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Abstract

This thesis studies the problem of detecting multiple change-points of the process with

a piecewise-constant signal plus dependent noise, and analysing lead-lag relationships

between nonstationary time series.

Motivated by the demand of long-run variance (LRV) in extending the application

of existing change-point detection (CPD) approaches proposed for independent time

series, the first part of the thesis introduces novel wavelet-based consistent LRV es-

timators to quantify the level of noise in mean nonstationary processes. In our pro-

posed estimators, a particular blend of wavelets and well-suited thresholds make our

methods lie somewhere in between the two broad classes of LRV estimators: residual-

and difference-based estimators. Specifically, they bypass the difficulty in the pre-

estimation of signals and can be robust to potential outliers that largely impact the

performance many difference-based estimators. Several asymptotic properties of our

estimators are proved, and their performance are illustrated through comparative sim-

ulation studies.

Secondly, we study the aspects of model selection for nonstationary time series with

level change. In particular, we explore the possible extensions of the Narrowest-Over-

Threshold (NOT) detection algorithm, hoping that it can show better performance for

serially correlated data. Our attempts mainly consist of three parts and we provide

more detailed discussion of the last two, including data-preprocessing and the modifica-

tion of the strengthened Schwarz Information Criterion (sSIC) applied in NOT solution
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path algorithm. Many simulations are conducted to demonstrate the practicability of

our ideas.

Lastly, motivated by the dynamics of COVID-19 datasets, our interest shifts towards in-

vestigating lead-lag relationships between nonstationary time series. Relying the “scale-

space” viewpoint employed in the SIgnificant ZERo crossings of derivatives (SiZer)

map, we introduce an exploratory approach, Multi-scale Lead Lag Heatmap (MLLH),

for providing an broad view of (possible) significant relations between two time series,

which may serve as the first step for further lead-lag or causal analyses. Starting from

simple examples, we develop and describe several heatmaps that display significant

features of simulated bi-variate data over both locations and scales. Finally we assess

the performance of MLLH on real-world COVID-19 data examples.
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Chapter 1

Introduction

The problem of detecting and estimating abrupt change-points in the structural fea-

tures of time series has been of interest to statisticians over many fields such as finance,

economics and medicine for a long time. And this issue has been extensively investi-

gated under the particular assumption of independent noise, see e.g. Yao (1988), Yao

and Au (1989), Lee (1995), Vostrikova (1981) and Venkatraman (1992) for some early

references for detection on mean shifts. Since the independence assumption is quite

restrictive from a practical viewpoint, the focus, more recently, has been distinguish-

ing change-points from the natural fluctuations in serial correlated processes, see e.g.

Lavielle and Moulines (2000), Davis et al. (2006), Chakar et al. (2017) and Cho and

Kirch (2022), or Aue and Horváth (2013) for an overview. In Chapter 2, we provide

more reviews on the topics of change-point detection and estimation. The basic con-

cepts of time series analysis are given in Section 2.1, and Section 2.2 introduces more

methodologies especially developed for sequences with piecewise-constant mean.

For serially dependent data, one particular line of research is to make a suitable ex-

tension on the applicability of the existing approaches proposed for independent data.

22
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And hence the estimation of long-run variance (LRV) can be particularly useful for

overcoming this issue by quantifying the level of noise in applications with correlated

time series, see e.g. Tecuapetla-Gómez and Munk (2017), Khismatullina and Vogt

(2020) and Dette et al. (2019). This task becomes more challenging when the signal is

discontinuous due to the difficulty arising from the pre-estimation of the signals, which

is the core of residual-based LRV estimators. On the other hand, existing difference-

based estimators can circumvent this notoriously difficult problem but can often be

quite sensitive to the choice of the smoothing parameter, see formula (4.3) in Khis-

matullina and Vogt (2020) as an example. To tackle this issue, Chapter 3 proposes

several asymptotically unbiased and consistent LRV estimators based on wavelets and

the related idea of wavelet shrinkage. To eliminate the signals and better estimate

the error process, the two stage procedure first conducts a wavelet transformation to

remove the most of the piecewise-constant signals in series, and then thresholding is

utilised to remove the remaining “outliers” containing more than noise. The theoretical

results demonstrate the asymptotic properties of our robust estimators, and their good

practical performances are illustrated in an extensive comparative simulation study as

well.

Chapter 4 is motivated by the consideration whether LRV can be utilised to enhance the

performance of Narrowest-Over-Threshold (NOT) change-point detection algorithm for

dependent data. We provide an overall discussion on how NOT can be extended to

time series produced by piecewise-constant signal and serial correlated error process.

Starting from the threshold-based NOT algorithm, we assess the practicability of build-

ing the threshold proportional to the new LRV estimator. Due to the possible failure

of finding the optimal threshold, Baranowski et al. (2019) produced the NOT solution

path algorithm to allow for the automatic selection of threshold and the corresponding

best candidate model via minimising the strengthened Schwarz Information Criterion.

Therefore, we secondly investigate the potential development of this new algorithm,

and begin with studying the two practical data preprocessing methods introduced to
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reduce the dependence of data before employing NOT, see Section 4 in Baranowski

et al. (2019). Furthermore, we explore the possible usefulness of extension via chang-

ing the measure of fit or penalty in sSIC. Simulations show the performance of our

attempts over a variety of series with different number and locations of change-points

in mean shifts plus dependent error processes.

In Chapter 5, we conduct an exploratory analysis on lead-lag relationships between

bi-variate nonstationary time series. In the spirit of “SIgnificant ZERo crossings of

derivatives” (SiZer) (Chaudhuri and Marron, 1999), our approach is developed on the

scale-space viewpoint, with the aim of eliminating the requirement of choosing an op-

timal bandwidth by simultaneously studying a broad range of scales (bandwidths).

Meanwhile, we construct several multi-scale lead-lag heatmaps to help graphically dis-

play the significance of (possible) relations. To make the model simpler, we avoid the

problem of finding possible time lags by directly drawing inference from data at original

time locations, and hence it can provide more accurate information for dataset knowing

the direction of lead-lag relations. In the first part of this chapter, we present many

simulated examples and provide detailed descriptions of the obtained heatmaps. Ad-

ditional real-world examples of COVID-19 curves (Mathieu et al., 2020) are analysed

in the remainder of the chapter.

Finally, Chapter 6 provides a brief conclusion of the contributions and discusses possible

directions for future research.



Chapter 2

Literature Review

This chapter offers a comprehensive review of the literature in the two domains of statis-

tics explored within this thesis: time series analysis and lead-lag relationships. And we

shall attach particular importance to asymptotic estimation of long-run variance and

change-point detection in time series.

2.1 Time series analysis

2.1.1 Introduction

The term time series generally refers to stochastic processes that consist of observations

collected sequentially over time. A stochastic process is a family of random variables

{Xt, t ∈ T}, where T ̸= ∅ is an index set. Usually, a realisation of {Xt, t ∈ T} is

also considered as a time series in practice. For discrete time series analysis, the index

set T is usually chosen to be the integers Z, the non-negative integers N, the positive

integers Z+ or the commonly-used set T = {1, 2, . . . , n}. Unlike regression analysis for

25
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independent data, time series analysis aims to solve the statistical problems resulted

from the time correlations of adjacent observations.

To capture the time correlations, we commonly analyse and utilise the moments of a

time series, especially the first and the second order moments. The first moment, i.e.

the mean function, is given by µt = E(Xt), and together with the second moment it

gives us the autocovariance function (ACVF), defined as

γt(τ) = Cov(Xt, Xt+τ ) = E[(Xt − µt)(Xt+τ − µt+τ )]

and the autocorrelation function (ACF) is defined as

ρt(τ) =
γt(τ)√

Var(Xt)Var(Xt+τ )
.

These two functions can display the degree of linear dependence between two points

on the same time series. The degree of persistence in one series can be reflected in the

long-lasting large value of γt(τ), which holds even for large τ . Meanwhile, this series

will generally fluctuate if the large γt(τ) is negative. On the other hand, the condition

γt(τ) = 0 tells us that the two time points Xt and Xt+τ can only be non-linearly

correlated.

Imposing assumptions on the dependence or distribution of a time series is necessary

for utilising some apparent features to describe the data. The idea of stationarity

forms the basis of many statistical procedures employed in existing literature. A time

series {Xt, t ∈ T} can be defined as strictly stationary if the joint distribution of

(Xt1 , Xt2 , . . . , Xth) is the same as that of (Xt1+τ , . . . , Xth+τ ) for all t1, . . . , th ∈ T and

τ such that t1 + τ, . . . , th + τ ∈ T . In particular, when taking h = 1, 2, we can know

that mean and autocovariance functions are time-invariant and the latter one depends

solely on the time lag τ .
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Indeed, verifying properties for a given time series can be challenging, especially when

the underlying distribution of the series is complex, i.e. it is often difficult to estimate

numerous model parameters from the available data. Therefore, strict stationarity is

often too restrictive in practice and so weak stationarity, or second-order stationarity,

is introduced instead. A time series is defined as weakly stationary when the mean

E(Xt) = µ < ∞, Var(Xt) < ∞ and the autocovariance function γt(τ) depends on the

time location only through the difference τ , i.e. γt(τ) = γ(τ).

For time series analysis and forecasting, white noise process, a sequence of uncorrelated

random variables with constant mean, is one of the most fundamental building com-

ponents of complex time series data. Mathematically speaking, a white noise process

{Xi} satisfies E(Xi) = µ < ∞ and γ(τ) = 0 for τ ̸= 0, i.e. Xi ∼ WN(µ, σ2). In

the next section, we shall talk about the definition of Autoregressive Moving Average

(ARMA) processes, which can be represented as a linear combination of white noise

time series variables.

2.1.2 Autoregressive Moving Average (ARMA) processes

In statistical analysis, the ARMA process, a widely used model, offers an explicit

representation of weakly stationary stochastic processes through two polynomials for

the AR and the MA parts respectively. This process can be applied to forecast the

observation at time t + 1 based on the recorded historical data (Xt, Xt−1, . . . ). The

notation ARMA(p, q) refers to an ARMA model with p autoregressive and q moving-

average terms, and for the error process Xt, it is defined as

Xt −
p∑

j=1

ϕjXt−j = ϵt +

q∑
l=1

θlϵt−l (2.1.1)
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where ϕj and θl are all constants with ϕp ̸= 0 and θq ̸= 0, and the ϵt are independent,

identically distributed (iid) zero-mean random variables, which are often assumed to

be normally distributed. A stationary ARMA(p, q) model can have non-zero mean µ if

Xt = α +

p∑
j=1

ϕjXt−j + ϵt +

q∑
l=1

θlϵt−l (2.1.2)

with α = µ/(1 −
∑p

j=1 ϕj). Let Θ(B) and Φ(B) denote the moving average operator

and autoregressive operator respectively, which are defined as

Θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q

Φ(B) = 1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p
(2.1.3)

where B is a backward shift operator giving BsXt = Xt−s. And hence the ARMA(p, q)

model can also be represented as

Φ(B)Xt = Θ(B)ϵt. (2.1.4)

An ARMA(p, q) process is weakly stationary if the corresponding AR characteristic

polynomial

Φ(z) = 1− ϕ1z − ϕ2z
2 − · · · − ϕpz

p (2.1.5)

has no complex roots inside the unit circle or on its boundary. Any process with an

MA(∞) representation with absolute convergence of the sum of its coefficients can be

considered as weak stationarity as well.

2.2 Nonstationary Time Series

Nonstationarity in time series can arise in different aspects, including shifts in the

mean, fluctuations in the variance, changes in both aspects, shifts in the autocorrelation
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function, or even transformations in the entire joint distribution. A time series can also

possess more than one nonstationary behaviours.

When dealing with nonstationary data, there exist scenarios where it is possible to

interpret the nonstationarity as smooth transitions. In such cases, the underlying

trend or pattern in the data changes gradually over time rather than experiencing

abrupt changes. For example, the house prices in the UK can be modelled as having a

smoothly varying trend, see Figure 2.1. On the other hand, it is also natural to model

time series in the way of containing abrupt change-points in the underlying patterns.

This presents a substantial challenge and leads to extensive investigations even in recent

years within various fields such as finance (Aminikhanghahi and Cook, 2017; Habibi,

2021; Kim et al., 2022), environment (Alyousifi et al., 2022; Getahun et al., 2021; He

et al., 2022; Shi et al., 2022), medical sciences (Malladi et al., 2013; Liu et al., 2018;

Chen et al., 2019; Ondrus et al., 2021), and engineering (Daly et al., 2020; Kamalabad

et al., 2023).

Figure 2.1: Monthly house price index (HPI) recorded from 1995-01-01 to 2017-12-01 in
London, where the changes of the observed time series seem to occur gradually rather than
abruptly.
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Among all categories, unit-root non-stationarity occurs when a time series {Yt}nt=1 con-

tains a stochastic trend, i.e. the simple random walk process Yt = Yt−1+ ϵt, which does

not converge to a constant mean, and the statistical properties such as mean and vari-

ance change over time. And hence the presence of a unit root indicates a lack of station-

arity. Therefore, traditional methods designed for detecting abrupt change-points in

the unknown signal of an otherwise stationary time series are not well-behaved for unit-

root nonstationary time series. Instead of unit-root nonstationarity, this thesis intends

to review the main existing approaches for modelling other kinds of non-stationarities

in time series, especially mean shifts. T hen we shall focus on the particular class of

nonstationary processes that will be of interest to us in the following chapters.

One common technique to address nonstationary data is to assume that the observed

data can be “well approximated” by piecewise-stationarity over shorter intervals of time,

which can be regarded as “local stationarity”. For example, considering time depen-

dence, Dahlhaus (1997) introduced the novel concept of time-rescaling and extended

the Cramér representation to the class of locally stationary Fourier (LSF) processes,

where the well-known Cramér representation (see e.g. Brockwell and Davis (2009),

Chapter 4) allows for the decomposition of any zero-mean, uni-variate, discrete time

series that possesses weak stationarity.

Inspired by Dahlhaus (1997), Nason et al. (2000) proposed the locally stationary wavelet

(LSW) model after incorporating the concept of rescaled time. However, it deviates

from the LSF approach by substituting the Fourier basis representation with a non-

decimated wavelet basis representation (see its definition in Section 2.3.1). To complete

the LSW model, Fryzlewicz (2003) modified the definition of model in Nason et al.

(2000).

When dealing with situations where there exists rapid changes in second-order struc-

ture, the LSW processes are effective due to the compact support of the wavelets. Sev-
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eral authors show their applications of the LSW framework: for example, Fryzlewicz

(2003) proposed an algorithm for forecasting nonstationary time series and utilised the

LSW model for analysing the financial log-return data; Knight et al. (2012) considered

an LSW process with missing observations; Chapman et al. (2020) introduced a non-

parametric technique to detect changes in variance for data with outliers and heavy

tails. However, the LSW process has a limitation that it cannot handle time-varying

first-order behavior, as it is applicable only to zero-mean time series. To overcome this,

McGonigle et al. (2022) introduced a polynomial trend LSW process and Dette and

Wu (2022) proposed a new estimator for the high-dimensional covariance matrix of a

locally stationary process characterized by a smoothly varying trend.

In the following subsections, since we are particularly interested in multiple change-

point detection for models with piecewise-constant signals, we assume that the data

{Y1, Y2, . . . , Yn} is identified in the following structure

Yi = fi +Xi, i = 1, 2, . . . , n (2.2.1)

where fi is the unknown deterministic signal and {Xi}ni=1 represents the error process.

Let η1, . . . , ηq denote the change-points where there exist changes in features of interest

and q represents the unknown number of change-points.

2.2.1 Change-Points in Piecewise Constant Signal

In this section, we consider the problem of detecting multiple change-points when ft

in (2.2.1) becomes piecewise-constant signal of nonstationary time series such that

ft =

q+1∑
j=1

θj1(ηj−1,ηj ](t), t = 1, 2, . . . , n
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where the locations of q change-points satisfy 0 = η0 < η1 < . . . ηq < ηq+1 = n, q is

either known or unknown, and θ1, . . . , θq+1 are the function values of ft.

One standard technique for change-point estimation is relying on minimising a model

cost function of the form

L(Yt, η1, . . . , ηq̂) + penalty(q̂, η1, . . . , ηq̂) (2.2.2)

where the likelihood-type function L(·) measures the quality of fit of estimated model

(to find the change-point locations) and the “penalty” term penalty(·) discourages over-

fitting (for setting the number of change points).

For continuously distributed iid noise {Xi}ni=1 such that E(Xi) = 0 and E(X6
i ) <

∞, Yao and Au (1989) applied the following least-squares method to estimate the

η1, . . . , ηq, θ1, . . . , θk and described their behaviour under the assumption of known q,

argmin
η1,...,ηq


q+1∑
k=1

ηk∑
t=ηk−1+1

(
Yt − Ȳ(ηk−1+1):ηk

)2 (2.2.3)

where Ȳ(ηk−1+1):ηk represents the average of the observations Yηk−1+1, . . . , Yηk . In terms

of the unknown number of change-points, Yao (1988) regarded q as the dimension

of the model and proposed an estimator via minimising the Schwarz criterion (SIC),

i.e. Bayesian information criterion (BIC), for independent Gaussian sequence with

Xi
iid∼ N(0, σ2). Under the assumption of unknown σ2, the criterion is defined as

follows

SIC(q) = argmin
η1,...,ηq

n
2
log

 1

n

q+1∑
k=1

ηk∑
t=ηk−1+1

(
Yt − Ȳ(ηk−1+1):ηk

)2+ q log(n)

 (2.2.4)

And the estimator of q is

q̂SIC = argmin
0⩽q⩽qU

SIC(q) (2.2.5)
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where qU is the pre-specified fixed upper bound of q. Moreover, for the selection of

penalty, Lee (1995), Lavielle and Moulines (2000) and Boysen et al. (2009) decided to

choose the ones built on the number of change-points whereas Pan and Chen (2006)

and Zhang and Siegmund (2007) considered penalties relying on both the number

and locations of change-points. Especially, Boysen et al. (2009) took account of the

minimisers of the Potts functional, which is given below.

argmin
f

[
1

n

n∑
t=1

(Yt − ft)
2 + γ|J(f)|

]
(2.2.6)

where J(f) = {t : 1 ⩽ t ⩽ n − 1, ft ̸= ft+1} represents the set of change-points of the

candidate signals f ∈ Rn and | · | indicates the number of elements in the target set.

However, the recommended parameter γ = 2.5σ̂2 log(n)/n makes this method indeed

close to SIC. To clarify, if the noise variance σ2 is assumed to be a known parameter,

the basic setting of SIC can be represented as

1

n

q+1∑
k=1

ηk∑
t=ηk−1+1

(
Yt − Ȳ(ηk−1+1):ηk

)2
+ 2σ2q log(n)/n (2.2.7)

We can see it deviates from (2.2.6) by the constant factor 2 instead of 2.5. When σ2 is

unknown, SIC would be more convenient since there is no need to separately provide

a consistent estimator of σ2. In order to overcome the issue due to the irregularities in

the likelihood function, Zhang and Siegmund (2007) derived a modified BIC (mBIC)

by providing a more detailed formula for the penalty function:

−1

2

[
3q log(n) +

q+1∑
i=1

log

(
ηi − ηi−1

n

)]
. (2.2.8)

Compared to traditional BIC, the mBIC statistic also penalises the relative locations

of change-points and hence may intuitively be more effective because of anomalies in

the likelihood function. However, the mBIC actually inadvertently promotes change-
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points locating closely to each other since it imposes a less severe penalty on this kind

of change-points. Hence this estimator is more suitable for models without closely

located change-points.

By balancing the asymptotic null distribution of the multi-scale test statistic (for con-

trolling the probability of overestimating the true number of change-points) and the ex-

ponential bounds (for the probability of underestimation), Frick et al. (2014) provided

an approach for the exponential family regression model instead of the basic Gaussian

ones. In contrast, to allow for applications in broader classes of models, Du et al. (2016)

attached importance to the flexibility of Bayesian approaches with prior distributions

and proposed a related change-point estimation method in a marginal likelihood frame-

work, whose penalty is also maximised, similar to mBIC, when change-point estimates

are located as close as possible.

Although such least-square approaches using dynamic programming seem to be opti-

mal in the case of a normal error process when minimising likelihood-type function,

their efficacy were severely impacted by the slow computational speed. When turning

to computing the theoretical minimum, the penalty-based optimisations often have an

O(n2) cost for both space and time. To overcome this issue, Jackson et al. (2005) intro-

duced the Optimal Partitioning algorithm that can find the exact global optimum with

a linear computational cost in best scenarios. This dynamic programming algorithm,

in terms of both the number q and locations η1, . . . , ηq of change-points, recursively

minimises the penalised cost, which often takes the form of

Q(N ; η1, . . . , ηq) =

q+1∑
i=1

C(Y1:n, ηi−1, ηi) + qλ (2.2.9)

where the segment cost functions for the residual sum of squares are introduced as

C(Y1:n, k, l) =
∑l

i=k+1(Yi − Ȳ(k+1):l)
2, l > k. In order to further enhance the Optimal

Partitioning algorithm, Killick et al. (2012) incorporated the pruning rule and proposed
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an algorithm named the Pruned Exact Linear Time (PELT), which can significantly en-

hance computational efficiency particularly for data containing short segments relative

to the overall data length. Rigaill (2015) proposed the Pruned Dynamic Programming

Algorithm (pDPA) as a solution to the computational problem. Guédon (2013) in-

troduced the Forward-backward Dynamic Programming algorithm and Smoothing-type

Forward-backward Programming algorithm for different types of change-points.

Binary Segmentation

Binary Segmentation (BS) proposed by Vostrikova (1981) can be considered the most

straightforward hierarchical, top-down approach for detecting multiple change-points.

Specifically, top-down change-point detection techniques start by examining the en-

tire dataset to identify the most prominent change-point candidate and then progres-

sively narrow the focus to two sub-intervals split by the detected candidate to obtain

less prominent change-point candidates. This hierarchical approach helps efficiently

identify multiple change-points within the dataset. At each stage of the BS proce-

dure, change-point testing is carried out using a CUSUM (Cumulative Sum) statistic

Cs,b,e(Y).

Given 1 ⩽ s ⩽ b < e ⩽ n, the CUSUM statistic (Vostrikova, 1981) for any sequence

Y = (Y1, . . . , Yn)
⊺ on the interval [s, e] is defined by

Cs,b,e(Y) =

√
e− b

(e− s+ 1)(b− s+ 1)

b∑
t=s

Yt −

√
b− s+ 1

(e− s+ 1)(e− b)

e∑
t=b+1

Yt

=

√
(e− b)(b− s+ 1)

e− s+ 1
[Ȳ (s, b)− Ȳ (b+ 1, e)]

(2.2.10)

The BS algorithm is defined recursively with the resulting change-point in [s, e]:

b∗ = argmax
s⩽b<e

|Cs,b,e(Y)|, if max
s⩽b<e

|Cs,b,e(Y)| > λ, (2.2.11)
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where λ is a pre-specified threshold. To be specific, the BS algorithm calculates

C1,b,n(Y) in the beginning and considers b1,1 = argmax1⩽b⩽n |C1,b,n(Y)| as the first

change-point candidate after judging its significance against the criterion. C1,b,b1,1(Y)

and Cb1,1+1,b,n(Y) are then computed in the next step. The whole algorithm termi-

nates when no additional change-points are detected. This condition is met when the

computed CUSUM values become lower than the specified threshold λ. Vostrikova

(1981) proved the consistency of Binary Segmentation for a fixed number of breaks

and Venkatraman (1992) provided the proof the consistency under weaker conditions

of change-points (both number and location).

Compared to optimisation approaches, the BS algorithm is a “greedy” procedure. It

operates sequentially, where each stage depends on the preceding ones and are never

visited again. Also, each stage is straightforward and only involves one-dimensional

optimization. These provides BS with the advantages of low computational complexity

and conceptual simplicity.

While Binary Segmentation is widely used for multiple change-point detection, it is

still limited in its ability to accurately handle segments [s, e] with more than one true

change-point since it only utilises a single change-point in the least-squares sense to

fit a best piecewise-constant function. To eliminate the weakness of the BS algorithm,

Olshen et al. (2004) proposed the Circular Binary Segmentation; Fryzlewicz (2014)

proposed the Wild Binary Segmentation (WBS) where local CUSUM statistics, instead

of a global one, are calculated over a group of pre-specified subsamples; Narrowest-

Over-Threshold (NOT) detection method was developed in Baranowski et al. (2019);

and Fryzlewicz (2020) investigated the reasons for the poor performance of Wild Binary

Segmentation in some settings and proposed the Wild Binary Segmentation 2 (WBS2)

and the steepest-drop model selection method.

To be specific, given 1 ⩽ s < e ⩽ n, the WBS algorithm improved BS by calculating
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the CUSUM statistic Cs,b,e(Y) of suitably many subsamples (Ys, Ys+1, . . . , Ye) in the

first stage, where s and e are integers selected uniformly, independently and with

replacement instead of computing a global statistic C1,b,n(Y) over the entire dataset

(Y1, Y2, . . . , Yn) (which is the idea behind the term ‘Wild’). Then the first change-point

candidate will be the largest maximiser among the entire collection of largest CUSUMs

in all subsamples if it is larger than a pre-specified threshold λ. Similar to the Binary

Segementation, the WBS algorithm conducts the same procedure recursively to the left

and right of the chosen change-point candidate.

However, although the WBS algorithm outperform the BS method, it is still not opti-

mal, especially when multiple change-points are present in close proximity. In detail,

the interval selected by WBS at each stage is not necessary to contain a single change-

point exclusively. Consequently, the CUSUM statistic obtained from that interval may

not show us the most accurate estimator for the change-point location. Baranowski

et al. (2019) proposed the NOT localisation approach to deal with this issue by favour-

ing the shortest intervals with the significant contrast statistics (e.g. CUSUMs), see

detailed literature review in Section 2.5. Mathematically speaking, the chosen change-

point in the narrowest interval is defined by

b∗ = argmin
s⩽argmaxs⩽b<e |Cs,b,e(Y)|<e

{|e− s| : max
b

|Cs,b,e(Y)| > λ}, (2.2.12)

where λ is a pre-specified threshold. Furthermore, the concentration on the narrow-

est intervals within the data enables NOT to go beyond change-point detection for

piecewise-constant signals, which is the primary objective of the WBS method. The

WBS and BS algorithms, lacking this narrowest-interval focus, may not be as suitable

for broader feature detection scenarios as the NOT algorithm. We shall cover more

underlying models relying on NOT in the following chapters.

On the other hand, Fryzlewicz (2020) proposed the WBS2 solution path algorithm to
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directly tackle the data-nonadaptivity problem of the WBS algorithm when deciding

interval choice, especially for signal with multiple change-points. Instead of dividing

the data into many segments at the beginning, WBS2 applies a data-adaptive interval

drawing scheme, where the subsamples are recursively drawn relying on the detected

change-point candidates.

Bottom-up Techniques

Recognising that the top-down nature can be the primary cause for the commonly ob-

served weak performance of Binary Segmentation, a “bottom-up” essence is employed as

an alternative direction in several existing papers. This idea starts from the finest level

of resolution of the data and successively merges the adjacent regions that are highly

likely to represent the same locally constant underlying signal, i.e. rather than the “di-

visive” character of BS, it is an “agglomerative” algorithm. For hierarchically estimating

the change-point locations, Matteson and James (2014) proposed an agglomeration al-

gorithm that proceeds by optimising a goodness-of-fit statistic. Messer et al. (2014)

built upon the concepts from the filtered derivative method and introduced a strategy

involving the progressive merging of change-point candidates in a bottom-up manner,

starting from those initially identified candidates using the smallest bandwidth. By

introducing and entailing the idea “tail-greediness”, Fryzlewicz (2018) constructed the

discrete Unbalanced Haar (UH) basis (Fryzlewicz, 2007) in an inherently different way

and then proposed the Tail-Greedy Unbalanced Haar (TGUH) transform that yields a

multi-scale data-adaptive decomposition of the one-dimensional data. This approach

is particularly attractive due to its ability to provide good practical performance and

offer fast computation speed regardless of the number of change-points or the complex

features of the signals. The TGUH decomposition algorithm determines both the num-

ber q and the locations η1, . . . , ηq of change-points in the piecewise-constant signal ft

through four sequential stages (see Fryzlewicz (2018)).
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The tail-greediness of the TGUH algorithm carries significant and extensive implica-

tions for the computational complexity by giving it an O(n log2(n)) upper bound. Also,

since multiple merges over non-overlapping regions take place at each scale j of the

transform, TGUH can guarantee the L2 consistency of the estimated signal f , and af-

ter some post-processing, can even derive another estimator consistent in detecting the

number and locations of the change-points in f .

Moving Sum

When addressing multiple mean shift problems, it can typically be more straightforward

to sequentially consider subsamples that are expected to contain at most one change-

point on a moving-window basis, and then correspondingly detect and estimate the

single change-point. Eichinger and Kirch (2018) explored the characteristics of change-

point estimators constructed based on Moving Sum (MOSUM) statistics. The paper

considers the CUSUM-like statistic of the form

Tn(G) = max
G⩽k⩽n−G

|Tk,n(G)|
σ∗

Tk,n(G) = Tk,n(G;Y1, . . . , Yn) =
1√
2G

(
k+G∑
i=k+1

Yi −
k∑

i=k−G+1

Yi

) (2.2.13)

with the bandwidth G satisfying

G

n
→ 0 and

n2/(2+ν) log(n)

G
→ 0 (2.2.14)

where ν and σ∗ are as in the following assumption on the error distribution: For error

process Xi, there exists a standard Wiener process {W (k) : 1 ⩽ k ⩽ n} and ν > 0

such that
n∑

i=1

Xi − σ∗W (n) = O(n1/(2+ν)) a.s.
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with a strictly positive long-run variance (see more details in section 2.4)

σ2
∗ = σ2 + 2

∞∑
h=1

γ(h) > 0, γ(h) = Cov(X0, Xh), σ2 = Var(X0)

where the standard Wiener process is a continuous-time stochastic process that starts

at zero (W (0) = 0), and its independent increments follows W (t)−W (s) ∼ N(0, t− s)

for any t > s ⩾ 0.

Since the testing interval [k − G + 1, k + G] moves along the time series, MOSUM

only performs one single test for each fixed interval, which compares the data over

[k −G+ 1, k] with that over [k + 1, k +G].

2.2.2 Change-Point Detection Methods for Dependent Data

Under the conditions where permitting serial correlated error processes, considerable

developments have also been made in detecting multiple change-points in the mean of

one-dimensional data. When dealing with such a detection problem, the main challenge

arises from the fact that it is hard to distinguish change-points in signal from natural

fluctuations in a dependent error process. In this section, we shall conduct a brief

literature review on multiple change-point detection for dependent data with piecewise-

constant signal.

In general, there are two lines of research: one is extending the test statistics proposed

under the assumption of independence to a broader setting while the other one is to

conduct a simultaneous estimation on the serial dependence in noise and change-point

structures in signal by applying specific time series models such as the autoregressive

(AR) model.
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Regarding to the first line of research, the performance of existing approaches largely

rely on finding a reliable estimate of quantified dependence structure in noise, which

can be described with nuisance parameters such as the long-run variance (LRV). We

have a more detailed review of LRV in Section 2.4. In particular, under general assump-

tions on the error process, Dette et al. (2020) extended the simultaneous multi-scale

change-point estimator (SMUCE) introduced in Frick et al. (2014) by scaling the basic

statistic with a difference-based LRV estimator (see Hall et al. (1990) and Tecuapetla-

Gómez and Munk (2017)). Eichinger and Kirch (2018) extended the applicability of

the MOSUM statistic (Hušková and Slabỳ, 2001) for data with possible error processes,

which can have better performance for small samples.

In the presence of (possibly) multiple change points, it can be challenging to find the

LRV estimators, which may be largely impacted by the selection of tuning parameters,

such as the bandwidth parameter mentioned in Shao and Zhang (2010), that can be

closely associated with the frequency of change-points. To avoid the direct estimation

of LRV, Shao and Zhang (2010) conducted an extension on the self-normalization

(SN) method to build a SN Kolmogorov–Smirnov test for detecting change-points in

the mean of short-range dependent time series; For long-range dependent time series,

Betken (2016) proposed a robust SN test relying on the Wilcoxon-statistic; Pešta and

Wendler (2020) combined SN and wild bootstrap (Wu, 1986) without computing either

nuisance or tuning parameters. To be specific, based on the well-known Kolmogorov-

Smirnov test statistic

KSn = sup
k=1,...,n

|Tn(k)/σ̂∗| (2.2.15)

where Tn(k) = n−1/2
∑k

i=1(Yi − Ȳ ), Shao and Zhang (2010) introduced a new self-

normaliser Vn(k), to replace the estimated LRV σ̂2
∗. Given St1,t2 =

∑t2
i=t1

Yi for 1 ⩽

t1 ⩽ t2 ⩽ n, the normalisation process for k = 1, . . . , n− 1 is defined as follows

Vn(k) =
1

n2

[
k∑

i=1

(
S1,i −

i

k
S1,k

)2

+
n∑

i=k+1

(
Si,n −

n− i+ 1

n− k
Sk+1,n

)2
]
.
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The final test statistic is given as

Gn = sup
k=1,...,n

Tn(k)
2/Vn(k) (2.2.16)

and the estimated change-point can then be represented as

k̂ = argmax
k=1,...,n

Tn(k)
2/Vn(k) (2.2.17)

For further extension, Shao and Zhang (2010) also discussed the scenarios of multiple

change-points or a more general framework with other quantities of interest besides the

mean shift. Self-normalisation can successfully bypass the estimation of the LRV and

hence avoid the selection of the bandwidth parameter, but their theoretical validity is

often limited to testing the availability of the single change-point. To overcome this

issue, Zhao et al. (2022) developed a novel framework for change-point estimation by

combining the SN test with a nested local window-based algorithm. In particular,

instead of the global SN test, this paper computes a maximal SN test over nested

window sets H1:n(k) covering each k = h, . . . , n− h, where h denotes the window size,

with the test statistic for each subsample {Yi}t2i=t1
defined as

Gn(t1, k, t2) = Tn(t1, k, t2)
2/Vn(t1, k, t2) (2.2.18)

where

Tn(t1, k, t2) =
(k − t1 + 1)(t2 − k)

(t2 − t1 + 1)3/2
(θ̂t1,k − θ̂k+1,t2) (2.2.19)

Vn(t1, k, t2) =
k∑

i=t1

(i− t1 + 1)2(k − i)2

(t2 − t1 + 1)2(k − t1 + 1)2
(θ̂t1,i − θ̂i+1,k)

2

+

t2∑
i=k+1

(t2 − i+ 1)2(i− 1− k)2

(t2 − t1 + 1)2(t2 − k)2
(θ̂i,t2 − θ̂k+1,i−1)

2 (2.2.20)

and where θ̂a,b represents the nonparametric estimator of the quantity of interest. Then,
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Zhao et al. (2022) proposed an SN-based multiple change-point estimation (SNCP)

algorithm replying on the maximal test statistic G1,n(k) = max(t1,t2)∈H1:n(k)Gn(t1, k, t2)

and a user-specified threshold λ, leading to the first estimated change-point

k̂ = argmax
k=1,...,n

G1,n(k), if max
k=1,...,n

G1,n(k) > λ (2.2.21)

This algorithm can be recursively utilised on subsamples {Yi}k̂i=1 and {Yi}ni=k̂+1
until no

test statistic exceeds the threshold λ. Compared to the change-point testing methods

above, this change-point estimation framework further provides the estimation on the

number and locations of change-points. Besides, based on Schwarz criterion (Schwarz,

1978), Cho and Kirch (2022) introduced a localised pruning algorithm permitting an

exhaustive search on change-point candidates obtained from multi-scale methods and

its estimation consistency was proved under general assumptions allowing for heavy

tails and dependence.

The second direction has been extensively researched in the literature. For the sim-

plest AR(1)-type dependence model, Fang and Siegmund (2020) utilised the maximum

score statistic for the change-point estimation in the level, slope, or other features of

data; Chakar et al. (2017) developed the dynamic programming algorithm, AR(1) Seg-

mentation (AR1Seg), for dependent data although it requires a post-processing step to

avoid estimating more than one change around each change-point location; to bypass

this step, Romano et al. (2022) proposed the Detecting Changes in Autocorrelated and

Fluctuating Signals (DeCAFS) algorithm, another principled dynamic programming

algorithm, to minimise the penalised cost function for estimating the number and lo-

cation of change-points. In this paper, the authors detected abrupt changes in data

in the presence of signal fi = fi−1 + ηi + δi with ηi
iid∼ N(0, σ2

η) and δi = 0 except at

time i immediately after the occurrence of change-points. The stationary error pro-

cess follows an AR(1) model Xi = ϕ1Xi−1 + ϵi, i = 2, . . . , n, with ϵi
iid∼ N(0, σ2

ϵ ) and

ϵ1 ∼ N(0, σ2
ϵ/(1−ϕ2

1)). Denote f1:n = {f1, . . . , fn} and δ1:n = {δ1, . . . , δn}. Under such
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structure, Romano et al. (2022) defined the function as the minimum penalised cost

for data {Y1, . . . , Yi}, conditional on fi = f , with the following representation

Qi(f) = min
f1:i,δ2:i,fi=f

{
(1− ϕ2

1)(Y1 − f1)
2/σ2

ϵ+

i∑
t=1

[
(ft − ft−1 − δi)

2/σ2
η + (Yt − ft − ϕ1(Yt−1 − ft−1))

2 /σ2
ϵ + β1{δi ̸=0}

]}
. (2.2.22)

A recursion is defined for Qi(f) for i = 2, . . . , n

Qi(f) = min
u∈R

{
Qi−1(u) + min{(f − u)2/σ2

η, β}+ (Yi − f − ϕ1(Yi−1 − u))2 /σ2
η

}

with the start Q1(f) = (1−ϕ2
1)(Yi−1−f)2/σ2

σ, which indicates that this algorithm first

finds the minimum penalised cost for set {Y1, . . . , Yi} given fi−1 = u and fi = f , and

then conducts a second minimisation over u. In practice, the estimate of fi is obtained

by minimising the penalised cost for data {Y1, . . . , Yi} conditional on fi+1 = f̂i+1 and

the change-point k is detected by considering whether (f̂k+1 − f̂k)
2/σ2

η > β. Moreover,

compared to Fang and Siegmund (2020), Fryzlewicz (2023) bypassed the requirement

of an accurate estimation of the nuisance AR coefficients and developed the Narrowest

Significance Pursuit (NSP) for automatic detection of localised regions for a given data

sequence that each must contain a change-point.

Considering the two directions, Cho and Fryzlewicz (2023) proposed a combined method-

ology, WCM.gSa, for estimating multiple change-points in the piecewise-constant mean

of an otherwise stationary, linear and autocorrelated time series. On the one hand,

the wild contrast maximisation (WCM) principle is applied to generate the solution

path for dividing change-points in mean from fluctuations in a serially dependent pro-

cess. It concentrates on WBS2 proposed in Fryzlewicz (2020), where subsamples are

drawn recursively based on the already detected change-point candidates to ensure the

completeness of the procedure. On the other, the gappy Schwarz algorithm (gSa) is



2.2 Nonstationary Time Series 45

constructed based on Schwarz criterion in the presence of AR errors, which can help

estimate the dependence structure and the number of change-points without any di-

rect estimation of the level of the noise. In particular, this paper considers the model

(2.2.1), Yt = ft +Xt, under the following assumption of errors

Xt =

p∑
i=1

ϕiXt−i + ϵt such that Yt = (1− ϕ(B))ft +

p∑
i=1

ϕiYt−i + ϵt (2.2.23)

where the independent zero-mean ϵt satisfies Var(ϵt) = σ2
ϵ <∞ and ϕ(B) =

∑p
i=1 ϕiB

i

is defined with the backshift operator B. Here the order p in the AR model is unknown

and could be derived with a data-driven approach in the proposed model selection

methodology. Write the estimated value of p as r ⩾ 0 and a set of candidate change-

point estimates T = {kj, 1 ⩽ k ⩽ m : k1 < · · · < km} ⊂ {1, . . . , n} corresponding to a

candidate model. The Schwarz criterion is represented as

SC({Yt}nt=1, T , r) =
n

2
log(σ̂2

n({Yt}nt=1, T , r)) + (|T |+ r)ξn (2.2.24)

where the choice of penalty parameter ξn is related to the distribution of ϵt and the

applied residual sum of squares σ̂2
n({Yt}nt=1, T , r) is defined as 1/n∥Y − Xβ̂ββ∥, where

Y = (Y1, . . . , Yn)
⊺ and

X =

[
L(r)
n×r

R(T )
n×(m+1))

]
=



Y0 . . . Y1−r 1 0 0 . . . 0
...

Yk1−1 . . . Yk1−r 1 0 0 . . . 0

Yk1 . . . Yk1−r+1 0 1 0 . . . 0
...

Yn−1 . . . Yn−r 0 0 0 . . . 1


(2.2.25)

with Y0, . . . , Y1−r satisfying E(Yt) = E(Y1) for any t ⩽ 0. Here L(r) and R(T ) stand

for the AR part and the part of mean shift modelling respectively. From the lease
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squares estimation, regression parameters can be estimated with β̂ββ = (α̂αα(r)⊺, µ̂µµ(T )⊺)⊺,

where α̂αα(r) is the estimator of AR parameters and µ̂µµ(T ) represents the estimated level

of signals. Given the pre-specified upper bound pmax, the unknown order p can be

estimated with

p̂ = argmin
r∈{0,...,pmax}

SC({Yt}nt=1, T , r) (2.2.26)

With the participation of the gappy model sequence, this algorithm stops directly min-

imising the Schwarz criterion. Instead, it begins with the largest model and compares

backwards with simpler models by considering the increase in the measure of fit and

the model complexity resulting from the introduction of new change-point estimators

with Schwarz criterion.

2.3 Wavelets

This section provides an overview of wavelets, especially Haar wavelets, which are the

basis of our robust estimators of long-run variance. In addition, we review the concept

of wavelet shrinkage that is a motivation of our new estimators.

2.3.1 Wavelet Analysis

Let indices j and k denote scale (or dilation) and location (or translation) parameters

respectively. Those wavelet functions whose dyadic dilations and translations

ψj,k = 2j/2ψ(2jx− k), j, k ∈ Z (2.3.1)
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form an orthonormal basis of L2(R), especially the Haar wavelet, shall be the focus of

this thesis. In general, this thesis concentrates on discretely sampled time series and

hence we shall attach more importance on discrete wavelets instead of continuous ones.

Discrete wavelet transform (DWT) (Mallat, 1989) is one specific technique that utilizes

wavelet functions to achieve the multiresolution representation, making it well-suited

for various signal and image processing applications.

Discrete Wavelet Transform

Corresponding to the wavelet function ψ(·), Mallat (1999) introduced a scaling function

ϕ(·) and scaling coefficients cj,k. Given observations Y = (Y1, Y2 . . . , Yn)
⊺ with n = 2J ,

the scaling cj,k and detailed dj,k coefficients at scale j can be computed from the scaling

coefficients cj+1,k using the relation

cj,k =
∑
l

hl−2kcj+1,l

dj,k =
∑
l

gl−2kcj+1,l

(2.3.2)

for j = 1, 2, . . . , J and k = 1, 2, . . . , 2j, where hk and gk are typically referred to as low-

pass and high-pass filters in the corresponding filter bank. The coefficients dj,k and cj,k

are often named as smoothing (scaling) and detailed (wavelet) coefficients respectively.

In a general context, the low-pass coefficients cj,k display the trend while the high-pass

ones dj,k monitor the fluctuations present in the time series. Following Vidakovic (2009)

(Chapter 3.4), we can see a comprehensive discussion on a wide variety of wavelets that

can be encountered in both mathematical and statistical applications. We shall describe

one key example of wavelets, Haar wavelets, employed in the following chapters.

Haar Wavelets. Haar (1910) introduced the Haar wavelet function, almost the most
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well-known shape of wavelet functions. The Haar father wavelet can be described as

ϕ(x) =

1 x ∈ [0, 1],

0 otherwise.
(2.3.3)

Simultaneously, given a low-pass filter (h0 = h1 = 1/
√
2, hk = 0 otherwise) and a

high-pass filter (g0 = −g1 = 1/
√
2, gk = 0 otherwise), by simple algebra, the Haar

mother wavelet is defined by

ψ(x) =


1 x ∈ [0, 1

2
),

−1 x ∈ [1
2
, 1),

0 otherwise.

(2.3.4)

Therefore, suppose that n is a power of two, let J = log2(n) and mj = 2j−1, j =

1, 2, . . . , J . In discrete Haar wavelet transformation, the detailed coefficients dj,k for

scales j = 1, 2, . . . , log2(n) and, within the jth scale, for indices k = 1, 2, . . . , n/(2mj)

can be represented as

dj,k :=
1√
2mj

 2kmj∑
i=(2k−1)mj+1

Yi −
(2k−1)mj∑

i=(2k−2)mj+1

Yi

 (2.3.5)

Despite the fact that their lack of continuity will make it hard to approximate smooth

signals, Haar wavelet functions can be helpful for analysing signals with sudden changes,

and they offer significant advantages for modeling and computational techniques owing

to their inherent simplicity.

Maximal Overlap Discrete Wavelet Transform

Translation invariance, i.e. a shift in the position of the original signal does not result
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in different wavelet coefficients, is a desirable property for statistical modeling like re-

gression analysis. This represents the primary limitation of the standard DWT, as it

restricts its capacity to extracting information from the input vector only at specific

(dyadic) locations within any given scale. To tackle this problem, Percival and Walden

(2000) described the Maximal Overlap Discrete Wavelet Transform (MODWT), a mod-

ified version of the DWT, as a means of obtaining a more comprehensive representation

of the analysed data. In wavelet literature, multiple very similar transforms were inde-

pendently discovered and assigned different names such as the Non-decimated wavelet

transform (NDWT) in Pesquet et al. (1996), the shift-invariant DWT (SIDWT) in

Lang et al. (1995), the overcomplete DWT (ODWT) in Zaciu et al. (1996) and the

redundant DWT (RDWT) in Fowler (2005). The MODWT computes all wavelet coef-

ficients and is no longer sensitive to the origin point.

In this thesis, we also concentrate on Maximal Overlap Haar wavelets. Mathematically

speaking, given J0 = ⌊n/(2mj)⌋, as MODWT filters can be defined by renormalizing

the DWT filters, the wavelet coefficients W̃j,k can similarly be defined here for scales

j = 1, 2, . . . , J0 and, within the jth scale, for indices k = 1, 2, . . . , n− 2mj + 1,

W̃j,k :=
1

2mj

 k+2mj−1∑
i=k+mj

Yi −
k+mj−1∑

i=k

Yi

 (2.3.6)

Compared to DWT, MODWT can be more informative because it can be defined for all

sample sizes without the dyadic restriction and retain overlapping or redundant infor-

mation between scales and locations, in addition to its translation invariant property.
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2.3.2 Wavelet Smoothing

To estimate a function f : [0, 1] → R given noisy observations {Y1, Y2, . . . , Yn} observed

on an equally spaced grid:

Yi = f

(
i

n

)
+Xi, i = 1, 2, . . . , n (2.3.7)

where the noises Xi’s are zero-mean random variables, non-linear smoothing methods

can show better performance for less regular functions. In particular, Donoho and

Johnstone (1995), Donoho (1995), and Donoho et al. (1995) introduced the principle

of wavelet shrinkage, a non-linear smoothing method, in their seminal papers.

The main idea of the wavelet shrinkage method is taking the wavelet transform of

Equation (2.3.7) to obtain dj,k = µj,k + Zj,k, where dj,k and (µj,k, Zj,k) are the corre-

sponding wavelet coefficients of Yi and (f(i/n), Xi). A proper threshold is chosen to

separate significantly different coefficients, thus distinguishing signal from noise. In the

final stage, the values of estimate f̂ on {i/n}ni=1 are derived from the inverse DWT.

There are two main reasons supporting this approach.

1. In the wavelet domain, the signal f(i/n) can be efficiently represented with spar-

sity, i.e. the wavelet coefficients µj,k corresponding to locations with smooth sig-

nals will be close to zero because of the vanishing moments property of wavelets

whereas those corresponding to locations with irregular signals will significantly

differ from zero;

2. Since DWT is orthogonal, white noise in the time domain can be transformed

into white noise in the wavelet domain.

Therefore, the wavelet shrinkage method is proposed with the expectation that the

larger empirical wavelet coefficients can predominantly capture true signals whereas
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the smaller coefficients only reflect noise. Two thresholding methods that have found

widespread use and undergone thorough examination are defined in Donoho and John-

stone (1994) as

d̂Hj,k = ηH(dj,k, λ) = dj,k1(|dj,k>λ|)

d̂Sj,k = ηS(dj,k, λ) = sgn(dj,k)(|dj,k| − λ)dj,k1(|dj,k|>λ)

(2.3.8)

for a given λ, where d̂Hj,k and d̂Sj,k stand for hard and soft thresholding functions respec-

tively, and 1(·) is the indicator function. Donoho and Johnstone (1994) also provides

the definition of universal threshold, a particularly commonly used threshold, which is

denoted by λ = σ
√
2 log(n). Since the standard deviation σ of the noise is unknown

in practical situations, an estimator σ̂ should be derived first for further non-linear

wavelet estimation. For Xi ∼ iid N(0, σ2), the scaled Median Absolute Deviation

(MAD) is employed by many authors on the series of wavelet coefficients at the finest

level to compute σ̂, and thus help in controlling the possible upward bias caused by

the presence of signal at that particular level (see e.g. Donoho and Johnstone (1994)

and Johnstone and Silverman (1997)).

2.4 Long-Run Variance Estimators

As mentioned in Section 2.2.2, one particular line of research for serially correlated

data is to make an extension of the existing approaches proposed for independent

data, especially those relying on CUSUM or MOSUM test statistics (Cho and Fry-

zlewicz, 2023). When detecting a single change-point, Paul and Piotr (2022) described

the extended likelihood ratio test (or CUSUM test) for data whose error process is

dependent or non-Gaussian. In particular, when testing a CUSUM statistic against

a threshold in a correlated data context, this corresponding threshold should be mul-

tiplied by the long-run standard deviation σ∗. Moreover, given the unknown signal
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ft =
∑q+1

j=1 θj1(ηj−1,ηj ](t), t = 1, 2, . . . , n with the locations of q (unknown) change-

points satisfying 0 = η0 < η1 < . . . ηq < ηq+1 = n and θ1, . . . , θq+1 being the function

values of ft. For simplicity, Dette et al. (2020) considered the estimators of the form

f̂t =
∑q̂+1

j=1 θ̂j1(η̂j−1,η̂j ](t), where the estimates only take values at points 0, 1
n
, . . . , n−1

n
, 1

and the set of these functions is represented by Sn. To extend SMUCE to the models

with piecewise-constant regression function and dependent error process, they embed-

ded the LRV estimator σ̂∗ into the multi-scale statistic

Vn(Y, f) = max
1⩽j⩽q+1

max
nηj⩽s⩽e<nηj+1

e−s+1⩾ncn

{
1

σ̂∗

√
e− s+ 1

∣∣∣∣∣ 1

e− s+ 1

e∑
l=s

Yl − θj

∣∣∣∣∣−
√

2 log

(
exp(1)n

e− s+ 1

)}

where {cn > 0} is a sequence that converges to 0. Next, for a fixed threshold λ, the

number of change-points is estimated by

q̂ = q̂(Vn, λ) = inf
f∈Sn Vn(Y,f)⩽λ

|{η1, . . . , ηq}|.

The best candidate step function for data is then identified with the following formula

f̂ = argmin
f∈C(Vn,λ)

=
n∑

i=1

(Yi − f(i/n))2

where C(Vn, λ) := {f ∈ Sn : |{η1, . . . , ηq}| = q̂ and Vn(Y, f) ⩽ λ} represents the

estimated set whose elements with the minimal number of change-points q̂ satisfying

the multi-scale criterion Vn(Y, f) ⩽ λ.

To distinguish abrupt change-points in mean shifts from the random fluctuations in

noise, a well-defined long-run variance estimator can be particularly useful since it can

quantify the level of noise without being largely impacted by the presence of change in

features. Here we present the definition of LRV for the error process {Xi}ni=1:

σ2
∗ = Στ∈ZCov(X0, Xτ ) = Στ∈Zγ(τ) (2.4.1)
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which is also known as time-average variance constant (TAVC) or asymptotic variance

of sample mean in many existing works.

When the mean changes are not present, there are, in general, three well-known

classes of methods for deriving LRV estimators: the subsampling method, resampling

method and kernel-based method (Chan and Yau, 2017). First, for a pre-specified l ∈

{1, 2, . . . , n}, the subsampling approach starts with dividing the whole sample into over-

lapping batches, or namely subsamples, {X1, . . . , Xl}, {X2, . . . , Xl+1}, . . . , {Xn−l+1, . . . ,

Xn}. In addition, the overlapping batch means (OLBM) estimator, a possible exten-

sion of non-overlapping batch means (NOLBM) estimator (Carlstein et al., 1986), was

proposed in Meketon and Schmeiser (1984) using the batch means, which is defined as

σ̂2
∗,OBM :=

l

n− l + 1

n∑
k=l

[(
1

l

k∑
i=k−l+1

Xi

)
− X̄

]2
(2.4.2)

where X̄ denotes the overall sample mean. Although utilising overlapping batches

leads to large positive correlations, the OLBM estimator is still proved to be a good

one due to the pre-specified batch size. Also, Welch (1987) introduced the partially

overlapping batch means estimator. In addition, we can see more relevant studies in

Song and Schmeiser (1995), Alexopoulos and Goldsman (2004) and Damerdji (1994).

Alexopoulos et al. (2011) employed the idea of overlapping batches to standardized time

series in Schruben (1983) and developed an . Second, to mimic the behaviour of the

test statistic while simultaneously keeping the original data structure, Kunsch (1989)

developed a bootstrapping-based procedure, i.e. resampling method, by considering

each batch as a whole and doing iid resampling from different batches. Based on the

same setting of batches in OLBM, a new sample (resample) of size K := ml is generated

by randomly drawing m batches with replacement. After repeating this action of N#

times, we can derive the sample mean of each resample and the overall sample mean
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over the N# resamples with the following definitions

X̄#
K,j :=

1

K

K∑
i=1

X#
i,j and X̃#

K,N# :=
1

N#

N#∑
j=1

X̄#
K,j (2.4.3)

for j = 1, 2, . . . , N#. Furthermore, the jackknife and the bootstrap (JB) estimator

(Kunsch, 1989) is given as follows

σ̂2
∗,JB :=

K

N#

N#∑
j=1

(
X̄#

K,j − X̃#
K,N#

)2
. (2.4.4)

Related works include the matched-block bootstrap estimator in Carlstein et al. (1998),

circular block-resampling estimator in Romano (1992), dependent wild bootstrap esti-

mator in Shao (2010a), tapered block bootstrap (TAB) estimator in Paparoditis and

Politis (2001) and extended TAB in Shao (2010b). These subsampling estimators can

result in small biases and mean square errors but require a pre-specified number of sub-

samples and often suffer from high computational complexity. The final kernel-based

estimators can be constructed from a good combination of the sample autocovariance

γ̂(τ). Since the direct summation of γ̂(τ) leads to inconsistent results, different kernels

are applied to assign weights to γ̂(τ). And the estimator may be defined as

σ̂2
∗ =

n−1∑
τ=−(n−1)

W

(
τ

bn

)
γ̂(τ) (2.4.5)

where W : [−1, 1] → R is a user-specified kernel and bn is the bandwidth parameter,

which is hard to choose unless we are provided with the detailed dependence structure

(Politis and Romano, 1995).

Later, considering the presence of mean changes, we face an increase in the difficulty

of estimating the LRV, and it becomes even more complicated for series with (possi-

bly) multiple change-points. Well-known LRV estimators for non-constant mean trend
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can generally be divided into two broad classes: residual-based and difference-based

estimators. Here we provide a literature review on both of them.

As indicated by the name, residual-based LRV estimators are constructed relying on

the residuals X̂i = Yi− f̂h(i), where f̂h(·) is a non-parametric estimator of the unknown

signal derived with the bandwidth or smoothing parameter h. Spline smoothing and

kernel smoothing are two commonly used approaches for estimation while an AR pro-

cess is commonly applied to model the noise. For example, to estimate the unknown

smooth function f(ti) defined on [0, 1] for ti = i/n, Truong (1991) proposed a sequence

of estimators based on local averages under the assumption of a Gaussian error process.

Given {δn}n⩾1, a sequence of positive numbers that gradually decreases towards zero,

and t ∈ [0, 1], define the blocks

In(t) = {i : 0 ⩽ i ⩽ n| |ti − t| ⩽ δn} and Nn(t) = |In(t)|

The kernel estimator, or moving average estimator, is then represented by

f̂(t) =
1

Nn(t)

∑
In(t)

Yi

Due to computational expediency and the demand of single optimisation, Shao and

Yang (2011) focused on the spline smoothing instead of kernel smoothing. This paper

applies polynomial splines to estimate the trend function f(ti) by dividing the interval

[0, 1] into subintervals with width h. Moreover, compared to these two estimators

without introducing an optimal smoothing parameter, Qiu et al. (2013) proposed a

modified moving average estimator with an automatic selection of optimal parameter.

Without the assumption of Gaussianity of data, the proposed trend estimator is defined
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as follows

f̂(t/n) =


1

2q+1

∑t+q
i=t−qXi, q + 1 ⩽ t ⩽ n− q

1
N1t

∑t+q
i=1Xi − 1

N2t

∑t+q
i=1(i− t)Xi, 1 ⩽ t ⩽ q

1
N3t

∑n
i=t−qXi − 1

N4t

∑n
i=t−q(i− t)Xi, n− q + 1 ⩽ t ⩽ n

(2.4.6)

where N1t, N2t, N3t and N4t are time-dependent values that follow

N−1
1t =

4q2 − 4qt+ 6q + 4t2 − 6t+ 2

(q + t)(q + t− 1)(q + t+ 1)

N−1
2t =

6(q − t+ 1)

(q + t)(q + t− 1)(q + t+ 1)

N−1
3t =

4(n− t))2 + 4q2 − 4q(n− t) + 2(n+ q − t)

(n+ q − t+ 2)(n+ q − t+ 1)(n+ q − t)

N−1
4t =

6(n+ q − t)

(n+ q − t+ 2)(n+ q − t+ 1)(n+ q − t)

For all of the approaches above, an Yule–Walker estimator can then be derived for

ϕϕϕ = (ϕ1, . . . , ϕp)
⊺ in AR(p) error process Xi =

∑p
k=1 ϕkXi−k + ϵi with E(ϵi) = 0 and

Var(ϵi) = σ2 based on the residuals X̂ = Y − f , which is given as

ϕ̂ϕϕ = Γ̂−1γ̂γγ , γ̂(k) =
1

n

n−k∑
i=1

X̂iX̂i+k

where γ̂γγ = (γ̂(1), . . . , γ̂(p)) and Γ̂ is a p × p estimated covariance matrix with Γ̂ij =

γ̂(i− j). Then the variance σ2 and LRV σ2
∗ can be estimated by

σ̂2 = γ̂(0)− γ̂γγ⊺ϕ̂ϕϕ and σ̂2
∗ =

σ̂2

(1−
∑p

i=1 ϕ̂i)2
(2.4.7)

On the other hand, the pre-estimation of signal function f can be indeed difficult when

there are dominant random fluctuations from the error process (Tecuapetla-Gómez

and Munk, 2017). To overcome this issue, difference-based techniques are developed
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by building the whole estimator on the l-th differences Yi − Yi−l of the observed time

series, which as first introduced in Hall et al. (1990). In particular, a difference sequence

{∆j} is a sequence of real numbers such that

∑
∆j = 0, and

∑
∆2

j = 1 (2.4.8)

Assume that ∆j = 0 for j < −l1 and j > l2 and ∆−l1∆l2 ̸= 0 for l1, l2 ⩾ 0. The

term l = l1 + l2 is then regarded as the order of the sequence, where l1 = 0 and l2 = l

are usually selected for simplicity. Based on the difference sequence, a difference-based

estimator of γ(0) is defined with the following format

γ̂(0) =
1

n− l

n−l2∑
k=l1+1

(
l2∑

i=−l1

∆Yi+k

)2

.

Similar estimators have been explored extensively when there are no discontinuities or

high fluctuation in signals and we can see more examples in Muller and Stadtmuller

(1987), Dette et al. (1998) and Brown and Levine (2007), etc. In particular,Muller

and Stadtmuller (1987) also introduced estimators for autocovariances in the presence

of stationary m-dependent errors; Hall and Keilegom (2003) proposed autocovariance

estimates of autoregressive noise. To avoid the restriction on the dependence struc-

ture in noise, Tecuapetla-Gómez and Munk (2017) considered the m-dependent errors

and proposed biased-optimized estimates that only depend on m, where the estimator

leading to the smallest bias is defined as

γ̂(m)(0) =
1

6nm

nm∑
i=1

(
Yi − 2Yi+(m+1) + Yi+2(m+1)

)2
, nm = n− 2(m+ 1)

The other values of the autocovariance function γ(1), . . . , γ(m) can also be represented

with an m-dependent formula. However, to construct the LRV σ2
∗ =

∑
γ(τ) from

autocovariances, other methods like HAC-type estimation procedure are required to

define the final version of estimated LRV (Khismatullina and Vogt, 2020); see equation
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(2.4.5) as an example. Here HAC is the abbreviation of “Heteroskedasticity and Au-

tocorrelation Consistent”. Because the performance of LRV estimators can be largely

impacted by the choice of the smoothing parameter in HAC-type estimation, Khis-

matullina and Vogt (2020) mentioned that the assumption of a time series model on

{Xi}ni=1 could be really helpful even though some biases possibly exists. Then they

constructed a difference-based estimator by considering the error process as the class

of AR(p) model.

Considering more general error processes, Wu and Zhao (2007) proposed three asymp-

totically consistent LRV estimators under the assumption of Lipschitz continuous func-

tion, i.e. given an interval I on R, a function f is considered as Lipschitz continuous

on I if supx1 ̸=x2
|f(x1) − f(x2)|/|x1 − x2| < ∞ for any x1, x2 ∈ I. Before creating the

estimators, the sample is first divided into mn = ⌊n/kn⌋ blocks {Y1+ikn , . . . , Y(i+1)kn}

for i = 0, 1, . . . ,mn − 1 and the local averages are derived as follows

Ai =
1

kn

kn∑
j=1

Yj+ikn

Then the (absolute) difference-based estimator is developed as

σ̂∗ =

√
πkn

2(mn − 1)

mn−1∑
i=1

|Ai − Ai−1| (2.4.9)

which can be quite sensitive to abrupt changes in signals. Among these three esti-

mators, the median-based one can be more robust to large jumps in signal, which is

introduced as follows.

σ̂∗ =

√
kn√
2z1/4

median(|Ai − Ai−1|, 1 ⩽ i ⩽ mn − 1) (2.4.10)

where z1/4 denotes the third quartile of N(0, 1). When extending SMUCE for depen-

dent data, Dette et al. (2020) applied the mean-based estimator in Wu and Zhao (2007)
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and further proved its consistency in the presence of piecewise-constant signals. We

can see its definition in the following

σ̂2
∗ =

kn
2(mn − 1)

mn−1∑
i=1

|Ai − Ai−1|2. (2.4.11)

Considering the possibly nonstationary error process, Dette et al. (2019) introduced

the following LRV estimator for data with piecewise-constant signals. First, they define

Sk,r =
∑r

i=k Yi and ∆S,j = (Sj−m+1,j −Sj+1,j+m)/m for m ⩾ 2. Then, for t ∈ [m/n, 1−

m/n],

σ̂2
∗ =

n∑
j=1

m∆2
S,j

2
ω(t, j) (2.4.12)

where for some bandwidth τn ∈ (0, 1),

ω(t, j) = K

(
j/n− t

τn

)/ n∑
j=1

K

(
j/n− t

τn

)
.

For constant variance, the estimator can be reduced to

σ̂2
∗ =

n∑
j=1

m∆2
S,j

2n
(2.4.13)

which is a kind of overlapped version of estimator (2.4.11). Based on the flat-top kernels

in Politis and Romano (1995), Eichinger and Kirch (2018) proposed the following time

dependent MOSUM version of it for estimating LRV in the presence of dependent data

σ̂2
k,∗ = γ̂k(0) + 2

Λn∑
h=1

ω(h/Λn)γ̂k(h) (2.4.14)

with pre-specified bandwidth Λn and suitable weights ω, where autocovariances are
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estimated by

γ̂k(h) =
1

2G

k−h∑
i=k−G+1

(Xi − X̄k−G+1,k)(Xi+h − X̄k−G+1,k)

+
1

2G

k+G−h∑
i=k+1

(Xi − X̄k+1,k+G)(Xi+h − X̄k+1,k+G).

Also, McGonigle and Cho (2023) introduced a robust scale-dependent TAVC for many

existing multi-scale change-point detection approaches, see more details in Section

3.1.2. More recently, Chan (2022) proposed a general framework for LRV estimation for

data with serially correlated noise and non-constant mean trends. Take the definition

of difference sequence (2.4.8), then the mth order lag-h difference statistics are defined

as

Di =
m∑
j=0

∆jYi−jh, i = mh+ 1, . . . , n

and the mth order difference-based estimator is then developed as

σ̂2
∗ =

∑
|k|<l

W

(
k

l

)
γ̂D(k), with γ̂D(k) =

1

n

n∑
i=mh+|k|+1

DiDi−|k| (2.4.15)

where the kernel function W (·) is similar to that defined in (2.4.5).

In Chapter 3, we propose several robust wavelet-based LRV estimators and conduct

comparative simulation studies with some existing LRV estimators, see Section 3.4 for

detailed results.

2.5 Narrowest-Over-Threshold Technique

The change-point detection (CPD) method for dependent data discussed in Chapter

4 of this thesis is based upon the Narrowest-Over-Threshold (NOT) detection device
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proposed in Baranowski et al. (2019). In this section, we review the underlying ideas of

NOT algorithm and provide a detailed description of the NOT solution path algorithm.

2.5.1 The NOT algorithm

To search for the an unknown number of features in signal fi, NOT skillfully conducts

both “global” and “local” treatment of the observations Yi’s and hence help detect

change-points in a multi-scale manner. From the “global” perspective, the NOT algo-

rithm starts with a random selection of a group of special subsamples (Ys+1, . . . , Ye)
⊺,

0 ⩽ s < e ⩽ n, which are assumed to contain at most one change-point. Various

contrast functions are proposed to meet the requirement of searching for the most

possible location of the change-point for different type of signals. On the other hand,

the “local” stage concentrates on finding the “narrowest-over-threshold” interval that

is highly likely to contain the single change-point, i.e. among all subsamples contain-

ing contrast larger than a preset threshold, NOT tends to pay more attention to the

contrast derived from the interval with the smallest range. Such a technique makes

NOT effective in detecting the unknown number and locations of change-points in fi

for data with different models of signal and noise.

Among all stages, the selection of a contrast function Cb
(s,e](·) is of great importance and

it largely relies on the underlying model chosen for signal fi and noise Xi within the

data. We shall review the two particular tailor-made contrast functions corresponding

to data with iid Gaussian noise plus precewise-constant or precewise-linear signals.

For example, when signal ft is precewise-constant, for any integer triple (s, e, b) with

0 ⩽ s < b < e ⩽ n, the contrast vector ψψψb
(s,e] = (ψb

(s,e](1), ψ
b
(s,e](2), . . . , ‘ψb

(s,e](n))
⊺ is
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defined as

ψb
(s,e](t) =



√
e−b

(e−s)(b−s)
t = s+ 1, . . . , b,

−
√

b−s
(e−s)(b−s)

t = b+ 1, . . . , e,

0 otherwise.

(2.5.1)

In contrast, if b /∈ {s+ 1, . . . , e− 1}, ψb
(s,e](t) is set to be zero for all t. For any vector

v = (v1, . . . , vn)
⊺, the contrast function is defined as

Cb
(s,e](v) =

∣∣〈v,ψψψb
(s,e]

〉∣∣ . (2.5.2)

Also, when the continuous signal ft is precewise-linear, for any integer triple (s, e, b)

with 0 ⩽ s < e ⩽ n and s+1 < b < e, the contrast vector ϕϕϕb
(s,e] = (ϕb

(s,e](1), ϕ
b
(s,e](2), . . . ,

ϕb
(s,e](n))

⊺ is considered as

ϕb
(s,e](t) =


αb
(s,e]β

b
(s,e][{3(b− s) + (e− b)− 1}t− {b(e− s− 1) + 2(s+ 1)(b− s)}] t = s+ 1, . . . , b,

−αb
(s,e]

βb
(s,e]

[{3(e− b) + (b− s) + 1}t− {b(e− s− 1) + 2e(e− b+ 1)}] t = b+ 1, . . . , e,

0 otherwise.

where αb
(s,e] =

√
6

l(l2−1)(1+(e−b+1)(b−s)+(e−b)(b−s−1))
, βb

(s,e] =
√

(e−b+1)(e−b)
(b−s−1)(b−s)

and l = e − s.

Similarly, if b /∈ {s + 2, . . . , e − 1}, ψb
(s,e](t) will be zero for all t. For any vector

v = (v1, . . . , vn)
⊺, the contrast function is defined as

Cb
(s,e](v) =

∣∣〈v,ϕϕϕb
(s,e]

〉∣∣ .
In Figure 2.2, plots of ψψψb

(s,e] and ϕϕϕb
(s,e] are presented as an illustration for contrast vectors

over different (s, e, b).
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Figure 2.2: Plots (a) and (b) show respectively values of ψψψb
(s,e] and ϕϕϕb

(s,e] for s = 0, e =
1000 and b = 125, 250, 500, 750, 875, where colour number 1 to 5 given on graphs
indicate values of b from 125 to 875.

2.5.2 The NOT solution path algorithm

Besides the contrast function, two vital tuning parameters are required to be considered

as well: a user-specified threshold satisfying ζn > 0 and the number M of the intervals

randomly drawn in the process. Notably, since the performance of the original NOT

algorithm is largely impacted by the choice of ζn, it may not show a good performance

without a well-selected threshold.

To overcome this issue, the NOT solution path algorithm combines the original NOT

with a well-suited information-based criterion, allowing for the automatic determina-

tion of the threshold ζn. This innovation eliminates the requirement for a predefined

threshold, rendering the algorithm entirely threshold-free. Simultaneously, when con-

sidering a fixed number of well-spaced change-points, Baranowski et al. (2019) mention
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that the minimum required value for M increases with sample size n and 10000 is the

number recommended for datasets of lengths of the order of thousands.

In the following, we present the detailed pseudo-code for the NOT solution path algo-

rithm developed in the supplementary material of NOT (Baranowski et al., 2019); see

Algorithm 1. Let T (ζn) = {η̂1(ζn), . . . , η̂q̂(ζn)(ζn)} denote the locations of change-points

estimated by the NOT algorithm with threshold ζn. It is also assumed that there ex-

ists thresholds satisfying 0 = ζ
(1)
n < ζ

(2)
n < · · · < ζ

(N)
n , where T (ζ

(i)
n ) ̸= T (ζ

(i+1)
n ) for

all i = 1, 2, . . . , N − 1, T (ζn) = T (ζ
(i)
n ) for all ζn ∈ [ζ

(i)
n , ζ

(i+1)
n ) and T (ζn) = ∅ for

all ζn ⩽ ζ
(N)
n . Algorithm 1 mainly works by relying on the iterative application of

information from T (ζ
(i)
n ) to obtain both ζ(i+1)

n and the corresponding T (ζ
(i+1)
n ) for any

i = 1, 2, . . . , N − 1. To sum up, it produces the entire threshold-indexed solution path

{T (ζn)} for ζn ⩾ 0 with low computational complexity, and it can be employed directly

with the help of the R package not and breakfast.

In Algorithm 1, FM
n represents a collection of M left-open and right-closed intervals

that encompass all randomly selected sub-intervals for testing. In general, given a

fixed threshold ζn, a binary tree structure can be constructed in accordance with the

detected sequence of change-points, starting with (s, e] = (0, n]. And then the initial

change-point identified within the (0, n] interval is treated as the central node of the

tree. Subsequently, its branches are expanded in a recursive manner.

To be specific, every tree node holds the following three features. First, the interval

(N.s,N.e] is the target to test for each node. Second, the narrowest-over-threshold sub-

interval is chosen from the intervals resulting from the intersection of (N.s,N.e] and

elements in FM
n . This algorithm denotes N.c as the highest value of the contrast func-

tion among all potential data locations, and N.b as the corresponding location within

the same sub-interval. N.Left and N.Right represent the nodes of the subsequently

detected change-points in sub-intervals (N.s,N.b] and (N.b,N.e], respectively.
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Algorithm 1 NOT solution path
1: Input: Data vector Y, all sub-intervals (sm, em] ∈ FM

n together with
2: bm := argmaxsm<b⩽em Cb

(sm,em](Y), cm := Cbm
(sm,em](Y), lm := em − sm

3: Output: Thresholds 0 = ζ
(1)
n < ζ

(2)
n < · · · < ζ

(N)
n and sets of estimated change-points

T (ζ
(1)
n ), T (ζ

(2)
n ) . . . T (ζ

(N)
n )

4: To start the algorithm: Call SOLUTIONPATH()
5: procedure BUILDBINARYTREE((s, e], ζn, N)

6: M(s,e] := set of those m ∈ {1, 2, . . . ,M} such that (sm, em] ⊂ (s, e]

7: O(s,e] := set of those m ∈ M(s,e] such that cm > ζn

8: if O(s,e] = ∅ then
9: N=NULL

10: else
11: k := any element of argminm∈M(s,e]

lm

12: N.b := bk, N.c := ck, N.Left := NULL, N.Right := NULL
13: BUILDBINARYTREE((s,N.b], ζn, N.Left)
14: BUILDBINARYTREE((N.b, e], ζn, N.Right)
15: end if
16: end procedure
17: procedure UPDATEBINARYTREE((s, e], ζn, N)

18: if N.c ⩽ ζn then
19: BUILDBINARYTREE((s, e], ζn, N)
20: else
21: if N.Left ̸= NULL then
22: UPDATEBINARYTREE((s,N.b], ζn, N.Left)
23: end if
24: if N.Right ̸= NULL then
25: UPDATEBINARYTREE((N.b, e], ζn, N.Right)
26: end if
27: end if
28: end procedure
29: procedure SOLUTIONPATH()

30: Set Nr := NULL, i := 1, ζ(1)n := 0

31: BUILDBINARYTREE((0, n], ζ(1)n ,Nr)

32: while Nr ̸= ∅ do
33: D := {Nrand all its children nodes}
34: T (ζ

(i)
n ) := {N.b|N ∈ D}

35: ζ
(i+1)
n := minN∈D{N.c}

36: UPDATEBINARYTREE((0, n], ζ(i+1)
n ,Nr)

37: i := i+ 1

38: end while
39: end procedure
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Choice of ζn via the strengthened Schwarz Information Criterion (sSIC)

As mentioned in the beginning of Section 2.5.2, finding a proper information-based

criterion supports the automatic selection of ζn. For k = 1, . . . , N let q̂k = |T (ζkn)|,

Θ̂1, Θ̂2, . . . , Θ̂q̂k+1 denote the maximum likelihood estimators of the parameters ob-

tained via the estimated change-points τ̂1, τ̂2, . . . , τ̂q̂k ∈ T (ζkn), and nk denote the total

number of estimated parameters, from τ̂1, τ̂2, . . . , τ̂q̂k to free parameters in Θ̂1, Θ̂2, . . . ,

Θ̂q̂k+1. In Algorithm 1, Baranowski et al. (2019) choose the threshold ζkn and the as-

sociated estimated locations of change-points T (ζkn) by minimising the sSIC defined

below.

sSIC(k) = −2

q̂k+1∑
j=1

log(l(Yτ̂j−1+1, . . . , Yτ̂j ; Θ̂j)) + nk log
α(n) (2.5.3)

for a pre-specified α ⩾ 1, τ̂0 = 0 and τ̂q̂k+1 = n.

Besides the proved consistency and near-optimality of NOT for generalised change-

points detection, Baranowski et al. (2019) also present the simulation results for differ-

ent distributions of the error process Xt, from heavy-tailed noise to weakly dependent

noise. In Chapter 4, we aim to practically explore several possible extensions of the

NOT solution path algorithm for different serial correlated data.

2.6 Lead-lag Relationship

As mentioned in the introduction, Chapter 5 intends to propose an exploratory method

for the analysis of the lead-lag or causal relationships between two nonstationary time

series. To that end, we shall first provide a general review on basic concepts of these

two patterns.

The lead-lag effect is a kind of phenomenon that sees changes in one time series influence



2.6 Lead-lag Relationship 67

another time series, but usually with a time delay. Specifically, it characterises the

order of the arrival of changes in two variables, i.e. the concept that the changes in one

variable lead (lag) the changes in the other indicates that the the first (second) variable

may impact the second (first). This phenomenon is widely examined in various fields,

especially economics and finance. In particular, after figuring out how trends in prices

of certain financial commodities follow that of some other commodities, conservative

investors can potentially use the information of specific “time lag” to make more profits

without taking more risks. The lead-lag relationship between stock index and stock

index futures has been extensively studied to derive a (possible) price discovery function

in a capital market without perfect efficiency, but the findings drawn from different

markets and time periods via different approaches are indeed contradictory, referring

to Gong et al. (2016) for a comprehensive review. For example, Kawaller et al. (1987),

Abhyankar (1995) and Hasbrouck (2003) indicated that price movements of futures

lead that of index in the short-run whereas some other studies such as Shyy et al.

(1996) mentioned the opposite. More recently, Li et al. (2022) introduced the idea that

the definition of the “lead–lag effect” slightly differs from that of “lead–lag relationship”,

where the latter one is a short-run event that can be random and hence may not offer

us too much information. In this paper, Li et al. (2022) formally defined the lead-lag

effect and developed a lead–lag investment strategy by exploring the availability of the

well-known power-law function (Clauset et al., 2009) in stock trading and considering

the corresponding conditions should be satisfied. Since we consider relatively long-run

features in bi-variate data, we use the terms “lead–lag effect” and “lead–lag relationship”

interchangeably in the following.

In order to identify (possible) lead-lag relationships between time series, many conven-

tional approaches, such as the cross-correlation function (CCF), vector error correction

(VEC) model, vector autoregressive (VAR) model, the generalized autoregressive con-

ditional heteroskedasticity (GARCH) model and Granger-causality test, are commonly

applied to detect the dependence of two series within a certain period. The early inves-
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tigations into relationships between time series were conducted via simple correlation,

where CCF is a typical measure of similarities. To be specific, the cross-correlation

function can measure the correlation between two time series {Xi}ni=1 and {Yi}ni=1 at

different lags. At each time lag k, we have the sample CCF defined below

RXY (k) =


1
n

∑n−k
i=1

(Xi−X̄)(Yi+k−Ȳ )

sXsY
k = 1, 2, . . . , n− 1,

1
n

∑n+k
i=1

(Yi−Ȳ )(Xi−k−X̄)

sXsY
k = −1,−2, . . . ,−(n− 1)

(2.6.1)

where X̄ and Ȳ denote the sample mean, and sX and sY represent the sample stan-

dard deviation. Its results are often interpreted through the sign and magnitude of

the correlation RXY (k) at different lags k. In particular, when one or more RXY (k)

are significant with positive k’s, {Xi}ni=1 can be considered to lead {Yi}ni=1; similarly,

{Xi}ni=1 can be considered to lag {Yi}ni=1 if one or more RXY (k) are significant with neg-

ative k’s. Based on CCF, Chapter 11 in Box et al. (2015) introduces a straightforward

lead–lag modeling method over assumed transfer function models. However, compared

to regression that can summarise the association, it can be quickly recognised that

correlation does not possess a natural direction (Hoover, 2008).

By employing a VAR or VEC model, the direction of lead-lag relationships is naturally

described in the time domain and their existence among the involved time series can

be indicated by the presence of non-zero or statistically significant lagged coefficients

of the explanatory variables (Skoura, 2019). In econometrics, an vector error correc-

tion model is often estimated to describe the co-integration among nonstationary time

series, which refers to the property of these time series sharing a common stochastic

trend. The long-run association implied by co-integration is compatible with a lead-

lag relationship in the short run (Kanas and Kouretas, 2005), and more examples are

shown in, for example, Corhay et al. (1993) and Chung and Liu (1994). Moreover,

the Autoregressive Conditional Heteroskedasticity (ARCH) model is often applied to
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to capture the properties on volatility in time series data. The model is defined as

Xt = σtϵt, σ2
t = α0 +

p∑
i=1

αiX
2
t−i (2.6.2)

where {ϵt}nt=1 follows an iid distribution with zero mean and unit variance, and α0 > 0,

αi ⩾ 0 for all i > 0. It was extended to be GARCH model by Bollerslev (1987) to

further characterise the persistence nature of volatility, with the following definition

Xt = σtϵt, σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
i=1

βjσ
2
t−j (2.6.3)

with the same assumption of ϵt and α0, together with αi ⩾ 0, βj ⩾ 0 and
∑p

i=1 αi +∑q
j=1 βj < 1. Kavussanos et al. (2008) introduced a VECM-GARCH-X model to

allow for the time-varying variance and covariances of the series, see also the bi-variate

error-correction EGARCH model in Zhong et al. (2004).

Granger (1988) demonstrated that for a pair of co-integrated series, there must be

some Granger causation between them in at least one direction. Therefore, with the

development of co-integration analysis, the studies of lead-lag relationships become

closely related to the causal inference, especially Granger causality, with the application

of a VAR model Skoura (2019). The Granger causality test is hence quite essential for

the detection of lead-lag relationships, see examples in, for example, Jiang et al. (2019),

Scherbina and Schlusche (2020), Otneim et al. (2022) and Zeng and Atta Mills (2023).

In the next subsection, we shall have a brief review of the concept of causality in time

series, especially the Granger causality. Although it is well-known that the Granger

causality may not imply a substantive cause-effect relationship due to omission of

relevant variables, nevertheless the tested associations between variables can still be

useful for empirical causality investigation (Eichler, 2013).

In addition, to capture the dynamic nature of the lead-lag relationships, new approaches
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including genetic programming (GP) (Lien et al., 2003), wavelet analysis (Reboredo

and Rivera-Castro, 2013; Kim and In, 2005), the thermal optimal path (TOP) method

(Gong et al., 2016; Meng et al., 2017), dynamic time warping (DTW) (Ma et al., 2022;

Wang et al., 2012) and Aligned Correlation (AC) (Gupta and Chatterjee, 2020), etc.

were developed for relation discovery.

2.6.1 Causality in time series

Generally speaking, causality represents the influence that changes of one variable may

have by causing the changes of the other in a system. Many research questions are

inherently causal and the increasing demand to understand such underlying patterns

between variables largely promotes the development of the study of causality. In this

section, we shall mainly provide an overview of causality in time series.

When defining causality, temporal precedence (causes happen before their effects) and

physical influence (changes in causes lead to changes in effects) are the two most sig-

nificant properties, where the second aspect often lies at the heart of existing literature

on causal relationships (see more in Eichler (2012)). In time series analysis, since it is

usually impractical to set controlled experiments, many existing approaches of causal

inference tend to focus on temporal precedence, a readily available property in data.

There are, in general, four possible existing definitions of causality utilised for time se-

ries, such as intervention causality in Eichler (2012), structural causality in White and

Lu (2010), Granger causality and Sims causality in Sims (1972). In particular, Granger

causality is a statistical concept of causality providing information about the capabil-

ity of prediction and is probably the most widely used concept (see details in Granger

(1969), Granger (1980) and Granger (1988)). In the original definition, Granger causal-

ity is a measure of the relationship between the variables and is supposed to be analysed

with all relevant information. On the other hand, observed information can be incom-
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plete and the there could be loss of crucial variables, and hence Hsiao (1982) proposed

concepts for spurious causality among variables in a tri-variate model.

In the meantime, graphical models, and in particular directed acyclic graphs, have

been widely used to describe and infer causal relationships in data (see Pearl (1995),

Dawid (2000), Lavielle and Moulines (2000) and Pearl (2009)). In a time series setting,

compared to the intervention-based causality in Pearl (1995), Dahlhaus and Eichler

(2003) employed a more straightforward idea that relies on the principle of temporal

precedence that is readily available in time series. Through analysing partial correla-

tions at different time lags, noncausality relations among the variables can be studied

as well. This approach also allows for showing directional edges in graphical models

without assuming a pre-specified variable ordering. To be specific, they provided a de-

tailed discussion on the application of Granger causality in a more general framework

of modern graph-based causal inference.

Let X = {Xt}t∈Z with Xt = (X1,t, . . . , Xd,t)
⊺ be a d-variate stationary process. Its

mean-square convergent autoregressive representation can be defined as

Xt =
∞∑
u=1

Φ(u)Xt−u + ϵt

where Φ(u) is a square summable sequence of d × d matrices and the errors ϵt are iid

random variables with mean 0 and non-singular covariance matrix Σ. To visualize the

dependence structure of the vector autoregressive process, the simplest method is to

construct a graph from the conditional distribution of Xt given its past values, where

the vertices at and bt−k can be used to represent variable Xa,t and lagged instances

Xb,t−k respectively. To be specific, for Σab ̸= 0, an undirected (dashed) edge can be

used to link two distinct vertices at and bt. Meanwhile, vertices bt−k will be connected

to nodes at for Φab(k) ̸= 0 whereas they will be removed when Φab(k) = 0 for all a.
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In Chapter 5, our introduced graphical approach is purely exploratory, which may serve

as the first step in lead-lag or causal analyses, and it is in the spirit of SiZer, which is

discussed in the next section.

2.7 SiZer – A Visual Tool for Time Series

In data analysis, smoothing methods for curve estimation offer a valuable technique

for obtaining the underlying patterns or structures within data.

The SiZer in Chaudhuri and Marron (1999), a shortening for “SIgnificant ZERo cross-

ings of derivatives”, is a useful approach that can be utilised to capture the statistical

significance of features at different locations and scales (bandwidths), such as peaks

and valleys, in uni-variate linear data. The developed SiZer map provides an obvious

identification for significant features with colour red or blue whereas the remaining

grey areas indicate the data with sparse information.

To make SiZer useful for different scenarios, several adaptations have been developed in

the existing statistical literature. For example, Godtliebsen et al. (2002) extended SiZer

to a two-dimensional setting of image analysis; Li and Marron (2005) proposed the local

likelihood SiZer map, which can offer more powerful inferences and is more efficient for

discrete data; Rondonotti et al. (2007) extended SiZer to deal with time series with

dependent noise; to deal with the quartile composition instead of mean structure of

the data, Park et al. (2010) introduced the quartile SiZer constructed on a local linear

quartile smoother; under the assumption of Gaussian distributed residuals, Skrøvseth

et al. (2012) proposed a change-point detection technique by imposing causality on the

scale-space viewpoint applied in SiZer-type plots; there are also many adaptations to

linear variables, see e.g. Rudge (2008) and Rydén (2010).
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For circular data, Oliveira et al. (2014) introduced the CircSiZer, a new extension of

SiZer that is constructed with the kernel density estimator and regression estimator

to assess the statistical significance of observed features. In order to take advantage

of the wrapped Gaussian kernel which yields circular “causality”, i.e. the number of

modes should be non-increasing with increasing bandwidth, Huckemann et al. (2016)

proposed the Wrapped SiZer (WiZer) and provided a numerical foundation for choosing

the number of wrappings for statistical tests. Inspired by Godtliebsen et al. (2002),

Vuollo and Holmström (2018) developed SphereSiZer for investigating structure in

spherical data.



Chapter 3

Multi-scale estimation of long-run

variance

3.1 Introduction

Considering the aforementioned importance of long-run variance in change-point esti-

mation, this chapter concentrates on developing well-suited LRV estimators for serial

correlated time series modelled with piecewise-constant signal. To clarify, a simplified

version of model (2.2.1) is formulated through

ft =

q+1∑
j=1

θj1(ηj−1,ηj ](t) (3.1.1)

which is the unknown signal being partitioned into q + 1 segments (ηj−1, ηj] for j =

1, . . . , q+1, where 0 = η0 < η1 < . . . ηq < ηq+1 = n are distinct change-point locations,

and θ1, . . . , θq ∈ R are the function values of f , satisfying θj ̸= θj+1 for j = 1, . . . , q.

Meanwhile, the stationary error process {Xi}ni=1 satisfies the properties E(Xi) = 0 and

74
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Var(Xi) = σ2 <∞. To avoid much loss of generality, we consider the stationary error

process of the general form

Xi = g(. . . , ϵi−1, ϵi) (3.1.2)

where the inputs ϵi, i ∈ Z, are independent and identically distributed (iid) ran-

dom variables and g(·) is an input-output filter or transformation leading to all the

dependencies within the outputs Xi. Since dependence is an intrinsic feature of a

stochastic process, how to measure such dependence has been discussed in many exist-

ing works, see especially the strong-mixing coefficients first proposed in the influential

paper (Rosenblatt, 1956). There are various types of strong mixing conditions, includ-

ing α−, β− and ϕ− conditions, etc (see a broad review in Doukhan (2012)). Although

they are widely applied and continuously improved after being developed, their ap-

plication can still be challenging due to the difficulty in computation and verification

under some cases.

To provide dependence measures under mild and easily provable conditions, Wu (2005)

introduced a physical system that shows a direct relationship with data-generating

mechanisms. This representation is generally enough to cover a huge class of stochas-

tic processes, which subsumes many well-known time series models such as the ARMA,

ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) models. Due to its easily work-

able measures, we establish the asymptotic consistency of our new wavelet-based LRV

estimators under the assumption that error process {Xi}ni=1 follows the physical system

proposed in Wu (2005).

In the following discussion, we write ∥X∥p = (E|Xi|p))1/p, p ⩾ 1, for a random variable

X (in the case of its existence). For two real sequences of positive numbers {an} and

{bn}, write an ≍ bn if 0 < lim infn→∞ an/bn ⩽ lim supn→∞ an/bn < ∞. Let ϵ′j be

an iid copy of ϵj and X∗
i = g(. . . , ϵ−1, ϵ

′
0, ϵ1, . . . , ϵi−1, ϵi). To show how alterations in

the inputs result in corresponding changes in the outputs, we consider the functional
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dependence measure

δi,p := ∥Xi −X∗
i ∥p

under the condition ∥Xi∥p < ∞. This measure intuitively calculates the dependence

of Xi on the single innovation ϵ0 by replacing ϵ0, with all other inputs ϵi remaining the

same.

In practice, the dependence in time series can describe diverse patterns and character-

istics. A sequence is often assumed to have short-range dependence (SRD) and hence

the impacts of such dependence can be constrained with standard extreme value limits,

i.e. events Xi and Xj can be considered independent if the time points i and j are

sufficiently distant from each other. With the functional dependence measure δi,p, the

process {Xi}ni=1 can be regarded as short-range dependence if

∆m,p :=
∞∑

i=m

δi,p <∞, m ⩾ 0

where ∆m,p quantifies the cumulative impact of ϵ0 on Xi for i ⩾ m given fixed m. For

the process X. = {Xi}∞i=−∞ with slow decay of ∆m,p, the dependence adjusted norm

(DAN) (Wu and Wu, 2016) is further applied to account for the serial correlation in

this stronger dependence case, which is defined as follows

∥X.∥p,υ := sup
m⩾0

(m+ 1)υ∆m,p = sup
m⩾0

(m+ 1)υ
∞∑

i=m

δi,p, υ ⩾ 0

In general, this chapter introduces several wavelet-based LRV estimators that can be

well-suited for dependent data with signal (3.1.1) and the error process (3.1.2). Their

asymptotic unbiasedness and consistency are proved under basic assumptions related to

the above mentioned measures (see detailed assumptions in section 3.3). In particular,

ARMA model, a commonly used time series model, also follows the above mentioned

assumptions and the related dependence measures are presented in Remark 3.1. To
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compare the effectiveness of several LRV estimators, we conduct complete simulation

tests on the following ARMA model, which has an explicit expression for the true LRV.

Remark 3.1 The ARMA model is a vital special class of linear process Xt =
∑∞

i=0 aiϵt−i

and takes the form Xt−
∑p

j=1 ϕjXt−j = ϵt+
∑q

l=1 θlϵt−l, where ϕj and θl are autoregres-

sive and moving average parameters. The linear process carries the convenient results

for functional dependence measure that δi,p = |ai|∥ϵ0 − ϵ
′
0∥p, where ∥ϵ0 − ϵ

′
0∥p <∞, see

Example 1 in Wu (2011). When representing the ARMA model as a linear process, the

corresponding ai should be the coefficient of the series (1+
∑q

l=1 θlz
l)/(1−

∑p
j=1 ϕjz

j).

Let λ1, . . . , λp denote the roots of the equation λp −
∑p

j=1 φjλp−j = 0. After adding

the assumption λ∗ = maxm⩽p |λm| < 1, Example 2 in Wu (2011) shows the coefficients

|ai| = O(ri) hold for all r ∈ (λ∗, 1).

And hence we can prove that both assumptions (A2) and (A3) introduced in Section

3.3 are satisfied, i.e. ∆0,4 =
∑∞

i=0 |ai|∥ϵ0 − ϵ
′
0∥4 = O(1)∥ϵ0 − ϵ

′
0∥4 < ∞,

∑∞
i=1 iδ0,2 =∑∞

i=1 i|ai|∥ϵ0 − ϵ
′
0∥2 ⩽ Čr/(1−r)2∥ϵ0−ϵ

′
0∥2 <∞ and the DAN ∥X.∥p,υ = supm⩾0{(m+

1)υ
∑∞

i=m |ai|}∥ϵ0 − ϵ
′
0∥p = supm⩾0{(m + 1)υrm/(1 − r)}∥ϵ0 − ϵ

′
0∥p < ∞ for all υ ⩾ 0,

where Č is a finite constant.

Overall, this chapter is organised as follows. In the remainder of this section, we provide

the underlying ideas for our methodology and review more related works. Section 3.2

describes our proposed estimators, while Section 3.3 presents their theoretical proper-

ties. Simulation results are shown in Section 3.4, 3.5 and Appendix 3.6, and the proofs

of theorems are offered in Section 3.7.
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3.1.1 Basic Ideas for Wavelet-Based Estimators

In general, in the presence of non-constant mean trend, there are two broad classes of

LRV estimators: difference- and residual-based estimators. Difference-based techniques

are built on the l-th differences Yi−Yi−l of the observed time series whereas the residual-

based ones attach great importance to residuals X̂i = Yi − f̂h(i), where f̂h(·) is a non-

parametric estimator of the unknown signal derived with the bandwidth or smoothing

parameter h. To be specific, before proposing the estimator for the whole LRV σ2
∗ =∑

τ∈Z γ(τ), it is quite common to first consider the estimation of autocovariance γ(τ).

The two classes of estimators usually take the following forms respectively

γ̂D(0) =
1

2(n− l)

n∑
i=l+1

(Yi − Yi−l)
2, γ̂D(h) = γ̂D(0)− 1

n− |m|

n∑
i=|m|+1

(Yi − Yi−|m|)
2

γ̂R(0) =
1

n

n∑
i=1

(Yi − f̂h(i))
2, γ̂R(h) =

1

n

n−m∑
i=1

(Yi − f̂h(i))(Yi+m − f̂h(i+m))

where m = 1, . . . , n − 1. The widely used moving average estimator is defined as

f̂h(i) = N−1
i,q

∑
|j−i|⩽q Yj, where q is the chosen lag, h = q/n, and Ni,q denotes the

number of j satisfying |j − i| ⩽ q (see Qiu et al. (2013) and Khismatullina and Vogt

(2020)).

By applying a threshold to the wavelet coefficients in chosen scales, we develop, in what

follows, several asymptotically unbiased and consistent wavelet-based estimators lying

somewhere in between the two broad classes. From the perspective of difference-based

measures, our idea is quite clear since Haar wavelet coefficients can be regarded as

functions built on mj-th differences Yi − Yi−mj
, i.e. dj,k = 1√

2mj
(
∑2kmj

i=(2k−1)mj+1 Yi −∑(2k−1)mj

i=(2k−2)mj+1 Yi) =
1√
2mj

∑2kmj

i=(2k−1)mj+1(Yi − Yi−mj
).

On the other hand, wavelets can be viewed as analogous to difference in local averages,

which can provide difference-based estimation of the signal fi, i.e. Applying DWT
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dj,k = µj,k + Zj,k, we have large dj,k stands for the estimated signal. Meanwhile, simi-

lar to the idea of separating the signal and noise in γ̂R(h), utilising wavelet shrinkage

(thresholding) can successfully eliminate the signals from the observations. Here we

provide a brief explanation of this idea based on the Haar discrete wavelet transform.

Figure 3.1 illustrates this point by presenting the reconstructed signal and error pro-

cess obtained from discrete inverse wavelet transform (IDWT) after removing large

coefficients, where the implementation of IDWT is provided in the publicly available

R package wavethresh (Nason et al., 2022). This example considers data generated

by adding an independent Gaussian process (a) X(1)
i = ϵi and an AR(1) process (b)

X
(2)
i = 0.3X

(2)
i−1 + ϵi, where ϵi

iid∼ N(0, 1), to a piecewise-constant signal with q = 7

regular change-points at locations i = 64, 128, 192, 256, 320, 384, 448 (n = 512).

Intuitively, similar to the ideas applied in wavelet shrinkage, the wavelet-based esti-

mators are constructed via transforming Equation (2.3.7) into wavelet coefficients such

as dj,k = µj,k + Zj,k, with the expectation that µj,k corresponding to smooth signals

will be close to zero while those corresponding to irregular signals will significantly

differ from zero. And we can choose a threshold to separate all information into two

parts, i.e. signal (coefficients over threshold) and noise (coefficients below threshold).

Figure 3.1 demonstrates that for the simple example, adopting a suitable threshold can

successfully divide the original simulated data as we can see the reconstructed signals

in black are close to the true signal in red.

Also, in order to capture the central tendency of time series, we consider building our

estimators with two basic measures: mean and median, for simplicity (see examples in

Dette et al. (2019) and Wu and Zhao (2007)).
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Figure 3.1: A simple example for the underlying idea of our wavelet-based LRV estimators.
Yt. Plots (a) and (b) display the simulated data generated by adding {X(1)

i }ni=1 and {X(2)
i }ni=1

to piecewise-constant signal with 7 regular change-points (n = 512). After applying discrete
inverse wavelet transform, we have (c) and (d) show the obtained signal (black line) and true
signal (red line) while (e) and (f) present obtained noise.

3.1.2 Related Work

In the following, to bypass the challenge of pre-estimating the signal with dominant

fluctuation, we choose to employ difference-based estimators as the foundation for

our subsequent construction. We now describe two asymptotically consistent estima-

tors that serve as the motivation for our wavelet-based approaches. When estimating

σ∗, Wu and Zhao (2007) first divide the time series into mn = ⌊n/kn⌋ blocks with

{Y1+ikn , . . . , Y(i+1)kn} for i = 0, 1, . . . ,mn − 1 and use the difference of local averages
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Ai − Ai−1, where

Ai =
1

kn

kn∑
j=1

Yj+ikn

to eliminate the impact of signal and concurrently characterise the dependence struc-

ture of the sample. For dependent data with piecewise-constant mean, two estimates

are formulated as follows

σ̂2
∗ =

kn
2(mn − 1)

mn−1∑
i=1

|Ai − Ai−1|2

σ̂∗ =

√
kn√
2z1/4

median(|Ai − Ai−1|, 1 ⩽ i ⩽ mn − 1)

(3.1.3)

where the first estimate is developed closely related to the subseries variance estimate

in Carlstein et al. (1986) and proved (the second one by conjecture) to have the same

optimal Mean Square Error (MSE), i.e. E[(σ̂2
∗ − σ2

∗)
2] = O(n−2/3), when kn ≍ n1/3.

On the other hand, in the presence of serial dependence, McGonigle and Cho (2023)

argued that it seems inappropriate to estimate the noise level with one single LRV esti-

mator. Instead, to gauge the noise level within the data section of certain length, they

introduced a robust estimator for the scale-dependent time-average variance constant

(TAVC) that is defined as follows,

σ̂2
L = Var

(
1√
L

L∑
t=1

Xt

)

under the given scale L. To be specific, suppose that block size satisfies G = L/2 where

L is an even number. For any b ∈ {0, 1, . . . , G−1} and corresponding number of blocks

N1(b) = ⌊(n− b−G)/G⌋, local averages and their difference are similarly defined as

Ȳj,b =
1

G

(j+1)G+b∑
t=jG+b+1

Yt, and ξj,b =
G(Ȳj,b − Ȳj−1,b)

2

2
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for j = 1, 2, . . . , N1(b). McGonigle and Cho (2023) then adopt M-estimators to truncate

observations with the solution

θ̂ = argmin
θ

(
1

n

n∑
i=1

ρ(Yi, θ)

)

where the real-valued objective function of (Yi, θ) is a sample average. Least squares es-

timation (LSE) and maximum likelihood estimation (MLE) are two well-studied special

cases. In particular, the introduced robust estimator σ̂2
L,b is provided as the solution

to the following M-estimation formula proposed in Catoni (2012)

hL,b(u) =
1

N1(b)

N1(b)∑
j=1

ϕv(ξj,b − u) = 0 (3.1.4)

where ϕv(x) = v−1ϕ(vx) for some specific v > 0; and the non-decreasing influence

function ϕ(x) is defined as

ϕ(x) =



− log(2) x ⩽ −1,

log(1 + x+ x2/2) −1 < x ⩽ 0,

− log(1− x+ x2/2) 0 < x ⩽ 1,

log(2) x > 1.

This scale-dependent TAVC estimator is also built relying on the physical system in

Wu (2005) with assumptions similar to our models. And McGonigle and Cho (2023)

shows that the estimator can successfully approximate the LRV when scale L is large

enough. A maximum time-scale M is also pre-specified to balance the errors resulted

from changes in time-scale L. Meanwhile, McGonigle and Cho (2023) also pointed

out the possible failure of a global LRV resulted from its lack of adaptivity to the

scale of local data sections when computing test statistics in multi-scale algorithms.

In particular, taking MOSUM as an example, the application of a global LRV σ2
∗ may
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lead to a failure in true change-point detection when σ2
∗ is very small while spurious

information may be detected when σ2
∗ is indeed a large value.

Unlike the scale-dependent TAVC, our estimation takes into account multiple scales of

wavelets, making it more robust to one particular scale. Concurrently, maximal overlap

wavelets are employed to better draw the serial correlated features from data. These

two points, together with thresholding, make our estimator well-constructed and also

robust to the presence of multiple mean shifts.

3.2 Estimation of the LRV

In this section, we shall describe our new estimators of the LRV σ2
∗ in (2.4.1) that

are asymptotically unbiased and consistent, and are robust to the presence of multiple

change-points in piecewise-constant signal. The detailed procedure of the development

of these estimators will also be discussed in the first part of this section, from removing

extreme scales to removing large coefficients.

This section generally contains four parts, in terms of different combinations of two

measures of central tendency, i.e. mean and median, and two wavelet transform meth-

ods, i.e. DWT and MODWT.

1. Mean (Discrete Haar Wavelets)

Here we focus on and develop a two-step procedure for selecting coefficients as these

factors play a central role in the estimation process. Specifically, after thresholding, the

(scaled) squared coefficients d2j,k or 2mjW̃
2
j,k in suitable scales j can serve as asymp-

totically unbiased estimators of LRV σ2
∗, see Lemma 3.1 and Section 3.7 for further

details.
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In the first step, we decide to remove some of the finest and coarsest scales to realise

the “concentration of power”. To clarify, optimising the performance of wavelet thresh-

olding, in reality, largely relies on selecting scales where the transformed data show a

sparsity pattern in the wavelet domain. This means it would be better to focus on

scales with only a few coefficients having notable magnitudes while most coefficients

take on smaller values, which mainly reflect noise. In practice, it is often observed that

the dominant Haar coefficients are mainly situated at scales that are coarser, though

typically not at the coarsest scales.

Figure 3.2: Scaled Haar DWT coefficients computed at scale 1-8 (multiresolution level 10-3)
for the simulated data Yt. The corresponding mean shifts are plotted with red line.

Using the implementation available from R package wavethresh (Nason et al., 2022),

we study the scaled Haar coefficients computed at different scales, where the largest

resolution level indicates the finest scale j = 1, and second largest resolution level is the
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second finest scale j = 2, etc. As a simple example, Figure 3.2 plots the corresponding

coefficients for simulated data with noise following an AR(1) process with resolution

levels 3-10, i.e. scales 8 to 1. It indicates that the coarser scales, especially j = 4, 5,

offer relatively more significant features in signals without completely excluding all

information about noises. For the finest scales, such as j = 1, 2, we can see the

magnitude of coefficients is largely impacted by the level of noise and hence it is hard

to find any patterns related to the true signal. On the other hand, the coarsest scales,

such as j = 7, 8, 9, 10, only contain a few elements, which carry less information and

cannot even show us half of the features in the signal.

Therefore, when deciding the choice of scales, we exclude the coarsest scales because

they contain too few coefficients to fully capture all features in mean shift signals,

especially when there are closely located change-points. For example, in Figure 3.2,

it is evident that at the coarsest scales, the change-points around t = 500 are not

effectively reflected in the corresponding coefficient. Simultaneously, the finest scales

are also eliminated due to the fact that although these scales mainly reflect noise, some

signal still remains but we cannot find a clear separation between noise and signal.

This goes against the target of only retaining the structure of the error process.

After removing the extreme scales, we introduce a wavelet-based estimator with coef-

ficients dj,k (2.3.5), which is represented as follows

σ̂2
1 =

1

b− a+ 1

b∑
j=a

1

Kj

Kj∑
k=1

d2j,k (3.2.1)

This basic estimator is somewhat similar to the first difference-based estimator intro-

duced in (3.1.3), where the wavelet coefficients dj,k’s are applied as a substitution for

the difference in local averages Ai − Ai−1.

In the second step, with the aim of enhancing the sparsity of the representation, we
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will eliminate scales at the extremes and further selectively reduce certain large coeffi-

cients within the remaining scales, in the hope that the chosen threshold λ can remove

all coefficients corresponding to locations with discontinuities or other irregularities.

Mathematically, let N1
j denote the set of all those indices k = 1, 2, . . . , Kj for which

|dj,k| ⩽ λ in scale j, and denote K∗
j = |N1

j |. We have the general formula

σ̂2
1(λ) =

1

b− a+ 1

b∑
j=a

1

K∗
j

Kj∑
k=1

d2j,k1(|dj,k|⩽λ) (3.2.2)

where 1(·) represents the indicator function and λ is the pre-specified threshold for all

scales. From the formula, it becomes evident that as the parameter λ grows increasingly

larger, the estimator approaches closer and closer to σ̂2
1, i.e. σ̂2

1(∞) = σ̂2
1.

2. Mean (Maximal Overlap Haar Wavelets)

Compared to DWT, Figure 3.3 demonstrates that MODWT coefficients can extract

more information from the same dataset, especially at coarser scales. In order to

remove the dyadic restriction and better retain the dependence structure of the error

process, we adopt the MODWT instead of the DWT (see section 2.3.1). Similarly, with

a, b ∈ {1, 2, . . . , J0}, where a ⩽ b and J0 = ⌊log(n)⌋, we have the estimators relying on

the definition of W̃ 2
j,k in (2.3.6) that

σ̂2
2 =

1

b− a+ 1

b∑
j=a

2mj

n− 2mj + 1

n−2mj+1∑
k=1

W̃ 2
j,k

σ̂2
2(λ) =

1

b− a+ 1

b∑
j=a

2mj

T ∗
j

n−2mj+1∑
k=1

W̃ 2
j,k1(|

√
2mjW̃j,k|⩽λ)

(3.2.3)

where T ∗
j = |N2

j | and N2
j denotes the set of all those indices k = 1, 2, . . . , n− 2mj + 1

for which |
√

2mjW̃j,k| ⩽ λ.
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Figure 3.3: Scaled Haar MODWT coefficients computed at scale 1-8 (multiresolution level
10-3) for the simulated data Yt. The corresponding mean shifts are plotted with red line.

3. Median (Discrete Haar Wavelets)

When analysing the coefficients at each scale, taking the mean usually gives us an

overall picture of all values whereas taking the median can reduce the impact of extreme

values and hence give us a more robust representation of these values. Similar to σ2
1

and σ2
1(λ), the median-based estimator is also proposed following a two-step procedure.

First, after removing extreme fine and coarse scales, one simple estimator of long-run

standard deviation is given as

σ̂3 =
1

b− a

b∑
j=a

1

z1/4
median(|dj,k|, 1 ⩽ k ⩽ Kj) (3.2.4)

which can be close to the second estimator in (3.1.3) if we replace the difference of local
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averages Ai−Ai−1 with wavelet coefficients dj,k. Moreover, although σ̂3 is comparatively

robust to the absolutely large coefficients, we still consider removing information related

to signals to test whether this estimator can be further improved. After removing both

extreme scales and large coefficients, the formula (3.2.4) can be extended to

σ̂3(λ) =
1

b− a

b∑
j=a

1

z1/4
median(|dj,k|1(|dj,k|⩽λ), 1 ⩽ k ⩽ Kj) (3.2.5)

where z1/4 is the third quartile of the standard normal distribution. Compared to the

mean-based estimators σ̂1 and σ̂1(λ), the performance of median-based estimators may

not be heavily impacted when the pre-specified threshold is not good enough.

4. Median (Maximal Overlap Haar Wavelets)

Similarly, after extending (3.2.4) and (3.2.5) to the maximal overlap case, we have

σ̂4 =
1

b− a

b∑
j=a

√
2mj

z1/4
median(|W̃j,k|, 1 ⩽ k ⩽ n− 2mj + 1)

σ̂4(λ) =
1

b− a

b∑
j=a

√
2mj

z1/4
median(|W̃j,k|1(|

√
2mjW̃j,k|⩽λ)

, 1 ⩽ k ⩽ n− 2mj + 1)

(3.2.6)

based on the definition (2.3.6).

Here scales a and b grow as the sample size increases to ensure the appropriate asymp-

totic behaviour. For details see Theorem 3.1 and Theorem 3.2 below, where we show

the asymptotic consistency of our wavelet-based estimators. Meanwhile, guidance on

the choice of threshold λ is given in Section 3.4.1.
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3.3 Asymptotic Properties of Estimators

For the statement of the asymptotic properties in this section we shall make the fol-

lowing basic assumptions on the error process {Xi}ni=1.

(A1) ∥Xi∥4 <∞

(A2) ∆0,4 <∞ and
∑∞

i=1 iδi,2 <∞

(A3) ∥X.∥p,υ <∞, where p > 2 and υ > 0

Under Assumption (A1), the condition ∆0,4 < ∞ implies that the autocovariance

functions are absolutely summable, i.e.
∑

τ∈Z |γ(τ)| < ∞, ensuring the existence of∑
τ∈Z γ(τ). Hence, Assumption (A2) indicates the short-range dependence of the error

process {Xi}ni=1 and is made to establish the asymptotic properties of differences in

local sums, see Lemma 3.1. Assumption (A3) permits a sharp and easy-to-use bound

of the wavelet coefficients, see Lemma 3.2 and Lemma 3.3. See Remark 3.1 for a

particular example satisfying these assumptions.

In contrast to the common short-range dependent time series, the notion of long-range

dependence (LRD) is basically associated with data whose ACVFs γ(τ) decays like

τ 2d−1 as τ → ∞, where 0 < d < 1/2. Such fractional differencing parameter d guar-

antees that the corresponding ACVF is not absolutely summable. The study of LRD

began with the work of Hurst (1951), Mandelbrot and Van Ness (1968) and Mandel-

brot and Wallis (1968), and long memory processes have attracted substantial interest

in the field of hydrology, geophysics, finance and economics (Gerstenberger, 2021), see

Doukhan et al. (2002) for more literature on applications. Compared to LRV of SRD

limn→∞ Var(n1/2X̄1:n) = limn→∞ Var(n−1/2
∑n

i=1Xi), Pipiras and Taqqu (2017) sug-

gests that the sample mean X̄1:n should be normalised by nd−1/2 instead to achieve

the LRV of long-range dependence, i.e. limn→∞ Var(n1/2−dX̄1:n) → c2
d(2d+1)

, where c2

is a constant for conditions γ(τ) = L2(τ)τ
2d−1 and L2(u) ∼ c2. Abadir et al. (2009)

discussed two possible LRV estimators to deal with long memory time series. Although
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our LRV estimators are developed for SRD time series, they can be applied in testing

procedures (such as calculating CUSUM statistics) for distinguishing between a SRD

time series with abrupt mean shifts and a stationary LRD time series. For example,

Berkes et al. (2006) proposed the CUSUM-type testing procedure by supposing SRD

under the null hypothesis and LRD under the alternative; Gerstenberger (2021) intro-

duced a similar Wilcoxon-type testing procedure that can outperforms the CUSUM-

type one in the presence of outliers. Also, considering time series non-stationarity and

long-range dependence, Bai and Wu (2024) developed a difference-based long-run co-

variance matrix estimator for time series observations following functional linear models

with time-varying regression coefficients.

The following Lemmas present asymptotic results for the proof of consistency of our

LRV estimators, see Theorem 3.1 and Theorem 3.2. To clarify, lemmas 3.2 and 3.3

provide theoretical justifications for σ̂2
1(λ) and σ̂2

2(λ) respectively.

Lemma 3.1 Denote Sn =
∑n

i=1Xi and σ2
∗ =

∑
i∈Z Cov(X0, Xi). Under the assump-

tion (A2), we have ∥S2n − 2Sn∥2 = 2nσ2
∗ + O(1) (see proof of Lemma 4 in Wu and

Zhao (2007)). Also, let k = m+ 2l, for l = 1, 2, . . . , l
′, we have

l
′∑

l=1

Cov(S(k+1)n − 2Skn + S(k−1)n, S(m+1)n − 2Smn + S(m−1)n) <∞ (3.3.1)

and the same result can be derived when we let k = m− 2l, for l = 1, 2, . . . , l
′.

Proof: Denote γ(n) = Cov(Y0, Yn) = Cov(X0, Xn) and Sn =
∑n

i=1Xi. We have that

when |k −m| ⩾ 2

Cov(S(k+1)n − 2Skn + S(k−1)n, S(m+1)n − 2Smn + S(m−1)n)

= Cov

 (k+1)n∑
i=kn+1

Xi −
kn∑

i=(k−1)n+1

Xi,

(m+1)n∑
i=mn+1

Xi −
mn∑

i=(m−1)n+1

Xi
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⩽

∣∣∣∣∣∣Cov

 (k+1)n∑
i=kn+1

Xi,

(m+1)n∑
i=mn+1

Xi

∣∣∣∣∣∣+
∣∣∣∣∣∣Cov

 (k+1)n∑
i=kn+1

Xi,
mn∑

i=(m−1)n+1

Xi

∣∣∣∣∣∣ (3.3.2)

+

∣∣∣∣∣∣Cov

 kn∑
i=(k−1)n+1

Xi,

(m+1)n∑
i=mn+1

Xi

∣∣∣∣∣∣+
∣∣∣∣∣∣Cov

 kn∑
i=(k−1)n+1

Xi,

mn∑
i=(m−1)n+1

Xi

∣∣∣∣∣∣
⩽

2n∑
h=1

h|γ(n|k −m| − 2n+ h)|+
2n∑
h=1

(2n− h)|γ(n|k −m|+ h)|

Let k = m+ 2l, for l = 1, 2, . . . , l
′ . A straightforward calculation shows that

l
′∑

l=1

Cov(S(k+1)n − 2Skn + S(k−1)n, S(m+1)n − 2Smn + S(m−1)n)

⩽
2n∑
h=1

h|γ(h)|+ 2n

(2l
′−2)n∑
h=1

|γ(2n+ h)|+
2n∑
h=1

(2n− h)|γ(2l′n+ h)| ⩽
∞∑
h=1

h|γ(h)| <∞

(3.3.3)

And the same result can be derived when let k = m− 2l, for l = 1, 2, . . . , l
′ .

Lemma 3.2 Let mj = 2j−1 and S1
j = {1 ⩽ k ⩽ n/(2mj) : dj,k is such that (2k −

2)mj + 1 < ηi < 2kmj for some i = 1, 2, . . . , q} and S0
j = {1, 2, . . . , n/(2mj)} \ S1

j . If

assumption (A3) is satisfied, for any j = 1, 2, . . . , J , k ∈ S0
j , as n→ ∞

P

 1√
2mj

∣∣∣∣∣∣
2kmj∑

i=(2k−1)mj+1

Yi −
(2k−1)mj∑

i=(2k−2)mj+1

Yi

∣∣∣∣∣∣ > C
√
log(n)

→ 0 (3.3.4)

i.e. P
{
|dj,k| > C

√
log(n)

}
→ 0 for some C, and we have Kj/K

∗
j − 1 = op(n

−1+ν0)

when ν0 > ν (detailed conditions of these parameters can be found in proof), for any

j = ν log2(n).

Proof: We apply Theorem 2 in Wu and Wu (2016) and it follows that under the

assumption (A3), (i) if υ > 1/2− 1/p, there exist some constants C1, C2 and C3 only
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depending on p and υ such that, for all
√
aλ > 0,

P (|Sa| >
√
aλ) ⩽ C1

a∥X.∥pp,υ
(
√
aλ)p

+ C2 exp

(
− C3aλ

2

a∥X.∥22,υ

)
(3.3.5)

(ii) If υ < 1/2− 1/p, for all
√
aλ > 0, there exists the inequality

P (|Sa| >
√
aλ) ⩽ C1

ap/2−υp∥X.∥pp,υ
(
√
aλ)p

+ C2 exp

(
− C3aλ

2

a∥X.∥22,υ

)
. (3.3.6)

After setting a = nν , 0 < ν < 1 and λ = C
√

log(n) for certain C, we have

C1

a∥X.∥pp,υ
(
√
aλ)p

+ C2 exp

(
− C3aλ

2

a∥X.∥22,υ

)
= O(nν(1−p/2) log(n)−p/2) +O(exp(−C4 log(n)))

= O(nν(1−p/2) log(n)−p/2 + n−C4)

(3.3.7)

where C4 is a positive constant that depends on p, υ, C and the dependence condition

∥X.∥2,υ. In addition,

C1

ap/2−υp∥X.∥pp,υ
(
√
aλ)p

+ C2 exp

(
− C3aλ

2

a∥X.∥22,υ

)
= O(n−υνp log(n)−p/2 + n−C4). (3.3.8)

For 2mj = nν , we can know that P (|dj,k| > λ) should have the same order as (3.3.7)

or (3.3.8) for all k ∈ S0
j . Given the fact that the signal ft is piecewise constant with

finite change-points, the set S1
j contains a finite number of elements, independently of

n ∈ N and |S0
j | = O(n1−ν). Then, applying a Bonferroni correction, we have that (i)

when ν > min(2/p, 1− C4),

P
(
K∗

j < |S0
j |
)
= P

{
∃k ∈ S0

j , |dj,k| > λ
}
⩽
∑
k∈S0

j

P (|dj,k| > λ)

⩽ |S0
j |P (|dj,k| > λ)

= O(n1−νp/2 log(n)−p/2 + n1−ν−C4)

→ 0 as n→ ∞

(3.3.9)
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(ii) Or when ν > min(1/(1 + υp), 1− C4),

P
(
K∗

j < |S0
j |
)
= O(n1−ν−υνp log(n)−p/2 + n1−ν−C4) → 0 as n→ ∞ (3.3.10)

As Kj = n1−ν , for any δn > 0, we can always find a value j′ leading to δnKj ⩾ |S1
j |

when j > j′ and δn = O(n−1+ν0), where ν0 > ν. It hence gives

lim
n→∞

P

(
1−

K∗
j

Kj

> δn

)
= lim

n→∞
P (Kj −K∗

j > δnKj)

= lim
n→∞

P (K∗
j < (1− δn)Kj)

⩽ lim
n→∞

P (K∗
j < |S0

j |) = 0

(3.3.11)

And we can also obtain that for any δ′n ⩾ δn/(1− δn),

lim
n→∞

P

(
Kj

K∗
j

− 1 > δ
′

n

)
= lim

n→∞
P

(
1−K∗

j /Kj

K∗
j /Kj

> δ
′

n

)
= 0 (3.3.12)

And hence we have Kj/K
∗
j − 1 = op(n

−1+ν0) when ν0 > ν > min(2/p, 1 − C4) if

υ > 1/2− 1/p (or ν0 > ν > min(1/(1 + υp), 1− C4) if υ < 1/2− 1/p).

Lemma 3.3 Let S̃1
j = {1 ⩽ k ⩽ n− 2mj + 1 : W̃j,k is such that k < ηi < k + 2mj −

1 for some i = 1, 2, . . . , N} and S̃0
j = {1, 2, . . . , n− 2mj + 1} \ S̃1

j . Under assumption

(A3), for any j = 1, 2, . . . , J , k ∈ S̃0
j , as n→ ∞,

P

 1√
2mj

∣∣∣∣∣∣
k+2mj−1∑
i=k+mj

Yi −
k+mj−1∑

i=k

Yi

∣∣∣∣∣∣ > C̆
√

log(n)

→ 0 (3.3.13)

i.e. P
{√

2mj|W̃j,k| > C̆
√

log(n)
}

→ 0 for some C, and for any j = ν log2(n), we

have (n − 2mj + 1)/T ∗
j − 1 = op(n

−1+ν0) when ν0 > ν (detailed conditions of these

parameters can be found in the proof).
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Proof: Let λ = C
√

(1 + κ) log(n) given some κ. From inequalities (3.3.5) and (3.3.6) in

Lemma 2, we can know that P (|
√

2mjW̃j,k| > λ) = O(nν(1−p/2) log(n)−p/2 + n−C4(1+κ))

(or O(n−υνp log(n)−p/2 + n−C4(1+κ))), where C4 is a positive constant depending on p,

υ, C and the dependence condition ∥X.∥2,υ, for all k ∈ S̃0
j . Similarly, as |S̃0

j | = O(n),

applying a Bonferroni correction, we have (i) when κ > 1/C4 − 1 and ν ⩾ 2/(p− 2),

P
(
T ∗
j < |S̃0

j |
)
= P

{
∃k ∈ S̃0

j , |
√
2mjW̃j,k| > λ

}
⩽
∑
k∈S̃0

j

P
(
|
√
2mjW̃j,k| > λ

)
⩽ |S̃0

j |P
(
|
√

2mjW̃j,k| > λ
)

= O(n1+ν−νp/2 log(n)−p/2 + n1−C4(1+κ))

→ 0 as n→ ∞
(3.3.14)

And (ii) when κ > 1/C4 − 1 and ν ⩾ 1/(υp),

P
(
T ∗
j < |S̃0

j |
)
= O(n1−υνp log(n)−p/2 + n1−C4(1+κ))

→ 0 as n→ ∞
(3.3.15)

Let Tj = n − 2mj + 1. Also, since |S̃1
j | = O(nν), for any δn > 0, we can always find

a value j′ leading to δnTj > |S̃1
j | when j > j′ and δn = O(n−1+ν0), where ν0 > ν. It

hence gives

lim
n→∞

P

(
1−

T ∗
j

Tj
> δn

)
= lim

n→∞
P (Tj − T ∗

j > δnTj)

= lim
n→∞

P (T ∗
j < (1− δn)Tj)

⩽ lim
n→∞

P (T ∗
j < |S̃0

j |) = 0

(3.3.16)

And we can also obtain that for any δ′n ⩾ δn/(1− δn),

lim
n→∞

P

(
Tj
T ∗
j

− 1 > δ
′

n

)
= lim

n→∞
P

(
1− T ∗

j /Tj

T ∗
j /Tj

> δ
′

n

)
= 0 (3.3.17)

And hence we have (n − 2mj + 1)/T ∗
j − 1 = op(n

−1+ν0) when κ > 1/C4 − 1 and
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ν0 > ν ⩾ 2/(p− 2) if υ > 1/2− 1/p (or ν0 > ν ⩾ 1/(υp) if υ < 1/2− 1/p).

Throughout the paper, whenever we refer to the estimators σ̂2(λ) as “consistent”, we

mean it in the sense that (σ̂2(λ)− σ2
∗)

2 → 0 or simply |σ̂2(λ)− σ2
∗| → 0, on a set with

probability approaching 1 with sample size n. Here, we shall provide the asymptotic

properties and theoretically compare the estimators. More information for constant C

is given in lemmas 3.2 and 3.3, and that for constants ã and ν0 is shown in the proof

of Theorem 3.1 and Theorem 3.2, see Section 3.7.

For our mean-based asymptotically consistent estimators σ̂2
1 and σ̂2

1(λ), we introduce a

set An (3.3.18). Given the inequality in Lemma 3.2 such that P{|dj,k| > C
√
log(n)} →

0 for some constant C when k ∈ S0
j as n→ ∞, we have P (An) → 0 for λ = C

√
2 log(n)

as well, which arises from the fact that dj,k = Zj,k for any k ∈ S0
j , j = 1, . . . , J .

Heuristically speaking, on the set An, the estimator σ̂2
1(λ) is well-behaved in the sense

that the wavelet coefficients with or without the signals can be successfully separated

with threshold λ.

Theorem 3.1 Let Yi follows the model (2.2.1) with piecewise-constant signal in (3.1.1)

plus the stationary error process Xi in (3.1.2) satisfying Assumptions (A1)-(A3). Let

a and b denote the minimum and maximum value of scales chosen for estimators re-

spectively. Write a = α log2(n) and b = β log2(n). Let the threshold parameter satisfy

λ = C
√

2 log(n) for certain constant C. On the set An, defined by

An =

∀ 1 ⩽ k ⩽ n(2mj)
−1 1√

2mj

∣∣∣∣∣∣
2kmj∑

i=(2k−1)mj+1

Xi −
(2k−1)mj∑

i=(2k−2)mj+1

Xi

∣∣∣∣∣∣ ⩽ λ


(3.3.18)

which contains all |Zj,k| ⩽ λ at k = 1, . . . , n(2mj)
−1. When it satisfies P (An) → 1, we
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have for some 0 < α ⩽ β < 1,

|σ̂2
1(λ)− σ2

∗| = Op{(n−1+β+ã + n−α) log2(n)
−1}

|σ̂2
1 − σ2

∗| = Op{(n−1+β+ã + n−α + n−1+2β) log2(n)
−1}

(3.3.19)

where α ⩾ 1/(2+ 2υ) and ã > (1− β)/2 (ã > (1− β)(1/2− 1/υ)) when υ > 1/2− 1/p

(υ < 1/2− 1/p).

In general, for a small positive constant ∆a, write ã = (1 − β)/2 + ∆a (ã = (1 −

β)(1/2 − 1/υ) + ∆a) when υ > 1/2 − 1/p (υ < 1/2 − 1/p). Given 1 ⩽ α ⩽ β < 1,

we can see the error |σ̂2
1(λ) − σ2

∗| goes to zero when 1/(2 + 2υ) ⩽ α ⩽ β < 1 − 2∆a

or 1/(2 + 2υ) ⩽ α ⩽ β < 1 − ∆a/(1/2 + 1/υ) respectively. Meanwhile, the selection

of α and β that helps the error |σ̂2
1 − σ2

∗| converging to zero is similar but bounded

more conservatively by min(1/2, 1 − 2∆a) or min(1/2, 1 −∆a/(1/2 + 1/υ)). If 1/2 ⩽

β < 1 − 2∆a (1/2 ⩽ β < 1 −∆a/(1/2 + 1/υ)) when υ > 1/2 − 1/p (υ < 1/2 − 1/p),

the estimator with thresholding σ̂2
1(λ) will outperform σ̂2

1. Also, it is interesting to

note that when υ > 1/2 − 1/p, σ̂2
1(λ) could achieve the optimal error |σ̂2

1(λ) − σ2
∗| =

Op{(n(−1+2∆a)/3) log2(n)
−1} if α = β = (1 − 2∆a)/3, which is close to that of MSE

optimal variance estimate introduced in Wu and Zhao (2007) and Dette et al. (2020)

when ∆a is small enough. Also, when υ < 1/2 − 1/p, we have the optimal error

|σ̂2
1(λ) − σ2

∗| = Op{(n(−1/2−1/υ+∆a)/(3/2+1/υ))) log2(n)
−1} with α = β = (1/2 + 1/υ −

∆a)/(3/2 + 1/υ), which seems that our estimators can outperform when there exists

a tiny υ, i.e. under a strong dependence case. However, the following restriction is

required to be discussed as well.

From a more detailed perspective, we shall also consider the inequality α > min(2/p, 1−

C4) when υ > 1/2−1/p (or α > min(1/(1+υp), 1−C4) when υ < 1/2−1/p) introduced

in Lemma 3.2, where p, υ and C are pre-specified parameters, and C4 is a positive

constant that depends on p, υ, C and the dependence condition ∥X.∥2,υ with C being
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a user-tailored constant in threshold λ. In particular, the value of C4 should not be

ignored (can be relatively small) when q and C are large and υ, together with ∥X.∥2,υ,

is small. However, because ∥X.∥2,υ is closely related to the underlying model of error

process and no explicit formulas are provided for constants in Nagaev inequality (3.3.5),

we can hardly provide the precise value of constant C4 and hence cannot further narrow

the range of α and β derived above.

In terms of the choice of scales following a = α log2(n) and b = β log2(n), the existence

of indicator function in both numerator and denominator of our estimators, such as

1/K∗
j and 1(|dj,k|⩽λ) in σ̂2

1(λ), complicates the computation of E[σ̂2
1(λ)]. To be specific,

even under the strict assumption that the noise Xi is a Gaussian process, we still

have difficulty dealing with E[1/K∗
j

∑Kj

k=1 d
2
j,k1(|dj,k|⩽λ)] when the explicit formula of

E[d2j,k1(|dj,k|⩽λ)] can be easily derived as follows

E[d2j,k1(|dj,k|⩽λ)] = Var(dj,k1(|dj,k|⩽λ))

= σ2
j

[
1 +

−(λ/σj)ϕ(−λ/σj)− (λ/σj)ϕ(λ/σj)

Φ(λ/σj)− Φ(−λ/σj)

]
= σ2

j

[
1− (λ/σj)ϕ(λ/σj)

Φ(λ/σj)− 1/2

]
= σ2

j (1− Cj)

where σj =
√

Var(dj,k), ϕ(·) and Φ(·) are probability density function and cumula-

tive distribution function of standard normal distribution respectively. The function

xϕ(x)/(Φ(x) − 1/2) is a monotonically decreasing function, which maps (0,∞) onto

(0, 1). Consequently, it becomes challenging to decide the optimal value of scales a and

b with respect to bias-variance trade-off. Therefore, instead, we offer practical guidance

on the selection of scales in Section 3.4.1.

Analogously, we provide a set Bn (3.3.18) for MODWT-based estimators σ̂2
2 and σ̂2

2(λ).

Similarly, the set satisfies that P (Bn) → 0 as n → ∞ when λ = C
√
2 log(n) due to

the inequality P{|W̃j,k| > C
√

log(n)} → 0, k ∈ S̃0
j , j = 1, . . . , J0, for some constant C



3.3 Asymptotic Properties of Estimators 98

proved in Lemma 3.3. And we have the following conclusion.

Theorem 3.2 Let Yi follows the model (2.2.1) with piecewise-constant signal in (3.1.1)

plus the stationary error process Xi in (3.1.2) satisfying Assumptions (A1)-(A3). Let

a and b denote the minimum and maximum value of scales chosen for estimators re-

spectively. Write a = α log2(n) and b = β log2(n). Let the threshold parameter satisfy

λ = C
√
2 log(n) for certain constant C. Considering the set Bn,

Bn =

∀ 1 ⩽ k ⩽ n− 2mj + 1
1√
2mj

∣∣∣∣∣∣
k+2mj−1∑
i=k+mj

Xi −
k+mj−1∑

i=k

Xi

∣∣∣∣∣∣ ⩽ λ

 (3.3.20)

which contains all |Z̃j,k| ⩽ λ at k = 1, . . . , n(2mj)
−1. When it satisfies P (Bn) → 1 for

some constant C (different from the one in Theorem 3.1), we have for some 0 < α ⩽

β < 1,
|σ̂2

2(λ)− σ2
∗| = Op{(n−1+ã + n−α + n−1+ν0) log2(n)

−1}

|σ̂2
2 − σ2

∗| = Op{(n−1+ã + n−α + n−1+2β) log2(n)
−1}

(3.3.21)

when α ⩾ 1/(2 + 2υ), ν0 > β and ã > 1/2.

Similarly, on the one hand, we discuss the choice of constants α, β, ã and ν0 from a

general perspective. Given 0 < α ⩽ β < 1, the error |σ̂2
2(λ)−σ2

∗| (or |σ̂2
2−σ2

∗|) is proved

to converge to zero when 1/(2 + 2υ) ⩽ α < ν0 < 1 (or 1/(2 + 2υ) ⩽ α ⩽ β < 1/2)

and 1/2 < ã < 1. If β ⩾ 1/2, the estimator σ̂2
2(λ) will outperform σ̂2

2. Also, write

ν0 = α + ∆ν , the estimator with thresholding σ̂2
2(λ) could achieve the optimal error

|σ̂2
1(λ)−σ2

∗| = Op{(n(−1+∆ν)/2) log2(n)
−1} if α = 1− ã = (1−∆ν)/2 while σ̂2

2 could get

|σ̂2
1−σ2

∗| = Op{(n−1/3 log2(n)
−1} when α = β = 1/3. On the other hand, the underlying

condition from Lemma 3.3 for Theorem 3.2 is ν0 > ν ⩾ 2/(p − 2) if υ > 1/2 − 1/p

(or ν0 > ν ⩾ 1/(υp) if υ < 1/2 − 1/p), which would be impacted by the pre-specified

parameters p and υ. Moreover, compared to estimators built on DWT, Lemma 3.3

imposes stricter restrictions on constants depending on p and υ. These constraints can
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significantly influence the optimal choice of constants α, β, ã and ν0, thereby affecting

the optimal error of estimators constructed with MODWT.

Furthermore, for the median-based estimators σ̂3(λ) and σ̂4(λ), while we do not present

their analogous consistency proofs in this thesis, we do include them in our comparative

simulation studies of Section 3.4.

3.4 Simulation Studies I

In this section, we shall run a series of tests on dependent data with piecewise-constant

signals. To intuitively display the efficacy of our new estimators σ̂2
2(λ) and σ̂2

4(λ), we

will set several estimators mentioned in Chapter 2 as the benchmark. To be specific,

approaches (A1) and (A2) represent the estimators proposed in Wu and Zhao (2007),

with definitions (2.4.9) and (2.4.10) respectively; also, the estimator (2.4.11) introduced

in Dette et al. (2020) is recorded as approach (A3); (A4) indicates the general frame-

work developed by Chan (2022), with definition (2.4.15). Meanwhile, we also consider

the two estimators built on the assumption of an AR(p) error process: (A5) is the

difference-based estimator proposed in Khismatullina and Vogt (2020), implemented

in R package dlrv available on the author’s website, and (A6) is the residual-based

estimator introduced in Qiu et al. (2013), with definition (2.4.6), where all calculations

are implemented by R package aTSA (Qiu, 2015) and itsmr (Weigt, 2022). (A7)

stands for the estimator introduced in Dette et al. (2019), which is defined as (2.4.13).

Only the MODWT-based estimators σ̂2
2(λ) and σ̂2

4(λ) are tested here since they can

be applied without the restriction of dyadic sample size. All parameters are chosen as

recommended in the corresponding papers.

As mentioned in Remark 3.1, the commonly used ARMA process is a special case in the

general system applied for our dependent noise and it satisfies all of the assumptions
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listed in the previous section. When the error process {Xi}ni=1 follows an ARMA(p, q)

model represented with Φ(B)Xt = Θ(B)ϵt and Var(ϵt) = σ2, its LRV can also be

written as σ2
∗ = σ2(Θ(1)/Φ(1))2 (Lee and Phillips, 1994). This explicit formula for

true LRV makes it the concentration of our simulation.

To evaluate the performance of our estimators, we report the normalized absolute error

(NAE) between true and estimated LRVs, which is given by σ̃∗ = |σ∗ − σ̂∗|/σ∗. Also,

though detailed rules have not been fully investigated, we shall first provide some

guidance on the choice of important parameters, such as λ, a and b, for the new LRV

estimators.

3.4.1 Practical considerations

The choice of λ. For the threshold λ = C
√
log(n), our decision is initiated from

the MAD-based robust estimator in Johnstone and Silverman (1997) developed for

computing the wavelet transformed noise level at particular scale j, which is defined as

σ̂j = MAD(dj,k, k = 1, . . . , n/(2mj))/z1/4, where z1/4 is the third quartile of the stan-

dard normal distribution. And for the MODWT case, we have σ̂j = MAD(W̃j,k, k =

1, . . . , n − 2mj + 1)/z1/4. For simplicity, we choose an overall threshold for all scales

and recommend λ = Ċ(
√
2mJ∗σ̂J∗)

√
2 log(n), where J∗ = ⌊log2(n)/2⌋. The value Ċ is

chosen to be 0.5 for σ̂2
2(λ) and 0.75 for σ̂2

4(λ). In practice, this constant can be somehow

related to signal-to-noise ratio in data, which may be discussed in future work.

The choice of a and b. In our simulation studies, we report the results obtained with

a = 4 and b = 4 for the smallest sample size n = 100 whereas a = ⌈2 log2(n)/5⌉ and

b = ⌊2 log2(n)/3⌋ for larger n.
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3.4.2 Settings

Here we consider a variety of ARMA(p, q) error structures {Xi}ni=1, see (N1)-(N18).

To provide more results, we assess the performance of different estimators both in the

case of no change-points (q = 0) and one or more change-points (q ⩾ 1) over different

sample sizes. In the following, we shall present the outcomes of six typical settings

and postpone the descriptions of the simulation results from the remaining scenarios

to Appendix 3.6. We also consider the scenario where the signal θi = 0 to evaluate the

possible under- or over-estimation for independent data.

(M1) ft undergoes q = 0 with n = 200;

(M2) ft undergoes q = 0 with n = 500;

(M3) ft undergoes q = 1 change-points at η1 = 30 with n = 100 and (θ1, θ2) =

(2.5,−2.5);

(M4) ft undergoes q = 1 change-points at η1 = 100 with n = 200 and (θ1, θ2) =

(1.5,−1.5);

(M5) ft undergoes q = 2 change-points at (η1, η2) = (30, 80) with n = 150 and

(θ1, θ2, θ3) = (−1, 3,−3);

(M6) ft undergoes q = 2 change-points at (η1, η2) = (80, 200) with n = 300 and

(θ1, θ2, θ3) = (0, 2,−2);

and the ARMA(p, q) noise follows

(N1) AR(1)SP : ϕ = 0.20, σ = 1.00;

(N2) AR(1)LP : ϕ = 0.80, σ = 0.50;

(N3) AR(1)SN : ϕ = −0.20, σ = 1.00;

(N4) AR(1)LN : ϕ = −0.80, σ = 0.50;

(N5) AR(2)P : ϕ = c(0.75,−0.15), σ = 0.50;

(N6) AR(2)N : ϕ = c(−0.75, 0.15), σ = 0.50;

(N7) MA(1)SP : θ = 0.20, σ = 1.00;
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(N8) MA(1)LP : θ = 0.80, σ = 1.00;

(N9) MA(1)SN : θ = −0.20, σ = 1.00;

(N10) MA(1)LN : θ = −0.80, σ = 1.00;

(N11) MA(6)1: θ = c(0.80, 0.70, 0.60, 0.50, 0.40, 0.30), σ = 0.75;

(N12) MA(6)2: θ = c(0.80,−0.70, 0.60, 0.50,−0.40, 0.30), σ = 1.00;

(N13) ARMA(1, 1)1: ϕ = 0.50, θ = 0.75, σ = 0.75;

(N14) ARMA(1, 1)2: ϕ = 0.50, θ = −0.75, σ = 1.00;

(N15) ARMA(1, 1)3: ϕ = −0.50, θ = 0.75, σ = 1.00;

(N16) ARMA(1, 1)4: ϕ = −0.50, θ = −0.75, σ = 0.50;

(N17) ARMA(2, 6)1: ϕ = c(0.75,−0.15), θ = c(0.80, 0.70, 0.60, 0.50, 0.40, 0.30), σ =

0.25;

(N18) ARMA(2, 6)2: ϕ = c(−0.75, 0.15), θ = c(0.80, 0.70, 0.60, 0.50, 0.40, 0.30), σ =

0.50.

where ϕ, θ and σ represent the parameters we simulate in R.

Models (M1) and (M3) to (M7) consider relatively shorter time series with n ∈ [100, 300].

Models (M7), (M9), (M11) and (M13) contain relatively more frequent change-points

which can be close to each other. On the other hand, noise models (N1)-(N18) repre-

sent ARMA(p, q) stationary error scenarios. Among all models, AR models (N4) and

(N6), MA model (N10) and ARMA models (N14) and (N16) have LRV closer to zero,

making its accurate estimation difficult. Models (A2), (A5) and (A17) show stronger

autocorrelations in the error process {Xi}ni=1.

In general, we evaluate the performance of all methods when the signal series satisfies

models (M1) and (M4)-(M9). When sample size increases, algorithms (A5) and (A6),

proposed under the assumption of an AR(p) error process tend to possess a larger com-

putation burden with the R packages mentioned in their papers. Hence, for simulated

data produced by the other signal models, we only test the effectiveness of estimators

(A1)-(A4), (A7) and the two introduced wavelet-based estimators.
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3.4.3 Results

Table 3.1 to 3.6 and Table 3.10 to 3.17 summarise the results of the comparative

simulation studies from 100 realisations under each combination of signal and noise,

i.e. (M1)-(M14) and (N1)-(N18). Besides NAEs for all models, we also provide simple

summations on NAEs and record them under “Total” and “Subtotal”, where “Total”

is for the sum of all elements above while “Subtotal” shows that of elements under

different model choices. These two measures can help us illustrate the effectiveness of

estimators on different noises in general and also demonstrates their performance on

some of the error processes that most estimators can work well with.

The reason for computing “Subtotal” is that we can see most tested estimators show

poor performance on estimating data with the negatively correlated noise such as

AR(1)LN and MA(1)LN . Such failure in estimation is largely resulted from the nature

of the true LRV of the tested noise. For example, AR(1)LN Xi = −0.8Xi−1 + ϵi with

σ = 0.5 has σ2
∗ ≈ 0.1389 and MA(1)LN Xi = ϵi − 0.8ϵi−1 with σ = 1 leads to σ2

∗ = 0.2.

These values are too small in practice, making the bias more obvious. Therefore, to be

specific, for AR models, “Subtotal” only contains AR(1)SP , AR(1)LP , AR(1)SN , and

AR(2)P ; for MA models, “Subtotal” represents all models except MA(1)LN ; for ARMA

models, it denotes ARMA(1,1)1, ARMA(1,1)3, ARMA(2,6)1, and ARMA(2,6)2; i.e.

not consider the case with large negative coefficients.

Table 3.1 to 3.6 and Table 3.10 to 3.17 summarise the simulation results of the LRV

estimators (A1)-(A7) for all combinations of signal and noise, where the methods that

achieve the relatively best performance are highlighted in bold for the corresponding

scenario. Overall, these tables indicate that our wavelet-based estimators can perform

at least as well as the existing ones when the sample size is small and have relatively

better performance for data with larger sample size, especially for dataset with MA

parameters. In addition, although the median-based estimator cannot outperform the
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mean-based one when applying the chosen λ, it can generally be more robust to the

dependence structure of the time series.

Table 3.1: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M1), where n = 200 and q = 0, and noises following
an ARMA model (N1)-(N18) based on approaches (A1)-(A7), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 5.

(A1) (A2) (A3) (A4) (A5) (A6) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 0.083 0.126 0.089 0.298 0.081 0.096 0.082 0.116 0.130
AR(1)LP 0.554 0.557 0.554 0.166 0.197 0.609 0.617 0.264 0.258
AR(1)SN 0.109 0.151 0.115 0.195 0.053 0.101 0.079 0.108 0.158
AR(1)LN 0.718 0.716 0.693 0.740 0.037 0.515 0.346 0.186 0.208
AR(2)P 0.258 0.256 0.261 0.142 0.116 0.574 0.291 0.141 0.146
AR(2)N 1.076 1.099 1.039 0.664 0.090 0.513 0.184 0.182 0.222

Subtotal 1.004 1.090 1.019 0.801 0.447 1.380 1.069 0.629 0.692
Total 2.798 2.905 2.751 2.205 0.574 2.408 1.599 0.997 1.122

MA(1)SP 0.130 0.181 0.122 0.236 0.089 0.108 0.089 0.132 0.141
MA(1)LP 0.133 0.158 0.143 0.582 0.143 0.260 0.107 0.133 0.161
MA(1)SN 0.133 0.233 0.104 0.262 0.102 0.145 0.120 0.140 0.165
MA(1)LN 2.859 2.851 2.785 0.638 3.206 3.351 3.100 1.335 1.283
MA(6)L 0.386 0.372 0.395 1.118 0.368 0.232 0.496 0.175 0.165
MA(6)M 0.293 0.288 0.297 0.383 0.247 0.264 0.332 0.129 0.153

Subtotal 1.075 1.232 1.061 2.581 0.949 1.009 1.144 0.709 0.785
Total 3.934 4.083 3.846 3.219 4.155 4.360 4.244 2.044 2.068

ARMA(1, 1)1 0.246 0.246 0.252 1.128 0.194 0.151 0.303 0.115 0.108
ARMA(1, 1)2 0.595 0.618 0.597 0.331 0.800 0.747 0.794 0.300 0.338
ARMA(1, 1)3 0.068 0.118 0.067 0.237 0.117 0.116 0.082 0.102 0.129
ARMA(1, 1)4 4.218 4.452 4.086 0.923 3.647 1.395 4.059 2.064 1.997
ARMA(2, 6)1 0.490 0.496 0.495 0.481 0.258 0.812 0.583 0.171 0.182
ARMA(2, 6)2 0.348 0.338 0.348 0.278 0.481 0.345 0.475 0.136 0.191

Subtotal 1.152 1.198 1.162 2.124 1.050 1.424 1.443 0.524 0.610
Total 5.965 6.268 5.845 3.378 5.497 3.566 6.296 2.888 2.945



3.4 Simulation Studies I 105

Table 3.2: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M2), where n = 500 and q = 0, and noises following
an ARMA model (N1)-(N18) based on approaches (A1)-(A5), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 5.

(A1) (A2) (A3) (A4) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 0.099 0.128 0.095 0.194 0.077 0.080 0.101
AR(1)LP 0.471 0.470 0.472 0.189 0.564 0.267 0.278
AR(1)SN 0.107 0.150 0.094 0.192 0.057 0.058 0.074
AR(1)LN 0.410 0.376 0.428 0.700 0.686 0.208 0.212
AR(2)P 0.156 0.164 0.166 0.179 0.230 0.088 0.090
AR(2)N 0.846 0.877 0.823 0.671 1.076 0.159 0.149

Subtotal 0.833 0.912 0.827 0.754 0.928 0.493 0.543
Total 2.089 2.165 2.078 2.125 2.690 0.860 0.904

MA(1)SP 0.067 0.095 0.074 0.124 0.062 0.073 0.093
MA(1)LP 0.092 0.107 0.095 0.698 0.082 0.087 0.092
MA(1)SN 0.099 0.125 0.099 0.185 0.100 0.059 0.066
MA(1)LN 2.101 2.094 2.107 0.684 2.567 1.339 1.270
MA(6)L 0.262 0.267 0.261 1.296 0.400 0.143 0.144
MA(6)M 0.212 0.220 0.213 0.506 0.259 0.132 0.133

Subtotal 0.732 0.814 0.742 2.809 0.903 0.494 0.528
Total 2.833 2.908 2.849 3.493 3.470 1.833 1.798

ARMA(1, 1)1 0.162 0.197 0.160 1.137 0.243 0.113 0.120
ARMA(1, 1)2 0.565 0.589 0.554 0.331 0.743 0.282 0.249
ARMA(1, 1)3 0.087 0.098 0.089 0.173 0.055 0.075 0.086
ARMA(1, 1)4 2.978 3.132 2.948 0.896 3.791 1.983 1.898
ARMA(2, 6)1 0.321 0.314 0.327 0.703 0.467 0.174 0.154
ARMA(2, 6)2 0.278 0.291 0.272 0.167 0.332 0.146 0.156

Subtotal 0.848 0.900 0.848 2.180 1.097 0.508 0.516
Total 4.391 4.621 4.350 3.407 5.631 2.773 2.663
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Table 3.3: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M3), where n = 100 and q = 1, and noises following
an ARMA model (N1)-(N18) based on approaches (A1)-(A7), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 4.

(A1) (A2) (A3) (A4) (A5) (A6) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 0.123 0.138 0.192 1.201 0.782 0.825 0.148 0.168 0.246
AR(1)LP 0.496 0.547 0.432 0.524 0.483 0.317 0.518 0.563 0.552
AR(1)SN 0.420 0.332 0.634 1.455 1.139 1.442 0.552 0.159 0.161
AR(1)LN 1.564 0.545 2.846 0.851 3.626 3.637 2.864 0.219 0.118
AR(2)P 0.099 0.181 0.073 0.283 1.350 0.183 0.082 0.232 0.270
AR(2)N 1.247 0.340 2.466 1.790 8.990 6.433 3.142 0.186 0.157

Subtotal 1.138 1.198 1.331 3.463 3.754 2.767 1.300 1.122 1.229
Total 3.949 2.083 6.643 6.104 16.370 12.837 7.306 1.527 1.504

MA(1)SP 0.289 0.295 0.361 3.269 1.102 1.135 0.252 0.160 0.241
MA(1)LP 0.124 0.188 0.095 2.187 0.672 0.923 0.076 0.167 0.217
MA(1)SN 0.517 0.258 0.741 1.966 1.330 1.673 0.673 0.140 0.197
MA(1)LN 4.286 3.309 5.392 2.759 6.529 10.218 5.701 2.065 1.639
MA(6)L 0.397 0.431 0.373 3.679 0.811 0.570 0.495 0.413 0.368
MA(6)M 0.160 0.222 0.130 3.986 0.096 0.907 0.253 0.178 0.257

Subtotal 1.487 1.394 1.700 15.087 4.011 5.208 1.749 1.058 1.280
Total 5.773 4.703 7.092 17.846 10.540 15.426 7.450 3.123 2.919

ARMA(1, 1)1 0.257 0.294 0.240 3.689 0.484 0.394 0.326 0.289 0.185
ARMA(1, 1)2 1.065 0.700 1.436 1.948 2.356 2.887 1.546 0.523 0.423
ARMA(1, 1)3 0.274 0.298 0.326 3.256 1.101 1.088 0.264 0.137 0.162
ARMA(1, 1)4 8.101 4.675 11.969 9.175 13.965 15.726 11.772 2.765 1.981
ARMA(2, 6)1 0.451 0.487 0.414 2.867 1.924 0.317 0.537 0.432 0.368
ARMA(2, 6)2 0.214 0.358 0.094 0.561 1.958 0.880 0.128 0.306 0.281

Subtotal 1.196 1.437 1.074 10.373 5.467 2.679 1.255 1.164 0.996
Total 10.362 6.812 14.479 21.496 21.788 21.292 14.573 4.452 3.400



3.4 Simulation Studies I 107

Table 3.4: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M4), where n = 200 and q = 1, and noises following
an ARMA model (N1)-(N18) based on approaches (A1)-(A5), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 5.

(A1) (A2) (A3) (A4) (A5) (A6) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 0.141 0.161 0.151 0.620 0.121 0.233 0.089 0.160 0.147
AR(1)LP 0.461 0.470 0.440 0.390 0.196 0.455 0.507 0.417 0.413
AR(1)SN 0.178 0.239 0.208 0.195 0.114 0.387 0.220 0.076 0.079
AR(1)LN 0.693 0.352 1.355 0.627 0.339 0.854 1.621 0.286 0.236
AR(2)P 0.130 0.141 0.111 0.450 0.207 0.230 0.118 0.155 0.192
AR(2)N 0.612 0.307 1.118 2.081 1.535 1.917 1.831 0.186 0.163

Subtotal 0.910 1.011 0.910 1.655 0.638 1.305 0.934 0.808 0.831
Total 2.215 1.670 3.383 4.363 2.512 4.076 4.386 1.280 1.230

MA(1)SP 0.100 0.136 0.107 0.880 0.152 0.330 0.066 0.110 0.131
MA(1)LP 0.071 0.125 0.067 1.109 0.234 0.515 0.077 0.058 0.073
MA(1)SN 0.261 0.217 0.310 0.382 0.154 0.509 0.226 0.112 0.084
MA(1)LN 2.690 2.385 3.152 0.733 3.585 5.489 3.432 1.868 1.758
MA(6)L 0.297 0.274 0.308 1.501 0.214 0.231 0.366 0.248 0.226
MA(6)M 0.227 0.233 0.202 1.156 0.229 0.539 0.237 0.188 0.197

Subtotal 0.956 0.985 0.994 5.028 0.983 2.124 0.972 0.716 0.711
Total 3.646 3.370 4.146 5.761 4.568 7.613 4.404 2.584 2.469

ARMA(1, 1)1 0.202 0.245 0.180 1.567 0.209 0.236 0.215 0.171 0.163
ARMA(1, 1)2 0.768 0.712 0.933 0.490 1.000 1.468 0.951 0.531 0.496
ARMA(1, 1)3 0.154 0.195 0.158 0.855 0.282 0.477 0.130 0.120 0.130
ARMA(1, 1)4 4.845 3.666 7.036 3.222 4.547 5.919 6.867 2.840 2.603
ARMA(2, 6)1 0.321 0.314 0.331 1.296 0.159 0.651 0.409 0.233 0.194
ARMA(2, 6)2 0.263 0.309 0.227 0.217 0.507 0.207 0.223 0.222 0.231

Subtotal 0.940 1.063 0.896 3.935 1.157 1.571 0.977 0.746 0.718
Total 6.553 5.441 8.865 7.647 6.704 8.958 8.795 4.117 3.817
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Table 3.5: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M5), where n = 150 and q = 2, and noises following
an ARMA model (N1)-(N18) based on approaches (A1)-(A7), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 4.

(A1) (A2) (A3) (A4) (A5) (A6) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 0.410 0.054 0.953 1.178 1.226 1.163 0.489 0.223 0.215
AR(1)LP 0.295 0.467 0.074 1.331 0.688 0.196 0.331 0.358 0.475
AR(1)SN 0.826 0.311 1.794 0.875 1.539 1.666 1.005 0.216 0.100
AR(1)LN 3.038 0.840 6.877 2.205 4.604 4.489 4.298 0.415 0.170
AR(2)P 0.271 0.220 0.866 0.684 2.214 0.287 0.339 0.125 0.245
AR(2)N 3.176 1.435 6.106 1.383 11.894 7.352 3.706 0.290 0.153

Subtotal 1.802 1.052 3.687 4.068 5.667 3.312 2.164 0.922 1.035
Total 8.016 3.327 16.670 7.656 22.165 15.153 10.168 1.627 1.358

MA(1)SP 0.483 0.192 1.055 1.052 1.470 1.197 0.534 0.184 0.197
MA(1)LP 0.254 0.136 0.493 4.659 0.930 1.256 0.218 0.262 0.142
MA(1)SN 0.961 0.299 1.940 1.283 1.700 1.773 1.113 0.323 0.157
MA(1)LN 5.824 2.982 10.217 3.419 7.625 10.513 7.237 2.914 1.356
MA(6)L 0.197 0.301 0.128 3.592 0.633 0.275 0.319 0.265 0.342
MA(6)M 0.107 0.234 0.264 3.059 0.102 0.820 0.093 0.138 0.216

Subtotal 2.002 1.162 3.880 13.645 4.835 5.321 2.277 1.172 1.054
Total 7.826 4.144 14.097 17.064 12.460 15.834 9.514 4.086 2.410

ARMA(1, 1)1 0.129 0.188 0.122 4.470 0.595 0.420 0.131 0.051 0.155
ARMA(1, 1)2 1.964 0.933 3.491 3.054 3.271 3.583 2.367 0.989 0.304
ARMA(1, 1)3 0.545 0.260 1.069 4.009 1.341 1.274 0.588 0.333 0.135
ARMA(1, 1)4 12.384 5.469 24.867 3.180 17.115 18.209 16.753 3.867 1.988
ARMA(2, 6)1 0.225 0.382 0.073 1.595 1.840 0.243 0.298 0.306 0.390
ARMA(2, 6)2 0.130 0.308 0.712 0.876 2.267 1.105 0.167 0.315 0.463

Subtotal 1.029 1.138 1.976 10.950 6.043 3.042 1.184 1.005 1.143
Total 15.377 7.540 30.334 17.184 26.429 24.834 20.304 5.861 3.435
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Table 3.6: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M6), where n = 300 and q = 2, and noises following
an ARMA model (N1)-(N18) based on approaches (A1)-(A7), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 5.

(A1) (A2) (A3) (A4) (A5) (A6) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 0.119 0.124 0.228 0.583 0.342 0.819 0.190 0.181 0.159
AR(1)LP 0.418 0.457 0.360 0.538 0.206 0.272 0.420 0.254 0.315
AR(1)SN 0.328 0.145 0.576 0.211 0.437 1.196 0.528 0.203 0.088
AR(1)LN 1.436 0.579 2.836 1.121 1.272 2.976 2.680 0.370 0.117
AR(2)P 0.054 0.103 0.165 0.381 0.749 0.229 0.104 0.129 0.093
AR(2)N 1.082 0.273 2.410 1.614 4.859 5.595 2.533 0.311 0.112

Subtotal 0.919 0.829 1.329 1.713 1.734 2.516 1.242 0.767 0.655
Total 3.437 1.681 6.575 4.448 7.865 11.087 6.455 1.448 0.884

MA(1)SP 0.180 0.202 0.249 0.656 0.395 0.853 0.229 0.186 0.093
MA(1)LP 0.089 0.174 0.075 1.604 0.353 0.826 0.064 0.163 0.126
MA(1)SN 0.346 0.293 0.564 0.345 0.446 1.228 0.572 0.211 0.078
MA(1)LN 3.570 2.647 4.901 2.230 4.362 8.803 4.947 1.984 1.245
MA(6)L 0.285 0.315 0.274 1.791 0.250 0.157 0.357 0.142 0.198
MA(6)M 0.153 0.180 0.103 1.118 0.136 0.772 0.124 0.135 0.187

Subtotal 1.053 1.164 1.265 5.514 1.580 3.836 1.346 0.837 0.682
Total 4.623 3.811 6.166 7.744 5.942 12.639 6.293 2.821 1.927

ARMA(1, 1)1 0.114 0.171 0.108 2.502 0.345 0.490 0.134 0.123 0.203
ARMA(1, 1)2 1.181 0.857 1.624 1.095 1.607 3.043 1.633 0.593 0.254
ARMA(1, 1)3 0.254 0.282 0.364 0.676 0.490 0.971 0.311 0.141 0.068
ARMA(1, 1)4 6.621 3.732 11.634 1.529 7.117 13.286 11.006 2.638 1.776
ARMA(2, 6)1 0.309 0.347 0.282 1.138 0.658 0.465 0.356 0.095 0.128
ARMA(2, 6)2 0.121 0.218 0.059 0.291 1.026 0.878 0.057 0.115 0.214

Subtotal 0.798 1.018 0.813 4.607 2.519 2.804 0.858 0.474 0.613
Total 8.600 5.607 14.071 7.231 11.243 19.133 13.497 3.705 2.643
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3.5 Simulation Studies II

To assess the efficacy of our wavelet-based estimators in change-point estimation, we

incorporate them into DepSMUCE (Dette et al., 2020) to substitute the introduced

LRV estimator and then compare the finite sample performance of this adapted change-

point estimator with the original DepSMUCE. For simplicity, we shall use the notations

DepSMUCE1 and DepSMUCE2 respectively for the procedure adjusted by MODWT-

based LRV estimators σ̂2
2(λ) and σ̂2

4(λ), whose parameters are set according to the

guidelines outlined in Section 3.4.1. We will now consider the three scenarios taken from

Section 4 in Dette et al. (2020) and maintain the same block length 10 for DepSMUCE.

The sample size is n = 1000 and 1000 realisations are generated under each setting.

Likewise, we will demonstrate the performance of different DepSMUCE when working

with three specific significance levels, i.e. α = 0.1, 0.5, 0.9. In practice, these estimators

can be efficiently computed using a dynamic programming approach and are readily

available for implementation through the function “stepFit” in the R package “stepR”.

Table 3.7: Distribution of q̂ − q obtained by the DepSMUCE algorithm for data generated
according to (2.2.1) with the signal (θ1, θ2, θ3, θ4, θ5, θ6) = (0, 1, 0, 2, 0,−1) and noise from an
MA(1) process with θ = 0.3 and σ = 1.00, the average Mean Square Error (MSE) of the
resulting estimate of the signal and the average Hausdorff distance dH over 1000 simulations.

q̂ − q
Method ⩽ −3 -2 -1 0 1 2 ⩾ 3 MSE dH

DepSMUCE(0.1) 0.004 0.031 0.395 0.570 0.000 0.000 0.000 0.079 0.822
DepSMUCE(0.1)1 0.000 0.015 0.281 0.704 0.000 0.000 0.000 0.063 0.595
DepSMUCE(0.1)2 0.001 0.037 0.334 0.628 0.000 0.000 0.000 0.074 0.721
DepSMUCE(0.5) 0.000 0.002 0.058 0.934 0.006 0.000 0.000 0.039 0.217
DepSMUCE(0.5)1 0.000 0.000 0.033 0.956 0.011 0.000 0.000 0.037 0.186
DepSMUCE(0.5)2 0.000 0.002 0.046 0.937 0.014 0.001 0.000 0.039 0.214
DepSMUCE(0.9) 0.000 0.000 0.003 0.914 0.080 0.003 0.000 0.035 0.184
DepSMUCE(0.9)1 0.000 0.000 0.005 0.953 0.039 0.003 0.000 0.035 0.158
DepSMUCE(0.9)2 0.000 0.000 0.005 0.915 0.073 0.006 0.001 0.035 0.193
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For each scenario, a frequency table is provided for the distribution of q̂ − q, where

q̂ and q denote the number of the estimated and true change-points respectively. We

also compute the estimated Mean Squared Error of the estimated signal f̂t, which is

defined as

MSE = E

[
1

n

n∑
t=1

(ft − f̂t)
2

]

Moreover, an estimate of the (scaled) Hausdorff distance is defined below for assessing

the accuracy of estimated locations of change-points. For 0 ⩽ dH ⩽ 1,

dH =
1

n
E
[
max

{
max

j=0,...,q+1
min

k=0,...,q̂+1
|ηj − η̂k|, max

k=0,...,q̂+1
min

j=0,...,q+1
|ηj − η̂k|

}]
(3.5.1)

where the true and estimated locations of change-points respectively satisfy the con-

straints 0 = η0 < η1 < · · · < ηq < ηq+1 = n and 0 = η̂0 < η̂1 < · · · < η̂q̂ < η̂q̂+1 = n.

In general, smaller dH indicates better performance of the algorithm. Since dH can be

largely influenced by distinct estimated change-point locations or an under-estimated

change-point number, we can analyse the performance of different estimators by finding

a balance among the above three measures.

First, since SMUCE often fails to produce satisfactory results when the error process

displays stronger dependencies, we consider a sequence generated according to (2.2.1)

with signal (3.1.1) and noise (3.1.2) given by (θ1, θ2, θ3, θ4, θ5, θ6) = (0, 1, 0, 2, 0,−1)

and MA(1) process with θ = 0.3 and σ = 1.00 respectively. This underlying model

exhibits q = 5 change-points at locations (η1, η2, η3, η4, η5) = (101, 301, 501, 551, 751).

Table 3.7 indicates that after replacing the LRV estimator, the adjusted DepSMUCE

methods perform at least as well as the original DepSMUCE and DepSMUCE1 tends to

outperform the others. Specifically, we can observe higher rate of correctly estimated

change-point numbers, improved signal estimation (lower MSE) and more satisfactory

estimation of change-point locations (smaller dH).
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Second, Dette et al. (2020) considers another example building on (θ1, θ2, θ3, θ4, θ5, θ6) =

(0, 3, 0, 4, 0,−3) and an MA(4) process with θ = c(0.90, 0.80, 0.70, 0.60) and σ = 1.00,

where the number and location of change-points remain unchanged. Moreover, the

last example follows the model that contains a piecewise-constant signal produced by

(θ1, θ2, θ3, θ4, θ5, θ6) = (0, 5, 1, 8, 1,−2) and an ARMA(2,6) error process following ϕ =

c(0.75,−0.5), θ = c(0.80, 0.70, 0.60, 0.50, 0.40, 0.30) and σ = 1.00. Both cases involve

strong dependencies, further confirming the substantial superiority of DepSMUCE over

SMUCE for serial correlated data.

Table 3.8: Distribution of q̂ − q obtained by the DepSMUCE algorithm for data generated
according to (2.2.1) with the signal (θ1, θ2, θ3, θ4, θ5, θ6) = (0, 3, 0, 4, 0,−3) and an MA(4)
error process with θ = c(0.90, 0.80, 0.70, 0.60) and σ = 1.00, the average Mean Square Error
(MSE) of the resulting estimate of the signal and the average Hausdorff distance dH over 1000
simulations.

q̂ − q
Method ⩽ −3 -2 -1 0 1 2 ⩾ 3 MSE dH

DepSMUCE(0.1) 0.008 0.136 0.525 0.331 0.000 0.000 0.000 0.851 0.617
DepSMUCE(0.1)1 0.007 0.069 0.365 0.557 0.002 0.000 0.000 0.651 0.422
DepSMUCE(0.1)2 0.017 0.082 0.305 0.586 0.009 0.001 0.000 0.632 0.460
DepSMUCE(0.5) 0.000 0.003 0.158 0.826 0.013 0.000 0.000 0.411 0.211
DepSMUCE(0.5)1 0.000 0.001 0.083 0.864 0.048 0.004 0.000 0.357 0.210
DepSMUCE(0.5)2 0.000 0.006 0.081 0.774 0.110 0.024 0.005 0.368 0.286
DepSMUCE(0.9) 0.000 0.000 0.021 0.832 0.135 0.012 0.000 0.329 0.275
DepSMUCE(0.9)1 0.000 0.000 0.037 0.803 0.143 0.015 0.002 0.338 0.292
DepSMUCE(0.9)2 0.000 0.001 0.072 0.788 0.111 0.024 0.004 0.361 0.288

Table 3.8 and 3.9 show the efficacy of DepSMUCE algorithms in estimating the number

and locations of change-points over highly dependent data. Considering the first three

rows in these two tables, we can see that the adjusted change-point estimators perform

better when α = 1. However such advantage cannot be guaranteed for α = 0.5 and

0.9. For example, we observe that only DepSMUCE1 outperforms while DepSMUCE2

consistently leads to poorer results if α = 0.5; on the other hand, when α = 0.9,

conclusions for DepSMUCE2 can vary a lot between Table 3.8 and 3.9.
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Table 3.9: Distribution of q̂ − q obtained by the DepSMUCE algorithm for data generated
according to (2.2.1) with the signals (M1) and (M2) and the noises (N1)-(N9), the average
Mean Square Error (MSE) of the resulting estimate of the signal and the average Hausdorff
distance dH over 1000 simulations.

q̂ − q
Method ⩽ −3 -2 -1 0 1 2 ⩾ 3 MSE dH

DepSMUCE(0.1) 0.004 0.056 0.361 0.579 0.000 0.000 0.000 1.411 0.685
DepSMUCE(0.1)1 0.002 0.035 0.299 0.664 0.000 0.000 0.000 1.234 0.563
DepSMUCE(0.1)2 0.005 0.087 0.314 0.593 0.001 0.000 0.000 1.455 0.667
DepSMUCE(0.5) 0.000 0.000 0.056 0.933 0.011 0.000 0.000 0.671 0.255
DepSMUCE(0.5)1 0.000 0.000 0.049 0.934 0.016 0.001 0.000 0.662 0.238
DepSMUCE(0.5)2 0.000 0.002 0.085 0.889 0.023 0.001 0.000 0.743 0.273
DepSMUCE(0.9) 0.000 0.000 0.002 0.890 0.101 0.007 0.000 0.610 0.269
DepSMUCE(0.9)1 0.000 0.000 0.005 0.909 0.083 0.003 0.000 0.611 0.253
DepSMUCE(0.9)2 0.000 0.000 0.011 0.917 0.070 0.002 0.000 0.622 0.246

In general, after adjusting the current change-point detection procedure DepSMUCE,

we can see our MODWT-based LRV estimators, especially the mean-based one σ̂2
2(λ),

can enhance the performance of change-point estimation under certain pre-specified

significance levels α, such as 0.1 or 0.5.

3.6 Appendix – Complete Simulated Results

In the section, we display the remaining simulation results summarised in Section 3.4.3

of the main text. Here are the simulated models.

(M7) ft undergoes q = 3 change-points at (η1, η2, η3) = (50, 200, 250) with n = 300

and (θ1, θ2, θ3, θ4) = (−2, 4,−3, 3.5);

(M8) ft undergoes q = 3 change-points at (η1, η2, η3) = (100, 250, 400) with n = 500

and (θ1, θ2, θ3, θ4) = (0, 2.5,−1.5, 2);

(M9) ft undergoes q = 5 change-points at (η1, η2, η3, η4, η5) = (50, 200, 230, 300, 410)

with n = 500 and (θ1, θ2, θ3, θ4, θ5, θ6) = (−2, 3,−4, 2.5,−3.5, 3);
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(M10) ft undergoes q = 5 change-points at (η1, η2, η3, η4, η5) = (50, 200, 300, 500, 650)

with n = 750 and (θ1, θ2, θ3, θ4, θ5, θ6) = (0, 2.5,−2, 2,−2, 1.5);

(M11) ft undergoes q = 7 change-points at (η1, η2, η3, η4, η5, η6, η7) = (50, 180, 260,

300, 500, 570, 850) with n = 900 and (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8) = (0, 4,−3, 3.5,

−2.5, 3.5,−3, 3);

(M12) ft undergoes q = 7 change-points at (η1, η2, η3, η4, η5, η6, η7) = (50, 180, 300, 500,

750, 910, 1050) with n = 1200 and (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8) = (0, 2,−3, 1.5,−2, 2,

−2, 2.5).

(M13) ft undergoes q = 12 change-points at (η1, η2, η3, η4, η5, η6, η7, η8, η9, η10, η11, η12) =

(50, 180, 220, 300, 500, 570, 850, 960, 1000, 1200, 1380, 1420) with n = 1500 and

(θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ11, θ12, θ13) = (0, 4,−4.5, 4,−2.5, 3.5,−3.5, 3,−3,

4,−3, 4,−4);

(M14) ft undergoes q = 12 change-points at (η1, η2, η3, η4, η5, η6, η7, η8, η9, η10, η11, η12) =

(50, 300, 500, 850, 960, 1000, 1200, 1380, 1480, 1600, 1750, 1900) with n = 2000 and

(θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ11, θ12, θ13) = (0, 2,−2.5, 3,−2.5, 2.5,−2.5, 2,−2,

2.5,−3, 2,−2.5);
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Table 3.10: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M7), where n = 300 and q = 3, and noises following an
ARMA model (N1)-(N18) based on approaches (A1)-(A7), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 5.

(A1) (A2) (A3) (A4) (A5) (A6) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 0.566 0.226 0.898 1.018 1.478 2.438 0.808 0.229 0.190
AR(1)LP 0.234 0.460 0.080 0.225 0.922 0.602 0.111 0.197 0.411
AR(1)SN 0.970 0.350 1.715 0.489 1.740 3.599 1.549 0.287 0.229
AR(1)LN 3.161 0.504 6.550 1.345 6.034 10.115 6.106 0.307 0.242
AR(2)P 0.436 0.077 0.867 0.145 2.601 1.756 0.742 0.087 0.288
AR(2)N 2.726 0.357 5.764 3.558 13.436 17.301 5.522 0.298 0.206

Subtotal 2.206 1.113 3.560 1.877 6.741 8.395 3.210 0.800 1.118
Total 8.093 1.974 15.874 6.780 26.211 35.811 14.838 1.405 1.566

MA(1)SP 0.584 0.219 0.953 0.431 1.446 2.315 0.844 0.129 0.278
MA(1)LP 0.366 0.170 0.538 1.517 1.080 2.119 0.425 0.283 0.167
MA(1)SN 1.077 0.339 1.868 0.724 1.909 3.925 1.666 0.223 0.221
MA(1)LN 6.282 2.962 9.991 3.093 8.421 18.964 9.419 2.008 0.914
MA(6)L 0.171 0.247 0.121 3.662 0.674 0.595 0.174 0.097 0.174
MA(6)M 0.075 0.207 0.235 1.543 0.161 1.743 0.171 0.118 0.196

Subtotal 2.273 1.182 3.715 7.877 5.270 10.697 3.280 0.850 1.036
Total 8.555 4.144 13.706 10.970 13.691 29.661 12.699 2.858 1.950

ARMA(1, 1)1 0.103 0.145 0.121 3.801 0.754 1.149 0.063 0.182 0.179
ARMA(1, 1)2 2.330 1.179 3.555 1.931 3.740 7.178 3.279 0.675 0.119
ARMA(1, 1)3 0.641 0.231 1.056 0.541 1.621 2.805 0.949 0.292 0.133
ARMA(1, 1)4 13.144 4.583 24.100 3.406 20.183 37.627 22.579 2.793 1.352
ARMA(2, 6)1 0.157 0.324 0.044 0.719 2.035 0.398 0.100 0.104 0.304
ARMA(2, 6)2 0.257 0.170 0.652 0.544 2.664 3.073 0.555 0.127 0.367

Subtotal 1.158 0.870 1.873 5.605 7.074 7.425 1.667 0.705 0.983
Total 16.632 6.632 29.528 10.942 30.997 52.230 27.525 4.173 2.454
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Table 3.11: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M8), where n = 500 and q = 3, and noises following an
ARMA model (N1)-(N18) based on approaches (A1)-(A7), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 5.

(A1) (A2) (A3) (A4) (A5) (A6) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 0.171 0.171 0.267 1.033 0.405 0.521 0.098 0.075 0.077
AR(1)LP 0.353 0.407 0.290 0.709 0.985 0.265 0.443 0.387 0.359
AR(1)SN 0.314 0.159 0.606 0.771 0.391 0.865 0.371 0.065 0.086
AR(1)LN 1.588 0.680 3.090 0.304 1.209 2.254 2.267 0.172 0.094
AR(2)P 0.081 0.134 0.202 0.637 1.216 0.109 0.041 0.125 0.134
AR(2)N 1.698 1.065 2.810 0.371 13.026 4.299 2.267 0.119 0.062

Subtotal 0.919 0.871 1.365 3.150 2.997 1.760 0.953 0.652 0.656
Total 4.205 2.616 7.265 3.825 17.232 8.313 5.487 0.943 0.812

MA(1)SP 0.584 0.219 0.953 0.431 1.446 2.315 0.844 0.129 0.278
MA(1)LP 0.366 0.170 0.538 1.517 1.080 2.119 0.425 0.283 0.167
MA(1)SN 1.077 0.339 1.868 0.724 1.909 3.925 1.666 0.223 0.221
MA(1)LN 6.282 2.962 9.991 3.093 8.421 18.964 9.419 2.008 0.914
MA(6)L 0.171 0.247 0.121 3.662 0.674 0.595 0.174 0.097 0.174
MA(6)M 0.075 0.207 0.235 1.543 0.161 1.743 0.171 0.118 0.196

Subtotal 2.273 1.182 3.715 7.877 5.270 10.697 3.280 0.850 1.036
Total 8.555 4.144 13.706 10.970 13.691 29.661 12.699 2.858 1.950

ARMA(1, 1)1 0.077 0.170 0.067 2.460 0.411 0.437 0.172 0.127 0.068
ARMA(1, 1)2 1.102 0.728 1.640 0.735 1.360 2.278 1.243 0.369 0.297
ARMA(1, 1)3 0.166 0.122 0.321 0.960 0.487 0.803 0.171 0.089 0.105
ARMA(1, 1)4 6.787 3.557 12.605 3.222 6.672 10.549 9.482 2.094 1.717
ARMA(2, 6)1 0.257 0.255 0.252 2.240 1.636 0.473 0.410 0.263 0.195
ARMA(2, 6)2 0.093 0.232 0.086 0.368 2.898 0.633 0.104 0.230 0.219

Subtotal 0.593 0.779 0.726 6.028 5.432 2.346 0.857 0.709 0.587
Total 8.482 5.064 14.971 9.985 13.464 15.173 11.582 3.172 2.601
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Table 3.12: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M9), where n = 500 and q = 5, and noises following an
ARMA model (N1)-(N18) based on approaches (A1)-(A7), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 5.

(A1) (A2) (A3) (A4) (A5) (A6) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 0.655 0.139 1.207 0.436 3.315 3.960 0.734 0.089 0.204
AR(1)LP 0.107 0.345 0.134 0.215 3.549 1.335 0.151 0.317 0.384
AR(1)SN 1.152 0.230 2.186 0.682 3.834 6.044 1.442 0.059 0.236
AR(1)LN 3.918 0.739 8.076 0.765 17.391 17.087 5.792 0.204 0.162
AR(2)P 0.553 0.093 1.147 0.175 6.409 3.229 0.650 0.093 0.268
AR(2)N 3.843 1.198 7.144 0.344 49.041 29.256 5.239 0.129 0.194

Subtotal 2.467 0.807 4.674 1.508 17.107 14.568 2.977 0.558 1.092
Total 10.228 2.744 19.894 2.617 83.539 60.911 14.008 0.891 1.448

MA(1)SP 0.665 0.165 1.240 0.656 3.269 4.124 0.788 0.062 0.227
MA(1)LP 0.392 0.110 0.694 1.306 1.933 3.157 0.394 0.063 0.182
MA(1)SN 1.189 0.251 2.300 0.399 3.775 6.241 1.523 0.061 0.208
MA(1)LN 6.820 2.836 11.790 2.185 11.125 28.762 8.820 1.599 0.879
MA(6)L 0.065 0.198 0.088 2.883 2.448 1.435 0.167 0.184 0.198
MA(6)M 0.145 0.170 0.415 1.759 0.375 2.782 0.122 0.203 0.308

Subtotal 2.456 0.894 4.737 7.003 11.800 17.739 2.994 0.573 1.123
Total 9.276 3.730 16.527 9.188 22.925 46.501 11.814 2.172 2.002

ARMA(1, 1)1 0.094 0.116 0.205 3.277 1.488 1.974 0.050 0.138 0.196
ARMA(1, 1)2 2.465 0.910 4.286 0.893 6.564 10.945 3.078 0.448 0.128
ARMA(1, 1)3 0.729 0.121 1.371 0.360 3.163 4.473 0.854 0.076 0.285
ARMA(1, 1)4 14.841 3.888 29.392 5.041 42.656 60.478 21.494 2.192 1.247
ARMA(2, 6)1 0.060 0.207 0.123 1.498 4.489 0.868 0.140 0.200 0.254
ARMA(2, 6)2 0.435 0.141 1.017 0.343 10.864 5.992 0.541 0.143 0.310

Subtotal 1.318 0.585 2.716 5.478 20.004 13.307 1.585 0.557 1.045
Total 18.624 5.383 36.394 11.412 69.224 84.730 26.157 3.197 2.420
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Table 3.13: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M10), where n = 750 and q = 5, and noises following
an ARMA model (N1)-(N18) based on approaches (A1)-(A5), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 5.

(A1) (A2) (A3) (A4) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 0.325 0.174 0.543 0.961 0.259 0.104 0.096
AR(1)LP 0.196 0.260 0.138 1.570 0.340 0.220 0.239
AR(1)SN 0.609 0.220 1.038 0.984 0.601 0.125 0.123
AR(1)LN 2.276 0.632 4.413 2.453 3.017 0.262 0.109
AR(2)P 0.232 0.133 0.438 0.752 0.170 0.073 0.172
AR(2)N 2.181 0.777 3.879 2.418 2.554 0.202 0.153

Subtotal 1.362 0.787 2.157 4.267 1.370 0.522 0.630
Total 5.819 2.196 10.449 9.138 6.941 0.986 0.892

MA(1)SP 0.330 0.116 0.601 0.887 0.339 0.109 0.061
MA(1)LP 0.169 0.145 0.255 2.315 0.082 0.121 0.082
MA(1)SN 0.632 0.209 1.086 0.858 0.672 0.100 0.135
MA(1)LN 4.243 2.076 6.814 3.843 5.193 1.605 0.854
MA(6)L 0.058 0.078 0.049 4.297 0.224 0.071 0.100
MA(6)M 0.063 0.145 0.112 2.828 0.114 0.075 0.119

Subtotal 1.252 0.693 2.103 11.185 1.431 0.476 0.497
Total 5.495 2.769 8.917 15.028 6.624 2.081 1.351

ARMA(1, 1)1 0.080 0.147 0.063 4.109 0.113 0.091 0.121
ARMA(1, 1)2 1.396 0.674 2.241 1.088 1.636 0.468 0.101
ARMA(1, 1)3 0.362 0.143 0.568 1.381 0.337 0.158 0.107
ARMA(1, 1)4 9.120 3.235 16.978 17.343 12.272 2.119 1.211
ARMA(2, 6)1 0.096 0.149 0.062 3.437 0.270 0.067 0.073
ARMA(2, 6)2 0.186 0.083 0.367 1.119 0.051 0.039 0.182

Subtotal 0.724 0.522 1.060 10.046 0.771 0.355 0.483
Total 11.240 4.431 20.279 28.477 14.679 2.942 1.795
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Table 3.14: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M11), where n = 900 and q = 7, and noises following
an ARMA model (N1)-(N18) based on approaches (A1)-(A5), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 6.

(A1) (A2) (A3) (A4) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 0.433 0.105 1.035 1.034 0.406 0.076 0.171
AR(1)LP 0.118 0.336 0.127 0.801 0.245 0.214 0.268
AR(1)SN 0.794 0.128 1.923 0.361 0.891 0.077 0.177
AR(1)LN 2.742 0.423 7.265 3.267 3.943 0.150 0.162
AR(2)P 0.386 0.099 1.005 0.421 0.336 0.074 0.196
AR(2)N 2.364 0.277 6.389 8.628 3.575 0.114 0.192

Subtotal 1.731 0.668 4.090 2.617 1.878 0.441 0.812
Total 6.837 1.368 17.744 14.512 9.396 0.705 1.166

MA(1)SP 0.501 0.107 1.151 0.912 0.459 0.060 0.142
MA(1)LP 0.304 0.108 0.610 2.238 0.213 0.068 0.087
MA(1)SN 0.890 0.178 2.071 0.488 0.977 0.083 0.151
MA(1)LN 4.861 1.731 10.717 5.677 6.256 1.024 0.586
MA(6)L 0.053 0.129 0.091 4.348 0.158 0.085 0.091
MA(6)M 0.152 0.104 0.396 2.713 0.042 0.072 0.107

Subtotal 1.900 0.626 4.319 10.699 1.849 0.368 0.578
Total 6.761 2.357 15.036 16.376 8.105 1.392 1.164

ARMA(1, 1)1 0.079 0.108 0.209 3.631 0.052 0.075 0.088
ARMA(1, 1)2 1.726 0.517 3.784 1.047 2.051 0.239 0.062
ARMA(1, 1)3 0.522 0.138 1.188 0.804 0.510 0.057 0.144
ARMA(1, 1)4 10.546 2.547 26.529 11.028 15.285 1.532 0.935
ARMA(2, 6)1 0.053 0.154 0.138 3.329 0.172 0.089 0.114
ARMA(2, 6)2 0.278 0.117 0.864 1.048 0.238 0.101 0.232

Subtotal 0.932 0.517 2.399 8.812 0.972 0.322 0.578
Total 13.204 3.581 32.712 20.887 18.308 2.093 1.575
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Table 3.15: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M12), where n = 1200 and q = 7, and noises following
an ARMA model (N1)-(N18) based on approaches (A1)-(A5), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 6.

(A1) (A2) (A3) (A4) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 0.429 0.096 0.998 0.721 0.390 0.060 0.139
AR(1)LP 0.121 0.276 0.102 1.192 0.252 0.176 0.208
AR(1)SN 0.747 0.125 1.826 0.570 0.843 0.048 0.154
AR(1)LN 2.523 0.388 6.920 2.245 3.767 0.126 0.131
AR(2)P 0.345 0.085 0.918 0.383 0.288 0.086 0.199
AR(2)N 2.193 0.292 6.118 6.052 3.424 0.121 0.139

Subtotal 1.642 0.582 3.844 2.866 1.773 0.370 0.700
Total 6.358 1.262 16.882 11.163 8.964 0.617 0.970

MA(1)SP 0.461 0.098 1.063 0.994 0.426 0.056 0.153
MA(1)LP 0.282 0.077 0.555 2.496 0.183 0.063 0.074
MA(1)SN 0.792 0.143 1.940 0.794 0.909 0.063 0.147
MA(1)LN 4.869 1.978 10.270 4.571 6.013 1.038 0.674
MA(6)L 0.062 0.130 0.075 3.804 0.176 0.112 0.108
MA(6)M 0.140 0.109 0.366 2.662 0.032 0.085 0.120

Subtotal 1.737 0.557 3.999 10.750 1.726 0.379 0.602
Total 6.606 2.535 14.269 15.321 7.739 1.417 1.276

ARMA(1, 1)1 0.076 0.100 0.205 3.641 0.049 0.086 0.083
ARMA(1, 1)2 1.660 0.560 3.601 1.203 1.972 0.260 0.065
ARMA(1, 1)3 0.483 0.102 1.140 0.766 0.474 0.091 0.152
ARMA(1, 1)4 10.008 2.798 25.389 9.917 14.651 1.475 0.987
ARMA(2, 6)1 0.040 0.154 0.133 2.768 0.177 0.135 0.134
ARMA(2, 6)2 0.253 0.118 0.805 0.890 0.202 0.137 0.244

Subtotal 0.852 0.474 2.283 8.065 0.902 0.449 0.613
Total 12.520 3.832 31.273 19.185 17.525 2.184 1.665



3.6 Appendix – Complete Simulated Results 121

Table 3.16: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M13), where n = 1500 and q = 12, and noises following
an ARMA model (N1)-(N18) based on approaches (A1)-(A5), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 6.

(A1) (A2) (A3) (A4) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 1.224 0.192 2.383 1.646 1.504 0.067 0.285
AR(1)LP 0.283 0.189 0.766 0.951 0.300 0.164 0.377
AR(1)SN 1.997 0.263 3.998 2.480 2.628 0.053 0.331
AR(1)LN 6.527 0.653 13.707 7.646 9.494 0.156 0.310
AR(2)P 1.170 0.114 2.381 0.854 1.463 0.081 0.337
AR(2)N 5.900 0.763 12.068 10.186 8.314 0.132 0.331

Subtotal 4.674 0.758 9.528 5.931 5.895 0.365 1.330
Total 17.101 2.174 35.303 23.763 23.703 0.653 1.971

MA(1)SP 1.321 0.231 2.536 1.600 1.614 0.083 0.271
MA(1)LP 0.777 0.171 1.459 1.899 0.870 0.082 0.195
MA(1)SN 2.083 0.267 4.163 2.968 2.755 0.075 0.323
MA(1)LN 10.018 2.164 19.439 15.737 13.733 1.129 0.415
MA(6)L 0.254 0.074 0.506 4.050 0.176 0.058 0.142
MA(6)M 0.575 0.084 1.118 3.499 0.605 0.062 0.224

Subtotal 5.010 0.827 9.782 14.016 6.020 0.360 1.155
Total 15.028 2.991 29.221 29.753 19.753 1.489 1.570

ARMA(1, 1)1 0.442 0.095 0.789 2.326 0.405 0.071 0.161
ARMA(1, 1)2 3.731 0.738 7.275 3.044 4.997 0.295 0.150
ARMA(1, 1)3 1.345 0.246 2.593 1.647 1.665 0.066 0.272
ARMA(1, 1)4 23.228 3.212 47.812 26.779 33.911 1.667 0.737
ARMA(2, 6)1 0.340 0.070 0.717 1.628 0.296 0.084 0.254
ARMA(2, 6)2 1.030 0.099 2.132 1.913 1.279 0.084 0.379

Subtotal 3.157 0.510 6.231 7.514 3.645 0.305 1.066
Total 30.116 4.460 61.318 37.337 42.553 2.267 1.953
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Table 3.17: Normalized absolute error (NAE) between true and estimated Long-Run Variance
(LRV) of the sequences with signal (M14), where n = 2000 and q = 12, and noises following
an ARMA model (N1)-(N18) based on approaches (A1)-(A5), σ̂2(λ) and σ̂4(λ), which stand
respectively for "Mean" and "Median" MODWT-based estimators. Here, both of the chosen
scales are 4 : 6.

(A1) (A2) (A3) (A4) (A7) σ̂2(λ) σ̂4(λ)

AR(1)SP 0.730 0.133 1.450 1.110 0.730 0.062 0.162
AR(1)LP 0.067 0.170 0.318 0.895 0.085 0.207 0.292
AR(1)SN 1.207 0.190 2.487 1.251 1.365 0.041 0.180
AR(1)LN 3.969 0.383 9.110 4.682 5.521 0.123 0.153
AR(2)P 0.686 0.086 1.423 0.543 0.674 0.073 0.230
AR(2)N 3.505 0.347 8.026 8.881 4.808 0.108 0.175

Subtotal 2.690 0.579 5.678 3.799 2.854 0.383 0.864
Total 10.164 1.309 22.814 17.362 13.183 0.614 1.192

MA(1)SP 0.779 0.167 1.515 1.082 0.756 0.047 0.176
MA(1)LP 0.461 0.127 0.829 2.037 0.367 0.051 0.116
MA(1)SN 1.219 0.144 2.622 1.249 1.452 0.044 0.219
MA(1)LN 6.573 1.782 13.204 9.932 8.344 1.023 0.628
MA(6)L 0.102 0.063 0.228 4.545 0.050 0.072 0.077
MA(6)M 0.301 0.084 0.596 2.928 0.178 0.073 0.156

Subtotal 2.862 0.585 5.790 11.841 2.803 0.287 0.744
Total 9.435 2.367 18.994 21.773 11.147 1.310 1.372

ARMA(1, 1)1 0.217 0.056 0.416 3.463 0.094 0.054 0.071
ARMA(1, 1)2 2.366 0.610 4.730 3.153 2.855 0.236 0.033
ARMA(1, 1)3 0.816 0.156 1.601 1.825 0.822 0.046 0.184
ARMA(1, 1)4 14.885 2.714 32.633 15.418 20.617 1.539 1.000
ARMA(2, 6)1 0.125 0.088 0.302 2.492 0.038 0.097 0.143
ARMA(2, 6)2 0.578 0.070 1.254 1.554 0.533 0.094 0.264

Subtotal 1.736 0.370 3.573 9.334 1.487 0.291 0.662
Total 18.987 3.694 40.936 27.905 24.959 2.066 1.695
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3.7 Proofs

3.7.1 Proof of Theorem 3.1

Let dj,k = µj,k + Zj,k, where µj,k and Zj,k represent the scaled signal and noise parts

respectively. We have µj,k = 0 for detailed coefficients in S0
j . By applying Lemma 1,

the definition of d2j,k gives that E(d2j,k) follows

E(d2j,k) = E[(µj,k + Zj,k)
2] = µ2

j,k + E(Z2
j,k)

= µ2
j,k +

1

2mj

E
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) (3.7.1)

Hence we have σ2
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) for any k ∈ S0

j . By Lemma 2, elementary

calculations show that on the set An,
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Here, since the error process Xt = g(. . . , ϵt−1, ϵt) is assumed to be a physical sys-

tem proposed in Wu (2005), Z2
j,k − E(Z2

j,k) also follows the same system and we

can write Dj,k = Z2
j,k − E(Z2

j,k) = ĝ(. . . , ϵ0, ϵ1, . . . , ϵ2kmj−1, ϵ2kmj
). Then, let Z∗
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By Theorem 1 (iii) in Wu et al. (2007), we then have
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Therefore, under the assumption ∥X.∥p,υ = supm⩾0(m+1)υ
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Let j = ν log2(n). Due to the finite number of change-points, we have |S0
j | = O(n1−ν).

When ∥Dj.∥p,υ < ∞, where p > 2 and υ > 1/2 − 1/p, it follows from Wu and Wu

(2016) that for any k ∈ S0
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 = P

∣∣∣∣∣∣
∑
k∈S0

j

Dj,k

∣∣∣∣∣∣ > nãδ̃
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2ã−1+ν))

(3.7.5)

where C̃4 is a positive constant that depend of p, υ and the dependence condition

∥Dj.∥2,ν . It tells us when ã > (1− ν)/2, the term above converges to 0 as n→ ∞. We

can then get that
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j,k−E(Z2
j,k)) = op(n

ã) when ã > (1−ν)(1/2−1/υ) and hence

we have (3.7.6) when ã > (1− β)(1/2− 1/υ). On the other hand, we know that

µ2
j,k =

1

2mj

 2kmj∑
i=(2k−1)mj+1

f

(
i

n

)
−

(2k−1)mj∑
i=(2k−2)mj+1

f

(
i

n

) 2

(3.7.8)

which indicates µ2
j,k = 1

2mj
O(m2

j) = O(
mj

2
) uniformly over k = 1, 2, . . . , Kj. Given the

fact that ft is piecewise constant with finite change-points, the set {k ∈ {1, 2, . . . , Kj}|

µj,k ̸= 0} contains a finite number of elements, independently of n ∈ N. It then follows

that 1
b−a+1

∑b
j=a

1
Kj

∑Kj

k=1 µ
2
j,k = 1

b−a+1

∑b
j=a

1
Kj
O(

mj

2
) = O(n−1+2β{log2(n)}−1). By∑

k∈S0
j
(Z2

j,k − E(Z2
j,k)) = op(n

ã), we can then similarly derive that

|σ̂2
1 − σ2

∗| =

∣∣∣∣∣∣ 1

b− a+ 1

b∑
j=a

1

Kj

Kj∑
k=1

(
d2j,k − σ2

∗
)∣∣∣∣∣∣

=

∣∣∣∣∣∣ 1

b− a+ 1

b∑
j=a

1

Kj

Kj∑
k=1

(
Z2

j,k + 2Zj,kµj,k + µ2
j,k − σ2

∗
)∣∣∣∣∣∣

⩽
1

b− a+ 1

b∑
j=a

1

Kj

∣∣∣∣∣∣
Kj∑
k=1

(Z2
j,k − σ2

∗)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
k∈S1

j

2Zj,kµj,k

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
k∈S1

j

µ2
j,k

∣∣∣∣∣∣
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⩽
1

b− a+ 1

b∑
j=a

1

Kj

∣∣∣∣∣∣
Kj∑
k=1

(Z2
j,k − E(Z2

j,k))

∣∣∣∣∣∣+O

(
Kj

2mj

)
+

1

b− a+ 1

b∑
j=a

|S1
j |

Kj

Op(log(n)
1/2) ∗O(nν/2) +

1

b− a+ 1

b∑
j=a

1

Kj

∑
k∈S1

j

µ2
j,k

= Op{(n−1+β+ã + n−α + n−1+2β) log2(n)
−1} (3.7.9)

3.7.2 Proof of Theorem 3.2

Let
√
2mjW̃j,k = µ̃j,k + Z̃j,k, where µ̃j,k and Z̃j,k represent the scaled signal and noise

parts respectively. We have µ̃j,k = 0 for detailed coefficients in S̃0
j . By applying Lemma

1, the definition of W̃ 2
j,k gives that 2mjE(W̃ 2

j,k) follows

2mjE(W̃ 2
j,k) = E[(µ̃j,k + µ̃j,k)

2] = µ̃2
j,k + E(Z̃2

j,k)

= µ̃2
j,k + σ2

∗ +O

(
1

2mj

) (3.7.10)

Hence we also have σ2
∗ = 2mjE(W̃ 2

j,k)+O(
1

2mj
) for any k ∈ S̃0

j . Elementary calculations

show that

|σ̂2
2(λ)− σ2
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∣∣∣∣∣∣ 1
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1
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j
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2
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2
∗

∣∣∣∣∣∣
⩽

1

b− a+ 1

b∑
j=a

1

T ∗
j


∣∣∣∣∣∣∣
∑
k∈S̃0

j

(Z̃2
j,k − E(Z̃2

j,k))

∣∣∣∣∣∣∣+O
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2mj
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1
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T ∗
j

|S̃1
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1

b− a+ 1
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j
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j )σ

2
∗

(3.7.11)

When ∥D̃j.∥p,υ < ∞, where p > 2 and υ > 1/2 − 1/p, it follows from Wu and Wu
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(2016) that for any k ∈ S̃0
j , there exist some ã, for all δ̃ > 0,

P


∣∣∣∣∣∣∣
∑
k∈S̃0

j

(Z̃2
j,k − E(Z̃2

j,k))

∣∣∣∣∣∣∣ > nãδ̃

 = P
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∑
k∈S̃0

j

D̃j,k

∣∣∣∣∣∣∣ > nãδ̃


⩽ C̃1

|S̃0
j |∥D̃j.∥pp,υ
(nãδ̃)p

+ C̃2 exp

(
− C̃3|(nãδ̃)2

|S̃0
j |∥D̃j.∥22,ν

)
= Op(n

1−pã + exp(−C̃4n
2ã−1)) (3.7.12)

This tells us that when ã > 1/2, the term above converges to 0 as n → ∞. We can

then get that
∑

k∈S̃0
j
(Z̃2

j,k−E(Z̃2
j,k)) = op(n

ã). Similarly, when p > 2 and υ < 1/2−1/p,

it follows that for any k ∈ S̃0
j , there exist some ã, for all δ̃ > 0,

P


∣∣∣∣∣∣∣
∑
k∈S̃0

j

(Z̃2
j,k − E(Z̃2

j,k))

∣∣∣∣∣∣∣ > nãδ̃

 = Op(n
p/2−pυ−pã + exp(−C̃4n

2ã−1+ν)) (3.7.13)

Here we can also get
∑

k∈S̃0
j
(Z̃2

j,k − E(Z̃2
j,k)) = op(n

ã) when ã > 1/2. Also, Lemma 2

tells us Tj/T ∗
j − 1 = op(n

−1+ν0) when ν0 > ν. In addition, we know 1/T ∗
j = Op(n

−1).

When λ = O(
√
log(n)), it can be obtained that
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1
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b∑
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(3.7.14)

where ν0 > β and ã > 1/2. In addition, write 1
b−a+1

∑b
j=a

1
Tj

∑Tj

k=1 µ̃
2
j,k = 1

b−a+1

∑b
j=a
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2mj
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|σ̂2
2 − σ2

∗| =

∣∣∣∣∣∣ 1

b− a+ 1

b∑
j=a

1

Tj

Tj∑
k=1

[
2mjW̃

2
j,k − σ2

∗

]∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

b− a+ 1

b∑
j=a

1

Tj

Tj∑
k=1

(
Z̃2

j,k + 2Z̃j,kµ̃j,k + µ̃2
j,k − σ2

∗

)∣∣∣∣∣∣
⩽

1

b− a+ 1

b∑
j=a

1

Tj


∣∣∣∣∣∣

Tj∑
k=1

(Z̃2
j,k − σ2

∗)

∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∑
k∈S̃1

j

2Z̃j,kµ̃j,k

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∑
k∈S̃1

j

µ̃2
j,k

∣∣∣∣∣∣∣


⩽
1

b− a+ 1

b∑
j=a

1

Tj

∣∣∣∣∣∣
Tj∑
k=1

(Z̃2
j,k − E(Z̃2

j,k))

∣∣∣∣∣∣+O

(
Tj
2mj

)
+

1

b− a+ 1

b∑
j=a

|S̃1
j |
Tj

Op(log(n)
1/2) ∗O(nν/2) +

1

b− a+ 1

b∑
j=a

1

Tj

∑
k∈S̃1

j

µ̃2
j,k
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Chapter 4

Aspects of model selection for

nonstationary time series with level

change

4.1 Introduction

In this chapter, our focus is the application of Narrowest-Over-Threshold (NOT) al-

gorithm for dependent data generated with piecewise-constant signal. The NOT al-

gorithm, together with NOT solution path algorithm, was introduced in Baranowski

et al. (2019) to identify the number and locations of multiple changes in the uni-variate

statistical model

Yt = ft +Xt, i = 1, 2, . . . , n (4.1.1)

where the unknown deterministic signal ft can show some regularity across time t, espe-

cially “features” like jumps or kinks, and {Xi}ni=1 represents the independent Gaussian

error process exactly or approximately centred at zero. Generally speaking, the most

130
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valuable contribution of the NOT approach arises from the idea of considering the

observations {Yi}ni=1 by concentrating on narrowest candidate intervals, which make it

effective for detection problems with more general features, besides the change-points

in the piecewise-constant signal. Also, the limited number of randomly drawn intervals

M and the proposed threshold-indexed solution path lead to the low computational

complexity of this algorithm.

Due to the aforementioned benefits, it would be indeed valuable to find possible exten-

sions of the NOT algorithm for serial correlated data. Therefore, the present chapter is

devoted to the analysis of NOT in dependent time series starting with that produced

by piecewise-constant signal under more general assumptions on the error process, see

detailed definitions of signal (3.1.1) and noise (3.1.2) in Chapter 3.

As discussed in Section 4.1 in Baranowski et al. (2019), although there might be infor-

mation loss, the NOT algorithm can still be utilised as a quasi-likelihood-type procedure

for dependent data. The consistency of the basic NOT algorithm can still be proved if

the assumption Xt
iid∼ N(0, σ2

t ) is replaced by a short-memory stationary error process,

where σt represents the standard deviation of noise at time t; see Corollary 1 and 2 in

Baranowski et al. (2019). For the dependent error setting, the simplest extension the

can be made on the basic NOT algorithm is to instead choose the threshold ζn relying

on LRV estimators. Its results will be presented first in the next section.

Also, some numerical results for NOT solution path algorithm are displayed in Section

E of the online supplementary material (Baranowski et al., 2019). However, it seems

that the algorithm tends not to work so well for dependent data, the main reason being

that the defined strengthened Schwarz Information Criterion is no longer well-suited

in the presence of serial correlated noise. Therefore, in the following sections, we shall

experiment on several practical ways to overcome this issue.
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• Preprocessing data to eliminate the dependence and increase its similarity to a

Gaussian series (see Baranowski et al. (2019)), which is discussed in Section 4.3.

(1). Add an additional zero-mean independent Gaussian error process to the

original data, hoping that the new series will be closer to Gaussian and the serial

correlated noise can be reduced.

(2). Divide the time series into ⌊T/h⌋ blocks of length h and regard the cal-

culated local averages as the new dataset, with a similar expectation that the

pre-averaged noise can approximately follow a Gaussian distribution by the law

of large numbers and become less dependent.

• Modifying the sSIC to make it more suitable for dependent data, see Section 4.4.

(1). Directly replace the maximum likelihood estimator of the residual variance

with segmented LRV estimators or the sum of the estimated autocovariances;

the hope is that the substituted estimators can describe the information of both

dependence and the candidate change-points.

(2). Choose an appropriate constant α in the original sSIC based on the strength

of autocorrelation and signal-to-noise ratio obtained from data; following this, we

can see how the independent NOT algorithm works for dependent data and when

it breaks down.

In order to check the potential improvement in performance, we first analyse the be-

haviour of different NOT algorithms using the same simulation models introduced in

the online supplementary materials of Baranowski et al. (2019):

(M1) teeth: piecewise-constant ft, n = 512, q = 7 change-points at t = 64, 128, ..., 448,

with the corresponding jump sizes −2, 2,−2, ...,−2, starting intercept f1 = 1 for

t = 1, . . . , n.
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(M2) blocks: piecewise-constant ft, n = 2024, q = 11 change-points at t = 205, 267, 308,

472, 512, 820, 902, 1332, 1557, 1598, 1659, with the corresponding jump sizes 1.464,

−1.830, 1.098,−1.464, 1.830,−1.537, 0.768, 1.574,−1.135, 0.769,−1.537, starting

intercept f1 = 0 for t = 1, ..., n.

Besides (M1) and (M2), we also simulate more examples under various scenarios and the

description of the full simulation models (from twelve scenarios with different sample

size, number and location of change-points and serial dependence features) is deferred

to Appendix 4.5

In general, this chapter is aimed at discussing the possible improvements we can make

on the original NOT or NOT solution path algorithm. The main contribution is as

follows. First, Section 4.2 discusses the performance of the basic NOT algorithm by

choosing the preset threshold ζn on the estimated LRV estimators. Since the basic

NOT highly depends on the choice of threshold and its performance is roughly moder-

ate even for independent noise, we attach more importance to the NOT solution path

algorithm. In Section 4.3, we illustrate the effectiveness of two data preprocessing

approaches applied before the NOT solution path algorithm, while freezing all pre-

specified parameters in the algorithm. We also consider extending the NOT solution

path algorithm itself in Section 4.4 via changing the information criterion or param-

eters in the penalty function. The Supplementary Appendix 4.5 contains complete

simulation models.
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4.2 Threshold-based NOT Algorithm

4.2.1 Choice of Threshold

For a stationary error process {Xi}ni=1, the autocorrelation function ρt(τ) depends only

on the difference τ and hence we write ρt(τ) = ρ(τ) for any lag τ . As shown in

Corollary 1 in Baranowski et al. (2019), the basic NOT algorithm still works when

the dependent Gaussian process {Xi}ni=1 satisfies
∑∞

τ=−∞ |ρ(τ)| < ∞. In particu-

lar, the ARMA models can satisfy this condition because we know that they can be

represented as a linear process with coefficients |ai| = O(ri) for all r ∈ (λ∗, 1), see

Remark 3.1 in Chapter 3. This means that
∑∞

τ=−∞ |ρ(τ)| = 1 + 2
∑∞

τ=1 |ρ(τ)| =

1 + 2
∑∞

i=0

∑∞
j=i+1 |aiaj|/

∑∞
i=0 a

2
i < ∞. Here, we shall focus on the ARMA model

when constructing the serial correlated noise.

For independent noise Xi ∼ N(0, σ2), the basic NOT algorithm employs a pre-specified

threshold ζn proportional to the the standard deviation σ. Its MAD-based estima-

tor (Hampel, 1974) applied in NOT is defined as σ̂ = Median(|Y2 − Y1|, . . . , |Yn −

Yn−1|)/(
√
2z1/4), where z1/4 is the third quartile of the standard normal distribution.

Under the new dependence assumption, the threshold ζn is permitted to be propor-

tional to σ
√∑∞

τ=−∞ |ρ(τ)|. For positively correlated noise, this term can naturally be

regarded as long-run standard deviation and hence it could be estimated relying on

our new LRV estimators.

4.2.2 Simulation Results

In practice, the success of NOT is largely impacted by the selection of the pre-specified

constants in ζn, i.e. the constant Cnot in ζn = Cnotσ̂
√
2 log(n) for NOT and the constant
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Clrv in ζn = Clrvσ̂2(λ)
√

2 log(n) for the possible extended NOT.

Therefore, we first consider the simplest examples, data with independent noise, to see

whether our LRV estimators can reduce the impacts of the unobserved quantities. In

other words, we choose proper constants Cnot and Clrv based on simulated data with

signal (M1) and will not change them when we detect change-points in data with signal

(M2). To be specific, we compare the performance of NOT and extended NOT (‘NOT

LR’) using the test signals (M1) and (M2) introduced in Section 4.1, accompanying

the error process following (a) Xt
iid∼ N(0, 1) and (b) Xt

iid∼ N(0, 2); here results for all

cases are summarised in Table 4.1.

For each case, we show a frequency table for the distribution of q̂ − q, where q̂ and

q denote the number of the estimated and true change-points respectively. We also

provide the estimated Mean Squared Error of the estimated signal f̂t, which is defined

as

MSE = E

[
1

n

n∑
t=1

(ft − f̂t)
2

]

In the NOT algorithm, the values of the estimated piecewise-constant mean of the

vector are computed by taking sample means of the sequence between each pair of

consecutive detected candidate change-points. Meanwhile, to assess the accuracy of

estimating the locations of change-points, we calculate the estimates of the (scaled)

Hausdorff distance defined below, which follows 0 ⩽ dH ⩽ 1

dH =
1

n
E
[
max

{
max

j=0,...,q+1
min

k=0,...,q̂+1
|ηj − η̂k|, max

k=0,...,q̂+1
min

j=0,...,q+1
|ηj − η̂k|

}]
(4.2.1)

where the true and estimated locations of change-points respectively satisfy the con-

straints 0 = η0 < η1 < · · · < ηq < ηq+1 = n and 0 = η̂0 < η̂1 < · · · < η̂q̂ < η̂q̂+1 = n.

In Table 4.1, we observe that based on an optimal choice of threshold, utilising the
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Table 4.1: Distribution of q̂−q obtained by NOT and NOT LR for data generated according to
(2.2.1) with the signals (M1) and (M2), together with the noise Xt

iid∼ N(0, 1) and N(0, 2), the
average Mean Square Error of the resulting estimate of the signal and the average Hausdorff
distance dH over 100 simulations.

q̂ − q
Method Signal Noise ⩽ −3 -2 -1 0 1 2 ⩾ 3 MSE dH
NOT

(M1)
N(0, 1)

0 0 9 72 15 4 0 0.984 0.125
NOT LR 0 0 16 82 2 0 0 0.999 0.135

NOT
N(0, 2)

0 0 8 80 10 2 0 1.968 0.139
NOT LR 0 0 12 82 6 0 0 1.973 0.140

NOT

(M2)
N(0, 1)

2 23 57 17 1 0 0 0.995 0.441
NOT LR 0 8 59 25 6 2 0 0.991 0.498

NOT
N(0, 2)

51 30 19 0 0 0 0 2.004 0.845
NOT LR 20 30 30 15 4 1 0 1.988 0.821

new LRV estimator can slightly enhance the performance of estimating the number

of change-points while it leads to a slight increase in MSE and Hausdorff distance.

However, the last four rows show us that without any adaptation, the two algorithms

using the same constants Cnot and Clrv are not able to give good estimation results

in the case of irregular change-points even for independent noise. Therefore, finding a

mechanism for choosing the optimal threshold is indeed vital for the performance of

NOT. In practice, while Theorem 1 and Corollary 1 in Baranowski et al. (2019) assert

the existence of threshold ζn that ensures consistent estimation of the change-points

in dependent data, determining this parameter in experiments often relies on many

unobserved quantities. Generally speaking, the NOT algorithm tends to be sensitive

to the choice of threshold even under the independent case.

To overcome this issue, Baranowski et al. (2019) proposed the NOT solution path

algorithm that can automatically select the optimal threshold and the corresponding

candidate model from a threshold-indexed solution path by minimising the sSIC, see

Section 2.5. To take full advantage of this existing flexible CPD technique, in the

following sections, we shall pay more attention to the NOT solution path algorithm.



4.3 Data Preprocessing 137

4.3 Data Preprocessing

In the development of NOT solution path algorithm, the most straightforward way

is to conduct a data preprocessing procedure first to make the tested sequence closer

to an independent Gaussian distributed series. Following the aforementioned data

preprocessing approaches, we now discuss how the NOT solution path algorithm can

be extended in practice to handle serial correlated error processes. In this section, we

tend to focus on analysing the practical behaviour of the algorithm on the new series,

with the readily available function in R package “breakfast” for Gaussian mean shift

model. To avoid the possible estimation error resulting from the noise type, we conduct

the analysis under the assumption of a Gaussian distributed error process.

4.3.1 Adding zero-mean iid Gaussian distributed error process

Here we consider adding an additional series εi
iid∼ N(0, σ2) to the original model Yi =

fi+Xi, where fi is piecewise-constant and Xi follows an AR model Xi =
∑p

j=1 ϕjXi−j+

ϵi with ϵi
iid∼ N(0, σ2

ϵ ). This method is applied in the hope that the suitably chosen

iid Gaussian noise εi can lead to weaker serial correlation within the new observations

Yi + εi. We motivate this idea with the following example:

Example 1. (a) Signal (M1), noise Xi = 0.3Xi−1 + ϵi with ϵi
iid∼ N(0, 1); (b) Signal

(M2), noise Xi = 0.3Xi−1 + ϵi with ϵi
iid∼ N(0, 1); (c) Add εi

iid∼ N(0, 1) on (a); (d) Add

εi
iid∼ N(0, 1) on (d).

Figure 4.1 shows that the new error process Xi+εi seems to be closer to an independent

series and somehow leads to the dependence reduction in the original series, which is

more obvious in (a) and (c). Heuristically speaking, the definition of long-run variance

σ2
∗ =

∑
i∈Z γ(i) indicates that the main difference between LRV σ2

∗ and variance γ(0)
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Figure 4.1: Plots for original simulated data [(a) and (b)] and plots for the corresponding
preprocessed simulated data [(c) and (d)] after adding proper independent Gaussian series.
The red lines represent the true signal fi, see (M1) and (M2).

originates from the autocorrelations of the series, where independent sequences will

always have γ(0)/σ2
∗ = 1. Hence the underlying idea of “correlation reduction” is to

make the ratio of traditional variance γ(0) to long-run variance σ2
∗ closer to 1. It can be

easily derived that for any stationary error process Xi and new iid series εi
iid∼ N(0, σ2),

we have
Var(Xi + εi)

LRV(Xi + εi)
=

Var(Xi) + Var(εi)
LRV(Xi) + LRV(εi)

=
γ(0) + σ2

σ2
∗ + σ2

(4.3.1)

which always satisfies ∣∣∣∣γ(0) + σ2

σ2
∗ + σ2

− 1

∣∣∣∣ < ∣∣∣∣γ(0)σ2
∗

− 1

∣∣∣∣ (4.3.2)

for any σ2 > 0. The real challenging issue is to find an optimal σ2 to make the NOT

solution path algorithm well-suited for dependent data.
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Before considering the the optimal value of σ2, we first assess the effectiveness of

this preprocessing approach in the case of signal (M1) under the following AR error

structures (N1)-(N5) and (M2) under (N1), (N6) and (N7).

(N1) Xi = 0.3Xi−1 + ϵi, where ϵi
iid∼ N(0, 1);

(N2) Xi = 0.8Xi−1 + ϵi, where ϵi
iid∼ N(0, 1);

(N3) Xi = 0.8Xi−1 + ϵi, where ϵi
iid∼ N(0, 0.352);

(N4) Xi = −0.3Xi−1 + ϵi, where ϵi
iid∼ N(0, 1);

(N5) Xi = −0.8Xi−1 + ϵi, where ϵi
iid∼ N(0, 1);

(N6) Xi = 0.3Xi−1 + ϵi, where ϵi
iid∼ N(0, 0.52);

(N7) Xi = 0.8Xi−1 + ϵi, where ϵi
iid∼ N(0, 0.12);

Models (N2), (N3), (N5) and (N7) represent strongly autocorrelated error process. And

models (N6) and (N7) somehow present the error processes with the largest possible

σ2
ϵ under which NOT can work well after data preprocessing. Table 4.2 and Table

4.3 generally demonstrate that adding additional iid Gaussian noise can successfully

enhance the performance of the NOT solution path algorithm on dependent data.

However, the scenarios (N2) in Table 4.2 and (N1) in Table 4.3 also indicate that

further investigations are still required to discover a suitable formula of the possible

variance σ2 of the iid noise with respect to the sample sizes, change-point configurations

and strength of dependence in the original data. That is, we can see that after the

preprocessing procedure, NOT works well for data produced by signal (M1) and noise

(N1), but fails to provide good results for data with the same noise but different signals.

Therefore, the key point remaining here is to find out what kind of dependent data can

potentially be estimated with NOT and what the optimal choices of σ2 are for different

kinds of dependent data.
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Theoretically speaking, we know from the supplementary material of NOT (Baranowski

et al., 2019) that the consistency of the NOT solution path algorithm is proved when

the set En holds. Write 1(s,e] = (1(s,e](1), . . . ,1(s,e](n))
⊺ with

1(s,e](t) =

(e− s)−1/2 t = s+ 1, . . . , e,

0 otherwise
(4.3.3)

and X = (X1, . . . , Xn)
⊺. The set En is defined as

En =

{
max

0⩽s<e⩽n
⟨1(s,e],X⟩ ⩽

√
6 log(n)

}
. (4.3.4)

This provides a restriction to both the dependence and σ2
ϵ in the original noise and

the σ2 for newly added noise εi. Johnstone and Silverman (1997) presented that given

Gaussian random variables X1, . . . , Xn distributed with mean 0 and variances σ2
i , we

have

p

{
max
1⩽i⩽n

|Xi/σi| >
√
2 log(n)

}
→ 0 (4.3.5)

regardless of the level of dependence in {Xi}ni=1. Although the inequalities (4.3.4) and

(4.3.5) do not necessarily share the same right bound, this still gives us a rough idea for

setting the maximum value of σ2
ϵ . Take the AR(1) error process as a special example,

when adding a new iid Gaussian noise εi
iid∼ N(0, σ2) to the original model with error

process Xi = ϕ1Xi−1 + ϵi, ϵi
iid∼ N(0, σ2

ϵ ). We can see that the newly created noise

XN
i = Xi + εi has the properties Var(XN

i ) = σ2
ϵ/(1 − ϕ2

1) + σ2. Therefore, we may

derive from (4.3.4) and (4.3.5) that the largest possible value of σ2
ϵ/(1− ϕ2

1) + σ2 may

not locate distinctly away from 3. However, the specific expression for choosing the

optimal σ2 should be explored further and we attempt to start from a more practical

perspective. Intuitively speaking, this issue can be closely related to the other problem

with figuring out the combination of σ2
ϵ and ϕ1 under which NOT works or breaks

down, which is briefly discussed in Section 4.4.3.
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Table 4.2: Distribution of q̂ − q obtained by NOT solution path algorithm after pre-adding
an iid error process following N(0, σ2) for data generated according to (2.2.1) with the signals
(M1) and the noises (N1) to (N5), the average Mean Square Error of the resulting estimate
of the signal and the average Hausdorff distance dH over 100 simulations.

q̂ − q
Noise σ ⩽ −3 -2 -1 0 1 2 ⩾ 3 MSE dH

(N1)

0.00 0 0 0 67 10 15 8 1.481 0.124
0.50 0 0 0 78 7 8 7 1.264 0.105
0.75 0 0 0 82 13 3 2 1.506 0.100
1.00 0 0 0 89 10 1 0 2.892 0.100
1.25 0 1 0 83 10 4 2 2.557 0.138
1.50 0 4 1 86 8 1 0 2.994 0.205

(N2)

0.00 0 0 0 0 0 0 100 4.676 0.463
0.50 0 0 0 1 2 0 97 1.487 0.448
0.75 0 0 0 0 0 2 98 4.687 0.459
1.00 0 0 0 1 3 7 89 5.901 0.450
1.25 0 1 1 2 10 13 73 2.840 0.460
1.50 3 2 3 11 6 10 65 5.863 0.468
1.75 4 8 5 12 20 11 40 8.356 0.553
2.00 8 8 12 19 6 17 30 5.482 0.690

(N3)

0.00 0 0 0 0 0 0 100 0.774 0.460
0.50 0 0 0 4 2 8 86 0.419 0.385
0.75 0 0 0 28 18 16 38 0.767 0.266
1.00 0 0 0 44 28 11 17 2.097 0.195
1.25 0 0 0 69 14 8 9 1.739 0.165
1.50 0 2 1 79 12 3 3 2.170 0.182
1.75 1 9 3 71 15 1 0 4.719 0.272
2.00 8 13 9 56 10 2 2 4.135 0.536

(N4) 0.00 0 0 0 100 0 0 0 0.033 0.022
(N5) 0.00 0 0 0 100 0 0 0 0.028 0.013

4.3.2 Pre-averaging the sequence over non-overlapping moving

windows

In this method, we divide the time series into ⌊T/h⌋ blocks of length h and consider

the calculated local averages as the new dataset, hoping that the pre-averaged noise

can approximately follow a Gaussian distribution by the law of large numbers. In the
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Table 4.3: Distribution of q̂ − q obtained by NOT solution path algorithm after pre-adding
an iid error process following N(0, σ2) for data generated according to (2.2.1) with the signals
(M2) and the noises (N1), (N6) and (N7), the average Mean Square Error of the resulting
estimate of the signal and the average Hausdorff distance dH over 100 simulations.

q̂ − q
Noise σ ⩽ −3 -2 -1 0 1 2 ⩾ 3 MSE dH

(N1)

0.00 1 15 36 20 18 5 5 1.406 0.829
0.50 8 13 41 26 7 3 2 1.325 0.783
0.75 26 18 27 21 3 3 2 1.432 0.949
1.00 31 37 19 10 3 0 0 2.751 0.869
1.25 48 33 11 4 3 1 0 2.642 1.251
1.50 84 10 6 0 0 0 0 2.803 1.696

(N6)

0.00 0 0 4 71 17 2 6 0.293 0.307
0.50 0 0 2 81 11 3 3 0.279 0.267
0.75 0 0 2 72 17 8 1 0.294 0.313
1.00 0 0 6 74 12 6 2 0.447 0.228
1.25 0 0 11 75 11 2 1 0.429 0.310
1.50 0 0 21 59 14 4 2 0.453 0.437

(N7)

0.00 0 0 0 0 0 0 100 0.2816 2.397
0.25 0 0 0 19 21 20 40 1.035 1.27
0.50 0 0 3 74 17 5 1 0.272 0.251
0.75 0 0 27 64 8 1 0 0.294 0.307
1.00 2 12 45 38 3 0 0 1.019 0.436

new series, we often have two consecutive change-points located in the block containing

the original change-point, see sub-figures (a) and (b) in Figure 4.3.

To study whether this approach can be helpful, here we display Figures 4.2 to 4.5 that

summarise the results for different AR(1) error processes defined in Section 4.3.1. In

particular, the raw data shown in (a) and (c) of Figure 4.2 and 4.3 is built on signal

(M1) and noise (N1) while (b) and (d) presenting results for signal (M1) and noise

(N2). Also, Figure 4.4 shows the results for signal (M2) and the same noises (N1) and

(N2) whereas Figure 4.5 is plotted for signal (M2) and noise (N6) for sub-figures (a)

and (c), or noise (N7) for (b) and (d).

These graphs show that the pre-averaging stage can be useful for NOT to estimate the
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change-points in correlated series but its effectivess also depends on the sample sizes,

change-point configurations and strength of dependence mentioned in the last section.

The problem goes back to identifying the characteristics of the raw data. Moreover,

compared to adding iid noise, the application of the pre-averaging approach can face

more than one issues. First, even if the change-points are successfully detected in the

pre-averaged data, it is still hard to find the true change-point location within the

detected block. Although utilising moving windows may help reduce this problem,

it will also increase the computational complexity. The second issue arises from the

optimal choice of bandwidth h, and the difficulty in detecting the two consecutive

change-points resulted from pre-averaging; see red dots in Figure 4.3 and 4.5.

Figure 4.2: Under original signal (M1), plots for pre-averaged data with low correlated noise
(N1) [(a) and (c)] and plots for the pre-averaged data with high correlated noise (N2) [(c) and
(d)], where the bandwidth is set to be 8. The red lines in (a)-(b) and (c)-(d) represent the
true and estimated signals in pre-averaged data respectively.
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Figure 4.3: Under original signal (M1), plots for pre-averaged data with low correlated noise
(N1) [(a) and (c)] and plots for the pre-averaged data with high correlated noise (N2) [(c) and
(d)], where the bandwidth is set to be 6. The red lines in (a)-(b) and (c)-(d) represent the
true and estimated signals in pre-averaged data respectively

Figure 4.4: Under original signal (M2), plots for pre-averaged data with low correlated noise
(N1) [(a) and (c)] and plots for the pre-averaged data with high correlated noise (N2) [(c)
and (d)]. The red lines in (a)-(b) and (c)-(d) represent the true and estimated signals in
pre-averaged data respectively
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Figure 4.5: Under original signal (M2), plots for pre-averaged data with low correlated noise
(N6) [(a) and (c)] and plots for the pre-averaged data with high correlated noise (N7) [(c)
and (d)]. The red lines in (a)-(b) and (c)-(d) represent the true and estimated signals in
pre-averaged data respectively

4.4 Extended NOT Solution Path Algorithm

In this section, we shall concentrate on discovering the possible extensions on the

NOT solution path algorithm itself instead of data preprocessing. There are generally

two straightforward ways that can be utilised to build the information-based criterion

for candidate model selection under the assumption of dependent noise: adjusting

the measure of fit to the data or the penalty of the strengthen Schwarz Information

Criterion in NOT. These two parts are discussed separately in the following sections.

4.4.1 New Information Criterion

In order to extend the NOT solution path algorithm to dependent data, we attempt

to develop new information-based criterion for better performance. For any candidate
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model T (ζ
(k)
n ), let f̂k

t denote the estimated signal f with the definition f̂k
t = (η̂i+1 −

η̂i)
−1
∑η̂i+1

j=η̂i+1 Yj for η̂i + 1 ⩽ t < η̂i+1, i = 1, . . . , q̂(ζ
(k)
n ). Let σ̂2

k = n−1
∑n

t=1(Yt −

f̂k
t )

2 represent the maximum likelihood estimator of the residual variance. Under the

assumption of iid Gaussian noise, the sSIC function (2.5.3) is then reduced to

sSIC(k) =
n

2
log σ̂2

k + nk log
α(n) (4.4.1)

Considering the serial correlation in the Gaussian error process, we can somehow rep-

resent the measure of fit as a function of quantified dependence. We first attempt

to start with the log-likelihood function of a multivariate normal distribution, but we

find it hard to theoretically simplify the expression and even difficult to estimate the

determinant of the unknown covariance matrix. Therefore, we turn to thinking about

whether there are other measures acting as a possible substitution for the log-likelihood

function.

For simplicity, we decide to include the serial correlation in noise by straightforwardly

replacing the estimated residual variance σ̂2
k in (2.5.3). Note that for given observations

{Yi}ni=1 and set of random intervals FM
n , each threshold ζn and the corresponding

candidate model are selected by minimising sSIC. This indicates that we should retain

the features in the signal when they are not tested in the candidate model. Here,

we shall provide two possible solutions: segmented LRV estimators σ̂2
2 and sum of

estimated autocovariances. Mathematically speaking, for any candidate model T (ζ
(k)
n ),

we define

ICLRV (k) =
n

2
log

1

n

q̂(ζ
(k)
n )∑

i=1

(η̂i+1 − η̂i + 1)σ̂2
∗(Yη̂i+1, . . . , Yη̂i+1

) + nk log
α(n)

ICACV (k) =
n

2
log

1

n

q̂(ζ
(k)
n )∑

i=1

(η̂i+1 − η̂i + 1)

(
K∑
τ=1

[
2|γ̂[η̂i,η̂i+1)(τ)|+ 1

])2

+ nk log
α(n)

(4.4.2)
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where σ̂2
∗(Yη̂i+1, . . . , Yη̂i+1

) denotes the local LRV estimated on interval [η̂i, η̂i+1) and

γ̂[η̂i,η̂i+1)(τ) represents the estimated autocovariance at lag τ over interval [η̂i, η̂i+1).

First, it is natural to think of the proposed wavelet-based estimators of LRV, which

provide a good description of dependence in data and have good performance for differ-

ent cases. To keep the undetected changes in the signal, we choose the non-thresholded

estimators and tend not to use the most robust median-based ones. In ICLRV (k), the

locally estimated LRV σ̂2
∗(Yη̂i+1, . . . , Yη̂i+1

) acts as a replacement of the estimated resid-

ual variance. Then we construct a simple weighted average to provide the whole picture

of the candidate model. Analogously, the sum of the absolute estimated autocovari-

ances can somehow represent the LRV whereas the absolute sign increases the strength

of dependence extracted from the candidate model. Before studying the theoretical

development of the new information-criterion-based methods, we shall, in the next

subsection, first analyse the practical behaviour of the NOT solution path algorithm.

4.4.2 Simulation Results I

We test the performance of the three NOT approaches in the case of regular change-

points, i.e. signal (M1), under the assumptions of error structures (N1) to (N5) defined

in Section 4.3.1. We report the results of three methods based on ICLRV (k), ICACV (k)

and sSIC referred to as approaches (A1), (A2) and (A3), respectively. The number

of randomly drawn intervals and the maximum number of change-points for sSIC and

two new information-based criterion are pre-specified to be M = 10000 and qmax = 20

respectively. Table 4.4 summarises the results of the simulation study from 100 samples

of a time series with length n = 512 produced by signal (M1) plus noise (N1)-(N5) when

having a good choice of α.

Overall, it shows that the original NOT solution path algorithm can generally out-
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Table 4.4: Distribution of q̂−q obtained by approach (A1)-(A3) for data generated according
to (2.2.1) with the signals (M1) and the noises (N1) to (N5) in Section 4.3, the average Mean
Square Error of the resulting estimate of the signal and the average Hausdorff distance dH
over 100 simulations.

q̂ − q
Noise Method ⩽ −3 -2 -1 0 1 2 ⩾ 3 MSE dH

(N1)
(A1) 0 2 5 82 9 2 0 1.058 0.051
(A2) 0 0 0 100 0 0 0 0.002 5.360
(A3) 0 0 0 100 0 0 0 0.003 0.015

(N2)
(A1) 22 9 13 13 21 6 16 2.129 0.169
(A2) 15 10 13 29 19 8 6 0.004 57.600
(A3) 27 6 8 18 16 8 17 1.975 0.187

(N3)
(A1) 1 5 10 65 16 2 1 0.313 0.037
(A2) 0 0 0 99 1 0 0 0.001 3.480
(A3) 0 0 0 99 1 0 0 0.295 0.014

(N4)
(A1) 0 0 0 100 0 0 0 1.064 0.004
(A2) 0 0 0 100 0 0 0 0.002 2.190
(A3) 0 0 0 100 0 0 0 1.063 0.003

(N5)
(A1) 0 0 0 100 0 0 0 2.692 0.002
(A2) 1 5 3 72 13 5 1 0.005 14.360
(A3) 0 0 0 100 0 0 0 2.691 0.002

perform the two extended NOT methods if an optimal α is selected. Additionally,

it is evident that the two proposed measures cannot effectively replace the estimated

determinant of the unknown covariance matrix. Such failure arises from their inability

to achieve a satisfactory balance between change-point features and dependence con-

ditions in serial correlated data. In particular, the NOT based on ICACV (k) tends to

overestimate the change-points as we can see the small MSE and large dH when the

number of change-points is correct. One potential explanation is that the summation

of absolute autocovariances incorporates the dependence in noise to a greater extent

than necessary. One the other hand, the distribution of q̂ − q for the ICLRV (k)-based

NOT suggests that the LRV estimators are still too robust to multiple mean shifts even

without removing large coefficients in moderate scales, which somehow aligns with the

proved asymptotic consistency of σ̂2
2. Specifically, although the maximum of absolute

difference in local averages can serve as a global measure of the discrepancy, see Wu and
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Zhao (2007), the difference-based LRV estimators are usually developed to eliminate

the signal. We leave the vital problem of finding an optimal information criterion as

one of the possible extensions of NOT for future investigation.

4.4.3 Extension on Existing Information Criterion

In this section, we analyse the practical performance of the NOT solution path algo-

rithm built on the original sSIC (2.5.3) by simply adapting the value of α. In general,

the choice of α intuitively depends on four main perspectives: (a) sample size n, (b)

strength of autocorrelation, (c) the number of estimated change-points and (d) signal-

to-noise ratio. However, the number of estimated change-points should be unknown

before we conduct the change-point detection. Therefore, we would like to have a

discussion on how to choose the parameter α based on the remaining three elements.

In particular, to summarise the strength of autocorrelation of one process, we apply a

straightforward autocorrelation index (ACI) ϖY defined as

ϖ2
Y =

∞∑
τ=−∞

|ρ(τ)| (4.4.3)

Considering real-world applications, the positively correlated error process is widely

employed and capable of describing the persistent features of data in many fields, such

as economic data (stock prices, GDP growth rate, inflation rates) and environmental

data (daily temperature, precipitation). Hence we shall start with simulations on

data following an AR(p) error process with positive serial dependence, where Xi =∑p
j=1 ϕjXi−j + ϵi with ϵi

iid∼ N(0, σ2
ϵ ). Under such an assumption, ACI shares the

same expression as the scaled long-run standard deviation, i.e. ϖ2
Y =

∑∞
τ=−∞ ρ(τ) =

σ2
∗/γ(0), which makes our wavelet-based estimators in Section 3 good measures for

calculating ACI. Here we choose ϖ̂Y = σ̂4(λ)/γ̂(0); see its definition in (3.2.6). Given
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a pre-specified window size h and the corresponding block number kn = ⌊n/h⌋, the

estimated γ(0) is defined as follows

γ̂(0) = median

(
1

h− 1

h∑
i=1

(Yi − Ȳ(1+jh):(j+1)h)
2, j = 1, . . . , kn

)
(4.4.4)

where Ȳ(1+jh):(j+1)h stands for the average of observations Y1+jh, . . . , Y(j+1)h.

Meanwhile, estimating the signal-to-noise ratio (SNR) is often helpful for comparing

the level of the signal and noise in data, and its challenge mainly comes from quan-

tifying the strength of the signal. In practice, they are frequently described with the

corresponding standard deviation, power or the actual value directly. As σ̂4(λ) is suit-

able for estimating the level of noise, it is then a good choice to quantify the signal in

the form of “standard deviation” as well. Therefore, we consider the empirical signal-

to-noise ratio computed by

ŜNRY =
sY
σ̂4(λ)

(4.4.5)

where sY represents the sample standard deviation of {Yi}ni=1.

Table 4.5: Possible choices of α obtained by running the NOT solution path algorithm for
data generated according to (2.2.1) with the signal (M1) and the noises following AR(1) model,
whose sample signal-to-noise ratio and autocorrelation index are presented under SNR and
ACI. Meanwhile, ϕ1 denotes the coefficient of AR(1) noise. And σ̂ϵ represents the maximum
value of σϵ in ϵi

iid∼ N(0, σ2
ϵ ) where NOT still works.

Noise ϕ1 σ̂ϵ α SNR LRSD ACI γ̂(0)
AR(1) 0.1 1.80 1.00 0.857 2.412 1.435 1.687
AR(1) 0.2 1.60 1.05-1.15 0.794 2.386 1.596 1.496
AR(1) 0.3 1.40 1.15-1.30 0.760 2.328 1.783 1.304
AR(1) 0.4 1.20 1.30-1.45 0.722 2.290 2.012 1.128
AR(1) 0.5 1.00 1.40-1.60 0.681 2.228 2.353 0.946
AR(1) 0.6 0.80 1.65 0.666 2.103 2.767 0.766
AR(1) 0.7 0.65 1.70 0.639 2.063 3.260 0.633
AR(1) 0.8 0.45 1.90 0.667 1.857 4.131 0.448
AR(1) 0.9 0.20 2.20 1.198 0.923 4.643 0.201

Figure 4.6 and 4.7 display the estimated signal-to-noise ratio and autocorrelation index
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Figure 4.6: Under original signal (M1), plots for estimated signal-to-noise ratio (SNR) and
autocorrelation index (ACI) with AR(1) Gaussian noise Xi = ϕiXi−1 + ϵi, where ϕi > 0,
ϵi

iid∼ N(0, 1) (n = 512). The red line represents the true long-run standard deviation for the
corresponding error process.

Table 4.6: Possible choices of α obtained by running the NOT solution path algorithm for
data generated according to (2.2.1) with the signal (M2) and the noises following AR(1) model,
whose sample signal-to-noise ratio and autocorrelation index are presented under SNR and
ACI. Meanwhile, ϕ1 denotes the coefficient of AR(1) noise. And σ̂ϵ represents the maximum
value of σϵ in ϵi

iid∼ N(0, σ2
ϵ ) where NOT still works.

Noise ϕ1 σ̂ϵ α SNR LRSD ACI γ̂(0)
AR(1) 0.1 0.65 1.00-1.10 1.332 0.720 1.133 0.637
AR(1) 0.2 0.55 1.10-1.30 1.363 0.670 1.246 0.538
AR(1) 0.3 0.45 1.15-1.55 1.382 0.609 1.366 0.445
AR(1) 0.4 0.40 1.35-1.50 1.342 0.614 1.542 1.401
AR(1) 0.5 0.35 1.40-1.50 1.263 0.642 1.804 0.358
AR(1) 0.6 0.25 1.60 1.411 0.543 2.049 0.264
AR(1) 0.7 0.20 1.70 1.389 0.542 2.455 0.221
AR(1) 0.8 0.15 1.90 1.364 0.548 3.159 0.173
AR(1) 0.9 0.10 2.15 1.340 0.543 4.498 0.121

for data produced by positively correlated AR(1) noise with ϵi
iid∼ N(0, 1) and coeffi-

cient ϕi ∈ [0.05, 0.95] but different signals (M1) and (M2). We can see that with the
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Figure 4.7: Under original signal (M2), plots for estimated signal-to-noise ratio (SNR) and
autocorrelation index (ACI) with AR(1) Gaussian noise Xi = ϕiXi−1 + ϵi, where ϕi > 0

ϵi
iid∼ N(0, 1) (n = 2024). The red line represents the true long-run standard deviation.

same σ2
ϵ = 1, the estimation results of ACI are poorer for error process with higher

correlation, which may, together with estimated SNR, act as an indicator of the data

setting when NOT still works well or breaks down for dependent data.

To clarify, from the two tables, it is reasonable to presume that the optimal α for NOT

solution path algorithm can be viewed as a value proportional to the AR coefficient

ϕ1. Also, except for the results of the cases with large ϕ1, we can see that the ACI

can somehow linearly reflect the value of ϕ1. Meanwhile, since we have different rela-

tionships between α and ACI from the two tables, we consider SNR as a condition for

classifying different scenarios.

Therefore, we conduct experiments on more simulated data produced by simpler signal

models (M3) to (M6), with AR(1) error processes generated from the following two

models for ϕ1 = 0.1, 0.2 . . . , 0.9.
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• Xi = ϕ1Xi−1 + ϵi, where ϵi
iid∼ N(0, σ2

ϵ ) with σϵ = 2(1− ϕ1)

• Xi = ϕ1Xi−1 + ϵi, where ϵi
iid∼ N(0, σ2

ϵ ) with σϵ =
√

1− ϕ2
1

During experiments, we first briefly summarise the conditions when the NOT solution

path algorithm, after changing the α, could still have good performance and when it

might break down. That is, for time series with larger mean shift size, the extended

algorithm works well for any σϵ ∈ [0.05,max(2(1− ϕ1),
√
1− ϕ2

1)], whereas it is better

to have σϵ ∈ [0.05,min(2(1− ϕ1),
√

1− ϕ2
1)] when the mean shift size is small.

After conducting several tests, we find two series of α that can roughly work well for all

models above. And in particular, for data such as (A3) and (A5) with larger mean shift

size, α(1) = 1.2, 1.35, 1.5, 1.6, 1.7, 1.9, 2.0, 2.2, 2.5 works better for ϕ1 = 0.1, 0.2 . . . , 0.9;

On the other hand, we tend to use α(2) = 1.085, 1.225, 1.35, 1.45, 1.525, 1.7, 1.8, 1.975, 2.25,

see Figure 4.8. To test whether such α is also well-suited for other coefficients, we apply

the simple Lagrangian function to derive the α for other ϕ1’s, i.e. we test the perfor-

mance of data generated by AR(1) noise with different ϕ1’s based on α on the lines

in Figure 4.8. The good results encourage us to find an explicit formula for these α’s.

To fulfill this aim, we first use signal-to-noise ratio and the autocorrelation index to

categorise the data into different classes. We mainly consider two important criteria

for the segmentation process: one is to divide the models with different mean shift

size (ŜNRY ) and the other is to separate data with weak or strong autocorrelations

(ϖ̂). Meanwhile, following the aforementioned combination of mean shift size and σϵ

allowing for good performance, we divide the samples into three categories and then

derive the corresponding formulas.

Here we propose an empirical formula on the selection of parameter α required for

improving the performance of NOT for dependent data produced by piecewise-constant
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signal and an AR(p) error process.

α̂ =


0.65|ϖ̂Y − 0.8|+ 1.2 ŜNRY ⩾ 1.4, ϖ̂ ⩽ 2,

0.65|ϖ̂Y − 1.0|+ 1.2 ŜNRY ⩾ 1.4, ϖ̂ > 2,

min(2.5, 0.6|ϖ̂Y − 1.2|+ 1.0) 0.5 < ŜNRY < 1.4

(4.4.6)

When |ϖ̂Y | is small, if ŜNRY /ϖ̂Y < 0.5, the NOT solution path is highly likely to

break down regardless of the choice of α.

Figure 4.8: Plots for possible choices of α that works well for different values of coefficient
ϕ1 in AR(1) error process Xi = ϕ1Xi−1 + ϵi, where the top (bottom) one is provided for data
with larger (small) mean shift size.

4.4.4 Simulation Results II

In this section, we evaluate the performance of the NOT solution path algorithm applied

with the guidance on the choice of the pre-specified α; see (4.4.6). We provide the

simulation results in the case of examples following (M1)-(M14) introduced in Section
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4.1, under a variety of error processes defined below. We assume that ϵt
iid∼ N(0, σ2

ϵ )

and different σϵ’s are randomly generated for different signals, which will be specified

later. For each scenario, we consider the case with zero change-points (q = 0) in order

to evaluate the proposed methodology on its possibility of false detection.

(N1) Xt = ϵt with σϵ = 1;

(N2) AR(1) model Xt = ϕ1Xt−1 + ϵt, with ϕ1 = 0.1;

(N3) AR(1) model Xt = ϕ1Xt−1 + ϵt, with ϕ1 = 0.5;

(N4) AR(1) model Xt = ϕ1Xt−1 + ϵt, with ϕ1 = 0.9;

(N5) AR(2) model Xt = ϕ1Xt−1 + ϕ2Xt−2 + ϵt, with ϕ1 = 0.5 and ϕ2 = 0.3;

(N6) AR(2) model Xt = ϕ1Xt−1 + ϕ2Xt−2 + ϵt, with ϕ1 = 0.7 and ϕ2 = 0.2;

(N7) ARMA(1,1) model Xt = ϕ1Xt−1 + ϵt + ϑ1ϵt−1, with ϕ1 = 0.5 and ϑ1 = 0.3 with

σϵ = 1/2.14285;

(N8) ARMA(1,1) model Xt = ϕ1Xt−1 + ϵt + ϑ1ϵt−1 with ϕ1 = 0.7 and ϑ1 = 0.2 with

σϵ =
√

(1− ϕ1)2/(1 + ϕ1ϑ1 + ϑ2
1);

(N9) MA(1) model Xt = ϵt + ϑ1ϵt−1, with ϑ1 = −0.9 and σϵ = 1.

For signal models with larger size of θi, i.e. the ones marked with even numbers within

(M3)-(M14), we generate the corresponding noises σϵ from σϵ ∼ U [0.05,max(0.2(1 −

ϕ1),
√

1− ϕ2
1)]. On the other hand, for the remaining cases with smaller signals or

zero signal, the noises are selected relying on σϵ ∼ U [0.05,min(0.2(1− ϕ1),
√
1− ϕ2

1)].

The generated sample for simulation is recorded in Table 4.7 and the choice of pa-

rameters in models (N7) and (N8) are motivated by samples in Cho and Fryzlewicz

(2023). The small LRV in (N9) increases the difficulty in its accurate estimation. Due

to the comparatively small signals in (M1) and (M2), their corresponding noises σϵ
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for (N2)-(N9) are selected in advance as 0.65, 0.45, 0.10, 0.25, 0.15, 0.30, 0.20, 0.80 and

0.55, 0.35, 0.05, 0.15, 0.05, 0.30, 0.20, 0.80 respectively.

Table 4.7: The σϵ’s randomly generated for different signals (M3)-(M14).

σϵ (N2) (N3) (N4) (N6) σϵ (N2) (N3) (N4) (N5) (N6)
(M3) 1.42 0.75 0.42 0.37 (M4) 0.78 0.39 0.16 0.41 0.15
(M5) 1.53 0.47 0.34 0.26 (M6) 0.56 0.81 0.13 0.37 0.19
(M7) 1.65 0.90 0.25 0.34 (M8) 0.80 0.46 0.14 0.40 0.15
(M9) 1.51 0.80 0.29 0.21 (M10) 0.62 0.65 0.10 0.39 0.16
(M11) 1.28 0.59 0.23 0.17 (M12) 0.49 0.29 0.07 0.28 0.14
(M13) 1.47 0.35 0.27 0.28 (M14) 0.85 0.76 0.13 0.35 0.10

Similarly, we generate 100 replications and summarise the results of the simulation

study in a frequency table with the distribution of q̂ − q, the estimated MSE of the

estimated signal f̂t, the estimates of the (scaled) Hausdorff distance dH and the pro-

portion of spurious detection (evaluation of the size control performance).

Overall, based on the empirical formula of α (4.4.6), the NOT solution path algorithm

displays good size control for dependent data. In particular, when the sample size is

sufficiently large (n ⩾ 200), the proportion of the cases where the α-adapted NOT

falsely detects any change-point in a dataset with q = 0 is strictly controlled below

0.20 (often around 0.01). In addition, when q ⩾ 1, Table 4.9 to Table 4.11 demonstrate

that the α-adapted NOT algorithm consistently performs well for time series with

relatively low or moderate serial correlations (N1)-(N3) regardless of the value of σϵ (if

it satisfies the aforementioned criterion). Also, this algorithm shows good performance

of detecting both the number and locations of change-points in scenario (N9) where

the LRV is close to 0, i.e. good model selection accuracy as shown by the distribution

of q̂ − q and good localisation accuracy from low dH . However, the α-adapted NOT

seems to have two potential pitfalls. First, when there are strong autocorrelations,

the usefulness of this adapted algorithm can be impacted by the value of σϵ or the

number and localisation of change-points in the original data. Second, this empirical
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result is not robust to the small size of θi and we can see this limitation in Table 4.8,

where the algorithm finds it hard to show satisfactory results even for data with lower

dependence.

For further inspection of the results, Figure 4.9 to Figure 4.22 present the histograms

of the estimated change-point locations for different combinations of signal and noise

models across 100 realisations, where the data correspond to those tested examples

whose results are summarised in tables. Here all zeros shown in the histograms indicate

the failure to detect any change-points when q ⩾ 1, which suggests an overestimate of

α. We see that the α-adapted NOT solution path algorithm can often accurately detect

the change-point locations where relatively large mean shift size exists. For example,

Figure 4.14 shows that for the dataset with signal (M6), the localisation of the first

change-point is not as precise as the second one, where the mean shift sizes are 2 and

5 respectively.

Figure 4.9: Histograms plotting the estimated change-points for data produced by signal
(M1) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.
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Table 4.8: Distribution of q̂−q obtained by the α-adapted NOT algorithm for data generated
according to (2.2.1) with the signals (M1) and (M2) and the noises (N1)-(N9), the average
Mean Square Error (MSE) of the resulting estimate of the signal and the average Hausdorff
distance dH over 100 simulations. We also report the size, the proportion of replications with
change-points being falsely detected when there are no change-points.

q̂ − q
Model Noise Size ⩽ 3 -2 -1 0 1 2 ⩾ 3 MSE dH

(M1)

(N1) 0.000 12 0 0 88 0 0 0 0.164 10.836
(N2) 0.010 0 0 0 100 0 0 0 0.017 0.172
(N3) 0.030 28 0 0 69 1 1 1 0.295 24.709
(N4) 0.000 4 0 0 51 21 5 19 0.057 5.670
(N5) 0.000 27 0 0 51 17 4 1 0.280 23.969
(N6) 0.010 13 0 0 46 17 18 6 0.162 13.701
(N7) 0.020 12 0 0 81 4 2 1 0.130 10.805
(N8) 0.000 17 0 0 70 9 4 0 0.180 15.453
(N9) 0.000 0 0 0 100 0 0 0 0.018 0.221

(M2)

(N1) 0.000 0 1 36 63 0 0 0 0.015 0.951
(N2) 0.010 0 0 13 87 0 0 0 0.008 0.425
(N3) 0.050 0 0 5 84 10 1 0 0.006 1.082
(N4) 0.000 61 0 0 39 0 0 0 0.274 47.371
(N5) 0.000 22 3 43 32 0 0 0 0.053 12.371
(N6) 0.010 58 0 0 42 0 0 0 0.275 46.489
(N7) 0.030 0 0 18 75 5 2 0 0.009 0.970
(N8) 0.000 2 0 30 66 1 1 0 0.010 1.550
(N9) 0.000 0 0 100 0 0 0 0 0.009 2.024
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Table 4.9: Distribution of q̂−q obtained by the α-adapted NOT algorithm for data generated
according to (2.2.1) with the signals (M3)-(M6) and the noises (N1)-(N9), the average Mean
Square Error (MSE) of the resulting estimate of the signal and the average Hausdorff distance
dH over 100 simulations. We also report the size, the proportion of replications with change-
points being falsely detected when there are no change-points.

q̂ − q
Model Noise Size ⩽ 3 -2 -1 0 1 2 ⩾ 3 MSE dH

(M3)

(N1) 0.000 0 0 0 100 0 0 0 0.023 0.020
(N2) 0.080 0 0 0 100 0 0 0 0.064 0.080
(N3) 0.200 0 0 0 98 2 0 0 0.047 0.910
(N4) 0.370 0 0 11 66 17 4 2 0.890 12.770
(N5) 0.420 0 0 0 75 15 7 3 0.282 10.210
(N6) 0.410 0 0 3 64 22 4 7 0.434 13.060
(N7) 0.150 0 0 0 97 3 0 0 0.035 0.630
(N8) 0.160 0 0 2 92 4 1 1 0.274 2.880
(N9) 0.000 0 0 0 100 0 0 0 0.011 0.040

(M4)

(N1) 0.010 0 0 0 100 0 0 0 0.012 0.067
(N2) 0.030 0 0 0 100 0 0 0 0.006 0.007
(N3) 0.100 0 0 0 100 0 0 0 0.003 0.000
(N4) 0.080 0 0 23 76 1 0 0 0.472 7.963
(N5) 0.110 0 0 0 94 6 0 0 0.033 1.340
(N6) 0.120 0 0 13 82 4 1 0 0.273 5.657
(N7) 0.070 0 0 0 100 0 0 0 0.010 0.000
(N8) 0.040 0 0 1 94 4 1 0 0.104 2.143
(N9) 0.000 0 0 0 100 0 0 0 0.006 0.067

(M5)

(N1) 0.030 0 0 0 99 1 0 0 0.025 0.307
(N2) 0.080 0 0 0 100 0 0 0 0.083 0.173
(N3) 0.150 0 0 0 93 5 1 1 0.024 1.600
(N4) 0.350 0 1 1 58 22 14 4 0.364 8.853
(N5) 0.470 0 0 0 78 18 1 3 0.282 4.600
(N6) 0.380 0 1 0 50 22 13 14 0.213 11.253
(N7) 0.190 0 0 0 94 5 0 1 0.031 1.253
(N8) 0.260 0 0 1 88 6 4 1 0.216 2.567
(N9) 0.000 0 0 0 100 0 0 0 0.014 0.060

(M6)

(N1) 0.010 0 0 0 100 0 0 0 0.018 0.240
(N2) 0.030 0 0 0 99 1 0 0 0.006 0.123
(N3) 0.130 0 0 0 97 3 0 0 0.045 0.727
(N4) 0.100 0 19 0 76 3 2 0 0.882 13.410
(N5) 0.140 0 2 4 91 3 0 0 0.155 3.457
(N6) 0.050 0 21 5 68 4 0 2 1.025 17.027
(N7) 0.100 0 0 0 99 1 0 0 0.019 0.167
(N8) 0.040 0 0 18 76 6 0 0 0.231 9.257
(N9) 0.000 0 0 0 100 0 0 0 0.016 0.150
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Table 4.10: Distribution of q̂−q obtained by the α-adapted NOT algorithm for data generated
according to (2.2.1) with the signals (M7)-(M10) and the noises (N1)-(N9), the average Mean
Square Error (MSE) of the resulting estimate of the signal and the average Hausdorff distance
dH over 100 simulations. We also report the size, the proportion of replications with change-
points being falsely detected when there are no change-points.

q̂ − q
Model Noise Size ⩽ 3 -2 -1 0 1 2 ⩾ 3 MSE dH

(M7)

(N1) 0.000 0 0 0 99 1 0 0 0.016 0.027
(N2) 0.030 0 0 0 99 1 0 0 0.092 0.247
(N3) 0.100 0 0 0 97 3 0 0 0.05 0.217
(N4) 0.100 20 0 0 68 8 2 2 1.897 18.623
(N5) 0.130 2 0 0 96 2 0 0 0.318 2.003
(N6) 0.100 23 0 0 62 11 2 2 2.249 21.617
(N7) 0.150 0 0 0 93 4 2 1 0.023 1.037
(N8) 0.090 0 0 0 97 1 1 1 0.109 0.537
(N9) 0.000 0 0 0 100 0 0 0 0.007 0.017

(M8)

(N1) 0.000 0 0 0 100 0 0 0 0.017 0.102
(N2) 0.020 0 0 0 100 0 0 0 0.009 0.044
(N3) 0.200 0 0 0 98 2 0 0 0.008 0.218
(N4) 0.030 67 0 0 33 0 0 0 1.925 53.600
(N5) 0.020 2 0 0 96 2 0 0 0.092 1.830
(N6) 0.010 47 0 0 51 1 0 1 1.356 37.794
(N7) 0.040 0 0 0 100 0 0 0 0.016 0.062
(N8) 0.000 7 0 1 88 4 0 0 0.311 6.954
(N9) 0.000 0 0 0 100 0 0 0 0.013 0.096

(M9)

(N1) 0.030 0 0 0 100 0 0 0 0.013 0.002
(N2) 0.000 0 0 0 100 0 0 0 0.041 0.032
(N3) 0.150 0 0 0 99 1 0 0 0.033 0.160
(N4) 0.010 31 0 0 65 4 0 0 2.796 25.628
(N5) 0.120 20 0 0 76 2 2 0 1.905 16.734
(N6) 0.030 16 0 0 74 5 5 0 1.462 13.960
(N7) 0.070 0 0 0 99 1 0 0 0.016 0.094
(N8) 0.000 4 0 0 94 2 0 0 0.448 3.538
(N9) 0.000 0 0 0 100 0 0 0 0.008 0.024

(M10)

(N1) 0.010 0 0 0 100 0 0 0 0.015 0.066
(N2) 0.030 0 0 0 99 1 0 0 0.004 0.018
(N3) 0.040 0 0 0 100 0 0 0 0.013 0.057
(N4) 0.010 6 0 0 87 5 1 1 0.546 5.612
(N5) 0.000 2 0 0 93 5 0 0 0.222 2.118
(N6) 0.000 9 0 0 83 4 4 0 0.829 8.192
(N7) 0.030 0 0 0 99 1 0 0 0.012 0.040
(N8) 0.000 8 0 0 92 0 0 0 0.791 6.572
(N9) 0.000 0 0 0 100 0 0 0 0.012 0.053
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Table 4.11: Distribution of q̂−q obtained by the α-adapted NOT algorithm for data generated
according to (2.2.1) with the signals (M11)-(M14) and the noises (N1)-(N9), the average Mean
Square Error (MSE) of the resulting estimate of the signal and the average Hausdorff distance
dH over 100 simulations. We also report the size, the proportion of replications with change-
points being falsely detected when there are no change-points.

q̂ − q
Model Noise Size ⩽ 3 -2 -1 0 1 2 ⩾ 3 MSE dH

(M11)

(N1) 0.000 0 0 0 100 0 0 0 0.010 0.009
(N2) 0.040 0 0 0 100 0 0 0 0.025 0.028
(N3) 0.050 0 0 0 98 2 0 0 0.011 0.126
(N4) 0.000 24 0 0 75 1 0 0 2.182 22.741
(N5) 0.000 18 0 1 80 2 0 0 1.484 15.761
(N6) 0.010 3 0 0 81 8 4 4 0.296 4.431
(N7) 0.010 0 0 0 98 1 0 1 0.013 0.147
(N8) 0.000 0 0 0 100 0 0 0 0.066 0.033
(N9) 0.000 0 0 0 100 0 0 0 0.007 0.027

(M12)

(N1) 0.000 0 0 0 100 0 0 0 0.013 0.075
(N2) 0.020 0 0 0 100 0 0 0 0.002 0.081
(N3) 0.050 0 0 0 97 2 1 0 0.003 0.202
(N4) 0.000 10 0 0 89 1 0 0 0.779 15.769
(N5) 0.010 2 0 0 98 0 0 0 0.100 1.757
(N6) 0.000 42 0 0 58 0 0 0 2.206 44.625
(N7) 0.010 0 0 0 100 0 0 0 0.013 0.034
(N8) 0.000 0 0 51 49 0 0 0 0.123 5.622
(N9) 0.000 0 0 0 100 0 0 0 0.013 0.056

(M13)

(N1) 0.000 0 0 0 100 0 0 0 0.011 0.007
(N2) 0.030 0 0 0 100 0 0 0 0.033 0.037
(N3) 0.050 0 0 0 79 16 4 1 0.006 0.223
(N4) 0.000 64 0 0 36 0 0 0 7.509 67.213
(N5) 0.010 40 0 0 60 0 0 0 4.739 37.275
(N6) 0.010 55 0 0 42 2 0 1 6.422 51.237
(N7) 0.010 0 0 0 96 3 0 1 0.016 0.093
(N8) 0.000 2 0 1 97 0 0 0 0.301 2.004
(N9) 0.000 0 0 0 100 0 0 0 0.004 0.014

(M14)

(N1) 0.000 0 0 0 100 0 0 0 0.009 0.014
(N2) 0.010 0 0 0 100 0 0 0 0.007 0.008
(N3) 0.050 0 0 0 100 0 0 0 0.017 0.029
(N4) 0.000 27 0 0 73 0 0 0 1.744 25.650
(N5) 0.000 0 0 0 98 1 1 0 0.010 0.047
(N6) 0.000 6 0 0 93 1 0 0 0.391 5.730
(N7) 0.030 0 0 0 100 0 0 0 0.009 0.002
(N8) 0.020 0 0 1 99 0 0 0 0.054 0.217
(N9) 0.000 0 0 0 100 0 0 0 0.008 0.031
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Figure 4.10: Histograms plotting the estimated change-points for data produced by signal
(M2) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.

Figure 4.11: Histograms plotting the estimated change-points for data produced by signal
(M3) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.
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Figure 4.12: Histograms plotting the estimated change-points for data produced by signal
(M4) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.

Figure 4.13: Histograms plotting the estimated change-points for data produced by signal
(M5) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.
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Figure 4.14: Histograms plotting the estimated change-points for data produced by signal
(M6) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.

Figure 4.15: Histograms plotting the estimated change-points for data produced by signal
(M7) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.
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Figure 4.16: Histograms plotting the estimated change-points for data produced by signal
(M8) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.

Figure 4.17: Histograms plotting the estimated change-points for data produced by signal
(M9) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.



4.4 Extended NOT Solution Path Algorithm 166

Figure 4.18: Histograms plotting the estimated change-points for data produced by signal
(M10) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.

Figure 4.19: Histograms plotting the estimated change-points for data produced by signal
(M11) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.
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Figure 4.20: Histograms plotting the estimated change-points for data produced by signal
(M12) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.

Figure 4.21: Histograms plotting the estimated change-points for data produced by signal
(M13) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.
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Figure 4.22: Histograms plotting the estimated change-points for data produced by signal
(M14) and noises (N1)-(N9) by the α-adapted NOT solution path algorithm. The true change-
points are coloured red.
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4.5 Appendix – Complete Simulation Models

In addition to (M1) and (M2), we simulate more examples under the following scenarios.

We assess the performance of our methods in the case of both no change-points (q = 0)

and one or more change-points (q ⩾ 1) under different sample sizes, where θi = 0 is

considered in each scenario to show the false detection rate under different settings of

the error processes.

(M3) ft undergoes q = 1 change-points at η1 = 30 with n = 100 and (θ1, θ2) =

(2.5,−2.5);

(M4) ft undergoes q = 1 change-points at η1 = 100 with n = 200 and (θ1, θ2) =

(1.5,−1.5);

(M5) ft undergoes q = 2 change-points at (η1, η2) = (30, 80) with n = 150 and

(θ1, θ2, θ3) = (−1, 3,−3);

(M6) ft undergoes q = 2 change-points at (η1, η2) = (80, 200) with n = 300 and

(θ1, θ2, θ3) = (0, 2,−2);

(M7) ft undergoes q = 3 change-points at (η1, η2, η3) = (50, 200, 250) with n = 300

and (θ1, θ2, θ3, θ4) = (−2, 4,−3, 3.5);

(M8) ft undergoes q = 3 change-points at (η1, η2, η3) = (100, 250, 400) with n = 500

and (θ1, θ2, θ3, θ4) = (0, 2.5,−1.5, 2);

(M9) ft undergoes q = 5 change-points at (η1, η2, η3, η4, η5) = (50, 200, 230, 300, 410)

with n = 500 and (θ1, θ2, θ3, θ4, θ5, θ6) = (−2, 3,−4, 2.5,−3.5, 3);

(M10) ft undergoes q = 5 change-points at (η1, η2, η3, η4, η5) = (50, 200, 300, 500, 650)

with n = 750 and (θ1, θ2, θ3, θ4, θ5, θ6) = (0, 2.5,−2, 2,−2, 1.5);



4.5 Appendix – Complete Simulation Models 170

(M11) ft undergoes q = 7 change-points at (η1, η2, η3, η4, η5, η6, η7) = (50, 180, 260,

300, 500, 570, 850) with n = 900 and (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8) = (0, 4,−3, 3.5,

−2.5, 3.5,−3, 3);

(M12) ft undergoes q = 7 change-points at (η1, η2, η3, η4, η5, η6, η7) = (50, 180, 300, 500,

750, 910, 1050) with n = 1200 and (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8) = (0, 2,−3, 1.5,−2, 2,

−2, 2.5).

(M13) ft undergoes q = 12 change-points at (η1, η2, η3, η4, η5, η6, η7, η8, η9, η10, η11, η12) =

(50, 180, 220, 300, 500, 570, 850, 960, 1000, 1200, 1380, 1420) with n = 1500 and

(θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ11, θ12, θ13) = (0, 4,−4.5, 4,−2.5, 3.5,−3.5, 3,−3,

4,−3, 4,−4);

(M14) ft undergoes q = 12 change-points at (η1, η2, η3, η4, η5, η6, η7, η8, η9, η10, η11, η12) =

(50, 300, 500, 850, 960, 1000, 1200, 1380, 1480, 1600, 1750, 1900) with n = 2000 and

(θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ11, θ12, θ13) = (0, 2,−2.5, 3,−2.5, 2.5,−2.5, 2,−2,

2.5,−3, 2,−2.5);

Models (M4)-(M8) consider relatively shorter time series with sample size n ∈ [100, 300].

We generate 100 replications under each combination of the signal model above and

the noise model defined in later sections (unless stated otherwise).



Chapter 5

Multi-scale viewpoint in estimating

the strength of lead-lag relationships

between nonstationary time series

5.1 Motivation

In this chapter, we intend to introduce an exploratory technique that could be able

to serve as the first step in analyses for lead-lag relationships or even causality in

time series. Since December 2019, the severe coronavirus disease 2019 (COVID-19)

pandemic became a global outbreak and resulted in numerous cases, where the severest

cases can finally lead to death. To manage or prevent such disease, various government

policies were officially approved in different countries. The large amount of information

available seems to be a challenge, but it provides us with informative datasets for

statistical analyses. For example, Figure 5.1 shows the recorded new cases and deaths

in Mathieu et al. (2020), where sub-figures (b) and (d) display the dataset recorded

171
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at the subsequent 200 days from 2020-02-01. As seen, the common pattern observed

in both curves (b) and (d), i.e. 200-day new cases and deaths, involves an generally

upward movement, a peak, and then a downward trend. Considering the COVID

data, it is reasonable to believe that the changes in the number of new deaths will

react to that of new cases. Hence the tight association can heuristically indicate the

lead-lag relationship between these two time series. However, the number of new

cases exhibits larger but less frequent fluctuations than that of new deaths, which

may somehow enhance the importance of choosing parameters such as the number of

regression variables and order of regression in conventional approaches. Meanwhile,

without data preprocessing, the distinct units (metrics) of the dataset for new cases

and deaths also make lead-lag relationship less apparent. These issues demonstrate

the vital role of the selection of window size before making any statistical inference

on an interrelationship. Therefore, with the aim of obtaining a basic understanding of

data, a multi-scale graphical device across time can be convenient for identifying the

availability and location of the features of interest.

Figure 5.1: New cases (a) and new deaths (c) attributed to COVID-19 in United Kingdom
recorded from 2020-02-01 to 2023-12-06, and (b) and (d) display the corresponding data
recorded at the subsequent 200 days from 2020-02-01.
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Motivated by such COVID curves collected by Mathieu et al. (2020), we consider the

issue of discovering the lead-lag relationships among nonstationary time series, and

attempt to introduce a graphical method to display the significant features captured

from data without much preprocessing works. Meanwhile, instead of focusing on the

direction of such a relationship, we pay more attention to figuring out the significance

of the (possible) lead-lag phenomenon in bi-variate data with natural direction, hoping

that it can serve as a reasonable first step in lead-lag or causal analyses.

(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Combination of simulated samples with piecewise-linear signal and iid Gaussian
noise [(a) and (b)], heatmaps of − log(p) [(c) and (d)] and heatmaps of coefficients [(e) and
(f)]. The black (red) lines in (a) and (b) are the simulated regressors Xi (dependent variables
Yi).
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In particular, we provide several simple examples of (Xi, Yi) without any time lags in

Figure 5.2 and 5.3 to show the basic patterns to be identified with our method proposed

in the next section. From Figure 5.2, we see that the process Xi in sample (a) displays

a consistent upward trend while Yi experiences an initial increase and a subsequent de-

crease. In contrast, Xi and Yi in sub-figure (b) demonstrate a similar pattern of change.

It is evident that the co-movements of (Xi, Yi) in either the same or opposite direction

bring bright colours in the heatmaps of − log(p), indicating the presence of significant

correlations and (possible) lead-lag relationships between sequences. Additionally, the

occurrence of a change in the direction of these co-movements is reflected by a shift

between yellow and blue in the heatmaps of coefficients. Furthermore, considering

the largest scales, if no obvious colour shift happens in the coefficient heatmap, we

can discover the existence and the potential overall direction of significant correlations

between sequences Xi and Yi over the tested range, see sub-figure (f) as an example;

otherwise, the colour shown at those scales could indicate the dominance of the sig-

nificant correlation between (Xi, Yi) within its corresponding range. Specifically, the

colour yellow at the largest scales in sub-figure (e) implies that the dependence tested

within [1, 100] is significant enough to dominate the entire sample (Xi, Yi).

Following the identification process above, we shall investigate the mentioned patterns

in Figure 5.3 with more detailed explanations. In sub-figure (a), the process Xi first

experiences an upward trend and then follows a subsequent downward movement with

a flatter slope whereas Yi reaches the peak twice with the same slope of ascent and

descent. Sub-figure (b) shows another example that Xi keeps increasing while Yi goes

through two peaks with consistent increasing and decreasing rates but the slope for the

second peak is sharper. Besides the apparent shifts in colours in sub-figures (e) and

(f), diagonal stripes at 45◦ angles are noticeable in all four heatmaps, especially in sub-

figures (c) and (d), which help indicate the consistent co-movement of two sequences

within different windows and the coincidence of the trends around the locations of the

spikes.



5.1 Motivation 175

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Combination of simulated time series with piecewise-linear signal and iid Gaus-
sian noise [(a) and (b)], heatmaps of − log(p) [(c) and (d)] and heatmaps of coefficients [(e)
and (f)]. The black (red) lines in (a) and (b) are the simulated regressors (dependent vari-
ables).

Meanwhile, the width and length (total area) of the brightest stripe can serve as an

indicator of the strength of the most significant dependence between sequences. For

example, the positive-sloping (negative-sloping) diagonal stripes starting around i = 20

and i = 60 (concluding around i = 140 and i = 180) displayed in sub-figure (c)

align with the period where Xi and Yi experiences prominent co-movements within

approximate ranges of [10, 50] and [50, 100] ([100, 150] and [150, 190]). Among all these



5.1 Motivation 176

stripes, we can see the brightest one locates within the range [60, 90] but does not vanish

too much till around i = 110 at a large window size 140, which demonstrates that the

correlation of processes over range [60, 90] is indeed significant and can dominate the

surrounding observations.

This overall picture provides us with two potential ways of separating the whole sample

size into subsamples that contain similar information for further lead-lag analysis over

each one. On the one hand, we could partition the time series into equal-sized overlap-

ping or non-overlapping blocks by first identifying a “best” scale (window size) where

we can observe comprehensive data features, such as scale 50 in Figure 5.3. Specifi-

cally, starting from this scale, the dependence patterns become more stable, indicated

by much fewer changes in colour within coefficient heatmaps and increased significance

in corresponding p-values; Meanwhile, all changes in co-movements have not been cov-

ered by more dominant patterns and hence remain discernible. On the other hand, we

could simply focus on the ranges identified by colours in coefficient heatmaps, such as

[10, 50], [50, 150] and [150, 190] in sub-figure (e) and [10, 50], [50, 100], [100, 150] and

[150, 190] in sub-figure (f). Different modelling methods are then encouraged to capture

potential lead-lag relationships within each subsample. In the following sections, we

shall employ our proposed algorithm to first investigate these basic features in different

sorts of data. Furthermore, studies may also be conducted to see the possible choice

of time lags between bi-variate time series.

The remainder of this chapter is organised as follows. Section 5.2 provides a full

description of the multi-scale lead-lag heatmaps and the simple algorithm behind it.

In Section 5.3, we present the a comprehensive simulation study over different pairs of

time series and the performance of our algorithm is examined in Section 5.4 via data

examples of historical data on the COVID-19 pandemic collected up to 2023-12-06. In

Section 5.5, more visualisation examples are displayed and we provide a brief discussion

in the final section.
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5.2 Methodology

To extract features in data, many smoothing methods have been developed. Compared

to classic approaches, SiZer (Chaudhuri and Marron, 1999) is produced relying on the

scale-space viewpoint, i.e. analysing zero-crossings over a wide range of bandwidths

at the same time, and attaches more importance to the observed data instead of es-

timating the true underlying model. Inspired by such a multi-scale idea, we decide

to develop the heatmap over different moving windows to study the potential lead-lag

relationship between two series over both location and scale in time, see Figure 5.5 as a

simple example. This method is designed to highlight significant correlations between

sequences by showing the areas where the minus log p-value, − log(p), corresponding

to its non-zero regression coefficient is large enough. As stated in Algorithm 2, for the

sake of simplicity, our methodology is built on simple linear regression under the Gaus-

sian assumption. Mathematically speaking, given time series observations (Xi, Yi), at

i = t− h, t− h+1, . . . , t+ h− 1, we assume a linear model with a rolling time window

Yi = β0
h,t + β1

h,tXi + εi (5.2.1)

where β0
h,t and β1

h,t are unknown parameters and errors εi (i = t− h, . . . , t+ h− 1) are

such that

• E(εi) = 0 for any i;

• Var(εi) = σ2 for any i (homoskedasticity);

• Cov(εi, εj) = 0 for any i ̸= j;

• E(εi|Xi) = 0 (exogeneity);

• εi’s are iid Gaussian errors.

To estimate β1
h,t, we apply the unbiased ordinary least squares (OLS) estimator, and

hence the difference β̂1
h,t − β1

h,t is Gaussian, leading to the test statistic following a
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t-distribution. To clarify, under the null hypothesis H0 : β1
h,t = 0, the test statistic is

β̂1
h,t/SE(β̂1

h,t) and the corresponding − log(p) over each moving window is derived from

p = P

(
|T | >

∣∣∣∣∣ β̂1
h,t

SE(β̂1
h,t)

∣∣∣∣∣
∣∣∣∣∣H0

)
(5.2.2)

where SE(β̂1
h,t) is the estimated standard error.

Algorithm 2 presents the general procedure of deriving the Multi-scale Lead-Lag Heatmaps

(MLLH). The resulted heatmaps present the features simultaneously over location and

scale (window size). To be specific, the blue colour scheme in Figure 5.5(b) is lighter

where the p-value is closer to 0. In Figure 5.5(c), we can see the colour yellow (blue)

when the coefficient is positive (negative) and the lighter the colour is, the larger the

magnitude is. The heatmap as a whole follows the shape of a trapezium since we can

provide features at fewer locations when considering a larger moving window size.

Algorithm 2 Multi-scale Lead-Lag Heatmap
1: Input: Data vectors X and Y, a wide range of moving window sizes h, together with
2: Xt−h,t+h−1 = (Xt−h, . . . , Xt+h−1)

⊺ and Yt−h,t+h−1 = (Yt−h, . . . , Yt+h−1)
⊺

3: For any h, t > 0 satisfying 0 < t− h < t+ h− 1 ⩽ n, build the linear regression model
4: (allowing for other models as well)
5: Yi = β0

h,t + β1
h,tXi + εi, i = t− h, . . . , t+ h− 1

6: Output: Coefficients β̂1
h,t and their corresponding minus log p-value − log(p) produced

under the Gaussian assumption

Compared to the traditionally applied cross-covariance function (CCF), this algorithm

shares similar interpretations but simultaneously provides well-structured hypothesis

testing for the significance of the relationship between sequences. Also, the linear

regression model can be utilised for handling more than one regressors at the same

time, allowing for more complex relationships. Meanwhile, the scale-space viewpoint

can help us find out the existence of a lead-lag relationship from both “local” and

“global” perspectives. To clarify, considering the colour of the coefficient heatmap
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generally can help us get a basic understanding of the potential positive or negative

relations between bi-variate time series; on the other hand, under various scales, we

can see the different significance levels, and hence figure out the changing lead-lag

relationships of the tested dataset and the (possibly) “best” window size (scale) for

detecting the complete features in data.

(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Combination of simulated time series built on piecewise-linear signal and serial
correlated error process [(a) and (b)], heatmaps of − log(p) [(c) and (d)] and heatmaps of
coefficients [(e) and (f)]. The black (red) lines in (a) and (b) are the simulated regressors
(dependent variables).

In practical uses, our exploratory method aims to provide a concise overview of the
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presence and potential locations of lead-lag relationship between bi-variate time series,

and hence it remains applicable even when the data is dependent. Take Figure 5.4

as an example, based on the same signal, two examples generated by serial dependent

processes are provided as control groups for the pair observations (Xi, Yi) in Figure 5.3.

After comparison, it is evident that except for the detailed strength of significance in

− log(p) heatmaps, test results shown in Figure 5.4 share common patterns with those

in Figure 5.3.

5.3 Simulation Study

In this section, we analyse the possible lead-lag relationship between trends and their

changes for two time series shown by Algorithm 2. When looking at the lead-lag

relationship between bi-variate time series, we tend to assume that the direction of the

relation is known, i.e. {Xi}t+h−1
i=t−h leads {Yi}t+h−1

i=t−h , especially when applied for many

real-world examples. For example, in COVID-19 dataset, it is natural to consider that

changes in the number of new cases can impact that of new deaths, and hence we set

cases as regressor Xi and deaths as dependent variable Yi. Such a natural direction in

turn encourages us to concentrate on examining the significance and the corresponding

location of the (possible) lead-lag relationships.

Although our algorithm simply provides a family of regression coefficients and corre-

sponding p-values indexed by the moving window size, it comes with one point that can

be straightforward and convenient before considering the statistical literature. That is,

when getting an overall picture of the bi-variate data, we avoid the choice of parameters

such as the number of regression variables (or time lags), for simplicity, and simulta-

neously study a wide range of window sizes 2h due to the potential useful information

available at different resolution levels of data.
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To capture all information from the local to whole dataset, the sizes of the moving win-

dows are chosen mainly relying on the sample itself. Specifically, we set the smallest

window size 2hmin based on the practical rule of thumb of linear regression that 10 to

20 observations are required for each regressor to guarantee reasonable power of esti-

mation. The range of data can be applied as the largest window size 2hmax. However,

it is heuristically “dangerous” to use the whole sample size as the largest window since

the relationship can be evolving over time and hence applying this sort of a global tool

may provide distorted information about the true dependence. To clarify, conducting

a linear regression on the whole sample length is a bit close to the idea of taking the

sample mean of a time series with a trend, which does not seem to be meaningful.

5.3.1 Analysis on sequences with similar patterns

In the following, we present different combinations of two sequences with the same

patterns, i.e. for the two series {Yi}ni=1 and {Xi}ni=1 following simple periodic models

Yt = A sin(2πB(t− CY )) +D

Xt = A sin(2πB(t− CX)) +D
(5.3.1)

with the same frequency of oscillation B > 0, magnitude A > 0 and vertical shift

D ⩾ 0, we consider the results over various differences in phase shifts CY and CX ,

which satisfy B(CY − CX) ⩽ 1 for some CY , CX ⩾ 0, to illustrate the performance

of heatmaps on discovering lead-lag relationships. In this context, the differences of

phase shifts used in our test essentially corresponds to the time lags in traditional

correlation functions. To be specific, we consider the following simulated sequences

(M1)-(M7) representing the regressor Xt and dependent variable Yt with differences

CY − CX = 25, 50, 75, 100, 125, 150, 175 respectively. Results together with the cor-

responding signals of another group of sequences with higher frequencies are given in
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Section 5.5. Since we want to clearly display the patterns, in this section, we shall focus

on the scenarios without noises. Also, given that the provided examples (M1)-(M7) are

constructed without frequent fluctuations, we choose to set hmin = 25 and hmax = 200.

For sequences (M12)-(M18), the scale set is pre-defined with hmin = 25 and hmax = 300

due to higher frequency but the same sample length.

(M1) Xt = sin(πt/200−π/2)+1 for t = 1, 2, . . . , 825 and Yt = sin(πt/200−5π/8)+1

for t = 26, 27, . . . , 825.

(M2) Xt = sin(πt/200−π/2)+1 for t = 1, 2, . . . , 850 and Yt = sin(πt/200−3π/4)+1

for t = 51, 52, . . . , 850.

(M3) Xt = sin(πt/200−π/2)+1 for t = 1, 2, . . . , 875 and Yt = sin(πt/200−7π/8)+1

for t = 76, 77, . . . , 875.

(M4) Xt = sin(πt/200 − π/2) + 1 for t = 1, 2, . . . , 900 and Yt = sin(πt/200 − π) + 1

for t = 101, 52, . . . , 900.

(M5) Xt = sin(πt/200−π/2)+1 for t = 1, 2, . . . , 925 and Yt = sin(πt/200+7π/8)+1

for t = 126, 127, . . . , 925.

(M6) Xt = sin(πt/200−π/2)+1 for t = 1, 2, . . . , 950 and Yt = sin(πt/200+3π/4)+1

at t = 151, 152, . . . , 950

(M7) Xt = sin(πt/200−π/2)+1 for t = 1, 2, . . . , 975 and Yt = sin(πt/200+5π/8)+1

for t = 176, 177, . . . , 975.

Before further discussion, we first provide a more detailed description of Figure 5.5.

In sub-figure (a), the examined area is marked with blue vertical lines. The black

(red) curve in (a) is the simulated regressor (dependent variable). We estimate the

coefficients over a symmetric moving window around each location, which, for example,

are shown with blue dashed lines and a purple dotted line respectively. Sub-figures (b)

and (c) display the estimation results at the corresponding locations and sizes of moving

window.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.5: Combination of simulated signal (a) and heatmaps [(b) and (c)] for dataset (M1).
The blue vertical lines bound the examined area. As an example, the blue dashed line and
purple dotted lines stand for the location and the corresponding boundaries of the symmetric
moving window.
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For illustrative purposes, we display the figures 5.5 to 5.11 for all examples produced by

models (M1) to (M7) respectively, and the same colour scale is applied to allow for the

comparison between heatmaps. Overall, the difference of phase shifts CY −CX , which

can also be regarded as possible time lags between b-variate time series, is reported in

the time length of the shifted colour in sub-figures (b), such as the colour blue in Figure

5.5 to 5.11. Meanwhile, these heatmaps provide reasonable evidence supporting the

idea that for periodic bi-variate dataset with period 400, 2h = 200 can be a suitable

window size to discover the significance of dependence between time series. Then, we

will try to identify the fundamental patterns discernible within each graph.

Starting from Figure 5.5, we can see the two time series Xt (black) and Yt (red) re-

garded with lag 25 share very close movements and the sub-figure (c) indicates that

such associations are overall positive except for the conditions where small moving

windows covering the time intervals with comparatively different patterns, i.e. at

t ∈ [200, 225] ∪ [440, 425] ∪ [600, 625], within the smallest window size 50, Xt and

Yt will experience either a peak or a valley but with some time delays. Since the

patterns continue changing within the small window, the detected relationship is not

significant, as reflected by the small − log(p) in sub-figure (b). However, as the win-

dow size (scale) grows, the corresponding colour of − log(p) at the aforementioned time

points becomes lighter and lighter owing to the simple reason that a larger window size

can capture a more obvious co-movement in Model (M1). Overall, due to the small

difference CY −CX , the largest scale 400 use a sample length with longer co-movements

and hence report the strongest association between two time series.

Secondly, with a small increase in the difference of phase shifts CY −CX , Figure 5.6(c)

shows that compared to Model (M1), the strength of dependence between two time

series produced by Model (M2) is partly reduced (the colour blue looks darker) because

of the decreased sample length of relatively strict co-movements, by comparing Figure

5.6(b) with Figure 5.5(b). On the other hand, the negative associations at small scales
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are detected over a larger range while the coefficients located at the middle of this

range become a bit more significant (but not so obvious). Similarly, in Figure 5.7(b)

and 5.8(b), we can see a further reduction in the strength of detected dependence at

large scales and a slight increase at small scales.

(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.6: Combination of simulated signal (a) and heatmaps [(b) and (c)] for dataset (M2).
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.7: Combination of simulated data (a) and heatmaps [(b) and (c)] for dataset (M3).
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.8: Combination of simulated data (a) and heatmaps [(b) and (c)] for dataset (M4).
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Next, in graphs starting from Figure 5.9, the simulated bi-variate dataset experience a

growing co-movement in the opposite direction and we can see the colour blue gradually

dominates the heatmap of coefficients. Also, the more and more significant dependence

detected at large scales are highlighted by lighter and lighter blue in sub-figures (b). In

particular, following Model (M7), where the preset difference CY − CX is 175, Figure

5.11 shows that the co-movement in the opposite direction (and the corresponding

strength of dependence) becomes even as significant as the co-movement displayed in

the bi-variate time series introduced in Model (M1). We can also see similar features

in sub-figures (b) for (M2) and (M6), and those for (M3) and (M5).

Moreover, we conduct another similar simulation study on another group of sequences

with higher frequencies, see models and corresponding figures 5.35 to 5.41 in Section

5.5. Here, we choose the colour scale [0, 400] for this series of − log(p) heatmaps to

make comparison easier. Among all these figures, one special case is the “wrong” graph,

Figure 5.38, which shows the test results of Model (M15). As seen in its sub-figure

(a), the pair of observations experiences the strictly opposite patterns, and hence the

coefficient is always equal to 1 and the standard error of our test statistic that quantifies

the expected variability of estimated coefficient should be equivalent to 0, leading to the

grey area in sub-figure (b) (all NA’s). However, since real-word data usually contain

noise, such a “wrong” feature is highly unlikely to occur in practice.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.9: Combination of simulated data (a) and heatmaps [(b) and (c)] for dataset (M5).
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.10: Combination of simulated data (a) and heatmaps [(b) and (c)] for dataset (M6).
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.11: Combination of simulated data (a) and heatmaps [(b) and (c)] for dataset (M7).
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In moving on to the remaining graphs, we shall first discuss Figure 5.35. Although

models (M2) and (M12) are built on different frequencies, their corresponding differ-

ence in phase shifts CY − CX make the two models share similar patterns, and conse-

quently we can see information reported by heatmaps over scales 2h = 50, 100, 150, 200

for data from (M12) within [26, 425] is even the same as that provided over scales

2h = 100, 200, 300, 400 for series from (M2) within [51, 850]. Besides the similar parts,

three more points are highlighted in Figure 5.35. First, the evidence against the null

hypothesis is generally stronger in scales larger than 200. Second, different scales are

likely to report different patterns of significance at the same location. For example,

the scale 250 and 300 show a lighter colour in sub-figure (b) at different locations.

Intuitively speaking, such a difference arises from the synchronised trends, i.e. co-

movement in either the same or opposite directions, that can be covered within the

moving window at different time points. Lastly, when window size grows to 600, the

statistical significance obtained across time locations looks roughly the same, see at

scales 200 and 400 as well. In this case, the period of our sine formula can be re-

flected in the value of the scales. We can also find this result from scale 400 in figures

5.5, 5.6 and 5.7, etc. Almost the same heatmaps are shown in figures 5.35, 5.37, 5.39

and 5.41, where the small difference is the shifted colour and its corresponding time

length shown in sub-figures (c). This indicates that they exhibit a comparable degree

of co-movements (in the same or opposite directions) over all window sizes.

In Figure 5.36 and Figure 5.40, due to the limited degree of co-movements, the evidence

supporting the dependence between bi-variate time series is not so strong compared

to the other scenarios but we can still find some characteristics at relatively smaller

scales. On the whole, figures 5.35 to 5.41 reveal analogous features observed in figures

5.5 to 5.11, but 2h = 100, rather than 2h = 200, is a more suitable window size for the

periodic bi-variate dataset with period 200.

In summary, from Figure 5.5 to Figure 5.11 for the first pair of observations and Figure
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5.35 to Figure 5.41 for the second pair of observations, we make the following statements

about the lead-lag relationship between Yt and Xt:

1. Overall, the colour yellow or blue that represents the sign of coefficients at each

location over all scales can provide an overview of the positive or negative cor-

relation between features in two time series. The possible time lags between

bi-variate time series is suggested by the time length of the shifted colour in sub-

figure (b). And the width of the “bars” in sub-figure (b) can somehow indicate

whether the relationship is long-run or short-run.

2. At location t and half scale h with significant p-value and non-zero coefficients,

we can see the strong dependence between {Xi}t+h−1
i=t−h and {Yi}t+h−1

i=t−h , and in par-

ticular the scale indicates that more complete patterns can be found under this

window size while the location points out where we can discover comparatively

more obvious lead-lag relations.

For example, Model (M1) in Figure 5.5(a) is built with {Xi}t+h−1
i=t−h and {Yi}t+h−1

i=t−h

sharing the same pattern with only a small lag of 25. At a time point around

200, due to the change in trends, the heatmap does not show us a significant rela-

tionship (co-movement in the same direction) between two sequences for smaller

scales, but when the window size continues to increase, more similar patterns

(concave downwards) are shown in the examined interval and the coefficient be-

comes more significant. Also, nearly opposite patterns can report similar results

to us, see Figure 5.11. On the other hand, Figure 5.7 to Figure 5.9 display

stronger relationships under smaller window sizes because the aforementioned

patterns are more obvious in narrower intervals.

In the next section, we assess the performance of our method under relatively more gen-

eralised scenarios with the relationship changing over time, presenting both experiment

results and the corresponding heatmaps.
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5.3.2 Analysis on sequences with different patterns

While sinusoidal functions can capture a range of behaviours, the modelling of real-

world applications may also require considering situations where the amplitude A or the

frequency of oscillation B in (5.3.1) does not stay constant. For example, in physics and

calculus textbooks, it is common to explore models following a fixed percentage reduc-

tion in amplitude per second. Therefore, we present additional examples illustrating

the conclusions drawn in the last section and possibly more meaningful information

on more generalised conditions. Model (M8) and (M9) describe the scenarios with

changing amplitude and changing frequency of oscillation respectively. Moreover, we

consider examples (M10) and (M11) with piecewise-linear signal and independent error

process to show the performance of MLLH on data with abrupt changes in slopes.

(M8) Xt = sin(πt/100−π/2)+1 for t = 1, 2, . . . , 600 and Yt = sin(πt/100+9π/10)+1

for t = 61, 62, . . . , 260, Yt = sin(πt/90−7π/18)+1 for t = 261, 262, . . . , 440, with

Yt = sin(πt/80− π) + 1 for t = 441, 442, . . . , 600.

(M9) Xt = sin(πt/100−π/2)+1 for t = 1, 2, . . . , 600 and Yt = sin(πt/100−9π/10)+1

for t = 41, 42, . . . , 240, Yt = (sin(πt/100−9π/10)+1)/2 for t = 241, 242, . . . , 440,

with Yt = (sin(πt/80− 9π/10) + 1)/4 for t = 441, 442, . . . , 600.

(M10) Xt = fX
t + ϵXt where fX

t undergoes 10 change-points at 100, 200, 300, 400, 500,

650, 800, 900, 1000, 1100 for t = 1, . . . , 1200 and the corresponding slopes −1/50, 1/50,

−1/50, 1/50, 1/150,−1/50, 1/50,−1/50, 1/50,−1/50, starting intercept fX
1 = 2

and slope 1/50, and ϵXt
iid∼ N(0, 0.52); Yt = fY

t + ϵYt where fY
t undergoes 7

change-points at 126, 226, 326, 426, 626, 776, 1026 for t = 26, . . . , 1200 and the cor-

responding slopes −1/50, 1/100,−1/100, 1/100,−1/150, −1/250, 1/500, starting

intercept fY
1 = 1 and slope 1/50, and ϵYt

iid∼ N(0, 0.52).

(M11) Xt = fX
t +ϵXt where fX

t undergoes 8 change-points at t = 100, 200, 300, 400, 600,
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800, 900, 1000 for t = 1, . . . , 1200 and the corresponding slopes −1/50, 1/25,

−1/25, 1/100,−1/100, 1/200,−1/200, 1/200, starting intercept fX
1 = 3 and slope

1/50, and ϵXt
iid∼ N(0, 0.52); Yt = fY

t +ϵYt where fY
t undergoes 11 change-points at

111, 211, 311, 411, 511, 611, 711, 811, 911, 1011, 1111 for t = 11, . . . , 1200 and the

corresponding slopes −1/50, 1/50,−1/50, 1/50,−1/50, 1/50,−1/50, 1/50,−1/50,

1/50,−1/50, starting intercept fY
1 = 1 and slope 1/50, and ϵYt

iid∼ N(0, 0.52).

Model (M8) represents a sinusoidal function with increasing frequency and Model (M9)

allows decreasing amplitude. To be specific, the examined area of Model (M8) can

generally be divided into three parts, [60, 260] ∪ (260, 440] ∪ (440, 600], and the bi-

variate time series experiences a decreasing time lag within the last two intervals. On

the other hand, the time delay included in Model (M9) remains unchanged. Models

(M10) and (M11) present time series with changing trends and preset time lags of 25

and 10 respectively.

Figure 5.12 displays the bi-variate dataset produced by Model (M8) and analyses it

with MLLH. Overall, the varying frequency (different patterns of co-movement) makes

the detected coefficients less significant at large scales. The sub-figure (c) shows that

there is a gradual shift in the colour at larger scales, transitioning from blue to yellow,

implying an overall negative to positive dependence; Also, the “bars” in sub-figure (b)

exhibit a greater width at the two sides and narrower width in the middle. Both of

the two features align with the fact that the pair of observations starts with the co-

movement in the opposite direction, which gradually diminishes over time, and later

exhibits co-movement in the same direction. Second, we can see in (c) that the temporal

range of the shifted colour becomes narrower across locations, which corresponds to

the decreasing time lag of the original dataset. Moreover, Figure 5.12(b) shows lighter

colour after t = 440 and hence provides stronger evidence in favour of a significant

dependence between the bi-variate data. This also matches the enhanced co-movement

shown in the latter part of sub-figure (a). For this example, we have an even higher
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frequency compared to models (M12)-(M18), and hence the relatively best scale should

be smaller, i.e. 80 or 60.

Next we study the performance of MLLH in the settings of Model (M9). In Figure

5.13, the colour of the heatmap (c) is less apparent due to the shrinking magnitude of

the sinusoidal function applied in the dataset. Secondly, the “bars” in sub-figure (b)

at scales under 200 generally show regular patterns, which aligns with the unchanged

frequency in the original data. Also, the presence of both wider and narrower “bars”

suggests that the time lag between the bi-variate time series cannot be half of the

temporal range covering a complete pattern, which is the period of the sinusoidal

function in this example. Thirdly, in Figure 5.13(c), the unchanged temporal range

of the shifted colour corresponds to the time-invariant time lag of the original dataset

while the diminishing magnitude of coefficients (darker colour) reflects the decreasing

magnitude of data. In this example, we have the same frequency compared to models

(M12)-(M18), and it shows that 100 is still a suitable scale while the smaller scales

such as 80 or 60 could also provide strong evidence of dependence.

Overall, Figure 5.12 and Figure 5.13 demonstrate the effectiveness of MLLH on show-

ing the significance of dependence (strength of lead-lag relationship) of the bi-variate

datatset produced by the scenarios with a changing relationship over time. Besides, for

data with underlying periodic functions, MLLH can provide information about possi-

ble periodic feature in data through regularity in heatmaps, together with potential

changes in magnitude or frequency via different features across scale or space. To fur-

ther illustrate this idea, we shall consider periodic data (M10) and (M11) with abrupt

changes instead of the smooth changes in models (M8) and (M9).
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.12: Combination of simulated signal (a) and heatmaps [(b) and (c)] for dataset
(M8). The blue vertical lines bound the examined area. As an example, the blue dashed
line and purple dotted lines stand for the location and the corresponding boundaries of the
symmetric moving window.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.13: Combination of simulated signal (a) and heatmaps [(b) and (c)] for dataset
(M9). The blue vertical lines bound the examined area. As an example, the blue dashed
line and purple dotted lines stand for the location and the corresponding boundaries of the
symmetric moving window.
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Figure 5.14 and Figure 5.15 are plotted to show the results of MLLH on bi-variate data

with piecewise-linear signal and independent noise. Compared to sinusoidal functions,

we can find another typical feature: the (45◦) stripes in heatmaps, especially sub-

figures (b), which help indicate the coincidence of the trends around the locations of

the spikes. In particular, the brightest 45◦ thin region in Figure 5.14(b) is largely due

to the significant co-movement of data around the spike at approximately 200.

Specifically, Figure 5.14 shows generally positive correlation between the bi-variate

time series within areas [35, 800] and [900, 1000] and negative dependence within the

remaining areas. Also, due to the presence of noises, the dependence tends to be less

significant at the finest scales where the most significant feature locates within the

areas around t = 525. This indicates the difficulty in finding a consistent pattern at

small scales. In addition, the results in the sub-figure (b) can be divided into areas of

nested “triangles” (or 45◦ stripes) via the pre-specified colour scheme, where different

areas can somehow show dominant patterns and the (possible) shifts of the patterns in

different regions of data. For example, the brightest parallelogram area whose sides are

bounded by triangles with their base approximately at [25, 625] and [425, 825] present

the strongest significance of dependence of time series. It indicates that we can find

the dominant pattern within the region around [425, 625], i.e. we are highly likely to

discover the significant relationship when testing over regions containing this interval,

and there could be apparent pattern shifts around t = 425, 625. This corresponds

to the features we can observe in the original data. Similarly, the second dominant

pattern of data lies somewhere within [675, 825] and the pattern changes at t = 825. In

this example, it shows that 200 could be a suitable scale that is able to provide most

evident information of dependence.

Analogously, Figure 5.15(c) presents the overall positive dependence of data and an

particular change within the area [550, 700]. Also, Figure 5.15(b) shows that the most

dominant significance locates somewhere around [220, 320] and we can see consistent
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correlation of the bi-variate time series over periods containing (part of) [20, 320] in

the long run. In addition, besides the obvious short-run shift in patterns after t =

550, there exists a particular long-run change in patterns after t = 320. On the

other hand, although there are still some less significant short-run patterns after t =

320, we can hardly find apparent long-run patterns for the bi-variate time series. It

partly contradicts with the features of the underlying signals, which should possess

strongly significant long-run coincidence within region [700, 1100]. This indicates the

large impact of noises on signal with relatively lower trends, i.e. in Model (M11), Xt

has slopes 1/50 and −1/50 in the beginning while the slopes within [700, 1100] are

merely 1/200 and −1/200. Compared to Model (M10), the sub-figures (b) and (c) in

Figure 5.15 indicate that 200 is also a suitable scale for Model (M11) while the smaller

scales such as 180 or 160 could also provide the major patterns of dependence in the

bi-variate time series.

Overall, Figure 5.12 to Figure 5.15 demonstrate the effectiveness of MLLH as a tool

for detecting the significance of changing lead-lag relationships between bi-variate time

series with known direction. Meanwhile, MLLH provides information about dominant

patterns of coincidence within the data and indicates the locations where (possible)

pattern shifts exist, which can be useful for further data analysis. In addition, similar

to the statements made on heatmaps for constant lead-lag relationships, the possible

time lags between the tested bi-variate time series are suggested by the time length of

the shifted colour in sub-figure (b). Considering the (possibly) “best” scale containing

the majority of significant features in the data, the simulated results for time series

with changing relations also imply the idea that larger scales should be more suitable

for dataset with lower frequencies. Specifically, the highest frequency in (M8) and (M9)

is approximately twice of that in (M10) and (M11) while the acceptable scale for (M8)

and (M9) can be somehow half of that for (M10) and (M11).
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.14: Combination of simulated data (a) and heatmaps [(b) and (c)] for dataset
(M10). The blue vertical lines bound the examined area. As an example, the blue dashed
line and purple dotted lines stand for the location and the corresponding boundaries of the
symmetric moving window.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.15: Combination of simulated data (a) and heatmaps [(b) and (c)] for dataset
(M11). The blue vertical lines bound the examined area. As an example, the blue dashed
line and purple dotted lines stand for the location and the corresponding boundaries of the
symmetric moving window.
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5.4 Real-World Applications

In this section, we shall demonstrate the practical efficacy of MLLH through real-

world examples, describing both its usefulness and potential pitfalls. We apply MLLH

to COVID-19 datasets uploaded by (Mathieu et al., 2020) in order to visually present

the lead-lag relationship between the number of new cases and deaths in a range of

countries. Given the idea that the changes in the number of new cases will impact

that of new deaths, i.e. the relation between time series have a natural direction, the

strength of the potential lead-lag phenomenon can reasonably be reflected by the sig-

nificance of dependence within this bi-variate dataset. As count data are commonly

modelled as a Poisson-distributed series, we have decided to apply the Anscombe trans-

form (Anscombe, 1948) to approximate the case-death bi-variate time series to a stan-

dard Gaussian distribution, i.e. we employ the transformation x → 2
√
x+ 3/8 to all

observations.

Here we start with around four years of daily recorded time series between 03 January

2020 and 06 December 2023 in the UK. Of the provided series, we drop the data for

the first month and the last two weeks since they contain all zeros for both new cases

and deaths. The examined dataset is plotted in Figure 5.16(a), bounded by blue lines,

where the new cases (deaths) is coloured black (red). To offer more information, we

construct heatmaps at different scales, see Figure 5.16 and Figure 5.17 for results under

window sizes {20, 40, . . . , 800} and {7, 14, . . . , 280} respectively.

Overall, the heatmaps in Figure 5.16 show that the bi-variate time series is generally

positively correlated and the dependence between new cases and deaths is indeed sig-

nificant. To specify, we can see many (nested) “triangular” areas in the heatmaps,

especially for p-values. We can roughly find three regions across time locations, in-

cluding [0, 120], [200, 420] and [480, 1385] in the sub-figure (b). The robust evidence
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at moderate scales in the first two regions aligns with the obvious co-movement in the

original data, although the second region presents smaller coefficients. The darker area

between the two regions indicates a locally low dependence and implies a change in the

pattern of the bi-variate time series. In addition, Figure 5.18 displays the first 400 ob-

servations in the original dataset together with the corresponding MLLH, which again

amplify the introduced idea. Moreover, within [480, 1385], there are several apparent

nested “triangular” areas delineated in different colours. For example, the dark trian-

gles with their base across approximately [480, 780] and [780, 1200] indicate localised

low significance of lead-lag relationships and suggests a dominant pattern for depen-

dence within regions around t = 780. In addition, the left side of the largest triangle,

together with the dark region between [420, 480], highlights the changed pattern on two

sides. Also, the obvious boundary dividing the two nested largest shapes with light

colour presents a small change in characteristics of data around t = 480, see also time

locations approximately at t = 680, 780, 880, etc. Such (45◦) stripes somehow suggest

the presence of changing coincidence of the trends typically around the spikes of the

bi-variate time series. For further details, we refer to Figure 5.17, which reports results

obtained at finer scales. Notably, we can see frequent (slight) colour changes (stripes)

within the interval [680, 1100] across several the finest scales, and this corresponds to

the weak coincidence of the trends at the locations of the spikes. To explore a potential

reason for insignificant coefficients, we plot an additional sequence of the number of

new vaccinations in Figure 5.19. It shows that the relatively insignificant relationship

around t = 700 is intuitively related to the increase in vaccination rate.

Then, the second dataset we considered is the COVID curves recorded in China, which

is indeed special due to the strict government policy employed over time, see (g) and

(h) in Figure 5.20. Besides the number of new vaccinations, this figure also includes

the government response stringency index, which is measured based on 9 response

indicators such as school closures, workplace closures, and travel bans, etc (Mathieu

et al., 2020). This index locates within the interval [0, 100] with 100 representing the
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strictest response. Similarly, after removing time points where both new cases and

deaths are all zeros, we present respectively the results of the entire remaining dataset

in Figure 5.21 and those of the second half of data [750, 1278] in Figure 5.22. Figure

5.21(b) generally highlights two main points: first, although the increase in new cases

and deaths is largely controlled by the strict government policy, we can still observe

their positive dependence. Also, considering the nested triangular areas (45◦ stripes) in

the heatmaps, the coincidence of the trends at the locations of large spikes become more

apparent in heatmap (b), see t around 30, 500, 800 and 1100 for example, and the test

results will be more significant when such spikes are covered within the corresponding

moving window, i.e. bounded by sides of various triangles. Second, from heatmaps

(b) and (c), some obvious changes in the pattern of bi-variate time series are observed

around t = 60, 200, 750, 1100, etc. In addition, the most significant dependence we can

see in Figure 5.22 comes from the dramatic increase within the time length [1070, 1130],

which is caused by the sudden relaxation of government policy presented in 5.20(h).

Next we study the performance of MLLH in additional examples of case-death curves

in other countries. Overall, Figure 5.23 to Figure 5.34 present the significance of lead-

lag relationships between the recorded number of new cases and deaths in various

countries, together with some different patterns in the original data highlighted via

heatmaps (b). In the following, we continue to concentrate on the daily recorded

dataset and hence conduct the tests over periods with different length and starting

dates. For instance, since Mathieu et al. (2020) only provides weekly data in Brazil

after 2023-03-06, our analysis is conducted over the period from 2020-02-27 to 2023-

03-06, as bounded with blue vertical lines in Figure 5.23(a). Figure 5.23 indicates the

consistently significant lead-lag relationship of the dataset recorded in Brazil, where an

apparent shift in pattern is located around t = 750. For the dataset collected in Canada

from 2020-01-26 to 2022-06-11, we can see in Figure 5.24 that there exists localised low

significance of lead-lag relationships within regions [200, 240], [440, 550] and [650, 740]

while a dominant pattern of significant dependence can be observed within regions
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around [250, 300]. Also, an obvious abnormal pattern, i.e. the dark area between

two nested triangles in light colour, is present around t = 750, which indicates the

substantially changed coincidence of the trends at the spike around t = 750. In Figure

5.25, we plot heatmaps for the case-death curves in India from 2020-03-03 to 2023-

12-03. The 45◦ stripes in the heatmaps suggest that the data experience considerable

pattern shifts within regions around t = 500, 780, 1200, etc.

Additionally, Figure 5.26 to Figure 5.34 present tested results over case-death data

recorded respectively from 2020-02-22 to 2023-11-16 in Italy, from 2020-02-11 to 2023-

05-08 in Japan, from 2020-03-03 to 2023-03-10 in Malaysia, from 2020-03-07 to 2023-

11-21 in Poland, from 2020-03-19 to 2023-05-15 in Russian, from 2020-02-05 to 2023-

02-13 in Singapore, from 2020-03-06 to 2022-07-22 in South Africa, from 2020-02-16

to 2023-06-01 in South Korea, and from 2020-02-02 to 2022-10-19 in the USA. Besides

the significant dependence shown within [60, 150], Figure 5.26(b) indicates dominant

patterns at locations around t = 300, 530, 750, 1100 and a notable shift in pattern at

time around t = 630. Similar to the most obvious pattern change in Figure 5.16, we can

not figure out the relatively more significant pattern on two sides. For data collected

for Japan, Figure 5.27(b) presents evident 45◦ stripes indicating changes in coincidence

of the trends within regions around spikes at approximately t = 375, 600, 750, 900, etc.

In the remaining figures, we can also find the generally positive correlations, the areas

with more significant dependence between bi-variate time series and the correspondence

between stripes and the coincidence of the trends around the locations of the spikes,

which helps decide the bounds of intervals with different patterns for further analysis.

Additionally, relying on the empirical frequencies roughly observed from the real-world

data, we can see that a suitable window size can be 200 for bi-variate time series

recorded in India and Malaysia while we can choose scale 100 for analysis in the other

tested countries.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.16: Combination of original data (a) and heatmaps [(b) and (c)] for new cases
(black) and new deaths in UK recorded from 2020-02-01 to 2023-12-06. The chosen window
sizes are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.17: Combination of original data (a) and heatmaps [(b) and (c)] for new cases
(black) and new deaths in UK recorded from 2020-02-01 to 2023-12-06. The chosen window
sizes are 7, 14, . . . , 270. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.18: Combination of original data (a) and heatmaps [(b) and (c)] for new cases
(black) and new deaths in UK recorded from 2020-02-01 to 2021-03-06 (400 days). The
chosen window sizes are 7, 14, . . . , 270. The blue vertical lines in (a) bound the examined
area.
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Figure 5.19: Combination of original data: (a) new cases, (b) new deaths and (c) new
vaccinations in UK recorded from 2020-02-01 to 2023-12-06.

Figure 5.20: Combination of original data: (a)-(b) new cases, (c)-(d) new deaths, (e)-(f)
new vaccinations and (g)-(h) government response stringency index in China recorded from
2020-01-03 to 2022-12-31.



5.4 Real-World Applications 211

(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.21: Combination of original data (a) and heatmaps [(b) and (c)] for new cases (black)
and new deaths in China recorded from 2020-01-03 to 2023-12-06. The chosen window sizes
are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.22: Combination of original data (a) and heatmaps [(b) and (c)] for new cases (black)
and new deaths in China recorded from 2022-01-20 to 2023-07-03. The chosen window sizes
are 7, 14, . . . , 270.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.23: Combination of original data (a) and heatmaps [(b) and (c)] for new cases (black)
and new deaths in Brazil recorded from 2020-01-03 to 2023-12-06. The chosen window sizes
are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.24: Combination of original data (a) and heatmaps [(b) and (c)] for new cases (black)
and new deaths in Canada recorded from 2020-01-03 to 2023-12-06. The chosen window sizes
are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.25: Combination of original data (a) and heatmaps [(b) and (c)] for new cases
(black) and new deaths in India recorded from 2020-02-01 to 2023-12-06. The chosen window
sizes are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.26: Combination of original data (a) and heatmaps [(b) and (c)] for new cases
(black) and new deaths in Italy recorded from 2020-01-03 to 2023-12-06. The chosen window
sizes are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.27: Combination of original data (a) and heatmaps [(b) and (c)] for new cases (black)
and new deaths in Japan recorded from 2020-01-03 to 2023-12-06. The chosen window sizes
are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.28: Combination of original data (a) and heatmaps [(b) and (c)] for new cases
(black) and new deaths in Malaysia recorded from 2020-01-03 to 2023-12-06. The chosen
window sizes are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.29: Combination of original data (a) and heatmaps [(b) and (c)] for new cases (black)
and new deaths in Poland recorded from 2020-01-03 to 2023-12-06. The chosen window sizes
are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.30: Combination of original data (a) and heatmaps [(b) and (c)] for new cases (black)
and new deaths in Russia recorded from 2020-01-03 to 2023-12-06. The chosen window sizes
are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.31: Combination of original data (a) and heatmaps [(b) and (c)] for new cases
(black) and new deaths in Singapore recorded from 2020-01-03 to 2023-12-06. The chosen
window sizes are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.32: Combination of original data (a) and heatmaps [(b) and (c)] for new cases
(black) and new deaths in South Africa recorded from 2020-01-03 to 2023-12-06. The chosen
window sizes are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.33: Combination of original data (a) and heatmaps [(b) and (c)] for new cases
(black) and new deaths in South Korea recorded from 2020-01-03 to 2023-12-06. The chosen
window sizes are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.34: Combination of original data (a) and heatmaps [(b) and (c)] for new cases
(black) and new deaths in USA recorded from 2020-01-03 to 2023-05-20. The chosen window
sizes are 20, 40, . . . , 800. The blue vertical lines in (a) bound the examined area.
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5.5 Visualisation Examples

In this section, we introduce more simulated examples for testing the effectiveness of

MLLH on the analysis of lead-lag relationships between bi-variate data. In particular,

as supplements to the existing examples, we consider periodic functions with higher

frequency.

(M12) Xt = sin(πt/100− π/2) + 1 for t = 1, 2, . . . , 825 and Yt = sin(πt/100− π) + 1

for t = 26, 27, . . . , 825.

(M13) Xt = sin(πt/100− π/2) + 1 for t = 1, 2, . . . , 850 and Yt = sin(πt/100− π) + 1

for t = 51, 52, . . . , 850.

(M14) Xt = sin(πt/100− π/2) + 1 for t = 1, 2, . . . , 875 and Yt = sin(πt/100− π) + 1

for t = 76, 77, . . . , 875.

(M15) Xt = sin(πt/100−π/2)+1 for t = 1, 2, . . . , 900 and Yt = sin(πt/100−3π/2)+1

for t = 101, 52, . . . , 900.

(M16) Xt = sin(πt/100− π/2) + 1 for t = 1, 2, . . . , 925 and Yt = sin(πt/100− π) + 1

for t = 126, 127, . . . , 925.

(M17) Xt = sin(πt/100−π/2)+1 for t = 1, 2, . . . , 950 and Yt = sin(πt/100−3π/2)+1

at t = 151, 152, . . . , 950

(M18) Xt = sin(πt/100−π/2)+1 for t = 1, 2, . . . , 975 and Yt = sin(πt/100−3π/2)+1

for t = 176, 177, . . . , 975.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.35: Combination of simulated signal (a) and heatmaps [(b) and (c)] for dataset
(M12). The blue vertical lines bound the examined area. As an example, the blue dashed
line and purple dotted lines stand for the location and the corresponding boundaries of the
symmetric moving window.
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.36: Combination of simulated signal (a) and heatmaps [(b) and (c)] for dataset
(M13).



5.5 Visualisation Examples 228

(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.37: Combination of simulated data (a) and heatmaps [(b) and (c)] for dataset
(M14).
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.38: Combination of simulated data (a) and heatmaps [(b) and (c)] for dataset
(M15).
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.39: Combination of simulated data (a) and heatmaps [(b) and (c)] for dataset
(M16).
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.40: Combination of simulated data (a) and heatmaps [(b) and (c)] for dataset
(M17).
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(a) Original data

(b) − log(p)

(c) coefficients

Figure 5.41: Combination of simulated data (a) and heatmaps [(b) and (c)] for dataset
(M18).



5.6 Discussion 233

5.6 Discussion

In this section, we discuss some closely relevant ideas of multi-scale lead-lag heatmaps

for future research. First, considering the choice of time lags, the real-world data can

be largely contaminated by the (possibly dependent) noise and hence makes it hard

to figure out the time lags from the finest scales. Although we may still receive some

information, such as the time length of the shifted colour in Figure 5.17(b), from test

results obtained within small moving windows, a data preprocessing procedure might

be helpful for getting more apparent features in heatmaps. Two possible methods for

reducing the dependence in data are introduced in Section 4.3.

After adding the selected time lags k ⩾ 1, MLLH can then be extended for detecting

the direction of the lead-lag relationships between bi-variate time series by switching Xt

and Yt, and even for analysing more complex relationships, i.e. multiple testing. It is of

interest to start from the idea of the basic Granger causality test, i.e. conduct a multiple

linear regression between dependent variable Yt and regressors Xt−k, {Yt−1, Yt−2, . . . }.

Seasonality indicators can also be included in regressors to assess the significance of

such patterns in the real-world data. Then, with the new MLLH algorithm, we may

be able to provide theoretical verification of the “best” window size for data analysis.



Chapter 6

Conclusions

In this thesis, we consider the problem of detecting multiple change-points of the depen-

dent time series with abrupt mean shifts, and we investigate the problem of analysing

lead-lag relationships between bi-variate nonstationary time series. This chapter pro-

vides a brief summary of the contributions presented in Chapter 3, 4 and 5 and offers

a discussion on some possible directions for future studies.

Chapter 3 introduces new wavelet-based consistent LRV estimators that can help quan-

tify the level of noise in processes with piecewise-constant signals and errors following

the physical system proposed in Wu (2005). After applying a wavelet shrinkage idea

to DWT- or MODWT-based Haar wavelets, our proposed estimators lie somewhere

in between the two broad classes of LRV estimators: residual- and difference-based

estimators. These robust estimators bypass the challenging task of pre-estimating the

signals and will not be largely impacted by potential outliers that can possibly result

in the poor performance of difference-based estimators. We employ the Theorem 2

in Wu and Wu (2016) to show the asymptotic unbiasedness and consistency of our

estimators. The simulation results obtained from data with ARMA error processes

234
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indicate that our MODWT-based approaches can generally outperform many exist-

ing LRV estimators. In recent years, more general change-point detection problems

for data with higher-order polynomial trends, especially piecewise-linear segmentation,

have attracted much interest in the literature. Therefore, one major possibility for

future research is to extend the current LRV estimators to dependent data with linear

trends.

In Chapter 4, we discuss the possible extensions of the threshold-based NOT algorithm

and the NOT solution path algorithm for serially dependent data. First, we attempt

to extend the former basic algorithm by constructing the threshold proportional to

our new LRV estimators, which fail to show much efficacy. Secondly, we turn to focus

on the NOT solution path algorithm and provide detailed analyses on the two data-

preprocessing methods introduced in Baranowski et al. (2019). The test results indicate

that adding an independent error process following εt
iid∼ N(0, σ2) can successfully en-

hance the performance of NOT but the choice of σ can indeed be a challenging issue.

Additionally, although we can see the effectiveness of pre-averaging the sequence over

non-overlapping moving windows, this approach faces three important issues that may

arise in practice, i.e. the choice of window size, the detection of the two consecutive

change-points resulting from pre-averaging, and the estimation of the true change-point

within the detected moving window. Lastly, we study the modification of the strength-

ened Schwarz Information Criterion applied in the NOT solution path algorithm. The

simulated results show that the new NOT algorithms with adjusted measures of fit

cannot outperform the original NOT solution path algorithm if we choose an optimal

α for the penalty function. Hence, we propose an empirical formula for α to make the

original algorithm useful for dependent data, and the simulation studies demonstrate

the practicability of this formula for data with various mean shifts and ARMA error

processes. For future research, the first possible direction is to provide a theoretical

formula for σ or α after figuring out the explicit conditions of dependent data where

the NOT solution path algorithm breaks down regardless of the choice of σ or α. In
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addition, we shall continue to consider the possible measures of fit, together with the

corresponding penalty function, after determining the reasons leading to the failure of

the two introduced measures ICLRV (k) and ICACV (k).

In Chapter 5, we propose an exploratory approach, the Multi-scale Lead-Lag Heatmap,

to investigate the lead-lag relationships between bi-variate nonstationary time series

with natural directions. This approach is constructed based on the “scale-space” view-

point applied in the SiZer map and hence can provide an broad view of relations

between two time series, which is likely to serve as the first step for further lead-lag

or causal analyses. After examining examples with similar or changing relationships,

we present the information highlighted by the heatmaps of coefficients and the corre-

sponding − log(p) from both the “local” and “global” perspectives, i.e. from the basic

understanding of the overall dependence to the changing lead-lag relations and the (pos-

sibly) “best” window size for bi-variate time series. Then, we assess the practicability

of MLLH on real-world COVID-19 data examples for many countries. As mentioned in

Section 5.6, to make the heatmaps more informative, we can first decide the choice of

time lags after conducting data preprocessing. The following possible extension comes

from considering the direction of the lead-lag relationships and multiple testing for

dependent data.
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