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Abstract

This thesis consists of three chapters on the role of finance in influencing the distri-

bution of wealth.

In the first chapter, I study how improvements in entrepreneurial financing affect

top wealth inequality. On the one hand, improved financing allows entrepreneurs

to scale up, raising top inequality. Simultaneously, extreme wealth trajectories for

entrepreneurs become less likely as better financing improves risk sharing, lowering

top inequality. It turns out that which of these effects dominates depends on the

amount of economic activity that is reallocated to entrepreneurs from elsewhere in

the economy. Top wealth inequality rises provided that this reallocation is large

enough.

In the second chapter, co-authored with Andrew Atkeson, we derive an analytical

link between the fast dynamics of measured wealth inequality at the top on the one

hand, and the prevalence of newly created fortunes on the other. Specifically, in the

context of a random growth model of wealth accumulation, the shape of the top of

the wealth distribution changes rapidly only if the pace with which new fortunes are

created is fast.

In the final chapter, I study whether the rise in measured wealth inequality docu-

mented in the Distributional National Accounts (DINA) can be accounted for by the

combination of changing asset prices on the one hand, and household heterogeneity

in portfolio compositions on the other. In particular, I study the gap between the

share of wealth held by individuals at the top of the wealth distribution, and those

individuals’ share of the associated capital income flows. I find that the size of this

gap varies substantially over time. However, the steady rise in top wealth shares

since the late 1970s is not primarily accounted for by a rise in the size of this gap, but

by rising concentration in the associated capital income flows.
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Chapter 1

Innovations in Entrepreneurial

Finance and Top Wealth Inequality

How does improved risk sharing through better entrepreneurial financing affect top

wealth inequality? On the one hand, better entrepreneurial financing enables en-

trepreneurs to scale up, which tends to raise top wealth inequality. On the other

hand, better risk sharing allows entrepreneurs to reduce the idiosyncratic volatility

in their wealth portfolios. This risk reduction lowers wealth inequality by making

extreme wealth trajectories less likely and by weakening entrepreneurs’ precaution-

ary savings motive. The novel insight in this paper is that which of these two effects

dominates depends crucially on how much economic activity is reallocated to en-

trepreneurial firms from elsewhere in the economy when entrepreneurs try to scale

up. When this reallocation is large, wealth inequality rises rapidly as equity financ-

ing improves, and the model makes sense of several empirical trends, most notably

the dramatic rise of firms with a history of venture capital backing. The results

suggest that improved risk sharing through better equity financing could have been

a quantitatively important contributor to rising wealth concentration.
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1.1 Introduction

A cursory glance at the names appearing on lists of wealthy Americans uncovers

a striking fact: many of the richest individuals became wealthy through a risky

investment in a single entrepreneurial firm. Prior work has emphasized the role of

entrepreneurs with high exposures to idiosyncratic risk in explaining both the thick

right tail of the wealth distribution and the prevalence of newly minted fortunes at

the top. While improved entrepreneurial financing allows entrepreneurs to scale up,

it also allows them to offload idiosyncratic risk. With lower levels of idiosyncratic

risk, the extreme upward wealth trajectories that help account for the thick right

tail of the wealth distribution become less likely. Moreover, with less idiosyncratic

investment risk, entrepreneurs’ precautionary savings motives are weaker, which

slows their wealth accumulation. In addition, better risk sharing means that returns

to successful firms are spread over a larger set of investors. Therefore, it is not

immediately clear how wealth inequality is affected by better risk sharing. The

question studied in this paper is therefore: how is top wealth inequality affected by

improvements in financing for entrepreneurs?

I develop a tractable general equilibrium framework to answer this question. The

framework concisely summarizes the impact of improved financing in three eco-

nomic forces. Consider a hypothetical entrepreneur, Jeff. Suppose Jeff’s financing

constraints have just been relaxed. Specifically, he can now finance a larger fraction

of his online bookstore startup by issuing equity to outsiders. Jeff could use the risk-

sharing properties of improved equity financing to reduce his own idiosyncratic risk

exposure. This risk-reduction effect would lower top wealth inequality in the long run

by making extreme upward wealth trajectories for entrepreneurs less likely. How-

ever, Jeff could also use the improved financing to scale up and, with some luck, turn

his online bookstore into a retail giant. If this scaling-up effect is strong enough, top

wealth inequality rises. The existence of these two forces related to improvements in

risk-sharing for entrepreneurs has been discussed in the literature.1

The tractability of the framework in this paper allows me to highlight a novel

theoretical mechanism. Whether the risk-reduction or the scaling-up effect dominates

1See Bonfiglioli (2012) and Peter (2021).
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depends on a third force: the general equilibrium reallocation effect. This measures the

extent to which productive resources are reallocated to cutting-edge entrepreneurial

firms from other firms in the economy when entrepreneurial financing improves.

When every entrepreneur tries to scale up, competition among them reduces their

equilibrium profitability. This reduces the attractiveness of scaling up. Why does

entrepreneurs’ equilibrium profitability fall when they all want to scale up? First,

their profitability is reduced because their equilibrium cost of capital rises as they

compete for financing. Second, their profitability is diminished because their labor

costs rise, and the equilibrium prices of the goods they sell fall as they compete for

labor and customers.

This downward pressure on entrepreneurial profitability is ameliorated if en-

trepreneurs as a group can poach customers, attract labor, and raise capital at the

expense of other firms in the economy. A crucial feature of the model is that en-

trepreneurial firms compete not only with one another but also with traditional

firms. These traditional firms produce goods that are imperfectly substitutable with

those the entrepreneurial firms produce. The higher the elasticity of substitution

between these goods, the stronger the reallocation effect: with high elasticity of sub-

stitution, entrepreneurs can expand by poaching demand and productive resources

from traditional firms rather than competing down their equilibrium profitability. In

this case, entrepreneurs’ excess return remains relatively stable, while improvements

in equity financing allow them to carry less risk per dollar invested, thus improving

the risk-reward trade-off they face. Then, they choose to scale up so much that their

total risk exposure increases even if improvements in equity financing allow them to

carry a smaller fraction of the risk in their firm. Here, wealth inequality rises.

In contrast, when the elasticity of substitution between the goods is low, there is lim-

ited room for entrepreneurs to expand in equilibrium at the expense of the traditional

firms. Hence, the downward pressure on their excess return is high. If the excess

return falls enough for the risk-reward trade-off associated with entrepreneurial activ-

ity to deteriorate, entrepreneurs choose to reduce their idiosyncratic risk exposures,

lowering wealth inequality in the long run.

As a second contribution, the framework makes sense of several other empirical
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trends documented in U.S. data, provided the elasticity of substitution between

entrepreneurial firms’ goods and traditional firms’ goods is high. Most notable

among these trends is the rapid growth in the share of economic activity associated

with venture capital-backed firms. Other consistent trends include the stability of

the accounting return to the aggregate capital stock despite these falling safe rates,

and the fall in the aggregate labor share despite stable firm-level labor shares and a

falling safe rate. The model exhibits these patterns precisely when the reallocation

effect is strong.

Model overview. The extent to which entrepreneurs choose to bear idiosyncratic

risk is an equilibrium outcome, so a comprehensive understanding of how improve-

ments in entrepreneurial financing affect top wealth inequality requires an equilib-

rium model. To this end, I present a general equilibrium model where risks and

expected returns associated with entrepreneurship are endogenously determined.

The immediate precursors to the model are the modified neoclassical growth mod-

els of Angeletos (2007), Brunnermeier and Sannikov (2017), and Di Tella and Hall

(2021). The model features two sectors of production: an innovative entrepreneurial

sector and a traditional sector. The firms in the innovative entrepreneurial sector

are more productive than the traditional firms. However, a portion of each firm’s id-

iosyncratic risk must be borne by the associated entrepreneur for incentive alignment

purposes. Equity issuance is possible but limited. The traditional sector is less pro-

ductive but has no idiosyncratic risk costs. The uninsurable risk of entrepreneurial

production implies that entrepreneurs earn a positive idiosyncratic excess return.

Entrepreneurs choose how much idiosyncratic risk to bear by weighing the excess

return against the risk.

The allocation of capital to each type of firm is determined by the trade-off be-

tween the higher productivity of the entrepreneurial sector, the lower risk costs of

the traditional sector, and the substitutability of the goods they produce. I model

improvements in entrepreneurial financing as an increase in the fraction of the firm’s

risk that entrepreneurs can offload to financial markets. This greater offloading low-

ers the risk cost associated with entrepreneurial production, which, in turn, triggers

a reallocation of economic activity from the traditional firms to the entrepreneurial

15



firms.

The model makes stark predictions regarding the effect of improvements in equity

financing on top wealth inequality, and the effect depends on the strength of this

reallocation. When the degree of substitutability between the goods the two types of

firms produce is high, even minor improvements in entrepreneurial equity financing

cause a considerable reallocation of capital, labor, and sales to entrepreneurial firms.

The large reallocation means the competitive pressure among entrepreneurial firms

for financing, workers, and customers is less severe. Entrepreneurs can then expand

more aggressively without their expected excess returns declining much. Moreover,

better risk sharing reduces the risk per unit invested. If the risk-reward trade-off

improves despite the slightly lower expected excess return, then entrepreneurs scale

up not only by raising more capital from outsiders, but also by investing more of

their personal wealth, thereby raising their idiosyncratic risk exposures. This raises

top wealth inequality by making extreme upward wealth trajectories more likely, and

also, albeit to a lesser extent, by strengthening entrepreneurs’ precautionary savings

motive.

The setup with two types of firms is essential to deliver these results. The presence

of traditional firms from which entrepreneurial firms can draw productive resources

and customers enables entrepreneurs, in the aggregate, to scale up without adversely

affecting their returns. To the best of my knowledge, this aspect, that the extent to

which entrepreneurs can attract economic activity from elsewhere in the economy

is crucial for the effect of better risk-sharing on top inequality is, is new to the

literature. Finally, I derive a closed-form solution for the model’s steady state level of

Pareto inequality. The formula reveals an intimate link between entrepreneurs’ risk

exposures, the share of wealth they hold in aggregate, and the thickness of the right

tail of the overall cross-sectional distributional wealth.

Empirical overview. Although the main subject of this study is top wealth in-

equality, the framework can make sense of four other key empirical trends under the

assumption of a high elasticity of substitution between the goods that entrepreneurial

firms and traditional firms produce:

1. The dramatic growth in the fraction of firms with a history of venture capital-
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backing among the largest publicly traded firms in the U.S.2

2. The fall in the aggregate labor share, despite relatively stable firm-level labor

shares.3

3. The stable or slightly rising accounting return to the aggregate capital stock

despite the falling real safe interest rate.4

4. The fall in real safe interest rates.5

The first trend is directly related to the mechanism at the heart of this paper. The

three others have a more subtle connection to the main mechanism. Their significance

arises from the fact that they are implied by the model precisely when the general

equilibrium reallocation effect is so strong that the scaling-up effect dominates the

risk-reduction effect. The model exhibits these trends under the same conditions

under which improvements in entrepreneurial financing lead to higher top wealth

inequality.

The growth of venture capital-backed firms. For improvements in entrepreneurial

financing to be associated with rising top wealth inequality, the model requires that

it causes a substantial reallocation of capital from traditional firms to cutting-edge

entrepreneurial firms. Gornall and Strebulaev (2021) document precisely such a

reallocation. For instance, they document that firms with a history of VC-backing

constituted less than 5% of the market capitalization of publicly traded firms before

1980 but that this share has risen to around 41% in 2020. Since venture capital is

explicitly aimed at providing financing for cutting-edge entrepreneurial firms, this

suggests that there has been a significant reallocation to such firms over the past

half-century.

Labor share. Improvements in entrepreneurial financing have two offsetting effects

on the labor share in the model. First, the reallocation of production toward the low-

labor-share entrepreneurial firms reduces the aggregate labor share via a composition

effect. Conversely, it increases the labor share at the firm level for entrepreneurial

firms, as they must raise wages to attract workers. The model displays the empirically

observed pattern of a declining aggregate labor share alongside stable or weakly

2See Gornall and Strebulaev (2021) and Greenwood et al. (2022).
3See Autor et al. (2020) and Hartman-Glaser et al. (2019).
4See Reis (2022), Moll et al. (2022) and Farhi and Gourio (2018).
5See Holston et al. (2017), Auclert et al. (2021), Rachel and Summers (2019).
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rising firm-level labor shares precisely when the reallocation effect is strong. The

reason that the entrepreneurial firms have lower labor shares of income is that the

entrepreneur’s share of income comes out of both the pure capital share and the labor

share.

Rates of return to capital. The same reasoning applies to the accounting return to the

overall capital stock. Reallocating capital to high-return entrepreneurial firms raises

the aggregate return to capital. On the other hand, diminishing returns within the

entrepreneurial sector exert a counteracting downward pressure. Improvements in

entrepreneurial financing only increase the return to the aggregate capital stock if

the reallocation effect is strong.

Safe real interest rate. Improvements in entrepreneurial equity financing, combined

with a strong general equilibrium reallocation force, lead entrepreneurs to take on

more idiosyncratic risk. Higher idiosyncratic risk exposure increases entrepreneurs’

precautionary savings motive, which depresses the equilibrium real safe interest rate.

Numerical assessment. To gauge the quantitative role played by improved equity

financing, I study the model through numerical experiments. The tractability of the

framework allows me to compute the model’s transition dynamics straightforwardly.

In this experiment, I feed in a decline in equity financing frictions that reproduces the

rise in the average rate of equity issuance by firms associated with entrepreneurs at

the top of the Forbes 400, as documented by Gomez and Gouin-Bonenfant (2024). The

model can account for the fast transition dynamics of Pareto inequality in response

to improved equity financing for entrepreneurs, provided that the general equilib-

rium reallocation effect is large enough. In particular, when the general equilibrium

reallocation effect is strong enough to account for the rise in the market capitalization

share of firms with a history of venture capital backing, the model can account for

almost all of the rise in Pareto inequality.

Literature. This paper contributes to the literature on the consequences of idiosyn-

cratic investment risk and entrepreneurship for wealth inequality. This literature was

pioneered by Quadrini (2000) and further developed by Meh and Quadrini (2006)

and Cagetti and De Nardi (2006), with recent contributions by Benhabib et al. (2014),

Gabaix et al. (2016), Jones and Kim (2018), Peter (2021), Atkeson and Irie (2022), Hui
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(2023), Gomez and Gouin-Bonenfant (2024) and Robinson (2023). In recent years,

this literature has aimed at accounting for three stylized facts: the thick right tail of

the wealth distribution, the rapid dynamics of the wealth distribution over time, and

the prevalence of new fortunes at the top. These facts serve as important devices for

disciplining models of top wealth inequality.

Because the literature has emphasized the role played by entrepreneurs with high

idiosyncratic risk exposures to account for these facts, studies in this literature have

concluded that less restrictive debt financing could raise top wealth inequality while

better risk sharing would reduce wealth inequality. For instance, in contrast with

the results presented in this paper, recent studies by Peter (2021), Hui (2023), and

Robinson (2023) conclude that improved risk sharing for entrepreneurs lowers wealth

inequality.6 This is because the risk-sharing rather than the scaling-up force domi-

nates in their settings. I discuss this in more detail in Section 1.3.3. In the context of a

static model where agents choose between a risky project and a safe project, Bonfigli-

oli (2012) studies the impact of better risk-sharing on the extensive margin of risky

entrepreneurship and how that relates to income inequality. In that context, improve-

ments in risk-sharing lowers income dispersion for high-ability entrepreneurs, while

at the same time inducing entry into risky entrepreneurship among agents with lower

ability, thereby raising income dispersion among those agents. Average income in-

equality rises if the effect of the rise in income dispersion among lower ability agents

is stronger than the effect of lower dispersion among high-ability entrepreneurs.

However, because dispersion falls for high-ability entrepreneurs, improvements in

risk-sharing do not generate rising inequality within the top.7 A similar conclusion

is reached by Heyerdahl-Larsen et al. (2023), who study how improvements in risk

sharing impacts wealth and consumption inequality in a dynamic model where en-

trepreneurs differ in terms of their beliefs regarding the success probability of their

firm, rather than in their ability. They also find that improvement in risk sharing

lowers entrepreneurial risk, but stimulates entry on the extensive margin. The results

in this paper complement those result by investigating the impact of improvements

6In Atkeson and Irie (2022), entrepreneurs’ return and idiosyncratic risk are exogenous. In this
paper, they are endogenized and shown to be tightly linked.

7Moreover, because the model is static, it is silent on the dynamics of inequality.
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in risk-sharing on entrepreneurs decision of how much risk to take on the intensive

margin, and how that impacts both the level of wealth inequality and its dynam-

ics over time. In this context, when improvements in risk-sharing for entrepreneurs

leads to more risk-taking, it does so for all entrepreneurs, which leads to rising wealth

inequality and faster wealth dynamics within the top as well. That is, it changes the

so-called Pareto shape of the wealth distribution. The results in this paper also com-

plement those of İmrohoroğlu and Zhao (2022) and Gomez and Gouin-Bonenfant

(2024), who study the impact of falling costs of capital for entrepreneurs on top

wealth inequality. They emphasize that this may raise wealth inequality because

entrepreneurs can more cheaply scale up their firms. The focus in the present paper

is instead on improvements in risk-sharing, rather than a general fall in the cost of

capital. Panageas and Gârleanu (2024) study how disruptive growth influences the

demand for alternative asset classes such as private equity and venture capital, and

how this interacts with the wealth accumulation process of innovators. Further, as

in this paper, they study how entrepreneurs wealth accumulation process in turn

shapes the top of the wealth distribution.

Compared to models in this literature that are based on the framework of Aiyagari

(1994), the model in this paper is based on Angeletos (2007), so that the economy

aggregates tractably despite the presence of idiosyncratic risk. The specification of

the risk-sharing environment as one where equity issuance is possible but limited

due to agency frictions as in Di Tella (2017) and Brunnermeier and Sannikov (2017).

Risk-aversion, combined with the limits to risk-sharing, induces entrepreneurs to

run smaller firms than under perfect risk-sharing as in Kihlstrom and Laffont (1979).

Relative to the model of Angeletos (2007) (and Brunnermeier and Sannikov (2017)),

I introduce imperfect substitutability between the goods produced by the two types

of firms. I also consider a demographic setup where the between-type distribution

of wealth and the cross-sectional distribution of wealth are stable in the long run

despite the presence of idiosyncratic risk. These modifications are essential for

considering the issues at the heart of this paper: top wealth inequality, the factor

income distribution, and returns to wealth in the long run.

An ongoing discussion in the literature is the extent to which the rise in wealth
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inequality can be accounted for by changes in the valuations of the assets and liabilities

in the portfolios of wealthy households relative to less wealthy households, without

changes the distribution of the underlying assets and liabilities themselves, perhaps

driven by falling interest rates (see Kuhn et al. (2020), Greenwald et al. (2021), Cioffi

(2021), Gomez (2024), and others). Irie (2023b) points out that the increase in top

wealth inequality measured in the Distributional National Accounts of Piketty et al.

(2018) (which is a data set that has been used to argue that wealth inequality has risen

substantially) is associated with more unequal distributions of the income flows that

household wealth generates, suggesting that mere valuation effects do not entirely

drive the rise in top wealth inequality. When studying declining interest rates, Gomez

and Gouin-Bonenfant (2024) find that lower interest rates primarily raise Pareto

inequality by lowering costs of capital for entrepreneurs, not through direct valuation

effects.8 Other such explanations include changes in taxation as emphasized by Aoki

and Nirei (2017), Hubmer et al. (2021) and Kaymak and Poschke (2016); Moll et al.

(2022), focusing on automation; and Jones and Kim (2018) and Atkeson and Irie (2022),

who focus on entrepreneurs and business owners.9 Aoki and Nirei (2017) attribute

rising Pareto inequality to lower taxes, making entrepreneurs want to increase their

exposure to their firms. In the present study, it is instead reduced equity financing

frictions that make entrepreneurs want to scale up.

1.2 Scaling Up and Risk Reduction in a Simple Frame-

work

In this section, I present a simplified partial equilibrium framework where improved

risk sharing for entrepreneurs unambiguously leads to increases in risk-taking. In

other words, the scaling-up effect dominates when risk sharing improves. I also show

how moving from partial equilibrium to general equilibrium can turn this result on its

head. This section thus serves as motivation for the full model presented in Section

8Interestingly, the long-run response of the model presented in this paper includes a fall in the
cost of capital as well. Nevertheless, in contrast to Gomez and Gouin-Bonenfant (2024), this is an
outcome rather than a driving force.

9Recent surveys of the determinants of wealth inequality in the context of macroeconomic models
include for instance De Nardi and Fella (2017), Benhabib and Bisin (2018)
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1.3. In that full model, the extent to which entrepreneurial firms can poach customers,

raise capital, and attract labor at the expense of other firms in the economy is what

determines precisely how strong the scaling-up effect ends up being in equilibrium.

1.2.1 Partial Equilibrium: The Scaling-Up Force Dominates

Consider a continuum 𝑖 ∈ [0, 1] of entrepreneurs operating firms. Each firm produces

an output flow using capital, labor, and a Cobb-Douglas production technology.

Entrepreneur 𝑖 accumulates capital subject to idiosyncratic risk:

𝑦𝑖𝑡𝑑𝑡 = 𝐴̄𝑘𝛼𝑖𝑡 𝑙
1−𝛼
𝑖𝑡 𝑑𝑡

𝑑𝑘𝑖𝑡 = (𝜄𝑖𝑡 − 𝛿) 𝑘𝑖𝑡𝑑𝑡 + 𝑘𝑖𝑡 𝜎̃𝑑𝑍𝑖𝑡 + 𝑑Δ𝑘𝑖𝑡
(1.1)

where 𝜄𝑖𝑡 is the investment rate, 𝛿 is the depreciation rate, 𝑑Δ𝑘
𝑖𝑡

is net purchases of

capital, and 𝑘𝑖𝑡 𝜎̃𝑑𝑍𝑖𝑡 is the idiosyncratically risky part of capital accumulation. In

particular, 𝑍𝑖𝑡 is an individual-specific Brownian motion. The entrepreneur finances

the capital stock by investing their own wealth, by issuing risk-free securities 𝑑𝑖𝑡 , and

by issuing risky equity 𝑣out
𝑖𝑡

. The capital structure of the firm is therefore

𝑘𝑖𝑡 = 𝑛𝑖𝑡 + 𝑣out
𝑖𝑡 + 𝑑𝑖𝑡 .

The equity issued to outsiders carries the same risk as the risk in the firm’s capital.

Risk sharing through equity issuance is limited. In particular, the entrepreneur is

subject to a skin-in-the-game constraint:

𝑘𝑖𝑡 − 𝑣out
𝑖𝑡

𝑘𝑖𝑡
≥ 𝜒 (1.2)

where 𝜒 is the fraction of the firm’s risk that the entrepreneur must bear. The interest

rate on risk-free debt is 𝑟𝑡 . The required return on equity issued to outsiders is 𝑟out
𝑡 .

Because outsiders hold this equity as part of diversified portfolios, and since all risk

is idiosyncratic and therefore washes away in such a portfolio, no-arbitrage implies

that 𝑟𝑡 = 𝑟out
𝑡 . Although the two sources of financing have the same cost of capital,

the critical difference between issuing risk-free debt and issuing outside equity is
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that the former raises the risk for the entrepreneur, whereas the latter reduces the

risk. Because entrepreneurs are risk averse, they will be reluctant to issue too much

risk-free debt. In this sense, it is the risk aversion of the entrepreneurs together with

the limits to risk-sharing that limits the size of their firms, rather than an limit on

borrowing. The wage rate is 𝑤𝑡 . The entrepreneur consumes at rate 𝑐𝑖𝑡 and has

logarithmic utility. The entrepreneurs’ problem is therefore

max
{𝑐𝑖𝑡 ,𝑘𝑖𝑡 ,𝑙𝑖𝑡 ,𝑣out

𝑖𝑡
,𝑑𝑖𝑡}
E

[∫ ∞

0
𝑒−𝜌𝑡 log(𝑐𝑖𝑡) 𝑑𝑡

]
𝑑𝑛𝑖𝑡 =

(
𝑦𝑖𝑡 − 𝑤𝑡 𝑙𝑖𝑡 − 𝛿𝑘𝑖𝑡 − (𝑑𝑖𝑡 + 𝑣out

𝑖𝑡 )𝑟𝑡 − 𝑐𝑖𝑡
)
𝑑𝑡 + (𝑘𝑖𝑡 − 𝑣out

𝑖𝑡 )𝜎̃𝑑𝑍𝑖𝑡

subject to
𝑘𝑖𝑡 − 𝑣out

𝑖𝑡

𝑘𝑖𝑡
≥ 𝜒, and 𝑛𝑖𝑡 ≥ 0.

To solve this, we first define the instantaneous return on the firm’s capital as10

𝑑𝑅𝑘𝑡 ≡
(
𝑦𝑖𝑡 − 𝑤𝑡 𝑙𝑖𝑡 − 𝛿𝑘𝑖𝑡

𝑘𝑖𝑡

)
︸                  ︷︷                  ︸

expected return: 𝑟𝑘
𝑖𝑡

𝑑𝑡 + 𝜎̃𝑑𝑍𝑖𝑡 .

Next, we note that the firm’s labor demand decision is static. In particular, the

associated first-order condition pins down the labor-to-capital ratio as (1−𝛼)
(
𝑘𝑖𝑡
𝑙𝑖𝑡

)𝛼
=

𝑤𝑡 ⇒ 𝑙𝑖𝑡
𝑘𝑖𝑡

=

(
1−𝛼
𝑤𝑡

)1/𝛼
. Because the optimal labor-to-capital ratio does not depend on

𝑖, the expected return to capital 𝑟𝑘
𝑖𝑡

does not depend on 𝑖. Let 𝑟𝑘𝑡 denote this common

expected return (which will depend on the prevailing wage rate). We also note that

the equity issuance constraint is always binding in optimum; if it were not, then the

entrepreneur could issue more outside equity and invest the proceeds in the risk-free

asset with the same expected return but no risk. This would reduce risk without

affecting expected returns and, therefore, make the entrepreneur better off. Hence,

𝑣out
𝑖𝑡

= (1 − 𝜒)𝑘𝑖𝑡 . We can then redefine the entrepreneurs’ problem as a Merton

10Note that purchases of capital do not contribute to the instantaneous return on capital because
the cost of expanding the capital stock is equal to the instantaneous increase in value. Of course, the
purchased capital contributes to returns going forward.

23



portfolio choice problem instead:

max{
𝑐𝑖𝑡
𝑛𝑖𝑡
,
𝑘𝑖𝑡
𝑛𝑖𝑡

} E
[∫ ∞

0
𝑒−𝜌𝑡 log(𝑐𝑖𝑡) 𝑑𝑡

]
𝑑𝑛𝑖𝑡

𝑛𝑖𝑡
=

(
𝑟𝑡 +

𝑘𝑖𝑡

𝑛𝑖𝑡
(𝑟𝑘𝑡 − 𝑟𝑡) −

𝑐𝑖𝑡

𝑛𝑖𝑡

)
𝑑𝑡 + 𝑘𝑖𝑡

𝑛𝑖𝑡
𝜒𝜎̃𝑑𝑍𝑖𝑡 .

Subject to the skin-in-the-game constraint and non-negative net worth. This problem

has the following well-known solution for the optimal choice of investment in the

risky asset, captured by the optimal firm size relative to wealth (see Merton (1992) or

Brunnermeier and Sannikov (2017)):

𝑘𝑖𝑡

𝑛𝑖𝑡
=
𝑟𝑘𝑡 − 𝑟𝑡
(𝜒𝜎̃)2 . (1.3)

The entrepreneurs’ risk exposure, defined as the volatility of net worth, implied by

this solution is

𝜎̃𝐸𝑖𝑡 ≡
𝑘𝑖𝑡

𝑛𝑖𝑡
𝜒𝜎̃ =

𝑟𝑘𝑡 − 𝑟𝑡
𝜒𝜎̃︸ ︷︷ ︸

Sharpe ratio

(1.4)

where 𝜎̃𝐸
𝑖𝑡

is the resulting volatility of the entrepreneurs’ net worth. In other words,

entrepreneurs choose an exposure to the idiosyncratic risk equal to the Sharpe ratio

associated with investing in entrepreneurial capital, taking into account that they

only carry a fraction 𝜒 of the risk. Taking the wage rate 𝑤𝑡 and the risk-free rate 𝑟𝑡 as

given, it is clear that improved risk sharing would induce entrepreneurs to increase

their risk exposures: a fall in 𝜒 improves the risk-reward trade-off as measured by

the Sharpe ratio. A higher Sharpe ratio means a higher optimal risk exposure. This

is the scaling-up force in action. When risk sharing improves so that entrepreneurs

can carry a smaller fraction of the risk in their firm, they scale up so much that their

total risk exposure rises. The following lemma summarizes this discussion.

Lemma 1. Keeping fixed expected returns, a fall in 𝜒 raises the Sharpe ratio 𝑟𝑘𝑡 −𝑟𝑡
𝜒𝜎̃ and,

therefore, entrepreneurs’ optimal risk exposure.

However, the expected excess return 𝑟𝑘𝑡 − 𝑟𝑡 is an equilibrium object, and it is easy

to see that the effect of improved risk sharing on entrepreneurs’ risk exposure can
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easily go the other way around in equilibrium.

1.2.2 An Example of the Risk-Reduction Effect Dominating

As an example of a setting where the risk-reduction effect instead dominates, consider

a framework where, in equilibrium, the aggregate capital stock of the economy 𝐾𝑡 is

limited by the aggregate net worth of the entrepreneurs𝑁𝐸
𝑡 ≡

∫
𝑖
𝑛𝑖𝑡𝑑𝑖. An example of

such a framework would be one where the entrepreneurs were the only capital owners

in the economy, and the aggregate capital stock constituted aggregate wealth.11 In

such a setting, the optimal portfolio choice of entrepreneurs (3.9) combined with the

condition 𝐾𝑡 = 𝑁𝐸
𝑡 would imply

𝑟𝑘𝑡 − 𝑟𝑡
(𝜒𝜎̃)2 =

𝑘𝑖𝑡

𝑛𝑖𝑡
=
𝐾𝑡

𝑁𝐸
𝑡

= 1 ⇒ 𝑟𝑘𝑡 − 𝑟𝑡 = (𝜒𝜎̃)2

so that the equilibrium excess return is in fact proportional to 𝜒2. In this economy,

entrepreneurs’ equilibrium risk exposure would then be

𝜎̃𝐸𝑖𝑡 =
𝑟𝑘𝑡 − 𝑟𝑡
𝜒𝜎̃

= 𝜒𝜎̃. (1.5)

In this case, a looser inside equity constraint (a fall in 𝜒) instead leads to a fall in

the risk exposure. In other words, the partial equilibrium result in Lemma 1 is

completely reversed. The intuition behind this result is straightforward. When risk

sharing improves so that entrepreneurs can carry a smaller fraction of the risk in

their firm, they attempt to scale up. However, in equilibrium, they cannot all scale

up in the aggregate. To ensure that entrepreneurs are content with operating the

existing capital stock, the excess return has to fall. Because firm sizes (relative to

the entrepreneurs’ net worth) are the same as before, but entrepreneurs now hold a

smaller fraction of the risk, their total risk exposure is lower.

11Entrepreneurs could of course still share risks in such a setting by buying equity in each others
firms.
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1.2.3 What Determines Which Effect Dominates?

The intuition behind the contrasting results in the partial equilibrium case in Section

1.2.1, where excess returns are fixed, and the particular general equilibrium example

in Section 1.2.2, where firm sizes relative to entrepreneurs’ net worth are fixed, can

be understood through Figure 1.1. The left panel, Figure 1.1a, represents the partial

equilibrium framework of Section 1.2.1. We see an upward-sloping relationship

between the excess return and entrepreneurs’ choice of firm size. This upward-

sloping curve represents the entrepreneurs’ portfolio choice. When the excess return

is high, entrepreneurs supply their firms with a lot of capital. The slope is determined

by, among other things, the inside equity fraction 𝜒. When 𝜒 falls, this supply

schedule rotates outwards. In the left panel, where excess returns are fixed, the

improvements in risk sharing lead to a substantial increase in optimal firm sizes.

In contrast, the right panel, Figure 1.1b, represents the framework of Section 1.2.2.

Here firm size relative to entrepreneurs’ net worth is fixed at 𝐾𝑡
𝑁𝐸
𝑡

=
𝑘𝑖𝑡
𝑛𝑖𝑡

= 1 in equilib-

rium. Any improvement in risk sharing is, therefore, immediately accompanied by a

reduction in the excess return.

In this paper, I will argue that both the partial equilibrium framework represented

by Figure 1.1a and the particular general equilibrium framework represented by

Figure 1.1b are too extreme. Specifically, I will develop a general equilibrium model

where neither the excess return nor the amount of capital relative to entrepreneurs’

net worth is fixed. The equilibrium response of entrepreneurs’ choice of risk exposure

will then depend on exactly how sensitive excess returns are when entrepreneurs try

to scale up. When entrepreneurial firms are the only firms in the economy, they can

not scale up at all in the aggregate. One way of avoiding this stark implication is,

therefore, to introduce other types of firms into the economy.12 The entrepreneurial

firms will then be able to scale up in the aggregate at the expense of these other

firms. The easier it is for the entrepreneurial firms to poach demand, raise capital,

and attract labor from these other firms, the more closely this general equilibrium

model will resemble the partial equilibrium framework represented by Figure 1.1a.

In Section 1.3, I present precisely such a model. In that model, the ease with

12Another way would be to allow capital inflow from abroad.
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Improved financing

(a) Partial equilibrium response of better risk sharing (fall in 𝜒).
Excess return is stable, optimal firm size increases substantially.

Improved financing

(b) One-sector general equilibrium response of better risk shar-
ing (fall in 𝜒). Excess return falls, no change in firm size.

Figure 1.1: Partial equilibrium versus one-sector general equilibrium response of excess return and
optimal firm size 𝑘𝑖𝑡 when risk sharing improves.

which entrepreneurial firms can attract economic activity from the other firms in

the economy is governed by the elasticity of substitution between the goods that the

entrepreneurial firms produce and those that these other firms produce. When the

elasticity is high, entrepreneurial firms will be able to attract a lot of economic activity

from the other firms in the economy as entrepreneurial financing improves, and the

resulting equilibrium will resemble the partial equilibrium framework in Figure 1.1a,

where the scaling-up effect dominates. When the elasticity is low, entrepreneurs

will have a hard time attracting economic activity from these other firms, and the

equilibrium will more closely resemble the one represented by Figure 1.1b, where

the risk-reduction effect dominates.

1.3 Full Model

Relative to the simplified framework in the previous section, I now consider a model

with three types of agents and two types of firms. In addition to entrepreneurs

and hand-to-mouth workers, the model will also feature diversified investors. The

model will now include a standard neoclassical firm as well as those operated by

the entrepreneurs. The entrepreneur-operated firms will be more productive but

will be constrained in their equity issuance, as in the previous section. The neo-

classical firm, referred to as the traditional firm, will be less productive but will not
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face any financing constraints. The substitutability of the goods produced by the

entrepreneurial firms and those produced by the traditional firm will be governed

by a constant elasticity of substitution (CES) parameter 𝜀. This makes the model

into a modified version of Angeletos (2007). The key qualitative differences being

that the entrepreneurial firms can also be publicly traded as in Brunnermeier and

Sannikov (2017), that there is a class of diversified capitalists (which allows leverage

in equilibrium even for wealthy entrepreneurs), that the substitutability of the goods

produced by the firms is limited, and the details of the demographic setup discussed

next.

Demographics. The demographics in the model are set up to allow the distribution

of wealth to be stable in the long run. Specifically, the economy is populated by a con-

tinuum of hand-to-mouth workers endowed with 𝐿 units of labor and a continuum

𝑖 ∈ [0, 1] of capitalists. The group of capitalists consists of two types: entrepreneurs

and diversified capitalists, denoted by 𝐸 and 𝐷, respectively. Entrepreneurs own a

project and can choose to run a firm based on this project. Diversified capitalists do

not have a viable project and instead passively invest their wealth. Entrepreneurs

lose their ability to operate a firm at rate 𝜙𝑙 and then become diversified capitalists.

Capitalists die at rate 𝛿̃𝑑. When this happens, the capitalist is replaced with offspring

who either inherit the wealth and type of their parent, leaving the dynasty intact,

or the dynasty breaks, and the new agent is reborn with the average wealth level of

capitalists. The probability that the dynasty is broken conditional on death is 𝜋0. We

denote by 𝛿𝑑 = 𝛿̃𝑑𝜋0, the rate at which dynasties are broken. When dynasties are

broken, the newborn agent becomes an entrepreneur with probability 𝜓0. Setting

the initial fraction of entrepreneurs in the economy to 𝜓̄ =
𝛿𝑑𝜓0

𝛿𝑑+𝜙𝑙
ensures that the

population structure remains intact over time.

Firms and technology. There are two types of intermediate goods-producing

firms, namely (i) a representative traditional firm and (ii) a continuum of entrepreneurial

firms. The representative traditional firm is entirely standard and owns and operates

a capital stock 𝐾𝑇𝑡 that evolves according to

𝑑𝐾𝑇𝑡

𝐾𝑇𝑡
=

(
𝜄𝑇𝑡 − 𝛿

)
𝑑𝑡 + 𝜎𝑑𝑍𝑡 (1.6)
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where 𝜄𝑇𝑡 and 𝛿 are the investment and depreciation rates respectively, and 𝑍𝑡 is

an aggregate shock.13 The firm finances this capital stock externally by issuing

equity to the capitalists in the economy. The capital structure of the traditional firm

is therefore 𝐾𝑡 = 𝑉𝑇,out
𝑡 , where 𝑉𝑇,out

𝑡 is the total amount of equity issued. The

cost of this equity capital, its required return, is determined by competitive capital

markets. In particular, this equity pays an expected return of 𝑟𝑇𝑡 , to be determined in

equilibrium, and has the same risk as the risk in the capital, so the return for investing

in the equity of the traditional firm is

𝑑𝑅𝑇𝑡 = 𝑟𝑇𝑡 𝑑𝑡 + 𝜎𝑑𝑍𝑡 . (1.7)

The firm hires labor from the workers at the wage rate 𝑤𝑡 . The traditional firm uses a

standard Cobb-Douglas technology to produce an output flow𝑌𝑇𝑡 𝑑𝑡 = 𝐴(𝐾𝑇𝑡 )𝛼(𝐿𝑇𝑡 )1−𝛼𝑑𝑡.
This is sold at price 𝑝𝑇𝑡 . The traditional firm maximizes expected profit flows,

𝜋𝑇𝑡 = max𝐿𝑇𝑡 ,𝐾𝑇𝑡 𝑝
𝑇
𝑡 𝑌

𝑇
𝑡 − 𝑤𝑡𝐿

𝑇
𝑡 −

(
𝛿 + 𝑟𝑇𝑡

)
𝑉𝑇,out
𝑡 subject to 𝐾𝑇 = 𝑉𝑇,out

𝑡 .14 This im-

plies that wages and rates of returns are equated to the value of marginal products

of the respective factors of production:

𝑤𝑡 = 𝑝𝑇𝑡 (1 − 𝛼)
𝑌𝑇𝑡

𝐿𝑇𝑡
and 𝑟𝑇𝑡 + 𝛿 = 𝑝𝑇𝑡 𝛼

𝑌𝑇𝑡

𝐾𝑇𝑡
. (1.8)

Entrepreneurial firms produce the second type of intermediate goods. They also

employ a Cobb-Douglas technology to produce an output flow 𝑦𝑖𝑡𝑑𝑡 = 𝐴̄𝑘𝛼
𝑖𝑡
𝑙1−𝛼
𝑖𝑡

𝑑𝑡,

but where 𝐴̄ > 𝐴 so that entrepreneurial firms have higher total factor productivity

than does the traditional firm. Entrepreneurial firms hire labor at the wage rate 𝑤𝑡
in the same competitive labor market as the traditional firm. The intermediate good

entrepreneurial firms produce is sold to the final goods producer at a price 𝑝𝐸𝑡 . The

total quantity of this intermediate good is 𝑌𝐸𝑡 =
∫
𝑖∈𝐸 𝑦𝑖𝑡 𝑑𝑖.

Each entrepreneurial capitalist manages the stock of capital used by their firm. The

13In Appendix A.2.2, I define the continuum of traditional firms that the representative traditional
firm represents.

14Investment drops out of the optimization problem because investing one unit of capital decreases
cash flows by one unit but instantaneously increases the value of the capital stock by one unit.
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capital is subject to idiosyncratic risk. The stock of capital evolves according to

𝑑𝑘𝑖𝑡 = (𝜄𝑖𝑡 − 𝛿) 𝑘𝑖𝑡𝑑𝑡 + 𝑦𝑖𝑡 𝜎̃𝑑𝑍𝑖𝑡 + 𝑘𝑖𝑡𝜎𝑑𝑍𝑡 + 𝑑Δ𝑘𝑖𝑡 (1.9)

where 𝜄𝑖𝑡 and 𝛿 are the investment and depreciation rates, respectively, 𝑑Δ𝑘
𝑖𝑡

is net

purchases of capital, 𝑍𝑖𝑡 is an idiosyncratic Brownian motion, 𝑍𝑡 is an aggregate

Brownian motion, 𝜎̃ and 𝜎 are scalars governing the loadings on these Brownian

risks.

Note that the idiosyncratic shocks are proportional to output. This specification of

the idiosyncratic risk is directly related to the risk specification in Di Tella and Hall

(2021). One interpretation is that the idiosyncratic shocks become larger the more in-

tensely the capital is used in production. This assumption has two implications. First,

it makes the model more tractable because it will imply that the entrepreneurial firms

and the traditional firms will choose the same labor-to-capital ratio. If the shocks

were proportional to capital instead of output, the entrepreneurial firms would be

less capital intensive than the traditional firms. The intuition for this is the following:

for traditional firms, expanding production is associated with some marginal cost

determined by the wage rate and required return on capital. For entrepreneurial

firms, expanding production is also associated with higher risk. If the idiosyncratic

shocks depended on capital alone, expanding by increasing capital would be risky on

the margin, whereas expanding by hiring more labor would not. Hence, compared

to the traditional firm, capital would be a relatively more costly factor of production

when taking into account this risk cost. By having the idiosyncratic risk propor-

tional to output, expanding by hiring more labor also becomes risky on the margin.

This re-establishes the symmetry between capital and labor and ensures that the

trade-off is not distorted by risk.15 Secondly, this assumption also implies that the

entrepreneurs’ share of income will come at the expense of both the pure labor share

and the pure capital share. This will imply that the entrepreneurial firms have lower

labor shares and lower pure capital shares, providing the model with non-trivial

15Angeletos (2007) directly assumes that the production technologies are different in such a way
that the two types of firms choose the same capital-labor ratio. In contrast, the fact that the capital-
labor ratios are the same in this model is an implication of the fact that both labor and capital are
risky.
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testable implications for factor income shares.16

The return on capital for an entrepreneurial firm is

𝑑𝑅𝑘𝑖𝑡 =

(
𝑝𝐸𝑡 𝑦𝑖𝑡 − 𝑤𝑡 𝑙𝑖𝑡 − 𝛿𝑘𝑖𝑡

𝑘𝑖𝑡

)
𝑑𝑡 + 𝜎̃𝑘𝑖𝑡𝑑𝑍𝑖𝑡 + 𝜎𝑑𝑍𝑡 (1.10)

where 𝜎̃𝑘
𝑖𝑡

=
𝑦𝑖𝑡
𝑘𝑖𝑡
𝜎̃ is the loading on the idiosyncratic Brownian.17 Final output 𝑌𝑡

is produced by a representative firm using a CES technology and the two types of

intermediate goods,

𝑌𝑡𝑑𝑡 =

[
𝜈
(
𝑌𝐸𝑡

) 𝜀−1
𝜀 + (1 − 𝜈)

(
𝑌𝑇𝑡

) 𝜀−1
𝜀

] 𝜀
𝜀−1

𝑑𝑡

where 𝜀 is the elasticity of substitution between the intermediate goods. Note that

this is not a model with monopolistic competition. Entrepreneurs are in perfect com-

petition with each other. The limited substitutability is between entrepreneurs and

traditional firms. The parameter 𝜀 governs the strength of the implicit competition

between the sectors.18 The final goods producer’s first-order conditions are

𝑝𝐸𝑡 = 𝜈

(
𝑌𝐸𝑡
𝑌𝑡

)− 1
𝜀

, 𝑝𝑇𝑡 = (1 − 𝜈)
(
𝑌𝑇𝑡
𝑌𝑡

)− 1
𝜀

. (1.11)

Financial markets. Any capitalist can issue or invest in zero-net supply riskless

debt at the riskless rate 𝑟𝑡 . Entrepreneurial capitalists can also issue equity. However,

this outside financing is constrained. In particular, the entrepreneur faces a skin-

in-the-game constraint so that at least a fraction 𝜒 of the risk in the firm must be

retained. Letting 𝑣out
𝑖𝑡

denote the total value of the liabilities issued to outsiders by

entrepreneur 𝑖, the constraint is

𝑘𝑖𝑡 − 𝑣out
𝑖𝑡

𝑘𝑖𝑡
≥ 𝜒. (1.12)

16A growing literature emphasizes the role of risk for determining factor income shares. See for
instance Hartman-Glaser et al. (2019) for idiosyncratic risk, and David et al. (2023) for aggregate risk.

17This is the instantaneous return to the existing capital stock and therefore does not include any
references to capital purchases 𝑑Δ𝑘

𝑖𝑡
.

18Relative to sector-specific capital adjustment costs, this imperfect substitutability assumption is
more tractable. This is because sector-specific capital adjustment costs are both an intratemporal and
intertemporal friction. Imperfect substitutability is solely intratemporal.
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The risk in the liabilities issued to outsiders is determined by the riskiness of the

productive assets of their firm, but the price of those liabilities, and hence their

expected return, is determined in a competitive financial market. Outsiders hold the

liabilities of firm 𝑖 as part of a diversified portfolio of the liabilities of all firms and,

therefore, do not require a risk premium for the idiosyncratic risk associated with

firm 𝑖. Pricing by arbitrage then implies that the equilibrium expected return on the

liabilities of firm 𝑖 is 𝑟out
𝑡 = 𝑟𝑡 + 𝜍𝑡𝜎 = 𝑟𝑇𝑡 , where 𝜍𝑡 is the price of aggregate risk in

the economy and 𝑟𝑡 is the risk-free rate. Note in particular that the expected return

on equity issued to outsiders is identical to the expected return to equity issued by

traditional firms, 𝑟𝑇𝑡 . This is because both carry the same amount of aggregate risk,

and outsiders do not require compensation for idiosyncratic risk as they can diversify

it away. The total return is therefore

𝑑𝑅out
𝑖𝑡 = 𝑟𝑇𝑡 𝑑𝑡 + 𝜎̃𝑘𝑖𝑡𝑑𝑍𝑖𝑡 + 𝜎𝑑𝑍𝑡 . (1.13)

From the perspective of households investing in the firms, it is without loss of gen-

erality to assume that they invest in a mutual fund consisting of the liabilities of all

firms in the economy, traditional and entrepreneurial, with return

𝑑𝑅fund
𝑡 = 𝑟𝑇𝑡 𝑑𝑡 + 𝜎𝑑𝑍𝑡 . (1.14)

I purposely model improvements in entrepreneurial financing in a stylized fashion

rather than modeling it after the particularities of today’s venture capital industry.

Specifically, I model innovation in the financing of entrepreneurial firms as a fall in 𝜒,

the minimum inside equity financing fraction. This is motivated by two considera-

tions. First, this paper focuses on the consequences improvements in entrepreneurial

financing have for top wealth inequality rather than on the sources of those improve-

ments. Second, although this study focuses on a particular historical episode, the

framework is applicable more generally. Other contexts in which improvements in

entrepreneurial financing have impacted top wealth inequality differ in the details

while sharing the operational mechanism studied in this paper.

The valuation of entrepreneurial firms. The formulation of how entrepreneurial
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firms are financed in the model does not reference the number of shares the en-

trepreneurs issue or the prices of these shares. Instead, the financing of the en-

trepreneurial firms is expressed in terms of the amount of capital raised from out-

siders and the expected return these outsiders receive. There is, of course, a link

between the two ways of formulating the financing of these firms. Making this link

explicit clarifies two things. First, it clarifies that the entrepreneurs’ insider equity

financing fraction 𝜒 should not be confused with their insider ownership fraction.

Second, it demonstrates that the model produces deviations from Tobin’s 𝑞 = 1 us-

ing neither capital adjustment costs nor market power, which are the more common

modeling devices that accomplish this.

An entrepreneur who has decided on operating a firm with total capital stock 𝑘𝑖𝑡
must provide at least 𝜒𝑘𝑖𝑡 of the financing and can raise at most (1 − 𝜒)𝑘𝑖𝑡 from

outsiders. Let 𝑁0 be the initial number of shares, all owned by the entrepreneur. The

number of shares the entrepreneur has to issue to the outsider, Δ𝑁𝑡 , is then defined

by

𝑣out
𝑖𝑡 ≡ Δ𝑁𝑡𝑝𝑖𝑡 = (1 − 𝜒)𝑘𝑖𝑡 (1.15)

where 𝑝𝑖𝑡 is the price per share issued. The equilibrium price per share issued, on the

other hand, is pinned down by the condition that the equilibrium expected return

on equity to outsiders is 𝑟𝑇𝑡 𝑑𝑡. In other words,(
Δ𝑁𝑡

𝑁0+Δ𝑁𝑡

)
𝑘𝑖𝑡(1 + 𝑟𝑘

𝑖𝑡
𝑑𝑡)

𝑝𝑖𝑡Δ𝑁𝑡
= 1 + 𝑟𝑇𝑡 𝑑𝑡 (1.16)

where the numerator is the payoff to the outsider and the denominator is the amount

invested by the outsider. Equations (1.15) and (1.16) jointly pin down the price and the

number of shares issued in terms of the expected returns and the outside financing

fraction 1 − 𝜒:

Δ𝑁𝑡 =
(1 + 𝑟𝑇𝑡 𝑑𝑡)(1 − 𝜒)

(𝑟𝑘
𝑖𝑡
− 𝑟𝑇𝑡 )𝑑𝑡 + 𝜒(1 + 𝑟𝑇𝑡 𝑑𝑡)

𝑁0

𝑝𝑖𝑡 =

(
(𝑟𝑘
𝑖𝑡
− 𝑟𝑇𝑡 )𝑑𝑡 + 𝜒(1 + 𝑟𝑇𝑡 𝑑𝑡)

1 + 𝑟𝑇𝑡 𝑑𝑡

)
𝑘𝑖𝑡

𝑁0
.
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Measuring outsiders’ stake in the firm as 𝑝𝑖𝑡Δ𝑁𝑡 , the price per share times the

number of shares they hold, coincides with the model notion of the value of their

stake in the firm, since by construction 𝑝𝑖𝑡Δ𝑁𝑡 = (1− 𝜒)𝑘𝑖𝑡 . That is, however, not true

for the entrepreneur if there is a risk premium associated with entrepreneurship so

that (𝑟𝑘𝑡 − 𝑟𝑇𝑡 ) > 0. In particular, the valuation of the entrepreneur’s shares is

𝑝𝑖𝑡𝑁0 =

(
(𝑟𝑘
𝑖𝑡
− 𝑟𝑇𝑡 )𝑑𝑡 + 𝜒(1 + 𝑟𝑇𝑡 𝑑𝑡)

1 + 𝑟𝑇𝑡 𝑑𝑡

)
𝑘𝑖𝑡 > 𝜒𝑘𝑖𝑡 (1.17)

where the inequality follows from the fact that (𝑟𝑘𝑡 − 𝑟𝑇𝑡 ) > 0. This also illustrates that

𝜒 should not be confused with the entrepreneur’s ownership share measured as the

fraction of the outstanding shares the entrepreneur holds. Rather, 𝜒 is the insider

financing share, the share of the financing that the entrepreneur provides.

The discrepancy stems from the fact that 𝑝𝑖𝑡 is the price an investor with no exposure

to the idiosyncratic risk in firm 𝑖 is willing to pay for a share. This is more than what

the entrepreneur associated with that firm is willing to pay for a share because the

entrepreneur has to maintain a non-negligible exposure to the idiosyncratic risk in

the firm and requires a risk premium for that.19

This has important implications for the measurement of the value of an en-

trepreneurial firm, both in the context of this model and in reality. First, there is

a gap between the market cap of the firm, as measured as the price per share times

the number of shares outstanding, and the value of the capital stock invested in the

firm. In this sense, the entrepreneurial firms in the model have Tobin’s Q’s that differ

from 1. Specifically, the deviation from 𝑞 = 1 is

𝑞𝑖𝑡 − 1 =
𝑝𝑖𝑡 (𝑁0 + Δ𝑁𝑡)

𝑘𝑖𝑡
− 1 =

1 + 𝑟𝑘
𝑖𝑡
𝑑𝑡

1 + 𝑟𝑇𝑡 𝑑𝑡
− 1, (1.18)

which is the geometric excess return to entrepreneurship. In other words, the model

produces deviations from 𝑞 = 1 without adjustment costs to capital and without

market power. This is but one of the dimensions along which idiosyncratic risk

19Although they study the valuation of human capital, the spirit is similar to that of Huggett and
Kaplan (2016): valuing an entrepreneur’s firm using the entrepreneur’s own stochastic discount factor
yields a substantially lower value than using the public market’s stochastic discount factor.
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and the payoff entrepreneurs earn from carrying it have similar implications as the

presence of market power. Another such instance will be discussed when we examine

the model’s implications for the labor share of income. It will turn out that expected

returns to capital 𝑟𝑘
𝑖𝑡

are the same for all entrepreneurs, and so 𝑞𝑖𝑡 = 𝑞𝑡 will also be

the same for all entrepreneurs. This means that the distributions of firm values will

have the same shape in the tail as the distribution of 𝑘𝑖𝑡 . Introducing heterogeneity

in financial constraints 𝜒𝑖𝑡 may alter this implication so that the distributions of firm

values (and therefore entrepreneurial wealth) displays a different shape in the tail

compared to the distribution of 𝑘𝑖𝑡 .20

Aggregates. The financial wealth in the economy is 𝑁𝑡 = 𝑁𝐸
𝑡 + 𝑁𝐷

𝑡 , where 𝑁 𝑗

𝑡 =∫
𝑖∈ 𝑗 𝑛𝑖𝑡 𝑑𝑖 is the financial wealth of capitalists of group 𝑗 ∈ {𝐸, 𝐷}. The share of

financial wealth held by entrepreneurial capitalists is denoted by 𝜂𝑡 =
𝑁𝐸
𝑡

𝑁𝑡
. The

financial wealth consists of claims on the productive assets of the economy, in other

words, the real capital of the economy 𝐾𝑡 . Since the financial wealth of the economy

constitutes claims on the capital stock of the economy, we have 𝐾𝑡 = 𝑁𝐸
𝑡 + 𝑁𝐷

𝑡 . The

use of the capital stock is split between the traditional firms and the entrepreneurial

firms. The share of the capital stock used by entrepreneurial firms is denoted 𝜅𝑡 =
𝐾𝐸𝑡
𝐾𝑡

.

The labor-to-capital ratio is equalized across firms in equilibrium because the trade-

off between labor and capital in production is the same for all firms. Therefore, the

aggregate output can be written as

𝑌𝑡 = 𝐴(𝜅𝑡)𝐾𝛼
𝑡 𝐿

1−𝛼 (1.19)

where the aggregate total factor productivity (TFP) is

𝐴(𝜅𝑡) =
[
𝜈
(
𝐴̄𝜅𝑡

) 𝜀−1
𝜀 + (1 − 𝜈)

(
𝐴(1 − 𝜅𝑡)

) 𝜀−1
𝜀

] 𝜀
𝜀−1
, (1.20)

which depends on the capital allocation. Aggregate investment in the economy is

output less consumption. Therefore, the aggregate capital stock evolves according to

20With homothetic utility entrepreneurs’ consumption will be proportional to 𝑘𝑖𝑡 in this framework,
hence if 𝑘𝑖𝑡 is not proportional to the market value of their firm, the distribution of consumption will
have a different shape in the tail than the distribution of wealth. This would potentially address the
puzzle studied in Gaillard et al. (2023), without the need for non-homothetic utility. See also Ma and
Toda (2021) for a different framework and mechanism studying this “puzzle”.
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𝑑𝐾𝑡 =
(
𝑌𝑡 − 𝐶𝐸𝑡 − 𝐶𝐷𝑡 − 𝐶𝑊𝑡 − 𝛿𝐾𝑡

)
𝑑𝑡 + 𝜎𝐾𝑡𝑑𝑍𝑡 (1.21)

where 𝐶𝐸𝑡 , 𝐶𝐷𝑡 , and 𝐶𝑊𝑡 are the consumption of entrepreneurial capitalists, diversified

capitalists, and workers, respectively.

Entrepreneurs’ problem. In this section, I solve for the entrepreneurs’ consump-

tion and portfolio choices. In particular, I will solve for the entrepreneurs’ choice of

how much idiosyncratic risk to bear, which will be key for this paper’s result on top

wealth inequality because these choices determine the dynamics of the entrepreneurs’

wealth accumulation process. The net worth of an individual entrepreneur can be

written as

𝑛𝑖𝑡 = 𝑘𝑖𝑡︸︷︷︸
capital

− 𝑣out
𝑖𝑡︸︷︷︸

outsiders’ equity

− 𝑑𝑖𝑡︸︷︷︸
debt

+ 𝑣fund
𝑖𝑡︸︷︷︸

diversified holdings

. (1.22)

Each of the components of an entrepreneur’s net worth is associated with some

expected excess return and some risk. Table 1.1 summarizes the returns and risk

associated with each component.

Expected return Risk

𝑘𝑖𝑡 :
𝑝𝐸𝑡 𝑦𝑖𝑡−𝑤𝑡 𝑙𝑖𝑡−𝛿𝑘𝑖𝑡

𝑘𝑖𝑡
𝜎̃𝑘
𝑖𝑡
𝑑𝑍𝑖𝑡 + 𝜎𝑑𝑍𝑡

𝑣out
𝑖𝑡

: 𝑟𝑡 + 𝜍𝑡𝜎 𝜎̃𝑘
𝑖𝑡
𝑑𝑍𝑖𝑡 + 𝜎𝑑𝑍𝑡

𝑣fund
𝑖𝑡

: 𝑟𝑡 + 𝜍𝑡𝜎 𝜎𝑑𝑍𝑡
𝑑𝑖𝑡 : 𝑟𝑡 0

Table 1.1: Risk-return profiles for the various assets and liabilities that the entrepreneur can make use
of. The level of idiosyncratic volatility is 𝜎̃𝑘

𝑖𝑡
≡ 𝑦𝑖𝑡

𝑘𝑖𝑡
𝜎̃

As in the simplified framework of Section 1.2, we can express the entrepreneurs’

problem as a combination of a portfolio choice problem and a problem of choosing

the optimal factor input mix. In particular, expressing each component of the firm’s

capital structure relative to the entrepreneur’s financial wealth by letting 𝜃𝑘
𝑖𝑡
=

𝑘𝑖𝑡
𝑛𝑖𝑡

,

𝜃out
𝑖𝑡

=
𝑣out
𝑖𝑡

𝑛𝑖𝑡
, 𝜃fund

𝑖𝑡
=

𝑣fund
𝑖𝑡

𝑛𝑖𝑡
, −𝜃𝑑

𝑖𝑡
= 1−𝜃𝑘

𝑖𝑡
+𝜃out

𝑖𝑡
−𝜃fund

𝑖𝑡
, and by letting 𝑥𝑖𝑡 =

𝑦𝑖𝑡
𝑘𝑖𝑡

denote the
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ratio of output to firm capital, we can write the entrepreneurs’ problem as follows:21

max
{𝑐𝑖𝑡 ,𝑥𝑖𝑡 ,𝜃𝑘𝑖𝑡 ,𝜃

out
𝑖𝑡
,𝜃fund
𝑖𝑡

}
E

[∫ ∞

0
𝑒−𝜌𝑡 log(𝑐𝑖𝑡) 𝑑𝑡

]
𝑑𝑛𝑖𝑡

𝑛𝑖𝑡
=

(
𝑟𝑡 + 𝜃𝑘𝑖𝑡

(
𝑟𝑘𝑖𝑡 − 𝑟𝑡

)
− 𝜃out

𝑖𝑡 𝜍𝑡𝜎 + 𝜃fund
𝑖𝑡 𝜍𝑡𝜎 − 𝑐𝑖𝑡

𝑛𝑖𝑡

)
𝑑𝑡 +

(
𝜃𝑘𝑖𝑡 − 𝜃out

𝑖𝑡

)
𝑥𝑖𝑡 𝜎̃𝑑𝑍𝑖𝑡

+
(
𝜃𝑘𝑖𝑡 − 𝜃out

𝑖𝑡 + 𝜃fund
𝑖𝑡

)
𝜎𝑑𝑍𝑡 ,

where 𝑟𝑖𝑡 = 𝑝𝐸𝑡 𝑥𝑖𝑡 − 𝑤𝑡
(
𝑥𝑖𝑡

𝐴̄

) 1
1−𝛼

− 𝛿 and
𝜃𝑘
𝑖𝑡
− 𝜃out

𝑖𝑡

𝜃𝑘
𝑖𝑡

≥ 𝜒.

(1.23)

and non-negative net worth 𝑛𝑖𝑡 ≥ 0. As shown in Section A.2.4 of the Appendix,

solving this problem and expressing the solution in the unscaled variables implies

𝑐𝑖𝑡 = 𝜌𝑛𝑖𝑡 , 𝑦𝑖𝑡 = 𝐴̄

(
1 − 𝛼
𝛼

𝑟𝑇𝑡 + 𝛿

𝑤𝑡

)1−𝛼

𝑘𝑖𝑡 , 𝑘𝑖𝑡 =
𝑟𝑘
𝑖𝑡
− 𝑟𝑇𝑡

(𝜒𝜎̃𝑘𝑡 )2
𝑛𝑖𝑡

𝑣fund
𝑖𝑡 =

𝑟𝑇𝑡 − 𝑟𝑡
𝜎2 𝑛𝑖𝑡 − 𝜒𝑘𝑖𝑡 , 𝑣out

𝑖𝑡 = (1 − 𝜒)𝑘𝑖𝑡 , 𝑑𝑖𝑡 = 𝑛𝑖𝑡 − 𝑘𝑖𝑡 + 𝑣out
𝑖𝑡 − 𝑣fund

𝑖𝑡

(1.24)

Note three important things. Firstly, all the decision rules are proportional to the en-

trepreneur’s wealth, with the same proportionality for all entrepreneurs. This implies

that the distribution of wealth within the group of entrepreneurs does not matter for

aggregate quantities and prices. In particular, because 𝑥𝑖𝑡 ≡ 𝑦𝑖𝑡/𝑘𝑖𝑡 is identical for all

entrepreneurs, the expected return to entrepreneurial capital is identical for all en-

trepreneurial firms so that we can write 𝑟𝑘
𝑖𝑡
= 𝑟𝑘𝑡 . The same goes for the idiosyncratic

risk exposure, 𝜎̃𝑘
𝑖𝑡
=

𝑦𝑖𝑡
𝑘𝑖𝑡
𝜎̃ = 𝜎̃𝑘𝑡 . Secondly, note that the skin-in-the-game constraint

is always binding. This is because entrepreneurs have access to both issuing outside

equity and investing in a diversified portfolio of other firms’ equity. This diversified

portfolio, or mutual fund, has the same expected return as issuing outside equity

does, but it has lower risk. Hence, entrepreneurs will want to short (issue) as much

outside equity as possible. Finally, the labor-to-capital ratio in each entrepreneurial

firm is 𝑙𝑖𝑡
𝑘𝑖𝑡

= 1−𝛼
𝛼

𝑟𝑇𝑡 +𝛿
𝑤𝑡

, which is the same as in the traditional sector. This means that

21One implication of writing the entrepreneurs’ problem as a Merton optimal portfolio choice
problem is that we view the entrepreneur as choosing how much capital to hold and supply to their
firm 𝑘𝑖𝑡 , instead of how much capital to purchase 𝑑Δ𝑘

𝑖𝑡
. Hence, as in Brunnermeier and Sannikov

(2017), we make no explicit reference to the capital purchase decision.
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𝜅𝑡 is not only the fraction of capital employed by the entrepreneurial sector but also

the fraction of labor employed by the entrepreneurial sector, so aggregate supply of

the intermediate good produced by entrepreneurial firms is 𝑌𝐸𝑡 = 𝐴̄𝜅𝑡𝐾𝛼
𝑡 𝐿

1−𝛼
𝑡 .

Diversified capitalists and workers. Diversified capitalists have wealth 𝑁𝐷
𝑡 in

the aggregate. They invest this wealth in the mutual fund (diversified portfolio of

equity in all firms) and riskless bonds. Diversified capitalists have log utility. Their

consumption as a group is 𝐶𝐷𝑡 = 𝜌𝑁𝐷
𝑡 , and the fraction of their wealth invested in

the mutual fund is 𝜃𝐷𝑡 =
𝑟𝑇𝑡 −𝑟𝑡
𝜎2 . Workers supply labor inelastically and consume their

labor income so that 𝐶𝑊𝑡 = 𝑤𝑡𝐿.

1.3.1 Characterizing The Equilibrium

In this section, I begin by characterizing the equilibrium of the model at a given

point in time by considering the interactions between supply and demand for capital

to entrepreneurial firms and traditional firms, respectively. I then characterize the

dynamic equilibrium by describing how the economy’s aggregate state variables

evolve over time.

The equilibrium at a given point in time can be characterized in terms of the capital

stock 𝐾𝑡 and the share of wealth owned by entrepreneurs 𝜂𝑡 ≡
∫
𝑖∈𝐸 𝑛𝑖𝑡 𝑑𝑖

𝑁𝑡
=

∫
𝑖∈𝐸 𝑛𝑖𝑡 𝑑𝑖
𝐾𝑡

.

Given values of these state variables, the equilibrium fraction of the capital stock

operated by entrepreneurial firms 𝜅𝑡 =
𝐾𝐸𝑡
𝐾𝑡

and the equilibrium excess return to

entrepreneurial capital 𝑟𝑘𝑡 − 𝑟𝑇𝑡 are jointly pinned down by the following system of

equations:

𝜅𝑡
𝜂𝑡

(
𝜒𝜎̃𝑘𝑡

)2
= 𝑟𝑘𝑡 − 𝑟𝑇𝑡

𝑟𝑘𝑡 − 𝑟𝑇𝑡 =

(
𝐴̄𝑝𝐸(𝜅𝑡) − 𝐴𝑝𝑇(𝜅𝑡)

) (
𝐿

𝐾𝑡

)1−𝛼 (1.25)

where the prices are expressed as functions of 𝜅𝑡 as

𝑝𝐸𝑡 = 𝜈

(
𝐴̄𝜅𝑡
𝐴(𝜅𝑡)

)−1/𝜀
, 𝑝𝑇𝑡 = (1 − 𝜈)

(
𝐴(1 − 𝜅𝑡)
𝐴(𝜅𝑡)

)−1/𝜀
,

and aggregate TFP 𝐴(𝜅𝑡) is defined in equation (1.20). The first of these equations
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Figure 1.2: The equilibrium allocation of capital to entrepreneurs and excess return to entrepreneurial
capital.

is the relative supply of capital to entrepreneurial firms. It is relative because the

quantity variable is 𝜅𝑡 , the fraction of the aggregate capital stock operated by the

entrepreneurial firms, and the price variable is the excess return 𝑟𝑘𝑡 − 𝑟𝑇𝑡 . This comes

directly from the solution to the entrepreneurs’ problem in (1.24), noting that the

linearity of entrepreneurs’ decision rules implies 𝑘𝑖𝑡
𝑛𝑖𝑡

=
𝐾𝐸𝑡
𝑊𝐸
𝑡

=
𝜅𝑡
𝜂𝑡

. The supply is upward

sloping in the excess return to capital in the entrepreneurial sector as entrepreneurs

are willing to invest larger amounts of capital in their firms when the excess return

is high. From an asset pricing and portfolio choice perspective, this is commonly

referred to as the entrepreneurs’ risky asset demand, productive capital being the risky

asset. However, of course, an entrepreneur’s demand for capital as an investment

vehicle constitutes the supply of capital to that entrepreneur’s firm.

The second equation is instead the entrepreneurial firms’ relative demand sched-

ule, which can be derived by combining market clearing for capital,𝐾𝐸𝑡 = 𝐾𝑡−𝐾𝑇𝑡 , with

the fact that the traditional sector’s demand for capital is 𝐾𝑇𝑡 = 𝛼
(
𝑌𝑇𝑡
𝑟𝑇𝑡 +𝛿

)
, according to

(1.8).

In Section A.2.6 of the Appendix, I provide the definition of equilibrium. In Section

A.2.7 of the Appendix, I show that there is a unique resource allocation 𝜅𝑡 that solves
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this system provided 𝜀 > 0. Given this equilibrium allocation of productive resources

across the two sectors, all other prices and quantities are pinned down as well at the

given point in time. These time-𝑡 prices and quantities determine the evolution of

the state variables 𝐾𝑡 and 𝜂𝑡 going forward. These results are summarized in the

following proposition.

Proposition 1. Given values of 𝐾𝑡 and 𝜂𝑡 , and provided 𝜀 > 0, there is a unique solution

𝜅𝑡 ∈ [0, 1] to the system of equations in (1.25). Given this solution, the relative prices of the

intermediate goods are given by (1.11), while the other prices are given by

𝑟𝑇𝑡 + 𝛿 = 𝑝𝑇𝑡 𝛼𝐴

(
𝐿

𝐾𝑡

)1−𝛼
, 𝑟𝑘𝑡 = 𝑟𝑇𝑡 + 𝜅𝑡

𝜂𝑡

(
𝜒𝜎̃𝑘𝑡

)2

𝑟𝑡 = 𝑟𝑇𝑡 − 𝜎2, 𝑤𝑡 = (1 − 𝛼)𝐴
(
𝐿

𝐾𝑡

)1−𝛼
.

(1.26)

The evolution of an individual entrepreneur’s wealth is

𝑑𝑛𝑖𝑡

𝑛𝑖𝑡
=

(
𝑟𝐸𝑡 − 𝜌

)
𝑑𝑡 + 𝜎̃𝐸𝑡 𝑑𝑍𝑖𝑡 + 𝜎𝑑𝑍𝑡 (1.27)

where 𝜎̃𝐸𝑡 =
𝜅𝑡
𝜂𝑡
𝜒𝜎̃𝑘𝑡 is the entrepreneurs’ idiosyncratic risk exposure and 𝑟𝐸𝑡 = 𝑟𝑡 +

(
𝜎̃𝐸𝑡

)2 + 𝜎2

is the expected return to the entrepreneurs’ invested wealth. Finally, the system of stochastic

differential equations that govern the evolution of the aggregate capital stock and entrepreneurs’

wealth share is

𝑑𝐾𝑡

𝐾𝑡
=

(
𝜅𝑡𝑟

𝑘
𝑡 + (1 − 𝜅𝑡)𝑟𝑇𝑡 − 𝜌

)
𝑑𝑡 + 𝜎𝑑𝑍𝑡

𝑑𝜂𝑡
𝜂𝑡

=

(
(1 − 𝜂)

(
𝜎̃𝐸𝑡

)2
+ (𝜓̄ − 𝜂𝑡)

𝜂𝑡
(𝛿𝑑 + 𝜙𝑙)

)
𝑑𝑡.

(1.28)

A brief comment is worth making regarding the consumption behaviour of the

agents in equilibrium. The consumption rate out of net worth is the same for both

types of capitalists, namely 𝜌. At the same time entrepreneurs earn a higher rate of

return on their net worth in equilibrium, 𝑟𝐸𝑡 > 𝑟𝐷𝑡 . This means that entrepreneurs

have a higher savings rate out of income. Because entrepreneurs will turn out to be

overrepresented at the top wealth distribution, this means that the savings rate out

of income is increase along the wealth distribution while the savings rate out of net

worth is constant. This is inline with the observations of Fagereng et al. (2019).
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The entrepreneurial appraisal ratio. A critical determinant of both the evolution of

the wealth share of entrepreneurs as a group and the wealth accumulation process of

individual entrepreneurs is their idiosyncratic risk exposure 𝜎̃𝐸𝑡 . This idiosyncratic

risk exposure is key for understanding the level of top wealth inequality and the

prevalence of “self-made” fortunes because it determines the likelihood of extreme

upward wealth trajectories.

𝜎̃𝐸𝑡 appears directly as entrepreneurs’ risk loading on their idiosyncratic risk

process. However, because the equilibrium risk premium is determined by en-

trepreneurs’ risk bearing, it also influences the return on entrepreneurs’ invested

wealth 𝑟𝐸𝑡 = 𝑟𝑇𝑡 +
(
𝜎̃𝐸𝑡

)2.

Closer inspection reveals that this idiosyncratic wealth exposure is, in fact, equal to

the so-called appraisal ratio associated with investments in entrepreneurial capital.

The appraisal ratio, sometimes called the information ratio, is a close cousin of

the more well-known Sharpe ratio but measures instead the risk-reward trade-off

associated with investing in an asset with idiosyncratic risk relative to one with the

same systematic risk but no idiosyncratic risk. The fact that entrepreneurs choose

an idiosyncratic risk exposure equal to the appraisal ratio is a special case of the

solution to the standard optimal portfolio choice problem of Merton (1969). The

fact that entrepreneurs have logarithmic utility greatly simplifies the analysis of

the model, as the optimal risk exposure is unaffected by changes in the investment

opportunity set.

In this model, the appraisal ratio is defined relative to the traditional firm return:

appraisal ratio =
𝑟𝑘𝑡 − 𝑟𝑇𝑡
𝜒𝜎̃𝑘𝑡

=
𝜅𝑡
𝜂𝑡

𝜒𝜎̃𝑘𝑡 = 𝜎̃𝐸𝑡 . (1.29)

In other words, entrepreneurs choose an idiosyncratic risk exposure equal to the

appraisal ratio associated with entrepreneurial capital. When the idiosyncratic risk-

reward trade-off is more attractive, they choose a larger exposure, and their wealth

grows faster on average at the individual level, as does the wealth share of en-

trepreneurs as a group. As shown below, this appraisal ratio will also determine top

wealth inequality, and the effect of improved entrepreneurial financing on top wealth

inequality will work through its effect on this appraisal ratio.
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1.3.2 Steady State

In this section, I derive a closed-form formula for Pareto tail inequality in steady state

as a function of the steady state wealth share of entrepreneurs. I thereby show a

direct analytical link between the share of wealth entrepreneurs hold and the level of

tail inequality. In particular, tail inequality will increase when entrepreneurs hold a

larger fraction of wealth. Then, I describe how the steady state risk-reward trade-off

that entrepreneurs face pins down the amount of risk they bear and how that, in

turn, determines Pareto inequality.

A steady state of the economy is characterized by a pair of values for the capital

stock and entrepreneurs’ wealth share, 𝐾𝑠𝑠 and 𝜂𝑠𝑠 , such that 𝑑𝐾𝑡
𝐾𝑡

= 0 and 𝑑𝜂𝑡
𝜂𝑡

= 0.

The presence of aggregate shocks to capital will, in general, prevent the economy

from reaching, let alone staying in, any steady state. For this section, I study the

economy’s behavior along a path of zero realized aggregate shocks. In other words,

I assume 𝑑𝑍𝑡 = 0 for an indefinite time, which corresponds to studying the median

path of the economy. This differs from shutting down aggregate shocks by setting

𝜎 = 0. In particular, we study the realized behavior of the economy in a setting where

shocks are still possible but happen not to materialize.

Entrepreneurs’ wealth share and Pareto inequality. In a steady state, the drift

and volatility governing the wealth accumulation process of each entrepreneur is

described by a geometric Brownian motion. In particular,

𝑑𝑛𝑖𝑡

𝑛𝑖𝑡
=

(
𝑟𝑠𝑠 +

(
𝜎̃𝐸𝑠𝑠

)2
+ 𝜎2 − 𝜌

)
𝑑𝑡 + 𝜎̃𝐸𝑠𝑠𝑑𝑍𝑖𝑡 . (1.30)

The combination of individual wealth growing according to a geometric Brown-

ian motion with entrepreneurial dynasties interrupted by death or type-switching

implies that the steady state distribution of entrepreneurs’ wealth follows a dou-

ble Pareto distribution (Champernowne (1953), Reed (2001), Gabaix (2009)). The

so-called Pareto tail coefficient describes the thickness of the right tail of this distri-

bution.22 This tail coefficient is determined by the drift and volatility of the wealth

22Because consumption and income are proportional to net worth, the distributions of these vari-
ables display the same limiting tail coefficient in this model. Gaillard et al. (2023) discuss how
non-homothetic preferences and scale-dependent returns to wealth may address this counterfactual
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accumulation process and the death and switching rates.23 The key to the results in

this paper is that the model implies a direct relationship between drift and the volatil-

ity of entrepreneurs’ wealth accumulation process in a steady state equilibrium. In

particular, in equation (1.28), 𝑑𝐾𝑡𝐾𝑡
= 0 implies that 𝜇𝐸𝑠𝑠 = (1 − 𝜂𝑠𝑠)

(
𝜎̃𝐸𝑠𝑠

)2, and 𝑑𝜂𝑡
𝜂𝑡

= 0

implies that (𝜎̃𝐸𝑠𝑠)2 =
(1− 𝜓̄

𝜂𝑠𝑠
)(𝛿𝑑+𝜙𝑙)

1−𝜂𝑠𝑠 . In other words, the drift and volatility are both

directly related to the wealth share of entrepreneurs in a steady state equilibrium.

This allows us to characterize the Pareto tail coefficient in terms of the steady state

wealth share of entrepreneurs. The following proposition is proved in Appendix

A.3.3.

Lemma 2. The steady state right Pareto tail coefficient of entrepreneurs’ wealth is

𝜁 = 𝜂𝑠𝑠 −
1
2 +

√(
𝜂𝑠𝑠 −

1
2

)2
+

2𝜂𝑠𝑠(1 − 𝜂𝑠𝑠)
𝜂𝑠𝑠 − 𝜓̄

(1.32)

where 𝜂𝑠𝑠 is the steady state share of wealth entrepreneurs own. Moreover 𝜕𝜁
𝜕𝜂𝑠𝑠

< 0. Hence,

keeping fixed the population fraction 𝜓̄, tail inequality 1/𝜁will be higher when entrepreneurial

capitalists hold a larger fraction of wealth in the economy.

Equation 1.32 is strictly decreasing in 𝜂𝑠𝑠 so that the tail is thicker the higher the

share of wealth owned by entrepreneurs. This expression for the tail coefficient pro-

vides a direct analytical link between the cross-sectional distribution of wealth and

the share of wealth held by entrepreneurs. Understanding how structural changes in

the economy affect steady state top wealth inequality thus boils down to understand-

ing how those structural changes affect the steady wealth share of entrepreneurs.

What determines the steady state wealth share of entrepreneurs? Looking at

equation (1.28) with 𝑑𝜂𝑡
𝜂𝑡

= 0, we see that the steady state value 𝜂𝑠𝑠 is pinned down by

the exogenous demographic parameters, 𝛿𝑑 , 𝜙𝑙 , and 𝜓̄, as well as the idiosyncratic

volatility of entrepreneurs’ wealth 𝜎̃𝐸𝑠𝑠 , which is endogenous:

implication.
23Specifically, in Appendix A.3.3, I show that the stationary Kolmogorov forward equation that

pins down the Pareto tail coefficient 𝜁 is of the well-known form:

0 = 𝜁𝜇𝐸𝑠𝑠 +
(𝜎̃𝐸𝑠𝑠)2

2 𝜁 (𝜁 − 1) − (𝛿𝑑 + 𝜙𝑙) (1.31)

where 𝜇𝐸𝑠𝑠 = 𝑟𝑠𝑠 +
(
𝜎̃𝐸𝑠𝑠

)2 − 𝜌 is the drift of the entrepreneurs’ wealth accumulation process.
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(𝜎̃𝐸𝑠𝑠)2 =
(1 − 𝜓̄

𝜂𝑠𝑠
)(𝛿𝑑 + 𝜙𝑙)

1 − 𝜂𝑠𝑠
. (1.33)

From this equation, we see a strictly positive relationship between the steady state

wealth share of entrepreneurs and their steady state idiosyncratic risk exposure.

In other words, given the values of the demographic parameters, a steady state

associated with a higher level of idiosyncratic risk exposure will be associated with

a higher wealth share for entrepreneurs. This is because a higher idiosyncratic risk

exposure will be associated with a larger idiosyncratic risk premium or, equivalently,

a larger precautionary savings motive for entrepreneurs. That implies that their

expected wealth growth rate will be higher than that of the diversified capitalists,

which in turn implies a larger steady state wealth share.

No other endogenous objects appear in the steady state equation (1.33) for the

entrepreneurs’ wealth share and, consequently, in the steady state Pareto tail coef-

ficient. In particular, apart from the entrepreneurs’ idiosyncratic risk exposure 𝜎̃𝐸𝑠𝑠 ,

which is endogenous, only exogenous demographic parameters appear in equation

(1.33). Therefore, the response of the steady state Pareto tail coefficient to any non-

demographic change in the economy must go via changes in the idiosyncratic risk

exposure of entrepreneurs. Specifically, any change in the economy that increases

the idiosyncratic risk exposure of entrepreneurs will increase entrepreneurs’ share of

wealth, lower the Pareto tail coefficient, and thereby increase top wealth inequality.

Finally, recall that entrepreneurs choose an idiosyncratic risk exposure equal to the

appraisal ratio associated with entrepreneurial investment. These insights will allow

us to thoroughly summarize the effect of improved entrepreneurial financing on top

wealth inequality since we only need to determine how improved entrepreneurial

financing affects the appraisal ratio associated with entrepreneurial investment.

Improved entrepreneurial financing and steady state Pareto inequality. The

model features only one friction, the constraint on equity issuance that entrepreneurs

face. Recall that the severity of this constraint is captured by the parameter 𝜒, the

fraction of the risk in the firm that must be borne by the entrepreneur themself. Im-

proved entrepreneurial financing in this context thus refers to a fall in the parameter
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Figure 1.3: Pareto Tail Inequality 1/𝜁 and Entrepreneurs’ Idiosyncratic Risk Exposure 𝜎̃𝐸𝑠𝑠 Across
Steady States.

𝜒. Using the fact that any non-demographic change in the economy that affects the

Pareto tail coefficient must operate via its effect on the amount of idiosyncratic risk

that entrepreneurs choose to bear, we therefore have the following proposition:

Lemma 3. Improvements in entrepreneurial financing, understood as a relaxation of the

equity issuance constraint (a fall in 𝜒), leads to a fall in the Pareto tail coefficient 𝜁 (and,

therefore a rise in Pareto inequality 1/𝜁) if and only if it raises the idiosyncratic risk exposure of

entrepreneurs, which is, in turn, equal to the appraisal ratio associated with entrepreneurship:

𝜎̃𝐸𝑠𝑠 =
𝑟𝑘𝑠𝑠 − 𝑟𝑇𝑠𝑠
𝜒𝜎̃𝑘𝑠𝑠

≡ appraisal ratio. (1.34)

In other words, improved financing for entrepreneurs leads to a rise in top wealth

inequality if it makes the trade-off related to idiosyncratic risk bearing more attrac-

tive. Figure 1.3 depicts the relationship between the Pareto inequality 1/𝜁 and the

appraisal ratio associated with entrepreneurship, capturing the essence of the above

proposition.

Examining the mechanism: the role of the elasticity of substitution 𝜀. To under-

stand the mechanism behind the effect of improved entrepreneurial financing, we

consider the effect of a fall in 𝜒, the inside equity constraint. This fall in 𝜒 induces a
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Figure 1.4: The effect (on impact) of reduced financing frictions 𝜒 on capital allocation to en-
trepreneurs.

reallocation of capital from the traditional sector towards the entrepreneurial sector.

This can be seen from (1.25), which we recall can be written as

𝜅𝑡
𝜂𝑡

(𝜒𝜎̃𝑘𝑡 )2 =

(
𝐴̄𝑝𝐸(𝜅𝑡) − 𝐴𝑝𝑇(𝜅𝑡)

) (
𝐿

𝐾𝑡

)1−𝛼
(1.35)

where the prices are expressed in terms of 𝜅𝑡 as

𝑝𝐸𝑡 = 𝜈

(
𝐴̄𝜅𝑡
𝐴(𝜅𝑡)

)−1/𝜀
, 𝑝𝑇𝑡 = (1 − 𝜈)

(
𝐴(1 − 𝜅𝑡)
𝐴(𝜅𝑡)

)−1/𝜀
,

and 𝐴(𝜅𝑡) is defined in equation (1.20). On impact, 𝜂𝑡 and 𝐾𝑡 , and therefore also

𝜎̃𝑘𝑡 =
𝑌𝐸𝑡
𝐾𝐸𝑡

𝜎̃ = 𝐴̄𝜎̃
(
𝐿
𝐾𝑡

)1−𝛼
, are fixed, so that the left-hand side is simply an increasing

linear function of 𝜅𝑡 . In contrast, the right-hand side is a strictly decreasing function

of 𝜅𝑡 . The fall in 𝜒 shifts the supply of capital to entrepreneurial firms, on the left-

hand side, outward, leaving the demand schedule unaffected. The new equilibrium

features a higher 𝜅𝑡 and a lower excess return than in the initial steady state. Figure

1.4 is a graphical representation of this for two different values of the elasticity 𝜀.

What happens to the appraisal ratio, which we know determines entrepreneurs’

risk exposure as well as Pareto inequality? Rewriting the above equation in terms of

the appraisal ratio, we see that
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Figure 1.5: Relationship between the steady state appraisal ratio and outside financing share 1 − 𝜒.

𝜎̃𝐸𝑡 = appraisal ratio =
𝐴̄𝑝𝐸𝑡 (𝜅𝑡) − 𝐴𝑝𝑇𝑡 (𝜅𝑡)

𝜒𝜎̃𝐴̄
(1.36)

so that the appraisal ratio may move up or down depending on how much of the

fall in 𝜒 in the denominator is offset by a fall in the excess return in the numerator.

The fall in the numerator is determined by how much the intermediate goods prices

𝑝𝐸𝑡 (𝜅𝑡) and 𝑝𝑇𝑡 (𝜅𝑡) change. The sensitivity of these prices is, because of the CES setup,

determined by the constant elasticity of substitution parameter 𝜀.

If the elasticity of substitution between the two sectors is high, the market adjusts

primarily via quantities and not prices; that is, the excess return in the numerator is

relatively stable. In this case, the appraisal ratio rises. If, on the other hand, 𝜀 is low,

prices react strongly in response to any reallocation of capital. The fall in the excess

return in the numerator will then be larger than the fall in the denominator, and

the appraisal ratio will fall. Figure 1.5 displays the relationship between the steady

state appraisal ratio and the outside financing fraction 1 − 𝜒. Figure 1.5a depicts the

relationship when the elasticity of substitution is high, and 1.5b when this elasticity

is low.

An interesting observation is that as the outside financing fraction becomes very

large, the steady state appraisal ratio starts to decline. This happens because as

the risk costs associated with production in the entrepreneurial sector decline, the

entrepreneurial sector starts taking over all production in the economy. When this
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happens, the competitive pressure within the entrepreneurial sector becomes more

severe since there is not much capital that can be squeezed out of the traditional

sector. The increased competitive pressure between entrepreneurs for the existing

capital stock then drives down the excess return to entrepreneurship so that the

appraisal ratio falls.

The dynamic response of the economy after impact will also depend on whether

the appraisal ratio rises or falls in the longer run as well. Recalling the equations for

the evolution of the state variables in (1.28):

𝑑𝐾𝑡

𝐾𝑡
=

(
𝜅𝑡𝑟

𝑘
𝑡 + (1 − 𝜅𝑡)𝑟𝑇𝑡 − 𝜌

)
𝑑𝑡 + 𝜎𝑑𝑍𝑡

𝑑𝜂𝑡
𝜂𝑡

=

(
(1 − 𝜂)

(
𝜎̃𝐸𝑡

)2
+
(𝜓̄ − 𝜂𝑡)

𝜂𝑡
(𝛿𝑑 + 𝜙𝑙)

)
𝑑𝑡,

(1.37)

we see that a rise in the appraisal ratio will raise the drift of 𝜂𝑡 , which consequently

starts to grow. The behavior of the capital stock also depends on the strength of

the reallocation of capital relative to the reaction of prices to this reallocation. The

expected accounting return to the capital stock is the weighted average expected

return in the two sectors 𝜅𝑡𝑟𝑘𝑡 + (1 − 𝜅𝑡)𝑟𝑇𝑡 = 𝑟𝑇𝑡 + 𝜅𝑡(𝑟𝑘𝑡 − 𝑟𝑇𝑡 ). When capital is

reallocated in response to the fall in 𝜒, the capital stock will grow to the extent that

the reallocation of capital to the higher-return entrepreneurial sector constitutes a

stronger force than the excess return in that sector.

In this case, the resulting growth in the entrepreneurs’ wealth share and the capital

stock will induce entrepreneurs to scale up further and, therefore, increase 𝜅𝑡 over

time. This increase in 𝜅𝑡 will lower the excess return and the appraisal ratio over

time relative to the level reached on impact. What matters for the behavior of top

inequality, in the long run, is whether the economy settles on an appraisal ratio that is

higher or lower than in the initial steady state. Suppose the elasticity of substitution

between the sectors is high enough. Then, the new steady state appraisal ratio will

be higher than before, implying a larger share of wealth owned by entrepreneurs,

faster wealth dynamics for entrepreneurs, and higher Pareto inequality. I summarize

this discussion in the following proposition that says that inequality increases when

𝜒 falls, provided that the elasticity of substitution is high enough:
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Proposition 2. Suppose the economy is in an initial steady state 𝑠0 = (𝜂0, 𝐾0, 𝜅0), where

𝜅0 ∈ (0, 1) and the initial inside equity constraint parameter is 𝜒0. Let 𝜁(𝜒) denote the

steady state Pareto tail coefficient as a function of 𝜒. Then, there exists a 𝜀∗𝑠0 such that if the 𝜀

associated with the steady state 𝑠0 is larger than 𝜀∗𝑠0 , then 𝑑𝜁
𝑑𝜒 (𝜒0) > 0.

Proof. By Lemma 3, we need to show that the steady state appraisal ratio increases

as 𝜒 falls for high values of 𝜀. Let 𝜅(𝜒) denote the steady state 𝜅 as a function of 𝜒

keeping all other parameters fixed. Then, we have by equation (1.36) evaluated in

steady state:
𝑑 log 𝜎̃𝐸𝑠𝑠
𝑑 log 𝜒

=
𝑑 log

(
𝐴̄𝑝𝐸(𝜅(𝜒)) − 𝐴𝑝𝑇(𝜅(𝜒)

)
𝑑 log 𝜒

− 1.

For the value 𝜀 associated with the steady state 𝑠0, a change in 𝜒 will imply some

change in 𝜅(𝜒). Letting 𝜀∗𝑠0 be the value of the elasticity of substitution such that this

change in 𝜅(𝜒) leads to a small enough change in prices for the appraisal ratio to rise.

In particular, since the price functions 𝑝𝐸 and 𝑝𝑇 can be made arbitrarily insensitive

to changes in 𝜅(𝜒) by picking a high enough value for the elasticity of substitution,

we know that such a value exists. That is, there exists some 𝜀∗𝑠0 such that if 𝜀 > 𝜀∗𝑠0 ,

we have 𝑑 log(𝐴̄𝑝𝐸(𝜅(𝜒))−𝐴𝑝𝑇 (𝜅(𝜒))
𝑑 log 𝜒 < 1. This proves the result. □

Notice that this proposition is “local” as opposed to being uniform in the sense that

the threshold value 𝜀∗𝑠0 depends on the steady state the economy starts in. This means

that the relationship between 𝜒 and Pareto inequality can be non-monotonic. As we

saw in Figure 1.5a, the relationship turns around when the outside financing fraction

1 − 𝜒 becomes large. This extends the conclusion of Bonfiglioli (2012) that reduced

financial frictions may have a non-monotonic relationship to wealth inequality, to

a dynamic framework where risk-taking is an intensive margin decision. Hence,

comparing steady state wealth inequality with and without financial frictions may

not accurately reflect what would happen in an economy where financial frictions

are reduced but not fully removed. In fact, for some initial steady states, even infinite

elasticity of substitution is not enough to make top wealth inequality rise in response

to reductions in financial frictions. As an example of this, we have the following

proposition, which I prove in Appendix A.3.6:

Proposition 3. Even with perfect substitutes, 𝜀 = ∞, starting in an initial steady state 𝑠0,
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there is a value 𝜒∗ such that if 𝜒 is reduced to a value 𝜒 < 𝜒∗, a further fall in 𝜒 reduces

Pareto inequality.

The intuition is that with perfect substitutes when 𝜒 becomes low enough, the

entrepreneurial firms take over the entire economy so that 𝜅𝑠𝑠 = 1. When 𝜅𝑠𝑠

reaches this maximum value, entrepreneurs can no longer scale up at the expense

of traditional firms. In this case, the model reduces to a one-sector model, and

inequality falls when risk sharing improves because the scaling-up effect is mute. As

I discuss in the next section, the absence of a sector from which entrepreneurs can

attract resources is one of the reasons earlier work has found that improvements in

risk sharing reduce inequality.

1.3.3 Why the Two-Sector Setup is Important

One key prediction of the model is that wealth inequality increases in response to

improved entrepreneurial financing, provided that excess returns associated with

entrepreneurship do not fall too much when entrepreneurs scale up. The degree

to which the equilibrium excess return to entrepreneurial activity falls when en-

trepreneurs want to scale up depends on how fiercely they compete with each other

for the fixed amount of labor and the existing capital stock. The presence of the

traditional sector is critical for this model prediction. The traditional sector consti-

tutes a source from which the entrepreneurial sector can attract labor, capital, and

demand, relieving the competitive pressure. Instead of drawing economic activity

from other entrepreneurial firms, which puts downward pressure on the excess re-

turn to entrepreneurship, they can draw this economic activity from the traditional

sector.

Consider the extreme case where there is no sectoral reallocation possible. This

would be the case in a one-sector model where all firms are entrepreneurial as in

Section 1.2.2, or where the output produced by entrepreneurial firms and traditional

firms are perfect complements so that they do not compete in the output market.

In response to improved risk sharing, entrepreneurs want to scale up. However,

because the factors of production are fixed in the short run, they cannot scale up in
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the aggregate.24 Hence, the equilibrium expected excess return to entrepreneurial

activity has to fall in order to render the entrepreneurs content with operating the

existing capital stock and hire the avialable labor. Without the ability to scale up,

entrepreneurs’ risk exposure cannot rise. Because they operate a capital stock of

the same size as before but carry a smaller fraction of the associated risk, their

risk exposure unambiguously falls, as does wealth inequality. This mechanism is

at the heart of why Hui (2023) finds that improved risk sharing for entrepreneurs

lowers wealth inequality in a one-sector model. Peter (2021) also studies a model

wherein production is in the hands of entrepreneurial firms. That model is rich

and closer in spirit to Quadrini (2000) and Cagetti and De Nardi (2006). When

calibrating this model to European data, Peter (2021) finds that improved risk sharing

for entrepreneurs reduces steady state wealth inequality. The results in this paper

complement those in Peter (2021) by showing that improved risk sharing can also

raise top wealth inequality, provided entrepreneurs can scale up without adversely

affecting the profitability of entrepreneurial activity. Furthermore, in Section 1.5,

I show that at least part of the US experience of rising wealth inequality and an

increasing preponderance of newly created fortunes at the top can be understood as

a consequence of improved entrepreneurial equity financing. It should be said that

because Peter (2021) considers a very rich model framework, it is slightly difficult to

evaluate analytically precisely which of the model features produces the result that

better equity financing for entrepreneurs lowers wealth inequality. The results of the

present paper suggest that it may be that the equilibrium returns top entrepreneurial

activity fall when entrepreneurs all try to scale up, so that the risk sharing effect ends

up dominating the scaling up effect.

24This remains roughly true in the long run as well despite the fact that the capital supply is perfectly
elastic in the long run in this model.
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1.4 Improved Equity Financing and Top Wealth Inequal-

ity: Empirical Motivation

In the previous section, I established conditions under which improvements in risk

sharing for entrepreneurs lead to higher top wealth inequality. In the next section,

I will conduct a simple numerical exercise to understand whether improved risk

sharing has any quantitative bite. In this section, I briefly describe the empirical

motivation behind that numerical experiment. That experiment is motivated by

two sets of observations. The first set relates to the characteristics of the wealthiest

Americans today, how they became wealthy, and the rise of venture capital and

venture capital-backed firms. Specifically, the wealthiest Americans of today are, to a

larger extent than in decades past, founders or early investors in entrepreneurial firms,

rather than inheritors of great fortunes.25 These individuals were propelled to the

top of the wealth distribution by raising substantial amounts of capital from outside

investors, often venture capital funds. This allowed them to operate much larger

firms than their wealth would have admitted. Relatedly, some evidence suggest that

entrepreneurs’ ability to scale up and share risks with the help of financial markets

has improved over the past half-century, where a conspicuous example of this is

the emergence and rapid growth of venture capital financing, which has undergone

what has been referred to as a revolution.26 The second set of facts relates to the

evolution of measured top wealth inequality. Measured top wealth shares have risen

substantially over the past half-century.27 Especially noteworthy is that the observed

rise in top wealth shares has been fractal, meaning that wealth inequality has risen

within the top as well: not only has the top 1% wealth share risen, the top 0.01% share

of the top 1% has risen as well. In other words, Pareto inequality has increased.28

The central proposition advanced by this paper is that these two sets of facts may

be intimately related: improvements in the ability of entrepreneurs to raise outside

25See for instance Kaplan and Rauh (2013)
26See Gompers and Lerner (2001).
27There is some disagreement regarding the precise magnitudes of the increases in top wealth

shares, see for instance Saez and Zucman (2016) and Smith et al. (2022b). Interestingly, both sets of
authors document similar increases in Pareto inequality.

28See for instance Figure 4 in Gomez and Gouin-Bonenfant (2024), or figure 1.7b, based on data
from Smith et al. (2022b) and Piketty et al. (2018), respectively.

52



1960 1970 1980 1990 2000 2010 2020
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
R

IS
A

 R
ef

or
m

s
Figure 1.6: Evolution of market capitalization share of firms with history of venture capital backing.
Data from Gornall and Strebulaev (2021).

equity capital and offload risk to financial markets, as exemplified by, but not limited

to, the growth of the venture capital industry, may have contributed to the observed

pattern of increased top wealth inequality. I now briefly discuss these motivating

facts in more detail before presenting the parameterized model in Section 1.5.

The rise of venture capital-backed firms. The mechanism at the heart of this paper

connects changes in the ability of innovative entrepreneurs to raise equity capital and

offload risk to financial markets to the reallocation of economic activity to cutting-

edge entrepreneurial firms and rising top inequality. Regarding the reallocation of

economic activity, Gornall and Strebulaev (2021) document that firms with a history

of VC-backing constituted around 0–5% of the total market capitalization before and

up to 1980, rising to around 41% in 2020. Moreover, among firms founded after 1968,

Gornall and Strebulaev (2021) document that firms with a history of VC-backing

constituted around 50% of market cap in 1980, rising to 77% in 2020. Figure 1.6 from

Gornall and Strebulaev (2021) summarizes the evolution of venture capital-backed

firms. They argue that regulatory changes implemented through the 1974 Employee

Retirement Income Security Act (ERISA) and its subsequent reinterpretation in 1979

created a substantial divergence in the creation rate of large successful companies

between the U.S. and comparable countries. These reforms allowed a broader set

of investors to invest in venture capital, investments that were previously regarded
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as too risky.29 Many successful venture capital-backed firms and their associated

founders are household names by now: Tesla, Amazon, Google, Uber, and Apple, to

name but a few. It is important to note that venture capital is but a fraction of the

outside financing that these firms receive. The purpose of highlighting the growth

of firms with a history of venture capital backing is not to argue that venture capital

was responsible for this growth. Rather, because venture capital is explicitly aimed

at providing financing for cutting-edge entrepreneurial firms, the growth of venture

capital is evidence of a reallocation of economic activity to these types of firms.

To highlight the role of firms with a history of venture capital backing for top

wealth, Table 1.2 compares the ten wealthiest individuals on the Forbes 400 list in

2022 with the ten wealthiest individuals on the first edition of that list in 1982. As

pointed out by Kaplan and Rauh (2013), and more recently by Gomez (2023), the table

reflects the observation that the number of “self-made” entrepreneurs within the top

10 is markedly higher now. We also see that many of the wealthiest individuals in

2022 are associated with venture capital-backed firms.30

Pareto inequality. Saez and Zucman (2016) document a 13-percentage-point in-

crease in the wealth share of the top 1%, from a low of 22% in 1978 to 35% in 2016.

Similarly, Smith et al. (2022b) find an increase of 10 percentage points, to 33%, over

the same period.

Interestingly, they also document substantial changes in the distribution of wealth

within the top 1%. It is precisely these changes within the top 1% that are the subject

of this paper. Figure (1.7a) depicts the evolution of the ratio of the top 0.1% to the top

1% and the top 0.01% to the top 0.1%. As in Figure 1.6, the grey area marks the period

of the ERISA regulatory changes that Gornall and Strebulaev (2021) argue gave rise

to the expansion of the venture capital industry. The similar level and evolution of

these ratios indicate that the top of the wealth distribution roughly follows a Pareto

distribution and that Pareto inequality, the inverse of the Pareto tail coefficient, has

increased. Figure (1.7b) depicts an estimate of Pareto inequality based on these ratios

29See also Greenwood et al. (2022) for additional evidence.
30This is not to say that the VC connection is necessarily causally responsible for the rise of these

firms. It could have been that they had just brief encounters with venture capitalists at some early
stage. Instead, the point is that the fact that they have a VC connection suggests that their firms are
the types of firms that correspond to the entrepreneurial firms in the model of this paper.
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2022 1982

Name Firm Self-made VC connected Name Firm Self-made VC connected

1 Elon Musk Tesla ✓ ✓ 1 Daniel K. Ludwig Exportadora de Sal ✓ ✗

2 Jeff Bezos Amazon ✓ ✓ 2 Gordon Getty Getty Oil ✗ ✗

3 Bill Gates Microsoft ✓ ✓ 3 Margaret Hunt Hill - ✗ ✗

4 Larry Ellison Oracle ✓ ✓ 4 William H. Hunt Halcon ✗ ✗

5 Warren Buffet Berkshire Hathaway ✓ ✗ 5 Marvin H. Davis Davis Oil ✓ ✗

6 Larry Page Alphabet Inc. ✓ ✓ 6 David Packard Hewlett-Packard ✓ ✗

7 Sergey Brin Alphabet Inc. ✓ ✓ 7 Lamar Hunt - ✗ ✗

8 Steve Ballmer Microsoft ✗ ✓ 8 David Rockefeller Sr. - ✗ ✗

9 Michael Bloomberg Bloomberg LP ✓ ✗ 9 Caroline R. Hunt - ✗ ✗

10 Jim Walton Walmart ✗ ✗ 10 Nelson B. Hunt Halcon ✗ ✗

Table 1.2: Comparison of Forbes Top 10: 2022 and 1982. For 2022 the VC connection status is based
on Gornall and Strebulaev (2021). For the 2022 cohort, the “Self-made” status is based on having a
“Forbes Self-made score" of 8/10 or above.31 All of the firms associated with the 1982 cohort were
founded before the first VC fund was established. Gordon Getty inherited substantial wealth from J.
Paul Getty, and the Hunt fortune was established by H. L. Hunt, whose children are prominent in the
1982 cohort.

of top wealth shares, using a formula provided by Jones and Kim (2018).
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(a) Ratios of top wealth shares.
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(b) Pareto inequality 1/𝜁.

Figure 1.7: Ratios of top wealth shares and the Pareto tail coefficient. Data from Distributional
National Accounts via Piketty et al. (2018)

These figures capture the essence of the stylized facts on which the literature on top

wealth inequality has centered, accounting for the rise in the level of Pareto inequality

as well as the speed with which this rise has occurred. Gabaix et al. (2016) point out

that the speed of transition to higher Pareto inequality is not captured well by basic

random growth models of wealth accumulation, rather the transition speed in these

models is too slow. Atkeson and Irie (2022) point out a direct relationship between
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the ability of random growth models to match the speed of transition of top wealth

inequality observed in the data on the one hand, and the existence of rapidly amassed

“self-made" fortunes on the other. In particular, there is a direct relationship between

the existence of a subset of extremely upwardly mobile agents and the speed of

transition of the Pareto tail coefficient over time: in transitions between steady state,

the time it takes for the Pareto shape of the wealth distribution is governed by the

time it takes for an initially poor individual to get to the top. The delayed transition

dynamics imply that the Pareto shape of the top of the wealth distribution at any

given time is determined by the parameters that governed wealth accumulation a

couple of decades earlier. The delayed transition dynamics of the Pareto shape of

the wealth distribution are essential for understanding how the results in this paper

relate to the observation by Decker et al. (2016) that business dynamism has declined

in the United States. They argue that in the case of high-growth entrepreneurial

firms, the decline in dynamism happened only after the year 2000. Before that, their

measure of dynamism was actually rising for this group of firms. This decline in

dynamism may not be visible at the top of the wealth distribution yet but might

reveal itself in the coming decade.

The present paper incorporates one of the critical insights of Gabaix et al. (2016)

and Atkeson and Irie (2022) in order to address the shortcomings of the basic random

growth model. Namely, it includes a small minority of entrepreneurial capitalists

with very high idiosyncratic risk exposures and higher expected returns to wealth

than the other agents in the model. Importantly, and in contrast to Gabaix et al.

(2016) and Atkeson and Irie (2022), entrepreneurs’ high idiosyncratic risk exposures

are endogenous outcomes of their optimal portfolio choice problems rather than

exogenous parameters. Finally, because entrepreneurs are overrepresented at the top

of the wealth distributions, the average rate of return on wealth will be positively

correlated with wealth. This is in line with the empirical patterns documented by

Bach et al. (2020) and Fagereng et al. (2020). I explore this model further in the next

section.
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1.5 The Quantitative Impact of the Reallocation Effect:

A Numerical Approach

Section 1.3 described that the crucial determinant of how improved entrepreneurial

financing affects top wealth inequality is how much economic activity is reallocated

to entrepreneurs in equilibrium. When the reallocation is substantial, top wealth

inequality rises, and when it is not, top wealth inequality falls. The size of this reallo-

cation is, in turn, determined by the elasticity of substitution between the goods that

entrepreneurial firms produce and those that traditional firms produce. When the

substitutability is high, the economy reallocates much capital to the entrepreneurial

firms in response to the reduced risk cost associated with production in that sector.

In this section, I examine the role played by the strength of the general equilibrium

reallocation effect numerically. Specifically, I parameterize the model to be roughly

consistent with key aspects of the data. Then, I investigate how the strength of the

general equilibrium reallocation effect, as determined by the elasticity of substitution

𝜀, impacts how reductions in equity financing constraints affect top wealth inequal-

ity. The tractability of the framework allows me to compute the transition dynamics

of the model straightforwardly. This is important because we are interested in un-

derstanding how the strength of the equilibrium reallocation mechanism affects the

speed of the dynamics of Pareto inequality. In particular, recall that the remarkable

speed with which Pareto inequality has increased is one of the key stylized facts that

Gabaix et al. (2016) argued that models of top wealth inequality should ideally be

able to account for.

The takeaway from this exercise is that when the elasticity of substitution 𝜀 is set

to a large enough value, the model produces a rapid rise in Pareto wealth inequality

in response to improvements in entrepreneurial financing.

With this in mind, a natural follow-up question is whether there is additional

empirical evidence consistent with this large reallocation effect. I answer this in

the affirmative by pointing to the dramatic growth of venture capital-backed firms

observed by, among others, Gornall and Strebulaev (2021), and by pointing to three

additional well-documented macroeconomic trends, showing that the model cap-
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tures these trends, at least qualitatively, precisely when the reallocation effect is

large. These trends are (i) the fall in the aggregate labor share, despite relatively

stable firm-level labor shares; (ii) falling safe real interest rates: and (iii) the stable or

slightly rising accounting return to the aggregate capital stock, despite a falling real

safe interest rate. I go through each of these trends in turn and explain how they are

impacted by improvements in entrepreneurial financing qualitatively. The impact

will depend on whether the general equilibrium reallocation effect is strong or weak.

I conclude with a numerical examination of the model-implied transition dynamics

for each trend. The model produces a smaller but still meaningful fraction of the fall

in the aggregate labor share observed in the data, a temporarily elevated but long-

run stable rate of return to the aggregate capital stock, and a sizeable fraction of the

fall in the risk-free rate. One way of interpreting this is that the model requires the

entrepreneurial and traditional firms to operate together, producing similar goods

across a wide range of industries, rather than being isolated from one another in

separate industries. However, it does not imply that entrepreneurial and traditional

firms use the same production technologies. The entrepreneurial firms may use

cutting-edge high-tech production technology but produce output that is highly

substitutable with traditional firms’ goods. Despite using various cutting-edge tech-

nologies in their production processes, Uber is in the taxi business, Amazon is in the

retail business, and Google is in the advertising business.

Alternative explanations for the rise in wealth inequality. The purpose of the

numerical exercise considered in this section is not to argue that the observed rise in

wealth inequality is due to improvements in risk-sharing for innovative entrepreneurs

alone. Instead, it is to point out that improvements in risk-sharing for innovative

entrepreneurs are a quantitatively powerful mechanism, able to produce rapid rises

in Pareto inequality. In addition, the mechanism also turns out to be consistent with

a series of other well-documented macroeconomic trends: the fall in the aggregate

labor share, despite relatively stable firm-level labor shares; falling safe real interest

rates; and the stable or slightly rising accounting return to the aggregate capital stock,

despite a falling real safe interest rate.

This does not mean that other explanations for rising wealth inequality are ir-
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relevant. For instance, improvements in the technology operated by innovative en-

trepreneurial firms may generate rising Pareto wealth inequality without the need for

improvements in entrepreneurial financing. However, improvements in technology

and risk-sharing are not observationally equivalent: improvements in risk-sharing

do not lead to declining labor shares at the firm level, whereas improvements in en-

trepreneurial technology do.32 The empirical literature on the subject suggests that

the measured fall in the aggregate labor share is not due to falling labor shares at the

firm level but rather a reallocation to low labor share firms.

1.5.1 Parameterization

We want to numerically examine the effect of improved entrepreneurial financing,

modeled as a reduction in equity frictions captured by the parameter 𝜒, on top of

wealth inequality. More specifically, we want to study how this effect is influenced by

the strength of the general equilibrium reallocation of capital towards entrepreneurial

firms, governed by 𝜀. The focal parameters for this exercise are, therefore, 𝜒 and 𝜀.

What data can we use to discipline the way we parameterize the fall in 𝜒 that we

feed in to the model, and what data can we use to discipline the parameterization of

𝜀? The remaining parameters are set to roughly match relevant moments of the data

on top wealth inequality, factor income shares, rates of return to business capital,

the risk-free rate, the capital-output ratio, the average volatility of wealth growth at

the top of the wealth distribution, and various facts regarding the share of economic

activity accounted for by venture capital-backed firms. I will start by discussing how

I parameterize the fall in 𝜒.

Parameterizing the fall in 𝜒. I parameterize the fall in 𝜒 by selecting an initial

value 𝜒0 and a final value 𝜒1. I then let 𝜒 fall from 𝜒0 to 𝜒1 smoothly over time

according to the sigmoid curve depicted in Figure 1.8. To emphasize the connection

between the fall in 𝜒 and improvements in entrepreneurial financing, I let the lion’s

share of the fall occur in 1974–1979, which is the period of the ERISA regulatory

reforms that Gompers and Lerner (2001), Greenwood et al. (2022), and Gornall and

Strebulaev (2021) argue triggered the venture capital revolution.

32See section 1.5.4
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Figure 1.8: Baseline Fall in 𝜒

I pick 𝜒0 and 𝜒1 by matching the average rate at which firms associated with en-

trepreneurs at the top of the Forbes 400 list issued equity. Specifically, Gomez and

Gouin-Bonenfant (2024) document that the average lifetime growth rate of shares

outstanding associated with entrepreneurs at the top of the Forbes 400 list has in-

creased from 0.5% in 1985 to 2.9% in 2015. In Section A.4 of the Appendix, I show

that the average lifetime rate of equity issuance of the entrepreneurial firms in the

model is

Lifetime equity issuance rate =

(
1 + (1 + 𝑟𝑇)(1 − 𝜒)

(𝑟𝑘 − 𝑟𝑇) + 𝜒(1 + 𝑟𝑇)

)1/𝑇𝑙
− 1 (1.38)

where 𝑇𝑙 is the number of years that the firm is considered to be associated with the

entrepreneur. A few comments regarding this choice of calibrating 𝜒 are in order:

The insider financing fraction 𝜒 should not be confused with the insider ownership

fraction. As noted in Section 1.3, these are not the same. The constraint determines

the financing fraction, while the ownership fraction is determined by competition

in capital markets. Moreover, Brunnermeier et al. (2024) pursue a different way of

calibrating 𝜒. They look at the share of privately held business wealth in the economy

and argue that this is the share of business capital that insiders hold. This approach

would, however, be a problem in the present setting because we are specifically

interested in firms that are not necessarily privately held. Finally, Gomez and Gouin-
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Bonenfant (2024) measure the equity issuance rate in 1985, while the regulatory

changes that motivate the fall in 𝜒 are prior to that. However, it seems reasonable

to assume that many of the entrepreneurs at the top of the Forbes 400 list in 1985

had companies that were at the very least a decade old and so had operated mainly

in the pre-ERISA era. This would mean that their estimate of the average lifetime

equity issuance rate from 1985 reflects entrepreneurial financing conditions in the

pre-ERISA era.

The exercise aims to examine the transition dynamics of top wealth inequality

produced by the model. We want to understand how these are affected by the

strength of the reallocation effect. To this end, I consider two values of the elasticity

of substitution between the goods produced by the entrepreneurial firms and the

traditional firms: 𝜀 = 10 and 𝜀 = 100. The high value of 𝜀 = 100 generates a rise in

the fraction of the capital stock operated by the entrepreneurial firms in the model

that roughly matches the rise in the share of U.S. market capitalization associated

with firms with a history of venture capital-backing. The lower value of 𝜀 = 10 is to

give us a sense of how the transition dynamics are affected quantitatively by a weaker

reallocation effect. The remaining parameters are {𝛼, 𝜌, 𝛿, 𝜎, 𝜈, 𝐴̄, 𝜎̃, 𝛿𝑑 , 𝜙𝑙 , 𝜓̄, 𝑇𝑙}. I

choose 𝛼, 𝜌, and 𝜎 to produce a steady state that matches the labor share, the rate

of return to business capital, and the risk-free rate in 1960. These are important

quantities for the trends we want to study. In addition, I use 𝛿 to target a (business)

capital-output ratio of 2. This results in a value of 𝛿 = 0.1, which is larger than

in most standard calibrations. I choose 𝐴̄, 𝜈, and 𝜎̃ to match an initial Pareto tail

coefficient of 𝜁0 = 1.85, an initial fraction of the capital stock operated by innovative

entrepreneurial firms of 𝜅0 ≈ 5%, and idiosyncratic volatility of stock returns of

30%.33 The demographic parameters, the rate at which dynasties are broken 𝛿𝑑,

the rate at which innovative entrepreneurs become diversified capitalists 𝜙𝑙 , and

the fraction of innovative entrepreneurs among capitalists 𝜓̄, strongly influence the

fraction of entrepreneurs found at various points in the wealth distribution. Kaplan

and Rauh (2013) document that 69% of the Forbes 400 list in the 2011 edition were

the first in their family to run their business, up from 40% in the first 1982 edition. I

33According to Herskovic et al. (2016), this was the average idiosyncratic volatility of stock returns
in 1960.
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therefore target a share of entrepreneurs in the initial steady state of 40%. Moreover,

Gomez (2023) estimates that the average level of idiosyncratic volatility within the

top 0.01% of the wealth distribution for the period 1960–1980 was 10%, slightly lower

in 1960 than in 1980, so I target a level of 8% in the initial steady state. In the

present model, this will be the weighted average of the volatility of entrepreneurs

and diversified capitalists within this top quantile. I use 𝜓̄ and 𝜙𝑙 to match these

moments. I set the dynasty breaking rate to once a generation, 𝛿𝑑 = 1/30, to reflect

the risk of generational handover. I set the parameter 𝑇𝑙 , the lifetime over which the

model-implied average lifetime equity issuance rate is computed, to 30 years.

Finally, changing the value of 𝜀 while keeping all other parameters constant will, of

course, alter most of the moments that the model produces in the initial steady state.

In the extreme case, this could imply that each value of 𝜀 would need to be paired

with a different parameterization of all the other variables. However, it turns out

that changing the value of 𝜀 requires only a parsimonious re-parameterization of the

other variables. In particular, different parameterizations of 𝜀need to be coupled with

different parameterizations of 𝜈, but other than that, the model produces roughly the

same moments across the two specifications.

1.5.2 Reallocation to Cutting-Edge Entrepreneurial Firms

In the model, a reduction in equity-issuance-related agency frictions increases the

fraction of the capital stock operated by the entrepreneurial sector relative to the

traditional sector. In other words, 𝜅𝑡 =
𝐾𝐸𝑡
𝐾𝑡

rises. Exactly how much it rises depends

on the elasticity of substitution between the goods that the two sectors produce.

When the elasticity is high, the falling risk costs associated with entrepreneurial

production motivate a substantial reallocation to that sector, and vice versa when the

elasticity is low. This was illustrated in Figure 1.4. In this section, I study this question

numerically. In particular, taking as a starting point the initial steady state associated

with the baseline calibration in Table 1.3, I examine the transition dynamics of 𝜅𝑡 .

Figure 1.9 illustrates the result of this exercise. We see that 𝜀 = 100 is associated with

a rise in the relative size of the entrepreneurial sector. In contrast, we hardly see a

budge with 𝜀 = 10.
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Figure 1.9: Transition of 𝜅𝑡 for 𝜀 = 100 and 𝜀 = 10. Data from Gornall and Strebulaev (2021).

The reallocation in the data. If we interpret the entrepreneurial sector in the model

as consisting of innovative entrepreneurial firms similar to venture capital-backed

U.S. firms, we can compare the model-implied transitions with some relevant data.

Specifically, in Section 1.4, I discussed the so-called “venture capital revolution.” In

Figure 1.6 from Gornall and Strebulaev (2021), we see that venture capital-backed

firms constituted around 0–5% of the total market capitalization before and up to

1980, rising to around 41% of market cap in 2020.

1.5.3 Transition Dynamics of Wealth Inequality

In the previous section, we saw that the high value of 𝜀 = 100 was associated with a

rise in the fraction of the capital stock operated by entrepreneurs in the model that

is roughly in line with the rise in the market capitalization share of firms with a

history of venture capital-backing in Gornall and Strebulaev (2021). In this section, I

study how the value of 𝜀 affects the model-implied transition of Pareto inequality in

response to ameliorated equity issuance frictions captured by the fall in 𝜒 depicted in

Figure 1.8. That this high elasticity is indeed key is illustrated in Figure 1.10, where

we examine the transition dynamics of Pareto inequality, the inverse of the Pareto

tail coefficient, for the two different values 𝜀 = 100 and 𝜀 = 10. In Figure 1.10a,

we examine the transition of tail inequality measured at the top 0.1%, and in Figure
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(a) Tail inequality measured at top 0.1%
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(b) Tail inequality measured at top 0.01%

Figure 1.10: Transition of Pareto inequality for 𝜀 = 100 and 𝜀 = 10. Pareto tails based on ratio of
top 0.01% to 0.1% and top 0.1% to 1% wealth shares, respectively. Data (yellow) from Distributional
National Accounts provided by Piketty et al. (2018).

1.10b, we examine the transition of tail inequality measured at the top 0.01%. The

reason to look at tail inequality at two different points in the wealth distribution is

that although tail inequality is the same throughout the wealth distribution in steady

state, this is not the case in the transition. As pointed out by Gabaix et al. (2016),

the transition speed is slower higher up in the wealth distribution. A comprehensive

understanding of how well the model does with respect to the transition speed,

therefore, requires us to look at various points along the wealth distribution. When

𝜀 = 100, Pareto inequality rises at a rate roughly consistent with the data. In contrast,

when 𝜀 = 10, the downward pressure on entrepreneurial expected excess returns

in response to the capital reallocation is so heavy that the risk-reward trade-off

deteriorates: the risk falls as improved entrepreneurial financing enables more risk

sharing, but the expected excess return declines even more so that the appraisal ratio

falls. In this case, top wealth inequality declines slightly as entrepreneurs reduce

their idiosyncratic risk exposure.

This exercise demonstrates that the model can account for a meaningful portion of

the rapid transition dynamics of Pareto inequality, provided the elasticity of substi-

tution is very high. In the following sections, I examine how other model predictions

are affected by the strength of the general equilibrium reallocation effect, as captured

by the value of 𝜀. In particular, I focus on the model’s predictions along three dimen-

sions: the growing fraction of various measures of economic activity accounted for
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by innovative entrepreneurial firms (§1.5.2), factor income shares (§1.5.4), and rates

of return to savings and investment (§1.5.5).

1.5.4 Factor Income Shares

In the model, improved entrepreneurial financing leads to a fall in the aggregate labor

share despite stable or increasing labor shares at the firm level when the elasticity of

substitution between the sectors is high. To see why, note first that the labor share

in the traditional sector is 1 − 𝛼. This is unaffected by changes in entrepreneurial

financing.

Both the labor share and the pure capital share in the entrepreneurial sector are

lower than in the traditional sector. This is because, following Di Tella and Hall

(2021), the idiosyncratic risk in the firm renders the marginal product of each factor

of production locally uncertain. They argue that this is a way of taking seriously

the Knightian view (Knight, 1921) that entrepreneurs engage in risk-taking when

renting capital and hiring labor because the marginal products of each are uncertain

at the time that the cost of capital and wages are determined. As in David et al.

(2023) and Hartman-Glaser et al. (2019), the fact that this uncertainty will be priced

in equilibrium implies that risk-adjusted marginal products are lower than their

unadjusted counterparts. More precisely, rental rates and wages are equal to their

respective expected marginal products, less a risk premium. This risk premium

constitutes the foundation for the entrepreneurial share of income.34 Algebraically,

the labor share in the entrepreneurial sector is

𝑤𝑡𝐿
𝐸
𝑡

𝑝𝐸(𝜅𝑡)𝑌𝐸𝑡
= (1 − 𝛼)

𝑝𝑇(𝜅𝑡)
𝑝𝐸(𝜅𝑡)

𝐴

𝐴̄
= (1 − 𝛼)

©­­­­­­«
1 −

(𝑟𝑘𝑡 − 𝑟𝑇)𝐾𝐸𝑡
𝑝𝐸(𝜅𝑡)𝑌𝐸𝑡︸        ︷︷        ︸

“entrepreneurial" share

ª®®®®®®¬
(1.39)

and the pure capital share is analogously 𝑟𝑇𝐾𝐸𝑡
𝑝𝐸(𝜅𝑡)𝑌𝐸𝑡

= 𝛼
(
1 − (𝑟𝑘𝑡 −𝑟𝑇 )𝐾𝐸𝑡

𝑝𝐸(𝜅𝑡)𝑌𝐸𝑡

)
.

34I refer to it as the “entrepreneurial share” rather than the “entrepreneur’s share” because the
entrepreneur also gets some pure capital income. The entrepreneur’s share is, therefore, the en-
trepreneurial share plus the entrepreneur’s pure capital income share.
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The overall factor shares in the economy are the sales-weighted averages of the

shares in each sector. There are two channels along which improved entrepreneurial

financing affects these factor shares. Let us focus on the aggregate labor share,

although the reasoning is identical for the pure capital share. Firstly, there is a

composition effect coming from the reallocation of capital to low-labor-share en-

trepreneurial firms. This puts downward pressure on the aggregate labor share.

The pressure is stronger when 𝜀 is higher because reallocation is more substantial.

Secondly, the reallocation causes a rise in the labor share within the entrepreneurial

sector. This is because entrepreneurs need to raise wages to attract labor in response

to the reallocation of capital. Specifically, the price of the intermediate goods pro-

duced by the traditional sector 𝑝𝑇(𝜅𝑡) rises as resources are allocated away from that

sector. This raises the value of the marginal product of labor in that sector, which

puts upward pressure on wages. Hence, the labor share within the entrepreneurial

sector rises. This upward pressure on wages is higher if the elasticity of substitution

𝜀 is small because then the rise in 𝑝𝑇(𝜅𝑡), and consequently the marginal product of

labor in the traditional sector, is higher. The aggregate labor share only falls if the

composition effect is stronger than the within-sector effect. Because the composition

effect is larger than the within-sector effect when 𝜀 is large, this is, again, the key

parameter for this prediction. Figure 1.11 depicts the evolution of the labor share

in response to improved entrepreneurial financing for different values of 𝜀 in the

baseline calibration.

We also note in equation 1.39 that an improvement in the technology used by

entrepreneurial firms (an increase in 𝐴̄) also leads to a fall in the labor share. However,

in contrast to the fall in the aggregate labor share generated by a reallocation of

economic activity to the entrepreneurial firms driven by improvements in risk-sharing

for entrepreneurs, technological improvements lead to a falling labor share at the firm

level. In the next section, I discuss how the empirical literature on the evolution of

factor income shares seems to conclude that this is inconsistent with the data.

Evolution of factor income shares in the data. The debate on the precise cause

and magnitude of the fall in the labor share of income since 1970 is ongoing (see

Grossman and Oberfield (2022) for a review of this literature). Estimates range from,
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Figure 1.11: Transition dynamics of the aggregate labor share for 𝜀 = 100 and 𝜀 = 10. Data source:
U.S. Bureau of Labor Statistics (2023)

on the high end, a fall of 13 percentage points according to Barkai (2020), to a fall of

around 5–6 percentage points, found by Smith et al. (2022a). For the present purpose,

a key aspect of the documented fall in the labor share is the observation that this

fall has been driven by a reallocation of economic activity towards firms with low

labor shares rather than by a general fall in the labor share at the firm level, which

has remained relatively stable (Autor et al., 2020) or even increased (Hartman-Glaser

et al., 2019). Qualitatively, the model presented in this study is very much in line

with that observation.

Moreover, it has also been pointed out that the fall in the labor share has not

been accompanied by a rise in the pure capital share of income. Instead, both the

labor share and the capital share have fallen relative to what has been referred to

as factorless income (Karabarbounis and Neiman, 2019). The nature and causes

of this rise in factorless income have yet to be fully understood, and many studies

have pointed out potential sources. Barkai (2020) emphasizes the role of pure profits,

market power, and declining competition. Eisfeldt et al. (2022) and Smith et al. (2022a)

instead focus on the role of human capital income of key employees and business

owners. In the model presented in this paper, the rise in the factorless income share

comes from the rise in innovative entrepreneurs’ share of income. In this sense, the

explanation is closer in spirit to Eisfeldt et al. (2022) and Smith et al. (2022a), focusing
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on idiosyncratic risk bearing as the source of this entrepreneurial share.

How much of such a fall can be accounted for quantitatively by the mechanism

presented in this study depends on the value of 𝜀. Looking at Figure 1.11, with

𝜀 = 100, around 20% of the fall is accounted for.

1.5.5 The Return to the Aggregate Capital Stock, and the Risk-Free

Rate

A similar reasoning as for the labor share applies to the accounting return to the

aggregate capital stock as well. In particular, the accounting return to the aggregate

capital stock in the economy is given by

𝑟𝐾𝑡 ≡ 𝑌𝑡 − 𝑤𝑡𝐿𝑡 − 𝛿𝐾𝑡
𝐾𝑡

= 𝜅𝑡𝑟
𝑘
𝑡 + (1 − 𝜅𝑡)𝑟𝑇 . (1.40)

In other words, the aggregate return is the capital allocation weighted average of the

return in each sector. As with the labor share, a reallocation of resources towards

the entrepreneurial firm creates upward pressure on the aggregate return through

a composition effect and downward pressure by lowering excess returns within the

entrepreneurial sector. The composition effect is stronger than the within-sector effect

when 𝜀 is high. The aggregate return rises if 𝜀 is high enough.

So far, the mechanism is analogous to that for the labor share. However, there are

additional implications for returns to wealth in the long run. Recall that the basis for

the model in this study is a version of the neoclassical growth model. This means that

in the long-run steady state, the return to wealth settles down to the consumption

rate out of wealth.35 In other words, 𝑟𝐾𝑠𝑠 = 𝜌, because capital supply is perfectly elastic

in the long run. This means that any movements in the return to the aggregate capital

stock are temporary, and hence, the reallocation effect has no bite in the long run.

However, the long-run stability of the return to aggregate capital is what makes the

model’s implication for the risk-free rate interesting.

Since the total wealth of the economy is the total capital stock, the return to cap-

35Again focusing on the median path of the economy where aggregate shocks 𝑑𝑍𝑡 happen to be 0
for a long time.
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ital has to be the wealth-weighted average return to wealth for entrepreneurs and

diversified agents:

𝑟𝐾𝑠𝑠 = 𝜂𝑠𝑠𝑟
𝐸
𝑠𝑠 + (1 − 𝜂𝑠𝑠)𝑟𝑇𝑠𝑠 . (1.41)

Noting that the difference in return between entrepreneurs and diversified cap-

italists is 𝑟𝐸𝑠𝑠 − 𝑟𝑇𝑠𝑠 =
(
𝜎̃𝐸𝑠𝑠

)2, one obtains the following expression for the return to

aggregate capital:

𝑟𝐾𝑠𝑠 = 𝑟𝑇𝑠𝑠 + 𝜂𝑠𝑠
(
𝜎̃𝐸𝑠𝑠

)2
, (1.42)

which states that the return to the aggregate capital stock is the return in the tradi-

tional sector plus the risk premium received from investment in the entrepreneurial

firms. More precisely, the risk premium that entrepreneurs receive per unit of wealth

invested in their firms is
(
𝜎̃𝐸𝑠𝑠

)2, and their fraction of all wealth is 𝜂𝑠𝑠 so that the risk

premium for the economy as a whole is 𝜂𝑠𝑠
(
𝜎̃𝐸𝑠𝑠

)2. We know that when the general

equilibrium capital reallocation effect is strong enough, entrepreneurs’ risk exposure

and share of wealth both increase, so that 𝜂𝑠𝑠
(
𝜎̃𝐸𝑠𝑠

)2 rises. However, the fact that

𝑟𝐾𝑠𝑠 = 𝜌 is fixed in the long run means that the rise in the risk premium 𝜂𝑠𝑠
(
𝜎̃𝐸𝑠𝑠

)2

must be associated with a fall in 𝑟𝑇𝑠𝑠 . Since the risk-free rate is 𝑟𝑠𝑠 = 𝑟𝑇𝑠𝑠 − 𝜎2, it also

falls. An alternative way of interpreting the increase in 𝜂𝑠𝑠
(
𝜎̃𝐸𝑠𝑠

)2 and the resulting

fall in the risk-free rate is as a more pronounced precautionary savings motive of

entrepreneurs. As they take on more idiosyncratic risk, their precautionary savings

motive rises, which puts downward pressure on the risk-free rate.36 Figure 1.12 de-

picts the model-implied evolution of the rate of return to the aggregate capital stock

and the risk-free rate for the two values of 𝜀.

The rate of return to business capital and the risk-free rate in the data. Several

recent studies document a relatively stable or slightly rising return to business capital

in the U.S. (Farhi and Gourio, 2018; Gomme et al., 2011; Moll et al., 2022; Reis,

2022). With the different estimates these studies provide, one finds a return that

36Mian et al. (2021a) and Mian et al. (2021b) point to the savings behavior of wealthy households as
a contributor to falling interest rates. Increased risk-taking by entrepreneurs is a different mechanism
from those proposed by them, but because entrepreneurs are overrepresented among the wealthy, the
flavors are similar.
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(a) Riskless rate
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(b) Return to aggregate capital stock

Figure 1.12: Transition dynamics of the riskless rate and the rate of return to capital for 𝜀 = 100 and
𝜀 = 10. Data on riskless rate from Holston et al. (2017). Data on return to capital from Moll et al.
(2022) (smoothed).

hoovers around 7–10%. In contrast, estimates of the return on safe assets show a

downward trend for the last half-century (Rachel and Summers, 2019). Holston

et al. (2017) estimates a decline of 3–4 percentage points in the long-run return on

safe assets between 1960 and 2020. Powerful forces, like demographic changes and

the so-called international “savings glut” discussed in the literature on the secular

stagnation hypothesis, can perhaps account for most of the fall in the risk-free rate

(see Eichengreen (2015), Eggertsson et al. (2019), Rachel and Summers (2019) and

Auclert et al. (2021)). Looking at Figure 1.12, we see, however, that for the larger

values of 𝜀, the mechanism discussed in this study also puts meaningful downward

pressure on the risk-free rate, accounting for between around 30% of the drop when

𝜀 = 100.

1.6 Conclusion

This paper studies the effects of improvements in entrepreneurial equity financing

on the level and dynamics of top wealth inequality. By developing a tractable general

equilibrium model, I show that this impact is summarized by three key effects: the

risk-reduction effect, the scaling-up effect, and the general equilibrium reallocation

effect. First, improved financing enables entrepreneurs to offload more of their

firms’ risk to financial markets. This gives them the opportunity to reduce their
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idiosyncratic risk exposure, which would lower top wealth inequality by making

extreme wealth trajectories less likely and by reducing entrepreneurs’ precautionary

savings motive. This is the risk-reduction effect. In contrast, improved financing

also allows entrepreneurs to raise more capital and scale up, which raises top wealth

inequality. This is the scaling-up effect.

The central theoretical contribution of the paper is the insight that a third general

equilibrium effect determines the relative strengths of the risk-reduction and scaling-

up effects: the reallocation effect. If entrepreneurs can attract substantial amounts

of economic activity from other sectors of the economy without putting too much

downward pressure on their equilibrium expected excess returns, the scaling-up

effect dominates the risk-reduction effect, and wealth inequality rises. More generally,

it illustrates that the relationships between top wealth inequality, entrepreneurial

finance, and idiosyncratic risks and returns may be quite subtle.

The second contribution of the paper is to show that several well-documented

trends in U.S. data point to the strength of the general equilibrium reallocation

effect in practice. In particular, the dramatically growing fraction of venture capital-

backed innovative entrepreneurial firms among the largest publicly traded firms in

the U.S., the fall in the aggregate labor share despite relatively stable firm-level labor

shares, and the stable or slightly rising accounting return to the aggregate capital

stock despite falling safe rates are reflected by the model precisely when the general

equilibrium capital reallocation effect is strong enough for the scaling-up effect to

dominate the risk-reduction effect.
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Table 1.3: Baseline parameterization and model fit. All rates are annualized.

Parameter Value Description
Macro parameters
𝛼 0.34 Output elas. of cap-

ital
𝜌 0.071 Discount rate
𝛿 0.095 Depreciation
𝜎 0.15 Aggregate volatility
Distribution and allocation parameters
𝜀 100, 10 Elas. of substitution
𝜈 0.5041, 0.43905 CES share parame-

ter
𝐴̄ 1.06 TFP of ent. firms
𝜎̃ 0.3 Idiosyn. vol. scalar
𝛿𝑑 1/30 Dissipation rate
𝜙𝑙 1/15 Ent. switching rate
𝜓̄ 1/25 Ent. capitalist frac.
𝜒0 0.85 Ent. financing frac-

tion
𝑇𝑙 30 Top ent. firm life-

time

Moment Target Model
Pareto tail coefficient 1.85 1.85
Labor share 65% 65%
Average return to capital 7.41% 7.41%
Risk-free rate 4.51% 4.48%
Capital-output ratio 2 2.03
Equity issuance rate 0.5% 0.5%
Ent. share of capital <5% 4.83%, 5.22%
Ent. firms idios. vol 30% 31%
Ent. share of Forbes 400 40% 40%
Average vol. wealth for top 0.01% 8% 8%
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Chapter 2

Rapid Dynamics of Top Wealth Shares

and Self-Made Fortunes: What Is the

Role of Family Firms?

Co-authored with Andrew G. Atkeson

We derive an analytical link between the fast dynamics of inequality at the top of the

wealth distribution and the prevalence of newly created fortunes. Specifically, in the

context of a random growth model of wealth accumulation, the shape of the top of

the wealth distribution changes rapidly only if the pace with which new fortunes are

created is fast. Quantitatively, the decision of a few families to bear a large amount

of idiosyncratic risk in the form of family firms is crucial in accounting for both the

prevalence of new fortunes and the dynamics of top wealth inequality.

2.1 Introduction

This paper is motivated by two observations. First, many of the wealthiest families

in the world got rich quickly.1 Second, the concentration of wealth at the top of the

wealth distribution in the United States has increased substantially over the course

1For example, Forbes magazine reports in 2020 that nearly 70% of those on its list of the 400 richest
Americans have “self-made" fortunes. Bloomberg Magazine, reports a similar fraction of “self-made"
fortunes in its list of top fortunes worldwide.
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of the past 50 years.2 In this paper, we use a canonical random growth model similar

to that in Champernowne (1953) to show analytically that these two observations are

directly linked. That is, that the shape of the very top of the wealth distribution can

change rapidly over time only if there is rapid mobility of families from the bottom

to the top of the distribution of wealth.

We then examine a quantitative version of our model calibrated to match data on

innovations to wealth reported in Bach et al. (2020) to argue that the decision of a

small minority of families to bear a great deal of idiosyncratic risk in their portfolios

plays an key role in accounting both of the observations that motivate our study. We

interpret this portfolio choice of some families as a decision to concentrate their wealth

in a family firm. Certainly, one distinctive feature of capitalist economies worldwide

is that many of the wealthiest families hold portfolios that are very concentrated in a

single firm and hence are exposed to a high level of idiosyncratic risk in the returns

to their wealth.3

At the same time, we note that this rapid mobility of families from the bottom of

the wealth distribution to the top need apply only to the small minority of families

with portfolios concentrated in a family firm. The vast majority of families in our

model hold much more diversified portfolios and thus experience much less wealth

mobility. Thus, in our model, the observation that most of those at the top of

the wealth distribution are “self-made", while necessary to account for the rapid

dynamics of the shape of the top tail of the wealth distribution, does not imply that

wealth mobility is high for the typical family.4

Our paper is related to a large literature. Luttmer (2011) observed that a standard

random growth model applied to firm dynamics in which every firm experienced the

same distribution of idiosyncratic innovations to firm size failed to match the rapid

2See, for example, Saez and Zucman (2016), Smith et al. (2022b), Zheng (2020) and Gomez (2023).
3We focus on family firms over and above the traditional notion of entrepreneurship in shaping

the distribution of wealth and its evolution (see, for example, Cagetti and De Nardi (2009) and
Quadrini (2009)) because many of these families continue to hold these concentrated positions, and
thus continue to bear this idiosyncratic risk to their wealth, long past the time that the family firm
goes public and long past the time that the founding entrepreneur in the family has died. Evidence
on the prevalence of concentrated holdings of equity in a single family firm is available in Goldsmith
(1940), Anderson and Reeb (2003), Villalonga and Amit (2006), Klerk (2020), Peter (2021) and in the
Ernst & Young University of St. Gallen Family Business Index at http://familybusinessindex.com/.

4See, e.g. Carroll and Hoffman (2017).

74

http://familybusinessindex.com/


rise of young firms to the top of the firm size distribution when calibrated to match

data on innovations to firm size. Relatedly, Luttmer (2016) and Gabaix et al. (2016)

observed that the dynamics of the shape of the top of the distribution of firm size

and/or family income implied by this standard model was too slow. Our analytical

result shows that these two implications of a standard random growth model are

necessarily linked. These papers, and others by Jones and Kim (2018), Benhabib et al.

(2019), and Hubmer et al. (2021), have built more complex models with multiple types

of agents experiencing type-specific distributions of idiosyncratic shocks to account

for the dynamics of the distribution of income or wealth. We see our analytical

results as clarifying that these models with multiple types of agents generate rapid

dynamics of the shape of the top of the wealth distribution when they also generate

rapid mobility of individuals from the bottom of the distribution to the top.

One question that arises out of this line of research is whether it is primarily

heterogeneity across agents in the expected growth in the level of wealth or in the

idiosyncratic volatility of innovations to wealth that is key in accounting for the

dynamics of the top of the firm size, income, or wealth distribution. One might

interpret this question as being about the relative importance of differences in skill or

opportunities for investment versus luck in shaping the dynamics of the distribution

of top wealth. Here, we argue that the answer to this question is likely to be different

for wealth than it is for firm size or for income. It is clearly plausible to have wide

heterogeneity across agents in the expected growth rates of firm size and/or annual

income. That is less true both in theory and the data for wealth.

In theory, since wealth is the discounted present value of income, differences in

the expected growth rate of wealth arise from differences in expected returns across

families with different portfolios and/or different propensities for these families

to consume out of wealth. Consider first differences in expected returns. Theory

predicts that those families holding concentrated portfolios of publicly traded firms

should not be compensated with higher expected returns for the idiosyncratic risk

that they bear since those returns are available to any investor. In the data, many

of the very richest families do in fact hold concentrated positions in publicly traded
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firms.5 Moreover, many of the richest families in the Forbes 400 experienced very

rapid realized growth in their wealth even after the firms that they hold went public.

We see this evidence as pointing to an important role for substantial heterogeneity in

families’ exposure to idiosyncratic risk in the growth of their wealth.

We see the more systematic Scandinavian administrative data from Fagereng et al.

(2020) and Bach et al. (2020) as also pointing to the importance of high levels of

idiosyncratic risk for families with a family firm in shaping the dynamics of the

distribution of wealth. These data show differences in expected returns for families

at different points in the wealth distribution on the order of only a few percentage

points.6. On the other hand, the data in Bach et al. (2020), and data on innovations to

wealth for America’s wealthiest households from the Forbes 400 in Zheng (2020) and

Gomez (2023) indicate that the idiosyncratic volatilities of innovations to wealth at

the top of the wealth distribution are very much higher than they are at the bottom.

When we calibrate our model to match data on the concentration of top wealth

in Vermuelen (2018), Piketty et al. (2018) and Smith et al. (2021) and moments of

innovations to wealth across the wealth distribution in Bach et al. (2020), we find

that our model with family firms can account for much of the rapid mobility from

the bottom to the top of the wealth distribution as measured by the prevalence of

self-made fortunes and for much of the rapid dynamics of the shape of the top

of the wealth distribution over the past 50 years. In contrast, when we consider

alternative calibrations our model that do not include the very high idiosyncratic

volatility of returns to wealth of those investing in family firms, we cannot account

for the prevalence of self made fortunes at the top of the wealth distribution and

thus cannot account for rapid dynamics of the shape of the distribution of top wealth

even if we allow for differences in the expected growth of wealth across types well in

excess of what is observed in the data.

In focusing on the role of volatility and wealth mobility in shaping the dynamics

of the distribution of top wealth, our paper is most closely related to Zheng (2020),

Gomez (2023), and Pugh (2021). We see our main result as complementary to their

5For example, in the top 100 fortunes on the Bloomberg list of billionaires, we found that 2/3 of
the wealth of this group is in publicly traded equity and that 93% of that equity is concentrated in a
single holding.

6See also Balloch and Richers (2021)
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results on the role of displacement of incumbent top wealth holders in accounting

for observed growth in the share of wealth held by the richest families.

The remainder of our paper is organized as follows. We present our model in

Section 2.2. We present our analytical result in Section 2.3. We calibrate our model

and explore the role of heterogeneity in expected growth in wealth and volatility of

innovations to wealth in accounting for rapid mobility and dynamics of the distribu-

tion of top wealth in Section 2.4. In Section 2.5, we conclude. Technical results are

included in the online appendix.

2.2 The Model

We present a discrete-time, trinomial model of the evolution of the distribution of

wealth. Time is denoted by 𝑡 = 0, 1, 2, . . ., and the length of a time period in calendar

time measured in fractions of a year is denoted by Δ𝑡 .7

The economy is populated by a continuum of infinitely-lived families that we refer

to as dynasties. We assume that there is no aggregate risk in this economy, so all

shocks to the wealth of a dynasty are idiosyncratic. We assume that at each date 𝑡,

each dynasty is one of two types 𝑗 ∈ {𝐷, 𝐹}, where the type 𝑗 indexes the distribution

of innovations to assets for that dynasty. Here 𝐷 refers to dynasties that currently

hold a diversified portfolio and 𝐹 to dynasties with a concentrated portfolio in a

family firm.

The wealth of individual dynasties of each type evolves in discrete time on a

discrete grid of levels of wealth in a manner analogous to a continuous-time model

in which dynastic log wealth follows Brownian motion with a type-dependent mean

and standard deviation with a reflecting barrier at the bottom of the grid. Specifically,

the grid of wealth levels is given by𝑊(𝑛) = exp(𝑛Δ) with 𝑛 = 0, 1, 2, . . . , 𝑁 , where Δ

is the step size of the grid for the logarithm of wealth and 𝑁 ≤ ∞. Each period, for

dynasties with wealth 𝑊(𝑛) with 𝑛 > 0, their wealth rises by one node on the grid

with probability 𝑝𝑢,𝑗 , falls by one node on the grid with probability 𝑝𝑑,𝑗 , and remains

at the current node with probability 1− 𝑝𝑢,𝑗 − 𝑝𝑑,𝑗 . For those dynasties of type 𝑗 with

7We focus on a discrete-time, discrete-state version of such a model to simplify the mathematics
needed for our analytical results.
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wealth at the lowest node 𝑛 = 0, wealth rises to node 𝑛 = 1 with probability 𝑝𝑢,𝑗 and

remains at the lowest node with probability 1 − 𝑝𝑢,𝑗 .
After these idiosyncratic innovations to dynastic wealth have been realized, each

dynasty of type 𝑗 experiences a shock to its type. It remains of the same type 𝑗

with probability 𝜙 𝑗 and transitions to the opposite type with probability 1 − 𝜙 𝑗 .

These transitions of types are independent over time and of dynastic wealth. We

assume that at each date, the fraction of dynasties of type 𝑗 is equal to the fraction

𝜈𝑗 corresponding to the stationary distribution induced by this Markov process over

types.

To aid in the interpretation of these parameters, we use 𝜇𝑗 and 𝜎2
𝑗

to denote the

annualized expected value and variance of innovations to the logarithm of wealth for

dynasties of type 𝑗 and we use 𝜅 𝑗 to denote the annualized rate at which dynasties of

type 𝑗 switch type.8

We interpret these idiosyncratic innovations to wealth for each dynasty as aris-

ing from idiosyncratic shocks to returns on wealth together with a constant, type-

dependent propensity to consume out of wealth. Thus differences across types in the

expected growth rate of wealth can arise from differences in type-specific expected

returns or from differences in the propensity to consume out of wealth. We interpret

differences in the volatility of innovations to wealth for different types of dynasties

as arise from differences in the idiosyncratic volatility of returns of their portfolios.

We interpret the event of a dynasty switching from type𝐷 to type 𝐹 as the founding

of a new firm that is initially closely held by one dynasty. We interpret the event of

a dynasty switching from type 𝐹 to type 𝐷 as the choice of a dynasty with a family

firm to sell their interest in the firm and diversify its portfolio.

The fraction of dynasties of type 𝑗 with wealth equal to𝑊(𝑛) at time 𝑡 is denoted by

𝑔𝑗 ,𝑡(𝑛). The overall density of the distribution of assets across dynasties is given by

the vector 𝑔𝑡 = 𝜈𝐹𝑔𝐹,𝑡 + 𝜈𝐷𝑔𝐷,𝑡 . The evolution of the two densities of wealth by type

from 𝑡 to 𝑡 + 1 can be described by an operator Twhose definition is straightforward

but notationally tedious, so we put that definition in Appendix B.1.

To build intuition for the proofs of our analytical results, we consider the special

8See Appendix B.2 for the mapping between model parameters and these annualized moments.
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case of our model in which dynasties do not switch type. In this simple case, the

distribution of wealth for each type of dynasty evolves independently of the other as

described by type-specific operators T𝑗 for 𝑗 = 𝐹, 𝐷 defined for nodes 𝑛 ≥ 1 of the

grid of wealth levels by

𝑔𝑗 ,𝑡+1(𝑛) = 𝑝 𝑗 ,𝑢𝑔𝑗 ,𝑡(𝑛 − 1) + 𝑝 𝑗 ,𝑑𝑔𝑗 ,𝑡(𝑛 + 1) + (1 − 𝑝 𝑗 ,𝑢 − 𝑝 𝑗 ,𝑑)𝑔𝑗 ,𝑡(𝑛) (2.1)

and for the bottom wealth level at 𝑛 = 0 by

𝑔𝑗 ,𝑡+1(0) = 𝑝 𝑗 ,𝑑𝑔𝑗 ,𝑡(1) + (1 − 𝑝 𝑗 ,𝑢)𝑔𝑗 ,𝑡(0). (2.2)

2.2.1 The Steady-State Distribution of Wealth

The problem of finding the steady-state distribution implied by the operatorT reduces

to a problem of solving two linked second-order linear difference equations with

constant coefficients. In Appendix B.4, we use standard results for solving such

difference equations to show that the steady-state densities of log wealth by type are

given by

𝑔𝑠𝑠, 𝑗(𝑛) = 𝑎 𝑗(1 − 𝜆𝑎)𝜆𝑛𝑎 + 𝑏 𝑗(1 − 𝜆𝑏)𝜆𝑛𝑏 (2.3)

for 𝑗 = 𝐹, 𝐷, where 𝑏 𝑗 = (1 − 𝑎 𝑗). Here 𝜆𝑎 and 𝜆𝑏 are the two stable eigenvalues

of the pair of the characteristic equations of the difference equations that define the

operator T. As a normalization, we label the larger of these two eigenvalues as 𝜆𝑎 , so

0 < 𝜆𝑏 < 𝜆𝑎 < 1.

Note that equation 2.3 implies that the steady-state densities of the log of wealth by

dynastic type are given as convex combinations of two geometric distributions over

log wealth levels. We denote these geometric distributions compactly as vectors Λ𝑎

and Λ𝑏 , with Λ𝑖(𝑛) ≡ (1 − 𝜆𝑖)𝜆𝑛𝑖 .

To gain intuition for this characterization of the steady-state distribution, consider

the case in which dynasties do not switch type. In this case, one can solve the

difference equations defining the operators T𝑗 in equations 2.1 and 2.2 by hand for a

stationary solution. In this case, each stationary distribution of log wealth by type 𝑗 is

a single Geometric distribution 𝑔𝑗 ,𝑠𝑠(𝑛) = (1−𝜆 𝑗)𝜆𝑛𝑗 , whose shape is given analytically
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from the distributions of innovations to log wealth for each type: 𝜆 𝑗 = 𝑝𝑢,𝑗/𝑝𝑑,𝑗 .
In the more general case in which dynasties do switch types, there is no simple

analytical solution for the mapping between the parameters of the model and the

parameters of the steady-state distribution of wealth by type in equation 2.3. We

solve for the parameters of the steady-state distribution 𝑎 𝑗 , 𝜆𝑎 , and 𝜆𝑏 numerically as

described in Appendix B.4.

Since the top tail of the distribution of wealth in the data appears Pareto, it is com-

mon to measure inequality at the top of the wealth distribution by the tail coefficient

of that distribution, defined here as the negative of the slope of a graph with the loga-

rithm of wealth on the 𝑥-axis and the logarithm of the fraction of families with wealth

at or above this level on the 𝑦-axis. We denote this tail coefficient at node 𝑛 of our grid

of wealth by 𝜁𝑠𝑠(𝑛). If 𝜆𝑎 > 𝜆𝑏 the limiting tail coefficient of the overall distribution

of wealth for high levels of wealth approaches a constant 𝜁𝑡𝑜𝑝 ≡ − log(𝜆𝑎)/Δ.9

As noted by Jones and Kim (2018), if the top of the wealth distribution is Pareto,

then there is a direct relationship between ratios of top wealth shares and the top

Pareto tail coefficient. Specifically, let 𝑥 > 𝑦 be two top percentiles of the distribution

of wealth and 𝑆(𝑥) and 𝑆(𝑦) be the corresponding shares of aggregate wealth held

by these two top percentiles. If the tail coefficient of the distribution of wealth at the

top is constant at 𝜁(𝑛) = 𝜁𝑡𝑜𝑝 for nodes 𝑛 greater than those corresponding to wealth

percentile 𝑥, then the log of the ratio of these two wealth shares is related to this top

tail coefficient by
𝜁𝑡𝑜𝑝 − 1
𝜁𝑡𝑜𝑝

=
log 𝑆(𝑦) − log 𝑆(𝑥)

log(𝑦) − log(𝑥) (2.4)

We derive this formula and use it to document the dynamics of the shape of the top

of the wealth distribution using estimates of top wealth shares from Piketty et al.

(2018) and Smith et al. (2021) in Appendix B.5.1.

Note that in general there are dynasties of each type at the top of the wealth

distribution. In particular, in steady-state, the fraction of dynasties with wealth equal

9In the case in which dynasties do not switch type, as we shrink the time interval to zero the tail
coefficients for wealth for each type of dynasty approaches the standard formulas when log wealth
follows a Brownian motion with a reflecting barrier at the bottom 𝜁𝑠𝑠, 𝑗 = −2𝜇𝑗/𝜎2

𝑗
for 𝑗 = 𝐹, 𝐷. See

Appendix B.2.
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to𝑊 = exp(𝑛Δ) that own family firms is given by

𝜈𝐹(𝑛) =
𝜈𝐹(𝑎𝐹(1 − 𝜆𝑎)𝜆𝑛𝑎 + (1 − 𝑎𝐹)(1 − 𝜆𝑏)𝜆𝑛𝑏 )

(𝜈𝐹𝑎𝐹 + 𝜈𝐷𝑎𝐷)(1 − 𝜆𝑎)𝜆𝑛𝑎 + (1 − 𝜈𝐹𝑎𝐹 − 𝜈𝐷𝑎𝐷)(1 − 𝜆𝑏)𝜆𝑛𝑏
(2.5)

Thus, with 𝜆𝑎 > 𝜆𝑏 and 𝑎𝐹 > 𝑎𝐷 , the fraction of dynasties at any level of wealth

that own family firms rises with the level of wealth. In our model, it is through this

changing in the mix of dynastic types at each level of wealth that the moments of

innovations to wealth change by wealth level.

2.3 Wealth Mobility and Top Wealth Dynamics

We now consider the determinants of the speed with which the shape of the distri-

bution of top wealth converges to steady-state if we start from an initial distribution

of wealth by dynastic type that does not correspond to the steady-state distribution.

We show analytically, that if the initial distribution of log wealth by type has the

same form as the steady-state distribution (as in equation 2.3), but with a different

tail coefficient of top wealth, then the tail coefficient of top wealth changes over time

only as dynasties transition from the bottom of the wealth distribution to the top.

Thus, the dynamics of the tail coefficient of top wealth over time are tightly connected

to the degree of mobility from the bottom to the top of the distribution of wealth.

Consider the dynamics of the distribution of wealth starting from initial distri-

butions of log wealth by type defined as convex combinations of arbitrary pairs of

geometric distributions of the form

𝑔𝑗 ,0 = 𝑎 𝑗 ,0Λ𝑎,0 + 𝑏 𝑗 ,0Λ𝑏,0 (2.6)

with 𝑎 𝑗 ,0 + 𝑏 𝑗 ,0 = 1 for arbitrary nonnegative weights 𝑎 𝑗 ,0, 𝑏 𝑗 ,0 and arbitrary Λ𝑎,0,Λ𝑏,0

defined by 𝜆𝑎,0 > 𝜆𝑏,0 ∈ [0, 1) with Λ𝑖 ,0(𝑛) ≡ (1 − 𝜆𝑖 ,0)𝜆𝑛𝑖,0 for 𝑖 = 𝑎, 𝑏. Over time,

this pair of initial distributions of log wealth by type converges to the steady-state

distributions 𝑔𝑗 ,𝑠𝑠 given in equation 2.3.

With this notation, we have the initial tail coefficient of the distribution of top

wealth given by lim𝑛→∞ 𝜁0(𝑛) = − log(𝜆𝑎,0)/Δ and the steady-state tail coefficient of
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the distribution of top wealth given by lim𝑛→∞ 𝜁𝑠𝑠(𝑛) = − log(𝜆𝑎,𝑠𝑠)/Δ.

To describe this evolution of the distribution of wealth, and more specifically the

evolution the tail coefficient of top wealth, we now analyze the results of repeated

application of the operator T to the initial distribution of wealth given by equation

2.6. We do so as follows. Let the vector 1 denote a distribution of wealth across nodes

in our grid of wealth that places weight one on the lowest node 𝑛 = 0 and zero on all

other nodes. This distribution corresponds to the wealth distribution for a cohort of

dynasties starting at the bottom of the wealth distribution. We then have, by direct

calculations provided in Appendix B.3, the following result:

Main Proposition: The pair of densities of log wealth by dynastic type at date 𝑡 of

the transition to steady-state starting from initial densities in equation 2.6 are given

by


𝑔𝐹,𝑡

𝑔𝐷,𝑡

 =


𝑎𝐹,𝑡Λ𝑎,0

𝑎𝐷,𝑡Λ𝑎,0

 +

𝑏𝐹,𝑡Λ𝑏,0

𝑏𝐷,𝑡Λ𝑏,0

 +
𝑡−1∑
𝑘=0
T𝑘


𝑐𝐹,𝑡−𝑘1

𝑐𝐷,𝑡−𝑘1

 . (2.7)

where 𝑎 𝑗 ,𝑡 , 𝑏 𝑗 ,𝑡 and 𝑐 𝑗 ,𝑡 are scalars that depend on parameters that govern the rates

at which dynasties switch types and the initial weights 𝑎𝐹,0, 𝑎𝐷,0 as described in

Appendix B.3.

This result in equation 2.7 implies that the distributions of wealth by type at time

𝑡 of the transition to steady-state are each a convex combination of the two original

geometric distributions Λ𝑎,0 and Λ𝑏,0 that define the initial distribution of wealth in

equation 2.6, and distributions of wealth for cohorts that started at the bottom of the

wealth distribution in each of the periods from 𝑡 back to period 1 of the transition

as captured by the final summation in equation 2.7. This result implies that the tail

coefficient of the distribution of wealth at high levels of wealth at time 𝑡 remains

equal to its initial value of lim𝑛→∞ 𝜁0(𝑛) = log(𝜆𝑎,0)/Δ until enough time has passed

for the distribution of wealth for cohorts starting at the bottom has had time to reach

those high levels of wealth. If this mobility from bottom to top wealth levels is slow,

then this transition of the tail coefficient at the top of the wealth distribution is slow,

while if this wealth mobility from the bottom to top wealth levels is fast, then it is

possible to have fast transitions of the tail coefficient of the distribution of wealth at
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the top.

One can gain intuition for this result in equation 2.7 by considering the calculations

involved in the following simple case.

Corollary: If dynasties do not switch types and the initial distributions of wealth

by dynastic type 𝑗 are each single geometric distributions Λ𝑗 ,0(𝑛) = (1 − 𝜆 𝑗 ,0)𝜆𝑛𝑗,0 ,

then we have that the density of log wealth for dynasties of type 𝑗 = 𝐹, 𝐷 at time 𝑡 is

given by

𝑔𝑗 ,𝑡 = 𝐴𝑡𝑗Λ𝑗 ,0 + (1 − 𝐴 𝑗)
𝑡−1∑
𝑘=0

𝐴𝑡−1−𝑘
𝑗 T𝑘𝑗 (1) (2.8)

where 𝐴 𝑗 is a scalar given by

𝐴 𝑗 ≡
(
𝑝 𝑗 ,𝑑(1 − 𝜆 𝑗 ,0)(

𝜆 𝑗 ,𝑠𝑠
𝜆 𝑗 ,0

− 1) + 1
)

Here T𝑗 defined by equations 2.1 and 2.2 and 𝜆 𝑗 ,𝑠𝑠 = 𝑝 𝑗 ,𝑢/𝑝 𝑗 ,𝑑 as discussed in section

2.2.1.

Proof: Direct calculation using equations 2.1 and 2.2 above gives that

T𝑗(Λ𝑗 ,0) = 𝐴 𝑗Λ𝑗 ,0 + (1 − 𝐴 𝑗)1 (2.9)

The operator T𝑗 is linear. Repeated application of this operator to calculate 𝑔𝑗 ,𝑡+1 =

T𝑗(𝑔𝑗 ,𝑡) starting from 𝑔𝑗 ,0 = Λ𝑗 ,0 then gives the result.

The key insight to the proof of this corollary is that, if the initial distribution of

log wealth has a geometric distribution and hence a top tail coefficient described by

the parameter 𝜆 𝑗 ,0, then, as described in equation 2.9, the idiosyncratic innovations

to log wealth described in equation 2.1 do not change the shape of this geometric

distribution as measured by its tail coefficient away from the reflecting barrier at the

bottom of the distribution of wealth. In the case that the initial distribution is equal

to the steady-state distribution (so 𝜆 𝑗 ,0 = 𝜆 𝑗 ,𝑠𝑠), this result is immediate. Our result

follows from the observation that this same property holds for any initial geometric

distribution of log wealth.10

10Aleh Tsyvinski kindly provided us with a proof of this corollary directly in continuous time when
the log of wealth follows a Brownian motion with a reflecting barrier at the bottom. We reproduce
this proof in Appendix B.3.2.
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This main insight carries through to the case in which dynasties do switch types.

In this case, the formulas for the evolution of the weights 𝑎 𝑗 ,𝑡 , 𝑏 𝑗 ,𝑡 , 𝑐 𝑗 ,𝑡 in equation 2.7

are more complex due to the impact of dynasties switching types on the evolution

of the densities of wealth by type, but the main result that the shapes of the initial

pair of geometric distributions in equation 2.6 is preserved by the operator T except

at the reflecting barrier at the bottom of the distribution of wealth carries through to

this case as in equation 2.7.

Gabaix et al. (2016) use an alternative approach to analyze the dynamics of the

distribution of wealth to steady-state in the case in which dynasties do not switch

types based on a spectral analysis of the continuous time analog of the operator T𝑗 .

For the interested reader, in Appendix B.6, we provide direct analogs of their spectral

analysis in our discrete-time discrete-state setting for this case with no switching of

types. We do so for the case in which there is also a reflecting barrier at the top of

the grid of wealth (so 𝑁 < ∞). In this case, the operator T𝑗 is an 𝑁 × 𝑁 dimensional

Markov transition matrix whose (slowest) convergence dynamics to the steady-state

distribution are characterized by the second largest eigenvalue of this matrix. In this

special case, the eigenvalues of the matrix T𝑗 have an analytical solution as a function

of the mean and standard deviation of innovations to wealth for that one type of

dynasty as presented in equation (13) of Gabaix et al. (2016).

In contrast, our result in equation 2.7 is not a calculation of the eigenvalues of the

operator T. Instead, it is a decomposition of the dynamics of distributions implied

by that operator starting from a particular class of initial conditions. Moreover, our

result 2.7 holds when dynasties do switch types. We see the principal difference

between our result and theirs is that our analysis directly highlights the connection

between the speed of wealth mobility from the bottom of the wealth distribution

to the top and the dynamics of the shape of the top of the wealth distribution as it

converges to steady state in way which is not readily apparent from the calculation

of the eigenvalues and eigenvectors of a large Markov transition matrix.
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2.4 Quantitative Implications of the Model

We now ask whether a version of our model calibrated to match data on the con-

centration of top wealth and moments of innovations to wealth across the wealth

distribution can account for rapid mobility from the bottom to the top of the wealth

distribution as measured by the prevalence of self-made top fortunes and for the

rapid dynamics of the shape of the top of the wealth distribution in the US over the

last 50 years.

For data on the dynamics of the shape of the top of the distribution of wealth

in the US, we rely on recent estimates on the tail coefficient of top wealth from

Vermuelen (2018) and of the evolution of that tail coefficient of top wealth over time

using equation 2.4 and estimated top wealth shares from Piketty et al. (2018) and

Smith et al. (2021). These sources give an estimate of the tail coefficient of top wealth

close to 1.85 in the late 1960’s and early 1970’s corresponding to a ratio of the wealth

share of the top 0.01% to that of the top 0.1% close to 0.35. The estimate of the tail

coefficient of top wealth in recent years implied by these sources using equation 2.4

is between 1.4 and 1.5 corresponding to estimates of the ratio of the wealth share of

the top 0.01% to that of the top 0.1% in the range of 0.46 to 0.52. We review these

data on top wealth shares in greater detail in Appendix B.5.

For data on the moments of innovations to wealth by wealth level, we cite estimates

using administrative data from Sweden as reported in Bach et al. (2020). We use these

data as they are the most complete data of this kind available. These authors find

that both the expected growth in wealth and the standard deviation of innovations

to wealth rise with the level of wealth. Their findings on the standard deviation of

innovations to wealth at the top of the wealth distribution in Sweden are similar to

that reported in Gomez (2023) for the American households in the Forbes 400.

Our calibration strategy has two steps. Details are provided in Appendix B.5.

In the first step, we set the unconditional fraction of dynasties that have family

firms and the rates at which dynasties switch types to match data on entrepreneur-

ship and business dynamics. Cagetti and De Nardi (2009) find that the fraction of

entrepreneurs in the U.S. population is 7.6%. Hurst and Pugsley (2009) argue that

many of these entrepreneurs do not intend to grow their businesses. We choose to
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set 𝜈𝐹 = 5% as a balance between these two papers. We set the rate at which families

switch from the Family Firm type to the Diversified type to 𝜅𝐹 = 1/15. Thus, 6.66%

of family firms diversify each year. This switching rate is roughly consistent with the

data on the agent distribution of small business shown in Bhandari and McGrattan

(2021). We choose a switching rate slightly slower than implied by that data so that

the model will allow for the existence of family firms that are held by one family for

multiple generations.

Second, we search for values of the mean and standard deviation of innovations

to log wealth for the two types of dynasties to match the following four calibration

targets:

(a) the tail coefficient of top wealth to 𝜁 = 1.43, corresponding to a ratio of wealth

shares for the top 0.01% and the top 0.1% of 0.5,

(b) the difference in expected growth rates in the level of wealth of families at the

top 0.1% and the bottom of the wealth distribution of 5.69%,

(c) the cross-sectional dispersion of innovations to log wealth for families at the

bottom of the wealth distribution of 8.13%, and

(d) the cross-sectional dispersion of innovations to log wealth for families at the

top 0.01% of the wealth distribution of 35.79%.

The moment (a) is estimated using data on ratios of wealth shares in recent years

as described above. The moment (b) is taken from Bach et al. (2020) Table 1 column

1. The moments (c) and (d) are taken from Bach et al. (2020) Table 8, column 1.

The resulting model parameters are shown in row A of Table B.1.

We now consider several additional implications of our calibrated model.

The implied fraction of dynasties at the bottom of the wealth distribution that

have family firms is only 0.3% while the fraction at the top it is 65%. We show how

the moments of innovations to wealth in the model vary by the level of wealth in

Appendix Figure B.4.

Our calibration entails a very high standard deviation of innovations to log wealth

for family firms to match the overall dispersion of wealth growth at the top of the

wealth distribution in moment (d). We argue as follows that the data in Gomez

(2023) on the distribution of innovations to wealth for members of the Forbes 400
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is consistent with our hypothesis that a significant portion of those at the top of

the wealth distribution have a very large standard deviation of innovations to their

wealth. Specifically, innovations to log wealth at the top of the wealth distribution

in our model are given as a mixture of two normal distributions. Hence, our model

implies that the distribution of such innovations to top wealth has fat tails. In

Appendix B.5 we show that our calibrated model implies that this distribution of

innovations to top wealth has an excess kurtosis that is actually conservative relative

to the findings of Gomez (2023) regarding the large excess kurtosis of innovations

to log wealth for members of the Forbes 400. Moreover, our model replicates the

findings in Gomez (2023) that less than 10% of the families in the Forbes 400 in 1983

remain on this list today.

In Figure B.1, in the left panel (B.1a), we show the implications of this model for

mobility of dynasties from the bottom of the distribution to the top. Specifically,

we show the fraction of those dynasties above the percentile corresponding to the

Forbes 400 who were at the bottom of the distribution of wealth 𝑘 or fewer years ago,

with 𝑘 on the 𝑥-axis and the corresponding fraction of the most wealthy dynasties

on the 𝑦-axis. We see that 63% of the Forbes 400 in the model were at the bottom

of the wealth distribution within the last 50 years. In this sense, the model is nearly

successful in reproducing the finding by Forbes magazine that, in 2021, 70% of those

in the Forbes 400 are self made.

In the right panel of this figure (B.1b), we illustrate the model’s implications for

the speed of transition of the tail coefficient of wealth to steady-state starting from

an initial distribution as in equation 2.6 in which Λ𝑎,0 = Λ𝑏,0 with a common tail

coefficient at all levels of wealth of 𝜁0 = 1.85. As described above, this estimated tail

coefficient is consistent with a ratio of wealth shares for the top 0.01% to that for the

top 0.1% of 0.35 as reported in Piketty et al. (2018) and Smith et al. (2021) for the late

1960’s and early 1970’s.

We show in this figure the convergence of the tail coefficient from its initial value of

𝜁0 = 1.85 towards its steady-state value of 𝜁𝑠𝑠 = 1.43 at wealth levels corresponding

to the top 0.1%, 0.01%, and the Forbes 400. We see in this figure that the conver-

gence of this tail coefficient takes five to ten years to get started and proceeds more
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rapidly lower down in the distribution of wealth. That is, as indicated by our main

proposition, the shape of the wealth distribution changes more slowly higher up in

the distribution because this shape above any wealth level changes only as cohorts of

dynasties starting at the bottom have had time reach that wealth level.

The central quantitative implication of the model presented in this paper is that

the presence of a small minority of dynasties with portfolios subjected to high id-

iosyncratic volatility is crucial in accounting for the prevalence of large new fortunes

as well as rapid changes in top wealth inequality. To illustrate this implication we

consider two alternative calibrations of the model wherein we reduce 𝜎𝐹, the volatil-

ity for the family firm type, to 75% and 50% of its baseline value. We implement

this experiment by re-calibrating the model as follows. We maintain targets a)-c)

while replacing target d), the dispersion in wealth growth rates at the top of the

distribution, by directly setting 𝜎𝐹 to 75% and 50% of its baseline value, respectively.

The resulting parameter values are reported in rows B and C of Table B.1.

In Figure B.2 we compare the baseline calibration of the model to the two alternative

calibrations along two dimensions. Figure (B.2a) compares the transition of the tail

coefficient measured at the node corresponding to the Forbes 400. Figure (B.2b)

displays the transition of the ratio of the top 0.01% to the top 0.1% wealth shares.

The relatively slower transitions in these alternative calibrations suggest that the

absence of dynasties subjected to very large idiosyncratic volatility prevents the

model from being able to account for rapid dynamics of top wealth inequality as

measured by changes in the tail coefficient and in ratios of top wealth shares. As

for the prevalence of new fortunes, these alternative calibrations also display lower

values for the fractions of those dynasties above the percentile corresponding to the

Forbes 400 who were at the bottom of the distribution within the last 50 years. In the

baseline calibration this fraction is 63%. When 𝜎𝐹 is at 75% of its baseline value the

fraction is 20%, and when 𝜎𝐹 is at 50% of its baseline value the fraction is close to 0.

In this paper, we focus specifically on a model in which innovations to wealth for

dynasties depends on their type, rather than on their level of wealth. Hubmer et al.

(2021) calibrate a rich quantitative model of wealth dynamics in which the innovations

to wealth depend on the level of wealth. In that model, they consider a relatively
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small standard deviation of innovations to wealth at the top of the distribution of

wealth. (See Figure 6 in that paper). Consistent with our findings in experiment C,

they find that their model implies virtually no change in the shape of the top of the

wealth distribution as measured by the model-implied ratios of wealth shares for the

top 0.01% and 0.1% over 50 years as reported in Table 3 in their paper.

2.5 Directions for Future Research

We see several directions for future research suggested by our results.

One is positive. How have changes in the idiosyncratic volatilities of firm value over

time (see Herskovic et al. (2016)) and/or differences in this idiosyncratic volatilities

across countries (see Bekaert et al. (2023)) impacted differences in the distribution of

top wealth? We explore this question in Atkeson and Irie (2020).

One is normative. What are the welfare implications of inequality if such inequality

is driven by uninsured idiosyncratic risk? See, for example Lucas Jr. (1992). To

give a satisfactory answer to this question, we must ask why do we families making

undiversified investments in family firms for multiple generations? And what impact

does policy have on this portfolio choice? See for example Bertrand and Schoar (2006),

Aoki and Nirei (2017), Peter (2021), and Phelan (2019).

We see these as fruitful avenues for future research.
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Chapter 3

Wealth Inequality and Changing Asset

Valuations in the Distributional

National Accounts

In this paper, I study whether the rise in measured wealth inequality in the Distribu-

tional National Accounts (DINA) provided by Piketty et al. (2018) can be accounted

for by a combination of changing asset prices on the one hand, and household het-

erogeneity in portfolio compositions on the other. In particular, I study the gap

between the share of wealth held by individuals in the top quantiles of the wealth

distribution, and the same individuals’ share of the capital income flows associated

with that wealth. I find that the size of this gap varies a lot over time, being especially

large after the financial crisis of 2008. However, the steady rise in top wealth shares

since the late 1970s, is not primarily accounted for by a rise in the size of this gap.

Rather, top wealth shares and shares of the associated cash flows rise together. I

also examine whether the rise in measured wealth inequality is primarily associated

with increasingly concentrated distributions of wealth within broad asset classes or

with differences in performance between those asset classes. I find that the trend

rise in measured wealth inequality is primarily associated with an increase in the

concentration of wealth within asset classes.
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3.1 Introduction

Measured wealth concentration has risen in the United States over the past half

century. Among the more recent studies documenting this, Saez and Zucman (2016)

and Smith et al. (2022b) estimate wealth from data on income by “capitalizing” income

flows observed on tax returns (see also Giffen (1913), Stewart (1939), Saez and Zucman

(2020), and Bricker et al. (2016)). Because direct data on individual-level wealth

is scant, this method estimates wealth by multiplying the types of capital income

observed on tax returns—dividends, interest income, business income, and so on—by

time-varying and asset type-specific “capitalization factors”. The end-product of this

so-called capitalization method is an estimate of the joint distribution of wealth and

its associated capital income flows.

A version of this estimated joint distribution is made available through the public-

use Distributional National Accounts (DINA) microdata provided by Piketty et al.

(2018). The asset type-specific capitalization factors used to estimate wealth from

capital income change over time, year-by-year. As these valuation multiples for the

different types of asset income move relative to one another over time, the estimated

wealth distribution changes, even if the underlying distributions of the associated

capital income flows remain stable. This raises the question: how much of the

observed increase in wealth inequality is due to changes in capitalization factors

rather than shifts in the distribution of underlying capital income flows?

In this paper, I study this question using the estimated joint distribution of wealth

and its associated capital income flows in the DINA data. I first ask: to what extent

has the rise in measured wealth concentration in the DINA data been accompanied

by a corresponding rise in the concentration of the associated capital income flows

generated by that wealth?

Why is this interesting? The asset pricing literature distinguishes between changes

in the price of an asset that are driven by changes in the expected the cash flows

generated by the asset, and changes in the market valuation of those cash flows. The

former kind of asset price movements are sometimes referred to as cash flow induced

asset price movements, or slightly misleadingly “fundamental”. The latter kind of

asset price movements are sometimes referred to as discount rate induced asset price
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movements, or slightly misleadingly changes in “valuations”. This distinction has

interesting implications for our understanding of the rise in wealth inequality. If the

rise in wealth concentration is driven by the fact that wealthy households are more

likely hold portfolios that are sensitive to changes in valuations, then it is entirely

possible that the rise in wealth concentration has not been accompanied by a rise in

the concentration of the associated capital income flows. This would cast doubt on

theories of top wealth inequality wherein the rise in wealth concentration is primarily

based on economic fundamentals.

To evaluate the role of changes in the distribution of capital income flows versus

changes in valuations in accounting for the measured rise in wealth inequality in the

DINA data, I rank individuals based on the measure of wealth in this data, identify

individuals belonging to various top quantiles of this wealth distribution, and com-

pute the share of the associated capital income flows that those same individuals

receive. Note that this is not a question about the marginal distribution of capital

income, but a question about the joint distribution of wealth and capital income.

I find that there is a gap between the share of wealth held by top quantiles of the

wealth distribution, and the share of income received by these individuals. I also find

that the size of this gap varies a lot over time, being especially large after the crisis

of 2008. But I also find that over longer horizons the trend rise in top wealth shares

documented in the DINA data is accounted for by a rise of similar magnitude in the

shares of the associated cash flows, rather than a steady increase in the size of the

aforementioned gap. If one takes the joint distribution of wealth and its associated

cash flows estimated in DINA seriously, these findings suggest that theories relying

solely on changing valuations of a stable distribution of income flows for explaining

the rise in top wealth shares, are insufficient.

To interpret these results, it is important to understand how the capitalization

method for estimating wealth works. This is because the result might partly be a

mechanical artefact of this particular method of estimating the wealth distribution.

As explained in both Saez and Zucman (2016) and Smith et al. (2022b), this method

begins by breaking down the capital income observed on tax returns into different

categories. This categorization is based on the source of the income: dividends,
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interest, business income etc. The asset holdings𝑊𝑖 𝑗 of individual 𝑖 in asset category

𝑗, is estimated from the corresponding asset income 𝐼𝑖 𝑗 , by positing that asset hold-

ings are proportional to the associated asset income: 𝑊𝑖 𝑗 =
1
𝑟 𝑗
𝐼𝑖 𝑗 . Here, 1

𝑟 𝑗
is an asset

category-specific “capitalization factor”. These capitalization factors are based on

estimates of the yield 𝑟 𝑗 , for each asset category. In this basic version of the capital-

ization method, wealth is proportional to income within each asset category, with the

same proportionality for everyone, namely the asset category-specific capitalization

factor. This means that wealth shares and shares of cash flows are identical on a

category-by-category basis. However, this is not the case for overall wealth shares

and the associated shares of overall capital income in the DINA data. In particular,

the fact that capitalization factors are different for different asset categories, com-

bined with the fact that portfolio compositions vary systematically along the wealth

distribution, introduces a gap between wealth shares and shares of the associated

capital income flows.1

Focusing in particular on the income flows associated with the assets that consti-

tute wealth, the results in this paper agree with those of Kuhn et al. (2020) in that

there are extended periods where there is a substantial disconnect between the dis-

tribution of wealth on the one hand and the distribution of income on the other.2

As capitalization factors and the degree of portfolio heterogeneity along the wealth

distribution varies over time, the gap between wealth shares and shares of the capital

income flows associated with that wealth, also varies. Movements in top wealth

shares can therefore be understood as movements in this gap, or movements in the

distribution of the underlying cash flows. The results in this paper suggest that top

wealth shares in the DINA data do move around a lot in response to movements in

the gap, but that the trend rise in top wealth shares in the data is mostly due to a rise

in the concentration of the underlying cash flows.

Additionally, a by-product of the capitalization method is the implied estimation of

asset allocation decisions across broad asset categories within the wealth distribution.

1An additional reason why wealth shares and capital income shares are not identical in the DINA
data is also that Piketty et al. (2018) make various adjustment to the basic capitalization method
described above.

2In contrast to Kuhn et al. (2020), I focus on the capital income associated with the assets that
constitute wealth, and are used to estimate wealth in the capitalization method, rather than overall all
income (which also includes labor income).
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Because asset allocations vary substantially along the wealth distribution, changes

in the relative performance of the different asset classes lead to changes in measured

top wealth shares, even if the distribution of wealth within each asset class is stable.

For instance, top wealth shares rise when equity prices rise relative to house prices

because wealthy households tend to invest more heavily in stocks. The second

question I study in this paper is therefore: to what extent is the measured rise in

top wealth shares in the DINA data accounted for by an out-performance of asset

categories more prevalent in the portfolios of wealthy households relative to other

households, as opposed to increasingly concentrated distributions of wealth within

asset categories. I do this by means of a simple accounting decomposition.

Specifically, the share of wealth held by individuals belonging to a top quantile can

be written as a weighted average those individuals’ shares of wealth within each asset

class, where the weights are the aggregate portfolio weights of each asset class. This

invites a simple decomposition: how much of the increase in the wealth shares of top

quantiles is accounted for by changes in the weights, and how much is accounted for

by changes in the within-asset class wealth shares? Borrowing the language of Kuhn

et al. (2020): should we understand variation in top wealth shares as a “race” between

broad asset classes (housing versus equity for instance) that wealthy and less wealthy

households make different asset allocation decisions about? I find that variation in

the relative performance at the asset class level do induce meaningful swings in top

wealth shares in the DINA data. However, I also find that the trend rise in top wealth

shares measured in this data set since the late 1970s is overwhelmingly accounted

for by increasingly concentrated distributions of wealth within asset classes.

3.1.1 Related Literature

A large and growing literature studies the evolution of wealth inequality in the United

States (Kopczuk and Saez (2004), Saez and Zucman (2016), Bricker et al. (2016), Bricker

et al. (2018), Batty et al. (2019), Catherine et al. (2020), Saez and Zucman (2020), Smith

et al. (2022b)). Several recent papers highlight the potential connection between

movements in asset prices and variations in top wealth shares (Gomez (2024), Bach

et al. (2020), Greenwald et al. (2023), Kuhn et al. (2020)). Studies in this literature
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emphasize that not all sources of changes in asset prices have the same welfare

implications, focusing particularly on the the distinction between discount rate driven

versus cash flows driven asset price variation. This is highlighted in Cochrane (2020),

explained in Moll (2020), and further studied in Fagereng et al. (2023) and Greenwald

et al. (2023). A key implication of purely discount rate driven asset price variation

is that it leads to variation in wealth inequality without corresponding rise in the

concentration of cash flows generated by that wealth, or as expressed in Cochrane

(2020): “In sum, much of the increase in wealth inequality reflects higher market

values of the same income flows. Such increases indicate nothing about increases

in lifetime consumption inequality, which better reflect individual command over

resources”.

I study whether the rise in measured top wealth shares does indeed reflect variation

in the associated cash flow shares in the context of the DINA data.3 The distinction

between cash flow-induced and discount rate-induced asset price changes has been

fruitfully used in the empirical asset pricing literature to understand the sources of

asset price variation (Campbell and Shiller (1988), Cochrane (2011)). In reviewing this

literature, Cochrane (2011) argues that the a lot of the variation in asset prices across a

wide range of broad asset classes is due to discount rate variation rather than cash flow

variation. This conclusion is questioned by Larrain and Yogo (2008), who emphasize

the importance of expected cash flow variation. Similarly, looking at individual stocks

rather than broad indices, Vuolteenaho (2002) also concludes that expected cash flow

variation is more important. Other papers in this literature focus on the impacts

of the combination of changing asset prices on the one hand, and heterogeneity in

asset allocations along the wealth distribution on the other (see Fagereng et al. (2020),

Bach et al. (2020), Kuhn et al. (2020), and Balloch and Richers (2021) for studies on

return and asset allocation heterogeneity along the wealth distribution from a more

empirical perspective, and Pástor and Veronesi (2016), Cioffi (2021) and Gomez (2024)

for more theoretical perspectives). For instance, Kuhn et al. (2020) document that

top wealth shares rise when stock prices rise, and fall when house prices rise. The

3I emphasize that I study the measured rise in wealth inequality according to the distribution of
wealth estimated in the DINA data, critiques of the methodology behind these estimates are numerous,
including Bricker et al. (2016), Smith et al. (2022b), Batty et al. (2019) and Bhandari et al. (2020).
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present paper also studies how the relative performance of different asset classes

impacts top wealth shares. I decompose the rise in top wealth shares in the DINA

data in to a component related to changes in the relative performance between broad

asset classes versus changes in wealth shares within asset classes. Like Kuhn et al.

(2020) I find that top wealth shares rise between periods were asset classes primarily

held by the wealthy perform well. However, I also find that the trend rise in top

wealth shares since the late 1970s, documented in the DINA data, is more associated

with an increase in the concentration of wealth within asset classes.

Finally, the results in this paper relate to theories of why top wealth shares have

risen. Specifically, they suggest that theories of rising wealth inequality should be

consistent with the observation that the cash flows associated with wealth have also

become more concentrated in the hands of the wealthy. This includes a wide range of

theories related to technology and automation (Moll et al. (2022)), entrepreneurship

and the financial conditions of entrepreneurs (Gomez and Gouin-Bonenfant (2024),

Jones and Kim (2018), Atkeson and Irie (2022), Irie (2023a)), and taxation and redis-

tribution (Kaymak and Poschke (2016), Hubmer et al. (2021)). The results suggest

that theories that are only based on changes in the valuations of a given distribution

of income flows are insufficient for understanding the rise in wealth inequality.

3.2 Shares of Wealth and Shares of Income Flows in

DINA.

The Distributional National Accounts provided by Piketty et al. (2018), the DINA

consists of “a set of annual micro-files representative of the U.S. economy, where

each line is a synthetic individual created by combining tax, survey, and national

account data, and each column is a variable of the national accounts“.4 Because

individual data on wealth is hard to come by, DINA relies heavily on the so-called

“capitalization method”. I will discuss this method in detail in the next section where

I interpret the results presented in this section.

4I use the versions of the DINA files that are made available online by the authors, the so-called
“external-use” files. The details of these data files can be found in the Codebook associated with
Piketty et al. (2018).
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The aim of this section is to study the joint distribution of wealth and the cash flows

associated with that wealth. In particular, we are interested in understanding the

extent to which the rise in measured top wealth shares in the DINA data is accounted

for by a larger gap between the wealth shares and the associated cash flow shares,

or if the rise is accounted for by a more concentrated distribution of the underlying

cash flows.

Figure 3.1 depicts the share of wealth held by the top 10%, 1%, 0.1% and 0.01%

of the wealth distribution. respectively, according to the DINA data, along with the

share of the associated capital income flows received by these individuals.

Specifically, according to the measure of wealth in the DINA, wealth consists of

equities, fixed income assets, housing, various forms of business assets, pension

wealth, net of debt:

𝑊𝑖𝑡 =
∑
𝑗∈𝐽
𝑊

𝑗

𝑖𝑡
. (3.1)

Here, 𝑊𝑖𝑡 is the overall wealth of individual 𝑖 at time 𝑡, which is the sum across the

aforementioned categories of wealth indexed by 𝑗, denoted 𝑊 𝑗

𝑖𝑡
. I rank individuals

based on this measure of wealth, identify the individuals belonging to various top

quantiles, 𝑞, of the wealth distribution, and compute their share of wealth relative to

the wealth of all individuals in the dataset:

𝑠
top q%
𝑡 =

∑
𝑖∈top q%𝑊𝑖𝑡∑

𝑖𝑊𝑖𝑡
(3.2)

Moreover, each of the components of wealth are associated with a cash flow consisting

of the associated capital income. Dividends, interest income, rents, various forms of

private business income, and pension income (excluding social security). Summing

all these forms of income, I compute the share of these income flows received by the

individuals within the top 𝑞% of the wealth distribution

𝑠
top q%
𝑡 =

∑
𝑖∈top q% 𝐼𝑖𝑡∑

𝑖 𝐼𝑖𝑡
(3.3)

Note that 𝑠top q%
𝑡 is a statistic related to the joint distribution of wealth and capital

income. It is not the share of capital income flows received by the top q% of the
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capital income distribution.

The left panel of Figure 3.1 depicts the evolution of 𝑠top q%
𝑡 and 𝑠

top q%
𝑡 over time,

and the right panel depicts the gap between the them. Three features stand out

from Figure 3.1. Firstly, there is a gap for all top quantiles, sometimes positive,

sometimes negative. Secondly, the size of this gap varies substantially over time. For

the top 1% and above, the gap is especially large during the dotcom boom and in the

2010s. However, the third observation that stands out is how remarkably similar the

evolution of these two shares are over longer time horizons. In summary, over shorter

horizons, the share of wealth held by top quantiles of the wealth distribution may

deviate from the share of the associated capital income flows they receive. However,

the trend rise in top wealth shares documented in the DINA data is accounted for by

a trend rise in the concentration of the associated cash flows. What determines the

size of this gap? Why does it move over time? And looking at the very top wealth

shares, why does it seem to be large during the dotcom boom and in the period after

the financial crisis?

These questions are the topic of the next section, where I discuss how the method

for estimating wealth in the DINA data influences the measured size of this gap and

how it varies over time.

3.3 A Gap Between Wealth Shares and Shares of the Un-

derlying Capital Income Flows: Analytical Frame-

work

In this section, I use a simple analytical framework to illustrate precisely how the cap-

italization method for estimating wealth from income flows generates a gap between

wealth shares and shares of the underlying income flows when household portfolios

are heterogeneous along the wealth distribution. The purpose is to examine the

determinants of the size of this gap, which is visible in the DINA data in Figure 3.1.

I begin by briefly covering the basics of the capitalization method.5 This crucially

5See Saez and Zucman (2016) and Smith et al. (2022b) for further discussions of this method.

98



1960 1970 1980 1990 2000 2010 2020
Year

0.62

0.64

0.66

0.68

0.70

0.72

Sh
ar

e

Top 10% Shares Over Time
Top 10% Wealth Share
Top 10% Fiscal Income Share

1960 1970 1980 1990 2000 2010 2020
Year

0.06

0.04

0.02

0.00

0.02

0.04

Di
ffe

re
nc

e 
in

 S
ha

re

Difference Between Top 10% Wealth and Fiscal Income Shares Over Time
Difference (Wealth - Fiscal Income Shares)

1960 1970 1980 1990 2000 2010 2020
Year

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Sh
ar

e

Top 1% Shares Over Time
Top 1% Wealth Share
Top 1% Fiscal Income Share

1960 1970 1980 1990 2000 2010 2020
Year

0.04

0.02

0.00

0.02

0.04

Di
ffe

re
nc

e 
in

 S
ha

re

Difference Between Top 1% Wealth and Fiscal Income Shares Over Time
Difference (Wealth - Fiscal Income Shares)

1960 1970 1980 1990 2000 2010 2020
Year

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Sh
ar

e

Top 0.1% Shares Over Time
Top 0.1% Wealth Share
Top 0.1% Fiscal Income Share

1960 1970 1980 1990 2000 2010 2020
Year

0.00

0.01

0.02

0.03

Di
ffe

re
nc

e 
in

 S
ha

re

Difference Between Top 0.1% Wealth and Fiscal Income Shares Over Time
Difference (Wealth - Fiscal Income Shares)

1960 1970 1980 1990 2000 2010 2020
Year

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Sh
ar

e

Top 0.01% Shares Over Time
Top 0.01% Wealth Share
Top 0.01% Fiscal Income Share

1960 1970 1980 1990 2000 2010 2020
Year

0.005

0.000

0.005

0.010

0.015

0.020

0.025

Di
ffe

re
nc

e 
in

 S
ha

re

Difference Between Top 0.01% Wealth and Fiscal Income Shares Over Time
Difference (Wealth - Fiscal Income Shares)

Figure 3.1: On the left is the share of wealth held by top quantiles (top 10%, 1%, 0.1% and 0.01%)
of overall wealth distribution 𝑠top q%

𝑡 defined in equation 3.2 along with their share of the associated
capital income flows observed on tax returns (fiscal capital income) 𝑠top q%

𝑡 defined in equation 3.3.
On the right is the gap between these wealth shares and the associated fiscal capital income shares
𝑠

top q %
𝑡 − 𝑠top q%

𝑡 . All computations using the DINA data provided by Piketty et al. (2018).
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depends on the combination of heterogeneity in portfolio compositions along the

estimated wealth distribution on the one hand, and heterogeneity in capitalization

factors across asset categories on the other.

3.3.1 How Does the Capitalization Method Work?

In this section, I describe the capitalization method, which is at the heart of the wealth

distribution estimates of both Saez and Zucman (2016) and Smith et al. (2022b). The

most basic version of the capitalization method begins by breaking down asset in-

come, observed on income tax returns, into different asset categories. Asset holdings

for each category of asset is then estimated by multiplying the asset income by a

time-varying and category specific valuation ratio, a “capitalization factor”. The

capitalization factor is the wealth-to-income rate for each specific asset category.

For instance, the capitalization factor for fixed income assets at time 𝑡, denoted 𝜙FI
𝑡 ,

is the ratio of the total value of fixed income assets in the economy, denoted 𝑊FI
𝑡 , to

the total interest income in the economy, denoted 𝐼FI
𝑡 . In other words,

𝜙FI
𝑡 =

𝑊FI
𝑡

𝐼FI
𝑡

.

Note that 𝑟FI
𝑡 = 1

𝜙FI
𝑡

can be viewed as an estimate of the yield on fixed income assets.

Each single individual’s interest income, denoted 𝐼FI
𝑖𝑡

, is then multiplied by this ag-

gregate capitalization factor to arrive at an estimate of that individuals fixed income

wealth𝑊FI
𝑖𝑡

:

𝑊FI
𝑖𝑡 = 𝜙FI

𝑡 𝐼
FI
𝑖𝑡 .

As described by Saez and Zucman (2016): ”For example, if the stock of fixed-

income claims (bonds, deposits, etc.) recorded in the balance sheet of households is

equal to 50 times the flow of interest income in tax data, we attribute $50,000 in fixed-

income claims to a tax unit with $1,000 in interest”. In this sense, the underlying

distribution of asset holdings within each asset category is, in this sense, inferred

from the distribution of asset incomes.

An individuals total wealth is measured as the sum of asset holdings across all
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asset categories:

𝑊𝑖𝑡 =𝑊
FI
𝑖𝑡 +𝑊C-corporation equity

𝑖𝑡
+𝑊S-corporation equity

𝑖𝑡
+ ... (3.4)

With these estimates, we can rank individuals based on their overall wealth, and

let 𝑞 denote the set of individuals belonging to the top quantile (like the top 1%)

of the overall wealth distribution. The overall wealth of this top quantile 𝑞 is then

𝑊
𝑞

𝑡 =
∑
𝑖∈𝑞𝑊𝑖𝑡 , while amount of associated cash flows they receive are 𝐼𝑞𝑡 =

∑
𝑖∈𝑞 𝐼𝑖𝑡 .

Their type 𝑗 wealth and associated cash flows are similarly 𝑊
𝑞,𝑗

𝑡 =
∑
𝑖∈𝑞𝑊

𝑗

𝑖𝑡
, and

𝐼
𝑞,𝑗

𝑡 =
∑
𝑖∈𝑞 𝐼

𝑗

𝑖𝑡
, respectively. The share of wealth held by this top quantile 𝑞 is

𝑠
𝑞

𝑡 =
𝑊

𝑞

𝑡

𝑊𝑡
, (3.5)

and their share of the associated cash flows is

𝑠
𝑞

𝑡 =
𝐼
𝑞

𝑡

𝐼𝑡
. (3.6)

3.3.2 How Changing Capitalization Factors Impact Top Wealth Shares

In this simple framework, the we can show that the estimated share of overall wealth

held by the top quantile 𝑞, defined in equation 3.5, is a weighted average of their shares

of the underlying capital income flows, with weights that reflect the composition of

the aggregate wealth portfolio. The following lemma summarizes this more precisely.

Lemma 4. Let 𝜔 𝑗

𝑡 =
𝑊

𝑗

𝑡

𝑊𝑡
denote the weight of asset class 𝑗 in the aggregate wealth portfolio, let

𝑠
𝑞,𝑗

𝑡 =
𝑊

𝑞,𝑗

𝑡

𝑊
𝑗

𝑡

denote the share of category 𝑗 wealth held by the top quantile 𝑞, and let 𝑠𝑞,𝑗𝑡 =
𝐼
𝑞,𝑗

𝑡

𝐼
𝑗

𝑡

denote their share of the cash flows associated with that category of wealth. Then:

• the share of overall wealth held by the top quantile is

𝑠
𝑞

𝑡 =
∑
𝑗∈𝐽

𝜔
𝑗

𝑡 𝑠
𝑞,𝑗

𝑡 =
∑
𝑗∈𝐽

𝜔
𝑗

𝑡 𝑠
𝑞,𝑗

𝑡 (3.7)

• the gap between the measured wealth share held by the top quantile 𝑠𝑞𝑡 , and their share
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of the associated cash flows 𝑠𝑞𝑡 is

𝑠
𝑞

𝑡︸︷︷︸
wealth share

−

income share︷︸︸︷
𝑠
𝑞

𝑡 =
∑
𝑗

𝐼
𝑗

𝑡

𝐼𝑡︸︷︷︸
𝑗 income weight

·

capitalization︷    ︸︸    ︷(
𝜙
𝑗

𝑡

𝜙𝑡
− 1

)
· 𝑠

𝑞,𝑗

𝑡︸︷︷︸
𝑗 income share

(3.8)

Proof. Consider first equation (3.7). The first equality in this equation is an accounting

identity. In particular, we have

𝑠
𝑞

𝑡 =
𝑊

𝑞

𝑡

𝑊𝑡
=

∑
𝑗∈𝐽

𝑊
𝑞,𝑗

𝑡

𝑊𝑡
=

∑
𝑗∈𝐽

𝑊
𝑗

𝑡 𝑠
𝑞,𝑗

𝑡

𝑊𝑡
=

∑
𝑗∈𝐽

𝜔
𝑗

𝑡 𝑠
𝑞,𝑗

𝑡 .

The second equality follows because wealth shares 𝑠𝑞,𝑗𝑡 and cash flow shares 𝑠𝑞,𝑗𝑡 are

identical within asset classes according to the capitalization method:

𝑠
𝑞,𝑗

𝑡 ≡
𝑊

𝑞,𝑗

𝑡

𝑊
𝑗

𝑡

=
𝜙
𝑗

𝑡 𝐼
𝑞,𝑗

𝑡

𝜙
𝑗

𝑡 𝐼
𝑗

𝑡

=
𝐼
𝑞,𝑗

𝑡

𝐼
𝑗

𝑡

≡ 𝑠
𝑞,𝑗

𝑡 .

Consider now equation (3.8). This follows from subtracting the cash flow share

𝑠
𝑞

𝑡 =
∑
𝑗∈𝐽

𝐼
𝑞,𝑗

𝑡

𝐼𝑡
=

∑
𝑗∈𝐽

𝐼
𝑗

𝑡

𝐼𝑡
𝑠
𝑞,𝑗

𝑡 from the weighted average in equation (3.7) and using the

fact that aggregate portfolio weights can be written as

𝜔
𝑗

𝑡 =

(
𝜙
𝑗

𝑡

𝜙𝑡

)
𝐼
𝑗

𝑡

𝐼𝑡
.

□

Lemma 4 makes it clear why changes in the capitalization factors might induce

fluctuations in the measured top wealth share, even if all the underlying cash flow

shares remain stable. They do so by shifting the weights of the different cash flow

shares in the weighted average in equation (3.7). Moreover, it also clarifies that what

matters is really relative capitalization factors 𝜙
𝑗

𝑡/𝜙𝑡 . Similarly, the composition of

income flows 𝐼 𝑗𝑡/𝐼𝑡 , also matters.6

6We also note that if all the cash flow shares 𝑠𝑞,𝑗𝑡 are equal, then changes in relative capitalization
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The next lemma clarifies that in order for changes in the aggregate portfolio weights

(and therefore changes in capitalization factors) to have an impact on measured top

wealth shares, portfolio compositions must vary along the wealth distribution.

Lemma 5. Let 𝜔𝑞,𝑗

𝑡 denote the portfolio share devoted to asset category 𝑗 in the wealth portfolio

of the top quantile 𝑞. Keeping fixed the cash flow shares received by this quantile 𝑠𝑞,𝑗𝑡 (or

equivalently the within-asset class wealth share 𝑠𝑞,𝑗𝑡 ), a change in the aggregate portfolio share

𝜔
𝑗

𝑡 changes the measured top wealth share if and only if 𝜔𝑞,𝑗

𝑡 ≠ 𝜔
𝑗

𝑡 , i.e. if the top quantile

has a different weight on asset category 𝑗 in their wealth portfolio compared to the aggregate

wealth portfolio.

Proof. By definition, the ratio of the portfolio weight of asset category 𝑗 in the portfolio

of the top quantile, relative to the corresponding weight in the aggregate portfolio is

𝜔
𝑞,𝑗

𝑡

𝜔
𝑗

𝑡

≡
𝑊

𝑞,𝑗

𝑡

𝑊
𝑞

𝑡

𝑊
𝑗

𝑡

𝑊𝑡

=
𝑠
𝑞,𝑗

𝑡

𝑠
𝑞

𝑡

. (3.9)

This means that 𝜔𝑞,𝑗

𝑡 ≠ 𝜔
𝑗

𝑡 if and only if 𝑠𝑞𝑡 ≠ 𝑠
𝑞,𝑗

𝑡 . But if 𝑠𝑞𝑡 ≠ 𝑠
𝑞,𝑗

𝑡 then changing the

weight 𝜔 𝑗

𝑡 in the weighted average in equation (3.7) will alter the top wealth share.

However, if 𝑠𝑞𝑡 = 𝑠
𝑞,𝑗

𝑡 then changing the weight leaves the measured top wealth share

unaltered. □

The above lemmas clarify that portfolio heterogeneity along the wealth distribution

combined with different capitalization factors for different assets imply that the there

is a gap between the wealth share held by the top quantile 𝑞 and their share of the

associated income flows. They also clarify that the size of this gap changes when

relative capitalization factors change, even if the distributions of the underlying

cash flows remain fixed. If either capitalization factors are the same across all asset

categories, or if asset allocations do not vary with wealth, measured top wealth

shares directly reflect shares of the underlying income flows. This would be the case

if we viewed all wealth as belonging to one homogeneous asset category. In this

factors 𝜙 𝑗

𝑡/𝜙𝑡 (or changes in the composition of aggregate income flows 𝐼 𝑗𝑡/𝐼𝑡) do not affect this measure
of top wealth shares.
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case variation in capitalization factors have no impact on this measure of top wealth

shares.

To summarize this, we can combine equation (3.8) from Lemma 4 and equation

(3.9) from Lemma 5 and write the gap as a particular type of “covariance”:

Proposition 4. Let 𝜔̃ 𝑗

𝑡 =
𝐼
𝑗

𝑡

𝐼𝑡
denote the weight of income of type 𝑗 in the total income from

wealth 𝐼𝑡 . Then
𝑠
𝑞

𝑡 − 𝑠
𝑞

𝑡

𝑠
𝑞

𝑡

= C̃ov

(
𝜔
𝑞,𝑗

𝑡

𝜔
𝑗

𝑡

,
𝜙
𝑗

𝑡

𝜙𝑡

)
(3.10)

where the covariance C̃ov is taken under the measure defined by the income composition

weights 𝜔 𝑗

𝑡 .

Proof. Combining equation (3.8) in Lemma 4 with equation (3.9) in Lemma 5 implies

𝑠
𝑞

𝑡 − 𝑠
𝑞

𝑡 =
∑
𝑗

𝐼
𝑗

𝑡

𝐼𝑡

(
𝜙
𝑗

𝑡

𝜙𝑡
− 1

)
𝜔
𝑞,𝑗

𝑡

𝜔
𝑗

𝑡

𝑠
𝑞

𝑡 (3.11)

Under the measure defined by the income weights, this can clearly be written as

𝑠
𝑞

𝑡 − 𝑠
𝑞

𝑡

𝑠
𝑞

𝑡

= Ẽ

[(
𝜙
𝑗

𝑡

𝜙𝑡
− 1

)
𝜔
𝑞,𝑗

𝑡

𝜔
𝑗

𝑡

]
which is equal to the covariance in (3.10) since

Ẽ

[
𝜙
𝑗

𝑡

𝜙𝑡
− 1

]
=

∑
𝑗

𝐼
𝑗

𝑡

𝐼𝑡

𝜙
𝑗

𝑡

𝜙𝑡
− 1 =

∑
𝑗

𝑊
𝑗

𝑡

𝑊𝑡
− 1 =

∑
𝑗

𝜔
𝑗

𝑡 − 1 = 0

where the last inequality follows from the fact that portfolio weights sum to 1. □

This proposition tells us that the gap is larger the larger is this covariance. In other

words, the gap is larger if the top quantile wealth portfolio is tilted, relative to the

aggregate portfolio, towards asset categories that have larger capitalization factors

than the aggregate wealth-to-income ratio, for asset categories where the capital

income flow from that asset category is a large fraction of all capital income flows.

This proposition also mirrors the results in Greenwald et al. (2023) and Kuhn et al.

(2020) regarding how capital gains affect top wealth shares when portfolio choices
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are heterogeneous across the wealth distribution: wealth inequality increases when

capital gains are larger for the types of asset that wealthy individuals tend to hold.

In the context of wealth being estimated via the capitalization method, the propo-

sition further characterizes the relationship between “asset valuations” (as captured

by the capitalization factors) and the corresponding income flows.

3.3.3 The Role of Asset Category Delineations.

The previous subsection discusses what determines the gap between top wealth

shares and the associated cash flow shares, given a particular delineation between

asset categories. However, the choice of asset category delineations of course also

matters for the size of this gap. In particular, equation (3.10) tells us that the gap is

larger if there are large differences in capitalization factors between asset categories,

and the top quantile invests more heavily in asset categories with higher capitaliza-

tion factors. By assumption, there is no heterogeneity in capitalization factors within

asset classes. In practice, any implementation of the capitalization method risks miss-

ing some heterogeneity within asset categories. As discussed extensively in Saez and

Zucman (2016), Smith et al. (2022b) and Saez and Zucman (2020), the combination of

heterogeneity within asset categories in capitalization factors, and systematic varia-

tion in portfolio choices correlating with this heterogeneity in capitalization factors,

will lead to incorrect estimates of wealth.

I emphasize that the present study is not about correctly estimating wealth. How-

ever, it is important to understand how the choice of asset delineations affects the gap

between measured top wealth shares and shares of the underlying cash flows. In the

extreme case of only one asset category, top wealth shares are going to be identical to

cash flow shares and any movements in the top wealth share will be associated with

movements in cash flows shares.

Making a finer asset category delineation is in general going to affect both top

wealth shares 𝑠𝑞𝑡 and cash flows shares 𝑠𝑞𝑡 . It affects the measure of top wealth shares

𝑠
𝑞

𝑡 for all the reasons discussed in Saez and Zucman (2016), Smith et al. (2022b) and

Saez and Zucman (2020). It affects the cash flows shares 𝑠𝑞𝑡 , because this is a statistic

based on the estimated joint distribution of cash flows and wealth: to compute the
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cash flow share received by the top percentile 𝑞 of the wealth distribution, you must

first identify those in the top quantile. To the extent that changing asset category

delineations changes the ranking of individuals in the wealth distribution, 𝑠𝑞𝑡 also

changes. Making other choice regarding asset class delineations may make the gap

𝑠
𝑞

𝑡 − 𝑠
𝑞

𝑡 smaller or larger. It depends on if the new joint distribution of wealth and

its associated cash flows features a stronger positive relationship between wealth-to-

capital income ratios and wealth.

3.3.4 Deviations From the Baseline Capitalization Method in DINA

In addition to the fact that capitalization factors differ across asset categories, and

portfolio choices vary systematically along the wealth distribution, there is an addi-

tional reason for why there is a gap between the measured top wealth shares and the

associated shares of the underlying cash flows in the DINA data. This is simply that

Piketty et al. (2018) make various adjustments to the baseline capitalization method.

For instance, because they want their estimates of wealth to roughly agree with esti-

mates from sources like the Forbes 400 list, they make upward adjustments of equity

wealth for wealthy households relative to the basic capitalization method. Moreover,

when capitalizing income from equity, they include realized capital gains instead of

just capitalizing dividends. They also apply different capitalization factors to interest

income depending on an individuals rank in the wealth distribution.7

All of these adjustments affect the size of the gap between the measured wealth

share of various top quantiles of the wealth distribution, and their respective shares

of the associated capital income flows in the Distributional National Accounts Data.

3.4 Top Wealth Shares: A Race Between Broad Asset

Classes

In equation (3.7) of Section 3.3.2, we saw that the share of wealth held by a top

quantile 𝑠𝑞𝑡 , could, as a matter of pure accounting, be expressed as a weighted average

7The appropriate way of doing these adjustments is discussed extensively in Smith et al. (2022b)
and Saez and Zucman (2020).
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of within-asset category wealth shares:

𝑠
𝑞

𝑡 =
∑
𝑗∈𝐽

𝜔
𝑗

𝑡 𝑠
𝑞,𝑗

𝑡 .

This simply states that the overall share of wealth held by top quantile 𝑞 is the

weighted average of the shares of wealth that they hold in each asset category,

weighted by the fraction of aggregate wealth that each category represents. This

equality is an accounting identity and does not depend on the capitalization method.8

With this, we can compare the top wealth share 𝑠𝑞𝑡 at two different points in time, 𝑡

and 𝑡 + 𝑘

Δ𝑠
𝑞

𝑡+𝑘 ≡
∑
𝑗∈𝐽

(
𝜔
𝑗

𝑡+𝑘𝑠
𝑞,𝑗

𝑡+𝑘 − 𝜔
𝑗

𝑡 𝑠
𝑞,𝑗

𝑡

)
(3.13)

and ask a very simple question: how much of the change in the top wealth share is

accounted for by changes in the distribution of wealth within asset classes, and how

much is accounted for by changes in the weights?

How should this question be understood? Lemma 5 tells us that when portfolio

compositions vary systematically along the wealth distribution then changes in the

aggregate portfolio weights 𝜔
𝑗

𝑡 will change the top wealth share, keeping fixed the

within asset class wealth shares 𝑠𝑞,𝑗𝑡 . For instance, if the top quantile invests more

heavily in equities (with the equity asset category being denoted 𝑗 = 𝐸) compared to

the aggregate portfolio, so that 𝜔𝑞,𝐸

𝑡 > 𝜔𝐸
𝑡 , then the top quantile share of all equity

wealth 𝑠
𝑞,𝑗

𝑡 , is larger than their share of overall wealth 𝑠
𝑞

𝑡 . This means that when

equities increase in value relative to aggregate wealth, the top wealth share will rise.9

Since the aggregate portfolio shares measure the total value of asset category 𝑗

relative to aggregate wealth, changes in these weights over time measure the relative

8Under the capitalization method, we could go further, and replace the within-asset category
wealth shares 𝑠𝑞,𝑗𝑡 with the corresponding income shares 𝑠𝑞,𝑗𝑡

𝑠
𝑞

𝑡 =
∑
𝑗∈𝐽

𝜔
𝑗

𝑡 𝑠
𝑞,𝑗

𝑡 (3.12)

9The same flavor reasoning is in Meade (1964). In that context, the distribution of personal income
can become more concentrated if either capital or labor income becomes more concentrated, or if the
capital income share increases, since capital income is more concentrated than labor income.
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performance of each asset class. This point is made in Kuhn et al. (2020), and

borrowing their language, variation in the top wealth share can be understood partly

as a “race” between broad asset classes. A tractable way of decomposing the change

in the share of wealth held by the top quantile 𝑞 is as follows

Δ𝑠
𝑞

𝑡+𝑘 =
∑
𝑗

𝑠
𝑞,𝑗

𝑡 Δ𝜔
𝑗

𝑡+𝑘︸          ︷︷          ︸
asset class allocation

+
∑
𝑗

𝜔
𝑗

𝑡Δ𝑠
𝑞,𝑗

𝑡+𝑘︸        ︷︷        ︸
within asset class

+
∑
𝑗

Δ𝜔
𝑗

𝑡+𝑘Δ𝑠
𝑞,𝑗

𝑡+𝑘︸             ︷︷             ︸
interaction term

. (3.14)

This states that the change in the top wealth share can, as a matter of accounting, be

decomposed in to three parts. The first term in equation (3.14) represents the fact

that asset class allocations differ across the wealth distribution, and different asset

classes perform differently on average. The second term represents the fact that the

distribution of wealth changes within asset classes as well. The third part is the

interaction between the two effects.10

3.4.1 The Race Between Asset Classes in the DINA Data

In this section, I study the decomposition in equation (3.14) in the DINA data. To

compute this decomposition, the necessary ingredients are: (i) a delineation of asset

categories, (ii) top quantile shares of wealth within each asset category, at time 𝑡 and

𝑡 + 𝑘, (iii) aggregate portfolio weights for each asset category at time 𝑡 and 𝑡 + 𝑘.
The delineation between asset categories is of course crucial for this exercise. This

is obvious when considering the extreme case with only one asset category. By

construction, any change in the top wealth share is going to be accounted for by

changes within that asset category. I consider the following seven asset categories:

C-corporation equity, Fixed Income Assets, Housing, Sole Proprietorships, Partner-

ships, S-Corporation equity, Pensions, all net of debt.

I begin by ranking individuals based on the DINA measure of wealth, identifying

the individuals within the top 10%, top 1%, top 0.1% and 0.01%. I then compute the

share of wealth that these individuals hold 𝑠
𝑞,𝑗

𝑡 and 𝑠
𝑞,𝑗

𝑡+𝑘 in each of the seven asset

10A continuous time version of equation (3.14) is studied in Moll et al. (2022) in the context of
the relationship between the personal income distribution and the factor income distribution. In this
continuous time limit, the interaction term shrinks to zero.
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Top quantile Top 10% Top 1% Top 0.1% Top 0.01%

Total measured increase 8.3 13.6 11.4 7.4

Asset class allocation −1.8 −0.8 0.5 0.4

Within asset class 5.9 11.9 9.6 5.8

Interaction term 4.2 2.5 1.3 1.2

Table 3.1: Decomposition of the rise in various top wealth shares. All numbers in percentage points.
All computations using the DINA data provided by Piketty et al. (2018).

categories at time 𝑡 and time 𝑡 + 𝑘. I choose time 𝑡 = 1978 because this is the year

that the top 1% wealth share reached its lowest value in the DINA data. I choose

𝑡 + 𝑘 = 2019 because this is the latest available year for the public use DINA-files. I

compute the aggregate portfolio weights 𝜔 𝑗

𝑡 and 𝜔
𝑗

𝑡+𝑘 as the ratio of category 𝑗 wealth

summed across all individuals, to overall wealth summed across all individuals.

Finally, I compute each of the three terms of the decomposition in on the right-hand

side of (3.14). Table 3.1 summarizes the results. Within each of the top percentiles,

the vast majority of the measured increase in the corresponding top wealth share

is accounted for by an increasingly concentrated distribution of wealth within each

asset category. For example, for the 11.4 percentage point increase in the wealth

share of the top 0.1%, 9.6 percentage points is accounted for by the top 0.1% holding

a larger fraction of wealth within asset categories, while only 0.5 percentage points of

the rise are accounted for by the top 0.1% holding portfolios that are tilted towards

the asset classes that have performed well.

The race between the stock market and the housing market? How do these results

square with the results of Kuhn et al. (2020), who find that changes in the relative

performance of housing and equities, have substantial impact on top wealth shares?

I will argue that the seeming contradiction is more apparent than real, and that the

results in the present study are consistent with the evidence presented by Kuhn et al.

(2020). What Kuhn et al. (2020) show is that the top 10% wealth share falls when

house prices increase, and rises when stock prices increase. They do this by running

regressions of changes in the wealth share of the top 10% on changes in house prices

and stock prices, respectively. Mirroring the results from these regressions, they also
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conduct a counterfactual exercise showing that the top 10% wealth share would have

been lower had stock prices remained constant over a long period of time, and vice

versa if house prices had remained constant.

To interpret these results in the context of the decomposition in this paper, consider

a simple example economy, where housing (H) and equity (E) are the only sources of

wealth. Because 𝜔𝐸
𝑡 + 𝜔𝐻

𝑡 = 1 in this economy, we have that Δ𝜔𝐸
𝑡+𝑘 = −Δ𝜔𝐻

𝑡+𝑘 . That

is, an increase in the relative value of equities is exactly the same thing as a fall in the

relative value of housing.

To understand what happens to the top wealth share over time periods when

Δ𝜔𝐸
𝑡+𝑘 > 0, so that the total value of equities grows relative to the total value of

housing, let us keep fixed the within-asset class wealth shares: 𝑠𝑞,𝑗𝑡 = 𝑠
𝑞,𝑗

𝑡+𝑘 = 𝑠𝑞,𝑗 . In

other words, consider the case when Δ𝑠
𝑞,𝑗

𝑡+𝑘 = 0 in equation (3.14). Then substituting

Δ𝜔𝐸
𝑡+𝑘 = −Δ𝜔𝐻

𝑡+𝑘 into the decomposition yields

Δ𝑠
𝑞

𝑡+𝑘 =
(
𝑠𝑞,𝐸 − 𝑠𝑞,𝐻

)
Δ𝜔𝐸

𝑡+𝑘 (3.15)

where 𝑠𝑞,𝐸 and 𝑠𝑞,𝐻 are the fixed within-asset class wealth shares. In the data DINA

data, the difference 𝑠𝑞,𝐸 − 𝑠𝑞,𝐻 is large, around 0.4 on average (using C-corportation

equity as the measure of equity). This means that if the aggregate portfolio share

of equity wealth rises by 10 percentage points, then the wealth share of the top

10% rises by around 4 percentage points. This would account for about one third

of the total increase in the top 10% share of wealth since 1978. Incidentally, the

value of equity wealth relative to aggregate wealth rose by around 10% in the DINA

data during the dot.com boom period 1990-1999, and the top wealth share rose by

around 5 percentage points over this period. This suggests that changes in the relative

performance of different asset classes do move top wealth shares around in the DINA

data, just as Kuhn et al. (2020) document in the SCF+ data.

Note, however, that this does not necessarily mean that such changes account for

a large part of steady rise in the top wealth shares over since the late 1970s. Partly

because some of the movements in the aggregate portfolio compositions are reversed

over time, as equities do not always outperform housing, and partly because there

are countervailing movements in the portfolio shares of other asset classes, as equity
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and housing are not the only asset classes. In summary, Kuhn et al. (2020) uncover

that swings in the relative valuations of housing and equity generate swings in the

top wealth share, while the present study focuses on whether the observed trends in

relative valuations can account for the trends in top wealth shares.

Figure 3.2 illustrates this by depicting year-by-year values of the between-asset

allocation term’s contribution to changes in the top wealth share in the decomposition

in (3.14), for each year from 1978 to 2019. It is clear from this picture that changes

in aggregate portfolio weights combined with the heterogeneity in asset allocations

along the wealth distribution matter for changes in the wealth share of the top

quantiles on a year-by-year basis. Note, in particular, that the spectacular movements

in asset prices around the dotcom boom and the financial crisis of 2008 seem to have

impacted top wealth shares through the heterogeneity in asset allocations along the

wealth distribution. The race between asset classes is therefore likely important

for understanding fluctuations in top wealth shares in the DINA data. However, the

decomposition for the entire period from 1978 to 2019 displayed in Table 3.1, suggests

that the documented trend rise in top wealth shares over this time period is not driven

by the relative performance of broad asset classes.

3.5 Conclusion

This paper studied the joint distribution of wealth and its associated capital income

flows in the Distributional National Accounts provided by Piketty et al. (2018). The

gap between the share of wealth held by top quantiles of the wealth distribution

and their share of the associated capital income flows, varies a lot in this data set.

However, the half-century steady rise in top wealth shares as measured in this data

set is not accounted for by steady growth in the size of this gap.

If one takes seriously the joint distribution of wealth and its associated cash flows

in DINA, these findings suggest that theories relying solely on changing valuations

of a stable distribution of income flows for explaining the rise in top wealth shares are

insufficient, as the trend rise in wealth concentration is associated with a similar rise

in the concentration of the associated capital income flows. However, an alternative
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Figure 3.2: Year-by-year contribution of the asset allocation term in the decomposition in equation
3.14 (the first term in this equation) for various top quantiles. All computations using the DINA data
provided by Piketty et al. (2018).
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interpretation is that the joint rise in the share of wealth held by top quantiles of

the wealth distribution and their share of the associated cash flows is a mechanical

artefact of the capitalization method.

I also studied the relative contribution of between-asset class performance versus

within-asset class inequality for the rise in top wealth shares. While the race between

broad asset classes matters for fluctuations in top wealth shares over shorter horizons,

the long-run trend is primarily accounted for by rising inequality within asset classes.
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Appendix A

Appendix for Chapter 1

A.1 Wealth and Demographics

A.1.1 Wealth.

The economy is populated by a representative worker endowed with 𝐿 units of labor,

and a continuum 𝑖 ∈ [0, 1] of capitalists. The net worth of capitalist 𝑖 is denoted by

𝑛𝑖𝑡 . Workers have no net worth. For as long as capitalist 𝑖 is alive, her net worth

evolves according to

𝑑𝑛𝑖𝑡

𝑛𝑖𝑡
=

(
𝑟𝑖𝑡 −

𝑐𝑖𝑡

𝑛𝑖𝑡

)
𝑑𝑡 + 𝜎̃𝑖𝑡𝑑𝑍𝑖𝑡 + 𝜎𝑖𝑡𝑑𝑍𝑡 (A.1)

where 𝑟𝑖𝑡 is the expected return on the entrepreneurs’ portfolio, 𝑐𝑖𝑡 is consumption,

𝜎̃𝑖𝑡 and 𝜎𝑖𝑡 are the exposures to the idiosyncratic Brownian motion 𝑍𝑖𝑡 and the

aggregate Brownian motion 𝑍𝑡 , respectively. The expected return, consumption rate,

and risk exposures are to be determined in the equilibrium of the model.

A.1.2 Demographics.

The group of capitalists consists of two types, entrepreneurial capitalists and fully

diversified capitalists. These types are denoted by 𝐸 and 𝐷 respectively. En-

trepreneurial capitalists are in possession of a viable entrepreneurial project and

can choose to run a firm based on that project. Diversified capitalists do not have
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such a project and instead passively invest their wealth. Entrepreneurial capitalists

lose their project at rate 𝜙𝑙 and then become fully diversified capitalists.

Capitalists die at rate 𝛿̃𝑑. When this happens, the capitalist is replaced with an

agent who either inherits the wealth and type of their parent, leaving the dynasty

intact, or the dynasty breaks and the new agent is reborn with the average wealth

level of capitalists. The probability that the dynasty is broken is 𝜋0. In other words,

we can define 𝛿𝑑 = 𝛿̃𝑑𝜋0 as the rate at which dynasties are broken. When dynasties

are broken, the newborn agent becomes an entrepreneur with probability 𝜓0.

The evolution of the fraction of capitalists that have a viable entrepreneurial project,

denoted 𝜓𝑡 , is therefore

𝑑𝜓𝑡 =
(
−𝛿𝑑𝜓𝑡 − 𝜙𝑙𝜓𝑡 + 𝛿𝑑𝜓

0
)
𝑑𝑡 (A.2)

In steady state, 𝜓𝑡 = 𝜓̄ =
𝛿𝑑𝜓0

𝛿𝑑+𝜙𝑙
.

A.2 Firms and Technology

A.2.1 Final good

Final output𝑌𝑡 is produced by a representative firm using a CES-technology and two

types of intermediate goods 𝑌𝐸𝑡 and 𝑌𝑇𝑡 :

𝑌𝑡 =

[
𝜈
(
𝑌𝐸𝑡

) 𝜀−1
𝜀 + (1 − 𝜈)

(
𝑌𝑇𝑡

) 𝜀−1
𝜀

] 𝜀
𝜀−1

(A.3)

where 𝜀 is the elasticity of substitution between the intermediate goods. The prices

of the intermediate goods are 𝑝𝐸𝑡 and 𝑝𝑇𝑡 respectively. The first-order conditions

associated with the final goods producer are

𝑝𝐸𝑡 = 𝜈

(
𝑌𝐸𝑡
𝑌𝑡

)− 1
𝜀

, 𝑝𝑇𝑡 = (1 − 𝜈)
(
𝑌𝑇𝑡
𝑌𝑡

)− 1
𝜀

(A.4)

116



A.2.2 Intermediate Goods-Producing Firms

Intermediate good 𝑌𝑇𝑡 is produced by a continuum of traditional firms indexed by

𝑗 ∈ [0, 1]. This sector will in the end be captured by a representative traditional firm.

Intermediate good 𝑌𝐸𝑡 is produced by a continuum of entrepreneurial firms indexed

by 𝑖 ∈ 𝐸. In other words, the entrepreneurial firms are indexed by their associated

entrepreneur. Both types of firm produce output using a Cobb-Douglas technology:

𝑦𝑖𝑡𝑑𝑡 = 𝐴̄ (𝑘𝑖𝑡)𝛼 (𝑙𝑖𝑡)1−𝛼

𝑦 𝑗𝑡𝑑𝑡 = 𝐴
(
𝑘 𝑗𝑡

)𝛼 (
𝑙 𝑗𝑡

)1−𝛼
(A.5)

where 𝐴̄ > 𝐴 so that entrepreneurial firms have higher total factor productivity. Both

types of firm own and operate a capital stock.

𝑑𝑘𝑖𝑡 = 𝑘𝑖𝑡 (𝜄𝑖𝑡 − 𝛿) 𝑑𝑡 + 𝑦𝑖𝑡 𝜎̃𝑑𝑍𝑖𝑡 + 𝑘𝐸𝑖𝑡𝜎𝑑𝑍𝑡 + Δ𝑘𝑖𝑡

𝑑𝑘 𝑗𝑡 = 𝑘 𝑗𝑡
(
𝜄 𝑗𝑡 − 𝛿

)
𝑑𝑡 + 𝑦 𝑗𝑡 𝜎̃𝑍 𝑗𝑡 + 𝑘 𝑗𝑡𝜎𝑑𝑍𝑡 + Δ𝑘𝑗𝑡

(A.6)

where 𝜄𝑖𝑡 , 𝜄 𝑗𝑡 are investment rates, 𝛿 is the depreciation rate, 𝑑𝑍𝑖𝑡 , 𝑑𝑍 𝑗𝑡 are idiosyn-

cratic shocks, 𝑑𝑍𝑡 is an aggregate shock, and Δ𝑘
𝑖𝑡
,Δ𝑘

𝑗𝑡
are net capital purchases from

other firms. Note that both types of firms have the same level of risk exposures. Note

that the risk associated with the firm is not in the form of a TFP shock, but rather

a stockastic depreciation shock to capital (see Wälde (2011) for a review of different

ways of adding risk to standard models of production in continuous time).

Traditional firms’ problem and the representative traditional firm. Traditional

firms are entirely externally financed. They finance their capital stock by issuing

equity (to any capitalist) at the cost of capital 𝑟out
𝑡 = 𝑟𝑡 + 𝜍𝑡𝜎, where 𝜍𝑡 is the price

of aggregate risk in the economy. This price of aggregate risk will be determined

in equilibrium. Equity has the same risk (volatility) as the risk in the capital of the

firm. In other words, holding the equity of a traditional firm gives the instantaneous

return

𝑑𝑅𝑘,𝑇
𝑗𝑡

= 𝑟out
𝑡 𝑑𝑡 +

𝑦 𝑗𝑡

𝑘 𝑗𝑡
𝜎̃𝑑𝑍𝑖𝑡 + 𝜎𝑑𝑍𝑡

The cost of capital only depends on aggregate risk because the external financiers
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form diversified portfolios, and so do not care about the idiosyncratic risk in the firm.

Traditional firms decide how much capital to raise, how much labor to hire, and how

much to invest, to maximize expected profit flows:

𝜋 𝑗𝑡 = max
{𝑘 𝑗𝑡 ,𝑙𝑗𝑡 ,𝜄 𝑗𝑡}

𝑝𝑇𝑡 𝑦 𝑗𝑡 − 𝑤𝑡 𝑙 𝑗𝑡 − 𝜄 𝑗𝑡 𝑘 𝑗𝑡 + 𝑘 𝑗𝑡
(
𝜄 𝑗𝑡 − 𝛿

)
− 𝑟out

𝑡 𝑘 𝑗𝑡 . (A.7)

Profit maximization is consistent with any investment rate. The first-order conditions

are
𝑤𝑡 = 𝑝𝑇𝑡 (1 − 𝛼)

𝑦 𝑗𝑡

𝑙 𝑗𝑡

𝑟out
𝑡 = 𝑝𝑇𝑡 𝛼

𝑦 𝑗𝑡

𝑘 𝑗𝑡
− 𝛿.

(A.8)

Maximized profits are 𝜋 𝑗𝑡 = 0. This means that the expected return to capital in

this sector, denoted 𝑟𝑇𝑡 , is equal to the cost of capital in this sector, 𝑟𝑜𝑢𝑡𝑡 . From the

first-order conditions, we see that each traditional firm chooses the same production

input mix (labor-to-capital ratio). Hence, it is without loss of generality to consider

the traditional firms as being represented by a representative traditional firm that

produces a flow output

𝑌𝑇𝑡 𝑑𝑡 = 𝐴
(
𝐾𝑇𝑡

)𝛼 (
𝐿𝑇𝑡

)1−𝛼
, (A.9)

and finances a capital stock 𝐾𝑇𝑡 =
∫
𝑗
𝑘 𝑗𝑡𝑑𝑡 that evolves according to

𝑑𝐾𝑇𝑡 =

(
𝜄𝑇𝑡 − 𝛿

)
𝑑𝑡 + 𝜎𝑑𝑍𝑡 ,

which it finances by issuing equity, that pays a return

𝑑𝑅𝑘,𝑇𝑡 = 𝑟𝑇𝑡 𝑑𝑡 + 𝜎𝑑𝑍𝑡

with first-order conditions

𝑤𝑡 = 𝑝𝑇𝑡 (1 − 𝛼)
𝑌𝑇𝑡

𝐿𝑇𝑡

𝑟out
𝑡 = 𝑝𝑇𝑡 𝛼

𝑌𝑇𝑡

𝐾𝑇𝑡
− 𝛿.

(A.10)
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using 𝑟𝑜𝑢𝑡𝑡 = 𝑟𝑇𝑡 , we can write the labor-to-capital ratio as

𝐿𝑇𝑡

𝐾𝑇𝑡
=

1 − 𝛼
𝛼

𝑟𝑇𝑡 + 𝛿

𝑤𝑡

Entrepreneurial firms. The entrepreneurial firms hire labor on the same labor

market as the traditional firm at wage rate 𝑤𝑡 . The instantaneous return on the

productive assets of an entrepreneurial firm is

𝑑𝑟𝑘𝑖𝑡 =

(
𝑝𝐸𝑡 𝑦𝑖𝑡 − 𝑤𝑡 𝑙𝑖𝑡 − 𝛿𝑘𝑖𝑡

𝑘𝑖𝑡

)
𝑑𝑡 +

𝑦𝑖𝑡

𝑘𝑖𝑡
𝜎̃𝑑𝑍𝑖𝑡 + 𝜎𝑑𝑍𝑡 (A.11)

Entrepreneurial firms are partially financed internally by the associated entrepreneur,

and partially financed externally by issuing equity to other capitalists. However,

external financing is not unconstrained. In particular, the entrepreneur faces a skin-

in-the-game constraint so that at least a fraction 𝜒 of the risk in the firm must be

retained by the entrepreneur.1 Letting 𝑣out
𝑖𝑡

denote the total value of the liabilities

issued to outsiders, the constraint on equity issuance is

𝑘𝑖𝑡 − 𝑣out
𝑖𝑡

𝑘𝑖𝑡
≥ 𝜒. (A.12)

The risk in the liabilities issued to outsiders is the same as the risk in the productive

assets of the firm, so the cost of external capital for entrepreneurs is the same as for

the traditional firms 𝑟out
𝑡 = 𝑟𝑡 + 𝜍𝑡𝜎 = 𝑟𝑇𝑡 . The total return is therefore

𝑑𝑅out
𝑖𝑡 = 𝑟𝑇𝑡 𝑑𝑡 +

𝑦𝑖𝑡

𝑘𝑖𝑡
𝜎̃𝑑𝑍𝑖𝑡 + 𝜎𝑑𝑍𝑡 . (A.13)

and the return on a diversified portfolio of the liabilities of all entrepreneurial firms

is

𝑑𝑅out
𝑡 = 𝑟𝑇𝑡 𝑑𝑡 + 𝜎𝑑𝑍𝑡 . (A.14)

Note that the return on investing in the traditional firms’ equity, and investing in

1We technically allow 𝜒 to vary over time according to some Ito process, but suppress the depen-
dence on time here.
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entrepreneurial firms’ equity, is identical from the perspective of an outsider. Capi-

talists are therefore indifferent between these investment opportunities. It is therefore

without loss of generality to assume that capitalists hold shares in a mutual fund that

buys the liabilities of all entrepreneurial firms and rents out capital to the established

traditional firm. The return on this mutual fund is

𝑑𝑅fund
𝑡 = 𝑟𝑇𝑡 𝑑𝑡 + 𝜎𝑑𝑍𝑡 . (A.15)

A.2.3 Aggregates

The total financial capital in the economy consists of the financial wealth of both types

of capitalists, 𝑁𝑡 = 𝑁𝐸
𝑡 + 𝑁𝐷

𝑡 . We let 𝜂𝑡 denote the fraction of the financial capital in

the economy held by capitalists with entrepreneurial projects:

𝜂𝑡 =
𝑁𝐸
𝑡

𝑁𝑡
. (A.16)

The financial wealth of the economy consists of claims on the productive assets of the

economy, in other words the real capital of the economy 𝐾𝑡 . Therefore, the balance

sheet of the economy is

𝐾𝑡 = 𝑁𝐸
𝑡 + 𝑁𝐷

𝑡 . (A.17)

Recalling that the aggregate capital stock is split between the established traditional

firm and the entrepreneurial firms, we define 𝜅𝑡 as the fraction of the capital stock in

the entrepreneurial sector:

𝜅𝑡 =
𝐾𝐸𝑡
𝐾𝑡

(A.18)

It will turn out to be the case that the labor-to-capital ratio in each firm is the same,

and therefore aggregate output can be written as

𝑌𝑡 = 𝐴(𝜅𝑡)𝐾𝛼
𝑡 𝐿

1−𝛼 (A.19)

where aggregate TFP satisfies
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Expected return Risk
𝑘𝑖𝑡 :

𝑝𝐸𝑡 𝑦𝑖𝑡−𝑤𝑡 𝑙𝑖𝑡−𝛿𝑘𝑖𝑡
𝑘𝑖𝑡

− 𝑟𝑡 𝑦𝑖𝑡
𝑘𝑖𝑡
𝜎̃𝑑𝑍𝑖𝑡 + 𝜎𝑑𝑍𝑡

𝑣out
𝑖𝑡

: 𝜍𝑡𝜎
𝑦𝑖𝑡
𝑘𝑖𝑡
𝜎̃𝑑𝑍𝑖𝑡 + 𝜎𝑑𝑍𝑡

𝑣fund
𝑖𝑡

: 𝜍𝑡𝜎 𝜎𝑑𝑍𝑡
𝑏𝑖𝑡 : 0 0

Table A.1: Risk-return profiles

𝐴(𝜅𝑡) =
[
𝜈
(
𝐴̄𝜅𝑡

) 𝜀−1
𝜀 + (1 − 𝜈)

(
𝐴(1 − 𝜅𝑡)

) 𝜀−1
𝜀

] 𝜀
𝜀−1
.

The aggregate investment in the economy is the output less consumption so that the

aggregate capital stock evolves over time according to

𝑑𝐾𝑡 =
(
𝑌𝑡 − 𝐶𝐸𝑡 − 𝐶𝐷𝑡 − 𝐶𝑊𝑡 − 𝛿𝐾𝑡

)
𝑑𝑡 + 𝜎𝐾𝑡𝑑𝑍𝑡 . (A.20)

Finally, since zero-net supply riskless bonds and aggregate risk can be traded without

frictions, there is a unique riskless rate 𝑟𝑡 and a unique price of aggregate risk 𝜍𝑡 .

A.2.4 Entrepreneur’s Problem

The net worth of an individual entrepreneur can be written as

𝑛𝑖𝑡 = 𝑘𝑖𝑡 − 𝑣out
𝑖𝑡︸    ︷︷    ︸

stake in own firm

+ 𝑣fund
𝑖𝑡︸︷︷︸

mutual fund holdings

− 𝑑𝑖𝑡︸︷︷︸
debt

. (A.21)

Each of the components of the net worth of an entrepreneur is associated with

some expected excess return and some risk. Table A.1 summarizes the returns

and risk associated with each of these components. Letting 𝜃𝑘
𝑖𝑡

=
𝑘𝑖𝑡
𝑛𝑖𝑡

, 𝜃out
𝑖𝑡

=
𝑣out
𝑖𝑡

𝑛𝑖𝑡
,

𝜃fund
𝑖𝑡

=
𝑣fund
𝑖𝑡

𝑛𝑖𝑡
and 𝑥𝑖𝑡 =

𝑦𝑖𝑡
𝑘𝑖𝑡

, and −𝜃𝑑
𝑖𝑡
= 1 − 𝜃𝑘

𝑖𝑡
+ 𝜃out

𝑖𝑡
− 𝜃fund

𝑖𝑡
we can then write the

entrepreneurs problem as a Merton optimal portfolio choice problem (See Merton

(1992) and Brunnermeier and Sannikov (2017) for treatments of this type of problems):

max
{𝑐𝑖𝑡 ,𝑥𝑖𝑡 ,𝜃𝑘𝑖𝑡 ,𝜃

out
𝑖𝑡
,𝜃fund
𝑖𝑡

}
E

[∫ ∞

0
𝑒−𝜌𝑡 log(𝑐𝑖𝑡)𝑑𝑡

]
(A.22)

subject to
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𝑑𝑛𝑖𝑡

𝑛𝑖𝑡
=

(
𝑟𝑡 + 𝜃𝑘𝑖𝑡

(
𝑟𝑘𝑖𝑡 − 𝑟𝑡

)
− 𝜃out

𝑖𝑡 𝜍𝑡𝜎 + 𝜃fund
𝑖𝑡 𝜍𝑡𝜎 − 𝑐𝑖𝑡

𝑛𝑖𝑡

)
𝑑𝑡

+
(
𝜃𝑘𝑖𝑡 − 𝜃out

𝑖𝑡

)
𝑥𝑖𝑡 𝜎̃𝑑𝑍𝑖𝑡 +

(
𝜃𝑘𝑖𝑡 − 𝜃out

𝑖𝑡 + 𝜃fund
𝑖𝑡

)
𝜎𝑑𝑍𝑡

where 𝑟𝑘𝑖𝑡 = 𝑝𝐸𝑡 𝑥𝑖𝑡 − 𝑤𝑡
(
𝑥𝑖𝑡

𝐴̄

)1/(1−𝛼)
− 𝛿

and
𝜃𝑘
𝑖𝑡
− 𝜃out

𝑖𝑡

𝜃𝑘
𝑖𝑡

≥ 𝜒

Let 𝑆𝑡 denote a vector of all state variables except the individuals net worth. We

allow 𝜒 to be such a state variable, and require that it follow an Ito process. The

assumption that it follows an Ito process. Then, the HJB equation of this problem

can be written as

𝜌𝑉(𝑛, 𝑆) = max
{𝑐,𝑥,𝜃𝑘 ,𝜃out ,𝜃fund}

log(𝑐) +𝑉𝑛𝑛
(
𝑟 + 𝜃𝑘

(
𝑟𝑘 − 𝑟

)
− 𝜃out𝜍𝜎 + 𝜃fund𝜍𝜎 − 𝑐

𝑛

)
+ 1

2𝑉𝑛𝑛𝑛
2
((
𝜃𝑘 − 𝜃out

)2
(𝑥𝜎̃)2 +

(
𝜃𝑘 − 𝜃out + 𝜃fund

)2
𝜎2

)
+

∑
𝑠∈𝑆

𝑉𝑠𝜇𝑠𝑠 +
1
2𝑉𝑠𝑠𝑠

2𝜎2
𝑠 +𝑉𝑠𝑠′𝑠𝑠′𝜎𝑠𝜎𝑠′ +𝑉𝑠𝑛𝑠𝑛𝜎𝑠𝜎𝑛

+ 𝜆((1 − 𝜒)𝜃𝑘 − 𝜃out)

The first-order conditions of this problem are

𝑐−1 = 𝑉𝑛

𝑉𝑛𝑛(𝑟𝑘 − 𝑟) = 𝑉𝑛𝑛𝑛2
((
𝜃𝑘 − 𝜃out

)
(𝑥𝜎̃)2 +

(
𝜃𝑘 − 𝜃out + 𝜃fund

)
𝜎2

)
− 𝜆(1 − 𝜒) +

∑
𝑠∈𝑆

𝑉𝑠𝑛
𝜕𝜎𝑛
𝜕𝜃𝑘

𝑛𝑠𝜎𝑠

𝑉𝑛𝑛𝜍𝜎 = 𝑉𝑛𝑛𝑛
2
((
𝜃𝑘 − 𝜃out

)
(𝑥𝜎̃)2 +

(
𝜃𝑘 − 𝜃out + 𝜃fund

)
𝜎2

)
− 𝜆 +

∑
𝑠∈𝑆

𝑉𝑠𝑛
𝜕𝜎𝑛
𝜕𝜃out𝑛𝑠𝜎𝑠

𝑉𝑛𝑛𝜍𝜎 = 𝑉𝑛𝑛𝑛
2
(
𝜃𝑘 − 𝜃out + 𝜃fund

)
𝜎2 +

∑
𝑠∈𝑆

𝑉𝑠𝑛
𝜕𝜎𝑛

𝜕𝜃fund 𝑠𝑛𝜎𝑠

𝑉𝑛𝑛𝜃
𝑘

(
𝑝𝐸 − 1

1 − 𝛼
𝑤

(
𝑥

𝐴̄

) 𝛼
1−𝛼 1

𝐴̄

)
= 𝑉𝑛𝑛𝑛

2
(
𝜃𝑘 − 𝜃out

)2
𝑥𝜎̃2 +

∑
𝑠∈𝑆

𝑉𝑠𝑛
𝜕𝜎𝑛
𝜕𝑥

𝑠𝑛𝜎𝑠

We can guess and verify that the value function takes the form𝑉(𝑛, 𝑆) = 1
𝜌 log(𝑛)+
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𝑔(𝑆).2 With this guess we have 𝑉𝑛𝑛 = 𝑉𝑛𝑛𝑛
2 = 1

𝜌 and all mixed derivatives are

𝑉𝑠𝑛 = 0. The first-order conditions can then be written as

𝑟𝑘 − 𝑟 =
(
𝜃𝑘 − 𝜃out

)
(𝑥𝜎̃)2 +

(
𝜃𝑘 − 𝜃out + 𝜃fund

)
𝜎2 − 𝜌𝜆(1 − 𝜒)

𝜍𝜎 =

(
𝜃𝑘 − 𝜃out

)
(𝑥𝜎̃)2 +

(
𝜃𝑘 − 𝜃out + 𝜃fund

)
𝜎2 − 𝜌𝜆

𝜍𝜎 =

(
𝜃𝑘 − 𝜃out + 𝜃fund

)
𝜎2

𝜃𝑘

(
𝑝𝐸 − 1

1 − 𝛼
𝑤

(
𝑥

𝐴̄

) 𝛼
1−𝛼 1

𝐴̄

)
=

(
𝜃𝑘 − 𝜃out

)2
𝑥𝜎̃2

I look for solutions where entrepreneurs will actually want to invest some capital

in their firm and so we consider the case 𝜃𝑘 > 0. Combining the second and third

first-order condition we obtain

𝜌𝜆 =

(
𝜃𝑘 − 𝜃out

)
(𝑥𝜎̃)2 (A.23)

The skin-in-the-game constraint together with 𝜃𝑘 > 0 ensures that the right-hand

side of this equation is positive, which means 𝜆 > 0. Hence, the skin-in-the-game

constraint is always binding. We then have 𝜃out = (1 − 𝜒)𝜃𝑘 and the first-order

conditions can be reduced to

𝑟𝑘 − 𝑟 = 𝜒𝜃𝑘(𝑥𝜎̃)2 +
(
𝜒𝜃𝑘 + 𝜃fund

)
𝜎2 − 𝜒𝜃𝑘(𝑥𝜎̃)2(1 − 𝜒)

𝜍𝜎 = 𝜒𝜃𝑘(𝑥𝜎̃)2 +
(
𝜒𝜃𝑘 + 𝜃fund

)
𝜎2 − 𝜒𝜃𝑘(𝑥𝜎̃)2

𝜍𝜎 =

(
𝜒𝜃𝑘 + 𝜃fund

)
𝜎2

𝑝𝐸 − 1
1 − 𝛼

𝑤

(
𝑥

𝐴̄

) 𝛼
1−𝛼 1

𝐴̄
= 𝜃𝑘𝜒2𝑥𝜎̃2

(A.24)

The second and the third first-order conditions are now identical. We can simplify

this further to

2When utility is homothetic and budget constraints are linear, this is a standard guess for the form
of the value function.
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𝑟𝑘 − 𝑟 = 𝜒2𝜃𝑘(𝑥𝜎̃)2 + 𝜍𝜎

𝜍 =

(
𝜒𝜃𝑘 + 𝜃fund

)
𝜎

𝑝𝐸 − 1
1 − 𝛼

𝑤

(
𝑥

𝐴̄

) 𝛼
1−𝛼 1

𝐴̄
= 𝜃𝑘𝜒2𝑥𝜎̃2

(A.25)

we therefore have

𝜃𝑘 =
𝑟𝑘 − 𝑟𝑇
(𝜒𝑥𝜎̃)2

𝜃fund =
𝑟𝑇 − 𝑟
𝜎2 − 𝜒𝜃𝑘

𝜃out = (1 − 𝜒)𝜃𝑘

(A.26)

Multiplying the last first-order condition by 𝑥 we obtain the following:

𝑝𝐸𝑥 − 1
1 − 𝛼

𝑤

(
𝑥

𝐴̄

) 1
1−𝛼

= 𝜃𝑘(𝜒𝑥𝜎̃)2 = 𝑟𝑘 − 𝑟𝑇 (A.27)

using the fact that 𝑟𝑘 = 𝑝𝐸𝑥 − 𝑤
(
𝑥
𝐴̄

) 1
1−𝛼 − 𝛿 we obtain

1
1 − 𝛼

𝑤

(
𝑥

𝐴̄

) 1
1−𝛼

= 𝑤

(
𝑥

𝐴̄

) 1
1−𝛼

+ 𝑟𝑇 + 𝛿 (A.28)

which implies

𝑥 = 𝐴̄

(
1 − 𝛼
𝛼

𝑟𝑇 + 𝛿
𝑤

)1−𝛼
(A.29)

Or in terms of the labor-to-capital ratio

𝑙𝑖𝑡

𝑘𝑖𝑡
=

1 − 𝛼
𝛼

𝑟𝑇 + 𝛿
𝑤

=
𝐿𝑇

𝐾𝑇
(A.30)

confirming that every firm, including the representative traditional firm, has the

same labor-to-capital ratio. In conclusion, the decision rules of any entrepreneur is
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𝑐𝑖𝑡 = 𝜌𝑛𝑖𝑡

𝑦𝑖𝑡

𝑘𝑖𝑡
= 𝐴̄

(
1 − 𝛼
𝛼

𝑅𝑡

𝑤𝑡

)1−𝛼

𝜃𝑘𝑖𝑡 =
𝑟𝑘𝑡 − 𝑟𝑇𝑡
(𝜒 𝑦𝑖𝑡

𝑘𝑖𝑡
𝜎̃)2

𝜃fund
𝑖𝑡 =

𝑟𝑇𝑡 − 𝑟𝑡
𝜎

− 𝜒𝜃𝑘𝑖𝑡

𝜃out
𝑖𝑡 = (1 − 𝜒)𝜃𝑘𝑖𝑡

(A.31)

where 𝑟𝑘𝑡 =
𝑝𝐸𝑡 𝑌

𝐸
𝑡 −𝑤𝑡𝐿𝐸𝑡
𝐾𝐸𝑡

− 𝛿. Also note that

𝜃𝑘𝑖𝑡 − 𝜃out
𝑖𝑡 + 𝜃fund

𝑖𝑡 =
𝜍𝑡
𝜎

(A.32)

which implies that their exposure to aggregate risk is (𝜃𝑘
𝑖𝑡
−𝜃out

𝑖𝑡
+𝜃fund

𝑖𝑡
)𝜎 = 𝜍𝑡 . Because

each entrepreneurial firm chooses the same output-to-capital ratio, the aggregate

supply of the intermediate good 𝑌𝐸𝑡 is

𝑌𝐸𝑡 = 𝐴̄
(
𝐾𝐸𝑡

)𝛼
(𝐿𝐸𝑡 )1−𝛼 (A.33)

A.2.5 Diversified Capitalists and Workers

Diversified capitalists have wealth𝑁𝐷
𝑡 that they invest in the mutual fund and riskless

bonds. Diversified capitalists have log utility. Hence, their consumption as a group

is 𝐶𝐷𝑡 = 𝜌𝑁𝐷
𝑡 and the fraction of their wealth invested in the mutual fund is

𝜃𝐷𝑡 =
𝑟𝑡 + 𝜍𝑡𝜎 − 𝑟𝑡

𝜎2 =
𝜍𝑡
𝜎
. (A.34)

This implies that diversified capitalists net worth exposure to aggregate risk is

𝜃𝐷𝑡 𝜎 = 𝜍𝑡 . Finally, workers supply labor inelastically and consume their labor income,

so that 𝐶𝑊𝑡 = 𝑤𝑡𝐿.
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A.2.6 Equilibrium

Given an initial capital stock 𝐾0 and an initial share of wealth held by entrepreneurial

capitalists 𝜂0, an equilibrium is a map from histories of the Brownian shocks to price

processes 𝑤𝑡 , 𝑟𝑡 , 𝑝𝐸𝑡 , 𝑝
𝑇
𝑡 and 𝜍𝑡 , and an allocation of capital between the established

traditional firm and the entrepreneurial firms 𝜅𝑡 such that:

• All agents solve their respective problems given the prices.

• The markets for capital, labor, and financial assets clear.∫
𝑖∈𝐸

𝑘𝑖𝑡𝑑𝑖 + 𝐾𝑇𝑡 = 𝐾𝑡 = 𝑁𝐸
𝑡 + 𝑁𝐷

𝑡

∫
𝑖∈𝐸

𝑙𝑖𝑡𝑑𝑖 + 𝐿𝐷𝑡 = 𝐿∫
𝑖∈𝐸

𝑣𝑜𝑢𝑡𝑖𝑡 𝑑𝑖 + 𝐾
𝑇
𝑡 =

∫
𝑖

𝑣fund
𝑖𝑡 𝑑𝑖

(A.35)

• The capital stock evolves according to

𝑑𝐾𝑡

𝐾𝑡
=

(𝑌𝑡 − 𝐶𝑡 − 𝛿𝐾𝑡)
𝐾𝑡

𝑑𝑡 + 𝜎𝑑𝑍𝑡 (A.36)

• The share of wealth held by entrepreneurial capitalists evolves according to

𝑑𝜂𝑡
𝜂𝑡

=

𝑑
(
𝑁𝐸
𝑡

𝑁𝑡

)
𝑁𝐸
𝑡

𝑁𝑡

(A.37)

where 𝑁𝐸
𝑡 is the total wealth of entrepreneurial capitalists.

A.2.7 Characterizing the Equilibrium

The economy-wide state variables are 𝜂𝑡 and 𝐾𝑡 . To characterize equilibrium, we now

derive an equation that pins down the allocation of capital to the entrepreneurial

sector, 𝐾𝑇𝑡 = 𝜅𝑡𝐾𝑡 . All objects of interest in the model can then be expressed in terms

of 𝜂𝑡 , 𝐾𝑡 , 𝜅𝑡 and exogenous parameters.

Combining the demand for intermediate goods in (1.11) with the supply of each

intermediate good in equations (A.9) and (A.33) we obtain the following intermediate

goods prices
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𝑝𝑇𝑡 = (1 − 𝜈)
(

𝐴

𝐴(𝜅𝑡)
(1 − 𝜅𝑡)

)− 1
𝜀

, 𝑝𝐸𝑡 = 𝜈

(
𝐴̄

𝐴(𝜅𝑡)
𝜅𝑡

)− 1
𝜀

(A.38)

We can then derive an equation that pins down the fraction of the capital operated

by the entrepreneurial firms, 𝜅𝑡 , by combining these expressions for the prices with

the capital demand of entrepreneurial firms in equation (1.24). Specifically, using

that 𝑘𝑖𝑡
𝑛𝑖𝑡

=
𝐾𝐸𝑡
𝑁𝐸
𝑡

=
𝜅𝑡
𝜂𝑡

we obtain from this equation that

𝜅𝑡
𝜂𝑡

(
𝐴̄

(
𝐿

𝐾𝑡

)1−𝛼
𝜒𝜎̃

)2

= 𝑟𝑘𝑡 − 𝑟𝑇 = 𝑝𝐸𝑡 𝐴̄

(
𝐿

𝐾𝑡

)1−𝛼
− 𝑤𝑡

(
𝐿

𝐾𝑡

)
− 𝑅𝑡 (A.39)

Combining this with the first-order conditions of the established traditional firm

that provide expressions for 𝑤𝑡 and 𝑅𝑡 we obtain after some tedious algebra

𝜅𝑡
𝜂𝑡

(
𝐴̄𝜒𝜎̃

)2
(
𝐿𝑡

𝐾𝑡

)1−𝛼
= 𝑝𝐸𝑡 𝐴̄ − 𝑝𝑇𝑡 (1 − 𝛼)𝐴 − 𝑝𝑇𝑡 𝛼𝐴 (A.40)

which can be rewritten as

𝜅𝑡
𝜂𝑡

(
𝐴̄𝜒𝜎̃

)2
(
𝐿𝑡

𝐾𝑡

)1−𝛼
= 𝑝𝐸𝑡 𝐴̄ − 𝑝𝑇𝑡 𝐴 (A.41)

This equation pins down a unique 𝜅𝑡 ∈ (0, 1) if 𝜀 > 0. To see why, note that the

left-hand side is a strictly increasing linear function of 𝜅𝑡 , given positive 𝜂𝑡 and 𝐾𝑡 .

Moreover, using that 𝐴(𝜅𝑡) =
[
𝜈
(
𝐴̄𝜅𝑡

) 𝜀−1
𝜀 + (1 − 𝜈)

(
𝐴(1 − 𝜅𝑡)

) 𝜀−1
𝜀

] 𝜀
𝜀−1

we can write the

prices as

𝑝𝑇𝑡 = (1 − 𝜈)
[
𝜈

(
𝐴̄

𝐴

) 𝜀−1
𝜀

(
𝜅𝑡

1 − 𝜅𝑡

) 𝜀−1
𝜀

+ (1 − 𝜈)
] 1

𝜀−1

(A.42)

and

𝑝𝐸𝑡 = 𝜈

[
𝜈 + (1 − 𝜈)

(
𝐴

𝐴̄

) 𝜀−1
𝜀

(
1 − 𝜅𝑡
𝜅𝑡

) 𝜀−1
𝜀

] 1
𝜀−1

(A.43)

We see that if 𝜀 > 0, then 𝑝𝑇𝑡 is increasing in 𝜅𝑡 ∈ (0, 1) and 𝑝𝐸𝑡 is decreasing. For 𝜅𝑡
close to 0 we will have 𝑝𝐸𝑡 𝐴̄ − 𝑝𝑇𝑡 𝐴 > 0, for 𝜅𝑡 close to 1 we will have 𝑝𝐸𝑡 𝐴̄ − 𝑝𝑇𝑡 𝐴 < 0.

Hence, for some unique 𝜅𝑡 ∈ (0, 1), the left-hand side and right-hand side intersect.
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A.2.8 The Entrepreneurial Appraisal Ratio.

In the model, financial innovation raises top wealth inequality only when it raises

the so-called appraisal ratio associated with entrepreneurial activity. The appraisal

ratio, which is sometimes called the “information ratio,” is a close relative of the

more widely known Sharpe ratio. In contrast to the Sharpe ratio, it compares the

idiosyncratic risk premium of an investment relative to the idiosyncratic risk, instead

of the total risk premium relative to the total risk. The appraisal ratio associated

with entrepreneurship plays a crucial role because it determines how exposed an

entrepreneur wants to be to her firm. Entrepreneurs choose a higher exposure to

their firm if the appraisal ratio is high. I obtain tractable formulas for this choice

in the model, using well-known tools from Merton (1969) and Angeletos (2007).

In particular, entrepreneurs’ choice of exposure is going to be proportional to the

appraisal ratio associated with entrepreneurship.

A.2.9 Rates of Return

The idiosyncratic volatility of entrepreneurs’ wealth is

𝜎̃𝐸𝑡 =
𝜅𝑡
𝜂𝑡
𝐴̄

(
𝐿

𝐾𝑡

)1−𝛼
𝜒𝜎̃ =

𝑝𝐸𝑡 − 𝑝𝑇𝑡
𝐴

𝐴̄

𝜒𝜎̃
(A.44)

The expected return to entrepreneurs’ wealth on the other hand is

𝑟𝐸𝑡 = 𝑟𝑡+𝜃𝑘𝑡

(
𝑟𝑘𝑡 − 𝑟𝑡

)
−𝜃out

𝑡 𝜍𝑡𝜎+𝜃fund
𝑡 𝜍𝑡𝜎 = 𝑟𝑡+𝜃𝑘𝑡

(
𝑟𝑘𝑡 − (𝑅𝑡 − 𝛿)

)
−𝜒𝜃𝑘𝑡 𝜍𝑡𝜎+𝜃fund

𝑡 𝜍𝑡𝜎

(A.45)

simplifying this using from entrepreneurs’ capital demand that

𝜃𝑘𝑡 (𝑟𝑘𝑡 − (𝑅𝑡 − 𝛿)) =
(
𝜃𝑘𝑡 𝜒𝜎̃𝐴̄

(
𝐿

𝐾𝑡

)1−𝛼)2

and demand for the mutual fund gives us the following expression

𝑟𝐸𝑡 = 𝑟𝑡 +
(
𝜎̃𝐸𝑡

)2
+ 𝜎2 (A.46)
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Similarly, the expected return to diversified capitalists’ wealth is

𝑟𝐷𝑡 = 𝑟𝑡 + 𝜎2 (A.47)

The overall return to wealth is then

𝑟𝐾𝑡 = 𝜂𝑡𝑟
𝐸
𝑡 + (1 − 𝜂𝑡)𝑟𝐷𝑡 = 𝑟𝑡 + 𝜂𝑡

(
𝜎̃𝐸𝑡

)2
+ 𝜎2 (A.48)

The return to the mutual fund and entrepreneurial capital is

𝑟𝑇𝑡 = 𝑟𝑡 + 𝜎2, 𝑟𝑘𝑡 = 𝑟𝑡 +
𝜂𝑡
𝜅𝑡

(
𝜎̃𝐸𝑡

)2
+ 𝜎2 (A.49)

Finally, the risk-free rate is pinned down by the first-order condition of the estab-

lished traditional firms’ capital demand:

𝑟𝑡 = 𝑅𝑡 − 𝛿 − 𝜎2 = 𝑝𝑇𝑡 𝛼𝐴

(
𝐿

𝐾𝑡

)1−𝛼
− 𝛿 − 𝜎2 (A.50)

A.2.10 Labor Share and Capital-Output Ratio

The labor share in the established traditional firm is

𝑤𝑡𝐿
𝑇
𝑡

𝑝𝑇𝑡 𝑌
𝑇
𝑡

= 1 − 𝛼 (A.51)

The labor share in the entrepreneurial firms is

𝑤𝑡𝐿
𝐸
𝑡

𝑝𝐸𝑡 𝑌
𝐸
𝑡

=

𝑝𝑇𝑡 (1 − 𝛼)𝐴
(
𝐾𝑡
𝐿

)𝛼
𝑝𝐸𝑡 𝐴̄

(
𝐾𝑡
𝐿

)𝛼 = (1 − 𝛼)
𝑝𝑇𝑡

𝑝𝐸𝑡

𝐴

𝐴̄
(A.52)

using that 𝑟𝐾𝑡 − 𝑟out
𝑡 = (𝑝𝐸𝑡 𝐴̄ − 𝑝𝑇𝑡 𝐴)

(
𝐿
𝐾

)1−𝛼 This can be rewritten as

𝐿𝑆𝐸 = (1 − 𝛼)

©­­­­­­«
1 −

(𝑟𝐾𝑡 − 𝑟out
𝑡 )𝐾𝐸𝑡

𝑝𝐸𝑡 𝑌
𝐸
𝑡︸           ︷︷           ︸

“factorless" share

ª®®®®®®¬
(A.53)

The labor share in the overall economy is
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𝑤𝑡𝐿

𝑌𝑡
= (1 − 𝛼)

𝑝𝑇𝑡 𝐴
(
𝐾𝑡
𝐿

)𝛼
𝐿

𝐴(𝜅𝑡)
(
𝐾𝑡
𝐿

)𝛼
𝐿

= (1 − 𝛼)𝑝𝑇𝑡
𝐴

𝐴(𝜅𝑡)
(A.54)

We also derive the following expression for the labor share as the weighted average

of the labor share in the two sectors. First, note that:

𝐿𝑆 =
𝑤𝐿

𝑌
= 𝜃

𝑤𝐿𝐸

𝑝𝐸𝑡 𝑌
𝐸
𝑡

+ (1 − 𝜃) 𝑤𝐿
𝑇

𝑝𝑇𝑡 𝑌
𝑇
𝑡

= 𝜃𝑡
𝜅𝑡𝑤𝐿
𝜈𝑡𝑌𝑡

+ (1 − 𝜃𝑡)
(1 − 𝜅𝑡)𝑤𝐿
(1 − 𝜈𝑡)𝑌𝑡

= 𝜃𝑡
𝜅𝑡
𝜈𝑡
𝐿𝑆 + (1 − 𝜃𝑡)

1 − 𝜅𝑡
1 − 𝜈𝑡

𝐿𝑆

Which implies

1 = 𝜃𝑡
𝜅𝑡
𝜈𝑡

+ (1 − 𝜃𝑡)
1 − 𝜅𝑡
1 − 𝜈𝑡

(A.55)

so that 𝜃𝑡 is

𝜃𝑡 =
1 − 1−𝜅𝑡

1−𝜈𝑡
𝜅𝑡
𝜈𝑡
− 1−𝜅𝑡

1−𝜈𝑡

(A.56)

which can be rewritten as

𝜃𝑡 =
1 − 𝜈𝑡 − 1 + 𝜅𝑡
1−𝜈𝑡
𝜈𝑡

𝜅𝑡 − 1 + 𝜅𝑡
(A.57)

𝜃𝑡 =
𝜈𝑡(𝜅𝑡 − 𝜈𝑡)

(1 − 𝜈𝑡)𝜅𝑡 − 𝜈𝑡(1 − 𝜅𝑡)
(A.58)

𝜃𝑡 = 𝜈𝑡 (A.59)

So the overall labor share is the sales weighted labor share between the two sectors.

Using the previous expressions for the labor shares in the two sectors is

𝐿𝑆 = 𝜈𝑡𝐿𝑆
𝐸 + (1 − 𝜈𝑡)𝐿𝑆𝑇 = 𝐿𝑆𝑇 − 𝜈𝑡

(
𝐿𝑆𝑇 − 𝐿𝑆𝐸

)
(A.60)

which means
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𝐿𝑆 = (1 − 𝛼)
[
1 − 𝜈𝑡

(
1 −

𝑝𝑇𝑡

𝑝𝐸𝑡

𝐴

𝐴̄

)]
(A.61)

or differently

𝐿𝑆 = (1 − 𝛼)
[
1 − 𝜈𝑡

𝑝𝐸𝑡

(
𝑝𝐸𝑡 − 𝑝𝑇𝑡

𝐴

𝐴̄

)]
(A.62)

Recall that 𝜎̃𝐸𝑡 =
𝑝𝐸𝑡 −𝑝𝑇𝑡

𝐴

𝐴̄

𝜒𝜎̃ . We can therefore write this expression of the labor share

as

𝐿𝑆 = (1 − 𝛼)
[
1 − 𝜈𝑡

𝑝𝐸𝑡
𝜎̃𝐸𝑡 𝜒𝜎̃

]
(A.63)

We can go further by noting that

𝜈𝑡

𝑝𝐸𝑡
=
𝑝𝐸𝑡 𝑌

𝐸
𝑡

𝑝𝐸𝑡 𝑌𝑡
=
𝑌𝐸𝑡
𝑌𝑡

=
𝐴̄

(
𝐿
𝐾

)1−𝛼
𝐾𝐸𝑡

𝐴(𝜅𝑡)
(
𝐿
𝐾

)1−𝛼
𝐾𝑡

=
𝐴̄𝜅𝑡
𝐴(𝜅𝑡)

(A.64)

We therefore write the labor share as

𝐿𝑆 = (1 − 𝛼)
[
1 − 𝐴̄𝜅𝑡

𝐴(𝜅𝑡)
𝜒𝜎̃𝜎̃𝐸𝑡

]
(A.65)

We can use this expression to show that the behavior of the labor share is in-

formative with regard to whether or not the supply of capital to entrepreneurs is

high enough for financial innovation to increase the absolute risk exposure of en-

trepreneurs. To see this, suppose that we are in an economy where the elasticity is

not high enough. In such a world, by definition, a fall in 𝜒 would lead to a fall in 𝜅𝑡𝜒

and therefore in 𝜎̃𝐸𝑡 . Noting that 𝐴(𝜅𝑡) always increases when 𝜅𝑡 increases and 𝜀 > 0,

we see that the expression 𝐴̄𝜅𝑡𝜒
𝐴(𝜅𝑡) 𝜎̃

𝐸
𝑡 𝜎̃ must fall in this case. But then the aggregate

labor share would go up. Hence, the aggregate labor share would go up in response

to improvements in the ability of entrepreneurs to offload risk to financial markets if

the supply elasticity was low.
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Capital share

The pure capital share in the entrepreneurial firm is

𝑅𝑡𝐾
𝐸
𝑡

𝑝𝐸𝑡 𝑌
𝐸
𝑡

= 𝛼
𝑝𝑇𝑡

𝑝𝐸𝑡

𝐴

𝐴̄
(A.66)

From this we see that the pure entrepreneurial share, or “factorless income" of the

income in the entrepreneurial firms is

1 −
𝑤𝑡𝐿

𝐸
𝑡

𝑝𝐸𝑡 𝑌
𝐸
𝑡

−
𝑅𝑡𝐾

𝐸
𝑡

𝑝𝐸𝑡 𝑌
𝐸
𝑡

= 1 −
𝑝𝑇𝑡

𝑝𝐸𝑡

𝐴

𝐴̄
=

𝜎̃𝜎̃𝐸

𝑝𝐸𝑡
𝜒 (A.67)

Moreover, the capital-output-ratio in the economy is

𝐾𝑡

𝑌𝑡
=

1
𝐴(𝜅𝑡)

(
𝐾𝑡

𝐿

)1−𝛼
(A.68)

A.2.11 Evolution of State

The state variable 𝐾𝑡 evolves according to

𝑑𝐾𝑡

𝐾𝑡
=

(
𝑟𝐾𝑡 − 𝜌

)
𝑑𝑡 + 𝜎𝑑𝑍𝑡 (A.69)

and the state variable 𝜂𝑡 evolves according to

𝑑𝜂𝑡
𝜂𝑡

= (1 − 𝜂𝑡)
(
𝜎̃𝐸𝑡

)2
𝑑𝑡 +

(
𝛿𝑑𝜓0 − 𝜂𝑡(𝛿𝑑 + 𝜙𝑙)

𝜂𝑡

)
𝑑𝑡 (A.70)
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A.2.12 Summary of Key Model Objects

Key model objects

𝑟𝑡 : 𝑝𝑇𝑡 𝛼𝐴
(
𝐿
𝐾𝑡

)1−𝛼
− 𝛿 − 𝜎2

𝑟out
𝑡 : 𝑟𝑡 + 𝜎2

𝑅𝑡 − 𝛿: 𝑟𝑡 + 𝜎2

𝑟𝑘𝑡 : 𝑟𝑡 + 𝜎2 + 𝜂𝑡
𝜅𝑡

(
𝜎̃𝐸

)2

𝑟𝐾𝑡 : 𝑟𝑡 + 𝜎2 + 𝜂𝑡
(
𝜎̃𝐸

)2

𝑟𝐸𝑡 : 𝑟𝑡 + 𝜎2 +
(
𝜎̃𝐸

)2

𝑟𝐷𝑡 : 𝑟𝑡 + 𝜎2

𝐿𝑆𝑇 : 1 − 𝛼

𝐿𝑆𝐸: (1 − 𝛼) 𝑝
𝑇
𝑡

𝑝𝐸𝑡

𝐴

𝐴̄

𝐿𝑆: (1 − 𝛼)𝑝𝑇𝑡
𝐴

𝐴(𝜅𝑡)
𝐾𝑡
𝑌𝑡

: 1
𝐴(𝜅𝑡)

(
𝐾𝑡
𝐿

)1−𝛼

Table A.2: Summary of key model objects

The payout to owners of capital net of depreciation is

𝑌 − 𝑤𝐿 − 𝛿𝐾
𝑌

=
𝐼 + 𝐶𝐸 + 𝐶𝐷 − 𝛿𝐾

𝑌
=
𝐼 + 𝜌𝐾 − 𝛿𝐾

𝑌
= 𝜌

𝐾

𝑌
= 𝜌

1
𝐴(𝜅)

(
𝐾

𝐿

)1−𝛼

The share of external and internal financing can be expressed, respetively, as

𝜒𝐾𝐸𝑡 = internal financing => 𝜒
𝐾𝐸𝑡
𝑁𝑡

= 𝜒𝜅𝑡 ⇒ 1 − 𝜒𝜅𝑡 = external financing.

A.3 Steady State Equilibrium and Transition Dynamics

A long-run steady state can be defined when setting aggregate shocks 𝑑𝑍𝑡 = 0. In

this case, a steady state equilibrium is an equilibrium where the state variables 𝐾𝑡
and 𝜂𝑡 are constant, i.e. where:

𝑑𝐾𝑡

𝐾𝑡
=

(
𝑟𝐾𝑠𝑠 − 𝜌

)
𝑑𝑡 = 0

𝑑𝜂𝑡
𝜂𝑡

= (1 − 𝜂𝑠𝑠)
(
𝜎̃𝐸𝑠𝑠

)2
𝑑𝑡 +

(
𝛿𝑑𝜓0 − 𝜂𝑠𝑠(𝛿𝑑 + 𝜙𝑙)

𝜂𝑠𝑠

)
𝑑𝑡 = 0

(A.71)

I will further assume throughout that 𝜀 > 0.
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A.3.1 Analyzing the Steady State

Plugging in the expression for 𝑟𝐾𝑠𝑠 in equation (A.48) evaluated in steady state, the

evolution of the economy is described by the following pair of ordinary differential

equations:

𝑑𝐾𝑡

𝐾𝑡
=

(
𝑝𝑇𝛼𝐴

(
𝐿

𝐾

)1−𝛼
+ 𝜂

(
𝜎̃𝐸

)2
− 𝜌 − 𝛿

)
𝑑𝑡

𝑑𝜂𝑡
𝜂𝑡

=

(
(1 − 𝜂)

(
𝜎̃𝐸

)2
+
(𝜓̄ − 𝜂)

(
𝛿𝑑 + 𝜙𝑙

)
𝜂

)
𝑑𝑡

(A.72)

where 𝜎̃𝐸𝑠𝑠 =
𝜅
𝜂

(
𝜒𝜎̃𝐴̄

) (
𝐿
𝐾

)1−𝛼, and the equilibrium condition for the allocation of the

capital stock:

𝐴̄𝑝𝐸 − 𝐴𝑝𝑇

𝜒𝜎̃𝐴̄
=

𝜅
𝜂

(
𝜒𝜎̃𝐴̄

) (
𝐿

𝐾

)1−𝛼
(A.73)

where

𝑝𝐸 = 𝜈

(
𝐴̄𝜅

𝐴(𝜅)

)−1/𝜀
, 𝑝𝑇 = (1 − 𝜈)

(
𝐴(1 − 𝜅)
𝐴(𝜅)

)−1/𝜀

𝐴(𝜅) =
[
𝜈
(
𝐴̄𝜅

) 𝜀−1
𝜀 + (1 − 𝜈)

(
𝐴(1 − 𝜅)

) 𝜀−1
𝜀

] 𝜀
𝜀−1

(A.74)

The model admits a steady state if there is a solution to the following system of three

equations in the three variables 𝜂, 𝐾 and 𝜅:

𝑝𝑇𝛼𝐴

(
𝐿

𝐾

)1−𝛼
+ 𝜂

(
𝐴̄𝑝𝐸 − 𝐴𝑝𝑇

𝜒𝜎̃𝐴̄

)2

− (𝜌 + 𝛿) = 0

(1 − 𝜂)
(
𝐴̄𝑝𝐸 − 𝐴𝑝𝑇

𝜒𝜎̃𝐴̄

)2

+
(𝜓̄ − 𝜂)

(
𝛿𝑑 + 𝜙𝑙

)
𝜂

= 0

𝐴̄𝑝𝐸 − 𝐴𝑝𝑇

𝜒𝜎̃𝐴̄
− 𝜅

𝜂

(
𝜒𝜎̃𝐴̄

) (
𝐿

𝐾

)1−𝛼
= 0

(A.75)

Definition 1. A non-degenerate steady state equilibrium is a triplet 𝑠 = (𝜂, 𝐾, 𝜅) that

satisfies the equations (A.75) with 𝐾, 𝜂 > 0 and 𝜅 ∈ [0, 1].

I begin the analysis by proving the following lemmata:

Lemma 6. If 𝜀 > 1 then lim𝜅→0 𝑝
𝑇 = 𝑝𝑇 ≡ (1 − 𝜈) 𝜀

𝜀−1 and lim𝜅→0 𝑝
𝐸 = ∞. If 𝜀 < 1, then

lim𝜅→0 𝑝
𝑇 = 0 and lim𝜅→0 𝑝

𝐸 = 𝜈
𝜀

𝜀−1 < ∞. Symmetric limits apply to 𝜅 → 1.
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Proof.

𝑝𝑇 = (1 − 𝜈)
(

𝐴(𝜅)
𝐴(1 − 𝜅)

) 1
𝜀

= (1 − 𝜈)
(
𝜈

(
𝐴̄𝜅

𝐴(1 − 𝜅)

) 𝜀−1
𝜀

+ (1 − 𝜈)
) 1

𝜀−1

If 𝜀 > 1, then the exponent on the ratio inside the bracket is positive and therefore

lim
𝜅→0

𝑝𝑇 = (1 − 𝜈)
(
𝜈

(
𝐴̄ · 0
𝐴

) 𝜀−1
𝜀

+ (1 − 𝜈)
) 1

𝜀−1

= (1 − 𝜈) 𝜀
𝜀−1 .

If 0 < 𝜀 < 1 then the exponent inside the bracket is negative, and so the argument

inside the bracket goes to ∞ as 𝜅 → 0. But the exponent outside the bracket is also

negative and hence lim𝜅→0 𝑝
𝑇 = 0 in this case. For 𝑝𝐸 we instead have

𝑝𝐸 = 𝜈

(
𝐴(𝜅)
𝐴̄𝜅

) 1
𝜀

= 𝜈

(
𝜈 + (1 − 𝜈)

(
𝐴(1 − 𝜅)
𝐴̄𝜅

) 𝜀−1
𝜀

) 1
𝜀−1

.

If 𝜀 > 1, the exponent inside the bracket is positive, and hence the expression inside

the bracket goes to ∞ as 𝜅 → 0. The exponent outside the brackets is positive

and so 𝑝𝐸 → ∞ as 𝜅 → 0. If 𝜀 < 1 then the exponents are both negative, and so

𝑝𝐸 → 𝜈
𝜀

𝜀−1 . □

Lemma 7. Steady state values of 𝜅 are bounded above by 𝜅̄ ≡
(
𝐴

𝐴̄

) (
𝐴̄𝜈

𝐴(1−𝜈)

)𝜀
1+

(
𝐴

𝐴̄

) (
𝐴̄𝜈

𝐴(1−𝜈)

)𝜀 < 1

Proof. From equation (A.73) we see that the numerator on the left-hand side cannot

be negative, since all objects on the right-hand side are positive (risk exposure cannot

be negative). Therefore

𝐴̄𝑝𝐸 − 𝐴𝑝𝐹 = 𝐴̄𝜈

(
𝐴̄𝜅

𝐴(𝜅)

)−1/𝜀
− 𝐴(1 − 𝜈)

(
𝐴(1 − 𝜅)
𝐴(𝜅)

)−1/𝜀
> 0 (A.76)

This implies

𝐴̄𝜈

𝐴(1 − 𝜈) >
(

𝐴̄𝜅

𝐴(1 − 𝜅)

)1/𝜀
⇒ 𝜅 < 𝜅̄ ≡

(
𝐴

𝐴̄

) (
𝐴̄𝜈

𝐴(1−𝜈)

)𝜀
1 +

(
𝐴

𝐴̄

) (
𝐴̄𝜈

𝐴(1−𝜈)

)𝜀 < 1 (A.77)
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□

Lemma 8. Aggregate TFP 𝐴(𝜅) is increasing in 𝜅 for 𝜅 ≤ 𝜅̄.

Proof. We can write

𝐴(𝜅) =
[
𝜈
(
𝐴̄𝜅

) 𝜀−1
𝜀 + (1 − 𝜈)

(
𝐴(1 − 𝜅)

) 𝜀−1
𝜀

] 𝜀
𝜀−1 (A.78)

Taking the derivative of this we have

𝑑𝐴(𝜅)
𝑑𝜅

= 𝐴(𝜅) 1
𝜀

[
𝜈𝐴̄

𝜀−1
𝜀 (𝜅)−

1
𝜀 − (1 − 𝜈)𝐴 𝜀−1

𝜀 (1 − 𝜅)−
1
𝜀

]
If we can show that 𝜈𝐴̄ 𝜀−1

𝜀 (𝜅)−
1
𝜀 ≥ (1 − 𝜈)𝐴 𝜀−1

𝜀 (1 − 𝜅)−
1
𝜀 for any 𝜅 ≤ 𝜅̄, we are done.

Using again the non-negativity of risk exposure, we have

𝐴̄𝑝𝐸 − 𝐴𝑝𝐹 = 𝐴̄𝜈

(
𝐴̄𝜅

𝐴(𝜅)

)−1/𝜀
− 𝐴(1 − 𝜈)

(
𝐴(1 − 𝜅)
𝐴(𝜅)

)−1/𝜀
≥ 0

⇔ 𝐴̄𝜈
(
𝐴̄𝜅

)−1/𝜀 − 𝐴(1 − 𝜈)
(
𝐴(1 − 𝜅)

)−1/𝜀 ≥ 0

𝜈𝐴̄
𝜀−1
𝜀 (𝜅)−

1
𝜀 ≥ (1 − 𝜈)𝐴 𝜀−1

𝜀 (1 − 𝜅)−
1
𝜀

which is what we wanted to show. □

Lemma 9. Steady state values of 𝜅 are bounded below by 𝜅 > 0 if 𝜀 > 1.

Proof. Through the second steady state equation in (A.75), we can implicitly define

𝜂(𝜅) as the value of 𝜂 that solves this equation for a given value of 𝜅. 𝜂(𝜅) is a

decreasing function of 𝜅 for 𝜅 < 𝜅̄. This is because, when 𝜅 < 𝜅̄ we know by the

earlier lemmas that 𝑝𝐸 is strictly decreasing in 𝜅, and 𝑝𝑇 is strictly increasing in 𝜅.

This means that 𝐴̄𝑝𝐸 −𝐴𝑝𝑇 is strictly decreasing in 𝜅. This implies that higher values

of 𝜅 means a lower value for
(
𝐴̄𝑝𝐸−𝐴𝑝𝑇

𝜒𝜎̃𝐴̄

)2
. With a lower value of

(
𝐴̄𝑝𝐸−𝐴𝑝𝑇

𝜒𝜎̃𝐴̄

)2
, the value

of 𝜂 that solves (A.75) is also lower. Hence 𝜂(𝜅) is decreasing in 𝜅. Now, we show

that there is a lowest admissible value for 𝜅, denoted 𝜅 > 0 when 𝜀 > 1. As 𝜅 → 0,

then 𝑝𝐸 to ∞ when 𝜀 > 1. Looking at the equation

𝑝𝑇𝛼𝐴

(
𝐿

𝐾

)1−𝛼
+ 𝜂

(
𝐴̄𝑝𝐸 − 𝐴𝑝𝑇

𝜒𝜎̃𝐴̄

)2

− (𝜌 + 𝛿) = 0
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we see that as 𝜅 → 0, the second term increases without bound, and hence, it will

surpass the value of 𝜌 + 𝛿. Let 𝜅̄ be the value of for which 𝜂
(
𝐴̄𝑝𝐸−𝐴𝑝𝑇

𝜒𝜎̃𝐴̄

)2
− (𝜌 + 𝛿) = 0,

then there can be no steady states with 0 < 𝜅 ≤ 𝜅̄, because, then the first term

𝑝𝑇𝛼𝐴
(
𝐿
𝐾

)1−𝛼 has to be less than or equal to 0, which cannot happen for 𝜅 > 0. □

A.3.2 Existence of Steady State

We can now prove the existence of steady state for 𝜀 > 1. By substituting the

expressions for the prices into the three steady state equations in (A.75), we obtain

(1 − 𝜈)
(
𝐴(1 − 𝜅)
𝐴(𝜅)

)−1/𝜀
𝛼𝐴

1
𝜂

(
𝐿

𝐾

)1−𝛼
+

(
𝜅
𝜂

(
𝜒𝜎̃𝐴̄

) (
𝐿

𝐾

)1−𝛼)2

− 𝜌 + 𝛿

𝜂
= 0

(1 − 𝜂)
©­­­«
𝐴̄𝜈

(
𝐴̄𝜅
𝐴(𝜅)

)−1/𝜀
− 𝐴(1 − 𝜈)

(
𝐴(1−𝜅)
𝐴(𝜅)

)−1/𝜀

𝜒𝜎̃𝐴̄

ª®®®¬
2

+
(𝜓̄ − 𝜂)

(
𝛿𝑑 + 𝜙𝑙

)
𝜂

= 0

𝐴̄𝜈
(
𝐴̄𝜅
𝐴(𝜅)

)−1/𝜀
− 𝐴(1 − 𝜈)

(
𝐴(1−𝜅)
𝐴(𝜅)

)−1/𝜀

𝜒𝜎̃𝐴̄
− 𝜅

𝜂

(
𝜒𝜎̃𝐴̄

) (
𝐿

𝐾

)1−𝛼
= 0

(A.79)

Note that the first equation does not depend 𝐾 directly, but only on 1
𝜂

(
𝐿
𝐾

)1−𝛼, which

can be solved for from the last equation in terms of 𝜅. Specifically,

1
𝜂

(
𝐿

𝐾

)1−𝛼
=

𝐴̄𝜈
(
𝐴̄𝜅
𝐴(𝜅)

)−1/𝜀
− 𝐴(1 − 𝜈)

(
𝐴(1−𝜅)
𝐴(𝜅)

)−1/𝜀

𝜅(𝜒𝜎̃𝐴̄)2
(A.80)

Substituting this into the first equation gives

(1 − 𝜈)𝛼𝐴
(
𝐴(1 − 𝜅)
𝐴(𝜅)

)−1/𝜀 𝐴̄𝜈
(
𝐴̄𝜅
𝐴(𝜅)

)−1/𝜀
− 𝐴(1 − 𝜈)

(
𝐴(1−𝜅)
𝐴(𝜅)

)−1/𝜀

𝜅(𝜒𝜎̃𝐴̄)2

+
©­­­«
𝐴̄𝜈

(
𝐴̄𝜅
𝐴(𝜅)

)−1/𝜀
− 𝐴(1 − 𝜈)

(
𝐴(1−𝜅)
𝐴(𝜅)

)−1/𝜀

𝜒𝜎̃𝐴̄

ª®®®¬
2

− 𝜌 + 𝛿

𝜂
= 0

(A.81)

This equation, together with
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(1 − 𝜂)
©­­­«
𝐴̄𝜈

(
𝐴̄𝜅
𝐴(𝜅)

)−1/𝜀
− 𝐴(1 − 𝜈)

(
𝐴(1−𝜅)
𝐴(𝜅)

)−1/𝜀

𝜒𝜎̃𝐴̄

ª®®®¬
2

+
(
𝜓̄

𝜂
− 1

) (
𝛿𝑑 + 𝜙𝑙

)
= 0 (A.82)

defines the steady states of the model. Given any 𝜅, the second has exactly one

solution 𝜂(𝜅) on the interval (0, 1). To see this latter fact note that 𝜂 = 0 is not

admissible, so we can multiply through by 𝜂 without affecting the location of the

roots. Then the right-hand side is a quadratic function of 𝜂. At 𝜂 = 1, the quadratic

function is (𝜓̄ − 1)
(
𝛿𝑑 + 𝜙𝑙

)
< 0 and at 𝜂 = 0, that quadratic is 𝜓̄(𝛿𝑑 + 𝜙𝑙) > 0. Hence,

it crosses the 𝑥-axis once on the interval 𝜂 ∈ (0, 1). Denote this value 𝜂(𝜅). Note

also that 𝜂(𝜅) is strictly decreasing in 𝜅. If 𝜅 rises, then the squared term in the

brackets will fall, to maintain equality, 𝜂 must also fall since the expression is strictly

decreasing in 𝜂. In summary, candidate steady states are determined by the solutions

to the following equation in 𝜅

(1 − 𝜈)𝛼𝐴
(
𝐴(1 − 𝜅)
𝐴(𝜅)

)−1/𝜀 𝐴̄𝜈
(
𝐴̄𝜅
𝐴(𝜅)

)−1/𝜀
− 𝐴(1 − 𝜈)

(
𝐴(1−𝜅)
𝐴(𝜅)

)−1/𝜀

𝜅(𝜒𝜎̃𝐴̄)2

+
©­­­«
𝐴̄𝜈

(
𝐴̄𝜅
𝐴(𝜅)

)−1/𝜀
− 𝐴(1 − 𝜈)

(
𝐴(1−𝜅)
𝐴(𝜅)

)−1/𝜀

𝜒𝜎̃𝐴̄

ª®®®¬
2

− 𝜌 + 𝛿

𝜂(𝜅) = 0

(A.83)

where 𝜂(𝜅) is a strictly decreasing in 𝜅. We can go further in narrowing down the

candidate steady states. To prove that a steady state exists, we define the functions

ℎ(𝜅) = 𝜌 + 𝛿

𝜂(𝜅) −
©­­­«
𝐴̄𝜈

(
𝐴̄𝜅
𝐴(𝜅)

)−1/𝜀
− 𝐴(1 − 𝜈)

(
𝐴(1−𝜅)
𝐴(𝜅)

)−1/𝜀

𝜒𝜎̃𝐴̄

ª®®®¬
2

𝑓 (𝜅) = (1 − 𝜈)𝛼𝐴
(
𝐴(1 − 𝜅)
𝐴(𝜅)

)−1/𝜀 𝐴̄𝜈
(
𝐴̄𝜅
𝐴(𝜅)

)−1/𝜀
− 𝐴(1 − 𝜈)

(
𝐴(1−𝜅)
𝐴(𝜅)

)−1/𝜀

𝜅(𝜒𝜎̃𝐴̄)2

(A.84)

The steady state equation is then 𝑓 (𝜅) = ℎ(𝜅). Note that ℎ(𝜅) = 0 by the definition

of 𝜅. Note also that ℎ(𝜅) → −∞ when 𝜅 → 0, and ℎ(𝜅) → 𝜌+𝛿
𝑛(𝜅) > 0 when 𝜅 → 𝜅̄.
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By definition of 𝜅̄ and 𝜅 we have 𝑓 (𝜅̄) = 0 and 𝑓 (𝜅) > 0, while ℎ(𝜅̄) =
𝜌+𝛿
𝜂(𝜅) > 0

and ℎ(𝜅) = 0. By the intermediate value theorem, these lines must cross at least

once within the relevant interval, hence a steady state exists. Uniqueness of the

steady state can be demonstrated analytically in the case when the goods are perfect

substitutes, i.e. 𝜀 = ∞. If the goods are perfect substitutes, then note that 𝜂(𝜅) = 𝜂̄

does not depend on 𝜅 since it is pinned down by the equation

(1 − 𝜂)
(
𝐴̄𝜈 − 𝐴(1 − 𝜈)

𝜒𝜎̃𝐴̄

)2

+
(
𝜓̄

𝜂
− 1

) (
𝛿𝑑 + 𝜙𝑙

)
= 0 (A.85)

Given this, we have

ℎ(𝜅) =
𝜌 + 𝛿

𝜂̄
−

(
𝐴̄𝜈 − 𝐴(1 − 𝜈)

𝜒𝜎̃𝐴̄

)2

(A.86)

so that ℎ(𝜅) also does not depend on 𝜅. While at the same time

𝑓 (𝜅) = (1 − 𝜈)𝛼𝐴
𝐴̄𝜈 − 𝐴(1 − 𝜈)

𝜅(𝜒𝜎̃𝐴̄)2
(A.87)

is strictly decreasing in 𝜅 as long as 𝐴̄𝜈 − 𝐴(1 − 𝜈) > 0 (which ensures that en-

trepreneurs’ idiosyncratic volatility is positive). There is one additional parameter

restriction. In particular, the point at which 𝑓 (𝜅) and ℎ(𝜅) intersect must be such that

𝜅 ∈ (0, 1). This condition is

𝜅 = 𝜂̄
(1 − 𝜈)𝛼𝐴 𝐴̄𝜈−𝐴(1−𝜈)

(𝜒𝜎̃𝐴̄)2

𝜌 + 𝛿 − 𝜂̄
(
𝐴̄𝜈−𝐴(1−𝜈)

𝜒𝜎̃𝐴̄

)2 ∈ (0, 1) (A.88)

This ensures that entrepreneurs are not so much more productive than the tradi-

tional sector that they want to hold more than 100% of the capital stock, and that

their precautionary savings motive is not so strong that the capital stock grows to

without bound.

When the goods are not perfect substitutes, it is harder to see if the steady state is

unique. However, one can examine this graphically by plotting the functions 𝑓 (𝜅)
and ℎ(𝜅) for given parameter values and examining whether they have a unique

intersection or not. Figure A.1 provides an illustrative example. I have been unable
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Figure A.1: An illustrative example of graphical determination of unique steady state at the intersec-
tion of 𝑓 (𝜅) and ℎ(𝜅).

to construct a numerical example with multiple steady states.

A.3.3 Steady State Tail Coefficient

In this section, I omit the subscript denoting steady state. All variables should be

understood as being in steady state. First note that in steady state, the diffusion and

drift of the wealth growth of entrepreneurs is

𝜎̃𝐸 , and 𝜇𝐸 = 𝑟𝐸 − 𝜌 = (1 − 𝜂)
(
𝜎̃𝐸

)2
> 0. (A.89)

For diversified capitalists, we instead have zero volatility and negative steady state

mean growth rate of wealth 𝜇𝐷 = 𝑟𝐷 − 𝜌 < 0. The style of proof in this section

follows from those used in Gabaix (2009) and Gomez and Gouin-Bonenfant (2024),

both of which consider random growth models of wealth accumulation. The relevant

Kolmogorov forward equation for the distribution of entrepreneurs’ wealth can be

written as
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0 = − 𝜕

𝜕𝑛

[
𝜇𝐸𝑛 𝑓𝐸(𝑛)

]
+ 𝜕2

𝜕𝑛2

[
1
2(𝜎̃

𝐸)2𝑛2 𝑓𝐸(𝑛)
]
− (𝛿𝑑 + 𝜙𝑙) 𝑓𝐸(𝑛). (A.90)

We can guess and verify that the distribution takes the form of a double Pareto

distribution

𝑓𝐸(𝑛) = 𝐴
[
𝑛−𝜁+−11𝑛>𝑁 + 𝑛−𝜁−−11𝑛<𝑁

]
(A.91)

where 𝑁 is the steady state average wealth level (which is the wealth level at birth),

𝐴 =
−𝜁−𝜁+

(𝜁+−𝜁−)𝑁 , and 𝜁+ and 𝜁− are the positive and negative roots, respectively, of the

quadratic equation

0 = 𝜁𝜇𝐸 + (𝜎̃𝐸)2
2 𝜁 (𝜁 − 1) − (𝛿𝑑 + 𝜙𝑙) (A.92)

see Gabaix (2009) and references therein). For the diversified agents we guess that

the distribution takes the following form:

𝑓𝐷(𝑛) = 𝐵
[
𝜔1 𝑓𝐸(𝑛) +

(
𝜔2𝑛

−𝜁−−1 + (1 − 𝜔1 − 𝜔2)𝑛−𝜁̃−−1
)

1𝑛<𝑁
]
. (A.93)

This guess is motivated by the fact that diversified capitalists consists of former

entrepreneurs that have switched, but also of agents that were born diversified.

Because 𝜇𝐷 < 0, those born diversified will never have wealth above 𝑁 , so all

diversified agents with 𝑛 > 𝑁 must be former entrepreneurs. The guess is verified if

we can select the weights 𝜔1 and 𝜔2, and the tail-coefficient 𝜁̃ to solve the Kolmogorov

forward equation

0 = − 𝜕

𝜕𝑛

[
𝜇𝐷𝑛 𝑓𝐷(𝑛)

]
− 𝛿𝑑 𝑓𝐷(𝑛) +

𝜙𝑙𝜓𝐸

𝜓𝐷
𝑓𝐸(𝑛). (A.94)

Consider the case 𝑛 > 𝑁 . Then, the KFE is simply

𝜔1𝜇
𝐷𝜁+ − 𝜔1𝛿𝑑 +

𝜙𝑙𝜓𝐸

𝜓𝐷
= 0 (A.95)

This gives us 𝜔1 =
𝜙𝑙𝜓𝐸

𝜓𝐷(𝛿𝑑−𝜇𝐷𝜁+) , which pinns down the distribution of diversified

agents’ wealth above 𝑁 . Next consider 𝑛 < 𝑁 . Let 𝑔(𝑛) = 𝑛−𝜁̃−−1. Then the KFE can

in this case be written
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0 =

(
− 𝜕

𝜕𝑛

[
𝜇𝐷𝑛 (𝜔1𝐴 + 𝜔2) 𝑛−𝜁−−1] − 𝛿𝑑 (𝜔1𝐴 + 𝜔2) 𝑛−𝜁−−1 +

𝜙𝑙𝜓𝐸

𝜓𝐷
𝐴𝑛−𝜁−−1

)
+(

− 𝜕

𝜕𝑛

[
𝜇𝐷𝑛𝑔(𝑛)

]
− 𝛿𝑑𝑔(𝑛)

)
(1 − 𝜔1 − 𝜔2).

(A.96)

Note that the expression in the second term
(
− 𝜕

𝜕𝑛

[
𝜇𝐷𝑛𝑔(𝑛)

]
− 𝛿𝑑𝑔(𝑛)

)
, is analogous

to right-hand side of the KFE for a GBM with zero volatility, growth rate 𝜇𝐷 , constant

death rate 𝛿𝐷 and rebirth at 𝑁 . Specifically, this expression is 0 if we pick 𝜁̃− =
𝛿𝑑
𝜇𝐷

(see Steindl (1965) and Gabaix et al. (2016)). Setting the first expression to 0 then

gives an equation for 𝜔2, namely

0 = 𝜇𝐷 (𝜔1𝐴 + 𝜔2) 𝜁− − 𝛿𝑑 (𝜔1𝐴 + 𝜔2) +
𝜙𝑙𝜓𝐸

𝜓𝐷
𝐴 (A.97)

which implies

𝜔2 =


𝜔1

(
𝛿𝑑 − 𝜇𝐷

)
− 𝜙𝑙𝜓𝐸

𝜓𝐷

𝜇𝐷𝜁+ − 𝛿𝑑

 𝐴. (A.98)

Finally, we pick 𝐵 to ensure that the density integrates to 1. Integrating 𝑓𝐷(𝑛) and

setting this to 1 gives

𝐵

(
𝜔1 + 𝜔2

𝑁−𝜁−

𝜁−
+ (1 − 𝜔1 − 𝜔2)

𝑁−𝜁̃−

𝜁̃−

)
⇒ 𝐵 =

1

𝜔1 + 𝜔2
𝑁−𝜁−
𝜁−

+ (1 − 𝜔1 − 𝜔2)𝑁
−𝜁̃−
𝜁̃−

.

(A.99)

This verifies the guess. Note that the limiting right tail of the distribution of wealth

for diversified agents is inherited from that of entrepreneurs, where as the limiting

left tail depends on whether 𝜁− is larger than or smaller than 𝜁̃−.

Characterizing the right tail

To further characterize the right tail we have the following quadratic equation from

(A.92)
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𝜁2 + 𝜁

(
2𝜇𝐸(
𝜎̃𝐸

)2 − 1

)
−

2(𝛿𝑑 + 𝜙𝑙)(
𝜎̃𝐸

)2 = 0 (A.100)

using that 2𝜇𝐸

(𝜎̃𝐸)2 = 2(1 − 𝜂) we can write this as

𝜁2 + 𝜁 (1 − 2𝜂) −
2(𝛿𝑑 + 𝜙𝑙)(

𝜎̃𝐸
)2 = 0 (A.101)

the positive solution to this is (which I from here on denote simply by 𝜁 instead of 𝜁+
to save on notation)

𝜁 = 𝜂 − 1
2 +

√√(
𝜂 − 1

2

)2
+

2(𝛿𝑑 + 𝜙𝑙)(
𝜎̃𝐸

)2 (A.102)

We can go further in characterizing this since the steady state condition for 𝜂, 𝑑𝜂 = 0

implies

𝜂 (1 − 𝜂) (𝜎̃𝐸)2 = −
(
𝛿𝑑𝜓

0 − 𝛿𝑑𝜂 − 𝜙𝑙𝜂
)

(A.103)

using that in steady state 𝛿𝑑𝜓0 = 𝜓̄(𝛿𝑑 + 𝜙𝑙) this implies

𝜂 (1 − 𝜂) (𝜎̃𝐸)2 = (𝜂 − 𝜓̄)(𝛿𝑑 + 𝜙𝑙) (A.104)

so that

2𝜂(1 − 𝜂)
𝜂 − 𝜓̄

=
2(𝛿𝑑 + 𝜙𝑙)(

𝜎̃𝐸
)2 (A.105)

Note first that this tells us that 𝜓̄ < 𝜂 in steady state, otherwise the left-hand side is

negative, which cannot happen since the right-hand side is strictly positive. More-

over, plugging this into the expression for 𝜁 then gives

𝜁 = 𝜂 − 1
2 +

√(
𝜂 − 1

2

)2
+

2𝜂(1 − 𝜂)
𝜂 − 𝜓̄

(A.106)

the left-tail coefficient can be solved similarly.

We now proceed to proving that 𝜁 is strictly decreasing in 𝜂. In other words,

143



inequality is increasing in𝜂. First, note that the expression 2𝜂(1−𝜂)
𝜂−𝜓̄ is strictly decreasing

in 𝜂. To see this, not that its derivative is

(2(1 − 𝜂) − 2𝜂)
(
𝜂 − 𝜓̄

)
− 2𝜂(1 − 𝜂)

(𝜂 − 𝜓̄)2
=

2𝜂 − 4𝜂2 − 2𝜓̄ + 4𝜓̄𝜂 − 2𝜂 + 2𝜂2

(𝜂 − 𝜓̄)2
=

−2𝜂2 + 4𝜓̄𝜂 − 2𝜓2 + 2𝜓2 − 2𝜓̄
(𝜂 − 𝜓̄)2

=
−2(𝜂 − 𝜓̄)2 − 2𝜓̄(1 − 𝜓̄)

(𝜂 − 𝜓̄)2
= −2

(
1 +

𝜓̄(1 − 𝜓̄))
(𝜂 − 𝜓̄)2

)
< 0.

(A.107)

Moreover, clearly 𝜂 − 1
2 is increasing in 𝜂. The question is therefore if the slope of the

second term under the bracket, 2𝜂(1−𝜂)
𝜂−𝜓̄ , negative enough to counteract the positive

slope coming from the terms 𝜂 − 1
2 and (𝜂 − 1

2)2. To prove this, note that equation

(A.107) implies that slope of 2𝜂(1−𝜂)
𝜂−𝜓̄ is least negative (smallest in magnitude) when

𝜓̄ = 0. Moreover, for any other admissible value of 𝜓̄ (that is 𝜓̄ < 𝜂 < 1) the slope of

this term is more negative. Hence, if we can show that 𝜁 is non-increasing in 𝜂 when

𝜓̄ = 0, then it must be the case that 𝜁 is decreasing in 𝜂 when 𝜓̄ > 0. If we plug in

𝜓̄ = 0 in the expression for 𝜂, we obtain

𝜂 − 1
2 +

√(
𝜂 − 1

2

)2
+ 2(1 − 𝜂) = 𝜂 − 1

2 +
√
𝜂2 − 3𝜂 + 9

4 =

= 𝜂 − 1
2 +

√(
𝜂 − 3

2

)2
= 𝜂 − 1

2 + |𝜂 − 3
2 |

Using that 𝜂 ∈ (0, 1), we can write this as

= 𝜂 − 1
2 +

√(
𝜂 − 3

2

)2
= 𝜂 − 1

2 − 𝜂 + 3
2 = 1

The slope of this is 0. Hence, when 𝜓̄ = 0, the slope of 𝜁 with respect to 𝜂 is 0, and we

know that the slope is strictly smaller for all other admissible 𝜓̄, hence, 𝜁 is strictly

decreasing in 𝜂.

Finally, we proceed by showing that 𝜁 is strictly decreasing in 𝜎̃𝐸. This follows

from the fact that equation (A.105) implies that 𝜂 is strictly increasing in 𝜎̃𝐸, because

the left-hand side is decreasing in 𝜂 and the right-hand side is decreasing in 𝜎̃𝐸. Since
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𝜁 is decreasing in 𝜂, it must be then that 𝜁 is decreasing in 𝜎̃𝐸 as well.

A.3.4 Changes in Inequality After a Fall in 𝜒

Proposition 2 discusses small changes in 𝜒. In this section, I study what happens

to inequality for larger changes in 𝜒 and we discuss transition dynamics. More

specifically, we will consider the transition dynamics of the model in the following

type of experiment. We let the initial values 𝐾0, 𝜂0, and 𝜅0 be associated with an

initial steady state 𝑠0 with skin-in-the-game parameter 𝜒0. We then examine the

transition dynamics of the model in response to a change in 𝜒 to 𝜒1 < 𝜒0. For this

exercise to make sense, I will assume that there is a unique (non-degenerate) steady

state associated with the new value 𝜒1. I will also have to assume that the transition

dynamics ensure that we converge to this new steady state.

Proposition 5. Consider an initial (non-degenerate) steady state 𝑠0 = (𝐾0, 𝜂0, 𝜅0) with

𝜅0 ∈ (0, 1), associated with skin-in-the-game parameter 𝜒0, and a different steady state

𝑠1 = (𝐾1, 𝜂1, 𝜅1) with 𝜅1 ∈ (0, 1), associated with 𝜒1 < 𝜒0. Assume that the economy

converges to 𝑠1 from 𝑠0 when changing 𝜒0 to 𝜒1. All other parameters are fixed, in particular,

the parameter 𝜀 is the same for both steady states. Then, there exists a 𝜀∗𝑠0 ,𝑠1 such that if the 𝜀

associated with these two steady states is larger than 𝜀∗𝑠0 ,𝑠1 , then 𝜂1 > 𝜂0 and Pareto inequality

is higher in 𝑠1.

Proof. The initial value of the entrepreneurs’ risk exposure is

𝜎̃𝐸0 =
𝐴̄𝑝𝐸(𝜅0) − 𝐴𝑝𝑇(𝜅0)

𝜒0𝜎̃𝐴̄
.

Because the prices can be made arbitrarily insensitive to changes in 𝜅 ∈ (0, 1) by

letting 𝜀 be large enough, we know that there exists some 𝜀∗𝑠0 ,𝑠1 such that if 𝜀 > 𝜀∗𝑠0 ,𝑠1

we have

𝜎̃𝐸0 =
𝐴̄𝑝𝐸(𝜅0) − 𝐴𝑝𝑇(𝜅0)

𝜒0𝜎̃𝐴̄
<
𝐴̄𝑝𝐸(𝜅1) − 𝐴𝑝𝑇(𝜅1)

𝜒1𝜎̃𝐴̄
= 𝜎̃𝐸1 .

Because 𝜎̃𝐸1 > 𝜎̃𝐸0 , it must be that 𝜂1 > 𝜂0, which means Pareto inequality is higher in

the new steady state. □

Now we examine the transition dynamics more closely. Recall that the transition
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dynamics of the model are determined by the evolution of the state variables

𝑑𝐾𝑡

𝐾𝑡
=

(
𝑝𝑇(𝜅𝑡)𝛼𝐴

(
𝐿

𝐾𝑡

)1−𝛼
+ 𝜂𝑡

(
𝜎̃𝐸𝑡

)2
− 𝜌 − 𝛿

)
𝑑𝑡

𝑑𝜂𝑡
𝜂𝑡

=

(
(1 − 𝜂𝑡)

(
𝜎̃𝐸𝑡

)2
+
(𝜓̄ − 𝜂𝑡)

(
𝛿𝑑 + 𝜙𝑙

)
𝜂𝑡

)
𝑑𝑡

(A.108)

and the equilibrium condition for the allocation of the capital stock:

𝐴̄𝑝(𝜅𝑡)𝐸 − 𝐴𝑝𝑇(𝜅𝑡)
𝜒𝜎̃𝐴̄

=
𝜅𝑡
𝜂𝑡

(
𝜒𝜎̃𝐴̄

) (
𝐿

𝐾𝑡

)1−𝛼
≡ 𝜎̃2

𝑡 (A.109)

To understand what happens, when 𝜒 falls, let’s consider a transition between steady

state when 𝜒 falls.

Lemma 10. In this experiment, 𝜅𝑡 increases on impact.

Proof. On impact, 𝐾𝑡 and 𝜂𝑡 are fixed, so (A.109) implies that 𝜅𝑡 must increase to

maintain equilibrium if 𝜒 falls. □

The above lemma tells us what happens on impact. To examine what happens in

the transition, we need to study how 𝜂𝑡 and 𝐾𝑡 evolve. Clearly, for high enough values

𝜀, the idiosyncratic risk exposure of entrepreneurs 𝜎̃𝐸𝑡 rises on impact. According to

the equations describing the evolution of the state variables above, both 𝐾𝑡 and 𝜂𝑡

will start growing. Looking at the equilibrium condition for the capital allocation,

as 𝜂𝑡 and 𝐾𝑡 start growing, 𝜅𝑡 rises further. The intuition is that as entrepreneurs be-

come wealthier and the operational leverage of the economy (𝑌/𝐾) becomes smaller,

entrepreneurs are better equipped to bear risk and this scale up even more. However,

looking at the left-hand side of the equilibrium capital allocation equation (A.109),

we see that this scaling up after impact is going to be a reduction in the Sharpe ratio

for entrepreneurs (compared to the initial upward jump). In other words, even if the

Sharpe ratio jumps upwards on impact, this upward jump is moderated somewhat

when 𝜂𝑡 and 𝐾𝑡 start to grow. However, to be consistent with a new steady state with

higher risk exposure for entrepreneurs, 𝜎̃𝐸𝑡 cannot come back down all the way to its

initial value. Looking at the equation describing the evolution of 𝜂𝑡 , we see that the

growth rate of 𝜂𝑡 slows down after impact because 𝜎̃𝐸𝑡 declines and because a higher
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𝜂𝑡 makes 𝑑𝜂𝑡 smaller.

For the capital stock the dynamics are less clear. The increase in 𝜅𝑡 raises the

risk-free rate on impact because 𝑝𝑇(𝜅𝑡) rises. Moreover, the fact that both 𝜂𝑡 and 𝜎̃𝐸𝑡

rise, means the drift of the capital stock becomes even higher. However, as the capital

stock rises, the marginal product of capital falls according to the standard neoclassical

mechanism. Assuming that the economy actually converges to a new steady state it

must be the case the effect from the decreasing marginal product of capital is more

powerful than the increase in the price 𝑝𝑇𝑡 in the long run. In particular, we know

that there is a maximal 𝜅 consistent with steady state, 𝜅̄ < 1, so that the price 𝑝𝑇(𝜅)
is bounded above by 𝑝𝑇(𝜅̄).

Proving that the economy converges to a unique steady state in a multi-sector

growth model is difficult. In fact, Boldrin and Deneckere (1990) shows that multi-

sector growth models can display chaotic and cyclical behavior even without aggre-

gate risk. Other than in the limit when 𝜀 → ∞, so that 𝑝𝑇𝑡 is constant, I study the

convergence to steady state numerically.

A.3.5 Computing Transition Dynamics Numerically

Here is a brief outline of the numerical procedure for computing the transition

dynamics of the model.

To explain the steps, I consider an experiment wherein only one parameter changes,

at only one point in time, and that the transition experiment starts in an initial steady

state. Generalizing this is straightforward.

1. Choose a duration of the transition dynamics in years, 𝑇, and a time period

stepsize Δ𝑡 . The number of time periods per year is 1
Δ𝑡

.

2. Select values for the rest of the model’s parameters.

3. Compute steady state values of the capital stock and entrepreneurs wealth share

𝐾0, 𝜂0 for these parameters. This is the initial steady state.

4. Compute the value of all equilibrium objects of interest in this initial steady

state.
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5. Change the value of a parameter of interest. Now, for each time period in the

transition starting at 𝑡 = 0:

5.1 Given the current values for the capital stock and entrepreneurs wealth

share 𝐾𝑡 , 𝜂𝑡 , compute the equilibrium fraction of capital operated by en-

trepreneurs in this new equilibrium, 𝜅𝑡 using equation A.41.

5.2 Compute the new equilibrium values of all variables of interest for this

time period.

5.3 Use the following discretized version of the state transition dynamics equa-

tions in A.108 to compute next period values of the state variables:

𝐾𝑡+1 =

(
𝑝𝑇(𝜅𝑡)𝛼𝐴

(
𝐿

𝐾𝑡

)1−𝛼
+ 𝜂𝑡

(
𝜎̃𝐸𝑡

)2
− 𝜌 − 𝛿

)
𝐾𝑡Δ𝑡 + 𝐾𝑡

𝜂𝑡+1 =

(
(1 − 𝜂𝑡)

(
𝜎̃𝐸𝑡

)2
+
(𝜓̄ − 𝜂𝑡)

(
𝛿𝑑 + 𝜙𝑙

)
𝜂𝑡

)
𝜂𝑡Δ𝑡 + 𝜂𝑡

(A.110)

5.4 Go back to step 5.1 and repeat until reaching the last time period in the

experiment.

Now you will have period-by-period values for the state variables 𝐾𝑡 and 𝜂𝑡 , from

which all other equilibrium objects can be computed. To solve for the evolution of

the distribution of wealth, I use the sequence of drifts and volatilities 𝑟𝐸𝑡 , 𝑟𝐷𝑡 , 𝜎𝐸𝑡 ,

to numerically solve the time-dependent Kolmogorov forward equation associated

with the evolution of wealth for the respective type of agent using the numerical

procedure in Brunnermeier et al. (2021).

A.3.6 Decreasing Inequality Even with Perfect Substitutes

The relationship between Pareto inequality and 𝜒 turns around even when 𝜀 = ∞,

when 𝜒 becomes small enough. This does not contradict Proposition 2 or Proposition

5. These propositions tell us that starting in an initial steady state with interior𝜅, there

exists large enough values of 𝜀, so that inequality increases when 𝜒 falls. However,

as 𝜒 is reduced further, and further the required 𝜀 becomes larger and larger. This

is because as 𝜅 gets closer to 1, there is less room for entrepreneurs to scale up at
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the expense of the traditional firms. And even in the limit as 𝜀 → ∞, there is a limit

to the scaling-up effect coming from the fact that with perfects substitutes, small

enough 𝜒 implies that in steady state 𝜅 = 𝜅̄ = 1. Further falls in 𝜒 beyond this

leads to less inequality. To prove this is straightforward for 𝜀 = ∞ because tedious

the CES-algebra can be avoided. For 𝜀 < ∞, the traditional sector is never fully out

competed because prices in that sector increase rapidly when 𝜅 gets close to 1. This

means intuitively that the limits to the scaling-up effect occur even earlier than with

𝜀 = ∞. However, this is more challenging to prove analytically. I therefore produce

the proof for 𝜀 = ∞ and confirm the intuition numerically.

Proposition 6. Even with perfect substitutes, 𝜀 = ∞, there is a value 𝜒∗ such that if 𝜒 < 𝜒∗,

a further fall in 𝜒 reduces Pareto inequality.

Proof. Note that with perfect substitutes, the condition in equation (A.88) must be

satisfied for both sectors to be active. However, in that expression, we see that as

𝜒 → 0, this condition does not hold. This is because, with perfect substitutes and

low 𝜒, there is no steady state with 𝜅 ∈ (0, 1). Instead, the entrepreneurs take over

the entire economy. Hence, we let 𝜒∗ be the supremum of the values of 𝜒 ∈ (0, 1)
for which (A.88) does not hold. We instead seek an equilibrium where only the

entrepreneurs are active. In this economy entrepreneurs’ optimal portfolio choice

implies
1
𝜂
(𝜒𝜎̃𝑘)2 = 𝑟𝑘 − 𝑟. (A.111)

which follows from plugging in 𝜅 = 1 in entrepreneurs optimal portfolio choice. We

recall that 𝜎̃𝑘𝑠𝑠 = 𝑌
𝐾 𝜎̃. Moreover, when the traditional firms are not active, the risk-free

rate is no longer pinned down by the value of the marginal product in that sector.

Instead, we have the following system jointly pinning down the wage rate and the

risk-free rate:
𝑌

𝐾
= 𝐴̄

(
1 − 𝛼
𝛼

𝑟 + 𝛿
𝑤

)1−𝛼

𝑌

𝐾
− 𝑤 𝐿

𝐾
− 𝛿 − 𝑟︸              ︷︷              ︸

𝑟𝑘−𝑟

=
1
𝜂

(
𝜒
𝑌

𝐾
𝜎̃

)2 (A.112)
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Solving this gives us

𝑤 = (1 − 𝛼)𝐴̄
(
𝐾

𝐿

)𝛼 [
1 − 𝜒𝜎̃

𝜂

(
𝜒𝜎̃

𝑌

𝐾

)]
𝑟 = 𝛼𝐴̄

(
𝐿

𝐾

)1−𝛼 [
1 − 𝜒𝜎̃

𝜂

(
𝜒𝜎̃

𝑌

𝐾

)]
− 𝛿

(A.113)

Plugging this into the equations for the evolution of the state variables and setting

these to zero we obtain

𝑑𝐾𝑡

𝐾𝑡
=

(
𝛼
𝑌

𝐾
+ (1 − 𝛼)1

𝜂

(
𝜒
𝑌

𝐾
𝜎̃

)2
− 𝜌

)
𝑑𝑡 = 0

𝑑𝜂𝑡
𝜂𝑡

=

(
(1 − 𝜂)

(
1
𝜂
𝜒
𝑌

𝐾
𝜎̃

)2
+
(𝜓̄ − 𝜂)

(
𝛿𝑑 + 𝜙𝑙

)
𝜂

)
𝑑𝑡 = 0

(A.114)

From the steady state for 𝜂 we obtain

1
𝜂

(
𝜒
𝑌

𝐾
𝜎̃

)2
= −

(𝜓̄ − 𝜂)(𝛿𝑑 + 𝜙𝑙)
1 − 𝜂

We can then rewrite the steady state equations for 𝐾 as

𝛼
𝑌

𝐾
− 𝜌 = (1 − 𝛼)

(𝜓̄ − 𝜂)(𝛿𝑑 + 𝜙𝑙)
1 − 𝜂

(A.115)

The left-hand side is strictly decreasing in 𝜂 (take derivative). This means that if a

fall in 𝜒 leads to a fall in 𝜂, it must lead to a rise in 𝑌
𝐾 for this equation to hold, and

vice versa. In other words, it must lead to a fall in 𝐾. If a fall in 𝜒 leads to a rise in 𝜂,

then it must similarly lead to a rise in 𝐾, and vice versa. In other words, when 𝜒 falls,

𝜂 and 𝐾 must move in the same direction in steady state. To see that the direction is

downward, we look at the steady state equation for 𝜂. When 𝜒 falls, this equation

tells us that either 𝜂 or 𝐾 must fall. Since we know that they both move in the same

direction, this means they must fall.

What happens to the idiosyncratic risk exposure of entrepreneurs? We have

𝜎̃𝐸 =
1
𝜂
𝜒
𝑌

𝐾
𝜎̃
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which has to fall. To see this, note that when 𝜒 falls, 1/𝜂 and 𝑌/𝐾 rise, but if they

rise so much that this offsets the fall in 𝜒 in the sense that 𝜎̃𝐸 does not fall, then this

contradicts 𝜂 falling, because if 𝜎̃𝐸 falls, then the steady state equation for 𝜂 tells us

that 𝜂 should not fall. So 𝜎̃𝐸 must fall. Finally, Pareto inequality falls because 𝜎̃𝐸 falls.

This concludes the proof. □

A.4 Measuring Entrepreneurial Wealth

In this section I discuss how the model presented in this paper can help shed light

on the proper measurement of the wealth of an entrepreneur. Clarifying how en-

trepreneurs’ wealth is measured in the context of the model, and how it relates

to common ways of measuring entrepreneurs’ wealth in practice is also crucial for

understanding the quantitative exercise in the next section.

Note that the formulation of how entrepreneurial firms are financed in the model

makes no references to the number of shares that the entrepreneurs issue, or the prices

of these shares. Instead, the financing of the entrepreneurial firms is expressed in

terms of the amount of capital raised from outsiders and the expected return that

these outsiders receive. There is of course a link between the two formulations of the

financing of the firms. Making this link explicit clarifies the difference of how wealth

is commonly measured in practice, and how it is measured in the model.

An entrepreneur who has decided on operating a firm with total capital stock

𝑘𝑖𝑡 must provide 𝜒𝑘𝑖𝑡 of the financing herself, and raise (1 − 𝜒)𝑘𝑖𝑡 from outsiders.

Letting𝑁0 be the initial number of shares, all owned by the entrepreneur, the number

of shares that the entrepreneur has to issue, Δ𝑁𝑡 , is defined by

Δ𝑁𝑡𝑝𝑖𝑡 = (1 − 𝜒)𝑘𝑖𝑡

where 𝑝𝑖𝑡 is the price per share issued. The price per share issued on the other

hand is pinned down by the condition that the equilibrium expected return on equity

to outsiders is 𝑟fund
𝑡 𝑑𝑡. In other words,
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(
Δ𝑁𝑡

𝑁0+Δ𝑁𝑡

)
𝑘𝑖𝑡(1 + 𝑟𝑘𝑡 𝑑𝑡)

𝑝𝑖𝑡Δ𝑁𝑡
= 1 + 𝑟fund

𝑡 𝑑𝑡

these equations jointly pin down the price and the number of shares issued in

terms of the expected returns and the outside financing fraction 1 − 𝜒:

Δ𝑁𝑡 =
(1 + 𝑟fund

𝑡 𝑑𝑡)(1 − 𝜒)
(𝑟𝑘𝑡 − 𝑟fund

𝑡 )𝑑𝑡 + 𝜒(1 + 𝑟fund
𝑡 𝑑𝑡)

𝑁0

𝑝𝑖𝑡 =

(
(𝑟𝑘𝑡 − 𝑟fund

𝑡 )𝑑𝑡 + 𝜒(1 + 𝑟fund
𝑡 𝑑𝑡)

1 + 𝑟fund
𝑡 𝑑𝑡

)
𝑘𝑖𝑡

𝑁0

Note that measuring outsiders’ stake in the firm as 𝑝𝑖𝑡Δ𝑁𝑡 , the price-per-share

times the number of shares they hold, coincides with the model notion of the value

of their stake in the firm: (1− 𝜒)𝑘𝑖𝑡 . That is however not true for the entrepreneur. In

particular, the post-money valuation of the entrepreneurs’ shares is

𝑝𝑖𝑡𝑁0 =

(
(𝑟𝑘𝑡 − 𝑟fund

𝑡 )𝑑𝑡 + 𝜒(1 + 𝑟fund
𝑡 𝑑𝑡)

1 + 𝑟fund
𝑡 𝑑𝑡

)
𝑘𝑖𝑡 > 𝜒𝑘𝑖𝑡 (A.116)

where the inequality follows from the fact that (𝑟𝑘𝑡 − 𝑟fund
𝑡 ) > 0. This also illustrates

that 𝜒 should not be confused with the entrepreneurs’ ownership share measured as

the fraction of the outstanding shares that the entrepreneur holds. Rather, 𝜒 is the

insider financing share, the share of the financing that the entrepreneur provides.

The discrepancy stems from the fact that 𝑝𝑖𝑡 is the price that an investor with no

exposure to the idiosyncratic risk in firm 𝑖 is willing to pay for a share. This is more

than what the entrepreneur associated with that firm is willing to pay for a share.

This discrepancy in valuation of a share means that the entrepreneur would like to

issue additional shares, but cannot since the constraint is binding. The difference

in the pre- and post-money valuations of the entrepreneur’s shares reflects the fact

that some of the entrepreneur’s return from investing in the firm comes directly from

selling shares. To see this, note that the expected return to the entrepreneur’s stake

in the firm coming purely from issuing shares is
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𝑝𝑖𝑡𝑁0

𝜒𝑘𝑖𝑡
− 1 =

𝑟𝑘𝑡 − 𝑟fund
𝑡

𝜒
𝑑𝑡 > 0 (A.117)

The overall expected return to the entrepreneur’s stake, the insider equity return,

is

𝑟 𝑖𝑛𝑡 𝑑𝑡 =

𝑁0
𝑁0+Δ𝑁𝑡 (1 + 𝑟𝑘𝑡 𝑑𝑡)𝑘𝑖𝑡

𝜒𝑘𝑖𝑡
− 1 =

(
𝑟fund
𝑡 +

𝑟𝑘𝑡 − 𝑟fund
𝑡

𝜒

)
𝑑𝑡 (A.118)

In other words, the insider return is the outsider return plus the return that the

insider gets from issuing equity.

The fact that 𝜒 cannot be mapped to the insider ownership share of the en-

trepreneur, measured as the fraction of shares outstanding that the entrepreneur

holds means that one must look for other sources of data that are informative about

the value of 𝜒. To this end, I map the value of 𝜒 to the rate at which entrepreneurs

issue new shares. Specifically, the growth of the number of shares outstanding when

the entrepreneur issues shares to outsiders is

Δ𝑁𝑡

𝑁0
=

(1 + 𝑟fund
𝑡 𝑑𝑡)(1 − 𝜒)

(𝑟𝑘𝑡 − 𝑟fund
𝑡 )𝑑𝑡 + 𝜒(1 + 𝑟fund

𝑡 𝑑𝑡)
. (A.119)

Note that this is the growth in the number of shares when the entrepreneur first

issues equity to outsiders. It is not the steady growth rate of the number of shares

outstanding over time. The growth rate of the total number of shares outstanding

only grows after this initial equity issuance if the rates of return or 𝜒 change over

time. In a steady state, the returns as well as 𝜒 are constant, and the annualized

average growth rate of the number of shares outstanding over the time that a firm

remains entrepreneurial is

(
1 + Δ𝑁𝑡

𝑁0

)1/𝑇𝑙
− 1 =

(
1 +

(1 + 𝑟fund
𝑡 𝑑𝑡)(1 − 𝜒)

(𝑟𝑘𝑡 − 𝑟fund
𝑡 )𝑑𝑡 + 𝜒(1 + 𝑟fund

𝑡 𝑑𝑡)

)1/𝑇𝑙

− 1 (A.120)

where 𝑇𝑙 is the average number of years that the firm remains entrepreneurial. The

quantity −
(
1 + Δ𝑁𝑡

𝑁0

)1/𝑇𝑙
is the average lifetime buyback yield of an entrepreneurial

firm. Gomez and Gouin-Bonenfant (2024) document that this has changed substan-

tially over time for the entrepreneurial firms associated with the members of the
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Forbes 400. In the quantitative exercise, I map the fall in the parameter 𝜒 to the

change in this average lifetime buyback yield.
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Table B.1: Calibrated Parameters

Parameters 𝑔𝐹 𝑔𝐷 𝜎𝐹 𝜎𝐷 𝜈𝐹 𝜅𝐹

A (Baseline) 0.0035 −0.0847 0.4409 0.0779 0.05 0.067
B (𝜎𝐹 = 33%) 0.0216 −0.0721 0.3306 0.0791 0.05 0.067
C (𝜎𝐹 = 22%) 0.0344 −0.0639 0.2204 0.0802 0.05 0.067
Targets 𝜁𝑠𝑠 𝑔̄ − 𝑔 𝜎̄𝑏𝑜𝑡𝑡𝑜𝑚 𝜎̄𝑛𝑡𝑜𝑝0.01% 𝜎𝐹

A (Baseline) 1.43 0.0569 0.0813 0.3579 N/A
B (𝜎𝐹 = 33%) 1.43 0.0569 0.0813 N/A 0.3306
C (𝜎𝐹 = 22%) 1.43 0.0569 0.0813 N/A 0.2204

Rows labeled A are associated with the baseline calibration, rows B and C are asso-
ciated with alternative calibrations where the volatility of the family firm type is set
to 75% and 50% of its baseline value, respectively.

B.1 Appendix A: Definition of T

The evolution of the distribution of wealth by type from 𝑡 to 𝑡 + 1 can be described by

an operator T that maps pairs of densities of wealth by type at 𝑡 to pairs of densities

of wealth by type at 𝑡 + 1. The definition of this operator T is given by two linked

second-order differences equations characterizing the updating of the distribution of

wealth for each type. For 𝑛 ≥ 1 the difference equations are for each type 𝑗

𝑔𝑗 ,𝑡+1(𝑛) = 𝜙 𝑗

[
𝑝𝑢,𝑗𝑔𝑗 ,𝑡(𝑛 − 1) + 𝑝𝑑,𝑗𝑔𝑗 ,𝑡(𝑛 + 1) + (1 − 𝑝𝑢,𝑗 − 𝑝𝑑,𝑗)𝑔𝑗 ,𝑡(𝑛)

]
+ (B.1)

(1 − 𝜙 𝑗)
[
𝑝𝑢,−𝑗𝑔−𝑗 ,𝑡(𝑛 − 1) + 𝑝𝑑,−𝑗𝑔−𝑗 ,𝑡(𝑛 + 1) + (1 − 𝑝𝑢,−𝑗 − 𝑝𝑑,−𝑗)𝑔−𝑗 ,𝑡(𝑛)

]
,

where −𝑗 denotes the type opposite to 𝑗. For 𝑛 = 0, this evolution is given by

𝑔𝑗 ,𝑡+1(0) = 𝜙 𝑗

[
𝑝𝑑,𝑗𝑔𝑗 ,𝑡(1) + (1 − 𝑝𝑢,𝑗)𝑔𝑗 ,𝑡(0)

]
+ (B.2)

(1 − 𝜙 𝑗)
[
𝑝𝑑,−𝑗𝑔−𝑗 ,𝑡(1) + (1 − 𝑝𝑢,−𝑗)𝑔−𝑗 ,𝑡(0)

]
.

When the size of the grid is finite, we have the following additional equation

describing the evolution at 𝑛 = 𝑁
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Figure B.1: Wealth Mobility and Dynamics of Top Wealth

The left panel (B.1a) shows the speed of wealth mobility from the bottom to the top of the wealth
distribution, measured as the fraction of the Forbes 400 dynasties in steady-state that were last at the
bottom of the wealth distribution within the prior 𝑘 years. 63% of these wealthiest dynasties were at
the bottom within the prior 50 years. The right panel (B.1b) shows the speed of transition of the tail

coefficient of wealth at various top wealth levels starting from an initial distribution with tail
coefficient equal to 1.85 everywhere converging to a steady-state tail coefficient of 𝜁𝑠𝑠 = 1.43. The
transition is slower when the tail coefficient is measured at higher wealth levels as implied by the

proposition presented in 2.3. This also implies that the tail coefficient differs depending on where in
the wealth distribution it is measured during the transition. As the distribution converges to steady

state, all the tail coefficients converge to the same number provided that they are measured at
sufficiently high wealth levels.
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(a) Top Tail coefficient.
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(b) Ratios of Top Wealth Shares

Figure B.2: Dynamics Implied by Baseline and Alternative Calibrations

This figure displays comparisons along two dimensions of the baseline calibration A with the
alternative calibrations, B and C. In calibrations B and C the value of 𝜎𝐹 is set to 75% and 50% of its
baseline value, respectively. Panel (B.2a) compares the transition of the tail coefficient measured at

the cutoff for the Forbes 400, and Panel (B.2b) considers the transition of the ratio of the top 0.01% to
the top 0.1% wealth shares. Along both dimensions, the presence of a minority of dynasties with

very high idiosyncratic volatility is important for obtaining rapid transitions. The transition is
computed for the years 1966-2016. Marked are also the data from Smith et al. (2021) (circles) and
Piketty et al. (2018) (triangles). These are the ratios of the top 0.01% to the top 0.1% wealth shares

and the implied tail coefficient using equation 2.4.
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𝑔𝑗 ,𝑡+1(𝑁) = 𝜙 𝑗

[
𝑝𝑢,𝑗𝑔𝑗 ,𝑡(𝑁 − 1) + (1 − 𝑝𝑑,𝑗)𝑔𝑗 ,𝑡(𝑁)

]
+ (B.3)

(1 − 𝜙 𝑗)
[
𝑝𝑢,−𝑗𝑔−𝑗 ,𝑡(𝑁 − 1) + (1 − 𝑝𝑑,−𝑗)𝑔−𝑗 ,𝑡(𝑁)

]
.

B.2 Appendix B: Setting parameters as Δ𝑡 → 0

To compare results in our discrete time model with closely related results in con-

tinuous time versions of the model as presented in Luttmer (2016), Gabaix et al.

(2016) and elsewhere, we use the following procedure to adjust the parameters of

our model as we change the length of the time period Δ𝑡 . This is done to consider

the limiting implications of our model as the time period gets short. We set 𝑝𝑑,𝑗 and
𝑝𝑢,𝑗
𝑝𝑑,𝑗

to match annualized means 𝜇𝑗 and variances 𝜎2
𝑗

of innovations to the logarithm

of the idiosyncratic component of assets. Specifically, we set the grid step size Δ as a

function of the length of a time period Δ𝑡 as

Δ = 𝜎𝑚𝑎𝑥
√

2Δ𝑡 ,

where 𝜎𝑚𝑎𝑥 is the largest annualized standard deviation of innovations to the loga-

rithm of assets that we consider.

Under the model assumptions regarding the evolution of wealth for each type, the

expected value at 𝑡 of the innovations to the logarithm of wealth for all dynasties of

type 𝑗, except those at the lowest node on the grid, is given by

E𝑡
[
log𝑊𝑖 ,𝑡+1 − log𝑊𝑖 ,𝑡

]
= (𝑝𝑢,𝑗 − 𝑝𝑑,𝑗)Δ. (B.4)

The uncentered second moment of these innovations to the logarithm of the idiosyn-

cratic component of assets is given by

E𝑡
[
log𝑊𝑖 ,𝑡+1 − log𝑊𝑖 ,𝑡

]2
= (𝑝𝑢,𝑗 + 𝑝𝑑,𝑗)Δ2. (B.5)

We then choose the parameters 𝑝𝑑,𝑗 and 𝑝𝑢,𝑗
𝑝𝑑,𝑗

so that the expression in equation (B.4)

is equal to the target per period mean Δ𝑡𝜇𝑗 , and the expression in equation (B.5) is
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equal to the target per period uncentered second moment Δ𝑡𝜎2
𝑗
+ Δ2

𝑡𝜇
2
𝑗
. We set the

transition probabilities over types as 1 − 𝜙 𝑗 = 𝜅 𝑗Δ𝑡 for fixed target values of 𝜅 𝑗 .

In the case in which dynasties do not switch type, as we shrink the time interval to

zero the tail coefficients for wealth for each type of dynasty approaches the standard

formulas when log wealth follows a Brownian motion with a reflecting barrier at

the bottom, namely 𝜁𝑠𝑠, 𝑗 = −2𝜇𝑗/𝜎2
𝑗

for 𝑗 = 𝐹, 𝐷. To see this, we use that the tail

coefficient is 𝜁𝑠𝑠, 𝑗 = log
(
𝑝𝑢,𝑗
𝑝𝑑,𝑗

)
/Δ when the types do not switch. Moreover, equations

B.4 and B.5 together with Δ = 𝜎𝑚𝑎𝑥
√

2Δ𝑡 , imply that

log
(
𝑝𝑢,𝑗
𝑝𝑑,𝑗

)
Δ

=
1
Δ

log

(
𝜎2
𝑗
+ 𝜇2

𝑗
Δ𝑡 + 𝜇𝑗Δ

𝜎2
𝑗
+ 𝜇2

𝑗
Δ𝑡 − 𝜇𝑗Δ

)
=

1
Δ

log ©­«
𝜎2
𝑗
+ 𝜇2

𝑗
1
2

Δ2

𝜎2
𝑚𝑎𝑥

+ 𝜇𝑗Δ

𝜎2
𝑗
+ 𝜇2

𝑗
1
2

Δ2

𝜎2
𝑚𝑎𝑥

− 𝜇𝑗Δ

ª®¬
=

1
Δ

log
(
𝜎2
𝑗 + 𝜇2

𝑗

1
2

Δ2

𝜎2
𝑚𝑎𝑥

+ 𝜇𝑗Δ

)
− 1
Δ

log
(
𝜎2
𝑗 + 𝜇2

𝑗

1
2

Δ2

𝜎2
𝑚𝑎𝑥

− 𝜇𝑗Δ

)
(B.6)

Taking Δ𝑡 → 0 implies taking Δ → 0, and applying L’Hôpital’s rule to the above

two terms separately gives us

lim
Δ→0

1
Δ

log
(
𝜎2
𝑗 + 𝜇2

𝑗

1
2

Δ2

𝜎2
𝑚𝑎𝑥

+ 𝜇𝑗Δ

)
= lim

Δ→0

Δ
𝜇2
𝑗

𝜎2
𝑚𝑎𝑥

+ 𝜇𝑗

𝜎2
𝑗
+ 𝜇2

𝑗
1
2

Δ2

𝜎2
𝑚𝑎𝑥

+ 𝜇𝑗Δ
=

𝜇𝑗

𝜎2
𝑗

lim
Δ→0

1
Δ

log
(
𝜎2
𝑗 + 𝜇2

𝑗

1
2

Δ2

𝜎2
𝑚𝑎𝑥

− 𝜇𝑗Δ

)
= lim

Δ→0

Δ
𝜇2
𝑗

𝜎2
𝑚𝑎𝑥

− 𝜇𝑗

𝜎2
𝑗
+ 𝜇2

𝑗
1
2

Δ2

𝜎2
𝑚𝑎𝑥

+ 𝜇𝑗Δ
= −

𝜇𝑗

𝜎2
𝑗

and hence

lim
Δ𝑡→0

𝜁 =
𝜇𝑗

𝜎2
𝑗

−
(
−
𝜇𝑗

𝜎2
𝑗

)
=

2𝜇𝑗
𝜎2
𝑗

(B.7)
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B.3 Appendix C:

Analytical Solution for the Evolution of the Density

of Wealth

In our main proposition, we provide an analytical solution for the evolution of the

density of wealth in the transition to steady-state. We prove that proposition here.

B.3.1 One-type Model

We begin by providing an analytical expression for the evolution of the distribution

of wealth in the context of the model with only one type, or, equivalently, as in the

model in which dynasties do not switch types. In the one type model, the equations

(B.1) and (B.2) can be written as

𝑔𝑡+1(𝑛) = 𝑝𝑢𝑔𝑡(𝑛 − 1) + 𝑝𝑑𝑔𝑡(𝑛 + 1) + (1 − 𝑝𝑢 − 𝑝𝑑)𝑔𝑡(𝑛) (B.8)

𝑔𝑡+1(0) = 𝑝𝑑𝑔𝑡(1) + (1 − 𝑝𝑢)𝑔𝑡(0). (B.9)

Champernowne (1953) showed that the stationary distribution implied by these

equations is

𝑔𝑠𝑠(𝑛) = (1 − 𝜆𝑠𝑠)𝜆𝑛𝑠𝑠

where 𝜆𝑠𝑠 =
𝑝𝑢
𝑝𝑑

. The stationary distribution exists provided that 𝑝𝑢 < 𝑝𝑑. The

proposition presented in this paper establishes an analytical expression for the dis-

tribution of wealth at each time period of the transitions from one steady state to

another. Specifically, we consider initial distributions of wealth across dynasties that

are of the same form as the steady-state distribution but with a different parameter,

𝜆0 ≠ 𝜆𝑠𝑠 . That is, we assume that the initial distribution is of the form

𝑔0(𝑛) = (1 − 𝜆0)𝜆𝑛0 .

To develop our analytical formula in this case, we use the following notation. Let T
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be the operator mapping distributions over nodes 𝑛 of our grid to new distributions

defined by equations (B.8) and (B.9). Let Λ0 be a vector corresponding to the initial

distribution 𝑔0(𝑛) = (1 − 𝜆0)𝜆𝑛0 . Let Λ𝑠𝑠 be the distribution to which the economy

converges, 𝑔𝑠𝑠(𝑛) = (1 − 𝜆𝑠𝑠)𝜆𝑛𝑠𝑠 . Let 1 denote a distribution that places weight 1 on

the node 𝑛 = 0 and weight 0 on every node 𝑛 ≥ 1. That is, 1 corresponds to the

distribution of assets for a cohort of dynasties all starting with the minimum level of

assets. With this notation, we have the following result stated as a Corollary of our

main proposition in the text.

Corollary Assume that the initial distribution at 𝑡 = 0 of the idiosyncratic com-

ponent of assets across dynasties is given by Λ0 and that the transition probabilities

in equations (B.8) and (B.9) are constant at 𝑝𝑑 and 𝑝𝑢 = 𝜆𝑠𝑠𝑝𝑑 so that the stationary

distribution of the idiosyncratic component of assets across dynasties is given by

Λ𝑠𝑠 . Then the distribution at date 𝑡 implied by equations (B.8) and (B.9) is given

recursively by

(𝑔𝑡+1 −Λ𝑠𝑠) = 𝐴 (𝑔𝑡 −Λ𝑠𝑠) + (1 − 𝐴)
(
T𝑡(1) −Λ𝑠𝑠

)
, (B.10)

so that the distribution at time 𝑡 is given by

𝑔𝑡 = 𝐴𝑡Λ0 + (1 − 𝐴)
𝑡−1∑
𝑘=0

𝐴𝑡−1−𝑘T𝑘(1) (B.11)

where 𝐴 is a scalar given by

𝐴 ≡
(
𝑝𝑑(1 − 𝜆0)(

𝜆𝑠𝑠
𝜆0

− 1) + 1
)
,

Proof: Direct calculation gives that

T(Λ0) = 𝐴Λ0 + (1 − 𝐴)1.

The operator T is linear, and T(Λ𝑠𝑠) = Λ𝑠𝑠 . Repeated application of this operator to

𝑔𝑡+1 = T(𝑔𝑡) starting from 𝑔0 = Λ0 then gives the result (B.10). Solving (B.10) forward

then implies (B.11).
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B.3.2 Continuous-Time Analogue

Aleh Tsyvinski generously provided the continuous-time result presented in this

section. This result is analogous in the sense that it gives an analytical expression

for the density of the logarithm of wealth at all times during the course of a transi-

tion to steady state from an initial distribution in which the logarithm of wealth is

exponentially distributed (and hence, wealth is Pareto distributed).

In particular, let 𝑋𝑡 be a Brownian motion with drift 𝜇 = −𝑟 < 0 and diffusion

𝜎, with a reflecting barrier at zero. The transition density 𝑝𝑡(𝑥, 𝑦) of the process 𝑋𝑡
satisfies the following Kolmogorov backward equation

𝜕𝑝𝑡(𝑥, 𝑦)
𝜕𝑡

= −𝑟
𝜕𝑝𝑡(𝑥, 𝑦)

𝜕𝑥
+ 𝜎2

2
𝜕2𝑝𝑡(𝑥, 𝑦)

𝜕𝑥2 (B.12)

and the Neumann boundary condition

𝜕𝑝𝑡(𝑥, 𝑦)
𝜕𝑥

���
𝑥=0

= 0. (B.13)

The stationary distribution for transition densities 𝑝𝑡 is exponential with rate 2 𝑟
𝜎2 .

To see this, note that with 𝑔(𝑥) = 2 𝑟
𝜎2 𝑒

−2 𝑟

𝜎2 𝑥 , 𝑥 > 0, we have

𝜕

𝜕𝑡

∫ ∞

0
2 𝑟
𝜎2 𝑒

−2 𝑟

𝜎2 𝑥𝑝𝑡(𝑥, 𝑦)𝑑𝑥 =

∫ ∞

0
2 𝑟
𝜎2 𝑒

−2 𝑟

𝜎2 𝑥
(
−𝑟

𝜕𝑝𝑡(𝑥, 𝑦)
𝜕𝑥

+ 𝜎2

2
𝜕2𝑝𝑡(𝑥, 𝑦)

𝜕𝑥2

)
𝑑𝑥 =

∫ ∞

0

©­­«−
𝜕
(
𝑟𝑒

−2 𝑟

𝜎2 𝑥
)

𝜕𝑥
− 2 𝑟

2

𝜎2 𝑒
−2 𝑟

𝜎2 𝑥
ª®®¬
𝜕𝑝𝑡(𝑥, 𝑦)

𝜕𝑥
𝑑𝑥 = 0.

Where the second equality follows from integrating by parts. Consider now a

transition experiment analogous to the one considered in our Corollary above. In

other words, suppose that the initial distribution of the logarithm of wealth is given

by 𝑔0(𝑦) = 𝜆𝑒−𝜆𝑦 , 𝑦 > 0. The distribution at time 𝑡, which we denote by 𝑔𝑡(𝑦) is then

given by

𝑔𝑡(𝑦) =
∫ ∞

0
𝑔0(𝑥)𝑝𝑡(𝑥, 𝑦)𝑑𝑥
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Differentiating this (and using integration by parts) we obtain

𝜕𝑔𝑡(𝑦)
𝜕𝑡

=

∫ ∞

0
𝜆𝑒−𝜆𝑥

𝜕𝑝𝑡(𝑥, 𝑦)
𝜕𝑡

𝑑𝑥 =

∫ ∞

0
𝜆𝑒−𝜆𝑥

(
−𝑟 𝜕𝑝𝑡(𝑥, 𝑦)

𝜕𝑥
+ 𝜎2

2
𝜕2𝑝𝑡(𝑥, 𝑦)

𝜕𝑥2

)
𝑑𝑥 =

∫ ∞

0

©­­«−
𝜕
(
𝜆𝜎2

2 𝑒−𝜆𝑥
)

𝜕𝑥
− 𝑟𝜆𝑒−𝜆𝑥

ª®®¬
𝜕𝑝𝑡(𝑥, 𝑦)

𝜕𝑥
𝑑𝑥 =

(
𝜆2𝜎2

2 − 𝑟𝜆
) ∫ ∞

0
𝑒−𝜆𝑥

𝜕𝑝𝑡(𝑥, 𝑦)
𝜕𝑥

𝑑𝑥

=

(
𝜆2𝜎2

2 − 𝑟𝜆
) (

−𝑝𝑡(0, 𝑦) +
∫ ∞

0
𝜆𝑒−𝜆𝑥𝑝𝑡(𝑥, 𝑦)𝑑𝑥

)
=(

𝜆2𝜎2

2 − 𝑟𝜆
)
(𝑔𝑡(𝑦) − 𝑝𝑡(0, 𝑦))

In other words, the distribution at time 𝑡 satisfies the following non-homogeneous

ordinary differential equation

𝜕𝑔𝑡(𝑦)
𝜕𝑡

=

(
𝜆2𝜎2

2 − 𝑟𝜆
)
(𝑔𝑡(𝑦) − 𝑝𝑡(0, 𝑦))

Using the initial condition 𝑔0(𝑦) = 𝜆𝑒−𝜆𝑦 we obtain the solution

𝑔𝑡(𝑦) = 𝑒

(
𝜆2𝜎2

2 −𝑟𝜆
)
𝑡
𝜆𝑒−𝜆𝑦 −

(
𝜆2𝜎2

2 − 𝑟𝜆
) ∫ 𝑡

0
𝑒

(
𝜆2𝜎2

2 −𝑟𝜆
)
(𝑡−𝑠)

𝑝𝑠(0, 𝑦)𝑑𝑠

This is analoguous to equation B.11 in that it shows that the distribution at time 𝑡

is a linear combination of the initial distribution 𝜆𝑒−𝜆𝑦 , and the distribution of agents

coming up from the bottom,
∫ 𝑡

0 𝑒

(
𝜆2𝜎2

2 −𝑟𝜆
)
(𝑡−𝑠)

𝑝𝑠(0, 𝑦)𝑑𝑠.

B.3.3 Two-type Model

In this section, we prove our main Proposition in the model with switching between

the two types. We denote byΛ𝑖 the distribution over nodes given byΛ𝑖(𝑛) = (1−𝜆𝑖)𝜆𝑛𝑖
for any 𝜆𝑖 ∈ (0, 1) and for 𝑛 ≥ 0. We use 1 to denote a distribution that puts weight

one on the node 𝑛 = 0 and zero on every other node.

In the two-type model, the operator T defined by equations (B.1) and (B.2) maps a

pair of distributions by type at 𝑡, [𝑔𝐹,𝑡 , 𝑔𝐷,𝑡]′ to a pair of distributions by type at 𝑡 + 1,

[𝑔𝐹,𝑡+1, 𝑔𝐷,𝑡+1]′. Define T𝑗 to be the operator which maps pairs of distributions at 𝑡,
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[𝑔𝐹,𝑡 , 𝑔𝐷,𝑡]′ to the distribution for type 𝑗 at 𝑡 + 1. With these definitions

[𝑔𝐹,𝑡+1, 𝑔𝐷,𝑡+1]′ = T [𝑔𝐹,𝑡 , 𝑔𝐷,𝑡]′ =
[
T𝐹 [𝑔𝐹,𝑡 , 𝑔𝐷,𝑡]′ ,T𝐷 [𝑔𝐹,𝑡 , 𝑔𝐷,𝑡]′

] ′
Our main proposition provides an analytical expression for the distribution of

wealth at each time period in the transition between one steady state distribution and

another. Specifically, fix the parameters of the operator T given by {𝑝𝑢,𝑗 , 𝑝𝑑,𝑗 , 𝜙 𝑗}. Let

the initial distribution of assets by type be given by

𝑔𝑗 ,0 = 𝑎 𝑗 ,0Λ𝑎 + 𝑏 𝑗 ,0Λ𝑏

with 𝑎 𝑗 ,0 + 𝑏 𝑗 ,0 = 1 for arbitrary non-negative weights 𝑎 𝑗 ,0, 𝑏 𝑗 ,0 and arbitrary Λ𝑎 ,Λ𝑏

defined by 𝜆𝑎 ,𝜆𝑏 ∈ [0, 1). Then the following holds:

Main Proposition In the transition experiment described above the distributions

of wealth by type at date 𝑡 are given by


𝑔𝐹,𝑡

𝑔𝐷,𝑡

 =


𝑎𝐹,𝑡Λ𝑎

𝑎𝐷,𝑡Λ𝑎

 +

𝑏𝐹,𝑡Λ𝑏

𝑏𝐷,𝑡Λ𝑏

 +
𝑡−1∑
𝑘=0
T𝑘


𝑐𝐹,𝑡−𝑘1

𝑐𝐷,𝑡−𝑘1

 . (B.14)

where 𝑎 𝑗 ,0, 𝑏 𝑗 ,0 are given by the initial distributions at 𝑡 = 0,


𝑎𝐹,𝑡+1

𝑎𝐷,𝑡+1

 =


𝜙𝐹𝐴𝐹 (1 − 𝜙𝐹)𝐴𝐷

(1 − 𝜙𝐷)𝐴𝐹 𝜙𝐷𝐴𝐷



𝑎𝐹,𝑡

𝑎𝐷,𝑡

 (B.15)

and 
𝑏𝐹,𝑡+1

𝑏𝐷,𝑡+1

 =


𝜙𝐹𝐵𝐹 (1 − 𝜙𝐹)𝐵𝐷

(1 − 𝜙𝐷)𝐵𝐹 𝜙𝐷𝐵𝐷



𝑏𝐹,𝑡

𝑏𝐷,𝑡

 (B.16)

where

𝐴 𝑗 =

[
1 + 𝑝𝑢,𝑗

1 − 𝜆𝑎
𝜆𝑎

− 𝑝𝑑,𝑗(1 − 𝜆𝑎)
]

(B.17)

𝐵 𝑗 =

[
1 + 𝑝𝑢,𝑗

1 − 𝜆𝑏
𝜆𝑏

− 𝑝𝑑,𝑗(1 − 𝜆𝑏)
]

(B.18)
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and 𝑐𝐹,0 = 𝑐𝐷,0 = 0 and

𝑐𝐹,𝑡+1 = 𝜙𝐹(𝑎𝐹,𝑡 + 𝑏𝐹,𝑡) + (1 − 𝜙𝐹)(𝑎𝐷,𝑡 + 𝑏𝐷,𝑡) − (𝑎𝐹,𝑡+1 + 𝑏𝐹,𝑡+1)

𝑐𝐷,𝑡+1 = 𝜙𝐷(𝑎𝐷,𝑡 + 𝑏𝐷,𝑡) + (1 − 𝜙𝐷)(𝑎𝐹,𝑡 + 𝑏𝐹,𝑡) − (𝑎𝐷,𝑡+1 + 𝑏𝐷,𝑡+1)

Proof: Note that the operator T is linear in acting on pairs of distributions. Direct

calculation gives that

T𝐹


𝑎𝐹,𝑡Λ𝑎

𝑎𝐷,𝑡Λ𝑎

 =
[
𝜙𝐹𝐴𝐹𝑎𝐹,𝑡 + (1 − 𝜙𝐹)𝐴𝐷𝑎𝐷,𝑡

]
Λ𝑎+

[
𝜙𝐹(1 − 𝐴𝐹)𝑎𝐹,𝑡 + (1 − 𝜙𝐹)(1 − 𝐴𝐷)𝑎𝐷,𝑡

]
1 =

𝑎𝐹,𝑡+1Λ𝑎 +
[
𝜙𝐹𝑎𝐹,𝑡 + (1 − 𝜙𝐹)𝑎𝐷,𝑡 − 𝑎𝐹,𝑡+1

]
1

T𝐹


𝑏𝐹,𝑡Λ𝑏

𝑏𝐷,𝑡Λ𝑏

 = 𝑏𝐹,𝑡+1Λ𝑏 +
[
𝜙𝐹𝑏𝐹,𝑡 + (1 − 𝜙𝐹)𝑏𝐷,𝑡 − 𝑏𝐹,𝑡+1

]
1

T𝐷


𝑎𝐹,𝑡Λ𝑎

𝑎𝐷,𝑡Λ𝑎

 = 𝑎𝐷,𝑡+1Λ𝑎 +
[
𝜙𝐷𝑎𝐷,𝑡 + (1 − 𝜙𝐷)𝑎𝐹,𝑡 − 𝑎𝐷,𝑡+1

]
1

T𝐷


𝑏𝐹,𝑡Λ𝑏

𝑏𝐷,𝑡Λ𝑏

 = 𝑏𝐷,𝑡+1Λ𝑏 +
[
𝜙𝐷𝑏𝐷,𝑡 + (1 − 𝜙𝐷)𝑏𝐹,𝑡 − 𝑏𝐷,𝑡+1

]
1

These results imply that when the operator T is applied to the initial distribution

at 𝑡 = 0, the pair of distributions that results at 𝑡 = 1 is given by


𝑔𝐹,1

𝑔𝐷,1

 =


𝑎𝐹,1Λ𝑎

𝑎𝐷,1Λ𝑎

 +

𝑏𝐹,1Λ𝑏

𝑏𝐷,1Λ𝑏

 +

𝑐𝐹,11

𝑐𝐷,11


Now consider applying the operator T to a pair of distributions at 𝑡 of the form in

equation (2.7). We get


𝑔𝐹,𝑡+1

𝑔𝐷,𝑡+1

 = T


𝑔𝐹,𝑡

𝑔𝐷,𝑡

 =


𝑎𝐹,𝑡+1Λ𝑎

𝑎𝐷,𝑡+1Λ𝑎

 +

𝑏𝐹,𝑡+1Λ𝑏

𝑏𝐷,𝑡+1Λ𝑏

 +
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
𝑐𝐹,𝑡+11

𝑐𝐷,𝑡+11

 +
𝑡−1∑
𝑘=0
T𝑘+1


𝑐𝐹,𝑡−𝑘1

𝑐𝐷,𝑡−𝑘1

 =


𝑎𝐹,𝑡+1Λ𝑎

𝑎𝐷,𝑡+1Λ𝑎

 +

𝑏𝐹,𝑡+1Λ𝑏

𝑏𝐷,𝑡+1Λ𝑏

 +
𝑡∑
𝑘=0
T𝑘


𝑐𝐹,𝑡+1−𝑘1

𝑐𝐷,𝑡+1−𝑘1


which proves the result.

B.3.4 Conditions That the Steady-State Distribution Must Satisfy

The following are necessary conditions of Steady-State that are useful in our calibra-

tion of the model.

We take as given the parameters of the two-type model𝜙𝐹 , 𝜙𝐷 , 𝑝𝑢,𝐹 , 𝑝𝑑,𝐹 , 𝑝𝑢,𝐷 , 𝑝𝑑,𝐷 .

Provided that these parameters are such that equation (2.7) converges to a steady state

of the form 
𝑔𝐹

𝑔𝐷

 =


𝑎𝐹Λ𝑎 + 𝑏𝐹Λ𝑏

𝑎𝐷Λ𝑎 + 𝑏𝐷Λ𝑏


we can characterize the steady state as follows. The steady state distribution is given

by six parameters: 𝜆𝑎 ,𝜆𝑏 ∈ (0, 1) and 𝑎𝐹 , 𝑎𝐷 , 𝑏𝐹 , 𝑏𝐷 ∈ [0, 1]. These six parameters

have to satisfy the following conditions. The weights 𝑎𝐹 , 𝑎𝐷 , 𝑏𝐹 , 𝑏𝐷 have to satisfy

𝑎𝐹 + 𝑏𝐹 = 1

𝑎𝐷 + 𝑏𝐷 = 1

and be a stationary solution to equations (B.15) and (B.16) with the coefficients 𝐴 𝑗

and 𝐵 𝑗 given by equations (B.17) and (B.18). These equations imply that

𝑎𝐹

𝑎𝐷
=

(1 − 𝜙𝐹)𝐴𝐷
(1 − 𝜙𝐹𝐴𝐹)

=
(1 − 𝜙𝐷𝐴𝐷)
(1 − 𝜙𝐷)𝐴𝐹

(B.19)

The second of these equations implies

0 = 1 − (1 − 𝜙𝐹 − 𝜙𝐷)𝐴𝐹𝐴𝐷 − 𝜙𝐷𝐴𝐷 − 𝜙𝐹𝐴𝐹 (B.20)
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Since 𝜆𝐴𝐹 and 𝜆𝐴𝐷 are both quadratic in 𝜆, we can multiply the left hand side of

(B.20) and obtain a fourth order polynomial in 𝜆 when (1 − 𝜙𝐹 − 𝜙𝐷) ≠ 0. To have

a unique stationary distribution, one must check that only two of the roots of this

polynomial lie in the interval (0, 1). By convention, 𝜆𝑎 is the largest root of this

polynomial that lies in the interval (0, 1) and 𝜆𝑏 is the smaller of the two roots in

this interval. We have that 𝑏𝐹 and 𝑏𝐷 solve the analogous equation to (B.19) with 𝜆𝑏

being the smaller root in (0, 1) of the analog to equation (B.20) defined by 𝐵𝐹 and 𝐵𝐷
in place of 𝐴𝐹 and 𝐴𝐷 .

B.4 Appendix D: The Steady State Distribution of Wealth

We previously provided necessary conditions that the steady-state distribution must

satisfy if it is of a particular form. This appendix shows that the steady state of the

two type model is of the form 𝑔𝑗(𝑛) = 𝑎 𝑗(1 − 𝜆𝑎)𝜆𝑛𝑎 + 𝑏 𝑗(1 − 𝜆𝑏)𝜆𝑛𝑎 for 𝑗 ∈ {𝐹, 𝐷}
provided that a steady state exists. We begin by writing the equations (B.1) and (B.2),

that define the operator T in the form of matrix equations.

𝑥𝑡+1(𝑛 + 1) = Ψ𝑥𝑡(𝑛 + 2) + Γ𝑥𝑡(𝑛 + 1) + Θ𝑥𝑡(𝑛)

𝑥𝑡+1(0) = Ψ𝑥𝑡(1) + Ξ𝑥𝑡(0)
(B.21)

where 𝑥𝑡(𝑛) =

𝑔𝑡 ,𝐹(𝑛)
𝑔𝑡 ,𝐷(𝑛)

 and the following matrices

Ψ =


𝜙𝐹𝑝𝑑,𝐹 (1 − 𝜙𝐹)𝑝𝑑,𝐷

(1 − 𝜙𝐷)𝑝𝑑,𝐹 𝜙𝐷𝑝𝑑,𝐷

 , Γ =


𝜙𝐹𝑝𝑠,𝐹 (1 − 𝜙𝐹)𝑝𝑠,𝐷

(1 − 𝜙𝐷)𝑝𝑠,𝐹 𝜙𝐷𝑝𝑠,𝐷


Θ =


𝜙𝐹𝑝𝑢,𝐹 (1 − 𝜙𝐹)𝑝𝑢,𝐷

(1 − 𝜙𝐷)𝑝𝑢,𝐹 𝜙𝐷𝑝𝑢,𝐷

 , Ξ =


𝜙𝐹(1 − 𝑝𝑢,𝐹) (1 − 𝜙𝐹)(1 − 𝑝𝑢,𝐷)

(1 − 𝜙𝐷)(1 − 𝑝𝑢,𝐹) 𝜙𝐷(1 − 𝑝𝑢,𝐷)


Since our goal is to find the stationary distribution, we consider these equations

with time-subscripts removed. In particular, we want to solve the following second-

order matrix difference equation
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𝑥(𝑛 + 1) = Ψ𝑥(𝑛 + 2) + Γ𝑥(𝑛 + 1) + Θ𝑥(𝑛) (B.22)

with the initial condition 𝑥(0) = Ψ𝑥(1)+Ξ𝑥(0). To solve this equation, we rewrite it

as a first-order difference equation by letting 𝑧(𝑛) =

𝑥(𝑛 + 1)
𝑥(𝑛)

 and write the system

as follows

𝑧(𝑛 + 1) = 𝐿𝑧(𝑛), for 𝑛 ≥ 1

𝑧(0) =

Ψ−1(𝐼2×2 − Ξ)𝑥(0)

𝑥(0)


with

𝐿 =


Ψ−1(𝐼2×2 − Γ) −Ψ−1Θ

𝐼2×2 02×2

 (B.23)

The inverse of the matrix Ψ is given by Ψ−1 = 1
𝜙𝐷+𝜙𝐹−1


𝜙𝐷
𝑝𝑑,𝐹

𝜙𝐹−1
𝑝𝑑,𝐹

𝜙𝐷−1
𝑝𝑑,𝐷

𝜙𝐹
𝑝𝑑,𝐷

 . The inverse

exists provided that 𝜙𝐹 + 𝜙𝐷 ≠ 1 and the probability of moving down is positive for

each type. Provided that 𝐿 has four distinct eigenvalues we can diagonalize it and

write

𝑧(𝑛) = 𝐿𝑛𝑧(0) = 𝑃Λ𝑛𝑃−1𝑧(0) (B.24)

where 𝑃 is the matrix with the eigenvectors of 𝐿 as columns, and Λ is the diagonal

matrix of eigenvalues. Moreover, we have

𝑃−1𝑧(𝑛) = Λ𝑛𝑃−1𝑧(0) (B.25)

so that to ensure that the
∑∞
𝑛=0 𝑧(𝑛) < ∞ holds we need to impose the condition

that

𝑝̃𝑖𝑧(0) = 0, for every eigenvalue |𝜆𝑖 | ≥ 1 (B.26)
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where 𝑝̃𝑖 is a row vector from 𝑃−1 = [𝑝̃1, ..., 𝑝̃4]′. Let 𝜆𝑎 ,𝜆𝑏 ,𝜆𝑐 and 𝜆𝑑 be the

eigenvalues of 𝐿. It turns out that 𝐿 has two eigenvalues that are stable, i.e., less than

1 in absolute value. Without loss of generality let 𝜆𝑎 and 𝜆𝑏 be the stable eigenvalues.

Hence, for 𝑖 = 𝑐, 𝑑 |𝜆𝑖 | ≥ 1. With 𝑝̃3𝑧(0) = 𝑝̃4𝑧(0) = 0 we can write equation (B.24) as

𝑧(𝑛) = 𝑃Λ𝑛



𝑝̃1

𝑝̃2

𝑝̃3

𝑝̃4


𝑧(0) = 𝑃



𝜆𝑛𝑎 𝑝̃1𝑧(0)
𝜆𝑛
𝑏
𝑝̃2𝑧(0)
0

0


=



𝑝11𝜆𝑛𝑎 𝑝̃1𝑧(0) + 𝑝12𝜆𝑛𝑏 𝑝̃2𝑧(0)
𝑝21𝜆𝑛𝑎 𝑝̃1𝑧(0) + 𝑝22𝜆𝑛𝑏 𝑝̃2𝑧(0)
𝑝31𝜆𝑛𝑎 𝑝̃1𝑧(0) + 𝑝32𝜆𝑛𝑏 𝑝̃2𝑧(0)
𝑝41𝜆𝑛𝑎 𝑝̃1𝑧(0) + 𝑝42𝜆𝑛𝑏 𝑝̃2𝑧(0)


In other words, the pair of densities can be written on the form

𝑔𝐹(𝑛) = 𝑝31𝑝̃1𝑧(0)𝜆𝑛𝑎 + 𝑝32𝑝̃2𝑧(0)𝜆𝑛𝑏
𝑔𝐷(𝑛) = 𝑝41𝑝̃1𝑧(0)𝜆𝑛𝑎 + 𝑝42𝑝̃2𝑧(0)𝜆𝑛𝑏

By defining the weights 𝑎𝐹 , 𝑏𝐹 and 𝑎𝐷 , 𝑏𝐷 to solve the following system of equations

(1 − 𝜆𝑎)𝑎𝐹 = 𝑝31𝑝̃1


(1 − 𝜆𝑎)𝑎𝐹𝜆𝑎 + (1 − 𝜆𝑏)𝑏𝐹𝜆𝑏

(1 − 𝜆𝑎)𝑎𝐹 + (1 − 𝜆𝑏)𝑏𝐹

 (B.27)

(1 − 𝜆𝑎)𝑎𝐷 = 𝑝41𝑝̃1


(1 − 𝜆𝑎)𝑎𝐹𝜆𝑎 + (1 − 𝜆𝑏)𝑏𝐹𝜆𝑏

(1 − 𝜆𝑎)𝑎𝐹 + (1 − 𝜆𝑏)𝑏𝐹

 (B.28)

(1 − 𝜆𝑏)𝑏𝐹 = 𝑝32𝑝̃2


(1 − 𝜆𝑎)𝑎𝐹𝜆𝑎 + (1 − 𝜆𝑏)𝑏𝐹𝜆𝑏

(1 − 𝜆𝑎)𝑎𝐹 + (1 − 𝜆𝑏)𝑏𝐹

 (B.29)

(1 − 𝜆𝑏)𝑏𝐷 = 𝑝42𝑝̃2


(1 − 𝜆𝑎)𝑎𝐹𝜆𝑎 + (1 − 𝜆𝑏)𝑏𝐹𝜆𝑏

(1 − 𝜆𝑎)𝑎𝐹 + (1 − 𝜆𝑏)𝑏𝐹

 (B.30)

we have shown that the stationary distributions can be written as
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𝑔𝐹(𝑛) = (1 − 𝜆𝑎)𝑎𝐹𝜆𝑛𝑎 + (1 − 𝜆𝑏)𝑏𝐹𝜆𝑛𝑏
𝑔𝐷(𝑛) = (1 − 𝜆𝑎)𝑎𝐷𝜆𝑛𝑎 + (1 − 𝜆𝑏)𝑏𝐷𝜆𝑛𝑏

which is what we wanted to show.

B.5 Appendix E: Calibration Details

This appendix details the procedure for implementing the baseline calibration of the

model as well as the calibrations considered in various transition experiments.

The time step size Δ𝑡 , the grid step size Δ, the size of of the grid 𝑁 , the maximum

standard deviation accomodated by the grid 𝜎𝑚𝑎𝑥 and the fraction of dynasties in

the overall population that belong to the different types, 𝜈𝐹 and 𝜈𝐷 , as well as the

rate at which family firms diversify, 𝜅𝐹, are common to all calibrations. In particular,

Δ𝑡 = 1/15000, 𝜎𝑚𝑎𝑥 = 0.70, Δ = 𝜎𝑚𝑎𝑥
√

2Δ𝑡 , 𝑁 = 50√
Δ𝑡

, 𝜈𝐹 = 0.05, 𝜈𝐷 = 1 − 𝜈𝐹 = 0.95,

and 𝜅𝐹 = 1/15. The relationship between Δ𝑡 , 𝜎𝑚𝑎𝑥 and Δ ensures that the model is

well behaved when Δ𝑡 → 0, analogous to when one considers the continuous time

limit of a binomial option pricing model.

With these parameters set directly, we set the remaining four parameters governing

the first two moments of the innovations to log wealth for the two types of families

as described next.

B.5.1 Baseline Calibration

The baseline calibration targets four data moments. These are (a) the steady state

tail coefficient of top wealth which is set to a target of 𝜁 =1.43, (b) the difference

in expected growth rates in the level of wealth of families at the top 0.01% and the

bottom of the wealth distribution which is set to a target of 5.69%, (c) the cross-

sectional dispersion of innovations to log wealth for families at the bottom of the

wealth distribution which is set to a target of 8.13%, and (d) the cross-sectional

dispersion of innovations to log wealth for families at the top 0.01% of the wealth
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Figure B.3: Ratios of Top Wealth Shares for the Years 1966-2016.

Estimates of top wealth shares are from Piketty et al. (2018) (PSZ) and Smith et al. (2021) (SZZ).

distribution which is set to a target of 35.79%.

The moment (a) is estimated using equation 2.4 and data on ratios of wealth shares

for the top 0.01% and 0.1% in 2016. This tail coefficient corresponds to a ratio of these

top shares of 0.5. This lies in between the ratio estimated by Smith et al. (2021) and

Piketty et al. (2018) that report ratios of 0.47 and 0.51 in the year 2016, respectively.

To illustrate the ranges of values of that one could use for the ratios of wealth shares,

which in turn imply a tail coefficients through equation 2.4, Figure B.3 displays the

ratio of the top 0.01% to the top 0.1% wealth shares as well as the top 0.1% to the top

1%. The data comes from both Piketty et al. (2018) and Smith et al. (2021). Note that

their findings in each paper that the ratio of the wealth shares of the top 0.01% to the

0.1% and of the top 0.1% to the top 1% are similar is consistent with the maintained

assumption that the top of the wealth distribution above the top 1% has a Pareto

density with a constant tail coefficient.

The moment (b) is taken from Bach et al. (2020) Table 1 column 1. The moments

(c) and (d) are taken from Bach et al. (2020) Table 8, column 1.

Equation 2.4 can be derived as follows. Assume that the density of log wealth is

geometric with parameter 𝜆 above some node 𝑛̄ on our grid of wealth levels. That

is, let 𝑔(𝑛) = 𝑔̄𝜆𝑛 for 𝑛 > 𝑛̄ for some constant 𝑔̄. Let 𝐻(𝑛) be the complementary
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CDF corresponding to this density. Then 𝐻(𝑛) = 𝐻̄𝜆𝑛 for 𝑛 > 𝑛̄ for some constant

𝐻̄. With these assumptions, we have that the tail coefficient of wealth at nodes 𝑛 > 𝑛̄

is given by 𝜁(𝑛) = 𝜁𝑡𝑜𝑝 = − log(𝜆)/Δ.

Let 𝑥 > 𝑦 be two top wealth percentiles (for example, the top 0.1% and 0.01%). Let

𝑛(𝑦) > 𝑛(𝑥) > 𝑛̄ be the cutoff nodes for those percentiles. That is, let 𝑛(𝑥) solve

𝑥 = 𝐻̄𝜆𝑛(𝑥)

and likewise for 𝑛(𝑦). Assume that exp(Δ)𝜆 < 1 so that top wealth shares are

defined. Then the aggregate wealth held by the top 𝑥 percentile is given by 𝑊(𝑥) =
𝑊̄(exp(Δ)𝜆)𝑛(𝑥) for some constant 𝑊̄ and ratio of the share of wealth held by the top

𝑦 to top 𝑥 percentiles is given by

𝑆(𝑦)
𝑆(𝑥) =

(
exp(Δ)𝜆

)𝑛(𝑦)−𝑛(𝑥)
This implies that

log 𝑆(𝑦) − log 𝑆(𝑥) = (𝑛(𝑦) − 𝑛(𝑥))(Δ + log𝜆) = Δ(𝑛(𝑦) − 𝑛(𝑥))(1 − 𝜁)

Since

𝑛(𝑥) = (log(𝑥) − log(𝐻))/log(𝜆)

and likewise for 𝑛(𝑦), we have

log 𝑆(𝑦) − log 𝑆(𝑥) = (log(𝑦) − log(𝑥))(1 − 1
𝜁
)

which gives equation 2.4.

B.5.2 Calibration Procedure

To hit these four moments, we have 4 parameters: 𝜇𝐹, 𝜎𝐹, 𝜇𝐷 and 𝜎𝐷 . The subsequent

steps of the calibration are the following

1. Guess values for 𝜇𝑗 and 𝜎𝑗 , 𝑗 ∈ {𝐹, 𝐷}.
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2. Compute the corresponding probabilities 𝑝𝑢,𝑗 and 𝑝𝑑,𝑗 .

3. Compute the stationary distribution implied by these probabilities

4. Check what the implied tail coefficient of the resulting stationary distribution

and check if the difference in average growth rates between the top and the

bottom as well as the target values for dispersion of wealth growth are obtained.

5. Update guess until targets are hit.

In step 2, we must translate the annualized moments 𝜇𝑗 and 𝜎𝑗 , 𝑗 ∈ {𝐹, 𝐷} in to

probabilities of moving up and down on the grid. The annualized moments of the

innovations to log wealth for each type are related to the probabilities through the

following equations for the first and second moments of growth in log wealth

𝜇𝑗Δ𝑡 = (𝑝𝑢,𝑗 − 𝑝𝑑,𝑗)Δ

𝜎2
𝑗Δ𝑡 + 𝜇2

𝑗Δ
2
𝑡 = (𝑝𝑢,𝑗 + 𝑝𝑑,𝑗)Δ2

Solving these equations for the probabilities, using Δ = 𝜎𝑚𝑎𝑥
√

2Δ𝑡 , gives

𝑝𝑢,𝑗 =
1
2

[
𝜎2
𝑗

Δ𝑡

Δ2 + 𝜇2
𝑗

Δ2
𝑡

Δ2 + 𝜇𝑗
Δ𝑡

Δ

]
=

1
4𝜎2

𝑚𝑎𝑥

[
𝜎2
𝑗 + 𝜇2

𝑗Δ𝑡 + 𝜇𝑗Δ
]

𝑝𝑑,𝑗 =
1
2

[
𝜎2
𝑗

Δ𝑡

Δ2 + 𝜇2
𝑗

Δ2
𝑡

Δ2 − 𝜇𝑗
Δ𝑡

Δ

]
Therefore

𝑝𝑢,𝑗 =
1

4𝜎2
𝑚𝑎𝑥

[
𝜎2
𝑗 + 𝜇2

𝑗Δ𝑡 + 𝜇𝑗Δ
]

(B.31)

𝑝𝑑,𝑗 =
1

4𝜎2
𝑚𝑎𝑥

[
𝜎2
𝑗 + 𝜇2

𝑗Δ𝑡 − 𝜇𝑗Δ
]

(B.32)

In step 3, we must compute the stationary distribution. We do this by finding the

two stable eigenvalues of the matrix 𝐿 defined in equation (B.23) in Appendix B.4.

We know that the steady-state distribution for each type is of the form

𝑔𝑗(𝑛) = 𝑎 𝑗(1 − 𝜆𝑎)𝜆𝑛𝑎 + 𝑏 𝑗(1 − 𝜆𝑏)𝜆𝑛𝑏
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so for high levels of wealth, the tail coefficient is given by 𝜁𝑠𝑠 = 1
Δ

log(𝜆𝑎), where

𝜆𝑎 is the larger of the two eigenvalues. This is the first of our targets. To fully specify

the stationary distribution we also need to compute the weights 𝑎 𝑗 and 𝑏 𝑗 . Steady

state implies that

𝑎𝐹

𝑎𝐷
=

(1 − 𝜙𝐹)𝐴𝐷
(1 − 𝜙𝐹𝐴𝐹)

(B.33)

𝑏𝐹

𝑏𝐷
=

(1 − 𝜙𝐹)𝐵𝐷
(1 − 𝜙𝐹𝐵𝐹)

(B.34)

where

𝐴 𝑗 =

[
1 + 𝑝𝑢,𝑗

1 − 𝜆𝑎
𝜆𝑎

− 𝑝𝑑,𝑗(1 − 𝜆𝑎)
]

(B.35)

𝐵 𝑗 =

[
1 + 𝑝𝑢,𝑗

1 − 𝜆𝑏
𝜆𝑏

− 𝑝𝑑,𝑗(1 − 𝜆𝑏)
]

(B.36)

Combining this with the fact that the steady state densities must sum to 1 also

implies that 𝑎 𝑗 + 𝑏 𝑗 = 1, we obtain the system of equations

𝑎𝐹

𝑎𝐷
=

(1 − 𝜙𝐹)𝐴𝐷
(1 − 𝜙𝐹𝐴𝐹)

(B.37)

1 − 𝑎𝐹
1 − 𝑎𝐷

=
(1 − 𝜙𝐹)𝐵𝐷
(1 − 𝜙𝐹𝐵𝐹)

(B.38)

which implies

𝑎𝐹 =
(1 − 𝜙𝐹)𝐴𝐷
(1 − 𝜙𝐹𝐴𝐹)

(B.39)

1 − 𝑎𝐹
1 − 𝑎𝐷

=
(1 − 𝜙𝐹)𝐵𝐷
(1 − 𝜙𝐹𝐵𝐹)

(B.40)

which can be solved for 𝑎𝐹 and 𝑎𝐷 , which in turn imply values for 𝑏𝐹 = 1 − 𝑎𝐹 and

𝑏𝐷 = 1− 𝑎𝐷 . The overall steady-state distribution of dynasties over nodes is therefore
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𝜈𝐹𝑔𝐹(𝑛) + 𝜈𝐷𝑔𝐷(𝑛) = (𝜈𝐹𝑎𝐹 + 𝜈𝐷𝑎𝐷)(1 − 𝜆𝑎)𝜆𝑛𝑎 + (𝜈𝐹𝑏𝐹 + 𝜈𝐷𝑏𝐷)(1 − 𝜆𝑏)𝜆𝑛𝑏 (B.41)

and the fraction of family firm dynasties at node 𝑛 is given by

𝜈𝐹(𝑛) =
𝜈𝐹(𝑎𝐹(1 − 𝜆𝑎)𝜆𝑛𝑎 + (1 − 𝑎𝐹)(1 − 𝜆𝑏)𝜆𝑛𝑏 )

(𝜈𝐹𝑎𝐹 + 𝜈𝐷𝑎𝐷)(1 − 𝜆𝑎)𝜆𝑛𝑎 + (1 − 𝜈𝐹𝑎𝐹 − 𝜈𝐷𝑎𝐷)(1 − 𝜆𝑏)𝜆𝑛𝑏
(B.42)

which can be used to calculate node-specific moments. In particular, the average

growth rate of wealth and the dispersion of log wealth growth at node 𝑛 is given by

𝑔̄𝑛 = 𝜈𝐹(𝑛)(𝜇𝐹 + 0.5𝜎2
𝐹) + (1 − 𝜈𝐹(𝑛))(𝜇𝐷 + 0.5𝜎2

𝐷) (B.43)

𝜎̄2
𝑛 = ((𝜇2

𝐹 + 𝜎2
𝐹)𝜈𝐹(𝑛) + (1 − 𝜈𝐹(𝑛))(𝜇2

𝐷 + 𝜎2
𝐷) − (𝜇𝐹𝜈𝐹(𝑛) + 𝜇𝐷(1 − 𝜈𝐹(𝑛)))2 (B.44)

These formulas are the formulas for the moments of a mixture of two normal

distributions. Recall that target (b) is 𝑔̄𝑁 − 𝑔
0
= 0.0569, target (c) is 𝜎̄0 = 0.0813 and

target (d) is 𝜎̄𝑛𝑡𝑜𝑝0.01% = 0.3579. The node 𝑛𝑡𝑜𝑝0.01% is defined through the relationship

𝐺(𝑛𝑡𝑜𝑝0.01%) ≡
𝑁∑

𝑛𝑡𝑜𝑝0.01%

𝑔(𝑛) = 0.0001

We use the MATLAB function ’fsolve’ to find values of 𝜇𝑗 and 𝜎𝑗 that hit these

targets. The resulting parameters are reported in row A of Table B.1. We can

compute the excess kurtosis at node 𝑛 implied by this calibration using the following

formula

ex kurtosis(𝑛) =
𝜈𝐹(𝑛)

(
𝜇4
𝐹
+ 6𝜇2

𝐹
𝜎2
𝐹
+ 3𝜎4

𝐹

)
+ 𝜈𝐷(𝑛)

(
𝜇4
𝐷
+ 6𝜇2

𝐷
𝜎2
𝐷
+ 3𝜎4

𝐷

)(
𝜈𝐹(𝑛)

(
𝜇2
𝐹
+ 𝜎2

𝐹

)
+ 𝜈𝐷(𝑛)

(
𝜇2
𝐷
+ 𝜎2

𝐷

) )2 − 3 (B.45)

Table B.2 reports the excess kurtosis implied by the baseline calibration and com-

pares it to the excess kurtosis reported by Gomez (2023).

Gomez (2023) also reports that less than 10% of the members of the 1983 cohort of

the Forbes 400 list were still members in 2017. When we compute this measure of
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Table B.2: Excess Kurtosis of Innovations to Top Wealth

Data 6.58
Baseline 1.31

The data on excess kurtosis for the Forbes 400 is from panel b) of Table 2 of Gomez
(2023) for the period 1983-2017. The percentile used for the Forbes 400 in our model
is the top 0.0003 percentile.
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Figure B.4: Moments of Innovations to Wealth Across the Distribution

The left panel (B.4a) shows the difference in the expected growth rate of the level of wealth for
dynasties at different percentiles of the steady-state distribution of wealth relative to the bottom of
the distribution. The right panel (B.4b) shows the corresponding dispersion of innovations to the
logarithm of wealth. These moments of innovations to wealth differ across families at different
percentiles of the wealth distribution because the mix of dynasties with family firms and with

diversified portfolios varies with the level of wealth.

persistence in the membership of the Forbes 400 in the context of the steady state of

our baseline calibration we obtain that about 7% of the members of the Forbes 400

are still members over a 34 year period.

We calibrated our model to match the differences in the expected growth rate

of wealth and cross section dispersion of innovations to wealth at the top and the

bottom of the wealth distribution. To evaluate how well our model fits the data at

intermediate levels of wealth, in Figure B.4, in the left panel (B.4a), we show the

expected growth in the level of wealth for dynasties at each wealth percentile, and in

the right panel (B.4b), we show the corresponding cross section dispersion of growth

rates of the logarithm of wealth at each wealth percentile implied by these changing

fractions of dynasties of each type by wealth level. The red dots in these figures

correspond to the data in Tables 1 and 8 of Bach et al. (2020).
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B.5.3 Transition Experiments

Once we have the parameters governing the growth of wealth, we can compute the

evolution over time of a given distribution of wealth. This is done by applying the

T operator repeatedly to a given initial distribution. The T operator is defined by

equation B.21. For instance, to compute the tail coefficient at node 𝑛 at time 𝑡+1 given a

vector of distributions of wealth by type at time 𝑡, 𝑥𝑡 , we apply equations B.21 to obtain

𝑥𝑡+1. We then obtain the overal distribution of wealth as 𝑔𝑡+1(𝑛) = [𝜈𝐹 , 𝜈𝐷] · 𝑥𝑡+1(𝑛),
which we use to compute the negative of the slope of the CCDF at the given node 𝑛.

There is a question about what to do about at the last node of the grid. We impose a

reflecting barrier at the top of the grid analogous to the one at the bottom. However,

the grid size is so large that the mass at the top of the grid is very close to zero. In the

numerical examples we compute, it does not seem to matter if one puts a reflecting

barrier at the top or not. To understand this, consider the version of the model when

types do not switch. As long as 𝑝𝑢,𝑗/𝑝𝑑,𝑗 < 1, the mass at the top of the grid is

going to be negligible if the grid size is large enough since the mass is proportional

to 𝜆𝑛
𝑗,𝑠𝑠

=
(
𝑝𝑢,𝑗/𝑝𝑑,𝑗

)𝑛 .

B.5.4 Calibration of Alternative Experiments Presented in Section

2.4

We conduct a series of quantitative experiments. This appendix describes the cali-

bration procedures of those experiments.

The first two counterfactual experiments are presented in Section 2.4 of the paper.

Relative to the calibration procedure for the baseline, these two experiments replace

the target for the dispersion of wealth growth at the top with directly setting the

volatility of the 𝐹 type. In particular, the first experiment sets 𝜎𝐹 = 0.3306, while the

second sets 𝜎𝐹 = 0.2204. Recall that the baseline calibration does not set 𝜎𝐹 directly,

but the the implied value for this parameter in the baseline calibration is 𝜎𝐹 = 0.4409.

The values for the calibrated parameters are presented in rows B and C of Table B.1

of the paper.

In addition, when computing the persistence of membership in the Forbes 400,
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these alternative calibrations feature higher persistence than in the baseline and in

the data reported by Gomez (2023). In particular, Gomez (2023) reports that less

than 10% of the Forbes 400 cohort of 1983 were still on the list 33 years later. The

corresponding number in the baseline calibration is around 7% while it is closer to

13% and 21% in the two alternative calibrations discussed here.

B.5.5 Additional Quantitative Experiments

As robustness checks, we also consider three additional quantitative experiments in

this appendix. In the first two additional experiments, we examine the results of

calibrations wherein the volatility of the 𝐹 type is reduced in the same manner as the

two alternative calibrations presented in Section 2.4 of the paper, while the target for

the difference in mean growth rates across the wealth distribution is simultaneously

doubled. In other words, relative to the alternative calibrations considered in Section

2.4, we now also change the calibration target b) to 𝑔̄𝑁 − 𝑔̄0 = 0.1138. Increasing

the target difference in mean growth rates is meant to gauge the extent to which

larger differences in mean growth rates between the types rather than the very high

volatility of the 𝐹 type can account for the prevalence of new large fortunes and rapid

transitions of top wealth inequality. The following Table B.3 presents the values of the

calibrated parameters. Figure B.5 compares the fraction of the Forbes 400 members

that where at the bottom within the last 𝑘 years and the transition of ratios of top

wealth shares between these alternative calibrations and the baseline calibration. We

see that the presence of a substantially larger difference in mean growth rates across

the wealth distribution is not enough to compensate for the absence of the high

volatility of the 𝐹 type that is characteristic of the baseline calibration.

The final alternative calibration we consider is one in which the target steady state

wealth coefficient is set to 𝜁𝑠𝑠 = 1.4 instead of the baseline value of 𝜁𝑠𝑠 = 1.43. This

is motivated by the following two reasons. First, there is some discrepancy between

the ratios of top wealth shares reported by Piketty et al. (2018) and Smith et al. (2021).

Second, the mapping between ratios of top wealth shares in equation 2.4 is a steady

state relationship. It is entirely possible that the parameters governing wealth growth

at a specific point in time are associated with a different steady state than what the
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Table B.3: Calibrated Parameters in the Baseline and Alternative Calibrations

Parameters 𝑔𝐹 𝑔𝐷 𝜎𝐹 𝜎𝐷 𝜈𝐹 𝜅𝐹

A (Baseline) 0.0035 −0.0847 0.4409 0.0779 0.05 0.067
D 0.0223 −0.1319 0.3306 0.0798 0.05 0.067
E 0.0352 −0.1221 0.2204 0.0805 0.05 0.067
F 0.0068 −0.0828 0.4441 0.0778 0.05 0.067
Targets 𝜁𝑠𝑠 𝑔̄ − 𝑔 𝜎̄𝑏𝑜𝑡𝑡𝑜𝑚 𝜎̄𝑛𝑡𝑜𝑝0.01% 𝜎𝐹

A (Baseline) 1.43 0.0569 0.0813 0.3579 N/A
D 1.43 0.1138 0.0813 N/A 0.3306
E 1.43 0.1138 0.0813 N/A 0.2204
F 1.4 0.0569 0.0813 N/A 0.3579

Calibrated parameters in the baseline as well as the alternative calibrations D and E
where the volatility of the 𝐹 type is reduced to 75% and 50% of its baseline value,
respectively, while the targeted difference in growth rates between the top and the
bottom of the wealth distribution is doubled relative to the baseline. Alternative
calibration F instead features a lower target for the steady state tail coefficient.
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Figure B.5: Transition Results from Baseline and Alternative Calibrations

This figure displays comparisons along two dimensions of the baseline calibration A with the
alternative calibrations, D and E. In calibrations D and E the value of 𝜎𝐹 is set to 75% and 50% of its

baseline value, respectively, while the target difference in mean growth rates across the wealth
distribution is doubled. Figure (B.5a) compares the transition of the tail coefficient, and Figure (B.5b)

considers the transition of the ratio of the top 0.01% to the top 0.1% wealth shares. Along both
dimensions, the presence of a minority of dynasties with very high idiosyncratic volatility is
important for obtaining rapid transitions. The transition is computed for the years 1966-2016.

Marked are also the data from Smith et al. (2021) (circles) and Piketty et al. (2018) (triangles). These
are the ratios of the top 0.01% to the top 0.1% wealth shares and the implied tail coefficient using

equation 2.4.
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Figure B.6: Transition Results from Final Alternative Calibration

This figure displays the transition of the tail coefficient as well as the ratio of the top 0.01% wealth
share to the top 0.1% wealth share when the target steady state tail coefficient is 𝜁𝑠𝑠 = 1.4 instead of
the baseline value 𝜁𝑠𝑠 = 1.43. The transition is computed for the years 1966-2016. Marked are also

the data from Smith et al. (2021) (circles) and Piketty et al. (2018) (triangles).

current ratio of top wealth shares would imply. The resulting parameter values are

reported in row F of Table B.3. Figure B.6 plots the transition of the tail coefficient as

well as the evolution of the ratio of the top 0.01% to the top 0.1% wealth shares with

this alternative target together with data from Piketty et al. (2018) and Smith et al.

(2021). We see that the lower target value for the steady state distribution implies

that the transition is somewhat faster.

B.6 Appendix F:

A Spectral Analysis of the Dynamics of the Distri-

bution

In this paper, we provide an analytical expression for the dynamics of the distribution

of wealth over time as it converges to steady-state if the initial distribution of wealth

is in a certain class of distributions. Gabaix et al. (2016) use an alternative approach to

analyze the dynamics of the distribution of wealth to steady-state based on a spectral

analysis of these dynamics in continuous time. In this appendix, we provide direct

analogs of their spectral analysis in our discrete time - discrete state setting with the

model restricted to have only one type by analyzing the eigenvalues and eigenvectors
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of our operator T in the version of our model with only one type of dynasty.

To prove their results, Gabaix et al. (2016) impose a boundedness assumption on tail

coefficients of the distributions of wealth under consideration that is described in their

Assumption 1. Here, we consider a related bound by computing the eigenvalues and

eigenvectors of our operator T when the grid of wealth levels is finite (so 𝑁 < ∞).

In this case, this operator T is simply a square Markov transition matrix of size

(𝑁 +1)× (𝑁 +1), so the calculation of eigenvalues and eigenvectors is standard. As is

the case with finite Markov transition matrices, the largest eigenvalue is equal to one,

and the speed of convergence of the distribution to steady-state is related to the size

of the second largest eigenvalue, which is less than one. We are able to compute this

second largest eigenvalue and consider its limiting value as 𝑁 → ∞. We find that

this limiting value of the second largest eigenvalues of our finite Markov transition

matrix T as 𝑁 grows large corresponds to the formula found in Gabaix et al. (2016)

Proposition 1.

We present this analysis for two reasons. First, it may be of interest to readers wish-

ing to better understand spectral methods for analyzing dynamics of distributions.

Second, it allows us to highlight two differences between the analytical characteriza-

tion of the dynamics of the distribution of wealth that we present in our paper and

those obtained using spectral methods. These are, first, that our analysis does not

require that we impose a bound on the tail coefficient of the initial distribution un-

der consideration. Second, and more important, our analysis directly highlights the

connection between the speed of wealth mobility from the bottom of the wealth dis-

tribution to the top and the dynamics of the shape of the top of the wealth distribution

as it converges to steady state.

B.6.1 The Eigenvalue Problem of T

In the version of the model with one type, the operator T that maps a distribution

𝑔 at time 𝑡 to a distribution T(𝑔) at time 𝑡 + 1 can be defined through the following

equations

181



For 0 < 𝑛 < 𝑁 ,

T(𝑔)(𝑛) = 𝑝𝑢𝑔(𝑛 − 1) + (1 − 𝑝𝑢 − 𝑝𝑑)𝑔(𝑛) + 𝑝𝑑𝑔(𝑛 + 1) (B.46)

for 𝑛 = 0

T(𝑔)(0) = (1 − 𝑝𝑢)𝑔(0) + 𝑝𝑑𝑔(1) (B.47)

and, if 𝑁 < ∞, for 𝑛 = 𝑁

T(𝑔)(𝑁) = (1 − 𝑝𝑑)𝑔(𝑁) + 𝑝𝑢𝑔(𝑁 − 1) (B.48)

The eigenvalue problem 𝜆𝑔 = T(𝑔) is therefore defined by the following equations:

For 0 < 𝑛 < 𝑁 ,

𝜆𝑔(𝑛) = 𝑝𝑢𝑔(𝑛 − 1) + (1 − 𝑝𝑢 − 𝑝𝑑)𝑔(𝑛) + 𝑝𝑑𝑔(𝑛 + 1), (B.49)

for 𝑛 = 0

𝜆𝑔(0) = (1 − 𝑝𝑢)𝑔(0) + 𝑝𝑑𝑔(1) (B.50)

and, if 𝑁 < ∞, for 𝑛 = 𝑁

𝜆𝑔(𝑁) = (1 − 𝑝𝑑)𝑔(𝑁) + 𝑝𝑢𝑔(𝑁 − 1) (B.51)

Note that when 𝑁 < ∞, T can be represented by an 𝑁 + 1 × 𝑁 + 1 matrix 𝑃 of the

form

𝑃 =

©­­­­­­­­­­­­«

1 − 𝑝𝑢 𝑝𝑑 0 . . . . . . . . . 0

𝑝𝑢 1 − 𝑝𝑢 − 𝑝𝑑 𝑝𝑑 0 . . . . . . 0

0 𝑝𝑢 1 − 𝑝𝑢 − 𝑝𝑑 𝑝𝑑 0 . . . 0
... 0 . . .

. . .
. . . . . . 0

0 . . . . . . 0 𝑝𝑢 1 − 𝑝𝑑 − 𝑝𝑢 𝑝𝑑

0 . . . . . . 0 0 𝑝𝑢 1 − 𝑝𝑑

ª®®®®®®®®®®®®¬
(B.52)
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So that for all 𝑔 given by vectors of size 𝑁 + 1 × 1,

T(𝑔) = 𝑃𝑔

Thus, the eigenvalue problem for T corresponds to finding the eigenvalues of 𝑃.

Note that the matrix 𝑃 is not symmetric. Similarly, when 𝑁 = ∞, T is not self-

adjoint. This prevents a direct application of the Spectral Theorem for analyzing the

eigenvalue problem presented above.

Following Lemma 6 in Gabaix et al. (2016), we analyze a related operator S that

is self-adjoint and which, under certain conditions discussed below, has the same

eigenvalues as T.

We define this related self-adjoint operator S as follows. For each 𝑛, scale the

equations (B.46)-(B.48) that define the operator T by a factor
(√
𝑝𝑑/𝑝𝑢

)𝑛
. This gives

the equations

(
𝑝𝑑

𝑝𝑢

)𝑛/2
T(𝑔)(𝑛) = 𝑝𝑢

(
𝑝𝑑

𝑝𝑢

)𝑛/2
𝑔(𝑛 − 1) + (1 − 𝑝𝑢 − 𝑝𝑑)

(
𝑝𝑑

𝑝𝑢

)𝑛/2
𝑔(𝑛) + 𝑝𝑑

(
𝑝𝑑

𝑝𝑢

)𝑛/2
𝑔(𝑛 + 1)

T(𝑔)(0) = (1 − 𝑝𝑢)𝑔(0) + 𝑝𝑑𝑔(1)(
𝑝𝑑

𝑝𝑢

)𝑁/2
T(𝑔)(𝑁) = (1 − 𝑝𝑑)

(
𝑝𝑑

𝑝𝑢

)𝑁/2
𝑔(𝑁) + 𝑝𝑢

(
𝑝𝑑

𝑝𝑢

)𝑁/2
𝑔(𝑁 − 1)

For any vector 𝑔, let ℎ(𝑛) = 𝑔(𝑛)
(√
𝑝𝑑/𝑝𝑢

)𝑛
. We will use the notation ℎ𝑔 refer to

this vector. For 𝑁 < ∞, define the operator S by

S(ℎ)(𝑛) =
(
𝑝𝑑

𝑝𝑢

)𝑛/2
T(𝑔)(𝑛) (B.53)

In other words, S is defined by the following set of equations:

For 0 < 𝑛 < 𝑁 ,

S(ℎ)(𝑛) = (√𝑝𝑢𝑝𝑑)ℎ(𝑛 − 1) + (1 − 𝑝𝑢 − 𝑝𝑑)ℎ(𝑛) + (√𝑝𝑢𝑝𝑑)ℎ(𝑛 + 1) (B.54)
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for 𝑛 = 0,

S(ℎ)(0) = (1 − 𝑝𝑢)ℎ(0) + (√𝑝𝑢𝑝𝑑)ℎ(1) (B.55)

and, if 𝑁 < ∞
S(ℎ)(𝑁) = (1 − 𝑝𝑑)ℎ(𝑁) + (√𝑝𝑢𝑝𝑑)ℎ(𝑁 − 1) (B.56)

As with the operator T, for fixed 𝑁 < ∞, the operator S can be represented as an

𝑁 + 1 × 𝑁 + 1 matrix 𝑄:

𝑄 =

©­­­­­­­­­­­­«

1 − 𝑝𝑢
√
𝑝𝑢𝑝𝑑 0 . . . . . . . . . 0

√
𝑝𝑑𝑝𝑢 1 − 𝑝𝑢 − 𝑝𝑑

√
𝑝𝑢𝑝𝑑 0 . . . . . . 0

0 √
𝑝𝑢𝑝𝑑 1 − 𝑝𝑢 − 𝑝𝑑

√
𝑝𝑢𝑝𝑑 0 . . . 0

... 0 . . .
. . .

. . . . . . 0

0 . . . . . . 0 √
𝑝𝑢𝑝𝑑 1 − 𝑝𝑢 − 𝑝𝑑

√
𝑝𝑢𝑝𝑑

0 . . . . . . 0 0 √
𝑝𝑢𝑝𝑑 1 − 𝑝𝑑

ª®®®®®®®®®®®®¬
(B.57)

That is, for all ℎ given by vectors of size 𝑁 + 1 × 1,

S(ℎ) = 𝑄ℎ

Note that for any fixed𝑁 ≤ ∞, we can recover the dynamics of 𝑔 from the dynamics

of ℎ. That is, if we start from 𝑔0, we construct ℎ0(𝑛) = 𝑔0(𝑛)
(
𝑝𝑑
𝑝𝑢

)𝑛/2
. We then construct

ℎ𝑡 by applying the operator S, 𝑡 times, or, equivalently, when 𝑁 < ∞

ℎ𝑡 = 𝑄
𝑡ℎ0

We then can construct 𝑔𝑡 from 𝑔𝑡(𝑛) = ℎ𝑡(𝑛)
(√
𝑝𝑢/𝑝𝑑

)𝑛
.

Note as well that when 𝑁 < ∞ the matrix 𝑄 is real valued and symmetric. That is

𝑄(𝑖 , 𝑗) = 𝑄(𝑗 , 𝑖),∀𝑖 , 𝑗

Thus, we have that when 𝑁 < ∞ the eigenvalues of 𝑄 are real, that the eigenvectors

are orthogonal, and that the Spectral Theorem for finite dimensional spaces applies.
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That is, we can diagonalize 𝑄 and use that eigenvalue-eigenvector decomposition to

characterize the dynamics of ℎ𝑡 .

The eigenvalue problem 𝜆ℎ = S(ℎ) can be written

𝜆ℎ(𝑛) = (√𝑝𝑢𝑝𝑑)ℎ(𝑛 − 1) + (1 − 𝑝𝑢 − 𝑝𝑑)ℎ(𝑛) + (√𝑝𝑢𝑝𝑑)ℎ(𝑛 + 1) (B.58)

for 0 < 𝑛 < 𝑁 and for 𝑛 = 0

𝜆ℎ(0) = (1 − 𝑝𝑢)ℎ(0) + (√𝑝𝑢𝑝𝑑)ℎ(1) (B.59)

and, if 𝑁 < ∞, for 𝑛 = 𝑁

𝜆ℎ(𝑁) = (1 − 𝑝𝑑)ℎ(𝑁) + (√𝑝𝑢𝑝𝑑)ℎ(𝑁 − 1) (B.60)

Direct comparison of these two eigenvalue problems gives us our first proposition:

Proposition F1: When 𝑁 < ∞, the set of 𝑁 + 1 eigenvalues {𝜆𝑘}𝑁+1
𝑘=1 of the two

operators T and S are the same, and the eigenvectors of the two eigenvalue problems

are related by ℎ(𝑛;𝜆𝑘) = (
√
𝑝𝑑/𝑝𝑢)𝑛𝑔(𝑛;𝜆𝑘).

To prove this proposition, observe that the operators satisfyS(ℎ)(𝑛) =
(
𝑝𝑑
𝑝𝑢

)𝑛/2
T(𝑔)(𝑛)

for any two vectors ℎ and 𝑔 such that ℎ(𝑛) = (
√
𝑝𝑑/𝑝𝑢)𝑛𝑔(𝑛). Suppose that 𝜆𝑘 is

an eigenvalue of S, and that ℎ(𝑛;𝜆𝑘) is the corresponding eigenvector, then for all

0 ≤ 𝑛 ≤ 𝑁 :

S(ℎ)(𝑛) = 𝜆𝑘ℎ(𝑛;𝜆𝑘)

⇔(
𝑝𝑑

𝑝𝑢

)𝑛/2
T(𝑔)(𝑛) = 𝜆𝑘ℎ(𝑛;𝜆𝑘)

⇔

T(𝑔)(𝑛) = 𝜆𝑘 𝑔(𝑛;𝜆𝑘)

So that 𝜆𝑘 is also an eigenvalue of T, with 𝑔(𝑛;𝜆𝑘) being the corresponding eigen-
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vector. By the same argument, if 𝜆𝑘 is an eigenvalue of T, with 𝑔(𝑛;𝜆𝑘) being the

corresponding eigenvector, then 𝜆𝑘 is an eigenvalue of S, with ℎ(𝑛;𝜆𝑘) as the corre-

sponding eigenvector.

Note that equations (B.49) and (B.58) in the eigenvalue problems for the operatorsT

and S are both regular homogeneous second-order difference equation with constant

coefficients. For a given eigenvalue, 𝜆, the characteristic equations for these two

difference equations are as follows

𝑘(𝜆)2 −
(𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)

𝑝𝑑
𝑘(𝜆) +

𝑝𝑢

𝑝𝑑
= 0 (B.61)

𝑚(𝜆)2 − (𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)√
𝑝𝑢𝑝𝑑

𝑚(𝜆) + 1 = 0 (B.62)

The characteristic equation for the eigenvalue problem for the operator T has the

two solutions

𝑘1(𝜆) =
(𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)

2𝑝𝑑
+

√
(𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)2 − 4𝑝𝑢𝑝𝑑

2𝑝𝑑
(B.63)

𝑘2(𝜆) =
(𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)

2𝑝𝑑
−

√
(𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)2 − 4𝑝𝑢𝑝𝑑

2𝑝𝑑
(B.64)

while that for the operator S has the two solutions

𝑚1(𝜆) =
(𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)

2√𝑝𝑢𝑝𝑑
+

√
(𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)2 − 4𝑝𝑢𝑝𝑑

2√𝑝𝑢𝑝𝑑
=

√
𝑝𝑑/𝑝𝑢𝑘1(𝜆) (B.65)

𝑚2(𝜆) =
(𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)

2√𝑝𝑢𝑝𝑑
−

√
(𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)2 − 4𝑝𝑢𝑝𝑑

2√𝑝𝑢𝑝𝑑
=

√
𝑝𝑑/𝑝𝑢𝑘2(𝜆) (B.66)

Note that these roots of these characteristic equations are both real whenever

(𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)2 − 4𝑝𝑢𝑝𝑑 ≥ 0 (B.67)

and are complex conjugates of each other whenever

(𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)2 − 4𝑝𝑢𝑝𝑑 < 0 (B.68)
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Define the cutoffs 𝜆̄ and 𝜆 as the two solutions to

(𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)2 − 4𝑝𝑢𝑝𝑑 = 0

These are given by

𝜆̄ = 1 − (𝑝𝑢 + 𝑝𝑑) + 2√𝑝𝑢𝑝𝑑 (B.69)

and

𝜆 = 1 − (𝑝𝑢 + 𝑝𝑑) − 2√𝑝𝑢𝑝𝑑 (B.70)

we have 1 > 𝜆̄ > 𝜆. We distinguish between three cases surrounding the larger cutoff

point 𝜆̄:

1. In the interval (𝜆̄, 1), the characteristic equations corresponding to the difference

equations (B.49) and (B.58) have two distinct real roots, and the solutions to the

difference equations are of the form

𝑔(𝑛;𝜆) = 𝑎1(𝜆)𝑘1(𝜆)𝑛 + 𝑎2(𝜆)𝑘2(𝜆)𝑛 (B.71)

ℎ(𝑛;𝜆) = 𝑎1(𝜆)𝑚1(𝜆)𝑛 + 𝑎2(𝜆)𝑚2(𝜆)𝑛 (B.72)

respectively. Here the parameters 𝑎1(𝜆) and 𝑎2(𝜆) are to be chosen to match

boundary conditions.

2. At 𝜆̄, the characteristic equations have one real root and the solutions to the

difference equations are of the form

𝑔(𝑛;𝜆) = (𝑎1(𝜆) + 𝑛𝑎2(𝜆)) 𝑘(𝜆)𝑛 (B.73)

ℎ(𝑛;𝜆) = (𝑎1(𝜆) + 𝑛𝑎2(𝜆))𝑚2(𝜆)𝑛 (B.74)

3. When 𝜆 ∈ (𝜆, 𝜆̄), the roots of the two characteristic equations are complex and

the solution to the difference equations can be written

𝑔(𝑛;𝜆) =
(√
𝑝𝑢/𝑝𝑑

)𝑛
𝑎(𝜆) cos (𝜃(𝜆)𝑛 + 𝜔(𝜆)) (B.75)
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ℎ(𝑛;𝜆) = 𝑎(𝜆) cos (𝜃(𝜆)𝑛 + 𝜔(𝜆)) (B.76)

where

𝜃(𝜆) = cos−1
( (𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)

2√𝑝𝑑𝑝𝑢

)
(B.77)

and 𝑎(𝜆) and 𝜔(𝜆) are to be chosen to match boundary conditions

[𝑎1(𝜆)𝑚1(𝜆) + 𝑎2(𝜆)𝑚2(𝜆)]

(𝑎1(𝜆)𝑚1(𝜆)𝑁 + 𝑎2(𝜆)𝑚2(𝜆)𝑁 )(𝜆 − 1 + 𝑝𝑑) = (√𝑝𝑢𝑝𝑑)
[
𝑎1(𝜆)𝑚1(𝜆)𝑁−1 + 𝑎2(𝜆)𝑚2(𝜆)𝑁−1]

these in turn imply

𝑎1(𝜆) = −
(
𝜆 − 1 + 𝑝𝑢 − (√𝑝𝑑𝑝𝑢)𝑚2(𝜆)
𝜆 − 1 + 𝑝𝑢 − (√𝑝𝑑𝑝𝑢)𝑚1(𝜆)

)
𝑎2(𝜆)

𝑎1(𝜆) = −
(
𝑚2(𝜆)
𝑚1(𝜆)

)𝑁 (
𝜆 − 1 + 𝑝𝑑 − (√𝑝𝑑𝑝𝑢)𝑚2(𝜆)−1

𝜆 − 1 + 𝑝𝑑 − (√𝑝𝑑𝑝𝑢)𝑚1(𝜆)−1

)
𝑎2(𝜆)

Hence, 𝜆 is an eigenvalue if and only if(
𝜆 − 1 + 𝑝𝑢 − (√𝑝𝑑𝑝𝑢)𝑚2(𝜆)
𝜆 − 1 + 𝑝𝑢 − (√𝑝𝑑𝑝𝑢)𝑚1(𝜆)

)
=

(
𝑚2(𝜆)
𝑚1(𝜆)

)𝑁 (
𝜆 − 1 + 𝑝𝑑 − (√𝑝𝑑𝑝𝑢)𝑚2(𝜆)−1

𝜆 − 1 + 𝑝𝑑 − (√𝑝𝑑𝑝𝑢)𝑚1(𝜆)−1

)
(B.78)

Recall that when 𝜆 ∈ (𝜆̄, 1), 𝑚1(𝜆) > 1 > 𝑚2(𝜆). Hence, the left-hand side of (B.78)

is larger than 1. But, the right-hand side is smaller than 1 for the same reason.

Hence, there are no eigenvalues in the interval 𝜆 ∈ (𝜆̄, 1), when 𝑁 is finite. A similar

argument can be used to rule out eigenvalues smaller than 𝜆. We thus have the

following proposition:

Proposition F2: For 𝑁 < ∞, all eigenvalues of the operator S that are less than 1

lie in the interval (𝜆, 𝜆̄).
Since S and T have the same eigenvalues when 𝑁 < ∞, the proposition holds for

the operator T as well.

Next, we show how to find the 𝑁 + 1 eigenvalues. Since all eigenvalues lie in the

interval (𝜆, 𝜆̄), we know that for a given eigenvalue 𝜆, the eigenvectors are of of the
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form (B.76) corresponding to complex roots of the characteristic equation associated

with the difference equation defining S:

ℎ(𝑛;𝜆) = 𝑎(𝜆) cos (𝜃(𝜆)𝑛 + 𝜔(𝜆))

To pin down 𝜔(𝜆) for a given eigenvalue 𝜆, we use the lower boundary condition

(B.59) and the fact that cos (𝑥 + 𝑦) = cos(𝑦) cos(𝑥) − sin(𝑦) sin(𝑥). This gives us

0 = (1 − 𝑝𝑢 − 𝜆)ℎ(0;𝜆) + (√𝑝𝑢𝑝𝑑)ℎ(1;𝜆)

⇔

0 = (1 − 𝑝𝑢 − 𝜆) cos(𝜔(𝜆)) + (√𝑝𝑢𝑝𝑑) [cos(𝜔(𝜆)) cos(𝜃(𝜆)) − sin(𝜔(𝜆)) sin(𝜃(𝜆))]

This condition can in turn be written

𝜆 − 1 + 𝑝𝑢 − 𝑝𝑑
2√𝑝𝑢𝑝𝑑

= − sin(𝜃(𝜆)) tan(𝜔(𝜆))

by using (B.77). Moreover, note that

sin(𝜃(𝜆)) =
(
1 −

( (𝜆 − 1 + 𝑝𝑢 + 𝑝𝑑)
2√𝑝𝑑𝑝𝑢

)2
)1/2

since 𝜃(𝜆) = cos−1
(
(𝜆−1+𝑝𝑢+𝑝𝑑)

2√𝑝𝑑𝑝𝑢

)
, so we can solve for 𝜔(𝜆) as:

𝜔(𝜆) = arctan

©­­­­­«
−

(
𝜆−1+𝑝𝑢−𝑝𝑑

2√𝑝𝑢𝑝𝑑

)
(
1 −

(
(𝜆−1+𝑝𝑢+𝑝𝑑)

2√𝑝𝑑𝑝𝑢

)2
)1/2

ª®®®®®¬
(B.79)

We can then find all eigenvalues as solutions to the upper boundary condition

(B.60) plugging in the above expressions for 𝜃(𝜆) and 𝜔(𝜆):

(𝜆 − 1 + 𝑝𝑑) cos (𝜃(𝜆)𝑁 + 𝜔(𝜆)) − (√𝑝𝑢𝑝𝑑) cos (𝜃(𝜆)(𝑁 − 1) + 𝜔(𝜆)) = 0 (B.80)
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(b) 𝑁 = 50
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(c) 𝑁 = 2000

Figure B.7: Roots of the Upper Boundary Condition

Roots of the upper boundary condition for 𝑁 = 10, 𝑁 = 50, and 𝑁 = 2000. The red line indicates the
interval (𝜆, 𝜆̄)

where 𝜃(𝜆) and 𝜔(𝜆) are given by (B.77) and (B.79), respectively. In figure B.7, we

plot the left-hand side of (B.80) for increasing 𝑁 . The eigenvalues are the points at

which the left-hand side of (B.80) is equal to zero.

We see that as 𝑁 grows, the eigenvalues successively fill out the entire interval

(𝜆, 𝜆̄). This shows that the second largest eigenvalue in a model with a finite grid

approaches 𝜆̄ as the size of the grid grows.

In conclusion, an upper bound on the second largest eigenvalue of the operator T

is given by 𝜆̄. To relate this to Gabaix et al. (2016) we compute the continuous time

analogue of 𝜆̄:

lim
Δ𝑡→0

− 1
Δ𝑡

log(𝜆̄)
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and show that it is equal to 𝜇2

2𝜎2 which is the same value they obtain. To show this

we first rewrite 𝜆̄ in terms of the annualized moments 𝜇 and 𝜎 using equations (B.31)

and (B.32), and then apply L’Hôpital’s rule. Specifically, we can rewrite 𝜆̄ as

𝜆̄ = 1 − 𝑝𝑢 − 𝑝𝑑 + 2√𝑝𝑑𝑝𝑢

= 1 −
(
Δ𝑡

Δ2 𝜎
2 +

Δ2
𝑡

Δ2𝜇
2

)
+ 2

√√√
1
4

((
Δ𝑡

Δ2 𝜎
2 +

Δ2
𝑡

Δ2𝜇
2

)
+ Δ𝑡

Δ
𝜇

) ((
Δ𝑡

Δ2 𝜎
2 +

Δ2
𝑡

Δ2𝜇
2

)
− Δ𝑡

Δ
𝜇

)

= 1 −
(
Δ𝑡

Δ2 𝜎
2 +

Δ2
𝑡

Δ2𝜇
2

)
+

√√√(
Δ𝑡

Δ2 𝜎
2 +

Δ2
𝑡

Δ2𝜇
2

)2

−
Δ2
𝑡

Δ2𝜇
2

= 1 −
(
𝑐𝜎2 + 𝑐Δ𝑡𝜇2

)
+

√
(𝑐𝜎2 + 𝑐Δ𝑡𝜇2)2 − 𝑐Δ𝑡𝜇2

where 𝑐 = 1
2𝜎2

𝑚𝑎𝑥
is a constant. To use L’Hôpital’s rule we need to compute 𝑑

𝑑Δ𝑡
log(𝜆̄),

which is given by

𝑑

𝑑Δ𝑡
log(𝜆̄) =

−𝑐𝜇2 + 2(𝑐𝜎2+𝑐Δ𝑡𝜇2)𝑐𝜇2−𝑐𝜇2

2
√
(𝑐𝜎2+𝑐Δ𝑡𝜇2)2−𝑐Δ𝑡𝜇2

1 − (𝑐𝜎2 + 𝑐Δ𝑡𝜇2) +
√
(𝑐𝜎2 + 𝑐Δ𝑡𝜇2)2 − 𝑐Δ𝑡𝜇2

Letting Δ𝑡 → 0 we have

𝑑

𝑑Δ𝑡
log(𝜆̄) →

−𝑐𝜇2 + 2𝑐2𝜎2𝜇2−𝑐𝜇2

2𝑐𝜎2

1 =
−𝜇2

2𝜎2

So by L’Hôpital’s

lim
Δ𝑡→∞

− 1
Δ𝑡

log(𝜆̄) = lim
Δ𝑡→∞

−
𝑑
𝑑Δ𝑡

log(𝜆̄)
1 =

𝜇2

2𝜎2

which is what we wanted to show.
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