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Abstract

High dimensional tensor time series data is increasingly prevalent across various fields. In

the analysis of such data, factor modelling plays a crucial role as a dimension reduction

tool. While traditional factor models primarily handle vector time series, the exploration

of matrix or tensor factor models under various assumptions is still in its early stages and

has attracted increasing interest in recent years.

In this thesis, we develop a tensor factor model under the presence of both serial and

cross-correlations in the idiosyncratic components, assuming only bounded fourth order

moments for the time series variables. Moreover, we incorporate a spectrum of different

factor strengths into the model, in contrast to the prevalent assumption in many literature

that considers only pervasive factors. The inclusion of serial dependence noise and weak

factors makes our model more compatible with real data, especially in economics and

finance.

With the relaxed assumptions in our model, we propose a pre-averaging procedure to

initially estimate the factor loading spaces, which achieves signal accumulation through

the random projection of tensor fibres. Furthermore, we develop an iterative projection

algorithm to improve the re-estimation of factor loadings by projecting the data onto the

strongest estimated factor directions. To estimate the number of factors, we introduce a

new core tensor rank estimation method through correlation analysis on the projected data.

Theoretical guarantees are provided for all estimators, and extensive simulations, as well as

analyses of real datasets, are conducted to compare our methods with other state-of-the-art

or traditional alternatives. Finally, we present a new method for estimating factor strengths

with empirical results provided and introduce a novel matrix convergence criterion for

specific covariance matrix estimators, offering valuable insights into directions for future

research.
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Chapter 1

Introduction

Thanks to the advancement of the internet and general computing power, the collection

and analysis of massive data have become increasingly easier over the past few decades.

The richness of data also means that, more often than not, the data we obtain are high

dimensional in nature, in the sense that the number of variables is comparable to or even

larger than the sample size. To extract useful information from high dimensional time

series data, factor modelling is a major dimension reduction tool that allows insights into

the common dynamics of different observed time series (Bai, 2003; Bai and Ng, 2002;

Chamberlain and Rothschild, 1983; Fan et al., 2013; Forni et al., 2000; Lam and Yao, 2012;

Lam et al., 2011; Stock and Watson, 2002). In practice, a few common factors can often

capture a large amount of variation and dynamics among a large pool of variables and time

series. For instance, when considering many macroeconomic time series for forecasting

(Stock and Watson, 2002), the estimation and forecasting through the common factors can

give more accurate results overall, and allowing for the interpretation of the factors (e.g.,

potential grouping of macroeconomic time series as factors) at the same time.

While traditional factor models only deal with time series in vector form, there is

a growing trend of encountering time series observed in matrix or tensor forms across

various fields, including economics, finance, engineering, and others. Examples of such

data formats include Fama-French portfolio return series based on different sizes and

operating profitabilities (Wang et al., 2019), multi-category international trading volume

series (Chen and Chen, 2022), a collection of economic indicator series across various

countries (Chen et al., 2021), taxi traffic transport data (Chen et al., 2022), sequences of

gray-scale face recognition images (Chen and Fan, 2021), and neuroimaging data (Zhang,

2019).
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To achieve dimension reduction for high dimensional matrix-valued or tensor-valued

time series, although it’s possible to stack all observed time series into a single vector

time series for factor modelling analysis, the problem in doing this is that we are ignoring

the natural structure of the data. Moreover, stacking all time series into a long vector can

lead to the curse of dimensionality (e.g., when the stacked length is much larger than the

sample size), increasing the number of parameters to estimate and, consequently, resulting

in inaccurate estimation and predictions.

A more natural and effective approach is to consider factor modelling on matrix-valued

or tensor-valued time series directly. Wang et al. (2019) describe a factor model for matrix-

valued time series and provide estimation methods along with theoretical results. Their

work is extended to a general order-K tensor time series in Chen et al. (2022), Han et al.

(2020), and Han et al. (2022), where the tensor factor model structure is constructed in

a form similar to Tucker tensor decomposition (Tucker, 1963, 1964, 1966), and iterative

approaches to estimate the factor loadings and the number of factors are proposed. Recently,

a growing body of research has emerged in this field, introducing various factor model

assumptions and estimation methods for the analysis of matrix-valued or tensor-valued

time series (Barigozzi et al., 2023a,b; Chen and Fan, 2021; He et al., 2023b, 2022; Yu

et al., 2022). Nevertheless, despite these efforts, there are still limitations and challenges

in these models that need to be addressed. For example, Chen et al. (2022); Han et al.

(2020, 2022); Wang et al. (2019) assume independent noise series, while Barigozzi et al.

(2023a,b); Chen and Fan (2021); He et al. (2023b, 2022); Yu et al. (2022) only deal with

pervasive factors, which can be restrictive in many real-world applications, especially in

economics and finance, where data are usually autocorrelated, heavy-tailed, with weak or

“local” factors presence (Freyaldenhoven, 2022; Ross, 1976; Trzcinka, 1986; Uematsu and

Yamagata, 2022).

In this thesis, we make several important contributions to the field of factor modelling

for high dimensional tensor time series data of order two or above. The first one is

to propose a model that allows for a spectrum of different factor strengths, which is a

generalisation to Lam et al. (2011) when static vector time series factor model is concerned.

To the best of our knowledge, our model is the first one in tensor factor modelling to

consider weak factors when both serial and cross-correlations in the noise series are

presented, which can be more flexible for wider applications. For instance, when analyzing

economic and financial data, empirical studies indicate the common occurrence of weak

factors (Freyaldenhoven, 2022; Ross, 1976; Trzcinka, 1986), which makes the classical

methods based solely on pervasive factors less effective. In such scenarios, our model
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provides more appropriate estimation tools by more effectively capturing signals in the

presence of weak factors, as introduced in the next paragraph.

With relaxed assumptions of weak factors in the model, our second contribution is to

provide a “pre-averaging” initial estimator and an iterative projection estimator for the

factor loading matrices, with theoretical analyzes provided and rate of convergence spelt

out. The pre-averaging procedure can be seen as a random projection method by randomly

summing tensor fibres, and we provide a method to control for the quality of the random

projection. Iterative projection estimators are introduced with idea similar to the projection

method in Yu et al. (2022), except that we only project on the direction aligning to the

strongest estimated factor, unlike other literature (Barigozzi et al., 2023b; He et al., 2022;

Yu et al., 2022) which uses the entire estimated factor loading matrix. With weak factors

in the model, numerical experiments show that our estimator outperforms methods for

estimating matrix or tensor factor models under the sole assumption of pervasive factors.

This is because we only utilize the information that captures the most accurate estimations

so far, while projections including estimated weaker factors lead to worse performance.

Our third contribution is to develop an estimator of the core tensor rank through

correlation analysis. Core tensor rank is similar to the number of factors, and will be

explained in Chapter 2. While many literature estimates the number of factors by examining

the eigenvalues of the sample covariance matrix or its variations (Barigozzi et al., 2023b;

Chen and Fan, 2021; Han et al., 2022; He et al., 2023a, 2022; Yu et al., 2022), our method

utilizes correlation information on the projected data, which is inspired by the correlation

thresholding technique introduced by Fan et al. (2022) for the vector factor model, and

we further introduce a bootstrap method for tuning parameter selection. We provide

theoretical analysis of consistency, and empirical experiments demonstrate that our method

can effectively detect weak factors when present.

In addition to estimating the factor loading spaces and the number of factors, which are

the two most commonly studied aspects of factor modelling, we also contribute to factor

strength estimations—a new and challenging topic under the assumption of weak factors.

While literature on factor strength estimation is limited, existing studies (Bailey et al., 2021;

Uematsu and Yamagata, 2022) predominantly rely on the sparsity assumption of the factor

loading matrices, focusing solely on vector factor models. In contrast, we introduce a novel

approach to estimate factor strengths by leveraging covariance information, which proves

effective in more general settings where factor loading matrices are not necessarily sparse.

We also extend our method to be applicable in matrix factor models. The performance of
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our approach is demonstrated through numerical experiments, providing valuable insights

for future research in this direction.

Finally, our last contribution is in covariance matrix estimations. In high dimensional

settings, it is well-known that the sample covariance matrix is ill-conditioned, and various

regularization methods have been studied to improve the performance of the estimators.

Among them, eigenvalue-shrinkage estimators, such as the Nonparametric Eigenvalue-

Regularized Cvariance Matrix Estimator (NERCOME) proposed by Lam (2016), demonstrate

good empirical performance but lack theoretical guarantees regarding consistency. We

propose a new type of matrix convergence, called “normalized consistency”, and prove it

for certain covariance and precision matrix estimators, providing more theoretical support

for these estimators with potential applications. It is also worth mentioning that the

estimation of factor strengths and covariance matrices can be related and useful for future

research on inference problems in factor modelling.

The rest of this thesis is organized as follows. Chapter 2 reviews some basic knowledge

on tensor operations and factor modelling in general. Chapter 3 introduces important

assumptions on our tensor factor model and presents the pre-averaging and iterative

projection algorithm to estimate the factor loading spaces. Subsequently, Chapter 4

presents the method to find the rank of the core tensor through correlation thresholding.

Chapter 5 discusses a novel method for factor strength estimations. Finally, Chapter 6

investigates a new form of consistency of covariance matrix estimators.



Chapter 2

Review on Tensor Operations and Factor
Models

2.1 Notations and Basic Tensor Manipulations

In this thesis, we use a ≍ b to denote a = O(b) and b = O(a) (also a ≍P b for a = OP(b)

and b = OP(a)), while a ⪰ b is equivalent to b = O(a), and a ≻ b is equivalent to b = o(a).

We also use
∥∥ ·∥∥ to denote the L2 norm (of a vector or a matrix), and

∥∥ ·∥∥F to denote the

Frobenius norm, while
∥∥ ·∥∥max represents the maximum element (of a vector or a matrix).

We also use
∥∥A
∥∥

∞
= maxi ∑ j |ai j| and

∥∥A
∥∥

1 = max j ∑i |ai j| to denote the L∞ and L1 norm

of a matrix A respectively. The notation vec(·) represents the vectorisation of a matrix,

stacking columns of the matrix from left to right. We use 1m to represent a vector of ones

with length m, 1m,S to represent a vector of ones and zeros with length m, with ones on

positions belonging to the set S and zeros otherwise. The identity matrix with size m is

denoted by Im. The notation diag(A) of a square matrix A is the diagonal matrix with only

the diagonal elements of A remain, and everything else set to 0. This notation is also used

to represent a block diagonal matrix. For instance, diag(A1, . . . ,An) is the block diagonal

matrix with diagonal block matrices A1, . . . ,An. We use λ j(A) to denote the j-th largest

eigenvalue of a square matrix A, and tr(A) the trace of A. For a positive integer m, we

define [m] := {1, . . . ,m}. The cardinality of a set S is denoted by |S|.

We briefly introduce the notations and review on tensor manipulations in this section

just enough for the presentation of this thesis. For more information, please refer to Kolda

and Bader (2009).
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A tensor is a multidimensional array, a generalization of a matrix. Let X ∈ Rd1×···×dK

be an order-K tensor. Here K represents the number of dimensions in X , also called the

number of modes. For instance, a vector has K = 1 while a matrix has K = 2. If we write

X = (xi1···iK), then we define a mode-k fibre of X to be a column vector (of length dk)

(xi1···ik−1, j,ik+1···iK) j∈[dk], iℓ ∈ [dℓ] with ℓ ∈ [K],

where we define, for any positive integer n, [n] := {1, . . . ,n}. Hence there are in total

d-k := ∏
K
ℓ=1 ;ℓ̸=k dℓ number of mode-k fibres for the tensor X . For example, for an order-1

tensor (a vector) x, the mode-1 fibre is x itself; for an order-2 tensor (a matrix) X, the

mode-1 fibres are its columns, and the mode-2 fibres are its rows.

The mode-k matricization/unfolding matrix matk(X ) ∈ Rdk×d-k (also denoted as X(k)

sometimes) is then defined to be the matrix containing (in order) all the mode-k fibres of

X . For instance, for an order-1 tensor (a vector) x, mat1(x) = x; for an order-2 tensor

(a matrix) X, mat1(X) = X and mat2(X) = XT. See Figure 2.1 for a demonstration of a

mode-3 tensor (figure from Tao et al. (2019), where I is the same as our d).

Fig. 2.1 Illustration of the mode-k fibers and its corresponding unfolding matrix.

If there is a matrix A= (ai j)∈Rdk×rk , k ∈ [K], and F = ( fi1···iK)∈Rr1×···rK is an order-

K tensor, then the k-mode product of F and A, denoted by F ×k A∈Rr1×···×rk−1×dk×rk+1×···×rK ,

is defined as

(F ×k A)i1···ik−1, j,ik+1···iK :=
rk

∑
ik=1

fi1···ik···iK a jik ,

such that

matk(F ×k A) = Amatk(F ).
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As an example, consider K = 2, so that F is a matrix. Let A1 ∈ Rd1×r1 and A2 ∈ Rd2×r2 .

Then the mode-1 fibres of F are in fact the columns of F , while the mode-2 fibres of F

are the rows of F (made column vectors). We also have

F ×1 A1 = A1F , F ×2 A2 = FAT
2 = (A2F

T)T.

Note that the two unfolded matrices (mode-1 and mode-2 respectively) are mat1(F ) = F

and mat2(F ) = F T, hence the above also means that

F ×1 A1 = A1mat1(F ), F ×2 A2 = (A2mat2(F ))T.

In general, to calculate F ×k A, we find the mode-k unfolding matrix matk(F ) first and

then calculate Amatk(F ), which contains all mode-k fibres of F being pre-multiplied by

A. Then we put the columns in Amatk(F ) back into the original shape of the tensor F .

Hence for K = 2, to put the columns in Amat2(F ) back into the original orientation of

the tensor (rows), we take transpose of it, so that F ×2 A = (Amat2(F ))T. The order of

distinct mode products does not matter, in the sense that for i ̸= j,

F ×i Ai × j A j = F × j A j ×i Ai.

Tucker decomposition (Tucker, 1963, 1964, 1966) is a major extension of the matrix

singular value decomposition (SVD) to tensors of higher order. Recall that the SVD of

a matrix X ∈ Rd1×d2 can be written as X = U1ΛUT
2, where U1 and U2 are orthonormal

matrices of size d1 × r and d2 × r spanning the column and row spaces of X respectively,

and Λ is an r× r diagonal matrix with r positive singular values on its diagonal. In parallel,

Tucker decomposition decomposes an order-K tensor X into K orthonormal matrices

Uk ∈ Rdk×rk containing basis vectors spanning k-mode fibers of the tensor, a potentially

much smaller ‘core’ tensor G ∈ Rr1×···×rK and the relationship

X = G ×1 U1 ×2 U2 ×3 · · ·×K UK. (2.1)

See Figure 2.2 for a demonstration. Note that the core tensor G is similar to the Λ in the

middle of matrix SVD, but now it is not necessarily diagonal.

Finally, if C = F ×1 A1 ×2 · · ·×K AK , then we have the formula

matk(C ) = Akmatk(F )AT
-k, (2.2)
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Fig. 2.2 Tucker decomposition of an order-3 tensor.

where ⊗ is the Kronecker product, A-k := AK ⊗·· ·⊗Ak+1⊗Ak−1⊗·· ·⊗A1, and matk(C )

is the mode-k unfolding of C .

2.2 Factor Models

2.2.1 Vector Factor Models

In this section, we briefly review the factor model approach to panel time series data. The

earliest research on factor analysis can be traced back more than a century (Spearman,

1904). Over the past few decades, vector factor models have been extensively studied in

the statistics and economics literatures. Let xt ∈ Rd , t ∈ [T ] be a vector time series. Factor

model assumes

xt = ct + et = Aft + et , t ∈ [T ], (2.3)

where xt can be decomposed into a signal part ct and a noise part et , which is the

idiosyncratic noise series with a mean of 0. The signal part ct can be further decomposed

into Aft . Here, ft ∈ Rr, t ∈ [T ], represents a set of unobserved latent factor time series

with dimension r ≤ d, and r is the number of factors. The matrix A ∈ Rd×r is an unknown

constant factor loading matrix. Note that the decomposition (2.3) always holds. However,

it is only useful when r ≪ d, as then the dimension reduction is achieved in the sense that

the dynamics of xt is driven by a much lower dimensional process ft .

The advantage of the factor model is that it achieves a significant reduction in model

complexity, quantified by the number of parameters. This reduction occurs because the

covariance or autocovariance matrices are now determined by the factor loading matrix

A and the much smaller covariance or autocovariance matrix of the factor process ft .
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Additionally, the hidden dynamics, i.e., the co-movements, become transparent, providing

a clearer and more insightful understanding. This transparency is especially valuable

when the co-movement of the time series is complex and challenging to uncover without

proper modelling of the full panel. Factor models contribute to increasing the explanatory

and predictive power of various time series models. For instance, macroeconomic

time series can be modeled using common factors, which not only yield more accurate

forecasting results by extracting signals from the dynamics of factors, but also facilitate

easier interpretability of the factors in real-world applications. (Forni et al., 2003; Stock

and Watson, 2002). Other examples include revealing anomalous empirical findings in

monetary policy (Forni and Gambetti, 2010) and assisting in covariance matrix estimation

for portfolio optimization (Fan et al., 2013), among many others.

In the factor model (2.3), both A and ft are unobserved, and the number of factors, r, is

typically unknown. The focus of factor model studies usually lies in estimating (i) the factor

loading space of A and (ii) determining the number of factors, r. It is important to note

that the model (2.3) remains unchanged if we replace the pair (A; ft) on the right-hand side

with (AH;H−1ft) for any invertible H. However, the linear space spanned by the columns

of A, referred to as the factor loading space, is uniquely defined. Therefore, the actual

challenge lies in estimating the factor loading space of A or, equivalently, determining A
up to rotations.

In the model (2.3), if there is no temporal dependence in either the factors ft or the

idiosyncratic component et , and no cross-correlation among et , then it is called an Exact

Static Factor Model (Spearman, 1904). Estimation of such model can be conducted using

principal components analysis (PCA) (Tipping and Bishop, 1999) or maximum likelihood

(Lawley and Maxwell, 1962). However, the overly restrictive assumption of such model

limits its application to modern economic and financical data. When considering potential

temporal and cross-sectional dependence of the idiosyncratic components, additional and

more relaxed model assumptions are necessary. For the purpose of estimation and inference

based on (2.3), the literature commonly adopts two different types of model assumptions

for these purposes.

One type of model assumes that a common factor must have an impact on ‘most’

(defined asymptotically) of the time series but allows the idiosyncratic noise to have

weak cross-correlations and weak autocorrelations (see Bai (2003); Bai and Ng (2002,

2007, 2023); Bartholomew et al. (2011); Chamberlain and Rothschild (1983); Fan et al.

(2013, 2019); Forni et al. (2000); Hallin and Liška (2007); Stock and Watson (2005, 2002)

for examples). In other words, the effect of a factor aggregates along the cross-sectional
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dimension, thus leaving potentially serial dependence in the idiosyncratic components. This

is known as the "Approximate Factor Model" by Bai and Ng (2002), where the rigorous

definition of the common factors and the idiosyncratic noise can only be established

asymptotically when d (i.e., the number of component series) goes to infinity. In many

real datasets, such as those in finance, economics, genetics, and imaging, it is common

for (weak) serial correlations to exist in et , representing any serial correlations in xt not

captured by the common components (Chen and Fan, 2021; Stock and Watson, 2002).

Thus, an idiosyncratic noise series is not necessarily white noise, and each idiosyncratic

noise component may, at most, affect the dynamics of a few original time series. Under

these assumptions, principal component analysis (PCA) of the sample covariance matrix

is typically used to estimate the factor loading space, with various extensions employed

(Bai, 2003; Bai and Ng, 2002). The number of factors can be estimated by utilizing the

behavior of the eigenvalues of the sample covariance matrix, such as maximizing the ratio

of consecutive eigenvalues (Ahn and Horenstein, 2013) or separating diverging eigenvalues

from the rest using threshold functions in the form of an information criterion (Bai and Ng,

2002).

Another type of model assumes that the common factors ft account for all dynamics of

the series xt , making the idiosyncratic noise et ‘white’ with no autocorrelation but allowing

substantial contemporary cross-correlation among the error processes (see Lam and Yao

(2012); Lam et al. (2011); Pan and Yao (2008) for examples). In such a model, the d-

dimensional time series is decomposed into two parts: the dynamic part driven by r factors

and the static part, which is a vector of white noise. The assumption of independence and

identically distributed (i.i.d.) elements in et is considered a standard statistical analysis

assumption. Under these sets of assumptions, the estimation of the factor loading space is

done through eigenanalysis based on the non-zero lag autocovariance matrices (Lam et al.,

2011). The number of factors can be estimated by studying the ratio of eigenvalues of the

corresponding sample autocovariance matrices (Lam and Yao, 2012).

It is also worth noting that if there is no temporal dependence in the model (2.3), then

the two types of models discussed above coincide. Additionally, all models discussed

so far assume static loadings, which are an extension of the exact static factor model.

To accommodate broader assumptions, Forni et al. (2000) and Forni and Lippi (2001)

proposed the Generalized Dynamic Factor Model, which incorporates dynamic loadings to

capture the lagged impacts of the common factors. The assumptions of the dynamic factor

model are comprehensive and encompass all previously discussed models. However, its

more general assumptions also make it more challenging to estimate, particularly when
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extending to matrix or tensor settings. As a result, for the rest of this thesis, we focus solely

on the static factor model. For a more detailed survey of dynamic factor models, please

refer to Barigozzi and Hallin (2024).

Another important assumption in factor models is factor strength. In standard factor

models, such as those proposed by Bai (2003); Bai and Ng (2002); Stock and Watson

(2002), it is typically assumed that all r factors are strong, also referred to as pervasive. This

assumption implies that all r eigenvalues of ATA diverge proportionally to d, specifically

λ j(ATA)≍ d for j ∈ [r]. This results in a clear partition of the eigenvalues of the observed

covariance matrix into two sets: large eigenvalues representing factor-related variation and

small eigenvalues representing idiosyncratic variation.

However, such a phenomenon is frequently not observed in practice. Empirical

studies in economics and finance indicate that eigenvalues often diverge at varying rates

(Freyaldenhoven, 2022; Ross, 1976; Trzcinka, 1986). To address this, models introducing

‘weak factors’ have been proposed. For the j-th column a j of A, its factor strength α j, with

a range of [0,1], is defined such that

∥a j∥2 ≍ dα j , j ∈ [K], (2.4)

ensuring that

λ j(ATA)≍ dα j , j ∈ [K]. (2.5)

A strong (or pervasive) factor has α j = 1, while a weak factor has α j < 1. A weak factor

can result from two scenarios: (i) the factor has a weak effect on some or all observables, or

(ii) it affects only a subset of observables, referred to as a ‘local’ factor by Freyaldenhoven

(2022). Hallin and Liška (2011) discussed the local factor structure due to the presence

of blocks. The literature has developed studies focusing on the estimation of the factor

loading space and the number of factors when weak factors are present in the model (Bai

and Ng, 2023; Freyaldenhoven, 2022; Lam et al., 2011; Onatski, 2012; Uematsu and

Yamagata, 2022). These studies demonstrate that weaker factors are generally harder to

detect, and the estimation accuracy of factor loadings could be influenced by the strengths

of the factors as well. Thus, estimation and forecasting performances may suffer in the

presence of weak factors compared to the classical setting where all factors are pervasive.

There is limited research on estimating factor strengths. With sparsity assumptions

applied to the factor loadings, Uematsu and Yamagata (2022) employ techniques akin to

adaptive LASSO to recover the local factors and estimate their strengths, while Bailey
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et al. (2021) propose estimating factor strengths based on the proportion of statistically

significant factor loadings for observed factors. Nevertheless, the sparsity assumption

in these literature specifically address scenario (ii) mentioned earlier, i.e., when factors

are weak due to being “local”. On the other hand, if a factor is weak because it has

a ‘weak’ impact on some or all observables, then it may not be detectable by sparsity

assumptions. Connor and Korajczyk (2022) consider such a structure with observed factors,

and demonstrate its application when modelling U.S. equity return series. It remains an

open topic to estimate the factor strengths in such scenario without sparsity assumption.

2.2.2 Extensions to Matrix and Tensor Factors

The advancement in data collection capabilities has given rise to an extensive volume of

time series. The observation of variables organized in a well-defined matrix or tensor

structure over time has become prevalent across diverse fields (Chen and Chen, 2022; Chen

and Fan, 2021; Chen et al., 2021, 2022; Wang et al., 2019; Zhang, 2019). For example,

when forecasting many macroeconomic time series from different countries (Stock and

Watson, 2002), a natural approach is to consider the country-categorized macroeconomic

time series as matrix-valued (i.e., an order-2 tensor), with different countries represented

by rows and various macroeconomic time series represented by columns.

While considerable efforts have been directed towards the development of methodologies

and theories for vector factor models in the past few decades, literature addressing matrix-

valued or tensor-valued time series has been lacking until very recently. Wang et al. (2019)

for the first time describes a matrix factor model for matrix-valued time series Xt ∈Rd1×d2 ,

which takes the form:

Xt = Ct +Et = A1FtAT
2 +Et , t ∈ [T ], (2.6)

where the signal Ct and error Et are defined similarly to ct and et in the vector factor model

(2.3), except that they are now matrices of dimension d1 ×d2. The signal Ct is then further

decomposed into the matrix-valued common factor Ft ∈ Rr1×r2 and two factor loading

matrices A1 ∈ Rd1×r1 and A2 ∈ Rd2×r2 . Similar to vector factor models, it is assumed

that the common factors Ft drive all dynamics and co-movement of the matrix-valued

time series Xt . The two loading matrices A1 and A2 capture the dependency between

each individual time series in the matrix observations Xt and the matrix factors Ft . More

specifically, A2 reflects how each column of Xt depends on the columns of Ft and is thus

called the column loading matrix. Similarly, A1, the row loading matrix, reflects how each
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row of Xt depends on the rows of Ft . Wang et al. (2019) provides estimation methods

together with theoretical results for the model (2.6), based on the extension of assumptions

proposed by Lam et al. (2011) such that Et is white noise.

The work of Wang et al. (2019) is extended to a general order-K tensor Xt in Chen

et al. (2022), where the factor model for each Xt ∈ Rd1×···×dK is

Xt = Ct +Et = Ft ×1 A1 ×2 · · ·×K AK +Et , t ∈ [T ], (2.7)

with Ct as the common component, Et as the noise tensor, Ft ∈ Rr1×···×rK as the core

tensor, and Ak ∈ Rdk×rk as the mode-k factor loading matrix. The product ×k is the tensor

k-mode product. Tensor time series of order 3 or higher are becoming more prevalent in

various applications. For instance, consider international import-export volume time series

of different categories of products among countries (Chen et al., 2022). These data can be

organized into an order-3 tensor time series, where the first two modes represent import-

export patterns between countries, and the third mode represents different categories of

products. Other examples include taxi traffic transport data collected with different pick-

up, drop-off locations (Chen et al., 2022), and neuroimaging 3-dimensional data (Zhang,

2019).

Note that the decomposition of the common component Ct is based on the Tucker

decomposition (2.1), which is general and can be applied to tensors of any order-K.

Specifically, when K = 2, the model (2.7) reduces to the matrix factor model (2.6), and

when K = 1, the model (2.7) reduces to the traditional vector factor model (2.3). Similar

to the vector factor models, the Tucker tensor factor model (2.7) can only be identified

up to rotations. For tensor factor modelling, in addition to Tucker, another possible

decomposition is the CP-decomposition (Chang et al., 2023). CP decomposes a tensor into

a sum of component rank-one tensors, which is uniquely defined but harder to estimate.

One reason is that a CP representation is not guaranteed to exist for all K, which leads to

possible numerical difficulties. In contrast, a Tucker decomposition always exists but is not

unique and can be rotated. In this paper, we choose to use the Tucker decomposition for

its flexibility. In fact, CP can be viewed as a special case of Tucker where the core tensor

is superdiagonal and r1 = r2 = · · ·rk. Please refer to Kolda and Bader (2009) and Lettau

(2022) for more discussions and comparisons between Tucker and CP.

Similar to the vector factor model (2.3) and the matrix factor model (2.6), in the tensor

factor model (2.7), the goal is to achieve two objectives: (i) estimate the factor loading

space of Ak for each k ∈ [K], and (ii) determine the number of factors, rk, k ∈ [K], also
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known as the rank of the core tensor. To achieve this, Chen et al. (2022) assume that

the elements in each Et are sub-Gaussian, with each Et independent of each other, as an

extension of the assumptions from Lam et al. (2011) and Wang et al. (2019). Based on

these assumptions, Chen et al. (2022) propose two approaches, named TIPUP (Time series

Inner-Product Unfolding Procedure) and TOPUP (Time series Outer-Product Unfolding

Procedure), to estimate the factor loading spaces of Ak. These approaches involve a

combination of tensor unfolding and the use of lagged cross-product, which is the tensor

version of autocovariance. Han et al. (2020) further analyze the iterative projection

procedures iTOPUP and iTIPUP, providing improved rates for re-estimating Ak, while

Han et al. (2022) propose core rank estimators of Ct based on information criterion and

eigenvalue ratio criterion that are intertwined with iTIPUP and iTOPUP.

In other recent developments, Zhang and Xia (2018) proposes a similar model for

an order-3 tensor, with the tensor noise elements being i.i.d. normal having a common

variance, and develops minimax theoretical guarantees for their estimators. With the same

tensor noise assumption, Yokota et al. (2017) proposes a core rank estimator for Ct for a

general order-K tensor Xt based on a BIC-like criterion, while Liu et al. (2022) proposes a

tensor SVD method for estimation under a CP decomposition of Ct . Chen et al. (2020)

proposes a semiparametric model with Ct taking covariates under the assumption of i.i.d.

sub-Gaussian elements in Et , which are themselves independent of each other.

All the tensor factor modelling works mentioned above assume at least independent

noise tensor series Et with sub-Gaussian elements. The i.i.d. assumption for the elements

in Et in many of them is an extension of the assumptions of Lam et al. (2011) from the

vector factor model. This assumption is also considered standard for statistical analysis.

However, if we have applications in economics and finance for instance, it is very easy

that (weak) serial correlations exist in {Et}, representing any serial correlations in Xt not

captured by the common components Ct (some time series in Xt have “unique” company

or macroeconomic characteristics, for example). As introduced in Section 2.2.1, the

approximate factor model of Bai and Ng (2002) allows for such weak serial correlations

(as well as weak cross-correlations) in the idiosyncratic noise series {Et}. When Et has a

higher order tensor structure, allowing for weak-serial and cross-correlations becomes even

more essential as there could be even more potentially intricate serial and cross-correlations

in {Et}.

In the remainder of this thesis, we adopt such a more flexible approach by allowing

for both weak serial correlations and cross-correlations in {Et}. As an extension of Bai

(2003), our methods utilize covariance information of the tensor time series by analyzing
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the contemporary covariance matrix, which are more natural to apply to financial return

data for example as opposed to methods that utilize only autocovariance information

(see Wang et al. (2019) or Chen et al. (2022) for example). Due to market efficiency,

population autocovariances of the data can be close to zero and methods that only utilize

autocovariance information can have low signal-to-noise ratio.

Simultaneously, as we develop this thesis, there has also been other literature developed

very recently to deal with matrix or tensor factor models with weak-serial and cross-

correlations in Et (Barigozzi et al., 2023b; Chen and Fan, 2021; He et al., 2023a, 2022;

Yu et al., 2022). In these literature, the factor loading spaces are estimated by performing

PCA on the sample covariance matrix or its variations under the matrix or tensor settings,

and the number of factors is estimated by studying the behaviors of the eigenvalues of the

corresponding covariance information. For matrix factor models (i.e., an order-2 tensor),

Chen and Fan (2021) proposes an α-PCA method that aggregates both first and second

moment information to estimate the factor loadings, assuming α-mixing of noise series. He

et al. (2022) proposes using matrix Kendall’s tau instead of the sample covariance matrix

by assuming a matrix elliptical distribution of the noise. With the α-mixing assumption,

Yu et al. (2022) develops a projection estimation (PE) method to estimate factor loadings

for matrix factor models by projecting the observation matrix onto the row or column factor

space and performing eigenanalysis on the covariance information after projection. The

number of row and column factors is also estimated by the corresponding eigenvalue-ratio

statistics. He et al. (2023a) provides the least squares interpretation of PE and proposes a

robust method by substituting the least squares loss function with the Huber Loss function

(see also He et al. (2023b)). As an extension, Barigozzi et al. (2023b) and Barigozzi et al.

(2023a) further generalize PE and the robust method to estimate tensor factor models for a

general K.

However, one limitation of all these recent developments is that they assume all factors

are pervasive in every mode of the matrix or tensor, which can be restrictive in many real

applications when weak factors are present. As far as we are concerned, there has been

little literature dealing with tensor factor models assuming the presence of weak factors.

The only exception is Han et al. (2020), who propose two parameters, δ0 and δ1, to control

factor strengths for tensor factor models with independent Et . However, these parameters

are not easily interpretable as an extension of the factor strength defined in (2.4) and (2.5).

For time series tensor factor models with weak-serial and cross-correlations in Et , the

presence of weak factors can diminish the effectiveness of proposed estimation methods

developed for pervasive factors only (Barigozzi et al., 2023b; Chen and Fan, 2021; He et al.,
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2023a, 2022; Yu et al., 2022). The issue of weak factors becomes particularly pronounced

in tensor factor models compared to vector factor models. Since many proposed methods

in the current literature rely on iterated estimations of the factor matrices Ak for different

tensor modes (Barigozzi et al., 2023a,b; Han et al., 2020; Yu et al., 2022), inaccuracies in

each iteration of estimation are likely to accumulate, resulting in poor performance of the

final estimator. Dealing with tensor factor models with weak factors remains a challenge,

and this is the focus of our development in this thesis.



Chapter 3

Factor Loadings Estimation in Time
Series Tensor Factor Models by
Pre-averaging and Iterative Projection

3.1 Introduction

The occurrence of high-dimensional time series, observed in tensor format, is becoming

more prevalent across diverse fields, including neuroimaging (Zhang, 2019), face recognition

(Chen and Fan, 2021), traffic transport data (Chen et al., 2020), international trading

(Chen and Chen, 2022), among many others. An effective approach for reducing the

dimensionality of such high dimensional tensor time series involves adopting a factor

model structure, similar to the Tucker decomposition for tensors.

As explored in Chapter 2, the application of factor models to matrix and tensor time

series has garnered significant interest in recent years. Building upon the framework

established for vector time series, researchers have developed two main types of assumptions

to formulate tensor factor models. The first type assumes the independence of the noise

tensor series Et (Chen et al., 2018, 2022; Han et al., 2020, 2022; Liu et al., 2022; Wang et al.,

2019; Yokota et al., 2017; Zhang and Xia, 2018), extending the factor model assumptions

introduced by Lam et al. (2011). Under such assumptions, the estimation of the factor

loading space is performed through analysing the lagged cross-product, the tensor version

of non-zero lag autocovariance matrices. The second type allows for weak serial and

cross-correlations in Et (Barigozzi et al., 2023a,b; Chen and Fan, 2021; He et al., 2023a,

2022; Yu et al., 2022), building upon the approximate factor model assumptions proposed
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by Bai and Ng (2002). Under these assumptions, principal component analysis (PCA) of

the sample covariance matrix, or its variations under matrix or tensor settings, is typically

employed to estimate the factor loading space. We adopt the second approach due to its

flexibility, making it more applicable to a range of fields, such as economics and finance.

Though significant efforts have been devoted to the study of various models and

estimation methods for tensor time series, there has been limited literature addressing

tensor factor models with appropriate assumptions regarding the presence of weak factors.

In practical scenarios, it is common for the existence of weak or “local” factors to be

observed, particularly in applications related to finance and economics (Freyaldenhoven,

2022; Ross, 1976; Trzcinka, 1986; Uematsu and Yamagata, 2022). In such situations,

tensor factor model estimation methods based solely on pervasive factors tend to exhibit

poor performance. The exploration of weak factor models for tensor time series remains a

challenging research topic.

To bridge the gap described above, we propose our time series tensor factor model

(with tensor order two or above) with both serial dependence of {Et} and the presence

of weak factors. In this model, we allow for a spectrum of different factor strengths,

which is a generalisation to Lam et al. (2011) when static vector time series factor model

is concerned. To the best of our knowledge, our model is the first one in tensor factor

modelling to consider weak factors when both serial and cross-correlations in {Et} are

presented. For tensor factor models with independent {Et}, while Han et al. (2020) has

two parameters δ0 and δ1 controlling the factor strengths, these parameters are intricately

linked to the definitions of their TOPUP and TIPUP estimators, making their interpretation

within the broader context of the model, particularly in relation to Ak, less straightforward.

On the other hand, our factor strengths αk, j, j ∈ [rk], which has the j-th diagonal entry of

AT
kAk ≍ d

αk, j
k (see Assumption (L1) in Section 3.2.1.3 for more details), can be more easily

interpretable as a direct extension of the factor strengths definition by Lam et al. (2011)

in vector factor model. Hence if the j-th column of Ak is dense (a pervasive factor), then

αk, j = 1. If there are only finitely many non-zeros in the j-th column of Ak, then it is a

very weak factor, and αk, j = 0. Freyaldenhoven (2022) allows for these weaker factors in

its vector time series factor model, and called them “local factors”.

With relaxed assumptions for wider applications, and allowing for a spectrum of factors

with different strengths, we establish a procedure for estimating the factor loading space of

Ak for k ∈ [K]. We introduce a “pre-averaging” initial estimator and an iterative projection

estimator for our model, with theoretical analyzes provided and rate of convergence spelt

out. The pre-averaging procedure is presented in Section 3.2, which can be seen as a
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random projection method by randomly summing tensor fibres, and we provide a method to

control for the quality of the random projection in Section 3.2.3. Section 3.2.6 also shows

that our pre-averaging estimator is minimax optimal under certain scenarios on a certain

localized set. Iterative projection estimators of the factor loading matrices (see Section

3.3) are provided with idea similar to the projection method in Yu et al. (2022), except that

we only project on the direction aligning to the strongest estimated factor. This is because

we assume there are weak factors which may not be estimated with enough accuracy. With

weak factors in the model, numerical experiments show that our estimator outperforms

other competitors since we only utilize the information which captures the most accurate

estimations so far. Note that all methods discussed in this chapter are proposed to be

applied to tensor time series with order two or above. This is because the pre-averaging

procedure and iterative algorithm rely on projecting information from different tensor

modes, which cannot be applied when K = 1 (i.e., for vector time series).

The rest of this chapter is organized as follows. Section 3.2 presents important

assumptions of our model, together with the idea of pre-averaging. Discussions and

theory on choosing the “best” samples for aggregating results are presented, together

with rate of convergence for our pre-averaging estimator for the strongest factors spelt

out. Section 3.3 utilizes the pre-averaging estimator as the ideal initial estimator for re-

estimating the projection direction by iterations, and presents the key theoretical results on

the iterative projection estimators. Section 3.4 presents our simulation studies on a number

of different settings and compare to other benchmarks or state-of-the-art estimators. All

the proofs are presented in Section 3.5.

3.2 Initial Estimation of Strongest Factors by Pre-averaging

We define the tensor factor model for each Xt ∈ Rd1×···×dK , t ∈ [T ], as

Xt = µ +Ct +Et = µ +Ft ×1 A1 ×2 · · ·×K AK +Et , (3.1)

where we include a non-zero mean tensor µ ∈ Rd1×···×dK as compared to (2.7) introduced

by Chen et al. (2022), which makes our model more flexible.

Before officially introducing the pre-averaging estimator, we first present some technical

assumptions needed for the tensor factor model (3.1).
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3.2.1 Assumptions

3.2.1.1 Assumptions on the errors

We present assumptions (E1) - (E2) below with explanations.

(E1) (Decomposition of error) We assume that K is a constant, and

Et = Fe,t ×1 Ae,1 ×·· ·×Ae,K + εεε t , (3.2)

where Fe,t is an order-K tensor with dimension re,1×·· ·×re,K , containing independent

elements with mean 0 and variance 1. The order-K tensor εεεk ∈ Rd1×···×dK contains

independent mean zero elements each with finite variance, with the two time series

{εεε t} and {Fe,t} being independent.

Moreover, for each k ∈ [K], Ae,k ∈Rdk×re,k is such that
∥∥Ae,k

∥∥
1 = O(1). That is, Ae,k

is (approximately) sparse.

Hence with (E1), we have matk(Et) = Ae,kmatk(Fe,t)AT
e,-k +matk(εεε t), where Ae,-k :=

Ae,K ⊗·· ·⊗Ae,k+1 ⊗Ae,k−1 ⊗·· ·⊗Ae,1. Each mode-k noise fibre et,-k,ℓ for ℓ ∈ [d-k] can

then be decomposed as

et,-k,ℓ := Ae,kmatk(Fe,t)ae,-k,ℓ+(ΣΣΣ
(k)
ε,ℓ)

1/2
εεε
(k)
t,ℓ , (3.3)

where aT
e,-k,ℓ is the ℓ-th row of Ae,-k, ΣΣΣ

(k)
ε,ℓ is diagonal and εεε

(k)
t,ℓ contains independent elements

each with mean 0 and variance 1. The above decomposition means that each noise fibre

is now a sum of two parts. The first part is similar to a common component with a factor

loading matrix Ae,k, while the second part contains independent noise (but can still exhibit

serial correlations; see Assumption (E2)). However, Ae,k is (approximately) sparse here

and contains at most a very weak factor with factor strength 0 (see Assumption (L1) in

Section 3.2.1.3). This part facilitates cross-correlations of noise fibres, with the covariance

of any two mode-k fibres of the noise tensor taking the form

cov(et,-k,ℓ,et,-k,m) = aT
e,-k,ℓae,-k,mAe,kAT

e,k,

where et,-k,ℓ and et,-k,m are the mode-k noise fibres with l,m ∈ [d-k]. This error structure

satisfies the assumptions in Chen and Fan (2021) when re,k = O(dk). In fact, if Ae,k is not

(approximately) sparse, it should be counted as a factor loading matrix rather than a noise

component in our model.
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(E2) (Time series) There is Ze,t the same dimension as Fe,t , and Zε,t the same dimension

as εεε t , such that Fe,t = ∑q≥0 ae,qZe,t−q and εεε t = ∑q≥0 aε,qZε,t−q, with {Ze,t} and

{Zε,t} independent of each other, and each time series have i.i.d. elements with mean

0 and variance 1. The coefficients ae,q and aε,q are so that ∑q≥0 a2
e,q = ∑q≥0 a2

ε,q = 1

and ∑q≥0 |ae,q| ≤C, ∑q≥0 |aε,q| ≤C for some constant C.

With this assumption, the error variables in Fe,t and εεε t are serially correlated in general.

Together with (E1), (weak) serial and cross-sectional dependence within and among fibres

are allowed for the errors. (E1) and (E2) together satisfy Assumption 3 of Barigozzi

et al. (2023b), who provide a more general expression to quantify the serial and cross-

correalation of the noise by bounding the sums of cross and autocovariances of the

idiosyncratic terms.

3.2.1.2 Assumptions on the factors

Similar to (E2), the factors in Ft are assumed to follow general linear processes.

(F1) There is Z f ,t the same dimension as Ft , such that Ft = ∑q≥0 a f ,qZ f ,t−q. The time

series {Z f ,q} has i.i.d. elements with mean 0 and variance 1. The coefficients a f ,q

are so that ∑q≥0 a2
f ,q = 1 and ∑q≥0 |a f ,q| ≤C for some constant C.

Note the series of coefficients {ae,q}, {aε,q} and {a f ,q} are not necessarily equal.

3.2.1.3 Assumptions on the model parameters

We present the assumptions needed for the factor loading matrices Ak, k ∈ [K], and other

model parameters.

(L1) (Factor Strength) We assume that, for k ∈ [K], Ak is of full rank, rk = o(T 1/3), and

as dk → ∞,

D−1/2
k AT

kAkD−1/2
k → ΣΣΣA,k, (3.4)

where Dk = diag(AT
kAk) and ΣΣΣA,k is positive definite with all eigenvalues bounded

away from 0 and infinity. We assume (Dk) j j ≍ d
αk, j
k for j ∈ [rk], and 0 < αk,rk ≤

·· · ≤ αk,2 ≤ αk,1 ≤ 1.



22
Factor Loadings Estimation in Time Series Tensor Factor Models by Pre-averaging and

Iterative Projection

Assumption (L1) states that the factors can have different strengths. When K = 1 and

α1, j = α for j ∈ [r1], (3.4) reduces to the assumption of (approximate) vector factor model

with the same strength, which is discussed in Bai and Ng (2023). Hence, our assumption is

a generalisation of Bai and Ng (2023) to a tensor setting with mixed strengths of factors,

which is more flexible to apply on many real datasets. In addition, we do not assume the

orthogonality of Ak as Freyaldenhoven (2022) did, since this would be incompatible with

the expression of factor strength and signal accumulation in terms of the norm and row

sum of Ak. The concept of a pervasive factor, for instance, depends on a column of Ak

being dense. However, such an interpretation can be lost completely under the assumption

of orthogonal columns in Ak.

Note that in Assumption (L1), we allow rk to diverge as well, facilitating the possibility

that the product r = ∏
K
k=1 rk becomes large with an increasing K. However, we still assume

that K itself is finite because in practice, it is hard to observe and interpret a tensor with an

extremely large number of modes (K). Our theorems allow for the flexibility by taking the

potentially increasing rate of r into consideration.

(R1) The time series {Z f ,t} from Assumption (F1), {Ze,t} and {Zε,t} from Assumption

(E2) are mutually independent of each other. Define zε,t,i1,··· ,iK , to be an element

of Zε,t for t ∈ [T ], ik ∈ [dk]. Similarly define z f ,t,i1,··· ,iK and ze,t,i1,··· ,iK . We assume

E|zε,t,i1,··· ,iK |4 ≤ c, E|z f ,t,i1,··· ,iK |4 ≤ c, E|ze,t,i1,··· ,iK |4 ≤ c for some c<∞ independent

of t and ik.

(R2) We assume λdk(ΣΣΣ
(k)
ε,ℓ) is uniformly bounded below from 0 for ℓ ∈ [d-k], where ΣΣΣ

(k)
ε,ℓ is

defined in (3.3). Let Aε,T be the T ×T matrix with its (t,s) element to be (Aε,T )t,s =

∑q≥0 aε,qaε,q+|t−s|. Denote 0 < y := limdk,T→∞
min(dk,T )
max(dk,T )

≤ 1 and y∗ = min(y,1),

then we assume there exists c1 ∈ (1−y∗,1] such that λ⌊c1T⌋(Aε,T )> c2 > 0 for large

T , where c2 is a positive constant.

Assumption (R1) relaxes the need for Gaussian or sub-Gaussian random variables

(see Zhang and Xia (2018) and Chen et al. (2022) for example), with only bounded

fourth order moments required. This allows for substantially more types of data to be

analyzed. For instance, financial returns data typically displays behavior of heavy-tailed

distribution, where we do not usually want to assume moments beyond order four exist.

We demonstrate in Section 3.4 that in practice our proposed estimators remain robust

even when this assumption is violated and bounded fourth-order moments do not exist.

Note that Assumption (E2) and (R1) together imply that we are assuming linear process
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for factors and idiosyncratic components with finite fourth order moments. To quantify

serial dependence, other types of assumptions are also possible, such as assuming an

α-mixing process (Chen and Fan, 2021; Yu et al., 2022) or directly bounding the sums of

autocovariances of the idiosyncratic terms (Bai, 2003; Bai and Ng, 2002; Barigozzi et al.,

2023b).

Finally, together with Assumption (R1), Assumption (R2) enables us to bound the

eigenvalues of various sample covariance matrices from below (see (3.28), (3.29) and

(3.36) in Lemma 3.1 and Lemma 3.2). The first part of Assumption (R2) assumes the

positive definiteness of the covariance matrix of independent noise, and the second part

presents the technical requirement similar to Assumption D of Ahn and Horenstein (2013)

which enables us to utilize random matrix theory. As long as the serial correlations of the

ε
(k)
t,ℓ, j’s are not too strong, Assumption (R2) will be satisfied.

For convenience of further theoretical analysis, we define Qk = AkD−1/2
k . Since

QT
kQk → ΣΣΣA,k, Qk is a re-normalized version of Ak. In addition, we apply the singular

value decomposition of Ak as

Ak = UkG1/2
k VT

k, (3.5)

where Uk ∈ Rdk×rk has orthogonal columns such that UT
kUk = Irk , Gk ∈ Rrk×rk is diagonal

and consists of the eigenvalues of AT
kAk in decreasing order, and Vk ∈ Rrk×rk is an

orthogonal matrix. The subspaces spanned by the columns of Uk, Qk and Ak are the

same, and hence it is equivalent to estimate Uk (or Qk) and Ak, and the columns of Uk

form an orthonormal basis for the column space spanned by Qk (or Ak). We will estimate

Uk (or Qk) instead of Ak in the sections that follow. We need another regularity condition

on the singular values on Gk. This can be relaxed at the expense of lengthier explanations

involving factor loading spaces in all subsequent theorems.

(L1’) The singular values on Gk are distinct.

3.2.2 Potential advantages of pre-averaging

To estimate Ak, using (2.2), the mode-k unfolding of (3.1) can be written as

matk(Xt) = matk(µ)+Akmatk(Ft)AT
-k +matk(Et).
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If we define S j ⊆ [d j] for j ∈ [K], then we can always define the Cartesian product

S-k := SK ×·· ·×Sk+1 ×Sk−1 ×·· ·×S1, such that

1d-k,S-k = 1dK ,SK ⊗·· ·⊗1dk+1,Sk+1 ⊗1dk−1,Sk−1 ⊗·· ·⊗1d1,S1.

Projecting on 1d-k,S-k , equivalent to summing the fibres in matk(Xt) over the set S-k, is then

matk(Xt)1d-k,S-k = matk(µ)1d-k,S-k +Akmatk(Ft)AT
-k1d-k,S-k +matk(Et)1d-k,S-k , where

AT
-k1d-k,S-k = AT

K1dK ,SK ⊗·· ·⊗AT
k+11dk+1,Sk+1 ⊗AT

k−11dk−1,Sk−1 ⊗·· ·⊗AT
11d1,S1,

(3.6)

with A-k := AK ⊗·· ·Ak+1 ⊗Ak−1 ⊗·· ·⊗A1. Hence projection of the data using 1d-k,S-k

can be seen as pre-averaging the rows of each A j using S j for j ∈ [K]\{k}.

It is important to note that the pre-averaging procedure for estimating Ak is based on

summing the rows of A j for j ̸= k. For example, when K = 2, pre-averaging the rows of

A2 is for estimating A1, while pre-averaging the rows of A1 is for estimating A2. For ease

of understanding, consider the case when K = 2 and the model becomes

Xt = µ +A1FtAT
2 +Et . (3.7)

To estimate A1, we only have one mode (mode-2) for pre-averaging, and thus A-1 = A2,

S-1 = S2 and 1d-1,S-1 = 1d2,S2 . Then projecting on 1d2,S2 is equivalent to summing the

columns (mode-1 fibres) in Xt over the set S2, which leads to

Xt1d2,S2 = µ1d2,S2 +A1FtAT
21d2,S2 +Et1d2,S2 . (3.8)

Hence, we are projecting of the data using 1d2,S2 , which can be seen as pre-averaging the

rows of A2 using S2 ⊆ [d2].

While we re-estimate by projection in Section 3.3, and papers like Yu et al. (2022) does

projection estimation as well, the aim of this section is to provide an initial estimator of

projection direction with quality that can be controlled by careful selection of randomly

generated S j. The method to select S j among multiple random samples is introduced in

Section 3.2.3, which leads to the pre-averaging estimator in Section 3.2.5.
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The potential advantages of pre-averaging can be illustrated as follows. Consider just

calculating the second order moments

T

∑
t=1

matk(Xt −X̄ )matT
k(Xt −X̄ ) =: S0 +N1 +NT

1 +N2, where

S0 := Ak

T

∑
t=1

(
matk(Ft − F̄ )AT

-kA-kmatT
k(Ft − F̄ )

)
AT

k, (3.9)

N1 := Ak

T

∑
t=1

(
matk(Ft − F̄ )AT

-kmatT
k(Et − Ē )

)
, N2 :=

T

∑
t=1

matk(Et − Ē )matT
k(Et − Ē ),

and extracting an estimator of Ak through PCA (e.g., see Bai (2003)). Our proposed pre-

averaging estimator, like a projected estimator, can accumulate significantly more signals

before doing the PCA step for extracting an estimator of Ak. This is because the signal

term Ak ∑
T
t=1 matk(Ft − F̄ )AT

-k1d-k,S-k1
T
d-k,S-k

A-kmatT
k(Ft − F̄ )AT

k (from using 1d-k,S-k as

the projection direction of the data) can be significantly larger than S0 in (3.9), since the

diagonal elements of AT
-k1d-k,S-k1

T
d-k,S-k

A-k can be much larger than those in AT
-kA-k. For

instance, when A-k has a column with all positive or negative elements (e.g., factor loading

entries for the market factors in finance), we have diagonal elements of AT
-k1d-k,S-k1T

d-k,S-k
A-k

of order d2
-k, while those in AT

-kA-k are only of order d-k.

For ease of understanding, consider the matrix factor model (3.7) when K = 2. To

estimate A1, the signal term of the projected data (3.8) obtained by pre-averaging becomes

A1

(
∑

T
t=1 FtAT

21d2,S21T
d2,S2

A2FT
t

)
AT

1, while the signal (3.9) for directly using the second

order moments becomes A1
(
∑

T
t=1 FtAT

2A2FT
t
)

AT
1. If A2 has a column with the majority of

elements having the same sign and |S2| ≍ d2, then the diagonal elements of AT
21d2,S21T

d2,S2
A2

have order d2
2 , while those in AT

2A2 are only of order d2. Thus, pre-averaging the rows of

A2 can potentially accumulate significantly more signals in estimating A1. For example,

in practice, the first PC is usually the mean of data, which has majority of elements of

the same sign. If the first factor in A2 coincides with the first PC, then the diagonal

elements of AT
21d2,S21T

d2,S2
A2 can easily achieve order d2

2 , which leads to significant signal

accumulation that helps us obtain a more accurate estimator of A1.

The following assumption provides a more technical definition of signal accumulation

through pre-averaging.

(L2) (Signal accumulation from summing) For k ∈ [K], let Mk,0 > 0 be the number of

different sums of rows of Ak considered, and for m ∈ [Mk,0], denote Sk,m ⊆ [dk] to be

the m-th index set for summing the rows of Ak. With the choice of |Sk,m|= ⌊dk/2⌋,



26
Factor Loadings Estimation in Time Series Tensor Factor Models by Pre-averaging and

Iterative Projection

define

sk,m :=
∥∥AT

k1dk,Sk,m

∥∥2
, sk,max := max

m∈[Mk,0]
sk,m, s-k,max :=

K

∏
j=1; j ̸=k

s j,max. (3.10)

We assume for some zk ≤ rk,

d-k

s-k,max

(
1+

dk

T

)
= o

(
d

αk,zk
k

)
. (3.11)

In Assumption (L2), sk,m can be seen as a measure of accumulation of signals for a

specific sample m ∈ [Mk,0], and sk,max is the “largest” accumulation of signal we can attain

over the Mk,0 samples. In Section 3.2.3, the method to provide a carefully selection of

randomly generated S j,m is introduced, and Section 3.2.4 gives a more thorough discussion

on the number of samples needed to secure enough signal accumulation with a large

probability.

Note that we choose Sk,m with size |Sk,m| ≍ dk (e.g., |Sk,m| = ⌊dk/2⌋ in Assumption

(L2)) for each m ∈ [Mk,0]. This choice allows for the sum of rows of Ak to be potentially

large with a large probability (see also Section 3.2.4).

We also remark that the signal accumulation in Assumption (L2) does not require each

dk to be diverging. In Assumption (L2), some dk’s can be finite as long as d-k/s-k,max = o(1).

This can be achieved when, for example, there is an A j for some j ̸= k such that the

majority of the elements in a column are of the same sign, so that s j,m ≻ d j, resulting in

d-k/s-k,max = o(1). Thus, to estimate Ak for a specific mode k, we can potentially allow

d j’s for j ̸= k to be finite if the above situation holds, though dk itself should still be

diveging by Assumption (L1). However, we do not know this beforehand, and we suggest

to use the method when all dk’s are diverging to be on the safe side. In addition, as in

Assumption (L1), having dk → ∞ is a common assumption to make sure ‘spiked’ signal

eigenvalues are larger (in rate) than those from the noise.

3.2.3 Choosing samples of tensor fibres

We first present an algorithm for choosing the “best” sample of tensor fibres to sum. Recall

from Assumption (L2) that we define sk,m to be a measure of signal accumulation for a

specific sample m ∈ [Mk,0], and let s-k,m := ∏
K
j=1; j ̸=k s j,m. To estimate Ak, we aim to find

the sample with the largest s-k,m, i.e., the largest signal accumulation by pre-averaging the

rows of each A j for j ̸= k, as presented in (3.6). The following algorithm is designed to
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produce the sample with the largest signal accumulation over all random samples generated.

Algorithm for choosing the “best” sample of tensor fibres

1. Initialize Mk,0 for each k ∈ [K].

2. Generate a sequence of independent sets {Sk,m}k∈[K],m∈[Mk,0]. Each Sk,m chooses

uniformly over [dk], with |Sk,m|= ⌊dk/2⌋.

3. Fix k ∈ [K]. Define M0 := ∏ j∈[K]\{k}M j,0. For each m ∈ [M0], define S-k,m :=

× j∈[K]\{k}S j,m j and 1d-k,S-k,m :=⊗ j∈[K]\{k}1d j,S j,m j
for some m j ∈ [M j,0].

4. For the same fixed k from step 3, define for each m ∈ [M0],

X̃k,m := (matk(X1)1d-k,S-k,m, . . . ,matk(XT )1d-k,S-k,m)
T, (3.12)

and for an integer l satisfying rk + 1 ≤ l ≤ ⌊cmin(T,dk)⌋ − rk for some c > 0,

construct

ERl,m :=
λ1
(
X̃T

k,m

(
IT − 1

T 1T 1T
T
)

X̃k,m
)

λl
(
X̃T

k,m

(
IT − 1

T 1T 1T
T
)

X̃k,m
) , (3.13)

which represents the ratio of the largest eigenvalue and the l-th largest eigenvalue of

the sample covariance matrix of X̃k,m, with l chosen to be greater than rk.

5. The “best” sample m ∈ [M0] for estimating Ak is the one that maximizes ERl,m. We

denote by S-k,max :=× j∈[K]\{k}S j,max the corresponding product set, and

s-k,max := ∏
j∈[K]\{k}

s j,max := ∏
j∈[K]\{k}

∥∥AT
j1d j,S j,max

∥∥2
.

6. Repeat steps 3,4,5 until each k ∈ [K] is covered.

The justification of step 4 is as follows. With Assumption (L1) and (R2) satisfied, we

have by Lemma 3.2 that the eigenvalue-ratio ERl,m in (3.13) has

ERl,m ≍P d
αk,1
k

[
d-k

s-k,m

(
1+

dk

T

)]−1

. (3.14)

ERl,m can be seen as a measure of the signal-to-noise ratio in a specific sample X̃k,m,

since for the sample covariance matrix of X̃k,m, its largest eigenvalue reflects the largest
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magnitude of signal observed, and its l-th largest eigenvalue with l ≥ rk +1 reflects the

approximate level of noise contained in the sample. Hence, for a specific sample, (3.14)

implies that ERl,m should have magnitude proportional to s-k,m, and larger ERl,m observed

means the sample has accumulated a larger magnitude of signal. Thus, the sample that

maximised ERl,m in fact asymptotically maximizes the product of signals, from s-k,m to

s-k,max.

To better understanding the above algorithm, consider the case when K = 2 and

we want to estimate A1. Then M0 = M2,0, and for each random sample m ∈ [M0], we

generate S2,m ⊆ [d2] (with |S2,m| = ⌊d2/2⌋) to be the m-th index set. We next create

X̃1,m := (X11d2,S2,m, . . . ,XT 1d2,S2,m)
T, and calculate the eigenvalue ratio ERl,m as in (3.13).

Finally, among all M0 samples generated, we find the one which maximizes ERl,m as

the “best” sample for estimating A1, with the largest accumulated signal to be defined as

s-1,max = s2,max.

In step 4 of the above algorithm, we need to choose l such that l ≥ rk +1. One way to

choose l is to use expert opinion. A typical value of l we use depends on the user’s idea of

the maximum value of rk. Suppose for an economic data set, we expect rk ≤ 8. Then we

can use l = 9 for constructing ERl . For a more data-driven way, note from Lemma 3.2 that

for a particular sample with product set S-k,m ⊆ [d-k],

λi

(
X̃T

k,m

(
IT − 1

T
1T 1T

T

)
X̃k,m/T

)
≍P

 d
αk,i
k , i ∈ [rk];
d-k

s-k,m

(
1+ dk

T

)
, rk +1 ≤ i ≤ ⌊cmin(T,dk)⌋− rk,

where s-k,m is defined in (3.10), and X̃k,m in (3.12). Hence for dk ≍ T , if we have a sample

S-k,m such that d-k/s-k,m = O(1), then plotting the ordered-eigenvalues from the largest to

smallest, we would expect to see a large dip at the (rk +1)th position. If we do not see

such a dip, then we can generate another sample S-k,m and try again. Obtaining a sample

with d-k/s-k,m = O(1) should not take long. See the section below.

3.2.4 How many samples do we need

In most applications with dk = O(T ) for each k ∈ [K], if the ratio d-k/s-k,max = O(1),

then Assumption (L2) is automatically satisfied, and the rate of convergence in (3.18) in

Theorem 3.1 becomes d
−αk,1
k when we choose zk = 1 there. One way to achieve this is to

have sk,max ≍ dk for each k ∈ [K].
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The number of samples required to achieve sk,max ≍ dk depends on the signs of elements,

or more specifically, mean of the elements in Ak. If there exists a dense column in Ak

with the majority of elements having the same sign (i.e. the column has a non-zero

mean), then any sample with |Sk,m|= ⌊dk/2⌋ can achieve AT
k1dk,Sk,m ≍ dk, and thus sk,m =

(AT
k1dk,Sk,m)

2 ≍ d2
k , which is larger than dk. Therefore, sk,max = (maxm∈[Mk,0]A

T
k1dk,Sk,m)

2 ≍
d2

k can be easily achieved with just one sample (i.e. Mk,0 = 1).

On the other hand, if all columns in Ak contain a significant number of elements with

opposite signs (for example, half positive and half negative), we may require more samples

to achieve sk,max ≍ dk. Consider the scenario where for each k ∈ [K], rk = 1 and Ak contains

dk i.i.d. standard normal random variables, with Ai independent of A j for i ̸= j. In this case,

approximately half of the elements of Ak are positive and the other half are negative, and

the column of Ak has mean zero. For each Sk,m ⊆ [dk] with m ∈ [Mk,0], we want to choose

the Sk,m such that AT
k1dk,Sk,m is the largest, and that sk,max = (maxm∈[Mk,0]A

T
k1dk,Sk,m)

2 ≍P dk.

Now for each m ∈ [Mk,0],

zk,m :=
AT

k1dk,Sk,m

⌊dk/2⌋1/2 ∼ N(0,1), and corr(zk,m1 ,zk,m2) =
|Sk,m1 ∩Sk,m2|

⌊dk/2⌋
, (3.15)

if we are choosing |Sk,m|= ⌊dk/2⌋ for each m ∈ [Mk,0]. Then by Theorem 3.4 of Hartigan

(2014), we have

P
(

max
m∈[Mk,0]

zk,m ≥ σ(N +Lα − 1
2

log(N +Lα))
)
≥ 1−2α, where

N := log(M2
k,0/2π), Lα :=−2log(−log(α)), σ := min

i∈[Mk,0]
var(zk,i −E(zk,i|zk,1, . . . ,zk,i−1)),

as long as N +Lα ≥ 6. With α = 0.025, then N +Lα ≥ 6 implies Mk,0 ≥ 186, and with

this we have

P( max
m∈[Mk,0]

zk,m ≥ 5.1σ)≥ 0.95, (3.16)

meaning that sk,max = (maxm∈[Mk,0]A
T
k1dk,Sk,m)

2 has order dk with over 95% probability.

Hence if K = 2, when we are estimating A1 and to sample fibres from mat1(Xt) using

S-1,max = S2,max, we have when M0 = M2,0 ≥ 186 that over 95% probability we can have

s-1,max = s2,max ≍ d2 = d-1.

In a more extreme scenario, suppose rk = 1 and each element in Ak follows the

distribution such that P
(
(Ak) j = c1

)
= 0.5 and P

(
(Ak) j = c2

)
= 0.5, with c1 > 0 and

c2 < 0. This represents the case where half of the elements in Ak are strictly positive and
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the other half are strictly negative. If c1+c2 ̸= 0, then any sample with |Sk,m|= ⌊dk/2⌋ can

easily have AT
k1dk,Sk,m ≍ dk, and thus achieve sk,max = (AT

k1dk,Sk,m)
2 ≍ d2

k . If c1 + c2 = 0,

then by applying the Central Limit Theorem, as dk → ∞, we have zk,m :=
AT

k 1dk ,Sk,m

⌊dk/2⌋1/2
D−→

N(0,1), and the arguments from (3.15) onwards apply. Thus, with Mk,0 ≥ 186, we have

sk,max = (maxm∈[Mk,0]A
T
k1dk,Sk,m)

2 ≍ dk with over 95% probability.

To conclude, when there exists a column in Ak with mean of elements to be non-zero,

then sk,max ≍ d2
k can be easily achieved with any sample. If all columns in Ak have zero

means (i.e. half positive and half negative elements which sums to zero), then we have

sk,max ≍ dk with high probability when Mk,0 ≥ 186. The value of Mk,0 in practice to achieve

sk,max ≍ dk should be smaller than 186 since the constant 5.1σ above in (3.16) can be made

smaller. In fact, in practice, we find that around Mk,0 = 15 does a perfect job in all our

simulation settings in securing sk,max ≍ dk. It means that with K = 3, say we are estimating

A2, then M0 = M1,0M3,0 = 225 works fine for securing s-2,max ≍ d1d3 = d-2. Indeed in

all simulation settings, we use M0 = 200 for K = 2 or 3 and get very good performance

overall.

We do not suggest explicit tuning of M0, as our pre-averaging estimator is an initial

estimator for feeding our iterative projection procedure. Simulation experiments in Section

3.4.2 has clearly shown that the practical performance of our iterative projection estimator

remains at a good constant level no matter the initial M0 we use.

3.2.5 Theoretical results for the pre-averaging estimator

In Section 3.2.3, we choose S-k,max for summing the columns of matk(Xt). To create

stabler estimators, we can construct M different sets S(m)
-k,max ⊆ [d-k], m ∈ [M] (we set M = 5

in all our simulations), by choosing the best M from the M0 samples in the procedure laid

out in Section 3.2.3, and form X̃k,1, . . . , X̃k,M, where each X̃k,i is defined in (3.12). Note

that we choose M to be a small number compared to M0, ensuring that we only utilize

samples with the largest signal accumulation. This approach leads to the best estimation

accuracy of the pre-averaging estimator, as defined below. Let

Σ̂ΣΣx̃k,agg :=
1
M

M

∑
m=1

X̃T
k,m

(
IT − 1

T 1T 1T
T
)

X̃k,m

T
. (3.17)

The pre-averaging estimator Q̂k,pre,(zk) is defined as the zk eigenvectors corresponding

to the zk largest eigenvalues of Σ̂ΣΣx̃k,agg, with the constraint Q̂T
k,pre,(zk)

Q̂k,pre,(zk) = Izk , for
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any zk ≤ rk. The theoretical properties of Q̂k,pre,(zk) can be summarized in the following

theorem.

Theorem 3.1. Let M represent the number of selected samples from all M0 samples,

following the procedure outlined in Section 3.2.3. Let Assumption (E1), (E2), (F1), (L1),

(L2), (R1), (R2) be satisfied for all M chosen random samples for constructing Σ̂ΣΣx̃k,agg, and

re,k = O(dk). Then

∥∥Q̂k,pre,(zk)−QkHk
∥∥2

= Op

(
d
−2αk,zk
k ck,max

)
, where (3.18)

ck,max := min
{

1+
dk

T
,
rkdk

T

}
d-k

s-k,max
+d

αk,1
k

(
1+

d2
k

T 2

)
d2

-k

s2
-k,max

,

Hk := T−1D1/2
k

1
M

M

∑
m=1

[
F̃k,m

(
IT − 1

T
1T 1T

T

)
F̃T

k,m

]
AT

kQ̂k,pre,(zk)Ṽ
−1
k , with

F̃k,m := (matk(F1,-k)1d-k,S
(m)
-k,max

, . . . ,matk(FT,-k)1d-k,S
(m)
-k,max

),

where Hk is a rotation matrix with rank(Hk) = zk, and Ṽk is diagonal, containing the

zk eigenvalues (in decreasing order) of Σ̂ΣΣx̃k,agg. Moreover, further assuming (L1’), there

exists Ûk,pre,(zk) with ÛT
k,pre,(zk)

Ûk,pre,(zk) = Izk such that Q̂k,pre,(zk) = Ûk,pre,(zk)Pk,pre,(zk)

with Pk,pre,(zk) being an orthogonal matrix, so that

∥∥Ûk,pre,(zk)−Uk,(zk)

∥∥2
= Op

(
d
−2αk,zk
k

[
d

2αk,1
k

rk

T
+ ck,max

])
. (3.19)

The matrix Uk,(zk) is defined to be the matrix consisting of the first zk columns of Uk.

In the above theorem, Assumptions (E1), (E2), (F1), (L1), (R1), (R2) are naturally

satisfied for any sample with |S j,m| = ⌊d j/2⌋, j ∈ [d-k], and Assumption (L2) will be

satisfied for the M chosen samples by following the algorithm outlined in Section 3.2.3

with a suitable choice for M0, as discussed in Section 3.2.4. The meanings for (3.18) and

(3.19) are different. When zk < rk, (3.18) suggests that the estimated directions Q̂k,pre,(zk)

will lie in the subspace spanned by the columns of Qk (or Uk), but it may not be “close”

to the directions corresponding to the strongest zk factors. However, with (3.19), we can

conclude that Ûk,pre,(zk) will be “close” to the directions which correspond to the strongest

zk factors. As a compromise, (3.19) involves an extra rate d
2(αk,1−αk,zk )

k rkT−1 as compared

to (3.18). Such a difference is especially notable when we set zk = 1 and perform the

iterative projection in Section 3.3. In addition, (3.19) requires an additional assumption

(L1’) that all population eigenvalues are distinct.
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Remark: Suppose in (L2), the ratio d-k/s-k,max is of order d−1
-k , which can be achieved

if, for instance, there exists a dense column in A j (i.e., pervasive factor) having majority

of elements of the same sign for each j ∈ [K]. Suppose further that the rk’s and K are

constants, with dk ≍ T for each k ∈ [K]. The results from Theorem 3.1 implies that the

projection matrix P̂k,pre := Q̂k,pre,(rk)Q̂
T
k,pre,(rk)

has error rate

∥∥P̂k,pre −Qk(QT
kQk)

−1QT
k
∥∥= ∥∥P̂k,pre −UkUT

k
∥∥

= OP(d
−αk,rk
k (d−1/2

-k +d
αk,1/2
k d−1

-k )).
(3.20)

This can be compared to the rates in Chen et al. (2022), which need the errors to be

sub-Gaussian (compared to our Assumption (R1) where only bounded fourth moments is

needed). While their σ2 can be considered constant, their λ is such that λ ≍ ∏
K
k=1 d

αk,1
k .

The TIPUP procedure has rate (in our notations, using equation (47) in Chen et al. (2022),

which has a faster rate of convergence than TOPUP)

∥∥P̂k −UkUT
k
∥∥= OP

(
d1/2

k

T 1/2
∏

K
k=1 d

αk,1/2
k

+
d1/2

T 1/2
∏

K
k=1 d

αk,1
k

)
. (3.21)

When all factors are strong, i.e., αk, j = 1, the rate in (3.20) is faster than that in (3.21).

When αk,1 = 1 and αk,rk = 0.5, i.e., the strongest factor is pervasive but the weakest factor

is quite weak, then the two rates will be the same.

The rate in (3.20) can also be compared to Theorem 1 of Chen and Fan (2021) when

K = 2, which under the same conditions laid out at the start of the remark, implies

∥∥P̂k −UkUT
k
∥∥= OP(d

−1/2
k ). (3.22)

Our rate in (3.20) is d−3/2
k when all factors are strong, and is d−1

k when αk,1 = 1 and

αk,rk = 0.5. Both rates are faster than d−1/2
k in (3.22).

Indeed, the better performance of the iterative projection estimator, which uses the pre-

averaging estimator as an initial estimator, is reflected in the empirical results in Section

3.4.

3.2.6 A discussion on optimality

Our pre-averaging estimator achieves a minimax optimal rate under certain scenarios over

a certain localized set. For simplicity, suppose we only take M = 1 in (3.17), and assume
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the data has mean 0. It means from (3.1) that

Σ̂ΣΣx̃k,agg =
1
T

X̃T
k,mX̃k,m = M∗+H, where

H :=
1
T

T

∑
t=1

(AkFtAT
-kqqTET

t +EtqqTA-kFT
t AT

k)

+
1
T

T

∑
t=1

(EtqqTET
t −E[diag(EtqqTET

t )]),

M∗ :=
1
T

T

∑
t=1

AkFtAT
-kqqTA-kFT

t AT
k +

1
T

T

∑
t=1

E[diag(EtqqTET
t )],

with Ft := matk(Ft), Et := matk(Et) and q := 1d-k,S-k,max/
∥∥1d-k,S-k,max

∥∥ (normalizing it does

not affect the eigenvectors). Assume also Et has only i.i.d. entries with finite 4th order

moments (i.e., Et = εεε t in (E1), each element having the same finite variance), so that

E(H) = 0, and T−1
∑

T
t=1 E[diag(EtqqTET

t )] = σ2
ε Idk , where σ2

ε = var((Et)i j).

Let λ ∗
j be the j-th largest eigenvalue of M∗. The set of eigenvectors for M∗ now

coincides with the columns in Uk defined in (3.5), and we write u∗
j to be the j-th column

of Uk. Following equation (20c) in Cheng et al. (2021), define

M (M∗) :=
{

A ∈ Rdk×dk symmetric | rank(A) = rk,

λi(A) = λ
∗
i (1 ≤ i ≤ rk),

∥∥u j(A)−u∗
j
∥∥≤ cσmin

√
dk

|λ ∗
j |

}
,

where u j(A) is the eigenvector corresponding to the j-th largest eigenvalue of A, and σ2
min

is the smallest value amongst of the variance of the elements of H.

We can easily show that, as T → ∞,

λ
∗
j ≍P d

αk, j
k qTA-kAT

-kq ≍
d

αk, j
k s-k,max

d-k
, j ∈ [rk]; σmin ≍

√
qTA-kAT

-kq
T

≍
√

s-k,max

T d-k
.

Then the conditions in Theorem 3 of Cheng et al. (2021) are satisfied, except that the

elements of H are at most asymptotically normal as T → ∞, and are dependent in general.

The conclusion of the theorem is that

inf
û j

sup
A∈M (M∗)

E
∥∥û j −u j(A)

∥∥≥ Cσmin
√

dk

|λ ∗
j |

≍ 1

d
αk, j
k

√
dk

T qTA-kAT
-kq

≍ 1

d
αk, j
k

√
d

T s-k,max
.
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Similar to the remark at the end of Section 3.2.5, suppose s-k,max ⪰ d-kd
αk, j
k , which can

be achieved if there exists a column in Aℓ having “enough” elements of the same sign

for each ℓ ∈ [K] (if all are of the same sign, then s-k,max ≍ d2
-k, which can be much larger

than d-kd
αk, j
k ). Suppose also rk and K are constants, and dℓ ≍ T for each ℓ ∈ [K]. Then

the minimax rate above is d
−αk, j
k (d-k/s-k,max)

1/2 for j ∈ [rk], which coincides with the rate

from Theorem 3.1 for the pre-averaging estimator when zk = j ≤ rk:

∥∥Q̂k,pre,( j)−QkHk
∥∥= OP(d

−αk, j
k (d-k/s-k,max)

1/2) for j ∈ [rk], implying∥∥P̂k,pre −UkUT
k
∥∥= OP(d

−αk,rk
k (d-k/s-k,max)

1/2),

where P̂k,pre := Q̂k,pre,(rk)Q̂
T
k,pre,(rk)

. Define U(A) := (u1(A), . . . ,urk(A)), then

sup
A∈M (M∗)

∥∥P̂k,pre −U(A)U(A)T
∥∥≤ ∥∥P̂k,pre −UkUT

k
∥∥+ sup

A∈M (M∗)

∥∥U(A)−Uk
∥∥

= OP(d
−αk,rk
k (d-k/s-k,max)

1/2).

3.3 Re-estimation by Projection

While Yu et al. (2022), He et al. (2023a) and Barigozzi et al. (2023b) all deal with projection

estimation of a factor loading matrix in the case of K = 2 or a general K, they all assume

that all factors are pervasive. And in practice, they need to know the number of factors

rk in Ak for each k ∈ [K] first in order to estimate a projection matrix Bk of size d-k × r-k,

where r-k := r/rk with r = r1 · · ·rK .

In contrast, our projection method to be presented here does not need the estimation

of each rk first. This is because in our method, we are projecting in one direction only:

the direction of the strongest factors, iteratively. Setting zk = 1, the pre-averaging vector

Q̂k,pre,(1) is indeed asymptotically pointing to the direction of the strongest factors (see

(3.19) in Theorem 3.1).

Projecting to the direction of the strongest factors is needed in our setting since there are

weak factors. Their estimators have worse rate of convergence and estimation performance

than pervasive ones. Using these worse estimated directions for projections will deteriorate

the performance of the projection estimators. In Section 3.4, we demonstrated that under

the presence of weak factors, our method provides the best performance of factor loading

matrix estimation compared to all other state-of-the-art methods, including the projection

estimation suggested by these three papers.
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In (3.6), we demean the data first and change the projection direction to q-k, where

q-k := qK ⊗·· ·⊗qk+1 ⊗qk−1 ⊗·· ·⊗q1, with qk := Akck, k ∈ [K],

for some non-zero constant vectors ck. Then defining c-k := cK ⊗·· ·ck+1 ⊗ ck−1 ⊗·· ·⊗ c1,

we have q-k = A-kc-k, and we can construct the new projected data as

y(k)t : = matk(Xt −X̄ )q-k (3.23)

= Akmatk(Ft − F̄ )AT
-kA-kc-k +matk(Et − Ē )q-k.

Depending on the direction c-k, we can see from above that the signals from the factors are

strengthened due to the term AT
-kA-kc-k, while the noise level is retained or strengthened,

depending on the level of cross-correlations among the noise fibres.

The projected data can also be used to estimate a finer projection direction, essentially

iterating the projection step. See Theorem 3.2 below and the explanations followed. See

simulation results regarding this in Section 3.4 as well.

3.3.1 Refining the projection direction

From Theorem 3.1, setting zk = 1 there, we obtain q̂k,pre := Q̂k,pre,(1)= Ûk,pre,(1)Pk,pre,(1)=

±Ûk,pre,(1) (WLOG we take the plus sign in the presentations hereafter). For each k ∈ [K],

we create the projected data y(k)t as in (3.23), using

q-k = q̂-k,pre := q̂K,pre ⊗·· ·⊗ q̂k+1,pre ⊗ q̂k−1,pre ⊗·· ·⊗ q̂1,pre. (3.24)

Then we define q̌(1)
k to be the eigenvector corresponding to the largest eigenvalue of the

matrix

Σ̃ΣΣ
(k)
y := T−1

T

∑
t=1

y(k)t y(k)T
t .

The superscript (1) in q̌(1)
k signals that this is the first iterated estimator for Uk,(1). We

can iterate this process to obtain refinement of projection direction. More formally, we

introduce the following algorithm.

Algorithm for Iterative Projection Direction Refinement

1. Initialize q̌(0)
k = q̂k,pre for each k ∈ [K].
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2. For i ≥ 1, at the i-th step, create projected data y(k)t,i := matk(Xt −X̄ )q̌(i−1)
k for each

k ∈ [K].

3. For each k ∈ [K], define q̌(i)
k the eigenvector corresponding to the largest eigenvalue

of

Σ̃ΣΣ
(k)
y,i := T−1

T

∑
t=1

y(k)t,i y(k)T
t,i . (3.25)

4. Replace i by i+1. Go back to step 2. Stop until after the procedure has been repeated

for a fixed number of times.

We present a further assumption needed before presenting Theorem 3.2.

(RE1) For a positive integer N, let A f ,T ∈R(N+1)T×T be defined as A f ,T := (a f ,1, . . . ,a f ,T ),

where

a f ,t := (0T
t−1,a f ,NT ,a f ,NT−1, . . . ,a f ,0,0T

T−t)
T, t ∈ [T ],

with 0 j being a column vector of j zeros and the a f ,q’s are from Assumption (F1).

Define Ae,T and Aε,T similarly using coefficients from {ae,q} and {aε,q} respectively

from Assumption (E2). Then we assume that (with A can be either A f ,T ,Ae,T or

Aε,T )
∥∥A ∥∥ is uniformly bounded above, and

1
T

tr(A TA ) = 1−o(T−2d−2),

1
T

tr(A TA )2 → a1,
1

T 2 1T
T (A

TA )21T → a2,
1

T 3/2 1T
T A TA 1T → a3,

where 1T is a column vector of T ones, and the constants a1,a2 and a3 can be

different for A = A f ,T ,Ae,T and Aε,T respectively.

Consider a truncated linear process {yt}t∈[T ], and the original process {ỹt}t∈[T ],

ỹt = ∑
q≥0

aqzt−q, yt =
NT

∑
q=0

aqzt−q, with var(ỹt) = 1,

where {zt} is a sequence of i.i.d. random variables. Construct the matrix A using {aq}
similar to those in Assumption (RE1). Then A TA contains the variance of {yt} on the

diagonal, and lag-k autocovariance on the k-th off-diagonal. The rates in (RE1) are then

controlling how fast the aq’s are going to 0, and how much serial dependence between

the yt’s are allowed. In particular, general linear processes with absolutely summable
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autocovariance sequence, short range dependent processes like ARMA models, satisfy the

assumption.

Theorem 3.2. Let all the assumptions in Theorem 3.1 be satisfied, together with (RE1). Let

gs := ∏
K
j=1 d

α j,1
j , re := ∏

K
k=1 re,k. Assume further that for each k ∈ [K], r = O(dg−1

s ), re =

o(T ), dk = O(gs) = (re +
√

T/r). Then

∥∥q̌(1)
k −Uk,(1)

∥∥= OP

{√
r
T
+g−1/2

s bk

√
rd
T

}
, where

bk = K
√

rmax

T
+

K

∑
j=1; j ̸=k

d
−α j,1
j c1/2

j,max = o(1).

Furthermore, if rdg−1
s = o(T ), then for an integer m ≥ 1,

∥∥q̌(m+1)
k −Uk,(1)

∥∥= OP

{√
r
T
+g−1/2

s
∥∥q̌(m)

-k −U-k,(1)
∥∥√rd

T

}
= oP(1),

and the Algorithm for Iterative Projection Direction Refinement will produce, after a

certain number of iterations (say m),

∥∥q̌(m)
k −Uk,(1)

∥∥= OP

(√
r
T

)
.

To put the above results into perspective, assume a very common scenario that d1 ≍
·· · ≍ dK ≍ T (this is especially true in economic applications where T is small), with K and

each rk being constants for k ∈ [K]. While Barigozzi et al. (2023b) demonstrate that their

one-step iteration projection estimator is sufficient to achieve good performance, which

is computationally fast, we similarly show that, in certain scenarios especially when all

factors are strong, our iterative projection can achieve the optimal rate in a single step. We

first note that if all factors in Ak are pervasive, i.e., αk,1 = 1 for all k ∈ [K], then gs = d, and

hence
∥∥q̌(1)

k −Uk,(1)
∥∥= OP(T−1/2), and any refinements will retain the same rate. Even if

αk,1 < 1 (i.e., the strongest factor corresponding to Ak is not pervasive),
∥∥q̌(1)

k −Uk,(1)
∥∥

can still be OP(T−1/2), as long as b2
kd/gs = O(1), equivalent to αk,1 ≥ 1/2. The case of

αk,1 = 1/2 presents a significantly weak strongest factor corresponding to Ak, and without

the help of projection and strong factors from other modes’ factor loading spaces, the

typical rate for estimating such a weak factor would be d−1/4
k which is much worse than

T−1/2.

If b2
kd/gs = O(1) is not satisfied (for example, when the strongest factors for some or

all modes are weak), then we require more iterations to achieve the optimal rate. To have
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an idea on the value of m, from the last part of the proof of Theorem 3.2, we need

bk

(√
rd

T gs

)m

= O
(√

r
T

)
.

Suppose dk ≍ T , rk is a constant and d-k/s-k,max ≍ 1 (see Section 3.2.4 on how to achieve

this). Then bk ≍ d
−αk,1/2
k , and hence

m ≥
constant+αk,1log(dk)− log(T )

log( rd
T gs

)
.

Further, if αk,1 = 0.5 (a very weak factor), and d/gs ≍ T 0.95 (recall that we assume

rdg−1
s = o(T )), then as T,dk → ∞, we have m ≥ 10. This is already quite extreme since

d/gs ≍ T 0.95 means that the strongest factors of some or all other Ak’s are also weak. The

fact that we are using m = 30 in our simulations in Section 3.4 throughout made sure that

the rate
√

r/T is reached, and we do not recommend users increase m further for saving

computational time.

The fixed rate OP(
√

r/T ) in Theorem 3.2 comes from the fact that we need to

distinguish the direction of the strongest factors from all other directions of weaker factors

in order to find the “best” projection direction. In the case of studying the whole Uk, we in

fact may get a better rate of convergence even in the presence of weak factors.

Theorem 3.3. Let all the assumptions in Theorem 3.2 be satisfied. Suppose we know the

value of rk, and perform an eigenanalysis on Σ̃ΣΣ
(k)
y,m+1 in (4.2) which utilized the projection

direction q̌(m)
k in Theorem 3.2, obtaining rk eigenvectors as an estimator of the factor

loading space of Ak.

Then there exists Ǔk ∈ Rdk×rk with ǓT
kǓk = Irk such that the rk eigenvectors obtained

above is Ǔk multiplied with some orthogonal matrix, with

∥∥Ǔk −Uk
∥∥= OP

{
d

αk,1−αk,rk
k

[
g−1

s +

√
r

T gs

(
r1/2

e +d1/2
k +

√
rd
T

)]}
.

Our projection estimator will consistently estimate the space spanned by Ak if the

rate above is op(1). Consider d1 ≍ ·· · ≍ dK ≍ T , with K and rk being constants for

k ∈ [K]. If all factors for Ak are pervasive, i.e., αk, j = 1 for all j ∈ [rk], then we have∥∥Ǔk −Uk
∥∥ = OP(T−1). When K = 2, this has the same rate as the average Frobenius

error norm of the estimators of A1 and A2 in Theorem 3.1 and Theorem 4.1 of He et al.

(2023a). This is also consistent with the rate in Corollary 3.1 of Barigozzi et al. (2023b),
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Theorem 3.1 and 3.2 of He et al. (2022), and Theorem 3.1 of Yu et al. (2022) under the

same scenario. When K ≥ 3, under the same scenario, Corollary 3.1 of Barigozzi et al.

(2023b) takes advantage and produces a faster rate of OP(T−3/2). However, if there exist

some d j with smaller order such that d j ≍ T 1/2 for some j, then both Barigozzi et al.

(2023b) and our Theorem 3.3 gives the same rate of OP(T−1).

The above rate in Theorem 3.3 can be greatly improved if the term
√

rd/T can be

removed. It is there because the estimated projection direction is correlated with the

data in general. If we have independent noise tensor {Et} (e.g., the setting in Chen et al.

(2022)) we can split the data into half, and using only one half of it for projection direction

estimation while the other half is for re-estimation only. Then the estimated projection

direction will be independent of the re-estimation data, and hence the final rate indeed will

be rid of this term (see Abadir et al. (2014); Lam (2016) for more discussions on sample

splitting). When all the factors are strong, this improved rate will be the same as the one

for TIPUP in equation (47) of Chen et al. (2022). We do not pursue this since our paper

focuses on time series data with serial correlation in the noise. Moreover, the empirical

performance of our projection method is very good already.

Remark: We have not included the asymptotic normality result for our factor loading

estimators. This is because to estimate the covariance matrix in the asymptotic normality

result, we somehow need to estimate the strength of different factors in the process, which

poses another layer of practical and conceptual challenges. The accurate estimation of

factor strength, and the inference of such, are important questions worthy of investigating

as an independent topic since our NYC Taxi example in Section 4.4 has demonstrated that

weak factors exist, and is indicative to follow procedures that do not assume pervasive

factors in the first place. In Chapter 5, we propose a possible method to estimate factor

strengths under certain identification conditions, which could pave the way for further

research into the inference problem.

3.4 Simulation Experiments

In this section, we conduct simulation experiments to compare the performances of our

iterative projection estimators (PROJ) to other state-of-the-art competitors. The pre-

averaging estimator (PRE) is also presented with different M0 and compared to PROJ.
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3.4.1 Simulation settings

For generating our data, we use model (3.1), with elements in µ being i.i.d. standard normal

in each repetition of experiment. For k ∈ [K], each factor loading matrix Ak is generated

independently with Ak = BkRk, where the elements in Bk ∈ Rdk×rk are i.i.d. U(u1,u2),

and Rk ∈ Rrk×rk is diagonal with the j-th diagonal element being d
−ζk, j
k , 0 ≤ ζk, j ≤ 0.5.

Pervasive (strong) factors have ζk, j = 0, while weak factors have 0 < ζk, j ≤ 0.5.

The elements in Ft are independent standardized AR(5) with AR coefficients 0.7,0.3,-

0.4,0.2 and -0.1. Same for the elements in Fe,t and εεε t in (3.2), but their AR coefficients are

(-0.7,-0.3,-0.4,0.2,0.1) and (0.8,0.4, -0.4,0.2,-0.1) respectively. The standard deviation of

each element of εεε t is randomly generated with i.i.d. |N (0,1)|. Each entry of the matrices

Ae,k ∈ Rdk×re,k ,k ∈ [K] is generated with i.i.d. standard normal, but has an independent

probability of 0.7 being set exactly to 0. Each experiment is repeated 500 times. We

consider the simulation settings (I), (II), (III) and (IV), with sub-settings (a) and (b),

detailed below:

(Ia) Two strong factors with rk = 2, ζk, j = 0 for all k, j, and u1 =−2, u2 = 2 (elements

in Ak have mean 0)).

(IIa) One strong factor and one weak factor with rk = 2, ζk,1 = 0 and ζk,2 = 0.2 for all k;

u1 =−2, u2 = 2.

(IIIa) Two weak factors with rk = 2, ζk,1 = 0.1 and ζk,2 = 0.2 for all k; u1 =−2, u2 = 2.

(IVa) Four strong factors with rk = 4, ζk, j = 0 for all k, j; u1 =−2, u2 = 2.

Setting (Ib) to (IVb) are the same as (Ia) to (IVa) respectively, except that u1 = 0, u2 = 2,

so that the elements in Ak have non-zero mean, leading to larger sk,max.

Setting (I)(II)(III) and (IV) are designed to test the performance of estimation methods

under different profiles of factor strengths. In Setting (I), we have two strong factors with

αk,1 = αk,2 = 1 for each mode k, which is consistent with the pervasive factor assumptions

of Barigozzi et al. (2023b); Chen and Fan (2021); He et al. (2023a, 2022); Yu et al. (2022).

In Setting (II), αk,1 = 1 and αk,2 = 0.6, so the factor strengths differ and we have one

strong factor and one weak factor. In Setting (III), even the strongest factor becomes

weak, as αk,1 = 0.8 and αk,2 = 0.6. In Setting (IV), we may encounter what we refer to

as ‘pseudo weak factors’. This is because even if we generate four factors to be equally

strong, the four population eigenvalues are likely to be separated, leading to an effect that

certain factors seems to behave ‘weaker’ than the others.
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In each Setting (I)-(IV), the distinction between sub-settings (a) and (b) is intended

to highlight the impact of signal accumulation through pre-averaging. In sub-setting (a),

the mean of each element of Ak is 0, whereas in sub-setting (b), all entries of Ak share the

same sign. This difference potentially results in greater signal accumulation (larger sk,max)

through pre-averaging in sub-setting (b). For a more detailed analysis, please refer to the

simulation results in Section 3.4.2.

To test the performance of different estimation methods under heavy-tailed distributions,

we consider two distributions for the innovation processes of Ft , Fe,t and εεε t : 1) i.i.d.

standard normal; 2) i.i.d. t3. Thus, there are totally sixteen profiles considered. For all

profiles above, we set re,k = 2 for all k. Note that the innovations t3 do not have bounded

fourth moments as required by Assumption (R1). We test the robustness of different

methods under violations of this assumption.

3.4.2 Effect of M0 in pre-averaging and projection

In the pre-averaging procedure, as described in Section 3.2, we generate a total of M0

random samples. Following the algorithm outlined in Section 3.2.3, we then select the ‘best’

M samples from these generated samples, which achieve the largest signal accumulation,

to construct the pre-averaging estimator. We test empirically the effect of using different

M0 in the pre-averaging procedure. We fix M = 5, and consider M0 = 200, 400 and 800,

respectively. For each M0, we first calculate the pre-averaging estimator Q̂k,pre for each

k ∈ [K], and obtain q̌(0)
k = q̂k,pre = Q̂k,pre,(1). Then we calculate q̌(m)

k according to the

Algorithm for Iterative Projection Direction Refinement in Section 3.3.1 for m = 1, . . . ,29.

Finally, we obtain the iterative projection estimator Ǔk by utilising q̌(29)
-k as the projection

direction for each k ∈ [K].

In factor models, we can only estimate Ak up to rotations. Therefore, to evaluate the

accuracy of factor loading estimators, we aim to compare the column spaces spanned by

the columns of Q̂k and Ak. Recall that Uk is defined as the orthogonal basis of the true

factor loading spaces, while Q̂k represents the orthogonal basis of the estimated factor

loading spaces. A natural measure of the distance between the column spaces of Q̂k and Uk

is given by ∥Q̂kQ̂T
k −UkUT

k∥, i.e. the spectral norm of the difference between the estimated

and true underlying projection matrices, which also equals the sine of the largest principle

angle between the column spaces of Q̂k and Uk. Thus, a smaller value of ∥Q̂kQ̂T
k −UkUT

k∥
indicates a more accurate estimator of the factor loading spaces. In all subsequent sections,

we employ this commonly adopted measure to assess the accuracy of estimation (Chen
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and Fan, 2021; Chen et al., 2022; Han et al., 2020), although other metrics to compare

factor spaces are also possible (Barigozzi et al., 2023b; He et al., 2022).

For ease of presentation, we only display results under t3 distributed errors for each

setting, and consider the following three settings of different dimensions:

i. K = 2, T = 100, d1 = d2 = 40;

ii. K = 2, T = 200, d1 = d2 = 80;

iii. K = 3. T = 200, d1 = d2 = d3 = 15.

We omit the results for A2 (and A3) and only display the estimation accuracy for A1 in

Figures 3.1 to 3.4, since the results for A1 and A2 (and A3) are very similar.

From Figure 3.1 to 3.3, both the pre-averaging and iterative projection estimators have

better estimation accuracy as T and dk increase. Regarding the effect of M0, the first

thing to observe is that in each sub-setting (a), the initial pre-averaging estimator performs

slightly better with larger M0, while in sub-setting (b), M0 does not significantly affect

the accuracy of the pre-averaging estimator. This is natural, as the mean of each element

of Ak in sub-setting (a) is 0 while it is non-zero in sub-setting (b), where pre-averaging

estimators take advantage. In fact, in sub-setting (b), all entries of Ak have the same sign,

so sk,max ≍ d2
k (as the strongest factor in Ak is pervasive) can be easily achieved regardless

of M0. For sub-setting (a), around half of the entries of Ak are positive and the other half

are negative, so it is more difficult to achieve the theoretical maximum order sk,max ≍ d2
k

(this happens when the majority of entries in the chosen sample Sk are of the same sign).

However, in this case, we can still easily achieve sk,max ≍ dk with a small M0 (as discussed

in Section 3.2.4), which is good enough to serve as an initial estimator for the Algorithm

for Iterative Projection Direction Refinement.

The second thing to observe is that in most settings and dimensions, the differences in

performance of the initial pre-averaging estimators (caused by changing M0) do not affect

the estimation accuracy of the subsequent iterative projection estimators. This is because

in our iterative projection, we only need to utilize the strongest factor direction, which is

estimated most accurately by the pre-averaging procedure (see Theorem 3.1 and Section

3.3.1 for more details). Hence, while increasing M0 can lead to better performances of

Q̂k,pre as a whole, a small M0 is usually sufficient to provide an accurate initial direction

q̌(0)
k = q̂k,pre = Q̂k,pre,(1) for projection. This is especially true in Setting (Ia) and (IIa)

where the strongest factor is pervasive. The only exception is Setting (IIIa) with K = 2,



3.4 Simulation Experiments 43

PRE_200 PRE_400 PRE_800 PROJ_200 PROJ_400 PROJ_800

−
4

−
3

−
2

−
1

0

Sub−setting (a), T = 100, dk = 40

PRE_200 PRE_400 PRE_800 PROJ_200 PROJ_400 PROJ_800

−
3

.5
−

3
.0

−
2

.5
−

2
.0

−
1

.5

Sub−setting (b), T = 100, dk = 40

PRE_200 PRE_400 PRE_800 PROJ_200 PROJ_400 PROJ_800

−
4

−
3

−
2

−
1

0

Sub−setting (a), T = 200, dk = 80

PRE_200 PRE_400 PRE_800 PROJ_200 PROJ_400 PROJ_800

−
4

.0
−

3
.5

−
3

.0
−

2
.5

Sub−setting (b), T = 200, dk = 80

Fig. 3.1 Plot of estimation error
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1−U1UT
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∥∥ (in log-scale) for Setting (I), K = 2. Left:
Sub-setting (a). Right: Sub-setting (b).
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Fig. 3.2 Plot of estimation error
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∥∥ (in log-scale) for Setting (II), K = 2.
Left: Sub-setting (a). Right: Sub-setting (b).
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Fig. 3.3 Plot of estimation error
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∥∥ (in log-scale) for Setting (III), K = 2.
Left: Sub-setting (a). Right: Sub-setting (b).
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where even the strongest factor is too weak to be estimated accurately, so increasing M0

may lead to slightly better estimators after projection. However, such an issue is relieved

when K = 3, since we have directions from more modes to be projected, which largely

improves the estimation accuracy. In fact, a comparison between Figure 3.4 and Figure 3.1

to 3.3 reveals that both the pre-averaging and iterative projection estimator perform better

as K increases.

Hence in general, increasing M0 does not significantly affect the performance of

our final estimator obtained by iterative projection in most scenarios. To save some

computational time without sacrificing estimation accuracy, we use M0 = 200 for the

pre-averaging procedure in all of the subsequent simulations.

3.4.3 Comparison to state-of-the-art methods

We compare our iterative projection estimator (PROJ) in estimating the factor loading

spaces with some state-of-the-art methods proposed by recent literature. All the twelve

profiles in Section 3.4.1 and five settings of different dimensions are considered:

i. K = 2, T = 100, d1 = d2 = 40; ii. K = 2, T = 200, d1 = d2 = 80;

iii. K = 3. T = 200, d1 = d2 = d3 = 15; iv. K = 3. T = 200, d1 = d2 = d3 = 25;

v. K = 4. T = 200, d1 = d2 = d3 = d4 = 15.

When K = 2, the following methods designed for matrix-valued factor models are

compared: The method of Wang et al. (2019) is TOPOP in Chen et al. (2022), but we omit

its results since it performs much worse than iTIPUP in Han et al. (2020), which is the best

one among the same type of estimators. The α-PCA estimator of Chen and Fan (2021) is

implemented with α = 0 (the performances for α ∈ {−1,0,1} are comparable according

to Yu et al. (2022)). The projection method of Yu et al. (2022) and Barigozzi et al. (2023b)

are referred to as PE (which is in the same spirit as HOOI). In addition, we also consider

some robust procedures, including the robust tensor factor analysis (RTFA) proposed by

He et al. (2022) and He et al. (2023a), and the Matrix Kendall’s tau (MRTS) by He et al.

(2022). For all the above methods which involve iterations, we set the number of iterations

to be 30.

For settings with K = 3, we do not include α-PCA and MRTS, since they are only

designed for K = 2. For the setting with K = 4, we further exclude RTFA in comparison,

since it requires too much computational time, as can be observed in Table 3.1.
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Figure 3.5 to 3.9 show the logarithm of estimation errors of A1 under the five different

settings of dimensions for Setting (I)(II)(III), with normally and t3 distributed errors,

respectively. It can be seen that our iterative projection estimator (PROJ) generally

outperforms all competitors in all settings and dimensions we consider, and is at least on

par with other competitors.

More specifically, when K = 2, all methods perform reasonably well in sub-setting

(a), but they all perform poorly in sub-setting (b) except our iterative projection estimator

(PROJ). The only difference between sub-setting (a) and (b) is that the mean of each

element of Ak in sub-setting (a) is 0 while it is non-zero in sub-setting (b). Whenever

the mean of the elements are not 0, the pre-averaging estimator, and hence the iterative

projection estimator, can take advantage since pre-averaging is based on summing rows of

A1 (for estimating A2) or A2 (for estimating A1), which accumulates more signal when the

sum is non-zero.

Regarding factor strengths, the advantage of PROJ is more notable in Setting (II) and

(III), when other methods tend to give poorer estimates in the presence of weak factors

in these settings. PE and RTFA perform on par with PROJ in Setting (Ia), (Ib) and (IIa),

but they become less accurate in other settings. PROJ performs well when factor strengths

differ, because it only projects onto the direction of the strongest factors, which are most

accurately estimated in each iteration. In contrast, PE and RTFA project onto all factor

directions, including those for weak factors that are poorly estimated. Consequently,

using these less accurate directions for projection can degrade the performance of their

estimators. Our method is also robust to heavy-tailed errors, and perform better than the

robust procedure RTFA and MRTS in all scenarios. When K = 3 (and 4 as well), most

methods take advantage of a larger K and perform better. Our iterative projection estimator

still performs better than, or at least on par with all competitors.

Finally, Figure 3.10 compares the performance of different estimation methods under

Setting (IV) with four strong factors. As discussed in Section 3.4.1, in such scenarios, the

four population eigenvalues are likely to be separated, leading to an effect of ‘pseudo weak

factors’. Figure 3.10 shows that the performances of iTIPUP, RTFA, and α-PCA suffer

from this effect of ‘pseudo weak factors’, compared to their performances in Setting (I)

with only two strong factors. In contrast, PROJ and PE still perform well in this case.

To conclude, in general, pre-averaging estimator takes advantage of non-zero means in

a factor loading matrix, and our iterative projection estimator performs better when there

are weak factors, while on par with other estimators designed for pervasive factors when all

factors are indeed pervasive. While integrating our pre-averaging or projection algorithm
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with other iterative methods is feasible, we recommend using them together, particularly

when dealing with tensor factor models containing weak factors. This is because our

projection method is specifically tailored to handle the presence of weak factors, while the

pre-averaging procedure is intended to generate the optimal initial direction for projection.

Table 3.1 records the average computational time of factor loading estimations under

different methods and dimensions. For PROJ, we record the total computational time of the

initial pre-averaging procedure and the iterative projection algorithm. It can be seen that

the computational cost of our method is generally on par with iTIPUP and PE, while our

method can be faster when d-k is small, but become slower when d-k grows large. Hence,

in general, our method is more suitable for application when d-k is not excessively large.

The main reason for the increasing computational cost of our method with d-k is that we

need to sample over the d-k fibers during the pre-averaging process. However, our iterative

projection algorithm is fast on its own because it only involves the projection of a vector,

whereas other iterative methods require the projection of a matrix. For other methods,

MRTS is extremely computational expensive, and it gives poor estimation accuracy as well.

α-PCA is the fastest because it does not require any iterations, but it also performs poorly

as can be seen in Figure 3.5 and 3.6. The computational cost of RTFA also grows quickly

when K and dk increase, and it does not give good estimates when K = 3 (see Figure 3.7

and 3.8), which prompt us to not consider using it for K = 4.

PROJ iTIPUP PE α-PCA RTFA MRTS

K = 2
T = 100,dk = 40 1.15 2.01 1.99 0.08 3.88 9.32
T = 200,dk = 80 4.63 4.63 4.55 0.32 15.65 49.73

K = 3
T = 100,dk = 15 3.26 5.79 5.77 / 22.72 /
T = 200,dk = 25 10.66 10.05 10.04 / 151.65 /

K = 4 T = 200,dk = 15 43.80 34.16 33.69 / / /

Table 3.1 Mean of the run time (in seconds) for factor loading estimations under different
methods and different dimensions.



50
Factor Loadings Estimation in Time Series Tensor Factor Models by Pre-averaging and

Iterative Projection

PROJ iTIPUP PE aPCA RTFA MRTS PROJ iTIPUP PE aPCA RTFA MRTS

−
4

−
3

−
2

−
1

0

Setting (I), T = 100,  dk = 40

PROJ iTIPUP PE aPCA RTFA MRTS PROJ iTIPUP PE aPCA RTFA MRTS
−

4
−

3
−

2
−

1
0

Setting (I), T = 200, dk = 80

PROJ iTIPUP PE aPCA RTFA MRTS PROJ iTIPUP PE aPCA RTFA MRTS

−
3

.0
−

2
.5

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

Setting (II), T = 100, dk = 40

PROJ iTIPUP PE aPCA RTFA MRTS PROJ iTIPUP PE aPCA RTFA MRTS

−
3

−
2

−
1

0

Setting (II), T = 200, dk = 80

PROJ iTIPUP PE aPCA RTFA MRTS PROJ iTIPUP PE aPCA RTFA MRTS

−
3

.0
−

2
.5

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

Setting (III), T = 100, dk = 40

PROJ iTIPUP PE aPCA RTFA MRTS PROJ iTIPUP PE aPCA RTFA MRTS

−
3

.0
−

2
.5

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

Setting (III), T = 200, dk = 80

Fig. 3.5 Plot of estimation error
∥∥Q̂1Q̂T

1 −U1UT
1

∥∥ (in log-scale) for K = 2, normally
distributed errors. In each panel, the left six boxplots (in red) represent sub-setting (a),
while the right six boxplots (in blue) represent sub-setting (b).
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Fig. 3.6 Plot of estimation error
∥∥Q̂1Q̂T

1 −U1UT
1

∥∥ (in log-scale) for K = 2, t3-distributed
errors. In each panel, the left six boxplots (in red) represent sub-setting (a), while the right
six boxplots (in blue) represent sub-setting (b).
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Fig. 3.7 Plot of estimation error
∥∥Q̂1Q̂T

1 −U1UT
1

∥∥ (in log-scale) for K = 3, normally
distributed errors. In each panel, the left four boxplots (in red) represent sub-setting (a),
while the right four boxplots (in blue) represent sub-setting (b).
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Fig. 3.8 Plot of estimation error
∥∥Q̂1Q̂T

1 −U1UT
1

∥∥ (in log-scale) for K = 3,T = 200, t3-
distributed errors. In each panel, the left four boxplots (in red) represent sub-setting (a),
while the right four boxplots (in blue) represent sub-setting (b).
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Fig. 3.9 Plot of estimation error
∥∥Q̂1Q̂T

1−U1UT
1

∥∥ (in log-scale) for K = 4,T = 200,dk = 15.
In each panel, the left three boxplots (in red) represent sub-setting (a), while the right three
boxplots (in blue) represent sub-setting (b).
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Fig. 3.10 Plot of estimation error
∥∥Q̂1Q̂T

1 −U1UT
1

∥∥ (in log-scale) for K = 2, Setting (IV).
In each panel, the left six boxplots (in red) represent sub-setting (a), while the right six
boxplots (in blue) represent sub-setting (b).
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3.5 Proof of Theorems

Before we present our proofs, we first introduce some notations which will be used in

the proof of Theorem 3.1. Let f(k)e,t,ℓ = ( f (k)e,t,ℓ, j) to be the ℓ-th column of matk(Fe,t), and

f(k)t,ℓ = ( f (k)t,ℓ, j) be the ℓ-th column vector in matk(Ft). Then

f (k)e,t,ℓ, j = ∑
q≥0

ae,qz(k)e,t−q,ℓ, j, j ∈ [re,k], ℓ ∈ [re,-k]; ε
(k)
t,ℓ, j = ∑

q≥0
aε,qz(k)

ε,t−q,ℓ, j, j ∈ [dk], ℓ ∈ [d-k],

f (k)t,ℓ, j = ∑
q≥0

a f ,qz(k)f ,t−q,ℓ, j, j ∈ [rk]

where z(k)e,t,ℓ, j,z
(k)
ε,t,ℓ, j and z(k)f ,t,ℓ, j are the elements of Ze,t , Zε,t , Z f ,t defined in Assumption

(E2) and (F1), respectively. Furthermore, as introduced in Section 3.2, for a particular

sample S-k,m ⊆ [d-k] with |S j,m| ≍ d j, j ̸= k, denote x̃t,k,m =∑i∈S-k,m
xt,-k,i, f̃t,k,m =∑i∈S-k,m

ft,-k,i,

ẽt,k,m = ∑i∈S-k,m
et,-k,i and µ̃k,m = ∑i∈S-k,m

µ-k,i. Further, define f̈t,k,m = f̃t,k,m/s
1
2
-k,m, write

F̈k,m =
[
f̈1,k,m, . . . , f̈T,k,m

]
∈Rrk×T and F̃k,m =

[̃
f1,k,m, . . . , f̃T,k,m

]
. Similarly, denote ẍt,k,m =

x̃t,k,m/s
1
2
-k,m and Ẍk,m = (ẍ1,k,m, ..., ẍT,k,m)

T ∈ RT×dk , X̃k,m = (x̃1,k,m, ..., x̃T,k,m)
T. Also let

ët,k,m = ẽt,k,m/s
1
2
-k,m, Ëk,m =

(
ë1,k,m, ..., ëT,k,m

)T and Ẽk,m =
(
ẽ1,k,m, ..., ẽT,k,m

)T. Finally, let

µ̈k,m = µ̃k,m/s
1
2
-k,m.

We present four important lemmas under our model assumptions. For convenience of

presentation, we ignore the subscript m in Lemma 3.1, Lemma 3.2 and Lemma 3.4, since

the results apply to all random samples S-k,m ⊆ [d-k] with |S j,m| ≍ d j, j ̸= k.

Lemma 3.1. Under Assumption (E1), (E2), (L1), (L2), (R1), we have

λ1

(
ËT

kËk

T

)
= Op

(
d-k

s-k

(
1+

dk

T

))
, (3.26)

λ1

(
ËT

k

(
IT − 1

T 1T 1T
T
)

Ëk

T

)
= Op

(
d-k

s-k

(
1+

dk

T

))
. (3.27)

In addition, if Assumption (R2) is satisfied, then

P
(

λ⌊cmin(T,dk)⌋

(
ËT

kËk

T

)
≥C

(
d-k

s-k

(
1+

dk

T

)))
= 1, (3.28)

P

(
λ⌊cmin(T,dk)⌋

(
ËT

k

(
IT − 1

T 1T 1T
T
)

Ëk

T

)
≥C

(
d-k

s-k

(
1+

dk

T

)))
= 1, (3.29)

for some c ∈ (0,1] and C > 0.
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In Lemma 3.1, (3.26) provides an upper bound for the largest eigenvalue of ËT
kËk (and

ËT
k

(
IT − 1

T 1T 1T
T
)

Ëk), which facilitates the proof of Lemma 3.4. (3.28) suggests that at

least ⌊cmin(T,dk)⌋ largest eigenvalues of ËT
kËk (and ËT

k

(
IT − 1

T 1T 1T
T
)

Ëk) are of the same

order, which guarantees the validity of using eigenvalue ratio to detect the existence of

factors, which will be further discussed in Remark 3.4.

Lemma 3.2. Under Assumption (E1), (E2), (F1), (L1), (L2), (R1), we have

F̈kF̈T
k

T
→ ΣΣΣF,k

for some positive definite matrix ΣΣΣF,k, with all eigenvalues bounded away from 0 and

infinity. For j ∈ [rk],

λ j

(
F̈kF̈T

k
T

)
≍ 1, (3.30)

λ j (AT
kAk)≍ d

αk, j
k , (3.31)

λ j

(
AkF̈kF̈T

kAT
k

T

)
≍ d

αk, j
k , (3.32)

λ j

(
F̈k
(
IT − 1

T 1T 1T
T
)

F̈T
k

T

)
≍ 1, (3.33)

λ j

(
AkF̈k

(
IT − 1

T 1T 1T
T
)

F̈T
kAT

k
T

)
≍ d

αk, j
k . (3.34)

and for j ∈ [min(zk,rk)],

λ j

(
ẌT

k

(
IT − 1

T 1T 1T
T
)

Ẍk

T

)
≍ d

αk, j
k . (3.35)

In addition, if Assumption (R2) is satisfied, then for min(zk,rk)+1 ≤ j ≤ ⌊cmin(T,dk)⌋−
rk,

λ j

(
ẌT

k

(
IT − 1

T 1T 1T
T
)

Ẍk

T

)
≍ d-k

s-k

(
1+

dk

T

)
. (3.36)

The weak serial dependence of factors and errors are quantified in the following lemma.

Lemma 3.3. Define A f ,T and Ae,T similar to Aε,T in Assumption (R2). Define A f ,T 2 to be

the T 2 ×T 2 fourth moment matrix of the MA process f (k)t,l, j for any k, l, j, and define Ae,T 2

and Aε,T 2 similarly. Then, under Assumption (E1), (E2) and (F1), we have the following
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results: For AT can either be A f ,T , Ae,T or Aε,T ,

1T
T AT 1T = O(T ), ∥AT∥2

F = O(T ). (3.37)

For AT 2 can either be A f ,T 2 , Ae,T 2 or Aε,T 2 ,

1T
T 2AT 21T 2 = O(T 2), ∥AT 2∥2

F = O(T 2). (3.38)

Moreover,

vec(A f ,T )
Tvec(Ae,T ) = O(T ), vec(A f ,T )

Tvec(Aε,T ) = O(T ), (3.39)

1T
T 2A f ,T ⊗Ae,T 1T 2 = O(T 2), 1T

T 2A f ,T ⊗Aε,T 1T 2 = O(T 2), (3.40)

vec(A f ,T ⊗A f ,T )
Tvec(Ae,T 2) = O(T 2), vec(A f ,T ⊗A f ,T )

Tvec(Aε,T 2) = O(T 2), (3.41)

vec(A f ,T 2)
Tvec(Ae,T 2) = O(T 2), vec(A f ,T 2)

Tvec(Aε,T 2) = O(T 2). (3.42)

Given a particular sample, we can obtain Q̂k,(zk) as the zk largest eigenvectors of Σ̂ΣΣx̃k
:=

X̃T
k (IT− 1

T 1T 1T
T)X̃k

T , with normalisation Q̂T
k,(zk)

Q̂k,(zk) = Izk . Let Ṽk be the zk × zk diagonal

matrix of the first zk largest eigenvalues of Σ̂ΣΣx̃k
in decreasing order, and V̈k := Ṽk/s-k. The

theoretical properties of Q̂k,(zk) from a particular sample is presented in the following

lemma.

Lemma 3.4. Under Assumption (E1), (E2), (F1), (L1), (L2), (R1) and re,k = O(dk), for

k ∈ [K], let ck := d2
-k

s2
-k

(
1+ d2

k
T 2

)
+ d-k

s-k
d

αk,1
k min

{
1+ dk

T , rkdk
T

}
, then

∥∥Q̂k,(zk)−QkḦk
∥∥2

= Op

(
d
−2αk,zk
k ck

)
, (3.43)

where Ḧk =
D

1
2
k F̈k(IT− 1

T 1T 1T
T)F̈T

k AT
k Q̂k,(zk)

V̈−1
k

T has rank(Ḧk) = zk. Moreover, further assuming

(L1’), there exists Ûk,(zk) with ÛT
k,(zk)

Ûk,(zk) = Izk such that Q̂k,(zk) = Ûk,(zk)Pk,(zk) with

Pk,(zk) an orthogonal matrix, and

∥∥Ûk,(zk)−Uk,(zk)

∥∥2
= Op

(
d
−2αk,zk
k

[
d

2αk,1
k

rk

T
+ ck

])
, (3.44)

where Uk,(zk) is the matrix consisting of the first zk columns of Uk.
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Remark 3.4. Note that Lemma 3.2 implies the following result for eigenvalue ratio: For

j ≤ rk −1,

λ j

(
ẌT

k (IT− 1
T 1T 1T

T)Ẍk
T

)
λ j+1

(
ẌT

k (IT− 1
T 1T 1T

T)Ẍk
T

) ≍
d

αk, j
k

d
αk, j+1
k

;

For rk +1 ≤ j ≤ ⌊cmin(T,dk)⌋− rk −1,

λ j

(
ẌT

k (IT− 1
T 1T 1T

T)Ẍk
T

)
λ j+1

(
ẌT

k (IT− 1
T 1T 1T

T)Ẍk
T

) ≍ 1;

For j = rk,

λ j

(
ẌT

k (IT− 1
T 1T 1T

T)Ẍk
T

)
λ j+1

(
ẌT

k (IT− 1
T 1T 1T

T)Ẍk
T

) ≍
d

αk,rk
k

d-k
s-k

(
1+ dk

T

) → ∞.

Therefore,

λ1

(
ẌT

k (IT− 1
T 1T 1T

T)Ẍk
T

)
λrk+1

(
ẌT

k (IT− 1
T 1T 1T

T)Ẍk
T

) ≍
d

αk,1
k

d-k
s-k

(
1+ dk

T

) → ∞. (3.45)

(3.45) implies that at least one of ratio of subsequent eigenvalues


λ j

(
ẌT

k (IT − 1
T 1T 1T

T)Ẍk
T

)

λ j+1

(
ẌT

k (IT − 1
T 1T 1T

T)Ẍk
T

) , j ∈ [rk]


goes to infinity. This is essential to detect the existence of factors. Note that in the special

case when all factors have the same strength, we should have
λrk

(
ẌT

k (IT − 1
T 1T 1T

T)Ẍk
T

)

λrk+1

(
ẌT

k (IT − 1
T 1T 1T

T)Ẍk
T

) → ∞,

which recovers the result in Ahn and Horenstein (2013).
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In contrast, when there is no factor exist, we should have that

λ j

(
ẌT

k (IT− 1
T 1T 1T

T)Ẍk
T

)
λ j+1

(
ẌT

k (IT− 1
T 1T 1T

T)Ẍk
T

) =

λ j

(
ËT

k (IT− 1
T 1T 1T

T)Ëk
T

)
λ j+1

(
ËT

k (IT− 1
T 1T 1T

T)Ëk
T

) ≍ 1

for j = 1, ...,⌊cmin(T,dk)⌋ by (3.28) in Lemma 3.1. Thus, every ratio (actually until

⌊cmin(T,dk)⌋) of subsequent eigenvalues remains bounded. In this way, we can use

eigenvalue ratio to detect the existence of factors accordingly: when factors exist, at least

one of the eigenvalue ratio will goes to infinity; when there is no factor, all eigenvalue

ratios (until ⌊cmin(T,dk)⌋) remains bounded. Note that this is different from estimating

the number of factors, since we can only know that there is factor exist, but we do not

really know how many factors and what the factor strengths are. However, in the special

case when all factors are of the same strength, we have
λrk

(
ẌT

k (IT − 1
T 1T 1T

T)Ẍk
T

)

λrk+1

(
ẌT

k (IT − 1
T 1T 1T

T)Ẍk
T

) → ∞ and

λ j

(
ẌT

k (IT − 1
T 1T 1T

T)Ẍk
T

)

λ j+1

(
ẌT

k (IT − 1
T 1T 1T

T)Ẍk
T

) ≍ 1 for j ̸= rk, which is how Ahn and Horenstein (2013) estimates

the number of factors. In the same spirit, the eye-ball test of Lam and Yao (2012) also uses

eigenvalue ratios in a similar manner to deduce the number of factors in a vector factor

model.

Proof of Lemma 3.1. By Assumption (E1), (E2), (R1), we have

ẽt,k = Ae,k̃fe,t,k + ∑
ℓ∈S-k

(ΣΣΣ
(k)
ε,ℓ)

1/2
εεε
(k)
t,ℓ

:= ẽt,k,1 + ẽt,k,2

where ẽt,k,1 := Ae,k̃fe,t,k and ẽt,k,2 = ∑ℓ∈S-k
(ΣΣΣ

(k)
ε,ℓ)

1/2εεε
(k)
t,ℓ , and f̃e,t,k = ∑ℓ∈S-k

f(k)t,l is defined

in a similar way as f̃t,k. Using such decomposition, the error matrix can be written as

Ẽk = Ẽk,1 + Ẽk,2,

where Ẽk,1 =
(
ẽ1,k,1, ..., ẽT,k,1

)T and Ẽk,2 =
(
ẽ1,k,2, ..., ẽT,k,2

)T. Then we can deal with

Ẽk,1 and Ẽk,2 separately using random matrix theory. We first look at Ẽk,2. Similar to
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assumptions in Ahn and Horenstein (2013), we further write the matrix Ẽk,2 as

Ẽk,2 = L
1
2
e,k,2Ue,k,2R

1
2
e,k,2,

where Ue,k,2 ∈ RT×dk are iid random variables with uniformly bounded fourth moment by

Assumption (R1), and Le,k,2 ∈RT×T and Re,k,2 ∈Rdk×dk are time-serial and cross-sectional

covariance matrices. Define ΣΣΣ
(k)
ε := ∑ℓ∈S-k

ΣΣΣ
(k)
ε,ℓ. By Assumption (E1), Re,k,2 = ΣΣΣ

(k)
ε , and

Le,k,2 = Aε,T . Next, we need to bound the spectral norm of Le,k,2 and Re,k,2. Assumption

(E1) implies
∥∥Re,k,2

∥∥= O(d-k). For Aε,T , since it is symmetric, ∥Aε,T∥1 = ∥Aε,T∥∞
, and

∥Aε,T∥1 = max
t

T

∑
s=1

|(Aε,T )ts|

≤ 2
T

∑
v=0

∣∣∣∣∣∑q≥0
aε,qaε,q+v

∣∣∣∣∣
≤ 2

(
∑
q≥0

|aε,q|

)2

≤C (3.46)

by Assumption (E2). Thus,
∥∥Aε,T

∥∥ ≤√∥Aε,T∥1 ∥Aε,T∥∞
= ∥Aε,T∥1 ≤C. Bai and Yin

(1993) and Latala (2005) show that λ1

(
Ue,k,2UT

e,k,2/T
)
→ (1+

√
dk/T )2. Thus, similar

to the result obtained by Ahn and Horenstein (2013) (see also Moon and Weidner (2015)),

we have

λ1

(
ẼT

k,2Ẽk,2

T

)
≤
∥∥Le,k,2

∥∥∥∥Re,k,2
∥∥∥∥Ue,k,2UT

e,k,2/T
∥∥= Op

(
d-k

(
1+

dk

T

))
.

For Ẽk,1, note that the common error has a similar structure as the factor model. Similar to

the definition of sk and s-k, define se,k := ∑ j∈S-k

(
∑

dk
i=1(Ae,k)i j)

)2
and se,-k := ∏

K
l=1;l ̸=k se,l .

Define F̃e,k similar as F̃k, then following the similar analysis as in Lemma 3.2, we have for

j ∈ [re,k],

λ j

(
F̃e,kF̃T

e,k

T

)
≍ se,-k.

Thus,

λ1

(
ẼT

k,1Ẽk,1

T

)
= λ1

(
Ae,kF̃e,kF̃T

e,kAT
e,k

T

)
≤ λ1

(
AT

e,kAe,k
)

λ1

(
F̃e,kF̃T

e,k

T

)
= Op(se,-k),
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since λ1

(
AT

e,kAe,k

)
= O(1) by Assumption (E1). Next, note that by definition,

se,k ≤ re,k∥Ae,k∥2
1 = O(re,k),

so se,-k = O(re,-k). Since we assume re,k = O(dk), we have λ1

(
ẼT

k,1Ẽk,1
T

)
= Op(d-k).

Therefore,

λ1

(
ẼT

kẼk

T

)
≤
∥∥∥∥ẼT

k,1Ẽk,1

T

∥∥∥∥+∥∥∥∥ẼT
k,1Ẽk,2

T

∥∥∥∥+∥∥∥∥ẼT
k,2Ẽk,1

T

∥∥∥∥+∥∥∥∥ẼT
k,2Ẽk,2

T

∥∥∥∥
= Op

(
d-k

(
1+

dk

T

))
+2
∥∥∥∥ẼT

k,1Ẽk,2

T

∥∥∥∥
≤ Op

(
d-k

(
1+

dk

T

))
+

√∥∥∥∥ẼT
k,1Ẽk,1

T

∥∥∥∥∥∥∥∥ẼT
k,2Ẽk,2

T

∥∥∥∥
= Op

(
d-k

(
1+

dk

T

))
,

which implies (3.26), and

λ1

(
ẼT

k

(
IT − 1

T 1T 1T
T
)

Ẽk

T

)
≤
∥∥∥∥ ẼT

k√
T

∥∥∥∥2∥∥∥∥IT − 1
T

1T 1T
T

∥∥∥∥
≤ 2λ1

(
ẼT

kẼk

T

)

= Op

(
d-k

(
1+

dk

T

))
, (3.47)

which implies (3.27)

To show (3.28), we focus on Ẽk,2. Note that Assumption (R2) is parallel to Assumption

(D) in Ahn and Horenstein (2013). Following Lemma A.7. in Ahn and Horenstein (2013),

we have

P

(
λ⌊cmin(T,dk)⌋

(
ẼT

k,2Ẽk,2

max(T,dk)

)
≥Cd-k

)
= 1

for some c ∈ (0,1] and C > 0. Thus,

P

(
λ⌊cmin(T,dk)⌋

(
ËT

k,2Ëk,2

T

)
≥C

(
d-k

(
1+

dk

T

)))
= 1
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for some c ∈ (0,1] and C > 0. Finally, by Weyl’s inequalities,√√√√λ⌊cmin(T,dk)⌋

(
ẼT

kẼk

T

)
≥

√√√√
λ⌊cmin(T,dk)⌋

(
ẼT

k,2Ẽk,2

T

)
−

√√√√
λ1

(
ẼT

k,1Ẽk,1

T

)

≍

√
d-k

(
1+

dk

T

)
,

which implies (3.28), since λ1

(
ẼT

k,1Ẽk,1
T

)
= op

(
d-k

(
1+ dk

T

))
under Assumption (R2).

Similarly, following the same argument as Lemma A.7. in Ahn and Horenstein (2013), we

can show that

P

(
λ⌊cmin(T,dk)⌋

(
ËT

k,2
(
IT − 1

T 1T 1T
T
)

Ëk,2

T

)
≥C

(
d-k

(
1+

dk

T

)))
= 1

for some c ∈ (0,1] and C > 0, so√√√√λ⌊cmin(T,dk)⌋

(
ẼT

k

(
IT − 1

T 1T 1T
T
)

Ẽk

T

)
≥

√√√√
λ⌊cmin(T,dk)⌋

(
ẼT

k,2

(
IT − 1

T 1T 1T
T
)

Ẽk,2

T

)

−

√√√√
λ1

(
ẼT

k,1

(
IT − 1

T 1T 1T
T
)

Ẽk,1

T

)

≍

√
d-k

(
1+

dk

T

)
,

which implies (3.29). This completes the proof of Lemma 3.1. □

Proof of Lemma 3.2. We consider the case K = 3 without loss of generality. By

Assumption (F1), we know each element of Ft are independent with mean 0 and variance

1. Suppose we want to estimate A1. For i, j ∈ [r1], we have

E
(

f̃t,1,i f̃t,1, j
)
=

r2

∑
p=1

r3

∑
q=1

r2

∑
u=1

r3

∑
v=1

(
∑
ℓ∈S2

(A2)l p ∑
ℓ∈S3

(A3)lq ∑
ℓ∈S2

(A2)lu ∑
ℓ∈S3

(A3)lv

)
E( ft,ipq ft, juv)

=
r2

∑
p=1

r3

∑
q=1

(
∑
ℓ∈S2

(A2)l p

)2(
∑
ℓ∈S3

(A3)lq

)2

≍ s2s3 = s-1
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when i = j, and 0 otherwise. Thus, E
(

f̈t,1,i f̈t,1, j
)
≍ 1 for i = j, and 0 otherwise, which

implies that ΣΣΣF,k is a diagonal matrix with all diagonal elements bounded away from 0 and

infinity.

Next, we show (3.30) – (3.32). To apply random matrix theory, similar to Ahn and

Horenstein (2013), we can further write the matrix F̈k as

F̈k = L
1
2
f ,kU f ,kR

1
2
f ,k,

where U f ,k ∈ Rrk×T are iid random variables with uniformly bounded fourth moment

by Assumption (R1), and L f ,k ∈ Rrk×rk and R f ,k ∈ RT×T are cross-sectional and time-

serial covariance matrices. By Assumption (F1), L f ,k = Irk , and R f ,k = A f ,T . Following

similar analysis as (3.46), we have ∥R f ,k∥1 ≤ C. Thus,
∥∥R f ,k

∥∥ ≤√∥∥R f ,k
∥∥

1

∥∥R f ,k
∥∥

∞
=∥∥R f ,k

∥∥
1 ≤ C. Since we assume rk = o(T ), Bai and Yin (1993) and Latala (2005) show

that λ1

(
U f ,kUT

f ,k/T
)
− (1+

√
rk/T )2 → 0 and λrk

(
U f ,kUT

f ,k/T
)
− (1−

√
rk/T )2 → 0.

Similar to the result obtained by Ahn and Horenstein (2013) (see also Moon and Weidner

(2015)), since the largest eigenvalues of R f ,k and L f ,k are bounded, we have

λ1
(
F̈kF̈T

k/T
)
≤
∥∥L f ,k

∥∥∥∥R f ,k
∥∥∥∥U f ,kUT

f ,k/T
∥∥= Op(1).

Similarly, since λ1(R f ,k) =
∥∥R f ,k

∥∥≥ 1, we have

λrk

(
F̈kF̈T

k/T
)
= λrk

(
U f ,kR f ,kUT

f ,k/T
)
= λrk

(
UT

f ,kU f ,kR f ,k/T
)
≥ λrk

(
UT

f ,kU f ,k/T
)

λ1(R f ,k)≥ 1

as rk,T → ∞. Thus, we have λ j

(
F̈kF̈T

k
T

)
≍ 1 for j ∈ [rk].

Next, for j ∈ [rk], we know λ j

(
AkF̈kF̈T

k AT
k

T

)
= λ j

(
F̈kF̈T

k AT
k Ak

T

)
and

λ j (AT
kAk)λrk

(
F̈kF̈T

k
T

)
≤ λ j

(
F̈kF̈T

kAT
kAk

T

)
≤ λ j (AT

kAk)λ1

(
F̈kF̈T

k
T

)
.

Since λ j

(
F̈kF̈T

k
T

)
≍ 1 for j ∈ [rk], it follows that λ j

(
F̈T

k AT
k AkF̈k
T

)
≍ λ j(AT

kAk) for j ∈ [rk].

Similarly, λ j
(
AT

kAk
)
= λ j

(
D

1
2
k D− 1

2
k AT

kAkD− 1
2

k D
1
2
k

)
= λ j

(
DkD− 1

2
k AT

kAkD− 1
2

k

)
and

λ j(Dk)λrk

(
D− 1

2
k AT

kAkD− 1
2

k

)
≤ λ j

(
DkD− 1

2
k AT

kAkD− 1
2

k

)
≤ λ j(Dk)λ1

(
D− 1

2
k AT

kAkD− 1
2

k

)
.
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By Assumption (L1), λ j(Dk)≍ d
αk, j
k and λ j

(
D− 1

2
k AT

kAkD− 1
2

k

)
≍ 1 for j ∈ [rk] (this also

holds when elements of Ak are random and independent). Thus, for j ∈ [rk], we have

λ j

(
AkF̈kF̈T

k AT
k

T

)
≍ λ j(AT

kAk)≍ d
αk, j
k .

Next, we will show (3.33) – (3.34) accordingly. To start with, note that

λ1

(
F̈k
(
IT − 1

T 1T 1T
T
)

F̈T
k

T

)
≤
∥∥∥∥ F̈kF̈T

k
T

∥∥∥∥+∥∥∥∥ F̈k
1
T 1T 1T

T F̈T
k

T

∥∥∥∥
≤
∥∥∥∥ F̈kF̈T

k
T

∥∥∥∥+∥∥∥∥ F̈k√
T

∥∥∥∥2∥∥∥∥ 1
T

1T 1T
T

∥∥∥∥= 2
∥∥∥∥ F̈kF̈T

k
T

∥∥∥∥≍ 1.

And

λrk

(
F̈k
(
IT − 1

T 1T 1T
T
)

F̈T
k

T

)
= λrk

(
F̈kF̈T

k
T

−
F̈k

1
T 1T 1T

T F̈T
k

T

)

≥ λrk

(
F̈kF̈T

k
T

)
−λ1

(
F̈k1T 1T

T F̈T
k

T 2

)
. (3.48)

We next obtain an upper bound for λ1

(
F̈k1T 1T

T F̈T
k

T 2

)
. Note that F̈k1T ∈ Rrk×1 is a random

vector, with its i-th element to be ∑
T
t=1 f̈t,i. For its moment bounds, E

(
∑

T
t=1 f̈t,i

)2
=

1T
T A f ,T 1T = O(T ) and E

(
∑

T
t=1 f̈t,i

)4
= 1T

T 2A f ,T 21T 2 = O(T 2) by Lemma 3.3. Therefore,

following similar argument in previous analysis, we can decompose F̈k1T =
√

T IrkU ,

where U ∈ Rrk×1 has iid random entries with bounded second and fourth moments. Thus,

λ1

(
F̈k1T 1T

T F̈T
k

T 2

)
=

1
T 2 λ1

(
F̈k1T 1T

T F̈T
k
)
≤ 1

T 2 Op(rkT ) = Op

(rk

T

)
= op(1),

which implies λrk

(
F̈k(IT− 1

T 1T 1T
T)F̈T

k
T

)
⪰ 1 by (3.48). Therefore, λ j

(
F̈k(IT− 1

T 1T 1T
T)F̈T

k
T

)
for

j ∈ [rk].

Next, for j ∈ [rk], it is easy to see

λ j (AT
kAk)λrk

(
F̈k
(
IT − 1

T 1T 1T
T
)

F̈T
k

T

)
≤ λ j

(
AkF̈k

(
IT − 1

T 1T 1T
T
)

F̈T
kAT

k
T

)

≤ λ j (AT
kAk)λ1

(
F̈k
(
IT − 1

T 1T 1T
T
)

F̈T
k

T

)
,

which implies λ j

(
AkF̈k(IT− 1

T 1T 1T
T)F̈T

k AT
k

T

)
≍ d

αk, j
k for j ∈ [rk].
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Observe that
(
IT − 1

T 1T 1T
T
)2

= IT − 1
T 1T 1T

T , and ẌT
k

(
IT − 1

T 1T 1T
T
)
=
(
AkF̈k + ËT

k

)(
IT − 1

T 1T 1T
T
)
.

Hence to show (3.35), following the similar argument as Theorem 1 in Freyaldenhoven

(2022), for j ∈ [rk],√√√√λ j

(
ẌT

k

(
IT − 1

T 1T 1T
T
)

Ẍk

T

)
≥

√√√√λ j

(
AkF̈k

(
IT − 1

T 1T 1T
T
)

F̈T
kAT

k
T

)
−

√√√√λ1

(
ËT

k

(
IT − 1

T 1T 1T
T
)

Ëk

T

)

⪰
√

d
αk, j
k −

√
Op

(
d-k

s-k

(
1+

dk

T

))
≍
√

d
αk, j
k . (3.49)

where the second line follows from Lemma 3.1 and the last line follows from Assumption

(L2). Similarly, for j ∈ [rk],

λ j

(
ẌT

k

(
IT − 1

T 1T 1T
T
)

Ẍk

T

)
≤ λ j

(
AkF̈k

(
IT − 1

T 1T 1T
T
)

F̈T
kAT

k
T

)
+λ1

(
ËT

k

(
IT − 1

T 1T 1T
T
)

Ëk

T

)

+2

√√√√λ j

(
AkF̈k

(
IT − 1

T 1T 1T
T
)

F̈T
kAT

k
T

)√√√√λ1

(
ËT

k

(
IT − 1

T 1T 1T
T
)

Ëk

T

)

≍ d
αk, j
k +Op

(
d-k

s-k

(
1+

dk

T

))
≍ d

αk, j
k . (3.50)

Therefore, λ j

(
ẌT

k (IT− 1
T 1T 1T

T)Ẍk
T

)
≍ d

αk, j
k for j ∈ [rk].

Finally, to show (3.36), we apply similar technique as Lemma A.8 in Ahn and

Horenstein (2013). For simplicity of expression, in the following proof, we write MT =

IT − 1
T 1T 1T

T and M = (F̈kMT )
T(F̈kMT F̈T

k)
−1F̈kMT . Then rank(M)≤ rk, and

ẌT
kMT Ẍk =

(
AkF̈k + ËT

kM
)

MT
(
AkF̈k + ËT

kM
)T
+ ËT

k (MT −MMT MT) Ëk.

Hence, for rk +1 ≤ j ≤ ⌊cmin(T,dk)⌋− rk,

λ j
(
ËT

k (MT −MMT MT) Ëk
)
≤ λ j

(
ẌT

kMT Ẍk
)

≤ λ j−rk

(
ËT

k (MT −MMT MT) Ëk
)

+λrk+1

[(
AkF̈k + ËT

kM
)

MT
(
AkF̈k + ËT

kM
)T
]

≤ λ j−rk

(
ËT

k (MT −MMT MT) Ëk
)
,
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since
(
AkF̈k + ËT

kM
)

MT
(
AkF̈k + ËT

kM
)T is positive semi-definite and has rank at most rk.

Similarly, we can show that

λ j−rk

(
ËT

k (MT −MMT MT) Ëk
)
≤ λ j−rk

(
ËT

k (MT −MMT MT) Ëk + ËT
kMMT MTËk

)
= λ j−rk

(
ËT

kMT Ëk
)
,

λ j+rk

(
ËT

kMT Ëk
)
≤ λ j

(
ËT

k (MT −MMT MT) Ëk
)
+λrk+1

(
ËT

kMMT MTËk
)

= λ j
(
ËT

k (MT −MMT MT) Ëk
)
.

Therefore, for rk +1 ≤ j ≤ ⌊cmin(T,dk)⌋− rk,

λ j+rk

(
ËT

kMT Ëk
)
≤ λ j

(
ẌT

kMT Ẍk
)
≤ λ j−rk

(
ËT

kMT Ëk
)
,

which implies (3.36) with the result of Lemma 3.1. This completes the proof of Lemma

3.2. □

Proof of Lemma 3.3. For AT can either be A f ,T , Ae,T or Aε,T , we have already shown

that ∥AT∥1 = O(1) in the Proof of Lemma 3.1 and Lemma 3.2 (see (3.46) for example).

Hence

1T
T AT 1T ≤

T

∑
t,s=1

|(AT )ts| ≤ T∥AT∥1 = O(T ).

In addition, it is not difficult to see every entry of AT has absolute value bounded above by

1, hence,

∥AT∥2
F =

T

∑
t,s=1

|(AT )ts|2 ≤
T

∑
t,s=1

|(AT )ts| ≤ T∥AT∥1 = O(T ).

Next, for AT 2 can either be A f ,T 2 , Ae,T 2 or Aε,T 2 , we have

∥AT 2∥1 = max
t1,s1

T

∑
t2,s2=1

|(AT 2)t1s1,t2s2| ≤ 2max
q1q2

∑
q3,q4

∣∣aq1aq2aq3aq4

∣∣≤ 2

(
∑
q≥0

|aq|

)4

≤C.

Hence,

1T
T AT 21T ≤

T

∑
t,s=1

|(AT 2)ts| ≤ T 2∥AT 2∥1 = O(T 2).
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Similarly, we can also observe that every entry of AT 2 has absolute value bounded above by

1. To see this, take f (k)t,l, j for example, note that for the MA process ft := f (k)t,l, j for any (l, j,k),

|E( ft1 ft2 ft3 ft4)| ≤ 0.5
[
E( f 2

t1 f 2
t2)+E( f 2

t3 f 2
t4)
]
≤ 0.25

[
E( f 4

t1)+E( f 4
t2)+E( f 4

t3)+E( f 4
t4)
]
≤

1, because E( f 4
ti ) = ∑q≥0 a4

q ≤
(
∑q≥0 a2

q
)2

= 1 for any ti. Therefore,

∥AT 2∥2
F =

T

∑
t,s=1

|(AT 2)ts|2 ≤
T

∑
t,s=1

|(AT 2)ts| ≤ T 2∥AT 2∥1 = O(T 2).

(3.39) – (3.42) can be easily implied by (3.37) and (3.38). To see this, first note that

for any matrices A and B, ∥A⊗B∥F = ∥A∥F∥B∥F , and |vec(A)Tvec(B)| ≤ ∥A∥F∥B∥F by

Cauchy-Schwarz, which implies (3.39), (3.41) and (3.42). Finally, 1T
T 2A f ,T ⊗Ae,T 1T 2 ≤

T 2∥A f ,T ⊗Ae,T∥1 = T 2∥A f ,T∥1∥Ae,T∥1 = O(T 2), which gives (3.40). This completes the

proof of Lemma 3.3. □

Proof of Lemma 3.4. Note that we have

ẌT
k

(
IT − 1

T 1T 1T
T
)

Ẍk

T
=

(
AkF̈k + ËT

k

)(
IT − 1

T 1T 1T
T
)(

AkF̈k + ËT
k

)T

T

= Ak
F̈k
(
IT − 1

T 1T 1T
T
)

F̈T
k

T
AT

k +Rk, (3.51)

where

Rk =
AkF̈k

(
IT − 1

T 1T 1T
T
)

Ëk

T
+

ËT
k

(
IT − 1

T 1T 1T
T
)

F̈T
kAT

k
T

+
ËT

k

(
IT − 1

T 1T 1T
T
)

Ëk

T
. (3.52)

We estimate Q̂k,(zk) as the first zk eigenvectors of (3.51). Let’s define Uk,(zk) to be the matrix

consisting of the first zk columns of Uk, and B be its orthogonal complement. Then Uk,(zk)

is an invariant subspace for AkAT
k and[

UT
k,(zk)

BT

]
AkAT

k
[
Uk,(zk) B

]
=

[
Gk,(zk) 0

0 Λk,(zk)

]
,

where Gk,(zk) is a zk × zk diagonal matrix consisting the largest zk eigenvalues of AT
kAk, and

Λk,(zk) is a (dk − zk)× (dk − zk) diagonal matrix where the first rk − zk entries are the zk +1

to rk eigenvalues of AT
kAk, and the remaining entries are all 0’s. In this way, we can apply

Lemma 3 of Lam et al. (2011) and know that there exists Ûk,(zk) (with ÛT
k,(zk)

Ûk,(zk) = Izk)
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such that Q̂k,(zk) = Ûk,(zk)Pk,(zk) where Pk,(zk) is orthogonal matrix, so that

∥∥Ûk,(zk)−Uk,(zk)

∥∥≤ 8
∥∥∥∥Ak

[
F̈k(IT− 1

T 1T 1T
T)F̈T

k
T − Irk

]
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k +Rk

∥∥∥∥
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⪯
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T)F̈T

k
T − Irk

]
AT

k

∥∥∥∥+∥∥Rk
∥∥

d
αk,zk
k

. (3.53)

Next, we bound the norms on the numerator of (3.53). For the first term,∥∥∥∥Ak

[
F̈k
(
IT − 1

T 1T 1T
T
)

F̈T
k

T
− Irk

]
AT

k

∥∥∥∥≤ ∥∥Ak
∥∥2
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(
IT − 1

T 1T 1T
T
)

F̈T
k

T
− Irk

∥∥∥∥
≍ d

αk,1
k

∥∥∥∥ F̈k
(
IT − 1

T 1T 1T
T
)

F̈T
k

T
− Irk

∥∥∥∥.
By Assumption (F1), { f (k)t,l, j} is a linear process with absolutely summable autocovariance

sequence. In Lemma 3.2, we have shown that elements of F̈k retain the covariance structure

of { f (k)t,l, j}, so each row of F̈k is a linear process with absolutely summable autocovariance

sequence, which satisfies Assumption (R2) in Lam (2021). Thus, applying the result from

Lemma 3 (or more specifically, equation (8.26)) of Lam (2021) implies∥∥∥∥ F̈k
(
IT − 1

T 1T 1T
T
)

F̈T
k

T
− Irk

∥∥∥∥= Op

(√
rk

T

)
, (3.54)

which further gives

∥∥∥∥Ak
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T
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T
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]
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k
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(
d

αk,1
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√
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T

)
.

Next, we bound the norm of Rk. First, note that
∥∥IT − 1

T 1T 1T
T

∥∥≤ ∥∥IT
∥∥+∥∥ 1

T 1T 1T
T

∥∥= 2.

Bounding the squared norm of each term on the right hand side of (3.52), we have∥∥∥∥AkF̈k
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)
= Op

(
d
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)
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(
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s-k

(
1+

dk

T

))
, (3.55)
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where the last line follows from Lemma 3.1 and Lemma 3.2. Similarly,∥∥∥∥ËT
k

(
IT − 1

T 1T 1T
T
)

F̈T
kAT

k
T

∥∥∥∥2

= Op
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d
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)
Op

(
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(
1+
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))
.

As for the last term,∥∥∥∥ËT
k

(
IT − 1

T 1T 1T
T
)

Ëk

T
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≤ 4λ1
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ËT
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)2

= Op

(
d2

-k

s2
-k

(
1+

d2
k

T 2

))
(3.56)

by Lemma 3.1 and Lemma 3.2.

For the first two terms on the right hand side of (3.52), there may exist potentially

better bounds. To see this, note that we can equivalently write∥∥∥∥AkF̈k
(
IT − 1

T 1T 1T
T
)

Ëk

T

∥∥∥∥2

≤
∥∥Ak

∥∥2
∥∥∥∥ F̈kËk
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+
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T 1T 1T

T Ëk

T

∥∥∥∥2
)
.

Since F̈kËk
T and F̈k

1
T 1T 1T

T Ëk
T are rk × dk matrices with each element having a certain rate

of convergence, we actually can have a better rate by simply counting the numbers of

elements of them. More specifically, the (i, j) element of F̈kËk is

(
F̈kËk

)
i j =

T

∑
t=1

f̈t,k,iët,k, j,

where f̈t,k,i is the i-th entry of f̈t,k, and ët,k, j are defined similarly. We now focus on

bounding the Frobenius norm of F̈kËk. Note that ∥F̈kËk∥2
F = ∑(i, j)∈(rk,dk)

(
F̈kËk

)2
i j and

∥F̈kËk∥2
F = E∥F̈kËk∥2

F +Op

(√
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)
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F +Op

(√
E
(
∥F̈kËk∥4
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. (3.57)

Thus, we need to obtain bounds for E∥F̈kËk∥2
F and E∥F̈kËk∥4

F . We start with E∥F̈kËk∥2
F .

For each entry of F̈kËk, we have

E
(
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)2
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(
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E
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)
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By Assumption (F1),

E
(
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)
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Similarly, by Assumption (E1) and (E2),
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,
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where the last line follows from Assumption (E1) and Lemma 3.3. Next, for E
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note that
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We deal with the terms separately. For the term related to f̈ , we separate the cases for

i1 = i2 and i1 ̸= i2. When i1 = i2, by Assumption (F1), we have

E
(
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(3.61)

Hence, when i1 = i2,
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Thus, by Lemma 3.3, we have for any (i1, j1, i2, j2),
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by Assumption (E1). (3.62) together with (3.60) and (3.57) imply
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ët2,k, jës2,k, j

)
=

1
T 2

T

∑
t1,t2,s1,s2=1

(A f ,T )t1s1

1
s-k

[
se,-k

(
Ae,kAT

e,k
)

j j (Ae,T )t2s2
+
(

ΣΣΣ
(k)
ε

)
j j
(Aε,T )t2s2

]
=

1
T 2s-k

[
se,-k

(
Ae,kAT

e,k
)

j j 1T
T 2A f ,T ⊗Ae,T 1T 2 +

(
ΣΣΣ
(k)
ε

)
j j

1T
T 2A f ,T ⊗Aε,T 1T 2

]
= O

(
1

s-k

)[
se,-k

(
Ae,kAT

e,k
)

j j +
(

ΣΣΣ
(k)
ε

)
j j

]
where the second line follows from (3.58) and (3.59), and the last line follows from Lemma
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Next, we know
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ët,k, j2

)2
=

T

∑
t1=1

T

∑
s1=1

T

∑
t2=1

T

∑
s2=1

E
[
ët1,k, j1 ës1,k, j1 ët2,k, j2 ës2,k, j2

]
≤

T

∑
t1,t2,s1,s2=1

1
s2

-k

[
s2

e,-k
(
Ae,kAT

e,k
)

j1 j1

(
Ae,kAT

e,k
)

j2 j2

(
Ae,T 2

)
t1s1,t2s2

+(ΣΣΣ
(k)
ε ) j1 j1(ΣΣΣ

(k)
ε ) j2 j2

(
Aε,T 2

)
t1s1,t2s2

]
=

1
s2

-k

[
s2

e,-k
(
Ae,kAT

e,k
)

j1 j1

(
Ae,kAT

e,k
)

j2 j2
1T

T 2Ae,T 21T 2 +(ΣΣΣ
(k)
ε ) j1 j1(ΣΣΣ

(k)
ε ) j2 j21T

T 2Aε,T 21T 2

]
=O

(
T 2

s2
-k

)[
s2

e,-k
(
Ae,kAT

e,k
)

j1 j1

(
Ae,kAT

e,k
)

j2 j2
+(ΣΣΣ

(k)
ε ) j1 j1(ΣΣΣ

(k)
ε ) j2 j2

]
,
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where the third line follows from (3.61), and the last line from Lemma 3.3. Therefore,

E
[
(F̈k1T 1T

T Ëk)
2
i1 j1(F̈k1T 1T

T Ëk)
2
i2 j2

]
= O

(
T 4

s2
-k

)[
s2

e,-k
(
Ae,kAT

e,k
)

j1 j1

(
Ae,kAT

e,k
)

j2 j2
+(ΣΣΣ

(k)
ε ) j1 j1(ΣΣΣ

(k)
ε ) j2 j2

]
.

Hence,

E
∥∥∥∥F̈k

1
T

1T 1T
T Ëk

∥∥∥∥4

F
= O

(
1

s2
-k

) rk

∑
i1=1

dk

∑
j1=1

rk

∑
i2=1

dk

∑
j2=1

[
s2

e,-k
(
Ae,kAT

e,k
)

j1 j1

(
Ae,kAT

e,k
)

j2 j2
+(ΣΣΣ

(k)
ε ) j1 j1(ΣΣΣ

(k)
ε ) j2 j2

]
= r2

kO
(

1
s2

-k

){
s2

e,-k
[
tr(Ae,kAT

e,k)
]2
+
[
tr(ΣΣΣ(k)

ε )
]2
}
= O

(
r2

kd2
k

d2
-k

s2
-k

)
.

(3.64)

(3.64) together with (3.63) imply
∥∥F̈k

1
T 1T 1T

T Ëk
∥∥2

F = Op

(
rkdk

d-k
s-k

)
. Therefore, we can

conclude that∥∥∥∥AkF̈k
(
IT − 1

T 1T 1T
T
)

Ëk

T

∥∥∥∥2

= Op

(
d

αk,1
k

)(∥∥∥∥ F̈kËk

T

∥∥∥∥2

+

∥∥∥∥ F̈k
1
T 1T 1T

T Ëk

T

∥∥∥∥2
)

= Op

(
d-k

s-k

rkdk

T
d

αk,1
k

)
.

(3.65)

Compared with the original rate (3.55), we can obtain a potentially better rate (3.65) by

directly bounding and counting the elements in a large matrix. In other words, the rate for∥∥∥∥AkF̈k(IT− 1
T 1T 1T

T)Ëk
T

∥∥∥∥2

will be the minimum between the two, which is

∥∥∥∥AkF̈k
(
IT − 1

T 1T 1T
T
)

Ëk

T

∥∥∥∥2

= Op

(
d-k

s-k
d

αk,1
k min

{
1+

dk

T
,
rkdk

T

})
.

Combining the rates (3.55), (3.65) and (3.56) yields that

∥∥Rk
∥∥2

=
d2

-k

s2
-k

(
1+

d2
k

T 2

)
+

d-k

s-k
d

αk,1
k min

{
1+

dk

T
,
rkdk

T

}
:= ck.

Hence,

∥∥Ûk,(zk)−Uk,(zk)

∥∥2
= Op

(
d
−2αk,zk
k

[
d

2αk,1
k

rk

T
+ ck

])
.
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Finally, to show (3.43), let Ṽk be the zk × zk diagonal matrix of the first zk largest

eigenvalues of Σ̂ΣΣx̃k
in decreasing order, and V̈k := Ṽk/s-k. Then it follows from (3.51) that

Q̂k,(zk)−QkḦk = RkQ̂k,(zk)V̈
−1
k , implying∥∥Q̂k,(zk)−QkḦk

∥∥2 ≤
∥∥Rk
∥∥2∥∥V̈−1

k

∥∥2Op

(
d
−2αk,zk
k ck

)
.

This completes the proof of Lemma 3.4.

Proof of Theorem 3.1. Define s-k,pre := 1
M ∑

M
m=1 s-k,m. First, by the definition of s-k,m,

we have λ j

(
F̃k,mF̃T

k,m
T

)
≍ s-k,m for j ∈ [rk] and for each m. Then,

λ1

(
1
M

M

∑
m=1

F̃k,mF̃T
k,m

T

)
≤ 1

M

M

∑
m=1

λ1

(
F̃k,mF̃T

k,m

T

)
≍ s-k,pre,

λrk

(
1
M

M

∑
m=1

F̃k,mF̃T
k,m

T

)
≥ 1

M

M

∑
m=1

λrk

(
F̃k,mF̃T

k,m

T

)
≍ s-k,pre.

Therefore, for j ∈ [rk],

λ j

(
1
M

M

∑
m=1

F̃k,mF̃T
k,m

T

)
≍ s-k,pre.

Next, following the same analysis as in the proof of Lemma 3.2, it is easy to see that

λ j

(
1
M

M

∑
m=1

AkF̃k,mF̃T
k,mAT

k

T

)
≍ s-k,pre ≍ λ j

(
1
M

M

∑
m=1

AkF̃k,m
(
IT − 1

T 1T 1T
T
)

F̃T
k,mAT

k

T

)
,

for j ∈ [rk]. On the other hand, by Lemma 3.1,

λ1

(
1
M

M

∑
m=1

ẼT
k,mẼk,m

T

)
≤ 1

M

M

∑
m=1

λ1

(
ẼT

k,mẼk,m

T

)
= Op

(
d-k,pre

(
1+

dk

T

))
,

where d-k,pre =
1
M ∑

M
m=1 d-k,m. Similarly,

λ1

(
1
M

M

∑
m=1

ẼT
k,m

(
IT − 1

T 1T 1T
T
)

Ẽk,m

T

)
≤ Op

(
d-k,pre

(
1+

dk

T

))
.

If Assumptions (E1) – (R1) are satisfied for all M chosen samples, then d-k,m
s-k,m

(
1+ dk

T

)
=

o
(

d
αk,zk
k

)
for all m, which implies d-k,pre

s-k,pre

(
1+ dk

T

)
= o

(
d

αk,zk
k

)
. Therefore, if we define the
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new normalized version Ẍk,m = X̃k,m/s
1
2
-k,pre, and F̈k,m and Ëk,m similarly, then following

(3.49) and (3.50), (we can write 1
M ∑

M
m=1

ẌT
k,m(IT− 1

T 1T 1T
T)Ẍk,m

T =XTX by Cholesky decomposition,

and similarly define F and E, so that X = F+E.) we have

λ j

(
1
M

M

∑
m=1

ẌT
k,m

(
IT − 1

T 1T 1T
T
)

Ẍk,m

T

)
≍ 1

for j ∈ [rk]. Then, we can make use of the decomposition

1
M

M

∑
m=1

ẌT
k,m

(
IT − 1

T 1T 1T
T
)

Ẍk,m

T
=

1
M

M

∑
m=1

(
AkF̈k,m + ËT

k,m

)(
IT − 1

T 1T 1T
T
)(

AkF̈k,m + ËT
k,m

)T

T

= Ak

[
1
M

M

∑
m=1

F̈k,m
(
IT − 1

T 1T 1T
T
)

F̈T
k,m

T

]
AT

k +Rk,pre,

(3.66)

where

Rk,pre =
1
M

M

∑
m=1

[
AkF̈k,m

(
IT − 1

T 1T 1T
T
)

Ëk,m

T
+

ËT
k,m

(
IT − 1

T 1T 1T
T
)

F̈T
k,mAT

k

T

+
ËT

k,m

(
IT − 1

T 1T 1T
T
)

Ëk,m

T

]
. (3.67)

Then, following similar argument as in the proof of Lemma 3.4, we can apply Lemma 3

of Lam et al. (2011) and know that there exists Ûk,pre,(zk) (with ÛT
k,pre,(zk)

Ûk,pre,(zk) = Izk)

such that Q̂k,pre,(zk) = Ûk,pre,(zk)Pk,pre,(zk) where Pk,pre,(zk) is an orthogonal matrix, so that

∥∥Ûk,pre,(zk)−Uk,(zk)

∥∥⪯ d
αk,1
k

∥∥∥∥ 1
M ∑

M
m=1

F̈k,m(IT− 1
T 1T 1T

T)F̈T
k,m

T − Irk

∥∥∥∥+∥∥Rk,pre
∥∥

d
αk,zk
k

.
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To proceed, note that by (3.54), we have
∥∥∥∥ F̃k,m(IT− 1

T 1T 1T
T)F̃T

k,m
T s-k,m

− Irk

∥∥∥∥ = Op

(√
rk/T

)
for

each m, so
∥∥∥∥ F̈k,m(IT− 1

T 1T 1T
T)F̈T

k,m
T − s-k,m

s-k,pre
Irk

∥∥∥∥= Op

(
s-k,m

s-k,pre

√
rk
T

)
, and thus,

∥∥∥∥ 1
M

M

∑
m=1

F̈k
(
IT − 1

T 1T 1T
T
)

F̈T
k

T
− Irk

∥∥∥∥= 1
M

∥∥∥∥ M

∑
m=1

F̈k
(
IT − 1

T 1T 1T
T
)

F̈T
k

T
−MIrk

∥∥∥∥
=

1
M

∥∥∥∥ M

∑
m=1

[
F̈k,m

(
IT − 1

T 1T 1T
T
)

F̈T
k,m

T
−

s-k,m

s-k,pre
Irk

]∥∥∥∥
≤ 1

M

M

∑
m=1

∥∥∥∥ F̈k,m
(
IT − 1

T 1T 1T
T
)

F̈T
k,m

T
−

s-k,m

s-k,pre
Irk

∥∥∥∥
=

1
M

M

∑
m=1

Op

(
s-k,m

s-k,pre

√
rk

T

)
= Op

(√
rk

T

)
.

To bound
∥∥Rk,pre

∥∥2, we can bound each term on the right hand side of (3.67) by using

the similar technique as in the proof of Lemma 3.4. We have that∥∥∥∥ 1
M

M

∑
m=1

AkF̈k,m
(
IT − 1

T 1T 1T
T
)

Ëk,m

T

∥∥∥∥2

≤ 1
M

M

∑
m=1

∥∥∥∥AkF̈k,m
(
IT − 1

T 1T 1T
T
)

Ëk,m

T

∥∥∥∥2
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(
d

αk,1
k min

{
1+

dk

T
,
rkdk

T

} 1
M ∑

M
m=1 d-k,ms-k,m

s2
-k,pre

)
,

and similarly,

∥∥∥∥ 1
M

M

∑
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ËT
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(
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T 1T 1T
T
)

F̈T
k,mAT

k

T

∥∥∥∥2
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(
d
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{
1+

dk

T
,
rkdk

T

} 1
M ∑

M
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)
,

and ∥∥∥∥ 1
M

M

∑
m=1

ËT
k,m

(
IT − 1

T 1T 1T
T
)

Ëk,m

T

∥∥∥∥2

≤ 1
M

M

∑
m=1

∥∥∥∥ËT
k,m

(
IT − 1

T 1T 1T
T
)

Ëk,m

T

∥∥∥∥2

= Op

((
1+

d2
k

T 2

) 1
M ∑

M
m=1 d2

-k,m

s2
-k,pre

)
.

Combining the above results give

ck,pre :=
∥∥Rk,pre

∥∥2
= Op

(
min

{
1+

dk

T
,
rkdk

T

} 1
M ∑

M
m=1 d-k,ms-k,m

s2
-k,pre

+d
αk,1
k

(
1+

d2
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T 2

) 1
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M
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,
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and thus, ∥∥∥∥Ûk,pre,(zk)−Uk,(zk)

∥∥∥∥2

= Op

(
d
−2αk,zk
k

[
d

2αk,1
k

rk

T
+ ck,pre

])
. (3.68)

Further, let Ṽk,pre be the zk × zk diagonal matrix of the first zk largest eigenvalues of

Σ̂ΣΣx̃k,agg
in decreasing order, and V̈k,pre := Ṽk,pre/s-k,pre. Then it follows from (3.66) that

Q̂k,pre,(zk)−QkḦk,pre = Rk,preQ̂k,pre,(zk)V̈
−1
k,pre, implying∥∥Q̂k,pre,(zk)−QkḦk,pre

∥∥2 ≤
∥∥Rk,pre

∥∥2∥∥V̈−1
k,pre

∥∥2
= Op

(
d
−2αk,zk
k ck,pre

)
. (3.69)

Finally, (3.18) and (3.19) follow as we substitute d-k,m ≍ d-k and s-k,m ≍ s-k,max into

(3.69) and (3.68), which is guaranteed by our choice of Sk,m and M0 as discussed in Section

3.2.3 and 3.2.4. This completes the proof of Theorem 3.1. □

Before the proof of Theorem 3.2, we decompose

Σ̃ΣΣ
(k)
y,m+1 = T−1

T

∑
t=1

y(k)t,m+1y(k)T
t,m+1 = T−1

T

∑
t=1

matk(Xt −X̄ )q̌(m)
-k q̌(m)T

-k matT
k(Xt −X̄ )

= T−1
T

∑
t=1

(
Akmatk(Ft − F̄ )AT

-kq̌(m)
-k +matk(Et − Ē )q̌(m)

-k

)⊗2

= T−1
T

∑
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{
Akmatk(Ft − F̄ )AT

-kq̌(m)
-k +Ae,kmatk(Fe,t − F̄e,·)AT

e,-kq̌(m)
-k

+
[(

ΣΣΣ
(k)
ε,1
)1/2

(εεε
(k)
t,1 − ε̄εε

(k)
·,1 ), . . . ,

(
ΣΣΣ
(k)
ε,d-k

)1/2
(εεε

(k)
t,d-k

− ε̄εε
(k)
·,d-k

)
]
q̌(m)

-k

}⊗2

=
3

∑
i=1

S̃ii,m +
3

∑
i, j=1;i< j

(S̃i j,m + S̃T
i j,m), where

S̃11,m := Ak(Irk ⊗ q̌(m)T
-k A-k)T−1F̃(k)MT F̃(k)T(Irk ⊗ q̌(m)T

-k A-k)
TAT

k,

S̃12,m := Ak(Irk ⊗ q̌(m)T
-k A-k)T−1F̃(k)MT Θ̃ΘΘ

(k)T
diag1/2(ΣΣΣ

(k)
ε,1, . . . ,ΣΣΣ

(k)
ε,d-k

)(q̌(m)T
-k ⊗ Idk)

T,

S̃13,m := Ak(Irk ⊗ q̌(m)T
-k A-k)T−1F̃(k)MT F̃(k)T

e (Ire,k ⊗ q̌(m)T
-k Ae,-k)

TAT
e,k,

S̃22,m := (q̌(m)T
-k ⊗ Idk)diag1/2(ΣΣΣ
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ε,1, . . . ,ΣΣΣ

(k)
ε,d-k
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MT Θ̃ΘΘ
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(k)
ε,1, . . . ,ΣΣΣ

(k)
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T,

S̃23,m := (q̌(m)T
-k ⊗ Idk)diag1/2(ΣΣΣ

(k)
ε,1, . . . ,ΣΣΣ

(k)
ε,d-k

)T−1
Θ̃ΘΘ

(k)
MT F̃(k)T
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-k Ae,-k)
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e,k,

S̃33,m := Ae,k(Ire,k ⊗ q̌(m)T
-k Ae,-k)T−1F̃(k)

e MT F̃(k)T
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-k Ae,-k)
TAT

e,k,
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with MT = IT −T−11T 1T
T , and

F̃(k) := [vec(matT
k(F1)), . . . ,vec(matT

k(FT ))] =: [f(k)1 , . . . , f(k)T ],

F̃(k)
e := [vec(matT

k(Fe,1)), . . . ,vec(matT
k(Fe,T ))] =: [f(k)e,1, . . . , f

(k)
e,T ], where

f(k)t := ( f (k)t,1,1, . . . , f (k)t,r-k,1
, . . . , f (k)t,1,rk

, . . . , f (k)t,r-k,rk
)T,

f(k)e,t := ( f (k)e,t,1,1, . . . , f (k)e,t,re,-k,1
, . . . , f (k)e,t,1,re,k

, . . . , f (k)e,t,re,-k,re,k
)T, and

Θ̃ΘΘ
(k)

:= [εεε
(k)
1 , . . . ,εεε

(k)
T ] with εεε

(k)
t := (εεε

(k)T
t,1 , . . . ,εεε

(k)T
t,d-k

)T.

With the notations in Assumption (E2) and (F1), for t ∈ [T ], define

z(k)e,t := (z(k)e,t,1,1, . . . ,z
(k)
e,t,re,-k,1

, . . . ,z(k)e,t,1,re,k
, . . . ,z(k)e,t,re,-k,re,k

)T,

z(k)ε,t := (z(k)
ε,t,1,1, . . . ,z

(k)
ε,t,1,dk

, . . . ,z(k)
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, . . . ,z(k)
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)T,

z(k)f ,t := (z(k)f ,t,1,1, . . . ,z
(k)
f ,t,r-k,1

, . . . ,z(k)f ,t,1,rk
, . . . ,z(k)f ,t,r-k,rk

)T.

We further split, for a fixed integer N ≥ 1,

F̃(k) := F(k)+ F̌(k), F̃(k)
e := F(k)

e + F̌(k)
e , Θ̃ΘΘ

(k)
:= ΘΘΘ

(k)+ Θ̌ΘΘ
(k)
, where

F(k) :=
( NT

∑
q=0

a f ,qz(k)f ,1−q, . . . ,
NT

∑
q=0

a f ,qz(k)f ,T−q

)
= (z(k)f ,1−NT , . . . ,z

(k)
f ,T )A f ,T =: Z(k)

f A f ,T ,

F(k)
e :=

( NT

∑
q=0

ae,qz(k)e,1−q, . . . ,
NT

∑
q=0

ae,qz(k)e,T−q

)
= (z(k)e,1−NT , . . . ,z

(k)
e,T )Ae,T =: Z(k)

e Ae,T ,

ΘΘΘ
(k) :=

( NT

∑
q=0

aε,qz(k)
ε,1−q, . . . ,

NT

∑
q=0

aε,qz(k)
ε,T−q

)
= (z(k)

ε,1−NT , . . . ,z
(k)
ε,T )Aε,T =: Z(k)

ε Aε,T ,

with A f ,T , Ae,T and Aε,T defined in Assumption (RE1), and F̌(k), F̌(k)
e and Θ̌ΘΘ

(k)
the

remainders of the truncations. Then we define

S̃i j,m = Si j,m + Ši j,m, where

S11,m := Ak(Irk ⊗ q̌(m)T
-k A-k)T−1F(k)MT F(k)T(Irk ⊗ q̌(m)T

-k A-k)
TAT

k, (3.70)

and similarly for other Si j,m’s. We first prove a lemma on how large the quadratic form

ĝ-k := q̌(0)T
-k A-kAT

-kq̌(0)
-k (3.71)

is, before showing how small each remainder term Ši j,0 is in the next lemma.
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Lemma 3.5. Let all the assumptions in Theorem 3.2 be satisfied. Then

ĝ-k ≍P

K

∏
j=1; j ̸=k

d
α j,1
j .

To put some perspectives into Lemma 3.5, recall that q̌(0)
-k = q̂-k,pre = Û-k,pre,(1) is

estimating the direction U-k,(1). Hence the quadratic form ĝ-k is estimating

UT
-k,(1)A-kAT

-kU-k,(1) = UT
-k,(1)U-kG-kUT

-kU-k,(1) = (G-k)11 ≍
K

∏
j=1; j ̸=k

d
α j,1
j ,

where is the last rate is the result of (3.31) in Lemma 3.2. Hence ĝ-k has the same rate as

the quadratic form that it is estimating.

Proof of Lemma 3.5.

ĝ-k = q̂T
-k,preA-kAT

-kq̂-k,pre = ÛT
-k,pre,(1)A-kAT

-kÛ-k,pre,(1) (3.72)

= UT
-k,(1)A-kAT

-kU-k,(1)+(Û-k,pre,(1)−U-k,(1))
TA-kAT

-k(Û-k,pre,(1)−U-k,(1))

+2(Û-k,pre,(1)−U-k,(1))
TA-kAT

-kU-k,(1)

≥ U-k,(1)TA-kAT
-kU-k,(1)+2(Û-k,pre,(1)−U-k,(1))

TA-kAT
-kU-k,(1)

= UT
-k,(1)U-kG-kUT

-kU-k,(1)+2(Û-k,pre,(1)−U-k,(1))
TU-kG-kUT

-kU-k,(1),

where the last line used the singular value decomposition of Ak in (3.5), and

Û-k,pre,(1) := UK,pre,(1)⊗·· ·⊗Uk+1,pre,(1)⊗Uk−1,pre,(1)⊗·· ·⊗U1,pre,(1),

U-k := UK ⊗·· ·⊗Uk+1 ⊗Uk−1 ⊗·· ·⊗U1, G-k := GK ⊗·· ·⊗Gk+1 ⊗Gk−1 ⊗·· ·⊗G1,

U-k,(1) := UK,(1)⊗·· ·Uk+1,(1)⊗Uk−1,(1)⊗·· ·⊗U1,(1).

But (3.31) in Lemma 3.2 proves that Gk has the j-th diagonal element with order d
αk, j
k

for j ∈ [rk] under Assumption (L1), which is the same as those in Dk. At the same time,

induction (proof omitted) easily gives

∥∥Û-k,pre,(1)−U-k,(1)
∥∥=OP

( K

∑
j=1; j ̸=k

∥∥Û j,pre,(1)−U j,(1)
∥∥)=OP

(
K
√

rmax

T
+

K

∑
j=1; j ̸=k

d
−α j,1
j c1/2

j,max

)
,

(3.73)
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with rmax := maxk∈[K] rk. Hence from the decomposition after (3.72), we then have,

assuming the above rate is o(1),

ĝ-k ≍ (1+oP(1))(G-k)11 ≍P

K

∏
j=1; j ̸=k

d
α j,1
j .

Lemma 3.6. Let all the assumptions in Theorem 3.2 be satisfied. Then for each k ∈ [K],

3

∑
i, j=1;i≤ j

∥∥Ši j,0
∥∥= oP(T−1).

Proof of Lemma 3.6. Define

Q(k)
1,m := Ak(Irk ⊗ q̌(m)T

-k A-k),

Q(k)
2,m := (q̌(m)T

-k ⊗ Idk)diag1/2(ΣΣΣ
(k)
ε,1, . . . ,ΣΣΣ

(k)
ε,d-k

),

Q(k)
3,m := Ae,k(Ire,k ⊗ q̌(m)T

-k Ae,-k).

(3.74)

Then

∥∥Q(k)
1,0

∥∥2
= (q̌(0)T

-k A-kAT
-kq̌(0)

-k )
∥∥Ak

∥∥2
= OP

( K

∏
j=1; j ̸=k

d
α j,1
j ·dαk,1

k

)
= OP(gs),∥∥Q(k)

2,0

∥∥2
= OP

(
max
j∈[d-k]

∥∥ΣΣΣ
(k)
ε, j

∥∥)= OP(1),
∥∥Q(k)

3,0

∥∥2
= (q̌(0)T

-k Ae,-kAT
e,-kq̌(0)

-k )
∥∥Ae,k

∥∥2
= OP(1),

where the first line used Lemma 3.5, and the results for Q(k)
2,0 and Q(k)

3,0 used finiteness of K

and Assumption (E1). We also have, by Assumption (RE1),

E
∥∥T−1/2F(k)∥∥2

F = T−1Etr(A T
f ,T Z(k)T

f Z(k)
f A f ,T ) = rT−1tr(A f ,T A T

f ,T ) = r(1−o(T−2d−2)),

E
∥∥T−1/2F̌(k)∥∥2

F = O(rT ·T−1 ·o(T−2d−2)) = o(rT−2d−2),

E
∥∥T−1/2

ΘΘΘ
(k)∥∥2

F = d(1−o(T−2d−2)), E
∥∥T−1/2

Θ̌ΘΘ
(k)∥∥2

F = o(dT−2d−2) = o(T−2d−1),

E
∥∥T−1/2F(k)

e
∥∥2

F = re(1−o(T−2d−2)), E
∥∥T−1/2F̌(k)

e
∥∥2

F = o(reT−2d−2).

Then writing Š11,0 = I1 + IT
1 + I2, where

I1 := T−1Q(k)
1,0F̌(k)MT F(k)Q(k)T

1,0 , I2 := T−1Q(k)
1,0F̌(k)MT F̌(k)Q(k)T

1,0 ,
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we have for a > 0,

P(
∥∥I1
∥∥≥ a)≤

∥∥Q(k)
1,0

∥∥2E1/2∥∥T−1/2F(k)∥∥2
F ·E1/2∥∥T−1/2F̌(k)∥∥2

F/a

= o(gs · r1/2 · r1/2T−2/2d−2/2/a) = o(rgsT−1d−1/a) = o(T−1),

showing that
∥∥I1
∥∥ = oP(T−1). Similarly (details omitted),

∥∥I2
∥∥ = oP(T−2d−1), so that∥∥Š11,0

∥∥= oP(T−1). Similar to the above arguments, we can show that (details omitted)

∥∥Š12,0
∥∥= oP(r1/2g1/2

s T−1d−1/2) = oP(T−1),
∥∥Š13,0

∥∥= oP(g
1/2
s r1/2r1/2

e T−1d−1) = oP(T−1),∥∥Š22,0
∥∥= oP(d1/2 ·T−1d−1/2) = oP(T−1),

∥∥Š23,0
∥∥= oP(r

1/2
e T−1d−1/2) = oP(T−1),∥∥Š33,0

∥∥= oP(r
1/2
e · r1/2

e T−1d−1) = oP(T−1).

This completes the proof of the lemma. □

Before presenting the next lemma, define, for j ∈ [d-k] and k ∈ [K], and m a non-negative

integer,

S′
11,m = (q̌(m)T

-k A-kAT
-kq̌(m)

-k )AkAT
k,

S′′
11,m = Ak(Irk ⊗ q̌(m)T

-k A-k)(T−1F(k)MT F(k)T − Ir)(Irk ⊗ q̌(m)T
-k A-k)

TAT
k,

so that S11,m = S′
11,m +S′′

11,m, where S11,m is defined in (3.70). Then

Σ̃ΣΣ
(k)
y,m+1 = T−1

T

∑
t=1

y(k)t,m+1y(k)T
t,m+1 = S′

11,m +S′′
11,m +S22,m +S33,m +

3

∑
i, j=1;i< j

(Si j,m +ST
i j,m)+

3

∑
i, j=1

Ši j,m

=: S′
11,m +Em. (3.75)

Lemma 3.7. Let all the assumptions in Theorem 3.2 be satisfied. Then for j ∈ [d-k] and

k ∈ [K], defining ǧ(m)
-k := q̌(m)T

-k A-kAT
-kq̌(m)

-k , we have

∥∥S′′
11,m
∥∥= OP

(
ǧ(m)

-k d
αk,1
k

√
r
T

)
,
∥∥S12,m

∥∥= OP

{
(ǧ(m)

-k )1/2d
αk,1/2
k

(√
rdk

T
+
∥∥q̌(m)

-k −U-k,(1)
∥∥√rd

T

)}
,

∥∥S13,m
∥∥= OP

(
(ǧ(m)

-k )1/2d
αk,1/2
k

√
rre

T

)
,

∥∥S22,m
∥∥= OP

(
1+
∥∥q̌(m)

-k −U-k,(1)
∥∥2 d

T
+

dk√
T
+
∥∥q̌(m)

-k −U-k,(1)
∥∥√dkd

T

)
,

∥∥S23,m
∥∥= OP

{√
redk

T
+
∥∥q̌(m)

-k −U-k,(1)
∥∥√red

T

}
,
∥∥S33,m

∥∥= OP(1),
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where U-k,(1) := UK,(1)⊗·· ·⊗Uk+1,(1)⊗Uk−1,(1)⊗·· ·⊗U1,(1).

Proof of Lemma 3.7. Using (3.5) and the fact that (3.31) proves that λ j(Gk)≍ d
αk, j
k for

j ∈ [rk], we have

∥∥S′′
11,m
∥∥≤ (q̌(m)T

-k A-kAT
-kq̌(m)

-k )
∥∥Ak

∥∥2 ·
∥∥T−1Z(k)

f A f ,T MT A T
f ,T Z(k)T

f − Ir
∥∥

= ǧ(m)
-k

∥∥Gk
∥∥ ·∥∥T−1Z(k)

f A f ,T MT A T
f ,T Z(k)T

f − Ir
∥∥= OP

(
ǧ(m)

-k d
αk,1
k

√
r
T

)
,

where the last equality used Theorem 2.8 of Wang and Paul (2014), which can be applied

since we have r = o(T 1/3) and with fourth order moments exist for the elements in Z(k)
f

from Assumption (L1) and (R1) respectively, and that by Assumption (RE1),

∥∥A f ,T MT A T
f ,T
∥∥≤ ∥∥A f ,T

∥∥2
< ∞,

1
(N +1)T

tr(A f ,T MT A T
f ,T ) =

1
(N +1)T

(tr(A T
f ,T A f ,T )−T−11T

T A T
f ,T A f ,T 1T )→

1
N +1

,

1
(N +1)T

tr(A f ,T MT A T
f ,T )

2 =
1

(N +1)T
{

tr(A T
f ,T A f ,T )

2 −2T−11T
T (A

T
f ,T A f ,T )

21T

+T−2(1T
T A T

f ,T A f ,T 1T )
2}→ a1 −2a2 +a2

3
N +1

.

For
∥∥S12,m

∥∥, define the notation US to be a sub-matrix of U restricted to the rows

indexed by S. Let Z j := (Z(k)
ε )B j ∈ Rdk×(M+1)T , where B j := {( j−1)dk +1, . . . , jdk},

j = 1, . . . ,d-k. Let also aℓ, j := (ΣΣΣ
(k)
ε, j)

T
ℓ , ℓ ∈ [dk]. Using the notation in (3.74), for h ∈ [r]

and ℓ ∈ [dk], the (h, ℓ)-th element of T−1Z(k)
f A f ,T MT A T

ε,T Z(k)T
ε Q(k)T

2,m is J1 + J2, where

J1 := T−1
d-k

∑
j=1

(U-k,(1)) jaT
ℓ, jZ jAε,T MT A T

f ,T (Z
(k)
f )h,

J2 := T−1
d-k

∑
j=1

(q̌(m)
-k −U-k,(1)) jaT

ℓ, jZ jAε,T MT A T
f ,T (Z

(k)
f )h.

We have EJ1 = 0, and by Assumption (E1),

E|J1|2 = T−2
d-k

∑
j=1

(U-k,(1))
2
j
∥∥aℓ, j

∥∥2∥∥A f ,T MT A T
ε,T
∥∥2

F ≤ O(T−2) ·
∥∥A f ,T

∥∥∥∥MT
∥∥ ·∥∥Aε,T

∥∥2
F = O(T−1),

where the last equality is from Assumption (RE1). It means that J1 = OP(T−1/2). For

J2, using the Cauchy-Schwarz inequality and that aT
ℓ, jZ jAε,T MT A T

f ,T (Z
(k)
f )h = OP(T 1/2)
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from the analysis of J1 above,

J2 ≤
∥∥q̌(m)

-k −U-k,(1)
∥∥ ·T−1

( d-k

∑
j=1

(aT
ℓ, jZ jA f ,T MT A T

ε,T (Z
(k)
f )h)

2
)1/2

=
∥∥q̌(m)

-k −U-k,(1)
∥∥ ·T−1OP(d-kT )1/2 = OP

(∥∥q̌(m)
-k −U-k,(1)

∥∥√d-k

T

)
.

With the above, we then have

∥∥S12,m
∥∥= ∥∥Q(k)

1,mT−1Z(k)
f A f ,T MT A T

ε,T Z(k)T
ε Q(k)T

2,m

∥∥≤ ∥∥Q(k)
1,m

∥∥ ·√rdk ·OP(J1 + J2)

= OP

{
(ǧ(m)

-k )1/2d
αk,1/2
k

(√
rdk

T
+
∥∥q̌(m)

-k −U-k,(1)
∥∥√rd

T

)}
.

For S13,m, using the definitions in (3.74) and the bounds for
∥∥Q(k)

3,m

∥∥ in Lemma 3.6,

∥∥S13,m
∥∥≤ ∥∥Q(k)

1,m

∥∥ ·∥∥Q(k)
3,m

∥∥ ·∥∥T−1Z(k)
f A f ,T MT A T

e,T Z(k)T
e
∥∥

≤ (ǧ(m)
-k )1/2d

αk,1/2
k ·1 ·OP(T−1√rre

∥∥A f ,T MT A T
e,T
∥∥

F) = OP

(
(ǧ(m)

-k )1/2d
αk,1/2
k

√
rre

T

)
,

where the last line used the fact that an element in Z(k)
f A f ,T MT A T

e,T Z(k)T
e is OP(

∥∥A f ,T MT A T
e,T

∥∥
F)=

OP(T 1/2) by a similar calculation for treating J1 above.

For S22,m, decompose Q(k)
2,m = Q(k)

2,m,0 +Q(k)
2,m,e, where

Q(k)
2,m,0 :=(UT

-k,(1)⊗Idk)diag1/2(ΣΣΣ
(k)
ε,1, . . . ,ΣΣΣ

(k)
ε,d-k

), Q(k)
2,m,e :=((q̌(m)

-k −U-k,(1))
T⊗Idk)diag1/2(ΣΣΣ

(k)
ε,1, . . . ,ΣΣΣ

(k)
ε,d-k

).

Then S22,m = I0 + I1 + I2 + IT
2 + I3, where

I0 := Q(k)
2,mQ(k)T

2,m ,

I1 := Q(k)
2,m,0(T

−1Z(k)
ε Aε,T MT A T

ε,T Z(k)T
ε − Id)Q

(k)T
2,m,0,

I2 := Q(k)
2,m,e(T

−1Z(k)
ε Aε,T MT A T

ε,T Z(k)T
ε − Id)Q

(k)T
2,m,0,

I3 := Q(k)
2,m,e(T

−1Z(k)
ε Aε,T MT A T

ε,T Z(k)T
ε − Id)Q

(k)T
2,m,e.

Firstly, ∥∥I0
∥∥= ∥∥Q(k)

2,m

∥∥2 ≤ max
j∈[d-k]

∥∥ΣΣΣ
(k)
ε, j

∥∥= O(1).
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Using the same notations as in the treatment of S12,m before within this proof, for ℓ,h ∈ [dk],

the (ℓ,h) entry of I1 is given by

(I1)ℓ,h = T−1
( d-k

∑
j=1

(U-k,(1)) jaT
ℓ, jZ j

)
Aε,T MT A T

ε,T

( d-k

∑
j=1

(U-k,(1)) jaT
h, jZ j

)T

−
d-k

∑
j=1

(U-k,(1))
2
ja

T
ℓ, jah, j.

Hence by Assumption (RE1) and (E1), writing G := Aε,T MT A T
ε,T ,

E(I1)ℓ,h =
d-k

∑
j=1

(U-k,(1))
2
ja

T
ℓ, jah, j{T−1tr(G)−1}= O(T−1/2).

Also,

E(I1)
2
ℓ,h = T−2

d-k

∑
i, j=1

(U-k,(1))
2
i (U-k,(1))

2
jE{(aT

ℓ,iZiGZT
i ah,i)(aT

ℓ, jZ jGZT
jah, j)}

+T−2
∑
i ̸= j

(U-k,(1))
2
i (U-k,(1))

2
j{E(aT

ℓ,iZiGZT
jah, j)

2 +E{aT
ℓ,iZiGZT

jah, jaT
ℓ, jZ jGZT

i ah,i}}

−2T−1tr(G)

( d-k

∑
j=1

(U-k,(1))
2
ja

T
ℓ, jah, j

)2

+

( d-k

∑
j=1

(U-k,(1))
2
ja

T
ℓ, jah, j

)2

= T−2
d-k

∑
i=1

(U-k,(1))
4
i E(aT

ℓ,iZiGZT
i ah,i)

2 +T−2
∑
i̸= j

(U-k,(1))
2
i (U-k,(1))

2
j(a

T
ℓ,iah,i)(aT

ℓ, jah, j)tr2(G)

+T−2
∑
i ̸= j

(U-k,(1))
2
i (U-k,(1))

2
j(
∥∥aℓ,i

∥∥2∥∥ah, j
∥∥2

+(aT
ℓ,iah,i)(aT

ℓ, jah, j))tr(G2)

− (2T−1tr(G)−1)
( d-k

∑
j=1

(U-k,(1))
2
ja

T
ℓ, jah, j

)2

. (3.76)
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Now define wℓ :=ZT
i aℓ,i. Then E(wℓ)= 0 and cov(wℓ,wh)= aT

ℓ,iah,iI(M+1)T , with elements

in wℓ independent of each other for each ℓ ∈ [dk] and i ∈ [d-k]. Hence

E(aT
ℓ,iZiGZT

i ah,i)
2 = E(wT

ℓGwh) = E
( (N+1)T

∑
j=1

(G) j j(wℓ) j(wh) j + ∑
j1 ̸= j2

(G) j1 j2(wℓ) j1(wh) j2

)2

=
(N+1)T

∑
j=1

(G)2
j jE[(wℓ)

2
j(wh)

2
j ]+ ∑

j1 ̸= j2

(G) j1 j1(G) j2 j2(a
T
ℓ,iah,i)

2

+ ∑
j1 ̸= j2

(G)2
j1 j2(

∥∥aℓ,i
∥∥2∥∥ah,i

∥∥2
+(aT

ℓ,iah,i)
2)

=
(N+1)T

∑
j=1

(G)2
j j

{∥∥ah,i
∥∥2∥∥aℓ,i

∥∥2
+(ν4 −3)aT

h,idiag(aℓ,iaT
ℓ,i)ah,i +2(aT

ℓ,iah,i)
2
}

+ ∑
j1 ̸= j2

(G) j1 j1(G) j2 j2(a
T
ℓ,iah,i)

2 + ∑
j1 ̸= j2

(G)2
j1 j2(

∥∥aℓ,i
∥∥2∥∥ah,i

∥∥2
+(aT

ℓ,iah,i)
2)

=
∥∥ah,i

∥∥2∥∥aℓ,i
∥∥2tr(G2)+(aT

ℓ,iah,i)
2(tr2(G)+ tr(G2))

+(ν4 −3)tr(diag2(G))aT
h,idiag(aℓ,iaT

ℓ,i)ah,i, (3.77)

where ν4 := E(Zi)
4
11 < ∞ by Assumption (R1), and we used Lemma (A.2) of Li et al.

(2019). Substitute this back to (3.76), we have E(I1)
2
ℓ,h = H1 +H2 +H3 +H4, where

H1 := (T−2tr2(G)−2T−1tr(G)+1)
( d-k

∑
j=1

(U-k,(1))
2
ja

T
ℓ, jah, j

)2

,

H2 := T−2tr(G2)

( d-k

∑
j=1

(U-k,(1))
2
ja

T
ℓ, jah, j

)2

,

H3 := T−2tr(G2)

( d-k

∑
j=1

(U-k,(1))
2
ja

T
ℓ, jaℓ, j

)( d-k

∑
j=1

(U-k,(1))
2
ja

T
h, jah, j

)
,

H4 := T−2tr(diag2(G))
d-k

∑
j=1

(U-k,(1))
4
j(ν4 −3)aT

h, jdiag(aℓ, jaT
ℓ, j)ah, j.

By Assumption (RE1), we have

|H1|, |H2|, |H3|= O(T−1) ·O( max
j∈[d-k]

∥∥ΣΣΣ
(k)
ε, j

∥∥2
max) = O(T−1),

|H4| ≤ T−2tr(G2)(ν4 −3) max
j∈[d-k]

∥∥ΣΣΣ
(k)
ε, j

∥∥2
max = O(T−1).

Hence we can conclude that
∥∥I1
∥∥= OP(dkT−1/2).
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For I2, define ê j := (q̌(m)
-k −U-k,(1)) j. Then for ℓ,h ∈ [dk], the (ℓ,h) entry of I2 is given

by

(I2)ℓ,h =
d-k

∑
j1=1

ê j1

(
T−1aT

ℓ, j1Z j1G
d-k

∑
j2=1

(U-k,(1)) j2ZT
j2ah, j2 − (U-k,(1)) j1aT

ℓ, j1ah, j1

)
=:

d-k

∑
j1=1

ê j1g j1,ℓ,h.

By Assumption (RE1) and (E1),

E(g j1,h,ℓ) = (T−1tr(G)−1)(U-k,(1)) j1aT
ℓ, j1ah, j1 = O(T−1/2).

Also, similar to the treatment of I1 and using (3.77),

E(g2
j1,h,ℓ) = T−2

d-k

∑
j=1

(U-k,(1))
2
jE(a

T
ℓ, j1Z j1GZT

jah, j)
2

−2T−1tr(G)(U-k,(1))
2
j1(a

T
ℓ, j1ah, j1)

2 +(U-k,(1))
2
j1(a

T
ℓ, j1ah, j1)

2

=
d-k

∑
j=1

(U-k,(1))
2
jT

−2tr(G2)
∥∥ah, j

∥∥2∥∥aℓ, j1
∥∥2

+(T−1tr(G)−1)2(U-k,(1))
2
j1(a

T
ℓ, j1ah, j1)

2 +T−2tr(G2)(U-k,(1))
2
j1(a

T
ℓ, j1ah, j1)

2

+T−2(U-k,(1))
2
j1(ν4 −3)tr(diag2(G))aT

h, j1diag(aℓ, j1aT
ℓ, j1)ah, j1 = O(T−1),

so that we can conclude that
∥∥I2
∥∥ = OP

(
dk
∥∥q̌(m)

-k −U-k,(1)
∥∥√d-k

T

)
= OP

(
d1/2

k

∥∥q̌(m)
-k −

U-k,(1)
∥∥√ d

T

)
.

For I3, using Theorem 2 of Latała (2004),

∥∥I3
∥∥≤ ∥∥Q(k)

2,m,e

∥∥2∥∥T−1Z(k)
ε GZ(k)T

ε − Id
∥∥≤ ∥∥q̌(m)

-k −U-k,(1)
∥∥2 max

j∈[d-k]

∥∥ΣΣΣ
(k)
ε, j

∥∥ ·OP(1+d/T )

= OP(
∥∥q̌(m)

-k −U-k,(1)
∥∥2
(1+d/T )).

Hence

∥∥S22,m
∥∥= ∥∥I0

∥∥+∥∥I1
∥∥+2

∥∥I2
∥∥+∥∥I3

∥∥
= OP

(
1+

dk√
T
+
∥∥q̌(m)

-k −U-k,(1)
∥∥√dkd

T
+
∥∥q̌(m)

-k −U-k,(1)
∥∥2
( d

T
+1
))

= OP

(
1+
∥∥q̌(m)

-k −U-k,(1)
∥∥2 d

T
+

dk√
T
+
∥∥q̌(m)

-k −U-k,(1)
∥∥√dkd

T

)
.
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For S23,m, the treatment is exactly parallel to the treatment of S12,m, so that

∥∥S23,m
∥∥= ∥∥Q(k)

3,m

∥∥ ·√redk ·OP(J1 + J2)

= OP

{√
redk

T
+
∥∥q̌(m)

-k −U-k,(1)
∥∥√red

T

}
.

Finally, by Assumption (RE1) and Theorem 2 of Latała (2004) and that re = o(T ),

∥∥S33,m
∥∥≤ ∥∥Q(k)

3,m

∥∥2OP

(
1+
√

re

T

)
= OP(1).

This completes the proof of the lemma. □

Proof of Theorem 3.2. Firstly, (3.31) in Lemma 3.2 proves that Gk has the j-th diagonal

element with order d
αk, j
k for j ∈ [rk] under Assumption (L1), which is the same as those in

Dk. Define Bk ∈ Rdk×dk−rk to be an orthogonal compliment of Uk = (Uk,(1),Uk,(2:rk)), in

the sense that Vk := (Uk,Bk) has VkVT
k = VT

kVk = Idk . Then using the SVD of Ak in (3.5),

VT
kS′

11,mVk =

(
ǧ(m)

-k Gk 0
0 0

)
,

with the ( j, j) element of ǧ(m)
-k Gk of order ǧ(m)

-k d
αk, j
k , j ∈ [rk]. By Assumption (L1’), we

then have

sep(UT
k,(1)S

′
11,mUk,(1),(Uk,(2:rk),Bk)

TS′
11,m(Uk,(2:rk),Bk))≍ ǧ(m)

-k d
αk,1
k ,

where

sep(D1,D2) := min
λ∈λ (D1),µ∈λ (D2)

|λ −µ|.

Then by Lemma 3 of Lam et al. (2011), which is Theorem 8.1.10 in Golub and Van Loan

(1996), since Uk,(1) is an eigenvector of S′
11,m and hence the span of Uk,(1) is an invariant

subspace for S′
11,m, for the matrix Em in (3.75), if

∥∥Em
∥∥= oP(ǧ

(m)
-k d

αk,1
k ),

then there exists q̌(m+1)
k which is an eigenvector of Σ̃ΣΣ

(k)
y,m+1 such that

∥∥q̌(m+1)
k −Uk,(1)

∥∥= O(
∥∥Em

∥∥/(ǧ(m)
-k d

αk,1
k )). (3.78)
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We prove by induction on the integer m for the following statements:

I(m): ǧ(m)
-k d

αk,1
k ≍P gs for each k ∈ [K].

II(m): For each k ∈ [K],

∥∥q̌(m+1)
k −Uk,(1)

∥∥= OP

{√
r
T
+g−1/2

s
∥∥q̌(m)

-k −U-k,(1)
∥∥√rd

T

}
= oP(1).

The statement I(0) is proved exactly by Lemma 3.5. For statement II(0), using Lemma

3.6 and Lemma 3.7 at m = 0 and combine with the result that ǧ(0)-k = ĝ-k ≍P gs/d
αk,1
k from

I(0), we have from (3.75) that

∥∥E0
∥∥= OP

(∥∥S′′
11,0
∥∥+∥∥S22,0

∥∥+∥∥S33,0
∥∥+ 3

∑
i< j=1

(
∥∥Si j,0

∥∥+∥∥ST
i j,0
∥∥)+ 3

∑
i, j=1

∥∥Ši j,0
∥∥)

= OP

(
gs

√
r
T
+g1/2

s
∥∥q̌(0)

-k −U-k,(1)
∥∥√rd

T
+
∥∥q̌(0)

-k −U-k,(1)
∥∥2 d

T

)
= OP

(
gs

√
r
T
+g1/2

s bk

√
rd
T

+b2
k

d
T

)
,

where the dominating rates in the second line are the results of the explicit rate assumptions

presented at the beginning of Theorem 3.2, and the last line used (3.73) and the notation bk

used in Theorem 3.2. Hence from (3.78),

∥∥q̌(1)
k −Uk,(1)

∥∥= OP(
∥∥E0

∥∥/(ǧ(0)-k d
αk,1
k )) = OP(

∥∥E0
∥∥/gs)

= OP

(√
r
T
+g−1/2

s
∥∥q̌(0)

-k −U-k,(1)
∥∥√rd

T
+g−1

s
∥∥q̌(0)

-k −U-k,(1)
∥∥2 d

T

)
= OP

(√
r
T
+g−1/2

s bk

√
rd
T

+g−1
s b2

k
d
T

)
= OP

(√
r
T
+g−1/2

s bk

√
rd
T

)
= oP(1),

which is statement II(0), and the first statement of Theorem 3.2 is proved. Hence both I(m)

and II(m) are true at m = 0.

Assume that both statements are true at a non-negative integer m. Then with II(m), like

(3.72),

ǧ(m+1)
-k = q̌(m+1)T

-k A-kAT
-kq̌(m+1)

-k

≥ UT
-k,(1)U-kG-kUT

-kU-k,(1)+2(q̌(m+1)
-k −U-k,(1))

TU-kG-kUT
-kU-k,(1)

= (1+oP(1))(G-k)11 ≍P

K

∏
j=1; j ̸=k

d
α j,1
j = gsd

−αk,1
k ,
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which proves statement I(m+1). With this, then using the definitions in (3.74), we have

∥∥Q(k)
1,m+1

∥∥= (q̌(m+1)T
-k A-kAT

-kq̌(m+1)
-k )

∥∥Ak
∥∥2

= ǧ(m+1)
-k ·dαk,1

k = OP(gs),
∥∥Q(k)

2,m+1

∥∥= O(1) =
∥∥Q(k)

3,m+1

∥∥.
Then the rest of the proofs of Lemma 3.6 follow through and we can conclude that

3

∑
i< j=1

∥∥Ši j,m+1
∥∥= oP(T−1).

With the above, and Lemma 3.7 at m+1, we have from (3.75) that

∥∥Em+1
∥∥= OP

(∥∥S′′
11,m+1

∥∥+∥∥S22,m+1
∥∥+∥∥S33,m+1

∥∥+ 3

∑
i< j=1

(
∥∥Si j,m+1

∥∥+∥∥ST
i j,m+1

∥∥)+ 3

∑
i, j=1

∥∥Ši j,m+1
∥∥)

= OP

(
gs

√
r
T
+g1/2

s
∥∥q̌(m+1)

-k −U-k,(1)
∥∥√rd

T
+
∥∥q̌(m+1)

-k −U-k,(1)
∥∥2 d

T

)
,

so that by (3.78) and the proved I(m+1),

∥∥q̌(m+2)
k −Uk,(1)

∥∥= OP(
∥∥Em+1

∥∥/(ǧ(m+1)
-k d

αk,1
k )) = OP(

∥∥Em+1
∥∥/gs)

= OP

(√
r
T
+g−1/2

s
∥∥q̌(m+1)

-k −U-k,(1)
∥∥√rd

T
+g−1

s
∥∥q̌(m+1)

-k −U-k,(1)
∥∥2 d

T

)
= OP

(√
r
T
+g−1/2

s
∥∥q̌(m+1)

-k −U-k,(1)
∥∥√rd

T

)
,

which is oP(1) since
∥∥q̌(m+1)

-k −U-k,(1)
∥∥= oP(1) by assumption II(m), and that rdg−1

s =

o(T ). This proves statement II(m+1), and hence we have proved the statements I(m) and

II(m) for any non-negative integers m by induction.

To prove the second part of Theorem 3.2, define em,k :=
∥∥q̌(m)

k −Uk,(1)
∥∥ and em,-k :=∥∥q̌(m)

-k −U-k,(1)
∥∥. We have from an argument similar to the one in (3.73) that

em,-k = OP

( K

∑
j=1; j ̸=k

em, j

)
. (3.79)

We see from statement II(m) that the coefficient rate of
∥∥q̌(m)

-k −U-k,(1)
∥∥ is, for each k ∈ [K],

uk := g−1/2
s

√
rd/T , which is o(1) by the the assumption rdg−1

s = o(T ) in Theorem 3.2.
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The statement II(m+n−1) then implies that

em+n,k = OP

(√
r
T
+ukem+n−1,-k

)
= OP

(√
r
T
+uk

K

∑
j=1; j ̸=k

em+n−1, j

)
.

Defining em := (em,1, . . . ,em,K)
T, the above becomes

em+n = OP

(√
r
T

1K +Wem+n−1

)
, where W :=


0 u1 u1 · · · u1

u2 0 u2 · · · u2
...

... . . . ...
...

uK uK uK · · · 0

 ,

with
∥∥W
∥∥

∞
≤ K maxk∈[K] uk = o(1) since K is assumed finite. Hence iterating the above

n−1 more times, we have

em+n = OP

(√
r
T

(
IK +W+ · · ·+Wn−1)1K +Wnem

)
, implying

∥∥em+n
∥∥

max = OP

(√
r
T

(
1+
∥∥W
∥∥

∞
+ · · ·+

∥∥W
∥∥n−1

∞

)
+
∥∥W
∥∥n

∞

∥∥em
∥∥

max

)
= OP

(√
r
T
+
∥∥W
∥∥n

∞

∥∥em
∥∥

max

)
= OP

(√
r
T

)
for n large enough. This completes the proof of the theorem. □

Proof of Theorem 3.3. Using the notations in (3.70) and in Lemma 3.7, since S11,m

is sandwiched by Ak and AT
k, implying that it is sandwiched by Uk and UT

k, the span of

the columns of Uk forms an invariant subspace for S11,m. Now Let Bk be the orthogonal

complement of Uk, in the sense that U := (Uk,Bk) is an orthogonal matrix. Then we have

UTS11,mU =

(
UT

kS11,mUk 0
0 0

)
, where sep(UT

kS11,mUk,0) = λrk(U
T
kS11,mUk), and

λrk(U
T
kS11,mUk) = λrk

(
VkGkVT

k(Irk ⊗ q̌(m)T
-k A-k)T−1Z(k)

f A f ,T MT A T
f ,T Z(k)T

f (Irk ⊗ q̌(m)T
-k A-k)

T
)

≥ λrk(Gk)λrk(ǧ
(m)
-k Irk)λr(T−1Z(k)

f A f ,T MT A T
f ,T Z(k)T

f )≍P (ǧ(m)
-k d

αk,rk
k ),

where we used Theorem 2.8 of Wang and Paul (2014) (applicable since rk = o(T 1/3) by

Assumption (L1) and all variables are of bounded fourth moments by Assumption (R1)) to
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conclude that

λr(T−1Z(k)
f A f ,T MT A T

f ,T Z(k)T
f )≍P (N +1)

( tr(A f ,T MtA T
f ,T )

(N +1)T
+

√
r

(N +1)T

)
= 1+O(T−1/2),

(3.80)

and the last equality used Assumption (RE1). Hence Lemma 3 of Lam et al. (2011) implies

that there exists Ǔk with ǓT
kǓk = Irk and

∥∥Ǔk−Uk
∥∥=OP

{
[
∥∥S12,m

∥∥+∥∥S13,m
∥∥+∥∥S22,m

∥∥+∥∥S23,m
∥∥+∥∥S33,m

∥∥+ 3

∑
i, j=1

∥∥Ši j,m
∥∥]/sep(UT

kS11,mUk,0)
}
,

such that Ǔk equals the rk eigenvectors corresponding to the first rk largest eigenvalues of

Σ̃ΣΣ
(k)
y,m+1 multiplied with an orthogonal matrix, if we can show that the above rate is oP(1).

To this end, statement I(m) in the proof of Theorem 3.2 shows that ǧ(m)
-k ≍P gs/d

αk,1
k . And

from the rate assumptions in Theorem 3.2 and the results of Lemma 3.7, we have

∥∥Ǔk −Uk
∥∥= OP

{[
1+
√

rgs

T
(r1/2

e +d1/2
k +

∥∥q̌(m)
-k −U-k,(1)

∥∥d1/2)

]
/(gsd

αk,rk−αk,1

k )

}
= OP

{
d

αk,1−αk,rk
k

[
g−1

s +

√
r

T gs
(r1/2

e +d1/2
k +

∥∥q̌(m)
-k −U-k,(1)

∥∥d1/2)

]}
(3.81)

If m is large enough, then following Theorem 3.2, we have by (3.79) that

∥∥q̌(m)
-k −U-k,(1)

∥∥= OP

( K

∑
j=1; j ̸=k

∥∥q̌(m)
j −U j,(1)

∥∥)= OP

(
K
√

r
T

)
.

Substituting the above rate into (3.81) completes the proof. □





Chapter 4

Rank Estimation in Time Series Tensor
Factor Models by Bootstrapped
Correlation Thresholding

4.1 Introduction

High dimensional time series data, often observed in tensor format, is becoming increasingly

prevalent across various fields. An effective and widely adopted approach approach for

dimension reduction of such high dimensional tensor time series is to employ a factor

model structure (Chen et al., 2022; Han et al., 2020; Wang et al., 2019), similar to the

Tucker decomposition for tensors (refer to Chapter 2 for an introduction to tensor factor

modelling). In factor modelling, an important step is to accurately determine the number

of relevant factors in the model. Underestimating the number of relevant factors can result

in a loss of signal, while overestimating it may introduce more noise, both of which can

negatively impact estimation accuracy and forecasting performance. By specifying the

correct number of relevant factors, we can extract the significant signals from the factors

to the greatest extent possible, while minimizing the inclusion of excessive noise. Thus,

the accuracy of estimation and forecasting procedures depends on the specification of the

number of factors (Ahn and Horenstein, 2013; Bai, 2003; Lam and Yao, 2012), making it

an important consideration in the modelling process.

Over the past few decades, numerous methods have emerged for determining the

number of common factors required for modelling high dimensional vector time series

(i.e., when the tensor order is K = 1). The predominant approach involves leveraging
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the behaviour of the eigenvalues of the covariance matrix under the approximate factor

model assumptions with weak serial dependence of the idiosyncratic components (Bai and

Ng, 2002), or the singular values of the autocovariance matrix under the assumption of

‘white noise’ (Lam and Yao, 2012). According to the assumption of factor models, the

eigenvalues (or the singular values) corresponding to the r common components increase

with the cross-sectional units d and diverge to infinity, while the remaining eigenvalues,

representing idiosyncratic components, remain bounded. Under the approximate factor

model assumptions with weak serial and cross-sectional dependence of noise series, Bai

and Ng (2002) propose two information criteria to determine the number of factors by

separating diverging eigenvalues from the rest using threshold functions. Additionally,

Ahn and Horenstein (2013) estimate the number of factors by maximising the ratio of

consecutive eigenvalues of the sample covariance matrix. In the realm of assumptions

with independent noise series (Lam et al., 2011), Lam and Yao (2012) also employ an

eigenvalues ratio-based estimator but using the sample autocovariance matrix instead.

Other efforts to estimate the number of factors for vector factor modelling include

contributions from Amengual and Watson (2007); Bai and Ng (2007); Hallin and Liška

(2007); Kapetanios (2010); Kong (2017); Li et al. (2017); Luo and Li (2016); Onatski

(2010, 2012); Ye and Weiss (2003).

All of the above studies focus on determining the number of factors for vector time

series (i.e., order-1 tensor time series). The extension of factor modelling to matrix and

tensor time series has attracted significant interest in recent years. For tensor factor model

(2.7) with K > 1, the number of factors in each mode rk, k ∈ [K] actually defines the rank

of the core tensor Ct . Under tensor factor model assumptions with independent {Et}, Han

et al. (2022) extend information criteria (IC) and eigenvalue ratio (ER) based methods to

consistently estimate the rank of the core tensor. However, penalty functions are needed to

be specified for both IC and ER methods, and potential tuning parameters are needed for

fine tuning of performance, which can be computationally expensive.

Under the assumption of weak serial dependence of {Et}, recent studies have extended

eigenvalue ratio (ER) based methods (Ahn and Horenstein, 2013; Lam and Yao, 2012) to

estimate the number of factors. These methods involve maximising the ratio of consecutive

eigenvalues on different variants of "sample covariance matrices," which are intricately

linked with the corresponding factor loading estimation procedures. For matrix factor

models (i.e., an order-2 tensor), Chen and Fan (2021) introduce an α-PCA method that

performs eigenanalysis on aggregated statistics in both first and second moments. He

et al. (2022) conduct eigenanalysis on the sample matrix Kendall’s tau. Yu et al. (2022)
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define the "sample covariance matrix" by projecting the observation matrix onto the row

or column factor space, while He et al. (2023a) proposes a similar robust method using

a weighted version of the projection matrix. Barigozzi et al. (2023b) and Barigozzi et al.

(2023a) further generalize the projection method to estimate the core tensor rank for tensor

factor models for a general K, and prove consistency of the corresponding estimators.

However, the literature mentioned above all assume the existence of solely pervasive

factors in the model, a limitation that can be restrictive.

All the previously discussed studies rely on the examination of the eigenvalues of the

sample covariance matrix or its variations. However, a challenge arises in comparing these

eigenvalues due to the heterogeneous scales of observed variables, making it challenging

to establish a precise relationship between these eigenvalues and the number of common

factors. In practice, it is common to re-scale all variables to have a variance of one

before conducting any principal component analysis. As a result, many of the above-

mentioned methods are often applied through the eigenvalue ratio (ER) test on the sample

correlation matrices. However, in the presence of weak factors, the eigenvalues of the

sample covariance matrix or correlation matrix often diverge at varying rates, resulting in

the eigenvalue ratio (ER)-based methods being potentially less effective. In the context of

the vector factor model, Lam and Yao (2012) propose a two-step estimation procedure to

sequentially estimate the number of strong factors and weak factors using the eigenvalue

ratio-based estimator. However, this procedure assumes that the factors have only two

layers of strengths, i.e. r(1) strong factors with strength α(1) = 1, and r(2) weak factors

with the same strength α(2) < 1. Consequently, it becomes challenging to generalize this

approach when the actual model may consist of a spectrum of different factor strengths, as

specifying the number of layers of strengths can be difficult in practice.

In analyzing the correlation matrix, in contrast to the eigenvalue ratio (ER)-based

methods, Fan et al. (2022) propose an alternative approach by introducing an adjusted

correlation thresholding method to determine the number of factors for a vector factor

model. They demonstrate that, under certain mild conditions, the number of eigenvalues

greater than 1 of the population correlation matrix is the same as the number of common

factors, and establish an optimal threshold to account for sampling variabilities and biases.

Building on this idea, Lam (2021) extend this method to estimate the core tensor rank for a

general order-K tensor factor model by thresholding the eigenvalues of the total model-k

correlation matrix.

In this chapter, we further extend the correlation thresholding method proposed by

Fan et al. (2022) and Lam (2021) to our tensor factor model, as defined in Chapter 3.
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This model not only assumes the presence of both serial and cross-correlations in the

idiosyncratic components but also allows for a mixed strength of factors. While Lam

(2021) consider using the total model-k correlation matrix directly, we introduce our core

tensor rank estimators through correlation analysis on the projected data defined in Chapter

3.3, and provide theoretical guarantees for our estimators. Additionally, we present a

bootstrap method for tuning parameter selection for practical implementation, and thus, our

method is abbreviated as BCorTh (Bootstrapped Correlation Thresholding). Simulation

studies and real data analyses are conducted to compare BCorTh with other state-of-the-art

methods. Empirical studies demonstrate that BCorTh can effectively identify weak factors

when they are present.

The rest of this chapter is organized as follows. Section 4.2 provides theoretical

justifications for using correlation analysis in finding the rank of the core tensor. It also

introduces a fibre bootstrapping technique in determining the tuning parameter of the

procedure. Section 4.3 presents our simulation studies on various settings, comparing

BCorTh to other state-of-the-art estimators. Section 4.4 analyses a set of matrix-valued

portfolio return data and a tensor-valued NYC taxi data set, demonstrating the performance

of all the rank and factor loading estimators proposed in Chapter 3 and Chapter 4. All the

proofs are presented in Section 4.6.

Finally, all our methods in Chapter 3 and Chapter 4 are written into an R package

TensorPreAve published on CRAN and GitHub. Please see Section 4.5 for a very brief

explanation on how to use it.

4.2 Core Tensor Rank Estimation Using Projected Data

In Chapter 3, the tensor factor model for each Xt ∈ Rd1×···×dK , t ∈ [T ], is defined as

Xt = µ +Ct +Et = µ +Ft ×1 A1 ×2 · · ·×K AK +Et . (4.1)

Here, Ft ∈Rr1×···×rK represents the core tensor. In this chapter, our objective is to provide

an estimator for the rank of the core tensor, denoted as rk for k ∈ [K].

Our model assumes the presence of both weak serial and cross-correlations in the

idiosyncratic components Et . Additionally, we allow for a spectrum of different factor

strengths in each Ak. To avoid redundancy, please refer to Chapter 3.2.1 for a detailed

explanation of the assumptions underlying the model (4.1). We assume that all these

assumptions hold throughout the remainder of this chapter.
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In Chapter 3.3, we present an Algorithm for Iterative Projection Direction Refinement

and conduct eigenanalysis on the associated covariance matrix corresponding to the final

projection step to estimate the factor loading spaces. Interestingly, the same projected data

can also be utilised to estimate the rank of the core tensor using correlation analysis. We

briefly recap the algorithm as follows: The superscript (i) in q̌(i)
k signals that this is the i-th

iterated estimator for Uk,(1) (i.e., the direction corresponding to the strongest factor), and

q̂k,pre can be obtained using the pre-averaging procedure, as described in Chapter 3.2.

Algorithm for Iterative Projection Direction Refinement

1. Initialize q̌(0)
k = q̂k,pre for each k ∈ [K].

2. For i ≥ 1, at the i-th step, create projected data y(k)t,i := matk(Xt −X̄ )q̌(i−1)
k for each

k ∈ [K].

3. For each k ∈ [K], define q̌(i)
k the eigenvector corresponding to the largest eigenvalue

of

Σ̃ΣΣ
(k)
y,i := T−1

T

∑
t=1

y(k)t,i y(k)T
t,i . (4.2)

4. Replace i by i+1. Go back to step 2. Stop until after the procedure has been repeated

for a fixed number of times.

With the projected data and the associated covariance matrix Σ̃ΣΣ
(k)
y,m+1 defined in (4.2),

define the associated correlation matrix R̃(k)
y,m+1 as

R̃(k)
y,m+1 := diag−1/2(Σ̃ΣΣ

(k)
y,m+1)Σ̃ΣΣ

(k)
y,m+1diag−1/2(Σ̃ΣΣ

(k)
y,m+1), k ∈ [K]. (4.3)

Our estimator for rk for each k ∈ [K] is then defined to be

r̂k := max{ j : λ j(R̃
(k)
y,m+1)> 1+ηT , j ∈ [dk]}, (4.4)

where ηT → 0 as T → ∞, and its practical choice will be discussed in Section 4.2.2. This

estimator is inspired by the one in Fan et al. (2022) for independent observations from a

vector factor model.

4.2.1 Main results

The following assumption is needed for all the theorems in this section.
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(RE2) (Model Parameters) For each k ∈ [K], we assume that for each j ∈ [dk], c1 ≤
λ j(diag(AkAT

k)) ≤ c2 for some 0 < c1,c2 < ∞ as T,dk → ∞. Moreover, rk =

o(d
1−αk,1+αk,rk
k ).

Assumption (RE2) ensures that each row of Ak has at least one non-zero value, meaning

that at least one factor drives the dynamics of the corresponding element in y(k)t,m+1. The

assumption can be weakened so that the values are vanishing, at the price of more

complicated proofs and rates in Theorem 4.2. Define

ΣΣΣ
(k)
y,m+1 := q̌(m)T

-k A-kAT
-kq̌(m)

-k AkAT
k +

d-k

∑
j=1

(q̌(m)
-k )2

jΣΣΣ
(k)
ε, j + q̌(m)T

-k Ae,-kAT
e,-kq̌(m)

-k Ae,kAT
e,k. (4.5)

The matrix ΣΣΣ
(k)
y,m+1 is in fact the expected value of Σ̃ΣΣ

(k)
y,m+1 in (4.2), pretending that q̌(m)

-k is a

constant vector.

Theorem 4.1. Let Assumption (E1), (F1) and (RE2) hold. Define the correlation matrix

R(k)
y,m+1 = diag−1/2(ΣΣΣ

(k)
y,m+1)ΣΣΣ

(k)
y,m+1diag−1/2(ΣΣΣ

(k)
y,m+1), k ∈ [K].

Then for large enough T,dk, we have in probability λ j(R
(k)
y,m+1)⪰P r−1

k d
1−αk,1+αk, j
k > 1 for

j ∈ [rk], whereas λ j(R
(k)
y,m+1)≤ 1 for j = rk +1, . . . ,dk.

This theorem is in parallel to Theorem 1 of Fan et al. (2022). With this, we can write

rk = max{ j : λ j(R
(k)
y,m+1)> 1, j ∈ [dk]}.

In light of this, the estimator r̂k in (4.4) makes sense. The following theorem shows further

that r̂k is in fact consistent for rk for a suitable choice of ηT .

Theorem 4.2. Let (RE2) and all the assumptions in Theorem 3.2 hold. Suppose

d
αk,1−αk,rk
k

(√
r(re +dk)

T gs
+

Kr
T

√
d
gs

)
= o(1), k ∈ [K],

where gs is defined in Theorem 3.2. Then as T,dk → ∞, we have for each k ∈ [K],

λ j(R̃
(k)
y,m+1) =


⪰P r−1

k d
1−αk,1+αk, j
k

·(1+OP{rkd
2αk,1−αk, j−1
k aT (0)+aT (αk,1)}), j ∈ [rk];

≤ 1+OP{bT}, j ∈ [dk]/[rk],
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where for 0 < δ ≤ 1,

aT (δ ) :=
√

r
T

[
1+dδ/2

k g−1/2
s

(
r1/2

e +d1/2
k +K

√
rd
T

)
+dδ

k g−1
s

K2r1/2d
T 3/2

]
,

bT := d
αk,1
k g−1

s

{√
(re +dk)dk

T
+

K
√

r(re +dk)d
T

+
K2rd
T 2

}
,

with rkd
2αk,1−αk,rk−1
k aT (0), aT (αk,1) and bT assumed o(1). Hence r̂k in (4.4) is a consistent

estimator for rk if we choose ηT =CbT for some constant C > 0.

To gain some insights from the theorem, we can compare the rates of λ j(R̃
(k)
y,m+1) from

Theorem 4.2 and λ j(R
(k)
y,m+1) from Theorem 4.1. In this comparison, bT serves as the ‘bias

correction term’ attributed to noise, indicating the extent of eigenvalue disturbance caused

by noise series. Therefore, the rate of bT helps determine the threshold ηT that we choose.

Suppose the strongest factor for each mode-k unfolded matrix is pervasive, i.e., α j,1 = 1

for each j ∈ [K], and rk and K are constants with d1 ≍ ·· · ≍ dK ≍ T . Then

rkd
2αk,1−αk, j−1
k aT (0)+aT (1)≍ T−1/2, bT = O(d1/2

k d−1
-k +d−1/2

-k +T−1).

This shows that the rate of convergence of bT is at best T−1/2 when K = 2, and T−1 when

K ≥ 3. It means that our search for ηT can be in the form CT−1/2 when K = 2, and CT−1

when K ≥ 3. The extra rate assumptions in the theorem may not be more stringent than

those in Theorem 3.2 and (RE2). For instance, if K and each rk for k ∈ [K] are constants

with d1 ≍ ·· · ≍ dK ≍ T and all factors are pervasive, then the extra rate assumptions in

Theorem 4.2 are satisfied automatically.

4.2.2 Practical implementation for core rank estimator

Since there is only one mode-k unfolding matrix from our data, we propose the following

algorithm for Bootstrapping the mode-k fibres to facilitate the search for ηT .

Bootstrapping Algorithm for mode-k tensor fibres and projected data

1. Initialize an integer B > 0, and independent sequences of i.i.d. Bernoulli random

variables {ξ
(b)
j } j∈[d-k] for each b ∈ [B].

2. For each b, create Wb ∈ Rd-k×d-k , where the i-th column is 0 except its j-th zero is

replaced by ξ
(b)
i , with j chosen uniformly from [d-k].
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3. Define new projected data y(k)t,m+1,b := matk(Xt −X̄ )WbWT
bq̌(m)

-k for each b ∈ [B].

Essentially, we Bootstrap the mode-k fibres by choosing them randomly with replacement,

and augment the vector of projection q̌(m)
-k accordingly by pre-multiplying it with WT

b. Note

that though the sample size d-k could be diverging, we control each row of Wb to contains

at most c ξ
(b)
i ’s with a finite c. We take c = 8 here as an example in practice, meaning that

a fibre is at most chosen 8 times in each Bootstrap sample. This facilitates our proof of

Theorem 4.3 to bound the norm of Wb, although for all our simulations, a fibre is never

chosen more than 8 times.

From here on, we drop the subscript m+1 for the ease of presentation. With the new

projected data, we then create new covariance and correlation matrices:

Σ̃ΣΣ
(k)
y,b := T−1

T

∑
t=1

y(k)t,b y(k)T
t,b , R̃(k)

y,b := diag−1/2(Σ̃ΣΣ
(k)
y,b)Σ̃ΣΣ

(k)
y,bdiag−1/2(Σ̃ΣΣ

(k)
y,b), k ∈ [K],b ∈ [B].

Theorem 4.3. Let all the assumptions in Theorem 4.2 hold. Recall Uk as defined in (3.5) to

be the left singular vectors of Ak, and U−k := UK ⊗·· ·Uk+1 ⊗Uk−1 ⊗·· ·⊗U1. Suppose

for each k ∈ [K], the elements in the unit vector U-k,(1) =: (u j) j∈[d-k] have the same moment

structure up to the 4th order, and E(u2
i u2

j) = d−2
-k (1+ o(1)) for i ̸= j as d-k → ∞. Then

Theorem 4.1 holds for R(k)
y,m+1 defined there but with q̌(m)

-k in ΣΣΣ
(k)
y,m+1 replaced by WbWT

bq̌(m)
-k .

Theorem 4.2 holds also for R̃(k)
y,b .

The above theorem means that any procedures for finding the number of factors

exploiting Theorem 4.1 and 4.2, should work for our Bootstrapped correlation matrix

R̃(k)
y,b too. The assumption on E(u2

i u2
j) is mild, since it is easily see that E(u2

i ) = d−1
-k , so

that at exact independence we have E(u2
i u2

j) = d−2
-k . We are essentially assuming that the

covariance among the ui’s are o(d−2
-k ), so that ui and u j are nearly uncorrelated.

For a constant C, we use ηT = CT−1/2 for K = 2 and ηT = CT−1 for K ≥ 3, and

calculate

r̂(b)k (C) := max{ j : λ j(R̃
(k)
y,b)> 1+ηT , j ∈ [dk]}.

We propose to choose C with

Ĉ := min
C>0

v̂ar({r̂(b)k (C)}b∈[B]),
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where v̂ar({xt}t∈T ) is the sample variance of {xt}t∈T . Finally, our estimator for rk is

defined to be

řk := Mode of {r̂(b)k (Ĉ)}b∈[B]. (4.6)

The intuition of Ĉ and řk is as follows. If there are rk factors for Ak, then the first rk

eigenvalues of R̃(k)
y,b for each b ∈ [B] should be approximately well-separated. Setting a

large C will create a large threshold 1+ηT that is almost always lying in between λ j(R̃
(k)
y,b)

and λ j+1(R̃
(k)
y,b) for some fixed j ∈ [rk] for each b ∈ [B], so that v̂ar({r̂(b)k (C)}b∈[B]) will be

small, or even equals 0.

However, if C is small such that 1+ηT is now in between λ j(R̃
(k)
y,b) and λ j+1(R̃

(k)
y,b) for

some j ∈ [dk]/[rk] and some b ∈ [B], then we expect that this particular threshold will lie in

between λ j′(R̃
(k)
y,b) and λ j′+1(R̃

(k)
y,b) for some j′ ̸= j and some others b ∈ [B], since all these

eigenvalues are less than or equal to 1 by Theorem 4.1, and their variability is originated

from the noise series only, making them less stable compared to when j ∈ [rk]. Hence for a

small enough C, we expect v̂ar({r̂(b)k (C)}b∈[B]) to be large. The range of values of C such

that 1+ηT lies in between λrk(R̃
(k)
y,b) and λrk+1(R̃

(k)
y,b) for the majority of b ∈ [B] will then

include Ĉ. The definition of řk in (4.6) allows for variability arises from the noises and the

rk-th factor which can be weak and hence may not be detected in all Bootstrap samples.

While we haven’t developed an explicit theoretical framework for our final estimator

řk, our empirical findings in Section 4.3 illustrate that, with a suitable selection of ηT as

recommended by Theorem 4.2, the bootstrapped procedure provides a reliable estimator of

the rank of the core tensor across various scenarios. Finally, in all the simulation settings

in Section 4.3, we use B = 50 Bootstrap samples. This is a safe number, since reducing it

to 10 in fact hardly change the results in our simulation experiments.

4.3 Simulation Experiments

In this section, we conduct simulation experiments to test the performances of our proposed

rank estimators (BCorTH) with bootstrapping of tensor fibres for tuning parameter selection,

and compare it with other state-of-the-art methods.

4.3.1 Simulation settings

For generating our data, we use model (4.1), with elements in µ being i.i.d. standard normal

in each repetition of experiment. For k ∈ [K], each factor loading matrix Ak is generated
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independently with Ak = BkRk, where the elements in Bk ∈ Rdk×rk are i.i.d. U(u1,u2),

and Rk ∈ Rrk×rk is diagonal with the jth diagonal element being d
−ζk, j
k , 0 ≤ ζk, j ≤ 0.5.

Pervasive (strong) factors have ζk, j = 0, while weak factors have 0 < ζk, j ≤ 0.5.

The elements in Ft are independent standardized AR(5) with AR coefficients 0.7,0.3,-

0.4,0.2 and -0.1. Same for the elements in Fe,t and εεε t in (3.2), but their AR coefficients are

(-0.7,-0.3,-0.4,0.2,0.1) and (0.8,0.4, -0.4,0.2,-0.1) respectively. The standard deviation of

each element of εεε t is randomly generated with i.i.d. |N (0,1)|. Each entry of the matrices

Ae,k ∈ Rdk×re,k ,k ∈ [K] is generated with i.i.d. standard normal, but has an independent

probability of 0.7 being set exactly to 0. Each experiment is repeated 500 times. Similar to

Section 3.4.1, we consider the simulation settings (I), (II), (III) and (IV), with sub-settings

(a) and (b), detailed below:

(Ia) Two strong factors with rk = 2, ζk, j = 0 for all k, j, and u1 =−2, u2 = 2 (elements

in Ak have mean 0)).

(IIa) One strong factor and one weak factor with rk = 2, ζk,1 = 0 and ζk,2 = 0.2 for all k;

u1 =−2, u2 = 2.

(IIIa) Two weak factors with rk = 2, ζk,1 = 0.1 and ζk,2 = 0.2 for all k; u1 =−2, u2 = 2.

(IVa) Four strong factors with rk = 4, ζk, j = 0 for all k, j; u1 =−2, u2 = 2.

Setting (Ib) to (IVb) are the same as (Ia) to (IVa) respectively, except that u1 = 0, u2 = 2,

so that the elements in Ak have non-zero mean, leading to larger signal accumulation for

the initial pre-averaging procedure as introduced in Section 3.2.

Setting (I)(II)(III) and (IV) are designed to test the performance of rank estimators

under different profiles of factor strengths. In Setting (I), we have two strong factors with

αk,1 = αk,2 = 1 for each mode k, which is consistent with the pervasive factor assumptions

of Barigozzi et al. (2023b); Chen and Fan (2021); He et al. (2023a, 2022); Yu et al. (2022).

In Setting (II), αk,1 = 1 and αk,2 = 0.6, so the factor strengths differ and we have one strong

factor and one weak factor. In Setting (III), even the strongest factor becomes weak, as

αk,1 = 0.8 and αk,2 = 0.6. In Setting (IV), we may encounter what we refer to as ‘pseudo

weak factors’. This is because even if we generate four factors to be equally strong, the

four population eigenvalues are likely to be separated, resulting in certain factors exhibiting

a ‘weaker’ behavior compared to others.

In each Setting (I)-(IV), the distinction between sub-settings (a) and (b) is intended to

highlight the impact of signal accumulation through pre-averaging procedure as introduced
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in Section 3.2, which may subsequently affect the performance of our proposed rank

estimators (BCorTH). In general, pre-averaging takes advantage in sub-setting (b) when

all entries of Ak share the same sign, which leads to greater signal accumulation. For a

more detailed analysis, please refer to the simulation results in Section 3.4.2.

To test the performance of different estimation methods under heavy-tailed distributions,

we consider two distributions for the innovation processes of Ft , Fe,t and εεε t : 1) i.i.d.

standard normal; 2) i.i.d. t3. Thus, there are totally sixteen profiles considered. For all

profiles above, we set re,k = 2 for all k.

4.3.2 Core tensor rank estimations

We compare the performance of our BCorTh with other competitors for estimating the

rank of core tensors. All the twelve profiles in Section 4.3.1 and three settings of different

dimensions are considered:

i. K = 2, T = 100, d1 = d2 = 40;

ii. K = 2, T = 200, d1 = d2 = 80;

iii. K = 3. T = 200, dk = 25.

The methods we consider include iTIP-ER by Han et al. (2022), α-PCA-ER by Chen

and Fan (2021), PE-ER by Yu et al. (2022) and Barigozzi et al. (2023b), RTFA-ER by

He et al. (2022) and He et al. (2023a), and MRTS-ER by Barigozzi et al. (2023b). These

methods are based on the spirit of eigenvalue-ratio (ER) criteria of the (adjusted) sample

covariance matrices, which are defined differently in their corresponding processes of

factor loading estimations. Among them, the robust tensor factor analysis (RTFA) proposed

by He et al. (2022) and He et al. (2023a), as well as the Matrix Kendall’s tau (MRTS) by

He et al. (2022), are robust procedures. The α-PCA-ER method by Chen and Fan (2021) is

implemented with α = 0 (the performances for α ∈ {−1,0,1} are comparable according

to Yu et al. (2022)).

Table 4.1 records the correct proportion over 500 repetitions of different rank estimators

under different settings and dimensions. For BCorTh, we set the number of bootstrapped

samples to be B = 50 for settings with K = 2, and B = 10 for settings with K = 3. We have

tested that reducing B from 50 to 10 does not significantly change the results of BCorTh.

Also, for K = 3, we do not report the results for α-PCA-ER and MRTS-ER since they are

only designed for matrix time series (K = 2).
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From Table 4.1, all rank estimators perform better when T,dk or K increases, and

BCorTh generally outperforms all competitors in every setting and dimension we consider.

When K = 2, it is obvious that all methods, except BCorTh, perform quite poorly in Setting

(II) and (III) when weak factors are present (especially in sub-setting (b)), while BCorTh

can still give relatively good performances. In Setting (IV) with four strong factors (which

may lead to some ‘pseudo weak factors’), most estimators still perform quite well in

detecting the correct number of four factors. MRTS-ER and α-PCA-ER give extremely

poor estimates in all settings except (Ia). BCorTh is robust as well, since changing the

error distribution from normal to t3 does not have large effects in its estimation accuracy.

When K = 3, the accuracy of all estimators increases, and BCorTh still gives the best

performances among all competitors. However, as a general recommendation, we suggest

using our method when d-k is not excessively large. This is because, as demonstrated in

Chapter 3.4.1, the computational cost of the initial pre-averaging and projection algorithm

increases rapidly with d-k, resulting in a significant increase in the total computational cost

required for obtaining BCorTh in such scenario.

4.4 Real Data Analysis

In this section, we conduct a real data analysis using two distinct datasets. We estimate

both the factor loading spaces and the number of factors in each dataset, presenting all the

methods introduced in Chapter 3 and Chapter 4.

4.4.1 Fama-French portfolio returns

We analyse a set of Fama-French portfolio returns data formed on size and operating

profitability. Stocks are categorized into 10 different sizes (market equity, using NYSE

market equity deciles) and 10 different operating profitability (OP) levels (using NYSE

OP deciles. OP is annual revenues minus cost of goods sold, interest expense, and selling,

general, and administrative expenses divided by book equity for the last fiscal year end).

These levels, and hence the stocks in each category, are allocated at the end of June each

year. Moreover, the stocks in each of the 10×10 categories form exactly two portfolios,

one being value weighted, and the other of equal weight. Hence, there are two sets of

10×10 portfolios with their time series of returns observed. We use monthly data from

July 1973 to June 2021, so that T = 576, and each data tensor we have thus has size

10×10×576. For more details, please visit
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Setting BCorTh iTIP-ER PE-ER α-PCA-ER RTFA-ER MRTS-ER
N t3 N t3 N t3 N t3 N t3 N t3

K = 2, T = 100, d1 = d2 = 40
(Ia) .994 .988 .894 .866 .892 .878 .842 .810 .894 .884 .842 .810
(Ib) .998 1.000 .830 .794 .908 .896 .014 .012 .906 .898 .040 .030
(IIa) .994 .966 .754 .640 .762 .690 .010 .038 .768 .702 .026 .022
(IIb) .954 .928 .070 .084 .126 .080 .014 .046 .092 .070 .026 .056
(IIIa) .758 .684 .556 .482 .334 .408 .054 .092 .320 .372 .048 .068
(IIIb) .772 .712 .108 .202 .052 .116 .122 .180 .048 .106 .128 .182
(IVa) .998 .986 .930 .918 .934 .946 .946 .940 .954 .946 .932 .926
(IVb) .834 .828 .876 .780 .906 .842 .010 .012 .886 .882 .024 .028

K = 2, T = 200, d1 = d2 = 80
(Ia) .994 .990 .926 .910 .768 .854 .944 .904 .768 .842 .768 .804
(Ib) .998 1.000 .966 .956 .730 .898 .006 .012 .686 .884 .020 .022
(IIa) .992 .972 .814 .796 .438 .632 .000 .010 .406 .602 .000 .000
(IIb) .998 .998 .258 .176 .332 .230 .004 .024 .296 .230 .004 .016
(IIIa) .594 .620 .188 .292 .014 .092 .000 .010 .016 .092 .000 .010
(IIIb) .978 .968 .096 .074 .078 .082 .060 .074 .070 .080 .028 .054
(IVa) 1.000 .998 .996 .930 .932 .886 .986 .920 .932 .926 .870 .882
(IVb) .996 .998 .994 .932 .956 .948 .004 .008 .910 .938 .058 .032

K = 3, T = 200, d1 = d2 = 25
(Ia) 1.000 1.000 .996 .990 .992 .980 / / .776 .732 / /
(Ib) 1.000 .998 .998 .986 .972 .982 / / .998 1.000 / /
(IIa) 1.000 .988 .988 .968 .834 .854 / / .106 .072 / /
(IIb) .994 .992 .988 .968 .948 .940 / / .948 .920 / /
(IIIa) .930 .856 .910 .866 .522 .544 / / .100 .056 / /
(IIIb) .996 .996 .920 .868 .764 .738 / / .804 .760 / /

Table 4.1 Correct Proportion ((r̂1, r̂2) = (2,2) for K = 2, (r̂1, r̂2, r̂3) = (2,2,2) for K = 3)
of rank estimation under different settings, dimensions and error distributions (N for
normally distributed errors, t3 for t3 distributed errors).

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_100_port_szme_op.html

Since the market factor is certainly pervasive in financial returns, we use the following

CAPM to remove its effects and facilitate detection of potentially weaker factors:

yt = ȳ+βββ (xt − x̄)+ et ,

where yt ∈ R100 contains the returns of the 100 portfolios at time t, xt is the return for the

NYSE composite index at time t, and βββ = (β1, . . . ,β100)
T is the vector of β ’s for the 100

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_100_port_szme_op.html
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portfolios. Least squares estimation leads us to

β̂ββ =
∑

T
t=1(xt − x̄)(yt − ȳ)

∑
T
t=1(xt − x̄)2

.

Hence the data we analyse is {yt − ȳ− β̂ββ (xt − x̄)}t=1,...,576, with each observed vector

reshaped into a 10×10 tensor.

BCorTh iTIP-ER PE-ER α-PCA-ER RTFA-ER MRTS-ER
r̂1 r̂2 r̂1 r̂2 r̂1 r̂2 r̂1 r̂2 r̂1 r̂2 r̂1 r̂2

Value Weighted 2 2 2 2 2 2 2 2 2 2 2 2
Equal Weight 2 2 2 2 2 2 2 2 2 2 2 2

Table 4.2 Rank estimators for Fama-French Portfolios.

Table 4.2 shows that all of the rank estimators we consider, including BCorTh, give

r̂1 = r̂2 = 2 for both value weighted and equal weight portfolios. Using (r̂1, r̂2) = (2,2), we

estimate the factor loading spaces by our iterative projection (PROJ) method and compare

to iTIPUP (Han et al., 2020) and PE (Yu et al., 2022) and Barigozzi et al. (2023b)). Similar

to Wang et al. (2019), we show the estimated loading matrices after a varimax rotation that

maximizes the variance of the squared factor loadings, scaled by 30 for a cleaner view. To

save space, we only show the results for value weighted portfolios in Table 4.3 and 4.4.

Method Factor OP1 OP2 OP3 OP4 OP5 OP6 OP7 OP8 OP9 OP10

PROJ
1 8 -3 -6 -7 -8 -9 -12 -11 -12 -14
2 26 10 7 5 4 3 1 2 1 0

iTIPUP
1 -25 -14 -9 -1 -2 -1 0 -3 1 -2
2 12 -13 -5 -8 -7 -8 -10 -11 -9 -9

PE
1 28 8 4 2 1 0 0 0 0 2
2 5 -5 -7 -9 -10 -10 -11 -11 -12 -12

Table 4.3 OP Factor Loading Matrices for Value Weighted Portfolios after rotation and
scaling. Magnitudes larger than 8 are highlighted in red.

From Table 4.3, we can see that from PROJ and PE, OP1 itself (possibly OP2 as well)

forms one group while OP6 to OP10 form another. iTIPUP also gives a clear grouping

effect but is a bit different from the other two methods. Nevertheless, we can say that OP1

and OP2 possibly represents “low operating profitability”, while OP6 to OP10 are “high

operating profitability”, and are governed by different factors. For Size, from the three
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Method Factor S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

PROJ
1 -11 -11 -11 -10 -11 -9 -9 -6 -4 10
2 -2 1 0 3 4 6 6 8 10 25

iTIPUP
1 -11 -13 -13 -13 -11 -9 -3 -2 0 9
2 6 2 -2 -2 -5 -9 -12 -12 -14 -16

PE
1 -14 -15 -12 -10 -9 -6 -4 -1 2 9
2 5 1 -2 -5 -7 -10 -11 -13 -14 -15

Table 4.4 Size Factor Loading Matrices for Value Weighted Portfolios after rotation and
scaling. Magnitudes larger than 8 are highlighted in red.

methods, S1 to S5 form one group (“small size”) while another group contains at least S9

and S10 (“large size”), possibly S6 to S8 as well.

4.4.2 NYC taxi traffic

We analyse taxi traffic pattern in New York city. The data includes all individual taxi rides

operated by Yellow Taxi within New York City, published at

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

To simplify the discussion, we only consider rides within Manhattan Island. The

dataset contains 1.1 billion trip records within the period of January 1, 2011 to December

31, 2021. Each trip record includes fields capturing pick-up and drop-off dates/times,

pick-up and drop-off locations, trip distances, itemized fares, rate types, payment types,

and driver-reported passenger counts. Our study focuses on the pick-up and drop-off

dates/times, and pick-up and drop-off locations of each ride.

The pick-up and drop-off locations in Manhattan are coded according to 69 predefined

zones and we will use them to classify the pick-up and drop-off locations. Furthermore,

we divide each day into 24 hourly periods, with the first hourly period from 0am to 1am.

The total number of rides moving among the zones within each hour is recorded, yielding

a Xt ∈ R69×69×24 tensor for each day. More specifically, xi1,i2,i3,t is the number of trips

from zone i1 (the pick-up zone) to zone i2 (the drop-off zone) and the pickup time is within

the i3-th hourly period on day t. We consider business day and non-business day separately.

Hence we will analyse two tensor time series. The business-day series is 2770 days long,

and the non-business-day series is 1248 days long, within the period of January 1, 2011 to

December 31, 2021.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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We first estimate the rank of the core tensors using BCorTh as well as other state-of-the-

art methods. BCorTh gives (r̂1, r̂2, r̂3) = (3,3,2) for business-day series, and (r̂1, r̂2, r̂3) =

(3,2,2) for non-business-day series, while (r̂1, r̂2, r̂3) = (1,1,1) for iTIP-ER, PE-ER and

RTFA-ER. However, based on our common knowledge and previous analysis conducted by

Chen et al. (2022), (r̂1, r̂2, r̂3) = (1,1,1) is obviously not a reasonable choice for the rank

of the core tensor, since a single factor can hardly be sufficient to reveal all traffic patterns.

It is very likely that all of iTIP-ER, PE-ER and RTFA-ER fail to detect the weak factors in

both time series, since these methods are designed to analyse pervasive factors only. For

ease of presentation and comparison, we use (r̂1, r̂2, r̂3) = (3,3,2) for both business-day

and non-business-day series to estimate their factor loadings, and present the results of our

iterative projection estimator.

Figure 4.1 and 4.2 show the heatmaps of the loading matrices A1 (pick-up locations) for

the business day and non-business day series, respectively. It is seen that during business

days, the midtown/Times square area (tourism and office buildings) is heavily loaded on

Factor 1, east village/lower east (arts, music venues and restaurants) on Factor 2 and upper

east side (affluent neighborhoods and museums) on Factor 3. For non-business days, the

overall pattern for the three factors is generally similar, but with some non-negligible

differences. The area around Penn Station (large transportation hub) loads extremely

heavily in Factor 2, while its loading is much lighter than the midtown center and midtown

east for business day series, where a lot of office buildings locate.

Figure 4.3 and 4.4 show the loading matrices A2 (drop-off locations) for the business

day and non-business day series, respectively. For both business days and non-business

days, the drop-off factor matrices are quite similar to their pick-up factors. Similarly, the

area around Penn Station is heavily loaded in non-business days, but is overshadowed by

midtown center in business days. In addition, in Factor 1 of non-business days series, west

village (arts, music venues and theatres) loads heavily together with east village.

Table 4.5 and 4.6 show the loading matrices A3 (time of day) for business days and

non-business days, respectively. For ease of presentation, we show the estimated loading

matrices after a varimax rotation, scaled by 30 for a cleaner view. For business days, it can

be seen that day-time business hour (9am to 4pm) and evening hours (7pm to 12am) load

heavily on Factor 1, while morning rush-hours (6am to 9am), evening rush-hours (5pm to

7pm) and night life hours (0am to 2am) load heavily on Factor 2. For non-business days,

the patterns of estimated factors are significantly different: Evening hours from 6pm to

1am load heavily on Factor 1, while late-night hours from 1am to 5am load heavily on

Factor 2. The different factor loadings reveal the difference between people’s travelling
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habits in business days and non-business days. During non-business days, morning (and

evening) rush-hours and day-time business hours no longer appear in the factors, while

people tend to travel more frequently by taxi at evening and at night, and their night life

lasts to much later hours than in the business days.

0am 2 4 6 8 10 12pm 2 4 6 8 10 12am
1 6 3 2 1 1 0 1 4 7 9 8 7 7 7 7 7 6 4 6 8 9 8 8 7
2 12 7 4 2 1 -2 -11 -16 -8 0 3 -1 -2 0 -2 0 3 -7 -9 -2 3 0 3 8

Table 4.5 Estimated loading matrix A3 for hour of day fibre, business day, after rotation
and scaling. Magnitudes larger than 7 are highlighted in red.

0am 2 4 6 8 10 12pm 2 4 6 8 10 12am
1 9 -1 -1 -1 -2 -1 1 2 3 5 5 5 5 5 5 5 4 6 8 9 9 9 10 12
2 0 17 14 13 10 5 1 -1 -1 -2 0 2 4 4 5 4 4 2 0 0 2 0 -2 -4

Table 4.6 Estimated loading matrix A3 for hour of day fibre, non-business day, after rotation
and scaling. Magnitudes larger than 7 are highlighted in red.
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Fig. 4.1 Loadings on three pickup factors for business day series.
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Legend
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Fig. 4.2 Loadings on three pickup factors for non-business day series.
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Fig. 4.3 Loadings on three dropoff factors for business day series.
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Fig. 4.4 Loadings on three dropoff factors for non-business day series.

4.5 A Brief Introduction to TensorPreAve

All our methods in Chapter 3 and Chapter 4 are written into an R package TensorPreAve

published on CRAN and GitHub. For a given data of tensor time series, the function

rank_factors_est can estimate both the rank of core tensors and factor loading matrices

simultaneously.

Alternatively, there are individual functions designed for each step of our estimation

procedure. The pre-averaging method is implemented in function pre_est, with default

parameters chosen carefully to be applied in most scenarios and dimensions. We also

provide an alternative way to tune the parameter j manually using the function pre_eigenplot

to observe the eigenvalues of a random sample (see Chapter 3.2.3 for more details). With

initial estimated directions of the strongest factors obtained by the function pre_est, users

can feed them into the function iter_proj to get the iterative projection estimator. Finally,

the rank estimator (BCorTh) can be obtained by the function bs_cor_rank by inputting

the refined directions from iter_proj. The default number of bootstrapped samples is 50,

but users can reduce it to 10 to save computational time when tensor dimension is large.

Please refer to the vignettes and manual of TensorPreAve for more details.
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4.6 Proof of Theorems

Proof of Theorem 4.1. First, it is easy to see that (RE2) implies that

diag(ΣΣΣ(k)
y,m+1) = q̌(m)T

-k A-kAT
-kq̌(m)

-k diag(AkAT
k)(1+o(1)). (4.7)

Define

Qm(k)
1 := diag−1/2(ΣΣΣ

(k)
y,m+1)Ak(Irk ⊗ q̌(m)T

-k A-k),

Qm(k)
2 := diag−1/2(ΣΣΣ

(k)
y,m+1)(q̌

(m)T
-k ⊗ Idk)diag1/2(ΣΣΣ

(k)
ε,1, . . . ,ΣΣΣ

(k)
ε,d-k

), (4.8)

Qm(k)
3 := diag−1/2(ΣΣΣ

(k)
y,m+1)Ae,k(Ire,k ⊗ q̌(m)T

-k Ae,-k),

where ΣΣΣ
(k)
y,m+1 is defined in (4.5). Then we have

R(k)
y,m+1 =

3

∑
j=1

Qm(k)
j Qm(k)T

j .

Consider

tr(Qm(k)
1 Qm(k)T

1 ) = tr(diag−1/2(ΣΣΣ
(k)
y,m+1) · ǧ

(m)
-k AkAT

k ·diag−1/2(ΣΣΣ
(k)
y,m+1))

= tr[(ǧ(m)
-k )−1/2diag−1/2(AkAT

k)(1+o(1))−1 · ǧ(m)
-k AkAT

k

· (ǧ(m)
-k )−1/2diag−1/2(AkAT

k)(1+o(1))−1]

= dk(1+o(1)), (4.9)

where the second equality used (4.7). At the same time, for j ∈ [rk],

λ j(Qm(k)
1 Qm(k)T

1 ) = λ j(diag−1/2(AkAT
k)(1+o(1))AkAT

kdiag−1/2(AkAT
k)(1+o(1))

= λ j(UT
kdiag−1(AkAT

k)UkGk(1+o(1))), with

λ j(Gk)λmin(diag−1(AkAT
k))(1+o(1))≤ λ j(UT

kdiag−1(AkAT
k)UkGk(1+o(1)))

≤ λ j(Gk)λmax(diag−1(AkAT
k))(1+o(1)),

so that by Assumption (RE2), there are generic constants c,C > 0 such that

d
αk, j
k ≍P cλ j(Gk)≤ λ j(Qm(k)

1 Qm(k)T
1 )≤Cλ j(Gk)≍P d

αk, j
k (4.10)

in probability, where λ j(Gk) being asymptotic in probability to d
αk, j
k is given by (3.31) in

Lemma 3.2. Using (4.10), there exists a constant C > 0 (generic, different from the above)
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so that for j ∈ [rk],

λ1(Qm(k)
1 Qm(k)T

1 )

λ j(Qm(k)
1 Qm(k)T

1 )
≤Cd

αk,1−αk, j
k .

in probability. Hence using (4.9), in probability, we have

dk(1+o(1))≤ tr(Qm(k)
1 Qm(k)T

1 )≤ rkλ1(Qm(k)
1 Qm(k)T

1 )≤ rk ·Cd
αk,1−αk, j
k λ j(Qm(k)

1 Qm(k)T
1 ),

implying that, in probability, there exists a constant C > 0 such that as T,dk are large

enough,

λ j(R
(k)
y,m+1)≥ λ j(Qm(k)

1 Qm(k)T
1 )≥Cd

1−αk,1+αk, j
k /rk > 1, (4.11)

since rk = o(d
1−αk,1+αk, j
k ) by (RE2) for j ∈ [rk]. For j ∈ [dk]/[rk],

λ j(R
(k)
y,m+1)≤ λ j(Qm(k)

1 Qm(k)T
1 )+λ1(Qm(k)

2 Qm(k)T
2 )+λ1(Qm(k)

3 Qm(k)T
3 )

≤ 0+
∥∥diag−1(ΣΣΣ

(k)
y,m+1)

∥∥( d-k

∑
j=1

(q̌(m)
-k )2

j
∥∥ΣΣΣ

(k)
ε, j

∥∥+ q̌(m)T
-k Ae,-kAT

e,-kq̌(m)
-k

∥∥Ae,k
∥∥2
)

≤ (ǧ(m)
-k )−1∥∥diag−1(AkAT

k)(1+o(1))
∥∥ ·O(1)

= OP(d
αk,1
k g−1

s ) = oP(1), (4.12)

where the third inequality is in probability after using (4.7), and the last line used statement

I(m) in the proof of Theorem 3.2, that ǧ(m)
-k ≍P gsd

−αk,1
k . This completes the proof of the

theorem. □

Before proving Theorem 4.2, define

S(k)
y,m+1 := diag−1/2(ΣΣΣ

(k)
y,m+1)Σ̃ΣΣ

(k)
y,m+1diag−1/2(ΣΣΣ

(k)
y,m+1).

It is then easy to see that

R̂(k)
y,m+1 := diag−1/2(S(k)

y,m+1)S
(k)
y,m+1diag−1/2(S(k)

y,m+1).

We state and prove the following lemma.
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Lemma 4.1. Assume all the assumptions in Theorem 4.2 hold. Then for k ∈ [K],

max
j∈[rk]

∣∣∣∣ λ j(S
(k)
y,m+1)

λ j(R
(k)
y,m+1)

−1
∣∣∣∣= OP

(
rkd

2αk,1−αk, j−1
k

√
r
T

(
1+K

√
rd

T gs
+

K2r1/2d
T 3/2gs

))
,

max
j∈[dk]

∣∣∣∣ λ j(S
(k)
y,m+1)

λ j(R̂
(k)
y,m+1)

−1
∣∣∣∣= OP

(√
r
T

[
1+d

αk,1/2
k g−1/2

s

(
r1/2

e +d1/2
k +K

√
rd
T

)
+d

αk,1
k g−1

s
K2r1/2d

T 3/2

])
,

max
j∈[dk]/[rk]

|λ j(S
(k)
y,m+1)−λ j(R

(k)
y,m+1)|= OP

(
d

αk,1
k g−1

s

{√
(re +dk)dk

T
+

K
√

r(re +dk)d
T

+
K2rd
T 2

})
.

Proof of Lemma 4.1. Define, using the definition of Si j,m defined in Lemma 3.7,

Si j,r := diag−1/2(ΣΣΣ
(k)
y,m+1)Si j,mdiag−1/2(ΣΣΣ

(k)
y,m+1), i, j = 1,2,3.

Then using (4.8), for j ∈ [rk], we can decompose

∣∣∣∣ λ j(S
(k)
y,m+1)

λ j(R
(k)
y,m+1)

−1
∣∣∣∣≤ 1

λ j(R
(k)
y,m+1)

( 3

∑
i=1

∥∥Sii,r −Qm(k)
i Qm(k)T

i

∥∥+2 ∑
i< j

∥∥Si j,r
∥∥+∑

i̸= j

∥∥Ši jdiag−1(ΣΣΣ
(k)
y,m+1)

∥∥).
From (4.7) and Assumption (RE2), we have that

λ1(diag−1(ΣΣΣ
(k)
y,m+1)), λdk(diag−1(ΣΣΣ

(k)
y,m+1))≍ (ǧ(m)

-k )−1 ≍P d
αk,1
k g−1

s ,

where the last order is from statement I(m) in the proof of Theorem 3.2, that ǧ(m)
-k d

αk,1
k ≍P gs.

Hence coupled with the results from Lemma 3.7 and (4.11), and the fact that from an

argument similar to (3.73) and the result of Theorem 3.2 that for large enough m,

∥∥q̌(m)
-k −U-k,(1)

∥∥= OP

(
K
√

r
T

)
,
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we have, using the notations in Lemma 3.7,

∥∥S11,r −Qm(k)
1 Qm(k)T

1

∥∥
λ j(R

(k)
y,m+1)

≤

∥∥diag−1(ΣΣΣ
(k)
y,m+1)

∥∥∥∥S′′
11,m

∥∥
λ j(R

(k)
y,m+1)

= OP

(
rkd

αk,1−αk, j−1
k (ǧ(m)

-k )−1 · ǧ(m)
-k d

αk,1
k

√
r
T

)

= OP

(
rkd

2αk,1−αk, j−1
k

√
r
T

)
,∥∥S22,r −Qm(k)

2 Qm(k)T
2

∥∥
λ j(R

(k)
y,m+1)

≤

∥∥diag−1(ΣΣΣ
(k)
y,m+1)

∥∥∥∥S22,m −Q(k)
2,mQ(k)T

2,m

∥∥
λ j(R

(k)
y,m+1)

= OP

(
rkd

2αk,1−αk, j−1
k g−1

s ·
{

K2rd
T 2 +

dk√
T
+

K
√

rdkd
T

})
,∥∥S33,r −Qm(k)

3 Qm(k)T
3

∥∥
λ j(R

(k)
y,m+1)

= OP

(
rkd

2αk,1−αk, j−1
k g−1

s ·
√

re

T

)
,

∥∥S12,r
∥∥

λ j(R
(k)
y,m+1)

= OP

(
rkd

2αk,1−αk, j−1
k g−1/2

s

(√
rdk

T
+

Kr
√

d
T

))
,∥∥S13,r

∥∥
λ j(R

(k)
y,m+1)

= OP

(
rkd

2αk,1−αk, j−1
k g−1/2

s

√
rre

T

)
,

∥∥S23,r
∥∥

λ j(R
(k)
y,m+1)

= OP

(
rkd

2αk,1−αk, j−1
k g−1

s

(√
redk

T
+

K
√

rred
T

))
,

∥∥Ši jdiag−1(ΣΣΣ
(k)
y,m+1)

∥∥
λ j(R

(k)
y,m+1)

= OP

(
rkd

2αk,1−αk, j−1
k g−1

s T−1
)
.

These implies that

max
j∈[rk]

∣∣∣∣ λ j(S
(k)
y,m+1)

λ j(R
(k)
y,m+1)

−1
∣∣∣∣= OP

(
rkd

2αk,1−αk, j−1
k

√
r
T

(
1+K

√
rd

T gs
+

K2r1/2d
T 3/2gs

))
,

which is the first statement in the lemma.
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For the second statement, for j ∈ [dk] and k ∈ [K], defining u j to be a unit vector with

the j-th position being 1 and 0 elsewhere,

∣∣∣∣ λ j(S
(k)
y,m+1)

λ j(R̂
(k)
y,m+1)

−1
∣∣∣∣= ∣∣∣∣ λ j(S

(k)
y,m+1)

λ j(S
(k)
y,m+1diag−1(S(k)

y,m+1))
−1
∣∣∣∣≤ max

j∈[dk]
|λ j(diag(S(k)

y,m+1))−1|

= max
j∈[dk]

|λ j(diag(S(k)
y,m+1 −R(k)

y,m+1))|= max
j∈[dk]

|uT
j(S

(k)
y,m+1 −R(k)

y,m+1)u j|

≤ max
j∈[dk]

∣∣∣∣uT
j

(
S(k)

11,r −Qm(k)
1 Qm(k)T

1

)
u j

∣∣∣∣+2 max
j∈[dk]

|uT
jS

(k)
12,ru j|+2 max

j∈[dk]
|uT

jS
(k)
13,ru j|

+
3

∑
i=2

|uT
j(S

(k)
ii,r −Qm(k)

i Qm(k)T
i )u j|+2|uT

jS
(k)
23,ru j|+∑

i ̸= j

∥∥diag−1(ΣΣΣ
(k)
y,m+1)Ši j

∥∥.
But similar to the above,

max
j∈[dk]

|uT
j(S11,r −Qm(k)

1 Qm(k)T
1 )u j|= OP(

∥∥T−1Z(k)
f A f ,T MT A T

f ,T Z(k)T
f − Ir

∥∥) = OP

(√
r
T

)
,

max
j∈[dk]

|uT
jS

(k)
12,ru j|= OP

(
(ǧ(m)

-k )−1/2
(√

rdk

T
+

Kr
√

d
T

))
, max

j∈[d-k]
|uT

jS13,ru j|= OP

(
(ǧ(m)

-k )−1/2
√

rre

T

)
,

max
j∈[dk]

|uT
j(S22,r −Qm(k)

2 Qm(k)T
2 )u j|= OP

(
(ǧ(m)

-k )−1
{

K2rd
T 2 +

dk√
T
+

K
√

rdkd
T

})
,

max
j∈[dk]

|uT
jS

(k)
23,ru j|= OP

(
(ǧ(m)

-k )−1
(√

redk

T
+

K
√

rred
T

))
,

max
j∈[dk]

|uT
j(S33,r −Qm(k)

3 Qm(k)T
3 )u j|= OP

(
(ǧ(m)

-k )−1
√

re

T

)
,
∥∥diag−1(ΣΣΣ

(k)
y,m+1)Ši j

∥∥= OP((ǧ
(m)
-k )−1T−1).

Hence the above implies that

max
j∈[dk]

∣∣∣∣ λ j(S
(k)
y,m+1)

λ j(R̂
(k)
y,m+1)

−1
∣∣∣∣= OP

(√
r
T

[
1+(ǧ(m)

-k )−1/2
(

r1/2
e +d1/2

k +K

√
rd
T

)
+(ǧ(m)

-k )−1 K2r1/2d
T 3/2

])

= OP

(√
r
T

[
1+d

αk,1/2
k g−1/2

s

(
r1/2

e +d1/2
k +K

√
rd
T

)
+d

αk,1
k g−1

s
K2r1/2d

T 3/2

])
,

which is the second statement of the lemma.
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Finally, consider for j ∈ [dk]/[rk],

|λ j(S
(k)
y,m+1)−λ j(R

(k)
y,m+1)| ≤

∣∣∣∣λ j

(
S11,r +

3

∑
j=2

(S1 j,r +S j1,r +Qm(k)
j Qm(k)T

j )

)
−λ j(R

(k)
y,m+1)

∣∣∣∣
+2
∥∥S23,r

∥∥+ 3

∑
j=2

∥∥S j j,r −Qm(k)
j Qm(k)T

j

∥∥+∑
i ̸= j

∥∥diag−1(ΣΣΣ
(k)
y,m+1)Š

(k)
i j

∥∥
= 2
∥∥S23,r

∥∥+ 3

∑
j=2

∥∥S j j,r −Qm(k)
j Qm(k)T

j

∥∥+∑
i̸= j

∥∥diag−1(ΣΣΣ
(k)
y,m+1)Š

(k)
i j

∥∥,
(4.13)

if we can show that for large enough T,dk, in probability, for j ∈ [dk]/[rk],

λ j

(
S11,r +

3

∑
j=2

(S1 j,r +S j1,r +Qm(k)
j Qm(k)T

j )

)
= λ j(R

(k)
y,m+1). (4.14)

With (4.13), from the rates obtained in previous arguments, we then have

|λ j(S
(k)
y,m+1)−λ j(R

(k)
y,m+1)|= OP

(
d

αk,1
k g−1

s

{√
(re +dk)dk

T
+

K
√

r(re +dk)d
T

+
K2rd
T 2

})
,

which is the third statement of the lemma. Hence it remains to show (4.14). To this end,

define the kernel of AT
kdiag−1/2(ΣΣΣ

(k)
y,m+1) to be

N := {w : AT
kdiag−1/2(ΣΣΣ

(k)
y,m+1)w = 0} ≡ {w : AT

kw = 0}

in probability by (4.7) and assumption (RE2), and define N ⊥ the corresponding row space,

which has N ⊥ = span(Ak) in probability by the above argument. Hence by Assumption

(L1) that Ak is of full rank, the dimension of N ⊥ is exactly rk (in probability), and the

rank-nullity theorem implies that, in probability, the dimension of N is exactly dk − rk.

Consider, by (3.80) and Assumption (L1), for some constant c > 0, we have in probability

that

λrk(S11,r)≥ ǧ(m)
-k min∥∥w

∥∥=1:w∈N ⊥

∥∥wTdiag−1/2(ΣΣΣ
(k)
y,m+1)Ak

∥∥2
λr(T−1Z(k)

f A f ,T MT A T
f ,T Z(k)T

f )≥ cd
αk,rk
k .

At the same time, we have

∥∥Qm(k)
2 Qm(k)T

2 +Qm(k)
3 Qm(k)T

3

∥∥= OP((ǧ
(m)
-k )−1) = OP(d

αk,1
k g−1

s ),



120
Rank Estimation in Time Series Tensor Factor Models by Bootstrapped Correlation

Thresholding

and earlier calculations show that

∥∥S12,r
∥∥= OP

(
d

αk,1
k g−1/2

s

(√
rdk

T
+

Kr
√

d
T

))
,
∥∥S13,r

∥∥= OP

(
d

αk,1
k g−1/2

s

√
rre

T

)
.

Hence in probability, the eigenvalues of S11,r are dominating those in

G :=
3

∑
j=2

(S1 j,r +S j1,r +Qm(k)
j Qm(k)T

j ).

Hence the rk eigenvectors corresponding to the largest rk eigenvalues of G+S11,r coincide

with those of S11,r’s for large enough dk, which are all necessarily in N ⊥. This means

that the (rk +1)-th largest eigenvalue of G+S11,r and beyond will have eigenvectors in

N since the dimension of N ⊥ is rk. Take w ∈ N , then it is easy to see that

wT(G+S11,r)w = wT(Qm(k)
2 Qm(k)T

2 +Qm(k)
3 Qm(k)T

3 )w = wTR(k)
y,m+1w,

showing that λ j(G+S11,r) = λ j(R
(k)
y,m+1) for j ∈ [dk]/[rk], which is (4.14). This completes

the proof of the lemma. □

Proof of Theorem 4.2. For j ∈ [rk] and k ∈ [K], we can decompose

λ j(R̂
(k)
y,m+1)≥ λ j(R

(k)
y,m+1)

{
1−
∣∣∣∣λ j(R̂

(k)
y,m+1)

λ j(S
(k)
y,m+1)

−1
∣∣∣∣− ∣∣∣∣ λ j(S

(k)
y,m+1)

λ j(R
(k)
y,m+1)

−1
∣∣∣∣

−
∣∣∣∣λ j(R̂

(k)
y,m+1)

λ j(S
(k)
y,m+1)

−1
∣∣∣∣ · ∣∣∣∣ λ j(S

(k)
y,m+1)

λ j(R
(k)
y,m+1)

−1
∣∣∣∣}

= λ j(R
(k)
y,m+1)(1+OP(rkd

2αk,1−αk, j−1
k aT (0)+aT (αk,1)))

⪰P rkd
1−αk,1+αk, j
k (1+OP(rkd

2αk,1−αk, j−1
k aT (0)+aT (αk,1))),

where the second last line used the results in Lemma 4.1, and the last line used the result

from Theorem 4.1, noting that

aT (0) =
√

r
T

[
1+g−1/2

s

(
r1/2

e +d1/2
k +K

√
rd
T

)
+g−1

s
K2r1/2d

T 3/2

]
= O

(√
r
T

[
1+K

√
rd

T gs
+

K2r1/2d
T 3/2gs

])
.



4.6 Proof of Theorems 121

Similarly, for j ∈ [dk]/[rk],

λ j(R̂
(k)
y,m+1)≤ λ j(R

(k)
y,m+1)

(
1+
∣∣∣∣λ j(R̂

(k)
y,m+1)

λ j(S
(k)
y,m+1)

−1
∣∣∣∣)+ |λ j(S

(k)
y,m+1)−λ j(R

(k)
y,m+1)|

+ |λ j(S
(k)
y,m+1)−λ j(R

(k)
y,m+1)| ·

∣∣∣∣λ j(R̂
(k)
y,m+1)

λ j(S
(k)
y,m+1)

−1
∣∣∣∣

= oP(1) · (1+oP(1))+OP(bT )≤ 1+OP(bT ),

where the equality used the results of Lemma 4.1 and (4.12). This completes the proof of

the theorem. □

Proof of Theorem 4.3. To prove the theorem, we note that the proofs of Theorem 4.1

and 4.2 will go through for the Bootstrapped fibres and a redefined ΣΣΣ
(k)
y,m+1 in (4.5) (with

q̌(m)
-k replaced by WbWT

bq̌(m)
-k ) if the following hold:

I.
∥∥Wb

∥∥< ∞;

II. q̌(m)T
-k WbWT

bA-kAT
-kWbWbq̌(m)

-k ≍P gd/d
αk,1
k .

I. holds because we restrict the number of times a fibre can be chosen in a Bootstrap sample

to be at most 8, so that
∥∥Wb

∥∥≤ 8 < ∞.

Using the fact that
∥∥q̌(m)

-k −U-k,(1)
∥∥= oP(1), similar to (3.72), II. can be proved if we

can show that

UT
-k,(1)WbWT

bU-kG-kUT
-kWbWT

bU-k,(1) ≍P gs/d
αk,1
k .

With Assumption (L1’), this boils down to showing that

Q := UT
-k,(1)WbWT

bU-k,(1) > c > 0 (4.15)

with high probability for some constant c > 0 as T,dk → ∞. To do this, define U-k,(1) =:

(u j) j∈[d-k], and

P := Information on the position of ξ
(b)
i , i ∈ [d-k] on each column of Wb;

V := Information on the values of the ξ
(b)
i , i ∈ [d-k];

D := Information on the values of u j.
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Let X j be the number of ξ
(b)
i ’s assigned at the jth row of Wb (say at column number

i1, . . . , iX j). Hence the jth diagonal value of WbWT
b is

(WbWT
b) j j =

X j

∑
ℓ=1

ξ
(b)
iℓ , meaning that E[(WbWb) j j|P] =

X j

2
, var[(WbWT

b) j j|P] =
X j

4
.

But since ∑
d-k
j=1 X j = d-k, and each X j is identically distributed, we have

E(X j) = 1, corr(Xi,X j) =− 1
d-k −1

for i ̸= j.

Hence

E(Q|D) = E[E(Q|P,D)|D ] = E
[ d-k

∑
j=1

u2
jE[(WbWT

b) j j|P]|D
]
=

E(X j)

2

d-k

∑
j=1

u2
j =

1
2
,

var(Q|D) = E[var(Q|D ,P)|D ]+var(E(Q|D ,P)|D),

= E
( d-k

∑
j=1

u4
j ·

X j

4
|D
)
+var

( d-k

∑
j=1

u2
j ·

X j

2
|D
)

=
1
4

d-k

∑
j=1

u4
j +

d-k

∑
j=1

u4
j

4
var(X j)+

1
2 ∑

i< j
u2

i u2
j

(
−

var(X j)

d-k −1

)

=
1
4

d-k

∑
j=1

u4
j +

var(X j)

4(d-k −1)

(
d-k

d-k

∑
j=1

u4
j −1

)
.

But ∑
d-k
i=1 u2

i = 1 and the same moment structure up to the 4th order imply that

Eu2
j =

1
d-k

, Eu4
j =

1
d-k

− (d-k −1)E(u2
i u2

j) =
1

d2
-k
+o(d−1

-k ) = o(d−1
-k ).

Hence E(Q) = E(E(Q|D)) = 1/2, and

var(Q) = E(var(Q|D)) =
d-k

4
Eu4

j +
var(X j)

4(d-k −1)
(d2

-kEu4
j −1) = o(1),

since 0 ≤ X j ≤ 8 means that var(X j)< ∞. With E(Q) = 1/2 and var(Q) = o(1), we have

established (4.15). This completes the proof of the theorem. □



Chapter 5

Factor Strengths Estimation in Time
Series Factor Models

5.1 Introduction

Factor modelling has become an increasingly important tool for analyzing high dimensional

data across various academic fields, including finance, economics, psychology, and biology.

In high dimensional vector or tensor time series, it is generally assumed that a small

number of factors drive the dynamics of all variables, leading to significant dimension

reduction. Traditional factor models primarily focus on vector time series, exploring

various assumptions regarding cross-correlation and serial dependence structures (Bai,

2003; Bai and Ng, 2002, 2007, 2023; Chamberlain and Rothschild, 1983; Fan et al., 2013,

2019; Forni et al., 2000; Lam and Yao, 2012; Lam et al., 2011; Pan and Yao, 2008; Stock

and Watson, 2005, 2002). More recently, studies have extended their scope to include

matrix factor models (Chen and Fan, 2021; He et al., 2022; Wang et al., 2019; Yu et al.,

2022) and tensor factor models (Barigozzi et al., 2023a,b; Chen et al., 2022; Han et al.,

2020, 2022), incorporating emerging data in more complex matrix or tensor formats (for

further details on the assumptions of factor models under different data structures, please

refer to Chapter 2).

In factor modelling, a crucial assumption pertains to the strengths of factors. In the

early studies of standard vector factor models (Bai, 2003; Bai and Ng, 2002; Stock and

Watson, 2002), it is typically assumed that all r factors are strong, commonly referred to as



124 Factor Strengths Estimation in Time Series Factor Models

pervasive. Specifically, in the model

xt = Aft + et , t ∈ [T ],

where xt ∈Rd and A ∈Rd×r, the pervasive factor assumption implies that all r eigenvalues

of ATA diverge proportionally to d, i.e., λ j(ATA) ≍ d for j ∈ [r]. This results in a

clear partition of the eigenvalues of the observed covariance matrix into two sets: large

eigenvalues representing factor-related variation and small eigenvalues representing idiosyncratic

variation. Such a clear partition is also crucial for validating the procedure to estimate

the number of factors by analyzing the empirical behaviors of eigenvalues (Ahn and

Horenstein, 2013; Bai, 2003; Onatski, 2010).

However, a clear separation of the eigenvalues into one set of large eigenvalues

and a second set of small eigenvalues is typically not found in practice. Empirical

studies in economics and finance indicate that eigenvalues often diverge at varying rates

(Freyaldenhoven, 2022; Ross, 1976; Trzcinka, 1986). In response, models introducing

weak factors have been proposed for analyzing vector time series (Bai and Ng, 2023;

Freyaldenhoven, 2022; Hallin and Liška, 2011; Lam and Yao, 2012; Lam et al., 2011;

Onatski, 2012; Uematsu and Yamagata, 2022). For the j-th column a j of A, its factor

strength α j, ranging between 0 and 1, is defined such that

∥a j∥2 ≍ dα j , j ∈ [r],

ensuring that

λ j(ATA)≍ dα j , j ∈ [r].

Thus, a strong (or pervasive) factor has α j = 1, while a weak factor has α j < 1. Theoretically,

a weak factor can result from two scenarios: (i) the factor has a weak effect on some or all

observables, or (ii) it affects only a subset of observables, referred to as a “local” factor by

Freyaldenhoven (2022).

Building on assumptions about weak factors for vector time series, the literature has

developed studies focusing on the estimation of the factor loading space and the number of

factors when weak factors are present in the model (Bai and Ng, 2023; Freyaldenhoven,

2022; Lam and Yao, 2012; Lam et al., 2011; Onatski, 2012; Uematsu and Yamagata, 2022).

Lam et al. (2011) and Bai and Ng (2023) demonstrate that the estimation accuracy of factor
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loadings depends on the strength of the factors. Therefore, it may suffer in the presence of

weak factors compared to the classical setting where all factors are pervasive.

In recent years, there has been a growing body of research in matrix and tensor factor

modelling. While many studies assume pervasive factors (Barigozzi et al., 2023b; Chen

and Fan, 2021; He et al., 2023a, 2022; Yu et al., 2022), matrix and tensor factor models

with assumptions about weak factors have also emerged (Chen et al., 2022; Han et al.,

2020, 2022), including the model we proposed in Chapter 3. Similar to the vector case, the

presence of weak factors can diminish the effectiveness of estimation methods developed

for pervasive factors only (Barigozzi et al., 2023b; Chen and Fan, 2021; He et al., 2023a,

2022; Yu et al., 2022). Moreover, the strengths of the factors in tensor factor models

could also affect the estimation accuracy of the pre-averaging and iterative projection

estimators introduced in Chapter 3, as well as the TIPUP procedure by Chen et al. (2022).

Therefore, estimating the factor strengths can help us detect the presence of weak factors,

which can be informative for comparing the accuracy of different estimation procedures

and assisting in model selection. Additionally, factor strength estimation is crucial for

deriving the asymptotic normality of these estimators, enabling inference procedures that

are particularly useful for forecasting purposes.

There is limited research on estimating factor strengths. Uematsu and Yamagata (2022)

assume sparsity in the factor loading matrix A and employ techniques akin to adaptive

LASSO for factor selection. They calculate the estimated factor strengths by counting the

number of nonzero elements in the estimated factor loading matrix. Another study with

similar sparsity assumptions, Bailey et al. (2021), proposes estimating factor strengths

based on the proportion of statistically significant factor loadings, but it concentrates on

cases where factors are observed, while our primary emphasis is on latent factor models.

The sparsity assumptions in these works specifically address scenarios akin to case (ii)

mentioned earlier, i.e., when factors are weak due to being “local”. In many applications

especially when analyzing economic and financial time series, the sparsity assumption

provides convenient interpretation of the factors (Freyaldenhoven, 2022, 2023; Uematsu

and Yamagata, 2022). On the other hand, if a factor is weak because it has a ‘weak’ impact

on some or all observables, then it may not be detectable by sparsity assumptions. Connor

and Korajczyk (2022) consider such a structure with observed factors, and demonstrate its

application when modelling U.S. equity return series. Without the sparsity assumption,

estimating the factor strengths in such scenarios remains an open problem. Additionally,

with emerging literature extending the factor model approach to modeling matrix and

tensor time series, no method has been provided so far to estimate factor strengths in
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matrix or tensor factor models. Thus, the challenge of estimating factor strengths persists,

especially when not relying on sparsity assumptions, and particularly when extending to

matrix and tensor factor models.

In this chapter, we propose a novel method to estimate factor strengths in factor models

for vector and matrix time series. Our method does not assume the factor loading matrix is

sparse. Instead, we make use of covariance information and the estimated factor loading

matrices to extract factor strengths directly. To the best of our knowledge, this is the

first method to estimate factor strengths that can be applied in general settings when the

factor loading matrices are not necessarily sparse. Furthermore, we extend this method to

estimate factor strengths in matrix factor models, i.e., tensor factor models with K = 2. The

factor strengths on the row loading matrices and column loading matrices are estimated

with specific identifiability conditions provided. Numerical experiments show that our

method performs well in various settings of vector and matrix factor models, shedding

light on future research directions in this field.

The rest of this chapter is organized as follows. Section 5.2 discusses the definition and

identification of factor strengths in our model. Section 5.3 introduces our propose method

for estimating factor strengths based on extracting covariance information on vector factor

models, and Section 5.4 extends this approach to matrix factor models. Section 5.5 presents

our simulation studies, demonstrating the performance of our method in various settings.

5.2 Definition and Identification of Factor Strengths

The models we consider in this chapter are time series factor models in vector or matrix

formats. We start with a vector factor model, which takes the form

xt = Aft + εεε t , t ∈ [T ], (5.1)

where xt ∈ Rd , εεε t ∈ Rd , A ∈ Rd×r is the factor loading matrix, and ft ∈ Rr are the latent

factors.

To discuss the intuition for defining factor strengths, consider a j be the j-th column of

A. If the j-th (observed or latent) factor ft j has a pervasive effect on all units of xt , then it

means a j is dense, and thus ∑
d
i=1 a2

i j ≍ d, i.e., ∥a j∥2 ≍ d. This is called a pervasive factor.

In the studies of classical high dimensional factor models (see Bai (2003); Bai and Ng

(2002); Stock and Watson (2002) for examples), it is typically assumed that all r factors are
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pervasive, which implies that λ j(ΣΣΣx)≍ λ j(AΣΣΣ f AT)≍ d for j ∈ [r] and λr+1(ΣΣΣx) = O(1),

where ΣΣΣ f = E[ftfT
t ] is positive definite, and ΣΣΣx = E[xtxT

t ].

However, empirical studies in economics and finance have demonstrated that eigenvalues

of observed covariance matrices often diverge at different rates (Freyaldenhoven, 2022;

Ross, 1976; Trzcinka, 1986). Furthermore, model with solely pervasive factors implies a

large gap between the values of λr(ΣΣΣx) and λr+1(ΣΣΣx), but it is often missing in financial

and economic datasets (Fan et al., 2013). This suggests that the assumption of all pervasive

factors may be too restrictive, and some factors may have ‘weaker’ effects than others.

Factor strengths are thus introduced to explain such behavior.

In the context of observed factors, Bailey et al. (2021) defines the strength of a factor

as the degree of pervasiveness of its effects. For a weak (non-pervasive) factor, the factor

loading is sparse, and the factor strength α j can be seen as a measure of the number of non-

zero factor loadings ai j, such that (∑d
i=1 a2

i j)
1/2 = ∥a j∥2 ≍ dα j . The sparsity assumption

on A is also imposed by many literature dealing with latent factors (Freyaldenhoven, 2022,

2023; Uematsu and Yamagata, 2022), and can be referred to as a ‘local’ factor. On the other

hand, in the context of observed factors, Connor and Korajczyk (2022) consider another

scenario where the diverging eigenvalues can be induced by nonsparse factor loadings. In

this scenario, a factor can have a weak effect because it affects all the variables at similar

strengths, but thinly. For example, if a j is not sparse but composed of non-zero values of

order d(α j−1)/2, then ∥a j∥2 ≍ dα j . Both scenarios result in ∥a j∥2 ≍ dα j , which accounts

for the empirical observation that eigenvalues diverge at a slower rate than d when α j < 1.

With λ j(ΣΣΣx)≍ dα j , we can also interpret α j as a measure of the strength of signal which

can be observed from the model.

The definition of factor strengths can be similarly applied to the literature on latent

factor models. However, when factors are not observed, more assumptions need to be

imposed to identify the model. This is because the model (2.3) remains unchanged if

we replace the pair (A; ft) on the right-hand side with (AH;H−1ft) for any invertible H.

In models with only pervasive factors, Bai (2003) and Bai and Ng (2002) propose to

impose the normalization of either ATA
d = Ir or E[ftfT

t ] = Ir when employing the principal

component estimator (see Williams (2019) for example for more discussions on the

implications of these strategies). On the other hand, when defining factor strengths, it is

more common to assume E[ftfT
t ] = Ir and relax the assumption on A. Intuitively, we can

think of the factors as ‘primitive’ exogenous forces, which do not have common causes,

and it is natural to treat them as orthogonal (Bernanke, 1986). In this sense, factor strengths

α j can be defined and interpreted similarly to those of observed factors, as ∥a j∥2 ≍ dα j
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(Bai and Ng, 2023; Freyaldenhoven, 2022; Lam et al., 2011; Uematsu and Yamagata,

2022).

With the assumption of sparse factor loadings (i.e., local factors), in order to estimate

the factor loadings, factor strengths, and the number of factors, Freyaldenhoven (2022) and

Uematsu and Yamagata (2022) impose the assumption that ATA = D, where D is diagonal,

with diagonal elements d j j ≍ dα j . This assumption is more restrictive but necessary to

separately identify the factors for estimation purposes. Otherwise, different rotations

could mix weak factors with stronger ones, making the factor strengths unidentifiable and

impossible to estimate. Freyaldenhoven (2022) show that with local factors, ATA = D
will be approximately true if the groups of outcomes affected by different factors are

sufficiently distinct. In a more recent work, Freyaldenhoven (2023) proposes a rotation

criterion that minimizes the l1-norm to recover the loading if the true loading is sparse.

Similar to the assumptions of Freyaldenhoven (2022) and Uematsu and Yamagata

(2022), but without sparsity constraints, we present the following assumptions to identify

the factor loadings and factor strengths in our model (2.3).

(V1) (Factor strengths) A is of full rank, and ATA = D, where D is a diagonal matrix.

Define the diagonal entries of D as d j j := (D) j j, then d j j ≍ dα j for j ∈ [r], and

0 < αr ≤ ·· · ≤ α1 ≤ 1.

(V2) (Latent factors) There is z f ,t the same dimension as ft , such that ft = ∑q≥0 a f ,qz f ,t−q.

The time series {z f ,q} has i.i.d. elements with mean 0, variance 1, and E|z f ,t,i|4 ≤ c

for some c < ∞ independent of t ∈ [T ] and i ∈ [r]. The coefficients a f ,q are so that

∑q≥0 a2
f ,q = 1.

Assumption (V1) defines factor strengths in the model. As in the earlier discussion,

though the concept of factor strengths itself does not require the orthogonal loadings, ATA
being diagonal is necessary to identify and estimate a spectrum of different factor strengths

(Freyaldenhoven, 2022; Uematsu and Yamagata, 2022). It’s also important to note that

in Assumption (V1), we do not impose any sparsity assumptions on the factor loading

matrix A, in contrast to other recent literature dealing with weak factors (Bailey et al.,

2021; Freyaldenhoven, 2022; Uematsu and Yamagata, 2022). Consequently, a factor in

our model can be weak if either (i) the factor has a weak effect on some or all observables,

or (ii) it affects only a subset of observables. Such a relaxed assumptions provide more

flexibility for our approach to be used in practice, if no prior knowledge of the sparse factor

loadings is assumed.
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Assumption (V2) states that ft has uncorrelated elements, which is standard in the

litarature as previously discussed. Define F = [f1, . . . , fT ]
T, then Assumption (V2) implies

E[FTF
T ] = Ir and

∥∥FTF
T

∥∥= OP(1), facilitating the rationality of our method as described in

Section 5.3.

Remark: While Assumption (V1) relaxes the assumption of weak factors being ‘local’,

this broader framework also means that interpreting the α j as a measure of sparsity in

the loading becomes less straightforward. In general, it is hard to determine whether

a weak factor with α j < 1 is caused by local or pervasive scenarios. Therefore, while

estimating α j in Section 5.3 and 5.4 can help us identify the presence of weak factors and

approximate their strengths, it may not fully unveil the true structure of the factor loading

matrix. Additional techniques are required to uncover such complexities. Consequently,

we suggest that our method can be used in conjunction with other existing methods that

estimate the sparsity of factor loadings (Freyaldenhoven, 2023; Johnstone and Silverman,

2004; Uematsu and Yamagata, 2022).

For example, based on the estimated factor strengths from our method, we may identify

some weak factors and wish to impose sparsity assumptions on some of them. Then,

methods for estimating the sparsity of loadings (Freyaldenhoven, 2023; Johnstone and

Silverman, 2004; Uematsu and Yamagata, 2022) could help reveal the potentially true

sparse structure. Consequently, we can estimate the sparsity level of local factors and

quantify their effects. By comparing such effects with our estimated strengths, we might

be able to address any unexplained effects not attributed to local factors (i.e. weak effect

for some factors on some or all observables). We leave this as an interesting avenue for

future research.

5.3 Factor strengths estimation in vector factor models

To introduce our method for estimating factor strengths, let’s first focus on the vector factor

model (5.1). To estimate factor strengths α j, j ∈ [r], note that from Assumption (V1),

the factor loading matrix A can be written as A = QD
1
2 , where Q ∈ Rd×r has orthogonal

columns such that QTQ = Ir, and D ∈ Rr×r is a diagonal matrix. Since Q is orthogonal,

the information about factor strengths in A is fully encapsulated in D, given that d j j ≍ dα j .

Consequently, we can estimate factor strengths by estimating the diagonal elements of D.

To achieve this, we define Ŝ = Q̂TΣ̂ΣΣxQ̂, where Q̂ is an estimator of Q, and Σ̂ΣΣx =
1
T ∑

T
t=1 xtxT

t .
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Then

Ŝ =Q̂TQD
1
2

(
1
T

T

∑
t=1

ftfT
t

)
D

1
2 QTQ̂

+ Q̂TQD
1
2

(
1
T

T

∑
t=1

fteT
t

)
Q̂+ Q̂T

(
1
T

T

∑
t=1

etfT
t

)
D

1
2 QTQ̂+ Q̂T

(
1
T

T

∑
t=1

eteT
t

)
Q̂. (5.2)

If the error terms εεε t are appropriately bounded, with proper assumptions on its cross-

correlation and serial dependence, the last three terms in (5.2) become small in comparison

to the first term. Moreover, considering that E[ftfT
t ] = Ir by Assumption (V2), and assuming

we have an estimator Q̂ that is close to Q, we can make the following approximation:

Ŝ ≈ Q̂TQD
1
2

(
1
T

T

∑
t=1

ftfT
t

)
D

1
2 QTQ̂ ≈ D.

In practice, depending on more specific model assumptions, the estimated Q̂ can be

obtained through various approaches, such as PCA of the sample covariance matrix or

sample autocovariance matrix (see Bai (2003); Bai and Li (2012); Bai and Liao (2016);

Lam and Yao (2012); Lam et al. (2011) for examples). Now, given that D is diagonal, we

can directly derive the estimator for d j j, j ∈ [r], by using the diagonal entries of Ŝ, such that

d̂ j j := ŝ j j, where d̂ j j and ŝ j j represent the j-th diagonal entries of D̂ and Ŝ, respectively.

Thus, the factor strengths on A can be estimated as

α̂ j =
log
(

d̂ j j

)
log(d)

, j ∈ [r], (5.3)

and we can further obtain Â as Â = Q̂D̂
1
2 , where D̂ is a diagonal matrix with diagonal

entries given by d̂ j j.

To assess the estimator α̂ j obtained by (5.3), note that the true factor strength α j for

the model (5.1) is defined as

∥∥a j
∥∥2

=Cdα j , j ∈ [r], (5.4)

where C is a constant that may vary across different j. Additionally, introduce the realized

factor strength α̃ j as

α̃ j :=
log(

∥∥a j
∥∥2
)

log(d)
= α j +

log(C)

log(d)
. (5.5)
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It is important to note that our estimator α̂ j is, in fact, an estimator for α̃ j rather than the

true α j, as C and α j are not identifiable. However, given that C is a constant, when the

dimension d grows large, we expect log(C)
log(d) → 0, leading to a negligible difference between

α̃ j and α j. In general when C is unknown, α̃ j converges to the true α j with a rate of

log(d)−1, and the rate of |α̂ j −α j| cannot surpass this bound. However, in the special case

where we assume C = 1, then α̃ j = α j, making the factor strength α j exactly identifiable.

In such case, we can achieve a better rate of convergence for |α̂ j −α j| potentially. Thus,

in practical situations with finite samples and a moderately sized d, it is desirable for C

to be close to 1, ensuring that α̃ j does not significantly differ from α j. In such cases, α̂ j

serves as a reliable approximation to the true α j.

5.4 Extension to matrix factor models

In Section 5.3, we discuss our method to estimate factor strengths in a vector factor model.

The similar approach can be extended to a matrix factor model, which is developed for

analyzing time series observations recorded in matrix form (Chen and Fan, 2021; He et al.,

2023a; Wang et al., 2019; Yu et al., 2022). Consider the matrix factor model:

Xt = A1FtAT
2 +Et , t ∈ [T ], (5.6)

where Xt ∈ Rd1×d2 , Et ∈ Rd1×d2 , Ft ∈ Rr1×r2 , and Ak ∈ Rdk×rk for k = 1,2. The following

assumptions for matrix factor models are direct extensions of Assumptions (V1) and (V2)

for vector factor models:

(M1) (Factor strengths) For k = 1,2, Ak is of full rank, and AT
kAk = Dk, where Dk is a

diagonal matrix. Define the diagonal entries of Dk as dk, j j := (Dk) j j, then dk, j j ≍
dαk, j for j ∈ [rk], and 0 < αk,rk ≤ ·· · ≤ αk,1 ≤ 1.

(M2) (Latent factors) There is Z f ,t the same dimension as Ft , such that Ft =∑q≥0 a f ,qZ f ,t−q.

The time series {Z f ,q} has i.i.d. elements with mean 0, variance 1 and E|z f ,t,i, j|4 ≤ c

for some c < ∞ independent of t ∈ [T ] and i ∈ [r1], j ∈ [r2]. The coefficients a f ,q are

so that ∑q≥0 a2
f ,q = 1.

Assumptions (M1) and (M2) are parallel to the tensor factor model assumptions made

in Chapter 3.2.1 when K = 2, except that we assume AT
kAk to be diagonal here, in order

to separately identify and estimate the factor strengths. Assumption (M2) also implies
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E[ 1
T ∑

T
t=1 FtFT

t ] = Ir1 and E[ 1
T ∑

T
t=1 FT

t Ft ] = Ir2 . With Assumption (M1), we can write

A1 = Q1D
1
2
1 and A2 = Q2D

1
2
2 , where Qk ∈ Rdk×rk has orthogonal columns for k = 1,2.

Then (5.6) can be written as

Xt = Q1D
1
2
1 FtD

1
2
2 QT

2 +Et , t ∈ [T ].

To estimate the factor strengths on A1, similar to the vector case, we can create

Ŝ1 = Q̂T
1Σ̂ΣΣ1xQ̂1, where Q̂1 is an estimator of Q1, and Σ̂ΣΣ1x =

1
T ∑

T
t=1 XtXT

t . Then

Ŝ1 =Q̂T
1Q1D

1
2
1

(
1
T

T

∑
t=1

FtD2FT
t

)
D

1
2
1 QT

1Q̂1

+ Q̂T
1Q1D

1
2
1

(
1
T

T

∑
t=1

FtD
1
2
2 QT

2ET
t

)
Q̂1 + Q̂T

1

(
1
T

T

∑
t=1

EtQ2D
1
2
2 FT

t

)
D

1
2
1 QT

1Q̂1 + Q̂T
1

(
1
T

T

∑
t=1

EtET
t

)
Q̂1.

(5.7)

The last three terms in (5.7) will become small compared to the first term if the error terms

Et are small with proper assumptions on its cross-correlation and serial dependence. For

matrix factor models, Q̂1 can be obtained using the pre-averaging and iterative projection

algorithm developed in Chapter 3. Alternatively, literature has been developed to obtain

Q̂1 using different approaches under various model assumptions (see Barigozzi et al.

(2023b); Chen and Fan (2021); Chen et al. (2022); He et al. (2023a); Wang et al. (2019)

for examples). If Q̂1 is close to Q1, then

Ŝ1 ≈ Q̂T
1Q1D

1
2
1

(
1
T

T

∑
t=1

FtD2FT
t

)
D

1
2
1 QT

1Q̂1

≈ D
1
2
1

(
1
T

T

∑
t=1

FtD2FT
t

)
D

1
2
1

≈ D
1
2
1 tr(D2)D

1
2
1

= tr(D2)D1. (5.8)

If D2 is known, or we have an estimate for it, we can then estimate the diagonal entries of

D1 by using the diagonal entries of Ŝ1/tr(D2).
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Similarly, to estimate the factor strengths on A2, if we define Ŝ2 = Q̂T
2Σ̂ΣΣ2xQ̂2, where

Q̂2 is an estimator of Q2, and Σ̂ΣΣ2x =
1
T ∑

T
t=1 XT

t Xt , then by similar arguments,

Ŝ2 ≈ Q̂T
2Q2D

1
2
2

(
1
T

T

∑
t=1

FT
t D1Ft

)
D

1
2
2 QT

2Q̂2

≈ D
1
2
2

(
1
T

T

∑
t=1

FT
t D1Ft

)
D

1
2
2

≈ D
1
2
2 tr(D1)D

1
2
2

= tr(D1)D2. (5.9)

Thus, if D1 is known or if we have an estimate of it, then we can estimate the diagonal

entries of D2 by using the diagonal entries of Ŝ2/tr(D1).

However, in most practical scenarios, neither D1 nor D2 is known. Consequently, we

aim to estimate both D1 and D2 simultaneously from (5.8) and (5.9). In such situations,

it is crucial to note that due to matrix multiplication, the factor strengths on A1 and A2

are not identifiable in matrix factor models. This lack of identifiability is reflected in the

relationships derived from (5.8) and (5.9):

tr(D1)tr(D2)≈ tr(Ŝ1). (5.10)

and

tr(D1)tr(D2)≈ tr(Ŝ2). (5.11)

Therefore, to estimate the factor strengths on D1 and D2 simultaneously, it is necessary to

define the identifiability condition as:

tr(D1)

r1d1
=

tr(D2)

r2d2
. (5.12)

Note that the identifiability condition is not unique. However, we choose to define (5.12)

as it is convenient for interpretation. The intuition behind (5.12) is that, in general, larger

factor strengths will be “assigned" to larger dimensions. For instance, consider r1 = r2 = 1

and α1,1 = α2,1 = 1. In this case, tr(AT
1A1) = tr(D1)≈ r1d1 and tr(AT

2A2) = tr(D2)≈ r2d2.

Consequently, by (5.12), the estimated factor strengths will recover the true ones, i.e.,

α̂1,1 ≈ α̂2,1 ≈ 1. On the other hand, if A1 and A2 have the exact same dimensions (r1 = r2



134 Factor Strengths Estimation in Time Series Factor Models

and d1 = d2), they will be “assigned" the same factor strengths, as the factor strengths on

them are completely symmetric and indistinguishable from each other.

With identifiability condition (5.12), together with (5.10) and (5.11), we can allocate

the proper factor strengths on D1 and D2 accordingly. For more accuracy and consistency

in calculation, we can use the average of tr(Ŝ1) and tr(Ŝ2) as an estimate of tr(D1)tr(D2)

and solve for tr(D1) and tr(D2), respectively. This leads to the following approximations:

tr(D1)≈

(
tr(Ŝ1 + Ŝ2)

2
· r1d1

r2d2

) 1
2

, (5.13)

and

tr(D2)≈

(
tr(Ŝ1 + Ŝ2)

2
· r2d2

r1d1

) 1
2

. (5.14)

By substituting (5.14) and (5.13) back into (5.8) and (5.9), we can estimate the diagonal

entries of D1 and D2 by taking the corresponding diagonal entries in Ŝ1 and Ŝ2, respectively,

normalized to specific magnitudes, which leads to:

d̂1, j j :=
ŝ1, j j(

tr(Ŝ1+Ŝ2)
2 · r2d2

r1d1

) 1
2
, j ∈ [r1],

where d̂1, j j and ŝ1, j j are the j-th diagonal entries of D̂1 and Ŝ1, respectively, and

d̂2, j j :=
ŝ2, j j(

tr(Ŝ1+Ŝ2)
2 · r1d1

r2d2

) 1
2
, j ∈ [r2],

where d̂2, j j and ŝ2, j j are the j-th diagonal entries of D̂2 and Ŝ2, respectively. Finally, the

factor strengths on A1 and A2 can be estimated as:

α̂1, j =
log
(

d̂1, j j

)
log(d1)

, j ∈ [r1],

and

α̂2, j =
log
(

d̂2, j j

)
log(d2)

, j ∈ [r2],
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and we can further obtain Âk = Q̂kD̂
1
2
k , where D̂k is a diagonal matrix with diagonal entries

given by d̂k, j j, for k = 1,2.

5.5 Simulation Experiments

In this section, we conduct simulation experiments to test the performances of our proposed

method to estimate factor strengths in vector and matrix factor models.

5.5.1 Simulation settings

For generating our data, we use model (5.1) for vector time series (K = 1), and (5.6) for

matrix time series (K = 2), both of which are special cases of the general tensor factor

model (2.7). For k ∈ [K], each factor loading matrix Ak is generated independently with

Ak = BkDk, where the elements in Bk ∈ Rdk×rk are i.i.d. U(−
√

3,
√

3), and Dk ∈ Rrk×rk is

diagonal with the j-th diagonal element being d
−ζk, j
k , 0 ≤ ζk, j ≤ 0.5. Pervasive (strong)

factors have ζk, j = 0, while weak factors have 0 < ζk, j ≤ 0.5. In this way, the constant C

in (5.4) will be close to 1, so that α̃k, j ≈ αk, j and ∥ak, j∥ ≈ d
αk, j
k for j ∈ [rk], k ∈ [K].

The elements in ft for vector time series (or Ft for matrix time series) are independent

standardized AR(1) with AR coefficients 0.8. The elements in et (or Et) are generated

based on Assumptions (E1)(E2) in Chapter 3.2.1, where the elements in Fe,t and εεε t are

independent standardized AR(5) with coefficients (-0.7,-0.3,-0.4,0.2,0.1) and (0.8,0.4, -

0.4,0.2,-0.1) respectively. The innovation processes of Ft , Fe,t and εεε t are all i.i.d. standard

normal. The errors et (or Et) are then normalized based on the signal-to-noise ratio δ ,

defined as the average ratio of standard errors of ft and et (or Ft and Et). This normalization

ensures that 1
d ∑

d
j=1 var(et, j) =

1
δ 2 (or 1

d1d2
∑

d1
i=1 ∑

d2
j=1 var(et,i, j) =

1
δ 2 ). We assume δ = 2

for all simulation experiments in this chapter.

We set rk = 2 for all k, and consider two settings of factor strengths, detailed below:

(I) One strong factor and one weak factor with ζk,1 = 0 and ζk,2 = 0.2 for all k, so that

αk,1 = 1, αk,2 = 0.6.

(II) Two weak factors with different strengths, with ζk,1 = 0.1 and ζk,2 = 0.2 for all k,

so that αk,1 = 0.8, αk,2 = 0.6.

Note that in the simulation settings, we generate Ak in a way such that the constant

C in (5.4) will be close to 1. As discussed previously, the rate of |α̂ j −α j| cannot be
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faster than log(d)−1 if C is not close to 1. Hence, we set C to be close to 1 to ensure

α̃ j ≈ α j, which facilitates the potential observation of a faster rate of |α̂ j −α j| in finite

samples. Additionally, assuming C is close to 1, we exclude the setting where αk,1 = αk,2

(i.e., two factors in Ak having exactly the same strength). This exclusion is based on the

fact that when αk,1 = αk,2 and C = 1, it implies that the two eigenvalues of AT
kAk, and

thus the two population eigenvalues, become nearly identical. However, such behavior

is not supported by empirical observations in economics and finance (Freyaldenhoven,

2022; Ross, 1976; Trzcinka, 1986), as population eigenvalues usually diverge at different

rates. In practice, observing two very close eigenvalues is rare, since factor loading

space is of finite dimension with rk ≪ dk. In real data scenarios, it’s more realistic to

consider factor loading entries as random. With random entries, the probability of having

very close eigenvalues is significantly small, especially given that the dimension dk is

much larger than the number of factors rk. Finally, in the literature dealing with factor

strengths, it is also typically necessary in theory to assume that the eigenvalues of AT
kAk

are distinct (see Freyaldenhoven (2022); Lam et al. (2011); Uematsu and Yamagata (2022)

for examples, and Assumption (L1’) in Chapter 3.2.1 as well), which facilitates the use

of perturbation theory for estimating a well-defined eigenvector estimator. In fact, when

two eigenvalues are very close, an estimated eigenvector can be vastly different from a

particular target. Therefore, we only consider distinct factor strengths when assuming

C ≈ 1 in our simulations.

5.5.2 Results

For vector factor models (K = 1), we consider all combinations of dimensions d =

50,100,200,400,800 and T = 50,100,200,400,800 for each of the two settings outlined

in Section 5.5.1. We estimate α̂1 and α̂2 following the process described in Section 5.3,

where Q̂ is estimated using PCA of the sample covariance matrix (Bai, 2003). Tables 5.1

and 5.2 record the mean and standard deviation over 100 repetitions of factor strengths

estimations under different settings and dimensions.

Based on the results presented in Tables 5.1 and 5.2, our factor strengths estimators

demonstrate good performance across all settings in vector factor models. Both α̂1 and α̂2

converge to the true factor strengths α1 and α2, with a particularly notable improvement

as T increases. Furthermore, the standard deviation of the estimators decreases with

the increase in T or d. It’s essential to note that the standard deviation of estimation is

influenced not only by errors in the estimation procedure but also by the fact that α̃ j is not
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generated to be exactly α j but with some small variance (i.e., the constant C in (5.4) is

not exactly 1). Nevertheless, given that α̃ j ≈ α j, the estimated α̂ j still serves as a good

approximation of α j.

d T = 50 T = 100 T = 200 T = 400 T = 800

α̂1

50 1.00(0.10) 0.99(0.07) 1.00(0.06) 1.00(0.05) 1.00(0.04)
100 0.99(0.09) 0.98(0.06) 0.98(0.05) 1.00(0.04) 1.00(0.03)
200 0.99(0.08) 0.98(0.06) 0.99(0.04) 1.00(0.03) 1.00(0.02)
400 0.98(0.07) 0.99(0.04) 1.00(0.04) 1.00(0.03) 1.00(0.02)
800 0.98(0.07) 1.00(0.04) 0.99(0.03) 1.00(0.02) 1.00(0.02)

α̂2

50 0.56(0.08) 0.59(0.08) 0.59(0.06) 0.59(0.05) 0.59(0.05)
100 0.58(0.07) 0.59(0.07) 0.59(0.05) 0.59(0.04) 0.60(0.03)
200 0.59(0.06) 0.60(0.05) 0.60(0.04) 0.60(0.03) 0.60(0.02)
400 0.62(0.05) 0.59(0.05) 0.60(0.04) 0.60(0.03) 0.60(0.02)
800 0.64(0.04) 0.61(0.04) 0.60(0.03) 0.60(0.02) 0.60(0.02)

Table 5.1 The mean and standard deviation (in brackets) of the estimated factor strengths
for Setting (I) under vector factor models. The true factor strengths are α1 = 1, α2 = 0.6.

d T = 50 T = 100 T = 200 T = 400 T = 800

α̂1

50 0.82(0.09) 0.81(0.08) 0.82(0.05) 0.81(0.05) 0.81(0.04)
100 0.80(0.09) 0.80(0.07) 0.80(0.05) 0.80(0.03) 0.80(0.03)
200 0.79(0.07) 0.79(0.05) 0.80(0.04) 0.81(0.03) 0.80(0.03)
400 0.80(0.07) 0.80(0.05) 0.80(0.04) 0.80(0.02) 0.80(0.02)
800 0.81(0.05) 0.80(0.05) 0.80(0.03) 0.80(0.03) 0.80(0.02)

α̂2

50 0.56(0.09) 0.56(0.08) 0.59(0.06) 0.60(0.05) 0.59(0.05)
100 0.57(0.07) 0.59(0.05) 0.59(0.05) 0.59(0.03) 0.59(0.03)
200 0.59(0.05) 0.59(0.05) 0.60(0.04) 0.59(0.03) 0.60(0.02)
400 0.61(0.05) 0.60(0.05) 0.60(0.03) 0.60(0.03) 0.60(0.02)
800 0.63(0.03) 0.61(0.04) 0.60(0.03) 0.60(0.02) 0.60(0.02)

Table 5.2 The mean and standard deviation (in brackets) of the estimated factor strengths
for Setting (II) under vector factor models. The true factor strengths are α1 = 0.8, α2 = 0.6.

For matrix factor models (K = 2), we consider the following five settings of different

dimensions for d1 and d2:

i. d1 = d2 = 25;

ii . d1 = d2 = 50;

iii . d1 = d2 = 100;
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iv . d1 = 25, d2 = 50;

v . d1 = 50, d2 = 100.

We consider all combinations of T = 50,100,200,400,800, and the above five settings

of dimensions for each of the two settings outlined in Section 5.5.1. We estimate α̂1,1,

α̂1,2, α̂2,1, and α̂2,2 following the process described in Section 5.4, where Q̂1 and Q̂2 are

estimated using the pre-averaging and iterative projection algorithm developed in Chapter

3. Tables 5.3 and 5.4 record the mean and standard deviation over 100 repetitions of factor

strengths estimations under different settings and dimensions.

From Tables 5.3 and 5.4, our estimation procedure performs effectively across all

settings in matrix factor models. The identifiability condition (5.12) efficiently allocates

factor strengths between A1 and A2. When d1 = d2, we estimate relatively similar factor

strengths for A1 and A2 since they are indistinguishable. Moreover, all estimated factor

strengths converge to the true values as T and d increase. In cases where d1 ̸= d2, the

estimated factor strengths on A1 and A2 are allocated based on the relative magnitudes of

d1 and d2, contributing to the recovery of true factor strengths. This tendency is particularly

pronounced in Setting (I), where the strongest factors on A1 and A2 are pervasive.
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(d1,d2) T = 50 T = 100 T = 200 T = 400 T = 800

α̂1,1

(25,25) 1.00(0.07) 1.00(0.06) 0.99(0.05) 0.99(0.05) 1.00(0.04)
(50,50) 0.99(0.06) 1.00(0.05) 1.00(0.04) 1.00(0.03) 1.00(0.03)

(100,100) 0.99(0.04) 0.99(0.03) 1.00(0.02) 1.00(0.02) 1.00(0.02)

(25,50) 1.01(0.08) 0.99(0.06) 0.99(0.05) 0.99(0.04) 0.99(0.04)
(50,100) 0.98(0.06) 1.00(0.04) 0.99(0.04) 0.99(0.03) 0.99(0.02)

α̂1,2

(25,25) 0.55(0.11) 0.57(0.09) 0.58(0.09) 0.58(0.06) 0.59(0.06)
(50,50) 0.57(0.08) 0.58(0.07) 0.59(0.07) 0.59(0.05) 0.60(0.04)

(100,100) 0.57(0.07) 0.59(0.06) 0.59(0.04) 0.59(0.04) 0.59(0.03)

(25,50) 0.54(0.11) 0.55(0.10) 0.57(0.08) 0.57(0.06) 0.57(0.06)
(50,100) 0.57(0.09) 0.56(0.07) 0.59(0.06) 0.59(0.05) 0.59(0.04)

α̂2,1

(25,25) 1.00(0.07) 1.00(0.05) 0.99(0.05) 0.99(0.05) 1.00(0.04)
(50,50) 0.99(0.06) 0.99(0.05) 1.00(0.04) 1.00(0.03) 1.00(0.03)

(100,100) 0.99(0.04) 0.99(0.03) 1.00(0.02) 1.00(0.02) 1.00(0.02)

(25,50) 1.01(0.06) 1.00(0.04) 1.00(0.04) 1.00(0.03) 1.00(0.03)
(50,100) 0.99(0.05) 1.01(0.03) 1.00(0.03) 1.00(0.02) 1.00(0.02)

α̂2,2

(25,25) 0.55(0.12) 0.56(0.09) 0.58(0.08) 0.58(0.06) 0.58(0.06)
(50,50) 0.59(0.09) 0.59(0.07) 0.58(0.06) 0.59(0.04) 0.59(0.04)

(100,100) 0.58(0.08) 0.58(0.06) 0.59(0.04) 0.59(0.04) 0.59(0.03)

(25,50) 0.58(0.10) 0.59(0.07) 0.59(0.06) 0.59(0.04) 0.60(0.05)
(50,100) 0.59(0.08) 0.58(0.06) 0.59(0.05) 0.60(0.04) 0.60(0.03)

Table 5.3 The mean and standard deviation (in brackets) of the estimated factor strengths
for Setting (I) under matrix factor models. The true factor strengths are α1,1 = α2,1 = 1,
α1,2 = α2,2 = 0.6.
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(d1,d2) T = 50 T = 100 T = 200 T = 400 T = 800

α̂1,1

(25,25) 0.82(0.07) 0.81(0.05) 0.80(0.05) 0.81(0.05) 0.81(0.05)
(50,50) 0.80(0.06) 0.81(0.04) 0.80(0.03) 0.80(0.03) 0.81(0.03)

(100,100) 0.79(0.05) 0.80(0.03) 0.80(0.02) 0.80(0.02) 0.80(0.02)

(25,50) 0.79(0.07) 0.79(0.05) 0.78(0.05) 0.78(0.05) 0.78(0.04)
(50,100) 0.78(0.06) 0.78(0.05) 0.78(0.03) 0.78(0.03) 0.78(0.02)

α̂1,2

(25,25) 0.56(0.10) 0.55(0.08) 0.58(0.06) 0.58(0.06) 0.58(0.06)
(50,50) 0.57(0.06) 0.58(0.06) 0.58(0.05) 0.59(0.04) 0.59(0.04)

(100,100) 0.58(0.08) 0.60(0.05) 0.59(0.03) 0.60(0.03) 0.59(0.02)

(25,50) 0.53(0.10) 0.54(0.08) 0.55(0.07) 0.55(0.06) 0.55(0.06)
(50,100) 0.56(0.08) 0.56(0.06) 0.57(0.04) 0.57(0.04) 0.57(0.04)

α̂2,1

(25,25) 0.83(0.07) 0.80(0.06) 0.81(0.05) 0.81(0.04) 0.81(0.05)
(50,50) 0.81(0.05) 0.81(0.04) 0.80(0.04) 0.81(0.03) 0.81(0.03)

(100,100) 0.79(0.04) 0.80(0.03) 0.80(0.03) 0.80(0.02) 0.80(0.02)

(25,50) 0.83(0.06) 0.83(0.04) 0.81(0.04) 0.82(0.03) 0.82(0.03)
(50,100) 0.82(0.04) 0.82(0.04) 0.82(0.03) 0.82(0.02) 0.82(0.02)

α̂2,2

(25,25) 0.55(0.09) 0.57(0.08) 0.57(0.06) 0.57(0.06) 0.58(0.06)
(50,50) 0.57(0.06) 0.57(0.06) 0.59(0.05) 0.59(0.04) 0.59(0.04)

(100,100) 0.60(0.06) 0.59(0.05) 0.60(0.04) 0.60(0.03) 0.59(0.02)

(25,50) 0.58(0.08) 0.60(0.06) 0.62(0.05) 0.61(0.04) 0.61(0.04)
(50,100) 0.60(0.06) 0.61(0.05) 0.61(0.03) 0.62(0.03) 0.62(0.02)

Table 5.4 The mean and standard deviation (in brackets) of the estimated factor strengths
for Setting (II) under matrix factor models. The true factor strengths are α1,1 = α2,1 = 0.8,
α1,2 = α2,2 = 0.6.



Chapter 6

A New Form of Consistency for Large
Covariance Matrix Estimators

6.1 Introduction

The estimation of the covariance matrix ΣΣΣp and its inverse ΩΩΩp = ΣΣΣ
−1
p , referred to as the

precision matrix, plays a crucial role in statistical analysis across various fields. Examples

include risk estimation and portfolio allocation in finance, multiple hypotheses testing

in general statistical analysis, graphical modelling and clustering for gene discovery in

bioinformatics, and factor analysis in economics. With the increase in computational

power and significant technological developments, obtaining relatively large datasets has

become easier than ever. Many of these datasets are high dimensional, where the number

of variables p is comparable to or even larger than the sample size n. This poses challenges

for traditional covariance matrix estimators, such as the sample covariance matrix.

A significant issue arises from the fact that the sample covariance matrix is ill-

conditioned in high dimensional settings, in the sense that its eigenvalues are more extreme

than their population counterparts. In random matrix theory, it can be shown that when

ΣΣΣp = Ip and p/n → c ∈ (0,∞), the distribution of the eigenvalues of the sample covariance

matrix, called the empirical spectral density, does not converge to a single mass at 1.

Instead, it converges to a markedly different distribution known as the Marchenko-Pastur

distribution (Marčenko and Pastur, 1967). Furthermore, the eigenvectors of the sample

covariance matrix can differ significantly from those of ΣΣΣp (Johnstone and Lu, 2009; Ledoit

and Péché, 2011). Bai and Yin (1993) and Bai and Silverstein (2010) further demonstrated

that when ΣΣΣp = Ip and p/n → c > 0, the smallest and largest eigenvalues of the sample
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covariance matrix converge to max(0,(1−
√

c)2) and (1+
√

c)2), respectively. Moreover,

when p > n, the sample covariance matrix is not invertible, preventing the direct estimation

of ΩΩΩp = ΣΣΣ
−1
p .

To overcome the above mentioned problems, various regularization methods have been

studied to estimate the covariance or precision matrices in different applications. Two major

branches of regularization methods have been proposed. The first branch assumes special

structures on the covariance matrix ΣΣΣp or the precision matrix ΩΩΩp. Example methods

include thresholding (Bickel and Levina, 2008b; Cai and Liu, 2011), banding (Bickel

and Levina, 2008a), tapering (Cai et al., 2010; Furrer et al., 2006), penalization (Huang

et al., 2006; Lam and Fan, 2009; Ravikumar et al., 2011; Rothman et al., 2008), factor

modelling (Fan et al., 2008, 2013; Guo et al., 2017), modified cholesky decomposition

(Pan and Mackenzie, 2003; Pourahmadi, 2007; Rothman et al., 2010), Lasso (Peng et al.,

2009), adaptive Lasso (Kock and Callot, 2015) and graphical Lasso (Friedman et al., 2008;

Mazumder and Hastie, 2012), among others. In general, structural assumptions, such as

sparsity, bandedness or a factor structure, are needed for consistent estimation.

Despite the effectiveness of the above mentioned methods under their assumed structures,

the estimators may deviate considerably from the true matrix when prior information

is inaccurate. In practical scenarios, determining the true covariance matrix structure

beforehand is typically unfeasible, introducing the challenge of selecting the appropriate

matrix structure or estimation method.

Hence, the second branch of regularization methods concentrates on shrinking the

eigenvalues of sample covariance matrices without assuming specific structures on the

true covariance or precision matrices. The concept of shrinkage estimators for covariance

matrices was initially introduced by Stein (1975, 1986). Modern developments began

with Ledoit and Wolf (2004), who proposed a linear shrinkage estimator that shrinks the

eigenvalues of the sample covariance matrix towards the identity matrix. Schäfer and

Strimmer (2005) extended this idea to shrink towards different target matrices. Moreover,

Won et al. (2013) introduced a condition-number regularized estimator, maintaining the

middle portion of the sample eigenvalues while winsorizing the more extreme eigenvalues

at specific constants. Additionally, Ledoit and Wolf (2012) suggested a nonlinear shrinkage

estimator, and Abadir et al. (2014) proposed a model-free regularized estimator using a data

splitting scheme. Recently, Lam (2016) introduced nonparametric eigenvalue–regularized

covariance matrix estimator (NERCOME) through data splitting, providing a theoretically

supported data splitting scheme for asymptotic efficiency. Lam and Feng (2018) also
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applied similar ideas to derive a nonparametrically eigenvalue-regularized integrated

volatility matrix estimator (NERIVE) for high-frequency data.

While these eigenvalue-regularized estimators demonstrate strong empirical performance

in practice, the consistency of these estimators has not been well studied thus far. Though

other theoretical properties of these estimators, such as the optimality under expected

Frobenius loss (Lam, 2016; Ledoit and Wolf, 2004, 2012) or expected quadratic loss

(Schäfer and Strimmer, 2005) have been shown, the proof of the widely used spectral norm

consistency usually relies on structural assumptions; thus, it is challenging to establish for

non-structured estimators. The study of the convergence properties of these estimators

remains a challenge.

Recently, Xu et al. (2015) introduced a new matrix convergence criterion called

normalized consistency. It is closely related to, but different from, the commonly used

spectral norm convergence. Let Σ̂ΣΣp be any estimator of ΣΣΣp. We recall the classical definition

of spectral norm consistency, which is

ρ(Σ̂ΣΣp −ΣΣΣp) = oP(1), (6.1)

where ρ(B) is the spectral radius of a matrix B, which coincides with the operator norm

∥B∥ when B is symmetric positive definite. Meanwhile, let f =
∥∥ΣΣΣp

∥∥
F and f̂ =

∥∥Σ̂ΣΣp
∥∥

F .

Then we say that the estimate Σ̂ΣΣp of ΣΣΣp is normalized consistent if

ρ(Σ̂ΣΣp/ f̂ −ΣΣΣp/ f ) = oP(1). (6.2)

Xu et al. (2015) introduced normalized consistency to assist inferences and hypothesis

testing for high dimensional data. In general, normalized consistency does not imply

spectral norm consistency and vice versa. The relationship between these two types of

convergences was discussed briefly in Xu et al. (2015). Xu et al. (2015) also showed that

the sample covariance matrix, which does not exploit any structural assumptions, can be

normalized consistent under certain conditions. The conditions required are closely related

to the dependence structure of ΣΣΣp. For example, if cov(yi) = ΣΣΣp and the entries of yi are

strongly dependent in the sense that
∥∥ΣΣΣp

∥∥
F ≍ p (which can occur in data from a factor

model, for example), then the normalized consistency of the sample covariance matrix is

satisfied (see Theorem 3.3 from Xu et al. (2015) for details, also Forni et al. (2009) for its

implications for factor models). However, its rate of convergence is still unclear. Also, it

remains an open and interesting question as to whether other state-of-the-art covariance

matrix estimators are normalized consistent.
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Inspired by the research gaps discussed above, it is natural to consider the question of

whether normalized consistency can be explored for the class of non-structured covariance

matrix estimators such as NERCOME (Lam, 2016). Since traditional spectral norm

consistency remains difficult to study for these estimators, if new forms of consistency can

be established, they will provide more solid theoretical guarantees that can be applied to

these estimators. In this chapter, we prove normalized consistency for NERCOME and the

corresponding precision matrix estimator under some mild conditions. Applications for

the normalized consistency of NERCOME are also investigated. However, it should also

be noted that the definition of normalized consistency in (6.2) is intended to normalize

the effect of high dimensionality (which can only be applied when p → ∞), which means

that it does not offer the same desirable properties and applications as spectral norm

consistency or other consistency measure. As a result, normalized consistency is currently

only applicable in specific scenarios, such as aiding in high dimensional hypothesis testing

where Central Limit Theorems may not necessarily apply (Xu et al., 2015).

The rest of this chapter is organized as follows. Section 6.2 briefly reviews the

estimation procedures and properties of NERCOME as an eigenvalue-regularized covariance

matrix estimator. Section 6.3 provides theoretical results for proving normalized consistency

for NERCOME and its precision matrix estimator. Section Section 6.4 presents simulation

experiments to demonstrate the empirical evidence of normalized consistency for NERCOME.

Additionally, it illustrates the performance of NERCOME in a high dimensional hypothesis

test, showcasing an application of normalized consistency.

6.2 A Brief Review of NERCOME

In this section, we briefly review the estimation principles and properties of NERCOME as

proposed by Lam (2016). Let yi ∈Rp, i ∈ [n] be an independent and identically distributed

(i.i.d) sample with mean 0 and the covariance matrix ΣΣΣp = E(yiyT
i ). We assume that

p = pn and p/n → c > 0 as n → ∞. Let Y = (y1, · · · ,yn), and the sample covariance

matrix S = 1
nYYT.

Lam (2016) proposed to utilise the sample splitting idea as introduced by Abadir et al.

(2014), who split the data into two parts, say Y = (Y1,Y2), where Y1 has size p×n1 and

Y2 has size p×n2 with n1 +n2 = n. Define the sample covariance for Yi as

Σ̃ΣΣi =
1
ni

YiYT
i , i = 1,2.
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Let m = n1 be the split location, and Σ̃ΣΣ1 = P1D1PT
1 be the eigenvalue decomposition of Σ̃ΣΣ1,

where P1 is the matrix of eigenvectors of Y1. Then NERCOME can be calculated as

Σ̂ΣΣm = P1diag(PT
1Σ̃ΣΣ2P1)PT

1, (6.3)

with the corresponding precision matrix estimator

Ω̂ΩΩm = Σ̂ΣΣ
−1
m . (6.4)

To understand the idea behind NERCOME, we can consider a class of rotation-

equivalent estimators ΣΣΣ(D) = PDPT, where P is the matrix of eigenvectors for the sample

covariance matrix S, and D is a diagonal matrix. For the optimization problem

min
D

∥∥PDPT −ΣΣΣp
∥∥

F , (6.5)

Ledoit and Péché (2011) showed that the optimal solution is given by D = diag(d1, · · · ,dp),

where di = pT
i ΣΣΣppi, and pi is the i-th column of P. Thus, the “ideal” estimator, also called

the finite-sample optimal estimator by Ledoit and Wolf (2012), can be defined as

Σ̂ΣΣIdeal = Pdiag(PT
ΣΣΣpP)PT. (6.6)

It may be tempting to estimate the ideal estimator by directly using P and S (as an estimate

of ΣΣΣp) from the whole sample set. However, this may lead to poor performance in practice,

since D should not reuse the data that has already been used for calculating P, as they

worsen the estimate of D. That is why we need the splitting of the whole data set and use

independent observations Y1 and Y2 to regularize the eigenvalues.

If we replace P by P1 in (6.5), then similarly, the optimal solution is given by di =

pT
1iΣΣΣpp1i. Lam (2016) actually showed that pT

1iΣ̃ΣΣ2p1i is asymptotically the same as di =

pT
1iΣΣΣpp1i, and proved that Σ̂ΣΣm converge to Σ̂ΣΣIdeal,1 = P1diag(PT

1ΣΣΣpP1)PT
1, the ideal estimator

with P1 replacing P. Moreover, to assess the quality of estimator, Lam (2016) defined the

efficiency loss of an estimator Σ̂ΣΣ as

EL(ΣΣΣp, Σ̂ΣΣ) = 1−
L(ΣΣΣp, Σ̂ΣΣIdeal)

L(ΣΣΣp, Σ̂ΣΣ)
, (6.7)

where L(ΣΣΣp, Σ̂ΣΣ) is a loss function for estimating ΣΣΣp using Σ̂ΣΣ. If EL(ΣΣΣp, Σ̂ΣΣ)≤ 0, it means

that the estimator Σ̂ΣΣ is performing at least as good as the ideal estimator Σ̂ΣΣIdeal in terms
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of the loss function L. They further showed that EL(ΣΣΣp, Σ̂ΣΣm)
a.s.−−→ 0 with respect to the

Frobenius loss when m/n → 1 and n−m → ∞, so that Σ̂ΣΣm is asymptotically as efficient as

the ideal estimator (6.6) in estimating ΣΣΣp.

While using P1 as the matrix of eigenvectors does not fully utilize all the data, as

opposed to using P, the performance of Σ̂ΣΣm can be improved by defining an averaged

estimator that averages over all Σ̂ΣΣm’s calculated with different choices of Y1 and Y2. Recall

that each vector yi in Y is independent of each other and identically distributed. We can

permute the data and form a different data matrix Y( j), with the data split into Y( j)
1 and

Y( j)
2 accordingly. For the j-th permutation, let P1 j and Σ̃ΣΣ

( j)
2 be defined similarly to P1 and

Σ̃ΣΣ2. Then, the corresponding covariance matrix estimator is given by

Σ̂ΣΣ
( j)
m = P1 jdiag(PT

1 jΣ̃ΣΣ
( j)
2 P1 j)PT

1 j.

Suppose we have M permutations of the data, then the final averaged estimator can be

calculated as

Σ̂ΣΣ =
1
M

M

∑
j=1

Σ̂ΣΣ
( j)
m . (6.8)

Lam (2016) showed that Σ̂ΣΣ is also asymptotically as efficient as Σ̂ΣΣIdeal in estimating ΣΣΣp

with respect to the Frobenius loss, with empirically good performance demonstrated in a

variety of settings.

For the precision matrix estimator Ω̂ΩΩm as defined in (6.4), Lam (2016) showed that

it is asymptotically optimal with respect to minimizing the inverse Stein’s loss function

(James and Stein, 1961; Ledoit and Wolf, 2013) for estimating ΩΩΩp. After the averaging

procedure to obtain Σ̂ΣΣ in (6.8), the corresponding precision matrix estimator can be defined

as Ω̂ΩΩ = Σ̂ΣΣ
−1

, and the asymptotic efficiency still holds for Ω̂ΩΩ.

Finally, Lam (2016) also showed that some asymptotic results for NERCOME still

holds even when the data follows a factor model. Thus, we do not need to explicitly

estimate the factor loading matrix, the number of factors, and the unknown factor series, if

factor analysis is not the final goal and estimating the covariance or precision matrix is just

an intermediate step. In such sense, NERCOME can be robust to changes in the structure

of the data. For more details on the theoretical properties and empirical performances of

NERCOME under various model assumptions, please refer to Lam (2016).
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6.3 Normalized Consistency of NERCOME

To provide theoretical guarantees for NERCOME, Lam (2016) demonstrated its asymptotic

efficiency compared to Σ̂ΣΣIdeal in estimating ΣΣΣp with respect to certain loss functions.

However, the efficiency loss defined in (6.7) is still not an ideal measure: it only compares

an estimator Σ̂ΣΣ with the ideal estimator Σ̂ΣΣIdeal as defined in (6.6), which is restricted

to be a rotation-equivalent estimator. The direct distance between Σ̂ΣΣ and ΣΣΣp, usually

measured in terms of matrix norms, is still unknown. The proof of the traditional

spectral norm consistency of covariance matrix estimators, as defined in (6.1), relies

on structural assumptions, which are difficult to apply for NERCOME, a non-structured

estimator. In this section, we establish a new type of matrix convergence criterion called

normalized consistency, as defined in (6.2) (Xu et al., 2015), for NERCOME and the

corresponding precision matrix estimator. The establishment of normalized consistency

provides NERCOME with more theoretical guarantees for application in certain contexts.

We recall some general assumptions of NERCOME (Lam, 2016) as follows:

(A1) Each observation can be written as yi = ΣΣΣ
1/2
p zi for i ∈ [n], where each zi is a p×1

vector of independent and identically distributed random variables zi j. Each zi j has

mean 0 and unit variance, and E|zi j|k ≤ B < ∞ for some constant B and 2 < k ≤ 20.

(A2) The population covariance matrix ΣΣΣp is non-random and of size p× p. Furthermore,∥∥ΣΣΣp
∥∥= O(p1/2).

(A3) Let τn,1 ≥ ·· · ≥ τn,p be the p eigenvalues of ΣΣΣp, with corresponding eigenvectors

vn,1, · · · ,vn,p. Define Hn(τ) = p−1
∑

p
i=1 1τn,i≤τ the empirical distribution function

(e.d.f.) of the population eigenvalues, where 1A is the indicator function of the set A.

We assume Hn(τ) converges to some non-random limit H at every point of continuity

of H.

(A4) The support of H defined above is the union of a finite number of compact intervals

bounded away from zero and infinity. Also, there exists a compact interval in (0,∞)

that contains the support of Hn for each n.

Or, if the data follows a factor model yi = Axi + εεε i, the assumptions are:

(F1) The series {εεε i} has εεε i = ΣΣΣ
1/2
ε ξξξ i, where ξξξ i is a p× 1 vector of independent and

identically distributed random variables ξi j . Each ξi j has mean 0 and unit variance,
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and E|ξi j|k ≤ B < ∞ for some constant B and k ≤ 20. The factor series {xt} has a

constant dimension r, and xt = ΣΣΣ
1/2
x x∗t , where x∗t is a r×1 vector of independent

and identically distributed random variables x∗ti. Also, E|x∗ti|k ≤ B < ∞ for some

constant B and 2 < k ≤ 20.

(F2) The covariance matrix ΣΣΣx = var(xi) is such that
∥∥ΣΣΣx
∥∥ = O(1). The covariance

matrix ΣΣΣε = var(εεε i) also has
∥∥ΣΣΣε

∥∥ = O(1). Both covariance matrices are non-

random. The factor loading matrix A is such that
∥∥A
∥∥2

F = tr(AAT) = O(p).

Note that for ease of presentation, Assumptions (A1) and (F1) here are actually the

Assumptions (A1’) and (F1’) in Lam (2016). Please refer to Lam (2016) for more detailed

explanations of these assumptions. Assumption (F2) with
∥∥A
∥∥2

F = tr(AAT) = O(p) entails

both strong and weak factors as defined Lam and Yao (2012), as the population eigenvalues

of ΣΣΣy diverge with rate O(p). Based on the above assumptions, Lam (2016) derived several

theoretical results for NERCOME. We quote some of these results below, and they will be

utilised to prove normalized consistency.

Lemma 6.1. Let Assumptions (A1) to (A4) be satisfied. Or, if the data follows a factor

model, let Assumptions (F1) and (F2) be satisfied. Suppose p/n1 → c1 > 0 and ∑n≥1 n−3
2 <

∞, then for almost all x ∈ R,

1
p

p

∑
i=1

pT
1iΣ̃ΣΣ2p1i1{λ1i≤x}−

1
p

p

∑
i=1

pT
1iΣΣΣpp1i1{λ1i≤x}

a.s.−−→ 0,

where λ11 ≥ λ12 ≥ ·· · ≥ λ1p are the eigenvalues of Σ̃ΣΣ1. Furthermore, if the split location

m is such that ∑n≥1 p(n−m)−5 < ∞, then

max
1≤i≤p

∣∣∣∣∣pT
1iΣ̃ΣΣ2p1i −pT

1iΣΣΣpp1i

pT
1iΣΣΣpp1i

∣∣∣∣∣ a.s.−−→ 0.

Lemma 6.1 summarizes the results from Theorem 1, Theorem 3 and Lemma 1 from

Lam (2016). Moreover, Lam (2016) demonstrated that 1
p ∑

p
i=1 pT

1iΣΣΣpp1i1{λ1i≤x} converges

to the non-random limit
∫ x
−∞

δ (λ )dF(λ ), where δ (λ ) is the asymptotic nonlinear transform

of pT
i ΣΣΣppi as defined in (2.7) of Lam (2016), and the distribution function F(λ ) is the

non-random limit of the empirical distribution the sample eigenvalues.

Based on the above results, we show normalized consistency for both NERCOME Σ̂ΣΣm

and the precision matrix estimator Ω̂ΩΩm.
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Theorem 6.1. Let all assumptions in Lemma 6.1 be satisfied. Define fs =
∥∥ΣΣΣp

∥∥
F and

f̂s =
∥∥Σ̂ΣΣm

∥∥
F . Then, if

∥∥ΣΣΣp
∥∥ = o(min(p1/4, fs)), the covariance matrix estimator Σ̂ΣΣm

defined in (6.3) satisfies

ρ(Σ̂ΣΣm/ f̂s −ΣΣΣp/ fs) = oP(1). (6.9)

Similarly, let fo =
∥∥ΩΩΩp

∥∥
F and f̂o =

∥∥Ω̂ΩΩm
∥∥

F . If
∥∥ΩΩΩp

∥∥ = o(min(p1/4, fo)), then the

corresponding precision matrix estimator Ω̂ΩΩm, as defined in (6.4), satisfies

ρ(Ω̂ΩΩm/ f̂o −ΩΩΩp/ fo) = oP(1). (6.10)

Theorem 6.1 asserts that normalized consistency for NERCOME is achieved when∥∥ΣΣΣp
∥∥= o(min(p1/4, fs)). Note that the rate requirement

∥∥ΣΣΣp
∥∥= o(p1/4) is more relaxed

than Theorem 5 of Lam (2016), which shows asymptotic efficiency of NERCOME relative

to the ideal estimator Σ̂ΣΣIdeal under the assumption that
∥∥ΣΣΣp

∥∥ = O(1). However, if the

data follows a factor model, then the rate
∥∥ΣΣΣp

∥∥ = o(p1/4) correspond to a very weak

factor, which excludes most practical applications of factor models. In fact, Theorem 5 of

Lam (2016) excludes the data from a factor model as well. Hence, we recommend using

NERCOME in general scenarios when a factor model is not a prior belief, though we

also show in Section 6.4 that the empirical performance of NERCOME is robust to such

data structure. On the other hand, the condition
∥∥ΩΩΩp

∥∥= o(p1/4) for achieving normalized

consistency of the precision matrix estimator Ω̂ΩΩm is mild, since the largest eigenvalue of a

precision matrix typically remains bounded, even in a factor model with strong factors.

Proof of Theorem 6.1 From the proof of Theorem 3.3 of Xu et al. (2015), for a matrix

ΣΣΣ (which can be the covariance matrix ΣΣΣp or the precision matrix ΩΩΩp in our case), let Σ̂ΣΣ be

an estimate of ΣΣΣ. If the following condition is satisfied:

tr(Σ̂ΣΣ
4
)/ f̂ 4 = oP(1), (6.11)

where f̂ =
∥∥Σ̂ΣΣ
∥∥

F , then normalized consistency holds if and only if ρ(ΣΣΣ) = o( f ), where

f =
∥∥ΣΣΣ
∥∥

F . Thus, we only need to prove that condition (6.11) holds for Σ̂ΣΣm and Ω̂ΩΩm.

For the covariance matrix estimator Σ̂ΣΣm, the left hand side of (6.11) can be written as

tr[(Σ̂ΣΣm)
4]

tr2(Σ̂ΣΣm)2
=

1
p ∑

p
i=1(p

T
1iΣ̃ΣΣ2p1i)

4

1
p

(
∑

p
i=1(p

T
1iΣ̃ΣΣ2p1i)2

)2 . (6.12)
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We deal with the numerator and denominator of (6.12) separately. For the numerator, note

that

1
p

p

∑
i=1

(pT
1iΣ̃ΣΣ2p1i)

4 ≤ 8

(
1
p

p

∑
i=1

(pT
1iΣ̃ΣΣ2p1i −pT

1iΣΣΣpp1i)
4 +

1
p

p

∑
i=1

(pT
1iΣΣΣpp1i)

4

)
.

For the first term on the right hand side,

1
p

p

∑
i=1

(pT
1iΣ̃ΣΣ2p1i −pT

1iΣΣΣpp1i)
4 ≤

(
max

1≤i≤p

∣∣∣∣∣pT
1iΣ̃ΣΣ2p1i −pT

1iΣΣΣpp1i

pT
1iΣΣΣpp1i

∣∣∣∣∣
)4

. max
1≤i≤p

(pT
1iΣΣΣpp1i)

4

= oP(1)∗o(p)

= oP(p),

where the second line follows from Lemma 6.1. For the second term,

1
p

p

∑
i=1

(pT
1iΣΣΣpp1i)

4 ≤
∥∥ΣΣΣp

∥∥4
= o(p).

Thus, 1
p ∑

p
i=1(p

T
1iΣ̃ΣΣ2p1i)

4 = oP(p), which gives the upper bound of the numerator of (6.12).

For the denominator, note that by Arithmetic-Quadratic Means inequality,

p

∑
i=1

(pT
1iΣ̃ΣΣ2p1i)

2 ≥ p

(
1
p

p

∑
i=1

pT
1iΣ̃ΣΣ2p1i

)2

.

Then, by Lemma 6.1, we have that 1
p ∑

p
i=1 pT

1iΣ̃ΣΣ2p1i converges to 1
p ∑

p
i=1 pT

1iΣΣΣpp1i almost

surely, which again converges to a non-random limit of a non-zero constant M. Thus,

1
p

(
p

∑
i=1

(pT
1iΣ̃ΣΣ2p1i)

2

)2

≥ 1
p

p

(
1
p

p

∑
i=1

pT
1iΣ̃ΣΣ2p1i

)2
2

= p

(
1
p

p

∑
i=1

pT
1iΣ̃ΣΣ2p1i

)4

→ pM4,

which gives an lower bound for the numerator of (6.12). Therefore, we finally have that

tr[(Σ̂ΣΣm)
4]

tr2(Σ̂ΣΣm)2
=

1
p ∑

p
i=1(p

T
1iΣ̃ΣΣ2p1i)

4

1
p

(
∑

p
i=1(p

T
1iΣ̃ΣΣ2p1i)2

)2 ≤ oP(p)
pM4 = oP(1),

which implies normalized consistency of Σ̂ΣΣm iff
∥∥ΣΣΣp

∥∥ = o( fs). This proves (6.9), the

normalized consistency of Σ̂ΣΣm. To show normalized consistency of the precision matrix
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estimator, recall that

Ω̂ΩΩm = Σ̂ΣΣ
−1
m = P1

(
diag(PT

1Σ̃ΣΣ2P1)
)−1

PT
1.

Thus, we want to check condition (6.11) for Ω̂ΩΩm by showing that

tr[(Ω̂ΩΩm)
4]

tr2(Ω̂ΩΩm)2
=

1
p ∑

p
i=1(p

T
1iΣ̃ΣΣ2p1i)

−4

1
p

(
∑

p
i=1(p

T
1iΣ̃ΣΣ2p1i)−2

)2 = oP(1).

Similarly, for the numerator, we have

1
p

p

∑
i=1

(
1

pT
1iΣ̃ΣΣ2p1i

)4 ≤

(
max

1≤i≤p

∣∣∣∣∣pT
1iΣΣΣpp1i

pT
1iΣ̃ΣΣ2p1i

∣∣∣∣∣
)4

. max
1≤i≤p

(
1

pT
1iΣΣΣpp1i

)4

≤

(
max

1≤i≤p

∣∣∣∣∣pT
1iΣΣΣpp1i

pT
1iΣ̃ΣΣ2p1i

∣∣∣∣∣
)4

.
∥∥ΩΩΩp

∥∥4

= oP(p),

since max1≤i≤p

∣∣∣∣ pT
1iΣΣΣp p1i

pT
1iΣ̃ΣΣ2 p1i

∣∣∣∣ is bounded. For the denominator, by the Harmonic-Arithmetic-

Quadratic Means inequality,

1
p

p

∑
i=1

(
1

pT
1iΣ̃ΣΣ2p1i

)2

≥

(
1
p

p

∑
i=1

(
1

pT
1iΣ̃ΣΣ2p1i

))2

≥

(
p

∑
p
i=1 pT

1iΣ̃ΣΣ2p1i

)2

=

(
1

1
p ∑

p
i=1 pT

1iΣ̃ΣΣ2p1i

)2

→ 1
M2 ,

where M is a constant. Thus, the denominator

1
p

(
p

∑
i=1

(pT
1iΣ̃ΣΣ2p1i)

−2

)2

≥ 1
p

p

(
1

1
p ∑

p
i=1 pT

1iΣ̃ΣΣ2p1i

)2
2

= p

(
1

1
p ∑

p
i=1 pT

1iΣ̃ΣΣ2p1i

)4

→ p
M4 .

Therefore,

tr[(Ω̂ΩΩm)
4]

tr2(Ω̂ΩΩm)2
=

1
p ∑

p
i=1(p

T
1iΣ̃ΣΣ2p1i)

−4

1
p

(
∑

p
i=1(p

T
1iΣ̃ΣΣ2p1i)−2

)2 ≤ oP(p)
p

M4

= oP(1),



152 A New Form of Consistency for Large Covariance Matrix Estimators

which implies normalized consistency of Ω̂ΩΩm iff
∥∥ΩΩΩp

∥∥= o( fo). This proves (6.10), the

normalized consistency of Ω̂ΩΩm, and completes the proof of Theorem 6.1. □

6.4 Simulation Experiments

In this section, we conduct numerical studies to examine the empirical evidence of

normalized consistency for NERCOME under various data structures. Additionally, we

explore an application of normalized consistency in high dimensional hypothesis testing

and demonstrate the effectiveness and superiority of using NERCOME for the test.

6.4.1 Simulation settings

To investigate the performance of NERCOME under various covariance structures, we

create five profiles of covariance matrices as follows:

(i) ΣΣΣp = Ip.

(ii) The data comes from the factor model yi = Axi + εεε i, where A has size p × 3

and elements independently generated from the N(0,22) distribution. Moreover,

xi
iid∼ N(0,2Ir), and εεε i

iid∼ N(0,Ip).

(iii) Generate ΣΣΣp via the Cholesky decomposition ΣΣΣp = SST, where S is a p× p random

matrix with elements independently drawn from the Uniform[0,1] distribution. Next,

standardize ΣΣΣp into a correlation matrix so that the diagonal elements are all equal

to 1

(iv) ΣΣΣp = QDQT. The orthogonal matrix Q is randomly generated each time, and D is

diagonal, with 40% of its values equal to 3, and 60% equal to 7.

(v) Identical to (iii), except that the elements of matrix S are independently drawn from

the Uniform[−1,1] distribution.

In each profile, we generate yi, i ∈ [n] as i.i.d. standard normal, i.e. yi
iid∼ N(0,ΣΣΣp).

The above five profiles can be categorized into three groups based on the dependence

structure of yi. Profile (i) represents the “no dependence” setting, as the entries of yi are

mutually independent. Profiles (ii) and (iii) represent the “strong dependence” setting,

where both profiles satisfy
∥∥ΣΣΣp

∥∥≍ ∥∥ΣΣΣp
∥∥

F ≍ p. This condition corresponds to condition
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(i) of Theorem 3.3 in Xu et al. (2015), indicating that the sample covariance matrix can

achieve normalized consistency. On the other hand, profiles (iv) and (v) represent the

“weak dependence” setting, where both profiles satisfy
∥∥ΣΣΣp

∥∥≍ 1 and
∥∥ΣΣΣp

∥∥
F ≍ p0.5. We

have proven that NERCOME satisfies normalized consistency in these profiles.

The five profiles are simulated 100 times under all combinations of n= 50,100,200,500

and p= 50,100,200. We consider the split location m= 0.8n when calculating NERCOME.

Let ΩΩΩp = ΣΣΣ
−1
p be the true precision matrix, and fs and fo be the Frobenius norms of ΣΣΣp

and ΩΩΩp, respectively. We denote the NERCOME estimates of the covariance matrix and

precision matrix as Σ̂ΣΣm and Ω̂ΩΩm, respectively, and their corresponding Frobenius norms as

f̂s and f̂o, respectively. For each simulation, ρ(Σ̂ΣΣm/ f̂s −ΣΣΣs/ fs) and ρ(Ω̂ΩΩm/ f̂o −ΩΩΩp/ fo)

are computed to assess the normalized consistency of the covariance and precision matrix

estimates. Tables 6.1 through 6.5 report the averages of these quantities over 100 repetitions

for each profile.

From the results, both ρ(Σ̂ΣΣm/ f̂s − ΣΣΣp/ fs) and ρ(Ω̂ΩΩm/ f̂o − ΩΩΩp/ fo) converge to 0

for all profiles as n (or p) increases. Thus, empirical evidence shows that normalized

consistency holds for NERCOME in all the profiles we considered. The empirical rate of

convergence may depend on the profile setting. In profile (i), where all entries of yi are

mutually independent, ρ(Σ̂ΣΣm/ f̂s −ΣΣΣp/ fs) and ρ(Ω̂ΩΩm/ f̂o −ΩΩΩp/ fo) converge very rapidly

with relatively small n and p. The convergence rate may be slower when ΣΣΣp are generated

from more complicated structures, and it may vary for Σ̂ΣΣm and Ω̂ΩΩm as well. However,

normalized consistency still holds in general. Note that although we have not proven the

normalized consistency of NERCOME when
∥∥ΣΣΣp

∥∥≍ ∥∥ΣΣΣp
∥∥

F as in profiles (ii) and (iii),

empirical studies show that NERCOME still exhibits normalized consistency in this case.

ρ(Σ̂ΣΣm/ f̂s −ΣΣΣp/ fs) ρ(Ω̂ΩΩm/ f̂o −ΩΩΩp/ fo)
n p = 50 p = 100 p = 200 n p = 50 p = 100 p = 200

50 0.038 0.028 0.021 50 0.038 0.024 0.016
100 0.028 0.019 0.014 100 0.029 0.018 0.012
200 0.019 0.015 0.009 200 0.021 0.014 0.009
500 0.013 0.009 0.006 500 0.014 0.009 0.006

Table 6.1 Profile (i). Mean of ρ(Σ̂ΣΣm/ f̂s −ΣΣΣp/ fs) and ρ(Ω̂ΩΩm/ f̂o −ΩΩΩp/ fo) under different
dimensions n and p.
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ρ(Σ̂ΣΣm/ f̂s −ΣΣΣp/ fs) ρ(Ω̂ΩΩm/ f̂o −ΩΩΩp/ fo)
n p = 50 p = 100 p = 200 n p = 50 p = 100 p = 200

50 0.154 0.141 0.141 50 0.043 0.029 0.025
100 0.111 0.109 0.106 100 0.028 0.019 0.014
200 0.086 0.085 0.081 200 0.022 0.015 0.009
500 0.058 0.056 0.058 500 0.014 0.010 0.006

Table 6.2 Profile (ii). Mean of ρ(Σ̂ΣΣm/ f̂s −ΣΣΣp/ fs) and ρ(Ω̂ΩΩm/ f̂o −ΩΩΩp/ fo) under different
dimensions n and p.

ρ(Σ̂ΣΣm/ f̂s −ΣΣΣp/ fs) ρ(Ω̂ΩΩm/ f̂o −ΩΩΩp/ fo)
n p = 50 p = 100 p = 200 n p = 50 p = 100 p = 200

50 0.082 0.082 0.082 50 0.627 0.839 0.899
100 0.059 0.059 0.059 100 0.077 0.730 0.883
200 0.042 0.041 0.041 200 0.046 0.050 0.811
500 0.026 0.026 0.026 500 0.018 0.026 0.030

Table 6.3 Profile (iii). Mean of ρ(Σ̂ΣΣm/ f̂s −ΣΣΣp/ fs) and ρ(Ω̂ΩΩm/ f̂o −ΩΩΩp/ fo) under different
dimensions n and p.

ρ(Σ̂ΣΣm/ f̂s −ΣΣΣp/ fs) ρ(Ω̂ΩΩm/ f̂o −ΩΩΩp/ fo)
n p = 50 p = 100 p = 200 n p = 50 p = 100 p = 200

50 0.086 0.064 0.046 50 0.089 0.057 0.038
100 0.079 0.057 0.041 100 0.090 0.058 0.037
200 0.072 0.054 0.039 200 0.083 0.060 0.039
500 0.053 0.049 0.038 500 0.061 0.056 0.041

Table 6.4 Profile (iv). Mean of ρ(Σ̂ΣΣm/ f̂s −ΣΣΣp/ fs) and ρ(Ω̂ΩΩm/ f̂o −ΩΩΩp/ fo) under different
dimensions n and p.

ρ(Σ̂ΣΣm/ f̂s −ΣΣΣp/ fs) ρ(Ω̂ΩΩm/ f̂o −ΩΩΩp/ fo)
n p = 50 p = 100 p = 200 n p = 50 p = 100 p = 200

50 0.179 0.151 0.117 50 0.651 0.857 0.899
100 0.149 0.130 0.108 100 0.081 0.747 0.892
200 0.120 0.110 0.094 200 0.038 0.046 0.827
500 0.084 0.081 0.073 500 0.026 0.028 0.036

Table 6.5 Profile (v). Mean of ρ(Σ̂ΣΣm/ f̂s −ΣΣΣp/ fs) and ρ(Ω̂ΩΩm/ f̂o −ΩΩΩp/ fo) under different
dimensions n and p.
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6.4.2 A high dimensional hypothesis test

We consider an application of normalized consistency for NERCOME, which is a high

dimensional hypothesis test proposed by Xu et al. (2015). They developed an asymptotic

theory for the L2 norms of sample mean vectors in high dimensional data. An invariance

principle for the L2 norms is derived, and normalized consistency is proposed to guarantee

the validity of resampling procedures for computing the cutoff value of a high dimensional

hypothesis test. Here, we utilize NERCOME as an estimate of the covariance matrix and

illustrate its superior performance compared to the sample covariance matrix in various

settings.

Consider x1, ...,xn as independent and identically distributed (i.i.d.) observations with

a mean µµµ and a covariance matrix ΣΣΣp. To test the hypothesis H0 : µµµ = µµµ0 = 0, Xu et al.

(2015) proposed the test statistic nx̄T
nx̄n, where x̄n = ∑

n
i=1 xi/n. They demonstrated that

its distribution is asymptotically close to that of yTy, where y ∼ N(0,ΣΣΣp) is the Gaussian

analogue of x. Specifically, define

Rn =
n|x̄n|22 − f1

f
,

where f1 = tr(ΣΣΣp), and f =
∥∥ΣΣΣp

∥∥
F . Let

V =
p

∑
j=1

λ j

f
(η j −1),

where λ j’s are the eigenvalues of ΣΣΣp, and η j’s are i.i.d. χ2
1 random variables. In their

Theorem 2.2, Xu et al. (2015) showed that

sup
t
|P(Rn ≤ t)−P(V ≤ t)| → 0. (6.13)

Thus, given the significance level α ∈ (0,1), let u1−α be the (1−α)th quantile of V , namely

P(V ≤ u1−α) = 1−α . Then H0 is rejected if Rn > u1−α . In (6.13), if ΣΣΣp is known, then

the distribution of V can be easily computed, either numerically or analytically. However,

ΣΣΣp is usually unknown in most applications. In such cases, Xu et al. (2015) showed that

if we have a normalized consistent estimated covariance matrix Σ̂ΣΣ with corresponding

eigenvalues λ̂ j and Frobenious norm f̂ , then

max
j≤p

| f−1
λ j − f̂−1

λ̂ j|
p−→ 0.
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Thus, with probability converging to 1, we have

sup
t
|P(V ≤ t)−P(V̂ ≤ t)| → 0, (6.14)

where V̂ = ∑
p
j=1

λ̂ j

f̂
(η j −1). With (6.14), the distribution of V can be approximated by that

of V̂ via simulations, and the critical values of testing H0 can be computed accordingly.

With normalized consistency established for NERCOME, it offers theoretical assurances

for its utilization as an estimate of the covariance matrix when simulating V̂ . In the

following, we conduct simulations to compare the performances of using NERCOME and

the sample covariance matrix in the aforementioned high dimensional hypothesis test.

To investigate various data structures, we generate five profiles of covariance matrices

as defined in Section 6.4.1. To test the performance of NERCOME and the sample

covariance matrix under heavy-tailed distributions, we consider two distributions for xi,

i ∈ [n], for each profile:

(1) i.i.d. standard normal, i.e. xi
iid∼ N(0,ΣΣΣp).

(2) i.i.d. t5, i.e. xi
iid∼ t5(0,ΣΣΣp).

Thus, there are totally ten profiles considered. For each profile, we let p = 50 and

n = 50 and generate x1, · · · ,xn accordingly. We then calculate NERCOME Σ̂ΣΣm and the

sample covariance matrix Σ̂ΣΣs =
1
n ∑

n
i=1 xixT

i . Next, we simulate the distribution of V̂ based

on both Σ̂ΣΣm and Σ̂ΣΣs, respectively. We compare the distribution of V̂ with V and R̂n, where

V is simulated based on the true covariance matrix ΣΣΣp, and R̂n =
n|xn|22− f̂1

f † , where f † is the

ratio consistent estimate of f , namely f †/ f −1 = oP(1) (Bai and Saranadasa, 1996; Chen

and Qin, 2010; Xu et al., 2015). In Figure 6.1 to 6.5, we draw QQ-plots to measure the

closeness of distributions between V and V̂ , as well as R̂n and V̂ , under different profiles

of covariance matrices. We expect a “good” normalized consistent covariance matrix

estimator should give V̂ that closely approximates V .

From Figure 6.1 to 6.5, when the data are normally distributed, in all profiles, both

NERCOME and the sample covariance matrix provide good estimates of V by V̂ . Also,

R̂n converges to V̂ quickly. However, when the data are heavy-tailed distributed, differences

occur among different profiles. In profiles (i), (iv), and (v), where
∥∥ΣΣΣp

∥∥= o( f ), NERCOME

provides better approximations of V by V̂ compared to the sample covariance matrix (see,

for example, Figures 6.1(c), 6.4(c), 6.5(c)); and R̂n converges to V̂ at a slower rate. It’s

worth noting that we have proven the normalized consistency of NERCOME in these
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(a) V vs V̂ : Normal (b) R̂n vs V̂ : Normal

(c) V vs V̂ : t5 (d) R̂n vs V̂ : t5

Fig. 6.1 Profile (i). (a) QQ-plot of V v.s. V̂ , normally distributed data; (b) QQ-plot of R̂n
v.s. V̂ , normally distributed data; (c) QQ-plot of V v.s. V̂ , t5 distributed data; (b) QQ-plot
of R̂n v.s. V̂ , t5 distributed data. Red: NERCOME; blue: sample covariance matrix.
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(a) V vs V̂ : Normal (b) R̂n vs V̂ : Normal

(c) V vs V̂ : t5 (d) R̂n vs V̂ : t5

Fig. 6.2 Profile (ii). (a) QQ-plot of V v.s. V̂ , normally distributed data; (b) QQ-plot of R̂n
v.s. V̂ , normally distributed data; (c) QQ-plot of V v.s. V̂ , t5 distributed data; (d) QQ-plot
of R̂n v.s. V̂ , t5 distributed data. Red: NERCOME; blue: sample covariance matrix.
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(a) V vs V̂ : Normal (b) R̂n vs V̂ : Normal

(c) V vs V̂ : t5 (d) R̂n vs V̂ : t5

Fig. 6.3 Profile (iii). (a) QQ-plot of V v.s. V̂ , normally distributed data; (b) QQ-plot of R̂n
v.s. V̂ , normally distributed data; (c) QQ-plot of V v.s. V̂ , t5 distributed data; (d) QQ-plot
of R̂n v.s. V̂ , t5 distributed data. Red: NERCOME; blue: sample covariance matrix.
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(a) V vs V̂ : Normal (b) R̂n vs V̂ : Normal

(c) V vs V̂ : t5 (d) R̂n vs V̂ : t5

Fig. 6.4 Profile (iv). (a) QQ-plot of V v.s. V̂ , normally distributed data; (b) QQ-plot of R̂n
v.s. V̂ , normally distributed data; (c) QQ-plot of V v.s. V̂ , t5 distributed data; (d) QQ-plot
of R̂n v.s. V̂ , t5 distributed data. Red: NERCOME; blue: sample covariance matrix.
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(a) V vs V̂ : Normal (b) R̂n vs V̂ : Normal

(c) V vs V̂ : t5 (d) R̂n vs V̂ : t5

Fig. 6.5 Profile (v). (a) QQ-plot of V v.s. V̂ , normally distributed data; (b) QQ-plot of R̂n
v.s. V̂ , normally distributed data; (c) QQ-plot of V v.s. V̂ , t5 distributed data; (d) QQ-plot
of R̂n v.s. V̂ , t5 distributed data. Red: NERCOME; blue: sample covariance matrix.
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cases, whereas the sample covariance matrix may not exhibit normalized consistency (Xu

et al., 2015). Thus, the empirical studies align with our theoretical results. In profiles

(ii) and (iii), where
∥∥ΣΣΣp

∥∥≍ f , both NERCOME and the sample covariance matrix yield

good estimators of V , and R̂n converges to V̂ quickly. Although we have not proven the

normalized consistency of NERCOME in profile (ii) and (iii), simulation studies show that

NERCOME also performs well in this case.

The empirical studies demonstrate that, in general, using NERCOME can provide better

approximations of V compared to using the sample covariance matrix (Xu et al., 2015),

especially when
∥∥ΣΣΣp

∥∥= o( f ) and the data are heavy-tailed distributed. This suggests that

the hypothesis testing procedure proposed by Xu et al. (2015) should be more accurate if

NERCOME is used to approximate the critical values.
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