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Abstract

This thesis explores the topic of sequential inference on a variety of novel model classes.
Chapter 2 focuses on a class of discrete State Space Models (SSM) known as Hidden
Semi-Markov Model (HSMM), a versatile generalization of the famous Hidden Markov
Model (HMM) in which the underlying stochastic process follows a semi-Markov chain.
In a case study on the VIX Index, efficient batch as well as sequential Bayesian
parameter estimation schemes are contributed and validated. We benchmark HSMMs
against popular discrete SSM alternatives and show how by-products that arise during
the estimation process can be used for model selection and clustering. Chapter 3
centers on a new class of Susceptible-Exposed-Infected-Recovered (SEIR) type models
to analyze and detect regime switches in the SARS-CoV-2 pandemic. We propose an
epidemic model with the transmission rate between susceptible and infected individuals
being time varying and piecewise constant. At any point in time, this parameter is
linked to a latent variable that follows a HSMM. We define this model in state space
formulation and demonstrate the latent states can be efficiently estimated using the
Particle MCMC (PMCMC) and Sequential Monte Carlo Squared (SMC2) machinery.
Moreover, a case study is conducted on the reported infection and fatalities data in
the United Kingdom, during which we benchmark models with varying observation
distribution specifications and determine the number of latent regimes in the data.
Chapter 4 addresses Stochastic Volatility (SV) models and employs a variety of carefully
selected copulas to explore the dependency structure between stocks and their volatility.
This new class of models can reconstruct stylised empirical behaviours that cannot be
captured by standard symmetric Gaussian innovations. In a case study on the S&P 500
and the VIX index, we examine the marginal distributions and joint dependency
structure of the error terms in our proposed model. Moreover, batch and sequential
Bayesian model selection are applied to analyze the suitability of the separate copula
choices against standard modelling techniques.





Contents

List of Figures xvii

List of Tables xxiii

1 Introduction 1
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Open Source Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Structure and Literature Overview . . . . . . . . . . . . . . . . 3

2 Sequential Bayesian Learning for Hidden Semi-Markov Models 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Hidden Semi-Markov Model . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Bayesian Inference on Hidden Semi-Markov Models . . . . . . . . . . . 14

2.3.1 Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Particle Markov Chain Monte Carlo . . . . . . . . . . . . . . . . 17
2.3.3 Sequential Monte Carlo Squared . . . . . . . . . . . . . . . . . . 19
2.3.4 Tuning Configurations . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Simulation and Experimental Results . . . . . . . . . . . . . . . . . . . 22
2.4.1 Model Dynamics and Prior Assignments . . . . . . . . . . . . . 22
2.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Determining the number of states . . . . . . . . . . . . . . . . . 24

2.5 Applications on the VIX Times Series Data . . . . . . . . . . . . . . . 27
2.5.1 Prediction and Model Selection on Financial Volatility . . . . . 27

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



xiv Contents

3 SIR-type State Space Models with Piecewise Constant Transmission
Rates 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.2 Model Dynamics and Prior Assignments . . . . . . . . . . . . . 49
3.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 A Class of Stochastic Volatility Models with Copula Dependencies 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Modelling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Diffusions and their Discretisation . . . . . . . . . . . . . . . . . 61
4.2.2 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Model specification . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.3 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.2 Model Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.1 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.2 Model Prior Assignments . . . . . . . . . . . . . . . . . . . . . . 71
4.5.3 Marginals Discussion . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.4 Copula Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



Contents xv

5 Concluding Remarks 79
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Self Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Advice to new Research Students . . . . . . . . . . . . . . . . . . . . . 80
5.4 Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 83

Appendix A Plots 89

Appendix B Pseudo Algorithms 115

Appendix C Derivations 123





List of Figures

2.1 Figure 2.1a depicts a K-state Bayesian HMM, parameter θ and hyper-
parameter {β, γ}. The shaded nodes et denote the observed data at time
t, while the unshaded nodes indicate the latent state st. θi,s denotes
the parameter at state i for latent state s, and βi the corresponding
hyper-parameter. f is the transition distribution s, g is the observation
distribution for e. π denotes the initial distribution for s. Figure 2.1b
depicts aK-state Bayesian HSMM, parameter θ and hyper-parameter
{α, β, γ}. The shaded nodes et denote the observed data at time t, while
the unshaded nodes indicate latent duration dt and state st. θi,d denotes
the parameter at state i for latent duration d, and αi the corresponding
hyper-parameter. h and f are the transition distributions for d and s, g
is the observation distribution for e. π denotes the initial distribution
for d and s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Cumulative log Predictive Likelihood of 2-, 3- and 5-state HSMM, as
discussed in Section 2.3. The underlying data has been generated by a
3-state HSMM, and the 5-state HSMM returns PL levels as the HSMM
that generated the data, while the 2-state HSMM is not flexible enough
to detect the data structure. Hence, we can "overfit" the number of
states and let the algorithm decide the number of states itself in case
no prior knowledge is available. The bottom plot shows the whole data
sequence, while the bottom graph depicts the cumulative log PL as
defined in Section 2.3.5 of the last 500 iterations. . . . . . . . . . . . . 25

2.3 The top plot depicts the Cumulative Log Predictive Bayes Factor as
defined in Section 2.3.5 of the winning model in Section 2.5 at each
iteration. At the bottom, the corresponding log VIX index data is shown
over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



xviii List of Figures

2.4 The top plot depicts a histogram for changes in log VIX data, conditioned
on the most probable posterior latent state from the final SMC2 iteration.
The bottom graph displays the log VIX data over time (black) alongside
the most probable latent state, rescaled to the underlying data. . . . . 32

3.1 A HSMM-driven epidemic Model, parameter θ and hyper-parameter
{α, γ, δ}. zt follows a Hidden Semi-Markov Model and determines the
transmission rate βt at each time index. The unshaded nodes ct (cases)
and dt (deaths) denote the unobserved true data at time t. θi,z denotes
the model parameter for the latent state z in regime i. h denotes all
model functions and θc all parameter for the model implied cases c,
while g denotes all model functions and θd all parameter for the model
implied deaths d. vac, cr, dr denote the reported vaccinations, cases
and deaths. ifr denotes the infection-fatality ratio, f the distribution of
time from infection to death. . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 PMCMC Model implications of the best performing model for real data
in Section 3.5. All computations are based on data available up to the
current time on the x-axis. The upper plot shows the reported infections
against the model implied infections, adjust for an under-reporting score.
The second plot from the top shows the corresponding fatalities. The
third plot from the top shows the posterior mode of the latent state at
each time point. Each state represents a different regime. The bottom
plot shows the corresponding Rt value at each time index. The grey
horizontal line represents the first 28 days, for which no full history
for the model implied deaths as stated in Section 3.2 is available. The
blue horizontal line shows the date when vaccination data is taken into
account for the ODE in our model. . . . . . . . . . . . . . . . . . . . . 54

3.3 This plot shows daily predictions of each model described in Section 3.5
and their corresponding 95% CI against realized data. NB4 stands for
models using a Negative Binomial Duration distribution with 4 different
regimes. In this plot, only predicted fatalities are shown to compare all
models equally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



List of Figures xix

4.1 A Stochastic Volatility Model with Copula Dependencies (SVC), param-
eter θ and hyper-parameter {α, β, γ}. The shaded nodes vt (volatility)
and st (stock) denote the observed data at time t. cop defines the Copula
choice and dependence structure between st and vt. f denotes all model
functions and θs all parameter for s, while g denotes all model functions
and θv all parameter for v. θc denotes all parameters required for the
Copula choice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.1 This graph shows Particle Filter likelihood estimates for a range of
different parameter values. At each column, all parameter were kept
constant except the labeled parameter at the x-axis. The different colors
depict various amount of particles used for the computations: 100 (blue),
500 (green), 1000 (yellow), 2000 (orange) particles for sample data of
size 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.2 This graph shows the Partial Autocorrelation Function of Particle Filter
likelihood estimates that have been obtained during 1000 PMCMC steps
after burnin. The Particle Filter in the PMCMC kernels were set to
have a different amount of particles for each run. . . . . . . . . . . . . . 91

A.3 The upper graph shows generated observed data by the HSMM depicted
in section 2.4. The middle plot shows the hidden state (blue) and a
sample of a filtered trajectory from a particle filter. The lower plot
shows the remaining duration given the current state, and a sample of a
filtered particles from a particle filter. . . . . . . . . . . . . . . . . . . . 92

A.4 Traceplots of four Particle MCMC chains for continuous model parameter
of a HSMM in section 2.4. . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.5 Particle MCMC posterior estimates of the filtered latent state trajectory
of four chains for the HSMM in section 2.4. Parameter used to generate
sample data are shown as dashed lines. The bottom plot shows re-scaled
posterior means and the observed data. . . . . . . . . . . . . . . . . . . 94

A.6 Sequential Monte Carlo Squared posterior estimates of the continuous
model parameter of 100 chains for the HSMM in section 2.4. The
posterior mean and a 95% Credible Interval are provided for each
parameter at each time index. . . . . . . . . . . . . . . . . . . . . . . 95



xx List of Figures

A.7 Sequential Monte Carlo posterior estimates of the filtered latent state
trajectory of 100 chains for the HSMM in section 2.4 at each time index.
The bottom plot shows the underlying observed data and re-scaled
posterior mean of the latent state at the final iteration. Parameter used
to generate sample data are shown as dashed horizontal lines. . . . . . 96

A.8 Last 1000 end-of-day data points of the VIX Index used as data in
Section 2.5. Data as of January 1st 2022 from the Thomson Reuters
database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.9 Sequential Monte Carlo posterior estimates of the continuous model
parameter of 100 chains for the AR(1) HSMM with Negative Binomial
duration distribution, discussed in section 2.5. The posterior mean and
a 95% Credible Interval are provided for each parameter at each time
index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.10 Sequential Monte Carlo posterior estimates of the filtered latent state
trajectory of 100 chains for the AR(1) HSMM with Negative Binomial
duration distribution, discussed in section 2.5. The bottom plot shows
the underlying observed data and re-scaled posterior mean of the latent
state (rounded to closest integer) at the final iteration. . . . . . . . . . 99

A.11 Sequential Monte Carlo Squared posterior predictive samples for the
AR(1) HSMM with Negative Binomial duration distribution, discussed in
section 2.5. The Black line at the bottom table depicts the realized future
value against predictions in gold. The top 2 graph are predictions for
the state and duration variables, and the bottom plot shows predictions
for the observed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.12 Both plot depict a histogram for changes in log VIX data, conditioned on
the most probable posterior latent state from the final SMC2 iteration.
The left uses the states from the winning ARHSMM, while the right
plot uses the corresponding ARHMM data. . . . . . . . . . . . . . . . 101

A.13 Generated data for simulated HSMM-EM in Section 3.4. The upper
graph shows generated model implied deaths, computed as described
in Section 3.2. The lower plot shows the implied cases, computed as
described in Section 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.14 Full PMCMC trace plots of a HSMM-EM with 4 states and Negative
Binomial distribution for simulated data in Section 3.4. Parameter used
to generate sample data are shown as dashed horizontal lines. . . . . . 103



List of Figures xxi

A.15 Real data used in Section 3.5. The upper plot shows the reported
deaths in the UK, the lower plot the reported cases. A more detailed
explanation for the data processing is provided in Section 3.5.1. . . . . 104

A.16 The Underreporting index that is used in the observation model for the
reported infections, see Section 3.2. Individual values are determined
based on the work of Chatzilena et al. (2022). . . . . . . . . . . . . . . 105

A.17 Full PMCMC trace plots of a HSMM-EM with 4 states and Negative
Binomial distribution estimated on real data in Section 3.5. . . . . . . 106

A.18 SMC posterior estimates of the continuous model parameter of 48 chains
for the best performing HSMM-EM defined in section 3.2 and used on
real data in Section 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.19 SMC prediction plot for the HSMM-EM with 4 states and Negative
Binomial distribution estimated on real data in Section 3.5. A 95 %
Credible Interval (CI) is included at each iteration. The upper plot
shows the reported fatalities against the predicted ones, the lower the
corresponding cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.20 SMC prediction comparison: this plot shows the Cumulative Log Predic-
tive Bayes Factor of the HSMM-EM with 4 states and Negative Binomial
distribution against all other models for daily predictions (sub-plot 1)
as well as for weekly predictions (sub-plot 2). NB4 stands for models
using a Negative Binomial Duration distribution with 4 different regimes. 109

A.21 Real data used in Section 4.5. The upper plot shows the S&P 500 Index
in log space, the lower plot the transformed data based on VIX Index. A
more detailed explanation for the data processing is provided in Section
4.5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.22 Full MCMC trace plots of the best SVC according to the model com-
parison criteria described in Section 4.3.3 for real data in Section 4.5. . 111

A.23 Full SMC trace plots of the best SVC according to the model comparison
criteria described in Section 4.3.3 for real data in Section 4.5. . . . . . 112

A.24 This plot shows the Cumulative Log Predictive Bayes Factor as defined
in Section 4.3.3 of the Frank Copula against the rest. All computations
are based on daily data. . . . . . . . . . . . . . . . . . . . . . . . . . . 113





List of Tables

2.1 Posterior output statistics of 4 PMCMC chains for a HSMM on simulated
data in Section 2.4. 2000 iterations were run with 1000 iterations burnin,
resulting in 4000 total samples. Initial parameter have been sampled
from the prior distribution. . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Posterior output statistics for 100 SMC chains on a HSMM at final
iterations on simulated data in Section 2.4. . . . . . . . . . . . . . . . . 24

2.3 Parameter estimates for 5-state HSMM. The first column depicts the
parameter for the 3 state HSMM that were used to generate the data.
State 2 and 4 are hardly visited, and are the superfluous states. pi,j

denotes the transition probability from state i to j. pi,i is separately
modeled by the duration distribution. The transition probabilities p
form a simplex, so the probability to transition to the final state is
determined by all other states. . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Posterior output statistics for 100 SMC chains on ARHSMM in chapter
2.5 at final iterations in SMC2 run. pi,j denotes the transition probability
from state i to j. pi,i is separately modeled by the duration distribution.
The transition probabilities p form a simplex, so the probability to
transition to the final state is determined by all other states. r and ϕ

are parameters for the Negative Binomial duration probabilities. w are
the autoregressive coefficients for the ARHSMM. . . . . . . . . . . . . . 29

2.5 Cumulative log Predictive Likelihood as defined in Section 2.3.5 for
various discrete state space models fitted via SMC2 on data described
in chapter 2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



xxiv List of Tables

3.1 Posterior output statistics of four PMCMC chains on a HSMM-EM
with SEEIIR style ODE, four states and Negative Binomial duration
distribution for simulation experiments in Section 3.4. During the run,
1500 iterations have been used with 700 burnin steps, resulting in 3200
total samples. Data has been generated from a model with parameter
equal to the values in the second column of table, and can be seen
in Figure A.13. Initial parameter have been sampled from the prior
distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Model comparison criteria for various models estimated on real data in
Section 3.5. The 2 top tables depict batch model selection rules - the
lower the performance criterion, the better. The 2 bottom tables display
sequential model selection rules - the larger the performance criterion,
the better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Posterior output statistics of four PMCMC chains on a HSMM-EM with
SEEIIR style ODE, 4 states and Negative Binomial duration distribution
for applications in Section 3.5. 1200 iterations have been used with
burnin set to 700, resulting in 2000 total samples. Real data can be seen
in Figure A.15, and is described in more detail in Section 3.5.1. Initial
parameter have been sampled from the prior distributions. . . . . . . . 53

4.1 MCMC summary diagnostics for simulated data with Archimedean
Copula dependencies. θ summarizes all model parameter, and c the
copula specific parameter. . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 MCMC summary diagnostics for simulated data with Elliptical Copula
dependencies. θ summarizes all model parameter, and c the copula
specific parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Comparison diagnostics as defined in Section 4.3.3 for all SV Models
with different Copula choices on simulated data from the favored Cop-
ula choice in Section 4.5. The lower tables depicts estimates for the
cumulative log PL as defined in Section 4.3.3. . . . . . . . . . . . . . . 70

4.4 MCMC summary diagnostics on transformed S&P 500 data and VIX
data for marginal distribution analysis in Section 4.5.3. . . . . . . . . . 72

4.5 MCMC summary diagnostics for SV Model with Frank Copula depen-
dencies on real data in Section 4.5. . . . . . . . . . . . . . . . . . . . . 73



List of Tables xxv

4.6 Comparison diagnostics as defined in Section 4.3.3 for all SV Models
with different Copula choices on real data in Section 4.5. The lower
tables depicts estimates for the cumulative log PL as defined in Section
4.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Median estimates of Model implied Copula diagnostics on real data in
Section 4.5. LT refers to Lower Tail dependence, and UT refers to Upper
Tail dependence, respectively. . . . . . . . . . . . . . . . . . . . . . . . 75





Acronyms

Rt Effective Reproductive Number. xviii, 38, 51, 54

APF Auxiliary Particle Filter. 17

AR Autoregressive. 7, 9, 13, 27

ARHMM Autoregressive Hidden Markov Model. xx, 28, 31, 101

ARHSMM Autoregressive Hidden Semi-Markov Model. xx, xxiii, 28, 29, 31, 101

BF Bayes Factor. 19, 22, 47, 67

BMI Basic Marginal Likelihood Identity. 15

BPF Bootstrap Particle Filter. 17

CI Credible Interval. xviii–xxi, 20, 24, 51, 55, 95, 98, 108

CLPBF Cumulative Log Predictive Bayes Factor. xvii, xxi, 22, 28, 30, 47, 50, 67, 73,
109, 113

Copula Copula. xix, xxiv, xxv, 4, 60, 62–65, 67–75

CPF Conditional Particle Filter. 17, 44

DAG Directed Acyclic Graph. 42, 63

DIC Deviance Information Criterion. 46, 51, 52, 66, 67, 70, 73, 74

EDHMM Explicit-duration Hidden Markov Model. 11, 13, 42

ESS Effective Sample Size. 16

GBM Geometric Brownian Motion. 38



xxviii Acronyms

HM Heston Model. 61

HMC Hamiltonian Monte Carlo. 4, 18, 44, 65

HMM Hidden Markov Model. xi, 2, 3, 7, 8, 10, 11, 13, 14, 27, 31, 33, 39, 41, 51

HSMM Hidden Semi-Markov Model. xi, xviii–xx, xxiii, 3, 7–11, 13–15, 20, 22, 24, 26,
27, 31, 33, 37, 38, 41–43, 47, 50–52, 92–96, 98–100

HSMM-EM HSMM-driven epidemic Model. xviii, xx, xxi, xxiv, 37, 39, 42, 43, 45,
48, 53, 56, 102, 103, 106–109

IBIS Iterated Batch Importance Sampling. 4, 65–67

ifr Infection Fatality Ratio. xviii, 41, 43, 49, 50

IS Importance Sampling. 15

LPPD Log Pointwise Predictive Density. 46, 52, 66, 70, 74

MC Monte Carlo. 20

MCMC Markov Chain Monte Carlo. xxi, xxiv, 1, 2, 4, 9, 14, 17–21, 33, 44–46, 59,
60, 65–69, 72, 73, 81, 111

NUTS No U-Turn Sampling. 2, 4, 18, 44, 65

ODE Ordinary Differential Equation. xviii, xxiv, 3, 39–41, 44, 45, 48–51, 53, 54, 56

PACF Partial Autocorrelation Function. xix, 20, 91

PF Particle Filter. xix, 2, 3, 8, 9, 15–17, 19–22, 33, 39, 40, 44, 45, 52, 65, 90, 91

PGAS Particle Gibbs with ancestors sampling. 18, 21

PGIBBS Particle Gibbs. 9, 44, 45

PL Predictive Likelihood. xvii, xxiii–xxv, 22, 24, 25, 28, 31, 46, 47, 51, 52, 66, 70, 73,
74

PMCMC Particle MCMC. xi, xviii–xxi, 2, 9, 14, 15, 18–23, 33, 37, 39, 44, 45, 47, 51,
52, 54, 91, 93, 94, 103, 106



Acronyms xxix

PMH Particle Metropolis Hastings. 18, 21, 44

SEEIIR Susceptible-Exposed-Exposed-Infected-Infected-Recovered. xxiv, 39, 47, 48,
52, 53

SEIR Susceptible-Exposed-Infected-Recovered. xi, 3, 38–40

SIR Sequential Importance Resampling. 16

SIS Sequential Importance Sampling. 15, 16

SMC Sequential Monte Carlo. xx, xxi, 1–4, 8, 9, 19, 37, 45, 59, 60, 70, 74, 81, 96, 98,
99, 107–109, 112

SMC2 Sequential Monte Carlo Squared. xi, xviii–xx, xxiii, 9, 10, 19–24, 28, 29, 31–33,
39, 45–47, 51, 52, 65, 95, 100, 101

SSM State Space Model. xi, 1–3, 8, 9, 14, 16, 18, 19, 24, 27, 31, 38, 39, 41, 45, 47, 52

SV Stochastic Volatility. xi, xxiv, xxv, 4, 27, 59–62, 70, 72–75

SVC Stochastic Volatility Model with Copula Dependencies. xix, xxi, 64, 67, 71, 111,
112

VI Variational Inference. 1

WAIC Watanabe–Akaike Information Criterion. 46, 51, 52, 66, 67, 70, 73, 74





Chapter 1

Introduction

Bayesian Inference has grown increasingly popular in the last decade as inference
algorithms that were previously difficult to implement have become more accessible
through the immense effort of organizations including the Stan Development Team
(2021), Ge et al. (2018) or Salvatier et al. (2016) and the open source policy of their
software libraries. In particular, classic batch estimation techniques such as Markov
Chain Monte Carlo (MCMC) and Variational Inference (VI) have seen many new
research areas evolve. There is an abundance of new applications for these techniques
emerging frequently, in large part due to the ease of ready-made tools requiring minimal
coding effort from the user. Another area that has seen vast amounts of research effort is
known as Sequential Monte Carlo (SMC), inference methods that are particularly suited
for times series and sequential data, which often arise naturally in real applications.
My own doctoral research primarily evolved around combining and improving SMC
with MCMC methods. SMC methods can be broadly classified into two categories:
density tempering or annealing, which involves expanding in the density region, and
data tempering or annealing, which involves expanding in the data dimension. A
short overview of this is given in (Gunawan et al., 2021, Dai et al., 2020). Within
this framework, I mainly worked with State Space Models. I extensively explored
the concepts proposed by Chopin et al. (2013) in Chapters 2 and 3. In Chapter 4, I
ventured into non-latent variable models based on the ideas presented by Chopin (2002).
For each project, a brief overview with the most important literature contributions is
provided in Section 1.3.



2 Introduction

1.1 Challenges

While both SMC and MCMC methods have excellent software tools available, very rarely
are such packages inter-operable and, consequently, less effort has been conducted on
the interconnection between MCMC and SMC techniques. This can lead to challenges
when working with complex models typically used in research projects that require
advanced MCMC methods. A big challenge during my research was thus the ability to
use state-of-the-art tools of both research directions jointly, which ultimately led me
to create and open source libraries that do exactly this, described more in detail in
Section 1.2.

Modelling wise, the major challenge for State Space Models and more general
Latent Variable Models is working around the in general intractable likelihood function.
While basic models such as the popular Hidden Markov Model (HMM) have reasonable
computational complexity for the likelihood function calculation, more advanced models
can have intractable or computationally extremely challenging costs. An in-depth
discussion on this topic is provided in Section 2.

1.2 Open Source Contributions

While pursuing my PhD, a significant amount of time has been invested into developing
and open sourcing modular software pieces in which advanced MCMC kernels can
be used efficiently within SMC techniques. For instance, Baytes.jl is a Julia package
to perform batch and sequential Bayesian inference and provides valuable tools to
summarize and analyze the corresponding algorithm output. It consists of several
sub-libraries such as the MCMC library BaytesMCMC.jl that contains implementations
for, e.g., the No U-Turn Sampling (NUTS) kernel and the fully auto-differentiable
Particle Filter library BaytesFilters.jl. In the Particle MCMC (PMCMC) package
BaytesPMCMC.jl, one can freely combine kernels from the BaytesMCMC.jl and
the BaytesFilters.jl libraries; the SMC module BaytesSMC.jl provides methods to
mix all sub-libraries listed above. Moreover, as a by-product of expanding these
software components, tools with a broader span of applications have been open sourced,
including libraries to perform Automatic Differentiation on (nested) model parameter
structures, see ModelWrappers.jl and BaytesDiff.jl. These software packages mark a
major achievement in my work and have been the backbone of each project within this
thesis. They are intended as a tool for researchers working with exotic models, which

https://github.com/paschermayr/Baytes.jl
https://github.com/paschermayr/BaytesMCMC.jl
https://github.com/paschermayr/BaytesFilters.jl
https://github.com/paschermayr/BaytesPMCMC.jl
https://github.com/paschermayr/BaytesMCMC.jl
https://github.com/paschermayr/BaytesFilters.jl
https://github.com/paschermayr/BaytesSMC.jl
https://github.com/paschermayr/ModelWrappers.jl
https://github.com/paschermayr/BaytesDiff.jl
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are more common in research applications and are otherwise hard to implement with
standard probabilistic programming languages.

1.3 Thesis Structure and Literature Overview

The projects discussed in Chapters 2, 3 and 4 were completed in chronological order but
are self-contained, so each section can be read independently. Between each Chapter, a
notable quote from a book I read or a series I watched during my time at the London
School of Economics and Political Science (LSE) is shared; they serve as pleasant
memories when reflecting on my work.

Chapter 2 explores the class of Hidden Semi-Markov Models (HSMM), see (Murphy,
2002, Yu, 2010, 2016), a generalization of the popular discrete state space Hidden
Markov Model, see (Baum and Petrie, 1966). In this section, we construct efficient
computational schemes that operate on the joint space of latent states and parameters
based on the ideas from (Andrieu et al., 2010, Andrieu and Roberts, 2009) and Chopin
et al. (2013). Notably, we implement an efficient method to sample the latent state
trajectory via a Particle Filter (PF), see Johansen and Doucet (2008) for an excellent
review on this topic. These Sequential Monte Carlo (SMC) methods also facilitate
techniques for Bayesian model selection and predictive performance assessment based
on the ideas of the aforementioned authors and the terminology of Kastner (2016). We
display the suitability of this framework by modelling sequential financial data through
Auto-regressive Models that are linked to HSMMs.

In Chapter 3, we formulate and provide methods to efficiently estimate a novel
Susceptible-Exposed-Infected-Recovered (SEIR)-type discrete State Space Model with
time-varying, piecewise constant transmission rate parameter between susceptible
and infected individuals. The need for time-varying parameter in the general SEIR
structure, see (Cohen, 1992, Diekmann et al., 2012), is provided by e.g. Flaxman
et al. (2020b). To facilitate our estimation framework, we reuse the SMC machinery
developed in the first project, but have to adapt the Particle Filter machinery to
account for the Ordinary Differential Equation (ODE) arising from the SEIR structure
at each transition in the PF propagation. This make the computational complexity
significantly more challenging. A detailed model examination is provided in Chapter
3. We display the suitability for this class of models for decision making in a case
study on reported COVID-19 data in the United Kingdom, and provide fatalities and
infections predictions as well as COVID-19 relevant diagnostics in a sequential setting.



4 Introduction

Chapter 4 introduces a new class of Stochastic Volatility Models, see (Engle,
1982, Bera and Higgins, 1993). Standard SV Models have the capacity to capture
numerous significant stylized effects, such as leptokurtic and heavy-tailed marginal
return distributions, volatility clustering, and the phenomenon known as the leverage
effect, see Shephard (1996), Ghysels et al. (1996). In this project, we use Copula
(Copula) Models, see (Joe, 1997), to depict the joint dependency structure between
stock prices and their volatility. Several recent works have empirically illustrated
the presence of non-linear, asymmetric structures at the joint distribution of prices
and volatility, and suggested the use of classes of Copulas for capturing such effects
(see e.g. Ning et al. (2008)). Copula theory provides an extremely flexible modelling
framework for a multitude of shapes for asymmetric joint distributions, see, e.g., Joe
(2014)) and Cherubini et al. (2004), Czado et al. (2019), Krupskii and Joe (2020),
Bladt and McNeil (2022) for more general Copula usage in finance. Model parameter
are estimated using advanced Markov Chain Monte Carlo (MCMC) and Sequential
Monte Carlo (SMC) kernels for each selected copula. As there is no latent state
space involved, a slightly different SMC method known as Iterated Batch Importance
Sampling (IBIS), see Chopin (2002), can be used. The corresponding MCMC kernel
used in all projects is known as No U-Turn Sampling (NUTS), an Hamiltonian Monte
Carlo (HMC) kernel with automatic hyper-parameter tuning, which was proposed by
Hoffman and Gelman (2014). Notable improvements for this algorithm are suggested
in Betancourt (2016). In this project, batch as well as sequential Bayesian model choice
are used to determine the applicability for each copula, see e.g. (Spiegelhalter et al.,
2002, Watanabe, 2010). Our results support the more flexible Copula approach over
the use of Gaussian innovations that are standard in the financial modelling research.

Chapter 5 concludes the thesis with some reflection on the past few years at the
London School of Economics and Political Science as well as the future direction of
my work. While all projects tackle distinct economic problems, they are unified in
their sequential nature. The broader contribution of our work is thus to demonstrate
the capabilities and advantages of working with sequential inference methods and to
incentivize their use.



Taking on a challenge is a lot like riding a horse, isn’t it?
If you’re comfortable while you’re doing it, you’re probably doing it wrong.

Ted Lasso (Ted Lasso, 2020)





Chapter 2

Sequential Bayesian Learning for
Hidden Semi-Markov Models

In this Chapter, we explore the class of the Hidden Semi-Markov Model (HSMM),
a flexible extension of the popular Hidden Markov Model (HMM) that allows the
underlying stochastic process to be a semi-Markov chain. HSMMs are typically
used less frequently than their basic HMM counterpart due to the increased com-
putational challenges when evaluating the likelihood function. Moreover, while
both models are sequential in nature, parameter estimation is mainly conducted
via batch estimation methods. Thus, a major motivation of this Chapter is to
provide methods to estimate HSMMs (1) in a computationally feasible time, (2)
in an exact manner, i.e. only subject to Monte Carlo error, and (3) in a sequential
setting. We provide and verify an efficient computational scheme for Bayesian
parameter estimation on HSMMs. Additionally, we explore the performance of
HSMMs on the Volatility index (VIX) time series using Autoregressive (AR)
models with hidden semi-Markov states and demonstrate how this algorithm can
be used for regime switching, model selection and clustering purposes.
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2.1 Introduction

Discrete State Space Models (SSM) provide a flexible class of models with applications
in ecology, economics, finance, robotics and signal processing (Bulla and Bulla, 2006,
Lindsten and Schön, 2013, Chopin and Papaspiliopoulos, 2020, Corenflos et al., 2021),
among others. They can handle structural breaks, shifts, or time-varying parameters
and still have an interpretable structure. Moreover, such models are generative and
allow for multi-step forecasting. However, analytical forms of the likelihood function are
only available in special cases, and standard parameter optimization routines are often
challenging to implement. Given the observed data e1:T = (e1, . . . , eT ) and parameter
θ, the major challenge in the estimation of SSMs is thus the generally intractable
likelihood function pθ(e1:T ), which integrates over the latent state trajectory s1:T such
that pθ(e1:T ) =

∫
pθ(e1:T , s1:T )ds1:T .

A flexible discrete SSM on which we focus in this Chapter is known as a Hidden
Semi-Markov Model. HSMMs have a flexible state duration distribution, well suited for
processes that remain in any particular state for an extended period of time, and can be
considered as generalizations of the well-known basic Hidden Markov Model introduced
in Baum and Petrie (1966). A further review on HMMs can be found in Cappé et al.
(2005). HSMMs have been employed in ecology, epidemiology, finance (Bulla and Bulla,
2006, Pohle et al., 2021, Visani et al., 2021) and many other fields (Yu, 2016), but
are typically used more sporadically than their standard HMM counterparts because
the likelihood function is significantly more costly to evaluate. In the HMM case, the
likelihood has computational complexity of O(K2T ), where K = number of latent
states, T = number of data points, see Baum and Petrie (1966). For the HSMM, this is
a much more expensive operation of order O(K2(dmax−dmin)2T ) (Murphy, 2002, Dewar
et al., 2012), where dmin and dmax denote the minimal and maximal state duration
in a latent regime. In practice, (dmax − dmin) >> K, as described in more detail
in Section 2.2, which often leads to computationally expensive inference algorithms.
Such considerations have led to the use of approximate methods in applications where
HSMMs provide valuable models, see for example Hadj-Amar et al. (2022) and Xiao
et al. (2018).

In this Chapter, we follow an alternative route aiming to construct efficient compu-
tational schemes that operate on the joint space of latent states and parameters using
Sequential Monte Carlo (SMC) methods that are exact, in the sense that they are
only amenable to Monte Carlo error. The fundamental building block of the proposed
schemes is the Particle Filter (PF), see for example Doucet and Johansen (2011) and
the references therein. Traditionally, SMC samplers such as PFs have been used to
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estimate the underlying state sequence of SSMs, while standard Markov Chain Monte
Carlo (MCMC) samplers facilitate Bayesian inference for the model parameters. More
recently, combining these methods is becoming increasingly popular, see Daviet (2018)
and Buchholz et al. (2020). A natural computational framework that jointly infers the
latent state sequence and model parameter is known as Particle MCMC (PMCMC)
(Andrieu et al., 2010, Andrieu and Roberts, 2009). To our knowledge, PMCMC has
not been used for HSMMs, so we work within this framework aiming to construct
an efficient implementation. In particular, we focus on the Particle Gibbs (PGIBBS)
version to implement parameter updates, conditional on the latent state trajectory,
via Hamiltonian MCMC (Neal, 2012) variants. Given that SSMs are typically used
in applications with data of sequential nature, it is essential to explore techniques
where previous parameter estimates can be reused once the data is updated. An
example for that is provided by the Sequential Monte Carlo Squared (SMC2) algorithm,
introduced in Chopin et al. (2012), which can be viewed as an extension of the main
SMC framework of Chopin (2002) and Del Moral et al. (2006); see also Dai et al. (2020)
for some recent work that includes a survey of applications in different contexts. Other
similar approaches include Fearnhead and Taylor (2010) and Crisan and Miguez (2017).
More information on these methods is provided in the Section 2.3.

The major motivation of this Chapter is thus to develop methods to estimate
HSMMs (1) in a computationally feasible time and (2) in a sequential manner. The
contribution of this Chapter is two-fold: First, we offer Sequential Monte Carlo schemes
on Hidden Semi-Markov Models by tailoring ideas from Andrieu et al. (2010) and
Chopin et al. (2013) for batch and sequential estimation. This offers several benefits
over standard deterministic filtering techniques, including computational efficiency.
The developed SMC schemes can also facilitate Bayesian model choice and assessment
of predictive performance in an efficient manner. Second, we propose a novel class
of models by linking Autoregressive-type models with HSMMs to better describe
data consisting of financial and econometric time series. Sequential estimation of such
models is particularly important as AR HSMMs have the potential to detect substantial
changes in the data, which we illustrate in a case study on data that evolves rapidly
during the Covid-19 pandemic.

The Chapter is organized as follows: Section 2.2 formally introduces HSMMs via
a suitable formulation to apply sequential Monte Carlo methods such as Particle
Filtering. It also provides justification for the use of PFs instead of deterministic
filtering techniques. In Section 2.3, the developed methodology of this Chapter is
presented, which includes the model choice criteria available from by-products of the
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estimation process. Section 2.4 explores the performance of the developed methods via
simulation based experiments. In Section 2.5, we focus on the performance of HSMMs,
estimated with the developed methodology of this Chapter, on real-world applications
such as financial time series of the VIX index. Comparisons of different HSMMs as
well as benchmark HMMs are conducted. Model selection, and in particular choice of
the number of states using SMC2, is also put into test. Finally, Section 2.6 concludes
with some relevant discussion.

2.2 Hidden Semi-Markov Model

A standard Hidden Markov Model may be specified via a bivariate stochastic process
{et, st}t=1,2,..., where st is an unobserved Markov chain and et is an observed sequence
of independent random variables, conditional on st. The model is fully specified by
the transition distribution fθ, st ∼ fθ(st | st−1), t ≥ 2, the corresponding initial
distribution πθ, s1 ∼ πθ(s1), and the observation distribution gθ, et ∼ gθ(et | st), t ≥ 1.
Directly computing the likelihood function of this model involves summing up over all
possible state sequences,

p(e1:T ) =
∑
s1:T

p(e1 | s1)p(s1)
T∏

t=2
p(et | st)p(st | st−1).

Hence, various filtering techniques have been proposed that take into account the
memory of the latent state variable to reduce the computational costs to O(K2T ).
One shortcoming of HMMs is their explicit distributional assumption regarding the
duration in any particular state. To give insight into this issue, we denote p(st+k =
j, st+1:t+k−1 = i | st = i), the probability a state remains in any current state until it
switches, as state duration distribution. In the HMM case, this probability is implicitly
geometric. Set p(st = i | st−1 = i) = Tii, and assume there are only 2 states, then for a
homogeneous Markov chain, using the chain rule and the Markov assumption, it holds:

p(st+3 = j, st+2 = i, st+1 = i | st = i) = p(st+3 = j | st+2 = i)p(st+2 = i, | st+1 = i)p(st+1 = i | st = i)
= (1− Tii) ∗ T 2

ii
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In general, for t+ k steps, it holds that

p(st+k = j, . . . , st+1 = i | st = i) = (1− Tii) ∗ T k−1
ii

= GeometricTii
,

where the geometric distribution has to be interpreted as the length of state duration
up to and including the transition to the other state. For processes that tend to stay
in any particular state for a long-time horizon, this may be a poor modelling choice.
Alternatively, the state duration could be explicitly modelled. A Hidden Semi-Markov
Model, see (Murphy, 2002, Yu, 2010, 2016), is a generalization of an HMM, which may
be viewed as a HSMM with Geometric state duration distribution. A graph structure
and a comparison to the standard HMM can be seen in figures 2.1a and 2.1b. A specific
formulation of the HSMM that explicitly defines the duration distribution is known as
Explicit-duration Hidden Markov Model (EDHMM). Transitions are allowed only at
the end of each state, resulting in the following definition:

Definition 2.2.1. Hidden semi-Markov Model (HSMM) A hidden semi-Markov model
is a bivariate stochastic process {et, zt}t=1,2,..., where zt = {st, dt} is an unobserved semi-
Markov chain and, conditional on zt, et is an observed sequence of independent random
variables. The model is fully specified by the transition distribution fθ(st | st−1, dt−1) of
st

st ∼

δ(st, st−1) dt−1 > 0
fθ(st | st−1, dt−1) dt−1 = 0 ,

the duration distribution hθ of dt

dt ∼

δ(dt, dt−1 − 1) dt−1 > 0
hθ(dt | st, dt−1) dt−1 = 0 ,

the corresponding initial distribution πθ of zt, and the observation distribution gθ,
et ∼ gθ(et | st),

et ∼ gθ(et | st).

where δ(a, b) is and indicator function and equals 1 if a = b and 0 otherwise.

Popular choices for the duration distribution hθ are the Poisson or the Negative
Binomial distribution, for greater flexibility at the cost of an additional model parameter
per state. The observation distribution gθ can be set according to the specifics
of the application at hand, which includes higher order data dependency such as
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Figure 2.1 Figure 2.1a depicts a K-state Bayesian HMM, parameter θ and hyper-
parameter {β, γ}. The shaded nodes et denote the observed data at time t, while
the unshaded nodes indicate the latent state st. θi,s denotes the parameter at state
i for latent state s, and βi the corresponding hyper-parameter. f is the transition
distribution s, g is the observation distribution for e. π denotes the initial distribution
for s. Figure 2.1b depicts aK-state Bayesian HSMM, parameter θ and hyper-parameter
{α, β, γ}. The shaded nodes et denote the observed data at time t, while the unshaded
nodes indicate latent duration dt and state st. θi,d denotes the parameter at state i
for latent duration d, and αi the corresponding hyper-parameter. h and f are the
transition distributions for d and s, g is the observation distribution for e. π denotes
the initial distribution for d and s.
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gθ(et | st, et−k:t−1), for t ≥ 1. An example for an excellent data dependency use case is
provided in Section 2.5.1, where AR(1) models are used in each latent regime. The
joint distribution of an EDHMM given the parameter can be stated as

pθ(s1:T , d1:T , e1:T ) = πθ(s1)πθ(d1)gθ(e1 | s1)
T∏

t=2
fθ(st | st−1, dt−1)hθ(dt | st, dt−1)gθ(et | st)

The likelihood can be obtained by integrating out both s1:T and d1:T . Due to
the additional latent variables d1:T , this is a much more computationally expensive
operation than in the standard HMM case. In order to gain more insight on this, we
can shrink the graphical model structure of a HMM and HSMM to a single time step.
In order to compute the likelihood of observation et+1 given the current state st, a sum
over all possible state transitions has to be taken, as can be seen in equation (2.1).
This resembles a standard mixture model computation, with the transition matrix of
the HMM replacing the mixture component weights.

p(et+1 | st = k) =
∑
st+1

p(et+1, st+1 | st = k)

=
∑
st+1

p(st+1 | st = k)p(et+1 | st+1)
(2.1)

For the HSMM, however, the duration variable means an additional sum over a
random variable that has at worst an infinite number of terms in the case of duration
distributions with countably infinite support, shown in equation (2.2).

p(et+1 | st = k, dt = j) =
∑
st+1

∑
dt+1

p(et+1, st+1, dt+1 | st = k, dt = j)

=
∑
st+1

∑
dt+1

p(st+1 | st = k, dt = j)p(dt+1 | st+1, dt = j)p(et+1 | st+1)

(2.2)

Note that ∑zt+1 = ∑
dt+1

∑
st+1 , which sums up all possible durations over all

states, has at worst an infinite number of terms if the duration distributions have
countably infinite support, and at best a large number of terms for long sequences,
see Dewar et al. (2012). The standard approach to tackle this problem is to set up a
minimum and maximum duration dmin and dmax, where the computational complexity
of the forward-backward algorithm reduces to O(T (K(dmax − dmin)2)), compared to
the original O(TK2) in the HMM, see Murphy (2002). Choosing an appropriate
maximum duration varies depending on the underlying data. If the truncation is
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too small, then inference will typically fail, if is too large then calculations might
become infeasible. Hence, (dmax− dmin) may increase the computational complexity to
burdensome levels, which requires the modeler to set dmax too small. Other approaches
include (Johnson and Willsky, 2013, Johnson, 2014), who decrease computational
complexity by censoring the initial or end time. To give a numerical example, in order
to appropriately estimate a HSMM, we assume that at least a single state transition
has to occur, hence dmax < T , but (dmax − dmin) >> K. The computational costs for
a 5-state HMM and 1000 data points would be O(52 × 1000), while for the HSMM,
assuming dmax = 500 and dmin = 0, O(52 × 5002 × 1000) for a single likelihood call.

Alternatively, a particle filter can be used for the likelihood computation in O(NT )
operations, even if the model has HSMM dynamics. Exact inference is retained, subject
to Monte Carlo error, using the Particle MCMC algorithm (Andrieu et al., 2010). N
denotes the number of particles used in the filter, and we observed that it is sufficient
to set N = T

2 for sequential Monte Carlo schemes on HSMMs, see Section 2.3 for more
detail.

2.3 Bayesian Inference on Hidden Semi-Markov
Models

In a Bayesian framework, the typical goal is to infer the posterior distribution of
the model parameter θ given the observed data e1:T , p(θ | e1:T ) = pθ(e1:T ) p(θ)

p(e1:T ) . This
is a challenging task for SSMs as it involves integrating s1:T over the likelihood
pθ(e1:t) =

∫
pθ(e1:T , s1:T ) ds1:T , which is typically intractable or costly to evaluate.

Hence, usually the full posterior distribution

p(s1:T , θ | e1:T ) = pθ(e1:T | s1:T ) pθ(s1:T ) p(θ)
p(e1:T )

is inferred. If s1:T is continuous, the target distribution p(s1:t, θ | e1:t) ∝ p(e1:t |
s1:t, θ) × p(s1:t | θ) × p(θ) can theoretically be estimated via MCMC. However, in
this case, a state trajectory of p(s1:T | θ) has to be sampled while evaluating the
target function, usually resulting in very poor outcomes of this strategy. Alternatively,
classic Gibbs sampling strategies could be applied, which iterate the estimation process
between sampling the latent states given the continuous model parameter and vice
versa. However, for the latent state trajectory proposal step, a forward-backward
algorithm would have to be employed again, as other choices such as one-at-a-time
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updates or overlapping blocks are known to cause slow mixing (Kalogeropoulos et al.,
2010, Golightly, 2009) of the Markov chain.

A more general attempt to jointly target the full joint posterior p(s1:T , θ | e1:T ) can
be shown as follows:

• 1. propose θ⋆ ∼ f(θ⋆ | θ) and s⋆
1:T ∼ pθ⋆(s⋆

1:T | e1:T ),

• 2. accept (θ⋆, s⋆
1:T ) with acceptance probability

a((s⋆
1:T , θ

⋆), (s1:T , θ)) = pθ⋆(e1:T )
pθ(e1:T )

p(θ⋆)
P (θ)

q(θ | θ⋆)
q(θ⋆ | θ) . (2.3)

The last term in equation (2.3) has been simplified by using the Basic Marginal
Likelihood Identity (BMI) of Chib (1995). This framework allows to jointly sample θ
and s1:t, but the in general intractable likelihood function is still contained in step 3.
While this term can be computed analytically for the discrete HSMM via the so-called
forward-backward algorithms, they are prohibitively expensive to run, as described
in Section 2.2. Going forward, we introduce the algorithmic machinery known as
Particle MCMC (Andrieu et al., 2010), which replaces the likelihood evaluation with
an estimate p̂θ(e1:T ) from a Particle Filter.

2.3.1 Particle Filtering

Particle Filters are often used to solve filtering equations in the form of πt(x1:t) =
τt(x1:t)

zt
. The goal is to sequentially sample a sequence of random variables, xt, t ∈

(1, ..., T ) that come from a sequence of target probabilities πt(x1:t) with the same
computational complexity at each time step. If it impossible to directly sample from
πt, a similar proposal distribution qt can be used, s.t. πt(x1:t) > 0⇒ qt(x1:t) > 0. The
fraction of τt(x1:t) and qt(x1:t) is known as un-normalized weight function wt(x1:t) =
τt(x1:t)
qt(x1:t) , s.t. the target distribution can be rewritten as πt(x1:t) = wt(x1:t)qt(x1:t)

zt
. This

method is recognized as Importance Sampling (IS). Often, the variable of interest
is the normalizing constant zt =

∫
τt(x1:t)dx1:t =

∫
wt(x1:t)qt(x1:t)dx1:t, which can be

approximated via the un-normalized weight functions

ẑt = 1
t

K∑
i=1

τt(x1:t)
qt(x1:t)

= 1
t

K∑
i=1

wt(xi
1:t).

This technique does, unfortunately, rapidly degenerate as t becomes larger. A
technique to sequentially sample from such distributions is called Sequential Importance
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Sampling (SIS), which keeps the computational costs fixed given additional time steps
by decomposing the joint distribution as τt(x1:t) = τt−1(x1:t−1)τt(xt | x1:t−1). Similarly,
the importance distribution can be decomposed as qt(x1:t) = q1(x1)∏t

n=2 qn(xn | x1:n−1).
The associated un-normalized weights can then be computed recursively via wt(x1:t) =
w1(x1)

∏t
k=1 αk(x1:k), where the incremental importance weights αt(x1:t) are given as

αt(x1:t) = τt(xt|x1:t−1)
qt(xt|x1:t−1) .

In most state space models, the memory for qt(xt | x1:t−1) is limited, so the target
distribution can be evaluated and sampled from via the methods above at fixed
computational costs. The only freedom in this framework is choosing an appropriate qt.
Unfortunately, it can be shown that the variance of the corresponding weights grows
with t, and we refer to this problem as weight degeneracy. Due to weights degeneracy,
the variance for the estimator of the normalizing constant ẑ is also increasing with
t. To alleviate this obstacle, a resampling step for the particle trajectories x1:t that
normalizes the corresponding weights can be applied. Algorithms that do so at each
iteration are known as Sequential Importance Resampling (SIR). However, this creates
a new challenge known as sample path degeneracy, which refers to the problem that
continuously resampling particle paths ultimately ends with very few unique trajectories.
Balancing weight and sample path degeneracy is an ongoing research topic, and the
most common method is to resample trajectories only at specific iterations, for example,
if the Effective Sample Size (ESS)

ESSt = 1∑N
n=1

(
wt(xn

1:t)∑N

i=1 wt(xi
1:t)

)2

of the particles is less than an a priori set threshold. For a discussion on several different
resampling techniques, see Douc and Cappe (2005). Adaptive resampling mitigates the
exploding variance of the particle weights and keeps sample path degeneracy in check.
Algorithms that apply this machinery are commonly referred as Particle Filters. They
have a fixed computational complexity that is both linear in time T and in number
of particles N , O(NT ), and return an estimate of the normalizing constant ẑt and a
particle path of π̂(x1:t). In the SSM case, the joint distribution and the normalizing
constant are of the form τt(x1:t) = pθ(s1:t, e1:t) and zt = pθ(e1:t). An approximation for
the likelihood can be computed via the weights ẑt = 1

N

∑N
n=1 wt(sn

1:t, e1:t) , which can
be decomposed in the following recursive form:

wt(s1:t, e1:t) = w1(s1, e1)
t∏

k=1
αk(s1:k, e1:k).



2.3 Bayesian Inference on Hidden Semi-Markov Models 17

The incremental weight α is defined as αt(s1:t, e1:t) = pθ(et|s1:t,e1:t−1) pθ(st|s1:t−1,e1:t−1)
q(st|s1:t−1,e1:t) ,

and the full likelihood estimate can be expressed as ẑT = 1
N

∑N
n=1

∏T
k=1 αk(sn

1:k, e1:k),
which is usually the preferred method in particle filter software implementations
as this avoids memory allocations. This permits the estimation of the incremental
likelihood pθ(et | e1:t−1) ≈ 1

N

∑N
n=1 αt(sn

1:t, e1:t) as well, which becomes relevant in the
model selection Section 2.3.5. pθ(et | s1:t, e1:t−1) and pθ(st | s1:t−1, e1:t−1) are model
distributions, and have usually limited memory. The only free distribution to choose is
q(st | s1:t−1, e1:t), which should ideally look like pθ(st | s1:t−1, e1:t). A common and simple
choice is known as Bootstrap Particle Filter (BPF), which takes q(st | s1:t−1, e1:t) =
pθ(st | s1:t−1, e1:t−1), reducing the incremental weight to αt(s1:t, e1:t) = pθ(et | s1:t, e1:t−1).
Another popular approach is the so called Auxiliary Particle Filter (APF) (Pitt and
Shephard, 1999), which assumes αt(s1:t, e1:t) to be independent of st (in the Bootstrap
Particle Filter, this does not hold!). See (Kantas et al., 2015, Doucet and Johansen,
2011) for a more in-depth review. A pseudo algorithm implementation for a standard
PF can be found in Algorithm 1, where the auxiliary variable ai

t refers to the ancestor
path of a particular particle si at time t. Hence a particle trajectory can be recursively
defined as si

1:t = (sai
t

1:t−1, s
i
t). Resampling the whole particle trajectory is equivalent to

sampling a new ancestor path. Note that it is usually much faster to sample ancestors
one at a time and then recursively recover the resampled particle path than to resample
the whole particle trajectory at each iteration. A variant of this algorithm is known
as Conditional Particle Filter (CPF), where a single particle path, s′

1:T , is chosen a
priori as reference trajectory. This implementation tracks a slightly different target
distribution, p̂(s1:T | s′

1:T , e1:T ), and is used in Section 2.4 and 2.5. A pseudo algorithm
for this Conditional Particle Filter (CPF) with ancestor sampling can be found in
Algorithm 2, and a more thorough review can be read in (Lindsten et al., 2014, 2015).

Once a particle filter has been run, observed and latent data can be forecasted by
first sampling a new state sT +1 ∼ pθ(· | s1:T , e1:T ) and then a new data point given this
state eT +1 ∼ pθ(· | s1:T +1, e1:T ). sT +1 can be sampled by forward propagating algorithm
1 or 2 from T to T + 1, thereby reusing particles from 1 to T . This can be repeated for
multiple time steps as well, resulting in a very fast procedure to sample from predictive
distributions.

2.3.2 Particle Markov Chain Monte Carlo

The most common Bayesian inference technique for model parameter θ is known as
Markov Chain Monte Carlo. Basic familiarly with this concept is assumed, and we
refer to Craiu and Rosenthal (2014) for a more detailed review about standard MCMC
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techniques. A pseudo algorithm for a basic Metropolis step can be found in Algorithm
3. The major difficulty in algorithm 3 is finding a good proposal distribution f , which
often results in slow mixing. A MCMC kernel that automatically tunes its proposal
distribution at the cost of additional tuning hyper-parameter is known as Hamiltonian
Monte Carlo (HMC), see (Neal, 2012) for an introduction and (Betancourt, 2018)
for a review on this topic. A pseudo algorithm can be seen in Algorithm 4. The
additional tuning hyper-parameter can be configured on the fly in the famous extension
No U-Turn Sampling (NUTS), which was proposed by Hoffman and Gelman (2014).
Notable improvements for this algorithm are suggested in Betancourt (2016).

Note that both the HMC and NUTS kernel require the target density to be fully
differentiable with respect to the model parameter θ. In the SSM case, targetting the
marginal posterior distribution p(θ | e1:T ) ∝ pθ(e1:T ) p(θ) is difficult or impossible via
MCMC, as the latent variables in pθ(e1:T ) =

∫
s1:T

pθ(e1:T , s1:T ) have to be integrated
out in the proposal ratio. However, pθ(e1:T , s1:T ) is usually computable pointwise, so
p(s1:T , θ | e1:T ) can be targeted. In the Particle Metropolis Hastings (PMH) case,
formally introduced in (Andrieu et al., 2010) and shown in pseudo Algorithm 5, a
particle filter is used to obtain approximations for pθ(e1:T ) and pθ(s1:T | e1:T ) as
substitutes for the analytical solutions to target p(s1:T , θ | e1:T ) jointly. In this setting,
(Andrieu and Roberts, 2009) have shown the puzzling result that one can do so and
still target the exact posterior distribution of interest. A major difficulty for this
method is finding a good MCMC kernel Kmcmc(e1:T , θ), because the θ proposal will
be accepted based on the particle filter likelihood estimate, so tuning might be very
noisy. Moreover, gradient based MCMC sampler do not work in this case as pθ(e1:T )
typically cannot be evaluated pointwise. A common critique on PMH is thus that
this algorithm is ill-suited for a higher dimensional model parameter θ. A PMCMC
variant that can mitigate this is known as Particle Gibbs with ancestors sampling
(PGAS), see (Lindsten et al., 2014, 2015). A pseudo algorithm is shown in Algorithm
6. To account for sampling from an approximation via a particle filter and to preserve
the invariance principle, a slightly adjusted p̂θ⋆(s⋆

1:T | s1:T , e1:T ) distribution is used
to sample from the state trajectory. This method does not jointly estimate the state
sequence and model parameter, but the state sequence is fixed when the new model
parameter θ⋆ ∼ pθ(θ⋆ | s1:T , e1:T ) are sampled. In this step, more advanced HMC
style MCMC kernels can be used as pθ⋆(e1:T | s1:T ), which is easy to evaluate, replaces
pθ⋆(e1:T ) in the acceptance ratio. Hence, more advanced MCMC kernels, such as the
NUTS sampler, can be used to estimate model parameter θ in the PGAS setting.
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2.3.3 Sequential Monte Carlo Squared

In a times series setting, forecasting is of major relevance. The standard way for
prediction in a Bayesian setting is simple: obtain the posterior predictive distribution
by integrating out the model parameter θ and, in the SSM case, the state trajectories
s1:T ,

p(eT +1 | e1:T ) =
∫
p(eT +1, sT +1, s1:T , θ | e1:T ) dsT +1, s1:T , θ

=
∫
pθ(eT +1 | sT +1, s1:T , e1:T ) pθ(sT +1 | s1:T , e1:T ) p(s1:T , θ | e1:T ) dsT +1, s1:T , θ.

Once a sample for p(s1:T , θ | e1:T ) is obtained, the predictive distributions for
sT +1 | s1:T , e1:T , θ and eT +1 | sT +1, s1:T , e1:T , θ are trivial to sample from. A major
drawback of the PMCMC machinery is that, even though this algorithm primarily
works for models suited to times series settings, it only works as batch estimation.
Once additional data is observed, the algorithm needs to be run again to target
p(s1:T +1, θ | e1:T +1). A method that uses PMCMC in a sequential setting is known as
Sequential Monte Carlo Squared, see Chopin et al. (2012). SMC based algorithm often
expand in the density region, known as density tempering or annealing, or the data
dimension, known as data tempering or annealing, see Gunawan et al. (2021). SMC2
is a data tempering algorithm and moves a collection of particles that consist of the
model parameters and latent states by incrementally adding data to the estimation
process. At the beginning, particles are drawn from the prior. Subsequent particles are
explored iteratively by using multiple Particle Filter and particle MCMC sampler. At
each iteration, N Particle Filter are used to obtain the incremental likelihood estimates
p̂θn(e1:t | e1:t−1) = Ẑt = 1

N

∑N
n=1 αθn(sn

1:t, e1:t) and state trajectories sn
1:t ∼ p̂θn(sn

1:t | e1:t)
for n = 1, . . . , N . If the estimates p̂θn(e1:t | e1:t−1) are getting too noisy, the particles
are jittered via PMCMC. Note that either the Particle Gibbs or the Particle Metropolis
Hastings variant can be chosen for the PMCMC kernel. The density at the final
iteration is the posterior distribution of interest. A pseudo algorithm can be seen in
Algorithm 8.

A powerful feature of the SMC2 algorithm is that at each iteration, an unbiased
estimate of the incremental marginal likelihood p̂(et | e1:t−1) is obtained at practically
no extra costs, see equation (B.1). From here on, it is straight forward to obtain an
estimate for the marginal likelihood, p̂(e1:T ) = ∏T

t=1 p̂(et | e1:t−1), for model comparison
or Bayes Factor (BF) calculations. Moreover, this machinery is highly parallelizable, a
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feature that is typically difficult to include in standard MCMC techniques, and most
SMC2 iterations can be performed online as the particle filter can be propagated forward
if no resampling step has been taken at the previous iteration. Additionally, during
the propagation step, samples for st+1 and et+1 for posterior predictive distribution
analysis can be obtained at each time index.

2.3.4 Tuning Configurations

Particle Filter tuning

In our setup, we used a bootstrap particle filter with transition distribution equal to the
model dynamics as defined in Section 2.2. The particle resampling method was chosen
to be systematic, and the resampling threshold for the ESS calculation was set to 75%.
The only free tuning parameter in this case is the number of particles N . The higher N ,
the lower the variance for the log likelihood estimate, but the higher the computational
costs per PMCMC iteration. We note that ultimately, the Particle MCMC samples
are drawn from the correct target distribution, only subject to Monte Carlo error,
independent of N . However, the mixing of the MCMC chains might be slower if less
particles are used. In this case, a larger N might lead to better results at a fixed
computational time horizon. Often, people set N equal to the number of data points
received, but in practice, significantly less particles may be used. As a sanity check,
we performed two experiments to provide insight. First, we computed a likelihood
estimate for a range of parameter values for θ = {µ, σ, r, ϕ} of a 2-state HSMM for 1000
data points. µ and σ represent the parameter for a Normal distribution given a latent
state, r and ϕ are the parameter of a Negative Binomial duration distribution. The
transition distribution has no unknown parameter in the 2-state HSMM case, as the
diagonal elements of the transition matrix are separately modeled by the duration. The
true parameter can be seen as vertical grey lines on each subplot in Figure A.1, which
shows the log likelihood estimate for a range of each parameter that was chosen based
on the 95% Credible Interval (CI) of a PMCMC run in Section 2.4, keeping all other
parameter fixed. It can be seen that the variance is reasonably similar for N = 500,
1000 or 2000. Second, we directly examined the particle filter performance during
a PMCMC run for the model defined above. The Partial Autocorrelation Function
(PACF) plot of the log likelihood PF estimates for a varying number of particles can
be seen in Figure A.2. As there is little difference in the likelihood estimate variance
between PFs with 500 and 2000 particles and the PACF look reasonably similar for
the same particle range, we will use N = T

2 for our analysis going forward.



2.3 Bayesian Inference on Hidden Semi-Markov Models 21

PMCMC tuning

Once a particle filter is designed, only a suitable MCMC kernel has to be chosen. As
discussed in Section 2.3, more advanced gradient based MCMC sampler do not work
in the Particle Metropolis Hastings case, as pθ(e1:T ) typically cannot be evaluated
pointwise. Thus, we will use Particle Gibbs with ancestors sampling and target
θ⋆ ∼ pθ(θ⋆ | s1:T , e1:T ) in the MCMC step. As gradients for pθ⋆(e1:T | s1:T ) can easily
be calculated in this case, we choose the NUTS MCMC variant (Hoffman and Gelman,
2014, Betancourt, 2016) as MCMC kernel, as other kernels often take significantly
more proposal steps to move toward the typical set. This is especially relevant for
PMCMC on our model, as we will run a comparatively expensive particle filter after
each MCMC proposal.

SMC2 tuning

As described in pseudo-algorithm 8, SMC2 has a particle filter and a PMCMC algorithm
assigned for each particle. These particles may be propagated in parallel, so the number
of SMC2 are typically chosen to be a multiple of the available computer cores. Initial
model parameter drawn from the prior distributions, and the associated PF and
PMCMC algorithm will be initiated based on the starting data of length t0 << T .
Another tuning parameter is the number of jittering steps in the resampling step. As a
guideline, we will continue jittering until the maximum parameter correlation is below
75%.

2.3.5 Model Selection

Once parameter are estimated, how should the performance of a model be evaluated? A
powerful method for comparison is to validate models based on their marginal likelihood
p(e1:T ) =

∫
p(e1:T , θ) dθ = ∏T

t=1 p(et | e1:t−1). This distribution is typically intractable
or very costly to evaluate, but during an SMC2 run, an estimate for p(et | e1:t−1)
can be obtained at practically no extra cost at each time step. In the particle filter
propagation step in algorithm 8, the incremental weight given current model parameter
θm is computed via

p̂θn(et | e1:t−1) = 1
M

M∑
m=1

αt,θn(sm
1:t, e1:t), (2.4)

where αt,θn is defined as in Section 2.3.1 and M is the number of particles that are used
for the particle filter associated to continuous parameter vector θn. After all particles
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have been propagated forward, a Monte Carlo estimator for p(et | e1:t−1) is obtained
by weighting these likelihood increments from equation (2.4) with the corresponding
normalized particle weight wn ∝ wn−1p̂θn(et | e1:t−1) associated to parameter θn,

p̂(et | e1:t−1) =
∑

n

wn × p̂θn(et | e1:t−1).

Moving forward, we refer to p(et+1 | e1:t) as (one step ahead) Predictive Likelihood (PL)
at t+ 1, PLt+1, see Kastner (2016). After the final iteration, the marginal likelihood
estimate can then be computed as p̂(e1:t) = ∏t

i=1 P̂Lt. Based on the cumulative sums
of log PLs, model choice can be performed via the so called Cumulative Log Predictive
Bayes Factor (CLPBF). To compare model A and B, for u > 0, the CLPBF is defined
as

CLPBF t+1:t+u = log

[
pA(et+u | e1:t)
pB(et+u | e1:t)

]
=

u∑
i=t+1

log [PLi(A)− PLi(B)] .

A positive CLPBF indicates evidence in favor for model A and, if t = 0 and u = T ,
this factor is known as log Bayes Factor. Note that in Section 2.3.4, we mentioned that
we usually use t0 > 1 data points to initialize the jitter kernels and then record all
future PL increments going forward, hence the resulting estimate will be the slightly
different p̂(et0+1:T | e1:t0) = ∏T

t=t0+1 P̂Lt. The t0 data points can be seen as training
data for the jitter kernels to be initialized in a reasonable parameter region.

2.4 Simulation and Experimental Results

This section consists of simulation experiments conducted to study the performance of
the PF, the PMCMC and the SMC2 algorithm on Hidden Semi-Markov Models. We
first generate 1000 data points from a HSMM with Negative Binomial state duration
distributions. A plot with sampled observed and latent data is shown in figure A.3,
which also depicts a PF estimate of the latent parameter for known continuous model
parameter. The advantages of explicitly modelling duration are visible on the third
subplot, in which durations in each state vary drastically. The last sub-section shows
how the number of hidden states in the data can be estimated using SMC2.

2.4.1 Model Dynamics and Prior Assignments

The model consists of parameter: θ = {µ, σ, p, r, ϕ}, where the data et ∼ N(µst , σst)
has a normal distribution given the latent state. The latent states have the same
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dynamics as explained in Section 2.2, latent state and duration

st ∼

δ(st, st−1) dt−1 > 0
Categorical(pst−1) dt−1 = 0

, dt ∼

δ(dt, dt−1 − 1) dt−1 > 0
NegativeBinomial(rst , ϕst) dt−1 = 0

.

The µ parameter have truncated Normal priors with equal variance and different
means, µ1 ∼ Normal(−100,0)(µ = −2, σ = 105), µ2 ∼ Normal(0,100)(µ = 2, σ = 105).
We assigned a truncated Normal prior for the variances σ ∼ Normal(0,10)(µ = 2, σ =
105) and for the Negative Binomial parameter, r ∼ Normal(0,100](µ = 10, σ = 105). The
second duration distribution parameter, ϕ, has equal mass from 0 to 1, ϕ ∼ Beta(α =
1, β = 1). Similarly, we assigned a Dirichlet prior for the transition probabilities, p,
that favors equal weights, p ∼ Dirichlet(α1 = α2 = ... = αk = k), where k = number
of latent states.

2.4.2 Estimation

If parameter θ are unknown, both the PMCMC and SMC2 machinery can be used.
As the latter builds on the former, we first show estimation results for the Particle
MCMC run. The traceplots of four chains for the continuous model parameter can
be seen in figure A.4, and for the latent state sequence in figure A.5. After parameter
are initialized from the prior distributions, they rapidly converge to the values used to
generate the sample data. Common MCMC output statistics are summarized in Table
2.1. SMC2 results can be seen in figure A.6 for the model parameter and in figure A.7
for the latent variables. Just as in the PMCMC case, samples converge fast toward
the typical set. Common MCMC output statistics of the final SMC2 iteration for the
continuous model parameter are displayed in Table 2.2.

θ True Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µ1 -2.0 -2.03 0.01 0.39 1.00 -2.50 -2.18 -2.0 -1.85 -1.55
µ2 2.0 1.78 0.00 0.22 1.00 1.59 1.72 1.78 1.84 1.96
σ1 4.0 4.01 0.00 0.27 1.00 3.72 3.91 4.00 4.11 4.32
σ2 2.0 2.07 0.00 0.17 1.00 1.93 2.014 2.06 2.11 2.23
r1 10.0 13.64 0.01 4.06 1.00 5.46 10.64 14.01 17.09 19.72
r2 15.0 13.18 0.23 8.04 1.00 4.12 8.03 11.26 15.99 32.96
ϕ1 0.3 0.37 0.00 0.08 1.00 0.18 0.32 0.38 0.43 0.48
ϕ2 0.3 0.25 0.00 0.09 1.00 0.10 0.18 0.24 0.31 0.48

Table 2.1 Posterior output statistics of 4 PMCMC chains for a HSMM on simulated
data in Section 2.4. 2000 iterations were run with 1000 iterations burnin, resulting in
4000 total samples. Initial parameter have been sampled from the prior distribution.
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θ True Mean MCSE SD Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µ1 -2.0 -2.04 0.01 0.42 -2.86 -2.28 -2.05 -1.82 -1.06
µ2 2.0 1.7 0.00 0.17 1.42 1.63 1.73 1.83 2.10
σ1 4.0 4.03 0.00 0.22 3.61 3.90 4.02 4.16 4.48
σ2 2.0 2.00 0.00 0.18 1.42 1.94 2.02 2.1 2.30
r1 10.0 9.38 0.19 5.99 0.09 4.94 9.68 14.19 19.40
r2 15.0 23.68 0.63 22.03 1.00 8.50 16.03 31.50 87.74
ϕ1 0.3 0.26 0.00 0.13 0.02 0.16 0.27 0.36 0.48
ϕ2 0.3 0.41 0.00 0.21 0.06 0.24 0.37 0.55 0.88

Table 2.2 Posterior output statistics for 100 SMC chains on a HSMM at final iterations
on simulated data in Section 2.4.

2.4.3 Determining the number of states

Before estimating model parameter for a given data set, the researcher has to choose
the number of hidden states in a discrete SSM, which is often challenging a priori. To
tackle this problem, we choose methods from the overfitting mixtures literature, see
Rousseau and Mengersen (2011), Fruehwirth-Schnatter (2006), Fruehwirth-Schnatter
et al. (2018). In particular, Rousseau and Mengersen (2011) show that the posterior
distribution of a mixture model is much more stable if the prior weights of the mixture
components are concentrated on the boundary regions of the parameter space. We
borrow this concept for SSMs and show that by assigning appropriate prior weights
on the transition matrices of a HSMM, we can choose more states than necessarily
describe the data and still have an interpretable structure, as superfluous latent states
will never be visited during the estimation process. As an experiment, we fit a 2-, 3-,
and 5-state HSMM to data that was generated by a 3-state HSMM. The parameter
used to generate the data can be seen in Table 2.3, and the corresponding data in plot
2.2. In Section 2.3, we mentioned that the Predictive Likelihood can be estimated as a
by-product of the inference procedure in SMC2. Hence, we tracked the cumulative log
PL for each model at each iteration, and plotted the results in figure 2.2. It can be seen
that the 3- and 5-state HSMMs Predictive Likelihood perfectly align, and we conclude
that it is possible to determine the number of states via SMC2, and even check for
differences during the data propagation. All estimates for the model parameter can
be seen in Table 2.3. In this table, state 2 and 4 are almost never visited and act as
superfluous regimes. The remaining state estimates contain the correct parameter in
the 95% Credible Intervals.
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Figure 2.2 Cumulative log Predictive Likelihood of 2-, 3- and 5-state HSMM, as
discussed in Section 2.3. The underlying data has been generated by a 3-state HSMM,
and the 5-state HSMM returns PL levels as the HSMM that generated the data, while
the 2-state HSMM is not flexible enough to detect the data structure. Hence, we can
"overfit" the number of states and let the algorithm decide the number of states itself in
case no prior knowledge is available. The bottom plot shows the whole data sequence,
while the bottom graph depicts the cumulative log PL as defined in Section 2.3.5 of
the last 500 iterations.
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θ True Mean MCSE SD Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µ1 -5.0 -4.73 0.03 1.48 -8.21 -5.43 -4.66 -3.97 -1.6
µ2 - -1.5 0.1 4.18 -8.8 -4.46 -1.04 0.09 8.64
µ3 0.0 -0.44 0.07 2.06 -6.06 -0.19 -0.05 0.07 2.93
µ4 - -1.56 0.11 5.36 -9.25 -5.65 -3.19 2.56 9.35
µ5 5.0 4.95 0.0 0.03 4.9 4.94 4.96 4.97 5.01
σ1 2.5 2.95 0.03 1.38 1.13 2.26 2.7 3.2 7.69
σ2 - 3.27 0.08 2.32 0.76 1.56 2.42 4.11 9.24
σ3 1.5 1.92 0.05 1.33 1.27 1.46 1.55 1.67 6.9
σ4 - 4.43 0.06 2.68 0.46 2.4 3.59 6.68 9.62
σ5 0.5 0.52 0.0 0.06 0.45 0.49 0.51 0.53 0.69
λ1 5.0 4.53 0.04 1.7 1.38 3.4 4.46 5.53 8.36
λ2 - 10.14 0.17 6.71 1.55 5.08 9.33 12.23 27.51
λ3 10.0 10.76 0.1 3.58 3.16 9.89 10.8 11.65 21.89
λ4 - 11.72 0.23 8.77 1.36 4.01 8.9 18.78 29.02
λ5 30.0 30.92 0.04 1.59 27.72 29.84 30.98 32.03 33.89
p1,1 -
p1,2 - 0.15 0.01 0.22 0.0 0.0 0.05 0.26 0.77
p1,3 0.2 0.27 0.01 0.26 0.0 0.05 0.25 0.46 0.87
p1,4 - 0.08 0.0 0.18 0.0 0.0 0.01 0.09 0.74
p1,5 0.8 0.50
p2,1 - 0.19 0.01 0.25 0.0 0.01 0.07 0.27 0.9
p2,2 -
p2,3 - 0.2 0.01 0.26 0.0 0.0 0.07 0.31 0.92
p2,4 - 0.13 0.01 0.23 0.0 0.0 0.02 0.14 0.89
p2,5 -
p3,1 0.2 0.17 0.0 0.17 0.0 0.03 0.13 0.26 0.59
p3,2 - 0.1 0.01 0.16 0.0 0.0 0.03 0.14 0.59
p3,3 -
p3,4 - 0.07 0.0 0.14 0.0 0.0 0.01 0.07 0.49
p3,5 0.8 0.67
p4,1 - 0.23 0.01 0.29 0.0 0.01 0.08 0.37 0.95
p4,2 - 0.22 0.01 0.29 0.0 0.0 0.07 0.36 0.94
p4,3 - 0.24 0.01 0.29 0.0 0.01 0.11 0.4 0.94
p4,4 -
p4,5 -
p5,1 0.2 0.2 0.0 0.15 0.0 0.07 0.19 0.3 0.51
p5,2 - 0.18 0.01 0.26 0.0 0.0 0.04 0.24 0.82
p5,3 0.8 0.57 0.01 0.28 0.0 0.47 0.67 0.78 0.89
p5,4 -
p5,5 -

Table 2.3 Parameter estimates for 5-state HSMM. The first column depicts the parame-
ter for the 3 state HSMM that were used to generate the data. State 2 and 4 are hardly
visited, and are the superfluous states. pi,j denotes the transition probability from
state i to j. pi,i is separately modeled by the duration distribution. The transition
probabilities p form a simplex, so the probability to transition to the final state is
determined by all other states.
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2.5 Applications on the VIX Times Series Data

The section contains a case study on model selection and prediction for a financial
data set. Moreover, we show how SSMs can be used for clustering purposes.

2.5.1 Prediction and Model Selection on Financial Volatility

In this Section, we are modeling the VIX directly via HSMMs and other popular
benchmark models. The VIX is derived from options with near-term expiration dates
on the US major equity S&P 500 index, and is a popular indicator for future short term
volatility expectations. Volatility is often modeled indirectly based on (log) stock prices
via Stochastic Volatility (SV) models and its autoregressive nature is well recognized,
see e.g. (Hull and White, 1987, Kim et al., 1998, Kastner, 2016). We incorporate this
behaviour in our model by assigning autoregressive weights to the location parameters
in each latent regime. The corresponding model can be viewed as a separate AR(1)
model in each state, where a latent variable following a semi-Markov chain governs
the regime changes and durations. Multiple duration distribution choices, such as the
negative Binomial and Poisson distribution, are tested and benchmarked against HMM
and AR(1) models.

For real data collection, we first obtain 1000 daily end-of-day data points of this
instrument, which can be seen in figure A.8, as of January 1st 2022 from the Thomson
Reuters database. Notably, the Covid-19 epidemic is included in the data, which
causes the evidence to be much more volatile from the start of 2020 and to transition
to a different regime from there onward. Common ideas to address this issue are to
assign change points across the times series before estimating the model parameter.
Such methods have an easily interpretable structure, but lack the information from a
stochastic process governing the model dynamics, which enhances inference capabilities
for the data. For example, due to the discrete state space formulation of our proposed
model, parameter interpretation is straightforward, while the HSMM dynamics allow
to incorporate significantly more decision-making tools, such as regime change and
duration forecasting.

Model Dynamics and Prior Assignments

The AR(1) HSMM with Negative Binomial duration consists of parameter: θ =
{µ, σ, w, p, r, ϕ}, where the data et ∼ N(wst × et−1 + µst , σst) has a normal distribution
given the latent state and the previous data point. The latent states have the same
dynamics as explained in Section 2.2, latent state and duration
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st ∼

δ(st, st−1) dt−1 > 0
Categorical(pst−1) dt−1 = 0

, dt ∼

δ(dt, dt−1 − 1) dt−1 > 0
NegativeBinomial(rst , ϕst) dt−1 = 0

.

The µ parameter have truncated Normal priors with equal variance and means for
each state, µi ∼ Normal(0,1)(µ = 0.2, σ = 105). Similarly, we assigned a truncated
Normal prior for the variances σi ∼ Normal(0,1)(µ = 0.2, σ = 105) and for the Negative
Binomial parameter, ri ∼ Normal(0,100](µ = 10, σ = 105). The second duration
distribution parameter ϕ has equal mass from 0 to 1, ϕi ∼ Beta(α = 1, β = 1).
Similarly, we assigned a Dirichlet prior for the transition probabilities p that favors
equal weights, p ∼ Dirichlet(α1 = α2 = ... = αk = k), where k = number of latent
states. The autoregressive parameter, w, is bounded between −1 and 1 by assigning a
truncated prior, wi ∼ Normal(−1,1)(µ = 0, σ = 105). The AR(1) HSMM with Poisson
duration only differentiates with respect to the duration parameter, θ = {µ, σ, w, p, λ}.
In this case, the latent duration has a Poisson distribution,

dt ∼

δ(dt, dt−1 − 1) dt−1 > 0
Poisson(λst) dt−1 = 0

, where λi ∼ Normal(0,100](µ = 20, σ = 105). The

AR(1) HMM with parameter θ = {µ, σ, w, p}, has the same data dynamics and latent
state dynamics st ∼ Categorical(pst−1). All prior configurations are assigned from the
previous models. The AR(1) Model with parameter θ = {µ, σ, w} does not have latent
variables, and data dynamics et ∼ Normal(w× et−1 +µ, σ). The priors for µ are set to
µ ∼ Normal(0,10)(µ = 2.0, σ = 105). σ and w have the same prior as the other models.

Results

A detailed methodology for model comparison can be found in section 2.3.5. The SMC2
machinery with the tuning configurations discussed in Section 2.3 is used to estimate
model parameter. The Cumulative Log Predictive Bayes Factor as discussed in Section
2.3 is shown in figure 2.3, which contains diagnostics for ARHSMMs and ARHMMs
with a different number of states. We kept increasing the number of latent states until
the cumulative Predictive Likelihood started to decrease. As can be seen in table 2.5,
which contains diagnostics at the final time index, the 3 state models performed best
within each model family, and the Negative Binomial duration distribution performed
best among all models. Figure 2.3 shows the CLPBF of this model against all other
benchmarks, which is positive and in favor of the proposed model consistently over
time against all other models. Results for this particular model can be seen in Figure
A.9 and Table 2.4 for a model parameter summary. The traceplots show all model
parameter estimates at each point in time with the corresponding 95% credible interval.
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There is a clear distinction between a lower and higher volatility state. Moreover, an
additional regime is introduced at the time COVID-19 makes significant headlines in
the global markets with much larger volatility estimates that either of the other latent
regimes. During this period, a clear distinction between the different regimes forms,
which is captured very fast during the estimation process, and would be impossible for
standard batch estimation methods. Figure A.10 shows the filtered state trajectory
of the latent variables at each time step. A re-scaled posterior mean of the latent
variable at each time index is shown against the real data in the bottom sub-plot,
which displays the clear distinction between two volatile and a stable state in the times
series. There is more variation at the initial stages before more data is added to the
algorithm. Figure A.11 depicts model predictions against the realized data at each
time step.

Parameter Mean MCSE StdDev Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µ1 0.36 0.2 0.01 0.11 0.2 0.3 0.47 0.88
µ2 0.23 0.05 0.0 0.1 0.21 0.25 0.28 0.3
µ3 0.13 0.17 0.01 0.02 0.05 0.07 0.09 0.69
σ1 0.17 0.06 0.0 0.05 0.14 0.17 0.2 0.28
σ2 0.09 0.02 0.0 0.05 0.08 0.09 0.1 0.15
σ3 0.06 0.03 0.0 0.04 0.05 0.05 0.05 0.19
w1 0.92 0.07 0.0 0.76 0.88 0.94 0.98 1.0
w2 0.92 0.02 0.0 0.89 0.9 0.91 0.93 0.97
w3 0.95 0.06 0.0 0.78 0.96 0.97 0.98 0.99
p1,2 0.72 0.2 0.01 0.18 0.62 0.77 0.87 0.97
p2,1 0.49 0.23 0.01 0.07 0.3 0.52 0.68 0.89
p3,1 0.46 0.29 0.02 0.03 0.18 0.46 0.71 0.93
r1 4.99 5.4 0.15 0.03 0.66 2.74 7.83 18.35
r2 6.12 5.46 0.15 0.29 1.59 4.23 9.56 18.89
r3 4.75 4.33 0.12 0.36 1.72 3.21 6.25 17.13
ϕ1 0.68 0.3 0.01 0.07 0.45 0.79 0.95 1.0
ϕ2 0.56 0.28 0.01 0.05 0.34 0.62 0.8 0.94
ϕ3 0.24 0.18 0.01 0.04 0.12 0.19 0.31 0.74

Table 2.4 Posterior output statistics for 100 SMC chains on ARHSMM in chapter 2.5
at final iterations in SMC2 run. pi,j denotes the transition probability from state i to
j. pi,i is separately modeled by the duration distribution. The transition probabilities
p form a simplex, so the probability to transition to the final state is determined by all
other states. r and ϕ are parameters for the Negative Binomial duration probabilities.
w are the autoregressive coefficients for the ARHSMM.

Once parameter have been estimated, the latent state trajectory estimates can be
used to cluster the log VIX data into different regimes. A re-scaled state posterior
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Figure 2.3 The top plot depicts the Cumulative Log Predictive Bayes Factor as defined
in Section 2.3.5 of the winning model in Section 2.5 at each iteration. At the bottom,
the corresponding log VIX index data is shown over time.
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Names Cum Log PL. Difference to Winner
AR(1) HSMM, 2 state NegBin duration 573.25 14.39
AR(1) HSMM, 3 state NegBin duration 587.64 0.00
AR(1) HSMM, 4 state NegBin duration 585.80 1.84
AR(1) HSMM, 2 state Poisson duration 583.55 4.09
AR(1) HSMM, 3 state Poisson duration 585.23 2.41
AR(1) HSMM, 4 state Poisson duration 582.92 4.73

AR(1) HMM, 2 states 569.09 18.55
AR(1) HMM, 3 states 582.58 5.06
AR(1) HMM, 4 states 578.74 8.90

AR(1) 501.88 85.76
Table 2.5 Cumulative log Predictive Likelihood as defined in Section 2.3.5 for various
discrete state space models fitted via SMC2 on data described in chapter 2.5.

mean of the latent trajectory at the last SMC2 iteration against the actual data can
be seen at the top plot in Figure 2.4. State 1 corresponds to a short duration state
with jumps and drastic changes in levels, while state 2 and 3 corresponds to the more
typical high and low volatility regimes that are observed for the majority of times.
Based on the posterior mean, we clustered the changes in the index for each state,
which can be seen in the bottom plot of Figure 2.4. Here, state 1 is clearly associated
with drastic movements in either direction. To compare the ARHMM clusters with
the results obtained from our proposed model, we generated a plot that showcases
both models side by side in Figure A.12. Upon examination, it becomes evident that
the HMM variant exhibits significantly shorter durations in the high volatility state.
Instead, it predominantly switches back and forth between the most frequent state,
which accounts for the lower marginal likelihood observed in the tests. An intriguing
observation is that the separation of the low- and medium volatility states appears to
be based on scale in the Autoregressive Hidden Markov Model (ARHMM), whereas in
the Autoregressive Hidden Semi-Markov Model (ARHSMM), the separation occurs on
a scale basis.

2.6 Conclusions

In this Chapter, we discussed sequential parameter estimation techniques for State Space
Models with a focus on Hidden Semi-Markov Models. We compared the forecasting
accuracy of various models on financial data and concluded that the HSMM has
a superior predictive performance against other popular discrete SSMs. Moreover,
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Figure 2.4 The top plot depicts a histogram for changes in log VIX data, conditioned
on the most probable posterior latent state from the final SMC2 iteration. The bottom
graph displays the log VIX data over time (black) alongside the most probable latent
state, rescaled to the underlying data.
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we demonstrated how by-products emerging from a SMC2 estimation run can be
used to determine the number of latent regimes governing such models. While the
additional duration variable in the HSMM typically causes parameter inference to be
more challenging due to the increased computational costs of the likelihood function,
it adds significantly more flexibility in modelling the latent process. Our proposed
inference technique has the same computational costs for both the basic HMM and
the HSMM and is particularly suitable for sequential data. As for future research
topics, more optimized techniques to adaptively select the number of particles in a
PF may lead to faster runs and improved mixing for both the PMCMC and SMC2
algorithm. Furthermore, as tuning the individual MCMC and PF kernels was handled
independently during the SMC2 runs, adding information from all chains may drastically
increase the tuning process for the individual jitter kernels.

2.7 Software

The data and code used to run the algorithms in this Chapter can be be seen in https:
//github.com/paschermayr/Publish_SequentialHSMM. For more detailed information
about the implementations for running all algorithms and computing all tables can
be found in https://github.com/paschermayr/Baytes.jl and its sub-libraries. The
corresponding plots are defined in https://github.com/paschermayr/BaytesInference.jl.

https://github.com/paschermayr/Publish_SequentialHSMM
https://github.com/paschermayr/Publish_SequentialHSMM
https://github.com/paschermayr/Baytes.jl
https://github.com/paschermayr/BaytesInference.jl




The most important step a man can take. It’s not the first one, is it? It’s the next one.

Brandon Sanderson (The Way of Kings, 2010)





Chapter 3

SIR-type State Space Models with
Piecewise Constant Transmission
Rates

The SARS-CoV-2 pandemic has seen multiple resurgences due to evolving virus
variants, making it difficult to analyze these kinds of phenomena with classic
epidemic models, and thus challenging decision makers to successfully counteract
new infection waves in time. In this Chapter, we propose an epidemic model
with the transmission rate between susceptible and infected individuals, β, being
time varying and piecewise constant. At any point in time, β is linked to a latent
variable that follows a Hidden Semi-Markov Model (HSMM). This HSMM-driven
epidemic Model (HSMM-EM) structures the data into multiple regimes, which
greatly enhances decision-making capabilities, while the limited number of con-
tinuous model parameter guarantees straightforward model interpretation. In a
case study on COVID-19 numbers in the United Kingdom, reported fatalities as
well as infections are used in the observation model specification to account for
the uncertainty in either of the reporting methodologies. We show that this is
preferable to using only fatalities based on Bayesian model choice derived from
Particle MCMC (PMCMC) and Sequential Monte Carlo (SMC) runs.
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3.1 Introduction

Since the emergence of the SARS-CoV-2 virus in late 2019, policy makers find it
challenging to set intervention policies to prevent COVID-19 disease outbreaks in
time. Due to the high reproduction rate of the SARS-CoV-2 virus, it is of utmost
importance to monitor the current number of infections in an economy in order to
avoid the virus to spread to uncontrollable levels and cause havoc on both citizens
and the economy. Petrosillo et al. (2020) and Liu et al. (2020) provide estimates
for various coronavirus spread rates, placing even the early SARS-CoV-2 variants
among the top. The standard techniques to model such phenomena are known as
compartmental models, which assign the target population to different departments.
For example, the well-known Susceptible-Exposed-Infected-Recovered (SEIR) model,
see e.g. (Cohen, 1992, Diekmann et al., 2012), divides the population into susceptible,
exposed, infectious, or recovered individuals. A major advantage of this class of models
is the ease of interpretability for the model parameter and the established approaches
on government intervention policy analysis.

An important factor that can be computed based on the parameter from a SEIR
style model is known as Effective Reproductive Number (Rt), the number of secondary
infections that one infected person would produce through the entire duration of the
infectious period, Rt = βS(t)

γN(t) . In this case, N is the total population. In the standard
SEIR model case, the β parameter, the transmission rate between susceptible and
infected individuals, is kept constant across the time horizon. However, in the SARS-
CoV-2 case, it has been abundantly clear that this parameter is time varying, see, e.g.,
Flaxman et al. (2020b). Consequently, traditional SEIR type models are ill-suited to
provide accurate parameter estimates and predictions for future COVID-19 outbreaks.
Common ideas to alleviate this problem is to assign multiple β parameters across
the time horizon. Most propositions evolve around either assigning change points to
different β parameters or using continuous latent states, i.e. a Geometric Brownian
Motion (GBM), that are linked to this parameter, see, e.g., Chatzilena et al. (2022).
The former methods are easy to interpret but have no stochastic process governing the
dynamics and no memory associated to the parameter. This makes interpretation of
intervention impact and prediction more difficult. The latter method does have these
attributes, but model parameter, in particular the GBM part, are more challenging to
interpret.

We propose a new class of SEIR type models that accommodates both features
by having a time-varying, piecewise constant β that is dependent on a latent process
that follows a Hidden Semi-Markov Model, a flexible State Space Model (SSM) that
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is an extension of the popular Hidden Markov Model (HMM). Piecewise constant β
parameter are easier to interpret and base decisions on. They are a natural progression
to change-points and more parsimonious than continuous latent state trajectories.
Moreover, using a state space model formulation instead of change points has the
significant advantage that at any point in time, transition probabilities of regime changes
can be computed, which provides significant more information for decision-making.
We will denote all SEIR type models with such dependencies HSMM-driven epidemic
Model (HSMM-EM) from here on onwards. However, attaching a latent process to the
transmission rate between susceptible and infected individuals significantly increases
the computational complexity of the proposed model. In order to estimate the discrete
latent state trajectory, we design a tailored Particle Filter (PF) that is also used for
batch estimation of all model parameter via a Particle MCMC kernel. Additionally, a
Sequential Monte Carlo Squared (SMC2) algorithm is used for sequential estimation.
Note that estimating the latent state trajectory involves significant computational
challenges as the memory of the proposed model is much higher than for typical SSMs.

Our main contributions in this Chapter are formulating and efficiently estimating
a novel discrete State Space Model for epidemic models that is more flexible than
its alternatives but still convenient to interpret. This includes designing a Particle
Filter that can be used for SSMs that have Ordinary Differential Equation (ODE)s
at each transition in the PF propagation step. We show that this model performs
excellently in terms of predictive accuracy on reported COVID-19 infections and
fatalities in the United Kingdom and identify the number of latent regimes for the
provided data. Last but not least, we show that combining both reported fatalities
with the reported infections increases predictive performance versus models that only
use reported fatalities as data source.

This Chapter is organized as follows: Section 3.2 formally describes the proposed
Susceptible-Exposed-Exposed-Infected-Infected-Recovered (SEEIIR) model in more
detail. In Section 3.3, we present the methodology that is used in this Chapter for
parameter estimation and model comparison. Section 3.4 explores the validity of the
developed methods via simulation based experiments. In Section 3.5, we perform a
case study on COVID-19 fatalities and infections in the United Kingdom. Finally,
Section 3.6 concludes with some relevant discussion.
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3.2 Model Specification

In our framework, model implied infections and fatalities are linked to the corresponding
reported data. Throughout this Chapter, we will use a superscript r for the reported
data, and a superscript i for the model implied data. The model implied cases are
obtained from the following Ordinary Differential Equation:

dSt

dt = −βtSt
(I1,t + I2,t)

N
− ρνt−U ,

dE1,t

dt = βtSt
(I1,t + I2,t)

N
− ϵE1,t,

dE2,t

dt = ϵE1,t − ϵE2,t,

dI1,t

dt = ϵE2,t − γI1,t,

dI2,t

dt = γI1,t − γI2,t,

dRt

dt = γI2,t + ρνt−U ,

(3.1)

which is an extension of a standard SEIR Model, see Dureau et al. (2012). The total
population N in our model is divided into four groups: Susceptible (S), Exposed
(E), Infected (I), and Recovered (R). New infections occur at a rate of βtSt

(I1,t+I2,t)
N

.
This implies that susceptible individuals make effective contacts at a rate of β, which
represents the transmission rate between susceptible and infected individuals. The
parameters ϵ and γ indicate the average waiting times for individuals in the Exposed
and Infected compartments, respectively. These waiting times are given by 1

ϵ
and

1
γ
. νt represents the number of individuals who have received their first COVID-19

vaccination at time t. We set U , the number of days until the vaccination is in full
effect, to 45 and assume a constant vaccine efficiency ratio ρ of 0.5. The introduction
of additional compartments, namely E2 and I2, allows for more realistic waiting time
periods, as described in Wearing et al. (2005). One crucial distinction in our model is
that the transmission rate parameter between susceptible and infected individuals, β, is
associated with a latent discrete state, making it time-varying and piecewise constant.

In addition to the model parameter stated in Equation (3.1), a full discrete state
trajectory of length T , where T is the number of data points, has to be estimated.
We use a Particle Filter to sample the full state trajectories s1:T linked to β in the
estimation process. Once the ODE has been solved, the model implied cases can be
computed. The model implied deaths are a function of the model implied cases, see
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Flaxman et al. (2020a), Chatzilena et al. (2022), and are defined as

di
t = ifrt ∗

t−1∑
τ=max(1,t−28)

ci
τft−τ ,

where di
0 is set to 0. c are the model implied cases from the ODE, f the distribution

of time from infection to death, which is based on the work of Verity et al. (2020).
Infection Fatality Ratio (ifr) denotes the probability of death for an infected individual,
which is also known as the infection fatality ratio and is based on Levin et al. (2020) and
adjusted from findings of Chatzilena et al. (2022). The model implied deaths can occur
only up to 28 days after infection, which is the number of days the United Kingdom
uses to compute reported cases, see GOV.UK (2022). The observation probability for
the reported cases is defined as

cr
t ∼ Negative BinomialAlternative

(
c∗

t , c
∗
t + c∗2

t

ϕc

)
, (3.2)

where c∗
t = ci

t ∗ urt are the model implied cases adjusted by an under-reporting score
for the additional noise during the initial period of data gathering. The corresponding
values can be seen in Figure A.16. Negative BinomialAlternative(µ, ϕ) is an alternative
parameterization of the Negative Binomial distribution with E(Y ) = µ and V ar(Y ) =
µ+ µ2

ϕ
. Similarly, the observation probability for the reported deaths is defined as

dr
t ∼ Negative BinomialAlternative

di
t, d

i
t + di2

t

ϕd

 (3.3)

where di
t are the model implied deaths. The model implied deaths are a function of

the model implied cases, which in turn are obtained from solving the ODE stated in
Equation (3.1). In order to solve these equations, a vector of the piecewise constant β
parameter equal to the number of data points is needed. We obtain these by linking
each β to a latent variable that follows a HSMM, a flexible extension of the popular
HMM that allows the underlying stochastic process to be a semi-Markov chain. A
particular advantage of the HSMM is that it allows its state duration distribution,
the probability a latent state remains in any current state until it switches to a
different state, to be fully customizable, while the HMM counterpart is implicitly
geometric. Given the tendency of rapid switching between COVID-19 outbreaks and
longer time horizons of lockdowns, HSMMs are better suited for our purpose. In
addition, assigning a State Space Model allows us to compute probabilities for regime
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changes given the current state, which is extremely useful for prediction purposes. The
HSMM formulation used throughout this Chapter is known as the Explicit-duration
Hidden Markov Model (EDHMM), i.e. a HSMM that explicitly defines the duration
distribution. Transitions are allowed only at the end of each state, resulting in the
following definition. A hidden semi-Markov model is a bivariate stochastic process
{et, zt}t=1,2,..., where zt = {st, dt} is an unobserved semi-Markov chain and, conditional
on zt, et is an observed sequence of independent random variables. The model is fully
specified by the transition distribution fθ(st | st−1, dt−1) of st

st ∼

δ(st, st−1) dt−1 > 0
fθ(st | st−1, dt−1) dt−1 = 0 ,

the duration distribution hθ of dt

dt ∼

δ(dt, dt−1 − 1) dt−1 > 0
hθ(dt | st, dt−1) dt−1 = 0 ,

the corresponding initial distribution πθ of zt, and the observation distribution gθ,
et ∼ gθ(et | st),

et ∼ gθ(et | st).

where δ(a, b) is an indicator function and equals 1 if a = b and 0 otherwise. For
additional flexibility, we choose a Negative Binomial distribution to model the state
durations. A more detailed review of HSMMs can be seen in see Murphy (2002),
Yu (2010, 2016), and additional applications can be found in Bulla and Bulla (2006),
Lindsten and Schön (2013), Chopin and Papaspiliopoulos (2020), Corenflos et al. (2021).
The general structure of the HSMM-EM can be seen as a Directed Acyclic Graph
(DAG) in Figure 3.1.

3.3 Bayesian Inference

3.3.1 Parameter estimation

Inference on the posterior distribution of the model parameter θ given the observed
data e1:T , p(θ | e1:T ) = pθ(e1:T ) p(θ)

p(e1:T ) is a standard goal in Bayesian parameter estimation.
For our particular model, we want to emphasize that, in addition to the model
parameter, a latent state trajectory has to be estimated that assigns a piecewise
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z1 z2 · · · z29 · · · zThsmmθi,zαi

β1 β2 · · · β29 · · · βTvac, cr

c1 c2 · · · c29 · · · cThθcγi

ifr, f, dr d1 d2 · · · d29 · · · dT

gθdδi

K

Figure 3.1 A HSMM-driven epidemic Model, parameter θ and hyper-parameter {α, γ, δ}.
zt follows a Hidden Semi-Markov Model and determines the transmission rate βt at
each time index. The unshaded nodes ct (cases) and dt (deaths) denote the unobserved
true data at time t. θi,z denotes the model parameter for the latent state z in regime
i. h denotes all model functions and θc all parameter for the model implied cases c,
while g denotes all model functions and θd all parameter for the model implied deaths
d. vac, cr, dr denote the reported vaccinations, cases and deaths. ifr denotes the
infection-fatality ratio, f the distribution of time from infection to death.
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constant transmission rate between susceptible and infected individuals, βt, that is
linked to a latent variable st at each time index. Additionally inferring the latent
states s1:T is a challenging task as they have to be integrated out in the likelihood
computation, pθ(e1:t) =

∫
pθ(e1:T , s1:T ) ds1:T . This is typically intractable or costly to

evaluate and, consequently, usually the full posterior distribution p(s1:T , θ | e1:T ) =
pθ(e1:T |s1:T ) pθ(s1:T ) p(θ)

p(e1:T ) is inferred.
In this Chapter, we focus on the Particle MCMC machinery, see Andrieu et al.

(2010), which is a framework that jointly infers the latent state sequence and model
parameter. In a PMCMC step, a PF and a MCMC kernel are used iteratively to sample
a state trajectory s1:T and continuous model parameter θ. Typically, for a standard
PMCMC sampler like the Particle Metropolis Hastings (PMH) kernel, it is difficult
to find a good MCMC kernel Kmcmc(e1:T , θ), because the θ proposal will be accepted
based on the Particle Filter likelihood estimate. Additionally, pθ(e1:T ) typically cannot
be evaluated pointwise or is at least prohibitively expensive to do so, so gradient based
MCMC kernels are unavailable. An alternative PMCMC method is known as Particle
Gibbs (PGIBBS). During a PGIBBS step, first a Conditional Particle Filter (CPF) is
used to obtain a sample from p̂θ⋆(s⋆

1:T | s
′
1:T , e1:T ), and then a MCMC kernel is used

to obtain a sample for all other continuous model parameter θ. s
′
1:T is commonly

referred as reference trajectory and used to preserve the invariance principle in the
slightly altered Particle Filter target distribution. A major advantage of the PGIBBS
kernel is that the likelihood function for the MCMC step, pθ(y1:T | s1:T ), is usually
computable pointwise, so a greater variety of more advanced MCMC kernels can be
used. Consequently, we use the PGIBBS variant of this algorithm in order to use more
advanced gradient based MCMC algorithm to update the continuous model parameter.
A pseudo algorithm for the standard PMCMC variant can be seen in Algorithm 5,
and for the PGIBBS variant in Algorithm 6. We refer to Kantas et al. (2015), Doucet
and Johansen (2011) for a thorough Particle Filter review, and to Lindsten et al.
(2014, 2015) for an introduction to the PGIBBS version. Craiu and Rosenthal (2014)
provides a detailed guide on the topic of MCMC. In our computations, we used a fully
automated version of the MCMC variant Hamiltonian Monte Carlo (HMC), see Neal
(2012), Betancourt (2018), known as No U-Turn Sampling (NUTS) algorithm, which
was proposed by Hoffman and Gelman (2014) and later on improved in Betancourt
(2016).

While the Particle Filter permits the estimation of the log likelihood function by
incrementally evaluating data points, the ODE in Equation (3.1) has to be solved at
each time step as the log weights for the particles are based on the sum of Equations (3.2)
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and (3.3). Note that for most SSMs, the probability of observing data et depends only
on the current state st, and the transition probability for st only depends on st−1. In
our model, data et = {cr

t , d
r
t} ∼ Neg. Bin.Alt

(
c∗

t , c
∗
t + c∗2

t

ϕc

)
×Neg. Bin.Alt

(
di

t, d
i
t + di2

t

ϕd

)
,

where ϕd is dependent on the past 28 model implied cases, see Section 3.2. This
time frame is based on the U.K. methodology to compute the reported deaths after a
person has been inflicted with the COVID-19 disease. For our particular Particle Filter
proposal, this means that the model distribution pθ(et | sn

1:t, e1:t−1) used to compute
the incremental weights αt(sn

1:t, e1:t) = pθ(et|sn
1:t,e1:t−1) pθ(sn

t |sn
1:t−1,e1:t−1)

q(sn
t |sn

1:t−1,e1:t) for particle index
n in pseudo Algorithm 1 has a significantly higher memory. While for most SSMs, this
density collapses to pθ(et | sn

t ), it defaults to pθ(et | sn
t−28:t, et−28:t−1) for the HSMM-EM.

Consequently, at any point in time, the previous 28 particle ancestors have to be
resampled. We note that the computational complexity of this PF implementation is
still linear with respect to the time index T , but a single proposal step is computationally
more expensive than for standard PFs. This strengthens the need for a good MCMC
kernel and provides further support for the Particle Gibbs case.

Given that data for our model are typically acquired sequentially, it is prudent to
explore methods that facilitate such parameter estimation. A method that uses the
PMCMC machinery and in which parameter estimates can be reused once new data
arrives is known as Sequential Monte Carlo Squared, see Chopin et al. (2012). SMC2
is a method to sequentially estimate state trajectories as well as model parameter by
using a Particle Filter as well as a Particle MCMC kernel for multiple chains in parallel.
This algorithm is built on the Sequential Monte Carlo framework of Chopin (2002) and
Del Moral et al. (2006). A pseudo algorithm for this implementation can be seen in
Algorithm 8. For a further review that also includes multiple other applications, see
Dai et al. (2020).

3.3.2 Prediction

A convenient feature for SMC2 algorithms is that parameter are estimated at each time
index. Consequently, prediction for future cases and deaths can be performed at each
time step as well. This is particularly useful for model comparison, see Section 3.3.3.
In the SMC2 context, prediction comes naturally by using the Particle Filter. For
particle n, given the state trajectory sn

1:t, parameter θ and ODE state Ot, the predicted
state sn

t+1 | sn
1:t, θ can be sampled via the PF. Next, the ODE of Equation (3.1) can be

solved with initial state Ot, transmission rate βt+1 | sn
t+1 and otherwise fixed parameter

θ. Finally, the model implied cases and deaths at t+ 1 can be computed as shown in
Section 3.2.
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3.3.3 Model Comparison

In Section 3.5, model comparison is performed to assess models with different obser-
vation distribution specifications as well as to detect the number of latent regimes
governing the data. We will use methods from a classic batch as well as from a sequen-
tial estimation setting. In the batch estimation case, we use the Deviance Information
Criterion (DIC), introduced in Spiegelhalter et al. (2002) and the Watanabe–Akaike
Information Criterion (WAIC), introduced in Watanabe (2010). Both criteria have
methods to account for the number of parameter in each model and provide a single
numerical comparison value; the smaller the associated number, the better. Both
criteria can be computed with the parameter samples from a MCMC run. For the DIC
computation, we follow the notation from Gelman et al. (2013):

DIC = −2log p(e1:T | θ̂Bayes) + 2 pDIC,

where θ̂Bayes = E(θ | e1:T ) is the posterior mean given data e1:T . pDIC is defined as
the variance across all likelihood estimates. For the WAIC calculation, we follow the
guidance of Vehtari et al. (2016):

WAIC = −2 lppd +2 pWAIC,

where the Log Pointwise Predictive Density (LPPD) can be interpreted as a training
error and is computed as lppd = ∑T

t log
(

1
N

∑N
n p(et | θn)

)
. T is the number of data

points and N the number of MCMC samples. pWAIC can be computed as pWAIC =∑T
t Vart,post (log p(et | θ)), where Vart,post (log p(et | θ)) is the variance of p(et | θ) at

time t accross all θ samples. pDIC and pWAIC serve as penalizer for additional model
parameter. In a sequential model comparison context using SMC2, there are several
techniques that can be used from by-products that arise during the estimation run. A
highly sought after but typically unobtainable method is the analysis of each model’s
marginal likelihood p(e1:T ) =

∫
p(e1:T , θ) dθ. This distribution is typically intractable,

but in the SMC2 case, an estimate for p(et | e1:t−1) can be computed at each time step
at practically no extra costs. We denote p(et+1 | e1:t) as (one step ahead) Predictive
Likelihood (PL) at t + 1, PLt+1, see Kastner (2016), and note that it is straight
forward to compute p̂(e1:t) = ∏t

i=1 P̂Lt after the SMC2 run has finished. However,
given the observation distribution specifications are different for our models, a direct
comparison via this method is difficult. An alternative approach to compute the
PL terms is based on the prediction step, which is described in Section 3.3.2. For
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SSMs, the posterior predictive distribution is defined as p(et+1 | e1:t) =
∫
pθ(et+1 |

st+1, s1:t, e1:t) pθ(st+1 | s1:t, e1:t) p(s1:t, θ | e1:t) dst+1, s1:t, θ. pθ(et+1 | st+1, s1:t, e1:t) can
be evaluated and sampled from, and a Monte Carlo estimate can be obtained for the
Predictive Likelihood, P̂Lt+1 = p̂(et+1 | e1:t) ≈ 1

N

∑N
n=1 pθn(et+1 | e1:t, s

n
1:t+1), where

N is the number of samples. Note that in this case, pθn(et+1 | e1:t, s
n
1:t+1) has to be

evaluated and is not a pure by-product of the actual algorithm, which permits us
to evaluate only parts in the observation distribution specification that are shared
among all models. Direct model comparison can be conducted by computing the so
called Cumulative Log Predictive Bayes Factor (CLPBF), which is derived from the
cumulative sums of log PLs. Given model A and B, for u > 0, this factor can be stated
as

CLPBF t+1:t+u = log

[
pA(et+u | e1:t)
pB(et+u | e1:t)

]
=

u∑
i=t+1

log [PLi(A)− PLi(B)] ,

where a positive value for the CLPBF indicates evidence in favor for model A. In
this context, if t = 0 and u = T , the CLPBF defaults to the log Bayes Factor
(BF). Note that when fitting real data to the SMC2 algorithm in Section 3.5, we
usually use t0 > 1 data points as training period to initialize the jitter kernels in a
reasonable parameter region. This is especially useful in our case study as the reporting
standard for the COVID-19 data at the beginning of the times series has been extremely
noisy. The resulting estimate for the comparison criteria will be the slightly different
p̂(et0+1:T | e1:t0) = ∏T

t=t0+1 P̂Lt.

3.4 Simulations

In this section, simulation experiments are performed to verify the PMCMC and SMC2
algorithms. In order to do so, we use the posterior mean parameter of the PMCMC run
of the winning model in Section 3.5 according to the model comparison criteria stated
in Section 3.3.3. 500 data points are generated from a SEEIIR model with piecewise
constant β that follows a HSMM. The corresponding values used for data generation
are shown in the second column in Table 3.1, and the corresponding generated data can
be seen in Plot A.13. The estimation results and common output statistics can be seen
Table 3.1. The initial parameter are sampled from the priors, defined in Section 3.5,
and traceplots are shown in Figure A.14. Both the traceplots and R̂ indicate excellent
mixing, and the posterior mean of each parameter is close to the true value, which is
contained in the credible interval for all parameter.
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θ True Mean MCSE SD Rhat Q2.5 Q50.0 Q97.5
β1 -1.72 -1.71 0.0 0.08 1.01 -1.86 -1.71 -1.55
β2 -1.36 -1.36 0.01 0.09 1.02 -1.51 -1.36 -1.17
β3 -0.81 -0.81 0.0 0.09 1.0 -0.99 -0.82 -0.63
β4 0.45 0.46 0.01 0.25 1.0 -0.11 0.47 0.95
γ1 0.45 0.43 0.0 0.04 1.0 0.36 0.43 0.51
γ2 0.46 0.48 0.0 0.04 1.0 0.41 0.48 0.55
ϵ 0.94 1.01 0.0 0.1 1.0 0.82 1.01 1.23
p1 0.87 0.84 0.0 0.11 1.0 0.58 0.87 0.98
p2 0.50 0.53 0.0 0.15 1.01 0.25 0.53 0.82
p3 0.17 0.26 0.0 0.16 1.0 0.03 0.23 0.62

pthirdstate,1 0.35 0.35 0.0 0.15 1.0 0.09 0.34 0.67
pthirdstate,2 0.35 0.34 0.0 0.15 1.0 0.08 0.32 0.65

r1 36.11 36.03 0.13 6.01 1.0 25.15 35.72 48.59
r2 24.19 25.12 0.11 5.31 1.0 15.85 24.64 36.88
r3 14.19 15.83 0.1 4.18 1.0 8.6 15.43 25.06
r4 28.12 27.93 0.12 5.48 1.0 18.2 27.68 39.95
ψ1 0.76 0.75 0.0 0.06 1.01 0.62 0.75 0.86
ψ2 0.74 0.78 0.01 0.08 1.04 0.64 0.78 0.94
ψ3 0.54 0.62 0.0 0.08 1.0 0.45 0.62 0.77
ψ4 0.50 0.5 0.0 0.15 1.0 0.21 0.5 0.79

ϕcases 5.00 5.32 0.0 0.12 1.0 5.00 5.33 5.56
ϕdeaths 5.30 5.42 0.0 0.11 1.0 5.2 5.41 5.63

Table 3.1 Posterior output statistics of four PMCMC chains on a HSMM-EM with
SEEIIR style ODE, four states and Negative Binomial duration distribution for sim-
ulation experiments in Section 3.4. During the run, 1500 iterations have been used
with 700 burnin steps, resulting in 3200 total samples. Data has been generated from
a model with parameter equal to the values in the second column of table, and can be
seen in Figure A.13. Initial parameter have been sampled from the prior distributions.
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3.5 Applications

In this section, a case study on the SARS-CoV-2 epidemic in the United Kingdom
is performed. In particular, we analyze the number of regimes that are needed to
accurately describe this phenomena with the model defined in Section 3.2. Moreover, we
consider if expanding the observation model specification yields a predictive advantage.
The data source for the proposed observation model includes fatalities, which we define
as the reported deaths due to COVID-19 as interpreted by the U.K. government, as well
as infections, which we depict as the reported cases in this country, see GOV.UK (2022).
Observation model specifications often include either infections, which can be noisy
and include lagging reporting periods, or fatalities, which are less noisy but typically
need additional parameter in the observation model. We will combine both sources
and test if this yields a competitive advantage with respect to predictive performance
against models that use fatalities only.

3.5.1 Data Processing

All data for the number of reported deaths, cases and vaccinations in the United
Kingdom have been obtained since the starting date of recording from a publicly
available website, see GOV.UK (2022). The initial data point for the estimation was
taken at the first time index corresponding to at least ten reported deaths. Vaccination
data have been set to zero where unavailable. The number of data points were chosen
to be around 600. This period includes several waves of COVID-19 spikes with respect
to the reported infections and had estimated Infection Fatality Ratio values available
at the time of the case study, see Brazeau et al. (2022) for more details on the ifr.

3.5.2 Model Dynamics and Prior Assignments

The model consisting of both fatalities and infections in the observation distribution
has parameter: θ = {β, γ, ϵ, p, pthirdstate, r, ψ, ϕcases, ϕdeaths}. β, γ, ϵ are ODE parameter
in Equation (3.1). The other parameter, ρ, which can be interpreted as vaccine
efficiency parameter, has been fixed to 0.5. p is the transition distribution parameter
and pthirdstate is the transition distribution parameter from a non-recurring initial
state. This separate state considers the additional uncertainty at the beginning of
the reporting process and significantly improves inference for all other parameter
going forward. r and ψ are the Negative Binomial distribution parameters for the
duration distribution. ϕcases and ϕdeaths are noise parameter for the corresponding
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data, which is described in more detail in Section 3.2. The data et = {cr
t , d

r
t} ∼

Neg. Bin.Alt

(
c∗

t , c
∗
t + c∗2

t

ϕc

)
× Neg. Bin.Alt

(
di

t, d
i
t + di2

t

ϕd

)
depends on the model implied

deaths, which are a function of the model implied cases, which in turn are obtained from
the ODE in Equation (3.1). This ODE depends on the latent state trajectory up to
time t, and each latent state follows a HSMM. The ifr values used to compute the model
implied deaths defined in Section 3.2 are set to {0.01035, 0.0095, 0.007245, 0.004, 0.002}
and the change point dates have been set to 2020-07-18, 2020-10-01, 2021-01-30 and
2021-06-01. Our choices are based on the results of Chatzilena et al. (2022) and have
been adjusted for the limited memory of the model implied death computations. The
same holds for the under-reporting score that is used in the observation model for
the cases, which can be seen in Figure A.16. The β parameter are modeled in log
space and are a vector of length equal to the number of latent states, and their prior
is defined as ordered Multivariate Normal distribution. The four-state model has a
mean vector of {log(0.15), log(0.4), log(0.6), log(1.2)} with a unit diagonal covariance
matrix. The γ parameter is of length two, and the elements have Gamma priors for
shape and scale of Gamma(1600, 1

4000) and Gamma(2500, 1
5000). Similarly, Gamma

priors have been chosen for ϵ ∼ Gamma(1000, 1
10000), ϕcases ∼ Gamma(2500, 1

500) and
ϕdeaths ∼ Gamma(2500, 1

500). For the transition distribution parameter p and pthirdstate,
Dirichlet prior have been assigned that favor equal weights, i.e., p ∼ Dirichlet(α1 =
α2 = ... = αk = k), where k = number of latent states. ψ ∼ Beta(0.5, 0.5) for each
state, and r has Gamma priors with shape {40, 30, 20} in the 4 state case for the
recurring states, and shape = 28 for the non-recurring state. 28 has been chosen as
this is the number of lookback days that assigns a death due to COVID-19 after being
infected in the UK reporting methodology. We want to emphasize that initial test runs
have clearly shown that three or fewer regimes have very slow mixing properties for
the MCMC part and struggle to forecast realistic data, hence we will start with at
least four available states, and check if adding more regimes is favourable with respect
to the model comparison criteria mentioned in Section 3.3.3.

3.5.3 Results

In our analysis, models that include fatalities and infections in the observation distri-
bution specification vastly outperform models that include fatalities only with respect
to predictive power. Daily and weekly forecast performances with respect to the
Cumulative Log Predictive Bayes Factor as defined in Section 3.3.3 can be seen in
Figure A.20, which illustrates a consistent performance difference that is increasing over
time. To visualize the discrepancy in predictive accuracy, daily forecasts for all models
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can be seen in Figure 3.3, in which the fatalities-only model has continuously larger
Credible Intervals across all time horizons versus the combined fatalities-infections
models. As for the number of regimes, the four-state model does perform slightly
better for daily forecasts, and similarly on the weekly scale in comparison to its five
state counterpart. A summary for all model comparison criteria is shown in Table 3.2.
For batch estimation comparison, DIC and WAIC results are shown in the two top
sub-tables, in which both model choice schemes favor the four-state fatalities-infections
model. The bottom two sub-plots depict the daily and weekly cumulative log PL as
defined in Section 3.3.3 from the SMC2 runs at the final time index. We conclude
that the four-state fatalities-infections variant, while having less parameter, performed
at least equally well with respect to predictive power and the DIC/WAIC model
comparison criterion. Consequently, all analysis going forward will default to this
model.

A traceplot for the continuous model parameter of the PMCMC run is shown in
Figure A.17, and output diagnostics for all samples can be seen in Table 3.3. All
parameter have been initiated from the prior distributions and converge quickly to
the typical set. Summary plots for the model implied against reported infections and
fatalities can be seen in Figure 3.2, which depicts COVID-19 relevant diagnostics given
data available up to the current time on the x-axis. In the two top plots, both the
model implied deaths and cases, adjusted for under-reporting, match the reported data
excellently. The third plot from the top shows the posterior mode of the latent state at
each time point. Each state represents a different regime, and after the time horizon
shown at the blue dashed line, which shows the first date when vaccination data is
taken into account for the ODE in our model, there is a clear regime change. The
model transitions from being in regime one and two to being exclusively in regime
two and three, which have higher β transmission rates. Furthermore, the bottom plot
shows the Rt values over time, which are consistently higher after the vaccination effect.
In order to have such a large number of cases after taking the vaccination effect into
account, new, more dangerous, SARS-CoV-2 variants such as the alpha and omega
variations have to have emerged at that time. This regime change has been immediately
identified during the sequential estimation run, which would be challenging for classic
batch estimation techniques.

We note that if the HSMM with Negative Binomial distribution exhibited a failure
rate close to 1, it would resemble a Geometric distribution. In such a scenario, the
HSMM would collapse into a Hidden Markov Model. However, as can be seen in the
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parameter estimates in Table 3.3, it was found that the failure rate in all states of the
winning model was significantly higher than that.

DIC computations
Model DIC LPPD pDIC

Deaths and Cases - 4 states 41011.8 -20043.5 462.4
Deaths and Cases - 5 states 42093.1 -19272.0 1774.5

WAIC computations
Model WAIC LPPD pWAIC

Deaths and Cases - 4 states 15705.3 -7768.9 83.7
Deaths and Cases - 5 states 15837.2 -7749.2 169.4

Daily sequential model choice
Model Daily cumulative log PL

Deaths - 4 states -26394
Deaths and Cases - 4 states -16523
Deaths and Cases - 5 states -16601

Weekly sequential model choice
Model Weekly cumulative log PL

Deaths - 4 states -1985
Deaths and Cases - 4 states -1845
Deaths and Cases - 5 states -1843

Table 3.2 Model comparison criteria for various models estimated on real data in Section
3.5. The 2 top tables depict batch model selection rules - the lower the performance
criterion, the better. The 2 bottom tables display sequential model selection rules -
the larger the performance criterion, the better.

3.6 Conclusions

In this Chapter, we explored a new class of SEEIIR models with a piecewise constant
transmission rate parameter depending on a latent variable that follows a HSMM. The
SSM formulation permits regime change and duration forecasting, which is extremely
valuable for policy decision-making. Simultaneously, the discrete structure of the latent
variables keeps the number of continuous parameters limited and the interpretation
of the model straightforward. In order to estimate the latent HSMM, we designed a
tailored PF that can be used efficiently in the PMCMC and SMC2 machinery. The
computational schemes were validated on simulated data and, in a case study on
reported COVID-19 fatalities and infections in the United Kingdom, the proposed
models were tested for multiple regimes and various specifications of the observation
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θ Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
log β1 -1.72 0.0 0.08 1.01 -1.89 -1.78 -1.72 -1.67 -1.57
log β2 -1.36 0.01 0.08 1.03 -1.5 -1.41 -1.36 -1.31 -1.2
log β3 -0.81 0.0 0.09 1.0 -0.99 -0.87 -0.81 -0.76 -0.63
log β4 0.45 0.01 0.22 1.01 0.02 0.3 0.44 0.59 0.9

γ1 0.45 0.0 0.04 1.0 0.37 0.42 0.45 0.48 0.54
γ2 0.46 0.0 0.04 1.0 0.38 0.43 0.45 0.48 0.53
ϵ 0.94 0.0 0.1 1.0 0.76 0.87 0.94 1.0 1.13
p1 0.87 0.0 0.09 1.01 0.66 0.83 0.89 0.94 0.98
p2 0.5 0.01 0.14 1.01 0.23 0.38 0.5 0.6 0.77
p3 0.17 0.01 0.1 1.01 0.03 0.09 0.15 0.23 0.4

pthirdstate,1 0.35 0.01 0.15 1.0 0.09 0.23 0.34 0.45 0.67
pthirdstate,2 0.35 0.01 0.15 1.0 0.08 0.24 0.34 0.46 0.67

r1 36.12 0.18 6.53 1.0 24.69 31.63 35.71 39.77 50.58
r2 24.19 0.15 5.29 1.0 14.72 20.7 23.91 27.49 35.39
r3 14.19 0.17 4.32 1.0 7.22 11.0 13.72 16.96 23.56
r4 28.13 0.12 5.33 1.0 19.08 24.22 27.75 31.69 39.0
ψ1 0.76 0.01 0.07 1.04 0.62 0.72 0.77 0.81 0.88
ψ2 0.75 0.01 0.07 1.03 0.6 0.71 0.75 0.8 0.87
ψ3 0.55 0.01 0.09 1.01 0.36 0.48 0.55 0.61 0.73
ψ4 0.5 0.01 0.15 1.0 0.21 0.4 0.5 0.61 0.81

ϕcases 4.91 0.0 0.11 1.0 4.68 4.83 4.91 4.99 5.13
ϕdeaths 5.25 0.0 0.12 1.0 5.02 5.17 5.26 5.33 5.49

Table 3.3 Posterior output statistics of four PMCMC chains on a HSMM-EM with
SEEIIR style ODE, 4 states and Negative Binomial duration distribution for applica-
tions in Section 3.5. 1200 iterations have been used with burnin set to 700, resulting
in 2000 total samples. Real data can be seen in Figure A.15, and is described in
more detail in Section 3.5.1. Initial parameter have been sampled from the prior
distributions.
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Figure 3.2 PMCMC Model implications of the best performing model for real data in
Section 3.5. All computations are based on data available up to the current time on
the x-axis. The upper plot shows the reported infections against the model implied
infections, adjust for an under-reporting score. The second plot from the top shows
the corresponding fatalities. The third plot from the top shows the posterior mode
of the latent state at each time point. Each state represents a different regime. The
bottom plot shows the corresponding Rt value at each time index. The grey horizontal
line represents the first 28 days, for which no full history for the model implied deaths
as stated in Section 3.2 is available. The blue horizontal line shows the date when
vaccination data is taken into account for the ODE in our model.
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Figure 3.3 This plot shows daily predictions of each model described in Section 3.5
and their corresponding 95% CI against realized data. NB4 stands for models using a
Negative Binomial Duration distribution with 4 different regimes. In this plot, only
predicted fatalities are shown to compare all models equally.
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model. We conclude that combining infections and fatalities adds significant value to
the predictive performance of HSMM-EMs and that utilizing more than four different
regimes does not improve their predictive power for the underlying data. For future
research, open projects include linking the latent state duration probabilities explicitly
to the data. Possible inference about the timing and length of government policy
actions, i.e., initiating a lockdown given the current regime, could be deduced from
here. Furthermore, new models could be added and compared to our proposals via
the comparison criteria and inference algorithms used in this Chapter. Different data
sources could be added to our proposed observation model specification as well. For
example, a useful addition would be hospital admissions, which were unavailable at
the time we conducted our case study.

3.7 Software

The data and code used to run the algorithms in this Chapter can be be seen in
https://github.com/paschermayr/Publish_Covid19SSM. More detailed information
about the implementations for running all algorithms and computing all tables can
be found in https://github.com/paschermayr/Baytes.jl and its sub-libraries. The
corresponding plots are defined in https://github.com/paschermayr/BaytesInference.
jl. For all ODE computations used within the Baytes.jl packages, the Julia library
Differentialequations.jl, see Rackauckas and Nie (2017), has been used.

https://github.com/paschermayr/Publish_Covid19SSM
https://github.com/paschermayr/Baytes.jl
https://github.com/paschermayr/BaytesInference.jl
https://github.com/paschermayr/BaytesInference.jl


Sometimes I’ll start a sentence and I don’t even know where it’s going. I just hope I
find it along the way.

Michael Scott (The Office, 2005)





Chapter 4

A Class of Stochastic Volatility
Models with Copula Dependencies

Stochastic Volatility (SV) models are a popular class of models to analyze the
dependency structure between stocks and their volatility. We develop a new class
of SV models by incorporating carefully selected copula structures to reconstruct
stylised empirical behaviours that cannot be captured by symmetric Gaussian in-
novations. To estimate model parameter for each copula setting, modern Markov
Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) methods are
applied. We use batch as well as sequential Bayesian model selection to provide
insights into the suitability of different copula choices on the US equity S&P 500
and an associated volatility index. Our results provide strong evidence against
the common choice of Gaussian innovations for typical SV models proposed in
the financial modelling literature.
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4.1 Introduction

Time-varying volatility modelling has appeared in the financial community at least
since the early work in Clark (1973). Formulated statistical models are broadly grouped
into conditional volatility (i.e. ARCH, GARCH and their extensions, see e.g. (Engle,
1982, Bera and Higgins, 1993) for a review) and Stochastic Volatility classes. The
latter treats the underlying volatility as a latent process. Several works in empirical
finance and econometrics have tried to compare models in-between the two groups or
within the same group, see e.g. Kim et al. (1998). A lot of research has focused on
approximate or computationally intensive methods for fitting SV models, as they fall
into the intractable likelihood class of models, in contrast to the conditional volatility
models mentioned above, which typically have explicit likelihoods. Within the SV
family, another degree of separation involves continuous versus discrete time models,
the former class being particularly popular in the stochastic finance and asset pricing
communities (see e.g. Hull and White (1987)). We will focus on the latter and aim
to enrich this class to better capture empirical stylised effects in the co-movement of
prices and volatilities.

SV models can capture important stylised effects, including leptokurtic, heavy-tailed
marginal return distributions, volatility clustering and the so called leverage effect, see
Ghysels et al. (1996), Shephard (1996). Our interest lies in the important matter of
dependency structures within SV modelling. Several recent works have empirically
illustrated the presence of non-linear, asymmetric structures at the joint distribution
of prices and volatilities, and suggested the use of classes of Copulas for capturing
such effects (see e.g. Ning et al. (2008)). Copula theory provides an extremely flexible
modelling framework for a multitude of shapes for asymmetric joint distributions, see,
e.g., Joe (2014)).

Our first aim in this work is to suggest useful models for log-prices and volatilities
that naturally incorporate Copula dependencies in their development, thus moving
beyond the classical Heston-type models of symmetric Gaussian structures for capturing
leverage effects. After the modelling aspect has been clarified, we will make use of
recent advances in Monte-Carlo methodology to carry out model choice and determine
the most appropriate Copulas from a collection of reasonable candidates based on
Markov Chain Monte Carlo as well as Sequential Monte Carlo runs. During these
steps, we will also discuss methods that permit online model choice procedures.

The rest of the Chapter is structured as follows. In Section 4.2, we show some
popular continuous-time SV models for scalar time series and set up the framework
for adding Copula effects. Section 4.2.2 gives a brief introduction of Copula theory,
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with a focus on aspects relevant to the modeling context of this work. In Section
4.3, we present the computational approach for simultaneously fitting the models
and calculating the model evidence. We show numerical applications on real data in
Section 4.5, and conclude with some discussion in Section 4.6.

4.2 Modelling framework

4.2.1 Diffusions and their Discretisation

For a standard Stochastic Volatility model in scalar form, a general structure for the
instantaneous log-price St and volatility Vt can be depicted as:

dSt = fθ(St, Vt)dt+ gθ(Vt)dBt , S0 = s0 ∈ R ;
dVt = aθ(Vt)dt+ bθ(Vt)dWt , V0 ∼ pθ(v0) ,

for mappings fθ : R2 7→ R, gθ : R 7→ R+, a : R 7→ R, b : R 7→ R+ depending on
some parameter θ ∈ Θ ⊆ Rp, correlated Brownian innovations dBt, dWt to allow for a
leverage effects, and some initial distribution pθ(v0) for the underlying velocity process.
A famous specification of this model is known as Heston Model (HM) and has the
following dynamics:

dSt = (α + βVt)dt+ V
1/2

t dBt ;
dVt = κ (µ− Vt)dt+ σV

1/2
t dWt ,

(4.1)

where Bt, Wt denote standard Brownian motions such that ⟨dBt, dWt⟩ = ρ ∈ (−1, 1).
Model parameters include θ = (α, β, κ, µ, σ) and the noise distribution adds the extra
parameter ρ. As discussed in Section 4.1, we will sometimes have to work with a
discrete-time version of such models. It follows that, after using a Euler scheme,

Si = Si−1 + fθ(Si−1, Vi−1)δ + gθ(Vi−1)
√
δ ϵi , S0 = s0 ∈ R ;

Vi = Vi−1 + aθ(Vi−1)δ + bθ(Vi−1)
√
δ ζi , V0 ∼ pθ(v0) ,

with the innovation terms {Ei}i = (ϵi, ζi)i being independent over i ≥ 1. In standard
SV models, the error terms are typically specified as

(ϵi, ζi) ∼ N
(

0,
(

1 ρ
ρ 1

))
,
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for ρ ∈ (−1, 1). Here, we will allow for a much more flexible dependence framework by
referring to the Copula machinery. Thus, for marginal distributions FS and FV , our
model for the distribution of the transformed noises (ϵ̃ii, ζ̃i) := (FS(ϵi), FV (ζi)) will be

(ϵ̃ii , ζ̃i) ∼ C(ϵ̃ii, ζ̃i; θ)

independently over i ≥ 1, where C is a Copula and FS and FV the marginal dis-
tributions of choice. The original noises can be easily reconstructed via (ϵi, ζi) =
(F−1

S (ϵ̃i), F−1
V (ζ̃i)).

4.2.2 Copulas

Copulas provide a flexible approach for building up multivariate dependencies and
have been used extensively in finance, see Cherubini et al. (2004), Czado et al. (2019),
Krupskii and Joe (2020), Bladt and McNeil (2022). We provide a brief summary of
basic properties of Copula theory, and refer to Joe (1997) for a more thorough review on
this topic. In our setting we focus on bivariate laws, as that suffices for the development
of our Stochastic Volatility models. A (bivariate) Copula C = C(u, v) is a distribution
function on [0, 1]2 with uniform marginals on [0, 1]. We denote the corresponding pdf
(which we assume exists) as c(u, v) and assume that marginal cdfs FX , FY have been
determined for some univariate random variables X, Y respectively. Following common
practice, for uniform random variables (U, V ), the following transformation can be
stated:

(U, V ) =: (FX(X), FY (Y )) 7→
(
F−1

X (FX(X)), F−1
Y (FY (Y ))

)
=: (X, Y ).

Thus, the choice of Copula function refers to the specification of the joint law of
(FX(X), FY (Y )). Stylised effects explored for the selection of Copulae are, e.g., tail
symmetries/asymmetries, positive/negative dependence or the strength of tail depen-
dency. We will provide results for the lower and upper tail dependency as well as
estimates for the correlation structure of stock and volatility for each Copula choice in
Section 4.5. More discussion on the selection of Copulas can be found directly in the
Applications Section 4.5.4.
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4.2.3 Model specification

In our proposed model, we consider the transformation Xt = log Vt and apply Ito’s
Lemma on (4.1) to get

dSt =
(
µS − exp(Xt)/2

)
dt+ exp(Xt/2)dBt,

dXt =
κ
(
µV − exp(Xt)

)
− 1

2σ
2

exp(Xt)
dt+ σ exp(−Xt/2)dWt (4.2)

We will consider a discrete approximation of (4.2) based on the Euler-Maruyama
scheme

St = St−1 +
(
µS − exp(Xt)/2

)
δ +
√
δ exp(Xt/2) ϵt,

Xt = Xt−1 +
κ
(
µV − exp(Xt−1)

)
− 1

2σ
2

exp(Xt−1)
δ + σ

√
δ exp(−Xt−1/2) ζt . (4.3)

The dependency structure between ϵt and ζt is modeled via a Copula. Note that
when estimating Copulae, it is typically standard to formulate the model with respect
to the uniform data U instead of real data Y . This step decouples the modeling of
marginals from the dependency between them and is recommended if the researcher
is only interested in the dependency structure. In our model, however, parameters
are used to transform data from the real to the uniform domain, and the model has
to be specified with respect to Y. Assuming Y v

t = Vt and Y s
t = St, the likelihood

f(Y s, Y v | Θ) for the unknown parameter vector Θ, can then be written with respect
to the error terms (ϵi, ζi)i=1,...,T by inverting (4.3) to obtain E = hΘ(Y s, Y v). The
Jacobian of this transformation is denoted by JΘ. Using hΘ(·) and JΘ, we get

f(Y s, Y v | Θ) = f (E | JΘ) |JΘ| = σ−T
T∏

t=1
fS(ϵt)fV (ζt)c(FS(ϵt), FV (ζt) | θ),

with fS(ϵt) and fV (ζt) being the pdf and FS(ϵt) and FV (ζt) the cdf of the marginal
distributions of choice. c is the density of the Copula choice. The derivation of |JΘ|
can be seen in Appendix C. The model structure can be seen as a Directed Acyclic
Graph (DAG) in Figure 4.1.



64 A Class of Stochastic Volatility Models with Copula Dependencies

x1copθcα

v1 v2 · · · vTfθvβ

s1 s2 · · · sTgθsγ

Figure 4.1 A Stochastic Volatility Model with Copula Dependencies (SVC), parameter
θ and hyper-parameter {α, β, γ}. The shaded nodes vt (volatility) and st (stock) denote
the observed data at time t. cop defines the Copula choice and dependence structure
between st and vt. f denotes all model functions and θs all parameter for s, while
g denotes all model functions and θv all parameter for v. θc denotes all parameters
required for the Copula choice.
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4.3 Bayesian Inference

4.3.1 Parameter estimation

The typical Bayesian parameter estimation goal is to infer the posterior distribution
of the model parameter θ given the observed data e1:T , p(θ | e1:T ) = pθ(e1:T ) p(θ)

p(e1:T ) . For
this model, standard MCMC estimation can be applied, for which we assume basic
familiarity and refer to Craiu and Rosenthal (2014) for a more detailed guide on the
topic. For all batch estimation computations in Section 4.4 and 4.5, a fully automatic
version of the MCMC variant Hamiltonian Monte Carlo (HMC), see Neal (2012),
Betancourt (2018), known as No U-Turn Sampling (NUTS) algorithm, which was
proposed by Hoffman and Gelman (2014) and later on improved in Betancourt (2016),
has been used.

Given the underlying data is usually observed in a times series setting, sequential
parameter estimation techniques are particularly interesting. A method that explores
the parameter space sequentially and in which the MCMC machinery insight from
the batch estimation part can be reused is known as Iterated Batch Importance
Sampling (IBIS), see Chopin (2002) and Del Moral et al. (2006). During each iteration
over time index t, the incremental likelihood pθn(e1:t | e1:t−1) and therefore pθn(et) is
computed for each of n a priori chosen particles. If the variance of these increments
is too large, the parameter are jittered using a MCMC kernel. Some advantages of
this method are discussed in Section 4.3.3, and a pseudo algorithm implementation
for the IBIS algorithm can be seen in Algorithm 7. For a more detailed review,
including multiple other applications, see Dai et al. (2020). It is important to note that
this inference challenge differs from the ones addressed in the previous two chapters.
Unlike before, there is no involvement of an unobserved latent state sequence, and
as a result, there is no need to employ a Particle Filter to compute incremental
likelihood approximations. Consequently, the IBIS algorithm generally exhibits faster
computational speed compared to the SMC2 variant utilized in the previous chapters.

4.3.2 Prediction

While the IBIS algorithm iterates through the data, predictions can be performed at
each time step at practically no extra costs. This convenient feature permits the use of
additional model comparison techniques, see Section 4.3.3. At time t, given parameter
θ, (ut+1, vt+1) can be simulated from the attached Copula of choice. The uniform data
can then be transformed to the real space given the marginals associated to the model,
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which will yield the innovation terms (ϵt+1, ζt+1) from section 4.2. (ϵt+1, ζt+1) can then
be transformed to the stock and volatility prediction via Equation (4.3) given the
observed data and parameter θ.

4.3.3 Model Comparison

We will use model comparison methods from a standard batch as well as from a
sequential estimation view point. For the former, we use the Deviance Information
Criterion (DIC), see Spiegelhalter et al. (2002) and the Watanabe–Akaike Information
Criterion (WAIC), see Watanabe (2010). In these methodologies, a single numerical
value is provided to compare different models - the smaller the value, the better. The
DIC as well as the WAIC account for the number of parameter in different models by
assigning a penalizer, p, for using more parameter. Both methods can be used based
on the samples from the MCMC run alone. We use the Gelman et al. (2013) notation
for the DIC computation:

DIC = −2log p(e1:T | θ̂Bayes) + 2 pDIC,

where θ̂Bayes = E(θ | e1:T ) is the posterior mean given data e1:T . pDIC is defined as the
variance of all likelihood evaluations of the parameter samples. The WAIC calculation
is based on Vehtari et al. (2016):

WAIC = −2 lppd +2 pWAIC,

where the Log Pointwise Predictive Density (LPPD) is commonly referred to
as training error and can be computed as lppd = ∑T

t log
(

1
N

∑N
n p(et | θn)

)
. T is the

number of data points and N the number of MCMC samples. The penalizer term pWAIC

can be computed as pWAIC = ∑T
t Vart,post (log p(et | θ)), where Vart,post (log p(et | θ))

is the variance of p(et | θ) at time t across all θ samples. After the sequential IBIS
estimation is finished, multiple model comparison criteria are available. An often
difficult to obtain but highly sought after method is to compare the marginal likelihood
p(e1:T ) =

∫
p(e1:T , θ) dθ of each model. This distribution is typically unavailable, but an

estimate for p(et | e1:t−1) can be computed at each time step as a by-product of the IBIS
run. Going forward, we refer to p(et+1 | e1:t) as (one step ahead) Predictive Likelihood
(PL) at t + 1, PLt+1, see Kastner (2016). An estimate for the marginal likelihood
can then be easily computed after the IBIS run has finished via the corresponding
PL estimates, p̂(e1:T ) = ∏T

t=1 P̂Lt. The cumulative sums of log PLs also allow for
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direct model comparison via the Cumulative Log Predictive Bayes Factor (CLPBF).
To compare model A and B, for u > 0, this factor can be computed as

CLPBF t+1:t+u = log

[
pA(et+u | e1:t)
pB(et+u | e1:t)

]
=

u∑
i=t+1

log [PLi(A)− PLi(B)] ,

where a positive value indicates evidence in favor for model A. If t = 0 and u = T , then
the CLPBF defaults to the log Bayes Factor (BF). Note that for all IBIS computations,
1 < t0 < T data points have been used as training period to initialize the jitter kernels
in a reasonable parameter region, so the resulting comparison criteria is the slightly
different p̂(et0+1:T | e1:t0) = ∏T

t=t0+1 P̂Lt.

4.4 Simulation

4.4.1 Parameter Estimation

In this Section, simulation experiments for all choices of the Stochastic Volatility
Model with Copula Dependencies have been performed. Specifically, 1000 data points
have been generated and a MCMC sampler as described in Section 4.3 has been used
to estimate model parameter for each corresponding Copula. The resulting output
statistics are summarized in Table 4.1. It is worth noting that all choices converge
rapidly and are close to the parameter used to generate the data.

4.4.2 Model Choice

We established several model selection criteria to determine the most suitable Copula
for our proposed application. In this section, we validate these criteria by conducting a
simulation using data from a Frank Copula. Subsequently, we estimate all the Copulas
proposed in Section 4.5 using this simulated data. We evaluate the performance of each
Copula using both batch model comparison criteria, namely the Deviance Information
Criterion and Watanabe–Akaike Information Criterion. Additionally, we employ our
sequential criterion, the marginal likelihood, to assess all the models. It is noteworthy
that the resulting order consistently favors the Frank Copula across all model choices,
and even the order of the remaining choices stays consistent across all criteria. Table
4.3 provides a clear demonstration of that.
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Clayton
θ True Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µs 0.0 -0.06 0.0 0.07 1.0 -0.21 -0.11 -0.06 -0.01 0.08
µv 0.03 0.03 0.0 0.0 1.0 0.03 0.03 0.03 0.03 0.03
κ 20.0 20.24 0.02 1.11 1.0 18.07 19.51 20.24 20.99 22.42
σ 0.5 0.5 0.0 0.01 1.0 0.49 0.5 0.5 0.5 0.51
c 4.0 3.79 0.0 0.16 1.0 3.47 3.68 3.78 3.89 4.11

Frank
θ True Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µs 0.0 -0.07 0.0 0.08 1.0 -0.22 -0.12 -0.07 -0.02 0.08
µv 0.03 0.03 0.0 0.0 1.0 0.03 0.03 0.03 0.03 0.03
κ 20.0 21.96 0.04 2.83 1.0 16.2 20.08 21.96 23.91 27.44
σ 0.5 0.46 0.0 0.01 1.0 0.44 0.45 0.46 0.46 0.48
c 4.0 3.53 0.0 0.22 1.0 3.1 3.39 3.52 3.67 4.00

Gumbel
θ True Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µs 0.0 -0.53 0.0 0.09 1.0 -0.71 -0.6 -0.53 -0.47 -0.34
µv 0.03 0.04 0.0 0.0 1.0 0.04 0.04 0.04 0.04 0.05
κ 20.0 20.09 0.02 0.9 1.0 18.3 19.48 20.09 20.71 21.86
σ 0.5 0.48 0.0 0.0 1.0 0.47 0.48 0.48 0.49 0.49
c 4.0 4.11 0.0 0.12 1.0 3.88 4.03 4.11 4.19 4.33

Joe
θ True Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µs 0.0 -0.08 0.0 0.08 1.0 -0.24 -0.13 -0.08 -0.03 0.06
µv 0.03 0.03 0.0 0.0 1.0 0.03 0.03 0.03 0.03 0.03
κ 20.0 19.33 0.03 1.3 1.0 16.8 18.45 19.33 20.19 21.94
σ 0.5 0.49 0.0 0.01 1.0 0.47 0.48 0.49 0.49 0.5
c 4.0 3.92 0.0 0.14 1.0 3.66 3.82 3.91 4.01 4.2

BB1
θ True Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µs 0.0 0.07 0.07 0.0 1.0 -0.07 0.02 0.07 0.13 0.22
µv 0.03 0.03 0.0 0.0 1.0 0.02 0.03 0.03 0.03 0.03
κ 20.0 20.31 1.2 0.02 1.0 17.93 19.52 20.29 21.09 22.72
σ 0.5 0.5 0.0 0.0 1.0 0.49 0.5 0.5 0.5 0.51

clower 2.0 1.99 0.17 0.0 1.0 1.67 1.87 1.99 2.1 2.33
cupper 2.0 1.98 0.1 0.0 1.0 1.79 1.91 1.97 2.04 2.18

BB7
θ True Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µs 0.0 0.01 0.07 0.0 1.0 -0.13 -0.03 0.01 0.06 0.14
µv 0.03 0.03 0.0 0.0 1.0 0.02 0.03 0.03 0.03 0.03
κ 20.0 18.11 1.56 0.03 1.0 15.13 16.99 18.11 19.19 21.08
σ 0.5 0.5 0.01 0.0 1.0 0.49 0.5 0.5 0.51 0.52

clower 2.0 1.95 0.1 0.0 1.0 1.76 1.89 1.95 2.02 2.15
cupper 2.0 2.08 0.13 0.0 1.0 1.84 1.99 2.08 2.17 2.35

Table 4.1 MCMC summary diagnostics for simulated data with Archimedean Copula
dependencies. θ summarizes all model parameter, and c the copula specific parameter.
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Gaussian
θ True Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µs 0.0 0.09 0.0 0.07 1.0 -0.05 0.04 0.09 0.13 0.22
µv 0.03 0.02 0.0 0.0 1.0 0.02 0.02 0.02 0.02 0.03
κ 20.0 22.73 0.04 2.03 1.0 18.84 21.32 22.74 24.13 26.57
σ 0.5 0.51 0.0 0.01 1.0 0.49 0.5 0.51 0.51 0.53
c -0.75 -0.74 0.0 0.01 1.0 -0.77 -0.75 -0.74 -0.74 -0.72

T (2 degrees of freedoom)
θ True Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µs 0.0 -0.07 0.0 0.07 1.0 -0.2 -0.12 -0.07 -0.02 0.08
µv 0.03 0.03 0.0 0.0 1.0 0.03 0.03 0.03 0.03 0.03
κ 20.0 18.74 0.04 1.71 1.0 15.33 17.57 18.69 19.91 22.02
σ 0.5 0.51 0.0 0.01 1.0 0.5 0.5 0.51 0.51 0.52
c -0.75 -0.75 0.0 0.01 1.0 -0.78 -0.76 -0.75 -0.74 -0.72

Table 4.2 MCMC summary diagnostics for simulated data with Elliptical Copula
dependencies. θ summarizes all model parameter, and c the copula specific parameter.

4.5 Applications

4.5.1 Data Processing

We will consider the case where, in addition to the observed log-prices St, information
can also be made available for Vt through option prices, and assume here for a moment
that we work in continuous-time. A typical example is the case of S&P 500 and VIX
index pairs, which we use to illustrate our methodology. It can be shown that

Yt := V IX2
t × 10−4 = 1

τ
EQ

(∫ T

t
Vsds

)
, (4.4)

where Q is the risk neutral measure and τ denotes the time to expiry for the option
prices used in the construction of VIX, known to be equal to 30 days, see for example Lin
(2007). Hence, the specification of Q provides a link between the VIX observations and
Vt. Under the Black & Scholes model we get Y v

t = Vt, which we will use going forward.
Reverting back to discrete-time, we assume that the complete dataset consists of the
log-returns S = (S1, . . . , ST ) of assets of interest, and the VIX-informed observations
V = (V1, . . . , VT ), for some time-horizon T ≥ 1. For the corresponding evidence used
in the estimation runs, 1000 data points for the S&P 500 Total Return and VIX Index
have been obtained from Investing.com (2022). Both data sources were obtained as of
end-of-day, and are shown in Figure A.21. In a pre-processing step, the stock data has



70 A Class of Stochastic Volatility Models with Copula Dependencies

DIC computations
Copula DIC LPPD pDIC

Frank 2559.4 -1275.0 4.7
Gaussian 2603.6 -1297.2 4.5

2-reflected BB1 2660.6 -1324.8 5.5
2-reflected BB7 2677.8 -1333.3 5.6

2-reflected Clayton 2689.4 -1340.1 4.6
2-reflected Gumbel 2735.2 -1363.1 4.5

2-reflected Joe 2863.0 -1427.0 4.5
T (2 degrees of freedoom) 2923.1 -1456.9 4.7

WAIC computations
Copula WAIC LPPD pWAIC

Frank 2560.5 -1274.5 5.7
Gaussian 2605.0 -1296.6 5.9

2-reflected BB1 2662.8 -1323.7 7.6
2-reflected BB7 2680.3 -1332.2 8.0

2-reflected Clayton 2691.2 -1339.2 6.3
2-reflected Gumbel 2736.8 -1362.3 6.1

2-reflected Joe 2865.2 -1425.9 6.7
T (2 degrees of freedoom) 2925.1 -1455.9 6.6

SMC model choice
Copula Cum Log Predictive Likelihood

Frank -1457.9
Gaussian -1473.7

2-reflected BB1 -1478.0
2-reflected BB7 -1495.1

2-reflected Clayton -1500.0
2-reflected Gumbel -1506.4

2-reflected Joe -1547.6
T (2 degrees of freedoom) -1548.9

Table 4.3 Comparison diagnostics as defined in Section 4.3.3 for all SV Models with
different Copula choices on simulated data from the favored Copula choice in Section
4.5. The lower tables depicts estimates for the cumulative log PL as defined in Section
4.3.3.
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been transformed into log space, ℓS = log(S&P 500) and VIX data has been rescaled
to X = log((V IX

100 )2), see Equation (4.4) as reference.

4.5.2 Model Prior Assignments

The Stochastic Volatility Model with Copula Dependencies has the following parameter:
θ = {µs, µx, κ, σ, copula}. The corresponding parameter boundaries for µs and µx are
tackled via prior assignments. The drift parameter µs for the transformed stock data
has a truncated Normal prior with large variance, µs ∼ Normal(−1,1)(µ = 0, σ = 102).
µx, the mean parameter for the variance µx ∼ Normal[0,1)(µ = 0, σ = 102). The mean
reversion parameter κ has a Normal prior distribution as well, κ ∼ Normal(0,100)(µ =
10, σ = 104) and the strictly positive noise term σ has σ ∼ Normal(0,2)(µ = 0.5, σ =
104). The Copula parameter depends on the model corresponding Copula of choice.
The parameter for the T and Gaussian Copula was bounded between -1 and 1, the
parameter for the Archimedean types were set to be positive. More details can be
found directly on https://github.com/paschermayr/Publish_SVCopula.

4.5.3 Marginals Discussion

A factor to note in our model specification from Section 4.2 is that the marginals are
based on Gaussian distributions. Given the presence of possible jumps in the price
movement as well as the measurement error for the volatility via the VIX index, we
apply a sensitivity analysis on the marginals in line with common practice in Copula
modelling. To do so, we assign T distributed marginals with unknown degrees of
freedom for both stock and volatility, and estimate these separately. Copula specific
parameter as well as either stock or volatility parameter, respectively, are ignored
while estimating the marginal distribution of the other. We transform the degrees
of freedom parameter to ℓdf = log(df − 2) ∼ Normal(−10,25)(µ = 0.0, σ = 103). The
output diagnostics for S and X can be seen in Table 4.4. Note that in this case, we
re-scaled the noise term σ in order to use the scaled version of the T distribution. We
conclude that the degrees of freedom (in log space) for the stock data converges around
15, and for the volatility data around 3. Consequently, our sensitivity analysis suggests
that the Gaussian marginal innovations are suitable enough for the price and volatility
process analysis going forward.

https://github.com/paschermayr/Publish_SVCopula


72 A Class of Stochastic Volatility Models with Copula Dependencies

S&P 500
θ Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µs 0.09 0.0 0.07 1.0 -0.03 0.05 0.1 0.14 0.23
ℓν 16.05 0.2 5.31 1.01 6.95 11.47 16.02 20.71 24.64

VIX
θ Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µv 0.02 0.0 0.0 1.0 0.02 0.02 0.02 0.02 0.02
κ 22.16 0.06 3.02 1.0 16.15 20.08 22.2 24.25 27.97
σ 0.39 0.0 0.01 1.0 0.37 0.38 0.39 0.4 0.41
ℓν 2.91 0.0 0.17 1.0 2.58 2.79 2.9 3.01 3.26

Table 4.4 MCMC summary diagnostics on transformed S&P 500 data and VIX data
for marginal distribution analysis in Section 4.5.3.

4.5.4 Copula Selection

Choosing the number of available Copulae is based upon empirical considerations. In
particular, assuming data information about each of the involved times series data,
estimates of the residuals (ϵ̂i, ζ̂i)i=1,...,T can be obtained to perform pairwise exploratory
analysis in order to inform appropriate choices of bivariate Copulas. The objective is
to propose a reasonable number of different options and carry out model choice via
estimation of the model evidence. Preliminary analysis that fit univariate series and
investigated pairwise structure of estimated residuals has identified strong negative
dependencies between pairs of (residuals of log) prices and volatilities. Going forward,
we include all standard Archimedean Copulae such as the Clayton, Gumbel, Frank
and Joe variant that feature tail behavior on either side. In addition, we include the
2-parameter Archimedean Copulas BB1 and BB7, which exhibit different tail behavior
on both ends. To replicate the negative dependency structure between stock and
volatility, the Clayton, Gumbel, Joe, BB1 and BB7 Copulas undergo a process of
double reflection (2-reflection). This process is also often referred to as rotation, and
a 2-reflection is equivalent to a 270-degree rotation. To account for the difference in
tail behavior, we also perform a 1-reflection/90-degree rotation on all Copulas that
undergo such a transformation. On the other hand, the Frank copula, despite also
belonging to the Archimedean family, does not require any reflection and can be used
directly as it is, as it possesses reflection invariance. Next, the elliptical Gaussian and
T Copula are included as suitable candidates. The Gaussian Copula, in particular,
serves as a benchmark for standard modelling choices of Stochastic Volatility model
error terms against our proposed methods. For a review on the corresponding cdf and
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pdf functions as well as upper and lower tails of any aforementioned Copulae, see Joe
and Hu (1996).

4.5.5 Results

We adopted the Gaussian Copula as the benchmark model for all the comparison
criteria, as it aligns with the standard framework for modeling error terms in SV
models. The sequential model comparison criteria, introduced in Section 4.3.3, are
depicted in Figure A.24, which illustrates the Cumulative Log Predictive Bayes Factor
at each iteration during the IBIS run. Throughout the entire process, the Frank
Copula consistently outperforms all other Copula choices. The values for the final
iteration, along with the cumulative log Predictive Likelihood, are presented in Table
4.6, which also includes the results for the batch estimation criteria DIC and WAIC.
Notably, the Frank Copula, with a higher concentration of mass towards both tail
ends, yields a significantly higher estimate for the marginal likelihood and consistently
outperforms other Copula choices in terms of DIC and WAIC. Additional Copula
diagnostics, presented in Table 4.7, further validate our intuition regarding the negative
relationship between stock prices and their volatility. The trace plots for the favored
model, displaying all parameter estimates, can be seen in Figure A.22. These plots are
generated after discarding the initial 1000 burn-in iterations and demonstrate rapid
convergence. Convergence is further confirmed by the MCMC diagnostics shown in
Table 4.5.

To conclude, the Frank as well as the T Copula perform consistently better than the
benchmark Gaussian Copula. Notably, the Gumbel and BB1 Copula with asymmetric
tail behavior also outperform the benchmark with respect to most comparison criteria.

θ Mean MCSE SD Rhat Q2.5 Q25.0 Q50.0 Q75.0 Q97.5
µs -0.1 0.06 0.0 1.0 -0.23 -0.14 -0.1 -0.06 0.03
µv 0.03 0.0 0.0 1.0 0.03 0.03 0.03 0.03 0.04
κ 13.04 1.53 0.03 1.0 10.06 11.98 13.05 14.07 16.02
σ 0.49 0.01 0.0 1.0 0.47 0.48 0.49 0.49 0.5

copula -12.56 0.39 0.01 1.0 -13.32 -12.81 -12.57 -12.29 -11.79
Table 4.5 MCMC summary diagnostics for SV Model with Frank Copula dependencies
on real data in Section 4.5.
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DIC computations
Copula DIC LPPD pDIC

Frank 890.2 -440.6 4.5
T 1293.5 -642.0 4.7

1-reflected BB1 1357.8 -673.9 5.0
1-reflected Gumbel 1350.4 -671.0 4.2

Gaussian 1457.7 -724.1 4.8
2-reflected BB1 1494.7 -742.1 5.2

2-reflected Gumbel 1495.9 -743.5 4.5
1-reflected BB7 1625.3 -807.2 5.5
1-reflected Joe 1632.7 -811.6 4.8

2-reflected Clayton 1640.9 -815.9 4.6
2-reflected Joe 1688.4 -897.7 -53.4

1-reflected Clayton 1696.2 -922.0 -73.9
WAIC computations

Copula WAIC LPPD pWAIC
Frank 895.3 -438.3 9.4

T 1299.5 -638.8 11.0
1-reflected Gumbel 1356.4 -667.8 10.3

1-reflected BB1 1373.2 -668.5 18.1
Gaussian 1473.6 -715.8 21.0

2-reflected Gumbel 1513.2 -735.9 20.7
2-reflected BB1 1520.2 -730.3 29.8
1-reflected Joe 1646.2 -805.2 17.9

2-reflected Clayton 1654.5 -809.4 17.9
1-reflected BB7 1659.9 -792.9 37.0
2-reflected Joe 1768.6 -855.3 29.0

1-reflected Clayton 1801.5 -871.0 29.8
SMC model choice

Copula Cum Log Predictive Likelihood
Frank -839.8

T -914.3
2-reflected BB1 -948.4
1-reflected BB1 -949.7

Gaussian -950.2
2-reflected Gumbel -950.3
1-reflected Gumbel -951.4

2-reflected Joe -1019.3
1-reflected Clayton -1029.1

1-reflected BB7 -1032.9
2-reflected Clayton -1074.2

1-reflected Joe -1074.3
Table 4.6 Comparison diagnostics as defined in Section 4.3.3 for all SV Models with
different Copula choices on real data in Section 4.5. The lower tables depicts estimates
for the cumulative log PL as defined in Section 4.3.3.
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Model LT Q50 UT Q50 Spearman’s ρ Q50 Kendall’s τ Q50
1-reflected BB7 0.77 0.41 -0.61 -0.79
2-reflected BB1 0.27 0.73 -0.62 -0.8
1-reflected BB1 0.74 0.02 -0.61 -0.8

2-reflected Gumbel 0.0 0.75 -0.62 -0.8
1-reflected Gumbel 0.75 0.0 -0.61 -0.79
2-reflected Clayton 0.79 0.0 -0.6 -0.78
1-reflected Clayton 0.0 0.8 -0.61 -0.79

2-reflected Joe 0.0 0.81 -0.62 -0.79
1-reflected Joe 0.8 0.0 -0.6 -0.79

Frank 0.0 0.0 -0.62 -0.8
T 0.65 0.65 -0.62 -0.8

Gaussian 0.0 0.0 -0.62 -0.8
Table 4.7 Median estimates of Model implied Copula diagnostics on real data in Section
4.5. LT refers to Lower Tail dependence, and UT refers to Upper Tail dependence,
respectively.

4.6 Conclusions

In this Chapter, we explored a new class of Stochastic Volatility Models with Copula
dependencies to express the relationship between stock prices and their volatility.
We incorporated carefully selected Copula choices and benchmarked them based on
different model comparison criteria and their predictive performance, in which the
Frank and T Copula functioned consistently better than the other candidates. While
Copulas with asymmetric tail behavior did not continually perform better than standard
approaches, the aforementioned (symmetric) Copulas outperformed the common choice
of Gaussian innovations for SV models normally used in the financial modelling
literature. Moving forward, open research topics include proposing a framework to
jointly estimate the marginal distributions and joint densities of the data. In particular,
non-parametric approaches for the marginals might be suitable in combination with
our copula framework. Latent factors could also be imposed to describe the joint
dependency structure in the data and could be incorporated seamlessly in our model
specification in the form of factor Copulas. Furthermore, considering our objective
of accurately describing the (asymmetric) joint dependency structure between stock
returns and volatility, it is worth exploring new model choice criteria that specifically
emphasize the tails of the distribution. Last but not least, the stochastic volatility
model itself could be extended to include jumps.
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4.7 Software

Data and code used to run the algorithms in this Chapter can be be seen in https:
//github.com/paschermayr/Publish_SVCopula. More detailed information about the
implementations for running all algorithms and computing all tables can be found in
https://github.com/paschermayr/Baytes.jl and its sub-libraries. The corresponding
plots are defined in https://github.com/paschermayr/BaytesInference.jl.

https://github.com/paschermayr/Publish_SVCopula
https://github.com/paschermayr/Publish_SVCopula
https://github.com/paschermayr/Baytes.jl
https://github.com/paschermayr/BaytesInference.jl


There aren’t any magical words, really. Words just hold the magic.

Jim Butcher (Grave Peril, 2001)





Chapter 5

Concluding Remarks

5.1 Results

This Chapter marks the end of my PhD journey and the beginning of another. It
presents a valuable occasion for self reflection, sharing insights gained from my research
experience and to offer recommendations to fellow researchers venturing into academia.
Moreover, I aim to provide my perspective on the promising avenues of future research
within my field, while acknowledging that only time will reveal the (in)accuracy of my
predictions.

5.2 Self Reflection

Overall, I am content with my accomplishments. However, there are numerous aspects
I would tackle differently a posteriori. Although I have greatly enhanced my coding
abilities and contributed to multiple open source packages, these endeavors often
demand a substantial amount of time. If you intend to pursue research in a compu-
tationally intensive field, it is crucial to recognize that a significant portion of your
research time might be dedicated to programming — a resource that could otherwise
be allocated to actual research or publishing. While this is not necessarily a drawback
and can be invaluable in other domains, it may lead to slower initial progress during
your PhD studies. Moreover, recognizing when certain projects are futile is crucial. I
have devoted considerable amounts of time to projects that ultimately led nowhere.
While this is a common occurrence in academia, I believe it’s important to establish
a predetermined time frame to tackle a problem. If no significant progress is made
within that time frame, it’s best to pivot and redirect your efforts. Time passes swiftly,
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and in order to earn your degree, you must generate results. Thus, maximizing your
productivity becomes essential. Looking back, I regret not fully seizing the multitude
of opportunities available to me as a PhD student in London. In particular, I wish
I had actively participated in more seminars, meetings, and general lectures. I can’t
help but feel that I missed out on valuable experiences. In retrospect, the benefits of
forging new contacts and friendships would have far outweighed the late-night work
sessions. While I can’t alter the past, I am determined to prioritize such engagements
moving forward.

5.3 Advice to new Research Students

Regardless of where this journey leads, I have learned a tremendous amount during the
past four years. This growth extends beyond my research topic and transformed my
skills as a student, teacher, colleague, and problem-solver. Failure is a crucial part of
the research process. Though this can be frustrating in the moment, such experiences
contain valuable lessons for the future. At the beginning of my studies, setbacks were
particularly daunting but, over the years, I have come to understand this is often one
step of the process and fresh ideas can emerge from it. You will develop resilience in
the face of failures, although it may be challenging in the beginning. Moreover, it is
acceptable to be intimidated by new research tasks. Pursuing a PhD revolves around
a deep dive into exciting and unexplored research areas, which can be simultaneously
exhilarating and frightening. Even with objectives that seem overly ambitious at
first, taking everything one step at a time makes each project more feasible. I found
overwhelming tasks a lot more bearable when I split them into smaller pieces and
tried to solve them one at a time, it also makes asking questions about things you
are uncertain about much clearer. Additionally, it is perfectly fine to not have all
the answers. When venturing into a new research area, nobody expects you to be an
instant expert. While it’s important to thoroughly prepare for meetings, don’t hesitate
to seek clarification by asking questions if something is unclear. Furthermore, I highly
advise aiming to publish your first project as swiftly as feasible. I acknowledge that
early projects can greatly benefit from the insights gained later in your research journey
and thus be published in better journals. However, as a student, having something
already publicly available can alleviate a substantial amount of pressure. Additionally,
it enhances your academic visibility and proves beneficial during job interviews when
discussing your track record.
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5.4 Future Outlook

One objective of this dissertation is supporting the application and awareness of
Sequential Monte Carlo algorithms. In particular, automatic model selection and
sequential prediction seamlessly integrated in the SMC machinery establish these
methods as exceptionally suitable for sequential data. Historically, I believe the two
biggest drawbacks preventing widespread use of SMC kernels are the substantial
computational complexity and the relative scarcity of available software tools in
comparison to MCMC methods. I anticipate a significant reduction in these challenges in
the upcoming years, primarily driven by the continuous advancement in computational
processing power and the growing influx of open source contributions from both
industry and academia. The widespread adoption of Markov Chain Monte Carlo
methods, following the influential paper by Hoffman and Gelman (2014) and the
introduction of STAN, serves as a testament to their mainstream success. I envision
a similar level of achievement for sequential Monte Carlo SMC methods if a team of
esteemed experts undertakes their development. Nevertheless, one significant challenge
that I encountered in my own research was the necessity to tune the more advanced
MCMC kernels while using the SMC framework. It remains unclear a priori how to
accomplish this task effectively. While in theory tuning parameter should be fixed
after the adaption period in the MCMC kernel, a major strength of Sequential Monte
Carlo methods is the adaptability over time if the underlying data process changes.
However, this intriguing research area holds great promise and is something I am
eager to explore further in the future. Moving forward, I intend to continue working
within this research area and cannot wait to discover and explore future developments
throughout this domain. Though I had little experience with SMC algorithms when
this PhD journey began, I grew to enjoy working with this machinery due to the
inference and diagnostics tools that are inaccessible with other methods.
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Figure A.1 This graph shows Particle Filter likelihood estimates for a range of different
parameter values. At each column, all parameter were kept constant except the labeled
parameter at the x-axis. The different colors depict various amount of particles used
for the computations: 100 (blue), 500 (green), 1000 (yellow), 2000 (orange) particles
for sample data of size 1000.
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Figure A.2 This graph shows the Partial Autocorrelation Function of Particle Filter
likelihood estimates that have been obtained during 1000 PMCMC steps after burnin.
The Particle Filter in the PMCMC kernels were set to have a different amount of
particles for each run.
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Figure A.3 The upper graph shows generated observed data by the HSMM depicted in
section 2.4. The middle plot shows the hidden state (blue) and a sample of a filtered
trajectory from a particle filter. The lower plot shows the remaining duration given
the current state, and a sample of a filtered particles from a particle filter.
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Figure A.4 Traceplots of four Particle MCMC chains for continuous model parameter
of a HSMM in section 2.4.
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Figure A.5 Particle MCMC posterior estimates of the filtered latent state trajectory
of four chains for the HSMM in section 2.4. Parameter used to generate sample data
are shown as dashed lines. The bottom plot shows re-scaled posterior means and the
observed data.
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Figure A.6 Sequential Monte Carlo Squared posterior estimates of the continuous
model parameter of 100 chains for the HSMM in section 2.4. The posterior mean and
a 95% Credible Interval are provided for each parameter at each time index.
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Figure A.7 Sequential Monte Carlo posterior estimates of the filtered latent state
trajectory of 100 chains for the HSMM in section 2.4 at each time index. The bottom
plot shows the underlying observed data and re-scaled posterior mean of the latent
state at the final iteration. Parameter used to generate sample data are shown as
dashed horizontal lines.
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Figure A.8 Last 1000 end-of-day data points of the VIX Index used as data in Section
2.5. Data as of January 1st 2022 from the Thomson Reuters database.
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Figure A.9 Sequential Monte Carlo posterior estimates of the continuous model param-
eter of 100 chains for the AR(1) HSMM with Negative Binomial duration distribution,
discussed in section 2.5. The posterior mean and a 95% Credible Interval are provided
for each parameter at each time index.
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Figure A.10 Sequential Monte Carlo posterior estimates of the filtered latent state
trajectory of 100 chains for the AR(1) HSMM with Negative Binomial duration
distribution, discussed in section 2.5. The bottom plot shows the underlying observed
data and re-scaled posterior mean of the latent state (rounded to closest integer) at
the final iteration.
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Figure A.11 Sequential Monte Carlo Squared posterior predictive samples for the AR(1)
HSMM with Negative Binomial duration distribution, discussed in section 2.5. The
Black line at the bottom table depicts the realized future value against predictions in
gold. The top 2 graph are predictions for the state and duration variables, and the
bottom plot shows predictions for the observed data.
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Figure A.12 Both plot depict a histogram for changes in log VIX data, conditioned on
the most probable posterior latent state from the final SMC2 iteration. The left uses
the states from the winning ARHSMM, while the right plot uses the corresponding
ARHMM data.
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Chapter 3 Plots

Figure A.13 Generated data for simulated HSMM-EM in Section 3.4. The upper graph
shows generated model implied deaths, computed as described in Section 3.2. The
lower plot shows the implied cases, computed as described in Section 3.2.
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Figure A.14 Full PMCMC trace plots of a HSMM-EM with 4 states and Negative
Binomial distribution for simulated data in Section 3.4. Parameter used to generate
sample data are shown as dashed horizontal lines.



104 Plots

Figure A.15 Real data used in Section 3.5. The upper plot shows the reported deaths
in the UK, the lower plot the reported cases. A more detailed explanation for the data
processing is provided in Section 3.5.1.
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Figure A.16 The Underreporting index that is used in the observation model for the
reported infections, see Section 3.2. Individual values are determined based on the
work of Chatzilena et al. (2022).
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Figure A.17 Full PMCMC trace plots of a HSMM-EM with 4 states and Negative
Binomial distribution estimated on real data in Section 3.5.
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Figure A.18 SMC posterior estimates of the continuous model parameter of 48 chains
for the best performing HSMM-EM defined in section 3.2 and used on real data in
Section 3.5.
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Figure A.19 SMC prediction plot for the HSMM-EM with 4 states and Negative
Binomial distribution estimated on real data in Section 3.5. A 95 % Credible Interval
(CI) is included at each iteration. The upper plot shows the reported fatalities against
the predicted ones, the lower the corresponding cases.
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Figure A.20 SMC prediction comparison: this plot shows the Cumulative Log Predictive
Bayes Factor of the HSMM-EM with 4 states and Negative Binomial distribution against
all other models for daily predictions (sub-plot 1) as well as for weekly predictions
(sub-plot 2). NB4 stands for models using a Negative Binomial Duration distribution
with 4 different regimes.
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Chapter 4 Plots

Figure A.21 Real data used in Section 4.5. The upper plot shows the S&P 500 Index
in log space, the lower plot the transformed data based on VIX Index. A more detailed
explanation for the data processing is provided in Section 4.5.1.
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Figure A.22 Full MCMC trace plots of the best SVC according to the model comparison
criteria described in Section 4.3.3 for real data in Section 4.5.
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Figure A.23 Full SMC trace plots of the best SVC according to the model comparison
criteria described in Section 4.3.3 for real data in Section 4.5.
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Figure A.24 This plot shows the Cumulative Log Predictive Bayes Factor as defined
in Section 4.3.3 of the Frank Copula against the rest. All computations are based on
daily data.
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Algorithm 1: Standard particle filter
input : data e1:T , model parameter θ
output : log-likelihood estimate ℓ̂(θ) = log p̂θ(e1:T ) and sample

s1:T ∼ p̂(s1:T | e1:T )
tuning parameter : proposal distribution q, number of particles N
function : particle filter pf(e1:T , θ)
// Initialization:

1 for n← 1 to N do
2 Initiate particle sn

1 ∼ πθ(s1).
3 Compute αn

1 (sn
1 , e1) = pθ(e1|sn

1 ) pθ(sn
1 )

q(sn
1 |e1) .

4 Normalize weights α̃i
1 ∝ αi

1(sn
1 , e1) for i = 1 : N , s.t. ∑N

i=1 α̃
i
1 = 1.

5 Compute log-likelihood increment ℓ̂(θ) = log 1
N

∑N
i=1 α

i
1(si

1, e1)
// Forward propagation:

6 for t← 2 to T do
7 if Resampling required then
8 Sample ancestor an

t for particle trajectory sn
1:t−1 for n = 1 to N

according to normalized weights α̃t−1.
9 else

10 Set an
t = n for n = 1 to N .

11 for n← 1 to N do
12 Sample sn

t ∼ q(sn
t | s

an
t

1:t−1, e1:t).
13 Set sn

1:t := (san
t

1:t−1, s
n
t ).

14 Calculate incremental weight:

αt(sn
1:t, e1:t) = pθ(et | sn

1:t, e1:t−1) pθ(sn
t | sn

1:t−1, e1:t−1)
q(sn

t | sn
1:t−1, e1:t)

15 Normalize weights α̃i
t ∝ αi

t(si
1:t, e1:t) for i = 1 to N , s.t. ∑N

i=1 α̃
i
t = 1.

16 Add incremental weights to log-likelihood:
ℓ̂(θ) = ℓ̂(θ) + log 1

N

∑N
i=1 α

i
t(si

1:t, e1:t).
// Return log-likelihood estimate and particle trajectories:

17 Draw k with P (k = i) ∝ α̃i
T .

18 return ℓ̂(θ) and sk
1:T .
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Algorithm 2: Conditional particle filter with ancestor sampling
input : Reference s′

1:T , data e1:T , model parameter θ
output : Log-likelihood estimate ℓ̂(θ) = log p̂θ(e1:T ) and sample

s1:T ∼ p̂(s1:T | s
′
t:T , e1:T )

tuning parameter : proposal distribution q, number of particles N
function : particle filter cpf(s′

1:T , e1:T , θ)
// Initialization:

1 for n← 1 to N − 1 do
2 Initiate particle sn

1 ∼ πθ(s1).
3 Compute αn

1 (sn
1 , e1) = pθ(e1|sn

1 ) pθ(sn
1 )

q(sn
1 |e1) .

4 Set sN
1 := s

′
1 and compute αN

1 (sN
1 , e1) ∝ pθ(e1|sN

1 ) pθ(sN
1 )

q(sN
1 |e1) .

5 Normalize weights α̃i
1 ∝ αi

1(sn
1 , e1) for i = 1 : N , s.t. ∑N

i=1 α̃
i
1 = 1.

6 Compute log-likelihood increment ℓ̂(θ) = log 1
N

∑N
i=1 α

i
1(si

1, e1)
// Forward propagation:

7 for t← 2 to T do
8 if Resampling required then
9 Sample ancestor an

t for particle trajectory sn
1:t−1 for n = 1 to N − 1

according to normalized weights α̃t−1.
10 Set aN

t = k, with
P (k = i) ∼ αi

t−1(si
1:t−1, e1:t−1) pθ(s

′
t:T , et:T | si

1:t−1, e1:t−1).
11 else
12 Set an

t = n for n = 1 to N .
13 for n← 1 to N do
14 Sample sn

t ∼ q(sn
t | s

an
t

1:t−1, e1:t).
15 Set sn

1:t := (san
t

1:t−1, s
n
t ).

16 Calculate incremental weight:

αt(sn
1:t, e1:t) = pθ(et | sn

1:t, e1:t−1) pθ(sn
t | sn

1:t−1, e1:t−1)
q(sn

t | sn
1:t−1, e1:t)

17 Normalize weights α̃i
t ∝ αi

t(si
1:t, e1:t) for i = 1 to N , s.t. ∑N

i=1 α̃
i
t = 1.

18 Add incremental weights to log-likelihood:
ℓ̂(θ) = ℓ̂(θ) + log 1

N

∑N
i=1 α

i
t(si

1:t, e1:t).
// Return log-likelihood estimate and particle trajectories:

19 Draw k with P (k = i) ∝ α̃i
T .

20 return ℓ̂(θ) and sk
1:T .
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MCMC

Algorithm 3: Metropolis Hastings (MH) Kernel
input : data e1:T , current model parameter θ
output : model parameter θ ∼ p(θ | e1:T )
tuning parameter : proposal distribution f
function : MCMC Kernel Kmh(e1:T , θ)

1 Propose θ⋆ ∼ f(θ⋆ | θ).
2 Set θ := θ⋆ with acceptance probability min(1, a(θ⋆, θ)), where

a(θ⋆, θ) = p(θ | e1:T ) f(θ | θ⋆)
p(θ | e1:T ) f(θ⋆ | θ)

= pθ⋆(e1:T ) p(θ⋆) f(θ | θ⋆)
pθ(e1:T ) p(θ) f(θ⋆ | θ) .

3 return θ.



119

Algorithm 4: Hamiltonian Monte Carlo (HMC) Kernel
input : data e1:T , current model parameter θ
output : model parameter θ ∼ p(θ | e1:T )
tuning parameter : Mass matrix M , stepsize ϵ, number of leapfrog steps L.
function : MCMC Kernel KHMC(e1:T , θ)

1 Sample ρ ∼MvNormal(0,M) and set (θ⋆, ρ⋆) := (θ, ρ).
2 for i← 1 to L do
3 θ⋆, ρ⋆ = Leapfrog(θ⋆, ρ⋆,M, ϵ)
4 Set θ := θ⋆ with acceptance probability min(1, a(θ⋆, θ)), where

a(θ⋆, θ) = exp(H(ρ, θ)−H(ρ⋆, θ⋆))

5 return θ.
6 Function Leapfrog(θt, ρt,M, ϵ):
7 ρt+ ϵ

2
← ρt + ϵ

2
∂log p(θ|e1:T )

∂θ
(θt)

8 θt+ϵ ← θt + ϵM−1ρt+ ϵ
2

9 ρt+ϵ ← ρt+ ϵ
2

+ ϵ
2

∂log p(θ|e1:T )
∂θ

(θt+ϵ)
10 return θt+ϵ, ρt+ϵ.
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Particle MCMC

Algorithm 5: Particle Metropolis Hastings Kernel
input : current state trajectory s1:T , data e1:T , current model

parameter θ
output : model parameter θ and state trajectory s1:T ,

(θ, s1:T ) ∼ p(θ, s1:T | e1:T )
tuning parameter : MCMC kernel Kmcmc, particle filter pf , number of

iterations N
function : PMCMC kernel Kpmh(e1:T , s1:T , θ)

1 Propose θ⋆ ∼ Kmcmc(e1:T , θ)
2 Run particle filter pf to obtain p̂θ⋆(e1:T ) and s⋆

1:T ∼ p̂θ⋆(s⋆
1:T | e1:T ).

3 Set (θ, s1:T ) := (θ⋆, s⋆
1:T ) with acceptance probability min(1, a(θ⋆, θ)), where

a(θ⋆, θ) = p̂θ⋆(e1:T ) p(θ⋆) fmcmc(θ | θ⋆)
p̂θ(e1:T ) p(θ) fmcmc(θ⋆ | θ)

4 return (θ, s1:T )

Algorithm 6: Particle Gibbs Kernel
input : reference trajectory s1:T , data e1:T , current model

parameter θ
output : model parameter θ and state trajectory s1:T ,

(θ, s1:T ) ∼ p(θ, s1:T | e1:T )
tuning parameter : conditional particle filter cpf
function : PMCMC kernel Kpgibbs(e1:T , s1:T , θ)

1 Propose θ⋆ ∼ pθ(θ⋆ | s1:T , e1:T )
2 Run a conditional particle filter cpf to obtain s⋆

1:T ∼ p̂θ⋆(s⋆
1:T | s1:T , e1:T ).

3 Set (θ, s1:T ) := (θ⋆, s⋆
1:T )

4 return (θ, s1:T )
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SMC

Algorithm 7: Iterative Batch Importance Sampling Algorithm
input : Data e1:T
output : model parameter θ, (θi)i=1:N ∼ p(θi | e1:t) for t = 1 to T
tuning parameter : number of particles N , N MCMC kernel (Kmcmc,i)i=1:N
function : IBIS sampler ibis(e1:T )
// Initialization:

1 for n← 1 to N do
2 Initiate parameter vector θn ∼ p(θn).

// Transition:
3 for t← t0 + 1 to T do
4 if Resampled at t-1 then
5 for n← 1 to N do
6 Compute pθn(e1:t | e1:t−1).
7 else
8 for n← 1 to N do
9 Compute pθn(et | e1:t−1) and set

pθn(e1:t | e1:t−1) = pθn(et | e1:t−1)pθn(e1:t−1 | e1:t−2)

10 Normalize incremental weights α̃n
t ∝ pθn(e1:t | e1:t−1) for n = 1 to N , s.t.∑N

n=1 α̃
n
t = 1.

11 Compute an estimate for the incremental marginal likelihood:

L̂t = p̂(et | e1:t−1) =
N∑

n=1
α̃n

t pθn(e1:t | e1:t−1).

12 if Resampling required then
13 for n← 1 to N do
14 Draw k with P (k = i) ∝ α̃i

t.
15 Propose θ⋆ ∼ Kmcmc,k(e1:t, θ

k).
16 Set θn := θ⋆

17 return θi
i=1:N for t = 1 to T .
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Algorithm 8: Sequential Monte Carlo Squared algorithm
input : Data e1:T
output : model parameter θ and state trajectory s1:t,

(θi, si
1:t)i=1:N ∼ p(θi, si

1:t | e1:t) for t = 1 to T
tuning parameter : number of particles N , N particle filter (pfi)i=1:N , N

PMCMC kernel (Kpmcmc,i)i=1:N
function : SMC2 sampler smc2(e1:T )
// Initialization:

1 for n← 1 to N do
2 Initiate parameter vector θn ∼ p(θn).
3 Run particle filter pfn to obtain sn

1:t0 ∼ p̂θn(sn
1:t0 | e1:t0).

// Transition:
4 for t← t0 + 1 to T do
5 if Resampled at t-1 then
6 for n← 1 to N do
7 Run particle filter pfn to obtain p̂θn(e1:t | e1:t−1) and

sn
1:t ∼ p̂θn(sn

1:t | e1:t).
8 else
9 for n← 1 to N do

10 Propagate particle filter pfn forward to obtain p̂θn(e1:t | e1:t−1) and
sn

t ∼ p̂θn(sn
t | sn

1:t−1, e1:t).
11 Set sn

1:t := (sn
1:t−1, s

n
t ).

12 Normalize incremental weights α̃n
t ∝ p̂θn(e1:t | e1:t−1) for n = 1 to N , s.t.∑N

n=1 α̃
n
t = 1.

13 Compute an estimate for the incremental marginal likelihood:

L̂t = p̂(et | e1:t−1) =
N∑

n=1
α̃n

t p̂θn(e1:t | e1:t−1). (B.1)

14 if Resampling required then
15 for n← 1 to N do
16 Draw k with P (k = i) ∝ α̃i

t.
17 Propose (θ⋆, s⋆

1:t) ∼ Kpmcmc,k(e1:t, s
k
1:t, θ

k).
18 Set (θn, sn

1:t) := (θ⋆, s⋆
1:t)

19 return (θi, si
1:t)i=1:N for t = 1 to T .
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Chapter 4 Derivations

Derivation of |JΘ|

We can write
|JΘ| =

∣∣∣∣∣dEdY
∣∣∣∣∣ ,

| · | denotes the determinant, Y is a vector containing Y s and Y v and

dE

dY
= (∂Ei)/∂Yj)ij ∈ R2T ×2T .

The model in Section 4.2 can be re-written as

Et =
 ϵt

ζt

 =


Y s

t −Y s
t−1−

(
µS−exp(Xt)/2

)
δ

√
δ exp(Xt/2) ,

Xt−Xt−1−
κ

(
µV −exp(Xt−1)

)
−

1
2 σ2

exp(Xt−1) δ

σ
√

δ exp(−Xt−1/2)


where t = 1, 2, . . . T , and Xt = log Y v

t . Notice that dE/dY is a bi-diagonal matrix and
therefore its determinant is given by the product of its diagonal entries that are

∂Et

∂Yt

=


1√

δ exp(Xt/2) if t = 1, . . . , T,
exp(−Xt)

σ
√

δ exp(−Xt−1/2) if t = T + 1, . . . , 2T.
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Hence we can write∣∣∣∣∣dEdY
∣∣∣∣∣ =

T∏
t=1

{√
δ exp(Xt/2)

}−1 {
σ
√
δ exp(Xt−1/2)

}−1
∝ σ−T .
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