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Abstract

This thesis seeks to enhance our understanding of how the natural environment
interacts with the process of economic development in low- and middle-income
countries. The context for study in this thesis is India, home to almost 18 percent of
the world’s population, and staring down climate change and various environmen-
tal pollution crises while pursuing economic growth to reduce widespread poverty.
The four chapters uncover the environmental channels through which agricultural
activity - the dominant source of employment in poor economies – affects, and is
in turn affected by, the process of structural transformation. In chapter 1, I ask
whether and how anti-poverty rural workfare programs affect the dependence of
agricultural production on the weather. In chapter 2, I quantify the consequences
of air pollution from seasonal but predictable agricultural fires on the size and spa-
tial distribution of economic activity. In chapter 3, I document the economic costs
from an increase in air pollution due to a groundwater conservation policy that un-
intentionally shifted agricultural fires into the winter. In chapter 4, I estimate the
losses imposed by industrial water pollution on agricultural production. Taken to-
gether, these chapters drive home the vital importance of the natural environment
to sustainable economic development.
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Preface

There is a long tradition of research on how the scarcity of natural resources can
constrain economic growth. More recently, the degradation of the natural envi-
ronment in the form of climate change as well as air and water pollution has re-
ceived increasing attention. This literature has mostly provided evidence on de-
veloped countries, whereas the costs of such environmental degradation may be
much higher in Low- and Middle-Income countries (LMICs). These countries are
characterized by widespread poverty, weak institutions, and low trust within so-
ciety and in government, all factors that could potentially increase the damages
from environmental degradation. In turn, the process of economic development
itself can degrade the environment further in such settings (Jayachandran 2022).
Therefore, the channel of causation can run from environmental degradation to
economic development, or vice versa. In this thesis, I contribute to this compar-
atively nascent literature by documenting specific causal channels between eco-
nomic development and environmental degradation in India.

India is home to almost 18% of the world’s population who are expected to con-
sume substantially more in the coming decades. Even as the process of structural
transformation is underway, agriculture still is the main source of livelihoods for
more than 50 percent of the population in the country. The incomes of cultivators
and laborers reliant on this sector are especially vulnerable to climate change. At
the same time, more than 82 percent of farms are operated by small and marginal
farmers who practice subsistence agriculture and need constant government inter-
vention such as workfare programs to supplement their meager incomes. Workfare
programs can target consumption smoothing more efficiently and are also becom-
ing increasingly common in response to extreme weather events driven by cli-
mate change. The first chapter investigates the effect of India’s National Rural
Employment Guarantee Scheme (NREGS) - the largest workfare program in the
World - on agricultural productivity. I use the standard identification strategy in
the NREGS literature that exploits program rollout across districts to document
higher agricultural yield losses of 8 percent from negative rainfall shocks, after
the program comes into existence. Next, I proceed to examine whether higher
risk in crop choice is a potential mechanism that can explain this increased yield
volatility. I construct novel crop risk indices using pre-NREGS moments of the
crop revenue distribution, and confirm that higher risk as measured by these in-
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dices predicts higher realized yield after a positive weather shock, but lower yields
after a negative shock. Using this measure of yield risk and the rollout strategy,
I find little evidence that the increased yield volatility can be explained by higher
risk in crop choice. On the contrary, and consistent with the literature, I find that
NREGS strongly dampens pro-cyclical wage response to low rainfall shocks. This
could increase labor costs and exacerbate the agricultural productivity effects of
such shocks. Finally, higher provision of NREGS after a negative rainfall shock
in a given year worsens yield losses the next year if a negative rainfall shock is
also realized the next year, but improves yields if a positive shock is realized in-
stead. Policymakers considering such programs should pay close attention to the
negative and positive complementarities between social protection and agricultural
productivity that these results suggest.

Historically, economic growth and structural transformation have tended to be ac-
companied by large-scale degradation of air and water quality, which may in turn
affect economic growth. In the second chapter, I ask how consistently high lev-
els of air pollution in some Indian cities affect aggregate productivity and spatial
inequality across the country. I focus on air pollution from agricultural fires that
are used to burn crop residue after the harvest. First, in order to quantify the ef-
fect of these fires on pollution both locally and in downwind districts, I build a
novel econometric pollution transport model (ETM) and estimate its parameters
using exogenous variation in yearly wind and cropping patterns. With this model,
I demonstrate that external fires account for more than 10 percent of within-district
annual variation in concentrations of particulate matter less than 2.5 microns in di-
ameter (PM2.5) in Indian districts. I incorporate this ETM into a canonical quanti-
tative spatial equilibrium model that features costly migration in response to both
amenity and productivity differences across locations. Pollution affects both lo-
cation amenity and productivity, the relative strengths of these mechanisms being
governed by the pollution and income elasticities of migration respectively. Using
the equilibrium equation describing migration shares across locations, I estimate
these elasticites on migration shares data from the 2011 population census. I find
that the pollution elasticity is not significantly different from zero although mea-
sured imprecisely, while the income elasticity of 0.81 is precisely estimated. I
also estimate a parameter summarizing the institutional features that determine the
prevalence of agricultural fires. Finally, I conduct model counterfactuals to reduce
fires in the worst-offending states of India and find an increase in national GDP
of 1.22 percent and a reduction in the Gini coefficient of GDP by 0.23 percent,
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since large reductions in pollution in the poorest Northern parts of India leads to a
reallocation of labor towards the North.

In the third chapter, I describe how fixing one environmental externality in the
second-best setting of LMICs can exacerbate another environmental externality.
Alarming rates of groundwater aquifer depletion in North India are linked to water-
intensive rice cultivation based on cheap electricity for water pumps. Since opti-
mal marginal pricing of groundwater is not politically feasible, the northwestern
states of Punjab and Haryana that have high groundwater depletion rates, instead
passed legislation in 2009 with the intent to rely more on rain-fed irrigation by
mandating a delay in rice crop transplantation to coincide with monsoon arrival.
At the same time, rice crop residue burning in these two states contributes to high
PM2.5 levels over North India. I use satellite data on fires and a difference-in-
differences framework to document that the groundwater laws shifted more than
half of all agricultural fires into early winter, when meteorological conditions fa-
vor longer suspension of particulate matter over North India. I then quantify the
consequences of this increased air pollution on Indian GDP by estimating two fur-
ther elasticities. First, I develop a novel instrument for PM2.5 that summarizes the
exposure of a given location to upwind fires, showing that a 10 percent higher ex-
posure to November fires increases annual PM2.5 concentrations by 0.3 percent in
the average district. Second, I estimate the effect of higher PM2.5 concentrations
on GDP with new data on Indian districts between 2007-2013, using district and
year fixed effects combined with a first differences approach that is more efficient
for non-stationary data, and with the fire exposure instrument to tackle residual
reverse causality. With this approach, I find estimates that a 10 percent increase
in PM2.5 reduces GDP by 1.8 percent on average, with a 95 percent interval of
[-0.4%, -3.17%]. With these two elasticities and the structure of the instrument, I
estimate that the groundwater laws decrease yearly Indian GDP by 0.125 percent
due to the increase in November fire-driven air pollution.

In the co-authored fourth chapter, we shift our attention to the impact of indus-
trial water pollution on agricultural output in India. This type of pollution, a by-
product of industrialization and structural transformation, is high in many devel-
oping countries, but researchers and regulators have paid it less attention than air
and domestic water pollution. We focus on 71 industrial sites identified by the
central government as “severely polluted.” We exploit the spatial discontinuity in
pollution concentrations that these sites generate along a river. First, we show that
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these sites do in fact coincide with a large, discontinuous rise in pollutant concen-
trations in the nearest river. Then, we find that remote sensing measures of crop
growth are 2.6 percent lower in villages downstream of polluting sites, relative to
villages immediately upstream of the same site in the same year. In terms of agri-
cultural production, this estimate roughly translates to a 1 percent decline in crop
yields. The effect appears to be driven by reduced yields per cropped land area
and not factor reallocation. These results suggest that damages to agriculture may
not represent a major cost of water pollution, though many other potential social
costs remain unquantified.
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Chapter 1

Do Workfare Programs Affect Agricultural
Risk through Crop Choice?

1.1 Introduction

Agriculture is the largest source of livelihoods in most low and middle-Income
Countries (LMICs). Weather risk is a pervasive feature of agriculture in these
settings, with the effects of climate change set to make this risk worse in the future
decades (Hallegatte et al. 2016). The lack of insurance against such weather risks
leads to substantial welfare losses (Dercon 2002), reduces agricultural productivity
(Cole and Xiong 2017) and inhibits productive investments (Morduch 1995). How
would indemnifying income risk fromweather shocks affect aggregate agricultural
output? This paper analyzes the effect of large-scale workfare programs, which
reduce income risk for vulnerable populations, on aggregate agricultural yields,
and investigates whether risk in crop choice can explain the observed effect.

Workfare programs provide livelihood support to the poorest, particularly after
income losses from events such as adverse weather shocks. Their self-targeting
mechanism makes these program attractive in the absence of unemployment in-
surance in fiscally-constrained LMICs (Ravallion 1991; Besley and Coate 1992;
Bertrand et al. 2021). Such programs are also increasingly being considered part of
a flexible climate adaptation strategy (Rigolini 2021), given that private adaptation
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may be limited (Burke and Emerick 2016; Taraz 2017, 2018; Fishman 2018). The
National Rural Employment Guarantee Scheme (NREGS) in India is the largest
such program in the world, promising at least 100 days of minimum wage manual
work to each household that demands it.

This paper documents the effects of NREGS on the volatility of agricultural yields.
I combine the standard identification strategy in the NREGS literature that relies
on the rollout of the program across Indian districts with exogenous yearly weather
shocks, controlling for time trends and also making use of a first difference specifi-
cation. The program decreases aggregate yields by an additional 10% after a neg-
ative rainfall shock, the same magnitude of yield loss to a similar rainfall shock
pre-program. This effect is precisely estimated and is consistent across various
specifications including the first differences specification that performs better for
strongly non-stationary data (Wooldridge 2010).

Next, I investigate whether aggregate risk in crop choice is a potential mechanism
that could explain the additional volatility. Most small and medium-sized farm-
households provide some labor to the agricultural labor market in India, apart from
cultivating their own fields; the smallest farm-households are net sellers of la-
bor.1 The NREGS literature documents substantial increases in prevailing wages
for manual farm labor, using both natural experiments (Imbert and Papp 2015;
Berg et al. 2018) and RCTs (Muralidharan et al. 2016). This general equilibrium
increase in agricultural wages driven by NREGS increases expected earnings for
these small farm-households. Through the consumption smoothing opportunities
available in the event of agricultural productivity shocks, NREGS can act like so-
cial insurance. The provision of such insurance may therefore induce small and
medium farm-households to take on additional agricultural risk. Given that most
farm-households are smallholders in India, this increase in individual risk could
affect aggregate risk.

1 The median farm size in India is extremely small at 0.9 acres, leaving substantial family labor available for hire
on the agricultural market.
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In order to test this mechanism, I construct novel indices of aggregate risk us-
ing pre-NREGS moments of the district crop revenue distribution. District-crop
area shares for later years are used to aggregate each of these three moments into
three separate indices. Yearly variation in these indices comes from changes in the
district-level crop mix. For example, a relative increase in area under crops with
higher standard deviation of pre-NREGS revenue would increase the Risk Index of
Crop Choice constructed using the second moment (RICC-SD). I show that these
indices have skill in predicting variation in realized crop revenue. For example,
higher risk in crop mix as measured by RICC-SD is positively correlated with real-
ized crop revenue in normal weather years, but decreases realized revenue in years
with bad rainfall or higher than normal temperatures, and increases realized rev-
enue during a good rainfall year. These findings build confidence that these risk
indices are meaningful measures of aggregate crop choice.

Using the standard NREGS identification strategy reliant on rollout across dis-
tricts, I find no evidence of changes in aggregate risk as measured by risk indices
constructed from the first and third moments of pre-program crop revenue. I find
that the risk index constructed using the second moment increases very slightly
by 0.08% after NREGA, indicating a minuscule shift in cropped area toward more
risky crops. But, this increase can only explain less than 1% of the net additional
effect of NREGA on the rainfall sensitivity of crop yields. Therefore, aggregate
risk in crop choice, as measured by the risk indices I construct, does not seem to
be driving the increased rainfall sensitivity.

The labor market channel might help explain the effects. Imbert and Papp (2015)
find average wage increases of about 8% due to NREGAwhile Muralidharan et al.
(2016) find that beneficiary households’ earnings increase by about 14%. These
are large effects of a similar magnitude to the estimates for increased sensitivity
of crop yields. I further confirm findings in (Rosenzweig and Udry 2014; Santan-
gelo 2019) that wages become less elastic (by about 5.5%) to rainfall shocks after
NREGA. This inability tomodulate wages in a pro-cyclical manner after a bad rain-
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fall shock may increase labor costs enough for some larger farm-households that it
could hurt output during harvest; it may also cause some smaller farm-households
to abandon their own crop in order to earn higher incomes on the private labor
market.

Two other channels through which NREGS might affect agricultural outcomes are
the provision of community infrastructure such as irrigation through public works,
and higher use of inputs such as fertilizer due to an alleviation of credit constraints.
Neither of these channels would explain why crop yields worsen with negative
rain shocks after NREGS; better irrigation would make yields less sensitive to
rainfall shocks while higher fertilizer usagewould increase expected yields without
affecting volatility.

This paper contributes to the limited literature on the impact of workfare programs
on agricultural outcomes. Firstly, in parallel with (Taraz 2021), this paper docu-
ments increased rainfall sensitivity of crop yields post NREGS. This paper builds
further confidence in the increased sensitivity result by using two years of addi-
tional data as well as a first difference specification that deals better with non-
stationary data. But this paper also explicitly analyzes aggregate risk in crop choice
as a potential mechanism, finding that it is unlikely to explain the increased crop
yield sensitivity. Secondly, I use a nationwide data set of total agricultural output
relative to the existing literature on the impact of NREGS on agriculture which fo-
cuses on data from one state (Gehrke 2019) or a representative sample rather than
complete population from administrative data (Deininger et al. 2016).

Thirdly, I contribute to the small literature on crop choice and climate change by
constructing a novel measure of aggregate risk in crop choice. Most papers in
this literature use discrete choice models to understand the determinants of crop-
ping patterns (Seo and Mendelsohn 2008; Wang et al. 2010; Kurukulasuriya and
Mendelsohn 2008). An exception is Auffhammer and Carleton (2018) who study
the impact of crop diversity on drought resilience. In contrast to the literature using
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discrete choice models, I utilize OLS regressions with a transparent identification
strategy. I also study crop choice as an optimal risk-taking response to NREGS-
as-insurance that might cause increased yield volatility, relative to other literature
which studies crop choice as a climate adaptation margin.

The rest of the paper is structured as follows: section 2 describes the workfare pro-
gram, section 3 surveys related NREGS literature, section 4 discusses a theoretical
framework, section 5 describes data sources and construction of outcomes, section
6 relates the research design, section 7 presents the results and section 8 concludes.

1.2 Background

1.2.1 The workfare program

The NREGS program was created through an Act of Parliament in 2005 that pro-
vided a legal right to employment on labor-intensive public works on demand to
each rural household for a minimum of 100 days. The key feature of the program is
that it provides a minimum of 100 days of employment per household on demand
on public works activities. It incorporates labor-intensive minimum wage work
requirements such that individuals with a high opportunity cost of time select out
(Besley and Coate 1992). The local administration is supposed to provide work
within 5 km of home and 15 days of application.

The program was introduced in phase I to the poorest 200 districts in February
2006, followed by the next poorest 130 districts in phase II (February 2007) and
the remaining districts in phase III (April 2008). The assignment of district to phase
was based on a “Backwardness Index” created by the Planning Commission using
data from the early 1990s. Variables that were used to determine this index along
with the weights are available online2. The actual assignment of districts to phases

2 The variables include the fraction of lower castes (constitutionally protected underprivileged groups), agricultural
productivity per capita and log casual agricultural wage respectively
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did not perfectly follow the index since there was a lot of political bargaining over
the large budget allocation to the program. For instance, each state had to have
one district in each phase, regardless of the rank of the district. Hence some poor
districts in rich states got the program over a poorer district which is among the
richest ones in a poor state.

In 2010-2011, 2.3 billion person-days of employment was generated among 53
million households. The budget for that year was Rs 345 billion (US$1.64 billion,
0.6 % of GDP). 60% budget of the total budget is supposed to be for wages and
33% of work is reserved for women at an equal wage to men. Among the projects
to be undertaken as part of the program, water management is a major goal. This
includes micro-irrigation works, drought-proofing and flood-proofing. The local
village council approves projects in consultation with block and district adminis-
trations.

The program comes with exhaustive and detailed operational guidelines that run
to over 200 pages3. This does not preclude further ad-hoc documents that govern
aspects of the program separately. A common finding in the literature on NREGS
within economics, political science and other related social sciences is the hetero-
geneity in implementation of the program. Some reasons for this in the literature
include the varying nature of labor market conditions and need for public employ-
ment, differing administrative and fiscal capacities of states, local elite control and
politician-bureaucrat dynamics (Sukhtankar 2017).

1.2.2 Related literature

Evidence on the impact of NREGS on agricultural output and yields are thin com-
pared to the evidence on labor market, consumption, education and other develop-
ment outcomes. The few articles on this topic are reviewed next. Gehrke (2019)
uses panel data from the Young Lives study in Andhra Pradesh to show that house-

3 https://NREGS.nic.in/Circular_Archive/archive/Operational_guidelines_4thEdition_eng_2013.pdf
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holds use more inputs on cotton (a commercial crop which is more risky than food
grains such as rice) after the introduction of NREGS. Deininger et al. (2016) use
household panel data from the Additional Rural Incomes Survey and Rural Eco-
nomic and Demographic Survey (ARIS/REDS) to similarly show that area devoted
to rice goes down even as area under high value crops go up. They also show that
percentage irrigated area and input usage increase along with the number of crops
planted in all cropping seasons. These papers make the argument that the implicit
insurance provision in NREGS allows small farmers to diversify crop portfolios
by growing more risky crops and also increases the number of crops being planted
in all the cropping seasons. Santangelo (2019) utilize nationally representative
employment data to show that the relationship between rainfall shocks and agri-
cultural yield does not change after introduction of the NREGS but that rural wages
are no longer pro-cyclical, i.e., NREGS weakens the impact of rainfall shocks on
local rural wages. Further, Bhargava (2013) uses agricultural census data to show
that smaller farmers are more likely to adopt mechanical technologies in response
to rising wages.

In the paper that is closest to my study, Taraz (2021) documents increased volatil-
ity of aggregate yields to rainfall shocks after NREGS comes into force, using the
same district agricultural output panel data set that I employ. Her findings for the
increased sensitivity are of a similar magnitude to those found in this paper. In
contrast to Taraz (2021), I extend the analysis to include two additional years of
data to 2013. In contrast to their usage of a standardized precipitation variable
for rainfall shocks, I utilize the definition of rainfall shock as a dummy based on
deviations from historical records ( uses the) that has been widely used in the lit-
erature on wage determination in Indian village economies (Jayachandran 2006;
Kaur 2019). While results are similar in both cases, the use of a dummy allows
easier comparison with the previous literature. More importantly perhaps, Taraz
(2021) does not test any potential mechanism, only suggesting that various possi-
ble mechanisms could explain the result. I develop novel measures of risk in crop
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choice and proceed to show that increased risk, as measured by these indices, does
not explain much of the increased crop volatility.

While the consensus in the literature is that NREGS has increased rural wages,
whether this is due to productivity increases or increased market competition for
labor is unexplored (Sukhtankar 2017). There is also considerable evidence that
NREGSmay have crowded out private labor supply (Azam 2012; Imbert and Papp
2015; Berg et al. 2018; Muralidharan et al. 2016). There is some disagreement
about which parts of private work declines - most of the evidence suggests that the
fall in private sector work may represent a fall in disguised unemployment, idle
time or private work with close to zero productivity but Deininger et al. (2016)
find that on-farm self-employment increases. All but one of these papers utilize
a difference-in-differences strategy that arises from a phased rollout of the pro-
gram but use various data sources. Imbert and Papp (2015) and Azam (2012) use
the National Sample Survey data, Berg et al. (2018) use the Agricultural Wages
data from the Indian Ministry of Agriculture while Deininger et al. (2016) use the
ARIS/REDS household panel data. Muralidharan et al. (2016) run an RCT in the
state of Andhra Pradesh that evaluates the impact of a reform of the NREGS deliv-
ery system in the state of Andhra Pradesh. Hence they are able to collect their own
data with experimental variation in the improvement of NREGS implementation.

As mentioned earlier, there exists a vast literature on the impact of NREGS on
other development outcomes. The reader is referred to the excellent survey by
Sukhtankar (2017) for an exhaustive appraisal.

1.3 Theoretical Framework

This paper investigates whether NREGS makes crop yields more sensitive to
weather shocks, and whether this finding can be explained by increased aggregate
risk in the district crop mix. I now provide a theoretical treatment of these
questions below and discuss the resulting testable hypotheses.
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1.3.1 Risk in crop choice

Risk in production decisions is an important characteristic of the environment for
rural farmers in developing countries.4 These farmers are usually characterized
as risk-averse given that they are extremely poor and lack reliable consumption
smoothing in the event of productivity shocks. Such risk aversion may cause farm-
ers to plant lower yielding crops that also carry lower output risk. Insurance for
output risk could enable such risk-averse households to make more optimal crop
choice decisions; but such insurance is usually not available. This insurance mar-
ket failure can lead to the perpetuation of a low productivity equilibrium (Cole and
Xiong 2017; Morduch 1995).

The bulk of agriculture in India is carried out by small farm-households; the me-
dian household farm size is about 0.9 acres (Kaur 2019). These households are
more likely to be net sellers on the agricultural labor market (Imbert and Papp
2015). NREGS increases the net incomes of such farmers by providing work dur-
ing the lean season and in the aftermath of a poor monsoon. This provision of work
at close to or higher than agricultural wages introduces an entirely new consump-
tion smoothing mechanism. Thus NREGS can be interpreted as a public insurance
program that can more than supplements net incomes when agricultural produc-
tivity is low. Muralidharan et al. (2016) show, in an RCT, in the state of Andhra
Pradesh that average earnings of a rural household increase by 14%, with 2/3rd
of the gains coming from the general equilibrium wage increases which benefit
small farm-households the most. These are large effects that could raise expected
incomes substantially.

Viewed from the lens of portfolio choice theory, this provision of insurance to risk-
averse farmers could lead them to take on higher risk in their crop choice portfolio.
Higher risk may be individually optimal in this setting given the insurance market

4 This includes both output and price risk - in this paper, I consider output risk only since price-fixing mechanisms
such as government Minimum Support Prices (MSP) are a common feature of this setting, in theory limiting the price
risk faced by farmers.
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failure that forces the choice of lower risk portfolio in the first place, and could in-
crease expected aggregate yields within district. But higher risk could increase the
volatility of yields by making aggregate yields more sensitive to adverse weather
shocks.

1.3.2 Other mechanisms

A few other mechanisms have been postulated in the literature for how NREGS
could affect aggregate yields and the weather sensitivity of yields. This paper
limits itself to testing the Crop Choice mechanism. But I provide a short summary
of these other mechanisms below.

1.3.2.1 Labor market channel

Before NREGS, weather-driven negative productivity shocks would not change
market labor supply or would even increase it, since labor was the only economic
resource small farmers could sell to smooth consumption (Jayachandran 2006).
Larger landowners may have benefited from the pro-cyclical downward wage ad-
justment that occurs when labor demand decreases while labor supply does not.

An important general equilibrium effect of NREGS is the increase in agricultural
wages documented in the literature. At the same time, agricultural wages may be-
come less elastic to negative productivity shocks after NREGS (perhaps because
the program creates an outside option that may reduce themonopsony power of vil-
lage landowners) (Santangelo 2019). Nominal wage rigidities in Indian village la-
bor markets documented by Kaur (2019) can further solidify any level increases in
the agricultural wage due to NREGS, and reduce counter-cyclical wage responses
to productivity shocks.

This increase in the wage level may negatively affect crop yields if farmers who
are net buyers of labor cannot afford to hire more expensive labor during harvest,
or if availability of labor is constrained. Farmers that are net sellers of labor may
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shift labor supply away from own-farms if their outside earnings are higher than the
shadowwage on their own farm. Secondly, yield losses from aweather shock could
be exacerbated after NREGS if wages do not adjust downward, thereby further
increasing labor costs and decreasing labor availability. In the long run, some
farmers may adjust to higher costs by increasing mechanization or diversification
into non-agricultural activities, avenues that are usually not available to smaller
farmers (Bhargava 2013).

I provide some corroborating evidence on the labor market impact of NREGS that
confirms existing findings of an increase in wages. The labor market mechanism
would result in lower expected yield while making yields more sensitive to adverse
weather shocks.

1.3.2.2 Insurance channel

While the effects of NREGS-as-insurance on crop choice are detailed above, this
channel could also affect other agricultural practices such as the adoption of more
resilient seeds or better inputs. While mechanization can be seen as a response
to increasing wages, the procurement of high fixed cost machinery could also be
enabled by the higher incomes that small and medium farmers earn from NREGS.
These mechanisms would increase expected yield but also make yields less sensi-
tive to weather shocks

1.3.2.3 Infrastructure channel

Decisions on the public works programs to be undertaken under NREGS are sup-
posed to decided by the local community; in practice this is rarely the case, with
a top-down approach more common (Khera 2011). While corruption and misuse
of funds under NREGS were documented in the earlier years (Dutta et al. 2012),
administrative reforms including better monitoring mechanisms through the use
of MIS systems were gradually instituted. If such public works lead to better
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community-level provision of productive infrastructure such as irrigation facilities
or flood protection mechanisms, the level of yields would increase while decreas-
ing yield sensitivity. These mechanisms would also reduce sensitivity of yields to
weather shocks while increasing expected yield.

1.4 Data

1.4.1 Agricultural outcomes

While the ideal outcome measure to use would be farm-level profits for each crop
over time, such data are seldom available for any country. Therefore, I rely on
aggregatemeasures at the district level in India compiled by the International Crops
Research Institute for the Semi-Arid Tropics (ICRISAT) in their District Level
Database (DLD).5 This data contains information on crop area planted, output and
prices for all themain crops as well as some peripheral crops. Price data is available
for 16 crops, covering about 79% of all area under cultivation. This data contains
571 districts across 20 states from 1990-2015 for the agricultural year that runs
from July 1 to June 30. I describe the construction of the outcome measures to
capture aggregate crop yield and risk in crop choice below.

1.4.1.1 Measure of crop yields

The main measure is a crop area-weighted sum of the revenue value of output
per hectare for each crop (“Revenue Value of Yield” or RVY). Since price data is
patchy, I construct single national prices for each crop from pre-program data. All
price data used in the analysis pertains to these single national prices. This measure
of crop yields captures aggregate crop yield in a single index. This measure has
been used widely in the literature to capture output losses without being affected
by changes in prices (Duflo and Pande 2007; Burgess et al. 2017; Taraz 2021).

5 http://data.icrisat.org/dld/src/crops.html
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Indian agricultural markets are heavily regulated including through the Minimum
Support Price (a floor on crop prices); these markets are also typically not well-
integrated across district. These forces can cause prices to move in opposite direc-
tions, with trade frictions compensating farmers for some of the crop output losses
through higher prices. But the Revenue Value of Yield captures the output loss
that is the focus of this paper, leaving price effects out. I also make use of a crop
area-weighted output per hectare as a second measure that does not utilize price
data.

1.4.1.2 Measure of risk in crop choice

Output risk is a major issue for farmers in response to negative productivity shocks;
higher prices can only compensate for part of the losses due to such shocks. To
capture this output risk, I calculate the first three moments of Revenue Value of
Yield (RVY) for each crop using data from before 2003. Each of the three mea-
sures of risk index of crop choice for each district-year from 2003 onward are then
constructed through weighted sums of these three moments for each crop, with
the weight being the yearly share of area planted under each crop in that district.
The distribution of pre-program RVY is calculated per crop in a contiguous region
that shares similar agricultural characteristics, striking a balance between sample
size and variation across districts. These moments capture relative crop risk within
each region.6

The volatility of an asset is usually measured with the second moment of its dis-
tribution. The Risk Index of Crop Choice constructed using the second moment
(“RICC-SD”) can be interpreted as measure of expected volatility of revenue from
the district crop mix. Assets with higher returns also tend to be more volatile; this
is also true of crop revenues. For this reason, the RICC-Mean and RICC-SD are
strongly correlated. I also study whether farmers switch to crops with more out-

6 There are an average of 4.8 districts per region. I also conduct robustness using moments from each crop-state
combination. The results are presented in the appendix.
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liers using the skewness of pre-program RVY. A positively skewed distribution
tends to have more positive outliers than a normal distribution. In other words,
returns from these crops are likely to be relatively higher with good rainfall. The
skewness of assets is a major consideration in the financial economics literature.
For example, Mitton and Vorkink (2007) find that underdiversified investors have
a preference for positively skewed stocks; Barberis and Huang (2008) show that
a positively skewed security can be “overpriced” and can earn a negative average
excess return; and Zhang (2018) demonstrates that Swedish retail investors with
lower wealth or labor incomes that have higher downside risk tend to seek invest-
ment portfolios with higher skewness

An important point to note is that such changes reflect only yield variation and
not price variation, since single national prices are used to construct pre-program
moments of the Revenue Value of Yield across regions. Since the moments for
each district-crop are fixed at pre-program levels, yearly changes in RICC comes
from changes in the area planted under various crops.

Figure 1.1 plots the variation in the revenue value of yield and the three measures
of risk in crop choice over the sample period, separately for the three NREGS phase
districts. Only the revenue value has a growth trend across the sample period.

Figure 1.2 plots the mean for the distribution of crop-region revenue value of yield
between 1990-2002 against the SD of this distribution. The figure reflects the fact
that a more volatile crop that carries higher risk also has higher reward, although
it also comes at a higher cost of inputs.

1.4.2 Wages

This paper does not extensively test for the labor market channel. However, I do
provide corroborating evidence to the wage increase with NREGS as well as the
reducedweather sensitivity of wages to productivity shocks post-NREGS. The data
used is described in this section.
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The National Sample Survey on Employment and Unemployment (NSS EUE) is
the main source of information on labor conditions including wages and employ-
ment in India. I make use of the NSS EUE rounds from years 2003, 2004, 2005,
2007, 2009 and 2011 respectively. This survey provides a detailed break-up of the
time spent by activity status of each individual in the survey for the 7 days prior to
the survey date. The survey covers every member of the household, regardless of
age.

I follow Imbert and Papp (2015) in limiting the sample to individuals aged 18-59
to construct the wage data. Public works employment on NREGS is the closest
substitute to “casual labor,” which is usually work done on a daily wage rate on
spot labor markets. The NSS EUE differentiates such casual work with a separate
activity status. I create casual labor wages using this activity status, constructing
daily rates for each individual between 18-59 years of age.

1.4.3 Weather data

1.4.3.1 Heating degree days

I calculate heating degree days (HDD) for each district-year separately for the
planting season and growing season using the ERA5 reanalysis dataset from the
European Center for Medium Range Weather Forecasting (ECMWF).7 This mea-
sure of heat exposure is a metric proposed in the agronomic literature, and has
been commonly used to capture crop output losses from total excess heat expo-
sure on each growing plant organism (D’Agostino and Schlenker 2016; Burke and
Emerick 2016; Colmer 2021). The basic idea here is that temperatures up to the
threshold might not hurt the organism or might even be beneficial, but above the
threshold the organism suffers harm that is captured well through a linear approx-
imation in total temperature exposure above the threshold. The HDD measures
the number of heating degree-days above a threshold during a particular period of

7 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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time.

𝐻𝐷𝐷𝑇 ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑇 ) = ∑
𝑠𝑒𝑎𝑠𝑜𝑛

(𝑇 − 𝑇 ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) ∗ 1(𝑇 > 𝑇 ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

ERA5 provides hourly data on temperature at 30 km resolution for the whole world
from 1979 onward. I follow the literature in using the sine interpolation method to
calculate the fraction of each day above the threshold temperature (D’Agostino and
Schlenker 2016). To calculate total heating degree days, I sum up the total excess
temperature over the period under consideration. Finally, I calculate district-level
HDD using inverse square distance weighting from the district centroid.

I calculate HDD for various thresholds and seasons. Colmer (2021) shows that
crops differ in their optimal HDD threshold values; I assign the threshold for indi-
vidual crop yields based on their calculations. A single threshold is necessary for
aggregate crop yields; I choose 25 C as the main threshold and conduct robustness
for other thresholds. The main growing season months for most of India are the
main monsoon (“Kharif”) season of June-October, and I consider those months in
the main HDD calculation.8

1.4.3.2 Rainfall shocks

To capture the effect of precipitation on aggregate crop yields, I follow Jayachan-
dran (2006) and Kaur (2019) in constructing a piecewise function of rainfall. First,
I calculate total precipitation in the planting and growing seasons for each district-
year using daily rainfall data from TerraClimate provided by the Climatology lab.9

Next, I calculate the twentieth and eightieth percentiles of each district’s histori-
cal precipitation record. Then I designate rainfall extremes by creating high and

8 Kharif season Crops in some districts follow a different calendar, whereas Winter (“Rabi”) season runs from
roughlyNovember toMarch. However, Colmer shows thatmonsoon season rainfall and temperature are important even
for Rabi crops, since the amount of moisture retained in the soil through to the Rabi season depends on temperatures
in the monsoon season. I do robustness around the season considered for the weather variables in the appendix

9 https://www.climatologylab.org/terraclimate.html
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low rainfall indicators as follows. The high rainfall dummy (high_rain) turns on if
precipitation is above the eightieth percentile for the district, and zero otherwise;
similarly the low rainfall dummy (low_rain) turns on if precipitation is lower than
the twentieth percentile of historical precipitation, and zero otherwise. This non-
linear function has been extensively used to capture the effect of rainfall shocks on
agricultural productivity, especially in India and allows us to flexibly capture the
effect of excess and deficient rainfall on aggregate crop yields.

1.4.4 Further district controls

I construct district level controls from the Indian National Census 2001: fraction
population that is SC/ST (caste groups that have historically been discriminated
against), population density, literacy rate, male and female labor force participation
ratio, fraction of labor force in agriculture, irrigated cultivable land per capita and
non-irrigated cultivable land per capita. I also use the NSS and crop data to create
controls for baseline agricultural wages and agricultural productivity per worker.

1.4.5 NREGS data

The NREGS program was rolled out over a period of three years across the whole
of India, as detailed previously. This information is available on the website of
the ministry of rural development.10 I use three district-level NREGS take-up
measures: the number of NREGS person-days worked, the number of households
working the maximum number of days permitted, and, NREGS labor expendi-
ture. The NREGS data corresponds to the fiscal year (April 1 to March 31) and
is available for 2006–2012. Administrative reforms in 2008 reduced large-scale
corruption issues from inflated reporting in the official NREGS reports relative to
survey data (Imbert and Papp 2015).

The provision of NREGS also fell dramatically in 2014 with the election of a new
10 Can be found at https://NREGS.nic.in/MNREGS_Dist.pdf
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central government which was opposed to the program. Therefore, I limit the anal-
ysis to the agricultural year 2013-14.

1.4.6 Indian district administrative boundaries

In order to calculate weather data at the district level, I make use of publicly avail-
able district administrative boundaries in the form of shapefiles from the 2011 cen-
sus11.

1.4.7 Construction of district panel

There were 593 districts in the 2001 Indian census. Many district administrative
boundaries changed over the 2001-2011 period, due to creation of new states or
to provide better administrative efficiency through smaller districts. In order to
construct a panel of districts over the 2001-2007 period, I began with a list of un-
changed census districts from 2001 and 201112. This master list is then sequentially
matched with the NSS districts, crop data districts, the administrative boundary
districts and the NREGS districts.

At the end of this process, I am left with 466 districts that form a panel from 2003-
2013. I start the empirical analysis in 2003 because I use data from 1990-2002 to
construct data on the variables used to construct the NREGS backwardness index
is not available for districts in the panel before this year. I end the analysis in 2013
since the new government drastically reduced provision of NREGS after taking
office in 2014, in keeping with their electoral promises.

Table 1.1 provides summary statistics for the baseline covariates used to assign
NREGS districts, the main outcome and explanatory variables as well as controls.
The table disaggregates this information by the three NREGS phases.

11 I make use of the shapefiles provided by the Datameet google group
12 Available at http://censusindia.gov.in/2011census/maps/administrative_maps/Final%20Atlas%20India%

202011.pdf
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1.5 Research Design

1.5.1 Effect of weather shocks on crop yields

Weather shocks are an important predictor of crop yields in the literature. I docu-
ment the importance of these weather shocks for individual crops in this section. I
run the following regressions.

𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 = {𝐻𝐷𝐷𝑑𝑦, 𝑙𝑜𝑤_𝑟𝑎𝑖𝑛𝑑𝑦, ℎ𝑖𝑔ℎ_𝑟𝑎𝑖𝑛𝑑𝑦}

𝑐𝑟𝑜𝑝_𝑦𝑖𝑒𝑙𝑑𝑑𝑦 = ̃𝛿 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 + 𝐷𝑑 + 𝑌𝑦 + 𝜖𝑑𝑦 (1.1)

The vector ̃𝛿 denotes the effect of weather shocks on crop yields. The coefficient

𝛿ℎ𝑑𝑑 on 𝐻𝐷𝐷 captures the average effect of an extra degree-day over historical

levels on crop yields. Similarly, the coefficient on 𝑙𝑜𝑤_𝑟𝑎𝑖𝑛 (ℎ𝑖𝑔ℎ_𝑟𝑎𝑖𝑛) captures

the average effect of a low rainfall shock on crop yields. I use the data from 1990-

2013, including pre-program years to maximize power. The HDD thresholds and

growing seasons are taken from Colmer (2021), who choose these by maximizing

R-squared from various regressions with different seasons and HDD thresholds.

In the rest of the paper, for aggregate crop yields, the HDD threshold is 25 and the

growing season is June-October.

Identification relies on the exogeneity of weather shocks controlling for district

and year fixed effects (𝐷𝑑 and 𝑌𝑦 respectively). This assumption is quite common

in the literature and does not raise any concerns in this setting either, given that
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yearly weather shocks are as good as randomly assigned. The main concern with

inference is the spatial correlation in these shocks; I calculate Conley standard

errors that account for this spatial correlation and also for autocorrelation across

an arbitrary number of time periods using R routines provided by Thiemo Fetzer.13

This approach toward inference is continued in the rest of the paper.

1.5.2 Effect of weather shocks on NREGS provision

Before conducting the main analysis, I test whether the provision of NREGS re-

sponds to adverse weather shocks. Evidence from studies such as Dutta et al.

(2012) points to large demand for public works not always being met due to ra-

tioning. In this sense, administrative data on the quantum of money spent on labor,

person-days worked or number of households that worked over 100 days are a re-

sult both of the demand for public works but also supply constraints by bureaucrats.

Therefore administrative data do not allow us to parse out whether labor demand

on NREGS is higher during adverse weather shocks; rather, they allow us to test

whether these measures - which depends on both demand and supply for public

works - respond to adverse weather shocks. Given the corruption issues in the early

years of NREGS implementation that were corrected by administrative reforms in

2008, I restrict these regression to 2009–2013, since these data come from the

administrative system.
13See http://www.trfetzer.com/using-r-to-estimate-spatial-hac-errors-per-conley/
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𝑁𝑅𝐸𝐺𝑆_𝑎𝑑𝑚𝑖𝑛_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑦 = ̃𝜅 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 + 𝐷𝑑 + 𝑌𝑦 + 𝜖𝑑𝑦 (1.2)

The vector ̃𝜅 denotes the effect of weather shocks on NREGS provision measures.

Identification relies on the exogeneity of weather shocks controlling for district

and year fixed effects (𝐷𝑑 and 𝑌𝑦 respectively). This assumption is quite common

in the literature and does not raise any concerns in this setting either, given that

yearly weather shocks are as good as randomly assigned. The main concern with

inference again is the spatial correlation in these shocks which I tackle with the

same approach described in previous section.

1.5.3 Effect of NREGS on weather sensitivity of crop yields

Equation 1.3 presents the regressions I run to test for increased weather sen-

sitivity post NREGS. The outcome variable is the Revenue Value of Yield,

the main measure of aggregate yields.14. The coefficients of interest is ̃𝛽1 =

{𝛽ℎ𝑑𝑑
1 , 𝛽𝑙𝑟𝑎𝑖𝑛

1 , 𝛽ℎ𝑟𝑎𝑖𝑛
1 }; if these are different from zero then the sensitivity of ag-

gregate yields to weather shocks is different post-program relative to pre-program

sensitivities ̃𝛾1 = {𝛾ℎ𝑑𝑑
1 , 𝛾𝑙𝑟𝑎𝑖𝑛

1 , 𝛾ℎ𝑟𝑎𝑖𝑛
1 }. Identification of ̃𝛽1 (and ̃𝛾1) relies on the

exogeneity of yearly weather shocks. I use data from 2003-2013 since data from

before 2003 are utilized to estimate the main measure of risk (area-weighted SD

of the pre-program revenue value of yield).
14 I also plan to present a measure that does away with price data
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The main threat to identification for ̃𝛽1 is that another variable modulates the effect

of weather shocks on crop yields at the same time as the program rolls out. In

particular, differential time trends across the poorest districts which were targeted

first by the program could be an issue. In order to alleviate such concerns, I run

various specifications that account for this potential issues; equation 1.3 presents

the most saturated specification using fixed effects.

In the first specification, I include the NREGS program dummy, weather variables

as well as interactions of the three weather variables with the NREGS dummy.

In the second specification, I allow a linear time trend interacted with a phase

dummy. This controls for differential time trends in the outcome that differ by

NREGS phase. In the third specification, I allow for these time trends to differ

for each district based on initial values of observable characteristics that were used

in the allocation of districts to NREGS phase. Fourthly, I interact weather shocks

with values of these initial values of these characteristics to allow them to mediate

the effect of weather shocks separately for each district.

𝑙𝑜𝑔(𝑅𝑉 𝑌𝑑𝑦) = 𝛼1 𝑁𝑅𝐸𝐺𝑆𝑑𝑦 + ̃𝛾1 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 + ̃𝛽1 𝑁𝑅𝐸𝐺𝑆𝑑𝑦 ∗ 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦+

𝜆𝑝
𝑑 ∗ 𝑡 + 𝜙1

1 𝑍𝑑 ∗ 𝑡 + 𝜙2
1 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 ∗ 𝑍𝑑 + 𝐷𝑑 + 𝑌𝑦 + 𝜖𝑑𝑦

(1.3)

𝑅𝑉 𝑌 is the revenue value of yield, 𝑁𝑅𝐸𝐺𝑆 is the program dummy, 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 is

a vector containing {𝐻𝐷𝐷, 𝑙𝑜𝑤_𝑟𝑎𝑖𝑛 and ℎ𝑖𝑔ℎ_𝑟𝑎𝑖𝑛}, 𝑍𝑑 is a vector containing
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pre-program values of the variables entering the “backwardness” index, 𝜆𝑝
𝑑 denotes

the NREGS phase the district was part of, and𝐷𝑑 and 𝑌𝑦 are district and year fixed

effects respectively.

While controlling for trends in these specifications allows us to build more confi-

dence in the results, I also report results using first differences. First differences

(FD) can make non-stationary data stationary and be more robust than fixed ef-

fects (FE) when data have strong autocorrelation, as can be seen in panel (a) of

figure 1.1. Further, an FD specification that also includes a fixed effect allows

for a district-specific linear growth rate 𝑔𝑑 in the outcome. The FD approach is

commonly used in the macroeconomic literature to deal with serial correlation in

aggregated GDP data, similar to the measures I use in this paper. Equation 1.4

specifies the regression framework for the FD model.

Δ𝑙𝑜𝑔(𝑅𝑉 𝑌𝑑𝑦) = 𝛼1 Δ𝑁𝑅𝐸𝐺𝑆𝑑𝑦 + ̃𝛾1 Δ𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦+

̃𝛽1 Δ(𝑁𝑅𝐸𝐺𝑆𝑑𝑦 ∗ 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦) + 𝑔𝑑 + Δ𝑌𝑦 + Δ𝜖𝑑𝑦

(1.4)

In both the panel and FD specifications, the coefficient 𝛼1 captures the average

effect of NREGS on revenue value of yield during normal weather years. A large

NREGS literature uses similar difference-in-differences design with twoway fixed

effects (TWFE) for district and year to estimate average effects on various out-

comes (Imbert and Papp 2015; Berg et al. 2018; Gehrke 2019; Sheahan et al.
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2020).15

Identification of the average effect of NREGS (𝛼1) requires that, conditional on

the full set of controls, changes in the outcome post-treatment must be due to the

program, on average, and not to another omitted variable. But (𝛼1) is not the main

quantity of interest here; I also note that for the FD specification it is identified

using just one period.

1.5.4 Effect of NREGS on risk index of crop choice

First, I verify that the three measures of risk in district crop mix have skill in pre-

dicting aggregate crop yields. If these measures are correlated with actual aggre-

gate risk, higher values of RICC should lead to yield losses after a bad rainfall

shock while increasing yields after a good rainfall shock. I test this idea in equa-

tion 1.5. I expect 𝜃1 > 0 since higher risk with normal weather years should be

correlated with higher returns, 𝜃2 < 0 and 𝜃3 < 0 since higher risk with bad rain-

fall shocks or higher than normal temperatures should reduce yields, and 𝜃4 > 0

since higher risk with good rainfall should increase yields.
15 A literature on the bias of TWFE has developed recently, including that arising from differential timing. Callaway

and Sant’Anna (2021) provide a framework to eliminate some of the bias arising from differential timing. Their
approach relies on parallel trends conditional on baseline covariates, similar to this setting. But it is unable to test
for increased weather sensitivity of aggregate crop yields after NREGS since there are no never-treated units in this
setting. Therefore, I cannot conduct the whole analysis using their approach as it would limit the analysis to years
until 2007, the year before the last phase of the program was implemented (since the CS estimator only makes use
of untreated units as counterfactuals). Another complication in this setting is that treatment effect might evolve over
time. Nevertheless, I plan to utilize their R did package to explore whether conditional parallel trends are likely to hold
through a pre-trend check with data until 2007.
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𝑙𝑜𝑔(𝑅𝑉 𝑌𝑑𝑦) = 𝜃1 𝑙𝑜𝑔(𝑅𝐼𝐶𝐶)𝑑𝑦 + 𝜃2 𝑙𝑜𝑔(𝑅𝐼𝐶𝐶)𝑑𝑦 ∗ 𝐻𝐷𝐷𝑑𝑦
+ 𝜃3 𝑙𝑜𝑔(𝑅𝐼𝐶𝐶)𝑑𝑦 ∗ 𝐿𝑜𝑤_𝑅𝑎𝑖𝑛𝑑𝑦 + 𝜃4 𝑙𝑜𝑔(𝑅𝐼𝐶𝐶)𝑑𝑦 ∗ 𝐻𝑖𝑔ℎ_𝑅𝑎𝑖𝑛𝑑𝑦
+ 𝐷𝑑 + 𝑌𝑦 + 𝜖𝑑𝑦

(1.5)

Next, I test whether increased weather sensitivity of crop yields after NREGS can

be explained by increased agricultural risk embedded in the district crop mix, us-

ing the three measures of Risk Index of Crop Choice (RICC) separately. Since

this paper is interested in understanding crop choice as a driver of yield volatil-

ity, I focus on the RICC-SD that is constructed using the second moment of the

pre-program distribution. The RICC-mean and RICC-SD measures are strongly

correlated, reflecting the fact that higher revenue crops also have higher volatility.

Changes in RICC come from changes in area weights across crops. Equation 1.6

below presents the regression specification.

𝑙𝑜𝑔(𝑅𝐼𝐶𝐶𝑑𝑦) = 𝛼2 𝑁𝑅𝐸𝐺𝑆𝑑𝑦 + ̃𝛾2 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 + ̃𝛽2 𝑁𝑅𝐸𝐺𝑆𝑑𝑦 ∗ 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦+
𝜆𝑝

𝑑 ∗ 𝑡 + 𝜙1
2 𝑍𝑑 ∗ 𝑡 + 𝜙2

2 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 ∗ 𝑍𝑑 + 𝐷𝑑 + 𝑌𝑦 + 𝜖𝑑𝑦
(1.6)

The literature on farmer investment decisions shows that they pay close attention to

signals of what the weather is likely to be, including weather forecasts, before mak-

ing investment decisions (Rosenzweig and Udry 2014). The Indian subcontinent

receives most of its rainfall in the monsoon season that runs from June-September.

One of the most important signals that farmers look at is early season rainfall;
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this is the period in which sowing/planting of most major crops takes place, and

weather in the rest of the season affects crop growth but not crop choice. However,

rainfall and temperatures in the monsoon season affect soil moisture for the Rabi

(winter) season crops. Therefore, I control for planting season (June-July) weather

in contrast to the whole monsoon season used in the yield regressions.

Since crop choice is baked in before full weather realization, the main coefficient

of interest is 𝛼2, the average effect of NREGS on aggregate risk in crop choice

with a normal planting season weather. The coefficients ̃𝛽2 and ̃𝛾2 are informative

of any changes in crop choice that occur as a result of planting season weather that

is a signal for the full weather realization; these coefficients are to be interpreted

differently from ̃𝛽2 and ̃𝛾2. As with the regressions in the previous section, I suc-

cessively introduce trends that vary by phase and initial district characteristics, and

interact weather with initial characteristics. I do not conduct a first difference anal-

ysis as for Revenue Value of Yield; the FD specification may not be as informative

about 𝛼2 since the first difference of the NREGS dummy turns on only once when

the program starts.

1.5.5 Effect of NREGS on agricultural wages

In order to shed light on the labor market channel that could cause aggregate yields

to become more sensitive to NREGS, I run the following regression.
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𝑙𝑜𝑔(𝑤𝑎𝑔𝑒)𝑖𝑑𝑦 = 𝛼3 ∗ 𝑁𝑅𝐸𝐺𝑆𝑑𝑦 + ̃𝛾3 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 + ̃𝛽3𝑁𝑅𝐸𝐺𝑆 ∗ 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦

+ 𝜂𝐻𝑖𝑑𝑦 + 𝜆𝑝
𝑑 ∗ 𝑡 + 𝜙1

3 𝑍𝑑 ∗ 𝑡 + 𝜙2
3 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 ∗ 𝑍𝑑

+ 𝑀𝑚 + 𝐷𝑑 + 𝑌𝑦 + 𝜖𝑖𝑑𝑦
(1.7)

The coefficient 𝛼3 captures the average effect of NREGS on agricultural wages,

while 𝛽3 captures changes in the wage sensitivity to weather shocks post-NREGS.

Since the early NREGS districts were selected partially based on district character-

istics that could be correlated with the individual-level outcome, I utilize a similar

strategy to the regressions for the revenue value and risk index by flexibly control-

ling for trends in baseline values and weather as well as allowing NREGS phase-

wise trends. Identification of 𝛼3 and 𝛽3 requires similar assumptions to that for

the Revenue Value of Yield regressions.

Since these are individual-level regressions I also include a month-of-year dummy

that controls for any seasonal variation in wages. The vector𝐻𝑖𝑑𝑦 contain the usual

controls for gender, age group, education levels, caste, religion and marital status

that are included in a Mincer-type regression.

Imbert and Papp (2015) utilized data from 2004 and 2007 to conduct a standard

difference-in-difference analysis of the effect of NREGS onwages for casual labor.

I extend their analysis by estimating this effect using employment and wage data

from 2003, 2004, 2005, 2007, 2009 and 2011.
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1.6 Results

1.6.1 Initial results

I start with the impact of weather shocks on crop yields in Table 1.2. I confirm

results found in the literature showing that HDD and rainfall shocks are important

determinants of agricultural productivity. In particular, an extra heating degree

day in the growing season reduces aggregate revenue value of yield by 1.9%, a

low rainfall shock reduces yield by 7.5% and a high rainfall shock increases yields

by 4.3%.

Next, I discuss the effect of weather shocks on measures of NREGS program ac-

tivity, as proxied by three different variables. These results are shown in table 1.3.

We see that a low rainfall shock increases the number of per capita person-days by

0.303 SD, the per capita number of households that work more than 100 days by

0.321 SD and the per capita expenditure on labor by 0.482 SD, although the first

result is not statistically significant.16 On the other hand, a high rainfall shock re-

duces these measures by 0.2 SD, 0.014 SD and 0.110 SD respectively (the second

measure is not statistically significant).

However, the effect of HDD shocks is not to increase program activity, but rather

to decrease activity by 0.211 SD, 0.042 SD (insignificant) and 0.093 SD (only

significant at 10% level). The rainfall results confirm that negative (positive) agri-
16 Results are robust to an IHS transform of the provision measures (to allow for zeros) rather than a standardization.
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cultural productivity shocks lower (increase) average earnings and therefore in-

crease (decrease) demand for NREGS. The HDD results suggest that bureaucrats

pay more attention to proxies of agricultural productivity rather than knowledge of

true productivity, since rainfall shocks may be easier to measure and understand

than temperature deviations.

1.6.2 Main results

Table 1.4 presents the results for increased weather sensitivity of aggregate crop

yields after NREGS. The main coefficients of interest are for the interaction of

NREGS and weather variables. This table shows that a low rainfall shock after

NREGS reduces yield further by 8.1% in the most demanding specification in col-

umn 4, and 10.4% in the first difference in column 5. Reassuringly, this result is

consistent across all specifications. In contrast, high rainfall shocks do not change

the sensitivity of yield, while NREGS also does not change the effect of heating

degree days, even though the first difference specification suggests a decrease in

the sensitivity to HDD.

Appendix table 1.A1 conducts an indirect test of the parallel trends assumption

by using a placebo treatment. I move the NREGS indicator up by 5 years, as if

the program had first started in 2001 and not 2006. I estimate equation 1.3 on

this data from 1998-2008. The coefficient on the Low Rain X NREGS variable

is statistically indistinguishable from zero, providing reassuring evidence that the

results from Table 1.4 are attributable to NREGS and not to omitted variables.
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Table 1.5 provides further evidence that the increased rainfall sensitivity is due to

NREGS by adding an interaction term between weather, NREGS indicator and the

lagged provision of NREGS to results in Table 1.4. I include all three measures

of NREGS provision separately in different regressions using the most demanding

specification of column 4 in Table 1.4. While I interpret the coefficients on Low

Rain X NREGS as being causal, there may be need for caution in interpreting the

coefficient on the lagged interaction term Low Rain X NREGS Provision in a causal

manner. From Table 1.3, a negative rainfall shock increases provision on average;

if this shock also affects agricultural productivity in the next year this correlation

would be picked up in the interaction term. However, Kaur (2019) does not find

a dependence of agricultural productivity on lagged rainfall shocks in the Indian

context. I plan to test this with my data as well.

Going back to table 1.5, the estimate of the impact of a low rainfall shock post-

NREGS on crop yield, conditional on average level of NREGS provision within

district in the previous year, is between -5.3% and -9.9% in columns 1-6, and

mostly measured precisely. The coefficients on Low Rain X NREGS Provision

(High Rain X NREGS Provision) are estimates of the additional low (high) rainfall

sensitivity from a 1 SD increase in NREGS provision in the previous year. The

additional low rainfall sensitivity from 1 SD higher lagged provision ranges from

-1.8 % to -8.4 %, measured quite precisely.17 Additional high rainfall sensitivity

is small and insignificant for two columns but precisely measured from 0.023% to
17 Results are robust to an IHS transform of the provision measures (to allow for zeros) rather than a standardization.
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0.03% in four other columns.

These results indicate that the decision to provide NREGS after a negative rainfall

shock has repercussions into the next year. First, there is a trade-off between its

consumption smoothing benefits after a negative rainfall shock and the negative

effect this provision may have on agricultural yields if there is another negative

shock in the next year. On the other hand, conditional on a positive rainfall shock

in the next year, there is a positive complementarity between between higher pro-

vision in a given year and next year’s crop yields.

1.6.3 Mechanisms

I now turn to the potential mechanism of risk in crop choice that has been hypoth-

esized to explain increased weather sensitivity. Figure 1.2 shows that crops with

higher mean revenue in a region are also likely to be subject to higher revenue

volatility. Table 1.6 presents the results of a formal test, based on 1.5, of whether

the constructed Risk Indices of Crop Choice capture real-work agricultural risk in

the form of crop revenue volatility. The coefficients on RICC in column 1 and

2 for both RICC-Mean and RICC-SD show that higher risk is strongly correlated

with higher returns in normal rainfall years, with elasticities of 1.17 and 1.073

respectively.

On the other hand, coefficient on RICC for column 3 suggest RICC-Skew does not

predict returns during average years. Coefficients on the interaction term RICC X
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HDD are negative as expected for all three measures and strongly significant for

RICC-Mean and RICC-SD, with small elasticities of -0.003. Tellingly, given the

importance of rainfall shocks in the Indian agricultural context, the coefficients on

RICC X Low Rain show a consistent pattern of reductions in crop revenue, with

elasticities for RICC-Mean and RICC-SD of -0.005. The coefficient on RICC-

Skew should not be interpreted as an elasticity since the IHS transform behaves like

a log transform only with values above 10 or so for the raw variable (Bellemare

andWichman 2020).18 But the coefficient is in the same direction as the other two.

Similarly, the coefficients on RICC X High Rain are positive and significant for all

three measures of aggregate risk. Now that we have seen that these measures of

aggregate risk have skill in predicting crop revenue, we should be able to tease out

whether NREGS shifts district crop mix toward higher risk, higher revenue crops

that are also positively skewed. Table 1.7 tests these hypotheses.

The three columns of table 1.7 are estimated for each of the three measures of risk

in crop choice using the most demanding specification from equation 1.6 including

phase-wise time trends, baseline controls interacted with time trends and weather

shocks interacted with baseline controls. The coefficient on𝑁𝑅𝐸𝐺𝑆 is of interest

and estimates the average impact on each measure of risk in crop choice during

normal planting season years. From columns 1 and 3, there do not seem to be any

changes in the average district crop mix toward higher mean yield crops (col 1), or

more positively skewed crops (col 3). The coefficient in column 2 is significant at
18 The max skewness in the data is 3.33
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the 10% level and suggests a shift in average district crop mix toward more volatile

crops. This result suggests that NREGS may have increased average risk in crop

choice during normal planting seasons by 0.08%, as measured by the RICC-SD.

Such a result could explain part of the increased sensitivity of yields to a negative

rainfall realization.

However, there are a couple of reasons this result may not explain the increased

sensitivity. The elasticity of Revenue Value of Yield to RICC-SD in Table 1.6

column 2, row 3 is -0.007%. Therefore, an increase in risk of 0.08% can only

explain a (0.08*0.007) = 0.0056% reduction in yield. The actual reduction in yield

with a low rainfall shock after NREGS is abut 10%.

Secondly, in table 1.A2, I test whether the results in table 1.7 satisfy the indirect

parallel trends assumption. Column 2 of table 1.A2 shows that the placebo program

dummy increases RICC-SD by 1.3%. Since the program was not in place at this

time, the parallel trends assumption seems to be violated in this case, and a pre-

existing trend may be driving the result observed in table 1.7. So, the true effect of

NREGS on the Risk Index of Crop Choice may be even smaller, and it is unlikely

that this particular mechanism is the cause of the increased rainfall sensitivity of

crop yields after NREGS.

Finally, I provide some evidence in favor of the labor market channel. The NREGS

literature documents clear increases in wages for unskilled labor, mainly due to

general equilibrium effects that reallocate workers away from the private mar-
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ket (Muralidharan et al. 2016; Sukhtankar 2017). But beyond this level effect

on unskilled wages, the coefficient on Low Rain X NREGS in table 1.A3 demon-

strates that NREGS also reduces wage sensitivity to low rainfall shocks (Santan-

gelo 2019). This mechanism can increase labor costs for farmers who are already

dealing with a negative productivity shocks, thereby exacerbating the net produc-

tivity losses.

1.7 Conclusion

The stated purpose of NREGS was to improve livelihood security of the rural poor

by providing them with income from manual work on demand. The program suc-

ceeded in its main goal of improving earnings for the poor and helped reduce

poverty (Sukhtankar 2017). But I document that the program has economically

large implications for the volatility of agricultural output by making aggregate

yields more sensitive to negative rainfall shocks. I construct novel measures of

aggregate risk in district crop mix to analyze whether the increased sensitivity is

due to higher risk-taking by some farmers in response to the social insurance prop-

erties of NREGS. I show that these measures are meaningful because they have

skill in predicting the volatility of yields. Using these measures of risk, I argue

that the increased crop sensitivity cannot be explained by higher aggregate risk

in the district crop mix. It is important to note that these measures of risk in crop

choice may not capture other agricultural risk such as increased use of costly inputs
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such as fertilizers or machinery that could also reduce yields during a bad year if

farmers are also credit constrained at the same time. Further research is necessary

to understand those mechanisms better.

I also provide evidence consistent with the literature on the labor market chan-

nel that NREGS makes agricultural wages less elastic to rainfall shocks. This in-

hibits any pro-cyclical correction that would reduce labor costs during harvest and

thereby prevent additional crop losses. However, the welfare implications of this

are not straightforward; small and medium farmers who are net sellers of labor on

the agricultural market indirectly benefit through higher earnings from the wage ef-

fect as well as directly through provision of NREGS, transferring agricultural risk

to larger farmers. In a utilitarian sense, this might be a net welfare gain since the

marginal utility of consumption of smaller farm-households is higher than that of

larger ones, and they are also more numerous. There also exist positive (negative)

complementatarities at the intensive margin of higher provision of NREGS to deal

with rainfall shock in a given year, and subsequent aggregate yield if a positive

(negative) rainfall shock is realized next year.

The aggregate food security implications of workfare programs, especially in the

context of climate change, are not very well-understood. This paper sheds some

light on this question for India, pointing to the labor market channel as the most

important channel. By transferring yield risk from smaller to larger farmers while

simultaneously increasing incomes of the latter, NREGS improves consumption

smoothing for the poorest. But larger weather shocks in the future might lead to
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much larger yield losses and aggregate food security concerns, especially if the

ability to store or source essential food grains and other staples is low. The liter-

ature on the implications of climate change for agriculture discusses trade across

regions with less-correlated changes in climate as a potential solution (Costinot et

al. 2016). However, shocks are likely more correlated within-country. Another

avenue would be structural transformation such that fewer people depend on agri-

culture for livelihoods, and only the most productive farmers stay in agriculture

(Suri 2011). If these farmers are able to consolidate land, they may be even more

productive, given that larger farmers are less credit constrained and more able to

invest in technologies (Foster and Rosenzweig 2017). But, land market consolida-

tion is difficult given land market frictions, and other barriers to structural trans-

formation generally, which could also make increased rainfall sensitivity of yields

from NREGS more salient.
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1.8 Figures and Tables
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Figure 1.1: Trends in Revenue Value of Yield and Risk Indices of Crop Choice ↩

Notes: The first three moments for the distribution of revenue value of yield are separately calculated for each of the
16 crops in each of the 96 regions using data on yearly revenue value of yield between 1990-2002. The Risk Index
of Crop Choice for each moment is the calculated by yearly crop area-weighted average of the specified moment of
this distribution for the region within which the district falls (5.5 districts within each region on average). Panels (b),
(c) and (d) display the yearly average of these risk indices, separately for each NREGS phase. Vertical lines provide
NREGS start year by phase.
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Figure 1.2: Mean vs SD of pre-2003 revenue value of yield distribution ↩

Notes: Each dot represents a crop-region. The Mean (y-axis) and SD (x-axis) for this distribution are calculated for
each of the 16 crops in each of the 96 regions separately using data on yearly revenue value of yield between 1990-
2002. Linear and cubic fits are also shown within the figure.
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Table 1.1: Summary Statistics

Early - 2006 Mid - 2007 Late - 2008

Variable N Mean SD N Mean SD N Mean SD

Panel A: Pre-program variables used to determine district NREGS phase

Share of lower castes 169 0.35 0.17 98 0.25 0.1 200 0.2 0.1

Ag product per capita (Rs/person) 169 5563 5930 98 7053 8731 200 12196 13910

Casual daily labor wage (Rs) 169 26.77 17.81 98 26.2 18.65 200 21.86 18.21

Panel D: NREGS Variables

NREGA dummy 1859 0.73 0.45 1078 0.64 0.48 2210 0.55 0.5

HH worked > 100 days (Count/person) 1715 0.04 0.08 1015 0.02 0.05 2109 0.01 0.05

Person-days worked (Count/person) 1715 2.11 4.64 1015 1.74 3.95 2109 1.35 3.47

Labor Expenditure per capita (Rs/person) 1715 0.61 0.67 1015 0.42 0.54 2109 0.29 0.51

Panel B: Agricultural Outcomes

Revenue value of yield (Rs/ha) 1859 11427 4427 1078 13226 4980 2210 15159 6306

RICC-Mean (Rs/ha) 1859 9778 3229 1078 11005 3503 2210 12941 4703

RICC-SD (Rs/ha) 1859 2618 790 1078 2674 815 2210 2913 1238

RICC-Skew (Skewness) 1859 -2.66 1.3 1078 -2.63 1.46 2210 -2.7 1.97

Panel C: Weather Variables - monsoon season (Jun-Oct)

continued
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Table 1.1: Summary Statistics (Continued)

Demeaned HDD (Degree-days) 1859 0.33 0.59 1078 0.31 0.5 2189 0.45 0.91

Low Rain Dummy 1859 0.23 0.42 1078 0.25 0.43 2210 0.22 0.42

High Rain Dummy 1859 0.27 0.44 1078 0.27 0.44 2210 0.27 0.44

Panel D: Weather Variables - planting season (Jun-Jul)

Demeaned HDD (Degree-days) 1859 -9.82 11.95 1078 -11.34 8.99 2189 -10.93 8.34

Low Rain Dummy 1859 0.27 0.45 1078 0.27 0.44 2210 0.27 0.44

High Rain Dummy 1859 0.26 0.44 1078 0.24 0.43 2210 0.25 0.43

Panel E: Wage outcomes

Ag daily labor wage (Rs) 53762 84.67 57.18 34689 94.69 78.94 53362 111.61 90.26

Notes: Time-invariant pre-program variables in Panel A are calculated from the National

Sample Survey 2004 and Population Census of 2001. RICC in panel B refers to the Risk

Index of Crop Choice. Yearly NREGS provision variables in Panel B are from 2009-2015.

Weather variables in Panels C and D are calculated for from the Google Earth Engine.

Individual wage outcomes in Panel E are the NSS. ↩
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Table 1.2: Impact of weather shocks on aggregate and individual crop yields

Dependent variable: log(RVY)

(1) (2) (3) (4) (5) (6)

HDD −0.019∗∗ −0.016∗ −0.027∗∗∗ −0.052∗∗∗ −0.132 −0.035∗

(0.008) (0.010) (0.006) (0.019) (0.100) (0.019)

Low Rain −0.075∗∗∗ −0.073∗∗∗ −0.039∗∗∗ −0.023 −0.031 −0.128∗∗∗

(0.016) (0.023) (0.013) (0.016) (0.036) (0.025)

High Rain 0.043∗∗∗ 0.055∗∗∗ 0.043∗∗∗ 0.026 0.035 −0.011

(0.012) (0.017) (0.012) (0.019) (0.029) (0.018)

Crop Aggregate Rice Wheat Sugarcane Cotton Groundnut

Observations 10,134 9,421 8,353 4,136 4,136 6,322

R2 0.787 0.780 0.829 0.545 0.544 0.570

District and Year FE X X X X X X

Notes: Estimation on data from 1990-2013. RVY refers to Revenue Value of Yield. Each column presents estimates for either

the aggregate revenue value of yield for all crops weighted by area planted, or individual crop revenue value of yield. HDD

refers to heating degree days above 25C. Low and High Rain are dummies for rainfall below and above 20th or 80th percentile of

historical rainfall. Weather variables are for the monsoon period (June-October). Conley standard errors using a cutoff of 1000

km and arbitrary autocorrelation up to 5 years are reported. All columns include district and year fixed effects. *p<0.1; **p<0.05;

***p<0.01. ↩
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Table 1.3: NREGA provision in response to weather shocks

Dependent variable: Standardized per capita provision

(1) (2) (3)

HDD −0.211∗∗ −0.042 −0.093∗

(0.083) (0.064) (0.050)

Low Rain 0.303 0.321∗∗∗ 0.482∗∗∗

(0.203) (0.111) (0.117)

High Rain −0.205∗ −0.014 −0.110∗

(0.113) (0.078) (0.060)

NREGS Provision var Person days Num HH > 100 Days Labour Expenditure

Observations 2,117 2,117 2,117

R2 0.708 0.680 0.787

District and Year FE X X X

Notes: Estimation on data from 2009-2013. Each column presents estimates for a standardized measure of per

capita NREGS provison. HDD refers to heating degree days above 25C. Low and High Rain are dummies for

rainfall below and above 20th or 80th percentile of historical rainfall. Weather variables are for themonsoon pe-

riod (June-October). All provision variables are converted to per capita and then standardized. Conley standard

errors using a cutoff of 1000 km and arbitrary autocorrelation up to 5 years are reported. All columns include

district and year fixed effects. *p<0.1; **p<0.05; ***p<0.01. ↩
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Table 1.4: Impact of NREGA on Weather Sensitivity of Aggregate Yields

Dependent variable: log(RVY)

(1) (2) (3) (4) (5)

NREGA −0.003 0.013 0.018 0.016 0.042

(0.028) (0.030) (0.030) (0.029) (0.026)

HDD X NREGA 0.023 0.027 0.021 0.023 0.043∗∗

(0.017) (0.017) (0.016) (0.016) (0.021)

Low Rain X NREGA −0.081∗∗ −0.081∗∗ −0.085∗∗ −0.081∗∗ −0.104∗∗∗

(0.040) (0.040) (0.039) (0.037) (0.035)

High Rain X NREGA 0.007 0.012 0.005 0.006 −0.020

(0.027) (0.027) (0.027) (0.028) (0.032)

Observations 5,132 5,132 5,126 5,126 4,665

R2 0.810 0.811 0.813 0.815 0.086

Trend X Phase X X X

Trend X Controls X X

Weather X Controls X

First Difference X

District and Year FE X X X X X

Notes: Years 2003-2013. RVY refers to aggregate Revenue Value of Yield for all crops weighted by area planted.

HDD refers to heating degree days above 25C. Low and High Rain are dummies for rainfall below and above 20th

or 80th percentile of historical rainfall. Weather variables are for the monsoon period (June-October). Conley

standard errors using a cutoff of 1000 km and arbitrary autocorrelation up to 5 years are reported. All columns

include district and year fixed effects. *p<0.1; **p<0.05; ***p<0.01. ↩
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Table 1.5: Impact of Provision on Weather Sensitivity of Aggregate Yields

Dependent variable: log(RVY)

(1) (2) (3) (4) (5) (6)

NREGA 0.019 0.009 0.012 0.058∗∗ 0.045∗ 0.057∗∗

(0.029) (0.029) (0.030) (0.026) (0.025) (0.027)

Provision −0.019∗ 0.011 −0.018 0.010 −0.021 0.023

(0.011) (0.011) (0.013) (0.009) (0.019) (0.020)

HDD X NREGA 0.018 0.024 0.022 0.012 0.021 0.018

(0.015) (0.016) (0.016) (0.018) (0.018) (0.018)

Low Rain X NREGA −0.072∗ −0.080∗∗ −0.053 −0.085∗∗ −0.099∗∗∗ −0.070∗

(0.037) (0.037) (0.040) (0.039) (0.038) (0.041)

High Rain X NREGA −0.005 0.007 −0.009 −0.047 −0.034 −0.052∗

(0.029) (0.029) (0.029) (0.031) (0.031) (0.031)

HDD X Provision 0.013∗ 0.006 0.005 0.009∗∗ 0.012 0.004

(0.007) (0.005) (0.005) (0.004) (0.008) (0.008)

Low Rain X Provision −0.018∗ −0.056∗∗∗ −0.040∗∗ −0.021∗∗ −0.084∗∗∗ −0.043∗∗

(0.009) (0.022) (0.020) (0.010) (0.030) (0.019)

High Rain X Provision 0.030∗∗∗ −0.004 0.023∗∗ 0.028∗∗∗ 0.006 0.027∗∗

(0.009) (0.010) (0.012) (0.009) (0.010) (0.012)

Provision Variable HH100Days PDays LabExp HH100Days PDays LabExp

Observations 4,872 4,872 4,872 3,945 3,945 3,945

R2 0.820 0.818 0.820 0.112 0.107 0.111

First Differences X X X

District and Year FE X X X X X X

Notes: Years 2003-2013. RVY refers to aggregate Revenue Value of Yield for all crops weighted by area planted. Provision is the

lagged value of the per capita standardized NREGA measure listed under each column. HDD refers to heating degree days above 25C.

Low and High Rain are dummies for rainfall below and above 20th or 80th percentile of historical rainfall. Weather variables are for

themonsoon period (June-October). Conley standard errors using a cutoff of 1000 km and arbitrary autocorrelation up to 5 years are

reported. *p<0.1; **p<0.05; ***p<0.01. ↩
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Table 1.6: Does Risk Index of Crop Choice predict Crop Yields?

Dependent variable: log(RVY)

(1) (2) (3)

RICC 1.170∗∗∗ 1.073∗∗∗ −0.109

(0.160) (0.149) (0.108)

RICC X HDD −0.003∗∗ −0.003∗∗ −0.025

(0.001) (0.001) (0.021)

RICC X Low Rain −0.005∗ −0.007∗∗ −0.120∗∗∗

(0.003) (0.003) (0.046)

RICC X High Rain 0.005∗∗∗ 0.006∗∗∗ 0.075∗∗

(0.002) (0.002) (0.035)

RICC Var log(RICC-Mean) log(RICC-SD) ihs(RICC-Skew)

Observations 5,132 5,132 5,132

R2 0.825 0.818 0.806

District and Year FE X X X

Notes: Years 2003-2013. RVY refers to aggregate Revenue Value of Yield for all crops weighted by

area planted. RICC refers to the Risk Index of Crop Choice. Each column presents an estimate using

a different RICC that is constructed by crop area-weighting one of the first three moments of the the

pre-2003 crop revenue distribution. HDD refers to heating degree days above 25C. Low and High

Rain are dummies for rainfall below and above 20th or 80th percentile of historical rainfall. Weather

variables are for themonsoon season (June-October). Conley standard errors using a cutoff of 1000

km and arbitrary autocorrelation up to 5 years are reported. All columns include district and year fixed

effects. *p<0.1; **p<0.05; ***p<0.01. ↩
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Table 1.7: Impact of NREGA on Risk Index of Crop Choice

Dependent variable:

log(RICC-Mean) log(RICC-SD) ihs(RICC-Skew)

(1) (2) (3)

NREGA 0.001 0.008∗ 0.002

(0.005) (0.004) (0.006)

HDD X NREGA 0.001∗ 0.001∗∗ 0.0002

(0.0003) (0.0002) (0.0002)

Low Rain X NREGA 0.0003 −0.006 −0.010∗

(0.006) (0.004) (0.006)

High Rain X NREGA 0.009 0.001 −0.005

(0.008) (0.006) (0.006)

Observations 5,126 5,126 5,126

R2 0.982 0.985 0.982

District and Year FE X X X

Notes: Years 2003-2013. RICC refers to the Risk Index of Crop Choice. Each column presents an estimate

using a different RICC that is constructed by crop area-weighting one of the first three moments of the the

pre-2003 crop revenue distribution. HDD refers to heating degree days above 25C. Low and High Rain

are dummies for rainfall below and above 20th or 80th percentile of historical rainfall. Weather variables

are for the planting period (June-July). Conley standard errors using a cutoff of 1000 km and arbitrary

autocorrelation up to 5 years are reported. All columns include district and year fixed effects. *p<0.1;

**p<0.05; ***p<0.01. ↩
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1.9 Appendix
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Table 1.A1: Placebo Impact of NREGA on Weather Sensitivity of Agg. Yields

Dependent variable: log(RVY)

(1) (2) (3) (4) (5)

NREGA 0.020 0.019 0.019 0.020 −0.028

(0.027) (0.026) (0.026) (0.024) (0.031)

HDD X NREGA 0.014 0.013 0.011 0.013 0.003

(0.021) (0.022) (0.021) (0.020) (0.032)

Low Rain X NREGA −0.014 −0.014 −0.013 −0.008 0.033

(0.039) (0.039) (0.039) (0.037) (0.035)

High Rain X NREGA −0.043 −0.043 −0.041 −0.033 −0.029

(0.041) (0.042) (0.043) (0.043) (0.042)

Observations 5,092 5,092 5,091 5,091 4,625

R2 0.816 0.816 0.816 0.818 0.157

Trend X Phase X X X

Trend X Controls X X

Weather X Controls X

First Difference X

District and Year FE X X X X X

Notes: Years 1998-2008. RVY refers to aggregate Revenue Value of Yield for all crops weighted

by area planted. HDD refers to heating degree days above 25C. Low and High Rain are dummies for

rainfall below and above 20th or 80th percentile of historical rainfall. Weather variables are for the

monsoon period (June-October). Conley standard errors using a cutoff of 1000 km and arbitrary

autocorrelation up to 5 years are reported. All columns include district and year fixed effects. *p<0.1;

**p<0.05; ***p<0.01. ↩
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Table 1.A2: Placebo Impact of NREGA on Risk Index

Dependent variable:

log(RICC-Mean) log(RICC-SD) ihs(RICC-Skew)

(1) (2) (3)

NREGA 0.011 0.013∗ −0.006

(0.007) (0.007) (0.006)

HDD X NREGA 0.0005∗ 0.0002 −0.0004

(0.0002) (0.0002) (0.0003)

Low Rain X NREGA −0.006 −0.009 0.001

(0.006) (0.006) (0.005)

High Rain X NREGA 0.002 −0.00002 0.013∗∗

(0.007) (0.006) (0.005)

Observations 5,091 5,091 5,091

R2 0.983 0.984 0.981

District and Year FE X X X

Notes: Years 1998-2008. RICC refers to the Risk Index of Crop Choice. Each column presents an estimate

using a different RICC that is constructed by crop area-weighting one of the first three moments of the the

pre-2003 crop revenue distribution. HDD refers to heating degree days above 25C. Low and High Rain

are dummies for rainfall below and above 20th or 80th percentile of historical rainfall. Weather variables

are for the planting period (June-July). Conley standard errors using a cutoff of 1000 km and arbitrary

autocorrelation up to 5 years are reported. All columns include district and year fixed effects. *p<0.1;

**p<0.05; ***p<0.01. ↩
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Table 1.A3: Impact of NREGA on wages for hired agricultural labor

Dependent variable: log(Wage)

(1) (2) (3) (4)

NREGA 0.017 0.008 0.012 0.012

(0.027) (0.027) (0.027) (0.027)

HDD X NREGA −0.004 0.006 0.0002 −0.002

(0.016) (0.015) (0.016) (0.016)

Low Rain X NREGA −0.056∗ −0.055∗ −0.053∗ −0.057∗∗

(0.029) (0.028) (0.028) (0.028)

High Rain X NREGA −0.043 −0.037 −0.043 −0.044

(0.028) (0.028) (0.027) (0.027)

Observations 129,845 129,845 129,845 129,845

R2 0.387 0.387 0.388 0.389

Trend X Phase X X X

Trend X Controls X X

Weather X Controls X

District, Month and Year FE X X X X

Notes: Years 2003, 2004, 2005, 2007, 2009 and 2011. Outcome variable is log of individual daily

wage earnt while working on manual labor tasks in the private market. HDD refers to heating degree

days above 25C. Low and High Rain are dummies for rainfall below and above 20th or 80th percentile

of historical rainfall. Weather variables are for themonsoon period (June-October). Standard errors

are clustered at the district level. All columns include district, year and month fixed effects. *p<0.1;

**p<0.05; ***p<0.01. ↩
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Chapter 2

The Long-Term Impact of Air Pollution on

Aggregate Productivity and Spatial

Inequality

2.1 Introduction

Developing countries face an unprecedented environmental challenge in the form
of air pollution today. The worst affected country is India, where average partic-
ulate matter (PM2.5) levels at 7 times the prescribed World Health Organization
standards may be reducing life expectancy by 6 years (Greenstone 2021). Could
these high levels of air pollution at a relatively low level of development affect
aggregate growth patterns? This paper considers the implications of high air pol-
lution in some Indian cities for aggregate productivity and spatial inequality.

The literature documents substantial negative labor productivity impacts of con-
temporaneous air pollution (Graff Zivin and Neidell 2012; Chang et al. 2019;
Fu et al. 2021). High levels of air pollution in some cities could lead to a long-
term reallocation of economic activity away from these cities because they are less
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productive and liveable, leading to aggregate losses from spatial misallocation of
labor. If these cities were poorer to begin with, such a reallocation would lead to
further divergence in per capita incomes within the country.

Local air pollution can be affected by interjurisdictional externalities such as wild-
fires that consistently increase pollution in some cities (Burke et al. 2021). I focus
on the use of unregulated agricultural fires as the source of air pollution in down-
wind Indian cities. Low levels of economic development may lead to such pollut-
ing activity, especially in the context of weak regulatory capacity (Jayachandran
2022; Besley and Persson 2009). By documenting the impact of distant sources
of local air pollution on long run aggregate outcomes, this paper underlines the
importance of regulating such sources for aggregate growth patterns.

Wildfires are known to affect air pollution hundreds of kilometers away (Rogers
et al. 2020). I begin the analysis by documenting that agricultural fires in India
similarly increase PM2.5 concentrations in distant, downwind cities. To quantify
the long-term aggregate productivity impacts of fires-driven air pollution, it is nec-
essary to account for any spatial reallocation of economic activity in response to
changes in pollution and productivity across cities. Therefore, I employ aQuantita-
tive Spatial Equilibrium (QSE) framework of location choice (Redding and Rossi-
Hansberg 2017) in the spirit of Rosen (1974) and Roback (1982), incorporating air
pollution externalities across geographical units into the model.

The first mechanism that could cause spatial misallocation is the direct impact
of air pollution on labor productivity. Higher fire exposure leads to higher air
pollution and lower labor productivity, thereby leading to lower incomes and fewer
workers being attracted to the location. Cities that are closer to and in the path
of prevailing winds from sources of fires could be more productive if these fires
were reduced. The income elasticity of migration governs how strongly location
choice responds to income differences across potential locations - a lower elasticity
implies that higher incomes need to be paid on average to induce marginal workers
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to migrate. The extent to which reducing fires increases aggregate output depends
on this income elasticity.

Secondly, if workers respond by migrating away from more polluted cities due to
lower amenity value, that could reduce agglomeration forces and make those cities
less productive. I model this mechanism through a pollution elasticity of migra-
tion that determines how strongly worker location choice responds to the level of
pollution itself. Previous work has shown that workers in rich countries do care
about air quality in their location choice (Banzhaf and Walsh 2008), while recent
evidence suggests that workers in China also respond in similar ways (Khanna et
al. 2021).

The model equilibrium conditions lead to a labor supply equation across locations
that can be used to estimate both the income and pollution elasticities of migration
together, controlling for origin fixed effects.
1 The pollution elasticity of migration is not significantly different from zero in the
OLS while the income elasticity is precisely estimated and is 3 times larger than
the magnitude of the pollution elasticity.

I also estimate a parameter that determines the prevalence of fires in agriculture,
representing the sum total of agricultural practices and government policies. I uti-
lize a district-level panel data set of rice area under cultivation and fire count at
the annual level to quantify this elasticity. I calibrate parameters that control local
pollution generation from non-agricultural production (Fu et al. 2021) and labor
productivity losses from pollution (Adhvaryu et al. 2022).

With these parameters in hand, I conduct model policy counterfactuals to reduce
the prevalence of agricultural fires in the states of Punjab and Haryana that are

1To allay any concerns about residual factors that could be correlated with real income or pollution, I also instrument
for PM2.5 concentrations with exposure to upwind fires, and for own-district income with distance-weighted neighbor
income following Tombe and Zhu (2019). Due to concerns about the strength of the second instrument, I do not
present the IV results as the main estimates currently, although further work is underway. I also plan to use city-level
in-migration data and variation in PM2.5 driven by new thermal power plants constructed recently. This will enaable
the utilization of another measure of migration and a different source of identification, apart from also considering
education-specific effects of pollution on migration decisions.
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by far the main source of these fires. The benefits of this policy are to increase
total GDP for the country by approximately 1.22%, and total welfare by 1.29%.
This policy can be implemented through paying farmers not to burn, subsidizing
machinery that avoids setting fields on fire, or simply through better enforcement
on current regulations that outlaw any agricultural fires, each one of them with
different associated costs. Most of the GDP gains come from improving labor
productivity by reducing air pollution in North India from the fires. Sorting allows
marginal workers in the South and East to move toward the newly more productive
and liveable North, and therefore reallocate GDP. The additional gain in total GDP
from better allocation of labor is small, perhaps due to the locations not trading
with each other in the model.

While net GDP andwelfare increase, the Gini coefficient of GDP reduces by 0.23%
while the Gini for welfare increases by 0.27%. This implies a reduction in spatial
inequality of GDP but an increase in welfare inequality. Intuitively, this result
comes about because air pollution from fires predominantly affect the relatively
poorer Northern states of India. The reallocation of GDP toward the North due to
the policy increases its relative GDP vis-à-vis the rest of the country, thus reducing
GDP inequality. But the higher population in the North also increases congestion
effects (such as competition for housing), while reducing congestion in the rest
of the country. Thus, while welfare increases in each location relative to base-
line, it increases more in the rest of the country, explaining the increase in welfare
inequality.

This paper contributes to the recent literature modeling environmental outcomes
within QSE models (Balboni 2021; Khanna et al. 2021; Heblich et al. 2021),
by incorporating spatial air pollution externalities over geographical units. There
is a wider literature using general equilibrium Rosen-Roback models to measure
the effect of various policies such as state taxes, internal trade frictions, housing
constraints, infrastructure and land misallocation on aggregate growth.2

2See Fajgelbaum et al. (2019) for state taxes, Redding and Turner (2015) for internal trade frictions, Hsieh and
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Secondly, while more stringent regulation (Burgess et al. 2019), use of technology
(Assunção et al. 2022) and higher resource allocation to monitoring and enforce-
ment (Duflo et al. 2018) can improve environmental outcomes in developing coun-
tries, this paper’s key insight is that facilitating Coasian bargaining with suitable
compensation to farmers in Punjab and Haryana could lead to productivity gains
in other states. This regulatory failure may be down to poor state capacity (Jay-
achandran 2022) or due to inappropriate regulation (Lipscomb andMobarak 2017;
Kahn et al. 2015). Finally, I provide some evidence of a zero or small migration
response to pollution in India, relative to estimates for China (Freeman et al. 2017;
S. Chen et al. 2022; Khanna et al. 2021), although this estimate is imprecise.

The rest of the paper is structured as follows. Section 2 describes the data used
in the paper while section 3 presents the context and motivates the QSE model
by estimating the extent of pollution externalities from agricultural fires. Section
4 presents the model of general equilibrium while section 5 describes the estima-
tion of the parameters governing equilibrium. Section 6 describes the results from
model counterfactuals, and section 7 concludes.

2.2 Data and Measurement

2.2.1 Air quality

An important consideration for air quality data is complete geographical coverage.
Whereas ground-level monitoring station coverage in India is extremely sparse
(Greenstone and Hanna 2014), satellite imagery-based products provide complete
coverage. Secondly, ground-level observationsmay be susceptible tomanipulation
(Greenstone et al. 2022; Ghanem and Zhang 2014). Therefore, the main source
of data on air quality is Hammer et al. (2020), a gridded reanalysis product of
global surface PM2.5 concentrations at a resolution of 0.01∘ that should be much
Moretti (2019) for housing constraints, Duranton et al. (2015) for land misallocation, Ahlfeldt et al. (2015) for infras-
tructure
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less susceptible to such manipulation. This product combines satellite imagery
data on Aerosol Optical Depth with state-of-the-art chemical transport models, and
calibrates the output to global ground-based observations. This product has been
used in the litrature as the main measure of PM2.5 in settings where ground level
observations are sparse such as China (Khanna et al. 2021). It is easy to aggregate
the gridded product to the necessary resolution for analysis at pixel, city or district
level. Forthcoming sections will detail the aggregation procedure for each analysis.

2.2.2 Agricultural fires

The burning of residue from crop harvest is referred to as agricultural fires. There
are no representative ground-level observations of this phenomenon, but the Na-
tional Aeronautics and Space Administration (NASA) agency of the United States
produces the Fire Information for Resource Management System (FIRMS) prod-
uct that is widely used to identify such fires. This product provides information on
daily, pixel-level fire detection data across the world. FIRMS provides a few re-
lated products: a Near-Real Time (NRT) fires using the MODIS instrument aboard
Terra and Aqua satellites, a quality-controlled standard product from the same in-
strument but with a 2-3month lag and another NRT product using the VIIRS instru-
ment from the Suomi-NPP and NOAA-20 satellites. The main difference between
the first two and the third is the resolution of the data. MODIS products are at 1 km
resolution and are available from 2000 (with higher reliability from 2002 onward
when the Aqua satellite was launched) whereas VIIRS products are at 375 m but
only available from 2012.

Since I require data from before 2012, I am unable to use the higher-resolution
VIIRS-based product. The primary analysis here utilizes the MODIS quality-
controlled standard product which differs from the NRT data in that corrections
are made to the imprecise location of the Aqua satellite in the NRT data. Imagery
data from Aqua and Terra satellites is available at least four times daily for each
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pixel on Earth and is processed using a NASA algorithm to isolate a ground-level
fire signal from other signals such as solar flares.3

I combine this data with information on land use from the European Space Agency
Climate Change Initative’s land cover map (version 2.07).4 This allows the subset
of fires that is found on agricultural land to be separated from natural forest fires
since this paper is interested in agricultural fires. I aggregate and resample the
land cover data which is at a resolution of 300 m to the fire data grid (at 1 km
resolution), with an indicator for agricultural land use as the main output from this
process. All fires are thenmasked based on this indicator variable to find the subset
of agricultural fires.

2.2.3 Migration

The source of data on migration in this paper is the Population Census of India
2011.5 The estimating equation that characterizes spatial equilibrium in the quan-
titative model requires migration shares between all pairs of locations. Therefore,
we need data on such flows to estimate pollution and income elasticities of migra-
tion that determine spatial equilibrium. The population census provides tabulations
of the number of people canvassed in each district by district of birth. Following
Bryan and Morten (2019), I construct migration shares from these tabulations us-
ing district of birth as the origin and district of enumeration as the destination. This
measure of migration shares should capture all migrants except for those who were
not present in their destination at the time of enumeration for idiosyncratic reasons.

The census provides two separate tabulations of locations of birth and location of
enumeration (the person’s location at the time of interview for the census). Firstly,
table D-01 provides data on the number of people enumerated in a given district
who were born in other districts of the same state. This allows construction of

3 Further information on these products is available at https://firms.modaps.eosdis.nasa.gov
4 Data is available at https://cds.climate.copernicus.eu/cdsapp/#!/dataset/satellite-land-cover
5 See https://censusindia.gov.in/census.website/data/census-tables
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within-state migration shares across districts. Secondly table D-11 provides data
on the number of people who were enumerated in a given district but were born in
a different state of the Union of India. In order to construct the complete data set
on migration shares across all districts of India, I need to allocate data from table
D-11 on the total number of workers who were born in a given state but moved to
a district outside that state, to the various districts in the state of origin. This data
is not publicly available.

In order to do this, I utilize information on the out-migration tendency of districts
from table D-01 by calculating each district’s share of out-migrants within the same
state. Then I assume that these within-state out-migration shares are the same for
out-migration to districts in other states. This allows me to allocate the number
of out-migrants to a district outside the state, to each district of the state of origin.
To the extent that certain districts send out more migrants, whether within state or
outside, this method would capture migration shares from a district in a given state
to another district outside that state, with some error.

2.2.4 GDP and price data

The quantitative model is estimated on state level data for which GDP within agri-
culture and non-agriculture is required. Such data are published by the Planning
Commission of India for 2004-2011. Price data is necessary to construct real GDP.
I utilize the National Sample Survey household consumption module for 2011-12
to construct individual item price data, and construct weights for these items fol-
lowing standard methods used to construct price indices from the same data source.

2.2.5 Meteorological data

Hourly wind data are used to construct exposure to agricultural fires for every
origin-destination pixel pair. Details of the methodology follow in section 3 below.
The source of these wind data is the European Center for Medium Range Weather
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Forecasting (ECMWF) ERA5 family of global gridded reanalysis datasets.6 Re-
analysis data combine ground-level observations and satellite data with Chemical
TransportModels that represent physical and chemical processes in the atmosphere
to produce reliable and complete coverage for the world. Since ground-level ob-
servations are particularly sparse in developing countries, these reanalysis data are
widely used in the literature on climate and air pollution in Economics (Auffham-
mer et al. 2013). Hourly wind speed and direction data are taken from the ERA5-
Land hourly dataset which is available at a resolution of 0.1∘. These are combined
with daily agricultural fires at the pixel level to construct the fire exposure vari-
able, as described in section 3 below. Finally, I also construct temporal averages
for weather variables including rainfall, temperature and relative humidity from
this data set to be used as controls in the regression analysis.

Secondly, to construct data on thermal inversions, I utilize the ERA5 data set on
hourly temperature at a resolution of 0.25∘ and at various pressure levels through
the atmosphere.7 Atmospheric pressure reduces with altitude as the amount of
air exerting pressure decreases. Temperature usually also decreases with altitude
above sea level, but occasionally an upper layer of the atmosphere is at a higher
temperature than a lower level, hindering the diffusion of air pollutants through the
atmosphere. This phenomenon is referred to as a thermal inversion and is widely
used as an instrument for air pollution in the literature (Dechezleprêtre et al. 2019;
Bondy et al. 2020). Data on temperatures at various pressure levels is used to
identify when a thermal inversion by matching the land surface altitude with the
correct pressure level. Since the land surface of India has varied altitude, I utilize
a digital elevation model to guides the correct pressure level at the surface and the
construct thermal inversion based on temperature at the pressure layer above.

6 Data is available at https://cds.climate.copernicus.eu
7 See https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
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2.3 Context and Motivation

2.3.1 Causes of agricultural fires

The primary use of fires in Indian agriculture today is to clear the field of leftover
residue from harvesting a crop, before sowing and planting the next crop (Shyam-
sundar et al. 2019); this differs from slash-and-burn agriculture that is practiced
in parts of Africa and Indonesia (Andini et al. 2018). Figure 2.1 provides a map
of where agricultural fires are most prevalent in India; fires are concentrated in the
North-Western states of Punjab and Haryana (‘PH’).

The wheat growing states of Punjab and Haryana also grow rice, thereby creat-
ing a rice-wheat system. In these rice-wheat systems, rice is cultivated during the
monsoon or “Kharif” season (June-November) while the wheat crop is cultivated
in the winter or “Rabi” season (December-April). The rice crop harvesting process
leaves a residue in the field that makes planting of wheat in early Rabi season dif-
ficult; fires are a cheap way to remove this residue. Wheat must also be planted in
the first weeks of winter in order to get optimal yields. The short duration between
the rice harvest in late October and the optimal wheat planting window in early
November also incentivizes farmers to burn the residue so that they can prepare
the fields for wheat planting faster.

The rice-wheat system has its roots in the Green Revolution of the 1960s. Until
then, North-Western India was a primarily wheat-growing region with little rice
consumption or production locally. The advent of the Green Revolution brought
with it many institutional innovations from the Indian State that increased agricul-
tural productivity substantially across India. In the states of Punjab and Haryana,
this took the form of massive subsidies for tubewells which could be used to access
shallow groundwater to irrigate fields that did not have access to the pre-existing
large canals systems built by the colonial British empire. This newfound access to
groundwater allowed farmers to diversify their crop portfolio during the monsoon
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months by allowing the cultivation of water-intensive rice crop. The state of Pun-
jab contributed less than 1% of India’s rice in 1961; by the late 1990s this figure
was up to 10%, even as total rice output across India also increased substantially.
The use of fires to clear rice residue started in the 1990s. The earliest observations
of fires from the NASA FIRMS database starting in 2002 clearly demonstrate that
North-western India already had a disproportionate share of fires in Indian agri-
culture.

2.3.2 Quantifying air quality externalities from agricultural fires

The stock of pollution in a location is a result of both local and external fires. Air
pollution modelers in India describe emissions from agricultural fires affecting air
quality up to a thousand kilometers away. On the other hand, air pollution from
only certain non-agricultural sources such as thermal power plants is transported
over such long distances.8 Therefore, I capture the contribution of agricultural
emissions 𝐸𝑎

𝑜 from a 1x1 degree origin pixel 𝑜 on air quality in destination pixel
𝑑, at a distance of 𝑑𝑖𝑠𝑡𝑜𝑑,9 in calendar year 𝑦 in equation 2.1

𝜔𝑜𝑑𝑦 = (
𝐷𝑒𝑐−31

∑
𝑡=𝐽𝑎𝑛−1

𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡 ∗ 𝐸𝑎
𝑜𝑡

𝑑𝑖𝑠𝑡𝑜𝑑
) (2.1)

𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡 is the daily average fraction of time that the wind at 𝑜 blows towards
𝑑 on day 𝑡. In order to calculate𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡, I start by assigning each hourly wind
observation in 𝑜 on day 𝑡 into one of 36 bins of 10 degree span each, based on the
wind direction that hour (true north is 0 degree as in the figure). I then construct
the wind speed-weighted fraction of time the wind was blowing in each of these 36
bins by aggregating hourly observations for day 𝑡. 𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡 is then calculated
by summing up wind fraction for the bins which are in the direction of 𝑑 from 𝑜 as

8See “Basics 004 - diffused vs. point and local vs. non-local sources” at https://urbanemissions.info/blog-pieces/
whats-polluting-delhis-air.

9The distance elasticity is assumed to be -1 but can also be estimated using non-linear least squares
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shown in figure 2.2.

Daily “fire exposure” is then calculated by multiplying daily wind fraction
𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡 by daily emissions 𝐸𝑎

𝑜𝑡 at origin and dividing by 𝑑𝑖𝑠𝑡𝑜𝑑. Yearly
fire exposure from pixel 𝑜 to 𝑑 is then the sum of daily fire exposures. With
these measure of yearly fire exposure for each origin-destination in hand, I then
construct total fire exposure Ω𝑑 for destination 𝑑 as the sum of exposures 𝜔𝑜𝑑
from all origins 𝑜.

Ω𝑑 = (
𝑁

∑
𝑜=1

𝜔𝑜𝑑) (2.2)

The matrix Ω allows me to construct an Econometric Transport Model (ETM) for
agricultural fires by summarizing the exposure of any given location to agricultural
fires in all other locations. It flexibly accounts for daily changes in the count of
fires or wind patterns at the origin, the most important factors in determining the
exposure of downwind districts. Figure 2.4 demonstrates visually that this fire
exposure metric positively correlates with PM2.5 across Indian districts.

In order to estimate the causal effect of yearly local fire count 𝐸𝑎
𝑑𝑦 and external

fire exposure Ω𝑑𝑦 on average yearly PM2.5 concentration 𝑍𝑑𝑦, I run the following
regression on 1x1 degree pixels using panel data from 2002-2018.

𝑙𝑜𝑔(𝑍𝑑𝑦) = 𝛾 𝑙𝑜𝑔(𝐸𝑎
𝑑𝑦) + 𝜏 𝑙𝑜𝑔(Ω𝑑𝑦) + 𝑌𝑦 + 𝐷𝑑 + 𝜖1𝑑𝑦 (2.3)

The identification assumption for 𝛾 is that local pollution levels do not affect lo-
cal fires directly. The assumption for 𝜏 is that local pollution levels do not affect
upwind fires. These are likely to be satisfied, given that most regulations on agri-
cultural fires are not implemented.

Table 2.3 describes the results of this exercise. Since fires may be zero on any
given pixel, I run three measures of fire count, including log of fire count, inverse
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hyperbolic sine (ihs) of fire count and log of (1+fire count). An increase in exter-
nal fire exposure of 1% increases PM2.5 by 0.22-0.24%. Since fire exposure is a
weighted sum of all external fires, increases in exposure can come from a small
increase in the fire count in a nearby location that is upwind, or by a large increase
in another upwind location that is much farther.

On the other hand, local fire count does not seem to significantly affect local PM2.5
once fire exposure is accounted for, although the estimates on fire count are al-
ways positive. I attribute this to agricultural fires being predominantly employed
in Punjab and Haryana (North-Western India) whereas PM2.5 levels are high all
over India, and especially in the North. This result underlines that the spillover ef-
fects of external agricultural fires are more important to local pollution than local
fires themselves. In order to quantify how important fire exposure is, I note that
the within-R2 increases from 0.011 to 0.116, suggesting that around 10% of the
yearly variation in PM2.5 within districts can be explained by fire exposure.

2.4 Spatial Equilibrium Model with Pollution Externalities

This section incorporates the econometric pollution transport model into a canon-
ical quantitative models of economic geography (Redding and Sturm 2008;
Ahlfeldt et al. 2015) to investigate the effects of reducing agricultural fires on
aggregate productivity. The reader is referred to Redding and Rossi-Hansberg
(2017) for a survey of this literature.

2.4.1 Worker preferences

There are ̄𝐿𝑜 workers in location 𝑜 to begin with. Workers have preferences over
agricultural (𝐶𝑎

𝑑 ) and non-agricultural (𝐶𝑛
𝑑 ) goods. Preferences are assumed to

take a Cobb-Douglas form.
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𝑢𝑜𝑑 = 𝜖𝑜𝑑(𝐶𝑎
𝑑 )𝛼(𝐶𝑛

𝑑 )1−𝛼𝑍𝜆
𝑑 𝐵𝑑𝑀𝑜𝑑

where 𝐶𝑎
𝑑 , 𝐶𝑛

𝑑 are consumption of final agricultural and non-agricultural goods.
𝐵𝑑 are fixed amenities that can include climate and other institutional features.
Housing supply is assumed to be inelastic and therefore absorbed in amenities 𝐵𝑑.
𝜖𝑑 is an idiosyncratic preference shifter that captures preferences for location 𝑑. 𝜖𝑑
is i.i.d across workers, locations and sectors and drawn from a Frechet distribu-
tion given by the CDF 𝐹(𝜖) = 𝑒−𝜖−𝜂. A larger value of 𝜖𝑜𝑑 implies that worker
is particularly attached to location 𝑑 and would not move even with large wage
differentials or high pollution levels. This would capture real world features such
as strong local ties, for example.

𝑍𝑑 is the level of pollution in location 𝑑. If workers have preferences over clean
air, locationswill be characterized by compensating differentials for pollution, with
elasticity given by 𝜆. If 𝜆 < 0 then pollution lowers utility whereas if 𝜆 = 0 then
pollution does not directly affect worker utility. In the empirical section, I show
that 𝜆 = 0 and therefore air quality does not directly enter utility. Therefore, I will
omit this term from utility from now onwards.

A given worker in location 𝑜 decides whether to move to destination location 𝑑;
there are 𝑁 locations to choose from. Workers can move freely across sectors
within a location, but movement across locations is costly. Migration cost 𝑀𝑜𝑑
from origin 𝑜 to destination 𝑑 represents physical costs of migration and also any
salient differences in culture etc. This is motivated by the fact that about 80% of
migration in India is within the state, an entity that shares a common language and
cultural features.

Labor income in location 𝑑 is given by wage 𝑤𝑑 and is the same for both sectors as
there is free movement of labor given the free mobility across sectors assumption.
Workers choose the location where they receive highest utility, subject to moving
costs. If the indirect utility function for the worker is represented by 𝑉𝑜𝑑, then the
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worker chooses 𝑑 over 𝑑′ if 𝑉𝑜𝑑 > 𝑉𝑜𝑑′. Indirect utility function is given by

𝑉𝑜𝑑 = 𝜖𝑑𝐵𝑑𝑀𝑜𝑑( 𝑤𝑑
(𝑃 𝑎

𝑑 )𝛼(𝑃 𝑛
𝑑 )(1−𝛼))

Let 𝐼𝑑 be the real income such that

𝐼𝑑 = 𝑤𝑑
(𝑃 𝑎

𝑑 )𝛼(𝑃 𝑛
𝑑 )(1−𝛼)

This formulation allows us to write the migration share from 𝑜 to 𝑑, 𝜋𝑜𝑑 as follows,
where we have made use of the properties of the Frechet distribution

𝜋𝑜𝑑 = 𝑙𝑜𝑑
̄𝐿𝑜

= [𝐼𝑑𝐵𝑑𝑀𝑜𝑑]𝜂
𝑁

∑
𝑘=1

[𝐼𝑘𝐵𝑘𝑀𝑜𝑘]𝜂
(2.4)

Equilibrium number of workers in 𝑑 is given by 𝑙𝑑 = ∑𝑜 𝑙𝑜𝑑. Local demand 𝐷𝑗
𝑑

for goods in sector 𝑗 ∈ {𝑎, 𝑛} is pinned down by Cobb-Douglas shares.

𝐷𝑎
𝑑 = 𝛼𝑤𝑑𝑙𝑑 𝐷𝑛

𝑑 = (1 − 𝛼)𝑤𝑑𝑙𝑑

2.4.2 Production and general equlibrlium

Each location 𝑑 produces a homogeneous good 𝑦𝑗
𝑑 in sector 𝑗 using a linear tech-

nology with labor 𝑙𝑗𝑑 and TFP 𝐴𝑗
𝑑. Each worker supplies one unit of inelastic labor.

TFP varies across locations andmay be affected by pollution𝑍𝑑 and agglomeration
forces. Labor is assumed to be perfectly mobile across sectors.

𝑦𝑗
𝑑 = 𝐴𝑗

𝑑𝑙𝑗𝑑

Markets are perfectly competitive. Therefore, the price of each good equals
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marginal cost.

𝑝𝑗
𝑑 = 𝑤𝑑

𝐴𝑗
𝑑

All goods are produced and consumed locally so there is no goods trade. Output
within sector 𝑗 is then determined purely by demand 𝐷𝑗

𝑑. Labor shares in each
sector are determined by the Cobb-Douglas utility. This comes from the require-
ment that share of income spent on good 𝑗 must equal revenue from that good,
i.e. 𝛼𝑤𝑑𝑙𝑑 = 𝑝𝑎

𝑑𝑦𝑎
𝑑 and (1 − 𝛼)𝑤𝑑𝑙𝑑 = 𝑝𝑛

𝑑 𝑦𝑛
𝑑 .

𝑙𝑎𝑑 = 𝛼𝑙𝑑 𝑙𝑛𝑑 = (1 − 𝛼)𝑙𝑑

Local wages and agricultural prices are pinned down by setting 𝑝𝑛
𝑑 = 1. Total

earnings are purely from labor income 𝑤𝑑 and are spent locally. Equilibrium is
determined by the vector {𝑙𝑑} and is reached by varying 𝑙𝑗𝑑 across locations such
that equations 2.5, 2.6 and 2.7 below are satisfied.

𝑤𝑑 = 𝐴𝑛
𝑑 𝑝𝑎

𝑑 = 𝐴𝑛
𝑑

𝐴𝑎
𝑑

(2.5)

𝜋𝑜𝑑 = 𝑙𝑜𝑑
̄𝐿𝑜

=
[ 𝑤𝑑

(𝑝𝑎
𝑑)𝛼 𝐵𝑑𝑀𝑜𝑑]𝜂

𝑁
∑
𝑘=1

[ 𝑤𝑘
(𝑝𝑎

𝑘)𝛼𝐵𝑘𝑀𝑜𝑘]𝜂
(2.6)

𝑙𝑑 =
𝑁

∑
𝑜=1

𝜋𝑜𝑑 ̄𝐿𝑜 = 𝑙𝑎𝑑 + 𝑙𝑛𝑑 (2.7)

Productivity 𝐴𝑎
𝑑, 𝐴𝑛

𝑑 and pollution 𝑍𝑑 are endogenous in this model. Elasticities
that depend on employment govern generation of pollution, productivity impacts
of pollution and agglomeration effects. Equilibrium values of these endogenous
variables therefore depend on employment and are a part of the solver described
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above. I provide more details on the endogenous productivity and pollution spec-
ifications later.

2.4.3 Productivity, agglomeration and pollution impacts

TFP can vary by sector due to fixed exogenous factors like soil quality, presence of
rivers, or availability of raw materials like mineral ores; agglomeration forces and
the effect of pollution on worker productivity. Equation 2.8 formalizes these ideas.

̄𝐴𝑗
𝑑 is exogenously determined productivity that does not respond to employment.

𝐴𝑗
𝑑 = ̄𝐴𝑗

𝑑𝑍𝛽𝑗

𝑑 𝑙𝑗 𝜙𝑗

𝑑 (2.8)

𝛽𝑗 determines how productivity responds to pollution; if 𝛽𝑗 < 0, productivity is
negatively affected by pollution. The stength of agglomeration forces that may
arise from any potential non-excludable innovation (Arrow 1962) is captured by
𝜙𝑗.

2.4.4 Endogenizing pollution from production

Pollution 𝑍𝑑 in location 𝑑 is given by

𝑍𝑑 = ̄𝑍𝑑(𝐿𝑛
𝑑)𝜓(𝐸𝑎

𝑑)𝛾Ω𝜏
𝑑 (2.9)

The pollution elasticity of non-agricultural employment is given by 𝜓. This elas-
ticity is taken from Fu et al. (2021) for China where it is estimated to be 1.36.10

Ω𝑑 is the contribution of external fire exposure to local pollution in location 𝑑.

Ω𝑑 = (
𝑁

∑
𝑜=1

𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑 ∗ 𝐸𝑎
𝑜

𝑑𝑖𝑠𝑡𝑜𝑑
) (2.10)

10I will be estimating this elasticity for India
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As discussed earlier,𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑 is the fraction of time thewind blows from 𝑜 to 𝑑;
I consider the 10-year daily average wind patterns when constructing this quantity
for the model. The distance between the centroids of 𝑜 and 𝑑 is 𝑑𝑖𝑠𝑡𝑜𝑑. These
are exogenous physical determinants of fire exposure and together determine how
exposed district 𝑑 is to emissions in origin 𝑜.
The measure of agricultural emissions in district 𝑑 is 𝐸𝑎

𝑑 . As described in section
2.3, the main determinant of the extent of agricultural fires is the quantity of rice
produced, mediated by institutional features of that particular state. The quantity of
rice produced is also proportional to the area under rice cultivation. This motivates
the following specification

𝐸𝑎
𝑑 = (𝜃𝑑𝐿𝑎

𝑑)𝛿𝑑 (2.11)

Here rice area is measured by the inclusion of a scaling term 𝜃𝑑 reflects the im-
portance of rice in the district crop mix on agricultural employment. Thus 𝜃𝑑𝐿𝑎

𝑑
represents the potential residue that might be burnt. I operationalize 𝜃𝑑 by setting
it to the percentage of average cultivated land area that is dedicated to rice. The
location-specific elasticity 𝛿𝑑 captures the local institutional factors that motivate
the actual decision to burn. Details on estimation of 𝛿𝑑 follow in the next section.

2.5 Estimation of Model Parameters

Table 2.1 shows the model parameters that are estimated in this paper. Apart from
the productivity elasticity of pollution and the effect of non-agricultural output
on pollution, I estimate all the other parameters of the model. This section will
present the research design and discuss results for each of these parameters. Sum-
mary statistics for the data used in the various parameter estimation exercises are
provided in table 2.2
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2.5.1 Elasticity of emissions to labor in agriculture (𝛿)

Appendix figure 2.3 demonstrates that institutional differences drive the increased
prevalence of agricultural fires in Punjab and Haryana rice-wheat system. There-
fore, I allow 𝛿𝑑 to differs based on whether the district is in Punjab and Haryana,
or in another state. Further, labor employed for rice cultivation is proportional to
area cultivated under rice (𝜃𝑑𝐿𝑎

𝑑 ∝ 𝑅𝑖𝑐𝑒𝐴𝑟𝑒𝑎𝑑), allowing me to estimate 𝛿𝑑 with
a yearly panel of fires and area under rice cultivation.

I run the following regression on data from 2002-2011, where 𝐸𝑎
𝑑𝑦 represents an-

nual fire count and 𝑅𝑖𝑐𝑒𝐴𝑟𝑒𝑎𝑑𝑦 is the total area under rice in district 𝑑 and year 𝑦.
District fixed effects 𝐷𝑑 control for any fixed characteristics of the district that are
correlatedwith agricultural fires, state-by-year fixed effects𝑌𝑠𝑦 allow us to account
for any changes in state government policies (which is the relevant administrative
level for agricultural policy in India) that affect agricultural fires. Standard errors
are clustered at district and state-by-year to account for autocorrelation as well as
agricultural policy changes that are made at the state level.

𝑙𝑜𝑔(𝐸𝑎
𝑑𝑦) = 𝛿𝑝ℎ 𝑙𝑜𝑔(𝑅𝑖𝑐𝑒𝐴𝑟𝑒𝑎𝑑𝑦) ∗ 𝟙(𝑑 ∈ 𝑃𝐻)

+ 𝛿𝑛𝑝ℎ 𝑙𝑜𝑔(𝑅𝑖𝑐𝑒𝐴𝑟𝑒𝑎𝑑𝑦) ∗ 𝟙(𝑑 ∉ 𝑃𝐻)
+ 𝑌𝑠𝑦 + 𝐷𝑑 + 𝜖2𝑑𝑦

(2.12)

The main assumption required to identify 𝛿 is that yearly changes in area under rice
cultivation are not correlated with yearly changes in area under sugarcane crop,
which is the only other crop that is associated with agricultural fires in India. This
is likely to be the case as sugarcane is not a substitute for rice. Sugarcane also is
not likely to compete with rice for land, given that rice is a staple crop that is the
subject of policies such as minimum support prices from most state governments.

Table 2.4 confirms the result shown in the figure 2.3. The elasticity of fires to rice
area is 5 times larger for districts in Punjab and Haryana, reflecting institutional
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features that were baked in decades ago and do not respond to higher pollution
levels currently.

2.5.2 Elasticities of pollution from local fires and external fire exposure (𝛾, 𝜏 )

These two parameters have already been identified in section 3, where I estimated
equation 2.3, which is a log-linear version of equation 2.9. The third parameter
𝜓 that determines pollution from non-agricultural production is calibrated, as de-
scribed in the calibration section.

2.5.3 Income and pollution elasticities (𝜆, 𝜂), and Migration costs (𝑚𝑜𝑑)

Given the equilibrium migration shares predicted by the quantitative model, the
income and pollution elasticities can be estimated with data on migration shares
across Indian districts that were described in the data section. Taking natural log
of equation 2.4 gives us the following

𝑙𝑜𝑔(𝜋𝑜𝑑) = 𝜂 (𝑙𝑜𝑔(𝑤𝑑) − 𝛼 𝑙𝑜𝑔(𝑃 𝑎
𝑑 )) [𝑅𝑒𝑎𝑙 𝐼𝑛𝑐𝑜𝑚𝑒]

− 𝑙𝑜𝑔( ̄𝑉𝑜) [𝑂𝑟𝑖𝑔𝑖𝑛 𝑜𝑝𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒]
+ 𝜂𝜆 𝑙𝑜𝑔(𝑍𝑑) [𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑚𝑒𝑛𝑖𝑡𝑦]
+ 𝜂 𝑙𝑜𝑔(𝐵𝑑) [𝐹 𝑖𝑥𝑒𝑑 𝑎𝑚𝑒𝑛𝑖𝑡𝑦]
− 𝜂 𝑚𝑜𝑑 [𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡]

(2.13)

In order to estimate this equation on migration shares data, we need to specify
migration cost 𝑀𝑜𝑑. I follow Khanna et al. (2021) in assuming that 𝑀𝑜𝑑 take the
form 𝑀𝑜𝑑 = 𝑒𝑥𝑝(−𝑚𝑜𝑑), where 𝑚𝑜𝑑 are parameterized such that migration costs
are normalized and symmetric (𝑚𝑜𝑜 = 1 and 𝑚𝑜𝑑 = 𝑚𝑑𝑜).

𝑚𝑜𝑑 = 𝜈1𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝑜𝑑) + 𝜈2𝟙(𝑙𝑎𝑛𝑔𝑜𝑑)
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Here 𝑑𝑖𝑠𝑡𝑜𝑑 measures the physical distance between districts 𝑜 and 𝑑 while
𝟙(𝑙𝑎𝑛𝑔𝑜𝑑) captures whether a different language is spoken in 𝑜 and 𝑑.

𝑙𝑜𝑔(𝜋𝑜𝑑) = 𝜂 (𝑙𝑜𝑔(𝑤𝑑) − 𝛼 𝑙𝑜𝑔(𝑃 𝑎
𝑑 ))

+ 𝜂𝜆 𝑙𝑜𝑔(𝑍𝑑)
− 𝜂 𝜈1𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝑜𝑑) − 𝜂 𝜈2 𝟙(𝑙𝑎𝑛𝑔𝑜𝑑)
+ 𝐹𝑜 + 𝜖3𝑜𝑑

(2.14)

where 𝐹𝑜 is an origin fixed effect that absorbs 𝑙𝑜𝑔( ̄𝑉𝑜) and the residual (𝜖3𝑜𝑑 =
𝜂 𝑙𝑜𝑔(𝐵𝑑) + 𝜖4𝑜𝑑) contains differences in destination amenities and other idiosyn-
cratic features that determine bilateral migration shares. I then follow the literature
(Ahlfeldt et al. 2015; Bryan and Morten 2019; Khanna et al. 2021) in estimat-
ing amenities 𝐵𝑑 from the residual through the use of destination fixed effects,
𝜖3𝑜𝑑 = 𝐹𝑑 + 𝜖4𝑜𝑑, such that 𝐹𝑑 = 𝜂 𝑙𝑜𝑔(𝐵𝑑).
Table 2.5 presents the results from estimation of 2.14. The OLS results are pre-
sented in column 1. From a given origin district, a 1% higher PM2.5 level at
a potential destination district is associated with 0.19% lower migration share to
that district, whereas a 1% higher real wage at the destination district is associated
with a 0.81% higher migration share to that district. However, the coefficient on
log(PM) is not significantly different from zero. This may be the result of either
noise in measurement of migration shares for outside-state districts, or reflect het-
erogeneous preferences due to characteristics such as income wherein only high
income individuals move in response to pollution (Greenstone and Jack 2015).

On the other hand, coefficients on log(PM) and log(wage) may be biased if there
are residual destination-specific factors such as housing costs that are correlated
with PM2.5 or real wage, even after controlling for origin fixed effects and other
covariates. The coefficient on real wage and PM2.5 are both biased toward zero
since the true real wage and exposure to PM2.5 are both negatively correlated with
housing costs, but the expected signs on the coefficients are positive and negative
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respectively.

The standard solution to this problem is to instrument for both log(PM) and
log(wage). I follow Tombe and Zhu (2019) in instrumenting for log(wage) by a
distance-weighted average of the neighboring district real wages. I instrument
for log(PM) using yearly fire exposure.11 Columns 2 and 3 display the first
stage results for each instrument separately whereas column 4 presents the 2SLS
result. While the fire exposure instrument has a strong first stage Kleibergen-Paap
F-stat of 190.89, the neighbor-wage instrument has an F-stat of only 10.541. But
distance enters the fire exposure instrument directly; districts that are close to
each other may have correlated residuals due to fixed factors that affect migration
to certain districts such as a pleasant climate or pre-existing infrastructure. Also,
when there are two endogenous regressors, the best practice in testing for weak
instruments is not yet established (Andrews et al. 2019). For these reasons, I
prefer the OLS estimates at present.

Finally, 1% higher distance to destination district reduces migration to that district
by 1.78%while a district where people speak a different language have ~36% lower
migration share, holding all else constant.

2.5.4 Calibration

A few parameters of the quantitative model are calibrated. The Cobb-Douglas
share of expenditure on agriculture, 𝛼, is calculated from data to be 0.26. Next,
the pollution elasticity of non-agricultural labor that governs emissions from other
activity is taken from Fu et al. (2021), who estimate this elasticity for a panel of
Chinese manufacturing firms in the 2000s. The estimate of 1.36 for this elasticity
is the closest to the Indian context in the literature.

Third, the elasticity of labor productivity to PM2.5 in agriculture and non-
11 I utilize the strength of each fire, measured using the Fire Radiative Power from the NASA FIRMS data base to

maximize predictive power, given that a larger fire would emit more particulate matter.
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agriculture (𝛽𝑎, 𝛽𝑛) are crucial parameters. I take these from Adhvaryu et al.
(2022) who estimate the productivity elasticity of PM2.5 on individual-level data
that they collect for urban, indoor garment workers in the Indian state of Gujarat.
Their estimate of -0.05 is lower than the -0.09 estimated by Chang et al. (2019)
for indoor pear-packers at a factory in the US, but I prefer the estimate from India.
Due to the lack of a better estimate for outdoor agricultural workers as well, I take
-0.05 as a lower bound for those workers as well.

Lastly, the agglomeration elasticity𝜙𝑛 of 0.076 is taken fromChauvin et al. (2016).
They estimate the effect of population density on individual wages in Indian dis-
tricts using National Sample Survey data, relying on historical population density
that is a standard instrument in this literature.

2.5.5 Model quantities

Model quantities such as the fixed productivity component are inverted from data
and the structure of the model. Details are provided in table 2.6.

2.6 Results

2.6.1 Main counterfactual

The main policy counterfactual involves reducing the elasticity of emissions in
Punjab and Haryana (𝛿𝑝ℎ) to equal the elasticity for the rest of the country, 𝛿𝑛𝑝ℎ.
This seems like a reasonable government objective when considering fires in Pun-
jab and Haryana, since there are indeed some fires in other states.12 The exact na-
ture of policies to achieve this equalization of elasticities would differ, including
in their costs. For instance, a few ways to implement this policy would be through
better enforcement of existing regulations, to pay farmers not to burn stubble, or

12A separate counterfactual might be to completely eliminate agricultural fires, for instance through technological
and institutional innovations. This will be the subject of later inquiry.

91



through a subsidy to rent mechanical harvesters called Happy Seeders that obviate
the need for fires to get rid of residue.13 Associated costs with these policies are
different, but the benefits are quantified in the figure below. None of these poli-
cies includes changing the district crop mix itself; therefore, these estimates can be
seen as regulatory or institutional changes that drive air quality without the need
for difficult transitions in agricultural crop mix.

Table 2.7 describes model counterfactual results from implementing the policy to
reduce fires in Punjab and Haryana. I focus on two outcomes of interest: GDP
and welfare. In this model without trade, welfare maps directly to real incomes. I
discuss net changes in GDP and welfare, how sorting contributes to these changes,
and end with results on how the policy affects spatial inequality of GDP and wel-
fare.

Since I am unable to reject that the pollution elasticity is different from zero, I begin
the discussion assuming that the pollution elasticity of migration 𝜆 = 0. Row 1
of table 2.7 shows that the policy increases net GDP by 1.22% and net welfare by
1.29%. In order to understand the mechanisms behind this result better, I present
changes in GDP and welfare for each state, without and with sorting, in figure 2.5.

I focus on the counterfactual without sorting first. Panel (a) of figure 2.5 shows
that while GDP increases in all states, the increase is larger closer to Punjab and
Haryana (remembering that these two states lie at the Northwestern corner, where
fires are largest as in figure 2.1). Panel (a) of figure 2.6 provides an insight into why
this is the case. The policy reduces fires bymore than 90% in these two states. This
drastic reduction in fires reduces fire exposure relatively more in the North in panel
(c) of figure 2.6, and therefore also reduces pollution relatively more in the North
in panel (a) of figure 2.7. The main effect of reducing pollution without allowing
people to move is to make North India relatively more productive, although all
regions gain in productivity. These increases in productivity also decrease relative

13These machines harvest rice while sowing the wheat seeds into soil along with burring the stubble back into the
soil.
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prices, driving relatively higher increases in real incomes and welfare in North
India.

Next, I consider the additional effects of allowing people to move on GDP and
welfare. We have just noted that without allowing workers to move, the policy
reduces pollution and increases productivity in the North. If workers are allowed to
move, both these factors draw marginal workers toward the North from the South,
East and Punjab. This reallocation of population (which is the same as labor in the
model) is plotted in panel (c) of figure 2.7. This is accompanied by a reallocation of
GDP from these areas toward the North, relative to the no-sorting counterfactual.
However, this increased economic activity in the Northern states is counteracted by
increased congestion, relative to the no-sorting counterfactual. These congestion
effects reduce welfare gains for the North while increasing it for the rest of the
country, relative to no-sorting. The net effect of the policy on GDP and welfare
with sorting are plotted in panels (b) and (d) of figure 2.5. The additional change
from the no-sorting counterfactual are plotted in panels (b) and (d) of figure 2.A1.

To reiterate, row 1 of table 2.7 shows that change in total GDP and net welfare from
the policy, allowing for workers to move, is 1.22% and 1.29% respectively. Row
2 shows that sorting adds 0.39% to net welfare, accounting for 30% of the welfare
gains. At the same time, sorting adds only 0.01% to GDP. The large additional
increase in welfare from sorting may be explained by lower congestion forces in
the South and East, pollution and housing being good examples. In a model with
trade, where some workers could stay behind and enjoy the lower prices of goods
produced in theNorth, thesewelfare gains from sortingmay be lower; in the current
model without trade, the only way workers can get lower prices is by migrating.
The reason why sorting only adds 0.01% gains to total GDP could be that a model
without trade at the state-level does not allow efficient allocation to locations that
have comparative advantage in manufacturing.14

14I have new sectoral GDP data at the district level and will run model with trade at district level in a future iteration.
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Finally, this discussion demonstrates that the net changes hide much heterogeneity.
The third row of table 2.7 shows that the Gini coefficient of GDP reduces 0.23%,
implying a reduction in spatial inequality of GDP. But the Gini of welfare increases
by 0.27%; even though welfare increases everywhere, it increases relatively more
in the South.

2.7 Conclusion

This paper studies the aggregate productivity effects of air pollution caused by agri-
cultural fires in India. I develop an econometric transport model and demonstrate
that agricultural fires originating outside district boundaries account for more than
10% of within-district annual variation in PM2.5, whereas local fires only account
for ~1%. This pollution externality causes districts that could be more produc-
tive and employ more workers to be less productive. To quantify the gains from
reducing these fires, I build a spatial equilibrium model of location choice, incor-
porating across locations. I estimate some of the parameters of this model. Firstly,
I estimate that the pollution elasticity of migration, how much do workers respond
directly to air pollution by moving away from it, is not significantly different from
zero, although measured imprecisely. Secondly, I estimate the income elasticity
of migration, the extent to which workers are responsive to relative changes in real
income across locations, to be 0.81. Thirdly, I estimate a parameter governing the
institutional determinants of agricultural fires in the model. This parameter differ
between the states of Punjab and Haryana that account for more than 80% of all
agricultural fires and in the rest of the country, representing different agricultural
practices and policies.

I then conduct a policy counterfactual to change the institutional parameter to re-
flect a world in which residue burning practices in Punjab and Haryana look more
like the rest of India, reducing the prevalence of fires by more than 90%. I find that
this increases national GDP by ~1.22% and net welfare by 1.29%. The net gains

94



in GDP are much higher than most estimates of the monetary cost of eliminating
fires altogether in Punjab and Haryana. These gains in GDP are also higher for
the poorer North India, since agricultural fires affected air pollution most in those
states. On the other hand, while welfare increases in all states, larger increases are
observed in the South and East fromwhere population and GDP reallocated toward
the North. The explanation for this result is that while reallocation of economic
activity increases GDP and welfare, some of the welfare gains from reductions in
pollution in North India are dissipated away by the congestion forces that come
with increases in population. A note of caution in interpreting these results is that
the quantitative model does not allow for trade, thereby negating one of the av-
enues by which a more efficient spatial allocation of labor could be achieved, with
different implications for GDP and welfare changes.

A significant finding of this paper is that workers in states that are far away from
the major sources of agricultural fires and therefore not directly affected by pol-
lution from those fires, indirectly suffer losses from these fires. If pollution from
these fires were reduced, these workers would be able to take advantage of higher
incomes and living standards in the North, not just existing workers in the North.
This suggests the failure of a Coasian bargaining process wherein the rest of India
could have compensated Punjab and Haryana in some way in return for a costly
reduction in fires. This failure may be down to lack of regulation of the pollution
externalities at the appropriate level (Banzhaf and Chupp 2012; Lipscomb andMo-
barak 2017; Kahn et al. 2015). A deeper root cause could be that the regulatory
capacity necessary to tackle such large environmental externalities do not exist in
many developing countries (Jayachandran 2022).
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2.8 Figures and Tables

Figure 2.1: Count of fires in Indian districts (2010) ↩
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(a) Average wind directions at origin

(b) Direction from origin to destination

Figure 2.2: Schematic for construction of fire exposure for Econometric Transport Model ↩

Note: The pink lines on top are fractions of time during the day when the wind was blowing in that bin.
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Figure 2.3: Rice area and fire counts by districts in Punjab and Haryana (2002-2011) ↩
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Figure 2.4: Spatial correlation between district fire exposure and PM2.5 ↩
(a) Yearly District PM2.5 Concentration (2010)

(b) Yearly District PM2.5 Exposure Ω𝑑 (2010)
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Figure 2.5: Changes in GDP and Welfare from policy to reduce fires in Punjab and Haryana ↩
(a) Percentage Change in GDP without sorting (b) Net % Change in GDP with sorting

(c) Percentage Change in Welfare without sorting (d) Net % Change in Welfare with sorting
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Figure 2.6: Changes in fires / fire exposure from policy to reduce fires in Punjab and Haryana ↩
(a) % Change in Fires without sorting (b) Net % Change in Fires with sorting

(c) % Change in Exposure without sorting (d) Net % Change in Exposure with sorting
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Figure 2.7: Changes in pollution and labor from policy to reduce fires in Punjab and Haryana ↩
(a) % Change in Pollution without sorting (b) Net % Change in Pollution with sorting

(c) Net % Change in Labor with sorting
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Table 2.1: Model Parameters Estimated from Data

Parameter Description Equation

𝛾 Pollution elasticity of local fire emissions 2.3
𝜏 Pollution elasticity of external fire exposure 2.3
𝛿 Emissions elasticity of labor in agriculture 2.12
𝜈1 Distance elasticity of migration flows (Physical gravity) 2.14
𝜈2 Language elasticity of migration flows (Cultural gravity) 2.14
𝜆 Pollution elasticity of migration flows 2.14
𝜂 Income elasticity of migration flows 2.14

Notes: Estimation of parameters is done at the district level except for 𝜏 and 𝛾 which utilize pixel-level data, but close to
the resolution of a district. ↩
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Table 2.2: Summary Statistics

Variable N Mean SD Min Max

Panel A: District data for estimation of fire elasticies 𝛿, 2003-2011)
Area under rice cultivation (ha) 5367 131595 118007 1 920015
Fire count 5367 70.65 165.02 1 2345

Panel B: Pixel data for estimation of Ag pollution elasticites 𝛾 and 𝜏 (2002-2018)

PM2.5 (microgram/m3) 4862 50.60 23.45 5.32 137.4
Fire count 4862 127.35 403.1 0 5386
Fire Exposure (Count) 4862 16.78 8.67 1.491 69.144

Panel C: District data for estimation of migration elasticies 𝜂 and 𝜆 (2010)

Migration share 312870 0.002 0.037 0.000 0.982
Real Wage (Rs) 312870 244.445 148.149 77.028 2757
PM2.5 (microgram/m3) 312870 56.513 25.478 11.944 123
Distance (km) 312870 1032.133 572.250 0 3005
Language indicator 312870 0.735 0.441 0 1
Fire Exposure (Count) 312870 132.157 123.345 2.380 704.974
Neighbor wage (Rs) 312870 239.789 105.071 102.577 991

Notes: Summarizes the data used to estimate the main parameters of the quantitative model. Panel A presents district level
data on rice area and fire counts for 495 districts that grow rice. Panel B describes pixel level fire counts, fire exposures and
particulate matter data at a 1 degree resolution. Panel C describes pair-wise migration shares data across all districts from the
2011 census. The data correspond to the period of April 2010 - December 2010, with average particulate matter for calendar
year 2010. ↩
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Table 2.3: Effect of agricultural fires on local and external PM2.5

Dependent variable: log(PM2.5)

(1) (2) (3) (4) (5) (6)

log(Fire Count) [𝛾] 0.014∗∗ 0.003
(0.005) (0.005)

ihs(Fire Count) [𝛾] 0.015∗∗∗ 0.005
(0.005) (0.005)

log(1+Fire Count) [𝛾] 0.018∗∗∗ 0.006
(0.006) (0.006)

log(Fire Exposure) [𝜏 ] 0.226∗∗∗ 0.243∗∗∗ 0.242∗∗∗

(0.042) (0.044) (0.044)

Fixed Effects District, Year District, Year District, Year District, Year District, Year District, Year

Observations 4,530 4,530 4,862 4,862 4,862 4,862
R2 0.966 0.969 0.969 0.972 0.969 0.972
Within R2 0.011 0.116 0.012 0.128 0.014 0.128

Notes: Years 2002-2018. Estimation is done on pixels at a resolution of 1∘, approximately the size of an average Indian district. Column 1 tests whether log(fire
count) predicts PM2.5 by itself. Column 2 adds in log(Fire Exposure). Columns 3/4, and 5/6 do the same but with different measures of fire count to test
sensitivity to dropping zeros. *p<0.1; **p<0.05; ***p<0.01. Standard errors clustered at pixel and year. ↩
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Table 2.4: Estimation of fires elasticity to rice residue (𝛿)

Dependent variable: log(Fire Count)

(1)

log(Rice Area) x 𝟙(𝑑 ∈ 𝑃𝐻) 0.499∗∗∗

(0.181)
log(Rice Area) x 𝟙(𝑑 ∉ 𝑃𝐻) 0.099∗∗

(0.048)

Fixed-effects District, State X Year
Number of Districts 495

Observations 3,996
R2 0.903

Notes: Years 2003-2011. District-level regressions to estimate institutional parameter gov-
erning fire elasticity from rice residue burning. PH refers to districts in Punjab and Haryana.
Estimation uses rice area as dependent variable since it is proportional to labor used in rice cul-
tivation, and available yearly. Standard errors clustered at district and state-by-year. *p<0.1;
**p<0.05; ***p<0.01. ↩
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Table 2.5: Income and Pollution elasticities of migration

Dependent variable

log(𝜋𝑜𝑑) log(pm) log(real wage) log(𝜋𝑜𝑑)

(1) (2) (3) (4)

log(PM) [𝜂𝜆] -0.192 -0.011 -0.824∗∗∗

(0.120) (0.045) (0.212)
log(Real wage) [𝜂] 0.807∗∗∗ 0.002 1.51∗∗

(0.144) (0.031) (0.530)
log(Distance) [𝜂𝜈1] -1.78∗∗∗ 0.025∗∗∗ 0.009∗ -1.79∗∗∗

(0.024) (0.004) (0.005) (0.026)
𝟙(Different language) [𝜂𝜈2] -0.362∗∗∗ -0.182∗∗∗ 0.061∗∗∗ -0.566∗∗∗

(0.085) (0.017) (0.021) (0.103)
log(FRP exposure) 0.709∗∗∗

(0.036)
Nbr distance-wtd real wage 0.240∗∗∗

(0.059)

Observations 312,870 312,870 312,870 312,870
R2 0.538 0.605 0.325 0.514

Estimate Type OLS 2SLS
Birth District FE X X X X

First Stage Outcome PM2.5 Wage
KP First Stage Fstat 190.89 10.541

Notes: Outcome data are pair-wisemigration shares data across 615 districts from the 2011 census, correspon-
ing to data collected during the period of April-December 2010. Other independent variables are calculated
for calendar year 2010. Standard errors clustered at district of enumeration. Weather controls for district of
enumeration include temperature, windspeed, cloud cover and relative humidity included. *p<0.1; **p<0.05;
***p<0.01. ↩
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Table 2.6: Estimated model quantities

Quantity Description Estimation

𝐴𝑎 Ag productivity Data
𝐴𝑛 Non-Ag productivity Data

̄𝐴𝑎 Fixed component of 𝐴𝑎 Fit eqn (2.8) to data
̄𝐴𝑛 Fixed component of 𝐴𝑛 Fit eqn (2.8) to data
̄𝑍 Fixed pollution component Fit eqn (4.5.1) to data

𝐵 Fixed Amenity FE from (2.14)
𝜃𝑑 Rice share Data

Notes: Estimation of parameters is done at the district level to in-
crease power unless otherwise specified. The model is estimated at
the state level as sectoral GDP is not available below the state level.
↩
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Table 2.7: Counterfactual GDP and Welfare changes

GDP Welfare

Net Change 1.22% 1.29%
Gain from sorting 0.01% 0.39%
Change in Gini coefficient -0.23% 0.27%

Notes: Displays results from the policy counterfactual to reduce
fire intensity in Punjab and Haryana to levels in the rest of the
country. ↩
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Figure 2.A1: Additional change in GDP and Welfare from sorting with policy to reduce fires ↩
(a) Percentage Change in GDP without sorting (b) Additional % Change in GDP from sorting

(c) Percentage Change in Welfare without sorting (d) Additional % Change in Welfare from sorting
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Chapter 3

The Air Pollution-linked Productivity
Impacts of a Groundwater Conservation
Policy

3.1 Introduction

The relationship between economic growth and the environment at various lev-
els of development is poorly understood. The Environmental Kuznets Curve hy-
pothesized an inverted-U shape, with economic growth worsening environmental
outcomes at low levels of GDP per capita, but improving these outcomes at high
levels (Grossman and Krueger 1995). Recent evidence has disputed this character-
ization, instead focusing on uncovering the causal factors behind various environ-
mental outcomes at different stages of development1 (Jayachandran 2022; Stern
2017). This paper documents that the protection of groundwater resources in In-
dia substantially increased air pollution, resulting in substantial cost to economic
growth.

Aquifer depletion due to over-exploitation of groundwater is a well-documented
and pressing problem in India (World Bank 2021), Aquifer depletion has docu-

1 For a sample of urban areas across the world, Jayachandran (2022) documents that greenhouse gas emissions keep
increasing with GDP per capita, lead pollution displays the EKC inverted-U pattern, air pollution (particulate matter
concentrations) displays a linear and correlation while Ozone does not display any correlation at all.
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mented economic costs today (Blakeslee et al. 2020) with adaptation to long-term
water loss uncertain (Hagerty 2021). In order to combat particularly acute ground-
water depletion, the states of Punjab and Haryana in India passed groundwater
conservation laws that inadvertently increased concentrations of particulate matter
less than 2.5 microns in diameter (PM2.5) locally and across inter-state bound-
aries.2 India has the highest average PM2.5 concentrations in the world at 7 times
theWHO standards (Greenstone 2021). The economics literature documents wide-
ranging impacts of this type of air pollution, including on human health and mor-
tality (Schlenker and Walker 2016; Deryugina et al. 2019) and labor productivity
(Graff Zivin and Neidell 2012; Chang et al. 2019; Fu et al. 2021; Adhvaryu et al.
2022; Borgschulte et al. 2022) among others. This paper quantifies the short-term
consequences for economic growth of increases in PM2.5 driven by the ground-
water conservation laws, and summarized in the Gross Domestic Product (GDP).
Thus, decisions to protect local groundwater resources in the interest of local long-
term growth caused inter-state air pollution externalities with wide-ranging and
immediate economic costs.

The groundwater depletion problem in Punjab and Haryana has its roots in the
worldwide Green Revolution of the 1960s that allowed poor countries such as India
to grow sufficient food and avoid regular famine events (Pingali 2012). The set
of institutions that took root during that period in Punjab and Haryana led to the
cultivation of water-intensive rice crop in these states that had not cultivated any
rice before. Farmers were incentivized to pump out groundwater to irrigate paddy
fields.3 By the early 2000s, the state governments had realized the problem; but
rather than incentivizing a shift away from the rice crop or instituting a marginal
price for groundwater4, these states decided to force farmers to push back the dates

2 Other pollutants such as Ozone and PM10 may also be correlated with increases in PM2.5.
3 Rice is synonymous with paddy, with interchangeable references to paddy or rice fields.
4 Themarginal price of groundwater extraction continues to be close to zero, since electricity for pumps is subsidized

with flat tariffs rather than marginal pricing, and any outstanding farm electricity bills are rarely paid back to state
distribution companies.
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of rice transplantation5 from mid-May to mid-June, hoping that the arrival of the
monsoon by late June would reduce dependence on groundwater to grow rice.

Even before these groundwater conservation laws were passed in 2009, farmers in
Punjab and Haryana would set fire to their fields after the rice harvest in October
in order to prepare the same fields for planting the staple wheat crop. These fires
clear out leftover residue after rice harvest that come in the way of planting wheat
seeds, and have become popular as the cheapest method to get rid of this residue.
Although agricultural fires are nominally illegal, enforcement is rare, with an aver-
age expected fine in Haryana of 0.75 USD while the average marginal cost to clear
the field without fires is 50 USD (Behrer 2019; Lohan et al. 2018). By forcing a
shift in the transplantation dates to early June in order to conserve groundwater,
these states also shifted rice cultivation dates from October into November. Since
any delays in planting of wheat crops can reduce yields (McDonald et al. 2022),
farmers had further incentives to utilize fires to get rid of the rice residue after a
later harvest due to the laws. These factors had the unintended consequence of
shifting the peak of agricultural fires from October into November, when the onset
of winter brings lower wind speeds and temperatures that slow the dispersion of
particulate matter (Vallero 2014).

I utilize a two-way fixed effects design with information on the timing of the
groundwater laws to document that the laws increased November fire count by
54% and the measure of biomass burnt by 72% in districts of Punjab and Haryana.
Small anticipation effects imply that these may be slight underestimates. At the
same time, October fire count and measure of biomass burnt decreased by 58%
and 57% respectively. Since winter fire activity is predominantly concentrated in
these two months, these results document the shift in monthly fire patterns toward
early winter. Next, I develop a novel method to capture the effect of the increase in
November fire activity on annual PM2.5 levels. November fire exposure strongly

5 This process of moving seedlings grown in nurseries into fields reduces weed removal and produces higher yields.
More details at http://www.knowledgebank.irri.org/training/fact-sheets/crop-establishment/manual-transplanting
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affects annual PM2.5 levels across India, with changes in fire exposure explaining
4.2% of annual deviations in within-district PM2.5, compared to 16% explained
by local weather.

Next, I analyze the effect of PM2.5 levels on district GDP using newly available
panel data for 530 Indian districts between 2007 and 2013. In order to account for
the non-stationary nature of the GDP data6, I utilize district-specific time trends as
well as a first differences approach. The latter performs better with strongly non-
stationary data series and is commonly used in macroeconomic analysis of GDP
data (Wooldridge 2010). Identification of the causal effect of PM2.5 on district
GDP relies on yearly deviations in PM2.5 being plausibly exogenous, controlling
for year and district fixed effects as well as time trends. However, causalitymay yet
run from GDP to PM2.5, with larger yearly deviations in pollution systematically
being a result of higher economic activity in that district in the given year. To tackle
this endogeneity concern, I instrument for PM2.5 using the novel variable linking
all upwind fires to local PM2.5 concentrations. With this instrument, I show that
a 1% increase in PM2.5 levels reduces GDP by 0.18% in Indian districts.

With these causal estimates in hand, I calculate the effect of the increase in Novem-
ber fires due to the groundwater laws on net GDP in India. Districts that are closer
to and downwind of districts in Punjab and Haryana see a larger increase in par-
ticulate matter concentrations, and therefore reductions in GDP. I calculate an es-
timate of yearly net GDP losses using the three estimated elasticities: the increase
in November fire strength due to the laws, the increase in downwind PM2.5 due
to higher November fire exposure, and the reduction in GDP from an increase in
PM2.5 levels. This leads to an estimated yearly loss of 0.125%of national GDP due
to the groundwater laws. For comparison, the share of yearly expenditure as a per-
centage of GDP on the National Rural Employment Guarantee Scheme (NREGS),
a flagship welfare program, is about 0.25%. The loss figure of 0.125% is also an
underestimate of the overall economic costs associated with the increased pllution

6 Average yearly district GDP growth rate in this period was 7%.
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due to these laws, since it does not account for increased infant and old-age mor-
tality, as well unaccounted expenditures on health, lost schooling years etc. that
are not monetized into GDP.

This paper contributes to the literature on how institutions affect environmental
outcomes in developing countries. More stringent regulation (Burgess et al. 2019),
use of technology (Assunção et al. 2022) and higher resource allocation to moni-
toring and enforcement (Duflo et al. 2018) can improve environmental outcomes
in developing countries. Weak state capacity impedes the implementation of reg-
ulations on the books that prohibit the use of fires in agriculture in Punjab and
Haryana, leading to large economic costs.

Another explanation may be that while the groundwater externality is localized to
the two states, the air pollution externality is an inter-state phenomenon. Lipscomb
and Mobarak (2017) show that decentralization of regulatory authority in Brazil-
ian municipalities leads to larger water pollution externalities across border. Kahn
et al. (2015) document that providing promotion incentives to reduce some wa-
ter pollutants to local officials reduces their externality on downstream neighbors.
While the states of Punjab and Haryana are able to successfully implement one
set of laws intended to conserve local groundwater, they are unable (or unwilling)
to implement regulations on fires, which cause downwind externalities on top of
local ones. This result suggests that designing regulatory institutions for environ-
mental protection at the appropriate level is important in determining the outcomes
of regulation.

Finally, this paper also relates to the literature on second-best institutions in de-
veloping countries. Rodrik (2008) argue that institutional design in developing
countries with multiple distortions should not insist on the first-best, since the de-
sired outcome can be achieved at lower cost through second-best practices. The
textbook, first-best solution to the groundwater externality in Punjab and Haryana
is marginal pricing of groundwater. But this is very unlikely to occur given the po-
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litical power of farmer lobbies in these two states. Unfortunately, the second-best
solution to utilize the monsoon rains for rice cultivation backfired by exacerbating
the air pollution externality.

The rest of the paper is structured as follows. Section 2 describes the datawhile sec-
tion 3 presents the context and motivates the QSE model by estimating the extent
of pollution externalities from agricultural fires. Section 4 presents the model of
general equilibriumwhile section 5 describes the estimation of the parameters gov-
erning equilibrium. Section 6 conducts counterfactuals and section 7 concludes.

3.2 Background

India is the largest user of groundwater in the world; but with almost 20% of
the world’s population, it only has about 4% of the world’s freshwater resources
(World Bank 2021). The resulting overuse of groundwater to meet population
needs has caused rapid aquifer depletion and led to an urgent environmental crisis,
particularly affecting the alluvial plains of North-Western India. This section first
discusses the factors behind this depletion in the North-Western states of Punjab
and Haryana, leading to the passage of a set of groundwater conservation laws in
2009. I then discuss how these laws unintentionally pushed agricultural fires into
early winter, when their impact on air pollution is exacerbated due to meteorolog-
ical conditions.

3.2.1 Groundwater conservation laws in Punjab and Haryana

Until the advent of the so-called Green Revolution of the 1960s that raised agri-
cultural productivity dramatically across India and much of the poor world (Pin-
gali 2012), North-Western India was a primarily wheat-growing region with little
rice consumption or production locally. One of the institutional innovations of
the Green Revolution in these states was the provision of large subsidies for tube-
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wells and borewells. Individual farmers could now access shallow groundwater
to irrigate fields even if they did not have access to the large, pre-existing canals
systems built by the colonial British empire. Over time, modern pumps running
on electricity were combined with practically zero tariffs to farmers so that they
could irrigate their fields at minimum cost.

This newfound access to groundwater allowed farmers to diversify their crop port-
folio by allowing the cultivation of the highly water-intensive rice crop during the
“Kharif” or monsoon season (June-October). The wheat crop is cultivated during
the “Rabi” or winter season, when the lower temperatures and plenty of sunshine
provide perfect weather conditions for growth (Kataki et al. 2001); planting hap-
pens in early winter and harvest in early spring.

The state of Punjab contributed less than 1% of India’s rice in 1961; by the late
1990s this figure was up to 10%; absolute rice output across India rose from 11
million tonnes to 75 million tonnes in this period, underlining the massive increase
in rice cultivation in Punjab (Subramanian 2017). Similar trends in rice cultiva-
tion were seen in Haryana. This fundamental change in the cropping patterns of
the region exacerbated the depletion of groundwater resources, since the paddy
fields were flooded primarily using groundwater, pumped out before the annual
monsoon reached Punjab and Haryana. Taken together, the unregulated exploita-
tion of groundwater had led to an acute water crisis by the early 2000s, although
concerns about excessive extraction almost 1.5 times the natural recharge rate had
been expressed by agricultural scientists and government committees going back
to the 1980s (Singh 2009).

Despite the alarm expressed by various stakeholders, the state governments largely
ignored the problem until the early 2000s. When asked about these concerns, the
then-Chief minister of Punjab, Prakash Singh Badal, is quoted in the media as say-
ing, ”The problem is not as acute as is being projected. It is a theoretical evaluation
and there is no truth in it” (Down To Earth 1999). The political economy of both
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states, but particularly of Punjab, centers around medium and large sized farmers
who receive a range of state subsidies that incentivizes rice and wheat cultivation.
Apart from the Green Revolution era technological subsidies for higher-yielding
seeds, fertilizers and pesticides, tubewells and electric pumps, provision of cheap
electricity is also important in explaining groundwater levels (Ryan and Sudarshan
2020). Often these dues are not paid to state distribution companies at all, resulting
in lack of investment in the power grid (World Bank 2018). But, most importantly,
the procurement of wheat and rice crop by the state governments of Punjab and
Haryana at so-called Minimum Support Prices that distort market signals (Parikh
et al. 2003) precludes farmers from switching to other crops with higher price and
yield risks.

The practice of transplantation of rice before mid-June was thought to be particu-
larly cause too much reliance on groundwater (Singh 2009). In response, sections
of the state bureaucracy had made efforts starting in the early 2000s to shift the
transplantation of rice closer to the monsoon, since this was thought to ease the
strain on groundwater use. The two governments took executive action through
ordinances in 20087 to extend the practice of delaying rice transplantation state-
wide. Given the generally favorable response to this ordinance, the legislatures of
Punjab and Haryana separately ratified the Preservation of Subsoil Water Acts of
2009 (“laws” from now on) in an effort to conserve groundwater.

These laws prohibited early transplanting of rice before the monsoon in an attempt
to reduce groundwater usage for irrigation. Much of the rice transplantation would
occur in the peak of summer duringMay when evapotranspiration (water loss from
plants as well as soils and water bodies) is high. These laws specified June 10 as
the earliest transplantation date, and it was shifted further to June 20 later8. When
planting rice in May, farmers were solely dependent on groundwater reserves for
rice growth; moving transplantation to June allowed rice growth to depend more

7 These do not have the same power in Indian law as a statute and cannot be renewed beyond a few months.
8The Indian Met Department (IMD) sets out July 1 as the expected date of onset of the monsoon in North-Western

India. Details here
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on monsoon rainfall. This was expected to lead to a lower rate of groundwater
extraction.9

3.2.2 Increase in agricultural fires due to shifting of rice crop harvest

The primary use of fires in Indian agriculture today is to clear the field of leftover
residue from harvesting a crop, before sowing and planting the next crop (Shyam-
sundar et al. 2019); this differs from slash-and-burn agriculture that is practiced
in parts of Africa and Indonesia (Andini et al. 2018). Figure 3.1 shows that agri-
cultural fires are concentrated in the states of Punjab and Haryana, which are also
characterized by a Rice-Wheat crop system.

In the Rice-Wheat system of Punjab andHaryana, fires are used to clear rice residue
before the planting of the wheat crop on the same land, since rice residue comes
in the way of planting wheat. This practice dates back at least to the 1990s. The
earliest observations of fires from the NASA FIRMS database (described in the
next section) starting in 2002 clearly demonstrate that North-western India already
had a disproportionate share of fires in Indian agriculture.

The delay in rice transplantation due to the laws also pushed back harvest dates.
The resulting delay in rice harvest from mid October to late October and Novem-
ber meant that farmers had fewer days between rice harvest and wheat plantation.
Any delays in wheat plantation beyond the first two weeks of winter reduces yields
substantially (McDonald et al. 2022). Therefore, the law had the unintended con-
sequence of increasing the intensity of agricultural fires in November, when slower
winds and lower temperatures tend to worsen downwind air quality.

9 Groundwater recharge is typically a slow-moving process that takes place over a longer period than the period of
study here. I plan to conduct an assessment of the change in groundwater levels to the present day due the policy in
the future
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3.3 Data and Measurement

3.3.1 Agricultural fires

The burning of residue from crop harvest is referred to as agricultural fires. To
analyse the impact of the groundwater conservation laws on the monthly pattern
of fires, the ideal data would include precise location of each individual fire set for
the purpose of burning crop residue. But there are no representative ground-level
observations of this phenomenon. To overcome this challenge, I utilize the Fire In-
formation for Resource Management System (FIRMS) product from the National
Aeronautics and Space Administration (NASA) agency of the United States that
is widely used to identify terrestrial fires. This product provides information on
daily fires detected at latitude/longitude level across the world and has been re-
cently used to analyze agricultural fires in the economics literature (Behrer 2019).

FIRMS provides a few related products: Near-Real Time (NRT) fires using the
MODIS instrument aboard Terra and Aqua satellites, standard product from the
same instrument but with a 2-3 month lag and another NRT product using the VI-
IRS instrument from the Suomi-NPP andNOAA-20 satellites. Themain difference
between the first two and the third is the resolution of the data. MODIS products
are at 1 km resolution and are available from 2000 (more reliable from 2002 when
Aqua satellite was launched) whereas VIIRS products are at 375 m but only avail-
able from 2012. The primary analysis utilizes the MODIS standard product which
differs from the NRT data in that corrections are made to the imprecise location of
the Aqua satellite in the NRT data. Imagery data from Aqua and Terra satellites is
available at least four times daily for each pixel on Earth and is processed using a
NASA algorithm isolate a ground-level fire signal from other signals such as solar
flares.

I combine this data with information on land use from the European Space Agency

121



Climate Change Initiative’s land covermap (version 2.07).10 This allows the subset
of fires that is found on agricultural land to be separated from natural forest fires
since this paper is interested in agricultural fires. I aggregate and resample the
land cover data which is at a resolution of 300 m to the fire data grid (at 1 km
resolution), with an indicator for agricultural land use as the main output from this
process. All fires are thenmasked based on this indicator variable to find the subset
of agricultural fires.

3.3.2 Air quality

An important consideration for air quality data is complete geographical coverage.
Whereas ground-level monitoring station coverage in India is extremely sparse
(Greenstone and Hanna 2014), satellite imagery-based products provide complete
coverage. Secondly, ground-level observationsmay be susceptible tomanipulation
(Greenstone et al. 2022; Ghanem and Zhang 2014). Therefore, the main source
of data on air quality is Hammer et al. (2020), a gridded reanalysis product of
global surface PM2.5 concentrations at a resolution of 0.01∘ that should be much
less susceptible to such manipulation. This product combines satellite imagery
data on Aerosol Optical Depth with state-of-the-art chemical transport models, and
calibrates the output to global ground-based observations. It is easy to aggregate
the gridded product to the necessary resolution for analysis at pixel, city or district
level. Forthcoming sections will detail the aggregation procedure for each analysis.

3.3.3 GDP data

To estimate the impacts of PM2.5 on GDP, we would like data at the most gran-
ular sub-national level possible. While satellite-based data on PM2.5 levels are
available at a 1x1 km grid, output data are rarely available at such sub-national
scales. Fortunately, GDP measures at the district level in India between 2007-

10 Data is available at https://cds.climate.copernicus.eu/cdsapp/#!/dataset/satellite-land-cover
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2013 have recently been compiled by the International Crops Research Institute
for the Semi-Arid Tropics (ICRISAT) in their District Level Database (DLD).11 I
clean and combine these data with other district-level data using district identifiers
from ICRISAT and the Census of India, 2011.

3.3.4 Meteorological data

Hourly wind data are used to construct exposure to agricultural fires for every
origin-destination pixel pair. Details of the methodology follow in the section
3 below. The source of these wind data is the European Center for Medium
Range Weather Forecasting (ECMWF) ERA5 family of global gridded reanalysis
datasets.12. Reanalysis data combine ground-level observations and satellite data
with Chemical Transport Models that represent physical and chemical processes
in the atmosphere to produce reliable and complete coverage for the world. Since
ground-level observations are particularly sparse in developing countries these
reanalysis data are widely used in the literature on climate and air pollution in
Economics (Auffhammer et al. 2013) Hourly wind speed and direction data are
taken from the ERA5-Land hourly dataset which is available at a resolution of
0.1∘. These are combined with daily agricultural fires at the pixel level to construct
the fire exposure variable. Apart from being used to quantify the contribution of
distant residue burning on local air pollution, fire exposure also is an instrument
for pollution at the city and district level in estimation of certain elasticities. Fi-
nally, I also construct temporal averages for weather variables including rainfall,
temperature and relative humidity from this dataset to be used as controls in the
regression analysis.

11 http://data.icrisat.org/dld/src/crops.html
12 Data available at https://cds.climate.copernicus.eu
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3.3.5 Constructing instrument for air quality using agricultural fires

Since the laws push fires in Punjab and Haryana into November when there used
to be very few fires earlier, I only consider the month of November in constructing
this instrument. I capture the contribution of daily agricultural fires 𝐹𝑜𝑡 from 1x1
degree origin pixel 𝑜 on air quality in destination pixel 𝑑, at a distance of 𝑑𝑖𝑠𝑡𝑜𝑑

13,
in the month of November, as follows

𝜔𝑜𝑑 = ( ∑
𝑡∈𝑁𝑜𝑣

𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡 ∗ 𝐹𝑜𝑡
𝑑𝑖𝑠𝑡𝑜𝑑

) (3.1)

𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡 is the daily average fraction of time that the wind at 𝑜 blows towards
𝑑 on day 𝑡. In order to calculate𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡, I start by assigning each hourly wind
observation in 𝑜 on day 𝑡 into one of 36 bins of 10 degree span each, based on the
wind direction that hour (true north is 0 degree as in the figure). I then construct
the wind speed-weighted fraction of time the wind was blowing in each of these 36
bins by aggregating hourly observations for day 𝑡. 𝑤𝑖𝑛𝑑𝑓𝑟𝑎𝑐𝑜𝑑𝑡 is then calculated
by summing up wind fraction for the bins which are in the direction of 𝑑 from 𝑜 as
shown in figure 3.3.

I construct this instrument for various distances between origin and destination dis-
tricts.14 These are increased sequentially so that the distance that maximizes power
in predicting PM2.5 can be selected (Details in the next section of this estimation).
Yearly variation in the instrument is driven by two factors: (i) changes in the tem-
poral distribution of fires at origin and (ii) changes in the daily wind patterns at
origin during November.

Table 3.1 summarizes the main variables used in the analysis.
13The distance elasticity is assumed to be -1 but will be estimated using NLS
14Distances are calculated using district centroids.
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3.4 Research Design

3.4.1 Effect of policy on local fires

I utilize a difference-in-differences research design with fixed effects to test how
the groundwater conservation laws shifted the monthly pattern of fires. The out-
come variables in each district-month-year period from 2002 to 2020 are the count
of fires and the total strength of these fires as measured by the fire radiative power.
These are aggregated to the district-level to reflect the administrative unit at which
state policy is implemented in India. I estimate a Poisson fixed effects model to
recover the coefficient of interest, assuming the standard exponential link function
(Behrer 2019; Ranson 2014) for the count or measure of biomass burnt 𝐹𝑑𝑚𝑦 in
district d, month m and year y. The conditional expectation function given regres-
sors X𝑑𝑚𝑦 is as follows

E[𝐹𝑑𝑚𝑦|X𝑑𝑚𝑦] = 𝑒𝑥𝑝( ∑
𝑚∈[1,12]

𝛿𝑚 𝐷𝑑𝑚𝑦 + 𝛼𝑑 + 𝜏𝑠𝑚 ∗ 𝑌𝑦) (3.2)

where the RHS inside the exponential function contains X𝑑𝑚𝑦. Since the laws
came into force at the state-level in 2009, the treatment indicator 𝐷𝑑𝑚𝑦 turns on
for district-months in Punjab and Haryana in and after 2009. District fixed effects
𝐷𝑑 control for unobserved determinants of fires that do not change over time.
Comparison of fires within state-by-month cells (𝜏𝑠𝑦) flexibly controls for other
within-state determinants of fire seasonality such as different crop calendars, crop
mixes etc. that do not change over time. Year fixed effect 𝑌𝑦 controls for any com-
mon trends across the country (such as the country-wide increase in fires driven by
the Mahatma Gandhi National Employment Guarantee Scheme or NREGS docu-
mented by Behrer (2019)).

The count nature of the data and the nontrivial presence of zeros in the count data
motivate the use of a Poisson model. A log transform of 𝐹𝑑𝑚𝑦 would create bias in
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a linear model estimation whereas an inverse hyperbolic sine transform makes the
interpretation of the elasticity slightly more complicated (Bellemare andWichman
2020). Further, the Poisson FE model only requires that the conditional expec-
tation function be specified correctly for consistent estimation of the parameters
(Wooldridge 2010). It produces unbiased estimates of the coefficients even if the
fire data do not match the Poisson distributional assumptions (Wooldridge 1999a,
1999b; Lin and Wooldridge 2019). This is not true of other models that are used
to handle count data such as negative binomial (Blackburn 2015). I estimate this
model using quasi-maximum likelihood method through the fixest package in R
(Berge et al. 2022).15

Taking log of (3.2) yields the following

𝑙𝑜𝑔(E[𝐹𝑑𝑚𝑦|X𝑑𝑚𝑦]) = ∑
𝑚 ∈ [1,12]

𝛿𝑚 𝐷𝑑𝑚𝑦 + 𝛼𝑑 + 𝜏𝑚𝑦 (3.3)

Therefore the coefficients of interest 𝛿𝑚 give the monthly elasticity of fire count
to the policy. As with any difference-in-differences design, the main identifying
assumption for the 𝛿𝑚s is that trends in monthly fires would be similar between
treatment and control districts in the absence of the policy change. I discuss this
assumption in more details in the results section. Standard errors are clustered
two ways at the district and state-by-year level to account for the district-level
autocorrelation as well as implementation at the state-by-year level.

3.4.2 Effect of PM2.5 on GDP

This section describes the estimation of the causal impact of higher PM2.5 levels on
district GDP in India. I build up to an instrumental variables strategy for PM2.5
that allows the quantification of impact of the groundwater laws on downwind

15The Poisson model can be used with non-integer data such as the measure of biomass burnt as well, and the
strengths of the Poisson over other model when the data have nontrivial presence of zeros also holds (Wooldridge
2010)
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GDP. Before describing this IV strategy, equation (3.4) presents an OLS regression
model of the effect of PM2.5 on district GDP.

𝑙𝑜𝑔(𝐺𝐷𝑃𝑑𝑦) = 𝛽 𝑙𝑜𝑔(𝑃𝑀𝑑𝑦) + 𝛾 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 + 𝑔𝑑 ∗ 𝑡 + 𝛼𝑑 + 𝑌𝑦 + 𝜖𝑑𝑦 (3.4)

𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 = {𝑇 𝑒𝑚𝑝𝑑𝑦, 𝑇 𝑒𝑚𝑝_𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑑𝑦, 𝑅𝑎𝑖𝑛𝑑𝑦, 𝑅𝑎𝑖𝑛_𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑑𝑦,
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦𝑑𝑦, 𝑆𝑢𝑟𝑓𝑎𝑐𝑒_𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑑𝑦, 𝑊𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑑𝑦}

The quantity of interest 𝛽 is the percentage reduction in GDP for a 1% increase in
PM2.5 levels. This model contains district and year fixed effects𝐷𝑑 and 𝑌𝑦 respec-
tively, which control for fixed factors that raise productivity or increase pollution
as well as account for any common macroeconomic shocks. Weather variables
such as temperature, rainfall, humidity and wind speed are known to affect PM2.5
(Dechezleprêtre et al. 2019; Bondy et al. 2020). Therefore, I control for yearly
average weather that could determine the level of pollution from given emissions.

Themain residual concernwith identification of𝛽 in thismodel is that deviations of
GDP and PM can be jointly determined. Higher economic activity in a given year
can itself cause an increase in PM that year by increasing emissions. At the same
time, higher deviation in PM can stunt GDP growth that year through channels
such as increased worker morbidity and lower labor productivity

I adopt three approaches to tackle this endogeneity issue. Figure 3.4 shows that
GDP exhibits strong growth in this period and therefore is not stationary; between
2007-2013, average Indian GDP growth rate was 7%. First, I fit a district-specific
linear time trend 𝑔𝑑 ∗ 𝑡 in GDP. The time trend will capture district-specific factors
that cause constant GDP growth, leaving only deviations from the trend line in the
outcome. This approach can also help reduce omitted variables bias (OVB) that
jointly determines both GDP and PM2.5 (eg. demand shocks that affect certain
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districts). SuchOVB can cause the causal chain to run fromGDP to PM2.5, leading
to reverse causality that biases the estimate upwards, since an increase in economic
activity increases PM2.5 levels.

Secondly, I also conduct analysis using first differences (FD) that is the preferred
over fixed effects to deal with non-stationary, autocorrelated data series in both
outcome and explanatory variables. Further, an FD specification that also includes
a fixed effect allows for a district-specific linear growth rate 𝑔𝑑 in the outcome.
The FD approach is commonly used in the macroeconomic literature to deal with
serial correlation in aggregated GDP data. Equation (3.5) specifies the regression
framework for the FD model.

Δ𝑙𝑜𝑔(𝐺𝐷𝑃𝑑𝑦) = 𝛽 Δ𝑙𝑜𝑔(𝑃𝑀𝑑𝑦) + 𝛾 Δ𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑑𝑦 + 𝑔𝑑 + Δ𝑌𝑦 + Δ𝜖𝑑𝑦 (3.5)

This specification examines how the growth rate of PM2.5 affects the growth rate
of GDP, controlling for year-on-year changes in weather and common macroeco-
nomic conditions. The district fixed effect 𝑔𝑑 captures the constant growth rate
of GDP in these districts. But even with the FD design, there may still be some
OVB in the leftover variation, leading to reverse causality that biases the results
upwards.

The third approach utilizes the fact that the stock of pollution in a district is par-
tially due to sources outside the district, notably agricultural fires in this instance.
Using the instrument for PM2.5 defined in the previous section with both the panel
and FD specifications allows us to tackle the reverse causality challenge. Fires in
the winter are much worse for downwind PM due to meteorological conditions
that favor longer suspension and entrapment of particulate matter in the lower at-
mosphere of downwind districts. I also construct the same instrument with other
months separately and together for the whole year, and test the hypothesis that fires
in the winter are worse for PM2.5 in fire-exposed downwind districts. Before dis-
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cussing the results on the effect of PM2.5 on district GDP in section 3.5.3, I discuss
the results of this first stage in section 3.5.2, based on specifications in equations
3.4 and 3.5.

Inference would ideally be conducted using Conley spatial standard errors with ar-
bitrary autocorrelation at district level, given the spatial autocorrelation in PM2.5
and GDP levels. However, I am unable to implement these standard errors for
a panel data model with instrumental variables.16 Instead I cluster standard er-
rors at the region-year level, where regions are groups of contiguous districts that
share similarities in economic and geographic fundamentals such as level of de-
velopment, soil types, weather etc.17 In this case, the dependence of PM2.5 is
fundamentally spatial, and not administrative. In order to test whether clustering
at the level of the region is appropriate, I plan to conduct inference using a wild
cluster bootstrap later. I also plan to write code to calculate Conley standard errors
in a panel IV setting.

3.5 Results

3.5.1 Effect of groundwater laws on monthly fire patterns

To begin the results section, I refer to figure 3.2 that shows some growth in the fire
count and fire strength for November occurring just before the laws were passed in
2009, with a stronger trend upwards after the passage of the law, before stabilizing
by 2015 or so. This suggests some anticipation effects in November, since the
count of fires is trending up 2-3 years before the policy came into effect. These
anticipation effects can be attributed to the informal implementation of the policy
before 2009 that is discussed in section 3.2.1. This may have driven the shifts in
fire patterns by slightly delaying the cultivation dates before 2009, with formal

16 The R package lfe provides the command felm that implements Conley SEs with panel data; however it does not
produce these SEs with panel IV estimation.

17 There are 530 districts and 96 regions in the sample, so that there are 5.5 districts on average in each region. Each
district had an area of approximately 100 sq km, on average.
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implementation inducing a larger shift. The lack of pre-trends on October fires
combined with a downward shift after 2009 supports this view. Therefore, the
effect for November my be an underestimate.18

Table 3.2 presents estimates of the causal effect of these laws on monthly fires,
based on 3.2. Columns 1 and 3 provide the mean number of fires and measure
of biomass burnt in Punjab and Haryana, before the passage of these laws. Those
columns show peaks of fires during the months of April, October and November.
Fires in the latter two months are used to clear the monsoon season rice residue, as
described earlier. Fires in April are used to clear the wheat crop residue after the
harvest is done. The time pressure of needing to be rid of the rice residue before
wheat plantation that leads to the fires after monsoon rice harvest does not arise
after the wheat harvest. Yet we see substantial fire activity in April. This wheat
residue burning practice may have come about due to habit formation from setting
fires to the rice residue. However, it is less troublesome for downwind pollution
than are fires during early winter, since meteorological conditions in April do not
favor suspension of particulate matter over the plains of North India.

Turning to the results in columns 1 and 3 of table 3.2 now, the main result is that
the laws increase the log of expected fire count in November by 0.43, and log
of expected fire strength by 0.54. Estimates for October are negative, providing
evidence that the laws probably succeeded in pushing rice cultivation by a few
weeks to a month, and therefore peak fire activity into November. Estimates for the
other months except June and July are negative. For the months from December
to May, this would suggest a domino effect of the later rice cultivation on other
crop burning, since the entire crop calendar gets pushed back. The spring season
fire peak (from the wheat harvest) that used to happen in April and May seems to
shift slightly toward June and July, generating the positive estimates for those two

18 Given the recent literature on the bias of TWFE, I plan to test for conditional parallel trendswith anticipation effects
as well as the treatment effect of interest using the framework of Callaway and Sant’Anna (2021). Their approachwould
work well in this setting since they rely on never-treated units to estimate treatment effects. Therefore, I plan to utilize
their R did package to estimate these effects in the future, better accounting for anticipation effects.
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months. The negative estimates for August and September probably also come
from the enforced delay in rice plantation that would have affected some farmers
who would plant rice in earlyMay otherwise. Finally, since there are very few fires
to begin with in July, and since July happens to be the rainy season, the shifting of
the wheat fire season perhaps does not have the same consequences for downwind
pollution that the shifting of the rice season does.

I present robustness results to alternative specifications and sample selection in
table 3.A1. These include the following: OLS estimation rather than Poisson,
including fires data from 2000 and 2001,19 and limiting the analysis to the sample
for which GDP data is available.20 The results are consistent with table 3.2 in
all these robustness checks, with only the fire strength when limiting to the GDP
sample becoming insignificant. This lack of power could be due to the effects of
policy not having had enough time to accumulate by 2013 or to anticipation effects
just before 2009. It should certainly not be taken as an indication that the laws did
not increase November fire activity.

3.5.2 Effect of November fires on annual downwind pollution

Before turning to the causal effect of PM2.5 on district GDP, I discuss the effect
of fire exposure on district PM2.5 levels. These results are equivalent to the first
stage for the 2SLS results on GDP in the next section. As noted in the previous
sections, fires in the winter are particularly harmful for PM2.5 levels due to pre-
vailing meteorological conditions over North India that favor slower dispersion of
the particulate matter over space. Further, the groundwater laws pushed agricul-
tural fires in Punjab and Haryana toward November (early Winter). Therefore, I
focus on the effect of November fire exposure on PM2.5.

The construction of the explanatory variable log(Nov FRP exposure) is described
19 The NASA Aqua satellite was launched in 2002 and drastically improved estimates of fire activity in the FIRMS

database
20 530 district between 2007-2013
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in section 3.3.5. Referring to that section, variable𝐹𝑜𝑡 is the total fire strength mea-
sured by Fire Radiative Power (FRP) of all fires in district 𝑜 on day 𝑡 in November.
Certain fires can be stronger because more organic material is burnt, thereby pro-
ducing higher amounts of particulate matter. Therefore I use FRP to maximize
signal in the instrument relative to using count of fires.

Next, I implement various distance cut-offs on the exposure measure: origin dis-
tricts at a larger distance than the cut-off are not used to construct FRP exposure
for destination district. This is done for two reasons. Firstly, while wind fraction
times inverse-distance weighting21 captures some of the pollution decay over dis-
tance, it could miss out on some important features that govern decay, such as (i)
rainfall along the path, which can cause the “wet deposition” of particulate matter
(Vallero 2014) (ii) meteorological conditions along the path such as wind speed,
temperature and relative humidity that could also alter the trajectory or cause fur-
ther deposition out of the atmosphere and (iii) geographical features such as moun-
tains along the way. For this reason, I hypothesize that larger cut-offs could add
more noise to the instrument. Therefore, I test which distance cut-off maximizes
the within-R2, in order to quantify the trade-off between signal and noise when
increasing the distance cut-offs.

Table 3.3 shows results for cut-offs between 500 and 1000 km. In panel A, I present
results from a fixed effects model that includes a district-specific time trend, equiv-
alent to the first stage for equation 3.4. Panel B presents results from the first
difference model with district fixed effects in equation 3.5, therefore assuming a
district-specific trend in growth of PM2.5. Both these sets of results show strong
and robust elasticities of PM2.5 to November FRP exposure, peaking at a cut-off
of 900 km (for both the coefficient size and within-R2). The main result here is
that a 1% increase in November FRP exposure increases PM2.5 levels by 0.029%
(0.032%) with the FE (FD) model. It further illustrates the trade-off between sig-

21 The distance decay could be modeled through a distance elasticity different from -1 too. I plan to do this later.
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nal and noise when increasing distance to origin in constructing the instrument.22

Globally, 900 km maximizes within-R2 when explaining PM2.5 using Novem-
ber FRP exposure. I therefore use that as the preferred distance to construct the
instrument for PM2.5 in the next section.

Now, I address a concern that distance may be correlated with geographic deter-
minants of PM2.5 (and GDP later). Controlling for district fixed effects in these
regressions helps address that concern. But, distance also enters the instrument
itself non-linearly; it may be that the district fixed effect does not fully address the
issue. Therefore, I construct the instrument for each of these cut-offs by adding
up wind fraction-weighted FRP from qualifying origins without inverse-distance
weighting. Thus distance directly does not enter this instrument. Results for these
regressions are presented in appendix table 3.A2. They do not suggest any cause
for concern that distance entering the instrument non-linearly causes any bias in
the first stage.

Lastly, in appendix table 3.A3, I confirm that higher FRP exposure only from fires
during winter months affects annual PM2.5 levels. This can be explained by unfa-
vorable meteorological conditions during winter that cause the particulate matter
emissions from agricultural fires to stay suspended for longer. However, fires in
the winter months other than November are not affected by the groundwater laws
in Punjab and Haryana. Therefore, in order to quantify the effect of increased
November fires due to the laws later, I use only November-based FRP exposure
instrument in the analysis of the effect of PM2.5 on GDP in the next section.

3.5.3 Effect of PM2.5 on GDP

In this section, I turn to the impact of annual PM2.5 levels on annual GDP in Indian
districts in panel A of table 3.4. I present results with the fixed effects in columns
1-3, and with the first difference specification in columns 4-5. Column 1 presents

22 Results for regressions with a 100 km cut-off to no distance cut-off at all show an increasing within R2 until 900
km when they start dropping of monotonically.
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the OLS estimate controlling for weather and including district and year fixed ef-
fects, but without district-specific linear time trends. The coefficient is positive
and strongly significant. The causal effect of higher PM2.5 on GDP should be
negative, given the harmful effects on human health and productivity, and poten-
tial effects on agriculture and machinery. The positive coefficient suggests that
this specification is not sufficient to address the concern about omitted variables
that jointly determine GDP and PM2.5, such as yearly demand shocks that cause
higher GDP growth due to certain districts being more trade-exposed, for example.
Higher economic activity in that year would increase PM2.5 levels in that district,
and district fixed effects are insufficient to capture the co-movement of these vari-
ables. The estimate is biased upwards since the causal chain runs from GDP to
PM2.5 in such cases. The sample period witnessed very strong GDP growth in
Indian districts, making this a particular concern in this setting.

Column 2 presents results with the addition of a district-specific linear time trend
to reduce this concern. The coefficient turns negative now, although it is impre-
cise, suggesting that this time trend is able to reduce the upward bias from the
reverse causality of GDP to pollution. It also suggests the importance of includ-
ing such time trends for non-stationary GDP data when focusing on the effect of
jointly determined variables such as air pollution, as opposed to plausibly exoge-
nous variables such as temperature deviations (Dell et al. 2012).

Before discussing the 2SLS estimates in columns 3 and 5, I focus on column 4
which presents the first difference estimate along with a district fixed effect, in
effect assuming a district-specific trend in the growth rate of GDP. The coefficient
is -0.03 and significant at the 5% level. The FD specification works much better
with non-stationary data, and therefore this coefficient is less biased and also more
precisely measured than the fixed effects regression with time trends in column 2.

Both these approaches solve some of the omitted variable problem plaguing esti-
mation of the effect of PM2.5 on district GDP. However, any joint residual vari-
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ation from the trend still causes upward bias in the estimates. I turn to the instru-
mental variable strategy to address this residual concern. In column 3, I present
2SLS results from the fixed effects model with district-specific time trends, instru-
menting for PM2.5 using November FRP exposure with a 900 km distance cut-off.
The estimate is now much larger, although the IV also increases standard errors as
expected.

Panel B reproduces relevant first stage estimates from table 3.3. To test for weak
instruments, I also present two statistics below the first stage estimates. Stock and
Yogo (2005) suggest the use of the Cragg-Donald F-stat in a multivariate setting to
test for weak instruments, with a rule of thumb that a value less than 10 indicates a
potentially weak instrument. The Cragg-Donald F-stat is about 101.4; but this re-
lies on iid assumptions for the errors. Therefore, I also report the Kleibergen-Paap
(KP) F-stat which is equivalent to the robust F-stat with one endogenous regres-
sor, as in this setting. The F-stat of 25.3 is comfortably above 10, and therefore
concerns about weak instruments do not arise here.23

Column 5 presents the 2SLS results from the first difference model. The point
estimate is slightly larger than column 3, and is estimated much more precisely.
TheKP F-stat is 26.4, again comfortably larger than 10. I consider the specification
in column 5 as the preferred specification. These estimates suggest that increasing
PM2.5 levels by 1% in a given year has a large negative causal effect of 0.18% on
district GDP.

3.5.4 Quantifying the impact of groundwater laws on net GDP

The 2SLS estimates from the previous section can be used to estimate the effect
of the increase in November fires in Punjab and Haryana on net GDP. Variation in

23Andrews et al. (2019) recommend the use of the effective F-statistic (MOP F-stat) of Olea and Pflueger (2013)
in the case of a single endogenous regressor. This statistic is not easily calculated in any R or Stata package that
implements IV with panel data. However, Andrews et al. (2019) also note that with one single endogenous regressor,
the MOP F-stat is equivalent to the KP and robust F-stats. Therefore, the provided F-stat is the correct on to test for
weak instruments. In future versions of the paper, also plan to present identification-robust Anderson-Rubin confidence
intervals which are efficient regardless of the strength of the instrument.
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the instrument in the previous section comes fromNovember fires in all districts of
India, both before and after passage of the groundwater laws. Therefore, we cannot
interpret those estimates directly as the LATE associated with the laws. But we can
use the estimates from this paper to calculate the percentage loss in net GDP across
Indian districts in the following way.

Results from table 3.2 demonstrating that the laws increased November FRP in
districts of Punjab and Haryana by an average of 0.542 log points. This increase in
November FRPwould increase FRP exposure within 900 km of each district. Since
each Punjab and Haryana district sees the same proportionate increase in fires, and
the inverse-distance and wind fraction weights do not change,24 the proportionate
increase in FRP exposure for all districts within 900 km is the same. Using the
distance and wind fraction weights, this proportionate increase for each district
within 900 km is also 0.542 log points. The increase in PM2.5 from this 0.542
log points higher November FRP exposure is 0.542*0.032 = 0.0173 log points,
using the first stage estimate from column 5 of table 3.4. Finally, the proportionate
reduction in GDP for each district is 0.0173*(-0.179) = -0.0031 log points or -0.3%.

The same proportionate reduction in GDP for districts within 900 km can produce
different reduction in net GDP based on the initial GDP. This estimate for the av-
erage yearly impact of the groundwater laws on net GDP is -0.125%, 54.29 billion
Indian Rupees or 1.12 billion USD (2004 values). This estimate is based on the
530 sample districts only, assuming that November fire exposure is limited to 900
km.

3.6 Conclusion

This paper estimates the unintended consequences of groundwater conservation
laws in the two states of Punjab and Haryana on net Indian GDP, due to increased
air pollution in downwind districts. In order to arrive at the net impact, I esti-

24 I construct a 10-year average wind fraction for each day here
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mate three elasticities. First, I provide evidence that the groundwater conservation
laws shifted agricultural fire activity from late monsoon into early winter: biomass
burnt in November increased by 72% while it decreased in October by 57%. This
increased fire activity during winter more strongly affects PM2.5 levels because
lower wind speeds and temperatures along with scant rainfall favor longer suspen-
sion of particulate matter in the smoke plumes.

Second, to quantify the impact of higher November fires on annual downwind
PM2.5 levels, I construct a novel measure to summarize the exposure of each dis-
trict to all upwind fires in November. I show that this exposure measure predicts
4% of the year-to-year variation in PM2.5 within each district. Third, I estimate the
impact of higher PM2.5 levels on contemporaneous GDP. To solve concerns about
omitted variable bias/reverse causality and non-stationarity, I adopt an identifica-
tion strategy that relies on first differences to control for district-specific trends in
PM and GDP, with an instrumental variable that provides exogenous variation in
particulate matter. A 10% increase in PM2.5 levels in a given year reduces district
GDP in that year by 1.8%. With these three elasticities, I calculate the yearly im-
pact of increased PM2.5 levels due to the groundwater laws on net Indian GDP to
be 0.125%. This estimate does not include non-monetized impacts of this pollution
on health and well-being.

I have conducted some robustness checks that are presented in this chapter, and
plan to conduct more. There are also some limitations to this approach. First, the
estimate relies on the exposure instrument affecting downwind districts in accor-
dance with its structure. While a chemical transport model could do better in mod-
eling this relationship, it is much more resource-intensive to operate and may not
do especially well for seasonal sources such as agricultural fires. Second, it is not a
direct LATE of the legislation itself. It relies on the GDP elasticity of pollution that
is estimated using November fires both within and outside Punjab and Haryana. In
future work, I plan on directly estimating the impact of increased November fires
from the groundwater laws on downwind GDP by restricting fires sources to Pun-
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jab and Haryana, and leaving out districts outside North India that the exposure
instrument does not affect. While this would reduce power and potentially limit
external validity to the rest of India, it will also allow me to estimate more directly
the impact of groundwater laws on downwind GDP through exposure only to fires
in Punjab and Haryana. I also plan to

On a different note, I also plan to explore the mechanisms behind the impact of
the groundwater laws on net GDP, driven by the increase in November fires and
PM2.5. Does this decrease come from a reduction in industrial production or agri-
cultural output? Is the main channel the health and labor productivity impacts of
PM2.5? Can firms adjust to this increased pollution by either moving or reallo-
cating production to other months? One potential issue could be that legislation
may affect local GDP in Punjab and Haryana through the costly adaptation to the
laws themselves, biasing the estimates. Removing districts in these states from the
sample would solve that problem. However, fire exposure is also likely to have the
largest impact on PM2.5 on districts within these states and I prefer not to remove
those districts from the sample for that reason. Instead, I intend to utilize outcomes
such as the Index of Industrial Production that are not likely to be directly affected
by the groundwater laws.

These laws were intended to conserve critical groundwater aquifers that have de-
plted at an alarming rate. In this paper, I do not investigate whether the laws in-
creased groundwater levels, or quantify other benefits of this policy. I plan to do
these in the future too. But the unintended consequences of this policy were to
exacerbate the effects of agricultural fires on air pollution. Even though the use
of fires to clear fields of residue has large costs in India, a combination of factors
ranging from weak regulatory capacity or political capture by farm lobbies at the
macro level, to credit constraints or lack of trust among smaller farmers may be
responsible for this continued practice. By quantifying GDP losses in other states
due to the increased pollution from fires in Punjab and Haryana, this paper sug-
gests a mechanism whereby fiscal transfers from these downwind states affected
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by increased pollution could bemade to farmers in Punjab and Haryana as payment
not to burn (Jack et al. 2022).

The design of payments, specifically whether they should be upfront to allevi-
ate credit constraints and combined with more stringent monitoring and enforce-
ment, is another question for further research. While these payments go against
the “polluter pays” principle that may be more relevant for the farmers in Punjab
and Haryana, who are richer and have larger landholdings than the rest of India,
any workable solutions in such second-best environments should consider the ex-
isting political and regulatory distortions which make these payments a sensible
way to increase welfare. In the long term, incentivizing farmers to plant crops that
are more suitable to the available resources, priced appropriately, could be a more
sustainable solution.
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3.7 Figures and Tables

Figure 3.1: Count of fires in Indian districts (2010) ↩
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Figure 3.2: Trends in fire count and fire radiative power (2002-2020) ↩
(a) Fire count

(b) Fire radiative power
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Figure 3.3: Construction of the fire exposure instrument ↩

(a) Average wind directions at origin

(b) Direction from origin to destination

Note: The pink lines on top are fractions of time during the day when the wind was blowing in that bin.
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Figure 3.4: Trend in fire exposure, PM and GDP (2007-2013) ↩

Note: Growth from the 2007 baseline value of each variable is plotted
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Table 3.1: Summary Statistics

Variable N Mean SD Min Max

Panel A: Monthly Fire Measures and Groundwater Law (2002-2020)

Count of fires 143640 5.340 32.720 0 1148
Total Fire Radiative Power (mw) 143640 102.75 670.34 0 45044
Groundwater Law Dummy 143640 0.065 0.247 0 1

Panel B: Exposure to Upwind November Fires (FRP-based) with distance cut-off (2007-2013)

Nov FRP exposure, cut-off = 500 3731 35.167 86.607 0.020 675.725
Nov FRP exposure, cut-off = 600 3731 38.924 87.728 0.053 675.902
Nov FRP exposure, cut-off = 700 3731 42.431 88.123 0.063 675.920
Nov FRP exposure, cut-off = 800 3731 45.904 88.126 0.085 675.985
Nov FRP exposure, cut-off = 900 3731 49.451 87.799 0.087 676.289
Nov FRP exposure, cut-off = 1000 3731 52.759 87.268 0.164 676.300

Panel C: Annual Particulate Matter and GDP (2007-2013)

Mean PM2.5 (micrograms/m3) 3731 62.517 27.678 17.828 147.946
GDP (Billions of Rupees, Constant 2004) 3731 81.301 164.07 2.414 3728

Panel D: Annual Weather (2007-2013)

Mean Temperature (∘C) 3731 25.011 3.767 -10.369 29.847
Total Rainfall (mm) 3731 2165.9 430.47 0 2809
Mean Relative Humidity (Ratio) 3731 0.640 0.081 0.388 0.852
Mean Surface Pressure (kilo-pascal) 3731 96.85 4.946 56.460 100.83
Mean Windspeed (m/s) 3731 1.437 0.598 0.329 3.831

Notes: All data is at the district level. The sample consists of 530 districts, except for Panel A which consists of 630 districts (out of 640
census 2011 districts). The reduction is due to ICRISAT GDP data only being available between 2007-2013 for a subset of districts. ↩
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Table 3.2: Poisson Estimates of Impact of Groundwater Laws on Monthly Fires

Fire Count Fire Radative Power

Pre-2009 Pre-2009
Mean [SD] (1) Mean [SD] (2)

January 1.881 -0.749∗∗∗ 18.459 -0.746∗∗∗

[3.037] (0.137) [38.224] (0.154)
February 2.384 -0.659∗∗ 25.36 -0.809∗∗∗

[3.759] (0.278) [55.396] (0.218)
March 2.11 -0.529∗∗∗ 31.073 -0.771∗∗∗

[4.482] (0.145) [81.6] (0.154)
April 20.527 -1.09∗∗∗ 440.866 -0.789∗∗∗

[27.907] (0.260) [601.855] (0.266)
May 62.546 -0.430∗∗∗ 1330.916 -0.286∗

[72.912] (0.118) [1652.531] (0.157)
June 0.494 0.253 13.74 0.040

[1.306] (0.181) [55.281] (0.158)
July 0.149 0.542∗∗∗ 2.401 0.726∗∗∗

[0.524] (0.196) [9.039] (0.265)
August 0.36 -1.10∗∗∗ 6.031 -1.28∗∗∗

[1.077] (0.289) [19.759] (0.249)
September 4.625 -1.83∗∗∗ 58.319 -1.94∗∗∗

[10.988] (0.182) [143.641] (0.185)
October 192.287 -0.857∗∗∗ 2946.382 -0.855∗∗∗

[268.594] (0.118) [4473.063] (0.158)
November 49.846 0.429∗∗∗ 788.759 0.542∗∗∗

[130.006] (0.116) [2265.141] (0.159)

continued
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December 3.084 -0.600∗∗∗ 26.838 -0.526∗∗∗

[3.997] (0.162) [40.39] (0.175)

Observations 4018 140,372 4018 140,372
Pseudo R2 0.784 0.797
Years 2002-2018 2002-2018 2002-2018 2002-2018
Districts 41 630 41 630

State x Month FE X X
Year FE X X
District FE X X

Notes: Years 2002-2018. Columns 1 and 3 provide mean and
SD of fire count and fire strength before 2009 in Punjab and
Haryana. Columns labeled (1) and (2) provide Poisson estimates.
Standard errors are clustered at district and State x Year. *p<0.1;
**p<0.05; ***p<0.01. ↩
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Table 3.3: Impact of distance-weighted November fire exposure on PM2.5

Dependent Variable: log(PM)

(1) (2) (3) (4) (5) (6)

Panel A: Fixed Effects Model

log(Nov FRP Exposure) 0.011∗∗∗ 0.016∗∗∗ 0.022∗∗∗ 0.027∗∗∗ 0.029∗∗∗ 0.028∗∗∗

(0.004) (0.004) (0.005) (0.006) (0.006) (0.006)

Observations 3,731 3,731 3,731 3,731 3,731 3,731
Within R2 0.539 0.542 0.546 0.550 0.551 0.549

Panel B: First Differences Model

log(Nov FRP Exposure) 0.008∗∗∗ 0.009∗∗∗ 0.010∗∗∗ 0.031∗∗∗ 0.032∗∗∗ 0.031∗∗∗

(0.003) (0.003) (0.003) (0.006) (0.006) (0.006)

Observations 3,178 3,178 3,178 3,201 3,201 3,201
Within R2 0.171 0.172 0.173 0.197 0.197 0.193

Distance Cutoff [500 km] [600 km] [700 km] [800 km] [900 km] [1000 km]

Weather Controls X X X X X X
District and Year FE X X X X X X
District x Time Trend X X X X X X

Notes: Years 2007-2013. The sample is limited to districts for which GDP data is available. Each column of Panel A and B provides
estimates from the same regression specification but with a different distance cut-off when constructing the FRP exposure instrument.
Estimates in each panel are equivalent to the first stage for columns 3 and 5 in table 3.4. Standard errors are clustered at district and
Region x Year. *p<0.1; **p<0.05; ***p<0.01. ↩
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Table 3.4: Impact of Air Pollution (PM2.5) on GDP

Dependent Variable

log(GDP) Δ log(GDP)

(1) (2) (3) (4) (5)

Panel A: OLS and 2SLS Results

log(PM2.5) 0.147∗∗∗ -0.008 -0.159 -0.030∗∗ -0.179∗∗∗

(0.035) (0.016) (0.097) (0.014) (0.069)

Observations 3,731 3,731 3,731 3,201 3,201
R2 0.996 0.999 0.999 0.379 0.326

Weather Controls X X X X X
District and Year FE X X X X X
District x Time Trend X X

First Differences X X
2SLS Estimate X X

Panel B: First Stage Results

log(Nov FRP Exposure) 0.029∗∗∗ 0.032∗∗∗

(0.006) (0.006)
Cragg-Donald F-stat 101.4 116.5
Kleibergen-Paap F-stat 25.3 26.4

Notes: Years 2007-2013. The sample is limited to districts for which GDP data is available. Panel A,
columns 1-3, show estimates for both OLS and 2SLS regressions of log GDP level on log PM2.5, starting
without a time trend, then controlling for a time trend and finally conducting 2SLS with time trend. Columns
4 of panel A shows an OLS estimate using first differences while column 5 instruments for first difference of
log PM with first difference of log Nov Exposure (900 km cut-off). Standard errors are clustered at district
and Region x Year. *p<0.1; **p<0.05; ***p<0.01. ↩
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3.8 Appendix

Table 3.A1: Impact of Groundwater Laws on Monthly Fires in Punjab and Haryana - Robustness

Fire Count Fire Radative Power

(1) (2) (3) (4) (5) (6)

January -0.143∗∗ -0.747∗∗∗ -0.746∗∗∗ -0.164∗∗∗ -0.765∗∗∗ -0.918∗∗∗

(0.059) (0.133) (0.078) (0.054) (0.156) (0.080)
February -0.368∗∗∗ -0.737∗∗∗ -0.786∗∗∗ -0.407∗∗∗ -0.867∗∗∗ -0.949∗∗∗

(0.080) (0.252) (0.205) (0.077) (0.202) (0.229)
March -0.398∗∗∗ -0.668∗∗∗ -0.914∗∗∗ -0.500∗∗∗ -0.957∗∗∗ -1.27∗∗∗

(0.049) (0.142) (0.080) (0.057) (0.156) (0.137)
April -0.790∗∗∗ -1.06∗∗∗ 0.198 -0.735∗∗ -0.766∗∗∗ 0.028

(0.289) (0.254) (0.186) (0.335) (0.263) (0.183)
May -0.118∗ -0.534∗∗∗ -0.097 -0.072 -0.410∗∗∗ -0.086

(0.059) (0.118) (0.076) (0.072) (0.158) (0.080)
June -0.078 0.243 0.591∗∗∗ -0.233∗∗∗ 0.054 0.577∗∗∗

(0.052) (0.165) (0.170) (0.077) (0.157) (0.118)
July -0.152∗ 0.517∗∗∗ 1.20∗∗∗ -0.159∗∗∗ 0.698∗∗∗ 1.55∗∗∗

(0.076) (0.150) (0.401) (0.055) (0.220) (0.224)
August -0.495∗∗∗ -1.05∗∗∗ -0.035 -0.699∗∗∗ -1.25∗∗∗ 0.333∗

(0.082) (0.295) (0.070) (0.065) (0.254) (0.182)
September -1.09∗∗∗ -1.95∗∗∗ -1.42∗∗∗ -1.28∗∗∗ -2.07∗∗∗ -1.52∗∗∗

(0.258) (0.193) (0.144) (0.250) (0.195) (0.141)
October -0.223∗∗∗ -0.817∗∗∗ -0.380∗∗∗ -0.190∗ -0.821∗∗∗ -0.535∗∗∗

(0.074) (0.119) (0.070) (0.107) (0.159) (0.079)
November 1.05∗∗∗ 0.509∗∗∗ 0.238∗∗∗ 1.15∗∗ 0.613∗∗∗ 0.124
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(0.382) (0.120) (0.081) (0.430) (0.161) (0.091)
December -0.370∗∗ -0.677∗∗∗ -0.323∗∗ -0.359∗ -0.640∗∗∗ -0.355∗∗∗

(0.154) (0.157) (0.132) (0.178) (0.166) (0.103)

Observations 56,082 149,257 43,904 56,082 149,257 43,904
Specification OLS Poisson Poisson OLS Poisson Poisson
Years 2002-2018 2000-2018 2007-2013 2002-2018 2000-2018 2007-2013
Districts 630 630 630 630 630 630

State x Month FE X X X X X X
Year FE X X X X X X
District FE X X X X X X

Notes: Provides robustness checks for table 3.2. Columns 1 and 4 conduct OLS esti-
mation with log(fire count) and log(FRP) as the dependent variables. Columns 2 and 5
conduct the Poisson estimation with fires data from 2000 and 2001, when the fires are
less reliable. Columns 3 and 6 conduct Poisson estimation by restricting sample to data
from the 530 districts over 2007-2013 which have GDP data available. Standard errors
are clustered at district and State x Year. *p<0.1; **p<0.05; ***p<0.01. ↩
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Table 3.A2: Impact of November fire exposure without distance weighting on PM2.5

Dependent Variable: log(PM)

(1) (2) (3) (4) (5) (6)

Panel A: Fixed Effects Model

log(Nov FRP Exposure) 0.014∗∗∗ 0.021∗∗∗ 0.028∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.028∗∗∗

(0.004) (0.005) (0.006) (0.006) (0.006) (0.006)

Observations 3,731 3,731 3,731 3,731 3,731 3,731
Within R2 0.542 0.545 0.551 0.554 0.553 0.549

Panel B: First Differences Model

log(Nov FRP Exposure) 0.010∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.034∗∗∗ 0.033∗∗∗ 0.030∗∗∗

(0.003) (0.003) (0.003) (0.006) (0.006) (0.006)

Observations 3,178 3,178 3,178 3,201 3,201 3,201
Within R2 0.173 0.174 0.174 0.201 0.198 0.191

Distance Cutoff [500 km] [600 km] [700 km] [800 km] [900 km] [1000 km]

Weather Controls X X X X X X
District and Year FE X X X X X X
District x Time Trend X X X X X X

Notes: Years 2007-2013. Robustness to dropping distance from construction of exposure instrument in table 3.3. The sample is
limited to districts for which GDP data is available. Each column of Panel A and B provides estimates from the same regression
specification but with a different distance cut-off when constructing the FRP exposure instrument. Standard errors are clustered at
district and Region x Year. *p<0.1; **p<0.05; ***p<0.01. ↩
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Table 3.A3: Impact of distance-weighted Monthly fire exposure on annual PM2.5

Dependent Variable: log(PM)

Exposure Month Jan Feb Mar Apr May Jun

Panel A: Estimates for January to June

log(Monthly FRP Exposure) 0.007 0.017∗∗∗ 0.011∗∗ -0.002 0.007 -0.006∗∗∗

(0.006) (0.006) (0.004) (0.006) (0.006) (0.002)
Observations 3,731 3,731 3,731 3,731 3,731 3,718
Within R2 0.535 0.540 0.537 0.534 0.535 0.537

Dependent Variable: log(PM)

Exposure Month Jul Aug Sep Oct Nov Dec

Panel B: Estimates for July to December

log(Monthly FRP Exposure) -0.004 -0.002 0.003 -0.010∗ 0.029∗∗∗ 0.012∗

(0.003) (0.003) (0.003) (0.005) (0.006) (0.007)
Observations 3,697 3,726 3,730 3,731 3,731 3,731
Within R2 0.534 0.534 0.535 0.536 0.551 0.536

Distance Cutoff [900 km] [900 km] [900] [900 km] [900 km] [900 km]

Weather Controls X X X X X X
District and Year FE X X X X X X
District x Time Trend X X X X X X

Notes: Years 2007-2013. The sample is limited to districts for which GDP data is available. Each single column in Panel A and
B displays estimates for the regression of annual PM2.5 on exposure to fires during that month of the year only, using the same
specification as in table 3.3. Standard errors are clustered at district and Region x Year. *p<0.1; **p<0.05; ***p<0.01. ↩
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Chapter 4

Industrial Water Pollution and Agricultural
Production

4.1 Introduction

Pollution levels in low- and middle-income countries are often orders of magni-
tude worse than in high-income countries. Simple linear extrapolation suggests
the costs to health, productivity, and ecology could be high – and they could be
even higher if they are nonlinear, as some evidence suggests, with marginal costs
increasing in pollution levels (Arceo et al. 2016). Unfortunately, most causal ev-
idence on the costs of pollution comes from developed countries, with little basis
to extrapolate to developing settings. Water pollution in particular has received
less attention from both researchers and the public than air pollution. In India,
while regulation on air pollution may have reduced some air pollutants due to pub-
lic pressure, similarly strict regulation has not discernibly improved water quality
(Greenstone and Hanna 2014). Toxic white foam now forms annually on water
bodies in New Delhi and Bengaluru (Möller-Gulland 2018), and mass fish deaths
have become common (Vyas 2022).

Even in high-income countries, the social costs of water pollution have been chal-
lenging to quantify. While surveys show high levels of public interest in water
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quality, research has rarely found economically significant impacts of water pollu-
tion. This could be because the costs truly are low, or alternatively because water
pollution is especially difficult to study. Low quality and availability of pollution
measurements, the difficulty of modeling complex spatial relationships, and the
wide variety of distinct pollutants may have both inhibited research and attenuated
estimates that do exist (Keiser and Shapiro 2017).

This paper estimates the effects of industrial water pollution on agricultural pro-
duction in India. We study agriculture because several reasons suggest it could be
the site of large aggregate effects of water pollution. Agriculture uses four times
more water than all other sectors of the economy combined (FAO 2018), and ir-
rigation water is rarely treated before use, unlike drinking water. The agricultural
sector is also large and ubiquitous, so it can be found near virtually every source
of pollution. We focus on 71 industrial sites identified by India’s Central Pollution
Control Board in 2009 as “severely polluted” with respect to water pollution, out
of 88 sites selected for intensive study. India’s industrial clusters are home to some
of the greatest concentrations of industrial pollution in the world (Mohan 2021),
so if industrial water pollution matters anywhere, it likely matters here.

Our research design exploits the fact that water pollution, unlike air pollution, al-
most always flows in only one direction from its source. When industrial wastewa-
ter is released into a flowing river, it creates a spatial discontinuity in pollution con-
centrations along that river. Areas immediately downstream of a heavily polluting
industrial site will have higher pollution levels than areas immediately upstream,
yet they are likely similar otherwise. Thismakes upstream areas a reasonable coun-
terfactual for the downstream areas in studying the impacts of water pollution on
economic outcomes.

Importantly, we measure the overall effect of high-polluting industrial sites, rather
than specific pollutants. This approach allows us to sidestep the need to rely on wa-
ter quality monitoring data, which are generally plagued by noise, infrequency, low
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spatial density, and site selection bias. They are also difficult to summarize, since
industrial effluents can contain thousands of distinct elements and compounds.
Any of these could independently harm human, crop, or ecosystem health, but
each typically requires a separate laboratory test to measure.

To measure agricultural outcomes, our main analysis relies on satellite data. No
other data source is available at high enough spatial resolution to enable a spatial
regression discontinuity design; even in the United States, aggregate statistics are
too coarse and agricultural surveys too sparse. We use basic hydrological modeling
to define precise upstream/downstream relationships between industrial sites and
millions of pixels of satellite imagery. As proxies for agricultural output, we use re-
mote sensing products developed by earth scientists to measure vegetation density,
plant health, and metabolic activity. The measure we focus on is the normalized
differenced vegetation index (NDVI); we also examine two other measures but
find them to be noisier. All three have been shown to reliably predict crop yields
across a range of settings (Running et al. 2004; Burke and Lobell 2017; Lobell et
al. 2020, 2022; Asher and Novosad 2020). We also show in our context that NDVI
predicts agricultural output in aggregate statistics.

We show three sets of results. First, we quantify the water pollution released by
India’s “severely polluted” industrial sites, using the available monitoring station
data. We show that there is a large, discontinuous increase in water pollution at
these exact locations, raising prior levels of pollution in nearby rivers by 140%.
Second, we find that remote sensing measures of crop growth are lower down-
stream of high-polluting industrial sites, but only by 2.6 percent. The estimates
are precise; confidence intervals exclude differences of more than 5 percent. A
rough conversion implies that the sites reduce true crop yields by about 1 per-
cent, suggesting that even the localized effects of industrial water pollution are
small. Third, we document that farmers are neither substituting factors of pro-
duction away from agriculture nor applying additional compensating inputs. The
effects of being downstream on crop area, irrigation, labor, and population are
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small and statistically insignificant.

Our study focuses on crop yields and does not imply that industrial water pollution
is not costly. There are many types of potential social costs that we do not quantify,
including harm to ecosystems as well as to human health. Contaminated irrigation
watermay harm farmers and farm laborers who are exposed to it. Producemay take
up heavy metals or other toxins, harming consumers even if yields are unaffected.
These costs are outside the scope of this paper and important objects of future
research.

This paper contributes to the existing literature in four ways. First, it provides
among the first quasi-experimental evidence on any form of costs of industrial
water pollution. In recent papers on India, Do et al. (2018) study the effects of
industrial water pollution on infant mortality, while Brainerd and Menon (2014)
study the effects of agricultural water pollution to child health. In the United States,
Keiser and Shapiro (2017) study the effect of all water pollution on property values.
Most other economics literature on the costs of water pollution deals with domestic
water pollution in the context of providing clean drinking water. Second, this paper
documents economic costs of pollution to agriculture; to our knowledge only one
other paper does so quasi-experimentally, but in the context of air pollution Aragón
and Rud (2016). Third, it adds to the small but rapidly growing literature on the
costs of pollution in developing countries (Jayachandran 2009; Y. Chen et al. 2013;
Adhvaryu et al. 2022).

Finally, this paper contributes to a broader understanding of structural transforma-
tion and the relationship between industry and agriculture in developing countries.
Most existing literature focuses on input reallocation between sectors (Ghatak and
Mookherjee 2014; Bustos et al. 2016) , while this paper is among the first to doc-
ument a non-pecuniary externality from industry to agriculture.
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4.2 Background

4.2.1 Industrial water pollution and crop growth

Manufacturing plants like those in India produce a variety of waste chemicals
which, if untreated or insufficiently treated, will reach surface or ground water
systems. These chemicals include organic chemicals including petroleum prod-
ucts and chlorinated hydrocarbons; heavy metals including cadmium, lead, copper,
mercury, selenium, and chromium; salts and other inorganic compounds and ions;
and acidity or alkalinity. Many of these products are carcinogenic or otherwise
toxic in sufficient quantities to humans and other plants and animals.

Agricultural crops are no exception. Biologically, it is well known that plant
growth is sensitive to salinity, pH (i.e., acidity and alkalinity), heavy metals, and
toxic organic compounds. In addition, oil and grease can block soil interstices,
interfering with the ability of roots to draw water (Scott et al. 2004). Chlorine
in particular can cause leaf tip burn. Pollutants, especially heavy metals, harm by
accumulating in the soil over long periods of time, but they can also harm directly
through irrigation (Hussain et al. 2002). Agronomic field experiments confirm
reduced yields and crop quality from irrigation with industrially polluted water.
Experiments have found rice to have more damaged grains and disagreeable taste,
wheat to have lower protein content, and in general, plant height, leaf area, and dry
matter to be reduced (World Bank and State Environmental Protection Adminis-
tration 2007).

A few small case studies suggest that the findings of these field experiments extend
to real-world settings. Reddy and Behera (2006) found an 88% decline in culti-
vated area in a village immediately downstream of an industrial cluster in Andhra
Pradesh, India. Lindhjem et al. (2007) found that farmland irrigated with wastew-
ater had lower corn and wheat production quantity and quality in Shijiazhuang,
Hebei Province, China. Khai and Yabe (2013) found that areas in Can Tho, Viet-
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nam irrigated with industrially polluted water had 12 percent lower yields and 26
percent lower profits. History also suggests that crop loss from industrial water pol-
lution is not unknown to farmers; Patancheru, Andhra Pradesh sawmassive farmer
protests and a grassroots lawsuit in the late 1980s (Murty and Kumar 2011).

In contrast with industrial wastewater, domestic or municipal wastewater can
sometimes have positive effects on crop growth due to the nutrient value (Hussain
et al. 2002). This is especially true for treated municipal wastewater. However,
undiluted untreated wastewater can in fact have levels of nitrogen, phosphorous,
and potassium that are so high they harm crop growth, and it poses health risks to
agricultural workers, potentially reducing labor supply.

4.2.2 Remote sensing of crop yields

In order to quantify the effect of industrial water pollution on agricultural out-
put, the ideal data would be at a spatial resolution of tens of meters, similar to
the Cropland data layer from the US Department of Agriculture. However, the
most granular spatial extent over which Indian agricultural data is collected and
reported is the administrative unit of a district, an entity that is about 100 sq km
on average. This is far too large for our purposes since water pollution may get
diluted over distance; also, within-district sources of pollution may affect only part
of the district whereas the agricultural output data are for the district as a whole.
We solve this challenge by utilizing agricultural proxies from remote sensing data
that have been widely used in the scientific agronomic literature to measure crop
yields (Running et al. 2004; Burke and Lobell 2017; Lobell et al. 2022), and are
increasingly common within the economics literature as well (Asher and Novosad
2020; Lobell et al. 2020).

The two most commonly used and related vegetation indices (VIs) to proxy for
agricultural yields are the Normalized Difference in Vegetation Index (NDVI) and
the Enhanced Vegetation Index (EVI). These indices aim to capture the amount of
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photosynthetic activity in plants in the following way. The chlorophyll pigment
that gives leaves their green color absorbs much of the red light in the visible spec-
trum in healthy plants. Other cell structures of the same plant reflect most of the
near-infrared light in the invisible part of the electromagnetic spectrum. A healthy
plant with high photosynthetic activity due to high amounts of the Chlorophyll
pigment will reflect less red light and more near-infrared light. The NDVI pro-
vides a simple mathematical formula to compare these two reflectance values and
thereby establish the strength of photosynthetic activity in plant matter, indepen-
dent of other land cover. EVI is very similar but uses additional information from
the blue part of the electromagnetic spectrum to reduce atmospheric interference
and the influence of background vegetation (Son et al. 2014). NDVI is strictly
bound by the interval [-1, 1] whereas the EVI may have values outside that range,
although in practice this is rare.

These measures are both quite effective at crop classification tasks (Wardlow and
Egbert 2010). NDVI is known to predict well in developed country settings such
as wheat yields in Canada (Hochheim and Barber 1998); but importantly NDVI
and EVI have also been shown to predict Maize yields in smallholder settings in
Kenya (Burke and Lobell 2017), and to do better than farmers’ own self-reported
yields and at least as well as crop-cutting experiments and (gold standard) full-scale
harvests in Eastern Uganda (Lobell et al. 2020). These settings are closer to Indian
agriculture where smallholder farms are dominant in overall crop area cultivated.
We also confirm that these pixel-level NDVI data, when appropriately aggregated
to the district level, strongly predict agricultural yields from administrative data
during our sample period (Asher and Novosad 2020).

In addition to these vegetation indices, we also use another satellite-based proxy
known as annual Net Primary Production (NPP), an ecological variable that aims
to capture total plant biomass (Running et al. 2004).The NPP is based on the idea
that the total amount of solar energy absorbed by a plant minus energy lost through
growth andmaintenance respiration of the plant can be used to measure the amount
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of carbon per unit area sequestered within living plant biomass. Therefore, it is a
measure of the amount of carbon captured by plants in an ecosystem, after ac-
counting for losses due to respiration. Annual NPP has been to shown to correlate
with the NDVI (Tucker et al. 1985). We utilize the NPP as another proxy for agri-
cultural outcomes, and also verify its correlation with district-level administrative
data on agricultural yields.

4.3 Research Design

Point sources of water pollution, such as industrial clusters, present a natural set-
ting for a regression discontinuity design. Since water flows in only one direction,
pollution levels immediately downstream of the point source will be discontinu-
ously higher than pollution levels immediately upstream of the source.

Figure 1 illustrates this sharp discontinuity. It is an aerial photograph of one site
in our sample: the Nazafgarh Drain Basin on the Yamuna River just north of New
Delhi. The river flows from north to south and enters the image at the top with
a green color. In the center of the image, an industrial effluent channel meets the
river, discontinuously turning the river black. Although color is neither a sufficient
nor necessary condition for any specific pollutant, the color difference confirms the
presence of water from a different source, and color is correlated with water pol-
lution. Remote sensing measures, which include visible light as well as a broader
range of wavelengths, are becoming increasingly common in water quality moni-
toring (Gholizadeh et al. 2016).

4.3.1 Sample selection and treatment definition

The intuition for our research design is to compare agricultural outcomes in villages
downstream of heavily-polluting industrial sites to those in villages upstream of the
sites. While the basic idea is simple, defining which villages are “upstream” and
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“downstream” is conceptually challenging.

The first challenge is that to define “downstream” villages, we need to introduce
a channel of exposure through which river pollution reaches the villages. Geo-
metrically, the set of points downstream of a point source is a line – the path water
follows to reach the ocean – not an area. Possible exposure channels are through (a)
surfacewater irrigation, usingwater pumped directly from a river; (b) surfacewater
irrigation, using water from a canal that diverts water from the river; (c) ground-
water irrigation, using water pumped from underground aquifers that may have
been contaminated either through direct seepage or from surface water sources; or
(d) soil contamination, from groundwater in areas with high water tables. Each
of these exposure channels produces unique spatial patterns of treatment intensity,
depending on topography, geology, soils, infrastructure, and irrigation practices.

The second challenge is that there are many plausible ways to define an “upstream”
set of villages. One potential definition of “upstream” is the point source’s water-
shed – the land area that drains into that point. But if the point source does not
coincide with a river, its watershed may be small or nonexistent (imagine a plant
on top of a hill). Another potential definition is the watershed of a nearby river –
but which one? Stream networks are fractals and defining a “river” requires choos-
ing an arbitrary threshold. A low threshold may select a minor creek that results in
a very small sample of upstream villages. A high threshold may select a river that
is far away from the point source, raising the need to trace the path from source to
river, as well as the question of how to handle villages in between.

The third challenge is that if the downstream and upstream samples are selected
in asymmetric ways, they may not be good counterfactuals for each other. Our
goal is to create a single, unified process to select both downstream and upstream
villages, despite the inherent geometric asymmetry of the situation.

Our solution to these challenges is illustrated in Figure 3. This figure shows our
research design for one site in our sample: Bhillai-Durg, a major industrial city
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in the state of Chhattisgarh. The center of this industrial site is represented by
the orange dot. First, we follow the site downstream a short distance (25 km, to
the upper yellow dot). Second, we follow this point upstream into the uppermost
reaches of its watershed (to the lower yellow dot). Third, we find the downstream
flow path of this “headwater” point. This headwater flow path forms the base of our
analysis. We define our sample as all villages within 25 km of this flow path. We
define treatment status by projecting (snapping) villages and the industrial site onto
the headwater flow path, and calculating the flow distance between them along this
path. Villages are assigned to downstream if their projection is downstream of the
projected industrial site and upstream otherwise.

This approach has several advantages. It ensures the upstream and downstream
samples are comparable since they are chosen through a unified process. It ensures
a substantial sample of upstream villages, since we follow the industrial site’s flow
path downstream before finding the watershed. By keeping this distance short, we
retain the ability to measure effects within short distances of the industrial site. A
simpler approach might simply snap the point sources to the nearest major river
on a published map and conduct the same upstream-downstream comparison of
villages near that river (e.g., He et al. (2020)). But the nearest major river is
not always on the flow path, which may go in a different direction, depending on
topography. Our approach reduces measurement error by modeling the actual flow
path.

Our approach is agnostic as to the channel of exposure. It captures the aver-
age effect of being downstream of a heavily-polluting industrial site, regardless
of whether the pollution arrives through rivers, canals, or groundwater. We also
extend the main analysis in several ways to try to disentangle these channels of
exposure.

The main disadvantage of our approach is an ambiguity in treatment assignment
for a narrow range of villages immediately downstream of the projected industrial
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site. Industrial pollution likely enters the river (i.e., the headwater flow path) not
at the projected industrial site, but rather at the intersection point of the flow paths
from the industrial site and the headwater point. Villages in this range include some
that are likely affected by pollution (those near the flow path from the industrial
site), and also some that are likely unaffected (those on the opposite side of the
headwater flow path from the industrial site). Therefore, we plan to also check
whether our results are robust to a “donut hole” specification that excludes this set
of villages.

4.3.2 Regression discontinuity

Our main analyses estimate the causal effects of being immediately downstream
of a heavily-polluting industrial site. We estimate standard RD regressions of the
following form:

𝑦𝑖𝑠𝑡 = 𝛽𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑠+𝛾𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑠+𝛿𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑠×𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑠+𝛼𝑠𝑡+𝜀𝑖𝑠𝑡
(4.1)

in a sample consisting of the stacked upstream and downstream villages i corre-
sponding to each industrial site s, across all observed years t.

The coefficient of interest is 𝛽, the effect of being downstream of an industrial
site. The running variable is downstream distance along the river flow path, de-
fined such that each industrial site is at zero. Positive values indicate that a village
is downstream of the industrial site; negative values indicate that the village is up-
stream. We include site-by-year fixed effects 𝛼𝑠𝑡 so that the treatment effect at the
discontinuity is identified only using variation between upstream and downstream
observations for the same industrial site in the same year. For pollution outcomes,
all details are identical, except that 𝑖 represents a water quality monitoring station
instead of a village.
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We estimate local linear regressions on each side of the cutoff without higher or-
der polynomials, following Gelman and Imbens (2014). We report results using a
range of bandwidths with a minimum value of 25 km. Smaller bandwidths might
fail to include villages fully exposed to pollution, due to the way we construct our
sample. In future work we will implement the optimal bandwidth algorithm of
Calonico et al. (2020). We use a triangular kernel, which is optimal for estimating
local linear regressions at a boundary (Fan and Gijbels 1996). We cluster standard
errors by district (the administrative level below state) to account for correlation
across space and time. Clustering also accounts for repeated observations, when
the same village appears more than once in the stacked sample for different indus-
trial sites. Finally, we weight village observations by crop area so that our results
represent the treatment effects for the average acre of cropland, which is more
easily interpretable than effects for the average village.

To visualize the results, we plot smoothed binscatter graphs. To create these, we
first partial out site-by-year fixed effects by regressing 𝑦𝑖𝑠𝑡 on 𝛼𝑠𝑡, and add the
overall sample mean back to the residuals. We then plot means of these values
within quantile bins of distance relative to industrial site. We also fit piecewise
cubic splines to the values on each side of the graph. To provide fuller context, we
show these graphs for distance bandwidths wider than the bandwidths of our re-
gressions. Because the graphs are constructed differently from the regressions, we
omit confidence intervals and leave statistical inference for the regression tables.

The identifying assumption for this RD design is that the upstream patterns in pol-
lution and agricultural outcomes would have continued smoothly downstream if
the industrial site did not exist. Our samples represent continuous swaths of land
area, making it a priori unlikely that there would be discontinuities in either river
pollution or agricultural outcomes. One way the assumption would be violated
is if industrial sites were strategically located downstream of the best agricultural
land. Most of the sites in our sample are part of cities and towns that arose through
usual agglomeration processes, and we can test for discontinuities in land quality.
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Another way the assumption would be violated is if there is sorting of agricultural
inputs or farmers themselves. Migration and/or disinvestment in downstream ar-
eas is possible, and we can test for it. These resources are unlikely to shift to the
areas immediately upstream, rather than urban areas elsewhere, given India’s rigid
land and labor markets (Hsieh and Klenow 2009; Duranton et al. 2016).

4.3.3 Limitations of temporal variation

While our regressions include repeated cross-sections of data, they do not use tem-
poral variation for identification. In principle, using village or monitoring station
fixed effects would allow us to control for unobserved time-invariant factors, im-
proving the credibility of our design. Unfortunately, using temporal variation is
impractical for several reasons.

One, the starkest variation in our context is spatial, not temporal. Our causal iden-
tification is based on the location of industrial sites, which are extremely persistent
and have not changed for decades. Most of these sites have grown over time, but
this growth is correlated across sites over time as India has industrialized, leaving
little useful variation. Two, available measures of industrial plant growth are noisy.
The Economic Census gives the number of, and employment in, high-polluting
plants in a town or village, but is known to suffer from data quality limitations
(Bardhan 2013). Three, pollution itself cannot be used as an independent variable
without an instrument. Pollution concentrations are strongly affected by changes
in runoff (as varying volumes of water dilute the same pollution load), which itself
strongly affects agricultural production through availability of irrigation water.

Last, the timespan of pollution transport is unknown, and we want to capture the
effects of pollution through all possible channels. For example, diffusion through
groundwater can take years, decades, or more. Using temporal variation would
rule out these channels of transport that take longer to operate. We instead estimate
the long-term cumulative effects of location relative to highly polluting industrial
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plants.

4.4 Data

4.4.1 Sources

4.4.1.1 Industrial sites

The Central Pollution Control Board (CPCB) selected 88 industrial sites for de-
tailed, long-term study in 2009. Names of these sites were taken from the CPCB
document (Central Pollution Control Board 2009a). We identified the geolocation
of each site using Google Earth and other publicly available reference information.
These sites are displayed as orange dots in Figure 2.

The CPCB document also contains numerical scores for air, water, and land pollu-
tion, and an overall score, each out of 100. Details of the scoring methodology are
provided in the companion document Criteria for (Central Pollution Control Board
2009b). The CPCB considers a site “severely polluted” if the score for a single
pollution type exceeds 50, or if the overall score exceeds 60 (the overall score is a
nonlinear combination of the component scores). Sixty-three sites received such a
“severe” rating in water pollution in 2009; these constitute our sample.

4.4.1.2 Pollution measurements

We use a rich dataset of water pollution measurements along rivers in India col-
lected by the Central Pollution Control Board, as collected and published byGreen-
stone and Hanna (2014). This dataset includes monthly observations from 459
monitoring stations along 145 rivers between the years 1986 and 2005. We extend
this data set by downloading yearly pollution readings for the same stations from
2006-2012 from the Cental Pollution Control Board’s website. Then we construct
yearly averages for the pre-2005 data and append these to the newly downloaded
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data.

This raw dataset includes a noisy location measure as well as river name and a
description of the sampling location. We verified, refined, or corrected the ge-
olocation of each station by manually cross-referencing these contextual variables
with Google Maps, CPCB documents, and other publicly available reference in-
formation. The locations of these stations are displayed as green dots in Figure
2.

Many water quality parameters have been collected by the CPCB at some point.
However, only a few parameters are measured consistently. We focus on chemical
oxygen demand (COD), a standardized laboratory test that serves as an omnibus
measure of organic compounds, which industrial plants typically generate in high
quantities. Along with the related but narrower test of biochemical oxygen de-
mand (BOD), COD is the Indian government’s top priority in regulating industrial
wastewater (Duflo et al. 2013). We also report three other widely reported mea-
sures: BOD, dissolved oxygen (DO), and electrical conductivity (EC), a measure
of salinity.

None of these measures directly measure inorganic pollutants like heavy metals,
which, physiologically, are leading candidates for harming crop growth. Unfor-
tunately, heavy metals are measured in less than three percent of observations.
Another limitation is that these measures do not exclusively measure industrial
pollution; they can also indicate the presence of domestic or municipal pollution
(i.e., untreated sewage). Because many industrial sites are located in cities, they
may be coincident with domestic pollution, confounding the interpretation of our
results as being driven by industrial pollution. However, another consistently mea-
sured water quality indicator is fecal coliforms, a count of the number of certain
types of bacteria that originate from human waste. Because fecal coliforms are
overwhelmingly produced by domestic pollution, not industrial pollution, partial-
ing out fecal coliforms from COD should leave only the component of COD that
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is not produced by domestic pollution, i.e., industrial pollution. Therefore in some
specifications we control for fecal coliforms.

4.4.1.3 Agricultural outcomes via remote sensing

As discussed in the background section, we utilize remote sensing data to construct
measures of agricultural outcomes. All of our remote sensing data retrieval and
processing are carried out within the Google Earth Engine. For the NDVI and EVI
calculations, we utilize data from the Landsat 7 satellite launched by NASA and
operated by the US Geological Survey (USGS). The temporal coverage of Landsat
7 from 1999 onward suits our analysis better than the newer Landsat 8 that was
launched in 2013. Landsat 7 covers each point on earth every 16 days, thereby
providing an image of the globe at that frequency. The spatial resolution of 30m
of Landsat 7 is also superior to the 250m resolution of the Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument aboard NASA’s Terra satellite,
data from which are also commonly used to calculate these vegetation indices.
We utilize the Surface Reflectance product that is recommended for constructing
vegetation indices since it includes atmospheric corrections for aerosols, and apply
the quality assurance mask that indicates cloud cover over the pixel (Young et al.
2017). We also apply an agricultural land use mask from the Copernicus Global
Land Service (CGLS) to ensure that only pixels where agricultural activity is being
carried out are included in the sample.

The Net Primary Production measure is non-trivial to calculate. Therefore, we rely
on the pre-calculated MOD17A3HGF.006 product based on the MODIS instru-
ment aboard the NASA Terra satellite. These data are available at 500m resolution
at an annual frequency, representing the total amount of carbon sequestered in the
plant biomass on each pixel. We also apply the agricultural land use mask from
CGLS to this product.

We spatially aggregate these pixel-level data to the village-level to match with
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Population and Economic Census data to conduct our main analysis. Since the
NPP is an annual measure for the pixel, we spatially average it to the village-level
and then apply the log transform. In order to conduct the aggregation for NDVI
and EVI, we first calculate the pixel-level difference in themaximum andminimum
values of the two vegetation indices. The idea here is to measure yearly changes
in greenness that could be larger for cropland due to the use of inputs, similar to
Asher and Novosad (2020). These differenced measures are then log-transformed
for easier interpretation. We also utilize the same two indices provided by Asher
and Novosad (2020) who did not apply the cropland mask in their calculation.1 We
end up with 5 different remote sensing proxies for agricultural output at the village-
level: the Google Earth Engine (GEE) NDVI, EVI and NPP that we calculate, and
the SHRUG NDVI and EVI that we download.

4.4.1.4 Agricultural outcomes in aggregate data

We rely on aggregate measures at the district level in India compiled by the Interna-
tional Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in their Dis-
trict Level Database (DLD). 2 This data contains information on crop area planted,
output and prices for all the main crops as well as some peripheral crops. Price data
is available for 16 crops, covering about 79% of all area under cultivation. This
data contains 571 districts across 20 states from 1990-2015 for the agricultural year
that runs from July 1 to June 30.

Our primary outcome of interest is agricultural revenue. To calculate this, we mul-
tiply the quantity of each of 16 crops available in the dataset by the mean price for
that crop in that district between 1990-2002. For districts without price data, we
impute the state mean if available or the national mean otherwise.

1 Available for download from the SHRUG platform.
2 http://data.icrisat.org/dld/src/crops.html
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4.4.1.5 Village shapefiles and covariates

Shapefiles for villages and towns in the Population census of 2001 are not publicly
available, although covariate data on more than 200 variables indicating employ-
ment, population, ameneties and infrastructure are provided on the census web-
site. We download shapefiles cleaned and provided in the ‘Indian Village-Level
Geospatial Socio-Economic Data Set, v1’ by the Socioeconomic Data and Appli-
cations Center run by NASA and hosted by Columbia university.3 These shape-
files come with the various census covariates included in the data. We find village
centroids from the polygons.

Boundaries of villages and towns may change over time. Here we rely on the
Socioeconomic High-resolution Rural-Urban Geographic Platform for India
(SHRUG) provided by the Development Data Lab.4 The SHRUG provides an
identifier called a ‘shrid’ for a group of contiguous villages or towns that can be
combined into unchanged spatial entities over three population censuses (1991,
2001, 2011). Village/town level administrative data from various censuses and
surveys can be linked to each shrid, after aggregating over the appropriate spatial
extent. Almost 96% of villages from the 2001 population match a single shrid,
therefore not needing any spatial aggregation over village polygons or adminis-
trative data. For the rest of the villages, we dissolve the polygons boundaries to
obtain the shrid boundaries, and aggregate administrative data over the villages
within each shrid.

Some baseline village covariates and outcomes are summarized in table 4.8. We
use more covariates to test for continuity at the RD threshold later on. These in-
clude, but are not limited to, total population and area of the village; irrigated area
(gross irrigated area per gross cropped area, percent); river, canal and groundwater
specific measures of the previous variable; and land cropped (net cropped area per

3 Available at https://sedac.ciesin.columbia.edu/data/set/india-india-village-level-geospatial-socio-econ-1991-
2001

4 Available for download at https://www.devdatalab.org/shrug_download/
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total district area, percent).

4.4.2 Hydrological modeling

We use the following procedure to match villages and pollutionmonitoring stations
to industrial sites and assign river distances and treatment status.

Flow length raster. We obtain a digital elevation model (DEM) at 15 arc-second
resolution for the South Asia area from the HydroSHEDS project of the United
States Geological Survey. From this DEM, we use the Spatial Analyst tools in
ArcGIS Pro to fill sinks, create a flow direction raster (using the D8 method), and
derive a flow length raster. This raster gives the distance along rivers that a particle
released at each cell must travel to reach the ocean (or the edge of the raster).

Headwater points. To generate a “headwater” point for each industrial site, we use
the Trace Downstream tool in ArcGIS Pro (from the Ready to Use Hydrology
toolset) to find the flow path of each industrial site. This flow path is the route
that effluent released at the site must follow to reach the ocean. We then find
the point on this flow path that is 25 km downstream of the site. Next, we use the
Watershed tool (in the sameArcGIS Pro toolset) to find the area that drains into that
point. We find the flow lengths of all villages within this watershed by intersecting
the watershed polygon with village centroids and matching village centroids to the
flow length raster. We identify the longest possible flow path within this watershed
by choosing the village at the 95th percentile of flow length within this set. We
choose the 95th percentile instead of the maximum to avoid erroneous values that
sometimes arise at the edges of the watershed polygons.

Sample selection. To define the sample of villages for each industrial site, we find
the flow path of each headwater point (again using the Trace Downstream tool),
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generate a 25-km buffer around each flow path, and intersect this buffer with vil-
lage centroids. The distance of 25 km represents an estimate of how far away from
the river pollution is likely to travel. We use alternative buffer widths in robustness
checks.

Village distance and treatment status. To calculate distances for the RD design, we
project all village centroids, industrial sites, and monitoring stations into one-
dimensional river space. Specifically, we snap all these points to the nearest point
along the headwater flow path. We then find the flow length (i.e., to the ocean)
of each snapped point by matching it to the flow length raster. We construct dis-
tance, the running variable, as the difference in flow lengths between each village
or monitoring station and the corresponding industrial site. We also construct a
downstream indicator variable equaling one if the distance variable is positive,
meaning that the village or station is downstream of the industrial site.

4.4.3 Continuity tests and summary statistics

We provide summary statistics in Table 4.8 for our main outcome variables on
pollution and agricultural output, and in the first column of Appendix Table 6 for
covariates.

To assess the credibility of our research design, we test a range of covariates for
continuity at the threshold of being downstream of the industrial site. If the identifi-
cation assumption is true, we should not see any discontinuous jumps in the values
of other village characteristics that are fixed or unlikely to be affected by pollution.
We test for continuity by running RD regressions in the form of Equation 1 with
each covariate on the left-hand side. For the RD design, covariate means do not
need to be equal upstream and downstream; they only need to vary continuously
as the river passes the industrial site.

We group covariates into several categories. (1) physical characteristics, (2) poten-
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tial yields estimated for common crops, (3) commercial and public amenities, and
(4) demographic characteristics. Physical characteristics and potential yields are
time-invariant and cannot be affected by water pollution, so they are the “purest”
tests. In contrast, amenities and demographics could potentially respond to water
pollution if the economic impacts are large enough. For these variables, a dis-
continuity could represent a genuine outcome rather than evidence of pre-existing
difference. Still, we include them because they are important characteristics of vil-
lages and we expect any endogenous response to be small compared with overall
patterns.

Figure 4 shows visual evidence of continuity for a selection of these covariates.
For context, we first plot a histogram of village observations. The usual density
test of McCrary (2008) is unnecessary since our sample is based on land area,
which by definition has a continuous density in space; villages cannot manipulate
their locations relative to the cutoff. Other plots in Figure 4 suggest that elevation,
potential yields (standardized and averaged across crops), distance to nearest canal,
village population, and share of population in scheduled castes and scheduled tribes
are all roughly continuous.

Standard errors and RD point estimates for these covariates and many others are
shown in Appendix Table 6 using a range of bandwidths. Across the 31 variables
and 3 bandwidths we test, few coefficients are statistically significant. Taken to-
gether, there is little evidence to suggest that agricultural outcomes would be dif-
ferent immediately downstream of the industrial sites if they did not exist. It also
does not appear that commercial and public amenities or demographic character-
istics of villages are affected by being downstream of these industrial sites. In
robustness checks, we control for all these covariates.
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4.5 Results

4.5.1 Pollution

We first show that the industrial sites considered “severely polluted” by the Cen-
tral Pollution Control Board do in fact increase pollution levels discontinuously
in nearby rivers. The amount of water pollution released by these sites has not
previously been quantified in publicly available sources.

Figure 5 visualizes our main results for pollution. It shows regression discontinuity
plots for the four water quality parameters that are both widely reported and associ-
ated with industrial pollution: chemical oxygen demand (COD), biological oxygen
demand (BOD), dissolved oxygen (DO), and electrical conductivity (EC). These
graphs plot mean values of each parameter within quantile bins of distance from
the industrial site; each dot represents approximately 260 observations. Positive
distance values indicate that the monitoring station is downstream of the industrial
site, and negative values are upstream stations. Before binning, values are log-
transformed and adjusted for site-by-year fixed effects. We also fit nonparametric
curves to show overall patterns.

All four parameters show a discontinuous increase in pollution at the exact loca-
tion of the industrial sites. COD, BOD, and EC all increase; these parameters are
undesirable, with higher levels indicating worse water quality. The decrease in
DO also indicates an increase in pollution; this parameter is desirable, with lower
levels indicating worse water quality. The shapes of these graphs also show that
water pollution dissipates as the river flows downstream. For all four parameters,
pollution is highest immediately after the industrial site. It then steadily falls and
rejoins the trend implied by the upstream curve at a distance of 100 to 200 km from
the industrial site. (The noisy declines after 200 km are likely caused by unmod-
eled factors or compositional changes in the density of monitoring stations across
industrial sites.)
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Table 2 quantifies these results. It reports RD estimates from separate regressions
for each parameter, for bandwidths of 25, 50, and 100 km. Dependent variables
are listed in rows; each cell shows the estimated coefficient on the Downstream
indicator variable, controlling for distance on each side of the industrial site along
with site-by-year fixed effects.

The estimates are quantitatively large. For example, the estimate of 0.883 for COD
(with a 50-km bandwidth) implies that the average “severely polluted” industrial
site increases pollution in nearby rivers by 140% (𝑒0.883 − 1). Estimated disconti-
nuities are statistically significant for larger bandwidths (50 and 100 km for COD
and 100 km for other parameters at a 95% confidence level, as well as 50 km for
all parameters at a 90% confidence level). They are not significant for a bandwidth
of 25 km, but this is due to a lack of precision. The point estimates remain very
similar across bandwidths, while standard errors shrink as bandwidths increase and
more data enters the sample.

4.5.2 Agricultural outcomes

Having shown that industrial sites increase pollution, we investigate how this pol-
lution affects agricultural production in downstream villages, using our proxy vari-
ables derived from satellite data.

Figure 6 visualizes our main results for agricultural production. It shows similar
RD plots as for pollution, but using observations at the level of village-by-year,
instead of station-by-date. None of these plots show an obvious discontinuity at
the industrial site. Despite increasing water pollution drastically, industrial sites do
not seem to affect downstream vegetation indices, suggesting they do not reduce
crop yields. This is true whether we use NDVI or EVI as the outcome measure,
or whether we use the cropland-masked indices (from GEE) or the whole-village
indices (from SHRUG).

Table 3 quantifies these results. As before, it reports RD estimates for the outcome
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variables listed in each row for multiple bandwidths (in columns). We show five
outcome variables, all log-transformed for a percentage interpretation: cropland-
masked NDVI, whole-village NDVI, cropland-masked EVI, whole-village EVI,
and net primary productivity (NPP). The NDVI and EVI measures are differenced
to adjust for off-season normals; NPP is a cumulative measure based on the whole
year.

Cropland-masked NDVI yields the most precise estimates. (All coefficients repre-
sent the effect of a binary treatment variable on a log-unit outcome variable, so their
standard errors can be compared directly.) The estimate for a 50-km bandwidth is
−0.026, implying that NDVI is 2.6 percent lower immediately downstream of a
severely-polluting industrial site. Even clustering conservatively by district, the
95% confidence interval allows us to reject a decrease in NDVI greater than 5 per-
cent, as well as any increase in NDVI. Other measures are less precise but broadly
consistent. None of the point estimates is positive, none is larger in magnitude
than −0.047, and all 95% confidence intervals exclude reductions of more than 12
percent.

How do these proxies translate to crop yields? We can conduct a back-of-the-
envelope calculation using results from Appendix Table 5, in which we regressed
district-level agricultural output on the vegetation indices. We found that a 10-
percent increase in cropland-masked NDVI predicts a 3.7 percent increase in crop
revenues per acre (using state and year fixed effects in row 1, column 2). If this
relationship holds equally for all sources of variation in NDVI and revenues, then
a decrease in NDVI of 2.6 percent would imply a decrease in crop yields of 1.0
percent.

4.5.3 Agricultural inputs and economic outcomes

We next look at whether farmers adjust other agricultural inputs in response to in-
dustrial water pollution, and whether there is any evidence of follow-on economic
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impacts of pollution. Effects on agricultural inputs can provide a fuller description
of the potential costs of pollution. Even if crop yields are not harmed much, that
may be a net result of costly adaptation choices, as farmers reallocate factors of
production toward agriculture in order to maintain crop yields.

Table 4, Panel B reports RD estimates for a set of agricultural inputs. Labor, as
measured by the share of employment in agriculture, does not change immediately
downstream of severely-polluting industrial sites (the point estimate is small and
not statistically significant). Neither does land, as measured by crop area under
cultivation. Irrigation plausibly might either increase to compensate for damage
from pollution or decrease because the water itself is harmful, but that does not
appear to happen overall (share of crop area under irrigation) nor for any particular
source (share of irrigation from rivers, canals, or wells).

Table 4, Panel A reports RD estimates for two follow-on economic outcomes.
Per capita expenditure does not appear to decrease downstream of industrial sites.
There is weak evidence that the rural poverty rate falls, but the magnitudes are
small and insignificant for most bandwidths.

4.6 Explanations

It may be puzzling that near some of the largest point sources of industrial water
pollution in the world, crops seem not to be harmed more than 1 to 3 percent.
We propose six potential explanations for our results and attempt to evaluate them
using available evidence.

Pollution effects are highly localized. One possibility is that the effects of pollution
are concentrated in an area too small for even our highly targeted research de-
sign to detect. In particular, our analysis includes all villages within 25 km of the
flow line; perhaps this radius is too large. In future work, we will test robustness
to varying this radius and estimate heterogeneous treatment effects for different
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width bins around the flow line. However, one implication of this explanation is
that if pollution effects are highly localized, the aggregate effects of pollution are
probably not very large.

Industrial pollution has beneficial components that balance the harms. Industrial effluent
often includes salinity, heavymetals, and other components that are known to harm
crops. However, they can also include nitrates, phosphates, and potassium, which
can benefit plants as nutrients. It is possible that the net effects of industrial effluent
are near zero, even if individual components have positive and negative effects.
It is also possible that our estimates, which average over across industrial sites,
mask heterogeneity across sites. In future work, we will estimate heterogeneous
treatment effects by site and investigate whether the limited pollution data can shed
any light on the differences in pollutants across sites.

Estimates are confounded by beneficial municipal water pollution. Municipal wastewa-
ter that is less than completely treated also contains high concentrations of com-
pounds that can serve as fertilizer for crops. (It also can contain disease-causing
microorganisms, but these only affect human health, not plant growth). For in-
dustrial sites located in cities, our estimates might pick up the effects of municipal
wastewater in addition to the effects of industrial pollution. The net effect of both,
again, might be near zero. In future work, we will identify cities using population
density and fecal coliform measurements and estimate heterogeneous treatment
effects by whether the industrial site is colocated with a city.

Pollution harms output quality, not quantity. It is possible that industrial water pollu-
tion does harm crops, but only in ways that affect crop quality rather than quantity.
For example, a crop such as rice might absorb heavy metals, bringing adverse
health effects to consumers but leaving yield unaffected. Obvious quality effects
may capitalize into prices; other quality effects may not. In future work, we will
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test for impacts to crop prices in aggregate data, as well as local human health.

Remote sensing proxies are unable to detect yield effects from water pollution. Despite
a range of papers in both the economics and scientific literatures that have found
satellite-derived vegetation indicies to be useful proxies for crop yields and agricul-
tural output, many questions and uncertainties remain about their capabilities. One
possibility is that NDVI and EVI are simply not well-suited to pick up the effects of
industrial water pollution on crops. This could be because water pollution affects
crops in ways that do not show up in remote sensing measures, although many of
the agronomy studies on water pollution do specifically report negative impacts
to leaf size and color, characteristics that vegetation indices are well-tailored to
measure. It may also be possible that farmers adjust crop choice in response to
pollution exposure, even though we do not see other inputs change. NDVI and
EVI are affected by vegetation type in addition to crop health, so if farmers switch
to new crops with greater baseline biomass or leaf canopy, it could offset the direct
harms from pollution.5

Harm to crop yields truly is small. If none of the previous five explanations is true,
then the chief remaining possibility is the simplest one implied by our results: that
industrial water pollution does not reduce crop yields very much. Perhaps even
the levels of industrial pollution seen in India are not large enough to substantially
affect crops. Perhaps the mechanism of exposure is too indirect – since most irriga-
tion water in India is pumped fromwells, perhaps industrial effluent filters through
enough layers of soil that pollutants are removed or diluted before being taken up
by crops.

5Ideally, our analysis would use a dataset like the U.S. Department of Agriculture’s Cropland Data Layer to control
for crop type, but we are unaware of analogous data for India that is publicly available.
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4.7 Conclusion

This paper provides the first quasi-experimental evidence on the costs of industrial
water pollution to agriculture. We examine 71 industrial sites in India identified by
the government as “severely polluting” and estimate the costs of their pollution to
downstream agriculture. Our regression discontinuity research design exploits the
unidirectional flow of water pollution along with the location of these severely pol-
luted industrial sites. To overcome the limitations placed by spatially aggregated
administrative data on agricultural output, we construct remote sensing proxies for
agricultural yields including Normalized Difference Vegetation Index, Enhanced
Vegetation Index and Net Primary Production. These proxies have been shows to
perform well in predicting yields both in the scientific and economics literature,
and we verify that they predict agricultural yields within our sample too. We also
extend the data set on water pollution collected by Greenstone and Hanna (2014)
between 1986-2005 to 2012 using yearly data available from the Central Pollution
Control Board of India.

With these data in hand, we conduct our RD analyses. First, we find that the lo-
cation of these industrial sites coincides with a large, discontinuous jump in water
pollution in nearby rivers. Second, we find that each district immediately down-
stream of these sites has, on average, 1% percent lower crop revenue per hectare
(with a 95% confidence interval of -0.2% to -2%) than a corresponding district
immediately upstream of the same site, in the same year. Third, we find that this
effect is driven by the direct impact on yields; there is no evidence that factor re-
allocation either mitigates or exacerbates it.

We propose six explanations for these findings. Pollution effects may be highly lo-
calized, industrial pollution may have beneficial components for agriculture, mu-
nicipal pollution that can increase yields may confound the estimates, pollution
may harm output quality and not quantity, remote sensing may not be adequate to
detect yield effects or finally harms from industrial pollution may truly be small. In
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future work, we plan to investigate each of these explanations using heterogeneity
analyses and further data collection.
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4.8 Figures and Tables

Figure 1: Satellite photo showing a discontinuity in river color at the outlet of the Nazafgarh Drain
Basin on the Yamuna River, just north of New Delhi. (Source: Sentinel 2, taken on October 2,
2017.) ↩
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Figure 2: Locations of “severely polluted” industrial sites (orange dots) and water pollution mea-
surement stations (green dots).↩
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Figure 3: Illustration of the sample selection and treatment assignment for ourmain research design.
↩
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Figure 4: Continuity tests for a selection of covariates. ↩
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Figure 5: Regression discontinuity plots for pollution measurements. ↩
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Figure 6: Regression discontinuity plots for measures of agricultural production. ↩
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Table 1: Summary Statistics

Variable Mean SD N

Panel A: Pollution

Dissolved Oxygen (mg 𝑂2/l) 6.46 1.94 3322
Chemical Oxygen Demand (mg 𝑂2/l) 39.73 56.74 2872
Biological Oxygen Demand (mg 𝑂2/l) 8.81 15.26 3414
Electrical Conductivity (millisiemens/cm) 472.02 868.53 3204

Panel B: Agricultural Output

NDVI (GEE) -0.81 0.35 1366263
EVI (GEE) 1.64 1.25 1366263
NDVI (SHRUG) 8.12 0.43 1366112
EVI (SHRUG) 7.82 0.51 1366112
Net Primary Production (kg C/m2) 7.47 1.11 1355604

Panel C: Economic Outcomes

Crop Area under Cultivation per capita (ha) 18.75 106.60 106340
Share of Employment in Ag 0.71 0.21 106829
Share of Crop area under Irrigation 0.52 0.40 106829
Share of Irrigation from Rivers 0.02 0.10 90809
Share of Irrigation from Canals 0.14 0.27 83066
Share of Irrigation from Wells 0.41 0.37 56222
Per Capita Expenditure (Rs) 65.14 1109.76 106829
Rural Poverty Rate 0.26 0.18 103981

continued
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Table 1: Summary Statistics (Continued)

Notes: Summary statistics for the full sample of villages that are either
upstream or downstream of severely-polluting industrial sites. Pollu-
tion data come from laboratory tests of samples taken at water qual-
ity monitoring stations maintained by the Central Pollution Control
Board. NDVI and EVI variables from Google Earth Engine (GEE) are
the mean of the log of each pixel’s difference between maximum and
minimum NDVI values within a year, for all village pixels marked as
cropland in the croplandmask. NDVI and EVI variables from SHRUG
are the log of the difference between the maximum and early-season
village-mean NDVI values within a year, with no cropland mask ap-
plied. The net primary production (NPP) variable is the log of themean
of estimated NPP values across all cropland pixels within the village.
Economic outcomes come from the Population Census of 2001. ↩
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Table 2: RD Estimates for Pollution

RD Bandwidth

Dependent Variable [25 km] [50 km] [100 km]

log(Biological Oxygen Demand) 0.977 1.02∗ 0.909∗∗

(0.725) (0.512) (0.353)
Observations 1,365 2,215 3,414
R2 0.896 0.822 0.742

log(Chemical Oxygen Demand) 0.782 0.883∗∗ 0.741∗∗

(0.520) (0.416) (0.300)
Observations 1,137 1,852 2,872
R2 0.842 0.754 0.682

log(Electrical Conductivity) 0.628 0.656∗ 0.557∗∗

(0.433) (0.357) (0.238)
Observations 1,301 2,105 3,204
R2 0.934 0.922 0.918

log(Dissolved Oxygen) -0.254 -0.373∗ -0.386∗∗

(0.238) (0.188) (0.145)
Observations 1,318 2,145 3,313
R2 0.823 0.714 0.624

Distance X X X
Distance X Downstream X X X
Industry X Year FE X X X

continued
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Table 2: RD Estimates for Pollution (Continued)

Notes: Estimated effects of severely-polluting industrial
sites on water pollution concentrations in nearby rivers, im-
mediately downstream of the sites. Dependent variables are
listed in rows; each cell reports the estimated coefficient on
the Downstream indicator variable, controlling linearly for
distance on each side of the industrial site along with site-by-
year fixed effects. Observations are limited to monitoring
stations within the specified bandwidth of the industrial site
and are weighted using a triangular kernel. Standard errors
clustered by district. *p<0.1; **p<0.05; ***p<0.01. ↩
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Table 3: RD Estimates for Agricultural Outcomes

RD Bandwidth

Dependent Variable [25 km] [50 km] [100 km]

log(Differenced GEE NDVI) -0.017 -0.026∗∗ -0.022∗

(0.013) (0.013) (0.013)
Observations 363,062 726,304 1,366,263
R2 0.732 0.706 0.676

log(Differenced SHRUG NDVI) -0.029 -0.047 -0.046
(0.028) (0.030) (0.030)

Observations 359,128 729,014 1,366,112
R2 0.579 0.586 0.558

log(Differenced GEE EVI) -0.012 -0.008 -0.008
(0.045) (0.042) (0.050)

Observations 363,062 726,304 1,366,263
R2 0.704 0.686 0.654

log(Differenced SHRUG EVI) -0.023 -0.042 -0.040
(0.029) (0.029) (0.028)

Observations 359,128 729,014 1,366,112
R2 0.604 0.602 0.572

log(Net Primary Productivity) -0.0008 -0.010 -0.027
(0.031) (0.039) (0.049)

Observations 360,731 721,243 1,355,604
R2 0.776 0.762 0.730

Distance X X X
Distance X Downstream X X X

continued
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Table 3: RD Estimates for Agricultural Outcomes (Continued)

Industry X Year FE X X X

Notes: Estimated effects of severely-polluting industrial sites
on remote sensing measures of agricultural production in vil-
lages immediately downstream of the sites. Dependent vari-
ables are listed in rows; each cell reports the estimated coef-
ficient on the Downstream indicator variable, controlling lin-
early for distance on each side of the industrial site along with
site-by-year fixed effects. Sample includes villages within 25
km of a flow path that passes near each industrial site, as de-
fined in the text. Observations are limited to villages within
the specified bandwidth of the industrial site and are weighted
using a triangular kernel. Standard errors clustered by district.
*p<0.1; **p<0.05; ***p<0.01. ↩
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Table 4: RD Estimates for Agricultural Inputs and Economic Outcomes

RD Bandwidth

Dependent Variable [25 km] [50 km] [100 km]

Panel A: Economic Outcomes

Per Capita Expenditure 19.2 56.8 62.3
(36.4) (75.1) (71.5)

Rural Poverty Rate -0.003 -0.013 -0.015∗

(0.011) (0.009) (0.009)

Panel B: Agricultural Inputs

Share of Employment in Ag 0.015 -0.004 0.003
(0.016) (0.014) (0.012)

Crop Area under Cultivation per capita 13.3 36.9 36.1
(17.9) (27.1) (28.2)

Share of Crop area under Irrigation -0.009 -0.035 -0.028
(0.034) (0.044) (0.044)

Share of Irrigation from Rivers -0.004 0.003 0.002
(0.005) (0.004) (0.003)

Share of Irrigation from Canals -0.017 -0.006 -0.007
(0.018) (0.013) (0.015)

Share of Irrigation from Wells 0.041 0.021 0.034
(0.027) (0.024) (0.026)

Observations 11,454 23,740 46,262

Distance X X X
Distance X Downstream X X X

continued
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Table 4: RD Estimates for Agricultural Inputs and Economic Outcomes (Continued)

Industry FE X X X

Notes: Estimated effects of severely-polluting industrial sites on
measures of agricultural inputs and economic outcomes in villages
immediately downstream of the sites. Regressions are as described
in Table 3. *p<0.1; **p<0.05; ***p<0.01. ↩
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4.9 Appendix Tables

Table 5: Correlation of Satellite-based Proxies with Agricultural Output

GEE SHRUG

(1) (2) (3) (4) (5) (6) (7) (8)

log(Differenced NDVI) 0.212∗∗∗ 0.367∗∗∗ 0.020 -0.044∗∗∗ 0.201∗∗∗ 0.192∗∗∗ 0.177∗∗∗ 0.129∗∗∗

(0.040) (0.068) (0.013) (0.012) (0.041) (0.050) (0.021) (0.022)
R2 0.411 0.544 0.746 0.803 0.412 0.529 0.752 0.805

log(Differenced EVI) 0.094∗∗∗ 0.071∗∗∗ 0.059∗∗∗ -0.012∗∗ 0.216∗∗∗ 0.207∗∗∗ 0.183∗∗∗ 0.132∗∗∗

(0.013) (0.018) (0.006) (0.005) (0.036) (0.043) (0.021) (0.022)
R2 0.415 0.523 0.752 0.802 0.421 0.536 0.755 0.806

log(Net Primary Production) 0.007 0.022 -0.019∗∗∗ 0.009∗∗

(0.023) (0.028) (0.005) (0.005)
R2 0.392 0.514 0.746 0.802

Fixed Effects State StateXYear District District, Year State StateXYear District District, Year

Observations 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000

Notes: Predictive elasticities of crop yields (in district-level aggregate data) with respect to satellite-based measures of agricultural production. Coefficients are estimated from
district-by-year regressions of log crop revenue per hectare on the remote sensing measures. Remote sensing measures from Google Earth Engine (GEE) apply a cropland mask
(columns 1-4); those from the SHRUG database do not (columns 5-8). *p<0.1; **p<0.05; ***p<0.01. ↩

196



Table 6: RD Estimates for Continuity of Covariates

RD Bandwidth

Dependent Variable Mean [SD] [25 km] [50 km] [100 km]

Panel A: Infrastructure - Facility Available in Village?

Banking 0.154 -0.033 -0.032 -0.021
[0.361] (0.021) (0.020) (0.016)

Communication 0.57 -0.004 0.008 0.014
[0.495] (0.024) (0.020) (0.018)

Medical 0.548 -0.008 -0.025 -0.023
[0.498] (0.033) (0.036) (0.033)

Postal 0.691 0.004 0.018 0.037∗∗

[0.462] (0.021) (0.015) (0.015)

Paper and magazines 0.659 -0.083∗∗∗ -0.015 0.015
[0.474] (0.032) (0.022) (0.022)

Educational 0.932 -0.003 -0.0004 0.005
[0.252] (0.007) (0.006) (0.008)

Drinking water 0.998 -0.0002 1.64𝑡𝑖𝑚𝑒𝑠10−5 0.0002
[0.048] (0.002) (0.002) (0.002)

Panel B: Physical Characteristics

Distance from canal (km) 7.849 -0.426 -0.523 -1.24
[11.585] (0.833) (0.761) (0.794)

Distance from nearest town (km) 52.937 -2.22∗∗∗ -1.65 -2.15∗

[549.917] (0.847) (1.53) (1.09)

Elevation (m) 249.425 -3.54 -6.66∗∗ -8.94∗∗

continued
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Table 6: RD Estimates for Continuity of Covariates (Continued)

[169.407] (3.14) (3.01) (4.50)

Panel C: GAEZ potential yield - High Input Scenario

Normalized All Crops -0.224 -0.004 -0.008 -0.022
[0.703] (0.038) (0.033) (0.031)

Chickpea 0.585 -0.025 -0.025 -0.010
[0.51] (0.023) (0.021) (0.026)

Cotton 0.769 -0.002 -0.0002 -0.007
[0.173] (0.011) (0.010) (0.009)

Dryland rice 1.081 0.025 0.032 0.026
[1.216] (0.023) (0.024) (0.024)

Gram 1.476 -0.004 0.0009 -0.015
[0.408] (0.026) (0.022) (0.022)

Groundnut 1.404 -0.0003 -0.011 -0.024
[0.497] (0.026) (0.022) (0.023)

Maize 6.723 -0.036 -0.013 -0.058
[1.975] (0.115) (0.099) (0.102)

Pearl millet 1.263 0.008 0.024 0.027
[1.321] (0.028) (0.026) (0.029)

Pigeon pea 1.914 0.004 0.006 -0.015
[0.632] (0.033) (0.029) (0.028)

Rapeseed 0.854 0.013 0.005 0.009
[0.655] (0.019) (0.016) (0.017)

Sorghum 5.917 -0.052 -0.038 -0.045

continued
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Table 6: RD Estimates for Continuity of Covariates (Continued)

[1.35] (0.100) (0.086) (0.083)

Soybean 2.12 0.020 0.027 0.001
[0.745] (0.042) (0.038) (0.034)

Sugarcane 1.179 -0.005 0.023 0.031
[1.866] (0.027) (0.043) (0.056)

Sunflower 1.029 -0.004 -0.060∗ -0.079∗

[0.724] (0.023) (0.035) (0.044)

Wetland rice 1.727 -0.012 -0.019 -0.023
[1.091] (0.037) (0.037) (0.046)

Wheat 1.321 0.002 -0.016 -0.026
[1.141] (0.034) (0.032) (0.032)

Panel D: Social and Demographic Characteristics

Household size 5.785 0.119∗∗∗ 0.076∗ 0.024
[0.931] (0.043) (0.041) (0.040)

Literacy Rate (percent) 0.503 -0.009 -0.003 0.003
[0.133] (0.009) (0.007) (0.007)

Log Village Area 6.281 -0.065 -0.051 -0.025
[1.035] (0.055) (0.056) (0.047)

Log Population 7.455 -0.062 -0.032 -0.040
[1.056] (0.050) (0.044) (0.038)

Share of Scheduled Caste/Tribe Population 0.283 -0.016 -0.005 0.0005
[0.228] (0.018) (0.014) (0.012)

Observations 85,745 22,364 44,982 85,745

continued
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Table 6: RD Estimates for Continuity of Covariates (Continued)

Distance X X X
Distance X Downstream X X X
Industry FE X X X

Notes: Tests of continuity in river space at severely-polluting industrial sites, for covariates
that are either fixed in time or unlikely to be affected by the presence of industrial pollution.
Each cell reports a regression discontinuity (RD) coefficient using regressions as described
in Table 3. *p<0.1; **p<0.05; ***p<0.01. ↩
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Table 7: RD Estimates for Pollution adjusted for log(fecal coliform)

RD Bandwidth

[25 km] [50 km] [100 km]

log(Biological Oxygen Demand) 0.857 0.889∗ 0.683∗∗

(0.696) (0.513) (0.330)
Observations 1,143 1,844 2,830
R2 0.905 0.847 0.803

log(Chemical Oxygen Demand) 0.689 0.794∗ 0.551∗

(0.495) (0.444) (0.311)
Observations 948 1,526 2,362
R2 0.847 0.776 0.738

log(Electrical Conductivity) 0.513 0.588 0.464∗

(0.380) (0.400) (0.257)
Observations 1,109 1,779 2,709
R2 0.941 0.930 0.928

log(Dissolved Oxygen) -0.169 -0.268 -0.283∗∗

(0.221) (0.171) (0.123)
Observations 1,096 1,776 2,724
R2 0.861 0.774 0.712

Distance X X X
Distance X Downstream X X X
Industry X Year FE X X X

Notes: Robustness estimates for Table 2, adjusting for log Fecal Coliform. *p<0.1;
**p<0.05; ***p<0.01. ↩
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