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Abstract

In this thesis, we study two variants of graph (vertex) colourings: multi-

colouring and correspondence colouring.

In ordinary graph colouring, each vertex receives a colour. Such a colouring

is proper if adjacent vertices receive different colours. In k-multi-colouring,

each vertex receives a set of k colours, and such a multi-colouring is proper if

adjacent vertices receive disjoint set of colours. A graph is (n, k)-colourable

if there is a proper k-multi-colouring of it using n colours.

In the first part of the thesis, we study the following two questions.

1. For given n, k and n′, k′, if a graph is (n, k)-colourable, then what is the

largest subgraph of it that is (n′, k′)-colourable?

2. For given n, k, if a graph is (n, k)-colourable, then for what n′, k′ is the

whole graph (n′, k′)-colourable?

Question 1 is inspired by a partial colouring conjecture asked by Albertson,

Grossman, and Haas [2] in 2000 regarding list colouring. We obtain exact

answers for specific values of the parameters, and upper and lower bounds

on the largest (n′, k′)-colourable subgraph for general values of n′, k′.

For Question 2, we first observe how it can be reformulated into a conjecture

by Stahl from 1976 regarding Kneser graphs, and prove new results towards

Stahl’s conjecture.

In the second part of the thesis, we study another variant of colouring, which

is known as correspondence colouring.

In correspondence colouring, each vertex is associated with a prespecified

list of colours, and there is prespecified correspondence associated with each

edge specifying which pair of colours from the two endvertices correspond.

(On each edge, a colour on one endvertex corresponds to at most one colour

on the other endvertex.)

A correspondence colouring is proper if each vertex receives a colour from

its prespecified list, and that for each edge, the colours on its endvertices do

not correspond. A graph is n-correspondence-colourable if a proper corre-

spondence colouring exist for any prespecified correspondences on any pre-
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specified n-colour-lists associated to each vertex.

As correspondence colouring is a generalisation of list colouring, it is natural

to ask whether Albertson, Grossman, and Haas’ conjecture can be gener-

alised to correspondence colouring. Unfortunately, there are graphs on which

their conjectured value does not hold, and we will present a series of them.

We then study: for given n and n′, how many vertices of a n-correspondence-

colourable graph can always be properly correspondence-coloured with ar-

bitrary correspondences and arbitrary n′-colour-lists on that graph? We

generalise some results from the original conjecture in list colouring. Then

we discuss some sufficient conditions for a proper correspondence colouring

to exist.

The correspondence chromatic number of a graph is the smallest n such that

the graph is n-correspondence colourable. We study how different graph

operations affect the correspondence chromatic number of multigraphs, in

which multiple edges are allowed.
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1
Introduction

1.1 Graph Theory and Colouring

As abstraction of connections between objects, graphs appear in the study of

social or transport networks, data structures, chemical or physical structures

and more seemingly unrelated areas. From the Königsberg Seven Bridge

problem to the Four Colour Theorem and further, properties of graphs have

been widely studied and remain an interesting field of research.

Graph colouring problems are among the most studied topics in structural

graph theory. In this thesis, we focus on two generalisations of vertex colour-

ing.

Graph colouring problems are concerned with labelling the ‘objects’ in

graphs in a specific way that satisfies certain constraints. Formally, a graph

is a collection of vertices and edges. Each vertex can be viewed as the

abstraction of an object, and each edge as the abstraction of connections.

Two vertices are adjacent if there is an edge between them. The two vertices

attached to an edge are the endvertices of the edge.

A vertex colouring assigns a colour to each vertex, and such a colouring is

proper if for every edge in the graph, the colours assigned to its endvertices

are different. In this thesis, ‘colouring’ always refers to vertex colouring.
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Chapter 1. Introduction

1.1.1 Multi-Colouring and Fractional Colouring

In Chapters 2, 3 and 4, we explore a generalisation of vertex colouring called

multi-colouring.

Multi-colouring generalises vertex colouring and has been studied exten-

sively; see e.g. [43] for background. In a k-multi-colouring, each vertex

receives a set of k colours. Such a multi-colouring is proper if adjacent ver-

tices receive disjoint k-sets of colours. (Two sets are disjoint if there is no

element that is in both sets.) A graph is (n, k)-colourable if there is a proper

k-multi-colouring using at most n colours in total. In the case that k = 1,

we usually say a graph is n-colourable. The k-th multi-chromatic number

of a graph is the smallest n such that the graph is (n, k)-colourable.

Fractional colouring is closely associated with multi-colouring. A graph is

fractional-
n

k
-colourable if it is (tn, tk)-colourable for some positive integer t.

The fractional chromatic number of a graph is the infimum of
n

k
such that

this graph is fractional-
n

k
-colourable. It is well-known that this infimum is a

minimum. (For example, see in [43]. Note this is proved using the equivalent

linear programming definition of fractional chromatic number.) I.e. if a

graph has fractional chromatic number
n

k
, then it is (tn, tk)-colourable for

some positive integer t.

We study the following questions regarding multi-colouring.

(1.1). For given positive integers n, k and n′, k′, if a graph is (n, k)-

colourable, then what is the largest induced subgraph of it that is (n′, k′)-

colourable?

(1.2). For given positive integers n, k and n′, k′, if a graph is fractional-
n

k
-

colourable, then what is the largest induced subgraph of it that is (n′, k′)-

colourable?

(1.3). For given positive integers n, k and n′, k′, if a graph is fractional-
n

k
-

colourable, then what is the largest induced subgraph of it that is fractional-
n′

k′
-colourable?

2. For given positive integers n, k, if a graph is (n, k)-colourable, then for

what n′, k′ is the whole graph (n′, k′)-colourable?
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Chapter 1. Introduction

Questions (1.1), (1.2) and (1.3) are inspired by a partial colouring conjecture

formulated by Albertson, Grossman, and Haas [2] regarding list colouring.

(List colouring is a variant of vertex colouring, in which each vertex receives

a prespecified colour list, and we aim to find a proper list colouring by

assigning each vertex a colour from its list. Different vertices can have

different list of colours available. We will define it formally later in this

chapter.)

In Chapters 3 and 4, we start by showing Albertson et al.’s conjecture

does not hold in the setting of fractional colouring. Then we study Ques-

tions (1.1)–(1.3) and obtain upper and lower bounds on the largest (n′, k′)-

colourable induced subgraph for general values of n′, k′. In addition to

upper and lower bounds, we also obtain exact answers to these questions for

specific ranges of n′, k′ with given n, k.

In Chapter 3, we focus on the special case that k′ = 1 of Questions (1.1)

and (1.2). That is, we try to answer the question: if a graph is (n, k)-

colourable (or fractional-
n

k
-colourable), then what is its largest n′-colourable

induced subgraph?

We are interested to find a general lower bound on the relative order of that

subgraph (in terms of a fraction of the order of the original graph). Note that

if only the fractional chromatic number is known, a general upper bound for

this fraction other than 1 can not be guaranteed: consider a graph that is

the disjoint union of an arbitrary large n′-colourable graph and a complete

graph of n vertices (where n′ < n so that both the fractional chromatic

number and chromatic number are n). Then the relative order of largest

n′-colourable induced subgraph, as a fraction of the whole graph, can be

arbitrarily close to 1.

We now give the formal definitions relevant to our question. Denote χ(G)

and χf (G) as the chromatic number and fractional chromatic number of

a graph G, respectively. For any positive integer n′, the relative order of

largest n′-colourable induced subgraph in the whole graph is defined as the
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Chapter 1. Introduction

following

γ(G,n′) := max

{
|V (H)|
|V (G)|

∣∣∣∣H ⩽i G,χ(H) ≤ n′
}
,

γ(r, n′) := inf
{
γ(G,n′)

∣∣ χf (G) = r
}
.

Here H ⩽i G means that H is an induced subgraph of G, and V (G) denotes

the vertex set of graph G.

In Chapter 3, we determine both γ(G,n′) and γ(r, n′) as functions of some

other graph invariants on G for the case n′ = 0 or n′ = 1: for any graph G

with at least one vertex, we have γ(G, 0) = 0 and γ(G, 1) =
α(G)

|V (G)|
,

where α(G) is the independence number of G. (The independence number

of a graph is the order of the its maximum independent set. An independent

set in a graph is a set of vertices that are mutually nonadjacent.) Similarly,

we will prove that γ(r, 0) = 0 and γ(r, 1) =
1

r
for any rational number r = 1

or r ≥ 2. (There does not exist graph with fractional chromatic number

strictly between 1 and 2.) For the more general cases that n′ ≥ 2, we have

the following.

If r =
n

k
for some pair of co-primes n and k and 2 ≤ n′ < n− 2k + 2, then

we have γ(r, n′) = 1 −
(

1 − 1

r

)n′

.

For Questions (1.1) and (1.2), we first observe it suffices to study the largest

n′-colourable induced subgraphs of the Kneser Graph K(n, k). (Which also

holds for Question (1.3).) (For n ≥ k ≥ 1, the Kneser graph K(n, k) has as

vertex set the collection of all k-subsets of [n], and there is an edge between

two vertices if and only if the two k-sets are disjoint. We will always assume

n ≥ 2k, as otherwise the graph is edgeless.) Namely, we will prove that if G

is (n, k)-colourable, then we have γ(G,n′) ≥ γ(K(n, k), n′) for all integers n′.

And hence if we only know G is (n, k)-colourable, then γ(K(n, k), n′) is the

best possible upper bound we have. We then explore the upper and lower

bounds for γ(K(n, k), n′) for given n, k, n′.

A natural candidate of a ‘large’ n′-colourable induced subgraph of K(n, k)

is the subgraph induced by all k-subsets of [n] that contain at least one

11



Chapter 1. Introduction

element from [n′]. This immediately gives

γ(K(n, k), n′) ≥

(
n

k

)
−
(
n− n′

k

)
(
n

k

) .

Surprisingly, if n is large compared to k, then this is the correct answer

of γ(K(n, k), n′). (We will discuss in detail what ‘large’ means in Chap-

ter 3.) This type of n′-colourable subgraphs are called trivial n′-colourable

subgraphs.

On the other hand, for n closer to 2k, we can find constructions that are

always larger than the above construction, and hence which provide better

lower bounds for γ(K(n, k), n′). However, exact values of γ(K(n, k), n′) for

n closer to 2k remain unknown.

We also discuss how we can use different methods to find an upper bound

for γ(K(n, k), n′) and look at their different behaviour. The two main tech-

niques we discuss are

1. structural properties of a Kneser graph, and

2. algebraic method using Cauchy’s Interlacing Theorem. (Also known as

Inertia Bound ; see e.g. [24] for background.)

Note that the problem of determining γ(K(n, k), 2) has been studied by

Frankl and Füredi in [18], in which they proved that if n ≥ 1
2(3 +

√
5)k,

then γ(K(n, k), 2) is attained by the trivial bipartite subgraph. For n closer

to 2k, they also provided a construction that is better than trivial. Our

construction mentioned in the above paragraph is larger than theirs. An-

other more recent result in [10] leads to answers of γ(K(n, k), n′) for large

enough n compared to k and n′. We discuss both, including other related

results, in more detail in Chapter 3.

As mentioned, the case k′ = 1 for Questions (1.1) and (1.2) are studied in

Chapter 3. We study those questions for general k′ in Chapter 4.

Recall that our questions are inspired by a question asked by Albertson et al

regarding list colouring. We will prove by examples that the their conjecture

does not extends to fractional colouring, nor to multi-colouring, in the sense

12



Chapter 1. Introduction

that there exist graphs G for which strictly less than
n′

χf (G)
|V (G)| vertices

can be coloured with n′ colours.

Then we study the lower bounds of the fractional version of γ(G,n′) and

γ(r, n′). Namely, for positive rational number s, we define

γf (G, s) := max

{
|V (H)|
|V (G)|

∣∣∣∣H ⩽i G,χf (H) ≤ s

}
,

γf (r, s) := inf {γf (G, s) | χf (G) = r} .

We will prove the following results for any rational number s ≥ 2. (And we

will show that those infimums are not minimums, i.e. they are not attained

by any graph.)

If 2 ≤ s < r, then we have γf (r, s) ≥ 1 −
(

1 − 1

r

)⌊s⌋
; furthermore, if

⌊s⌋ ≤ r − 1

2
, then we have γf (r, s) = 1 −

(
1 − 1

r

)⌊s⌋
.

Similar as for γ(G,n′) and γ(r, n′), we also study upper and lower bounds

of γf (G, s) and γf (r, s) for general rationals r and s.

Finally, for Question (1.3), we denote by π(G,K(n′, k′)) the order of a largest

(n′, k′)-colourable induced subgraph of a graph G. Similar as above, we show

that if G is (n, k)-colourable, then

π(G,K(n′, k′)) ≥ π(K(n, k),K(n′, k′)).

Hence it suffices to study Kneser graphs if the only information we know

about G is that it is (n, k)-colourable.

We determine exact values of π(K(n, k),K(n′, k′)) for some small values

of n, k, n′, k′, and show that the exact value of π(K(n, k),K(n′, k′)) can

be determined by studying the independence number of a special prod-

uct of graphs. We also study general upper bounds and lower bounds for

π(K(n, k),K(n′, k′)).

Study of Question 2

We study Question 2 in Chapter 2. A first observation is that this question

can be reformulated into a question about multi-chromatic number of Kneser

13



Chapter 1. Introduction

graphs, for which Stahl [44] formulated a conjecture in 1976. In particular,

we show that in order to answer Question 2 for a given pair n, k, it is

equivalent to study the k′-th multi-chromatic number of the Kneser Graph

K(n, k) for every k′. (The k′-th multi-chromatic number χk′(G) of a graph

G is the smallest integer n′ such that G is (n′, k′)-colourable.)

Stahl’s conjecture [44] states that χk′(K(n, k)) = qn− 2r, where k′ = qk− r

for some q ≥ 1 and 0 ≤ r ≤ k − 1.

Some simple observations and corollaries (of some not-so-trivial results) can

be made regarding this conjecture. For k = 1, the Kneser graph K(n, 1)

is just the complete graph on n vertices. It is not hard to prove that the

k′-th multi-chromatic number of a complete graph with n vertices is k′n,

and hence Stahl’s conjecture is true in that case. For k′ = 1 (hence q = 1

and r = k − 1), we also find the conjecture to be true, since χ1(G) = χ(G),

and we know χ(K(n, k)) = n − 2k + 2 by the well-known Kneser Theorem

proved by Lovász [38].

Stahl and a few other authors made quite a number of observations regarding

the multi-chromatic number of Kneser graphs. We will reconstruct some of

these results in Section 2.2.

Our first contribution on this topic is a simple proof of the following result,

which generalises a theorem of Stahl [44] and the main result in Osztényi [42].

Yet our proof is much simpler.

Theorem 1.1.1.

For any k ≥ 2 and n > 2k, if 0 ≤ r ≤ k

n− 2k
and r ≤ k − 1, then we have

χk′(K(n, k)) = qn− 2r (where k′ = qk − r with q ≥ 1 and 0 ≤ r ≤ k − 1).

Our next contribution is to prove that for a fixed k, only at most k3 − k2

values χk′(K(n, k)) need to be determined in order to conclude whether or

not Stahl’s conjecture is true for that value of k and for all n and k′. Hence

it is possible to fully resolve this problem for each fixed k in finite time.

Theorem 1.1.2.

Fix k ≥ 1. Then there exist n0(k) and q0(n, k) such that the following holds.

If χqk−(k−1)(K(n, k)) = qn− 2(k − 1) for all n ≤ n0(k) and for at least one

14



Chapter 1. Introduction

q ≥ q0(n, k), then we have χqk−r(K(n, k)) = qn − 2r for all n ≥ 2k, q ≥ 1

and 0 ≤ r ≤ k − 1.

The functions n0(k) and q0(n, k) in Theorem 1.1.2 we obtain are quite com-

plicated; we will give details in Section 2.3. From those values, it is possible

to show that we have n0(k) < k3−k2+2k for all k, and q0(n, k) <
4k

ek
(n−2k)

for all k ≥ 2 and n ≥ 2k + 1 (where e ≈ 2.718 is Euler’s number). (Note

for each fixed k, we only need to verify at most k3 − k2 values χk′(K(n, k))

because Kneser Graphs are edgeless if n < 2k.)

As a side note, we can replace q0(n, k) by q′0(k) = max{q0(n, k) | 2k ≤ n ≤
n0(k)} in Theorem 1.1.2, to remove the dependency of q0 on n. We chose to

keep q0(n, k), since for larger values of n we get better bounds for q0(n, k).

For instance, if n ≥ (log2 e) k2, then we can show q0(n, k) < n.

For k = 4, our methods show that we only need to find χ4q−3(K(n, 4))

for 8 ≤ n ≤ 10, q = 13, and for 11 ≤ n ≤ 38, q = 12. The cases

n = 8, 9, 10 are known to be true by results in [35, 44]. So the first open

case is to determine whether or not χ45(K(11, 4)) = 126. Note that Stahl

already showed χ45(K(11, 4)) ≤ 126, while our bounds in Chapter 2 give

χ45(K(11, 4)) ≥ 124.

In Section 2.3, we also explain that determining χ45(K(11, 4)) can be done

by finding the chromatic number of the lexicographic product K(11, 4) •
K45. Unfortunately, K(11, 4) •K45 is a highly symmetric graph with 14,850

vertices and 12,021,075 edges, and none of the publicly available packages

for graph colouring we could find seems to be able to deal with this graph

within a reasonable amount of time.

We will discuss the above in full details in Chapter 2.

1.1.2 Correspondence Colouring

In the later chapters of this thesis (Chapters 5 and 6), we study another

variation of vertex colouring called correspondence colouring.

Recall that in a list colouring, each vertex has a prespecified list of colours

available, and in a proper list colouring, each vertex is assigned a colour from
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Chapter 1. Introduction

its prespecified list so that adjacent vertices receive different colours. The

special case that all the vertices have an identical prespecified list reduces

to ordinary vertex colouring.

Correspondence colouring is a generalisation of list colouring, by introducing

more flexible definitions on when a colouring is proper. In correspondence

colouring, in addition to prespecified colour lists on each vertex, there are

prespecified ‘correspondences’ on each edge that pairs colours from the lists

on its two endvertices. (On each edge, one colour from one endvertex is

paired with at most another colour from the other endvertex.) A correspon-

dence colouring is proper if each vertex receives a colour from its prespeci-

fied list, and ‘paired’ colours are avoided everywhere. I.e. on each edge, the

colours received by its endvertices are not paired in the correspondence on

that edge. We will formally define it later in this introduction. Again, a spe-

cial case of correspondence colouring is that only identical colours are paired

in each correspondence. This special case corresponds to list colouring.

Since correspondence colouring generalises list colouring, and list colouring

generalises ordinary colouring; it is not hard to note for any graph G, we

have χ(G) ≤ χℓ(G) ≤ χc(G) ≤ degcy(G)+1. (Here χ(G), χℓ(G), χc(G) and

degcy(G) are the chromatic number, list chromatic number and correspon-

dence chromatic number, degeneracy of a graph G, respectively. Formal

definitions of them are given in Section 1.2.) There has been a large body

of literature on correspondence colouring since it was introduced by Dvořák

and Postle [9].

It is known that correspondence colouring can behave very differently from

ordinary and list colouring. We include some interesting results here, con-

centrating on results that are related to comparable results on ordinary or

list colouring. For examples, it is well-known and not hard to prove that

χ(Cn) = χℓ(Cn) = 2 if n is even and χ(Cn) = χℓ(Cn) = 3 if n is odd for a

cycle graph Cn of n vertices. But χc(Cn) = 3 for all n ≥ 3. The difference on

these three colourings are more obvious on complete bipartite graphs: every

complete bipartite graph is 2-colourable, but its list chromatic number can

be arbitrarily large; for instance, it is well known that χℓ(Kk,l) = k + 1 if

and only if l ≥ kk (see e.g. [15, 46]). In correspondence colouring, we have
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χc(Kk,l) = k+ 1 for much smaller l compared to k; for instance, it is proved

in [41] that χc(Kk,l) = k + 1 if l > (kk/k!)(log(k!) + 1).

In Chapter 5, we explore how certain graph operations will affect the cor-

respondence chromatic number of a multigraph. (In a multigraph, we allow

multiple edges between any pair of vertices. Since it is possible to have

different correspondence on different edges between same pair of vertices,

larger chromatic numbers are expected for a multigraph. Edge multiplicity

of an edge with given endvertices refers to the number of edges connecting

those two endvertices.) The change to chromatic numbers or list chromatic

numbers by those graph operations are usually trivial to determine or find

a good bound of, but their behaviours are much more interesting and very

different in correspondence colouring.

In particular, we explore upper and lower bounds on the change of corre-

spondence chromatic numbers after following graph operations

• delete a vertex (and all edges with this vertex as an endvertex);

• delete an edge;

• identify two vertices (‘merge’ two vertices into a new vertex and remove

the two old vertices, so that the new vertex receives all edges with exactly

one endvertex coming from the two old vertices);

• take the m-th multiple of the original graph (that is, in the resulting graph,

the multiplicity of each edge is m times the original multiplicity).

Later in Chapter 5, we explore further the graph operation of taking the

m-th multiple of the original graph. We try to understand how the corre-

spondence chromatic number increases as the edge multiplicity is multiplied.

Building on results on those m-th multiple graphs, we introduce a new

graph invariant, which we call correspondence chromatic limit. It is de-

fined as the limit of the sequence (in m) of a graph’s m-th multiple’s cor-

respondence chromatic number divided by m. (I.e. we are interested in

lim
m→∞

χc

(
G(m)

)
− 1

m
, where G(m) denotes the m-th multiple of G.) We prove

that this limit is well defined, and is bounded by several other well-studied

graph invariants. We also show it is possible to have any fractional part

(with some integer part) as this limit, by finding the exact value for a group
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Chapter 1. Introduction

of special graphs. Several other properties of this limit are also studied.

Finally, we study partial correspondence colouring problems in Chapter 6.

That is, we ask a question similar to Question 1:

If a graph is n-correspondence-colourable, and n′ < n colours are given to

each vertex, then how large is the largest induced subgraph of it that can

be properly correspondence coloured?

Recall that this question was first asked on list colouring, and correspon-

dence colouring is a generalisation of list colouring. Hence it is natural to

ask whether current known results in list colouring can be generalised to

this question?

We first show that the conjectured bound for list colouring does not hold

for correspondence colouring. That is, there are graphs that are

n-correspondence-colourable, but strictly less than
n′

n
|V (G)| vertices can be

properly correspondence coloured in some n′-correspondence where n′ < n.

To finish this chapter, we discuss some of the results from list colouring that

generalise to this question for correspondence colouring. Then we discuss

some sufficient conditions for a proper correspondence colouring to exist.

1.2 Preliminaries

We summarise terminology and some more results on multi-colouring and

correspondence colouring in this section.

Graphs

All graphs in this thesis are finite, undirected and without loops. Addi-

tionally, multiple edges are not allowed in most of the chapters, except for

Chapter 5. Most of the notation and terminology we use is standard and

can be found in any textbook on graph theory. We use V (G) to denote the

vertex set and E(G) to denote the edge set of a graph G; or simply V and E

if there is no ambiguity. The order of a graph is the number of its vertices.

A graph H is an induced subgraph of a graph G (denoted by H ⩽i G)

if V (H) ⊆ V (G) and E(H) consists of all edges with both endvertices in
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V (H), i.e. V (H) = {uv : u, v ∈ V (H) and uv ∈ E(G)}. In this case, we also

say that H is a subgraph of G induced by V (H). All subgraphs mentioned

in this thesis are induced.

The edge degree of a vertex u in graph G, degG(u), is the total number of

edges with u as one of their endvertices. A graph G is k-degenerate if every

subgraph of G has a vertex of edge degree at most k. The degeneracy of

a graph G, degcy(G), is the smallest k such that G is k-degenerate. When

it is clear what graph G we are considering, we often omit the subscript G

and write deg(u), etc.

An independent set in a graph is a set of vertices that is mutually nonadja-

cent. A complete graph of n vertices, denoted by Kn is the n-vertex graph

with all possible simple edges. A clique in a graph is a set of vertices that

is mutually adjacent, i.e. a set of vertices that induce a complete subgraph.

A cycle with n vertices (n ≥ 3) is the graph whose vertices can be ordered

as v1, . . . , vn so that vivj is an edge if and only if |i− j| = 1, or i = 1 and

j = n. A path from vertex u to v is a list of vertices u = v1, . . . , vn = v so

that vivi+1 is an edge for any 1 ≤ i ≤ n. A graph is connected if for any two

vertices u, v in it, there is a path from u to v. A tree is a connected graph

without any cycle as a subgraph.

In the cases that multiple edges are allowed, we call a graph a multigraph.

For vertices u, v, we denote by uv the collection of all edges with endvertices

u and v. So if e ∈ E(G) is an edge, then e ∈ uv for some (distinct) vertices

u, v ∈ V (G). We usually say just “the edge uv” for this collection.

The multiplicity of an edge uv in a graph G, denoted mG(uv) = |uv|, is the

number of edges with endvertices u and v. We write mG(uv) = 0 if there

is no edge between u and v; we sometimes also write mG(uu) = 0 for any

u ∈ V (G) (since loops are not allowed). An edge uv is simple if mG(uv) = 1;

a graph G is simple if mG(uv) ∈ {0, 1} for all u, v ∈ V (G). We omit the

subscript G in the cases of no ambiguity.

Colourings

All colourings in this thesis are vertex colourings, hence a colouring of a

graph assigns a colour to each vertex. Such a colouring is proper if adjacent
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vertices receive different colours. A graph G is n-colourable if there is a

proper colouring of G using n colours. The chromatic number χ(G) is the

smallest n for which G is n-colourable.

Partial colouring is a variant of vertex colouring. For this we allow the graph

to be partially coloured, i.e. some of the vertices may have no colour assigned

to them. Such a partial colouring is proper if it is a proper colouring in the

subgraph induced by the coloured vertices. We usually study what is the

largest partial colouring of given graph and given parameters.

We study questions on multi-colouring and correspondence colouring in this

thesis. We now give their formal definitions.

As noted in Section 1.1.1, multi-colouring generalises vertex colouring. In a

k-multi-colouring, each vertex receives a set of k colours. And such a multi-

colouring is proper if adjacent vertices receive disjoint k-sets of colours. A

graph is (n, k)-colourable if there is a proper k-multi-colouring which uses

at most n colours in total. The k-th multi-chromatic number χk(G) of a

graph is the smallest n such that the graph is (n, k)-colourable.

Fractional colouring is closely associated with multi-colouring. A graph is

fractional-
n

k
-colourable if it is (tn, tk)-colourable for some positive integer t.

The fractional chromatic number χf (G) is the infimum of
n

k
so that G is

fractional-
n

k
-colourable. It is well-known (for example, see [43]) that this

infimum is a minimum and hence a rational number. I.e. for any graph G,

there are positive integers n, k such that χf (G) =
n

k
, and there exists a

positive integer t such that G is (tn, tk)-colourable.

List colouring is another generalisation of vertex colouring. In list colouring,

each vertex of a graph has a prespecified list of colours that can be used for

that vertex. A proper list colouring assigns a colour to each vertex from

its list, such that adjacent vertices receive different colours. A graph G is

n-choosable if G can be properly list-coloured with any prespecified n-list

at each vertex. The list chromatic number χℓ(G) (also known as choice

number) is the smallest n for which G is n-choosable.

We study a further variant of graph colouring called correspondence colour-

ing or DP-colouring (after the authors of the paper in which it first ap-
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peared: Dvořák and Postle [9]). Recall that list colouring generalises or-

dinary colouring, in which all vertices have the same collection of allowed

colours. Correspondence colouring generalises list colouring further. In ad-

dition to each vertex having its own list of allowed colours, each edge comes

with a prespecified correspondence, which defines what pair of colours on its

endvertices cannot be assigned at the same time. In such a correspondence

on an edge, each colour from the list of one endvertex is paired with at most

one other colour from the list of the other endvertex. The correspondence

on each edge can be considered as a matching between the lists of colours

of its endvertices; the matching can be partial. Given those lists and cor-

respondences, a proper correspondence colouring is an assignment for each

vertex of a colour from its own list such that the correspondence on each

edge is satisfied.

In the rest of this section, we first define correspondence colouring follow-

ing the original definition in [9], and discuss some simplification techniques

usually applied when studying this type of colourings.

Definition 1.2.1.

Given a multigraph G, a correspondence C(G) on G consists of two parts:

• for each vertex u ∈ V (G), there is a list of colours l(u) associated with u;

• for each edge e ∈ E(G) with endvertices u and v, there is a correspondence

C(e) specifying which pair of colours from the two endvertices correspond,

such that C(e) induces a (possibly partial) matching between {(u, c) | c ∈
l(u)} and {(v, c′) | c′ ∈ l(v)}.

The correspondence C(uv) on a (multiple) edge uv is the collection of cor-

respondences C(e) for all edges with endvertices u and v.

The correspondence on an edge e ∈ uv is full if the matching C(e) is perfect.

A correspondence on a graph is full if the correspondence on every edge is

full. If |l(u)| = n for all vertices u ∈ V (G), then the correspondence C(G)

on G is called an n-correspondence.

The central idea in correspondence colouring is that the matchings between

the list of colours of two vertices indicate combinations of colours that are

not allowed. In that sense, ordinary or list colouring are special cases of cor-
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respondence colouring in the senses that matchings are between the identical

colours in the colour lists.

Definition 1.2.2.

Given a multigraph G and a correspondence C(G) on G. A proper corre-

spondence colouring on C(G) is a mapping φ : V (G) →
⋃

u∈V (G)

l(u) such that

• for each vertex u ∈ V (G), we have φ(u) ∈ l(u), and

• for each edge e with endvertices u, v, we have {(u, φ(u)), (v, φ(v))} /∈ C(e).

A multigraph G is n-correspondence-colourable if a proper correspondence

colouring exists for any n-correspondence on G.

The correspondence chromatic number χc(G) is the smallest n such that G

is n-correspondence-colourable.

Before closing this section, we present a useful tool that allows us to assume

identical colour list is assigned to each vertex (in the study of correspondence

chromatic numbers). This idea first appeared in [9].

Definition 1.2.3.

Given a multigraph G and a correspondence C(G) on G. A renaming func-

tion f applied to C(G) consists of

• a bijective colour-replacement mapping fu : l(u) → l′(u) for each u ∈ V (G)

(note |l′(u)| = |l(u)|, but l′(u) and l(u) may or may not be identical);

• a replacement of correspondences that sends C(G) to fC(G): for each pair

of vertices u, v ∈ V (G), we have {(u, d1), (v, d2)} ∈ fC(uv) if and only if

there are colours c1 ∈ l(u), c2 ∈ l(v) such that d1 = fu(c1), d2 = fv(c2) and

{(u, c1), (v, c2)} ∈ C(uv).

Two correspondences C(G) and C′(G) on the same graph G are equivalent

if there exist some renaming function f so that C′(G) = fC(G).

If a proper correspondence colouring for some correspondence C(G) exists,

then it exists for any equivalent correspondence C′(G): assume C′(G) =

fC(G) and let p be a proper correspondence colouring of C. We will find a

proper correspondence colouring p′ on C′(G) using f and p: for each vertex

u ∈ V (G), simply set p′(u) = fu(p(u)). Then p′ is a proper correspondence

colouring of fC(G).
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When studying the correspondence chromatic number of a (multi)graph G,

we only consider cases where the colour lists assigned to each vertex has the

same size. As we can rename colours in the prespecified list of each vertex

while keeping the correspondence equivalent, we may assume the colour list

assigned to every vertex is identical. We also assume the correspondence on

each edge is full: if it isn’t, we can add more constraints to make each edge

full, and a proper correspondence colouring on the latter correspondence

implies a proper correspondence colouring on the original correspondence.

We now have all the general prerequisites for the remainder of this thesis.

Further specific definitions will be given when we use them.
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2
Multi-Colouring of Graphs:

towards Stahl’s Conjecture

2.1 Introduction

Multi-colouring generalises vertex colouring and has been studied exten-

sively; see e.g. [43] for background. Recall that in a k-multi-colouring of

a graph, each vertex receives a set of k colours, and such a colouring is

proper if adjacent vertices receive disjoint colour sets. A graph G is (n, k)-

colourable if there is a proper k-multi-colouring by assigning k-subsets of [n]

( = {1, 2, . . . , n}) to the vertices of G. For some integer k > 0, the k-th multi-

chromatic number χk(G) is the smallest n such that G is (n, k)-colourable.

Note that if k = 1, then k-multi-colouring is just normal vertex colouring,

and χ1(G) is just the normal chromatic number χ(G).

It this chapter, we consider the following question.

Question 2.1.1.

If a graph G is (n, k)-colourable (and this is the only information we have),

then for what pairs (n′, k′) is G also (n′, k′)-colourable?

We note that the corresponding question for more standard n-colouring is

trivial: if G is n-colourable, then it is n′-colourable for all n′ ≥ n. Or, more

precise: if χ(G) = n, then G is n′-colourable if and only if n′ ≥ n. Maybe
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Chapter 2. Multi-Colouring of Graphs

somewhat surprisingly, the question for multi-colouring appears to be much

more challenging, and in fact it is mostly open!

Kneser graphs play a central role in the studies of multi-colouring. Recall

that for n ≥ k ≥ 1, the Kneser graph K(n, k) has as vertex set the collection

of all k-subsets of [n] (denoted by

(
[n]

k

)
), and there is an edge between two

vertices if and only if the two k-sets are disjoint. We will usually assume

n ≥ 2k, as otherwise the graph is edgeless.

It is well known and easy to prove (see e.g. [43, Section 3.2]) that a graph

G is (n, k)-colourable if and only if there is a homomorphism from G to

K(n, k). (A homomorphism from a graph G to a graph H is a mapping

φ : V (G) → V (H) that preserves edges; i.e. if uv is an edge in G, then

φ(u)φ(v) is an edge in H.)

This means that the following questions are all equivalent to Question 2.1.1.

1. Given n, k, for what n′, k′ is the Kneser graph K(n, k) also (n′, k′)-

colourable?

2. Given n, k, for what n′, k′ is there a homomorphism from K(n, k) to

K(n′, k′)?

3. Given n, k, for what n′, k′ do we have n′ ≥ χk′(K(n, k))?

The last question was studied by Stahl [44], who formulated the following

conjecture.

Conjecture 2.1.2 (Stahl [44]).

For integers n ≥ 2k > 0, if k′ = qk− r where q ≥ 1 and 0 ≤ r ≤ k− 1, then

we have χk′(K(n, k)) = qn− 2r.

As mentioned in Section 1.1.1, there are some results on special cases of the

question, but not much are known in general. For instance, this conjecture

is trivially true for k = 1; and is true for k′ = 1 by Lovász’s proof [38] of the

Kneser conjecture.

In Stahl’s original paper, it was proved that the conjectured value is an

upper bound. In a follow-up paper [45], Stahl proved the following general
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lower bound for χk′(K(n, k)):

χqk−r(K(n, k)) ≥ qn− 2r − (k2 − 3k + 4). (2.1)

The conjecture is also known to be true for some special values of n, k and k′.

Theorem 2.1.3.

(a) For all k and k′, Conjecture 2.1.2 is true for the bipartite Kneser graphs

K(2k, k) and for the so-called odd graphs K(2k + 1, k) (Stahl [44]).

(b) For all n and k, Conjecture 2.1.2 is true for any k′ that is a multiple

of k; in other words: χqk(K(n, k)) = qn (Stahl [44]).

(c) For all n and k, Conjecture 2.1.2 is true for all k′ ≤ k; in other words:

χk−r(K(n, k)) = n− 2r (Stahl [44]).

(d) For all n and k′, Conjecture 2.1.2 is true for k = 2 and k = 3 (Stahl [45]).

Our first results are short proofs of the following theorems. The proofs of

our results are given in later sections of this chapter.

Theorem 2.1.4.

For any k ≥ 1 and n ≥ 2k, we have χk′(K(n, k)) ≥ k′n

k
, with equality if and

only if k′ is a multiple of k.

Note that this theorem extends Theorem 2.1.3 (b). Even then, our proof is

considerably simpler and shorter than the proof of Theorem 2.1.3 (b) in [44].

Theorem 1.1.1.

For any k ≥ 1 and n > 2k, if 0 ≤ r ≤ k

n− 2k
and r ≤ k − 1, then for all

q ≥ 1 we have χqk−r(K(n, k)) = qn− 2r.

This theorem is a small generalisation of the main result in Osztényi [42];

again with a much simpler and shorter proof.

Another result we present in this chapter is that for a fixed k, only at most

k3 − k2 values of χk′(K(n, k)) need to be determined in order to conclude

whether or not Stahl’s conjecture is true for that value of k and for all n

and k′.
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Theorem 1.1.2.

Fix k ≥ 1. Then there exist n0(k) and q0(n, k) such that the following holds.

If χqk−(k−1)(K(n, k)) = qn− 2(k − 1) for all n ≤ n0(k) and for at least one

q ≥ q0(n, k), then we have χqk−r(K(n, k)) = qn − 2r for all n ≥ 2k, q ≥ 1

and 0 ≤ r ≤ k − 1.

This chapter is structured as following: we recall and present the main ideas,

as well as our proof sketches in Section 2.2; formal proofs can be found in

Section 2.3. Conclusion and further directions are discussed in Section 2.4.

2.2 Main Ideas

In this section, we describe some of the original ideas behind Stahl’s conjec-

ture, as developed in [44,45]. To begin with, Stahl [44] proved the following.

Proposition 2.2.1 (Stahl [44]).

For any integers n ≥ 3 and k ≥ 2, there is a homomorphism φ from K(n, k)

to K(n− 2, k − 1).

Proof. If n < 2k, then any mapping of vertices is a homomorphism, because

both K(n, k) and K(n − 2, k − 1) are edge-less. If n ≥ 2k, we define φ as

follows.

For each k-subset K ∈
(

[n]

k

)
, denote by maxK the maximum element in K.

(a) If (K \ {maxK}) ⊆ [n− 2], then define φ(K) = K \ {maxK};

(b) Otherwise both n−1 and n are elements of K. Then let x be the largest

integer in [n−2] that is not in K, and define φ(K) = ({x} ∪K)\{n−1, n}.

We will show that φ is a homomorphism from K(n, k) to K(n − 2, k − 1).

Denote K1,K2 as the k-sets associated with vertices u, v respectively. If u, v

are adjacent in K(n, k), then K1,K2 are disjoint. If both K1 and K2 satisfy

the condition in (a), then it is clear that φ(K1) and φ(K2) are disjoint.

Since K1,K2 are disjoint, at most one of them satisfies condition in (b).

Without loss of generality, assume both n−1 and n are elements of K1, and

(K2 \ {maxK2}) ⊆ [n − 2]. Let x be the largest integer in [n − 2] that is

27



Chapter 2. Multi-Colouring of Graphs

not in K1, then x is either the largest element in K2, or x is not in K2. In

either cases, φ(K1) and φ(K2) are disjoint. □

The existence of a homomorphism from K(n, k) to K(n−2, k−1) means that

for any graph G, if there is a homomorphism from G to K(n, k) (i.e. if G is

(n, k)-colourable), then there is a homomorphism from G to K(n− 2, k− 1)

(i.e. G is also (n − 2, k − 1)-colourable). And hence for any graph G with

at least one edge, we have χk−1(G) ≤ χk(G) − 2. (We require at least one

edge in G, otherwise χk−1(G) = k − 1 = χk(G) − 1 for all k.)

Stahl’s conjecture (Conjecture 2.1.2) states that χqk−r(K(n, k)) = qn− 2r,

for any q ≥ 1 and 0 ≤ r ≤ k − 1. By Theorem 2.1.3 (b) and the observation

in the last paragraph, it is clear that for any fixed q, if χqk−(k−1)(K(n, k)) =

qn − 2(k − 1), then χqk−r(K(n, k)) = qn − 2r for any 0 ≤ r ≤ k − 1 for

the same q. I.e. in order to prove the conjecture, it suffices to prove it for

r = k − 1. Knowing the Lovász-Kneser Theorem χ1(K(n, k)) = n− 2k + 2,

an immediate corollary is that the conjecture is true for q = 1.

On the other hand, we can prove that the conjectured multi-chromatic num-

ber is an upper bound using the following result of Geller and Stahl [23].

Proposition 2.2.2 (Geller and Stahl [23]).

If a graph G is both (n1, k1)-colourable and (n2, k2)-colourable, then G is

(n1 + n2, k1 + k2)-colourable.

The proof is again constructive.

Proof. Let c1 : V (G) →
(

[n1]

k1

)
and c2 : V (G) →

(
[n1 + 1, n1 + n2]

k2

)
be

two multi-colourings of graph G. For each vertex v ∈ V (G), define c(v) =

c1(v) ∪ c2(v). Then c : V (G) →
(

[n1 + n2]

k1 + k2

)
is a proper (n1 + n2, k1 + k2)-

colouring of G. □

It follows that we can always construct a (qk−r)-multi-colouring of K(n, k)

by combining q−1 copies of a (n, k)-colouring and one copy of a (n−2r, k−r)

colouring. This immediately gives

χqk−r(K(n, k)) ≤ qn− 2r. (2.2)
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Note that other colourings may be possible. For instance, if k, q, r ≥ 2, we

can take q − 2 copies of a (n, k)-colouring, one copy of a (n − 2, k − 1)-

colouring and one copy of a (n− 2(r − 1), k − (r − 1))-colouring to get the

same bound.

2.2.1 Main New Ideas

In this section, we sketch some of the ideas behind our results and methods

to approach Stahl’s conjecture. In fact, many of these ideas have been

observed before, but we haven’t seen them used in the way we use them.

For any proper (χk′(G), k′) multi-colouring of a graph G, each colour class

(the set of vertices whose colour set contains a particular colour) is an inde-

pendent set, hence contains at most α(G) vertices (where α(G) is the inde-

pendence number). Since each vertex appears in at least k′ colour classes, we

have χk′(G)α(G) ≥ k′|V (G)| for any k′, and hence χk′(G) ≥
⌈
k′|V (G)|
α(G)

⌉
.

For Kneser graphs, we have |V (K(n, k))| =

(
n

k

)
by definition, while the

celebrated Erdős-Ko-Rado Theorem [14] states that α(K(n, k)) =

(
n− 1

k − 1

)
for any k and any n ≥ 2k. Substituting those values and k′ = qk − r in the

lower bound for χk′(G) above leads to

χk′(K(n, k)) ≥

⌈
k′
(
n
k

)(
n−1
k−1

)⌉ =

⌈
k′n

k

⌉
= qn− 2r −

⌊
r(n− 2k)

k

⌋
. (2.3)

This simple inequality is surprisingly powerful. For instance, it gives a

better bound than (2.1) if n ≤ k2 + 2. It also more or less directly gives

Theorem 1.1.1.

We can obtain further results by using more detailed knowledge about inde-

pendent sets in Kneser graphs. For instance, in [14] it is also proved that if

n ≥ 2k + 1, then the only independent sets of order

(
n− 1

k − 1

)
in the Kneser

graph K(n, k) are the so-called trivial independent sets: those vertex sets

whose vertices correspond to family of k-sets in [n] that contain some fixed

common element i ∈ [n]. Using that information about the structure of
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independent sets of order α(K(n, k)), in the next section we will show that

we can only have equality in (2.3) in very special cases.

Theorem 2.1.4.

For any k ≥ 2 and n ≥ 2k, we have χk′(K(n, k)) ≥ k′n

k
, with equality if and

only if k′ is a multiple of k.

The statement that χpk(K(n, k)) = pn if and only if p is a positive integer

is sometimes attributed to Stahl [44] (see, e.g., [42]), but it is not explicitly

stated in that paper. It can be found implicitly in the proof of [44, Theo-

rem 9] (using significantly more involved arguments than ours).

As observed in [23], we have that for any graph G, χk′(G) = χ(G • Kk′),

where “•” denotes the lexicographic product of two graphs: V (G • H) =

V (G) × V (H), and (u1, v1)(u2, v2) ∈ E(G •H) if and only if either u1u2 ∈
E(G) or u1 = u2 and v1v2 ∈ E(H). This allows us to translate the problem

of finding multi-chromatic numbers to finding chromatic numbers. Since we

also have that |V (G •Kk′)| = k′|V (G)| and α(G •KK′) = α(G), this gives

an alternative proof of χk′(G) ≥
⌈
k′|V (G)|
α(G)

⌉
.

One of the essential elements in the proof of Theorem 1.1.2 is the result of

Hilton and Milner [28] that if n ≥ 2k + 1 and an independent set in the

Kneser graph K(n, k) is not trivial, then it has order at most

(
n− 1

k − 1

)
−(

n− k − 1

k − 1

)
+ 1. This ‘second best’ bound is significantly smaller than the

Erdős-Ko-Rado bound (details in the next section), which means that for

large n and q, many of the colours used in a ‘good’ (qk− r)-multi-colouring

of K(n, k) must induce trivial independent sets. This observation allows us

to prove relations between the multi-chromatic numbers χqk−r(K(n, k)) for

different values of n and q, and eventually to prove Theorem 1.1.2.

Finally, we note that Theorem 1.1.2 generalises some known results. Chvátal

et al. [6] showed that for fixed k, we only need to find χk+1(K(n, k)) for

finitely many n to decide if Stahl’s Conjecture holds for χk+1(K(n, k)) for

all n. And Stahl [44] proved that for fixed n, k and sufficiently large k′, the

correctness of the conjecture for k′ is equivalent to its correctness for k′− k.

The proof of that result by Stahl is non-constructive and does not give an
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explicit bound on the value of k′, and hence it can only give a version of

Theorem 1.1.2 without a bound on the function q0(n, k).

2.3 Proofs of Our Results

This section contains the full proofs of the results stated in Sections 2.1

and 2.2. In this section, with given k, we use k′ and qk − r interchangeably

(k′ = qk − r), where q ≥ 1 and 0 ≤ r ≤ k − 1.

2.3.1 Proof of Theorem 2.1.4

Theorem 2.1.4 is a direct corollary of (2.2) and the following lemma. As

explained in Section 2.2, each colour class of an (n′, k′)-colouring of K(n, k)

induces an independent set in K(n, k).

Lemma 2.3.1.

For any k′ ≥ 1, k ≥ 1 and n ≥ 2k, we have χk′(K(n, k)) ≥
⌈
k′n

k

⌉
. Further-

more, if
k′n

k
is an integer and n > 2k, then K(n, k) is

(
k′n

k
, k′
)
-colourable

if and only if k′ is a multiple of k.

Proof. We have seen in (2.3) in Section 2.2 that χk′(K(n, k)) ≥

⌈
k′
(
n
k

)(
n−1
k−1

)⌉ =⌈
k′n

k

⌉
≥ k′n

k
.

If k′ = qk for some integer q, then we have χk′(K(n, k)) ≤ qn =
k′n

k
by

(2.2), and hence χk′(K(n, k)) =
k′n

k
=

⌈
k′n

k

⌉
.

Now suppose

⌈
k′n

k

⌉
=

k′n

k
, i.e. k′n is a multiple of k, and assume K(n, k) is(

k′n

k
, k′
)

-colourable; fix such a multi-colouring. Then the first inequality

in (2.3) must be an equality. In particular, every colour class has order(
n− 1

k − 1

)
, and hence must be trivial. So every colour class is a set of the

form Fi :=

{
F ∈

(
[n]

k

) ∣∣∣∣ i ∈ F

}
, for some i ∈ [n].
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For i ∈ [n], let λi be the number of colour classes of the form Fi. For any

vertex F ∈
(

[n]

k

)
we have that F is in a colour class of the form Fi if and

only if i ∈ F . This means that
∑
i∈F

λi = k′, for all F ∈
(

[n]

k

)
. In particular,

for any j1, j2 ∈ [n] and any (k − 1)-set F ′ in [n] \ {j1, j2}, we have∑
i∈F ′∪{j1}

λi =
∑

i∈F ′∪{j2}

λi,

and hence λj1 = λj2 for any j1, j2 ∈ [n].

On the other hand, we have
∑
i∈[n]

λi =
k′n

k
. This means that λi =

k′

k
for

all i ∈ [n]. In particular we have that
k′

k
is an integer, completing the proof

of the theorem. □

2.3.2 Proof of Theorem 1.1.1 and Other Bounds

on χk′(K(n, k))

We first prove Theorem 1.1.1, which states that Stahl’s conjecture is true

for 0 ≤ r ≤ k

n− 2k
. Note that this result generalises the following known

results.

(a) The conjecture is true if k′ is a multiple of k, i.e. if r = 0 (Stahl [44]).

(b) The conjecture is true if 2k < n < 3k and 0 ≤ r <
k

n− 2k
(Osztényi [42]).

Theorem 1.1.1.

For any k ≥ 1 and n > 2k, if 0 ≤ r ≤ k

n− 2k
and r ≤ k − 1, then for all

q ≥ 1 we have χqk−r(K(n, k)) = qn− 2r.

Proof. If 0 ≤ r <
k

n− 2k
, then

⌊
r(n− 2k)

k

⌋
= 0, and hence (2.3) immedi-

ately shows that χqk−r(K(n, k)) ≥ qn− 2r. We then have χqk−r(K(n, k)) =

qn− 2r by (2.2).

If r =
k

n− 2k
is an integer and 0 < r ≤ k − 1, then

k′n

k
=

(qk − r)n

k
=

qn− n

n− 2k
= qn− 2r − 1 is an integer. But then qk − r is not a multiple

of k, since 1 ≤ r ≤ k−1. Therefore by Lemma 2.3.1, we have that K(n, k) is

not (qn−2r−1, qk−r)-colourable. We can conclude that χqk−r(K(n, k)) =

qn− 2r by (2.2). □
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In [42, Proposition 5], Osztényi also shows a lower bound on multi-chromatic

number, which states: for any k, l ≥ 2 and lk < n < 2lk (∗), we have

χqk−r(K(n, k)) > qn− lr − c, where c ≥ 1 and c >
lr − 1

⌈ lk
n−lk⌉ − 1

. (2.4)

We can restate (∗) as: “for any k ≥ 2, n > 2k and
n

2k
< l <

n

k
”. We will

show that Lemma 2.3.1 is at least as good as (2.4), by rewriting (2.3) as

χqk−r(K(n, k)) ≥
⌈

(qk − r)n

k

⌉
= qn− lr −

⌊
r(n− lk)

k

⌋
, (2.5)

where k, l ≥ 2 and n ≥ lk.

For n ≥ lk, we first show that there is no positive integer c such that
lr − 1

⌈ lk
n−lk⌉ − 1

< c ≤
⌊
r(n− lk)

k

⌋
. Assume such a c exists for some n, k, r, l.

Then since c is an integer, we have

ck ≤ r(n− lk). (2.6)

Since lk < n < 2lk is equivalent to lk + 1 ≤ n ≤ 2lk − 1 for integers, we

have

⌈
lk

n− lk

⌉
− 1 ≥

⌈
lk

lk − 1

⌉
− 1 > 0, which gives c

⌈
lk

n− lk

⌉
− c > lr− 1.

Rearranging leads to

⌈
lk

n− lk

⌉
>

lr + c− 1

c
, and hence to

⌈
lk

n− lk

⌉
≥

lr + c

c
=

lr

c
+ 1. Since we are working with integers, we can conclude that

lk

n− lk
>

lr

c
, which gives ck > r(n− lk), contradicting (2.6).

On the other hand, for some values of n, k, r, l, there exist integers c ≥ 2

such that

⌊
r(n− lk)

k

⌋
< c ≤ lr − 1

⌈ lk
n−lk⌉ − 1

. For instance, if l = 2, n = 137,

k = 56, and r = 31, then c = 14 is an example; while if l = 3, n = 145,

k = 30, and r = 17, then c = 32 is an example.

Next we show that sometimes it is possible to improve the lower bound in

Lemma 2.3.1 by partitioning K(n, k) into suitable subgraphs, by splitting

the ground set [n]. Note that for any m that k ≤ m ≤ n − k, we can con-

sider K(m, k) as the subgraph of K(n, k) induced by

{
F ∈

(
[n]

k

)∣∣∣∣F ⊆ [m]

}
,

and K(n−m, k) as the subgraph induced by

{
F ∈

(
[n]

k

)∣∣∣∣F ⊆ [m + 1, n]

}
.

Moreover, since the vertices of these two subgraphs are disjoint in K(n, k),
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there is a complete bipartite join between them in K(n, k). These observa-

tions immediately give for k ≤ m ≤ n− k:

χk′(K(n, k)) ≥ χk′(K(m, k)) + χk′(K(n−m, k)). (2.7)

Theorem 2.3.2.

For k′ = qk − r, with q ≥ 1 and 1 ≤ r ≤ k − 1, let t be the largest integer

such that rt ≤ k, i.e. t =

⌊
k

r

⌋
.

(a) Write n = n0+
t∑

i=0

ci(2k+i) for some integers n0, 0 ≤ n0 < 2k, and ci ≥

0, i = 0, . . . , t. Then we have χk′(K(n, k)) ≥ q(n−n0)−2r
t∑

i=0

ci +k′
⌊n0

k

⌋
.

(b) Alternatively, write n = n0 +
t∑

i=0

ci(2k + i) for some integers n0, 2k ≤

n0 < 4k, and ci ≥ 0, i = 0, . . . , t. Then we have χk′(K(n, k)) ≥ q(n− n0)−

2r
t∑

i=0

ci +

⌈
n0k

′

k

⌉
.

Proof. Using (2.7), for both cases we have:

χk′(K(n, k)) ≥ χk′(K(n0, k)) + χk′(K(n− n0, k))

≥ χk′(K(n0, k)) +

t∑
i=0

ciχk′(K(2k + i, k))

= χk′(K(n0, k)) +
t∑

i=0

ci(q(2k + i) − 2r)

= χk′(K(n0, k)) + q(n− n0) − 2r
t∑

i=0

ci.

Then for case (a), we immediately have χk′(K(n0, k)) = 0 if 0 ≤ n0 < k,

and χk′(K(n0, k)) = k′ if k ≤ n0 < 2k. So we have χk′(K(n0, k)) = k′
⌊n0

k

⌋
.

For case (b), we have χk′(K(n0, k)) ≥
⌈
n0k

′

k

⌉
by Lemma 2.3.1. □

Note that Lemma 2.3.1 is a special case of Theorem 2.3.2 (b) by taking

n = c0 · 2k + n0 for some 2k ≤ n0 < 4k.
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Although Theorem 2.3.2 is based on Lemma 2.3.1, it actually can give better

bounds in many cases. For example, if n = c1(2k + 1) for some c1, then

Theorem 2.3.2 gives χk′(K(n, k)) ≥ qn − 2rc1, whilst Lemma 2.3.1 only

gives χk′(K(n, k)) ≥ qn− 2rc1 −
⌊rc1

k

⌋
.

2.3.3 Proof of Theorem 1.1.2

Theorem 1.1.2 is a corollary to the following two results.

Theorem 2.3.3.

For any k ≥ 1, there exists n0(k) < k3 − k2 + 2k, such that if n ≥ n0(k),

then we have χqk−r(K(n, k)) ≥ q + χqk−r(K(n − 1, k)) for any q ≥ 1 and

0 ≤ r ≤ k − 1.

Theorem 2.3.4.

For any k ≥ 1 and n ≥ 2k, there exist q0(n, k), such that if q ≥ q0(n, k),

then we have χqk−r(K(n, k)) ≥ n+χ(q−1)k−r(K(n, k)) for any 0 ≤ r ≤ k−1.

We first prove Theorem 1.1.2, as a corollary of Theorems 2.3.3 and 2.3.4.

Theorem 1.1.2.

Fix k ≥ 1. Then there exist n0(k) and q0(n, k) such that the following holds.

If χqk−(k−1)(K(n, k)) = qn−2(k−1) for all 2k ≤ n ≤ n0(k) and for at least

one q ≥ q0(n, k), then we have χqk−r(K(n, k)) = qn − 2r for all n ≥ 2k,

q ≥ 1 and 0 ≤ r ≤ k − 1.

Proof. Fix k ≥ 1. First let n0(k) be the integer as in Theorem 2.3.3. I.e. if

n ≥ n0(k), then for any 0 ≤ r ≤ k − 1, we have

χqk−r(K(n, k)) ≥ q + χqk−r(K(n− 1, k)). (2.8)

For each n ≥ 2k, let q0(n, k) be the integer as in Theorem 2.3.4. I.e. if

q ≥ q0(n, k), then for any 0 ≤ r ≤ k − 1, we have

χqk−r(K(n, k)) ≥ n + χ(q−1)k−r(K(n, k)). (2.9)

At the same time, note that for any n ≥ 2k and q′ ≥ 2, we have

χq′k−r(K(n, k)) ≤ n + χ(q′−1)k−r(K(n, k)), (2.10)
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since combining a copy of a (χ(q′−1)k−r(K(n, k)), (q′ − 1)k − r)-colouring

and a copy of a (n, k)-colouring of K(n, k) produces a proper (q′k − r)-

multi-colouring.

Assume the conditions in Theorem 1.1.2 hold. I.e. for each 2k ≤ n ≤ n0(k),

we have χqk−(k−1)(K(n, k)) = qn− 2(k − 1) for some q ≥ q0(n, k).

For any fixed n, 2k ≤ n ≤ n0(k), find its corresponding q∗ ≥ q0(n, k) such

that χq∗k−(k−1)(K(n, k)) = q∗n − 2(k − 1). Then we immediately have

χq∗k−r(K(n, k)) = q∗n− 2r for any 0 ≤ r ≤ k − 1 for that q∗, since for any

non-empty graph G we have χk′+1(G) ≥ χk′(G), and χq∗k(K(n, k)) = q∗n.

Hence by (2.2), (2.9), and (2.10), we have χqk−r(K(n, k)) = qn− 2r for all

q ≥ 1 and 0 ≤ r ≤ k − 1.

Therefore by (2.2), (2.8), and the correctness of the conjecture for n = n0(k),

we have χqk−r(K(n, k)) = qn − 2r for all n ≥ n0(k), q ≥ 1 and 0 ≤ r ≤
k − 1. Thus for all n ≥ 2k, q ≥ 1 and 0 ≤ r ≤ k − 1 we can conclude

χqk−r(K(n, k)) = qn− 2r. □

Before proving the two theorems from the start of this section, we recall that

for any n ≥ 2k, the independence number of the Kneser graph K(n, k) is

α(K(n, k)) =

(
n− 1

k − 1

)
. Furthermore, if n ≥ 2k+1, then the only maximum

independent sets in K(n, k) are the trivial independent sets [11]. Denote by

α∗(K(n, k)) the order of the maximum independent set of K(n, k) that is

not trivial. Then we know that α∗(K(n, k)) =

(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1

if n ≥ 2k + 1, by results in [28].

In the following proof of Theorem 2.3.4, we also name q0(n, k). The formula

is complicated, but we will discuss its upper bound in Section 2.4.

Proof of Theorem 2.3.4. We have seen that Stahl’s conjecture holds for bi-

partite Kneser graphs (i.e. if n = 2k), hence Theorem 2.3.4 is true if n = 2k.

Also note that if k = 1, then K(n, k) is the complete graph Kn, and in that

case the theorem is trivially true. So from now on we assume that n ≥ 2k+1

and k ≥ 2.

Fix any k ≥ 2, n ≥ 2k + 1 and 0 ≤ r ≤ k − 1. Consider any q ≥ q0(n, k),
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where q0(n, k) is a function we will specify later. Fix a proper (x, qk − r)-

colouring C : K(n, k) →
(

[x]

qk − r

)
for some x ≤ qn − 2r. We will find a

proper (x− n, (q − 1)k − r)-colouring of K(n, k).

Denote y as the number of nontrivial colour classes in C (that is, those colour

classes that cannot be written as a subset of

{
F ∈

(
[n]

k

) ∣∣∣∣ i ∈ F

}
for any

i ∈ [n]). Hence, there are x − y trivial colour classes, and by counting the

appearance of each vertex in all colours, we have

(qk − r)

(
n

k

)
≤ (x− y)α(K(n, k)) + yα∗(K(n, k))

≤ (qn− 2r − y)

(
n− 1

k − 1

)
+ y

((
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1

)
.

Since (qk − r)

(
n

k

)
=
(
qn− rn

k

)(n− 1

k − 1

)
, this gives

y ≤
(
rn
k − 2r

) (
n−1
k−1

)(
n−k−1
k−1

)
− 1

=
r(n− 2k)

(
n−1
k−1

)
k
((

n−k−1
k−1

)
− 1
) . (2.11)

We claim that if q ≥ q0(n, k), where

q0(n, k)

=
(k − 1)(n− 2k + 1)

n− k
+

(k − 1)(n− 2k)(n− 1)
((

n−2
k−1

)
−
(
n−k−1
k−1

))
k(n− k)

((
n−k−1
k−1

)
− 1
) + 1,

then for all i ∈ [n], there is a trivial colour class in C that is centred at i,

i.e. a colour class in C that is a subset of

{
F ∈

(
[n]

k

) ∣∣∣∣ i ∈ F

}
.

Assume that there is no colour class centred at i∗ for some i∗ ∈ [n], i.e. none

of the colour classes in C is a subset of F =

{
F ∈

(
[n]

k

) ∣∣∣∣ i∗ ∈ F

}
. Then

each trivial colour class contains at most

(
n− 2

k − 2

)
vertices in F, and each

nontrivial colour class contains at most

(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
vertices

in F.

Counting the appearance of all vertices in F, we have

(qk − r)|F| = (qk − r)

(
n− 1

k − 1

)
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≤ (x− y)

(
n− 2

k − 2

)
+ y

((
n− 1

k − 1

)
−
(
n− k − 1

k − 1

))
,

which leads to

(qk − r)(n− 1)

k − 1

(
n− 2

k − 2

)
≤ x

(
n− 2

k − 2

)
+ y

k+1∑
i=3

(
n− i

k − 2

)

≤ (qn− 2r)

(
n− 2

k − 2

)
+ y

k+1∑
i=3

(
n− i

k − 2

)
,

which in turn can be rewritten as

y

((
n− 2

k − 1

)
−
(
n− k − 1

k − 1

))
≥ q(n− k) − r(n− 2k + 1)

k − 1

(
n− 2

k − 2

)
. (2.12)

Combining (2.11) and (2.12), we have

r(n− 2k)
(
n−1
k−1

) ((
n−2
k−1

)
−
(
n−k−1
k−1

))
k
((

n−k−1
k−1

)
− 1
) ≥ q(n− k) − r(n− 2k + 1)

k − 1

(
n− 2

k − 2

)
,

which rearranges to

q ≤ r(n− 2k + 1)

n− k
+

r(n− 2k)(n− 1)
((

n−2
k−1

)
−
(
n−k−1
k−1

))
k(n− k)

((
n−k−1
k−1

)
− 1
) .

So if we choose q0(n, k) as larger than the right-hand side of this last in-

equality, then we obtain a contradiction.

Since for each i ∈ [n], non-existence of colour class centred at i leads to a

contradiction, we now assume that for all i ∈ [n], there is a trivial colour class

in C that is centred at i. By removing one such trivial colour class centred at

i for each i ∈ [n], we remove n colour classes in total and at most k colours for

each vertex. Thus we find a proper (x−n, (q−1)k−r)-colouring of K(n, k),

and consequently have proved χ(q−1)k−r(K(n, k)) ≤ χqk−r(K(n, k)) − n. □

We need the following technical lemma for the proof of Theorem 2.3.3.

Lemma 2.3.5.

For any k ≥ 2, there exist n0(k) ≤ k3 − k2 +

√
41 − 3

2
k − 1 such that if

n ≥ n0(k), then
α∗(K(n, k))

α(K(n, k))
<

n

(n− 2k + 2)k
.
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Proof. First note that if k = 2, then
α∗(K(n, k))

α(K(n, k))
=

3

n− 1
, which is smaller

than
n

2(n− 2)
if n > 4. I.e. n0(2) = 5 suffices.

Now assume k ≥ 3. Note that

α∗(K(n, k))

α(K(n, k))
=

(
n−1
k−1

)
−
(
n−k−1
k−1

)
+ 1(

n−1
k−1

) = 1 −
k−1∏
i=1

n− k − i

n− i
+

1(
n−1
k−1

) ,
and

n

(n− 2k + 2)k
=

1

k

(
1 +

2(k − 1)

n− 2k + 2

)
.

For all k ≥ 3 and n ≥ 2k we have

1(
n−1
k−1

) =
k!∏k−1

i=1 (n− i)
=

k − 1

k(n− 2k + 2)
· k

2(k − 2)!(n− 2k + 2)∏k−1
i=1 (n− i)

=
k − 1

k(n− 2k + 2)
· 2k

n− 1
· k

n− 2
· n− 2(k − 1)

n− (k − 1)
·
k−2∏
i=3

k − i + 1

n− i

<
k − 1

k(n− 2k + 2)
.

Also

k−1∏
i=1

n− k − i

n− i
=

k−1∏
i=1

(
1 − k

n− i

)
>

(
1 − k

n− k + 1

)k−1

. Hence it

suffices to find n0(k) ≥ 2k such that 1 −
(

1 − k

n− k + 1

)k−1

≤ 1

k
for any

n ≥ n0(k).

Define f(n, k) :=

(
1 − k

n− k + 1

)k−1

− k − 1

k
. Since for any fixed k,

f(n, k) increases as n increases, it suffices to find some n0(k) ≥ 2k such

that f(n0(k), k) ≥ 0.

Let n0(k) = k3 − k2 + (c + 1)k − 1, where c =

√
41 − 5

2
≈ 1.702 and define

g(k) := f(n0(k), k) =

(
1 − 1

k2 − k + c

)k−1

− k − 1

k
. Then for any k ≥ 3,

g(k) ≥ 0 if and only if h(k) := (k − 1) ln

(
1 − 1

k2 − k + c

)
− ln

k − 1

k
≥ 0.

Note that lim
k→∞

g(k) = 0, hence it suffices to prove
dh

dk
≤ 0, which is indeed

the case with the chosen c. □

Now we are ready to prove Theorem 2.3.3.
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Proof of Theorem 2.3.3. If k = 1, then K(n, k) is the complete graph Kn

and χk′(K(n, 1)) = nk′ for any k′. Hence Theorem 2.3.3 is true for k = 1.

Now assume k ≥ 2. Take n ≥ n0(k), with n0(k) as in Lemma 2.3.5, and

assume there is a proper (x, qk−r)-colouring of K(n, k) for some x ≤ qn−2r.

We will prove there is a proper (x−q, qk−r)-colouring of K(n−1, k), which

shows χqk−r(K(n− 1, k)) ≤ χqk−r(K(n, k)) − q.

We first claim there are at least (q − 1)n + 1 trivial colour classes in the

(x, qk − r)-colouring of K(n, k). If this is not the case, then there are at

most (q− 1)n colour classes that appear on more than α∗(K(n, k)) vertices.

Hence counting the total number of appearance of each vertex in all colour

classes, we have

(qk − r)

(
n

k

)
≤ (q − 1)nα(K(n, k)) + (x− (q − 1)n)α∗(K(n, k))

≤ (q − 1)nα(K(n, k)) + (qn− 2r − (q − 1)n)α∗(K(n, k)),

(2.13)

since each vertex appear in exactly qk − r colour classes.

Rearranging (2.13) leads to
α∗(K(n, k))

α(K(n, k))
≥ n(k − r)

k(n− 2r)
=

n

2k

(
1 − n− 2k

n− 2r

)
≥

n

(n− 2k + 2)k
, which contradicts Lemma 2.3.5.

Hence there are at least (q− 1)n+ 1 trivial colour classes in the (x, qk− r)-

colouring, where each trivial colour class is a subset of

{
F ∈

(
[n]

k

) ∣∣∣∣ i ∈ F

}
for some i ∈ [n]. Therefore there is some i∗ ∈ [n] such that at least q

trivial colour classes are subsets of

{
F ∈

(
[n]

k

) ∣∣∣∣ i∗ ∈ F

}
. Without loss of

generality assume i∗ = n. Removing those q trivial colour classes, we obtain

a (x− q, qk − r)-colouring of of K(n− 1, k), as required. □

2.4 Concluding Remarks

Our results are mainly of the following two types.

We present a simple proof of and extend known cases, using the order of

maximum independent set in Kneser graphs. As discussed in Section 2.3,

this simple bound is surprisingly strong.
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We also show that for each k, at most k3 − k2 values of χk′(n, k) need to

be examined to either prove the conjecture for k or find a counterexample.

As mentioned in Section 2.1, for fixed k, larger n yield smaller q0(n, k). For

instance:

(a) if n ≥ ck − 1 for some constant c > 2, then we have

q0(n, k) <

((
c− 1

c− 2

)k−1

− 1

)
(n− 2k) + 1;

(b) if n ≥ k2 + k − 1, then q0(n, k) < (e − 1)(n− 2k) +
1

k + 1
;

(c) if n ≥ k3 + k − 1, then q0(n, k) <
n

k
− 1.

Note that it is likely these upper bounds for n0(k) and q0(n, k) can be

improved, which may require some more involved calculations.

On the other hand, if the conjecture is false for some n, q, k, r, then we can

find more cases that the conjecture is false by Theorems 2.3.3 and 2.3.4.

Corollary 2.4.1.

If for some n, q, k, r, we have χqk−r(K(n, k)) ≤ qn− 2r− 1, then for any r′

such that r ≤ r′ ≤ k − 1 and q′ ≥ q + r′ − r, we have χq′k−r′(K(n, k)) ≤
q′n− 2r′ − 1.

Csorba and Osztényi [7] proved that the topological lower bounds used by

Lovász to prove the Kneser Conjecture cannot be used (immediately) to

prove Stahl’s conjecture. They proved that the topological lower bound only

implies χk′(K(n, k)) ≥ k′
⌊n
k

⌋
for k′ ≥

(
n

k

)
. With our Theorem 1.1.2, for

any fixed k and n, we only need to determine one χqk−r(K(n, k)) with q >

q0(n, k) to either prove or disprove the conjecture, and q0(n, k) is reasonably

small if n is large comparing to k. (E.g. we have just seen that if n ≥
k3 + k− 1, then q0(n, k) <

n

k
− 1.) Hence it might still be possible to prove

the conjecture for large enough n for each k using the same topological

bounds.

On the other hand, although q0(n, k) decreases as n increases, it never de-

creases to less then 2 for general k. Hence one can not hope to prove a ‘large

enough n’ result using only Theorem 2.3.3.

We studied the question that for what pairs of n′ and k′, is there a homo-
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morphism from K(n, k) to K(n′, k′)? One may ask a similar question: for

what pairs of n′ and k′, is there a homomorphism from K(n, k) to K(n′, k′)

and a homomorphism from K(n′, k′) to K(n, k) at the same time?

This question is not hard to answer. For simplicity, we write G → H if there

is a graph homomorphism from G to H.

Theorem 2.4.2.

For any integers k and n ≥ 2k, we have K(n, k) → K(n′, k′) and K(n′, k′) →
K(n, k) at the same time if and only if

(1) n = n′ and k = k′, or

(2)
n

k
=

n′

k′
= 2.

Proof. If n = n′ and k = k′, then clearly K(n, k) → K(n′, k′) and K(n′, k′) →

K(n, k). Also if
n

k
=

n′

k′
= 2, then both K(n, k) and K(n′, k′) are bipartite,

and we can easily map any bipartite graph to a single edge, by mapping all

vertices in one part to one endvertex of that edge, and all vertices in the

other part to the other endvertex.

Now assume that we have both K(n, k) → K(n′, k′) and K(n′, k′) → K(n, k),

but (2) does not hold. This means that K(n, k) is (n′, k′)-colourable, and

hence
n′

k′
≥ χf (K(n, k)) =

n

k
. Similarly, we find

n

k
≥ χf (K(n′, k′)) =

n′

k′
.

So we get that
n′

k′
=

n

k
> 2 (since we assumed (2) does not hold). We can

write this as n′ =
nk′

k
> 2k′ and n =

n′k

k′
> 2k. Then the second statement

of Lemma 2.3.1 gives that k′ is a multiple of k and k is a multiple of k′.

That must mean k = k′, and hence also n = n′, so (1) holds. □
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3
n-Colourable Induced

Subgraphs

3.1 Introduction

We study partial colouring problems in this and the next chapters. Those

questions are inspired by a partial colouring conjecture in list colouring.

Graphs in this chapter are undirected and without multiple edges nor loops.

Recall that in list colouring, each vertex of a graph is allocated with a list

of colours that can be used for that vertex. A proper list colouring assigns

a colour to each vertex from its list, such that adjacent vertices receive

different colours. A graph G is n-choosable, if for each assignment of lists of

length n to each vertex, a proper list colouring exists. And the list chromatic

number χℓ(G) is the smallest n for which G is n-choosable.

In 2000, Albertson, Grossman, and Haas [2] asked the following question:

given a graph G with list chromatic number n, if each vertex has been

assigned a list with n′ colours, 1 ≤ n′ ≤ n, can we always properly colour at

least
n′

n
|V (G)| vertices of G?

This problem is trivial for ordinary colouring. Recall that a graph G is n-

colourable if there is a proper colouring of (the vertices of) G using n colours.

If a graph G is n-colourable, then we can always partition the graph into n
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Chapter 3. n-Colourable Induced Subgraphs

independent sets by using the n colour sets. If we only have n′ ≤ n colours

available, we can always colour at least
n′

n
|V (G)| vertices by choosing the

largest n′ independent sets. In general, it is not possible to obtain a better

lower bound than
n′

n
|V (G)|, as can be seen by, for example, considering

complete graphs.

For the original question on list colouring, Chappell [5] proved that if G is

n-choosable and n′ ≤ n, then at least
6

7
· n

′

n
|V (G)| vertices can always be

properly coloured if every vertex has a list of n′ colours. The conjecture of

Albertson, Grossmann, and Haas has been studied extensively, see e.g. [25,

31,32], and is still open.

In this and the next chapters, we study the partial colouring problem asso-

ciated with other variants of graph colouring multi-colouring and fractional

colouring.

Recall that a graph G is (n, k)-colourable if there is a proper multi-colouring

by assigning k-subsets of [n] to the vertices of G. And the k-th multi-

chromatic number χk(G) is the smallest n such that G is (n, k)-colourable.

Also recall that a graph G is fractional-
n

k
-colourable if G is (ℓn, ℓk)-colourable

for some integer ℓ ≥ 1. And the fractional chromatic number χf (G) is the

infimum of
n

k
so that G is fractional-

n

k
-colourable.

It is natural to ask whether the question of Albertson et al. also holds

in the setting of multiple colouring or fractional colouring. For instance,

for any fractional-r-colourable graph G and s < r, does it always have a

fractional-s-colourable subgraph of at least
s

r
|V (G)| vertices? We show that

this bound do not always hold. In Section 4.2.1 we will show that that if

s < r, then there exists fractional-r-colourable graphs G for which strictly

less than
s

r
|V (G)| vertices can be properly fractional-s-coloured. Similar

properties are also observed on multiple colouring. Thus it is natural to ask

the following questions.

Question 3.1.1.

(a) Given a rational number r > 0 and integer n ≥ 1, for what real num-

ber a can we guarantee that every fractional-r-colourable graph G has an

n-colourable induced subgraph with at least a|V (G)| vertices?
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Chapter 3. n-Colourable Induced Subgraphs

(b) Given rational numbers r, s > 0, for what real number b can we guaran-

tee that every fractional-r-colourable graph G has a fractional-s-colourable

induced subgraph with at least b|V (G)| vertices?

(c) Given positive integers n, k, n′, k′, for what real number c can we guar-

antee that every (n, k)-colourable graph G has an (n′, k′)-colourable induced

subgraph with at least c|V (G)| vertices?

We focus on Question 3.1.1 (a) in this chapter. Questions 3.1.1 (b) and (c)

will be covered in the next chapter. We present the main results and some

proofs in Section 3.2; all other proofs can be found in Section 3.3.

3.2 Results

Let G be a graph, n′ a positive integer and r a positive rational number.

Recall the definition of γ(G,n′) and γ(r, n′) from the first chapter:

γ(G,n′) = max

{
|V (H)|
|V (G)|

∣∣∣∣H ⩽i G, H is n′-colourable

}
,

γ(r, n′) = inf{γ(G,n′) | χf (G) = r}.

(Here H ⩽i G means that H is an induced subgraph of G.)

Note that a graph H is 1-colourable if and only if H is edgeless. This means

that we have for any graph G: γ(G, 1) =
α(G)

|V (G)|
, where α(G) denotes the

independence number of G (order of the maximum independent set of G).

It is well known that
α(G)

|V (G)|
≥ 1

χ(G)
, but in fact we have the sharper

inequality
α(G)

|V (G)|
≥ 1

χf (G)
. This inequality follows from the following

argument. The fractional chromatic number χf (G) is the infimum of
n

k
for

which G is (n, k)-colourable. If G is (n, k)-colourable, then simple counting

over all vertices and colour classes yields k|V (G)| ≤ nα(G), i.e.
α(G)

|V (G)|
≥

1

n/k
for this pair n, k. This gives that

α(G)

|V (G)|
≥ 1

χf (G)
.

This lower bound is also the best possible if only χf (G) is known. For in-

stance, if G is vertex transitive, then we have
α(G)

|V (G)|
=

1

χf (G)
(see e.g. [43]).
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(A graph G is vertex transitive if for any two vertices u, v ∈ V (H), there

is an automorphism of H that maps u to v.) This means that for rational

numbers r = 1 or r ≥ 2, we have γ(r, 1) =
1

r
. (There is no graph with

fractional chromatic number strictly between 1 and 2.)

Before discussing lower bounds, we note that n′ = 2 is a special case, since

γ(r, 2) = γf (r, 2). This is an easy conclusion by a well-known and easy-to-

prove fact: for a graph H, χf (H) = 2 if and only if χ(H) = 2. I.e. H is

(2k, k)-colourable for some positive integer k if and only if H is bipartite.

Later in this chapter, we will prove the following result.

Theorem 3.2.1.

(a) If r =
n

k
for some co-prime n and k and 2 ≤ n′ < n − 2k + 2, then we

have γ(r, n′) = 1 −
(

1 − 1

r

)n′

.

(b) The bound in part (a) is not attained by any graph, i.e. for any fractional-

r-colourable graph G we have the strict inequality γ(G,n′) > γ(r, n′).

We start with showing the lower bound for γ(G,n′) with given χf (G) = r

is always attained by a Kneser graph. Recall for n ≥ k ≥ 1, the Kneser

graph K(n, k) has the collection of all k-subsets of [n] (denoted by

(
[n]

k

)
) as

vertex set, and there is an edge between two vertices if and only if these two

k-sets are disjoint. We will always assume n ≥ 2k, as otherwise the graph is

edgeless. It is well known and easy to prove (see e.g. [43]) that a graph G is

(n, k)-colourable if and only if there is a homomorphism from G to K(n, k).

To decide γ(r, n′) with given r, it suffices to only look at Kneser graphs with

fractional chromatic number r, by the following theorem.

Theorem 3.2.2.

If G is (n, k)-colourable, then γ(G,n′) ≥ γ(K(n, k), n′).

In fact, a more general statement can be proved for vertex transitive graphs

using similar averaging argument. Then Theorem 3.2.2 is an easy corollary

of the well-known fact that Kneser graphs are vertex transitive. We will

only prove the following more general theorem.
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Theorem 3.2.3.

If there is a graph homomorphism from a graph G to a vertex transitive

graph H, then for any n′ we have γ(G,n′) ≥ γ(H,n′).

Note that Theorem 3.2.3 reproduces Albertson and Collins’ no-homomorphism

Lemma in [1]. We will also generalise it in Section 4.2.

3.2.1 n′-Colourable Induced Subgraphs of K(n, k)

In this section, we study the maximum n′-colourable induced subgraphs of

K(n, k) in detail. For easy of reading, we will use the equivalent term n′-

partite instead of n′-colourable. In particular, we give upper bounds on the

order of such subgraph by structural and algebraic methods. We also give

several lower bounds by constructing specific types of subgraphs.

The celebrated Erdős-Ko-Rado Theorem [14] states that, for any n ≥ 2k, the

maximum independent set of the Kneser graph K(n, k) is of order

(
n− 1

k − 1

)
.

Moreover, if n ≥ 2k + 1, then the only such maximum independent set (up

to permutations of the ground set [n]) is the maximal trivial independent

set

{
F ∈

(
[n]

k

) ∣∣∣∣ 1 ∈ F

}
.

An n′-partite induced subgraph of K(n, k) is trivial if there are at most n′

elements of [n] so that each vertex in this subgraph contains some of those

n′ elements. Natural candidates of a ‘large’ n′-partite induced subgraph in

K(n, k) will be the maximal trivial families:

{
F ∈

(
[n]

k

) ∣∣∣∣ F ∩ [n′] ̸= ∅
}

.

Interestingly, those maximal trivial families are indeed the largest n′-partite

induced subgraphs if n is large enough (as a function of k and n′). On the

other hand, larger n′-partite induced subgraphs can always be constructed

if n is ‘close’ to 2k, as we will discuss later in this section.

For simplicity of formulas, we denote t(n, k, n′) :=

(
n
k

)
−
(
n−n′

k

)(
n
k

) as the

relative size of a maximal trivial n′-partite induced subgraph of K(n, k)

compared to the whole graph. Then for any n′ ≤ n − 2k + 1 (because
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χ(K(n, k)) = n− 2k + 2), we have

γ(K(n, k), n′) ≥
(
n
k

)
−
(
n−n′

k

)(
n
k

) =: t(n, k, n′).

Independent sets in Kneser graphs that are not trivial have also been studied.

For a non-trivial independent set H ⩽i K(n, k), assume 1 is the element that

appears most among all the vertices. Since H is not trivial, we can assume

[2, k + 1] is a vertex in H. Hence a natural candidate of large non-trivial

independent set is

{
F ∈

(
[n]

k

)∣∣∣∣1 ∈ F, F ∩ [2, k + 1] ̸= ∅
}
∪{[2, k+1]}. This

set family has

(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1 vertices. Hilton and Milner [28]

showed that if n > 2k and H ′ is an independent set in K(n, k) that is not

trivial, then |H ′| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1. They also showed that the

maximum such independent sets is either the set we discussed, or another

certain structure (in some edge cases). We will not discuss more details here.

In Section 3.3.1, we will prove the following theorem using the Erdős-Ko-

Rado Theorem and the Hilton-Milner bound on non-trivial maximum inde-

pendent set.

Theorem 3.2.4.

For any n′ ≥ 1, k ≥ 2 and n ≥ n0(n
′, k) := max{k2 + n′, n′k}, we have

γ(K(n, k), n′) = t(n, k, n′).

The main idea behind the proof of this result is that if n is quadratic in k,

then t(n, k, n′) is larger than the upper bound for an n′-partite induced

subgraph of K(n, k) that is not trivial.

Note that more careful calculations can give better bounds on n than those

in Theorem 3.2.4. For instance, it is not hard to prove:

• if n ≥ 1
2k

2 + k − 1 and k ≥ 4, then γ(K(n, k), 2) = t(n, k, 2) (and hence

γf (K(n, k), 2) = γ(K(n, k), 2) = t(n, k, 2)); and

• if n ≥ max
{
1
2k

2 + k + 2, 3k
}
, then γ(K(n, k), 3) = t(n, k, 3).

But on the other hand, only using the Hilton-Milner Theorem cannot lead

to a better than quadratic lower bound of n0(2, k). We will prove in Sec-

tion 3.3.1 that for any constants a and ϵ > 0, the condition n > ak2−ϵ is
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not sufficient to prove that the non-trivial bipartite upper bound is smaller

than the trivial one, if only the Hilton-Milner Theorem is used.

So a natural next question is: can we get a better-than-quadratic n0(2, k)?

The answer is yes, but we need to use more information about the structure

of Kneser graphs than just their independent sets.

For instance we have the following.

Theorem 3.2.5 (Frankl and Füredi [18]).

If n ≥ 1
2(3 +

√
5)k, then γ(K(n, k), 2) = t(n, k, 2).

This result means that if a graph G is (n, k)-colourable, for some n, k

with n ≥ 1
2(3 +

√
5)k, and this is the only information we know, then

γ(G, 2) ≥ t(n, k, 2) is the best possible lower bound. This also means

γ(r, 2) = inf
{
t(n, k, 2)

∣∣∣ n
k

= r
}

for rational r ≥ 1
2(3 +

√
5).

Note that in the same paper, Frankl and Füredi also claimed that if n = 2k+

c
√
k, then γ(K(n, k), n′) ≤ (1+c−4)t(n, k, 2) as Theorem 1; but there are er-

rors in their proof, which cannot be easily fixed. Their Theorem 1 was proved

using Lemma 4 from the same paper, in which they claimed that if n < 2k+
k

2
, then the order of A :=

{
F ∈

(
[n]

k

) ∣∣∣∣|F ∩ [1, 2i]| ≥ i for some i ≥ n

4

}
is

bounded above by some small multiple of

(
n

k

)
. This upper bound and def-

inition of A are both critical in their later proof of Theorem 1 (in the sense

that their counting technique in Theorem 1 requires the definition of A to

be exactly the same as they claimed). But in the proof of Lemma 4, they

instead counted

{
F ∈

(
[n]

k

) ∣∣∣∣min{i : |F ∩ [1, 2i]| ≥ i} ≥ n

4

}
, which missed

all sets F such that min{i : |F ∩ [1, 2i]| ≥ i} <
n

4
but still satisfies

|F ∩ [1, 2i]| ≥ i for some i ≥ n

4
.

For those (n, k), n ≥ 2k, that are not covered by Theorem 3.2.5, we can

prove the upper bound in the theorem below. We use a ‘shifting method’

to ‘re-structure’ any given induced bipartite subgraph of a Kneser graph,

without reducing its order. This method allows us to assume some structure

of a maximum induced bipartite subgraph, and hence to analyse its order.

Unfortunately, this method does not apply to n′-partite subgraphs with
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n′ ≥ 3 in the most obvious way. We will discuss this method further in

Section 3.3.2.

Theorem 3.2.6.

If n = ck where c < 1
2(3 +

√
5), then there exists a f(c, k) ≤ 4

3 such that

γ(K(n, k), 2) ≤ f(c, k)t(n, k, 2).

We present and discuss the explicit formula of f(c, k) in Section 3.3.2. Here

we just note that for fixed c < 1
2(3 +

√
5), we have

lim
k→∞

f(c, k) = min

{
c2

c3 − 3c2 + 4c− 1
,
−c3 + 4c2 − 2c

2c− 1

}
.

Also note that
c2

c3 − 3c2 + 4c− 1
=

−c3 + 4c2 − 2c

2c− 1
= 1 if c = 1

2(3 +
√

5),

which agrees with Frankl and Füredi’s result if n = 1
2(3 +

√
5)k.

One may next ask the question that whether a smaller bound on n0(n
′, k)

is possible. I.e. does there exist n0(n
′, k) smaller than 1

2(3 +
√

5)k such that

if n ≥ n0(n
′, k), then the largest n′-partite induced subgraph of K(n, k) is

trivial? This seems to be beyond the scope of classic structural methods.

Recently, Ellis and Lifshitz [10] use an influence-based method to show that

the largest n′-partite induced subgraph of K(n, k) is trivial if n ≥ 2k +

c(n′)k2/3, where c(n′) is a large constant depending only on n′. The fact

that c(n′) only depends on n′ allows us to conclude the following.

Theorem 3.2.7.

If χf (G) =
n

k
, where n and k are co-prime, then for 2 ≤ n′ ≤ n − 2k + 1,

γ(G,n′) > 1 −
(

1 − k

n

)n′

is the best possible lower bound.

In particular, γ
(n
k
, n′
)

= 1 −
(

1 − k

n

)n′

for n, k, n′ as above.

We have seen how structural bounds on the maximum n′-partite induced

subgraph of K(n, k) behave. We can also study the maximum n′-partite

induced subgraph problem using algebraic methods. We describe our ideas

and results in what follows.

In order to be able to use algebraic methods, we first turn the maximum

n′-partite induced subgraph problem into a maximum independent set prob-

lem. For two graphs G and H, the Cartesian product G 2 H has vertex
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set {(u, v) | u ∈ G, v ∈ H}, and (u1, v1)(u2, v2) is an edge if and only if

u1 = u2 and v1v2 ∈ E(H), or v1 = v2 and u1u2 ∈ E(G). For an integer n′,

there exists an obvious one-to-one correspondence between an n′-colourable

subgraph of G and an independent set in G2Kn′ .

There exist a well-known algebraic upper bound of the maximum size inde-

pendent set of a graph G: The independence number is at most the minimum

of the number of non-negative eigenvalues and the number of non-positive

eigenvalues of any weighted adjacency matrix of G. The adjacency matrix

A(G) is the |V (G)| × |V (G)| matrix with rows and columns labelled by ver-

tices, where (A(G))ij = 1 if ij is an edge and (A(G))ij = 0 otherwise. A

weighted adjacency matrix of G is a matrix obtained by replacing any of the

entries 1 (i.e. any component ij corresponding to an edge) by a real number.

See e.g. [24] for information on this approach. This method is known as the

‘inertia method’ or the ‘inertia bound’ in the literature.

Eigenvalues of adjacency matrices of Kneser graphs are well-studied. This

allows us to find the eigenvalues of certain weighted adjacency matrices of

the Cartesian product K(n, k) 2Kn′), and hence to find upper bounds on

their independence numbers. Note a general formula for general weighted

adjacency matrices is more or less impossible to find.

The weighted adjacency matrix of K(n, k) 2 Kn′ we will consider is the

matrix A(K(n, k)) ⊗ In′ + β · I(nk) ⊗ A(Kn′), where β is any real constant.

Here ⊗ denotes the tensor product of matrices. Hence A(K(n, k)) ⊗ In′ +

β · I(nk) ⊗A(Kn′) is just the weighted adjacency matrix of K(n, k)2Kn′ , by

assigning weight 1 to edges generated by edges from K(n, k), and weight β

to edges generated by edges from Kn′ .

For n′ = 2, by finding the value of β in A(K(n, k)) ⊗ I2 + β · I(nk) ⊗ A(K2)

that gives the best inertia bound, we get the following upper bound for the

order of induced bipartite subgraphs of K(n, k). We will later discuss that

in a certain sense this bound is a ‘pretty good’ upper bound for n ‘close’

to 2k. The structural bound in Theorem 3.2.6 is better for n a bit further

away from 2k.
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Theorem 3.2.8.

If H ⩽i K(n, k) is bipartite, then |V (H)| ≤
(
n

k

)
−
(
n− 1

i + 1

)
+

(
n− 1

i

)
,

where i = min

{
k − 1,

⌊
n− 1 −

√
n + 1

2

⌋}
.

More upper bounds for n′ = 2, when n is close to 2k are studied and com-

pared in Section 3.4.1, including a linear programming formulation that

strengthens our structural upper bound. We also looked at other existing

algebraic methods to bound the independence number, such as Hoffman’s

bound [29] and the method developed by Wilson [47]. We did not man-

age to use these methods, though, to give better upper bounds then those

mentioned in this section.

At this point we have seen various upper bounds for the order of an induced

n′-partite subgraph of K(n, k). The next question is whether we have better

lower bounds than the trivial one. That is, whether we have a construction

of induced n′-partite subgraphs that is larger than the trivial.

The answer is yes. If n − 2k = o(
√
k), then we will present a construc-

tion showing γ(K(n, k), n′) > t(n, k, n′) for large enough k. I.e. if we

have a function f(k) such that f(k) = o(
√
k), then for large enough k

and n = 2k + f(k) we can always find n′-partite induced subgraphs of

K(n, k) that are larger than the trivial n′-partite induced subgraph in-

duced by

{
F ∈

(
[n]

k

) ∣∣∣∣ F ∩ [n′] ̸= ∅
}

. In addition, for n′ = 2 we can require

f(k) ≥ 1 if k ≥ 3. In particular this means that we can give larger than

trivial bipartite subgraphs of K(n, k) if n = 2k + 1, for all k ≥ 3.

We now describe our construction. If n = 2k, then the whole Kneser graph

is bipartite. If n > 2k, we consider the subgraph of K(n, k) induced by the

following vertex sets, based on the parity of k.

Example 3.2.9.

If k = 2t + 1 is an odd positive integer and n ≥ 2k + 1, then we take

Fodd(n, k) :=

{
F ∈

(
[n]

k

) ∣∣∣∣ |F ∩ [k]| ≥ 1
2(k + 1)

}
∪
{
F ∈

(
[n]

k

) ∣∣∣∣ |F ∩ [n− k + 1, n]| ≥ 1
2(k + 1)

}
,
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which has order |Fodd(n, k)| =

(
n

k

)
−

n−2k∑
j=1

(
k + j − 1

t

)(
n− k − j

t

)
.

If k = 2t is an even positive integer and n ≥ 2k + 1, then we take

Feven(n, k) :=

{
F ∈

(
[n]

k

) ∣∣∣∣ |F ∩ [k − 1]| ≥ 1
2k

}
∪
{
F ∈

(
[n]

k

) ∣∣∣∣ |F ∩ [n− k, n]| ≥ 1
2k + 1

}
,

which has order |Feven(n, k)| =

(
n

k

)
−

n−2k∑
j=1

(
k + j

t

)(
n− k − 1 − j

t− 1

)
.

We will prove the following theorem in Section 3.3.4, which shows that our

examples above are larger than trivial bipartite subgraphs in the specific

range.

Theorem 3.2.10.

For any k ≥ 3, there exists T ≥ 1 such that if 2k + 1 ≤ n ≤ 2k + T , then

the Example 3.2.9 are larger than the trivial bipartite induced subgraphs of

K(n, k). Moreover, this T can be arbitrary large if k is large enough.

It is worth noting that even for n′-partite induced subgraphs with n′ > 2,

the same examples are still better than trivial for some values of n and k.

Theorem 3.2.11.

If n−2k = o(
√
k), then for sufficiently large k, the subgraphs induced by the

vertex sets in Example 3.2.9 are larger than the trivial n′-partite induced

subgraphs in K(n, k).

Note that Frankl and Füredi [18] also give a better than trivial construction

of bipartite induced subgraphs, but our construction in Example 3.2.9 is

always marginally better than theirs. More precisely, our subgraphs are

always larger, but if we divide the sizes of the subgraphs by the size of

trivial n′-partite subgraphs, then asymptotically they behave the same. We

will discuss this in details in Section 3.3.4.

It is clear that the above constructions give a lower bound for γ(K(n, k), n′).

Interestingly, both the lower bound and the upper bounds we studied have
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the property that if n = 2k + o(
√
k), then they approach to 4

3 t(n, k, 2)

as k goes to infinity. But in fact, this already is the case for most of the

earlier known lower and upper bounds. When we consider the case that

n = 2k + Ω(
√
k), we see some more variation among the different bounds.

This will be discussed in Section 3.4.1.

3.2.2 Inertia Bounds for γ(K(n, k), n′)

Theorem 3.2.8 provides an algebraic upper bound for γ(K(n, k), 2) that is

also known as the inertia bound. This method generalises to γ(K(n, k), n′)

for any integer n′ ≥ 2, as we will discuss in this subsection. However, as we

will see, this general upper bound is not very powerful for larger n′, if we

use the same edge weights as we did to obtain Theorem 3.2.8.

It is considerably more involved to analyse the cases with more different

edge weights. We went a bit further for the case n′ = 3, i.e. considering the

graph K(n, k)2K3, assigning weight 1 to edges corresponding to edges from

K(n, k) and three different weights to the three edges corresponding to the

copies of K3. But we can show that does not lead to a better upper bound

than just using one edge weight. Computational experiments indicate that

this may also hold for larger n′ (i.e. that using multiple edge weights on

the Kn′ part does not lead to a better upper bound). For space reasons, we

will not discuss this further.

Theorem 3.2.12.

For any n′ ≥ 3 and n ≥ 2k + n′ − 1 (so K(n, k) is not n′-colourable), an

n′-colourable subgraph in K(n, k) has order at most

min

{(
n

k

)
,

(
n

k

)
−
(
n− 1

i + 1

)
+ (n′ − 1)

(
n− 1

i

)}
,

where i = min

{
k − 1,max

{⌊
n′k − n

n′ − 2

⌋
,(n′ + 2)n− 2n′ −
√

((n′ − 2)n)2 + 4n′2n + 4n′2

4n′


.

Furthermore, this is the best possible inertia bound in the following cases:

(a) if we only apply one type of edge weight in Kn′, i.e. using the eigenvalues
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of A(K(n, k)) ⊗ In′ + β · I(nk) ⊗A(Kn′);

(b) if n′ = 3 and we use three different edge weights on edges corresponding

to the copies of K3 in K(n, k) 2K3.

We prove Theorem 3.2.12 in Section 3.3.3. In the remainder of this subsec-

tion we will discuss the limitations of this bound.

Since we assume n ≥ 2k + n′ − 1 (otherwise the whole graph K(n, k) is

n′-colourbale), it is clear that we can colour at most

(
n

k

)
− (n − 2k +

2 − n′) vertices properly with n′ colours. (Otherwise we will have a proper

colouring of the whole graph with fewer than n−2k+2 colours, contradicting

the Kneser Theorem proved by Lovász.) Hence we consider the bound in

Theorem 3.2.12 as useful if and only if the bound is strictly less than

(
n

k

)
.

We will show that if n ≤ n′2k

2n′ − 2
, then Theorem 3.2.12 does not provide a

useful bound. Since
n′2

2n′ − 2
=

n′ + 1

2
+

1

2n′ − 2
≥ 9

4
if n′ ≥ 3, this leaves

only a limited range of n with a useful inertia upper bound for each k. On

the other hand, recall that Ellis and Lifshitz [10] proved that the largest

n′-partite induced subgraph of K(n, k) is trivial if n ≥ 2k+ c(n′)k2/3, where

c(n′) is a large constant only depend on n′. Hence the inertia bound in

Theorem 3.2.12 is only useful for those n with
n′2k

2n′ − 2
< n < 2k+c(n′)k2/3.

For fixed n′, such n exist for finitely many k only, depending on the value

of c(n′).

We now give the promised proof that if n ≤ n′2k

2n′ − 2
, then Theorem 3.2.12

does not provide a useful bound.

As in the theorem, set i∗ = min

{
k − 1,max

{⌊
n′k − n

n′ − 2

⌋
,(n′ + 2)n− 2n′ −

√
((n′ − 2)n)2 + 4n′2n + 4n′2

4n′

}}.

It is clear that our bound in the theorem is useful if and only if

−
(
n− 1

i∗ + 1

)
+ (n′ − 1)

(
n− 1

i∗

)
< 0,

which simplifies to n > n′(i∗ + 1). That is, the bound is useful if and only
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• if n > n′k, or

• n > n′
(⌊

n′k − n

n′ − 2

⌋
+ 1

)
and

n > n′

(n′ + 2)n− 2n′ −
√

((n′ − 2)n)2 + 4n′2n + 4n′2

4n′

+ 1

.

Note that

n′

(n′ + 2)n− 2n′ −
√

((s− 2)n)2 + 4n′2n + 4n′2

4n′

+ 1


≤

(n′ + 2)n− 2n′ −
√

((n′ − 2)n)2 + 4n′2n + 4n′2

4
+ n′

≤
(n′ + 2)n + 2n′ −

√
((n′ − 2)n + (2n′ + 4))2

4
(since n′ ≥ 3)

= n− 1 < n.

Therefore, the bound in Theorem 3.2.12 is not useful if and only if n ≤

n′
(⌊

n′k − n

n′ − 2

⌋
+ 1

)
and n ≤ n′k. We can simplify this by noting that if

n ≤ n′ · n
′k − n

n′ − 2
, then n ≤ n′

(⌊
n′k − n

n′ − 2

⌋
+ 1

)
. On the other hand, by re-

arranging n ≤ n′ · n
′k − n

n′ − 2
, we have n ≤ n′2k

2n′ − 2
=

(
n′ + 1

2
+

1

2n′ − 2

)
k ≤

n′k, for all n′ ≥ 3. Thus we conclude that if n ≤ n′
(
n′k − n

n′ − 2

)
, then

Theorem 3.2.12 does not give a useful bound.

3.3 Proofs for the Results in this Chapter

In this section we prove the results presented in the previous section. We

first prove Theorem 3.2.3.

Theorem 3.2.3.

If there is a graph homomorphism from a graph G to a vertex transitive

graph H, then for any n′, we have γ(G,n′) ≥ γ(H,n′).

Proof. Consider any vertex transitive graph H, and let G be any graph that

admits a homomorphism φ : V (G) → V (H) to H.
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We will prove
π(G,K(n, k))

|V (G)|
≥ π(H,K(n, k))

|V (H)|
for any n, k. Recall that

π(G,K(n, k)) denotes the order of a largest induced subgraph of G that is

(n, k)-colourable. This immediately implies the theorem, since n′-colourable

is essentially (n′, 1)-colourable.

For fixed n, k, denote X1, . . . , Xt as all the maximum (n, k)-colourable in-

duced subgraphs of H. For a vertex v ∈ V (H), denote by m(v) the number

of Xi’s that contain v. For any two vertices v1, v2 ∈ V (H), there is an au-

tomorphism of H that maps v1 to v2, since H is vertex transitive. In that

automorphism, every Xi that contains v1 is mapped to a Xj that contains

v2, and different Xi’s are mapped to different Xj ’s, since the mapping is

bijective. Hence m(v2) ≥ m(v1). Similarly we have m(v1) ≥ m(v2). This

means that there is an m such that m(v) = m for all vertices v ∈ V (H).

Then we have

t · π(H,K(n, k)) =
t∑

i=1

|Xi| =
t∑

i=1

∑
v∈V (H)

1v∈Xi

=
∑

v∈V (H)

t∑
i=1

1v∈Xi = |V (H)|m,

where 1 is the indicator function that returns 1 if the subscript property is

true and 0 otherwise.

Since the preimage of any (n, k)-colourable graph is (n, k)-colourable, we

also have

t · π(G,K(n, k)) ≥
t∑

i=1

|φ−1(Xi)|

=

t∑
i=1

∑
u∈V (G)

1φ(u)∈Xi
=

t∑
i=1

∑
v∈V (H)

∑
u∈φ−1(v)

1φ(u)∈Xi

=

t∑
i=1

∑
v∈V (H)

1v∈Xi |φ−1(v)|,

(since v ∈ Xi if and only if φ(u) ∈ Xi for any u ∈ φ−1(v))

=
∑

v∈V (H)

t∑
i=1

|φ−1(v)|1v∈Xi =
∑

v∈V (H)

(
|φ−1(v)|

(
t∑

i=1

1v∈Xi

))
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=
∑

v∈V (H)

|φ−1(v)|m = |V (G)|m.

We can conclude
π(G,K(n, k))

|V (G)|
≥ m

t
=

π(H,K(n, k))

|V (H)|
. □

Then Theorem 3.2.2 is a simple corollary of the above, by the well-known

fact that Kneser graphs are vertex transitive.

3.3.1 Proof of Theorem 3.2.4 and Strength of Upper Bounds

only using Maximum Independent Sets

We prove Theorem 3.2.4 in this section, in which we analyse γ(K(n, k), n′)

using maximum (non-trivial) independent sets of Kneser graphs.

Theorem 3.2.4.

For any ≥ 1, k ≥ 2 and n ≥ n0(n
′, k) := max{k2 + n′, n′k}, we have

γ(K(n, k), n′) = t(n, k, n′).

Proof. Note this theorem essentially states that if n ≥ max{k2 + n′, n′k},

then the order of an n′-colourable induced subgraph of K(n, k) is bounded

above by the trivial n′-colourable induced subgraph.

This theorem is true for n′ = 1 by the Erdős-Ko-Rado Theorem. We first

prove the theorem for n′ = 2 and apply induction on n′ ≥ 2.

For n′ = 2, we consider each bipartite induced subgraph H as an union of

two independent sets H1 and H2. If both H1 and H2 are of the trivial kind,

then clearly |V (H)| ≤
(
n

k

)
−
(
n− 2

k

)
. If H1 is of the trivial kind, then

by moving all vertices in H2 that agree with the trivial type of H1 into H1

(i.e. if all vertices in H1 contain element x ∈ [n], then we move all vertices

in H2 that contain x into H1), we see the rest of |H2| is at most the largest

independent set in K(n− 1, k) and hence |V (H)| ≤
(
n

k

)
−
(
n− 2

k

)
.

If neither H1 nor H2 is of the trivial kind, then by the Hilton-Milner The-

orem, we have |V (H)| ≤ 2

((
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1

)
. Direct calcula-

tion shows if n ≥ max{k2 + 2, 2k}, then 2

((
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1

)
≤
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(
n

k

)
−
(
n− 2

k

)
and we are done.

Now assume this Theorem is true for all n′ that 2 ≤ n′ ≤ N . We will prove

its correctness for n′ = N + 1.

Consider any (N + 1)-colourable graph H ⩽i K(n, k), where n ≥ max{k2 +

N +1, (N +1)k}. As H is (N +1)-colourable, we can partition H into N +1

independent sets H1, . . . ,HN+1. Denote m (that 0 ≤ m ≤ N + 1) as the

number of independent sets that is trivial (i.e. there is an element shared by

all vertices in that independent set).

If m = 0, then we have |V (H)| ≤ (N + 1)

((
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1

)
by the Hilton-Milner bound. Direct calculation shows if n ≥ max{k2 +

N + 1, (N + 1)k}, then (N + 1)

((
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1

)
≤
(
n

k

)
−(

n− (N + 1)

k

)
.

If m ≥ 1, then without loss of generality, we can assume that Hi is trivial

for 1 ≤ i ≤ m; and for each trivial Hi∗ , the element shared by all vertices

in Hi∗ is i∗. Then similarly, we move all vertices F ∈ H that contains i for

some 1 ≤ i ≤ m into Hi, if that vertex is not already in one of H1, . . . ,Hm.

(If there are multiple i ∈ F that 1 ≤ i ≤ m, then it doesn’t matter which

Hi we move F into.)

Let H ′ be the graph induced by vertices in H that do not contain any of

1, . . . ,m. I.e. V (H ′) = {F ∈ V (H)|F ∩ [m] = ∅}. Then we have |V (H)| ≤(
n

k

)
−
(
n−m

k

)
+ |V (H ′)|. Note H ′ itself is an (N + 1−m)-colourable in-

duced subgraph of K(n − m, k). Since n ≥ max{k2 + N + 1, (N + 1)k},

we have n − m ≥ max{k2 + N + 1 − m, (N + 1)k − m} ≥ max{k2 +

N + 1 − m, (N + 1 − m)k}. Hence by our inductive hypothesis, we have

|H ′| ≤
(
n−m

k

)
−
(
n−m− (N + 1 −m)

k

)
. Therefore |V (H)| ≤

(
n

k

)
−(

n−m

k

)
+

(
n−m

k

)
−
(
n− (N + 1)

k

)
=

(
n

k

)
−
(
n− (N + 1)

k

)
.

This completes the inductive step. □

We mentioned in Section 3.2.1 that directly comparing independent set or-

ders using Erdős-Ko-Rado Theorem and Hilton-Milner Theorem does not
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lead to better-than-quadratic lower bound of n0(2, k). This is proved by

Lemma 3.3.1 and Theorem 3.3.2.

Lemma 3.3.1.

If H is a bipartite induced subgraph of K(n, k) (n > 2k) that at least one part

of H is trivial, then |V (H)| ≤ t(n, k, 2). In general, for any bipartite |H|,

we have |V (H)| ≤ max

{
t(n, k, 2), 2

(
n− 1

k − 1

)
−
(
n− k

k − 1

)
−
(
n− k − 1

k − 1

)
+(

n− k − 2

k − 3

)
+ 3

}
.

Theorem 3.3.2.

For any a, ϵ > 0, there exists k0 = k0(a, ϵ) such that for any k > k0, there

are integers n > ak2−ϵ that

(
n

k

)
−
(
n− 2

k

)
< 2

(
n− 1

k − 1

)
−
(
n− k

k − 1

)
−(

n− k − 1

k − 1

)
+

(
n− k − 2

k − 3

)
+ 3.

The first part of Lemma 3.3.1 is already proved in above. For completeness

we still include its proof. The rest is proved using a more fine-grained ver-

sion of the Hilton-Milner Theorem. Other than the bound we used in above,

Hilton and Milner [28] also proved that if n > 2k and H is an independent

set in K(n, k) so that any |V (H)|−t+1 vertices (t ≥ 0 and k ≥ min{3, t+1})

in H do not share a common element, then |H| ≤
(
n− 1

k − 1

)
−
(
n− k

k − 1

)
+n−k

if 2 < k < t + 2, and |H| ≤
(
n− 1

k − 1

)
−
(
n− k

k − 1

)
+

(
n− k − t

k − t− 1

)
+ t if k ≤ 2

or k ≥ n′ + 2.

(Note general non-trivial independent sets satisfy the above condition with

t = 1, hence general non-trivial independent sets have order at most

(
n− 1

k − 1

)
−(

n− k − 1

k − 1

)
+ 1.) Similar results for n′-colourable induced subgraphs can

also be studied, but we don’t state them explicitly here.

Short proof of Lemma 3.3.1. Fix n, k and let H be a bipartite induced sub-

graph of K(n, k). A bipartite subgraph is simply a union of two indepen-

dent sets, denote H = H1 ∪H2 where both H1, H2 are independent sets in

K(n, k). By the Erdős-Ko-Rado Theorem, we have |H| ≤ 2

(
n− 1

k − 1

)
.

But simply taking two maximum independent set (the trivial kind) only gives
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a bipartite subgraph of order

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
, since there are vertices

belong to both independent sets. Also if H1 is of the trivial kind, then

without loss of generality we assume all vertices in H1 contains element 1.

Then by moving every vertex in H2 containing 1 to H1, the rest of H2 can

at most be the maximum independent set in K(n− 1, k) and hence of order

at most

(
n− 2

k − 1

)
.

Hence if |V (H)| >
(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
, then it must be the case that both

independent sets H1 and H2 are non-trivial. If all but one vertices in H1

share one common element and same for H2, then both H1 and H2 are the

maximum non-trivial independent sets, and

|V (H)| ≤ 2

((
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1

)
− ‘overlap’.

With Hilton and Milner’s results, we know those maximum non-trivial in-

dependent sets have a specific structure{
F ∈

(
[n]

k

)∣∣∣∣1 ∈ F, F ∩ [2, k + 1] ̸= ∅
}
∪ {[2, k + 1]}

(or

{
F ∈

(
[n]

3

)∣∣∣∣F ∩ [3] ≥ 2

}
if k = 3). Hence we can determine that ‘over-

lap’ (i.e. vertices in both) will be at least

(
n− 2

k − 2

)
− 2(k − 1) if n = 2k + 1,

and

(
n− 2

k − 2

)
− 2

(
n− k − 2

k − 2

)
+

(
n− 2k − 2

k − 2

)
if n ≥ 2k + 2. (Here k > 3 is

essential; It is possible to construct two maximum non-trivial independent

set without overlap if k = 2 or k = 3.) This resulting order is always smaller

than

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
if k > 3.

If all but one vertices in H1 share one common element, and all but two ver-

tices in H2 share one common element, then we have |V (H)| ≤ 2

(
n− 1

k − 1

)
−(

n− k

k − 1

)
−
(
n− k − 1

k − 1

)
+

(
n− k − 2

k − 3

)
+ 3. (Here the ‘overlap’ still exists,

but becomes harder to analysis, since there will be more cases on possible

structure of H2. We avoid it here since this will not change our later results

of n0(k) by order in k.) □

Proof of Theorem 3.3.2. Denote LHS =

(
n

k

)
−
(
n− 2

k

)
=

(
n− 1

k − 1

)
+
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(
n− 2

k − 1

)
and RHS = 2

(
n− 1

k − 1

)
−
(
n− k

k − 1

)
−
(
n− k − 1

k − 1

)
+

(
n− k − 2

k − 3

)
+3.

Fix any a, ϵ > 0 and let n = ak2−ϵ + 2. We will prove if k is larger than

some k0(a, ϵ) (defined later), then we have LHS−RHS < 0. We can assume

0 < ϵ < 1, since if the statement is true for some ϵ∗, then it is true for any

ϵ > ϵ∗.

Note LHS − RHS = (A(k) − 1)

(
n− 2

k − 2

)
− 3, where

A(k) =

(
n− k

k − 1

)
+

(
n− k − 1

k − 1

)
−
(
n− k − 2

k − 3

)
(
n− 2

k − 2

)
=

(2n− k − 3)(n− 2k + 1)

(k − 1)(n− 2k + 1)(n− k)(n− k − 1)

· (n− k)!

(k − 2)!(n− 2k)!
· (n− k)!(k − 2)!

(n− 2)!

=
2n− k − 3

k − 1
· (n− k − 2)!(n− k)!

(n− 2)!(n− 2k)!

=
2n− k − 3

k − 1
·
k−1∏
i=2

(
n− k − i

n− i

)

≤ 2n− k − 3

k − 1

(
1 − k

n− 2

)k−2

=
2ak2−ϵ − k + 1

k − 1

(
1 − k

ak2−ϵ

)k−2

= 2ak1−ϵ

(
1 − 1

ak1−ϵ

)(k−2)1−ϵ(k−2)ϵ

We will show lim
k→∞

A(k) = 0. Hence there exists positive integer k0 ∈ N that

if k ≥ k0, then A(k) < 1
2 and therefore LHS − RHS < 0.

Since 0 < ϵ < 1, it is easy to prove that lim
k→∞

(
1 − 1

ak1−ϵ

)(k−2)1−ϵ

= e−1/a.

Hence there is k1 ∈ N that if k > k1, then

−1

a
− 1

2a
< ln

(
1 − 1

ak1−ϵ

)(k−2)1−ϵ

< −1

a
+

1

2a
.

That is, if k > k1, then 0 < A(k) < 2a exp

(
(1 − ϵ) ln k − 1

2a
(k − 2)ϵ

)
. Here

the right-most formula goes to 0 as k goes to infinity. Thus A(k) goes to 0

as k goes to infinity. □
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3.3.2 Proof of Theorems 3.2.6 and 3.2.7

Next, we prove Theorem 3.2.6. We will use more structural properties of

Kneser graphs. For this part, we treat the vertex set of each induced sub-

graph in K(n, k) as a set family (the family of sets that represented by each

vertex in the induced subgraph).

We need a bit more background to present our proof. A set family F is

intersecting if for any F1, F2 ∈ F, we have F1 ∩ F2 ̸= ∅. It is clear that

a subgraph of K(n, k) is independent if and only if the corresponding set

family is intersecting. Also, each bipartite subgraph of K(n, k) is induced

by the union of two intersecting families, and union of any two intersecting

families in

(
[n]

k

)
induces a bipartite subgraph of K(n, k). A set family F′ is

x-intersecting for some integer x if for any F1, F2 ∈ F, we have |F1∩F2| ≥ x.

For two k-subsets F1, F2 of [n], F1 is lexicographically smaller than F2 (de-

note by F1 ≺ F2) if for each i = 1, . . . , k, the i-th smallest element in F1 is

at most the i-th smallest element in F2. I.e. if we order all the elements in

F1 from small to large, and order all the elements in F2 from small to large,

then for each i = 1, . . . , k, the i-th element in F1 is always at most the i-th

element in F2. Note it is possible that two k-sets are not comparable.

A set family F ⊆
(

[n]

k

)
is (left-)shifted if for any F ∈ F, and any F ′ ∈

(
[n]

k

)
that F ′ ≺ F , we have F ′ ∈ F.

Similarly, a set family F ⊆
(

[n]

k

)
is right-shifted if for any F ∈ F, and any

F ′ ∈
(

[n]

k

)
that F ′ ≻ F , we have F ′ ∈ F. If the shifting direction is not

specified, left is always assumed.

A bipartite subgraph of K(n, k) is maximal if adding any vertex not in the

subgraph will make the graph non-bipartite.

The following lemma allows us to assume some structural properties on our

bipartite subgraph. Lemma 3.3.3 uses an idea similar to [18].

Lemma 3.3.3.

If F ⊆
(

[n]

k

)
induces a maximal bipartite subgraph in K(n, k), then there

exist left-shifted intersecting set family F1 and right-shifted intersecting set
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family F2 in

(
[n]

k

)
such that F1 ∩F2 = ∅ and |F1 ∪F2| = |F|.

Proof of Lemma 3.3.3. Consider any set family F = F1 ⊔F2 that induces a

bipartite subgraph in K(n, k), where both F1 and F2 are intersecting. We

will rearrange and replace sets in them, so that the resulting F1 is left-shifted

and the resulting F2 is right-shifted, while both of them are still intersecting.

First note the definition of ‘shifted’ is equivalent to the following:

• H ⊆
(

[n]

k

)
is left-shifted if and only if for all F ∈ H and j ∈ F , for

any i < j that i ̸∈ F , we have (F \ {j}) ∪ {i} ∈ H;

• H ⊆
(

[n]

k

)
is right-shifted if and only if for all F ∈ H and j ∈ F , for

any i > j that i ̸∈ F , we have (F \ {j}) ∪ {i} ∈ H.

We will apply a method called ‘shifting operator’ (defined in next paragraph)

to move and update the sets. This method was used in [18], and [22] surveyed

its single-sided version.

For any integers i, j ∈ [n] that i < j, the left shifting operator

Lij(F ) =

(F \ {j}) ∪ {i} if j ∈ F and i ̸∈ F

F otherwise;

and right shifting operator

Rij(F ) =

(F \ {i}) ∪ {j} if i ∈ F and j ̸∈ F

F otherwise.

Finally, the shifting operator Sij(F1,F2) = (F′
1,F

′
2) that for any F ∈ F1:

• if Lij(F ) ∈ F2, then put put Lij(F ) in F′
1 and put F in F′

2;

• otherwise, just put Lij(F ) in F′
1.

And for any F ∈ F2:

• if Rij(F ) ∈ F1, then put put Rij(F ) in F′
2 and put F in F′

1;
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• otherwise, just put Rij(F ) in F′
2.

It is not hard to verify that for any i, j, the shifting operator Sij(F1,F2)

keeps both F1 and F2 intersecting, and keeps |F1| + |F2| unchanged.

We apply the operator on F1,F2 as long as they are not both shifted (to

the correct direction). This process terminates, as each effective application

(that changes or moves some sets) of the shifting operator makes some sets

in F1 lexicographically smaller, or / and some sets in F2 lexicographically

larger. There are only finitely many sets in F1,F2, and finitely many possible

move to each set (so it become lexicographically larger or smaller, depending

on which side it belongs to). □

Before we continue, note this method does not directly generalise to tripar-

tite subgraphs. (Hence we don’t have a tripartite version of this Theorem.)

We need another famous result regarding the ‘shadow’ of an intersecting

family to prove Theorem 3.2.6. The following intersecting shadow theorem

is proved by Kruskal [36] and Katona [33] independently. The theorem holds

for more general cases, but we only include what is relevant to us here.

A set family F is t-intersecting if for any F1, F2 ∈ F, we have |F1 ∩F2| ≥ t.

Theorem 3.3.4 (Kruskal-Katona [33,36]).

For a t-intersecting set family F ⊆
(

[n]

k

)
, denote ∆(F) as its ‘shadow’, i.e.

∆(F) := {H ⊆ F |F ∈ F, |H| = k − 1}. Then we have
|∆(F)|
|F|

≥ k

k − t + 1
.

Now we are ready to present our proof to Theorem 3.2.6.

Theorem 3.2.6.

If n = ck where c <
3 +

√
5

2
, then γ(K(n, k), 2) ≤ f(c, k)t(n, k, 2) for some

f(c, k) ≤ 4

3
.

Proof of Theorem 3.2.6. Let F be the vertex set of a bipartite subgraph in

K(n, k). By Lemma 3.3.3, we can assume F = F1 ⊔ F2, where F1 is left-

shifted and F2 is right-shifted. We can also assume n ≤
√

5 + 3

2
k, since

otherwise γ(K(n, k), 2) = t(n, k, 2), proved by Frankl and Füredi [18].
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We further partition F1 = A1 ⊔ A2 ⊔ A3, and F2 = B1 ⊔ B2 ⊔ B3 by the

following rules:

• A1 := {F ∈ F1|1 ∈ F},

• A2 := {F ∈ F1|1 ̸∈ F, n ̸∈ F},

• A3 := {F ∈ F1|1 ̸∈ F, n ∈ F} = F1 \ (A1 ∪A2);

• B1 := {F ∈ F2|n ∈ F},

• B2 := {F ∈ F2|n ̸∈ F, 1 ̸∈ F},

• B3 := {F ∈ F2|n ̸∈ F, 1 ∈ F} = F2 \ (B1 ∪ B2).

Consider an arbitrary F ∈ A3, and let F ′(j) := (F \ {n}) ∪ {j}, for some

j ∈ [2, n] \ F , where [2, n] = {2, . . . , n}. Since F1 is left-shifted, we must

have F ′(j) ∈ A2 for any j ∈ [2, n] \ F . Hence (n − k − 1)|A3| ≤ k|A2|.
Similarly we have (n− k− 1)|B3| ≤ k|B2|, and therefore |F| ≤ |A1|+ |B1|+(

1 +
k

n− k − 1

)
(|A2| + |B2|) = |A1| + |B1| +

n− 1

n− k − 1
(|A2| + |B2|).

Claim. Set family A2 is 2-intersecting.

Proof. Since A2 is a subset of F1, so it is intersecting. Assume there are

two sets F1, F2 ∈ A2 that |F1 ∩ F2| = 1. Denote x as the only element in

both F1 and F2. Since all sets in A2 do not contain 1, we have x > 1.

As F1 is left-shifted, and F ′
1 := (F1 \ {x}) ∪ {1} is lexicographically smaller

than F1, so F ′
1 ∈ F1. But then F ′

1 ∩ F2 = ∅ contradicts to the assumption

that F1 is intersecting. ■

Note by the same reasons, set family B2 is also 2-intersecting.

Consider A′
2 := {[2, n − 1] \ F |F ∈ A2}. Note A′

2 ⊆
(

[2, n− 1]

n− k − 2

)
and for

any F ′
1, F

′
2 ∈ A′

2, we have F ′
1 = [2, n−1]\F1 and F ′

2 = [2, n−1]\F2 for some

F1 and F2. Hence |F ′
1∩F ′

2| = |[2, n−1]\(F1∪F2)| ≥ n−2−(2k−2) = n−2k.

I.e. A′
2 is (n− 2k)-intersecting.

Then by the intersecting shadow theorem (Theorem 3.3.4), we have

|∆(A′
2)| ≥

n− k − 2

(n− k − 2) − (n− 2k) + 1
|A′

2| =
n− k − 2

k − 1
|A2|.
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Note for any F ′ ∈ ∆(A′
2), F

′ ∪ {1} ̸∈ A1: since by the definition of A′
2, we

have F ′ ⊆ [2, n] \ F for some F ∈ A2 ⊆ F1; and hence F ∪ {1} is disjoint

with F .

Denote B′
2 similarly. (B′

2 := {[2, n− 1] \ F |F ∈ B2}.)

Hence |A1| + |∆(A′
2)| + |B1| + |∆(B′

2)| ≤
(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
. Therefore

|A1| + |B1| +
n− k − 2

k − 1
(|A2| + |B2|) ≤

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
. (3.1)

That is, |A2|+|B2| ≤
k − 1

n− k − 2

((
n− 1

k − 1

)
+

(
n− 2

k − 1

)
− |A1| − |B1|

)
. And

hence

|F| ≤ (n− 1)(k − 1)

(n− k − 1)(n− k − 2)

((
n− 1

k − 1

)
+

(
n− 2

k − 1

))
−
(

(n− 1)(k − 1)

(n− k − 1)(n− k − 2)
− 1

)
(|A1| + |B1|). (3.2)

Note if n ≤ 3 +
√

5

2
k, then

(n− 1)(k − 1)

(n− k − 1)(n− k − 2)
> 1.

On the other hand since F1 is left-shifted, we have |A2 ∪A3| ≤
n− k

k
|A1|.

(Which is true because for any set F in A2 or A3, and for any i ∈ F , we

have (F \ {i}) ∪ {1} ∈ A1.) Hence we have

|F| ≤ n

k
(|A1| + |B2|). (3.3)

Combine (3.2) and (3.3), we have

|F| ≤ n

k
·

(n− 1)(k − 1)

(n− k − 1)(n− k − 2)

((
n− 1

k − 1

)
+

(
n− 2

k − 1

))
n

k
+

(n− 1)(k − 1)

(n− k − 1)(n− k − 2)
− 1

=

n(n− 1)(k − 1)

((
n− 1

k − 1

)
+

(
n− 2

k − 1

))
n3 − (3k + 3)n2 + (4k2 + 5k + 2)n− (k3 + 4k2 + k)

. (3.4)

Equivalently, we can rearrange (3.1) into the following,

|A1| + |B1| ≤
(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
− n− k − 2

k − 1
(|A2| + |B2|) . (3.5)
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And combine (3.2) and (3.5), we have

|F| ≤ (n− 1)(−n2 + (4k − 1)n− 2k2)

k(k − 1)(2n− k − 1)
·
((

n− 1

k − 1

)
+

(
n− 2

k − 1

))
. (3.6)

If we denote c =
n

k
(note 2 ≤ c ≤ 3 +

√
5

2
), then we have the following since

both (3.4) and (3.6) need to be satisfied:

|F| ≤ f(c, k) ·
((

n− 1

k − 1

)
+

(
n− 2

k − 1

))
,

where

f(c, k) = min

{
c(ck − 1)(k − 1)

c3k2 − 3c2k(k + 1) + c(4k2 + 5k + 2) − (k2 + 4k + 1)
,

(ck − 1)(−c2k + c(4k − 1) − 2k)

(k − 1)((2c− 1)k − 1)

}
.

Thus

γ(K(n, k), 2) ≤ f(c, k) ·

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
(
n

k

) = f(c, k)t(n, k, 2).

Note

lim
k→∞

f(c, k) = min

{
c2

c3 − 3c2 + 4c− 1
,
−c3 + 4c2 − 2c

2c− 1

}
.

□

Then we prove Theorem 3.2.7, which provide the exact values of γ(r, n′)

with certain ranges of r and n′. This is a corollary following the theorem

of Ellis and Lifshitz [10]: if F is an n′-partite subgraph of K(n, k) where

n ≥ 2k+ c(n′)k2/3 (for some c(n′) only depending on n′), then |F| ≤
(
n

k

)
−(

n− n′

k

)
.

Theorem 3.2.7.

If χf (G) =
n

k
(with co-primes n, k) and this is the only information we have

about G, then for 2 ≤ n′ ≤ n− 2k + 1, γ(G,n′) > 1−
(

1 − k

n

)n′

is the best

possible lower bound.

In particular, γ
(n
k
, n′
)

= 1 −
(

1 − k

n

)n′

for n′ in the above range.
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Proof. Consider any graph G that χf (G) =
n

k
with co-primes n, k. We will

prove γ(G,n′) > 1 −
(

1 − k

n

)n′

, and furthermore, if 2 ≤ n′ ≤ n − 2k + 1,

then this is the best possible lower bound in general. (I.e. the best possible

lower bound that holds for all graphs with fractional chromatic number
n

k
.)

Since χf (G) =
n

k
, we know G is (tn, tk)-colourable for some integer t. If

n′ > tn, then clearly γ(K(tn, tk), n′) = 1, so we can assume n′ ≤ tn in the

calculation. We have

γ(G,n′) ≥ γ(K(tn, tk), n′) ≥

(
tn

tk

)
−
(
tn− n′

tk

)
(
tn

tk

)
= 1 −

n′−1∏
i=0

tn− tk − i

tn− i

= 1 −
n′−1∏
i=0

(
1 − k

n− i
t

)

> 1 −
(

1 − k

n

)n′

.

From now on we consider the case that n′ ≤ n − 2k + 1. We will define a

series of graphs with fractional chromatic number
n

k
and showing the above

lower bound is the best possible.

Recall that c(n′) (as in Ellis and Lifshitz’s result) is a constant only de-

pending on n′. Let T0 =
c(n′)3k2

(n− 2k)3
, then for any t > T0, we have tn >

2tk + c(n′)(tk)2/3. That is, for any t > T0, we have γ(K(tn, tk), n′) =

t(tn, tk, n′) = 1 −
n′−1∏
i=0

(
1 − k

n− i
t

)
> 1 −

(
1 − k

n

)n′

.

Note that the above lower bound is also a limit,

i.e. lim
t→∞

(
1 −

n′−1∏
i=0

(
1 − k

n− i
t

))
= 1 −

(
1 − k

n

)n′

.

Therefore we have inf {γ(K(tn, tk), n′)|t > T0} = 1 −
(

1 − k

n

)n′

.

Since the lower bound holds for all graphs with fractional chromatic num-
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ber
n

k
, and by the fact that

γ
(n
k
, n′
)

= inf
{
γ(G,n′)

∣∣∣χf (G) =
n

k

}
≤ inf

{
γ(K(tn, tk), n′)

∣∣t > T0

}
,

we conclude that γ
(n
k
, n′
)

= 1 −
(

1 − k

n

)n′

. □

3.3.3 Proofs of Theorems 3.2.8 and 3.2.12

In this section, we prove some algebraic upper bound of bipartite induced

subgraphs of K(n, k).

Theorem 3.2.8.

If H ⩽i K(n, k) is bipartite, then |V (H)| ≤
(
n
k

)
−
(
n−1
i+1

)
+
(
n−1
i

)
,

where i = min

{
k − 1,

⌊
n− 1 −

√
n + 1

2

⌋}
.

Proof of Theorem 3.2.8. Denote A(G) as the adjacency matrix of a graph

G. It is well known that the eigenvalues of A(K(n, k)) are

(−1)i
(
n− k − i

k − i

)
with multiplicity

(
n

i

)
−
(

n

i− 1

)
,

in which for simplicity we use

(
n

−1

)
= 0 as a convention.

Next we claim the eigenvalues of A(K(n, k))⊗ I2 + β · I(nk) ⊗A(K2) are just

(−1)i
(
n− k − i

k − i

)
+ β with multiplicity

(
n

i

)
−
(

n

i− 1

)
,

and

(−1)i
(
n− k − i

k − i

)
− β with multiplicity

(
n

i

)
−
(

n

i− 1

)
.

Note the eigenvalues of A(K2) are 1 and −1, with eigenvectors −→v1 =

[
1

1

]

and −→v2 =

[
1

−1

]
. For any eigenvector −→wi of A(K(n, k)) that A(k(n, k))−→wi =

(−1)i
(
n− k − i

k − i

)
, it is not hard to verify that

(A(K(n, k)) ⊗ I2 + β · I(nk) ⊗A(K2))(
−→wi ⊗−→v1)
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=

(
(−1)i

(
n− k − i

k − i

)
+ β

)
(−→wi ⊗−→v1),

and

(A(K(n, k)) ⊗ I2 + β · I(nk) ⊗A(K2))(
−→wi ⊗−→v2)

=

(
(−1)i

(
n− k − i

k − i

)
− β

)
(−→wi ⊗−→v2).

Denote E+(β) as the number of non-negative eigenvalues in A(K(n, k)) ⊗
I2 + β · I(nk) ⊗A(K2), and E−(β) as the number of non-positive eigenvalues

in A(K(n, k)) ⊗ I2 + β · I(nk) ⊗A(K2).

Since each independent set is an all-zero principle submatrix of the orig-

inal weighted adjacency matrix, we have |V (H)| ≤ α (K(n, k) 2K2) ≤
min{E+(β), E−(β)} for any β ∈ R by the Cauchy Interlacing Theorem.

(For more background of this, see e.g. [24].) We will find the β that min-

imise min{E+(β), E−(β)} in the following.

Since we want to minimise min{E+(β), E−(β)}, we only need to consider

the cases that β is not exactly equal to some eigenvalues of A(K(n, k)). And

it suffices to only consider non-negative β since the negative cases of β is

symmetric to the positive cases.

If

(
n− k − (i + 1)

k − (i + 1)

)
< β <

(
n− k − i

k − i

)
for some 0 ≤ i ≤ k − 1, then

min{E+(β), E−(β)}

= min

{(
n

k

)
−
(
n− 1

i + 1

)
+

(
n− 1

i

)
,

(
n

k

)
+

(
n− 1

i + 1

)
−
(
n− 1

i

)}
+

(
n

k

)
−
(
n− 1

i + 1

)
+

(
n− 1

i

)
.

Note whether min{E+(β), E−(β)} is E+(β) or E−(β) depends on the parity

of i, but the minimum follows the same formula as above.

If 0 < β <

(
n− k − k

k − k

)
= 1, then

min{E+(β), E−(β)}

= min

{
2

(
n− 1

k − 1

)
, 2

(
n− 1

k

)}
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= 2

(
n− 1

k − 1

)
=

(
n

k

)
−
(
n− 1

k

)
+

(
n− 1

k − 1

)
,

which is the same as the case i = k − 1.

And if β >

(
n− k

k

)
, then

min{E+(β), E−(β)} =

(
n

k

)
,

which is always larger then the earlier two cases.

That is, to decide the smallest min{E+(β), E−(β)}, it suffices to find the

0 ≤ i ≤ k − 1 that maximise

(
n− 1

i + 1

)
−
(
n− 1

i

)
.

A direct calculation shows for 1 ≤ i ≤ k− 1, we have

(
n− 1

i + 1

)
−
(
n− 1

i

)
>(

n− 1

i

)
−
(
n− 1

i− 1

)
if and only if i <

n− 1 −
√
n + 1

2
or i >

n− 1 +
√
n + 1

2
.

But since 1 ≤ i ≤ k − 1, we conclude that

(
n− 1

i + 1

)
−
(
n− 1

i

)
is in-

creasing (that ‘choosing i’ is larger than ‘choosing i − 1’) whenever i <
n− 1 −

√
n + 1

2
. That is, i = min

{
k − 1,

⌊
n− 1 −

√
n + 1

2

⌋}
maximises(

n− 1

i + 1

)
−
(
n− 1

i

)
for 1 ≤ i ≤ k − 1. □

The proof of Theorem 3.2.12 is very similar to Theorem 3.2.8.

Theorem 3.2.12.

For any n′ ≥ 3 and n ≥ 2k + n′ − 1 (so K(n, k) is not n′-colourable), we

have

π(K(n, k),Kn′) ≤ min

{(
n

k

)
,

(
n

k

)
−
(
n− 1

i∗ + 1

)
+ (n′ − 1)

(
n− 1

i∗

)}
,

where i∗ = min

{
k − 1,max

{⌊
n′k − n

n′ − 2

⌋
,⌊

(n′ + 2)n− 2n′ −
√

((n′ − 2)n)2 + 4n′2n + 4n′2

4n′

⌋}}
.

Furthermore, for any n′ ≥ 3, this is the best possible inertia bound if we

only apply one type of edge weight in Kn′; for n′ = 3, this is the best possible

inertia bound even if we allow three different edge weights on K3.
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We first prove for any n′ ≥ 3 and n ≥ 2k + n′ − 1, we have

π(K(n, k),Kn′) ≤ min

{(
n

k

)
,

(
n

k

)
−
(
n− 1

i∗ + 1

)
+ (n′ − 1)

(
n− 1

i∗

)}
,

where i∗ is given as in Theorem 3.2.12. And also this is the best possible

inertia bound if we only apply one type of edge weight in Kn′ . This part of

the proof is similar to Theorem 3.2.8, but we consider A(K(n, k))⊗ In′ +β ·
I(nk)

⊗A(Kn′) here.

Proof of Theorem 3.2.12, part 1. With essentially the same proof as in The-

orem 3.2.8, we have the following as the eigenvalues of A(K(n, k)) ⊗ In′ +

β · I(nk) ⊗A(Kn′):

(−1)i
(
n− k − i

k − i

)
+ (n′ − 1)β with multiplicity

(
n

i

)
−
(

n

i− 1

)
,

and

(−1)i
(
n− k − i

k − i

)
− β with multiplicity (n′ − 1)

((
n

i

)
−
(

n

i− 1

))
.

Denote E+(β) as the number of non-negative eigenvalues in A(K(n, k)) ⊗
In′ +β ·I(nk)⊗A(Kn′)}, and E−(β) as the number of non-positive eigenvalues

in A(K(n, k)) ⊗ In′ + β · I(nk) ⊗A(Kn′)}.

As in Theorem 3.2.8, we have π(K(n, k),Kn′) ≤ min{E+(β), E−(β)} for

any choice of β ∈ R. We will find the β that minimise min{E+(β), E−(β)}
in the rest of this proof.

To minimise min{E+(β), E−(β)}, we only need to consider the cases that

neither β nor −(n′−1)β is exactly equal to some eigenvalues of A(K(n, k)).

Note here the cases of choosing positive β and negative β are no longer

symmetric.

There are three cases of the value of β that we need to consider.

(1) β is strictly between 0 and (−1)k
(
n− 2k

0

)
. (I.e. β is ‘close to 0’.)

(2) β is strictly between (−1)i+2

(
n− k − (i + 2)

k − (i + 2)

)
and (−1)i

(
n− k − i

k − i

)
for

some 0 ≤ i ≤ k− 1. (Depending on the parity of i, β can be either negative
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or positive. For simplicity of notation, we take

(
n− k − (k + 1)

−1

)
= 0 as a

convention.)

(3) β >

(
n− k

k

)
or β < −

(
n− k

k

)
.

In case (1), β is strictly between 0 and (−1)k, hence |(n′ − 1)β| < n′ − 1 <

n− 2k + 1 =

(
n− 2k + 1

1

)
by assumption that n ≥ n− 2k + n′ − 1. That

is, none of the eigenvalues of K(n, k) has ‘switched sign’. Then

min{E+(β), E−(β)}

= min

{
n′
(
n− 1

k − 1

)
, n′
(
n− 1

k

)}
= n′

(
n− 1

k − 1

)
.

In case (2), β is strictly between (−1)i+2

(
n− k − (i + 2)

k − (i + 2)

)
and

(−1)i
(
n− k − i

k − i

)
for some 0 ≤ i ≤ k − 1. By our assumption that neither

β nor −(n′ − 1)β is equal to some eigenvalue of A(K(n, k)), we know one of

the following cases holds.

Case (2-1): we have −(n′ − 1)β strictly between (−1)j+2

(
n− k − (j + 2)

k − (j + 2)

)
and (−1)j

(
n− k − j

k − j

)
for some 0 ≤ j ≤ k − 2.

Case (2-2): −(n′ − 1)β >

(
n− k

k

)
.

Case (2-3): −(n′ − 1)β < −
(
n− k − 1

k − 1

)
.

Case (2-2) is possible only if i is odd, and hence

min{E+(β), E−(β)}

= min

{
(n′ − 1)

(
n

k

)
− (n′ − 1)

(
n− 1

i

)
, (n′ − 1)

(
n− 1

i

)
+

(
n

k

)}
.

Case (2-3) is possible only if i is even, and hence

min{E+(β), E−(β)}

= min

{
(n′ − 1)

(
n− 1

i

)
+

(
n

k

)
, (n′ − 1)

(
n

k

)
− (n′ − 1)

(
n− 1

i

)}
.
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But in both cases, (n′ − 1)

(
n− 1

i

)
+

(
n

k

)
>

(
n

k

)
and (n′ − 1)

(
n

k

)
− (n′ −

1)

(
n− 1

i

)
>

(
n

k

)
for all n′ ≥ 3 and for all 0 ≤ i ≤ k − 1. That is, neither

(2-2) nor (2-3) will be the best upper bound.

In case (2-1), we have

min{E+(β), E−(β)}

= min

{
(n′ − 1)

(
n

k

)
− (n′ − 1)

(
n− 1

i

)
+

(
n− 1

j

)
,

(n′ − 1)

(
n− 1

i

)
+

(
n

k

)
−
(
n− 1

j

)}
.

Note for any n′ ≥ 3, we have

(n′ − 1)

(
n

k

)
− (n′ − 1)

(
n− 1

i

)
+

(
n− 1

j

)
> (n′ − 1)

(
n

k

)
− (n′ − 1)

(
n− 1

k − 1

)
>

(
n

k

)
.

And if j ≤ i, then (n′ − 1)

(
n− 1

i

)
+

(
n

k

)
−
(
n− 1

j

)
>

(
n

k

)
.

So in case (2-1), we only need to consider the case that j > i and when

min{E+(β), E−(β)} =

(
n

k

)
+ (n′ − 1)

(
n− 1

i

)
−
(
n− 1

j

)
.

(Since the other possibility is always larger than

(
n

k

)
, and will never be the

best upper bound.)

Note −(n′ − 1)β is of the different sign as β, so j is of different parity as i.

Hence j ≥ i + 1 is a necessary condition for min{E+(β), E−(β)} ≤
(
n

k

)
.

We have β strictly between (−1)i+2

(
n− k − (i + 2)

k − (i + 2)

)
and (−1)i

(
n− k − i

k − i

)
,

and −(n′ − 1)β strictly between (−1)j+2

(
n− k − (j + 2)

k − (j + 2)

)
and (−1)j

(
n− k − j

k − j

)
. Such β exist if and only if

(
(n′ − 1)

(
n− k − (i + 2)

k − (i + 2)

)
, (n′ − 1)

(
n− k − i

k − i

))
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∩
((

n− k − (j + 2)

k − (j + 2)

)
,

(
n− k − j

k − j

))
̸= ∅.

Since j > i, we have

(
n− k − j

k − i

)
< (n′ − 1)

(
n− k − i

k − i

)
. Hence such β

exist if and only if we have(
n− k − j

k − j

)
> (n′ − 1)

(
n− k − (i + 2)

k − (i + 2)

)
. (3.7)

It is clear that one necessary condition for (3.7) to hold is j ≤ i + 2. Hence

among the cases of interest, we only need to solve for

(
n− k − (i + 1)

k − (i + 1)

)
>

(n′ − 1)

(
n− k − (i + 2)

k − (i + 2)

)
. This solves to i >

n′k − n

n′ − 2
− 1. Note k − 1 <

n′k − n

n′ − 2
− 1 for all n > 2k.

Therefore, the minimum of min{E+(β), E−(β)} over β in case (2) is the

minimum of

(
n

k

)
+(n′−1)

(
n− 1

i

)
−
(
n− 1

i + 1

)
over

n′k − n

n′ − 2
−1 < i ≤ k−1.

In case (3), if β >

(
n− k

k

)
, then min{E+(β), E−(β)} =

(
n

k

)
, which is

essentially the whole graph. If β < −
(
n− k − 1

k − 1

)
, then there are two cases.

Case (3-1): if n ≤ n′k, then it is only possible that −(n′ − 1)β >

(
n− k

k

)
,

in which case we have min{E+(β), E−(β)} =

(
n

k

)
.

Case (3-2): if n > n′k, then it is also possible that β < −
(
n− k − 1

k − 1

)
and(

n− k − 2

k − 2

)
< −(n′ − 1)β <

(
n− k

k

)
, in which case we have

min{E+(β), E−(β)} =

(
n

k

)
−
(
n− 1

0

)
. However, for n in this range, choices

of i in case (2) leads to better (i.e. smaller) upper bound.

Combining cases (1), (2) and (3), we have

min
β∈R

{
min{E+(β), E−(β)}

}
= min


(
n

k

)
,

(
n

k

)
− max

n′k−n
n′−2

−1<i≤k−1

{(
n− 1

i + 1

)
− (n′ − 1)

(
n− 1

i

)} .
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Direct computation shows that

(
n− 1

i + 1

)
− (n′ − 1)

(
n− 1

i

)
is larger than(

n− 1

i

)
− (n′ − 1)

(
n− 1

i− 1

)
if and only if

i <
(n′ + 2)n− 2n′ −

√
((n′ − 2)n)2 + 4n′2n + 4n′2

4n′ ,

or

i >
(n′ + 2)n− 2n′ +

√
((n′ − 2)n)2 + 4n′2n + 4n′2

4n′ .

Note
(n′ + 2)n− 2n′ +

√
((n′ − 2)n)2 + 4n′2n + 4n′2

4n′ >
n− 2

2
> k − 1. We

conclude that the maximum of

(
n− 1

i + 1

)
−(n′−1)

(
n− 1

i

)
for

n′k − n

n′ − 2
−1 <

i ≤ k − 1 is attained at

i∗ = min

{
k − 1,max

{⌊
n′k − n

n′ − 2

⌋
,⌊

(n′ + 2)n− 2n′ −
√

((n′ − 2)n)2 + 4n′2n + 4n′2

4n′

⌋}}
.

□

We then prove that for n′ = 3, the given bound is still best possible even if

we allow three different edge weights on K3.

Proof of Theorem 3.2.12, part 2. By allowing three different edge weights

on K3, we are considering the eigenvalues of

M(x, y, z) = A(K(n, k)) ⊗ I3 + β · I(nk) ⊗


0 x y

x 0 z

y z 0

 .

Denote β1, β2 and β3 as the eigenvalues of


0 x y

x 0 z

y z 0

. It is well-known and

easy to prove the sum of eigenvalues equals to the trace (sum of elements

in diagonal) of a square matrix, hence we have β1 + β2 + β3 = 0 and the

eigenvalues of M(x, y, z) are just

(−1)i
(
n− k − i

k − i

)
+ βj with multiplicity

(
n

i

)
−
(

n

i− 1

)
,
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for each 0 ≤ i ≤ k and each j = 1, 2, 3.

We first show that any real value pairs β1 and β2, together with −(β1 + β2)

can be the set of eigenvalues of


0 x y

x 0 z

y z 0

 at the same time, with suitable

choices of x, y, z.

It suffices to find one set of x, y, z for each fixed pair of β1 and β2. Without

loss of generality, we assume |β1| ≤ |β2|. Take x = |β1|, y =

√
β1β2 + β2

2

2

and z = −
√

β1β2 + β2
2

2
. Note y and z are well defined since β1β2 + β2

2 =

1

2
(β1 + β2)

2 +
1

2
β2
2 − 1

2
β2
1 ≥ 0. Then it is easy to verify that β1, β2 and

−(β1 + β2) are set of solutions of λ in −λ3 + (x3 + y3 + z3)λ + 2xyz = 0,

and hence are set of eigenvalues of


0 x y

x 0 z

y z 0

.

Now denote E+(β1, β2) as the number of non-negative eigenvalues of

M

(
|β1|,

√
β1β2 + β2

2

2
,−
√

β1β2 + β2
2

2

)
,

and E−(β1, β2) as the number of non-positive eigenvalues of

M

(
|β1|,

√
β1β2 + β2

2

2
,−
√

β1β2 + β2
2

2

)
.

(We assumed that |β1| ≤ |β2|.)

We can also assume two of β1, β2 are −(β1+β2) are of the same sign and the

other one is of opposite sign. (Otherwise they must all equal to 0.) Without

loss of generality, β1 and β2 are of the same sign.

Then with the same method as in first part of the proof, we have

min{E+(β1, β2), E
−(β1, β2)}

= min

{(
n

k

)
,

(
n

k

)
−
(
n− 1

i3

)
+

(
n− 1

i1

)
+

(
n− 1

i2

)
,

2

(
n

k

)
−
(
n− 1

i1

)
−
(
n− 1

i2

)
+

(
n− 1

i3

)}
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= min

{(
n

k

)
,

(
n

k

)
−
(
n− 1

i3

)
+

(
n− 1

i1

)
+

(
n− 1

i2

)}
. (3.8)

Here i1, i2 and i3 are non-negative integers at most k − 1 such that(
n− k − (i1 + 2)

k − (i1 + 2)

)
< |β1| <

(
n− k − i1
k − i1

)
, (3.9)

(
n− k − (i2 + 2)

k − (i2 + 2)

)
< |β2| <

(
n− k − i2
k − i2

)
, (3.10)

and (
n− k − (i3 + 2)

k − (i3 + 2)

)
< |β1 + β2| <

(
n− k − i3
k − i3

)
. (3.11)

Note |β1 + β2| = |β1| + |β2| since β1 and β2 are of the same sign.

If i1 = i2, then (3.8) is the same as first part of the theorem, i.e. the same

as only allow one edge weight on K3.

Hence we assume i1 > i2 without loss of generality. Since i1 and i2 are of

the same parity, we have i2 ≤ i1 − 2.

We claim it is not possible that i3 ≥ i1 + 1. If instead we have i3 ≥ i1 + 1,

then (
n− k − i3
k − i3

)
≤
(
n− k − (i1 + 1)

k − (i1 + 1)

)
≤
(
n− k − (i2 + 3)

k − (i2 + 3)

)
<

(
n− k − (i2 + 2)

k − (i2 + 2)

)
.

Which is not possible. And therefore it is not possible for (3.9), (3.10) and

(3.11) to hold at the same time.

However, if i3 ≤ i1 − 1, then

(
n

k

)
−
(
n− 1

i3

)
+

(
n− 1

i1

)
+

(
n− 1

i2

)
>

(
n

k

)
and hence min{E+(β1, β2), E

−(β1, β2)} =

(
n

k

)
.

Thus we conclude that we will not get a better inertia bound by allowing

three different edge weights on K3. □

3.3.4 Proof of Theorem 3.2.10

Finally, we prove our Example 3.2.9 is larger than the trivial n′-partite

induced subgraphs as we claimed.
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Recall that for n ≥ 2k + 1 and odd k, we have

Fodd(n, k) :=

{
F ∈

(
[n]

k

)∣∣∣∣|F ∩ [k]| ≥
⌈
k

2

⌉}
∪
{
F ∈

(
[n]

k

)∣∣∣∣|F ∩ [n− k + 1, n]| ≥
⌈
k

2

⌉}
.

And for n ≥ 2k + 1 and even k, we have

Feven(n, k) :=

{
F ∈

(
[n]

k

)∣∣∣∣|F ∩ [k − 1]| ≥ k

2

}
∪
{
F ∈

(
[n]

k

)∣∣∣∣|F ∩ [n− k, n]| ≥ k

2
+ 1

}
.

Theorem 3.2.10.

For any k ≥ 3, there exists T ≥ 1 that if 2k + 1 ≤ n ≤ 2k + T , then

Example 3.2.9 is larger than the trivial bipartite induced subgraph of K(n, k).

Moreover, this T can be arbitrary large for large k.

Proof of Theorem 3.2.10. Let t =

⌊
k

2

⌋
. (Hence k = 2t + 1 if k is odd, and

k = 2t if k is even.) We start our proof by showing

|Fodd(n, k)| =

(
n

k

)
−

n−2k∑
j=1

(
k + j − 1

t

)(
n− k − j

t

)
, (3.12)

and

|Feven(n, k)| =

(
n

k

)
−

n−2k∑
j=1

(
k + j

t

)(
n− k − 1 − j

t− 1

)
. (3.13)

Firstly, by counting the sets that are not in Fodd and substract it from

(
n

k

)
,

we have |Fodd| =

(
n

k

)
−

n−2k∑
j=1

(
n− 2k

j

)(
j∑

i=1

(
k

t + 1 − i

)(
k

t− j + i

))
.(A k-

subset F of [n] is not in Fodd if and only if |F∩[k]| ≤ t and |F∩[n−k, n]| ≤ t.)

For (3.12), we count the number of sets not in Fodd in a slightly different

way. For each set F that is not in Fodd, consider the (t + 1)’s smallest

element in F and denote it by j. Since F contains at most t elements in [k]

and at most t elements in [n− k + 1, n], we have j ∈ [k + 1, n− k]. And for

any choice of F1 ∈
(

[j − 1]

t

)
and F2 ∈

(
[j + 1, n]

t

)
, we have F1 ∪ {j} ∪ F2
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a k-subset that is not in Fodd. On the other side, any k-subset that is not

in Fodd can be represented in this way. By this method of counting we have

|Fodd(n, k)| =

(
n

k

)
−

n−k∑
j=k+1

(
j − 1

t

)(
n− j

t

)

=

(
n

k

)
−

n−2k∑
j=1

(
k + j − 1

t

)(
n− k − j

t

)
.

The idea for (3.13) is essentially the same, just we consider the t’s smallest

element as j (instead of the (t + 1)’s) in any F that is not in Feven.

Now we compare (3.12) and (3.13) with the trivial bipartite order

(
n

k

)
−(

n− 2

k

)
. We will first show that if n = 2k + 1 and k ≥ 3, then

|Fodd(n, k)| >
(
n

k

)
−
(
n− 2

k

)
, (3.14)

and

|Feven(n, k)| >
(
n

k

)
−
(
n− 2

k

)
. (3.15)

For (3.14), it suffice to show that

(
k

t

)(
k

t

)
<

(
n− 2

k

)
=

(
2k − 1

k

)
for each

k ≥ 3.

Denote fodd(t) =

(
2t + 1

t

)(
2t + 1

t

)/(
4t + 1

2t + 1

)
. We will prove by induction

that fodd(t) < 1 for all t ≥ 1. (Note k ≥ 3 if and only if t ≥ 1.)

It is easy to check that fodd(1) = 9/10 < 1. Assume fodd(t) < 1 for some

t ≥ 1. Then

fodd(t + 1) =

(
2t + 3

t + 1

)(
2t + 3

t + 1

)/(
4t + 5

2t + 3

)

=
(2t + 2)(2t + 3)3

(4t + 5)(4t + 3)(t + 2)2
·

(
2t + 1

t

)(
2t + 1

t

)
(

4t + 1

2t + 1

)
=

16t4 + 88t3 + 180t2 + 162t + 54

16t4 + 96t3 + 207t2 + 188t + 60
f(t),

which is less than 1 if fodd(t) < 1. Hence we can conclude fodd(t) < 1 for

any t ≥ 1.
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For (3.15), similarly denote feven(t) =

(
2t + 1

t

)(
2t− 1

t− 1

)/(
4t− 1

2t

)
. (Note

k = 2t if k is even, and here we will show feven(t) < 1 for any t ≥ 2.)

It is easy to verify that f(2) = 30/35 < 1. Assume feven(t) < 1 for some

t ≥ 2. Then

feven(t + 1) =

(
2t + 3

t + 1

)(
2t + 1

t

)/(
4t + 3

2t + 2

)

=
2(2t + 1)2(2t + 3)

(t + 2)(4t + 1)(4t + 3)
·

(
2t + 1

t

)(
2t− 1

t− 1

)
(

4t− 1

2t

)
=

16t3 + 40t2 + 28t + 6

16t3 + 48t2 + 35t + 6
f(t),

which is less than 1 if feven(t) < 1. Hence we can conclude feven(t) < 1 for

any t ≥ 2.

As stated in the Theorem, we will have an integer T ≥ 1 for each k ≥ 3 such

that if 2k + 1 ≤ n ≤ 2k + T , then Example 3.2.9 is larger than the trivial

bipartite. That it, for each n ∈ [2k + 1, 2k + T ], we have

n−2k∑
j=1

(
k + j − 1

t

)(
n− k − j

t

)
<

(
n− 2

k

)
if k is odd, and

n−2k∑
j=1

(
k + j

t

)(
n− k − 1 − j

t− 1

)
<

(
n− 2

k

)
if k is even. Now we show this T ≥ 1 can be arbitrary large if k is large.

Denote t =

⌊
k

2

⌋
. Since the case n− 2k = 1 is proved above, we can assume

n ≥ 2k + 2 here. Hence it suffice to prove

(n− 2k)

(
n− k

t

)(
n− k

t

)
<

(
2k

k

)
.

We then use Stirling’s approximation that n! ∼
√

2πn
(n
e

)n
. We have(

2k

k

)
(n− 2k)

(
n− k

t

)(
n− k

t

)
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=

(
(n− k − t) · · · (k − t + 1)

(n− k) · · · (k + 1)

)2

· 1

n− 2k
·

(
2k

k

)
(
k

t

)(
k

t

)
≥ 1

(n− 2k) · 22n−4k
· (2k)!t!(k − t)!t!(k − t)!

k!k!k!k!

≥ 1

T · 22T
· (2k)!t!(k − t)!t!(k − t)!

k!k!k!k!

∼


1

22TT
·
√

4πkt(t + 1)

k2
· 22kt2t(t + 1)2t+2

k2k
, if k odd

1

22TT
·
√
πk

2
, if k even

= Ω(
√
k).

That is, for any fixed T , there is k0(T ) such that if k > k0(T ), then we have(
2k

k

)
< (n− 2k)

(
n− k

t

)(
n− k

t

)
for any n ≤ 2k + T . □

Theorem 3.2.11.

If n−2k = o(
√
k), then for sufficiently large k, Example 3.2.9 is larger than

the trivial n′-partite induced subgraph in K(n, k).

Proof of Theorem 3.2.11. We can prove using similar technique as Theo-

rem 3.2.10. But a slightly more careful computation is needed. For simplic-

ity of notation assume n = 2k + x, with x = o(
√
k).

We will show for any fixed n′ and large enough k, we have

(
n

k

)
− |Fodd| <(

n− n′

k

)
and

(
n

k

)
− |Feven| <

(
n− n′

k

)
. (Note

(
n− n′

k

)
is the number of

vertices not in a trivial n′-partite family.)

Let n′ ≥ 2 be a fixed integer. Firstly we consider the case that k = 2t + 1

where t ≥ 1. Then for each 1 ≤ j ≤ x, we have(
k + j − 1

t

)(
n− k − j

t

)/(
n− n′

k

)
=

(k + j − 1)!(n− k − j)!k!(n− n′ − k)!

t!(k − t + j − 1)!t!(n− k − t− j)(n− n′)!

=
(k + j − 1)!(k + x− j)!k!(k + x− n′)!

t!(t + j)!t!(t + 1 + x− j)(2k + x− n′)!

∼

√
(k + j − 1)(k + x− j)k(k + x− n′)

2πt(t + j)t(t + 1 + x− j)(2k + x− n′)
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· (k + j − 1)k+j−1(k + x− j)k+x−jkk(k + x− n′)k+x−n′

tt(t + j)t+jtt(t + 1 + x− j)t+1+x−j(2k + x− n′)2k+x−n′

∼
√

2

πt
· 2n

′−1 · (2t + j)2t+j(2t + 1 + x− j)2t+1+x−j

(2t)t(2t + 2j)t+j(2t)t(2t + 2 + 2x− 2j)t+1+x−j

· (2k)k(2k + 2x− 2n′)k+x−n′

(2k + x− n′)2k+x−n′

= 2n
′−1

√
2

πt
·
(

1 +
j

2t

)t(
1 − j

2t + 2j

)t+j

·
(

1 +
x− j + 1

2t

)t(
1 − x− j + 1

2t + 2 + 2x− 2j

)t+1+x−j

·
(

1 − x− n′

2k + x− n′

)k (
1 +

x− n′

2k + x− n′

)k+x−n′

=
2n

′

√
2πt

·
(

1 +
j2

(2t)(2t + 2j)

)t(
1 − j

2t + 2j

)j

·
(

1 +
(x− j + 1)2

(2t)(2t + 2 + 2x− 2j)

)t(
1 − x− j + 1

2t + 2 + 2x− 2j

)x−j+1

·
(

1 − (x− n′)2

(2k + x− n′)2

)k (
1 +

x− n′

2k + x− n′

)x−n′

∼ 2n
′

√
πk

(since x = o(
√
k)).

Hence
x∑

j=1

((
k + j − 1

t

)(
n− k − j

t

)/(
n− n′

k

))
∼ x · 2n

′

√
πk

.

Now assume k = 2t is even and t ≥ 2. Then for each 1 ≤ j ≤ n− 2k, with

essentially the same calculation as above, we have(
k + j

t

)(
n− k − 1 − j

t− 1

)/(
n− n′

k

)
∼ 2n

′

√
πk

,

and hence
x∑

j=1

((
k + j

t

)(
n− k − 1 − j

t− 1

)/(
n− n′

k

))
∼ x · 2n

′

√
πk

.

Since x = o(
√
k), it is clear that for any fixed n′, we have lim

k→∞

x · 2n
′

√
πk

= 0.

Hence for any fixed n′, there exist k0(n
′) such that if k > k0(n

′), then

x∑
j=1

((
k + j − 1

t

)(
n− k − j

t

)/(
n− n′

k

))
< 1,
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and
x∑

j=1

((
k + j

t

)(
n− k − 1 − j

t− 1

)(
n− n′

k

))
< 1.

That is, |Fodd| >
(
n

k

)
−
(
n− n′

k

)
and |Fodd| >

(
n

k

)
−
(
n− n′

k

)
with those

given n, k, n′. □

We finish this section by a short proof showing our Example 3.2.9 is better

than the construction in [18]. Recall the construction in [18] is

H(n, k) =

{
F ∈

(
[n]

k

)∣∣∣∣∣∣∣F ∩
[n

2

]∣∣∣ > n

4
or
∣∣∣F ∩

[n
2

+ 1, n
]∣∣∣ > n

4

}
,

is only for even values of n. And note

|H(n, k)| =

(
n

k

)
−

∑
k−n/4≤j≤n/4

(
n/2

j

)(
n/2

k − j

)
.

Denote F(n, k, u) =

{
F ∈

(
[n]

k

)∣∣∣∣F ∩ [u] >
u

2

}
. We will prove the following

stronger result.

Lemma 3.3.5.

For any k ≥ 1, n ≥ 2k and u1, u2 ≥ 1,

(a) if |u1 − u2| = 1 and u1 is even, then |F(n, k, u1)| ≤ |F(n, k, u2)|;
(b) if both u1 and u2 are odd, and u1 ≥ u2, then |F(n, k, u1)| ≤ |F(n, k, u2)|.

For any odd k ≥ 1 and n ≥ 2k, there does not exist set F ∈
(

[n]

k

)
such that |F ∩ [k]| ≥

⌈
k

2

⌉
and |F ∩ [n− k + 1, n]| ≥

⌈
k

2

⌉
. Hence we have

|Fodd(n, k)| = 2|F (n, k, k) |. Similarly, for any even k ≥ 1 and n ≥ 2k, we

have |Feven(n, k)| = |F (n, k, k − 1) | + |F (n, k, k + 1) |. And for any k ≥ 1

and even n ≥ 2k, we have |H(n, k)| = 2
∣∣∣F (n, k, n

2

)∣∣∣. Thus Lemma 3.3.5

immediately implies Example 3.2.9 is larger than H(n, k).

Proof of Lemma 3.3.5. We first compare F(n, k, u + 1) and F(n, k, u) for

any u ≥ 1.

If F ∈ (F(n, k, u+1)\F(n, k, u)), then F ∩ [u+1] >
u + 1

2
and F ∩ [u] ≤ u

2
.

This is true only if u + 1 ∈ F and |F ∩ [u + 1]| =
u + 2

2
(i.e. u is even).
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Hence,

|F(n, k, u + 1) \F(n, k, u)| =


(

u

u/2

)(
n− u− 1

k − u/2 − 1

)
, if u is even;

0 , otherwise.

If F ∈ (F(n, k, u)\F(n, k, u+1)), then F ∩ [u] >
u

2
and F ∩ [u+1] ≤ u + 1

2
.

This happens only if |F ∩ [u]| =
u + 1

2
(i.e. u is odd) and u + 1 ̸∈ F . Hence

|F(n, k, u)\F(n, k, u+1)| =


(

u

(u + 1)/2

)(
n− u− 1

k − (u + 1)/2

)
, if u is odd;

0 , otherwise.

Therefore |F(n, k, u)| < |F(n, k, u + 1)| if u is even, and |F(n, k, u)| >

|F(n, k, u + 1)| if u is odd.

With a similar counting approach, for any odd integer u ≥ 1, we have

|F(n, k, u) \F(n, k, u + 2)| =

(
u

(u + 1)/2

)(
n− u− 2

k − (u + 1)/2

)
|F(n, k, u + 2) \F(n, k, u)| =

(
u

(u− 1)/2

)(
n− u− 2

k − (u + 3)/2

)
.

Hence our claim (b) is also proved since

(
u

(u− 1)/2

)
=

(
u

(u + 1)/2

)
and(

n− u− 2

k − (u + 3)/2

)
<

(
n− u− 2

k − (u + 1)/2

)
. □

3.4 Discussion and Open Questions

We start this section by further comparison on various upper and lower

bounds that we obtained.

3.4.1 More Upper and Lower Bounds of γ(K(n, k), 2)

In this short section, we discuss a few more techniques that we studied for

the upper bound of γ(K(n, k), 2), and compare them for n in different ranges

as functions of k. We also compare then with the lower bounds we presented

in Section 3.2.1.
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In the following plots, we present the comparison of four upper bounds on

γ(K(n, k), 2), with k as x-axis and n as a function of k, shown on each plot’s

title. To get a better understanding of how those bounds compare to the

trivial bipartite graphs, the values shown are already divided by t(n, k, 2).

Consider any fixed graph K(n, k). Since each bipartite graph is an union of

two independent sets, its order is always bounded above by two times the

maximum independent set. In the following plot, ‘Trivial’ denote the value

of 2

(
n− 1

k − 1

)/((
n

k

)
−
(
n− 2

k

))
. Lemma 3.3.1 gives an slightly better

upper bound for γ(K(n, k), 2) by considering the fact that each maximum

independent set in K(n, k) has a special structure, and the union of two

maximum independent sets are significantly smaller than 2

(
n− 1

k − 1

)
. Hence

we can use Hilton and Milner’s result on ‘second largest’ independent set

in K(n, k) to achieve a better bound. In the following plot, ‘Hilton-Milner’

denote the value of max

{
t(n, k, 2), 2

(
n− 1

k − 1

)
−
(
n− k

k − 1

)
−
(
n− k − 1

k − 1

)
+(

n− k − 2

k − 3

)
+3

}
divided by

(
n

k

)
−
(
n− 2

k

)
. Note for each choice of n, the

plot of ‘Trivial’ and ‘Hilton-Milner’ almost equals, apart from very small k.

Theorem 3.2.6 presents a better structural bounds for γ(K(n, k), 2), and is

shown as ‘Structural’ in the plots. Theorem 3.2.8 provides another upper

bound using algebraic methods, and is shown as ‘Algebraic’ in the following

plots. As we can see, this upper bound is better (i.e. smaller) if n = 2k+ 10

and larger k, or n = 2k + 0.3
√
k. We had other numerical experiments

showing this is a better upper bound if n − 2k is in o(
√
k). For space

reasons, we will not discuss this further.
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Recall that in Theorem 3.2.6, we bound the maximum order of a bipartite

subgraph H ⩽i K(n, k) by first partition H into smaller parts, each satisfy-

ing certain conditions, then we find the maximum possible total order |H|,
under structural constraints on each part. We can find more constraints if

we refine the partition of H.

Fixed n, k and a bipartite H ⩽i K(n, k). As in Lemma 3.3.3, we can assume

the vertex set of H is a disjoint union of a left-shifted intersecting family F1

and a right-shifted intersecting family F2. In addition to what we’ve done

in the proof of Theorem 3.2.6, we further partition F1 = A1⊔A2⊔A3⊔A4,

and F2 = B1 ⊔ B2 ⊔ B3 ⊔ B4. For simplicity of formulas, for a set family

X ⊆
(

[n]

k

)
, we use X(i) := {F \ {i}|i ∈ F, F ∈ X} and X(̄i) := {F |i ∈

F, F ∈ X}. Note we may have multiple arguments in the function bracket.

For instance, X(i, j̄) := (X(i))(j̄).

The partition is defined by the following rules:

• A1 := F1(1, n), A2 := F1(1, n̄), A3 := F1(1̄, n), A4 := F1(1̄, n̄);

• B1 := F2(n, 1), B2 := F2(n, 1̄), B3 := F1(n̄, 1), B4 := F1(n̄, 1̄).

Following similar ideas as in the proof of Theorem 3.2.6, we have the follow-

ing constraints.

• For Ai, 1 ≤ i ≤ 4, we have |A1| ≤
k − 1

n− k
|A2|, |A3| ≤

n− k

k − 1
|A1|,

|A3| ≤ |A2|, |A3| ≤
k

n− k − 1
|A4|, |A4| ≤

n− k − 1

k
|A2|, |A3| +

|A4| ≤
n− k

k
(|A1|+|A2|), and |A1|+|A2|+

n− k − 1

k − 1
(|A3| + |A4|) ≤(

n− 1

k − 1

)
;
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• for Bi, 1 ≤ i ≤ 4, we have |B1| ≤ k − 1

n− k
|B2|, |B3| ≤ n− k

k − 1
|B1|,

|B3| ≤ |B2|, |B3| ≤
k

n− k − 1
|B4|, |B4| ≤

n− k − 1

k
|B2|, |B3| + |B4| ≤

n− k

k
(|B1|+|B2|), and |B1|+|B2|+

n− k − 1

k − 1
(|B3| + |B4|) ≤

(
n− 1

k − 1

)
;

• moreover, we have |A1|+ |A2|+ |B1|+ |B2|+
n− k − 2

k − 1
(|A4| + |B4|) ≤(

n

k

)
−
(
n− 2

k

)
, |A1|+ |A2|+ |B1|+ |B2|+

n− k − 1

k − 1
(|A3| + |B3|) ≤(

n

k

)
−
(
n− 2

k

)
.

Some additional constrains involving above parts relies on the following re-

sults regarding cross-intersecting families. The concept of cross-intersecting

set families was first introduced by Hilton and Milner [28] in their proof to

the maximum non-trivial intersecting families. Two set families X and Y

are cross-intersecting if for any sets X ∈ X and Y ∈ Y, we have X ∩Y ̸= ∅.

The order of cross-intersecting families has been extensively studied. We

only mention results relevant to our studies here.

Theorem 3.4.1 (Frankl and Tokushige [21]).

If X ⊆
(

[m]

k1

)
and Y ⊆

(
[m]

k2

)
are cross-intersecting, m ≥ k1+k2, k1 ≤ k2,

then |X| + |Y| ≤
(
m

k2

)
−
(
m− k1

k2

)
+ 1.

Theorem 3.4.2 (Kupavskii [37]).

If X ⊆
(

[m]

k1

)
and Y ⊆

(
[m]

k2

)
are cross-intersecting, then |X|

/(
m

k1

)
+

|Y|
/(

m

k2

)
≤ 1.

With the above results, we have the following additional constraints.

• For Ai, 1 ≤ i ≤ 4, we have |A1|+|A4| ≤
(
n− 2

k

)
−
(
n− k

k

)
+1, |A2|+

|A3| ≤
(
n− 2

k − 1

)
+

(
n− k

k − 1

)
+1 and |A1|

/(
n− 2

k − 2

)
+|A4|

/(
n− 2

k

)
≤

1;

• for Bi, 1 ≤ i ≤ 4, we have |B1|+ |B4| ≤
(
n− 2

k

)
−
(
n− k

k

)
+1, |B2|+

|B3| ≤
(
n− 2

k − 1

)
+

(
n− k

k − 1

)
+1 and |B1|

/(
n− 2

k − 2

)
+ |B4|

/(
n− 2

k

)
≤

1.
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An analytical maximum |H| to the above set of formulas involving Ai’s

and Bi’s will be complicated. Instead, we plot how the upper bound of

|H| achieved by above constraints as following (using existing linear pro-

gramming solvers). Here two additional plots are introduced, where ‘Better

Structural’ is obtained by maximising
4∑

i=1
|Ai| +

4∑
i=1

|Bi| subject to above

formulas. And ‘Achievable’ denote the maximum over trivial bipartite sub-

graphs and the subgraph constructed in Examples 3.2.9.

Although it may not seem to be clear from the plot, recall that both the

lower bound and the upper bounds we studied have the property that if

n = 2k + o(
√
k), then they approach to 4

3 t(n, k, 2) as k goes to infinity.

When we consider the case that n = 2k+Ω(
√
k), we see some more variation

among the different bounds. For instance, if n = 2k + o(k), then ‘Trivial’,

‘Hilton-Milner’, and ‘Structural’ still approach to 4
3 t(n, k, 2) as k goes to

infinity, but the behaviour of ‘Algebraic’ becomes hard to track. If n = 2k+

ck, then those mentioned upper bounds will approach to different constant

multiple of t(n, k, 2), where each multiple is a function of c. Note if n =

2k + Ω(
√
k), then our construction in Example 3.2.9 is not better than

trivial bipartite subgraph, hence ‘Achievable’ is equal to t(n, k, 2). For space

reasons, we will not discuss this further.

In Example 3.2.9, we present a special construction of bipartite subgraph of

K(n, k), which is larger then the construction in [18]. It is worth asking: is

there any bipartite subgraph of K(n, k) that is larger than what we have?
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A family of natural candidates, which is also a generalisation of Exam-

ple 3.2.9 is

F(n, k, t1, t2) :=

{
F ∈

(
[n]

k

) ∣∣∣∣ |F ∩ [t1]| ≥ 1
2(t1 + 1)

}
∪
{
F ∈

(
[n]

k

) ∣∣∣∣ |F ∩ [n− t2 + 1, n]| ≥ 1
2(t2 + 1)

}
.

We have the following observations, each follows a similar approach as in

Lemma 3.3.5, but with slightly more involved ideas.

Lemma 3.4.3.

For fixed positive integers n, k such that n ≥ 2k + 1, there is a pair of t∗1, t
∗
2

maximising |F(n, k, t1, t2)| such that both t∗1, t
∗
2 are odd, and t∗1 + t∗2 ≤ 2k.

Lemma 3.4.4.

For fixed positive integers k ≥ 3 and n = 2k + 1, we have

(a) |F(n, k, t1, t2)| ≥ |F(n, k, t1−2, t2)| for odd integers t1, t2 that 3 ≤ t1 ≤ k,

1 ≤ t2 ≤ k;

(b) |F(n, k, k+x, k−x)| ≤ |F(n, k, k+x−2, k−x+2)| for each 1 ≤ x ≤ k−3

with the different parity as k (i.e. such that k − x is odd).

Lemmas 3.4.3 and 3.4.4 implies the following.

Theorem 3.4.5.

For fixed positive integer k and n = 2k + 1, if k is odd, then t1 = t2 = k

maximises |F(n, k, t1, t2)|; if k is even, then t1 = k−1, t2 = k+1 maximises

|F(n, k, t1, t2)|.

But they are not sufficient for us to conclude which pair of t1, t2 maximises

|F(n, k, t1, t2)| for general pairs of n, k. It is tempting to ask whether our

Fodd and Feven as in Example 3.2.9 always maximise |F(n, k, t1, t2)|? Un-

fortunately, direct computation using computer programs suggest not, even

for n close enough to 2k.

Instead, direct computation suggest for each small fixed c and n = 2k + c,

if k is relatively large, then the best choice of t1, t2 in |F(n, k, t1, t2)| is the

choice as in Fodd and Feven. But for smaller k (with each c), the best choice

is either t1 = t2 = 1 (which is the trivial bipartite subgraph), or some t1, t2
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close to but not equal to k. For instance fix c = 4, if k = 63, n = 130, then

|F(n, k, t1, t2)| is maximised at t1 = t2 = 1; if instead k = 64, n = 132, then

|F(n, k, t1, t2)| is maximised at t1 = 63, t2 = 61; similarly if k = 65, n = 134,

then |F(n, k, t1, t2)| is maximised at t1 = t2 = 63; finally for larger k, in this

case k = 113, n = 230, we have |F(n, k, t1, t2)| maximised at t1 = t2 = 113,

agreeing with the construction of Fodd.

In the other direction, our computation also seem to suggest for each fixed k

and n = 2k+c, then as c increases, the best choice of t1, t2 always start as the

choice in Fodd and Feven, and becomes something smaller but close enough

to k, and then immediately drop to t1 = t2 = 1. For example, if k = 161

and n = 2k + c, then for 1 ≤ c ≤ 4, we have |F(n, k, t1, t2)| maximised at

t1 = t2 = 161. But if c = 5, then the maximum is attained at t1 = 159, t2 =

161; if c = 6, then the maximum is attained at t1 = 155, t2 = 157; and if

c ≥ 7, then the maximum is attained at t1 = t2 = 1. For space reasons, we

will not discuss this further, and leave the rest to interested readers.

Proof of Lemma 3.4.3. We will show that if any of t1, t2 is even, then there

is another pair of t′1, t
′
2 such that |F(n, k, t′1, t

′
2)| ≥ |F(n, k, t1, t2)|.

Without loss of generality, we assume t1 is even. For each F ∈ F(n, k, t1, t2),

we have F ∈ F(n, k, t1−1, t2), and hence |F(n, k, t1−1, t2)| ≥ |F(n, k, t1, t2)|.

Now we suppose t1, t2 are both odd and t1 + t2 > 2k, then we have t1 + t2 ≥
2k + 2 by the parity. Then at least one of t1, t2 is at least 3. Without loss

of generality we assume t1 ≥ 3 since 2k + 2 ≥ 4. Direct comparison shows

|F(n, k, t1 − 2, t2)| ≥ |F(n, k, t1, t2)|. Repeat this process and we will get a

pair of t′1, t
′
2 such that |F(n, k, t′1, t

′
2)| ≥ |F(n, k, t1, t2)|, and t′1 + t′2 ≤ 2k.

That is, there is a pair of t∗1, t
∗
2 maximising |F(n, k, t1, t2)| such that both

t∗1, t
∗
2 are odd and t∗1 + t∗2 ≤ 2k. □

Proof of Lemma 3.4.4. For part (a), fix positive integers k ≥ 3, 3 ≤ t1 ≤ k,

1 ≤ t2 ≤ k, and let n = 2k + 1. By direct comparison of set families, we

have

|F(2k + 1, k, t1, t2) \F(2k + 1, k, t1 − 2, t2)|
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=

(
t1 − 2

(t1 − 3)/2

) (t2−1)/2∑
i=0

(
t2
i

)(
2k + 1 − t1 − t2

k − (t1 − 3)/2 − 2 − i

)
,

and

|F(2k + 1, k, t1 − 2, t2) \F(2k + 1, k, t1, t2)|

=

(
t1 − 2

(t1 − 1)/2

) (t2−1)/2∑
i=0

(
t2
i

)(
2k + 1 − t1 − t2
k − (t1 − 1)/2 − i

)
.

Hence |F(2k + 1, k, t1, t2)| ≥ |F(2k + 1, k, t1 − 2, t2)| if and only if for each

i that 0 ≤ i ≤ t2 − 1

2
, we have(

2k + 1 − t1 − t2
k − (t1 − 1)/2 − i− 1

)
≥
(

2k + 1 − t1 − t2
k − (t1 − 1)/2 − i

)
.

Which is true if and only if
(t2 − 1)

2
≥ i, which is always true.

For part (b), fix k ≥ 3, x ≥ 1 and let n = 2k + 1. By direct comparison of

set families, we have

|F(2k + 1, k, k + x, k − x) \F(2k + 1, k, k + x− 2, k − x + 2)|

=

(
k + x− 2

(k + x− 3)/2

)(
k − x + 1

(k − x− 1)/2

)
+

(
k + x− 2

(k + x− 3)/2

)(
k − x

(k − x + 1)/2

)
,

and

|F(2k + 1, k, k + x− 2, k − x + 2) \F(2k + 1, k, k + x, k − x)|

=

(
k + x− 2

(k + x− 1)/2

)(
k − x

(k − x− 1)/2

)
+

(
k + x− 1

(k + x− 3)/2

)(
k − x

(k − x− 1)/2

)
.

Hence |F(2k + 1, k, k + x, k− x)| ≤ |F(2k + 1, k, k + x− 2, k− x+ 2)| if and

only if(
k + x− 2

(k + x− 3)/2

)(
k − x + 1

(k − x− 1)/2

)
+

(
k + x− 2

(k + x− 3)/2

)(
k − x

(k − x + 1)/2

)
≤
(

k + x− 2

(k + x− 1)/2

)(
k − x

(k − x− 1)/2

)
+

(
k + x− 1

(k + x− 3)/2

)(
k − x

(k − x− 1)/2

)
,

which is true if and only if x ≥ 1. □
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3.4.2 Open Questions

We discussed when inertia bounds on the largest n′-partite subgraph of

K(n, k) is useful, and its limitations in this chapter. Since the inertia bounds

is built on Cauchy Interlacing Theorem, we can assign any weights in the

weighted adjacency matrix in any position with an edge. (Non-edge positions

remains zero.) Naturally, one may ask whether a more flexible weighting

technique leads to better inertia bounds than Theorem 3.2.8 and 3.2.12.

We explored the bipartite case by allowing different weights in edges from

different ‘layers’ of the graph product K(n, k) 2 K2. That is, we studied

the eigenvalues of A(K(n, k)) ⊗

[
1 0

0 x

]
+ I(nk)

⊗

[
0 y

y 0

]
. Unfortunately, we

receive the same best bound as in Theorem 3.2.8. It seems to suggest that in

order to receive better inertia bound, one need to introduce more flexibility

on those weights. We leave rest of the exploration to interested readers.

We have better induced bipartite subgraphs of K(n, k) comparing to Frankl

and Füredi’s result in [18] if n < 2k +

√
π

4

√
k. Whilst our upper bound is

approximately 1.4t(n, k, 2), our construction achieves 1.3t(n, k, 2) when k is

large. Hence it is also interesting to ask:

Question 3.4.6.

If G is (n, k)-colourable and n < 2k+

√
π

4

√
k, then what is the largest induced

bipartite subgraph in G?

Naturally, the next question following above regards tripartite induced sub-

graphs. Is there better general constructions (than Examples 3.2.9 and the

trivial tripartite) of a ‘large’ tripartite induced subgraph of K(n, k)? For

smaller values of n and k, it is possible to compute the exact maximum

tripartite subgraphs of K(n, k) using computer programs. For instance, the

largest tripartite subgraph of K(8, 3) has 47 vertices, and one such tripartite

subgraph attaining 47 is by taking a maximum independent set in K(8, 3)

(which has

(
7

2

)
= 21 vertices), and the largest bipartite subgraph in the

remaining K(7, 3) (which has 26 vertices, as we will see in Section 4.2.1).

Note this example is larger than the maximal trivial tripartite subgraph of
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K(8, 3), which has

(
8

3

)
−
(

5

3

)
= 46 vertices.

In general, upper bounds on the largest tripartite subgraph of K(n, k) comes

from the maximum of following:

• three non-trivial independent sets in K(n, k);

• a largest independent set in K(n, k) and a largest bipartite subgraph in

the rest K(n− 1, k);

• the trivial tripartite subgraph of K(n, k).

Direct computation on the above ideas, using the Erdős-Ko-Rado and Hilton-

Milner bounds does not leads better results than what are already discussed.

Also note that Frankl and Füredi’s shifting method cannot be directly ap-

plied on n′-partite subgraph of K(n, k) if n′ ≥ 3. (In the sense that ‘shifted’

n′-colourable subgraph may no longer be n′-colourable, for any n′ ≥ 2.)

Hence it is also of interest to study if an analogous method or other struc-

tural may lead to better upper bounds.
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4
Partial Multi-Colouring and

Fractional Colouring

4.1 Introduction

In this chapter, we study more general partial colouring problems associated

with multi-colouring and fractional colouring. Graphs in this chapter are

undirected and with neither multiple edges nor loops.

Recall that in a k-multi-colouring of a graph, each vertex receives a set of k

different colours, and such a colouring is proper if adjacent vertices receive

disjoint colour sets. A graph G is (n, k)-colourable if there is a proper k-

multi-colouring of G using n colours in total. And the k-th multi-chromatic

number χk(G) is the smallest n such that G is (n, k)-colourable.

Also recall that a graph G is fractional-
n

k
-colourable if G is (tn, tk)-colourable

for some t ≥ 1. The fractional chromatic number χf (G) is the infimum of
n

k
so that G is fractional-

n

k
-colourable. It is well-known (for example, see

in [43]) that this infimum is a minimum, i.e. if χf (G) =
n

k
, then G is

(tn, tk)-colourable for some t ≥ 1.

In this chapter, we study the following two sub-questions.

Question 3.1.1.

(b) Given rational numbers r, s > 0, for what real number b can we guaran-
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tee that every fractional-r-colourable graph G has a fractional-s-colourable

induced subgraph with at least b|V (G)| vertices?

(c) Given positive integers n, k, n′, k′, for what real number c can we guar-

antee that every (n, k)-colourable graph G has an (n′, k′)-colourable induced

subgraph with at least c|V (G)| vertices?

We present main results as well as proofs in Section 4.2. Discussion on

results, open problems and further interests are in Section 4.3.

4.2 Main Results and Their Proofs

We present our main results regarding Question 3.1.1 (b) and (c) in this

section. As most of their proofs are reasonably short, we also include the

proofs in this section.

Let G be a graph, n′ a positive integer and s a positive rational number.

Recall the definition of γ(G,n′) that we studied in the last chapter, as well

as γf (G, s) that we introduced in the first chapter:

γ(G,n′) = max

{
|V (H)|
|V (G)|

∣∣∣∣H ⩽i G, H is n′-colourable

}
,

γf (G, s) = max

{
|V (H)|
|V (G)|

∣∣∣∣H ⩽i G, χf (H) ≤ s

}
.

(Again, H ⩽i G means H is an induced subgraph of G.)

We discussed γ(G,n′) with n′ < 2 in the last chapter. Note that if s is

strictly smaller than 2, then γf (G, s) equals to γ(G, ⌊s⌋). In particular, for

any s < 1, if H ⩽i G has fractional chromatic number at most s, then we

know H has no vertex. Which leads to γf (G, s) = γ(G, 0) = 0 if s < 1. For

1 ≤ s < 2, if H ⩽i G has fractional chromatic number at most s, then H is

edgeless. Hence γf (G, s) = γ(G, 1) =
α(G)

|V (G)|
≥ 1

χf (G)
. (Recall that α(G)

denotes the independence number of G.) Here
α(G)

|V (G)|
≥ 1

χf (G)
holds with

essentially the same reason as last chapter: the fractional chromatic number

χf (G) is the infimum of
n

k
that G is (n, k)-colourable. If a graph G is (n, k)-

colourable, then simple counting gives k|V (G)| ≤ nα(G), i.e.
α(G)

|V (G)|
≥ 1

n/k
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for any pair of n, k that G is (n, k)-colourable. This lower bound is also the

best possible with given fractional chromatic number by the cases that G

with the given fractional chromatic number is vertex transitive.

For general s ≥ 2, we are interested in deciding the best possible lower

bounds of γf (G, s) with given fractional chromatic number. Recall that

γf (r, s) = inf {γf (G, s)|χf (G) = r} .

Later in this chapter, we will prove the following results. Note those infi-

mums (γf (r, s) where r > s ≥ 2) are not minimum, i.e. not attained by any

graph.

Theorem 4.2.1.

For any rational numbers r > s ≥ 2, we have γf (r, s) ≥ 1 −
(

1 − 1

r

)⌊s⌋
;

furthermore, if ⌊s⌋ ≤ r − 1

2
, then we have γf (r, s) = 1 −

(
1 − 1

r

)⌊s⌋
.

We start by showing the lower bound for γf (G, s) with given fractional

chromatic number of G are always observed by some extensively studied

graphs called Kneser graphs, as similar to γ(G, s).

Recall that for n ≥ k ≥ 1, the Kneser graph K(n, k) has the collection of

all k-subsets of [n] (denoted by

(
[n]

k

)
) as vertex set, and there is an edge

between two vertices if and only if these two k-sets are disjoint. We will

always assume n ≥ 2k, as otherwise the graph is edgeless. It is well-known

(see e.g. [43]) that a graph G is (n, k)-colourable if and only if there is a

homomorphism from G to K(n, k): in a proper (n, k)-colouring of G, the

set of k colours on each vertex x of G gives which vertex of K(n, k) is x

mapped to; and a homomorphism from G to K(n, k) naturally gives which

k colours should be assigned to each vertex in a proper k-multi-colouring.

To determine γf (r, s) with given r, it suffices to only consider Kneser graphs

with fractional chromatic number r by Theorem 3.2.2 and its extension to

γf (G, s).

Theorem 3.2.2 (extended).

If G is (n, k)-colourable, then γ(G, s) ≥ γ(K(n, k), s) and

γf (G, s) ≥ γf (K(n, k), s).
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Extended Theorem 3.2.2 is again an easy corollary of the following, and the

well-known fact that Kneser graphs are vertex transitive.

Theorem 3.2.3 (extended).

If there is a graph homomorphism from a graph G to a vertex transitive graph

H, then for any s, we have γ(G, s) ≥ γ(H, s) and γf (G, s) ≥ γf (H, s).

The same proof of Theorem 3.2.3 applies to the above extension: in the

proof, we proved that if there is a homomorphism from a graph G to a ver-

tex transitive graph H, then for any n ≥ 2k, the largest (n, k)-colourable

subgraph of G has at least the same portion of any (n, k)-colourable sub-

graph of H. We can then conclude the extended Theorem 3.2.3 by definition

of γ(G, s) and γf (G, s).

4.2.1 Counterexamples of the AGH Conjecture in Fractional

Colouring

Recall that our Question 3.1.1 is inspired by a conjecture of by Albertson et

al. [2] regarding partial list colouring. In this section, we show by examples

that the generalisation of that conjecture in fractional colouring is not true.

They asked: for a given graph G with list chromatic number n, if each

vertex has n′ colours where 1 ≤ n′ ≤ n, can we always properly colour at

least
n′

n
|V (G)| vertices of G?

We present the following examples that if a graph has fractional chromatic

number r, and n′ ≤ r colours are given, then we cannot always properly

colour
n′

r
|V (G)| vertices of G. Those examples are also highlighted by light

yellow in the images following.

• The bipartite subgraph induced by

{
F ∈

(
[5]

2

)∣∣∣∣F ∩ {1, 2} ≠ ∅
}

in K(5, 2)

is maximum. I.e. γ(K(5, 2), 2) =
7

10
. Which also means if G is (5, 2)-

colourable, then at least
7

10
|V (G)| vertices of G can be properly coloured

with 2 colours. But we cannot guarantee any ratio larger than
7

10
. (In

particular, if G has fractional chromatic number
5

2
, then we cannot always
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properly colour
2

5/2
|V (G)| vertices of G.)

• The bipartite subgraph induced by

{
F ∈

(
[6]

2

)∣∣∣∣F ∩ {1, 2} ≠ ∅
}

in K(6, 2)

is maximum. I.e. γ(K(6, 2), 2) =
3

5
. Which also means if G is (6, 2)-

colourable, then at least
3

5
|V (G)| vertices of G can be properly coloured

with 2 colours. But we cannot guarantee more.

One of the maximum bipartite subgraphs in K(5, 2) and in K(6, 2).

K(5, 2) is also famously known as the Petersen Graph.

No more than
7

10
of K(5, 2), nor more than

3

5
of K(6, 2) can be properly

coloured by 2 colours. Note both ratios are smaller than
2

χf (G)
|V (G)|.

It is not hard to prove the following. We assume n ≥ 5 since if n = 4 and G

is (4, 2)-colourable, then this whole graph is bipartite, i.e. 2-colourable.

(Note this implies a lower bound on γ
(n

2
, 2
)

, but not the exact value. Since

fractional-
n

2
-colourable graphs are not necessarily (n, 2)-colourable.)

Lemma 4.2.2.

For any given n ≥ 5, if a graph G is (n, 2)-colourable, then γf (G, 2) =

γ(G, 2) ≥ 4n− 6

n(n− 1)
. This is the best possible lower bound if we only know G

is (n, 2)-colourable.

Proof. First note the bipartite subgraph induced by{
F ∈

(
[n]

2

)∣∣∣∣F ∩ {1, 2} ≠ ∅
}

has 2n − 3 vertices, hence γf (G, 2) = γ(G, 2) ≥ 2n− 3

n(n− 1)/2
by Theo-

rem 3.2.2.
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We then prove γf (K(n, 2), 2) = γ(K(n, 2), 2) =
4n− 6

n(n− 1)
. It is not hard to

claim the largest independent set in K(n, 2) is of order n − 1 and if n ≥ 5,

then it must be the case that all vertices share one same element. If there are

three vertices in an independent set that do not share any common element,

then it is not possible to add a fourth vertex while keeping them independent

(i.e. keeping sets represented by those vertices pairwise intersecting).

That is, since each bipartite subgraph is the union of two independent sets,

if there is a bipartite subgraph of K(n, k) with at least 2n− 2 vertices, then

both independent sets must be exactly of order n− 1. But then their union

is of order 2n− 3. □

The largest bipartite subgraphs in K(n, 2) are the so-called trivial bipartite

subgraphs. But the above observations does not generalise to K(7, 3) in

the most obvious way: the maximal bipartite subgraphs of K(7, 3) follow-

ing above construction is H1 =

{
F ∈

(
[7]

3

)∣∣∣∣F ∩ {1, 2} ≠ ∅
}

with 25 ver-

tices, but H2 =

{
F ∈

(
[7]

3

)∣∣∣∣|F ∩ {1, 2, 3}| ≥ 2 or |F ∩ {4, 5, 6}| ≥ 2

}
with

26 vertices is also bipartite. Furthermore, it is not hard to prove that

γ(K(7, 3), 2) =
26

35
. (We can prove it by careful case analysis, or simply

apply the Hilton-Milner bound, as 26 is exactly 2 times the maximum non-

trivial maximum independent set in K(7, 3).)

That is, if graph G is (7, 3)-colourable, then at least
26

35
|V (G)| vertices of G

can be properly coloured with 2 colours. And this is the best possible

lower bound if we only know G is (7, 3)-colourable. This is another example

showing the generalisation of AGH Conjecture in fractional colouring does

not hold.

4.2.2 s-Fractional-colourable induced subgraph of K(n, k)

In this section, we study γf (G, s) and γf (r, s) more carefully.

Recall that if χf (G) =
n

k
(that n, k are co-primes), then G is (tn, tk)-

colourable for some integer t. And if an induced subgraph H ⩽i K(n, k)

is fractional-s-colourable, then K⌊s⌋+1 is not a subgraph of H, i.e. V (H)
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contains no more than ⌊s⌋ pairwise disjoint sets. On the other hand, any

⌊s⌋-colourable subgraph of K(n, k) is clearly fractional-s-colourable.

Following above observations, we have that the problem of largest fractional-

s-colourable induced subgraph problem is closely related to the Erdős Match-

ing Conjecture [12].

Conjecture 4.2.3 (Erdős [12]).

For any k ≥ 2, s ≥ 0 and n ≥ (s + 1)k − 1, if there is no s + 1 pairwise

disjoint k-sets in F ⊂
(

[n]

k

)
, then we have |F| ≤

(
n

k

)
−
(
n− s

k

)
.

It is easy to see the conjectured upper bound is attained by the trivial s-

partite subgraph of K(n, k):

∣∣∣∣{F ∈
(

[n]

k

)∣∣∣∣F ∩ [s] ̸= ∅
}∣∣∣∣ =

(
n

k

)
−
(
n− s

k

)
.

The Erdős Matching Conjecture (Conjecture 4.2.3) has been studied exten-

sively. Erdős proved the correctness of Conjecture 4.2.3 for large enough

n > n0 = n0(s, k) in his original paper. There have been massive number

of results on decreasing this n0(s, k), see e.g. in [4, 19, 30]. The most recent

progress that works for all k is in [16] that the Erdős Matching Conjecture

is true if n ≥ (2s + 1)k − s (for integer s). It is also proved to be true if

k = 2 in [13] or k = 3 in [17,20,39].

Those known cases of the Matching Conjecture allows us to determine the

exact γf (r, s) for r, s in certain range of values.

Theorem 4.2.1 (full).

For any positive rational number r, if a graph G has fractional chromatic

number r, then γf (G, s) > 1 −
(

1 − 1

r

)⌊s⌋
. Furthermore, if r ≥ 2⌊s⌋ + 1,

then γf (G, s) > 1−
(

1 − 1

r

)⌊s⌋
is the best possible lower bound with given r.

That is, for any positive rationals r, s, we have γf (r, s) ≥ 1 −
(

1 − 1

r

)⌊s⌋
;

furthermore, if r > s ≥ 2 and r ≥ 2⌊s⌋ + 1, then γf (r, s) = 1 −
(

1 − 1

r

)⌊s⌋
.

Proof of Theorem 4.2.1 (full). For given rational number r > 0, consider

any graph G that χf (G) = r =
n

k
, with co-primes n, k. Hence G is (tn, tk)-

colourable for some positive integer t.
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With the same proof as in Theorem 3.2.7, we have

γf (G, s) ≥ γf (K(tn, tk), ⌊s⌋) > 1 −
(

1 − 1

r

)⌊s⌋
.

Now consider any s-fractional-colourable induced subgraph H of K(tn, tk).

Clearly H does not contain the (⌊s⌋+1)-clique as a subgraph. (As otherwise

χf (H) ≥ χf

(
K⌊s⌋+1

)
= ⌊s⌋ + 1.) That is, V (H) ⊆

(
[tn]

tk

)
is a set family

without ⌊s⌋ + 1 pairwise disjoint tk-sets.

Therefore if r ≥ 2⌊s⌋+1, then tn ≥ (2⌊s⌋+1)tk > (2⌊s⌋+1)tk−⌊s⌋, and by

those known cases of the Matching Conjecture, we conclude that |V (H)| ≤(
tn

tk

)
−
(
tn− ⌊s⌋

tk

)
. Following the same calculation as in Theorem 3.2.7,

we have γf (K(tn, tk), s) > 1−
(

1 − 1

r

)⌊s⌋
is the best possible general lower

bound that holds for all possible t. Thus γf (r, s) ≥ 1 −
(

1 − 1

r

)⌊s⌋
. □

Before closing this section, we note the known cases that the Matching

Conjecture is true if k = 2 or k = 3 allows us to conclude the following. We

omit the proofs since it is essentially the same as Theorem 4.2.1 but with

concrete numbers.

Corollary 4.2.4.

For any integer n and real number s,

if n ≥ 2(⌊s⌋ + 1), then γf (K(n, 2), s) = t(n, 2, ⌊s⌋);
if n ≥ 3(⌊s⌋ + 1), then γf (K(n, 3), s) = t(n, 3, ⌊s⌋).

4.2.3 (n′, k′)-Colourable induced subgraph of K(n, k)

In this section, we study the maximum induced subgraph of K(n, k) that

is (n′, k′)-colourable (have a homomorphism to K(n′, k′)) with given n′

and k′. Note
n′

k′
>

n

k
does not guarantee a (n, k)-colourable graph is (n′, k′)-

colourable: for example χ(K(21, 7)) = 9, hence not (6, 1)-colourable whilst

6 >
21

7
.

Recall that π(G,K(n′, k′)) := max
∣∣{|V (H)| : H ⩽i G,H → K(n′, k′)

}∣∣.
(Note H1 → H2 stands for a homomorphism from graph H1 to graph H2.)
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In Theorem 3.2.3, we proved that if there is a graph homomorphism from

a graph G to a vertex transitive graph H, then for any n′ ≥ 2k′, we have
π(G,K(n′, k′))

|V (G)|
≥ π(H,K(n′, k′))

|V (H)|
. In particular, if we know G is (n, k)-

colourable for some n, k (but nothing else is known about G), then we only

need to study π(K(n, k),K(n′, k′)) to decide a ‘guaranteed portion’ of G

that is (n′, k′)-colourable: since
π(K(n, k),K(n′, k′))

|V (K(n, k))|
is a lower bound for

π(G,K(n′, k′))

|V (G)|
for any (n, k)-colourable graph G, and this is attained if for

example, G is K(n, k).

Not surprisingly, progress on the Erdős Matching Conjecture answers

π(K(n, k),K(n′, k′)) for some ranges of parameters, and hence answers Ques-

tion 3.1.1 (c) for those ranges of parameters.

Theorem 4.2.5.

For any n ≥ 2k and n′ ≥ 2k′, we have

π(K(n, k),K(n′, k′)) ≥ max
1≤b≤k


min{a−b,k−b}∑

i=0

(
a

b + i

)(
n− a

k − b− i

) ,

where a = 2b +

⌊
n′ − 2k′

⌈k′/b⌉

⌋
.

Furthermore, if n ≥
(

2

⌊
n′

k′

⌋
+ 1

)
k −

⌊
n′

k′

⌋
, then

π(K(n, k),K(n′, k′)) =

(
n

k

)
−
(
n− ⌊n′/k′⌋

k

)
.

Corollary 4.2.6.

For any n ≥ 2k and n′ ≥ 2k′, if a graph G is (n, k)-colourable, then

π(G,K(n′, k′)) ≥ max
1≤b≤k


min{a−b,k−b}∑

i=0

(
a

b + i

)(
n− a

k − b− i

) · |V (G)|(
n
k

) ,

where a = 2b +

⌊
n′ − 2k′

⌈k′/b⌉

⌋
.

Furthermore, if n ≥
(

2

⌊
n′

k′

⌋
+ 1

)
k−
⌊
n′

k′

⌋
, then

(
1 −

(n−⌊n′/k′⌋
k

)(
n
k

) )
|V (G)|

is the best possible lower bound of π(G,K(n′, k′)).
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Proof of Theorem 4.2.5. Proof to the first part of the theorem is by con-

struction.

For any b ≤ k and a ≤ n, denote F(n, k, a, b) =

{
F ∈

(
[n]

k

)∣∣∣∣|F ∩ [a]| ≥ b

}
.

It is not hard to see that

|F(n, k, a, b)| =

min{a−b,k−b}∑
i=0

(
a

b + i

)(
n− a

k − b− i

)
.

Note

|F(n, k, ⌊n′/k′⌋, 1)| =

(
n

k

)
−
(
n− ⌊n′/k′⌋

k

)
and

|F(n, k, n′, k′)| =

min{n′−k′,k−k′}∑
i=0

(
n′

k′ + i

)(
n− n′

k − k′ − i

)
,

where the second formula is only valid if k′ ≤ k and n′ ≤ n.

It suffices to show that F(n, k, a, b) is (n′, k′)-colourable for any b ≤ k and

a = 2b+

⌊
n′ − 2k′

⌈k′/b⌉

⌋
. This follows from the fact that Kneser graph K(a, b) is

(xa−2r, xb−r)-colourable for any x ≥ 1 and 0 ≤ r ≤ b−1 (by Equation (2.2)

in Section 2.2).

Firstly, F(n, k, a, b) is (a, b)-colourable since for any F ∈ F(n, k, a, b), we

simply assign any b colours from F ∩ [a]. Hence if F1 ∩ F2 = ∅ (i.e. there

is an edge between F1 and F2), then the colours assigned to F1 and F2 are

disjoint. I.e. this is a proper (a, b)-colouring on F(n, k, a, b).

Let x =

⌈
k′

b

⌉
and r =

⌈
k′

b

⌉
b− k′,

then K(a, b) is

(⌈
k′

b

⌉
a− 2

⌈
k′

b

⌉
b + 2k′, k′

)
-colourable. Then since

⌈
k′

b

⌉(
2b +

⌊
n′ − 2k′

⌈k′/b⌉

⌋)
− 2

⌈
k′

b

⌉
b + 2k′ =

⌈
k′

b

⌉
·
⌊

n′

⌈k′/b⌉

⌋
≤ n′,

we have that K(a, b) is (n′, k′)-colourable, and hence F(n, k, a, b) is (n′, k′)-

colourable.

The second part of the theorem follows from current progress on the Match-

ing Conjecture that the conjecture if true for integer s if n ≥ (2s + 1)k − s.
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Similar to Theorem 4.2.1, if a subgraph H ⩽i K(n, k) is (n′, k′)-colourable,

then V (H) ⊆
(

[n]

k

)
does not contain

⌊
n′

k′

⌋
+ 1 pairwise disjoint sets. Hence

if n ≥
(

2

⌊
n′

k′

⌋
+ 1

)
k −

⌊
n′

k′

⌋
, then |V (H)| ≤

(
n

k

)
−
(
n− ⌊n′/k′⌋

k

)
. □

For those parameters not included in Theorem 4.2.5, first note that the

Erdős Matching Conjecture is also proved to be true for k = 2, k = 3 and

n ≥ sk + 1 in [17,20,39]. These lead to the following.

Theorem 4.2.7.

π(K(6, 2),K(5, 2)) = 10, and for any n ≥ 7, we have π(K(n, 2),K(5, 2)) =(
n

2

)
−
(
n− 2

2

)
.

π(K(7, 3),K(5, 2)) = 35, and for any n ≥ 10, we have π(K(n, 3),K(5, 2)) =(
n

3

)
−
(
n− 2

3

)
.

Proof of Theorem 4.2.7. Since K(5, 2) is an induced subgraph of K(6, 2),

we have

π(K(6, 2),K(5, 2)) ≥ |V (K(5, 2))| = 10.

By Pigeonhole’s Principle, any 11 sets in

(
[6]

2

)
contains three pairwise dis-

joint sets, hence forming a K3 which is not (5, 2)-colourable. Therefore

π(K(6, 2),K(5, 2)) = 10.

The whole graph K(7, 3) is (5, 2)-colourable, hence π(K(7, 3),K(5, 2)) = 35.

Note any (5, 2)-colourable subgraph of K(n, k) does not have K3 as a sub-

graph, hence there is no three pairwise disjoint sets in the vertex set. Hence

by the proven cases of Matching Conjecture, we have π(K(n, 2),K(5, 2)) =(
n

2

)
−
(
n− 2

2

)
for n ≥ 7 and π(K(n, 3),K(5, 2)) =

(
n

3

)
−
(
n− 2

3

)
for

n ≥ 10. □

We can also prove π(K(7, 3),K(6, 3)) = 25 and π(K(10, 4),K(8, 4)) = 140

using the well-known fact that H is (2k′, k′)-colourable for some k′ if and

only if H is bipartite, and careful case analysis. We omit the proofs for

these two small results, as they can be easily verified, but do not lead to any

further cases.
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Some other parameters can be checked with the assistance of computer pro-

gram. Recall that in Section 3.2.1, we formulate the partial colouring prob-

lem into an independent set problem. Similarly, we can also formulate the

problem of ‘maximum induced subgraph of K(n, k) that has a homomor-

phism to K(n′, k′)’ into the problem of ‘maximum independent set in some

graph product of K(n, k) and K(n′, k′)’.

In the next proposition, we use the following notations:

• G 2 H is the Cartesian product between graphs G and H;

• G×H is the tensor product between graphs G and H: we have {(u, v), u ∈
G, v ∈ H} as the vertex set, and (u1, v1)(u2, v2) is an edge in G×H if and

only if u1u2 ∈ E(G) and v1v2 ∈ E(H);

• G+H combines edge sets of two graphs with the same vertex set, we can

do so whenever there is a natural one to one correspondence between the

vertex set of graphs G and H.

Also recall that α(G) is the independence number of G (maximum order of

an independent set of G), and G denotes the complement graph of G (that

is, G has the same vertex set as G, but uv (u ̸= v) is an edge in G if and

only if uv is not an edge in G).

Proposition 4.2.8.

For any positive integers n ≥ 2k and n′ ≥ 2k′, we have

π(K(n, k),K(n′, k′)) = α

(
K(n, k) 2 K

(n
′

k′)
+ K(n, k) ×K(n′, k′)

)
.

Proof of Proposition 4.2.8. First note in our graph product, we represent

the vertex set of K(n, k) and K(n′, k′) as usual, and we also use

(
[n′]

k′

)
as

the vertex set of K
(n

′
k′)

. (There is no ambiguity since complete graph has

all the possible edges.) Hence the summation of graph K(n, k) 2 K
(n

′
k′)

and

graph K(n, k) ×K(n′, k′) is well defined.

It is not hard to find an one-to-one correspondence of a (n′, k′)-colourable

induced subgraph of K(n, k) and an independent set in the graph product

K(n, k) 2 K
(n

′
k′)

+ K(n, k) ×K(n′, k′).

Assume H ⩽i K(n, k) is (n′, k′)-colourable and f : V (H) →
(

[n′]

k′

)
is a

proper (n′, k′)-colouring of H. Then it is not hard to verify that {(v, f(v))|v ∈
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V (H)} is an independent set in K(n, k) 2 K
(n

′
k′)

+ K(n, k) ×K(n′, k′).

Similarly, if H is an independent set in K(n, k) 2 K
(n

′
k′)

+K(n, k)×K(n′, k′),

then H ′ = {v1|(v1, v2) ∈ V (H) for some v2} is a (n′, k′)-colourable induced

subgraph of K(n, k). (Note it is not possible that both (v1, v2) and (v3, v4)

are in V (H), but v1 = v3 while v2 ̸= v4, nor v2 = v4 while v1 ̸= v3.) And

we have a proper (n′, k′)-colouring of H ′ by taking f(v1) = v2 for each

(v1, v2) ∈ V (H). □

Proposition 4.2.8 allows us to use existing independence number computer

programs to compute results for smaller pairs of (n, k) and (n′, k′). Since

the product of graphs we consider are highly symmetric, for each specific

pair of parameters, we can break the symmetry (to allow faster computa-

tion) by removing vertices that are always included in some of the largest

independent set. For instance, since the resulting graph product is also ver-

tex transitive, we can always assume any fixed vertex is included in some

maximum independent set. That is, we can delete any fixed vertex and its

neighbours, then find the largest independent set in the resulting graph and

add the first fixed vertex back.

We verified that π(K(8, 3),K(5, 2)) = 40 and π(K(9, 4),K(2, 1)) = 96 using

computer programs. (It is noted in [24] that 96 ≤ π(K(9, 4),K(2, 1)) ≤ 98.)

Additionally, Leonard Soicher helped us verified that π(K(9, 3),K(5, 2)) =

50 using his group theoretic computer program, which was built for highly

symmetric graphs.

In the rest of this section, we provide some examples of maximum partially

colourable subgraphs.

We are aware of one (5, 2)-colourable subgraph (up to isomorphism) of

K(8, 3) that attains π(K(8, 3),K(5, 2)) = 40:

{
F ∈

(
[8]

3

)∣∣∣∣|F ∩ [5]| ≥ 2

}
.

We are aware of many subgraphs that attain π(K(9, 4),K(2, 1)) = 96. But

(those we are aware) all have

{
F ∈

(
[9]

4

)∣∣∣∣|F ∩ [3]| ≥ 2

}
as one side (an in-

dependent set in the bipartite graph), and

(
[4, 9]

4

)
∪{H ∪ {x}|H ∈ H, x ∈ [3]}

for the other side. Here H can be any of the maximum independent sets of
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(
[4, 9]

3

)
. (There are many such H because |[4, 9]| = 6 = 2 × 3.)

For larger graphs, we have lower bounds by construction and several up-

per bounds, but exact computation is still hard. For instance, we know

362 ≤ π(K(11, 5),K(2, 1)) ≤ 372, but the product graph after deleting

some vertices are still too large for a computer program.

One may ask whether similar algebraic bounds as in Sections 3.2.1 and 3.2.2

can be useful here. Unfortunately, simply weighting Hoffman’s bound [29],

inertia method (discussed in Section 3.2.1) or alternated Wilson’s method [47]

does not give us better upper bounds than considering the maximum (n′ −
2k′ + 2)-colourable subgraph of K(n, k). (This is an upper bound since if H

is (n′, k′)-colourable, then H is (n′ − 2k′ + 2)-colourable.) It is possible to

study general inertia bounds by studying the number of positive and neg-

ative eigenvalues of a weighted version of A(K(n, k) 2 K
(n

′
k′)

+ K(n, k) ×

K(n′, k′)) = A(K(n, k))⊗I
(n

′
k′)

+I(nk)
⊗A(K

(n
′

k′)
)+A(K(n, k))⊗A(K(n′, k′)),

but the analysis become over complicated very soon. For instance, it is not

hard to find all the eigenvalues of αA(K(n, k))⊗ I
(n

′
k′)

+ βI(nk)
⊗A(K

(n
′

k′)
) +

γA(K(n, k)) ⊗A(K(n′, k′)) as functions of α, β, γ, but the analysis on find-

ing best α, β, γ is very complicated. We hence don’t include more details for

space reasons.

4.3 Discussions

In this chapter, we studied upper and lower bounds of γf (r, s) and

π(K(n, k),K(n′, k′)). We also derived some exact values with given ranges

of parameters. But the following more general question is still unsolved.

Question 4.3.1.

For given integer k ≥ 1 and rational number s ≥ 2, if n ≥ 2k is close to sk

(for example, if n < 2sk) and χf (G) =
n

k
, then what is the best possible

lower bound of γf (G, s)?

Some parameters of π(K(n, k),K(n′, k′)) were studied, and we showed some

subgraphs that attain π(K(8, 3),K(5, 2)) or π(K(9, 4),K(2, 1)). It is of
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interest to understand whether there are other constructions attaining these

π(K(n, k),K(n′, k′)). Before closing this chapter, we also note the problem

we studied in Chapter 2 is a specification of the questions we studied here.
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5
Effects of Graph Operations

on Correspondence

Chromatic Numbers

5.1 Introduction

In this and the next chapter, we study another variant of graph colouring

called correspondence colouring or DP-colouring (after the authors of the

paper in which it first appeared: Dvořák and Postle [9]). All graphs we

consider will be undirected and finite; multiple edges are allowed, but not

loops.

We use the notation xy for the collection of all edges with endvertices x

and y. So if e ∈ E(G) is an edge, then e ∈ xy for some (distinct) vertices

x, y ∈ V (G). We usually say just “the edge xy” for this collection. The

multiplicity of an edge xy in a graph G, denoted mG(xy) = |xy|, is the

number of edges with endvertices x and y. We write mG(xy) = 0 if there

is no edge between x and y; we sometimes also write mG(xx) = 0 for any

x ∈ V (G) (since loops are not allowed). An edge xy is simple if mG(xy) = 1;

a graph G is simple if mG(xy) ∈ {0, 1} for all x, y ∈ V (G).

Recall that correspondence colouring generalises ordinary colouring. In cor-
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respondence colouring, each vertex is associated with a prespecified list of

available colours, and each edge is associated with a prespecified correspon-

dence, specifying which pair of colours from the two endvertices correspond.

(On each edge, a colour on one endvertex corresponds to at most one colour

on the other endvertex.) A correspondence colouring is proper if each ver-

tex receives a colour from its prespecified list, and that for each edge, the

colours on its endvertices do not correspond.

Also recall the formal definition of correspondence colouring.

Definition 1.2.1.

Given a multigraph G, a correspondence C(G) on G consists of two parts:

• for each vertex x ∈ V (G), there is a list of colours l(x) associated with x;

• for each edge e ∈ E(G) with endvertices x and y, there is a correspondence

C(e) specifying which pair of colours from the two endvertices correspond,

such that C(e) induces a (possibly partial) matching between {(x, c) | c ∈
l(x)} and {(y, c′) | c′ ∈ l(y)}.

The correspondence C(xy) on a (multiple) edge xy is the collection of cor-

respondences C(e) for all edges with endvertices x and y.

Recall that the correspondence on an edge e ∈ xy is full if the induced

matching C(e) is perfect. A correspondence assignment on a graph is full if

the correspondence on every edge is full.

If |l(x)| = n for all vertices x ∈ V (G), then C(G) is a n-correspondence. A

graph G is n-correspondence-colourable if a proper correspondence colouring

on G exists for any n-correspondence on it. The correspondence chromatic

number χc(G) of a (multi)graph is the smallest such n.

As discussed in Section 1.2, since study of correspondence chromatic num-

bers assumed equal-order colour lists, and the fact that we can always ‘re-

name’ colours on each vertex while keeping the original correspondence on

each edge, we may assume the list of colours associated to each vertex are

identical.

We can also assume the correspondence on each edge is full. Since if it

is not, adding more correspondences only makes finding a proper corre-

spondence colouring ‘harder’: if a proper correspondence colouring exist on
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the later correspondence, then the same colouring is proper on the earlier

correspondence. On the other hand, if the earlier correspondence is an n-

correspondence, then the later correspondence stays n-correspondence, and

n-correspondence-colourable required a proper correspondence colouring ex-

ists on all n-correspondence of that graph.

We present our main results in Section 5.2 and proofs in Section 5.3. Dis-

cussions, open problems and area of further interests are in Section 5.4.

5.2 Change of Correspondence Chromatic Num-

bers

In this section, we present our results on the effects of certain graph oper-

ations on the correspondence chromatic numbers. As mentioned in Section

5.1, graphs refer to multigraphs that may have multiple edges but not loops.

Unless otherwise stated, edges refer to (multiple) edges with multiplicity at

least 1. We first investigate how vertex and edge deletion may change the

correspondence chromatic number of a graph.

For a graph G and a vertex x ∈ V (G), let G− x be the resulting graph

after removing x and all edges incident to x; and let G− xy be the resulting

graph of removing all edges with endvertices x, y (vertex set unchanged).

Denote MG(x) := max {mG(xv) : v ∈ V (G)} as the maximum multiplicity

of edges with one of the endvertices x. We have the following bounds for

edge or vertex deletion on any graph G. We will see in Section 5.3.1 for

proofs as well as examples showing our bounds are best possible for general

graphs.

Theorem 5.2.1.

For any graph G and any vertex x in G, we have χc(G − x) ≤ χc(G) ≤
χc(G− x) + MG(x).

Theorem 5.2.2.

For any graph G and any vertices x, y in G, we have χc(G−xy) ≤ χc(G) ≤
χc(G− xy) + min{MG(x),MG(y)}.
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We can extend Theorem 5.2.2 to cover the operations of ‘change multiplicity

of an edge’.

Theorem 5.2.3. Let any graph G and edge xy with m(xy) = m be given.

If we decrease m(xy) to m′ < m and denote the new graph as G′, then

χc(G
′) ≤ χc(G) ≤ χc(G

′) + max{m−m′,min{MG−xy(x),MG−xy(y)}}.
If we increase m(xy) to m′′ > m and denote the new graph as G′′, then

χc(G) ≤ χc(G
′′) ≤ χc(G) + max{m−m′,min{MG−xy(x),MG−xy(y)}}.

Our above results provides an upper bound on the change of correspondence

chromatic number if we increase the multiplicity of an edge. In ordinary or

list colouring, adding one edge increases the relevant chromatic number by

at most 1. One may ask, is correspondence so different that our bounds

make sense? The answer is yes. And the following example shows that for

a general graph, adding one edge can increase χc by arbitrarily much. Here

∇a,b,c denotes the graph with three vertices, and edge multiplicities of a, b, c

respectively.

Theorem 5.2.4.

For any positive integer l ≥ 1 and m ≥ (l + 1)2, we have

χc (∇lm,lm,m) − χc (∇lm,lm,m−1) = l + 1.

One can also ask, does adding an edge between non-adjacent vertices leads

to a similar or different result? We leave it as a conjecture.

Conjecture 5.2.5.

Given any integer l ≥ 1, there exist graph G such that adding one edge be-

tween two non-adjacent vertices in G increase its correspondence chromatic

number by more than l.

The next question is what will happen to the correspondence chromatic

number of we identify two vertices of a graph? Denote G/xy as the resulting

graph after identifying vertices x, y: remove x, y and create a new vertex z

adopts all edges incident to x or y (in G). Note x, y can be adjacent or

non-adjacent in G. Denoting NG(v) as the collection of all vertices adjacent

to v in G, we have NG/xy(z) = NG(x) ∪ NG(y), and ∀v ∈ V (G/xy) \ {z},
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m(zv) = mG(xv) + mG(yv). The following shows the relationship between

χc(G) and χc(G/xy).

Theorem 5.2.6.

For any graph G and adjacent vertices x, y, we have

χc(G) ≤ max
{
χc(G/xy),m(xy) +

⌈
1
2χc(G/xy)

⌉}
.

In the case that the two vertices identified were connected by a simple edge,

we have:

Corollary 5.2.7.

For any graph G and any simple edge xy ∈ E(G), if G/xy has at least one

edge, then χc(G) ≤ χc(G/xy).

Note that χc(G/xy) ≥ 2 is essential in Corollary 5.2.7 (in other words, we

need at least one edge in G/xy): if χc(G/xy) = 1, consider graph G of two

vertices and one simple edge xy, then χc(G) = 2 but χc(G/xy) = 1, i.e.

Corollary 5.2.7 no longer holds.

Following Theorem 5.2.6, we ask the following question: can we bound χc(G)

and χc(G/xy) from the other side? Is there a constant k so that χc(G/xy) ≤
χc(G) + k? The answer is yes but k depends on the choice of x, y.

Denote MG(xy) = max {m(xv) + m(yv) : v ∈ V (G), v ̸= x, y}.

(Note MG/xy(z) = MG(xy).) We have the following:

Theorem 5.2.8.

For any graph G and vertices x, y in G, we have χc(G/xy) ≤ χc(G− xy) +

MG(xy).

Another interesting operation on a multigraph is about multiplying the

whole edge set. We define the m-multiple copy G(m) of graph G as the

graph with the same vertex set as G, but multiplicity of each edge is mul-

tiplied by m, i.e. mG(m)(xy) = m · mG(xy) for each edge xy in G. By

convention G(0) is the empty graph with vertex set V (G) and no edges. The

following observation provides some idea on how this operation changes cor-

respondence chromatic number, more detailed results follow. (Note that in

the process of preparing this thesis, we found that Ciletti [40] also studied
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a relevant topic and proved Theorem 5.2.9. Our research has been done

independently from theirs.)

Theorem 5.2.9.

For any graph G and m ≥ 1, we have m (χc(G) − 1) ≤ χc

(
G(m)

)
− 1 ≤

degcy
(
G(m)

)
.

Can Theorem 5.2.9 be generalised to any two multiple copies of a graph?

We leave the general question as a conjecture, but will show its correctness

for some classes of graphs.

Conjecture 5.2.10.

For any k, l ≥ 1, we have χc

(
G(k+l)

)
−1 ≥

(
χc

(
G(k)

)
− 1
)
+
(
χc

(
G(l)

)
− 1
)
.

We understand that χc

(
G(m)

)
is bounded between m (χc(G) − 1) + 1 and

degcy
(
G(m)

)
+ 1 by Theorem 5.2.9. The following results show the asymp-

totic behaviour of χc

(
G(m)

)
.

Theorem 5.2.11.

For any graph G, the sequence

{
am : am =

χc

(
G(m)

)
− 1

m
,m ∈ N

}
con-

verges as m goes to infinity.

In the proof that the sequence in Theorem 5.2.11 converges to its supre-

mum, we will note that the sequence is not monotone in general. With

Theorem 5.2.11, we introduce and study the following graph invariant that

measures the correspondence chromatic number of graph G(m), m ∈ N
asymptotically.

Definition 5.2.12.

The correspondence chromatic limit of a base graph G (that may or may

not be simple) is a∞(G) := lim
m→∞

χc

(
G(m)

)
− 1

m
.

Note the ordinary or list colouring version of Definition 5.2.12 is trivial:

their chromatic number do not change by changing edge multiplicities (as

long as not change from or to 0), so the sequences always converge to 0.

By Theorem 5.2.11 and Theorem 5.2.9, we naturally conclude the following:
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Corollary 5.2.13.

For any graph G, we have χc(G) − 1 ≤ a∞(G) ≤ degcy(G).

So we ask: Can the inequality in Corollary 5.2.13 be strict? What values

can the correspondence chromatic limit attain?

For the first question, we will see examples that a∞(G) lies strictly be-

tween χc(G) − 1 and degcy(G) for some graphs in Section 5.3.4. For the

second question, we determine the exact correspondence chromatic number

of ‘isosceles triangles’: graphs with three vertices, and edge multiplicities

m,m, n (namely, ∇m,m,n). And hence prove the correspondence chromatic

limit can attain any given fractional part with some determined integer part,

as a corollary of following theorems.

Theorem 5.2.14.

For any integers m,n > 0, we have

χc(∇m,m,n) = max

{
m +

⌊
m

⌈m/n⌉

⌋
+ 1,

⌈m
n

⌉
n + 1

}
.

Theorem 5.2.15.

For any integers m,n > 0, we have a∞(∇m,m,n) = max

{
m +

m

⌈m/n⌉
,
⌈m
n

⌉
n

}
.

Corollary 5.2.16.

For any integers q > p ≥ 0, there exists positive integers N,m, n so that

a∞(∇m,m,n) = N +
p

q
.

We include the proof to Corollary 5.2.16 here as it is short.

Proof. Given q > p ≥ 0, let m = q2 + p and n = q + 1.

Hence
⌈m
n

⌉
=

⌈
(q − 1) +

p + 1

q + 1

⌉
= q. Then m +

m

⌈m/n⌉
= q2 + p + q +

p

q

and
⌈m
n

⌉
n = q(q + 1) ≤ q2 + p + q +

p

q
.

Therefore a∞(∇m,m,n) = q2 + p + q +
p

q
. □

Note Corollary 5.2.16 suggests: with any integer denominator q (or any

fractional part
p

q
), there are graphs G that a∞(G) is of denominator q (or

the fractional part
p

q
), and a∞(G) = ak(G) for some k. On the other hand,
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there are also graphs that a∞(G) < ak(G) for any k: a simple example will

be a∞(Cn) = 2. It is natural to ask: can the correspondence chromatic limit

a∞(G) attain any positive rational number?

For positive rationals smaller than 2, we know it is not the case: consider

any positive rational number x < 2, because a∞(G) ≥ a1(G) = χc(G)−1, we

have χc(G) = 1 or χc(G) = 2. In the first case, G is an independent set, then

a∞(G) = 0. In the second case, G is cycle-less, so it is a simple tree, and it

is not hard to prove a∞(G) = 2. But what about larger rational numbers?

Or even irrationals? In general, we think there are always some rational

numbers that is not the correspondence chromatic limit of any graph. We

leave this as a conjecture.

Conjecture 5.2.17.

For any k ≥ 1, there are some rational number x ∈ (k, k+1) such that there

does not exist graph G with a∞(G) = x.

We also conclude the following from Theorem 5.2.14 and Theorem 5.2.15.

Note Corollary 5.2.19 proves Conjecture 5.2.10 for all ‘isosceles triangle’

graphs.

Corollary 5.2.18.

For any m,n ≥ 0, we have χc(∇m,m,n) − 1 ≤ a∞(∇m,m,n) ≤ χc(∇m,m,n).

Corollary 5.2.19.

For any m,n, k, l ≥ 0, we have

χc

(
∇(k+l)

m,m,n

)
− 1 ≥

(
χc

(
∇(k)

m,m,n

)
− 1
)

+
(
χc

(
∇(l)

m,m,n

)
− 1
)
.

5.3 Proofs

In this section, we prove results presented in Section 5.2 and provide exam-

ples showing some of our bounds are best possible for general graphs. We

will use the following definition.

Definition 5.3.1.

Let G be a graph and C(G) be any correspondence associated with G. Let
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x, y be any two vertices of G. The correspondence graph on xy, denoted by

C(xy), is a simple graph with the vertex-colour pairs on x, y as vertices, and

the correspondence on xy as edges:

• V (C(xy)) = {(x, c) : c ∈ l(x)} ∪ {(y, c) : c ∈ l(y)}, and
• E(C(xy)) = {{(x, cx), (y, cy)} : {(x, cx), (y, cy)} ∈ C(G)}.

If there is no edge with endvertices x and y, then C(G) is just an empty

graph. Also note the correspondence graph on any edge is bipartite and

simple, with maximum vertex degree at most mG(xy).

5.3.1 Proofs of Theorems 5.2.1 and 5.2.2

We first prove Theorem 5.2.1. Note vertex deletion is a special case of re-

peated edge deletions, in which we delete all edges incident to one vertex; the

remaining isolated vertex does not affect the chromatic number of resulting

graph, as long as there are other vertices in the graph.

Recall that MG(x) := max {mG(xv) : v ∈ V (G)}.

Theorem 5.2.1.

For any graph G and vertex x in G, we have χc(G− x) ≤ χc(G) ≤ χc(G−
x) + MG(x).

Proof. Fix an arbitrary graph G with correspondence chromatic number

χc(G) = n. To prove χc(G−x) ≤ χc(G), fix any n-correspondence C(G−x)

on G− x. We fix a correspondence C(G) by copying the correspondence on

each edge in E(G− x) to each edge in E(G), and leaving empty correspon-

dence on edges with endvertex x. Then a proper correspondence colouring

on C(G) exist since χc(G) = n, and we can copy the colouring back to G−x.

And hence χc(G− x) ≤ n.

To prove the second inequality, we fix any x ∈ V (G) and assume χc(G−x) =

n′. Now for any (n′+MG(x))-correspondence on G, copy the correspondence

on each edge of G to each edge of G − x, whenever an edge exists. Fix a

colour c∗ ∈ l(x) and let l′(x) = l(x) \ {c∗}. For each original neighbour

v ∈ V (G − x) (that vx ∈ E(G)), remove colours corresponded to c∗ and

let l′(v) = l(v) \ {c : {(x, c∗), (v, c)} ∈ C(G)}; for any other u ∈ V (G − x),
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let l′(u) = l(u). Now the correspondence induced by l′(v) (for all v ∈
V (G)) is a correspondence on G−x with at least n′ colours in each vertices’

colour lists, so a proper correspondence colouring exists. We copy the proper

correspondence colouring from V (G− x) back to V (G) and colour vertex x

by c∗. Hence χc(G) ≤ n′ + MG(x). □

Our bounds on both sides are best possible for general graphs by the follow-

ing examples. Following left graphs show that χc(G − x1) = χc(G) (both

graphs have correspondence chromatic number 2) and right side graphs show

χc(G) = χc(G− y) + MG(y) (here χc changes from 4 to 1).

−→ −→

For Theorem 5.2.2, the first inequality that χc(G − xy) ≤ χc(G) is easy to

verify and follows a similar idea as in Theorem 5.2.1. We will prove the

second inequality that χc(G) ≤ χc(G− xy) + min{MG(x),MG(y)}.

Theorem 5.2.2.

For any graph G and vertices x, y in G, we have χc(G − xy) ≤ χc(G) ≤
χc(G− xy) + min{MG(x),MG(y)}.

Proof. Fix any graph G with at least one edge, as otherwise there is noth-

ing to prove. Fix arbitrary xy ∈ E(G) that m(xy) ≥ 1. Without loss of

generality, we assume MG(x) ≤ MG(y). Let n = χc(G− xy) + MG(x).

Let C(G) be an arbitrary n-correspondence on G. Copy the correspondence

on each edge of G to each of G− xy. Fix an arbitrary colour c∗ ∈ l(x). Let

• l′(x) = l(x) \ {c∗},

• ∀u ∈ NG(x), l′(u) = l(u) \ {c : {(u, c), (x, c∗)} ∈ C(G)}, and

• ∀u ̸∈ NG(x), l′(u) = l(u).

Denote the remaining correspondence (induced by l′(v) for all v ∈ V (G)) on

G − xy with colour lists l′ as C′(G − xy). Note that ∀v ∈ V (G), |l′(v)| ≥
n−MG(x) ≥ χc(G− xy), so there is a proper correspondence colouring on

C′(G− xy). Denote it by p : V (G− xy) →
⋃
l′(v).
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Since {(x, c∗), (y, p(y))} ̸∈ C(G), there is a proper correspondence colouring

on C(G) by assigning colour c∗ to x and colour p(v) to any other vertex

v ̸= x. □

Theorem 5.2.2 is best possible for general graphs. For the first inequality,

we have the following graphs that χc(G) = χc(G− xy) = 3 as an evidence.

−→

To show that χc(G) = χc(G − xy) + min{MG(x),MG(y)} is best possible

for some graphs, we consider G = C
(m)
k with some k ≥ 3 and m ≥ 0, so

χc(G) = 2m+1 (proof follows from Lemma 5.3.6 in later of this section). For

any adjacent x, y ∈ V (G), we have MG(x) = MG(y) = m and χc(G− xy) =

m + 1.

5.3.2 Proofs of Theorems 5.2.6 and 5.2.8

We start with definitions specific to this section. Consider an arbitrary

correspondence C(G) on a graph G. For two vertices x, y, vertex-colour

pairs (x, c) and (y, c′) are anti-matched if c ∈ l(x), c′ ∈ l(y) and they do not

correspond in C(G). An anti-matching (on C(xy)) of size K is a pairing P

of anti-matched vertex-colour pairs between {(x, c) : c ∈ l(x)} and {(y, c) :

c ∈ l(y)}, so that P ∩ C(xy) = ∅ and |P | = K.

If vertices x, y are not adjacent in G, then an anti-matching of size |l(x)|
exists. Hence any χc(G/xy)-correspondence C(G) on G has a proper corre-

spondence colouring: we can copy correspondence C(G) to G/xy by iden-

tifying anti-matched vertex-colour pairs on x, y, then a proper correspon-

dence colouring on C(G/xy) exist and can be copied back to G. That is,

χc(G) ≤ χc(G/xy) if m(xy) = 0. In the rest of this section, we study how

identifying x, y (where m(xy) ≥ 1) affects the correspondence chromatic

numbers of a graph by studying existence and size of anti-matching.

We first derive Theorem 5.2.6 from Lemma 5.3.2.
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Theorem 5.2.6.

For any graph G and adjacent vertices x, y, we have

χc(G) ≤ max
{
χc(G/xy),m(xy) +

⌈
1
2χc(G/xy)

⌉}
.

Lemma 5.3.2. Let H be a simple bipartite graph with vertex partition X⊔Y
that |X| = |Y |. If degH(v) ≥ k for any vertex v ∈ X ⊔ Y , then there is a

matching of size min{2k, |X|} in H.

Proof of Theorem 5.2.6. We first consider the case that m(xy) ≤ 1
2χc(G/xy).

Fix an arbitrary (χc(G/xy))-correspondence C(G) on G. Because m(xy) ≤
1
2χc(G/xy), the correspondence graph C(xy) is a simple bipartite graph with

maximum degree at most m(xy), and 2(χc(G/xy)−m(xy)) ≥ χc(G/xy). By

Lemma 5.3.2, we can find an anti-matching of size χc(G/xy) on C(xy).

Without loss of generality we assume the anti-matching is between identical

colours. (We can always achieve this by renaming colours on C(G) while

keeping the original correspondence.)

Denote the vertex generated by identifying x, y as z. Define correspondence

C(G/xy) by adopting C(G), while z replacing all appearance of x, y. Hence

a proper correspondence colouring on C(G/xy) exists. Assume z is coloured

by c∗, we have a proper correspondence colouring on C(G) by copying all

colour assignments in C(G/xy) and colour both x, y by c∗.

If instead m(xy) > 1
2χc(G/xy), then firstly by the integrality, we have

m(xy) ≥ ⌈12χc(G/xy)⌉. Let C′(G) be an arbitrary
(
m(xy) + ⌈12χc(G/xy)⌉

)
-

correspondence on G. By Lemma 5.3.2, there is an anti-matching of size

2⌈12χc(G/xy)⌉ ≥ χc(G/xy) on C(xy). Assume the anti-matching is between

some pairs of identical colours, and remove colours in l(x), l(y) that are not

in this anti-matching. Denote the resulting correspondence by C′′(G). With

essentially the same argument as above, a proper correspondence colouring

on C′′(G) exists, and hence a proper correspondence colouring on C′(G)

exists. Therefore χc(G) ≤ m(xy) + ⌈12χc(G/xy)⌉.

Note m(xy) ≤ 1
2χc(G/xy) if and only if χc(G/xy) ≥ m(xy) + ⌈12χc(G/xy)⌉.

We hence conclude

χc(G) ≤ max
{
χc(G/xy),m(xy) + ⌈12χc(G/xy)⌉

}
.
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□

Lemma 5.3.2 can be derived from the König’s Theorem (the maximum size

of a matching equals the minimum size of a vertex cover in any bipartite

simple graphs), see in e.g. Diestel’s book [8]. We include a direct proof to

Lemma 5.3.2 for completeness.

Proof of Lemma 5.3.2. There is nothing to prove if k = 0, so we can assume

k ≥ 1.

Let H = (X ⊔ Y,E) be a simple bipartite graph with |X| = |Y | and min-

imum vertex degree k. Assume M = {x1y1, x2y2, . . . , xKyK} is one of the

maximum matching in H. Note that K ≥ 1 since degH(v) ≥ k ≥ 1 for any

v ∈ V (H).

Assume K < min{2k, |X|}, then there exist x∗ ∈ X \ {x1, . . . , xK} and

y∗ ∈ Y \ {y1, . . . , yK}. As M is a maximum matching, so NH(x∗) ∩ (Y \
{y1, . . . , yK}) = ∅ and NH(y∗) ∩ (X \ {x1, . . . , xK}) = ∅. I.e. all neighbours

of x∗ and y∗ are in {x1, . . . , xK , y1, . . . , yK}. But since degH(x∗) ≥ k and

degH(y∗) ≥ k, and the fact that K < 2k, there exist i∗ ∈ {i ∈ [K] : x∗yi ∈
E(H)} ∩ {i ∈ [K] : y∗xi ∈ E(H)}, then we can build a matching of size

K + 1 by an augmenting path. □

The bound achieved in Lemma 5.3.2 is the best possible for general graphs.

It is clear if |X| ≤ 2k. And if |X| > 2k, consider the graph that all vertices

in X only adjacent to the first k vertices in Y , and all vertices in Y only

adjacent to the first k vertices in X, then the maximum order of a matching

in this graph is 2k.

There are many graphs with χc(G) = χc(G−xy). For an example, consider

a cycle of at least 3 vertices, by identifying two adjacent vertices, its corre-

spondence chromatic number does not change. We also have examples that

χc(G) = mG(xy) + ⌈12χc(G/xy)⌉: consider G as a graph of two vertices and

one edge, then χc(G) = m(xy) + 1 and χc(G/xy) = 1.

We have a strengthened version of Theorem 5.2.6.
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Theorem 5.3.3.

For any graph G, we have

χc(G) ≤ max

{
χc (G/xy) ,min

{
m(xy) +

⌈
1
2χc(G/xy)

⌉
,

max {m(xy), χc(G/xy)} + max{MG(xy), 1}
}}

.

Proof. Recall MG(xy) = max {m(xv) + m(yv) : v ∈ V (G), v ̸= x, y}. With

Theorem 5.2.6, we only need to show our theorem holds in the case

max{m(xy), χc(G/xy)} + max{MG(xy), 1} < m(xy) + ⌈12χc(G/xy)⌉.

Fix arbitrary vertices x ̸= y in graph G, and let K = max{m(xy), χc(G/xy)}+

max{MG(xy), 1}. Consider an arbitrary K-correspondence C(G) on G and

fix any colour c∗ ∈ l(x). Find colour c∗∗ ∈ l(y) so that {(x, c∗), (y, c∗∗)} ̸∈
C(xy) (note such c∗∗ exists because |l(y)| = K ≥ m(xy) + 1). We can as-

sume c∗∗ = c∗: if not, we just apply a renaming function f to C(G) setting

fy(c∗∗) = c∗ and all other fv as identity.

So now {(x, c∗), (y, c∗)} ̸∈ C(xy). Denote the new vertex generated by iden-

tifying x, y as z. Copy C(G) to G/xy and apply the following alterations:

• l′(z) = l(z) \ {c∗},

• ∀v ∈ NG/xy(z), l′(v) = l(v) \ {c : {(z, c∗), (v, c)} ∈ C(zv)}, and

• ∀u ∈ V (G) \ (NG/xy(z) ∪ {z}), l′(u) = l(u).

Denote C′(G/xy) as the correspondence on G/xy induced by l′. Note each

colour list is of size at least χc(G/xy), so a proper correspondence colouring

exists, say p : V (G/xy) →
⋃

v∈G/xy

l′(v). Then we have a proper correspon-

dence colouring p∗ on C(G): let p∗(x) = p∗(y) = c∗, and p∗(v) = p(v) for

any v ̸= x, y. □

For Theorem 5.2.8, we first present and prove the following result, which

uses a similar method.

Lemma 5.3.4.

For any simple graph G and x, y ∈ V (G), we have χc(G/xy) ≤ χc(G −
xy) + 2. If x, y has at most one common neighbour, then χc(G/xy) ≤
χc(G− xy) + 1.
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Proof. Fix vertices x ̸= y in simple graph G and denote the new vertex

generated by identifying x, y as z. The case that x, y do not have a common

neighbour (i.e. NG(x) ∩NG(y) = ∅) is easier and we will discuss it later.

Assume there exists w ∈ NG(x) ∩ NG(y). Let K = χc(G − xy) + 1 if

|NG(x) ∩NG(y)| = 1, or K = χc(G − xy) + 2 if |NG(x) ∩NG(y)| > 1. Let

C(G/xy) be an arbitrary K-correspondence on G/xy. Copy C(G/xy) to

G− xy and leave correspondence on xy empty (denote by C(G)).

Fix an arbitrary colour c∗ ∈ l(x), find colours ci ∈ l(w) and cj ∈ l(y) so that

{(x, c∗), (w, ci)} ∈ C(xw) and {(y, cj), (w, ci)} ∈ C(yw). Note ci, cj exist by

the assumption of full correspondence on each edge other than xy. Let

• l′(x) = l(x) \ {c∗}, l′(y) = l(y) \ {cj}, l′(w) = l(w) \ {ci},

• for each v ∈ (NG(x) ∪NG(y)) \ {x, y, w},

l′(v) = l(v) \ {c : {(x, c∗), (v, c)} ∈ C(xv) or {(y, cj), (v, c)} ∈ C(yv)}, and

• for any other vertex u, l′(u) = l(u).

Update the correspondence on each edge accordingly, and denote the result-

ing correspondence (induced by l′) as C′(G).

A proper correspondence colouring exists on C′(G) as each colour list is of

order at least χc(G − xy) (and the fact that C(xy) is empty). Denote the

proper correspondence colouring as p : V (G) →
⋃
v∈G

l′(v). Then a proper

correspondence colouring p∗ on C(G/xy) exist by letting p∗(z) = c∗, and

∀v ̸= z, p∗(v) = p(v).

If x, y do not have a common neighbour in G, then essentially the same steps

skipping all w related parts applies with K = χc(G− xy) + 1. □

The proof of Theorem 5.2.8 is essentially the same as the |NG(x)∩NG(y)| > 1

case of above, except we take K = χc(G− xy) + MG(xy) instead. We skip

the proof here.

The following example shows that our bounds in Theorem 5.2.8 are the best

possible. We’ll need Theorem 5.3.5 in the steps of verification.

Theorem 5.3.5.

For k ≥ 2, m ≥ 1, we have χc

(
K

(m)
k

)
= m(k − 1) + 1 and χc

(
C

(m)
k

)
=

2m + 1.
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Theorem 5.3.5 can be proved directly using Theorem 5.2.9, or as a conclusion

of Lemma 5.3.6 proved by Bernshteyn, Kostochka and Pron [3]. We omit

their proof here. (Recall G(m) is the resulting graph by multiplying edge

multiplicity of each edge in G by m.)

Lemma 5.3.6 (Bernshteyn, Kostochka and Pron [3]).

Let G be a connected multigraph. There is a correspondence on G that does

not have a proper correspondence colouring and each vertex has a colour list

of order at least of its degree, if and only if each block of G is K
(m)
n or C

(m)
n .

We construct a graph H with χc(H/xy) = χc(H − xy) + MH(xy). Let

m, k, p ≥ 1 be given that p ≤ m

2
. Let H be a graph with vertex set V (H) =

V
(
K

(m)
k

)
∪ {x, y}.

−→

Multigraphs H and H/xy with m = 2

Denote Sx =
{
xv : v ∈ V

(
K

(m)
k

)}
and Sy =

{
yv : v ∈ V

(
K

(m)
k

)}
as the

edge sets. Then the edge set of H is

E(H) = E
(
K

(m)
k

)
∪ S

(⌊m
2

⌋)
x ∪ S

(⌈m
2

⌉)
y ∪ {e}(p) .

Note MH(xy) = m. We will use Theorem 5.3.5 to show

χc(H/xy) = χc(H − xy) + MH(xy).

Proof. For any m, k ≥ 1, we have χc(H−xy) ≥ χc

(
K

(m)
k

)
= m(k−1)+1 =

degcy(H −xy) + 1 (as long as p ≤ m

2
), so χc(H −xy) = m(k− 1) + 1. Since

χc(H/xy) = χc

(
K

(m+1)
k

)
= mk+1, we conclude χc(H/xy) = χc(H−xy)+

m = χc(H − xy) + MH(xy). □
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5.3.3 Proofs of Theorems 5.2.9 and 5.2.11

We first prove Theorem 5.2.9.

Theorem 5.2.9.

For any graph G and m ≥ 1, we have χc

(
G(m)

)
− 1 ≥ m (χc(G) − 1).

Proof. Consider an arbitrary graph G. If χc(G) = 1 then G is an indepen-

dent set, and there is nothing to prove. So we assume χc(G) ≥ 2. We will

construct a (m(χc(G) − 1))-correspondence on G(m) that does not have a

proper correspondence colouring.

Denote K = χc(G). Let C(G) be an (K−1)-correspondence on G that does

not have a proper correspondence colouring. We now define an (m(K− 1))-

correspondence C(m) on G(m): assign colour list {ci,j : i ∈ [K − 1], j ∈ [m]}
to each vertex v, and correspondence {(u, ciu,ju) , (v, civ ,jv)} ∈ C(m) if and

only if {(u, ciu) , (v, civ)} ∈ C(G).

Then G(m) that does not have a proper correspondence colouring under

C(m), as any proper correspondence colouring on C(m) deduces a proper

correspondence colouring on C(G), which is impossible. □

We conclude the following corollaries from Theorem 5.2.9.

Corollary 5.3.7.

If χc(G) = degcy(G) + 1, then χc(G
(m)) = m · degcy(G) + 1.

Proof. Let G be a graph with χc(G) = degcy(G) + 1. Then Theorem 5.2.9

implies

χc

(
G(m)

)
≥ m(degcy(G) − 1) + 1 = m · degcy(G) + 1 = degcy

(
G(m)

)
+ 1,

and hence χc

(
G(m)

)
= m · degcy(G) + 1. □

Corollary 5.3.8.

For any graph G and m ≥ 1, we have χc(G) − 1 ≤
χc

(
G(m)

)
− 1

m
≤

degcy(G).
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The first inequality directly follows from Theorem 5.2.9 and the second

inequality follows from χc

(
G(m)

)
≤ m · degcy(G) + 1.

We now prove in Theorem 5.2.11 that the correspondence chromatic limit

is well defined. Note this sequence converges to its supremum, but is not

monotone in general.

Theorem 5.2.11.

For any graph G, the sequence {am : am =
χc

(
G(m)

)
− 1

m
,m ∈ N} converges

as m goes to infinity.

Proof. Consider an arbitrary graph G. Recall am :=
χc

(
G(m)

)
− 1

m
, and

hence a1 = χc (G) − 1.

We first show the sequence {am}m∈N is bounded both above and below. For

any positive integer m, we have

χc(G) − 1 = a1 =
m (χc(G) − 1)

m
≤

χc

(
G(m)

)
− 1

m
= am,

and

am =
χc

(
G(m)

)
− 1

m
≤ (m · degcy(G) + 1) − 1

m
= degcy(G).

Hence by the least upper bound property of bounded sequence of real num-

bers, there exists R ∈ R such that R = sup{am : m ∈ N}.

For any given s, t ∈ N (without loss of generality assume s ≥ t), there exist

integers q = q(s, t) and r = r(s, t) (0 ≤ r(s, t) ≤ t − 1) so that s = qt + r.

(Precisely, q(s, t) =
⌊s
t

⌋
and r(s, t) = s−

⌊s
t

⌋
t but we will not use it here.)

Then

∀s, t ∈ N, s ≥ t, s · as =χc

(
G(qt+r)

)
− 1

≥χc

(
G(qt)

)
− 1

≥q
(
χc

(
G(t)

)
− 1
)

=qt · at,

i.e. as − at ≥
qt

s
· at − at = − r

s
· at ≥ −r

s
· degcy(G).
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By the definition of supremum, for any given ϵ > 0, there exists at least one

N0 ∈ N such that R− ϵ

2
< aN0 ≤ R. Let N1 = max {N0, ⌈degcy(G) · 2N0/ϵ⌉}.

For any m ≥ N1 ≥ N0, denote r′ = r(m,N0) := m −
⌊
m

N0

⌋
· N0. Note

0 ≤ r(m,N0) ≤ N0 − 1 and

r′

m
≤ r′

N1
<

N0

N1
≤ N0

degcy(G) · 2N0/ϵ
=

ϵ

2 · degcy(G)
.

Therefore we have

R ≥ am ≥ aN0 −
r′

m
· degcy(G) > aN0 −

ϵ

2
> R− ϵ.

I.e. ∀ϵ > 0, ∃N1 ∈ N such that m ≥ N1 =⇒ |am − R| < ϵ. Thus am

converges to R = sup{am : m ∈ N} as m goes to infinity. □

5.3.4 Proofs of Theorems 5.2.4, 5.2.14 and 5.2.15

Recall that for integers a, b, c ≥ 0, the graph ∇a,b,c has three vertices and

three (possibly empty) edges of multiplicity a, b, c respectively. In this sub-

section, we always denote the vertices of ∇a,b,c as A,B,C, and edge multi-

plicities satisfy mAB = a, mAC = b and mBC = c.

In the cases that a = b = c, Theorem 5.3.5 shows that χc (∇a,a,a) =

χc

(
C

(a)
3

)
= 2a + 1. And it is not hard to prove for any a ≥ 0, we have

χc (∇a,a,0) = a + 1. In this section (Theorem 5.2.14), we will determine the

exact χc(∇a,b,c) for the cases that a = b or b = c.

We first prove Theorem 5.2.4 using Theorem 5.2.14.

Theorem 5.2.14.

For any m,n > 0, we have

χc(∇m,m,n) = max

{
m +

⌊
m

⌈m/n⌉

⌋
+ 1,

⌈m
n

⌉
n + 1

}
.

Theorem 5.2.4.

For any positive integers l and m ≥ (l + 1)2, we have

χc (∇lm,lm,m) − χc (∇lm,lm,m−1) = l + 1.
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Proof of Theorem 5.2.4. By Theorem 5.2.14, we calculate

χc(∇lm,lm,m) = max {lm + m + 1, lm + 1} = lm + m + 1.

We have

⌈
lm

m− 1

⌉
=

⌈
l +

l

m− 1

⌉
= l + 1 since 0 <

l

m− 1
≤ l

l2 + 2l
≤ 1

3
.

And hence⌊
lm

⌈lm/(m− 1)⌉

⌋
=

⌊
lm

l + 1

⌋
=

⌊
m− m

l + 1

⌋
≤ m− (l + 1).

Then

lm +

⌊
lm

⌈ml/(m− 1)⌉

⌋
+ 1 ≤ lm + m− (l + 1) + 1 = lm + m− l,

and ⌈
lm

m− 1

⌉
(m− 1) + 1 = (l + 1)(m− 1) + 1 = lm + m− l.

Thus χc(∇lm,lm,m−1) = lm + m− l = χc(∇lm,lm,m) − (l + 1). □

We then prove Corollary 5.2.19 as a corollary of Theorem 5.2.14.

Corollary 5.2.19.

For any m,n, k, l ≥ 0, we have

χc

(
∇(k+l)

m,m,n

)
− 1 ≥

(
χc

(
∇(k)

m,m,n

)
− 1
)

+
(
χc

(
∇(l)

m,m,n

)
− 1
)
.

Proof. If any of m,n, k, l is 0, then the inequality automatically hold. For

the more general case, fix arbitrary m,n, k, l ≥ 1 and denote G = ∇m,m,n

for simplicity.

If n ≥ m, then χc

(
G(k+l)

)
− 1 = max{2m(k + l) + 1, n(k + l) + 1} =(

χc

(
G(k)

)
− 1
)

+
(
χc

(
G(l)

)
− 1
)
.

If m > n, then by Theorem 5.2.14, we have

χc

(
G(k)

)
− 1 = max

{
mk +

⌊
mk

⌈m/n⌉

⌋
,
⌈m
n

⌉
nk

}
,

and

χc(G
(l)) − 1 = max

{
ml +

⌊
ml

⌈m/n⌉

⌋
,
⌈m
n

⌉
nl

}
.
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Note

⌊
m(k + l)

⌈m/n⌉

⌋
≥
⌊

mk

⌈m/n⌉

⌋
+

⌊
ml

⌈m/n⌉

⌋
always holds. We hence have the

following three cases.

Case 1: χc

(
G(k)

)
− 1 = mk +

⌊
mk

⌈m/n⌉

⌋
≥
⌈m
n

⌉
nk and χc

(
G(l)

)
− 1 =

ml +

⌊
ml

⌈m/n⌉

⌋
≥
⌈m
n

⌉
nl.

Then m(k+l)+

⌊
m(k + l)

⌈m/n⌉

⌋
≥ mk+

⌊
mk

⌈m/n⌉

⌋
+ml+

⌊
ml

⌈m/n⌉

⌋
≥
⌈m
n

⌉
n(k+

l). So χc

(
G(k+l)

)
= m(k+l)+

⌊
m(k + l)

⌈m/n⌉

⌋
≥
(
χc

(
G(k)

)
− 1
)
+
(
χc

(
G(l)

)
− 1
)
.

Case 2: χc

(
G(k)

)
− 1 =

⌈m
n

⌉
nk ≥ mk +

⌊
mk

⌈m/n⌉

⌋
and χc

(
G(l)

)
− 1 =⌈m

n

⌉
nl ≥ ml +

⌊
ml

⌈m/n⌉

⌋
.

If χc

(
G(k+l)

)
=
⌈m
n

⌉
n(k + l), then χc(G

(k+l)) − 1 =
(
χc

(
G(k)

)
− 1
)

+(
χc

(
G(l)

)
− 1
)
.

If χc

(
G(k+l)

)
= m(k+l)+

⌊
m(k + l)

⌈m/n⌉

⌋
, then χc(G

(k+l))−1 ≥
⌈m
n

⌉
n(k+l) =(

χc

(
G(k)

)
− 1
)

+
(
χc

(
G(l)

)
− 1
)
.

Case 3: χc

(
G(k)

)
− 1 = mk +

⌊
mk

⌈m/n⌉

⌋
>
⌈m
n

⌉
nk and χc

(
G(l)

)
− 1 =⌈m

n

⌉
nl > ml +

⌊
ml

⌈m/n⌉

⌋
.

Note the above cannot happen if n > m or n divides m, so we have m = nq+r

for some integers q and 1 ≤ r ≤ n− 1. Then

⌊
mk

q + 1

⌋
> (q + 1)nk −mk =

(n−r)k implies
mk

q + 1
> (n−r)k, and hence n−r <

m

q + 1
. At the same time

(q + 1)nl > ml +

⌊
ml

q + 1

⌋
, so (n − r)l >

⌊
ml

q + 1

⌋
. In other words, positive

integers k, l satisfy
ml

q + 1
> (n−r)l >

⌊
ml

q + 1

⌋
, which is not possible because

both second and third terms are integers, and
ml

q + 1
<

⌊
ml

q + 1

⌋
+ 1.

Thus for all m,n, k, l ≥ 0, we have

χc

(
∇(k+l)

m,m,n

)
− 1 ≥

(
χc

(
∇(k)

m,m,n

)
− 1
)

+
(
χc

(
∇(l)

m,m,n

)
− 1
)
.

□
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Also by Theorem 5.2.14, we can calculate the correspondence chromatic

limit a∞(G) of ‘isosceles triangles’ directly. For examples:

• χc (∇3m,3m,2m) = ⌊4.5m⌋ + 1 for any m ≥ 1, hence a∞(∇3,3,2) = 4.5;

• χc (∇5m,5m,3m) = ⌊7.5m⌋ + 1 for any m ≥ 1, hence a∞(∇5,5,3) = 7.5.

We then prove Theorem 5.2.15 again using Theorem 5.2.14.

Theorem 5.2.15.

For any m,n > 0, a∞(∇m,m,n) = max

{
m +

m

⌈m/n⌉
,
⌈m
n

⌉
n

}
.

Proof. Recall that a∞(G) := lim
m→∞

χc

(
G(m)

)
− 1

m
. We will use Theorem

5.2.14 to show

a⌈m/n⌉(∇m,m,n) = max

{
m +

m

⌈m/n⌉
,
⌈m
n

⌉
n

}
.

And then we prove

a∞(∇m,m,n) = a⌈m/n⌉(∇m,m,n).

For simplicity, we denote k∗t := χc (∇mt,mt,nt) for each t ≥ 1.

Firstly, by definition and Theorem 5.2.14, we have

a⌈m/n⌉(∇m,m,n) =
k∗⌈m/n⌉ − 1

⌈m/n⌉

=

max

{
m⌈m/n⌉ +

⌊
m⌈m/n⌉
⌈m/n⌉

⌋
+ 1,

⌈m
n

⌉
n⌈m/n⌉ + 1

}
− 1

⌈m/n⌉

=
max

{
m⌈m/n⌉ + m,

⌈m
n

⌉
n⌈m/n⌉

}
⌈m/n⌉

= max

{
m +

m

⌈m/n⌉
,
⌈m
n

⌉
n

}
.

As we proved in Theorem 5.2.11, the correspondence chromatic limit a∞(G)

evaluates to the supremum of sequence {at(G) : t ∈ N}. Since a⌈m/n⌉ is

clearly a member of the sequence, we will show a⌈m/n⌉ is the maximum of

the sequence. On the contrast, we assume there is some positive integer T

such that aT > a⌈m/n⌉. Therefore

k∗T − 1

T
>
k∗⌈m/n⌉ − 1

⌈m/n⌉
= max

{
m +

m

⌈m/n⌉
,
⌈m
n

⌉
n

}
,
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k∗T >max

{
mT +

mT

⌈m/n⌉
+ 1,

⌈m
n

⌉
nT + 1

}
.

The above contradicts to the fact that

k∗T = max

{
mT +

⌊
mT

⌈m/n⌉

⌋
+ 1,

⌈m
n

⌉
nT + 1

}
,

so there is no such T .

Thus a∞(∇m,m,n) = a⌈m/n⌉(∇m,m,n) = max

{
m +

m

⌈m/n⌉
,
⌈m
n

⌉
n

}
. □

We now start to prove Theorem 5.2.14. We will determine χc (∇m,m,n) with

n ≥ m ≥ 0 and m ≥ n ≥ 0 respectively, and show that the formulas in both

cases agree with the Theorem. We first prove the easier case n ≥ m ≥ 0.

Lemma 5.3.9.

If n ≥ m ≥ 0, then χc (∇n,m,m) = max{n + 1, 2m + 1}.

Proof. Firstly, χc (∇n,m,m) ≥ n + 1 since we have an edge of multiplicity n.

If m ≤ n

2
, then degcy (∇n,m,m) ≤ n and hence χc (∇n,m,m) = n + 1. (Note

in this case, we have n + 1 ≥ 2m + 1.)

If instead m >
n

2
, then χc (∇n,m,m) ≥ χc

(
C

(m)
3

)
= 2m+ 1, but at the same

time degcy (∇n,m,m) = 2m, so χc (∇n,m,m) = 2m+ 1. (Note in this case, we

have 2m + 1 ≥ n + 1.) □

For the other case m ≥ n:

Lemma 5.3.10.

If m ≥ n ≥ 0, then χc (∇m,m,n) = min

{
k ∈ N : k > m, k >

⌊
k

k −m

⌋
n

}
.

Denote S =

{
k ∈ N : k > m, k >

⌊
k

k −m

⌋
n

}
. We first show that minS

exists, and for and two positive integers k1 ≤ k2, if k1 ∈ S, then k2 ∈ S. As⌊
m + n + 1

m + n + 1 −m

⌋
n ≤ mn + n2 + n

n + 1
= m + n− m

n + 1
< m + n + 1,

we have m+n+1 ∈ S, and in particular S ̸= ∅. Clearly S is bounded below

and consist of integers, therefore minS exists.
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Consider any two positive integers k1 ≤ k2 such that k1 ∈ S. Denote

t = k2 − k1 ≥ 0, then we have⌊
k2

k2 −m

⌋
n =

⌊
k1 + t

k1 + t−m

⌋
n

≤

⌊
k1 + k1

k1−m t

k1 −m + t

⌋
n =

⌊
k1

k1 −m

⌋
n < k1 ≤ k2,

i.e. for any positive integer k2 ≥ minS, we have k2 >

⌊
k2

k2 −m

⌋
(and clearly

k2 ≥ minS > m). Hence k2 ∈ S.

Then we prove the easier direction of Lemma 5.3.10 as the following Lemma.

Lemma 5.3.11.

For any m ≥ n > 0, if k ≤
⌊

k

k −m

⌋
n, then ∇m,m,n is not k-correspondence

colourable.

Proof. Fix any given m,n, k ≥ 1 such that m ≥ n > 0 and k ≤
⌊

k

k −m

⌋
n.

It suffices to construct an k-correspondence C(∇m,m,n) that does not have

a proper correspondence colouring. Note χc(∇m,m,n) ≤ (m + n + 1) and⌊
m + n + 1

m + n + 1 −m

⌋
n < m+n+1, so k < m+n+1 by our earlier observations.

Denote colour lists on the three vertices of ∇m,m,n as l(A) = {ai : 1 ≤ i ≤ k},

l(B) = {bi : 1 ≤ i ≤ k} and l(C) = {ci : 1 ≤ i ≤ k}. Recall mAB = m,

mAC = m and mBC = n.

Because

⌊
k

k −m

⌋
(k − m) ≤ k

k −m
(k − m) = k ≤

⌊
k

k −m

⌋
n, we can

express k as a sum of integers between k−m and n, i.e. k =
∑⌊k/(k−m)⌋

s=1 hs,

k −m ≤ hs ≤ n for each 1 ≤ s ≤
⌊

k

k −m

⌋
. For referring purpose later, we

let h0 = 0 and write k =
∑⌊k/(k−m)⌋

s=0 hs.

Construct the correspondence C(BC) on edge BC be as following:

• {(B, bi), (C, cj)} ∈ C(BC) (colour bi and colour cj corresponds) if and only

if there exist a positive integer s∗ ≤
⌊

k

k −m

⌋
such that

1 +
s∗−1∑
s=0

hs ≤ i, j ≤
s∗∑
s=0

hs.
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That is, for each s∗ ≥ 1, there is a complete bipartite subgraph Khs∗ ,hs∗

in the correspondence graph C(BC), induced by all colours bi, cj where

1 +
s∗−1∑
s=0

hs ≤ i, j ≤
s∗∑
s=0

hs. The correspondence on BC is well-defined, since

k−m ≤ hs ≤ n for each s, 1 ≤ s ≤
⌊

k

k −m

⌋
, and each c ∈ l(C) corresponds

to at most n = mBC colours in l(B), vice versa.

Now for C(AB) and C(AC):

• {(A, ai), (B, bj)} ∈ C(AB) if and only if {(C, ci), (B, bj)} ̸∈ C(BC),

• {(C, ci), (A, aj)} ∈ C(CA) if and only if {(C, ci), (B, bj)} ̸∈ C(BC).

These correspondences are also well-defined, because the degree of each

vertex-colour pair in C(BC) is at least k−m, and hence at most k−(k−m) =

m in C(AB) or C(AC).

There is no proper correspondence colouring on C(G), because for each

colour ai ∈ l(A), all the colours in l(B), l(C) that do not correspond to ai are

on the same Khs,hs subgraph in C(BC). Hence for any colour ai ∈ l(A), it is

not possible to find bj ∈ l(B), ck ∈ l(C) such that none of them correspond.

□

Then we prove the harder direction of Lemma 5.3.10 that if m ≥ n, then

min

{
k ∈ N : k > m, k >

⌊
k

k −m

⌋
n

}
colours are sufficient for ∇m,m,n (to

have a proper correspondence colouring) with any prespecified correspon-

dence. We need the following four lemmas.

Lemma 5.3.12.

If k >

⌊
k

k −m

⌋
n and k > m ≥ n, then k > m +

2

3
n.

Proof. Fix any positive integers k > m ≥ n such that k >

⌊
k

k −m

⌋
n. If

k > m+n, then the statement is immediately true. So we assume k = m+αn

for some rational number α ∈ (0, 1).

Substitute k = m + αn into the formula, then we have

m + αn >

⌊
m + αn

m + αn−m

⌋
n =

⌊
m + αn

αn

⌋
n, which implies:

(1) m + αn >

⌊
m + αn

αn

⌋
n ≥ 2n since m + αn ≥ n + αn > 2αn,

135



Chapter 5. Correspondence Colouring

(2) m + αn >

⌊
m + αn

αn

⌋
n ≥

(
m + αn

αn
− αn− 1

αn

)
n =

m + 1

α
, note the

second inequality holds because αn = k −m is an integer.

Here (1) shows m > (2 − α)n and (2) shows m <
α2n− 1

1 − α
. So if such

a positive integer m exists, we have (2 − α)n <
α2n− 1

1 − α
for some n, i.e.

(2 − 3α)n < −1. Which is only possible if 2 − 3α < 0, i.e. α >
2

3
.

Thus for any positive integers m and n, there is no positive integer k satisfy-

ing both k ≤ m+
2

3
n and k >

⌊
k

k −m

⌋
n. In other words, if k >

⌊
k

k −m

⌋
n

and k > m ≥ n, then k > m +
2

3
n. □

Lemma 5.3.13.

If a k-correspondence C(∇m,m,n) does not have a proper correspondence

colouring, then for each colour b∗ ∈ l(B), there are at least k − m colours

ai ∈ l(A) that do not correspond to (B, b∗); and for each such ai, the

subgraph of C(BC) induced by colours do not correspond to (A, ai) (i.e.

{(B, b) : {(B, b), (A, ai)} ̸∈ C} ⊔ {(C, c) : {(C, c), (A, ai)} ̸∈ C}), is a com-

plete bipartite subgraph containing (B, b∗), and of at least k −m vertices in

each part.

Proof. Fix any b∗ ∈ l(B), denote l∗(A) as the colours in l(A) not correspond-

ing to b∗. Then |l∗(A)| ≥ k−m, as mAB = m. For each ai ∈ l∗(A), because

colouring A by ai does not lead to a proper correspondence colouring of G,

if we consider the colours do not correspond to ai and denote them as li(B),

li(C) respectively, then none of the combinations between li(B) and li(C)

is valid. In other words, ({B} × li(B)) ∪ ({C} × li(C)) induces a complete

bipartite subgraph in C(BC). It is clear that this subgraph contains (B, b∗),

and at least k−m vertex-colour pairs in each part, i.e. |li(B)| ≥ k−m and

|li(C)| ≥ k −m. □

Lemma 5.3.14.

If a k-correspondence C(∇m,m,n) does not have a proper correspondence

colouring and k > m +
n

2
, then there exist a naming of l(B) = {bi : 1 ≤ i ≤

k} (i.e. a way of renaming the colours in l(B) while keeping the original

136



Chapter 5. Correspondence Colouring

correspondence) and a naming of l(C) = {ci : 1 ≤ i ≤ k} such that for each

1 ≤ s ≤
⌊

k

k −m

⌋
, we have

(s− 1)(k −m) + 1 ≤ i, j ≤ s(k −m) =⇒ {(B, bi), (C, cj)} ∈ C(BC).

Proof. Assume k > m +
n

2
and C(∇m,m,n) is a k-correspondence that does

not have a proper correspondence colouring. Since every ∇m,m,n is (m+n+

1)-correspondence colourable, we can assume k ≤ m + n.

Because colouring A by a1 (any arbitrarily fixed colour) does not lead to a

proper correspondence colouring on C(∇m,m,n), the colours in l(B) and l(C)

that do not correspond to a1 induce a complete bipartite subgraph of C(BC)

of at least k − m vertex-colour pairs in each part. Denote an arbitrarily

chosen Kk−m,k−m subgraph as H1. Name the colours in V (H1)∩({B}×l(B))

as b1, . . . , bk−m and the colours in V (H1) ∩ ({C} × l(C)) as c1, . . . , ck−m

respectively.

Now we have our base case (s = 1). Assume we have already named s(k−m)

colours in l(B) and l(C), say b1, . . . , bs(k−m) and c1, . . . , cs(k−m), for some

s ≤
⌊

k

k −m

⌋
− 1 =

⌊
m

k −m

⌋
. Denote the collection of unnamed colours as

lR(B) and lR(C) respectively.

Considering colours in l(A), we claim there exist some a∗ ∈ l(A) that does

not correspond to at least n− (k−m) + 1 colours in lR(B). Note |l(A)| = k

and |lR(B)| = k−s(k−m), so for each a ∈ l(A), the average number of edges

(on the correspondence graph) between it and lR(B) is at most
1

k
(m(k −

s(k −m))); and hence there exists a∗ ∈ l(A) that does not correspond with

at least (k − s(k −m)) −
⌊

1

k
(m(k − s(k −m)))

⌋
colours in lR(B). Note

k − s(k −m) −
⌊

1

k
(m(k − s(k −m)))

⌋
− (n− (k −m))

=

⌈
1

k
((k − s(k −m))(k −m))

⌉
− (n− (k −m))

≥
⌈

1

k

(
(k −

⌊
m

k −m

⌋
(k −m))(k −m)

)⌉
− (n− (k −m))

≥
⌈

1

k

(
(k −

(
m

k −m

)
(k −m))(k −m)

)⌉
− (n− (k −m))
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=

⌈
1

k

(
k2 − 2km + m2 − kn + k2 − km

)⌉
=

⌈
2

k

((
k − 3

4
m− 1

4
n

)2

− 9m2

16
− n2

16
+

m2

2

)⌉
since m2 + n2 ≤ (m + n)2,

≥

⌈
2

k

((
k − 3

4
m− 1

4
n

)2

− (m + n)2

16

)⌉

=

⌈
2

k

((
k −m− n

2

)(
k − m

2

))⌉
, taking ceiling of positive products,

≥1.

So a∗ ∈ l(A) does not correspond to at least (n − (k − m)) + 1 colours

in lR(B). Name those colours in lR(B) that do not correspond to a∗ as

bs(k−m)+1, . . . , bs(k−m)+t, if t = |lR(B)| that (n− (k−m)) + 1 ≤ t ≤ k−m;

if instead we have |lR(B)| > k − m, then just take t = k − m and name

arbitrary k −m of them.

Because colouring A by a∗ also does not lead to a proper correspondence

colouring on χc(∇m,m,n) by choosing any b ∈ l(B) and c ∈ l(C), the

colours in l(B), l(C) that do not correspond to a∗ (including bs(k−m)+1,

. . . , bs(k−m)+t) induce a complete bipartite subgraph in C(BC), which has

at least k −m vertices on both sides. Denote Hs+1 as a Kk−m,k−m in this

complete bipartite subgraph that contains bs(k−m)+1, . . . , bs(k−m)+t.

Because mBC = n and (k−m) + t > n, there does not exist c ∈ l(C) \ lR(C)

that is also in Hs+1. (Otherwise there will be some vertex-colour pairs in

l(C) \ lR(C) that correspond to more than n colours in l(B).) Name all

k−m colours in Hs+1∩ l(C) as cs(k−m)+1, . . . , c(s+1)(k−m). Also, for exactly

the same reason there does not exist b ∈ l(B) \ lR(B) that is also in Hs+1.

Name the unnamed ones as bs(k−m)+t+1, . . . , b(s+1)(k−m).

Repeat the above procedure for each s ≤
⌊

k

k −m

⌋
− 1, then we find an

ordering of the first

⌊
k

k −m

⌋
(k−m) colours in l(B) and l(C) respectively.

We pick an arbitrary order for the unnamed colours to complete the required

ordering. □
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Lemma 5.3.15.

Let k > m +
2

3
n, and the naming of l(B) and l(C) be as in Lemma 5.3.14.

If (s1 − 1)(k−m) + 1 ≤ i ≤ s1(k−m), (s2 − 1)(k−m) + 1 ≤ j ≤ s2(k−m)

for some s1 ̸= s2, then there does not exist a Kk−m,k−m subgraph of C(BC)

containing both bi and cj, nor both bi and bj, nor both ci and cj.

Proof. Assume the colour names in l(B) and l(C) are in accordance to

Lemma 5.3.14. Denote Hs as the Kk−m,k−m subgraph of C(BC) induced

by colours indexed (s− 1)(k −m) + 1, . . . , s(k −m). Fix arbitrary pair of

indices i, j such that (s1 − 1)(k −m) + 1 ≤ i ≤ s1(k −m) and (s2 − 1)(k −
m) + 1 ≤ j ≤ s2(k −m), for some s1 ̸= s2. So (B, bi), (C, ci) ∈ V (Hs1) and

(B, bj), (C, cj) ∈ V (Hs2). We discuss the following subcases.

(1) Note bi corresponds to at most n− (k −m) vertex-colour pairs outside

Hs1 , and cj corresponds to at most n− (k −m) vertex-colour pairs outside

Hs2 . If there exists H∗ = Kk−m,k−m ⊆ C(BC) that (B, bi) ∈ V (H∗) and

(C, cj) ∈ V (H∗), then H∗ contains at least (k−m)−(n−(k−m)) colours in

the l(C) side of Hs1 , and contains at least (k−m)− (n− (k−m)) colours in

the l(B) side of Hs2 . Consider c∗ ∈ l(C) such that (C, c∗) ∈ V (H∗)∩V (Hs2).

Then it corresponds to at least (k−m)+((k−m)−(n−(k−m))) = 3(k−m)−n

colours in l(B). But k > m+
2

3
n implies 3(k−m)−n > n, so the existence

of c∗ contradicts to mBC = n. I.e. there does not exist a Kk−m,k−m subgraph

in C(BC) containing both bi and cj .

(2) If there is some H∗∗ = Kk−m,k−m ⊆ C(BC) where both (B, bi) ∈ V (H∗∗)

and (B, bj) ∈ V (H∗∗), then with similar arguments as in (1), H∗∗ contains

at least (k − m) − (n − (k − m)) colours in the l(C) side of Hs1 . But

now bj corresponds to at least 3(k − m) − n > n colours in l(C), which

contradicts mBC = n. I.e. there does not exist a Kk−m,k−m subgraph in

C(BC) containing both bi and bj .

(3) With essentially the same arguments as in (2), there does not exist a

Kk−m,k−m subgraph in C(BC) containing both ci and cj . □

Now we can prove Lemma 5.3.10. Recall that
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Lemma 5.3.10.

If m ≥ n ≥ 0, then χc (∇m,m,n) = min

{
k ∈ N : k > m, k >

⌊
k

k −m

⌋
n

}
.

Proof. Fix any m ≥ n ≥ 0 and denote G = ∇m,m,n. Let k∗ = min

{
k ∈ N :

k > m, k >

⌊
k

k −m
n

⌋}
.

Assume on the contrast there exists an k∗-correspondence C(G) that does

not have a proper correspondence colouring. Note Lemma 5.3.12 suggests

k∗ > m +
2

3
n, so the conditions in Lemmas 5.3.13, 5.3.14 and 5.3.15 are

satisfied. Also let the colour names of l(B) and l(C) be in accordance to

Lemma 5.3.14.

For each s such that 1 ≤ s ≤
⌊

k∗

k∗ −m

⌋
, let ls(A) ⊆ l(A) denote the sublist

of colours in l(A) that does not correspond to colour b(s−1)(k∗−m)+1, i.e.

ls(A) = {a ∈ l(A) : {(A, a), (B, b(s−1)(k∗−m)+1)} ̸∈ C(AB)}. Note |ls(A)| ≥
k∗ −m, and Lemma 5.3.15 suggests that if i ̸= j, then li(A) ∩ lj(A) = ∅.

Denote the colours in l(C) that does not correspond to some of ls(A) as

ls(C). For any s, since mBC = n, we have b(s−1)(k∗−m)+1 corresponds to at

most n colours in l(C), and hence each ls(C) contains at most n distinct

colours, otherwise a proper correspondence colouring on C(G) exists. I.e.

|ls(C)| = |{c ∈ l(C) : {(C, c), (A, a)} ̸∈ C(AC) for some a ∈ ls(A)}| ≤ n.

As k∗ >

⌊
k∗

k∗ −m

⌋
n, there exists at least one colour c∗ ∈ l(C) that is not

in any of the ls(C). So c∗ corresponds to all colours in
⋃
s
ls(A). But since

all ls(A) are disjoint and of cardinality at least k∗ −m, we have

∣∣∣∣⋃
s
ls(A)

∣∣∣∣ ≥⌊
k∗

k∗ −m

⌋
(k∗ − m) ≥

(
k∗

k∗ −m
− k∗ −m− 1

k∗ −m

)
(k∗ − m) = m + 1 > m,

which contradicts to mAC = m that c∗ corresponds to at most m colours in

l(A). So such an uncolourable k∗-correspondence on G does not exist, and

hence χc(G) ≤ k∗.

Together with Lemma 5.3.11, we conclude that

χc(G) = min

{
k ∈ N : k > m, k >

⌊
k

k −m

⌋
n

}
.

□
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Now we have all the tools required for Theorem 5.2.14. It is not hard to see

Theorem 5.2.14 agrees with Lemma 5.3.9 for m,n ̸= 0: if 0 < m ≤ n, then

⌈m/n⌉ = 1, and hence m+

⌊
m

⌈m/n⌉

⌋
+ 1 = 2m+ 1 and

⌈m
n

⌉
n+ 1 = n+ 1.

We need the following two lemmas to show it agrees with Lemma 5.3.10.

Lemma 5.3.16.

For m ≥ n > 0, if k = max

{
m +

⌊
m

⌈m/n⌉

⌋
+ 1,

⌈m
n

⌉
n + 1

}
, then k > m

and k >

⌊
k

k −m

⌋
n.

Proof. Fix any m ≥ n > 0, and let k = max

{
m +

⌊
m

⌈m/n⌉

⌋
,
⌈m
n

⌉
n

}
+ 1.

It is clear that k > m, so we will prove that k −
⌊

k

k −m

⌋
n is positive.

If n divides m, then m+

⌊
m

⌈m/n⌉

⌋
+ 1 = m+n+ 1 and

⌈m
n

⌉
n+ 1 = m+ 1.

So k = m + n + 1 and k −
⌊

k

k −m

⌋
n = m + n + 1 − n−

⌊
m

n + 1

⌋
n ≥ 1.

If n does not divide m, we write m = nq + r for some integer q and 1 ≤ r ≤
n− 1. So

⌈m
n

⌉
= q + 1.

Case 1: m +

⌊
m

⌈m/n⌉

⌋
≥
⌈m
n

⌉
n, i.e. m +

⌊
m

q + 1

⌋
≥ (q + 1)n = m + n− r.

Which means

⌊
m

q + 1

⌋
≥ n− r, i.e. m ≥ (q + 1)(n− r), or n ≤ (q + 2)r.

In this case k = m +

⌊
m

⌈m/n⌉

⌋
+ 1. Denote r′ = n −

⌊
m

q + 1

⌋
. We know

1 ≤ r′ ≤ r because n >

⌊
m

q + 1

⌋
≥ n − r. So (n − r′)(q + 1) ≤ m <

(n− r′ + 1)(q + 1), and we have

k −
⌊

k

k −m

⌋
n = m +

⌊
m

⌈m/n⌉

⌋
+ 1 − n−

 m⌊
m

⌈m/n⌉

⌋
+ 1

n

= m + (n− r′) + 1 − n−
⌊

m

n− r′ + 1

⌋
n

≥ m− r′ + 1

≥ 1.
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Here the second last inequality holds since m < (n − r′ + 1)(q + 1), which

leads to

⌊
m

n− r′ + 1

⌋
≤ q.

Case 2: m +

⌊
m

⌈m/n⌉

⌋
<
⌈m
n

⌉
n, i.e. m +

⌊
m

q + 1

⌋
< (q + 1)n = m + n− r.

Which means

⌊
m

q + 1

⌋
< n− r, i.e. m < (q + 1)(n− r), or n > (q + 2)r.

In this case k =
⌈m
n

⌉
n + 1. And then

k −
⌊

k

k −m

⌋
n =

⌈m
n

⌉
n + 1 − n−

⌊
m

⌈m/n⌉n + 1 −m

⌋
n

= (q + 1)n + 1 − n−
⌊

m

(q + 1)n− (nq + r) + 1

⌋
n

= qn + 1 −
⌊

m

n− r + 1

⌋
n

≥qn + 1 − qn

= 1,

Here the inequality holds because
m

n− r
< q+1, which leads to

m

n− r + 1
<

q + 1.

That is, in all cases of k = max

{
m +

⌊
m

⌈m/n⌉

⌋
,
⌈m
n

⌉
n

}
+ 1, we have

k > m and k >

⌊
k

k −m

⌋
n. □

Then we prove the other direction.

Lemma 5.3.17.

For any integers k > m ≥ n > 0, if k >

⌊
k

k −m

⌋
n, then k > m +

m

⌈m/n⌉
and k >

⌈m
n

⌉
n.

Proof. Fix any integers m ≥ n > 0, and integer k such that k > m and

k >

⌊
k

k −m

⌋
n.

Consider functions f1 : R>m \ {m} → Z, f1(x) =

⌊
m

x−m

⌋
and f2 : R>0 →

R, f2(x) =
x

n
− 1. (Here R>α denotes all the real numbers larger than α.)

Note f1 is the floor function of a reciprocal function and f2 is linear. Also

note k > m and k >

⌊
k

k −m

⌋
n translates to k ≥ m + 1 and f2(k) > f1(k).
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For each non-negative integer y in the image of f1(x), x > m, we have

f1(x) = y ⇔ y ≤ m

x−m
< y + 1,

⇔ (y + 2)m

y + 1
< x ≤ (y + 1)m

y
,

⇔ (y + 2)m

(y + 1)n
− 1 < f2(x) ≤ (y + 1)m

yn
− 1.

Hence for some non-negative integer y, There exists x (not necessarily an

integer) satisfying both f1(x) = y and f2(x) > f1(x) only if
(y + 1)m

yn
− 1 >

y. Since for all x > m, we have f2 monotonically increasing and f1 is non-

increasing, hence the largest such y (that exist x satisfying both f1(x) = y

and f2(x) > f1(x)) gives a strict lower bound on possible x values (that

f2(x) > f1(x)). Although we cannot determine the ‘smallest’ such x, because

x does not have to be integer and the inequality is strict, we can determine

the largest such y since it is an integer. Denote y∗ as the largest y such that

there exist x with both f1(x) = y∗ and f2(x) > f1(x).

Solving
(y + 1)m

yn
− 1 > y, we have y <

m

n
, so y∗ =

⌈m
n

⌉
− 1. That

is, the preimage f−1
1 (y) where x first satisfies f2(x) > f1(x) is f−1

1 (y∗) =

f−1
1

(⌈m
n

⌉
− 1
)

. In other words, because f1 is non-increasing for x > m,

we have f1(x) ≤ y∗ implies x ≥ (y∗ + 2)m

y∗ + 1
=

(⌈m/n⌉ + 1)m

⌈m/n⌉
= m+

m

⌈m/n⌉
.

And f2(x) > y∗ implies
x

n
− 1 ≥ y∗ =

⌈m
n

⌉
− 1, i.e. x >

⌈m
n

⌉
n.

For each k satisfying both k > m and f2(k) > f1(k), there are x satisfying

x > m and f1(x) > f2(x) with ⌈x⌉ = k. Hence k > m and k >

⌊
k

k −m

⌋
n

implies k > m +
m

⌈m/n⌉
and k >

⌈m
n

⌉
n. □

Finally, we can conclude for the m ≥ n, the formula in Lemma 5.3.10 also

agrees with the formula in Theorem 5.2.14.

Theorem 5.2.14.

For any integers m,n > 0, we have

χc(∇m,m,n) = max

{
m +

⌊
m

⌈m/n⌉

⌋
+ 1,

⌈m
n

⌉
n + 1

}
.
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Proof. Lemma 5.3.17 and Lemma 5.3.16 suggests

χc(∇m,m,n) = min

{
k ∈ N : k > m, k >

⌊
k

k −m

⌋
n

}
= min

{
k ∈ N : k > m +

m

⌈m/n⌉
, k >

⌈m
n

⌉
n

}
.

Since
⌈m
n

⌉
n is an integer, and integer k > m +

m

⌈m/n⌉
if and only if k ≥⌊

m +
m

⌈m/n⌉

⌋
+ 1, we have

χc(∇m,m,n) = max

{
m +

⌊
m

⌈m/n⌉

⌋
+ 1,

⌈m
n

⌉
n + 1

}
.

□

5.4 Discussions

In this chapter, we studied the effects of certain graph operations on the

correspondence chromatic numbers, including vertex / edge deletion, iden-

tification and multiplying the whole edge set of a graph. We also find the

exact correspondence chromatic number of a class of graphs. We discuss

some possible ways of improvement and more open problems in this section.

Recall that we proved the following theorem in Section 5.3.2.

Theorem 5.3.3.

For any graph G and vertices x, y ∈ V (G), we have

χc(G) ≤ max

{
χc (G/xy) ,min

{
m(xy) +

⌈
1

2
χc(G/xy)

⌉
,

max {m(xy), χc(G/xy)} + max{MG(xy), 1}
}}

.

If we analyse Theorem 5.3.3 a bit further, it means:

• if χc(G/xy) ≥ 2m(xy), then χc(G) ≤ χc(G/xy);

• if m(xy) < χc(G/xy) < 2m(xy), then

χc(G) ≤ min

{
m(xy) +

⌈
1

2
χc(G/xy)

⌉
, χc (G/xy) + max{MG(xy), 1}

}
;

• if χc(G/xy) ≤ m(xy) and χc(G/xy) ≥ 2MG(xy), then
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χc(G) ≤ m(xy) + max{MG(xy), 1};

• if χc(G/xy) ≤ m(xy) and χc(G/xy) < 2MG(xy), then

χc(G) ≤ m(xy) +

⌈
1

2
χc(G/xy)

⌉
.

It is of interests to know whether our bounds in Theorem 5.3.3 can be further

improved. We discussed in Section 5.3.2 for the cases that

max {χc (G/xy) ,mxy} + max{Mxy(G), 1} < mxy +

⌈
1

2
χc(G/xy)

⌉
,

and the first term will provide a better bound for χc(G) than the second.

But it is still not understood whether there are graphs G satisfying χc(G) =

max {χc (G/xy) ,mxy} + max{Mxy(G), 1}.

In Section 5.3.4, we determined the exact correspondence chromatic numbers

of ∇a,b,c with a = b or b = c. It is also of interest to understand χc(∇a,b,c)

for general positive integers a, b, c. We present the following observations

here and leave the rest as an open problem.

Corollary 5.4.1.

For any given a ≥ b ≥ c > 0, we have

max

{
a + 1, 2c + 1, b +

⌊
b

⌈b/c⌉

⌋
+ 1,

⌈
b

c

⌉
c + 1

}
≤ χc(∇a,b,c)

≤ min

{
max

{
a +

⌊
a

⌈a/c⌉

⌋
+ 1,

⌈a
c

⌉
c + 1

}
,max{b + c + 1, a + 1}

}
.

Corollary 5.4.1 is a direct corollary of Theorem 5.2.14 and the fact that

max{χc(∇a,c,c), χc(∇b,b,c)} ≤ χc(∇a,b,c) ≤ min{χc(∇a,a,c), degcy(∇a,b,c)+1}.

Corollary 5.4.2.

Fix any positive integers a > b > c.

(1) If a ≥ b + c, then χc(∇a,b,c) = a + 1.

(2) If c | b and a ≤ b + c, then χc(∇a,b,c) = b + c + 1.

(3) If b + c = a + 1, then χc(∇a,b,c) = b + c + 1 = a + 2.

(4) If a ≤ 4

3
c, then χc(∇a,b,c) = 2c + 1.

Corollary 5.4.2 (1), (2) and (4) are derived from Corollary 5.4.1. Corol-

lary 5.4.2 (3) is a bit different but also simple. We give the proofs as follow-

ing.
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Proof. (1) Note χc(∇a,b,c) ≥ a + 1 considering the edge with multiplicity a.

And as a ≥ b + c, degcy(∇a,b,c) = a, so χc(∇a,b,c) = a + 1.

(2) Because c | b, we have χc(∇a,b,c) ≥ χc(∇b,b,c) = b + c + 1. And since

a ≤ b + c, degcy(∇a,b,c) = b + c. So ∇a,b,c = b + c + 1.

(3) Because b + c = a + 1, we have degcy(∇a,b,c) = b + c. We construct a

(b + c)-correspondence without a proper correspondence colouring:

• {(A, ai), (B, bj)} ∈ C(∇a,b,c) if j ≡ i + k mod b + c, for k = 1, . . . , a;

• {(A, ai), (C, cj)} ∈ C(∇a,b,c) if j ≡ i + k mod b + c, for k = 0, . . . , b− 1;

• {(B, bi), (C, cj)} ∈ C(∇a,b,c) if j ≡ i+k mod b+c, for k = b, . . . , b+c−1.

So χc(∇a,b,c) = b + c + 1 = a + 2.

(4) As a ≤ 4

3
c < 2c, χc(∇a,b,c) ≥ χc(∇a,c,c) = max{a + 1, 2c + 1} = 2c + 1.

At the same time

χc(∇a,b,c) ≤ χc(∇a,a,c) = max

{
a +

⌊
a

⌈a/c⌉

⌋
+ 1,

⌈a
c

⌉
c + 1

}
= 2c + 1.

So χc(∇a,b,c) = 2c + 1. □

Question 5.4.3. What are the exact correspondence chromatic numbers

of ∇a,b,c, for a, b, c that have not been considered by Corollary 5.4.2?
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6
Partial Correspondence

Colouring

6.1 Introduction

Recall that a graph G is n-correspondence-colourable if a proper corre-

spondence colouring exists for any n-correspondence on G; and the cor-

respondence chromatic number χc(G) is the smallest n so that G is n-

correspondence-colourable.

Also recall in correspondence colouring, we can always ‘rename’ colours

in each colour list while keeping its original correspondence on each edge.

Hence we may assume all colour lists assigned to each vertex are identi-

cal, given that they are of the same order. We can also assume all corre-

spondences are full, because otherwise we can always add more correspond

to make it full, and a proper correspondence colouring on the new corre-

spondence easily implies a proper correspondence colouring on the original

correspondence.

In this chapter, we study partial correspondence colouring problems. All

graphs in this chapter are undirected and without multiple edges nor loops.

Formally, we study the following question.
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Question 6.1.1.

Given n and a graph G that is n-correspondence colourable. For any positive

integer n′ < n and arbitrary n′-correspondence on G, how many vertices of G

can we guarantee to be properly correspondence coloured?

Similar to a few earlier chapters, this question is inspired by a partial

colouring conjecture asked by Albertson et al. [2] regarding list colouring:

given a graph G that is n-choosable, if n′ colours are given to each vertex,

1 ≤ n′ ≤ n, can we always properly list colour at least
n′

n
|V (G)| vertices

of G?

Recall that this problem is trivial for ordinary colouring: if a graph G is

n-colourable, then we can always partition the graph into n independent

sets using the n colour classes. If we only have n′ ≤ n colours available,

we can always colour at least
n′

n
|V (G)| vertices by choosing the largest n′

independent sets. It is not possible to obtain a better lower bound than
n′

n
|V (G)| for general n-colourable graphs, as can be seen by, for example,

considering complete graphs.

Also recall that for the original question on list colouring, Chappell [5] proved

that if G is n-choosable and n′ ≤ n, then at least
6

7
· n

′

n
|V (G)| vertices can

always be properly list coloured if every vertex has a list of n′ colours. The

conjecture of Albertson et al. has been studied extensively, see e.g. [25, 31,

32], and is still open.

In Section 6.3, we will explain by a series of examples showing the conjecture

of Albertson et al. does not hold if we extend it to correspondence colouring.

That is, there exist graphs G with correspondence chromatic number n, and

an n′-correspondence with another integer n′ < n on G such that less than
n′

n
|V (G)| vertices can be properly correspondence coloured.

We then study Question 6.1.1. (Note that in the process of preparing this

thesis, we found that the authors in [34] also studied partial correspondence

colouring.) Our research has been done independently from theirs.

Unfortunately, the technique Chappell used to prove the
6

7
· n

′

n
|V (G)| lower

bound for list colouring cannot be directly applied to prove a similar bound

148



Chapter 6. Partial Correspondence Colouring

for correspondence colouring. We discuss some of the partial colouring (on

ordinary or list colouring) results that extend to correspondence colouring

in Section 6.2. Then we discuss some sufficient conditions for a proper

correspondence colouring to exist in Sections 6.4 and 6.5.

6.2 Partial Correspondence Colouring

In this section, we generalise some results on partial list colouring [5, 25,

31] to correspondence colouring. Recall that with the renaming function

discussed in Section 1.2, we can rename the colours associated to each vertex

while keeping the same number of colours and correspondence. We use the

following notations in this chapter.

Definition 6.2.1.

For a graph G and a correspondence C(G) on it, the partial correspon-

dence colourable number λc(C(G)) of G with respect to C is the maximum

number of vertices on G that can be properly correspondence coloured re-

specting C(G). For any given positive integer n′ and a graph G, the n′-th

certainly colourable number λc(G,n′) is the smallest λc(C(G)) over all pos-

sible n′-correspondence C(G).

Lemma 6.2.2.

Let G be a graph with correspondence chromatic number χc(G) = n. For

any given integer n′ ≤ n, we have λc(G,n′) ≥ |V (G)|
⌈n/n′⌉

.

Proof. Given graph G with correspondence chromatic number χc(G) = n,

assign an arbitrary n′-correspondence on G where n′ ≤ n and denoted by

C(G). Let p := ⌈n/n′⌉.

Denote l(v) = {c1, c2, ..., cn′} as the colour list associated with each vertex v.

Now we define correspondence C′(G):

• For each vertex x in V (G), we extend its colour list to l′(x) = L′ =
p⋃

i=1

li(x) where l1(x) = l(x) = {cj : 1 ≤ j ≤ n′} and li(x) = {cij : 1 ≤

j ≤ n′} for 2 ≤ i ≤ p;
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• The correspondence on each edge keeps original: for adjacent ver-

tices x and y, {(x, cik), (y, cjl )} ∈ C′(G) if and only if i = j and

{(x, ck), (y, cl)} ∈ C(G).

By the definition of p, we have n′p ≥ n, so there is a proper correspondence

colouring f : V (G) → L′ under C′(G). Using this proper correspondence

colouring, V (G) can be partitioned into p colour classes C1, C2, ..., Cp: a

vertex x is in Ci if and only if f(x) ∈ li(x). Now one of the p classes contains

at least the average number of vertices over all classes (i.e.
|V (G)|

p
). Without

loss of generality, we assume C1 contains at least
|V (G)|

p
vertices. As the

correspondence C′(G) is copied from C(G), we can properly correspondence

colour each vertex x ∈ C1 by colour f(x), which will be a proper partial

colouring in C(G). Thus we have λc(G,n′) ≥ |V (G)|
p

=
|V (G)|
⌈n/n′⌉

. □

Corollary 6.2.3.

Let G be a graph with correspondence chromatic number χc(G). For each

positive integer n′, if n′ < χc(G), then we have λc(G,n′) >
n′|V (G)|
2χc(G)

, or if

n′ ≥ χc(G), then we have λc(G,n′) = |V (G)|.

Proof. The n′ ≥ χc(G) part is trivial. If n′ < χc(G), then we have⌈
χc(G)/n′⌉ <

χc(G)

n′ + 1 ≤ 2χc(G)

n′ , and hence by Lemma 6.2.2, we have

λc(G,n′) ≥ |V (G)|
⌈χc(G)/n′⌉

>
n′|V (G)|
2χc(G)

. □

Lemma 6.2.4.

Given any graph G with correspondence chromatic number χc(G). For any

integers r, s such that 1 ≤ r, s ≤ χc(G), we have λc(G, r) + λc(G, s) ≥
λc(G, r + s).

Proof. By our definition of certainly colourable numbers, it is sufficient to

construct a (r + s)-correspondence Cr+s(G) such that λc(G, r) + λc(G, s) ≥
λc(Cr+s(G)), and hence λc(G, r) + λc(G, s) ≥ λc(G, r + s).

Let Cr(G) and Cs(G) be arbitrary r-correspondence and s-correspondence on

G, with colour lists lr = {c1, . . . , cr} and ls = {cr+1, . . . , cr+s} respectively.
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We construct the (r + s)-correspondence Cr+s(G) with colour lists lr+s(v)

assigned to each vertex:

• lr+s(v) = lr(v) ∪ ls(v) = {c1, ..., cr, cr+1, ..., cr+s},

• {(u, ci), (v, cj)} ∈ Cr+s(G) iff {(u, ci), (v, cj)} ∈ Cr(G) ∪ Cs(G).

Note that for any i, j such that 1 ≤ i ≤ r, 1 ≤ j ≤ s, there is no correspon-

dence between (u, ci) and (v, cr+j).

Let f be the partial correspondence colouring of G so that exactly λc(Cr+s(G))

vertices are coloured. We may partition the coloured vertices to subsets

R = {v ∈ V (G) : f(v) ∈ lr} and S = {v ∈ V (G) : f(v) ∈ ls}. Note that

|R| ≤ λc(Cr(G)) and |S| ≤ λc(Cs(G)). Hence

λc(G, r + s) ≤ λc(Cr+s(G)) = |R| + |S|

≤ λc(Cr(G)) + λc(Cs(G)) = λc(G, r) + λc(G, s).

□

Corollary 6.2.5.

Given graph G and positive integer n′ such that 1 ≤ n′ ≤ χc(G). Then

at least one of inequalities λc(G,n′) ≥ n′|V (G)|
χc(G)

or λc(G,χc(G) − n′) ≥

(χc(G) − n′)|V (G)|
χc(G)

is true.

Proof. Let graph G be given and denote n = χc(G). On the contrary,

assume there is some n′, 1 ≤ n′ ≤ n such that λc(G,n′) <
n′|V (G)|

n
and

λc(G,n − n′) <
(n− n′)|V (G)|

n
. Then according to the Lemma 6.2.4, we

have

λc(G,n) ≤ λc(G,n′) +λc(G,n−n′) <
n′|V (G)|

n
+

(n− n′)|V (G)|
n

= |V (G)|.
Which gives λc(G,n) < |V (G)|, contradicting n = χc(G). □

We need the following definition for the rest of the results.

Definition 6.2.6.

Let G be a graph and H its subgraph, C(G) is a correspondence on G with
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colour list l(v) to each vertex v ∈ V (G). The restriction of C(G) to H,

denote by C(G)|H , is the correspondence on H with the same colour list l(v)

as C(G) and correspondence inherited from C(G): for each edge uv ∈ E(H),

we have {(u, cu), (v, dv)} ∈ C(G)|H if and only if {(u, cu), (v, dv)} ∈ C(G).

Corollary 6.2.7.

Given a graph G and H an induced subgraph of G. For any positive integer

n′, we have λc(G,n′) ≥ λc(H,n′).

Proof. Given graph G and let H ⩽i G be its induced subgraph. Given any

positive integer n′. Let C(G) be the correspondence on G that λc(C(G)) =

λc(G,n′). Let correspondence C(H) be C(G)|H on H, then λc(H,n′) ≤
λc(C(H)) ≤ λc(C(G)) = λc(G,n′). □

Lemma 6.2.8.

Given graph G and any integer n′ such that 1 ≤ n′ ≤ χc(G), we have:

(1) if there is an induced subgraph H of G such that χc(H) = n′, then

λc(G,n′) ≥ |H|;
(2) if H ′ is an induced subgraph of G such that |V (H ′)| = λc(G,n′), then

χc(H
′) ≥ n′.

Proof. (1) Assume by contrary that λc(G,n′) < |H|. Let Cn′(G) be the

n′-correspondence on G so that λc(G,n′) = λc(Cn′(G)). Thus we can colour

fewer than |H| vertices in G under Cn′(G). But χc(H) = n′ and hence all

of V (H) can be coloured under Cn′ |H , contradicts to λc(Cn′(G)) < |H|. We

conclude that λc(G,n′) ≥ |H|.

(2) Suppose on the contrary that χc(H
′) = s < n′, then a proper correspon-

dence colouring exists for any s-correspondence Cs(H
′) on H ′. Consider an

n′-correspondence Cn′(G) on G that λc(G,n′) = λc(Cn′(G)). Fix a vertex

x ∈ V (G \H ′) and colour c ∈ ln′(x). (Such x exists as otherwise H ′ = G,

|H ′| = λc(G,n′), and hence χc(H
′) = χc(G) = n′.) Let C′(H ′) be the

correspondence inherit from C(H ′) by removing any colours corresponded

to colour c, i.e. for each vertex v ∈ V (H ′), we have l′(v) = l(v) \ {d :

{(v, d), (x, c)} ∈ Cn′(G)}. Then by the fact that χc(H
′) = s ≤ n′ − 1 and
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for each vertex v ∈ V (H ′), we have |l′(v)| ≥ n′ − 1, we see H ′ is C′(H ′)-

colourable. Hence we can colour |H ′|+1 vertices of G under Cn′(G) by assign

colour c to vertex x, which contradict to our assumption of λc(Cn′(G)) =

|H ′|. We conclude that χc(H
′) ≥ n′. (Note that it is ‘at least’ because we

may not be able to colour exactly the subgraph H ′ under chosen correspon-

dence.) □

Recall that a graph is k-degenerate if every subgraph of it has a vertex of

degree at most k. We denote the degeneracy of graph G as degcy(G). Also

recall that for any graph G, we have χ(G) ≤ χl(G) ≤ χc(G) ≤ degcy(G)+1.

A chord in a cycle of a graph is an edge between two vertices that are not

adjacent in the cycle. A graph is chordless if it has no chords.

Lemma 6.2.9.

Let G be a chordless graph with correspondence chromatic number n, then

for any integer n′ where 0 < n′ < n, we have λc(G,n′) ≥ n′|V (G)|
n

.

We need the following lemma to prove Lemma 6.2.9.

Lemma 6.2.10 (Janssen et al. [32]).

Let G be a minimally 2-connected (2-connected and chordless) graph. Then

for any vertex x ∈ V (G), we can find vertices u, v, w ∈ V (G) such that

v, w ∈ NG(u), degG(v) = degG(w) = 2 and x ̸∈ {v, w}.

Proof of Lemma 6.2.9. We have n ≤ 3 by the 2-degeneracy property of

chordless graphs. The lemma for n ≤ 2 is trivial: we only need to discuss

n′ = 1, which holds by choosing the largest single-coloured vertex subset

under each correspondence.

Now we consider n = 3. The case that n′ = 1 is trivial as the largest single-

coloured vertex subset of G has size at least ⌈|V (G)|/3⌉. If n′ = 2, we will

use induction on number of vertices to prove λc(G, 2) ≥ 2|V (G)|
3

.

Assume the hypothesis holds for graphs with at most |V (G)| − 1 vertices,

i.e. λc(G, 2) ≥ 2|V (G)|
3

for |V (G)| ≤ |V (G)| − 1.

If there is a vertex x ∈ V (G) with degree at most 1, denote G′ as graph G

after removing x. By our assumption, we have λc(G
′, 2) ≥ 2(|V (G)| − 1)

3
.
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Look at any correspondence of G′, we can always add x back with at least

one colour available as x has at most 1 neighbour in G. Hence we have

λc(G, 2) ≥ 2(|V (G)| − 1)

3
+ 1 >

2|V (G)|
3

.

If every vertex in G has at least 2 neighbours, we consider the block graph

of G and a leaf block B in G. (The block graph of a undirected graph is

the intersection graph of its bi-connected components, note that such graph

must be a block graph as its bi-connected components for each articulation

vertex must be a clique.) The leaf B is 2-connected as G does not have

isolated vertices and the chordless property of G assures that B is minimally

2-connected. As B is a leaf block, we can find cut vertex x so that removing

x separate B from the main graph. By Lemma 6.2.10 we can find vertices

u, v, w ∈ V (B) so that v, w ∈ NB(u), x ̸∈ {v, w}, and degB(v) = degB(w) =

2, then neither v nor w is a cut vertex, and hence their degree in G stays,

i.e. degG(v) = degG(w) = 2. Now let S = {u, v, w} and let G′′ denote graph

G after removing S. By induction hypothesis λc(G
′′, 2) ≥ 2(|V (G)| − 3)

3
.

When adding u, v and w back to G, if we don’t colour u, both v and w can

be properly correspondence coloured as they only have at most one coloured

neighbour. Thus λc(G, 2) ≥ 2(|V (G)| − 3)

3
+ 2 =

2|V (G)|
3

. □

Let G be a hereditary graph family that all graphs in G satisfy χ(G) =

χc(G). Then for any integer n′ that 0 < n′ ≤ χc(G), we have λc(G,n′) ≥
n′|V (G)|
χc(G)

: we can always find an induced subgraph H satisfying χ(H) =

n′ and |V (H)| ≥ n′|V (G)|
χ(G)

by introducing a χ(G)-partition of V (G) with

independent sets and combining the largest n′ such independent partitions.

By the hereditary property χc(H) = χ(H) ≤ n′ and hence λc(G,n′) ≥
n′|V (G)|
χc(G)

.

Note that family of chordal graphs (graphs where all cycles of length four and

above has a chord) and family of odd cycles are two examples of hereditary

graph families with χc(G) = χ(G).
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6.3 Counterexamples of the AGH Conjecture in

Correspondence Colouring

As a chordless graph is 2-degenerate, it is natural to ask whether all 2-

degenerate graphs satisfies the extended conjecture. The answer is no by

the following counterexample.

The graph as shown is 2-degenerate, with correspondence chromatic number

3, but only 3 <
2

3
·5 vertices can be coloured with the given 2-correspondence

as indicated in the picture: each vertex is indexed by a letter and each edge

by a solid line; colours assigned to each vertex are denoted by integers,

and two integers are linked by a dotted line if they correspond in the 2-

correspondence.

Counterexample to the extended AGH conjecture

To prove that at most 3 vertices can be properly correspondence coloured,

assume 4 vertices can be correspondence coloured properly on the contrary.

In this case at least one of the bottom vertices (D or E) must be coloured.

If only one of D and E is coloured, all of A, B and C must be coloured.

Without loss of generality assume D is coloured by 1 and then B and C

must both be coloured by 2, but then we cannot correspondence colour A

properly.

If both D and E are coloured, then they must be of different colours and

hence none of B and C can be properly correspondence coloured.
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We can construct a series of counter examples Gn of similar structure by

following steps:

(1) Fix n ≥ 2, denote the output graph by Gn and start with Kn,

i.e. V1 = {vi : 1 ≤ i ≤ n}, E1 = {vivj : 1 ≤ i, j ≤ n, i ̸= j};

(2) add n vertices to the graph and connect each of them to each vi,

i.e. V2 = V1 ∪ {wi : 1 ≤ i ≤ n}, E2 = E1 ∪ {viwj : 1 ≤ i, j ≤ n};

(3) add vertex w0 and connect it to every other wi added in step 2,

i.e. V3 = V2 ∪ {w0}, G3 = E2 ∪ {w0wi : 1 ≤ i ≤ n};

(4) output Gn = (V3, E3).

And we define the n-correspondence C(Gn) on Gn:

(1) Let all correspondence be straight except for edges w0wi, 1 ≤ i ≤ n,

i.e. C1 = {{(x, i)(y, j)} : xy ∈ E2, 1 ≤ i, j ≤ n};

(2) add the correspondence on w0wi so every colour in l(w0)

corresponds with n different colours along each of {w0wi : 1 ≤ i ≤ n},

i.e. C2 = C1 ∪ {{(w0, j), (wi, i + j − 1 mod n)} : 1 ≤ i ≤ n, 1 ≤ j ≤ n};

(3) output C(Gn) = C2.

Theorem 6.3.1.

Each of the graphs Gn (n ≤ 2) is n-degenerate, with correspondence chro-

matic number n + 1, but at most 2n − 1 <
n

n + 1
(2n + 1) vertices can be

properly correspondence coloured with the given n-correspondence.

Proof. On the contrary, suppose we can properly correspondence colour at

least 2n vertices in Gn under C(Gn). So at least n − 1 vertices from {v1 :

1 ≤ i ≤ n} are coloured.

If all vertices in {v1 : 1 ≤ i ≤ n} are coloured, they must be of different

colours, so no vertex from w1 to wn can be coloured, then at most n+1 < 2n

vertices in Gn are coloured.

If n − 1 vertices of {v1 : 1 ≤ i ≤ n} are coloured, then they must be of

different colours and we denote the only unchosen colour by k; we must

colour all of {wi : 0 ≤ i ≤ n}, but all of {wi : 1 ≤ i ≤ n} can only be

coloured by the k, and hence w0 can not be coloured under C(G), as each of

the colours in l(w0) correspond with colour k of some wi, 1 ≤ i ≤ n. Then

at most 2n− 1 < 2n vertices are coloured.
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We can conclude that at most 2n− 1 vertices of Gn can be properly corre-

spondence coloured under C(G), and hence λc(Gn, n) ≤ λc(C(Gn)) = 2n−1.

□

6.4 Condition on the size of Correspondence

We present a lemma that guarantees the existence of a proper correspon-

dence colouring by restricting the correspondence between adjacent vertices.

Lemma 6.4.1.

Let G be a graph and k a positive integer. Denote l(v) as the lists of colours

associated to each vertex v ∈ V (G) and C(G) as the correspondence on G.

If |l(v)| ≥ 2k for each vertex v ∈ V (G) and each vertex-colour pair (u, c)

corresponds to at most k other vertex-colour pairs, i.e. for any (u, c) such

that u ∈ V (G) and c ∈ l(v), we have |{{(u, c), (v, c′)} : {(u, c), (v, c′)} ∈
C}| ≤ k. Then there exist a proper correspondence colouring of G with

respect to C(G).

In order to complete the proof, we need the following result by Haxell [27].

Lemma 6.4.2 (Haxell [27]).

Let k be a positive integer. Let H be a graph of maximum degree at most k,

and let V (H) =
n⋃

i=1

Vi be a partition of the vertex set V (H). If |Vi| ≥ 2k for

each i, then there is an independent set {vi : 1 ≤ i ≤ n, vi ∈ Vi} of H.

Haxell derived the above result in [27] from another theorem regarding ‘dom-

inating subsets’, whose proof was noted essentially the same as another com-

plicated Theorem. A more generalised version of Haxell’s result was proved

as Theorem 4.1 in [26], where the existence of specific independent set was

generalised to existence of induced subgraph with component sizes at most

r, while the condition on size of each partition was generalised to ‘at least

k + ⌊k/r⌋’. Proof of the later theorem can be found in [26] in full.

Now we prove Lemma 6.4.1.

Proof. Consider a given graph G and positive integer k, colour lists l(v)
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assigned to each vertex with |l(v)| = 2k, and correspondence C(G) ⊆
{{(u, c1), (v, c2)} : {u, v} ∈ E(G), c1 ∈ l(u), c2 ∈ l(v)}. We define the auxil-

iary graph A = (V (A), E(A)) where

• V (A) = {(v, c) : v ∈ V (G), c ∈ l(v)},

• {(u, c1), (v, c2)} ∈ E(A) if and only if {(u, c1), (v, c2)} ∈ C(G).

By our construction, finding a proper correspondence colouring of G is equiv-

alent to finding an independent set of size |V (G)| in A, with one vertex from

each set of 2k vertices (v, c) associated to the same v.

Now by our assumption, the maximum degree of A is at most k, and for

each vertex u ∈ V (G), V (u) := {(u, c) : c ∈ l(u)} is of cardinality at least

2k and ∪u∈V (G)V (u) is a pairwise disjoint partition of V (A).

Hence by Haxell’s result, we can find colour cu ∈ l(u) for each u ∈ V (G) such

that I = {(u, cu) : u ∈ V (G)} is an independent set in the auxiliary graph A

we built. Here we have exactly one vertex (u, cu) ∈ I comes from one subset

V (u) of the partition. Therefore we have a proper correspondence colouring

of G with respect to C(G) by assigning cu to each u ∈ V (G) following the

pairs in I. □

Definition 6.4.3.

Let G be a graph and C(G) the correspondence assigned to G. We say C(G)

is consistent if there is no series of vertex-colour pairs (u1, c1), (u2, c2), . . . ,

(uk, ck) such that u1 = uk, and for each i, 1 ≤ i ≤ k − 1, we have

{(ui, ci), (ui+1, ci+1)} ∈ C(G), but c1 ̸= ck. C(G) is inconsistent if such

series exists.

If a correspondence is consistent, then after certain steps of colour renam-

ing, we can make it equivalent to a list colouring while keeping correspon-

dence unchanged: for each series of vertex-colour pairs (u1, c1), (u2, c2), . . . ,

(uk, ck) such that {(ui, ci), (ui+1, ci+1)} ∈ C(G) for 1 ≤ i ≤ k−1, we rename

c1, . . . , ck all to a new colour c∗; this will not cause different colours from

list of the same vertex be renamed to the same new colour, since the corre-

spondence is consistent. Hence a correspondence colouring problem can be
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regarded as list colouring problem if the correspondence is consistent. This

essentially means inconsistent correspondence are more interesting to study.

We also note that, a correspondence colouring problem is equivalent to a

ordinary colouring problem if it is consistent, each colour list have the same

number of colours, and correspondence on all the edges are full. (Since the

correspondence on all edges are full, this means the list colouring problem

we have after renaming have the same list on any edge’s endvertices, i.e. all

colour lists are the same.)

6.5 Discussion on λc(G, 2) and Related Properties

Let G be a graph with χc(G) = n. Fix n′ ≤ n, recall that λc(G,n′) is

the guaranteed number of properly correspondence colourable vertices in G

under any n′-correspondence C(G).

It is clear that λc(G, 1) = α(G) where α(G) is the Independence number of

G: trivially λc(G, 1) ≥ α(G), and the we cannot have λc(G, 1) > α(G)

by considering the all-straight correspondence on G. By the inequality

λc(G,n′)+λc(G,n− n′) ≥ λc(G,n) = |V (G)|, we also have |V (G)|−α(G) ≤
λc(G,n− 1) ≤ |V (G)| − 1.

In Chapter 4, we defined π(G,Kn′) as the number of vertices in a largest

induced subgraph of G that has a homomorphism to Kn′ , i.e. that is n′-

colourable. Here we define it similarly for correspondence colouring.

Definition 6.5.1.

Given graph G and n′ ≤ χc(G), the size of the maximum n′-correspondence-

colourable induced subgraph of G is πc(G,Kn′). Since we will only study

n′-correspondence-colourable for integer n′, we also denote it as πc(G,n′)

for simplicity of notations.

From the definition, we have πc(G,n′) ≤ |V (G)|− (n−n′). We also directly

have λc(G,n′) ≥ πc(G,n′) and that the equality holds for n′ = 1. It is

natural to ask: how does λc(G, 2) compare to πc(G, 2)? We first discuss the

same question in ordinary or list colouring.
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We define/recall both λ and π in ordinary colouring or list colouring:

λ(G,n′) := min
arbitrary n′ colours

{
max

{
|H|
∣∣H ⩽i G, H properly colourable

by given n′ colours
}}

π(G,n′) := max
{
|H|
∣∣H ⩽i G,χ(H) ≤ n′}

λl(G,n′) := min
arbitrary n′-lists on each vertex

{
max

{
|H|
∣∣H ⩽i G, H properly

list colourable with given n′-lists
}}

πl(G,n′) := max
{
|H|
∣∣H ⩽ G,χl(H) ≤ n′} .

First note π(G, 2) in ordinary colouring gives the size of maximum induced

bipartite subgraph, while in the correspondence colouring setting it evaluates

the size of maximum induced sub-forest, as any cycle has correspondence

chromatic number 3.

In terms of comparing λ and π, it is clear that for any positive integer n′,

we have λ(G,n′) = π(G,n′). And for the case that n′ = 1, we know all

λ, π, λl, πl, λc and πc of graph G equals to the independence number of G.

Interestingly, from n′ = 2, we have examples such that λl(G, 2) > πl(G, 2).

Consider a complete bipartite graph G = Kk,k with k ≥ 5 vertices on each

side. We will show that πl(G, 2) = k + 1 and λl(G, 2) ≥ k + 2. Denote

V (G) = A ⊔ B, where A,B are the two sides of the bipartite graph, with

k vertices each. For πl(G, 2), it is not hard to show that K2,4 and K3,3 are

not 2-list-colourable, and since k ≥ 5, the largest 2-list-colourable induced

subgraph of G has is either A ∪ {v} for some v ∈ B, or B ∪ {u} for some

u ∈ A. For λl(G, 2), consider arbitrary 2-lists on each vertex, and denote the

2-list on each vertex v ∈ V (G) as l(v). If any two vertices u1, v1 ∈ A have

the a common colour c1 in their list, then we can colour u1, v1 by c1 and

the whole vertex set B by any colour not the same as c1; the same applies if

any two vertices u2, v2 ∈ B have a common colour c2 in their list. Instead,

if none of the above cases is true, then all vertices in A have disjoint colour

lists, and all vertices in B have disjoint colour lists. Hence by the pigeonhole

principle, there exist vertices u3, v3 ∈ A and colours c3 from l(u3), colour c′3

from list l(v3) such that l(u) ̸= {c3, c′3} for any u ∈ B. That is, we can

always colour B ∪ {u3, v3} properly in this case. I.e. λl(G, 2) ≥ k + 2.
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For the same G, we also have πc(G, 2) = k+1. However, the same idea does

not immediately give λc(G, 2). It is still interesting to understand whether

the same example gives λc(G, 2) > πc(G, 2), and what the relationship be-

tween λc and πc is.

Lemma 6.5.2.

Let G be a graph and denote the graph after contracting both neighbours

of a degree-2 vertex as G−, then we have λc(G, 2) = λc(G
−, 2) + 1 and

πc(G, 2) = πc(G
−, 2) + 1.

Proof. Let v ∈ V (G) be a vertex of degree 2 and denote NG(v) = uw.

Denote G− as the resulting graph after contracting uv and {w, v}.

The lemma is equivalent to the following statements

(1) πc(G, 2) = k ⇒ πc(G
−, 2) ≥ k − 1,

(2) πc(G
−, 2) = k ⇒ πc(G, 2) ≥ k + 1,

(3) λc(G, 2) = k ⇒ λc(G
−, 2) ≥ k − 1, and

(4) λc(G
−, 2) = k ⇒ λ(G, 2) ≥ k + 1.

We consider cases of uw ̸∈ E(G) and uw ∈ E(G) separately.

−→

Contract edges a and b: case uw ̸∈ E(G)

We first prove (1) and (2) under the case uw ̸∈ E(G), which is shown as

above (we only demonstrate the interesting part of graph G and G−). Here

edges a = uv ∈ E(G), b = vw ∈ E(G) and ab = uw ∈ E(G−).

For statement (1), we have the following cases (we say a vertex is chosen if

the vertex is in the maximum 2-correspondence-colourable induced subgraph

of G or G−):

• If all of u, v and w are chosen in G, i.e. u −a v −b w is included in a

forest subgraph of size k in G, then both u and w can be included in

a forest induced subgraph of size at least k − 1 in G−;
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• If v and exactly one of u, w are chosen in G, then the chosen u or w

is included in a forest induced subgraph of size at least k − 1 in G−;

• If u and w are chosen in G, but not v, then at least one of u,w can be

included in a forest induced subgraph of size at least k − 1 in G−;

• If only v, u, w is chosen in G, then take the rest part of the forest

induced subgraph chosen in G gives a forest induced subgraph of size

k − 1 in G−;

• None of u, v, w is chosen in G. This case cannot hold: if neither of

u and w is chosen in G, then v is guaranteed to be chosen for the

maximality.

Now we are left with the case that there is an edge c = uw ∈ E(G) before

contraction:

−→

Contract edges a and b: case uw ∈ E(G)

For this case, first note that at most two of u, v, w can be chosen in the

chosen forest induced subgraph of G.

• If exactly one of u,w is chosen in the sub-forest of G, then v must also

be chosen as otherwise the induced sub-forest is not maximal; then we

can simply keep u or w in the forest induced subgraph of G−;

• If both u,w are chosen, we keep exactly one of u or w in the forest

induced subgraph of G−;

• If none of u,w is chosen in the sub-forest of G, for the maximality of

forest induced subgraph, v must be included, hence G− can use the

same forest induced subgraph as G by just losing v.
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Now (1) is proved.

Proof of (2) is similar, we first consider the case uw ̸∈ E(G):

• If both u and w are chosen in G−: so u−abw is part of a forest induced

subgraph of size k in G−, then u−a v −b w is part of a forest induced

subgraph of size at least k + 1 in G;

• If only u is chosen in G−, then u −a v is part of a forest induced

subgraph of size at least k + 1 in G;

• If only w is chosen in G−, then v −b w is part of a forest induced

subgraph of size at least k + 1 in G;

• If neither u nor w is chosen in G−, then v can be added to the forest

induced subgraph to make its size at least k + 1 in G.

For the case c = uw ∈ E(G) before contraction, note that at most one of

u,w can be chosen in the forest induced subgraph of G−. And no matter

one or none of u,w is chosen in G−, we can always add v to the chosen forest

in G− to build a forest induced subgraph of size at least k + 1 in G. Here

(2) is proved.

Now we look at statements (3) and (4) regarding λ(G, 2).

Here we say a vertex is chosen if it is coloured in the partial correspondence

colouring that provides λ(G, 2). For a given 2-correspondence with colour

list {1, 2}, we say an edge is straight if identical colours correspond along

the edge, an edge is crossed if there are different colours correspond along

this edge in the 2-correspondence.

For statement (3):

Assume on the contrary that λ(G, 2) = k but λ(G−, 2) ≤ k − 2. Let C(G−)

be the correspondence on G− that only k − 2 vertices can be properly cor-

respondence coloured. We copy the correspondence on each edge of G− to

G (i.e. for {x, y} ∈ E(G) \ {a, b}, {(x, c1), (y, c2)} ∈ C(G) if and only if

{(x, c1), (y, c2)} ∈ C(G−)), and we copy the correspondence on ab to a.

Note that by our assumption and definition of λ(G, 2), we should be able

to properly correspondence colour at least k vertices of G under any 2-
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correspondence, hence the behaviour of correspondence on a and b should

not lower the number of colourable vertices.

In both cases (regarding whether uw is in E(G)), all of V (G) − {v, w} and

V (G−) − {w} should behave the same on its chosen-unchosen status. So

the only possibility that λ(G, 2) = k and λ(G−, 2) ≤ k − 2 is v, w are both

chosen in G while w is not chosen in G−.

In both cases, let edge b be crossed, that is both v, w in G need to be coloured

by the same colour, without loss of generality assume both are coloured by

‘1’. Then w can also be coloured by ‘1’ in G−, contradiction.

For statement (4):

Here λ(G−, 2) = k and we need λ(G, 2) ≥ k. Let an arbitrarily corre-

spondence on G be given and denoted by C(G). We copy all correspon-

dence on E(G) \ {a, b} to E(G−) \ {ab} (i.e. for {x, y} ∈ E(G−) \ {ab},

{(x, c1), (y, c2)} ∈ C(G−) if and only if {(x, c1), (y, c2)} ∈ C(G)); and for

edge ab, if a and b are both straight, or both crossed, then let ab be straight

in C(G−); if one of a, b is straight and the other crossed, then let ab be

crossed in C(G−).

By assumption, at least k vertices of G− can be properly correspondence

coloured. In both cases (regarding whether uw is in E(G)), if at most one

of u, w is chosen in G−, we also choose it in G and add v (vertex v can be

chosed as it has at most one chosen neighbour).

In the case that uw ̸∈ E(G), if both u and w are chosen in G−:

• If ab is crossed, then both u,w should be coloured by the same colour,

then we copy all chosen vertices in G− to G; v is also colourable as

a and b are both straight or both crossed, and u, w are of the same

colour (i.e. without loss of generality assume u and w are coloured

by 1, then v can be coloured by 1 if a, b both crossed, 2 if a, b both

straight);

• If ab is straight, then u, w are coloured by different colours, without

loss of generality assume u, w are coloured by 1, 2 respectively; we

copy all coloured vertices in G− to G and see that v could also be
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coloured (if a straight, b crossed then v can be coloured by 2; if a

crossed, b straight then v can be coloured by 2).

In the case that uw ∈ E(G), if both u and w are coloured in G−, the only

possibility is that c and ab are both straight or both crossed. Then same

derivations as previous case hold. Here (4) is cleared.

Now we’ve seen the proof to all 4 statements, and we can conclude that

λ(G, 2) = λ(G−, 2) + 1 and πc(G, 2) = πc(G
−, 2) + 1. □

Theorem 6.5.3 is a simple conclusion of Lemma 6.5.2.

Theorem 6.5.3.

If G is a graph with minimum number of vertices that λc(G, 2) > πc(G, 2),

then G does not have vertex of degree 2.
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