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Abstract
This thesis aims to clarify a number of conceptual aspects of the debate sur-
rounding algorithmic fairness. The particular focus here is the role of causal
modeling in defining criteria of algorithmic fairness. In Chapter 1, I argue
that in the discussion of algorithmic fairness, two fundamentally distinct no-
tions of fairness have been conflated. Subsequently, I propose that what is
usually taken to be the problem of algorithmic fairness should be divided
into two subproblems, the problem of predictive fairness, and the problem of
allocative fairness. At the core of Chapter 2 is the proof of a theorem that estab-
lishes that three of the most popular (predictive) fairness criteria are pairwise
incompatible. In particular, I show that under certain conditions, a predic-
tive algorithm that satisfies a criterion called counterfactual fairness will with
logical necessity violate two other popular predictive fairness criteria called
equalized odds and predictive parity. In Chapter 3, a new predictive fairness cri-
terion is developed using a mathematical framework for causal modeling.
This fairness criterion, which I call causal relevance fairness, is a relaxation of
another popular fairness criterion, counterfactual fairness, but turns out to be
more closely in line with philosophical theories of discrimination. In Chapter
4, another infamous impossibility result in algorithmic fairness is analyzed
through the lens of causality. I argue that by using a causal inference method
called matching, we can modify the two fairness criteria equalized odds and
predictive parity in a way that resolves the impossibility. Lastly, Chapter 5
contains an empirical case study. In it, the fairness of a popular recidivism
risk prediction tool is analyzed using the criteria of (predictive) fairness de-
veloped earlier.
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Introduction

"Move fast and break things"

- Mark Zuckerberg

The invention and adoption of new technology are rarely preceded by a
comprehensive exploration and evaluation of its likely consequences. While
Zuckerberg’s famous imperative was intended to inspire technologists to
break with conventional approaches and existing paradigms, all too often
it was human rights, democratic processes, and laws that ended up being
broken instead. The ethical implications of the use of novel technologies are,
more often than not, merely an afterthought.

This is, in particular, true for artificial intelligence technology. Especially with
the rise of machine learning in the 1990s, the field of artificial intelligence
made progress at a dizzying pace, quickly spinning off a wide variety of real-
world applications. Phones all of a sudden began to understand our voices,
allowing us to transcribe spoken words into text, cars became capable of per-
forming complex maneuvers without human help, and doctors were put in a
position where they could get a second opinion on a patient’s diagnosis from
a virtual colleague. But making mundane tasks more efficient was not the
only manner in which artificial intelligence was being utilized. In domains
that require making socially sensitive decisions, where stakes for affected in-
dividuals are typically high, the use of AI increased rapidly as well.

Examples of this are plentiful. Some American cities, for instance, saw the
rise of predictive policing — a machine learning-based technology used to
predict in which area the occurrence of a crime is most probable at a given
moment. As a consequence, communities in predicted areas experienced
great increases in police presence1. To mention another example, hiring de-
cisions nowadays commonly rely on applicant tracking systems that scan
applicants’ resumes in search of patterns that are indicative of professional

1See, e.g., Richardson et al. (2019) for a critical analysis of predictive policing practices.
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success, discarding those that do not exhibit these patterns. So the list con-
tinues.

Social progress is usually hard-won. Several decades had to pass after the
first discussion of racial profiling before US police departments started im-
plementing policies to address and prohibit this practice (Harris, 2020). The
rise of technologies such as predictive policing threatens to stall or even re-
verse this progress. Typically, predictive policing software predicts future
crime probability on the basis of historical data on the number of past arrests
and emergency police calls in a given area. The rate of innocent people being
stopped and searched, however, is, at least in the US, much higher for racial
minorities than for White citizens (Gelman et al., 2007). In a similar vein, the
police are frequently called on the grounds of unjustified, racist suspicions2.
If these types of historically biased data are used to inform policing strate-
gies, this creates a feedback loop that can perpetuate historical and existing
biases. It is not hard to see that this is racial profiling in a technological guise.

Similarly long was the fight women have fought for educational equality and
equality in the workplace. While the fight is ongoing, important milestones
were achieved when legislation was passed that prohibits hiring decisions
based on gender as well as gender-based discrepancies in pay. The use of ap-
plicant tracking systems, however, might reintroduce discriminatory prac-
tices into the hiring process. Imagine a company decides to use a resume
screening tool in the process of hiring for, say, a technical position. Further-
more, imagine the tool is being trained on data about the company’s current
workforce, which, as is often the case for technical roles, happens to be pre-
dominantly male. The algorithm will learn the pattern that people in this
technical role are mostly men. It might consequently deem female appli-
cants less qualified for the job solely on the basis of their gender. Far from
being a merely hypothetical consideration, the inadvertent and unnoticed in-
troduction of such biases is a real risk. Unsurprisingly, the systematic public
engagement with the normative questions raised by such tools only emerged
after they were already in use.

2Examples of this are occasionally discussed in the media, as was for instance the case
with the so-called "Central Park birdwatching incident" (Hackett & Schwarzenbach, 2020).
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0.1 Mind the gap

Academia caught on to the topic as well. Researchers from two different
branches of academic research began to show interest in the subject: com-
puter scientists on the one hand and philosophers on the other. Computer
scientists, for the most part, treated the issue as an optimization problem, try-
ing to define machine learning algorithms that perform maximally well un-
der some mathematical fairness constraint. Philosophers, meanwhile, equipped
themselves with moral theories to evaluate the application of AI technology
in specific social situations.

While both gave rise to valuable insights, there was a gap between the two
approaches that needed filling. Most early computer science papers on the
problem of algorithmic fairness motivated their formal fairness constraint
using a few cases in which the constraint seemed intuitively plausible, before
swiftly turning to the more technical treatment of the problem at stake. Few
engaged in depth with moral and political theory to build their algorithms on
stable normative grounds. To build machine learning algorithms that can be
guaranteed to avoid discriminatory outcomes, however, it seems that a more
principled approach would be necessary. Philosophers, in contrast, rarely
undertook the (admittedly non-trivial) attempt to translate their conclusions
into mathematical language so that they could straightforwardly inform the
creation of future machine learning models.

While over the last couple of years this space slowly started to fill3, it is still
in a relatively early stage. Some philosophers have started evaluating fair-
ness constraints proposed by computer scientists; computer scientists have
started taking moral theory more seriously and used it to assess the assump-
tions made in their work. Nonetheless, to this day it seems that most ques-
tions have not been answered conclusively.

This is the space in which I want to situate the present work. The central
question that motivates the different essays in this thesis is the following:
which constraints can and should we impose on machine learning algorithms in
order to prevent discriminatory bias? In this thesis, I am going to tackle the
question from a specific vantage point. In particular, I will assume that (1)

3A number of computer science papers engage with political and moral theory, see, e.g.
Carey and Wu (2022); Heidari et al. (2019). At the same time, formal fairness constraints are
being discussed by a number of philosophers, see, e.g., Eva (2022); Hedden (2021).
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discrimination has a causal aspect and that (2) the wrongfulness of discrimi-
nation is (in at least some cases) grounded in a failure to treat a person as an
individual. I will not argue for these premises here — this has been done by
others (see, e.g., Loftus et al., 2018; Eidelson, 2015). Readers not sympathetic
to these assumptions risk being disappointed; all others will hopefully find
the essays insightful.

0.2 Chapter overview

Each of the chapters is written as a self-contained article. That is, each chapter
can be read independently and does typically not presuppose that the reader
is familiar with the previous ones. Where ideas from earlier chapters are ref-
erenced, this is explicitly stated. Nonetheless, the five chapters are connected
by an overarching argumentative structure.

In Chapter 1, I argue that in the discussion of algorithmic fairness, two fun-
damentally distinct notions of fairness have been conflated. Subsequently, I
propose that what is usually taken to be the problem of algorithmic fairness
— the problem of finding an adequate formal constraint that, when imposed
on predictive algorithms, ensures that they produce fair outcomes — should
be divided into two subproblems, the problem of predictive fairness, and the
problem of allocative fairness. This, as I will go on to show, resolves several
paradoxes in the discussion of algorithmic fairness. Moreover, it allows for
delimiting and focusing the subsequent discussion of predictive algorithmic
fairness.

At the core of Chapter 2 is the proof of a theorem that establishes that three
of the most popular (predictive) fairness criteria are pairwise incompatible.
In particular, I show that under certain conditions, a predictive algorithm
that satisfies a criterion called counterfactual fairness will with logical necessity
violate two other popular predictive fairness criteria called equalized odds and
predictive parity. Different ways to escape the impossibility are subsequently
discussed.

In Chapter 3, a new predictive fairness criterion is developed using a math-
ematical framework for causal modeling. This fairness criterion, which I call
causal relevance fairness, is a relaxation of the above-mentioned criterion coun-
terfactual fairness. Replacing counterfactual fairness with causal relevance
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fairness not only resolves the impossibility established in the previous chap-
ter but is also more closely in line with philosophical theories of discrimina-
tion.

In Chapter 4, another infamous impossibility result in algorithmic fairness
is analyzed through the lens of causality. I argue that by using a causal
inference method called matching, we can modify the two fairness criteria
equalized odds and predictive parity in a way that resolves the impossibility.
Instead of requiring that error rates be equal across protected groups, I ar-
gue that we should require that the protected characteristic does not causally
influence the error rates of a predictive model. Likewise, instead of requir-
ing that predictive value be equal across protected groups, I argue that we
should require that the protected characteristic does not causally influence
the predictive value of the predictive model.

Chapter 5 contains an empirical case study. In it, the fairness of a popular
recidivism risk prediction tool is analyzed using the criteria of (predictive)
fairness developed in Chapters 3 and 4.

0.3 Mathematical formalism

We will end with a brief introduction of the central mathematical concepts
that will be of importance in this thesis, as well as the notational conventions
I am following.

0.3.1 Random variables and probabilities

A random variable describes a state of affairs that depends (to some degree) on
a random or random-seeming process. We can, for instance, describe the out-
come of the roll of a die using a random variable, since this outcome depends
on a physical process that seems random to a human observer. To rigorously
define what a random variable is, we need to introduce the notion of a sample
space. A sample space, denoted by Ω, is a non-empty, finite set of possible
states — for example, the state that the number of eyes that comes up in the
roll of a die is four. Precisely speaking, a random variable X is a function
from the sample space to the real numbers, i.e. X : Ω→ R. It hence assigns a
numerical value to each of the elements of the sample space. We denote ran-
dom variables by capital letters, e.g. X, their values by lower-case letters, e.g.
x, and the domain of a random variable X by DX. As an example, consider
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the following random variable which describes whether the outcome of a die
roll results in an even or an odd number of eyes:

R =

{
1 if number of eyes 2, 4, or 6
0 otherwise

(1)

A vector of variables X1, X2, ..., Xn is denoted in boldface by X with value x.
The domain DX of a vector of n variables is defined as the Cartesian product
of the domains of the individual variables in the vector, i.e. DX1 ×DX2 × ...×
DXn . Apart from this notational difference, vectors of variables can be treated
just the same as individual variables. This will be particularly useful when
speaking about the vector of features in a dataset, which we will typically
denote by the compound variable X, rather than the list of each individual
feature.

Next, we can define probabilities of random variables. To this end, let us
introduce the notion of a probability space. A probability space is a triple
(Ω,F , P). As stated above, Ω is the sample space of possible states. Subsets of
Ω are called propositions or events. Events describe what is the case and can
be represented as random variables taking specific values. For example, the
event A := {R = 1} describes that in the roll of a die, the number of eyes is
even, i.e. that random variable R takes the value 1.

The event space F is a subset of the powerset P(Ω) of the sample space that is
closed under Boolean operations, that is, under conjunction ∧, disjunction ∨,
and negation ¬. These three logical operators are understood in set-theoretic
terms: ∧ as the intersection of the sets of outcomes that constitute the events
in question, ∨ as their union, and ¬ as the complement of the set constituting
the event the operator is applied to.

Finally, P is a probability function on F , that is, P assigns real numbers to all
events A, B ∈ F , such that 0 ≤ P(A) ≤ 1, P(Ω) = 1, and P(A∨ B) = P(A) +

P(B) whenever A and B are mutually incompatible, i.e. the intersection of
the sets of outcomes constituting A and B is empty. The probability that a
variable X takes value x, P(X = x), will be abbreviated by P(x) when this is
unambiguous. The probability of the conjunction of two events X = x and
Y = y will occasionally be abbreviated as P(x, y).

The conditional probability P(x | y) is the probability of an event X = x given
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that event Y = y has occurred. For example, the probability that the number
of eyes after the roll of a die is 2, given that the number is even. The con-
cept of conditional probability is related to unconditional probability in the
following way:

P(x | y) =
P(x, y)
P(y)

(2)

Two variables (and analogously sets of variables) X and Y are said to be con-
ditionally independent given variable Z (in probability distribution P(·)) if
and only if P(x | y, z) = P(x | z) for all x ∈ DX, y ∈ DY, and z ∈ DZ, and
P(y, z) > 0. We denote conditional independence by (X ⊥⊥ Y | Z).

0.3.2 Causal models and counterfactuals

We next introduce a number of central concepts from the mathematical frame-
work of causal modeling. While a number of different people, such as Lau-
ritzen (1996) and Spirtes et al. (2000), have been central in the development
of the mathematical theory of graphical causal models, we will here fol-
low the theory as presented by Pearl (2009). A causal model is defined as a
triple (U, V, F) such that (i) U is a set {U1, U2, ..., Un} of exogenous variables
whose values are determined by factors outside the present model, (ii) V is a
set {V1, V2, ..., Vn} of endogenous variables whose values are determined by
other variables in the model, that is, by a subset of the variables in U and V,
and (iii) F is a set of structural equations { f1, f2, ..., fn} such that each struc-
tural equation fi is a mapping from DPAi to DVi , with PAi ⊆ U ∪ (V \ Vi)

(Pearl, 2009, p. 203). This means, a causal model encodes for each variable Vi

how it functionally depends on the other variables in V and U, or, in other
words, what its direct causes are.

L
(Lamp on or off)

(Lamp intact or not)

U1
S (Light switch on or off)

U2 (Time of day)

FIGURE 0.1: An example of a causal model (represented by its causal
structure).
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To illustrate this definition, take for example the causal model (U, V, F) de-
picted in Figure 0.1, which represents the causal mechanism of a lamp. In
this example, U contains the binary variables U1 and U2, which represent
whether the lamp is intact or whether it is broken, and which time it is, re-
spectively. V contains the variables L and S, which represent whether the
light switch is in the "On" or in the "Off" position and whether the lamp is on
or off. F contains two structural equations:

l = f1(s, u1) = min(s, u1)

s = f2(u2) =

{
1 if u2 > 17
0 if u2 ≤ 17

First, it contains f1, which specifies that the lamp is on whenever it is intact
and the light switch is in the "On" position. This is formalized as min(s, u1):
whenever the lamp is intact, u1 = 1, and whenever the light switch is on,
s = 1, and consequently, L = min(s, u1) = min(1, 1) = 1 – the lamp is on.
Whenever one of u1 or s takes the value 0, representing that either the light
switch is off or that the lamp is not intact, l = min(s, u1) = 0 – the lamp is off.
Secondly, f2 specifies that whether the light switch is on depends on the time
of day, in particular, whether it is after 17:00. There are no structural equa-
tions for the variables U1 and U2, as their respective values are determined
by factors that are not represented in our model.

L
(Lamp on or off)

(Lamp intact or not)

U1
S = 1 (Light switch set to "on")

U2 (Time of day)

FIGURE 0.2: Submodel of the original causal model. By setting S = 1,
the initial link from U2 to S is deleted.

On the basis of the above definition of a causal model, we can introduce the
notion of a submodel. A submodel of a causal model M is itself a causal model
MX=x = (U, V, FX=x) where FX=x = { fi : Vi /∈ X} ∪ {X = x} for a particular
realization X = x of a set of variables X ⊆ V. Figure 0.2 illustrates this. Here,
we have replaced the structural equation for the variable S by the value 1.
This can be interpreted as an external actual or hypothetical intervention on
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this variable. An intervention of this kind deletes all functional dependen-
cies on other variables. In our example, this means that when we decide to
artificially intervene in the system by turning the light switch on, the position
of the switch does not depend on the time of day anymore.

Next, we need to introduce the notion of a potential response. A potential re-
sponse YX=x(U = u) represents the value that the variable Y takes according
to the set of equations Fx and a particular realization u of the background
variables U (Pearl, 2009, p. 204). In our example, we can for instance think
of how the lamp would potentially respond to the intervention of setting the
light switch to "on", assuming that the lamp happens to be intact. According
to the structural equations above, this would lead to the lamp being on. Con-
sequently, this potential response would be formalized as LS=1(U1 = 1) = 1.
For the sake of simplicity, we will henceforth leave the background variables
implicit and denote the potential response by YX=x. Moreover, where it is
unambiguous which variable we refer to, we will abbreviate this by Yx.

The notion of a potential response now allows us to define counterfactual
statements of the form "The value that Y would have obtained, had X been
x" (for X, Y ⊆ V) as the potential response Yx. Given a causal model M
and a probability distribution P(u) over DU, the conditional probability of a
counterfactual "If it were the case that X = x, then it would be the case that
Y = y" given evidence e can be evaluated by (1) updating P(u) by condi-
tioning on evidence e in order to obtain P∗(u) = P(u | e), (2) generating
the submodel Mx of M obtained by removing the structural equation for X
from M and replacing it by a constant x, (3) using the submodel Mx and the
updated probability distribution P∗(u) to compute the probability of Y = y.
This probability of the counterfactual statement is denoted by P(Yx = y | e).

Let us again illustrate this with our example. Assume we attempt to de-
termine the probability of the counterfactual "If the light switch had been
turned on, then the lamp would be on", knowing that the lamp is actually
not on. The formalization of this is P(LS=1 = 1 | L = 0). Now we sim-
ply have to run through the three steps. First, we update the relevant back-
ground variables. In general, this would be both, U1 and U2, but here only
U1 is relevant4. Let us assume that initially, we would think that it is 90%
likely that the lamp is intact, i.e. P(U1 = 1) = 0.9. After learning that the
lamp is currently off (L = 0), we update the probability assignment to, say,

4This is because after the intervention on S, L is screened off from U2.
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P(U1 = 1 | L = 0) = P∗(U1 = 1) = 0.8, reflecting the fact that the lamp
being off is weak evidence for the lamp being broken. Next, we have to gen-
erate a submodel (see Figure 0.2) by replacing s = f2(u2) with s = 1. Using
the updated probability assignment and the submodel, we can now calculate
P(LS=1 = 1 | L = 0) = P∗(min(s, u1) = 1) = P∗(min(1, u1) = 1) = P∗(U1 =

1) = 0.8. In words, the probability that the lamp would have been on, if the
switch had been on, is simply the probability of the lamp being intact, given
we observe that actually the lamp is off. This is due to the fact that the lamp
is only on if both, the switch is on and the lamp is intact.
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Chapter 1

Two Concepts of Fairness in
Algorithmic Decision-Making

1.1 Introduction

Machine learning algorithms generate models that attempt to predict or esti-
mate unobserved properties on the basis of historical data. Commonly, these
predictions are used to inform a decision-making process to which the pre-
diction is relevant. Automating decision-making processes in this manner,
however, runs the risk of systematizing morally problematic decision pat-
terns. This is in particular a cause for concern when minority groups are the
ones who could experience disproportionate negative consequences of algo-
rithmic decision-making, as it could potentially reinforce existing biases and
structural inequalities. The recognition of this problem has led to a wide-
ranging discussion about algorithmic fairness.

Typically, the problem of algorithmic fairness is presented as the problem of
defining a unique formal criterion that guarantees that a given algorithmic
decision-making procedure is morally permissible. In this chapter, I argue
that this is conceptually misguided and that we should replace the problem
thus formulated with two more specific sub-problems. An algorithmic deci-
sion system can be conceptualized as operating in two stages: first, it predicts
a relevant property, and second, it recommends a decision based (at least
partly) on this prediction. It is important to notice that predictions are subject
to different normative constraints than decisions. While predictions ought to
be unbiased with regard to certain protected characteristics, decision-making
based on these predictions ought to ensure that the resulting allocation of
goods and opportunities is in line with the relevant principles of distributive



12 Chapter 1. Two Concepts of Fairness in Algorithmic Decision-Making

justice. Current approaches to algorithmic fairness have failed to make this
distinction. This chapter provides a formal framework to address both ethi-
cal issues and argues that this way of conceptualizing them resolves some of
the paradoxes present in the discussion of algorithmic fairness.

The chapter is organized as follows. In Section 1.2, I introduce the problem
of algorithmic fairness and explain why all of the proposed solutions to it
are unsatisfactory. In Section 1.3, I explicate the concept of algorithmic de-
cision systems and argue for a model of algorithmic decision systems which
explicitly distinguishes between the predictive and the decision component
of such systems. In Section 1.4, I turn to the ethical aspects of algorithmic
decision-making, first examining the ethics of public decision-making more
generally, before applying the conclusions of this analysis to algorithmic de-
cision systems. In Section 1.5, I provide a formal framework for addressing
the sub-problems obtained in the foregoing analysis, which I call the prob-
lem of predictive fairness and the problem of allocative fairness. In Section
1.6, I demonstrate how this bifurcation of algorithmic fairness problems can
help to resolve several issues and paradoxes that beset the original approach
to algorithmic fairness. Lastly, Section 1.7 discusses a number of potential
objections to this proposal.

1.2 The problem of algorithmic fairness

The topic of algorithmic fairness gained traction when in 2016 the non-profit
newsroom ProPublica published an article that analyzed the results produced
by a software tool called COMPAS, which supports bail and sentencing deci-
sions in some US courts by calculating the risk that a defendant will commit
crimes in the near future (Angwin et al., 2016). ProPublica’s journalists were
able to show that for the data they obtained for Broward County in Florida,
the false positive rates of COMPAS’ predictions were much higher for defen-
dants identified as African American than for those identified as Caucasian,
and on the other hand, that false negative rates were much higher for Cau-
casian than for African American defendants. This means African Americans
were much more often falsely accused of committing future crimes, while
Caucasians were much more often falsely deemed innocent. They thus con-
cluded that COMPAS is racially biased. A discussion ensued about the ques-
tion of whether disparities in error rates do indeed indicate bias, or whether
there is a more appropriate criterion by which algorithmic decision systems
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such as COMPAS could be assessed (Flores et al., 2016). This marked the
beginning of the field of fair machine learning.

While it is rarely made explicit, the problem addressed in much of the litera-
ture on fair machine learning is in fact a demarcation problem. The aim is to
provide a precise criterion that constitutes a necessary and sufficient condi-
tion for the moral permissibility of an algorithmic decision-making process.
This means, a criterion that, given a specific state of the world, allows us to
rigorously distinguish algorithmic decision systems that are morally prob-
lematic from those that are unproblematic. Such a criterion needs to be for-
mulated in terms of properties that can meaningfully and unambiguously
be applied to algorithmic decision systems. Since these systems are, at some
level of abstraction, mathematical objects, a fairness criterion needs to be for-
mulated as a mathematical constraint. The problem of algorithmic fairness
can, preliminarily, be stated as follows:

The problem of algorithmic fairness. For which formal criterion ϕ is it the case
that the application of algorithmic decision system S in world W is morally permis-
sible if and only if ϕ is satisfied?

Proposals for ϕ abound. Verma and Rubin (2018) list and describe more than
20 different fairness criteria in their survey paper. Typically, proposals are
formulated as conditions involving the following variables: the input features
X that are fed into the algorithmic system in order for it to arrive at a de-
cision; the relevant protected characteristic A, which typically denotes a trait
such as ethnicity, gender, or religion; the target variable Y, that is, the relevant
property that is being estimated by the algorithm, and which is unknown at
the time of application; and lastly, the outcome C, which denotes the value the
algorithm returns after execution.

To illustrate with an example what these variables could stand for, think of
a bank that uses an algorithmic decision system to determine whom to grant
a loan to. X could here represent a vector of variables containing a person’s
income level (X1), credit repayment history (X2), and the like. The variable A
could represent the applicant’s religion, while Y would most likely stand for
whether the applicant would pay back their loan. The variable C represents
the categories that the algorithm can assign to an applicant: creditworthy or
not creditworthy.
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Fairness criterion Description

Statistical parity Algorithmic decisions are fair iff1 the
probability of receiving outcome c ∈ DC
is equal across all protected groups ai ∈ DA.

Equalized odds Algorithmic decisions are fair iff the
(Hardt et al., 2016) probability of receiving outcome c ∈ DC

conditional on being in class y ∈ DY is
equal across all protected groups ai ∈ DA.

Predictive parity Algorithmic decisions are fair iff the
(Cleary, 1966) probability of being in class y ∈ DY

conditional on receiving outcome c ∈ DC is
equal across all protected groups ai ∈ DA.

Fairness through awareness Algorithmic decisions are fair iff any two
(Dwork et al., 2012) individuals i and j with similar input

features x(i), x(j) ∈ DX receive similar
outcomes c(i), c(j) ∈ DC.

Counterfactual fairness Algorithmic decisions are fair iff for each
(Kusner et al., 2017) decision it is the case that the outcome

c ∈ DC would have been the same had the
individual’s protected characteristic
ai ∈ DA been different.

TABLE 1.1: Five of the most popular fairness criteria.

Table 1.1 contains brief descriptions of five of the most widely discussed fair-
ness criteria. For the sake of simplicity, the criteria are presented as prose
descriptions instead of mathematical definitions. I will later, where neces-
sary, introduce their precise mathematical formalizations. For the moment,
however, the prose descriptions should suffice to provide a conceptual expo-
sition of the criteria.

Despite the initial plausibility of each of these criteria, they come with a num-
ber of problems. First, none of the criteria seems to adequately capture the
moral permissibility of the application of an algorithmic decision-making
process. Often, the criteria are motivated by a handful of hypothetical or ac-
tual scenarios of algorithmic decision-making for which they give the right
verdict but are not shown to generally guarantee the absence of a particu-
lar moral wrong. For each criterion, forceful counterexamples can be con-
structed which demonstrate that moral permissibility and the satisfaction of

1Note that here, "iff" is used to abbreviate "if and only if".
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the formal criterion can come apart. A counterexample can be a clearly per-
missible case of algorithmic decision-making that fails to satisfy the criterion
or a clearly impermissible case that does satisfy it. This means that none
of the criteria provides both, a necessary and sufficient condition, and, as a
matter of fact, many provide neither.

Second, the three so-called "statistical criteria" — statistical parity, equalized
odds, and predictive parity — were shown to be pairwise incompatible when
the target variable Y is correlated with the protected characteristic A (Klein-
berg et al., 2016; Chouldechova, 2017). This means that, in most realistic sce-
narios, whenever one of the three criteria is satisfied, the other two criteria
will be violated. This is an unfortunate result for a set of individually plausi-
ble fairness criteria.

Third, some of the criteria are constraints on individual algorithmic deci-
sions (fairness through awareness, counterfactual fairness), while others are con-
straints on the population-level patterns of decision outcomes (statistical par-
ity, equalized odds, predictive parity). This raises the question of whether the
moral wrongs inherent in certain algorithmic decision procedures are consti-
tuted at the individual or at the collective level, and if on both, how they
relate to each other.

These three problems cast doubt on the possibility of solving the problem of
algorithmic fairness as formulated above. A potential candidate for ϕ would
have to (1) guarantee that whenever the application of a given algorithmic
decision system in a given context is wrongful, ϕ is violated, and vice versa,
that whenever the application is permissible, ϕ is satisfied; (2) be grounded
in a moral theory that explains away the mutual incompatibility of statistical
parity, equalized odds, and predictive parity, by specifying the conditions
under which the more fundamental fairness criterion ϕ implies statistical
parity, equalized odds, or predictive parity, respectively, and showing that
under given conditions, it implies at most one of the three; and (3) said the-
ory either shows that, fundamentally, the objects of algorithmic fairness are
individuals, or that they are groups and explains away intuitions to the con-
trary. Altogether, this is much to ask of a single fairness criterion.

It seems that the best explanation for the occurrence of the three problems is
that there are different types of moral wrongs that can occur in applications
of algorithmic decision systems, even though the unified use of the term al-
gorithmic fairness suggests the opposite. This, in turn, implies that different
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moral norms are relevant to algorithmic decision-making.

The apparent inability to specify universally applicable necessary and suf-
ficient conditions for the absence of moral wrongs in algorithmic decision-
making suggests that whether a given moral norm applies might depend on
factors outside the mere specification of how the algorithm moves from in-
put data to the resulting output. It might, first, depend on which aspect of
the algorithmic decision-making process one is concerned with, and, second,
on contextual factors that have a moral bearing on a given decision. If this
is right, it entails that it is impossible to define a single, universally applying
formal criterion of algorithmic fairness.

Now, if one accepts this explanation, this calls for a principled way of fine-
graining the problem of algorithmic fairness, such that for each aspect of
algorithmic decision-making that is bound to different normative constraints,
we separately look for a (possibly context-relative) formal fairness criterion.
This will be the task for the remainder of the chapter.

1.3 Algorithmic decision systems

I begin by specifying what I take algorithmic decision systems to be. This will,
first, help identify what the relevant normative questions about such systems
are, and, secondly, delimit the scope of application of our framework. While
these days algorithms are used in a variety of different ways, I am here con-
cerned with one specific, but commonly used type of algorithmic system: a
system, deployed in the public or semi-public sphere, that recommends or
autonomously takes decisions affecting individuals, where these decisions
are made based on predictions from available information about these indi-
viduals.

Algorithmic decision systems of this sort are becoming increasingly popular
in areas such as credit lending, criminal justice, hiring, and fraud detection.
Returning to the example from the previous section, a bank could, for in-
stance, use such a system to make a decision about whether and at what con-
ditions to offer a loan to a loan applicant. The decision would (at least partly)
be based on a prediction about the probability that the applicant would if
granted, default on the loan. To generate the prediction, the system might, as
mentioned above, take as input data information about the applicant’s repay-
ment history, education, and employment (see, e.g., Lee and Floridi, 2020).
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Many algorithmic decision systems deployed in other fields work similarly.

Before outlining my proposal for a model of algorithmic decision systems, it
is necessary to highlight an important conceptual distinction. In the discus-
sion of algorithmic fairness, it is rarely acknowledged that there is a morally
relevant difference between algorithmic predictions and algorithmic decisions.
Even though some authors explicitly distinguish between predictions and
decisions (see, e.g., Hedden, 2021; Kleinberg et al., 2018; Corbett-Davies et al.,
2018), the terms are, especially with regard to their moral aspects, often used
interchangeably2. A plausible explanation for this is that algorithmic deci-
sions are, as a matter of fact, almost always closely tied to predictions. One
might therefore be misled to conclude that there is no need to distinguish
between them. This, however, is a faulty line of reasoning. A prediction —
broadly understood as an inference of an unknown proposition from a body
of evidence — and a decision — understood as a choice of an act from a set
of alternatives — differ in which properties can meaningfully be applied to
each. While we can, for instance, speak of the accuracy of a prediction, it would
be a category mistake to speak of the accuracy of a decision. By the same token,
we can speak of the expected utility of a decision, but it would be a category mis-
take to speak of the expected utility of a prediction. The same, I contend, is true
for moral properties. Consequently, we need to apply a model of algorithmic
decision systems that is sensitive to this distinction in order to consistently
discuss ethical aspects of algorithmic decision-making.

Algorithmic decision systems, according to the model proposed here, have
two components (see Figure 1.1): a predictive model and a decision function.
The predictive model takes the feature values x as input, and, given a vec-
tor of learned model parameters θ, outputs a probability assignment to the
prediction ŷ. The decision function, on the other hand, takes this probabil-
ity assignment f̂θ(x) as an input (and possibly the input values x as well,
as the dashed arrow indicates), and, given a cardinal utility function u over

2This is, for instance, evidenced by the following quotes: "It is always possible to con-
struct a trivial predictor satisfying equalized odds by making decisions independent of X, A,
and R" (Hardt et al., 2016, p. 6), "If we think of the decision as a binary prediction of the
outcome, then b00 and b11 are the values of true negatives and true positives, respectively."
(Corbett-Davies et al., 2018, p. 7), "we use the following notations: [...] d: predicted deci-
sion (category) for the individual (here, predicted credit score for an applicant – good or bad)"
(Verma and Rubin, 2018, p. 2), and Kusner et al. (2017), who first write "predictor Ŷ is coun-
terfactually fair if (...)" (p. 3) but then "while Ŷ is the actual decision of giving the loan" (p. 5)
[italics in quotes are my own].
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FIGURE 1.1: Schematic model of an algorithmic decision system

different possible outcomes, determines a decision o. This can be made math-
ematically precise. Let X be a vector of input variables (with domain DX), Ŷ a
random variable (with domain DŶ) representing predictions of a target vari-
able Y, and O a non-empty set of decision options. We can then define the
notion of an algorithmic decision system as follows:

Definition 1.3.1 (Algorithmic decision system). An algorithmic decision system
is an ordered pair S = ( f̂θ, du), consisting of a predictive model f̂θ : X→ [0, 1],
where f̂θ(x) is interpreted as the conditional probability of ŷ given x, and a
decision function du : [0, 1]× Dx → O, where du( f̂θ(x), x) is interpreted as the
decision option assigned to the combination of prediction f̂θ(x) and input x.

A few remarks are in order. The predictive model is defined as a function
from the input features x to a real number in the interval [0, 1]. The output of
the function represents an estimation of how likely it is that feature values x
make the prediction ŷ true, and it coincides with the conditional probability
of the prediction ŷ given input features x. The reason for introducing a new
function symbol f̂ is to highlight that we consider the predictive model to be
a function of x for fixed ŷ. This is conceptually distinct from a probability
function Pθ(ŷ | x), which is a function of ŷ for fixed x. This definition of
a predictive model is conceptually in line with common practice in machine
learning, where models are typically conceptualized as functions of the input
values together with a quantification of the uncertainty of a given prediction
(see Deisenroth et al., 2020, Ch. 8.2). On our definition, the predictive model
encompasses simple models, such as logistic regression, but also more com-
plex ones, such as deep neural networks (see Goodfellow et al., 2016, p. 174).
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The decision function du(·) is defined in analogy to choice functions in de-
cision and game theory (see, e.g, Bradley, 2017, p. 247; Sen, 1971, p.2, Suzu-
mura, 2009, pp. 20ff). However, it differs from them in that the set of avail-
able decision options O is held fixed, as we assume that a given algorithmic
decision system will only be applied to one specific type of decision situation.
Generally, the decision function is a function of the probabilistic prediction
f̂θ(x), and possibly further information encoded in the input vector x. The
output is a decision option o from the set of available decision options O. The
decision function can embody principles such as maximize expected utility or
the maximin rule, relative to a fixed cardinal utility function u which assigns
numerical utilities to outcomes. As is standard in decision theory, outcomes
are defined as combinations of a given decision option o, input values x, and
a value y of the target variable (the latter two representing mutually exclusive
and jointly exhaustive possible states of the world).

To illustrate this with our previous example, imagine an algorithmic system
for lending decisions. The system will proceed as follows: it will take as
input data on the applicant’s income (x1) and their repayment history (x2),
on the basis of which the predictive model estimates how probable it is that
the applicant defaults on the loan. On the basis of this probabilistic prediction
f̂θ(x), the decision function then outputs a decision, namely whether to grant
the applicant the loan or not. Obviously, this is an unrealistically simplified
model for making lending decisions, but is helps clarify the concept of an
algorithmic decision system.

More formally, the vector of input variables X = {X1, X2} contains the two
variables X1 (annual income in thousands of dollars), and X2 (repayment
history), with respective domains

• DX1 = N,

• DX2 = {0, 1, 2}, where 0 stands for "No late payments", 1 for "Some late
payments", and 2 for "Many late payments"

Assume that the predictive model is a logistic regression model, which esti-
mates the probability that a given applicant will default on their loan accord-
ing to the following equation3:

3The function S(·) stands for the logistic function. This detail is of no importance to the
subsequent arguments in this chapter, and only serves the purpose of illustration.
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f̂θ(x) = S(−0.05x1 + 1.5x2) (1.1)

Now imagine an applicant, Alice (A), who earns $35, 000 annually, and whose
repayment history contains no records of any late payments. That is, her in-
put values are x(A)

1 = 35 and x(A)
2 = 0. We can hence calculate her probability

of defaulting on the loan according to the predictive model as follows:

f̂θ(⟨35, 0⟩) = S(−0.05 ∗ 35 + 1.5 ∗ 0) = 0.148 (1.2)

According to the predictive model, Alice has a 14.8% probability of default-
ing. In the next step, this prediction is used to inform the decision on whether
to grant Alice a loan. To this end, we have to specify the decision function
du(·). We will assume that there is only one type of loan in terms of credit
amount and conditions. The set of decision options O hence contains exactly
two possible decisions: to reject an applicant ("Reject"), or to grant them a
loan ("Grant"). The decision function could then take the following form:

du(p, x) =

{
Grant if p < 0.3
Reject if p ≥ 0.3

(1.3)

Recall that by the definition of algorithmic decision systems, the first argu-
ment of the decision function is the output of the predictive model, that is,
p = f̂θ(x). This means, a loan is granted if the applicant has less than 30%
probability of defaulting. Since in our example, Alice’s estimated probability
of defaulting is 14.8%, the decision function’s output is “Grant". To sum it
up, the algorithmic decision system would make the decision to grant her a
loan, based on the information that she earns $35, 000 per year and that her
repayment history contains no records of late payments.

Note that the second argument of the decision function, x, does not influence
the decision in this example (other than through its influence on the proba-
bilistic prediction). We can, however, imagine a different decision function
according to which the decision to grant the loan is made only if the prob-
ability of a default is less than 30% and the applicant earns above $100, 000
annually. The decision function would look as follows:
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d′u(p, x) =

{
Grant if p < 0.3 and x1 > 100
Reject otherwise

(1.4)

The reason for including this further condition (that the applicant needs to
earn more than $100, 000) might be completely unrelated to the epistemic
consideration of whether the applicant will default on the loan. It might,
for instance, be that the bank is only interested in acquiring high-earners as
customers, or some other non-epistemic, business-related reason.

The model introduced in this section is an idealized representation of an al-
gorithmic decision system intended to be general enough to subsume most of
the impactful systems that are used in the public and semi-public sphere, and
yet specific enough to allow for a sufficiently deep analysis that does justice
to the complexity of the ethical questions we attempt to address. I will now
turn to the ethical questions that arise when a system of the above form is
applied to contexts where it is used for making decisions about individuals.

1.4 Ethical aspects of algorithmic decision-making

In order to examine the relevant ethical aspects of algorithmic decision-making,
it will be useful to take a step back and think about the ethical aspects of
public decision-making more generally. I will use the term public decision in
a relatively loose sense, denoting two different types of decisions. First, any
act or policy implemented by a public body, such as central and local gov-
ernments, courts, or police departments, which allocates certain benefits or
incurs certain harms on individual persons. Secondly, acts by private actors
that involve access to goods which can reasonably be expected to be regu-
lated by the government, such as education, housing, employment, or trans-
port. For the purposes of this analysis, we can ignore the difference between
the two.

There are two ethical concerns about decisions in the public sphere, which
persist even if we assume that the decisions are taken without objectionable
intentions. First, the decisions might be based on biased beliefs4, which can
result in discriminatory decisions. Secondly, the decisions might produce

4Note that the term bias is here used in the sense of cognitive bias (as opposed to behavioral
or emotional bias), and refers to a systematic error in forming propositional attitudes.
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unjust distributions of benefits and burdens among different groups in soci-
ety5. While discrimination is closely connected to distributive injustice, it is
important to distinguish between the two concepts, for they are neither co-
extensive, nor is it obvious whether their wrongfulness is grounded in the
same fundamental moral principles (see, e.g, Eidelson, 2015, pp. 51-58). I
will discuss each in turn.

Discrimination can broadly be understood as wrongfully disadvantaging some-
one because they belong to a certain salient social group (see, e.g, Moreau,
2010; Eidelson, 2015; Lippert-Rasmussen, 2014). The property of belonging to
such a group is what is called a protected characteristic, the group constituted
by this shared property a protected group. Whether an individual is treated
disadvantageously is determined relative to some other (actual or hypothet-
ical) individual, who is not a member of that group, and who is, by some
standard, suitable for comparison. When a decision-maker takes an individ-
ual’s social group membership as a reason for intentionally treating them in
a disadvantageous way, we speak of direct discrimination. However, not all
forms of discrimination require an intention to discriminate. When rules and
policies are set up in a way such that, despite the absence of any intentions to
this effect, being a member of the group results in experiencing certain dis-
advantages, we speak of structural discrimination. Under which conditions
exactly disadvantageous treatment of the above form is wrong, and why it
is when it is, is widely debated (see, e.g., Alexander, 1992; Eidelson, 2015). I
will, for now, set this issue aside.

Unintentional discrimination can come about when decisions are informed
by beliefs that are defective in particular ways (see, e.g, Eidelson, 2015; Ch.
5, Lippert-Rasmussen, 2014, pp. 41 ff). This is the case when beliefs are bi-
ased, either in that they are inferred from inaccurate generalizations about
the properties or behaviors of individuals who belong to a specific social
group (i.e. stereotyping), or in that they are grounded in, for instance, a
decision-maker’s emotional reaction to members of a specific group, rather
than in adequate evidence (i.e. prejudice). When decisions in the public
sphere are taken, it is hence obligatory to ensure that beliefs which inform
the decision at hand are arrived at in an appropriate way.

5This is sometimes (e.g. in legal texts) called indirect discrimination, even though, as some
have argued (see, e.g., Eidelson, 2015, Ch. 1.2), this is a misleading use of the term discrimi-
nation. For this reason, we will give preference to the term distributive injustice.
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On the other hand, we can say that a decision contributes to creating or am-
plifying distributive injustice, when the decisions, which typically allocate
certain benefits or burdens, do so in a way that disrespects the distributive
principle relevant in a given context. A strict egalitarian principle, for in-
stance, would require that certain goods6 be distributed equally among dif-
ferent groups, while an equality of opportunity principle would require that
economic and educational opportunities be equally distributed among those
with the same level of talent and diligence. It is plausible to think that differ-
ent goods ought to be distributed according to different distributive princi-
ples. Which principle applies to the distribution of a given good depends on
the social meaning attributed to the good in question (see, e.g, Walzer, 1983).

So, while discrimination refers to the procedure by which a decision is deter-
mined, distributive injustice refers to the resulting distribution of goods. To
make this distinction more tangible, consider the following two scenarios. In
both, we assume that a company is looking to hire a suitable employee. In
the first scenario, we assume that in order to decide between two applicants,
the employer estimates how much profit an applicant would generate for the
company, were they employed. One applicant is female, has a relevant de-
gree from a renowned university, and has a track record of prestigious jobs
which evidence her willingness to work hard. The other applicant is male,
has no university degree, and has an employment record of rather unim-
pressive jobs. In estimating their profitability, the employer considers the
first applicant’s gender to be a point against employing her, as the employer
thinks that women are generally not capable of hard work. Nonetheless, due
to the male applicant’s lack of relevant education and work experience, the
female applicant is estimated to be slightly more profitable for the company,
and is hence offered the job. While in this scenario, the employer’s decision is
clearly informed by a stereotypical and hence wrongful belief about women,
this does not result in an unjust distribution of employment opportunities.

To contrast the previous example, consider the second scenario (inspired by
Eidelson, 2015, p. 53). In this scenario, we assume the employer knows that
if an employee has a parent who has herself been a long-term employee of
the company, this has a positive effect on the new employee’s productivity,
and hence the profitability for the company. Assume this is due to the fact

6For the sake of brevity, I will use the term good to denote any material object or service
that is assumed to have a (positive or negative) utility to individual persons. This includes
what is sometimes called economic bads (see, e.g, Varian, 2006, p. 41).
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that having a parent who is a senior employee facilitates certain things for
new employees — it might, for instance, allow them to get acquainted with
the processes within the company more quickly, or to get to know people
in important roles at a more personal level, and so on. For this reason, the
employer prefers, all else being equal, applicants who have a parent who has
been working for their company. Now assume further that non-Christian
applicants are less likely to have a parent who has been working in the em-
ployer’s company — possibly because many of the non-Christian applicants
happen to be children of recent immigrants. This means that the employer’s
hiring policy disproportionately denies non-Christians the opportunity to
work for the company, even if they are, on average, equally talented and
diligent. Hence, this constitutes a case of distributive injustice against the
group of non-Christians, despite the fact that the decision is not informed by
biased beliefs about non-Christians.

In both scenarios, we can criticize the employer’s decision-making procedure
as wrongful. However, we do so on different grounds. In the first case we
can criticize the decision as being made on the basis of a belief which is, in a
morally relevant way, defective. We cannot, however, criticize the outcome
of the decision. In the second case, we can criticize the decision as produc-
ing an unfair distribution of economic opportunities among different social
groups. We cannot, however, criticize that the employer’s belief about the
profitability of potential employees is defective, since, by assumption, the
belief is true.

Let us now transfer the above analysis to algorithmic decision systems. When
algorithmic decision systems are deployed in order to make or recommend
decisions in the public sphere, they are bound to the same normative con-
straints as public decisions taken by human decision-makers. Hence, it is
necessary to ensure that they do not make decisions on the basis of biased
beliefs, and that they do not make decisions that allocate goods in a way that
violates the relevant distributive principle.

While algorithmic decision systems do not have beliefs in any literal sense,
they do possess representations of real world properties. Those are encoded
in the input features x, and the estimation of the probability that the unob-
served property y is present. Consequently, the first normative constraint on
algorithmic decision systems is that the probabilistic estimation of y on the
basis of x must not be biased. This, unsurprisingly, is a constraint on the first
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component of an algorithmic decision system, the predictive model.

When an algorithmic decision system makes a decision that allocates goods,
allocating these goods according to the probabilistic prediction of property
y and background information x must be compatible with the relevant dis-
tributive principle. This means that, for a given decision, the variable Y has
to be chosen such that distributing a good according to it (possibly together
with some of the input variables in X) is permissible in the light of the prin-
ciple. Think, for instance, of the second scenario discussed above. Assume
we deem an equality of opportunity principle the right principle for allocat-
ing job opportunities. This principle demands that everyone with the same
talent and diligence should have the same chance to be offered a given job. If
we accept this principle, then in the scenario above, hiring decisions cannot
(merely) be based on a prediction of the profitability of an applicant, because
profitability is influenced by factors beyond talent and diligence — namely
having a parent who also works for the employer’s company. Put differently,
in the above case predicted profitability alone does not provide a permis-
sible reason for a hiring decision. So, the second normative constraint on
algorithmic decision systems is that a decision must be determined on the
basis of properties (or predictions thereof) which are permissible for a given
allocation of goods. This, on the other hand, is a constraint on the second
component of an algorithmic decision system, the decision function.

We can conclude by summarizing that there are two aspects of algorithmic
fairness, which are both necessary but individually insufficient for guaran-
teeing that the application of an algorithmic decision system is morally per-
missible. Consequently, we are confronted with two problems of algorithmic
fairness: (1) finding a constraint on predictive models that ensures that prob-
abilistic predictions are generated in an unbiased way, and (2) finding a con-
straint on decision functions that ensures that decisions about the allocation
of a given good are based on information and estimations of adequate prop-
erties. These two problems will be made more precise in the next section.

1.5 Two concepts of algorithmic fairness: a formal

framework

The above analysis suggests a way to replace the problem of algorithmic fairness
presented in Section 1.2 with two separate subproblems. Rather than finding
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a single formal criterion which guarantees that, if satisfied, the application of
a given algorithmic decision system is morally permissible, we should turn
our attention to finding two different criteria: one criterion that guarantees
the absence of biased predictions, and another criterion that guarantees that
decisions are made in a way such that no unjust distribution of goods re-
sults. While it seemed infeasible to find a single criterion that guarantees the
intuitive permissibility of algorithmic decision systems, the bifurcation of the
problem into two sub-problems aligns well with moral theory and allows us
to explain away seeming contradictions.

Let us begin with the problem of finding a constraint on an algorithmic de-
cision system’s predictive model that guarantees the absence of discrimina-
tory bias. We say that predictive models are biased when their predictions
exhibit specific patterns of errors. In other words, biased predictions devi-
ate from the truth in systematic ways. To determine whether a predictive
model is biased, it is thus necessary to not only take the probabilistic predic-
tions themselves into consideration, but moreover what is actually the case
in (some relevant aspect of) the world. The constraint on the algorithmic de-
cision system must hence be formulated relative to a specification of the rele-
vant aspects of the world. How informationally rich this specification needs
to be depends on how exactly one defines the notion of bias. In order to
make the present framework compatible with as many different approaches
as possible, I will here not take a stance on which technical notion of bias is
to be chosen. To provide two examples, however, note that the world could
simply be specified as the set of all the (relevant) true propositions7, or as a
causal model which not only specifies what is true, but which also represents
the relevant underlying mechanisms and processes8. We can now formulate
the first subproblem as follows:

The problem of predictive fairness. For which formal criterion ϕ is it the case
that the predictive model f̂θ(·) is unbiased if and only if f̂θ(·) satisfies ϕ relative to
world W and protected characteristic A?

Next, consider the problem of allocative algorithmic fairness. The task here is
to find a constraint that ensures that the distribution of goods resulting from
the application of the algorithmic decision system is in line with the relevant

7Examples of criteria that take into account whether certain propositions are true are
equalized odds and predictive parity.

8Examples of criteria for the absence of bias that take the relevant causal mechanisms into
account are counterfactual fairness and no-proxy discrimination (Kilbertus et al., 2017).
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distributive principle. More technically speaking, this means that we want
to constrain which properties are allowed or need to be correlated with re-
ceiving the specific good. For example, a strict gender parity principle would
require that there be no correlation between an individual’s gender and re-
ceiving the good in question. Applied to, say, a hiring context, this would
ensure that the proportion of female applicants offered a job is equal to the
overall proportion of female applicants. An equality of opportunity princi-
ple, on the other hand, would require that receiving the good be perfectly
correlated with talent and diligence, even if this means that receiving the
good is to some degree correlated with a protected characteristic. Applied to
the hiring example, equality of opportunity would ensure that the applicants
which score the highest on features such as education, professional experi-
ence, or the performance on relevant tests, are the ones who are offered the
job.

As argued above, we can assume that how a good ought to be distributed
depends on the type of good in question. One might argue, for example,
that certain government jobs should be allocated in accordance with a gen-
der parity principle to ensure equal representation of men and women in
policy making. On the other hand, this principle certainly doesn’t hold for
criminal justice decisions: whether someone receives a jail sentence should
only depend on factors such as the seriousness of the crime and the degree to
which a defendant can be held liable for the crime. Hence, whether the deci-
sion function of an algorithmic decision system is fair can only be determined
relative to the specific good in question.

In order to define a formal framework for determining whether a decision
function produces unfair allocations of a given good G, we hence have to
specify two sets of properties. The first, IG, denotes the set of properties for
which it is impermissible to be correlated with the decision outcome du. The
second, OG, denotes the set of properties for which it is obligatory that they
be correlated with the decision outcome du. Since an impermissible property
cannot be obligatory, we can assume that the set of impermissible properties
and the set of obligatory properties are disjoint, i.e. IG ∩OG = ∅. We can
now formulate the second subproblem of algorithmic fairness as follows9:

9Note that for full generality, we would need to frame the problem of allocative fairness in
terms of partial/conditional correlations, rather than unconditional correlations. This would
mean that IG and OG would contain tuples of properties rather than individual properties.
This would allow us to express conditional requirements, as for instance that it is impermis-
sible that the decision outcome du is correlated with Vi given Ui. Formally, this requirement
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The problem of allocative fairness. For which pair of property sets (IG, OG)

is it the case that the decision function du(·) is allocatively fair with regards to a
given good G if and only if, under the assumption of perfectly accurate predictions,
the outcomes of du(·) are sufficiently correlated with all variables Vi ∈ OG, and are
sufficiently uncorrelated with all variables Vj ∈ IG?

Operationalizing any specific definition of allocative fairness requires mak-
ing precise what is meant by saying that two variables are sufficiently corre-
lated or uncorrelated. One natural way of doing this would be to define two
variables to be sufficiently correlated whenever the absolute value of some
correlation coefficient, such as Pearson’s correlation coefficient (see, e.g, Lee
Rodgers and Nicewander, 1988), is above a certain threshold. Conversely, we
could define two variables to be sufficiently uncorrelated whenever the abso-
lute value of their correlation coefficient is below a certain threshold. There
are, however, many different ways in which these notions could be expli-
cated, and I will here leave open how the question which of them is the most
adequate one is to be answered.

Note that we always evaluate predictive and allocative fairness relative to
a specific protected characteristic. This means that we decide on the pro-
tected characteristic relative to which we want to evaluate a given algorith-
mic decision system beforehand, and then check whether the chosen criteria
of predictive and allocative fairness hold for this specific characteristic. The
framework presented here is agnostic about what counts as a protected char-
acteristic and how to choose which protected characteristics are of special
importance in a given situation. Those are complex questions in their own
right, in particular in light of the fact that sometimes we care about intersec-
tional characteristics, like for instance being a woman of a particular ethnic-
ity. While the present framework cannot provide answers to these questions,
it is general enough to be compatible with different theories about protected
characteristics.

Let us now illustrate the distinction between the two problems with two hy-
pothetical examples. As a first example, consider an algorithmic decision
system which estimates how probable it is that a given, previously crimi-
nal individual, will commit another crime within some specified time frame
in the future. On the basis of this prediction, the system then recommends

would be expressed by stating that (Vi, Ui) ∈ IG. For the sake of conceptual clarity, how-
ever, and due to the fact that most distributive principles can be expressed as constraints on
unconditional correlations, we will restrict the discussion to the latter.
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Ethnicity Area Crime
ADS

f̂θ(·) du(·)

White 1 No 0.2 ✗

White 1 No 0.2 ✗

White 1 Yes 0.2 ✗

White 2 Yes 0.8 ✓
Non-White 1 No 0.2 ✗

Non-White 2 Yes 0.8 ✓
Non-White 2 Yes 0.8 ✓
Non-White 2 No 0.8 ✓

TABLE 1.2: This table contains informa-
tion on the protected characteristic (Ethnic-
ity), the input variable (Area), the "ground
truth" of the target value (Crime), and
the predictions and decision recommenda-
tions of the algorithmic decision system.

FIGURE 1.2: Average probabilistic pre-
dictions of (a) criminal behaviour, (b) ab-
sence of criminal behaviour among indi-
viduals who actually go on to commit a
crime, (c) criminal behaviour among in-
dividuals who actually do not go on to

commit a crime.

whether to subject the individual to increased monitoring measures.

In this example, we can assume that the only input the predictive model of
the algorithmic decision system takes is information about which neighbor-
hood a given individual lives in. We can further assume that it is known that
there is a correlation between living in a given neighborhood and exhibiting
criminal behavior, so that this choice of input data has, at least at first glance,
some plausibility. The predictive model assigns a 0.2 probability of crimi-
nal behavior if the individual lives in neighborhood 1, and 0.8 probability if
the individual lives in neighborhood 2. The decision function of the system is
equally simple: it outputs the decision to increase monitoring ("✓") of an in-
dividual whenever the prediction is greater than 0.7, and the decision to stay
with a regular level of monitoring ("✗") otherwise. While this is certainly an
unrealistically simplistic algorithmic decision system, its simplicity allows us
to focus on those aspects that I aim to illustrate without getting caught up in
technical details.

Table 1.2 contains information on eight fictitious individuals for whom pre-
dictions of criminal behaviour were generated. In particular, we have infor-
mation on each individual’s ethnicity, which is the protected characteristic
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relative to which we will assess the fairness of the system; on the neighbor-
hood an individual lives in, which is the (only) input feature to the predictive
model in this example; and on whether an individual actually exhibited crim-
inal behavior, which is the target variable for which the predictive model es-
timates a probability. Note that, from the perspective of the predictive model,
the value of the target variable is not known. Additionally, the table describes
the probabilistic prediction f̂θ(·) of the algorithmic decision system and the
decision output generated by the decision function du(·).

In order to assess whether the algorithmic decision system is fair according
to our proposed framework, we have to fill in the variables in the two fair-
ness schemata to obtain concrete fairness criteria. Begin with predictive fair-
ness. The protected characteristic relative to which we evaluate whether the
predictive model is biased is ethnicity (denoted by variable A). The relevant
aspect of the world W, relative to which we check whether the predictions
make systematic errors, is whether an individual does in fact commit a crime
(denoted by variable Y). As the criterion that ensures that the predictive
model is not biased with regards to ethnicity, we choose equalized odds (Hardt
et al., 2016). This means we require that the average predicted probability
that an individual will not commit a crime, given she does in fact commit
a crime (and, likewise, the average predicted probability that an individual
will commit a crime, given that she does not, in fact, commit a crime) be equal
among White and non-White individuals. These metrics can be considered
the analogues of the false positive and the false negative rates for probabilis-
tic predictions. Hence, we substitute ϕ in the schema with the condition that
for all ŷ ∈ DŶ, y ∈ DY, and a1, a2 ∈ DA:

P(ŷ | y, a1) = P(ŷ | y, a2) (1.5)

Having specified a concrete predictive fairness criterion, we can now assess
whether the predictive model is biased. A quick look at the dataset in Ta-
ble 1.2 shows that of the four White individuals, two turned out to commit
criminal offenses (row 3 and 4), as did two of the four non-White individu-
als (rows 6 and 7). This means, the prevalence of criminal behavior is equal
among the two groups according to our data. If, however, we look at the
summary statistics of the predictive model f̂θ(·), we can see that on average,
the non-White individuals received a probabilistic prediction of crime above
0.6, while the White individuals received on average predictions below 0.4
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(Figure 1.2(a)). More specifically, we note that the average predicted proba-
bility of absence of criminal behavior among those who did in fact commit
a crime is much higher for White individuals than for non-White individ-
uals (Figure 1.2(b)). At the same time, the average predicted probability of
criminal behavior among those who do in fact not commit a crime is much
higher for non-White individuals than for White individuals (Figure 1.2(c)).
Intuitively speaking, this means that for White individuals it is much more
probable to be deemed innocent while actually going on to commit a crime,
whereas for non-White individuals it is much more probable to be deemed
criminal while actually being innocent. This clearly violates the fairness cri-
terion specified above — the predictive model is biased on our definition.

Next, we have to choose a criterion according to which we can examine
whether the decision function allocates the good in question in a fair way.
The "good" at issue is in fact an "economic bad" — a burden that comes with
negative utility for the individual — namely, to be subjected to an increased
level of monitoring. Presumably, no egalitarian principles apply here — it
seems implausible to think that increased monitoring should necessarily be
equal among different ethnicities, men and women, and so on. Rather, it
seems, a burden such as increased monitoring should be allocated according
to a desert-based principle — in other words, the individuals subjected to
increased levels of monitoring should be those who deserve so due to their
inclination towards criminal behavior. In accordance with our formal frame-
work, this can be formalized as the requirement that Crime∈ OMonitoring. This
means that, assuming that the predictive model generates perfectly accurate
predictions, the target variable Crime (that is, whether an individual did ac-
tually exhibit criminal behavior) ought to be correlated with the outcome of
the decision function du(·). Apart from this, there are no further constraints.

If the predictions were perfectly accurate, then every individual who will in
fact go on to commit a crime would have received a predicted probability
of 1, and every individual who will not would have received a predicted
probability of 0. Since the decision rule du(·) recommends increased mon-
itoring for those individuals who have a predicted probability of criminal
behavior above 0.7, every criminal would be subjected to increased monitor-
ing, whereas no innocent individual would. Hence, the decision outcomes
would be perfectly correlated with criminal behavior, and we can conclude
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that the decision function satisfies our criterion of allocative fairness.10

To summarize, the algorithmic decision system in this example produces un-
fair decisions. As our analysis has shown, this is due to a biased predictive
model. Hence, in this case the predictive model should be adjusted so as to
not produce such biased predictions. There is, however, no reason to change
the decision function.

Let us now turn to the second example. Here, we are considering univer-
sity admission decisions. The predictive model of the algorithmic decision
system estimates how likely it is that a given individual would be successful
at the university they apply to, where success will be defined as achieving
a grade average above a specific threshold. The decision function then rec-
ommends an admission decision on the basis of this estimation. Similar to
the previous example, the predictive model f̂θ(·) assigns a predicted proba-
bility of university success of 0.8 whenever the individual had a high school
grade of A or B, and 0.4 whenever the high school grades were below that.
The decision function du(·) recommends the decision to admit an individual
whenever the predicted probability of success if greater than 0.7 ("✓"). Ta-
ble 1.3 depicts a fictitious dataset with information on whether an individual
has dyslexia (the protected characteristic in this example), their high school
grades (the input data), whether they actually turned out to be successful
at university (the target variable), and what the algorithmic decision system
would have predicted and decided for each individual.

Examining Figure 1.3, we notice that individuals without dyslexia have, on
average, a higher predicted probability of academic success. Yet, the average
predicted probability of not being successful, given that the student would
actually have been successful, as well as the average predicted probability
of being successful, given that the student would actually not succeed, are
equal across the two groups. By our notion of predictive fairness (equalized
odds), the predictive model would hence count as fair. Yet, if we think about
how education opportunities should be distributed, we might want to say
that a learning difficulty such as dyslexia should not affect one’s chances of
being accepted to a university programme. Dyslexic students, on this view,
should have the same overall admission rate as students without dyslexia.

10We could, for instance, use the Pearson correlation coefficient to measure the degree of
correlation. As we here have a perfect correlation between criminal behaviour and increased
monitoring, the coefficient would take the maximum value +1. This would trivially be con-
sidered a sufficiently strong correlation.
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Dys-
lexia

High
school
grades

Uni-
versity
success

ADS

f̂θ(·) du(·)

No A Yes 0.8 ✓
No B Yes 0.8 ✓
No C No 0.4 ✗

No D No 0.4 ✗

Yes B Yes 0.8 ✓
Yes C No 0.4 ✗

Yes D No 0.4 ✗

Yes E No 0.4 ✗

TABLE 1.3: This table contains infor-
mation on the protected characteris-
tic (Dyslexia), the input variable (High
school grades), the "ground truth" of
the target value (University success),
and the predictions and decision rec-
ommendations of the algorithmic deci-

sion system.

FIGURE 1.3: Average probabilistic pre-
dictions of (a) university success, (b)
university failure among individuals
who would actually succeed, (c) univer-
sity success among individuals who ac-
tually would actually not succeed at uni-

versity.

More precisely, the decision outcomes should not be correlated with the vari-
able Dyslexia, i.e. Dyslexia ∈ IAdmission. This allocative fairness criterion is
clearly violated by the decision function. Out of four students with dyslexia,
only one is admitted to the university, as compared to two out of the four
students without dyslexia. This means, the decision outcomes are not statis-
tically independent of the variable Dyslexia 11. Moreover, this would still be
the case if the probabilistic predictions were perfectly certain and accurate.

What these two examples show is that two intuitively unfair algorithmic de-
cision systems can suffer from fundamentally different flaws, and hence re-
quire different approaches to rectify these flaws. In the first example, the pre-
dictive model is biased against non-White individuals, and consequently, the
appropriate response to this assessment would be to put effort into increas-
ing the predictive accuracy for data points of non-White individuals. Chang-
ing the decision function would not help in any way, and would presumably
lead to further unforeseen and undesirable consequences. In contrast, in the

11More precisely speaking, the absolute value of the Pearson correlation coefficient of ad-
mission and dyslexia is 0.26, while we would expect it to be 0 (or close to 0) in a fair algo-
rithmic decision system.
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second example, the predictive model is not biased against dyslexic individ-
uals. Yet, basing decisions solely on the predictions of success at a given
university creates a distribution of admissions which conflicts with our prin-
ciple of allocative fairness. This, however, calls for a very different approach
than the first example. Here, increasing predictive accuracy would not help
to make the system fair. What would potentially help, in contrast, would be
to change the decision function such that it takes not only an individual’s
predicted probability of success into account, but moreover whether the in-
dividual has a learning difficulty. A fair decision function could, for instance,
implement different cut-off thresholds for individuals with dyslexia and for
individuals without learning disorder12. This would counteract the unequal
initial conditions for individuals with dyslexia and those without.

1.6 The three issues revisited

In Section 1.2, I introduced three problematic issues for current approaches to
algorithmic fairness, namely that (1) none of them adequately capture the no-
tion of moral permissibility of deploying an algorithmic decision system, (2)
three of them are, from a mathematical point of view, pairwise incompatible
whenever Y is correlated with A, and (3) it is unclear whether algorithmic
fairness is an individual-level or a collective-level property. In this section
I will discuss to which extent the proposed bifurcation of the problem of
algorithmic fairness into the two sub-problems of predictive and allocative
fairness allows us to resolve or explain away these issues.

1.6.1 Inadequacy of current criteria

Recall that by stating that none of the proposed constraints capture the notion
of moral permissibility adequately, it was meant that none of the constraints
provides a necessary and sufficient condition for the moral permissibility of
a given algorithmic decision system. More precisely, this means that for each
of the criteria, we can provide a counterexample of an algorithmic decision
system that is either morally permissible but does not satisfy the constraint
in question, or is not morally permissible but satisfies the constraint. In the
case of some of the proposed fairness criteria, both types of counterexamples
can be constructed.

12The idea of implementing different cut-off thresholds for different protected groups was
explored in more detail by Kleinberg et al. (2018).
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While the bifurcation of fairness notions will certainly not be able to com-
pletely resolve the issue that many fairness constraints face plausible coun-
terexamples, it may provide an explanation for why, despite the existence of
a multitude of plausible fairness constraints, it seems that it is relatively easy
to construct tenacious counterexamples to each of them. This is so because
the constraints were implicitly intended to simultaneously play two distinct
and incompatible roles, namely to act as a fairness constraint on predictions
and as a fairness constraint on decisions. As argued above, predictions and
decisions are subject to different normative constraints. Consequently, ap-
plying a fairness constraint that is plausible for predictions to decisions, or
vice versa, will in most cases conflict with our moral judgment. This, in turn,
means that we have a simple recipe for constructing counterexamples. We
only need to figure out which realm (predictions or decisions) a given con-
straint is intuitively plausible for and then construct an example in which we
apply the constraint to the other realm.

A second potential explanation can be made with regards to allocative fair-
ness. As argued above, allocative algorithmic fairness constraints should be
indexed by goods, since for different goods different distributive principles
hold. This means that an allocative fairness constraint that is plausible for
one particular good might not be plausible for another, different good. So,
a second recipe for constructing counterexamples to fairness constraints is
to apply an allocative fairness constraint to an algorithmic decision system
which is used for a good that is subject to a different distributive principle
than the one corresponding to the fairness constraint.

My claim is that if the scope of a given fairness constraint is being restricted
according to the bifurcation of fairness problems proposed above, many coun-
terexamples will lose their argumentative force. It would be tedious to check
for every alleged counterexample whether the above pair of explanations can
in fact rebut it, and it would be impossible to show more generally that we
can do so for every conceivable counterexample. To illustrate the point, how-
ever, we can look at a number of prominent counterexamples in order to see
whether the explanations are any good.

Let us first consider the fairness criterion statistical parity, which requires that
the members of different protected groups be equally likely to receive a cer-
tain algorithmic outcome, or, in other words, that the algorithmic outcome
be statistically independent of the protected characteristic. A typical case in
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which this seems to be a reasonable normative constraint is university ad-
missions, where the protected characteristic in question is gender (see, e.g.,
Bickel et al., 1975): arguably, it would be morally problematic if the proba-
bility of being admitted to the relevant university were significantly lower
for a randomly picked female applicant than for a randomly picked male
applicant.

Statistical parity was criticized as a formal algorithmic fairness criterion in a
number of ways. Hardt et al. (2016), for instance, argue that statistical parity
is too strict a requirement for fairness. Their argument is based on the obser-
vation that whenever there is a correlation between the target variable and
the protected characteristic, a perfect predictor, that is, a predictive model
which predicts the target variable with perfect accuracy, will not satisfy sta-
tistical parity. If one assumes that perfectly accurate predictions are always
morally permissible, it follows that statistical parity is not a necessary con-
dition for fairness. The example they mention to illustrate this argument is
credit lending. Imagine a predictive model which predicts with perfect ac-
curacy whether an applicant will default on a loan or not. It would not be
reasonable, they contend, to consider this model discriminatory and hence
unfair, even if the proportion of positive predictions were different for loan
applicants of different ethnicities.

Another counterexample was put forward by Corbett-Davies et al. (2017),
who argue that applying statistical parity to decision-making in an area such
as criminal justice is not morally optimal. In their example, which is based on
the COMPAS dataset13, statistical parity is applied to an algorithmic decision
system for pretrial release decisions, that is, for decisions as to whether to de-
tain or release a defendant for the time leading up to the trial. Corbett-Davies
et al. compare two different decision functions: one that maximizes expected
social utility without any fairness constraints, and one that maximizes ex-
pected social utility subject to statistical parity with regards to ethnicity. In
this scenario, it is assumed that positive utility is assigned to detaining de-
fendants who would otherwise commit violent crimes, while negative utility
is assigned to the social and economic costs incurred through detention. It
can be shown that in this specific case a decision function which satisfies sta-
tistical parity yields a lower expected overall utility: such a function can be
expected to lead to a higher number of violent crimes committed by released

13The dataset can be found here: https://github.com/propublica/compas-analysis
(Accessed: 21 April 2022).

https://github.com/propublica/compas-analysis
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defendants as well as a higher rate of detentions of individuals who would
not have committed violent crimes had they been released. If we assume,
as Corbett-Davies et al. seem to do, that in the domain of criminal justice
the expected social utility of a decision has a bearing on its moral evaluation,
it follows that ensuring statistical parity alone is not sufficient for the moral
permissibility of an algorithmic decision system.

We can make sense of these two counterexamples with our conceptual dis-
tinction between predictive and allocative algorithmic fairness. Statistical
parity clearly only makes sense as an allocative fairness criterion. It only
takes into account whether the protected characteristic is correlated with the
algorithmic outcome. This would not be plausible for a constraint on predic-
tions. As argued above, we have to check whether predictions deviate from
the truth in systematic ways in order to determine whether they are biased.
To do so, we obviously have to take information about the relevant aspect of
the world (that is, at least the individual truth values of the target variable)
into account. Statistical parity does not do this — it merely considers whether
outcomes are uniformly distributed across protected groups. It is hence mis-
guided to interpret statistical parity as a criterion of predictive fairness. But
this is exactly what Hardt et al. did: they argued against statistical parity
on grounds that it possibly prohibits the perfect predictor. This, however, is
wrong — statistical parity can at best constrain how to move from perfectly
accurate predictions to decisions. So, the first counterexample loses its force
when viewed through the lens of our conceptual distinction.

In order to address the second counterexample, we have to keep in mind that
criteria of allocative fairness are indexed by goods. Statistical parity can be
represented as the pair of property sets (IG, OG) = ({A}, ∅). This means that
for a certain class of goods G, it is impermissible that the decision outcomes
are correlated with the protected characteristic A, but that there are no re-
quirements as to which variables the outcomes must be correlated with. The
class of goods G for which statistical parity encodes the relevant distributive
principle may contain goods such as access to education, healthcare, or po-
litical offices, and in general all goods that should be uniformly distributed
among protected groups. But it is important to note that different types of
goods are subject to different distributive principles, as we ascribe different
social meanings to different goods. Legal punishment certainly does not fall
into the same distributive category as education or healthcare, as it does not
seem to be morally required that legal punishment be distributed uniformly
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among groups, but rather according to desert. So, the counterexample of
Corbett-Davies et al. cannot be taken as an argument against statistical par-
ity per se, but at best as an argument that, if statistical parity is interpreted as
an allocative fairness criterion for a certain class of goods, legal punishment
does not fall into this category of goods.

Let us now consider an alleged counterexample to equalized odds. Recall that
equalized odds is the fairness criterion that requires that the probability of a
prediction of some target variable, given the actual value of the target vari-
able, be equal for all protected groups. This is a generalization of the re-
quirement that the false positive and false negative rates of the algorithmic
decision system be equal for all protected groups. An example of a con-
text in which equalized odds can plausibly be applied is criminal sentencing.
The criterion was, for example, used to evaluate whether algorithmic assign-
ments of risk scores, measuring a defendant’s risk of violent reoffence, are
biased in discriminatory ways. The intuition behind this criterion is that if
one protected group has a higher false positive rate than another, meaning
that it is more likely for members of one group to actually be innocent and
yet be deemed to be at high risk of violent reoffence by the algorithm, this re-
flects a discriminatory bias on part of the model underlying the algorithm14.

Gölz et al. (2019) argue against equalized odds as a criterion of algorithmic
fairness on grounds that under some circumstances, equalized odds conflicts
with certain game-theoretic axioms of fair division. Most strikingly, they con-
tend, equalized odds is largely incompatible with a principle called popula-
tion monotonicity. This principle states that when a finite amount of goods is
to be distributed among a number of individuals, removing one individual
(for instance because the individual ceases to be interested in the goods to be
allocated) should not negatively affect the allocation of goods to the remain-
ing individuals. This means, any individual who would previously have re-
ceived the good in question should, after the removal of the other individual,
still receive the good. Gölz et al. put forward an example along the following
lines: imagine a number of student loans can be given out to applicants of a
given university. Assume further that the algorithmic decision system which
recommends whether to grant a loan to a student or not satisfies equalized
odds. That is, for each protected group it is the case that of those students in

14A higher false negative rate, on the other hand, reflects a reverse bias: it means that
it is more likely to actually be a violent reoffender and yet be deemed to be at low risk of
reoffending.
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that group who are in fact capable of paying back their loan, an equal pro-
portion are granted a loan. Analogously, for each protected group, of those
students in that group who would in fact default on the loan, an equal pro-
portion are denied the loan. Now, if a student from one group, who was
granted a loan and is in fact capable of paying it back, decides to reject the
loan — maybe because the student decided to enrol at a different university
-, this might require withdrawing the initially granted offer of a loan from
students of the other protected groups in order to restore equalized odds. It
is counterintuitive to think that this would be morally permissible, let alone
morally required. In other words, it seems that this shows that equalized
odds is not a necessary condition for moral permissibility.

This counterexample, too, can be explained away using the bifurcation of
fairness problems. While the cited axiom of fair division, population mono-
tonicity, is concerned with the fair allocation of goods, equalized odds must
— contrary to what is done in the example — be interpreted as a criterion
of predictive rather than allocative fairness15. Since equalized odds is a cri-
terion of which one parameter takes into account what is actually the case
in the world (by considering the target variable Y), it nicely fits the schema
of the problem of predictive fairness. Interpreting it as an allocative fairness
criterion, on the other hand, is implausible: the very notion of a true or false
positive can not be meaningfully applied to decision settings. Predictions
can turn out to be true or false (or, in the probabilistic case, accurate), but
decisions can not. What gives rise to the counterintuitive consequence in the
example is the mistaken assumption that equalized odds can act as a fairness
constraint on decisions to allocate goods.

Hence, the purported counterintuitive consequence in the example does not
actually follow. When applying a predictive model to determine whether a
student would pay back their loan, equalized odds can be used to ensure
that predictions are not biased. The predictions then act as an input to the
decision function in order to determine whom to grant a loan. If one of the
students who is initially granted a loan rejects the offer, this has an effect on

15Note that a number of articles, contrary to what I propose, explicitly categorize equal-
ized odds as a criterion of allocative fairness. Heidari et al. (2019), for example, understand
equalized odds as analogous to a Rawlsian conception of equality of opportunity. This,
however, rests on the implausible assumption that the predicted value of the target variable
directly corresponds to some measure of utility for the affected individual. This is clearly not
the case: the prediction that a person will pay back their loan, for example, will, even if di-
rectly tied to a decision, have very different utility values for individuals from, say, different
socioeconomic backgrounds.
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the distribution of loans, but not on the predictions made by the predictive
model. So, it does not affect whether the predictive model satisfies equalized
odds or not. Once again, the counterexample emerged due to a failure to
distinguish between normative constraints on predictions on the one hand,
and normative constraints on the allocation of goods on the other.

These three examples should suffice to show that the conceptual distinction
between predictive fairness and allocative fairness can help to rebut many of
the arguments put forward against specific notions of algorithmic fairness.
Many of the counterexamples arise simply because the scope of proposed
fairness criteria is not appropriately delineated. The above examples should
count as evidence for the claim that at least part of the difficulty of defining
adequate criteria of algorithmic fairness can be explained by the inappropri-
ate framing of the problem of algorithmic fairness as the problem of finding
a unique formal criterion for the moral permissibility of an algorithmic deci-
sion system.

1.6.2 Pairwise incompatibility

Next, we consider the issue that three of the fairness criteria — statistical
parity, equalized odds, and predictive parity — are pairwise incompatible
except under highly constrained circumstances. Let us make this more pre-
cise. In (Kleinberg et al., 2016), it is shown that statistical parity is inconsistent
with both, equalized odds and predictive parity, whenever there is a corre-
lation between the protected characteristic A and the target variable Y. That
means, whenever the base rate of the property of interest differs between
protected groups, an algorithm whose outcomes satisfy statistical parity will
satisfy none of the other two fairness criteria. What is more, if in addition to
this condition the predictor is imperfect — which means that it is not the case
that f̂θ(·) assigns probability 1 to all individuals for whom Y takes value 1,
and probability 0 to all individuals for whom Y takes value 0 -, then equalized
odds and predictive parity cannot be satisfied simultaneously. The latter was
independently shown by Kleinberg et al. (2016) and Chouldechova (2017).

While the conceptual bifurcation of fairness problems will certainly not be
able to completely resolve this impossibility result, it can offer a partial expla-
nation as to why the impossibility emerges. In particular, it can offer an ex-
planation as to why statistical parity is inconsistent with equalized odds and
predictive parity. Again, this is due to a conflation of the predictive model
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and the decision function. Statistical parity is an allocative fairness principle
whose aim it is to ensure an equitable distribution of goods. Equalized odds
and predictive parity, on the other hand, must both be interpreted as criteria
of predictive fairness. Equalized odds ensures that individuals have equal
probabilities of receiving a false positive (and false negative, respectively)
prediction across all protected groups. Predictive parity, on the other hand,
ensures that individuals have equal positive and negative predictive values
across all protected groups. The positive predictive value is the conditional
probability of the target variable taking a specific value, given the prediction
that it would take this value. Both criteria are based on metrics that compare
predictions with some ground truth — the false positive/negative rate in the
case of equalized odds, and the positive/negative predictive value in the case
of predictive parity. So, they both fit the schema of predictive fairness, while
it would require somewhat of an interpretive stretch to understand them as
allocative criteria.

We can think of situations in which it is possible and desirable that the predic-
tive model satisfies either equalized odds or predictive parity, and where, at
the same time, the decision function satisfies statistical parity. Think, for in-
stance, of the earlier example in which an algorithmic decision system is ap-
plied in order to make university admission decisions. Assume the protected
characteristic we care about is whether a prospective student has dyslexia.
We might think that students with dyslexia and students without should
have equal admission rates — that is, the distribution resulting from the ad-
mission decision algorithm should satisfy statistical parity. To this end, we
might deploy an algorithmic system that has a predictive model which sat-
isfies either equalized odds or predictive parity, and can hence be assumed
to provide unbiased predictions of how well a prospective student will per-
form. Based on these performance predictions for each student, we might
define two separate cutoff thresholds for admittance, one for the students
with dyslexia and one for the students without — this is the decision func-
tion of the algorithmic decision system. The thresholds are chosen such that
the best, say, fifty percent of each group are admitted. This creates outcomes
which satisfy the allocative criterion statistical parity, and these outcomes re-
sult from decisions which are partly based on predictions which satisfy one
of the predictive fairness criteria equalized odds or predictive parity.

The above example shows that the incompatibiltiy of statistical parity on the
one hand, and equalized odds and predictive parity on the other, is due to
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a conceptual conflation of predictions and decisions and can be explained
away using our bifurcation of fairness criteria. The incompatibility of the
two predictive fairness criteria equalized odds and predictive parity, how-
ever, cannot be explained away so easily16. Arguably, this is the more worry-
ing incompatibility because, as opposed to statistical parity, equalized odds
and predictive parity both seem, at first glance, to be universally desirable
properties of predictive models. Yet, the bifurcation can at least shed some
light on the incompatibility of fairness criteria, even though it cannot com-
pletely resolve the problem.

This, at the same time, highlights the limits of the approach presented here.
While many incompatibilities and counterintuitive situations can be resolved
by recognizing the difference between moral requirements on the predic-
tive model and the decision function, of course not all problems in the field
emerge only from this conflation. Some incompatibilities remain, and quite
possibly new ones will be discovered in the future. Resolving these will
require further analysis of the moral norms which underlie the criteria in-
volved, and of how conflicts between them can be resolved. Nonetheless,
the distinction between predictive and allocative fairness criteria is an impor-
tant step in the direction towards fully resolving the question under which
circumstances which criterion of fairness is to be used.

1.6.3 Level of description

Lastly, let us turn to the problem of different levels of description. The prob-
lem here is that it is unclear whether fairness should be described as a group-
level property or as an individual-level property. This is particularly prob-
lematic because it is often the case that an algorithmic decision system that
satisfies a criterion of individual fairness will lead to outcomes that fail to
satisfy any of the group fairness criteria.

Before we try to analyze this issue through the lens of the conceptual dis-
tinction between predictive and allocative fairness, let us first make the dis-
tinction between group and individual fairness more precise. The term group
fairness describes all those criteria of fairness which compare some summary
statistic across protected groups. This category encompasses the criteria sta-
tistical parity, equalized odds, and predictive parity. Each of those criteria

16This incompatibility is addressed in more detail in Chapter 4.
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considers a different summary statistic — the average probability of a pos-
itive outcome, for instance, or the average probability of a false positive or
false negative — for each protected group and compares them. If the sum-
mary statistic is equal (or sufficiently similar) across protected groups, the
fairness criterion is satisfied. The term individual fairness, on the other hand,
describes all those criteria of fairness which take into account individual
cases of algorithmic decision-making and determine whether the outcome
is fair. Whether an individual algorithmic outcome is fair is, for instance,
determined by comparing the case to similar actual cases, as implemented
in the criterion fairness through awareness, or by comparing it to a similar hy-
pothetical case, as implemented in the criterion counterfactual fairness. Being
able to categorize fairness criteria in this way has lead many researchers to
adopt the following widely held idea: while group fairness ensures that pro-
tected groups are treated fairly, individual fairness ensures that individuals
are not treated unfairly due to having a certain protected characteristic.

The most thorough philosophical treatment of the distinction between in-
dividual and group fairness and their potential conflict can be found in an
article by Binns (2020). Binns argues that the apparent conflict between in-
dividual and group fairness criteria can be resolved by acknowledging that
whether criteria of individual or group fairness are called for depends on
what is believed about the data generating process underlying the observed
data. If disparities between protected groups in the data are assumed to be
due to unjust social structures (for instance in that disparities came about
through discriminatory institutional practices), group fairness criteria are ap-
propriate. These criteria help to counteract unfair inequalities. If, on the
other hand, observed disparities can be assumed to be due to the free choices
of the individuals constituting these groups, individual fairness criteria are
most appropriate. In this case, there is no need to ensure that outcomes are
equalized, only that everyone’s outcomes are arrived at in the same way.

To some extent this explanation is plausible, and in some situations it can
help to guide the choice of an appropriate fairness criterion. It is, however,
important to acknowledge that Binns’ explanatory hypothesis rests on two
strong assumptions. First, the assumption that any observed disparity in al-
gorithmic outcomes between two protected groups which is not due to the
free choices of the individuals within the group must be due to unjust social
structures. Secondly, the assumption that luck egalitarianism is the correct
theory of distributive justice. This means, it is assumed that disparities in the
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distribution of goods are only justified if they are the result of the free choices
of individuals. When the properties determining the outcome are not within
the control of the individuals themselves, disparities in the distribution of
goods are not justified. For Binns’ explanation to count as a general account
of the relation between group and individual fairness rather than as a partial
guide to choosing an appropriate criterion, these two conditions have to be
taken to hold universally. While I do not aim to scrutinize these two assump-
tions here, it is important to note that both assumptions are contentious.

Rather than formulating a criticism of Binns’ thesis, we can try to offer a re-
lated but more general account of the relation between individual and group
fairness. To this end, let us begin with a general consideration of the potential
wrongs at play in public decision-making. As outlined in Section 1.4, pub-
lic decisions can be morally wrong in two different ways: they can either be
wrongful due to being discriminatory, or because they produce unjust distri-
butions of benefits and burdens among protected groups. These two wrongs
arise at different levels of description. While the moral wrong involved in
discrimination17 occurs at the level of the individual, the moral wrong in-
volved in distributive injustice (unless it is caused by discrimination) occurs
at the level of the collective. To illustrate this, consider the following exam-
ple, which was put forward by Eidelson (2015, pp 55-56). Imagine a soci-
ety which is, by and large, friendly and accepting towards homosexual peo-
ple, but in which a specific situation occurs where an individual homophobe
treats a gay person in a discriminatory way. Here, it seems clear that it is
the individual person who is wronged (because of their sexuality), and not
(or at least to a lesser extent) the gay community as a whole. On the other
hand, we can imagine a school whose admission criteria are such that the
most talented students are admitted. As it turns out, however, this results in
children of working class parents being admitted at lower rates than children
of academics. Insofar as this can be considered morally wrong, it is a wrong
that emerges only at the collective level. As every student is held to the exact
same standard, it would be hard to argue that individuals are being wronged
in this scenario.

Turning back to the topic of algorithmic fairness, we recall that algorithmic
decision-making can be discriminatory due to predictions which are biased
in discriminatory ways, and that they can result in unjust distributions when

17I here refer only to direct discrimination, and exclude what is sometimes called indirect
discrimination.
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the decision function allocates goods on the basis of inadequately chosen
variables. Now, if we accept the above line of reasoning, this would sug-
gest that criteria of predictive fairness are concerned with avoiding wrongs at
the individual level (as they prohibit bias and hence prevent discrimination),
while criteria of allocative fairness are concerned with avoiding wrongs at
the collective level (as they prohibit unjustly distributed decision outcomes).
So, we would expect that criteria of individual fairness are in fact criteria of
predictive fairness, and that criteria of group fairness are in fact criteria of
allocative fairness.

This, however, is not generally the case. Some of the criteria fall into one, but
not the other category. Equalized odds, for example, is considered a criterion
of group fairness, since whether it is satisfied or not depends on summary
statistics across groups. At the same time, as was argued earlier, equalized
odds fits the schema of predictive fairness, and would be implausible as an
allocative fairness criterion. An analogous argument can be made for predic-
tive parity.

In order to make sense of this mismatch, one has to consider the interpre-
tation of equalized odds. First, it is important to note that equalized odds
should not be understood as a definition of predictive fairness. Rather, the
violation of equalized odds should be understood as an indication that a pre-
dictive model is biased. Bias here is to be understood as an over- or un-
derestimation of the relevance of a protected characteristic for predicting the
property of interest. Imagine, for instance, that a prediction of the expected
profitability of a potential future employee is to be made. We can assume
that for this prediction, gender is an irrelevant property. In this scenario, a
prediction would count as gender-biased if the information that an applicant
is female were to lead to a lower prediction of the expected profitability. If
such bias were present, this would, on the whole, lead to a higher rate of false
negative predictions for women than for men.

Underestimating an applicant’s expected profitability for the company due
to their gender is a wrong that occurs at the individual level. Yet, due to
the opacity of the workings of many predictive algorithms, it is often hard to
detect what exactly leads to a given prediction. It is much easier to analyze
summary statistics to detect systematic patterns in the predictions. This is
what equalized odds is intended for: it is a metric that uses summary statis-
tics to infer whether a predictive model is systematically biased and hence
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wrongs individuals with a given protected characteristic by over- or under-
estimating the relevance of certain traits.

This analysis shows that the two categories individual fairness and group
fairness, as used in the literature, do not map neatly onto the underlying
space of moral concepts. The conceptual distinction between predictive and
allocative fairness, in contrast, is more helpful in categorizing criteria in a
way that corresponds to the relevant underlying moral concepts. It would
hence seem sensible to give up the distinction between individual and group
fairness and replace this distinction with the conceptual distinction between
predictive and allocative fairness.

Under certain assumptions, the predictive/allocative fairness distinction en-
tails Binns’ hypothesis that the choice of fairness criterion should depend
on the underlying data generating mechanism. Recall that predictive fair-
ness criteria should hold universally — a predictive model should under no
circumstances be biased with regards to a particular protected group. Two
individuals with relevantly similar input features, but of different protected
groups, should consequently receive similar (or similarly accurate) predic-
tions. Allocative criteria, on the other hand, are indexed by goods. Follow-
ing Walzer (1983), we can assume that which allocative criterion holds for
a given good is determined by the social meaning ascribed to this good. If
we now, as Binns does, assume that goods are to be allocated according to
some distributive parity criterion whenever the properties relevant for the
allocation decision are outside a person’s control, and there are disparities
in the predictions between different protected groups, then it will be neces-
sary to take further variables beyond the predicted variable into account to
ensure that despite disparities in the predictions, the decision outcomes are
distributed equitably.

1.7 Potential objections

I will now address a number of potential objections to the proposed frame-
work and the assumptions on which it is built. The first objection is that the
problem of algorithmic fairness is not presented in an adequate form. The
second objection is that one central premise, namely that we can clearly dis-
tinguish predictions from decisions, is false. Let us discuss both potential
objections in turn.
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1.7.1 Misrepresentation of the problem of algorithmic fair-

ness

One could argue that the way the problem of algorithmic fairness is pre-
sented here — namely as an attempt to find a single formal criterion that is a
necessary and sufficient condition for the moral permissibility of an algorith-
mic decision system — does not correspond to the reality of what researchers
in the field of algorithmic fairness are actually doing. Instead of trying to
find a single formal criterion which provides a necessary and sufficient con-
dition for fairness, they aim to identify individually necessary conditions of
moral permissibility, with the greater goal of being able to find the list of all
those individually necessary conditions which are jointly sufficient for the
moral permissibility of algorithmic decision systems. Formally represented,
we could say that on this alternative view, researchers are trying to find some
ϕi, such that ϕ = ϕ1 ∧ ...∧ ϕn, with i ∈ 1, ..., n.

The first thing to be said about this is that, clearly, many of the seminal papers
in the field of algorithmic fairness can be understood as attempts to formu-
late a definition of fairness18. Giving a definition typically means providing
necessary and sufficient conditions. But granted that indeed the goal of most
authors is to provide only necessary conditions for fairness, would this in-
validate our argument?

The central point this chapter is trying to establish is that when considering
criteria of algorithmic fairness, be they intended as necessary and sufficient,
or as necessary conditions only, one has to take into account whether these
criteria are reasonable constraints on the predictive model or on the decision
function. This determines whether in evaluating the algorithmic decision
system, we take the output to be the probabilistic prediction f̂θ(x) or the
decision option o. Given an algorithmic decision system and a criterion of
algorithmic fairness, we might come to different conclusions about whether
it satisfies the criterion depending on whether we take f̂θ(x) or o to be the
relevant output. The aim of proposing a framework for distinguishing be-
tween predictive and allocative fairness criteria is to eliminate this kind of
ambiguity.

While the assumption that the problem of algorithmic fairness is the search

18See, e.g., Dwork et al. (2012, p. 2), who speak about "our definition of fairness", or Kusner
et al. (2017, p. 16), who speak about giving a "causal definition of fairness".
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for a single formal necessary and sufficient condition of moral permissibil-
ity provides a motivation for the present project, the value of the proposed
framework does not hinge on this assumption.

1.7.2 The distinction between predictions and decisions

The argument outlined in this chapter builds on the assumption that we can,
at least in most cases, clearly distinguish between predictions — interpreted
as forming an epistemic attitude towards an unobserved event or property
— and a decision — interpreted as the choice to pursue one specific course
of action. But while in theory the distinction can be upheld, there are some
arguments to the effect that this distinction is less strict. This involves some
major philosophical projects such as epistemic utility theory (see, e.g., Petti-
grew, 2016), or the theory of epistemic democracy (see, e.g., List & Goodin,
2001; Goodin & Spiekermann, 2018) . Let us discuss both in turn.

The central idea of epistemic utility theory is to apply the mathematical ma-
chinery of decision theory to the evaluation of epistemic norms. At its foun-
dation sits the assumption that, from an epistemic point of view, all we care
about is coming to believe true (and only true) propositions. Epistemologists
are hence concerned with finding norms of belief formation that are opti-
mal with regard to this goal. The gist of epistemic utility theory is that the
structure of the epistemic problem — forming beliefs in a way that is optimal
with regard to the goal of accuracy — is similar to the problem of practical
rationality — taking decisions in a way that is optimal with regard to one’s
personal preferences or values. Since the structure is similar, the methods
used to evaluate decision strategies can also be used to evaluate epistemic
norms. Nonetheless, epistemic utility theory is about norms of rational be-
lief formation, not about rational decision-making, even though it applies the
formal framework of the latter. On our more orthodox interpretation of what
a decision is, making predictions cannot be seen as a species of decision-
making, since, as Pettigrew (2016, p. 207) himself puts it, "we don’t choose
our doxastic states". Moreover, adopting a doxastic state does not allocate
any goods — and this is, at least in the present context, the central type of
decision from which we wish to distinguish predictions. The project of epis-
temic utility theory, then, does not seem to put into doubt the feasibility of
the distinction between predictions and allocative decisions in the context of
algorithmic decision-making.
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Another philosophical project which seems to blur the lines between decision-
making and belief formation is the theory of epistemic democracy. Here, the
central notion is that in collective decision-making, there is some fact of the
matter about which choice can be considered to be correct. This, however,
has to be understood in the following way. For each of the options available
to the collective, it is possible to assign an objective utility. On the basis of this
objective utility assignment, we can say that it is true (or false) that a given
option is the best option available. Choosing the best option can be consid-
ered the correct decision, choosing any other option an incorrect decision.
While this view introduces some epistemic aspects into collective decision-
making, it would be an overstatement to say that the view implies that we
cannot clearly distinguish between (purely) epistemic practices (like making
predictions) and the act of making a decision to allocate some good.

Now, even if one were to concede that we can understand belief formation
as a species of decision-making, or that one can call some decisions (in some
epistemic sense) correct and others incorrect, this would still not necessarily
invalidate our thesis. The minimal premise needed for the argument outlined
here is that in the context of algorithmic decision-making, it is clear whether
at a given moment we are concerned with predicting an event or a property,
or whether we are concerned with allocating a good. This does not seem to
be put into doubt by either of the two projects described above.

1.8 Conclusion

I have argued that the way the problem of algorithmic fairness is commonly
presented is misleading and unlikely to be solvable. This, as I have argued,
is due to the fact that it conflates two different realms of ethical considera-
tion, namely predictions and decisions. An algorithmic decision system typ-
ically makes (or recommends) decisions on the basis of predictions of some
variable of interest. Here, two distinct morally problematic phenomena can
occur: first, the predictions can exhibit discriminatory bias, and secondly,
the decisions can lead to unfair distributions of goods or opportunities. I
have provided a general formal schema that helps to individually diagnose
and address each of these two problems — the problem of predictive algo-
rithmic fairness, and the problem of allocative algorithmic fairness. I then
demonstrated how this bifurcation of fairness criteria enables us to (at least
partially) resolve many of the paradoxes that beset the original problem of
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algorithmic fairness. I concluded by considering two potential objections to
the framework.
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Chapter 2

Yet Another Impossibility Theorem
in Algorithmic Fairness

2.1 Introduction

In this chapter, I will consider the relation between three of the most popu-
lar criteria of predictive algorithmic fairness: counterfactual fairness, equalized
odds, and predictive parity. Recall the ideas underlying these criteria: counter-
factual fairness formalizes the idea that in a given prediction, the protected
characteristic (e.g. gender, ethnicity, or religion) should not make a (causal)
difference to the prediction (Kusner et al., 2017). Equalized odds, in contrast,
formalizes the idea that in a given population, the false positive and false
negative error rates of a predictive model should be independent of the pro-
tected characteristic (Hardt et al., 2016). And lastly, predictive parity is con-
cerned with the predictive value, that is, the probability that the predicted
property is indeed present (or absent), given that an individual received a
positive (or negative) prediction. Predictive parity formalizes the idea that in
a given population, the predictive value of a model should be independent
of the protected characteristic (Chouldechova, 2017).

The central contribution of this chapter is an impossibility theorem with re-
gard to the relation between the three criteria. It establishes that whenever
the protected characteristic has some causal relevance to the variable that is
to be predicted, a counterfactually fair predictive model will with logical ne-
cessity violate both, equalized odds and predictive parity. The result forces
us to give up one of four individually plausible and widely held assumptions
about algorithmic fairness. These assumptions are (1) that fairness requires
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that either equalized odds or predictive parity is satisfied, (2) that predic-
tions should be counterfactually fair, (3) that protected characteristics (like
age, gender, etc.) can, in some cases, influence the variable of interest for
the prediction, and lastly, (4) that we can always find a fair way of making
a prediction. A way to interpret this impossibility result is that we either
have to accept that counterfactual fairness is not a requirement of fairness for
predictive models, or that neither equalized odds nor predictive parity are
requirements of fairness. If none of these two interpretations seem plausible,
we either have to accept that there are situations for which no fair predictive
models exist, or deny that the type of situation in which the impossibility
arises ever occurs.

Some earlier works have discussed limitations of counterfactual fairness. A
number of articles propose alternative causal fairness criteria which relax
counterfactual fairness and would potentially avoid the results discussed
here. Chiappa (2017) and Loftus et al. (2018) provide frameworks for an-
alyzing whether individual causal paths in a model satisfy counterfactual
fairness, allowing for the possibility of some of those paths to not be subject
to fairness constraints. Kilbertus et al. (2017) present an alternative causal
fairness constraint in which causal effects of the protected characteristic on
the prediction that are not mediated by proxy variables are considered fair.
Practical limitations of counterfactual fairness have been addressed by Kil-
bertus et al. (2020), Wu et al. (2019) and Russell et al. (2017). No previous
work discusses the incompatibilities presented in this chapter in depth.

The remainder of the chapter is organized as follows. In Section 2.2, I intro-
duce the concept of a causal structure and present a theorem used in the proof
of the impossibility result. In Section 2.3, I introduce formal definitions of the
three fairness criteria counterfactual fairness, equalized odds, and predictive
parity. In Section 2.4, I state and prove the impossibility theorem before then
discussing ways to circumvent it in Section 2.5.

2.2 Causal structures and the projection theorem

Recall that in Section 0.3, we defined causal models as triples (U, V, F), with
U and V being sets of variables, and F a set of structural equations. If we
strip a causal model of its parameters (i.e. the information on the coefficients
of the structural equations in F), we obtain a causal structure (Pearl, 2009, p.
203). A causal structure can be represented as a directed acyclic graph in
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which each node corresponds to a variable in U ∪V, and in which there is a
directed edge pointing toward Vi ∈ V from every node corresponding to a
variable that occurs in fi. A directed edge from one node to another conse-
quently represents a direct causal link between the corresponding variables.
More intuitively speaking, the causal structure contains purely qualitative
information about the causal relations between the variables in the model.
Figures 0.1 and 0.2 (from Section 0.3) are examples of causal structures: each
figure represents the qualitative information about causal dependencies be-
tween variables in a qualitative way. It is not apparent from the graph what
functional form the causal dependencies between the variables exactly take.
To denote the causal structure of a causal model M, we will henceforth write
GM.

In order to establish a connection between a causal structure and an asso-
ciated probability distribution over the variables represented as nodes, we
need to introduce the notion of d-separation. Two variables X and Y are said
to be d-separated by Z in a causal structure GM if and only if each path be-
tween the nodes representing X and Y contains either (i) a chain (i→ m→ j)
or a fork (i ← m → j), and m is a node representing a variable in Z, or (ii) a
collider (i → m ← j) and neither m nor any of its descendants is a node rep-
resenting a variable in Z (Pearl, 2009, pp. 16-17). In Figure 0.1, for example,
the nodes U1 and S are d-separated by the empty set, as are U2 and S, while
L and U2 are d-separated by S.

We say that a probability distribution P(·) is Markov relative to a causal struc-
ture GM if for any X, Y, and Z, it is the case that if Z d-separates X and Y,
it is also the case that (X ⊥⊥ Y | Z) (Pearl, 2009, p. 26). Conversely, we say
that P(·) is faithful to GM if (X ⊥⊥ Y | Z) implies that Z d-separates X and Y.
In a probability distribution that is Markov compatible with the causal struc-
ture in Figure 0.1, the following conditional independencies have to hold:
(U1 ⊥⊥ U2 | ∅), (U1 ⊥⊥ U2 | S), (U1 ⊥⊥ S | ∅), and (L ⊥⊥ U2 | S). For
the probability distribution to be faithful to the causal structure, there must
not be any other (conditional) independencies between the variables. Hence-
forth, we will generally assume1 that a probability distribution P(·) is both
faithful and Markov relative to its associated causal structure GM.

The above notions now allow us to describe a theorem which will later help

1For a discussion and defense of the two assumptions, see Pearl (2009, pp. 61-64) and
Zhang & Spirtes (2016).
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us construct an economical proof of the impossibility theorem presented in
this chapter. I will call this theorem the projection theorem. It states the follow-
ing: for every set of observed variables O, there exists a causal structure with
a node Uij for each pair of variables Oi, Oj ∈ O, representing their (potential)
latent common cause, which is (Markov) compatible with the joint probabil-
ity distribution over DO (Verma and Rubin, 2018). More intuitively speak-
ing, whenever we have a set of variables and a joint probability distribution
over these variables but no information about their causal dependencies, we
are guaranteed to be able to represent the "correct" causal structure of these
variables, if, in addition, for each pair of observed variables we assume the
existence of a hidden variable which potentially influences both observed
variables simultaneously.

O1 U13

O2

U12

O3

U23

FIGURE 2.1: Representation of all the possible causal structures be-
tween O1, O2, and O3.

If, for example, we are interested in the variables O1 (which stands for, say,
"diabetes"), O2 ("sugar consumption") and O3 ("weekly amount of exercise"),
and know their joint probability distribution but not what the causal rela-
tions between the variables are, we can assume there is a causal structure
(i.e. directed acyclic graph) of O1, O2, O3 and three hidden variables U12,U23,
and U13, to which their probability distribution is Markov compatible. U12

would, in this structure, stand for any unobserved background factor which
could simultaneously influence whether a person has diabetes and what their
level of sugar consumption is — for instance, some genetic disposition. Fig-
ure 2.1 illustrates this: the projection theorem guarantees that, if we choose
the right arrows (among the possible, dashed arrows), we obtain a graph that
depicts the correct causal structure between O1, O2, and O3.
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2.3 Fairness in predictive models

Let us now turn back to the topic of predictive models in algorithmic decision-
making. As argued in the previous chapter, predictive models can exhibit
discriminatory bias. That is, the predictions of a machine learning model can
be such that decisions based on them would constitute cases of discrimina-
tion relative to a given protected characteristic. The different fairness con-
straints that have been proposed in recent years are aimed at guaranteeing
that, provided a model satisfies the fairness constraint, it does not exhibit
such bias. Each of these constraints interprets the notion of discriminatory
bias in a different way. While different proposals for fairness constraints
abound, three constraints are at the center of the debate: counterfactual fair-
ness, equalized odds, and predictive parity.

The intuitive motivations for the three constraints have been mentioned in
the previous chapter. I will now introduce the formal definitions and the
rationales underlying the constraints. In order to define the criteria in a rig-
orous fashion, let X ⊆ U ∪ V be a set of input variables, Y ∈ V the target
variable, i.e. the variable representing the presence or absence of the prop-
erty of interest which is unknown at the time of prediction, and A ∈ U the
protected characteristic relative to which we aim to evaluate or constrain the
predictive model. For the sake of simplicity, we will assume Y to be a bi-
nary variable taking the values 0 or 1. If, for a given individual, it is the
case that Y = 1, we will say that the individual belongs to the positive class.
We will moreover assume that A is a binary variable with values a1 and a2,
which represent the presence and the absence of the protected characteristic,
respectively. When we refer to protected groups, we refer to the groups con-
stituted by individuals with property A = a1 and individuals with property
A = a2. Finally, let us denote the causal model representing the mechanisms
of the real world situation within which the (sets of) variables X, Y and A are
situated as Mbase = (Ubase, Vbase, Fbase).

Let us next turn to the representation of predictive models. To this end, let Ŷ
be a binary variable which is interpreted as an attempt to predict the value of
the target variable Y. Whenever Ŷ = 1, we will speak of a positive prediction,
and of a negative prediction whenever Ŷ = 0. Analogously, we will, for lack
of better terminology, call the individuals for which it is the case that Y = 1
and Y = 0 the positive and negative class, respectively. Generally, we will
take predictive models to be functions of the form f̂θ : DX → DŶ, that is,
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functions from a vector of input values x to a prediction ŷ. This is a simplifying
assumption since many predictive models provide a probability estimate of
the presence of a property instead of an outright prediction of the property’s
presence or absence2. To keep the discussion simple, however, we will in this
chapter assume that predictions are binary. This means we assume that the
model either predicts that the property y is present or that it is absent. This
simplification does not affect the generality of the result presented here.

For given X, Y and A in a causal model Mbase, a predictive model f̂θ can be
represented within an augmented causal model Maug = (Ubase, Vaug, Faug),
where Vaug = Vbase ∪ {Ŷ}, and where Faug is the extension of Fbase obtained
by adding the function f̂θ representing the predictive model as a structural
equation to Fbase. We here interpret the function f̂θ as the causal relation be-
tween the predictive model’s input variables X and the prediction Ŷ. For
every predictive model, there consequently is a specific augmented causal
model representing the causal relations between relevant variables and the
prediction. Since f̂θ is a deterministic function of X, which is a subset of
U ∪V, the joint probability distribution over the variables in the augmented
causal model is readily obtained from the set of structural equations Fbase

and the probability distribution over the exogenous variables P(u). Subse-
quently, when we speak about causal relations we will always do so relative
to a specific predictive model f̂θ, hence referring to causal relations within an
augmented causal model as outlined above.

2.3.1 Equalized odds

The first fairness constraint I will introduce is equalized odds (Hardt et al.,
2016). It formalizes the requirement that a predictive model produce equal
false positive and false negative error rates across protected groups. The un-
derlying idea here is that a disparity in error rates across protected groups
indicates that the model is biased with regard to a group in that it takes the
protected characteristic (or proxies thereof) to be more predictive of the tar-
get variable than it actually is. If, for example, a predictive model is applied
to predict whether a defendant is at risk of reoffending or not, and it has a
higher false positive rate for African American defendants than for White

2Note, that with regards to the model of algorithmic decision systems introduced in Sec-
tion 1.3, this can be interpreted as a boundary case of a predictive model, as DŶ = {0, 1}, and
{0, 1} ⊂ [0, 1]. That is, it can be considered a predictive model that only estimates extreme
probabilities, namely 0 and 1, where a prediction of 0 is considered a negative, a prediction
of 1 a positive prediction.
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defendants, this means that a greater proportion of low-risk African Ameri-
can defendants will be falsely predicted to be at high risk than is the case for
White defendants. Implicitly, the model seems to overestimate how predic-
tive the trait of being African American (or information closely linked to it,
like for instance living in a certain neighborhood, or having a certain name) is
of recidivism. Overestimating how predictive a person’s ethnicity is of some
other property can clearly be considered a form of bias against (or towards)
people of this ethnicity.

In practical terms, different error rates reflect that a different standard is ap-
plied to one protected group than to the other, or so the argument goes. In
the recidivism example, individuals of the group with a higher false positive
rate are held to a higher standard — on average, they have to satisfy stricter
conditions (as reflected in the information that serves as input to the model)
in order to be deemed to be at low risk of recidivism than individuals of the
other group. Equalized odds can be formalized as follows:

Definition 2.3.1 (Equalized odds). A predictive model f̂θ satisfies equalized
odds (relative to A) if and only if for all ŷ ∈ DŶ, y ∈ DY, and the constants
a1, a2 ∈ DA

P(ŷ | a1, y) = P(ŷ | a2, y) (2.1)

This formalization can be understood as requiring that the value of the pre-
diction Ŷ be independent of the value of the protected characteristic A, once
we control for the actual value of the target variable Y. Applied to the above
example, it means that the probability of being deemed to be at high risk of
recidivism (or low risk, respectively) should be equal across low risk African
American and low risk White defendants (and, analogously, it should be
equal across high risk African American and high risk White defendants).

By the axioms of probability and the definition of conditional independence,
equalized odds is equivalent to (Ŷ ⊥⊥ A | Y). This, in turn, is equivalent to
Ŷ and A being d-separated by Y in the associated causal structure, due to the
assumption that P(·) is Markov and faithful.
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2.3.2 Predictive parity

Next, I will introduce the fairness constraint called predictive parity (Choulde-
chova, 2017). The central metric used in this constraint is positive (and nega-
tive) predictive value. The positive predictive value of a predictive model is
the proportion of instances that actually belong in the positive class among
those that received a positive prediction. Analogously, the negative predic-
tive value is the proportion of instances that actually do not belong in the
positive class among those that did not receive a positive prediction. Predic-
tive parity requires that these two metrics be equal across protected groups.

In our running example, this would mean that the proportion of defendants
who go on to reoffend among those who received a high recidivism risk pre-
diction should be equal for African American and White defendants (and,
of course, analogously for negative predictions). The rationale behind this
is that predictions should be equally informative and reliable across differ-
ent protected groups. If the positive predictive value is much lower for one
protected group than for another, this means that positive predictions for in-
dividuals of this group are less trustworthy, and are less indicative of the
individual actually being in the positive class, than for individuals of a dif-
ferent protected group. More intuitively speaking, a prediction of being at
high risk of recidivating should mean the same for an African American and
a White defendant. This idea can be expressed as the following mathematical
constraint:

Definition 2.3.2 (Predictive parity). A predictive model f̂θ satisfies predictive
parity (relative to A) if and only if for all ŷ ∈ DŶ, y ∈ DY, and the constants
a1, a2 ∈ DA

P(y | a1, ŷ) = P(y | a2, ŷ) (2.2)

Analogously to equalized odds, predictive parity can be expressed in terms
of conditional independence by stating that the value of the target variable Y
should be independent of the protected characteristic A, once we control for
the value of the prediction Ŷ. Formally, this can be expressed as (Y ⊥⊥ A | Ŷ).
For the associated causal structure, this means that Y and A are d-separated
by Ŷ.
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2.3.3 Counterfactual fairness

The third and most complex fairness constraint to be introduced is counter-
factual fairness (Kusner et al., 2017). It formalizes the requirement that an in-
dividual with a given value of a protected characteristic would have received
the same prediction as they actually received, had their protected characteris-
tic A taken a different value, while everything else that is not causally down-
stream of the protected characteristic had stayed the same. In other words, if
the predictive model is fair, the change in the value of the protected charac-
teristic does not make a difference to the prediction for an otherwise identical
individual. Whether a predictive model is counterfactually fair is not deter-
mined by the probability distribution P(·) alone, but requires a fully speci-
fied causal model. Otherwise, the probability of the counterfactual statement
could not be calculated. Given such a model M, counterfactual fairness can
be defined as follows:

Definition 2.3.3 (Counterfactual fairness). A predictive model f̂θ satisfies
counterfactual fairness (relative to constant a1) if and only if for all ŷ ∈ DŶ
and x ∈ DX

P(Ŷa1 = ŷ | x, a1)− P(Ŷa2 = ŷ | x, a1) = 0 (2.3)

Note that, other than equalized odds and predictive parity, counterfactual
fairness is defined relative to a specific trait a1, rather than the variable A. For
example, equalized odds might determine whether error rates are equally
distributed among, say, different religious groups, but counterfactual fair-
ness determines whether one specific group’s trait, say being Muslim as op-
posed to being Christian, makes a difference to a given prediction.

The above definition of counterfactual fairness implies that there is no causal
chain from A to Ŷ in the causal structure GM. To see this, note that by the se-
mantics of counterfactuals we need to consider the submodel Ma1 (in which
the structural equation for A was replaced by the constant a1) in order to de-
termine the probability of the counterfactual statement. With regard to the
graph, this means that all the incoming edges into A are removed. Any out-
going edges from A remain intact. Counterfactual fairness then requires that
(given a specific assignment of a joint probability distribution to the latent
variables in U) in the resulting probability distribution Pa1 associated with
the submodel Ma1 , Ŷ is independent of A, i.e. (Ŷ ⊥⊥a1 A). By the assumption
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of faithfulness, this entails that A and Ŷ are d-separated by the empty set in
the causal structure GMa1

. In particular, this means that there is no causal
chain from A to Ŷ. Since any outgoing edges from A would have remained
intact in the submodel and would hence also exist in Ma1 , we can conclude
that there is also no causal chain from A to Ŷ in the causal structure GM of
the original causal model M.

2.4 An impossibility theorem

As it turns out, there are circumstances under which counterfactual fairness
is incompatible with both, equalized odds and predictive parity. In partic-
ular, I will show that the following four individually plausible propositions
are jointly inconsistent:

(1) If a predictive model is fair, it satisfies equalized odds or predictive
parity.

(2) If a predictive model is fair, it satisfies counterfactual fairness.

(3) There are some morally relevant prediction contexts where the pro-
tected characteristic has some (possibly mediated) causal relevance to
the target variable.

(4) For every morally relevant prediction context there exists a fair predic-
tive model.

I will explain the four propositions in turn. Proposition (1) states that it is
necessary for a fair predictive model to at least satisfy one of the two fairness
constraints equalized odds and predictive parity. While both are prima facie
plausible, they were shown to be mutually incompatible whenever the base
rate prevalence of the predicted property differs among protected groups
(Kleinberg et al., 2016; Chouldechova, 2017). Hence, we cannot require that a
fair model generally satisfy both, but it seems like a relatively weak desidera-
tum to require that a fair model satisfy at least one of the two. Proposition (2)
simply states that it is necessary for a fair predictive model to satisfy coun-
terfactual fairness.

Proposition (3) contains a number of concepts that require explaining. First,
by prediction context we mean a situation in which a specific property is
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being predicted, for instance, whether a given applicant would be a prof-
itable employee for the hiring company. We say that a prediction context is
morally relevant when the prediction and the subsequent decision are subject
to moral norms, like for instance non-discrimination or equality of opportu-
nity norms. To make precise what it means that a protected characteristic is
causally relevant to the target variable, we have to refer to the causal mod-
eling framework outlined in Section 0.3. Using this framework, we can say
that the protected characteristic is causally relevant to the target variable if
there is a (hypothetical) intervention on the former that results in a change
of the probability distribution of the latter. In other words, it is possible that
there is a causal link, direct or indirect, from the protected characteristic to
the target variable. Formally, this means that in those contexts there exists a
y ∈ DY, and x ∈ DX such that

P(Ya1 = y | x, a1)− P(Ya2 = y | x, a1) ̸= 0 (2.4)

With regard to the causal structure, this means that there is a sequence of
edges originating in A toward Y in the graph.

Lastly, (4) states that for every prediction context that is subject to moral
norms, there is some way of predicting the target variable in question. This
means, there always exists some kind of evidence that would warrant a judg-
ment about the target variable.

To show that (1)-(4) are jointly inconsistent, assume (2), (3), and (4). Imagine,
as warranted by accepting (3), a prediction context in which the protected
characteristic has some causal relevance to the target variable. By (4), there
exists a fair predictive model for the given prediction context. By (2), the fair
model satisfies counterfactual fairness. The following theorem implies the
negation of (1):

Theorem 1. Every counterfactually fair predictive model necessarily violates
equalized odds and predictive parity if the protected characteristic A has a
(possibly mediated) causal effect on the target variable Y.

Before presenting the formal proof of Theorem 1, I will first specify the frame-
work and the assumptions applied in the proof. Generally, the idea is to con-
struct a graphical proof of the theorem that shows that in any causal structure
that incorporates our assumptions, A and Ŷ are not d-separated by Y, and A
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and Y are not d-separated by Ŷ. This entails that equalized odds and pre-
dictive parity are violated in any context represented by a causal structure
compatible with the assumptions. The following are the premises of the ar-
gument:

Premise 1 (Predictive model). We assume that a predictive model is a func-
tion f̂θ : DX → DŶ that maps a set of input values x to a prediction ŷ. This
implies that in a causal structure, the only edge into node Ŷ is a directed edge
from X.

Premise 2 (Relation between target and input variables). We assume that
either of three causal relations holds between the target variable Y and the
input variables X on the basis of which a prediction of Y is to be made:

• there is an edge from X into Y,

• there is an edge from Y into X, or

• there is an unobserved node with outgoing edges into both, Y and X
(i.e. the node represents a latent common cause).

Premise 3 (Protected characteristic). We assume that the protected character-
istic A is such that it is not caused by either the target variable Y, the predic-
tion Ŷ, or the input features X. This implies that in a causal structure there
are no outgoing edges (or chains) from Y, Ŷ, or X into A.

Premise 4 (Counterfactual fairness). As argued above, counterfactual fair-
ness implies that there is no outgoing edge (or chain) from A into Ŷ.

Premise 5 (Effect of protected characteristic on target variable). The pro-
tected characteristic having a (possibly mediated) causal effect on the target
variable implies that there is a directed edge (or chain thereof) from A into
Y. For the sake of simplicity, we can ignore the case in which it is a chain
without loss of generality.

The proof strategy we pursue here is proof by cases. We can show that in
any possible causal structure representing the relations between Y, Ŷ, X, and
A that satisfies the premises, equalized odds and predictive parity are not
satisfied. To this end, we can exploit the projection theorem. Recall that
the theorem states that any causal structure with unobserved latent variables
can be represented as a causal structure where the only latent variables are
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FIGURE 2.2: The two possible causal structures involving Y, Ŷ, A, and
X.

the potential common causes of each pair of observed variables.

This restricts the number of possible causal structures significantly. It leaves
us with exactly two classes of structures. Note that we will consider classes
of causal structures rather than individual causal structures because we can
summarize a number of possible causal structures by indicating the possible
presence of latent common causes. As we only need to show that in each
such class there exists one path which is unblocked for the relevant nodes
in order to show that equalized odds and predictive parity are violated (as
this implies that the relevant conditional independence holds), the presence
or absence of latent common causes remains irrelevant as long as we find
another path that is unblocked. We will represent the possible presence of
an unobserved common cause by a dashed bidirectional arrow. Actual but
unobserved common causes are depicted by unnamed, hollow circles.

Proof. We consider all the causal structures that represent different possible
causal relations among Y, Ŷ, X, and A compatible with premises 1-5. The two
resulting classes of graphs are depicted in Figure 2.2.

Let us first show that equalized odds is violated. Recall that equalized odds
is equivalent to Ŷ and A being d-separated by Y. This is not the case in
either of the two classes of causal structures. In 2.2a, the path A → Y ←
X → Ŷ is not blocked by Y, hence in this class of causal structures, Ŷ and
A are not d-separated by Y. Whether the potential latent common causes
are actually present or not does not matter, since we have already found an
unblocked path. It is similar in 2.2b, where the path A → Y ← ◦ → X → Ŷ
is not blocked by Y, and hence in this class of causal structures Ŷ and A are
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also not d-separated by Y. We conclude that in any possible causal structure
compatible with the premises, equalized odds is violated. It follows that
equalized odds is not compatible with the premises.

Let us next show that predictive parity is violated as well. Predictive parity
is equivalent to Y and A being d-separated by Ŷ. As in both causal structures,
there is, by hypothesis, an edge from A to Y, they cannot be d-separated by
Ŷ. Therefore, in any possible causal structure compatible with the premises,
predictive parity is violated as well and is hence itself not compatible with
the premises.

To summarize, I have shown that the four individually plausible proposi-
tions about algorithmic fairness introduced at the beginning of this section
are jointly inconsistent. In the next section, we explore how we can circum-
vent this impossibility result.

2.5 Escaping the impossibility

I will now consider how the impossibility established in the previous section
can potentially be circumvented. While propositions (1)-(4) were shown to
be jointly inconsistent, it is easy to see that every combination of three of the
four propositions is consistent. This means the impossibility can be avoided
by giving up or adequately relaxing one of the four propositions. For each of
the four propositions, we will consequently explore whether this is a plau-
sible route to take. We will work through the propositions in reverse order,
beginning with proposition (4).

2.5.1 Relaxing proposition (4)

Let us begin by considering whether it is reasonable to relax the proposi-
tion that for every morally relevant prediction context there exists a fair pre-
dictive model. In light of the impossibility result, it might be tempting to
conclude that in situations in which at best one of the three fairness criteria
equalized odds, predictive parity, and counterfactual fairness can be satis-
fied, there simply exists no (fully) fair predictive model. In these prediction
contexts, we have to abstain from making algorithmic predictions.

This, however, has strong counterintuitive consequences. Recall that we de-
fined predictive models as functions from some input features to a prediction
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of the value of the target variable in question. This is a very general definition
that allows representing any systematic procedure of moving from evidence
to a prediction of the target variable’s value as a predictive model. So, if there
is a fair systematic procedure for a human agent to come to a judgment about
the target variable’s value, then there is a fair predictive model to predict the
target variable’s value. And, on the other hand, it means that if there is no
fair predictive model, there is also no fair systematic way for humans to make
such a judgment.

Consequently, if we give up proposition (4), we have to accept that there
are some situations in which we have to suspend judgment about a partic-
ular proposition on moral grounds, no matter what evidence we have. This
seems hard to accept. Intuitively, it seems that for every proposition, there
exists some type of evidence that would warrant a judgment on it. It would,
for instance, be hard to accept that there are propositions where even in the
presence of direct observational evidence the only morally permissible dox-
astic attitude is to suspend judgment.

Relaxing or giving up proposition (4) hence does not seem to be the most
promising way of circumventing the impossibility result. We will next con-
sider whether we can reasonably relax proposition (3) instead.

2.5.2 Relaxing proposition (3)

Giving up proposition (3) means to accept that there are no morally relevant
prediction contexts in which the protected characteristic has some, possibly
mediated, causal relevance to the target variable. Different lines of argument
can be pursued to defend this claim. First, one could argue that it is con-
ceptually impossible that in a morally relevant prediction context, protected
characteristics can be causally relevant to the target variable. One could ei-
ther do so by arguing that protected characteristics are by definition those
that are not causally relevant to a given target variable, or by arguing that
when they are, the prediction context is not morally relevant. Secondly, one
could argue that empirically this type of case simply never occurs, or is so
unlikely to occur that it is not worth considering it morally relevant.

None of these defenses are tenable. Let us consider each in turn. First, we
will consider the claim that protected characteristics are by definition irrele-
vant to a given target variable. Protected characteristics are most commonly
defined as socially salient traits that indicate an individual’s membership in
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a specific social group. The social salience of a trait can be understood as
the fact that the trait is well perceivable and that the trait plays a role in the
structure of social relations (Lippert-Rasmussen, 2014, pp. 30ff). The US law,
for instance, considers being of a particular religion, ethnicity, or gender as
protected, as well as being disabled or belonging to a certain age group3. All
of these traits are, to some degree, perceivable — significant age differences
are visible, many religious groups are clearly distinguishable by clothing or
accessories, as are some physical disabilities. Moreover, they do, to some de-
gree, structure social interaction — some people might act differently toward
a woman than they would toward a man, or to someone with disability than
to someone without disability. So, this definition of protected characteris-
tics seems to indicate that protected characteristics can have causal effects on
social interactions. Moreover, the definition does not rule out that protected
characteristics have further causal effects. Depending on how the target vari-
able is chosen, it might well be the case that a protected characteristic has a
causal effect on it. The claim that by definition protected characteristics are
causally inefficacious traits is therefore wrong.

Secondly, we will consider the claim that when protected characteristics are
causally relevant to the target variable, the prediction context is not morally
relevant. In other words, this claim states that in prediction contexts in which
there is some causal link from the protected characteristic to the target vari-
able, no moral norms apply. Indeed, there is a family of theories of discrimi-
nation according to which the main constitutive component of wrongful dis-
crimination is that people are treated differently on the basis of an irrelevant
trait (Halldenius, 2017). Treating people differently on the basis of irrele-
vant traits lacks rational justification (see, e.g., Flew, 1993). But acknowledg-
ing that in a given situation the protected characteristic is, to some degree,
causally relevant to the target variable does certainly not imply that no moral
norms apply at all. At best, it implies that the causal relevance of a pro-
tected attribute renders a certain, rationally justified, degree of differential
treatment morally permissible. It does not imply that it renders arbitrarily
differential treatment permissible. So this line of argument fails, too.

Lastly, we will consider the claim that as a contingent matter of empirical fact,
these types of cases never occur, or are sufficiently unlikely to occur to be a
matter of moral concern. This claim can be easily refuted, too. To see this, we

3See, e.g., Title VII of the Civil Rights Act of 1964, the Age Discrimination in Employment
Act of 1967, the Rehabilitation Act of 1973, and the Americans with Disabilities Act of 1990.
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can consider a number of common, morally relevant examples. One domain
that is certainly bound to fairness constraints is hiring. The target variable
in a prediction for a hiring decision might be whether an applicant would be
productive (in the sense of generating profit for their company) in their role
if they were hired. Depending on the role at issue, productivity might well
be influenced by a protected characteristic. Think, for instance, of the role of
a salesperson for the Spanish-speaking market — being of Hispanic ethnicity
will likely contribute to being productive in this role, simply for the fact that
it might explain why someone speaks Spanish fluently. This entails that a
Hispanic person who is in fact productive in their role as a Spanish-market
salesperson would not have been as productive as they are, had they not
been of Hispanic ethnicity. To provide another example, consider the health
insurance domain. Imagine an insurer wishes to predict how many claims an
applicant will likely make on their health insurance policy. Here, age (which
is generally considered to be a protected characteristic) will certainly have an
effect, since age is a factor that influences one’s health. Consequently, it might
be the case that an older person would not have made as many insurance
claims as they actually did, had they been younger. These examples should
suffice to refute the claim that cases in which protected characteristics have
a causal effect on the target variable occur too infrequently to be of moral
concern.

So it seems that giving up proposition (3) is no attractive way to circumvent
the impossibility result either. Next, we consider whether one or more of the
fairness criteria can reasonably be relaxed without allowing for intuitively
unfair cases of algorithmic prediction.

2.5.3 Relaxing proposition (2)

Can we give up or relax counterfactual fairness as a requirement for fair pre-
dictive models? To explore this possibility, let us first consider the norma-
tive theory that motivates the counterfactual fairness constraint. It is plau-
sible to interpret counterfactual fairness as an anti-discrimination constraint.
Discrimination is typically defined as the unjustified disadvantageous treat-
ment of an individual (as compared to another individual) where this treat-
ment can be (causally) explained by the fact that the former possesses a pro-
tected characteristic that the latter does not possess (see, e.g., Eidelson, 2015;
Lippert-Rasmussen, 2014; Moreau, 2010). More simply put, discrimination
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occurs when a protected characteristic makes an unjustified difference in
how someone is treated.

This definition can be applied to predictive models. If an individual unjusti-
fiedly receives a worse prediction than another because the former individual
possesses a sensitive characteristic that the latter does not possess, then the
prediction exhibits discriminatory bias. And this, conversely, means that in
a non-discriminatory prediction, the protected characteristic does not make
a difference to the prediction, unless this is justified in some way. Counter-
factual fairness formalizes an idea along those lines, except for the fact that it
does not take into account that under some circumstances the influence of a
protected characteristic on the prediction might be justified.

This suggests a straightforward way of relaxing counterfactual fairness, namely
to allow for certain conditions under which the protected characteristic can
have an influence on the prediction. While there is some disagreement in
the philosophical and legal literature about when exactly disadvantageous
treatment on the basis of a protected characteristic is unjustified, a widely
held view is that such differential treatment is unjustified when the protected
characteristic is irrelevant to the goal at hand (Halldenius, 2017; Eidelson,
2015). If, for instance, someone is not granted a loan because of their reli-
gion, this constitutes a case of discrimination because religion is irrelevant to
whether someone will pay back their loan or not. By the same token, eth-
nicity and race are irrelevant to an individual’s risk of violent crime, as well
as gender to hiring decisions for, say, a managerial role. Hence, using these
traits in such decisions constitutes discrimination. But there are some situa-
tions in which the protected characteristic is relevant, and in which disadvan-
tageous treatment would typically not count as discrimination. For example,
when deciding whom to grant a driving license, it seems justified to take into
account whether a person is visually impaired because their visual ability is
relevant for driving safely. So, we might say that counterfactual fairness is
too strict in those cases in which the protected characteristic is relevant to the
prediction at issue.

Consequently, we might give up proposition (2) in its universal form. It
seems that counterfactual fairness is a necessary requirement for fair pre-
dictive models only when the protected attribute is causally irrelevant to the
target variable in question. In at least some of the cases in which the protected
characteristic is relevant to the target variable, it does not seem reasonable to
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require that the predictive model satisfy counterfactual fairness in order to
be considered fair. A somewhat weaker non-discrimination criterion would
suffice. Hence, this provides a promising way of escaping the impossibility4.

2.5.4 Relaxing proposition (1)

Let us now consider whether we can give up or relax the claim that for a
model to be fair, it is necessary that it satisfy either equalized odds or pre-
dictive parity. Giving up this claim means accepting that even if neither pre-
dictive parity nor equalized odds is satisfied, the predictions of a model can
still be considered fair. We will first consider an argument for giving up pre-
dictive parity as a universal criterion of fairness. We will then consider an
argument for giving up equalized odds as a universal criterion of fairness.

Predictive parity ensures that the positive and negative predictive values of a
predictive model — the probabilities of positive/negative predictions being
true — are equal for all protected groups. If the predictive values are equal,
this means that on average predictions are equally informative for members
of different protected groups. The argument for requiring that predictions
be equally informative is based on the idea that a difference in informative-
ness across protected groups’ predictions incentivizes treating individuals
differently on the basis of their protected characteristics. From a normative
perspective, this seems undesirable as it rationalizes disadvantaging individ-
uals from one protected group through no fault or shortcoming of their own.

We can, for example, imagine a company using a hiring algorithm to pre-
dict whether a potential employee would be profitable for the company if
hired. We can assume that the proportion of potentially profitable employ-
ees is equal among the subpopulation of female applicants and the subpop-
ulation of male applicants. If we now assume that the positive predictive
value is lower for female applicants than for male applicants, then the em-
ployer has an incentive to prefer male applicants that were predicted to be
profitable, because the employer knows that the probability of them actually
being profitable for the company is higher for male applicants who were pre-
dicted to be profitable than for female applicants predicted to be profitable.
This is so even though the employer knows that overall, the male and female
applicants are equally likely to be well qualified and hence profitable for the
company.

4This is approach is motivated and pursued in more detail in Chapter 3.
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Giving up proposition (1) entails that one accepts that there are circumstances
under which a situation like the above is not morally problematic. An ar-
gument to this effect has been offered by Hellman (2019). She argues that
although it seems intuitively undesirable that predictions are not equally re-
liable for all protected groups, this is not a case of discriminatory bias. When
it seems that equal predictive values are required from a normative point of
view, then this is so on the basis of a presumed equal entitlement to accu-
rate predictive instruments (Hellman calls this the "right to the best available
decision-making tool" (Hellman, 2019, p. 833)). Hellman argues, however,
that in many cases it is doubtful whether one really is entitled to such a right.
If we accept this argument, we can accept to give up one disjunct of proposi-
tion (1).

Let us now turn to an argument for giving up the second disjunct — namely
that fair predictive models satisfy equalized odds. The argument we will con-
sider aims to establish that, by focusing on implications for decision-making,
it is, under specific circumstances, morally permissible to give up equalized
odds. Recall that, from a decision-making perspective, a violation of equal-
ized odds can be interpreted as not holding individuals from different pro-
tected groups to the same standards. Requiring that fair predictive models
satisfy equalized odds hence implicitly presupposes that it is unfair to hold
individuals from different protected groups to different standards.

There are, however, situations in which this does not seem to be the case.
In particular, when due to past injustices, opportunities are not distributed
equitably, it might be morally permissible to hold individuals to different
standards based on their membership in a protected group. In a society,
for instance, in which for a long period of time a certain minority was sys-
tematically discriminated against, and where, consequently, members of this
minority group have lower average levels of education and socioeconomic
status, it might be morally permissible or even required that when it comes
to, say, university admission decisions, members of this minority be held to
lower standards. Such affirmative action policies can help achieve what is
sometimes called compensatory justice — making up for the past injustices
a minority has suffered. Such policies can also be justified from other per-
spectives. First, one might argue that sometimes brute luck leads to unequal
opportunities. This is for instance the case when children are born with dis-
abilities. Luck egalitarian theories of justice would have it that it is unfair that
children who, through no fault of their own, were born with a disability, face
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reduced opportunities in life as a consequence. This, so the argument goes,
ought to be compensated by holding them to different standards than chil-
dren without disabilities. A third argument for such policies can be made by
appealing to the intrinsic value of diversity. According to it, there is intrinsic
value in having, say, students of a diverse range of different backgrounds in
a cohort that reflect the diversity of backgrounds in the general population.
This includes, for example, different ethnic and socioeconomic backgrounds.
If the university’s standard admission procedures do not achieve a propor-
tional representation of the different backgrounds present in the general pop-
ulation, lowering the standards for some groups seems to be a morally per-
missible way to increase diversity. If we accept that equalized odds encodes
the rationale that everyone should be held to the same standards, these ar-
guments can be taken as arguments against equalized odds as a universal
requirement of fairness for predictive models5.

2.6 Conclusion

To summarize, I have shown that four intuitively plausible propositions about
predictive algorithmic fairness are jointly incompatible. After discussing dif-
ferent ways of escaping this impossibility by giving up one or more of the
propositions, I concluded that there are two reasonable ways of doing this.
First, it seems plausible to relax counterfactual fairness as a universal require-
ment of algorithmic fairness and replace it with a weaker criterion. Secondly,
one could give up predictive parity and only require equalized odds in spe-
cific situations.

5Note, however, that in the light of the distinction between predictive and allocative fair-
ness introduced in Chapter 1, this argument can easily be refuted. It seems that different
standards for different protected groups ought to be implemented as a constraint on the
decision function, not the predictive model.
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Chapter 3

Causal Relevance Fairness

3.1 Introduction

Much of the early discussion on algorithmic fairness was centered around
statistical criteria of fairness. These criteria define fairness in terms of joint
probability distributions over a set of relevant variables. A criticism of these
criteria, however, is that they are unable to distinguish between certain cases
of which some intuitively seem to be cases of discrimination, whereas others
do not. Whether an algorithmic prediction is discriminatory or not seems to
be determined by facts that go beyond mere population-level correlations.

This implies that in order to adequately determine whether an algorithmic
prediction should count as discriminatory, one has to, first, evaluate individ-
ual instances of algorithmic predictions instead of population-level patterns,
and, secondly, consider the underlying mechanisms by which the prediction
came about. Causal modeling has become an increasingly popular frame-
work for achieving this in developing criteria of algorithmic fairness.

The most popular and widely discussed fairness criterion that makes use of
causal modeling is counterfactual fairness. As outlined in the previous chap-
ters, counterfactual fairness formalizes the idea that an algorithmic predic-
tion is fair if and only if it is the case that the prediction would have been the
same, had the relevant protected characteristic (e.g. gender or ethnicity) been
different. The central idea is thus that in order to determine whether a pre-
diction was fair, we have to compare it with a prediction in a counterfactual
world, where the individual about whom the prediction is made, has, say, a
different gender or is of different ethnicity, but is otherwise the same. If the
prediction is the same in both, the actual and the counterfactual world, the
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prediction counts as fair.

Yet, counterfactual fairness, too, suffers from problems. Besides the result
from the previous chapter, a number of recent papers have formulated fur-
ther criticisms of the criterion. While the main focus of these criticisms is
problems of applying counterfactual fairness in practice (see, e.g., Kilbertus
et al., 2020; Wu et al., 2019), some have argued that there is something con-
ceptually amiss with counterfactual fairness. It seems that there are certain
cases in which counterfactual fairness is violated, but which, according to
most theories of discrimination, nonetheless would not constitute wrongful
discrimination. This point is addressed in a recent paper by Chiappa (2017),
who acknowledges that counterfactual fairness seems like an overly strong
requirement in certain situations. To mitigate this problem, Chiappa pro-
poses to weaken counterfactual fairness so that only certain causal links be-
tween the protected characteristic and the algorithmic prediction are consid-
ered unfair, but others are not. This results in a fairness criterion that allows
for certain differences between the prediction in the actual and the counter-
factual world. However, this approach fails to provide a principled way of
distinguishing between fair and unfair causal links. A fairness criterion that
requires specifying what is fair a priori is conceptually circular and of little
practical use.

In this chapter, I aim to provide an alternative causal definition of fairness
that allows to distinguish between fair and unfair causal effects on the pre-
diction in a principled way. The new criterion I propose, causal relevance fair-
ness, formalizes the idea that a prediction is fair only if the protected char-
acteristic’s effect on the prediction does not exceed its (causal) relevance for
the prediction. In other words, the effect of the protected characteristic on
the prediction should, at most, be as great as its actual effect on the target
variable that is to be predicted. In contrast to counterfactual fairness, this cri-
terion is not susceptible to the counterexamples above, but, unlike Chiappa’s
path-specific refinement of counterfactual fairness, it is firmly grounded in
ethical theories of discrimination.

The plan for the rest of the chapter is as follows. In Section 3.2, I will present
two challenges for predictive algorithmic fairness criteria, each consisting of
two cases that any reasonable criterion should be able to distinguish. In Sec-
tion 3.3 I then address the question of how wrongful discrimination can be
defined for the context of algorithmic predictions, before I introduce the new
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causal fairness criterion, causal relevance fairness, in Section 3.4. In Section
3.5, I revisit the two challenges outlined earlier and show that causal rel-
evance fairness meets these challenges. Section 3.6 discusses a number of
noteworthy points and addresses two potential objections to the criterion.

3.2 Two challenges for predictive fairness criteria

The move from statistical to causal criteria of algorithmic fairness was, at
least in part, motivated by the observation that a specific class of cases poses
problems for statistical criteria of fairness. These are cases in which obser-
vational information alone does not suffice to detect morally relevant differ-
ences. Additional information about the underlying mechanisms is required
in order to distinguish cases that constitute wrongful discrimination from
those that do not. This is where causal criteria of fairness, and in particular
counterfactual fairness, come in handy. Fairness criteria based on causal as-
sumptions about the underlying structures allow us to differentiate between
cases which, despite identical joint probability distributions over the vari-
ables of interest, differ in their moral evaluation.

To illustrate this problem, consider the following case1. A university applies
a predictive algorithm to predict whether a given applicant is adequately
qualified to succeed in their degree. We can, as before, take the predictive
algorithm to simply be a function from a number of input variables to a vari-
able that represents the algorithm’s prediction of a student’s success in their
academic studies. To keep things simple, I will, for the moment, leave prob-
abilistic predictions aside and only consider binary predictions. Imagine the
actual outcomes and the algorithmic predictions are as represented in the
confusion matrix in Table 3.1. The columns show the actual outcomes, where
Y = 1 and Y = 0 stand for adequately qualified and unqualified, respectively,
while the rows show the predicted outcomes, where Ŷ = 1 and Ŷ = 0 stand
for predicted to be adequately qualified and predicted to be unqualified, respectively.
The top left cell, for example, shows the number 80. This cell represents the
number of adequately qualified (Y = 1) male applicants who were correctly
predicted to be adequately qualified (Ŷ = 1).

1The case outlined here is similar to a real-world case in which the University of Califor-
nia, Berkeley was suspected of discriminating against female applicants (Bickel et al., 1975).
Kusner et al. (2017) use a similar example to illustrate their counterfactual fairness criterion.
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Male Female

Y = 1 Y = 0 Y = 1 Y = 0 Total

Ŷ = 1 80 0 72 0 152
Ŷ = 0 20 100 28 100 248

Total 100 100 100 100

TABLE 3.1: Confusion matrix representing the performance of a hy-
pothetical predictive algorithm.

We observe that there are 200 male and 200 female applicants. The bottom
row tells us that 100 of the 200 male and, likewise, 100 of the 200 female
applicants are adequately qualified for a university degree. In other words,
there is no observable difference in qualification between men and women.
Yet, according to the first row, 80 men were predicted to be adequately qual-
ified, while only 72 women were. Now compare the following two scenarios
which could have generated the data:

Scenario 1: All applicants in our dataset applied for a business degree. The
predictive algorithm used by the university takes as input data an applicant’s
high school performance (X1) and their gender (A). As it turns out, both, high
school performance and gender, are used by the algorithm as predictors2.
This means, a female applicant for the business degree is less likely to receive
the prediction that she is adequately qualified than a male applicant with
identical high school grades. This is represented in the causal graph in Figure
3.1a. Intuitively, it seems that this predictor is biased against women.

Scenario 2: Applicants in our dataset applied for either a degree in physics or
a degree in business. The predictive algorithm takes as input data only the
applicant’s high school performance (X1) and the degree the applicant ap-
plies for (X2). As it happens, women have a different tendency in choosing
their degree than men. A large percentage of women decide to apply for the
physics degree (90%) rather than the business degree (10%), while the male
applicants are equally divided between business (50%) and physics (50%).
Since the physics department has higher entry requirements than the busi-
ness department, the average rate at which adequately qualified applicants

2Note that the presence of a variable in the dataset does not necessitate that it is used
by the predictive model in predicting the target variable. Often, feature selection meth-
ods which narrow down the number of used variables are part of the machine learning
pipeline, for instance in the form of regularization (e.g. Lasso regression) or as part of the
pre-processing of the data (e.g. principal component analysis).
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Gender

High school
performance

Prediction of
adequate qualification

(A) Scenario 1

Department
High school
performance

Prediction of
adequate qualification

Gender

(B) Scenario 2

FIGURE 3.1: Two different causal models potentially producing the
same joint probability distribution. The solid arrows indicate causal
relations, while the bidirected dashed arrow indicates a correlation
due to some unobserved factor which acts as a common cause of both

variables.

are predicted to be adequately qualified is only 0.7 for the physics degree,
while for the business degree it is 0.9. In other words, the false negative rate is
0.3 for the physics department and 0.1 for the business department. Male and
female applicants are equally likely to be predicted to be adequately quali-
fied if we look at each department individually. The lower overall rate at
which female applicants are predicted to be adequately qualified can be ex-
plained by their tendency towards choosing physics over business3. This is
represented in the causal graph in Figure 3.1b. Intuitively, it does not seem
that this predictor is biased against women.

A criterion of fairness should be able to distinguish between Scenarios 1 and
2. This means, in Scenario 1, the criterion should be violated, whereas in
Scenario 2, it should be satisfied. We can consider the ability to make this type
of distinction between cases a first challenge for any reasonable candidate
fairness criterion:

Challenge 1 Distinguish between Scenario 1 and Scenario 2. That is, Scenario
1 should be categorized as unfair, and Scenario 2 as fair.

Let us now examine how different fairness criteria handle these two scenar-
ios. We will begin with the statistical fairness criterion equalized odds, which
we already discussed in previous chapters. Equalized odds requires that the
prediction be independent of the protected characteristic conditional on the
actual value of the target variable. For a binary predictor, this means that
the false positive and the false negative error rates should be equal across all

3For a more detailed description of this scenario, see Appendix A.
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protected groups. Now, in both above scenarios, the false negative rate is 0.2
for male, and 0.28 for female applicants, while the false positive rate is 0 for
both4. According to equalized odds, both scenarios therefore count as unfair.
This is so because the error rates are determined solely by the frequencies
of different outcomes represented in Table 3.1. Since these frequencies are
identical in Scenarios 1 and 2, and the only difference is in the causal mech-
anism generating them, the error rates in the scenarios are necessarily iden-
tical. Consequently, equalized odds cannot distinguish between Scenario 1
and 2 and hence fails on Challenge 1.

To contrast this statistical fairness criterion with a causal criterion, we will
next consider counterfactual fairness. Recall that, informally stated, the idea
behind counterfactual fairness can be described as follows. In a fair predic-
tion, the prediction would still have been the same, had the protected char-
acteristic been different. Put differently, to assess whether a prediction is
fair, we need to compare an actual prediction with the prediction the same
individual would have received in a counterfactual world in which their pro-
tected characteristic is different. Applying this to the above examples, we can
look at, say, a prediction for a female applicant. Assume the prediction was
negative, predicting that the applicant would not be suitable to study at the
university. Now, to check whether this prediction is fair, we have to consider
the counterfactual world in which the same individual was a man, and check
whether the prediction would be different5. If the prediction remained the
same, it is fair, if not, it is unfair. If every prediction is fair, the predictive
model can be considered fair.

It is easy to see that this criterion will not give identical verdicts in Scenarios 1
and 2. In Scenario 1, we know that gender has a direct causal influence on the
prediction. This implies that there are cases where the negative prediction a
female applicant received would have been positive if the applicant had been
male. According to counterfactual fairness, the predictive model in Scenario
1 would hence be considered unfair.

In Scenario 2, on the other hand, the situation is different. The only variables
that influence the prediction are an applicant’s high school performance and
the department they apply to. So, whatever the prediction is that a given
applicant receives, it is clear that it would be the same even if their gender

4See the calculation in appendix A.
5Precisely speaking, we have to check whether the probability of the prediction would be

different.
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had been different. That is because even though gender is correlated with
the department the applicant chooses, gender does not causally influence
the choice of department. Hypothetically changing an applicant’s gender
can thus not influence the prediction. The predictive model in this scenario
would hence be considered fair. It is of course important to emphasize that
this evaluation is based on the assumption that the causal graph in Figure
3.1b represents the true causal structure of the situation. But once this as-
sumption is granted, we know with certainty that the predictor in Scenario 2
cannot violate counterfactual fairness.

Contrary to equalized odds, counterfactual fairness can hence distinguish be-
tween scenario 1 and 2, and consequently meets Challenge 1. However, there
is another, different pair of cases that a reasonable candidate fairness criterion
should be able to distinguish. These are cases in which the protected charac-
teristic makes a difference to the outcome that is to be predicted. In one of the
cases, it intuitively seems that it is morally problematic to take the protected
characteristic into account because the protected characteristic is irrelevant
to the prediction. In the other case, however, the protected characteristic is
relevant, and it seems intuitively permissible for the protected characteristic
to make a difference to the outcome. The following two examples help to
illustrate this.

Scenario 3: A predictive algorithm is used to estimate a given driver’s risk
of a car accident. The prediction is based (among other variables, which we
will ignore for the moment) on the driver’s gender. On average, being female
results in an increased risk estimation. As being female does not increase the
actual risk of an accident, it intuitively seems that this predictor is biased
against women. This scenario is represented in the causal graph in Figure
3.2a, and the confusion matrix in Table 3.2.

Scenario 4: A predictive algorithm is used to estimate a given driver’s risk
of a car accident. The prediction is based (among other variables, which we
will ignore for the moment) on whether the driver is visually impaired or
not. On average, being visually impaired results in an increased risk estima-
tion. As we can assume that being visually impaired does in fact increase the
actual risk of an accident6, it intuitively seems that this predictor should not
be deemed to be biased against visually impaired people. This scenario is
represented in the causal graph in Figure 3.2b and in Table 3.3.

6See, e.g., Anstey et al. (2012).
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Gender

Actual
accident risk

Predicted
accident risk

(A) Scenario 3

Visual ability

Actual
accident risk

Predicted
accident risk

(B) Scenario 4

FIGURE 3.2: Two different scenarios in which the protected character-
istic (gender in (A), visual impairment in (B)) has a causal influence

on the prediction.

Male Female

Y = 1 Y = 0 Y = 1 Y = 0 Total

Ŷ = 1 50 0 50 50 150
Ŷ = 0 0 50 0 0 50

Total 50 50 50 50

TABLE 3.2: Confusion matrix representing the performance of a hy-
pothetical predictive algorithm in Scenario 3.

Looking at the two causal models, we see that in Scenario 3, the protected
characteristic, gender, does causally influence the predicted risk of a car ac-
cident, but it does not causally influence the actual risk of a car accident7. In
contrast, in Scenario 4, the protected characteristic, visual impairment, does
causally influence both, the predicted as well as the actual risk of a car acci-
dent.

Good eyesight Visually impaired

Y = 1 Y = 0 Y = 1 Y = 0 Total

Ŷ = 1 50 0 100 0 150
Ŷ = 0 0 50 0 0 50

Total 50 50 100 0

TABLE 3.3: Confusion matrix representing the performance of a hy-
pothetical predictive algorithm in Scenario 4.

We can imagine an experimental setting in which this is empirically investi-
gated. In the first experiment, a group of 100 men and 100 women are asked

7Note, that this is a hypothetical assumption. A number of studies seem to indicate that
male drivers have a systematically higher risk of car accidents, see, e.g, Arnett (2002) and
Simon and Corbett (1996). However, the evidence is ambiguous (Classen et al., 2012).
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to drive a car for a set amount of time. Whenever a driver has an accident,
this is recorded. For simplicity, we will assume that Y = 1 stands for a driver
having at least one car accident, while Y = 0 stands for no accidents. In the
second experiment, a group of 100 people with good eyesight and 100 visu-
ally impaired people are asked to do the same. Again, accidents are recorded.
The outcomes of these two hypothetical experiments are depicted in the two
confusion matrices in Tables 3.2 and 3.3.

The difference in underlying causal mechanisms shows up in the hypotheti-
cal confusion matrices corresponding to the two experiments. The last row of
the confusion matrix for Scenario 3 (Table 3.2) indicates that there are equally
many men and women having at least one accident, namely 50 each, while
50 do not have any accidents. Nonetheless, all women are predicted to have
at least one accident, while only 50 men are predicted to have at least one
accident. The confusion matrix for Scenario 4 (Table 3.3), on the other hand,
indicates that among the people with good eyesight, 50 have at least one
accident, while 50 have no accidents. Among the people with visual im-
pairments, all 100 have an accident. All outcomes are correctly predicted.
Scenarios 3 and 4 allow to formulate the second challenge for any reasonable
candidate fairness criterion:

Challenge 2 Distinguish between Scenario 3 and Scenario 4. That is, Scenario
3 should be categorized as unfair, and Scenario 4 as fair.

Let us now examine how different fairness criteria deal with this second chal-
lenge. Again, we will begin with the statistical fairness criterion equalized
odds. To do so, we again have to compare false positive and false negative
error rates for the different protected groups, as the predictions are binary. In
Scenario 3, the false positive as well as the false negative rate for male drivers
is 0. This can be directly read off from Table 3.2: all male drivers that do ac-
tually have at least one accident (Y = 1) are predicted to do so (Ŷ = 1), while
all who do not have an accident (Y = 0) are predicted to not have accidents
(Ŷ = 0). The false positive rate for female drivers, however, is 1: all female
drivers who do not actually have accidents (Y = 0) are nonetheless predicted
to have at least one accident (Ŷ = 1). Consequently, the criterion equalized
odds would evaluate Scenario 3 as unfair. Scenario 4, on the contrary, would
count as fair according to equalized odds: the false positive as well as the
false negative rate is 0 for both protected groups, the people with good eye-
sight and the visually impaired. This is easily read off from Table 3.3. So,
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equalized odds meets Challenge 2.

How about the causal fairness criterion counterfactual fairness? From the
causal graph for Scenario 3, we can infer that there are at least some cases
for which a change in gender will effect a change in predicted accident risk.
This follows from our definition of causation (Pearl, 2009, p. 46). Hence, Sce-
nario 3 would, as required, be categorized as unfair. However, the same is
true for Scenario 4: since there is a causal link from visual ability to predicted
accident risk, there are at least some cases for which a change in visual abil-
ity will effect a change in predicted accident risk. Even though this seems
intuitively acceptable, it violates counterfactual fairness. Hence, Scenario 4
would also be categorized as unfair. Counterfactual fairness fails on Chal-
lenge 2, as it cannot distinguish between Scenarios 3 and 4, even though they
seem intuitively different in morally relevant ways.

It seems that neither equalized odds nor counterfactual fairness can meet
both Challenges 1 and 2. And in fact, this result can be extended to all the
currently popular statistical as well as causal fairness criteria. The reason for
this is obvious: since statistical criteria8 only take the probability distribu-
tions over certain variables into account, they necessarily fail at distinguish-
ing scenarios which are alike in terms of their relevant variables’ probability
distributions, but differ in underlying causal mechanisms. Therefore, any
statistical fairness criterion will fail on Challenge 1. Current causal criteria,
on the other hand, typically only take into account whether there is an (in-
direct) causal link from the protected characteristic to the prediction of the
target variable9. They often ignore, however, the relationship between the
prediction of the target variable and its actual value. Any such causal fair-
ness criterion will necessarily fail on Challenge 2.

It seems that in order to meet both challenges, a fairness criterion needs to
be sensitive to two things, namely (1) the nature of the causal mechanism
linking target variable and prediction, and (2) the relationship between pre-
diction and actual value of the target variable. As we will see, the fairness
criterion which I motivate and define in this chapter does this.

8Examples of such statistical criteria include demographic parity and its variants (Dwork
et al., 2012; Darlington, 1971; Feldman et al., 2015), predictive parity and its variants (Cleary,
1966; Berk et al., 2021; Chouldechova, 2017), equalized odds and its variants (Hardt et al., 2016;
Zafar et al., 2017).

9Examples of such causal criteria include counterfactual fairness (Kusner et al., 2017) and
the "no proxy discrimination"-criterion (Kilbertus et al., 2017).
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3.3 What is wrongful discrimination, anyway?

Before providing a formal definition of the new fairness criterion, let us begin
by explicating the notion of wrongful discrimination. This is important, since
the aim of predictive algorithmic fairness criteria is to ensure that by using a
given predictive model one does not wrongfully discriminate against specific
individuals.

I will here broadly follow the conceptual analysis provided by Eidelson (2015,
pp. 13ff). On Eidelson’s account, discrimination occurs when a person is
treated differently from another person in some respect, where this differ-
ential treatment constitutes a comparative disadvantage for the person, and
occurs on the grounds of a perceived difference between the discriminatee
and some other person. Eidelson does not treat the concept of discrimina-
tion as a normative concept. This means that the above description is ag-
nostic with regard to the question when and why discrimination is morally
wrong. Eidelson does, however, offer a separate theory regarding this lat-
ter question. What distinguishes wrongful discrimination from permissible
discrimination is, in his view, that in an act of wrongful discrimination, the
discriminator fails to respect the discriminatee’s standing as a person. Let us dis-
cuss the different aspects of wrongful discrimination in some more detail.

The first aspect of wrongful discrimination is what Eidelson calls the differ-
ential treatment condition. In an act of wrongful discrimination an individual
is treated differently from some other relevant comparison individual. This
differential treatment imposes a relative disadvantage on the individual dis-
criminated against. This can mean that some harm is imposed on the dis-
criminatee but not on the comparison individual, that the discriminatee is
denied some basic right that the other individual enjoys, or that access to
a good that everyone is equally entitled to is not granted. The comparison
individual should be from within the same organizational structure that is
governed by a unified set of normative principles (e.g. society, country, or
company). If, for example, a particular woman is denied a right to vote be-
cause she is a woman, then the comparison individual should be a male per-
son from the same country, rather than, for instance, another woman from a
different country. The comparison individual need not be an actual individ-
ual. In some cases, differential treatment in comparison with a hypothetical
individual is sufficient for an act to constitute discrimination.
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The second aspect of wrongful discrimination is an explanatory relation be-
tween a perceived difference (between discriminatee and the comparison in-
dividual) and the differential treatment. In other words, the fact that the dis-
criminatee is perceived to be different in some respect from the comparison
individual explains that the discriminatee is treated differently. This explana-
tory relation can take different forms. The most blatant form would be if the
perceived difference, for instance in gender, provided a motivating reason
for the discriminator to treat one person worse than another. However, the
explanatory relation can also be more subtle. There need not be a conscious,
malevolent motive behind the differential treatment. Sometimes, an implicit
bias held by a decision-maker might lead to differential treatment, or institu-
tions might be set up in a way such that having a specific trait results in some
disadvantage. At the most general level, we can say that discrimination in-
volves a causal link from the trait in question (which the discriminatee pos-
sesses while the comparison individual does not) and the differential treat-
ment. The existence of this causal link implies that the differential treatment
can be at least partially explained by the difference between discriminatee
and comparison individual.

Let us return to the example mentioned above, namely that a specific woman
is denied the possibility to cast a vote while some suitable comparison indi-
vidual is allowed to vote. This can only be considered an act of gender dis-
crimination if this differential treatment can be explained by the fact that she
is a woman. In 19th century Britain, for instance, we find such cases. During
that time, women were by law excluded from voting. This means, in 19th
century Britain the fact that a person was a woman explained why they were
not allowed to vote. Contrary to this example, if a 16-year-old woman in
contemporary Britain is denied the possibility to vote because of her young
age, while the 19-year-old male comparison individual is allowed to vote,
this would not constitute a case of gender discrimination. In the latter case,
there is no causal link from the fact that the person in question is a woman
(while the comparison individual is not) and the difference in voting rights
(between discriminatee and comparison individual). The difference in voting
rights is fully explained by the age difference.

While Eidelson does not take it to be necessary that the trait on the grounds
of which a person is treated differently be a so-called protected characteristic,
a majority of theories of discrimination do (see, e.g., Holroyd, 2017, p. 384;
Lippert-Rasmussen, 2014, p. 25;Fredman, 2011, p. 154). We will here diverge
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from Eidelson in that we will also presuppose that in cases of wrongful dis-
crimination, the differential treatment is explained by a difference in some
protected characteristic, such as gender, disability, ethnicity, age, and so on.
How exactly protected characteristics are to be defined will be left open.

The last aspect of wrongful discrimination is what we will call the wrong-
fulness condition. Not all acts of differential treatment constitute wrongful
discrimination, even if a perceived difference in protected characteristics ex-
plains the differential treatment. Think, for instance, of a blind person who
is denied a driver’s license. Here, a protected characteristic — being visually
disabled — explains the fact that the person is treated disadvantageously as
compared to someone without this disability (in that they are excluded from
the opportunity to drive a car). Nonetheless, I assume most people would
be hesitant to consider this a case of wrongful discrimination. But, what is it
that makes some cases of discrimination wrong and others not? Indeed, it is
a much debated question under which conditions exactly an act of discrimi-
nation is wrong, and a wide variety of views on it have been expressed (see,
e.g., Moreau, 2010; Alexander, 1992; Lippert-Rasmussen, 2014; Halldenius,
2017).

The condition under which discrimination is wrongful, according to Eidel-
son, is that it constitutes a failure to respect the discriminatee’s standing as
a person. Respecting someone’s standing as a person, in turn, involves two
aspects: (1) recognizing that everyone is of equal moral worth, and (2) treat-
ing a person as an individual. We will here only focus on the latter, as this
seems to be well suited to the domain of algorithmic predictions. While it is
possible to conceive of a way in which an algorithmic prediction fails to treat
the person about whom a prediction is made as an individual, it is harder to
imagine how a prediction could succeed or fail to recognize a person’s moral
worth. By definition, predictions do not involve any such value judgments.

What does it mean to treat a person as an individual? Here, too, different
answers can be given. Eidelson thinks that the intention to treat people as
individuals restricts the ways in which one can form generalizations about
groups of people, and hence draw inferences about individual members of
the group (Eidelson, 2015, p. 142). More specifically, treating someone as
an individual imposes two requirements on generalization-based judgments
about a person. First, it requires that in the process of arriving at a judg-
ment, adequate weight is given to "evidence about the ways [the person] has
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exercised her autonomy in giving shape to her life, where this evidence is
reasonably available and relevant to the determination at hand" (Eidelson,
2015, p. 144). Secondly, it requires that no judgment is "made in a way that
disparages [the person’s] capacity to make [...] choices as an autonomous
agent" (Eidelson, 2015, p. 144) in the case that judgments are concerned with
the person’s choices.

To illustrate this, imagine a landlord who judges on the basis of an appli-
cant’s religion that the applicant will not pay their rent reliably, despite the
fact that the applicant provides evidence of a secure job and references from
previous landlords. The landlord generalizes from the supposition that peo-
ple who have the applicant’s religion do not pay their rent reliably. In doing
so, the landlord clearly fails to acknowledge evidence about how the appli-
cant has autonomously shaped their life, for instance in terms of what kind
of career to pursue, which evidences reliability. Furthermore, the landlord
ignores evidence of the choices the applicant made in the past, in particular
with regard to paying the rent reliably, which was readily available in the
form of references from previous landlords. Therefore, this act is an instance
of a decision that is based on a wrongful generalization.

Generalizations thus fail to respect a person’s individuality when weight is
given to evidence in inadequate ways. This is, more specifically, the case
when not enough weight is given to evidence about a person’s character
traits, where these character traits are relevant to the property that is to be
predicted (e.g. reliability), or not enough weight is given to the person’s
choices, where these choices are relevant to the predicted property (e.g. crim-
inal behaviour). Instead, too much weight is given to a person’s membership
in a demographic group (i.e. a protected characteristic), despite this not being
directly (or only to a lesser extent) relevant to the predicted property.

Consequently, treating someone as an individual imposes a duty on the decision-
maker to give the right weight to all the relevant factors in making a judg-
ment about a person. This, in particular, entails that a person’s protected
characteristics should only influence a judgment to the degree to which they
are actually relevant. If a protected characteristic influences the judgment
to a higher degree, then this means that not enough weight is attributed to
the person’s relevant character traits or the person’s relevant choices as an
autonomous agent.
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We hence arrive at a definition of wrongful discrimination against an individ-
ual i1 which involves the conjunction of the following three conditions:

• Differential Treatment Condition:
Individual i1 is treated less favourably in respect of some dimension W
than some other actual or counterfactual individual i2

• Explanatory Condition:
A (perceived) difference between i1 and i2 with regard to the protected
characteristic A figures in the explanation of this differential treatment

• Wrongfulness Condition:
This differential treatment on the basis of A constitutes a failure to treat
i1 as an individual. In particular, the differential treatment is based on
a judgment where the influence of i1’s protected characteristic exceeds
its relevance

We will now turn to the question how this definition can be formalized so
that it can be applied to predictive models.

3.4 Causal relevance fairness

The new causal fairness criterion I will now introduce is called causal relevance
fairness. It can be thought of as a modification of the popular counterfactual
fairness criterion that is more closely in line with the informal definition of
wrongful discrimination outlined in the previous section. The central task
in this section is to formalize the different aspects of this definition in order
to render it applicable to algorithmic systems. To do so, I will make use of
Pearl’s causal modelling framework (Pearl, 2009, Ch. 7).

As previously, we shall, for the sake of simplicity, assume that the target
variable Y, the prediction Ŷ, as well as the protected characteristic A are all
binary variables. While there are, of course, variables representing protected
characteristics that have more than two values (like for instance ethnicity),
it is always possible to represent a multi-valued variable as a set of binary
variables. Hence, this modelling assumption can be made without loss of
generality.

Let us begin with the differential treatment aspect. The first question we need



88 Chapter 3. Causal Relevance Fairness

to answer is which type of disadvantageous treatment we are actually con-
cerned with. Since we are here thinking about predictive algorithmic models,
the straightforward answer is that the disadvantageous treatment consists in
the prediction or classification the discriminatee received in some context.
More formally speaking, this means that for some prediction Ŷ = ŷ, the prob-
ability of receiving this prediction is different for the discriminatee i1 (who is
characterized by the values of the input variables X(1)) than for the compar-
ison individual i2 (who is characterized by X(2)). Hence, the formal version
of the differential treatment conditions is the following:

P(Ŷ(1) = ŷ | X(1) = x1) ̸= P(Ŷ(2) = ŷ | X(2) = x2), (3.1)

for some ŷ in the domain of Ŷ. Note that the variables Ŷ(1) and Ŷ(2) represent
the predictions for individuals i1 and i2, respectively. We will only use in-
dices when comparing probabilities for different individuals, but drop them
in equations that are only concerned with one individual.

Next, we have to think about how the explanatory condition can be formalized.
Recall that we concluded that in order for there to be an explanatory relation
between protected characteristic A = a and the differential treatment (with
regard to prediction Ŷ = ŷ), there must be a causal link from A to Ŷ. More
precisely speaking, in the specific prediction we’re concerned with, it needs
to be the case that the fact that A = a (rather than A = ¬a, where ¬a in-
dicates the only other possible value of binary variable A) is the actual cause
of Ŷ = ŷ. Following Kusner et al. (2017), the actual causal effect can be de-
fined as the difference between two quantities: first, the probability that the
prediction takes the value that it actually takes (conditional on the fact that
the protected characteristic takes its actual value, together with some circum-
stantial background conditions), and second, the probability that the predic-
tion would have been the same had the protected characteristic been differ-
ent from its actual value (conditional on the same circumstantial background
conditions). Formally, the explanatory condition can hence be expressed as
stating that for given a ∈ DA, ŷ ∈ DŶ and x ∈ DX:

P(ŶA=a = ŷ | X = x, A = a)− P(ŶA=¬a = ŷ | X = x, A = a) > 0 (3.2)
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A few remarks are in order. The left expression of the subtraction is the prob-
ability that the discriminatee receives the prediction ŷ when the value of the
protected characteristic A is set (via intervention) to its actual value a in the
causal model, conditional on the input values X = x. While this, for concep-
tual continuity with the definition of counterfactual fairness, is expressed as
an interventional probability, its value coincides with the conditional prob-
ability of receiving prediction ŷ given X = x and A = a. The expression
on the right-hand side of the subtraction, on the other hand, is a counter-
factual probability, namely the probability that the prediction would have
been ŷ, had the same individual (characterized by X = x and A = a) had
a different value for their protected characteristic, namely ¬a instead of a.
To illustrate this with an example, we could, for instance, consider the prob-
ability that a specific female loan applicant would receive a prediction that
she will default, and subtract from it the probability that she would have re-
ceived a prediction to default had she been male. The difference between the
two probabilities can be interpreted as the actual causal effect of the individ-
ual’s gender on the prediction10. If this value is greater than 0, this means
there exists such an actual causal effect, and that, in turn, being female (at
least partially) explains why the individual received the prediction they in
fact received.

To express the foregoing more concisely, let us introduce the formal concept
of a variable’s influence on a prediction. This should be understood as the
actual causal effect of the variable taking a specific value on the prediction ŷ.
We can hence define the influence of protected characteristic A = a on the
prediction Ŷ = ŷ as follows:

I(a, ŷ, x) := P(ŶA=a = ŷ | X = x, A = a)− P(ŶA=¬a = ŷ | X = x, A = a)
(3.3)

Using this concept, we can now express the explanatory condition as the
protected characteristic having some influence on the prediction. This means,

10Note that we here only consider positive causal effects, that is causal effects that are
greater than (or equal to) zero. To exhaust the logical space, we would, of course, also have
to consider the possibility of negative causal effects. In the present example, this would be
a case where being female reduces the probability of a default prediction. While the present
account could easily be extended to such cases as well, it would make the formalism signifi-
cantly more complicated. As the central point of this chapter is a conceptual one, I chose to
give priority to simplicity over completeness and ignore these cases.
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the influence of the protected characteristic on the prediction is greater than
0:

I(a, ŷ, x) > 0 (3.4)

Let us now turn to the wrongfulness condition. We here need to formalize the
notion that an individual’s protected characteristic has a greater influence on
the prediction than relevant for the prediction. We already formalized the
concept of influence. In order to formally express the wrongfulness condi-
tion, we in addition need to formalize the concept of relevance. Similarly to
the former, a variable’s relevance for a prediction can be interpreted in terms
of causal relations. Pearl himself defines a variable’s irrelevance to some other
variable as the absence of any causal effect of the former on the latter (Pearl,
2009, p. 235). Broadly inspired by this definition, I will define the degree of
relevance of the protected characteristic to the prediction as the actual causal
effect of the protected characteristic on the value the target variable takes
(that is, the variable whose value is to be predicted). Note, however, that,
strictly speaking, we’re here concerned with a different relation than Pearl,
since instead of defining relevance as a relation between variables, we are
here defining it as a relation between propositions (expressed as variables
taking specific values). Formally, the degree of relevance of protected char-
acteristic A = a on the prediction Ŷ = ŷ can be defined as follows:

R(a, ŷ, x) := P(YA=a = y | X = x, A = a)− P(YA=¬a = y | X = x, A = a)
(3.5)

As above, this is the difference between two interventional probabilities: the
probability of the target variable taking the value that it actually takes if the
protected characteristic is set to the value it actually has, and the probability
that the target variable would take this value were the protected characteris-
tic different. To illustrate this, we can consider the degree of relevance of a
person’s gender for predictions as to whether the person will default on their
loan. To calculate this degree of relevance, we have to compare (1) the prob-
ability that a person is predicted to default with (2) the probability that they
would be predicted to default had their gender been different. Presumably,
the difference will be close to zero, as it seems implausible to think that a
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person’s gender has a strong effect on whether they will pay back their loans
or not.

With these two formalizations at hand, we can formally define the wrong-
fulness condition for algorithmic predictions. In accordance with the outline
in the previous section, we can define the wrongfulness condition as the cir-
cumstance that a person’s protected characteristic has a greater influence on
a prediction than would be warranted by its relevance:

I(a, ŷ, x) > R(a, ŷ, x) (3.6)

On the basis of what was outlined above, we can summarize that a prediction
can be considered to constitute wrongful discrimination if and only if the
following set of conditions is satisfied:

• Differential Treatment Condition:
P(Ŷ(1) = ŷ | X(1) = x1) ̸= P(Ŷ(2) = ŷ | X(2) = x2)

• Explanatory Condition:
I(a, ŷ, x) > 0

• Wrongfulness Condition:
I(a, ŷ, x) > R(a, ŷ, x)

It is interesting to note that due to the way we formalized the three condi-
tions, the following logical relations hold between them. Since by assump-
tion we only consider positive causal effects, the degree of relevance R(a, ŷ, x)
can never be below zero. This, in turn, means that the wrongfulness condi-
tion implies the explanatory condition. Whenever the influence of a pro-
tected characteristic on a prediction is greater than its relevance, it must be
the case that the protected characteristic partially explains the prediction.
This is so because we defined that a prediction is (at least partially) explained
by some proposition if the proposition has some influence on the prediction.
If we assume that in the differential treatment condition we compare the dis-
criminatee to a hypothetical individual which is identical in every aspect ex-
cept the protected characteristic (and what is causally influenced by the pro-
tected characteristic), then the explanatory condition implies the differential
treatment condition. This simply follows from our definition of actual causal
effects, which forms the basis of the concept of explainability.
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The upshot of this is that the wrongfulness condition cannot be satisfied with-
out the differential treatment and the explanatory condition being satisfied
as well. So, whenever either the differential treatment condition or the ex-
planatory condition is violated, the wrongfulness condition will also not be
satisfied. It can, however, be the case that the differential treatment and the
explanatory condition are satisfied without the wrongfulness condition be-
ing satisfied. In order to ensure that a prediction does not constitute wrong-
ful discrimination according to our relevance-based definition, it is conse-
quently enough to ensure that the wrongfulness condition is not satisfied.
This insight suggests a straightforward way of defining a new causal crite-
rion for predictive algorithmic fairness, which formalizes the idea that for a
prediction to be fair, the influence of the protected characteristic should not
exceed its relevance:

Definition 3.4.1 (Causal relevance fairness). A predictive model satisfies causal
relevance fairness (relative to A = a) if (and only if) for all ŷ ∈ DŶ, all x ∈ DX

and fixed a ∈ DA, it is the case that

I(a, ŷ, x) ≤ R(a, ŷ, x) (3.7)

It is easy to see that this criterion is a relaxation of counterfactual fairness.
Using the above conceptualization, we can express the criterion of counter-
factual fairness as follows: a prediction ŷ is counterfactually fair (relative
to protected characteristic a) if for all x ∈ X, it is the case that I(a, ŷ, x) = 0.
This means, in order for a prediction to be counterfactually fair, the protected
characteristic cannot have any influence on it. This condition is relaxed in
causal relevance fairness in that it is only the case that the protected charac-
teristic is not allowed to have any influence on the prediction if the protected
characteristic is irrelevant to the prediction (i.e. when R(a, ŷ, x) = 0). This
constitutes a limiting case in which counterfactual fairness is equivalent to
causal relevance fairness. If we were to assume that protected characteris-
tics can never have any relevance to predictions, then counterfactual fairness
and causal relevance fairness would agree on every case. Whenever the de-
gree of relevance of the protected characteristic for the prediction is greater
than zero, however, counterfactual fairness and causal relevance fairness can
provide differing fairness evaluations.

In the next section, I will return to the scenarios from Section 3.2 to see
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whether causal relevance fairness can meet the two challenges for predictive
fairness criteria.

3.5 The two challenges revisited

In Section 3.2 I presented two challenges, which, I argued, any reasonable cri-
terion of predictive fairness ought to meet. On the first challenge, equalized
odds fails because it is not able to distinguish between different underlying
causal mechanisms that produce identical observational data. On the second
challenge, counterfactual fairness fails because it is not able to distinguish
between a protected characteristic’s legitimate and illegitimate causal influ-
ence on a prediction. Let us now see how our new criterion, causal relevance
fairness, performs on the two challenges.

Let us begin with Challenge 1. In order to assess the two scenarios, we have
to consider the causal relations not only between prediction, input variables,
and the protected characteristic, but also the target variable. In this specific
case, this means we have to include information on the causal relations be-
tween gender, high school performance, and whether an applicant is qual-
ified for a university degree. It seems reasonable to assume that whether
someone is adequately qualified is causally influenced by one’s high school
performance, but not by one’s gender. Consequently, the scenario will be
assessed according to the causal model depicted in Figure 3.3a.

We now need to frame the situation in Scenario 1 in terms of the concepts
coined in Section 3.4. We can read off a number of things from the causal
graph directly. Since there is a causal link between the protected character-
istic gender and the predictions of whether an applicant is adequately quali-
fied, we know that there can be (in particular negative) predictions on which
the protected characteristic (being female) has an influence. Formally ex-
pressed, this means that

I(A = f emale, Ŷ = 0, X = x) > 0 (3.8)

(the variable X here represents the only input variable high school perfor-
mance). But, since there is no causal link from gender to the target variable,
the relevance of gender on whether the person is adequately qualified is 0,
i.e.



94 Chapter 3. Causal Relevance Fairness

Gender

High school
performance

Prediction of
adequate qualification

Qualification

(A)

Department
High school
performance

Prediction of
adequate qualification

Gender

Qualification

(B)

FIGURE 3.3: Two different causal models potentially producing the
same joint probability distribution. This time, the target variable

("Qualification") is included in the causal models as well.

R(A = f emale, Ŷ = 0, X = x) = 0 (3.9)

It then follow that for some predictions, it is the case that

I(A = f emale, Ŷ = 0, X = x) > R(A = f emale, Ŷ = 0, X = x), (3.10)

and that hence causal relevance fairness is not satisfied. There are cases in
which being female influences the prediction, even though being female is
irrelevant here.

Things are slightly different in Scenario 2. If we look at the causal graph
for this scenario, which is depicted in Figure 3.3b, we see that there is no
causal link from gender to the target variable qualification. Being female can
consequently not influence the prediction in any way, and so

I(A = f emale, Ŷ = 0, X = x) = 0 (3.11)

As before, there is also no causal link from gender to the target variable, and
hence

R(A = f emale, Ŷ = 0, X = x) = 0 (3.12)

Causal relevance fairness is satisfied because
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I(A = f emale, Ŷ = 0, X = x) = R(A = f emale, Ŷ = 0, X = x) (3.13)

Being female does not influence the prediction at all, and hence it is trivially
true that being female does not influence the prediction to a degree that ex-
ceeds its relevance. Challenge 1 is therefore met.

Let us now turn to Challenge 2. The causal graphs in Figure 3.2 already
include the target variable, which, in this case, is the actual accident risk. Sce-
nario 3 is easily analyzed: there is a causal link from gender to predicted
accident risk, hence there are cases where the influence of gender on predicted
accident risk is greater than 0, i.e.

I(A = f emale, Ŷ = 1, X = x) > 0 (3.14)

Since, however, there is no causal link from gender to actual accident risk,
gender is irrelevant to accident risk, and hence

R(A = f emale, Ŷ = 1, X = x) = 0 (3.15)

Consequently,

I(A = f emale, Ŷ = 1, X = x) > R(A = f emale, Ŷ = 1, X = x) (3.16)

for at least some x ∈ DX, which means that causal relevance fairness is vio-
lated.

Before we begin to evaluate Scenario 4, let us fill in some gaps that we left
open in the initial presentation of the example. As stated there, we assumed
that the model we are evaluating predicts an individual’s accident risk on
the basis of their visual ability as well as some other factors. Let us assume
we can summarize these other factors in some variable. We will assume that
this variable represents all the aspects relevant for driving safely that are in-
dependent of the individual’s visual ability (e.g. certain cognitive abilities,
attention, risk attitudes, etc.). Nothing in the fairness evaluation hinges on
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FIGURE 3.4: Two different scenarios in which the protected character-
istic (gender in (A), visual impairment in (B)) has a causal influence

on the prediction.

the existence of this variable, it just serves to make the example more real-
istic. The enriched causal model is depicted in Figure 3.4 (for the sake of
completeness, an enriched causal model for Scenario 3 is depicted as well).

Analyzing Scenario 4 is a bit more complex. Here, looking at the causal graph
alone does not provide enough information to determine whether the pre-
dictions the model produces are fair. In addition, we have to look at the
structural equations that describe the mechanism of the scenario. In accor-
dance with the data represented in the confusion matrix in Table 3.3, we shall
assume that the following structural equation model describes the situation:

Y = ¬V ∨ ¬F

Ŷ = ¬V ∨ ¬F
(3.17)

In the model, Ŷ stands for the predicted accident risk, Y for the actual ac-
cident risk, V for good visual ability, and F for the other factors. We will
assume that all of the variables are binary, so that we can interpret Ŷ = 1
as the prediction that the accident risk is above a certain threshold, Y = 1
as the risk actually being above this threshold, V = 1 as the person having
a sufficiently good visual ability for driving, and F = 1 as the other factors
being present at a level above what is minimally required for driving safely.

Under this interpretation, the structural equations say the following. The
accident risk is above the relevant threshold if it is the case that either the
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visual ability is not sufficiently good for driving, or the other factors are be-
low the level required for driving safely. The conditions for a prediction of
accident risk above the relevant threshold are exactly the same as for actual
accident risk. For simplicity’s sake, the model in this example is determinis-
tic. By adding an unobserved background variable of which we only know
the probability distribution, we could turn this example into a probabilistic
one. Restricting the example to the deterministic case, however, does not
lead to a loss of generality.

Based on the two structural equations, we can now calculate the quantities
necessary to determine whether the predictive model in this example satisfies
causal relevance fairness — the protected characteristic’s influence on and
relevance for the prediction. Let us assume an individual is visually impaired
(V = 0), but satisfies the minimally required level of other factors (F = 1).
Then, this individual will, according to the structural equation model above,
have an accident risk above the relevant threshold (Y = 1) and be predicted
to be above this threshold (Ŷ = 1).

First, we need to calculate the individual’s probability of receiving the pre-
diction they actually received, that is, P(ŶV=0 = 1 | F = 1, V = 0). To this
end, we need to go through the three steps necessary to calculate counterfac-
tual probabilities11 (Pearl, 2009, pp. 212ff). The first step (abduction), in which
the probability distribution over the exogenous variables is updated, can be
skipped because in this specific case there are no variables whose probabil-
ities would change. Then, in the second step (action), we set V to 0 in the
structural equation model, and, in the third step (prediction) evaluate how this
affects the probability of Ŷ = 1 given the background information available
(F = 1). It is easy to see that, due to the fact that our model is deterministic,
this probability is 1. Setting the visual ability to below the required level will
under these circumstances always lead to a prediction of accident risk above
the relevant level, because evaluating the structural equation yields

Ŷ = ¬V ∨ ¬F = ¬0∨ ¬1 = 1∨ 0 = 1 (3.18)

11As explained earlier, even though this probability coincides with an actual probability,
here it is in fact defined as the subjunctive probability that the individual would have re-
ceived the prediction, had their visual ability been set to below the threshold — which is
what is actually the case. So, in some sense, the intervention which makes it a subjunctive
(or counterfactual) probability does not actually change anything. We can think of this as a
trivial counterfactual, where nothing disagrees with the actual facts.
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Next, we need to evaluate the counterfactual probability that the individual
would have received a prediction of being above the relevant risk of accident
threshold, had they not been visually impaired. That is, we need to deter-
mine P(ŶV=1 = 1 | F = 1, V = 0). Applying the same steps as above, we
obtain a probability of 0. The hypothetical intervention on the individual’s
visual ability (so as to make it sufficiently good) leads to a prediction that the
risk is below the relevant threshold, since

Ŷ = ¬V ∨ ¬F = ¬1∨ ¬1 = 0∨ 0 = 0 (3.19)

With these two quantities at hand, we can now calculate the influence of
being visually impaired on the prediction:

I(V = 0, Ŷ = 1, F = 1)

= P(ŶV=0 = 0 | F = 1, V = 0)− P(ŶV=1 = 1 | F = 1, V = 0)

= 1− 0

= 1

(3.20)

The influence in this specific case is 1, hence as strong as possible. In order to
determine whether this is fair, we need to compare it to the relevance of being
visually impaired for the prediction. The calculation here is very similar as
above, and yields the following:

R(V = 0, Ŷ = 1, F = 1)

= P(YV=0 = 0 | F = 1, V = 0)− P(YV=1 = 1 | F = 1, V = 0)

= 1− 0

= 1

(3.21)

As we can see, according to the causal model specified above and given the
circumstantial condition that the individual otherwise satisfies the required
level of ability (F = 1), the visual impairment is highly relevant to the predic-
tion. With these two quantities at hand, we can now determine whether the
prediction is fair using the definition of causal relevance fairness in Equation
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3.7. To this end, we have to check whether the following holds:

I(V = 0, Ŷ = 1, F = 1) = 1 ≤ R(V = 0, Ŷ = 1, F = 1) = 1 (3.22)

This is obviously satisfied. We can conclude that, according to causal rele-
vance fairness, this prediction is considered fair.

To determine whether the predictive model is fair generally, this type of eval-
uation has to be conducted for all possible predictions ŷ ∈ DŶ and all pos-
sible contexts f ∈ DF. In other words, for the predictive model to be fair,
the influence of the protected characteristic has to be shown to never exceed
its relevance, no matter whether the person’s other factors are above or be-
low the level minimally required for driving safely (i.e. F = 1 or F = 0),
and whether the prediction is that the individual is above the relevant risk
threshold or not (i.e. Ŷ = 1 or Ŷ = 0). As it turns out, for Scenario 4, this
is the case. We can hence conclude that causal relevance fairness also meets
Challenge 2.

3.6 Discussion

I will now turn to the discussion of a number of central points regarding
causal relevance fairness. First, I will explain how causal relevance fairness
can pick up on indirect causal effects of the protected characteristic on the
prediction. Then I will address a methodological question about the sources
of the causal knowledge required for determining whether a prediction satis-
fies causal relevance fairness. Lastly, I will address two potential objections,
one conceptual, and one practical.

3.6.1 Detecting indirect causation

It is important to note that causal relevance fairness can pick up on indirect
causal effects of the protected characteristic on the prediction. This is a rel-
evant property, as predictive models can be unfair despite being "blinded"
with regard to protected characteristics. The widely used practice to ignore
protected characteristics when building predictive models is called fairness
through unawareness.
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The idea of fairness through unawareness is, more precisely, to not allow
any protected characteristics as input variables of a predictive model, and to
thereby prohibit that protected characteristics can influence the prediction. It
was convincingly demonstrated, however, that simply turning a blind eye to
protected characteristics does not generally guarantee that predictive models
are unbiased12. The reason for this is that, especially if a predictive model has
a large number of input variables, we often find that a protected characteristic
is redundantly encoded in (a subset of) those variables, even if the protected
characteristic itself is not part of the input variables. In other words, there
might be enough information contained in the remaining input variables that
allows for inferring information about a person’s protected characteristics
with relatively high reliability.

An analogy often invoked to illustrate this problem is the phenomenon of
redlining (see, e.g., Allen, 2019). Redlining was a strategy used by some banks
(and other financial institutions) to exclude certain ethnic groups from their
services in an indirect way. The idea was to use a person’s postal code as
a proxy for their ethnicity, while making their decision procedures formally
colorblind. Banks would, for instance, not offer mortgage loans to residents
of specific neighborhoods that were known to be predominantly inhabited
by Black and Hispanic residents. These banks were able to specifically tar-
get and discriminate against people on the basis of their ethnicity without
explicitly using information on their ethnicity in the decision procedure.

Ŷ
(Predicted

creditworthiness)

(Actual
creditworthiness)

Y

X1
(Input:
postal
code)

A
(Ethnicity)

FIGURE 3.5: Indirect causal influence from the protected characteris-
tic ethnicity on the prediction of creditworthiness.

A similar situation can, even inadvertently, arise in the context of algorithmic

12Empirical studies about the ineffectiveness of such color-blind approaches can be found
in Bonilla-Silva (2006) and Apfelbaum et al. (2010). A more detailed explanation why this
approach fails in predictive machine learning models can be found in Hardt et al. (2016).
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predictions. Suppose a bank uses a predictive model that, among other vari-
ables, takes a loan applicant’s postal code into account, but does not use any
information about the person’s ethnicity. The model is intended to predict
whether a person is creditworthy or not. Imagine that the (incomplete) causal
structure depicted in Figure 3.5 represents the causal mechanisms at work: a
person’s ethnicity influences where they live (i.e. their postal code), which in
turn is an input variable to the predictive model and consequently influences
the prediction of their creditworthiness. We can, moreover, see that postal
code does not influence a person’s actual creditworthiness, even though the
two variables are correlated (indicated by the dashed bidirectional arrow).
Hence, ethnicity indirectly influences the prediction of creditworthiness, but
is not causally relevant to the prediction as it does not causally influence a
person’s actual creditworthiness.

With this predictive model, the following might happen. Imagine there are
two individuals, one lives in a neighborhood that is predominantly inhabited
by a specific ethnic minority, and the other in some other neighborhood that
is predominantly inhabited by the majority ethnicity. Furthermore, imag-
ine that the two individuals are very similar to each other in that they have
roughly the same age, a similar education, job and salary, and so on. Now,
the latter receives the prediction to be creditworthy while the former receives
the prediction not to be creditworthy. Analyzing the predictive model and
the causal mechanisms of the context, it might turn out to be the case that
had the first person been of a different ethnicity, they would have lived in
a different neighborhood, and would consequently have been predicted to
also be creditworthy. If this is so, then their ethnicity explains the prediction.
Ethnicity is, however, not actually relevant to whether someone is creditwor-
thy or not. Hence, by the lights of the theory of discrimination outlined in
Section 3.3, this predictor exhibits discriminatory bias: said person is treated
disadvantageously due to their ethnicity, and this constitutes a failure to treat
them as an individual, since, as we have stated, their ethnicity is not actually
relevant to the prediction.

A fairness criterion should, of course, be able to detect indirect unjustified
influences on the prediction as well. Causal relevance fairness is capable of
doing this. It is easy to see that in a counterfactual world in which a person’s
ethnicity was different, their postal code would potentially change as well,
which would in turn potentially influence their predicted creditworthiness.
Their actual creditworthiness, however, would not change. So, given the



102 Chapter 3. Causal Relevance Fairness

causal model we assumed, a predictor as the one outlined above would not
satisfy causal relevance fairness.

3.6.2 Sources of causal assumptions

We can only evaluate whether a predictive model satisfies causal relevance
fairness relative to a causal model involving the variables of interest. This
includes, at the very least, a model of the causal relationship between the
protected characteristic and the target variable that the predictive model is
intended to predict, as well as between the protected characteristic and the
prediction. The latter can be easily determined by either analyzing how the
predictive model is specified, or by conducting (virtual) experiments with it.
But how do we obtain the justification to make assumptions about causal re-
lations regarding the former? This is an important methodological question
that needs to be answered in order for causal relevance fairness to be useful
in practice.

There are two possible approaches to this problem. The first approach is
to consult external scientific resources to justify the choice of specific causal
assumptions. Imagine we want to evaluate whether a predictive model for
health costs is biased against elderly people. In many contexts, age is consid-
ered a protected characteristic. This means, unjustified differential treatment
on the basis of age is morally impermissible. Imagine the predictive model
is sensitive to age, in that, all other things being equal, elderly people are
predicted to incur higher health costs than young people. In order to check
whether the predictor satisfies causal relevance fairness, we can consult epi-
demiological and public health research on the effects of age on health and
associated costs. This information can then be used to determine the degree
to which being elderly explains higher health costs, and hence to which de-
gree it is relevant to the prediction of health costs.

This first approach thus bases the evaluation of causal relevance fairness on
causal assumptions which are backed by peer-reviewed social science re-
search. This means the causal assumptions are independent of the data the
predictive model is built on and applied to, and obtained in compliance with
established scientific standards. This is, in general, desirable. The central
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limitation of this approach, however, is that we can only evaluate causal rele-
vance fairness for predictions of variables for which the relevant research ex-
ists. Otherwise, assessing a predictive model for fairness would require con-
ducting social science research specifically designed for this purpose. This
makes the assessment using this approach complex and costly.

The second approach is a post-hoc analysis of the predictions made. It only
requires a sufficiently large set of data on the input variables, the protected
characteristic, the predictions, and what the target variable’s actual values
turned out to be. We can then apply causal inference methods to determine
whether in the given dataset the protected characteristic has a stronger causal
effect on the prediction than on the target variable itself13. If this is the case, it
indicates that the predictive model does not satisfy causal relevance fairness.
Such a conclusion, however, rests on two assumptions. First, the assumption
that the dataset used is representative of the overall population the predictive
model is applied to, and secondly, that the dataset contains sufficient obser-
vations to allow for statistically reliable conclusions about causal relations
(within the predetermined acceptable margin of error) (Wang and Ji, 2020).

To apply this approach to the above example, we would, at some later point
in time, need to collect data on the actual health costs of a sufficiently large
number of representative individuals that received predictions. Then we
would need to run two statistical causal inference analyses to determine the
causal effect of age on the predicted health costs, and the causal effect of age
on the actual health costs. If the former exceeds the latter, this is an indicator
that the predictive model violates causal relevance fairness.

While the second approach is more cost-effective (no new studies have to be
conducted) and more universally applicable (the scope of available causal
knowledge is not restricted to existing scientific studies), it is less reliable
than the externally validated first approach. The reason is that the observa-
tions in the dataset might themselves be biased in several ways. It is, for in-
stance, often the case that the target variable cannot directly be observed. In
these cases, one can only compare the prediction to some proxy for the target
variable, which might not be perfectly aligned with the actual target variable.
Another problem is that it can be difficult to check whether the dataset is rep-
resentative of the overall population. This will often require information on
a number of variables which the dataset might not contain. Nonetheless, this

13This is the strategy pursued in the empirical case study in Chapter 5.
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second approach can often provide a good first approximation of whether
and to which degree a predictive model violates causal relevance fairness.

3.6.3 Risk of reinforcing existing biases

One conceptual worry about causal relevance fairness could be that it only
guards against new biases, but cannot help to detect and eliminate existing
societal biases. We can, for instance, imagine a school class in which most
students are implicitly biased against female teachers. A majority of the stu-
dents incorrectly assumes that male teachers are more competent than female
teachers. Imagine that this implicit bias leads the students to be less obedient
and less attentive when they are being taught by a female teacher. This, in
turn, results in lower average learning outcomes when a class is taught by a
female teacher than when it is taught by a male teacher. The existing implicit
bias thus introduces a causal connection between gender and learning out-
comes — the fact that the teacher is a woman has the effect that, on average,
the learning outcomes of the school class are somewhat lower. But this, in
turn, means that in this example predicting lower learning outcomes on the
basis of a teacher’s gender does not violate causal relevance fairness (given
that the influence on the prediction does not exceed the actual causal effect
on learning outcomes). At first sight, it might seem as if this indicates that
causal relevance fairness allows for the reinforcement of existing biases.

This, however, is a faulty line of thinking. Recall the distinction between
predictive and allocative fairness introduced in Chapter 1. While predictive
fairness ensures that no discriminatory cognitive biases enter algorithmic
predictive models, allocative fairness ensures that decisions based on these
predictions are fair and equitable. Causal relevance fairness is a predictive
fairness criterion — it constrains which evidence can legitimately influence a
prediction and to which degree it can do so. Policies aimed at ensuring the
fair distribution of goods and opportunities, however, are to be realized in
the decision function. They hence fall into the domain of allocative fairness
rather than predictive fairness. This includes, for instance, affirmative action
policies aimed at correcting injustices that exist due to societal biases.

If we consider the example above in the light of this distinction, it seems fair
to acknowledge the existing bias and its consequences when making a pre-
diction — in this case that a female teacher might face resistance and disobe-
dience from students which might result in lower average learning outcomes
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— but to make decisions in a way that does not reinforce this existing bias.
For instance, if the decision to be made is whom to hire for a teaching job, it
might be important to base this decision not only on the predicted learning
outcomes, but also on other factors beyond that prediction. We could po-
tentially decide to apply different standards for male and female teachers to
ensure an equitable distribution of job opportunities.

One could even go so far as to argue that it is necessary to have a predictive
fairness criterion that allows for predictions that are sensitive to societal bi-
ases. Think, for instance, of a situation in which we have the same predictive
model as in the example above, but where predicted learning outcomes are
used to decide whether a teacher should receive special support — maybe in
the form of a targeted training to deal with disobedient students, or some-
thing else along those lines. The predictions could here be used to actively
counteract the existing gender bias in teaching. If a fair prediction, however,
was not sensitive to causal effects due to societal biases, it would be impossi-
ble to create an algorithmic decision system which can ensure that this special
support is provided to those people who, in light of the evidence, are likely
to need it most. In this example, it would mean that it would not be possi-
ble to pick out the female teachers for whom special support would be most
useful without violating the hypothetical fairness criterion in question. This
seems undesirable.

An overall fair algorithmic decision system might hence require the ability
to pick up on such causal effects of the protected characteristic on the pre-
diction. Causal relevance fairness has this ability, while other causal fairness
criteria, such as counterfactual fairness, do not.

3.6.4 Causal effects of protected characteristics

Another more practical worry about the fairness criterion presented here
could be that it is defined in terms of causal effects of protected characteristics
like ethnicity or gender. We need to be able to make sense of counterfactual
scenarios in which we imagine that we intervene on or manipulate, say, an in-
dividual’s ethnicity. But, as some have argued, it is not clear what this means
or whether it is possible. If for some protected characteristics, it were not
even in principle conceivable to intervene on them, causal relevance fairness
would not be well-defined for these protected characteristics. Consequently,
it would be unclear what it means to satisfy or violate the criterion.
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A number of scientists have argued that some protected characteristics are
not manipulable, and that protected characteristics hence cannot be consid-
ered or investigated as causes of anything. Holland (1986), for instance,
makes this argument for an individual’s race and gender, similar to Kaufman
and Cooper, who extend the argument to sex, year of birth, and generally all,
as they call it, "unalterable" characteristics (Kaufman and Cooper, 1999). An
important premise in both arguments is that an individual could not be con-
sidered the same individual if we imagined them to have a different such
characteristic. In some sense, the protected characteristic is essential to their
identity. A counterfactual conditional of the form "x would be the case if the
individual’s protected characteristic were different" is thus meaningless.

Different lines of argument can be pursued to counter this claim. First, even
if we grant that protected characteristics are not manipulable, it is often not
the protected characteristic itself that we are interested in. Instead, most pre-
dictive modelling applications are typically concerned with relevant proxies
of the protected characteristic. These are often specific isolated aspects cor-
related with or entailed by a protected characteristic, and in most cases it
is easy to manipulate them. Say, we want to evaluate whether a predictive
model that is used for hiring decisions is biased against certain ethnicities.
The proxies for membership in a specific ethnicity that appear in the doc-
uments submitted for a job application are a person’s name, their address,
maybe even the writing style in which their cover letter is written. While it
may in practice be difficult to figure out how exactly ethnicity influences or
is correlated with all of these, it is at least clear that these variables are in
principle easily manipulable.

But one could also argue against the very claim that many protected char-
acteristics are not manipulable. An argument of this form was put forth by
Malinsky and Bright (2021). Many protected characteristics, and in particu-
lar ethnicity, race, and gender, so the argument goes, can be understood as
socially constructed categories. This means that they do not correspond to
discrete natural divisions between different groups, but rather to contingent
choices as to how to categorize human beings. Mills, for instance, argues that
we have to think of racial categories as based on a continuum of phenotypical
traits where the lines that demarcate one group from another are drawn in a
contingent way that constitutes the outcome of a social decision rather than
a biological fact (Mills, 2015, pp. 44ff). We could imagine that in a different
social and historical context, the boundaries for racial categories would have
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been drawn at different points. On this social constructionist understanding
of racial categories, a person’s racial category is not essential to their identity
but is a contingent social fact. Some people who, in the actual social context
fall into one category (e.g. Asian) would, in a counterfactual social context,
fall into a different one (e.g. White). Such a counterfactual scenario is clearly
conceivable. This, in turn, means that a person’s racial category is manipula-
ble — namely by intervening on the social context which sets the boundaries
for the racial categories. While it might in individual cases be very difficult to
work out what exactly such a counterfactual social context would look like,
it is not in principle impossible to do so. A similar argument can be made for
ethnicity and gender.

3.7 Conclusion

In this chapter I have introduced and discussed a new causal fairness crite-
rion called causal relevance fairness. The idea underlying causal relevance
fairness is that a predictor is fair only if the protected characteristic’s effect
on the prediction does not exceed its relevance for the prediction. I have
shown that the criterion is firmly grounded in ethical theories that interpret
wrongful discrimination as differential treatment on the basis of a protected
characteristic, where this treatment constitutes a failure to treat the person in
question as an individual. Moreover, I have shown that causal relevance fair-
ness, in contrast to other popular fairness criteria, can meet two challenges
that any reasonable criterion of algorithmic fairness should meet.
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Chapter 4

Reconciling Algorithmic Fairness
Criteria

4.1 Introduction

The discourse about algorithmic fairness hit a roadblock early on. Two pa-
pers independently proved that the fairness criteria equalized odds and predic-
tive parity are mutually incompatible under most circumstances (Kleinberg
et al., 2016; Chouldechova, 2017). This means, it is in most cases impossible
to satisfy both — when one is satisfied, the other must be violated. At the
same time, these impossibility results inadvertently provided a justification
for companies, governments, and other organizations to use predictive mod-
els which violate one of the fairness criteria: they could simply argue that the
model cannot but violate the criterion since it satisfies the other. To resolve
this issue, it was subsequently discussed whether one of the criteria can be
given up (see, e.g., Hellman, 2019; Hedden, 2021), whether it is context de-
pendent which criterion is to be applied (see, e.g., Loi et al., 2021), or whether
both criteria should generally be abandoned and supplanted by some other
criterion (see, e.g., Kusner et al., 2017; Dwork et al., 2012). Yet, the two cri-
teria equalized odds and predictive parity have some intuitive appeal that
makes it hard to accept any of these options. As a consequence, there is still
no consensus on how to deal with the impossibility.

In this chapter, I will argue that both criteria can be modified in a way that re-
tains their intuitive appeal and renders them universally compatible. Instead
of requiring that error rates must be equal across protected groups, I contend
that we should require that the protected characteristic does not cause error
rates to be different across groups. By the same token, instead of requiring
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that predictive value must be equal across protected groups, I argue that we
should require that the protected characteristic does not cause the predictive
value to be different for different groups. To formalize these modified ver-
sions of equalized odds and predictive parity, I will use a statistical method
called matching, which is typically used for causal inference in observational
studies.

The remainder of this chapter is organized as follows. In Section 4.2, I present
the Kleinberg-Chouldechova impossibility theorem, before discussing possi-
ble criticisms of the two criteria equalized odds and predictive parity. In
Section 4.3, I turn away from fairness for a moment, to introduce the method
of matching, which is used for causal inference in statistics. In Section 4.4, I
use the matching method to define versions of equalized odds and predic-
tive parity, which, I argue, more adequately capture the ideas underlying
equalized odds and predictive parity. As I will show, the two criteria are
universally compatible.

4.2 An interpretation of the Kleinberg-Chouldechova

impossibility

As in the previous chapters, I will focus on binary predictions (or classifi-
cations) and take the predictive model to be a function from a set of input
variables to the prediction. I will, as before, denote the variable representing
the protected characteristic with A (which will also be assumed to be binary),
the prediction with Ŷ, and the target variable that is to be predicted with Y.
Recall the definitions of the two criteria:

Definition 4.2.1 (Equalized odds). A predictive model satisfies equalized
odds (relative to protected characteristics a1, a2 ∈ DA) if and only if for all
ŷ ∈ DŶ and y ∈ DY, P(ŷ | a1, y) = P(ŷ | a2, y).

Definition 4.2.2 (Predictive parity). A predictive model satisfies predictive
parity (relative to protected characteristics a1, a2 ∈ DA) if and only if for all
ŷ ∈ DŶ and y ∈ DY, P(y | a1, ŷ) = P(y | a2, ŷ).

In most contexts, equalized odds and predictive parity cannot be satisfied
simultaneously, as was shown by Chouldechova (2017) and Kleinberg et al.
(2016). More precisely, whenever the prevalence (i.e.the probability of the tar-
get variable taking a specific value) is different for different protected groups,
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a predictive model which satisfies equalized odds must violate predictive
parity, and vice versa1. For example, a predictive model which is intended
to predict whether a defendant will re-offend (i.e. commit a future crime)
cannot at the same time produce equal error rates and have equal predictive
values for different ethnic groups, if the prevalence of reoffence (i.e. the rela-
tive frequency of defendants committing another crime in the future) differs
across these groups. To state it concisely, the theorem can be formulated as
follows:

Theorem 2 (The Kleinberg-Chouldechova impossibility). If the probability
distribution of the target variable differs across protected groups, no (imper-
fect) predictive model can satisfy both equalized odds and predictive parity.

If equalized odds and predictive parity were both universally necessary con-
ditions of predictive fairness, these impossibility results would be bad news.
It would mean that it is impossible to build truly fair predictive models.
There is, however, another way to interpret the impossibility: we can un-
derstand it as showing that we got something wrong in formalizing our in-
tuitions about what makes predictive models fair. The impossibility result
can then be seen as an indicator that we have to rethink the definitions of
the two fairness criteria and reevaluate whether they actually formalize the
intuitive ideas they are supposed to formalize.

The argument I will pursue here is along those lines. I will argue that, despite
the fact that both fairness criteria have intuitive appeal, upon closer scrutiny,
they turn out to be stronger than would be required in order to avoid certain
types of unfairness in predictive models. I will examine both criteria in turn,
beginning with equalized odds.

A reasonable interpretation of the aim behind equalized odds is that it is in-
tended as a criterion that prevents systematic cognitive bias. Systematic cog-
nitive bias can here roughly be understood as misjudging how informative a
certain trait is in predicting another trait. Assume, for example, that in mak-
ing predictions about whether someone will get lung cancer, we overestimate
how informative it is that the person smokes. More precisely, if someone is a
smoker, we predict that they will get lung cancer, and if not, we predict that

1Strictly speaking, this is only true for imperfect predictive models, that is, models that
are not guaranteed to always predict correctly. Since in real-world situations no predictive
model could ever be guaranteed to only make correct predictions, this restriction does not
limit the significance of the impossibility result.
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they will not get lung cancer. We are clearly biased with regard to smoking
in predicting lung cancer: not everyone who smokes gets lung cancer, and
some people get it without ever having touched a cigarette. It is easy to see
that this will result in different error rates for the group of smokers and the
group of non-smokers. The smokers will have a false negative rate of 0 (sim-
ply for the fact that no smoker was predicted to not get lung cancer) but a
false positive error rate above 0 (some smokers do not get lung cancer). Vice
versa, the non-smokers will have a false negative rate above 0 (there are some
who get lung cancer, but we never predict a non-smoker to get lung cancer)
but a false positive rate of 0 (because no non-smoker is predicted to get lung
cancer). One could say that this model is systematically biased with regard
to smoking in predicting lung cancer. If, however, instead of using the pre-
dictive model just described we used a predictive model which guarantees
that the error rates across smokers and non-smokers are equal, then we could
be sure that the predictor contains no such bias.

Yet, it is important to note that a violation of equalized odds across protected
groups can only plausibly be understood as an indicator and not a definition
of systematic cognitive bias. To see this, note that the statement relating er-
ror rates to bias is a conditional: if there is bias with regard to trait A, there
will be disparities in error rates between those with trait A and those with-
out. By simple logic, this implies that whenever there are no disparities in
error rates, there is no bias. Yet, it does not imply that whenever we observe
disparities in error rates between those with trait A and those without, we
can conclude that the predictor is biased with regard to A. In other words,
equalized odds relative to A is a sufficient condition for the absence of bias
with regard to A, but not a necessary one. Hence, trying to deduce that a
predictor is biased from the observation that error rates among groups differ
amounts to committing the well-known fallacy of affirming the consequent. At
best, observing disparities in error rates allows one to make an inference to
the best explanation: when disparities in error rates between two groups are
observed, and there is no other plausible explanation, then one is justified in
suspecting that this is due to bias with regard to the trait that distinguishes
the groups. This may in many cases be a plausible inference, but what mat-
ters for our purposes is that it is a fallible one.

To illustrate this with an example, imagine a health insurance company that
tries to predict the healthcare costs an individual incurs in a given year. To
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FIGURE 4.1: Two different causal models potentially producing the
same discrepancy in error rates across religious groups.

simplify things, imagine the company trying to predict only whether an in-
dividual’s annual costs are above a certain threshold. This allows us to repre-
sent the target variable and the prediction as binary variables. Now imagine
that in country C, citizens of religion R1 are, on average, younger than citi-
zens of religion R2 (we can imagine that this is due to the fact that many peo-
ple of religion R1 in C have recently immigrated, and that people generally
tend to immigrate when they are somewhat younger). Suppose that, upon
examination, the predictions turn out to have a higher false positive rate for
people with religion R1 than for people of religion R2. Can we conclude that
the predictive model the insurance company used is biased against people
of religion R1? The observation of different error rates does not conclusively
establish this. Different explanations for this discrepancy are conceivable.

Imagine first a scenario in which the insurance company uses a predictive
model which solely takes the individual’s age into account, as depicted in
Figure 4.1a. Now imagine further that the predictor is biased with regard to
age, in that it overestimates how informative young age is of risky behavior
(e.g. reckless driving or extreme sports), and hence of increased health costs.
This, as I have shown above, will obviously lead to higher false positive rates
for predictions of high health costs among young people. Because, on aver-
age, people of religion R1 are younger, and the predictive model is biased
with regards to age, it will produce predictions with a higher false positive
rate for people of religion R1.

It is arguable, however, that this predictive model is not biased against peo-
ple of religion R1. To see this, consider the following. Imagine that instead
of C, the health insurance company operated in a different country D, where
citizens of religion R2 are, on average, younger than citizens of religion R1

(again because people of religion R2 are mostly recent immigrants to D). It is
easy to see that here, the predictive model (even though it is exactly the same
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model as above) would produce predictions with a higher false positive rate
for people of religion R2 (other than in C, where the reverse was the case).
If we define bias as disparities in observed error rates, we would come to
the somewhat contradictory conclusion that the predictive model is biased
against people of religion R1, but that, had the insurance company applied
the exact same predictive model in a different country, the model would be
biased against people of religion R2. We can see that which religion a per-
son has does not, in any sense, influence the predictions (or, for that matter,
the error rates). It only happens to be the case that, in the given context, the
predictive model works on average less well for one religious group than for
another. This, I contend, should not be considered systematic cognitive bias.

Compare this with a second scenario, depicted in Figure 4.1b, in which the
insurance’s predictor takes a person’s religion into account in order to make
a healthcare cost prediction. From an observational point of view, the two
predictors’ performances might be indistinguishable, as they could both pro-
duce the same discrepancies in error rates between different religious groups.
Yet, on a narrow understanding of what systematic cognitive bias is, only the
latter can be said to be biased against people of religion R1.

This is of course not to say that disparities in error rates among different
protected groups are of no moral concern by themselves, but just that there
is a conceptual difference between matters of distributive justice and those
of systematic cognitive bias. It is problematic that the burdens of predictive
errors fall disproportionately on one religious group, as this might lead to an
unequal distribution of goods that ought to be distributed equally between
groups. Nonetheless, claiming that an algorithmic decision-making system
produces an unjust distribution of goods is not equivalent to claiming that
the predictions its decisions are based on are biased. This is an important
difference, as achieving distributive justice will most likely require different
interventions than removing bias.2

Let us now turn to predictive parity. Here, a similar observation can be made.
Imagine a medical device that tests for a specific disease. Given a person
has the disease, there is a 95% probability that the test turns out positive.
When applied to a person who is healthy, there is a 5% probability that the
test nonetheless turns out positive. This, we can imagine, can be shown to

2This was discussed in more detail in Chapter 1.
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robustly hold across genders. There is no difference whatsoever in the likeli-
hood of receiving an erroneous result, no matter whether a patient is male or
female. Intuitively, it seems, this medical testing device is not gender-biased.

But now imagine that the disease happens to occur more frequently in men.
More specifically, we can imagine that one in every ten men has the disease,
but only one in every hundred women. Then the positive predictive value,
that is, the probability of actually having the disease given that one receives
a positive test result is different for men and women. For men, it is roughly
68%, whereas for women it is only about 16%.3 This means, in this intuitively
fair case, predictive parity is not satisfied. But it seems that this is not due
to some bias in the testing device, but just to the prevalence of the disease,
which differs across genders. In other words, it is not gender that causes the
difference in predictive value (since the testing device works, by assumption,
equally well for a randomly chosen man as for a randomly chosen woman).
So it seems that here, too, we want to distinguish between discrepancies in
predictive value which are (causally) explained by gender, and discrepancies
in predictive value which are due to external factors, such as differences in
the prevalence of a disease.4

In light of these criticisms, it seems that the definitions of both, equalized
odds and predictive parity, do not adequately explicate the underlying moral
intuitions they were designed to capture5. This, in turn, could mean that the
Kleinberg-Chouldechova impossibility result is not so disastrous after all. If
neither equalized odds nor predictive parity are, as they are currently de-
fined, necessary conditions for fairness, the impossibility loses its bite. There
is a chance that the impossibility theorem is just an artifact of the way the
criteria are defined. In the remainder of this chapter, I will examine this pos-
sibility by trying to provide modified definitions of equalized odds and pre-
dictive parity which retain all the intuitively plausible aspects of the current
definitions but avoid the impossibility.

3See calculation in Appendix B.
4To my knowledge, there is only one other article that addresses the problem that dis-

crepancies in statistical fairness metrics might, in some cases, not be due to unfair bias but
to differences in the prevalence of the target variable. Eva (2022) takes this as the motiva-
tion for developing an alternative criterion of predictive algorithmic fairness for risk scoring
algorithms, which he calls base rate tracking.

5Explication is a method which seeks to turn an informal concept into an exact, formally
defined concept. For an overview of the method of explication, see, e.g., Novaes (2020).
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4.3 The matching method

I will use matching — a method for causal inference on the basis of obser-
vational data (Stuart, 2010) — to define modified versions of equalized odds
and predictive parity. In this section, I will explain the method.

The motivation behind matching stems from the following problem. In many
scenarios, it would be useful to be able to infer whether and to what de-
gree a given variable has a causal effect on some other variable. The "gold
standard" for estimating causal effects is the so-called randomized controlled
trial — a specific type of experimental study. Often, however, it is practi-
cally impossible or unethical to run experiments, or the only available data
is observational data. Think, for instance, about studying the health effects
of passive smoking on children. It would be unethical to actively expose a
group of children to secondhand smoke. Yet, there might be observational
data on the health of children who live in a home where at least one of the
parents smokes. Matching aims to, as best as possible, replicate the proper-
ties of a randomized controlled trial for observational data, to allow for the
estimation of causal effects in cases like the above, where experimental data
is unavailable.

How do randomized controlled trials work? The starting point of a typical
randomized controlled trial is to split the participants of the trial into two
groups via random selection. Random selection of participants ensures that
there are no systematic differences between the groups. If slight differences
remain, these are due to chance. In other words, randomization ensures that
the distribution of observed and unobserved properties is similar for both
groups. One group then receives some kind of treatment — accordingly, they
are called the treatment group —, while the other doesn’t — the latter are
called the control group. If it turns out that (potentially at some later point in
time) there is a statistically significant difference in some other variable (the
effect variable), it can be concluded that this must be caused by the treatment,
as due to randomization there are no other systematic differences between
the two groups. Randomization and the intervention on one group, but not
the other, make randomized controlled trials ideal for inferring causal effects.

A typical example of a randomized controlled trial is drug testing. Say, a new
drug for lowering systolic blood pressure was developed and its effective-
ness has to be evaluated. A sensible way of doing this is to select a sufficiently
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large group of people and randomly assign them to either the treatment or
to the control group. The treatment group receives the new drug while the
control group receives a placebo. After a few weeks of taking the drug, the
participants’ blood pressure is taken. If it turns out that the treatment group
has a significantly lower average blood pressure than the control group, it
can be concluded that the drug does indeed cause a lowering of the systolic
blood pressure. If, however, it turns out that the treatment and the control
group have similar average levels of blood pressure, it can be concluded that
the drug has no effect.

To highlight why for such a conclusion a randomized controlled trial is supe-
rior to a (naive) observational study, imagine the following. The drug is given
to anyone who wants it, and later the blood pressure of those who decided
to take the drug is compared to the blood pressure of those who didn’t take
the drug. Assume we don’t find any significant differences in blood pressure
between the two groups — can we conclude that the drug has no effect on
blood pressure? The answer is, of course, no. The reason why we observe
these results is, most likely, a phenomenon called confounding. Confounding
means that there is some other variable that influences the effect to be mea-
sured and, at the same time, affects who receives the treatment. In this exam-
ple, such a confounding factor could be overweight. It is likely that people
who are overweight struggle with symptoms of high blood pressure and are
therefore more interested in taking a blood-lowering drug than people with-
out any such symptoms. At the same time, being overweight often leads to
higher blood pressure. Consequently, people in the (non-randomized) treat-
ment group will most likely have a higher baseline blood pressure than peo-
ple in the control group. Now, even if the drug is highly effective in lowering
the high initial blood pressure of overweight individuals to normal levels,
we will observe no difference in average post-treatment blood levels between
the two groups. Someone who only sees the post-treatment data would be
led to falsely conclude that the drug does not make a difference. Random-
ized controlled trials allow us to control for confounding factors like, in this
case, overweight, which could influence who receives the treatment and who
doesn’t, because we would have roughly equal body weight distributions in
the treatment and control group.

When we only have observational data, we can try to mimic randomization
via matching. Instead of randomly choosing who to assign to the treatment
or control group, however, the effect of randomization is supposed to be
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achieved by using the observational data to create a synthetic control group
that does not systematically differ from the treatment group on any observed
or unobserved variables (other than the treatment variable). This is done
as follows. Assume that the data consists of information on the treatment
variable, the effect variable, and a number of other variables, which, in this
context, will be called the covariates. For each individual in the treatment
group6, we try to find an individual in the initial control group whose co-
variate values are identical or as similar as possible to the covariate values
of the individual from the treatment group. This individual is added to the
synthetic control group. We end up with a treatment and a synthetic control
group with identical or very similar distributions over the covariates. Given
certain assumptions that we will get to in a moment, this allows us to con-
clude that any significant difference between the groups with regard to the
effect variable is caused by the difference in the treatment variable.

T Blood pr. BMI

Person 1 1 85 28
Person 2 1 102 32
Person 3 1 85 23
Person 4 1 75 27
Person 5 0 82 23
Person 6 0 65 21
Person 7 0 84 19
Person 8 0 118 32
Person 9 0 80 27

(A) Original

T Blood pr. BMI

Person 1 1 85 28
Person 2 1 102 32
Person 3 1 85 23
Person 4 1 75 27
Person 9 0 80 27
Person 8 0 118 32
Person 5 0 82 23
Person 9 0 80 27

(B) Matched

TABLE 4.1: Post-treatment data (Unmatched on the left and matched
on BMI on the right).

Let us illustrate this by applying the matching method to the above example.
Table 4.2a represents a (fictitious) dataset with data on nine individuals. We
have observations on whether individuals took the supposedly blood pres-
sure lowering drug (the treatment, T), their blood pressure (measured in mil-
limeters of mercury, abbreviated as mmHg) sometime after they started tak-
ing the drug (Blood pr.), and their body mass index (BMI). We are interested

6Note that the terms treatment and control group are, in the context of observational data,
to be understood figuratively. No individual is actually assigned to a specific group. Rather,
it is the case that for some individuals, the supposed causal property is present (T = 1) —
these we call the treatment group —, and for others, it is not present (T = 0) — these we call
the initial control group. To highlight the analogy to randomized controlled trials, we will
stick to the terms.
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in whether the drug works, i.e. whether there is a causal link from taking the
drug (T) to blood pressure. If we were to follow the naive approach outlined
above, we would check whether the average blood pressure of the group that
took the drug (i.e. individuals for which T = 1) is significantly lower than
the average blood pressure of the group which didn’t (i.e. individuals for
which T = 0). Doing this, we find that the average blood pressure of indi-
viduals who took the drug is 86.75 mmHg, while the average blood pressure
of individuals who didn’t take the drug is 85.8 mmHg.

This naive analysis of the observational data seems to indicate that the drug
has the opposite effect of what we would expect — individuals who took the
blood pressure lowering drug have, on average, higher blood pressure after
taking the drug than individuals who did not take the drug. But, as explained
above, this is a false conclusion, as it is likely that there is a confounding
factor present. And indeed if we look at the BMI by group, we find that
the average BMI for individuals who took the drug is 27.5, while it is only
24.4 for the others. What we are really interested in is whether the group
of people that took the drug would, on average, have had a higher blood
pressure had they not taken the drug. This question can be addressed using
matching. If for each of the individuals who took the drug, we find one
individual with similar characteristics among those who didn’t take the drug,
and then compare the average blood pressure, this comparison will be more
meaningful. This is represented in Table 4.2b.

Note that in this context, the treatment variable is T, the effect variable is
Blood pressure, and the only covariate is BMI. In order to obtain a sample that
achieves to mimic randomization, we have to find a match for each individ-
ual in the treatment group with regard to BMI. We consequently obtain the
following matches:

• Person 1 (BMI = 28) is matched to Person 9 (BMI = 27)

• Person 2 (BMI = 32) is matched to Person 8 (BMI = 32)

• Person 3 (BMI = 23) is matched to Person 5 (BMI = 23)

• Person 4 (BMI = 27) is (also) matched to Person 9 (BMI = 27)

Note that not every match is exact, but for each individual in the treatment
group, we have taken the individual from the initial control group whose
BMI is closest. Note, moreover, that we matched Person 9 to two individuals
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from the treatment group. If we now compare the treatment and the synthetic
control group, we find that the former has a lower average blood pressure
(86.75 mmHg vs. 90 mmHg). This seems to confirm the hypothesis that the
drug does in fact help lower a person’s blood pressure, or, in other words,
that there is a causal link between taking the drug and lower blood pressure.7

Let us now address a central methodological question, namely how to choose
covariates. In order for matching to be as good a method for estimating
causal effects as randomization, it is crucial that the set of covariates contains
all the variables that influence both the causal and the effect variable (i.e. all
confounding variables). This is important because it entails that there are no
unobserved differences between the control and treatment group conditional
on the observed covariates (Stuart, 2010, pp. 3f). The assumption that this is
the case is typically called ignorability. In our example above, ignorability is
most likely not satisfied: there could be other variables that influence both
treatment and effect variable, like for instance certain pre-existing diseases,
smoking, and so on. Even though we did remove some confounding bias by
matching on BMI, we could still get a better estimate of the causal effect of the
drug on blood pressure if we had moreover matched the data on pre-existing
diseases and habits like smoking. Another important norm for choosing co-
variates is not to include any variables that are causally influenced by the
causal variable. This might lead to an underestimation of the causal effect
and thereby distort the analysis (Pearl, 2010, pp. 114-118).

Lastly, it is important to mention that there is, in fact, an entire family of
matching methods and that we could have chosen a different matching method
for the example above. The type of matching we implicitly used can be spec-
ified as Euclidean distance-based 1:1 nearest neighbor matching with replacement.
However, there is a number of choices one can make when deciding between
different matching methods. Distance, for instance, can be defined in differ-
ent ways8, as well as the strategy for choosing matches.9 Moreover, there is
a choice as to whether individuals from the initial control group can be used

7Note that this example serves the purpose of illustration only. Strictly speaking, the
difference in average blood pressure in the example is not statistically significant due to the
very small size of the sample. The example does, however, allow us to explain the idea
behind matching in an easily understandable way.

8Besides Euclidean distance, one could use Mahalanobis distance, propensity scores, or a
binary exact-match distance.

9One could choose a 1:k nearest neighbor matching method for any natural number k,
where the match is the data point obtained by averaging over the k individuals, or one
could choose a globally optimal matching method, etc.
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more than once ("with replacement") or not. The metric we have estimated
is the average treatment effect on the treated, which means we have exam-
ined whether the drug had a causal effect on the individuals in the treatment
group, but not necessarily on the individuals in the control group. As the
purpose of the present project is to present a conceptual point, the method-
ological details do not matter much. This matching method was chosen be-
cause it is the simplest method that allows us to illustrate the main idea in
the most straightforward way.

4.4 Modifying the criteria

Let us now return to the attempt to modify equalized odds and predictive
parity in a way that avoids the Kleinberg-Chouldechova impossibility. Both
fairness criteria will be considered in turn.

4.4.1 Matched equalized odds

Let us begin by laying out the intended interpretation of the fairness crite-
rion which is to replace equalized odds, which we will call matched equalized
odds. Satisfying matched equalized odds means that the relevant protected
characteristic has no direct effect on the predictor’s error rates. For example,
if a recidivism predictor satisfies matched equalized odds, then the fact that a
defendant is African American does not increase the probability of receiving
a false positive recidivism prediction.

How can we attempt to determine whether a predictor satisfies matched
equal odds? We can frame this as a causal inference problem. We are try-
ing to determine the causal effect of the protected characteristic on a pre-
dictor’s error rates. This problem, as explained in the previous section, can
be addressed using matching. We take the protected characteristic to be the
treatment variable and then specify an appropriate set of covariates. We next
create a matched control group, such that the treatment and control group
(i.e. the two protected groups) exhibit no systematic differences other than
in their protected characteristics and the predictions they receive. Then we
compare the error rates of the two groups. If and only if the error rates are
(roughly) equal, matched equalized odds is satisfied.

Some more words are to be said about the choice of covariates. The first
point is that we can, of course, only determine whether a predictor satisfies
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Actual color blindness

Sex Prediction of
color blindness

FIGURE 4.2: Direct and indirect (dashed) causal effect from Sex to the
Prediction of color blindness. Matched equalized odds is concerned only

with the direct causal effect.

matched equalized odds if the covariates satisfy the ignorability assumption.
Any reliable evaluation of a predictor’s fairness hence requires data on an
appropriate amount of variables so that we can ensure that there are no un-
observed differences between the two matched protected groups. The second
point is that, in contrast to standard applications of matching, in which we
aim to determine the total causal effect of some treatment variable on the
effect variable, we are here specifically interested in the direct effect (Avin et
al., 2005; Pearl, 2014; Weinberger, 2019) of the protected characteristic on the
prediction. More precisely, we are interested in the causal effect along those
causal paths that are not mediated by the target variable. In many cases,
namely when the protected characteristic does not influence the target vari-
able, this just is the total causal effect. But there are some cases where the
protected characteristic does in fact influence the target variable. In those
cases, we want to exclude the causal effect along this path from our analysis.
Technically, this implies that we have to include the target variable in the set
of covariates. This violation of the back-door criterion allows us to determine
the path-specific effect of the protected characteristic on the prediction.

Why should we exclude this causal path from our analysis? We do this be-
cause, from the point of view of moral permissibility, causal effects along
paths mediated by the target variable seem unproblematic. When we are
trying to predict the value of a variable, the variable that is to be predicted
should influence the prediction. Think, for instance, of a medical algorithm
to detect whether a person is color blind. Obviously, the fact that a person
is color blind should influence the algorithm’s prediction of whether they are
color blind. In the ideal case, the prediction perfectly aligns with whether
the person is actually color blind. Color blindness, however, seems to be in-
fluenced by sex-specific genetic differences (Abramov et al., 2012). This, in
turn, implies that in this example, there is a causal link from a person’s sex to



4.4. Modifying the criteria 123

the prediction of whether they are color blind via the target variable (which
represents whether they actually are color blind). Figure 4.2 illustrates this.
Since we are interested in whether discrepancies in error rates arise from an
unjustified direct influence of the protected attribute on the prediction (which
cannot be attributed to group-specific differences in the target variable dis-
tribution), we exclude the mediated causal path from our analysis. This is
achieved by adding the target variable to the set of covariates.

Let us now make the above precise by giving a formal definition of matched
equalized odds.

Definition 4.4.1 (Matched equalized odds). A predictive model satisfies matched
equalized odds (relative to protected characteristics a1, a2 ∈ DA) if and only
if for all ŷ ∈ DŶ and y ∈ DY,

FA=a1(ŷ | a1, y) = FA=a1(ŷ | a2, y),

where FA=a1 is the relative frequency function on a dataset obtained by ap-
plying matching to the original dataset such that A = a1 indicates the treat-
ment and A = a2 the control group, and where the covariates include Y.

Let us now consider whether this definition escapes the criticism against
equalized odds offered in Section 4.2. Recall that we considered the argu-
ment that equalized odds can be interpreted as a criterion against systematic
cognitive bias, where this is understood as a misjudgment of how informa-
tive a given trait is for predicting another trait. I gave an example in which a
predictor of health costs misjudges the informativeness of its only input vari-
able age, but, by assumption, not of religion (which was not among the input
variables). Its predictions nonetheless exhibit a higher false positive rate for
people of a specific religion due to the fact that members of this religious
group happen to be, on average, younger than members of other religious
groups. Despite a discrepancy in observed error rates, we would not want to
say that this predictor is unfairly biased against this religious group.

Matched equalized odds gets this right. In order to evaluate the predictor, we
would take the data on all the individuals from the relevant religious group
as the treatment group to then create a synthetic control group from the data
on individuals from other religious groups. We would do this by matching
them on a number of covariates, which (minimally) have to include age (since
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this is a confounder) and actual health costs (the target variable). This would,
consequently, result in a treatment and a synthetic control group which have
equal (or very similar) distributions for the variables age and actual health
costs. Since by assumption the predictor only takes age as an input variable,
the two groups would not exhibit significant discrepancies in error rates.

We can conclude that matched equalized odds retains the intuitive appeal
of equalized odds but can escape certain types of counterexamples, as the
health cost prediction example just illustrated. A predictor that satisfies matched
equalized odds is guaranteed to not misjudge how informative a protected
characteristic is. It does, however, allow for cases in which one protected
group happens to have a different observed error rate, provided this is not
because of the protected characteristic.

4.4.2 Matched predictive parity

We can modify predictive parity in a similar manner in order to define a crite-
rion which I will call matched predictive parity. The intended interpretation of
matched predictive parity is that the criterion ensures that the protected char-
acteristic does not influence the meaning of the prediction. Meaning is here
understood as the confidence conveyed in a given prediction. Another way
of stating this is to say that matched predictive parity ensures that the pro-
tected characteristic does not influence the predictor in a way that results in
discrepancies in (positive or negative) predictive value. While this criterion
does not prohibit that for a given protected group the predictions can hap-
pen to have a different average predictive value than for some other group,
matched predictive parity ensures that such a difference is not due to the
protected characteristic (or any of the properties affected by it).

Like before, we can frame the evaluation of whether a predictor satisfies
matched predictive parity as a causal inference problem we attempt to solve
using matching. As before, it is necessary that the target variable as well
as all confounder variables are contained in the set of covariates. In other
words, the dataset used for determining matched predictive parity is the
same one used for determining matched equalized odds. We can formally
define matched predictive parity as follows:

Definition 4.4.2 (Matched predictive parity). A predictive model satisfies
matched predictive parity (relative to protected characteristics a1, a2 ∈ DA) if
and only if for all ŷ ∈ DŶ and y ∈ DY,
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FA=a1(y | a1, ŷ) = FA=a1(y | a2, ŷ),

where FA=a1 is the relative frequency function on a dataset obtained by ap-
plying matching to the original dataset such that A = a1 indicates the treat-
ment and A = a2 the control group, and where the covariates include Y.

Can matched predictive parity handle the counterexample described in Sec-
tion 4.2? We imagined a medical testing device that, independent of gender,
has a 95% probability of correctly predicting that an individual has the dis-
ease (i.e. its true positive rate, TPR), and a 5% probability of incorrectly pre-
dicting that an individual who is actually healthy has the disease (i.e. its false
positive rate, FPR). Assuming that the disease is much more common among
men than among women, the device would produce predictions which, on
average, have a lower positive predictive value (PPV) for women than for
men. Analyzing the example, the conclusion was that the discrepancy in
predictive value should not be considered discriminatory bias despite violat-
ing predictive parity, since the discrepancy is due only to the different preva-
lence levels of the disease in women and men. It is easy to see that this device
would satisfy matched predictive parity. As a direct consequence of Bayes’
theorem, we know that generally:

PPV =
TPR ∗ p

TPR ∗ p + FPR ∗ (1− p)

where p is the prevalence of the target variable (i.e. P(Y = 1)). First, by as-
sumption, TPR and FPR do not differ across gender groups. Secondly, we are
looking at the relative frequencies obtained after matching on (among others)
the target variable. This entails that in the matched dataset, the prevalence
of the target variable is equal (or very similar) for men and for women (i.e.
pmale = p f emale). Clearly, then, the positive predictive value as well is equal
for men and for women. This indicates that matched predictive parity can
deal with certain types of counterexamples to predictive parity while retain-
ing those aspects of it which are intuitively plausible. For negative predictive
value, the reasoning is analogous.
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4.4.3 The Kleinberg-Chouldechova impossibility revisited

Let us now return to our initial question, namely whether we can understand
the Kleinberg-Chouldechova impossibility theorem as an indication that the
plausible intuitions motivating equalized odds and predictive parity have
been formalized in inadequate ways. If this is the right interpretation, then
adequately modified versions of equalized odds and predictive parity should
be universally compatible and hence escape the impossibility result. I will
now analyze whether this is the case for the two modified criteria proposed
above.

First, note that, assuming ideal matching conditions, we know that for the
relative frequency function FA=a1 on the matched dataset it is always the case
that FA=a1(y | a1) = FA=a1(y | a2) (for any two groups a1, a2 ∈ DA and all
y ∈ DY). This simply follows from the fact that we are required to include
the target variable Y in the set of covariates. The matching thus results in a
dataset where the distribution of Y is identical for both groups a1 and a2. We
can now show that matched equalized odds and matched predictive parity
are not only universally compatible, but they moreover turn out to be math-
ematically equivalent.

Proof. To see this, it will first be shown that if a predictive model satisfies
matched equalized odds, it also satisfies matched predictive parity. To this
end, assume we want to evaluate the predictive model relative to a1, a2 ∈ DA.
By the assumption of matched equalized odds, the predictive model satisfies

FA=a1(ŷ | a1, y) = FA=a1(ŷ | a2, y) (4.1)

for all y ∈ DY and ŷ ∈ DŶ. From this assumption, together with the equality
stated above, it follows that:

FA=a1(ŷ | a1, y) ∗ FA=a1(y | a1)

FA=a1(ŷ | a1, y) ∗ FA=a1(y | a1) + FA=a1(ŷ | a1,¬y) ∗ FA=a1(¬y | a1)
=

=
FA=a1(ŷ | a2, y) ∗ FA=a1(y | a2)

FA=a1(ŷ | a2, y) ∗ FA=a1(y | a2) + FA=a1(ŷ | a2,¬y) ∗ FA=a1(¬y | a2)

(4.2)
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where y and ¬y abbreviate Y = 1 and Y = 0, respectively. By Bayes theorem,
it follows that for all y ∈ DY and ŷ ∈ DŶ:

FA=a1(y | a1, ŷ) = FA=a1(y | a2, ŷ) (4.3)

This is the definition of matched predictive parity. We have hence shown that
matched equalized odds implies matched predictive parity. Likewise, if we
assume matched predictive parity, i.e. that (given fixed a1 and a2 ∈ DA), for
all y ∈ DY and ŷ ∈ DŶ the predictive model satisfies

FA=a1(y | a1, ŷ) = FA=a1(y | a2, ŷ), (4.4)

we can, together with the assumption that

FA=a1(y | a1) = FA=a1(y | a2), (4.5)

use Bayes theorem to show that this implies matched equalized odds. As
both directions of the proof have an identical structure, the proof that matched
predictive parity implies matched equalized odds is omitted.

The upshot of the above is that the infamous impossibility theorem loses its
force when we consider adequately modified versions of equalized odds and
predictive parity. From a normative point of view, the modifications can be
justified by considering counterexamples where the original criteria seem too
demanding (as done in Section 4.2). Modifying the two criteria accordingly
not only allows us to rebut the counterexamples but moreover resolves the
Kleinberg-Chouldechova impossibility. Surprisingly, under perfect matching
conditions, the two criteria even turn out to be equivalent. This can be inter-
preted as meaning that we have found the unique and robust baseline notion
of algorithmic fairness which can be strengthened in at least two (mutually
inconsistent) ways.

This conclusion, however, has to be qualified in one respect. We assumed for
the proof that the matching conditions are ideal and that hence
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FA=a1(y | a1) = FA=a1(y | a2) (4.6)

holds for any two groups a1, a2 ∈ DA and all y ∈ DY. In many realistic
situations, however, the conditions for matching are not ideal. Especially if
there is a big number of covariates, it is unlikely that for every individual in
the treatment group one can find an exact match in the control group. But
only exact matching can guarantee the above equality. Typically, the meth-
ods of choice are distance-based or propensity score matching. Both can give
very good results in that the distributions over individual covariates in the
treatment and control group are very similar in the matched dataset. Yet,
these two methods cannot guarantee identical distributions over the covari-
ates. The following two theorems, however, show that even though the im-
possibility persists under imperfect matching10, the smaller the difference in
prevalence, the smaller the trade-off between equalized odds and predictive
parity. More precisely, if equalized odds is satisfied, then the smaller the
difference in prevalence between the groups, the smaller the difference in
positive and negative predictive value. Conversely, if predictive parity is sat-
isfied, then the smaller the difference in prevalence between the groups, the
smaller the difference in false positive and false negative error rates. Proofs
for the theorems can be found in Appendix B.

Theorem 3. Suppose a predictive model satisfies equalized odds (relative
to a1 and a2 ∈ DA). Let ∆p denote the difference in prevalence between two
groups a1 and a2, and let ∆PPV(∆p) and ∆NPV(∆p) denote the functions
which return the difference in positive predictive value and the difference in nega-
tive predictive value between the groups for a given value of ∆p, respectively.
Then ∆PPV(∆p) and ∆NPV(∆p) are both monotonically increasing in the
interval (0, 1).

Theorem 4. Suppose a predictive model satisfies predictive parity (relative
to a1 and a2 ∈ DA). Let ∆p denote the difference in prevalence between two
groups a1 and a2, and let ∆FPR(∆p) and ∆FNR(∆p) denote the functions
which return the difference in false positive and the difference in false negative
error rates between the groups for a given value of ∆p, respectively. Then
∆FPR(∆p) and ∆FNR(∆p) are both monotonically increasing in the interval
[0, 1].

10Note that this is only a relaxation of the assumption that the distribution of the target
variable is identical for both groups. We still assume that the ignorability assumption holds.
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These two theorems hence provide evidence that the more closely matched
the data is, the more closely we are approximating the underlying criteria of
fairness.

4.5 Conclusion

In this chapter, I have argued that, in light of the Kleinberg-Chouldechova
impossibility, the two fairness criteria equalized odds and predictive parity
seem too demanding. I have further argued that using the causal inference
method matching, we can modify both criteria in a way that retains their
intuitive appeal but makes them compatible. I was able to show that the
modified versions of equalized odds and predictive parity are not only com-
patible but equivalent. Moreover, I have shown that an approximate version
of this result holds when perfect matching is not possible.
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Chapter 5

Case Study: COMPAS Recidivism
Scores

5.1 Introduction

In 2016, ProPublica, an investigative journalism organization, published an
article (Angwin et al., 2016) in which the authors aimed to show that the al-
gorithmic decision support systems used in criminal sentencing in some US
states exhibit significant racial bias. In their analysis, they focussed on a tool
called COMPAS, developed and distributed by the company Northpointe,
which calculates recidivism risks. More specifically, it predicts the probabil-
ity that a defendant will commit another crime within some time after their
trial. The risk score is based on a detailed questionnaire that the defendants
have to complete.

The analysis of the COMPAS algorithm found that while the overall accu-
racy of the predictions was roughly the same for Black (67%) and for White
(69%) defendants, the two groups differed significantly in their respective er-
ror rates: the false positive rate for Black defendants was 45%, while only 23%
for White defendants — indicating that Black defendants were twice as often
incorrectly classified as future recidivists; at the same time, the false negative
rate for Black defendants was 28%, while 48% for Whites — which means
that White defendants who would actually go on to commit further crimes
after trial were much more likely to nevertheless receive a low risk score. This
was taken to show that COMPAS’ predictions were biased against Blacks and
that they could potentially result in discriminatory sentencing decisions.

Northpointe contested the claims (Flores et al., 2016), arguing that since the
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algorithm can be shown to be well-calibrated by group (which entails predic-
tive parity), it cannot be considered unfairly biased. In the COMPAS case,
this specifically means that for both groups, Blacks and Whites, of those de-
fendants that were assigned x% risk of recidivating by the algorithm, a pro-
portion of roughly x% did indeed turn out to recidivate. Northpointe argued
that if a predictor does not yield results that are calibrated by group, the
predicted probability estimate would not have a consistent meaning across
different demographic groups. This sparked the debate about the adequacy
of different fairness criteria, and in particular about the question of which
criterion ought to be applied in order to evaluate the COMPAS algorithm.

In this chapter, I will show how the previously developed fairness criteria
(causal relevance fairness, matched equalized odds, matched predictive parity) can
be applied to the COMPAS algorithm. For causal relevance fairness, this
means testing the hypothesis that the influence of the variable ethnicity on the
COMPAS recidivism risk predictions exceeds its relevance for those predic-
tions. For matched equalized odds and matched predictive parity it means
creating a data set matched on, among other things, the variable representing
recidivism, to check whether in this matched data set both groups have equal
error rates and predictive values.

The rest of the chapter is structured as follows. In Section 5.2, I will intro-
duce the data set this case study is based on and conduct a brief exploratory
analysis of the data. In Section 5.3, I will present the analysis of the COM-
PAS algorithm with regard to causal relevance fairness. In Section 5.4, I will
present the analysis for the two criteria matched equalized odds and matched
predictive parity. Section 5.5 discusses the results of both analyses.

5.2 An exploratory analysis of the COMPAS data

The analysis is based on the data set made available by ProPublica1. To
create the data set, ProPublica merged COMPAS scores obtained from the
Broward County Sheriff’s Office in Florida with public criminal records from
the Broward County Clerk’s Office website. The resulting data set contains 7214
entries, each representing one defendant. The features of interest to our anal-
ysis are age, the charge degree (which takes values “M” for misdemeanor, or “F”
for felony), ethnicity, the number of prior convictions, the risk score assigned by

1https://github.com/propublica/compas-analysis (Accessed: 4 October 2021).

https://github.com/propublica/compas-analysis
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(A) Predicted recidivism risk (B) Actual recidivism

FIGURE 5.1: Proportion of outcomes by ethnicity

the COMPAS algorithm, and whether defendants actually recidivated within
two years after their trial.

In line with ProPublica’s analysis, I removed a number of rows from the data
set. First, those for which the date of the COMPAS evaluation was more than
30 days after the arrest, as this could indicate that the recorded COMPAS
score is not for the recorded crime the defendant was arrested for. Second,
those for which there was no COMPAS risk score. Third, those for which
the charge was an ordinary traffic offense. Since in this analysis the focus
is supposed to be on the difference between defendants identified as ethni-
cally Black ("African American" in the data set) and those identified as White
("Caucasian" in the data set), I removed all those data points where the defen-
dants’ ethnicity was neither recorded as "Caucasian" nor "African American".
This results in a data set containing 5278 entries.

These 5278 defendants can be divided into 3175 African American and 2103
Caucasian defendants, 4247 male, and 1031 female defendants. Of the defen-
dants, 2002 received a high risk score (above five on the ten-point scale); 2647
did in fact recidivate. Like ProPublica, we will interpret a risk score of above
five as the prediction that a defendant will recidivate within two years.

Of the African American defendants, 1506 were categorized as high risk (i.e.
above 5) by the COMPAS algorithm, and 1661 did actually recidivate. Of
the Caucasian defendants, 496 were categorized as high risk, and 822 did
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FIGURE 5.2: Proportion of predicted recidivism by ethnicity and age
group

recidivate.

If we look at how risk scores are distributed among different age categories,
we notice that for those below 25, more than half of the defendants received
a high risk score by the COMPAS algorithm, while for those between 25 and
45 it was still a significant portion — about one third. For those above 45
it is only a relatively small fraction. This distribution is similar for actual
recidivism.

If we look at risk scores and actual recidivism by ethnicity while control-
ling for age, we find that young and middle-aged African Americans are the
group that had the greatest proportion of high risk predictions (see Figure
5.2). This is also the case for actual recidivism (see Figure 5.3). But, compar-
ing the two box plots, it is striking that especially in the middle-aged group
(25-45 years) the proportion of Caucasians that received a high risk score is
significantly lower than the proportion that actually recidivated, while for
African Americans the proportions of predicted high risk of recidivism and
actual recidivism are more closely aligned.

To get a more precise sense of the disparities between African American and
Caucasian defendants in terms of risk scores and actual recidivism, we can
perform two t-tests in order to assess whether the seeming disparities are due
to chance or whether we can assume that there are underlying systematic dif-
ferences that drive the observed results. The t-test for a high risk evaluation
yields a difference in proportion of 0.24. The 95% confidence interval for the
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FIGURE 5.3: Proportion of actual recidivism by ethnicity and age
group

difference in proportion of high risk evaluations ranges from 0.21 to 0.26.
On the other hand, the t-test for actual recidivism yields a difference in pro-
portion of 0.14 (with a 95% confidence interval from 0.12 to 0.17), which is
significantly lower than the difference in proportion of a high risk evalua-
tion. In words, this means that the proportion of defendants that are catego-
rized as high risk is 24% higher in the group of African Americans than it is
in the group of Caucasian defendants. However, the proportion of African
Americans in our sample that actually recidivates is only 14% higher than
the proportion of Caucasians.

Note that the above differences result from comparisons in which no other
variables were controlled for. Running a multivariate logistic regression for
both, high risk evaluation and actual recidivism, while controlling for age,
sex, number of priors, and charge degree, yields that for an average African
American defendant, the probability of a high risk evaluation is 11% higher
than for a Caucasian defendant, but the probability of actual recidivism is
only about 1% higher.

5.3 Causal relevance fairness

Let us begin with an examination of whether the COMPAS recidivism risk
model is biased using the causal relevance fairness criterion developed in
Chapter 3.
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Recall that causal relevance fairness formalizes the idea that a prediction is
fair (relative to a specific protected characteristic, in this case ethnicity), only if
the influence of the protected characteristic on the prediction does not exceed
its relevance. Expressed mathematically, this means we need to consider two
causal quantities: the influence of the protected characteristic on the predic-
tion, which we define as the causal effect of the protected characteristic on
the prediction, and the relevance of the protected characteristic for the pre-
diction, which we define as the causal effect of the protected characteristic on
the target variable we aim to predict. In the COMPAS case, we thus need to
estimate the causal effect of ethnicity on recidivism risk predictions by COM-
PAS (the influence), and the causal effect of ethnicity on whether defendants
actually recidivate (the relevance).

Note that, for practical reasons, we here consider a slight generalization of
causal relevance fairness. While initially, the criterion was defined on the basis
of token-causal effects — that is, on the basis of whether a specific individual
would have received the same risk prediction had they been of a different
ethnicity — we here consider whether on the aggregate level those causal
effects can be detected. This is because it is easier to estimate aggregate-level
causal effects with relative reliability than token-level causal effects. We can
take aggregate-level causal effects as indicative of the presence of token-level
causal effects.

5.3.1 The matching method

To estimate the two causal quantities, the method of matching is used.2 We
could have chosen to use other causal inference methods because the defi-
nition of causal relevance fairness (as opposed to matched equalized odds
and matched predictive parity) does not prescribe the use of one particular
method. Matching, however, will in this case prove to be a convenient way
to estimate the relevant causal quantities.

Recall that matching is a causal inference method that is inspired by the idea
of randomization in experimental studies. The central point is to create a syn-
thetic control group that is as similar as possible to the treatment group with
regard to some relevant variables (the covariates). By ensuring similar distri-
butions over the covariates we can be confident that any observed difference

2For a more detailed explanation of the theory underlying the matching method, see
Chapter 4.
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in outcomes is only due to the causal ("treatment") variable. As matching is
usually applied within the potential outcomes framework for causal inference in
statistics, we will adopt this framework here as well (Rubin, 2005).

In a nutshell, the idea of the potential outcomes framework is the follow-
ing. Assume we are interested in the effect of treatment T on outcome O,
where X are the covariates. Moreover, assume our sample consists of n indi-
viduals. For every individual i, we can define two quantities: the potential
outcome under treatment, expressed as Oi(Ti = 1), and the potential out-
come under control, expressed as Oi(Ti = 0). As an individual can only
ever be in either the treatment or the control group, we can, of course, only
measure either of the two quantities. The other is a counterfactual quan-
tity. The causal effect of T on O (for individual i) can then be expressed as
the conditional expectation3 of the difference between the two quantities, i.e.
E(Oi(Ti = 1) | X)− E(Oi(Ti = 0) | X) for i ∈ {1, ..., n} (Stuart, 2010, p. 3). To
obtain the aggregate-level causal effect, in addition, we need to average over
all the individual causal effects.

In the present case, this means we take the group of African Americans and
construct a synthetic control group of Caucasian defendants that match the
African Americans on a number of relevant covariates, which we will deter-
mine in a moment. The frequency distribution over the covariates should
be as similar as possible for African American and Caucasian defendants.
We then determine (1) the causal effect of ethnicity on COMPAS recidivism
predictions, and (2) the causal effect of ethnicity on actual recidivism.

To formalize this, let A denote ethnicity (where Ai = 1 is to be interpreted as
individual i being identified as African American, and Ai = 0 as i being iden-
tified as Caucasian, respectively), Y whether a defendant actually reoffends,
Ŷ whether a defendant is predicted to have a high risk of recidivism, and X
the set of covariates. We can then define the (average) influence of ethnicity on
the recidivism risk prediction as follows:

α =
∑i∈{1,...,n}(E(Ŷi(Ai = 1) | X)− E(Ŷi(Ai = 0) | X))

n
(5.1)

3The conditional expectation can be understood as the average value a random variable
would take on in the long run. It is defined as

E(X | Y) = ∑
x

xP(X = x | Y)

.
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Analogously, we define the (average) relevance of ethnicity for recidivism risk
predictions as follows:

β =
∑i∈{1,...,n}(E(Yi(Ai = 1) | X)− E(Yi(Ai = 0) | X))

n
(5.2)

The hypothesis that the COMPAS algorithm does not satisfy causal relevance
fairness can hence be expressed as the former being greater than the latter:

α > β (5.3)

5.3.2 Modelling assumptions

In order to determine the covariates, we need to assume a qualitative causal
model of the variables in the dataset. The focus here is the potential causal
link from ethnicity to the predicted recidivism risk Ŷ as well as to whether
someone actually reoffends (Y). We assume there could potentially be a la-
tent common cause of ethnicity, charge degree, and number of prior convictions.
This latent variable could be something like the family an individual is born
into, which might determine or at least partially influence genetic factors, so-
cioeconomic level, exposure to violence, and so on. Further, we will draw
links from age and sex to charge degree and number of prior convictions. This
seems reasonable, as there is evidence that both sex (see, e.g., Mawby, 1980)
and age (see, e.g., Ulmer and Steffensmeier, 2014) have an effect on criminal
behavior. No link is drawn from ethnicity to either number of prior convictions
nor charge degree, as studies indicate that if one controls for the right back-
ground variables, the correlation between ethnicity and crime rates vanishes
(see, e.g., Ulmer et al., 2012).

Based on the COMPAS handbook4, we know that sex, age, and criminal be-
havior are taken into account by the COMPAS algorithm, and hence we can
assume they potentially have a causal effect on the risk prediction. While
ethnicity is not explicitly recorded in the data on which the prediction is
based, there may be proxies for ethnicity in the data. This makes it possible
that ethnicity causally influences the risk prediction without being explicitly

4https://www.equivant.com/wp-content/uploads/Practitioners-Guide-to-COMPAS-Core-040419.
pdf (Accessed: 5 April 2022).

https://www.equivant.com/wp-content/uploads/Practitioners-Guide-to-COMPAS-Core-040419.pdf
https://www.equivant.com/wp-content/uploads/Practitioners-Guide-to-COMPAS-Core-040419.pdf
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FIGURE 5.4: Causal graph

recorded in the dataset. Figure 5.4 graphically summarizes our causal judg-
ments.

Further potential confounding factors for the risk prediction could include
socioeconomic status and previous exposure to crime, which are not included
in the dataset. However, assuming that the number of priors and charge
degree are sufficiently correlated with these potential confounders and that
they can hence be considered proxies, justifies the assumption that we have
sufficiently precise observations of all the factors that influence the risk pre-
diction. This assumption, as explained in Section 4.3, is called ignorability and
is a precondition for reliably inferring causal effect magnitudes via matching.

Given the causal graph above, it seems plausible to include the four variables
age, sex, number of prior convictions, and charge degree in the set of covariates
in order to create a matched control group. Since our set of covariates is not
highly dimensional, we can use a distance-based matching method5. Specifi-
cally, we will use a method based on the Mahalanobis distance measure, which
is a common choice in comparable studies.

We defined being identified as African American as the treatment and be-
ing identified as Caucasian as the control group property. Since the number
of observations in the treatment group is significantly greater than the num-
ber of observations in the control group, we will use a matching procedure
with replacement. This means some of the data points describing Caucasian
defendants will be used more than once in estimating the causal effect.

Two matching methods will be tried out: 1:1 and 2:1 nearest-neighbors match-
ing. This means, for each African American defendant we will add the single

5In highly dimensional space, distances converge and hence become meaningless. This
is known as the curse of dimensionality (see, e.g., Beyer et al., 1999).
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(A) Age (B) Count of prior convictions

FIGURE 5.5: Balance of covariates Age and Count of prior convictions
after 1:1 matching

FIGURE 5.6: Summary covariate balance after 1:1 matching

most similar Caucasian defendant to the dataset (1:1). Then we will compare
this to matching each African American defendant to the average of the two
most similar Caucasian defendants (2:1). Depending on which of the two
methods yields the better balance between samples, we will make our choice
of matching method for estimating the treatment effect. Let us first analyze
the adjusted sample using 1:1 matching.

For sex and charge degree, the plot indicates that we achieved a (close to) per-
fect balance, and also for age (see Figure 5.5a) and number of prior convictions
(see Figure 5.5a) it looks like the balance the 1:1 matching achieves is suffi-
cient. If we look at the standardized difference in means6 for the adjusted
sample, we see that with sex we indeed have a perfect match, with charge
degree we have a negligible difference of 0.0006, for age 0.0033, and for priors
count 0.0104. This is by all standards a very close match. The numbers are
summarized in Figure 5.6.

Next, we will perform 2:1 matching and see whether we can improve the
balance achieved by 1:1 matching. Again, the diagrams indicate that our
adjusted sample matches the treatment group relatively closely.

More precisely, there is no difference in means for sex, and a negligible one for

6That is, the mean difference expressed in units of standard deviation. Standardizing the
mean difference helps make differences better interpretable across variables. This is standard
practice in matching (Rubin, 2001).
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(A) Age (B) Count of prior convictions

FIGURE 5.7: Balance of covariates Age and Count of prior convictions
after 2:1 matching

FIGURE 5.8: Summary covariate balance after 2:1 matching

charge degree (0.0009), the standardized difference in means for age has gone
down by a very small degree (to 0.0003) but the difference in means for the
number of prior convictions has doubled to 0.0203 (see Figure 5.7 and Figure
5.8). Since a good balance on the number of prior counts seems desirable, we
are consequently going to use 1:1 matching for our estimation of the causal
effects.

Before we begin the estimation of the causal effect, we have to address the
question of whether we should estimate the average treatment effect (ATE)
or the average treatment effect for the treated (ATT). The latter would be a
good choice in those cases in which we are more interested in the treated
population. An example of this sort is smoking: what a study on the effects
of smoking intends to assess is what would have been the case if the smoker
had not smoked. It is less interesting to ask what would have happened if a
given non-smoker would have smoked. In our case, however, we are inter-
ested in both counterfactuals. How would the risk evaluation have differed
if a given person would have been of Caucasian rather than African Amer-
ican ethnicity? And, equally relevant, how would the risk evaluation have
differed if a given person would have been of African American rather than
Caucasian ethnicity? Estimating the ATE can be problematic if there is no
sufficient overlap between the treatment and the control group. This, how-
ever, is not the case in our sample, as the foregoing analysis has shown.
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FIGURE 5.9: Comparison of causal estimates. The circles represent
the estimated ATE, the lines represent the corresponding 95% confi-

dence intervals.

5.3.3 Results

The estimated difference in proportion for a high risk prediction is 0.094. In
other words, being African American makes it almost 10% more likely to be
predicted to be at high risk of recidivism by the COMPAS algorithm as com-
pared to being Caucasian. The standard error of our estimate is 0.014. The
p-value is well below the 0.01 level of statistical significance. Given that our
ignorability assumption holds, we can conclude that the ethnicity of a defen-
dant does indeed have a significant effect on the COMPAS recidivism risk
prediction. These results are relatively robust with regard to the influence of
unobserved confounders.7

To contrast this with the results for actual recidivism, we find that the esti-
mated difference in proportion from the adjusted sample is only 0.020. The
standard error of this estimate is 0.015, and the p-value is 0.19. This means
the result is not significant at any conventional level of statistical significance.
We have to conclude that our analysis does not establish a causal link be-
tween ethnicity and actual recidivism. In other words, being African Ameri-
can (rather than Caucasian) does not make one more likely to re-offend. This
is in line with scientific evidence on racial disparities in crime behavior (see,
e.g., Ulmer et al., 2012).

The investigation confirms the hypothesis that α > β, that is, the influence of

7To check how robust our results are with regards to unobserved confounders, we can
conduct a sensitivity analysis using Rosenbaum bounds (Rosenbaum, 2002). The upper
bound of the p-value remains below the 0.01 level of significance up to a gamma value of 1.7
— that is, we would only change our conclusion if there were an unobserved characteristic
that is associated with high risk scores and that is 1.7 times more common among African
Americans rather than Caucasian defendants. While this shows that our causal estimate is
somewhat sensitive to the presence of unobserved confounders, the result that conclusions
are only valid up to such a confounding level is not uncommon in the social sciences (see,
e.g., Becker and Caliendo, 2007, p. 80).
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FIGURE 5.10: Summary covariate balance after 1:1 matching

ethnicity on the recidivism risk prediction exceeds its relevance. The COM-
PAS recidivism risk predictions hence do not satisfy causal relevance fair-
ness, provided our modeling assumptions hold.

5.4 Matched equalized odds and matched predic-

tive parity

Next, we shall examine the COMPAS recidivism risk model according to the
two fairness criteria developed in Chapter 4. Recall that in order to evaluate
those criteria, we need to consider a matched dataset where the target vari-
able is among the covariates. Matched equalized odds is defined as equal false
positive and false negative error rates on this dataset, whereas matched pre-
dictive parity is defined as equal positive and negative predictive values on
this dataset. If the two criteria are satisfied, we can interpret this as showing
that ethnicity does not have an effect on COMPAS’ error rates and predictive
values, respectively.

5.4.1 The matched dataset

Other than in the previous section, we here need to include information on
whether the defendant actually recidivated in the set of covariates on which
we match the data points. As before, we will compare 1:1 and 2:1 nearest-
neighbors matching. For both, Mahalanobis distance will be used to deter-
mine closeness, as well as matching with replacement.

Again, 1:1 matching provides a slightly more closely matched dataset. The
covariate balance is represented in 5.10. Note, in particular, the almost exact
match on the target variable (whether a defendant recidivated within two
years). The standardized mean difference is 0.0002. This is important because
it means that the recidivism base rates for both, African Americans as well
as Caucasians, are only negligibly different. This, as shown in Section 4.4,
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FIGURE 5.11: Comparative false negative and false positive rates,
and positive and negative predictive values for African American
and Caucasian defendants as well as overall values (in the matched

dataset).

resolves the incompatibility between equalized odds and predictive parity.
If COMPAS were perfectly fair, we could expect its error rates and predictive
values on this dataset to be equal for both groups.

The modelling assumptions for this analysis are, as in the previous section,
that the causal relationships of the relevant variables are as depicted in Figure
5.4, and that consequently the set of covariates age, number of prior convictions,
sex, charge degree, and whether they recidivated suffices to satisfy the ignorability
assumption.

5.4.2 Results

We can now use the matched dataset to check whether the COMPAS risk
predictions satisfy matched equalized odds and matched predictive parity.

First, we find that matched equalized odds is not satisfied. In the matched
dataset, the false negative error rate is still significantly lower for African
American defendants than for Caucasian defendants (40% vs 53%), while
the reverse is true for false positive rates (28% vs 18%). This means that
there are discrepancies in error rates that cannot be explained away by dif-
ferences in base recidivism rates (which are overall higher for the African
American defendants in the dataset) and other variables. Recall that in the
initial dataset, the discrepancy in false negative rates was 20%, whereas in
the matched dataset it is only 13%. Hence, a discrepancy of only 7% can
be explained away. We see a similar pattern for false positive rates. Here,



5.5. Discussion 145

the discrepancy in the initial dataset was 23%, which shrunk to 10% in the
matched dataset. Hence, 13% of the discrepancy can be explained away, but
the remaining discrepancy of 10% must be assumed to be due to the differ-
ence in ethnicity.

Secondly, we find that matched predictive parity is not satisfied either. It has
to be acknowledged, though, that the discrepancies in predictive values are
much less striking than the discrepancies in error rates. The positive pre-
dictive value for African American defendants is 62%, while it is 67% for
Caucasian defendants. Hence, a discrepancy of 5% can be attributed to racial
bias. The same is true for a 3% discrepancy in negative predictive value (the
negative predictive value for African American defendants is 70% and 67%
for Caucasian defendants).

5.5 Discussion

The above analyses confirm the hypothesis I initially set out to investigate,
namely the claim that the COMPAS algorithm is racially biased. It shows
that higher average risk predictions for African American defendants can-
not be explained away as mere correlations that come about through differ-
ences in other factors (such as for instance, different base recidivism rates,
different age distributions, or different average socioeconomic levels). Nor
can different error rates or predictive values be explained away by those fac-
tors. Being African American makes a systematic difference to COMPAS’ risk
predictions and to how accurate they are. The evidence, however, does not
lend credence to the claim that being African American makes a difference
to whether someone actually ends up reoffending — which could potentially
have justified these disparities to some degree.

Our investigation hence supports ProPublica’s hypothesis that the COMPAS
recidivism risk predictions are not fair, yet it does so from a different per-
spective than ProPublica’s own analysis. Applying causal relevance fairness,
matched equalized odds, and matched predictive parity as criteria of fairness gives
us, at least in principle, a more robust assessment of racial bias than merely
comparing different error rates between ethnic groups. The reason for this is
that we aim at identifying the cause of the disparity in the outcome, rather
than just observing a correlation between ethnicity and higher or lower error
rates. Comparing only observed error rates (as done by ProPublica) might



146 Chapter 5. Case Study: COMPAS Recidivism Scores

lead to skewed results if there are unobserved factors present that are corre-
lated with ethnicity and which incorrectly drive the predictions in one direc-
tion.

Yet, this robustness comes at a price. The assumptions we have to make in
order to conduct the analysis of whether an algorithm satisfies these causal
criteria of fairness are stronger than the assumptions ProPublica needed to
make to check for equal error rates. This is particularly problematic when
the full dataset on which predictions were based is not available because
then there is no guarantee that the crucial ignorability assumption holds. A
potential confounder we did not control for is socioeconomic status. Our
analysis implicitly relied on the assumption that charge degree and number of
prior crimes are sufficiently correlated with socioeconomic status, such that
matching on these variables also yields a balanced distribution of socioeco-
nomic status. Hence the validity of our fairness evaluation depends on the
plausibility of this assumption.

5.6 Conclusion

In this chapter, I have attempted to assess the hypothesis that COMPAS —
a computational tool used in some US courts for assessing defendants’ risk
of recidivism — is racially biased against African Americans. In order to do
so, I applied three previously developed criteria of fairness. As it turned
out, the analysis confirmed the hypothesis: based on the available data, it
seemed that none of the three fairness criteria were satisfied by the COMPAS
algorithm. I ended with a discussion of the assumptions we had to make to
arrive at our conclusions.
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Conclusion

The point of departure for this thesis was that in the discussion around al-
gorithmic fairness there is a gap to be filled between philosophy and com-
puter science: philosophers, I argued, ought to engage in more depth with
proposed technical solutions to the problem(s) of algorithmic fairness, while
computer scientists ought to engage in more depth with the normative the-
ory that motivates them.

How, then, did this thesis contribute to filling this gap? I began by introduc-
ing a conceptual distinction between the ethics of algorithmic predictions —
predictive algorithmic fairness — and the ethics of decisions based on algorith-
mic predictions — allocative algorithmic fairness (Chapter 1). This served as a
precondition for an orderly discussion of algorithmic fairness, as it allowed
us to put aside questions of distributive justice, which belong to the norma-
tive realm of decision-making. Instead, we were able to focus on the norma-
tive realm of predictions, which is to ensure the absence of discriminatory
bias.

Zeroing in on predictive algorithmic fairness, I then started to investigate
the role and use of causal reasoning in algorithmic fairness (Chapter 2). The
starting point was a popular causal criterion of predictive algorithmic fair-
ness called counterfactual fairness. I showed that under certain conditions,
counterfactual fairness and two other popular and intuitively appealing cri-
teria of fairness, namely equalized odds and predictive parity, are pairwise
incompatible. The upshot of this investigation was the following. If we deem
the relevant type of situation conceivable, insist that there always has to be
a fair way of making predictions, and are unwilling to simultaneously give
up equalized odds and predictive parity, then we have to weaken, replace, or
fully give up counterfactual fairness. This follows from the logical relations
between the three different mathematical fairness criteria alone.
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This motivated the investigation into the normative roots of the logical im-
passe in the next chapter (Chapter 3). I argued that the central wrong in-
volved in biased algorithmic predictions is a failure to treat a person as an
individual. If understood as a constraint aimed at prohibiting this type of
wrong, counterfactual fairness is too strong a criterion to ensure fair predic-
tions. I consequently developed a weakened version of counterfactual fair-
ness — causal relevance fairness -, which is more closely in line with moral
theory and which avoids the logical impasse. Causal relevance fairness is
firmly grounded in moral theory but is defined as a formal criterion that can
be applied in a straightforward and rigorous manner to evaluate the fairness
of a given predictive algorithm.

Next, I turned to another logical incompatibility that had beset the discussion
around algorithmic fairness, namely the incompatibility between equalized
odds and predictive parity (Chapter 4). Examined through a causal lens, it
seemed that the incompatibility is due to an overly strong formalization of
two intuitively appealing aspects of fairness. As in the previous chapter, I
showed how the criteria can be modified in a way that retains their intuitive
appeal but resolves the incompatibility. As it turned out, thus modified the
criteria did not only become compatible but equivalent: whenever one is
satisfied, the other is as well.

The last chapter (Chapter 5) aimed to demonstrate the practical usefulness of
the foregoing philosophical investigations. In it, I examined data on the infa-
mous COMPAS tool, a tool that predicts how likely it is that a defendant will
recidivate. I used the previously developed criteria of predictive algorithmic
fairness to evaluate the fairness of the tool. The study confirmed the hypoth-
esis that COMPAS is unfairly biased against African American defendants.

The upshots of this thesis will hopefully be of interest to philosophers and
computer scientists alike. From a philosophical point of view, this thesis
aimed to raise and clarify a number of conceptual, logical, and normative
issues in the discussion of algorithmic fairness. From a technical point of
view, it aimed to show how moral theory can be translated into applicable
mathematical fairness constraints for machine learning algorithms.

If this thesis was successful in its aim, it will have shrunk the gap between
philosophy and computer science. Yet, much is left to be done. To conclude
this thesis, I will provide a brief overview of three possible avenues for future
work.



5.6. Conclusion 149

First, an examination of the question of whether there is a tension between
rationality constraints and the three fairness criteria developed in this work.
For many existing fairness criteria, it was shown that (at least under non-
ideal circumstances) enforcing the criteria engenders a decrease in prediction
accuracy (see, e.g., Menon & Williamson, 2018; Chen et al., 2018). Ideally,
a predictive fairness criterion should be such that being fair is compatible
with being maximally accurate. Future work could address whether this is
the case for causal relevance fairness, matched equalized odds, and matched
predictive parity. If not, it would be valuable to rigorously characterize the
trade-off.

Secondly, an examination of the potential risks of fairness gerrymandering.
A common worry regarding fairness criteria is that it might be possible for
the creators of unfair prediction algorithms to (superficially) manipulate the
algorithm or their data in a way such that the algorithm remains unfair, but
satisfies the fairness criterion in question. Ideally, a fairness criterion should
make this type of gerrymandering as difficult as possible. Future work could
engage with the question of how gerrymandering could affect causal rele-
vance fairness, matched equalized odds, and matched predictive parity.

Lastly, from a technical side, it would be interesting to examine how popular
machine learning algorithms have to be constrained to be able to minimize
their cost function while guaranteeing that the fairness criteria causal rele-
vance fairness, matched equalized odds, and matched predictive parity will
be satisfied.
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Appendix A

A.1 Decision tree for Scenarios 1 and 2

To better understand the difference between Scenarios 1 and 2, the two sce-
narios can be represented in the form of a decision tree. In both, Figure A.1
and Figure A.2, we can see that there are, all in all, 200 adequately qualified
applicants for university degrees (i.e. Y = 1). As can be seen in the confusion
matrix, all unqualified applicants are correctly predicted to be unqualified,
hence the false positive rate is 0 (for men and women), and so we can leave
them aside in the analysis. This will facilitate the presentation.

In both scenarios, there are 100 adequately qualified female and 100 ade-
quately qualified male applicants. In Scenario 1 (Figure A.1), however, all
of them apply for a business degree. Of the 100 adequately qualified female
applicants, 28 are incorrectly predicted to be unqualified. 72 are correctly pre-
dicted to be adequately qualified for the degree. Among the male applicants,
on the other hand, only 20 are incorrectly predicted to be unqualified, and
80 are predicted to be adequately qualified. This amounts to a false negative
rate of 28

100 = 0.28 for women, and 20
100 = 0.20 for men. Here, the department’s

predictive model seems to have some sort of gender bias against women.

If, in comparison, we look at Scenario 2 (Figure A.2), things look very dif-
ferent. Here, of the 100 adequately qualified female applicants, 90 apply for
a degree in physics. Of the male applicants, only 50 apply for a degree in
physics. Since, by assumption, the false negative rate of the physics depart-
ment is 0.3 (for both men and women), 27 women and 15 men are incorrectly
predicted to be unqualified. At the same time, only 10 women but 50 men ap-
ply to the business department, which has a lower false negative rate of only
0.1, which results in 1 women and 5 men being incorrectly predicted to be
unqualified. This, as above, amounts to a false negative rate of 27+1

100 = 0.28
for women, and 15+5

100 = 0.20 for men. Only in this case, we know that the
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FIGURE A.1: Decision tree for Scenario 1.

different departments’ false negative rates are not different for men and for
women, and the difference in overall false negative rates between men and
women is due to the fact that more women choose to study physics (which
has a higher false negative rate) than men. It does not seem that the predic-
tive model is gender biased.
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FIGURE A.2: Decision tree for scenario 2.
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Appendix B

B.1 Calculation of PPV for men and women

Let the variable T denote the test result of the device (1 indicates a positive
and 0 a negative test result), D whether a person has the disease (value 1
indicates the presence of the disease and 0 the absence), and A the gender of
the person (male or female, indicated by 1 and 0). To calculate the positive
predictive values for men and women, we assume that the device has the
same true and false positive rates (0.95 and 0.05, respectively) for men and
for women, that is:

TPR = P(T = 1 | D = 1)

= P(T = 1 | D = 1, A = 1)

= P(T = 1 | D = 1, A = 0)

= 0.95

(B.1)

FPR = P(T = 1 | D = 0)

= P(T = 1 | D = 0, A = 1)

= P(T = 1 | D = 0, A = 0)

= 0.05

(B.2)

We also know that the disease is more common in men than in women:

P(D = 1 | A = 1) = 0.1 (B.3)

P(D = 1 | A = 0) = 0.01 (B.4)



156 Appendix B.

To increase the readability of equations, we will use the following abbrevia-
tions:

p := P(T = 1 | D = 1, A = 1)

q := P(T = 1 | D = 1, A = 0)

r := P(D = 1 | A = 1)

s := P(D = 1 | A = 0)

t := P(T = 1 | D = 0, A = 1)

u := P(T = 1 | D = 0, A = 0)

v := P(D = 0 | A = 1)

w := P(D = 0 | A = 0)

Now we can use Bayes theorem to calculate the positive predictive value for
men and women.

PPVmale =
p ∗ r

p ∗ r + t ∗ v

=
0.95 ∗ 0.1

0.95 ∗ 0.1 + 0.05 ∗ 0.9
≈ 0.68

(B.5)

PPVf emale =
q ∗ s

q ∗ s + u ∗ w

=
0.95 ∗ 0.01

0.95 ∗ 0.01 + 0.05 ∗ 0.99
≈ 0.16

(B.6)

B.2 Proof of Theorem 3 and 4

To prove Theorem 3, suppose that the predictive models we consider satisfy
equalized odds relative to a1 and a2 ∈ DA, i.e. P(ŷ | a1, y) = P(ŷ | a2, y)
for all ŷ ∈ DŶ and y ∈ DY. We here ignore whether the data is matched or
unmatched, as we are only interested in how the difference in positive and
negative predictive value between the groups changes when the difference
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in prevalence changes.

Without loss of generality, we assume that group a1 has a higher prevalence
than a2. This allows us to define the difference in prevalence as

P(Y = 1 | a1)− P(Y = 1 | a2) = ∆p (B.7)

To make the calculations more readable, we will abbreviate expressions as
follows:

u := P(Ŷ = 1 | Y = 1, A = a1)

v := P(Ŷ = 1 | Y = 0, A = a1)

w := P(Y = 1 | A = a2)

By Bayes theorem, equalized odds, and the definition of prevalence, we can
then express the positive predictive value of groups a1 and a2 as follows:

PPVa1 =
u(w + ∆p)

u(w + ∆p) + v(1− w− ∆p)
(B.8)

PPVa2 =
uw

uw + v(1− w)
(B.9)

We can now define the difference between the two groups’ positive predic-
tive value as a function of their difference in prevalence:

∆PPV(∆p) = PPVa1 − PPVa2

=
u(w + ∆p)

u(w + ∆p) + v(1− w− ∆p)
− uw

uw + v(1− w)

(B.10)

We want to show that the smaller the difference in prevalence ∆p, the smaller
the difference in positive predictive value, i.e. the smaller ∆PPV(∆p). To do
this, we need to show that ∆PPV(∆p) is strictly increasing on the interval
[0, 1]. To do this, we calculate the derivative of ∆PPV(∆p):
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∆PPV′(∆p) =
u (∆p + w) (−u + v)

(u (∆p + w) + v (−∆p− w + 1))2

+
u

u (∆p + w) + v (−∆p− w + 1)

(B.11)

This derivative is always positive for u, w, v, ∆p ∈ (0, 1). ∆PPV(∆p) is hence
strictly increasing on the interval [0, 1].

Analogously, we can show that the difference in negative predictive value
∆NPV(∆p) strictly increases on the interval [0, 1].

Theorem 4 can be proved in a similar fashion, for which reason the proof is
omitted.
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