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Abstract

This thesis consists of four chapters spanning climate policy and green innovation. The
first chapter identifies the impacts of China’s regional emission trading scheme pilots on
firm carbon emissions and other economic outcomes using a unique dataset of Chinese
firm tax records. The results demonstrate evidence that China’s ETS reduces carbon
emissions despite low carbon prices and infrequent trading. This chapter also identifies
the channels through which firms respond to ETS by adjusting energy consumption and
sources, employment, capital, and productivity. The second chapter assesses the impacts
of ETS on low-carbon innovation of unregulated subsidiary firms affiliated with regulated
firms. The findings demonstrate that ETS induces low-carbon innovation of unregulated
subsidiaries and suggest policy spillovers of ETS through corporate ownership networks.
Such policy spillovers are contingent on technological proximity between parent firms and
their subsidiaries, top managers with R&D experience, and parent firms’ financial con-
straints. The third chapter investigates the relationship between firms’ green revenues and
clean innovation. Using a global firm dataset disaggregating commercial activities based
on a new green taxonomy, this chapter finds that firms’ green revenues are enhanced by
their own clean innovation and clean innovation of other firms close in technological and
product market spaces. Such results suggest both private and social economic benefits of
clean innovation. The last chapter explores the role of foreign direct investment in green
knowledge spillovers to Chinese domestic firms. Through text-mining business description
and tracking patents of foreign-invested firms in China, this chapter develops new defini-
tions of green FDI and identifies the impacts of knowledge stocks resulting from green FDI
firms on green innovation of domestic firms. The findings show that knowledge stocks of
green FDI firms in downstream industries drive domestic firms’ green patents and suggest
knowledge spillovers from downstream green FDI.
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Introduction

Climate change is a global challenge that needs collective actions to curb increasing carbon
emissions around the world. To address climate change, well-designed climate policies and
widely-adopted green technologies are both strongly needed as they provide the promising
feasibility of reducing emissions without depressing economic growth. Harnessing climate
policies and green technologies to fulfil climate targets requires a more comprehensive
understanding of the outcomes of climate policies and the benefits of green innovation.
Therefore, my research focus is targeted on two themes: The first theme focuses on the
direct and indirect impacts of climate policies. I take the emission trading scheme (ETS)
in China as the climate policy case as it performs as a flagship climate policy instrument
for the world’s largest CO2 emitter to achieve its climate targets. I explore how the ETS
reduces emissions in regulated firms while inducing innovation in unregulated firms. The
second theme focuses on the economic benefits of green innovation, and how such benefits
can be spread to a wider range of firms through technology spillovers, which lead to more
revenues from green products and further innovation of green technologies. The two themes
are explored in detail in four independent chapters.

The first chapter of this thesis, The Effectiveness of China’s Regional Carbon Market Pilots
in Reducing Firm Emissions, explores the impacts of China’s emission trading scheme on
emissions and other economic consequences. The emission trading scheme is an import-
ant climate policy in China to reduce its ever-increasing greenhouse gas emissions while
maintaining rapid economic growth. With low carbon prices and infrequent allowance
trading, however, whether China’s ETS is an effective approach to climate mitigation has
entered the centre of the policy and research debate. This chapter provides a compre-
hensive assessment of the effects of ETS on firm carbon emissions and economic outcomes
by means of a matched difference-in-differences (DID) approach. The empirical analysis
is based on a unique panel dataset of firm tax records in the manufacturing and pub-
lic utility sectors during 2009-2015. This chapter shows unambiguous evidence that the
regional ETS pilots are effective in reducing firm emissions, leading to a 16.7 percent re-
duction in total emissions and a 9.7 percent reduction in emission intensity. Regulated
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firms achieve emission abatement through conserving energy consumption and switching
to low-carbon fuels. The economic consequences of the ETS are mixed. On the one hand,
the ETS has a negative impact on employment and capital input; on the other hand, the
ETS incentivizes regulated firms to improve productivity. In the aggregate, the ETS does
not exhibit statistically significant effects on output and export. This chapter also finds
that the ETS displays notable heterogeneity across pilots. Mass-based allowance allocation
rules, higher carbon prices, and active allowance trading contribute to more pronounced
effects in emission abatement.

The second chapter of this thesis, Policy Spillover Induces Low-carbon Innovation: Evid-
ence from Corporate Ownership Network in China, further investigates the policy spillover
effects of the emission trading scheme. The emission trading scheme establishes a market
price for carbon emissions and induces behavioural changes especially low-carbon innova-
tion, while most policy evaluations focus on the innovation of firms that are directly reg-
ulated by the ETS. This chapter attempts to extend the understanding of the ETS policy
spillovers through corporate ownership networks. Taking advantage of China’s regional
ETS pilots as a quasi-experiment, this chapter identifies the causal effects of the ETS on
the low-carbon innovation of unregulated subsidiaries that are affiliated with regulated par-
ent firms. By a difference-in-differences (DID) strategy with the propensity score matching,
the findings demonstrate that China’s regional ETS pilots raise low-carbon innovation of
unregulated subsidiaries by 4.92% of patent counts and 7.04% of patent citations. The
results suggest the ETS policy spillovers from regulated parent firms to their unregulated
subsidiary firms that induce low-carbon innovation in the unregulated subsidiaries. The
strength of the policy spillover effects varies by carbon prices, while the effects are similar
on invention and utility patents. Such policy spillovers are contingent on technological
proximity between parent firms and their subsidiaries, top managers with R&D experi-
ence, and financial constraints of parent firms. The results suggest that the effects of the
ETS on innovation are underestimated without accounting for the policy spillovers through
corporate ownership networks.

The third chapter of this thesis, Green Revenues, Clean Innovation and Technology Spillover:
Evidence from Global Firm Level Data, focuses on the economic benefits of clean innov-
ation. Innovation of clean technologies is critical to mitigating increasing environmental
challenges, while it can generate revenues for the inventing firms and beyond through tech-
nology spillovers. However, the extent to which clean technologies are generating private
and social economic benefits remains poorly understood to date, due to a lack of suit-
able data sources. Using a unique dataset disaggregating commercial activities of global
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publicly listed firms based on a new green taxonomy, this chapter shows the variation of
green revenues during 2009-2016. This chapter documents a smooth increase in average
green revenues over the years. This increase is mainly driven by the expansion of revenues
from green products but not the structure change between green and non-green revenues.
This chapter finds that firms’ green revenues are enhanced by not only their own clean
innovation but clean technology spillovers from other neighbouring firms close in the tech-
nological and product market spaces. This chapter also finds that the growing maturity
of clean technologies facilitates firms to obtain more green revenues, particularly for firms
with more own clean technologies. Firms with larger sizes and higher technology capacit-
ies benefit more from their own and others’ clean innovation. The new evidence on clean
technology spillovers implies considerable social benefits of clean innovation and the need
to provide policy support to encourage investments in clean technologies.

The last chapter of this thesis, Knowledge Spillover from Green FDI: Evidence from Green
Innovation in China, looks back to the starting point of the Chinese green industries’
take-off and attempts to explore how green knowledge spills over to Chinese firms via
foreign direct investment (FDI). China had rapid development of green industries in the
past two decades and foreign direct investment was an important enhancer of bringing
cutting-edge green technologies to Chinese domestic firms. However, the contributions
of FDI to green knowledge spillovers may not be estimated accurately if one does not
differentiate whether an FDI involves environmentally-friendly commercial activities, i.e.,
green FDI. This chapter develops four new definitions of green FDI by text-mining the
business description and tracking patenting activities of foreign-invested firms. I identify
the impacts of knowledge stocks resulting from green FDI firms on domestic firms’ green
innovation using Chinese firm-level data, together with an instrumental variable based
on the changes in China’s FDI opening-up policy. The results show no impact of green
FDI firms’ knowledge stocks on domestic firms’ green innovation when green FDI firms
operate within the same industry as domestic firms. In contrast, I find that a 1% increase
in knowledge stocks resulting from green FDI firms in downstream industries contributes
to roughly 0.732% increase in green patents of domestic firms. Such knowledge spillover
effects of downstream green FDI are more pronounced on domestic high-quality green
innovation. I further investigate the factors affecting green FDI knowledge spillovers and
find that the location of green FDI firms, technological proximity between industries, and
environmental regulation stringency of green FDI origins can influence the strength of the
knowledge spillovers from downstream green FDI.
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Chapter 1

The Effectiveness of China’s Regional
Carbon Market Pilots in Reducing
Firm Emissions1

1.1 Introduction

China has pledged that its carbon emissions will peak by 2030 and that it will achieve
carbon neutrality by 2060. To meet these ambitious climate targets while maintaining
economic growth, it has implemented an emission trading system (ETS) to achieve cost-
effective climate mitigation. China has a long history of experimenting with ETS, ori-
ginated with the SO2 ETS in the early 1990s (Karplus et al., 2021). Its experience with
carbon markets started in the early 2000s through the Clean Development Mechanism, a
voluntary carbon offset scheme created by the Kyoto Protocol (Zhang and Wang, 2011).
China’s regional carbon ETS pilots, announced in 2011 and launched in 2013, marked its
first systematic attempt to use market-based instruments to regulate firm carbon emis-
sions (Zhang et al., 2017). Building on the experience of regional pilots, China brought a
national carbon ETS, the largest carbon market in the world, online in 2021. As China is
poised to ramp up its effort to fight climate change, whether ETS is an effective approach
for climate mitigation has entered the center of debate.

Concerned with the impact of carbon regulations on industrial competitiveness, China
has been experimenting with both mass- and rate-based allowance allocation rules in the
regional pilots. A mass-based rule sets a cap on total emissions while a rate-based rule
regulates emission intensity. The national ETS, which covers only the power sector, has
adopted a rate-based rule. A rate-based rule creates less regulatory pressure than a mass-
1This paper has been published as a research article in Proceedings of the National Academy of Sciences,
https://doi.org/10.1073/pnas.2109912118.
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based rule (Fischer and Newell, 2008; Boom and Dijkstra, 2009; Pizer and Zhang, 2018;
Goulder and Morgenstern, 2018; Goulder et al., 2019). Less regulatory pressure gives
rise to low carbon prices and infrequent allowance trading. The average carbon price
was $5.6/t-CO2e in the regional ETS between 2013 and 2015; the average carbon price
was $7.8/t-CO2e for the national ETS in the first week of operation. Allowance trading
has been sporadic, with most transactions occurring in the narrow windows close to the
compliance deadlines. In this context, two questions arise from China’s ETS, especially
from the regional ETS pilots: First, can a low carbon price create incentives for firms to
reduce emissions? Second, is a thin carbon market with few buying or selling allowances
still useful for firms to mitigate the cost of compliance?

The empirical evidence from the European Union and the United States shows that ETS
is effective in mitigating climate change (Fowlie, 2010; Fowlie et al., 2012; Martin et al.,
2014; Jaraite and Di Maria, 2016; Borenstein et al., 2019; Colmer et al., 2020), but the
economic consequences are mixed (Linn, 2010; Veith et al., 2009; Commins et al., 2011;
Bushnell et al., 2013; Martin et al., 2016; Curtis, 2017; Marin et al., 2018; Joltreau and
Sommerfeld, 2019). In particular, a recent study demonstrates that the EU ETS with
low carbon prices still works as long as it sends a credible signal to emission entities that
the regulation will become more stringent in the future (Bayer and Aklin, 2020). Some
literature on the effectiveness of China’s ETS has also started to emerge. However, these
studies are only focused on certain companies, such as power generators (Cao et al., 2021),
large firms (Zhu et al., 2019), or publicly listed companies (Cui et al., 2018). The overall
impacts of China’s ETS on firms are still largely unknown.

This paper comprehensively evaluates the effects of China’s regional ETS pilots on firm
emissions and economic outcomes. The pilot ETS provides an excellent setting as a quasi-
natural experiment since the pilots cover firms above thresholds in certain sectors in seven
jurisdictions (Table 1.A.1). Taking advantage of regulatory variations across sectors, re-
gions, and years, this paper employs a matched difference-in-differences (DID) approach
to identify the plausible causal effects of ETS on firm carbon emissions and economic out-
comes. The empirical analysis is based on a unique panel dataset of firm tax records from
the Chinese National Tax Survey Database (CNTSD). The data have broad coverage of
firms in terms of sizes, sectors, regions, and years. With detailed information about firm
energy and economic activities, the data enable us to comprehensively assess the ETS
effects and identify the channels through which firms respond.

The regional ETS pilots also provide a rich set of variations to study the impacts of
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carbon market design. First, the two-stage launching of the pilots allows us to distinguish
the announcement effect from the trading effect. Second, the variation in carbon market
performance across regional pilots allows us to identify the impacts of carbon price and
allowance liquidity. Third, the heterogeneity of allowance allocation rules allows us to
assess the impact of regulatory stringency (Table 1.A.2). Although our analysis focuses on
the regional ETS pilots, it provides important policy implications for the national carbon
ETS. After all, the design of the national ETS closely follows regional pilots. Many issues
that occurred in the regional pilots are likely to be scaled up to the national level.

1.2 Results

The regression analyses take advantage of the quasi-natural experiment created by China’s
regional ETS pilots. The estimation of the ETS effects proceeds in two steps. We first con-
struct the comparison group by one-to-one matching. This approach pairs each regulated
firm with an unregulated firm in the same sector based on certain observable attributes.
We conduct a balancing test to ensure that the unregulated firm can serve as the coun-
terfactual for the regulated firm. With the matched sample, we then employ the DID
approach to estimate the effects of ETS on carbon emissions and other firm outcomes of
interest.

1.2.1 The regional carbon ETS pilots are effective in reducing firm total
emissions and emission intensity after the start of allowance trad-
ing

Table 1.1 presents the estimated coefficients and standard errors for the effects of ETS on
firm carbon emissions based on the baseline model in Eq (1.1). Columns (1)-(2) report
the results for total emissions and columns (3)-(4) show the effects on emission intensity
(emissions per unit of output value). The preferred estimation results, contained in columns
(2) and (4), control for regional (provincial) and industrial linear trends. We differentiate
the ETS effects into two phases: announcement (2011-2012) and allowance trading (2013-
2015). The ETS effect in the announcement phase, capturing the anticipation effect, is
negative but statistically insignificant in the preferred model. The ETS effect starts to
kick in during the trading phase; the preferred model estimates that the ETS reduces total
emissions by 16.7% (95% CI: [-26.4%,-6.9%]) and by 9.7% for emission intensity (90% CI:
[-18.7%, -0.6%]).

We test the assumption that the regulated firms and the matched comparison firms follow a
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Table 1.1: The ETS Effects on Firm Carbon Emissions

Dep Var Total Emissions Emission Intensity
(1) (2) (3) (4)

Announcement -0.075* -0.088 -0.027 -0.017
(0.038) (0.072) (0.028) (0.084)

Trading -0.178*** -0.167*** -0.118** -0.097*
(0.053) (0.047) (0.043) (0.053)

Observations 2,416 2,416 2,416 2,416
R-squared 0.047 0.198 0.090 0.220
Firm FE Y Y Y Y
Year FE Y Y Y Y
Province Trend N Y N Y
Industry Trend N Y N Y

Notes: All dependent variables are in natural logarithms. Announcement equals one for the
regulated firms during the announcement period (2011-2012). Trading equals one for the
regulated firms during the trading period (2013-2015). Standard errors in parentheses are
clustered at the industry level. *** significant at the 1% level, ** significant at the 5% level,
* significant at the 10% level.

similar emission trend by regressing the dynamic effects model in Eq (1.2). The estimated
coefficients for the pre-policy indicators are not statistically significant at any conventional
level, as shown in Figure 1.1. These estimates cannot reject the null hypothesis that carbon
emissions were not statistically different between the regulated and matched comparison
firms prior to the initiation of ETS. After trading started, the estimated coefficients for
the post-policy indicators display a downward trend. In the Appendix, we conduct a series
of robustness checks with regarding to alternative specifications, potential threats from
confounding policies, and data treatment (Tables 1.B.3, 1.C.2, 1.D.1, 1.E.2, 1.E.3, 1.E.4,
1.G.1, and 1.G.2). The main conclusion survived all these sensitivity analyses. Further-
more, to examine heterogeneous ETS effects by sectors, we run the baseline regressions
for the electricity and manufacturing sectors separately. We find that the ETS effects for
the manufacturing sector are similar to the baseline results, while the effects for the power
sector are statistically insignificant. This can be partly due to a lack of statistical power
since our data only include a small sample size of matched regulated power plants (Table
1.F.1).
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Figure 1.1: Dynamic Effects on Total Emissions and Emission Intensity
Notes: Left panel is based upon the period 2009-2015, and the right panel is for the period 2007-2015.
The shaded areas indicate the 95% confidence intervals. The hollow circles represent the point estimates
for effects prior to the announcement phase (period -1 and before). The solid circles indicate the effects of
the announcement phase (period 0 to 1). The rectangular symbols mark the effects of the trading phase
(period 2 and after).

1.2.2 Firms achieve carbon emission reductions through energy conser-
vation and fuel switching

Under carbon regulations, firms can abate emissions through conserving energy, improving
energy efficiency, and/or switching to low-carbon fuels (Copeland and Taylor, 2005; Lev-
inson, 2009; Shapiro and Walker, 2018; Colmer et al., 2020). To investigate the channels
through which firms achieve emission reductions, we estimate the effects of ETS on firm
energy consumption, energy consumption per unit of output value (Energy/Output), car-
bon emissions per unit of energy consumption (Emission/Energy), and the ratio of natural
gas to total energy. Figure 1.2 illustrates the estimated effects of ETS on each component
based upon the baseline model in Eq (1.1).

Consistent with the baseline conclusion, the ETS effects mainly occur during the trading
phase. Specifically, the ETS reduces firm energy consumption – including coal, gasoline,
natural gas, and electricity – by 13% (95% CI: [-23.3%, -2.6%]). Carbon emission abate-
ment is also achieved through fuel switching. Regulated firms reduce emissions per unit of
energy consumption by 3.7% (95% CI: [-6.8%,-0.7%]) by switching to low-carbon energy
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sources. In particular, the ETS increases the share of natural gas by 3.7% (95% CI: [1.1%,
6.4%]). In a nutshell, we find that energy conservation results in the largest portion of
emission reductions, while fuel switching also contributes to lower emissions.

Annoucement Trading

−0.2 −0.1 0.0 0.1 −0.2 −0.1 0.0 0.1

Natural gas ratio

Emission/Energy

Energy/Output

Energy

90% CI 95% CI

Figure 1.2: The Channels of Carbon Emission Reductions
Notes: The dependent variables except for natural gas ratio are in log form (y-axis). Announcement
designates the ETS effects during the announcement period (2011-2012). Trading designates the ETS
effects during the trading period (2013-2015). Firm and year fixed effects, as well as province linear trend
and industry linear trend, are included.

1.2.3 Firms respond to the ETS by reducing labor and capital inputs,
improving productivity while maintaining the same level of output

We examine how firms make economic adjustments in response to the ETS. Specifically, we
consider three categories of firm attributes, including output (output value, value-added,
and export), input (labor, capital, capital-labor ratio, wage, and investment), and pro-
ductivity (output-labor ratio, output-capital ratio, and total factor productivity (TFP)).
Figure 1.3 illustrates the estimation results for each attribute based upon the baseline
model in Eq (1.1).

We find that regulated firms adjust factors of production in response to carbon pricing. The
ETS reduces employment by 6.6% (95% CI: [-11.8%,-1.4%]) in the announcement phase
and by 11.8% (95% CI: [-23.1%, -0.4%]) in the trading phase. The ETS reduces capital
by 15.6% (95% CI: [-30.2%,-1.0%]) in the trading phase, while the effect is statistically
insignificant in the announcement phase. Since the relative price of capital and labor is
not affected, the ETS has no statistically significant effect on the capital-labor ratio. The
ETS effects on wage rate and investment are also statistically insignificant.

While the ETS induces firms to reduce emissions, it also encourages firms to innovate and
improve productivity. Our results show that, during the trading phase, the ETS increases
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Annoucement Trading

−0.4 0.0 0.4 0.8 −0.4 0.0 0.4 0.8
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TFP−OP

Output/Capital

Output/Labor

Export

Output Value

Value Added

Investment

Wage

Capital/Labor

Capital

Labor

90% CI 95% CI

Figure 1.3: The ETS Effects on Firm Economic Attributes
Notes: The dependent variables are in log form (y-axis). Announcement designates the ETS effects during
the announcement period (2011-2012). Trading designates the ETS effects during the trading period (2013-
2015). Firm and year fixed effects, as well as province linear trend and industry linear trend, are included.

productivity by 29.1% (95% CI: [0.8%, 57.5%]) or 25.6% (90% CI: [2.9%, 48.2%]), following
two alternative TFP measures (Olley and Pakes, 1996; Levinsohn and Petrin, 2003). In
addition, the ETS has positive effects on output per unit of labor and output per unit of
capital, although the estimates are statistically insignificant.

Because the ETS not only increases the cost of production but also boosts firm productiv-
ity, the aggregate effects of ETS on firm output can be ambiguous. We find no statistically
significant effects of ETS on output values and value-added. This result suggests that
emission abatement is probably not being achieved through cutting production. This find-
ing also speaks to the concern that regulating carbon emissions will impose a competitive
disadvantage on firms that are exposed to trade. Our empirical result rejects the null
hypothesis that the ETS has a negative effect on firm export.

China’s Regional Carbon Market Pilots Reduce Firm Emissions 10



1.2.4 High carbon prices and active allowance trading are more likely to
stimulate firms to engage in emission abatement

Heterogeneous carbon market designs lead to variance in market performance. We focus
on carbon price and trading activeness. The daily carbon price of the regional ETS pilots
ranged from $1.38 to $20.88/t CO2e between 2013 and 2015, with the average carbon price
at $5.6/t CO2e. The turnover rate of carbon allowance, measured by the ratio of exchanged
allowances to total allowances, was 0.018 on average in the same period. Allowance trading
is infrequent and mainly occurs before the deadline for compliance.

We interact the trading dummy with carbon price and allowance turnover rate using a
variant of the baseline model defined in Eq (1.3). Table 1.2 reports the estimation results.
In columns (1) and (3), the estimates show that a 1% increase in carbon price results in a
0.043% decline (95% CI: [-0.065%, -0.020%]) in total emissions and a 0.022% decline (90%
CI: [-0.044%, -0.001%]) in emission intensity. In columns (2) and (4), we find that a higher
turnover rate also stimulates emission reductions. When the turnover rate increases by 0.01,
it can lead to a 3.75% decrease (95% CI: [-5.715%, -1.794%]) in total emissions and a 2.41%
decrease (95% CI: [-4.656%, -0.169%]) in emission intensity. The findings highlight the
pivotal role of carbon price and trading activeness in incentivizing firm emission reductions.

Table 1.2: Effects of Carbon Price and Allowance Liquidity

Dep Var Total Emissions Emission Intensity
(1) (2) (3) (4)

Announcement -0.074 -0.054 -0.006 0.000
(0.068) (0.068) (0.081) (0.075)

Carbon Price -0.043*** -0.022*
(0.011) (0.013)

Turnover Rate -3.754*** -2.412**
(0.940) (1.075)

Observations 2,416 2,416 2,416 2,416
R-squared 0.198 0.194 0.219 0.219
Firm FE, Year
FE

Y Y Y Y

Province Trend Y Y Y Y
Industry Trend Y Y Y Y

Notes: The dependent variables and carbon price are in natural logarithms, while turnover
rate is shown as a ratio. Announcement equals one for the regulated firms during the an-
nouncement period (2011-2012). Carbon price and turnover rate are only available for the
regulated firms during the trading period (2013-2015) and are shown as zero otherwise. Stand-
ard errors in parentheses are clustered at the industry level. *** significant at the 1% level,
** significant at the 5% level, * significant at the 10% level.
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1.2.5 A mass-based allowance allocation rule creates stronger incentives
for emission abatement than does a rate-based rule

The regional ETS pilots adopt two types of allowance allocation rules: mass-based and
rate-based. Under a mass-based rule, the total allowance for a regulated firm is determ-
ined in advance of the compliance period based on its historical emission level or a fixed
reference production quantity. In contrast, under a rate-based rule, the total allowance
may be adjusted at the end of each compliance period based on a firm’s production level
during this period. A rate-based rule allows a regulated firm to increase emissions as long
as its emission intensity is compliant. Therefore, a rate-based rule implicitly subsidizes
production and poses weaker regulatory pressure than a mass-based rule does (Goulder
and Morgenstern, 2018).

Table 1.3: Heterogeneous Effects by Allowance Allocation Rules

Dep Var Total Emissions Emission Intensity
(1) (2) (3) (4)

Announcement -0.083** -0.120* -0.047 -0.068
(0.039) (0.063) (0.033) (0.073)

Trading -0.342*** -0.399** -0.367*** -0.436***
(0.098) (0.147) (0.076) (0.096)

Trading×Rate 0.212*** 0.284* 0.319*** 0.414***
(0.067) (0.140) (0.079) (0.086)

Observations 2,416 2,416 2,416 2,416
R-squared 0.055 0.207 0.102 0.233
Firm FE, Year FE Y Y Y Y
Province Trend N Y N Y
Industry Trend N Y N Y

Notes: All dependent variables are in natural logarithms. Announcement equals one for the reg-
ulated firms during the announcement period (2011-2012). Trading equals one for the regulated
firms during the trading period (2013-2015). Rate equals one if the regulated firms are categor-
ized into the rate-based group. Standard errors in parentheses are clustered at the industry level.
*** significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.

We examine the effect of allowance allocation rules following the regression model in Eq
(1.4). The estimation results, presented in Table 1.3, support the argument that the
mass-based rule is more effective in incentivizing emission reductions. Specifically, the
preferred estimates in columns (2) and (4) show that the mass-based rule reduces firm
total emissions by 39.9% (95% CI: [-70.6%, -9.2%]), 43.6% (95% CI: [-63.7%, -23.6%]) for
emission intensity. However, under the rate-based rule, the effect of the ETS on total
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emissions is diminished by 28.4 percentage points (90% CI: [4.2%, 52.5%]) and the effect
on emission intensity is weakened by 41.4 percentage points (95% CI: [23.5%, 59.3%]).

1.3 Discussion

This paper demonstrates that China’s regional ETS pilots were effective in reducing firm
emissions in the early trading phase (2013-2015) despite low carbon prices and allowance
liquidity. The magnitude of the effect, a 16.7% reduction in carbon emissions, is on par
with that of the EU ETS (8-12%) in the second trading phase (2008-2012) (Wagner et al.,
2014; Dechezleprêtre et al., 2018; Colmer et al., 2020). Nevertheless, the regulated firms
in China and the EU have responded differently in terms of emission abatement channels.
Whereas the EU ETS has reduced consumption of natural gas and petroleum products by
manufacturing firms in Germany (Wagner et al., 2014) and France (Colmer et al., 2020), the
firms regulated by China’s regional ETS have increased natural gas consumption. Because
China’s energy mix is dominated by coal, switching to natural gas can still reduce carbon
emissions.

The cost of regulations is a major concern for many countries, including China, in deciding
to take more aggressive climate actions. On the one hand, we find that ETS has a negative
impact on employment. By putting a price on carbon, ETS imposes additional costs
of production, since energy conservation and fuel switching can be costly. To maintain
competitive advantages, regulated firms reduce labor inputs. Our analysis contributes
to the heated debate on the impact of carbon regulations on the labor market. Most
studies find that ETS has a negative (Abrell et al., 2011; Curtis, 2017) or muted impact
(Commins et al., 2011; Wagner et al., 2014; Dechezleprêtre et al., 2018; Colmer et al.,
2020) on employment. Our finding also contributes to the literature on how environmental
regulations affect employment (Greenstone, 2002; Berman and Bui, 2001; Curtis, 2017; Liu
et al., 2021). These results, including those in this paper, suggest that it is important to
provide assistance to the workers displaced from carbon-intensive sectors to ensure a just
transition.

On the other hand, the measures that firms undertake to reduce emissions may also contrib-
ute to higher production efficiency. This hypothesis is supported by our empirical results.
We find that ETS stimulates firms to improve productivity. This finding is consistent with
the literature documenting how ETS has sparked low-carbon innovation in the EU (Calel
and Dechezleprêtre, 2016; Calel, 2020) and in China’s regional ETS pilot areas (Cui et al.,
2018; Zhu et al., 2019). Productivity growth reduces the cost of compliance with carbon
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regulations, which alleviates the concern of policymakers regarding the tradeoff between
climate mitigation and economic growth.

Firms respond to carbon regulations by reducing labor and capital while improving energy
efficiency. This suggests that firms take advantage of low-hanging fruit to reduce energy
consumption and carbon emissions. The literature on greenhouse gas abatement cost curves
has identified a plethora of technologies that can help achieve this (McKinsey, 2013). In
addition, firm management practices are positively associated with energy efficiency and
productivity (Bloom et al., 2010; Boyd and Curtis, 2014). For example, firms use sensors
and big data to better dispatch cooling systems. This smart technology could free up some
air conditioners and reduce capital stocks. It also reduces labor demand since firms need
fewer people to manage air conditioners.

This paper sheds important light on the policies regarding carbon markets. First of all,
carbon price plays a central role in incentivizing emission reductions. The carbon price
in China’s regional ETS pilots is relatively low compared with the social cost of carbon
or the level in other mature carbon markets. A major cause of low carbon prices is the
excess supply of carbon allowances (Zhang et al., 2017). For example, the Guangdong and
Shenzhen ETS pilots failed to auction allowances in the primary market, suggesting that
carbon allowances were oversupplied. Another concern is that the carbon market is thin
and carbon allowances are illiquid. Infrequent trading results from firms’ lack of capacity
in managing carbon allowances. In addition, most transactions occurred at the end of
a compliance period, due to the fact that total allowances are not known until the final
output is determined under the rate-based allowance allocation rule. A low carbon price is
inadequate to support China’s climate ambition. If China could increase its carbon price
to the same level as California’s cap-and-trade program ($17/t-CO2e), it would reduce
emissions by 8.83%. If the carbon price could be further increased to the level of the
EU ETS ($32/t-CO2e), it would reduce emissions by 20.39%. If the carbon price could
reach the social cost of carbon ($50/t-CO2e) (Nordhaus, 2019), one would expect a 34.31%
emission reduction.

Another important policy implication is that allowance allocation rules matter. A mass-
based rule creates stronger regulatory pressure than a rate-based rule because the latter
implicitly subsidizes production (Pizer and Zhang, 2018; Goulder and Morgenstern, 2018;
Goulder et al., 2019). Nevertheless, the national carbon ETS launched in 2021, which
covers only the power generation sector, uses a rate-based approach. Given that China
has pledged to achieve a carbon emission peak by 2030 and carbon neutrality by 2060,
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a national ETS without an explicit emission cap is unlikely to achieve China’s ambitious
climate targets. It is therefore urgent to design a transition from the rate-based system to
a mass-based rule.

This paper leaves several areas for future study. First, we are not able to reliably measure
firms’ entry and exit in the tax survey data. Therefore, this paper only focuses on the
intensive margin. Second, our analysis estimates the short-run effects of ETS. Although it
is important to trace out the behavioural responses of firms in the long run, such an analysis
is implausible since the regional ETS pilots are in the process of being incorporated into the
national carbon market. Therefore, this question can only be answered after waiting for
the national ETS to operate for several years. Third, this analysis considers only carbon
emissions from energy consumption, including direct emissions from burning fossil fuels and
indirect emissions from purchased electricity. Due to data limitations, we are not able to
include the emissions of other greenhouse gases beyond CO2, especially those from certain
chemical reactions in the manufacturing sectors. Firm-level greenhouse gas emissions are
not systematically documented, especially for those firms that are not covered by the ETS.
Conducting a more comprehensive analysis in the future should overcome the hurdle of
emission data availability.

1.4 Data and Methods

1.4.1 Data

Firm Attributes

The primary firm data are obtained from the Chinese National Tax Survey Database
(CNTSD), a large-scale annual survey conducted by China’s Ministry of Finance and State
Administration of Taxation. This database documents the detailed energy consumption
and economic information at the firm level. One notable advantage is its broad coverage
of firms. Unlike another widely used Chinese firm-level dataset – the Annual Survey of
Industrial Enterprises (ASIE) – that only comprises large firms, the CNTSD covers a much
wider range of firms (Liu and Mao, 2019). Another advantage is the detailed firm-level
information about energy consumption by source, including coal, oil, natural gas, and
electricity. Note that a firm is not the perfect unit of analysis compared with a plant or
facility. It is difficult to determine the regulatory status of a multiple-plant firm operating
in different jurisdictions. This is a caveat in the Chinese firm data collection system.
Nevertheless, more than 95% of firms in the ASIE are single plants (Brandt et al., 2012).
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Since ASIE and CNTSD follow similar protocols, dominant single plants should mitigate
our concern about misclassification of ETS regulatory status.

ETS Rules and Performances

The ETS rules in the seven regional pilots are compiled from the official websites of local
Development and Reform Commissions, which regulate carbon emissions and carbon mar-
kets (Table 1.A.1) We compile a list of regulated firms and classify them into a rate- or
mass-based system according to the allowance allocation rules (Table 1.A.2). In addition,
we obtain the carbon allowance trading data – including price and volume – from the seven
carbon exchanges.

Variable Construction

This paper considers both direct emissions from combustion of fossil fuels and indirect
emissions from purchased electricity. Emissions are calculated from the CNTSD energy
consumption data by source and carbon emission factors (Table 1.C.1) Emission intensity
is defined as the ratio of total carbon emissions to gross output value. Firm economic
attributes include output value, value-added, export, labor, capital, wage, and investment.
Firm total factor productivity (TFP) is measured by means of two standard approaches
in the economics literature (Olley and Pakes, 1996; Levinsohn and Petrin, 2003).

Summary Statistics

Merging the ETS data with the firm data, the final dataset includes 51,179 unique firms
associated with 254,378 firm-year observations during the 2009-2015 period. The procedure
of data cleaning and matching is documented in the Appendix. The summary statistics
for the variables of interest are reported in the Table 1.B.2.

1.4.2 Empirical Strategy

One-to-one Matching

We use matching to construct a comparison group with firms not regulated by the ETS to
serve as the counterfactuals for the treatment group with regulated firms. The estimation of
ETS effects can be biased if the treatment and control groups significantly differ in their pre-
treatment characteristics (Dehejia and Wahba, 2002). To address this concern, we employ
a one-to-one nearest neighbor matching technique. For each regulated firm, we match
the closest unregulated firm within the same sector according to the shortest Mahalanobis
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distance. This distance is calculated based on total carbon emissions, emission intensity,
and energy consumption in the two years before the announcement of ETS (i.e., 2009
and 2010). In addition, matching within the sector-year cell can help control for sector-
specific, time-variant unobservables that affect both treatment and comparison units. We
allow matching with replacement to avoid introducing extra bias in the selection of control
units, ensuring that each treated firm is matched with the closest comparison firm.

We carefully assess the credibility of the matching procedure using balancing tests. Spe-
cifically, we compare the sample means of covariates between the treatment and matched
control groups (Table 1.E.1). We find no significant differences between the two groups in
all covariates used in matching and even for those not used. These results suggest that
our matching strategy performs well in extracting reasonable comparison firms that are
similar to the regulated firms within the same sector prior to the announcement of ETS.

Baseline Model

Using China’s regional ETS pilots as a quasi-natural experiment, which regulates carbon
emissions for the firms in certain sectors over seven jurisdictions, we employ a difference-
in-differences (DID) approach to estimate the ETS effects on firm outcomes. For firm i in
sector j from region r at year t, the baseline model specification is given by:

Yijrt =β1Announcementrt + β2Tradingit + γi + λt + ηrt + δjt + εijrt. (1.1)

In this form, Yijrt denotes firm carbon emissions (including total emissions and emission
intensity, in logarithms) or corporate financial outcomes (input, output, and productivity).
The dummy Announcementrt equals one if region r at year t (between 2011 and 2012) has
announced its participation in ETS and zero otherwise. The dummy Tradingit takes a
value of one for regulated firms in the trading phase and zero otherwise. Correspondingly,
β1 captures the announcement effect, and β2 measures the trading effect.

In addition, we include firm-level fixed effect γi to control for unobservable firm attributes
that are time-invariant. The time fixed effect indexed by λt absorbs year-specific unob-
servables. We add regional linear trend ηrt and industrial linear trend δjt to control for the
region- and industry-specific time-varying unobservables that affect firm outcomes. In the
robustness checks, we also use region-by-year and industry-by-year fixed effects. Finally,
εijrt is an unobserved error term. With the control group constructed by the matching
approach, we can consistently estimate the matched-DID model in Eq (1.1) using ordinary
least squares.
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Dynamic Effects

The validity of the DID model relies on the assumption that the regulated firms do not
exhibit a different emission trend from the matched comparison firms. To check this
assumption, we conduct the following parallel trends test by running a variant of the DID
model while controlling for the lags and leads of the policy year dummies:

Yijrt =
2∑

m=1
α1mETSi,s−m +

4∑
n=0

α2nETSi,s+n + γi + λt + ηrt + δjt + εijrt. (1.2)

In this form, the dummy variable, denoted by ETSit, integrates the pre-announcement,
announcement, and trading effects. ETSi,s−m is a pre-policy dummy indicating the mth

lag of announcing ETS pilots in 2011, while ETSi,s+n denotes a post-policy indicator for
the nth lead, where s is the year of the ETS announcement. The latter measures the
announcement effect for n ∈ [0, 1] and the trading effect for n ∈ [2, 4]. Controlling for lags
allows us to examine the pre-ETS effect as a parallel trends test. Controlling for leads
helps trace out the treatment effects in the years after the launching of allowance trading.

Carbon Market Performances

The performance of carbon ETS pilots varies across regions due to diverse market designs.
Carbon price signals marginal cost of abatement and turnover rate measures the activeness
of allowance trading. Utilizing carbon price and turnover rate across pilots and years, we
examine how carbon market performance relates to abatement activities. A variant of the
baseline model is given by:

Yijrt =β1Announcementrt + β2Tradingit+

β3Tradingit × Marketrt + γi + λt + ηrt + δjt + εijrt, (1.3)

where Marketrt denotes either carbon price or turnover rate at pilot r in year t. The
coefficient β3 captures the effect of carbon market performances.

Allowance Allocation

We classify regulated firms into a rate- or mass-based allowance allocation system. The
baseline specification is modified to compare the treatment effects between these two alloc-
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ation rules by adding another dimension of the variation. A variant of the baseline model
is proposed below:

Yijrt =β1Announcementrt + β2Tradingit+

β3Tradingit × Ratei + γi + λt + ηrt + δjt + εijrt, (1.4)

where Ratei is a binary indicator, equaling one if firm i is in a rate-based allowance alloca-
tion system, otherwise zero. The coefficient β3 captures the difference in treatment effects
between rate- and mass-based systems. Some unregulated firms may be used to construct
the control groups for both rate- and mass-based treatment groups due to matching with
replacement. Nevertheless, in the matched sample, very few unregulated firms appear in
both the rate- and mass-based control groups; they are dropped in the analysis.

Robustness Checks

To test the stability of the baseline estimates, we conduct a series of sensitivity analyses.
First, we consider alternative data cleaning approaches (Table 1.B.3) Second, to address
the concern of missing data on emissions from industrial processes, we run additional re-
gressions without steel, chemical, petrochemical, cement, lime, glass, and other building
materials sectors (Table 1.C.2). Third, we isolate the influence of potential confounders at
the regional and firm levels (Table 1.D.1). In particular, we account for contemporaneous
local air pollution control and energy policies. We also try to control for unobservables with
alternative fixed effects. Fourth, we employ alternative empirical strategies such as different
matching numbers (Table 1.E.2), different sets of firm-level covariates for matching (Table
1.E.3), alternative matching approaches including propensity score matching, inverse prob-
ability of treatment weighting, and coarsened exact matching (Table 1.E.4). Further, we
consider four alternative classifications and different model specifications (Table 1.G.1 and
1.G.2). All these results lend strong support to the conclusion that the mass-based allow-
ance rule achieves a more pronounced carbon mitigation impact than the rate-based one
does. Overall, our main conclusions survived all these robustness checks.

China’s Regional Carbon Market Pilots Reduce Firm Emissions 19



1.A Policy Background

As the world’s largest greenhouse gas (GHG) emitter, China has gradually embodied cli-
mate change initiatives in its development planning. In the 2009 Copenhagen Accord,
China pledged to reduce its carbon intensity, measured by carbon emissions per unit of
GDP, by 40 to 45 percent from the 2005 level by 2020. On October 29, 2011, the Na-
tional Development and Reform Commission (NDRC) formally approved seven regional
carbon emission trading system (ETS) pilots, covering four municipalities (Beijing, Shang-
hai, Tianjin, and Chongqing), one special economy zone (Shenzhen), and two provinces
(Guangdong and Hubei).2 These pilots began trading carbon allowances in 2013 and 2014.3

The pilot regions are granted flexibility in designing their own carbon market rules, fol-
lowing general guidelines from the NDRC. While the NDRC sets rules for allowance man-
agement, transaction process, and supervision, each pilot is responsible for determining
the specific details of their market design, including sectoral coverage, threshold selection,
emission targets, allowance allocation, monitoring, reporting and verification (MRV), and
compliance (Zhang et al., 2017). Table 1.A.1 provides a summary of ETS policies across
pilots. Under the oversight of the NDRC on the planning and development of ETS, each
pilot takes advantage of the discretion to adapt the general guidelines to suit the specific
local needs.4

The pilot ETS has three distinct features. First, it experienced two important phases:
announcement (2011 to 2012) and trading (since 2013). During the announcement phase,
there existed considerable uncertainty about the coverage and stringency of ETS pilots.
Without a list of regulated entities, carbon market prices, and detailed implementation
rules, firms in pilot regions may not have had clear expectations regarding their emission
reduction paths. Thus, the announcement effect on emission abatement would likely differ
dramatically from the trading effect. Therefore, our empirical analysis differentiates the
ETS effects between the announcement effect and the trading effect.

Second, the pilot ETS exhibits significant heterogeneity in policy design. The covered sec-

2Shenzhen is a sub-provincial city located in Guangdong province but establishes an independent ETS
pilot. The firms regulated by the Shenzhen ETS are not covered by the Guangdong ETS.

3The first ETS pilot was launched by Shenzhen in June 2013, followed by Shanghai, Beijing, Guangdong,
and Tianjin in the same year. The remaining pilots, Hubei and Chongqing, launched ETS in April and
June in 2014, respectively. Fujian province opted to launch the eighth carbon market pilot in December
2016, which is beyond our sample period.

4For instance, the selection of covered sectors and thresholds aims to strike a balance of encompassing a
significant portion of emissions while keeping the number of regulated entities manageable. A broader
coverage of entities provides stronger incentives for emission reduction, but it also increases administrative
efforts for local governments and compliance costs for covered sectors (Zhang et al., 2014).
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Table 1.A.1: Covered Sectors across Regional ETS Pilots

Region Announcement Launch Covered Sectors Threshold Emissions
Year Year Covered

Beijing 2011 2013 Electricity, heating, cement, petrochemical,
and other industries, large public buildings in-
cluding hospitals, schools and governments

>10kt 40%

Shanghai 2011 2013 Electricity, iron and steel, petrochemical and
chemical industries, metallurgy, building ma-
terials, paper making, textile, aviation, air-
ports and ports, public and office buildings,
railway stations

Industries>20kt;
Non-industries>10kt

57%

Shenzhen 2011 2013 Electricity, building, manufacturing, water
supply

Industries>5kt;
Public buildings>20km2

Office buildings>10km2

40%

Guangdong 2011 2013 Electricity, cement, iron and steel, petrochem-
ical industries, public services including hotels,
restaurants and businesses

2013: >20kt;
Since 2014: industries>10kt;
non-industries>5kt

58%

Tianjin 2011 2013 Electricity, heating, iron and steel, chemical
and petrochemical industries, oil and gas ex-
ploration

>20kt 60%

Hubei 2011 2014 Electricity, heating, metallurgy, iron and steel,
automobile and equipment, chemical and pet-
rochemical industries, cement, medicine and
pharmacy, food and beverage, papermaking

energy consumption>60k tce 33%

Chongqing 2011 2014 Electricity, metallurgy, chemical industries,
cement, iron and steel

>20kt 39.5%

Notes: Complied based on Zhang et al. (2017).

tors vary across pilots, ranging from manufacturing to non-manufacturing industries. The
threshold of coverage is determined by annual emissions or energy consumption, resulting
in various total emission allowances across pilots.5 While almost all pilots allocate allow-
ances for free,6 carbon allowances can only be traded within the same pilot, with the result
that carbon price and trading activity vary across pilots. Further, each pilot has estab-
lished its own MRV (measurement, reporting, and verification) system, although the pilots
share similar protocols, in which noncompliances is subject to financial and non-financial
penalties.7 The policy variations across sectors and regions enable us to identify different
carbon market outcomes.

Third, China’s regional ETS used two main allowance allocation rules: mass-based and
rate-based. Under the mass-based (cap-and-trade) system (Goulder and Morgenstern,
2018; Goulder et al., 2019), regulators set a total number of allowances – an emission cap
– in advance of each compliance period. Each covered facility receives allowances based
on its historical emission level (e.g., Phases I & II in the EU ETS) or the product of
a pre-established benchmark emission-output ratio and some fixed reference production

5Guangdong issues the most carbon allowances (388 Metric tons [Mt]), while Shenzhen has the least (30
Mt). The covered shares of emissions in each pilot range from 33 percent for Hubei to 60 percent for
Tianjin.

6The exception is that Guangdong and Shenzhen auction a small share of allowances – up to 3 percent.
7These include deduction of excessive emissions from the allowance allocation next year, and records of
noncompliance in the business credit reporting systems.
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quantity (e.g., Phase III in the EU ETS, cap-and-trade in California and Quebec). If a
covered facility’s emission level exceeds the pre-established number of allowances, it must
purchase additional allowances from the carbon market to achieve compliance. In most
cases, the allowance allocation is exogenous to a facility’s production level during the
compliance period.8

Some ETS pilots have adopted tradable performance standards, which is a rate-based
system (Goulder and Morgenstern, 2018; Pizer and Zhang, 2018; Goulder et al., 2019). The
regulators set an emission intensity ratio – a performance standard or rate – rather than
an emission cap for covered firms. The number of allowances depends on output level and
a benchmark or historical emission rate. The total number of allowances is not determined
until the end of each compliance period when a firm’s production level is observed. As
an ex-post adjustment, the allowance is thus endogenous within each compliance period.9

This system can be regarded as an implicit subsidy to firm production since additional
output value increases the number of allowances that covered firms receive (Fischer, 2001;
Fischer and Newell, 2008). Such flexibility puts less compliance pressure on regulated firms
but compromises cost-effectiveness in achieving climate targets (Goulder and Morgenstern,
2018; Pizer and Zhang, 2018; Goulder et al., 2019). Table 1.A.2 summarizes detailed
information about allowance allocation rules across pilots.

8There are a few exceptions. If the allowance allocation under the cap-and-trade system is output-based
and therefore endogenous, the allowances allocated to a covered firm could be updated based on the
production level in the previous compliance period (Goulder et al., 2019). The purpose of such output-
based allocation is to mitigate carbon leakage and safeguard the competitiveness of covered facilities by
subsidizing additional output with extra allowances (Fowlie et al., 2016; Goulder et al., 2019). In some
cap-and-trade systems, the output-based allocation under the cap-and-trade system has been applied to
only a small subset of facilities that are in emissions-intensive and trade-exposed sectors.

9Under a rate-based system, covered firms receive carbon allowances through a two-step process. At the
beginning of a compliance period, each covered firm receives initial allowances based upon its output value
in the previous period. At the end of the compliance period, each firm receives additional allowances based
on the actual output value in order to bring the total allowances per output value down to the specified
benchmark or historical level emissions rate.
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Table 1.A.2: Allowance Allocation across Regional ETS Pilots

Region

Mass-based System Rate-based System
Emission-based grandfathering,
fixed baseline periods1

Emission-based grandfathering,
moving baseline periods2

Fixed historical produc-
tion based benchmarking3

Moving historical produc-
tion based benchmarking4

Intensity-based
grandfathering5

Current production based
benchmarking6

Exogenous Endogenous (output-based) Exogenous Endogenous (output-based) Endogenous (output-based) Endogenous (output-based)
EU ETS Phases I and II Phase III Emission-intensive and

trade-exposed industries
(Phase III)

California C&T Industrial facilities
Beijing Cement, petrochemical and

other industries, large public
buildings including hospitals,
schools and governments.

Electricity, heating

Shanghai Iron and steel, petrochemical
and chemical industries, metal-
lurgy, building materials, paper
making, textiles, public and of-
fice buildings, railway stations

Electricity, aviation, airports
and ports.

Shenzhen Manufacturing Electricity, heating, building,
water supply.

Guangdong7 Electricity (cogeneration genset),
cement (cement mining and other
grinding process), steel (DR-EAF
route), petrochemical industries.

Electricity (pure genset), ce-
ment (cement clinker pro-
duction and cement grind-
ing process), steel (BF-BOF
route).

Tianjin Iron and steel, chemical and pet-
rochemical industries, oil and
gas exploration.

Electricity, heating

Hubei Metallurgy, iron and steel, auto-
mobile and equipment, chemical
and petrochemical industries, ce-
ment (only 2014), medicine and
pharmacy, food and beverage, pa-
per making.

Electricity, heating, cement
(only 2015).

Chongqing8 Electricity, metallurgy, chemical in-
dustries, cement, iron and steel
(due to self-declaration & ex-post
adjustment).

Notes: (1) Emission-based grandfathering with fixed baseline periods, known as "pure grandfathering", depends on firm’s historical emission level in fixed periods to compute the number of allowances. (2) Since the baseline periods of a firm’s his-
torical emissions are moving, the number of allowances is updated based on outputs across periods and therefore categorized as "output-based" allocation. (3) Allowance = sectoral benchmark × firms’ historical production in fixed baseline periods.
(4) Allowance = sectoral benchmark × firms’ historical production in moving baseline periods. Hence, the number of allowances is updated based on output values across periods and categorized as "output-based" allocation. (5) Intensity-based
grandfathering depends on a firm’s historical emission intensity level and firm’s current output level to compute the number of allowances. (6) Allowance = sectoral benchmark × firms’ current production level. (7) The Guangdong pilot determines
allowance allocation methods based on industrial processes and techniques in the electricity, cement, and steel sectors. (8) The Chongqing pilot allocates allowances on the basis of the self-declaration number by covered firms and allows for ex-post
adjustment of the allowance number at the end of the compliance period.
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1.B Data Cleaning

This section documents the data cleaning process. (1) We remove observations with missing
or zero values in output value, sales, emissions, and energy consumption of fuels. Around
20.9% of firms are dropped from the sample for this reason. (2) We drop the regulated
firms whose carbon emissions or energy consumption levels during the pre-ETS period are
smaller than the coverage thresholds of ETS pilots (as shown in Table 1.A.1). This results
in removal of 191 ETS firms, around 0.03% of all firms in our sample, from the sample.
(3) Next, we drop observations whose key variables (output value, emission, and emission
intensity) have drastic changes across years. In our analysis, any observations with annual
change rates above ±500% are excluded. As a result, around 12.5% of firms are excluded
during this process. (4) The firms that entered the survey after 2011 are dropped because
the matching procedure relies on firm covariates in 2009 and 2010. The firms that exited
from the survey before 2012 are also removed from the sample since they do not have the
post-treatment observations. Around 50.3% of total firms are removed from the sample.
(5) We delete the firms without reported key variables in two consecutive years during our
sample period of 2009-2015. Moreover, for a treated firm with missing data in one specific
year, we search for a matched firm with the same data missing year during the matching
procedure to ensure that the treatment and control units are as similar as possible in the
remaining data pattern.10 This round of cleaning excludes around 6.5% of firms in our
sample. (6) We remove observations with outlier values in key variables of interest (either
greater than 99% or smaller than 1%). Finally, the cleaned dataset includes 280 regulated
firms and 50,899 unregulated firms.

One concern is whether our data cleaning algorithm yields a biased sample. This concern
is centered on whether these dropped missing values are affected by ETS-induced entry
and exit. To test this, we count the number of dropped firms by region in each data
cleaning step. Table 1.B.1 in the Appendix summarizes the results. First, we remove
firms without pre-ETS observations (panel b). The number of firms removed in this step
accounts for 43.5% of total removals for non-ETS regions and 44.5% for ETS regions.
Second, we remove firms without post-ETS observations (panel c). The number of firms
removed in this step accounts for 40.9% of total removals for non-ETS regions and 38.9%
for ETS regions. Third, we remove firms without both pre- and post-ETS observations.

10Keeping firms that are observed for all sample periods, while deemed safer, tends to result in fewer
samples appearing in our empirical analysis. This will be particularly true in our case because there exist
missing observations in certain variables. Therefore, we choose the threshold for cleaning missing data
(no missing observations in two consecutive years) that ensures the representativeness of our samples
while not impairing the consecutiveness very much.
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Table 1.B.1: Number of Removed Firms due to No Pre- or Post-ETS Observations

Non-ETS ETS Difference
Regions Regions

(1) (2) (3) = (2) - (1)
a. # of removed firms (row a = b + c + d) 312,311 79,049
b. # of removed firms due to no pre-ETS data 135,821 35,215

ratio of removed firms (row b/row a) 43.5% 44.5% -1%
c. # of removed firms due to no post-ETS data 127,635 30,770

ratio of removed firms (row c/row a) 40.9% 38.9% 2%
d. # of removed firms due to no pre- & post-ETS data 48,855 13,064

ratio of removed firms (row d/row a) 15.6% 16.5% -0.9%

Notes: Row a shows the total number of removed firms that do not have observations before the announcement or
after the trading of the ETS. Row b represents the number of firms that enter the survey after the announcement
period. Row c stands for the number of firms that exit the survey before trading. Row d records the number of
removed firms that enter the survey after the announcement but exit it before trading.

Table 1.B.2: Summary Statistics

Variables N Mean Std Mean
NonETS ETS

Panel A. Firm-level Carbon Emissions and Energy Consumption
Emission 2,428 11.06 2.525 11.07 11.06
Emission/Output 2,428 0.222 2.263 0.208 0.236
Energy Consumption 2,428 9.802 2.684 9.785 9.820
Energy/Output 2,428 -1.038 2.434 -1.075 -0.999

Panel B. Firm-level Attributes
Output Value 2,428 10.84 1.116 10.86 10.82
Sale 2,428 10.91 1.109 10.92 10.91
Labor 2,428 6.505 0.980 6.498 6.512
Wage 2,397 7.989 1.180 7.901 8.080
Wage/Labor 2,397 1.487 0.816 1.403 1.574
Capital 2,295 9.912 1.462 9.864 9.963
Value Added 2,317 9.165 1.302 9.157 9.173
Export 2,428 4.385 4.909 4.237 4.537
Invest 1,833 6.865 1.968 6.847 6.885
Total Factor Productivity 2,185 -0.595 1.479 -0.592 -0.598
Capital/Labor 2,295 3.402 1.624 3.369 3.435
Output/Labor 2,428 4.335 1.134 4.361 4.307
Output/Capital 2,295 0.918 1.044 0.996 0.836

Panel C. Regional Carbon Market Performance
Carbon Price 2,428 0.739 1.528 0.000 1.500
Turnover Rate 2,428 0.004 0.011 0.000 0.007

Notes: Panels A and B report firm-level carbon emissions and attributes, respectively. Panel C shows regional carbon mar-
ket performance. Units: Emission - metric tons of CO2; Energy Consumption - metric tons of standard coal equivalent
(TCE), with 1 TCE = 29,307 GJ; Output Value, Sale, Wage, Capital, Value Added, Export, Invest - ten thousands of Yuan;
Labor - number of employees; Carbon Price - Yuan (1 Yuan = 0.145 Dollars). All variables are in natural logarithms except
Turnover Rate. Turnover Rate is the ratio of trading volume to the total allowance in each carbon market.
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The number of firms removed in this step accounts for 15.6% of total removals for non-
ETS regions and 16.5% for ETS regions. Across the three steps of data cleaning, we do
not observe a dramatic difference in the removal ratios of firms between ETS and non-ETS
regions. This suggests that ETS-induced entry and exit may not cause a concern of sample
selection.11

Table 1.B.2 reports the summary statistics. Column (1) reports the number of observations
used in our analysis after matching. The last two columns show the means of each variable
by treatment status. All variables except for turnover rate are in logarithms.

Table 1.B.3: Robustness Checks on Alternative Data Cleaning Algorithms

VARIABLES Growth Rate < ±300% Growth Rate < ±700%
Total Emission Total Emission

Emissions Intensity Emissions Intensity
(1) (2) (3) (4)
Panel A: Main Effects

Announcement -0.012 0.077 -0.147*** -0.101
(0.090) (0.081) (0.052) (0.084)

Trading -0.073 0.022 -0.145*** -0.094**
(0.063) (0.055) (0.040) (0.041)

R-squared 0.255 0.263 0.202 0.209
Panel B: Main Effects by Rate- and Mass-based ETS

Announcement -0.038 0.052 -0.182*** -0.150*
(0.081) (0.072) (0.045) (0.080)

Trading -0.298 -0.171** -0.357*** -0.402***
(0.175) (0.080) (0.122) (0.076)

Trading×Rate 0.274 0.232** 0.256** 0.370***
(0.166) (0.098) (0.114) (0.080)

R-squared 0.262 0.268 0.206 0.215

Observations 1,942 1,942 2,670 2,670
Firm FE Y Y Y Y
Year FE Y Y Y Y
Province Trend Y Y Y Y
Industry Trend Y Y Y Y

Notes: All dependent variables are in natural logarithms. Announcement equals one for the reg-
ulated firms during the announcement period (2011-2012). Trading equals one for the regulated
firms during the trading period (2013-2015). Rate equals one if the regulated firms are categor-
ized into the rate-based group. Standard errors in parentheses are clustered at the industry level.
*** significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.

Moreover, we test alternative data cleaning algorithms. In our baseline model, we drop

11It is a caveat that the data do not allow us to distinguish whether a new record in the tax survey data
is from a new market entrant or from an existing one, and the same issue applies to exit. Although we
cannot completely rule out the possibility that firms’ entry and exit are induced by the ETS, the similar
ratios of firms without pre- and post-ETS observations between ETS and non-ETS regions presented in
Table 1.B.1 suggest that the missing observations are little likely to be driven by the ETS.
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observations with annual growth or shrinkage above ±500% because the drastic changes
might include unknown shocks or data entry errors. This threshold is set at the level
where we can remove most of the potential bias due to the drastic changes while ensuring
sample representativeness. To test the stability of our results, we also employ a stringent
threshold of ±300% and a lenient threshold of ±700% in the data cleaning process as
robustness checks. Table 1.B.3 shows the corresponding estimated ETS effects on carbon
emissions. With a stringent cleaning algorithm, in columns (1) and (2), we observe some
modest impacts of the ETS on emission intensity for the mass-based programs during
the launching period. Columns (3) and (4) present the results with a lenient cleaning
algorithm. We find robust evidence supporting the baseline conclusions.

1.C Carbon Emission Measurement

Total carbon emissions in this paper consider both direct and indirect emissions. The
former is from combustion of fossil fuels and the latter comes from consumption of pur-
chased electricity. For each firm, we calculate carbon emissions by multiplying the con-
sumption of each energy type (i.e., coal, oil, natural gas, and electricity) by its carbon
emission factor. Energy consumption is measured in metric tons of standard coal equival-
ent (TCE).12 Table 1.C.1 summarizes the emission factors for each energy type.

Besides energy-related emissions, those from industrial processes also need to be calculated
(e.g., emissions from chemical reactions when producing chemicals, iron, steel, and cement)
but require further information on manufacturing techniques and processes. Unfortunately,
such information is not available in our dataset. As a robustness check, we drop the firms
in the sectors that likely produce significant industrial process emissions, including iron
and steel, chemical and petrochemical, cement, lime, glass, and other building materials
sectors (IPCC, 2006). Table 1.C.2 presents the results. Overall, the main conclusions still
hold.

1.D Potential Confounding Policies

Threats to identification arise from the potential confounding environmental and energy
policies that affect firms’ carbon mitigation activities. Although provincial and industrial
confounding policies are absorbed by the province and industry linear trends in the baseline
model, we attempt to remove other confounding factors arising from overlapping policies.

121 TCE is equivalent to 29,307 GJ
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Table 1.C.1: China’s CO2 Emission Factors

Energy Unit Emission Factor
Panel A: Emission Factors of Coal, Oil and Natural Gas

Coal kgCO2/kg 1.978
Oil kgCO2/kg 3.065
Natural Gas kgCO2/m3 1.809

Panel B: Emission Factors of Electricity
North China Grid kgCO2/kWh 0.8843
Northeast China Grid kgCO2/kWh 0.7769
East China Grid kgCO2/kWh 0.7035
Central China Grid kgCO2/kWh 0.5257
Northwest China Grid kgCO2/kWh 0.6671
China Southern Power Grid kgCO2/kWh 0.5271

Notes: China has six regional power grids whose carbon emission factors are com-
puted separately. The North China Grid covers Beijing, Tianjin, Hebei, Shandong,
Shanxi,and Inner Mongolia. The Northeast China Grid covers Liaoning, Jilin, and
Heilongjiang. The East China Grid covers Shanghai, Jiangsu, Zhejiang, Anhui, and
Fujian. The Central China Grid covers Henan, Hubei, Hunan, Jiangxi, Chongqing, and
Sichuan. The Northwest China Grid Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang.
The China Southern Power Grid covers Guangdong, Guangxi, Yunnan, Guizhou, and
Hainan. Source of Panel A: Department of Energy Statistics, National Bureau of Stat-
istics of China and IPCC Guidelines for National Greenhouse Gas Inventories. Source
of Panel B: National Center for Climate Change Strategy and International Coopera-
tion, National Development and Reform Comission of China.

Our baseline estimates may be subject to additional potential confounding factors. Table
1.D.1 provides robustness checks.

First, time-variant provincial and industrial regulations may exist as confounders. To
address this concern, we supplement the regression model with industry-year and province-
year fixed effects. Columns (1) and (2) show the results. In Panel A, both estimates for the
trading effects are negative and statistically significant for emissions but not for intensity.
The trading effect is more pronounced for carbon emissions but remains muted for carbon
intensity. In Panel B, the trading effects are negative and statistically significant at the 1%
level, while the rate-based ETS effects remain positive and statistically significant at the
1% level. The inclusion of additional time-variant fixed effects does not change the overall
baseline conclusions.

Second, we test the sensitivity against potential confounding environmental policies. In
2011, the Ministry of Ecology and Environment targeted Beijing, Tianjin, and Hebei
(BTH), one of the most polluted regions in China, to dramatically heighten air pollu-
tion regulations, especially for PM2.5. Since CO2 is co-emitted with many air pollutants,
this regional air pollution control policy could also lead to the abatement of carbon emis-
sions. To address this concern, we drop the firms from the BTH region in the robustness
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Table 1.C.2: Robustness Checks on Alternative Emission Measurements

VARIABLES Total Emissions Emission Intensity
(1) (2)

Panel A: Main Effects
Announcement -0.113 -0.031

(0.068) (0.072)
Trading -0.152*** -0.059

(0.051) (0.062)
R-squared 0.224 0.261

Panel B: Main Effects by Rate- and Mass-based ETS
Announcement -0.144** -0.066

(0.067) (0.074)
Trading -0.491** -0.474***

(0.192) (0.126)
Trading×Rate 0.372* 0.455***

(0.184) (0.097)
R-squared 0.226 0.219

Observations 1,530 1,530
Firm FE Y Y
Year FE Y Y
Province Trend Y Y
Industry Trend Y Y

Notes: We exclude those sectors with significant emissions from industrial process
(iron and steel, chemical and petrochemical, cement, lime, glass and other building
materials sectors). All dependent variables are in natural logarithms. Announce-
ment equals one for the regulated firms during the announcement period (2011-2012).
Trading equals one for the regulated firms during the trading period (2013-2015).
Rate equals one if the regulated firms are categorized into the rate-based group.
Standard errors in parentheses are clustered at the industry level. *** significant at
the 1% level, ** significant at the 5% level, * significant at the 10% level.

check. Columns (3) and (4) show the results. The main conclusion still holds. The ETS
trading phase plays a substantial role in achieving the target of carbon mitigation. This
effect mainly arises from those pilots using the mass-based ETS rule.

Lastly, some contemporaneous energy policies may also confound our estimates. In late
2011, the NDRC launched the Top 10,000 (Top-10k) Firm Energy Conservation Program,
covering the top 10,000 energy users, accounting for around 60 percent of nationwide energy
consumption in China. This central government-led program requires energy-intensive
entities to meet the targets of energy conservation and technology upgrades with higher
energy efficiency. Carbon emission activities of ETS firms were likely affected by this
policy. In our samples, around 50% of ETS firms are included in this program. To address
this concern while avoiding losing a large portion of observations, we add a policy indicator
for Top-10k into the model as a robustness check. The last two columns in Table 1.D.1
present the results. The estimates for the Top-10k program are not statistically significant,
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Table 1.D.1: Robustness Checks on Confounding Factors

VARIABLES Additional FE Without BTH Top-10k
Total Emission Total Emission Total Emission

Emissions Intensity Emissions Intensity Emissions Intensity
(1) (2) (3) (4) (5) (6)

Panel A: Main Effects
Announcement -0.087 -0.007 -0.088 -0.017

(0.067) (0.084) (0.073) (0.083)
Trading -0.190*** -0.069 -0.132** -0.033 -0.166*** -0.097*

(0.042) (0.056) (0.050) (0.046) (0.046) (0.052)
Top-10k -0.007 0.026

(0.059) (0.045)
R-squared 0.222 0.239 0.197 0.212 0.198 0.220

Panel B: Main Effects by Rate- and Mass-based ETS
Announcement -0.118* -0.063 -0.120* -0.069

(0.068) (0.076) (0.064) (0.072)
Trading -0.474*** -0.408*** -0.333** -0.378*** -0.400** -0.439***

(0.103) (0.090) (0.138) (0.076) (0.149) (0.097)
Trading×Rate 0.331*** 0.382*** 0.230* 0.403*** 0.286* 0.417***

(0.086) (0.077) (0.120) (0.069) (0.143) (0.086)
Top-10k 0.016 0.042

(0.054) (0.038)
R-squared 0.206 0.233 0.204 0.226 0.207 0.233

Observations 2,402 2,402 2,188 2,188 2,416 2,416
Firm FE Y Y Y Y Y Y
Year FE Y Y Y Y
Province Trend Y Y Y Y
Industry Trend Y Y Y Y
Province-Year FE Y Y
Industry-Year FE Y Y

Notes: All dependent variables are in natural logarithms. Announcement equals one for the regulated firms during the
announcement period (2011-2012). Trading equals one for the regulated firms during the trading period (2013-2015).
Rate equals one if the regulated firms are categorized into the rate-based group. "Without BTH" refers to the removal
of observations located in Beijing, Tianjin, and Hebei areas due to the confounding local environmental policy. Top-10k
equals one for firms under the Top 10k Energy Conservation Program. Standard errors in parentheses are clustered at
the industry level. *** significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.

indicating little impact on carbon mitigation for the firms in our sample. More importantly,
the baseline conclusions on the trading effect still hold.

1.E Alternative Matching Approaches

The literature lacks consensus about the inclusion variables and constraints in the matching
process. A large number of included covariates and matching restrictions, while deemed
safe, are likely to result in fewer matched pairs. Moreover, the performance of Mahalanobis
distance-based matching is impaired when there are too many covariates (Rubin, 1979;
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Zhao, 2004; Stuart, 2010). Therefore, we choose the variables (total emissions, emission
intensity, and energy consumption) that determine a firm’s regulatory status in a pilot
region to ensure close similarity between the treated and control units while keeping the
highest number of matched pairs. Besides, we restrict the matching within the same sector
and year to control for the sector-specific time-variant factors that may affect both the
treatment and control groups. Table 1.E.1 summarizes matching quality by comparing the
sample means of covariates between the treatment and matched control groups. We find
no significant differences between the two groups in any of the covariates used or even in
those not used in the matching process. These results suggest that our matching strategy
performs well in extracting reasonable comparison firms, similar to regulated firms within
the same sector prior to the announcement of ETS.

Table 1.E.1: Balancing Test

Unmatched Sample Matched Sample
280 treated vs 50,899 control firms 198 treated vs 198 control firms

Variables Treated Control P-value Treated Control P-value
(1) (2) (3) (4) (5) (6)

Panel A: Covariates Used in Matching
Emission 2010 11.180 7.194 0.000 11.197 11.204 0.978
Emission/Output 2010 0.330 -1.308 0.000 0.368 0.360 0.973
Energy Consumption 2010 9.906 7.873 0.000 9.914 9.910 0.988
Emission 2009 10.949 7.820 0.000 10.811 10.771 0.888
Emission/Output 2009 0.325 -1.253 0.000 0.302 0.276 0.918
Energy Consumption 2009 9.639 8.132 0.000 9.500 9.457 0.891

Panel B: Covariates Not Used in Matching
Output Value 2010 10.850 8.502 0.000 10.829 10.844 0.894
Sale 2010 10.923 8.547 0.000 10.901 10.894 0.946
Energy/Output 2010 -0.944 -2.127 0.000 -0.915 -0.934 0.941
Labor 2010 6.552 4.990 0.000 6.551 6.512 0.697
Wage 2010 7.985 7.130 0.000 7.998 7.820 0.091
Capital 2010 9.992 6.978 0.000 10.006 9.885 0.434
ValueAdded 2010 9.199 6.651 0.000 9.182 9.134 0.717
Invest 2010 7.006 4.714 0.000 7.018 6.952 0.785
Output Value 2009 10.624 9.073 0.000 10.509 10.494 0.909
Sale 2009 10.652 9.082 0.000 10.543 10.504 0.764
Energy/Output 2009 -0.985 -1.824 0.000 -1.009 -1.037 0.919
Labor 2009 6.586 5.502 0.000 6.560 6.455 0.366
Wage 2009 7.737 7.037 0.000 7.688 7.527 0.193
Capital 2009 9.894 7.779 0.000 9.809 9.616 0.282
ValueAdded 2009 8.890 7.251 0.000 8.767 8.738 0.854
Invest 2009 7.135 5.267 0.000 7.008 7.058 0.838

Notes: All firm-level attributes used in the matching approach are historical records in 2009 and 2010 during the pre-
announcement phase. All attributes are in natural logarithms.

The baseline model adopts a one-to-one nearest neighbor matching estimator. To ensure
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the stability of the main results, we consider a series of robustness checks, including al-
ternative matching estimators, a rich set of covariates, and other matching approaches.
First, we adopt nearest two and nearest five neighbor matching to increase the matched
observations. Table 1.E.2 summarizes the estimation results. Columns (1)-(2) report the
one-to-two matching results, and columns (3)-(4) report the one-to-five matching results.
In all columns, the estimated coefficients for the announcement effect remain statistically
insignificant. The estimates for the trading effect are negative and statistically significant
at conventional levels. The baseline conclusions are not altered by accounting for different
numbers of control units during the matching process.

Table 1.E.2: Robustness Checks on Alternative Matching Numbers

VARIABLES 1:2 Matching 1:5 Matching
(198 treated vs 396 control) (198 treated vs 990 control)

Total Emission Total Emission
Emissions Intensity Emissions Intensity

(1) (2) (3) (4)
Announcement -0.051 0.038 -0.071 -0.004

(0.066) (0.067) (0.049) (0.032)
Trading -0.126*** -0.101* -0.122*** -0.102***

(0.042) (0.049) (0.035) (0.034)

Observations 3,668 3,668 6,501 6,501
R-squared 0.154 0.185 0.115 0.127
Firm FE Y Y Y Y
Year FE Y Y Y Y
Province Trend Y Y Y Y
Industry Trend Y Y Y Y

Notes: All dependent variables are in natural logarithms. Announcement equals one for the regu-
lated firms during the announcement period (2011-2012). Trading equals one for the regulated firms
during the trading period (2013-2015). Standard errors in parentheses are clustered at the industry
level. *** significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.

Second, the baseline uses emissions, emissions per unit of output value, and energy con-
sumption as the key covariates. We consider alternative covariates to select the control
firms to match the characteristics of regulated firms prior to the ETS. Specifically, we
account for eight additional sets of matching covariates, mixing among emissions, energy
consumption, emission intensity, energy intensity, output, and sales. Table 1.E.3 reports
the corresponding results. The estimated announcement effects are not statistically signi-
ficant at any conventional level, while the estimated trading effects are negative and stat-
istically significant. These results provide further corroborating support to the baseline
conclusions.
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Table 1.E.3: Robustness Checks on Alternative Sets of Covariates in Mahalanobis Matching

VARIABLES Covariate Set 1 Covariate Set 2 Covariate Set 3 Covariate Set 4
(176 treated vs 176 control) (169 treated vs 169 control) (195 treated vs 195 control) (210 treated vs 210 control)

Total Emission Total Emission Total Emission Total Emission
Emissions Intensity Emissions Intensity Emissions Intensity Emissions Intensity

(1) (2) (3) (4) (5) (6) (7) (8)
Announcement 0.012 -0.008 -0.121 -0.085 -0.071 -0.024 -0.032 0.030

(0.070) (0.093) (0.081) (0.093) (0.081) (0.094) (0.048) (0.070)
Trading -0.028 -0.107* -0.182*** -0.185*** -0.153*** -0.110** -0.132** -0.099*

(0.037) (0.053) (0.040) (0.049) (0.045) (0.048) (0.057) (0.056)
Observations 2,088 2,088 1,983 1,983 2,381 2,381 2,575 2,575
R-squared 0.211 0.236 0.255 0.249 0.202 0.218 0.177 0.217

Covariate Set 5 Covariate Set 6 Covariate Set 7 Covariate Set 8
(193 treated vs 193 control) (202 treated vs 202 control) (180 treated vs 180 control) (173 treated vs 173 control)

Announcement -0.050 0.004 -0.046 0.016 -0.081 -0.091 -0.077 -0.047
(0.048) (0.067) (0.066) (0.089) (0.063) (0.096) (0.048) (0.062)

Trading -0.174*** -0.156*** -0.138** -0.103* -0.148*** -0.157** -0.184*** -0.200***
(0.046) (0.040) (0.053) (0.057) (0.044) (0.056) (0.043) (0.060)

Observations 2,336 2,336 2,475 2,475 2,141 2,141 2,050 2,050
R-squared 0.206 0.209 0.195 0.235 0.223 0.250 0.230 0.246

Firm FE Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y
Province Trend Y Y Y Y Y Y Y Y
Industry Trend Y Y Y Y Y Y Y Y

Notes: All dependent variables are in natural logarithms. Announcement equals one for the regulated firms during the announcement period (2011-2012). Trading
equals one for the regulated firms during the trading period (2013-2015). A set of covariates used in the matching process vary across columns. Covariate Set 1:
emissions, emissions per output, energy consumption, and energy per output. Set 2: emissions, emissions per output, energy consumption, and sale. Set 3: emissions,
energy consumption and output. Set 4: emissions, emissions per output, output. Set 5: emissions, energy consumption, sale. Set 6: emissions, energy consumption,
energy per output. Set 7: emissions, emissions per output, energy consumption, output. Set 8: emissions, energy consumption, energy per output, sale. Standard
errors in parentheses are clustered at the industry level. *** significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.
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Table 1.E.4: Robustness Checks on Alternative Matching Methods

VARIABLES PSM IPTW CEM
(220 treated vs 220 control) (280 treated vs 50,899 control) (149 treated vs 149 control)

Total Emission Total Emission Total Emission
Emissions Intensity Emissions Intensity Emissions Intensity

(1) (2) (3) (4) (5) (6)
Announcement -0.136** -0.095* -0.053 -0.028 -0.036 0.030

(0.050) (0.052) (0.034) (0.033) (0.059) (0.084)
Trading -0.159** -0.070** -0.141*** -0.068* -0.195** -0.119**

(0.059) (0.034) (0.033) (0.035) (0.066) (0.056)

Observations 2,715 2,715 254,378 254,378 1,742 1,742
R-squared 0.174 0.210 0.379 0.347 0.205 0.235
Firm FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Province Trend Y Y Y Y Y Y
Industry Trend Y Y Y Y Y Y

Notes: PSM - propensity score matching; IPTW - inverse probability of treatment weighting; CEM - coarsened exact matching. All
dependent variables are in natural logarithms. Announcement equals one for the regulated firms during the announcement period
(2011-2012). Trading equals one for the regulated firms during the trading period (2013-2015). Standard errors in parentheses are
clustered at the industry level. *** significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.

Third, we consider three alternative matching approaches, i.e., propensity score matching
(PSM), inverse probability of treatment weighting (IPTW), and coarsened exact matching
(CEM). Table 1.E.4 presents the corresponding results. PSM is a widely used matching
approach, which projects all covariates onto one scalar (i.e., propensity score). PSM can
achieve a similar distribution of covariates between treated and control units while con-
taining a higher dimension of information (Austin, 2011). But it also potentially increases
model dependence and imbalance on matching variables (King and Nielsen, 2019). A sim-
ilarly estimated scalar cannot effectively ensure similar values of each covariate used in
matching. For robustness, a PSM-DID estimation is conducted. Columns (1) and (2)
show the estimates. The results do not alter our baseline conclusions. One potential con-
cern in our baseline is the loss of observations during the matching procedure. To address
this, we use the IPTW method to transform the estimated propensity scores to weight
firms (Hirano and Imbens, 2001), though this may cause large variance if the weights are
extreme (Stuart, 2010). More specifically, each treated firm is weighted by 1/p̂ and each
control firm is weighted by 1/(1 − p̂), where p̂ is the propensity score estimated from the
matching procedure (Guadalupe et al., 2012). As shown in columns (3) and (4), the results
of the inverse probability of treatment weighting are consistent with our baseline results.
Another popular approach is the CEM, which can achieve lower levels of imbalance and
model dependence (King and Nielsen, 2019). But the proportion of matched units de-
creases rapidly with the number of strata, which may lead to a potentially larger bias in
estimation (Azoulay et al., 2010). Columns (5) and (6) show the corresponding estimates.
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The results are consistent with our baseline conclusions. Overall, these results suggest that
our findings are robust to different matching approaches.

1.F Heterogeneity: Electricity vs Manufacturing

We split the data by power generation and manufacturing industries and run the baseline
regressions separately. Table 1.F.1 in the Appendix presents the results. The estimates for
the manufacturing sector are consistent with the baseline results; however, the estimates for
the power sector are statistically insignificant for both announcement and trading effects.
This suggests that the estimated ETS effects in the baseline model are driven by the
manufacturing sector. Please note that this result should be interpreted with caution. Our
sample includes only 38 power plants regulated under the ETS, which may not provide
adequate statistical power to identify the ETS effects on the electricity sector.

Table 1.F.1: Heterogeneity of ETS Effects by Sectors

VARIABLES Electricity Sector Manufacturing Sector
Total Emission Total Emission

Emissions Intensity Emissions Intensity
(1) (2) (3) (4)

Announcement -0.044 -0.006 -0.047 0.018
(0.229) (0.178) (0.064) (0.069)

Trading -0.003 0.014 -0.187*** -0.097*
(0.172) (0.192) (0.037) (0.055)

Observations 427 427 1,977 1,977
R-squared 0.342 0.329 0.207 0.232
Firm FE Y Y Y Y
Year FE Y Y Y Y
Province Trend Y Y Y Y
Industry Trend Y Y Y Y

Notes: All dependent variables are in natural logarithms. Announcement equals one for the reg-
ulated firms during the announcement period (2011-2012). Trading equals one for the regulated
firms during the trading period (2013-2015). Standard errors in parentheses are clustered at the
industry level. *** significant at the 1% level, ** significant at the 5% level, * significant at the
10% level.

1.G Heterogeneity: Allowance Allocation Rules

The classification of ETS pilots into a rate- or mass-based system is not unambiguous. To
test the robustness, we provide four sets of alternative classifications for the ETS pilots.
Table 1.G.1 presents the estimates.

China’s Regional Carbon Market Pilots Reduce Firm Emissions 35



Table 1.G.1: Robustness Checks on Alternative Classifications for Rate-based Allowance Allocation

VARIABLES Alt. Classification 1 Alt. Classification 2 Alt. Classification 3 Alt. Classification 4
drop GD&CQ exogenous & endogenous drop mass-based endogenous only grandfathering

Total Emission Total Emission Total Emission Total Emission
Emissions Intensity Emissions Intensity Emissions Intensity Emissions Intensity

(1) (2) (3) (4) (5) (6) (7) (8)
Announcement -0.126 -0.073 -0.103 -0.047 -0.221*** -0.136* -0.090 -0.023

(0.076) (0.079) (0.067) (0.075) (0.062) (0.074) (0.074) (0.077)
Trading -0.546*** -0.571*** -0.538*** -0.542*** -0.634*** -0.676*** -0.400*** -0.426***

(0.147) (0.113) (0.169) (0.102) (0.177) (0.104) (0.123) (0.104)
Trading×Rate 0.427*** 0.552*** 0.516*** 0.650*** 0.263* 0.410***

(0.147) (0.102) (0.171) (0.091) (0.127) (0.113)
Trading×Endo 0.426** 0.512***

(0.160) (0.097)

Observations 1,727 1,727 2,416 2,416 2,008 2,008 1,865 1,865
R-squared 0.234 0.273 0.205 0.232 0.227 0.263 0.224 0.251
Firm FE Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y
Province Trend Y Y Y Y Y Y Y Y
Industry Trend Y Y Y Y Y Y Y Y

Notes: All dependent variables are in natural logarithms. Announcement equals one for the regulated firms during the announcement period (2011-
2012). Trading equals one for the regulated firms during the trading period (2013-2015). Rate equals one if the regulated firms are categorized into
the rate-based group. Endo equals one if the regulated firms are categorized into the endogenous rate-based system. Columns (1) and (2) drop
all regulated firms in Guangdong (GD) and Chongqing (CQ) ETS pilots and their corresponding control firms. Standard errors in parentheses are
clustered at the industry level. *** significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.
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First, the Guangdong ETS pilot differentiates allowance allocation methods in the electri-
city, cement, and steel sectors based on industrial processes.13 However, we do not have
further information to identify the specific industrial processes of each firm in our data-
set. Moreover, the Chongqing ETS pilot allocates allowances based on self-declaration by
covered firms and allows for ex-post adjustment at the end of the compliance period. This
flexible and adjustable emission cap makes the Chongqing ETS pilot not precisely consist-
ent with a mass-based allocation system. To address the ambiguities in the rate-based and
mass-based classifications in these two ETS pilots, we drop all regulated firms from the
Guangdong and Chongqing ETS pilots and their corresponding control firms. Columns
(1) and (2) show the estimation results. Overall, the baseline conclusions hold.

Second, the Guangdong and Hubei ETS pilots update allowances based on moving baseline
periods of historical emissions across years. Unlike most mass-based ETS pilots, alloca-
tions in these two pilots are affected by firms’ output choices in previous compliance peri-
ods and hence are endogenous to the firms. To further compare the difference of policy
impacts between the output-based (endogenous) and non-output-based (exogenous) alloc-
ation methods, we categorize firms as endogenous and exogenous groups.14 We define
Endoi as a binary indicator, equaling one if a firm is categorized into an endogenous group
and zero otherwise. Based upon the allowance allocation model, we replace the variable
Ratei by Endoi and rerun a variant of this model. Columns (3) and (4) show the policy
effects between the endogenous and exogenous groups. The estimates for the interaction
term between Trading and Endo are positive and statistically significant at the 1% level.
These findings lend further support to the baseline conclusion. Under the rate-based and
mass-based classification systems, we remove all mass-based firms under the output-based
allocation (endogenous) regime because they are exceptional cases in the mass-based sys-
tem. Columns (5) and (6) present the corresponding results. The estimates are positive
and statistically significant, suggesting the stronger mitigation impacts of the mass-based
rule over the alternative rate-based approach.

Third, the rate-based and mass-based allocations include both grandfathering and bench-

13Power plants using cogeneration gensets, cement companies engaged in cement mining and other grind-
ing processes, and steelmaking enterprises using a DR-EAR process (direct reduction using electric arc
furnace) are granted allowances based on the emission-based grandfathering method (mass-based). Al-
lowances of other firms in the electricity, cement, and steel sectors are allocated via the benchmarking
method (rate-based).

14The pilots and sectors that use emission-based grandfathering with fixed baseline periods and bench-
marking based on fixed historical production are classified as the exogenous method. Other pilots and
sectors, which employ emission-based grandfathering with moving baseline periods, benchmarking based
on moving historical production, intensity-based grandfathering, and benchmarking based on current
production, are categorized as the endogenous method.
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marking rules.15 The difference between grandfathering and benchmarking might blur the
comparison of policy impacts between the rate-based and mass-based systems. To deal
with this concern, we only compare the mass-based and rate-based systems for grandfath-
ering.16 Columns (7) and (8) show the results, which are consistent with the baseline
conclusions.

Lastly, we have tried different model specifications by splitting samples into the mass-
based and rate-based groups. Table 1.G.2 presents the estimates. Accounting for these
alternative settings and classifications, we are reassured of the main conclusion that the
ETS effects remain negative and statistically significant. More importantly, the rate-based
ETS still achieves smaller carbon mitigation targets than the mass-based one.

Table 1.G.2: Alternative Model Specification on Rate-based vs. Mass-based Allocation

VARIABLES Total Emissions Emission Intensity
(1) (2) (3) (4) (5) (6)

Announcement 0.029 -0.238*** -0.118* -0.083 -0.069 -0.049
(0.127) (0.082) (0.062) (0.204) (0.085) (0.073)

Trading×Mass -0.266 -0.389*** -0.428*** -0.326***
(0.167) (0.120) (0.113) (0.097)

Trading×Rate -0.115* -0.117** -0.018 -0.044
(0.057) (0.054) (0.049) (0.049)

Observations 674 1,758 2,416 674 1,758 2,416
R-squared 0.447 0.237 0.207 0.398 0.270 0.227
Firm FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Province Trend Y Y Y Y Y Y
IndustryTrend Y Y Y Y Y Y
Subsamples Mass-based Rate-based Full Mass-based Rate-based Full

Notes: All dependent variables are in natural logarithms. Announcement equals one for the regulated firms during the an-
nouncement period (2011-2012). Trading equals one for the regulated firms during the trading period (2013-2015). Mass
equals one if the regulated firms are categorized into the mass-based group. Rate equals one if the regulated firms are
categorized into the rate-based group. Standard errors in parentheses are clustered at the industry level. *** significant
at the 1% level, ** significant at the 5% level, * significant at the 10% level.

15The grandfathering rule determines allowances according to covered entities’ historical levels, while the
benchmarking rule allocates allowances based on sector- or technology-specific performance indicators.

16No pilots or sectors adopted the mass-based benchmarking method in China’s ETS pilots. Hence, we
cannot compare the effects between the mass-based and rate-based systems in benchmarking in our
analysis.
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Chapter 2

Policy Spillover Induces Low-carbon
Innovation: Evidence from Corpor-
ate Ownership Network in China

2.1 Introduction

In the context of strengthening the global response to climate change, governments around
the world are pushing for curbing ever-increasing carbon emissions and maintaining the
global temperature increase below 1.5°C (Masson-Delmotte et al., 2018). Emission trading
scheme (ETS), as an important market-based climate policy tool, is adopted widely to
reduce carbon emissions while inducing behavioural changes for climate mitigation and
adaptation, especially for low-carbon technological changes (Jung and Song, 2023).

Recent empirical literature has documented evidence from the United States (Taylor, 2012),
European Union (Calel and Dechezleprêtre, 2016; Calel, 2020), and China (Cui et al., 2018;
Zhu et al., 2019) that the enforcement of the emission trading policy can induce clean innov-
ation of regulated firms. However, most of the focus is confined to the innovation activities
of directly regulated firms, while the role of other unregulated firms in the response to
the emission trading policy remains largely ignored. More importantly, such neglect of
unregulated firms impedes understanding the spillover effects of emission trading, which
ultimately leads to the underestimation of the induced-innovation effects of the policy.

The spillover induced by policies may emerge across wide-ranging channels (Popp et al.,
2011; Dechezleprêtre and Glachant, 2014; Chakraborty and Chatterjee, 2017), but such
spillover is particularly stronger within the same corporate ownership networks as firms
inside share internal capital market (Alfaro and Chen, 2012; Giroud and Mueller, 2015),
supply chains (Bena et al., 2022), and knowledge resources (Michailova and Mustaffa,
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2012; Argote et al., 2022). Exploiting the launch of China’s regional ETS pilots, this paper
provides the first empirical evidence on how the ETS policy spills over to unregulated
firms through corporate ownership networks, and how such spillovers induce low-carbon
innovation in unregulated firms.

Based on a unique dataset linking corporate ownership networks with firms’ patenting
activities over the period 2010 to 2016 in China, this paper identifies to what extent the
policy pressures of China’s regional ETS pilots on regulated parent firms induce low-carbon
innovation in their unregulated subsidiaries. Specifically, this paper adopts a difference-
in-differences (DID) approach with the propensity score matching (PSM) technique, and
compares low-carbon innovation between unregulated subsidiaries owned by ETS-regulated
parent firms and owned by non-regulated parent firms during the pre- and post-ETS peri-
ods. The DID results show unambiguous evidence for the positive impacts of China’s
regional ETS pilots on unregulated subsidiaries’ low-carbon patenting, by raising 4.92% of
patent counts and 7.04% of associated citations. These findings suggest the existence of the
policy spillovers from regulated parent firms to their unregulated subsidiaries that induce
low-carbon innovation in the unregulated subsidiaries. The findings are robust against a
rich set of alternative checks on endogenous challenges and empirical strategies. The results
further demonstrate that higher carbon prices lead to stronger policy spillovers. The policy
spillovers induce both invention and utility low-carbon patents in unregulated subsidiaries.
Echoing the literature on factors of intra-organisational spillovers (Barker III and Mueller,
2002; Yang and Steensma, 2014; Forman and Van Zeebroeck, 2019), the results also reveal
that closer technological proximity, more top managers with R&D experience, and looser
financial constraints enhance the policy spillovers, which indicates more unregulated sub-
sidiaries’ engagement in low-carbon innovation when their parent firms are regulated by
the ETS.

This paper contributes to the literature on how environmental policies induce firms’ in-
novation. Since the seminal paper by Porter and Van der Linde (1995) documents that
firms would adapt their strategies to develop new technologies in response to environmental
policies, more following research examines the induced-innovation effects across different
policies (Johnstone et al., 2010; Popp, 2010). Despite the prominence of the induced-
innovation effects of environmental policies, little is known about how the policies spill
over across corporate ownership networks and induce additional innovation in unregulated
firms. This paper builds upon the long-lasting focus on how ownership networks facilitate
the exploitation of knowledge resources in the corporate management literature (Frost and
Zhou, 2005; Phene and Almeida, 2008; Achcaoucaou et al., 2014; Faems et al., 2020), and
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explains why unregulated subsidiaries perform as knowledge creators when their parent
firms face climate policy pressures such as ETS. In addition, previous corporate manage-
ment discussions on the role of ownership networks in corporate innovation are largely
built upon correlation evidence, while this paper provides causality evidence to bring novel
empirical support to the literature. With new findings on unregulated subsidiaries’ low-
carbon patenting induced by the ETS, this paper inspires policy evaluation research to
further explore the role of ownership networks in the policy spillovers that induce innova-
tion.

Moreover, this paper makes a contribution to the understanding of the enablers and barriers
of the policy spillovers through corporate ownership networks. Although there is an ongoing
debate over what proximity between units plays a more crucial role in innovation (Knoben
and Oerlemans, 2006; Capaldo and Petruzzelli, 2014; Guan and Yan, 2016; Liang and
Liu, 2018), the findings suggest that it is technological proximity rather than geographical
proximity can enable the policy spillovers to unregulated subsidiaries and induce low-
carbon innovation. While the existing literature recognises how the career experience
of top managers influences firms’ strategies (Carpenter et al., 2004; Menz, 2012; Qian
et al., 2013; Heyden et al., 2017), the findings of this paper add knowledge about how top
managers can use their experience to influence the strategies on environmental practices
such as low-carbon innovation. The empirical evidence also builds upon the discussion on
how constrained financial resources to alter firms’ strategies (Kubik et al., 2011; Yang and
Steensma, 2014; Amore and Bennedsen, 2016), and reveals that financial constraints of
parent firms can influence the engagement of subsidiaries in low-carbon innovation.

Finally, this paper offers policy lessons and managerial implications. Although regional
climate policies are usually criticised for potential carbon leakage (Fell and Maniloff, 2018;
Bartram et al., 2022), they may also create the policy spillovers that induce additional
low-carbon innovation in unregulated units through corporate ownership networks. The
awareness of this positive spillover provides a more eclectic view of regional climate policies
for policymakers during the policy evaluations. In addition, low-carbon innovation is not
an exclusive task only responsible for regulated units in a corporate group. In response
to the rising carbon pricing pressures across the globe, corporations could further take
advantage of knowledge sources across ownership networks to fulfil the needs for low-carbon
technology development.

The remainder of this paper is structured as follows. Section 2.2 introduces the institutional
background of China’s regional ETS pilots and the rationale of the policy spillovers across
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corporate ownership networks. Section 2.3 presents data sources, variable construction,
and the identification strategy. Section 2.4 shows the empirical results of policy spillovers,
the moderating factors, and the robustness checks. Section 2.5 concludes the paper.

2.2 Background

2.2.1 Policy Background of China’s Regional ETS Pilots

As the world’s largest greenhouse gas emitter, China has gradually become active in global
climate mitigation. To control and mitigate carbon emissions cost-effectively, on October
29th of 2011, National Development Reform Committee (NDRC) formally announced the
launch of seven regional carbon market pilots, including four municipalities (i.e., Beijing,
Shanghai, Tianjin, and Chongqing), one economic-special zone (i.e., Shenzhen), and two
provinces (i.e., Guangdong and Hubei). Since June 2013, the seven pilot markets started
emission trading.1 Accounting for around 10% of national CO2 emissions in the early trad-
ing phase, China’s regional ETS pilots were the world’s second-largest carbon markets and
became the flagship policy of the Chinese government to achieve the climate change targets
(Zhang et al., 2017). Table 2.A.1 summarises the basic information on each regional ETS
pilot. Previous papers document that China’s ETS pilots have exerted significant impacts
on regulated entities in terms of innovation (Cui et al., 2018; Zhu et al., 2019), emission
(Cui et al., 2021), and energy consumption (Cao et al., 2021; Yong et al., 2021). In addi-
tion to the direct policy effects, exploring how the policy effects spill over across corporate
ownership networks, for example in inducing low-carbon innovation in unregulated firms,
can provide both policy and managerial implications. It provides a new perspective for
policymakers to evaluate the wider impacts of carbon pricing policies. Meanwhile, focusing
on corporate ownership networks sheds light on how firms can use their ownership networks
to adjust innovation strategies in response to the rising carbon pricing pressures.

The regional ETS pilots have two distinct features for the empirical strategies. First,
each pilot exhibits wide heterogeneity in firm coverage. The seven pilots cover major
emitters in the manufacturing and public utility sectors. Under the general guidelines by
NDRC, each pilot has discretion in designing its covered entities, carbon trading platforms,
allowance allocation, and compliances (Zhang et al., 2014, 2017). The quasi-experimental
setting allows this paper to pin down regulated firms and accordingly which unregulated

1The first pilot to launch the carbon ETS was Shenzhen in June 2013 and then followed by Shanghai,
Beijing, Guangdong, and Tianjin in the same year. The remaining pilots, Hubei and Chongqing, launched
the ETS in April and June 2014, respectively. Fujian launched the eighth carbon ETS in December 2016,
which is not included in the analysis due to the lack of post-ETS periods in the sample.
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subsidiaries are affiliated with the regulated parent firms. It offers an opportunity to tease
out the causal relationship between the ETS pilots and the policy spillovers that induce
low-carbon innovation in unregulated subsidiary firms.

Second, the ETS pilots present variations in carbon market performances across regions
and years. Since the trading in seven ETS pilots is operated separately, it gives rise to
the variation in carbon prices and allowance trading turnover rate across pilots. Each
covered firm is subject to the carbon pricing stringency and trading activeness within
the jurisdiction. Beijing and Shenzhen are two more active markets with carbon prices
fluctuating around 50 RMB (or $7 US dollars) per tonne before 2016, while other pilots
have carbon prices varying around 20 RMB (or $3 US dollars) per tonne. Such variations
in the carbon market performances provide another lens for exploring how corporations
form strategic responses to the stringency and activeness of carbon markets.

2.2.2 Policy Spillover Effects on Innovation of Unregulated Subsidiaries

Literature has documented that corporate groups may exploit resources or adjust produc-
tion throughout their ownership networks in response to local shocks. On the one hand,
when positive shocks appear in one region, such as new investment opportunities, plants
located in the more profitable region would enjoy more capital and labour support from
their headquarters (Giroud and Mueller, 2015). On the other hand, ownership networks
provide headquarters with the flexibility to adjust production or investment across affili-
ated plants and help to build up resilience when one of the plants is exposed to negative
local shocks, such as economic downturn shocks (Giroud and Mueller, 2019; Bena et al.,
2022), natural disasters (Seetharam, 2018), or environmental regulations (Hanna, 2010;
Cui and Moschini, 2020).

Along this line, corporate groups can take advantage of ownership networks to fulfil the
strategic purposes of innovation and technology development. Typically, many subsidiaries
are initially established as knowledge receivers in the ownership networks and only spe-
cialise in existing technologies (Cantwell and Mudambi, 2005). However, they gradually
develop their own capabilities and obtain more comparative advantages in innovation by
seeking new markets, accumulating capital, and refining existing technologies (Birkinshaw
and Hood, 1998; Achcaoucaou et al., 2014). With more subsidiaries becoming valuable
sources of new knowledge, parent firms can utilise control rights to exploit and integ-
rate the fragmented knowledge within corporate ownership networks by parent-subsidiary
R&D collaborations or R&D outsourcing (Frost and Zhou, 2005; Phene and Almeida, 2008;
Faems et al., 2020). China’s regional ETS pilots perform as a local shock that exerts regula-
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tion pressures on firms within the jurisdictions. Standing in the position of regulated firms,
developing low-carbon innovation is not a solo task but a knowledge combination and syn-
ergy within corporate ownership networks. Innovation competence in their subsidiaries can
be employed by the parent firms to fulfil the needs of new low-carbon technologies. Thus,
the policy pressures on regulated parent firms are likely to spill over to their unregulated
subsidiaries and induce low-carbon innovation in unregulated subsidiaries.

The strength of the policy spillovers through corporate ownership networks is contingent
on the parent firms’ capacities and willingness to leverage subsidiaries’ knowledge for their
needs, which could be influenced by organisational mechanisms (Feinberg and Gupta,
2004). First, it is determined by how "close" the parent and subsidiary firms are. One
aspect of the "closeness" is the geographical distance. Due to a lower cost of travel and
transport, shorter geographical distance encourages more frequent interactions between
partners in organisations (Funk, 2014). This facilitates the collaboration and informa-
tion exchange that are important to innovation activities (Knoben and Oerlemans, 2006;
Capaldo and Petruzzelli, 2014). Another "closeness" is technological proximity. A greater
overlap in knowledge spectrums between two entities accelerates the knowledge absorption
of each other (Aharonson and Schilling, 2016; Forman and Van Zeebroeck, 2019). Strong
absorptive capacities create a solid basis for technology collaboration between entities and
facilitate the transfer of knowledge into innovation outcomes more easily (Liang and Liu,
2018). In this regard, a stronger policy spillover effect may derive from a closer pair of
parent and subsidiary firms, with respect to geographical and technological closeness.

Second, the exploitation of knowledge within ownership networks is also determined by
the expertise of top managers. Top managers play a crucial role in corporate strategies,
but they may also be functionally biased during the decision making given their career
experience (Carpenter et al., 2004). Top managers with throughput career experience (e.g.,
production) prioritise efficiency improvement given existing resources (Heyden et al., 2017).
In response to policy pressures, managers with production backgrounds are more inclined
to optimise efficiency such as energy conservation or waste management (Garza-Reyes,
2015). In contrast, top managers with output career experience (e.g., R&D) focus more on
the development of new products and technologies (Barker III and Mueller, 2002; Heyden
et al., 2017). Therefore, they may better specialise in exploiting knowledge resources within
corporate groups for new low-carbon innovation.

Third, how much parent firms resort to subsidiaries’ knowledge depends on the financial
resources of parent firms. Innovation is an investment process that incurs higher costs
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and risks, which adds more financial pressure on firms engaging in innovation (Hall, 2002).
Regulated parent firms with limited financial resources would tend to exploit existing know-
ledge resources from their subsidiaries, rather than explore new knowledge by themselves
to fulfil the needs of innovation (Yang and Steensma, 2014). In other words, financially
constrained parent firms are more likely to depend on their ownership networks to develop
innovation in response to the ETS pressures, which results in a stronger policy spillover to
their unregulated subsidiaries.

2.3 Empirical Methodology

2.3.1 Data Sources

The dataset pertains to the Chinese publicly-listed firms in both Shanghai and Shenzhen
stock exchanges during the 2010-2016 period.2 It covers the manufacturing and public util-
ity sectors. This paper assembles the data from three main sources: (1) The list of regulated
entities in seven pilot regions is reported by the National Development Reform Committee
(NDRC). (2) Corporate ownership networks and economic fundamentals for parent firms
are supplied by China Stock Market and Accounting Research Solution (CSMAR). (3) In-
formation on patent applications and citations is provided by China National Intellectual
Patent Administration (CNIPA) and Google Patents, respectively.

The CSMAR provides ownership linkage between parent firms and subsidiary firms in pub-
licly listed corporations in Chinese stock markets, including firm names and shareholding
ratios of the ownership. This paper also collects fundamental and financial information
about conglomerates and parent firms from the CSMAR. Linking to the list of regulated
entities in China’s ETS pilots, this paper can pin down the ownership linkage between
regulated and unregulated firms, which provides the basis for the following construction of
the treatment and control groups. However, the CSMAR does not provide complete subsi-
diary firms’ fundamental information, which is needed to capture subsidiary geographical
and sectoral variation and measure geographic distances to parents. Therefore, this paper
complements location and sector information for subsidiaries by the National Enterprise
Credit Information Publicity System of China.3

This paper uses patent applications and grant data from CNIPA to measure firms’ low-

2Shanghai and Shenzhen stock exchanges are the two main stock exchanges covering firms publicly listed
in mainland China, around 3,000 listed firms by 2016.

3Only a handful of subsidiaries are located outside of mainland China, hence are excluded from the sample.
Thus, this paper does not cover carbon pricing pressures from other jurisdictions/countries via corporate
ownership networks.
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carbon innovation quantity. The CNIPA supplies detailed patent information in China,
including application number, application data, grant number, grant date, and Interna-
tional Patent Classification (IPC) code. Moreover, this paper collects citation information
associated with patents filed by the sample firms from Google Patents to measure innova-
tion quality.4

2.3.2 Variable Construction

The primary dependent variable is low-carbon innovation of unregulated subsidiaries meas-
ured by firms’ patents. To classify low-carbon patents, this paper matches each patent’s
IPC code with the IPC Green Inventory code, which is developed by the World Intellec-
tual Property Organization (WIPO)’s IPC Committee of Experts. The IPC Green Invent-
ory classifies environmentally sound technologies based on the list by the United Nations
Framework Convention on Climate Change (UNFCCC).5 This paper defines low-carbon
patents as the technologies involved in alternative energy production, energy conservation,
and waste management (Cui et al., 2018).6

China’s patent system differentiates patents into three categories based on their invent-
iveness and functionality: invention patents, utility model patents, and design patents.
The invention patents are defined as new technical solutions with prominent substantive
features and notable progress, which are subject to substantive examinations by CNIPA.
The utility model patents, or so-called “minor patents” in China, are associated with new
technical solutions to the shape and structure of products, which requires only preliminary
examinations. This paper takes into account invention patents and utility model patents
in the analysis as they are most relevant to low-carbon innovation and their IPC codes are
in line with the WIPO.7

This paper distinguishes the quantity and quality of low-carbon innovation. Specifically,

4Unlike other patent offices, such as European Patent Office (EPO), patent examiners in China are not
subject to mandatory requirements for adding citations to patent applications. Hence, there is little
citation information documented in CNIPA and patent citation needs to be supplemented from another
data source, e.g., Google Patents. This paper retrieves international citations that are received by Chinese
patents belonging to the sample firms from Google Patents. Due to the data limitations in this paper, it
is not available to measure patent applications and citations based on patent families.

5The EPO has developed a category of Cooperative Patent Classification (CPC) codes, labelled as the Y02
class, pertaining to technologies for climate mitigation or adaptation. Although CNIPA does not have
adopted the Y02 class yet, this paper has cross-checked the CPC Y02 class and IPC Green Inventory and
found these three classes are similar in the scope of low-carbon technologies.

6Waste management under the IPC Green Inventory covers a part of climate mitigation related technologies
such as carbon capture and storage and reuse of waste materials. Alternatively, I construct a measure of
low-carbon innovation that excludes waste management in the robustness checks.

7Design patents are only targeted to the external appearance of products and not related to climate mit-
igation or adaptation functionality. Hence, the analysis excludes design patents.
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this paper uses the number of low-carbon patents that are granted to indicate the quantity
of firms’ innovation (Schankerman and Pakes, 1986; Acs et al., 2002). In addition to
the quantity measurement, the quality of innovation is measured based on the number of
forward citations received by low-carbon patents (Trajtenberg, 1990; Harhoff et al., 1999;
Hall et al., 2005). Although rare in the Chinese patent data, multiple patent applications
may correspond to one patent when the patent updates patent claims after its first patent
application. To avoid the double-counting of patents, this paper aggregates the patent
measures to the patent family level, which identifies whether a group of patent applications
derive from the same patent.8

This paper considers several mechanism variables that moderate the spillover effects of
China’s ETS pilots. First, the geographical distance between parent firms and their sub-
sidiary firms is employed to capture the moderating effects of geographic barriers on the
policy spillovers through ownership networks. The distance, denoted by GeogDist, is com-
puted based on the longitude and latitude of the locations where parent firms and their
subsidiary firms lie in. To examine the role of technological barriers, this paper follows the
approach proposed by Jaffe (1986) and constructs an index measuring technology proximity
between subsidiary firm i and its parent firm m:

TechProxim = FiF
′
m√

(FiF ′
i )(FmF ′

m)
, (2.1)

where Fi/m = (F 1
i/m, F 2

i/m, . . . , F n
i/m, . . . , F N

i/m) is a multidimensional vector and each ele-
ment F n

i/m indicates the ratio of patents in the technological field n to all patents that are
owned by firm i/m. The classification of technological fields relies on IPC 4-digit code and
there are 608 fields in the sample (i.e., N = 608). The proximity measure varies between
0 and 1, and higher values stand for a more similar distribution of technological fields
between subsidiary and parent firms.

Second, this paper looks closer into the professional backgrounds of top management mem-
bers. Specifically, Num_Prod and Num_R&D denote the number of top management
members in parent firms who have work experience in production and R&D, respectively.
These moderating factors examine how the relevant expertise of decision-makers influences
the policy spillovers through corporate ownership networks. As an alternative, this paper
also accounts for the average tenure of top management members with production and
R&D experience in the robustness checks.
8The time dimension of each patent family in the analysis is defined as the period when its first patent
application in the patent family is filed. Firms have been able to use the new technology enclosed in the
patent in their production and operation when the application is filed.
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Last, in the main analysis, the financial constraint of a parent firm is measured by the
financial leverage (the ratio of debt to equity), which increases if the parent firm is faced
with a higher constraint on its financial resources (Hendricks et al., 2015). In the robustness
checks, this paper alternatively uses a financial constraint index proposed by Kaplan and
Zingales (1997) to capture if a parent firm lacks financial resources.

After combing the data from multiple sources and removing data with missing values, this
paper obtains a final sample of 20,225 subsidiary firms from the original 68,482 subsidiary
firms over the period 2010-2016, including 1,012 treated subsidiary firms.9

2.3.3 Identification Strategy

To estimate the policy spillovers from regulated parents to unregulated subsidiaries, this
paper first extracts regulated parent firms based on the list of regulated entities of China’s
regional ETS pilots, then finds their unregulated subsidiary firms based on the corporate
ownership networks archived by CSMAR. Figure 2.1 illustrates the empirical setting of
the treatment and control group. More specifically, the treated firms (marked in shaded
blue) are unregulated subsidiaries whose parent firms are regulated by the ETS (in black).
The control firms are unregulated subsidiaries whose parent firms are free from the ETS
coverage (in grey). The empirical exercise is carried out at the subsidiary level. Any
subsidiary firms that are directly regulated by the ETS are removed from the analysis.10

A comparison in innovation between unregulated subsidiaries with and without regulated
parent firms before and after the ETS may shed light on the policy spillovers of China’s
ETS.

The difference-in-differences (DID) setting is subject to an assumption that a reasonable
counterfactual for the treatment group is found. If the treated and control subsidiaries
differ substantially in the pre-treatment periods11, the DID estimate is unlikely to yield an
unbiased estimate (Dehejia and Wahba, 2002). This concern further arises when inspecting

9Among 20,225 subsidiary firms, 2,277 subsidiary firms are directly regulated by the ETS and will be
excluded in the following analysis. The 1,012 treated subsidiary firms take around 10% of total patents
and low-carbon patents among all subsidiary firms in the cleaned sample.

10There may be a concern about the policy spillovers from regulated subsidiaries to other unregulated
subsidiaries within the corporate ownership networks. To deal with this concern, this paper imposes a
further restriction on the pool of potential controls and all unregulated subsidiaries in the control group
do not have any regulated firms within their corporate ownership network (including their parent firm
and other sister subsidiary firms). Moreover, this paper also controls the number of regulated subsidiaries
in each corporate group in the robustness checks.

11As five ETS pilots (Beijing, Shanghai, Guangdong, Shenzhen, and Tianjin) were launched in 2013 while
two ETS pilots (Hubei and Chongqing) were launched in 2014, the treatment period in this paper is set
at the launch year of the corresponding ETS pilot where a regulated parent is located (period 0), and
pre-treatment and post-treatment periods are set relative to the launch years.
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Subsidiary a1 Subsidiary a2

Parent A

Subsidiary b1 Subsidiary b2

Parent B

Figure 2.1: Diagram of the Treatment and Control Group Setting
Notes: Dash outline marks corporate ownership networks. ETS firms are in black, while non-ETS firms
are in grey. The treated units in blue shade are defined as unregulated subsidiaries owned by a regulated
parent firm (i.e., Subsidiary a1 and a2). Control units in grey are defined as unregulated subsidiaries owed
by an unregulated parent firm (i.e., Subsidiary b1 and b2).

the mean statistics in key covariates for the treated and control firms during the pre-ETS
periods, as shown in Table 2.1. Columns (1) to (3) show the statistics for 1,012 subsidiaries
in the treatment group and 16,936 subsidiaries in the pool of potential controls. The table
shows that treated firms significantly differ from control ones in terms of most innovation
and economic variables before the ETS.

This paper employs the nearest neighbour propensity score matching (PSM) technique to
construct a tenable counterfactual for the treatment group (Dehejia and Wahba, 2002).
Although one-to-one nearest neighbour matching can seek out the most similar controls
and minimise the difference between the treatment and control group in the pre-treatment
periods, it may also sacrifice the precision as decreasing the size of the matched sample (Im-
bens, 2004). Hence, this paper adopts one-to-two nearest neighbour matching in the main
analysis: each treated firm is paired with two control firms that are operating in the same
sector as the treat firm and have the closest propensity scores to the treat firm.12 Using
a logistic regression model, the propensity score is estimated based on the pre-treatment
innovation outcomes and other predictors of innovation outcomes and the treatment as-
signment.13 Specifically, the pre-treatment attributes contain subsidiaries’ low-carbon pat-

12A simulation research by Austin (2010) finds that matching two untreated units to each treated unit
can result in improved precision without a commensurate increase in bias. This paper also performs
one-to-one, one-to-three, and inverse probability treatment weighting as the robustness checks.

13There is a lack of consensus on which covariates should be included for estimating propensity scores.
More covariates and restrictions added in the matching procedure, while deemed stringent and safe, tend
to result in fewer matched pairs. As suggested by Austin et al. (2007), this paper chooses the covariates
that might strongly affect both the outcomes and the treatment assignment.
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Table 2.1: Mean Statistics for Matched and Unmatched Sample

Unmatched Sample Matched Sample
1012 treated vs 16936 control firms 640 treated vs 1020 control firms

Variable Treated Control P-value Treated Control P-value
(1) (2) (3) (4) (5) (6)

Panel A: 3 periods prior to ETS
Low carbon patent count 0.009 0.013 0.360 0.009 0.016 0.319
Low carbon patent citation 0.015 0.023 0.309 0.016 0.027 0.351
Total patent stock 0.140 0.108 0.040 0.120 0.165 0.103
Low carbon patent stock 0.009 0.012 0.392 0.009 0.015 0.335
Registered capital 4.598 4.421 0.164 3.938 3.968 0.883
Total patent (Parent) 0.888 0.545 0.000 0.751 0.785 0.645
Low carbon patent (Parent) 0.180 0.094 0.000 0.169 0.154 0.591
Total patent stock (Parent) 0.884 0.545 0.000 0.745 0.785 0.584
Low carbon patent stock (Parent) 0.180 0.094 0.000 0.169 0.154 0.591
Panel B: 2 periods prior to ETS
Low carbon patent count 0.023 0.021 0.751 0.019 0.023 0.648
Low carbon patent citation 0.036 0.037 0.930 0.029 0.040 0.438
Total patent stock 0.291 0.208 0.000 0.255 0.336 0.047
Low carbon patent stock 0.028 0.027 0.853 0.024 0.029 0.587
Registered capital 6.273 5.911 0.001 5.895 5.892 0.988
Total patent (Parent) 1.530 0.838 0.000 1.462 1.320 0.112
Low carbon patent (Parent) 0.387 0.160 0.000 0.352 0.304 0.250
Total patent stock (Parent) 1.758 0.984 0.000 1.672 1.541 0.179
Low carbon patent stock (Parent) 0.466 0.202 0.000 0.447 0.380 0.146
Panel C: 1 period prior to ETS
Low carbon patent 0.036 0.030 0.434 0.029 0.034 0.630
Low carbon patent citation 0.054 0.047 0.531 0.043 0.054 0.486
Total patent stock 0.432 0.317 0.000 0.403 0.492 0.074
Low carbon patent stock 0.050 0.044 0.442 0.043 0.049 0.615
Registered capital 7.422 7.167 0.001 7.222 7.256 0.754
Total patent (Parent) 1.804 1.128 0.000 1.662 1.734 0.463
Low carbon patent (Parent) 0.480 0.214 0.000 0.448 0.412 0.441
Total patent stock (Parent) 2.293 1.425 0.000 2.186 2.194 0.940
Low carbon patent stock (Parent) 0.616 0.305 0.000 0.594 0.568 0.628

Notes: All variables are defined in a log fashion. Columns (1) - (3) report the mean statistics for the treated and control subsidi-
aries for the unmatched sample, while the remaining columns report that for the matched sample.

enting over the three years before the ETS (to capture the growth path of subsidiaries’
low-carbon innovation) , subsidiaries’ and parents’ cumulative number of all patents and
low-carbon patents at one year before the ETS (to capture technology stocks of subsidiary
and parent firms), and subsidiaries’ and parents’ capital at one year before the ETS (to
capture the sizes of subsidiary and parent firms). All covariates used in the matching are
log-transformed. Considering the matching quality, the matching sets a calliper of 0.2 of
the standard deviation of the propensity score to remove matched pairs with a larger dis-
tance of propensity scores.14 Replacement is allowed in the matching procedure to ensure

14While there is no gold-standard for the maximal acceptable calliper of propensity scores, a simulation
study by Austin (2011) suggests that a calliper width equal to 0.2 of the standard deviation of the logit of
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that each treated unit matches the closest control units and to avoid extra bias in selecting
control units.

To examine the matching quality, a balancing test is performed by comparing the sample
means of firm characteristics between the treatment and matched control groups. Columns
(4) - (6) of Table 2.1 report the results. Among 1,012 treated subsidiaries, 640 are success-
fully matched with 1,020 control subsidiaries. For each control unit matching more than
one treated unit, a weight is added to the control unit based on how many treated units it
matches. Except for few pre-treatment characteristics, there exists no statistically signi-
ficant difference between the treatment and control groups for the matched sample. These
results suggest that the matching procedure performs well in selecting control subsidiaries
to mimic historical innovation patterns and economic characteristics of treated subsidiar-
ies before the ETS.15 The parallel trend prior to the ETS launch is further supported by
estimating the dynamic effects using an event study model, which is displayed in Figure
2.2 and discussed in the main results.

Based on the matched sample, Table 2.2 reports the summary statistics for the variables
used in the empirical analysis, including measures of low-carbon innovation, indicators of
the ETS policy, moderating factors, and firms’ financial attributes.

The DID approach is then employed to compare the innovation outcomes between treated
subsidiaries with matched control units during the pre- and post-ETS periods. For an
unregulated subsidiary firm i in sector j from region r, with a parent firm m in sector s

from region p, and at year t, the baseline DID model is specified as:

Yijrt = β0 + β1ETSParenti × Postt + β2Ximt + γi + δjt + ηrt + λst + µpt + εijrt. (2.2)

In this specification, the outcome variable Yijrt refers to subsidiaries’ low-carbon patent
family counts and citations (in logarithms). The dummy ETSParenti is an indicator for
the treatment assignment, equaling one if an unregulated subsidiary is affiliated with a
parent firm regulated by the ETS pilots, and zero otherwise. The dummy Postt equals
one if the period is after the launch of the ETS pilots, and zero otherwise. Ximt is a vector
of control variables at both subsidiary and parent firm levels, including subsidiary firms’
registered capital, and parent firms’ assets, capital, and sales.

To control for unobservable confounding factors that affect low-carbon innovation, The

propensity score could minimise the mean squared error of the estimated treatment effect and eliminate
much of the bias in the estimators.

15Although there is still a discrepancy of subsidiary firms’ total patent stock between the treatment and
matched control groups, the discrepancy has been much shrunk due to the matching.
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Table 2.2: Summary Statistics for Matched Sample

Variable N Mean S.D. Min. Max.
Panel A. Patent Information
Low-carbon patent count 9810 0.120 0.960 0 26
Low-carbon patent citation 9810 0.300 3.150 0 173
Panel B. Policy Indiactors
ETSParent 9810 0.390 0.490 0 1
CarbonPriceParent (yuan) 9810 8.830 18.11 0 64.83
TurnoverRateParent 9810 0.0100 0.0200 0 0.140
Panel C. Moderation Factors
Geographical distance 9792 539.2 677.7 0 3907
Technological proximity 9810 0.110 0.270 0 1
No. of production TM members 9805 1.450 2.100 0 18
Avg tenure of production TM members 9805 3.812 2.247 0.0833 15.25
No. of R&D TM members 9805 2.690 2.640 0 30
Avg tenure of R&D TM members 9805 4.050 2.566 0 14.25
Financial leverage 9695 1.280 1.720 0.0100 65.43
KZ index 9316 0.300 2.160 -9.430 6.870
Panel D. Other Firm Attributes (million yuan)
Registered capital (subsidiary) 9810 444.7 7223 0.100 250000
Asset (parent) 9801 20415 35331 54.47 271267
Capital (parent) 9801 8934 14619 1.375 131421
Sale (parent) 9805 14123 25522 29.94 222505

Notes: Panel A provides summary statistics of patent information at the subsidiary and parent firm
levels. Panel B presents the statistics of policy indicators used in the empirical analysis. Panel C re-
ports moderating factors of the ETS policy spillovers. Panel D displays summary statistics of other
firm attributes.

model adds a series of fixed effects at different levels. Subsidiary firm fixed effects, denoted
by γi, absorb any time-invariant subsidiary-specific characteristics. One may worry about
co-existing regional or sectoral policies that affect subsidiaries’ innovation. The model
includes the subsidiary sector-year and province-year fixed effects, represented by δjt and
ηrt, respectively. These two fixed effects help absorb time-variant sectoral and regional
shocks that directly affect subsidiaries. Similarly, the parent sector-year fixed effects λst

and province-year fixed effects µpt are also included to control sectoral and regional time-
varying shocks that indirectly affect subsidiaries via their parent firms. Lastly, εijrt is an
idiosyncratic error term.

Of central interest is the coefficient of the interaction term between ETSParenti and
Postt dummies. The estimate, denoted by β1, captures the spillover effect of China’s
ETS pilots on unregulated subsidiaries’ low-carbon innovation. With the matched sample,
this paper estimates the coefficients using the ordinary least squares method. Alternative
estimation methods including Poisson Pseudo Maximum Likelihood and Iterated Ordinary
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Least Squares are conducted in the robustness checks.16 The standard errors are clustered
at the parent firm level to allow for the correlations within corporate groups.

This paper further considers potential mechanisms that moderate the spillover effects of
the ETS. Based upon the matched DID model equation (2.2), the ETS policy indicator
further interacts with moderating factors. The model specification is:

Yijrt =β0 + β1ETSParenti × Postt + β2ETSParenti × Postt × Mechanismimt+ (2.3)

β3Mechanismimt + β4ETSParenti × Mechanismimt+

β5Postt × Mechanismimt + β6Ximt + γi + δjt + ηrt + θm + λst + µpt + εijrt.

In this form, Mechanismimt represents several moderating variables, specifically geograph-
ical distance, technological proximity, top manager backgrounds of production and R&D,
and financial constraints. The moderating effects, denoted by β2, capture how these vari-
ables facilitate or impede the policy spillovers from regulated parent firms to unregulated
subsidiaries.

2.4 Empirical Results

2.4.1 Baseline Results

Using the DID specification with the PSM technique, this paper first investigates whether
the ETS policy pressures spill over from parent firms to their unregulated subsidiaries and
induce subsidiaries’ low-carbon innovation. Table 2.3 shows the results. In all columns,
subsidiary firm fixed effects are included to absorb subsidiary-specific unobservables that
may affect the innovation activities. Subsidiary sector-year and province-year fixed effects
are also included to control for provincial and sectoral time-variant confounding shocks
that affect subsidiaries’ low-carbon innovation, such as coexisting environmental, energy,
and industrial policies.

Columns (1) and (2) of Table 2.3 report the results on low-carbon innovation quantity. In

16Although a Poisson estimator may perform better for count data compared to the ordinary least squares,
a very high dimension of fixed effects may lead to serious numerical instability to the Poisson Pseudo
Maximum Likelihood estimator and fail to reach the convergence or converge to the incorrect estimates
(Silva and Tenreyro, 2011; Bratti et al., 2014; Henn and McDonald, 2014; Correia et al., 2020). A new
estimation method, Iterated Ordinary Least Squares, is put forward to overcome the issues with the
Poisson models, but it is yet to be widely tested in econometrics literature (Bellégo et al., 2022). The
estimation under the case of very high-dimension fixed effects also requires high computing power and
finds it difficult to converge. Since the key interest is to estimate the policy spillover effects by controlling
both subsidiary and parent firm-level unobservable shocks, this paper mainly uses the ordinary least
squares estimator in the analyses.
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Table 2.3: The ETS Spillover Effects on Unregulated Subsidiary Firms

Dependent Variable: Patent Count Patent Citation
Low Carbon Patent Family (1) (2) (3) (4)
ETSParent×Post 0.021* 0.048*** 0.030* 0.068***

(0.012) (0.016) (0.017) (0.024)
Observations 9,799 9,785 9,799 9,785
Firm Attributes Y Y Y Y
Subsidiary FE Y Y Y Y
Subsidiary Province-Year FE Y Y Y Y
Subsidiary Sector-Year FE Y Y Y Y
Parent Province-Year FE Y Y
Parent Sector-Year FE Y Y

Notes: Dependent variables are logarithm one plus low-carbon patent family counts and citations. ET SP arent
equals one if an unregulated subsidiary is affiliated with a regulated parent firm, and zero otherwise. P ost
equals one if the period is after the launch of the ETS, and zero otherwise. All columns contain the firm-level
attributes including subsidiaries’ registered capital, and parents’ assets, capital, and sales. Fixed effects at the
subsidiary firm, subsidiary province-year, subsidiary sector-year, parent province-year, and parent sector-year
levels are included. Standard errors in the parenthesis are clustered at the parent firm level. ***, **, *, indic-
ate the significance at the 1% level, 5% level, and 10% level, respectively.

Column (1), the estimated coefficient for the interaction term between ETSParent and
Post is positive and statistically significant at the 10% level. The result indicates the
ETS policy induces low-carbon innovation of unregulated subsidiaries through regulating
their parent firms. However, if the ETS policy can spill over to unregulated subsidiaries
through their parent firms, other policy shocks to parent firms would also produce similar
spillover effects. Omitting confounding sectoral and regional shocks to parent firms may
cause biases in the estimation of the policy spillover effects of the ETS. To further address
this concern, the model adds parent firm sector-year and province-year fixed effects in
Column (2). The estimated coefficient for the interaction term remains positive. The
magnitude of the coefficient becomes larger and the significance becomes stronger, at the
1% level.17 This result suggests that the ETS policy pressure on parent firms can lead to
a 4.92% increase in low-carbon patents in their affiliated unregulated subsidiaries, given
other policy shocks to sectors and provinces are controlled.18

Columns (3) and (4) show the results for low-carbon innovation quality, measured by the
received citations of low-carbon patents. Both columns document positive and statistically
significant coefficients for the interaction terms. In the preferred model in Column (4), the
estimate of 0.068 indicates that the ETS pressures on parent firms contribute to a 7.04%

17The direct effects of the ETS on low-carbon innovation of parent firms are reported in Table 2.A.2. The
results document a significantly positive and stronger impact of the ETS on regulated parent firms.

18Since the dependent variable is transformed into the logarithm, more rigorously the estimated coefficient
should be interpreted as exp(β)-1 as the percentage change. Hence, the coefficient 0.048 indicates a 4.92%
increase in low-carbon patent counts.

Policy Spillover Induces Low-carbon Innovation 54



increase in low-carbon patent citations in unregulated subsidiaries.19 Overall, the results
document supporting evidence that the ETS induces low-carbon innovation in unregulated
subsidiaries by the spillover effects through corporate ownership networks.

A more intuitive way to present the spillover effects of the ETS on unregulated subsidi-
aries’ innovation is through a plot of the dynamic effects. Figure 2.2 plots the estimated
coefficients for the policy effects in the pre- and post-ETS periods and the 95% confidence
intervals of each point estimation. The upper panel shows the dynamic effects on the pat-
ent count, while the lower panel displays the results for the patent citation. The coefficient
for the year before the launch of ETS is omitted because it is set as the benchmark. All
estimated effects are relative to the benchmark year.

There are two features of Figure 2.2 that are worth discussing. First, the coefficients are
very similar and statistically insignificant across the pre-ETS periods. This result suggests
that there is no significant discrepancy in subsidiaries’ low-carbon innovation of treated and
control units before the launch of the ETS and lends strong support to the parallel trend
assumption, given firm characteristics and other unobservable policy shocks are controlled.
Second, the point estimates start to increase significantly in the year when the ETS is
launched and the policy spillover effects trend up over the three years after the launch of
the ETS. These findings further suggest the policy spillovers to unregulated subsidiaries
caused by the ETS.

This paper further investigates the effects of heterogeneous carbon pricing policies and
the policy spillovers to different types of innovation. First, the performance of carbon
markets varies across pilots and provides an opportunity to explore the spillover effects of
heterogeneous policies. Carbon price signals the marginal cost of emission abatement and
reflects the regulatory stringency of the carbon pricing policy. Turnover rate captures the
activeness of allowance trading in the carbon markets. Using carbon price and turnover
rate, this paper examines how different carbon market performances affect the spillover
effects of the ETS policy. Panel A in Table 2.4 presents the results for the heterogeneous
policies. ETSParentHetero denotes the carbon price and turnover rate of the ETS pilots
to which the regulated parent firms are exposed. In Columns (1) and (3), the estimated
coefficients for carbon price are positive and statistically significant at the 1% and 5% level,
respectively. The findings suggest that a higher carbon price imposed on regulated parent
firms leads to stronger policy spillovers to unregulated subsidiaries, where more low-carbon

19Due to the log-transformation, more rigorously the estimated coefficient 0.068 should be interpreted as
exp(β)-1 percentage change and indicates a 7.04% increase in low-carbon patent counts.
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Figure 2.2: Dynamic Effects of the Policy Spillovers
Notes: The upper and lower panel report the dynamic effect results on unregulated subsidiaries’ low-carbon
patent count and citation, respectively. The dots indicate the point estimates for periods before and after
the ETS launch. The intercept indicates the 95% confidence interval. The benchmark is set one year before
the ETS launch.

innovation is induced. In contrast, turnover rate in carbon markets has mild impacts on
the policy spillovers.

Second, in China’s patent system, invention patents usually involve more critical innov-
ativeness and represent a higher quality of innovation compared with utility patents (Wei
et al., 2017). Hence, this paper separates invention and utility patents and explores the
policy spillover effects on the two types of innovation in unregulated subsidiaries. Panel
B in Table 2.4 reports the results for the heterogeneous innovation. The dependent vari-
able of Panel B is low-carbon invention patent in Columns (1) and (3) and utility patent
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in Columns (2) and (4). The estimated effects on both invention and utility patents are
positive and statistically significant. The results indicate that the ETS induces both more
innovative and less innovative low-carbon patents in unregulated subsidiaries through the
policy spillovers.

Table 2.4: Heterogeneity of Policy and Innovation

Dependent Variable: Patent Count Patent Citation
Low Carbon Patent Family (1) (2) (3) (4)
Panel A: Policy Heterogeneity: Carbon Price Turnover Rate Carbon Price Turnover Rate
ETSParentHetero×Post 0.012*** 0.702 0.018** 1.026*

(0.005) (0.448) (0.007) (0.584)
Observations 9,785 9,785 9,785 9,785
Panel B: Innovation Heterogeneity: Invention Utility Invention Utility
ETSParent×Post 0.023** 0.035*** 0.041** 0.046**

(0.009) (0.013) (0.018) (0.018)
Observations 9,785 9,785 9,785 9,785
Firm Attributes Y Y Y Y
Subsidiary FE Y Y Y Y
Subsidiary Province-Year FE Y Y Y Y
Subsidiary Sector-Year FE Y Y Y Y
Parent Province-Year FE Y Y Y Y
Parent Sector-Year FE Y Y Y Y

Notes: Dependent variables are logarithm one plus low-carbon patent family counts and citations. ET SP arent equals one if an un-
regulated subsidiary is affiliated with a regulated parent firm, and zero otherwise. P ost equals one if the period is after the launch
of the ETS, and zero otherwise. Panel A measures the policy heterogeneity by ET SP arentHetero, which denotes the carbon price
and turnover rate of the ETS pilots to which the regulated parent firms are exposed. Panel B captures the innovation heterogeneity
by separating low-carbon invention and utility patents in dependent variables. All columns contain the firm-level attributes includ-
ing subsidiaries’ registered capital, and parents’ assets, capital, and sales. Fixed effects at the subsidiary firm, subsidiary province-
year, subsidiary sector-year, parent province-year, and parent sector-year levels are included. Standard errors in the parenthesis
are clustered at the parent firm level. ***, **, *, indicate the significance at the 1% level, 5% level, and 10% level, respectively.

2.4.2 Moderating Effects

This paper further explores the roles of geographical and technological proximity, manager
background, and financial constraints in the policy spillovers. The additional moderators
further interact with the ETS policy indicators based upon the baseline DID model. Table
2.5 reports the results on the quantity and quality of low-carbon innovation.
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Table 2.5: The Moderating Effects on the ETS Spillovers to Unregulated Subsidiary Firms

Dependent Variable: Patent Count Patent Citation
Low Carbon Patent Family (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
ETSParent×Post 0.060** 0.029** 0.053*** 0.017 0.017 0.082** 0.048** 0.079*** 0.028 0.018

(0.027) (0.014) (0.017) (0.019) (0.018) (0.038) (0.022) (0.025) (0.027) (0.026)
ETSParent×Post×GeogDist -0.003 -0.004

(0.004) (0.006)
ETSParent×Post×TechProx 0.258*** 0.282**

(0.094) (0.109)
ETSParent×Post×Num_Prod -0.004 -0.007

(0.004) (0.006)
ETSParent×Post×Num_R&D 0.010** 0.013*

(0.005) (0.007)
ETSParent×Post×FinLeverage 0.022** 0.033*

(0.011) (0.017)
Observations 9,772 9,785 9,785 9,785 9,665 9,772 9,785 9,785 9,785 9,665
Firm Attributes Y Y Y Y Y Y Y Y Y Y
Subsidiary FE Y Y Y Y Y Y Y Y Y Y
Subsidiary Province-Year FE Y Y Y Y Y Y Y Y Y Y
Subsidiary Sector-Year FE Y Y Y Y Y Y Y Y Y Y
Parent Province-Year FE Y Y Y Y Y Y Y Y Y Y
Parent Sector-Year FE Y Y Y Y Y Y Y Y Y Y

Notes: Dependent variables are logarithm one plus low-carbon patent family counts and citations. ET SP arent equals one if an unregulated subsidiary is affiliated with a reg-
ulated parent firm, and zero otherwise. P ost equals one if the period is after the launch of the ETS, and zero otherwise. GeogDist denotes the geographic distance between
subsidiaries and their parent firms. T echP rox denotes the technology proximity between subsidiaries and their parent firms based on the patent IPC 4-digit. Num_P rod and
Num_R&D denote the number of top management members with production and R&D experience in parent firms, respectively. F inLeverage denotes financial leverage of par-
ent firms and increases with financial constraints. For the sake of brevity, it only reports the estimated coefficients for the interaction terms of key interest. All columns contain
the firm-level attributes including subsidiaries’ registered capital, and parents’ assets, capital, and sales. Fixed effects at the subsidiary firm, subsidiary province-year, subsidiary
sector-year, parent province-year, and parent sector-year levels are included. Standard errors in the parenthesis are clustered at the parent firm level. ***, **, *, indicate the
significance at the 1% level, 5% level, and 10% level, respectively.
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First, this paper examines the roles of geographical distance and technological proximity
between parent firms and their subsidiaries. Columns (1) and (2) of Table 2.5 report the
results on the patent count. The results document both positive and statistically significant
estimates for the interaction terms of the ETSParent and Post dummy, further confirm-
ing the baseline conclusion. Moreover, the estimate for the triple interaction term for
GeogDist in Column (1) is not statistically significant at any convention level. It indicates
that geographical distance between parent and subsidiary firms is not an obstacle to the
policy spillovers through the corporate ownership networks. Standing in sharp contrast,
in Column (2), the estimated coefficient for the interaction term of TechProx is positive
and statistically significant at the 1% level. This indicates the positive role of technology
proximity between parent firms and subsidiaries in the policy spillovers that induce low-
carbon innovation in unregulated subsidiaries. The results are consistent with the research
on technological proximity and innovation that closer technological proximity can enhance
technology exploitation and collaboration (Aharonson and Schilling, 2016; Forman and
Van Zeebroeck, 2019). For unregulated subsidiaries sharing a similar technology spectrum
with their parent firms, the subsidiaries stand in a better position to utilise their R&D
resources and contribute to the needs of low-carbon innovation when the parent firms are
exposed to the ETS pressures. When it comes to innovation quality, Columns (6) and (7)
report the corresponding results. The estimated coefficient for GeogDist is statistically
insignificant, while the coefficient for TechProx is positive and significant at the 5% level.
These findings suggest that geographical distance plays a silent role while technology prox-
imity performs a facilitating role in improving subsidiaries’ low-carbon innovation quality
in response to the policy pressures on their parent firms.

Next, this paper looks at whether professional backgrounds of top management members
in parent firms would facilitate the policy spillovers that induce innovation in unregulated
subsidiaries. The number of top management members with production and R&D exper-
ience is measured by Num_Prod and Num_R&D, respectively. Columns (3) and (8)
present insignificant coefficients for the triple interaction terms of Num_Prod. On the
contrary, as shown in Columns (4) and (9), the estimated coefficients for the triple in-
teraction terms of Num_R&D are consistently positive and statistically significant. The
findings indicate that top managers’ R&D experience contributes to the policy spillover
effects on unregulated subsidiaries’ innovation. The inconsistency in the moderating effects
may be explained by the different focus of top managers with production and R&D exper-
ience. Under external policy pressures, top managers with output career experience (e.g.,
R&D) prefer innovation due to their focus on growth through discovering new products
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and markets (Barker III and Mueller, 2002). In contrast, top managers with throughput
career experience (e.g., production) focus more on efficiency improvement given existing
resources and therefore, under the ETS pressures, may regard R&D as a discretionary
expense rather than a potential opportunity for growth (Heyden et al., 2017). In the
robustness check, the average tenure of top management members with production and
R&D experience are employed as alternative measures of professional backgrounds of top
management members.

Last, this paper investigates how parent firms’ financial constraints affect the policy spillover
effects. The parent firms’ financial constraint is proxied by financial leverage (the ratio of
debt to equity). Column (5) reports the results on the low-carbon patent quantity, while
Column (10) shows the results on the patent quality. In both columns, the estimates for
the triple interaction term are consistently positive and statistically significant. These find-
ings together echo the literature that organisations with deprived financial resources may
resort to the exploitation of existing knowledge rather than the exploration of new know-
ledge (Yang and Steensma, 2014). In the presence of tighter financial constraints, parent
firms may respond to the ETS pressures by outsourcing innovation activities to subsidiaries
free from any ETS pressures. The tighter the financial constraints, the stronger the policy
spillover would be. This paper also uses the KZ index as an alternative measure of the
financial constraints, which is tested in the robustness checks.

2.4.3 Robustness Checks

To demonstrate the stability of the results, this paper conducts a rich set of robust-
ness checks regarding endogenous concerns (Table 2.A.3), alternative empirical approaches
(Table 2.A.4), and alternative measures of the moderating factors (Table 2.A.5).

Endogenous Concerns. First, an unregulated subsidiary may have affiliated sister sub-
sidiaries that are regulated under the ETS regimes, giving rise to another source of policy
spillover within corporate ownership networks. To cope with this concern, this paper ac-
counts for the number of regulated sister subsidiaries as a control variable in the DID
regression. Panel A in Table 2.A.3 reports the corresponding results. Both columns still
document the positive and significant spillover effects from regulated parent firms to un-
regulated subsidiary firms.

Second, the baseline matching process selects the cumulative number of all patents and low-
carbon patents as two key variables to ensure the similarity in innovation capability between
treated subsidiaries and control ones during the pre-ETS periods. One may conjecture that
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treated subsidiaries may follow a different innovation growth path than control ones. To
tackle this issue, this paper adds patent growth rate as a control variable to the DID
regression. Panel B in Table 2.A.3 presents the results. In both columns, the estimates
are positive and statistically significant at the 1% level, with very similar magnitude.

Third, though a rich set of fixed effects at both the subsidiary and parent firm levels
are included, there are still concerns about other contemporary environmental, energy,
or subsidy policies that have impacts on low-carbon innovation. One is the air pollution
control policy implemented in 2013, which mandated the Beijing, Tianjin, and Hebei (BTH)
regions to abate air pollution. To mitigate this concern, this paper excludes samples when
subsidiary firms or their parent firms are located in the BTH regions and re-estimates the
models. The results in Panel C of Table 2.A.3 do not alter the baseline findings. Another
is the "Top 10,000 Enterprises Energy Saving Programme" (ES10k) implemented in 2012,
which is an energy policy requiring around 16,000 energy-intensive firms to meet energy
efficiency targets. To address this concern, this paper excludes samples when subsidiary
firms or their parent firms are regulated by the ES10k programme. Panel D of Table
2.A.3 reports the corresponding results, which are also in line with the baseline findings.
In addition, there were subsidy policies supporting low-carbon innovation, including a
low-carbon special fund in Shenzhen, and a national subsidy for solar and wind energy
technologies. This paper excludes samples when subsidiary firms or their parent firms are
located in Shenzhen, displayed in Panel E of Table 2.A.3, and removes solar and wind
energy related patents in the dependent variables, displayed in Panel F of Table 2.A.3.
The results in both panels remain positive and statistically significant at the 1% level.

Last, one may worry about the measurement errors brought about by including waste
management patents in the dependent variables as they contain some patents not closely
relevant to climate adaptation or mitigation. To test the robustness of the results, this
paper removes waste management patents in the dependent variables, reported in Panel G
of Table 2.A.3. The results still document the positive and significant policy spillovers to
unregulated subsidiaries.

Alternative Empirical Approaches. The baseline DID model adopts the one-to-two
PSM approach to find the most comparable control units while avoiding the overfitting
issue. To test the robustness with other matching strategies, this paper considers one-to-
one and one-to-three nearest neighbour matching based on the same covariates used in the
baseline matching method. The results are reported in Panel A and B of Table 2.A.4 and
show that the baseline findings are robust against alternative matching strategies.
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Moreover, one potential concern in the baseline model is the loss of observations during
the matching procedure. To address this, this paper uses the inverse probability treatment
weighting (IPTW) method to transform the estimated propensity scores to weight firms
(Hirano and Imbens, 2001), though this may cause a large variance if the weights are
extreme (Stuart, 2010). More specifically, each treated firm is weighted by 1/p̂ and each
control firm is weighted by 1/(1 − p̂), where p̂ is the propensity score estimated from the
matching procedure (Guadalupe et al., 2012). Panel C of Table 2.A.4 shows the results for
the IPTW method and still provides supporting evidence for the baseline findings.

One may concern the ETS policy produces lagged effects on low-carbon innovation. To
tackle the potential time-lag issues, this paper adds a one-year lag and two-year lag in the
robustness checks. Panel D and E of Table 2.A.4 report the results for the one-year lag
and two-year lag, respectively. The baseline findings remain unchanged when taking into
account the time-lag issues.

Although the very high dimension of fixed effects in the analyses creates many difficulties
in the estimation by the Poisson Pseudo Maximum Likelihood and Iterated Ordinary Least
Squares, this paper also employs these two alternative methods to estimate the baseline
model. The corresponding results are displayed in Panel F and G of Table 2.A.4, respect-
ively. The changes in estimation methods do not qualitatively alter the baseline findings.20

Alternative Moderating Factors. This paper further tests the stability of the moder-
ating effects against alternative measures on technological proximity, top managers’ pro-
fessional backgrounds and financial constraints. Table 2.A.5 reports the results of these
robustness checks.

The baseline regression adopts the 4-digit IPC class to compute the technological proxim-
ity between each subsidiary firm and its parent firm. As a robustness check, this paper
considers the 3-digit IPC class. Columns (1) and (5) report the corresponding results.
Technological proximity still plays a positive and significant moderating role in the ETS
policy spillover.

This paper also uses the average tenure of top managers with production experience and
R&D experience. Columns (2) and (6) present the corresponding results and do not show
significant moderating effects of production experience. Columns (3) and (7) show the
results of the moderating effect of R&D experience. The estimates remain positive and
statistically significant. These findings further indicate that R&D experience rather than

20The outcome variables are not log-transformed in the estimations by the Poisson Pseudo Maximum
Likelihood and Iterated Ordinary Least Squares.
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production experience would help the policy spillovers that induce innovation in unregu-
lated subsidiaries.

The financial constraint mechanism is checked by instead using the KZ index (Kaplan and
Zingales, 1997). In analogous to the financial leverage, the larger the KZ index, the higher
financial constraints the firm confronts. Columns (4) and (8) report the corresponding
results. In both columns, the results document the consistently positive and statistically
significant estimates for the triple interaction terms. The findings reassure the baseline
findings on the moderating role of financial constraints.

2.5 Conclusion

Using data on corporate ownership networks and patent information of Chinese publicly
listed companies, this paper identifies whether China’s regional ETS pilots induce low-
carbon innovation of unregulated subsidiaries when their parent firms are regulated. It
further examines the heterogeneity of the policy impacts by carbon market performances
and two types of patents. This paper also reveals how such spillover effects through corpor-
ate ownership networks are influenced by organisational factors, including geographical and
technological proximity between parents and subsidiaries, top managers’ career experience,
and financial constraints of parent firms.

The main findings of this paper demonstrate that the ETS pilots lead to an increase in
low-carbon innovation in unregulated subsidiaries. Compared to unregulated subsidiaries
without regulated parent firms, there is a 4.92% increase in low-carbon patent counts and a
7.04% increase in associated citations among those unregulated subsidiaries affiliated with
regulated parent firms. This evidence suggests that policy spillovers from regulated parent
firms to their subsidiary firms induce low-carbon innovation in the unregulated subsidi-
aries. Furthermore, the findings show that such policy spillovers are stronger when the
ETS pilots have higher carbon prices. The policy spillovers have clear impacts on both
invention and utility patents. In addition, the empirical results demonstrate that technolo-
gical proximity between parent and subsidiary firms is an important enabler for the policy
spillovers, while geographical proximity does not play an important role. R&D experience
of top managers facilitates the engagement of unregulated subsidiaries in low-carbon innov-
ation, but production experience of top managers does not contribute to the subsidiaries’
innovation. Limited financial resources in parent firms also enhance low-carbon innovation
activities in their subsidiary firms. To test the stability of the findings, this paper conducts
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a series of robustness checks on endogenous challenges, empirical strategies, and alternative
indicators. The findings survive against these robustness checks.

Existing empirical research indicates that the ETS policy can drive an increase in regu-
lated firms’ low-carbon innovation around 10%-30% (Calel and Dechezleprêtre, 2016; Cui
et al., 2018; Zhu et al., 2019; Calel, 2020).21 Although the low-carbon innovation in un-
regulated subsidiaries induced by the ETS policy spillovers is relatively smaller than the
direct policy effects, the evidence clearly contributes to the understanding of how owner-
ship networks become a channel that induces additional innovation and helps to shape a
more comprehensive evaluation of climate policies. Particularly, regional climate policies,
though more politically feasible than full-scale ones, are usually blamed for the possibility
of carbon leakage. However, the evidence on the policy spillovers enhancing additional
low-carbon technologies can offer a more eclectic perspective on regional climate policies
for policymakers. Without accounting for the policy spillovers through corporate owner-
ship networks, the estimation of how much the ETS policy contributes to innovation would
be underestimated.

21This paper also examines the direct effects of China’s ETS pilots on low-carbon innovation of regulated
parent firms, displayed in Table 2.A.2. Although based on the limited samples, The results document
around a 30% increase in low-carbon innovation of regulated parents driven by the ETS policy.
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2.A Additional Tables

Table 2.A.1: Summary of China’s Region ETS Pilots

Region Announcement
Year

Launch
Year

Covered Sectors Threshold Emission Covered in
Region

Beijing 2011 2013 Electricity, heating, cement, petrochemical other in-
dustries, large public buildings including hospitals,
schools and governments

>10kt 40%

Shanghai 2011 2013 Electricity, iron and steel, petrochemical and chem-
ical industries, metallurgy, building materials, paper-
making, textile, aviation, airports and ports, public
and office buildings, railway stations

Industries>20kt;
Non-industries>10kt

57%

Shenzhen 2011 2013 Electricity, building, manufacturing, water supply Industries>5kt;
Public buildings>20km2
Office buildings>10k m2

40%

Guangdong 2011 2013 Electricity, cement, steel, petrochemical industries,
textiles, papermaking, aviation, public services in-
cluding hotels, restaurants and business

2013: >20kt;
Since 2014:
industries>10kt;
non-industries>5kt

58%

Tianjin 2011 2013 Electricity, hearing, iron and steel, chemical and pet-
rochemical and industries, oil and gas exploration

>20kt 60%

Hubei 2011 2014 Electricity, heating, metallurgy, iron and steel, auto-
mobile and equipment, chemical and petrochemical
industries, cement, medicine and pharmacy, food and
beverage, papermaking

energy consumption
>60k tce

33%

Chongqing 2011 2014 Electricity, metallurgy, chemical industries, cement,
iron and steel

>20kt 39.5%

Sources: Complied based on Zhang et al. (2017).
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Table 2.A.2: Direct Effect of ETS on Regulated Parent Firms

Dependent Variable: Patent Count Patent Citation
Low Carbon Patent Family (1) (2)
ETS×Post 0.297** 0.478**

(0.144) (0.198)
Observations 1,180 1,180
CarbonPrice×Post 0.062** 0.108**

(0.030) (0.048)
Observations 1,180 1,180
TurnoverRate×Post 9.445** 11.093**

(4.186) (4.718)
Observations 1,180 1,180
Firm Attributes Y Y
Parent FE Y Y
Parent Province-Year FE Y Y
Parent Sector-Year FE Y Y

Notes: Dependent variables are logarithm one plus low-carbon patent family counts and cita-
tions. ET S equals one if a parent firm is regulated, and zero otherwise. P ost equals one if the
period is after the launch of the ETS, and zero otherwise. All columns contain the firm-level
attributes including parents’ assets, capital, and sales. Fixed effects at the parent firm, parent
province-year, and parent sector-year levels are included. Standard errors in the parenthesis
are clustered at the parent firm level. ***, **, *, indicate the significance at the 1% level, 5%
level, and 10% level, respectively.
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Table 2.A.3: Robustness Checks on Endogeneity Issues

Dependent Variable: Patent Count Patent Citation
Low Carbon Patent Family (1) (2)
A. Number of Regulated Sister Subsidiaries as Control 0.044** 0.068**

(0.018) (0.027)
B. Patent Growth Rate as Control 0.047*** 0.068***

(0.017) (0.026)
C. Drop Samples in BTH Regions (Environmental Policy) 0.044** 0.054*

(0.022) (0.029)
D. Drop Samples Regulated by ES10k (Energy Policy) 0.048*** 0.073***

(0.017) (0.027)
E. Drop Samples in Shenzhen (Low-carbon Special Fund) 0.051*** 0.068***

(0.017) 0.024)
F. Drop Solar and Wind Energy Patents (Subsidy Policy) 0.041*** 0.059***

(0.015) (0.021)
G. Drop Waste Management Patents 0.045*** 0.063***

(0.016) (0.023)
Firm Attributes Y Y
Subsidiary FE Y Y
Subsidiary Province-Year FE Y Y
Subsidiary Sector-Year FE Y Y
Parent Province-Year FE Y Y
Parent Sector-Year FE Y Y

Notes: Dependent variables are logarithm one plus low-carbon patent family counts and citations. ET SP arent equals
one if an unregulated subsidiary is affiliated with a regulated parent firm, and zero otherwise. P ost equals one if the
period is after the launch of the ETS, and zero otherwise. Panel A includes the number of regulated sister subsidiary firms
as an additional control variable. Panel B includes the growth rate of patents as an additional control variable. Panel
C excludes samples when subsidiary firms or their parent firms are located in Beijing, Tianjin, and Hebei regions. Panel
D excludes samples when subsidiary firms or their parent firms are regulated by China’s "Top 10,000 Enterprises Energy
Saving Programme". Panel E excludes samples when subsidiary firms or their parent firms are located in Shenzhen. Panel
F removes solar and wind energy related patents in the dependent variables. Panel G removes waste management patents
in the dependent variables. All columns contain the firm-level attributes including subsidiaries’ registered capital, and
parents’ assets, capital, and sales. Fixed effects at the subsidiary firm, subsidiary province-year, subsidiary sector-year,
parent province-year, and parent sector-year levels are included. Standard errors in the parenthesis are clustered at the
parent firm level. ***, **, *, indicate the significance at the 1% level, 5% level, and 10% level, respectively.
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Table 2.A.4: Robustness Checks on Alternative Empirical Methods

Dependent Variable: Patent Count Patent Citation
Low Carbon Patent Family (1) (2)
A. 1:1 Nearest Neighbour Matching 0.046** 0.064**

(0.019) (0.027)
B. 1:3 Nearest Neighbour Matching 0.046*** 0.064***

(0.015) (0.022)
C. Inverse Probability Treatment Weighting 0.012*** 0.017***

(0.004) (0.005)
D. One-year Lag 0.042*** 0.056***

(0.015) (0.021)
E. Two-year Lag 0.048** 0.064**

(0.020) (0.025)
F. Poisson Pseudo Maximum Likelihood 2.298*** 1.927**

(0.689) (0.762)
G. Iterated Ordinary Least Squares 4.306*** 4.226***

(0.563) (0.579)
Firm Attributes Y Y
Subsidiary FE Y Y
Subsidiary Province-Year FE Y Y
Subsidiary Sector-Year FE Y Y
Parent Province-Year FE Y Y
Parent Sector-Year FE Y Y

Notes: Dependent variables are logarithm one plus low-carbon patent family counts and citations in the
estimations from Panel A to E. Dependent variables are not log-transformed in the estimations from
Panel F to G. ET SP arent equals one if an unregulated subsidiary is affiliated with a regulated parent
firm, and zero otherwise. P ost equals one if the period is after the launch of the ETS, and zero other-
wise. Panel A performs one-to-one nearest neighbour matching. Panel B performs one-to-three nearest
neighbour matching. Panel C uses the inverse probability treatment weighting in the regression analyses.
Panel D uses one-year lagged independent variables. Panel E uses two-year lagged independent variables.
Panel F conducts the estimation by the Poisson Pseudo Maximum Likelihood. Panel G conducts the
estimation by the Iterated Ordinary Least Squares. All columns contain the firm-level attributes includ-
ing subsidiaries’ registered capital, and parents’ assets, capital, and sales. Fixed effects at the subsidiary
firm, subsidiary province-year, subsidiary sector-year, parent province-year, and parent sector-year levels
are included. Standard errors in the parenthesis are clustered at the parent firm level. ***, **, *, indic-
ate the significance at the 1% level, 5% level, and 10% level, respectively.
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Table 2.A.5: Robustness Checks on the Moderating Effects

Dependent Variable: Patent Count Patent Citation
Low Carbon Patent Family (1) (2) (3) (4) (5) (6) (7) (8)
ETSParent×Post 0.025* 0.043*** 0.021 0.033** 0.044** 0.067*** 0.032 0.047**

(0.013) (0.016) (0.017) (0.014) (0.021) (0.025) (0.026) (0.020)
ETSParent×Post×TechProx(3-digit) 0.232*** 0.254***

(0.078) (0.095)
ETSParent×Post×AvgTenure_Prod 0.001 0.000

(0.003) (0.004)
ETSParent×Post×AvgTenure_R&D 0.006** 0.008**

(0.003) (0.004)
ETSParent×Post×KZ_Index 0.014** 0.020**

(0.006) (0.009)
Observations 9,785 9,785 9,785 9,283 9,785 9,785 9,785 9,283
Firm Attributes Y Y Y Y Y Y Y Y
Subsidiary FE Y Y Y Y Y Y Y Y
Subsidiary Province-Year FE Y Y Y Y Y Y Y Y
Subsidiary Sector-Year FE Y Y Y Y Y Y Y Y
Parent Province-Year FE Y Y Y Y Y Y Y Y
Parent Sector-Year FE Y Y Y Y Y Y Y Y

Notes: Dependent variables are logarithm one plus low-carbon patent family counts and citations. ET SP arent equals one if an unregulated subsidiary is affil-
iated with a regulated parent firm, and zero otherwise. P ost equals one if the period is after the launch of the ETS, and zero otherwise. T echP rox(3 − digit)
denotes the technology proximity between subsidiaries and their parent firms based on the patent IPC 3-digit. AvgT enure_P rod and AvgT enure_R&D
denote the average tenure of top management members with production and R&D experience in parent firms, respectively. KZ_Index is an index by Kaplan
and Zingales (1997) and measures the financial constraints of parent firms. For the sake of brevity, it only reports the estimated coefficients for the interaction
terms of key interest. All columns contain the firm-level attributes including subsidiaries’ registered capital, and parents’ assets, capital, and sales. Fixed ef-
fects at the subsidiary firm, subsidiary province-year, subsidiary sector-year, parent province-year, and parent sector-year levels are included. Standard errors
in the parenthesis are clustered at the parent firm level. ***, **, *, indicate the significance at the 1% level, 5% level, and 10% level, respectively.
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Chapter 3

Green Revenues, Clean Innovation
and Technology Spillover: Evidence
from Global Firm Level Data

3.1 Introduction

In response to the increasing environmental challenges and regulations, the demand for
environmentally friendly goods and services has continuously grown over the last decade
and encouraged more firms to alter their business focus to the markets of green products
(FTSE Russell, 2022). During the transition to the "green economy", the innovation of clean
technologies plays a crucial role as it delivers new solutions to improving environmental
performance while boosting firms’ competitiveness in green product markets, leading to a
"win-win" outcome (Porter and Van der Linde, 1995; Jaffe et al., 2002; Dechezleprêtre and
Sato, 2017). However, innovators are not always beneficiaries because the economic benefits
of clean innovation largely rely on technology commercialisation, which takes time and does
not necessarily happen inside the same firms where new technologies are invented (Teece,
2006; McGahan and Silverman, 2006; Popp, 2017). Commercial practices have shown
the separation of innovation and commercialisation, and firms can benefit from others’
technologies due to the existence of technology spillovers (Jaffe, 1986; Teece, 1986).1 The

1For example, the leading Israeli biotechnology company Evogene reached a business collaboration with
the giant US-based agricultural biotechnology company Monsanto in 2008. Evogene received funding from
Monsanto to develop new seeds that produce higher crop yields and become more drought-resistant. Al-
though Evogene held the intellectual property rights and received royalty payments, Monsanto secured
exclusive licence rights to commercialise the seeds and grabbed a large share of revenues from the new
products based on its well-established business networks (Evogene, 2014; Lianos and Katalevsky, 2017).
This business model reveals that the economic benefits of new technologies do not always accrue to innov-
ators but spill over to the owners of commercial advantages that are complementary to the technologies.
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focus should not be confined to innovators but extended to other firms sharing similar
business markets when one is evaluating clean innovation’s benefits.

There are two main research challenges in estimating clean innovation’s benefits. First,
as summarised by Popp (2019), most existing literature examines the economic impacts
of clean innovation based on the aggregated firm-level data, but experiences difficulties in
isolating the effects on green economic activities to which clean technologies are practically
targeted. Some previous research adopts binary or indirect measures of firms’ involvement
in green economic activities, though there is still disagreement on how to define and meas-
ure green economic activities (Jacobs et al., 2010; Oberndorfer et al., 2013). Considerable
measurement errors may also be drawn into the estimation of clean innovation’s benefits
due to the ambiguity in the measures of green economic activities. Second, many previous
studies rely on patenting activities, especially patent citations, to capture the spillover link-
ages between firms and measure clean technology spillovers when evaluating the economic
benefits of clean innovation (Dechezleprêtre et al., 2017; Barbieri et al., 2020a). However, a
large share of technology spillovers does not have observable paper trails of citation linkages
(Myers and Lanahan, 2022). The spillover linkages based on patenting may also downplay
firms that are engaged in green commercial activities while not leading in clean innovation.
Relying heavily on patenting activities to construct technology spillover linkages between
firms may miss some important spillovers existing in reality.

To better estimate the economic benefits of clean innovation, we resort to a novel dataset
from FTSE Russell that provides a detailed breakdown of revenues from green commercial
activities across global publicly listed firms. This dataset contains approximately 14,000
publicly listed firms from 2009 to 2016 and covers approximately 98.5% of global market
capitalisation. The rich details of firms’ revenues from specific green goods and services
archived in the data allow us to more accurately measure firms’ involvement in green
commercial activities. Around 3,400 firms in the data are identified as gaining revenues
from green commercial activities. Moreover, the detailed information on firms’ revenues
from specific green subsectors enables us to construct technology spillover linkages between
firms based on the proximity of green commercial activities rather than solely on patent
activities or citations. Merged with a global patent dataset from PATSTAT, our data is
able to provide a more comprehensive assessment of how much clean innovation contributes
to firms’ economic benefits, particularly from green commercial activities.

We show that firms’ average green revenues are smoothly growing during our sample period,
but the growth is fulfilled by expanding green commercial activities but not shifting the
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structure between green and non-green business. Energy-related business takes around
half of the firms’ green revenues. Describing the relationship between firms’ green revenues
and clean innovation, we find that many firms with little clean innovation obtain a large
share of green revenues. Further estimation evidence shows that firms’ green revenues are
enhanced by not only their own clean technologies but also technology spillovers from other
neighbouring firms close in the technological space and product market space. The result of
technology spillovers across the product market space also suggests that positive technology
spillovers dominate the possible negative market-stealing effects between firms in the clean
technology field. Such findings reflect the private and social economic benefits of firms’
clean innovation. Moreover, we find that an increasing maturity of firms’ clean technologies
brings firms more green revenues, and this increase in green revenues is enhanced if firms
themselves more specialise in clean innovation. In addition, we disaggregate our data
into a more granular level and find the significant correlations between clean innovation
and green revenues in the fields of alternative energy, energy efficiency, and sustainable
transport. Lastly, we find that firms obtain higher green revenues from clean innovation
if they have larger sizes or higher technology capacities. Our results survive in a series of
robustness checks that address some alternative measures and empirical settings.

This paper relates to extensive literature that investigates the linkage between firms’ en-
vironmental efforts and economic performance. Porter and Van der Linde (1995) raises
the point that innovation activities induced by environmental policies not only help firms
recover extra costs caused by regulations but also improve competitiveness in commer-
cial markets. More following papers show that firms’ inputs in green products and clean
innovation positively relate to profitability and market values (Ambec and Lanoie, 2008;
Palmer and Truong, 2017; Kruse et al., 2020). The evidence that firms benefit from their
own environmental efforts is further recognised by capital markets and fosters private sec-
tor investments in clean assets and technologies (Dechezleprêtre et al., 2021). This paper
builds on this strand of literature by providing a new piece of evidence on the relationship
between clean innovation and firms’ revenues from green products.

This paper also adds to the burgeoning literature that investigates the effect of technology
spillovers. Earlier studies including Jaffe (1986) and Teece (1986) observe that innovating
firms often do not obtain full economic returns from their own innovation, while other
industry participants may gain more benefits from the innovation. These findings motivate
more following works to focus on technology spillovers and develop frameworks to separate
returns deriving from own and others’ innovation efforts (McGahan and Silverman, 2006;
Kafouros and Buckley, 2008; Teece, 2018). In addition to the technology spillovers across
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the technological space (Jaffe, 1986), the closenesses of the product market and geographic
location also play important roles in technology spillovers (Bloom et al., 2013; Lychagin
et al., 2016). More recent studies differentiate the spillover effects of clean technologies
and estimate the economic benefits of clean technology spillovers (Dechezleprêtre et al.,
2013; Aghion et al., 2016; Dechezleprêtre et al., 2017; Barbieri et al., 2020a), but the
spillover linkages between entities heavily rely on patenting activities in most research.
Our study extends the existing approach of measuring clean technology spillovers by using
the disaggregated green subsector information to capture the spillover linkages based on
the similarity of green commercial activities between firms. By incorporating spillovers
across technological, product market, and geographical spaces, we document new evidence
of clean technology spillovers to firms’ green commercial activities. Following a recent
paper on the economic values of clean technologies by Martin and Verhoeven (2022), we
also attempt to interpret the social economic benefits of clean innovation based on our
estimated clean technology spillovers.

Finally, this paper contributes to the literature on capturing firms’ engagement in green
commercial activities. Due to the limited disclosure of corporate information, previous
studies usually rely on crude and indirect indicators, containing the inclusion in a green
stock index (Oberndorfer et al., 2013), the adoption of voluntary green management sys-
tems (Jacobs et al., 2010; Eccles et al., 2014), or emission data (Fujii et al., 2013). However,
these proxies do not well reflect how much a firm engages in green commercial activities
and gains revenues from its green goods and services. The potential measurement errors
included in these measures may lead to biased results of estimation. Recent research by
Kruse et al. (2020) using the FTSE Russell green revenues data inspires us to capture firms’
green revenues based on firms’ disclosed information on commercial activities. Built upon
their remedy of using the FTSE Russell dataset, our paper constructs an estimated meas-
ure of green revenues to more precisely capture firms’ revenues from their green commercial
activities.

The remainder of this paper is organised as follows. Section 3.2 describes the data used
in our study. Section 3.3 presents the construction of key variables and our empirical
strategies. Section 3.4 shows empirical results including the relationship between firms’
green revenues and clean innovation, clean technology spillovers across different spaces,
the role of clean technology maturity, heterogeneity across green sectors and firms’ char-
acteristics, and robustness checks. Section 3.5 concludes.
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3.2 Data

3.2.1 Green Revenue

One key empirical challenge when estimating the relationship between clean technologies
and firms’ economic outcomes is the difficulty in capturing green commercial activities
to which clean technologies are targeted. Our new data from FTSE Russell allows us to
tackle this problem. The FTSE Russell Green Revenues Data Model (FTSE GR) is a global
firm-level dataset, designed to measure firms’ revenues from green goods and services. The
dataset includes approximately 14,000 global publicly listed companies across 48 countries
between 2009 and 2016, which covers around 98.5% of total global market capitalisation.

To construct firms’ green revenues, a Green Revenue Classification System (GRCS) is
developed by the FTSE Russell Industries Advisory Committee and breaks down green
commercial activities into 10 green sectors, 64 green subsectors, and 133 green microsect-
ors.2 Figure 3.1 displays the taxonomy of 10 broad green sectors and 64 green subsectors
at a more granular level. Following the defined taxonomy of green sectors, a team of
analysts in the FTSE Russell search through corporate disclosures (e.g., annual reports)
and map revenues from company-reported business segments and subsegments to the rel-
evant green sectors under GRCS.3 Finally, subsector-level green revenues are aggregated
to obtain firm-level green revenue. Around 3,400 companies are identified as involved in
green business activities during the sample period and having non-null green revenue val-
ues (named "green firms" henceforth).4 To avoid confusion of terms, in this paper, "sector"
denotes green sectors categorised by the FTSE GR data, "segment" denotes firms’ own
classification of their disclosed business, and "industry" denotes the standard industrial
classification (SIC) that reflects a firm’ overall business activities.5

2FTSE Russell Green Industries Advisory Committee consists of senior and leading experts from the global
investment community (including asset managers and technical experts in environmental industries) to
ensure the classification system aligns with the EU’s environmental objectives and addresses market needs.

3The green microsectors, though seem more precise, are much more difficult to be mapped to firms’ green
business activities due to the limitation of disclosed information. Hence, most green business activities
and their revenues are not mapped to green microsectors but only to green subsectors. Due to the lack of
data at the green microsector level, our paper constructs green revenue indicators based on values at the
green subsector level.

4The geographic distribution of firms covered by the FTSE Russell data is shown in Figure 3.A.1.
5In the FTSE GR data, the term "sector" is exclusively used for describing the 10 green sectors, 64 green
subsectors, and 133 green microsectors in the Green Revenue Classification System (GRCS). Meanwhile,
"segment" is exclusively used for firms’ disclosed business segments and subsegments. Since firms across
regions are subject to different disclosure requirements, the classification of business segments and subseg-
ments is not consistent in the data (e.g., one firm may have "Vehicle" at the segment level but another firm
may record "Vehicle" at its subsegment level, depending on specific business and disclosure requirements
to which they are subject). Hence, segments and subsegments are not comparable across firms but only
reflect relative business layers within each firm. The standard industrial classification (SIC) is also used
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Figure 3.1: FTSE Russell Green Revenue Classification System
Notes: The FTSE Russell Green Revenues Data Model develops a new green taxonomy - Green Revenue
Classification System (GRCS), containing 10 green sectors and 64 subsectors. It is worth noting that the
names of the sectors and subsectors listed above are created according to the green taxonomy and only
capture the green activities in these sectors and subsectors. For example, "Transport Equipment" under
the GRCS does not cover all business activities related to any transportation equipment but only the
activities related to green transportation. More details on the green taxonomy of FTSE Russell Green
Revenues at https://www.ftserussell.com/data/sustainability-and-esg-data/green-revenues-data-model.

One caveat of using the green revenue data from the FTSE GR is the ambiguity of the
green revenue values. Some firms’ business subsegments have been mapped to specific
green subsectors, but the exact revenue values from these business subsegments are not
fully disclosed. In the raw dataset, zero revenue values are assigned to the green business
without full disclosures, and accordingly the FTSE Russell reports the minimum value
of firm-level green revenues. As the distribution of the minimum green revenues is highly
skewed towards zero, simply using the minimum values may threaten the following analyses
due to measurement error.

in our empirical analyses. Therefore, we distinguish "sector", "segment", and "industry", and these three
terms are not interchangeable in this paper.
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Segment
Segment Revenue 

Share
Subsegment Subsegment Revenue Share

Vehicle 60%

Hybrid power vehicle 10%

Fuel emission control N.A.

Non-green vehicle 70%

Spare parts & accessories N.A.

Energy storage 10% Solar battery 100%

Building Heating, ventilation, 

and air conditioning (HVAC)
30%

Geothermal products 10%

Non-green building HVAC 90%

Minimum value of green 

revenue share

60%(vehicle) × 10%(hybrid power vehicle) + 10%(energy storage) × 100%(solar battery)

+ 30%(HVAC) × 10%(geothermal products) = 19%

Unreported revenue share 60%(vehicle) × [1 - 70%(non-green vehicle) - 10%(hybrid power vehicle)] = 12%

Imputed green revenue share 

of fuel emission control

With 20% industry(SIC) average green revenue share:

12% (unreported revenue share) × 20%(industry average green revenue share) = 2.4%

Total green revenue share 

after imputation
19% (minimum green revenue share) + 2.4% (imputed green revenue) = 21.4%

Figure 3.2: Example of Undisclosed Green Revenue Imputation
Notes: The business subsegments without full revenue disclosure are recorded as zero in the dataset, which
is labelled as "N.A." in this example. Subsegments in green shade indicate green business. Our imputation
process assumes that the unknown revenue has a similar green revenue share to the industry average level.

To tackle this issue, we follow the approach by Kruse et al. (2020) to impute the undis-
closed share of green revenues, accompanied by an example of the imputation process for a
clearer interpretation (shown in Figure 3.2). Firstly, we utilise the disclosed information of
business segments and subsegments to pin down minimum and unreported revenue share.
For the particular firm in the example, the three business segments "Vehicle", "Energy
Storage", and "Building HVAC" generate 60%, 10%, and 30% of the firm’s total reven-
ues, respectively. Four subsegments are identified as green business, but the revenue share
from "Fuel emission control" subsegment is not disclosed.6 A non-green business subseg-
ment "Spare parts & accessories" is not disclosed, too. The minimum green revenue share
is 19% [=60%×10%+10%×100%+30%×10%)] as zero revenue is assigned to "Fuel emis-
sion control" subsegment. The unreported revenue share is 12% [=60%×(1-70%-10%)],
including both unreported revenues from the both green and non-green business. The 19%
green revenue share is obviously an underestimation. In order to develop a more precise
estimation of green revenues, we need to impute the revenue share of the undisclosed "Fuel
emission control" subsegment. Secondly, we employ the yearly average of green revenue
share in the industry (2-digit US SIC primary code) where the firm operates to impute
the green revenue share of undisclosed business subsegments. In this particular example,

6Revenue values at the business segment level are fully-reported in all firms while some subsegments do
not disclose their values.
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if we observe green business accounts for 20% of firms’ total revenues on average in the
industry, the imputed revenue share from the undisclosed green business subsegment "Fuel
emission control" is 2.4% [=12%×20%]. Accordingly, the final estimated firm-level green
revenue share [21.4%] is obtained by adding the imputed green revenue share [2.4%] to the
minimum green revenue share [19%]. The imputation builds upon the assumption that the
business with unreported revenue is likely to have a similar share of green business to the
industry average level. Although this assumption does not perfectly reflect the real share
of green business among the unreported revenues, it offers a proximate share closer to the
real green revenue share than simply assigned zero value.

Figure 3.3: Distribution of Minimum and Estimated Green Revenue Share
Notes: The left panel shows the distribution of the original minimum green revenue share provided by the
FTSE Russell Green Revenue dataset, where nearly 80% observations with green revenue level between 0
and 0.022 (the first bar in the figure) and 70% observations do not disclose any specific green revenue values
(recorded as zero in the dataset). The right panel shows the distribution of estimated green revenue after
the imputation process, where around 30% observations have green revenue between 0 and 0.022 and less
than 10% observations have zero green revenues.

Figure 3.3 compares the distribution of the original minimum green revenue share provided
by the FTSE GR and the estimated green revenue share by our imputation strategy. The
observations with nearly-zero green revenues drop from more than 70% to around 30% of
the sample after the imputation, which relieves the concern of highly skewed distribution
of green revenues and measurement errors.

Figure 3.4 shows an overview of the trend and composition of green revenue among global
publicly listed firms. The top half of the figure is the average green revenue value from 2009
to 2016, decomposed by 10 FTSE GR green sectors.7 The average green revenue has been
a growing overall during the sample period, while increased more from 2009 to 2013 and

7Figure 3.4 excludes firms that are not identified as engaged in green business as they do not have any
green revenues.
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Figure 3.4: Trend and Composition of Green Revenue and Green Revenue Share
Notes: The two graphs show the average green revenue value and green revenue share of global publicly
listed firms in our sample from 2009 to 2016. The graphs exclude firms that are not identified as engaged
in green business as they do not have any green revenues.

held steady thereafter. The bottom half displays the average green revenue share in each
firm. Although the absolute value of green revenue increases, the share of green revenue
remains stable over the years. The trends imply that the development of green business is
fulfilled by expanding green business but not fundamentally altering the structure between
green and non-green business. Among the 10 main green sectors, energy-related business
(energy generation, energy equipment, and energy efficiency) take the lion’s share, with
around 50% of green revenues.

3.2.2 Clean Innovation

Our variables of clean innovation are constructed by patents drawn from the EPO World-
wide Patent Statistical Database (PATSTAT). The PATSTAT is the largest global patent
database, covering all of the world’s major patent offices such as the United State Pat-
ents and Trademark Office (USPTO), European Patent Office (EPO), Japan Patent Office
(JPO), and China National Intellectual Property Administration (CNIPA). Detailed bib-
liographic information of each patent is archived in the database, including applicants,
inventors, date of application and publication, granted by which patent office, technology
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classes, citations, and patent families.8 We identify patents pertaining to clean techno-
logies by using the Y02 category in the Cooperative Patent Classification (CPC) system,
which provides a tagging scheme that contains patents with potential contributions to cli-
mate change adaptation and mitigation (Veefkind et al., 2012; Haščič and Migotto, 2015;
Angelucci et al., 2018). To ensure the relevance between technologies in the Y02 category
and green business in the FTSE GR data, we manually link each Y02 category to related
FTSE GR green subsectors for a more precise check of corresponding green revenues from
clean technologies. In our analyses, we focus on successfully granted patents but use their
patent application filing dates because the patent granting justifies the innovativeness of a
patent and it is reasonable to expect a firm can incorporate the attached technology into
its business after the application filing dates. Each patent is mapped to companies in the
FTSE GR dataset based on the Orbis Intellectual Property database, which provides the
linkage of companies to the patents which they possess at a global level.

3.3 Empirical Methodology

3.3.1 Variable Construction

Our main outcome variable is firms’ green revenue. We estimate firms’ green revenue share
based on the minimum green revenue share reported by the FTSE GR and the imputed
unreported green revenue share following the imputation process in Section 3.2.1. Firms’
green revenue is calculated by firms’ total revenue and the estimated green revenue share
after the imputation.

Our baseline measure of clean innovation is the cumulative stocks of clean patent applic-
ations. Specifically, we retrieve patent documents starting from 1970 and calculate pat-
ent stocks using a perpetual inventory method with a 15% depreciation rate (Hall et al.,
2005). A firm’s clean patent stock CleanTech in year t is CleanTecht = CleanPatt +(1−
δ)CleanTecht−1, where CleanPatt is the new clean patent applications filed by this firm
in yeat t, and δ denotes depreciation rate. In addition to using the count of clean patent
applications as the quantity measure, we also construct clean patent stocks using patent
citations, international patent families and triadic patent families to capture the quality
of clean innovation. Specifically, a firm’s clean patent stock based on patent citations is
constructed by accumulating the number of forward citations received by the firm’s clean
patents. International patent families are defined as patent families that cover a set of ap-

8Technology classes of patents in the PATSTAT are categorised by International Patent Classification (IPC)
and Cooperative Patent Classification system (CPC).
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plications filed in more than one country. A firm’s clean patent stock based on international
patent families is calculated by accumulating the stocks of the firm’s clean international
patent families. Similarly, triadic patent families are defined as a set of patent applications
within one patent family submitted to the USPTO, EPO, and JPO three patent offices. A
firm’s clean patent stock based on triadic patent families is computed based on accumu-
lating stocks of the firm’s clean triadic patent families.9 The 15% depreciation rate is also
taken into account during the calculations of the quality measures based on patent stocks.
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Figure 3.5: Scatter Plot of Green Revenue and Clean Innovation
Notes: This scatter plot shows cross-sectional observations in 2016 and their fitted values. The Y-axis
represents firms’ green revenue values. The X-axis stands for firms’ clean patent stocks.

To have a glimpse of the relation between green revenues and clean innovation, we draw
a scatter graph based on cross-section data in 2016, as shown in Figure 3.5. It is not
surprising that firms’ green revenues generally increase with their own clean innovation,
while firms with higher clean innovation do not always obtain higher green revenues.10

This graph further justifies the existence of clean technology spillovers.

For a firm receiving clean technology spillovers from others, the spillovers are determined
by: (1) how much clean technologies are available, which can be measured by the clean
technology pools of other firms; (2) how close the receiver firm is to other firms with clean

9A firm’s clean international patent families represent the number of international patent families that
include clean patents owned by the firm, while a firm’s clean triadic patent families represent the number
of triadic patent families that include clean patents owned by the firm.

10Some firms with little clean innovation grab a large share of green revenues (dots in the upper left), while
some others leading in clean innovation do not retain a decent share of green revenues (dots in the lower
right).
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technology pools, which can be captured by some "proximity" measures between firms.
Specifically, clean technology pools of other firms accessed by a receiver firm (i.e., focal
firm) i at year t are defined as:

CleanSpillit =
∑
j ̸=i

wijt · CleanTechjt (3.1)

where CleanTechjt is the cumulative stock of clean patents that other firms j possess up to
year t. wijt is a weight reflecting the "proximity" between firms i and j.11 The "proximity"
indicators capture the possible spillover linkage between firms. In this paper, we investigate
the "proximity" measures in the technological, product market, and geographical spaces.
The clean technology pools of other firms weighted by the "proximity" in different spaces
capture clean technology spillovers over different channels.

Proximity in Technological Space

We construct our measure of "proximity" in technological space, i.e., technological proxim-
ity, built upon the approach first used by Jaffe (1986). More specifically, for a focal firm i

and one of its peers j, the technological proximity between them is:

wT echSpace
ijt = CLijt · TechProxJaffe

ijt = CLijt ·
TitT

′
jt√

TitT ′
it

√
TjtT ′

jt

(3.2)

where Tit is firm i’s patent portfolio vector up to year t, defined as Tit = (Ti1,t, Ti2,t, ..., TiK,t),
in which Tik,t is the share of patents of firm i in technology class k up to year t.12 The
proximity index TechProxJaffe

ijt ranges between 0 and 1, showing the similarity of a pair
of firms’ patent distributions across technology classes, and is symmetric to firm ordering.
One distinction compared to Jaffe’s conventional index is the additional term represent-
ing historical citation linkage between firm i and j: CLijt is a dummy that indicates if
firm i has cited patents possessed by firm j up to year t.13 It is stronger to justify the
likelihood of clean technological spillover from firm j to firm i if the historical citation
linkage exists.14 Bloom et al. (2013) (BSV) develops an alternative Mahalanobis-distance
index of technological proximity that takes into account the relatedness between different
11This approach is built upon the assumption that the technology spillover from firm j to firm i is propor-

tional to the "proximity" between this pair of firms.
12Technology classes in our variable depend on International Patent Classification (IPC) 4-digit code, 647

technology classes in total in our sample.
13Similar to the technological proximity index, we take into account the citation linkage happening prior

to the observation year t.
14For example, for a pair of firms that have not had any linkage with respect to technologies, even if having

the same distribution of technology classes, it would be difficult to argue that one firm learns and benefits
from the other firm’s technologies.
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technology classes. This alternative measure does not dramatically affect the magnitude
of the technology spillovers across the technological space. We also use the technological
proximity built upon the BSV’s approach in our robustness checks.

Proximity in Product Market Space

In many previous studies, technology spillovers across the product market space is simply
divided into intra-industry and inter-industry spillovers, i.e., spillovers from the same or
different industries (Bernstein and Nadiri, 1989; McGahan and Silverman, 2006; Kafouros
and Buckley, 2008; Liu, 2008). However, it is closer to business practices that firms,
especially large and global publicly listed ones in our sample, provide goods and services
in multiple industries. The conventional dichotomous indicators of technology spillovers
cannot well reflect firms’ proximity in the product market space when multiple products
are taken into account. Therefore, we are inspired by Bloom et al. (2013)’s idea and
extend the "proximity" measure used in the technological space to the product market
space. Since our interest lies in revenues from green goods and services, a proximity
indicator specifically capturing green products is more aligned with our focus. Based on
detailed revenue data broken down into the green subsector level by the FTSE GR dataset,
we advance the literature by constructing the proximity of green product markets across
global firms to measure the "proximity" in the product market space. More specifically, the
product market proximity between a focal firm i and one of its paired firms j is computed
by:

wP rodMktSpace
ijt = ProdMktProxijt =

SitS
′
jt√

SitS′
it

√
SjtS′

jt

(3.3)

Analogous to the vector Tit in Eq (3.2), Sit = (Si1,t, Si2,t, ..., SiG,t) where Sig,t is the share of
revenues of firm i in green subsector g up to year t.15 Sit indicates the distribution of firm
i’s business across green product markets. A higher ProdMktProxijt suggests a stronger
overlap of green products between a pair of firms, which may generate another spillover
that has not been well captured by the channel of technological proximity. In addition,
unlike technological proximity or patent citation linkage, this indicator of the "proximity"
between firms is not confined to firms with patenting activities but all firms with green
commercial activities. Technology spillovers like the Evogene and Monsanto case may not
be well captured by the spillover indicators based on the technological proximity or patent
citation as that spillover does not necessarily lead to new innovation in the receiver. In

15G = 64 as firms’ business is categorised into 64 green subsectors in the FTSE GR dataset.
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contrast, the spillover indicator based on the overlap of green products between firms can
better cover the technology spillovers that lead to technology commercialisation.

Proximity in Geographical Space

Previous studies often focus on the location of firms’ headquarters and measure the geo-
graphical proximity by a binary variable indicating if a pair of firms located in the same
region or a Euclidean distance between the location of headquarters (Keller, 2002; Orlando,
2004; Aldieri and Cincera, 2009). However, where firms’ innovation activities emerge is not
always consistent with where headquarters locate. In reality, innovation activities are more
likely to be scattered in research labs located in different regions rather than clustered in
headquarters, especially for large and global firms in our sample. A proxy variable re-
flecting the geographical distribution of innovation activities is helpful to better estimate
the spillover effect due to geographical closeness between firms (Lychagin et al., 2016).
Although we do not have detailed information on the geographic locations of research labs
owned by each firm, we instead use the locations of firms’ priority patents to capture where
innovation activities emerge.16 More specifically, the geographic proximity between a pair
of firms i and j is calculated as:

wGeogSpace
ijt = GeogProxijt =

LitL
′
jt√

LitL′
it

√
LjtL′

jt

(3.4)

where the vector Lit = (Li1,t, Li2,t, ..., LiC,t), in which Lic,t is the share of patents of firm i

in country c up to year t.17

Clean Technology Maturity

The recent decline in new clean innovation raises concern if the green economy is able
to keep a sustainable momentum in expansion and development (Probst et al., 2021).
From the perspective of the technology life cycle, however, the observed decrease may
suggest the increasing maturity of clean technologies and a higher degree of knowledge
codification (Barbieri et al., 2020b). As technologies move towards maturity, though it is
more challenging to achieve breakthroughs, they enhance the reliability, applicability and
cost-effectiveness of technology adoption in business (Capaldo et al., 2017). The lower risk
and higher value of commercial applications encourage firms to put more focus on business

16We use priority patent, i.e., the first patent in every patent family, to define the location of innovation
activity. The further patent applications following the first patent in a patent family do not create new
technologies but only aim at expanding the property rights of patents to more regions.

17C = 77, which means there are 77 countries observed in patent applications of our sample firms.
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involving clean technologies. Building on these premises, we study how clean technology
maturity plays a role in the revenues from corresponding green goods and services.

There is no widely-recognised consensus on how to measure technology maturity. One
approach is to use the average age of technology classes that a firm engages in. More
specifically, a firm-level clean technology maturity can be constructed as:

CleanTechMatit =
G∑

g=1
GR_Ratioigt · ( 1

P

P∑
p=1

TechAgeipt) (3.5)

A straightforward measure of TechAgeipt is the age of patent p owned by firm i up to year
t,18 and P represents the number of firm i’s clean patents categorised into the technology
classes which are linked to green subsector g.19 GR_Ratioigt denotes the ratio of green
revenue from green subsector g to total revenue in firm i at year t. This index represents
the average age of clean patents weighted by the ratio of green revenue in each green
subsector.

The information enclosed in backward citations offers another idea to quantify technology
maturity (Sørensen and Stuart, 2000; Lanjouw and Schankerman, 2004; Alnuaimi and
George, 2016; Capaldo et al., 2017). Prior arts that a patent cites describe the composition
of knowledge that this focal patent draws on (Popp, 2005). Patents in technological fields
that are more mature are typically built upon prior arts with longer years elapsed. Hence,
another measure of TechAgeipt is the age of patent p cited by firm i until year t, and now
P represents the number of patents cited by firm i’s clean patents. This maturity measure
indicates the average age of prior arts that are cited by clean technologies, weighted by the
ratio of green revenue in each green subsector.

Summary Statistics

After combining the data sources of green revenues from FTSE Russell and patents from
PATSTAT, we obtain a panel sample of approximately 14,000 firms spanning the periods
from 2009 to 2016. Among these firms, around 3,400 firms are identified as green firms
that involve in green business activities and have non-null green revenue values during
2009-2016. Table 3.1 presents the basic descriptive statistics of all sample firms and green
firms. The firms in our sample are relatively large and the green firms are much larger than

18Some old patents, which were invented before the creation of the clean technology class Y02, have been
assigned to the corresponding Y02 categories in PATSTAT. Consequently, those old patents are also taken
into account during the calculation of the technology age.

19Patents in each clean technology class, defined by CPC codes, are manually linked to green subsectors
under the FTSE Green Revenue Classification System (GRCS).
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other non-green firms. In terms of innovation activities, green firms emerge to be much
more active among the full sample of firms (both in total patenting and clean patenting
activities). Additionally, we compare the mean and important quartiles of key variables
between green and non-green firms, as shown in Figure 3.6. It further highlights that green
firms play a much bigger role in both aspects of markets and technologies compared to
other non-green firms.

Since green revenue information is available only for green firms, our analyses mainly focus
on the 3,400 green firms. However, all other non-green firms are still taken into account
when constructing the measures of spillovers across firms and other industry- or country-
level indicators.

Table 3.1: Summary Statistics

Variables All Sample Firms Green Firms
N Mean SD Min Max N Mean SD Min Max

Panel A: Firm Revenue and Innovation Indicators
Total Revenue ($million) 99868 3439.270 13877.859 0.001 485873.000 23641 6159.857 20575.153 0.001 484489.000
Green Revenue ($million) 99868 101.657 780.896 0.000 69347.938 23641 429.435 1560.552 0.000 69347.938
Green Revenue Share 99868 0.034 0.135 0.000 1.000 23641 0.143 0.248 0.000 1.000
Total Patent Stock 99868 191.006 1817.162 0.000 84109.594 23641 595.852 3484.876 0.000 84109.594
Total Patent Citation Stock 99868 1347.914 16078.088 0.000 1053903.600 23641 4069.185 30762.437 0.000 1053903.600
Total Intl. Patent Family Stock 99868 126.306 1330.372 0.000 69045.703 23641 396.270 2533.814 0.000 69045.703
Total Triadic Patent Stock 99868 51.617 574.084 0.000 32172.787 23641 153.562 1009.540 0.000 26483.842
Clean Patent Stock 99868 16.996 229.034 0.000 16797.014 23641 62.342 458.053 0.000 16797.014
Clean Patent Citation Stock 99868 119.706 1666.066 0.000 121040.990 23641 419.314 3247.658 0.000 121040.990
Clean Intl. Patent Family Stock 99868 12.521 177.253 0.000 12778.706 23641 45.694 352.113 0.000 12778.706
Clean Triadic Patent Stock 99868 6.051 92.996 0.000 6640.184 23641 21.514 180.840 0.000 6640.184
Panel B: Spillover and Maturity Indicators
Spill_TechSpace(Jaffe) 99868 2790.327 7669.344 0.000 79506.078 23641 6696.314 11923.744 0.000 79506.078
Spill_TechSpace(BSV) 99868 2165.920 5685.711 0.000 58772.676 23641 5065.481 8673.051 0.000 58772.676
Spill_ProdSpace 99868 3748.545 10460.613 0.000 88721.188 23641 15783.419 16430.997 0.000 88721.188
Spill_GeogSpace 99868 18415.357 32606.241 0.000 144539.310 23641 31885.647 40343.176 0.000 144539.310
CleanTechMat(PatAge) - - - - - 23641 5.229 3.153 0.000 22.393
CleanTechMat(BkwAge) - - - - - 23641 11.734 5.641 0.000 37.522

Notes: The left half of the table reports summary statistics of all sample firms, while the right half reports values of green firms. Panel A shows
the indicators of revenue and innovation. Panel B shows the measures of clean technology spillovers and clean technology maturity. Jaffe denotes
that the technology spillover is built upon the technological proximity based on Jaffe (1986)’s method, and BSV denotes the spillover is built
upon the technological proximity based on Bloom et al. (2013)’s method. PatAge indicates the clean technology maturity is calculated based on
average patent age, and BkwAge indicates the clean technology maturity is calculated based on average backward prior art patent age. Since
the indicators of clean technology maturity are weighted by the ratio of firms’ green revenue from the green subsector to firms’ total revenue, the
indicators are only applicable to "Green Firms".

3.3.2 Empirical Strategy

We start by examining the simple relationship between firms’ green revenue and their own
clean technology stocks. For firm i in industry j from country c at year t, the correlation
can be estimated by the following model:

Yitjc = β0 + β1CleanTechi,t−1 + Xi,t−1 + γi + δjt + λct + εijct (3.6)
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Figure 3.6: Comparison between Green and Non-Greene Firms
Notes: This figure compares the values of mean, lower quartile, median, and upper quartile between green
firms (i.e., firms identified as involved in the green business) and other non-green firms, with respect to
total revenues, total assets, total patent stock, and clean patent stock.

where Yijct is the outcome variables of our interests, including green revenue value and
green revenue share. CleanTechi,t−1 denotes the cumulative stock of clean patents. We
lag the key independent variable by one year as clean technologies may take time to be com-
mercialised and produce revenues. Xi,t−1 is a series of firm-level control variables including
market capitalisation, the number of employees, the assets-to-sales ratio, operating profit
margin (operating income divided by revenue), and current ratio (current assets divided by
current liabilities).20 We use firms’ market capitalisation and the number of employees as
proxies for firm size. The assets-to-sales ratio captures capital intensity for firms’ business.
The operating profit margin measures firms’ profitability, and the current ratio reflects the
liquidity and financial resources. All variables except green revenue share are transformed
into logarithms. We also control firm-specific fixed effects γi, industry-year fixed effects
δjt, and country-year fixed effects λct to absorb firm-specific and time-variant industry and
country unobservable factors. εijct is an idiosyncratic error term. The standard errors are
clustered at the industry (SIC 2-digit) level.

However, firms not only benefit from their own clean technologies but also from the clean
technologies of other firms. The above regression Eq (3.6) cannot capture the spillover

20The information of control variables derives from the FTSE Russell dataset.
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effects of other firms’ clean technologies. Hence, the clean technology pools of other firms
should be also added to the regression model:

Yit = β0 + β1CleanTechi,t−1 + β2CleanSpilli,t−1 + Xi,t−1 + γi + δjt + λct + εijct (3.7)

where CleanSpilli,t−1 represents clean technology pools of other firms close to firm i. As
firm i’s closeness to other firms can be measured in the technological, product market, and
geographical spaces, CleanSpilli,t−1 includes three separate indicators to capture clean
technology spillovers to firm i from other firms via different channels.

3.4 Empirical Results

3.4.1 Baseline Results

Table 3.2 summarises the relationship between firms’ own technologies and their revenues.
Technology is measured from the perspectives of both quantity and quality: patent count in
Panel A, and patent citation in Panel B. Columns (1) and (2) show the role of technologies
(measured by total patent stock AllTech) in firms’ total revenues. We observe that firms
with more technologies obtain higher revenues in general, and the results are consistent for
the sample of all firms and green firms (firms identified as involved in the green business)
in the FTSE Russell dataset. Due to the availability of green revenue information, we
further look into the role played by clean technologies only for green firms in the following
analyses. We find that, in Column (3), firms’ own clean technologies can help them gain
more revenue from green goods and services. This increase in revenues from green business
does not alter the structure between green and non-green businesses, which is shown by
the insignificant effect on green revenue share in Column (4). The similar results in Panel
A and B indicate that both the quantity and quality of clean technologies contribute to
firms’ green revenue.

Since firms’ green revenues may also benefit from other firms’ clean technologies, we next
estimate the clean technology spillovers by Eq (3.7). Table 3.3 contains the results taking
into account clean technology spillovers across different spaces. The measures of clean
technologies in this table are based on clean patent counts. In Column (1), the specifica-
tion includes both firms’ own clean technologies and clean technology pools of other firms
weighted by technological proximity. The coefficients show that firms’ green revenues are
not only positively associated with their own clean technologies but also with clean tech-
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Table 3.2: Correlation between Innovation on Revenue

Dependent Variable: Total Revenue Green
Revenue

Green Revenue
Share

(1) (2) (3) (4)
Panel A: Innovation Measured by Patent Count
AllTecht−1 0.077*** 0.058***

(0.012) (0.020)
CleanTecht−1 0.078*** -0.003

(0.025) (0.003)
Panel B: Innovation Measured by Patent Citation
AllTecht−1 0.057*** 0.041**

(0.010) (0.019)
CleanTecht−1 0.066*** 0.000

(0.019) (0.002)
Observations 85,300 19,996 19,996 19,996
Covered Firms All Green Green Green
Firm Attributes Y Y Y Y
Firm FE Y Y Y Y
Industry-Year FE Y Y Y Y
Country-Year FE Y Y Y Y

Notes: The dependent variables are total revenue in Columns (1) and (2), green revenue in Columns
(3), and green revenue share in Columns (4). Innovation indicators in Panel A are constructed
based on patent count, and in Panel B are based on patent citation. AllTech and CleanTech de-
note total and clean patent stock, measured by the cumulative stock of total and clean patents with
a 15% yearly depreciation rate, respectively. All variables except green revenue share are meas-
ured in logarithms. Column (1) cover all sample firms, and Columns (2)-(4) only cover green firms
(i.e., firms identified by FTSE Russell as involved in the green business). All models incorporate
firm control variables, firm fixed effects, industry-by-year fixed effects (SIC 2-digit) and country-
by-year fixed effects. Standard errors in the parentheses are clustered at the industry (SIC 2-digit)
level. ***, **, *, indicate significance at 1% level, 5% level, and 10% level, respectively.

nologies of other neighbouring firms close in the technological space. This result suggests
the existence of spillovers across the technological space.

The product market space is also accountable for clean technology spillovers, as shown in
Column (2). The estimated coefficient on Spill_ProdSpacet−1 is positive and statistically
significant at the 1% level. This result indicates that firms also benefit from the clean
technology spillovers from other neighbouring firms close in the product market space. It
is worth noting that some previous studies on generic technology spillovers find a firm’s
benefit is negatively affected by technologies of other firms close in product markets, which
implies a market-stealing effect (Bloom et al., 2013). Our different result suggests that,
in the product market space, a positive technology spillover effect dominates a possible
negative market-stealing effect in clean technologies.

We also examine whether geographical closeness also contributes to the technology spillovers.
As the result displayed in Column (3), the estimated coefficient on Spill_GeogSpacet−1

is statistically insignificant and suggests that a firm’s green revenues do not benefit from
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Table 3.3: Estimation of Clean Technology Spillovers

Dependent Variable: Green Revenue
Measure: Patent Count (1) (2) (3) (4)
CleanTecht−1 0.058** 0.085*** 0.077*** 0.067***

(0.027) (0.022) (0.024) (0.024)
Spill_TechSpacet−1 0.033*** 0.035**

(0.012) (0.015)
Spill_ProdSpacet−1 0.093*** 0.093***

(0.010) (0.010)
Spill_GeogSpacet−1 0.005 -0.011

(0.009) (0.013)
Observations 19,996 19,996 19,996 19,996
Covered Firms Green Green Green Green
Firm Attributes Y Y Y Y
Firm FE Y Y Y Y
Industry-Year FE Y Y Y Y
Country-Year FE Y Y Y Y

Notes: The dependent variable is green revenue in all columns. Innovation indicators are
constructed based on patent count. CleanTech represents clean patent stock, measured by
the cumulative stock of clean patents with a 15% yearly depreciation rate. Spill_TechSpace,
Spill_ProdSpace, and Spill_GeogSpace denote clean technology pools of other firms
weighted by technological proximity, product market proximity, and geographical proxim-
ity, respectively. All variables are measured in logarithms. All results focus on green firms.
All models incorporate firm control variables, firm fixed effects, industry-by-year fixed ef-
fects (SIC 2-digit) and country-by-year fixed effects. Standard errors in the parentheses are
clustered at the industry (SIC 2-digit) level. ***, **, *, indicate significance at 1% level,
5% level, and 10% level, respectively.

clean technologies of other firms close in the geographical space. The muted effect of tech-
nology spillovers in the geographical space does not surprise us because global public firms
in our sample have been strongly capable to access technology resources across different
regions, and physical distance is a relatively unimportant obstacle for them.

Column (4) includes technology spillovers across all three spaces. Conditional on all clean
technology spillovers, it further supports the evidence that a firm’s green revenues are
increased by clean technologies of other firms close in the technological space and product
market space. The results when clean technologies are measured based on patent citations
are presented in Table 3.B.1, which shows similar results as Table 3.3. In sum, the positive
and statistically significant effects of firms’ own clean innovation and others’ technology
spillovers imply the considerable private and social economic benefits of clean innovation.

3.4.2 Clean Technology Maturity

Clean technologies moving towards maturity may facilitate the commercialisation of these
technologies and therefore generate more corresponding revenues. To examine the role of
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clean technology maturity, we add the maturity indicators constructed by Eq (3.5) to our
regression.

Table 3.4 contains the results for clean technology maturity. Columns (1) and (3) have the
technology maturity indicator based on firms’ average patent age, and Columns (2) and
(4) have the maturity indicator based on firms’ average prior art (backward cited patent)
age. In Columns (1) and (2), the estimated coefficients on clean technology maturity sug-
gest that firms’ green revenues are positively associated with the maturity of firms’ clean
technologies. Moreover, the results on the interaction terms of clean technology matur-
ity with firms’ own clean technologies and technology spillovers suggest that firms benefit
more from technology maturity if these firms have more own clean technologies. Columns
(3) and (4) measuring clean technologies by patent citation numbers also display a pos-
itive relationship between technology maturity and green revenue. The interaction terms
between firms’ own clean technologies and their technology maturity further support that
if firms themselves more specialise in clean innovation, they benefit more from technology
maturity. The consistent results in technology maturity indicate that observed growth in
revenues from green goods and services is partly explained by the increasing maturity of
clean technologies. Such growth in green revenues by firms’ own technology maturity can
be enhanced if firms own more clean technologies. The findings imply that the economic
benefits of clean technologies also depend on the commercialisation of mature technologies.

3.4.3 Heterogeneity of Green Sector

Due to the variance in technical features and business models, certain green goods or ser-
vices may benefit from clean technologies stronger than others. Hence, we explore the
heterogeneity of the role played by clean technologies in different green sectors. To sep-
arate the effects across green sectors, we disaggregate the firm-year panel into a more
granular firm-subsector-year level. We focus on three main green business fields: alternat-
ive energy (energy generation & energy equipment sectors in FTSE GR), energy efficiency
(energy management and efficiency sector in FTSE GR), and sustainable transport (trans-
port equipment sector in FTSE GR). The results are presented in Table 3.5, where the
coefficients of technology quantity measures are shown in Panel A and quality measures in
Panel B. We observe that a firm’s green revenue is positively associated with its own clean
technologies in all three fields. However, clean technologies of other firms only contribute
to green revenues when firms are close in the product market space, and the spillovers via
the technology space do not appear to be positively significant. These findings suggest
that firms primarily benefit from others’ technologies when they have a substantial overlap
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Table 3.4: Clean Technology Maturity and Green Revenue

Dependent Variable: Green Revenue
Innovation Measured by: Patent Count Patent Citation
Technology Maturity Measured by: PatAge BkwAge PatAge BkwAge

(1) (2) (4) (5)
CleanTecht−1 -0.010 -0.029 0.011 -0.003

(0.030) (0.043) (0.013) (0.027)
Spill_TechSpacet−1 0.045** 0.045 0.037** 0.035

(0.020) (0.027) (0.015) (0.021)
Spill_ProdSpacet−1 0.052*** 0.050*** 0.044*** 0.041***

(0.007) (0.007) (0.006) (0.006)
CleanTechMatt−1 1.027*** 0.744*** 0.966*** 0.753***

(0.227) (0.225) (0.273) (0.274)
CleanTecht−1×CleanTechMatt−1 0.040** 0.045** 0.037*** 0.035***

(0.015) (0.018) (0.013) (0.013)
Spill_TechSpacet−1×CleanTechMatt−1 -0.012 -0.007 -0.011* -0.006

(0.008) (0.009) (0.006) (0.007)
Spill_ProdSpacet−1×CleanTechMatt−1 0.014 0.009 0.017 0.006

(0.021) (0.023) (0.022) (0.024)
Observations 19,996 19,996 19,996 19,996
Covered Firms Green Green Green Green
Firm FE Y Y Y Y
Industry-Year FE Y Y Y Y
Country-Year FE Y Y Y Y

Notes: The dependent variable is green revenue in all columns. Innovation indicators in Columns (1) and (2)
are based on patent count, and in Columns (3) and (4) are based on patent citation. CleanTech represents
clean patent stock, measured by the cumulative stock of clean patents with a 15% yearly depreciation rate.
Spill_TechSpace and Spill_ProdSpace denote clean technology pools of other firms weighted by technological
proximity and product market proximity, respectively. CleanTechMat is clean technology maturity, based on
average patent age (PatAge) and backward prior art patent age (BkwAge), respectively. All variables are meas-
ured in logarithms. All results focus on green firms. All models incorporate firm control variables, firm fixed
effects, industry-by-year fixed effects (SIC 2-digit) and country-by-year fixed effects. Standard errors in the par-
entheses are clustered at the industry (SIC 2-digit) level. ***, **, *, indicate significance at 1% level, 5% level,
and 10% level, respectively.

in green product markets within the broad fields of alternative energy, energy efficiency,
and sustainable transport.21

3.4.4 Heterogeneity of Firm Characteristic

How much firms’ green revenues can benefit from their own clean technologies and others’
clean technologies may vary with firms’ characteristics. Hence, we construct a series of sub-

21It is a caveat that the results of spillovers via the technology space in these three broad green business
fields differ from the main findings of this paper. One possible explanation for this discrepancy is that
the classification of green business fields in this heterogeneity analysis remains relatively broad and is
potentially difficult to capture the inherent heterogeneity in more granular green business fields. For
instance, the alternative energy field comprises approximately 10 distinct green subsectors in the data,
each with its own market structure and innovation mode that could introduce additional heterogeneity
that affects technology spillovers. Consequently, caution should be exercised in interpreting the current
results of the heterogeneity analysis.
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Table 3.5: Heterogeneity across Green Sectors

Dependent Variable: Green Revenue
Alternative Energy Energy Efficiency Sustainable Transport

(1) (2) (3)
Panel A: Innovation Measured by Patent Count
CleanTecht−1 0.214*** 0.139*** 0.526***

(0.026) (0.024) (0.096)
Spill_TechSpacet−1 -0.008 -0.047** -0.004

(0.005) (0.023) (0.006)
Spill_ProdSpacet−1 0.051*** 0.019*** 0.078***

(0.007) (0.004) (0.023)
Panel B: Innovation Measured by Patent Citation
CleanTecht−1 0.131*** 0.086*** 0.323***

(0.013) (0.013) (0.071)
Spill_TechSpacet−1 -0.001 -0.027 0.003

(0.003) (0.017) (0.005)
Spill_ProdSpacet−1 0.039*** 0.015*** 0.055***

(0.005) (0.004) (0.017)
Observations 426,027 182,583 81,148
Firm Attributes Y Y Y
Firm FE Y Y Y
Industry-Year FE Y Y Y
Country-Year FE Y Y Y

Notes: The sample is disaggregated to the firm-subsector-year level (64 green subsectors). The dependent
variable is green revenue in all columns. Innovation indicators in Panel A are based on patent count, and
in Panel B are based on patent citation. CleanTech represents clean patent stock, measured by the cumu-
lative stock of clean patents with a 15% yearly depreciation rate. Spill_TechSpace and Spill_ProdSpace
denote clean technology pools of other firms weighted by technological proximity and product market
proximity, respectively. Columns (1) to (3) show the results for alternative energy (energy generation and
energy equipment sectors in FTSE GR), energy efficiency (energy management and efficiency sector in
FTSE GR), and sustainable transport (transport equipment in FTSE GR), respectively. All variables are
measured in logarithms. All results focus on green firms. All models incorporate firm control variables,
firm fixed effects, industry-by-year fixed effects (SIC 2-digit) and country-by-year fixed effects. Standard
errors in the parentheses are clustered at the industry (SIC 2-digit) level. ***, **, *, indicate significance
at 1% level, 5% level, and 10% level, respectively.

samples to examine the role of firm size and technology capacity in the relationship between
green revenues and clean technologies. Table 3.6 presents the corresponding results.

We first divide firms into two groups based on their firm sizes: one group with market
capitalisation higher than the median, and the other group with market capitalisation
lower than the median. The corresponding results are shown in Columns (1) and (2).
Comparing the estimated coefficients in the two columns, we find that large firms’ green
revenues can benefit more from their own clean patents, and technology spillovers from
other firms close in the technological and product market spaces. In contrast, small firms
do not benefit as much as large firms from their own or others’ clean technologies.

We then separate firms by their technology capacities: one group with total patent stocks
higher than the median, and the other group with total patent stocks lower than the
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Table 3.6: Heterogeneity by Firms’ Characteristics

Dependent Variable: Green Revenue
Firm Size Tech Capacity

Low High Low High
Measure: Patent Count (1) (2) (3) (4)
CleanTecht−1 0.027 0.073* -0.094 0.056**

(0.028) (0.038) (0.205) (0.022)
Spill_TechSpacet−1 -0.006 0.032** 0.020 0.025

(0.014) (0.015) (0.038) (0.016)
Spill_ProdSpacet−1 0.079*** 0.112*** 0.083*** 0.105***

(0.012) (0.012) (0.019) (0.008)
Observations 7,857 8,844 7,821 8,896
Firm Attributes Y Y Y Y
Firm FE Y Y Y Y
Industry-Year FE Y Y Y Y
Country-Year FE Y Y Y Y

Notes: The dependent variable is green revenue in all columns. Innovation indicators are based on
patent count. CleanTech represents clean patent stock, measured by the cumulative stock of clean
patents with a 15% yearly depreciation rate. Spill_TechSpace and Spill_ProdSpace denote clean
technology pools of other firms weighted by technological proximity and product market proximity,
respectively. Columns (1) and (2) divide the sample into two groups based on if firms’ market capit-
alisation is higher or lower than the median. Columns (3) and (4) divide the sample into two groups
based on if firms’ total patent stock is higher or lower than the median. All variables are measured
in logarithms. All results focus on green firms. All models incorporate firm control variables, firm
fixed effects, industry-by-year fixed effects (SIC 2-digit) and country-by-year fixed effects. Stand-
ard errors in the parentheses are clustered at the industry (SIC 2-digit) level. ***, **, *, indicate
significance at 1% level, 5% level, and 10% level, respectively.

median. Columns (3) and (4) report the results. The coefficients in the two columns
show that firms with higher technology capacities can benefit more from their own clean
technologies, and the technology spillovers from other firms close in the product market
space. The results in Table 3.6 echo the opinion that firms’ complementary assets play an
important role in how much firms can benefit from innovation (Teece, 1986; Pisano, 2006)

3.4.5 Robustness Checks

First, Bloom et al. (2013) (BSV) develops an alternative measure of technological proximity
that takes into account the relatedness between different technology classes.22 To examine
whether our results are sensitive to different measures of technological proximity, we build
upon BSV’s method to construct the proximity in the technological space as:

wT echSpace
ijt = CLijt · TechProxBSV

ijt = CLijt ·
TitΩT ′

jt√
TitT ′

it

√
TjtT ′

jt

(3.8)

22One limitation of the technology spillover indicator based on the technological proximity by Jaffe (1986)
is that it assumes the spillover only occurs within the same technology class, and rules out the possibility
of spillover between different classes.
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The relatedness between each pair of technology classes is captured by the additional K×K

matrix Ω, where each element Ωuv = ηuη′
v (u, v = [1, K]), in which ηk = [Tk1, Tk2, ..., TkN ]

represents the share of patents of technology class k across total N firms.23 We re-estimate
our models by using the BSV’s technological proximity. The results for this robustness
check are kept in Table 3.B.2, which provides very similar estimated coefficients to using
our baseline Jaffe (1986)’s technological proximity.

Second, we employ alternative indicators of innovation to test the sensitivity of our results.
Following prior research (Dernis and Khan, 2004; Palangkaraya et al., 2011; Probst et al.,
2021), we use international patent families and triadic patent families to capture the value
of clean patents instead. In other words, all variables of clean technologies are constructed
by the stocks of international patent families and triadic patent families, respectively. The
results for the two innovation indicators are presented separately in Columns (1) to (3)
and (4) to (6) of Table 3.B.3. The magnitude and significance of the effects remain fairly
stable compared to our previous results.

Third, some existing literature reinforces the idea that the effect of market competition may
co-exist with technology spillovers (Qu et al., 2013; Banal-Estañol et al., 2022; Tseng, 2022).
Hence, we rerun our regression models by adding an industry-country level Herfindahl-
Hirschman Index to capture market concentration. The results for this robustness check
are kept in Columns (1) and (2) in Table 3.B.4. None of these results changes our main
conclusion.

Last, since clean innovation may take a longer time to produce green revenues, we estimate
the regression models with a two-year lag of innovation variables. The results are reported
in Columns (3) and (4) in Table 3.B.4. Although a further shrink of the sample size may
undermine the solidity of our results, the coefficients of our interests still remain similar to
our baseline results.

Overall, this series of robustness checks further supports our conclusion that firms’ green
revenues benefit from their own clean innovation and clean technology spillovers from other
firms close in the technological and product market spaces.

23The proximity index by Jaffe (1986) is a particular case of the technology relatedness matrix when Ω = I,
where different technology classes are orthogonal rather than related to each other. The intuition behind
the BSV’s technology class relatedness matrix is that technology spillovers may exist between classes if
firms specialise in these classes simultaneously.
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3.5 Conclusion

In this paper, we investigate the role that clean innovation plays with respect to firms’
revenues from green products. Measuring green revenues based on detailed information
on commercial activities of global publicly listed firms, we show that firms’ green revenues
are overall trending up during our sample period, but the increasing green revenues do not
alter the relative share between green and non-green business. Examining the relationship
between firms’ green revenues and clean innovation, we find that firms’ green revenues are
strongly and positively correlated with their own clean innovation. With further explor-
ing clean technology spillovers across different spaces, the results show that firms’ green
revenues are enhanced by clean technologies of other firms close in the technological and
product market spaces. The result of the spillovers across the product market space sug-
gests a dominant position of the positive externalities from technology spillovers compared
to the negative externalities from market-stealing effects. We also find evidence that firms
with more mature clean technologies are able to derive higher green revenues. In addition,
firms with larger sizes and higher technology capacities obtain more economic benefits
from clean innovation. Our results are robust to alternative measures of innovation and
spillovers and alternative settings of model specifications.

Our conclusion supports the implication that firms not only benefit from their own but
also from others’ clean innovation. The positive externality brought by clean technology
spillovers is important to enhance the development and diffusion of clean technologies. The
new evidence on the effects of firms’ own innovation and technology spillovers across firms
implies private benefits for innovators and social benefits beyond innovators from clean
innovation. Therefore, strong policy support to clean innovation is needed to spread the
economic benefits of clean technologies and achieve the green transition.

Green Revenues, Clean Innovation and Technology Spillover 95



3.A Additional Figures
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Figure 3.A.1: Geographic Distribution of Firms in FTSE Russell Dataset
Notes: The upper left panel presents the number of firms in each region. The upper right panel displays the
proportion of firms in each region relative to the total number of firms in the FTSE Russell dataset. The lower
left panel shows the number of firms identified as green firms in each region. The lower right panel exhibits
the proportion of firms identified as green firms in each region relative to the total number of firms in the FTSE
Russell dataset. It is worth noting that firms located in Cayman Islands and Bermuda are usually not for operating
business in these two regions but only for the sake of tax avoidance due to their zero corporate tax rate.
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3.B Additional Tables

Table 3.B.1: Estimation of Clean Technology Spillovers (measured by patent citation)

Dependent Variable: Green Revenue
Measure: Patent Citation (1) (2) (3) (4)
CleanTecht−1 0.054** 0.062*** 0.064*** 0.051***

(0.021) (0.016) (0.019) (0.018)
Spill_TechSpacet−1 0.025*** 0.026**

(0.009) (0.011)
Spill_ProdSpacet−1 0.077*** 0.077***

(0.008) (0.008)
Spill_GeogSpacet−1 0.006 -0.007

(0.008) (0.011)
Observations 19,996 19,996 19,996 19,996
Covered Firms Green Green Green Green
Firm Attributes Y Y Y Y
Firm FE Y Y Y Y
Industry-Year FE Y Y Y Y
Country-Year FE Y Y Y Y

Notes: The dependent variable is green revenue in all columns. Innovation indicators are construc-
ted based on patent citation. CleanTech represents clean patent stock, measured by the cumulative
stock of clean patents with a 15% yearly depreciation rate. Spill_TechSpace, Spill_ProdSpace,
and Spill_GeogSpace denote clean technology pools of other firms weighted by technological prox-
imity, product market proximity, and geographical proximity, respectively. All variables are meas-
ured in logarithms. All results focus on green firms. All models incorporate firm control vari-
ables, firm fixed effects, industry-by-year fixed effects (SIC 2-digit) and country-by-year fixed ef-
fects. Standard errors in the parentheses are clustered at the industry (SIC 2-digit) level. ***, **,
*, indicate significance at 1% level, 5% level, and 10% level, respectively.
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Table 3.B.2: Robustness Checks for Alternative Spillover Measures (BSV)

Dependent Variable: Green Revenue
Patent Count Patent Citation

(1) (2) (3) (4)
CleanTecht−1 0.058** 0.066*** 0.053** 0.051***

(0.027) (0.024) (0.021) (0.018)
Spill_TechSpace(BSV)t−1 0.035*** 0.037** 0.026*** 0.026**

(0.012) (0.016) (0.009) (0.011)
Spill_ProdSpacet−1 0.093*** 0.077***

(0.010) (0.008)
Observations 19,996 19,996 19,996 19,996
Firm Attributes Y Y Y Y
Firm FE Y Y Y Y
Industry-Year FE Y Y Y Y
Country-Year FE Y Y Y Y

Notes: The dependent variable is green revenue in all columns. Innovation indicators in Columns
(1) and (2) are based on patent count, and in Columns (3) and (4) are based on patent citation.
CleanTech represents clean patent stock, measured by the cumulative stock of clean patents with
a 15% yearly depreciation rate. Spill_TechSpace and Spill_ProdSpace denote clean technology
pools of other firms weighted by technological proximity (BSV method) and product market proxim-
ity, respectively. All variables are measured in logarithms. All results focus on green firms. All mod-
els incorporate firm control variables, firm fixed effects, industry-by-year fixed effects (SIC 2-digit)
and country-by-year fixed effects. Standard errors in the parentheses are clustered at the industry
(SIC 2-digit) level. ***, **, *, indicate significance at 1% level, 5% level, and 10% level, respectively.
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Table 3.B.3: Robustness Checks on Alternative Innovation Measures

Dependent Variable: Green Revenue
International Patent Family Triadic Patent Family

(1) (2) (3) (4) (5) (6)
CleanTecht−1 0.070*** 0.087*** 0.076*** 0.071** 0.086*** 0.079***

(0.023) (0.020) (0.021) (0.029) (0.025) (0.026)
Spill_TechSpacet−1 0.037*** 0.040** 0.042*** 0.042**

(0.013) (0.016) (0.015) (0.018)
Spill_ProdSpacet−1 0.096*** 0.095*** 0.104*** 0.103***

(0.010) (0.010) (0.011) (0.011)
Observations 19,996 19,996 19,996 19,996 19,996 19,996
Firm Attributes Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
Industry-Year FE Y Y Y Y Y Y
Country-Year FE Y Y Y Y Y Y

Notes: The dependent variable is green revenue in all columns. Innovation indicators in Columns (1)-(3) are
based on international patent family, and in Columns (4)-(6) are based on triadic patent family. CleanTech rep-
resents clean patent stock, measured by the cumulative stock of clean patents with a 15% yearly depreciation
rate. Spill_TechSpace and Spill_ProdSpace denote clean technology pools of other firms weighted by tech-
nological proximity and product market proximity, respectively. All variables are measured in logarithms. All
results focus on green firms. All models incorporate firm control variables, firm fixed effects, industry-by-year
fixed effects (SIC 2-digit) and country-by-year fixed effects. Standard errors in the parentheses are clustered at
the industry (SIC 2-digit) level. ***, **, *, indicate significance at 1% level, 5% level, and 10% level, respectively.
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Table 3.B.4: Robustness Checks on Additional Control and Lag

Dependent Variable: Green Revenue
Additional Control (HHI) Alternative Lag (t-2)

Patent Count Patent Citation Patent Count Patent Citation
(1) (2) (3) (4)

CleanTecht−1 0.067*** 0.051*** 0.055* 0.050**
(0.024) (0.018) (0.028) (0.020)

Spill_TechSpacet−1 0.028*** 0.022*** 0.041** 0.030**
(0.010) (0.008) (0.016) (0.012)

Spill_ProdSpacet−1 0.093*** 0.077*** 0.050*** 0.042***
(0.010) (0.008) (0.006) (0.005)

HHI(Ind-Cnt)t−1 1.391 1.457
(1.065) (1.070)

Observations 19,996 19,996 16,713 16,713
Firm Attributes Y Y Y Y
Firm FE Y Y Y Y
Industry-Year FE Y Y Y Y
Country-Year FE Y Y Y Y

Notes: The dependent variable is green revenue in all columns. Innovation indicators in Columns (1) and
(3) are based patent count, and in Columns (2) and (4) are based on patent citation. CleanTech represents
clean patent stock, measured by the cumulative stock of clean patents with a 15% yearly depreciation rate.
Spill_TechSpace and Spill_ProdSpace denote clean technology pools of other firms weighted by techno-
logical proximity and product market proximity, respectively. HHI stands for Herfindahl-Hirschman Index,
which is computed at the industry-country level. Columns (3) and (4) lag independent variables by two
years. All variables except HHI are measured in logarithms. All results focus on green firms. All models
incorporate firm control variables, firm fixed effects, industry-by-year fixed effects (SIC 2-digit) and country-
by-year fixed effects. Standard errors in the parentheses are clustered at the industry (SIC 2-digit) level.
***, **, *, indicate significance at 1% level, 5% level, and 10% level, respectively.
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Chapter 4

Knowledge Spillover from Green FDI:
Evidence from Green Innovation in
China

4.1 Introduction

China has undergone explosive growth in green industries such as solar and wind energy
beginning in the early 2000s (Linster and Yang, 2018). The boom came as a surprise to
many observers because most green industries in China only emerged in the late 1990s
but rapidly rose to one of the world’s largest markets within two decades.1 The rapid
expansion of China’s green industries followed closely behind a large scale of opening
up to foreign direct investment (FDI) after China joined the World Trade Organisation
(WTO) in 2001 (Davies, 2013). The larger inflows of foreign investment facilitated Chinese
domestic manufacturers to engage in multinationals’ supply chains (Ueno, 2009). Along
with industrial policies such as public procurement and local content requirement, foreign
multinationals deepened the engagement of Chinese domestic firms in production and
technology, which enhanced technology transfer to Chinese firms (Lema et al., 2011; Urban
et al., 2012). Chinese domestic firms managed to gradually build up production capacities
and develop indigenous innovation during the engagement with foreign multinationals (Fu
and Zhang, 2011; Lema and Lema, 2012). Although many Chinese domestic manufacturers
currently achieve their advantage even dominance in China’s green industries, foreign direct
investment still contributed to shaping China’s green industries in the early phase and
helping Chinese firms catch up with cutting-edge foreign green technologies.
1For example, the cumulative installed wind capacity in China was around 0.3 Gigawatts (GW) in 2000
but reached 44.7 GW and surpassed the United States as the globally largest wind energy market in 2010
(Ru et al., 2012). The cumulative installed photovoltaic (PV) capacity was around 0.7 GW in 2000 but
rose to 180 GW in 2014 (Zhang and Gallagher, 2016).
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However, there are two main challenges in identifying the contributions of FDI to green
knowledge spillovers in the host countries. First, most existing literature on FDI and the
environment regards FDI as generic and does not differentiate whether an FDI project
involves clean and pro-environment investment. However, generic FDI includes much for-
eign investment that is irrelevant to environmentally-friendly commercial activities or even
negatively contributes to environmental performance. Consequently, the analyses based on
generic FDI contain considerable ambiguities in quantifying how much FDI can contribute
to green knowledge spillovers in the host countries. Such ambiguities also partially ex-
plain why many previous studies on FDI and the environment obtain mixed results (Cole
et al., 2017). Second, the relationship between domestic green innovation and knowledge
spillovers from FDI is usually endogenous. The correlation results cannot quantify well
the contributions to green knowledge spillovers by FDI as potential problems associated
with omitted variables and reverse causality may bias the estimated magnitude of know-
ledge spillovers (Lu et al., 2017). To resolve current research challenges, I put forward
new approaches of how to define "green FDI" (i.e., FDI involving environmentally-friendly
commercial activities) based on the detailed information on FDI, and employ Chinese
FDI opening-up policy as an exogenous shock to causally identify the knowledge spillovers
effects of green FDI.

In this paper, I use a new Chinese firm-level dataset that combines detailed information on
firms’ innovation and received foreign investment during the period 2000-2013. The rich
details of foreign direct investment allow me to more accurately identify foreign-invested
firms (FDI firms) with environmentally-friendly commercial activities. Specifically, I de-
velop four approaches to defining if foreign-invested firms involve environmentally-friendly
commercial activities (green FDI firms) by text-mining the investment business descrip-
tion and tracking patenting activities in foreign-invested firms and foreign investors. Built
upon the newly defined green FDI, I construct how much domestic firms are exposed to the
knowledge stocks resulting from green FDI firms, and estimate the impact of knowledge
stocks resulting from green FDI firms on the green innovation of domestic firms to capture
the knowledge spillovers from green FDI. I separate knowledge stocks resulting from green
FDI firms into three types based on the industrial linkage between domestic firms and
green FDI firms: knowledge stocks resulting from green FDI firms in the same industry
(horizontal industry), green FDI firms in downstream industries, and green FDI firms in
upstream industries, to further distinguish the knowledge spillovers from different channels.
To overcome the endogeneity in identification, I utilise the changes in the Catalogue for the
Guidance of Foreign Investment Industries, capturing the openness of specific industries to
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FDI in China, as an exogenous shock to construct instrumental variables for the knowledge
stocks resulting from green FDI firms. The validity of the instrumental variables is fur-
ther consolidated by controlling possible non-random selections of FDI openness and other
causality paths through which the FDI policy changes affect domestic green innovation.

I find that there is a big discrepancy in green technologies between newly defined green
FDI and other FDI, and such discrepancy cannot be explained well by other generic factors
such as firm sizes or generic technologies. The result implies that considerable noise may
be brought in when estimating the contributions of FDI to green knowledge spillovers if
one only focuses on generic FDI but not exclusively on green FDI. Based on the new green
FDI definitions, there is no evidence that green innovation of domestic firms benefits from
knowledge stocks of green FDI firms within the same industry. In contrast, the results
show that a 1% increase in the knowledge stocks of green FDI firms in downstream in-
dustries contributes to around 0.732% increase in green patents of domestic firms, which
indicates the knowledge spillovers from downstream green FDI. The positive impacts of
downstream green FDI firms’ knowledge imply that domestic firms benefit from knowledge
stocks of green FDI firms by becoming suppliers to green FDI firms. Moreover, the know-
ledge spillovers from downstream green FDI mainly boost most innovative patents (i.e.,
invention patents). Further evidence on patent citations also supports the positive spillover
effects on the quality of green innovation. Breaking down technological fields, the positive
knowledge spillover effects of green FDI appear to be more pronounced for domestic innov-
ation in alternative energy and sustainable transportation. In addition, I further examine
the possible mechanisms for the knowledge spillover effects of downstream green FDI. The
findings suggest that green FDI firms located in the same regions as domestic firms appear
to generate more pronounced knowledge spillovers than green FDI firms located in differ-
ent regions. The closer technological proximity between industries facilitates knowledge
spillovers from downstream green FDI firms to domestic firms. I also find higher stringency
of environmental regulations in green FDI origin countries enhances knowledge spillovers
in the host countries. Most results survive under a bunch of robustness checks.

This paper contributes to the literature on how to define and measure green FDI. There is
so far little discussion on the definitions of green FDI, though a few policy discussions raise
some rough guidelines of the definitions, such as FDI related to environmentally-friendly
sectors, mitigation of climate damage, or research and production of clean goods and ser-
vices (Golub et al., 2011; UNCTAD, 2016; Johnson, 2017). However, these guidelines do not
provide concrete approaches to green FDI definitions. Several previous empirical studies
made pioneering efforts to distinguish green FDI. For example, Glachant and Dechezle-
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prêtre (2017) and Dussaux et al. (2017) define low-carbon FDI based on whether foreign
investing firms own at least one low-carbon patent. Castellani et al. (2022) defines green-
tech FDI as the cross-border investment occurring in sectors that are most specialised in
green technologies. A major constraint with these definitions is that they only use indir-
ect proxies but do not directly capture the characteristics of FDI projects. Considerable
measurement errors of green FDI may be included due to the ambiguities of the green FDI
measures.2 I develop four new definitions of green FDI built upon the previous efforts. The
new definitions focus on the characteristics of FDI projects, including FDI firms’ business
description with keywords related to environmentally-friendly activities, FDI firms’ green
patenting activities, prior arts of FDI firms’ patents, and FDI firms’ investor patenting
activities. The newly defined green FDI more accurately captures the FDI that is likely to
involve green knowledge spillovers.

This paper also relates to the extensive literature on FDI and domestic production, innov-
ation and environmental performance in the host countries. Earlier studies such as Aitken
and Harrison (1999) raise the point that domestic firms may enjoy a positive spillover ef-
fect but also suffer from a negative competition effect brought by FDI. The mixed effects
of FDI stimulate a strand of following research exploring the relationship between FDI
and domestic firms’ output (Liang, 2017), productivity (Javorcik, 2004), R&D (Sun et al.,
2021), export (Bajgar and Javorcik, 2020), and product upgrade (Javorcik et al., 2018; Bai
et al., 2020). Moreover, not consistent with the conventional pollution haven hypothesis,
more empirical research on FDI and the environment finds that FDI can contribute to the
domestic environmental performance by improving corporate social responsibility (Kellen-
berg, 2009; Poelhekke and Van der Ploeg, 2015) and energy efficiency (Brucal et al., 2019).
This paper extends to examining the impacts of FDI knowledge spillovers on domestic green
innovation performance and attempts to differentiate the channels of knowledge spillovers.

Finally, this paper adds to a strand of burgeoning literature that identifies the impacts of
FDI spillovers. Many earlier studies on FDI produce correlation evidence, but this raises
concerns about the reliability of the results and drives more focus on proper identification
strategies that provide causality evidence. Several new identification strategies are put for-
ward including merge and acquisition (M&A) (Guadalupe et al., 2012), export orientation
(Crescenzi et al., 2015), joint venture partner (Jiang et al., 2018), geographic distance (Lin

2For example, an FDI project in China invested by Siemens, which owns a variety of clean energy related
patents around the world, may be a manufacturing factory producing household appliances irrelevant to
clean energy. Moreover, although the household appliance sector overall involves a decent level of green
specialisation (e.g., energy-saving appliances), a specific FDI project in this sector does not necessarily
specialise in energy-saving appliances.

Knowledge Spillover from Green FDI 104



et al., 2021), and FDI regulations (Lu et al., 2017; Chen et al., 2022). However, most of the
current identification strategies are targeted at generic FDI or a few individual FDI cases.
Built upon the identification strategy put forward by Lu et al. (2017), I utilise the changes
in FDI opening-up policy in China and develop an instrumental variable specifically for
green FDI. I further discuss the potential concerns in the validity of this instrumental
variable and the corresponding methods to relieve the concerns.

The rest of this paper is organised as follows. Section 4.2 describes the data and the key
measures used in this study. Section 4.3 presents the identification strategy and discusses
the potential challenges to the identification. Section 4.4 reports the main empirical results,
robustness checks, results for innovation heterogeneity, and discussions on mechanisms of
green FDI knowledge spillovers. Section 4.5 concludes.

4.2 Data and Measures

4.2.1 China’s Industrial Firms

The main firm-level panel data is from the Annual Survey of Industrial Enterprises (ASIE),
conducted by the National Bureau of Statistics of China. This survey covers all state-owned
enterprises and non-state-owned enterprises in China with annual sales above 5 million
Yuan (around US$ 620000), involving mining, manufacturing and public utility sectors.
Abundant firm-level fundamental, operation and financial information are included, such
as identification number, 4-digit industry code, location code, output, sales, asset, em-
ployment, wage, export, and ownership. The dataset used in this paper spans the period
2000-2013.

There are some caveats to using this data. First, the industry classification during the
sample period was modified from the version GB/T 4754-1994 (adopted during 1994-2001)
to GB/T 4754-2002 (adopted during 2002-2010) and finally to GB/T 4754-2011 (adopted
during 2011-2016). To address this issue, I link the three classifications and develop a
consistent classification system throughout my entire sample period.3 Second, some firms
re-appear in the data after several years of missing. To avoid the possible impacts of
the inconsistency of the data collection, I drop firms with missing observations for three
consecutive years. Third, I drop observations where firms’ identification number, location
code and industry code are missing as the missing information affects the merge of datasets
and construction of variables.
3Brandt et al. (2012) have constructed a concordance table that well links GB/T 4754-1994 to GB/T
4754-2002. I follow their process and extend the linkage to the version GB/T 4754-2011.
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4.2.2 Green Innovation

Firms’ innovation is measured by patenting activities in this study. I retrieve Chinese
patent data from the China National Intellectual Property Administration (CNIPA), which
has full coverage of all patent applications and publications filed in China since 1985. The
CNIPA provides detailed bibliographic information on each patent, including applicants,
application and publishing number, application and publishing date, and the International
Patent Classification (IPC) code. In addition, I complement the information on patent
priority, patent claim, patent citation, and Cooperative Patent Classification (CPC) code
by the EPO Worldwide Patent Statistical Database (PATSTAT), which is the largest global
patent database covering all of the world’s major patent offices.

There are two widely-used definitions of green patents: (1) The IPC Green Inventory,
developed by the World Intellectual Property Organization (WIPO)’s IPC Committee of
Experts. The IPC Green Inventory covers a list of IPC codes that are closely relevant
to environmentally sound technologies. (2) The Y02 category in the Cooperative Patent
Classification (CPC) system, which tags technologies with contributions to climate change
adaptation and mitigation (Haščič and Migotto, 2015). To have more comprehensive cover-
age of green technologies, I identify patents pertaining to green technologies by combining
the two definitions, where a patent is green if either its IPC lies in the IPC Green Inventory
or its CPC belongs to the Y02 category.

In the raw Chinese patent data, one patent innovation may correspond to multiple patent
applications when they cover several different patent claims. To avoid double-counting of
patents, I aggregate patent applications to the patent family level (DOCDB family code
by PATSTAT), which identifies a group of patent applications that derive from the same
patent innovation.4

4.2.3 Green Foreign Direct Investment

Although the dataset from ASIE includes information on firms’ ownership, it only provides
the share of ownership by state, foreign, and other domestic private entities. The lack of de-
tails on FDI creates a large barrier to differentiating the specific features of FDI and identi-
fying green FDI accordingly. Therefore, I further retrieve the details of foreign-invested
firms archived by The Ministry of Commerce of China, which fully covers FDI establish-
ment and modification in China during 1980-2016 and records fundamental information

4The time dimension of each patent family is the patent priority year, which is the year when the earliest
application in the patent family is filed.
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such as names of firms receiving foreign direct investment, type of FDI, investors, invest-
ment amount, the origin of country, and text description of business scope. These details
of FDI records allow me to identify green FDI more accurately.

Although there is currently no consensus on the green FDI definition, a green FDI is
generally deemed to involve environmentally-friendly commercial activities, including pro-
duction, operation or technology transfer in the mitigation of pollution and climate change
(Golub et al., 2011; UNCTAD, 2016; Johnson, 2017). Accordingly, I developed four new
approaches to defining which foreign-invested firm is green FDI.

Text description of foreign-invested firms’ business. First, I take advantage of the
text description of each foreign-invested firm’s business scope and define a foreign-invested
firm as a green FDI firm if its business scope includes keywords related to environmental
governance, clean production, clean energy, or green technology.5 The text of business
scope disclosed by FDI displays the business focus of each FDI firm and helps to detect
whether a foreign-invested firm involves in environmentally-friendly commercial activities.

Green patents in foreign-invested firms. Second, I employ the patenting activities of
foreign-invested firms and identify a foreign-invested firm as a green FDI firm if it files green
patents in China. To relieve the concern that green patents derive from a firm’s pre-existing
knowledge rather than new knowledge brought in by FDI, only green patents that are filed
after foreign investment enters the firm are counted. The existence of new green patenting
activities after foreign investment enters helps to capture whether a foreign-invested firm
acquires new green knowledge from foreign investment.

Prior arts of green patents in foreign-invested firms. One may question that green
patents in foreign-invested firms may be mainly driven by domestic knowledge outside the
foreign-invested firms and do not convincingly demonstrate green technology transfers via
foreign investment. To respond to this concern, I further trace the prior arts of green
patents in each foreign-invested firm and define a foreign-invested firm as a green FDI firm
if its green patents cite prior arts invented outside China. The prior arts of FDI firms’
green patents indicate where the knowledge enclosed in the green patents originates from
and helps to further demonstrate that the new green knowledge of foreign-invested firms
derives from foreign investment.

Green patents of foreign investors. In the fourth approach, I focus on patenting
activities of foreign investors and define a foreign-invested firm as a green FDI firm if

5To obtain a more precise result of keyword searching, I break down environmentally-friendly commercial
activities into more than 200 keywords, which are shown in Table 4.A.1.
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the firm’s foreign investors have filed green patents in China. If foreign investors intend
to utilise their existing technologies in China, they may file new applications of these
technologies to the Chinese patent office to better protect the intellectual property rights
of these technologies in China. This approach may capture stronger evidence of green
technology transfers to China, though some technology transfers may be omitted as foreign
investors probably resort to other ways rather than new patent applications to protect their
existing technologies.

Figure 4.1 compares the performance of identifying green FDI by different approaches. The
value in the left panel of the figure displays the ratio of foreign-invested firms defined as
green FDI firms to all foreign-invested firms in China.6 The value in the right panel is the
average stock of green patents (depreciation rate 15%) owned by green FDI firms. The first
definition (based on the text description of foreign-invested firms’ business scope) achieves
the largest coverage of green FDI firms (about 13% of all foreign-invested firms), while
these green FDI firms have relatively lower green patent stocks compared to other green
FDI definitions. The second definition (based on green patents in foreign-invested firms)
extracts a slightly lower number of green FDI firms (about 12% of all foreign-invested
firms) because it excludes the FDI firms operating in green commercial activities but not
filing green patents. The third definition (based on prior arts of green patents in foreign-
invested firms) narrows down to the FDI firms with stronger evidence of cross-border green
technology transfers. Only focusing on green FDI firms that have green patents originating
from foreign knowledge extracts the foreign-invested firms with higher specialisation in
green innovation, though at the expense of a lower coverage of firms identified as green
FDI. The fourth definition (based on green patents of foreign investors in China) does not
perform well in identifying green FDI with respect to the coverage of FDI firms and the level
of green patent stocks. One possible reason for the poor performance of the fourth definition
is that foreign investors’ green knowledge is not necessarily transferred via publicly filing
and using patents in the host countries but in less conspicuous or codifiable channels such
as trade secrets, technical specialists, or management experience.

In addition, I also compare the performances when using combinations of different green
FDI definitions. The overlap of green FDI identified by the first and second definitions
extracts a smaller pool of foreign-invested firms but ensures the identified green FDI firms
have a higher level of specialisation in green technologies. The combinations of the first
and third or fourth definitions similarly lead to a lower firm coverage while a higher green

6Figure 4.1 is drawn based on cross-section data in 2007, but the performances are very similar in other
years during the sample period.
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Figure 4.1: Comparison of Different Green FDI Definitions
Notes: The value in the left panel is the ratio of foreign-invested firms defined as green FDI firms to
all foreign-invested firms in China. The value in the right panel is the average stock of green patents
(depreciation rate 15%) owned by green FDI firms. Green FDI definition 1 is whether the text description
of FDI firms’ business scope includes keywords related to environmental governance, clean production, clean
energy, or green technology (Def. 1: Biz scope text). Green FDI definition 2 is whether FDI firms own
green patents (Def. 2: Green patent). Green FDI definition 3 is whether FDI firms own green patents that
cite prior arts from foreign countries outside China (Def. 3: GrPat citing out of CN). Green FDI definition
4 is whether FDI firms’ foreign investors have filed green patents in China (Def. 4: FI GrPat filed in CN).
Definition 1 & 2 indicates the intersection of Green FDI definitions 1 and 2. Definition 1 & 3 indicates
the intersection of Green FDI definitions 1 and 3. Definition 1 & 4 indicates the intersection of Green FDI
definitions 1 and 4.

technology level of green FDI. Overall, using text description of FDI business scope helps
to have the largest coverage of FDI firms involving environmentally-friendly commercial
activities, while using patenting activities of FDI firms is conducive to capturing FDI
specialisation in green technologies and possible technology transfers.

This study uses the first approach (keywords searching in the text description of foreign-
invested firms’ business) to define whether a foreign-invested firm is green FDI because
environmentally-friendly commercial activities cover the transfers in green technologies and
provide a business basis for possible green technology transfers. In contrast, green FDI
definition based on patent activities may not reflect well the business focus of a foreign-
invested firm even if this firm owns a few green patents.7 Although the first definition of
7Since there is currently no consensus on green FDI definition in both academic and policy research, more
discussions on how to properly define green FDI are still strongly needed.
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green FDI is used in the main analysis, other alternative definitions of green FDI are also
examined in robustness checks.

Figure 4.2 compares foreign-invested firms identified as green FDI firms and other foreign-
invested firms (non-green FDI firms). The four graphs reveal the differences between green
FDI and non-green FDI firms with respect to economic and technological characteristics.
The generic factors such as the size of assets, size of labour, or overall technology capacities
still cannot explain well the huge discrepancy of green technologies between green and
non-green FDI firms.8 Hence, only focusing on generic FDI in analyses, even controlling
generic factors, may bring considerable noise in estimating the contributions of FDI to
green knowledge transfer in the host countries. By developing specific definitions of green
FDI, this paper can remove the noise from non-green FDI and refine the estimation of how
much FDI contributes to green knowledge spillovers in China.9

4.2.4 FDI Opening-up Policy in China

Which industry is opened up to FDI and how much the opening-up is allowed in China are
regulated by the Catalogue for the Guidance of Foreign Investment Industries, compiled by
the National Development and Reform Commission and Ministry of Commerce of China.
Since the first edition of the Catalogue appeared in 1995, the Catalogue was modified every
few years to adapt to the need of the increasingly globalised Chinese economy. Figure 4.3
displays the timeline of the Catalogue that develops from the first edition to the seventh
edition. Each new edition of the Catalogue contains the modifications of which products
become more open to FDI and which ones become less open. The several modifications of
the Catalogue offer a series of policy shocks that can be used as an instrumental variable
and help to identify the knowledge spillovers from green FDI. Since the sample period
covers 2000-2013, this study takes advantage of the FDI changes in the 3rd edition (2002),
4th edition (2004), 5th edition (2007), and 6th edition (2011).

As displayed in Figure 4.3, the Catalogue regulates FDI opening-up at the product level
and classifies products into four categories: (1) Products where FDI is supported; FDI in
such products enjoys preferential investment policies such as tax credits, the lower interest
8The abnormal drop in firms’ assets in 2010 is probably caused by the measurement issues of production
and financial variables including output, asset, sales, wages, and material inputs in the data compilation
of ASIE for 2010 by the National Bureau of Statistics of China (Brandt et al., 2014). However, the key
dependent and independent variables in this paper are constructed by the information on innovation and
foreign direct investment, which are not built upon ASIE. Hence, the potential measurement issues in the
data of ASIE for 2010 do not influence the estimations in this paper.

9The definition of green FDI used in Figure 4.2 is based on the first approach, i.e., text description of FDI
firms’ business. There are much larger discrepancies in green technologies between green and non-green
FDI firms when using other green FDI definitions.
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Figure 4.2: Green FDI vs. Non-green FDI
Notes: The four plots present the trends of the average green patent stock, average total patent stock,
average asset, and average employee of green FDI firms (solid) and non-green FDI firms (dash). The four
vertical lines indicate the time points of the four waves of FDI opening-up policy changes: 3rd Edition FDI
Catalogue published in 2002, 4th Edition FDI Catalogue published in 2004, 5th Edition FDI Catalogue
published in 2007, 6th Edition FDI Catalogue published in 2011. Each updated edition opened up more
products and industries to FDI. Further details of the FDI opening-up policy changes are discussed in
Section 4.2.4.

of loans and the cheaper land rents. (2) Products where FDI is permitted; FDI in such
products is not subject to extra restrictions. (3) Products where FDI is restricted; FDI
in such products is subject to restrictions such as ownership limits or more scrutiny. (4)
Products where FDI is prohibited; FDI in such products are completely banned. FDI is
most welcome in product category (1) while least welcome in product category (4).

By comparing each edition of the Catalogue, I can identify whether a product becomes more
open or less open to FDI. According to the changes in FDI opening-up regulations at the
product level, there are three possible scenarios for each product during each modification
of the Catalogue: (1) FDI becomes more open, i.e., a product is changed from a less FDI-
welcome to a more FDI-welcome category. (2) FDI becomes less open, i.e., a product is
changed from a more FDI-welcome to a less FDI-welcome category. (3) No change in the
openness to FDI, i.e., a product does not have any change in the openness to FDI before
and after a modification of the Catalogue. Since this study focuses on green FDI, I identify
products relevant to environmental governance, clean production, clean energy or green
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technology as green products based on the Catalogue. Each green product is classified into
the three possible scenarios of the change in FDI openness according to the modification
of four Catalogue versions (3rd to 6th edition) during 2000-2013.

1995

1st edition 
Catalogue

2002 20071997 2004 2011

2nd edition 
Catalogue

Limited-scale 
opening up to FDI

3rd edition 
Catalogue

Large wave of 
opening up to FDI 

(along with China’s 
acession to WTO 

in 2001).
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Start supporting the 
development of eco-
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5th edition 
Catalogue
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(along with Renewable 
Energy Law in 2005).
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2015
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operating period
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Figure 4.3: FDI Opening-up Policy Change in China
Notes: The Catalogue classifies products into four categories: FDI in "supported" category can enjoy pref-
erential investment policies, FDI in "permitted" category is not subject to restrictions, FDI in "restricted"
category is subject to extra investment restrictions, and FDI in "prohibited" category is not allowed. In each
wave of the Catalogue update, a large number of products are moved from a less FDI-welcome category to
a more FDI-welcome category, while very few products are moved from a more FDI-welcome category to
a less FDI-welcome category. Our sample period (2000-2013) covers four waves of the Catalogue update
(3rd, 4th, 5th, 6th edition Catalogue).

However, the changes in the Catalogue are at the product level, while the firm-level data
by ASIE do not provide detailed product information of each firm but only industry classi-
fications.10 Hence, I need to aggregate the changes in FDI opening-up regulations from the
product level to the industry level. Following Lu et al. (2017), I use the Industrial Product
Catalogue from the National Bureau of Statistics of China to map each product classific-
ation to the four-digit industry classification. It is worth noting that multiple products
from the Catalogue may be mapped to one industry classification. Hence, the aggregation
process generates four industry categories during each modification of the Catalogue:

(1) Green FDI No-change Industry: All green products mapped to the industry keep
unchanged in the openness to FDI.

(2) Green FDI Encouraged Industry: For all green products belonging to the industry,
10Product classifications in the Catalogue for the Guidance of Foreign Investment Industries are more

disaggregated than the four-digit Chinese industry classifications.
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there is at least one green product becoming more open to FDI, while no green products
becoming less open to FDI.

(3) Green FDI Disencouraged Industry: For all green products belonging to the industry,
there is at least one green product becoming less open to FDI, while no green products
becoming more open to FDI.

(4) Green FDI Mixed Industry: For all green products belonging to the industry, there
is at least one green product becoming more open to FDI, while also at least one green
product becoming less open to FDI.

Figure 4.4 visualises the definition of four industry categories in a Catalogue change. Since
this study covers four waves of the Catalogue changes, first, I only designate an industry as
"Green FDI No-change Industry" only when all green products mapped to the industry keep
unchanged in the openness to FDI throughout the four waves of the Catalogue changes.
Second, an industry is classified as "Green FDI Encouraged Industry" only after at least one
green product mapped to the industry becomes more open to FDI in one modification of
the Catalogue, while no green product becomes less open to FDI in all later modifications
of the Catalogue. Third, an industry is classified as "Green FDI Disencouraged Industry"
only after at least one green product mapped to the industry becomes less open to FDI in
one modification of the Catalogue, while no green product becomes more open to FDI in
all later modifications of the Catalogue. All other industries are assigned to "Green FDI
Mixed Industry".

Among the 506 four-digit Chinese industries, 293 industries do not contain any green
products or contain green products that do not change the openness to FDI throughout
the sample period, categorised as "Green FDI No-change Industry"; 192 industries contain
green products that become more open to FDI while no green products that become
less open to FDI throughout the sample period, categorised as "Green FDI Encouraged
Industry"; 21 industries are categorised as "Green FDI Disencouraged Industry" or "Green
FDI Mixed Industry".11 Since this study mainly focuses on the knowledge spillover effect
of green FDI on green innovation of domestic firms, the analysis only includes "Green FDI
No-change Industry" and "Green FDI Encouraged Industry" and excludes the other two
industry groups.

11Each wave of the modification of the Catalogue for the Guidance of Foreign Investment Industries since
2002 is basically opening up more products to FDI because of the commitments made by the Chinese
central government for the accession to WTO in 2001. Therefore, there are very few industries categorised
as "Green FDI Disencouraged Industry" and "Green FDI Mixed Industry".
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Figure 4.4: FDI Policy Change Aggregation from a Product Level to an Industry Level
Notes: This figure illustrates how to define the "Green FDI No-change Industry", "Green FDI Encouraged
Industry", "Green FDI Disencouraged Industry", and "Green FDI Mixed Industry" based on the change of
FDI openness at the product level during a wave of the Catalogue change. An industry is defined as "Green
FDI No-change Industry" if all green products mapped to the industry keep unchanged in the openness to
FDI. An industry is defined as "Green FDI Encouraged Industry" if it includes at least one green product
becoming more open to FDI while no green product becoming less open to FDI. An industry is defined as
"Green FDI Disencouraged Industry" if it includes at least one green product becoming less open to FDI
while no green product becoming more open to FDI. An industry is defined as "Green FDI Mixed Industry"
if it includes at least one green product becoming more open to FDI while at least one green product
becoming less open to FDI. "More open to FDI" stands for a product is changed from a less FDI-welcome
to a more FDI-welcome category (e.g., from restricted to permitted), and "less open to FDI" stands for
a product is changed from a more FDI-welcome to a less FDI-welcome category (e.g., from restricted to
prohibited).

4.3 Empirical Strategy

4.3.1 Econometric Specification

In most FDI literature, the spillover effect of FDI is tested by estimating the relationship
between the presence of foreign-invest firms in the host countries and the performance of
other domestic firms (Aitken and Harrison, 1999; Javorcik, 2004). Following this idea, I
start with the regression model that examines whether green innovation of domestic firms
is enhanced by the knowledge stocks resulting from green FDI firms.12 More specifically,
12One implied assumption of this specification is that green FDI brings new knowledge to foreign-invested

firms, and then the knowledge stocks in those foreign-invested firms spread to other domestic firms and
promote domestic green innovation. Such assumption is tested and reported in Table 4.A.2, where the
results show that the entry of green FDI leads to more green innovation in foreign-invested firms except
using the fourth definition of green FDI.
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for domestic firm f in four-digit industry i located in province p at year t, the baseline
model is:

E[Yfipt|GrFDIKnowit, Xft] =exp(β0 + β1GrFDIKnowit + β2Xft + γf + λt + δi + ηp),
(4.1)

where Yfipt denotes green innovation of domestic firm f in industry i, province p and year
t, measured by the number of green patent families filed in China in the main results.13

Domestic firm f includes firms that are only invested by domestic investors in China and do
not contain any foreign-invested firms. Xft is a vector of time-varying firm characteristics,
including asset, employee, and sales revenue. γf , λt, δi and ηp denote firm, year, industry,
and province fixed effects. The standard errors are clustered at the four-digit industry level.
Since the dependent variable Yfipt is a count variable, I use the conditional fixed effects
Poisson regression (FE Poisson) and compute coefficients by Poisson Pseudo Maximum
Likelihood (PPML) estimators.

GrFDIKnowit is the main regressor of interest, which consists of three indicators that
capture how much the domestic firms in industry i are exposed to the knowledge from
green FDI firms that belong to the same industry i, the downstream industries of i, and
the upstream industries of i, respectively. First, the exposure of domestic firms to the
knowledge from green FDI firms within the same industry i is measured by the aggregation
of knowledge stocks of green FDI firms operating in industry i (named as “horizontal green
FDI knowledge stocks”). Specifically, for industry i at year t, it is constructed as:

GrFDIKnowHori
it =

∑
j for all j∈i

I(GrFDIjt) × GrPatStockjt, (4.2)

where I(GrFDIjt) is a binary indicator equalling one if foreign-invested firm j received
green FDI at year t or before (i.e., green FDI firms), and zero otherwise. GrPatStockjt

is the stock of green patents filed by foreign-invested firm j, adjusted with a 15% yearly
depreciation rate (Hall et al., 2005). The summation of I(GrFDIjt)×GrPatStockjt within
industry i aggregates green patent stocks of all foreign-invested firms that have received
green FDI up to year t (i.e., green FDI firms).14

13Other green patent measures are used in the discussion on innovation heterogeneity, including the number
of green invention patent families, the number of green utility patent families, the number of forward
citations received by green patent families, the number of green patent families cited by patents outside
China, and the number of patent family in the fields of alternative energy, sustainable transportation,
and energy conservation.

14The term I(GrF DIjt) × GrP atStockjt reflects the stock of green patents filed by foreign-invested firm j
at year t given that firm j has received green FDI up to year t. If a foreign-invested firm j has not received
green FDI up to year t, I(GrF DIjt) × GrP atStockjt would be zero. In other words, the summation does
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Second, the exposure of domestic firms in industry i to the knowledge from green FDI firms
that belong to the downstream industries of i can help to capture how much domestic firms
can benefit from the knowledge of downstream green FDI. Built upon Javorcik (2004), for
domestic firms in industry i, such exposure is measured by the weighted aggregation of
knowledge stocks of green FDI firms operating in all downstream industries of i (named as
“downstream green FDI knowledge stocks”). For industry i at year t, it is constructed as:

GrFDIKnowDown
it =

∑
k if k ̸=i

αikGrFDIKnowHori
kt (4.3)

where k stands for a downstream industry of industry i. GrFDIKnowHori
kt is the knowledge

stocks of green FDI firms operating in i’s downstream industry k at year t. As one industry
i can have multiple downstream industries, the knowledge stocks of green FDI firms in
each downstream industry need to be further aggregated to measure the total exposure of
domestic firms in industry i to knowledge from downstream green FDI. The weight αik

determines the importance of each downstream industry k to industry i’s selling activities,
representing the share of industry i’s output supplied to its downstream industry k.

Third, for domestic firms in industry i, their exposure to the knowledge of upstream
green FDI can be measured by the weighted aggregation of knowledge stocks of green FDI
firms operating in all upstream industries of i (named as “upstream green FDI knowledge
stocks”). Similarly, such exposure can be constructed as:

GrFDIKnowUp
it =

∑
m if m ̸=i

βimGrFDIKnowHori
mt (4.4)

where m stands for an upstream industry of industry i. GrFDIKnowHori
mt is the knowledge

stocks of green FDI firms operating in i’s upstream industry m at year t. Similar to
the previous case in Eq (4.3), since one industry can have multiple upstream industries,
the knowledge stocks of green FDI firms in each upstream industry need to be further
aggregated to measure the total exposure of domestic firms in industry i to knowledge
from upstream green FDI. The weight βim is used to determine the importance of each
upstream industry m to industry i’s purchase activities, representing the share of industry
i’s input purchased from its upstream industry m. The input-output linkage between
industries is obtained from China’s 2007 Input-Output Table.15

not take into account the green patent stocks of foreign-invested firms that have not received green FDI
up to year t, as their I(GrF DIjt) × GrP atStockjt are zero.

15The inter-industry Input-Output Table in China is published every five years. Considering the sample
period covers 2000-2013, this study uses the input-output information in the middle point of the sample
period in the analysis.
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GrFDIKnowit represents GrFDIKnowHori
it , GrFDIKnowDown

it , and GrFDIKnowUp
it .

Hence, the coefficient β1 in Eq (4.1) captures the relationship between domestic firms’
green innovation and knowledge stocks of green FDI firms that belong to the same in-
dustry i, to industry i’s downstream industries, and to industry i’s upstream industries,
respectively. However, this relationship cannot be interpreted as the impacts of green FDI
yet as GrFDIKnowHori

it , GrFDIKnowDown
it , and GrFDIKnowUp

it are not uncorrelated
with the error term, even conditional on a group of control variables and fixed effects.16

To tackle the endogeneity issue, inspired by Lu et al. (2017), I resort to the variations
across industries in the changes of FDI opening-up policy in China as an instrumental
variable for the knowledge stocks of green FDI firms. The instrumental variable serves as
a quasi-random shock that determines whether a larger scale of green FDI enters a specific
industry and consequently leads to more knowledge stocks of green FDI firms within the
industry.17 Specifically, industry i is assigned to the treatment group if it is categorised as
the "Green FDI Encouraged Industry", and assigned to the control group if it is categorised
as the "Green FDI No-change Industry", based on the category definition in Section 4.2.4.
The treatments occur in 2002, 2004, 2007 and 2011, by the timeline of the four waves of
the FDI Catalogue changes in China. For the endogenous variable GrFDIKnowHori

it , the
first-stage estimation of the instrumental variable is based on a difference-in-differences
(DID) strategy:

GrFDIKnowHori
it =β0 + β1GrFDIOpenHori

it + β2Xft + γf + λt + δi + ηp + εfipt, (4.5)

where GrFDIOpenHori
it is a binary variable that indicates whether industry i is categorised

as a "Green FDI Encouraged Industry" at year t. The intuition behind the instrumental
variable is that an industry i receives more green FDI if green products in this industry
become more open to FDI, and consequently the domestic firms are more exposed to the
knowledge stocks of green FDI firms within the same industry i.

The instrumental variable for the knowledge stocks of green FDI firms in downstream indus-
tries GrFDIKnowDown

it can be constructed by computing the overall openness of green FDI
in industry i’s downstream industries, similar to Eq (4.3). Specifically, GrFDIOpenDown

it =∑
k if k ̸=i αikGrFDIOpenHori

kt , where αik represents the weights of industry i’s exposure
16For example, the decision of whether a green FDI enters an industry in China might be driven by a

selective strategy based on their own and the invested entities’ competitiveness. Additionally, the increase
in knowledge stocks of green FDI firms could also be influenced by the innovation capacities of domestic
firms rather than solely relying on knowledge from foreign investors.

17The decision regarding whether an industry becomes more open to green FDI is determined by the
previous negotiation of China’s accession to WTO and high-level government policies. These factors are
much less influenced by the strategies of foreign investors or the capacities of invested domestic firms.
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to its each downstream industry k. Similarly, the instrumental variable for the know-
ledge stocks of green FDI in upstream industries GrFDIKnowUp

it can be constructed as:
GrFDIOpenUp

it = ∑
m if m ̸=i βimGrFDIOpenHori

mt , where βim represents the weights of in-
dustry i’s exposure to its each upstream industry k. With controlling the endogeneity
of GrFDIKnowit by using instrumental variables, the coefficient β1 in Eq (4.1) captures
the impacts of knowledge stocks resulting from green FDI firms on domestic firms’ green
innovation. Such impacts by green FDI firms’ knowledge stocks from the same industry
(as domestic firms), downstream industries, and upstream industries can be interpreted
as the knowledge spillover effects of green FDI via horizontal, downstream and upstream
linkages, respectively.

Table 4.1: Summary Statistics

Variables N Mean SD Min Max
Panel A: Innovation Indicator
Total Patent Family Count 387059 0.824 24.300 0.000 5607
Green Patent Family Count 387059 0.104 4.504 0.000 2023
Total Patent Family Citation 387059 2.265 126.200 0.000 35059
Green Patent Family Citation 387059 0.305 11.100 0.000 2229
Panel B: Green FDI Knowledge Stock
Horizontal GrFDI Know (Text) 387059 28.330 116.000 0.000 1971
Horizontal GrFDI Know (GrPat) 387059 52.290 142.000 0.000 2020
Horizontal GrFDI Know (GrPatOutCN) 387059 34.800 124.900 0.000 1933
Horizontal GrFDI Know (FIGrPatCN) 387059 3.292 20.070 0.000 254.4
Downstream GrFDI Know (Text) 387059 24.300 41.470 0.000 384.7
Downstream GrFDI Know (GrPat) 387059 44.450 70.350 0.000 550.7
Downstream GrFDI Know (GrPatOutCN) 387059 31.380 58.000 0.000 526.8
Downstream GrFDI Know (FIGrPatCN) 387059 4.284 9.345 0.000 143.9
Upstream GrFDI Know (Text) 387059 21.190 38.960 0.013 431.6
Upstream GrFDI Know (GrPat) 387059 36.230 59.930 0.121 528.1
Upstream GrFDI Know (GrPatOutCN) 387059 24.700 48.950 0.002 467.7
Upstream GrFDI Know (FIGrPatCN) 387059 1.448 3.407 0.000 48.02
Panel C: Other Firm Atrributes
Firm Age 386089 26.340 13.750 3.000 66
Output (1 million Yuan) 356787 286.200 2562.000 0.001 258799
Asset (1 million Yuan) 386077 300.400 3015.000 0.001 276431
Sale Revenue (1 million Yuan) 386078 283.500 2750.000 0.001 258206
Employee 384310 517.000 2450.000 1.000 161654

Notes: Panel A shows the indicators of innovation. Panel B presents the knowledge stocks
of green FDI by different definitions and channels. In Panel B, Horizontal denotes the know-
ledge stocks resulting from green FDI firms within the same industry, Downstream indicates
the knowledge stocks resulting from green FDI firms in downstream industries, and Upstream
represents the knowledge stocks resulting from green FDI firms in upstream industries. "Text"
denotes the first green FDI definition: whether the text description of FDI business scope in-
cludes keywords related to environmental governance, clean production, clean energy, or green
technology. "GrPat" is the second green FDI definition: whether FDI firms own green pat-
ents. "GrPatOutCN" stands for the third green FDI definition: whether FDI firms own green
patents that cite prior arts from foreign countries. "FIGrPatCN" represents the fourth green
FDI definition: whether FDI firms’ foreign investors have filed green patents in China. Panel
C reports other firm-level attributes.
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Table 4.1 presents the summary statistics of key variables in the following analyses, in-
cluding innovation indicators, measures of knowledge stocks of green FDI, and other firms’
characteristics. Panel A shows that green patents take around 10% to 20% of total patents
in each firm on average, and the low value of means and much larger standard deviations
suggest that a large share of domestic firms do not have patenting activities. The fact that
patenting activities happen at a small group of firms further justifies the use of Poisson
regression rather than OLS for estimation of the baseline model Eq (4.1). Panel B dis-
plays the difference in the knowledge stock of green FDI firms across different green FDI
definitions. In the main analyses, I focus on the green FDI definition based on the "Text"
approach, i.e., defined by the text description of FDI business scope. Results of using
other green FDI definitions are discussed in the robustness checks. Panel C shows that
firms in the sample are relatively large, with total assets equivalent to around 300 million
Yuan and output equivalent to around 286 million Yuan. Such large sizes result from the
fact that ASIE mostly covers firms above annual sales above 5 million Yuan rather than
small size firms in China. Therefore, the conclusion of this paper is more applicable to
the knowledge spillover effects on large size domestic firms in the host countries, and one
should be cautious in extrapolating the conclusion to small size domestic firms.

4.3.2 Validity of Instrumental Variable

The validity of the DID instrumental variable heavily relies on the exclusion restriction
condition, which requires: (1) the green products opened up to FDI are randomly selected
in the FDI opening-up policy; (2) no other major channels through which the FDI opening-
up policy affects the domestic firms’ green innovation other than the increasing presence
of green FDI firms’ knowledge stocks.

Unfortunately, the selection of when and which green products become more open to FDI is
likely to be non-random. One defence for the quasi-random selection of products is that the
FDI opening-up policy in China was generally aligned with the agreement from lengthy
negotiations of China’s accession to WTO, which was not largely determined by China
and still uncertain prior to the accession (Lu et al., 2017; Chen et al., 2022). However,
the Chinese government might still wield considerable influence on the implementation of
the opening-up policy and cherry-pick specific green products to be opened up at specific
desired timelines due to specific industrial factors.18 In such cases, the selection of whether

18For instance, if there is an important technology discovery regarding a green product in a particular
industry, the government might choose to protect that industry for a longer period and therefore delay its
opening-up to green FDI. Moreover, other green industrial policies promoting domestic green innovation
could also lead to a synergistic effect, impacting the timing of opening-up to green FDI.
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and when a green product is opened up to FDI is not random, and the validity of the
instrumental variable is impaired.
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Figure 4.5: Dynamic Effect of Green FDI Opening-up Policy Changes
Notes: Dependent variable is the knowledge stocks of green FDI firms in the same industry (Horizontal
GrFDI), which is measured in logarithms. The dot indicates the point estimates for each period before
and after the industry-level green FDI opening-up policy changes, i.e., if the industry becomes "Green
FDI Encouraged Industry" (includes green products more opened up to FDI while no green products less
opened up to FDI during FDI regulation changes). The intercept indicates the 95% confidence interval.
The estimation is based on the two-stage DID strategy designed by Gardner (2022). Specific numbers of
coefficients are shown in Table 4.A.5.

I adopt two strategies to alleviate this concern. First, I conduct an event study and plot
the dynamic effects based on the DID model in Eq (4.5), to examine whether there is a sig-
nificant difference in green FDI firms’ knowledge stocks between the treatment and control
groups prior to the time points when an industry encourages green FDI. It is worth noting
that the DID model in Eq (4.5) is a staggered DID setting, under which the coefficients of
the treatments may not be reliable measures of the treatment effects if directly estimated
by the ordinary least squares (OLS) (Borusyak and Jaravel, 2017; Callaway and Sant’Anna,
2021; Sun and Abraham, 2021; Gardner, 2022). I use the two-stage DID strategy designed
by Gardner (2022) to estimate the dynamic effects of Eq (4.5).19 The estimated coefficients

19The two-stage DID requires a clear binary DID setting as the estimation in the first stage is targeted to
the units never treated. However, it is unable to apply this strategy to the indicators of the openness
to downstream and upstream green FDI GrF DIOpenDown

it and GrF DIOpenUp
it because they are the

aggregations of the treatment variables across multiple downstream and upstream industries. I therefore
compare the results of the horizontal knowledge spillover effects between the conventional DID and
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over periods before and after the treatments are displayed in Figure 4.5. The plot indicates
that the treatment and control groups are balanced in green FDI firms’ knowledge stocks
in the pre-treatment periods. In contrast, the treatment group experiences a gradual and
persistent increase in green FDI firms’ knowledge stocks in the post-treatment periods and
generates a significant difference compared with the control group. The specific magnitude
of corresponding coefficients is displayed in Table 4.A.5.

Second, inspired by Gentzkow (2006), I control for industrial factors that explain as much
as possible whether an industry encourages green FDI (i.e., the selection of the treatment
group).20 However, a manual search and selection of key industrial factors involve consid-
erable subjective judgement, which cannot well ensure most of the key determinants are
covered. I resort to the least absolute shrinkage and selection operator (LASSO) to per-
form an automatic variable selection, to largely avoid the subjective bias in the selection of
key factors. Specifically, I add to the model 14 pre-open (prior to 2002, i.e., the first wave
of the Catalogue change during the sample period 2000-2013) industry-level factors that
have abundant pre-open observations and capture most of the important dimensions of
industrial development.21 The variable selection process ultimately singles out 8 industrial
factors as the key determinants (number of firms, output, average number of employees,
average wage, HHI, new product intensity, R&D expense, and green patent stock), which
possess the largest explanatory power to the selection of the treatment group while avoid-
ing the overfitting of the model.22 Then I add the interaction terms between year fixed
effects λt and the 8 industry-level key determinants in pre-open periods (average in 2000
and 2001) to the regression models to control for endogenous selection of which industry

two-stage DID, which are shown in Table 4.A.3 in the Appendix. The horizontal spillover results of the
two-stage DID are very close to the results of conventional DID, which suggests the results of downstream
and upstream knowledge spillover effects can be reliable even if they are unable to be estimated by the
two-stage DID strategy.

20While it may not completely eliminate the possibility of other policy confounders, this approach can
control for the majority of potential confounders that influence the selection of the treatment assignment
and enhance the exogeneity of the estimation as much as possible.

21The 14 industry factors include the number of firms, the average age of firms, output, sales, capital,
the average number of employees, average wage per employee, new production intensity, export, export
intensity, Herfindahl-Hirschman Index (HHI), R&D expense, total patent stock, green patent stock. They
are taken average over 2000 and 2001.

22Among three major methods of the LASSO, I choose the adaptive method because it provides nearly the
lowest deviance while further reducing the overfitting issue compared with the cross-validation method.
The plug-in method does not perform well in the variable selection.
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encourages green FDI.23 The results are discussed in the robustness checks and do not
challenge the conclusion.

There is another considerable concern that the FDI opening-up policy may affect the
domestic firms’ green innovation via other channels beyond the increasing presence of green
FDI firms’ knowledge stocks. For example, when an industry encourages green FDI, it not
only increases the knowledge stocks of green FDI firms but also the knowledge stocks of non-
green FDI. The non-green FDI firms’ knowledge stocks may indirectly influence domestic
firms’ green innovation. To control this additional channel, I construct the knowledge
stocks of non-green FDI firms in the horizontal, downstream, and upstream industries.24

Then I add the measures of the non-green FDI firms’ knowledge stocks as additional
covariates to the regression models, to control for the possible impacts via the non-green
FDI channel.

The second possible channel is associated with firm sorting behaviour. Firms may decide
to adjust their operating industries in response to the FDI policy changes when certain
industries become more open to FDI. The green innovation of domestic firms is likely to be
influenced by some firms moving in or out of certain industries. I remove all of the firms
that change industries throughout the sample period to avoid the possible channel via the
firm sorting behaviour. I discuss the robustness checks of the two tests that eliminate
additional channels through which the FDI opening-up policy may affect domestic firms’
green innovation, and the two tests do not change the main results.

23There are two reasons of adding the interactions between year fixed effects and pre-open key determinants
rather than directly adding the time-varying key determinants as controls to the model: (1) Some key
determinants have missing values in several periods (e.g., R&D expense, export), and therefore using
these time-varying control variables will largely shrink the observations. (2) These time-varying key
determinants are very likely to be also affected by the treatments. Such reverse impacts by the treatments
may open new spurious paths between the treatments and the outcomes and therefore deliver poorer
estimates of the causal effects, which is known as the "bad control" problem (Zeldow and Hatfield, 2021;
Callaway, 2022; Caetano et al., 2022). Hence, adding more time-varying control variables probably
affected by the treatments leads to higher possibilities of bringing in extra biases of the estimations. The
strategy of using interaction terms not only confine key determinants to pre-treatment periods but also
takes into account the changes of key determinants in future periods, which is an alternative way to
capture the time-variation of key controls while avoiding the "bad control" problem.

24The construction of non-green FDI knowledge stocks is similar to Eq (4.2), (4.3), and (4.4), and the only
change is the binary indicator from I(GrF DIjt) to I(NonGrF DIjt), which denotes if foreign-invested
firm j having received non-green FDI at year t.
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4.4 Empirical Results

4.4.1 Main Results

Table 4.2 summarises the main results for the knowledge stocks of green FDI and green
innovation of domestic firms. I start with estimating the baseline model Eq (4.1) without
using the instrumental variables. Columns (1) to (3) reports the correlation between green
FDI firms’ knowledge stocks and domestic firms’ green patent family count. The explan-
atory variable in Columns (1) to (3) represents the knowledge stocks of green FDI firms in
the same (horizontal) industry, the downstream industries, and the upstream industries,
respectively. The coefficients in the first three columns are statistically insignificant and
seemingly indicate that domestic green innovation is not associated with knowledge res-
ulting from green FDI firms. However, the coefficients in Columns (1) to (3) do not tease
out the impacts of green FDI firms’ knowledge stocks but contain many unclear factors
that both influence green FDI and domestic green innovation, even if conditional on a
group of control variables and fixed effects. Such endogeneity problems create difficulties
in identifying how much green FDI firms’ knowledge stocks affect domestic firms’ green
innovation.

Therefore, I correct the endogeneity problems by using instrumental variables of green FDI
firms’ knowledge stocks. The corresponding results are reported in Columns (4) to (6) of
Table 4.2. The explanatory variable in the first-stage estimation captures the openness
of an industry covering green products to FDI after the changes in the FDI opening-
up policy in China. Column (4) in the first-stage estimation shows that the instrument
GrFDIOpenHori

it has a positive and statistically significant effect on GrFDIKnowHori
it ,

confirming the relevance of the instrument that more knowledge stocks of green FDI firms
exist in an industry if this industry becomes more open to green FDI. Moreover, I report
the Cragg-Donald Wald F-statistic and Kleibergen-Paap rk Wald F-statistic to detect
the weak instrumental variable problem. Cragg-Donald Wald F-statistic is valid when
errors are independent and identically distributed (i.i.d), while Kleibergen-Paap rk Wald
F-statistic is valid when errors are not i.i.d. The result in Column (4) shows that the Cragg-
Donald statistic and Kleibergen-Paap statistic are both larger than the 10% critical value
by Stock and Yogo (2002), rejecting the null hypothesis that the instrumental variable for
horizontal green FDI firms’ knowledge stocks is subject to the weak IV problem. After
being instrumented, the explanatory variable of Column (4) in the second-stage estimation
identifies the impact of green FDI firms’ knowledge stocks on domestic firms’ green patent
counts. The coefficient suggests that knowledge stocks of green FDI within the same
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Table 4.2: Knowledge Stocks of Green FDI Firms and Green Innovation of Domestic Firms

Dependent Variable: Green Patent Family Count
Knowledge Stock of: Horizontal

GrFDI
Downstream

GrFDI
Upstream

GrFDI
Horizontal

GrFDI
Downstream

GrFDI
Upstream

GrFDI
(1) (2) (3) (4) (5) (6)

Second-stage Estimation

GrFDI Know 0.148 0.026 0.237 0.000 0.732** 2.512*
(0.091) (0.149) (0.236) (0.263) (0.357) (1.393)

Observations 51,296 51,296 51,296 51,296 51,296 51,296
First-stage Estimation

Dependent Variable: GrFDI Know

GrFDI Open 0.845*** 1.570*** 0.376*
(0.157) (0.385) (0.208)

Observations 384,297 384,297 384,297
CD Wald F-statistic 33165 55003 15849
KP Wald F-statistic 29.07 16.60 9.131
Estimation Poisson Poisson Poisson Poisson&IV Poisson&IV Poisson&IV
Firm Controls Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Industry FE Y Y Y Y Y Y
Province FE Y Y Y Y Y Y

Notes: Dependent variable is firm green patent family count. Columns (1) to (3) show results for Poisson re-
gression. GrFDIKnow is classified into three types: the knowledge stocks of green FDI firms in the same in-
dustry (Horizontal GrFDI), in downstream industries (Downstream GrFDI), and upstream industries (Upstream
GrFDI). All knowledge stocks indicators are in logarithms. Columns (4) to (6) show results for two-stage IV es-
timation: the first-stage estimation is OLS, and the second-stage estimation is Poisson regression. GrFDIOpen is
the instrumental variable used in the first-stage estimation and captures if the same industry (Horizontal GrFDI),
downstream industries (Downstream GrFDI), and upstream industries (Upstream GrFDI) are identified as "Green
FDI Encouraged Industry" (i.e., includes green products more opened up to FDI while no green products less
opened up to FDI during FDI regulation changes). CD Wald F-statistic denotes Cragg-Donald Wald F-Statistic,
and KP Wald F-statistic denotes Kleibergen-Paap rk Wald F-statistic. Stock-Yogo critical values for weak identi-
fication test (Cragg-Donald and Kleibergen-Paap rk Wald F statistics) are 16.38 at 10% and 8.96 at 15% maximal
IV size. All columns contain firm control variables, firm fixed effects, year fixed effects, industry fixed effects, and
province fixed effects. Standard errors in the parentheses are clustered at the industry level. ***, **, *, indicate
significance at 1% level, 5% level, and 10% level, respectively.

industry has an insignificant effect on the green innovation of domestic firms. The muted
horizontal knowledge spillover effects of green FDI echoes the mixed conclusions in the
existing literature of whether domestic firms benefit from or suffer from FDI in the same
industry. (Aitken and Harrison, 1999; Javorcik, 2004; Newman et al., 2015; Lu et al., 2017;
Chen et al., 2022). On one hand, domestic firms may benefit from foreign entrants by
observing, imitating, or reverse-engineering the new products and technologies brought by
FDI. On the other hand, the entry of FDI may crowd out domestic firms in the market due
to the advantages of new products or technologies and lead to the market-stealing effect.
The two simultaneous but opposite effects may be offset and lead to an insignificant effect
of knowledge stocks resulting from green FDI firms within the same industry.
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Column (5) reports the results for knowledge stocks of green FDI firms in downstream
industries. After being instrumented, the coefficient in Column (5) in the second-stage es-
timation reports a positive and statistically significant effect of green FDI firms’ knowledge
stocks from downstream industries on domestic firms’ green patents. This finding suggests
the knowledge spillovers from downstream green FDI to domestic firms and a 1% increase
in downstream green FDI firms’ knowledge stocks can lead to roughly 0.732% increase in
green patents of domestic firms.25 Such finding implies that domestic firms can benefit from
green FDI firms’ knowledge by becoming suppliers to green FDI firms, which echoes some
flagship industrial policies in China, such as public procurement and local content require-
ment in renewable energy industries. Although not specialising in green products initially,
Chinese domestic firms took advantage of their lower cost of manufacturing and entered
the supply chains as suppliers of components to foreign companies. During the integration
into the supply chains of green products, domestic firms can benefit from absorbing green
knowledge resulting from FDI firms. This process helps domestic firms gradually build up
their own green innovation capacities, take a more important role in the supply chains,
develop new green products with more competitiveness, and ultimately dominate local and
penetrate global green markets.

Column (6) presents the results for knowledge stocks of green FDI firms in upstream in-
dustries. In the first-stage estimation, the coefficient shows a much weaker correlation
between the openness of upstream industries to green FDI GrFDIOpenUp

it and the know-
ledge stocks of green FDI firms in upstream industries GrFDIKnowUp

it . Although the
Cragg-Donald statistic is larger than the 10% critical value, the Kleibergen-Paap statistic
is only larger than the 15% critical value but smaller than the 10% critical value. The
Kleibergen-Paap statistic offers a more valid test as the standard errors in my regression
are clustered at the industry level and are not i.i.d. The weak identification test raises
the concern of the weak instrumental variable problem for the knowledge stocks of green
FDI firms in upstream industries. After being instrumented, the coefficient in Column (6)
displays a slightly positive and statistically significant effect of upstream green FDI firms’
knowledge stock on domestic firms’ green innovation. This finding indicates that domestic
firms may learn green technologies embedded in the intermediate goods supplied by green
FDI firms. The inputs supplied by upstream green FDI may be accompanied by additional
services or technical supports that also facilitate the knowledge absorption of domestic
customers and users. Such learning may as well generate green knowledge spillovers from

25Since the independent variable is transformed into the logarithm and the estimated model is Poisson
regression, the estimated coefficients can be interpreted as the elasticity of the outcome variable (domestic
firms’ green patents) with respect to the independent variable (green FDI firms’ knowledge stocks).
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foreign-invested suppliers to domestic firms. However, the possible existence of the weak
instrumental variable problem threatens the solidity of the estimation and reminds the
caution in concluding the knowledge spillovers from upstream green FDI. Further tests are
conducted in the robustness checks.

4.4.2 Robustness Checks

I conduct a battery of robustness checks on the main results to examine the stability of
the coefficient estimates.

Non-random instrumental variables. As discussed in Section 4.3.2, the selection of
when and which industries become more open to green FDI may be non-random and vi-
olates the parallel trend assumption of using the DID instrumental variable. I use two
strategies to tackle this issue. First, I conduct an event study to check if there is a signi-
ficant difference in the pre-treatment periods. Figure 4.5 shows the estimated coefficients
across periods. There is no evidence of significant difference existing in the pre-treatment
periods, which provides support for the parallel trend assumption. Second, I use the
LASSO to extract key determinants that sufficiently explain the non-random selection in
which industries become more open to green FDI during the changes in the FDI opening-up
policy. Then I add interaction terms between year fixed effects and the key determinants
to control for endogenous selection of the treatment group while avoiding the "bad control"
problem as far as possible. The corresponding results, shown in Table 4.A.6, are similar
to the main results in Table 4.2.

Instrumental variables affecting outcomes via other channels. The instrument,
the FDI opening-up policy, may affect domestic firms’ green innovation via the other chan-
nels beyond the key endogenous variable green FDI firms’ knowledge stocks, according to
the discussion in Section 4.3.2. My robustness checks eliminate two typical channels to
alleviate this concern. First, I add the measures of the non-green FDI firms’ knowledge
stocks as additional controls to remove the possible effect of the FDI opening-up policy on
the outcomes via non-green FDI. The corresponding results are shown in Table 4.A.7. The
results are generally similar to the main results in Table 4.2, except the insignificant coeffi-
cient of the instrumental variable GrFDIOpenUp

it for upstream green FDI firms’ knowledge
stocks GrFDIKnowUp

it in Column (3). The insignificant coefficient of the instrument in
Column (3) and the Kleibergen-Paap statistic much lower than the 15% critical value sug-
gest the weak instrumental variable problem for upstream green FDI knowledge stocks
and hinder the further interpretation of knowledge spillovers from upstream green FDI.
Second, I remove firms that change industries during the sample period to eliminate the
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possible effect of the FDI opening-up policy on the outcomes via firms’ sorting behaviour.
Such robustness test is based on the concern that some firms may adjust their operating
industries in response to the openness of certain industries to green FDI, and ultimately
influence green innovation of domestic firms. The corresponding results are reported in
Table 4.A.8. The robustness check further supports the evidence of knowledge spillover
effects of green FDI in downstream industries on domestic firms’ green innovation.

Controlling for Subsidies. Some literature finds that a large scale of subsidy pro-
grammes are launched by Chinese central and local governments to support R&D activ-
ities of domestic firms (Li, 2012; Haley and Haley, 2013). Particularly, many subsidy
programmes are targeted to renewable energy sectors such as solar and wind energy and
catalyse firms’ investment in the relevant technologies (Wang et al., 2012; Xiong and Yang,
2016). These subsidy programmes boost domestic firms’ generic and green innovation while
probably also affecting green FDI firms’ knowledge stocks. Omitting such an important
policy confounder may bias the results when I estimate the knowledge spillover effects of
green FDI on domestic firms’ green innovation. To relieve this concern, I include the total
amount of subsidies that each firm receives as an additional control variable in the regres-
sions.26 The corresponding results are shown in Table 4.A.9. Although the sample size
shrinks due to the incomplete coverage of firm-level subsidy information, the estimated
coefficients are similar to the main results and do not change the conclusion.

Alternative thresholds of foreign ownership. The knowledge spillover effects of green
FDI may vary due to the ratio of foreign ownership in green FDI firms. Two important
ownership thresholds may have influences. First, a foreign-invested firm with foreign own-
ership less than 25%, though contains foreign investment, is not entitled to preferential
corporate taxation offered for FDI according to China’s Foreign Investment Law. This dif-
ference in the FDI preferential policy may impact the knowledge spillover effects of green
FDI. I therefore reconstruct the knowledge stocks of green FDI by defining I(GrFDIjt) = 1
if foreign-invested firm j is identified as a green FDI firm and has foreign ownership greater
than 25% at year t in Eq (4.2). The corresponding results are reported in Columns (1) to
(3) of Table 4.A.10. Second, the majority foreign ownership (greater than 50%) can ensure
the foreign investors’ absolute control in the operation and management of FDI firms. This
controlling position may alleviate the worries of foreign investors about the enforced tech-
26It would be ideal to extract each specific subsidy policy regarding R&D and green sectors in China, but

Chinese subsidy policies are implemented by governments at different levels and it is very challenging to
collect data on a wide variety of subsidy programmes. Moreover, there is currently no available firm-level
dataset that differentiates the subsidies based on the purposes of subsidies. Although not perfect, firms’
total amount of subsidies can still be a feasible proxy that to some extent controls the effect of subsidies
on domestic firms’ green innovation.
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nology transfer to domestic partners and impact the green knowledge spillovers via FDI.
To capture the knowledge stocks of green FDI firms under the majority foreign ownership,
I re-define that I(GrFDIjt) = 1 only if foreign ownership greater than 50% in the con-
struction of green FDI firms’ knowledge stocks. The corresponding results are reported in
Columns (4) to (6) of Table 4.A.10. The coefficients in Columns (2) and (5) further sup-
port the main results that the knowledge stocks of downstream green FDI firms generate
knowledge spillovers to domestic firms, while results in Columns (3) and (6) further warn
that the upstream green FDI may not generate clear knowledge spillovers.

Alternative definitions of green FDI. This study constructs four approaches to defin-
ing green FDI as discussed in Section 4.2.3. I use the first approach to define green FDI in
the main analyses, i.e., keywords searching in the text description of foreign-invested firms’
business. To check the robustness, I use other developed definitions to define green FDI
and reconstruct the knowledge stocks of green FDI firms. Specifically, I use the second
approach (whether foreign-invested firms own green patents), third approach (whether
foreign-invested firms own green patents that cite prior arts from foreign countries), fourth
approach (whether foreign investors have filed green patents in China), and the intersection
of the first and second approach to defining green FDI in I(GrFDIjt) = 1 from Eq (4.2),
respectively. The corresponding second-stage estimation results are presented in Table
4.A.11. The coefficient estimates based on different green FDI definitions, though vary in
coefficient magnitude, do not significantly change the main conclusion.

4.4.3 Heterogeneity of Innovation

In this subsection, I investigate the knowledge spillover effects of green FDI on the quality
of domestic green innovation, and on innovation in different technological fields.

There are three categories under the Chinese patent system: invention, utility model, and
design patents (Wei et al., 2017). The invention patent requires a more substantial im-
provement related to practical, inventive, and new technical innovations. The utility model
patent corresponds to the improvement in technical solutions to the shape or structure of
an object. The design patent only involves the external appearance of products. Among
the three categories, the invention patent contains the highest requirement of novelty, and
inventiveness, which stands for a higher quality than other categories. I distinguish green
invention and utility model patents as separate dependent variables.27 With the number
of green invention and utility model patent families as dependent variables, Panel A and B

27The design patent is not related to environmental governance, clean production, climate mitigation or
adaptation functionality. Hence, the analysis excludes the design patent.
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in Table 4.3 report the corresponding results. The coefficients in Column (2) indicate that
the knowledge stocks of green FDI firms in downstream industries promote domestic firms’
green invention patents but do not has a clear effect on green utility patents. This finding
suggests that the knowledge spillovers from downstream green FDI contribute more to the
most innovative green patents of domestic firms.

Table 4.3: Heterogeneity of Green Innovation Quality

Knowledge Stock of: Horizontal GrFDI Downstream GrFDI Upstream GrFDI
Second-stage Estimation (1) (2) (3)
Panel A: Dependent Variable: Green Invention Patent Family
GrFDI Know 0.139 1.305* 4.086**

(0.383) (0.673) (1.833)
Observations 30,581 30,581 30,581
Panel B: Dependent Variable: Green Utility Patent Family
GrFDI Know 0.007 0.101 1.383

(0.199) (0.370) (1.388)
Observations 39,080 39,080 39,080
Panel C: Dependent Variable: Green Patent Family Cititation
GrFDI Know 0.285 0.877*** 4.011***

(0.260) (0.313) (1.325)
Observations 43,145 43,145 43,145
Panel C: Dependent Variable: Green Patent Family Cited by Patents outside China
GrFDI Know 0.450 1.186*** 4.144**

(0.320) (0.330) (1.816)
Observations 12,356 12,356 12,356
Firm FE Y Y Y
Year FE Y Y Y
Sector FE Y Y Y
Province FE Y Y Y

Notes: Panel A shows the results for the second-stage estimation, which is Poisson regression. Depend-
ent variable is firm green invention patent family count in Panel A, green utility patent family count
in Panel B, green patent family citation in Panel C, and green patent family cited by patents outside
China in Panel D. GrFDIKnow is classified into three types: the knowledge stocks of green FDI firms
in the same industry (Horizontal GrFDI), in downstream industries (Downstream GrFDI), and up-
stream industries (Upstream GrFDI). All knowledge stock indicators are in logarithms. The first-stage
estimation results are not shown in the table for the sake of brevity. All columns contain firm control
variables, firm fixed effects, year fixed effects, industry fixed effects, and province fixed effects. Stand-
ard errors in the parentheses are clustered at the industry level. ***, **, *, indicate significance at 1%
level, 5% level, and 10% level, respectively.

The number of forward citations received by patents is another widely-used indicator of
patent quality (Hall et al., 2005). Hence, I use the domestic firms’ green patent family
citations as the dependent variable to examine how knowledge stocks of green FDI affect
domestic green innovation quality. The corresponding results are kept in Panel C of Table
4.3. The positive and statically significant coefficient in Column (2) suggests that down-
stream green FDI firms’ knowledge stocks promote domestic high-quality green innovation.

Although overall citations can reflect the value of patents, the citations across borders may
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indicate a distinct value compared with the citations within borders because the cross-
border citations imply a wider applicability and commercial value. Particularly, most of
the Chinese patents are only used within China and do not contribute much to the global
technology frontier. This also casts a doubt on the quality of Chinese patents. To better
capture the quality of green innovation, I extract green patent families that receive citations
outside China, which indicates a clear technology diffusion across borders. Panel D in Table
4.3 shows the results. The similar results as Panel C further justify the knowledge spillover
effects of downstream green FDI.

Table 4.4: Heterogeneity across Green Technological Fields

Knowledge Stock of: Horizontal GrFDI Downstream GrFDI Upstream GrFDI
Second-stage Estimation (1) (2) (3)
Panel A: Dependent Variable: Alternative Energy Patent Family
GrFDI Know 0.509** 0.867** 5.424***

(0.253) (0.398) (1.877)
Observations 21,304 21,304 21,304
Panel B: Dependent Variable: Sustainable Transportation Patent Family
GrFDI Know 0.296 0.432** 2.460**

(0.210) (0.201) (1.156)
Observations 9,635 9,635 9,635
Panel C: Dependent Variable: Energy Conservation Patent Family
GrFDI Know -0.083 0.424 1.765

(0.308) (0.440) (1.852)
Observations 30,429 30,429 30,429
Firm FE Y Y Y
Year FE Y Y Y
Sector FE Y Y Y
Province FE Y Y Y

Notes: Panel A shows the results for the second-stage estimation, which is Poisson regression. Depend-
ent variable is alternative energy patent family count in Panel A, sustainable transportation patent
family count in Panel B, and energy conservation patent family count in Panel C. GrFDIKnow is
classified into three types: the knowledge stocks of green FDI firms in the same industry (Horizontal
GrFDI), in downstream industries (Downstream GrFDI), and upstream industries (Upstream GrFDI).
All knowledge stock indicators are in logarithms. The first-stage estimation results are not shown in the
table for the sake of brevity. All columns contain firm control variables, firm fixed effects, year fixed ef-
fects, industry fixed effects, and province fixed effects. Standard errors in the parentheses are clustered
at the industry level. ***, **, *, indicate significance at 1% level, 5% level, and 10% level, respectively.

Due to the variance in innovation features and business models, green FDI firms’ knowledge
spillovers may have heterogenous impacts on domestic green innovation across green tech-
nological fields. I break down green patents into a more disaggregated level and focus on
three main fields: alternative energy, sustainable transportation, and energy conservation.
The results are presented in Table 4.4. The statistically significant coefficients in Panel
A indicate that domestic innovation in alternative energy is enhanced by the knowledge
stocks of green FDI in the same industry, downstream and upstream industries. The ef-

Knowledge Spillover from Green FDI 130



fects on domestic sustainable transportation innovation are not salient by green FDI firms’
knowledge within the same industry. In contrast, there is no evidence that green FDI can
effectively promote domestic innovation in energy conservation.

4.4.4 Mechanisms of Green FDI Knowledge Spillovers

In this subsection, I explore what mechanism factors can explain the difference in knowledge
spillover effects of green FDI.

Local vs. non-local green FDI. The effects of green FDI firms’ knowledge stocks on
domestic firms’ green innovation may vary with the geographic distance. Domestic firms
located in the regions close to green FDI firms may benefit from a stronger knowledge
spillover from green FDI due to the lower cost of communication and shared local talent
pool. To test whether the distance to green FDI firms makes a difference, I define a binary
variable, LocalFDI, which indicates whether the knowledge stocks are from green FDI
firms located in the same province as the domestic firms. The corresponding results of the
second-stage estimation are reported in the Panel A of Table 4.5. The interaction term
of green FDI firms’ knowledge stocks GrFDIKnow and the dummy variable LocalFDI

captures whether local knowledge stocks of green FDI firms contribute more to domestic
firms’ green innovation. The result in Column (2) suggests that domestic firms’ green
innovation significantly benefit more from local green FDI if domestic firms become local
suppliers of green FDI firms, while the results in Columns (1) and (3) indicate local green
FDI firms’ knowledge does not contribute to domestic green innovation if green FDI is in
the same industry or upstream industries.

Technological Proximity. The main results have shown that domestic firms’ green in-
novation significantly benefits from the knowledge stocks of green FDI firms in the down-
stream industries. The knowledge spillovers across industries may vary with the knowledge
similarity of the industries. A closer technology background between a pair of industries
indicates innovation activities between the two industries are more relevant. The higher
relevance of knowledge basis between industries can facilitate knowledge spillovers and ab-
sorptions. Hence, if the knowledge stocks of green FDI firms derive from the downstream
industries that are closer in technological spectrums, the knowledge spillovers from such
downstream green FDI may contribute more to domestic firms’ green innovation.

To capture the effect of technological proximity on green FDI knowledge spillovers, I start
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Table 4.5: Mechanisms of Green FDI Knowledge Spillovers

Dependent Variable: Green Patent Family Count
Knowledge Stock of: Horizontal GrFDI Downstream GrFDI Upstream GrFDI
Second-stage Estimation (1) (2) (3)
Panel A: Local FDI vs. Non-local FDI
GrFDI Know -0.052 0.413* 0.589

(0.192) (0.229) (0.400)
GrFDI Know×Local FDI -0.085 0.899* 1.526

(0.426) (0.498) (1.035)
Observations 102,386 102,591 102,594
Panel B: Technological Proximity between Industries
GrFDI Know N/A 0.680* 1.440

(0.369) (0.963)
GrFDI Know×FDI IndTechProx N/A 0.059* -0.080

(0.032) (0.053)
Observations 102,596 102,596
Panel C: Environmental Regulation Stringency of Green FDI Origin Countries
GrFDI Know -0.111 0.428* 0.550

(0.479) (0.239) (0.376)
GrFDI Know×FDI OriginEPS 0.009 0.292* 0.619

(0.132) (0.163) (0.424)
Observations 102,596 102,596 102,596
Firm Controls Y Y Y
Firm FE Y Y Y
Year FE Y Y Y
Industry FE Y Y Y
Province FE Y Y Y

Notes: Panel A shows the results for the second-stage estimation, which is Poisson regression. Dependent vari-
able is firm patent family count. GrFDIKnow is classified into three types: the knowledge stocks of green FDI
firms in the same industry (Horizontal GrFDI), in downstream industries (Downstream GrFDI), and upstream
industries (Upstream GrFDI). All knowledge stock indicators are in logarithms. LocalFDI is a binary variable
indicating if the knowledge stock is from green FDI firms within the same province. FDI IndTechProx is a bin-
ary variable indicating if the knowledge stock is from green FDI firms in other industries with large technological
proximity (above the median value). FDI IndTechProx is not applicable for Horizontal GrFDI as technological
proximity is always 1 for the same industry. FDI OriginEPS is a binary variable indicating if the knowledge
stock is from green FDI that originates from countries with environmental policy stringency index higher than
China. The first-stage estimation results are not shown in the table for the sake of brevity. All columns con-
tain firm control variables, firm fixed effects, year fixed effects, industry fixed effects, and province fixed effects.
Standard errors in the parentheses are clustered at the industry level. ***, **, *, indicate significance at 1%
level, 5% level, and 10% level, respectively.

with computing the technological proximity across industries, built upon the approach
proposed by Jaffe (1986):

TechProxidt = TitT
′
dt√

TitT ′
it

√
TdtT

′
dt

(4.6)

where Tit is industry i’s patent portfolio vector up to year t,28 defined as Tit = (Ti1,t, Ti2,t, ..., TiC,t),

28Industry d denotes another industry paired with industry i during the calculation.
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in which Tic,t is the share of patents of industry i in technology class c up to year t.29 The
proximity indicator ranges between 0 and 1, showing the similarity of a pair of industries’
patent distributions across technology classes.

Then I divide each industry pair into high and low groups depending on whether the tech-
nological proximity of an industry pair is larger or smaller than the median value. I define
a binary variable, FDI IndTechProx indicates whether the knowledge stocks derive from
green FDI in the industries with high technological proximity (above the median value)
to the domestic firms’ industry or in the industries with the low technological proximity
(below the median value). The interaction term of GrFDIKnow and FDI IndTechProx

tests whether technological proximity matters in cross-industry knowledge spillovers of
green FDI firms.30 The corresponding results of the second-stage estimation are presen-
ted in the Panel B of Table 4.5. Similarly, the second-stage estimation result in Column
(2) suggests that knowledge from downstream green FDI contributes more to domestic
firms’ green innovation when such downstream green FDI come from the industries close
to domestic firms’ industries in terms of technological proximity. The results in Column (3)
indicate that industrial technological proximity does not play a role in knowledge spillovers
from upstream green FDI.

Environmental regulations in origin countries of green FDI. While environmental
regulations can drive green technological changes within the jurisdictions, they may also
play a role in knowledge spillovers across borders (Popp, 2006). Once green knowledge
has been developed to comply with a specific environmental regulation in one country, it
may be transferred to other countries with lower regulation stringency due to its compet-
itive advantage compared to other potential competitors in the lower-regulating countries
(Dechezleprêtre et al., 2015). This provides an incentive for foreign investors to apply their
green knowledge in the host countries. Therefore, the discrepancy of the environmental
regulation stringency may affect the knowledge spillovers via green FDI.

To examine the role of environmental regulation stringency, I define a binary indicator
FDIOriginEPS to indicate whether the knowledge stocks are from green FDI that ori-
ginates from countries with environmental policy stringency higher than China. The envir-
onmental policy stringency of green FDI origin countries is measured by the Environmental
Policy Stringency (EPS) index, collected from the OECD Statistics database.31 The in-

29Technology classes in the analysis rely on International Patent Classification (IPC) 4-digit code.
30The effect of the knowledge stocks of green FDI firms within the same industry (Horizontal GrFDI) is

not considered in this analysis as the technological proximity is always 1 between the same industry.
31The Environmental Policy Stringency (EPS) index covers all OECD countries and other main non-OECD

economies including Brazil, China, India, Indonesia, Russia, and South Africa.
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teraction term of GrFDIKnow and FDIOriginEPS captures whether environmental
regulation stringency plays an important role in knowledge spillovers of green FDI. The
corresponding results of the second-stage estimation are displayed in the Panel C of Table
4.5. The coefficient in Column (2) indicates that domestic firms’ green innovation bene-
fit from stronger knowledge spillovers from downstream green FDI that originates from
countries with higher environmental regulation stringency.

4.5 Conclusion

There has been a lack of attention to how to define and measure green FDI. Such neglect
leads to considerable noise in quantifying how much FDI contributes to green knowledge
spillovers. This partly explains why there is no consensus on the effects of FDI on pollution,
energy efficiency, or clean technologies in the host countries. However, these mixed findings
may bring troubles for policymaking in many governments of developing countries, because
on one hand they are keen to attract FDI to enhance efficiency or absorb technologies, but
on the other hand they are facing the ambiguities of how much FDI can contribute to their
green economies.

This paper contributes to the literature by developing new definitions of green FDI by util-
ising the characteristics of FDI projects. Based on the newly defined green FDI, I examine
the impacts of green FDI firms’ knowledge stocks on domestic firms’ green innovation. I
further develop an instrumental variable for green FDI firms’ knowledge stocks based on
the changes in FDI opening-up policy in China to better identify the knowledge spillovers
of green FDI. The results show that green innovation of domestic firms does not benefit
from the knowledge of green FDI firms within the same industry, but mostly benefits from
the knowledge of green FDI firms in downstream industries. Specifically, a 1% increase in
downstream green FDI firms’ knowledge stocks contributes to roughly 0.732% increase in
domestic firms’ green patents. Such knowledge spillovers from downstream green FDI imply
that domestic firms absorb green knowledge when they perform as suppliers of green FDI
firms. Using different indicators of green innovation, I find that the knowledge spillovers
from downstream green FDI contribute more to high-quality domestic green innovation.
I further explore some features of knowledge spillovers from downstream green FDI and
find that the knowledge spillovers vary with the location of green FDI, the technological
proximity between industries, and the environmental regulation stringency of green FDI
origin countries. Most of the results remain valid in the robustness checks.

This paper answers how FDI performs as one of the important drivers in the rapid de-

Knowledge Spillover from Green FDI 134



velopment of green industries in China. During the engagement in supply chains led by
foreign companies, Chinese domestic firms strongly focus on the build-up of their own scales
and innovation capabilities, to establish the basis of large-scale production, new techno-
logy innovation, and competitiveness in the markets. Such model of a rapid expansion
in green industries, though along with some debatable measures such as subsidies, public
procurement and local content requirement, may provide other emerging economies with
some implications for a faster path to the green transition. More rapid progress in green
knowledge spillovers and the green transition is critical to achieving global climate targets.
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4.A Additional Tables

Table 4.A.1: Keywords for Green FDI Definition by the Text-mining of Firms’ Business Description

Fields Keywords
Environmental

protection (general)
Environmental protection, environmental governance, environmental treatment, environmental monitoring, environmental testing, environmental countermeasures, environmental restoration, envir-
onmental purification, environmental improvement, environmental sanitation, sanitation machinery, environmental engineering, environmental equipment, environmental technology, environmental
science, environmental research, new environmental materials, environmental test equipment, low-carbon technology, low-carbon science, low-carbon industry, low-carbon products, green products,
green technology, environmentally-friendly, eco-friendly

Pollution control Pollution control, low-carbon emission; air treatment, flue gas purification, exhaust gas purification, carbon capture, emission control, emission reduction, exhaust gas purification, scrubber,
filter material, air purification, dust remover, dust removal equipment, air improvement; water treatment, water governance, water filter, water purifier, water quality monitoring, water quality
improvement, wastewater treatment, wastewater reuse, seawater desalination, brackish water desalination, reclaimed water recycle, reclaimed water treatment, filter membrane; soil remediation,
soil pollution, soil remediation, desertification prevention, soil erosion control, soil erosion prevention, soil conditioning, ecological restoration

Clean energy Clean energy, low-carbon energy, new energy, alternative energy, clean fuel, renewable energy, sustainable energy; wind energy, wind power, wind turbines, power generation blades; solar energy,
solar electric energy, photovoltaic, solar thermal, wind-solar hybrid; hydropower, hydroelectric power, tidal power, ocean power, geothermal energy; cogeneration, thermoelectric production;
hydrogen fuel, hydrogen energy, hydrogen storage; biofuels, biomass fuel, biomass energy, bioenergy, biodiesel

Energy efficiency &
management

Energy efficiency, energy management, energy saving, low-energy consumption; compact fluorescent lamp, diode, heat pumps; electric control systems, distribution switch control, low-voltage
switchgear, transformers, inductors, transformers, rectifiers, sensors, boosters, electricity meters, sensitive components, electrical control system, uninterruptible power supply, integration of
electromechanical equipment, relays, circuit breakers

Battery & sustainable
vehicle

Lithium battery, lithium ion battery, lithium polymer battery, nickel metal hydride battery, power battery, fuel cell, green battery, environmentally friendly battery, pollution-free battery; electric
vehicle, dual fuel car, hybrid car, charging pile

Sustainable agriculture Sustainable agriculture, green agriculture, pollution-free agriculture, organic agricultural, organic farming, low-impact farming, eco-agriculture; biomass resource utilization, biofertilizer, drip
irrigation, water saving irrigation, genetic engineering

Resource saving &
waste management &

recycling

Resource saving, recycling, resource recovery, resource regeneration, resource conservation, resource protection, renewable resource, resource regeneration, comprehensive utilization of resources,
recycled material recovery, waste resource recovery; waste management, waste treatment power generation, waste incineration power generation, biogas power generation, waste heat recovery,
waste heat power generation, waste gas treatment; leftover material production, comprehensive utilization of biology, comprehensive utilization of ash and slag, utilization of waste plastics, exhaust
gas turbine, waste liquid treatment, scrap steel, waste dismantling, scrap metal, oil and gas recovery, comprehensive utilization of electricity

Materials and
components for

renewable energy &
energy efficiency &

sustainable buildings

Rare metals, rare earths, lithium, cobalt, tantalum, tungsten, platinum, silica, silicon rectifiers, graphite, uranium, permanent magnet materials, high temperature insulation, thermoelectric
materials, inorganic heat conduction, monocrystalline silicon, polycrystalline silicon, cross-linked polyethylene, fluorine-free, rare earth hydrogen storage, photoelectric new materials, low-carbon
materials, semiconductors, electronic ceramics, UHMWPE fiber, organic heat carrier, glass fiber, optical fiber, liquid crystal display, liquid crystal cell, silicon wafer, single chip, thin film, polyester
film, optoelectronic film, electronic glass, optoelectronics, nanocomposite, nanotechnology, ultra-thin glass; lightweight building materials, fire-resistant materials, heat insulation materials, heat
preservation materials, thermal insulation materials, fireproof materials, temperature control system equipment, coated glass, adjustable light transmittance glass, glass ceramics, exterior wall
insulation, aerated concrete, insulation system materials

Automation &
intelligence

Automation control, intelligent control, smart grid, smart city, digital control, power automation, distribution automation, intelligent network, building intelligence, electric power automation,
industrial automation

Notes: The table lists the keywords of business activities regarding environmental governance, clean production, clean energy, and green technology. The keywords are used for text-mining the description of foreign-invested
firms’ business scope, which is the first approach to defining green FDI. If a foreign-invested firm’s business description includes keywords listed in the table, this foreign-invested firm is defined as green FDI.
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Table 4.A.2: Entry of Green FDI and Green Innovation of Foreign-invested Firms

Dependent Variable: Green Patent Family
Patent Count Patent Citation

(1) (2)
GrFDI (Text) 0.649* 0.713**

(0.390) (0.351)
GrFDI (GrPat) 2.324*** 2.115***

(0.387) (0.349)
GrFDI (GrPatOutCN) 1.047*** 1.142***

(0.225) (0.229)
GrFDI (FIGrPatCN) -0.117 -0.266

(0.935) (0.765)
Observations 28,645 24,352
Firm Controls Y Y
Firm FE Y Y
Year FE Y Y
Industry FE Y Y
Province FE Y Y

Notes: The table shows the results for the correlation between the entry of green
FDI to foreign-invested firms and their green innovation. Dependent variable is firm
green patent family count and citation. GrFDI is a dummy variable that indicates
whether foreign-invested firms receive green FDI. The regressions for using different
green FDI definitions are separately conducted: "Text" is the first green FDI defin-
ition: whether the text description of FDI business scope includes keywords related
to environmental governance, clean production, clean energy, or green technology.
"GrPat" is the second green FDI definition: whether FDI firms own green patents.
"GrPatOutCN" stands for the third green FDI definition: whether FDI firms own
green patents that cite prior arts from foreign countries. "FIGrPatCN" represents
the fourth green FDI definition: whether FDI firms’ foreign investors have filed green
patents in China. All columns contain firm control variables, firm fixed effects, year
fixed effects, industry fixed effects, and province fixed effects. Standard errors in the
parentheses are clustered at the industry level. ***, **, *, indicate significance at 1%
level, 5% level, and 10% level, respectively.
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Table 4.A.3: Robustness Checks on Two-stage DID

Knowledge Stock of: Horizontal GrFDI
(1) (2)

Panel A: Second-stage Estimation (Dependent Variable: Green Patent Family)
Patent Count Patent Citation

GrFDI Know 0.000 0.285
(0.263) (0.260)

Observations 51,296 43,145
Panel B: First-stage Estimation (Dependent Variable: GrFDI Know)
GrFDI Open 0.845*** 0.845***

(0.157) (0.157)
Observations 384,297 384,297
Firm Controls Y Y
Firm FE Y Y
Year FE Y Y
Industry FE Y Y
Province FE Y Y

Notes: Panel A shows the results for the second-stage estimation, which is Poisson
regression. Dependent variable in Panel A is firm green patent family count and
citation. GrFDIKnow is the knowledge stocks of green FDI firms in the same in-
dustry (Horizontal GrFDI), which is measured in logarithms. Panel B shows the
results for the first-stage estimation, which is OLS. Dependent variable in Panel B
is the knowledge stock of green FDI firms, which is the main exploratory variable
in the second-stage estimation. GrFDIOpen is the instrumental variable used in
the first-stage estimation and captures if the same industry (Horizontal GrFDI) is
identified as "Green FDI Encouraged Industry" (i.e., includes green products more
opened up to FDI while no green products less opened up to FDI during FDI regu-
lation changes). CD Wald F-statistic denotes Cragg-Donald Wald F-Statistic, and
KP Wald F-statistic denotes Kleibergen-Paap rk Wald F-statistic. All columns
contain firm control variables, firm fixed effects, year fixed effects, industry fixed
effects, and province fixed effects. Standard errors in the parentheses are clustered
at the industry level. ***, **, *, indicate significance at 1% level, 5% level, and
10% level, respectively.

Knowledge Spillover from Green FDI 138



Table 4.A.4: Results for Baseline Model (OLS)

Dependent Variable: Green Patent Family Count
Knowledge Stock of: Horizontal

GrFDI
Downstream

GrFDI
Upstream

GrFDI
Horizontal

GrFDI
Downstream

GrFDI
Upstream

GrFDI
(1) (2) (3) (4) (5) (6)

Second-stage Estimation
GrFDI Know 0.010*** 0.010*** 0.020*** 0.011** 0.027** 0.050

(0.002) (0.003) (0.004) (0.006) (0.012) (0.039)
Observations 384,297 384,297 384,297 384,297 384,297 384,297

First-stage Estimation
Dependent Variable: GrFDI Know

GrFDI Open 0.845*** 1.570*** 0.376*
(0.157) (0.385) (0.208)

Observations 384,297 384,297 384,297
CD Wald F-statistic 33165 55003 15849
KP Wald F-statistic 29.07 16.60 9.131
Estimation OLS OLS OLS 2SLS 2SLS 2SLS
Firm Controls Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Industry FE Y Y Y Y Y Y
Province FE Y Y Y Y Y Y

Notes: Dependent variable is firm green patent family count. Columns (1) to (3) show results for OLS regression.
GrFDIKnow is classified into three types: the knowledge stocks of green FDI firms in the same industry (Hori-
zontal GrFDI), in downstream industries (Downstream GrFDI), and upstream industries (Upstream GrFDI). All
knowledge stock indicators are in logarithms. Columns (4) to (6) show results for 2SLS estimation. GrFDIOpen
is the instrumental variable used in the first-stage estimation and captures if the same industry (Horizontal
GrFDI), downstream industries (Downstream GrFDI), and upstream industries (Upstream GrFDI) are identi-
fied as "Green FDI Encouraged Industry" (i.e., includes green products more opened up to FDI while no green
products less opened up to FDI during FDI regulation changes). CD Wald F-statistic denotes Cragg-Donald Wald
F-Statistic, and KP Wald F-statistic denotes Kleibergen-Paap rk Wald F-statistic. Stock-Yogo critical values for
weak identification test (Cragg-Donald and Kleibergen-Paap rk Wald F statistics) are 16.38 at 10% and 8.96 at
15% maximal IV size. All columns contain firm control variables, firm fixed effects, year fixed effects, industry
fixed effects, and province fixed effects. Standard errors in the parentheses are clustered at the industry level.
***, **, *, indicate significance at 1% level, 5% level, and 10% level, respectively.

Knowledge Spillover from Green FDI 139



Table 4.A.5: Results for Dynamic Effects

GrFDI Open Horizontal GrFDI Know
Pre-Open Period 8 0.233

(0.214)
Pre-Open Period 7 0.106

(0.250)
Pre-Open Period 6 0.181

(0.185)
Pre-Open Period 5 0.062

(0.189)
Pre-Open Period 4 0.090

(0.193)
Pre-Open Period 3 0.183

(0.218)
Pre-Open Period 2 0.088

(0.178)
Pre-Open Period 1 0.239

(0.190)
Post-Open Period 0 0.411**

(0.189)
Post-Open Period 1 0.515***

(0.197)
Post-Open Period 2 0.691***

(0.217)
Post-Open Period 3 0.656***

(0.210)
Post-Open Period 4 0.583**

(0.236)
Post-Open Period 5 0.578**

(0.252)
Post-Open Period 6 0.604**

(0.287)
Post-Open Period 7 0.612

(0.441)
Post-Open Period 8 1.021***

(0.351)
Observations 384,301
Firm Controls Y
Firm FE Y
Year FE Y
Industry FE Y
Province FE Y

Notes: The table shows the coefficients for each point estimate in the dynamic
effect plot Figure 4.5. Dependent variable is the knowledge stocks of green FDI
firms in the same industry (Horizontal GrFDI), which is measured in logarithms.
PreOpen Period t is a time dummy variable indicating t periods before the in-
dustry becomes "Green FDI Encouraged Industry" (i.e., the industry includes green
products becoming more open to FDI while no green product becoming less open
to FDI during FDI regulation changes). PostOpen Period t is a time dummy vari-
able indicating t periods after the industry becomes "Green FDI Encouraged In-
dustry". Firm control variables, firm fixed effects, year fixed effects, industry fixed
effects, and province fixed effects are included. Standard errors in the parentheses
are clustered at the industry level. ***, **, *, indicate significance at 1% level, 5%
level, and 10% level, respectively.
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Table 4.A.6: Robustness Checks on Adding Key Determinants

Knowledge Stock of: Horizontal GrFDI Downstream GrFDI Upstream GrFDI
(1) (2) (3)

Panel A: Second-stage Estimation (Dependent Variable: Green Patent Family Count)
GrFDI Know 0.077 0.546** 3.903***

(0.246) (0.276) (1.310)
Observations 51,296 51,296 51,296
Panel B: First-stage Estimation (Dependent Variable: Green FDI Knowledge Stock: GrFDI Know)
GrFDI Open 0.638*** 1.506*** 0.357**

(0.132) (0.348) (0.170)
Observations 384,297 384,297 384,297
CD Wald F-statistic 22360 47319 11305
KP Wald F-statistic 23.24 18.73 9.455
Firm Controls Y Y Y
Key Determinants Y Y Y
Firm FE Y Y Y
Year FE Y Y Y
Industry FE Y Y Y
Province FE Y Y Y

Notes: Panel A shows the results for the second-stage estimation, which is Poisson regression. De-
pendent variable in Panel A is firm green patent family count. GrFDIKnow is classified into three
types: the knowledge stocks of green FDI firms in the same industry (Horizontal GrFDI), in down-
stream industries (Downstream GrFDI), and upstream industries (Upstream GrFDI). All knowledge
stock indicators are in logarithms. Panel B shows the results for the first-stage estimation, which is
OLS. Dependent variable in Panel B is the knowledge stock of green FDI, which is the main explor-
atory variable in the second-stage estimation. GrFDIOpen is the instrumental variable used in the
first-stage estimation and captures if the same industry (Horizontal GrFDI), downstream industries
(Downstream GrFDI), and upstream industries (Upstream GrFDI) are identified as "Green FDI En-
couraged Industry" (i.e., includes green products more opened up to FDI while no green products less
opened up to FDI during FDI regulation changes). The interaction terms between year fixed effects
and eight industry-level key determinants that affect the openness to green FDI are included as con-
trols. CD Wald F-statistic denotes Cragg-Donald Wald F-Statistic, and KP Wald F-statistic denotes
Kleibergen-Paap rk Wald F-statistic. Stock-Yogo critical values for weak identification test (Cragg-
Donald and Kleibergen-Paap rk Wald F statistics) are 16.38 at 10% and 8.96 at 15% maximal IV size.
All columns contain firm control variables, firm fixed effects, year fixed effects, industry fixed effects,
and province fixed effects. Standard errors in the parentheses are clustered at the industry level. ***,
**, *, indicate significance at 1% level, 5% level, and 10% level, respectively.
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Table 4.A.7: Robustness Checks on Controlling Non-green FDI

Knowledge Stock of: Horizontal GrFDI Downstream GrFDI Upstream GrFDI
(1) (2) (3)

Panel A: Second-stage Estimation (Dependent Variable: Green Patent Family Count)
GrFDI Know -0.118 0.996** 3.692**

(0.350) (0.411) (1.460)
Observations 51,296 51,296 51,296
Panel B: First-stage Estimation (Dependent Variable: Green FDI Knowledge Stock: GrFDI Know)
GrFDI Open 0.642*** 1.245*** 0.317

(0.158) (0.398) (0.222)
Observations 355,108 384,297 384,297
CD Wald F-statistic 25493 26077 2889
KP Wald F-statistic 23.93 9.789 2.869
Firm Controls Y Y Y
Non-GrFDI Control Y Y Y
Firm FE Y Y Y
Year FE Y Y Y
Industry FE Y Y Y
Province FE Y Y Y

Notes: Panel A shows the results for the second-stage estimation, which is Poisson regression. De-
pendent variable in Panel A is firm green patent family count. GrFDIKnow is classified into three
types: the knowledge stocks of green FDI firms in the same industry (Horizontal GrFDI), in down-
stream industries (Downstream GrFDI), and upstream industries (Upstream GrFDI). All knowledge
stock indicators are in logarithms. Panel B shows the results for the first-stage estimation, which is
OLS. Dependent variable in Panel B is the knowledge stock of green FDI, which is the main explor-
atory variable in the second-stage estimation. GrFDIOpen is the instrumental variable used in the
first-stage estimation and captures if the same industry (Horizontal GrFDI), downstream industries
(Downstream GrFDI), and upstream industries (Upstream GrFDI) are identified as "Green FDI En-
couraged Industry" (i.e., includes green products more opened up to FDI while no green products less
opened up to FDI during FDI regulation changes). The knowledge stock of non-green FDI is added
as a control variable. CD Wald F-statistic denotes Cragg-Donald Wald F-Statistic, and KP Wald F-
statistic denotes Kleibergen-Paap rk Wald F-statistic. Stock-Yogo critical values for weak identifica-
tion test (Cragg-Donald and Kleibergen-Paap rk Wald F statistics) are 16.38 at 10% and 8.96 at 15%
maximal IV size. All columns contain firm control variables, firm fixed effects, year fixed effects, in-
dustry fixed effects, and province fixed effects. Standard errors in the parentheses are clustered at the
industry level. ***, **, *, indicate significance at 1% level, 5% level, and 10% level, respectively.

Knowledge Spillover from Green FDI 142



Table 4.A.8: Robustness Checks on Removing Firm Sorting

Knowledge Stock of: Horizontal GrFDI Downstream GrFDI Upstream GrFDI
(1) (2) (3)

Panel A: Second-stage Estimation (Dependent Variable: Green Patent Family Count)
GrFDI Know 0.003 0.842** 2.469

(0.349) (0.385) (1.555)
Observations 27,930 27,930 27,930
Panel B: First-stage Estimation (Dependent Variable: Green FDI Knowledge Stock: GrFDI Know)
GrFDI Open 0.867*** 1.620*** 0.437*

(0.157) (0.375) (0.240)
Observations 232,093 232,093 232,093
CD Wald F-statistic 18679 31812 10302
KP Wald F-statistic 30.54 18.63 7.487
Firm Controls Y Y Y
Drop Sorting Firms Y Y Y
Firm FE Y Y Y
Year FE Y Y Y
Industry FE Y Y Y
Province FE Y Y Y

Notes: Panel A shows the results for the second-stage estimation, which is Poisson regression. De-
pendent variable in Panel A is firm green patent family count. GrFDIKnow is classified into three
types: the knowledge stocks of green FDI firms in the same industry (Horizontal GrFDI), in down-
stream industries (Downstream GrFDI), and upstream industries (Upstream GrFDI). All knowledge
stock indicators are in logarithms. Panel B shows the results for the first-stage estimation, which is
OLS. Dependent variable in Panel B is the knowledge stock of green FDI firms, which is the main ex-
ploratory variable in the second-stage estimation. GrFDIOpen is the instrumental variable used in
the first-stage estimation and captures if the same industry (Horizontal GrFDI), downstream indus-
tries (Downstream GrFDI), and upstream industries (Upstream GrFDI) are identified as "Green FDI
Encouraged Industry" (i.e., includes green products more opened up to FDI while no green products
less opened up to FDI during FDI regulation changes). Firms changing industries during the sample
period are removed. CD Wald F-statistic denotes Cragg-Donald Wald F-Statistic, and KP Wald F-
statistic denotes Kleibergen-Paap rk Wald F-statistic. Stock-Yogo critical values for weak identifica-
tion test (Cragg-Donald and Kleibergen-Paap rk Wald F statistics) are 16.38 at 10% and 8.96 at 15%
maximal IV size. All columns contain firm control variables, firm fixed effects, year fixed effects, in-
dustry fixed effects, and province fixed effects. Standard errors in the parentheses are clustered at the
industry level. ***, **, *, indicate significance at 1% level, 5% level, and 10% level, respectively.
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Table 4.A.9: Robustness Checks on Subsidies as Control

Knowledge Stock of: Horizontal GrFDI Downstream GrFDI Upstream GrFDI
(1) (2) (3)

Panel A: Second-stage Estimation (Dependent Variable: Green Patent Family Count)
GrFDI Know 0.106 0.859** 3.142**

(0.285) (0.347) (1.471)
Observations 36,874 36,874 36,874
Panel B: First-stage Estimation (Dependent Variable: Green FDI Knowledge Stock: GrFDI Know)
GrFDI Open 0.749*** 1.448*** 0.361*

(0.149) (0.374) (0.197)
Observations 320,445 320,445 320,445
CD Wald F-statistic 24101 37410 8449
KP Wald F-statistic 25.12 15.01 6.017
Firm Controls Y Y Y
Subsidy Control Y Y Y
Firm FE Y Y Y
Year FE Y Y Y
Industry FE Y Y Y
Province FE Y Y Y

Notes: Panel A shows the results for the second-stage estimation, which is Poisson regression. De-
pendent variable in Panel A is firm green patent family count. GrFDIKnow is classified into three
types: the knowledge stocks of green FDI firms in the same industry (Horizontal GrFDI), in down-
stream industries (Downstream GrFDI), and upstream industries (Upstream GrFDI). All knowledge
stock indicators are in logarithms. Panel B shows the results for the first-stage estimation, which is
OLS. Dependent variable in Panel B is the knowledge stock of green FDI firms, which is the main ex-
ploratory variable in the second-stage estimation. GrFDIOpen is the instrumental variable used in
the first-stage estimation and captures if the same industry (Horizontal GrFDI), downstream indus-
tries (Downstream GrFDI), and upstream industries (Upstream GrFDI) are identified as "Green FDI
Encouraged Industry" (i.e., includes green products more opened up to FDI while no green products
less opened up to FDI during FDI regulation changes). Total amount of subsidies received by each
firm is added as an additional control variable. CD Wald F-statistic denotes Cragg-Donald Wald F-
Statistic, and KP Wald F-statistic denotes Kleibergen-Paap rk Wald F-statistic. Stock-Yogo critical
values for weak identification test (Cragg-Donald and Kleibergen-Paap rk Wald F statistics) are 16.38
at 10% and 8.96 at 15% maximal IV size. All columns contain firm control variables, firm fixed effects,
year fixed effects, industry fixed effects, and province fixed effects. Standard errors in the parentheses
are clustered at the industry level. ***, **, *, indicate significance at 1% level, 5% level, and 10%
level, respectively.
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Table 4.A.10: Robustness Checks on Alternative Foreign Ownership Thresholds

Ownership Thershold: Foreign Ownership > 25% Foreign Ownership > 50%
Knowledge Stock of: Horizontal

GrFDI
Downstream

GrFDI
Upstream

GrFDI
Horizontal

GrFDI
Downstream

GrFDI
Upstream

GrFDI
(1) (2) (3) (4) (5) (6)

Panel A: Second-stage Estimation (Dependent Variable: Green Patent Family Count)
GrFDI Know -0.069 0.717** 1.892 -0.071 0.561** 1.179

(0.288) (0.342) (1.412) (0.238) (0.261) (0.965)
Observations 51,296 51,296 51,296 51,296 51,296 51,296
Panel B: First-stage Estimation (Dependent Variable: Green FDI Knowledge Stock: GrFDI Know)
GrFDI Open 0.780*** 1.507*** 0.385 0.990*** 2.004*** 0.590

(0.133) (0.322) (0.261) (0.181) (0.263) (0.393)
Observations 384,297 384,297 384,297 384,297 384,297 384,297
CD Wald F-statistic 29401 53916 1548 45653 85352 1143
KP Wald F-statistic 34.59 21.90 4.575 30.06 58.21 3.417
Firm Controls Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Industry FE Y Y Y Y Y Y
Province FE Y Y Y Y Y Y

Notes: Panel A shows the results for the second-stage estimation, which is Poisson regression. Dependent variable
in Panel A is firm green patent family count. GrFDIKnow is classified into three types: the knowledge stocks
of green FDI firms in the same industry (Horizontal GrFDI), in downstream industries (Downstream GrFDI), and
upstream industries (Upstream GrFDI). All knowledge stock indicators are in logarithms. Panel B shows the res-
ults for the first-stage estimation, which is OLS. Dependent variable in Panel B is the knowledge stock of green
FDI firms, which is the main exploratory variable in the second-stage estimation. GrFDIOpen is the instrumental
variable used in the first-stage estimation and captures if the same industry (Horizontal GrFDI), downstream indus-
tries (Downstream GrFDI), and upstream industries (Upstream GrFDI) are identified as "Green FDI Encouraged
Industry" (i.e., includes green products more opened up to FDI while no green products less opened up to FDI dur-
ing FDI regulation changes). Only firms with foreign ownership larger than 25% are regarded as FDI in Columns
(1)-(3) and firms with foreign ownership larger than 50% are regarded as FDI in Columns (4)-(6) when construct-
ing the knowledge stock of green FDI firms. CD Wald F-statistic denotes Cragg-Donald Wald F-Statistic, and KP
Wald F-statistic denotes Kleibergen-Paap rk Wald F-statistic. Stock-Yogo critical values for weak identification test
(Cragg-Donald and Kleibergen-Paap rk Wald F statistics) are 16.38 at 10% and 8.96 at 15% maximal IV size. All
columns contain firm control variables, firm fixed effects, year fixed effects, industry fixed effects, and province fixed
effects. Standard errors in the parentheses are clustered at the industry level. ***, **, *, indicate significance at 1%
level, 5% level, and 10% level, respectively.
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Table 4.A.11: Robustness Checks on Alternative Green FDI Definitions

Dependent Variable: Green Patent Family Count
Knowledge Stock of: Horizontal GrFDI Downstream GrFDI Upstream GrFDI
Second-stage Estimation (1) (2) (3)
GrFDI Know (GrPat) -0.058 1.029** 2.251*

(0.509) (0.482) (1.263)
GrFDI Know (GrPatOutCN) -0.082 0.510* 1.296

(0.264) (0.285) (0.866)
GrFDI Know (FIGrPatCN) -0.112 0.496* 0.718

(0.440) (0.287) (0.460)
GrFDI Know (Text&GrPat) 0.000 0.732*** 2.512*

(0.263) (0.357) (1.393)
Observations 51,296 51,296 51,296
Firm Controls Y Y Y
Firm FE Y Y Y
Year FE Y Y Y
Industry FE Y Y Y
Province FE Y Y Y

Notes: The table shows the results for the second-stage estimation, which is Poisson regression. Depend-
ent variable is firm green patent family count. GrFDIKnow is classified into three types: the knowledge
stocks of green FDI firms in the same industry (Horizontal GrFDI), in downstream industries (Downstream
GrFDI), and upstream industries (Upstream GrFDI). All knowledge stock indicators are in logarithms. The
regressions for using alternative green FDI definitions are separately conducted: "GrPat" is the second green
FDI definition: whether FDI firms’ own green patents. "GrPatOutCN" stands for the third green FDI defini-
tion: whether FDI firms own green patents that cite prior arts from foreign countries. "FIGrPatCN" repres-
ents the fourth green FDI definition: whether FDI firms’ foreign investors have filed green patents in China.
"Text&GrPat" means the intersection of the first and second definitions of green FDI: whether the text de-
scription of FDI business scope includes keywords related to environmental governance, clean production,
clean energy, or green technology, and owns green patents. The first-stage estimation results are not shown
in the table for the sake of brevity. All columns contain firm control variables, firm fixed effects, year fixed
effects, industry fixed effects, and province fixed effects. Standard errors in the parentheses are clustered at
the industry level. ***, **, *, indicate significance at 1% level, 5% level, and 10% level, respectively.
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