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Abstract

Regression with Gaussian process (GP) priors has become increasingly popular due to

its ability to model complex relationships between variables and handle auto-correlation

in the data through the covariance function of the process, called kernel. Despite its

popularity, the statistical modelling aspect of GP regression has received relatively

limited attention.

In this thesis, we explore a regression model where the regression function can

be decomposed into a sum of lower-dimensional functions, akin to the principles of

Generalised Additive Models (Hastie and Tibshirani, 1990). We propose additive

interaction modelling using a class of hierarchical ANOVA decomposition kernel. This

flexible statistical modelling framework naturally accommodates interaction effects of

any order without increasing the number of model parameters. Our approach facilitates

straightforward assessment and comparison of models with different interaction struc-

tures through the model marginal likelihood. We also demonstrate how this framework

enhances the interpretability of complex data structures, especially when combined

with the concept of kernel centring.

The second segment of the thesis focuses on the computational aspects of im-

plementing the proposed additive models for handling large-scale data structured in

multidimensional grids. Such structured data often arise in scenarios involving multi-

level repeated measurements, as commonly seen in spatio-temporal analysis or medical,

behavioural, and psychological studies. Leveraging the Kronecker product structure
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within the covariance matrix, we reduce the time complexity to O(n3) and storage

requirements to O(n2). We extend existing work in the GP literature to encompass all

models under hierarchical ANOVA decomposition kernels. Additionally, we address

issues related to incomplete grids and various missingness mechanisms.

We illustrate the practical application of our proposed methodologies using both

simulated and real-world spatio-temporal and longitudinal data.
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Chapter 1

Introduction

With data at hand, a statistical model aims to provide a simple summary of the data

and describe the relationship between a variable y, called the response or dependent

variable, and a set of variables x, called predictors or independent variables. This

relationship can be decomposed into a systematic and random component. For a

real-valued response y, a typical statistical model thus takes the following form:

y = f(x)︸ ︷︷ ︸
Systematic variation

+ ϵ︸︷︷︸
Random variation

where x belongs to some set X , e.g. Rp if x is p-dimensional. The systematic effect

of x on y is captured through regression function f , which is estimated based on the

sample of observed y and x, denoted by D = (yi, xi)n
i=1. The effect may be assumed

linear, in which case a standard linear regression can be used. For modelling non-linear

relationships, popular approaches include polynomial regression as an extension to the

standard linear regression, smoothing spline (Wahba, 1990) and Gaussian process (GP)

regression (Rasmussen and Williams, 2006). GP regression has gained popularity due to

its ability to account for various relationships between y and x, including but not limited

to linear, by assuming different covariance structures of k(x, x′) = cov(f(x), f(x′)) for
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x, x′ ∈ X . Through this function k, GPs can inherently incorporate auto-correlation in

the data, rendering it particularly useful for spatial, temporal and spatio-temporal data

where accounting for auto-correlation is crucial. Moreover, employing a GP as a prior

on the regression function f provides the possibility of quantifying the uncertainty in

the inferred systematic effect.

1.1 Additive Gaussian process models

Constructing a good statistical model requires a thorough investigation of data and

is often a challenging task. This thesis concerns statistical modelling with Gaussian

process (GP) priors. More specifically, we focus on additive GP models, which assume

that the regression function f is decomposed into e.g., f(x) = a+f1(x1)+f2(x2)+ . . .+

fd(xd), where a is a constant term. This formulation is useful when the predictor x is

divided into several sets x = (x1, x2, . . . , xd), and each set of variables has a different

relationship to y. The effect of each predictor may also interact with each other, in which

case, additional terms modelling two-way interaction effects, e.g.,f12(x1, x2), f23(x2, x3)

can be added to f . Higher-ordered interaction effects may also be considered. For

instance, with d = 3, the regression function with the highest-ordered interaction effect

consists of 23 = 8 terms and is given by

f(x) = a + f1(x1) + f2(x2) + f3(x3)︸ ︷︷ ︸
main effect

+ f12(x1, x2) + f23(x2, x3) + f31(x3, x1)︸ ︷︷ ︸
two-way interaction effect

+ f123(x1, x2, x3)︸ ︷︷ ︸
three-way interaction effect

. (1.1)

In this thesis, we explore additive GP models with diverse interaction structures. Our

contributions to the existing literature encompass the following key aspects:
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• Providing a comprehensive framework for additive interaction modelling with

GP priors, employing the ANOVA decomposition kernel,

• Enhancing the interpretability of the proposed additive GP models for higher-

order interaction models, which is made possible due to the centring of kernels,

and

• Providing computationally efficient implementations of additive GP model ac-

commodating various interaction structures, particularly tailored for analysing

large-scale datasets often encountered in spatio-temporal and longitudinal data.

We summarise the methodological challenges in the current additive GP literature and

our main contributions as follows.

Statistical modelling with ANOVA decomposition kernel

With GP models, statistical modelling typically involves specifying the structure of

its covariance k. While there are various ways to specify interaction models, such as

(1.1), we adopt ANOVA decomposition kernel introduced by Stitson et al. (1999) in the

context of Support Vector Machines. The concept of ANOVA decomposition kernel can

be traced back to functional ANOVA (f-ANOVA) decomposition (Huang, 1998; Stone,

1994), which aims to decompose a d-variate function f(x) where x = (x1, . . . , xd) into

the form:

f(x) = f0 +
d∑

l=1
f(xl) +

∑
1≤l<l′≤d

fll′(xl, xl′) + . . . .

In the literature on splines and reproducing kernel Hilbert space, Smoothing-Spline

ANOVA (SS-ANOVA) proposed by Wahba (1990) and Gu and Wahba (1993) gained

popularity. Similarly to classical analysis of variance, f-ANOVA models have been used

to identify significant differences in the functional mean of different groups. The usual

approach, e.g. in Wahba (1990), has more model parameters for larger (more interaction
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terms) models; hence, applying this directly to GP models poses considerable challenges

in estimation and model comparison.

This thesis uses an ANOVA decomposition kernel construction proposed by Bergsma

and Jamil (2023) in the I-prior methodology (Bergsma, 2020), which has a close

connection to Gaussian process regression. This formulation is more parsimonious,

requiring only d + 1 scale parameters to be estimated, regardless of the number of

interaction terms involved in the model. This facilitates a straightforward model

selection procedure. Moreover, we select interaction terms in a hierarchical manner

using hierarchical ANOVA decomposition kernel. As with any statistical modelling

problem, interaction terms are included along with main and lower-order interaction

terms. This differs from the approach in Stitson et al. (1999), where the l-th order

model includes all l-th interactions but no higher or lower ones.

Interpretability

Interpretation of a regression model is an essential part of analysing real-world data.

Plate (1999) is one of the first to discuss the importance of modelling interactions

and a trade-off between interpretability and accuracy in flexible modelling using GP,

which can be done through kernel construction. Duvenaud et al. (2011) is a more

recent attempt at kernel-based modelling of main and interaction effects. However,

the proposed methodology does not guarantee certain common practices in statistical

modeling, such as a hierarchical structure in interaction terms. In the presence of

higher-order interactions, further discussion is warranted regarding the interpretation

of main and lower-order interaction effects within the proposed model. In our approach,

we utilise centring of kernels when constructing the hierarchical ANOVA decomposition

kernel. This is an analogue to the centring of the predictors in standard linear regression,

which provides a meaningful interpretation of the constant term as the expected value
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of the response when all predictors are set to zero. Within the proposed additive GP

models, after centring the kernels, all terms in the model, including the main and

lower-order interaction effects, possess an intuitive interpretation.

Computation

Implementing such flexible GP models poses computational challenges due to time

complexity O(n3) and storage requirement O(n2). Consequently, standard GP regres-

sion becomes impractical for many real-world datasets of substantial scale. Various

strategies have been developed to alleviate the computational burden associated with

GP models (for a comprehensive overview, see Liu et al. (2020)). One particularly

effective approach is to make use of a Kronecker product structure in a covariance

matrix, which is applicable when the data has a multidimensional grid structure. This

concept is pertinent to scenarios such as multi-level panel data commonly encountered

in spatio-temporal and longitudinal datasets, where measurements are repeatedly

collected at each sample location or individual. As demonstrated in prior work by

Flaxman et al. (2015); Gilboa et al. (2013); Saatçi (2012); Wilson et al. (2014), the

Kronecker method can reduce the computational complexity and storage requirements

to a best-case scenario of O(n) without resorting to approximations. However, these

methods were limited to specific submodels, such as saturated models or those with

only the highest-ordered interaction terms. This implies that other additive models,

such as main effect or non-saturated interaction effect models, still face constraints with

O(n3) computations and O(n2) storage or necessitate adopting alternative scalable

methods relying on approximations. While these alternative methods avoid imposing

constraints on the kernel structure, they typically do not achieve the same level of

scalability and accuracy as the Kronecker method.
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This thesis introduces an extension of the Kronecker method, specifically designed

to handle any models constructed using the hierarchical ANOVA kernel, wherein the

centring of kernels plays a crucial role. This novel Kronecker approach enables the

modelling of large-scale data with many structures, including, but not limited to,

saturated models. Another common challenge associated with the Kronecker method is

its reliance on complete datasets without missing values. To address this limitation, an

approximation method for handling incomplete data has been proposed, as outlined in

the works of Gilboa et al. (2013) and Wilson et al. (2014). We evaluate the effectiveness

of this approach under various missingness mechanisms, providing insights into its

performance in different scenarios.

1.2 The outline of the thesis

The thesis is organised as follows.

• Chapter 2 offers an overview of Gaussian process regression. The chapter provides

a summary of the estimation and inference of GP models for both Gaussian and

non-Gaussian likelihoods. We explore the relationships between GP models and

classical methods such as kernel ridge regression and Kriging. Additionally, we

introduce the concept of kernel centring with illustrative examples.

• Chapter 3 revolves around additive GP models, emphasising interaction modelling

utilizing the hierarchical ANOVA decomposition kernel. We study the properties

of the posterior mean function of each term consisting of an additive model and

discuss how it facilitates the interpretation of the result.

• In Chapter 4, we present our approach for the efficient implementation of the

proposed model, particularly tailored for multi-dimensional grid-structured data.

This method capitalizes on the Kronecker product structure within the covariance



1.2 The outline of the thesis 27

matrix of the model. The chapter begins with an introduction to this special

data structure, the Kronecker product, and its inherent properties. We then

delve into how the model’s covariance matrix can be effectively decomposed into

a sum of Kronecker products, leading to efficient evaluations of the likelihood

function and the posterior of additive Gaussian process models.

• Chapter 5 addresses the challenge of handling missing grids within the Kronecker

product approach. We highlight the limitations of the proposed approach in the

literature and discuss the direction for future research.

Furthermore, for readers seeking additional technical details pertaining to Gaussian

processes, kernels, and the Kronecker product, we have provided Appendices A and

B. Throughout the thesis, we underscore the practical application of the proposed

model through analyses of real-world spatio-temporal and longitudinal data, as well as

through simulation studies. Additional results and illustrations related to data analysis

can be found in Appendix C.





Chapter 2

Regression with Gaussian process

prior

This chapter provides the basics of regression models with a Gaussian process (GP)

prior. Consider a regression model for a real-valued response y and a set of predictors

x which belongs to a set X . The set X can be, for example, Rp for p-dimensional

real-valued predictors. For i = 1, . . . , n, the model is expressed as

yi = f(xi) + ϵi (2.1)

where the error terms (ϵ1, . . . , ϵn) ∼ MVN(0, Σ). For i.i.d errors, we can write Σ = σ2In

where In is n × n identity matrix. The main idea here is to put a prior on the function

f directly. Specifically, we shall assume f to follow a GP. By assuming a different

covariance function, called a kernel, GP regression can model various relationships

between a response variable and predictors.

This chapter is structured as follows. In Section 2.1, we provide an introduction to

GPs and kernels. This section offers a list of common kernels frequently employed in

the fields of machine learning and spatio-temporal analysis. Additionally, we introduce
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the concept of kernel centring, which holds significant importance in the subsequent

chapters. Section 2.2 is dedicated to the estimation and inference aspects of regression

with Gaussian process priors. We focus on scenarios where the response variable is

real-valued, and we assume a Gaussian likelihood. Furthermore, in Section 2.3, we

delve into the extension of GP regression to accommodate various types of response

variables, including categorical and count data. We emphasize that while GP regression

excels in modelling nonlinear relationships and is often regarded as a non-parametric

approach, it readily accommodates the inclusion of parametric relationships. This

adaptability is exemplified in the introduction of semi-parametric GP models in Section

2.4. Lastly, in Section 2.5, we briefly explore other statistical methods that bear a

connection to GP regression.

2.1 Gaussian processes and kernels

The key component of a GP is its covariance function, known as the kernel. We provide

definitions of kernels and Gaussian processes.

Definition 1 (Kernel). Let X be a nonempty set. A kernel is defined as a symmetric

positive definite function k : X × X → R satisfying, for all n = 1, 2, ..., a1, . . . an ∈ R

and x1, . . . xn ∈ X , ∑n
i=1

∑n
j=1 aiajk(xi, xj) ≥ 0.

Definition 2 (Gaussian Process). Let X be a non-empty set, k : X × X → R be a

(positive definite) kernel, and m : X → R be a real-valued function. A random function

f : X → R is a Gaussian Process with mean function m and kernel k, if, for any finite

set x1, . . . , xn ∈ X , the random vector f = (f(x1), . . . , f(xn))⊤ follows a multivariate

normal distribution MVN(m, K) where m = (m(x1), . . . , m(xn))⊤ and K is a n × n

matrix with (i, j)-th element given by k(xi, xj).
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Throughout the thesis, we denote a random function f following a GP with a mean

function m and a kernel k by f ∼ GP(m, k). The matrix K is referred to as the Gram

matrix. The GP is fully specified by its mean function and kernel, allowing us to

incorporate our beliefs about the regression function. In the absence of prior beliefs,

a common choice is to set the mean function to zero, i.e., m(x) = 0 for all x ∈ X .

Under this assumption, the kernel k defines a unique GP, and selecting a specific

kernel corresponds to making different assumptions about the underlying process. For

instance, the squared exponential (SE) kernel is widely used in machine learning and

associated with a very smooth process that possesses mean-square derivatives of all

orders (Adler, 1981, Chapter 2). The next section introduces some of the popular

kernels, including the SE kernel. For more comprehensive reviews on different classes

of kernels, see Rasmussen and Williams (2006, Chapter 4) and Genton (2001) for

example.

2.1.1 Common kernels

The squared exponential kernel (2.2) is arguably the most frequently used kernel in

the machine learning literature.

Example 1 (Squared exponential kernel). Let X ⊂ Rp. For α > 0 and ρ > 0, a

squared exponential (SE) kernel kse : X × X → R is defined by

kse(x, x′) = α2 exp
(

−||x − x′||2

2ρ2

)
, x, x′ ∈ X . (2.2)

We refer to unknown parameters in a kernel as hyperparameters. In the example

above, we have a scale parameter α, which is common to all kernels, and a length-scale

parameter ρ. The values of these hyperparameters also carry assumptions on the

underlying process. See Figure 2.1 for a further demonstration of this.



32 Regression with Gaussian process prior

Fig. 2.1 Sample paths from a zero-mean Gaussian process with a one-dimensional
squared exponential kernel. The y axis is y = f(x). Taking the middle panel as a
reference, the left panel has a smaller length scale which makes the process more wiggly.
Having a larger sample scale parameter (right panel) makes the average distance from
the mean (0) bigger.

The importance of SE kernel is also attributed to its relation to other popular

kernels, such as the Matérn class kernel (Matérn, 1960; Stein, 1999) and the squared

exponential periodic kernel, introduced below.

Example 2 (Matérn kernel kernel). Let X ⊂ Rp. For α > 0, ρ > 0 and ν > 0, the the

Matérn kernel kmat : X × X → R is defined by

kmat(x, x′) = α2 21−ν

Γ(ν)

(√
2ν||x − x′||

ρ

)ν

Kν

(√
2ν||x − x′||

ρ

)
, x, x′ ∈ X , (2.3)

where Γ is the gamma function and Kν is the modified Bessel function of a second kind.

Example 3 (Periodic squared exponential kernel). Let X ⊂ Rp. For α > 0, ρ > 0 and

p > 0, the periodic squared exponential kernel kpr : X × X → R is defined by

kpr(x, x′) = α2 exp
−

2 sin2(π|x−x′|
p

)
ρ2

 , x, x′ ∈ X .

With Matérn class kernels, the smoothness of the process can be controlled by parameter

ν. With ν = 1.5, the process is “rough” compared with ν = 2.5 (see figure 2.2). The

smoothness can be discussed in terms of mean square differentiability. A sample path
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with the Matérn class kernel with ν is k = ⌈ν⌉ times mean square differentiable. It is

worth noting that for ν → ∞, it equals the SE kernel. The periodic SE kernel is useful

when handling, e.g., the continuous-time process that has a regular cycle, e.g. daily,

weekly or annual. The period parameter p can be treated as known or unknown, and the

GP path from the periodic kernel is a periodic function of period p. It can be derived

from the SE kernel; we have kse(u, u′) = kpr(x, x′) where u = (sin( p
2π

x), cos( p
2π

x))⊤.

In fact, any kernel k can be made periodic with this formulation.

A constant kernel kconst : X × X , which is given by

kconst(x, x′) = α2, x, x′ ∈ X (2.4)

is usually used in combination with other kernels. This yields random constant

functions, in particular, functions of the form f(x) = c, where c ∼ N(0, α2).

The SE kernel, Matérn kernel, periodic SE kernel and constant kernel are all in the

class of stationary kernels, more specifically isotropic kernels. A stationary kernel is

a function of a lag vector τ = x − x′ of two inputs. When the value of the function

depends only on the norm of the two inputs r = ||τ ||, the kernel is said to be isotropic,

and the corresponding process is invariant under a shift in time or space. While

the assumption of isotropy or stationarity gives a nice interpretation of correlation

structure, we need a class of non-stationary kernels in the case where this assumption

does not hold. A few simple examples of non-stationary kernels include the linear

kernel and polynomial kernel.

Example 4 (Polynomial kernel). Let X ⊂ Rp. For α > 0 and positive integer d, the

polynomial kernel of degree d kpol : X × X → R is defined by

kpol(x, x′) = α2
(
x⊤x′ + c

)d
,
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(a) Matérn (b) periodic (c) polynomial

Fig. 2.2 Sample paths from a zero-mean GP with different kernels. For all panels, the
scale parameter α is set to be 1, and the length-scale parameter ρ = 1 for (a) and (b).
For the polynomial kernel, c = 0. For the additional parameters, see the legend of each
panel.

With d = 1, we get the linear kernel. Using the linear kernel or the polynomial kernel

in GP regression corresponds with Bayesian linear or polynomial regression. Another

useful non-stationary kernel is the fractional Brownian Motion kernel and kernels that

are constructed from this kernel, such as its centred version. We will introduce this in

Section 2.1.3.

Finally, we give an example of a kernel that can be used for categorical variables.

Let X now be a finite set, e.g., X = {1, 2, . . . , J} where J is a positive integer and each

integer in the set represents a different category. We define the kernel for categorical

variable kcat : X × X → R by

kcat(x, x′) = α2δxx′ , x, x′ ∈ X , (2.5)

where δ is the Kronecker delta. This kernel assumes no inter-category correlation.

Using this kernel to account for individual variability in multi-level models corresponds

with the random effect model. We give an example in Section 3.4.2.
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2.1.2 Kernel sums and products

Given two kernels k1 : X × X → R and k2 : X × X → R, a function k : X × X → R

constructed as their sum or product

k(x, x) = k1(x, x′) + k2(x, x′)

k(x, x) = k1(x, x′)k2(x, x′)

is also a kernel. That is, in this sense, the set of kernels is closed with respect to

addition and multiplication.

The kernel k1 or k2 can be the constant kernel (2.4). Hence, adding a positive

constant or multiplying by a positive constant gives a positive definite kernel.

The addition and multiplication operations above can be extended to kernels on

different sets, as we illustrate next. Consider two kernels k1 : X1 × X1 → R and

k2 : X2 × X2 → R, where X1 and X2 are two different sets. Then k : X × X → R where

X = X1 × X2 given by

k((x1, x2), (x′
1, x′

2)) = 1 + k1(x1, x′
1) + k2(x2, x′

2) + k1(x1, x′
1)k2(x2, x′

2), xl, x′
l ∈ Xl

is a positive definite kernel.

2.1.3 Centring of kernels

GP paths may be arbitrarily positioned. For example, all paths of a GP with a

polynomial kernel pass through the fixed point (0, α2cd), which may be undesirable. In

this case, centring of kernels can be applied. A positive definite kernel can be centred

by the following.
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Definition 3 (Centred kernel). Let P be a probability distribution over a non-empty

set X and X, X ′ ∼ P are independent. Any kernel k : X × X → R may be centred by

kcent(x, x′) = EP [k(x, x′) − k(x, X) − k(x′, X ′) + k(X, X ′)] , x, x′ ∈ X . (2.6)

A kernel centred by the above retains positive definiteness (see Appendix A.1.2), and

GPs with such a kernel have centred paths in the sense that EX∼P [f(X)] = 0. In

practice, we take P to be the empirical distributions of x1, . . . xn. An empirically

centred kernel is given by:

kcent(x, x′) = k(x, x′) − 1
n

n∑
i=1

k(x, xi) − 1
n

n∑
j=1

k(x′, xj) + 1
n2

n∑
i=1

n∑
j=1

k(xi, xj). (2.7)

This ensures the function f evaluated at x1, . . . xn sums to zero, i.e., ∑n
i=1 f(xi) = 0.

The empirically centred Gram matrix for a given K, can be computed using a centring

matrix C = In − 1
n
1n1⊤

n , by K(c) = CKC. This means that all columns and rows of

K(c) sum to 0. Centring of a kernel plays a key role in the interpretation and efficient

computation, as shown in Section 3.2.1 and 4.4.3.

Centring example with fractional Brownian motion kernel

We will illustrate the centring of kernels using the fractional Brownian Motion (fBM)

kernel.

Example 5 (fractional Brownian motion kernel). Let X ⊂ Rp be a set. For α > 0 and

0 < γ < 1, the fractional Brownian motion kernel kfbmγ : X × X → R is given by

kfbmγ (x, x′) = α2

2
(
||x||2γ + ||x′||2γ − ||x − x′||2γ

)
, x, x′ ∈ X (2.8)
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Fig. 2.3 Sample paths (y = f(x)) from the fBM kernel given in (2.8) with different
values for the Hurst coefficient γ.

The Hurst coefficient γ in (2.8) determines the roughness of the process. A smaller

value of γ is associated with rougher sample paths (see Figure 2.3). With γ = 0.5, we

have the standard Brownian motion. From Figure 2.3, we notice f(0) = 0 for all paths,

which may be undesirable for the problems we consider in the paper. To avoid this, a

fBM kernel can be centred.

Example 6 (Centred fractional Brownian Motion kernel). Applying (2.7) to the fBM

kernel (2.8), we have

k
(c)
fbmγ

(x, x′) = α2

2n2

n∑
i=1

n∑
j=1

(
||x − xi||2γ + ||x′ − xj||2γ − ||x − x′||2γ − ||xi − xj||2γ

)
(2.9)

For the rest of the thesis, we always centre fBM kernels with respect to the empirical

distribution.

Another issue with the fBM kernel in (2.8) is its roughness. In contrast to a GP

with SE kernel, fractional Brownian motion paths are differentiable nowhere; hence

they may be too rough to be used in many examples. To remedy this, we introduce a

squared kernel.

Definition 4 (Squared kernel). Let X be a non-empty set. Given a kernel k : X ×X →

R and data xi ∈ X for i = 1, . . . , n, a squared kernel is a function ksq : X × X → R
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(a) γ = 0.2 (b) γ = 0.5 (c) γ = 0.8

Fig. 2.4 Sample paths from centred fBM kernels (2.9) with different values for the
Hurst coefficient γ.

given by

ksq(x, x′) =
n∑

i=1
k(x, xi)k(x′, xi), x, x′ ∈ X . (2.10)

As this kernel consists of products and sums of positive definite kernels, it is a positive

definite kernel. The corresponding Gram matrix is given by Ksq = KK. If we use

the empirically centred kernel, the resulting Gram matrix K(c)
sq = K(c)K(c) is also

empirically centred, as we have

K(c)
sq 1 = K(c)

(
K(c)1

)
= K(c)0 = 0.

This kernel has been shown to be useful in previous work by Bergsma (2020); Jamil

(2018); Jamil and Bergsma (2020) in the context of I-priors, which has a close connection

to GP regression and kernel methods. As shown in Figure 2.5, GP paths with squared

(and centred) γ-fBM kernels are much smoother. In fact, the smoothness properties

of GP paths with fBM kernel and squared fBM kernel can be discussed in terms of

Hölder condition. While the realisations from the former are known to be a.s. Hölder

of any order less than γ (see Embrechts and Maejima (2002) for example), the latter

is Hölder of order 2γ. Bergsma (2020) discusses the smoothness properties of fBM
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Fig. 2.5 Sample paths (y = f(x)) from centred and squared fBM kernels constructed
using (2.9) and (2.10) with different values for the Hurst coefficient γ.

paths and squared fBM paths using different concepts of smoothness, including Hölder

condition and regularity.

2.2 Estimation and inference for Gaussian likeli-

hood

Let us revisit the regression model in (2.1) where we assume a zero-mean GP prior

on f and i.i.d error. With y = (y1, . . . , yn)⊤ and X being a data matrix gathering

covariates from all observations, the marginal distribution of y given X, obtained by

integrating out the prior, is:

y|X ∼ MVNn(0, K + σ2I). (2.11)

The following sections discuss the posterior distribution, the estimation of the hyper-

parameters and model selection.
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(a) Sample paths from prior (b) Posterior mean
(c) Sample paths from pos-
terior

Fig. 2.6 Example of one-dimensional regression/curve fitting with a GP prior. Consider
that we have a sample of size 7 (from a true function, f(x) = 2 + 2

5x − 1
20x2 + sin x).

The prior is a GP with SE kernel with α = 1 and ρ = 1. The panel (a) shows sample
paths from the prior GP and (b) shows the posterior mean with 95% confidence interval
together with the observations and the true function. Random sample paths drawn
from the posterior are shown in (c).

2.2.1 Posterior

For a Gaussian likelihood, the GP is a conjugate prior, i.e., the posterior is also a GP.

Specifically, we have f |y, X ∼ GP(m̄, k̄) with the mean function m̄ : X → R and the

kernel k̄ : X × X → R given by

m̄(x) = k(x)⊤(K + σ2I)−1y, x ∈ X (2.12)

k̄(x, x′) = k(x, x′) − k(x)⊤(K + σ2I)−1k(x′), x,x′∈ X (2.13)

where k(x) = (k(x1, x), . . . , k(xn, x))⊤ for x ∈ X . See Appendix A.2 for the derivation

and Figure 2.6 for an example of GP regression with a one-dimensional covariate

x ∈ R. The posterior given by (2.12) and (2.13) may more commonly be discussed

in connection to prediction problems. In fact, given a new point x∗ the posterior

distribution of f(x∗) is Gaussian with mean m̄(x∗) and variance k̄(x∗, x∗). In this

thesis, we mainly use a zero-mean GP prior. Nonetheless, it is important to highlight

that incorporating a non-zero mean function is a straightforward extension. For a GP
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prior with a non-zero mean function, denoted as m : X → R, the posterior mean is

expressed as:

m̄(x) = m(x) + k(x)⊤(K + σ2I)−1 (y − m) , x ∈ X (2.14)

where m = (m(x1), . . . , m(xn))⊤. The kernel of the posterior remains unchanged from

the expression given in (2.13).

2.2.2 Hyperparameter estimation

The fully Bayesian approach to estimating f is obtained by assigning priors (also

known as hyperpriors) to the hyperparameters denoted by θ. This includes parameters

in the kernels and the variance in the error term σ2. In such a case, we most typically

resort to Markov chain Monte Carlo (MCMC) to obtain samples from the posterior.

The posterior mean, mode or median may be used as parameter estimates.

Alternatively, we can use the empirical Bayes approach (maximum marginal like-

lihood (MML) estimation), where the parameters are estimated by maximising the

log marginal likelihood denoted by p(y|X, θ) =
∫

p(y|f)p(f |X, θ)df . With Gaussian

likelihood, this equals

log p(y|X, θ) = −1
2y⊤(K + σ2In)−1y − 1

2 log |K + σ2In| − n

2 log 2π. (2.15)

Here the hyperparameters are involved in the Gram matrix K and the error term. The

value of hyperparameters can also be estimated using cross-validation (CV).

Estimating hyperparameters with either CV or MML estimation may be costly. To

reduce the computational complexity, it may be necessary to use a grid search. For

example, the values ν = 1.5, 2.5 and 3.5 for the parameter ν for the Matérn class kernel



42 Regression with Gaussian process prior

(2.3), or 0.1, 0.2, . . . , 0.9 for the Hurst coefficient γ ∈ (0, 1) of the fractional Brownian

motion kernel (2.8) are common choices.

2.2.3 Model selection

In a real-world application, a model selection problem may involve choosing an appro-

priate type of kernel. It is worth noting that a more complex model does not necessarily

result in a larger marginal likelihood (MacKay, 1995; Murray and Ghahramani, 2005),

making it a suitable criterion for comparing models with different kernels. The marginal

likelihood, as presented in the previous section (2.15), depends on the hyperparameters

θ. In a fully Bayesian approach, θ should be integrated out, giving:

p(y|X, M) =
∫

p(y|X, θ, M)p(θ|M)dθ, (2.16)

where p(θ|M) represents the prior for the hyperparameters of a given model M, and

p(y|X, θ, M) denotes its density function. The Bayes factor allows us to compare two

different models, M and M′:

BF(M, M′) = p(y|X, M)
p(y|X, M′) .

A Bayes factor greater than one indicates stronger support for M than for M′. The

strength of the evidence favouring one model over another depends on the value of the

Bayes factor; for guidelines, refer to Kass and Raftery (1995). In practice, evaluating

the integral in (2.16) can be done via, e.g. bridge sampling (Bennett, 1976; Meng and

Schilling, 2002; Meng and Wong, 1996). This can be computationally expensive, and one

may resort to the Laplace approximation or the estimated marginal likelihood, which

involves plugging in the parameter estimates θ̂ into (2.15). The Laplace approximation
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is effective when the posterior of θ is approximately multivariate normal around the

mode of the posterior.

A disadvantage of estimating the marginal likelihood is that then the Bayes factor is

not a valid model selector in general, and there is a risk of overfitting. This problem can

be avoided when comparing models with different interaction structures; see Section

3.2.2 for further details.

If models are compared in terms of out-of-sample predictive accuracy, one can

attempt to quantify it with cross-validation using appropriate scoring rules, such as log

predictive density. The drawback is the necessity to repeat the model fitting procedure

for, e.g., k times for a k-fold cross-validation. Leave-one-out cross-validation (LOO-CV)

is the special case where k equals the number of observations n. The Bayesian LOO-CV

is given by 1
n

∑n
i=1 log p(yi|y−i, X, M) where

p(yi|y−i, X, M) =
∫

p(yi|y−i, X, θ, M)p(θ|y−i, X−i, M)dθ. (2.17)

Note that y−i or X−i denotes y or X after removing the i-th observation. With Gaussian

likelihood, p(yi|y−i, θ, xi, M) can be computed analytically. See e.g. Rasmussen and

Williams (2006, Section 5) and Vehtari et al. (2016). To bypass fitting the model n

times, we can use importance sampling to sample from p(θ|y−i, X−i, M) with the

posterior with full data p(θ|y, X, M) as the candidate distribution and approximate

the LOO-CV as described in Vehtari et al. (2017); Vehtari and Lampinen (2002);

Vehtari et al. (2016).

Alternatively, information criteria, such as DIC (Spiegelhalter et al., 2002) or

WAIC (Watanabe and Opper, 2010) can be considered as approximately unbiased

estimates of the expected log predictive density for new, i.e. out of sample, data. In a

manner akin to AIC (Akaike, 1973), they consist of two terms: the deviance, i.e., the

negative of the log predictive density for existing data, which is a biased estimate of
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the target quantity, and a bias correction term, which relates to the effective number

of parameters. DIC is simpler to compute but has known disadvantages, such as the

possibility of producing a negative effective number of parameters and its limitation to

regular models. WAIC overcomes these issues and is fully Bayesian, using log pointwise

posterior predictive density, ∑n
i=1 Eθ|y,X,M[p(yi|xi, θ, M)]. This contrasts DIC, which

uses the log joint density evaluated at the posterior mean log p(y|X, θ̂Bayes). The bias

correction term for DIC or WAIC requires approximating Eθ|y,X,M[log p(y|X, θ, M)]

or Eθ|y,X,M[log p(yi|xi, θ, M)] respectively.

WAIC is asymptotically equal to Bayesian LOO-CV (Watanabe and Opper, 2010),

but for finite n or hierarchical model, there are noticeable differences as shown in

Gelman et al. (2014). Vehtari et al. (2017) introduces Pareto-smoothed importance

sampling (PSIS) LOO-CV and shows that this is more robust in the finite n with weak

priors or influential observations.

2.3 Estimation and inference for Non-Gaussian like-

lihood

In section 2.2, we saw that the posterior is analytically tractable with a Gaussian

likelihood. This is due to the Gaussian distribution being a conjugate prior for a

Gaussian mean. For non-conjugate priors, a closed-form expression for the posterior is

typically unavailable.

Given a sample (yi, xi) for i = 1, . . . , n, where yi ∈ Y follows non-Gaussian

distribution, we consider a model

g(µi) = f(xi) (2.18)
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Response (yi) Y Distribution link
Binary {0, 1} Bernoulli logit
Binary {0, 1} Bernoulli probit

Categorical {1, 2, . . . , C} Categorical softmax
Count {0, 1, 2, . . .} Poisson log

Table 2.1 Distributions and link functions for different types of response variables.

where µi = E[yi] is the mean of yi, g(µi) is a link function, and the function f follows a

GP, i.e., f ∼ GP(m, k). For example, if the response is counts, yi ∈ {0, 1, 2, ...} and we

assume a Poisson distribution with rate parameter λi, we have E[yi] = λi. The log-link

function g(λi) = log(λi) is commonly used. See Table 2.1 for other types of response

variables. This section primarily focuses on the univariate case, such as the Poisson

model and Bernoulli-logit/probit model; however, the generalisation to multivariate

problems, e.g., (multi-class) categorical with soft-max link function, is straightforward.

See Appendix A.3 for the details.

The procedure of deriving the posterior predictive distribution p(y∗|y, X, xnew)

given a new input x∗ is three-fold and requires the evaluation of the integrals:

1. the posterior distribution of f = (f(x1), . . . , f(xn))⊤

p(f |y, X) = p(y|f)p(f |X)∫
p(y|f)p(f |X)df

(2.19)

where p(f |X) is the prior distribution, in this case, multivariate Gaussian, and

p(y|f) = ∏n
i=1 p(yi|fi) is the likelihood function;

2. the conditional distribution for f ∗ = f(x∗)

p(f ∗|y, X, x∗) =
∫

p(f ∗|f , X, x∗)p(f |y, X)df (2.20)
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where p(f ∗|f , X, x∗) is the probability density function of the normal distribution

with its mean and variance given by

E[f ∗|f , X, x∗] = k(x∗)⊤K−1f

Var[f ∗|f , X, x∗] = k(x∗, x∗) − k(x∗)⊤K−1k(x∗);

3. the predictive distribution for the response y∗

p(y∗|y, X, x∗) =
∫

p(y∗|f ∗)p(f ∗|y, X, x∗)df ∗. (2.21)

Due to the non-Gaussian likelihood function, the integrals (2.19)-(2.21) typically lack

an analytical solution, hence necessitating the use of approximations. The next section

discusses different approximation methods.

2.3.1 Approximation methods

There is a rich literature on approximation methods for GP regression with non-

Gaussian likelihood, many of which focus on approximating the posterior distribution

of f given by (2.19). Despite the computational cost, utilising MCMC to sample from

the posterior is considered the gold standard. Once we obtain the posterior sample

from p(f |y, X), evaluating (2.20) and (2.21) is straight-forward. The samples from the

conditional distribution and the predictive distribution can be obtained with a simple

sequential Monte Carlo algorithm.

An alternative to the numerical approximation is analytical approximation methods

such as Laplace approximation (Rasmussen and Williams, 2006, Chapter 3), variational

inference (Chai, 2012; Khan et al., 2012; Khan and Lin, 2017; Opper and Archambeau,
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2009), or expectation propagation (Kim and Ghahramani, 2003, 2006; Minka, 2001),

which also target approximating the posterior p(f |y, X) by q(f).

Laplace approximation (LA) aims to approximate the posterior with a multi-

variate normal MVN(µ, V) where the mean vector is given by the mode of the log of

the (un-normalised) posterior

Ψ(f) := log p(y|f) − 1
2f⊤K−1f − 1

2 log |K| − n

2 log 2π (2.22)

and the covariance matrix is given by the negative inverse Hessian of Ψ(f) evaluated at

the mode, i.e., µ = f̂ := arg maxf Ψ(f) and V = (−∇2Ψ(̂f))−1. Differentiating (2.22)

with respect to f , we have the gradient and the Hessian:

∇Ψ(f) = ∇ log p(y|f) − K−1f (2.23)

∇2Ψ(f) = ∇2 log p(y|f) − K−1. (2.24)

As ∇ log p(y|f) is a non-linear function of f , we cannot solve ∇Ψ(f) = 0 for f directly,

but we can use Newton’s method to find a mode with the iteration update:

µk+1 = µk − ∇2Ψ(µk)−1∇Ψ(µk). (2.25)

The Laplace approximation retains popularity due to its simplicity and low computa-

tional cost. Nevertheless, it can yield inadequate approximations of the true posterior,

particularly when the Hessian matrix fails to accurately represent the width and

skewness of the distribution peak (Rasmussen and Williams, 2006, Chapter 3). Conse-

quently, this deficiency leads to poor approximations of both the predictive distribution

and the marginal likelihood, with the latter playing a crucial role in hyperparameter
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estimation, as evidenced in the works of Kuss and Rasmussen (2005) and Nickisch and

Rasmussen (2008).

Variational inference has become increasingly popular as a useful alternative

to Laplace approximation, in which we aim to find q(f) that minimises the Kull-

back–Leibler (KL) divergence of the approximated from the true posterior,

q(f) := arg min
q∗(f)

DKL[q∗(f)||p(f |y, X)] (2.26)

where DKL[q(f)||p(f |y, X)] = Eq(f)[log q(f)
p(f |y,X) ]. This is equivalent to maximising the

Evidence Lower Bound (ELBO):

ELBO(q(f)) = −DKL[q(f)||p(f |X)] + Eq(f) [log p(y|f)]

= Eq(f) [log p(y, f) − log q(f)] , (2.27)

or minimising the Variational Free Energy (VFE), which is simply the negative ELBO.

In practice, we restrict q(f) to have a certain form or distribution. With GP, it is

common to assume multivariate Gaussian MVN(µ, V) on q(f), similar to the Laplace

approximation. We then treat µ and V, (or more commonly, the natural parameters

of the multivariate Gaussian distributions: η(1) = V−1µ, η(2) = 1
2V−1) as variational

parameters, and optimise them using (stochastic) gradient descent. See e.g. Khan and

Lin (2017) for more details.

Expectation Propagation (EP) also leads to the posterior, approximated by the

Gaussian distribution, but through a local likelihood approximation. Noting that the

likelihood factorises, p(y|f) = ∏n
i=1 p(yi|fi), we have the true posterior,

p(f |y, X) ∝ p(f |X)p(y|f) = p(f |X)
n∏

i=1
p(yi|fi). (2.28)
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With each likelihood p(yi|fi) approximated by t(fi), q(f) has the form:

q(f) ∝ p(f |X)
n∏

i=1
t(fi). (2.29)

The function t(fi) is given by e.g., un-normalised Gaussian t(fi) = si exp
(

− 1
2σ2

i
(fi − mi)2

)
,

where the parameters si, mi and σ2
i are optimised so that the q(f) becomes as close as

possible to the true posterior p(f |y, X). This is done by individual si, mi, σ2
i and hence

also t(fi) being updated sequentially. At the convergence, we have s̃i, m̃i, σ̃2
i and

n∏
i=1

t(fi) = MVN(m̃, Σ̃)
n∏

i=1
Zi

where Zi = si

√
2πσ̃2

i , m̃ = (m̃1, . . . , m̃n)⊤ and Σ̃ is diagonal with Σ̃i,i = σ̃2
i . Then the

approximated posterior is given by MVN(µ, V) where

µ = VΣ̃−1m̃

V = (K−1 + Σ̃−1)−1.

See e.g. Minka (2001) and Rasmussen and Williams (2006, Chalpter 3) for the detail

of the algorithm and its implementation.

Once the posterior p(f |y, X) is approximated by the respective multivariate Gaus-

sian with mean µ and the covariance matrix V, the rest of the predictive inference

is straightforward. The conditional distribution p(f ∗|y, X, x∗) is now analytically

tractable. More specifically, it is a multivariate normal distribution with

E[f ∗|y, X, x∗] = k(x∗)⊤K−1µ

Var[f ∗|y, X, x∗] = k(x∗, x∗) − k(x∗)⊤K−1k(x∗) + k(x∗)⊤K−1VK−1k(x∗). (2.30)
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The last step, computing posterior predictive distribution (2.21), can be done by Monte

Carlo sampling.

Variational inference and expectation propagation often provide superior approxima-

tions compared to the Laplace method, all while maintaining computational efficiency

when contrasted with MCMC-based approaches. However, a well-recognized issue

with these techniques is that they may not guarantee a positive semi-definite (PSD)

covariance matrix for the approximated posterior distribution. The work by Wilkinson

et al. (2023) delves into the intricacies of various approximation methods, including

Laplace approximation, expectation propagation, variational inference, and posterior

linearization, offering insights and connections among them. They introduce innovative

algorithms that ensure a PSD covariance matrix, applicable across a spectrum of these

approximation techniques.

Variational inference, along with many other analytical approximations, presents

an additional challenge in the need for customizing model-specific algorithms involving

derivatives of the target function—such as the ELBO or marginal likelihood—depending

on the chosen kernel and its structure. This can pose a significant hurdle for practition-

ers. Automatic Differentiation Variational Inference (ADVI) by Kucukelbir et al. (2017)

provides an automated implementation of variational inference that extends beyond

GP models to more general model classes. It is readily available in the probabilistic

programming language Stan, where users specify a probabilistic model (likelihood and

prior), and the program generates the variational algorithm and posterior samples.

Notably, Stan can leverage the same code used for MCMC-based posterior sampling to

implement ADVI.

However, it is crucial to highlight that these approximation techniques do not

alleviate the cubic computational complexity inherent to GP models. Larger datasets

require more computationally efficient methods. Variational inference, in conjunction
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with inducing point techniques, can tackle this challenge, leading to the development

of sparse variational GPs (Hensman et al., 2015; Matthews et al., 2016; Titsias, 2009).

Further exploration of this computational issue is provided in Chapter 4.

2.3.2 Hyperparameter estimation

We discuss the estimation of the hyperparameters for GP regression with a non-

Gaussian likelihood. In this context, the hyperparameters to be estimated, denoted as

θ, are the parameters associated with the chosen kernel. When employing MCMC for

posterior approximation, it is often most convenient to pursue fully Bayesian inference,

introducing hyper-priors on θ and obtaining posterior samples. With analytical

approximation methods, it is more customary to optimize the marginal likelihood

and obtain Maximum A Posteriori (MAP) estimates. It is worth noting that due to

the non-Gaussian nature of the likelihood, the marginal likelihood typically lacks a

closed-form expression.

In the case of Laplace approximation to the posterior, approximating the marginal

likelihood is a sensible approach. By conducting a first-order Taylor expansion of

(2.22), evaluated at its mode, f̂ = arg maxf Φ(f), and substituting it into p(y|X) =∫
exp(Φ(f))df , we arrive at the following expression:

p(y|X, θ) = −1
2 f̂⊤K−1̂f + log p(y|̂f) − 1

2 log |K| − 1
2 log |V| (2.31)

Here, V = (−∇2Ψ(̂f))−1. See Rasmussen and Williams (2006, Chapter 3) for the

details. When employing variational inference, the ELBO (2.27) itself serves as a lower

bound on the marginal likelihood (evidence). This can be utilized to select optimal

values for θ. While not all terms within the ELBO possess closed-form expressions,

they can be approximated numerically using methods such as quadrature techniques.

It is important to recognize that (2.31) for Laplace approximation depends on the
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current value of f̂ , whereas the ELBO (2.27) depends on q(f), or more precisely, its

variational parameters. As a result, iterating between hyperparameter estimation and

the posterior approximation algorithm becomes necessary.

2.3.3 Model selection

The model selection criteria discussed in Section 2.2.3, including marginal likelihood,

LOO-CV and WAIC, can be considered for model comparison. However, non-Gaussian

likelihood makes the computation of the key quantities analytically intractable, hence

additional approximation is required. For example, with LOO-CV, the predictive

density for the holdout observation yi is given by (2.17) and unlike the Gaussian

case, p(yi|y−i, X, θ, M) does not have a closed-form expression. Vehtari et al. (2016)

proposed an approximation of LOO-CV using EP or LA. Noting that

p(yi|y−i, X, θ, M) =
∫

p(yi|fi, θ)p(fi|y−i, X, θ, M)dfi,

we consider approximating p(fi|y−i, X, θ, M) by qfi
in the same manner as EP or LA

algorithm described in Section 2.3.1. For each case, the approximated distribution qfi

is already obtained as a by-product of the algorithm or easy to compute using the

result at hand; therefore, the additional cost of computing LA-LOO or EP-LOO, if

any, is negligible. If the approximation is poor, k-fold cross-validation is recommended

(Vehtari et al., 2016).

2.4 Semi-parametric GP models

Let us assume that we have a d-dimensional covariate x ∈ X with e.g. X ⊂ Rd, some

of which we expect a complex, non-linear relationship with the response y and the

other having a linear effect on the response. This is common in, for example, spatial
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analysis, where we have location information represented by 2− or 3−dimensional geo-

coordinates and some additional information available, such as population or average

income in the area/location of interest. The spatial information can be used to account

for auto-correlation and non-linear relationships, but the effect of other variables may

be linear, and its interpretation may be of scientific interest. This linear part can easily

be incorporated into the GP model.

Let us revisit the regression model given by (2.1). We assume that x ∈ X ⊂ Rd, and

is separated into two components, x = (z⊤, s⊤)⊤, where z ∈ Z ⊂ Rp and s ∈ S ⊂ Rd−p.

Note that X = Z × S. Then, for i = 1, . . . , n, we consider a regression model:

yi = f(zi, si) + ϵi (2.32)

f(zi, si) = a + z⊤
i β + fs(si) (2.33)

where we assume an i.i.d error ϵi ∼ N(0, σ2), a ∼ N(0, σ2
a) and fs ∼ GP(0, ks) with

a kernel ks : S × S → R. Then, the linear part can be incorporated into the mean

function of the prior and β in the semi-parametric GP model can be estimated along

with other hyperparameters. See (2.14) for the posterior with such non-zero mean

function.

Instead of assuming a fixed mean function, we can place a prior on the regression

coefficient β, as β ∼ MVN(0, B). After integrating out β, the prior on the overall

function f is GP(0, k) where k : X × X → R is given by

k(x, x′) = σ2
a + z⊤Bz′ + ks(s, s′). (2.34)

This is equivalent to re-write (2.33) as f(zi, si) = a + fz(zi) + fs(si) and assume

fz ∼ GP(0, kz) where the kernel kz : Z × Z → R is given by kz(z, z′) = z⊤Bz′. The

constant term a can be included in the linear term by writing zi = (1, z1i, . . . , zpi)⊤
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and β = (α, β1, . . . , βp)⊤. The matrix B is then a (p + 1) × (p + 1) matrix, and we

re-write (2.34) by

k(x, x′) = z⊤Bz′ + ks(s, s′). (2.35)

Equivalently, we have f ∼ MVN(0, K) with the Gram matrix given by

K = ZBZ⊤ + Ks (2.36)

where Z is n × (p + 1) matrix with i-th row given by z⊤
i , Ks = {ks,ij}1≤i,j≤n. Incorpo-

rating the parametric component into the kernel k simplifies the parameter estimation.

For instance, assuming B = σβIp+1, we only need to estimate the scale parameter σβ

instead of p + 1 regression coefficients. Another advantage is the flexibility in modelling.

As we see in Chapter 3, the interaction between different predictors, e.g., s and z, can

be modelled by taking the tensor product of the two specified kernels ks and kz.

Note that we can replace the linear part in (2.33) with ϕ(zi)⊤β, where ϕ : Rp → Rq

are some fixed basis functions. The following section focuses on the simple linear case;

however, they can easily be generalised to semi-parametric models. See Rasmussen and

Williams (2006, Chapter 2) for the details. It is also worth noting that the parametric

function and non-parametric function in (2.33) can be defined on the same set, i.e., we

consider a regression model specified by (2.1) and f(xi) = a + x⊤
i β + fx(xi) where the

prior over f is specified in the same manner as (2.34).
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2.4.1 Posterior

Following Rasmussen and Williams (2006, Chapter 2), the posterior of f for the model

given by (2.32) - (2.34) is a GP with mean and covariance given by

m̄(x) = ks(s)⊤(Ks + σ2In)−1y + r⊤β̄ (2.37)

k̄(x, x′) = ks(s, s′) − ks(s)⊤(Ks + σ2In)−1ks(s)+

r(x)⊤
(
B−1 + Z⊤(Ks + σ2In)−1Z

)−1
r(x′) (2.38)

where

r(x) = z − Z⊤
(
Ks + σ2In

)−1
ks(s) (2.39)

β̄ =
(
B−1 + Z⊤(Ks + σ2In)−1Z

)−1
Z⊤(Ks + σ2In)−1y (2.40)

for s, s′ ∈ S and z, z′ ∈ Z. Notice that the first term in (2.37) and the first two terms

in (2.38) corresponds with the posterior mean and kernel given in (2.12) and (2.13)

for a simple GP regression. The additional terms can be seen as contributions of the

parametric term. The equation (2.40) can be interpreted as the posterior mean of the

regression coefficient. Moreover, we can derive the posterior distribution of β, which is

multivariate normal with mean given by (2.40) and the covariance matrix given by

Σβ = B − BZ⊤
(
Ks + σ2In

)−1
ZB (2.41)

In the case of a vague prior, e.g. B = σ2
βIp where σ2

β → ∞, the expression

(
B−1 + Z⊤(Ks + σ2In)−1Z

)−1

involved in (2.38) and (2.40) reduces to
(
Z⊤(Ks + σ2In)−1Z

)−1
.



56 Regression with Gaussian process prior

For a non-Gaussian likelihood, although we do not know exact posterior, we have

expressions similar to (2.37) and (2.40), but y replaced with E[f |y, X] and Ks + σ2In

replaced with Ks. For example, for the mean of the regression coefficient, we have:

β̄ =
(
B−1 + Z⊤K−1

s Z
)−1

Z⊤K−1
s E[f |y, X].

The variance can be computed by

Σβ = B − BZ⊤K−1
s ZB + BZ⊤K−1

s VK−1
s ZB,

where V is the covariance matrix of the posterior of f .

2.4.2 Marginal likelihood

The marginal likelihood for the discussed model with Gaussian likelihood can be

computed by

log p(y|X, B) = − 1
2y⊤(Ks + σ2In)−1y + 1

2y⊤Cy

− 1
2 log |Ks + σ2In| − 1

2 log |B| − 1
2 log |A| − n

2 log 2π (2.42)

where A = B−1 + X⊤(Ks + σ2In)−1X and C = (Ks + σ2In)−1XA−1X⊤(Ks + σ2In)−1.

If we have a vague prior on B, evaluating the log determinant term becomes an issue

as it approaches minus infinity. In such a case, we have to discard the log determinant

term involving B and re-scale the last term by 1 − m
n

(Ansley and Kohn, 1985).
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2.5 Related methods

In this section, we discuss the connection between GP regression and other well-

established statistical methods, namely kernel ridge regression in Section 2.5.1, and

Kriging and conditional auto-regressive models in 2.5.2.

2.5.1 Kernel ridge regression

In this section, we consider a regression problem for the response yi and the predictors

xi ∈ X for i = 1, . . . , n, where the aim is to find a function f : X → R that best

explains the relationship between yi and xi. With kernel ridge regression, the function

f is estimated as a solution to the following problem:

arg min
f∈Hk

(
1
n

n∑
i=1

(yi − f(xi))2 + λ||f ||Hk

)
(2.43)

where Hk is a Reproducing kernel Hilbert Space (RKHS, see Appendix A.1.1) induced

by the kernel k. Let us now consider a similar problem, but the first term replaced by

a loss function l : R × R → R:

arg min
f∈Hk

(l (yi, f(xi)) + λ||f ||Hk
) . (2.44)

By the representer theorem (Kimeldorf and Wahba, 1970; O’sullivan et al., 1986;

Schölkopf et al., 2001), the solution to the above (2.44) has the form

f ∗(x) =
n∑

i=1
αik(x, xi), x ∈ X (2.45)
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where αi ∈ R for i = 1, . . . , n are some coefficient that depends on the sample (yi, xi)n
i=1.

The equation above (2.45) can also be written as

f ∗(x) = k(x)⊤α, x ∈ X (2.46)

where α = (α1, . . . , αn)⊤ and k(x) = (k(x, x1), . . . , k(x, xn))⊤. For a mean squared

loss, we recover the problem given in (2.43). Substituting (2.46) into (2.43) with

λ = σ2, and minimising with respect to α, we have α̂ = (K + σ2In)−1y. We see that

this corresponds with the posterior mean of GP regression, as given in (2.12).

2.5.2 Methods in spatial statistics

Kriging

It is widely recognized that the posterior (predictive) mean in GP regression has a

close relationship with Kriging prediction, a classical method in geostatistics. Kriging

was first introduced for a mining problem by Krige (1951), with formal mathematical

theories developed by Matheron (1963). In this section, we focus on the regression

problem for a continuous response and see the connection between universal Kriging,

also called regression Kriging, to the semi-parametric GP models discussed in Section

2.4. Following common practices in geostatistics, we introduce slight changes in notation

and formulation. The model is defined as follows:

y(si) = µ(si)︸ ︷︷ ︸
mean component

+ e(si)︸ ︷︷ ︸
error component

(2.47)
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Here, the mean and error components are specified as:

µ(si) = Z(si)⊤β (2.48)

e(si) = f(si) + ϵ(si). (2.49)

This model bears a resemblance to (2.32) and (2.33), with the terms yi, zi, and ϵi

replaced by y(si), Z(si), and ϵ(si), respectively. We also assume that the constant

term is included in (2.48). The error component (2.49) is assumed to be a zero-mean

random process, with its first term f accounting for spatial variation and the second

term ϵ accounting for i.i.d. measurement error. Specifically, we assume that E[ϵ(s)] = 0

and Var[ϵ(s)] = σ2 for s ∈ S. As we are dealing with spatially referenced data, S is

commonly considered to be either R2 or R3.

The primary objectives in this context may involve estimating the regression

coefficient β, understanding the spatial auto-correlation structure modelled by f ,

or making predictions at locations where samples were not taken. The latter step,

involving prediction, is commonly referred to as Kriging.

In classical geostatistics, the initial step is to compute the ordinary least square

estimator for β. To address auto-correlation, the estimation of the covariance function

(kernel) becomes a crucial subsequent stage. In geostatistics, when the error process

exhibits second-order stationarity (i.e., when the covariance function is stationary), it

is common to focus on a semi-variogram, defined as

γ(s, s′) = 1
2Var (e(s) − e(s′)) . (2.50)

Another widely used stationarity assumption is intrinsic stationarity, characterized by:

γ(s, s′) = γ(s − s′), s, s′ ∈ S.
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Under this assumption, there exists a relationship between the covariance function k

and the semi-variogram γ:

γ(h) = k(0) − k(h) (2.51)

where h = s − s′ ∈ S. The empirical estimation of the semi-variogram can be

performed using the residual errors, ê(si) for i = 1, . . . , n, obtained from the initial step.

This empirical semi-variogram is typically smoothed using parametric semi-variogram

models, such as Gaussian (SE), exponential, or Matérn.

If the primary objective is to estimate and interpret the regression coefficients,

then the coefficients should be re-estimated using estimated generalized least squares

(EGLS). The EGLS estimator aligns with the results from GP regression (2.40) when

a vague prior is placed on β.

For prediction at an arbitrary location s∗ ∈ S, Kriging aims to interpolate from

surrounding measurements using the following equation:

Ŷ (s∗) =
n∑

i=1
wiY(si) = w⊤Y. (2.52)

where w = (w1, . . . , wn)⊤ is a fixed vector and Y = (Y(s1), . . . , Y(sn))⊤. This is often

referred to as a linearity condition. Kriging provides the best linear unbiased prediction,

where the estimator minimizes:

Var[Y (s∗) − Ŷ (s∗)]

subject to E[Ŷ (s)] = E[Y (s)]. This is equivalent to minimizing: E([Y (s∗) − Ŷ (s∗))2]

with the same bias constraint. This leads to a minimization problem of the Lagrangian

function:

L(w, λ) = −w⊤Γw + 2w⊤γ − 2λ
(
Z(s∗)⊤ − w⊤Z

)
(2.53)
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where Γ = [γ(si, sj)]1≤i,j,≤n, γ = (γ(s∗, s1), . . . , γ(s∗, sn))⊤ and Z is the data matrix

with i-th row given by Z(si). Minimizing (2.53) with respect to w (and λ), we obtain:

ŵ =
(

γ + Z
(
Z⊤Γ−1Z

)−1
rγ

)⊤
Γ−1. (2.54)

where rγ =
(
Z(s∗) − Z⊤Γ−1γ

)
). Hence, the Kriging equation for prediction and

variance becomes:

Ŷ (s∗)s = γ⊤Γ−1Y + r⊤
γ

(
Z⊤Γ−1Z

)−1
Z⊤Γ−1Y (2.55)

σ̂2(s∗) = γ⊤Γ−1γ − r⊤
γ

(
Z⊤Γ−1Z

)−1
rγ (2.56)

By exploiting the relationship between the semi-variogram and covariance function

under the intrinsic stationarity assumption (2.51), we can establish the equivalence

between Kriging equations (2.55) and (2.56) and the GP posterior mean and variance

for the semi-parametric model (2.37) and (2.34). For a detailed derivation of Kriging

equations, see e.g., Cressie (1993, Chapter 3) or Zimmerman and Stein (2010).

Conditional auto-regressive model

When dealing with areal data, such as crime counts or disease cases within regions of a

city, one approach to model spatial variation is to compute the centroid of each region

as a measure of location and apply standard GP regression. However, a more commonly

employed technique in spatial statistics is the use of Conditional Auto-Regressive (CAR)

models. This class of models originated in the work of Besag (1974), who introduced

models for analysing spatially discrete data. In CAR models, the specification of

auto-correlation structure involves the weighted adjacency matrix W, where the i, j-th

element is positive only when regions i and j share a border and zero otherwise. It is

also symmetric, wij = wji.
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Let us consider a regression model similar to (2.47)-(2.49), given by:

yi = µi + ei,

where µi = z⊤
i β. In CAR models, the prior for the (spatial) error component is specified

through a set of conditional distributions of ei given all other error components, denoted

as e−i. The simplest of such distributions is defined as follows:

ei|e−i ∼ N

 1
di

∑
j∼i

ej,
τ 2

di

 ,

where di denotes the number of neighboring regions, and j ∼ i indicates that region

j shares a border with region i. This prior specification corresponds to the intrinsic

auto-regressive model (Besag et al., 1991). The joint distribution of e = (e1, . . . , en) is

then given by:

e ∼ MVN(0, τ 2Q−1),

where Q = D−W and D is a degree matrix, i.e., dn×n diagonal matrix with diagonal

elements d1, . . . , dn, and W is the adjacency matrix. Note that the precision matrix Q

in this case is centred and thus singular. Besag et al. (1991) also proposed adding a

random effect to the error term, which is called the convolution model. In this case,

the individual terms consisting of the error term are not identifiable; hence additional

assumptions are needed. The matrix D − W is also known as the Graph Laplacian

or un-normalized Graph Laplacian when W is a weighted adjacency matrix. Other

common choices for Q include D − ρW with 0 < ρ < 1, corresponding to the Cressie

model (Cressie, 1993; Stern and Cressie, 2000), Q = ρW + (1 − ρ)I, which is known as

Leroux model (Leroux et al., 1999; MacNab, 2003), and:

Q = In − ϕW, (2.57)
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where λ−1
1 ≤ ϕ ≤ λ−1

n and λ1 and λn are the smallest and largest eigenvalues of W. The

prior specification given by (2.57) is particularly significant, as many CAR priors can

be reformulated in this form when the response and covariates are appropriately scaled

(Cressie et al., 2005; De Oliveira, 2012). This covariance matrix also corresponds to a

kernel on graphs, known as the Katz kernel (Katz, 1953) or Von Neumann Diffusion

Kernel (Kandola et al., 2002). Hence, for areal data, we can consider a multivariate

Gaussian prior on the spatial error component with its covariance matrix determined

by different kernels on graphs. For other kernels on graphs, see e.g. Avrachenkov et al.

(2019); Fouss et al. (2012); Smola and Kondor (2003).

CAR models find extensive use in cases involving non-Gaussian likelihoods, such as

the Poisson distribution with a log link function. For an overview, see Waller and Carlin

(2010). A comprehensive comparison of various CAR models for disease mapping can

be found in Lee (2011).





Chapter 3

Additive interaction modelling with

Gaussian process priors

Chapter 2 is primarily dedicated to regression with Gaussian process (GP) priors

with a single, possibly multidimensional covariate but also covers models involving

another set of covariates with a presumed linear relationship to the response variable

(a semi-parametric model, see Section 2.4). We add a linear kernel to complement an

existing kernel to capture this linear component. This is an example of an additive GP

model (Duvenaud et al., 2013; Plate, 1999).

As the name implies, additive GP models assume an additive structure of GPs for

the regression function, akin to generalised additive models (Hastie and Tibshirani,

1990). In the semi-parametric model discussed in the preceding chapter, we incorporate

two parts: one that models a potentially non-linear and complex relationship and

another in the form of a linear combination of covariates and regression coefficients.

This effectively models the main effects of x1 and x2. In many real-world scenarios,

we encounter more than two sets of covariates, where the effects may also interact.

For instance, let us consider a case with a response variable yi ∈ R and three sets

of covariates: x1i ∈ X1, x2i ∈ X2, and x3i ∈ X3 for i = 1, . . . , n. It is important to
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note that each of xl for l = 1, 2, 3 does not necessarily have to be one-dimensional;

for instance, X1 ⊂ R2 if x1 represents geographical coordinates. We can model the

relationships between the response and covariates as follows:

yi = f(x1i, x2i, x3i) + ϵi (3.1)

where ϵi represents the error term. The specific form of f(x1i, x2i, x3i) depends on the

model assumptions. One possible example is:

f(x1i, x2i, x3i) = a + f1(x1i) + f2(x2i) + f3(x3h)︸ ︷︷ ︸
main effect

+ f13(x1i, x3i) + f23(x2i, x3i)︸ ︷︷ ︸
two-way interaction effect

, (3.2)

which includes a constant term, main effect terms, and two-way interaction effect

terms among all three sets of covariates. If this model seems to overfit the data, one

may consider eliminating some two-way interaction terms. Furthermore, suppose all

two-way interaction effects are present. In that case, it may be worth investigating

the addition of a three-way interaction term f123(x1i, x2i, x3i) to potentially provide a

better explanation of the data structure.

This chapter explores how GP models approach this statistical modelling problem

through kernel functions. We place special emphasis on the construction and selection

of interaction terms and the interpretation of both main and interaction effects. We

primarily focus on models involving two sets of predictors as a motivating example

since the concepts and advantages can be effectively illustrated in this simple setting.

Each section also provides a generalisation to higher-dimensional cases.
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3.1 Statistical modelling with kernels

Let X1 and X2 be nonempty sets. Consider a regression model for a real-valued response

y and two (sets of) predictors x1 ∈ X1, x2 ∈ X2. We denote the sample (of size n) as

(yi, x1i, x2i)n
i=1. Similar to (3.1) we have:

yi = f(x1i, x2i) + ϵi (3.3)

where the error terms (ϵ1, . . . , ϵn) ∼ MVN(0, Σ). For i.i.d errors, we write Σ = σ2In

where In is the n × n identity matrix. Given two predictors and a constant a, it is

natural to consider the following additive models:

f(x1i, x2i) = a + f1(x1i) + f2(x2i) (3.4)

f(x1i, x2i) = a + f1(x1i) + f2(x2i) + f12(x1i, x2i). (3.5)

While the first represents the main effect model, the second assumes an additional

interaction effect between the two predictors. The main idea of additive GP models is

to put a GP prior on each function f1, f2 and f12 in (3.4) and (3.5).

3.1.1 Sum kernels and main effect terms

Consider the main effect model with two predictors specified in (3.3) and (3.4). Given

two kernels k1 : X1 × X1 → R and k2 : X2 × X2 → R, we assume f1 ∼ GP(0, k1) and

f2 ∼ GP(0, k2). A nice property of kernels is that the sum of the given two valid

kernels constitutes a new kernel (See section 2.1.2). With the additional assumption

that the constant term a ∼ N(0, 1), the overall function f : X → R with X = X1 × X2
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follows GP(0, k), where k : X × X → R is given by

k((x1, x2), (x′
1, x′

2)) = 1 + k1(x1, x′
1) + k2(x2, x′

2).

Note that the first term 1 is also a positive definite kernel, known as a constant kernel.

Hence, the function k can be seen as a sum of three positive definite kernels. To avoid

constraining the prior variance of the constant term a, we multiply the overall kernel k

by α2
0 where α0 > 0, i.e.,

k((x1, x2), (x′
1, x′

2)) = α2
0 (1 + k1(x1, x′

1) + k2(x2, x′
2)) .

With this formulation, we assume a ∼ N(0, α2
0), and the scale parameters of k1 and k2,

(denoted by α2
1 and α2

2), are re-scaled by the factor of α2
0. The corresponding Gram

matrix is given by

K = α2
0

(
1n1⊤

n + K1 + K2
)

(3.6)

where 1n1⊤
n is a n × n matrix with all elements equal to 1, and Kl is a Gram matrix

with i, j-th element given by kl(xl, x′
l). We can generalise this to the case with d

predictors x1, . . . xd.

Example 7 (Main effect kernel). Let Xl be a nonempty set and kl be a positive definite

kernel on Xl × Xl for l = 1, . . . , d. Let X = X1, . . . , Xd. Given d predictors, the kernel

that gives a main effect GP model is defined on X × X and given by

kmain((x1, . . . xd), (x′
1, . . . x′

d)) = α2
0

(
1 +

d∑
l=1

kl(xl, x′
l)
)

, xl, x′
l ∈ Xl. (3.7)
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3.1.2 Tensor product kernels and interaction effect terms

The interaction effect model (3.5) has an additional function term f12. We put a zero

mean GP prior on this, with its kernel k : X × X → R given by a tensor product of

two kernels k1 and k2. Formally, we have k = k1 ⊗ k2 defined by k((x1, x2), (x′
1, x′

2)) =

k1(x1, x′
1)k2(x2, x′

2) where ⊗ is a tensor product operator. Generalising this kernel to

the case involving d predictors, we have the following definition.

Definition 5 (Tensor product kernel). Let Xl be a nonempty set and kl be a positive

definite kernel on Xl × Xl for l = 1, . . . , d. With X = X1 × . . . × Xd, a tensor product

of {kl}d
l=1 is a kernel on X × X defined as

(⊗d
l=1kl)((x1, ..., xd), (x′

1, ..., x′
d)) =

d∏
l=1

kl(xl, x′
l), xl, x′

l ∈ Xl. (3.8)

Using the sum kernel for the main effect terms, and the tensor product kernel for the

interaction effect term, we can specify the prior on the regression function f in (3.5) as

GP(0, k), where k = α2
0(1 + k1 + k2 + k1 ⊗ k2) is defined by

k((x1, x2), (x′
1, x′

2)) = α2
0 (1 + k1(x1, x′

1) + k2(x2, x′
2) + k1(x1, x′

1)k2(x2, x′
2)) . (3.9)

The corresponding Gram matrix can be written as

K = α2
0

(
1n1⊤

n + K1 + K2 + K1 ◦ K2
)

(3.10)

where ◦ is the element-wise product operator.

3.1.3 ANOVA decomposition kernel

When including interaction terms in a model, it is common practice to include both

the main terms and all lower-order interaction terms. In this section, we introduce a
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special class of additive kernels, known as the ANOVA decomposition kernel, that can

naturally take this into consideration.

Following Bergsma and Jamil (2023), for a model with d predictors, we define the

saturated ANOVA decomposition kernel as follows.

Definition 6 (Saturated ANOVA decomposition kernel). Let Xl be a nonempty set, kl

be a positive definite kernel on Xl × Xl for l = 1, . . . , d and α0 be a positive constant.

With X = X1×. . .×Xd, the saturated ANOVA decomposition kernel ks-anova : X ×X → R

is given by:

ks-anova((x1, ..., xl), (x′
1, ..., x′

l)) = α2
0

d∏
l=1

(1 + kl(xl, x′
l)) , xl, x′

l ∈ Xl. (3.11)

The ANOVA decomposition kernel was first introduced by Stitson et al. (1999) in the

context of Support Vector Machines. It borrows the idea of an ANOVA decomposition

of a function in a Reproducing Kernel Hilbert Space (RKHS), as used in smoothing

spline ANOVA models (Gu, 2002; Gu and Wahba, 1993; Wahba et al., 1995). The

formulation in (3.11) is different from the standard ANOVA decomposition kernel

used in the spline models, where a separate scale parameter is used for the individual

interaction term. The proposed specification is more parsimonious; for d-dimensional

covariates, the number of scale parameters is d + 1. It is also different from the kernel

used in Stitson et al. (1999), which only included the interaction terms of a fixed order,

i.e., the three-way interaction model involves only three-way interaction effect terms

and not the lower-order terms.

The saturated ANOVA decomposition kernel has 2d terms, including a constant

term, all of the base kernels, the d-th order interaction term and any lower order

interaction terms. The kernel given by (3.9) is, in fact, this class of kernel. It can also

be seen as a special case of tensor product kernels by treating k̃(xl, x′
l) = 1 + kl(xl, x′

l)

as one kernel. In contrast to the saturated ANOVA decomposition kernel, a GP model
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with a tensor product kernel in its simplest form, given by Definition 5 with each kl not

being a sum kernel involving the constant kernel, only includes the highest interaction

term. As we will see in the following sections, this may lead to a poor fit and cause

difficulty in interpreting the fitted model. The saturated ANOVA kernel, however,

assumes the highest complexity given a set of base kernels kl, which may be an overfit

to the data.

To address this issue, we introduce another class of ANOVA decomposition kernels,

called the hierarchical ANOVA decomposition kernel. This kernel includes a constant

term, all main terms, and any interaction terms of any orders constructed using tensor

product kernels. This means that no new kernels are introduced for interaction terms,

and for given data, all models under this class of kernels share the same hyperparameters.

Additionally, this kernel must have a hierarchical structure. If we include any p-th

order interaction terms, any lower order interaction terms involving any covariates

used in the p-th order interaction terms must also be included. The smallest kernel in

this class is the main effect kernel given by (3.7), and the largest kernel is simply the

saturated ANOVA decomposition kernel. Figure 3.1 illustrates the differences between

the kernels discussed in this section with d = 4. It is worth noting that there are many

hierarchical ANOVA kernels, and Figure 3.1b shows one such example. We may use a

simpler term, the ANOVA kernel, to refer to the ANOVA decomposition kernel.

3.1.4 Separable, sum of separable and non-separable kernels

Structured kernels can be categorized as either “separable” or “non-separable”. A

separable kernel, denoted as k : X × X → R, takes the form of a tensor product kernel:

k = ⊗d
l=1k̃l, where each component kernel k̃l contributing to the construction of k can

itself be a combination of multiple kernels, such as a sum or product. For instance, in

the saturated ANOVA decomposition kernel, each k̃l = 1 + kl for a given kl. Essentially,
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(a) Main (b) Hierarchical (c) Saturated (d) Tensor

Fig. 3.1 Visualisation of ANOVA decomposition kernels (Panel (a),(b) and (c)) and a
tensor product kernel (Panel (d)) with d = 4 dimensional covariates. The term 0 in
the panels refers to the constant term, and the terms 1 to 4 refer to the main effect
term that corresponds to kl for l = 1, . . . , 4. The remaining terms are interaction effect
terms, e.g., the term 123 models the three-way interaction effect involving the covariates
x1,x2 and x3. Panel (b) is an example of a hierarchical ANOVA decomposition kernel.
Adding the term 34 to this example gives another example of such a kernel. If we are
to include the term 134 and/or 234, the term 34 should also be added to ensure a
hierarchical structure.

separable kernels entail that the tensor product separates the kernel for each dimension

l.

A more general class is the “sum of separable” kernel, which has the form k =∑Q
q=1 ⊗d

l=1k̃lq, where for a given l ∈ {1, . . . , d}, k̃l1, k̃l2, . . . , k̃lQ are all defined on Xl ×Xl.

Hierarchical ANOVA decomposition kernels are special cases of this class of kernel,

where some of k̃lq is a constant kernel (2.4), with the scale parameter α = 1, i.e.,

k̃lq(xl, x′
l) = 1, ∀xl, x′

l ∈ Xl, and for all non-constant kernels, we have k̃lq = k̃l for

q = 1, . . . , Q and l = 1, . . . , d.

On the other hand, non-separable kernels encompass those that do not adhere to

the separable structure. For interested readers, see, e.g. Cressie and Huang (1999);

Gneiting (2002) for the stationary case, and Fonseca and Steel (2011); Wang et al.

(2020) for the non-stationary case.
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3.2 Posterior and model comparison

3.2.1 Decomposition of the posterior under additive models

For inferring the posterior distribution or predictive distribution of the overall function

f and estimating model hyperparameters, the methods presented in Chapter 2 remain

directly applicable. However, if our interest shifts towards the individual compo-

nent function that constitutes the function f , e.g., (3.4) or (3.5), deriving posterior

distributions for these individual functions becomes essential.

In particular, suppose the regression function satisfies fall = ∑J
j=1 fj ∼ GP(0,

∑J
j=1 kj)

where the component functions are uncorrelated, i.e., fj ∼ GP(0, kj). Note that the

ANOVA decomposition kernels used in this thesis and described in the previous sec-

tion have this structure. Then the posterior distribution of the jth component is

fj|y ∼ GP(m̄j, k̄j), where

m̄j(xj) = kj(xj)⊤(Kall + σ2In)−1y, xj∈ Dj (3.12)

k̄j(xj, x′
j) = k̄j(xj, x′

j) − kj(xj)⊤(Kall + σ2In)−1kj(x′
j), xj,x′

j∈ Dj (3.13)

for j = 1, 2..., J and J denoting the number of terms. Note that a kernel may have

tensor product form, e.g. the j-th term can be kj(xj, x′
j) = kl(xl, x′

l)kl′(xl′ , x′
l′) with

xj = (xl, xl′)⊤, xl ∈ Xl, xl′ ∈ Xl′ and Dj = Xl × Xl′ .

3.2.2 Comparing models under hierarchical ANOVA kernels

In this section, we focus on model comparison and selection among models with

different interactions, i.e., given a set of predictors and kernels, we aim to select a

model incorporating the appropriate interaction terms.
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Section 2.2.3 and 2.3.3 discuss different options for model comparison and selection

in broader contexts, such as marginal likelihood, Watanabe Akaike information criteria

(WAIC) and leave-one-out cross-validation (LOO-CV). When comparing models with

different interaction structures, we can adhere to the principles outlined in these

preceding sections in theory. However, as discussed, computing these quantities can

pose a formidable computational challenge associated with integrating out hyper-

parameters θ, especially in the case of non-Gaussian likelihood. For example, the

marginal likelihood for a model M, as given by (2.16),

p(y|X, M) =
∫

p(y|X, θ, M)p(θ|M)dθ,

is typically numerically approximated by e.g. employing bridge sampling (Bennett,

1976; Meng and Schilling, 2002; Meng and Wong, 1996). The choice of hyper-priors

on θ may also play a role, and sensitivity analysis is recommended. The alternative

plug-in marginal likelihood, or best-fit predictive density p(y|X, θ̂, M) is much simpler

to evaluate but often susceptible to overfitting.

Our parsimonious interaction model specification circumvents this issue. Specifically,

irrespective of the order or number of interaction terms within a model, the number of

hyperparameters remains constant with the ANOVA kernel construction. Bergsma and

Jamil (2023) demonstrate the favourable performance of plug-in marginal likelihood

compared to methods such as Lasso, spike and slab prior (Mitchell and Beauchamp,

1988), or g-prior (Zellner, 1986), in selecting the correct interactions within the I-

prior framework employing the same ANOVA decomposition kernel specification for

interaction terms. I-prior is closely associated with Gaussian process regression, as

discussed in Bergsma (2020). The spike and slab approach is utilized in GP regression

(Dance and Paige, 2022) for variable selection by placing the spike and slab prior on the

length scale parameters of the kernels; however, its applicability is limited to kernels
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with a length scale parameter and is not directly applicable to the task of selecting

interactions.

An additional challenge arises in the case of non-Gaussian likelihood due to the

absence of a closed-form expression for the marginal likelihood (even for the plug-in

marginal likelihood), the pointwise predictive density for WAIC, or the hold-out predic-

tive density for LOO-CV. If the posterior is approximated via Laplace approximation

(LA) or expectation propagation (EP), then it is natural to approximate LOO-CV

or marginal likelihood similarly using LA or EP. Nonetheless, the accuracy of such

approximations warrants careful investigation. In cases where the chosen approxima-

tion is inadequate, it is customary in the literature to compare models using k-fold

cross-validation error, employing a suitable scoring rule such as the Brier score (Brier,

1950) for categorical variables. We take this approach in our data example in Section

3.4.1.

3.3 ANOVA kernel, centring and interpretation

As discussed in Plate (1999) and Duvenaud et al. (2011), one effective way to interpret

an additive GP model is to visualise each function contributing to the model. If a

kernel kj is centred, the corresponding posterior mean function sums to zero over each

input, i.e., ∑n
i=1 m̄j(xj,i) = 0. Furthermore, if we denote the posterior mean of the

interaction effect term between xl and xl′ by m̄ll′(xl, xl′) and use centred kl and kl′ ,

we have ∑n
i=1 m̄ll′(xli, xl′) = ∑n

i=1 m̄ll′(xl, xl′i) = 0 for xl ∈ Xl and xl′ ∈ Xl′ . This

indicates that all terms in the additive regression function, including main effects and

lower-order interaction effects, have intuitive interpretations and can be understood

as averaged effects. Consider a regression model for a real-valued response y and two

predictors x1 ∈ X1 and x2 ∈ X2 as specified by (3.3) and (3.5). Repeating the latter,



76 Additive interaction modelling with Gaussian process priors

the regression function is

f(x1i, x2i) = a + f1(x1i) + f2(x2i) + f12(x1i, x2i)

for i = 1, . . . , n. The prior over the regression function f is an additive GP with

saturated ANOVA decomposition kernel (3.9),

k((x1, x2), (x′
1, x′

2)) = 1 + k1(x1, x′
1) + k2(x2, x′

2) + k1(x1, x′
1)k2(x2, x′

2),

where we assume that each base kernel kl for l = 1, 2 is empirically centred and α0 = 1

for simplicity. We write the Gram matrix K = 1n1⊤
n + K1 + K2 + K1 ◦ K2. Due to

centring, we have K11n = K21n = 0. Using (3.12), the posterior mean function is the

sum of m̄a = 1⊤
n w which corresponds with the constant term, and

m̄1(x1) = k1(x1)⊤w x1 ∈ X1

m̄2(x2) = k2(x2)⊤w x2 ∈ X2

m̄12(x1, x2) = (k1(x1) ◦ k2(x2))⊤ w x1 ∈ X1, x2 ∈ X2

where w = (K + σ2I)−1y and kl(xl) = (kl(xl, x1), . . . , kl(xl, xn))⊤ for l = 1, 2. Each

m̄j corresponds with the term fj for j ∈ {1, 2, 12}.

3.3.1 Properties of posterior mean functions

Centring kernels implies that each of the posterior mean functions for main terms sums

to zero over each input, i.e., ∑n
i=1 m̄1(x1i) = ∑n

i=1 m̄2(x2i) = 0. We can see this by

n∑
i=1

m̄l(xli) = 1⊤
n Kl︸ ︷︷ ︸
=0⊤

w = 0
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for l = 1, 2. For interaction terms, we have a similar property, but the summation is

over one input, e.g., ∑n
i=1 m̄12(x1i, x2) = 0. We show this by

n∑
i=1

m̄12(x1i, x2) = 1⊤
n (K1 • k2(x2))⊤w = 1⊤

n (k2(x2) • K1)⊤w

= 1⊤
n (Dk2K1)⊤w = 1⊤

n K1︸ ︷︷ ︸
=0⊤

Dk2w = 0

where • is the row-wise Kronecker product (see Appendix B.1) and Dk2 = diag(k2(x2)).

We can show that ∑n
i=1 m̄12(x1, x2i) = 0 in a similar manner. Interestingly, the

summation over both inputs does not equal 0 in general, i.e., ∑n
i=1 m̄12(x1i, x2i) ̸= 0.

The exception is when we have multi-dimensional grid data, as we will introduce

in Chapter 4. The multi-dimensional grid data can be seen as multi-level panel /

balanced longitudinal data, where each unit in the upper level (e.g., individual) has

the measurements at the same time points. For a detailed explanation of such data

structure, refer to Section 4.2. Let us consider a simple 2-level panel data with x1i

and x2j representing level-specific covariates where i = 1, . . . , n1 and j = 1, . . . , n2 and

assume interaction model. Then we have ∑n1
i=1

∑n2
j=1 m̄12(x1i, x2j) = 0 where m̄12 is the

posterior mean of the interaction term.

3.3.2 Interpretation

These properties of posterior mean functions allow for meaningful interpretation of

each main and interaction term. To see this, we start with the interaction term. We

can understand how the effect of x1 changes depending on the level of x2 by plotting

g(x1|x2) := m̄1(x1) + m̄12(x1, x2) (3.14)
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as a function of x1 for a fixed value of x2 ∈ X2. Let us now evaluate this function at

each observed value x2,i for i = 1, . . . n, and take the average. We have that

1
n

n∑
i=1

g(x1|x2i) = m̄1(x1) + 1
n

n∑
i=1

m̄12(x1, x2i)︸ ︷︷ ︸
=0

= m̄1(x1).

This allows for interpreting the main effect term m̄1(x1) in the interaction model as

the effect of x1 averaged over each input of x2. We can generalise this to a higher-

order interaction case. For example, if we have the third predictor x3 ∈ X3, and

include the three-way interaction term in the regression model, we can show that∑n
i=1 m̄123(x1, x2, x3i) = 0, for x1 ∈ X1, x2 ∈ X2. Then the interpretation of the

two-way interaction effect m̄12(x1, x2) stays the same as the example above (3.14),

but now averaged over each input of x3. The posterior mean of the constant term,

m̄a, has an interpretation as the average of the posterior mean of the response y after

averaging over all (main and interaction) effects, under two circumstances: 1) when we

have multi-dimensional grid data, or 2) when we have main effects only model with

non-structured data.

3.4 Application

In this section, we illustrate the proposed method using two datasets. The first

dataset, bovine tuberculosis (BTB) data in Cornwall, UK, is multivariate spatial/spatio-

temporal patterns, where the location, time and genotypes responsible for each outbreak

of the disease are recorded. For this dataset, we aim to conduct spatio-temporal analysis

using the ANOVA decomposition kernel in order to produce a segregation map over

space and time. We see that a proper treatment of the main and interaction effects is

important. The second data is balanced longitudinal data, where the subjects (cattle)
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are randomly divided into two treatment groups, and the weight is measured over the

course of the study period. We use this dataset to illustrate the interpretability of

the proposed ANOVA decomposition kernel. More specifically, we aim to estimate the

average growth curve for different treatment groups.

3.4.1 Bovine Tuberculosis in Cornwall

Bovine tuberculosis (BTB) is an infectious disease of cattle caused by Mycobacterium

bovis. The disease has been endemic in the UK, especially from the late 1980s to

2010s. In this period of time, there was a widespread in the south-west of England

and Wales. The BTB dataset from Diggle et al. (2005) contains 919 confirmed cases

of outbreak from 1989 to 2002 in Cornwall, UK. The data has been examined by

using non-parametric methods (Diggle et al., 2005) and by using log-Gaussian Cox

Process (LGCP) models (Diggle et al., 2013; Taylor et al., 2015). For each observation,

the location of the herd where the BTB breakdown was detected, the year of the

breakdown, and the genotype that was responsible for the outbreak were recorded.

The location information is based on 2-dimensional spatial coordinates. During the

period of 14 years, a total of 12 genotypes were identified for 899 cases. We limit the

data to the four most prevalent types (genotypes 9, 12, 15 and 20), which totals 873

cases. Figure 3.2 shows the locations of these cases. From the plot, we can observe

a spatial pattern of genotypes over the region. For example, more cases are detected

in the northeast and southwest of Cornwall, but it is genotype 9 that prevails in the

former, while genotypes 15 and 20 are dense in the latter. From Figure 3.3, we notice

that the relative prevalence of each genotype changes over time. In this section, we

focus on the classification/segregation of different genotypes over space and time.
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Fig. 3.2 The location of BTB outbreak

Fig. 3.3 Frequency by genotypes
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Model

Let yi ∈ Y be the categorical response variable, recording the genotypes of i-th

observation, and si ∈ S, ti ∈ T be the location and time of the outbreak of the disease

for the i observation for i = 1, . . . , 873. Note Y = {9, 12, 15, 20}, T ⊂ R and the

location information is given by two-dimensional geographical coordinate, i.e., S ⊂ R2.

For the spatial model, we assume yi ∼ Categorical(π9,i, π12,i, π15,i, π20,i) where the

probability πj,i = p(yi = j) for j ∈ Y and i = 1, . . . , 873 is given by

πj,i = exp f(j, si)
exp∑j′∈Y f(j′, si)

. (3.15)

We put a zero mean GP prior on f and assume no inter-class correlation. See Appendix

A.3 for a further explanation of this. Equivalently, we can specify the prior on the

vector of f(j, si) given by

f = (f(9, s1), . . . , f(9, s873), . . . . . . , f(20, s1), . . . , f(20, s873))⊤ .

Then we assume f ∼ MVN(0, K) where K is a block diagonal matrix given by I4 ⊗ Ks.

Note ⊗ here is the Kronecker product (see Section 4.3) and Ks is a 873 × 873 matrix of

which the i, i′-th element is given by α2
0 (1 + k(si, s′

i)) for a positive constant α2
0. It is

possible to assume different covariance structures for different classes; however, in the

absence of prior knowledge, we used the same kernel for all classes. For all f(j, si) to be

identifiable, we can e.g., assume f(j, si) = 0 for one class, or ensure ∑j∈Y f(j, si) = 0

for i = 1, . . . , 873. Here we take the former approach and set f(9, si) = 0.

For the spatio-temporal models, we can replace f(j, si) in (3.15) with f(j, si, ti)

to incorporate the temporal variation. The prior on f is zero-mean multivariate Gaussian

with the covariance matrix given by K = I4⊗Kst. We consider three different structures

for Kst corresponding to the main effect, the main effect + spatio-temporal interaction
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Model Description Kst

1 Main effect α2
0(11⊤ + Ks + Kt)

2 Main + space-time interaction α2
0(11⊤ + Ks + Kt + Ks ◦ Kt)

3 Space-time interaction only α2
0(K̃s ◦ K̃t)

Table 3.1 The list of spatio-temporal models for BTB dataset and their covariance
structures. Note for model 3, we omit the scale parameters of matrix Ks and Kt as
they are not identifiable. The unscaled matrices are denoted by K̃s and K̃t.

effect, and the spatio-temporal interaction effect only model. See Table 3.1 for the list

of the model and the structure of Kst. Note that for Model 1 and Model 2, we use

non-saturated and saturated hierarchical ANOVA decomposition kernels. We look at

a 5-fold cross-validation error to compare models with different structures. For this

purpose, we used the Automatic Differentiation Variational Inference (ADVI) algorithm

in Stan. Once a model is selected, it is re-estimated using MCMC.

We use squared exponential kernel (2.2) for both space ks and time kt, hence there

are length-scale parameters ρs and ρt, and scale parameters αs and αt respectively.

Additionally, all models have α0 as overall scale parameters. For priors of length-scale

parameters, we use Inverse Gamma distribution, which puts negligible mass on values

close to zero and has a heavy right tail. In contrast, for the scale parameters, we use

half-normal, which puts non-negligible mass around zero.

Result

Table 3.2 shows the misclassification rate and Brier score (Brier, 1950) for each model.

Brier score is a strictly proper scoring rule for a categorical response variable, and it

is computed by 1
873

∑873
i=1

∑
j∈Y(π̂j,i − rj,i)2 where rj,i is the re-coded response variable,

which takes the value 1 if yi = j and 0 otherwise, and π̂j,i is the mean of the posterior

predictive distribution. Comparing the spatial model and spatio-temporal models

(Model 1 and Model 2), we see that incorporating the temporal information improves
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the prediction accuracy. Furthermore, as Model 2 (main + space-time interaction) has

a lower classification error and Brier score, we conclude that the spatial segregation

changes over time. Interestingly, Model 3 (the interaction-only model) performs

worse than the simple main effect model, which highlights the importance of properly

modelling interaction effects in a hierarchical manner. We conclude that the spatio-

temporal model with both the main and interaction effects (Model 2) is the best fit for

the data. We note, however, that only the squared exponential kernel is considered

here, and further analysis of the choices of different kernels should be conducted. We

briefly discuss this in Appendix C.1.

Figure 3.4 shows the maps of the posterior (conditional) probabilities, p(y = j|s, t)

for different genotypes and years. It is conditional in the sense that it is the probability

of the outcome being in the class j given we observe an event at that point and time.

We see the patterns shifting with time. For example, genotype 9, which was mainly

prevalent in the western area in the beginning, also has higher conditional probabilities

in the central part over the years. For the segregation map, following Diggle et al.

(2013), we compute Pj,c = Pr{p(y = j) > c|s, t} where 0 < c < 1 is some threshold.

For a chosen c, let Aj,q denote a set of locations satisfying Pj,c > q where 0 < q < 1.

In this way, the uncertainty of the point prediction can be incorporated, compared to

plotting the set satisfying E[p(y = j)|s, t] > q for some q. Figure 3.5 shows Aj,q for

Table 3.2 The 5-fold CV errors for spatial and spatio-temporal GP models

Model kernel Misclassification rate Brier score
Spatial

SE 0.142 0.224
Spatio-temporal

Model 1 1+ SE + SE 0.135 0.214
Model 2 (1+SE)(1+SE) 0.12 0.204
Model 3 SE*SE 0.434 0.615
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Fig. 3.4 Maps of conditional probabilities π̂j,i = E[p(yi = j|s, t)] for different genotypes
j and time t.
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(a) q = 0.5 (b) q = 0.7 (c) q = 0.9

Fig. 3.5 Segregation map for t = 1989. We plot a set of locations ∼ that satisfy
Pr(p(y = j) > 0.8|s, t = 1989) > q. The value of q is 0.5, 0.7 and 0.9 respectively.

(a) 1991 (b) 1993 (c) 1995

(d) 1997 (e) 1999 (f) 2001

Fig. 3.6 Segregation map for different years. Each colour represents different genotypes
and the coloured area is a set of location for which Pr(p(y = j) > 0.8|s, t) > 0.5
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q = 0.5, 0.7, 0.9. We see in the left panel of Figure 3.5 that genotype 9 is dominant

in one large area in the east and in one small area in the west. Genotype 12 and 15

are dominant in the upper-middle and lower-middle part of the region, while only a

very small area where genotype 20 is dominant is seen. These dominant areas become

smaller with a higher threshold q, but genotype 9 is still dominant in the east area at

q = 0.9. We can also observe how this segregation pattern changes over time in Figure

3.6. In these maps, we set c = 0.8 and q = 0.5. An example of a noticeable change is

with genotype 9, which stays dominant in the east and in a small area in the west, but

with additional area appearing in the central part of the region from the mid-1990s.

3.4.2 Longitudinal data analysis

The second dataset we analyse is balanced longitudinal data consisting of repeated

measurements of weights from 60 cattle. The cattle were randomly assigned to either

Treatment Group A or Treatment Group B. Each group is of size 30. For each cattle,

the weight is measured 11 times over the course of 133 days. The data is analysed in

Kenward (1987) and is available in the R package jmcm (Pan and Pan, 2017). The

model formulation we used for this analysis has similarity to Cheng et al. (2019), but

some notable differences are the inclusion of the (global) constant term and the centring

of kernels.

Given the available information (treatment group, cattle identification number, and

measurement time), we consider the following model:

yi,j,k = f(ti, j, k) + ϵi,j,k (3.16)

where ti is the day that the measurement is taken, j is the indicator of the treatment

group, and k is the id of each cattle. Therefore, yi,j,k represents the weight of cattle k

which belongs to Treatment Group j, taken at time ti. We assume an iid error. As the
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presence of three-way interaction was confirmed in Jamil (2018, Chapter 4), in this

section, we focus on the interpretation of the results. With the three-way interaction

model, the function f above has the additive structure:

f(ti, j, k) = α + f1(ti) + f2(j) + f3(k)

+ f12(ti, j) + f13(ti, k) + f23(j, k) + f123(ti, j, k). (3.17)

Following Jamil (2018, Chapter 4), we specify the prior on f as GP (0, k) where k is

given by the saturated ANOVA decomposition kernel α2
0((1 + k1) ⊗ (1 + k2) ⊗ (1 + k3)).

A squared-centred standard BM kernel is employed for k1, while the centred categorical

kernel (2.5) is utilised for both k2 and k3. All three kernels are empirically centred.

This model postulates the existence of both a treatment effect and random effect on

cattle growth, with these effects interacting with each other; for instance, the treatment

effect may vary over time and differ across individual cattle.

The model includes four hyperparameters: an overall scale parameter α0 alongside

a scale parameter for each kl where l = 1, 2, 3. We adopt a half-normal distribution as

the prior distribution for these parameters. It is important to note that the main aim

of this section is to illustrate the interpretability of the proposed additive interaction

GP model. In many real-world data applications, careful consideration of the selection

of kernels and priors is imperative.

Figure 3.7 shows the posterior mean of the growth curve from the specified regression

model. We see that the curve is different for different cattle; however, it is difficult to

generalise how the growth curve differs in the treatment group on average. Additive

GP models allow for the decomposition of posterior mean as discussed in Section 3.2.1,

and with the use of ANOVA decomposition kernel, and centring, the main effect and

two-way interaction effect can be interpreted as “average” effects. Figure 3.8a shows

the posterior mean of the main effect term f1(t), denoted by m̄1(t). This can be seen
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Fig. 3.7 The observed and fitted growth curve of 60 cattle by treatment group

as the growth curve (after centring the response) or the effect of time, averaged over

the treatment effect and the random effect of the individual cattle. The regression

model assumes that the growth of cattle depends on the treatment group. Figure 3.8b

illustrates the interaction effect between time and treatment group. This is the plot

of m̄1(t) + m̄12(t, j) for j = {Treatment A, Treatment B}, which can be interpreted as

the average growth curve for the two treatment groups. These curves are after the

individual cattle variability is taken into account. We see that the growth curves are

similar in the beginning, with group A, on average, growing quicker. This changes

at a later stage when the growth curve for Group B surpasses that of Group A. The

curve for Group B also captures the weight decrease that was observed for many cattle

belonging to the group. Other main effects and interaction effects can also be visualised

and interpreted in the same manner. We include them in Appendix C.2
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(a) Main effect: m̄1(t) (b) Inteaction effect: m̄1(t) + m̄12(t, j)

Fig. 3.8 Average centred growth curve

3.5 Discussion

This section explored statistical modelling with a GP prior. We particularly focused on

modelling interaction effects of different degrees. We introduced Additive GP models

with hierarchical ANOVA decomposition kernels for this purpose. Not only does this

approach comply with standard practice in statistical modelling, such as hierarchical

inclusion interaction effects, but it also has some attractive properties, such as intuitive

interpretation of main and lower-order interaction effects in the presence of higher-order

interaction effects. Additionally, ANOVA decomposition kernels offer a parsimonious

model in the sense that, given a set of predictors, higher-order interaction models share

the same number (and set) of model parameters, which facilitates model selection and

identification of appropriate interaction effects. However, the computational cost still

remains the main hurdle. The next chapter addresses this issue for large datasets with

special structure applicable, for example, to balanced longitudinal data considered in

this chapter.





Chapter 4

Kronecker method for additive

Gaussian process models

In this chapter, we address the computational challenges posed by Gaussian Process

(GP) regression. The primary challenge, as we will see in Section 4.1, revolves around

the demanding nature of evaluating, storing, and operating on the Gram matrix of

order n, where n represents the sample size. Implementing GP regression involves

O(n3) operations and O(n2) storage, making it increasingly impractical as n grows.

We address this issue specifically for datasets exhibiting a particular structure referred

to as a multidimensional grid (Section 4.2). When such a structured dataset is at

hand, the Gram matrix can be efficiently represented using the Kronecker product

(Section 4.3). Section 4.4 then delves into how we exploit the Kronecker product and

its associated properties to facilitate the evaluation of each component essential for

GP model implementation. To illustrate the efficacy of this approach, we present a

practical demonstration using large-scale real-world data.
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4.1 Computational challenge

Let us revisit the regression model with GP priors, considered in the previous chapters.

Here, we denote the response by y ∈ R, the (set of) covariates by x ∈ X and the

sample (yi, xi)n
i=1 with y = (y1, . . . , yn)⊤. The evaluation of the log marginal likelihood

(2.15), the posterior mean (2.12) and covariance (2.13) involves the n × n marginal

covariance matrix K + σ2I. The main bottlenecks are:

1. Matrix-vector multiplication involving inverse of the Gram matrix,

(
K + σ2I

)−1
v

where v = y for the log marginal likelihood and v = k(x) = (k(x, x1), . . . , k(x, xn))⊤

for the posterior mean and kernel; and

2. Log-determinant of the Gram matrix,

log |K + σ2I|.

Taking the inverse of a n × n matrix and computing its determinant have cubic time

complexity if naively done. Furthermore, matrix-vector multiplication between the

resulting inverted matrix and a vector has O(n2) scaling. Storing the (Gram) matrix

of order n has O(n2) memory requirement.

4.2 Multidimensional grid structure

While there are various approaches to reduce the computational burden of GP models

(see Liu et al. (2020) for an overview), we focus on a method that is applicable to data

with multidimensional grid structure. Multidimensional grid data, which can also be
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Fig. 4.1 Illustration of two-dimensional grid

seen as a multi-level panel or balanced longitudinal data, is common in image analysis,

spatial and spatio-temporal data, and repeated measurement in medical or behavioural

science.

Formally we say that the data has a multi-dimensional grid structure when the

predictors form a Cartesian grid,

X = X1 × X2 × . . . × Xd

where Xl represents a set of observed values for the input dimension l and × is the

Cartesian product. We let nl represent the cardinality of set Xl, i.e., nl = |Xl|. The

total number of observations is therefore n = ∏d
l=1 nl.

Figure 4.1 illustrates two-dimensional grid data. In image analysis, the pair x1, x2

typically represents the X − Y coordinate of a pixel, while with spatial analysis of e.g.

meteorological measurements over a rectangular region, it may be a set of geographical

coordinates. In environmental monitoring, it is common that the measurements are

taken from multiple monitoring stations over some periods. Then x1 denotes the
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Fig. 4.2 Example of three-dimensional grid

geographical coordinate of a monitoring station, and x2 is a timestamp of when each

measurement is recorded, with X1 ⊂ R2, a set of coordinates for all monitoring stations,

and X2 ⊂ R, a set of timestamps.

For higher dimensions, we give an example in brain imaging (Figure 4.2), such as

functional Magnetic Resonance Imaging (fMRI) studies. The dataset for each patient

may consist of measurements at different Region of Interest (ROI) recorded for a certain

period of time. This constitutes a three-dimensional grid as illustrated in Figure 4.3.

When a multidimensional grid structure is present in the data, the computations of

the key components listed in 4.1 can be made efficient using Kronecker methods. In

the following section, we introduce the Kronecker product and its key properties.

4.3 Kronecker product

Consider two matrices A = {ai,j}1≤i≤n,1≤j≤m and B = {bi,j}1≤i≤p,1≤j≤q. The Kronecker

product of the two matrices, A ⊗ B, is the matrix of size np × mq given by

A ⊗ B =


a1,1B . . . a1,mB

... . . . ...

an,1B . . . an,mB.





4.3 Kronecker product 95

Fig. 4.3 Illustration of three-dimensional grid

More generally, we denote the Kronecker product of d ≥ 2 matrices, Al where l = 1, . . . d

by

A =
d⊗

l=1
Al = A1 ⊗ A2 ⊗ . . . ⊗ Ad

If each matrix Al is size nl × ml, the resulting Kronecker product matrix A has size∏d
l=1 nl ×∏D

l=1 ml.

4.3.1 Kronecker product properties

We list some of the properties of Kronecker product that we use in this paper. In

addition to Al defined above, let us assume we have, for l = 1, . . . , d, Bl of size pl × ql,

B′
l of size pl × ql, Cl of size hl × kl and Dl of size ml × pl. The size of matrices is given

so that the operations Bl + B′
l and AlDlBl are allowed.

1. Bilinearity:

Al ⊗ (Bl + B′
l) = Al ⊗ Bl + Al ⊗ B′

l
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2. Associativity:

Al ⊗ (Bl ⊗ Cl) = (Al ⊗ Bl) ⊗ Cl

α(Al ⊗ Bl) = (αAl) ⊗ Bl = Al ⊗ (αBl)

where α is a scalar.

3. Transpose: (
d⊗

l=1
Al

)⊤

=
d⊗

d=l

A⊤
l (4.1)

4. Inverse: (
d⊗

l=1
Al

)−1

=
d⊗

d=l

A−1
l

5. The mixed product properties:

d⊗
l=1

(AlDl) =
(

d⊗
l=1

Al

)(
d⊗

l=1
Dl

)
(4.2)

6. Matrix vector product

(Al ⊗ Bl) v = vec
(
BlVA⊤

l

)
(4.3)

where V = vec−1(v) is the inverse of the vectorization operator and v is a vector

of length mlql.

For the proceeding sections, it becomes useful to consider a generalisation of (4.2). For

example, for triplets of matrices Al, Dl, Bl we have the following:

d⊗
l=1

(AlDlBl) =
(

d⊗
l=1

Al

)(
d⊗

l=1
Dl

)(
d⊗

l=1
Bl

)
. (4.4)
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The property on the matrix-vector product provides a computational advantage. Let

us assume matrices Al and Bl involved in (4.3) are a squared matrix of order n1 and n2.

Naively evaluating the left-hand side of (4.3) takes (n1n2)2 operations, while exploiting

the right-hand side reduces the cost to (n1n2)(n1 + n2) ≤ (n1n2)2. We extend this

property to evaluate e.g., (⊗d
l=1 Al)v where v is a vector of an appropriate length, in

Section 4.4.1.

4.3.2 Eigendecomposition of a matrix with Kronecker product

A key operation for the efficient methods proposed in this section is the eigendecom-

position of a Gram matrix involving the Kronecker product. Let Al be a nl × nl

diagonalizable matrix for l = 1, . . . , d, and

A =
d⊗

l=1
Al.

We write the eigendecomposition of a matrix Al by Al = QlΛlQ⊤
l , where Λl is a

diagonal matrix of which the diagonal elements are eigenvalues of Al in non-decreasing

order, which we denote by λl = (λ1,l, . . . , λnl,l)⊤, and Ql is an orthonormal matrix with

its i-th column qi being the eigenvector which corresponds to the i-th eigenvalue. Using

the mixed product properties of the Kronecker product (4.4), the eigendecomposition

of the matrix A is the following:

A =
d⊗

l=1

(
QlΛlQ⊤

l

)

=
d⊗

l=1
Ql

d⊗
l=1

Λl

d⊗
l=1

Q⊤
l

=
(

d⊗
l=1

Ql

)(
d⊗

l=1
Λl

)(
d⊗

l=1
Ql

)⊤

(4.5)



98 Kronecker method for additive Gaussian process models

From the second to the third line, we used the property of Kronecker product in-

volving matrix transpose (4.1). Let Q ≡ ⊗d
l=1 Ql and Λ ≡ ⊗d

l=1 Λl. Note that Q is

orthonormal, i.e., QQ⊤ = In. We can confirm this by

QQ⊤ =
(

d⊗
l=1

Ql

)(
d⊗

l=1
Ql

)⊤

=
(

d⊗
l=1

Ql

)(
d⊗

l=1
Q⊤

l

)

=
d⊗

l=1
QlQ⊤

l =
d⊗

l=1
Inl

= In.

Furthermore, the matrix Λ is a diagonal matrix, whose diagonal elements are given by

the Kronecker product of the eigenvalue vectors λl. We have:

Λ =
d⊗

l=1
Λl

=
d⊗

l=1
(diag (λl))

= diag
(

d⊗
l=1

λl

)
. (4.6)

We use these results in the following sections for the case where Al is a Gram matrix.

4.4 Efficient computation using Kronecker method

The primary component of this scalable method is a Kronecker product structure in a

Gram matrix, applicable when the predictors form a multidimensional grid. To give an

example, let us revisit the models with two predictors considered in Chapter 3. If the

two predictors form a two-dimensional grid, we can rewrite the model equation (3.3) as

yi,j = f(x1i, x2j) + ϵi,j (4.7)
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where yi,j is the response from the i, j-th location of the grid with i = 1, . . . , n1,

j = 1, . . . , n2 and n = n1n2. We write y = (y1,1, . . . , y1,n2 , . . . , yn1,1 . . . , yn1,n2) and

define ϵ similarly. The main effect and interaction effect models in (3.4) and (3.5) then

can be specified by

f(x1i, x2j) = a + f1(x1i) + f2(x1j) (4.8)

f(x1i, x2j) = a + f1(x1i) + f2(x1j) + f12(x1i, x2j). (4.9)

If we use the same prior as the previous model with α0 = 1, we have y|X ∼ MVNn(0, K+

σ2In) with the Gram matrix for each model given by

K = 1n11⊤
n1 ⊗ 1n21⊤

n2 + K1 ⊗ 1n21⊤
n2 + 1n11⊤

n1 ⊗ K2. (4.10)

K = (1n11⊤
n1 + K1) ⊗ (1n21⊤

n2 + K2)

where ⊗ is a Kronecker product operator. We relax the assumption on α0 later in

section 4.4.3. In what follows, we show how we can exploit this structured Gram matrix

for efficient computation. In Section 4.4.1, we outline the general procedures of the

Kronecker approach, with the key operation being the eigendecomposition of the Gram

matrix. We illustrate how this can be achieved for models employing saturated and

non-saturated hierarchical ANOVA kernels in Sections 4.4.2 and 4.4.3, respectively.

4.4.1 General procedure of Kronecker approach

For d dimensional grid data, the main idea of Kronecker methods is to decompose the

Gram matrix in the form:

K =
(

d⊗
l=1

Ql

)
D
(

d⊗
l=1

Ql

)⊤

(4.11)
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where each Ql, and hence also Q := ⊗d
l=1 Ql, is orthonormal and D is diagonal with

non-negative entries. Once we obtain this decomposition, the log determinant of the

marginal covariance matrix can be computed by

log |K + σ2I| =
n∑

i=1
log
(
Di,i + σ2

)

where Di,i is the i-th diagonal element of D. This costs O(n) operations. The

multiplication of the inverted matrix and a vector v can be expressed as

(
K + σ2In

)−1
v =

(
d⊗

l=1
Ql

)(
D + σ2In

)−1
(

d⊗
l=1

Ql

)⊤

v. (4.12)

The inversion of the middle diagonal matrix can be done by simply inverting its diagonal

elements. Evaluating the above also requires matrix-vector multiplication (⊗d
l=1 Ql)⊤v.

Let us rewrite this expression by

(
d⊗

l=1
Ql

)⊤

v =
(

d⊗
l=1

Q⊤
l

)
v =

(
d−1⊗
l=1

Q⊤
l

)
vd (4.13)

where vd = vec(Q⊤
d V) with vec(A) being a vectorisation operator transforming a

p × q matrix A to a vector of length pq by stacking the columns of the matrix, and

V is a nd × n
nd

matrix whose elements are filled with elements of vector v in column-

major order. Computing vd takes O(n2
l

n
nl

) = O(nnl). Iteratively applying this to

get vd−1 = vec(Q⊤
d−1Vd), vd−2 = vec(Q⊤

d−2Vd−1), . . . v1 = vec(Q⊤
1 V2) thus requires

O(n∑d
l=1 nl) operations, and the final vector v1 equals (⊗d

l=1 Ql)⊤v. The complete

algorithm is described in Saatçi (2012, Chapter 5) and Wilson et al. (2014).

The Kronecker method has been used and proven useful for an efficient implementa-

tion of GP models; see e.g. Saatçi (2012, Chapter 5), Groot et al. (2014) Wilson et al.

(2014) and Flaxman et al. (2015). However, the existing method is only applicable to
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limited sub-models with so-called separable kernel structures (see Section 3.1.4). This

includes models with a tensor-product kernel or a saturated ANOVA decomposition

kernel and is not capable of handling the non-saturated models that involve the addition

of matrices in a Kronecker product form, such as (4.10). As mentioned previously,

using a tensor product kernel implies including only the interaction term of the highest

order. This may be problematic in many applications where assessing the effect of each

predictor is needed. On the other hand, using the saturated ANOVA kernel means

that we assume a saturated model, which could often overfit the data.

4.4.2 Eigendecomposition for saturated ANOVA kernel

Now let us assume that we have d-dimensional grid structure in the predictors. We

have a response vector y of length n. If we use the saturated ANOVA decomposition

kernel (3.11), the Gram matrix can be written as

K =
d⊗

l=1
K̃l

where K̃l = (1n1⊤
nl

+ Kl) and Kl = {kl,(i,j)}nl×nl
with kl,(i,j) = kl(xl,i, xl,j). We write

the eigendecomposition of each matrix K̃l by K̃l = Q̃lΛ̃lQ̃⊤
l . It follows from the result

in (4.5),

K =
(

d⊗
l=1

Q̃l

)(
d⊗

l=1
Λ̃l

)(
d⊗

l=1
Q̃l

)⊤

. (4.14)

Note that Q̃ :=
(⊗d

l=1 Q̃l

)
is orthonormal and Λ̃ :=

(⊗d
l=1 Λ̃l

)
is diagonal with

non-negative entries as each K̃l is positive semi-definite.

4.4.3 Eigendecomposition for hierarchical ANOVA kernel

We now show that the Kronecker product structure can be exploited for efficient

computation even when we have a more general structure in the kernel, such as (4.10)
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if each (sub-)Gram matrix Kl is empirically centred by (2.7). To show this, we first

establish the following results on an empirically centred Gram matrix.

Eigendecomposition of a centred Gram matrix

Recall that a Gram matrix K of order n can be empirically centred using centring

matrix C = In − 1
n
1n1⊤

n by CKC. We denote the resulting matrix by K(c). For a

centred Gram matrix K(c), we have the following result.

Lemma 1. Any eigenvector qi of a n × n centred Gram matrix K(c) associated with

non-zero eigenvalue λi is orthogonal to 1n.

Proof. Using K(c)qi = λiqi, we have

q⊤
i 1n = 1

λi

q⊤
i K(c)1n = 0.

The last equality is due to the fact that all rows and columns of a centred matrix sum

to 0.

Lemma 2. Any n × n centred Gram matrix K(c) has the following eigendecomposition:

K(c) = Q(c)Λ(c)Q(c)⊤ (4.15)

where

Λ(c) = diag
(
(0, λ2, . . . , λn)⊤

)
, λj ≥ 0 ∀j ∈ {2, . . . , n} (4.16)

and

Q(c) =


1√
n

...
1√
n

q2 · · · qn

 . (4.17)
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Proof. Let k denote the number of zero eigenvalues of K(c). Due to the centring,

rank(K(c)) ≤ n − 1, i.e., we have k ≥ 1.

For k = 1, we have λj > 0, ∀j ∈ {2 . . . , n} and the eigenvectors q2, . . . , qn are

orthogonal to 1n from Lemma 1. Normalising the vector 1n completes an orthonormal

basis, hence the first column of Q(c) is given by 1√
n
1.

For k ≥ 2, the first k columns of Q(c), (q1, . . . , qk), are not uniquely determined. Using

q⊤
j ( 1√

n
1n) = 1√

n
q⊤

j 1n = 0 for j = k + 1, . . . , n, we set q1 = 1√
n
1n and find (q2, . . . , qk)

to complete an orthonormal system.

In practice, we may use a computer program to obtain a initial set of normalised

eigen-vectors denoted by v1, . . . , vn. For k ≥ 2, v1, . . . , vk may not contain a vector
1√
n
1n but span(v1, . . . , vk) contains 1n. To have orthonormal bases q1, . . . , qn specified

above, we take q1 = 1√
n
1n and qj = vj for j = k + 1, . . . , n. The rest of the vectors

q2, . . . , qk can be computed using for example a Gram–Schmidt process.

Remark 1. The n × n matrix 1n1⊤
n has the following decomposition:

1n1⊤
n = Q(c)AnQ(c)⊤ (4.18)

where Q(c) is given by (4.17) and An is a n × n matrix with i, i-th element n and 0

everywhere else, i.e.,

An = diag
(
(n, 0, . . . , 0)⊤

)
. (4.19)

Eigendecomposition with a hierarchical ANOVA decomposition kernel

Consider a hierarchical decomposition ANOVA kernel for data with a d-dimensional

grid structure. Let us now assume that we have m terms in our additive kernel where

1 + d ≤ m ≤ 2d. The corresponding Gram matrix K then also involves addition of m
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matrices Mp for p = 1, . . . , m:

K =
m∑

p=1
Mp (4.20)

where

Mp =
d⊗

l=1
Bl where Bl =


K(c)

l , if k
(c)
l is involved in the p-th term

1nl
1⊤

nl
, otherwise.

For this class of Gram matrices, we have the following lemma.

Lemma 3. A matrix K of the form given by (4.20) has the following decomposition:

K =
(

d⊗
l=1

Q(c)
l

)
D
(

d⊗
l=1

Q(c)
l

)⊤

where Q(c)
l is orthonormal matrix whose columns consist of eigenvectors of K(c)

l , and

D is diagonal with non-negative entries.

Proof. From Lemma 2 (see 4.15 and 4.18), for l = 1, . . . , d, we have:

K(c)
l = Q(c)

l Λ(c)
l Q(c)⊤

l (4.21)

1nl
1⊤

nl
= Q(c)

l Al Q(c)⊤
l

where (4.21) is an eigendecomposition of a centred matrix K(c)
l i.e., Q(c)

l is orthonormal,

Λ(c)
l is diagonal with non-negative eigenvalues in the diagonal (see 4.16 and 4.17 ) and

Al is a nl × nl matrix with A1,1 = nl and 0 everywhere else. Then using the mixed

product property of Kronecker products, we can decompose Mp as

Mp =
d⊗

l=1
Q(c)

l

d⊗
l=1

Dpl

d⊗
l=1

Q(c)⊤
l
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where

Dpl =


Λ(c)

l if k
(c)
l is involved in the p-th term

Al otherwise.

Let Dp = ⊗d
l=1 Dpl . We have

K =
m∑

p=1
Mp =

m∑
p=1

(
d⊗

l=1
Q(c)

l Dp

d⊗
l=1

Q(c)⊤
l

)
(4.22)

=
d⊗

l=1
Q(c)

l

 m∑
p=1

Dp

 d⊗
l=1

Q(c)⊤
l .

It is easy to see that each Dp and hence also the matrix D := ∑m
p=1 Dp is diagonal

with non-negative diagonal entries.

Example 8 (Example of the Kronecker method for a hierarchical ANOVA kernel with

d = 2). Consider a model specified by (4.7) and (4.8), i.e., the main effect model for

two-dimensional grid data. If we use centred kernels, the Gram matrix given by (4.10)

can be written as

K = 1n11⊤
n1 ⊗ 1n21⊤

n2 + K(c)
1 ⊗ 1n21⊤

n2 + 1n11⊤
n1 ⊗ K(c)

2

and can be decomposed as

K = Q(c)
1 A1Q(c)⊤

1 ⊗ Q(c)
2 A2Q(c)⊤

2 + Q(c)
1 Λ1Q(c)⊤

1 ⊗ Q(c)
2 A2Q(c)⊤

2

+ Q(c)
1 A1Q(c)⊤

1 ⊗ Q(c)
2 Λ2Q(c)⊤

2

=
(
Q(c)

1 ⊗ Q(c)
2

)
(A1 ⊗ A2 + Λ1 ⊗ A2 + A1 ⊗ Λ2)

(
Q(c)

1 ⊗ Q(c)
2

)⊤
.

Thus far, we have restricted the prior variance of the constant term a in (4.8) and

(4.9) to be 1. Lifting this assumption is straightforward. If the prior variance is α2
0, the
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decomposition of the corresponding Gram matrix can be expressed in the same way as

(4.14) and (4.22) with all elements of the middle diagonal matrix multiplied by α2
0.

4.4.4 Computational complexity and space requirement

Kronecker methods significantly reduce the cost of computing the log determinant of

the matrix K+σ2I, and solving the linear system (K+σ2I)−1v, which usually has O(n3)

when K is an n × n Gram matrix. The key operations are eigendecomposition K and

matrix-vector multiplication involving Kronecker products (4.13). With a Kronecker

product structure, eigendecomposition is applied to each Kl of size nl × nl individually,

which has O(n3
l ) complexity. The total cost for the eigendecomposition of K then

reduces to O(∑d
l=1 n3

l ), which is dominated by the largest of nl. The second component

is a matrix-vector multiplication in (⊗d
l=1 Q⊤

l )v. A matrix-vector multiplication of an

n × n matrix and a vector of length n usually requires O(n2) operations. Using the

algorithm provided in Saatçi (2012, Chapter 5) and Wilson et al. (2014), this Kronecker

product matrix-vector multiplication takes O(n∑d
l=1 nl) which is much less than the

usual O(n2). Once we have eigenvalues of all sub-Gram matrices Kl, computing the

log-determinant has an additional cost of O(n). The storage requirement reduces from

O(n2) to O(∑d
l=1 n2

l ) which is associated with storing matrices Q1, . . . , Qd. Previous

work by Saatçi (2012) and Wilson et al. (2014) explored the use of the Kronecker

method in GP regression and demonstrated improved computational time through

simulation studies. Our approach, which shares the same key factors determining

computational cost (namely, eigendecomposition of Gram matrices and matrix-vector

multiplication), is expected to yield similar computational gains.
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Summary of Computational Complexity

• Time complexity

– Eigendecomposition of Gram matrices: O(n3) to O(∑d
l=1 n3

l )

– Matrix-vector multiplication: O(n2) to O(n∑l=1d nl)

– Log-determinant: O(n)

• Memory requirement: O(n2) to O(∑d
l=1 n2

l )

4.4.5 Other scalable approaches

A number of methods have been proposed to enhance the scalability of GP models. As

summarized by Liu et al. (2020), one mainstream approach involves approximating

the Gram matrix K. This can be achieved by utilizing a subset of data, typically of

size m ≪ n (subset-of-data), or by exploiting sparsity in the Gram matrix. This is

based on the assumption that the covariance between distant points is zero, resulting

in sparse kernels (Melkumyan and Ramos, 2009). A particularly popular technique

is the low-rank approximation using inducing points (e.g., Hensman et al. (2013);

Titsias (2009)), inspired by Nystrom’s method (Williams and Seeger, 2001). In the

spatio-temporal setting, Datta et al. (2016) introduced dynamic nearest neighbour GP

that induces a sparse structure in the inverse of the covariance matrix with wide range

of kernel structures, including non-separable kernels. This was used to analyse air

pollution data similar in size to the data in our study provided in Section 4.5. Unlike

the Kronecker approach, which necessitates a multidimensional grid structure for the

data, these methods can be applied to broad data structures. However, the Kronecker

approach offers the advantage of avoiding approximation, as it rather exploits the

structure of the data to efficiently evaluate and store the key components required

for estimation and inference. In fact, the Kronecker approach and other scalable



108 Kronecker method for additive Gaussian process models

methods can complement each other, as exemplified by Wilson and Nickisch (2015),

who incorporated a grid structure into inducing points. Although their work focused

on the tensor product kernel, the method can be extended to handle additive kernels

using the decomposition discussed in Section 4.4.3.

4.5 Application to NO2 concentrations in London

We applied our method to analyse a dataset of hourly nitrogen dioxide (NO2) concen-

trations in London, covering the period before and after the first COVID-19 lockdown

in the UK. NO2 is a harmful air pollutant that adversely affects human health and the

environment. Short-term exposure to high levels of NO2 can irritate the respiratory

system, exacerbating conditions like asthma, while prolonged exposure is linked to

lung and cardiovascular diseases. Additionally, NO2 contributes to environmental

damage through acid rain, smog, and ozone formation. According to the World Health

Organization, recommended ambient NO2 concentration levels are below 10µg/m3

for the annual mean and at most 3-4 exceedance days per year with a 24-hour mean

of 25µg/m3. Investigating the direct and indirect effects of policy interventions and

regulation changes that reduce NO2 emissions is crucial. One example of such indirect

policy intervention is the lockdown measures taken across the world. In urban areas

like London, vehicle emissions are the main source of NO2. A number of studies

have shown that restricted mobility due to the lockdown has contributed to a drop in

NO2 concentration in the air on a global scale (See Dutta et al. (2021) and Cooper

et al. (2022) for example). By examining measurement data from monitoring stations

across the country, a comparable conclusion was drawn at the national level in the

UK (Higham et al., 2021; Jephcote et al., 2021; Lee et al., 2020). The majority of

such studies analyse the average daily concentrations. While daily mean data are

suitable when the research question revolves around assessing long-term changes in the
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concentration level, interesting findings may be reached by analysing hourly-recorded

data. It is known that the concentration of NO2 in the air varies over the course

of a day, with a distinct daily cycle. If we are to investigate the effect of lockdown,

in addition to studying the average downtrend, which is typically done by analysing

daily or weekly average data, one may ask if the daily cycle changed over time during

this period. With measurement data from multiple sites, it is also possible to study

spatial patterns, and with that pattern identified, we can conduct further research

on spatio-temporal interaction. That is, we can let the daily cycle or global time

trend be different at different locations. Answering these questions requires analysis

of hourly-measured data over a number of days at different locations, which easily

results in massive data. However such data typically have a balanced panel structure

as described in the next section, and can be analysed efficiently using the proposed

Kronecker approach. Although our data analysis is exploratory, we aim to show that

flexible additive GP models combined with this Kronecker method make it possible to

investigate important research questions that would have been otherwise infeasible.

4.5.1 Dataset

We used a dataset of NO2 concentrations (measured in µg/m3) collected at various

sites in the London Air Quality network1 during the period from January 6th, 2020 to

May 30th, 2020. We excluded sites with more than 30% missing values or more than

48 consecutive missing values, resulting in a total of 59 sites and 208,152 observations.

As seen in Figure 4.5, the data has a three-level structure: site location (Easting

and Northing), day, and hour of the day. To accommodate the Kronecker method,

which usually requires a complete grid structure, we imputed the remaining missing

values following the steps outlined in Appendix C.3.1. Although the method used
1https://www.londonair.org.uk
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Fig. 4.4 The location of NO2 measurement sites included in the dataset. Four sites are
selected and labelled for illustration purposes. Site CR5 is in the Borough of Croydon,
while TH4, KC1 and BT5 are in Tower Hamlets, Kensington and Chelsea, and Brent.
The sites in the dataset are classified into 5 categories: Kerbside, Roadside, Urban
Background, Suburban and Industrial.

for imputation is simple, due to a very small proportion (0.62%) of missing values,

we believe that any bias introduced does not have significant impact. Another issue

to consider is the transformation of the response, NO2 concentrations. While they

are typically modeled on a log-scale to address the right skewness commonly found

in air pollutant concentration data, due to the presence of zero and negative records

(accounting for measurement equipment uncertainty), we retained the response variable

in its original scale. The observed NO2 levels range from −2.9 to 320.6. Additionally,

we adjusted for the transition from winter time to summer time during the study

period (details provided in Appendix C.3.1).
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Fig. 4.5 The structure of the NO2 concentrations data

4.5.2 Model formulation

As shown in Figure 4.5, the dataset has a three-dimensional grid structure, with

location, day and hour as predictors, denoted by x1 ∈ X1, x2 ∈ X2 and x3 ∈ X3

where X1 ⊂ R2, X2 represents the set of calendar dates numbered 1, 2, . . ., and X3

represent hour of the day indexed by 1, 2, ..., 24. Let ys,d,h denote the observed NO2

concentration from monitoring station s, on day d at hour h where s = 1, . . . , n1, d =

1, . . . , n2, h = 1, . . . , n3 and n1 = 59, n2 = 147, n3 = 24. To model the response, we

consider a function of three variables f : X = X1 × X2 × X3 → R and assume a zero

mean GP prior. The model is given by:

ys,d,h = f(x1s, x2d, x3h) + ϵs,d,h

with f ∼ GP(0, k) where a covariance kernel k : X × X → R is modelled according

to our prior belief. We assume i.i.d error with ϵs,d,h ∼ N(0, σ2). We consider several

kernels that belong to a class of hierarchical ANOVA decomposition kernels and the

tensor product kernel. Note that for l = 1, 2, 3, we denote the base kernel for each

predictor by kl defined on Xl × Xl and assume fl ∼ GP(0, kl). The interaction terms

are constructed using the tensor product kernel (3.8). For the model specification, we

drop the subscripts s, d, h to simplify the expression.
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List of models

We list the kernels for the models we consider for this dataset. Note that the prior over

the overall function f follows zero mean GP with kenel k = α2
0kmj

for j = 1, . . . , 5.

Model 1: main effect

The first model we consider is the main effect model, where f(x1, x2, x3) and the kernel

are given by

f(x1, x2, x3) = a + f1(x1) + f2(x2) + f3(x3)

km1 = 1 + k1 + k2 + k3.

The Gram matrix with this kernel and all other kernels under consideration are given

in Appendix C.3.2. This model does not involve any interaction effects, meaning that

the effect of the location is constant throughout the whole period. Or equivalently,

the global time trend captured using the day predictor x2 and the daily cyclical effect

captured by the hour predictor x3 are both assumed the same for all sites. We use

Model 1 as the baseline model and extend it to include two-way or three-way interaction

effects.

Model 2: space-time interaction

If we assume a space and time interaction, i.e., both the global time trend and the

daily cycle are different at different location, we have Model 2 specified by

f(x1, x2, x3) = a + f1(x1) + f2(x2) + f3(x3) + f12(x1, x2) + f13(x1, x2)

km2 = km1 + k1 ⊗ k2 + k1 ⊗ k3.
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Model 3: all two-way interaction

The model with all two-way interactions extends Model 2 by

f(x1, x2, x3) = a + f1(x1) + f2(x2) + f3(x3) + f12(x1, x2) + f13(x1, x2) + f23(x2, x3)

km3 = km2 + k2 ⊗ k3

and adds further assumption that the daily cycle changes over time.

Model 4: saturated/three-way interaction model

If we consider the saturated model with a three-way interaction, the model equals

f(x1, x2, x3) = a + f1(x1) + f2(x2) + f3(x3)+

f12(x1, x2) + f13(x1, x2) + f23(x2, x3) + f123(x1, x2, x3)

km4 = km3 + k1 ⊗ k2 ⊗ k3.

Note that this is the saturated ANOVA decomposition kernel for three-dimensional

grid data.

Model 5: three-way interaction only

Finally, we also fit a model with only the three-way interaction term, of which the

model function f and the kernel are given by

f(x1, x2, x3) = f123(x1, x2, x3)

km5 = k1 ⊗ k2 ⊗ k3.

Although this separable kernel is widely used in machine learning applications, with this

kernel construction, the interpretation of the effects of each predictor is difficult. The

result shows that it fits the data poorly compared to other models under consideration.
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Kernel choice

The choice of baseline kernels kl is also an important factor that reflects our prior

belief about the underlying process. As discussed in Section 2.1.3, a GP with the

squared-centred standard Brownian motion kernel (γ = 0.5) has good smoothness

properties. This kernel, as well as other fractional Brownian motion-based kernels, has

a computational advantage over other common kernels, such as squared exponential

kernels, as we do not have to perform eigendecomposition or matrix-vector multiplica-

tion at each iteration of a chosen optimisation algorithm (See Appendix B.2). We use

this as a starting point and explore different options. We found that the spatial process

f1 is rougher than the temporal processes f2, f3. To determine the optimal values for

the Hurst coefficient γ in k1, we conducted a grid search, which led to the choice of

γ = 0.3. For k2 and k3, squared-centred standard Brownian motion kernels (γ = 0.5)

produced a good fit. We use a half normal distribution with its scale parameter set to

1 as priors on the rest of the hyper-parameters, including the scale parameters of the

overall kernel and each base kernel, α0, α1, α2, α3, and the variance of the error term σ2

and estimated them by the posterior mean from MCMC samples. The specified models

are implemented using the programming language Stan2. Changing the hyper-prior to,

e.g., a log-normal distribution made a little difference in the result.

4.5.3 Results

The main results are shown in Table 4.1, including the point estimates of hyper-

parameters, log marginal likelihood improvement compared to the baseline model

and computational time. We use the best-fit log marginal likelihood to compare

different models. The marginal likelihood has a closed-form expression since we assume

Gaussian likelihood on the response y, and different interaction models share the same
2The code is provided at github.com/sahokoishida/Additive-GP-Kronecker

github.com/sahokoishida/Additive-GP-Kronecker
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Table 4.1 Results from fitting Model 1 to Model 5 to London NO2 data. The difference
of the log marginal likelihood in comparison to that of the baseline model (Model
1) is shown as ∆mloglik. The log marginal likelihood for Model 1 is -857,889. The
average time (in minutes) taken to obtain 2 chains of 300 MCMC samples after the
200 warm-up phase is also displayed. For model 5, we only need one scale parameter
α1 due to identifiability issues.

Model α0 α1 α2 α3 σ

1: main 6.87 5.08 2.23 0.34 14.85
2: spatio-temporal interaction 14.36 1.29 0.67 0.24 12.54
3: all two-way interaction 10.67 1.86 1.32 0.31 8.37
4: saturated 52.05 0.48 0.94 0.051 6.51
5: three-way interaction only - 0.0 - - 36.43
Model ∆mloglik Time (m)
1: main - 20.9
2: spatio-temporal interaction 25,834 14.3
3: all two-way interaction 98,070 17.5
4: saturated 104,109 17.1
5: three-way interaction only -186,450 1.96

number of hyper-parameters (see Section 3.2.2). From the log marginal likelihood

values for Model 1 to Model 4, we see that the fit to the data improves as the model

becomes more complex. It is apparent that Model 3 (all two-way interactions) offers

significant improvement compared to Models 2 (spatio-temporal interaction), indicating

the importance of including the additional interaction term between daily cycle and

global time effect. The improvement in the log-marginal likelihood by including the

three-way interaction is not as large, however, as we still sees a major improvement,

we conclude that Model 4 (saturated) is the best model. It is important to note,

however, the saturated model does not always offer the best fit, and in order to confirm

the presence of higher order interactions, a comparison to simpler models is essential.

MCMC sampling took less than 20 minutes on average for all models. Note that

Model 5, which took 1.96 minutes, only has two model parameters. We also estimated

hyper-parameters by finding maximiser of the log marginal likelihood (2.15), which



116 Kronecker method for additive Gaussian process models

took a few seconds for each model as shown in Appendix C.3.3. It can also be seen that

the interaction-only model performs worse than the simple main effect model. In Figure

4.6, we show the posterior mean and the 2.5% and 97.5% quantiles of the posterior

predictive distribution derived by Model 3, at selected sites (see Table 4.4) from the

23rd of March for two weeks together with the corresponding observed values. We see

that the posterior predictive mean captures the overall trend well, but smoother than

the observed. The model comparison implies that, on top of the space-time interaction,

the effect of the hours of the day interacts with the effects of global time. That is,

the global time trend and the daily cycle of NO2 concentration level are different for

different locations, and the identified daily cycle also changes over time. Furthermore,

the fact that the additional three-way interaction term led to further improvement in

log marginal likelihood suggests that this change in daily pattern over time depends

on the measurement sites.

4.5.4 Visualisation and interpretation of each effect

To interpret the chosen model (Model 4), we can visualise each effect using the mean

decomposition of additive GP models seen in (3.12). We denote the posterior mean

function of the main effect terms by m̄l for l = 1, 2, 3, two-way interaction effect

terms by m̄ll′ for 1 ≤ l < l′ ≤ 3, and the three-way interaction effect term by m̄123.

In addition, we have the mean of the constant term m̄a = 28.988. As discussed in

Section 3.2.1, due to centering of kernels, the mean of the main effect, as well as mean

(over each covariate) of interaction effect is zero, e.g., we have ∑59
s=1 m̄1(x1,s) = 0,∑147

d=1 m̄23(x2,d, x3,h) = 0 and ∑24
h=1 m̄123(x1,s, x2,d, x3,h) = 0. This allow for interpreting

the lower order interaction effects, including the main effects, as averaged effects. In

what follows, we visualise and interpret the main effects, selected two-way interaction

effects and the three-way interaction effects.
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Fig. 4.6 Observed and fitted (with 95% predictive bands) NO2 concentrations (in
µg/m3) at 4 different sites

Figure 4.7 shows the three main effects m̄1(x1), m̄2(x2) and m̄3(x3). From Figure

4.7a showing spatial effect averaged over hour of the day and calendar date, we see

a few hot spots in central London and a negative effect in the outskirts of London,

especially towards the east. However, as we did not take into account the types of

sites in modelling, we need to be careful with the interpretation. The average global

time effect is visualised in Figure 4.7c. We notice a small downward trend over the

period. Whether this is the effect of the lockdown or the result of lower emission from

e.g. heating source due to warmer weather needs further investigation. For example,

we can compare the records from previous years, or incorporate information such as

temperature in the model. Short-term variation is also apparent. There are many

factors to consider in explaining this variation. One possibility is the weekend effect

associated with less traffic. Looking at the figure, we see that some troughs in the
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(a) Spatial effect (b) Hour of the day effect

(c) The global time (day) effect and wind speed

Fig. 4.7 Main effects on NO2 in µg/m3. In panel (c), weekends are highlighted. We see
low wind speed corresponding to a higher level of pollution.

figure seem to fall into weekend although there are some deviations from this pattern.

This may be due to some meteorological factors affecting the concentration level of

the pollutant. For example, it is well-known that lower wind speeds are associated

with higher concentrations. The two-week period starting on the 12th of January sees

one large peak across the sites, which corresponds with the trough in the wind speed.

Other weather conditions such as temperature, precipitation or sunlight also affect the

levels of NO2 concentrations in the air. Including meteorological data as covariates can
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Fig. 4.8 Hour of the day effect on NO2 in µg/m3 by site

help improve the fit, as well as estimate and visualise the time trend after removing

the effect of the weather conditions. If the weekly pattern is still apparent, we can

introduce another level in the data structure, i.e., a four-dimensional grid structure,

and gain further computational efficiency. The hour of the day effect shown in 4.7b is

averaged over monitoring stations and calendar date. It shows two clear peaks in the

morning and in the evening with the former is bigger in magnitude.

As two-way interaction effects between x3 and both x1 and x2 are present, the

hour of the day effect changes over location and time. To see this we can plot

m̄3(x3) + m̄13(x1, x3) and m̄3(x3) + m̄23(x2, x3) as a function of x3 for different x1 and

x2. Figure 4.8 shows the estimated daily cycle at selected sites. It is noticeable that

Station CR5 and Station TH4 which are located in kerbside and roadside respectively,

have two peaks corresponding to rush hours. While the latter (TH4) shows a similar

pattern to that of the main effect, the former is distinctively different with a larger peak

in the evening. The station in the background, KC1, also shows two peaks but with

much smaller magnitude of the effect. Station BT5 is close to an industrial site and

with only one peak in the morning. Figure 4.9 shows the interaction effect between the

global time and the hour of the day for selected weeks. During the week commencing
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on the 27th of January (week 5 of 2020), there are two clear peaks in the beginning of

the week, but this pattern becomes less clear over the course of the week. During the

weekend, the magnitude of the effect becomes smaller. The week starting on the 23rd

of March (week 14 of 2020), where the first COVID-19 lockdown in the UK took place,

shows more irregular patterns. The Monday of this week is the day that the British

Prime Minister announced the plan to introduce the measure which legally came into

force 3 days later. The first national lockdown lasted the next few months with parts

of the restriction being lifted from mid-May. The last two plots show the effect in the

week starting on the 20-th of April (week 17 of 2020, week 4 of lockdown) and on the

25-th of May (week 22 of 2020, week 11 of lockdown). There is a distinct peak in the

morning for many of the days, but the evening peak is much less apparent compared

with week 5. Appendix C.3.4 includes a few more examples of how to visualise and

interpret two-way interaction effects.

The chosen model indicates that the change of the cyclical effect over time is

different for different location. This can be visualised by plotting m̄3(x3)+m̄23(x2, x3)+

m̄123(x1, x2, x3) as a function of x3 (shown in Figure 4.10). In week 5 of 2020, the

pattern in Station CR5 and KC1 are similar especially in the beginning of the week.

On the eleventh week into the lockdown, the pattern for Station KC1 is similar to the

last panel in Figure 4.9, while this is not the case for Station CR5, where two daily

peaks are still observed.

4.6 Discussion

This section proposed an efficient method to implement additive GP regression for

multidimensional grid data, by exploiting the Kronecker product structure in the Gram

matrix. This approach has been used in the literature but has had limited use, as it

can only handle models with kernels constructed as tensor products, which include



4.6 Discussion 121

Fig. 4.9 Change in hour of the day effect (in µg/m2) over time averaged over different
monitoring stations.

saturated interaction model, and the model with the highest-ordered interaction. Our

contribution is to extend the Kronecker approach to handle additive interaction effect

models of various structures, by making use of the ANOVA decomposition kernel and

centring of kernel. This allows for the analysis of large-scale multidimensional grid

data without being constrained to the saturated model.

The proposed method is applied to efficiently analyse hourly-recorded ambient NO2

concentrations in London for the period covering both before and after the COVID-19

lockdown measure was introduced. We treated the data as three-dimensional grid

data, with the location of the monitoring stations, day, and hour of the day as three
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Fig. 4.10 Change in hour of the day effect (in µg/m2) over time at two different
monitoring stations, CR5 and KC1

predictors. The effect of three variables can be seen as the spatial effect, global time

effect and daily cyclical effect respectively. We considered five regression models,

including the main effect model, two kinds of two-way (hierarchical) interaction models,

the three-way (hierarchical) interaction model, and the three-way interaction only

model. We compared the models in terms of the marginal likelihood and found that

the three-way interaction model is the best fit for the data, suggesting that the global

time trend and the daily cycle are different for different locations, with the latter

changing over time. How daily cycles changes over the course of the period differs

across various monitoring stations. The proposed Kronecker approach enabled efficient

implementation of all models considered. This allowed us to compare different models

and confirm the presence of interaction terms. It is also important to note that the

success of our approach does not reduce the significance of other scalable approaches

to GP regression that can be used for more general data structures such as a subset of

data, Nyström approximation, inducing points methods, sparse variational methods, or

vice versa. In fact, the Kronecker approach, including our proposal, can be combined

with such methods, which can then facilitate the analysis of even larger datasets.
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We would like to point out that, while it is not considered in this section, the

inclusion of other covariates (e.g. such as information related to monitoring stations,

or meteorological variables for our data example) is possible under the proposed model.

If the covariates are level-specific, e.g. types of the monitoring stations (roadside,

background etc.) at the top level, or daylight time in London at the middle level, we

can simply add the centred covariance function for each covariate to the kernel given

at each level, which in this example, are the kernels for location and day, respectively.

However, many meteorological variables are observed at a cross-level. For example, we

may want to use hourly-recorded wind speed or precipitation at different locations. If

the effect of these meteorological variables is assumed linear (including polynomial),

we can incorporate them into a model while still avoiding cubic time complexity, by

combining the idea of semi-parametric GP model, discussed in Section 2.4, with our

Kronecker approach. Using such information in the model is especially important if

prediction is the main interest.

Another worthwhile aspect to investigate is the challenge of handling missing values.

In our data analysis, we assume a complete grid structure, i.e., no missing values.

This may not always be a reasonable assumption for real-world applications. For

example, in air quality monitoring, there may be some periods where the data is not

available due to malfunctioning of the monitoring devices. Repeated measurements

in social, psychological, or medical science commonly suffer from dropout. In this

data analysis example, we excluded some monitoring sites that have many missing

records and imputed the rest of the missing values by a simple procedure. If the

proportion of missing values in the data is large, more sophisticated approaches should

be considered to avoid potential bias. Gilboa et al. (2013); Wilson et al. (2014) proposed

an approximation to the likelihood in the presence of missing values in multidimensional

grid structure data. The next section explore this further.





Chapter 5

Kronecker Gaussian process models

with incomplete grid

In the previous chapter, we discussed how Kronecker product structures in the Gram

matrix facilitate computations in Gaussian process (GP) regression. While the advan-

tage of this approach, scalability without approximation, is clear, what limits its use in

practice is the fact that it generally requires a complete grid structure. This is not the

case for many real-world data. In this chapter, we consider a regression model with a

hierarchical ANOVA decomposition kernel for data where the response vector y is on

an incomplete d-dimensional grid X = X1 × . . . × Xd. We denote each predictor by

xl ∈ Xl for l = 1, . . . , d and a set of d-dimensional predictors by x = (x⊤
1 , . . . , x⊤

d ) ∈ X .

Figure 5.1 shows an example with d = 2.

5.1 Issues with incomplete grid

In the previous chapter, a critical assumption we operated under was the completeness

of the grid, signifying the absence of missing values within the response vector y.

Nonetheless, incomplete grids are a common occurrence in real-world datasets. For
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(a) Complete grid (b) Incomplete grid

Fig. 5.1 Illustration of complete and incomplete grid for two-dimensional grid structured
data.

example, in balanced longitudinal data, missing values may result from subject dropouts.

In the realm of spatio-temporal data, as illustrated in the previous chapter’s air quality

monitoring dataset, missing records can be attributed to malfunctioning monitoring

devices. It is worth noting that in these scenarios, we are primarily concerned with

missing values in the response variable y rather than the predictors.

We denote the observed portion of the response vector y as yobs and the missing

portion as z. We denote the length of yobs by n, and the complementary set of

observations is denoted as m = N − n. Similarly, we partition the matrix X into Xobs

and Xms. Notably, in the context of an incomplete grid, Xms is not missing; instead,

it represents a matrix that aggregates the predictors corresponding to the missing

responses.

Handling missingness in the response variable within multidimensional grid data

poses distinct challenges compared to non-grid data (Jafrasteh et al., 2023; Smola et al.,

2005), or datasets with missing values in the predictor variables (Liu et al., 2018). One

potential solution is to utilize only the observed part (complete-case analysis). However,

when dealing with a large N , the value of n often remains substantial, making the naive

implementation of GP models a challenging endeavour. The marginal distribution

of yobs, given the portion of X that aligns with the observed section of the response,
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follows a multivariate normal distribution. However, it lacks a Kronecker product

structure in the Gram matrix that could be leveraged for analysis.

5.2 Kronecker method with incomplete grid

To address this challenge, Gilboa et al. (2013) introduced the concept of imaginary

observations within the missing grid. They demonstrated that these imaginary ob-

servations have no detrimental impact on posterior inference (including predictions)

under certain prior assumptions about the imaginary observations. To estimate hy-

perparameters, an approximation to the marginal likelihood for the observed yobs was

employed. This approximation allows efficient computation. This approach has been

demonstrated for Gaussian likelihood in applications like image inpainting and spatio-

temporal temperature forecasting (Wilson et al., 2014), as well as for non-Gaussian

likelihood in spatio-temporal crime rate forecasting (Flaxman et al., 2015). The kernel

structures considered in these papers are separable. Note that the kernel is called

separable when it can be separated by a tensor product. This includes the saturated

ANOVA decomposition kernel. The proposed method is directly applicable to models

featuring sum of separable kernels as well, provided the Gram matrix possesses an

eigendecomposition of the form:

K =
(

d⊗
l=1

Ql

)
D
(

d⊗
l=1

Ql

)⊤

, (5.1)

Here, Ql represents an orthonormal matrix whose columns constitute the eigenvectors

of the sub Gram matrix Kl, and D is diagonal with positive entries. As discussed

in Section 4.4.3, this condition holds for hierarchical ANOVA decomposition kernels,

where each kernel kl is empirically centred by (2.7).



128 Kronecker Gaussian process models with incomplete grid

5.2.1 Posterior distribution with missing grid

Even with incomplete grid data, Wilson et al. (2014) and Gilboa et al. (2013) show

that it is possible to perform (asymptotically) exact predictive inference while still

benefiting from a Kronecker product structure in the Gram matrix. The first step is

to fill the missing part of the response z with imaginary observation yms and assume

yms ∼ N(0, w−1Im). Given the observed (yobs, Xobs) and hyper-parameter θ, we aim

to obtain the posterior of f , which is a GP with mean and kernel given by:

m̄(x) = kn(x)⊤
(
Knn + σ2In

)−1
yobs, x ∈ X (5.2)

k̄(x, x′) = k(x, x′) − kn(x)⊤
(
Knn + σ2In

)−1
kn(x′), x, x′ ∈ X . (5.3)

where the Gram matrix Knn and the vector kn(x) are evaluated only at Xobs. However,

it is costly to compute and store Knn and evaluate (Knn + σ2In)−1yobs. Due to the

assumed Kronecker product structure (5.1), it is much more efficient to handle KNN .

To utilise this, we consider the vector ỹ = (y⊤
obs, y⊤

ms)⊤. We have

ỹ ∼ MVN
(

0N , KNN + D
)

(5.4)

where

KNN =

Knn Knm

K⊤
nm Kmm


and

D =

σ2In 0nm

0⊤
nm w−1Im

 .

Note that Kmm is the covariance (Gram) matrix evaluated at each row of Xms and

Knm = K⊤
mn is the cross-covariance matrix with its i, j-th row given by k(x(obs)

i , x
(ms)
j )

for i = 1, . . . , n and j = 1, . . . , m. Then the posterior mean and covariance kernel of f
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given ỹ and X are

m̄∗(x) = kN(x)⊤(KNN + D)−1ỹ, x, ∈ X (5.5)

k̄∗(x, x′) = k(x, x′) − kN(x)⊤(KNN + D)−1kN(x′), x, x′ ∈ X . (5.6)

Using a standard formula for the inverse of a block matrix, it can be shown that as

w → 0,

m̄∗(x) → m̄(x), k̄∗(x, x′) → k̄(x, x′), x, x′ ∈ X

See Gilboa et al. (2013); Wilson et al. (2014) for the proof. Note that due to the matrix

D not being the multiple of the identity matrix, the method discussed in the previous

chapter to compute (KNN + D)−1ỹ or (KNN + D)−1kN(x′) does not directly apply;

however we can efficiently evaluate them using a conjugate gradient method with the

preconditioning matrix D−1/2 (PCG)1. If the eigendecomposition of KNN is readily

available2, evaluating (KNN + D)−1ỹ costs O(JN
∑d

l=1 nl) for a d−dimensional grid

data, where J denotes the number of iterations required for PCG. Note for a complete

grid, this was O(N ∑d
l=1 nl). The missing grids can be filled using e.g., posterior mean

(5.5), evaluated at each grid.

5.2.2 Hyper-parameter estimation

To estimate the hyper-parameters, θ, we consider maximum marginal likelihood

estimation. Let p(yobs|θ) be the marginal likelihood based on all observed responses.
1Instead of solving these directly, we can solve the system of linear equations (KNN + D)v = b for

v. Here b is either y or kN (x′). Using preconditioning matrix and solve D−1/2(KNN + D)D−1/2v =
D−1/2b improves convergence.

2This is the case if we use saturated ANOVA decomposition kernel, or non-saturated hierarchical
ANOVA decomposition kernel with centred kernel to construct KNN .
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We treat the predictors as constant here. The log marginal likelihood is given by

log p(yobs|θ, Xobs) = −1
2y⊤

obs

(
Knn + σ2In

)−1
yobs − 1

2 log |Knn + σ2In| − n

2 log 2π.

The first term can be replaced by −1
2 ỹ⊤(KNN + D)−1ỹ with the same reasoning in the

previous section. The second term involving the log determinant is more complicated.

Gilboa et al. (2013) and Wilson et al. (2014) proposed an approximation by

log |Knn + σ2In| ≈
n∑

i=1
log
(
λ̃n

i + σ2
)

(5.7)

where λ̃n
i = n

N
λN

i for i = 1, . . . , n, and λN
1 , . . . , λN

n are the n largest eigenvalues of the

Gram matrix KNN . The approximation is asymptotically consistent (Baker and Taylor,

1979). The advantage of this method is its relatively low computational cost. For

each update of θ, in addition to other computational costs required for the standard

Kronecker GP approach discussed in Section 4.4.4, evaluating the first term takes

O(JN
∑d

l=1 nl) operations as seen in Section 5.2.1. The second term is simply rescaling

n < N eigenvalues, thus is linear in N .

5.2.3 Missing data mechanism

When dealing with missing data, it is also important to consider missingness mechanisms.

Rubin (1976) described three missingness mechanisms: Missing Completely at Random

(MCAR), Missing at Random (MAR) and Missing Not at Random (MNAR). Under the

assumption of MCAR, the probability of missing does not depend on any observed or

missing variables and is equal to all units, and a complete case analysis does not lead to

a biased estimator. If MAR, the missing mechanism can be explained by other recorded

variables. In such cases, a complete case analysis can be used if these covariates are

included in the model. However, unlike the MCAR assumption, the MAR assumption
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is generally challenging to test, and the missing mechanism in many real-world cases is

MNAR. This includes when the missingness depends on the unobserved predictors or

missing value itself. For example, in environmental monitoring of e.g., temperature,

the malfunctioning of the recording device leads to missing records, but the cause of

malfunctioning may be related to unobserved/unrecorded factors such as the age of the

device at each location or extreme temperature. Failing to account for missing data

mechanisms can produce biased estimates. The simple method discussed in Section

5.2.1 and 5.2.2 only works under MCAR or MAR assumption. We see this in Section

5.3.

5.2.4 Considerations for other methods

Another possible approach is to use an iterative algorithm, such as the expectation-

maximization algorithm (Dempster et al., 1977) or one of its variants, that sequentially

imputes the missing grid z given and updates the value of hyper-parameters using

complete-data marginal likelihood. With the EM algorithm, while the E-step have a

closed form solution, it requires computing the conditional mean and covariance of

p(z|yobs, θ(t−1)) at each iteration. The entries of the mean vector of length m and the

m × m covariance matrix have to be computed using the PCG algorithm. While the

mean vector can be computed in O(JN
∑d

l=1 nl) time, for the covariance matrix, this

operation has to be repeated m(m+1)
2 times. Here m denotes the number of missing

grids. With EM, the covariance matrix also has to be inverted for each update of the

hyperparameters. Stochastic variants, such as Monte-Carlo EM (Wei and Tanner, 1990),

stochastic EM (Celeux and Diebolt, 1985; Diebolt and Ip, 1995) and the stochastic

approximation (Robbins and Monro, 1951) version of EM (Delyon et al., 1999) may

be considered. On a related topic, Kim and Leskovec (2011) proposed an MCEM

algorithm for Kronecker graphs with missing nodes and edges; however, the sampling
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step for the stochastic variants still involves sampling from the conditional distribution

of the missing response z, which is m dimensional. If naively done, this requires the

computation of the m × m covariance matrix. Applying these iterative algorithms to a

dataset with a large number of missing responses is challenging.

The EM algorithm has been used for GP models with multivariate responses in

Bonilla et al. (2007) where the values of some response variables are missing for some

observations. This has a close connection to GP models for multi-dimensional grid

data, as both approaches involve covariance matrices expressed using the Kronecker

product. In their approach, the vector f evaluated at each row of X is treated as

missing. However, the derived algorithm still involves taking expectations with regard

to the conditional distribution of yobs, which poses a computational issue similar to

the one discussed.

Nevertheless, the EM algorithm or its variants have an advantage over the method

discussed in Section 5.2.1 and 5.2.2, as more complex missingness mechanism can be

modelled and incorporated into the algorithm. This can be an attractive option if the

sampling scheme in MCEM or stochastic approximation EM can be improved.

Other approaches in the GP literature for addressing missing values in multidimen-

sional grids include Imani et al. (2019), who proposed the adoption of nested GP models

within this context, and Hori et al. (2016), who introduced an iterative algorithm

employing regularized Principal Component Analysis. It is worth noting that both of

these studies (implicitly or explicitly) assume the presence of saturated interactions.

Therefore, the potential applicability of these methodologies to non-saturated models

warrants further investigation.
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5.3 Simulation

We investigate the performance of the discussed method with synthetic data. We

consider 2-dimensional grid data on two predictors x1 ∈ X1 and x2 ∈ X2. We generate

data by the following additive structure:

y = f1(x1) + f2(x2) + ϵ,

where ϵ ∼ N(0, 1.52). The functions f1 : X1 → R and f2 : X2 → R are given by

f1(x1) = −10 + 33ϕ(x1|1, 0.82) + 2ϕ(x1|2.5, 0.252)

+ 65ϕ(x1|4, 1.52) + (exp (1.25(x1 − 4.5)) − 1) I(x1 > 4.5)

f2(x2) = 5 + 43ϕ(x2|0, 1.22) + 2ϕ(x2|2.5, 0.252)

+ 55ϕ(x2|4, 1.22) + (exp(−1.25x2) − 1) I(x2 < 0)

where ϕ(x|µ, σ2) is the probability density function of a normal distribution with mean

µ and variance σ2. See Figure 5.2 for illustration. We let X1 and X2 be a set of
√

N equispaced points on an interval {−1, 6}, hence the data are on a 2-dimensional

grid X = X1 × X2. We drop m observations denoted by z = (z1, . . . , zm)⊤ from the

total of N observations (i.e., the proportion of the missing values is m
N

), based on the

(1) MCAR, (2) MAR and (3) MNAR assumptions. For (2) we drop the response y

depending on the value of x1 and x2. For (3), the largest 100m
N

% y-values are treated

as missing. We vary the size of the grid N and the proportion of missing data m
N

and

check the root mean squared error (RMSE) of the predicted value. We also check the

RMSE for σ. See Figure 5.3 and 5.4 for an example of the simulated data and the

three missing mechanisms with N = 702. We assume a zero mean GP prior on f with
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Fig. 5.2 Functions f1(x1) and f2(x2) for data generation

Fig. 5.3 Synthetic data, N = 702
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(a) MCAR (b) MAR (c) MNAR

Fig. 5.4 Three missing data mechanisms for the synthetic data with the grid size 70×70
and the missing proportion 30%.

hierarchical ANOVA kernel

k((x1, x2)⊤, (x′
1, x′

2)⊤) = α2
0(1 + k1(x1, x′

1) + k2(x2, x′
2))

with squared and centred Brownian motion kernel (γ = 1
2) for k1 and k2. Therefore

we have hyperparameters θ = (α0, α1, α2, σϵ)⊤ where α1, α2 are scale parameters for k1

and k2, and σϵ is the standard deviation of the error term.

Table 5.1 shows the mean of the parameter estimate for σ, the RMSE for σ, the

mean of the RMSE for f = f1 + f2 and the average running time under the three

different missing mechanisms and with the varying missing proportions (10%,20% and

30%) for a 70 × 70 grid. These are based on 20 replications. Note that the true values

of scale parameters are unknown, but we provide their estimates in Table C.4 in the

Appendix C.4. We notice that under MCAR and MAR, the RMSE of σ is very small.

Under MNAR, the standard deviation of the error term is underestimated, as well

as the imputed values for z. See Figure 5.5 for the residuals ẑi − ytrue
i where ẑi is

the posterior predictive mean of a missing response ytrue
i given by (5.5). We can see

that for the MNAR case, the distribution of the residuals shown in Figure 5.5c is not

centred around zero and is skewed to the left. In terms of the computational cost,
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Table 5.1 RMSEs for the parameters and for missing grid. Running time is measured in
seconds. The synthetic data with 70 × 70 grid size. For each scenario, the experiment
is repeated 20 times. See Table C.4 for more information.

MCAR MAR MNAR
10% 20% 30% 10% 20% 30% 10% 20% 30%

σ̄ 1.5 1.49 1.49 1.5 1.5 1.5 1.45 1.43 1.42
RMSE-σ 0.02 0.02 0.023 0.018 0.017 0.019 0.051 0.074 0.085
RMSE-f 0.16 0.17 0.18 0.17 0.19 0.22 0.73 0.89 1.01
Time(s) 138 146 141 111 110 104 155 147 141

(a) MCAR (b) MAR (c) MNAR

Fig. 5.5 The histograms of residuals for the synthetic data of grid size 70 × 70 and the
missing proportion 30%.
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Fig. 5.6 Running time of Kronecker GP methods and complete case analysis. For
complete case analysis and the Kroncker method with a missing grid, the missing
proportion is 10%, and the missingness mechanism is MAR.

although we do not see the same scalability of the Kronecker method for a complete grid

structure, exploiting the Kronecker structure with the use of imaginary observations

on the missing grid is more efficient compared to naively implementing a complete case

analysis (See Figure 5.6).

5.4 Discussion

In this chapter, we delve into the challenge posed by incomplete grids in the Kronecker

method for GP regression. The approach proposed by Gilboa et al. (2013); Wilson

et al. (2014) represents an approximation akin to complete case analysis, holding an

advantage over a naive implementation. For datasets with a grid size of N and m

missing values, the time complexity is O(JN
∑d

l=1 nl) for the former and O(N(1 − r)3)

for the latter, where J stands for the number of iterations required for the PCG

algorithm, and r = m/N denotes the proportion of missing values on the grid. The

complexity of the approximated Kronecker method remains unaffected by the number
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or proportion of missing grids directly, though they may influence the number of

iterations J in practice. This is in stark contrast to iterative methods like the EM

algorithm, which also scales with the number of missing values m.

While the discussed Kronecker method has primarily been applied to models featur-

ing separable kernels, it can be readily extended to accommodate models constructed

using a non-saturated hierarchical ANOVA kernel. We have assessed the method’s

performance for such a model under varying assumptions regarding the mechanisms of

missingness. Our simulation study, conducted on 2-dimensional grid-structured data,

demonstrates that the method performs admirably for Missing Completely at Random

(MCAR) and Missing at Random (MAR) situations. In the case of MAR, we assume

that the missingness can be elucidated by the covariates, which, in this instance, form

a multidimensional grid and are thus incorporated into the model. However, since

the method approximates complete case analysis by employing likelihood that ignores

the missing data mechanism, it falters under the Missing Not at Random (MNAR)

assumption. It is important to note that the simulation setting is limited in scope,

with one synthetic data and assuming simple missing data mechanisms. In many

real-world examples, missing mechanisms are often more complex. For instance, in

environmental monitoring, if machine malfunctions are the cause of the missingness, it

is likely that the measurements are not recorded until the machine is fixed. The length

of such consecutive missing values may depend on various factors and also needs to be

taken into account. Further studies investigating different missing data mechanisms

are needed.

As outlined in the preceding chapter, the Kronecker method exhibits significant

utility across various fields, including environmental, psychological, medical, and

behavioural studies where repeated measurements or longitudinal data are common. In

these contexts, a prevalent challenge arises with missing data, often accompanied by an
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MNAR mechanism. In such situations, it becomes imperative to integrate the missing

data mechanism into the model. Consequently, future work should prioritize addressing

this challenge within the framework of the Kronecker method. More specifically,

incorporating the missingness mechanism into the EM algorithm will be an attractive

option if the computational efficiency can be improved.





Chapter 6

Conclusions

In this chapter, we present an overview of the thesis, highlighting its contributions,

and outlining potential directions for future research.

Within this thesis, our primary focus centred on developing a statistical model for

a response variable y and a set of predictors x = (x1, x2, . . . , xd)⊤ where the regression

function f(x) can be decomposed into the addition of several functions. Each xl belongs

to a set Xl, and we write X = X1 × . . . × Xd. The simplest form of this model is known

as the main effect model, wherein we make the following assumption:

f(x) = a +
d∑

l=1
fl(xl),

This assumption implies that each predictor xl possesses an individual and distinct

relationship with the response variable y. We assumed an additive Gaussian process

(GP) prior. Specifically, we assume that each component function fl follows a GP

with prior distribution GP(0, kl), where the kernel function kl : Xl × Xl → R plays

a pivotal role in characterizing the relationship between predictor xl and response y.

Notably, the sum of these individual functions, ∑d
l=1 fl, also follows a GP with a kernel

determined by the summation of individual kernels, as expressed by: k = ∑d
l=1 kl.
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Chapter 2 serves as a foundational introduction within the thesis, elucidating

key concepts related to GPs, kernels, and regression with GP priors. Additionally,

it establishes a contextual framework by exploring the connections between the GP

regression and other classical statistical methodologies, including kernel ridge regression,

Kriging (Krige, 1951), and conditional autoregressive models. This chapter primarily

concerned the regression model with d = 1 or d = 2. In the latter case (d = 2), we

introduced a specific example of an additive GP model, called the semi-parametric

GP model, where a linear kernel is added to another kernel of choice, typically of a

non-linear nature. This combination yields a model that can capture both linear and

non-linear relationships, thereby enhancing its utility for various practical applications.

Chapter 3 then generalised this framework to d ≥ 2, and also considered interaction

effect models. In these models, functions representing the interaction effects between

different variables, denoted as fll′(xl, xl′), are incorporated into the regression function

alongside the main effect model. Instead of introducing new kernels for these interaction

effect functions, a more parsimonious approach is adopted using the tensor product

kernel kll′ = kl ⊗ kl′ . This approach draws inspiration from the field of smoothing

splines, particularly the ANOVA decomposition of functions in a Reproducing Kernel

Hilbert Space (Gu, 2002; Gu and Wahba, 1993; Wahba, 1990). By adapting this

concept into the decomposition of kernels, Stitson et al. (1999) introduced the ANOVA

decomposition kernel, also known simply as the ANOVA kernel. Within the context of

GP regression, we employed a more parsimonious specification of the ANOVA kernel

that also adheres to common practices of statistical modelling to model interaction

effects. This offers several advantages, such as maintaining the same number of model

parameters for both main and interaction models, and its inherent additive nature

enhances interpretability (Buja et al., 1989).
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In addition to the saturated interaction model with the saturated ANOVA kernel,

which encompasses all possible interactions, including the highest-ordered and all

lower-ordered interactions, we consider a parsimonious model structure that includes

only interactions with substantive effects while preserving a hierarchical interaction

structure, using the hierarchical ANOVA decomposition kernel (Bergsma and Jamil,

2023). The data analysis of spatio-temporal disease classification highlighted the

importance of hierarchical modelling of spatial and temporal effects.

The use of the ANOVA kernel, when centred, further enhances interpretability.

This is particularly attractive when investigating lower-order interaction effects. To

illustrate this, we examined a case involving longitudinal data, where subjects are

assigned to different treatment groups, and their weights are measured. Understanding

the variations in growth curves among different treatment groups, considering individual

variability and its interaction with treatment effects, is often intricate. however, the

additive GP model with centred (hierarchical) ANOVA kernels yields interpretable

outputs and provides the average growth curves for each treatment group.

In Chapter 4, we shift our focus to the computational challenges inherent in GP

models. These challenges primarily stem from the extensive operations involving

an n × n covariance matrix, resulting in a time complexity of O(n3) and a space

requirement of O(n2). We considered large-scale multidimensional grid data, where the

predictors x1, x2, . . . , xd collectively form a Cartesian grid X1 × X2 × . . . × Xd. Within

this structured data, the covariance matrix can be expressed using the Kronecker

product. By exploiting the properties of the Kronecker product, we can evaluate the

marginal likelihood and the posterior mean and covariance without explicitly forming

the full covariance matrix. It is sufficient to evaluate only the covariance matrix on

each level, which is of order nl = |Xl|. In the literature, the kernels called separable, i.e.

the kernels that have the form: k = k̃1 ⊗ . . . ⊗ k̃p where each k̃l is defined on Xl, were
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considered (Flaxman et al., 2015; Gilboa et al., 2013; Saatçi, 2012; Wilson et al., 2014).

We extend the work in the literature to the special case of the sum of separable kernels,

which are constructed using centred (non-saturated) hierarchical ANOVA kernels. This

expansion allows us to efficiently compare models with varying interaction structures,

thereby aiding in the selection of a more parsimonious model, provided that such a

model is adequate.

One of the primary limitations associated with the Kronecker product approach

is its reliance on a comprehensive grid, necessitating the recording of the response

variable for every input point within the Cartesian grid X1 × . . . × Xp. Chapter 5

addresses the issue by applying and assessing a methodology introduced by Gilboa et al.

(2013) and Wilson et al. (2014) to models utilizing non-saturated ANOVA kernels. The

proposed algorithm allows us to benefit from the Kronecker product structure even

with an incomplete grid. We considered various missingness mechanisms and concluded

that for Missing completely at Random and Missing at Random scenarios, the method

performs admirably. Moreover, it preserved a notable computational advantage when

compared to the naive implementation of complete case analysis.

The key contribution of the thesis to the field of Gaussian process models is to

provide a statistical modelling framework with GP priors, especially for additive

interaction models, to enhance the interpretability of additive GP models, and to

offer a computationally efficient implementation of this methodology tailored for multi-

dimensional grid data, which is frequently encountered in the realms of spatio-temporal

analysis and longitudinal data analysis. We conclude the thesis by listing a set of open

questions and possible future research.

• Kronecker product approach with non-Gaussian likelihood. Chapter

4 concerned the Kronecker product approach with Gaussian likelihood. For

non-Gaussian likelihood and separable kernels, Flaxman et al. (2015) proposed
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the Kronecker method with Laplace approximation. It is worth noting that the

Kronecker product structure can also facilitate likelihood evaluation within the

context of Markov Chain Monte Carlo (MCMC) methods.

While the application of this approach may initially appear straightforward, a

noteworthy complication arises when dealing with the centred (sum of separable,

non-saturated) ANOVA decomposition kernel. The crucial property we leverage

for the covariance matrix decomposition is that each sub-covariance matrix

possesses, at most, nl − 1 non-zero eigenvalues. With non-Gaussian likelihoods,

this property implies that the model covariance matrix is always singular. Taking

the inverse and log-determinant of this matrix can be avoided for some steps in

Laplace approximation or expectation propagation (Section 2.3) as discussed in

Rasmussen and Williams (2006, Chapter 3). For the remaining parts, using a

pseudoinverse may be a viable option. Nevertheless, it is imperative to thoroughly

investigate the performance and numerical stability of algorithms involving

additive Kronecker products. Furthermore, exploring the possibility of employing

more advanced algorithms, such as variational inference, presents another path

for future research.

• Kronecker product approach with additional predictors. Within this

thesis, our primary assumption has been that only one set of predictors is observed

at each level of multi-dimensional grid data. However, in many real-world datasets,

additional covariates may be available, introducing an added layer of complexity.

For instance, when monitoring air-pollutant concentrations in a spatio-temporal

context alongside geographical coordinates and timestamps, we may possess

supplementary information, such as the station type or the proximity to a road.

Notably, in this scenario, the additional covariates typically vary only at one

level of the data hierarchy.
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As outlined in Section 4.6, we have the option to incorporate a distinct kernel,

such as a linear kernel, to capture the effects of these additional covariates. This

supplementary kernel can be combined with the existing kernel, which, in this

instance, accounts for spatial variation. If both kernels are centred, the resulting

sum kernel remains centred as well. However, if we assume interactions between

these two kernels, necessitating the introduction of an additional tensor product

kernel, the resulting composite kernel is not centred in general. Consequently,

this limitation restricts the applicability of the Kronecker approach to separable

kernels in such scenarios.

Moreover, when dealing with cross-level covariates, we encounter a similar issue.

If the effects of these covariates are linear and do not interact with the predictors

that form the multidimensional grid, the model can still be efficiently evaluated

by exploiting the Kronecker product structure. However, complications arise

when interactions between covariates and predictors are present, rendering the

model more complex and challenging to analyze using the Kronecker approach.

• Gaussian process models with a missing value under Missing not at

Random scenario. In Chapter 5.2.2, we arrive at the conclusion that the

existing Kronecker method, when applied to an incomplete grid, falls short

when confronted with a Missing Not at Random scenario. In cases where the

missingness mechanism is non-random, it becomes imperative to incorporate this

mechanism into the modeling process. One viable avenue for achieving this is

through methods like the Expectation-Maximization (EM) algorithm. However,

it’s worth noting that the scalability of the EM algorithm becomes problematic

as the number of missing values increases.

Even when employing more computationally efficient alternatives, such as stochas-

tic approximation EM, the need to sample from the conditional distribution



147

of the missing responses at each iteration outweighs the advantages offered by

the Kronecker product approach. This underscores the need for a computation-

ally efficient sampling approach that can better accommodate the complexities

introduced by missing data in such contexts.

• Multivariate response. The proposed methodology, employing the ANOVA

decomposition kernel, along with its efficient implementation method via the

Kronecker product, naturally lends itself to handling multivariate responses.

Consider, for instance, a scenario where measurements at each monitoring station

encompass the concentrations of multiple air pollutants. When dealing with

data involving multivariate responses, we can conceptually view each class of

measurement as a categorical predictor, effectively treating the data as multi-

dimensional grid data. Under this perspective, the model’s covariance matrix

readily involves the Kronecker product.

By adopting the ANOVA kernel, we can incorporate variations in the means

attributed to different classes (main effect) and explore how the influence of

other covariates, such as temporal or spatial patterns, varies across these different

classes (interaction effect). However, addressing multivariate responses introduces

a unique challenge—selecting and estimating an appropriate kernel for each class.

This becomes particularly complex when the covariance structure itself must

be estimated, as it may not always be straightforward to apply centring to the

kernel in this context.
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Appendix A

Kernel and Gaussian processes

A.1 Centring of kernels

A.1.1 Reproducing kernel Hilbert space

Recall that Hilbert space is a complete inner product space equipped with a positive

definite inner product. Let H be a Hilbert space of functions over a set X with an

inner product ⟨·, ·⟩H. The Hilbert space H is called a reproducing kernel Hilbert space

(RKHS) if and only if there exists a function k : X × X → R satisfying

1. k(x, ·) ∈ H for all x ∈ X

2. f(x) = ⟨f, k(x, ·)⟩H for all f ∈ H and x ∈ X

The function k is called reproducing kernel. Note that using the two properties, we

have that k(x, x′) = ⟨k(x, ·), k(x′, ·)⟩H, hence k is positive definite. It can be shown

by the Moore–Aronszajn theorem (Aronszajn (1950)) that a kernel defines a unique

RKHS and vice versa. We write the norm of a function in f in H as ∥f∥H =
√

⟨f, f⟩.
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A.1.2 Centring of kernel and functions in RKHS

Let P be distribution over a non-empty set X and X, X ′ ∈ X are independent and

follow P . We consider a kernel k on X and let Hk denote the RKHS induced by k. We

can centre this kernel by,

kcent(x, x′) = ⟨k(x, ·) − µP , k(x′, ·) − µP ⟩Hk
(A.1)

where µP is the kernel mean given by

µP := E
X∼P

[k(X, ·)] =
∫

X
k(x, ·)dP (x).

Note that the expectation of any function f ∈ Hk can be computed as an inner product

with µP :

E
X∼P

[f(X)] =
∫

X
f(x)dP (x)

=
∫

X
⟨k(x, ·), f⟩Hk

dP (x)

= ⟨
∫

X
k(x, ·)dP (x), f⟩Hk

= ⟨µP , f⟩Hk
.

The centred kernel (A.1) is positive definite by construction. We can see that this

corresponds with (2.6) by

⟨k(x, ·) − µP , k(x′, ·) − µP ⟩Hk
= ⟨k(x, ·), k(x′, ·)⟩Hk

− ⟨µP , k(x′, ·)⟩Hk

− ⟨k(x, ·), µP ⟩Hk
+ ⟨µP , µP ⟩Hk

= k(x, x′) − E
X∼P

[k(x′, X)] − E
X′∼P

[k(X ′, x)] + E
X,X′∼P

[k(X, X ′)].
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Note that

E
X,X′∼P

[k(X, X ′)] =
∫

X

∫
X

k(x, x′)dP (x)dP (x′)

=
∫

X

∫
X

⟨k(x, ·), k(x′, ·)⟩Hk
dP (x)dP (x′)

= ⟨
∫

X
k(x, ·)dP (x),

∫
X

k(x′, ·)dP (x′)⟩Hk
= ⟨µP , µP ⟩Hk

.

Given a sample x1, . . . xn drawn from P , the kernel mean µP can be estimated empiri-

cally, by

µ̂P = 1
n

n∑
i=1

k(xi, ·).

By replacing µP with µ̂P , we obtain (2.7).

A.2 Posterior in GPR

Let us consider the regression model considered in (2.1) with normal i.i.d error, i.e., we

have

y = (y1, . . . , yn)⊤ ∼ MVNn(0, K + σ2I).

Let us assume that we have x∗
j ∈ X for j = 1, . . . , m. This set of x∗

j can include xi in

a sample (training set). We denote f∗ = (f(x∗
1), . . . , f(x∗

m)). From our prior we know

f∗ ∼ MVNm (0, K∗∗) (A.2)

where K∗∗ = {k∗∗
i,j}m×m and k∗∗

i,j = k(x∗
i , x∗

j ). Hence we have

y

f∗

 ∼ MVNn+m


0

0

 ,

K + σ2I K∗

K⊤
∗ K∗∗



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where K∗ = {k∗i,j}n×m and k∗i,j = k(xi, x∗
j ). By conditional distribution of multivariate

normal distribution,

f∗|X, X∗, y ∼ MVNm(µ∗, V∗)

where

µ∗ = K∗⊤(K + σ2I)−1y

V∗ = K∗∗ − K∗⊤(K + σ2I)−1K∗.

It is easy to see that we have µ∗ = (m̄(x∗
1), . . . , m̄(x∗

1)) and V∗ = {v∗
i,j}m×m with

v∗
i,j = k̄(x∗

i , x∗
j ) where m̄ : X → R and k̄ : X × X → R are given by

m̄(x) = k(x)⊤(K + σ2I)−1y, x ∈ X

k̄(x, x′) = k(x, x′) − k(x)⊤(K + σ2I)−1k(x′), x,x′∈ X .

By Kolmogorov extension theorem and Definition 2, this implies that the posterior is

the Gaussian process GP(m̄, k̄).

A.3 Multi-class categorical and multivariate response

In this section, we first show how the GP model for a binary response can be extended

to a multi-class categorical response and discuss its connection to the GP models for

multivariate response.

Consider a sample (ỹi, xi)n
i=1 where ỹi ∈ Y is a response variable which takes value

j if the i-th instance in the dataset belongs to category j for j = 1, . . . , c and xi ∈ X

is a set of predictors. We have Y = {1, . . . , c}. We assume ỹ ∼ Categorical(p1, . . . , pc)

where pj = p(ỹ = j) subject to ∑c
j=1 pj = 1. It is common to re-code the response
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variable by

yj,i =


1 if ỹi = j

0 otherwise.

Note that only one element in the vector of a response for i-th instance, yi =

(y1,i, . . . , yc,i)⊤, can take the value 1. We model the relationship between the response

and the predictors xi ∈ X using the soft-max function:

pi,j = p(yj,i = 1) = exp (f(j, xi))∑c
j′=1 exp (f(j′, xi))

. (A.3)

Let D = Y × X . We assume the function f : D → R to follow zero mean GP,

f ∼ GP (0, k) where the kernel k : D × D → R is, for example, given by

k((j, x)⊤, (j′, x′)⊤) = kc(j, j′)kx(x, x′), x, x′ ∈ X , j, j′ ∈ Y .

Through kernel kc, we can model class dependence. For instance, if kc(j, j′) = 0 for all

j ̸= j′, no inter-class correlation is assumed. If we define

f = (f(1, x1), . . . , f(1, xn), . . . . . . , f(c, x1), . . . , f(c, xn))⊤

and similarly,

y = (y1,1, . . . , y1,n, . . . . . . , yc,1, . . . , yc,n)⊤,

we have:

f |X ∼ MVN(0, K)

where K = Kc ⊗ Kx and {Kc}1≤j,j′≤c and {Kx}1≤i,i′≤n are Gram matrices with each

element given by kc(j, j′) and kx(xi, x′
i). If we assume no inter-class correlation, then

Kc is a diagonal matrix with positive diagonal entries D and the matrix K is block
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diagonal:

K =



d1,1Kx 0 . . . 0

0 d2,2Kx . . . 0
... . . . ...

0 0 . . . dc,cKx


.

where dj,j is the j-th diagonal element of D. The log-likelihood for this model is given

by

log p(y|f) = y⊤f −
n∑

i=1
log

 c∑
j=1

exp f(j, xi)
 .

Once the prior and likelihood is specified, the procedures described in Section 2.3 can

be used for model estimation and inference. For the detail of each approximation

method in the multi-class categorical response setting, see Rasmussen and Williams

(2006, Chapter 3) for Laplace approximation, Chai (2012) for Variational Inference

and Seeger and Jordan (2004) for Expectation propagation. It is worth noting that

multi-class classification with GP in this formulation has an identifiability issue. For f

to be identifiable, we have to e.g. set f(1, xi) = 0 or ensure ∑c
j=1 f(j, xi) = 0 for all

i = 1, . . . , n. The latter can be satisfied by empirically centring the kc. See Section

2.1.3.

This model formulation is closely connected to GP models for multivariate response.

This class of models may also be called multi-task GP (Bonilla et al., 2007) or GP models

for a vector output (Alvarez et al., 2012). The multivariate response is common in spatio-

temporal analysis. For example, in environmental monitoring, multiple meteorological

variables (wind speed, temperature, etc.) are recorded at each monitoring station. The

crime cases in a region are also often available in different categories.

Using the same notations for y and f we specify the likelihood by e.g. yj,i ∼

Poisson(λj,i) with log λj,i = f(j, xi). The specification on kc plays an important part

in this context. One popular approach is putting prior on Kc using, e.g. Inverse
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Wishart distribution, or LDK prior (Lewandowski et al., 2009). Note that the latter

can be used as a prior on the correlation matrix. The entries of the covariance matrix

or matrices that account for inter-class correlation can also be estimated using the

EM algorithm see, e.g., (Zhang, 2007), which considered the spatial linear model of

coregionalization (LCM). The LCM (Goovaerts, 1997; Journel and Huijbregts, 1976) is

a popular model for a multivariate response, which has a more complex structure in K

e.g., K = ∑Q
q=1 Kcq ⊗ Kxq.

It is also possible to consider the ANOVA decomposition kernel introduced in Section

3.1.3, in which case the Gram matrix can be expressed as (11⊤ + Kc) ⊗ (11⊤ + Kx).

This formulation allows us to understand how the effect of x is different for different

classes (interaction effect) but also the effect of x averaged over all classes (main effect).

The Kriging framework and conditional auto-regressive model for areal data, dis-

cussed in Section 2.5, can be extended to multivariate spatial variables. The former

is known as co-kriging. See, e.g. Ver Hoef and Cressie (1993) for the details. For

the multivariate conditional auto-regressive models (MCAR), see Carlin et al. (2003);

Gelfand and Vounatsou (2003).





Appendix B

Kronecker product

B.1 Row-wise Kronecker product

Consider two matrices A = {ai,j}1≤i≤n,1≤j≤m and B = {bi,j}1≤i≤n,1≤j≤q. Let Ai and

Bi be the i−th row of the matrices A and B respectively. The row-wise Kronecker

product of the two matrices, A • B, is the matrix of size n × mq given by

A • B =



A1 ⊗ B1

A2 ⊗ B2

...

An ⊗ Bn



where ⊗ is the Kronecker product (see Section 4.3). The row-wise Kronecker product

may also be called the face-splitting product. Let v be a vector of length n. Then we

have

A • v = v • A = VdA (B.1)

where Vd = diag(v), a diagonal matrix with its diagonal elements given by v.
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B.2 Eigendecomposition of Gram matrix with fBM

kernel

Assume a tensor product kernel

k(x, x′) =
d∏

l=1
kd(xl, x′

l)

over a multidimensional grid X = X1 × . . . × Xd where xl ∈ Xl and kl : Xl × Xl. Let

nl = |Xl|. Then, the associated Gram matrix can be written as

K =
d⊗

l=1
Kl

where Kl is a nl × nl gram matrix for l input dimension, with i, j-th element given by

kl(x(l),i, x(l),j). Let Kl = QlΛlQ⊤
l be the eigendecomposition of each matrix. Then the

eigendecomposition of the matrix K is the following:

K =
d⊗

l=1

(
QlΛlQ⊤

l

)

=
d⊗

l=1
Ql

d⊗
l=1

Λl

d⊗
l=1

Q⊤
l . (B.2)

This decomposition leads to a particularly efficient algorithm when using an fBM

kernel or a squared and centred fBM kernel with a known Hurst coefficient γl. Let

each kl be a fBMγl
kernel. This means we have only one hyper-parameter (scale

parameter) to estimate for each dimension l. We denote the corresponding gram

matrix by Kl = αlK′
l where K′

l is un-scaled gram matrix. Let K′
l = QlΛlQ⊤

l be the

eigendecomposition of the un-scaled matrix. Then eigendecomposition of Kl is

Kl = αlK′
l = Ql (αlΛl) Q⊤

l .
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Using (B.2), we can write

K =
d⊗

l=1
K′

l =
d⊗

l=1
Ql

d⊗
l=1

(αlΛl)
d⊗

l=1
Q⊤

l .

This means that we do not have to apply eigendecomposition at each iteration when

estimating the hyper-parameters by maximising the marginal likelihood or by MCMC.

The inverse and the determinant can be updated by simply multiplying each eigenvalue

by the scale parameters.





Appendix C

Illustration and data analysis

C.1 Bovine Tuberculosis in Cornwall

In Section 3.4.1, we used squared exponential kernels to compare different model

structures for Bovine Tuberculosis data. The posterior mean function, in this case,

is infinitely differentiable. This may be too smooth. We run the spatial model with

Matérn class kernels (See Table C.1) and see that the models with Matérn class

kernels achieve higher prediction accuracy. Similarly, for spatio-temporal models, it is

important to consider and evaluate models with different kernels in the future.

Table C.1 CV (5-folds) errors for spatial GP models with different kernels. Matérn(1.5)
and Matérn(2.5) refer to Matérn kernel with the κ parameter1.5 and 2.5.

Model kernel Misclassification rate Brier score
Spatial

SE 0.1421 0.2242
Matérn(1.5) 0.1305 0.2209
Matérn(2.5) 0.1237 0.2159
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C.2 Longitudinal data analysis

The model considered in Section 3.4.2 given by (3.16) and (3.17) has eight terms in

total. These include a constant term a, and three main effect terms f1, f2, f3, three

two-way interaction effect terms f12, f23, f31 and one three-way interaction effect term

f123. The posterior mean m̄ consists of 8 terms of constant, main and interaction

effect terms. We write m̄ = ∑
h∈H m̄,h where H = {0, 1, 2, 3, 12, 23, 31, 123}. Here m̄0

corresponds with the constant term. Figure C.1 shows each m̄h against day.

The main effects (Figure C.1a-C.1c) can simply be interpreted as the average effect

of group, id and time respectively. For two-way interaction effects, it is natural to

consider e.g., m̄3 + m̄13 which shows how the effect of time (or the growth curve) is

different for different treatment groups, as we saw in Section 3.4.2. Here, we give

another example. To understand how the growth curve differs among different cattle,

we show the plot of m̄3 + m̄23 in Figure C.2. This can be seen as the effect of time for

different cattle (id) after the effect of treatment is averaged out. We see that there is

more variability in the growth attributed to individuals at the beginning and the end

of the study period.

C.3 NO2 concentrations in London

C.3.1 Data manipulation

Missing value imputation

In the dataset used in this paper, we had 1, 290 missing values out of 208, 152. For each

missing value at a measurement site, we created a small subset of the data consisting

of the observations collected from the same location from 24 hours before to 24 hours

after the missing values were observed. A simple one-dimensional Gaussian process
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(a) group : m̄1 (b) id : m̄2 (c) time : m̄3

(d) group × id : m̄12 (e) id × time : m̄23 (f) time × group : m̄31

(g) group × id × time : m̄123 (h) constant : m̄0 (i) all :
∑

h m̄h

Fig. C.1 The posterior mean function m̄h for h = {0, 1, 2, 3, 12, 23, 31, 123} together
with the added posterior mean m̄ = ∑

h m̄h. Each m̄h can also be understood as the
effect on the weight (y-axis). The scale of the y-axis is adjusted for each effect.
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Fig. C.2 The plot of time + time × id : m̄3 + m̄31

regression with squared and centred standard Brownian Motion kernel (γ = 1
2) is then

fitted. We replace the missing value with the posterior predictive mean given by (2.12).

Adjustment of Summer time

The study period, from January 6 2020, to May 31, 2020, includes the clock change to

British Summer Time (BST), starting at 1:00 AM on March 29. The timestamps in the

original data are all in Greenwich Mean Time (GMT). We converted the timestamp to

match BST from 1:00 AM (in GMT). This resulted in an hour gap without any record

at 1:00 AM of the adjusted timestamp. We filled the gap with a mean of the m before

and after. The procedure is summarised in Table C.2.

C.3.2 Gram matrix for each models

Let Kl denote the Gram matrix that corresponds with the kernel kl in Section 4.5.2,

i.e., Kl = {k
(l)
i,j }1≤i,j,≤nl

. The Gram matrices for the models under consideration in

Section 4.5.2 are listed as follows.
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Table C.2 Adjustment from GMT to BST

Time in GMT Original y Time in BST Adjusted time Adjusted y
... ... ... ... ...

2020-03-29 0:00 yt−1 - 2020-03-29 0:00 yt−1
2020-03-29 1:00 (yt−1 + yt)/2

2020-03-29 1:00 yt 2020-03-29 2:00 2020-03-29 2:00 yt

2020-03-29 2:00 yt+1 2020-03-29 3:00 2020-03-29 3:00 yt+1
... ... ... ... ...

• Model 1: main effect

Km1 =
3⊗

l=1
1nl

1⊤
nl

+ K1 ⊗ 1n21⊤
n2 ⊗ 1n31⊤

n3+

1n11⊤
n1 ⊗ K2 ⊗ 1n31⊤

n3 + 1n11⊤
n1 ⊗ 1n21⊤

n2 ⊗ K3

• Model 2: space-time interactions

Km2 = Km1 + K1 ⊗ K2 ⊗ 1n31⊤
n3 + K1 ⊗ 1n21⊤

n2 ⊗ K3

• Model 3: all two-way interactions

Km3 = Km2 + 1n11⊤
n1 ⊗ K2 ⊗ K3

• Model 4: saturated

Km4 = Km3 + K1 ⊗ K2 ⊗ K3 =
3⊗

l=1

(
1nl

1⊤
nl

+ Kl

)

• Model 5: three-way interaction only

Km5 = K1 ⊗ K2 ⊗ K3
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Table C.3 The parameter estimates obtained by maximising the log-marginal likelihood
using the L-BFGS algorithm provided in Stan. The time taken (in seconds) until
convergence is also provided.

Model α0 α1 α2 α3 σ Time(s)
1: main 6.86 5.02 2.2 0.32 14.85 3.4
2: spatio-temporal interaction 14.4 1.28 0.67 0.24 12.54 4.1
3: all two-way interaction 10.63 1.87 1.32 0.31 8.37 4.2
4: saturated 52.02 0.48 0.94 0.051 6.51 3.4
5: three-way interaction only - 0.0008 - - 36.43 1.4

C.3.3 Hyper-parameter estimation by Naive Bayes

In addition to obtaining samples from the posterior of the hyper-parameters, we also

estimated the hyper-parameters by finding the maximiser of the log marginal likelihood

(2.15). We used the optimisation algorithm provided by Stan, which can be run with

the same code used for MCMC sampling. The convergence was achieved within a few

seconds for all models. The values obtained (Table C.3) are close to the MCMC sample

means.

C.3.4 Visualisation of interaction effects

The selected model implies that the effect of x2 (the global time effect) takes on different

forms for different values of x1 (location). This is shown in Figure C.3, which plot

m̄2(x2) + m̄12(x1, x2) as a function x2 given a set of coordinates x1 at selected stations.

Figure C.4 shows how the spatial effect changes over the course of a day. These are

the plots of m̄1(x1) + m̄13(x1, x3) as a function of x1 evaluated at different hours of

the day.
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C.4 Additional results for the simulation study with

incomplete grid

We provide in Table C.4 the mean of the parameter estimates and standard error for

the simulation study considered in Section 5.3. The simulation setting considered is:

grid size 70 × 70, three missingness mechanisms considered in the section; Missing at

Completely Random(MCAR), Missing at Random(MAR) and Missing not at Ran-

dom(MNAR), the missing proportions varying from 10% to 30%, and the number of

experiments for each scenario 20.

α0 α1 α2 σ

Complete data 21.47 (0.02) 0.11 (0.004) 0.11 (0.006) 1.5 (0.02)
MCAR 10% 21.45 (0.07) 0.12 (0.005) 0.11 (0.007) 1.5 (0.02)

20% 21.49 (0.06) 0.14 (0.006) 0.13 (0.008) 1.49 (0.02)
30% 21.45 (0.04) 0.16 (0.01) 0.13 (0.01) 1.49 (0.02)

MAR 10% 21.47 (0.07) 0.11 (0.004) 0.11 (0.005) 1.5 (0.02)
20% 21.45 (0.07) 0.11 (0.004) 0.11 (0.006) 1.5 (0.02)
30% 21.46 (0.05) 0.11 (0.005) 0.11 (0.005) 1.5 (0.02)

MNAR 10% 21.29 (0.07) 0.11 (0.01) 0.11 (0.01) 1.45 (0.01)
20% 21.16 (0.05) 0.11 (0.01) 0.11 (0.01) 1.43 (0.02)
30% 21.02 (0.07) 0.11 (0.01) 0.11 (0.01) 1.42 (0.02)

Table C.4 The parameter estimates and its standard error (in parentheses) for simulation
study with 70 × 70 grid size, based on 20 replications.
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