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Abstract

The thesis includes three papers:

1. Limited Arbitrage Analysis of CDS Basis Trading

By modeling time-varying funding costs and demand pressure as the limits to arbi-

trage, the paper shows that assets with identical cash-flows have not only different

expected returns, but also different expected returns in excess of funding costs. I

solve the model in closed-form to show that the arbitrage on the CDS and corporate

bond market is a risky arbitrage. The sign of the expected excess return of the ar-

bitrage is decided by the sign and size of market frictions rather than the observed

price discrepancy. The size and risk of the arbitrage excess return are increasing

in market friction levels and assets’ maturities. High levels of market frictions also

destruct the positive predictability of credit spread term structure on credit spread

changes. Results from the empirical section support the above-mentioned model

predictions.

2. General Equilibrium Analysis of Stochastic Benchmarking

This paper applies a closed-form continuous-time consumption-based general equi-

librium model to analyze the equilibrium implications when some agents in the

economy promise to beat a stochastic benchmark at an intermediate date. For very

risky benchmark, these agents increase volatility and risk premium in the equilib-

rium. On the other hand, when they promise to beat less risky benchmark, they

decrease volatility and risk premium in the equilibrium. In both cases, the degree

of effect is state-dependent and stock price rises.

3. Institutional Asset Pricing with Heterogenous Belief (Co-authored)

We propose an equilibrium asset pricing model in which investors with heteroge-

neous beliefs care about relative performance. We find that the relative performance

concern leads agents to trade more similarly, which has two effects. First, similar

trading directly decreases volatility. Second, similar trading decreases the impact

of the dominant agents. When the economy is extremely good or bad, the sec-

ond effect is dominant so that the relative performance concern enlarges the excess

volatility caused by heterogeneous beliefs. When the first effect is dominant, which

corresponds to a normal economy, the volatility is lower than without the relative
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performance concern. Moreover, this paper shows that the relative performance

concern also influences investors’ holdings, stock prices and risk premia.
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1 Limited Arbitrage Analysis of CDS Basis Trading

Abstract

By modeling time-varying funding costs and demand pressure as the limits to arbi-

trage, the paper shows that assets with identical cash-flows have not only different

expected returns, but also different expected returns in excess of funding costs. I

solve the model in closed-form to show that the arbitrage on the CDS and corporate

bond market is a risky arbitrage. The sign of the expected excess return of the ar-

bitrage is decided by the sign and size of market frictions rather than the observed

price discrepancy. The size and risk of the arbitrage excess return are increasing

in market friction levels and assets’ maturities. High levels of market frictions also

destruct the positive predictability of credit spread term structure on credit spread

changes. Results from the empirical section support the above-mentioned model

predictions.

1.1 Introduction

As summarized in Gromb and Vayanos (2010), costs or demand shocks faced by

arbitrageurs can prevent them from eliminating mis-pricings on the markets and

therefore generate market anomalies. My model illustrates how the interaction of

time-varying funding cost and demand pressure faced by arbitrageurs results in two

assets with identical payoffs having different expected excess returns. This result

implies that taking opposite positions on these two assets is a risky arbitrage that is

expected to earn profit in excess of funding costs. I then use the arbitrage between

CDS and corporate bonds as an example to show how funding costs and demand

pressures determine the expected excess return of risky arbitrage and change the

credit spreads term structure’s predictability on future credit spread. Finally, the

empirical section lends support to several major theoretical results.

I explain the riskiness of arbitraging on two defaultable bonds with identical cash-

flows as the result of the interaction of funding illiquidity and market illiquidity.

Under a continuous-time demand-based framework in which risk-averse arbitrageurs

trade on two markets with identical defaultable bonds to meet demand pressure

posed by local investors, the presence of demand pressure results in arbitrageurs re-

quiring risk premium for the positions they take. Without other frictions, demand

pressure alone doesn’t generate pricing discrepancies between assets with identical

cash-flows. Arbitrageurs also face time-varying funding costs on the two markets,

which under certain conditions result in the two assets having different risk expo-
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sures and carrying different levels of risk premium. The co-existence of time-varying

funding cost and demand pressure makes taking opposite positions on the two mar-

kets a risky arbitrage. As shown in the model, without any one of these two sources

of friction, the arbitrage doesn’t generate expected excess profit.

I solve the model in closed-form under two cases. The first case assumes con-

stant demand pressure from local investors while the second case assumes off-setting

stochastic demand pressure. In the latter case, even if the arbitrageurs can take the

exact opposite positions on the two markets in equilibrium so that they are com-

pletely protected from the risk of defaults, they still have non-zero exposures to

other risk factors. Applying the results to the CDS and corporate bond markets

suggests CDS basis trading is in fact risky arbitrage and it is reasonable for the

CDS basis to deviate from its theoretical frictionless value of zero under severe mar-

ket frictions. The expected excess return of the risky arbitrage depends on market

frictions rather than the level of the price discrepancy. The model also shows the

arbitrageurs sometimes magnify rather than correct price distortion under market

frictions and offers a number of results on term structure properties.

Empirical results support the model predictions. Using Markit CDX and iBoxx

Indices data and corporate bond data from TRACE, I show that basis trading is

exposed to systematic risk factors, while the interaction of funding cost and market

liquidity have predictive power on abnormal basis trading returns. As predicted by

the model, the predictability of credit spread term structure slope on future credit

spread change may turn from positive to negative when market frictions are high. I

also find the size and volatility of realized basis trading excess return is increasing

in the degree of market frictions. Moreover, the size of realized basis trading excess

return is increasing in underlying maturity.

In early theoretical literature, Tuckman and Vila (1990) show that exogenous price

discrepancies between two assets with identical cash-flows do not necessarily cre-

ate arbitrage opportunities if there’s shorting-selling cost. As show in Gromb and

Vayanos (2010), without other frictions, the discrepancies between the expected re-

turns of the two assets should compensate exactly for the funding costs so that an

arbitrageur is still expected to earn zero excess return. In contrary, my model sug-

gests arbitrageur can earn a risky profit even after adjusting for the funding costs

if the funding costs are time-varying and arbitrageur faces demand pressure.
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The demand pressure faced by the arbitrageurs is another important source of mar-

ket friction that contributes to the rise of market anomalies. Investors other than

arbitrageurs can have endogenous demand shocks that arise via different channels,1

but a number of papers have focused on the pricing implications given exogenous

demand shocks as I do. These theoretical demand-based papers include Garleanu,

et.al.(2009), Naranjo (2009) and Vayanos and Villa (2009). By assuming exogenous

underlying asset prices, Garleanu, et.al.(2009) and Naranjo (2009) solve derivative

prices endogenously to show that exogenous demand shocks and frictions in arbi-

trageurs’ trading can drive derivative prices away from conventional prices implied

by the no-arbitrage conditions. Naranjo (2009) considers extra funding cost faced

by arbitrageurs as the friction limiting her ability to eliminate price discrepancies

on the futures and underlying markets. However, he assumed the underlying asset’s

price as exogenously given, so the market frictions only have impact on the futures

price but not on the underlying market, which is unrealistic as derivative markets’

trading do have impact on underlying price.

My paper is the closest to Vayanos and Vila (2009) in that prices in both legs of

the arbitrage are endogenized so frictions on one market affect all markets. Vayanos

and Villa (2009) study arbitrage across different Treasury bonds maturities, i.e. as-

sets with different cash-flows, and there’s no other frictions than the demand shocks

from other preferred habitat investors. However, my paper introduces an additional

friction, which is the time-varying funding costs, to show that two assets with iden-

tical cash-flows can earn different expected excess return, which implies profitability

yet risk for a cross-market arbitrage trade. The two assets with identical cash-flows

are two defaultable bonds, one represents corporate bond, while the other repre-

sents a synthetic corporate bond position created by writing a CDS protection and

default-free lending.2 Trading corporate bonds through repo and reverse-repo gen-

erates additional funding costs that are sensitive to default intensity of the bonds.

Therefore I model the funding costs as functions of default intensity. Although the

assumption on funding costs are not fully endogenized, a clear motivation in Ap-

pendix 1.A along with empirical findings by Gorton and Metrick (2010) justify this

assumption, which is further supported by a recent paper by Mitchell and Pulvino

(2011), which illustrates the consequence of funding liquidity failure on arbitrage

activities from practitioners’ perspectives.

1See Gromb and Vayanos (2010) for details.
2The equivalence of synthetic corporate bond and writing CDS plus lending will be illustrated

in the next section.
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I apply the model’s implications on CDS basis trading, which turned out to be

a risky arbitrage activity in the 2007/08 crisis. Credit default swap (CDS) is an

OTC contract in which one party pays the other party a periodical fee (the CDS

premium) for the protection against credit events of an underlying bond, in which

case the protection seller pays the protection buyer for the loss from the underlying

bond. The CDS market offers hedgers and speculators to trade credit risks in a

relatively easy way. It is a fast growing market with vast market volume. The ex-

act way to trade CDS has experienced some significant changes in the recent years

following hot debates over the role it plays in the 2007/08 financial crisis. In the

past, the two parties of a CDS trade agree on the CDS premium that makes the

CDS contract having zero value at origination. Then as conditions change in the

life of this contract, it has a marked-to-market value that is not zero. Following the

implementation of the so-called CDS Big-Bang regulations on the North American

markets in April 2009, the CDS premia are fixed at either 100bps or 500bps, and the

two parties exchange an amount of cash at origination to reflect the true value of

the contract. For instance, if the reasonable CDS premium should be 200bps, then

the protection buyer pays the protection writer a certain amount of money at the

beginning, and then pays CDS premium at 100bps each period. This is certainly a

change in order to make the market more standardized and more liquid, however,

the CDS market is still very opaque and illiquid.

Theoretical papers such as Duffie (1999) and Hull and White (2000) show the parity

between CDS price and credit spread under the no-arbitrage condition, i.e. investors

who hold a defaultable bond and short a CDS (buy protection) on this bond is effec-

tively holding a default-free bond and thus should earn the risk free return. In other

words, the CDS basis, which is CDS premium minus the credit spread, should be

zero if basis trading earns only risk free return. Empirical works including Hull, et.

al.(2004), Blanco, et. al.(2005) and Zhu (2006) using relatively early data support

this zero basis hypothesis.

However, practitioners observe positive or negative basis at times and many in-

vestors engage in basis trading. Buying a bond and CDS protection is known as

negative basis trading, while shorting a bond and writing CDS protection is called

positive basis trading. Meanwhile, recent work by Garleanu and Pedersen (2011)

and Fontana (2010) document large negative basis persisted from the summer of

2007 to early 2009. Figure 1.13 shows that during the 2007/08 crisis the CDS

3All figures and tables for this chapter are listed in Appendix 1.C.
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basis become very negative for a long period, which contradicts text-book arbitrage

argument, yet negative basis trading still lost money even at quite negative CDS

basis level. In this paper, I reveal the risky arbitrage nature of CDS basis trading in

closed-form and show the expected excess return of basis trading depends on market

frictions rather than the level of CDS basis.

To justify the deviation from the law of one price on the CDS and corporate bond

markets, Garleanu and Pedersen (2011) attribute two otherwise identical assets’ dif-

ferent exposures to risk factors to the different level of exogenous margin requirement

on the two markets. Empirical work by Fontana (2010) finds that funding costs vari-

ables are important in explaining CDS basis changes, while Bai and Collin-Dufresne

(2010) explain cross-sectional variations in CDS basis with funding liquidity risk,

counterparty risk and collateral quality. However, their result concerns only the

changes in CDS basis, which according to my model doesn’t determine the expected

excess return of basis trading in the presence of funding costs. My paper is also

related to a number of empirical works in explaining credit spread and CDS price

movements such as: Collin-Dufresne, et. al.(2001), Elton, et. al.(2001), Huang and

Huang (2003), Blanco, et. al.(2005), Tang and Yan (2007), and Ellul, et. al.(2009)

among others. A recent work of Giglio (2011) proposes a novel way of inferring

implied joint distribution of financial institution’s default risk from the CDS basis,

which shows the role of counterparty risk in widening CDS basis.

The next section introduces the model set-up before Section 1.3 and Section 1.4

solves the model under two cases and provides a number of results on the expected

excess return of basis trading and the term structure properties of credit spreads.

Empirical study is carried out in Section 1.5 to support theoretical results. Finally,

Section 1.6 concludes the paper.

1.2 The Model

1.2.1 The Markets

In a continuous time economy with a horizon from zero to infinity, there exists two

defaultable bond markets, named C and D respectively. On each market, there’s

a continuum of zero-coupon4 defaultable bonds with face value of 1 and time to

maturity τ , τ ∈ (0, T ]. Denote the time t prices of these bonds by P ct (τ) and P dt (τ)

respectively. When applying equilibrium results to explain real world phenomenon,

4The coupon rate is assumed to be zero so as to derive closed form solutions.
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I regard market C as the cash market, which corresponds to the corporate bond

market, and market D as the derivative market, which corresponds to the CDS

market plus default-free lending.5

Assume all bonds on the two markets are issued by the same entity, which has

an exogenous default time T ′. Upon default, for all bonds on the two markets, a

bond holder loses L fraction of a bond’s market value. To keep the model tractable,

I assume L is constant and the same across all bonds. The above specification en-

sures that a bond with time to maturity τ on market C has identical cash-flows as

the bond with time to maturity τ on market D.6

Assume the default intensity (instantaneous default probability) of the bond en-

tity is λ̃+ λt, the stochastic part λt follows the Ornstein-Uhlenbeck process7:

dλt = κλ(λ̄− λt)dt+ σλdBλ,t (1.1)

Where κλ, λ̄ and σλ are positive constants, and Bλ,t is a Brownian Motion. A

detailed description of stochastic default probability and doubly-stochastic default

time can be found in Duffie (2005).

Next, assume there’s a money market account that generates instantaneous return

at an exogenous short rate of rt, which also follows an Ornstein-Uhlenbeck process:

drt = κr(r̄ − rt)dt+ σrdBr,t (1.2)

As mentioned earlier, the real world implication of the model refers positions on

market C as the cash bond positions, and positions on market D as the deriva-

5The equivalence between CDS plus default-free lending and synthetic defaultable bond position
is given at the end of this section.

6Although price discrepancies between similar assets can arise from small cash-flow discrepancies,
e.g. difference contract specifications, this model only aims to derive price discrepancies between
assets with identical cash-flows under market frictions. This aim is in line with other limited
arbitrage models.

7Under the assumption that λt follows the Ornstein-Uhlenbeck process, it is possible to have
λt < 0. Adding a positive λ̃ to the default intensity reduces the chance of having negative default
intensity λ̃ + λt, but still cannot exclude negative default intensity completely. To avoid negative
default intensity, I assume that λt is mean-reverting with square-root diffusion term in Appendix
1.D., which shows that the model still has closed-form solution in the constant demand pressure case
and the main conclusion on the expected excess return of basis trading still stands. However, in the
stochastic demand pressure case, the model cannot be solved in closed-form under this alternative
assumption. Therefore, I still present the model under the simple Ornstein-Uhlenbeck assumption
for λt.
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tive (synthetic bond) positions created by CDS positions and default-free borrow-

ing/lending in practice. In early literature such as Duffie (1999), the equivalence

between buying defaultable bond and writing CDS plus default-free lending is best

illustrated using floating rate notes (FRN). For instance, the cash flow of a default-

able FRN is the same as the cash flow from writing CDS protection plus the cash

flow of a default-free FRN.

Without using FRNs, the equivalence still holds in the following way: in the absence

of default, the zero-coupon defaultable bond holder gets the face value of 1 dollar at

maturity, and upon default, gets the default-free present value of this 1 dollar but

loses L fraction of the bond’s pre-default market value; As for the synthetic default-

able bond position created by CDS and default-free lending, assume the CDS has

the same maturity as the defaultable bond and the CDS premium is paid up-front

so that unless there’s a default, there’s no cash-flow between the two parties except

at the origination of the contract. Also assume that in the default-free lending, the

lender lends the default-free present value of 1 dollar to the borrower, who pays back

the face value of 1 dollar at the maturity of the CDS, or the default-free present

value of 1 dollar at anytime before the maturity. Therefore, if there’s no default,

synthetic position’s total payoff at maturity is the 1 dollar from the default-free

lending at maturity. If there’s default, the CDS position pays a fraction L of the

defaultable bond’s pre-default market value, and the default-free lending position

retrieves the present value of the 1 dollar lent. So the synthetic position’s total

payoff is the default-free present value of 1 dollar minus L fraction of the bond’s

pre-default market value. Therefore, the cash-flow from the synthetic position is the

same as that of a defaultable bond, whether there’s default or not.

When applying model’s predictions to discuss real world phenomenon, define nega-

tive basis trading as buying cash bond C and selling derivative bond D. This corre-

sponds to buying corporate bond through borrowing and buying CDS protection in

practice. In the contrary, positive basis trading is defined as buying derivative bond

D and selling cash bond C. This corresponds to shorting corporate bond through

reverse repo and writing CDS protection.

1.2.2 The Agents and Demand Pressure

The economy consists of two types of agents: local investors and arbitrageurs. Lo-

cal investors are segmented into the two markets. Denote the cash market local

investors’ aggregate amount invested for maturity τ by zct (τ), and the derivative
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market local investors’ aggregate amount invested for maturity τ by zdt (τ). Local

investors can only invest in their own markets.

In reality, large excess demand or supply from local investors exist on both the

CDS market and the corporate bond market. Investors have different motives to

trade on the CDS or the corporate bond markets, so it is reasonable to assume they

are segmented.8 The excess supply of corporate bonds could come from regulation

restricted fire-sale of bonds by insurance companies or simply a flight to quality

during crisis. The excess demand for corporate bonds can come from large inflows

into bond market funds. On the other hand, excess demand or supply on the CDS

markets can come from the hedging demand from banks who hold bonds/loans or

those who gain exposure to default risk from other credit derivative market posi-

tions. Sometimes the local investors’ demand on the two markets can be exactly the

opposite. As documented by Mitchell and Pulvino (2011) and also in other prac-

titioners’ articles, some banks that hold corporate bonds and CDS protection on

these underlying bonds unwound their positions after the Lehman Collapse in order

to free up more cash. Their trades would have introduced negative zct and positive

zdt with the same absolute value in the model. In this scenario, the arbitrageurs face

exactly the opposite demand pressures from the two markets. A special case of my

model investigates this scenario in detail in the following sections.

There’s an infinite number of risk-averse arbitraguers that form a continuum with

measure 1 who can trade any amount on the two bond markets, and therefore ren-

ders the prices arbitrage free. At any time t, the continuum of arbitrageurs are born

in time t and die in t + dt, so arbitrageur’s utility is to trade off the instantaneous

mean and variance of their payoff. The arbitrageurs have zero wealth when they’re

born, i.e. an arbitrageur’s time t wealth Wt = 0. Denote the arbitrageur’s amount

invested in the cash market for maturity τ by xct(τ) and the amount invested in the

derivative market for maturity τ by xdt (τ).

Assume both markets have zero supply. At equilibrium, the arbitrageurs and local

investors clear both markets, i.e. xct(τ) + zct (τ) = 0 and xdt (τ) + zdt (τ) = 0.

A positive zit, i = c, d corresponds to local investors’ excess demand and suggests the

arbitrageurs have a pressure to sell in equilibrium. On the other hand, a negative

8Like in Vayanos and Vila (2009), it is a simplification to assume that local investors are seg-
mented, and to consider those who can trade on both markets as arbitrageurs.
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zit corresponds to local investors’ excess supply and the arbitrageurs have a pressure

to buy in equilibrium.

In general, assume the aggregate demand from local investors are linear functions

of a stochastic process zt:

zit(τ) = θ̄i(τ) + θi(τ)zt (1.3)

dzt = κz(z̄ − zt)dt+ σzdBz,t (1.4)

where i = c, d. θ̄i(τ) and θi(τ) are functions of τ . The sign of θ̄i(τ) and θi(τ) will

be specified later. So far there are three Brownian motions in the model, namely

Bλ,t, Br,t and Bz,t. To derive closed form solutions, assume they are independent.

The excess demand or supply from local investors faced by the arbitrageur is of-

ten called demand pressure. The presence of demand pressure has implications on

asset pricing because the arbitraguers, who provide liquidity by clearing the markets,

need to be compensated for the risk exposure they get by doing so. As summarized

by Gromb and Vayanos (2010), several kinds of demand pressure effects on treasury

bonds, futures and options markets have been studied.9 Without other frictions,

demand pressure alone doesn’t generate pricing discrepancies between assets with

identical cash-flows. My model introduce the time-varying funding costs described

in the next section as the source of friction that work together with demand pressure

to cause pricing discrepancies. The inclusion of this funding cost also distinguishes

my model from the above mentioned ones.

1.2.3 Funding Costs

In the real world, buying defaultable bonds through borrowing (using repo) and

short-selling through reverse-repo incurs funding costs in excess of the short rate. If

one buys defaultable bond through borrowing, she can only borrow at a rate higher

than rt. Similarly, if one shorts defaultable bond, she incurs short-selling cost.

The additional borrowing cost and short-selling cost are called funding costs in this

model. The presence of these funding costs represents a source of market friction.

Assume that the funding costs hit(τ), i = c, d, are exogenous linear functions of λt,

the stochastic part of default intensity:

hit(τ) = αi(τ)λt + δi(τ) i = c, d 0 < αi < L (1.5)

9By Vayanos and Villa (2009), Naranjo (2008), and Garleanu, et.al. (2009) respectively
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Appendix 1.A provides motivations for this assumption10 by solving for the op-

timal hair-cuts applied in repo and reverse-repo transactions. Given exogenous

interest rates, the cost of borrowing using the defaultable bond as collateral in a

repo transaction is shown to be increasing in the default intensity risk λt. This is

because the amount that can be borrowed using the bond as collateral is decreasing

in λt. Therefore, when λt is higher, the borrower has to borrow more at the un-

collateralized rate, and therefore incur more borrowing costs. The short-selling cost

is also shown to be increasing in λt. In a reverse-repo transaction, the short-seller

of the bond will be asked to put more cash collateral to borrow the bond for sale

when λt is higher because the bond is more risky which makes the short-seller more

likely to default on the obligation to return the bond. As a result, the short-seller

lends more at collateralized rate, less at uncollateralized rate, therefore earns less

interest from the proceeds of the short-selling (incurs more short-selling costs). The

above rationale is supported by empirical evidence found by Gorton and Metrick

(2010) that the repo hair-cut is increasing in the riskiness of collaterals. Mitchell

and Pulvino (2011) also justify the above assumption from a practitioner’s perspec-

tive. This funding cost models both the borrowing cost and short-selling cost, so it

reduces arbitrageur’s wealth regardless of the direction of her trades.

When making the analogy between derivative market D and the CDS market, if

trading on the CDS market is frictionless, then αd(τ) and δd(τ) can be set as ze-

ros. However, although the CDS market used to have extremely low funding costs

due to its low margin requirement, it is not frictionless. During the 2007/08 crisis,

counterparty risk in CDS contract led to the raise in margin requirement on the

CDS market. Counterparty risk refers to the possibility that protection writers may

default on their obligation to pay the buyers upon the default of the underlying,

or the possibility that protection buyers default on their obligation to pay the CDS

premium. CDS protection writers were asked to put more collaterals than before,

while protection buyers were asked to pay CDS premium up-front. These changes

made CDS having comparable funding costs as trading corporate bonds. An alter-

native way for CDS protection writers to provide collateral that was widely used in

practice is for them to buy a CDS on their own names for the protection buyer from

a third party. In this way, if the CDS writer defaults, the buyer can still get paid by

the third party. Therefore, the CDS protection writer incurs additional periodical

cost that equals to the CDS premium on themselves. If the CDS writer’s default

10The above specifications imply symmetric borrowing and short-selling costs. The model can
be easily adapted to include asymmetric borrowing cost and short-selling costs.
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can only be triggered by the underlying’s default, then this additional cost should

be increasing in the underlying’s default intensity. So for the derivative market D,

it’s also reasonable to assume funding costs as an increasing function of λt.

1.2.4 The Arbitrageurs’ Optimization Problem

An arbitrageur’s optimization problem is:

max
xct ,x

d
t

[Et(dWt)−
γ

2
V art(dWt)] (1.6)

dWt = [Wt −
∫ T

0
xct(τ)dτ −

∫ T

0
xdt (τ)dτ ]rtdt

+

∫ T

0
xct(τ)[

dP ct (τ)

P ct (τ)
− LdNt]dτ +

∫ T

0
xdt (τ)[

dP dt (τ)

P dt (τ)
− LdNt]dτ

−
∫ T

0
|xct(τ)|hct(τ)dτdt−

∫ T

0
|xdt (τ)|hdt (τ)dτdt (1.7)

The arbitrageur trades off instantaneous expected payoff and variance of payoff. In

the above dynamic budget constraint, Wt is the representative arbitrageur’s wealth

at time t and is assumed to be zero. γ is her risk aversion coefficient. Ignoring

τ , xct is the amount she invests into cash bond C and xdt is the amount she in-

vests into derivative bond D. The first term on the right hand side of the dynamic

budget constraint gives the amount earned by her money market account. The ar-

bitrageur’s wealth is also affected by changes in the cash and derivative bond prices,

as well as jumps upon default. Additionally, since the arbitrageur is born with zero

wealth, she can only buy through borrowing or sell through short-selling. There-

fore, trading on the cash and derivative markets incurs funding cost at the rate of

hct(τ) and hdt (τ). These costs reduce arbitrageur’s wealth regardless of the direction

of her trades, so the costs are multiplied by the absolute value of arbitrageur’s trade.

Before presenting the equilibrium results, I first derive the arbitrageur’s F.O.C.s

so as to provide intuition and definition that facilitate the discussions in latter parts

of this section. I then solve the equilibrium bond prices in closed form for two cases

separately. Under each case, the closed form solutions clearly reveal the sign and

size of the expected excess return of basis trading under market frictions, and also

offer new properties of credit spreads.
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1.2.5 The First Order Conditions

Lemma 1.1. Ignoring τ where it doesn’t cause confusion, the Arbitrageur’s F.O.C.s

are:

µct − rt − hct
∂|xct |
∂xct

− L(λ̃+ λt) = LΦJ,t +
∑

j∈{λ,r,z}
σj

1

P ct

∂P ct
∂j

Φj,t (1.8)

µdt − rt − hdt
∂|xdt |
∂xdt

− L(λ̃+ λt) = LΦJ,t +
∑

j∈{λ,r,z}
σj

1

P dt

∂P dt
∂j

Φj,t (1.9)

where µct and µdt are the expected returns of bond C and D conditional on no default,11

and

ΦJ,t = γL

∫ T

0
[xct(τ) + xdt (τ)]dτ(λ̃+ λt) (1.10)

Φj,t = γσj

∫ T

0
[xct(τ)

1

P ct

∂P ct
∂j

+ xdt (τ)
1

P dt

∂P dt
∂j

]dτ (1.11)

are the market prices of risks, j = λ, r, z.

Proof. see Appendix 1.B.

The left hand side of the F.O.C.s is the instantaneous expected excess return, here-

after EER, and the right hand side is the risk premium. The EER is the expected

return of a bond in excess of the short rate and the funding cost. The EER equals

the risk premium which is given by the exposure to risk times the market price of

risk. By construction, bond C and bond D have the same exposure to the jump

risk of default, which carries market price of risk ΦJ,t. They also have exposures to

the other 3 risk factors, namely the default intensity risk factor λt, which carries

market price of risk Φλ,t, the short rate risk factor rt, which carries market price of

risk Φr,t and the demand shock risk factor zt, which carries market price of risk Φz,t.

The magnitudes of these exposures depend on equilibrium terms 1
P it

∂P it
∂j , i = c, d,

j = λ, r, z.

Subtracting the first F.O.C. from the second one gives the total expected excess

return of the so-called negative basis trade. In contrary, subtracting the second

F.O.C. from the first one gives the expected excess return of positive basis trade.

Formally, I make the following definition.

Definition 1.1. Negative basis trading (nbt) is defined as buying bond C and sell-

11For definition of µct and µdt , see the Proof of Lemma 1 in Appendix B
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ing bond D for the same time-to-maturity, which corresponds to buying corporate

bond through borrowing and buying CDS protection in the real world; Positive basis

trading (pbt) is defined as selling bond C and buying bond D for the same time-to-

maturity, which corresponds to shorting corporate bond and writing CDS protection

plus lending in the real world.

EERnbt =
∑

j∈{λ,r,z}
σj(

1

P ct

∂P ct
∂j
− 1

P dt

∂P dt
∂j

)Φj,t (1.12)

EERpbt =
∑

j∈{λ,r,z}
σj(

1

P dt

∂P dt
∂j
− 1

P ct

∂P ct
∂j

)Φj,t (1.13)

Based on the F.O.C.s, equilibrium results are solved using the market clearing con-

dition. On each market, the optimally derived quantities of the arbitrageurs plus

those from the local investors equals zero. To solve the model in closed-form, I make

further assumptions on the local investors demand and derive equilibrium results in

the following two cases.

1.3 Equilibrium Results 1: Under Constant Demand Pressure

In the first case, I assume that the local investors have constant demand on the two

markets. Recall the specification for the local investors’ demand zit(τ) in Equation

(1.3), this assumption implies θi(τ) = 0 and zit(τ) = θ̄i(τ) = zi(τ), i = c, d. As-

suming local investors having constant demand removes the demand shock factor

zt from the model, I therefore conjecture that the bond prices to take the following

form:

P ct (τ) = e−[Acλ(τ)λt+Acr(τ)rt+Cc(τ)] (1.14)

P dt (τ) = e−[Adλ(τ)λt+Adr(τ)rt+Cd(τ)] (1.15)

where Aij(τ) and Ci(τ), i = c, d, j = λ, r, are functions of τ . To solve for the equi-

librium, take the above conjectured prices into the arbitrageurs F.O.C.s in Equation

(1.8) (1.9) and replace xit(τ) with −zi(τ) to reflect the market clearing condition in

the equilibrium: xit(τ) + zi(τ) = 0, i = c, d.
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1.3.1 Solutions

Lemma 1.2. The Aij(τ), i = c, d, j = λ, r, z, in the conjectured price functions are

solved as:

Acλ(τ) = {−αc(τ)
|zc(τ)|
zc(τ)

+ L− γL2
∫ T

0
[zc(τ) + zd(τ)]dτ}1− e−κλτ

κλ

Adλ(τ) = {−αd(τ)
|zd(τ)|
zd(τ)

+ L− γL2
∫ T

0
[zc(τ) + zd(τ)]dτ}1− e−κλτ

κλ

Acr(τ) =
1− e−κrτ

κr

Adr(τ) =
1− e−κrτ

κr
(1.16)

Proof. see Appendix 1.B.

Therefore, Acr(τ) = Adr(τ), prices on the two markets have the same coefficients

for the short rate risk. As for the coefficient for the default intensity risk, if local

investors’ demand on the two markets are in opposite directions, i.e. sign[zc(τ)] =

−sign[zd(τ)], then Acλ(τ) 6= Adλ(τ), the prices on the two markets have different co-

efficients for the default intensity risk λt, as long as at least one market has funding

cost that has non-zero sensitivity to the default intensity risk, i.e. αc(τ) 6= 0 or

αd(τ) 6= 0; if local investors’ demand on the two markets are in the same direction,

then prices on the two markets have different coefficients for the default intensity

risk if funding costs on the two markets have different sensitivity to the default

intensity risk, i.e. αc(τ) 6= αd(τ).

The prices’ sensitivities to risk factors have important implications on the discussion

of basis trading returns, which now can be derived by taking the solutions of Aij(τ)

into Equation (1.12) (1.13).

1.3.2 The Expected Excess Returns of Basis Trading

Although conventional wisdom suggests market frictions such as funding cost may

cause assets with identical cash-flows to have different prices, it is not clear whether

arbitrageurs are expected to earn positive excess return if they try to take advantage

from the price discrepancies. However, in this model, it is possible to derive the

expected excess return of basis trading in closed form and analyze its sign and size

in the following way:
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Proposition 1.1. The expected excess returns of basis trading are:

EERnbt = σλ[αc(τ)
|zc(τ)|
zc(τ)

− αd(τ)
|zd(τ)|
zd(τ)

]
1− e−κλτ

κλ
Φλ,t (1.17)

EERpbt = −EERnbt (1.18)

Φλ,t = γσλ

∫ T

0
[zc(τ)Acλ(τ) + zd(τ)Adλ(τ)]dτ (1.19)

Proof. see Appendix 1.B.

Corollary 1.1. The sign of the expected excess return of basis trading has the fol-

lowing properties:

• Basis trading earns non-zero expected excess return, except for the follow-

ing three scenarios, : 1) αc(τ) = αd(τ) = 0; 2) αc(τ) = αd(τ) 6= 0 and

sign[zc(τ)] = sign[zd(τ)]; and 3) zc(τ) = zd(τ) = 0.

• When local investors are selling on both markets, or only buying moderate

amount on both markets, basis trading is expected to earn positive excess return

by buying on the market whose funding cost has higher sensitivity to default

intensity risk and selling on the other market.

• When local investors are buying in huge amount on both markets such that

prices have positive sensitivities to default intensity risk, basis trading is prof-

itable by buying on the market whose funding cost is less sensitive to default

intensity risk and selling on the other market.

Proof. see Appendix 1.B.

The first point suggests that basis trading is a risky arbitrage that earns non-zero

EER only when both funding cost friction and market liquidity friction are present.

Under scenario 1), funding costs on the two markets have no sensitivities to λt; un-

der scenario 2), they have the same sensitivities and arbitrageur takes the same side

of trade on the two markets, then the two assets carry the same exposures to the

default intensity risk factor, which results in them carrying the same risk premium.

Therefore, under both scenarios 1) and 2), buying on one market and selling on the

other results in zero aggregate exposure to risk factors and basis trading earns zero

EER. Under scenario 3), even if assets on the two markets may have different risk

exposures to default intensity risk, the market prices of risks are all zeros because

the arbitrageur doesn’t have to provide liquidity in equilibrium so all EERs should

be zero. Other than in the above mentioned three scenarios, basis trading is ex-

pected to earn non-zero return in excess of the funding costs, i.e. basis trading is
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expected to be profitable.

Intuitively, basis trading can earn positive expected excess return, i.e. make profit

after deducting funding costs, because the presence of demand pressure results in

arbitrageurs requiring risk premium for the positions they take. The time-varying

funding costs which are correlated with the underlying risk (default intensity risk)

on the two markets cause the two assets to have different risk exposures. The ag-

gregate risk exposure of buying on one market and selling the same quantity on the

other market is thus non-zero, and therefore earns non-zero expected excess return.

However, in reality, one can do basis trading in two ways: Buying on market C

while selling on market D, or buying on market D while selling on market C. The

second and third points in Corollary 1.1 concern the sign of basis trading EERs.

When local investors on the two markets are all selling, bonds on both markets carry

positive risk premia which compensates the arbitrageurs who are buying to provide

liquidity. The arbitageur is exposed to more default intensity risk on the market

with higher funding cost sensitivity to λt, therefore earns more default intensity risk

premium on this market. So buying bond on this market and selling on the other

generates positive expected excess return. For instance, if there’s funding cost on

corporate bond market but not on CDS market, i.e. αc > αd = 0, then if local

investors are selling on both markets, the model predicts negative basis trading to

be profitable even after deducting the funding costs. In the other case, when lo-

cal investors on the two markets are all buying moderate amount, bonds on both

markets carry negative risk premium. The market whose funding cost has higher

sensitivity to λt has lower sensitivity to the default intensity risk, therefore earns

less negative risk premium. So buying bond on this market and selling on the other

is expected to be profitable.

However, if local investors are buying too much on both markets, bonds also carry

negative default intensity risk premium but the market whose funding cost has lower

sensitivity to λt now has lower sensitivity to the default intensity risk, therefore earns

less negative risk premium. So buying bond on this market and selling on the other

is expected to be profitable. The difference here with the moderately positive local

investor demand case is that when local investors are buying too much, bond prices

become increasing in default intensity. This is true due to the assumption that bond

holders retain (1 − L) fraction of bond’s market value upon default. The compen-

sation to arbitrageur for providing liquidity in this case is for price to be increasing
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in default intensity so that she’s expected to gain more upon default when default

intensity is higher.

Corollary 1.2. The size of the risk exposure and expected excess return of basis

trading has the following properties:

• When sign(zc) = sign(zd), the size of basis trading’s risk exposure is increas-

ing in |αc − αd|.

• When sign(zc) = −sign(zd), the size of basis trading’s risk exposure is in-

creasing in (αc + αd).

• Size of basis trading EER is increasing in the volatility of default intensity.

Proof. see Appendix 1.B.

As mentioned above, the net exposure to default intensity risk depends on the

funding costs’ sensitivities to λt. When the local demands on the two markets

are in the same direction, the net exposure is determined by the difference of αc

and αd. But when the local investors’ demand are in opposite directions, the net

exposure depends on the sum of αc and αd. The size of EER of basis trading is

also increasing in σλ, which is not surprising as σλ is positively priced in both the

basis trading’s absolute net exposure to default intensity risk and the market price

of default intensity risk.

1.3.3 Implications on Credit Spread Term Structure and the Predictabil-

ity of Credit Spread

Earlier empirical works such as Bedendo et.al.(2007) found that the slope of the

credit spread term structure positively predicts future changes in credit spread. My

model supports this result when friction is moderate, but when there’s high level of

market friction, my model suggests that the positive predictability become negative.

To see this point in details, I first make the following definitions:

Definition 1.2. Credit spread is the difference between the yield to maturity of a

defaultable bond and the yield to maturity of a default-free bond of the same maturity.

Denote yields to maturity of the defaultable bond with time to maturity τ by Y c
t (τ),

and the credit spread by CSct (τ).

Y c
t (τ) = − logP

c
t (τ)

τ
(1.20)
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There’s no default-free bond market in my model, but it is safe to conjecture that

a frictionless default-free bond market has default-free bond prices: DFt(τ) =

e−[Ar(τ)rt+Cdf (τ)],12 so that the yield to maturity of default-free bond can be de-

noted by Y df
t (τ) = − logDFt(τ)/τ . Because the defaultable bond and default-free

bond have the same coefficient to short rate rt, therefore the credit spread term

structure CSt(τ) only has one time-varying risk factor λt.

CSt(τ) = Yt(τ)− Y df
t (τ) =

Acλ(τ)

τ
λt +

Cc(τ)

τ
− Cdf (τ)

τ
(1.21)

where Cc(τ) and Cdf (τ) are functions of τ that do not matter in deriving the fol-

lowing results.

Bedendo et.al.(2007) run the following regression for credit spread of a certain ma-

turity τ and found the coefficient estimate ψ to be significantly positive, which

suggests the slope of credit spread term structure positively predicts future credit

spread changes.

CSt+∆τ (τ −∆τ)− CSt(τ) = ψ0 + ψ[CSt(τ)− CSt(τ −∆τ)] + εt+∆τ (1.22)

According to my model, the coefficient ψ is calculated in closed-form and analyzed

in the following way:

Proposition 1.2. When ∆τ → 0, the regression coefficient ψ(τ) = F (τ)
1−F (τ)e−κλτ

,

where F (τ) = −αc(τ) |z
c(τ)|
zc(τ) + L− γL2

∫ T
0 [zc(τ) + zd(τ)]dτ

• When there’s no friction, i.e. αc(τ) = 0 and zc(τ) = zd(τ) = 0, then ψ > 0.

The slope of credit spread term structure positively predicts future credit spread

changes.

• When local investors are selling large quantities and funding cost is very sen-

sitive to λt, i.e. zc(τ) << 0, αc(τ) >> 0, then ψ < 0. The slope of credit

spread term structure negatively predicts future credit spread changes.

• ψ < 0 is more likely to happen to bonds with short time-to-maturities.

Proof. see Appendix 1.B.

Under standard set-up without the funding cost and demand pressure frictions, the

condition for ψ > 0 simplifies to L < eκλτ , which is always satisfied as L < 1 by as-

12For example, this can be derived from Vayanos and Vila (2009) by assuming arbitrageurs in
their model face no demand pressures from local investors.
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sumption. Therefore, the credit spread slope should always positively predict future

credit spread changes, which has been documented by Bedendo et.al.(2007) among

others. But new features in this model suggests that market frictions can distort

this predictability. The coefficient ψ can be either positive or negative depending on

market conditions. When local investors are selling large quantities on the corporate

bond market and funding cost is very sensitive to default intensity risk, the credit

spread slope may negatively predict future credit spread changes. In the empirical

section, this point is supported by data during the crisis in 2008.

Intuitively, similar to the argument of the expectation hypothesis of the interest

rate term structure, conventional thinking believes credit spread term structure

contains information of the expectation of future credit spread changes, i.e. positive

credit spread term structure slope implies that future default probability is likely to

increase, hence credit spread will increase. However, in the presence of large market

frictions, corporate bond prices reflect not only credit risk but also funding liquidity

and market liquidity risk, so credit spread term structure becomes less informative

about future credit spread changes.

To be more specific, the negative predictability of credit spread term structure slope

on future credit spread changes can be explained in the following way: if market

frictions are high and local bond market investors are selling, bonds with longer

time-to-maturity may become less favorable to use as collateral for borrowing due

to its higher sensitivity to risk factors. Therefore, although all bonds will be un-

dervalued, bonds with longer time-to-maturity will have higher credit spread (lower

price) than bonds with shorter time-to-maturity even if they carry the same default

risk information. The credit spread term structure is thus upward sloping. Since

the underpricing of bonds are caused by market frictions rather than default risk

factor fluctuation, the credit spread in the future is likely to decrease as bond prices

finally return to their fundamental level. Then empirical study can observe pos-

itive credit spread term structure followed by negative credit spread changes, i.e.

negative predictability.

1.4 Equilibrium Results 2: Under Off-setting Stochastic Demand

Pressure

Next, I relax the constant demand pressure assumption to allow local investors

to have stochastic demand. To keep the model linear and thus allow closed form

solutions, I make an additional assumption that the demand from local investors on
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the cash and derivative markets are exactly the opposite, i.e. −zdt (τ) = zct (τ). This

is equivalent to assuming:

zct (τ) = θ̄(τ) + θ(τ)zt (1.23)

zdt (τ) = −θ̄(τ)− θ(τ)zt (1.24)

The demand function is price in-elastic. If I assume the two demand pressures to be

exactly the opposite and price-elastic, the equilibrium prices can still be solved in

closed-form, but are very complicated that makes the discussions on assets returns

unclear, so results for that case are not presented.

1.4.1 Solutions

Given the above assumptions on local investors’ demand, the model has closed-

form solutions for the following two scenarios: 1) θ̄(τ) << 0 and θ(τ) < 0, and 2)

θ̄(τ) >> 0 and θ(τ) > 0. I conjecture that prices are exponential affine in the risk

factors:

P ct (τ) = e−[Acλ(τ)λt+Acr(τ)rt+Acz(τ)zt+Cc(τ)] (1.25)

P dt (τ) = e−[Adλ(τ)λt+Adr(τ)rt+Adz(τ)zt+Cd(τ)] (1.26)

and solve for the coefficients for the two scenarios separately in the following Lem-

mas.

Lemma 1.3. For very negative θ̄(τ) and negative θ(τ):

Acλ(τ) = [αc(τ) + L]
1− e−κλτ

κλ

Adλ(τ) = [−αd(τ) + L]
1− e−κλτ

κλ

Acr(τ) =
1− e−κrτ

κr

Adr(τ) =
1− e−κrτ

κr

Acz(τ) = −γσ2
λA

c
λ(τ)

∫ T

0
θ(τ)[αc(τ) + αd(τ)]

1− e−κλτ

κλ
dτ

1− e−κ∗zτ

κ∗z

Adz(τ) = −γσ2
λA

d
λ(τ)

∫ T

0
θ(τ)[αc(τ) + αd(τ)]

1− e−κλτ

κλ
dτ

1− e−κ∗zτ

κ∗z
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where κ∗z is the unique solution to:

κ∗z = κz + γσ2
z

∫ T

0
θ(τ)[Acz(τ)−Adz(τ)]dτ (1.27)

Proof. see Appendix 1.B.

Lemma 1.4. For very positive θ̄(τ), positive θ(τ) and very positive κz:

Acλ(τ) = [−αc(τ) + L]
1− e−κλτ

κλ

Adλ(τ) = [αd(τ) + L]
1− e−κλτ

κλ

Acr(τ) =
1− e−κrτ

κr

Adr(τ) =
1− e−κrτ

κr

Acz(τ) = γσ2
λA

c
λ(τ)

∫ T

0
θ(τ)[αc(τ) + αd(τ)]

1− e−κλτ

κλ
dτ

1− e−κ∗zτ

κ∗z

Adz(τ) = γσ2
λA

d
λ(τ)

∫ T

0
θ(τ)[αc(τ) + αd(τ)]

1− e−κλτ

κλ
dτ

1− e−κ∗zτ

κ∗z

where κ∗z is the unique solution to:

κ∗z = κz + γσ2
z

∫ T

0
θ(τ)[Acz(τ)−Adz(τ)]dτ (1.28)

Proof. see Appendix 1.B.

Once again, prices on the two markets have the same coefficients for the short

rate. Now, local investors’ demand on the two markets are always in the opposite

directions, so the prices on the two markets have different coefficients for λt and zt

even if the funding costs on the two markets have the same sensitivities to λt.

1.4.2 The Expected Excess Returns of Basis Trading and Corporate

Bond

The calculation of expected excess return is complicated by the inclusion of zt, as

the EER of basis trading has exposure to two sources of risk premia now.

Proposition 1.3. Under the two cases described in Lemma 1.3 and Lemma 1.4,

the expected excess returns of basis trading are:

EERnbt = −γσ2
λG

λ(τ)

∫ T

0
Gλ(τ)zct (τ)dτ − γσ2

zG
z(τ)

∫ T

0
Gz(τ)zct (τ)dτ
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EERpbt = −EERnbt (1.29)

Gλ(τ) = [αc(τ) + αd(τ)]
1− e−κλτ

κλ

Gz(τ) = −γσ2
λG

λ(τ)

∫ T

0
Gλ(τ)θ(τ)dτ

1− e−κ∗zτ

κ∗z
(1.30)

Proof. see Appendix 1.B.

Corollary 1.3. Assume on each market, bonds of all time-to-maturities have the

same funding cost sensitivity to default intensity risk, i.e. αi(τ) = αi. Then, the sign

and size of the expected excess return of basis trading has the following properties:

• EER of basis trading is non-zero unless αc = αd = 0.

• sign(EERnbt) = −sign(EERpbt) = −sign(zct ) The market on which local

investors are selling has higher EER, taking long position on this market and

short position on the other market is expected to earn positive return in excess

of funding costs.

• The size of expected excess return of basis trading is increasing in αi, σj and

|zct |.

Proof. see Appendix 1.B.

Under the assumption about local investors’ demand in this case, the arbitrageur

is always taking opposite positions on the two markets. If the funding costs are

constants that have no sensitivities to risk factors such as λt, the two assets carry

exactly the same exposure to risk factors. Then the arbitrageur is left with zero

aggregate exposure to any risk factors, therefore all market prices of risk will be

zero. In that case, bonds on both markets and basis trading will all earn zero risk

premia and hence zero EER. But as long as at least one funding cost has sensitivity

to the default intensity risk factor λt, the two assets carry different exposures to

default intensity risk and also different exposures to the demand shock risk. The

arbitrageur captures non-zero aggregate exposures to these two risks, hence market

prices of risks for these two factors are non-zero. Therefore, the two assets carry

different level of risk premium and basis trading is expected to be profitable in ex-

cess of funding costs.

Moreover, the sign of basis trading EER is completely determined by the sign of

local investors’s demand on the cash market. Since the non-zero condition of basis

trading EER is completely determined by the funding costs’ sensitivities to default
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intensity risk, Corollary 3a suggests that the profitability of basis trading is com-

pletely determined by the properties of the two sources of limits to arbitrage. In

the real-world, practitioners tend to see positive CDS basis as signal to do posi-

tive CDS basis trading and vice versa, but results here suggests that the timing

and directional signals of CDS basis trading are current market frictions. The CDS

basis which characterizes price discrepancy between the two markets is an endoge-

nous term itself. Empirical proxies of the interaction of funding cost friction and

demand pressure friction should be more reliable in predicting CDS basis trading

excess returns than the CDS basis.

Corollary 1.4. Assume that the funding costs sensitivities to default intensity risk

are less than L, i.e. 0 < αi < L, i = c, d, then the expected excess return of bond is

positive no matter if local investors are buying or selling.

• When zct < 0: EERc > EERd > 0

• When zct > 0: EERd > EERc > 0

Proof. see Appendix 1.B.

The result that if zit > 0 then sign(EERi) = sign(zit) implies that the arbitrageur is

providing liquidity at a loss, which is against conventional wisdom. The usual con-

clusion on the pricing implication of demand shocks is: when there’s excess demand,

those who provide the liquidity will only agree to sell at a high price in equilibrium

so as to earn something extra, which is the compensation for providing liquidity.

Therefore, the instantaneous expected excess return should have the opposite sign

of the local investors demand. However, in the presence of the other market, the

arbitrageur in this model is willing to provide liquidity at a loss on the market she

shorts because she can earn more on the other market. By doing so, the arbitrageur

doesn’t correct but instead magnifies the price deviation and creates a bubble.

1.4.3 Implications on Basis

Definition 1.3. Basis is the difference between the yield to maturity of bond on

market D minus the yield to maturity of bond on market C with the same time to

maturity.

Basis(τ) = [− logP
d
t (τ)

τ
]− [− logP

c
t (τ)

τ
]

= [
Adλ(τ)

τ
− Acλ(τ)

τ
]λt + [

Adz(τ)

τ
− Acz(τ)

τ
]zt +

Cd(τ)

τ
− Cc(τ)

τ
(1.31)
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Under conventional wisdom, negative Basis implies doing negative basis trading is

profitable while positive Basis implies doing positive basis trading is profitable. But

according to the model, the value of Basis is not very meaningful in the presence

of funding costs, as it is only an observed endogenous quantity. As shown in the

previous subsection, the sign of basis trading EER is solely determined by the sign

of local investors’ demand. Deriving the value of Basis is very complicated, as it

depends on the values of λt, zt, τ and the solution of Ci(τ). However, the sensitivities

of Basis to the risk factors can be derived clearly:

Proposition 1.4. The sensitivities of Basis to risk factors are:

• When zct < 0: ∂Basis
∂λt

< 0, and ∂Basis
∂zt

> 0.

• When zct > 0: ∂Basis
∂λt

> 0, and ∂Basis
∂zt

> 0.

Proof. see Appendix 1.B.

For zct < 0, which corresponds to the case when local investors are selling, corporate

bond are more sensitive to default intensity risk than CDS. Therefore, increase of

default intensity increases credit spread more than it increases CDS price, thus

causing basis, which is CDS price minus credit spread, to decrease, vice versa. The

result for the comparative statics for zct follows the same logic.

1.4.4 Implications on Term Structure

The coefficients for λt and zt in the bond prices are increasing in the bond’s time to

maturity τ . Assume the funding cost’s sensitivity to λt is the same across τ , then

basis trading on bonds with longer time to maturity has larger net exposure to the

risk factors than basis trading on bonds with shorter time to maturity. Therefore,

the size of basis trading EER is increasing in τ . Together with the properties in

Corollary 1.3 regarding the sign of basis trading EER, I derive the following results:

Proposition 1.5. Assume αc(τ) = αc and αd(τ) = αd for τ ∈ (0, T ], then the term

structures of basis trading expected excess returns are:

• When zct < 0: ∂EERnbt

∂τ > 0, and ∂EERpbt

∂τ < 0. When local investors are selling

corporate bonds, negative basis trading using longer maturity bonds have higher

EER, while positive basis trading using shorter maturity bonds have higher

EER.

• When zct > 0: ∂EERnbt

∂τ < 0, and ∂EERpbt

∂τ > 0. When local investors are

buying corporate bonds, negative basis trading using shorter maturity bonds
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have higher EER, while positive basis trading using longer maturity bonds have

higher EER.

• The absolute value of basis trading EER, |EERnbt| or |EERpbt|, is increasing

in the time to maturity of basis trading instruments.

Proof. see Appendix 1.B.

As in the previous case, Yt(τ) denotes the time t yield to maturity of a corporate

bond with time to maturity τ . The collection of Yt(τ) gives the yield curve of

corporate bonds. As shown below, the slope of corporate bond yield curve ∂Yt(τ)/∂τ

is decreasing in λt, but the degree of the decreasing relationship depends on local

investors’ demand.

Proposition 1.6. Assume 0 < αi(τ) < L, i = c, d, then the sensitivity of yield

curve slope to default intensity risk is:

∂2Yt(τ)

∂τ∂λt
= [

Acλ(τ)

τ
]′ < 0 (1.32)

.

• The slope of corporate bond yield curve is decreasing in λt.

• The decreasing effect is stronger when zct < 0 than when zct > 0.

Proof. see Appendix 1.B.

The result that the slope of corporate bond yield curve is decreasing in λt is not

surprising as λt is mean-reverting. But the level of the yield curve is higher in

the case of zct < 0, which corresponds to local investors selling, than in the case

of zct > 0, which corresponds to local investors buying. So the decreasing effect is

stronger when zct < 0.

1.5 Empirical Study

I focus on data between 2007 and 2009, a period which has not only persistently

negative CDS basis, but also high funding costs and poor market liquidity. After

describing the data and key variables, I run a set of regressions to show that the

co-existence of frictions in funding cost and market liquidity turns basis trading

into a risky arbitrage. Then, I show that the comparative statics results of the size

and risk of realized excess returns of basis trading as consistent with the model.

Moreover, I test the predictability of credit spread term structure on future credit

spread changes to support the predictions made in earlier sections.
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1.5.1 Data and Key Variables

I collect a number of CDS and corporate bond indices data from Markit, indi-

vidual CDS data from Bloomberg and corporate bond data from TRACE. I also

download several kinds of interest rates data from the Federal Reserve web-site and

Fama-French three factor data from Kenneth French’s web-site. For the majority

of the data collected, daily observation starts as early as 01/01/2007 and ends at

31/12/2009.

A number of theoretical results to be tested concerns the expected excess return

of basis trading. I use the realized excess return (hereafter RER) of basis trading

between time t and t+k to proxy the expected excess return. Since my main results

are on the instantaneous expected excess returns, I mainly focus on k =1 day and 1

week. The CDS basis was persistently negative for a large part of my sample period,

which saw many practitioners engaged in negative basis trading. So I focus mainly

on the RER of negative basis trading. The realized excess return of doing negative

basis trading between time t and t + k is calculated as the return from holding

a corporate bond index minus the return from holding a CDS index, and minus

net funding costs. To be specific, I calculate the realized excess returns (RERs) of

negative basis trading as:

RERnbtt,t+k = ReturnCBondt,t+k −ReturnCDSt,t+k −NetFundingCostt,t+k (1.33)

where ReturnCBondt,t+k is the realized return of a value-weighted corporate bond index

between time t and t + k. I first collect the 1-10yrs Markit iBoxx USD Domestic

Corporates AAA, AA, A and BBB indices13, and then create the value-weighted

corporate bond index using these 4 indices. Realized return of the corporate bond

index is calculated as the change of the corporate bond index value between time t

and t + k divided by the index value at time t. ReturnCDSt,t+k is the realized return

of the Markit CDX North America Investment Grade Excess Return Index, whose

components have maturities of 5 years.

In the above calculation, NetFundingCostt,t+k is the funding cost of corporate

bond minus the funding cost of writing CDS.14 The funding costs are difficult to

13average maturity around 5-year
14The net funding cost is thus equivalent to the funding cost of buying corporate bond plus the

funding cost of buying CDS protection. But as explained in the next paragraph, the funding cost
of buying CDS protection is effectively negative, since it’s bear by the writer.
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observe directly, I proxy the funding cost of corporate bond as:

BondFundingCostt,t+k = Σt+k−1
s=t [(1−haircut)∗Tbills+haircut∗LIBORs] (1.34)

This assumption implies investors can fund the 1− haircut fraction of their corpo-

rate bond purchase at the collateralized rate (TBill), and the haircut fraction at the

un-collateralized rate (LIBOR). The funding cost is increasing in the hair-cut and

the difference between collateralized and un-collateralized rate. This approximation

for the funding cost of corporate bond is consistent with the model’s assumption

on the functional form of the funding costs. Motivation of this approximation can

be found in Appendix 1.A. Ideally, the hair-cut input should be time-varying as

well. However, daily data on hair-cut is very difficult to get. Therefore, I applied

different values of hair-cut for different sub-periods in the sample based on the aver-

age hair-cut data described in Gorton and Metrick (2010). The empirical evidence

is not very sensitive to different hair-cut assumptions. I calculate funding cost for

each day and sum up to get the funding cost between time t and t+ k.

The funding cost of CDS is approximated by the average CDS premium on financial

institutions. During the crisis, the main friction on CDS market is the counterparty

risk, especially from the protection writers’ side. A protection buyer would suffer

from the joint default of the underlying entity and the protection writer. In order

for the protection buyer to be willing to trade at the CDS premium without coun-

terparty risk, the protection buyer requires the protection seller to buy a CDS on

the seller herself for the buyer, so that in the event of joint default, the protection

buyer can at least get paid from the CDS on the protection seller. Therefore, I

calculate the average CDS premium on financial institutions using individual name

CDS data from Bloomberg, and then adjust for the length of period k. As expected,

the funding cost of CDS is close to zero before the crisis, but becomes very large

during the crisis. After the Lehman collapse, the funding cost of CDS is even higher

than the funding cost of corporate bond. This point is consistent with both empir-

ical evidence found by others and observation made by practitioners.

Depending on market conditions, the realized return of negative basis trading can

be positive or negative. The absolute value of the RERnbt measures the size of ba-

sis trading RERs, whose comparative statics properties are tested in the following

sections. To test the term structure property of the size of basis trading RERs, I

further calculated the RERs of negative basis trading on underlying with approxi-
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mately 2 years, 5 years and 9 years using individual CDS and corporate bond data.

I also collect Markit iBoxx USD Domestic Corporate Rating Indices for 1-3 years,

3-5 years, 1-5 years, 5-7 years, 7-10 years and 5-10 years of maturities and use the

asset swap spread of these indices to approximate the credit spread of these matu-

rities and build the credit spread term structure.

Important parameters and variables in the model, such as α, the funding cost’s

sensitivity to default intensity risk, zi, the local investors’ demand, and σλ, the

volatility of default intensity risk are proxied in the following way: In the calcu-

lation of corporate bond’s funding cost, haircut is multiplied by LIBOR − Tbill.
Comparing with the model assumption on the functional form of funding costs, if

hair-cut is linear in default intensity risk λt, then α is a multiple of LIBOR−Tbill,
which is the TED spread. Therefore, α in the model is empirically proxied by the

TED spread (hereafter TED), which is collected from Federal Reserve’s web-site.

As for zi, the sign of local investors’ demand is difficult to measure, but the absolute

value of local investors’ demand on the cash market can be proxied by the corpo-

rate bond market trading volume, hereafter TV , which is collected from TRACE.

I also use the contemporaneous15 volatility of asset swap spread (hereafter ASW )

of Liquid Corporate Bond Index from Markit to proxy for σλ since this particular

asset swap rate is less affected by movements in interest rate and market liquidity.

Other empirical proxies are introduced in the following sections when they emerge.

1.5.2 Rolling Window Time-series Tests on the Realized Excess Returns

of Negative Basis Trading

Hypothesis 1.1. Basis trading returns in excess of arbitrage costs contain time-

varying exposures to systematic risk factors.

The model implies that the expected excess return of basis trading contains com-

pensation for the exposure to risk factors. Therefore, the realized excess return (or

return) of basis trading might be explained by systematic risk factors. However,

the model suggests that negative basis trading’s exposures to risk factors are time-

varying. Depending on the sign of local investors demand and relative sensitivity of

funding cost to λt, negative basis trading can have positive or negative loadings on

the risk premia. In other words, in a time series regression of basis trading RER on

risk factor returns, the betas will be time-varying. Thus it is not appropriate to test

the negative basis trading RERs on systematic factors over the entire sample period.

1590-day period around day t
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Instead, for each month starting from March 2007, I run times-series regressions

on daily observations for the next quarter. For each type of regressions specified

later, I do 30 regressions and obtain 30 sets of coefficient estimates and Newey-West

t-stats. I report these estimates and t-stats in Table 1.1 to Table 1.3 to see the

time-varying patterns of negative basis trading RER’s exposures to risk factors. I

also plot the coefficient estimates for certain factors to highlight the time-varying

patterns that are consistent with the model’s predictions. If basis trading RER rep-

resents compensation for taking systematic risk, then the regression results will have

significant coefficient estimates for the systematic risk factors. I run the following

two regressions to test the above Hypothesis 1.1:

Regression A

RERnbtt,t+k = β0 + β1(LIBOR− FFR)t,t+k + β2FFRt,t+k + β3TEDt,t+k

+β4(TED ∗ASW )t,t+k + β5Basist + εA,t (1.35)

Regression B

RERnbtt,t+k = β0 + β1(LIBOR− FFR)t,t+k + β2FFRt,t+k + β3TEDt,t+k

+β4(TED ∗ASW )t,t+k + β5Basist + β6MKTRFt,t+k + β7DEFt,t+k

+β8TERMt,t+k + εB,t (1.36)

Because the funding costs in the calculation of basis trading RER may not be accu-

rate enough, I include 4 additional variables to control for potential mis-measurement

of funding costs in Regression A to see if funding costs can explain the RER of

negative basis trading. The four control variables are Libor − FFR, FFR, TED

and TED ∗ASW . FFR is the federal funds rate. The TED ∗ASW term accounts

for the effect from the mis-measurement of the hair-cut. I also include Basis as an

independent variable. Basis is calculated as the average CDS basis16 of a number of

individual entities. Conventional thinking regards negative basis as signal for profit

in doing negative basis trading. But the model doesn’t suggest any relationship be-

tween the level of basis and basis trading returns. Therefore, I include this variable

to test whether there’s any significance relationship.

In Regression B, I add three of the Fama-French five factors. The MKTRF

factor is the excecss return of the market portfolio, the DEF factor is the liquid

16CDS premium minus corporate bond credit spread
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corporate bond index return minus the T-Note index return of similar maturity17,

and the TERM factor is the T-Note return minus the T-Bill return from Kenneth

French’s web-site.18 I use factor values that are contemporaneous to the dependent

variable.

As can be seen from Table 1.1, for Regression A, the funding cost variables are

significant during months 13-20, which correspond to the period from Bear Stearn’s

crisis to the end of 2008. This suggests there may be some mis-measurement in the

funding costs when calculating realized returns, but also suggests funding costs have

important roles in justifying the return of basis trading during the crisis. The Basis

factor is not significant for 27 out of 30 rolling windows. This is consistent with the

model. It highlights the importance of not relying on observed price discrepancy

when doing risky arbitrage because the signal given by price discrepancy is in fact an

endogenous quantity affected by the existence of arbitrage cost such as funding costs.

However, funding costs variables alone are not good enough to explain the return of

negative basis trading. Regression A has significant intercept estimates in most

windows. Adding Fama-French factors doesn’t reduce the significance of intercepts

by much, but the Fama-French factors are indeed significant and the betas are in-

deed time-varying as predicted by the model. As shown in Table 1.2 and Figure

1.2, the beta estimate for the DEF factor is significantly negative for the early

periods but not very significant in latter periods, while the beta estimate for the

TERM factor is not very significant for the early periods but is significantly positive

in latter periods. These patterns in the betas are consistent with model prediction

and empirical results from other papers. According to the model, when corporate

bond market investors are selling, corporate bond returns are more sensitive to risk

factors than CDS, therefore negative basis trading return’s exposures to risk factors

should have the same signs as corporate bond return’s exposures to risk factors.

Meanwhile, Kim et.al.(2010) show that corporate bond returns during the same pe-

riod has negative exposure to the DEF factor and positive exposure to the TERM

factor.

Hypothesis 1.2. Interaction of funding liquidity and market liquidity predicts ab-

normal basis trading return.

According to the model, the expected excess profit of basis trading is driven by the

interaction of funding costs and local investors’ demand. Therefore, I add two other

17calculated based on Markit iBoxx 1-10yrs USD Domestic Treasury Index
18Other Fama-French factors have been tested and removed due to their insignificance.
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terms in Regression C in order to better explain the abnormal returns of basis

trading. The first term SignedTV is the time t corporate bond market trading vol-

ume times the sign of corporate bond index values’ change from t−1 to t. This term

accounts for the momentum driven by market liquidity. The second term is TED

spread squared times adjusted trading volume, where the adjusted trading volume

is calculated as the corporate bond market trading volume minus its -45 days to +45

days median. This adjusted trading volume term is aimed to model the absolute

value of demand shocks in local investors demand, i.e. |zt|. This TED2
t ∗ AdjTVt

term is implied by the formula for negative basis trading return in the model.

Regression C

RERnbtt,t+k = β0 + β1(LIBOR− FFR)t,t+k + β2FFRt,t+k + β3TEDt,t+k

+β4(TED ∗ASW )t,t+k + β5Basist + β6MKTRFt,t+k + β7DEFt,t+k

+β8TERMt,t+k + β9SignedTVt + β10TED
2
t ∗AdjTVt + εC,t (1.37)

As shown in Table 1.3, the coefficient estimates for the SignedTV term are signif-

icantly positive for most windows. This is not surprising as negative basis trading

consists of buying corporate bond, which is positively affected by the momentum in

corporate bond returns. The coefficient estimates for the TED2
t ∗AdjTVt term are

significantly negative during the latter half of 2008. This is highly consistent with

the model’s prediction. Proposition 1.3 suggests that negative basis trading re-

turn is increasing in α and −zt, which during the latter half of 2008 are well proxied

by TED spread and the adjusted corporate bond trading volume respectively. More

importantly, Regression C results in insignificant intercepts for most windows,

and the Basis factor is once again not significant for almost all windows.

To summarize, both Hypothesis 1.1 and Hypothesis 1.2 are supported by the

data. Basis trading RERs contain time-varying exposures to systematic risk factors

and the interaction of funding liquidity and market liquidity has predictive power

on abnormal basis trading returns.

1.5.3 Term Structure of the Size of the Realized Excess Returns of

Negative Basis Trading

Proposition 1.5 predicts that the size of basis trading RER is increasing in the time

to maturity of the underlying bond. I compared the absolute value of basis trading

excess return on underlyings with 2 years, 5 years and 9 years time to maturity. I
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list the average 1-day, 1-week and 1-month absolute RERs for these maturities in

Table 1.4, which shows clearly that basis trading on longer maturities have larger

absolute RERs.

This result is also shown by the plot of cumulative 1-week absolute RER of ba-

sis trading on these maturities in Figure 1.3. Basis trading on longer maturities

have higher cumulative absolute RERs, and the gaps between the lines are also

increasing over time, which is consistent with the prediction that the size of basis

trading RER is increasing in the time to maturity of the underlying bond.

1.5.4 Tests of Comparative Statics

The model yields several testable comparative statics results. The purpose here is to

show that more severe market frictions make basis trading more risky, hence earning

higher expected excess return. To be specific, I tested the following predictions:

Hypothesis 1.3.

• The size of basis trading RER is increasing in αc and σλ.

• Basis trading is risky, the size of basis trading RER is increasing in the volatil-

ity of basis trading RER.

• The volatility of basis trading RER is increasing in αc, which is proxied by

TED spread.

The volatility of basis trading RER is the next 90-day volatility of the negative basis

trading RER. To test the comparative statics results, I sort the time-series of the

absolute value and volatility of basis trading RERs based on their corresponding

TED and default intensity volatility values. For instance, I assign each date in the

sample period into 5 groups according to the TED spread value of each date, the

first group contains dates with the lowest TED spread values, the 5th group contains

dates with the highest TED spread values. Then I calculate the median value of

the absolute value of negative basis trading RER for each group, and report in a

table to see if the group with higher TED spread also has larger basis trading RER

size. I also sort the sizes of basis trading RER into negative basis trading volatility

groups. Results are summarized in Table 1.5, in which each panel provides result

of each comparative statics. In general, the results support Hypothesis 1.3 very

well.
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1.5.5 The Predictability of Credit Spread Term Structure Slope on Fu-

ture Credit Spread Changes

Hypothesis 1.4.

• Credit spread term structure slope positively predicts future credit spread changes

when frictions are small.

• Credit spread term structure slope does not positively predict (and may nega-

tively predict) future credit spread changes when investors are selling corporate

bonds and funding cost has high sensitivity to default intensity risk. This sce-

nario is more likely for shorter maturities.

I carry out the following type of regression to test this hypothesis which corresponds

to Proposition 1.2:

CSt+k − CSt = ψ0 + ψSlopet + εt (1.38)

I use 4 sets of dependent variables and independent variables. For instance, for Set

1, I use the 1-5 years grade A corporate bond index asset swap spread as the CS

variable. For this dependent variable, I use the 3-5 years grade A corporate bond

index asset swap spread minus the 1-3 years grade A corporate bond index asset

swap spread as the Slope variable. For this set, the dependent variable proxies the

future change in credit spread of a 3-year corporate bond, while the independent

variable proxies the difference in credit spreads of a 4 year corporate bond and a 2

year corporate bond issued by the same entity as the 3-year bond. The independent

variable thus proxies the term structure of credit spread at 3 years. A full list of

variables for other sets are listed in Table 1.6, which also reports regression results.

I test for k =5 days and 15 days respectively and run the regressions on three sub-

periods: Sub-period 1 (07/2007 to 02/2008), Sub-period 2 (03/2008-03/2009) and

Sub-period 3 (04/2009-09/2009) to account for different levels of market frictions.

The results support Hypothesis 1.4. For Sub-period 1 (07/2007 to 02/2008) and

Sub-period 3 (04/2009-09/2009) that correspond to periods with low market fric-

tions, the positive predictability of the independent variable on dependent variable

is found in most cases. These results are consistent with Bedendo et.al.(2007). But

in Sub-period 2 (03/2008-03/2009) when market frictions are high after the Bear

Stern and Lehman Collapse, the predictability is lost for Set 1 and Set 3, which

correspond to credit spread term structure at approximately 3 years, while the pre-

dictability is still significant for Set 2 and Set 4, which correspond to longer time
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to maturity at approximately 7.5 years. Such findings support the predictions from

Proposition 1.2, which states that the regression coefficient ψ may not be positive

when friction is high, especially for short maturities. Therefore, it’s not surprising to

find that the predictability is lost during Sub-period 2 for Set 1 and 3. Using shorter

sub-period windows, I find negative coefficient ψ for the 3-year term structure as

shown in Figure 1.4.

1.5.6 Robustness Checks

The main results are not affected when using alternative funding cost proxies. To

test if the results are sensitive to the construction of the Markit indices, I also

construct alternative negative basis trading RERs using individual CDS and corpo-

rate bond data. Regression results using these returns as dependent variables are

consistent with results in the previous section. But individual CDS and corporate

bond data are less reliable than the Markit indices, so I still report results using the

Markit indices as the main results.

1.6 Conclusion

The paper tackles with the puzzle between CDS and corporate bond. Previous lit-

eratures show that buying CDS protection and buying corporate bond should earn

risk free return and CDS-basis, which is CDS price minus credit spread, should be

zero. However, the CDS basis was persistently non-zero during the 2007/2008 finan-

cial crisis, yet many arbitrageurs lost money trying to take advantage of this. The

limited arbitrage literature suggests that no-arbitrage relationship can be violated

when arbitrageurs face risk and costs to do the arbitrage. So it may be intuitive to

think that market frictions such as funding costs cause CDS basis to be non-zero.

But the CDS basis doesn’t signal which market to long and which market to short

so as to earn positive expected returns when there’s funding costs. I use a limited

arbitrage model to analyze the risky arbitrage nature of CDS-basis trading and de-

rive the following three major results:

The first result tells us when CDS-basis trading is expected to earn positive re-

turn when arbitrageurs face funding costs that are increasing in default intensity of

the bonds. To be more specific, there are two cases. In the first case, when local

investors are trading towards the same directions on the two markets, one can earn

positive expected excess return by taking long position on the market whose funding

cost is more sensitive to default intensity; in the second case, when local investors
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are trading towards different directions on the two markets, one can earn positive

expected excess return by taking long position on the market that local investors

are selling. The rationale is: the presence of demand pressure results in arbitrageurs

requiring risk premium for the positions they take. Without other frictions, demand

pressure alone doesn’t generate pricing discrepancies between assets with identical

cash-flows. But since funding costs also contain systematic risk factor, the two

assets have different loadings on systematic risk factors if they obtain different ex-

posures to the risk factor through funding costs. Therefore, CDS-basis trading has

non-zero loadings on systematic risk factors and is expected to earn non-zero excess

return. As shown in the model, without any one of these two sources of frictions,

the arbitrage only generates zero expected excess return. It may be intuitive to

think that assets with identical cash-flows will have different expected returns when

there’s funding costs involved, but my model shows they can have different expected

returns even after the deduction of funding costs, if funding costs are time-varying

and correlated with assets’ fundamental risk.

Secondly, the paper offers new properties of the term structure of credit spreads.

Previous literatures found that the slope of credit spread term structure positively

predicts future credit spread changes, but when market frictions are high, for in-

stance, funding costs are very sensitive to default intensity and demand pressures

are high, this positive predictability may turn negative. Empirically, I find positive

predictability in periods other than the latter half of 2008 but negative predictability

during the latter half of 2008 for short time-to-maturity bonds, which is consistent

with model prediction.

Moreover, the model also offers closed form solution for defaultable bonds under

market frictions. Defaultable bonds prices are solved as exponential affine functions

of risk factors. As implied by the closed form solution of the expected excess return

of CDS basis trading, an interaction term of funding liquidity and market liquidity

predicts abnormal CDS-basis trading return, especially in the latter half of 2008.

As predicted by the model, empirical risk exposures of CDS-basis trading have strong

time-varying patterns depending on market frictions. I therefore use rolling-window

time-series regressions that are very useful considering the time-varying nature of

betas. I show that basis trading is exposed to systematic risk factors, while the

interaction of funding cost and market liquidity have predictive power on abnormal

basis trading returns. In the cross-section, bonds with longer time-to-maturity re-

43



alize larger yet more risky basis trading excess returns. In the time-series, periods

with higher market friction realize larger yet more risky basis trading excess returns.
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1.8 Appendix 1.A: Motivation for the Funding Costs Function

1.A1. Borrowing Costs

When buying the defaultable bonds through borrowing, one can not borrow at the

rate of rt. The total cost is rt + ht, where ht reflects the borrowing cost in excess of

rt. The existence of ht represents a source of market friction. The model assumes

that ht is an increasing linear function of the default intensity risk λt:

hit(τ) = αi(τ)λt + δi(τ) i = c, d 0 < αi < L (1.39)

This is a reasonable assumption with motivation illustrated in the following way:

Consider a simplified version of repo transaction, assume there’s a continuum of

competitive cash lenders who lend out yt amount of cash if the borrowers offer 1-

dollar worth of defautable bond as collateral.19 The borrower may default on the

obligation to pay back, denote N̄t as counting process for the borrower’s default,

assume the intensity of N̄t is f(λt), which is increasing in λt. This is a reasonable

assumption in the real world, the borrowers are usually buyers of the defaultable

bond who can only afford to buy through borrowing, and rely on the selling of the

bond to pay back their borrowing. If the bond defaults, they are unlikely to pay

back and would default. Denote the wealth of the lender by wt, then the lender’s

optimization problem is:

max
yt

[Et(dwt)−
γ̄

2
V art(dwt)] (1.40)

dwt = (wt − yt)rtdt+ yt(rt + s)dt+ [(1− L)− yt]dN̄t (1.41)

where rt+s, s > 0, is the exogenous rate asked by the lender for lending against the

defaultable bond as collateral.20 The wt−yt part of her wealth increases at the rate

of rt, while the yt part earns interest rate rt+ s. If the borrower defaults, the lender

retains the bond, which is now worth 1 − L but loses the yt lent to the borrower.

The optimal lending amount y∗t is solved as:

y∗t =
s

γ̄f(λt)
− 1

γ̄
+ (1− L) (1.42)

19The lender effectively buys the bond for yt, while the borrower promises to buy back the bond
at a price higher than yt at the end of the repo contract that reflects an interest rate higher than
the short rate rt.

20rt can be understood as the rate asked by the lender for lending against default-free bond as
collateral.
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Therefore, y∗t is decreasing in f(λt), thus decreasing in λt. In other words, the

amount a borrower can borrow using defaultable bond as collateral is decreasing in

the riskiness of the bond. 1− y∗t is the so-called ‘hair-cut’asked by the lender. The

hair-cut is increasing in the riskiness of the bond. The borrower borrows y∗t fraction

of her bond purchase at the rt + s rate charged by the lender, and the rest 1 − y∗t
fraction at an exogenous un-collateralized rate rt + u from somewhere else. Here,

u > s > 0 since un-collateralized borrowing is riskier than collateralized borrowing.

So the borrower’s total borrowing cost in excess of rt is:

ht = y∗t (rt + s) + (1− y∗t )(rt + u)− rt = u− (u− s)y∗t (1.43)

which is a decreasing function of y∗t . Since y∗t is decreasing in λt, the borrowing

cost ht is increasing in λt. With careful choice of the exogenous function f(λt), the

borrow cost has the linear functional form of αλt + δ used in the model.

1.A2. Short-selling Costs

When short-selling the defaultable bond, one needs to borrow the bond from a bond

lender. The bond lender asks for cash-collateral of a certain amount. Effectively,

the short-seller buys the bond for that amount while the bond lender agrees to buy

back the bond at the end of the reverse-repo contract for an amount higher than

the initial cash-collateral. However, the end-of-the-day amount usually reflects an

interest rate paid on the cash-collateral that is lower than the short-rate. The short-

seller hence incur short-selling costs.

Assume there’s a continuum of competitive bond lenders that require Yt amount

of cash-collateral for 1-dollar worth of bond lent. The short-seller, i.e. the bond

borrower, may default on the obligation to return the bond, denote Ñt as counting

process for the short-seller’s default, assume the intensity of Ñt is g(λt) which is

decreasing in λt. This is a reasonable assumption in the real world, when λt is low,

the bond price is high, the short-seller is more likely to suffer loss and hence default

on the obligation to return the bond. Denote the wealth of the lender by wt, then

the lender’s optimization problem is:

max
Yt

[Et(dwt)−
γ̃

2
V art(dwt)] (1.44)

dwt = (wt + Yt)rtdt− Yt(rt − S)dt+ (Yt − 1)dÑt (1.45)
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where rt − S, S > 0, is the exogenous special repo rate offered by the bond lender

on the cash collateral. The wt + Yt part of her wealth increases at the rate of rt,

while the Yt part pays interest rate rt − S. If the short-seller defaults, the lender

retains the cash Yt, but loses the 1-dollar worth of bond lent to the short-seller.

Y ∗t =
S

γ̃g(λt)
+

1

γ̃
+ 1 (1.46)

Therefore Y ∗t is decreasing in g(λt), thus increasing in λt. The short-seller puts Y ∗t

fraction of her bond sales as cash-collateral which earns interest at the rate of rt−S
and invests the rest 1− y∗t fraction at the short rate rt. So her short selling cost is:

ht = rt − [Y ∗t (rt − S) + (1− Y ∗t )rt] = SY ∗t (1.47)

which is an increasing function of Y ∗t . Since Y ∗t is also increasing in λt, the short-

selling cost ht is increasing in λt. With careful choice of the exogenous function

g(λt), the short-selling cost has the linear functional form of αλt + δ used in the

model.
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1.9 Appendix 1.B: Proofs of Lemmas and Propositions

1.B1. Proof of Lemma 1.1

In the most general set-up, there’re 4 sources of uncertainties: the jump at default,

characterized by Nt, and three Brownian Motions in the default intensity risk factor

λt, short rate factor rt and local investors’ demand shock factor zt, i.e. Bλ,t, Br,t

and Bz,t. The dynamic of Nt only enters into play through λt, so I can rewrite P dt (τ)

as P dt (τ, λ, r, z) and P ct (τ) as P ct (τ, λ, r, z). Assuming all three Brownian Motions

Bλ,t, Br,t and Bz,t are independent, I apply Ito’s lemma to write dP ct (τ, λ, z) and

dP dt (τ, λ, z) as:

dP ct (τ, λ, r, z) = µct(τ)P ct dt+ σλ
∂P c

∂λ
dBλ,t + σr

∂P c

∂r
dBr,t + σz

∂P c

∂z
dBz,t

(1.48)

dP dt (τ, λ, r, z) = µdt (τ)P dt dt+ σλ
∂P d

∂λ
dBλ,t + σr

∂P d

∂r
dBr,t + σz

∂P d

∂z
dBz,t

(1.49)

where

µit =
1

P it
[
∂P i

∂t
+

∑
j∈{λ,r,z}

(µj
∂P i

∂j
+
σ2
j

2

∂2P i

∂j2
)] (1.50)

and µj = κj(j̄− jt), i = c, d, j = λ, r, z. µct and µdt are the expected returns of bond

C and bond D, conditional on no default. Dropping τ , the E(dWt) and V ar(dWt)

terms in the optimization problem are:

E(dWt) = {Wt −
∫ T

0
[xct(τ) + xdt (τ)]dτ}rtdt

+
∑
i=c,d

{
∫ T

0
xit(τ)[(µit(τ)− L(λ̃+ λt)]dτ −

∫ T

0
|xit(τ)|hit(τ)dτ}dt

(1.51)

V ar(dWt) =
∑

j∈{λ,r,z}
{
∫ T

0
[xct(τ)σj

1

P ct (τ)

∂P ct (τ)

∂j
+ xdt (τ)σj

1

P dt (τ)

∂P dt (τ)

∂j
]dτ}2dt

+{L
∫ T

0
[xct(τ) + xdt (τ)]dτ}2(λ̃+ λt)dt (1.52)

Entering the above terms into the optimization problem,
∂[E(dWt)− γ2 V ar(dWt)]

∂xit
, i =

c, d, gives the F.O.C.s in Lemma 1.1.
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1.B2. Proof of Lemma 1.2

Apply Ito’s lemma to the conjectured prices, the dP ct /P
c
t and dP dt /P

d
t terms are

re-written as:

dP ct
P ct

= µctdt−AcλσλdBλ,t −AcrσrdBr,t (1.53)

dP dt
P dt

= µdt dt−AdλσλdBλ,t −AdrσrdBr,t (1.54)

where, omitting τ , the instantaneous expected returns conditional on no default are:

µct = −Acλκλ(λ̄− λt)−Aczκr(r̄ − rt) +Acλ
′λt +Acr

′rt + Cc′ +
1

2
Acλ

2σ2
λ +

1

2
Acr

2σ2
r

(1.55)

µdt = −Adλκλ(λ̄− λt)−Adrκr(r̄ − rt) +Adλ
′
λt +Adr

′
rt + Cd

′
+

1

2
Adλ

2
σ2
λ +

1

2
Adr

2
σ2
r

(1.56)

Substitute the above into the dynamic budget constraint, the arbitrageur’s F.O.C.s

are:

µct(τ)− rt − hct(τ)
|xct(τ)|
xct(τ)

− L(λ̃+ λt) = LΦJ,t − σλAcλ(τ)Φλ,t − σrAcr(τ)Φr,t

(1.57)

µdt (τ)− rt − hdt (τ)
|xdt (τ)|
xdt (τ)

− L(λ̃+ λt) = LΦJ,t − σλAdλ(τ)Φλ,t − σrAdr(τ)Φr,t

(1.58)

where

ΦJ,t = γL

∫ T

0
[xdt (τ) + xct(τ)](λ̃+ λt)dτ (1.59)

Φλ,t = γσλ

∫ T

0
[−xdt (τ)Adλ(τ)− xct(τ)Acλ(τ)]dτ (1.60)

Φr,t = γσr

∫ T

0
[−xdt (τ)Adr(τ)− xct(τ)Acr(τ)]dτ (1.61)

are the market prices of risks to the default jump, default intensity and short rate

factors.

In equilibrium, markets clear. So xit + zi = 0, i = c, d. Replace xit(τ) by −zi(τ),

and replace hit by the functions defined in the funding cost section, then the F.O.C.s

are affine equations in the risk factors λt and rt. Setting the linear terms in λt and
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rt to zeros implies that Aij(τ) are the solutions to a system of ODEs with initial

conditions Aij(0) = 0, i = c, d and j = λ, r:

Acλ
′(τ) + κλA

c
λ(τ)− [−αc(τ)

|zc(τ)|
zc(τ)

+ L] = −γL2
∫ T

0
[zd(τ) + zc(τ)]dτ

(1.62)

Adλ
′
(τ) + κλA

d
λ(τ)− [−αd(τ)

|zd(τ)|
zd(τ)

+ L] = −γL2
∫ T

0
[zd(τ) + zc(τ)]dτ

(1.63)

Acr
′(τ) + κrA

c
r(τ)− 1 = 0 (1.64)

Adr
′
(τ) + κrA

d
r(τ)− 1 = 0 (1.65)

Thus, Aij(τ) are solved as in Lemma 1.2.

1.B3. Proof of Proposition 1.1

Replace 1
P ct

∂P ct
∂λ , 1

P dt

∂P dt
∂λ , 1

P ct

∂P ct
∂r and 1

P dt

∂P dt
∂r with −Acλ(τ), −Adλ(τ), −Acr(τ), −Adr(τ)

respectively in Definition 1.1 gives Proposition 1.1. Because−Acr(τ) and−Adr(τ)

are the same, so the two exposures to the short rate risk cancel out each other, only

the exposure to the default intensity risk premium Φλ,t remains.

1.B4. Proof of Corollary 1.1

Point 1: 1) If αc(τ) = αd(τ) = 0, then EERnbt = EERpnt = 0. 2) If αc(τ) =

αd(τ) 6= 0 and sign[zc(τ)] = sign[zd(τ)], then the term inside the bracket in the

EER formula equals zero, so EERnbt = EERpnt = 0. 3) If zc(τ) = zd(τ) = 0, then

Φλ,t = 0, so EERnbt = EERpnt = 0.

Point 2: If zc(τ) < 0 and zd(τ) < 0, then Φλ,t < 0, and sign(EERnbt) = −sign(EERpbt) =

sign(αc(τ) − αd(τ). If αc(τ) > αd(τ), then EERnbt > 0, i.e. buying on market C

and selling on market D earns positive expected excess return; if αd(τ) > αc(τ),

then EERpbt > 0, i.e. buying on market D and selling on market C earns positive

expected excess return.

If zc(τ) > 0 and zd(τ) > 0, but both not too large, then then Φλ,t > 0, and

sign(EERnbt) = −sign(EERpbt) = sign(αc(τ)− αd(τ). The rest follows the above

zc(τ) < 0 and zd(τ) < 0 case.

Point 3: If zc(τ) >> 0 and zd(τ) >> 0, then then Φλ,t < 0, and sign(EERnbt) =
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−sign(EERpbt) = −sign(αc(τ) − αd(τ). If αc(τ) < αd(τ), then EERnbt > 0, i.e.

buying on market C and selling on market D earns positive expected excess return;

if αd(τ) < αc(τ), then EERpbt > 0, i.e. buying on market D and selling on market

C earns positive expected excess return.

1.B5. Proof of Corollary 1.2

Point 1: If sign(zc) = sign(zd), then the size of basis trading’s exposure to the

default intensity risk is: | ± σλ[αc(τ)−αd(τ)]1−e−κλτ
κλ

|. Because σλ
1−e−κλτ

κλ
> 0, it is

increasing in |αc − αd|.

Point 2: If sign(zc) = −sign(zd), then the size of basis trading’s exposure to the

default intensity risk is: | ± σλ[αc(τ) +αd(τ)]1−e−κλτ
κλ

|. Because σλ
1−e−κλτ

κλ
> 0, it is

increasing in αc + αd.

Point 3: Size of basis trading EER is: | ± σλ[αc(τ) |z
c(τ)|
zc(τ) − αd(τ) |z

d(τ)|
zd(τ)

]1−e−κλτ
κλ

|.

It is equal to σλ|[αc(τ) |z
c(τ)|
zc(τ) − α

d(τ) |z
d(τ)|
zd(τ)

]1−e−κλτ
κλ

|, which is increasing in σλ.

1.B6. Proof of Proposition 1.2

The time-varying component in the dependent variable is:
Acλ(τ−∆τ)

τ−∆τ λt+∆τ−
Acλ(τ)

τ λt,

the time-varying componet in the independent variable is:
Acλ(τ)

τ λt−
Acλ(τ−∆τ)

τ−∆τ λt. So

the regression coefficient is:

ψ =
Cov[

Acλ(τ−∆τ)

τ−∆τ λt+∆τ −
Acλ(τ)

τ λt,
Acλ(τ)

τ λt −
Acλ(τ−∆τ)

τ−∆τ λt]

V ar[
Ac
λ

(τ)

τ λt −
Ac
λ

(τ−∆τ)

τ−∆τ λt]
(1.66)

=
τAcλ(τ −∆τ)e−κλ∆τ − (τ −∆τ)Acλ(τ)

(τ −∆τ)Acλ(τ)− τAcλ(τ −∆τ)
(1.67)

when ∆τ → 0,

ψ = −τ [Acλ(τ)′ + κλA
c
λ(τ)]

τ [Acλ(τ)′ − 1]
(1.68)

=
F (τ)

1− F (τ)e−κλτ
(1.69)

where F (τ) = −αc(τ) |z
c(τ)|
zc(τ) + L− γL2

∫ T
0 [zc(τ) + zd(τ)]dτ .

If αc(τ) = 0 and zc(τ) = zd(τ) = 0, then F = L. 0 < F < 1, so ψ = F (τ)
1−F (τ)e−κλτ

> 0.
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If zc(τ) << 0, αc(τ) >> 0, then F >> 0. So ψ = F (τ)
1−F (τ)e−κλτ

< 0.

When F > 0, the threshold for ψ < 0 is F > eκλτ , which is easier to meet for

small τ than for large τ .

1.B7. Proof of Lemma 1.3 and Lemma 1.4

Apply Ito’s lemma to the conjectured prices, the Arbitrageur’s F.O.C.s are:

µct(τ)− rt − hct(τ)
|xct(τ)|
xct(τ)

− L(λ̃+ λt) = LΦJ,t − σλAcλ(τ)Φλ,t − σrAcr(τ)Φr,t − σzAcz(τ)Φz,t

(1.70)

µdt (τ)− rt − hdt (τ)
|xdt (τ)|
xdt (τ)

− L(λ̃+ λt) = LΦJ,t − σλAdλ(τ)Φλ,t − σrAdr(τ)Φr,t − σzAdz(τ)Φz,t

(1.71)

where

ΦJ,t = γL

∫ T

0
[xdt (τ) + xct(τ)]dτ(λ̃+ λt) (1.72)

Φλ,t = γσλ

∫ T

0
[−xdt (τ)Adλ(τ)− xct(τ)Acλ(τ)]dτ (1.73)

Φr,t = γσr

∫ T

0
[−xdt (τ)Adr(τ)− xct(τ)Acr(τ)]dτ (1.74)

Φz,t = γσz

∫ T

0
[−xdt (τ)Adz(τ)− xct(τ)Acz(τ)]dτ (1.75)

are the market prices of risks to the default jump, default intensity, short rate and

demand shock factors.

In equilibrium, markets clear. So xit + zit = 0. Replace xit with −zit in the above

F.O.C.s, then the F.O.C.s are affine equations in the risk factors λt, rt and zt.
21

Setting the linear terms in λt, rt and zt to zero implies that Aij(τ) are the solutions

to the a system of ODEs with initial conditions Aij(0) = 0, i = c, d and j = λ, r, z.

If θ̄(τ) << 0 and θ(τ) < 0, then zct (τ) < 0, zdt (τ) > 0. So xct(τ) > 0 and xdt (τ) < 0.

The system of ODEs becomes:

Acλ
′(τ) + κλA

c
λ(τ)− [αc(τ) + L] = 0 (1.76)

Adλ
′
(τ) + κλA

d
λ(τ)− [−αd(τ) + L] = 0 (1.77)

21By assuming that the two markets have exact opposite demand pressure, the market price of
risk for the default jump factor becomes zero as the arbitrageur’s aggregate positions are free of
default jump risk.
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Acr
′(τ) + κrA

c
r(τ)− 1 = 0 (1.78)

Adr
′
(τ) + κrA

d
r(τ)− 1 = 0 (1.79)

Acz
′(τ) + κzA

c
z(τ) = −γσ2

λA
c
λ(τ)

∫ T

0

θ(τ)[Acλ(τ)

−Adλ(τ)]dτ − γσ2
zA

c
z(τ)

∫ T

0

θ(τ)[Acz(τ)−Adz(τ)]dτ

(1.80)

Adz
′
(τ) + κzA

d
z(τ) = −γσ2

λA
d
λ(τ)

∫ T

0

θ(τ)[Acλ(τ)

−Adλ(τ)]dτ − γσ2
zA

d
z(τ)

∫ T

0

θ(τ)[Acz(τ)−Adz(τ)]dτ

(1.81)

The first 4 equations can be solved independently. The solutions are as summarized

in Lemma 1.3. For the last 2 equations, the solutions are as in Lemma 1.3 because

the equation:

κ∗z = κz + γσ2
z

∫ T

0
θ(τ)[Acz(τ)−Adz(τ)]dτ (1.82)

has a unique solution in the region (0,+∞), as κ∗z is increasing from the origin in

the region (0,+∞) and κz + γσ2
z

∫ T
0 θ(τ)[Acz(τ)−Adz(τ)]dτ is positive decreasing in

the region (0,+∞).

If θ̄(τ) >> 0 and θ(τ) > 0, then zct (τ) > 0, zdt (τ) < 0. So xct(τ) < 0 and xdt (τ) > 0.

The system of ODEs becomes:

Acλ
′(τ) + κλA

c
λ(τ)− [−αc(τ) + L] = 0 (1.83)

Adλ
′
(τ) + κλA

d
λ(τ)− [αd(τ) + L] = 0 (1.84)

Acr
′(τ) + κrA

c
r(τ)− 1 = 0 (1.85)

Adr
′
(τ) + κrA

d
r(τ)− 1 = 0 (1.86)

Acz
′(τ) + κzA

c
z(τ) = −γσ2

λA
c
λ(τ)

∫ T

0

θ(τ)[Acλ(τ)−Adλ(τ)]dτ

−γσ2
zA

c
z(τ)

∫ T

0

θ(τ)[Acz(τ)−Adz(τ)]dτ

(1.87)

Adz
′
(τ) + κzA

d
z(τ) = −γσ2

λA
d
λ(τ)

∫ T

0

θ(τ)[Acλ(τ)−Adλ(τ)]dτ

−γσ2
zA

d
z(τ)

∫ T

0

θ(τ)[Acz(τ)−Adz(τ)]dτ

(1.88)
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The first 4 equations can be solved independently. The solutions are as summa-

rized in Lemma 1.4. For the last 2 equations, the solutions are as in Lemma

1.4 if κz >> 0. κ∗z is still increasing from the origin in the region (0,+∞), but

γσ2
z

∫ T
0 θ(τ)[Acz(τ)−Adz(τ)]dτ is negative and decreasing in the region (0,+∞). How-

ever, if κz >> 0, then κz+γσ2
z

∫ T
0 θ(τ)[Acz(τ)−Adz(τ)]dτ is decreasing from a positive

value in the region (0,+∞). Then the equation has unique solution in (0,+∞).

κ∗z = κz + γσ2
z

∫ T

0
θ(τ)[Acz(τ)−Adz(τ)]dτ (1.89)

1.B8. Proof of Proposition 1.3

Replace 1
P ct

∂P ct
∂λ , 1

P dt

∂P dt
∂λ , 1

P ct

∂P ct
∂r , 1

P dt

∂P dt
∂r , 1

P ct

∂P ct
∂z and 1

P dt

∂P dt
∂z with −Acλ(τ), −Adλ(τ),

−Acr(τ), −Adr(τ), −Acz(τ) and −Adz(τ) respectively in Definition 1.1 gives Propo-

sition 1.3. Because −Acr(τ) and −Adr(τ) are the same, so the two exposures to the

short rate risk cancel out each other, only the exposure to the default intensity risk

premium Φλ,t and the exposure to the demand shock risk premium Φz,t remain.

1.B9. Proof of Corollary 1.3

Point 1: If αc = αd = 0, then Gλ = 0 and Gz = 0, so EERnbt = 0 and

EERpbt = 0. Otherwise, Gλ 6= 0 and Gz 6= 0, so Gλ(τ)
∫ T

0 Gλ(τ)zct (τ)dτ 6= 0

and Gz(τ)
∫ T

0 Gz(τ)zct (τ)dτ 6= 0, and

sign[Gλ(τ)

∫ T

0
Gλ(τ)zct (τ)dτ ] = sign[Gz(τ)

∫ T

0
Gz(τ)zct (τ)dτ ] = sign[zct (τ)]

(1.90)

so EERnbt 6= 0 and EERpbt 6= 0.

Point 2: Directly derived from Equation (1.90). Point 3: Directly derived from

the first order derivatives of |EERnbt|.

1.B10. Proof of Corollary 4

The EERs of defautable bonds on market C and market D are:

EERc = −σ2
λA

c
λ(τ)

∫ T

0
[Acλ(τ)−Adλ(τ)]zct (τ)dτ − σ2

zA
c
z(τ)

∫ T

0
[Acz(τ)−Adz(τ)]zct (τ)dτ

(1.91)

EERd = −σ2
λA

d
λ(τ)

∫ T

0
[Acλ(τ)−Adλ(τ)]zct (τ)dτ − σ2

zA
d
z(τ)

∫ T

0
[Acz(τ)−Adz(τ)]zct (τ)dτ

(1.92)
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When zct < 0, according to Lemma 1.3, Acλ(τ) − Adλ(τ) > 0, Aiλ(τ) > 0, Acz(τ) −
Adz(τ) < 0 and Aiz(τ) < 0. So EERc > 0 and EERd > 0. According to Corollary

1.3, when zct < 0, EERnbt = EERc − EERd > 0, therefore, EERc > EERd > 0.

When zct > 0, according to Lemma 1.4, Acλ(τ) − Adλ(τ) < 0, Aiλ(τ) > 0, Acz(τ) −
Adz(τ) < 0 and Aiz(τ) > 0. So EERc > 0 and EERd > 0. According to Corollary

1.3, when zct > 0, EERpbt = EERd − EERc > 0, therefore, EERd > EERc > 0.

1.B11. Proof of Proposition 1.4

∂Basis

∂λt
=

Adλ(τ)

τ
− Acλ(τ)

τ
(1.93)

∂Basis

∂zt
=

Adz(τ)

τ
− Acz(τ)

τ
(1.94)

Therefore, sign(∂Basis∂λt
) = sign(Adλ−Acλ) and sign(∂Basis∂zt

) = sign(Adz −Acz). When

zct < 0, according to Lemma 1.3, Acλ(τ) > Adλ(τ), so ∂Basis
∂λt

< 0; Acz(τ) < Adλ(τ), so
∂Basis
∂zt

> 0. When zct > 0, according to Lemma 1.4, Acλ(τ) < Adλ(τ), so ∂Basis
∂λt

> 0;

Acz(τ) < Adλ(τ), so ∂Basis
∂zt

> 0.

1.B12. Proof of Proposition 1.5

∂EERnbt

∂τ
= − κλe

−κλτ

1− e−κλτ
γσ2

λG
λ(τ)

∫ T

0
Gλ(τ)zct (τ)dτ

− κze
−κzτ

1− e−κzτ
γσ2

zG
z(τ)

∫ T

0
Gz(τ)zct (τ)dτ

∂EERpbt

∂τ
= −∂EER

nbt

∂τ
(1.95)

Then, the proof is similar to that in the Proof of Corollary 1.3.

1.B13. Proof of Proposition 1.6

∂2Yt(τ)
∂τ = [

Acλ(τ)

τ ]′λt + constants, where
Acλ(τ)

τ = [αc + L]1−e−κλτ
κλτ

when zct < 0 and
Acλ(τ)

τ = [−αc + L]1−e−κλτ
κλτ

when zct > 0. 1−e−κλτ
κλτ

is a decreasing function of τ . Also

note that 0 < αi(τ) < L, therefore [αc + L](1−e−κλτ
κλτ

)′ < [−αc + L](1−e−κλτ
κλτ

)′ < 0,

So ∂2Yt(τ)
∂τ∂λt

< 0. And it is more negative when zct < 0.
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1.10 Appendix 1.C: Figures and Tables

Figure 1.1: CDS Basis and 1-week Negative Basis Trading RER

60



Figure 1.2: Negative Basis Trading RER’s Time-varying Exposure to Systematic

Factors
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Figure 1.3: Cumulative Absolute RERs of Negative Basis
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Figure 1.4: Time-varying Coefficient Estimate of ψ for 3yr Grade A Corporate Bond

Index
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Table 1.1: Beta and NW-Tstats of Rolling-Window Regression A

Table 1.1: Beta and NW‐Tstats of Rolling‐Window Regression A

Dependent varible: 1‐day realized excess return of negative basis trading

Panel A: Beta

Start End constant Libor‐FFR FFR TED TED*ASW Basis

Mar‐07 May‐07 0.001 0.544 ‐0.064 ‐0.739 0.605 0.506

Apr‐07 Jun‐07 0.040 ‐2.401 ‐2.752 ‐1.596 3.298 0.703

May‐07 Jul‐07 ‐0.049 3.389 3.314 0.110 ‐0.872 0.713

Jun‐07 Aug‐07 ‐0.025 2.370 1.792 0.180 ‐1.170 0.159

Jul‐07 Sep‐07 0.006 0.480 ‐0.315 0.295 ‐0.796 0.099

Aug‐07 Oct‐07 0.005 ‐0.008 ‐0.321 0.049 ‐0.222 0.380

Sep‐07 Nov‐07 0.001 ‐0.057 ‐0.110 0.884 ‐0.698 0.290

Oct‐07 Dec‐07 0.007 ‐0.773 ‐0.527 0.503 ‐0.180 0.044

Nov‐07 Jan‐08 0.001 ‐0.064 0.036 0.367 ‐0.420 0.075

Dec‐07 Feb‐08 ‐0.002 0.572 0.275 0.474 ‐0.378 0.118

Jan‐08 Mar‐08 ‐0.007 2.252 0.917 ‐0.212 ‐0.214 0.217

Feb‐08 Apr‐08 ‐0.008 2.777 1.339 ‐1.726 0.349 0.261

Mar‐08 May‐08 0.011 1.640 ‐2.049 ‐2.549 1.182 ‐0.314

Apr‐08 Jun‐08 ‐0.018 5.203 3.304 ‐8.051 3.159 ‐0.141

May‐08 Jul‐08 ‐0.019 4.961 3.399 ‐4.758 1.362 ‐0.470

Jun‐08 Aug‐08 0.018 0.099 ‐2.994 1.141 ‐0.910 ‐0.275

Jul‐08 Sep‐08 0.010 0.744 ‐0.929 ‐2.635 0.596 0.422

Aug‐08 Oct‐08 0.008 0.275 ‐1.250 ‐1.188 0.331 0.456

Sep‐08 Nov‐08 0.002 ‐0.204 ‐1.322 0.085 0.178 0.334

Oct‐08 Dec‐08 0.001 ‐0.680 ‐1.958 1.878 ‐0.200 0.303

Nov‐08 Jan‐09 ‐0.002 0.906 0.692 0.623 ‐0.280 ‐0.102

Dec‐08 Feb‐09 0.007 1.539 ‐13.012 4.885 ‐1.609 ‐0.069

Jan‐09 Mar‐09 0.004 1.677 ‐7.665 3.424 ‐1.181 ‐0.030

Feb‐09 Apr‐09 0.004 0.679 ‐9.861 0.800 ‐0.180 0.149

Mar‐09 May‐09 0.005 1.720 ‐9.133 0.439 ‐0.275 0.259

Apr‐09 Jun‐09 ‐0.002 ‐0.302 4.188 0.513 0.023 0.155

May‐09 Jul‐09 ‐0.005 3.115 6.883 5.158 ‐2.234 0.220

Jun‐09 Aug‐09 ‐0.008 5.581 18.200 0.867 ‐1.487 0.099

Jul‐09 Sep‐09 0.001 3.351 ‐4.239 3.337 ‐2.016 0.315

Aug‐09 Oct‐09 0.002 5.987 ‐3.484 5.294 ‐4.361 0.027
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Table 1.1 Continued: Beta and NW‐Tstats of Rolling‐Window Regression A

Dependent varible: 1‐day realized excess return of negative basis trading

Panel B: Newey West Tstat

Start End constant Libor‐FFR FFR TED TED*ASW Basis

Mar‐07 May‐07 0.022 0.153 ‐0.018 ‐1.338 1.210 1.503

Apr‐07 Jun‐07 0.504 ‐0.501 ‐0.505 ‐1.581 1.750 1.965

May‐07 Jul‐07 ‐1.755 2.169 1.765 0.111 ‐0.684 1.224

Jun‐07 Aug‐07 ‐2.641 3.988 2.655 0.192 ‐1.332 0.385

Jul‐07 Sep‐07 0.550 0.779 ‐0.429 0.302 ‐0.773 0.248

Aug‐07 Oct‐07 0.879 ‐0.012 ‐0.650 0.050 ‐0.247 1.647

Sep‐07 Nov‐07 0.126 ‐0.084 ‐0.132 1.846 ‐1.640 1.367

Oct‐07 Dec‐07 1.616 ‐1.891 ‐1.407 0.985 ‐0.561 0.251

Nov‐07 Jan‐08 0.334 ‐0.127 0.128 0.308 ‐0.501 0.274

Dec‐07 Feb‐08 ‐0.590 0.941 0.763 0.398 ‐0.612 0.392

Jan‐08 Mar‐08 ‐0.993 1.849 0.974 ‐0.082 ‐0.167 0.698

Feb‐08 Apr‐08 ‐0.838 1.833 0.799 ‐0.715 0.359 0.597

Mar‐08 May‐08 0.373 0.454 ‐0.388 ‐0.878 1.870 ‐1.066

Apr‐08 Jun‐08 ‐1.985 3.651 2.078 ‐2.765 2.139 ‐0.515

May‐08 Jul‐08 ‐2.055 3.395 1.991 ‐2.464 1.538 ‐2.239

Jun‐08 Aug‐08 1.370 0.089 ‐1.186 0.758 ‐1.798 ‐1.524

Jul‐08 Sep‐08 2.900 1.581 ‐1.585 ‐2.629 2.225 1.802

Aug‐08 Oct‐08 2.884 0.430 ‐2.405 ‐0.868 1.004 2.506

Sep‐08 Nov‐08 1.298 ‐0.254 ‐2.975 0.059 0.590 1.835

Oct‐08 Dec‐08 0.845 ‐0.671 ‐1.512 1.021 ‐0.507 1.704

Nov‐08 Jan‐09 ‐1.115 0.883 0.337 0.297 ‐0.514 ‐0.575

Dec‐08 Feb‐09 3.081 1.067 ‐3.909 2.042 ‐2.520 ‐0.456

Jan‐09 Mar‐09 1.153 1.635 ‐1.315 1.345 ‐1.682 ‐0.218

Feb‐09 Apr‐09 1.258 0.519 ‐1.319 0.855 ‐1.218 0.892

Mar‐09 May‐09 2.264 1.288 ‐1.807 0.462 ‐1.004 1.675

Apr‐09 Jun‐09 ‐0.695 ‐0.084 0.620 0.232 0.085 0.763

May‐09 Jul‐09 ‐1.641 1.009 0.914 1.370 ‐1.897 0.725

Jun‐09 Aug‐09 ‐1.957 1.735 1.855 0.310 ‐1.699 0.420

Jul‐09 Sep‐09 0.601 1.069 ‐0.722 0.514 ‐0.532 1.200

Aug‐09 Oct‐09 0.976 1.535 ‐0.676 0.973 ‐1.239 0.126
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Table 1.2: Beta and NW-Tstats of Rolling-Window Regression B

Table 1.2: Beta and NW‐Tstats of Rolling‐Window Regression B

Dependent varible: 1‐day realized excess return of negative basis trading

Panel A: Beta

Start End constant Libor‐FFR FFR TED TED*ASW Basis MKTRF DEF TERM

Mar‐07 May‐07 0.068 ‐3.273 ‐4.633 ‐0.484 0.709 0.270 0.016 ‐0.282 0.020

Apr‐07 Jun‐07 0.021 ‐2.775 ‐1.433 ‐3.512 8.881 0.696 ‐0.030 ‐0.436 0.079

May‐07 Jul‐07 ‐0.057 3.635 3.935 0.505 ‐1.418 0.798 ‐0.029 ‐0.607 0.104

Jun‐07 Aug‐07 ‐0.013 1.515 1.024 ‐0.960 0.273 0.237 ‐0.051 ‐0.745 0.056

Jul‐07 Sep‐07 0.018 0.051 ‐1.145 ‐2.355 2.169 0.376 ‐0.067 ‐1.007 0.040

Aug‐07 Oct‐07 0.002 0.360 ‐0.063 ‐0.565 0.367 0.272 ‐0.032 ‐0.757 0.030

Sep‐07 Nov‐07 ‐0.006 0.110 0.494 0.401 ‐0.276 0.369 ‐0.019 ‐0.466 0.062

Oct‐07 Dec‐07 0.001 ‐0.543 ‐0.055 0.599 ‐0.167 0.027 ‐0.041 ‐0.424 0.132

Nov‐07 Jan‐08 0.000 ‐0.258 0.040 0.448 0.009 ‐0.208 ‐0.059 ‐0.330 0.209

Dec‐07 Feb‐08 0.000 0.646 0.048 0.587 ‐0.413 ‐0.213 ‐0.048 ‐0.603 0.056

Jan‐08 Mar‐08 ‐0.011 2.635 1.402 ‐1.024 0.253 ‐0.034 ‐0.057 ‐0.605 0.060

Feb‐08 Apr‐08 ‐0.013 4.292 2.066 ‐3.766 1.316 0.328 ‐0.103 ‐0.650 0.166

Mar‐08 May‐08 0.010 1.730 ‐1.818 ‐3.473 1.722 ‐0.248 ‐0.142 ‐0.502 0.106

Apr‐08 Jun‐08 ‐0.019 5.671 3.676 ‐9.383 3.915 0.111 ‐0.036 ‐0.413 0.187

May‐08 Jul‐08 ‐0.023 5.239 4.147 ‐5.518 1.835 ‐0.218 ‐0.046 ‐0.413 0.209

Jun‐08 Aug‐08 0.006 1.868 ‐0.575 1.885 ‐1.786 ‐0.679 ‐0.065 ‐0.161 0.319

Jul‐08 Sep‐08 0.008 1.558 ‐0.061 ‐3.650 0.676 0.341 ‐0.041 ‐0.088 0.251

Aug‐08 Oct‐08 0.006 0.479 ‐0.642 ‐1.354 0.338 0.403 ‐0.033 0.110 0.395

Sep‐08 Nov‐08 0.002 0.141 ‐0.666 ‐0.647 0.317 0.368 ‐0.039 0.041 0.410

Oct‐08 Dec‐08 0.001 ‐0.168 ‐1.424 0.875 ‐0.048 0.214 ‐0.042 0.213 1.172

Nov‐08 Jan‐09 0.000 1.597 ‐0.474 1.450 ‐0.518 0.003 ‐0.035 0.106 0.980

Dec‐08 Feb‐09 0.006 0.531 ‐11.117 5.893 ‐1.694 ‐0.009 0.002 0.140 0.691

Jan‐09 Mar‐09 0.002 1.948 ‐4.978 4.822 ‐1.629 ‐0.050 ‐0.010 0.072 0.628

Feb‐09 Apr‐09 0.004 0.151 ‐9.468 0.844 ‐0.139 0.124 0.000 0.079 0.328

Mar‐09 May‐09 0.004 1.066 ‐7.447 0.398 ‐0.141 0.245 ‐0.032 0.009 0.492

Apr‐09 Jun‐09 ‐0.001 ‐4.554 1.482 2.018 0.222 0.229 ‐0.020 ‐0.015 0.941

May‐09 Jul‐09 ‐0.003 ‐2.891 1.308 7.599 ‐2.122 0.175 ‐0.046 ‐0.003 1.195

Jun‐09 Aug‐09 ‐0.006 2.394 11.082 2.999 ‐1.610 ‐0.078 ‐0.029 ‐0.011 1.199

Jul‐09 Sep‐09 0.001 2.117 ‐4.418 11.093 ‐5.735 ‐0.020 0.011 0.042 0.996

Aug‐09 Oct‐09 0.002 8.331 ‐4.068 10.783 ‐8.135 ‐0.186 0.005 ‐0.003 0.858
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Table 1.2 Continued: Beta and NW‐Tstats of Rolling‐Window Regression B

Dependent varible: 1‐day realized excess return of negative basis trading

Panel B: Newey West Tstat

Start End constant Libor‐FFR FFR TED TED*ASW Basis MKTRF DEF TERM

Mar‐07 May‐07 1.040 ‐0.878 ‐1.038 ‐0.867 1.006 0.939 0.640 ‐4.756 1.105

Apr‐07 Jun‐07 0.276 ‐0.554 ‐0.276 ‐3.322 4.422 3.065 ‐1.079 ‐6.020 1.787

May‐07 Jul‐07 ‐2.823 3.272 2.884 0.511 ‐1.250 1.658 ‐1.323 ‐3.341 1.856

Jun‐07 Aug‐07 ‐0.790 1.982 0.918 ‐0.945 0.274 0.692 ‐2.478 ‐4.520 0.925

Jul‐07 Sep‐07 1.831 0.105 ‐1.637 ‐2.130 2.075 1.046 ‐3.405 ‐5.428 1.080

Aug‐07 Oct‐07 0.394 0.894 ‐0.143 ‐0.678 0.490 1.019 ‐1.571 ‐7.699 0.686

Sep‐07 Nov‐07 ‐0.466 0.143 0.520 0.510 ‐0.586 1.378 ‐0.980 ‐3.154 0.805

Oct‐07 Dec‐07 0.365 ‐1.281 ‐0.151 0.575 ‐0.258 0.126 ‐2.083 ‐3.228 1.277

Nov‐07 Jan‐08 ‐0.080 ‐0.548 0.154 0.279 0.008 ‐0.849 ‐2.813 ‐4.444 2.364

Dec‐07 Feb‐08 ‐0.029 1.009 0.174 0.471 ‐0.677 ‐0.884 ‐1.798 ‐5.866 0.509

Jan‐08 Mar‐08 ‐1.420 1.870 1.446 ‐0.423 0.220 ‐0.127 ‐1.457 ‐5.918 0.610

Feb‐08 Apr‐08 ‐1.545 2.860 1.471 ‐1.833 1.600 0.883 ‐2.289 ‐5.915 1.490

Mar‐08 May‐08 0.456 0.602 ‐0.467 ‐1.419 2.244 ‐0.827 ‐2.325 ‐5.526 1.342

Apr‐08 Jun‐08 ‐1.835 3.613 1.940 ‐3.137 2.736 0.547 ‐1.647 ‐6.488 1.875

May‐08 Jul‐08 ‐2.048 3.145 2.058 ‐2.823 2.264 ‐1.131 ‐3.010 ‐4.561 1.986

Jun‐08 Aug‐08 0.587 1.928 ‐0.322 1.661 ‐4.954 ‐3.058 ‐4.014 ‐1.619 3.000

Jul‐08 Sep‐08 2.688 2.015 ‐0.095 ‐2.680 2.000 1.220 ‐1.717 ‐0.906 1.595

Aug‐08 Oct‐08 2.557 0.674 ‐1.304 ‐0.933 1.035 2.076 ‐1.658 0.925 1.948

Sep‐08 Nov‐08 1.541 0.181 ‐1.316 ‐0.489 1.167 2.164 ‐1.969 0.294 1.657

Oct‐08 Dec‐08 0.945 ‐0.192 ‐1.444 0.553 ‐0.142 1.399 ‐2.082 1.915 3.010

Nov‐08 Jan‐09 ‐0.519 1.748 ‐0.331 0.748 ‐1.031 0.016 ‐1.575 1.076 3.834

Dec‐08 Feb‐09 3.582 0.325 ‐4.750 3.427 ‐2.968 ‐0.063 0.158 1.622 4.773

Jan‐09 Mar‐09 0.814 1.660 ‐0.868 2.556 ‐3.002 ‐0.318 ‐0.620 0.802 4.131

Feb‐09 Apr‐09 1.328 0.094 ‐1.369 0.844 ‐0.864 0.736 ‐0.002 0.979 1.576

Mar‐09 May‐09 1.575 0.749 ‐1.374 0.424 ‐0.505 1.801 ‐1.401 0.201 1.909

Apr‐09 Jun‐09 ‐0.350 ‐1.476 0.304 1.140 0.954 1.699 ‐0.717 ‐0.390 3.744

May‐09 Jul‐09 ‐0.783 ‐0.908 0.203 2.546 ‐2.413 1.120 ‐2.092 ‐0.128 8.719

Jun‐09 Aug‐09 ‐2.505 0.964 1.977 1.467 ‐2.317 ‐0.527 ‐1.384 ‐0.289 8.388

Jul‐09 Sep‐09 0.590 0.727 ‐1.016 1.676 ‐1.478 ‐0.133 0.426 0.518 5.990

Aug‐09 Oct‐09 1.235 2.794 ‐0.980 2.005 ‐2.431 ‐1.166 0.267 ‐0.031 4.087
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Table 1.3: Beta and NW-Tstats of Rolling-Window Regression C

Table 1.3: Beta and NW‐Tstats of Rolling‐Window Regression C

Dependent varible: 1‐day realized excess return of negative basis trading

Panel A: Beta

Start End constant libor‐ffr ffr ted ted*asw Basis MKTRF DEF TERM signedtv ted2*tv

Mar‐07 May‐07 ‐0.007 1.140 0.446 ‐1.035 1.043 0.216 0.002 ‐0.420 ‐0.009 0.033 0.412

Apr‐07 Jun‐07 ‐0.011 ‐0.243 0.790 ‐1.874 5.106 0.460 ‐0.014 ‐0.503 0.065 0.046 ‐0.110

May‐07 Jul‐07 ‐0.067 4.641 4.663 0.115 ‐2.412 0.631 ‐0.016 ‐0.704 0.025 0.057 0.275

Jun‐07 Aug‐07 ‐0.020 1.906 1.511 ‐1.508 0.659 0.178 ‐0.024 ‐0.900 0.035 0.066 0.016

Jul‐07 Sep‐07 0.011 0.423 ‐0.580 ‐2.578 2.301 0.254 ‐0.041 ‐1.131 0.050 0.064 ‐0.010

Aug‐07 Oct‐07 ‐0.001 0.777 0.202 ‐1.127 0.778 0.276 ‐0.018 ‐1.026 0.016 0.090 ‐0.018

Sep‐07 Nov‐07 0.007 ‐0.503 ‐0.464 0.095 ‐0.185 ‐0.059 0.002 ‐0.666 0.015 0.100 0.070

Oct‐07 Dec‐07 0.001 ‐0.382 ‐0.050 ‐0.039 ‐0.002 ‐0.003 ‐0.029 ‐0.663 0.028 0.088 0.059

Nov‐07 Jan‐08 0.000 ‐0.257 ‐0.037 ‐0.483 0.485 ‐0.195 ‐0.042 ‐0.528 0.139 0.075 0.075

Dec‐07 Feb‐08 ‐0.001 1.386 0.112 1.501 ‐0.863 ‐0.224 ‐0.015 ‐0.744 ‐0.003 0.090 ‐0.126

Jan‐08 Mar‐08 ‐0.010 2.310 1.278 ‐0.559 0.099 ‐0.111 ‐0.035 ‐0.781 0.011 0.113 ‐0.103

Feb‐08 Apr‐08 ‐0.012 3.895 1.667 ‐2.581 0.933 0.322 ‐0.072 ‐0.784 0.081 0.108 ‐0.120

Mar‐08 May‐08 0.008 1.496 ‐1.569 ‐2.732 1.444 ‐0.129 ‐0.117 ‐0.623 0.092 0.068 ‐0.030

Apr‐08 Jun‐08 ‐0.012 4.305 2.255 ‐6.985 3.087 0.256 ‐0.020 ‐0.533 0.210 0.059 ‐0.116

May‐08 Jul‐08 ‐0.020 4.501 3.625 ‐5.248 2.066 ‐0.050 ‐0.026 ‐0.571 0.255 0.064 ‐0.125

Jun‐08 Aug‐08 0.001 2.238 0.303 1.509 ‐1.660 ‐0.663 ‐0.043 ‐0.131 0.320 0.016 ‐0.033

Jul‐08 Sep‐08 0.005 1.422 0.139 ‐3.258 0.674 0.368 ‐0.011 ‐0.089 0.234 0.094 ‐0.023

Aug‐08 Oct‐08 0.004 0.535 ‐0.241 ‐1.031 0.321 0.343 0.007 0.072 0.337 0.156 ‐0.051

Sep‐08 Nov‐08 0.001 0.230 ‐0.530 ‐0.706 0.298 0.333 ‐0.025 ‐0.082 0.263 0.099 0.002

Oct‐08 Dec‐08 0.001 0.002 ‐1.290 1.019 ‐0.153 0.217 ‐0.034 0.126 0.938 0.067 0.032

Nov‐08 Jan‐09 0.000 1.937 ‐0.720 1.098 ‐0.633 ‐0.089 ‐0.030 ‐0.058 0.611 0.086 0.083

Dec‐08 Feb‐09 0.004 0.596 ‐8.394 5.413 ‐1.574 0.008 0.003 0.061 0.648 0.049 0.023

Jan‐09 Mar‐09 0.002 1.355 ‐4.665 5.818 ‐1.725 ‐0.060 ‐0.006 ‐0.008 0.525 0.055 ‐0.273

Feb‐09 Apr‐09 0.005 ‐0.431 ‐11.309 1.872 ‐0.245 0.133 ‐0.001 ‐0.009 0.207 0.033 ‐0.177

Mar‐09 May‐09 0.005 0.379 ‐9.181 1.407 ‐0.243 0.219 ‐0.029 0.009 0.394 0.003 ‐0.143

Apr‐09 Jun‐09 ‐0.001 ‐4.500 2.013 1.850 0.225 0.234 ‐0.022 ‐0.002 0.990 ‐0.014 0.031

May‐09 Jul‐09 ‐0.003 ‐2.506 1.751 7.430 ‐2.176 0.181 ‐0.051 0.004 1.220 ‐0.012 0.048

Jun‐09 Aug‐09 ‐0.006 2.327 10.628 2.993 ‐1.576 ‐0.046 ‐0.022 ‐0.037 1.159 0.020 0.011

Jul‐09 Sep‐09 0.001 1.944 ‐4.402 10.927 ‐5.568 ‐0.040 0.011 0.038 0.994 0.001 ‐0.094

Aug‐09 Oct‐09 0.002 8.687 ‐4.225 11.403 ‐8.536 ‐0.210 0.008 ‐0.044 0.826 0.009 ‐0.122
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Table 1.3 Continued: Beta and NW‐Tstats of Rolling‐Window Regression C

Dependent varible: 1‐day realized excess return of negative basis trading

Panel B: Newey West Tstat

Start End constant libor‐ffr ffr ted ted*asw Basis MKTRF DEF TERM signedtv ted2*tv

Mar‐07 May‐07 ‐0.102 0.289 0.100 ‐1.681 1.631 0.857 0.079 ‐5.302 ‐0.483 3.762 1.693

Apr‐07 Jun‐07 ‐0.216 ‐0.073 0.216 ‐1.741 2.487 2.045 ‐0.639 ‐6.056 1.864 3.362 ‐0.518

May‐07 Jul‐07 ‐2.720 2.971 2.743 0.142 ‐2.003 1.510 ‐0.726 ‐4.053 0.442 2.510 1.268

Jun‐07 Aug‐07 ‐1.612 3.229 1.757 ‐1.431 0.722 0.587 ‐1.110 ‐5.878 0.640 2.461 0.305

Jul‐07 Sep‐07 0.851 0.862 ‐0.674 ‐2.028 2.088 0.798 ‐1.654 ‐6.825 1.565 2.301 ‐0.216

Aug‐07 Oct‐07 ‐0.346 2.235 0.636 ‐1.445 1.260 1.403 ‐1.214 ‐11.036 0.397 6.066 ‐0.517

Sep‐07 Nov‐07 0.711 ‐0.757 ‐0.650 0.143 ‐0.429 ‐0.191 0.118 ‐4.593 0.223 4.106 1.646

Oct‐07 Dec‐07 0.312 ‐0.944 ‐0.184 ‐0.040 ‐0.004 ‐0.010 ‐1.485 ‐3.904 0.268 3.143 1.572

Nov‐07 Jan‐08 0.136 ‐0.623 ‐0.176 ‐0.339 0.485 ‐0.919 ‐1.850 ‐5.728 1.714 2.949 2.247

Dec‐07 Feb‐08 ‐0.531 1.780 0.394 1.450 ‐1.640 ‐0.943 ‐0.430 ‐6.909 ‐0.031 2.552 ‐1.608

Jan‐08 Mar‐08 ‐1.537 1.705 1.588 ‐0.297 0.115 ‐0.432 ‐0.839 ‐7.537 0.132 3.733 ‐0.895

Feb‐08 Apr‐08 ‐1.639 2.907 1.357 ‐1.406 1.329 0.926 ‐1.326 ‐7.163 0.784 3.103 ‐0.998

Mar‐08 May‐08 0.394 0.566 ‐0.432 ‐1.246 2.260 ‐0.432 ‐1.571 ‐5.666 1.143 2.003 ‐0.246

Apr‐08 Jun‐08 ‐1.134 2.644 1.159 ‐2.350 2.263 1.406 ‐0.740 ‐5.942 2.294 1.535 ‐1.873

May‐08 Jul‐08 ‐1.932 2.712 1.952 ‐3.131 3.193 ‐0.239 ‐1.646 ‐4.980 2.457 1.908 ‐2.405

Jun‐08 Aug‐08 0.092 2.194 0.164 1.446 ‐5.559 ‐3.368 ‐2.540 ‐1.073 3.158 0.425 ‐2.218

Jul‐08 Sep‐08 2.078 2.118 0.239 ‐2.950 2.120 1.296 ‐0.612 ‐0.822 1.589 1.901 ‐1.233

Aug‐08 Oct‐08 1.989 0.964 ‐0.615 ‐0.963 1.096 1.635 0.408 0.683 1.724 3.411 ‐2.614

Sep‐08 Nov‐08 1.034 0.290 ‐1.391 ‐0.545 1.182 1.927 ‐1.062 ‐0.647 0.872 1.670 0.075

Oct‐08 Dec‐08 0.943 0.002 ‐1.459 0.668 ‐0.464 1.379 ‐1.471 1.096 2.168 1.864 0.725

Nov‐08 Jan‐09 0.101 2.771 ‐0.587 0.708 ‐1.573 ‐0.463 ‐1.519 ‐0.506 3.498 2.488 3.802

Dec‐08 Feb‐09 2.708 0.368 ‐3.036 3.129 ‐2.665 0.054 0.196 0.670 4.773 1.803 0.835

Jan‐09 Mar‐09 0.821 1.268 ‐0.815 2.899 ‐2.912 ‐0.383 ‐0.383 ‐0.089 3.560 2.724 ‐2.442

Feb‐09 Apr‐09 1.508 ‐0.278 ‐1.587 1.557 ‐1.200 0.816 ‐0.055 ‐0.079 1.047 1.177 ‐1.512

Mar‐09 May‐09 1.903 0.234 ‐1.793 1.131 ‐0.877 1.623 ‐1.322 0.172 1.380 0.121 ‐1.295

Apr‐09 Jun‐09 ‐0.321 ‐1.248 0.365 0.808 0.921 1.720 ‐0.770 ‐0.055 4.691 ‐0.833 0.285

May‐09 Jul‐09 ‐0.780 ‐0.695 0.271 2.571 ‐2.293 1.285 ‐2.135 0.167 9.519 ‐0.785 0.357

Jun‐09 Aug‐09 ‐2.505 0.943 1.906 1.371 ‐1.932 ‐0.333 ‐0.985 ‐0.745 6.681 1.191 0.040

Jul‐09 Sep‐09 0.592 0.633 ‐1.025 1.649 ‐1.414 ‐0.263 0.419 0.371 5.147 0.066 ‐0.212

Aug‐09 Oct‐09 1.331 2.888 ‐1.051 2.096 ‐2.530 ‐1.438 0.379 ‐0.308 3.559 0.574 ‐0.267
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Table 1.4: Term Structure of the Size of Negative Basis Trading RER

Table 1.4: Term Structure of the Size of Negative Basis Trading RER

Average Absolute RER of NBT on Underlyings of Different Maturity

2year 5year 9year

1day 0.08% 0.19% 2.90%

|RER_nbt| 1week 0.22% 0.46% 3.12%

1month 0.79% 1.24% 4.21%
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Table 1.5: Comparative Statics Results on Basis Trading

Table 1.5: Comparative Statics Results on Basis Trading

1.5A

Relationship between Size of Basis Trading RER and TED

TED

low medium high

1day 0.172 0.110 0.173 0.204 0.281

|RER_nbt| 1week 0.362 0.271 0.450 0.463 0.707

1month 1.181 0.693 1.221 1.326 1.487

2month 1.951 1.657 1.860 2.813 2.317

1.5B

Relationship between Size of Basis Trading RER and Vol of Default Intensity

Vol of Lambda

low medium high

1day 0.192 0.186 0.158 0.224 0.259

|RER_nbt| 1week 0.537 0.384 0.397 0.472 0.707

1month 0.764 0.929 1.275 1.061 1.979

2month 1.413 1.673 1.623 3.247 3.813

1.5C

Relationship between  Size and Volatility of Basis Trading RER

Vol_nbt

low medium high

|RER_nbt| 1day 0.117 0.167 0.181 0.262 0.255

1week 0.191 0.464 0.433 0.524 0.608

1.5D

Relationship between  Volatility of Basis Trading RER and TED

TED

low medium high

Vol_nbt 1day 0.072 0.138 0.177 0.243 0.263

1week 0.179 0.271 0.338 0.495 0.539
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Table 1.6: Predictability of Credit Spread Term Structure on Credit Spread Changes

Table 1.6: Predictability of Credit Spread Term Structure on Credit Spread Changes

Set 1 Y variable: changes in 1‐5yr Grade A ASW spread

Set 1 X variable: 3‐5yr Grade A ASW spread minus 1‐5yr Grade A ASW spread

Set 2 Y variable: changes in 1‐5yr Grade AA ASW spread

Set 2 X variable: 3‐5yr Grade AA ASW spread minus 1‐5yr Grade AA ASW spread

Set 3 Y variable: changes in 5‐10yr Grade A ASW spread

Set 3 X variable: 7‐10yr Grade A ASW spread minus 5‐7yr Grade A ASW spread

Set 4 Y variable: changes in 5‐10yr Grade AA ASW spread

Set 4 X variable: 7‐10yr Grade AA ASW spread minus 5‐7yr Grade AA ASW spread

1.6A

Regression Results of 15‐day Credit Spread Change on Slope of CS Term Structure

Set 1 Set 2 Set 3 Set 4

Period 1: 07/2007‐02/2008

estimate Nwtstat estimate Nwtstat estimate Nwtstat estimate Nwtstat

constant 0.09 (2.27) 0.39 (3.82) ‐0.14 (‐1.83) ‐0.04 (‐0.62)

slope 0.00 (1.75) ‐0.01 (‐1.05) 0.00 (0.05) 0.02 (2.86)

adj.R^2 0.03 0.01 ‐0.01 0.09

Period 2: 03/2008‐03/2009

estimate Nwtstat estimate Nwtstat estimate Nwtstat estimate Nwtstat

constant 0.13 (1.42) 0.01 (0.17) ‐0.92 (‐7.91) ‐1.01 (‐11.92)

slope 0.00 (‐0.04) 0.01 (2.30) 0.00 (0.99) 0.02 (6.98)

adj.R^2 0.00 0.09 0.02 0.39

Period 3: 04/2009‐09/2009

estimate Nwtstat estimate Nwtstat estimate Nwtstat estimate Nwtstat

constant 0.02 (0.76) 0.05 (1.24) ‐0.98 (‐14.16) ‐1.25 (‐5.53)

slope 0.00 (7.07) 0.02 (10.81) 0.03 (6.55) 0.03 (4.29)

adj.R^2 0.60 0.60 0.38 0.46

1.6B

Regression Results of 5‐day Credit Spread Change on Slope of CS Term Structure

Set 1 Set 2 Set 3 Set 4

Period 1: 07/2007‐02/2008

estimate Nwtstat estimate Nwtstat estimate Nwtstat estimate Nwtstat

constant 0.00 (0.29) 0.17 (2.13) ‐0.22 (‐3.20) ‐0.01 (‐0.11)

slope 0.00 (2.87) 0.00 (0.37) 0.00 (0.37) 0.00 (0.39)

adj.R^2 0.14 0.00 0.00 0.00

Period 2: 03/2008‐03/2009

estimate Nwtstat estimate Nwtstat estimate Nwtstat estimate Nwtstat

constant 0.03 (0.84) ‐0.05 (‐1.03) ‐0.91 (‐8.63) ‐0.94 (‐17.79)

slope 0.00 (‐0.55) 0.01 (3.40) 0.00 (0.44) 0.01 (7.89)

adj.R^2 0.00 0.24 0.00 0.32

Period 3: 04/2009‐09/2009

estimate Nwtstat estimate Nwtstat estimate Nwtstat estimate Nwtstat

constant 0.00 (‐0.24) 0.20 (9.91) ‐0.88 (‐16.29) ‐1.05 (‐7.20)

slope 0.00 (3.16) 0.01 (14.11) 0.02 (5.61) 0.02 (5.89)

adj.R^2 0.22 0.72 0.29 0.54
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1.11 Appendix 1.D: Alternative Assumption for λt

To avoid the problem of having negative default intensity, assume the default inten-

sity is still λ̃+ λt, where λt follows:

dλt = κλ(λ̄− λt)dt+ σλ
√
λtdBλ,t (1.96)

Where κλ, λ̄ and σλ are positive constants, and Bλ,t is a Brownian Motion. The

drift term of the bond prices then change to:

µct = −Acλκλ(λ̄− λt)−Aczκr(r̄ − rt) +Acλ
′λt +Acr

′rt + Cc′ +
1

2
Acλ

2σ2
λλt +

1

2
Acr

2σ2
r

(1.97)

µdt = −Adλκλ(λ̄− λt)−Adrκr(r̄ − rt) +Adλ
′
λt +Adr

′
rt + Cd

′
+

1

2
Adλ

2
σ2
λλt +

1

2
Adr

2
σ2
r

(1.98)

Substitute the above into the dynamic budget constraint, the F.O.C.s are:

µct(τ)− rt − hct(τ)
|xct(τ)|
xct(τ)

− L(λ̃+ λt) = LΦJ,t − σλ
√
λtA

c
λ(τ)Φλ,t − σrAcr(τ)Φr,t

(1.99)

µdt (τ)− rt − hdt (τ)
|xdt (τ)|
xdt (τ)

− L(λ̃+ λt) = LΦJ,t − σλ
√
λtA

d
λ(τ)Φλ,t − σrAdr(τ)Φr,t

(1.100)

where

ΦJ,t = γL

∫ T

0
[xdt (τ) + xct(τ)](λ̃+ λt)dτ (1.101)

Φλ,t = γσλ
√
λt

∫ T

0
[−xdt (τ)Adλ(τ)− xct(τ)Acλ(τ)]dτ (1.102)

Φr,t = γσr

∫ T

0
[−xdt (τ)Adr(τ)− xct(τ)Acr(τ)]dτ (1.103)

are the market prices of risks to the default jump, default intensity and short rate

factors.

Under constant demand pressure assumption, in equilibrium, markets clear. So

xit + zi = 0, i = c, d. Replace xit(τ) by −zi(τ), and replace hit by the functions

defined in the funding cost section, then the F.O.C.s are affine equations in the risk

factors λt and rt. Setting the linear terms in λt and rt to zeros implies that the

parameters Aij(τ) in the conjectured bond prices are the solutions to a system of
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ODEs with initial conditions Aij(0) = 0, i = c, d and j = λ, r:

Acλ
′(τ) +

1

2
σ2
λA

c
λ(τ)2 + {κλ + γσ2

λ

∫ T

0
[zd(τ)Adλ(τ) + zc(τ)Acλ(τ)]dτ}Acλ(τ)

= −αc(τ)
|zc(τ)|
zc(τ)

+ L− γL2
∫ T

0
[zd(τ) + zc(τ)]dτ (1.104)

Adλ
′
(τ) +

1

2
σ2
λA

d
λ(τ)

2
+ {κλ + γσ2

λ

∫ T

0
[zd(τ)Adλ(τ) + zc(τ)Acλ(τ)]dτ}Adλ(τ)

= −αd(τ)
|zd(τ)|
zd(τ)

+ L− γL2
∫ T

0
[zd(τ) + zc(τ)]dτ (1.105)

Acr
′(τ) + κrA

c
r(τ)− 1 = 0 (1.106)

Adr
′
(τ) + κrA

d
r(τ)− 1 = 0 (1.107)

Comparing to the simple mean-reverting λt used in the main text, the additional

square-root assumption adds a quadratic term of Aiλ to the coefficient of λt in the

drift term of the bond prices. It also adds a linear term of Aiλ to the coefficient of λt

on the right hand side of the F.O.C.. These changes the equation for Aiλ from simple

linear ODE to Riccati equation, which can still be solved in closed-form easily. Note

that the equations for Acλ and Adλ are symmetric but for the difference in parameter

αc and αd on the right hand side. Therefore, the solutions are symmetric but for

the difference in parameter αc and αd, just like under the simple mean-reverting

assumption in the main text. So the main conclusions on the expected excess return

of basis trading in Corollary 1.1 still hold.

However, the above results are derived under the assumption of constant demand

pressure. Under the stochastic demand pressure in Case 2, the right hand side

of the F.O.C.s will emerge a ztλt term that makes the system non-linear. In the

constant demand pressure case, the market price of risk contains square-root of the

variable, and the exposure to the risk factor also contains square-root of the variable,

so the risk premium is linear in the variable. However, under stochastic demand

pressure, the exposure to the risk factor still contains square-root of the variable,

but the market price of risk contains the square-root of one variable multiplied by

the linear term of the other variable, so the risk premium is no longer linear in the

variables. This problem cannot be resolved even if the conjectured price function

changes to include non-linear terms of the variables. Therefore, results in the main

text are still presented under the simple mean-reverting assumption for λt, even

though it has the drawback of creating negative default intensity.
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2 General Equilibrium Analysis of Stochastic Bench-

marking

Abstract

This paper applies a closed-form continuous-time consumption-based general equi-

librium model to analyze the equilibrium implications when some agents in the

economy promise to beat a stochastic benchmark at an intermediate date. For very

risky benchmark, these agents increase volatility and risk premium in the equilib-

rium. On the other hand, when they promise to beat less risky benchmark, they

decrease volatility and risk premium in the equilibrium. In both cases, the degree

of effect is state-dependent and stock price rises.

2.1 Introduction

This paper studies the equilibrium implications when some agents in the econ-

omy face stochastic benchmarking constraint. These constrained benchmarking

agents characterize fund managers who promise to beat a stochastic benchmark

at an intermediate date. Using the martingale approach, I solve a continuous-time

consumption-based general equilibrium model explicitly to get the equilibrium as-

sets prices, risk premium, volatility and optimal strategies in this benchmarking

economy featuring both normal unconstrained agents and constrained benchmark-

ing agents. I also compare these equilibrium quantities with those in a normal

economy featuring only normal unconstrained agents so as to highlight the impact

of the benchmarking constraint on the economy. To my knowledge, this is the first

paper to investigate the equilibrium effects of this type of benchmarking constraint.

The benchmarking constraint in this paper is a requirement that an agent’s wealth

at a pre-specified intermediate date is no less than a stochastic benchmark index.

The problem of beating a constant floor has been studied by the portfolio insurance

literature, e.g. the equilibrium analysis of portfolio insurance by Basak (1995) and

Grossman and Zhou (1996). However, the portfolio insurance constraint only en-

sures the agent doesn’t lose more than a certain level without asking for a higher

return when the economy is good. Fund manager’s performance is often evaluated

against a benchmark index. Facing this benchmarking constraint is equivalent to

promising to beat the performance of the benchmark index at a certain evaluation

date. The economy consists of two assets, a risk-free money market account and

a risky stock. The stochastic benchmark index is a replication portfolio using the
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money market account and the stock. Therefore, it is achievable through passive

management and the riskiness of the benchmark is measured by the positions in the

risk-free money market account.

After describing the finite horizon standard Lucas (1978) economy with an inter-

mediate constraint date, I first characterize the portfolio choice problems for the

normal agents and the constrained agents. The approach is the martingale rep-

resentation approach as in Cox and Huang (1989) and Basak (1995). Then I get

explicit solutions for the equilibrium market dynamics under log utility using the

martingale approach for option pricing and Ito’s lemma. This paper adopts simi-

lar set-ups as in Basak (1995), but the alternative consideration of the stochastic

benchmark complicates the calculation of equilibrium quantities and the discussion

of equilibrium effects.

I find that in the benchmarking economy before the constraint date, the stock price

is higher than that in the normal economy because the constrained agents consume

less than if they’re not constrained. Since the money market account is in zero net

supply, the extra investment from the constrained agents goes into the stock market

and drives up the stock price before the constraint date. The increase in stock price

also reflects the constrained agents’ preferences for consumption and dividend after

the constraint date.

If the benchmark is risky, which means the replication portfolio of the benchmark

index has a short position in the money market account, then the risk premium

and volatility are higher than those in the normal economy. Moreover, the optimal

fraction of wealth invested in the stock by the constrained agent is higher than that

of the unconstrained normal agent. While if the benchmark is safe, which means

the replication portfolio of the benchmark index has positive position in the money

market account, then the risk premium and volatility are lower than those in the

normal economy, and the optimal fraction of wealth invested in the risky asset by

the constrained agent is lower than that of the unconstrained normal agent. In both

cases, the degree of the effect is state-dependent.

The rationale behind these findings is that the presence of the benchmarking con-

straint results in more (or less) demand for the stock from the constrained agent,

then the volatility has to increase (or decrease) so as to induce unconstrained normal

agents to change their demand and clear the market. It is also because that the
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stock price in this economy is equal to the normal economy price plus the present

value of an option-like payoff that represents the effects from the benchmarking con-

straint. For the risky benchmark case, the extra payoff is like a call option payoff

and the effect is thus volatility increasing; but for the safe benchmark case, the extra

payoff is like a put option payoff and the effect becomes volatility decreasing. From

the modeling aspect, the market price of risk is constant and the SPDs before the

constraint date are not directly affected by the existence of the constraint due to the

use of the consumption good as numeraire and the existence of intermediate divi-

dend for consumption, which are not true in some other papers that have contrary

conclusions for certain parts of the model, for instance Grossman and Zhou (1996).

However, the conclusion of this paper is consistent with that for the portfolio insur-

ance model of Basak (1995), which has the similar set-up and approach with this

paper.

The closest literatures are the equilibrium analysis of portfolio insurance by Basak

(1995) and Grossman and Zhou (1996). Basak (1995) builds a similar consumption-

based general equilibrium model and compares the explicit expressions for equilib-

rium market dynamics in the portfolio insurance economy with those in the normal

economy. The portfolio insurers’ strategies are similar to the synthetic put approach

and the presence of the intermediate portfolio insurance constraints decreases the

risk premium, volatility and optimal fraction of wealth invested in the risky asset.

The use of log utility ensures the SPDs are not affected by the constraints since they

are derived by market clearing of intermediate consumption. In contrast, Grossman

and Zhou (1996) adopts a different set-up in which the portfolio insurance con-

straint is on the final date and there’s no intermediate consumption so agents only

care about consumption at the final date which is financed by a lump-sum of divi-

dend. Therefore, the pricing kernels before the final date are directly affected by the

constraint and that makes the overall effect of portfolio insurance to be increasing

risk premium and volatility. However, the use of bond price as the numeraire results

in different predictions with Basak (1995) and makes the model impossible to be

solved explicitly. As mentioned above, these two papers only consider the case of

portfolio insurance which is benchmarking on a constant floor while Tepla (2001)

studies the optimal portfolio choice of an agent who performs against a stochastic

benchmark similar to the one considered here but doesn’t derive the equilibrium

results.

The general topic of optimal strategy and asset pricing implications of constrained
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or benchmarking institutional investors have been explored by a number of papers.

Basak and Shapiro (2001) reveal in a general equilibrium model that VaR risk man-

agers amplify volatility in poor market and attenuate volatility in good market.

Basak and Chabakauri (2012) provide a new framework that derives the optimal

strategy of portfolio managers who care about their tracking error to a benchmark.

Basak and Pavlova (2012) show that institutional investors favor stocks that com-

prise their benchmark index and amplify the index stock volatilities and aggregate

stock market volatility.

In the rest of the paper, Section 2.2 presents the model and characterizes the op-

timization problems of agents. Section 2.3 solves for the equilibrium and shows

the main effects of the benchmarking constraint on the economy. Then Section 2.4

presents more discussion on the equilibrium effects before Section 2.5 concludes.

2.2 The Model

2.2.1 The Economy

In a finite horizon [0, T ′] pure-exchange economy, all quantities are in units of a

consumption good. Let B denote a Brownian Motion on a complete probability

space (Ω,F ,P). Let {Ft; t ∈ [0, T ′]} be the augmentation by null sets of the filtration

generated by B, which represents all uncertainties in the economy. Prior to T ′, some

agents face a constraint at the constraint date T , which will be specified later.

2.2.2 Securities

The economy consists of two assets. S0 is a risk-less money market account in zero

net supply that pays interest at rate rt, which is to be determined in the equilibrium,

and S is a risky stock in constant net supply of 1 and pays dividend at an exogenous

rate of δt in [0, T ′]. Assume that the dividend process follows a Geometric Brownian

Motion.

dδt = δt(µδdt+ σδdBt), t ∈ [0, T ′] (2.1)

where µδ and σδ are both constants. Similar to Basak (1995), I anticipate a price

discontinuity in equilibrium around the intermediate constraint date T .22 Therefore,

I model the stock price as a diffusion process with an FT -measurable jump at time

T :

dSt + δtdt = St(µtdt+ σtdBt + qdAt), t ∈ [0, T ′] (2.2)

22For more intuition, see the section for equilibrium
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And ST ′ = 0. Here, At is the right-continuous step function defined by At ≡ 1t≥T ,

and the FT -measurable random variable q is the jump size parameter, defined as

q = ln(ST /ST−), where ST− denotes the left limit of ST . As explained in Basak

(1995), the above specifications ensure that the stock price has continuous local

martingale part and discontinuous bounded variation part that contains an FT -

measurable jump. The money market account’s value also has a jump:

dS0
t = S0

t (rtdt+ q0dAt), t ∈ [0, T ′] (2.3)

By construction, the jump sizes are revealed immediately before the jumps occur.

So to rule out arbitrage, q = q0.

2.2.3 State Price Density

Given market completeness, define the state price density process (SPD) as:

πt =
1

S0
0

exp(−
∫ t

o
rsds−

∫ t

o
θsdBs −

1

2

∫ t

o
θ2
sds− qAt) (2.4)

where θt = (µt−rt)/σt is the market price of risk. The SPD process which represents

the price of consumption also contains a jump, which is of the opposite direction of

jumps in asset prices.23 Apply Ito’s lemma to πt gives:

dπt = −πt(rtdt+ θtdBt + qdAt), t ∈ [0, T ′] (2.5)

and using the SPD process, the relationship between the stock price and future

dividends is

St =
1

πt
E[

∫ T ′

t
πsδsds | Ft], t ∈ [0, T ′] (2.6)

2.2.4 Agents

The economy has two types of agents, i.e. agent type n and agent type m. Type n

agent is the normal agent, while type m is referred to as the constrained agent later

on. Each type has infinite number of agents that form a continuum with measure

1. Each agent belonging to type n or type m is endowed with initial wealth xn0 or

xm0 at time zero respectively.24 Let Xit denote the wealth of an agent of type i at

23Because asset prices are in units of consumption goods, when asset prices jump downward,
SPD as the price of consumption jumps upward, and the product of πS remains continuous.

24The endowment can be in the form of shares of the stock, each type n and type m agents’
endowed shares of stock worth xn0 and xm0, which add up to the stock price at time 0.
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time t, i = n,m, then Xit follows:

dXit = (1−Φit)Xit(rtdt+qdAt)+ΦitXit(µtdt+σtdBt+qdAt)−citdt, t ∈ [0, T ′] (2.7)

where Φit denotes the fraction of wealth invested in the risky asset and cit is the

consumption process for agent i. Both type of agents have time-additive state-

independent utility function over consumption. The function u(cit) is the same for

all agents and is continuous with continuous first derivatives, strictly increasing,

strictly concave. Hereafter, denote all optimal quantities with a caret (ˆ). The

optimal wealth of an agent satisfies:

X̂it =
1

πt
E[

∫ T ′

t
πsĉisds | Ft], t ∈ [0, T ′] (2.8)

In this model, a type n agent is the normal agent. But a type m agent is the con-

strained agent who faces a stochastic benchmarking constraint at time T so that

she has to maintain her time T wealth above a stochastic benchmark index aST + b,

where a and b are exogenously given constants. For a type m agent, the constraint

is XmT− ≥ aST + b, where XmT− is the left limit of XmT .25

Although the parameters a and b are exogenous, the benchmark index value aST +b

is endogenous. Type m agents characterize fund managers who promise investors

to beat a benchmark index at a given evaluation date (time T ). The value of b

characterizes the riskiness of the benchmark. As will be explained in more details

in latter sections, an unconstrained investor with log utility will optimally choose to

invest all wealth in the stock, so b < 0 suggests the benchmark is more risky than

the agent’s original strategy; and b > 0 means the benchmark is relatively safe as

it contains positive position in the money market account while the agent’s original

strategy doesn’t. The parameter values a and b have important implications on the

equilibrium properties.

2.2.5 The Optimization Problems

A normal agent solves the following standard problem:

max
cn

E[

∫ T ′

0
u(cns)ds] (2.9)

25The idea of comparing time T− wealth against time T benchmark value may be confusing at
first glance, but in equilibrium ST = (T ′−T )δT−, so the constraint is effectively requiring time T−
wealth to be no less than a stochastic time T− value.
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subject to E[

∫ T ′

0
πscnsds] ≤ π0xn0 (2.10)

Assuming a solution exists, the optimal consumption is simply:

ĉnt = I(λnπt) t ∈ [0, T ′] (2.11)

where I(·) is the inverse of u′(·) and λn satisfies:

E[

∫ T ′

0
πsI(λnπs)ds] = π0xn0 (2.12)

Alternatively, a constrained agent faces an additional benchmarking constraint as

well as the normal budget constraint which is now written in two parts:

max
cm,XmT−

E[

∫ T ′

0
u(cms)ds] (2.13)

subject to E[

∫ T

0
πscmsds+ πT−XmT−] ≤ π0xn0 (2.14)

E[

∫ T ′

T
πscmsds | FT ] ≤ πT−xmT− almost surely, (2.15)

XmT− ≥ aST + b almost surely (2.16)

Lemma 2.1. Assuming a solution exists, a constrained agent’s optimal consumption

is:

ĉmt = I(λm1πt) t ∈ [0, T ) (2.17)

ĉmt = I(λm2πt) t ∈ [T, T ′] (2.18)

where λm1 and λm2 satisfy:

E[

∫ T

0
πsI(λm1πs)ds+ πT−max{aST + b,

1

πT−
E[

∫ T ′

T
πsI(λm1πs)ds|FT ]}] = π0xm0

(2.19)

E[

∫ T ′

T
πsI(λm2πs)ds|FT ] = πT−max{aST + b,

1

πT−
E[

∫ T ′

T
πsI(λm1πs)ds|FT ]}

(2.20)

N.B. (1) λn, λm1 are constants, λm2 is an FT -measurable random variable. (2) If

xn0 = xm0, then λm1 ≥ λn. (3) λm1 = λm2 if the benchmarking constraint is not

binding; λm1 > λm2 if it is binding.

Proof. see Appendix 2.
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The above results suggest if a constrained agent is equally endowed as a normal

agent, then the constrained agent consumes less before the constraint date than the

normal agent so as to ensure her wealth at the constraint date is higher than the

benchmark value. If the constraint is binding, then the constrained agent no longer

restricts her consumption after the constraint date so it may rise.

2.3 The Equilibrium

2.3.1 Market Clearing Conditions

The equilibrium conditions are the market clearing of consumption goods, the mar-

ket clearing of the money market account and the market clearing of the stock.

These conditions imply that the aggregate optimal consumption from all agents

adds up to the dividend:

δt = ĉnt + ĉmt t ∈ [0, T ′] (2.21)

Following this equilibrium condition, the SPD satisfies the following equations:

δt = I(λnπt) + I(λm1πt) t ∈ [0, T ) (2.22)

δt = I(λnπt) + I(λm2πt) t ∈ [T, T ′] (2.23)

For u(c) = log(c),26 the solution for the SPD πt is:

πt = (
1

λn
+

1

λm1
)

1

δt
t ∈ [0, T ) (2.24)

πt = (
1

λn
+

1

λm2
)

1

δt
t ∈ [T, T ′] (2.25)

Applying Ito’s lemma on πt which follows the dynamics in equation (2.5), I solve

for the following equilibrium quantities as:

rt = µδ − σ2
δ (2.26)

θt = σδ (2.27)

q = ln(
1

λn
+

1

λm1
)− ln(

1

λn
+

1

λm2
) ≤ 0 (2.28)

The short-rate rt and market price of risk θt are constants. Hereafter, denote

rt = µδ − σ2
δ = r and θt = σδ = θ.

26For simplicity, I only consider log-utility while similar approach can be applied to power and
negative exponential utilities.
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The SPD has an upward jump at time T . This jump is necessary for the equi-

librium condition to hold. If the SPD is continuous, the normal agent’s demand

for consumption will also be continuous. But when type m agent’s benchmarking

constraint is binding, since λm1 > λm2 and ĉmT− = 1/λm1πT−, ĉmT = 1/λm2πT , her

demand for consumption will jump upwards immediately after time T , resulting in

the aggregate demand for consumption jumping upwards, which is impossible since

the dividend process is continuous. Hence, there must be a jump in the SPD to

smooth the constrained agent’s demand for consumption. And the jump in SPD is

upward because the constrained agent values consumption after the constraint date

more than before the date.

As mentioned above, the other two equilibrium conditions are the market clear-

ing of the money market account and the market clearing of the stock. The money

market account is in zero net supply, so the aggregate optimal wealth invested into

the money market account adds up to zero in the equilibrium. On the other hand,

the stock is in a supply of 1, so the aggregate optimal wealth invested into the stock

adds up to the stock price. Recall that X̂nt and X̂mt denote the optimal wealth of

agents and Φ̂nt and Φ̂mt denote the optimal fraction of wealth invested in the stock,

the above two equilibrium conditions imply:

0 = X̂nt(1− Φ̂nt) + X̂mt(1− Φ̂mt) (2.29)

St = X̂ntΦ̂nt + X̂mtΦ̂mt (2.30)

Combining the above two equations implies that the stock price is the sum of all

agents’ optimal wealth.

St = X̂nt + X̂mt (2.31)

2.3.2 Asset Prices

In this section, I derive explicit solutions for the equilibrium stock price. Then in

the following sections, I provide explicit solutions to the risk premium, volatility

and agents’ optimal fraction of wealth invested into stock. For each equilibrium

quantity, I also provide results under a normal economy consisting only normal

agents to compare with the results under this benchmarking economy with both

normal and constrained agents. Hereafter, denote equilibrium quantities under the

normal economy with a bar (̄ ).
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Lemma 2.2. In the normal economy, the equilibrium stock price is:

S̄t = (T ′ − t)δt t ∈ [0, T ′] (2.32)

In the benchmarking economy, after the constraint date (t ∈ [T, T ′]), the stock price

St is the same as that in the normal economy:

St = (T ′ − t)δt t ∈ [T, T ′] (2.33)

But before the constraint date (t ∈ [0, T )), the stock price is no less than that in the

normal economy:

St = S̄t +
1

πt
E[πT−max{aST + b− λn

λn + λm1
(T ′ − T )δT−, 0}|Ft] (2.34)

≥ S̄t t ∈ [0, T ) (2.35)

Proof. see Appendix 2.

In the benchmarking economy before the constraint date, the stock price could be

higher than that in the normal economy because the stock price is the aggregate

amount of invested wealth, which reflects the present value of aggregate future con-

sumptions. In this benchmarking economy, agents value consumption after the con-

straint date time T more than before the constraint date. This concern is reflected

in the SPDs and then may results in a higher stock price than in the normal economy.

Now focus on the explicit solution of St for t ∈ [0, T ). From the equation (2.49),

ST = (T ′ − T )δT , and by the continuity of δt, δT− = δT . So, replace ST by

(T ′ − T )δT−, equation (2.53) becomes:

St = (T ′ − t)δt +
1

πt
E[πT−max{(a− λn

λn + λm1
)(T ′ − T )δT− + b, 0}|Ft] (2.36)

Since the process δt is a Geometric Brownian Motion, I apply the martingale ap-

proach to take the expectation in equation (2.36). Hereafter, assume (a− λn
λn+λm1

)b <

0, which means there’s always uncertainty over the relative performance of the un-

constrained strategy against the benchmark index aST+b. This assumption excludes

the cases where either the constraint will never bind (b < 0 and a − λn
λn+λm1

< 0),

in which case the constrained agent always behaves the same as the unconstrained

one, or the constraint will always bind (b > 0 and a − λn
λn+λm1

> 0), in which case

the constrained agent will just hold the benchmark index. Now, the stock price St
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is solved from equation (2.36) as:

Proposition 2.1. In the benchmarking economy, for t ∈ [0, t):

St = (T ′ − t)δt + (a− λn
λn + λm1

)(T ′ − T )N [− b

|b|
z1]δt + be−r(T−t)N [− b

|b|
z2] (2.37)

where

z1 = z2 + σδ
√
T − t

z2 =
ln[(a− λn

λn+λm1
)(T ′ − T )δt/− b] + (r − 1

2σ
2
δ )(T − t)

σδ
√
T − t

N(·) is the distribution function of normal random variable. And the optimal in-

vested wealth of agent m at time t is:

X̂mt = St − X̂nt = St −
λm1

λn + λm1
(T ′ − t)δt (2.38)

Proof. see Appendix 2.

2.3.3 Volatility and Risk Premium

Applying Ito’s lemma on St provides explicit solutions for the volatility and risk

premium in both the normal and benchmarking economy.

Proposition 2.2. In the normal economy, for t ∈ [0, T ′], the stock return volatility

σ̄t and risk premium µ̄t − r are:

σ̄t = σδ (2.39)

µ̄t − r = σ2
δ (2.40)

In the benchmarking economy, after the constraint date (t ∈ [T, T ′]), the stock return

volatility σt and risk premium µt − r are the same as those in the normal economy:

σt = σδ (2.41)

µt − r = σ2
δ (2.42)

But before the constraint date (t ∈ [0, T )), the stock return volatility and risk pre-

mium are different from those in the normal economy:

σt = [1−
be−r(T−t)N [− b

|b|z2]

St
]σδ (2.43)
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µt − r = [1−
be−r(T−t)N [− b

|b|z2]

St
]σ2
δ (2.44)

Proof. see Appendix 2.

Before the constraint date, whether the volatility and risk premium in the bench-

marking economy are higher or lower than those in the normal economy only depends

on the sign of the fraction term inside the bracket in the above set of equations.

Corollary 2.1. Before the constraint date (t ∈ [0, T )): for b < 0 (b > 0), the

volatility and risk premium in the benchmarking economy are higher (lower) than

those in the normal economy.

Proof. see Appendix 2.

The volatility and risk premium in the normal economy are constant. However, now

they become stochastic in the presence of the stochastic benchmarking constraint.

As will be explained in more details in latter sections, b < 0 means the benchmark

index is risky while b > 0 means the benchmark index is safe. The above corollary

suggests that when some agents in the economy promise to beat risky benchmark,

they increase volatility and risk premium in the equilibrium. On the other hand,

when they promise to beat safe benchmark, they decrease volatility and risk pre-

mium in the equilibrium. In both cases, the degree of the increase or decrease is

state-dependent as the N(z2) and St terms both depend on δt. The value of volatil-

ity and risk premium are also affected by the parameter a in the stochastic index, as

both z2 and St contains a. To better understand the results for volatility, I further

investigate agents’ optimal strategies.

2.3.4 The Optimal Strategy

Denote the optimal fraction of wealth invested in the risky asset by Φ̂nt and Φ̂mt for

agent of type n and agent of type m. Applying Ito’s lemma on πtX̂nt and πtX̂mt

provides explicit solutions for Φ̂nt and Φ̂mt in the benchmarking economy. I also

provide results in the normal economy for comparison.

Proposition 2.3. In the normal economy, the normal agent optimally invest all

her wealth in the stock.

In the benchmarking economy, for the normal agent n, the optimal fraction of wealth

invested in the stock is:

Φ̂nt = (µt − r)/σ2
t (2.45)
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While for the constrained agent m, after the constraint date (t ∈ [T, T ′]), the optimal

fraction of wealth invested in the stock is the same as that of the normal agent:

Φ̂mt = Φ̂nt = (µt − r)/σ2
t (2.46)

Before the constraint date (t ∈ [0, T )), the optimal fraction of wealth invested in the

stock is different from that of the normal agent:

Φ̂mt = [1−
be−r(T−t)N [− b

|b|z2]

X̂mt

]
µt − r
σ2
t

(2.47)

Proof. see Appendix 2.

Corollary 2.2. In the benchmarking economy before the constraint date (t ∈ [0, T )):

for b < 0 (b > 0), the constrained agent invests more (less) fraction of wealth in

the risky asset than the normal agent. And both agents’ optimal fraction of wealth

invested in the risky asset are now stochastic.

Proof. see Appendix 2.

2.4 Discussion of the Equilibrium

In the normal economy, agents invest all their wealth into the stock. In the ben-

chamrking economy, the benchmark faced by some agents is aST + b, so a = 1 and

b = 0 corresponds to a strategy that replicates the normal agent’s behavior in the

normal economy. If the benchmark has parameter b < 0, this is equivalent to a

strategy involving borrowing in the money market account to invest in stock. Such

a strategy is riskier than the normal agent’s behavior in the normal economy. There-

fore, such a benchmark is regarded as a risky benchmark. On the other hand, if

b > 0, this is equivalent to investing less in the stock but more in the money market

account, comparing with the normal agent’s behavior in the normal economy. Such

a benchmark is regarded as safe.

The existence of risky benchmark increases risk premium and volatility condition-

ally, while a safe benchmark decreases these terms. In both cases, the risky asset

price is higher in the presence of the benchmarking constraint than in the normal

economy. The conclusion here is consistent with that of Basak (1995), in which the

portfolio insurance constraint can be viewed as a special case of the benchmarking

constraint studied here.
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Such findings may be contrary to conventional wisdom, e.g. Grossman and Zhou

(1996), which says the inclusion of the portfolio insurance constrained agent should

increase volatility and risk premium. However, the results here are understandable

in the following ways:

Firstly, seen from Proposition 2.2 and Corollary 2.2, the effect of volatility can

be explained by the optimal fractions of wealth invested in the stock by both agents.

In the normal economy, both agents optimally invest all their wealth into the stock.

In the benchmarking economy, with safe benchmark, the constrained agents have

to invest less in the stock so as to hold some risk-free asset. To clear the market,

the normal agents have to buy more stock than they would in the normal economy.

Since Φ̂nt = (µt − r)/σ2
t = θ/σt, the only way to make the normal agent hold more

stock is to decrease σt. If the benchmark is risky, the constrained agents have to

hold more stock. So the volatility has to increase to induce the unconstrained agents

to hold less stock than they would in the normal economy. The above mentioned

rationale suggests that in the benchmarking economy which has a constant market

price of risk (θ), the volatility of the stock has to decrease (or increase) so as to

make the stock more (or less) attractive to the normal agent. Since the constrained

agents have to adjust their demand for the stock conditionally, the degree to which

the volatility is increased or decreased is therefore state-dependent.

For b < 0, agent m is more constrained in good states, so the effects on equilib-

rium dynamics are stronger in good states. While for b > 0, the agent is more

constrained in bad states, so the effects are stronger in bad states.

In another attempt to explain the results on volatility, recall the expression for

St before T in equation (2.36). The stock price in the benchmarking economy is

the normal economy price plus an expectation term which is the present value of an

option-like payoff, which is a call option payoff when the benchmark is risky, and a

put option payoff when the benchmark is safe. In the risky benchmark case, when

the market goes down the call option value goes down as well so the stock price falls

even further. Therefore, the constraint destabilizes price and increases volatility.

However, for the safe benchmark case, when the market goes down, the put option

value goes up, which helps stabilize stock price. So the volatility is decreased in the

presence of the constraint.

The results for the safe benchmark case is consistent with Basak (1995) which has
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the similar set-up in using consumption as numeraire and having intermediate con-

sumption, dividend and constraint date. These features result in a constant market

price of risk as compared to the price of consumption. But in Grossman and Zhou

(1996), the market price of risk is time-varying as they used bond price as numeraire

and there’s no intermediate consumption so the pre-constraint pricing kernels are

conditional expectations of the final one and therefore directly affected by the con-

straint. Therefore, the volatility is affected by both the change in market price of

risk and the change in agent’s risk aversion, and they show that the overall effect is

a higher volatility.

2.5 Concluding Remarks

This paper studies the equilibrium effect of a stochastic benchmarking constraint.

The economy has normal agents with log utility over continuous consumption and

constrained agents whose wealth at an intermediate date must lie above a stochastic

benchmark index. Using the martingale approach, I solve this consumption-based

general equilibrium model in closed form to get the equilibrium assets prices, risk

premium, volatility, optimal strategy and compare them with those in a normal

economy. The problem of the equilibrium effects of portfolio insurance studied by

Basak (1995) and Grossman and Zhou (1996) is a special case of the problem stud-

ied here.

The constrained agents can be understood as fund managers who promise investors

to beat a benchmark index that is achievable through passive management. When

they promise to beat risky benchmark, they increase volatility and risk premium in

the equilibrium. On the other hand, when they promise to beat safe benchmark,

they decrease volatility and risk premium in the equilibrium. In both cases, the

degree of the increase or decrease is state-dependent.

The rationale behind these findings is that when there’s more (less) demand for

the stock from the constrained agent, the volatility has to increase (decrease) so as

to clear the market. This is true because in this model the market price of risk is

constant and the SPDs before the constraint date are not directly affected by the

existence of the constraint due to the existence of intermediate dividend for con-

sumption. The model has consistent results with the portfolio insurance model of

Basak (1995) that has the similar set-up and approach with this paper.

Further development of this paper may include numerically analyzing the equilib-
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rium effect of the benchmarking constraint under the Grossman and Zhou (1996)

set up, in which the constraint directly affect the SPDs, and studying more realistic

variation of the benchmarking constraint allowing for tracking errors.
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2.7 Appendix 2: Proofs of Lemmas and Propositions

2.1. Proof of Lemma 2.1

Replacing K in Basak (1995)’s proof of Lemma 3 by aST + b proves Lemma 2.1.

2.2. Proof of Lemma 2.2

In the normal economy, the equilibrium stock price is:

S̄t =
1

π̄t
E[

∫ T ′

t
π̄s

1

λnπ̄s
ds | Ft]

= (T ′ − t)δt t ∈ [0, T ′] (2.48)

In the benchmarking economy, the stock price St is derived for the two horizons

t ∈ [T, T ′] and t ∈ [0, T ) separately. For t ∈ [T, T ′], taking the optimal consumption

solutions into equation (2.8) gives the stock price St as:

St = X̂nt + X̂mt

=
1

πt
E[

∫ T ′

t
πs

1

λnπs
ds | Ft] +

1

πt
E[

∫ T ′

t
πs

1

λm2πs
ds | Ft]

=
1

( 1
λn

+ 1
λm2

) 1
δt

(
1

λn
+

1

λm2
)(T ′ − t)

= (T ′ − t)δt
= S̄t (2.49)

In the benchmarking economy, for t ∈ [0, T ):

St = X̂nt + X̂mt

=
1

πt
E[

∫ T ′

t
πs

1

λnπs
ds|Ft] +

1

πt
E[

∫ T

t
πs

1

λm1πs
ds+ πT−X̂mT−|Ft] (2.50)

Taking the optimal consumption solutions into equation (2.8) gives:

X̂nT− =
1

πT−
E[

∫ T ′

T
πsI(λnπs)ds | FT ] (2.51)

X̂mT− = max{aST + b,
1

πT−
E[

∫ T ′

T
πsI(λm1πs)ds | FT ]} (2.52)

Therefore,

St =
λm1

λn + λm1
(T ′ − t)δt +

λn
λn + λm1

(T − t)δt
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+
1

πt
E[πT−max{aST + b,

1

πT−
E[

∫ T ′

T
πsI(λm1πs)ds|FT ]}|Ft]

=
λm1

λn + λm1
(T ′ − t)δt +

λn
λn + λm1

(T − t)δt +
λn

λn + λm1
(T ′ − T )δt

+
1

πt
E[πT−max{aST + b− λn

λn + λm1
(T ′ − T )δT−, 0}|Ft]

= S̄t +
1

πt
E[πT−max{aST + b− λn

λn + λm1
(T ′ − T )δT−, 0}|Ft] (2.53)

≥ S̄t

2.3. Proof of Proposition 2.1

The expectation term in equation (2.36) is:

1

πt
E[πT−max{(a− λn

λn + λm1
)(T ′ − T )δT− + b, 0}|Ft] (2.54)

Define an equivalent martingale Q(A) ≡ E[z(T ′)1A], A ∈ FT ′ , where

zt ≡ exp{−
∫ t

0
θsdBs −

1

2

∫ t

0
θ2
sds} = πtS

0
t (2.55)

Therefore, the expectation term in equation (2.36) under measure Q can be written

as:
S0
t

S0
T−

EQ[max{(a− λn
λn + λm1

)(T ′ − T )δT− + b, 0}|Ft] (2.56)

Since the process δt is a Geometric Brownian Motion, the above term can be cal-

culated similarly as Black-Scholes option prices. When b < 0 and a − λn
λn+λm1

> 0,

it is equivalent to Black-Scholes European Call Option Price; when b > 0 and a −
λn

λn+λm1
< 0, it is equivalent to Black-Scholes European Put Option Price. Sum-

marizing the above two cases, it can be integrated explicitly as (a − λn
λn+λm1

)(T ′ −
T )N [− b

|b|z1]δt + be−r(T−t)N [− b
|b|z2] where z1 and z2 are as in Proposition 2.1.

2.4. Proof of Proposition 2.2

By definition dS̄t + δtdt = S̄t(µ̄tdt + σ̄tdBt) and dSt + δtdt = St(µtdt + σtdBt), t ∈
[0, T ) and t ∈ [T, T ′]. Apply Ito’s lemma on the explicit solution of S̄t and St, take

the diffusion terms into the above equations. Matching the diffusion terms solves

for the volatility σ̄t and σt respectively. Then use the relationship that (µ̄t−r)/σ̄t =

θ̄t = σδ and (µt − r)/σt = θt = σδ to derive the risk premium µ̄t − r and µt − r.
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2.5. Proof of Corollary 2.1

−e−r(T−t)N [− b
|b|z2] < 0, so for b < 0, [1−

be−r(T−t)N [− b
|b| z2]

St
] > 1 and vice versa.

2.6. Proof of Proposition 2.3

Applying Ito’s lemma on the product πtX̂t gives

d(πtX̂it) + πtĉitdt = πtX̂it(Φ̂itσt − θt)dBt (2.57)

i = n,m. Then apply Ito’s lemma on the products of πtX̂nt and πtX̂mt, take the

results into the above equation, then equaling the diffusion terms solves for Φ̂nt and

Φ̂mt.

2.7. Proof of Corollary 2.2

Same as the proof of Corollary 2.1.
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3 Institutional Asset Pricing with Heterogenous Belief

Abstract

We propose an equilibrium asset pricing model in which investors with heteroge-

neous beliefs care about relative performance. We find that the relative performance

concern leads agents to trade more similarly, which has two effects. First, similar

trading directly decreases volatility. Second, similar trading decreases the impact

of the dominant agents. When the economy is extremely good or bad, the sec-

ond effect is dominant so that the relative performance concern enlarges the excess

volatility caused by heterogeneous beliefs. When the first effect is dominant, which

corresponds to a normal economy, the volatility is lower than without the relative

performance concern. Moreover, this paper shows that the relative performance

concern also influences investors’ holdings, stock prices and risk premia. 27

3.1 Introduction

Fund managers care about their relative performance compared to their peer group.

In the fund management industry, the compensation for the money managers could

be a fixed proportion of the assets under management, or a fixed proportion plus

performance-based rewards. Under fixed contract, managers care not only about

the trading profit but also about the fund flows. Empirical evidence, such as in

Chevalier and Ellison (1997), Sirri and Tufano (1998) and Huang, Wei and Yan

(2007), shows the positive and convex relationship between the fund flows and the

relative performance. In reality, fund of fund investors’ decisions depend on fund

managers’ rankings. Under performance based contracts, peer group performance

is often used as benchmark in evaluating manager performance.

In the literature of delegated portfolio management, most people focus on how the

relative performance affects risk taking behaviors and the equilibrium implications

of the asset prices (as discussed below). However, how relative performance could

affect the trading generated from difference of opinions remains uncertain. It is

difficult to solve for the asset pricing implications with endogenous fund flows. We

instead assume that managers receive a bonus/penalty based on their relative per-

formance comparing to their peers.28 In a dynamic general equilibrium model with

27This paper was jointly co-authored with Mr. Shiyang Huang, Dr. Zhigang Qiu and Dr. Ke
Tang. Huang is from LSE, Qiu and Tang are from Hanqing Advanced Institute of Economics and
Finance, Renmin University of China.

28Our assumption is consistent with the observation of mutual fund managers’ compensation by
Ma, Tang and Gomez (2012), and takes both fixed (AUM related) and performance based contracts
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heterogeneous beliefs, we analyze the effects of the relative performance concern on

equilibrium quantities.

We consider a continuous time, finite horizon economy with two assets, interpreted

as the risky stock and the risk-free bond, respectively. There are two groups of risk-

averse agents, interpreted as fund managers, who optimally allocate their wealth

between two assets to maximize their utility at the final date. Each manager in a

certain group is identical; she has a CRRA utility function over both the final wealth

and the relative performance compared to managers in the other group. We adopt

the standard exchange economy with the Lucas (1978) type of aggregate dividends,

which follow the geometric Brownian motion. The heterogeneous beliefs come from

two groups of agents’ different opinions about the drift process of the dividend.

We solve the model in closed form by assuming that the risk aversion coefficient

is an integer. To illustrate our result and compare with the benchmark case with

only heterogeneous belief but not relative performance, we focus on a special case in

which the risk aversion coefficient is equal to 2. We first analyze the stock holdings,

specifically, the relative performance leads agents to trade more similarly. When

the relative performance is infinitely strong, both groups of agents submit the same

demand. The result is the same as the economy with one representative agent

whose beliefs are the average for the economy. The relative performance affects

the way that two groups of agents share the final dividend, and hence affects their

expectations for the final wealth. Note that the expectations are conditional on the

current state of the world. When both groups of agents believe that the economy

is very good, on expectation, the pessimistic group of agents with relative perfor-

mance holds more shares than the agents without relative performance, while the

optimistic group of agents holds fewer shares. Thus, in this case, the pessimistic

group of agents has more impact compared to the benchmark case. Perceiving this,

the optimistic group of agents tends to demand less relative to the benchmark case,

and the pessimistic group of agents also demands less. When both groups of agents

believe that they are in a very bad economy, the opposite is true. In some cases, the

two groups of agents can disagree with each other regarding the status of the econ-

omy, thus the optimistic group tends to demand fewer stocks and the pessimistic

demands more.

Regarding the market price of risk, we show that when the economy is good, the

into consideration.

96



optimistic group of agents possesses less wealth with relative performance than they

do without relative performance. Therefore, although the optimistic group of agents

still dominates the market, the stock is less overvalued with relative performance.

Hence, the market price of risk is higher with relative performance than it is without

relative performance. When the economy is bad, by a similar logic, the market price

of risk is lower than it is without relative performance. Moreover, the model also

indicates that the market price of risks is counter-cyclical for both groups of agents.

The stock price is also affected by the relative performance. When the economy

is very good (bad), the stock price is lower (higher) with relative performance than

it is without relative performance. This result is the aggregate of the stock holdings.

When both groups of agents believe that the economy is good, both groups hold

fewer shares relative to the benchmark case, and hence, the aggregate demand is

less and the stock price is lower. When both groups of agents believe that they are

in a bad economy, the opposite is true. When the two groups disagree regarding

whether it is a good or a bad economy, the stock price could either be higher or

lower than the price without relative performance.

The relative performance also affects the stock volatility. When the economy is

normal, the volatility is smaller relative to the benchmark case; however, in the

extreme economy, it is larger. Relative performance leads agents to trade similarly,

which has two effects. On the one hand, it makes the agents trade more similarly,

which has the direct effect of decreasing the stock volatility, and this effect is dom-

inant on normal days; on the other hand, it decreases the impact of the dominant

group of agents,29 which is dominant in the extreme economy. As a result, the

volatility is larger with relative performance than it is without relative performance

in the extreme economy. This result is consistent with the scenario of financial crisis.

One application of our model regards price impact and the survival of irrational

traders. This issue can be analyzed by assuming that one group of agents are ra-

tional and correct in their belief, and the other group of agents are irrational and

with the wrong belief. The case without relative performance is analyzed by Kogan,

Ross, Wang and Westerfield (2006) who demonstrate the range where the irrational

traders can survive. In our paper, the irrational traders have a higher survival prob-

ability in the presence of relative performance because they trade more similarly to

29It decreases the fraction of wealth held by the optimistic (pessimistic) agent in the good (bad)
economy.
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the rational traders.

Our paper is closely related to the asset pricing literature with heterogeneous beliefs

and delegated portfolio management. For asset pricing with heterogeneous beliefs,

the general framework is by Basak (2001, 2005), in which two agents disagree with

the drift of the dividend’s process. Other researchers consider the framework in

which one agent has the correct belief, and the other has the incorrect one, for ex-

ample, Kogan, Ross, Wang and Westerfield (2006) and Yan (2008). Those papers

examine the mis-pricing caused by the agent with the incorrect belief. Moreover,

Scheinkman and Xiong (2003) combine the heterogeneous beliefs and the short sales

constraints and show that this combination can create bubbles. Our paper combines

Basak’s framework with the relative performance and examines the equilibrium as-

set prices.

Delegated portfolio management literature is a growing field of research, which is

reasonable because a large fraction of the financial assets are held by institutional in-

vestors (Allen, 2000). Therefore, it is important for us to consider how the behavior

of institutions affects asset prices. In the literature, most of people consider mod-

els that have a single representative fund manager. For example, Vayanos (2004),

Vayanos and Woolley (2008), and He and Krishnamurthy (2009, 2010) belong to this

category. Because there is only one agent, the relative performance does not matter.

For the investigation of relative performance, researchers either use the relative

performance compared to some exogenous benchmark, or the relative performance

within the peer group, which is the same as is our paper. For example, Cuoco

and Kaniel (2010), Shang (2008) and Basak and Pavlova (2010) consider the rel-

ative performance compared to a passive benchmark, e.g., the S&P 500. On the

other hand, Kapur and Timmermann (2005), Basak and Makarov (2009, 2010) and

Kaniel and Kondor (2009) consider the relative performance within a peer group of

managers. All of these papers, however, consider only how the relative performance

might affect the risk taking behaviors of investors. To the best of our knowledge,

this paper is the first to investigate how the relative performance affects the trading

behavior generated by a difference of opinions.

Some papers study the asset pricing model with asymmetric information in which

the agents either know or do not know. For example, Dasgupta and Prat (2006,

2008) show that career concerns can increase uninformed trading and slow down
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the information revelation process, and Guerreri and Kondor (2010) show that ca-

reer concerns can generate a ‘reputation premium’ for the bond return and hence

increase the volatility of bond prices. In some sense, the relative performance con-

cerns are similar to reputation concerns. Our paper, which is different from those,

considers the case that agents either agree or disagree with their observations (i.e.,

heterogeneous beliefs).

Generally speaking, our paper is also related to the literature of ‘social status’,

which considers the asset pricing implications when the investors care about the

status of their wealth relative to the average of the society. For example, Bakshi

and Chen (1996) examine the impact of social status on portfolio and consumption

choices. In our model, two groups of agents want to beat the average (or each

other) which is, in some sense, very similar to the concerns regarding social status.

In Bakshi and Chen (1996), the average wealth level of the society is exogenously

given, but in our model the average level is endogenous. Thus, our model can be

thought of as a special case of ‘social status’ if we relax the assumption that the

agents are fund managers. Moreover, some papers consider ‘catching up with the

Joneses’, for example Chan and Kogan (2002), which has a similar interpretation

regarding social status. Our paper thus captures some of the futures of those models.

The rest of the paper is organized as follows. We first introduce the model setup in

Section 3.2, and develop a benchmark case without relative performance in Section

3.3. Section 3.4 presents a general model with relative performance. Section 3.5

shows a special case when the risk aversion coefficient equals two, and analyzes the

characteristics of volatility, portfolio choices, stock prices and market prices of risks.

In Section 3.6, we numerically consider more special cases as a robustness check.

As an extension of this paper, Section 3.7 discusses the survivalship of irrational

traders when they care about relative performance. Section 3.8 concludes.

3.2 The Model Setup

In this section, we first present the model setup for the economy including hetero-

geneous beliefs and the relative performance.

3.2.1 Economy

We consider a continuous time, finite horizon [0,T] economy with two assets that

are risky and risk-free, respectively. We interpret the risky asset as a stock that has
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the following dynamics
dSt
St

= µs,tdt+ σs,tdBt (3.1)

where σs,t > 0 and Bt is the standard Brownian motion defined on the filtered

probability space (Ω,F , {Ft} ,P). Note that the Brownian motion Bt is the only

source of uncertainty in this economy. The drift µs,t and diffusion σs,t are determined

in equilibrium. The stock is in positive net supply and pays the liquidating dividend

DT at time T . We assume Dt follows a geometric Brownian motion

dDt

Dt
= µDdt+ σDdBt (3.2)

where µD and σD are positive constants. The risk-free asset, interpreted as a bond,

is in zero net supply and has a constant return r. For simplicity, we assume r = 0.

There are two groups of agents, interpreted as fund managers, in the market who

optimally allocate their fund between the risky and the risk-free assets. Each group

has infinite number of managers that form a continuum with measure 1. Because

there are two groups, with a little abuse of notations, we use subscript of i to denote

the manager in group i, i ∈ (1, 2)30. Each manager i invests a fraction, θi,t, of her

investment wealth Wi,t on the stock. Hence, Wi,t follows

dWi,t = θi,tWi,t (µs,tdt+ σs,tdBt) (3.3)

We assume that the managers have the same initial endowment, which means that

each manager has Wi,0 = S0
2 initial wealth.

3.2.2 Relative Performance and Objective Function

In reality, two types of compensation contracts exist for fund managers: fixed (pro-

portional to Asset Under Management), or performance based. Under fixed contract,

managers care about fund flows, which according to empirical evidence31, depend

on a fund’s relative performance compared to peers. Under performance based con-

tract, a manager’s performance is compared to benchmarks that also include peer

performance. Consistent with the compensation contracts in the fund management

industry observed by Ma, Tang and Gomez (2012), we assume that the managers

receive a time T bonus or penalty that is related to their relative performance com-

paring to their peers. We assume that a manager receives bonus if her own type

30Thus, manager i means an individual manager who belongs to group i.
31Such as Chevalier and Ellison (1997), Sirri and Tufano (1998) and Huang, Wei and Yan (2007).
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beats the other type of managers, and suffers penalty if the other type beats her

own type of managers.

We define the functional form of the bonus/penalty in the following way: first de-

note Wi,T as the worth of manager i’s portfolio at time T , and Ri,T as the aggregate

return of all managers in group i relative to the aggregate return of all managers in

group j, where i = 1, j = 2 or vice versa. Manager i’s relative performance, Ri,T ,

is defined as:

Ri,T =
Wi,T /Wi,0

Wj,T /Wj,0
(3.4)

From our previous assumption, W1,0 = W2,0 = S0
2 . Then Ri,T =

Wi,T

Wj,T
depends only

on the ratio of their performance because they start with the same initial wealth.

Then define the bonus/penalty as:

BPi,T = Wi,T (Rki,T − 1) (3.5)

where k > 1. If Wi,T > Wj,T , then Ri,T > 1 and BPi,T > 0, so that manager i

receives a bonus. If Wi,T < Wj,T , then Ri,T < 1 and BPi,T < 0, so that manager i

receives a penalty. The assumption k > 1 ensures the bonus/penalty is increasing

and convex in manager i’s relative performance, which is consistent with empiri-

cal results. Following this assumption, manager i’s wealth from investment plus

bonus/penalty adds up to Wi,T + BPi,T = Wi,TR
k
i,T , which is the objective in her

optimization problem. Denote fi,T := (Ri,T )k, then a CRRA manager i’s objective

function32 is then:

vi,T =
(Wi,T fi,T )1−γ

1− γ
(3.6)

3.2.3 Heterogeneous Beliefs

Manager i has the probability space
(
Ω,F i,

{
F it
}
,P i

)
. Following the standard fil-

tering theorem, the dividend process under fund manager i’s belief follows

dDt

Dt
= µi,Ddt+ σDdBi,t (3.7)

By Girsanov’s theorem, dBi,t = dBt + ηidt is the Brownian motion in manager i’s

probability space , and ηi =
µD−µi,D

σD
. For two groups of agents, 1 and 2, equation

(3.7) implies

dB2,t = dB1,t + µdt (3.8)

32The objective function is consistent with the catch-up with Jones utility function.
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where

µ =
µ1,D − µ2,D

σD
(3.9)

(3.9) represents the investors’ disagreement on the drift of the dividend process,

normalized by its diffusion term. µ > 0 implies that the agents in group 1 are more

optimistic and vice versa. Given the priors of agents, µ is an exogenous parameter.33

Under the subjective measures of groups 1 and 2, the stock has the dynamics

dSt = St[µs,tdt+ σs,tdBt]

= St[µi,tdt+ σs,tdBi,t], for i = 1, 2 (3.10)

The two groups of agents must agree with the price, so we have the relationship

between the perceived means

µ1,t − µ2,t = σs,tµ (3.11)

Because the market is complete, there exists a unique state price density process,

πi, for each manager i
dπi,t
πi,t

= −κi,tdBi,t (3.12)

where

κi,t =
µi,t
σs,t

(3.13)

is the perceived market price of risk (Sharpe ratio) for group 1 and 2 respectively.

We also have κ1 − κ2 = µ which is the measure of the disagreement between the

agents’ perceived market price of risk.

3.3 The Benchmark Case: No Relative Performance (k = 0)

In this section, we analyze a benchmark case model as if there is no relative perfor-

mance; that is, k = 0. When k = 0, the indirect utility function, (3.6), becomes a

standard CRRA utility function, so that the problem for manager i becomes

maxEi
[
Wi,T

1−γ

1− γ

]
(3.14)

s.t. dWi,t = θi,tWi,t (µi,tdt+ σs,tdBi,t) (3.15)

33Details can be found from Basak (2004).
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This problem becomes the standard model with heterogeneous beliefs (e.g., Basak

2005).34 Solving the above problem, we show the optimal consumption and state

prices at time T in the following Lemma.

Lemma 3.1. When k = 0, the final wealth for the two agents are

W 0
1,T =

DT

1 + λ(T )
1
γ

; W 0
2,T =

λ(T )
1
γDT

1 + λ(T )
1
γ

(3.16)

The state prices at time T are

π0
1,T =

(1 + λ(T )
1
γ )γ

y1D
γ
T

; π0
2,T =

(1 + λ(T )
1
γ )γ

y2D
γ
Tλ(T )

(3.17)

The process λ(t) is

λ(t) =
y1π1,t

y2π2,t
(3.18)

where yi is the Lagrange multiplier for manager i’s optimization problem, and πi,t

is the perceived state price density for manager i, and i = 1, 2.

Proof. see Appendix 3.

The superscript 0 means no relative performance (k = 0). (3.16) shows that two

groups of agents share the final dividend DT , and the sharing rule depends on λ(T )
1
γ .

(3.17) gives the state prices at time T . (3.18) shows the dynamics of λ(t) which is

the stochastic weight for the central planner’s problem (Basak (2005))35. By Ito’s

Lemma, we can obtain the dynamics of λ(t):

dλ(t)

λ(t)
= −µdB1,t (3.19)

d
1

λ(t)
=

1

λ(t)
µdB2,t (3.20)

Given that the priors of two groups of agents, µ is exogenous, (3.19) and (3.20)

indicate that λ(t) is an exogenous process. Note that there is only one uncertainty

Bt in the economy; from (3.19) one can see that λ(t) has a one-to-one relationship

with Bt, and hence λ(t) can represent the status of the economy. In particular, λ(t)

is the opposite of the status of economy; for example, when the economy is good,

Bt has a large positive value (i.e., the stock price is high), while λ(t) has a rather

34However, in the model, agents only consume at time T which is different to Basak (2005) in
which agents consume continuously.

35The central planner’s problem is maxc1+c2=c u1(c1) + λ(t)u2(c2).
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small value.

Calibrating the equilibrium requires the explicit expression of state price density,

πi,t, which can be calculated as πi,t = Eit (πi,T ) by its martingale property. However,

the difficulty in calculating the expectation is the term (1 + λ(T )
1
γ )γ , which can be

solved as
γ∑
i=0

(
γ

i

)
λ(T )

i
γ (3.21)

when γ is an integer. Thus, we assume that γ is an integer and solve the equilibrium

in the following Proposition.

Proposition 3.1. When γ is an integer, the state prices are

π0
1,t =

1

y1D
γ
t

γ∑
i=0

(
γ

i

)
λ(t)

i
γ e

[
−µ

2

2
i
γ
−γ
(
µ1−

σ2
D
2

)
+ 1

2

[
i
γ
µ+γσD

]2]
(T−t)

π0
2,t =

1

y2D
γ
t

γ∑
i=0

(
γ

i

)
λ(t)

i−γ
γ e

[
µ2

2
i−γ
γ
−γ
(
µ2−

σ2
D
2

)
+ 1

2

[
i−γ
γ
µ+γσD

]2]
(T−t)

The market prices of risk are

κ0
1,t = γσD + δ0

1,tµ

κ0
2,t = γσD − δ0

2,tµ

where δ0
1,t and δ0

2,t are two functions of λ(t).

The stock shares for the two groups of agents at t are:

θ0
1,t =

µ1,t

γσ2
s,t

+
1− 1

γ δ
0
1,t

σs,t
µ−

β0
1,t

σs,t
µ

θ0
2,t =

µ2,t

γσ2
s,t

−
1− 1

γ δ
0
2,t

σs,t
µ+

β0
2,t

σs,t
µ

where β0
1,t and β0

2,t are two functions of λ(t)..

This proposition gives us the benchmark case without concerns about relative per-

formance, and all of our results will be compared to this benchmark. Given the state

prices, we can easily calculate the stock price, S0
t , and the volatility, σ0

s,t, which can

be found in Appendix 3 (when k = 0).
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3.4 The Model with Relative Performance

In this section, we solve the model with relative performance (k > 1) and compare

the equilibrium to the benchmark case. Given the indirect utility function, (3.6) ,

for each agent i, the optimization problem is

maxEi
[

(Wi,T fi,T )1−γ

1− γ

]
(3.22)

s.t. dWi,t = θi,tWi,t (µi,tdt+ σs,tdBi,t) (3.23)

By the standard martingale approach (Cox and Huang 1989), manager i’s optimiza-

tion problem is static

maxEi
[

(Wi,T fi,T )1−γ

1− γ

]
(3.24)

s.t.Ei [πi,TWi,T ] =
S0

2
(3.25)

Solving (3.25), we have the following Lemma.

Lemma 3.2. There is an unique equilibrium, where

Ŵi,T = (yiπi,T )
− 1
γ (fi,T )

1−γ
γ (3.26)

where Ŵi,T is the optimal final wealth for individual manager i.

Proof. see Appendix 3.

Note that because there is infinite number of managers in group i, each manager

group i takes fi,T as given; hence, this equilibrium belongs to a competitive equilib-

rium. By the market clearing condition, W1,T +W2,T = DT , we can solve the final

wealth of each agent in Lemma 3.3.

Lemma 3.3. At time T, two agents share the final dividend DT

W1,T =
DT

1 + λ(T )
1

γ̂

; W2,T =
λ(T )

1

γ̂DT

1 + λ(T )
1

γ̂

(3.27)

where γ̂ = γ + 2k(γ − 1).

Proof. see Appendix 3.

Compared to the results in Lemma 1, two groups of managers still share the final

dividend DT . However, the sharing rule now depends on λ(T )
1

γ̂ instead of λ(T )
1
γ .
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γ̂ is a function of k so that the relative performance affects the fraction of the final

dividend that is shared by the two groups. By choosing different values of γ, we

have the following Lemma.

Lemma 3.4. When γ = 1 and γ̂ = γ, the relative performance has no effect; for

γ > 1, γ̂ > γ, we then have

when λ(T ) is small enough, W1,T < W 0
1,T and W2,T > W 0

2,T ;

when λ(T ) is large enough, W1,T > W 0
1,T and W2,T < W 0

2,T .

The case of γ = 1 refers to the log utility and the relative performance does not

matter in this case. When γ > 1, we have two scenarios that are conditional on

the realizations of λ(T ). As mentioned before, a small λ(T ) corresponds to a good

economy and a large λ(T ) corresponds to a bad economy. The results show that

in a very good economy, the wealth of the optimistic group is lower than it is in

the benchmark case, and in the very bad economy, the opposite is true. Note

that the optimistic group of agents is dominant in the very good economy, and the

pessimistic group of agents is dominant in the very bad economy. We can then draw

the conclusion that the relative performance decreases the impact of the dominant

group of agents in the extreme economy.

Lemma 3.5. The state price densities at time T are

π1,T =
(k + 1)

y1

(1 + λ(T )
1

γ̂ )γ

Dγ
T

λ(T )
θ(γ−1)

γ̂ (3.28)

π2,T =
(k + 1)

y2

(1 + λ(T )
1

γ̂ )γ

Dγ
T

λ(T )
− θ(γ−1)+γ

γ̂ (3.29)

Proof. see Appendix 3.

Similar to the benchmark case in the last section, the term (1 +λ(T )
1

γ̂ )γ can be ex-

pressed as
∑γ
i=0

(
γ

i

)
λ(T )

i

γ̂ when γ is an integer. We then provide the equilibrium

in the following Proposition.

Proposition 3.2. When γ is an integer, the state prices are:

π1,t =
k + 1

y1D
γ
t

γ∑
i=0

(
γ

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1) e

[
−µ

2

2
i+k(γ−1)
γ+2k(γ−1)

−γ
(
µ1−

σ2
D
2

)
+ 1

2

[
i+k(γ−1)
γ+2k(γ−1)

µ+γσD
]2]

(T−t)

π2,t =
k + 1

y2D
γ
t

γ∑
i=0

(
γ

i

)
λ(t)

i−k(γ−1)−γ
γ+2k(γ−1) e

[
µ2

2
i−k(γ−1)−γ
γ+2k(γ−1)

−γ
(
µ2−

σ2
D
2

)
+ 1

2

[
i−k(γ−1)−γ
γ+2k(γ−1)

µ+γσD
]2]

(T−t)
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The market prices of risk are

κ1,t = γσD + δ1,tµ

κ2,t = γσD − δ2,tµ.

The stock holdings of the two groups of agents at t are

θ1,t =
µ1,t

γσ2
s,t

+
1− 1

γ δ1,t

σs,t
µ− β1,t

σs,t
µ

θ2,t =
µ2,t

γσ2
s,t

−
1− 1

γ δ2,t

σs,t
µ+

β2,t

σs,t
µ

The stock price is

St =

∑γ
i=0

(
γ

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1) e

[
−µ

2

2
i+k(γ−1)
γ+2k(γ−1)

+
σ2
D
2

+ 1
2

[
i+k(γ−1)
γ+2k(γ−1)

µ+(γ−1)σD
]2]

(T−t)
Dte

(µ1−σ2
D)(T−t)

∑γ
i=0

(
γ

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1) e

{
−µ

2

2
i+k(γ−1)
γ+2k(γ−1)

+ 1
2

[
i+k(γ−1)
γ+2k(γ−1)

µ+γσD
]2}

(T−t)

(3.30)

and the volatility is

σs,t = σD +Ktµ (3.31)

Note that δ1,t, δ2,t, β1,t, β2,t and Kt are shown in Appendix 3.

Proof. see Appendix 3.

Compared to the results in Proposition 3.1, we can see that all of the equilibrium

quantities are affected by the relative performance k. The relative performance af-

fects β1,t, β2,t, δ1,t , δ2,t and Kt in the stock holdings, the Sharpe ratio and the

volatility. These parameters are all at play through the disagreement parameter,

µ. Thus, the relative performance affects those quantities that are generated by the

difference of opinions.

To analyze the effects of the relative performance, we consider a special case with

γ = 2 as an example, where the equilibrium can be analyzed in more detail.36 For

a robustness check, in Section 3.6, we also analyze those cases when γ = 3, 4.

36The approach of using an integer for the risk aversion coefficient is the same as Yan (2008) who
uses numerical simulation to analyze the equilibrium. Rather than doing the numerical study, we
choose a special case with γ = 2.
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3.5 Special Case: γ = 2

In this section, we solve the equilibrium by choosing γ = 2. The purpose of this

section is to compare the equilibrium with relative performance to that without rel-

ative performance. Because we can solve everything in closed form, the comparative

statics are also analyzed in this section.

3.5.1 Stock Holdings

The following proposition shows the portfolio choices for the managers.

Proposition 3.3. When γ = 2, the stock holdings of the two groups of agents at t

are

θ1,t =
µ1,t

2σ2
s,t

+
1− 1

2δ1,t

σs,t
µ− β1,t

σs,t
µ (3.32)

θ2,t =
µ2,t

2σ2
s,t

−
1− 1

2δ2,t

σs,t
µ+

β2,t

σs,t
µ (3.33)

β1,t and β2,t are functions of k, which can be found in Appendix 3.

Proof. The proof is in see Appendix 3.

From (3.32) and (3.33), the optimal stock holdings consist of three terms. The first

terms is the traditional Merton (1971) myopic demand without heterogeneous be-

liefs.37 The second and the third terms are both hedging demand, but the
1− 1

γ
δi,t

σs,t
µ

term is for hedging against variation in market price of risk κi,t caused by heteroge-

neous belief, hereafter called the variation hedging demand; while the
βi,t
σs,t

µ term is

for hedging against the heterogeneous belief itself, hereafter called the heterogeneity

hedging demand. From (3.27), we can see that the two groups of agents share the

final dividend DT , and the fraction depends on λ(T )
1

γ̂ . Given the realization of

different states, the agents have state dependent shares of wealth. For example, the

optimistic group of agents has larger fraction of wealth than the pessimistic group

when the economy is good. For this reason, the additional uncertainty originating

from different opinions generates heterogeneity demand. Note that the parameter of

the relative performance, k, affects δi,t, βi,t and σs,t, hence affects both the variation

hedging demand and the heterogeneity hedging demand.

37Without heterogeneous demand, µ = 0, then risk premium and volatility are both constants,
so is the myopic demand.
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3.5.2 Comparison to the Benchmark Case

To analyze the effect of relative performance, we need to compare βi,t to the bench-

mark case.

Proposition 3.4. The following relationships hold:

θ1,t − θ2,t = µ [1− (β1,t + β2,t)] (3.34)

β1,t + β2,t − (β0
1,t + β0

2,t) > 0 (3.35)

moreover,
d (β1,t + β2,t)

dk
> 0 (3.36)

Proof. see Appendix 3.

(3.34) shows that the difference in the two groups of agents’ stock holdings only

depends on the betas, and is decreasing in β1,t+β2,t, and (3.35) shows that β1,t+β2,t

is greater than in the benchmark case. Thus, with relative performance, two agents

trade more similarly than they do without relative performance. (3.36) shows that

the more important the relative performance is, the more similarly the managers

trade. The following corollary shows the case when the relative performance is

infinitely strong (k →∞).

Corollary 3.1. The difference between two demands goes to zero when k →∞.

Proof. One can show that both β1,t and β2,t are smaller than 1
2 . Thus, given (3.36),

we have the above corollary.

Intuitively, when concerns of the relative performance are infinitely strong, the dif-

ference of opinions goes to zero; hence, the two groups of agents trade like one group.

We also show how the heterogeneity hedging demand of each manager changes with

respect to the relative performance in the following proposition.

Proposition 3.5. For both agents, there exist cutoffs, gc1 < gc2

Case1 : when λ (t) < gc1 ; β1,t > β0
1,t , β2,t < β0

2,t

Case2 : when λ (t) > gc2 ; β1,t < β0
1,t , β2,t > β0

2,t

Case3 : when gc1 < λ (t) < gc2 ; β1,t > β0
1,t , β2,t > β0

2,t

Proof. see Appendix 3.
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We compare the heterogeneity hedging demand with and without the relative per-

formance conditional on λ(t). The results are intuitive because the realization of

λ(T ) determines the fraction of wealth allocated to each agent, which is shown by

(3.27). We use the following figure to illustrate the three cases in the proposition.

Figure 3.1: The difference of β with relative performance to that without relative

performance.

Figure 3.1 gives the graphical illustration of the proposition. It shows how the

difference of heterogeneity hedging demands with and without relative performance

changes with respect to λ(t). We discuss each case separately.

Case 1 indicates the situation in which both groups of agents believe that the

economy is good. The reason is shown in the following. Compared to the case

without relative performance, the heterogeneity hedging demand of the optimistic

(pessimistic) agent is higher (lower). From the results of Lemma 3.5, when λ(T ) is
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small, W1,T < W 0
1,T and W2,T > W 0

2,T . Given that λ(t) is small, the possibility that

W1,T < W 0
1,T and W2,T > W 0

2,T is high. On expectation, the pessimistic group of

agents will have the larger share of wealth than in the case without relative perfor-

mance. Consequently, the optimistic (pessimistic) group of agents will have a lesser

(greater) fraction of wealth so that she needs to have a larger heterogeneity hedging

demand.

Case 2 indicates the situation in which both groups of agents believe that the econ-

omy is bad. Following the same logic as in case 1, given that λ(t) is large, the

possibility that W1,T > W 0
1,T and W2,T < W 0

2,T is high. The optimistic group of

agents will end up with higher fraction of wealth and will hence have less hetero-

geneity hedging demand.

Note that the definition of a ‘good economy’ and a ‘bad economy’is subjective con-

sidering the two types of investors’ beliefs. In case 3, the optimistic group of agents

believes that the economy is ‘good’, and the pessimistic group of agents believes

that it is ‘bad’.38 Thus, regarding the expectations over the subjective belief, the

possibility that W1,T < W 0
1,T and W2,T < W 0

2,T is high for the optimistic and the

pessimistic groups of agents, respectively. In this range, both groups of agents have

a higher heterogeneity hedging demand.

3.5.3 Market Price of Risk (Sharpe Ratio)

The following proposition shows the Sharpe ratios with/without relative perfor-

mance.

Proposition 3.6. When γ = 2, the market prices of risk are

κ1,t = 2σD + akµ ; κ2,t = 2σD − (1− ak)µ (3.37)

where ak is a function of k and is shown in Appendix 3. Moreover, the market prices

of risk in the benchmark case are:

κ0
1,t = 2σD + a0µ ; κ0

2,t = 2σD − (1− a0)µ (3.38)

38There is no other possibility (e.g. the pessimistic agent believes the economy is good, and
optimistic one believes bad.) given the priors of two agents because the optimistic agent, by
definition, is always more ‘optimistic’ than the pessimistic one.
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Then we have

Case1 : when λ(t) < exp[−2µσD (T − t)] ,ak > a0 , and
∂ak
∂k

> 0

Case2 : when λ(t) > exp[−2µσD (T − t)] ,ak < a0 , and
∂ak
∂k

< 0

Proof. see Appendix 3.

(3.37) shows that some risk is actually transferred from the pessimistic agents to

the optimistic agents because κ1,t − κ2,t = µ. This result is standard for asset pric-

ing with heterogeneous beliefs. Given that ak is a function of k, we know that the

transferred risk is affected by the relative performance. (3.38) gives Sharpe ratios

without relative performance (k = 0), so the analysis depends on the comparison

between ak and a0, which is shown in the two cases of the proposition.

Similar to the analysis of the stock holdings, case 1 corresponds to a good econ-

omy. We show that the market price of risk with relative performance is higher than

without relative performance, and the more important the relative performance, the

higher the market price of risk. In case 2 (a bad economy), the market price of risk

with relative performance is smaller than it is without relative performance, and

the more important the relative performance, the smaller the market price of risk.

We have above results because: when the economy is good, the optimistic group of

agents possesses less wealth with relative performance than they do without relative

performance. Although the optimistic group of agents still dominates the market,

the stock is less overvalued with relative performance. Hence, the market price

of risk is higher with relative performance than it is without relative performance.

When the economy is bad, by a similar logic, the market price of risk is smaller with

relative performance than it is without relative performance.

Proposition 3.7. The first order derivative of κi on λ is positive for both investors,

i.e.
dκi,t
dλ(t)

> 0 , i = 1, 2 (3.39)

Proof. see Appendix 3.

(3.39) shows that Sharpe ratios of both groups of agents are counter-cyclical. Intu-

itively, when the market is good, the optimistic agents dominate the market so that

the stock is overvalued. The excess return is lower, hence the Sharpe ratio is lower.
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3.5.4 Stock Price and Volatility

In this section, we solve the equilibrium price and the volatility and compare these

to the benchmark case.

Proposition 3.8. The stock price is

St =

{
1 + λ(t)

1
2+2k 2e

[
− µ2

8(1+k)2
+ 1

2+2k
µσD

]
(T−t)

+ λ(t)
2

2+2k e
2

2+2k
µσD(T−t)

}
Dte

(µ1−2σ2
D)(T−t)

{
1 + 2λ(t)

1
2

1
1+k e

(
− µ2

8(1+k)2
+µσD

1
1+k

)
(T−t)

+ λ(t)
1

1+k e(µσD
2

1+k )(T−t)
}
e(

1
2
µσD

k
1+k )(T−t)

(3.40)

Denote S0
t as the stock price when k = 0; then we have

Case1 : when λ(t)→ 0, St < S0
t

Case2 : when λ(t)→∞, St > S0
t

Proof. see Appendix 3.

(3.40) shows the expression of the stock price, and we compare it to the benchmark

case price, S0
t , in two extreme cases. Case 1 and case 2 depend on the process λ(t),

so we have a similar interpretation to that of the stock holdings. In case 1, λ(t)→ 0,

so we interpret it as the extremely good economy. We show that the stock price is

lower with the relative performance than without the relative performance. Case 2

is interpreted as the extremely bad economy, and the stock price is higher with the

relative performance than without.

When λ(t) is small, the aggregate demands are lower than in the benchmark case.

When λ(t) is large, the aggregate demands are higher. Given that the stock has a

fixed supply, the price is lower in case 1 and higher in case 2 relative to the bench-

mark case. Figure 3.2 explains this proposition.

From the graph below and the proposition, we can see that when λ(t) is very large

(a very bad economy), the stock price is higher than the benchmark case. When λ(t)

is very small (a very good economy), the stock price is lower. For the middle range

of λ(t), the stock price can be either higher or lower than it is in the benchmark

case. Note that the middle range corresponds to case 3 in proposition 5 in which

both agents disagree with the ‘good’ or the ‘bad’ economies.
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Figure 3.2: The comparison of stock prices with and without relative performance

for different λ. The model parameters are σD = 0.3, µ = 1, k = 1.5

Corollary 3.2. When k →∞, St = Dte
(
µ1+µ2

2
−2σ2

D

)
(T−t).

This corollary is an extension of Corollary 3.1. When k → ∞, we know that,

from Corollary 3.1, both groups of agents submit the same demand so that the

economy is the same as the economy with one representative investor. Moreover,

this investor has the average belief, µ1+µ2
2 , regarding the dividend process. As a

result, we have the stock price in the corollary.

Proposition 3.9. The volatility is

σs,t = σD+
1

1 + k


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1+2λ(t)
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1
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1
2

1
1+k e

[
− µ2

8(1+k)2
+ 1

2+2k
µσD

]
(T−t)

+e
2

2+2k
µσD(T−t)

λ(t)
1

1+k
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
µ

(3.41)

Comparing the volatility with relative performance, σs,t, to the benchmark case σ0
s,t,

there exist two cutoffs, dc1 and dc2, where dc1 < dc2.

Case1 : When dc1 < λ(t) < dc2 , σs,t < σ0
s,t
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Case2 : When λ(t) < dc1 or λ(t) > dc2 , σs,t > σ0
s,t

Moreover, the larger the k is, the larger the dc2− dc1 is.

Proof. see Appendix 3.

From (3.41), the volatility with relative performance is greater than σD. That is,

the difference of opinions generates excess volatility. In case 1, λ(t) has upper and

lower bounds so that we interpret it as normal days (the economy is not very good

or very bad). We show that the volatility is smaller with relative performance than

the volatility without relative performance. Case 2 indicates an extreme economy

(very good or very bad); we show that the volatility is larger with relative perfor-

mance than that without relative performance. Moreover, the stronger the relative

performance is (the large k), the wider the range of the normal days is. Figure 3.3

depicts the numerical simulations.

The relative performance leads the two groups of agents to trade more similarly,

which has two effects on the volatility. First, it makes managers trade more simi-

larly to each other, hence, it has the direct effect of decreasing the volatility. This

effect is dominant in the middle range of the economy. Second, it decreases the

wealth (and impact) of the dominant group of agents, which in turn increases the

volatility. For example, when the economy is extremely good, the optimistic agents

dominate the market. We can imagine that the pessimistic agents are driven out of

the market when they lose a lot of money. Thus, only the optimistic agents survive

in the market. As a result, the difference in opinions is not reflected on the market,

hence no excess volatility. However, with concerns regarding relative performance,

the pessimistic agents trade more like the optimistic agents, so they can stay in the

market even when the economy is extremely good39. The existence of pessimistic

agents exaggerates the effects caused by the difference of opinions and hence results

in excess volatility.

39The similar story holds for the extremely bad economy and the pessimistic agent.
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Figure 3.3: Comparison of volatilities with and without relative performance. Volatil-

ity vs. the value of λ(t). σk and σ0 denote the volatility with and without relative

performance, respectively. Choose different k for different graphs. Other model pa-

rameters are σD = 0.3, µ = 1

Overall, in normal days, the first effect dominates the second one so that the volatil-

ity with relative performance is smaller. In extreme cases, the second effect domi-

nates the first so that the volatility is larger. The stronger the concerns regarding

relative performance, the more similarly the agents trade; as a result, the range of

normal days becomes wider. This result is shown by the changes in the middle range

(increasing) from the first to the fourth graph in Figure 3.3. However, when k goes

to infinity, we have the one agent economy again which is shown in the following

corollary.

Corollary 3.3. When k →∞, σs,t → σD.

It is easy to see that, in (3.41), the expression in the bracket is between 0 and 1 so

that when k → ∞, σs,t → σD. The intuition is similar to those in Corollary 3.1
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and Corollary 3.2. When the relative performance is infinitely strong, we have the

representative agent economy.

3.6 More Special Cases

In Section 3.5, we use one special case with γ = 2 to illustrate our general model.

However, to show that our general model works for more cases, we do some numeri-

cal studies using different risk aversion parameters. In particular, we use the results

in Proposition 3.2 (the general case) by choosing γ = 3 and 4 and simulating the

volatilities in the different cases.

Note that we use the volatility as the embodiment of more cases because it can

best illustrate the theory in a normal and an extreme economy. Similar to the

special case when γ = 2, the volatility with relative performance is smaller than

the volatility without relative performance on normal days. The result reflects the

smaller difference of opinions that is dominant on normal days. However, in the

extreme economy, the wealth decrease for the dominant agents is substantial.

Figure 3.4: Comparison of volatilities with and without relative performance for γ =

3. σk and σ0 denote the volatility with and without relative performance, respectively.

Other model parameters are k = 1.5, σD = 0.3, µ = 1.
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Figure 3.5: Comparison of volatilities with and without relative performance for γ =

4. σk and σ0 denote the volatility with and without relative performance, respectively.

Other model parameters are k = 1.5, σD = 0.3, µ = 1.

3.7 The Irrational Traders’ Survivalship

In this section, we discuss one important implication for our model, i.e., the survival

of irrational traders in the long run. Without a loss of generality, we suppose that

the first group of agents has a rational belief and is always right about the economy.

The second group has an irrational belief, but both groups of traders care about their

performance relative to each other. We relax our assumption that µ > 0 so that the

irrational traders can be either optimistic or pessimistic. Importantly, µ represents

the extent of the wrong opinions that the irrational traders hold. Intuitively, the

larger the absolute value of µ, the more unlikely that the irrational traders will

survive in the long run. In this paper, we define the extinction of a group of traders

in the long run if

lim
T→∞

W2,T

W1,T
= 0.40 (3.42)

From the competitive equilibrium derived in Section 3.4, we have the following

Proposition.

40For further discussion of this definition, please refer to Kogan, Ross, Wang and Westerfield
(2006).
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Proposition 3.10. Define µ∗ := −2σD (γ̂ − 1), where γ̂ = γ + 2k (γ − 1). For

γ > 1 and µ 6= µ∗, only one of the traders survives in the long run. In particular,

we have:

µ > 0, pessimistic irrational trader ⇒Rational trader survives

µ∗ < µ < 0, moderately optimistic irrational trader ⇒Irrational trader survives

µ < µ∗, strongly optimistic irrational trader ⇒Rational trader survives

Proof. see Appendix 3.

Note that for µ = µ∗, both the rational and the irrational traders survive. This

proposition identifies three distinct regions regarding the extent of the wrong opin-

ions µ. In particular, the range in which the irrational trader survives depends on

µ∗. Note that in the benchmark case (k = 0 ), µ∗ = −2σD (γ − 1).

Corollary 3.4. The range of µ for the irrational trader to survive (µ∗, 0) is larger

in the case of relative performance than it is without relative performance.

Proof. By the expression of γ̂ and Proposition 3.10, we can easily get the result.

The above Corollary is consistent with our results, i.e., because both types of traders

care about their relative performance and hence they trade more similarly, the group

of the irrational traders has a higher probability of survival.

3.8 Conclusion

This paper studies an equilibrium asset pricing model in which institutional in-

vestors with heterogeneous beliefs care about their relative performance. We focus

on the investor’s stock holdings, the asset prices, the volatility and the market price

of risk. Relative performance leads the agents to trade more similarly. On the

one hand, this similarity lowers the stock volatility. On the other hand, relative

performance decreases the wealth of the dominant agents and increases the stock

volatility. Combining the two effects, in this paper, we show that the volatility is

smaller with relative performance than that without relative performance in normal

economy; and larger in the extreme economy. The asset price is lower with rela-

tive performance than without relative performance when the economy is extremely

good; it is higher when the economy is extremely bad. The model shows that the

stock holdings for both groups of agents can be decomposed into myopic demand,

variation hedging demand and heterogeneity hedging demand. The heterogeneity

hedging demand is influenced by the relative performance. When the economy is
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good, the market risk premium is higher relative to the case without relative per-

formance; it is lower when the economy is bad. As an application of our model, we

show that irrational traders tend to have a higher survival probability with relative

performance concerns because they tend to trade similarly to the rational traders.
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3.10 Appendix 3: Proofs of Lemmas and Propositions

3.1. Proof of Lemma 3.1, 3.2, 3.3, 3.5

The Lagrangian for (3.25) is:

Ei
[

[Wi,T fi,T ]1−γ

1− γ

]
+ yi

[
S0

2
− Ei (πi,tWi,T )

]
(3.43)

By FOC, we have W−γi,T (fi,T )1−γ = (yiπi,T ), so in equilibrium, we will have:

Ŵ1,T = (y1π1,T )
− 1
γ (f1,T )

1−γ
γ (3.44)

Ŵ2,T = (y2π2,T )
− 1
γ (f2,T )

1−γ
γ (3.45)

in equilibrium, we should have:

f1,T = (
Ŵ1,T

Ŵ2,T

)k (3.46)

f2,T = (
Ŵ2,T

Ŵ1,T

)k (3.47)

now,we will have

Ŵ2,T

Ŵ1,T

= λ(T )
1

γ̂ (3.48)

where λ(T ) =
y1π1,T
y2π2,T

and γ̂ = γ + 2k(γ − 1). Together with the market clearing

clearing conditions, W1,T +W2,T = DT , we get the (3.27) in Lemma 3.3. (3.16) in

Lemma 3.1 is just a special case of (3.27). Together with the FOC (which shows

the relationship between Wi,T and πi,T ), we can solve πi,T in Lemma 3.5.

3.2. Proof of Proposition 3.2 and 3.9:

State Prices

When γ is an integer, (3.28) and (3.29) become:

π1,T =
(k + 1)

y1

∑γ
i=0

(
γ

i

)
λ(T )

i
γ+2k(γ−1)

Dγ
T

λ(T )
k(γ−1)

γ+2k(γ−1) =
(k + 1)

y1

∑γ
i=0

(
γ

i

)
λ(T )

i+k(γ−1)
γ+2k(γ−1)

Dγ
T
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π2,T =
(k + 1)

y2

∑γ
i=0

(
γ

i

)
λ(T )

i
γ+2k(γ−1)

Dγ
T

λ(T )−
k(γ−1)+γ
γ+2k(γ−1) =

(k + 1)

y2

∑γ
i=0

(
γ

i

)
λ(T )

i−k(γ−1)−γ
γ+2k(γ−1)

Dγ
T

Given the dynamics of λ(t) and Dt w.r.t. B1,t, we have

λ(T ) = λ(t) exp

[
−µ

2

2
(T − t)− µ (B1,T −B1,t)

]
(3.49)

DT = Dt exp

[(
µ1 −

σ2
D

2

)
(T − t) + σD (B1,T −B1,t)

]
(3.50)

Then we can rewrite π1,T as:

π1,T =
k + 1

y1D
γ
t

γ∑
i=0

(
γ

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1) e


[
−µ2

2
i+k(γ−1)
γ+2k(γ−1) − γ

(
µ1 −

σ2
D
2

)]
(T − t)

−
[
i+k(γ−1)
γ+2k(γ−1)µ+ γσD

]
(B1,T −B1,t)


(3.51)

by π1,t = E1
t (π1,T ) , we have

π1,t =
k + 1

y1D
γ
t

γ∑
i=0

(
γ

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1) e
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(3.52)

Similarly, for the dynamics w.r.t B2,t, we have

λ(T ) = λ(t) exp

[
µ2

2
(T − t)− µ (B2,T −B2,t)

]
(3.53)

DT = Dt exp

[(
µ2 −

σ2
D

2

)
(T − t) + σD (B2,T −B2,t)

]
(3.54)

Following the similar procedure, we have

π2,t =
k + 1

y2D
γ
t
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γ

i

)
λ(t)

i−k(γ−1)−γ
γ+2k(γ−1) e

 µ2

2
i−k(γ−1)−γ
γ+2k(γ−1) − γ

(
µ2 −

σ2
D
2

)
+1

2

[
i−k(γ−1)+γ
γ+2k(γ−1) µ+ γσD

]2
(T−t)

(3.55)
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Market Price of Risk

By Ito’s lemma on π1,t and matching the diffusion terms, we can get Market price

of risk

−π1,tκ1,t =
(k + 1)

y1D
γ
t
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Similarly, we can get κ2,t with
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
Portfolio Choices

For agent 1, we have π1,tW1,t = E1
t (W1,Tπ1,T ) . By some manipulation, it can be

written as
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i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1) exp

([
−µ

2

2
i+k(γ−1)
γ+2k(γ−1)

− (γ − 1)

(
µ1 −

σ2
D
2

)
+ 1

2

[
i+k(γ−1)
γ+2k(γ−1)

µ + (γ − 1)σD

]2
]

(T − t)

)
(3.56)
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by Ito’s lemma and matching the diffusion terms

π1,tW1,t

(
θ1,tσs,t − κ1,t

)
dB1,t =

(k + 1)

y1D
γ−1
t


∑γ−1

i=0

(
γ − 1

i

)
e

 −µ
2

2
i+k(γ−1)
γ+2k(γ−1)

−

(γ − 1)

(
µ1 −

σ2
D
2

)
+

1
2

[
i+k(γ−1)
γ+2k(γ−1)

µ + (γ − 1)σD

]2
(T−t)

×λ(t)
i+k(γ−1)
γ+2k(γ−1)

(
− (γ − 1)σD −

i+k(γ−1)
γ+2k(γ−1)

µ
)


dB1,t

(3.57)

then θ1,t =
µ1,t
γσ2
s,t

+
1− 1

γ
δ1,t

σs,t
µ− β1,t

σs,t
µ with

β1,t =

∑γ−1

i=0

(
γ − 1

i

)
exp

 −µ2

2
i+k(γ−1)
γ+2k(γ−1)

+1
2

[
i+k(γ−1)
γ+2k(γ−1)µ+ (γ − 1)σD

]2
(T−t)

× i+k(γ−1)
γ+2k(γ−1)

λ(t)
i+k(γ−1)
γ+2k(γ−1) µ

∑γ−1

i=0

(
γ − 1

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1) e

 −µ2

2
i+k(γ−1)
γ+2k(γ−1)

+1
2

[
i+k(γ−1)
γ+2k(γ−1)µ+ (γ − 1)σD

]2
(T−t)

Similarly,

θ2,t =
µ2,t
γσ2
s,t
−

1− 1
γ
δ2,t

σs,t
µ+

β2,t
σs,t

µ with

β2,t =

∑γ−1
i=0

(
γ − 1

i

)
e

 µ2

2
1+i−k(γ−1)1−γ
γ+2k(γ−1) +

1
2

(
1+i−k(γ−1)1−γ
γ+2k(γ−1) µ+ (γ − 1)σD

)2

(T−t)

×

k(γ−1)1+γ−1−i
γ+2k(γ−1) λ(t)

1+i−k(γ−1)1−γ
γ+2k(γ−1) µ

∑γ−1

i=0

(
γ − 1

i

)
λ(t)

1+i−k(γ−1)1−γ
γ+2k(γ−1) e

 µ2

2
1+i−k(γ−1)1−γ
γ+2k(γ−1) +

1
2

(
1+i−k(γ−1)1−γ
γ+2k(γ−1) µ+ (γ − 1)σD

)2

(T−t)

Stock Price

By the martingale property,

St =
E1
t (π1,TDT )

π1,t
St = E1

t


(k+1)
y1

∑γ

i=0

(
γ

i

)
λ(T )

i+k(γ−1)
γ+2k(γ−1)

Dγ−1
T

π1,t


(3.58)
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=

∑γ
i=0

(
γ

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1) e

 −µ2

2
i+k(γ−1)
γ+2k(γ−1) +

σ2
D
2

+1
2

[
i+k(γ−1)
γ+2k(γ−1)µ+ (γ − 1)σD

]2
(T−t)

Dte
(µ1−σ2

D)(T−t)

∑γ
i=0

(
γ

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1) e

 −µ2

2
i+k(γ−1)
γ+2k(γ−1)+

1
2

[
i+k(γ−1)
γ+2k(γ−1)µ+ γσD

]2
(T−t)

(3.59)

Volatility

Denote the stock price as

St =
Xt

Yt
(3.60)

set

Xt =
∑γ
i=0

(
γ

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1) exp




−µ2

2
i+k(γ−1)
γ+2k(γ−1) +

σ2
D
2

+1
2

 i+k(γ−1)
γ+2k(γ−1)µ+

(γ − 1)σD

2

 (T − t)


Dte

(µ1−σ2
D)(T−t)

and

Yt =
∑γ
i=0

(
γ

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1) exp


 −µ2

2
i+k(γ−1)
γ+2k(γ−1)+

1
2

[
i+k(γ−1)
γ+2k(γ−1)µ+ γσD

]2
 (T − t)

, then

for diffusion term, we only need to consider dXtYt = YtdXt−XtdYt
Y 2
t

. Apply Ito’s Lemma

to calculate diffusion terms of dXt and dYt.

The diffusion term for dXt is

e(µ1−σ
2
D)(T−t)



∑γ
i=0

(
γ

i

)
e

 −µ2

2
i+k(γ−1)
γ+2k(γ−1) +

σ2
D
2

+1
2

[
i+k(γ−1)
γ+2k(γ−1)µ+ (γ − 1)σD

]2
(T−t)

×λ(t)
i+k(γ−1)
γ+2k(γ−1)

 DtσD

− i+k(γ−1)
γ+2k(γ−1)Dtµ




dBt

(3.61)

The diffusion term for dYt is

γ∑
i=0

(
γ

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1)

i+ k(γ − 1)

γ + 2k(γ − 1)
e

 −µ2

2
i+k(γ−1)
γ+2k(γ−1)+

1
2

[
i+k(γ−1)
γ+2k(γ−1)µ+ γσD

]2
(T−t)

dBt (3.62)
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by matching the diffusion terms, we have Xt
Yt
σs,t = YtσX−XtσY

Y 2
t

and σs,t = YtσX−XtσY
YtXt

.

σs,t = σD −

∑γ
i=0

(
γ

i

)
e

 −µ
2

2
i+k(γ−1)
γ+2k(γ−1) +

σ2
D

2

+ 1
2

[
i+k(γ−1)
γ+2k(γ−1)µ+ (γ − 1)σD

]2
(T−t)

i+k(γ−1)
γ+2k(γ−1)λ(t)

i+k(γ−1)
γ+2k(γ−1)

∑γ

i=0

(
γ

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1) e

 −µ
2

2
i+k(γ−1)
γ+2k(γ−1) +

σ2
D

2

+ 1
2

[
i+k(γ−1)
γ+2k(γ−1)µ+ (γ − 1)σD

]2
(T−t)

Dte
(µ1−σ2

D)(T−t)

µ

+

∑γ
i=0

(
γ

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1)

i+k(γ−1)
γ+2k(γ−1)e

 −µ
2

2
i+k(γ−1)
γ+2k(γ−1)+

1
2

[
i+k(γ−1)
γ+2k(γ−1)µ+ γσD

]2
(T−t)

∑γ
i=0

(
γ

i

)
λ(t)

i+k(γ−1)
γ+2k(γ−1) e

 −µ
2

2
i+k(γ−1)
γ+2k(γ−1)+

1
2

[
i+k(γ−1)
γ+2k(γ−1)µ+ γσD

]2
(T−t)

µ

then, we can get the expression in the proposition.

Similarly, by setting γ = 2, we can get (3.41). Thus, Proposition 3.9 is proved.

3.3. Proof of Proposition 3.3

Similar to the proof of Proposition 3.2 by setting γ = 2, we can get ( 3.32) and

(3.33) where:

β1,t =
k

2+2k + 1
2λ(t)

1
2(k+1) e

(
− µ2

8(1+k)2
+ 1

2(k+1)
µσD

)
(T−t)

1 + λ(t)
1

2(k+1) e

(
− µ2

8(1+k)2
+ 1

2(k+1)
µσD

)
(T−t)

β2,t =
k

2+2kλ(t)
1

2(1+k)
e

(
µ2

8(1+k)2
+ 1

2
1

1+k
µσD

)
(T−t)

+ 1
2

λ(t)
1

2(1+k)
e

(
µ2

8(1+k)2
+ 1

2
1

1+k
µσD

)
(T−t)

+ 1

(3.63)

3.4. Proof of Proposition 3.4

Define exp(a) = λ(t)
1
2 exp

[(
1
2µσD

)
(T − t)

]
and b = µ2

8 , then we have:

β1,t =
k

2+2k + 1
2e
− b

(1+k)2
+ a

(k+1)

1 + e
− b

(1+k)2
+ a

(k+1)

; β2,t =
1
2 + k

2+2ke
b

(1+k)2
+ a

(k+1)

1 + e
b

(1+k)2
+ a

(k+1)

(3.64)
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when k = 0, we have β0
1,t =

1
2
e−b+a

1+e−b+a
; β0

2,t =
1
2

1+eb+a
. By some manipulation, we

can write the difference between two investors’ portfolio choices as

θ1,t − θ2,t =
µ

σs,t

[
1− (βk1,t + βk2,t)

]
where : βk1,t <

1

2
, βk2,t <

1

2

For this reason, relative performance’s effect on portfolio choice depends on βk1,t +

βk2,t − (β0
1,t + β0

2,t) which can be calculated as

1+2k
2(1+k) + e

− b
(1+k)2

+ a
(k+1) + k

1+ke
b

(1+k)2
+ a

(k+1) + 1+2k
2(1+k)e

2a
(k+1)

1 + e
− b

(1+k)2
+ a

(k+1) + e
b

(1+k)2
+ a

(k+1) + e
2a

(k+1)

−
1
2 + e−b+a + e2a

1 + e−b+a + eb+a + e2a

(3.65)

If we use notation A
B −

C
D for above expression, its sign depends on AD−CB, which

can be calculated as:

k

2(1 + k)
− 1

2(1 + k)
e−b+a +

1 + 2k

2(1 + k)
eb+a +

k

2(1 + k)
e2a + e

− b
(1+k)2

+ a
(k+1)

(
1

2
+ e−b+a + e2a

)
+e

b
(1+k)2

+ a
(k+1)

[
k

1 + k
− 1

2
− 1

(1 + k)
e−b+a +

k

1 + k
eb+a +

(
k

1 + k
− 1

2

)
e2a
]

+e
2a

(k+1)

[
k

2(1 + k)
− 1

2(1 + k)
e−b+a +

1 + 2k

2(1 + k)
eb+a +

k

2(1 + k)
e2a
]

Then we can conclude

βk1,t + βk2,t− (β0
1,t + β0

2,t) > 0 when k > 1, < 0 when k < 1 and a is large enough

(3.66)

Moreover, we have:

d
(
βk1,t + βk2,t

)
dk

=

d

 1+2k
2(1+k)

+e
− b

(1+k)2
+ a

(k+1) + k
1+k

e
b

(1+k)2
+ a

(k+1) + 1+2k
2(1+k)

e
2a

(k+1)

1+e
− b

(1+k)2
+ a

(k+1) +e
b

(1+k)2
+ a

(k+1) +e
2a

(k+1)


dk

(3.67)

After some manipulation,
d(βk1,t+βk2,t)

dk can be expressed as:[
1

2(1 + k)2
+

1

(1 + k)2
e

b
(1+k)2

+ a
(k+1) +

1

2(1 + k)2
e

2a
(k+1)

] [
1 + e

− b
(1+k)2

+ a
(k+1) + e

b
(1+k)2

+ a
(k+1) + e

2a
(k+1)

]
+

2b

(1 + k)3

[
1

2(1 + k)
+

1

1 + k
e
− b

(1+k)2
+ a

(k+1) +
1

2(1 + k)
e

2a
(k+1)

]
e
− b

(1+k)2
+ a

(k+1)
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+e
b

(1+k)2
+ a

(k+1)
2b

(1 + k)3

[
1

2(1 + k)
+

1

1 + k
e

b
(1+k)2

+ a
(k+1) +

1

2(1 + k)
e

2a
(k+1)

]
− a

(k + 1)2
1

2(1 + k)
e
− b

(1+k)2
+ a

(k+1) +
a

(k + 1)2
1

2(1 + k)
e
− b

(1+k)2
+ a

(k+1) e
2a

(k+1)

− a

(k + 1)2
1

2(1 + k)
e

b
(1+k)2

+ a
(k+1) +

a

(k + 1)2
1

2(1 + k)
e

b
(1+k)2

+ a
(k+1) e

2a
(k+1)

It is easy to see that the above expression is greater than 0.

3.5. Proof of Proposition 3.5

Given βi,t in the proof of Proposition 3.3, we can easily get β0
i,t by setting k=0.

Then for optimistic agent, the sign of β1,t − β0
1,t depends on

k
1+k + λ(t)

1
2(k+1) e

(
− µ2

8(1+k)2
+ 1

2(k+1)
µσD

)
(T−t)

1 + λ(t)
1

2(k+1) e
− λ(t)

1
2( e

(
−µ

2

8
+ 1

2
µσD

)
(T−t)

1 + λ(t)
1
2 e

(
−µ

2

8
+ 1

2
µσD

)
(T−t)

(3.68)

by some manipulation, the sign depends on

k

1 + k
+λ(t)

1
2(k+1) e

(
− µ2

8(1+k)2
+ 1

2(k+1)
µσD

)
(T−t)

− 1

1 + k
λ(t)

1
2( e

(
−µ

2

8
+ 1

2
µσD

)
(T−t)

(3.69)

Let x ≡ λ(t))
1
2 e(

1
2
µσD)(T−t), define F (x) as

F (x) =
k

1 + k
+ e

(
− µ2

8(1+k)2

)
(T−t)

x
1

1+k − 1

1 + k
x (3.70)

When

F
′
(x) =

1

1 + k
e

(
− µ2

8(1+k)2

)
(T−t)

x
1

1+k
−1 − 1

1 + k
= 0 (3.71)

We have x = e
−µ2

8(1+k)k
(T−t)

.When x > e
−µ2

8(1+k)k
(T−t)

, F
′
(x) < 0, F (x) is a mono-

tonically decreasing function of x; when x < e
−µ2

8(1+k)k
(T−t)

, F
′
(x) > 0, F (x) is a

monotonically increasing function of x. For this reason, there exist one cutoff xc1,

when x > xc1, F (x) < 0, when x < xc1, F (x) > 0

For pessimistic agent, the sign of β2,t − β0
2,t depends on

k
1+kλ(t)

1
2(1+k)

e

(
µ2

8(1+k)2
+ 1

2
1

1+k
µσD

)
(T−t)

+ 1

λ(t)
1

2(1+k)
e

(
µ2

8(1+k)2
+ 1

2
1

1+k
µσD

)
(T−t)

+ 1

− 1

λ(t)
1
2 e

(
µ2

8
+ 1

2
µσD

)
(T−t)

+ 1

(3.72)
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by some manipulation, the sign depends on

k

1 + k
+e
− µ2

8(1+k)2
(T−t)

[
λ(t)

1
2 e(

1
2
µσD)(T−t)

]− 1
1+k

− 1

1 + k
e−

µ2

8
(T−t)

[
(λ(t))

1
2 e(

1
2
µσD)(T−t)

]−1

(3.73)

Let x := λ(t)
1
2 e(

1
2
µσD)(T−t), define G(x) as

G(x) =
k

1 + k
+ e

(
− µ2

8(1+k)2

)
(T−t)

x−
1

1+k − 1

1 + k
x−1 (3.74)

When

G
′
(x) = − 1

1 + k
e

(
− µ2

8(1+k)2

)
(T−t)

x−
1

1+k
−1 +

1

1 + k
x−2 = 0 (3.75)

We have x = e

(
µ2

8(1+k)k

)
(T−t)

. When : x > e

(
µ2

8(1+k)k

)
(T−t)

, G
′
(x) < 0, G(x) is a

monotonically decreasing function of x; when x < e

(
µ2

8(1+k)k

)
(T−t)

, G
′
(x) > 0, G(x)

is a monotonically increasing function of x. Consequently, there exist one cutoff xc2,

when x > xc2, G(x) > 0, when x < xc2, G(x) > 0.

Now we study the xc1 and xc2. We have F (1) = G(1) = k
1+k+e

(
µ2

8(1+k)k

)
(T−t)

− 1
1+k >

0. Because 0 = G(xc2) < G(1) < G

[
e

(
µ2

8(1+k)k

)
(T−t)

]
, we have: xc2 < 1. In addition,

because 0 = F (xc1) < F (1) < F

[
e

(
µ2

8(1+k)k

)
(T−t)

]
, we have: xc1 > 1. To sum up,

xc1 > xc2. Let gc1 := x2
c1e

(−µσD)(T−t) and gc2 := x2
c2e

(−µσD)(T−t), Proposition 3.5

is proved.

3.6. Proof of Proposition 3.6

Similar to the proof of Proposition 3.2 by setting γ = 2, we can get (3.37) and

(3.38) where

ak =
k

2+2k + λ(t)
1
2

1
1+k e

(
− µ2

8(1+k)2
+µσD

1
1+k

)
(T−t)

+ 2+k
2+2kλ(t)

1
1+k e(µσD

2
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1
2

1
1+k e
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+µσD

1
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1

1+k e(µσD
2

1+k )(T−t)
.

(3.76)

a0 =
λ(t)

1
2 e

(
−µ

2

8
+µσD

)
(T−t)

+ λ(t)e(2µσD)(T−t)

1 + 2λ(t)
1
2 e
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−µ

2

8
+µσD
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(T−t)

+ λ(t)e(2µσD)(T−t)

(3.77)
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If ak ≥ (≤)a0,then ak
1−ak ≥ (≤) a0

1−a0 . The sign of ak
1−ak −

a0
1−a0 depends on

k
2+2k + λ(t)

1
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1
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Hence, in this case, ak
1−ak >

a0
1−a0 , and it is easy to show that ak > a0.
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In this case ak
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For comparative statics, we consider how the ratio ak
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(3.79)

Let a = µσD (T − t), b = µ2

8 (T − t), we calculate
∂

ak
1−ak
∂k . After some calculation, we

find that the sign depends on

−
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If e

a
1+k − 1 > 0 , then a > 0, and the above expression is smaller than zero. If

e
a

1+k − 1 < 0 , then a < 0, and we can show it is greater than zero. Since
∂

ak
1−ak
∂k has

the same sign with ∂ak
∂k , the proposition is thus proved.
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3.7. Proof of Proposition 3.7
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Since κ1,t − κ2,t is a constant, it is easy to show
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dλ(t) > 0.

3.8. Proof of Proposition 3.8

Similar to the proof of Proposition 3.2 by setting γ = 2, we can get (3.40). When
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where K = λ(t)eµσD(T−t). After some calculation, the sign of Xk
t Y
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t −Y k

t X
0
t depends

on
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Then when K →∞, St > S0
t . When K → 0, St < S0

t

3.9. Proof of Proposition 3.10
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Using the strong Law of Large Numbers for Brownian motion (see Karatzas and

Shreve (1991), for any value of σ, we have:

lim
T→∞

exp(aT + σBT ) =

{
0, a < 0

∞, a > 0

}
(3.85)
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then we can easily get the result in the proposition.
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