
LP-based approximation
algorithms for Partial-Ordered

Scheduling and Matroid
Augmentation

Karl Christoph Heinz Walter Stickler

A thesis submitted for the degree of
Master of Philosophy

Department of Mathematics

London School of Economics
and Political Science

December 2023

1

Declaration

I certify that the thesis I have presented for examination for the MPhil degree
of the London School of Economics and Political Science is my own work. The un-
derlying research has been conducted in collaboration with my supervisor Dr Neil
Olver and Dr Franziska Eberle for Chapter 2 and with my supervisor Dr Neil Olver,
Prof. László Végh, and Dr Georg Loho for Chapter 3.

The copyright of this thesis rests with the author. Quotation from it is permitted,
provided that full acknowledgement is made. In accordance with the Regulations,
I have deposited an electronic copy of it in LSE Theses Online held by the British
Library of Political and Economic Science and have granted permission for my thesis
to be made available for public reference. Otherwise, this thesis may not be repro-
duced without my prior written consent.

I warrant that this authorisation does not, to the best of my belief, infringe the
rights of any third party.

2

Abstract

In this thesis, we study two NP-hard problems from Combinatorial Optimiza-
tion, from the perspective of approximation algorithms.

The first problem we study is called Partial-Order Scheduling on Parallel Ma-
chines, which we abbreviate to PO Scheduling. Here, we are given a partially ordered
set of jobs which we want to schedule to a set of machines. Each job has some weight
and some processing time associated to it. On each machine, the order of the jobs
scheduled to it must agree with the given partial order, i.e., a job can only be started
once all its predecessors scheduled to the same machine have been completed. How-
ever, two jobs scheduled to different machines are not constrained in any way. Thus,
PO Scheduling deviates from the well-studied problem of precedence-constrained
scheduling in this regard. The goal of PO Scheduling is to find a feasible schedule
which minimizes the sum of weighted completion times of the jobs. PO Schedul-
ing generalizes an already NP-hard version of scheduling introduced by Bosman,
Frascaria, Olver, Sitters and Stougie [3], where they ask the same question as in
PO Scheduling for the case where the jobs are totally ordered. The authors above
present a constant-factor approximation algorithm for their problem. We conjecture
that there is a constant-factor approximation algorithm for PO Scheduling as well.
While we do not solve the problem, we give approximation algorithms for the spe-
cial case that the partial order consists of disjoint totally ordered chains of linearly
bounded length. Additionally, we give a structural result for optimal schedules in
the case that the partial order consists of disjoint, backwardly ordered (with regard
to the Smith-ratio) chains. We point towards some potential research directions.

For the Weighted Tree Augmentation Problem, we are given a graph with a dis-
tinguished spanning tree. Each non tree-edge has a cost associated to it. The goal
is to find a cost-minimal set of edges such that when we add them to the tree-edges,
the resulting graph is 2-edge-connected. Weighted tree augmentation is NP-hard.
There has been recent progress in decreasing the best-known approximation factor
for the problem by Traub and Zenklusen to (1.5 + ε) [51, 52]. We study a general-
ization of weighted tree augmentation, called the Weighted Matroid Augmentation
Problem, which we abbreviate to WMAP. In WMAP, we consider a matroid with a
distinguished basis and a cost function on the non-basis elements. The goal is to find
a cost-minimal set such that the union of the fundamental circuits of the elements in
the set with regard to the distinguished basis cover that basis. We conjecture that
there is a 2-approximation algorithm for the problem in the case that the matroid is
regular. While we do not solve the problem, we give an approximation algorithm for
the special case of the cographic matroid and show that there is no constant-factor
approximation algorithm for WMAP for representable matroids unless P = NP.

3

Acknowledgements

I would like to thank the whole Department of Mathematics at LSE, and in
particular my supervisor, Dr Neil Olver. Thanks a lot for the time spent discussing
problems with me, for all information and research problems provided and for giving
me an inside into the work and life of a member of academia. The same holds for my
second supervisor Prof. László Végh, the entire Operations Research Group at the
Department and for all members of the Department I have interacted and worked
together with.

I want to especially thank the people I have worked together with on the prob-
lems which are presented in this thesis. For the problem of Partial-Order Scheduling
on Parallel Machines, these are Dr Neil Olver and Dr Franziska Eberle. For the
Weighted Matroid Augmentation Problem, these are Dr Neil Olver, Prof. László
Végh and Dr Georg Loho. Thanks a lot for the time spent discussing together and
trying to solve the problems presented. I also want to thank all other people who
I’ve worked together with on different projects and everyone who supported me in
writing this thesis by giving comments or by engaging in discussions about the ma-
terial.

I would like to thank all PhD students and post-doctoral researchers for enhanc-
ing my stay in London and for forming an enriching social group at the Department.

Last, I also want to thank the NWO for providing me with financial support
through a Vidi grant awarded to my supervisor Dr Neil Olver.

4

Contents

1 Introduction 6
1.1 Approximation Algorithms . 8
1.2 Notation and Definitions . 9

2 Partial-Order Scheduling on Parallel Machines 11
2.1 Problem Description and Motivation 11

2.1.1 Notes on the Setup and the Multiple-Chains Case 13
2.2 Total-Order Scheduling on Parallel Machines 15
2.3 Results for the Multiple-Chains Case 18

2.3.1 Approximation Algorithms for Short Chains 19
2.3.2 A Structural Result on Optimal Schedules for Multiple-Chains 23
2.3.3 An IP Formulation for the Multiple-Chains Case 32

2.4 The Configuration IP . 35
2.4.1 The Configuration LP and its Dual 35
2.4.2 The Dual Separation Problem 37
2.4.3 Approximating Scheduling with Rejection 40

3 The Weighted Matroid Augmentation Problem 47
3.1 Problem Description and Motivation 47
3.2 An Introduction to Matroids . 49

3.2.1 Basic Definitions . 49
3.2.2 Representable Matroids . 50
3.2.3 Totally Unimodular Matrices and Regular Matroids 52

3.3 Approximating the Graphic and Cographic Case 53
3.3.1 The Graphic Matroid Case 54
3.3.2 The Cographic Matroid Case 56

3.4 IP-Formulations and Iterative Rounding 60
3.4.1 An IP-Formulation of WMAP and some Observations 60
3.4.2 Introduction to Iterative Rounding 61
3.4.3 Iterative Rounding for the Graphic and Cographic Case . . . 64

3.5 Seymour Decomposition . 66

5

Chapter 1

Introduction

In this thesis, we consider designing constant-factor approximation algorithms for
two NP-hard problems from the field of Combinatorial Optimization.

In Chapter 2 we discuss the problem of “Partial-Order Scheduling on Parallel
Machines”, which we abbreviate to PO Scheduling. We are given a set of machines
M and a set of jobs J which is equipped with a partial order ≺. Each job j ∈ J
has an integral processing time pj and a weight wj associated to it. A schedule is
an assignment of the jobs to time slots on machines such that a job j is assigned
to pj consecutive time slots on a single machine. The completion time Cj of j in a
schedule is the last time slot j is assigned to. Each machine in each time slot can
have at most one job assigned to it. The goal is to find a valid schedule where the
sum of weighted completion times is minimized. For a schedule to be valid, besides
the conditions stated above, on each machine the order of the completion times of
the jobs scheduled to the machine must agree with the partial order ≺, i.e., when
j ≺ k in the partial order and j and k are scheduled to the same machine, j must be
completed before k can be started. Notably, if j ≺ k but j and k are scheduled to
different machines, there is no constraint on their time slots relative to each other.
This problem can be understood as a variation of precedence-constrained scheduling.
In precedence-constrained scheduling, the restriction on start- and completion times
of related jobs applies over all machines. Intuitively, we can interpret for example
the setting of precedence-constrained scheduling as steps in an assembly line process.
Before the final product can be assembled, each of the constituent parts must be
completed, independent of the machine these parts are being processed. In the
setting of PO Scheduling however, we can think of different jobs requiring different
machine configurations. Thus, jobs have to be processed on each machine in a certain
order, with some changes to the machine configuration between jobs. However,
if two jobs are scheduled to two different machines, they do not constrain each
other. Thus, while formally, precedence-constrained scheduling and PO Scheduling
are quite close, there are significant differences in the set-up and its interpretation.
Alternatively, PO Scheduling generalizes an already NP-hard problem considered by

6

Chapter 1. Introduction

Bosman, Frascaria, Olver, Sitters and Stougie [3] where they ask the same question
as in PO Scheduling for the case where the jobs are totally ordered. We refer
to this problem as TO Scheduling. The authors have presented a constant-factor
approximation algorithm for TO Scheduling. Thus, we can understand our studies
of PO Scheduling as an attempt to extend the result above for the case of a more
general order.

We conjecture that there exists a constant-factor approximation algorithm for
PO Scheduling. We give approximation algorithms for the case that the partial
order consists of disjoint totally ordered chains of linearly bounded length. Addi-
tionally, we give a result on some structural properties of optimal schedules for the
case where the partial order consists of disjoint totally ordered chains, with unit
processing times which are ordered backwardly with regard to their weights, i.e.,
the weights of the jobs only increase along each chain.

In Chapter 3 we discuss the “Weighted Matroid Augmentation Problem”, which
we abbreviate as WMAP. The problem is inspired by recent progress made on the
NP-hard weighted tree augmentation problem (WTAP) by Traub and Zenklusen
[52]. In WTAP, we are given a graph G = (V,E), a spanning tree T ⊆ E and a
cost function c : E\T → R. The goal is to find a cost-minimal set S ⊆ E\T such
that the graph (V, T ∪ S) is 2-edge-connected. This problem (and variations of it)
are for example studied in the context of designing robust networks, when we want
to ensure that a given network remains connected even if some links fail. Traub
and Zenklusen improved the approximation factor on this problem below 2, making
progress after a long time. We will see that WMAP is a generalization of WTAP.
In WMAP, we are given a matroid M = (E, I) with a distinguished basis B and a
cost function c : E\B → R. The goal is to find a cost-minimal set S ⊆ E\B such
that the union of the fundamental circuits C(s,B) of all s ∈ S cover B.

We conjecture that there is a 2-approximation algorithm for WMAP for the case
that the matroid is regular. We show that there is no constant-factor approximation
algorithm for WMAP even for representable matroids unless P = NP. Next, we dis-
cuss how WTAP can be understood as a special case of WMAP, more specifically,
how WTAP arises when we consider WMAP for the case of a graphic matroid. We
re-contextualize two well-known 2-approximation algorithms for WTAP in terms of
WMAP. We give a 2-approximation algorithm for WMAP for the case that the ma-
troid is cographic. Based on the algorithms for these two cases, we discuss potential
ways forward to tackle designing a 2-approximation algorithm for WMAP for regu-
lar matroids.

Definitions specific to the problems are discussed in the relevant chapters. For
each of the problems, as mentioned, we give partial results, discuss what techniques
we have deployed so far to try to solve the problems and what roadblocks we have
encountered. We also state open directions which can be pursued to settle the
conjectures. For now, we give a quick overview of approximation algorithms in

7

Chapter 1. Introduction

Section 1.1 and state relevant notation and definitions used throughout the thesis
in Section 1.2.

1.1 Approximation Algorithms

As mentioned, in this thesis we consider finding approximation algorithms for two
problems. We start by giving a quick introduction to the topic of approximation al-
gorithms. A thorough overview of the field can be found in textbooks by Williamson
and Shmoys [58] and Vazirani [57]. The definitions and notation used is this thesis
follows mostly [58].

Many interesting problems which are studied in Combinatorial Optimization are
NP-hard, including the ones we discuss in the following chapters. Thus, unless
P = NP, we cannot expect to be able to solve all large instances of such problems to
optimality, given our limited resources in processing power and speed. Therefore, a
common approach is to search for a “reasonably good” solution, which we can find
“fast”. This is, we want to find a solution which we can compute in polynomial
time in terms of the input size and which has cost which can be bounded in terms
of the cost of the (unknown) optimum. Throughout the thesis, we assume, unless
stated otherwise, that we are in a minimization setting, i.e., we are trying to find
a solution that satisfies some constraints and minimizes some cost function1. This
gives rise to the definition of an approximation algorithm [58]2:

Definition 1. Consider some optimization problem. Recall that we assume we are
in a minimization setting. An α-approximation algorithm is an algorithm that runs
in polynomial time in terms of the input size of each specific problem instance.
Additionally, for all instances of the problem the algorithm produces a solution with
cost that is bounded above by α times the value of an optimal solution.

We call α the approximation factor of the approximation algorithm. For the
problems discussed in this thesis, we give an overview in the respective chapters over
how the best known approximation factor has developed over time by new approxi-
mation algorithms being introduced. When α ∈ O(1), i.e., when the approximation
factor is a constant, we call the related algorithm a constant-factor approximation
algorithm3. If there is a family of approximation algorithms such that for each ε > 0
there exists a (1 + ε)-approximation algorithm, we call such a family of algorithms
a polynomial-time approximation scheme (PTAS). Note that the run-time of such a

1Note that the definition can equivalently be formulated for a maximization setting [58].
2Note that some authors do not polynomial runtime as part of the definition of an α-

approximation algorithm [24] and would refer to the object in Definition 1 e.g., as an α-
approximation algorithm approximation algorithm with polynomial time bound. We however fol-
low the [58] and [57] and include polynomially bounded runtime as part of the definition of an
α-approximation algorithm.

3Recall again that we assume that we are in a minimization setting. For a maximization setting,
we have to slightly reformulate our statements [58]

8

Chapter 1. Introduction

family of algorithms may depend on ε. However, for each individual algorithm ε is
fixed and thus a constant.

However, some problems are hard to approximate. This can be quantified by
assuming conjectures such as P ̸= NP and then e.g., showing that it is NP-hard to
find an approximation algorithm with a certain approximation factor. Such results
are called inapproximability results. An optimization problem which does not admit
a PTAS (unless P = NP) is called APX-hard. Thus, for such a problem, there exists
some lower bound β > 1 such that no approximation algorithm for the problem has
an approximation factor better than β unless P = NP. When assuming stronger
conjectures then P ̸= NP, stronger inapproximability results can be achieved. One
such assumption is the Unique Games Conjecture (UGC) [27]. The UGC states
that it is NP-hard to find approximate values for certain types of games4. Using the
assumptions above, it can be shown for certain optimization problems that they do
not even admit a constant-factor approximation algorithm. We will encounter one
such problem in Chapter 3.

Throughout the thesis, we assume that the reader has a basic understanding of
standard notions from linear and integer optimization, i.e., is familiar with concepts
such as a linear program (LP), an integer program (IP), algorithms for finding opti-
mal solutions to such programs if they exist, the notion of polytopes and is familiar
with the most relevant related results. A good overview of these topics can be found
in a textbook by Schrijver [42]. A common way to design approximation algorithm
proceeds by formulating the problem as an IP and then solving the linear relaxation,
which means solving an LP. While solving an IP is hard (the decision-version of the
problem is in NP), an LP can be solved in polynomial size in terms of its size (as
long as the LP’s size is polynomial in terms of the input size). The optimal value
obtained from solving the LP (i.e., the linear relaxation) gives us a lower bound on
the optimal value of the original problem. Approximation algorithms based on LPs
often include a step where the optimal LP-solution is transformed or rounded to an
integral solution to achieve a feasible solution to the original IP with cost which can
be bounded by some suitable multiple of the cost of the LP-optimum. Alternatively,
one can sometimes argue that the optimal LP-solution is already integral. We will
encounter such LP-based approximation algorithms in Chapters 2 and 3.

1.2 Notation and Definitions

Let us now define some notation and state some definitions used throughout the
thesis.

Let S be an arbitrary set. By P(S) we denote the power set of S, i.e., the set
of all subsets of S. Let S, T be disjoint sets, i.e., S ∩ T = ∅. We denote by S ·∪ T
the disjoint union of S and T . The disjoint union is the same as the union, i.e.,

4For the sake of brevity, we will not discuss the exact statement of the conjecture here. The
details can be found in [27].

9

Chapter 1. Introduction

S ·∪T = S∪T , we merely use this notation to emphasize that the two sets comprising
the union are disjoint. By |S|, we denote the cardinality of S. Let T ⊆ S be a subset
of S. The incidence vector 1(T) ∈ {0, 1}S is a vector with 1(T)i = 1⇔ i ∈ T . We
treat sets and incidence vectors interchangeably when convenient. Let c, x ∈ R

S .
We define c(x) :=

∑
i∈S cixi. Then, c(T) := c(1(T)) =

∑
i∈T ci. Let c ∈ R

S and
x ∈ RT with T ⊆ S. We define c(x) :=

∑
i∈T cixi.

A relation ≺ on a set S is called a partial order-relation (or simply a partial
order), if for all s ∈ S we have ¬(s ≺ s) and for all s, t, u ∈ S we have if s ≺ t and
t ≺ u then s ≺ u follows. Let < be a partial order. We call < a total order on S if
in addition to the axioms above we have for all s, t ∈ S that either s < t or s = t
or t < s. For some partial order ≺ and for s, t ∈ S we denote by s ⪯ t that either
s ≺ t or s = t. Similarly, s ≤ t denotes that s < t or s = t.

We denote by R≥0 and R>0 the non-negative and positive real numbers. By N≥0

and N>0 we denote the non-negative and positive whole numbers (i.e., the integers
in the latter case). Let Z be the set of the whole numbers. For a ≤ b, a, b ∈ Z, we
denote the set of whole numbers between a and b by [a, b] := {n ∈ Z | a ≤ n ≤ b}.
We define [a] := [1, a] for a ∈ N>0.

Throughout the thesis, we will assume that the reader has a basic understanding
of standard notions from graph theory. A good overview can be found in a textbook
by Bondy [2]. We include here some definitions related to graph theory used more
frequently in this thesis for the sake of being self-contained. Let G be a graph. By
V (G) we denote the set nodes of G and by E(G) the set of edges. If clear from
context, we will drop the dependence on G, i.e., refer to V and E only. For some
k ∈ N>0, G is k-edge-connected if for every pair of nodes u, v ∈ V there are k
edge-disjoint paths in E from u to v. Let W ⊆ V be a subset of the nodes. The
node-induced subgraph G [W] := (W,E′) with E′ := {{u, v} = e ∈ E | u, v ∈W} is
the subgraph of G with node set W and all edges with both endpoints in W . Let
F ⊆ E be a subset of the edges. The edge-induced subgraph G [F] := (V ′, F) with
V ′ := {v ∈ V | ∃e ∈ F : e = {u, v} for some u ∈ V } is the subgraph of G with edge
set F and all nodes which are adjacent to edges in F . A subset T ⊆ E of the edges
is called a spanning tree if (V, T) is connected and does not contain any cycles. Let
r ∈ V be an arbitrary node. We can designate r as the root of a spanning tree T .
Since in a tree, there is a unique path between every pair of nodes, for each node
u ∈ V , we can define the descendants (nodes v ∈ V , where the unique path from
r to v goes through u) and the predecessors (nodes v ∈ V , where the unique path
from r to u goes through v) of u in terms of the tree T .

10

Chapter 2

Partial-Order Scheduling on
Parallel Machines

In this chapter, we consider the problem of “Partial-Order Scheduling on Parallel
Machines”, which we abbreviate as PO Scheduling. In Section 2.1 we define PO
Scheduling and describe its background, motivation, and relation to other problems
in the wider area of scheduling problems. We conjecture that there is a constant-
factor approximation algorithm for PO Scheduling. We show that PO Scheduling is
a generalization of “Total-order Scheduling on parallel machines”, or TO Scheduling,
for which a constant-factor approximation algorithm in known. We give an introduc-
tion to TO Scheduling in Section 2.2 to introduce some definitions and techniques
which will also prove relevant for PO Scheduling. In Section 2.3, we consider an
important special case, the Multiple-Chains Case. We present results on approxi-
mation algorithms for the case when the length of each chain is linear in the amount
of machines and give structural results on the optimal solutions. Last, in Section
2.4 we consider the general case of PO Scheduling. There, we present a different
approach on how to tackle the problem of designing an approximation algorithm via
the Configuration IP.

2.1 Problem Description and Motivation

Scheduling is a very well studied class of problems in Combinatorial Optimization.
Usually, for scheduling we are given a set of jobs J with n := |J | and a set ofmachines
M with m := |M |. Each job j ∈ J has a processing time pj and often a weight wj

associated with it. We also have a set of time slots T . A schedule S : J → M × T
is an assignment of jobs to time slots on machines. Usually, there are some further
constraints a schedule has to satisfy to be feasible. The goal is to find a feasible
schedule that is optimal with regard to some given objective function. There is a
vast variety of different scheduling problems both in terms of additional constraints
imposed for a schedule to be feasible and in terms of the objective function. To

11

Chapter 2. Partial-Order Scheduling on Parallel Machines

deal with the different cases, Graham, Lawler, Lenstra and Kan [20] introduced the
three-field notation to denote different types of scheduling problems, which is still
being updated to deal with new variations of scheduling being introduced1.

A classic and well-studied type of scheduling problems is precedence-constrained
scheduling [9, 38, 7, 22, 43]. Here, the job-set J is equipped with a partial order
≺. In a prominent version of the problem, each job j ∈ J must be assigned to
pj consecutive time slots on a single machine (i.e., non-preemptive setting, no job-
splitting). The job j can be scheduled to any machine and all machines are able
to complete a job in the same amount of time pj (i.e., parallel machines). We
call the first time slot a job j ∈ J is scheduled to the start time C ′

j of j, and the
last time slot j is scheduled to we call the completion time Cj of j. Note that
Cj = C ′

j + pj by our earlier requirements. If j ≺ k for some j, k ∈ J , the jobs
must be scheduled in such a way that Cj ≤ C ′

k. The goal is to minimize the sum
of weighted completion times

∑
j∈J wjCj

2. This problem is NP-hard [56] already
for the case of unit weights and unit processing times, i.e., for wj = 1 and pj = 1
for all j ∈ J . Thus, a common approach is to design approximation algorithms to
find near-optimal solutions. For the problem described above, the currently best
known approximation factor is 2+2 ln (2)+ ε for each ε > 0 [35]. A great survey on
different versions of precedence-constrained scheduling and other related problem
can be found in [6].

Next, we consider a variation of precedence-constrained scheduling we refer to
as “Total-Order Scheduling on Parallel Machines”, abbreviated as TO Scheduling.
Here, the job set J is equipped with a total order <. Again, each job j ∈ J must be
scheduled to pj consecutive time slots on a single machine, j can be scheduled to any
machine and all machines are able to complete a job on the same amount of time
pj . If j < k are scheduled to the same machine, we must again have that Cj ≤ C ′

k.
However, if j and k are scheduled to different machines, there are no constraints,
i.e., job k can be completed before job j is started. We say, on each machine, the
order of the completion times of the jobs scheduled to the machine must agree with
the order <. The of goal is again to minimize the sum of weighted completion
times

∑
j∈J wjCj . We can understand TO Scheduling as a variation of precedence-

constrained scheduling where the ordering of the jobs is only relevant on a per-
machine basis. This problem was introduced by Bosman, Frascaria, Olver, Sitters
and Stougie [3]. The authors present a constant-factor approximation algorithm for
this NP-hard problem.

In this chapter, we consider a generalization of TO Scheduling. Instead of the

1We will not describe the notation in greater detail here, for details see [20]. PO Scheduling
does not have a standardized three-field notation. We propose using local-PO-prec to describe the
constraint-type, given the similarities to precedence-constrained scheduling. Thus, PO Scheduling
as described would be denoted P |local-PO-prec|

∑
j wjCj in the extended three-field notation. For

some of the scheduling problems mentioned, we give the three-field notation for the interested reader
when applicable.

2The specific problem we describe here is referred to as P |prec|
∑

j wjCj in the three-field nota-
tion by [20].

12

Chapter 2. Partial-Order Scheduling on Parallel Machines

job set J being equipped with a total order, we consider the case of the job set being
equipped with a partial order ≺. Else, the same conditions as in TO Scheduling
apply. In particular, on each machine, the order of the jobs scheduled to it given by
the completion times must agree with the order ≺, as above. To give an example,
assume j ≺ k and j ≺ l for some j, k, l ∈ J . Consider a feasible schedule which as-
signs jobs j and k to the same machine but job l to a different machine. Since j ≺ k,
j must be completed before k can be started, i.e., Cj ≤ C ′

k. However, it is possible
for l to be completed before j is started since they are scheduled to different ma-
chines. We refer to this problem as “Partial-Order Scheduling on Parallel Machines”
which we abbreviate as PO Scheduling. We denote an instance of PO Scheduling by
(J,≺),M . We conjecture that there is a constant-factor approximation algorithm
for PO Scheduling.

Conjecture 2. There is a constant-factor approximation algorithm for PO Schedul-
ing.

Thus, we want to extend the understanding gained by developing a constant-
factor approximation algorithm for TO Scheduling [3] to the case of the set of jobs
being equipped with a partial order instead of a total order.

2.1.1 Notes on the Setup and the Multiple-Chains Case

As mentioned above, there are different angles how TO Scheduling, and thus its
generalization of PO Scheduling, can be motivated. Based on different points of
view, different setups arise. To avoid confusion, we want to introduce two more or
less natural settings and highlight their differences. We will do so by arguing based
on a special case of PO Scheduling, which we call the multiple-chains case. While
both setups can be extended to general partial orders3, we think that the difference
in motivation is most clear for the multiple-chains case.

For the multiple-chains case, consider an instance of PO Scheduling, when the
partial order on J consists of multiple disjoint totally ordered chains. I.e., we can
partition J = J1 ·∪J2 ·∪ ... ·∪Jl into l disjoint subsets. We have Ji = {ji1 , ji2 , ..., ji|Ji|}
with ji1 ≺ ji2 ≺ ... ≺ ji|Ji| for all 1 ≤ i ≤ l. Also, j ̸≺ k if j ∈ Ja, k ∈ Jb for a ̸= b.
As mentioned, we refer to this case as the Multiple-Chains Case. This setting is a
natural case to consider since it is a generalization of TO Scheduling that seemingly
keeps much of the original properties of the problem intact. The multiple-chains
case will be a starting-point for some of the approaches described in this chapter.
Thus, we spend some time discussing properties of this case and give some structural
results for the multiple-chains case in Section 2.3.

Let us now consider the two different setups mentioned earlier for the example
of the multiple-chains case.

3In fact, the second setup we describe is just PO Scheduling as introduced earlier.

13

Chapter 2. Partial-Order Scheduling on Parallel Machines

The first setup we call the conveyor model. Here, we interpret the chains as
different conveyor belts on which jobs are presented. While all jobs arrive at the
first time slot (i.e., no release-times), we can only assign a job to a machine once all
predecessors from the same chain have already been assigned. Intuitively, in terms
of a conveyor belt, we have to take care of the predecessors first, to access the later
jobs. In this interpretation, where we think of assigning jobs to machines one at
a time, the constraints of PO Scheduling arise naturally. However, is this setup,
there are additional constrains on feasible schedules which are not present for PO
Scheduling, as the problem was described above. As a consequence of the conveyor
model, crucially, in any feasible schedule there must be a machine where the job
scheduled to the first time slot is the first job of some chain (in terms of ≺). Thus,
there are some additional constraints on what constitutes a feasible schedule for the
conveyor model. Please consult Figure 2.1 for an example.

The second setup is PO Scheduling as we have introduced it before. Here, we
don’t interpret the different chains as conveyor belts but just as the abstract object
of a partial order. Figure 2.1 shows an instance where the optimal solution for the
conveyor-model and for PO Scheduling differ significantly.

Let us consider the instance with J = {1, 2, A,B} where 1 ≺ 2 and A ≺ B form
two disjoint chains. 1 and A are light jobs, w1 = wA = 1, with long processing times,
p1 = pA = M , for some sufficiently large number M ∈ N>0. 2 and B are heavy jobs,
w2 = wB = M , with short processing times, p2 = pB = 1. We have two machines,
m = 2. In an optimal solution, we want to schedule 2 and B as early as possible.
For PO Scheduling, we can schedule jobs 2 and A to the first machine in this order
and jobs B and 1 to the second machine in this order. Effectively, we get rid of all
constraints related to ≺ since at most one jobs of each chain is scheduled to each
machine. We thus get an optimal value of 2(M ·1)+2 (1 · (1 +M)) = 4M+2 ∈ O(M).
In the conveyor model however, this solution wound not be feasible since as noted
above not both jobs 2 and B can simultaneously be scheduled to the first time slots
of the machines since they are “blocked” by jobs 1 and A. Thus, we could start
by scheduling job 1 to the second machine. Then, we can access job 2 from that
chain and schedule it to the first machine, to get it to the earliest possible time
slot. Next, we can schedule job A on the first machine after job 2. Last, we can
schedule job B to the second machine, after job 1. This gives us an optimal value
of M · 1 + 1 · (1 +M) + 1 ·M +M · (1 +M) = M2 + 4M + 1 ∈ O(M2). In Figure
2.1, we depict the optimal solutions described above. The jobs 1, 2 are depicted in
purple, the jobs A,B are depicted in blue. Each job j ∈ J is represented by a box
with the name of the job (printed in bold type) and the weight wj shown inside.
The processing time pj is indicated via the height of the box. On the “x-axis”, we
show the different machines and on the “y-axis” we show the completion times Cj

for the schedule that is presented. Depictions similar to this will appear at different
point in this chapter.

Thus, we see that we can reach qualitatively different results for the same instance
in the different interpretations. Given these two potential models and their different

14

Chapter 2. Partial-Order Scheduling on Parallel Machines

2,M B,M

A, 1 1, 1

M1 M2

Cj

1

1 +M

An optimal solution for PO Scheduling

1, 1

B,M

2,M

A, 1

M1 M2

Cj

1

M

1 +M

An optimal solution in the conveyor
model

Figure 2.1

behaviors, we want to clarify that throughout this chapter we focus on PO Scheduling
as initially defined. However, the conveyor model might also be an interesting setup
to be studied.

Given the setup described so far, before diving into the possible approaches on
how to design an approximation algorithm for PO Scheduling, in Section 2.2 we give
a quick overview of the methods used to design a constant-factor approximation
algorithm for TO Scheduling. Some of the concepts presented there will be used
there later when working with PO Scheduling. In Section 2.2, we also establish
some notation used throughout this chapter.

2.2 Total-Order Scheduling on Parallel Machines

In this section, we give a brief overview of the constant-factor approximation algo-
rithm for the problem of TO Scheduling as presented by Bosman, Frascaria, Olver,
Sitters and Stougie [3]. We state the major definitions, as many of them will later be
adapted to the partial order setting. We also introduce some of the most important
results, however for the sake of brevity, we do not give any proofs. These can of
course be found in the paper [3].

The main theorem of the paper is that there is a constant-factor approximation
algorithm for TO Scheduling.

15

Chapter 2. Partial-Order Scheduling on Parallel Machines

Theorem 3 ([3]). There is a constant-factor approximation algorithm for TO schedul-
ing with an approximation factor of 27

2 + 9
√
3 < 29.1.

To prove Theorem 3, the authors first show that we only lose a constant factor
when looking for certain types of schedules, which we will describe in the following,
compared to the optimum.

Recall the definition of TO Scheduling from Section 2.1 and let S be a feasible
schedule for TO Scheduling on some input with jobs J and machines M , where J
is equipped with a total order <. Let n := |J | and m := |M |. Since J is totally
ordered, we can identify J := [n] and assume that < is the natural order on [n].
Similarly, we identify M := [m]. For a job j ∈ J , we denote by S(j) ∈ M the
machine j is scheduled to. For a job j with weight wj and processing time pj we
define the Smith-ratio4 ρj :=

wj

pj
. We assume that all Smith-ratios ρj are positive

powers of some γ ∈ (0, 1). This can always be achieved by rounding and scaling the
weights and only loses us a factor of at most 1

γ in the approximation compared to

the optimum. In case not all Smith-ratios are positive powers of γ, let w′
j and ρ′j be

the values before rounding. Set wj such that ρj is the power of γ which is closest to
ρ′j from above. We thus have wj ≤ 1

γw
′
j . We can now scale all weights such that the

Smith-ratios are all positive powers of γ. This only loses us the factor mentioned
above by rounding and scaling the weights as described. Note that this procedure
is not limited to TO Scheduling but works e.g., for PO Scheduling as well.

Intuitively, a job with high Smith-ratio should be scheduled to an early time slot,
as the job has high weight compared to its processing time. We define a new order
<SM via j <SM k if and only if j < k and ρj ≤ ρk. Therefore <SM is a partial order
where jobs are only comparable when they are comparable in the original order and
when they are backwards with regard to their Smith-ratios. Intuitively, we ignore
the original order when jobs are already in the right order with regard to the Smith-
ratio, i.e., when the job with the higher Smith-ratio comes first. We call the new
order <SM the Smith-order.

A schedule S is Smith-monotone if, for every j <SM k, it holds that S(j) ≤ S(k).
First, we consider the case of TO Scheduling with unit processing times, i.e., pj = 1
for all j ∈ J . We say a schedule S is staircase shaped if for every prefix of the
jobs in terms of the total order <, i.e., for 1 < 2 < ... < k for some k ≤ n, the
number of jobs assigned to each machine decreases monotonically with the machine
index. In other words, every prefix of jobs is assigned to machines in such a way
that machines with higher index receive at most as many jobs as machines with
lower index. Thus, in a stair-case shaped schedule, the jobs 1 < 2 < ... < k form a
“decreasing staircase” where machine β has at most as many jobs from [1, k] assigned
to it as has machine α with α ≤ β. Equivalently, we can say that for each job j ∈ J
that S(j) = |{k ∈ J | k < j,Cj = Ck}|+ 1 must hold.

4Based on the work of Smith [50], who conducted much of the early research on scheduling
problems.

16

Chapter 2. Partial-Order Scheduling on Parallel Machines

Lemma 4 ([3]). For unit processing times, there exists an optimal schedule that is
Smith-monotone and staircase shaped.

Note that the concept of a staircase-shaped schedule is only defined for the case
of unit-processing times. For general processing times, an equivalent statement
to Lemma 4 does not hold. However, by focusing on Smith-monotone schedules,
we only lose a constant factor compared to the optimum. Let S be an optimal
Smith-monotone schedule and let S⋆ be an optimal schedule for our instance of TO-
Scheduling. By w(S) we denote the cost of the schedule, i.e., the sum of weighted
completion times.

Lemma 5 ([3]). An optimal Smith-monotone schedule S has cost w(S) at most
3
2w(S

⋆).

Thus, we can focus on finding an optimal Smith-monotone schedule. In the rest
of this section, we focus on TO Scheduling in general, i.e., we won’t assume unit
processing times.

Next, the authors introduce the partial completion time C̃j of a job j ∈ J as
C̃j :=

∑
k≤SM j:S(k)=S(j) pk. Thus, the partial completion time C̃j of a job j ∈ J is

the completion time we would achieve if we only considered the jobs on the same
machine which are earlier with regard to the total order and which have a smaller
Smith ratio. The authors then consider changing the objective function by using the
partial completion time instead of the standard completion time. They show that
both objective values are within a constant factor of each other.

Theorem 6 ([3]). Take an instance where all Smith ratios are positive powers of
γ ∈ (0, 1). Consider any schedule S. It holds that∑

j∈J
wjC̃j ≤

∑
j∈J

wjCj ≤
(

4

1−√γ
− 3

)∑
j∈J

wjC̃j

Given Theorem 6 and from what we have seen so far, we can focus on finding a
Smith-monotone schedule which is optimal under the partial completion time while
assuming that all Smith ratios are positive powers of some γ ∈ (0, 1).

The problem above can be formulated as an IP. For each job j ∈ J , we have
an integer variable uj ∈ [m] where uj = α indicates that j should be scheduled to
machine α. Additionally, for each pair of jobs j, k ∈ J we have a binary variable zkj
where zkj = 1 indicates that j and k are scheduled to different machines. We obtain
the following IP:

min
∑

j∈J wjC̃j

s.t. C̃j ≥ pj +
∑

k<SM j(1− zkj)pk ∀j ∈ J

uj ≥ uk + zkj ∀k <SM j, j, k ∈ J
uj ∈ [m] ∀j ∈ J
zkj ∈ {0, 1} ∀k <SM j, j, k ∈ J

(2.1)

17

Chapter 2. Partial-Order Scheduling on Parallel Machines

Note that the IP 2.1 does not explicitly encode which time slot each job is
scheduled to. However, we can still obtain a valid schedule from the solution since
we know which machine each job is scheduled to while on each machine the order
of jobs is dictated by the total order <. Consider the linear relaxation of the IP
2.1, where we replace the integrality constraints by 1 ≤ uj ≤ m for all j ∈ J and
by 0 ≤ zkj ≤ 1 for all k <SM j, where j, k ∈ J . Since we have polynomially many
constraints, we can find an optimal solution to the linear relaxation in polynomial
time. Let (z⋆, u⋆, C̃⋆) be such an optimal solution. It remains to round this solution
to a feasible integral solution.

To do so, the authors introduce β-point rounding. β-point rounding can be
understood as a variation of α-point rounding, which has been applied in different
setting to scheduling problems [45]. In β-point rounding, for β ∈ (0, 1), the β-point
associated to u⋆ is the schedule obtained by scheduling job j ∈ J to machine ⌈u⋆j−β⌉
and sorting the jobs on each machine according to the total order. β is chosen
uniformly at random from (0, 1), making the β-point schedule a random schedule.
In Proposition 7 the authors show that rounding the schedule in expectation does
not increase cost. This means that there must exist an integral solution with cost
at most the cost of the optimum (z⋆, u⋆, C̃⋆) of the linear relaxation, which can be
found by applying β-point rounding. The authors also discuss how the process can
be derandomized.

Proposition 7 ([3]). For any j ∈ J we have that E[C̃j] ≤ C̃⋆
j . Thus

E

∑
j∈J

wjC̃j

 ≤∑
j∈J

wjC̃
⋆
j .

Combining the statements from Lemma 5, Theorem 6 and Proposition 7, the
authors can prove the main Theorem 3 showing that there is a constant-factor ap-
proximation algorithm for TO Scheduling.

After having seen the main concepts employed to design a constant-factor ap-
proximation algorithm for TO Scheduling, in the next Section 2.3 we return to the
problem of PO Scheduling. We start by considering the multiple-chains case, for
which we will make use of many of the concepts described in this section.

2.3 Results for the Multiple-Chains Case

In this section, as a first step for designing an approximation algorithm for PO
Scheduling, we try to find an approximation algorithm for the multiple-chains case.
This is the special case of PO Scheduling where the partial order consists of multiple
disjoint totally ordered chains. I.e., we can partition J = J1 ·∪ J2 ·∪ ... ·∪ Jl into l
disjoint subsets. We have Ji = {ji1 , ji2 , ..., ji|Ji|} with ji1 ≺ ji2 ≺ ... ≺ ji|Ji| for
all 1 ≤ i ≤ k. Also, j ̸≺ k if j ∈ Ja, k ∈ Jb for a ̸= b. Additionally, we assume
throughout this section that we have unit processing times, i.e., pj = 1 for all j ∈ J .

18

Chapter 2. Partial-Order Scheduling on Parallel Machines

We approach designing an approximation algorithm by deriving a result on the
structure of optimal schedules in Section 2.3.2 which then can be used to give an
IP-formulation for the multiple-chains case in Section 2.3.3. We will see that the
structural result does only add sufficient information for chains from a certain length
onwards. Thus, we discuss “short chains” separately in Section 2.3.1. We show that
we can find separate approximation algorithms for such short chains, independent
of the IP introduced in Section 2.3.3.

2.3.1 Approximation Algorithms for Short Chains

Let (J,≺),M be an instance of PO Scheduling where ≺ consists of l disjoint totally
ordered chains. Let |J | = n and let |M | = m. For 1 ≤ i ≤ l let Ji denote the ith

chain. Recall that we assume pj = 1 for all j ∈ J . We consider the case where all
chains have length linear in the number of machines, i.e., when |Ji| ≤ αm for all
1 ≤ i ≤ l and for some natural number α. We call this case the Short Chains Case.

We first consider the short chains case where α = 1, i.e., when |Ji| ≤ m for all
1 ≤ i ≤ l. Given this, we can consider the following Algorithm.

Algorithm 1: 2-Approximation Algorithm for Short Chains Case for
α = 1
Input : (J,≺),M with pj = 1 for all j ∈ J and where ≺ consists of disjoint

totally ordered chains each of length at most m.
Output : A feasible schedule of J with cost at most twice the optimum.

1 Relabel the jobs by [n] such that wj ≥ wk for all j ≤ k.
2 for j = 1 to n do
3 Consider j and let Ji be the chain that j belongs to.
4 Schedule j to the earliest free time slot on the machine with lowest

current load which doesn’t already have a job of chain Ji scheduled
to it.

5 end
6 Let S be the schedule thus obtained. Return S.

Algorithm 1 assigns jobs one-by-one non-increasingly by weight to the machine
with the smallest number of jobs currently scheduled to it which doesn’t have a
job from the same chain already scheduled to it. Since there are at most m jobs
per chain and m machines, we can always find a suitable machine. Thus, on each
machine, no two jobs are comparable. We will see that we can bound the completion
time of a job being scheduled compared to the case where we spread the jobs evenly
over all machines, ignoring all constraints related to the order ≺.

Lemma 8. Algorithm 1 is a 2-approximation algorithm for the short-chains case
for α = 1.

Proof. First, we show that the algorithm runs in polynomial time in terms of the

19

Chapter 2. Partial-Order Scheduling on Parallel Machines

input size. We can relabel the jobs decreasingly by weight and breaking ties arbi-
trarily in polynomial time. All other steps can be completed in polynomial time as
well. Since the main loop is only executed n times, the algorithm overall runs in
polynomial time.

Next, we show that the solution returned is feasible. Consider some job j ∈ Ji,
for 1 ≤ i ≤ l, which is currently to be scheduled by the algorithm. Since there are m
machines but only at most m jobs per chain, we can always find some machine with
no job of chain Ji already scheduled to it. Thus, on each machine, there is at most
one job of each chain and thus no two jobs on the same machine are comparable
under ≺. Therefore, we trivially have that the constraints related to the order ≺
are satisfied, i.e., on each machine the order of completion times of the comparable
jobs agrees with the order ≺.

Last, we show that the solution returned has the claimed cost. Let S be the
schedule obtained from the Algorithm 1 on the input (J,≺),M and let Cj be the
completion time of job j ∈ J under S. To bound the cost of the schedule S, we first
consider an optimal schedule S∅ of the instance (J, ∅),M , i.e., our original instance
where we don’t have any order constraints. Let S⋆ be the optimal schedule for our
current instance (J,≺),M and let C∅

j and C⋆
j be the completion times of j ∈ J

under S∅ and S⋆ respectively. Since S⋆ is feasible for the instance (J, ∅),M , we have∑
j∈J wjC

∅
j ≤

∑
j∈J wjC

⋆
j ≤

∑
j∈J wjCj . We claim that Cj ≤ 2C∅

j , from which the
lemma would then follow.

Consider some job j ∈ J for 1 ≤ j ≤ n. Note that j is the jth job to be scheduled

since we have relabeled the jobs accordingly. We have C∅
j =

⌈
j
m

⌉
since for (J, ∅),M

we want to put the jobs with the highest weights as early as possible, which we can
do since we don’t have any order constraints5. Consider the partial schedule S′ of
all jobs up to j obtained by the algorithm, i.e., the partial schedule obtained by the
algorithm just after we have scheduled job j. Let Li be the last occupied time slot of
machine 1 ≤ i ≤ m in S′. We re-label the machines such that L1 ≤ L2 ≤ ... ≤ Lm.
Let i be the machine job j has been assigned to by the algorithm. Thus, Li = Cj .
Note that we must have L1 ≤ C∅

j since machine 1 currently has minimal load and
since only j jobs are currently scheduled in S′. Now, consider some machine α and
some job k ∈ Jα, j ̸= k, which is already scheduled in S′ with Ck > C∅

j
6. Let

k ∈ Ja be in chain Ja for some a ∈ [l]. Then, there must be a job of the same chain
Ja scheduled to machine 1 as else job k would have been scheduled to machine 1
by the algorithm. Since this must hold for each job with the same characteristics
on machine α, we must have Lα ≤ C∅

j + L1. Thus, putting the arguments above
together, we can bound the current completion time of j in S′ and thus in S as

5Note that (J, ∅),M describes scheduling without precedence constraints on parallel machines.
C∅ is the same schedule as obtained from applying the well-known greedy algorithm “list scheduling”
(see e.g., [19]). In list scheduling, we assign jobs by non-increasing weight to the earliest free time
slot. In the setting we have described it is well known that list scheduling yields an optimal schedule.

6If no such job exists, we have Co ≤ C∅
o of all o ∈ J and the statement of the lemma follows

trivially.

20

Chapter 2. Partial-Order Scheduling on Parallel Machines

follows: Cj = Li ≤ C∅
j + L1 ≤ 2C∅

j . Therefore, the overall statement follows.

Next, we consider the general short chains case, i.e., where |Ji| ≤ αm for all 1 ≤ i ≤ l
for some natural number α. Let (J,≺) be the given job set, where J = J1 ·∪J2 ·∪... ·∪Jl.
We consider a new job set (J ′,≺′) where we combine tuples of α successive jobs in
a chain into a new single job. More formally, consider jobs jia , jia+1 , ..., jib ∈ Ji for
some 1 ≤ i ≤ l with a = αc + 1, b = min{α(c + 1), |Ji|} for some 1 ≤ c ≤ m. We
combine this set of at most α jobs into a single job j′ic with pj′ic

= 1 and wj′ic
=∑b

d=awjid
. Thus, we obtain a set J ′ = J ′

1 ·∪ J ′
2 ·∪ ... ·∪ J ′

l with J ′
i = {j′i1 , j

′
i2
, ..., j′|J ′

i |
}

and |J ′
i | =

⌈
|Ji|
α

⌉
≤

⌈
αm
α

⌉
= m for 1 ≤ i ≤ l. We define a new order ≺′ on J ′ as

follows: For J ′
i = {j′i1 , j

′
i2
, ..., j′|J ′

i |
} we have j′i1 ≺

′ j′i2 ≺
′ ... ≺′ j′|J ′

i |
. For j′ ∈ J ′

a,

k′ ∈ J ′
b with a ̸= b we have ¬ (j ≺′ k). Intuitively ≺′ is a contracted version of ≺

after combining the tuples of jobs as described above. Note that (J ′,≺′),M is an
instance of the short chains case for α′ = 1. Given this, for the (general) short chains
case, we can state Algorithm 2:

Algorithm 2: 2α-Approximation Algorithm for the (general) short
chains case
Input : (J,≺),M with pj = 1 for all j ∈ J and where ≺ consists of disjoint

chains each of length at most αm for some fixed constant α.
Output : A feasible schedule of J with cost at most 2α the optimum.

1 Compute (J ′,≺′) as described in Subsection 2.3.1.
2 Let S′ be the output of Algorithm 1 of the input (J ′,≺′),M .
3 Consider j′ ∈ J ′. Let ja, ja+1, ..., jb ∈ J be the jobs which were combined

to form j′. Denote by Cj′ be the completion time of j′ in S′. Let S be
the schedule obtained from S′ by scheduling the jobs ja, ja+1, ..., jb
according to the order ≺ in the time slots from (α− 1)Cj′ +1 to αCj′ on
the same machine j′ was scheduled to in S′.

4 Return S.

Intuitively, on each chain, the algorithm combines each set of α consecutive jobs
into a single job with processing time 1. As the original chain has at most αm jobs,
the new chain has at most m jobs. Thus, we can apply Algorithm 1 on the new
instance with the combined jobs. Intuitively, we show that combining each set of
at most α consecutive jobs only loses us a constant factor of α compared to the
objective value of the optimal solution. The rest follows from the proof of Lemma
8.

Theorem 9. Algorithm 2 is a 2α-approximation algorithm for the (general) short
chains case.

21

Chapter 2. Partial-Order Scheduling on Parallel Machines

Proof. We can compute (J ′,≺′) in polynomial time from (J,≺). As noted, |J ′
i | =⌈

|Ji|
α

⌉
≤

⌈
αm
α

⌉
= m for all 1 ≤ i ≤ l. Thus, (J ′,≺′),M is an instance of the short

chains case with α′ = 1. Algorithm 1 runs in polynomial time as shown in Lemma
8. Let S′ be the output of Algorithm 1 on the input (J ′,≺′),M . We can obtain S
from S′ in polynomial time. Thus, the algorithm runs in polynomial time.

By construction of J ′, at most α different jobs of J are combined into a single
job j′. Thus, we give ourselves enough time slots when constructing S from S′ to
schedule all jobs in J which were combined to form j′. In S′, we have at most one
job from each chain per machine. Thus, in S we have at most α jobs from each
chain per machine. By construction, all these jobs are scheduled according to the
order ≺. Therefore, S is a feasible schedule.

Let Cj denote the completion time of a job j in S. Let S∅ be an optimal
schedule for the instance (J, ∅),M , i.e., our original instance but without any order
constraints and let C∅

j be the completion time of j in S∅. Let S⋆ be an optimal
schedule for the instance (J,≺),M , where C⋆

j denotes the completion time of j ∈ J .

As S⋆ is a feasible schedule for the instance (J, ∅),M , we have that
∑

j∈J wjC
∅
j ≤∑

j∈J wjC
⋆
j ≤

∑
j∈J wjCj . We claim that Cj ≤ 2αC∅

j for all j ∈ J from which the
lemma would then follow.

Fix a job j ∈ J . Consider the jobs jia , jia+1 , ..., jib ∈ Ji for some 1 ≤ i ≤ l with
a = αc + 1, b = min{α(c + 1), |Ji|} for some 1 ≤ c ≤ m such that we have j = jiγ
for some γ ∈ [a, b]. Let j′ ∈ J ′ be the job that was obtained by combining jobs
jia , jia+1 , ..., jib . Let S̄ be an optimal schedule for (J ′, ∅),M , i.e., for the instance
with jobs J ′ without any ordering constraints. Let C̄j′ be the completion time
of j′ under S̄ and let C ′

j′ be the completion time of j′ under S′. S′ is the schedule
computed by Algorithm 2 in line 2. Note that by the same arguments as in the proof
of of Lemma 8, we obtain C ′

j′ ≤ 2C̄j′ , as S
′ is a schedule obtained by Algorithm 1 on

the input (J ′,≺′),M , while S̄ is an optimal schedule for (J ′, ∅),M . Now, consider
the schedule S̃ for the jobs J obtained from S̄ by scheduling the jobs ja, ja+1, ..., jb
according to the order ≺ in the time slots from (α− 1)C̄j′ + 1 to αC̄j′ on the same
machine as j′ was scheduled to in S̄. We denote by C̃j the completion time of j
under S̃. Note that S̃ and S are obtained from S̄ and S′ in the same manner. Thus,
we obtain that Cj ≤ 2C̃j .

Consider again the schedule S∅ which is optimal for (J, ∅),M . Consider any
tuple of jobs jia , jia+1 , ..., jib ∈ Ji for some a, b as described above. Note that here
we do not require that j = jiγ for some γ ∈ [a, b], i.e., we just consider an arbitrary
tuple of jobs which are combined into a single job in J ′. For these jobs, we define

ωa,b = min
{
αC∅

jiδ
| δ ∈ [a, b]

}
. Let δa,b be a job from the tuple of jobs above such

that αC∅
δa,b

= ωa,b. Let S̄
∅ be the schedule where we schedule each such tuple of jobs

jia , jia+1 , ..., jib in order according to ≺ to the time slots from ωa,b−α+1 to ωa,b to the
machine job δa,b is scheduled to in S∅. We can thus understand S̄∅ as being obtained
by first multiplying each completion time in S∅ by α and then scheduling each tuple
of jobs jia , jia+1 , ..., jib to the α time slots before and including ωa,b, i.e., the earliest

22

Chapter 2. Partial-Order Scheduling on Parallel Machines

time slot any of these jobs is completed in the scaled-up version of S∅. Let C̄∅
j be the

completion time of job j in S̄∅. By construction, we have C̄∅
j ≤ αC∅

j . Additionally,

by definition of S̄ (as an optimal schedule to (J ′, ∅),M) and subsequently of S̃
(as described above), we have C̃j ≤ C̄∅

j . This is since S̄∅ can be understood as a
feasible schedule for the instance (J, ∅),M with the additional constraint that all
such tuples of jobs jia , jia+1 , ..., jib ∈ Ji as above (i.e., tuples of jobs which would be
combined into a single job in J ′) must be scheduled to subsequent time slots, while
S̃ is an optimal schedule for this problem. Putting everything together, we obtain
Cj ≤ 2C̃j ≤ 2C̄∅

j ≤ 2αC∅
j . Thus, the lemma follows.

Overall, we have therefore seen that we can find constant-factor approximation
algorithms for the short chains case for each fixed α.

2.3.2 A Structural Result on Optimal Schedules for Multiple-Chains

Next, we consider chains of arbitrary lengths. We still assume unit processing times,
pj = 1 for all j ∈ J . Additionally, we impose that chains are ordered backwardly,
meaning that among each chain, the weights of the jobs only strictly increase along
with increasing elements in the chain according to ≺. Thus, we can partition J =
J1 ·∪ J2 ·∪ ... ·∪ Jl into l disjoint subsets. We have Ji = {ji1 , ji2 , ..., ji|Ji|} with wi1 <
wi2 < ... < wi|Ji|

for all 1 ≤ i ≤ k. To justify why we start by focusing on backwardly
ordered chains, consider the following: Intuitively, to minimize the sum of weighted
completion times, we would like to schedule jobs with high weight as early as possible.
Under our assumption, jobs with higher weight are “blocked” as much as possible
by jobs with lower weight in front of them. Thus, studying this case might generate
insights into how to develop approximation algorithms for more general cases. We
think it is likely that the results in this section can be extended to the case of
non-decreasing weights, i.e., when adjacent weights can be equal, by adjusting the
arguments below by introducing a secondary, auxiliary potential function, similar to
as was done in [3] in the proof of Lemma 1 (in their paper). We leave incorporating
such an improved potential function open for now.

We show in Lemmas 11, 12 and 13 as well as in Corollary 14 that under the
assumptions described above, on each machine in an optimal schedule all jobs of
the same chain are scheduled to consecutive time slots. Furthermore, each chain
changes machines at most 2m − 2 times (Corollary 14). Note that we consider a
quite specific special case of PO Scheduling. It might be interesting to determine
the complexity of this problem, i.e., showing that the problem is either in P or is
NP-complete. We haven’t focused on this question too much and leave it open for
now.

The results stated in this section rely on Algorithm 3 by Sidney [48]. Sidney’s
algorithm is an algorithm for precedence-constrained scheduling on a single machine.
We will shortly point out how the algorithm is related to PO Scheduling. We give a

23

Chapter 2. Partial-Order Scheduling on Parallel Machines

slightly adjusted version of the original algorithm and the related result, which are
more suitable to our setting. Specifically, the original algorithm by Sidney does not
require unit processing time, which we assume for convenience.

Let (J,≺), {1} be an instance of precedence-constrained scheduling of jobs J to
a single machine. Assume that pj = 1 for all j ∈ J . Let V ⊆ J . We define w(V) :=∑

j∈V wj and ρ(V) := w(V)
|V | . I.e., ρ(V) denotes the Smith-ratio or equivalently the

average weight of V . We say U ⊆ V is initial for V if for all j ∈ U there is no
k ∈ V \U such that k ≺ j. U ⊆ V is w-maximal for V if U is initial for V and
ρ(U) ≥ ρ(W) for any W ⊆ V which is initial for V . Lastly, U ⊆ V is w⋆-maximal
for V if U is w-maximal for V and if there is no W ⊊ U such that W is w-maximal
for V . In terms of a single totally-ordered chain, U is w⋆-maximal for V if it is a
prefix of jobs in V which has minimal size among the prefixes of maximal average
weight. Thus, we can introduce Algorithm 3 by Sidney [48].

Algorithm 3: Sidney’s Algorithm [48]

Input : (J,≺) with pj = 1 for all j ∈ J , an instance of
precedence-constrained scheduling on a single machine.

Output : An optimal schedule.

1 Set S ← ∅.
2 Set V ← J .
3 while V ̸= ∅ do
4 Find U that is w⋆-maximal for V .
5 Let S(U) be an optimal schedule of U . Append S(U) to S.
6 Set V ← V \U .

7 end
8 Return S.

Sidney [48] has shown a result about the optimality of schedules for precedence-
constrained scheduling on a single machine, Theorem 10. Note that the original
result does not assume unit processing times. We consider the case of unit processing
times here for notational convenience.

Theorem 10 ([48]). A schedule S is optimal for precedence-constrained scheduling
with jobs (J,≺) on a single machine and unit processing times if and only if S can
be generated by Algorithm 3.

Note that for the case of a general partial order, it is not clear how to find a
w⋆-maximal subset of jobs or an optimal schedule for such a subset in polynomial
time. However, for the case that the order consists of disjoint chains both problems
become much more straight forward.

Given Algorithm 3, we can now start discussing the structure of optimal sched-
ules for the multiple-chains case when all chains are ordered backwardly. Consider
an instance (J,≺),M of PO Scheduling satisfying all assumptions stated before. Let

24

Chapter 2. Partial-Order Scheduling on Parallel Machines

S be some feasible schedule. For some chain Ji, 1 ≤ i ≤ l, and some machine a ∈M
we denote by TS(i, a) := {t | Cj = t, S(j) = a for some j ∈ Ji} the set of time slots
jobs of chain Ji on machine a are scheduled to. We drop the dependence on S when
the reference is clear. Let S⋆ be an optimal schedule to our instance (J,≺),M .

Lemma 11. For all Ji, 1 ≤ i ≤ l and a ∈ M we have TS⋆(i, a) = [α, β] for some
suitable α, β. I.e., all jobs from the same chain which are scheduled to the same
machine occupy successive time slots.

Proof. Consider the set of jobs Ja := {j ∈ J | S⋆(j) = a} which is scheduled to
machine a by S⋆. For S⋆ to be optimal, Ja must be scheduled optimally, as else we
could replace the schedule on machine a with an optimal schedule of Ja and thereby
decrease the sum of weighted completion times, contradicting the optimality of S⋆.
Thus, when considering how Ja is scheduled (as part of an optimal schedule S⋆), we
can consider PO Scheduling of only the jobs in Ja to a single machine. Note that
PO Scheduling on a single machine is identical to precedence-constrained scheduling
with the same order ≺ on a single machine, as the difference between both problems
is only manifest when multiple machines are involved. Therefore, Theorem 10 must
hold for the schedule of Ja (as part of the schedule S⋆), i.e., the schedule of Ja must
have been generated by Algorithm 3.

Let Ja
i := Ja ∩ Ji. To conclude the proof, it suffices to show that only some set

Ja
i would be chosen by Algorithm 3 to be scheduled next. I.e., no set of jobs W

which intersects at least two chains would ever be chosen and no proper prefix of
jobs of a single chain V ⊊ Ja

i would ever be picked by Algorithm 3 to be scheduled
next.

For the first case, let W =
⋃

γ∈Γ⊂[l] J
a
γ where for each γ ∈ Γ we have Wγ :=

W ∩ Ja
γ ̸= ∅ and |Γ| ≥ 2, i.e., W intersects at least two chains. Let i, j be the

chain-indices maximizing ρ(Wγ), where we break ties arbitrarily. W can only be w-
maximal if ρ(Wi) = ρ(Wj), as else either Wi or Wj would be w-maximal. However
then, W is only w⋆-maximal if either Wi = ∅ or Vj = ∅, leading to a contradiction.

Thus, the second case remains and we can assume we have a prefix of jobs
V ⊊ Ja

i . Note that for all V ⊊ Ja
i where V is a prefix of Ja

i we have ρ(V) < ρ(Ja
i)

since weights are only strictly increasing along each chain. Thus, no such V would
ever be chosen as a w⋆-maximal in Algorithm 3. By Theorem 10, in an optimal
schedule we would thus never schedule any such V , but only Ja

i . Thus, all jobs in
Ja
i will be at some point picked as the next subset of jobs by Algorithm 3 to be

scheduled to successive time slots.

Now, consider a chain Ji, 1 ≤ i ≤ l. For γ ∈M , let Jγ
i = {j ∈ Ji | S⋆(j) = γ} be

the set of jobs of chain Ji which are scheduled to machine γ by the schedule S⋆, as
defined in the proof of Lemma 11. Consider two machines α, β ∈M . Let U ⊆ Jα

i be
a subset of jobs and let jl, ju be the jobs which are minimal and maximal for U with
respect to the order ≺, i.e., jl ⪯ j ⪯ ju for all j ∈ U . U is called α, β-consecutive
if there is no k ∈ Jβ

i such that jl ⪯ k ⪯ ju. U is called an α, β-block if U is α, β-
consecutive and if there is no proper superset V ⊋ U such that V is α, β-consecutive.

25

Chapter 2. Partial-Order Scheduling on Parallel Machines

By Bα,β(i) we denote the set of all α, β- and β, α-blocks. For notational convenience,
we refer to the elements of Bα,β(i) as {α, β}-blocks, i.e., an {α, β}-block is either an
α, β-block or a β, α-block.

Lemma 12. We have |Bα,β(i)| ≤ 3 for all α, β ∈ M and Ji, 1 ≤ i ≤ l. I.e., on
each pair of machines α, β each chain is split into at most three {α, β}-blocks.

Proof. Fix some chain Ji, for some 1 ≤ i ≤ l, and let α, β ∈ M . Going forward, all
jobs we consider will be from the chain Ji. To prove the statement, we will show
that there is only a single possible arrangement of three {α, β}-blocks on the two
machines α, β. W.l.o.g., we assume that there are two α, β-blocks and one β, α-
block on the two machines α, β. Given this unique possible arrangement of three
{α, β}-blocks, we show that no further {α, β}-block can occur.

Assume that in S⋆, we have on the machines α, β an arrangement of two α, β-
blocks and one β, α-block. In the following, for the statements to be well-defined, we
consider the two α, β-blocks and the β, α-block which are scheduled to the earliest
time slots on the machines α, β. We denote the α, β-block on α which is scheduled
to earlier time slots in S⋆ as Block1 and denote the later α, β-block on α as Block3.
Note that since S⋆ is a feasible schedule, we must have j ≺ k for all j ∈ Block1, k ∈
Block3. We denote the β, α-block on β as Block2. Let a1, a2 be the minimal and
maximal jobs of Block1. Similarly, let b1, b2 be the minimal and maximal jobs of
Block2 and let c1, c2 be the minimal and maximal jobs of Block3. We must have
a2 ≺ b1 ≺ b2 ≺ c1 for there to be two α, β-blocks and one β, α-block. Thus, overall
we have a1 ⪯ a2 ≺ b1 ⪯ b2 ≺ c1 ⪯ c2. Therefore, since all chains are ordered
backwardly by assumption, we have wa1 ≤ wa2 < wb1 ≤ wb2 < wc1 ≤ wc2 . Equality
holds if two jobs are equal, i.e., if a block consists of a single job.

We now consider the completion times in S⋆ of the jobs mentioned above, namely
Ca1 , Ca2 , Cb1 , Cb2 , Cc1 and Cc2 . Trivially, we have Ca1 ≤ Ca2 < Cc1 ≤ Cc2 and
Cb1 ≤ Cb2 . Note that given Lemma 11, all jobs of the same chain on the same ma-
chine are scheduled to consecutive time slots and thus we have Cc1 = Ca2 +1. In the
following, we consider different relations of the completion times of the jobs to each
other. To show that there is a unique configuration of three {α, β}-blocks in terms of
the completion times, we proceed by assuming that some relation of the completion
times relative to each other occurs in an optimal schedule. We then show how to
rearrange (a subsets of) jobs such that we still have a feasible schedule but such that
the sum of weighted completion times strictly decreases, leading to a contradiction
with S⋆ being optimal. Intuitively, we move jobs with higher weights to earlier time
slots while moving jobs with lighter weights to later time slots. We do this for every
possible arrangement of completion times until only one option remains. Thus, we
end up with only a single possible arrangement of three {α, β}-blocks in terms of
the completion times of their extremal jobs.

First, we show that Cc1 ≤ Cb2 and that Cb1 ≤ Ca2 . Intuitively, this means
that all three blocks must overlap in terms of the time slots they are scheduled to.

26

Chapter 2. Partial-Order Scheduling on Parallel Machines

First, assume for a contradiction that Cb2 < Cc1 . Consider the schedule S′ which
we obtain from S⋆ by swapping jobs c1 and b2. See the left panel of Figure 2.2 for a
visualization of the jobs to be swapped. The right panel of Figure 2.2 shows which
jobs should be swapped in the case that we assume Cb1 > Ca2 , which we will discuss
later. We show the arrangement of jobs before the swap and mark the jobs to be
swapped in blue.

Block1

Block3

Block2

b2

c1

α β

Cj

Assuming Cb2 < Cc1 , showing which
swap leads to a contradiction

Block1

Block3

Block2

b1

a2

α β

Cj

Assuming Cb1 > Ca2
, showing which

swap leads to a contradiction

Figure 2.2

Consider the jobs of the blocks Block1, Block2, Block3 on machine α under S′.
In increasing order of completion times, we first have the jobs of Block1, then job b2
and then the jobs of Block3 except c1. On β, we have first the jobs of Block2 except
b2 and then job c1. All other jobs remain unchanged. Thus, the order of completion
times in S′ agrees with ≺ and S′ is a feasible schedule.

Let C ′
j denote the completion time of job j ∈ J in S′, while Cj denotes the

completion time in S⋆. We have∑
j∈J wjC

′
j =

∑
j∈J wjCj − (wc1Cc1 + wb2Cb2) + (wc1Cb2 + wb2Cc1)

=
∑

j∈J wjCj + (wc1 − wb2) (Cb2 − Cc1)

Since wb2 < wc1 and Cb2 < Cc1 by assumption, we have
∑

j∈J wjC
′
j <

∑
j∈J wjCj ,

contradicting the optimality of S⋆. Thus, Cc1 ≤ Cb2 must hold. By a similar argu-
ment, we must have Cb1 ≤ Ca2 , as else we could obtain a new schedule by swapping
jobs a2 and b1.

Next, we show that Cb1 ≤ Ca1 and Cc2 ≤ Cb2 must hold. It will thus follow that
we have Cb1 ≤ Ca1 ≤ Ca2 < Cc1 ≤ Cc2 ≤ Cb2 . Intuitively, this means that among
the three blocks, Block2 starts being processed first and is finished last.

To show this, first assume for a contradiction that Ca1 < Cb1 . Let δ :=
min{|Block1|, |Block2|}, ε := |Block1| − δ and ζ := |Block2| − δ. Note that if

27

Chapter 2. Partial-Order Scheduling on Parallel Machines

|Block2| ≥ |Block1|, then |Block1| = δ and ε = 0. Else, if |Block2| < |Block1|, then
|Block2| = δ and ζ = 0. In either case, |Block1| = δ + ε and |Block2| = δ + ζ.
Consider the schedule S′ obtained from S⋆ by swapping the last δ jobs of Block1
with the first δ jobs of Block2. I.e., depending on the cardinality of Block1 and
Block2, we either swap the entire Block1 with the first δ = |Block1| jobs of Block2
(if |Block2| ≥ |Block1|) or we swap the entire Block2 with the last δ = |Block2| jobs
of Block1 (if |Block2| < |Block1|). See Figure 2.3 for a visualization. In this figure,
the green and blue bars next to the blocks indicate how the jobs should be swapped.

Block1

Block3

Block2

ε

δ
δ

ζ

α β

Cj

Block1, Block2, Block3 in the schedule
S⋆

Block3

ε

δ
δ

ζ

α β

Cj

The jobs of the original
Block1, Block2, Block3 in the schedule S′

Figure 2.3

Again, consider the jobs of Block1, Block2, Block3 on machine α under S′. In
order of completion time, we first have the first ε jobs of Block1, then the first δ
jobs of Block2 and afterwards all jobs of Block3. On β, we first have the last δ
jobs of Block1 and then the last ζ jobs of Block2. All other jobs remain unchanged.
Thus, the order of completion times in S′ agrees with ≺ and therefore S′ is a feasible
schedule.

Let C ′
j denote the completion time of job j ∈ J in S′, while Cj denotes the

completion time in S⋆. By a1, a2, ..., aδ = a2 we refer to the last δ jobs of Block1 in
S⋆. By b1 = b1, b2, ..., bδ we refer to the first δ jobs of Block2 in S⋆. Note that we
have wa1 < ... < waδ < wb1 < ... < wbδ since the chain is ordered backwardly. Thus,
in particular we have wai < wbi for all 1 ≤ i ≤ δ.

By assumption, we have Ca1 < Cb1 . Also, as shown before, we have Ca2 < Cc1 ≤
Cb2 . First consider the case that |Block2| ≥ |Block1|. Then, we have δ = |Block1|
and ε = 0. Therefore, a1 = a1 and thus Ca1 = Ca1 < Cb1 = Cb1 . Else, we have
|Block2| < |Block1| and δ = |Block2| and ζ = 0. Therefore, b2 = bδ and thus
Caδ = Ca2 < Cb2 = Cbδ . Since by assumption all jobs have unit processing times,

28

Chapter 2. Partial-Order Scheduling on Parallel Machines

we have in both cases that Cai < Cbi for all 1 ≤ 1 ≤ δ. It follows that∑
j∈J wjC

′
j =

∑
j∈J wjCj −

∑δ
i=1 (waiCai + wbiCbi) +

∑δ
i=1 (waiCbi + wbiCai)

=
∑

j∈J wjCj +
∑δ

i=1 (wbi − wai) (Cai − Cbi)

Thus, we have (wbi − wai) (Cai − Cbi) < 0 for all 1 ≤ i ≤ δ and
∑

j∈J wjC
′
j ≤∑

j∈J wjCj . This contradicts S⋆ being optimal. It follows that Cb1 ≤ Ca1 must
hold.

We obtain Cc2 ≤ Cb2 by a similar argument. We set δ := min{|Block2|, |Block3|},
ε := |Block3| − δ and ζ := |Block2| − δ. We obtain S′ from S⋆ by swapping the
first δ jobs of Block3 with the last δ jobs of Block2. From this point onwards the
argument proceeds similarly as above.

Therefore, we must have Cb1 ≤ Ca1 ≤ Ca2 < Cc1 ≤ Cc2 ≤ Cb2 . We give a
visualization of this case in Figure 2.4

Block1

Block3
Block2

α β

Cj

Ca1

Ca2

Cc1

Cc2

Cb1

Cb2

Figure 2.4: Two α, β-blocks and one β, α-block on two machines α, β

Given the unique arrangement of three {α, β}-blocks in terms of the completion
times, we consider if there can be four {α, β}-blocks on two machines α, β in S⋆.
Assume this is the case. W.l.o.g., we assume that the earliest three such {α, β}-
blocks consist of two α, β-blocks and one β, α-block. We denote the minimal and
maximal jobs of these blocks as before. We have seen that Cb1 ≤ Ca1 ≤ Ca2 <
Cc1 ≤ Cc2 ≤ Cb2 must hold. The fourth {α, β}-block must be a β, α-block, as else
there would not be four {α, β}-blocks. We denote this β, α-block as Block4. Let
d1, d2 be the minimal and maximal job of Block4. We have c2 ≺ d1 (for there to
be four {α, β}-blocks) and thus wc2 < wd1 (since chains are ordered backwardly).
Note that by Lemma 11 we have Cd1 = Cb2 + 1. From Cc2 ≤ Cb2 , as shown above,
it thus follows that Cd1 > Cc2 . In this setting, we could switch c2 with d1. This
would again lead to a feasible schedule S′, as the order of the completion times in
S′ on both machines α, β agrees with the order ≺. We again have Cc2 < Cd1 and

29

Chapter 2. Partial-Order Scheduling on Parallel Machines

wc2 < wd1 . Therefore, by the same analytical steps as above, we have that S′ has
a smaller sum of weighted completion times than S⋆, leading to a contradiction.
Thus there cannot be a fourth {α, β}-block in any optimal solution and the lemma
follows.

Consider U ⊆ Ji and let jl, ju be the minimal and maximal jobs of U with
respect to the order ≺, i.e., jl ⪯ j ⪯ ju for all j ∈ U . We call U consecutive
(without reference to any pair of machines) if S⋆(j) = α for all j ∈ U for some fixed
machine α ∈M and if there is no k ∈ Ji such that jl ⪯ k ⪯ ju and S⋆(k) ̸= α. U is
called a block (without reference to any pair of machines) if U is consecutive and if
there is no proper superset V ⊋ U such that V is consecutive. By B(i) we denote
the set of all blocks of Ji across all machines.

To clarify the relationship between the two sets of definitions for blocks and α, β-
blocks, consider the following. Let B ⊆ Jα

i be an α, β-block and let B′ ⊆ Jα
i be a

block. Let jl, ju be the minimal and maximal job of B and let j′l, j
′
u be the minimal

and maximal job of B′. We can think of B as a maximal subset of jobs of chain Ji
scheduled to a single machine α such that we have ∀k ∈ Jβ

i : ¬(jl ⪯ k ⪯ ju). We can
think of B′ as a maximal subset of jobs of chain Ji scheduled to a single machine α
such that we have ∀β ∈ M\{α}∀k ∈ Jβ

i : ¬(j′l ⪯ k ⪯ j′u) Thus intuitively, a block
is a “refinement” of an α, β-block. Stated differently, for an α, β-block we consider
a single machine β, while for a block, we consider all other machines β ̸= α. Thus,
each block is an α, β-block as well, for all β ̸= α, where α is the machine the jobs
of the block are scheduled to. An α, β-block on the other hand can be comprised of
several smaller blocks.

Given this, we can now state the main structural lemma:

Lemma 13. Let Ji, 1 ≤ i ≤ l be some chain and let α ∈ M be the machine the
minimal job of Ji is scheduled to. Let b be the number of blocks of chain Ji scheduled
to machine α.

Then, we can partition M =
⋃b+1

a=0Ma into disjoint subsets such that Ma ̸= ∅
for 0 ≤ a < b and such that for each pair of jobs j, k ∈ Ji with j ∈ J ū

i , k ∈ J v̄
i , ū ∈

Mu, v̄ ∈Mv and 1 ≤ ū < v̄ ≤ m we have j ≺ k.

Proof. Given the rather technical statement of the lemma, let us start by providing
some intuition and insights into the statement. We want to show that we can
partition the set of machines such that jobs which appear later in the chain are
scheduled to machines which are part of a subset with higher index in the partition.
Let B1 be the block which contains the minimal job of chain Ji. Let α be the
machine B1 is scheduled to. We define M0 := {α}. Let Mb+1 := {a ∈M | Ja

i = ∅}
be the set of machines such that no job of chain Ji is scheduled to them by S⋆. Note
that we can have that Mb+1 = ∅. Let M̄ := M\ (M0 ∪Mb+1).

Given this, we want to show that we can partition M̄ =
⋃b

a=1Ma into disjoint
subsets, such that Ma ̸= ∅ for 1 ≤ a < b and such that the jobs of chain Ji assigned
to some machine v̄ ∈ Mv appear later in the chain than all jobs assigned to some

30

Chapter 2. Partial-Order Scheduling on Parallel Machines

machine ū ∈ Mu with 1 ≤ u < v ≤ b. Note that we can write here 1 ≤ u < v ≤ b
instead of 1 ≤ ū < v̄ ≤ m, since we can always re-label the machines appropriately.

We consider two cases: First, we assume that b = 1, thus Jα
i = B1 and all jobs

of chain Ji scheduled to machine α are part of the same block B1. In this case, we
have M̄ = M1, and the statement of the lemma follows trivially.

Second, we assume that b > 1. Let B,B′ ∈ B(i) be two blocks. We say B is
earlier than B′, written B <B(i) B′, if for all j ∈ B and k ∈ B′ we have j ≺ k.
Given the definition of blocks above and given that S⋆ is a feasible schedule, for
each pair of blocks B ̸= B′ we either must have B <B(i) B

′ or B′ <B(i) B. Addi-
tionally, we have ¬

(
B <B(i) B

)
, B <B(i) B

′ ⇒ ¬
(
B′ <B(i) B

)
and

(
B <B(i) B

′) ∧(
B′ <B(i) B

′′) ⇒ (
B <B(i) B

′′) since ≺ is a total order on Ji. Thus, <B(i) de-
fines a total order on B(i). Starting from B1, we now iteratively define Ba ⊆ Jα

i

for 2 ≤ a ≤ b as the block on machine α scheduled immediately after block
Ba−1, i.e., as the block such that Ba−1 <B(i) Ba and such that for all blocks
B ⊆ Jα

i with B ̸= Bβ, for 1 ≤ β ≤ a − 1, we have Ba <B(i) B. We define
Ba :=

{
B ∈ B(i) | j ̸∈ Jα

i for all j ∈ B,Ba <B(i) B <B(i) Ba+1

}
for 1 ≤ a ≤ b, i.e.,

Ba is the set of blocks between Ba and Ba+1 scheduled to machines different from
α. In the definition above, we refer to Bb+1, which is not defined. We do so for
notational convenience and assume that B <B(i) Bb+1 for all blocks B ∈ B(i). For
1 ≤ a < b, we have Ba ̸= ∅, as else Ba and Ba+1 wouldn’t be two different blocks.
We can have Bb = ∅, if the maximal job of Ji is scheduled to machine α. Else,
Bb ̸= ∅. Note that

⋃b
a=1 (Ba ∪ Ba) = B(i) is a partition of B(i) given that <B(i) is

a total order.
For 1 ≤ a ≤ b we define Ma := {γ ∈M | ∃B ∈ Ba∃j ∈ B : j ∈ Jγ

i } as the set of

machines jobs from Ba are scheduled to. Note that M̄ =
⋃b

a=1Ma. We will see that
this is a partition of M̄ which satisfies the statement of the lemma. By definition
of the Ba and since <B(i) is a total order on B(i), for all pairs of jobs j, k ∈ Ji
with j ∈ J ū

i , k ∈ J v̄
i , ū ∈ Mu, v̄ ∈ Mv and 1 ≤ u < v ≤ b we have j ≺ k. For

1 ≤ a < b we have Ma ̸= ∅, as Ba ̸= ∅, as seen above. Lastly, consider Ma,Ma′

with 1 ≤ a < a′ ≤ b (assuming Mb ̸= ∅, else with 1 ≤ a < a′ < b). Assume
for a contradiction that there exists a machine β ∈ Ma ∩Ma′ . Consider the block
B1, some block B ∈ Ba, some block B′ ∈ Ba′ ans last the block Ba′ . Together,
B1, B, B′ and Ba′ imply the existence of four {α, β}-blocks on the machines α, β.
This however contradicts Lemma 12. Thus, we must have Ma ∩Ma′ = ∅ and the
statement holds.

Corollary 14. We have |B(i)| ≤ 2m− 1 for Ji, 1 ≤ i ≤ l. I.e., each chain is split
into at most 2m− 1 blocks across all machines.

Proof. Let S⋆ be the optimal schedule for our current instance of PO Scheduling.
Let M0 ⊆ M be a subset of machines and denote M1 := M\M0. We define Ji :=⋃

m∈Mi
J i for i = 0, 1. Let Si be the schedule for the jobs Ji on the machines Mi

obtained from deleting the machines M1−i and jobs J1−i from S⋆. Note that Si

must be an optimal schedule for PO Scheduling on the instance with jobs Ji and

31

Chapter 2. Partial-Order Scheduling on Parallel Machines

machines Mi. Else, w.l.o.g., we consider i = 0. Assume there is a schedule S̄ with
a strictly lower sum of weighted completion times on the instance with J0 and M0

than S0. Then, we can combine the schedules S̄ and S1 into a feasible schedule for
the instance with jobs J and machines M since jobs on different machines don’t
interact with each other in terms of feasibility. The combined schedule has a strictly
lower sum of weighted completion times than S⋆, leading to a contradiction.

To prove the statement of the lemma, we proceed by induction over m. For
m = 1, the statement is trivial. For the induction step, let α ∈ M be the machine
the minimal job of Ji is scheduled to. Let b be the number of blocks of chain
Ji scheduled to machine α and let M =

⋃b+1
a=0Ma be the partition obtained from

Lemma 13. We use all notation as introduced in the proof of Lemma 13.
If b = 1, we have M1 = M̄ . The statement follows by the induction hypothesis,

as there are at most 2|M1| − 1 = 2(m − 1) − 1 = 2m − 3 blocks on M1. We apply
the induction hypothesis to the instance of PO Scheduling where we delete machine
α and all jobs Jα scheduled to α in S⋆ as described in the introduction of the proof.
Thus, in total we obtain 2m− 3 + 1 = 2m− 2 blocks and the statement follows.

If b > 1, we consider M̄ =
⋃b

a=1Ma as obtained from Lemma 13. Let ma =
|Ma| for 1 ≤ a ≤ b. By Lemma 13, for 1 ≤ a < b, we have Ma ̸= ∅. Note
that we can have Mb = ∅ and thus mb = 0. By the induction hypothesis, we
have at most 2ma − 1 blocks on Ma. We apply the induction hypothesis to the
instance of PO Scheduling where we split our current instance into Ma and M\Ma

as described in the introduction of the proof. As
⋃b

a=1Ma is a partition of M̄ , we

have
∑b

a=1ma = |M̄ | ≤ m − 1. Adding up all individual terms yields us |B(i)| ≤
b+

∑b−1
a=1 (2ma − 1) + 0 ≤ b+ 2(m− 1)− (b− 1) = 2m− 1.

Thus, we see that in an optimal solution S⋆ to the special case of PO Scheduling
discussed in this section, the chains are structured in a certain restricted way as
described above.

2.3.3 An IP Formulation for the Multiple-Chains Case

Given Corollary 14, we can try to formulate an IP to encapsulate the special case
of PO Scheduling we currently consider. The goal would be to use such an IP to
find an LP-based approximation algorithm. However, we will see that we encounter
significant roadblocks with this approach, which leaves us to abandon it for now.
While we give an IP 2.2 below, this fails to fully capture our special case while also
taking advantage of the structure of optimal schedules explored in Corollary 14.

Let (J,≺),M be an instance of PO Scheduling. As before, we assume that pj = 1
for all j ∈ J and that ≺ consists of l disjoint backwardly ordered chains. We define a
set of time slots T := [n], where n := |J |. We have binary variables xjt for all j ∈ J
and all t ∈ T where we interpret xjt = 1 as job j being scheduled to some machine
at time slot t ∈ T . Additionally, we have variables uj ∈ [2m− 1] for all j ∈ J . Let
j ∈ Ji for some 1 ≤ i ≤ l. uj = α indicates job j is part of the αth block of chain
Ji. Last, we have binary variables zjk for all j, k ∈ J where we interpret zjk = 1

32

Chapter 2. Partial-Order Scheduling on Parallel Machines

as jobs j and k being scheduled to different machines. We consider the following
time-indexed IP:

min
∑

j∈J
∑

t∈T wjtxjt
s.t.

∑
t∈T xjt = 1 ∀j ∈ J∑
j∈J xjt ≤ m ∀t ∈ T∑
t′<t xjt′ + zjk ≥

∑
t′≤t xkt′ ∀t ∈ T, ∀j ≺ k

uk ≥ uj + zjk ∀j ≺ k
uj ∈ [2m− 1] ∀j ∈ J
zjk ∈ {0, 1} ∀j, k ∈ J
xjt ∈ {0, 1} ∀j ∈ J, ∀t ∈ T

(2.2)

Note that the IP 2.2 takes inspiration from time-indexed IP-formulations for
precedence-constrained scheduling [6]. The first constraint expresses that each job
must be scheduled at some time slot. The second constraint states that at each
time slot at most m jobs can be scheduled since we have m machines. The third
constraints encodes that the order of completion times agrees with the order ≺ for
jobs scheduled to the same machine. If jobs are scheduled to different machines, the
constraint is trivially satisfied. In the fourth constraint, we state that every time we
change machines for a chain, we must increase the suitable block counting variable
u. The fifth constraint bounds the size of the block counting variables u based on
Corollary 14.

In the linear relaxation of 2.2 we relax the integrality constraints to 1 ≤ uj ≤
2m − 1 for all j ∈ J , 0 ≤ zjk ≤ 1 for all j, k ∈ J and 0 ≤ xjt ≤ 1 for all j ∈ J and
for all t ∈ T .

Note that the IP 2.2 is inspired by the IP 2.1 for TO Scheduling in terms of the
u-variables. In the IP 2.1, we can interpret the u-variables as machine indices, based
on Lemma 5 about Smith-monotone schedules. In the IP 2.2, we cannot interpret
the u-variables as machine indices directly, as we can only bound them from above
using Corollary 14 about how often a single chain switches machines. Also, different
chains might disagree on the ordering of the machines, i.e., which machines are
visited in which order. Thus, for the IP 2.2 we cannot interpret the u-variables as
machine indices directly.

Additionally, note that in case that we have chains of length at most 2m −
1, the fifth constraint does not provide any additional structure to the solution.
However, recall that Algorithm 2 allows us to approximate cases where all chains are
short. This justifies some optimism that if we can find an LP-based approximation
algorithm based on IP 2.2 (or some other IP which makes use of the structure found
in Corollary 14) we can also find some way to incorporate Algorithm 2 to deal with
short chains as well, where the IP 2.2 does not provide any additional structure.

To be able to derive an LP-based approximation algorithm from the IP 2.2,
we must have that the cost of an optimal solution to the linear relaxation cannot
have cost which is significantly lower than the cost of an optimal integral solution.
To analyze LP-based approximation algorithms, we usually bound the cost of the

33

Chapter 2. Partial-Order Scheduling on Parallel Machines

integral optimum by the cost of the fractional optimum. When both costs are too
far apart, we cannot use the cost of the fractional optimum in a suitable way. For
the IP 2.2 to be suitable to be used in an LP-based approximation algorithm, the
property above must hold, in particular for the case of a single chain, i.e., TO
Scheduling, as well. We have seen in Section 2.2 that the objective value of the
fractional optimal solution of the linear relaxation and the integer optimal solution
of the IP 2.1 coincide. In the IP 2.1, we bound the u-variables from above by m,
whereas in the IP 2.2 we bound the u-variables from above by 2m − 1. We will
shortly consider an instance for TO Scheduling, where even changing the number
of machines by 1 leads to an arbitrarily large change of the value of the fractional
optimum for the linear relaxation of the IP 2.1. Given the structural similarities
of the IPs 2.1 and 2.2 and given that the IP 2.2 heavily uses the 2m − 1 bound
(instead of the m bound from the IP 2.1), we are pessimistic that the IP 2.2 can be
successfully used to design an LP-based approximation algorithm for TO Scheduling
or therefore for PO Scheduling. Thus, we won’t further pursue this approach for
now. Potentially, utilizing the IP 2.2 it might be possible to derive a bi-criteria
result, i.e., a result where we find an integral solution with cost within a constant
factor of the fractional optimum, but which uses e.g., twice as many machines. We,
however, leave this question open for now.

We now consider the instance of TO Scheduling mentioned above. More formally,
we show we cannot bound the increase in the optimal sum of weighted completion
times value of the linear relaxation of the IP 2.1 when removing a single machine in
TO Scheduling. While not contained in [3], the following instance is due to Sitters
(one of the authors of [3]) and was conveyed in personal communication with his
coauthors. We here still assume unit processing times.

Lemma 15 (Sitters). Consider the TO Scheduling IP-formulation 2.1 on some
instance (J,<),M and let OPT be the optimal value of said instance to the linear
relaxation to 2.1. Let (J,<),M ′ be a new instance of TO Scheduling where we obtain
M ′ from M by removing a single machine. Let OPT ′ be the optimal value of new
instance (J,<),M ′ to the linear relaxation to 2.1. Then, OPT ′

OPT can be arbitrarily
large.

Proof. Consider the following instance of TO Scheduling (J,<),M , where |J | = n
and |M | = m. The jobs are split into m different “batches” (Di)i∈[m]. Batches with
higher index contain fewer jobs but have a higher total weight than batches with
lower index. In particular for an arbitrary but fixed k ∈ N>0, batch Di consists of
km−i+1 jobs, each with weight 1

k2(m−i+1) . Thus, the total weight of each batch is
1

km−i+1 . There are in total n = km + ... + k2 + k jobs. Within each batch, the jobs
are totally ordered by <. Jobs in batches with lower index proceed jobs in batches
with higher index with regard to <.

An optimal schedule for (J,<),M simply puts every batch i on its own machine

i. The cost of this solution is OPT =
∑m

i=1 k
m−i+1 km−i+1+1

2
1

k2(m−i+1) ≈ 1
2m. Now

suppose we decrease the number of machines from m to m − 1. By the pigeonhole

34

Chapter 2. Partial-Order Scheduling on Parallel Machines

principle, there must be at least one machine that contains a 1
m−1 fraction of the jobs

from two different batches. We now consider such a machine. We call the fraction of
jobs coming from the earlier (respectively later) of the two batches D (respectively
D′), and suppose D′ comes from a batch with ki jobs. Thus, |D′| ≥ 1

m−1k
i and

|D| ≥ 1
m−1k

i+1. The weight of each job inD′ is 1
k2i

. Since the jobs inD are scheduled

before those in D′, the completion times of jobs in D′ is at least |D| ≥ 1
m−1k

i+1.

Therefore, the total cost of jobs in D′ is at least 1
k2i

1
(m−1)2

kiki+1 = Ω(k
m2). This is

already a lower bound for OPT ′, the optimal value of the new instance (J,<),M ′.
Since we can choose k arbitrarily large, this completes the argument.

Thus, as stated before, it seems unlikely that we can use the IP 2.2 to design an
LP-based approximation algorithm for PO Scheduling or even for the multiple-chains
case. Therefore, we don’t further pursue this approach for now.

2.4 The Configuration IP

In this section, we consider a quite different idea (compared to the approach pre-
sented in Section 2.3) on how to design a constant-factor approximation algorithm
for PO Scheduling. The approach is LP-based as well, i.e., we give an IP formulation
for PO Scheduling and discuss solving and rounding the linear relaxation. We reduce
solving the linear relaxation to solving a different scheduling problem, Scheduling
with Rejection and show the current state of progress with this approach. While
we do not solve the problem here, there are potential jumping-off points for further
research.

2.4.1 The Configuration LP and its Dual

Let (J,≺), M be an instance of PO Scheduling. For each subset of jobs C ⊆ J
we denote by S⋆

C an optimal schedule of C on a single machine, where the order
of the completion times agrees with the partial order ≺. By w(S⋆

C) we denote the
cost of said schedule. More generally, if S is some schedule, we denote by w(S)
the sum of the weighted completion times of this schedule. Recall that on a single
machine, PO Scheduling is equivalent to precedence-constrained scheduling on a
single machine7. As mentioned before, precedence-constrained scheduling is NP-
hard, even for the case of a single machine. Note that for every given C ⊆ J , we
can find a 2-approximation for w(S⋆

C) [22]. For now, let us set this issue aside and
treat w(S⋆

C) as some known values.
We start by considering the Configuration IP. For each C ⊆ J we have a binary

variable zC , where zC = 1 indicates that there is some machine in the final schedule
that has exactly the jobs in C scheduled to it.

71|prec|
∑

j wjCj in the three-field notation by [20].

35

Chapter 2. Partial-Order Scheduling on Parallel Machines

min
∑

C⊆J w(S
⋆
C)zC

s.t.
∑

C⊆J zC ≤ m∑
C⊆J :j∈C zc = 1 ∀j ∈ J

zC ∈ {0, 1} ∀C ⊆ J

(2.3)

The constraints of the IP 2.3 imply that we want to find at most m = |M |
subsets of jobs (each scheduled to its own machine) such that each job is contained
in exactly one subset of jobs. Consider the linear relaxation of the IP 2.3, where we
replace the integrality constraint by 0 ≤ zC ≤ 1 for all C ⊆ J . We call this linear
relaxation the Configuration LP. Note that both the IP and its linear relaxation
have exponentially many variables, as there are exponentially many subsets C ⊆ J .
Given the linear relaxation, we have to find solutions to two main questions to arrive
at a constant-factor approximation algorithm for PO Scheduling based on the IP
2.3:

� Solving an LP can be done in polynomial time in terms of amount of variables
and constraints the LP has. Given that the Configuration LP has exponentially
many variables in terms of the input size, can we find an optimal fractional
solution in polynomial time in terms of the input size?

� Given an optimal fractional solution to the Configuration LP, how can we
obtain a feasible integral solution of comparable cost? I.e., this is the problem
of rounding an optimal LP solution.

We will focus on the first question for the rest of this section and leave the second
question open for now. As noted, in the Configuration LP we have exponentially
many variables and polynomially many constraints. To deal with the exponential
number of variables, we consider the dual LP of the Configuration LP (which we
will call primal from now). LP Duality is a fundamental concept in the field of
linear optimization. An introduction on LP Duality and the most important results
can be found in Schrijver [42]. In particular, if we find an optimal solution to the
dual problem, we can from it compute an optimal solution to the primal problem
(using strong duality and complementary slackness [42]). In the dual problem (or
dual for short), we will have polynomially many variables and exponentially many
constraints. More specifically, in the dual we have one variable λ associated with
the first constraint of the primal and one variable yj for each j ∈ J , related to each
instance of the second type of constraints in the primal. We obtain the dual LP 2.4:

max −mλ+
∑

j∈J yj
s.t. −λ+

∑
j∈C yj ≤ w(S⋆

C) ∀C ⊆ J

λ ≥ 0

(2.4)

Consider some class of inequalities Ax ≤ b. The problem of checking if a point
x̄ satisfies Ax̄ ≤ b is called the separation problem (for this class of inequalities).
It is known (by using Khachiyan’s Ellipsoid Method [26] and by using a version of

36

Chapter 2. Partial-Order Scheduling on Parallel Machines

binary search [42] to find the optimal value) that solving the separation problem in
polynomial time enables optimizing over the same inequalities in polynomial time,
i.e., when we can solve the separation problem for Ax ≤ b in polynomial time, we
can find x⋆ ∈ max {c(x) | Ax ≤ b}, for an objective vector c of suitable dimension,
in polynomial time.

Consider the separation problem for the dual LP 2.4 For a point (λ, y) we can
trivially check λ ≥ 0 in constant time. We have exponentially many inequalities
of the form −λ +

∑
j∈C yj ≤ w(S⋆

C) for which we have to check if they are all
satisfied. Checking if all such inequalities are satisfied is equivalent to checking

maxC⊆J

(
−λ+

∑
j∈C yj − w(S⋆

C)
)
≤ 0. The question remains if we can find said

maximum in polynomial time. If so, as explained above, we can find the dual
optimum in polynomial time and thus the primal optimum as well.

2.4.2 The Dual Separation Problem

Let us consider the dual separation problem for a given point (λ, y) in more de-

tail. Ideally, we would like to check if maxC⊆J

(
−λ+

∑
j∈C yj − w(S⋆

C)
)
≤ 0 in

polynomial time. We can reformulate the separation problem as follows:

maxC⊆J

(
−λ+

∑
j∈C yj − w(S⋆

C)
)

≤ 0

⇔ maxC⊆J

(∑
j∈C yj − w(S⋆

C)−
∑

j∈J yj

)
≤ λ−

∑
j∈J yj

⇔ minC⊆J

(
w(S⋆

C) +
∑

j∈J yj −
∑

j∈C yj

)
≥

∑
j∈J yj − λ

⇔ minC⊆J

(
w(S⋆

C) +
∑

j ̸∈C yj

)
≥

∑
j∈J yj − λ

Thus, the separation problem can be expressed as a minimization problem over
all possible subsets of jobs, where we need to check if the optimal value of our
objective function takes at least the value

∑
j∈J yj − λ.

Note that we can interpret this minimization problem again as a scheduling
problem with the following setting: We are given a partially ordered set of jobs
(J,≺), the same set as in the original input for PO Scheduling, and a single ma-
chine M = {1}. Recall that on a single machine, PO Scheduling is equivalent to
precedence-constrained scheduling. For each job j ∈ J , we have weights wj , process-
ing times pj and rejection costs yj which we obtain from the point (λ, y). We can
either schedule a job, leading to some weighted completion time, or pay yj to reject
the job, meaning that the job won’t contribute any completion time. A schedule is
valid if the order of the completion times of the scheduled jobs agrees with the par-
tial order ≺. The goal is to find a valid schedule that minimizes the sum of weighted
completion times plus the sum of rejection payments incurred. This problem is know
as scheduling with rejection and precedence constraints on one single machine8. The

8Extending the 3-field notation and following the notation of [47, 13], the problem can be denoted
as 1|rej, prec|

∑
S wjCj +

∑
S̄ yj , where S ⊆ J is the set of jobs to be scheduled, S̄ = J\S and rej

denotes the option for rejection.

37

Chapter 2. Partial-Order Scheduling on Parallel Machines

wider class of scheduling problems where jobs can be rejected is known as scheduling
with rejection and is a well-studied class of scheduling problems in its own right, see
e.g., [47, 13]. We abbreviate scheduling with rejection with precedence constraints
on one single machine in this section to “Scheduling with Rejection” for the sake of
brevity when the context is clear.

The question remains how to solve the separation problem in polynomial time.
Recall from the beginning of this section that finding w(S⋆

C) is already NP-hard.
Thus, we cannot hope to solve the separation problem optimally in polynomial
time. Given this, we consider finding a suitable approximation algorithm for the
dual separation problem.

Let (λ, y) be a point for which we want to solve dual the separation problem, i.e.,
Scheduling with Rejection, where we interpret yj as rejection cost for each j ∈ J .
To approximate the separation problem in a suitable manner, we consider finding
an approximation algorithm with a special property. Let α be some fixed constant
which will be our desired approximation factor. We define y′j :=

yj
α for all j ∈ J .

We consider an algorithm that in polynomial time returns a subset of jobs C̄ and a
valid schedule S̄C̄ (in terms of precedence constraints from ≺) for all jobs in C̄ to a
single machine, with cost w(S̄C̄), such that

w(S̄C̄) + α
∑
j ̸∈C̄

y′j ≤ αmin
C⊆J

w(S⋆
C) +

∑
j ̸∈C

y′j

 . (2.5)

Such an algorithm is called a Lagrange-Multiplier preserving (LMP) approxima-
tion algorithm for Scheduling with Rejection with rejection cost y′j for each j ∈ J .
LMP approximation algorithms are used in designing approximation algorithms for
different problems [18, 30] and can intuitively be understood as approximation al-
gorithms where we “localize” the approximation error to only some component of
the cost function. In our case, we want to “localize” the approximation factor to
the part of the cost stemming from the weighted completion times. We describe in
the rest of this section how such an LMP algorithm helps us to find an approximate
solution to the Configuration LP.

Let C⋆ be such that w(S⋆
C⋆)+

∑
j ̸∈C⋆ yj = minC⊆J

{
w(S⋆

C) +
∑

j ̸∈C yj

}
. Alterna-

tively, as seen above, −λ+
∑

j∈C⋆ yj−w(S⋆
C⋆) = maxC⊆J

(
−λ+

∑
j∈C yj − w(S⋆

C)
)
.

It can be easily checked that the condition 2.5 is equivalent to

w(S̄C̄) +
∑
j ̸∈C̄

yj ≤ αw(S⋆
C⋆) +

∑
j ̸∈C⋆

yj . (2.6)

Given that 2.5 and 2.6 are equivalent, we work with the later condition going forward
and thus we can use the rejection costs yj for each j ∈ J (obtained from (λ, y))
directly instead of the y′j =

yj
α defined earlier.

38

Chapter 2. Partial-Order Scheduling on Parallel Machines

We discuss finding such an LMP approximation algorithm for the dual separation
problem in the next Subsection 2.7. For now, we consider how having access to
an LMP approximating algorithm would help us in designing an approximation
algorithm for PO Scheduling. Recall that (λ, y) is a point for which we want to
solve the dual separation problem and let C̄, S̄C̄ , w(S̄C̄) be the output of the LMP
approximation algorithm for the current point. We can check if −λ +

∑
j∈C̄ yj −

w(S̄C̄) ≤ 0 or not. If −λ +
∑

j∈C̄ yj − w(S̄C̄) > 0, we have found a new violated

inequality related to C̄, S̄C̄ , w(S̄C̄) and can thus say that (λ, y) is not feasible. If
however −λ+

∑
j∈C̄ yj − w(S̄C̄) ≤ 0, we have the following:

0 ≥ −λ+
∑

j∈C̄ yj − w(S̄C̄)

= −λ−
∑

j ̸∈C̄ yj − w(S̄C̄) +
∑

j∈J yj
≥ −λ−

∑
j ̸∈C⋆ yj − αw(S⋆

C⋆) +
∑

j∈J yj
= −λ+

∑
j∈C⋆ yj − αw(S⋆

C⋆)

Thus, from −λ+
∑

j∈C̄ yj−w(S̄C̄) ≤ 0 it follows −λ+
∑

j∈C⋆ yj−αw(S⋆
C⋆) ≤ 0. Note

that by definition of C⋆ we have −λ+
∑

j∈C⋆ yj −w(S⋆
C⋆) ≥ −λ+

∑
j∈C yj −w(S⋆

C)

for all C ⊆ J . Putting these two facts together, from −λ +
∑

j∈C̄ yj − w(S̄C̄) ≤ 0
it follows −λ +

∑
j∈C yj − αw(S⋆

C) ≤ 0 for all C ⊆ J . In other words, having

−λ+
∑

j∈C̄ yj−w(S̄C̄) ≤ 0 gives witness that (λ, y) approximately satisfies the dual
separation problem, i.e., (λ, y) satisfies all inequalities if we scale up the right-hand
side by a factor α.

Given what we have seen above, we can now state how to use an LMP algorithm
as described above to obtain an approximately optimal solution to the Configuration
LP. We can apply Khachiyan’s Ellipsoid Method [26] to figure out in polynomial
time if (an α-scaled version of) the LP 2.4 is feasible based on solving the separation
problem. By doing so, if the α-scaled version of the problem is indeed feasible, we
obtain in polynomial time a solution (λ⋆, y⋆) that has objective value at least the
optimal value of 2.4 and which satisfies all inequalities of 2.4 if the right-hand side
is scaled up by a factor α9.

Let s be the number of times the LMP algorithm is called until finding the point
(λ⋆, y⋆) as described above. As mentioned earlier, s can be bounded by a polynomial
in terms of the input size. By C̄i we denote the subset of jobs that was returned
the ith time the LMP approximation algorithm was called for 1 ≤ i ≤ s. Let
S :=

{
C̄i | 1 ≤ i < s

}
. Let S̄C̄i

be the schedule returned by the LMP approximation
algorithm along with C̄i. Consider the LP 2.7:

max −mλ+
∑

j∈J yj
s.t. −λ+

∑
j∈C yj ≤ w(S̄C̄) ∀C̄ ∈ S

λ ≥ 0

(2.7)

9We basically apply the well-known methodology to solving a linear problem to optimality by
reducing it to a feasibility problem and applying Khachiyan’s Ellipsoid Method. For further details,
see Schrijver [42].

39

Chapter 2. Partial-Order Scheduling on Parallel Machines

Note that (λ⋆, y⋆) is optimal for the LP 2.7 by design of which constraints we
include. Equivalently, (λ⋆, y⋆) has objective value at least the objective value of the
optimum to the LP 2.4 and satisfies all inequalities of 2.4 if the right-hand side is
scaled up by a factor α. Consider the dual of the LP 2.7:

min
∑

C̄∈S w(S̄C̄)zC̄
s.t.

∑
C̄∈S zC̄ ≤ m∑
C̄∈S:j∈C̄ zC̄ = 1 ∀j ∈ J

0 ≤ zC̄ ≤ 1 ∀C̄ ∈ S

(2.8)

The LP 2.8 has the same types of constraints as the Configuration LP but only
|S| = s−1 many variables. Thus, we can find an optimal solution to 2.8 in polynomial
time in terms of the input size. Let z be such an optimal solution. We can extend
z to a feasible solution z̄ for the Configuration LP by setting z̄C = 0 for all C ̸∈ S.
By the theorem of strong duality [42] the optimal solution z to the LP 2.8 has the
same optimal value as (λ⋆, y⋆) in the LP 2.7. Thus, since z̄ is obtained from z
since z̄ and (λ⋆, y⋆) are corresponding primal and dual optimal solutions, and since
(λ⋆, y⋆) has objective value at least the objective value of the optimum to the LP
2.4 and satisfies all inequalities of 2.4 if the right-hand side is scaled up by a factor
α, z̄ can be understood as a solution for the Configuration LP where each term
in the objective function was scaled up by at most a factor of α. Overall, this is
equivalent to saying that z̄ is an α-approximation to the optimal solution to the
linear relaxation of 2.3.

Overall, if we can find an LMP approximation algorithm for Scheduling with
Rejection, we can obtain an α-approximation for the fractional optimum solution,
which would be a strong first step to design an approximation algorithm for PO
Scheduling based on the Configuration IP 2.3. Thus, in the next part of this section,
we consider finding a LMP constant-factor approximation algorithm for Scheduling
with Rejection.

2.4.3 Approximating Scheduling with Rejection

We have seen in the previous section, that to make progress on PO Scheduling,
we are interested in finding a constant-factor LMP approximation algorithm for
Scheduling with Rejection.

As mentioned, scheduling with rejection in general is a commonly studied sub-
class of scheduling problems and is considered in various flavors [13]. Related to our
discussions, Engels, Karger, Kolliopoulos, Sengupta, Uma and Wein [13] have shown
that there is a constant-factor (non-LMP) approximation algorithm for scheduling
with rejection, release-times and precedence constraints on a single machine10. As
mentioned, this approximation algorithm is not LMP. We, however, still want to give

101|rej, rj , prec|
∑

S wjCj +
∑

S̄ yj in the extended 3-field notation. In scheduling with release-
times, each job j ∈ J is only available to be scheduled from a known release-time rj ≥ 0 onwards.
We obtain scheduling without release-times as a special case by assuming rj = 0 for all j ∈ J .

40

Chapter 2. Partial-Order Scheduling on Parallel Machines

an overview of the result here, as it might provide a jumping-off point for further
research.

The approach of Engels, Karger, Kolliopoulos, Sengupta, Uma and Wein [13]
is quite general and can be used to extend approximation algorithms for certain
assignment problems to approximation algorithms for the same assignment problem
with rejection. The notation used here follows [13]. Consider a problem P, where
we want to assign each object in some set O1 to objects in some set O2. Each
i ∈ O1 should be assigned to si objects in O2, where si is some natural number.
To each j ∈ O2 at most κj items from O1 can be assigned to, where κj is some
natural number. M ⊆ O1 × O2 denotes a set of forbidden assignments. There
might be further additional constraints. The goal is to minimize some objective
function, while satisfying all constraints. The authors model the problem as an IP,
using binary decision variables xij for all i ∈ O1 and all j ∈ O2, where xij = 1 is
interpreted as i being assigned to j. Furthermore, the authors introduce variables
yl for l ∈ [|O1| + |O2|], one for each object, to model potential further constraints
and costs. Let c, d be non-negative cost-vectors of suitable dimensions, A be a
constraint-matrix of suitable dimensions and let b be a right-hand side vector of

suitable dimensions. A
[
x y

]⊤ ≤ b captures any additional constraints that might
be present. Thus, the authors consider the following IP-formulation of P:

min c⊤x+ d⊤y
s.t.

∑
j∈O2

xij = si ∀i ∈ O1∑
i∈O1

xij ≤ κj ∀j ∈ O2

A
[
x y

]⊤ ≤ b
xij = 0 ∀(i, j) ∈M
xij ∈ {0, 1} ∀i ∈ O1,∀j ∈ O2

(2.9)

Consider the linear relaxation of 2.9, where we replace the integrality constraints
xij ∈ {0, 1} for all i ∈ O1, j ∈ O2 by xij ≥ 0 for all i ∈ O1, j ∈ O2. The authors call
this relaxation LP1. Now assume there exists an approximation algorithm A with
approximation factor ρ for the problem P that operates by rounding an optimal
solution to LP1 to a feasible solution to the original problem, where the cost of
the rounded solution is at most ρ times the cost of the optimal solution to LP1.
Note that in the original problem P, no rejection is present. The authors show
that, given certain conditions, the approximation algorithm P can be extended to
an approximation algorithm for P where we allow for rejection, i.e., it is possible to
reject elements from O1 instead of assigning them.

To do so, the authors first consider a further relaxation of LP1, which they refer
to as LP2. Here, 0 < β < 1 is some constant. We now allow that an object in O1

is assigned only at least βsi times, instead of being assigned exactly si times. Thus,

41

Chapter 2. Partial-Order Scheduling on Parallel Machines

we obtain:
min c⊤x+ d⊤y
s.t.

∑
j∈O2

xij ≥ βsi ∀i ∈ O1∑
i∈O1

xij ≤ κj ∀j ∈ O2

A
[
x y

]⊤ ≤ b
xij = 0 ∀(i, j) ∈M
xij ≥ 0 ∀i ∈ O1,∀j ∈ O2

(2.10)

Given LP2, we can state the first condition introduced by the authors.

Condition 16 ([13]). Let q be a feasible solution to LP2 of value v(q). There exists
a polynomial-time algorithm to convert q into a feasible solution to LP1 of value at
most f(β)v(q), where f is some function of β.

Given this first condition, we can now introduce rejection to the original problem
P. We refer to the problem with rejection as PR. The authors model PR as an IP,
by introducing new variables zi for each i ∈ O1, where we interpret zi = 1 as i
getting rejected. Rejecting i has costs gi associated to it. We obtain the following
IP:

min c⊤x+ d⊤y + g⊤z

s.t. 1
si

(∑
j∈O2

xij

)
+ zi = 1 ∀i ∈ O1∑

i∈O1
xij ≤ κj ∀j ∈ O2

A
[
x y

]⊤ ≤ b
xij = 0 ∀(i, j) ∈M
xij ∈ {0, 1} ∀i ∈ O1,∀j ∈ O2

zi ∈ {0, 1} ∀i ∈ O1

(2.11)

Similarly as before, the authors introduce LP1R, where we replace the integrality
constraints by xij ≥ 0 for all i ∈ O1, j ∈ O2 and zi ≥ 0 for all i ∈ O1.

Let (x, y, z) be a feasible solution to LP1R and let 0 < β < 1 be a positive

constant. The authors define Sβ :=
{
i ∈ O1 |

∑
j∈O2

xij ≥ βsi

}
as the set of objects

which are fractionally assigned in total to βsi objects in O2. The authors refer by
x(Sβ) and y(Sβ) to the vectors x and y restricted to the entries in Sβ. Given these
definitions, we can state the second condition.

Condition 17 ([13]). Let (x, y, z) be a feasible solution to LP1R. Then, for any β,
we have that (x(Sβ), y(Sβ)) is a feasible solution to LP2, where we consider only Sβ

as elements to be assigned.

Thus, the authors can give an Algorithm 4 for PR as follows, assuming that
Conditions 16 and 17 as satisfied.

Note that in step 2 of the Algorithm 4 the rejection part of the cost only increases
by a factor of at most 1

1−β since at least a 1 − β fraction of the jobs was already
rejected by design.

Therefore, the authors obtain the following theorem:

42

Chapter 2. Partial-Order Scheduling on Parallel Machines

Algorithm 4: max {f(β)ρ, 1
1−β}-Approximation Algorithm for PR

Input : An instance of the problem PR, an approximation algorithm A for P
with approximation factor ρ, a value 0 < β < 1 and a function f of β.

Output : A feasible solution to PR with cost at most max {f(β)ρ, 1
1−β}

times the optimum.

1 Compute an optimal solution to LP1R (x, y, z).

2 Define Sβ :=
{
i ∈ O1 |

∑
j∈O2

xij ≥ βsi

}
and let S̄ := O1\S be the set of

rejected objects.
3 Note that by Condition 17, (x(Sβ), y(Sβ)) is a feasible solution to LP2.

Convert that solution into a feasible solution (x̄, ȳ) to LP1, using
Condition 16.

4 Apply the approximation algorithm A to (x̄, ȳ) and obtain a solution
(x⋆, y⋆).

5 Return (x⋆, y⋆).

Theorem 18 ([13]). Let P be a problem satisfying Conditions 16 and 17. If there
is an approximation algorithm for P such that the cost of the solution obtained by
the approximation algorithm is at most ρ times the cost of an optimal solution to
LP1, then Algorithm 4 is a max {f(β)ρ, 1

1−β}-approximation algorithm for PR.

Given this theorem, the authors consider an IP-formulation for scheduling with
rejection, release-times and precedence constraints on a single machine. They con-
sider the a time-indexed IP. Here, T := [maxj∈J{rj}+

∑
j∈J pj] is a set of time slots

jobs can be scheduled to.

min
∑

j∈J wjCj

s.t.
∑

j∈J xjt ≤ 1 ∀t ∈ T∑
t∈T\[0,rj] xjt = pj ∀j ∈ J

1
pj

∑
rj≤t′<t xjt′ ≥

1
pk

∑
rk≤t′≤t xkt′ ∀j ≺ k, j, k ∈ J, ∀t ∈ T

Cj =
pj
2 + 1

pj

∑
t∈T xjt

(
t+ 1

2

)
∀j ∈ J

xjt = 0 ∀j ∈ J, t < rj
xjt ∈ {0, 1} ∀j ∈ J, t ∈ T

(2.12)
The authors show that the IP 2.12 along with the relaxations introduced above

satisfy Conditions 16 and 17. Thus, by Theorem 18, they show that any approxi-
mation algorithm for scheduling with release-times and precedence constraints on a
single machine, which is based on the IP 2.12 can be extended to an approximation
algorithm for scheduling with rejection, release-times and precedence constraints on

a single machine. For this result we have f(β) = 1
β2 and β = 1

2

(√
ρ (ρ+ 4)− ρ

)
.

The approximation algorithm they use for scheduling with release-times and prece-

43

Chapter 2. Partial-Order Scheduling on Parallel Machines

dence constraints on a single machine is due to Schulz and Skutella [44] with an
approximation factor of (e+ ε) for ε > 0.

Lemma 19 ([13]). For every ε > 0, there is a (4.5 + ε)-approximation algorithm
for scheduling with rejection, release-times and precedence constraints on a single
machine.

There are more recent approximation algorithms for scheduling with release-
times and precedence constraints on a single machine. The currently best known
approximation factor is (2 + ε) for ε > 0 [49]. However, their authors use different
IP-formulations, meaning the result presented above does not immediately carry
over to these different IP-formulations without some further work.

By setting all release-times to zero, we immediately obtain a constant-factor
non-LMP approximation algorithm for PO Scheduling with rejection on a single
machine. However, it is not immediately clear if the arguments presented above due
to Engels, Karger, Kolliopoulos, Sengupta, Uma and Wein [13] can be extended or
modified to obtain an LMP approximation algorithms for Scheduling with Rejection.
We leave this potential path of further research open for now.

Given the discussion on a non-LMP approximation algorithm for Scheduling
with Rejection, let us now consider finding an LMP approximation algorithm for
the problem. While we do not find such an algorithm here, we will find a more
direct way of how a LMP approximation algorithm for Scheduling with Rejection
leads to an approximate solution to the Configuration LP than was shown earlier in
Section 2.4.2.

Recall the notation from the previous subsection. In Scheduling with Rejection,
we are given a partially ordered set of jobs (J,≺), where n := |J | with weights wj ,
processing times pj and rejection costs yj for each job j ∈ J . We can either schedule
a job or reject it, but then incur the rejection cost. The goal is to find a subset of
jobs to be scheduled to a single machine and a feasible schedule (where the order of
the scheduled jobs on the machine agrees with the partial order ≺) with the lowest
sum of the weighted completion times for the scheduled jobs plus the rejection costs
for the rejected jobs. As a first step, we focus on the case of unit processing times,
i.e., pj = 1 for all j ∈ J .

Consider the following IP 2.13 for Scheduling with Rejection. It is a time-indexed
IP and quite similar to the IP formulation 2.12 used for the non-LMP approximation
algorithm. Let T := [n] be a set of time slots. We have binary variables xjt for all
j ∈ J and t ∈ T , where xjt = 1 indicates that job j is scheduled to time slot t.
Additionally, we have binary variables zjt for all j ∈ J and t ∈ T , where zjt = 1
indicates that job j is rejected at time slot t. While the specific time slot at which
a job is rejected is not important in terms of the goal of Scheduling with Rejection,
we will see below that these variables form a convenient extended formulation of the
problem.

44

Chapter 2. Partial-Order Scheduling on Parallel Machines

min
∑

j∈J
∑

t∈T (wjtxjt + yjzjt)

s.t.
∑

j∈J xjt ≤ 1 ∀t ∈ T∑
t∈T (xjt + zjt) = 1 ∀j ∈ J∑
t′<t

(
xjt′ + zjt′

)
+ zjt ≥

∑
t′≤t (xkt′ + zkt′) ∀j ≺ k, j, k ∈ J, ∀t ∈ T

xjt ∈ {0, 1} ∀j ∈ J, t ∈ T
zjt ∈ {0, 1} ∀j ∈ J, t ∈ T

(2.13)
We want at each time slot that at most one job is scheduled to the time slot

(first constraint). Each job must be either scheduled or rejected (second constraint).
Additionally, if job k with j ≺ k is scheduled or rejected at some time slot, job j
must have been scheduled or rejected at some previous time slot, or j is rejected at
the same time slot k is scheduled to (third constraint). Consider the linear relaxation
of 2.13, where we replace the integrality constraints by 0 ≤ xjt, zjt ≤ 1 for all j ∈ J
and all t ∈ T .

We will see that having access to an LMP approximation algorithm for Schedul-
ing with Rejection that operates by rounding an optimal solution to the linear re-
laxation of 2.13 leads to a more direct way of finding an approximate solution to
the Configuration LP as we have shown in the previous section 2.4.2. To do so, let
δ := 1

m . Recall that m = |M |, where M is the machine set in the original instance
of PO Scheduling we consider. Assume we have an instance of Scheduling with Re-
jection where in an optimal fractional solution (x, z) we have

∑
t∈T zjt = 1 − δ for

all j ∈ J , i.e., we want to “almost reject” all jobs. Assume now that we have a
way to round the fractionally optimal solution (x, z) to a distribution over schedules
that respect precedence constraints and where each schedule rejects some jobs and
schedules the rest on a single machine, and each job is scheduled with probability
precisely 1

m . If we scale up this distribution by a factor of m, it is precisely a solu-
tion to the Configuration LP for PO scheduling on m machines. Thus, with such
a rounding procedure in place, we could for such an instance find an approximate
solution to the Configuration LP much more directly.

However, we can always achieve the first condition by adding the constraint∑
t∈T zjt = 1− δ for all j ∈ J to the IP 2.13 and to its linear relaxation. We refer to

the linear relaxation of 2.13 with the additional constraint as LPadd. Assume now
we have a (randomized) LMP approximation algorithm with approximation factor
α, where α is some positive constant, for Scheduling with Rejection that takes an
optimal solution to LPadd and rounds it to a feasible schedule. This implies that the
integrality gap of LPadd is at most α. By Yao’s principle [59], this is equivalent to
the following: for every solution (x, z) to LPadd there is a distribution over integral
solutions to LPadd such that probability that a job j is included in a schedule is
at most α

∑
t∈T xjt. Thus, the probability that a job j is scheduled is at most

α
∑

t∈T xjt = αδ = α 1
m . Therefore, besides the constant factor α, we are exactly in

the setting described above.

45

Chapter 2. Partial-Order Scheduling on Parallel Machines

Thus, having access to an LMP approximation algorithm for Scheduling with
Rejection would provide a more direct way to get an approximately optimal solution
to the Configuration LP, as we have just seen. We leave the question of finding such
an LMP approximation algorithm open for now.

46

Chapter 3

The Weighted Matroid
Augmentation Problem

In this chapter, we consider the “Weighted Matroid Augmentation Problem”, which
we will abbreviate as WMAP. We describe the background and the motivation of the
problem in Section 3.1. Here, we also state the main Conjecture 20 of this chapter.
In Section 3.2, we give the main definitions needed throughout the chapter and
explain in some more detail why we state Conjecture 20 in the specific way we do.
In Section 3.3 we show that Conjecture 20 holds for the two important base-cases
of graphic and cographic matroids. In the last two Sections 3.4 and 3.5, we present
two possible ways of approaching Conjecture 20 based on iterative rounding (Section
3.4) and via Seymour’s decomposition theorem (Section 3.5). We explain what the
techniques are based on, give preliminary results, show limitations encountered so
far and point towards further possible approaches on trying to prove Conjecture 20.

3.1 Problem Description and Motivation

The Tree Augmentation Problem (TAP) is a fundamental and heavily studied [16,
39, 10, 33, 1] problem in the field of augmentation algorithms. Let G = (V,E) be
an undirected graph with a spanning tree T ⊆ E. We call the edges in T tree-edges
and the edges in L := E\T links. The goal is to find a minimal set S ⊆ L such
that (V, T ∪ S) is 2-edge-connected. Given a cost-function c : L → R≥0, we can
ask for finding the cost-minimal set of links S, such that the resulting graph is 2-
edge-connected. This version of the problem in referred to as the Weighted Tree
Augmentation Problem (WTAP).

Already TAP, even on trees of diameter 4, was shown to be APX-hard by Ko-
rtsarz, Krauthgamer and Lee [31]. Thus, TAP and WTAP are studied under the
point of view of approximation algorithms. For TAP, the currently best known ap-
proximation factor is 1.393 by Cecchetto, Traub and Zenklusen [5], improving from
a factor of 1.458 [21] and previously a factor of 1.5 [32, 8, 14]. For a long time, the

47

Chapter 3. The Weighted Matroid Augmentation Problem

best known approximation factor for WTAP has been 2, which is due to Frederick-
son and Jájá [16]. This factor was recently brought down by Traub and Zenklusen,
first to (1 + ln 2 + ε) < (1.7 + ε) and then to (1.5 + ε) [51, 52].

(W)TAP can be understood as a special case of the (Weighted) Connectivity
Augmentation Problem, (W)CAP. Here, we are given an undirected graph G =
(V,E) and a k-edge-connected subgraph H ⊆ E for some k ∈ N>0. Again, we call
the edges in L := E\H links and are given a cost-function c : L→ R≥0. The goal is
to find a cost-minimal (or cardinality-minimal for the case of CAP) subset of links
S ⊆ L such that (V,H ∪ S) is k + 1-edge-connected. In the case of k = 1, we can
contract all 2-edge-connected components of H and thus attain a spanning T on a
smaller graph, bringing us back to the setting of (W)TAP. Thus, (W)CAP is also
APX-hard. In the case that k is odd, it has been known that CAP reduces to the
case k = 1, i.e., to TAP [11]. For CAP, there has been recent progress improving
the approximation factor from 1.91 [4] to 1.393 by Cecchetto, Traub and Zenklusen
[5], the same result as mentioned above for TAP, thus unifying the progress on both
problems. For WCAP, Traub and Zenklusen [53] gave a (1.5 + ε)-approximation,
improving from the previous factor of 2 [17, 23].

Given the recent results, especially for WTAP, we want to consider a generalized
version of the problem, based on matroids. We give a short overview of matroids
in Section 3.2. We consider the following problem: Let M = (E, I) be a matroid
with a distinguished basis B and a cost-function c : E → R≥0. For some s ∈ E\B,
let C(s,B) be the unique fundamental cycle for s and B. The goal is to find a
cost-minimal subset S ⊆ E\B such that the set {C(s,B) | s ∈ S} covers B, i.e., for
all b ∈ B there is some s ∈ S such that b ∈ C(s,B). We call this problem “Weighted
Matroid Augmentation Problem” (WMAP). As mentioned, we will discuss matroids
and the related concepts in Section 3.2. In that section, we also re-consider the
problem statement for WMAP and see that it is a generalization of WTAP. We
state the following open conjecture:

Conjecture 20. There is a 2-approximation algorithm for WMAP in the case that
the matroid is regular.

In the next Section 3.2, we define regular matroids and justify why we focus on
them in Conjecture 20.

Equivalently, we can reformulateMatroidConjecture as follows:

Conjecture 21. There is a 2-approximation algorithm for the set-covering problem
in case that the constraint matrix is the support of a totally unimodular matrix.

We will introduce the set-covering problem in Section 3.2.2 and totally unimod-
ular matrices in Section 3.2.3. In Section 3.4.1 we discuss why both statements of
the conjecture are equivalent.

48

Chapter 3. The Weighted Matroid Augmentation Problem

3.2 An Introduction to Matroids

A deep overview of matroids and matroid theory can be found in a textbook by
Oxley [40]. Schrijver [42] also gives a short introduction to the topic. For the sake of
being self-contained, we will give a brief overview of some of the key definitions and
results which are needed for in this chapter. The results mentioned in this section
are quite well known and can all be found again in greater detail in [40].

3.2.1 Basic Definitions

Let E be a finite set, called the ground set, and let I ⊆ P(E) be a family of subsets
of E. We call I the independent sets and say a set I ∈ I is independent. M = (E, I)
is a matroid if M satisfies the following axioms:

1. The empty set is independent:
∅ ∈ I

2. Every subset of an independent set is independent:
∀A ⊆ B ⊆ E : B ∈ I ⇒ A ∈ I

3. For all independent sets A,B, where A has smaller cardinality than B, there
is an element b ∈ B\A such that A ∪ {b} is independent:
∀A,B ∈ I : |A| < |B| ⇒ (∃b ∈ B\A : A ∪ {b} ∈ I)

Matroids are widely studied objects in various branches of Mathematics, such
as Combinatorial Optimization and Combinatorics. They generalize the concept of
linear independence in vector spaces. We will see this connection in more detail
when we discuss representable matroids in Section 3.2.2.

A set A ̸∈ I is called a dependent set. A minimal dependent set, i.e., a set
where every proper subset is independent, is called a circuit (of M). As mentioned,
subsets A ⊆ E with A ∈ I are called independent. A maximal independent set,
i.e., a set such that every proper superset is dependent, is called a basis (of M).
From the third matroid axiom above, it follows that all bases of M have the same
cardinality. Consider a fixed basis B ∈ I and some element e ∈ E\B1. By definition,
B ∪ {e} ̸∈ I. Thus, there is a circuit contained in B ∪ {e}. It can be shown that
there is exactly one circuit contained in B ∪ {e}. This unique circuit is called the
fundamental circuit C(e,B) related to e and B. Note that by the second axiom we
must have e ∈ C(e,B).

LetM = (E, I) be a matroid. Define I⋆ := {I ⊆ E | E\I contains a basis of M}.
It can be shown that M⋆ = (E, I⋆) is again a matroid [40]. M⋆ is called the dual
matroid of M . Dual matroids play an important role in matroid theory, which we
can here only acknowledge in passing. For a more thorough discussion, see [40].

1Assuming B ̸= E. If B = E, by the second axiom I = P(E) and there are no dependent sets
anyways.

49

Chapter 3. The Weighted Matroid Augmentation Problem

One example of a matroid is the graphic matroid. Consider an undirected con-
nected graph G = (V,E). Let I(G) := {T ⊆ E | (V, T) contains no cycles}. It can
be checked that M(G) := (E, I(G)) is a matroid. Furthermore, the set of bases
of M(G) is formed by the set of spanning trees of G, i.e., the maximal cycle-free
subsets of the edges. We call such matroids graphic matroids2.

Given this knowledge, we can revisit WMAP and see that in the case of a graphic
matroid we indeed obtain the problem of weighted tree augmentation. In other
words, WMAP is a generalization of WTAP. In WMAP, we are given a matroid
M = (E, I), a distinguished basis B and a cost-function c : E\B → R≥0. If M
is a graphic matroid, we have seen that B is a spanning tree T ⊆ E of the graph
G = (V,E), where G is implicitly given via the edges E. Let L := E\T be called
the links. The cost-function c : L→ R≥0 can be understood as assigning some cost
to each link. For WTAP, the goal is to find a cost-minimal subset S ⊆ L such that
the (V, T ∪ S) is 2-edge-connected. For WMAP, the goal is to find a cost-minimal
subset S ⊆ E\B such that the set {C(s,B) | s ∈ S} covers B. For the case of the
graphic matroid, consider some {u, v} = l ∈ L. Note that in T there is an unique
path between u and v, which we denote by P (u, v) or P (l). The fundamental circuit
C(l, T) is the unique cycle in (V, T ∪ {l}), i.e., C(l, T) = {l} ∪ P (l). Note that by
adding l, all nodes adjacent to edges in P (l) are now 2-edge-connected. In terms
of WMAP, adding l covers all edges in C(l, T)\{l} = P (l) ⊆ T . Therefore, we can
understand the goal of WMAP for the case of the graphic matroid as finding a cost-
minimal set S ⊆ L such that (V, T ∪ S) is 2-edge-connected., which is exactly the
set-up of WTAP.

3.2.2 Representable Matroids

Let F be a field and consider a finite-dimensional vector-space V over F . Let E′ be
a finite (multi-)set of vectors in V and let I ′ be a set of linear independent subsets
of E′. It can be easily checked that M ′ = (E′, I ′) is a matroid.

Now let M = (E, I) be an arbitrary matroid and let V again be a finite-
dimensional vector-space over a field F . Let f : E → V be a function from the
ground set E to the vector-space V . f is called a F-representation of M if for all
A ⊆ E we have that A ∈ I if and only if f |A is injective and the set of vectors
in f(A) are linearly independent. If, for a matroid M and a field F , there exists a
finite dimensional vector-space V such that there is a F-representation, we say that
M is F-representable. Intuitively, M is F-representable if there is a function f that
maps the elements in E to vectors in some finite-dimensional vector-space V over F
such that independent sets in I are mapped to linearly independent sets of vectors
(where the elements in independent sets must be mapped one to one, to avoid trivial

2This includes matroids isomorphic to such matroids. However, we will not focus on the concept
of matroid isomorphisms here and, moving forward, we implicitly assume that we always include
isomorphic matroids in our definitions.

50

Chapter 3. The Weighted Matroid Augmentation Problem

maps). Clearly, the type of matroid described at the beginning of this subsection
is F-representable. We say a matroid M is representable (or linear) if there exists
a field F such that M is F-representable. Note that there are some matroids that
are F-representable over some fields F but not over all fields. Furthermore, there
are non-representable matroids, i.e., matroids that are not F-representable over any
field F . A matroid is called regular if for every field F , M is F-representable. We
discuss such matroids in greater detail later in this chapter.

Let us consider again the problem WMAP. The goal is to find a cost-minimal
subset S ⊆ E\B such that the set {C(s,B) | s ∈ S} covers B. From this formulation,
it is clear that we are considering a special case of the set-covering problem. For
the set-covering problem, we denote by n the size of the ground set, i.e., the set
to be covered. It is known that no approximation algorithm can have a better
approximation factor than O(log n), unless P = NP, as shown by Raz and Safra
[41]. Thus, we should not expect a constant-factor approximation algorithm for the
general set-covering problem.

For a finite set S, consider a finite family A := (Aj)j∈J of subsets of S, i.e.,
Aj ⊆ S for all j ∈ J . We call T ⊆ S a transversal of A = (Aj)j∈J , if there exists a
bijective function f : J → T such that f(j) ∈ Aj . We callX ⊆ S a partial transversal
of S if there is a subset K ⊆ J such that X is a transversal of (Aj)j∈K . Let I(A)
be the set of partial transversals of A. It can be shown that M(A) := (S, I(A)) is a
matroid [40]. Such matroids are called transversal matroids where the transversals of
S are the bases of the matroid M(A). Proving the statement above can be achieved
by interpreting partial transversals as matchings in a bipartite graph as follows: Let
G = (V,E) be a graph with V := S ·∪ J and E := {{s, j} | s ∈ Aj , j ∈ J}. Clearly,
G is bipartite. It is not difficult to see that X ⊆ S is a partial transversal if and
only if there is a matching in G covering every node in X, i.e., if there is a subset
Y ⊆ E of the edges such that no two edges in Y share a node and that every node
in X is incident to exactly one edge in Y . The full proof that M(A) := (S, I(A))
is a matroid can be found in [40]. Importantly for our case, it can be shown that
transversal matroids are representable [40].

Theorem 22. There is no constant-factor approximation algorithm for WMAP
already for the case of representable matroids unless P = NP.

Proof. We show this statement by considering instances of transversal matroids,
which are representable [40].

Consider a finite set S = {s1, s2, ..., sb} and a finite family of subsetsA := (Aj)j∈J
with Aj ⊆ S for all j ∈ J . Let B := [b]. Now, consider the ground set S′ := S ·∪ J
with a finite family of subsets A′ := (A′

i)i∈B, where A′
i := {si} ∪ {j ∈ J | si ∈ Aj}

for all i ∈ B. Let M(A′) be the related transversal matroid over the ground set S′.
For M(A′), consider the graph G′ = (V ′, E′) as described above. According to

the definition from earlier, we obtain V ′ = S ·∪ J ·∪ B and E′ = {{sk, k} | k ∈ B} ∪
{{j, k} | sk ∈ Aj , k ∈ B}.

51

Chapter 3. The Weighted Matroid Augmentation Problem

Note that S ⊆ S′ is a transversal of A′. Thus, S ⊆ S′ is a basis of M(A′).
Consider the fundamental circuit C(j, S) of some j ∈ J ⊆ S′ for the basis S.
Interpreting the transversal S as a matching in the graph constructed as described
above, we see that C(j, S) = {j} ∪ Aj ⊆ S′, as these nodes are the ones which
prevent us from finding a matching in the graph G′ (i.e., a transversal of A′) when
j is added to S. Now, consider WMAP for such an instance. We want to find a
cost-minimal subset X ⊆ J = S′\S such that the set

⋃
j∈X Aj covers S, i.e., for all

s ∈ S we have some j ∈ X such that s ∈ C(j, S) or equivalently s ∈ Aj . However,
this is a general set-covering instance, given that we can start from arbitrary families
of subsets of S. As stated before, there is no approximation algorithm with a better
approximation factor than O(log n), unless P = NP [41].

Therefore, in Conjecture 20, we do not consider the class of representable ma-
troids, but restrict ourselves to the class of regular matroids, which we introduce in
the next section.

3.2.3 Totally Unimodular Matrices and Regular Matroids

As seen above, representable matroids are too wide a class for our goal of finding a
constant-factor approximation algorithm for WMAP. To see why in Conjecture 20
we focus on regular matroids, let us first consider totally unimodular matrices. A
matrix A is totally unimodular (TU) if every subdeterminant of A is equal to either
−1, 0 or 1, i.e., if we consider any square submatrix B of A, then we have det (B) ∈
{−1, 0, 1}. TU matrices are important for objects in the area of Mathematical
Optimization since optimizing over the related polytopes (in the right circumstances)
yields integral solutions [42]:

Theorem 23. Let A be a TU matrix and b be an integral vector of suitable dimen-
sion. Then, the polyhedron P := {x ∈ R | Ax ≤ b} is integral.

Tutte [54, 55] has shown that a matroid is regular if and only if it can be repre-
sented by the columns of a totally unimodular matrix.

Theorem 24 ([54, 55]). A matroid M is regular if and only if it is R-representable
by {−1, 0, 1}-vectors which together form a TU matrix.

The two theorems above will be useful later when we express WTAP and WMAP
as an IP and use its linear relaxation for the purpose of finding an approximate
solution. We will see that the constraint matrix of the linear relaxation forms a
TU matrix and that the right-hand side is integral. Thus, we can solve the linear
relaxation in polynomial time and still achieve an integral solution.

To do so, let us introduce a special case of TU matrices, namely network matrices.
Let D = (V,A) be a directed graph and let T ⊆ A be a directed tree on the same

52

Chapter 3. The Weighted Matroid Augmentation Problem

graph. Let (u,w) = a ∈ A and t ∈ T and consider the T ×A-matrix M defined via

Mt,a :=

1, the unique u-v path in T passes through t in the direction of t

−1, the unique u-v path in T passes through t against the direction of t

0, else

Such a matrix M is called a network matrix (represented by T and D). See
chapter 19.3 in [42] for a proof that network matrices are indeed TU.

In the previous Section 3.2.2, we have introduced regular matroids as matroids
which are F-representable over every field F . Note that graphic matroids are regular
matroids [42]. Indeed, a matroid is graphic if and only if it can be represented by
a network matrix [40]. For a graphic matroid M(G) with a distinguished tree T ,
pick an arbitrary note r ∈ V as the root and consider directing all edges in T away
from the root. Also, assume all edges in L = E\T are directed arbitrarily. Let A be
the network matrix represented by T and (V,L) and let Al denote the column of A
corresponding to l ∈ L. Note the |Al| is the characteristic vector of P (l) ⊆ T . Thus,
in particular, the graphic matroid M(G) can be represented by a TU matrix of the
form

[
I A

]
. This can be achieved by taking a network matrix-representation of

M(G) and performing Gaussian elimination steps on some related network matrix
representing the matroid until the columns related to T form the identity matrix.

Given our discussions on the graphic matroid, we consider a related object,
namely the dual matroid to graphic matroids. Let G = (V,E) be a graph and let
I⋆(G) := {U ⊆ E | E\U contains a spanning tree of G}. Thus,M⋆(G) := (E, I⋆(G))
is again a matroid, because it is the dual matroid of the graphic matroidM(G). Such
matroids are called cographic matroids. Note that B ⊆ E is a basis of M⋆(G), if
E\B is a spanning tree of G. Additionally, cographic matroids are also regular ma-
troids [42]. Indeed, a matroid is cographic if and only if it can be represented by
the transpose of a network matrix [40]. Fix a basis B of M⋆(G) and let T := E\B.
Consider A as defined above for the case of a graphic matroid (we replace L by
B in the definition of course). In particular, a cographic matroid M⋆(G) can be
represented by a TU matrix of the form

[
I A⊤].

In the next Section 3.3, we want to study graphic and cographic matroids in
terms of WMAP in more detail as a first step to tackle Conjecture 20.

3.3 Approximating the Graphic and Cographic Case

In this section, we consider WMAP for the cases of graphic and cographic ma-
troids. We show how WMAP can be understood in these two settings and give
2-approximation algorithms for both cases.

53

Chapter 3. The Weighted Matroid Augmentation Problem

3.3.1 The Graphic Matroid Case

For graphic matroids, we have already seen in Section 3.2.1 that WMAP is the same
problem as WTAP. The currently best known approximation factor for WTAP is
(1.5 + ε) by Traub and Zenklusen [52]. In this section, we present a more basic
2-approximation algorithm, which is folklore in the field. While not the best known,
the 2-approximation will give us some insights on how WMAP behaves for the case
of a graphic matroid.

Consider a graph G = (V,E) and a spanning tree T ⊆ E. Let L := E\T be the
links and consider a cost function c : L → R≥0. Let M := M(G) be the graphic
matroid for this instance. The goal is to find a cost-minimal set S ⊆ L such that
the fundamental circuits C(s, T) cover T . We have seen in Section 3.2 that this
is equivalent to saying that (V, T ∪ S) is 2-edge-connected for a cost-minimal set
S. Note that for each pair of nodes u, v ∈ V there is a unique path from u to v
in T , which we denote by P (u, v) ⊆ T . For {u, v} = l ∈ L, we denote P (u, v)
alternatively as P (l). Thus, for the fundamental cycle of some l ∈ L and T we have
C(l, T) = P (l)∪{l}. We can formulate WTAP on this instance as an IP with binary
variables xl for all l ∈ L. We interpret xl = 1 as l ∈ S and thus a solution denotes
an incidence vector of S.

min
∑

l∈L clxl
s.t.

∑
l:t∈P (l) xl ≥ 1 ∀t ∈ T

xl ∈ {0, 1} ∀l ∈ L

(3.1)

By the linear relaxation of the IP 3.1, we denote the LP with the same variables,
constraints, and objective function as above but replacing xl ∈ {0, 1} with 0 ≤ xl ≤ 1
for all l ∈ L.

From G, we choose an arbitrary node r ∈ V as the root. Given the spanning
tree T , for each pair of notes u, v ∈ V we can define a least common ancestor,
that is the node that is the predecessor of both u and v which is furthest removed
from the root r in terms of the length of the unique path from r. For an edge
{u, v} = l ∈ L, we denote the least common ancestor as lca (l). Note that it can
happen that lca (l) ∈ {u, v}. Such links are called uplinks. Consider a set of links
L′ obtained from L as follows: For l ∈ L with lca (l) ∈ {u, v}, we leave l as is. For
l ∈ L with lca (l) ̸∈ {u, v}, we bisect {u, v} = l at the least common ancestor lca (l)
and thus obtain two edges. More formally,

L′ := {l ∈ L | l = {u, v}, lca (l) ∈ {u, v}}
∪ {{u, lca (l)}, {lca (l) , v} | l = {u, v}, lca (l) ̸∈ {u, v}} .

Thus, in L′ each link is an uplink. For the new link-set L′ we define a new cost-
function c′ via c′(l) = c(l) if l is an uplink and via c′({u, lca (l)}) = c′({lca (l) , v}) =
c(l) otherwise. For an instance G = (V, T ·∪ L′) and c′ of WTAP, we can consider
the linear relaxation of the IP 3.1. Consider the constraint matrix A of this LP for
the first type of inequalities

∑
l:t∈P (l) xl ≥ 1 for all t ∈ T . Consider a column of A

54

Chapter 3. The Weighted Matroid Augmentation Problem

for a variable xl, where {u, v} = l ∈ L′. We have seen that l is an uplink. W.l.o.g.,
assume that lca (l) = u. We have that At,l = 1 for all t ∈ P (l) and At,l = 0 for
all t ̸∈ P (l). Thus, if we interpret T as a directed tree, where each tree-edge t ∈ T
is directed towards the root r and interpret every link in l ∈ L′ as being directed
towards lca (l), we see that A is a network matrix represented by (a directed version
of) T and (a directed version of) G. The constraint matrices for the other bounding
inequalities are identity matrices. Since it is known that adjoining an identity matrix
to a TU matrix results in a TU matrix [42], the entire constraint matrix of the linear
relaxation of 3.1 for the instance G = (V, T ·∪L′) and c′ is TU. Thus, since the right-
hand side is integral, by Theorem 23, optimizing the LP yields an integral basic
optimal solution.

Given this, consider the following Algorithm 5 for WTAP:

Algorithm 5: 2-Approximation Algorithm for WTAP

Input : Graph G = (V,E), spanning tree T , cost function c : L→ R≥0 (with
L := E\T).

Output : A feasible solution x to WTAP with cost at most twice the
optimum.

1 Chose r ∈ V arbitrarily. Compute L′ and c′ from L and c as described in
Section 3.3.1.

2 Solve the LP-relaxation of 3.1 for T, L′ and c′. Let x⋆ be a basic optimal
solution.

3 For each {u, v} = l ∈ L with l1, l2 the corresponding bisected edges in L′

(if l is an uplink, l1 = l2 = l), define xl := 1 if x⋆l1 = 1 or x⋆l2 = 1. Else,
xl = 0.

4 Return x.

Lemma 25. Algorithm 5 is a 2-approximation algorithm for WTAP.

Proof. Let x be the solution returned by the algorithm on the input G = (V,E), T ,
L = E\T and c. Let x⋆ be the basic optimal solution to the LP for the input T, L′

and c′ computed by the algorithm in line 2.
Solving the LP can be done in polynomial time, given that we only have poly-

nomially many constraints. All other steps can clearly be completed in polynomial
time as well. Thus, the algorithm runs in polynomial time.

As noted above, by Theorem 23 x⋆ is integral since the constraint matrix for the
LP on the input T , L′ and c′ is TU and the right-hand side of the LP is integral.
Note that in x⋆, each tree-edge is covered by some link in L′. Taking a link l ∈ L
and comparing it to its corresponding links l1, l2 ∈ L′, we see that the tree-edges
covered by l are the union of the tree-edges covered by l1 and l2. Since we include
l in x whenever l1 or l2 are included in x⋆, each tree-edge must be covered by x as
well since we switch to longer (in terms of the tree-edges covered) links only. Thus,
x is a feasible solution.

55

Chapter 3. The Weighted Matroid Augmentation Problem

Lastly, let y be an optimal solution to WTAP on the input T, L and c. Let y⋆ be
an optimal solution to the linear relaxation of 3.1 on the input T, L and c and let ȳ
be a solution to the linear relaxation of 3.1 on the input T, L′ and c′ obtained from
y⋆, where we set ȳl1 = ȳl2 = y⋆l , with being l1, l2 the edges in L′ that correspond
to l ∈ L. Note that ȳ is feasible for the linear relaxation of 3.1 on the input T, L′

and c′ since y⋆ is feasible for the linear relaxation of 3.1 on the input T, L and c.
Additionally, c′(ȳ) ≤ 2c(y⋆) by the definition of ȳ since we at most bisect each edge
in L and the new bisected edges both have the same cost as the original edge. We
have that c(x) ≤ c′(x⋆) ≤ c′(ȳ) ≤ 2c(y⋆) ≤ 2c(y). The first inequality holds since
x contains a link l ∈ L if x⋆ contains at least one of the bisected corresponding
links l1, l2 ∈ L′, which both have the same cost under c′ as l has under c. The
second inequality holds since x⋆ is an optimal solution to the relevant LP while ȳ
is a feasible solution to the same LP. The third inequality holds as stated above.
The last inequality holds trivially since the minimal solution to the LP relaxation is
always smaller than the minimal solution of the IP since we optimize over a smaller
space for the IP.

Thus, we have given a 2-approximation algorithm for WTAP, i.e., for WMAP in
the case of a graphic matroid.

3.3.2 The Cographic Matroid Case

Let us recall the definition of the cographic matroid. Let G = (V,E) be a graph.
Let I⋆(G) := {U ⊆ E | E\U contains a spanning tree of G}. Then, the matroid
M⋆(G) := (E, I⋆(G)) is called the cographic matroid. Note that M⋆(G) is the dual
matroid of M(G). When the context is clear, we will refer to the cographic matroid
only as M in this section.

Let G = (V,E) be a graph, T ⊆ E be a spanning tree and B := E\T be called
the basis-edges. Let c : T → R≥0 be a cost-function on the tree-edges. Denote by
M = (E, I) the cographic matroid for the graph G. Note that B is a basis of M .
Consider for some {u, v} = t ∈ T the edge set T\{t}. The graph G′ := (V, T\{t})
isn’t connected and can be understood as two disjoint trees, one rooted in u, the
other rooted in v. Let us refer to these trees as Tu and Tv, where Tu, Tv ⊆ E. To
make G′ connected we need to add an edge that connects the two trees Tu and Tv.
Let St = S{u,v} := {{c, d} = b ∈ B | c ∈ G [Tu] , d ∈ G [Tv]}. Adding any such edge
(or t) to the edge set of G′ would make the graph connected, i.e., the updated edge
set would be a spanning tree of G. Alternatively, already (V,E\ (St ∪ {t})) is not
connected, i.e., (V,E\ (St ∪ {t})) cannot contain a spanning G since there is no way
to form a path from u to v. Thus, for the fundamental circuit of t for the basis B
we have C(t, B) = St ∪ {t}. Therefore, in terms of WMAP, t covers all basis-edges
in St.

Now, let {u, v} = b ∈ B and denote by P (b) = P (u, v) ⊆ T the unique path in T
from u to v. Consider which tree-edges could be used to cover b in terms of WMAP.
This is exactly the set {t ∈ T | b ∈ St} = P (u, v). Thus, the goal of WMAP in the

56

Chapter 3. The Weighted Matroid Augmentation Problem

case of a cographic matroid can be reformulated as finding a cost-minimal subset
S ⊆ T such that for each {u, v} = b ∈ B there is some s ∈ S with s ∈ P (b), i.e.,
there is some s ∈ S which is part of the unique path in T connecting the endpoints
u, v of b.

As mentioned in Section 3.2.3, note that the cographic matroid can be repre-
sented by a TU matrix of the form

[
I A⊤], where A is the network matrix repre-

sented by T and (V,B), when interpreting all edges in T as directed away from an
arbitrary root r ∈ V and when all basis-edges are directed arbitrarily.

Next, we will see that WMAP for the case of a cographic matroid is NP-hard.
We show this by giving a reduction from the vertex cover problem. In the vertex
cover problem, we are given a graph G = (V,E). The goal is to find a minimal
subset S ⊆ V such that for each edge e = {u, v}, S contains at least one of the
endpoints u or v, i.e., for all {u, v} = e ∈ E we must have that u ∈ S or v ∈ S. It is
known that the vertex cover problem is NP-hard [25]. Furthermore, the vertex cover
problem is APX-hard. More specifically, there is no approximation algorithm with
an approximation factor better than

√
2 − ε for all ε > 0 unless P = NP [28, 12].

Assuming the stronger Unique Games Conjecture holds, it can be shown that no
approximation algorithm can have an approximation factor better than 2 [29].

Let G = (V,E) be a graph, an instance of the vertex cover problem. We intro-
duce a new node s a and new set of edges T := {{s, v} | v ∈ V }. We obtain the
graph G′ = (V ′, E′) with V ′ := V ∪{s} and E′ := E ∪T . Note that T is a spanning
tree of G′. Consider WMAP for the case of the cographic matroid based on the
graph G′, the spanning tree T , the basis E = E′\T and unit-costs, i.e., ct = 1 for
all t ∈ T . For {u, v} = e ∈ E we have P (e) = P (u, v) = {{u, s}, {s, v}}. Thus,
to cover the fundamental circuit related to e, we must pick one of the tree-edges
{u, s} or {v, s}. Thus, if S′ is a (cost-)minimal solution to WMAP of the instance
described, we obtain a solution S for the vertex cover problem on G by setting u ∈ S
if and only if {u, s} ∈ S′. Additionally, if S is a minimal solution to the vertex cover
problem on G, we can define S′ := {{u, s} | u ∈ S} to obtain a minimal solution to
WMAP on the instance described above.

Let the T , B and c be an instance of WMAP for the case of a cographic matroid
as above. We can formulate the problem as an IP. Consider the following binary
IP, where xt = 1 denotes that t ∈ S and thus a solution can be understood as an
incidence vector of S.

min
∑

t∈T ctxt
s.t.

∑
t∈P (b) xt ≥ 1 ∀b ∈ B

xt ∈ {0, 1} ∀t ∈ T

(3.2)

By the linear relaxation of the IP 3.2, we refer to the LP with the same variables,
constraints, and objective function as above but replacing xt ∈ {0, 1} with 0 ≤ xt ≤ 1
for all t ∈ T .

57

Chapter 3. The Weighted Matroid Augmentation Problem

Again, we can choose an arbitrary node r ∈ V as the root, interpret T as rooted
and define the least common ancestor lca (u, v) for each pairs of nodes u, v ∈ V and
for {u, v} = b ∈ B define lca (b) := lca (u, v) as in the previous section. We now
consider an approximation algorithm for WMAP in the case of a cographic matroid.
For the case of WTAP, in Algorithm 5, we have bisected the links to have uplinks
only and thus obtain a constraint matrix which is TU for the LP we solve. Note
that for the case of a cographic matroid we cannot just bisect all basis-edges, as by
doing so we obtain more and “shorter” edges in the new instance and therefore we
might need to include significantly more (costly) tree-edges to cover all fundamental
circuits of the bisected basis-edges. Intuitively, in Algorithm 6, we still bisect the
basis-edges but only include some of the bisected edges to be able to handle the
increase in cost. Therefore, we can obtain an LP with a TU constraint matrix for a
slightly altered instance, which we are able to relate back to our original instance.
We choose which bisected basis-edges to include based on a basic optimal solution to
the linear relaxation of 3.2 for the instance we consider. To state this more formally,
consider Algorithm 6.

Algorithm 6: 2-Approximation Algorithm for WMAP for the case of a
cographic matroid

Input : Graph G = (V,E), basis B, cost function c : T → R≥0 (with
T := E\B).

Output : A feasible solution to WMAP for the given input with cost at
most twice the optimum.

1 Chose r ∈ V arbitrarily. This is needed to define the least common
ancestor of pairs of notes.

2 Solve the LP-relaxation of 3.2 for T,B and c. Let x⋆ be a basic optimal
solution.

3 Define B′ := {b | {u, v} = b ∈ B with lca (b) ∈ {u, v}} ·∪{
{u, lca (b)} | {u, v} = b ∈ B, lca (b) ̸∈ {u, v},

∑
t∈P (u,lca(b)) x

⋆
t ≥ 1

2

}
.

4 Solve the LP-relaxation of 3.2 for T,B′, c. Let x′ be a basic optimal
solution.

5 Return x′.

Theorem 26. Algorithm 6 is a 2-approximation algorithm for WMAP for the case
of a cographic matroid.

Proof. Let x′ be the solution returned by the algorithm on the input G = (V,E), T ,
B = E\T and c. Let x⋆ be the basic optimal solution to the first LP solved by the
algorithm in line 2.

Solving both LPs can be done in polynomial time, given that we only have
polynomially many constraints in both cases because the cardinality of B′ is bounded

58

Chapter 3. The Weighted Matroid Augmentation Problem

by twice the cardinality of B. All other steps can clearly be completed in polynomial
time as well. Thus, the algorithm runs in polynomial time in terms of the input size.

Consider x⋆ and some arbitrary {u, v} = b ∈ B. Say lca (b) = w. We first
consider the case that u, v ̸= w, i.e., that b is not an uplink. Since x⋆ is a feasible
solution to the LP, we must have

∑
t∈P (u,v) x

⋆
t =

∑
t∈P (u,w) x

⋆
t +

∑
t∈P (w,v) x

⋆
t ≥ 1.

Therefore,
∑

t∈P (u,w) x
⋆
t ≥ 1

2 or
∑

t∈P (w,v) x
⋆
t ≥ 1

2 must hold. Thus, in this case note

that for a basis-edge in B we have at most two corresponding edges in B′. Next, if
b is an uplink, assume w.l.o.g. that w = u. By definition we have that b ∈ B′ and
therefore there is one edge in B′ that corresponds to the original uplink. Therefore,
we have that all edges in B′ are uplinks as defined in the last section. Consider the

constraint matrix A for the first type of inequalities
(∑

t∈P (b) xt ≥ 1 for all b ∈ B′
)

of the second LP solved by the algorithm in line 4 for the input T , B′ and c. Consider
a row of A for an edge {u, v} = b′ ∈ B′. As noted above, b′ is an uplink. W.l.o.g., we
assume lca (b′) = u. We show that A is the transpose of a network matrix. Similar
as in the proof of lemma 25, we have Ab′,t = 1 for all t ∈ P (b′) and Ab′,t = 0 for all
t ̸∈ P (b′). Therefore, we can interpret T as a directed tree, where each tree-edge t
is directed towards the root r and can interpret every basis-edge b′ ∈ B′ as being
directed towards lca (b′). By doing so, we see that A is indeed the transpose of a
network matrix represented by (a directed version of) T and (a directed version of)
G. Thus, as in the proof of lemma 25, the entire constraint matrix is TU [42], for the
input T , B′ and c. Also, the right-hand side of the LP is integral. Thus, by Theorem
23, x′ is an integral (binary) vector. Therefore, x′ is a feasible solution to the IP with
inputs T , B′ and c, i.e., x′ hits all edges in B′ as described earlier in this section.
Note that each edge in B is at least as long as the corresponding edges in B′ (in
terms of the length of the unique path in T). Thus, when replacing any edge b′ ∈ B′

by the corresponding longer edge b ∈ B, x′ still hits b since P (b′) ⊆ P (b). Therefore,
x′ is also a feasible (integral) solution to WMAP for the cographic matroid on the
instance T , B and c.

Let y be defined via yt := min {1, 2x⋆t } for all t ∈ T and let z be an optimal
solution to the IP 3.2 for the input T , B and c. Note that y is a feasible solution to
the linear relaxation of 3.2 with inputs T , B′ and c. To see this, first consider some
{u, v} = b ∈ B with lca (b) ̸∈ {u, v}. Say that lca (b) = w. We have

∑
t∈P (u,w) x

⋆
t ≥

1
2 or

∑
t∈P (v,w) x

⋆
t ≥ 1

2 . W.l.o.g. let us assume the former. If yt = 1 for some
t ∈ P (u,w), we have

∑
t∈P (u,w) yt ≥ 1, as desired. Else, we have

∑
t∈P (u,w) yt =∑

t∈P (u,w) 2x
⋆
t ≥ 1. Else, if lca (b) = u, we have

∑
t∈P (u,v) x

⋆
t ≥ 1. Again, if for

some t ∈ P (u, v) we have yt = 1 we are done. Else, we obtain
∑

t∈P (u,v) yt =∑
t∈P (u,v) 2x

⋆
t ≥ 1 and the result follows as well. Also, y clearly satisfies the box

constraints, i.e., 0 ≤ yt ≤ 1 for all t ∈ T . We have c(x′) ≤ c(y) ≤ 2c(x⋆) ≤ 2c(z).
The first inequality holds since y is a feasible solution to the LP with input T , B′

and c, while x′ is an optimal solution for the same LP. The second inequality holds
since yt ≤ 2x⋆t for all t ∈ T by the definition of y. The third inequality holds since
x⋆ is optimal for the linear relaxation while z is an optimal solution for the IP.

59

Chapter 3. The Weighted Matroid Augmentation Problem

3.4 IP-Formulations and Iterative Rounding

In this section, we consider an IP-formulation for the general WMAP problem, give
some observations on this formulation, and discuss a first potential approach on how
to design an approximation algorithm for WMAP for the case of regular matroids.

3.4.1 An IP-Formulation of WMAP and some Observations

Consider a TU-matrix A′ ∈ {−1, 0 − 1}m×n with m ≤ n and full row-rank. It is
known [42] that applying Gaussian elimination (via pivoting operations [42]) to a
TU matrix preserves total unimodularity. Thus, we can assume that A′ =

[
I A

]
,

where I is the m×m identity matrix and A is some other TU matrix. By Theorem
24, A′ can be understood as a R-representation f of some regular matroid M with
n elements and where the size of any basis is m. W.l.o.g., we denote the elements
of M as [n], where 1 ≤ k ≤ n is represented by A′

k, the kth column of A′. Note that
B = [m] is a basis of M , as the elements {1, 2, ...,m} are linearly independent since
their images together form the m×m-identity matrix. We define N := E\B. Given
this, we have A′ =

[
I A

]
, where I is the image of the basis B and A is the image of

the elements in N . Consider some element k ∈ N and let a := Ak = A′
m+k be the kth

column of A representing the element k. Note that a−
∑m

i=1 aiei = a−
∑m

i=1 aiA
′
i =

0, where ai is the ith entry of a. Thus, C(k,B) = supp {a} ·∪ {k}, where supp {a}
denotes the support of a, which are all entries with a value different from 0.

Let us now consider an IP-formulation for WMAP. The goal is finding a cost-
minimal S ⊆ N such that the set {C(s,B) | s ∈ S} covers B. Consider the following
binary IP3, where xk = 1 for k ∈ N is interpreted as k ∈ S and thus a solution can
be understood as an incidence vector of S.

min
∑

k∈N ckxk
s.t.

∑
k:b∈C(k,B) xk ≥ 1 ∀b ∈ B

xk ∈ {0, 1} ∀k ∈ N

(3.3)

By the linear relaxation of 3.3 we refer to the LP with the same variables, con-
straints, and objective function as above but replacing xk ∈ {0, 1} with 0 ≤ xk ≤ 1
for all k ∈ N .

Consider a regular matroid M which is represented by a TU matrix A′ =
[
I A

]
as above. Let Q be the constraint matrix of the linear relaxation of 3.3 for the input
M for the first type of inequalities

∑
k:b∈C(k,B) xk ≥ 1 for all b ∈ B. Consider Qk,

the column of Q which is related to the variable xk. We have Qb,k = 1 for all b ∈ B
with b ∈ C(k,B) and Qb,k = 0 for all b ∈ B with b ̸∈ C(k,B). Thus, Qb,k = 1
if and only if b ∈ supp {Ak}. It follows that we can understand Q as the absolute
value of A, i.e., Q is obtained by taking the absolute value of a TU matrix which

3Note that we can compute all inequalities of 3.3 in polynomial time from the input M = (E, I)
with a distinguished basis B, even if the matrix A is not given since we can find the fundamental
circuits C(k,B) for each k ∈ N in polynomial time [37].

60

Chapter 3. The Weighted Matroid Augmentation Problem

represents the non-basis elements of a regular matroid. Note that from the points
above can can conclude that both statements of our main conjecture in this chapter
(Conjecture 20 and Conjecture 21) are equivalent.

3.4.2 Introduction to Iterative Rounding

Iterative Rounding is a method to round LP-solutions which was introduced by Jain
[23]. It is the first approach we tried to round solutions of the linear relaxation of
3.3 to design a suitable approximation algorithm. We first give a short overview of
iterative rounding as introduced by Jain [23]. Then, we apply this method to the
graphic and cographic case in the next Section 3.4.3. The algorithm and the proofs
shown in this section follow Jain [23] but are slightly adapted to the problem at
hand.

The idea of iterative rounding to obtain a 2-approximation algorithm, as intro-
duced by Jain [23], is based on three premises4:

� We have an LP to which we can find a basic optimal solution in polynomial
time on all inputs. This is e.g., because the LP has polynomial size in terms
of the input size or because we can efficiently solve the separation problem.

� When fixing some variables to integer values (for binary IPs to 0 or 1) and
considering the reduced problem5, it has the same form as the original LP,
i.e., it is the same LP for some different (reduced, or – for some versions of
iterative rounding – generalized) instance of the same problem.

� In each basic optimal solution to the relevant LP, there is at least one variable
that takes value at least 1

2 .
Note that this last premise is not required for many generalizations and adap-
tations of iterative rounding, where we e.g., aim for different approximation
factors than 2. In those cases, we only want there to be some variable with
a value above some fixed threshold. However, the premise as stated here is
required for iterative rounding as first introduced by Jain [23] and to obtain a
2-approximation algorithm, which is why we state it in the form seen above.

Based on the above, we want to give a short and informal overview of the procedure,
following Jain [23]. If the three premises above are satisfied, we start by solving the
LP for the original input. We set all variables to 1 which take a value of at least 1

2 in
the basic optimal solution obtained from solving the LP. By doing so, we can adjust
the right-hand sides as some variables are now fixed and obtain a smaller instance
of the same LP and can thus iterate the process. Given that there is always at least
one variable in each iteration with value of at least 1

2 , the algorithm will terminate in

4Note that there are various generalizations and adaptions of the procedure [15, 34, 36].
5The reduced problem is usually attained by introducing new constraints fixing the variables

mentioned before. Alternatively, one can fix every occurrence of the variables to their prescribed
value, adjust the right-hand side accordingly, remove the variables from the IP and drop any already
satisfied constraints.

61

Chapter 3. The Weighted Matroid Augmentation Problem

polynomial time since we can solve each individual LP in polynomial time. Since in
every iteration we only double the contribution to the cost by increasing the values
of some variable from at least 1

2 to 1, we get a 2-approximation algorithm.
To be more formal, we consider some IP 3.4, for which we assume that some

assumption, stated below, hold:

min
∑

e∈E cexe
s.t.

∑
e∈E Ad,exe ≥ 1 ∀d ∈ D

xe ∈ {0, 1} ∀e ∈ E
(3.4)

For notational convenience, we assume A ∈ {0, 1}D×E . We consider the linear
relaxation to 3.4, where we replace the integrality constraint by 0 ≤ xe ≤ 1 for all
e ∈ E. Assume for now that for every input D,E,A and c in every basic optimal
solution x of the linear relaxation, there exists some e ∈ E such that xe ≥ 1

2 . Let
x⋆ be such a basic optimal solution. Clearly, the linear relaxation has polynomial
size in terms of the input size and can thus be solved in polynomial time. Consider
some S ⊆ E. If we set xs = 1 for all s ∈ S, we obtain a residual problem which can
be formulated as an LP of the same form (with appropriately restricted versions of
A and c) on the input E′ := E\S and D′ := D\

{
d ∈ D |

∑
s∈S Ad,s · 1 ≥ 1

}
. That

is, we fix the variables in S to 1 and drop the constraints which are already satisfied
by the fixed variables. Going forward, we will always use S :=

{
s ∈ E | x⋆s ≥ 1

2

}
.

Therefore, all three premises stated above are satisfied and we are thus in the setting
where iterative rounding can be applied.

Given this, iterative rounding can be formulated as Algorithm 7.

Algorithm 7: Iterative Rounding [23]

Input : D,E,A ∈ {0, 1}D×E , c.
Output : A feasible integral solution to the IP 3.4 with cost at most twice

the optimum.

1 Set S ← ∅.
2 while D ̸= ∅ do
3 Solve the linear relaxation of 3.4 with input E and D. Let x⋆ be a

basic optimal solution.
4 Let S⋆ :=

{
s ∈ E | x⋆s ≥ 1

2

}
.

5 Set S ← S ∪ S⋆, E ← E\S⋆ and
D ← D\

{
d ∈ D |

∑
s∈S⋆ Ad,s · 1 ≥ 1

}
.

Set A and c to appropriately restricted versions of themselves.
6 end
7 Return S.

To analyze Algorithm 7, consider the following Lemma 27.

Lemma 27 ([23]). Let x⋆ be the optimal solution to the linear relaxation of 3.4 on
the input E,D. Let S⋆ :=

{
s ∈ E | x⋆s ≥ 1

2

}
, D′ = D\

{
d ∈ D |

∑
s∈S⋆ Ad,s · 1 ≥ 1

}
and let E′ = E\S⋆ . Let x⋆res be the optimal solution to the linear relaxation of 3.4

62

Chapter 3. The Weighted Matroid Augmentation Problem

on the input E′, D′. Lastly, let Sres be a feasible integer solution to the IP 3.4 on
the input E′, D′ with cost at most twice the cost of x⋆res.

Then, S⋆ ∪ Sres is an integral solution to the IP 3.4 on the input E,D with
c(S⋆ ∪ Sres) ≤ 2c(x⋆).

Proof. Note that Sres satisfies all inequalities in D′ by assumption while S⋆ satisfies
all inequalities in D\D′ by definition of S⋆ and D′. Thus, S⋆ ∪ Sres is a feasible
integral solution to the IP 3.4 with input E,D.

Note that
∑

e∈E′ Ad,ex
⋆
e ≥ 1 for all d ∈ D′ as well. Thus x⋆ restricted to the

variables in E′ is also a feasible solution to the linear relaxation of 3.4 with input
E′, D′. Therefore, we have

c(x⋆res) ≤ c(x⋆)−
∑
e∈S⋆

cex
⋆
e.

With this, we get

2c(x⋆) ≥ 2c(x⋆res) + 2
∑

e∈S⋆ cex
⋆
e by the inequality above

≥ 2c(x⋆res) +
∑

e∈S⋆ ce since 2x⋆e ≥ 1 for all e ∈ S⋆ by definition
≥ c(Sres) + c(S⋆) since c(Sres) ≤ 2c(x⋆res) by assumption
= c(Sres ∪ S⋆)

Thus, we obtain Lemma 28.

Lemma 28 ([23]). Algorithm 7 is a 2-approximation algorithm to the IP 3.4 given
the assumptions stated above.

Proof. Solving each individual LP can be done in polynomial time. All other steps
can be completed in polynomial time as well. Given the third premise, in each step
there is always at least one variable with value of at least 1

2 . Thus, the main loop
is executed at most |D| times. Therefore, the algorithm runs in polynomial time in
terms of the input size.

We now use iteration over the at most |D| executions of the main loop of the
algorithm, repeatedly applying Lemma 27, to show that in each step we obtain a
2-approximation algorithm for the reduced version of the IP 3.4 considered in that
step. Thus overall, it follows that S is a feasible solution to the IP 3.4 and that the
cost of S is at most twice the cost of the optimum of the IP.

Now that we have seen how iterative rounding works, we can try to apply it
to WMAP. Note that our IP 3.3 has polynomially many constraints and can thus
be solved in polynomial time. Additionally, if we set the variables related to some
edges N ′ ⊆ N to 1, we cover some elements B′ ⊆ B. The new, smaller instance of
the problem thus obtained can be expressed as the same general IP for the input
N\N ′ and B\B′. Thus, in the next Section 3.4.3 we consider if we can always find
a variable with value at least 1

2 for the case of WMAP, i.e., if the third premise is
satisfied.

63

Chapter 3. The Weighted Matroid Augmentation Problem

3.4.3 Iterative Rounding for the Graphic and Cographic Case

In this section, we show that iterative rounding as described in the previous section
works for the case of WTAP to obtain a 2-approximation algorithm. Note that this
result is well-known in the field. We here recontextualize the approach and reprove
the statement. However, for WMAP in the case of a cographic matroid, we show
that the IP 3.2 does not satisfy the third premise for iterative rounding as stated in
the previous section.

First, we consider WMAP for the case of a graphic matroid, which as we have
seen is equivalent to WTAP. Recall the IP 3.1.

Lemma 29. Let y be a basic optimal solution to the linear relaxation of the IP 3.1
for some input T, L, c. Then, there exists some l ∈ L such that yl ≥ 1

2 .

Proof. Assume for a contradiction that the statement is false. Consider a lexico-
graphical ordering of all possible instances where we primarily sort by n := |T | and,
among instances with the same n, secondarily by m := |L|. Consider the lexico-
graphically smallest instance of WTAP such that for some vector c there exists a
basic optimal solution x where we have xl <

1
2 for all l ∈ L. Let T, L, c and y be an

instance and a basic optimal solution witnessing the above. Note that since T is a
tree, the related graph has n+ 1 nodes.

We now consider some properties which must hold for the minimal counterexam-
ple T, L, c and y. First, we must have yl > 0 for all l ∈ L. Else, we could remove the
links whose variables take value 0 and consider the instance T, {l ∈ L | yl > 0} , c.
This would be a lexicographically smaller instance with the same properties as men-
tioned above. We therefore have that m ≤ n = |T | since we have n constraints and
thus at most n variables must take non-zero values in any basic solution. Further-
more, we can assume that

∑
l:t∈P (l) yl = 1 for all t ∈ T , as if we had a non-tight

such constraint, we could drop it and y would still remain a basic optimal solu-
tion. Note that dropping a constraint is equivalent to contracting the related tree.
Thus, from having such a non-tight constraint we could construct a lexicographically
smaller instance with the same properties as mentioned above, meaning that all such
constraints must indeed be tight, to not contradict minimality of T, L, c and y.

Let some arbitrary node r ∈ V be the root. Recall that our graph has n + 1
nodes. We first consider the case where every node either has at least two direct
descendants (i.e., descendants that are adjacent to the node) or is a leaf. Note
that in such a tree at least half the nodes must be leaves. Consider a tree-edge
{u, v} = t ∈ T which is adjacent to a leave u. Clearly, this tree-edge t can only be
covered by links l ∈ L which are adjacent to u. However, since yl <

1
2 for all l ∈ L,

there must be at least three links adjacent to u to collectively cover the tree-edge t,
i.e., to satisfy the constraint

∑
l:t∈P (l) yl ≥ 1. Since this holds for every leaf u, we

must have at least 3n+1
2 > n links in L. Because we however have |L| = m ≤ n, no

such instance can exist, leading to a contradiction.
Now, consider the case where we have a node u ∈ V with u ̸= r which is adjacent

64

Chapter 3. The Weighted Matroid Augmentation Problem

to exactly two other nodes via tree-edges6. I.e., u is incident to exactly two tree-edges
t1 = {v, u}, t2 = {u,w} ∈ T and thus u has exactly one direct predecessor v and ex-
actly one direct descendant w. Let In(u) := {{a, u} = l ∈ L | t1 ∈ P (l), t2 ̸∈ P (l)},
i.e., the set of links that are incident to u which cover t1 but not t2. Similarly,
we define Out(u) := {{u, b} = l ∈ L | t1 ̸∈ P (l), t2 ∈ P (l)} and define Over(u) :=
{l ∈ L | t1 ∈ P (l), t2 ∈ P (l)}. Note that

∑
l∈In(u) yl =

∑
l∈Out(u) yl since we have∑

l:t1∈P (l) yl = 1 =
∑

l:t2∈P (l) yl and thus it follows that
∑

l∈In(u)) yl+
∑

l∈Over(u)) yl =
1 =

∑
l∈Out(u)) yl +

∑
l∈Over(u)) yl.

By splitting a link {a, b} = l ∈ In(u) ·∪Out(u) we mean replacing l with two new
parallel links l1 = {a, b}, l2 = {a, b} and replacing the related variable yl by yl1 , yl2
such that yl = yl1 + yl2 and 0 ≤ yl1 , yl2 ≤ 1. Note that there are different ways
to split a link, depending on how we distribute the value of yl between yl1 and yl2 .
In any case, we define cli := cl ·

yli
yl

for i = 1, 2. Thus, cl = cl1 + cl2 , i.e., splitting
the link leads to a larger instance with an extended solution with the same cost
as the original solution. Now, consider the sets In′(u) and Out′(u) obtained from
splitting the links in In(u) and Out(u) such that we have |In′(u)| = |Out′(u)| and
such that there exists a bijection µ : In′(u) → Out′(u) where for all l ∈ In′(u) we
have yl = yµ(l), i.e., we split the links in In(u) and Out(u) in such a way that we can
map splitted links whose variable take the same value to each other. Note that we
can always achieve such a splitted instance. Now, consider some {a, u} = l ∈ In′(u)
and {u, b} = µ(l) ∈ Out′(u). We can combine the two splitted links into a longer
link l′ = {a, b} and replace the variables yl, yµ(l) by yl′ := yl = yµ(l). We define
cl′ := cl + cµ(l). Thus cl′yl′ = clyl + cµ(l)yµ(l), i.e., combining the splitted links in
such a way leads to a new instance with a solution with the same cost as the cost for
the solution for the splitted instance. Consider the instance obtained as described
by splitting and combining the links in In(u) and Out(u). Note that after splitting
and recombining links as described, in the new instance no link is adjacent to u
anymore. Thus, we can contract the edges t1 and t2. Therefore, we arrive at a
lexicographically smaller instance of the problem, as we have decreased |T | (while
|L| might have become much larger). This, however, contradicts our assumption of
considering the smallest counterexample. Therefore, every node must have at least
two direct descendants or be a leaf which puts us back into the setting considered
before and the lemma follows.

Thus, for WTAP with the IP 3.1, iterative rounding works as described in Section
3.4.2.

Next, we consider WMAP for the case of a cographic matroid with the IP 3.2.

6We still assume that the root r has at least two direct descendants. Note that this assumption
is w.l.o.g.. We do not consider the case that r is the only node, as here no edges exist. If r has
exactly one direct descendant r′, we can instead assume that r′ is the root. If the new root r′ now
has at least two direct descendants, we are done. If again r′ has only one direct descendant r, the
tree consists of a single tree-edge. In this case, in any basic solution we must necessarily choose
a single link completely, thus we cannot have yl < 1

2
for all l ∈ L. Therefore, the assumption is

w.l.o.g..

65

Chapter 3. The Weighted Matroid Augmentation Problem

Consider the instance shown in Figure 3.1 below. The colorful full edges are the
basis-edges (the different colors are only used to (hopefully) enhance readability
and don’t have any further meaning). The black dashed edges are the tree-edges.
Note that the basis-edges also form a spanning tree which is edge-disjoint from the
tree-edges. Fix an arbitrary basis-edge b and consider P (b), as defined in Section
3.3.2. Note that |P (b)| = 3. Thus, by setting xt = 1

3 for all t ∈ T we have∑
t∈P (b) xt = 3 · 13 = 1 for each basis-edge b. Therefore, this solution is feasible.

Furthermore, we have exactly |B| = 14 tight constraints and exactly |T | = 14
variables. It follows that the solution is basic. Additionally, it can be checked that
for c = 1, i.e., the all-ones vector, the solution is optimal. Overall, in Figure 3.1 we
have found an instance of WMAP for the cographic matroid with a basic optimal
solution where xt <

1
2 for all t ∈ T . Therefore, iterative rounding as described in

Section 3.4.2 cannot be applied to WMAP in the case of a cographic matroid using
the IP 3.2 to obtain a 2-approximation algorithm.

Figure 3.1

Thus, for an iterative rounding-based approach to work, we would have to modify
Algorithm 7 or consider a different type of IP, i.e., by using a different formulation or
by somehow adjusting some inequalities between iterations. We leave this approach
open for now as a jumping off point for further research.

3.5 Seymour Decomposition

In this section, we present an alternative approach on how to potentially design an
approximation algorithm for WMAP for the case of regular matroids. First, let us
consider the following definitions. Let

M10 :=

1 − 1 0 0 − 1
− 1 1 − 1 0 0
0 − 1 1 − 1 0
0 0 − 1 1 − 1
− 1 0 0 − 1 1

66

Chapter 3. The Weighted Matroid Augmentation Problem

It can be shown that M10 is TU [42]. We refer to the matroid represented by[
I M10

]
as the matroid R10.

Next, we define three matroid operations, which take two matroids as inputs,
namely the one-sum ⊕1, two-sum ⊕2 and three-sum ⊕3. These operations will have
the property that they preserve matroid regularity, i.e., if both inputs are regular,
the resulting matroid will also be regular [46]. Since in our context, we only care
about regular matroids, we primarily define and use these operations in terms of the
TU matrices representing the regular matroids, i.e., we define and use the operations
as operations on TU matrices, following the notation of [42]. Let M,N be regular
matroids represented by some TU matrices

[
I A

]
and

[
I B

]
. Thus, we then define

K = M ⊕i N as the matroid that is represented by
[
I C

]
, where C := A⊕i B for

i = 1, 2, 3.
Let A,B be TU matrices and let a and d be {−1, 0, 1}-column vectors and b and

c be {−1, 0, 1}-row vectors of suitable dimensions. All matrices shown below on the
left-hand side (as inputs) are assumed to be TU, e.g.,

[
A a

]
as an input for the

2-sum is assumed to be TU. The outputs on the right-hand side can, as mentioned,
also shown to be TU. By 0 we denote the all zero-matrix of suitable dimensions. We
have

A⊕1 B :=

[
A 0

0 B

]
(3.5)

[
A a

]
⊕2

[
b
B

]
:=

[
A ab
0 B

]
(3.6)

[
A a a
c 0 1

]
⊕3

[
1 0 b
d d B

]
:=

[
A ab
dc B

]
(3.7)

To gain some further insights into these operations, we consider the following, as
stated by Seymour [46]. Under certain conditions to be stated later, the one-, two-
and three-sums of graphic matroids are graphic matroids themselves. Therefore, the
operations can be understood in terms of graphs as well in certain cases. Let G =
(V,E) be a connected graph. Y ⊆ V is called a cut-set if removing the nodes in Y
and all adjacent edges causes the graph to be disconnected. Let Y be a minimal cut-
set of G and choose T1, T2 ̸= ∅ such that (T1, Y, T2) is a partition of V and such that
no edge in E joins a node of T1 to a node of T2. Let Z := {{y, z} | y ̸= z, y, z ∈ Y },
i.e., let Z be a (potentially new) set of edges joining each pair of nodes in Y . If
|Y | = k for k = 1, 2, 3 and if we can find two subgraphs Gi = (Vi, Ei), for i = 1, 2
such that:

� Vi = Y ∪ Ti

� E1 ∪ E2 = E ∪ Z

� E1 ∩ E2 = Z

� |E1|, |E2| < |E|

67

Chapter 3. The Weighted Matroid Augmentation Problem

then the graphic matroid M(G) is the k-sum of the graphic matroids M(G1) and
M(G2).

Given these definitions, we can state a seminal result by Seymour [46] which
characterizes all regular matroids:

Theorem 30 ([46]). Let N be a regular matroid. There exists a finite familyM :=
(Mi)i∈I of matroids such that N can be constructed from members ofM be repeatedly
applying 1-, 2- and 3-sum operations. Furthermore, for all i ∈ I, Mi is either a
graphic matroid, a cographic matroid or the matroid R10.

Given this result, we can consider the following approach to prove Conjecture
20. We know from previous sections that there is a 2-approximation algorithm for
WMAP for the case of a graphic and a cographic matroid. Also, we can solve the
case for R10 to optimality since it is only a single matroid. If we can show for
the one-, two- and three-sum that if there is a 2-approximation algorithm for both
inputs then there is also a 2-approximation algorithm for the output, we can use
Theorem 30 to conclude that there is a 2-approximation algorithm for WMAP for
every regular matroid.

Let

[
P
I

]
be the constraint matrix of the IP 3.3 from Section 3.4.1 on the input

of a regular matroid M . Recall that P can be understood as the absolute value
of a matrix A such that M is represented by

[
I A

]
. Given this, the can restate

what we have to show as follows: For i = 1, 2, 3, let M,N,O be regular matroids
which are represented by

[
I A

]
,
[
I B

]
and

[
I C

]
such that O := M ⊕i N , i.e.,

C = A⊕iB. Set P := |A|, Q := |B| and R := |C|. Let BM , BN and BO be the bases
of M,N,O identified by the choice of the matroid representations

[
I A

]
,
[
I B

]
,[

I C
]
and let cM , cN and cO = (cM , cN)⊤ be cost-vectors of suitable dimensions.

Let x⋆M , x⋆N and x⋆O be optimal solutions to WMAP on the instances M,BM , cM ,
N,BN , cN and O,BO, cO. Assume that in polynomial time we can compute feasible
solutions xM and xN such that cM (xM) ≤ 2cM (x⋆M) and cN (xN) ≤ 2cN (x⋆N). We
now want to show that we can find in polynomial time a feasible solution xO such
that cO(xO) ≤ 2cO(x

⋆
O).

Let us first consider the case of the one-sum. We show that Conjecture 20 holds
when considering only one-sums.

Lemma 31. Let M̄ be a matroid such that there exists a finite family M̄ := (M̄i)i∈I
of matroids where for all i ∈ I, M̄i is either a graphic matroid, a cographic matroid
or the matroid R10 and such that M̄ can be constructed from members of M̄ be
repeatedly applying the 1-sum operation. Then, there is a 2-approximation algorithm
for WMAP in the case of an input N .

Proof. We have seen in Lemma 25 and Theorem 26 that there is a 2-approximation
algorithm for WMAP if the matroid is graphic or cographic. Furthermore, WMAP

68

Chapter 3. The Weighted Matroid Augmentation Problem

with the matroid R10 is a single optimization problem, which we can solve to opti-
mality. Thus, to show the statement, it suffices to prove that if we have two regular
matroids for which we have a 2-approximation algorithm for WMAP, then there is
a 2-approximation algorithm for their one-sum, as we then can apply this statement
repeatedly constructing M̄ from M̄.

Let M,N and O be regular matroids and let all related notation be as before. By
assumption, we can in polynomial time compute suitable approximate solutions xM
and xN . We now set xO := (xM , xN)⊤. From the definition of the one-sum 3.5, we
see that xO is feasible for WMAP on the input O,BO, cO, as

[
P 0

]
(xM , xN)⊤ =

PxM ≥ 1 since xM is feasible for WMAP on the input M,BM , cM . Similarly,[
0 Q

]
(xM , xN)⊤ ≥ 1. Note that can assume that x⋆O = (x⋆M , x⋆N)⊤ since by using

the same argument as above, we can split xO into two parts xMO and xNO . Note that
for xO to be feasible for the input O,BO, cO, we must have that xMO and xNO are
feasible for the inputs M,BM , cM and N,BN , cN respectively. Thus, we can replace
xMO and xNO by x⋆M and x⋆N without increasing the cost. Additionally, cO(xO) =
(cM , cN)⊤((xM , xN)⊤) = cm(xM) + cN (xN) ≤ 2 (cM (x⋆M) + cN (x⋆N)) = 2cO(x

⋆
O) by

our assumptions. Thus, the statement follows.

For the two-sum and for the three-sum, the problem becomes more involved. Let
xO := (xM , xN)⊤ as above. Note that xO is again a feasible solution. However, the
argument about splitting xO into xMO and xNO does not work any longer, as the less
sparse output matrix means that both partial solutions “interact” with each other
so xMO and xNO must not necessarily be feasible solutions for the inputs M,BM , cM
and N,BN , cN anymore. Thus, we cannot assume that x⋆O = (x⋆M , x⋆N)⊤. Given
the IP 3.3, we can always find in polynomial time an optimal solution to the linear
relaxation. The question remains, how to suitably round said solution.

Given its less involved definition, it seems reasonable to next consider the case

of the two-sum. Let M =
[
A a

]
and N =

[
b
B

]
. Let cA := cM |A. Trying to find a

suitable solution xO, we can proceed by induction and assume that the claim holds
for all smaller instances. Thus, we can assume that we can also find a solutions
xA and xB in polynomial time which are feasible for the inputs |A|, BM , cA and
|B|, BN , cN and that we have cA(xA) ≤ 2cA(x

⋆
A) and cB(xB) ≤ 2cB(x

⋆
B), where

x⋆A and x⋆B are optimal solutions for the respective instances. To continue making
progress on this topic, it might prove helpful to first solve the problem for the case
of two graphic matroids, as we do have a graph-interpretation of the input-matroids
for this case.

Given these thoughts, we leave solving the question even for the case of the
two-sum open for now.

69

Bibliography

[1] D. Adjiashvili. Beating Approximation Factor Two for Weighted Tree Aug-
mentation with Bounded Costs. ACM Transactions on Algorithms (TALG),
15(2):1–26, 2018.

[2] J. A. Bondy, U. S. R. Murty, et al. Graph Theory with Applications, volume
290. Macmillan London, 1976.

[3] T. Bosman, D. Frascaria, N. Olver, R. Sitters, and L. Stougie. Fixed-Order
Scheduling on Parallel Machines. In Integer Programming and Combinato-
rial Optimization: 20th International Conference, IPCO 2019, Ann Arbor, MI,
USA, May 22-24, 2019, Proceedings 20, pages 88–100. Springer, 2019.

[4] J. Byrka, F. Grandoni, and A. J. Ameli. Breaching the 2-Approximation Barrier
for Connectivity Augmentation: A Reduction to Steiner Tree. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages
815–825, 2020.

[5] F. Cecchetto, V. Traub, and R. Zenklusen. Bridging the Gap Between Tree and
Connectivity Augmentation: Unified and Stronger Approaches. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
370–383, 2021.

[6] C. Chekuri and S. Khanna. Approximation Algorithms for Minimizing Average
Weighted Completion Time. In Handbook of scheduling: Algorithms, models,
and performance analysis, pages 11–1. CRC press, 2004.

[7] C. Chekuri and R. Motwani. Precedence Constrained Scheduling to Minimize
Sum of Weighted Completion Times on a Single Machine. Discrete Applied
Mathematics, 98(1-2):29–38, 1999.

[8] J. Cheriyan and Z. Gao. Approximating (Unweighted) Tree Augmentation via
Lift-and-Project, Part II. Algorithmica, 80:608–651, 2018.

[9] F. A. Chudak and D. S. Hochbaum. A Half-Integral Linear Programming Re-
laxation for Scheduling Precedence-Constrained Jobs on a Single Machine. Op-
erations Research Letters, 25(5):199–204, 1999.

70

Bibliography

[10] N. Cohen and Z. Nutov. A (1 + ln 2)-Approximation Algorithm for Minimum-
Cost 2-Edge-Connectivity Augmentation of Trees with Constant Radius. The-
oretical Computer Science, 489:67–74, 2013.

[11] E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov. On the Structure of
the System of Minimum Edge Cuts in a Graph. Issledovaniya po Diskretnoi
Optimizatsii, pages 290–306, 1976.

[12] I. Dinur, S. Khot, G. Kindler, D. Minzer, and M. Safra. Towards a Proof of the
2-to-1 Games Conjecture? In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 376–389, 2018.

[13] D. W. Engels, D. R. Karger, S. G. Kolliopoulos, S. Sengupta, R. Uma, and
J. Wein. Techniques for Scheduling with Rejection. Journal of Algorithms,
49(1):175–191, 2003.

[14] S. Fiorini, M. Groß, J. Könemann, and L. Sanità. Approximating Weighted
Tree Augmentation via Chvátal-Gomory Cuts. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 817–831.
SIAM, 2018.

[15] L. Fleischer, K. Jain, and D. P. Williamson. Iterative Rounding 2-
Approximation Algorithms for Minimum-Cost Vertex Connectivity Problems.
Journal of Computer and System Sciences, 72(5):838–867, 2006.

[16] G. N. Frederickson and J. Jájá. Approximation Algorithms for Several Graph
Augmentation Problems. SIAM Journal on Computing, 10(2):270–283, 1981.

[17] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, E. Tardos, and
D. P. Williamson. Improved Approximation Algorithms for Network Design
Problems. Technical report, Cornell University Operations Research and In-
dustrial Engineering, 1995.

[18] M. X. Goemans and D. P. Williamson. A General Approximation Technique
for Constrained Forest Problems. SIAM Journal on Computing, 24(2):296–317,
1995.

[19] R. L. Graham. Bounds on Multiprocessor Timing Anomalies. SIAM Journal
on Applied Mathematics, 17:263–269, 1969.

[20] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan. Optimization
and Approximation in Deterministic Sequencing and Scheduling: A Survey. In
Annals of discrete mathematics, volume 5, pages 287–326. Elsevier, 1979.

[21] F. Grandoni, C. Kalaitzis, and R. Zenklusen. Improved Approximation for Tree
Augmentation: Saving by Rewiring. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, pages 632–645, 2018.

71

Bibliography

[22] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to Minimize
Average Completion Time: Off-Line and On-Line Approximation Algorithms.
Mathematics of operations research, 22(3):513–544, 1997.

[23] K. Jain. A factor 2 Approximation Algorithm for the Generalized Steiner Net-
work Problem. Combinatorica, 21:39–60, 2001.

[24] T. Jansen. Introduction to the theory of complexity and approximation algo-
rithms. Lectures on Proof Verification and Approximation Algorithms, pages
5–28, 2006.

[25] R. M. Karp. Reducibility Among Combinatorial Problems. Springer, 2010.

[26] L. G. Khachiyan. A Polynomial Algorithm in Linear Programming. In Doklady
Akademii Nauk, volume 244, pages 1093–1096. Russian Academy of Sciences,
1979.

[27] S. Khot. On the Power of Unique 2-Prover 1-Round Games. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pages 767–
775, 2002.

[28] S. Khot, D. Minzer, and M. Safra. On Independent Sets, 2-to-2 Games, and
Grassmann Graphs. In Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing, pages 576–589, 2017.

[29] S. Khot and O. Regev. Vertex Cover Might Be Hard to Approximate to within
2− ε. Journal of Computer and System Sciences, 74(3):335–349, 2008.

[30] J. Könemann, N. Olver, K. Pashkovich, R. Ravi, C. Swamy, and J. Vygen. On
the Integrality Gap of the Prize-Collecting Steiner Forest LP. Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques,
2017.

[31] G. Kortsarz, R. Krauthgamer, and J. R. Lee. Hardness of Approximation for
Vertex-Connectivity Network Design Problems. SIAM Journal on Computing,
33(3):704–720, 2004.

[32] G. Kortsarz and Z. Nutov. A simplified 1.5-Approximation Algorithm for Aug-
menting Edge-Connectivity of a Graph from 1 to 2. ACM Transactions on
Algorithms (TALG), 12(2):1–20, 2015.

[33] G. Kortsarz and Z. Nutov. LP-Relaxations for Tree Augmentation. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2016). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2016.

72

Bibliography

[34] R. Krishnaswamy, S. Li, and S. Sandeep. Constant Approximation for k-Median
and k-Means with Outliers via Iterative Rounding. In Proceedings of the 50th
annual ACM SIGACT symposium on theory of computing, pages 646–659, 2018.

[35] S. Li. Scheduling to Minimize Total Weighted Completion Time via Time-
Indexed Linear Programming Relaxations. SIAM Journal on Computing,
49(4):FOCS17–409, 2020.

[36] A. Linhares, N. Olver, C. Swamy, and R. Zenklusen. Approximate Multi-
Matroid Intersection via Iterative Refinement. In Integer Programming and
Combinatorial Optimization: 20th International Conference, IPCO 2019, Ann
Arbor, MI, USA, May 22-24, 2019, Proceedings 20, pages 299–312. Springer,
2019.

[37] E. Minieka. Finding The Circuits of a Matroid. Journal of Research of the
National Bureau of Standards - B. Mathematical Sciences, 80B, No.3, 1976.

[38] A. Munier, M. Queyranne, and A. S. Schulz. Approximation Bounds for a Gen-
eral Class of Precedence Constrained Parallel Machine Scheduling Problems. In
Integer Programming and Combinatorial Optimization: 6th International IPCO
Conference Houston, Texas, June 22–24, 1998 Proceedings 6, pages 367–382.
Springer, 1998.

[39] H. Nagamochi and T. Ibaraki. An Approximation for Finding a Smallest 2-
Edge-Connected Subgraph Containing a Specified Spanning Tree. Lecture notes
in computer science, pages 31–40, 1999.

[40] J. G. Oxley. Matroid Theory, volume 3. Oxford University Press, USA, 2006.

[41] R. Raz and S. Safra. A Sub-Constant Error-Probability Low-Degree Test, and
a Sub-Constant Error-Probability PCP characterization of NP. In Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing, pages
475–484, 1997.

[42] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
1998.

[43] A. S. Schulz. Scheduling to Minimize Total Weighted Completion Time: Per-
formance Guarantees of LP-Based Heuristics and Lower Bounds. In Integer
Programming and Combinatorial Optimization: 5th International IPCO Con-
ference Vancouver, British Columbia, Canada, June 3–5, 1996 Proceedings 5,
pages 301–315. Springer, 1996.

[44] A. S. Schulz and M. Skutella. Random-Based Scheduling New Approximations
and LP Lower Bounds. In Randomization and Approximation Techniques in
Computer Science: International Workshop RANDOM’97 Bologna, Italy, July
11–12, 1997 Proceedings 1, pages 119–133. Springer, 1997.

73

Bibliography

[45] A. S. Schulz and M. Skutella. The Power of α-Points in Preemptive Single
Machine Scheduling. Journal of Scheduling, 5(2):121–133, 2002.

[46] P. D. Seymour. Decomposition of Regular Matroids. Journal of combinatorial
theory, Series B, 28(3):305–359, 1980.

[47] D. Shabtay, N. Gaspar, and M. Kaspi. A Survey on Offline Scheduling with
Rejection. Journal of scheduling, 16:3–28, 2013.

[48] J. B. Sidney. Decomposition Algorithms for Single-Machine Sequencing with
Precedence Relations and Deferral Costs. Operations Research, 23(2):283–298,
1975.

[49] R. Sitters and L. Yang. A (2 + ε)-Approximation for Precedence Constrained
Single Machine Scheduling with Release Dates and Total Weighted Completion
Time Objective. Operations Research Letters, 46(4):438–442, 2018.

[50] W. E. Smith. Various Optimizers for Single-Stage Production. Technical report,
California University Los Angeles Numerical Analysis Research, 1955.

[51] V. Traub and R. Zenklusen. A Better-Than-2 Approximation for Weighted
Tree Augmentation. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 1–12. IEEE, 2022.

[52] V. Traub and R. Zenklusen. Local Search for Weighted Tree Augmentation
and Steiner Tree. In Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 3253–3272. SIAM, 2022.

[53] V. Traub and R. Zenklusen. A (1.5+ε)-Approximation Algorithm for Weighted
Connectivity Augmentation. In Proceedings of the 55th Annual ACM Sympo-
sium on Theory of Computing, pages 1820–1833, 2023.

[54] W. T. Tutte. A Homotopy Theorem for Matroids. I. Transactions of the
American Mathematical Society, 88(1):144–160, 1958.

[55] W. T. Tutte. A Homotopy Theorem for Matroids. II. Transactions of the
American Mathematical Society, 88(1):161–174, 1958.

[56] J. D. Ullman. NP-Complete Scheduling Problems. Journal of Computer and
System sciences, 10(3):384–393, 1975.

[57] V. V. Vazirani. Approximation Algorithms, volume 1. Springer, 2001.

[58] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.
Cambridge university press, 2011.

[59] A. C.-C. Yao. Probabilistic Computations: Toward a Unified Measure of Com-
plexity. In 18th Annual Symposium on Foundations of Computer Science (sfcs
1977), pages 222–227. IEEE Computer Society, 1977.

74

	Introduction
	Approximation Algorithms
	Notation and Definitions

	Partial-Order Scheduling on Parallel Machines
	Problem Description and Motivation
	Notes on the Setup and the Multiple-Chains Case

	Total-Order Scheduling on Parallel Machines
	Results for the Multiple-Chains Case
	Approximation Algorithms for Short Chains
	A Structural Result on Optimal Schedules for Multiple-Chains
	An IP Formulation for the Multiple-Chains Case

	The Configuration IP
	The Configuration LP and its Dual
	The Dual Separation Problem
	Approximating Scheduling with Rejection

	The Weighted Matroid Augmentation Problem
	Problem Description and Motivation
	An Introduction to Matroids
	Basic Definitions
	Representable Matroids
	Totally Unimodular Matrices and Regular Matroids

	Approximating the Graphic and Cographic Case
	The Graphic Matroid Case
	The Cographic Matroid Case

	IP-Formulations and Iterative Rounding
	An IP-Formulation of WMAP and some Observations
	Introduction to Iterative Rounding
	Iterative Rounding for the Graphic and Cographic Case

	Seymour Decomposition

