�1,...,n be a sequence of constants such that 0   zi ¤
1. The probability generating functional (p.g.�) of the INMA sequence tYtut�1,...,n is

given by

GpYnqpz.q � exp

#
µ

ņ

t�1

pF pYnqpz.|tq � 1q
+

F pYnqpz.|tq � exp

#
n�t�1¸
k�1

βk�1pzt�k�1 � 1q
+
.

(7.17)

Proof. The aggregated process Sn �
°n
t�1 Yt is actually a cluster point process such
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that

Sn �
ņ

t�1

Yt �
ņ

t�1

t�1̧

k�0

βk � ξt�k

�
ņ

t�1

n�ţ

k�0

βk � ξt

�
ņ

t�1

ξţ

i�1

pupt,0qi � u
pt�1,1q
i � � � � � u

pn,n�tq
i q, u

pt,kq
i � Poispβkq

d�
ņ

t�1

ξţ

i�1

uti, uti � Poisp
n�ţ

k�0

βkq.

(7.18)

The last equality follows from the independence of the Poisson random variables. It

is now clear that the aggregated process Sn is a cluster process such that

� ξt generates the cluster centres independently.

� uti is a cluster generated by one of the cluster centre from ξt, with the size of

cluster (exclude the cluster centre) following Poisp°n�t
k�0 βkq

The (discrete) p.g.� of Yt is de�ned as

Gpz.q � Er
n¹
j�0

z
Yj
j s.

Now we can derive the p.g.� of this process by following the similar argument in

Proposition 7.1. Conditionally on the arrivals of cluster centres generated by ξt, the

p.g.� of cluster uti is

F pYnqpz.|tq � Er
n�t¹
k�0

z
u
pt�k,kq
i
t�k s � exp

#
n�ţ

k�0

βkpzt�k � 1q
+
.

The cluster centres generated by ξt are mutually independent. Then the p.g.� of°ξt
i�1 u

t
i is

Gtpz.q � ErF pYnqpz.|tqξts � exp
 
µpF pYnqpz.|tq � 1q( .

Clusters centres generated by tξtut�1,...,n are also mutually independent. Finally the

p.g.� of Yt is

GpYnqpz.q �
n¹
t�1

Gtpzq � exp

#
µ

ņ

t�1

pF pYnqpz.|tq � 1q
+
.
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Similar to the INAR model, due to the integer-valued nature of the INMA model, if

we �x an bounded area r0, T s and let Yt counts the number of points for the equal-

length area ppt� 1q∆, t∆s with ∆ � T
n
, the p.g.� of the INMA sequence tYtut�1,...,n

will look like the discrete version of the p.g.� of the Cox process under some speci�c

parametric setting.

Proposition 7.7. Consider the following parametric setting.

� Fix the bounded area r0, T s, T   8

� Choose n ¡ 0, the number of all subintervals over r0, T s

� Set the length of subintervals ∆ � T
n
, µ � ρ∆ and βk � Υtfpk∆q∆, k ¥ 0

� Υt are i.i.d random variables corresponding to the cluster centre ξt∆ arriving

at t∆, with the Laplace transform ĥpuq � Ere�uΥts

� Let zk � zpk∆q where zp.q P V0pR�q

Then the probability generating functional of the sequence tYtut�1,...,n becomes

G
pYnq
p∆q pzp.qq � exp

#
ρ

ņ

t�1

pF pYnqpzp.q|t∆q � 1q∆
+

F pYnqpzp.q|t∆q � ĥ

�
�

n�t�1¸
k�1

fpk∆qpzppt� k � 1q∆q � 1q∆
�
.

(7.19)

Proof. By substituting βk � Υtfpk∆q∆, k ¥ 0 into Proposition 7.6, the p.g.� of the

cluster part F pYnqpz.|tq � F pYnqpzp.q|t∆q becomes

F pYnqpzp.q|t∆q � Er
n�t¹
k�0

z
u
pt�k,kq
i
t�k s

� E

�
exp

#
n�ţ

k�0

Υtfpk∆q∆pzt�k � 1q
+�

� ĥ

�
�

n�t�1¸
k�1

fpk∆tqpzppt� k � 1q∆q � 1q∆
�
.
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Then substituting µ � ρ∆, the p.g.� of the INMA sequence tYtut�1,...,n becomes

G
pYnq
p∆q pzp.qq � exp

#
µ

ņ

t�1

pF pYnqpzp.q|t∆q � 1q
+

� exp

#
ρ

ņ

t�1

pF pYnqpzp.q|t∆q � 1q∆
+
.

7.3.3 Integer-valued Autoregressive Moving Average model

De�nition 7.9. The stationary Poisson thinning INARMA(8,8) model is de�ned

as

Zn �
8̧

k�1

αk � Zn�k � Yn

�
8̧

k�1

αk � Zn�k �
8̧

j�0

βj � ξn�j

� α1 � Zn�1 � � � � � αn�1 � Z1 � β0 � ξt � � � � � βn�1 � ξ1,

(7.20)

where

� ξt
i.i.d� Poispµq.

� αi and βi are positive coe�cients, and
°8
i�1 αi   1.

°8
i�0 βi   8, limiÑ8 βi �

0.

� The thinning operator � is de�ned as

αk � Zn�k �
Zn�ķ

i�1

ε
pn,kq
i ε

pn,kq
i

i.i.d� Poispαkq

βk � ξn�k �
ξn�ķ

i�1

u
pn,kq
i , u

pn,kq
i

i.i.d� Poispβkq.

� ε
pn,kq
i and u

pn,kq
i are mutually independent over n P N, i P N, k P N.

The INARMA model simply combines the INAR components and the INMA com-

ponents from previous sections. It is a generalized INAR model whose immigrants

process εn is replaced by the INMA model Yn.
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Proposition 7.8. Let z. � tziui�1,...,n be a sequence of constants such that 0   zi ¤
1. The probability generating functional (p.g.�) of the INARMA sequence tZtut�1,...,n

is given by

GpZnqpz.q � exp

#
µ

ņ

i�1

�
exp

#
n�i̧

k�0

βkpF pXnqpz.|i� kq � 1q
+
� 1

�+

F pXnqpz.|iq � zi exp

#
n�i̧

k�1

αk
�
F pXnqpz.|i� kq � 1

�+
,

(7.21)

where F pXnqpz.|tq is the p.g.� of the cluster generated by an immigrant (cluster cen-

tre) arriving at time t, and including that immigrant. While F pXnqpz.|tq � F pXnqpzt�.q
is simply the translation of z..

Proof. The F pXnqpz.|iq is exactly the same as the one in INAR model, because this

is the cluster generated by the autoregressive structure in the INARMA model and

it is irrelevant to Yi. Hence we can apply the result directly from Proposition 7.4

F pXnqpz.|iq � zi exp

#
n�i̧

k�1

αk
�
F pXnqpz.|i� kq � 1

�+
.

Then we can apply a similar argument to the INAR model such that

GpZnqpz.q �
n¹
i�1

E

�
Yi¹
j�1

E exp

#
ņ

t�i
log ztF

pi,jq
t�i

+�

�
n¹
i�1

E
�
F pXnqpz.|iqYi

�
.

Now apply the p.g.� of the INMA model from Proposition 7.6

GpZnqpz.q �
n¹
i�1

E
�
F pXnqpz.|iqYi

�

� exp

#
µ

ņ

i�1

�
exp

#
n�i̧

k�0

βkpF pXnqpz.|i� kq � 1q
+
� 1

�+
.

Similar to the INAR model, due to the integer-valued nature of INARMA model,

if we �x a bounded area r0, T s and let Zt counts the number of points for the

equal-length area ppt � 1q∆, t∆s with ∆ � T
n
, the p.g.� of the INARMA sequence
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tZtut�1,...,n will look like the discrete version of the p.g.� of the generalized dynamic

contagion process.

Theorem 7.1. Consider the following parametric setting.

� Fixed the terminal time T , T   8

� Choose n ¡ 0, the number of all subintervals over r0, T s

� Set the length of subintervals ∆ � T
n
, the parameters of INAR part αk �

χiηpk∆q∆, k ¡ 0 and the parameters of INMA part µ � ρ∆t , βj � Υifpj∆q∆, j ¥
0

� Υi are i.i.d random variables corresponding to each cluster centre ξi∆ arriving

at i∆, with the Laplace transform ĥpuq � Ere�uΥis

� χi are i.i.d random variables corresponding to each INAR cluster centre Zi∆

arriving at i∆, with the Laplace transform ĝpuq � Ere�uχis

� Let zt � zpt∆q with zp.q P V0pR�q.

The probability generating functional of the INARMA sequence tZtut�1,...,n becomes

G
pZnq
p∆q pzp.qq � exp

#
ρ

ņ

i�1

�
ĥ

�
�

n�i̧

k�0

pF pXnqpzp.q|pi� kq∆q � 1qfpk∆q∆
�
� 1

�
∆

+

F pXnqpzp.q|i∆q � zpi∆qĝ
�
�

n�i̧

k�1

�
F pXnqpzp.q|pi� kq∆q � 1

�
ηpk∆q∆

�
.

(7.22)

Proof. By substituting αk � χiηpk∆q∆ into Proposition 7.8, the p.g.� F pXnqpz.|iq �
F pzp.q|i∆q is exactly the same as the one in Proposition 7.5

F pXnqpzp.q|i∆q � zpi∆qE
�

exp

#
n�i̧

k�1

χiηpk∆q∆ �
F pXnqpzp.q|pi� kq∆q � 1

�+�

� zpi∆qĝ
�
�

n�i̧

k�1

pF pXnqpzp.q|pi� kq∆q � 1qηpk∆q∆
�
.

By substituting βk � Υifpk∆q∆, the p.g.� of the whole INARMA sequence tZtut�1,...,n

becomes the p.g.� of INMA sequence tYtut�1,...,n. Then we can apply Proposition
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7.7

G
pZnq
p∆q pzp.qq � G

pYnq
p∆q pF pXnqpzp.q|i∆qq

� exp

#
ρ

ņ

i�1

�
ĥ

�
�

n�i̧

k�0

pF pXnqpzp.q|pi� kq∆q � 1qfpk∆q∆
�
� 1

�
∆

+
,

where the zp.q is replaced by F pXnqpzp.q|i∆q in GpYnq
p∆q .

7.4 Convergence of probability generating function-

als

In this section, we will prove the convergence results of the p.g.�.s between the

INARMA models and the cluster point processes.

7.4.1 Dynamic contagion process and INARMA model

The p.g.� of the generalized dynamic contagion process is given by

GpDCP qpzp.qq � exp

"
ρ

» T

0

�
ĥ

�
�
» T�u

0

pF pHqpzp.q|u� vq � 1qfpvqdv


� 1



du

*

F pHqpzp.q|uq � zpuqĝ
�
�
» T�u

0

pF pHqpzp.q|u� vq � 1qηpvqdv


.

(7.23)

The p.g.� of the INARMA model with speci�c parametric setting in theorem 7.1 is

given by

G
pZnq
p∆q pzp.qq � exp

#
ρ

ņ

i�1

�
ĥ

�
�

n�i̧

k�0

pF pXnqpzp.q|pi� kq∆q � 1qfpk∆q∆
�
� 1

�
∆

+

F pXnqpzp.q|i∆q � zpi∆qĝ
�
�

n�i̧

k�1

pF pXnqpzp.q|pi� kq∆q � 1qηpk∆q∆
�
.

(7.24)

Lemma 7.1. If rpuq is an Riemann integrable function over an interval ra, bs such
that rpuq is bounded and the set D, the discontinuities of rpuq, has Lebesgue measure
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0, then there exist positive constants M and k satisfy the following inequality

����
» b

a

rpuqdu�Rn

���� ¤M∆k � Op∆kq, n ¡ 0, (7.25)

where

� n - number of subintervals over ra, bs which has the partition tx0, x1, . . . , xnu
such that a � x0   x1   � � �   xn�1   xn � b

� Rn �
°n
i�1 rptiq∆i, where xi P rxi�1, xis, ∆i � xi�xi�1 and ∆ � maxi�1,...,n ∆i

Proof. From the de�nition of Riemann integral, for every ε ¡ 0, there exists δ ¡ 0

such that ����
» b

a

rpuqdu�Rn

����   ε, for ∆   δ.

Then conversely, for every choice of δ, there exists ε such that the above inequality

holds and it converges to 0 when δ Ñ 0 from which we can infer that the ε is the

function of ∆ with a positive power. Then we let δ � ∆ and let ε � M∆k ¡ 0

for some positive M and k such that the above inequality also holds for the case of

equality .

Proposition 7.9. Let Θ be the parameter space to specify the generalized dynamic

contagion process and the INARMA model and zpq P V0pR�q. There exist a positive

constant k such that the rate of convergence for the absolute di�erence of the log

p.g.�.s between the generalized dynamic contagion process and the INARMA model

is given by

DpDCP qpzp.q,∆|Θq �
���logGpDCP qpzp.qq � logG

pZnq
p∆q pzp.qq

��� � Op∆kq

lim
nÑ8

DpDCP qpzp.q,∆|Θq � 0.

(7.26)

Proof. See the appendix 7.C.

Corollary 7.4.1. Let Θ be the parameter space to specify the Cox process and the

INMA model and zp.q P V0pR�q. There exist a positive constant k such that the rate

of convergence for the absolute di�erence of the log p.g.�.s between the Cox process

and the INMA model is given by

DpCqpzp.q,∆|Θq �
���logGpCqpzp.qq � logG

pYnq
p∆q pzp.qq

��� � Op∆kq

lim
nÑ8

DpCqpzp.q,∆|Θq � 0.

(7.27)
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Proof. See appendix 7.D.

Corollary 7.4.2. Let Θ be the parameter space to specify the Hawkes process and

the INAR model and zpq P V0pR�q. There exist a positive constant k such that the

rate of convergence for the absolute di�erence of the log p.g.�.s between the Hawkes

process and the INAR model is given by

DpHqpzp.q,∆|Θq �
���logGpHqpzp.qq � logG

pXnq
p∆q pzp.qq

��� � Op∆kq

lim
nÑ8

DpHqpzp.q,∆|Θq � 0.

(7.28)

Proof. See appendix 7.E.

7.5 Links between the INARMA models and the

cluster point processes

In this section, we will construct a family of random measures tNnun�1,2,... on BpN#
R�q

by aggregating the integer-valued time series and explain how the discrete time

models can mimic the behaviour of those continuous time cluster point processes N .

We prove that, under the weak convergence theorem, Nn will converge weakly to N

as nÑ 8.

7.5.1 Preliminaries and de�nition

As discussed in the previous section, we can always �x a bounded area r0, T s and
choose a number n ¡ 0, large enough. Then a continuous point processNpp0, T sq can
be treated as the sum of the bin-size count tNppt � 1q∆, t∆squt�1,...,n with ∆ � T

n
.

Conversely, for example the INAR model, we let the sequence tXtut�1,...,n be the

measures for the bin-size count tNppt � 1q∆, t∆squt�1,...,n . Hence if we specify the

parameters in integer-valued time series models carefully and if n is large enough,

we would expect the aggregation of the integer-valued time series can approximate

the continuous cluster point process.

De�nition 7.10. For n ¡ 0, let tXtut�1,...,n,tYtut�1,...,n and tZtut�1,...,n be the INAR

sequence, the INMA sequence and the INARMA sequence de�ned in section 3 with
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the parametric setting ∆ � T
n
, α0 � ν∆, αk � χiηpk∆q∆ for k ¡ 0, βj � Υifpj∆q∆

for j ¥ 0 and µ � ρ∆. De�ne the following three families of point processes,

N pHq
n pAq �

¸
t:t∆PA

Xt

N pCq
n pAq �

¸
t:t∆PA

Yt

N pDCP q
n pAq �

¸
t:t∆PA

Zt

(7.29)

where A is a bounded set in BpR�q and T is a constant such that T ¥ supA. The

joint distribution of these point processes are uniquely determined by their p.g.�.s

derived in the section 3.

The idea here is basically followed from Kirchner (2016). To prove the weak con-

vergence, he de�ned the INAR model and construct a family of point processes

N p∆q by aggregating the INAR sequence over A P BpRq, the Borel σ-algebra on R.
Then he proved the weak convergence of N p∆q to the Hawkes process N from the

de�nition point of view, see de�nition 5 and Theorem 2 in Kirchner (2016). He

also mentioned this can be proved in a di�erent way by showing the convergence

of the Laplace functional of N p∆q. In our case, we will use probability generating

functionals.

7.5.2 Weak convergence

From de�nition 7.1 in section 2 and Proposition 9.2.II in Daley and Vere-Jones

(2007), we can say that the distribution of a random measure (point process) ζ

on pN#
R� ,BpN#

R�qq is completely determined by its �nite-dimensional distributions.

Then for the weak convergence of random measure on N#
R� , it is su�cient to prove

the convergence of �nite dimensional distributions, which is established by Theorem

11.1.VII in Daley and Vere-Jones (2007).

Proposition 7.10. Let X be a complete separable metric space and let P, tPnu
be distributions on pM#

X ,BpM#
X qq. Then Pn Ñ P weakly if and only if the �nite-

dimensional distributions of Pn converge weakly to those of P.

In our case, the state space is X � R�. Also, there is one-to-one mapping from

�nite dimensional distributions to its probability generating functional. Hence it is

su�cient to prove the convergence of the p.g.�.s between point processes. This is
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con�rmed by another Proposition 11.1.VIII in Daley and Vere-Jones (2007). We

only write down part of it here.

Proposition 7.11. Each of the following conditions is equivalent to the weak con-

vergence Pn Ñ P, assuming the function f ranges over the space of continuous

functions vanishing outside a bounded set.

� The distribution of
³
X fdζ under Pn converges weakly to its distribution under

P

� For point process, the p.g.�.s Gnrzs converge to Grzs for each continuous z P
V0pX q

Before establishing the convergence theorem, we need to �rst show the probability

measures of those point processes de�ned in 7.10 are uniformly tight. Here we refer

and combine the results of Lemma 1 and 2 in Kirchner (2016). We also derive a

similar one for N
pCq
n and N

pDCP q
n .

Lemma 7.2. For any bounded interval ra, bs on R�, we can always �nd a constant

T ¡ b and de�ne ∆ � T
n
P p0, δq for some constant δ ¡ 0 as long as n ¡ �

T
δ

�
. Let

N
pHq
n be the point process de�ned in 7.10 Then there exists a constant BpHq such that

ErN pHq
n pra, bsqs   pb� a� 2δqνBpHq

BpHq �

$''&
''%
p1�Kq�1 , if K   1

p1�K �K2 � � � � �Kmq, otherwise

K � µχ

8̧

k�1

ηpk∆q∆

(7.30)

Proof. The coe�cients pb�a�2δqν denote the upper bound of the expected number
of immigrants over the �xed time interval ra, bs, whose derivation is given in Kirchner
(2016). In the stationary case where the branching ratio K   1. The expected size

of a cluster for INAR(8) over a long time horizon is evaluated as p1�K�K2�. . . q �
p1 � Kq�1. In the non-stationary case, since the o�spring is produced by Poisson

distribution, there is a positive waiting time before a new generation is produced.

So over the bounded interval ra, bs, there exists a constant m ¡ 0 and the size of a

cluster is the sum of m generations p1�K �K2 � � � � �Kmq

Lemma 7.3. For any bounded interval ra, bs on R�, we can always �nd a constant

T ¡ b and de�ne ∆ � T
n
P p0, δq for some constant δ ¡ 0 as long as n ¡ �

T
δ

�
. Let
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N
pCq
n and N

pDCP qq
n be the point processes de�ned in 7.10. Then there exist constants

BpHq and LpT q such that

ErN pCq
n pra, bsqs   pb� a� 2δqρLpT q

ErN pDCP q
n pra, bsqs   pb� a� 2δqρLpT qBpHq,

(7.31)

where LpT q � µΥp
³T
0
fptqdt�cq. The constant c is de�ned as c �

���³T0 fptqdt�°n�1
k�0 fpk∆q∆

���
Proof. From the de�nition of INMA model, the expectation is

ErYts � Erβ0 � ξt � � � � � βt�1 � ξ1s

� Erξis
n�1̧

k�0

Erβks

� ρ∆
n�1̧

k�0

µΥfpk∆q∆

¤ ρ∆µΥ

�» T

0

fptqdt� c




¤ ρLpT q∆.

The number of subintervals over ra, bs is r b�a
∆
s � 1   b�a

∆
� 2. Finally we have

ErN pCq
n pra, bsqs �

¸
t,t∆Pra,bs

ErYts

¤
��

b� a

∆

�
� 1



ρLpT q∆

 
�
b� a

∆
� 2



ρLpT q∆

  pb� a� 2δqρLpT q.

The upper bound for ErN pDCP q
n pra, bsqs can be derived similarly as that of ErN pHq

n pra, bsqs.
We need to replace ν by ρLpT q
Lemma 7.4. The families of the probability measures PpCq

n ,PpHq
n ,PpDCP q

n on
�
N#

R� ,BpN#
R�q

	
corresponding to the point processes N

pCq
n , N

pHq
n , N

pDCP q
n respectively are uniformly

tight.

Proof. For any bounded interval ra, bs on R�, we can always �nd a constant T ¡ b

and de�ne ∆ � T
n
, such that ∆ P p0, δq for some constant δ ¡ 0 as long as n ¡ �

T
δ

�
.
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To show the tightness, for every ε ¡ 0, we can let M
pHq
ε � pb � a � 2δqνBpHq

ε
,

M
pCq
ε � pb� a� 2δqρLpT q1

ε
and M

pDCP q
ε � pb� a� 2δqρLpT qBpHq

ε
such that

P pN pHq
n pra, bsq ¡M pHq

ε q ¤ ErN pHq
n pra, bsqs
M

pHq
ε

  pb� a� 2δqνB
pHq

M
pHq
ε

� ε

P pN pCq
n pra, bsq ¡M pCq

ε q ¤ ErN pCq
n pra, bsqs
M

pHq
ε

  pb� a� 2δqρLpT q
M

pHq
ε

� ε

P pN pDCP q
n pra, bsq ¡M pDCP q

ε q ¤ ErN pDCP q
n pra, bsqs
M

pHq
ε

  pb� a� 2δqρLpT qB
pHq

M
pDCP q
ε

� ε

Here we apply the Markov inequality.

Theorem 7.2. Let N pHq, N pCq, N pDCP q be the Hawkes process, the Cox process and

the generalized dynamic contagion process de�ned in section 2. For n ¡ 0, let N
pHq
n ,

N
pCq
n and N

pDCP q
n be the point processes de�ned in 7.10. Then we have the following

weak convergence results

N pHq
n

wÑ N pHq

N pCq
n

wÑ N pCq

N pDCP q
n

wÑ N pDCP q as nÑ 8.

(7.32)

Proof. Uniform tightness of the three families of point processes is followed by

Lemma 7.4. From the preliminaries in section 2, the distribution of a random

measure N on N#
R� is completely determined by the �nite dimensional distributions

see Proposition 9.2.III in Daley and Vere-Jones (2007), i.e. the joint distribution

for all �nite families of bounded Borel sets A1, . . . , Ak on R� of the random variable

NpA1q, . . . , NpAkq. From the tightness lemma, it is clear that all �nite dimensional

distribution for the point processes N
p.q
n restricted to ra, bs are uniformly tight. Con-

sequently, there always exist a constant T ¡ b such that we can uniquely describe

the �nite dimensional distributions by its probability generating functional on the

bounded area r0, T s. Combining the convergence results in Proposition 7.9, Corol-

lary 7.4.1 and 7.4.2 in section 4, i.e. the absolute di�erence of the log p.g.�.s between

the point processes N
p.q
n and N p.q goes to 0 as ∆ Ñ 0, equivalently nÑ 8

lim
nÑ8

���logGpHqpzp.qq � logG
pXnq
p∆q pzp.qq

��� � 0

lim
nÑ8

���logGpCqpzp.qq � logG
pYnq
p∆q pzp.qq

��� � 0

lim
nÑ8

���logGpDCP qpzp.qq � logG
pZnq
p∆q pzp.qq

��� � 0,
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we can now apply Proposition 7.11 and state that the families of point processes

N
pHq
n , N

pCq
n and N

pDCP q
n converge weakly to N pHq, N pCq and N pDCP q respectively as

nÑ 8.

7.6 Concluding Remarks

In this paper, we review the continuous cluster point process in a general parametric

setting. Then we review the Poisson thinning INARmodel and introduce the Poisson

thinning INMA and the INARMA models. We prove that these integer-valued

time series models, under some speci�c parametric setting, are actually the discrete

versions of the cluster point processes N
p.q
t with continuous stochastic intensity λ

p.q
t .

We con�rms Kirchner's thought in Kirchner (2016) on the relationship between the

INARMAmodel and the dynamic contagion process. If there is a simple and e�ective

estimation procedure for the INARMA model, for example the one Kirchner did in

Kirchner (2017) for the INAR model, then the dynamic contagion process can be

applied to those Hawkes-based processes. However, there are some potential issues

left to be addressed. For example, can we make use of the structure standard ARMA

model to perform estimation for the integer-valued version? How can we deal with

random variables in the coe�cients of time series models (random coe�cients)?

These are all proposed as topics for future research.

139



7.A Proof of Proposition 7.1

The Cox process is basically a cluster point process such that,

� The arrivals of cluster centres ci follow N� � Poispρq a homogeneous Poisson

process

� Conditionally on ci, each cluster centre will generate a cluster, the size of which

follows N1
T � PoispΥifpT � ciqq.

Vere-Jones (1970) gives the p.g.� of a cluster process as

Gpzp.qq � G0pF pzp.q|tqq, (7.33)

where G0pq is the p.g.� of the process of cluster centres and F pzp.q|tq is the p.g.�

for a cluster given that the cluster centre occurs at time t. Combining the second

bullet point, we have

F pCqpzp.q|cq � Erexp

»
R�

log zpsqN1
T pdsqs

� E exp

"
Υi

» T

c

fps� cqpzpsq � 1qds
*

� E exp

"
Υi

» T�c

0

fpuqpzpc� uq � 1qdu
*

� ĥ

�
�
» T�c

0

fpuqpzpc� uq � 1qdu


.

Hence the p.g.� of the Cox process is

GpCqpzp.qq � E
�

exp

»
R�

logF pCqpzp.q|cqN�pdcq
�

� exp

"
ρ

» T

0

pF pCqpzp.q|cq � 1qdc
*
.

7.B Proof of Proposition 7.2

The generalized dynamic contagion process process is a cluster process,
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� The arrivals of immigrants follow the Cox process with intensity λ
pCq
t .

� Each immigrant generates a Galton�Watson type branching process with ex-

pected branching ratio µχ
³8
0
ηpuqdu   1. The cluster is formed by including

all generations from the branching process.

Let F pCq
t be the �ltration generated by λ

pCq
t . Conditionally on F pCq

t , the p.g.� of

the generalized dynamic contagion process is just the p.g.� of the Hawkes process

with its immigration process being an inhomogeneous Poisson process. Then we can

apply Theorem 2 in Hawkes and Oakes (1974)

Gpzp.q|F pCq
t q � exp

"» T

0

�
F pHqpzp.q|uq � 1

�
λpcqu du

*

F pHqpzp.q|uq � zpuqĝ
�
�
» T�u

0

pF pHqpzp.q|u� vq � 1qηpvqdv


.

The underlying intensity function is λt � ν �°
i:τi t γpt� τiq in Hawkes and Oakes

(1974). In our case, we are working on the bounded area r0, T s and 1�hpuq � 0 when

u lies outside r0, T s. By the de�nition of p.g.�, F pzp.q|uq � 1 when u lies outside

r0, T s. The ranges of integrals for Gpzp.q|F pCq
t q and F pHqpzp.q|uq , therefore, reduce

to r0, T s and r0, T � us respectively. Then we substitute γpt � τiq with χifpt � τiq
and take expectation with respect to χi. Finally, the unconditional p.g.� of the

generalized dynamic contagion process is ErGpzp.q|F pCq
t qs, which turns out to be the

p.g.� of the Cox process. Then we can apply the results from Proposition 7.1

GpDCP qpzp.qq � E
�

exp

"» T

0

�
F pHqpzp.q|uq � 1

�
λpCqu du

*�

� exp

"
ρ

» T

0

�
ĥ

�
�
» T�c

0

pF pHqpzp.q|u� cq � 1qfpuqdu


� 1



dc

*
.

(7.34)
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7.C Proof of Proposition 7.9

Let us de�ne the following quantities

I1 �
» T

0

�
ĥpI2puqq � 1

	
du

I2puq �
» T�u

0

p1� F pHqpzp.q|u� vqqfpvqdv

R1 �
ņ

i�1

pĥpI2ppi� 1q∆qq � 1q∆

R2piq �
n�i�1¸
k�1

p1� F pHqpzp.q|pk � i� 1q∆qqfppk � 1q∆q∆

R3piq �
n�i�1¸
k�1

p1� F pXnqpzp.q|pk � i� 1q∆qqqfppk � 1q∆q∆

Ji � µχ

�����
» T�i∆t

0

pF pHqpzp.q|u� vq � 1qηpvqdv �
n�i̧

k�1

pF pHqpzp.q|u� vqηpk∆q∆
����� .

Then DpDCP qpzp.q,∆|Θq can be decomposed as

DpDCP qpzp.q,∆|Θq �
���logGpDCP qpzp.qq � logG

pZnq
p∆q pzp.qq

���
� ρ

�����
» T

0

pĥpI2puqq � 1qdu�
ņ

i�1

pĥpR3piqq � 1q∆
�����

¤ ρ

����
» T

0

pĥpI2puqq � 1qdu�R1

����� ρ

�����R1 �
ņ

i�1

pĥpR3piqq � 1q∆
����� .

(7.35)

Here we add the inter-median termR1 which is the Riemann sum of its corresponding

integral. Then apply Lemma 7.1 to the �rst part

����
» T

0

pĥpI2puqq � 1qdu�R1

���� � Op∆k1q.
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For the second part, we make use of the property of the convex function ĥpuq such
that

�����R1 �
ņ

i�1

pĥpRS3piqq � 1q∆
����� �

�����
ņ

i�1

pĥpI2ppi� 1q∆qq � 1q∆�
ņ

i�1

pĥpR3piqq � 1q∆
�����

¤
ņ

i�1

|I2ppi� 1q∆q �R3piq|µΥ∆

 
ņ

i�1

|I2ppi� 1q∆q �R2piq|µΥ∆�
ņ

i�1

|R2piq �R3piq|µΥ∆,

(7.36)

which again separates into two parts. For the �rst part, apply Lemma 7.1

ņ

i�1

|I2ppi� 1q∆tq �R2piq|µΥ∆t � Op∆k2q.

For the second part,

|R2piq �R3piq| �
n�i̧

k�0

��F pHqpzp.q|pk � iq∆q � F pXnqpzp.q|pk � iq∆q�� fpk∆q∆

¤ fm∆
n�i̧

k�0

��F pHqpzp.q|pk � iq∆q � F pXnqpzp.q|pk � iq∆q��
¤ fm∆

ņ

k�0

��F pHqpzp.q|k∆q � F pXnqpzp.q|k∆q��
fm � max

k�1,...,n
fpk∆q.

For the absolute di�erence
��F pHqpzp.q|k∆q � F pXnqpzp.q|k∆q��, we can solve it back-

wardly. When i � n,

|F pHqpzp.q|n∆q � F pXnqpzp.q|n∆q| � 0.
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When i � n� 1,

|F pHqpzp.q|pn� 1q∆q � F pXnqpzp.q|pn� 1q∆q|,

¤ zppn� 1q∆q �|ĝp�In�1q � ĝp�Rn�1q| � |ĝp�Rn�1q � ĝp�Rb
n�1q|

�
¤ Jn�1 �

1̧

k�1

µχηpk∆q|F pHqpzp.q|pn� 1� kq∆q � F pXnqpzp.q|pn� 1� kq∆q|∆

� Jn�1,

where we use the condition zp.q P V0pR�q and zpuq ¤ 1, u P p0, T q. Then when

i � n� 2,

|F pHqpzp.q|pn� 2q∆q � F pXnqpzp.q|pn� 2q∆q|,

¤ zppn� 2q∆q �|ĝp�In�2q � ĝp�Rn�2q| � |ĝp�Rn�2q � ĝp�Rb
n�2q|

�
¤ Jn�2 �

2̧

k�1

µχηpk∆q|F pHqpzp.q|pn� 2� kq∆q � F pXnqpzp.q|pn� 2� kq∆q|∆

¤ Jn�2 � Jn�1µχηp∆q∆

� Jn�2 �Op∆k3�1q � Op∆k3q.

Note that Ji is the absolute di�erence between the Integral and its Riemann sum,

hence we can apply Lemma 7.1

Ji ¤Mi∆
k3 ¤M 1∆k3 � Op∆k3q

M 1 � max
i�0,...,n

Mi.

When i � n� j, j � 1, 2, ...n,

|F pHqpzp.q|pn� jq∆q � F pXnqpzp.q|pn� jq∆q|,

¤ zppn� jq∆q �|ĝp�In�jq � ĝp�Rn�jq| � |ĝp�Rn�jq � ĝp�Rb
n�jq|

�
¤ Jn�j �

j̧

k�1

µχηpk∆q|F pHqpzp.q|pn� j � kq∆q � F pXnqpzp.q|pn� j � kq∆q|∆

� Jn�j � jOp∆k3�1q � Op∆k3q.
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Then the whole sum becomes

ņ

i�0

|F pHqpzp.q|i∆q � F pXnqpzp.q|i∆q|∆

¤ ∆
n�1̧

i�0

�
Ji � iOp∆k3�1q� � Op∆k3q.

(7.37)

Then the second part in equation 7.36 becomes

ņ

i�0

|R2piq �R3piq|µΥ∆ ¤
ņ

i�1

�
fm∆

ņ

k�0

��F pHqpzp.q|k∆q � F pXnqpzp.q|k∆q��
�
µΥ∆ � Op∆k3q.

Finally, let k � mintk1, k2, k3u.

7.D Proof of Corollary 7.4.1

The results follows from Proposition 7.9. The p.g.� of the Cox process GpCq can

be derived from the p.g.� of the generalized dynamic contagion process GpDCP q by

letting ηpuq � 0 such that F pHqpzp.qq becomes

F pHqpzp.q|uq � zpuqĝp0q � zpuq.

Similarly, G
pYnq
p∆q can be derived from G

pZnq
p∆q by letting F pXnqpzp.q|i∆q � zpi∆q. Then

DpCqpzp.q,∆|Θq will have the same form as the equations 7.35 and 7.36 such that

DpCqpzp.q,∆|Θq �
���logGpCqpzp.qq � logG

pYnq
p∆qqpzp.qq

���
� ρ

�����
» T

0

pĥpI2puqq � 1qdu�
ņ

i�1

pĥpR3piqq � 1q∆
�����

¤ ρ

����
» T

0

pĥpI2puqq � 1qdu�R1

����� ρ

�����R1 �
ņ

i�1

pĥpR3piqq � 1q∆
�����

¤ ρ

����
» T

0

pĥpI2puqq � 1qdu�R1

����� ρ
ņ

i�1

|I2ppi� 1q∆tq �R2piq|µΥ∆

� ρ
ņ

i�1

|R2piq �R3piq|µΥ∆

� Op∆k1q �Op∆k2q,
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where R2piq � R3piq � 0 since F pHqpzp.q|i∆q � zpi∆q � F pXnqpzp.q|i∆q. Finally, we
can take k � mintk1, k2u.

7.E Proof of Corollary 7.4.2

Similarly, this result follows from Proposition 7.9. From the p.g.�.s point of view,

GpHq can be recovered by replacing ρ and ĥ
�
� ³T�u

0
pF pHqpzp.q|u� vq � 1qfpvqdv

	
by ν and F pHqpzp.q|uq in GpDCP q respectively. GpXnq

p∆q can be derived from G
pZnq
p∆q in a

similar way. Then DpHq becomes

DpHqpzp.q,∆|Θq � ν

�����
» T

0

pF pHqpzp.q|uqq � 1qdu�
ņ

i�1

pF pXnqpzp.q|i∆q � 1q∆
�����

¤ ν

�����
» T

0

pF pHqpzp.q|uq � 1qdu�
ņ

i�1

pF pHqpzp.q|i∆q � 1q∆
�����

� ν

�����
ņ

i�1

pF pHqpzp.q|i∆q � 1q∆�
ņ

i�1

pF pXnqpzp.q|i∆q � 1q∆
����� .

Adopting the similar technique as in Proposition 7.9, we add the term
°n
i�1pF pHqpzp.q|i∆q�

1q∆ which is the right Riemann sum of the integral. Then we can apply Lemma 7.1

�����
» T

0

pF pHqpzp.q|uq � 1qdu�
ņ

i�1

pF pHqpzp.q|i∆q � 1q∆
����� � Op∆k1q, k1 ¡ 0.

The second part is

�����
ņ

i�1

pF pHqpzp.q|i∆q � 1q∆�
ņ

i�1

pF pXnqpzp.q|i∆q � 1q∆
�����

¤
ņ

i�1

|F pHqpzp.q|i∆q � F pXnqpzp.q|i∆q|∆ � Op∆k2q.

This result follows from the inequality 7.37. Finally, we can take k � mintk1, k2u.
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CHAPTER 8

Paper E. INAR Approximation of Bivariate Linear

Birth and Death Process

Abstract

In this paper, we propose a new type of univariate and bivariate Integer-valued

autoregressive model of order one (INAR(1)) to approximate univariate and bivariate

linear birth and death process with constant rates. Under a speci�c parametric

setting, the dynamic of transition probabilities and probability generating function of

INAR(1) will converge to that of birth and death process as the length of subintervals

goes to 0. Due to the simplicity of Markov structure, maximum likelihood estimation

is feasible for INAR(1) model, which is not the case for bivariate and multivariate

birth and death process. This means that the statistical inference of bivariate birth

and death process can be achieved via the maximum likelihood estimation of a

bivariate INAR(1) model.

8.1 Introduction

The simple linear birth and death process, which was �rst introduced by Feller

(1939), is a widely used Markov model with applications in population growth, epi-

demiology, genetics and so on. The basic idea of this process is that the probabilities
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of any individual giving birth to a new individual, or any individual dying, are con-

stant at any moment in time and all individuals are independent of each other. Many

statistical properties, including moments, distribution function, extinction probabil-

ity, or some other cumulative distribution of interests, are explicitly derived in the

literature; see for example, Kendall (1949). The statistical inference for simple birth

and death processes is then developed by Keiding (1975), where maximum likeli-

hood estimators and other asymptotic results are discussed. Since the distribution

function of simple birth and death processes is explicit, the construction of the like-

lihood function is straightforward. However, it is pointed out in the literature that

the transition probability is actually cumbersome and numerically unstable when

the size of population is large over time. At the same time, a variety of alternative

estimation methods have been proposed. For example, quasi- and pseudo � likeli-

hood estimators Chen and Hyrien (2011), Crawford et al. (2014) addressed it as a

missing data problem and apply an EM algorithm to maximize it. Tavaré (2018)

found those transition probabilities by numerical inversion of the probability gener-

ating function and then applied Bayesian methods to perform estimation. Davison

et al. (2021) adopted a saddle point approximation method to further improve the

accuracy of transition probabilities.

The bivariate and multivariate birth and death process are developed in Gri�ths

(1972, 1973). Gri�ths (1972) described the transmission of malaria (so called host-

vector situation) as a bivariate birth and death process where there is no direct in-

fection between the same type of population. Then the author extended the model

to multivariate case Gri�ths (1973) which can be regarded as an approximation of

general epidemic with several types of infective. However, due to the intractability

of the joint probability generating function, maximum likelihood estimation for pa-

rameters is not implementable. One possible way forward is to use integer-valued

time series to approximate the continuous birth and death process and maximum

likelihood estimation would then be feasible.

In recent years, there has been a growing interest in modelling integer-valued time

series due to the presence of count data from di�erent scienti�c �elds such as social

science, healthcare, insurance, economic and the �nancial industry. In particular,

regarding to the univariate case, Al-Osh and Alzaid (1987) and McKenzie (1985)

were the �rst to consider an INAR(1) model based on the so-called binomial thinning

operator. The idea here is to manipulate the operation between coe�cients and

variables as well as the innovation terms in a way that the values are always integer.

One can apply di�erent discrete random variables to describe this operation. For

more details, the interested reader can refer to Weiÿ (2018) Davis et al. (2016a),

Scotto et al. (2015), Weiÿ (2008b) among many more.
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In this paper, we propose an integer-valued autoregressive model of order one

(INAR(1)) to approximate continuous birth and death process. In this way, the

continuous process is approximated by a discrete Markov chain so that transition

probabilities as well as likelihood function can be written down explicitly. As the

birth and death process in our setting does not consider any immigrant, the inno-

vation term is dropped in the proposed INAR(1) model. Similar to Nelson (1990),

Kirchner (2016), where they �nd out the relationship between discrete models and

their continuous counterparts, we also �rst need to make sure the our proposed dis-

crete INAR(1) model would converge to birth and death process in weak convergence

sense. Then we will explore how our proposed model would help facilitate the statis-

tical inference. According to the probability generating function of the simple birth

and death process, the death part can be described by binomial random variable

while the birth part corresponds to a negative binomial. Then one can construct

a bivariate INAR model based on these random variables to describe the bivariate

birth and death process and even the multivariate one. As the transition probabili-

ties and likelihood function of bivariate birth and death process cannot be written

down explicitly, the main contribution is that the proposed bivariate INAR(1) model

would provide a feasible way to estimate the parameters of bivariate birth and death

process (Maximum likelihood estimation).

The paper is organized as follows: Section 2 reviews some main results of univariate

and bivariate birth and death processes with constant rates. Section 3 introduces

Integer-valued autoregressive models as well as some distributional properties. Sec-

tion 4 constructs the discrete semimartingale using the proposed INAR models and

proves the weak convergence between constructed semimartingale and birth and

death processes. A simulation study is carried out in section 5 to illustrate the

estimation method via proposed INAR models an their corresponding properties of

estimators. Some concluding remarks are in section 6.

8.2 Univariate and bivariate birth and death pro-

cesses

In this section, we will review the essential elements of simple birth-and-death pro-

cesses, including moments and other distributional properties. These are well known

and extensively discussed in the literature. Then, we will discuss the bivariate case

where analytic expressions of the distribution function are not available.
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8.2.1 Simple univariate birth-and-death process

Suppose that we have a population whose total number is evolved as a simple birth

and death process Zt, with constant birth rate λ ¥ 0, death rate µ ¥ 0 and initial

population Z0 P N. In other words, the probability that any individual gives birth

in time ∆ is λ∆, and the probability that any individual dies in time ∆ is µ∆.

Individuals are independent of each other. Let Pnptq � PrpZt � nq be the probability
that the total population is n at time t. Then the transition probability of the

simple birth and death process is characterized by the following ordinary di�erential

equation (ODE)

$''&
''%

dPnptq
dt

� λpn� 1qPn�1ptq � µpn� 1qPn�1ptq � pλ� µqnPnptq, n ¥ 1

PZ0p0q � 1

(8.1)

Applying a liner transform
°
n θ

n on both sides and ϕpt, θq � °
n θ

nPnptq, we can get
a partial di�erential equation whose solution ϕ is the probability generating function

of Z
paq
t .

Bϕ
Bt � λθ2Bϕ

Bθ � µ
Bϕ
Bθ � pλ� µqθBϕBθ

� pλθ � µqpθ � 1qBϕBθ
ϕp0, θq � θa

(8.2)

This linear PDE can be solved explicitly

ϕpt, θq �
�

1� αptq � αptq βptqθ
1� p1� βptqqθ


Z0

αptq � pλ� µqepλ�µqt
λepλ�µqt � µ

, βptq � λ� µ

λepλ�µqt � µ

(8.3)

This probability generating function clearly gives the construction of Zt given Z0,

i.e. the sum of i.i.d zero-modi�ed geometric random variables

Zt �
Z0̧

i�1

BipαptqqGipβptqq, (8.4)

where Bi are i.i.d Bernoulli random variables and Gi are i.i.d Geometric random

variables with mean αptq and 1
βptq , respectively. Furthermore, from the de�nition of
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transition probability, the linear birth and death process is a pure-jump semimartin-

gale with following characteristic triplet:

ChpZtq �

$''''''&
''''''%

Bt � 0

Ct � 0

νpZt; dt, dxq � dtKpZt, dxq � dtpλZt�δ1pdxq � µZt�δ�1pdxqq»
R

�
x2 ^ 1

�
KpZt, dxq � pλ� µqZt�   8, given that Zt� is �nite

(8.5)

With the help of piece-wise deterministic Markov process theory in Davis (1984), the

in�nitesimal generator of the simple birth and death process Zt acting on a function

fpt, Zq within its domain ΩpAq is given by

Afpt, Zq � Bf
Bt � λZpfpt, Z � 1q � fpt, Zqq � µZpfpt, Z � 1q � fpt, Zqq, (8.6)

where ΩpAq is the domain for the generator A such that fpt, Zq is di�erentiable

with respect to t for all t, Z, and

|fpt, Z � 1q � fpt, Zq|   8

|fpt, Z � 1q � fpt, Zq|   8.
(8.7)

The �rst and second moments can be derived by applying in�nitesimal generator to

the functions fpt, zq � Z,Z2 such that

AZ � λZpZ � 1� Zq � µZpZ � 1� Zq

AZ2 � λZppZ � 1q2 � Z2q � µZppZ � 1q2 � Z2q,
(8.8)

which leads to two ODEs,

dErZts
dt

� pλ� µqErZts
dErZ2

t s
dt

� 2pλ� µqErZ2
t s � pλ� µqErZts

(8.9)
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Then, we can solve them explicitly

ErZts � Z0e
pλ�µqt

ErZ2
t s � Z2

0e
2pλ�µqt � Z0pλ� µq

pλ� µq epλ�µqt
�
epλ�µqt � 1

�
V arpZtq � Z0pλ� µq

pλ� µq epλ�µqt
�
epλ�µqt � 1

�
(8.10)

According to the analytic expression of the �rst moment, it is clear that the popu-

lation is bound to become extinct if λ   µ.

8.2.2 Bivariate birth-and-death process

Suppose there are two populations M � pM1,M2qT with initial population M0 P N2
�.

The rate with which the populationM1 increases by one is λ21M2�λ11M1 while the

same for the populationM2 would be λ12M1�λ22M2. The subscript λi,j means that

the rate is from population i contributed to population j. The death rate for two

populations would be µ1, µ2 respectively. The two population is not independent

as long as the cross birth rates λi,j � 0, i � j. Then denote Pmnptq � PrpM1,t �
m,M2,t � nq. This satis�es the following ODE

$''''''''''&
''''''''''%

dPm,n
dt

� pλ11pm� 1q � λ21nqPm�1,n � µ1pm� 1qPm�1,n

�pλ12m� λ22pn� 1qqPm,n�1 � µ2pn� 1qPm,n�1

�ppλ11 � λ12 � µ1qm� pλ21 � λ22 � µ2qnqPm,n

PM0p0q � 1, M1,0,M2,0 P N�

(8.11)

Gri�ths (1972) introduced this bivariate birth death process (λ11 � λ22 � 0) to

describe the host-vector epidemic situation where the birth probability of two popu-

lation depends on the size the other population only, e.g. transmission of malaria. To

get the joint probability generating function of Ψpt, θ, φq � °
m

°
n θ

mφnPmnptq, we
can apply a linear transform

°
m

°
n θ

mφn on both sides of the ODE. The resulting

PDE is
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BΨ

Bt � λ11θ
2BΨ

Bθ � λ21θφ
BΨ

Bφ � µ1
BΨ

Bθ � λ12θφ
BΨ

Bθ � λ22φ
2BΨ

Bφ � µ2
BΨ

Bφ
� θpλ11 � λ12 � µ1qBΨ

Bθ � φpλ21 � λ22 � µ2qBΨ

Bφ
� pλ11θ

2 � λ12θφ� µ1 � θpλ11 � λ12 � µ1qqBΨ

Bθ
� pλ22φ

2 � λ21θφ� µ2 � φpλ21 � λ22 � µ2qqBΨ

Bφ
Ψp0, θ, φq � θM1,0φM2,0

(8.12)

This is a semi-linear PDE. The subsidiary equations are de�ned as

dΨ

0
� dt

1
� �dθ
λ11θ2 � λ12θφ� µ1 � θpλ11 � λ12 � µ1q

� �dφ
λ22φ2 � λ21θφ� µ2 � φpλ21 � λ22 � µ2q

(8.13)

The �rst fraction does not mean divide dΨ by 0 and combining with the second frac-

tion dt
1
infers that Ψ � constant, according to chapter 8 of Bailey (1991). Matching

the third and fourth di�erentials above, we have

dθ

dφ
� λ11θ

2 � λ12θφ� µ1 � θpλ11 � λ12 � µ1q
λ22φ2 � λ21θφ� µ2 � φpλ21 � λ22 � µ2q (8.14)

It seems that there is no way to solve this non-linear ODE and therefore no explicit

solution is available for this PDE. However, it can be shown that this PDE gives

a unique solution by Existence-Uniqueness Theorem for Quasilinear First-Order

Equations. With regard to its characteristic, similar to the univariate case, this
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process is a pure-jump semimartingale with following characteristic triplets:

ChpMtq �

$''''''''''&
''''''''''%

Bt � 0

Ct � 0

νpMt; dt, dxq � dtKpMt, dxq �

dtpλ̃1δp1,0qpdxq � λ̃2δp0,1qpdxq � µ̃1δp�1,0qpdxq � µ̃2δp0,�1qpdxqqMt�»
R

�
x2 ^ 1

�
KpMt, dxq � pλ̃1 � λ̃2 � µ̃1 � µ̃2qMt�   8, given that Mt� is �nite,

where

λ̃1 � pλ11, λ21q, λ̃2 � pλ21, λ22q, µ̃1 � pµ1, 0q, µ̃2 � p0, µ2q
(8.15)

The moments of this bivariate process can be derived by applying again in�nitesimal

generator.

Proposition 8.1. The �rst and second moments of the bivariate birth and death

process Mt � pM1,t,M2,tq de�ned in (8.11) are given by

ErM1,ts �M1,0

�
λ12c

2λ12c� κ1 � κ2

epλ12c�κ2qt � λ12c� κ1 � κ2

2λ12c� κ1 � κ2

e�pλ12c�κ1qt



�M2,0
λ21

2λ12c� κ1 � κ2

�
epλ12c�κ2qt � e�pλ12c�κ1qt

�
ErM2, ts �M1,0

λ12

2λ12c� κ1 � κ2

�
epλ12c�κ2qt � e�pλ12c�κ1qt

�
�M2,0

�
λ12c� κ1 � κ2

2λ12c� κ1 � κ2

epλ12c�κ2qt � λ12c

2λ12c� κ1 � κ2

e�pλ12c�κ1qt


,

(8.16)

where

κ1 � µ1 � λ11, κ2 � µ2 � λ22, c � κ2 � κ1 �
apκ1 � κ2q2 � 4λ21λ12

2λ12

.

The second moments ErM2
1,ts,ErM2

2,ts and ErM1,tM2,ts are determined by the follow-
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ing system of ODE,

d

dt
ErM2

1,ts � �2κ1ErM2
1,ts � 2λ21ErM1,tM2,ts � λ21ErM2,ts � µ1ErM1,ts

d

dt
ErM2

2,ts � �2κ2ErM2
2,ts � 2λ12ErM1,tM2,ts � λ12ErM1,ts � µ2ErM2,ts

d

dt
ErM1,tM2,ts � �pκ1 � κ2qErM1,tM2,ts � λ21ErM2

2,ts � λ12ErM2
1,ts

(8.17)

Proof. See appendix A.8.A

Note that to ensure the bivariate process becomes extinct with probability one, we

need the (necessary and su�cient condition) pµ1�λ11qpµ2�λ22q ¡ λ12λ21 according

to Gri�ths (1973). Many interesting properties of the process have been investigated

by Gri�ths (1972, 1973). In general, this bivariate birth and death process is not

straightforward to apply in practice because there are no explicit solutions to the

above PDE, and the second moments have to be evaluated by numerical methods.

The discrete integer-value model proposed in the next section would be a possible

solution.

8.3 Univariate and Bivariate INAR models

In this section, we will introduce integer-valued autoregressive models which will

serve as discrete approximations for continuous counterparts discussed in the last

section. The derivation of this approximation will demonstrate how to parameterize

the bivariate INAR case.

8.3.1 Univariate INAR model

The classical integer-value autoregressive (INAR) model is introduced by de�ning a

so-called binomial thinning operator � such that α�X is the sum of X i.i.d Bernoulli

random variable with success probability α. i.e.

α �X �
X̧

i�1

bi, bi
i.i.d� Bernoullipαq (8.18)

A well-known Poisson INAR(1) model Xt is given by

Xt � α �Xt�1 �Rt, (8.19)
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where tRiui�1,...,t are i.i.d Poisson variables with parameter ρ. The key idea of the

integer-value model would be the operator �. One can choose di�erent discrete

random variables to construct di�erent integer-valued models. Indicated by the

transition probability of continuous birth and death process, i.e. the sum of i.i.d

zero-modi�ed geometric random variables shown in equation (8.4), INAR model can

be a good approximation by combining � and geometric operator as de�ned below.

De�nition 8.1. A birth and death INAR(1) model with survival probability α P r0, 1s
and birth probability p P r0, 1s is de�ned as

Xt � p �1 α �Xt�1, (8.20)

where

� � is the binomial operator

� �1 is a geometric (reproduction) operator such that p �1X � °X
i�1 g

p1q
i with g

p1q
i

being i.i.d geometric random variable with success probability p whose proba-

bility mass function is given by

P pgp1qi � kq � pp1� pqk�1, k � 1, 2, . . . ,

� p �1 α �X � °α�X
i�1 g

p1q
i

Remark The innovation is dropped as there is no independent immigrant process

in the birth and death process investigated.

Proposition 8.2. The birth and death INAR(1) model has the following statistical

properties

1. The probability generating function of Xt can be iterated backwardly such that

ϕpIqpt, θq � ErθXts � E

��
1� α � αpθ

1� p1� pqθ

Xt�1

�

� E

��
1� αi � αipiθ

1� p1� piqθ

Xt�i

�
, i � 1, . . . , t

(8.21)
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where

pi � pi

di�1

αi � αi

di�1

di � pi

�
��1� p1� pq

α
p
�
�
α
p

	i�1

1� α
p

�
� (8.22)

In order words, the birth and death operator p �1 α� as a whole is iterable.

Xt � p1 �1 α1 �Xt�1 � p2 �1 α2 �Xt�2 � � � � � pt �1 αt �X0 (8.23)

2. Then the mean, variance and covariance are given by

ErXts � αi
pi
ErXt�is

V arpXtq �
�
αip1� piq

p2
i

� αip1� αiq
p2
i



ErXt�is � α2

i

p2
i

V arpXt�iq

CovpXt, Xt�iq � αi
pi
V arpXt�iq

(8.24)

Proof. See appendix A.8.B.

Note that if α{p   1, the process Xt will become extinct eventually. It is obvious

that the continuous birth and death process can be approximated by this discrete

INAR(1) model by directly matching the probability generating function ϕpIq to the

one ϕ in equation (8.3) as the p�1α�X is the sum of X i.i.d zero-modi�ed geometric

random variables.

8.3.2 Bivariate INAR model

Discrete approximation for univariate birth and death process is somehow simple

because the PDE(8.2) has an explicit solution and hence the distribution is already

known. In the case where the dynamic of two populations are characterized by

(8.11), no explicit solution for its PDE (8.12). However, from the birth and death

INAR(1) model, it is clear that birth and death probability are closely related to

binomial and negative binomial random variables. Based on the dynamic (8.11) and

linear form of the �rst moment (8.16), a bivariate INAR(1) model is proposed as

follows.
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De�nition 8.2. A bivariate birth and death INAR(1) model Yt � pY1,t, Y2,tqT with

survival probability α1, α2 P r0, 1s and birth probability β11, β12, β21, β22 P r0, 1s is
de�ned as

Y1,t � β11 �1 α1 � Y1,t�1 � β21 �2 Y2,t�1

Y2,t � β12 �2 Y1,t�1 � β22 �1 α2 � Y2,t�1,

(8.25)

where

� � is the binomial operator

� �2 is another geometric (reproduction) operator di�erent from �1 such that

β�2X � °X
i�1 g

p2q
i with g

p2q
i being i.i.d geometric random variable whose success

probability is β . The probability mass function is given by

P pgp2qi � kq � βp1� βqk, k � 0, 1, 2, . . . ,

� Conditional on Yt�1, the random variables β11 �1α1�Y1,t�1, β21 �2Y2,t�1, β12 �2

Y1,t�1 and β22 �1 α2 � Y1,t�1 are all independent of each other.

Now it seems that the structure of bivariate INAR(1) matches the the dynamics of

(8.11), i.e. the birth probability depends on the size of both populations while death

probability depends on the size of its own population. We adopt another geometric

random variable gp2q which is slightly di�erent from gp1q because for example, if we

use gp1q, Y1,t ¥ Y2,t�1@t which is not reasonable when Y1,t�1   Y2,t�1 for a population.

Proposition 8.3. The �rst and second moments of the bivariate INAR(1) de�ned
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above are characterized by the following recursive formulas

ErY1,ts �
α1

β11
ErY1,t�1s �

1 � β21

β21
ErY2,t�1s

ErY2,ts �
1 � β12

β12
ErY1,t�1s �

α2

β22
ErY2,t�1s

V arpY1,tq �
α2

1

β2
11

V arpY1,t�1q �
α1p2 � β11 � α1q

β2
11

ErY1,t�1s �

�
1 � β21

β21


2

V arpY2,t�1q

�
1 � β21

β2
21

ErY2,t�1s � 2
α1p1 � β21q

β11β21
CovpY1,t�1, Y2,t�1q

V arpY2,tq �

�
1 � β12

β12


2

V arpY1,t�1q �
1 � β12

β2
12

ErY1,t�1s �
α2

2

β2
22

V arpY2,t�1q

�
α2p2 � β22 � α2q

β2
22

ErY2,t�1s � 2
α2p1 � β12q

β12β22
CovpY1,t�1, Y2,t�1q

CovpY1,t, Y2,tq �

�
α1α2

β11β22
�
p1 � β21qp1 � β12q

β12β21



CovpY1,t�1, Y2,t�1q

�
α1p1 � β12q

β11β12
V arpY1,t�1q �

α2p1 � β21q

β21β22
V arpY2,t�1q

(8.26)

Proof. Similar to proposition 8.2, the moments can be derived by conditional ex-

pectation. The �rst and second moment for random variable g
p2q
i with parameter β

are 1�β
β

and 1�β
β2 . Then the �rst moment for Xt are

ErY1,t|Yt�1s � Erβ11 �1 α1 � Y1,t�1|Y1,t�1s � Erβ21 �2 Y2,t�1|Y2,t�1s

� α1

β11

Y1,t�1 � 1� β21

β21

Y2,t�1

The second moments are given by

V arpY1,T |Ytq � V arpβ11 �1 α1 � Y1,t�1|Y1,t�1q � V arpβ21 �2 Y2,t�1|Y2,t�1q

� α1p2� β11 � α1q
β2

11

Y1,t�1 � 1� β21

β2
21

Y2,t�1

V arpY1,tq � V arpErY1,t�1|Yt�1sq � ErV arpY1,t|Yt�1qs

� 2CovpErβ11 �1 α1 � Y1,t�1|Y1,t�1s,Erβ21 �2 Y2,t�1|Y2,t�1sq

� 2ErCovpβ11 �1 α1 � Y1,t�1, β21 �2 Y2,t�1|Yt�1qs

� V arpErY1,t|Yt�1sq � ErV arpY1,t|Yt�1qs

� α1p1� β21q
β11β21

CovpY1,t�1, Y2,t�1q
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CovpY1,t, Y2,tq � Covpβ11 �1 α1 � Y1,t�1, β12 �2 Y1,t�1q � Covpβ11 �1 α1 � Y1,t�1, β22 �1 α2 � Y2,t�1q

� Covpβ21 �2 Y2,t�1, β12 �2 Y1,t�1q � Covpβ21 �2 Y2,t�1, β22 �1 α2 � Y2,t�1q

� α1p1� β12q
β11β12

V arpY1,t�1q � α1α2

β11β22

CovpY1,t�1, Y2,t�1q

� p1� β12qp1� β21q
β12β21

CovpY2,t�1, Y1,t�1q � p1� β21α2q
β21β22

V arpY2,t�1q

The �rst and second moments of Y2,t can be derived in a similar way.

Proposition 8.4. If the eigen-values η1, η2 of the following matrix

A �

�
�� α1

β11

1�β21
β21

1�β12
β12

α2

β22

�
�� (8.27)

lie in the interval r�1, 1s, then the bivariate population Xt, Yt will become extinct

eventually.

Proof. The �rst moment can be expressed in a matrix form

ErYts � AErYt�1s � AtErY0s (8.28)

The t-th power of a matrix here is de�ned as t times matrix multiplication. By

eigen-decomposition, power of a matrix can be expressed as

At � Q diagptηt1, ηt2uqQ�1, (8.29)

where Q � pν1, ν2q is eigen vector matrix with ν1, ν2 as eigen vectors for η1, η2. Now,

it is clear that ErYts is decreasing in t when η1, η2 P r�1, 1s.

8.4 Weak Convergence to continuous Birth and Death

process

In this section, we will construct two continuous processes from the above pro-

posed INAR models. These processes, under a certain parametrization, will con-

verge weakly to the aforementioned continuous birth and death processes when the

length of sub-interval goes to 0.
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8.4.1 Construction of continuous processes

Since the continuous birth and death processes are clearly semimartingale de�ned

in non-negative state spaces, to apply limit theorem of locally bounded semimartin-

gales, we need to construct 'continuous' processes on a dense subsets of R� (will

take t P r0, 1s for convenience) and compute their characteristic triplets from the

discrete INAR models. Finally, when everything is set up nicely, we can apply weak

convergence of semimartingale theorem to prove the result. The construction mainly

follows from Jacod and Shiryaev (2013), Chapter II, section 3.

Starting with a discrete basis B � pΩ,F, pFnqnPN,Pq, assume that he INAR models

Xn and Yn de�ned above are adapted to this discrete stochastic basis and so as the

increment processes

Uk � Xk �Xk�1, U0 � X0

Vk � Yk �Yk�1, V0 � Y0, k � 0, 1, 2, . . .

(8.30)

then we can construct 'continuous' processes via time change.

De�nition 8.3. Given a �xed time interval r0, 1s, one can de�ne a equal-length

grid with size n such that each subinterval with length ∆ � 1
n
. The following the

processes:

Z
pnq
t �

σţ

k�0

Uk, M
pnq
t �

σţ

k�0

Vt, (8.31)

where σt � ttnu, are adapted to the continuous-time basis B̃ � pΩ,F, G � pgtqt¥0,Pq.
The parameters setting for Z

pnq
t are

α � pλ� µqepλ�µq∆
λepλ�µq∆ � µ

, p � λ� µ

λepλ�µq∆ � µ
. (8.32)

The parameters setting for M
pnq
t are

α1 � pλ11 � µ1qω1p∆q
λ11ω1p∆q � µ1

, α2 � pλ22 � µ2qω2p∆q
λ22ω2p∆q � µ2

β11 � λ11 � µ1

λ11ω1p∆q � µ1

, β22 � λ22 � µ2

λ22ω2p∆q � µ2

β21 �
�
1� Cβ1

�
eu1∆ � eu2∆

���1
, β12 �

�
1� Cβ2

�
eu1∆ � eu2∆

���1
,

(8.33)
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where

ω1p∆q � Cαe
u1∆ � p1� Cαqeu2∆, ω2p∆q � p1� Cαqeu1∆ � Cαe

u2∆

Cα � λ12c

2λ12c� µ1 � µ2

, Cβ1 �
λ21

2λ12c� κ1 � κ2

, Cβ2 �
λ12

2λ12c� κ1 � κ2

u1 � λ12c� κ2, u2 � �pλ12c� κ1q, κi � µi � λii, i � 1, 2

c � κ2 � κ1 �
apκ1 � κ2q2 � 4λ21λ12

2λ12

.

It is straightforward to derive the parameter setting for univariate case since we

only need to match the parameter via probability generating function between Z
pnq
t

and Zt. However, in the other case where the closed form probability generating

function for Mt is not available, we need to seek other ways to set up αi and βi,j in

terms of λ and µ. The direct approach would be to match the �rst and second order

moments to see whether it works. It is clear that we can match moment equations

(8.26) to (8.16) and �nd out the mapping of β12, β21 in terms of λi,j, µi, i, j P t1, 2u.
Unfortunately, only the ratio αi{βii is known. Nevertheless, the parameter setting

in univariate case shows us the way to distribute the ratio α{p to α and p. Then

αi, βii can be set up in a similar way.

Proposition 8.5. With the above parameters setting and any non-negative integer

m, the transition probabilities for Z
pnq
t conditional on Z

pnq
t�∆ � k are

PrpZpnq
t � k �m|Zpnq

t�∆ � kq �
�
k �m� 1

k � 1



pλ∆qm � op∆mq

PrpZpnq
t � k �m|Zpnq

t�∆ � kq �
�

k

k �m



pµ∆qm � op∆mq

(8.34)

The above probabilities can be simpli�ed as,

Pr
�
Z
pnq
t � k � 1|Zpnq

t�∆ � k
	
� λk∆� op∆q

Pr
�
Z
pnq
t � k � 1|Zpnq

t�∆ � k
	
� µk∆� op∆q

Pr
�
|Zpnq

t � k| ¥ 2|Zpnq
t�∆ � k

	
� op∆q

(8.35)

On the other hand, the transition probabilities for M
pnq
t conditional on M

pnq
t�∆ � k �
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pk1, k2q given by

PrpM pnq
i,t � ki �m|Mpnq

t�∆ � kq

�
ki�m̧

j�ki

�
j � 1

ki � 1


�
k1 � k2 �m� j � 1

ki1 � 1



pλii∆qj�kipλi1,i∆qki�m�j � op∆mq

PrpM pnq
i,t � ki �m|Mpnq

t�∆ � kq �
�

ki
ki �m



pµi∆qm � op∆mq,

(8.36)

where i P t1, 2u and i1 � 3 � i. Due to the conditional independence of bivariate

INAR models, the joint transition probabilities for M
pnq
t conditional on M

pnq
t�∆ are

PrpM pnq
1,t � k1 �m1,M

pnq
2,t � k2 �m2|Mpnq

t�∆ � kq

�PrpM pnq
1,t � k1 �m1|Mpnq

t�∆ � kqPrpM pnq
2,t � k2 �m2|Mpnq

t�∆ � kq
(8.37)

Similarly, the above probabilities can be simpli�ed as

PrpM pnq
i,t � ki � 1|Mpnq

t�∆ � kq � λiik1∆� λi1,ik2∆� op∆q

PrpM pnq
i,t � ki � 1|Mpnq

t�∆ � kq � µiki∆� op∆q

Pr
�
|M pnq

i,t � ki| ¥ 2|Mpnq
t�∆ � k

	
� op∆q

(8.38)

Proof. See Appendix A.8.C

It is obvious that the above transition probabilities have exactly the same form as

continuous counterparts when m � 1. Consequently, the Lévy measures of Z
pnq
t and

M
pnq
t have similar structure to their continuous counterparts.

Proposition 8.6. The continuous processes Z
pnq
t and M

pnq
t de�ned above are semi-
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martingales with following characteristics triplets.

ChpZpnq
t q �

$''''''&
''''''%

Bt � 0

Ct � 0

νpr0, ts � gq � °σt
k�1pgp1qλ� gp�1qµqXk�1∆�Op∆q

ChpMpnq
t q �

$''''''''''''''&
''''''''''''''%

Bt � 0

Ct � 0

νpr0, ts � gq � °σt
k�1

�
gp1, 0qλ̃1 � gp�1, 0qµ̃1

	
Yk�1∆

�
�
gp0, 1qλ̃2 � gp0,�1qµ̃2

	
Yk�1∆

�Op∆q,

(8.39)

where the g is a continuous, non-negative, bounded Borel function vanishing near 0

and M
pnq
t respectively, the truncation function is h � |x|1t|x| 1u and

λ̃1 � pλ11, λ21q, λ̃2 � pλ21, λ22q, µ̃1 � pµ1, 0q, µ̃2 � p0, µ2q

Proof. See appendix A.8.D

Theorem 8.1. With the the de�nition and the parametrization above, and the initial

distribution condition:

Z
pnq
0 � Z0, M

pnq
0 � M0, (8.40)

the processes Z
pnq
t and M

pnq
t converge weakly to the continuous birth and death pro-

cesses Zt and Mt.

lim
nÑ8

Z
pnq
t

wÑ Zt

lim
nÑ8

M
pnq
t

wÑ Mt,

(8.41)

when the size of subinterval ∆ goes to 0 or equivalently, nÑ 8.

Proof. Here we simply apply Theorem 3.39 from Jacod and Shiryaev (2013), chapter

IX ,section 3, the limit theorem of semimartingales for the locally bounded case.

i The local strong Majorization Hypothesis: For both cases Zt and Mt, the

164



�rst two terms of the characteristic triplets are 0 and stochastic integrals with

respect to the function is clearly �nite on r0, 1s

ii Local Conditions on big jumps: For both cases Zt and Mt, there is no jump

with absolute size greater than 1.

iii The local uniqueness: for every choices of initial distributions for Z0 and M0,

their Lévy measures are uniquely characterized by their (joint) probability

distribution functions.

iv Continuity Condition, the characteristic triplets Btpωq, Ctpωq, νpω; dt, dxq of
Zt and Mt are continuous with respect to ω.

v Weak convergence of initial distribution. This is stated at the beginning of

this theorem.

vi Convergence of characteristic triplet of discrete processes to that of their con-

tinuous counterparts. This can be proved by showing the uniform convergence

of Lévy measures. For every a ¡ 0, de�ne a stopping time for the population

process:

SapXq � inf tt : |Xt| ¡ a, or |Xt� | ¡ au (8.42)

For the univariate case, the stochastic integral with respect to g � v for any Borel

function g is given by

pg � νt^Saq � Zpnq � g � νpZpnq; r0, t^ SapZpnqqs, Rq

�
» t^SapZpnqq

0

»
R

gpxqpλδ1pdxq � µδ�1pdxqqZpnq
s� ds

�
» t^SapZpnqq

0

pgp1qλ� gp�1qµqZpnq
s� ds

�
σ
t^SapZ

pnqq¸
k�1

pgp1qλ� gp�1qµqZpnq
k�1∆

� pgp1qλ� gp�1qµqZpnq
σ
t^SapZ

pnqq

�
t^ SapZpnqq � σt^SapZpnqq∆

�

(8.43)

and the absolute di�erence of two stochastic integrals is given by,

|g � νnt^Sa � pg � νt^Saq � Zpnq|

�
���Op∆q � pgp1qλ� gp�1qµqZσ

t^SapZ
pnqq

�
t^ SapZpnqq � σt^SapZpnqq∆

����
¤Op∆q � |gp1qλ� gp�1qµ|Zσ

t^SapZ
pnqq

�
t^ SapZpnqq � σt^SapZpnqq∆

�
(8.44)
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It is clear that all the quantity inside |..| are �nite and for every ξ ¡ 0, and then

there exists a natural number N such that for n ¡ N , we have

|g � νnt^Sa � pg � νt^Saq � Zpnq|   ξ (8.45)

and hence we have the uniform convergence for g � νnt^Sa to pg � νt^Saq � Zpnq. For

the bivariate case, the stochastic integral g � ν, where ν is the Lévy measure of M ,

for any Borel function g is given by

pg � νt^Saq �Mpnq � g � νpMpnq; r0, t^ SapMpnqqs, Rq

�
» t^SapMpnqq

0

»
R

gpxqpλ̃1δp1,0qpdxq � λ̃2δp0,1qpdxq

� µ̃1δp0,�1qpdxq � µ̃2δp0,�1qpdxqqMpnq
s� ds

�
» t^SapMpnqq

0

�
gp1, 0qλ̃1 � gp0, 1qλ̃2 � gp�1, 0qµ̃1 � gp0,�1qµ̃2

	
M

pnq
s� ds

�
t^SapMpnqq¸

k�1

�
gp1, 0qλ̃1 � gp0, 1qλ̃2 � gp�1, 0qµ̃1 � gp0,�1qµ̃2

	
M

pnq
k�1∆

�
�
gp1, 0qλ̃1 � gp0, 1qλ̃2 � gp�1, 0qµ̃1 � gp0,�1qµ̃2

	
�Mpnq

σ
t^SapM

pnqq

�
t^ SapMpnqq � σt^SapMpnqq

�

(8.46)

Then the absolute di�erence of two stochastic integrals is given by

|g � νt^SapMpnqq � pg � νt^Saq �Mpnq|

¤Op∆q �
���gp1, 0qλ̃1 � gp0, 1qλ̃2 � gp�1, 0qµ̃1 � gp0,�1qµ̃2

���
�Mpnq

σ
t^SapM

pnqq

�
t^ SapMpnqq � σt^SapMpnqq

�
(8.47)

Hence the uniform convergence holds using similar argument as in the univariate

case. Finally, the Z
pnq
t , M

pnq
t converge weakly to Zt and Mt respectively.

8.5 Simulation Study

In this section, we outline the simulation algorithm for bivariate birth and death

processes. Then estimation method, properties of estimators are investigated in the

simulation study.
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8.5.1 Simulation of bivariate birth and death process

The simulation algorithm of bivariate birth and death process Mt can be derived

straightforwardly according to its ODE (8.11). Given the current population Mt,

the waiting time that a event (birth or death in either population) will happen

follows exponential distribution with rate

ρt � pλ11 � λ12 � µ1qM1,t � pλ21 � λ22 � µ2qM2,t

Then the probability that this event will happen in population M1,t is

p1 � λ21M2,t � pλ11 � µ1qM1,t

ρt
(8.48)

The probability that this event will happen in population M2,t would simply be

p2 � 1�p1. Suppose now an event happens in population M1,t, the probability that

there is a new individual would be

pb1 �
λ11M1,t � λ21M2,t

λ21M2,t � pλ11 � µ1qM1,t

, (8.49)

and the probability that an individual dies is pd1 � 1 � pb1. Likewise, if the event

happens in the population M2,t, the birth probability would be

pb2 �
λ12M1,t � λ22M2,t

λ12M1,t � pλ22 � µ2qM2,t

(8.50)

and death probability pdn � 1 � pbn. Overall, the simulation algorithm is shown in

the following algorithm 1.

On the other hand, the simulation procedure of bivariate INAR(1) model is straight-

forward because the distribution of Yt are indicated by the operator p�, �1, �2q given
Yt�1.
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Algorithm 1 Simulation of bivariate birth and death process with rates
tλ11, λ12, λ21, λ22, µ1, µ2u, initial population M1,0,M2,0, a vector of cumulative time
tc where tcr1s � 0, a counter i and terminal time T

1. Simulate a waiting time tw � Exppρtq and two independent uniform random
variable U1, U2 � Up0, 1q

2. if U1 ¤ p1, and U2 ¤ pb1, M1,t�tw �M1,t � 1 and M2,t�tw �M2,t

3. if U1 ¤ p1, and U2 ¡ pb1, M1,t�tw �M1,t � 1 and M2,t�tw �M2,t

4. if U1 ¡ p1, and U2 ¤ pb2, M2,t�tw �M2,t � 1 and M1,t�tw �M1,t

5. if U1 ¡ p1, and U2 ¡ pb2, M2,t�tw �M2,t � 1 and M1,t�tw �M1,t

6. Append a new element to tc, tcri� 1s � tcris� tw and update counter i � i� 1

7. Repeat all the steps above until tcris ¡ T or M1,tcris �M2,tcris � 0

8. Set M1,T � M1,tcri�1s and M2,T � M2,tcri�1s and return the trajectory M at
each element of tc

8.5.2 Statistical inference of Univariate and bivariate birth

and death process

8.5.2.1 Quasi-MLE for univariate LBD

In the univariate case, parameters estimation and their asymptotic properties are

available in Keiding (1975). Suppose now we have the full information of the sample

path, the exact inter-arrival times for each birth and death events tτiuti�0,1,2,... u on

the sampling interval r0, T s where τ0 � 0, the maximum likelihood estimators for Zt

are

λ̂ � BT

XT

, µ̂ � DT

XT

, XT �
BT�DT¸
k�1

τkZτk�1
�
�
T �

ņ

i�1

τi

�
ZT , (8.51)

where BT , DT are total number of birth and death events respectively. The asymp-

totic properties are given by �xed T and large population

lim
Z0Ñ8

�
Z0pepλ�µqT � 1q

λ� µ


 1
2
�
λ̂� λ

µ̂� µ



DÑ N

�
���

0

0



,

�
��λ 0

0 µ

�
�
�
� (8.52)

168



In practice, one may not have exact information of inter-arrival time of the events.

Instead, we have records for populations sampling over a �xed-length interval ∆

such that Z0, Z∆, Z2∆ . . . Zn∆ are available. Then to estimate the parameters λ, µ,

one can numerically maximize the Quasi log-likelihood function from the proposed

INAR(1) model Xk � Zk∆, k � 0, 1, . . . , n. The log likelihood function is given by,

`pα, pq �
ņ

k�1

log PrpXk�1, Xkq

PrpXk�1, Xkq �$''''''&
''''''%

1, Xk�1 � Xk � 0

p1� αqXt�1 , Xk � 0

°mintXk�1,Xku
j�1 fbpj;Xk�1, αqfnbpXk � j; j, pq, Xk�1 ¡ 0 & Xk ¡ 0,

(8.53)

where fb and fnb are probability mass function of binomial and negative binomial

random variables

fbpx;n, αq �
�
n

x



αxp1� αqn�x fnbpx;n, βq �

�
n� x� 1

n� 1



βnp1� βqx

The simulation is conducted as follow: we generate 1000 sample paths of Zt using

Table 8.1: Parameter setting for univariate Case

parameters λ µ Z0 T
values 1.2 1 100 1

the parameters settings in Table 8.1. Since Zt are continuous sample paths, we

set up an equal-distance grid with sampling interval ∆. Then the equal-distance

observations Xt are obtained by counting the total number of population up to each

discrete time p0,∆, 2∆, . . . , n∆q where n � T
∆
. The log likelihood function is then

maximized by 'optim' function with method = 'BFGS' in R programming. Finally,

we can recover the rate estimates by inverting the parametrization in equation (8.32)

such that

λ̃ �
1�p̂
p̂

log α̂
p̂

α̂
p̂
� 1

, µ̃ � λ̃� 1

∆
log

α̂

p̂
(8.54)

In the following, we will �rst explore how the size of ∆ would a�ect properties esti-

mators, i.e. bias and mean square error (MSE), and how much more computational

time we need compared to true MLE method. Four di�erent size of sampling inter-
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vals ∆ � t0.1, 0.05, 0.025, 0.01u is chosen and the results are presented in table 8.2.

The theoretical row shows the biased and MSE computed through equation (8.52).

There is no surprise that the True MLE method from equation (8.51) performs the

best, with lowest MSE and computational time. The Quasi-MLE method by con-

structing INAR model, on the other hand, becomes better as we decreasing the size

of sampling interval ∆ but it still performs no better than the true MLE method

and require much more computational time. The empirical distribution of these

estimators are illustrated in �gure 8.1 and since the general shape of distribution of

λ̃ and µ̃ has little di�erence, we will only show the distribution of λ̃. It is clear that

only the case ∆ � 0.01 has satisfactory normal shape compared to all other cases.

Table 8.2: Properties of di�erent maximum likelihood estimators. The time column
is the total time of estimating 1000 sample paths.

Bias λ MSE λ Bias µ MSE µ time (s)
Theoretical 0 0.000126 0 0.000116 -

MLE -0.000701 0.000124 0.015898 0.000396 0.09
∆ � 0.1 -0.133845 0.075696 -0.116943 0.072754 49
∆ � 0.05 -0.086435 0.023935 -0.069513 0.021836 98.6
∆ � 0.025 -0.051234 0.007711 -0.034323 0.006557 201.4
∆ � 0.01 -0.014178 0.001378 0.002721 0.001159 522.2
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Figure 8.1: The empirical distribution of estimated parameters. The top panel is the MLE

from 8.51 and the rest of plots are MLE from INAR model. The solid lines are the true

values of the parameters listed in table 8.1 and the dash lines stand for empirical means.

To achieve asymptotic normality for Quasi-MLE method from INAR model, one

need not only large initial population, but also a small sampling interval ∆. In the

following simulation, we would �x the sampling interval ∆ � 0.01 and investigate

how the size of initial population would a�ect the asymptotic distribution of esti-

mators and the computational time for estimation procedure. To explore the e�ect

of Z0 for asymptotic distribution, we choose Z0 P t5, 10, 30, 50u and it seems from

Figure 8.2 that to ensure asymptotic normality for both estimators, one need at

least Z0 � 30 , which is a large sample size in statistical sense.

171



Figure 8.2: Asymptotic distribution of λ̃, µ̃ with di�erent Z0

The computational time with respect to Z0 P t10, 50, 100, 150, . . . , 500u clearly shows
a linear trend in 8.3. This is reasonable as the number of summation involved in

equation (8.53) increases linearly with respect to Z0
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Figure 8.3: The computational time for INAR models of 1000 sample paths

In summary, the Quasi-MLE method constructed from INAR model can reach mod-

erate level of estimation accuracy and asymptotic normality with large initial pop-

ulation Z0 ¥ 30 and small sampling interval ∆ ¤ 0.01. However, it would require

much more computational time than the true MLE method. This method should

only be used in the case where we have no information on inter-arrival time of birth

and death events.

8.5.2.2 Quasi-MLE for bivariate LBD

Since the bivariate INAR(1) model is a bivariate Markov Chain, the log likelihood

function can be written as the sum of logarithm of transition probabilities. Denote

Θ � tα1, α2, β11, β12, β21, β22u as the parameter space of bivariate INAR(1) model,

then the likelihood function can be written as

`pΘq �
ņ

t�1

log PrpXt, Yt|Xt�1, Yt�1q

�
ņ

t�1

plog PrpXt|Xt�1, Yt�1q � log PrpYt|Xt�1, Yt�1qq

� `xpΘxq � `ypΘyq,

(8.55)

where Θx � tα1, β11, β21u and Θy � tα2, β12, β22u. Because Xt and Yt are indepen-

dent of each other given the last state pXt�1, Yt�tq, the likelihood function can be

separated into two parts, `x and `y respectively. Then transition probability for Xt
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is given by

PrpXt � z1|Xt�1 � x, Yt�1 � yq

�

$''''''''''''''''''&
''''''''''''''''''%

1 z1 � x � y � 0

p1 � α1q
xβy21 z1 � 0

fnbpz1; y, β21q x � 0 & y ¡ 0

°mintx,z1u
i�1 fbpi;x, α1qfnbpz1 � i; i, β11q x ¡ 0 & y � 0

°z1
j�1

°mintx,ju
i�1 fbpi;x, α1qfnbpz1 � i; i, β11qfnbpz1 � j; y, β21q

�p1 � α1q
xfnbpz1; y, β21q x ¡ 0 & y ¡ 0

The one for Yt is

PrpYt � z2|Xt�1 � x, Yt�1 � yq

�

$''''''''''''''''''&
''''''''''''''''''%

1 z2 � x � y � 0

p1 � α2q
yβx12 z2 � 0

fnbpz2;x, β12q x ¡ 0 & y � 0

°minty,z2u
i�1 fbpi; y, α2qfnbpz2 � i; i, β22q x � 0 & y ¡ 0

°z2
j�1

°minty,ju
i�1 fbpi; y, α2qfnbpz2 � i; i, β22qfnbpz2 � j; y, β12q

�p1 � α2q
yfnbpz2;x, β12q x ¡ 0 & y ¡ 0

One can then numerically maximize the log likelihood function `x, `y given the

random samples tpX0, Y0q, pX1, Y1q, . . . , pXn, Ynqu. From the estimated parameters

Θ̂, we can solve the following system of equations to get the estimates Θbd �
tλ11, λ12, λ21, λ22, µ1, µ2u for bivariate birth and death process.

$''''''''''''''''''&
''''''''''''''''''%

α1pΘbd,∆q � α̂1 � 0

α2pΘbd,∆q � α̂2 � 0

β11pΘbd,∆q � β̂11 � 0

β12pΘbd,∆q � β̂12 � 0

β21pΘbd,∆q � β̂21 � 0

β22pΘbd,∆q � β̂22 � 0,

(8.56)
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where the parametrization function .pΘbd,∆q are given in equation 8.33 and ∆ is

chosen based on the interpretation of birth and death rates. For example, when

the random samples are collected on daily basis over a year t � 1, one can de�ne

∆ � t{365. Then these parameters Θbd are interpreted on an annual scale.

Table 8.3: Parameter setting for simulation

parameters λ11 λ12 λ21 λ22 µ1 µ2 T M0

values 0.3 1.2 1.3 0.4 1.1 1.2 1 (40,50)

In the following, we will simulate the r2 � 1000 sample paths of Mt based on the pre-

speci�c parameters in table 8.3. Then equal-distance gird with sampling interval ∆

is set up and random samples pY0,Y1, . . . ,Ynq are obtained, like the way mentioned

in the univariate case. Then the likelihood functions `x, `y are maximized by 'optim'

in R with method being speci�ed as 'BFGS' and the maximum likelihood estimators

Θ̂ are obtained. Finally, we can obtain the estimators Θ̂bd by numerically solving

the system of equations (8.56) via a root-�nding algorithm (e.g. Newton-Raphson

method). Referring to the estimation results in univariate case, we focus on the

choices of ∆ P t0.02, 0.01, 0.005u as well as large initial population p40, 50q, and
hopefully we can obtain asymptotic normality for each estimator. The empirical

distribution of these estimators Θbd are illustrated in Figure 8.4 and their properties

are summarized in Table 8.4.

Table 8.4: Properties of di�erent maximum likelihood estimators. The time column
is the total time of estimating 1 sample paths.

Bias λ̂11 λ̂12 λ̂21 λ̂22 µ̂1 µ̂2 time (s)
∆ � 0.02 -0.031393 0.069314 0.031804 -0.072310 0.025835 0.012040 25.46
∆ � 0.01 -0.026080 0.061711 0.019728 -0.064421 0.018005 0.012375 46.7
∆ � 0.005 0.002760 0.044764 -0.004686 -0.049816 0.019450 0.010779 82.32

MSE λ̂11 λ̂12 λ̂21 λ̂22 µ̂1 µ̂2

∆ � 0.02 0.266179 0.401756 0.301175 0.296895 0.104222 0.104958
∆ � 0.01 0.249248 0.359153 0.263573 0.270960 0.055740 0.058685
∆ � 0.005 0.266925 0.351415 0.268431 0.286881 0.037742 0.036170

175



Figure 8.4: Empirical distribution estimators from bivariate INAR model. The solid lines

are the true values of the parameters listed in table 8.3 and the dash lines stand for

empirical means.
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Figure 8.5: Empirical distribution estimators from bivariate INAR model.

Figure 8.6: Empirical distribution for total birth rates. The solid lines are the true values

of the parameters listed in table 8.3 and the dash lines stand for empirical means.

The bias and MSE of most estimators are decreasing with respect to ∆ as expected.
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However, the MSE of birth rates are much larger than the estimators of death rates.

Except the estimators for death rates, all other estimators for birth rate are skewed

to di�erent directions and clearly non-normal distributed. This may caused by some

of non-normal estimators for proposed INAR model illustrated in Figure 8.5. In the

classical setting where the innovation term is included, one need stationary condition

to ensure asymptotic normality for all estimators of parameters, see Bu et al. (2008).

And in our case, INAR model itself is not stationary and hence some of the estimate

can be skewed.

Notice that the pair of birth rates that contributed to the same population, pλ11, λ21q
and pλ12, λ22q are skewed in opposite directions. It is then worthwhile to see whether
the sum of these pair estimators has desired asymptotic properties and the results in

Figure 8.6 con�rms our conjecture. Combining the simulation procedure of bivariate

birth and death processes, Quasi-MLE method may not be able to distinguish the

pair of birth rates contributed to the same population. Instead, it would provide

good estimators for the scale of total birth rates λ̄1 � λ̂11rm � λ̂21p1 � rmq and
λ̄2 � λ̂12rm � λ̂22p1 � rmq where rm � ErM1,ts

ErM1,t�M2,ts . Furthermore, according to the

proof A.8.A, the relationship between �rst moment of two population is given by

ErM1,ts � cErM2,ts � pM1,0 � cM2,0qe�pλ12c�κ2qt. (8.57)

As long as the whole process is not extinct with probability one, i.e. κ1κ2   λ12λ21,

the exponential power pλ12c � κ2q will always be positive and hence ErM1,ts �
cErM2,ts when t is large. In other words, the ratio

rm � ErM1,ts
ErM1,t �M2,ts Ñ

c

1� c
, (8.58)

becomes a constant eventually. For the parameter setting in Table 8.3, c � 1.040833,

rm � 1
2
and hence λ̂11� λ̂21 serves as an estimator for the total birth rate ofM1,t. In

practice, the c is unknown as true parameters need to be estimated. Then we can

use the values at the end of sampling period to approximate rm, i.e.

rm � M1,T

M1,T �M2,T

(8.59)
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Table 8.5: Properties for total birth rates estimators

bias λ̄1 MSEλ̄1 Biasλ̄2 MSE λ̄2

∆ � 0.02 0.012623 0.024232 -0.015039 0.028914
∆ � 0.01 0.008386 0.013068 -0.014407 0.017563
∆ � 0.005 0.009380 0.009286 -0.015613 0.011202

Figure 8.7: Empirical distribution for total birth rates. The solid lines are the true values

of the parameters listed in table 8.3 and the dash lines stand for empirical means.

The properties of λ̄1, λ̄2 and their empirical distribution are shown in Table 8.5 and

Figure 8.7. These new estimators bene�ts from nice properties, low bias and MSE

and they decreases as ∆ decreases. Most importantly, they are not skewed anymore

and asymptotic normal.

Let us try another parameter setting in Table 8.6 to verify this conjecture. Same

simulation and estimation process as previous case and the results are shown in Table

8.7, 8.8 and Figure 8.8. This time the constant c is 0.576306 and rm � 0.365605.

Similar to the last setting, the estimators for all birth rates are skewed and some

of them have large bias and MSE. The estimators for total birth rate, on the other

hand, are of low bias and MSE and they are again asymptotic normal.

Table 8.6: Parameter setting for simulation

parameters λ11 λ12 λ21 λ22 µ1 µ2 T M0

values 0.3 0.5 0.8 1.5 1.1 1.2 1 (30,60)
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Table 8.7: Properties of di�erent maximum likelihood estimators.

Bias λ̂11 λ̂12 λ̂21 λ̂22 µ̂1 µ̂2

∆ � 0.02 -0.091964 1.633439 0.064837 -0.891418 0.050226 0.008661
∆ � 0.01 -0.092042 1.613498 0.056800 -0.863226 0.034508 0.02260
∆ � 0.005 -0.063956 1.513447 0.036706 -0.818343 0.024054 0.016939

MSE λ̂11 λ̂12 λ̂21 λ̂22 µ̂1 µ̂2

∆ � 0.02 0.243023 4.669929 0.108730 1.315634 0.115385 0.120301
∆ � 0.01 0.225980 4.535412 0.090212 1.259920 0.062935 0.06831
∆ � 0.005 0.243969 4.186109 0.087121 1.177241 0.042955 0.036328

Table 8.8: Properties for total birth rates estimators

Bias λ̄1 MSE λ̄1 Bias λ̄2 MSE λ̄2

∆ � 0.02 0.013970 0.017193 0.007765 0.062907
∆ � 0.01 0.008500 0.009268 0.017503 0.038616
∆ � 0.005 0.004425 0.006884 0.012662 0.023027

Figure 8.8: Empirical distribution for total birth rates. The solid lines are the true values

of the parameters listed in table 8.3 and the dash lines stand for empirical means.
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Let us �nally try another parameter setting in Table 8.9 where the Mt is going to

be extinct eventually. It means that the exponential function in equation (8.57) can

no longer be omitted. The results are illustrated in Table 8.10 and Figure 8.9 and

they look similar to the results of the �rst case. Nice properties for death rates'

estimators but skewed and non-normal for birth rates' estimators.

Table 8.9: Parameter setting for simulation

parameters λ11 λ12 λ21 λ22 µ1 µ2 T M0

values 0.3 0.5 0.8 0.3 1.1 1.2 1 (30,60)

Table 8.10: Properties of di�erent maximum likelihood estimators.

Bias λ̂11 λ̂12 λ̂21 λ̂22 µ̂1 µ̂2

∆ � 0.02 0.026802 0.071221 -0.020855 -0.064399 0.015807 0.007330
∆ � 0.01 0.033741 0.063121 -0.024328 -0.056261 0.019261 0.008451
∆ � 0.005 0.032433 0.061202 -0.022955 -0.046396 0.016784 0.011859

MSE λ̂11 λ̂12 λ̂21 λ̂22 µ̂1 µ̂2

∆ � 0.02 0.245305 0.184363 0.165970 0.091334 0.088017 0.059102
∆ � 0.01 0.226033 0.167176 0.150903 0.081478 0.052522 0.039980
∆ � 0.005 0.211617 0.155803 0.139283 0.078867 0.042573 0.035270
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Figure 8.9: Empirical distribution for individual birth and death rates. The solid lines are

the true values of the parameters listed in table 8.9 and the dash lines stand for empirical

means.

8.6 Concluding remarks

In this paper, we propose an integer-valued autoregressive model INAR(1) to ap-

proximate the continuous birth-and-death process. In univariate case, we propose a

birth-death operator p �1 α �X which is the sum of zero-modi�ed geometric random

variable. The parametrization of p and α can be determined by matching the �rst

and second moment of continuous process. Then we propose an bivariate INAR(1)

model to approximate bivariate birth and death process where birth probabilities

will also depend on the size of the other population. The parametrization of this

model can be obtained in a similar way. The convergence from discrete process to

continuous process is proved by apply weak convergence theorem of locally bounded

semimartingales. Due to the simple Markov structure of INAR(1) model, maximum

likelihood estimation would be feasible. It is however not the case for bivariate and
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multivariate birth and death process. Basically, one can extend the result here to

multivariate case, i.e. we can approximate multivariate birth and death process in

Gri�ths (1973) by multivariate INAR(1) model using the these operators �1, �2, �
only as well as adding an immigrant process. However, the di�culty of expressing

the parameters of INAR(1) model in terms of the parameters of multivariate birth

and death process would be increasing and as we need to �nd out the �rst moment

of birth and process explicitly.
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8.A Proof of proposition 8.1

Similar to univariate case de�ned in (8.6), the in�nitesimal generator of the bivariate

birth and death process pM1,t,M2,tq acting on a function fpt,M1,M2q within its

domain ΩpAq is given by

Afpt,M1,M2q �BfBt � pλ11M1 � λ21M2qpfpt,M1 � 1,M2q � fpt,M1,M2qq

� µ1M1pfpt,M1 � 1,M2q � fpt,M1,M2qq

� pλ12M1 � λ22M2qpfpt,M1,M2 � 1q � fpt,M1,M2qq

� µ2M2pfpt,M1,M2 � 1q � fpt,M1,M2qq,

where ΩpAq is the domain for the generator A such that fpt,M1,M2q is di�erentiable
with respect to t for all t,M1,M2 and

|fpt,M1 � 1,M2q � fpt,M1,M2q|   8, |fpt,M1 � 1,M2q � fpt,M1,M2q|   8

|fpt,M1,M2 � 1q � fpt,M1,M2q|   8, |fpt,M1,M2 � 1q � fpt,M1,M2q|   8

Apply in�nitesimal generator A to functions fpt,M1,M2q � M1,t,M2,t,M
2
1,t,M

2
2,t

and M1,tM2,t respectively, we have

AM � pλ11M1 � λ21M2qpM1 � 1�M1q � µ1M1pM1 � 1�M1q

AN � pλ12M1 � λ22M2qpM2 � 1�M2q � µ2M2pM2 � 1�M2q

AM2
1 � pλ11M1 � λ21M2qppM1 � 1q2 �M2

1 q � µ1M1ppM1 � 1q2 �M2
1 q

AM2
2 � pλ12M1 � λ22M2qppM2 � 1q2 �M2

2 q � µ2NppM2 � 1q2 �M2
2 q

AM1M2 � pλ11M1 � λ21M2qppM1 � 1qN �M1M2q � pλ12M1 � λ22M2qpM1pM2 � 1q �M1M2q

� µ1M1ppM1 � 1qM2 �M1M2q � µ2pM1pM2 � 1q �M1M2q

The �rst two result in the following system of ODE

d

dt
ErM1,ts � λ21ErM2,ts � κ1ErM1,ts

d

dt
ErM2,ts � λ12ErM1,ts � κ2ErM2,ts

(8.60)
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The other three equations become (8.17), which is hard to solve explicitly as we

need to solve an inhomogeneous ordinary di�erential equation system. To solve the

system (8.60), we can �rst assume a linear relationship between ErM1,ts and ErM2,ts
such that ErM1,ts � cErM2,ts � gptq for some constant c and a real value function g.

Applying this substitution, the �rst ODE in (8.60) becomes

c
d

dt
ErM2,ts � g1ptq � λ21ErM2,ts � κ1pcErM2,ts � gptqq

Make use of the second the ODE in , the �rst ODE can be rearranged into a ordinary

equation.

cpλ12ErM1,ts � κ2ErM2,tsq � g1ptq � λ21ErM2,ts � κ1ErM1,ts

pλ12c� κ1qErM1,ts � pcκ2 � λ21qErM2,ts � g1ptq � 0

pλ12c� κ1qpcErM2,ts � gptqq � pcκ2 � λ21qErM2,ts � g1ptq � 0

pλ12c
2 � pκ1 � κ2qc� λ21qErM2,ts � g1ptq � pλ12 � κ1qgptq � 0

Then c is the solution of the quadratic equation

λ12c
2 � pκ1 � κ2qc� λ21 � 0

c � κ2 � κ1 �
apκ1 � κ2q2 � 4λ21λ12

2λ12

Both roots would result in the same moments, so just take the positive root. The

function g would be the solution of following ODE

g1ptq � pλ12 � κ1qgptq � 0

gptq � gp0qe�pλ12c�κ2qt

gp0q � ErM1,0s � cErM2,0s � pa� cbq

Then ErM2,ts is determined by the following ODE

d

dt
ErM2,ts � λ12ErM1,ts � κ2ErM2,ts � pλ12c� κ2qErM2,ts � λ12gptq

and ErM1,ts � cErM2,ts � gptq
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8.B Proof of proposition 8.2

For the �rst property, we can verify in the following way.

When i � 1

d0 � p0

�
�1� p1� pq

α
p
�
�
α
p

	
1� α

p

�
� 1

p1 � p, α1 � α

Suppose equation (8.22) holds for i � k. Then for i � k � 1, we have

φpIqpt, θq � E

��
1 � αk �

αkpkθ

1 � p1 � pkqθ


Xt�k�

� E

��
1 � αk � p1 � αk � pkqθ

1 � p1 � pkqθ


Xt�k�

� E

�
��
�
�1 � α� p1 � α� pq1�αk�p1�αk�pkqθ

1�p1�pkqθ
1 � p1 � pq1�αk�p1�αk�pkqθ

1�p1�pkqθ

�

Xt�k�1

�
��

� E

�
��
�
� 1�α�p1�α�pqp1�αkq

1�p1�pqp1�αkq �
� p1�pk�p1�pqpαk�pk�1qq

1�p1�pqp1�αkq � ααk
1�p1�pqp1�αkq

	
θ

1 � p1�pk�p1�pqpαk�pk�1qq
1�p1�pqp1�αkq θ

�

Xt�k�1

�
��

It is then clear that

1� p1� pqp1� αkq � dk�1 � p1� pqpdk�1 � αkq
dk�1

� dk
dk�1

αk�1 � ααk
1� p1� pqp1� αkq �

αk�1

dk

pk�1 � 1� p1� pk � p1� pqpαk � pk � 1qq
1� p1� pqp1� αkq

� 1� 1� p1� pqp1� αkq � ppk
1� p1� pqp1� αkq � ppk

1� p1� pqp1� αkq �
pk�1

dk
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So equation (8.22) holds for all i � 1, 2, . . . . For the second property, the moments

can be found by conditional expectation such that

Erp �1 α �X|Xs � E

�
E

�
α�X̧

j�1

g
pjq
j |α �X

�
|X

�
�

1

p
Erpα �Xq|Xs �

1

p
E

�
X̧

j�1

bj |X

�
�
α

p
X

V arpp �1 α �X|Xq � E

�
V ar

�
α�X̧

j�1

g
pjq
j |α �X

�
|X

�
� V ar

�
E

�
α�X̧

j�1

g
pjq
j |α �X

�
|X

�

�
1 � p

p2
Erα �X|Xs �

1

p2
V arpα �X|Xq

�

�
αp1 � pq

p2
�
αp1 � αq

p2



X

V arpp �1 α �Xq � ErV arpp �1 α �X|Xqs � V arpErp �1 α �X|Xsq

CovpXt, Xt�iq � Covppi �1 αi �Xt�i, Xt�iq

� Cov pErpi �1 αi �Xt�i|Xt�is,ErXt�i|Xt�isq

� ErCovppi �1 αi �Xt�i, Xt�i|Xt�iqs

�
αi
pi
CovpXt�i, Xt�iq � 0

8.C Proof of Proposition 8.5

The transition probability of giving out mpm ¡ 0q birth of from the process Z
p∆q
t

given Z
p∆q
t�∆ during an in�nitesimal time interval ∆ is given by

PrpZp∆q
t � k �m|Zp∆q

t�∆ � kq � PrpXs � k �m|Xs�1 � kq

�
mintk,k�mu¸

j�1

�
k

j



αjp1� αqk�j

�
k �m� 1

j � 1



pjp1� pqk�m�j

�
ķ

j�1

�
k

j


�
k �m� 1

j � 1



epλ�µqj∆λk�m�jµk�jpepλ�µq∆ � 1q2k�2j�mpλ� µq2j

� pλepλ�µq∆ � µq�p2k�mq

�
k�1̧

j�1

�
k

j


�
k �m� 1

j � 1



λk�jµk�jpλ� µq2jppλ� µq∆� op∆qq2k�2j�m

� p1� pλ� µq∆� op∆qqj
�

1

λ� µ
� λ

λ� µ
∆� op∆q


2k�m
,
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where all the exponential function are expressed as their corresponding Taylor ex-

pansion at ∆ � 0. To make comparison with the continuous birth and death process,

we are interested in the coe�cients in front of ∆. First we need to check the lowest

order of ∆ in above probability. That is, we would like to minimize the sum

min
1¤j¤k

2k � 2j �m � m

So for the transition probability is rearranged in the following way

PrpZp∆q
t � k �m|Zp∆q

t�∆ � kq

�
�
k

k


�
k �m� 1

k � 1



λmpλ� µq2kppλ� µq∆� op∆qqmp1� pλ� µq∆� op∆qqk

�
�

1

λ� µ
� λ

λ� µ
∆� op∆q


2k�m
� op∆mq

�
�
k �m� 1

k � 1



pλ∆qm � op∆mq,

Then it is clear that the there is no �rst order term in the case where m ¥ 2 and

the probability that giving out exactly one birth is

PrpZp∆q
t � k � 1|Zp∆q

t�∆ � kq � λk∆� op∆q

On the other hand, we can derive the probability that mp1 ¤ m ¤ kq individuals
die within in�nitesimal time ∆ in a similar way

PrpZ
p∆q
t � k �m|Z

p∆q
t�∆ � kq � PrpXs � k �m|Xs�1 � kq

�

mintk�m,ku¸
j�1

�
k

j



αjp1 � αqk�j

�
k �m� 1

j � 1



pjp1 � pqk�m�j

�
k�m̧

j�1

�
k

j


�
k �m� 1

j � 1



epλ�µqj∆λk�m�jµk�jpepλ�µq∆ � 1q2k�2j�m

� pλ� µq2jpλepλ�µq∆ � µq�p2k�mq

�
k�m̧

j�1

�
k

j


�
k �m� 1

j � 1



λk�m�jµk�jpλ� µq2jppλ� µq∆ � op∆qq2k�2j�m

� p1 � pλ� µq∆ � op∆qqj
�

1

λ� µ
�

λ

λ� µ
∆ � op∆q


2k�m

The minimum order of ∆ is determined by

min
1¤j¤k�m

2k � 2j �m � m (8.61)
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Then the probability is reduced to

PrpZp∆q
t � k �m|Zp∆q

t�∆ � kq

�
�

k

k �m


�
k �m� 1

k �m� 1



µmpλ� µq2pk�mqppλ� µq∆� op∆qqmp1� pλ� µq∆� op∆qqk�m

�
�

1

λ� µ
� λ

λ� µ
∆� op∆q


2k�m
� op∆mq

�
�

k

k �m



pµ∆qm � op∆mq

(8.62)

The transition probability that only one individual dies is

PrpZp∆q
t � k � 1|Zp∆q

t�∆ � kq � µk∆� op∆q (8.63)

the probability that more than one individuals die are op∆q As the birth rate and

death pλ, µq are time-homogeneous, so as the parameters α, p, the transition proba-

bilities stay the same for all time t P rt1, t2s. This means that the discrete birth and

death INAR(1) model would result in the the same dynamic (8.1) of simple birth

and death process when ∆ is small enough.

Similar to the univariate case. It is necessary to �nd out the transition probabilities

before proceeding to the weak convergence. The transition probability of giving

out mpm ¥ 1q births of population M
p∆q
t given M

p∆q
t�∆ � k1, N

p∆q
t�∆ � k2 during an
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in�nitesimal time ∆ is given by

PrpM p∆q
t � k1 �m|M p∆q

t�∆ � k1, N
p∆q
t�∆ � k2q � PrpXs � k1 �m|Xs�1 � k1, Ys�1 � k2q

�
k1�m̧

j�0

Prpβ11 �1 α1 �Xs�1 � j|Xs�1 � k1qPrpβ21 �2 Ys�1 � k1 �m� j|Ys�1 � k2q

�
k1�m̧

j�1

�
mintk1,ju¸

i�1

�
k1

i



αi1p1� α1qk1�i

�
j � 1

i� 1



βi11p1� β11qj�i

��
k2 � k1 �m� j � 1

k2 � 1




� βk221p1� β21qk1�m�j � p1� α1qk1
�
k2 � k1 �m� 1

k2 � 1



βk221p1� β21qk1�m

�
k1�m̧

j�1

mintk1,ju¸
i�1

�
k1

i


�
j � 1

i� 1


�
k2 � k1 �m� j � 1

k2 � 1


�pλ11 � µ1qω1p∆q
λ11ω1p∆q � µ1


i

�
�
µ1pω1p∆q � 1q
λ11ω1p∆q � µ1


k1�i� λ11 � µ1

λ11ω1p∆q � µ1


i�
λ11pω1p∆q � 1q
λ11ω1p∆q � µ1


j�i

�
�

1

1� Cβ1peu1∆ � eu2∆q

k2 � Cβ1peu1∆ � eu2∆q

1� Cβ1peu1∆ � eu2∆q

k1�m�j

� op∆2k1�m�1q

�
k1�m̧

j�1

mintk1,ju¸
i�1

�
k1

i


�
j � 1

i� 1


�
k2 � k1 �m� j � 1

k2 � 1



pλ11 � µ1qip1� pλ11 � µ1q∆� op∆qqi

� µk1�i1 ppλ11 � µ1q∆� op∆qqk1�ipλ11 � µ1qiλj�i11 ppλ11 � µ1q∆� op∆qqj�i

�
�

1

λ11 � µ1

� λ11

λ11 � µ1

∆� op∆q

k1�j

� p1� Cβ1pu1 � u2q∆� op∆qqk2pCβ1pu1 � u2q∆� op∆qqk1�m�j � op∆2k1�m�1q

�
k1�m̧

j�1

mintk1,ju¸
i�1

�
k1

i


�
j � 1

i� 1


�
k2 � k1 �m� j � 1

k2 � 1



pλ11 � µ1q2iλj�i11 µ

k1�i
1

� ppλ11 � µ1q∆� op∆qqk1�j�2ip1� pλ11 � µ1q∆� op∆qqi

�
�

1

λ11 � µ1

� λ11

λ11 � µ1

∆� op∆q

k1�j

� p1� Cβ1pu1 � u2q∆� op∆qqk2pCβ1pu1 � u2q∆� op∆qqk1�m�j � op∆2k1�m�1q,

where all the exponential function are expressed in their corresponding Taylor expan-

sion at ∆ � 0. The lowest order of ∆ is determined by the power of ppλ11�µ1q�op∆qq
and pCβ1pu1 � u2q∆� op∆qq,

min
1¤i¤mintk1,ju

k1 � j � 2i� k1 �m� j � min
1¤i¤mintk1,ju

2k1 � 2i�m � m,

where j �P t1, . . . , k1�mu. This leads to j � k1, i � k1�1 and j � k1�1, i � k1�1,
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respectively. Then the transition probability reduces to

PrpM
p∆q
t � k1 �m|M

p∆q
t�∆ � k1, N

p∆q
t�∆ � k2q

�
k1�m̧

j�k1

�
k1

k1


�
j � 1

k1 � 1


�
k2 � k1 �m� j � 1

k2 � 1



pλ11 � µ1q

2k1λj�k111 µk1�k11

� ppλ11 � µ1q∆ � op∆qqk1�j�2k1p1 � pλ11 � µ1q∆ � op∆qqk1

�

�
1

λ11 � µ1
�

λ11

λ11 � µ1
∆ � op∆q


k1�j

� p1 � Cβ1pu1 � u2q∆ � op∆qqk2pCβ1pu1 � u2q∆ � op∆qqk1�m�j � op∆2k1�m�1q,

�
k1�m̧

j�k1

�
j � 1

k1 � 1


�
k2 � k1 �m� j � 1

k2 � 1



pλ11∆qj�k1pCβ1pu1 � u2q∆ � op∆qqk1�m�j

� op∆2k1�m�1q,

�
k1�m̧

j�k1

�
j � 1

k1 � 1


�
k2 � k1 �m� j � 1

k2 � 1



pλ11∆qj�k1pλ21∆qk1�m�j � op∆mq,

Then the probability when m � 1 is given by

PrpM p∆q
t � k1 � 1|M p∆q

t�∆ � k1, N
p∆q
t�∆ � k2q

�
k1�1̧

j�k1

�
j � 1

k1 � 1


�
k2 � k1 � j

k2 � 1



pλ11∆qj�k1pλ21∆qk1�1�j � op∆q,

�k2λ21∆� k1λ11∆� op∆q

(8.64)

By symmetry, the birth transition probability for the other population is given by

PrpN
p∆q
t � k2 �m|M

p∆q
t�∆ � k1, N

p∆q
t�∆ � k2q � P pYs � k2|Xs�1 � k1, Ys�1 � k2q

�
k2�m̧

j�k2

�
j � 1

k2 � 1


�
k1 � k2 �m� j � 1

k1 � 1



pλ22∆qj�k2pλ12∆qk1�m�j � op∆mq.

On the other hand, the probability that m individual die in population M
p∆q
t given
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that M
p∆q
t�∆ � k1, N

p∆q
t�∆ � k2 during an in�nitesimal time interval ∆ is

PrpM
p∆q
t � k1 �m|M

p∆q
t�∆ � k1, N

p∆q
t�∆ � k2q � PrpXs � k1 �m|Xs�1 � k1, Ys�1 � k2q

�
k1�m̧

j�1

�
�mintk1,ju¸

i�1

�
k1

i



αi1p1 � α1q

k1�i
�
j � 1

i� 1



βi11p1 � β11q

j�i

�


�

�
k2 � k1 �m� j � 1

k2 � 1



βk221p1 � β21q

k1�j � p1 � α1q
k1

�
k2 � k1 �m� 1

k2 � 1



βk221p1 � β21q

k1

�
k1�m̧

j�1

j̧

i�1

�
k1

i


�
j � 1

i� 1


�
k2 � k1 �m� j � 1

k2 � 1



pλ11 � µ1q

2iλj�i11 µk1�i1

� ppλ11 � µ1q∆ � op∆qqk1�j�2i

� p1 � pλ11 � µ1q∆ � op∆qqi
�

1

λ11 � µ1
�

λ11

λ11 � µ1
∆ � op∆q


k1�j

� p1 � Cβ1pu1 � u2q∆ � op∆qqk2pCβ1pu1 � u2q∆ � op∆qqk1�m�j � op∆2k1�k2�1q

�

�
k1 � 1

k1


�
k1 � 1

k1 � 1


�
k2 � 1

k2 � 1



pλ11 � µ1q

2k1µ1ppλ11 � µ1q∆ � op∆qq

� p1 � pλ11 � µ1q∆ � op∆qqk1

�

�
1

λ11 � µ1
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λ11

λ11 � µ1
∆ � op∆q


2k1�1

p1 � Cβ1pu1 � u2q∆ � op∆qqk2 � op∆q

�µ1pk1 � 1q∆ � op∆q

The lowest order of ∆ is determined by the power of ppλ11�µ1q�op∆qq and pCβ1pu1�
u2q∆� op∆qq,which is

min
1¤i¤j

k1 � j � 2i� k1 �m� j � min
1¤i¤j

2k1 � 2i�m � m,

where j P t1, . . . , k1 �mu. So the above probability reduces to

PrpM p∆q
t � k1 �m|M p∆q

t�∆ � k1, N
p∆q
t�∆ � k2q

�
�

k1

k1 �m


�
k1 �m� 1

k1 �m� 1


�
k2 � 1

k2 � 1



pλ11 � µ1q2pk1�mqµm1

� ppλ11 � µ1q∆� op∆qqm

� p1� pλ11 � µ1q∆� op∆qqk1�m
�

1

λ11 � µ1

� λ11

λ11 � µ1

∆� op∆q

2k1�m

� p1� Cβ1pu1 � u2q∆� op∆qqk2 � op∆mq

�
�

k1

k1 �m



pµ1∆qm � op∆mq
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It is not surprise that the transition probability only depends on its own size of pop-

ulation from the bivariate INAR construction. Then the death transition probability

for the other population is

PrpN p∆q
t � k2 �m|M p∆q

t�∆ � k1, N
p∆q
t�∆ � k2q �

�
k2

k2 �m



pµ2∆qm � op∆mq (8.65)

The it is clear that the probabilities for both population that there is only one death

would have the same form as in the univariate case. By conditional independence

of bivariate INAR model, the joint transition probability would be the product of

any of two transition probabilities shown above. For example, for any two integers

m1,m2 P Z,

PrpM p∆q
t � k1 �m1, N

p∆q
t � k2 �m2|M p∆q

t�∆ � k1, N
p∆q
t�∆ � k2q

�PrpM p∆q
t � k1 �m1|M p∆q

t�∆ � k1, N
p∆q
t�∆ � k2qPrpN p∆q

t � k2 �m2|M p∆q
t�∆ � k1, N

p∆q
t�∆ � k2q

(8.66)

Then it is straightforward to show that, to have a �rst order ∆ term, the only

possible combinations of pm1,m2q are tp1, 0q, p0, 1q, p�1, 0q, p0,�1qu, which under the
proposed parametrization, the joint process only allow one jump during in�nitesimal

time which coincide with the bivariate continuous birth and death process.

As the birth rates λi,j and death rate are µi time homogeneous, so as the parameters

αi, βi,j, i, j P t1, 2u, the transition probabilities stay the same for all time t P r0, 1s.
This means that this bivariate birth and death INAR(1) model would result in the

the same dynamic (8.11) when ∆ is small enough.

8.D Proof of Proposition 8.6

According to Theorem 3.11, Chapter 2 in Jacod and Shiryaev (2013). We need

to make sure the following two sum is �nite for any truncation function h before

constructing their discrete Lévy measures.

σţ

k�1

|ErhpUkq|Fk�1s|   8
σţ

k�1

Er|U2
k ^ 1| |Fk�1s   8,

(8.67)
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where Uk are increments of any underlying processes. This can be shown straight-

forwardly as the there are only �nite number of terms for summation σt ¤ n and

truncation functions are bounded. Then by The Theorem 3.11, the Lévy triplets for

Z
pnq
t is

ChpZpnq
t q �

$''''''&
''''''%

Bt �
°σt
k�1 ErhpUkq|Fk�1s

Ct � 0

νpZpnq
t ; r0, ts � gq � °σt

k�1 ErgpUkq1tUk�0uq|Fk�1s

(8.68)

We can choose the truncation function hpxq � |x|1t|x| 1u such that Bt is always 0 as

there is no jump with size smaller than 1 in Z
pnq
t . Finally for the discrete stochastic

integral:

ErgpUkq1tUk�0u|Fk�1s

�Ergp1q1tUk�1u|Fk�1s � Ergp�1q1tUk��1u|Fk�1s

�
8̧

η�2

Ergpηq1tUk�ηu � gp�ηq1tUk��ηu|Fk�1s

�gp1qλXk�1∆� gp�1qµXk�1∆� op∆q � op∆2q
1�∆

�gp1qλXk�1∆� gp�1qµXk�1∆� op∆q

(8.69)

Then it is clear that

νpZpnq
t ; r0, ts � gq �

σţ

k�1

pgp1qλ� gp�1qµqXk�1∆�Op∆q
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For the bivariate case, the proof is similar, the conditional expectation

ErgpVkq1tVk�p0,0qT u|Fk�1s

�Ergp1, 0q1tVk�p1,0qT u|Fk�1s � Ergp0, 1q1tVk�p0,1qT u|Fk�1s

� Ergp�1, 0q1tVk�p�1,0qT u|Fk�1s � Ergp0,�1q1tVk�p0,�1qT u|Fk�1s

�
¸

|i|�|j|¡1

Ergpi, jq1tVk�pi,jqT u|Fk�1s � Ergpi,�jq1tVk�pi,�jqT u|Fk�1s

�
¸

|i|�|j|¡1

Ergp�i, jq1tVk�p�i,jqT u|Fk�1s � Ergp�i,�jq1tVk�p�i,�jqT u|Fk�1s

�
�
gp1, 0qλ̃1 � gp�1, 0qµ̃1 � gp0, 1qλ̃2 � gp0,�1qµ̃2

	
Yk�1∆� op∆q � op∆2q

p1�∆q2

�
�
gp1, 0qλ̃1 � gp�1, 0qµ̃1 � gp0, 1qλ̃2 � gp0,�1qµ̃2

	
Yk�1∆� op∆q

(8.70)

Finally the discrete stochastic integral is given by

σţ

k�1

�
gp1, 0qλ̃1 � gp�1, 0qµ̃1 � gp0, 1qλ̃2 � gp0,�1qµ̃2

	
Yk�1∆�Op∆q (8.71)
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CHAPTER 9

Concluding Remarks and Future Research

This thesis primarily investigates the realm of integer-valued time series and their

linkage with classical point processes, speci�cally Poisson point processes, and birth-

and-death processes. Focusing on the autoregressive structure within integer-valued

time series, the �rst two papers (A, B) explore and develop di�erent structure of

univariate and multivariate INAR(1) model and introduce mixed Poisson random

variables in innovations. This novel integration of mixed Poisson random variables

imparts enhanced �exibility to the model, allowing it to accommodate varying levels

of dispersion and correlation within and across count data sequences. Moreover,

paper C develops an expectation and maximization algorithm to facilitate maximum

likelihood estimation methods for previous proposed multivariate INAR(1) model.

This development addresses the complexities in the likelihood function arising from

the binomial thinning (autoregressive component) and diverse mixing densities of

the mixed Poisson variables.

Shifting focus to the classical point processes, Papers D and E endeavor to dis-

cover discrete analogs to continuous point processes. Paper D introduces so called

INARMA with in�nity orders, aiming to approximate Poisson point processes The

adoption of in�nite orders in this model serves to approximate the decay function

observed in the intensity of point processes. Similarly, Paper E proposes an integer-

valued model tailored to approximate birth-and-death process, where the 'birth' and

'death' events are explicitly modelled through the interplay of Bernoulli and Geo-

metric random variables. In summary, the rationale behind these approximation are

three-folds: (i) Integer-valued models o�er explicit formulations of point processes,

enhancing interpretability. (ii) Many datasets lack precise time records for each
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event, typically aggregating data at regular intervals instead. (iii) Integer-valued

models present an alternative methodology for estimating point processes.

9.1 Application of Point Processes

The last two papers focus on theoretical development. However, exploring the prac-

tical applications of these stochastic processes is equally signi�cant. Consider the

Hawkes process, which can be conceptualized as an autoregressive Poisson point

process, enjoy popularity for a long time due to many available inference methods.

The Hawkes process �nds diverse applications in �nance, epidemiology, sociology

and seismology. In contrast, the dynamic contagion process, which can be regarded

as AMRA point process, received less attention, primarily due to the lack of robust

inference methods. Nevertheless, it's important to highlight the distinct advantage

of the dynamic contagion process over the Hawkes process, whose immigrant inten-

sity ν in equation 7.5 is �xed or deterministic over time. Dynamic contagion process

is useful when the underlying intensity is driven by another independent random

event stream. For example, it is reasonable to adopt dynamic contagion process in

epidemic (COVID-19) modelling Chen et al. (2021) as from general point of view,

the transmission of a disease within a certain area is likely caused by a external

event, e.g. virus carriers from overseas. In insurance modelling, Dassios and Zhao

(2017b) considered a risk process with the arrival of claims modelled by a dynamic

contagion process. Jang and Oh (2020) introduced a bivariate compound dynamic

contagion process for the modelling of aggregate losses from cyber events.

Birth and death processes is relatively simple process. It is a continuous-time Markov

chain that models a non-negative integer number of particles in a system. For the

univariate one, it has been used extensively in many applications including evolu-

tion biology, ecology, population genetics, epidemiology, and queueing theory. Many

applied models require the consideration of two or more interacting populations si-

multaneously to model behavior such as competition, predation, or infection and

so on. Gri�ths (1972) proposed bivariate birth-death process to model infectious

disease Malaria. Xu et al. (2015) consider multi-typed birh-death-shift process to

model evolution of mobile genetic elements. More recently, DeWitt et al. (2023) con-

sider multi-typed birth and death process to model the phylodynamics and Azizi and

Salari (2023) applies bivariate birth/death process for condition-based maintenance

scheduling for a continuously monitored manufacturing system.
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9.2 Perspectives on Future Research

The ideas brought forward in this thesis open the door to further research projects

on integer-valued time series.

1. In the multivariate INAR(1) model, one can set some o�-diagonal element of

the matrix to be non-zero in equation 5.1 to introduce further cross correla-

tion among the sequences. The challenge here will be the the evaluation of

likelihood function as the non-zero o�-diagonal elements will introduce further

discrete convolution in probability transition functions. On the other hand,

one can explore EM algorithm by introducing further latent variables from

binomial parts.

2. On insurance claim regression modelling, based on the multivariate INAR(1)

model proposed in Paper B, one can introduce further heterogeneity by ap-

plying a regression structure on φ such that gpφq � Z 1β where gp.q is a link

function and Z 1 can be a subset of design matrix of Z � pz1, z2, . . . , znqT , see
the description following the equation 5.2. The choice of link function will

depend on the range of parameter φ.

3. The EM algorithm proposed in paper C still require evaluation of transition

probability in equation 6.22 which always involves discrete convolution and

integrals. One can regard the mixing density function fφpθq as a prior for

θ and when fφpθq is not a conjugate prior for gamma density ηpθ|λt,ktq ,
the integrals inside the probability transition function have to be evaluated

through numerical methods. In multivariate setting, the probability transition

function need a stable and fast computation method for discrete convolutions

and multivariate integrals. One can address this challenge or �nd a way to

avoid the computation of transition probabilities, e.g. variational inference

method.

4. Unlike the autoregressive INARppq, the likelihood functions for INMA and

INARMA are di�cult to construct as they involve many unobserved vari-

ables, it is the same problem for Cox process and dynamic contagion pro-

cesses. It would be interesting to explore whether there are parametric or

non-parametric ways to estimate INMAppq models and INARMApp, qq models

so that these classical point process can be applied straightforwardly to the

real data. Non-parametric methods (conditional least square) for INARppq
model was purposed in Kirchner (2017).
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5. Similarly, it will be interesting to seek another inference method other than

maximum likelihood estimation for the birth-and-death INAR models pro-

posed in Paper E as the likelihood function is already cumbersome in bivariate

case. While I believe the INAR approximation can be well extent to multi-

variate linear birth and death models, fast inference methods are required to

ensure applicability for such models.
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