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Abstract

This thesis contains three essays in the theory of contracts and organisations. The first

chapter examines the role of information in shaping the incentives of a decision maker

who cares about passing a threshold. We present a model which can be applied to the

case of a young employee in an organisation with an ‘up-or-out’ promotion system. We

solve for the optimal design of the informational environment in which such a young

employee operates, with the objective of encouraging hard work. The optimal informa-

tion structure generates outcomes such that the promotion is allocated as if the young

employee received full information. However, the young employee does not benefit

from the information he receives and remains exactly indifferent between receiving ad-

vice or not. The second chapter (co-authored with Alkis Georgiadis-Harris and Balazs

Szentes) analyses the sale of a durable good by a seller who cannot make intertemporal

commitments to a buyer with private valuation for the good. Motivated by smart con-

tracts used in digital markets, we allow the seller to offer general dynamic contracts. The

main result is that the seller’s expected payoff is bounded away from the lowest valu-

ation, that is the Coase conjecture fails. The third chapter (co-authored with Francesco

Caselli) develops a model of a dynamic economy in which production takes place in

worker cooperatives. We formalise an equilibrium concept that applies to such an econ-

omy in an overlapping-generation environment. We illustrate its applicability under

specific assumptions on preferences and technology. The cooperative economy follows a

growth path qualitatively similar to the path followed by a capitalist economy, featuring

gradual convergence to a steady state with constant output. However, the cooperative

economy features a static inefficiency, in that, for a given aggregate capital stock, firm

size is smaller than what a social planner would choose. On the other hand, the cooper-

ative economy cannot be dynamically inefficient, and could accumulate capital at a rate

that is higher or lower than the capitalist economy.
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Chapter 1

Encouraging a Go-Getter

1.1 Introduction

Information disclosure is a crucial way to provide incentives. In accounting, manage-

ment consulting, law or academia, where up-or-out systems are common, firms adopt

strict rules of interim evaluations to encourage ambitious young workers to engage in

higher effort. In this paper, we investigate the role of strategic information provision in

shaping incentives for such go-getters who wish to be promoted.

We model a go-getter as a decision maker (he) who may receive an exogenously

fixed reward if he takes an action above a threshold. Each action has a cost which can be

identified with the action itself. The threshold is initially unknown to the decision maker.

The information available to the decision maker is controlled by a designer (she), whose

utility depends on the decision maker’s action, in an increasing manner. The designer

can commit to disclose arbitrary information about the true value of the threshold. Upon

receiving that information, the decision maker updates his belief about the threshold and

chooses an action.

Our main goal is to solve for the designer’s optimal information disclosure policy. As

is standard, her messages can be assumed to be action recommendations. The essence

of the persuasion problem is to optimally attach information content to each recommen-

dation. In particular, each action recommendation must be associated with a posterior

belief such that, given this belief, the decision maker finds it optimal to follow the de-

signer’s recommendation. Moreover the induced distribution over those posterior be-
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liefs must be consistent with Bayesian updating from the decision maker’s prior. That

is, the expected posterior belief is the prior.

We show that a solution to the designer’s persuasion problem satisfies two general

properties: full-information rewarding and no-information indifference. Let us explain each

property. Full-information rewarding is defined in relation to the benchmark case in which

the decision maker has full information about the realised threshold. We say that the

reward is within reach if it would be optimal for the decision maker to match the thresh-

old if he knew its true realisation. A disclosure policy is said to satisfy full-information

rewarding if, with probability one, the threshold is strictly above the designer’s recom-

mendation only if it is not within reach. No-information indifference is defined in relation

to the other extreme benchmark in which the decision maker receives no information be-

yond his prior belief. A disclosure policy is said to satisfy no-information indifference if the

decision maker remains ex-ante indifferent between following the designer’s recommen-

dation or choosing an action without receiving information. Observe that information

cannot hurt the decision maker, since he is free to ignore the designer’s recommendation.

No-information indifference means that he will not benefit either.

The consequences of those two properties for the outcomes induced by the designer’s

optimal information disclosure policy are the following. First, due to full-information re-

warding, the decision maker always1 takes an action (weakly) above the action he would

have taken if he had known the true realisation of the threshold. To see this, observe

that, with full information, the decision maker matches the threshold if it is within reach

and takes the lowest action otherwise. Moreover, due to no-information indifference, the

decision maker always takes an action above his no-information optimal action. The rea-

son is that his no-information optimal action is always available to take ex-post. Since

the decision maker is indifferent ex-ante between taking that action or following the

designer’s recommendation, the no-information optimal action cannot be strictly sub-

optimal ex-post. Therefore, if the designer’s recommendation was ever below the de-

cision maker’s no-information optimal action, she could change her recommendation

to be the no-information optimal action without needing to affect the decision maker’s

posterior beliefs.

Let us now describe the structure of the designer’s optimal information disclosure

1If a property holds almost surely at the optimum, there exists a payoff equivalent information disclosure
policy such that the property holds surely.
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policy depending on her preferences. First observe that, if the designer’s utility function

is linear in the decision maker’s action, any information disclosure policy satisfying full-

information rewarding and no-information indifference is optimal. Indeed, no-information

indifference implies that the decision maker’s expected payoff is pinned down to his no-

information expected payoff. Furthermore, full-information rewarding implies that the

decision maker receives the reward with probability equal to the probability that the re-

ward is within reach. Therefore, the expected cost incurred by the decision maker is con-

stant across all information disclosure policies satisfying those two properties. However,

if the designer’s preferences are non-linear, full-information rewarding and no-information

indifference are not sufficient to characterise optimal policies.

We use the following approach to solve the persuasion problem. At the optimum,

each possible realisation of the threshold is assigned a shadow price, which captures

how valuable that realisation is for incentive provision. We can then decompose the de-

signer’s problem as follows. First, for each action, among all posterior beliefs that would

rationalise that action as optimal for the decision maker, the designer chooses a cheapest

one, in the sense that it minimises the expected shadow price of the threshold. Intu-

itively, the decision maker’s posterior beliefs place as little probability mass as possible

on those realisations of the threshold that are the most valuable for incentive provision.

In turn, the prior stock of probability mass on the most valuable realisations remains

available to the designer to construct the posterior beliefs associated to alternative rec-

ommendations. Second, we use the value to this minimisation problem to define the

implementation cost of each action. The designer’s problem of choosing which actions to

induce then reduces to a simple cost-benefit analysis, where the utility benefit of each

action is traded-off against its implementation cost. In a final step, the probability al-

located to each optimal action is set so that the associated optimal posterior beliefs are

consistent with Bayesian updating from the decision maker’s prior belief.

We present explicit solutions to the persuasion problem when the designer’s objec-

tive is either convex or concave in the decision maker’s action. In each case, the solu-

tion does not depend specifically on the designer’s utility function beyond its convexity

or concavity. The reason why the solution is the same for any increasing and concave

(respectively convex) specification of the designer’s utility function is that, among the

distributions over the decision maker’s actions which can be implemented by an infor-
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mation disclosure policy satisfying full-information rewarding and no-information indiffer-

ence, there exists a maximal (respectively minimal) element, in terms of second-order

stochastic dominance.

When the designer’s utility function is convex, the actions she recommends are dis-

tributed between the decision maker’s no-information optimal action and the costliest

action that the decision maker may be willing to take, with an atom at the top of that

interval. The decision maker’s posterior beliefs are characterised by binding incentive

constraints. In contrast, when the designer’s utility function is concave, the lowest ac-

tion she recommends, denoted a, is strictly above the decision maker’s no-information

optimal action. The designer’s recommendations have full-support between a and the

highest action the decision maker may be willing to take, with a unique atom at the bot-

tom of that interval. The decision maker’s posterior beliefs are characterised by a gap,

located immediately below the designer’s recommendation. In other words, when the

decision maker is recommended to take an action x, she rules out the possibility that the

threshold may be slightly below x.

In each case, a notable feature of the designer’s optimal policy is that the decision

maker’s posterior beliefs keep him confused about which action he should take. Ex-

post, there is a range of optimal actions, and in doubt the decision maker goes along

with the designer’s recommendation, which is the largest action in that range. In a sense,

actions that are less favourable to the designer are pooled together with more favourable

actions up until the decision maker is just indifferent. At this point, the designer can still

recommend the most favourable action in an incentive compatible way.

The results are illustrated by the following example.

Example.— Normalise the value of the potential reward to 1. The decision maker chooses

an action x ≥ 0 at cost x and receives the reward if and only his action is (weakly) above

the random threshold y. The designer has an increasing utility function of the decision

maker’s action. Assume that the decision maker and the designer share the prior belief

that y is distributed on [0, 1] with cumulative distribution function: F (z) = P(y ≤ z) =

√
z.

Our results imply that, irrespective of her utility function, the designer’s optimal

disclosure policy will satisfy full-information rewarding and no-information indifference.

If the decision maker had full information about the realisation of y, he would op-
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timally choose action x = y and receive the reward. Indeed, on the one hand, any

higher action would also guarantee to receive the reward but would be costlier. On the

other hand, since y only takes values below 1, the decision maker obtains a positive pay-

off from choosing x = y, while any action below would lead to a negative payoff. So

full-information rewarding implies that it will be optimal for the designer to recommend

actions so that the decision maker receives the reward with probability 1.

Now, consider the case in which the decision maker receives no information about

the threshold beyond his prior. In this case, his expected payoff from taking any action

x ∈ [0, 1] writes as the prior probability that the threshold is below x minus the cost of

action x, that is
√
x − x. As a result, there is a unique no-information optimal action

x∗ = 1/4, yielding expected payoff u = 1/4. By no-information indifference, the designer’s

optimal disclosure policy will leave the decision maker with the same expected payoff

u.

Beyond those two properties, the designer’s optimal information disclosure policy

depends more specifically on her preferences. We present explicit descriptions of so-

lutions when the designer’s utility function is either convex or concave in the decision

maker’s action. A complete description of the solution in each case is in Appendix A.1.

In either case, the solution does not depend on the specific functional form of the de-

signer’s utility beyond its convexity or concavity.2

Figure 1.1 plots the cumulative distribution function of the designer’s action recom-

mendations in each case. In the convex case, the distribution has full support between

the no-information optimal action x∗ = 1/4 and 1, with a unique atom at 1. In the

concave case, the designer’s lowest action recommendation is a ≈ 0.71.3 The distribu-

tion has an atom at a, followed by a continuous distribution until 1. Both distributions

have the same mean. This fact is a consequence of full-information indifference and no-

information rewarding. To see this, observe that the expected action taken by the decision

maker writes as the ex-ante probability that he will get the reward minus his expected

payoff, that is 1− 1/4 = 3/4.

Each action recommendation is associated with a posterior belief about the value

2A consequence is that, if the designer’s utility is linear, then she is indifferent between the two information
disclosure policies presented, and in fact many others.

3The exact value of a in this case is:

a =
1

4

(√
2 + 1/2

√
2− 1/2

)√
2

.
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Figure 1.1: Action Distribution Comparison

Note: Cumulative distribution function of the decision maker’s action induced by an optimal information
structure when the designer’s utility is concave (dashed blue) or convex (solid red) in the action, under the
assumptions of the example.
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Figure 1.2: Posterior Belief Comparison

Note: Cumulative distribution function representing the decision maker’s posterior belief upon receiving
recommendation x = 0.8 when the designer’s utility is convex (left) or concave (right) in the decision
maker’s action, under the assumptions of the example. In each case, the dashed red curve is the cumulative
distribution function of the threshold that would keep the decision maker indifferent between any action in
[0, x].

of the threshold. Figure 1.2 represents the decision maker’s posterior belief about the

distribution of the threshold conditional on receiving recommendation x = 0.8, which

belongs to the the support of the designer’s action recommendations in both cases. A

common feature is that the decision maker’s posterior belief places probability 1 on the

threshold being below the designer’s recommendation. This is a consequence of full-

information rewarding. A second common feature is that both posterior cumulative dis-

tribution functions remain weakly below the affine curve z 7→ 1 − x + z. The reason

is that the decision maker must find it better to follow the recommendation x, yielding

expected payoff 1−x, rather than taking any alternative action z, yielding expected pay-

off P
(
y ≤ z|x

)
− z. It follows from no-information indifference that the decision maker is

in fact indifferent between following the designer’s recommendation and deviating to

his no-information optimal action x∗, so the two posterior cumulative distribution func-

tions coincide with the affine curve at that point. Actually, when the designer’s utility

function is convex, the decision maker’s posterior belief keeps indifferent between any

action in [x∗, x]. In contrast, when the designer’s utility function is concave, the decision

maker’s posterior belief completely rules out that the threshold could take values in the

interval
(
θ(x), x

)
≈ (0.37, 0.8), rendering deviations in that interval strictly sub-optimal.
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The remaining of this introductory section is devoted to reviewing the related liter-

ature. Section 1.2 describes the model. Section 1.3 presents a preliminary analysis of

the model, analysing the two benchmarks in which the decision maker either receives

complete information about the threshold or no information at all, and showing that a

solution satisfies full-information rewarding. Section 1.4 presents the general methodology

that we use to solve the designer’s persuasion problem and establishes no-information in-

difference. Section 1.5 describes, in turn, the solutions to the designer’s problem when

her utility function is either convex or concave.

Literature Review

We model information transmission following the tradition of information design and

Bayesian persuasion as introduced4 by Kamenica and Gentzkow (2011) and recently

surveyed by Kamenica (2019) and Bergemann and Morris (2019). Operational tools to

solve the persuasion problem when states of the world live in a continuum remain lim-

ited to special cases. Gentzkow and Kamenica (2016), Dworczak and Martini (2019),

Arieli, Babichenko, Smorodinsky, and Yamashita (2023) and Kleiner, Moldovanu, and

Strack (2021) develop approaches that can be applied when the designer’s objective de-

pends only on a single posterior moment of the decision maker’s belief. More recently,

Kolotilin, Corrao, and Wolitsky (2022) analyse the case in which the set of beliefs that ra-

tionalise an action as optimal for the decision maker can be characterised by a first-order

condition. Those approaches are not useful in our setting due to the discontinuity in the

decision maker’s payoff introduced by the threshold.

Due to the aforementioned discontinuity, our environment is more closely related to

that of Bergemann, Brooks, and Morris (2015).5 In their model, properties equivalent

to full-information rewarding and no-information indifference are sufficient for a consumer-

surplus maximising market segmentation. As explained previously, those two proper-

ties are sufficient for a designer-optimal information disclosure policy when her utility

function is linear. A contribution of our analysis is to go beyond the linear case.

4Early contributions to the topic include Aumann, Maschler, and Stearns (1995), Ostrovsky and Schwarz
(2010) and Rayo and Segal (2010).

5It is possible to translate the set up of Bergemann et al. (2015) with our terminology as follows. The
decision maker is a seller who chooses a price and receives a reward if and only if the price is below a random
threshold — a buyer’s willingness-to-pay. The seller incurs no direct cost for setting a price, but may have to
reduce the size of the reward (the price itself) in order to increase the probability of getting it. Our analysis can
be adapted to their environment to study optimal market segmentations from the perspective of a designer
with non-linear preferences over the prices set in different segments. Details are available upon request.
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Our main technical tool to establish optimality of a candidate information disclosure

policy relies on assigning a shadow price to each possible realisation of the threshold.

Duality methods have been used extensively to analyse other persuasion problems. Ex-

amples include Kolotilin (2018), Dworczak and Martini (2019), Dizdar and Kováč (2020),

Perego, Galperti, and Levkun (2021), Kolotilin et al. (2022) and Dworczak and Kolotilin

(2022).

More generally, the present paper is connected to a vast literature on the role of in-

formation in incentive provision. Sobel (1993), Lazear (2006), Jehiel (2014) and Ederer,

Holden, and Meyer (2018) make the case that full transparency is often sub-optimal in

moral hazard problems. Our results indeed imply that the exact realisation of the thresh-

old is revealed to the decision maker with probability zero.

Our analysis complements that of Ely and Szydlowski (2020) who study optimal

dynamic information disclosure to an agent with a payoff structure similar to ours. In

their dynamic setting, the timing of information disclosure is a critical object of design.6

In contrast, we focus on situations in which the designer has a one-off opportunity to

disclose information and study the optimal content of her messages.

1.2 Model

A decision maker chooses a costly action x ≥ 0 and receives a fixed reward of value

normalised to 1 if his action is above a threshold y ≥ 0. The decision maker’s preferences

are represented by the utility function:

u(x, y) = 1[0,x](y)− x,

where 1[0,x] is the indicator of the interval [0, x]. The threshold is initially unknown

to the decision maker. We model y as the realisation of a positive random variable Y ,

with cumulative distribution function F . Observe that the decision maker would never

rationally take an action whose cost is greater than the value of the reward. Therefore, we

restrict the decision maker’s choice set to the interval [0, 1]. The following assumption

will be maintained throughout.

6See also Smolin (2021) and Liu (2021).
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Assumption 1. The threshold’s cumulative distribution function F is strictly increasing and

continuous on [0, 1], with F (0) = 0 and F (1) = 1.

Assumption 1 rules out gaps and atoms for simplicity. However, the arguments we

present could be adapted to take into account those possibilities. Assumption 1 also re-

quires that the highest possible realisation of the threshold coincides with the highest

action that the decision maker may rationally be willing to take. Relaxing this assump-

tion would not substantially alter the analysis presented in the main text.

The information available to the decision maker about the threshold is controlled

by a designer. The designer’s preferences depend only on the agent’s action x and are

represented by the increasing utility function v : [0, 1] → R.

In line with standard models of persuasion, we assume that the designer can fully

commit at no cost to disclose arbitrary information about the threshold. That is, the

designer publicly chooses a policy, which maps realisations y ∈ suppF = [0, 1] of the

threshold Y to (possibly random) signals. The decision maker observes the policy as

well as the signal realisation and chooses an action x ∈ [0, 1]. Both the designer and the

decision maker share the prior F , update beliefs according to Bayes’s rule and maximise

their respective expected utility. An outcome is a joint distribution over the decision

maker’s actions and the realisations of the threshold induced by this game.

We formulate the designer’s problem directly as a maximisation problem over out-

comes. Denote F the set of cumulative distribution functions with support included in

[0, 1]. The designer chooses an element ⟨(Gx)x, H⟩ ∈ F [0,1]×F , where for each x ∈ [0, 1],

Gx is the cumulative distribution function of the threshold conditional on the decision

maker choosing action x; and H is the cumulative distribution function of the decision

maker’s actions. The decision maker’s choices must be consistent with expected utility

maximisation. That is, we must impose an incentive compatibility constraint. Note that,

when the threshold is distributed according to Gx, the decision maker’s expected utility

from taking action x̂ writes:

∫
u(x̂, y)dGx(y) =

∫
1[0,x̂](y)dGx(y)− x̂ = Gx(x̂)− x̂.

Therefore, we express the incentive compatibility constraint as:

∀x, x̂ ∈ [0, 1], Gx(x̂)− x̂ ≤ Gx(x)− x. (IC)
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In addition, the distribution of the threshold must be consistent with the prior F , leading

to the Bayes plausibility constraint:

∀y ∈ [0, 1],

∫ 1

0

Gx(y)dH(x) = F (y). (BP)

To summarise, we analyse the following persuasion problem:

max
⟨(Gx)x,H⟩∈F [0,1]×F

∫ 1

0

v(x)dH(x) s.t. (BP) and (IC). (1.1)

1.3 Preliminary Analysis

We discuss the two benchmarks in which the decision maker receives either no informa-

tion or full information about the threshold.

No-Information Benchmark.— Consider first the case in which the designer provides no

information to the decision maker. The decision maker’s belief about the threshold re-

mains fixed at the prior. His expected utility from taking action x ∈ [0, 1] writes:

F (x)− x.

By Assumption 1, x 7→ F (x) − x possesses a largest maximum x∗ ∈ [0, 1]. If x∗ = 1,

the designer’s problem (1.1) has a trivial solution, since no information disclosure is

necessary to induce the largest possible action. For the rest analysis we will maintain:

Assumption 2. x∗ < 1.

Denote u = F (x∗)− x∗. Note that, by Assumption 1, u ≥ F (0)− 0 = 0. Furthermore,

information cannot hurt, that is u provides a lower bound on the decision maker’s ex-

pected payoff from any choice of the designer.7 Proposition 1 below will establish that,

in fact, the decision maker does not benefit either from the designer’s optimal choice.

Let us define this property formally:

Definition 1 (No-Information Indifference). An outcome ⟨(Gx)x, H⟩ satisfies no-information

7To see this, observe that the decision maker’s expected payoff writes:
∫ 1
0 [Gx(x)− x]dH(x). Due to the in-

centive compatibility constraint:
∫ 1
0 [Gx(x)−x]dH(x) ≥

∫ 1
0 [Gx(x∗)−x∗]dH(x). Due to the Bayes plausibility

constraint,
∫ 1
0 [Gx(x∗)− x∗]dH(x) = F (x∗)− x∗ = u.
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indifference if: ∫ 1

0

[Gx(x)− x]dH(x) = u.

Full-Information Benchmark.— Suppose now that the designer reveals perfectly the value

y of the threshold to the decision maker. If y ≤ 1, it is optimal for the decision maker

to match exactly that value and choose action x = y. If instead, y > 1, the value of the

reward is not worth the required cost and it is uniquely optimal for the decision maker

to choose x = 0. In particular, with full information, the decision maker achieves the

reward whenever it is within reach.

Definition 2 (Full-Information Rewarding). An outcome ⟨(Gx)x, H⟩ satisfies full-information

rewarding if:

∀x ∈ [0, 1], Gx(x) = Gx(1).

That is, an outcome satisfies full-information rewarding, if conditional on the deci-

sion maker choosing any action x, either the threshold is not within reach (y > 1) or the

decision maker receives the reward. Moreover, under Assumption 1, the threshold is

within reach with probability 1. Therefore, the decision maker is guaranteed to receive

the reward if the designer’s chosen outcome satisfies full-information rewarding.

Lemma 1 below implies that full-information rewarding must be a property of a so-

lution to the designer’s problem (1.1).8 Before stating the result, let us introduce a piece

of notation. For x ∈ [0, 1], denote Gx = {G ∈ F : G(x) = 1}. In addition, denote

G =×x∈[0,1]
Gx. Finally, let O the set of outcomes ⟨(Gx)x, H⟩ ∈ G × F satisfying (BP)

and (IC). That is, O is the set of outcomes that are feasible for problem (1.1) and satisfy

full-information rewarding.

Lemma 1. For any outcome ⟨(Gx)x, H⟩ feasible for problem (1.1), there exists and outcome

⟨(Ĝx)x, Ĥ⟩ ∈ O such that:

∫ 1

0

v(x)dĤ(x) ≥
∫ 1

0

v(x)dH(x).

The proof is presented in Appendix A.2. Its logic is relatively straightforward. For

any action taken by the decision maker, if the threshold is within reach but strictly above

8Due to indifferences over zero-probability events, there are also solutions to the designer’s problem which
do not satisfy full-information rewarding.
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the decision maker’s action, the designer could send a further message to the decision

maker warning him about the true value of the threshold. Conditional on not receiving

the warning message, the decision maker can only infer that the threshold is below the

action he was planning to take, which makes him all the more confident in his choice.

Instead, if he receives the warning message, the decision maker knows the true value of

the threshold and optimally adjusts his action upwards, to the benefit of the designer.

In view of Lemma 1, we restrict the designer’s choice set to O. That is, we will

consider the problem:

max
⟨(Gx)x,H⟩∈O

∫ 1

0

v(x)dH(x). (1.2)

1.4 General Analysis

This section presents three results. First, Theorem 1 provides sufficient conditions for

the optimality of a candidate outcome. This will be our main tool to solve the designer’s

problem (1.2) depending on her preferences in the following section. Second, Proposi-

tion 1 establishes that the sufficient conditions of Theorem 1 not only imply optimal-

ity but also no-information indifference. As a consequence, the solutions presented in

the following section will satisfy no-information indifference. Finally, Lemma 2 shows

that outcomes satisfying no-information indifference need only be described above the

no-information optimal action x∗, which allows to slightly simplify the analysis in the

following section.

Theorem 1. Let ⟨(Gx), H⟩ ∈ O. Suppose there exists a lower-semicontinuous function λ :

[0, 1] → R, such that:

(i) For all x ∈ [0, 1] and y ∈ [0, x], if y ∈ suppGx, then ∀z ∈ [y, x], λ(y) ≤ λ(z).

(ii) For all x ∈ [0, 1] and y ∈ [0, x], if ∀z ∈ (y, x] λ(y) < λ(z), then Gx(y)− y = 1− x.

(iii) suppH ⊆ argmaxx
{
v(x)− (1− x)min0≤z≤x λ(z)−

∫ x

0

[
miny≤z≤x λ(z)

]
dy
}

.

Then ⟨(Gx), H⟩ is a solution to the designer’s problem.

Let us explain the statement of the theorem. We consider a feasible outcome ⟨(Gx), H⟩

for the designer. For each y ∈ [0, 1], λ(y) acts as a shadow price associated to the real-

isation y of the threshold. Condition (i) says that, for each x, the posterior distribution

Gx places mass only at realisations y of the threshold that are the cheapest among all
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possible realisations in [y, x]. Furthermore, condition (ii) implies that, if the realisation y

is strictly cheaper than any alternative in (y, x], then the posterior distribution Gx places

as much as possible below y, that is until the decision maker is just indifferent between

taking action x and deviating to action y. Together, conditions (i) and (ii) are equivalent9

to:

∀x ∈ [0, 1], Gx ∈ arg min
G∈Gx

∫ x

0

λ(y)dG(y)

subject to ∀y ∈ [0, x], G(y)− y ≤ 1− x.

(1.3)

That is, the posterior distribution of the threshold given action x is chosen to minimise

the expected shadow price of the threshold. Moreover, the value of the minimisation

problem in equation (1.3) defines an implementation cost Λ(x) for each action x ∈ [0, 1].

As we show in Appendix A.2, it follows from conditions (i) and (ii) that:

Λ(x) =

∫ x

0

λ(y)dGx(y) = (1− x) min
0≤z≤x

λ(z) +

∫ x

0

[
min

y≤z≤x
λ(z)

]
dy. (1.4)

Therefore, condition (iii) has a straightforward interpretation. It specifies that the sup-

port of the unconditional distribution over actions H should be found within the set of

maximisers of x 7→ v(x)−Λ(x). That is, the designer implements actions optimally trad-

ing off their utility benefit to their implementation cost. Next, we present the proof of

the theorem.

Proof. Suppose that ⟨(Gx), H⟩ and λ satisfy the assumptions of the theorem. In this

proof, we take as given that equations (1.3) and (1.4) above are satisfied. Those are

proven in Appendix A.2. We consider an arbitrary outcome ⟨(G̃x), H̃⟩ ∈ O and show

that the designer must prefer ⟨(Gx), H⟩ over ⟨(G̃x), H̃⟩. The designer’s expected utility

from ⟨(G̃x), H̃⟩ writes:

∫ 1

0

v(x)dH̃(x) =

∫ 1

0

[v(x)− Λ(x)]dH̃(x) +

∫ 1

0

Λ(x)dH̃(x). (1.5)

Since Λ(x) is the value of the minimisation problem in equation (1.3), it must be the case

that:

Λ(x) ≤
∫ x

0

λ(y)dG̃x(y).

9For a formal proof of this equivalence, see claim 1 in Appendix A.2.
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Furthermore, since (BP) must be satisfied by all outcomes:

∫ 1

0

∫ x

0

λ(y)dG̃x(y)dH̃(x) =

∫ 1

0

λ(y)dF (y) =

∫ 1

0

∫ x

0

λ(y)dGx(y)dH(x) =

∫ 1

0

Λ(x)dH(x),

where the last equality follows from equation (1.4). As a result, the second term in the

designer’s expected utility in equation (1.5) is bounded above:

∫ 1

0

Λ(x)dH̃(x) ≤
∫ 1

0

Λ(x)dH(x).

Moreover, condition (iii) implies that the first term is also bounded above:

∫ 1

0

[v(x)− Λ(x)]dH̃(x) ≤
∫ 1

0

[v(x)− Λ(x)]dH(x).

Summing the two inequalities, we conclude:

∫ 1

0

v(x)dH̃(x) ≤
∫ 1

0

v(x)dH(x).

Conditions (i), (ii) and (iii) guarantee optimality of the outcome ⟨(Gx)x, H⟩. Our next

results shows that those conditions also guarantee no-information indifference.

Proposition 1. Under the hypotheses of Theorem 1, ⟨(Gx)x, H⟩ satisfies no-information indif-

ference.

The logic of the proof below is the following. We consider the cheapest realisation y∗

of the threshold. The corresponding action must have the lowest implementation cost

among all actions. The reason is that the posterior distribution placing probability 1 at y∗

rationalises action y∗ as optimal for the decision maker. Therefore, the designer would

never find it optimal to implement actions below y∗ — those would yield lower utility

at a higher implementation cost. As a result, any action in the support of H is above y∗.

Condition (ii) then implies that all posterior distributions Gx for x ∈ suppH make the

decision maker exactly indifferent between taking action x and action y∗. Thus, from

the ex-ante perspective, the decision maker must be indifferent between receiving the

designer’s information or simply taking action y∗ without further information. Since

information cannot hurt, it must be that y∗ is a no-information optimal action.
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Proof. Since it is lower-semicontinuous, λ has a minimum. Denote y∗ the largest value

at which λ attains its minimum. For all y ≤ y∗, we have:

min
y≤z≤y∗

λ(z) = λ(y∗).

It follows that:

Λ(y∗) = (1− y∗)λ(y∗) +

∫ y∗

0

λ(y∗)dy = λ(y∗).

Furthermore, for any x ∈ [0, 1], we have:

Λ(x) = (1− x) min
0≤z≤x

λ(z) +

∫ x

0

[
min

y≤z≤x
λ(z)

]
dy ≥ λ(y∗) = Λ(y∗).

We use this fact to establish that any action in suppH must be weakly above y∗. Indeed,

by condition (iii), for any x ∈ suppH , it must be that:

v(x)− Λ(x) ≥ v(y∗)− Λ(y∗),

then it follows that:

v(x) ≥ v(y∗) + [Λ(x)− Λ(y∗)] ≥ v(y∗).

Since v is increasing, we have indeed x ≥ y∗.

As a consequence, for x ∈ suppH and by definition of y∗, it must be the case that

∀z ∈ (y∗, x], λ(y∗) < λ(z), implying, by condition (ii) that:

Gx(y
∗)− y∗ = 1− x.

We use this fact to evaluate the decision maker’s expected payoff:

∫ 1

0

(1− x)dH(x) =

∫ 1

0

[Gx(y
∗)− y∗]dH(x) = F (y∗)− y∗.

Since
∫ 1

0
(1 − x)dH(x) ≥ u = maxx

{
F (x) − x

}
≥ F (y∗) − y∗ =

∫ 1

0
(1 − x)dH(x), all

the inequalities are equalities and we conclude that ⟨(Gx)x, H⟩ satisfies no-information

indifference.

In light of Proposition 1, we will restrict the search of an optimal outcome to those

satisfying no-information indifference. A consequence is that it will be sufficient to de-
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scribe outcomes by their behaviour on [x∗, 1]. Let us first introduce a piece of notation

and then state this result precisely.

Denote ONII
the set of elements of the form ⟨(Γx)x∈[x∗,1], H⟩ whereH is a cumulative

distribution function with support included in [x∗, 1] and, for each x ∈ [x∗, 1], Γx is a non-

decreasing and right-continuous function on [x∗, x] with Γx(x
∗) = 1− x+ x∗, Γx(x) = 1,

for all x̂ ∈ [x∗, x], Γx(x̂) ≤ 1− x+ x̂, and:

∀y ∈ [x∗, 1],

∫ 1

x∗
Γx(y)dH(x) = F (y).

We have the following result.

Lemma 2. (A) If ⟨(Gx)x, H⟩ ∈ O satisfies no-information indifference, then (i) suppH ⊆

[x∗, 1], and (ii) there exists (G̃x)x ∈ G such that ∀x ∈ [x∗, 1], G̃x(x
∗) = 1 − x + x∗, and

⟨(G̃x)x, H⟩ ∈ O.

(B) If ⟨(Γx)x∈[x∗,1], H⟩ ∈ ONII
, there exists (Gx)x ∈ G such that ⟨(Gx)x, H⟩ ∈ O and:

∀x ∈ [x∗, 1]∀x̂ ∈ [x∗, x], Gx(x̂) = Γx(x̂).

The proof is in Appendix A.2. In the following sections, we will describe solutions

on [x∗, 1]. Then we can use the result of this lemma to construct complete solutions to

the designer’s problem. One remark is that, in part (B), the construction of (Gx) given

⟨(Γx)x∈[x∗,1], H⟩ is explicit.

1.5 Optimal Information Structures

The purpose of this section is to present explicit solutions to the designer’s problem

depending on her preferences. We start with the case in which the designer’s utility

function is convex. Then, we describe the case in which the designer’s utility function is

concave.

1.5.1 Convex Objective

Assume that the designer’s utility function v is increasing and convex. We will construct

a solution to her problem. Then, we prove its optimality by constructing shadow prices

and using Theorem 1.

23



Intuitively, because her utility function is increasing, the designer wishes to induce

the decision maker to take actions that are as high as possible. In order to choose a

high action, the decision maker needs to be convinced that the threshold is likely to be

high. In other words, the incentive compatibility constraint (IC) associated to the highest

actions restricts the probability that the decision maker’s posterior belief can place on

lower realisations of the threshold. Therefore, due to the Bayes plausibility constraint, if

the designer induces the highest actions with large probability, she may have to include

lower actions in the support of her chosen outcome, in order to be able to include lower

realisations of the threshold in the associated posterior distribution. It follows that the

unconditional distribution over the decision maker’s actions may place large probability

on the highest actions only if the distribution is sufficiently spread. When the designer’s

utility is convex, she in fact benefits from this spread.

As a consequence, the construction of the candidate solution will focus on trying to

induce the highest actions with as much probability as possible. The main restriction

that the designer faces is the incentive compatibility constraint (IC). A first step in the

construction may then be to assume that this constraint always holds with equality, that

is to set: Gx(y) = min
{
1, 1− x+ y

}
. This will allow to build a valid outcome only when

the prior distribution of the threshold has a concave cumulative distribution function

F . The reason is that the constraint (BP) will imply that F writes as a sum of concave

functions. If F is not concave, we will have to adapt this argument by first concavifying

F .

Let us now explain the construction formally. Denote F : [0, 1] → [0, 1] the pointwise-

smallest concave function that remains everywhere weakly above F . Note that the prop-

erties of F imposed by Assumption 1 are preserved by F . By concavity, F has a well-

defined right-derivative F
′
+ on [0, 1). Furthermore, F

′
+ is non-increasing, positive and

right-continuous on [0, 1). We extend its definition by setting F
′
+(1) = 0. We define the

unconditional cumulative distribution function over the decision maker’s actions by:

Hvex(x) =


0 if x < x∗,

1− F
′
+(x) if x ≥ x∗.

(1.6)

Observe that equation (1.6) defines a valid cumulative distribution function with sup-

port in [x∗, 1]. To see this, in addition to the properties of F
′
+ described previously, note
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that F and F must coincide at x∗ and that F
′
+(x

∗) ≤ 1.10 Before describing the associated

posterior distributions (Gx)x, an important remark is that:11

suppHvex ⊆
{
x ∈ [x∗, 1] : F (x) = F (x)

}
.

With this remark in mind, we can define:

∀x ∈ suppHvex∀y ∈ [x∗, 1], Gvex
x (y) = min

{
1, 1− x+ y − F (y)− F (y)

F
′
+(y)

}
. (1.7)

Note that F
′
+(y) = 0 only if y = 1, at which point we must have Gvex

x (y) = 1, so the

definition above is valid up to a slight abuse of notation. Recall also that, by Lemma

2, it is sufficient to describe Gx on [x∗, 1]. Since F and F coincide at x∗ and at any

x ∈ suppHvex, we have indeed Gvex
x (x∗) = 1− x+ x∗ and Gvex

x (x) = 1. In addition, the

expression y 7→ y− F (y)−F (y)

F
′
+(y)

is increasing on [x∗, 1].12 For completeness, we should also

describe Gx for x /∈ suppHvex. In this case, set Gvex
x (y) = min{1, 1− x+ y}.

We are ready to state the main result of this section. Irrespective of the specific utility

function of the designer, as long as it is increasing and convex, the construction above

provides a solution to her persuasion problem.

Proposition 2. If v is convex, ⟨(Gvex
x )x, H

vex⟩ describe an optimal outcome for the designer.

The proof is presented in Appendix A.2.

1.5.2 Concave Objective

Now assume that the designer’s utility function v is increasing and concave. Again, we

construct a solution to her problem and use Theorem 1 to establish its optimality.

In this case, the designer dislikes spread in the distribution of the decision maker’s

actions. Therefore, the designer will find it optimal to relax the incentive compatibility

10Indeed, x 7→ F (x∗) + x− x∗ is a concave function remaining everywhere weakly above F , by definition
of x∗. Therefore, for all x, F (x) ≤ F (x) ≤ F (x∗) + x − x∗. Evaluating this chain of inequalities at x∗ yields
F (x∗) = F (x∗). Next, taking the limit as x → x∗, x > x∗, yields F ′

+(x∗) ≤ 1.
11If F (x) < F (x), define a = sup{z ≤ x : F (z) = F (z) and b = inf{z ≥ x : F (z) = F (z). Since F and

F are both continuous, a < x < b. Furthermore, it is easy to see that F must be affine on [a, b], so Hvex is
constant on [a, b).

12For y such that F (y) ̸= F (y), define a and b as in the previous footnote. Then F is affine on [a, b], that is
of the form: F (y) = αy + β. Then:

y −
F (y)− F (y)

F
′
+(y)

= −
β

α
+

F (y)

α
.
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constraints locally. More precisely, the solution has the feature that, when the decision

maker’s action is x, the posterior distribution of the threshold places no mass on an

interval (θ(x), x). As a result, realisations of the threshold in (θ(x), x) remain available

to associate to posterior distributions conditional on alternative actions. This feature

will allow the designer to induce the decision maker to take actions that are all relatively

high, even though the highest among those will arise with small probability.

The main technical challenge of this section is to define θ(x). For clarity of the expo-

sition, we make a further assumption on the prior. In this case, the construction will be

relatively transparent.

Assumption 3. The prior cumulative distribution function of the threshold F is twice continu-

ously differentiable and strictly concave on [0, 1].

Under Assumption 3, we can define a function θ as a solution to the differential equa-

tion:

θ′(x)F ′′(θ(x))(x− θ(x)
)
= F ′(x),

with initial condition:

θ(1) = x∗.

We show in Appendix A.2 that there exists a constant a ∈ (x∗, 1), such that a unique

solution θ can be defined on [a, 1], is decreasing on [a, 1] and satisfies θ(a) = a.

We can now use such a function θ to define a candidate solution ⟨(Gcave
x )x, H

cave⟩ to

the designer’s problem. Define:

Hcave(x) =


0 if x < a,

F ′(θ(x)) if x ≥ a.

(1.8)

Hcave has support [a, 1], with an atom at a. Since both θ and F ′ are continuously de-

creasing, Hcave is continuously increasing on [a, 1]. Furthermore, Hcave(1) = F ′(x∗) =

1, where the second equality is a consequence of the first-order condition of decision
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maker’s no-information benchmark problem.13 Now, for x ≥ a and y ∈ [x∗, 1], define:

Gcave
x (y) =


1− x+ y if y ≤ θ(x),

1− x+ θ(x) if θ(x) ≤ y < x,

1 if y ≥ x.

(1.9)

Recall that by Lemma 2, it is sufficient to describe those posterior distributions above x∗.

For all x ≥ a, θ(x) ≥ x∗, so indeed Gcave
x (x∗) = 1 − x + x∗. The mapping θ assigns, to

each action x above a, a “last tempting deviation” θ(x) below a. After θ(x), Gcave
x is flat,

until reaching x. For completeness, we also define Gcave
x for x < a, in which case we set

Gcave
x (y) = min{1, 1− x+ y}.

Proposition 3. If v is concave and F satisfies Assumption 3, then ⟨(Gcave
x )x, H

cave⟩ describes

an optimal outcome for the designer.

The proof is presented in Appendix A.2.

13Note that the first-order approach applies under Assumption 3.
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Chapter 2

Smart Contracts and the Coase

Conjecture

2.1 Introduction

The Coase Conjecture is a manifestation of the striking consequences of the lack of in-

tertemporal commitment power: if the monopolist can post prices frequently, she clears

the market quickly, at prices close to the lowest possible willingness-to-pay even when

most consumers have high valuation for the good.1 The goal of this paper is to exam-

ine the extent to which this conclusion is robust to considering more complex selling

mechanisms than just price-posting. Motivated by smart contracts used in digital mar-

kets, we allow the seller to offer general dynamic contracts. Our main result is that if the

monopolist has access to such contracts, the Coase Conjecture no longer holds.

In our model, there is a seller of a single good and a buyer. The buyer’s valuation for

the good is binary, high or low, and it is his private information.2 We consider the case

where the probability of high valuation is large enough for the static monopoly price to

be the high valuation. Time is discrete and both parties discount the future at the same

rate. In the initial period, the seller offers a contract from a space described below. If

the buyer accepts the contract, it determines the probabilities of trade and the transfers

1This phenomenon was first described by Coase (1972), and later formalized by Stokey (1981), Fudenberg,
Levine and Tirole (1985), and Gul, Sonnenschein and Wilson (1986).

2We focus on the “gap case” and assume that the seller’s production cost, normalized to be zero, is smaller
than the low valuation. In the “no-gap case”, Ausubel and Deneckere (1989) show that the Coase Conjecture
fails even with posted prices.
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in subsequent periods until it is replaced. At the beginning of each period, the seller

decides whether to proceed with the current contract or to void it and offer a new one.

We use the analogy of a mediator to describe a typical contract from our contract

space. In each period, both the seller and the buyer may send messages to the mediator.

In turn, the mediator sends private (and possibly public) signals to the contracting par-

ties and implements an allocation. Perhaps the most notable feature of such a contract

is that the mediator can possess information which the seller does not. When the seller

abandons a contract, she loses that information. This feature is shown to be the driving

force of our main result.

Some aspects of our contract space are reminiscent of the technologies developed

in relation to the aforementioned smart contracts. First, smart contracts are automated

in the sense that they execute trades without further consent from the contracting par-

ties. Similarly, in our model, the allocation proposed by the mediator is implemented

and cannot be renegotiated. Second, smart contracts in practice can be, and often are

switched off just like the seller can abandon her current contract in our model. One of

the reasons that contracts in digital markets are designed so that they can be switched

off is to avoid the execution of unlawful transactions, for example, due to bankruptcy

procedure against a contracting party.3 Finally, we note that cryptographic encoding of

a party’s input can prevent the other contracting party to recover that input even if she

has access to the contract’s code. Such encoding also plays an important role in dig-

ital markets: smart contracts deployed on blockchain networks use cryptographically

signed transactions.4

Since the seller’s commitment power is limited, she may benefit from a small contract

space. The reason is that removing contracts from the seller’s action space makes the set

of possible deviations shrink which, in turn, may enable the seller to stick with contracts

which are advantageous from the ex ante perspective. This can be seen most vividly by

considering the scenario when each contract available to the seller specifies trading at the

high valuation. In this case, the seller could achieve the full-commitment profit because,

even though she maybe tempted to lower the price if there is no trade, she cannot do so.

3Another context in which a contracting party retains her right to void smart contracts is where the issuer
deploys these contracts in her private blockchains. Examples for such issuers include Walmart, Comcast,
Spotify, DHL, JPMorgan and MetLife.

4While communications in many digital trading platforms are public, there are examples for protocols
which allow for private communications. We discuss these examples and the implementation of such private
communications in the concluding section.
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So, in order to model the consequences of limited commitment in a meaningful way, the

contract space should be rich enough. To this end, we assume that the seller has access

to all simple and direct contracts defined as follows. A contract is called simple and direct

if the contract elicits the buyer’s valuation in the initial period of its deployment and

does not communicate with the contracting parties ever after. Our main result holds as

long as the seller’s contract space is rich enough to include all such contracts.

We note that our model assumes a certain amount of commitment power of the mo-

nopolist. Namely, if the contract in place determines an allocation, that allocation will be

implemented and the seller cannot take further actions. The same assumption is main-

tained in the standard Coasian model: if the buyer is willing to buy at the posted price,

trade will take place and the seller cannot reneg on the price.5

Our main result is that the monopolist’s payoff is bounded away from the low val-

uation irrespective of the discount factor. We prove this result by constructing a simple

and direct but suboptimal mechanism which never reveals any information to the seller.

In the initial period, the buyer reports his valuation and the high type trades at a price

less than his valuation with probability less than one. The low-type buyer does not trade

in the first period. Even though the seller receives no signal from the mechanism, she

updates her prior about the buyer’s type whenever trade does not occur. In every sub-

sequent period, the probability of trade is constant and does not depend on the buyer’s

type, so the seller’s posterior remains the same unless there is sale. Furthermore, the

price is the buyer’s reported valuation. This means that the low-value buyer’s payoff

is zero and the high-value buyer earns rent only in the initial period. Finally, from the

second period onwards, the discounted present value of the seller’s payoff is larger than

the low valuation.

If the seller abandons this contract, she loses its information content. The trading

probabilities in this mechanism are specified so that the optimal full-commitment mech-

anism in all but the initial period is clearing the market at the low valuation. Since the

seller’s expected payoff is larger than the low valuation, the constraint guaranteeing that

she does not abandon the mechanism is satisfied in each future period. The mechanism

we construct may not be optimal: In the initial period, the seller might prefer to choose

a different mechanism. But that would only imply that her equilibrium payoff is even

5McAdams and Schwarz (2007) and Akbarpour and Li (2020) consider static mechanism design problems
where the principal has even less committment power and she cannot credibly promise to follow the rules of
her own mechanism.
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larger than the one generated by the mechanism described above. Therefore, since the

seller’s expected profit is bounded away from the low valuation in our mechanism, her

equilibrium payoff is also larger than the low valuation. That is, the Coase Conjecture

fails.

From the methodological viewpoint, a contribution of our paper is the introduc-

tion of the aforementioned contracts into a dynamic principal-agent problem without

intertemporal commitment. Following the tradition of Mechanism Design, we do not

impose restrictions on the contract space and consider general dynamic contracts simi-

lar to those in the full-commitment benchmark. Of course, when the principal can com-

mit to long-term contracts, the information revealed to her by the mechanism about the

agent’s prior communications is irrelevant. In contrast, when the principal lacks com-

mitment power and re-optimizes in each period, such information is crucial in shaping

the future relationship with the agent. Consequently, the information revealed by the

contract should be part of the optimal contract design problem and hence, we allow for

contracts that store more information than the principal has access to. We speculate that

this approach may turn out to be useful in analyzing dynamic mechanism design prob-

lems with limited commitment in various environments. The application of this idea to

the problem of a durable-good monopolist merely clarifies that the Coase Conjecture is

not only due to the seller’s lack of commitment power but also to her restricted contract

space.

Literature Review

The literature on dynamic contracting in the absence of commitment probably started

with the papers by Laffont and Tirole (1988 and 1990). The authors offer two related

yet distinct approaches to model such environments. The first one is to consider one-

period contracts. In each period, the principal offers a contract which, if accepted by the

agent, determines the allocation in that period as a function of contractible variables.6

The second approach is to allow dynamic contracts which can be voided and replaced if

both parties wish to do so. That is, equilibrium contracts must be renegotiation-proof.7

6Examples for recent papers analysing dynamic screening problems with short-term contracts include Ger-
ardi and Maestri (2020), Beccuti and Möller (2018), Acharya and Ortner (2017) and Tirole (2016).

7Among others, Battaglini (2007) and Maestri (2017) generalize the results of Laffont and Tirole (1990) in
various ways. Strulovici (2017) provides a foundation for renegotiation-proof contracts in a bargaining en-
vironment. Hart and Tirole (1988) and Breig (2019) compare the two modelling approaches in a dynamic
buyer-seller relationship.
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The methodological contribution of our paper is to put forward another approach

of modeling limited commitment which appears to be new. In order to explore the

consequences of the absence of commitment in the context of a principal-agent rela-

tionship, it is desirable to consider a setting which differs from the full-commitment

benchmark only in the assumption regarding the principal’s commitment power. In the

full-commitment benchmark, the principal has access to dynamic contracts and has full

bargaining power. Therefore, our model combines the two approaches of Laffont and

Tirole (1988 and 1990) in the following way. On the one hand, the set of mechanisms is

not restricted to be one-period ones and the principal has access to infinite-horizon dy-

namic contracts. On the other hand, the principal can offer new contracts in each period

and the agent’s consent is not required to abandon the previous contract.

Doval and Skreta (2022) also consider mechanism design problems with limited com-

mitment. They generalize the approach in Laffont and Tirole (1988) and consider one-

period contracts. Their mechanisms do not only determine allocations but can also re-

veal public information. The authors develop a Revelation Principle and show that the

information revealed by a mechanism can be assumed to be the principal’s posterior

about the agent’s type.8 In their companion paper, Doval and Skreta (2020) show that

the Coase Conjecture still holds with such a contract space. Indeed, the authors demon-

strate that in a Coasian environment, the seller optimally posts prices in each period.9

Our paper also contributes to the literature documenting failures of the Coase Con-

jecture in the ‘gap case’. With multiple atomic buyers, Bagnoli, Salant and Swierzbinski

(1989), von der Fehr and Kuhn (1995) and Montez (2013) show that the seller can main-

tain high posted prices until a trade occurs. Feinberg and Skrzypacz (2005) show that

higher-order uncertainty can generate delay. Other papers demonstrate that the Coase

Conjecture is not robust to the assumption that the seller’s marginal cost of production is

constant, see, for example, Kahn (1988), McAfee and Wiseman (2008), Karp (1993), and

Ortner (2017).10 Bulow (1982) argues that the monopolist benefits from renting the good

8Bester and Strausz (2001) also develop a Revelation Principle in finite-horizon environments and finite
type spaces.

9Lomys and Yamashita (2022) introduce a mediator into the model of Doval and Skreta (2022) who controls
the communication between the contracting parties. The mediator cannot be replaced by the principal and
can possess information which the principal does not have. The authors demonstrate that such a mediator
expands the set of implementable allocations of Doval and Skreta (2022). See also Fanning (2021a, 2021b) who
explores how a mediator who can withhold information can improve equilibrium outcomes in a reputational
bargaining problem.

10Also related is the literature on obsolescence or imperfect durability of the good, see Bulow (1986), Wald-
man (1993), and Fudenberg and Tirole (1998).
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rather than selling it.11

Another approach to break the Coase Conjecture is to allow the seller to intratempo-

rally screen, e.g. by producing a variety, see Wang (1998), Takeyama (2002), Hahn (2006),

Inderst (2008), or Board and Pycia (2014). A notable contribution by Nava and Schiraldi

(2019) demonstrates that all these results are consistent with the Coasian logic in the fol-

lowing sense. The seller’s limit payoff is the maximal static monopoly profit subject to

the market-clearing condition.

The Coase conjecture has been also proved to fail when market deterioration is pre-

vented by the arrival of new buyers or stochastically changing values. Important contri-

butions include Sobel (1991), Biehl (2001), and Fuchs and Skrzypacz (2010).

Our work is also related to the literature on smart contracts. The term ‘smart con-

tract’ was first coined by Nick Szabo in the mid-90’s, whose prototypical example of a

vending machine highlights the ideas of automatic execution and immutability. Since

then, with the advent of bitcoin and the popularization of blockchain technologies such

as Ethereum, interest in smart contracts has heightened. For some recent papers on the

blockchain, see Huberman, Leshno and Moallemi (2021) who provide an insightful anal-

ysis of the Bitcoin Payment System and Abadi and Brunnermeier (2018) who study the

impossibility of any distributed ledger to satisfy certain desiderata.

Recent research on smart contracts has explored how these contracts can enlarge

the space of implementable economic outcomes. Cong and He (2019) study the ef-

fects of smart contracts on industrial organization, while Tinn (2018) studies how fi-

nancial contracting may be affected. Bakos and Halaburda (2019) delineate the effects

of enhanced information generation of technologies dubbed the Internet-of-Things, and

the automatic execution offered by smart contracts in a simple contracting game. Fi-

nally, Holden and Malani (2021) examine the use of smart contracts in the context of

the hold-up problem. Two key properties of smart contracts underpin all of the above

papers: (i) enhanced commitment power—for example, through lowering enforcement

costs via automatic execution, or preventing renegotiation of terms altogether; and (ii)

better information—for example, by reducing state-verification costs.

While we recognize that restoring some commitment power is possibly the main

reason for the popularity of smart contracts, our paper intends to provide a different

11Hart and Tirole (1988) point out that the arguments of Bulow (1982) rely on buyer-anonymity and show
and that renting may make the seller worse-off.
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perspective. We take the view of Laffont and Tirole (1988) that the lack of intertemporal

commitment is a form of contractual incompleteness. In other words, contracting par-

ties may refrain from signing long-term, binding contracts due to potential unforeseen

or non-contractible contingencies even if such contracts were feasible.12 Although we

do not model these contingencies, our assumption that the seller cannot commit not to

switch off a deployed contract embodies the idea that she prefers a contract allowing for

discretion in the future.13 Our main result suggests that smart contracts may turn out to

be useful even in such environments because they can store information securely.

2.2 The Model and a Preview of the Results

There is a seller of a durable, indivisible good and a buyer whose willingness-to-pay for

the good is his private information. The buyer’s valuation is either high, vh, or low, vl

so that vh > vl > 0. The probability of high valuation, µ, is common knowledge. We

assume that µvh > vl, so the static monopoly price is vh. Time is discrete and indexed by

0, 1,... In the initial period, the seller offers a contract from the set C described below. This

contract then determines the allocation, i.e., the probability of trade and the transfer, in

every period unless it is replaced. In each subsequent period, the seller decides whether

to proceed with the previous period’s contract or to deploy a new one. If the seller

deploys a new contract, then it will determine the allocation in that period as well as

in every future period until it is replaced. The game ends when the good is sold. We

assume that both parties discount the future according to the common factor δ (∈ (0, 1)).

If the buyer’s valuation is v (∈ {vl, vh}), trade occurs in period T and the transfer is pt at

time t, then the payoffs of the buyer and seller are

δT v −
∞∑
t=0

δtpt and
∞∑
t=0

δtpt,

respectively. Moreover, both parties maximize their expected payoffs.

To complete the description of the model, we need to define the principal’s contract

12Unexpected software security vulnerabilities, bugs, novel types of attack threats, the need for upgrades,
and regulatory risk, are among the reasons one may willingly retain discretion over aspects of a smart contract,
preventing its absolute immutability in practice.

13Such control can be exercised via ‘admin keys’ retained by the issuer. It is worth noting that
12 out of the 15 most popular Decentralized Finance protocols, governed by smart contracts, have
such ‘admin keys’ (https://cointelegraph.com/news/how-many-defi-projects-still-have-god-mode-admin-
keys-more-than-you-think).
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space, C. However, the formalism associated with general contracts may not be neces-

sary to understand the main arguments leading to the failure of the Coase Conjecture.

In order to spare the uninterested reader from technical details, we first describe a par-

ticular contract and explain informally how it can be used to bound the seller’s largest

equilibrium payoff away from vl.

Preview of the Arguments.— We describe a dynamic contract by using the analogy of

a long-lived mediator once again. In the initial period, the buyer can report a valuation

from the set {vl, vh} to the mediator privately. If the buyer reports vh, the mediator ex-

ecutes trade immediately with probability α ∈ (0, 1) at price p ∈ (vl, vh) and there is no

trade if the buyer reports vl. In any subsequent period, trade occurs with probability β

with both types at a price equal to the buyer’s report. Furthermore, to make the buyer’s

participation voluntary, in each period, he can tell the mediator that he rejects the con-

tract. If so, neither the good nor any money changes hands in that period. In addition,

rejecting the contract results in a one-period delay.14 Moreover, the mediator does not

communicate with the seller. Notably, the seller can learn about the buyer’s valuation

only from past allocations but receives no additional information from the mediator.

Observe that such a contract is fully determined by the three parameters α, β and p.

Let us explain intuitively how the availability of such contracts may break the logic

of the Coase Conjecture. The key feature of these contracts is that, after the initial pe-

riod, they clear the market with a delay at a price equal to the buyer’s valuation. When

the seller is unable to commit not to clear the market, introducing delay is paramount

in screening the buyer’s willingness-to-pay. Indeed, if the delay is long enough (β is

small), the high-type buyer finds it optimal to report his type truthfully and to trade

immediately at price p with probability α instead of trading at price vl in the future. In

other words, setting β to be low makes the contract incentive compatible even when the

price p is relatively high. The downside of the delay is that, just like in the standard

price-posting model, the seller is tempted to deviate from her plan and clear the mar-

ket faster. However, if she abandons the contract, she loses its information content and

hence, she is unable to trade at the buyer’s true valuation. So, being able to trade at high

prices enables the seller to resist the temptation to abandon the contract and to clear the

market at vl.
14That is, the mediator’s plan at the beginning of a period after a rejection is the same as at the beginning of

the previous period.
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The proof of our main theorem consists of two steps. First, based on the intuitions

of the previous paragraph, we demonstrate that, for each δ, the triple (α, p, β) can be

chosen so that the corresponding contract satisfies the following four properties: (i) the

seller’s expected payoff generated by this contract is larger than a constant, say π, and

π > vl, (ii) the contract is incentive compatible, (iii) after the initial period, conditional on

no trade, the seller’s posterior regarding the high type is so low that the static monopoly

price becomes vl, and finally (iv) the seller’s continuation payoff is larger than vl in each

period. Let us denote a contract having these properties by dδ .

The second step of the proof is to show that if, for a given δ, there is an equilibrium

in which the seller’s payoff is less than π, then there also exists an equilibrium in which

her payoff is larger than π. Observe that the failure of the Coase Conjecture follows

from this result because π > vl. Let us now explain the arguments related to the second

step. To this end, consider an equilibrium in which the seller’s payoff is less than π. By

modifying this equilibrium, we construct a new one in which the contract dδ is deployed

forever, so the seller’s payoff is larger than π. On the new equilibrium path, the seller

always deploys dδ , the buyer always accepts it and reports his valuation truthfully. Of

course, one must also specify what happens off the equilibrium path. The rough idea

is to define the equilibrium strategy at a certain information set to be the same as in the

original equilibrium at a similar information set. Importantly, if the seller deviates in

the initial period and offers a contract different from dδ , the continuation play will be

identical to that in the original equilibrium.

It remains to argue that properties (i)-(iv) imply that neither the seller nor the buyer

can profitably deviate. The seller’s payoff from offering a contract different from dδ in

the initial period is the same as from offering that contract in the original equilibrium.

Hence, her deviation payoff is weakly less than the original equilibrium payoff which,

in turn, is less than π. Since, by property (i), the seller’s new equilibrium payoff is π,

such a deviation is not profitable. In addition, by property (ii), the buyer optimally

reports his valuation truthfully at the beginning of the game. In subsequent periods,

when dδ was already deployed a number of times, the seller’s continuation payoff ex-

ceeds the full-commitment profit by properties (iii) and (iv). Of course, if the seller aban-

dons dδ and loses its information content, her continuation payoff cannot exceed the

full-commitment profit. So even in later periods, the seller has no incentive to deviate
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from offering dδ . In fact, since the seller expects the buyer to always accept dδ , she opti-

mally offers this contract even after many periods of rejection. In turn, knowing this, the

buyer best-responds by accepting the seller’s offer.

In the remainder of this section, we describe the contract space formally and define

the equilibrium concept.

The Contract Space C.— We describe a typical contract, c, from the seller’s contract

space C. The contract specifies both the communication and the implemented allocation

in each period when the contract is deployed. Formally, c =
(
M b

T ,M
s
T , S

b
T , S

s
T ,xT ,pT , ρT

)∞
T=0

,

where M b
T and Ms

T are the messages available to the buyer and the seller in a given

period if the contract was already deployed T consecutive periods immediately pre-

ceding that period.15 The sets Sb
T and Ss

T are the signals the buyer and the seller may

receive privately. The functions xT :
(
M b

γ ,M
s
γ

)T
γ=0

×
(
Sb
γ , S

s
γ

)T−1

γ=0
→ [0, 1] and pT :(

M b
γ ,M

s
γ

)T
γ=0

×
(
Sb
γ , S

s
γ

)T−1

γ=0
→ R specify the probability of trade and the transfer condi-

tional on sale16 as a function of histories of messages and signals. Finally, the function

ρT =
(
ρbT , ρ

s
T

)
:
(
M b

γ ,M
s
γ

)T
γ=0

×
(
Sb
γ , S

s
γ

)T−1

γ=0
→ ∆

(
Sb
T , S

s
T

)
specifies the distributions of

the signals revealed to the buyer and the seller as a function of the history of messages

and signals. To model the buyer’s participation decision, we assume that, for each T ,

the buyer’s message space, M b
T , includes a special message, r, which triggers no trade.17

Sending this message is interpreted as rejecting the contract. If the buyer rejects the con-

tract, mb
T = r, then xT = pT = 0.18 We say that the contract c is actively deployed in a

given period, if the seller deploys c and the buyer does not reject it in that period. The

seller’s contract space C is a set of contracts described above.

Note first that the signals revealed to the contracting parties are assumed to be pri-

vate. However, when the signals are perfectly correlated, they are effectively public. In

fact, contracts are defined to be general enough to also allow the mixture of private and

public communication; signals may have both private and public components. Second,

despite the seller having no private information to start with, it is important to allow a

contract to condition on the seller’s messages. The reason is that the seller learns over

15For an example, suppose that c is deployed at t = 0, 2, 3 but not at t = 1. Then, T = 0 at t = 0, 2 and
T = 1 at t = 3.

16For notational simplicity, we assume that transfers are deterministic and paid only if there is trade. Allow-
ing random transfers has no impact on our results.

17We further discuss our modeling choice of the buyer’s interim participation in the Discussion Section.
18One may also find it natural to assume that the seller is informed about the buyer’s rejection of the contract.

Our main result holds irrespective of such an assumption.
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time and when she decides to deploy a contract, she may benefit from inputting her

posterior and making the implemented allocations dependent on it.

Simple and Direct Contracts.— We are not making any additional assumption on the

contract space except that it contains all those mechanisms which ask the buyer to report

her valuation in the initial period of deployment but involve no additional meaningful

communication. We call such contracts simple and direct and define them formally below.

Again, let us describe a typical simple and direct contract, d. First, if d is deployed

repeatedly then sending the message r only triggers a one-period delay. So, the easiest

way to describe d is to index the message and signal spaces as well as the allocations

defining these contracts by the number of those consecutive periods of deployment in

which the contract d was not rejected. More precisely, at each history, let τ denote the

number of previous periods in which d was actively deployed since a different contract

was deployed.19 Then, with a slight abuse of notation, the contract d is defined by the

collection (xτ ,pτ )
∞
τ=0, where xτ : {vl, vh} → [0, 1] and pτ : {vl, vh} → R. In the initial

period of deployment, and in every other period in which τ = 0, the buyer is asked to

report his valuation, so M b
0 = {vl, vh, r}. If the buyer reports v ∈ {vl, vh} then trade

occurs with probability x0 (v) at price p0 (v). If the buyer sends the message r and the

seller deploys d in the next period, the buyer’s message space is again {vl, vh, r} and

the allocation is determined by (x0,p0). After the buyer does not reject d and reports a

valuation, he can only accept or reject the contract, that is, M b
τ = {a, r} for all τ > 0. The

seller is only informed whether or not the buyer rejected the contract, that is, Ss
τ = {a, r}

for all τ and ρsτ
(
mb

τ

)
= r if, and only if, mb

τ = r. The seller does not communicate to the

contract and the buyer does not receive any information, so the seller’s message spaces

and the buyer’s signal spaces are singletons. The set of such simple and direct contracts

is denoted by D and we assume that D ⊂ C.

We point out that the set D is different from the set of contracts one may wish to

call direct in our environment. In general, a contract should be defined to be direct if its

message spaces in each period of its deployment are rich enough to allow the seller and

the buyer to report their private information. Since such a contract may send signals

to both parties and information may also evolve in those periods when the contract is

not deployed, a direct contract must allow the reporting of hierarchies of beliefs. For

19For example, if d was deployed at t = 0, 1, 2, 3 and was rejected only at t = 1, then τ = 2 at t = 3.
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example, the seller’s type includes his posterior about the buyer’s valuation, her belief

about the buyer’s belief about her posterior, etc.

Equilibrium Concept and Existence.— We focus on Weak Perfect Bayesian Equilibria.

That is, an equilibrium is defined as an assessment: a pair of system of beliefs and a

(possibly mixed) strategy profile. The belief system specifies for each information set

of the game a probability distribution over the set of nodes in that set, which is then

interpreted as the belief of the contracting party who moves at that information set. An

assessment is a Weak Perfect Bayesian Equilibrium if (i) the strategy profile is sequen-

tially rational at each information set and (ii) beliefs are derived by Bayes’ rule at those

information sets which are reached with positive probability.

The concept of Weak Perfect Bayesian Equilibrium places little restrictions on the

players’ out-of-equilibrium beliefs. Since we provide a lower bound on the seller’s equi-

librium payoffs, one may suspect that this result is supported by constructing beliefs off

the equilibrium path which may appear arbitrary. For example, if the seller believes that

the buyer’s willingness-to-pay is surely vh whenever he rejects a contract, she would ra-

tionally offer a contract which specifies trade only at price vh in subsequent periods. In

fact, the seller may maintain this belief even after the buyer rejects contracts arbitrarily

many times. This, in turn, may deter the buyer from rejecting an otherwise unattrac-

tive contract in the first place if it generates non-negative payoffs. We emphasize that

our analysis does not rely on such arguments and we impose further restrictions on the

seller’s off-equilibrium beliefs. First, we require the assessment to satisfy a version of

the “no-signaling-what-you-don’t-know” condition. In particular, the seller’s posterior re-

garding the buyer’s type cannot change arbitrarily after her own deviation. Specifically,

at the seller’s information sets followed by such deviations, her new posterior must be

computed by Bayes’ Rule using the buyer’s equilibrium strategy. Second, in the spirit

of the concept of Sequential Equilibrium,20 special care is taken to construct the seller’s

beliefs so that they are limit points of beliefs derived by Bayes’ rule along a sequence of

totally mixed strategy profiles converging to the equilibrium strategy profile.

It is not hard to show that equilibria exist in a discretized version of our model, i.e.,

the set of contracts, the message and signal spaces are all finite.21 We also prove existence

20Myerson and Reny (2020) discuss the difficulty to extend the definition of Sequential Equilibrium to games
with infinite sets of signals and actions, and propose the new concept of Perfect Conditional ε-Equilibrium.

21See Fudenberg and Levine (1983).
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for the case when the seller only has access to simple and direct contracts, that is, C = D,

see the Online Appendix. In the rest of this paper, we assume that an equilibrium exists

irrespective of the discount factor.

2.3 Main Result

In order to state our main theorem, let π (C, δ) denote the supremum of the seller’s payoff

across all equilibria if the contract space is C and the discount factor is δ.

Theorem 2. There exists a π > vl, such that for all δ ∈ (0, 1) ,

π (C, δ) ≥ π.

We remark that this theorem implies the failure of the Coase Conjecture: no matter

how close the discount factor is to one, the largest equilibrium payoff of the seller is

bounded from below by a constant, π, which is larger than the low valuation, vl.

The key to the arguments leading to the statement of Theorem 2 is to analyze a par-

ticular set of simple and direct contracts, coined as abiding contracts. The identifying

feature of these contracts is that if they are actively deployed forever then (i) the buyer’s

continuation payoff is weakly positive in each period irrespective of his type and (ii) the

seller’s expected continuation payoff is larger than her full-commitment profit in all but

the initial periods. The proof of the theorem consists of two steps. We first show that the

seller’s largest equilibrium payoff cannot be smaller than her payoff generated by any

of the abiding contracts. The second step is to construct an abiding contract generating

a payoff to the seller which is larger than vl and does not depend on the discount factor.

Next, we define incentive compatible and abiding contracts formally.

Incentive Compatible Simple and Direct Contracts.— Whether the buyer has incentive

to report his willingness-to-pay truthfully after accepting a simple and direct contract

depends on what contracts he expects to be deployed in the future. Moreover, it also

depends on the discount factor, δ. In what follows, we define incentive compatibility

conditional on the same contract being deployed forever. Before presenting the for-

mal definition, recall that the allocation determined by a simple and direct contract,

(xτ ,pτ )
∞
τ=0, depends only on the initial report of the buyer. Observe that if a simple

and direct contract is actively deployed in each period, the buyer’s report, v, determines
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the unconditional probability of trade, Xτ (v), and the expected transfer, Pτ (v), in each

period by

Xτ (v) = xτ (v)Π
τ−1
t=0 (1− xt (v)) and Pτ (v) = pτ (v)xτ (v)Π

τ−1
t=0 (1− xt (v)) .

Vice versa, each simple and direct contract d ∈ D can be described by (Xτ , Pτ )
∞
τ=0, where

Xτ : {vl, vh} → [0, 1] denotes the probability that trade occurs in period τ conditional d

being actively deployed in each period and Pτ : {vl, vh} → R is the expected transfer in

that period.

Note that if a simple and direct contract is deployed forever, the buyer may maximize

his payoff by misreporting his type in the initial period of deployment and optimizing

with respect to his rejection-acceptance strategy in the future. Let U (v, v̂, d, δ) denote the

buyer’s value if the contract d is deployed forever, the discount factor is δ, the buyer’s

valuation is v and he reported v̂ in the initial period. Recall that if the buyer rejects

a simple and direct contract, he only induces a one-period delay. Therefore, he only

rejects the contract if his continuation payoff is negative, in which case, he would reject

it forever. Consequently,

U (v, v̂, d, δ) = sup
T≥0

T∑
t=0

δt [Xt (v̂) v − Pt (v̂)] ,

where T denotes the time period after which the buyer rejects the contract forever. We

are now ready to define incentive compatibility.

Definition 3. The contract d = (Xτ , Pτ )
∞
τ=0 ∈ D is δ-incentive compatible if for v ∈ {vl, vh}

v ∈ arg max
v̂∈{vl,vh}

U (v, v̂, d, δ) .

Abiding Contracts.— As mentioned before, we intend to call a contract abiding if,

conditional on the contract being actively deployed forever, the buyer’s continuation

payoff is non-negative and the seller’s continuation payoff exceeds her full-commitment

profit in each period. More precisely, we require that an abiding contract specifies trad-

ing probabilities with each type of the buyer so that, after the initial period, the static

monopoly price becomes the low valuation. That is, conditional on not trading, the

seller becomes so pessimistic regarding the buyer’s willingness-to-pay that she would
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optimally clear the market at price vl. Before providing the formal definition, let us in-

troduce an additional piece of notation. If an incentive compatible, simple and direct

contract is actively deployed in each period then µt (d) denotes the posterior probability

that the buyer’s willingness-to-pay is vh in period t.

Definition 4. The contract d = (Xτ , Pτ )
∞
τ=0 ∈ D is δ-abiding if it is δ-incentive compatible

and, in addition,

(i)
∑∞

t=T δ
t−T [Xt (v) v − Pt (v)] ≥ 0 for all v ∈ {vl, vh} , T ≥ 0,

(ii) µt (d) ≤ vl/vh for all t ≥ 1, and

(iii) µT (d)
∑∞

t=T δ
t−TPt (vh) + (1− µT (d))

∑∞
t=T δ

t−TPt (vl) ≥ vl for all T ≥ 1.

Condition (i) implies that if a δ-abiding contract is deployed forever, accepting the

contract in each period is an optimal strategy of the buyer if his discount factor is δ.

Conditions (ii) and (iii) require that the static monopoly price is vl and the seller’s con-

tinuation value is larger than vl in all but the initial period if d is actively deployed

forever.

Let v (d, δ) denote the seller’s payoff if the incentive compatible, simple and direct

contract d = (Xτ , Pτ )
∞
τ=0 ∈ D is actively deployed forever, that is,

v (d, δ) = µ

∞∑
t=0

δtPt (vh) + (1− µ)

∞∑
t=0

δtPt (vl) .

We are ready to state that the seller’s value generated by any abiding contract is a lower

bound on her largest equilibrium payoff.

Lemma 3. Suppose that d ∈ D is a δ-abiding contract. Then π (C, δ) ≥ v (d, δ).

Let us explain the main arguments leading to this result. If the statement was false,

the seller’s payoff in each equilibrium would be strictly less than v (d, δ). Therefore, to

prove the lemma, it is enough to argue that each such equilibrium can be modified so

that, in the new equilibrium, the contract d is actively deployed forever. On the modified

equilibrium path, the seller always deploys d and the buyer always accepts it. Off the

equilibrium path the new equilibrium assessment is constructed based on the original

equilibrium. In particular, the seller’s payoff from offering a contract different from d in

the initial period is the same as from offering that contract in the original equilibrium.

Since the seller’s payoff from offering any contract in the initial period is smaller than
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v (d, δ) in the original equilibrium, such deviations are not profitable. In subsequent pe-

riods, when d was already deployed a number of times, the seller’s continuation payoff

from offering it exceeds the full-commitment profit because d is abiding. Of course, if

the seller abandons d and loses its information content, her continuation payoff cannot

exceed the full-commitment profit. So even in later periods, the seller has no incentive to

deviate from offering d. If the buyer ever rejects the contract, the seller’s posterior belief

remains the same.22 Given this belief and that the buyer is expected to accept d, the seller

rationally offers this contract even after many periods of rejection. In turn, knowing this,

the buyer best-responds by accepting the seller’s offer because d is abiding so it provides

him with a non-negative continuation payoff irrespective of his willingness-to-pay.

Proof. We prove this lemma by contradiction. Suppose that the seller’s payoff in each

equilibrium is strictly smaller than v (d, δ). In what follows, we fix such an equilibrium

and, by modifying it, we construct a new equilibrium so that the contract d is actively

deployed forever and, consequently, the seller’s payoff is v (d, δ), yielding a contradic-

tion.

Let us first define the new equilibrium assessment at those information sets which

are reached by paths along which no contract was offered but d. The seller always offers

d and the buyer never rejects it. Moreover, in the initial period, the buyer reports his type

truthfully. So, the equilibrium path, and hence payoffs, are determined by the repeated

active deployment of d. If the seller moves at such an information set, her belief is de-

fined to be µτ (d) if dwas actively deployed τ times before reaching that information set,

irrespective of the number of times the buyer rejected the contract. In other words, when

the buyer rejects d along a path where no other contract was offered, the seller does not

update her belief.

Next, we define the assessment at each information set which is reached by a path

along which a contract c ̸= d is offered. Observe that if d is actively deployed τ times be-

fore the seller deviates for the first time, her posterior is µτ (d). Next, we show that even

in the original equilibrium assessment there are information sets at which the seller’s

posterior is exactly µτ (d). We accomplish this by demonstrating the existence of a sim-

ple and direct contract c (d, τ) = (Xτ , Pτ )
∞
τ=0, with the following properties. In each

22This belief is the limit of beliefs derived by Bayes’ rule along a sequence of mixed strategies of the buyer
over rejecting and accepting the contract, along which the probability of rejection goes to zero and does not
depend on the buyer’s valuation.

43



equilibrium,

(i) the buyer accepts c (d, τ) in the initial period,

(ii) the buyer truthfully reports his type in the initial period if c (d, τ) is deployed and

(iii) the seller’s posterior belief is µτ (d) after the initial period if there is no trade.

To this end, let P0 (vl) = −vh, X0 (vl) = 1/2, P0 (vh) = −vh + q (vl + ε) and X0 (vh) =

1/2 + q, so that

µτ (d) =
µ
(
1
2 − q

)
µ
(
1
2 − q

)
+ (1− µ) 1

2

,

and ε (> 0) is small enough so that vh − (vl + ε) > δ (vh − vl). Moreover, let Pτ (v) =

Xτ (v) = 0 for all τ > 0 and v ∈ {vl, vh}. One interpretation of this contract is that each

type trades with probability half at price −2vh in the initial period. If the buyer reports

vh, he trades with an additional probability of q at a price just above vl. After the initial

period, the contract prescribes autarky. Note that accepting this contract generates an

instantaneous payoff of at least vh to the buyer. The sequential rationality of the seller

implies that the expected continuation payoff of the buyer cannot exceed vh, so the buyer

accepts this contract in every equilibrium, yielding (i). To see part (ii), first recall that

reporting vh triggers trade with an additional probability of q at vl + ε. Observe that the

sequential rationality of the seller implies that the object is never sold at a price lower

than vl so the high-value buyer is better off trading at vl+εwith an additional probability

of q whereas the low-value buyer is not. Hence, the buyer reports his value truthfully. To

obtain part (iii), observe that, by no-signaling-what-you-don’t-know, the seller’s posterior

must be computed by Bayes’ rule. In addition, q is defined such that this posterior is

µτ (d).

We are now ready to specify the new assessment at those information sets which are

reached by paths along which a contract c ̸= d is offered. To this end, consider an infor-

mation set at which c is offered and along the paths reaching this set the contract d was

actively deployed τ times and no other contract was ever offered. Therefore, the seller’s

posterior belief when offering c is µτ (d). Of course, the continuation game starting at

this information set is isomorphic to the continuation game in which the seller offers

c (d, τ) in the initial period, the buyer accepts it and reports his type truthfully, trade

does not occur and the seller offers c in the next period. Indeed, the seller’s posterior is

also µτ (d) by the definition of c (d, τ). Therefore, we define the equilibrium assessment

in the continuation game starting from offering c to be the same as the original equilib-
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rium assessment in the continuation game in which the seller offers c (d, τ) and c in the

first and second periods, respectively.

It remains to prove that the new assessment defined above is indeed an equilibrium

assessment. We first argue that players are sequentially rational at each information set.

In the initial period, the seller’s payoff from offering c (̸= d) is at most as large as her

payoff in the original equilibrium. Since, v (d, δ) is larger than that, the seller rationally

offers d. At those information sets which are reached by paths along which only d was

offered, the seller’s continuation payoff is larger than her full-commitment payoff given

her posterior. So, even at those information sets, the seller rationally offers d. At any

other information set, the seller’s strategy is sequentially rational because it is defined

by the sequentially rational original equilibrium assessment in the corresponding iso-

morphic continuation game. The buyer’s strategy is also sequentially rational at those

information sets which are reached by those paths along which no contract other than

d was offered. The reason is that d provides the buyer with a non-negative payoff and

rejecting d would only delay those payoffs given that the seller offers it again after any

number of rejections. Since d is incentive compatible, the buyer rationally reports his

type truthfully in the first period. At any other information set, the buyer’s strategy is

sequentially rational because it is defined by the original equilibrium assessment in the

corresponding isomorphic continuation game. Also note that the seller’s belief is de-

fined by Bayes’ rule at each information set which is reached with positive probability.

Indeed, the seller’s belief after the contract d was actively deployed τ times is µτ (d).

Having established Lemma 3, in order to prove Theorem 2, we need to demonstrate

the existence of a δ-abiding contract for each δ which generates a payoff to the seller

which is larger than a bound which is bigger than vl. The next lemma states that such

contracts exist.

Lemma 4. For all δ ∈ (0, 1), there exists a δ-abiding contract dδ ∈ D so that v (dδ, δ) ≥ π > vl.

In what follows, we construct a contract for each δ satisfying this lemma’s statement.

This contract will have the following properties. In its initial period of deployment, if

the buyer reports vh, the contract specifies a positive probability of trade, α, at price

p ∈ [vl, vh] and the buyer does not trade if he reports vl. In any subsequent period,

trade occurs with probability β with both types at a price equal to the buyer’s report.

In other words, this simple and direct contract depends on three parameters (α, β, p) ∈
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[0, 1]
2 × [vl, vh] and can be formally defined as follows. In the initial period, x0(vh) = α,

x0(vl) = 0 and p0(vh) = p0(vl) = p.23 For each τ > 0, xτ (v) = β and pτ (v) = v for

v ∈ {vl, vh}. In what follows, we express the constraints guaranteeing that the contract

is not only incentive compatible but also abiding in terms of these parameters.

Let us first discuss incentive compatibility. First, note that the buyer with type vl

weakly prefers to report his willingness-to-pay irrespective of the parameter values. The

reason is that if he does so, he always trades at price vl and hence, his expected payoff is

zero. On the other hand, if he reports vh, the price is always weakly larger than vl and

hence, his expected payoff is non-positive. Consider now the buyer whose valuation

is vh. If he reports his true valuation, his payoff is α (vh − p) because he trades with

probability α at price p in the initial period and, any time in the future, the price is vh.

If he reports vl, he does not trade in the initial period and, conditional on not trading

before, he trades with probability β at price vl in every period in the future. Therefore,

if the high-type buyer misreports his type, the expected discounted present value of his

payoff is

δ

∞∑
t=0

δt(1− β)tβ(vh − vl) =
βδ

1− δ + βδ
(vh − vl).

So, the incentive constraint of the buyer with type vh is satisfied if

α(vh − p) ≥ βδ

1− δ + βδ
(vh − vl). (2.1)

Next, we investigate the set of those parameters for which the contract is abiding.

First, note that whenever the buyer trades, the price is weakly smaller than his willing-

ness to pay. Therefore, if such a contract is actively deployed forever, the continuation

value of each type is weakly larger than zero, so the contract satisfies part (i) of Defi-

nition 4 for any parameters. Let us now describe the constraint corresponding to part

(ii) of Definition 4. That is, we describe conditions under which the seller’s posterior in

each future period is such that the full-commitment monopoly price is vl and her con-

tinuation payoff exceeds vl if the contract is deployed forever. To this end, observe that,

conditional on no trade, the seller’s posterior remains the same after the initial period

because the probability of trade in future periods, β, does not depend on the buyer’s

report. This posterior depends only on the probability of trade in the initial period, α,

23Since x0 (vl) = 0, p0 (vl) can be defined arbitrarily.

46



and we denote it by µ̃ (α). It can be computed by Bayes’ Rule,

µ̃ (α) =
(1− α)µ

1− µ+ (1− α)µ
. (2.2)

So, condition (ii) of Definition 4 holds and the static monopoly price is vl if, and only if,

vl ≥ µ̃ (α) vh. (2.3)

We now compute the seller’s continuation payoff in each period after the first deploy-

ment of the contract. Since neither the posterior distribution of types nor the probability

of trade depend on time, this continuation payoff is also independent of time and can be

expressed as

∞∑
t=T

δt−T (1− β)t−Tβ[µ̃ (α) vh + (1− µ̃ (α))vl] =
β

1− δ + βδ
[µ̃ (α) vh + (1− µ̃ (α))vl].

So, part (iii) of Definition 4 holds if this payoff is larger than vl. In fact, we will construct

parameter values so that that the seller’s continuation value also exceeds his payoff from

deploying this contract for one more period and selling the good at vl immediately if the

contract does not recommend trade, that is,

β

1− δ + βδ
[µ̃ (α) vh + (1− µ̃ (α))vl] ≥ β[µ̃ (α) vh + (1− µ̃ (α))vl] + (1− β) vl. (2.4)

In order to prove Lemma 4, for each large enough δ, it is enough to show the existence

of a triple, (α∗, β∗, p∗) ∈ [0, 1]
2 × [vl, vh], such that the constraints (2.1), (2.3) and (2.4) are

satisfied. Furthermore, we need to demonstrate that the seller’s payoff is bounded away

from vl uniformly.

Proof of Lemma 4. First, we construct a δ-abiding contract for small discount factors. For

each δ, consider the contract which specifies trade with the high-type buyer in the initial

period at a price vh − δ (vh − vl) and specifies trade with the low-type buyer in the next

period at price vl. This contract corresponds to the parameter triple where α = β = 1 and

p = vh − δ (vh − vl). Note that this price makes the high-type buyer indifferent between

buying the good immediately and trading at vl a period later and hence, the constraint

(2.1) is satisfied. Furthermore, since α = β = 1 and µ̃ (1) = 0, this contract is obviously
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δ-abiding and satisfies the constraint (2.4). Let πδ denote the seller’s value generated by

this contract and note that

πδ = µ [vh − δ (vh − vl)] + (1− µ) δvl = µvh (1− δ) + δvl > vl (1− δ) + δvl = vl,

where the inequality follows from µ > vl/vh. Moreover, observe that πδ decreases in

δ and converges to vl as δ goes to one. Therefore, it is enough to prove the lemma’s

statement for large δ’s. That is, we show that there exists a δ ∈ (0, 1), such that for all

δ ≥ δ, there exists a δ-abiding contract dδ ∈ D so that v (dδ, δ) ≥ π̂ > vl. Then, setting π

to be π = min
{
πδ, π̂

}
, the lemma follows.

Let us explain how we construct the aforementioned triple of parameters for large δ.

First, for each αwe define β̃ (α) so that the abiding constraint (2.4) evaluated at β = β̃ (α)

binds and ignore the constraint that β̃ (α) must be a probability. Second, we define p̃ (α)

so that the incentive constraint (2.1) evaluated at (β, p) =
(
β̃ (α) , p̃ (α)

)
binds and ig-

nore the constraint that p̃ (α) ∈ [vl, vh]. Then, we consider the functional form of the

seller’s payoff at
(
α, β̃ (α) , p̃ (α)

)
, maximize it with respect to α subject to the constraint

(2.3) and define α∗ to be the maximizer. Finally, we show that, if δ is large enough, the

parameters β̃ (α∗) , p̃ (α∗) are feasible, that is,
(
β̃ (α∗) , p̃ (α∗)

)
∈ [0, 1] × [vl, vh]. More-

over, the seller’s payoff generated by the contract corresponding to
(
α∗, β̃ (α∗) , p̃ (α∗)

)
is strictly larger than vl and does not depend on δ.

For each α ∈ [0, 1], let β̃ (α) be defined so that the constraint (2.4) binds, that is,

β̃ (α) = β =
1− δ

δ
· vl
µ̃ (α) (vh − vl)

. (2.5)

In addition, let us define p̃ (α) for each α ∈ [0, 1] so that the high-type buyer’s incentive

constraint, (2.1) binds, that is

α(vh − p̃ (α)) =
β̃ (α) δ

1− δ + β̃ (α) δ
(vh − vl). (2.6)

We now turn our attention to the seller’s payoff generated by the contract corre-

sponding to the triple
(
α, β̃ (α) , p̃ (α)

)
. We first compute the seller’s continuation payoff

in each period t > 0. As mentioned above, this continuation payoff does not depend on

t. Since the abiding constraint (2.4) binds at β = β̃ (α), this payoff can be computed by
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plugging β̃ (α) into the right-hand side of this constraint,

1− δ

δ
· vl
µ̃ (α) (vh − vl)

[µ̃ (α) vh + (1− µ̃ (α))vl] +

(
1− 1− δ

δ
· vl
µ̃ (α) (vh − vl)

)
vl

=
1− δ

δ
· vlvh
(vh − vl)

− 1− δ

δ
· v2l
(vh − vl)

+ vl =
vl
δ

.

We are now ready to compute the seller’s payoff generated by the contract defined by(
α, β̃ (α) , p̃ (α)

)
. Let ν (α) denote this payoff. Observe that, in the initial period, the

seller receives p̃ (α) with probability µα and, in the next period, her continuation payoff

is vl/δ. Therefore,

ν (α) = µαp̃ (α) + δ (1− µα)
vl
δ

= µαp̃ (α) + (1− µα) vl. (2.7)

Substituting p̃ (α) from equation (2.6) and using equation (2.2) yield

ν (α) = vl + (vh − vl)

(
1− 1− µ

1− µ̃ (α)
− µvl
µ̃ (α) vh + (1− µ̃ (α))vl

)
. (2.8)

Finally, we define α∗ to maximize ν (α), subject to the constraint (2.3). That is, α∗ solves

max {ν (α) : α ∈ [0, 1] , µ̃ (α) ≤ vl/vh} . (2.9)

We now show that α∗ is uniquely determined. To this end, note that ν depends

on α only through µ̃ (α). Also note that, by (2.2), the function µ̃ is continuous, strictly

decreasing in α and, in addition, µ̃ (0) = µ and µ̃ (1) = 0. Let Π(µ̂) denote ν
(
µ̃−1 (µ̂)

)
.

In what follows, we characterize the unique solution, µ̂∗, of the following maximization

problem

max
µ̂∈[0,vl/vh]

Π(µ̂) .

Then, it follows that α∗ = µ̃−1 (µ̂∗) is the unique solution of the problem (2.9). Note that

Π′ (µ̂) = −(vh − vl)

(
1− µ

(1− µ̂)2
− µvl(vh − vl)

(µ̂vh + (1− µ̂)vl)
2

)
,
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so Π′ (µ̂) ≥ 0 if, and only if, µ̂ ≤
[√

µ
1−µ −

√
vl

vh−vl

]
/
[√

µ
1−µ +

√
vh−vl

vl

]
. Therefore,

µ̂∗ = min


√

µ
1−µ −

√
vl

vh−vl√
µ

1−µ +
√

vh−vl
vl

,
vl
vh

 (2.10)

and note that µ̂∗ ∈ (0, vl/vh] because µ ∈ (vl/vh, 1).

Let us now return to examine whether
(
β̃ (α∗) , p̃ (α∗)

)
∈ [0, 1] × [vl, vh] if α∗ =

µ̃−1 (µ̂∗). Observe that, by equation (2.5), β̃ (α∗) ∈ [0, 1] if, and only if,

µ̂∗ (= µ̃ (α∗)) ≥ 1− δ

δ
· vl
vh − vl

.

Since the right-hand side is decreasing in δ and converges to zero as δ goes to one, there

exists δ such that β̃ (α∗) ∈ [0, 1] whenever δ ∈
(
δ, 1
)
. Let us turn our attention to the first

period’s transfer, p̃ (α∗). By the definition of the function p̃, it follows that p̃ (α∗) ≤ vh for

all α ∈ [0, 1]. Furthermore, equation (2.7) implies that the seller’s payoff, ν (α), can be

expressed as a convex combination of p̃ (α∗) and vl. Therefore, in order to establish that

p̃ (α∗) ∈ [vl, vh] we only need to show that ν (α∗) > vl, which we do next.

Before proceeding, we note that the construction of the parameters depends on the

prior distribution of types, µ ∈ (vl/vh, 1). We now make this dependency explicit and

express the seller’s payoff induced by the contract constructed above as a function of µ.

To this end, let us write the seller’s posterior defined by (2.10) as a function of µ, µ̂∗ (µ).

Now, observe that, by equation (2.8), the seller’s payoff can be written as

V (µ) = vl + (vh − vl)

(
1− 1− µ

1− µ̂∗ (µ)
− µvl
µ̂∗ (µ) vh + (1− µ̂∗ (µ))vl

)
. (2.11)

In order to prove that ν (α∗) > vl, it is enough to show that V is strictly increasing on

(vl/vh, 1) and

limµ→vl/vh
V (µ) = vl. To this end, note that V is continuous on (vl/vh, 1). From equation

(2.10), it follows that there is a cutoff value of µ, µ̄ ∈ (vl/vh, 1) ,
24 such that µ̂∗(µ) =

vl/vh whenever µ ∈ (µ̄, 1). On this domain, V (µ) = µv2h/ (2vh − vl), which is indeed

strictly increasing. Since µ̂∗ was chosen to maximize the seller’s payoff, on the domain

24It can be shown that

µ̄ =
vl(2vh − vl)

2

vl(2vh − vl)2 + (vh − vl)3
.
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(vl/vh, µ̄), the Envelope Theorem implies that

V ′(µ) = (vh − vl)

[
1

1− µ̂∗(µ)
− vl
µ̂∗(µ)vh + (1− µ̂∗(µ)) vl

]
= (vh − vl)

[
1− 2

vl
vh

+

√
vl
vh

(
1− vl

vh

)(√
µ

1− µ
−
√

1− µ

µ

)]
.

It is clear from inspecting the expression in the second line that V ′ is strictly increasing on

(vl/vh, µ̄). Furthermore, since limµ→vl/vh
µ̂∗(µ) = 0 by (2.10), the first line of the previous

equality chain implies that limµ→vl/vh
V ′(µ) = 0. Therefore, V ′ is strictly positive on

(vl/vh, µ̄). Recall that V ′ is also strictly positive on (µ̄, 1) and continuous on (vl/vh, 1).

Then, by noting that limµ→vl/vh
V (µ) = vl, we conclude that V > vl on (vl/vh, 1).

To summarize, we have constructed a triple of parameters,

(α∗, β∗, p∗) =
(
α∗, β̃ (α∗) , p̃ (α∗)

)
.

We have demonstrated the existence of δ such that
(
β̃ (α∗) , p̃ (α∗)

)
∈ [0, 1] × [vl, vh],

so these parameters indeed define a contract. By equations (2.5) and (2.7), this contract

is incentive compatible and abiding. Finally, we have proved that the seller’s value

from deploying this contract forever is strictly larger than vl. To conclude the lemma’s

statement, all is left to do is to argue that, provided that δ > δ, the seller’s value does not

depend on δ. This, however, is evident from equations (2.11) and (2.10).

We are ready to argue that the statement of Theorem 2 follows from Lemmas 3 and

4.

Proof of Theorem 2. Recall that Lemma 4 guarantees the existence of a δ-abiding contract

dδ ∈ D for each δ ∈ (0, 1) such that seller’s value generated by dδ is bounded away from

vl, that is, v (dδ, δ) ≥ π > vl. Then Lemma 3 implies that, for all δ ∈ (0, 1), the seller’s

largest equilibrium payoff exceeds π, that is, π (C, δ) ≥ π.

2.4 Discussion

Optimal Contracts.— Theorem 2 above states that the seller’s largest equilibrium payoff

is bounded away from vl but it provides no further information about this payoff. In

fact, we do not know what the seller’s optimal contract is, nor her largest equilibrium
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Figure 2.1: Comparison of the seller’s profits when the discount factor varies.

profit. However, when we prove equilibrium existence for the case of C = D, we con-

struct an equilibrium contract which induces a payoff to the seller which is significantly

larger than the bound provided by Lemma 4 (see the Online Appendix). For each δ, this

equilibrium contract specifies trade before a certain date, T (δ), with probability one. In

the initial period, only the buyer with valuation vh trades with a positive probability at

a price in (vl, vh). Ever after, the price is always the reported valuation, just like in the

case of the contract described in the proof of Lemma 4. In early time periods, only the

high-type buyer trades and the seller is becoming more and more pessimistic. The low-

type buyer only trades in the last and in the penultimate periods. Of course, as δ goes

to one, T (δ) converges to infinity. Figure 2.1 plots the seller’s payoff generated by this

contract as a function of δ for the example where vl = 1, vh = 3 and µ = .95.

What happens if the seller’s contract space is larger than D? It is not hard to show that

in general principal-agent models, the principal typically benefits from having access

to contracts which reveal information to both contracting parties. It is also possible to

construct examples where the principal is worse off if her contract space includes such

contracts. Unfortunately, we were unable to establish whether the seller benefits or is

hurt by enlarging the set D.
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Other Contracting Games.— As mentioned in the Introduction, a common approach

to model the lack of intertemporal commitment is to restrict the contract space to be the

set of one-period contracts. Doval and Skreta (2020) pursue this approach in the context

of a durable-good monopolist. In their setup, a contract of a given period determines

the probability of trade and transfer in that period and reveals a public signal which can

be assumed to be the seller’s posterior. The authors show that the largest equilibrium

payoff the seller can get, can be generated by a sequence of posted prices. Moreover,

the seller’s equilibrium profit converges to vl as the discount factor goes to one, that is,

the Coase Conjecture holds. Our main theorem highlights that the Coase Conjecture in

Doval and Skreta (2020) is not only the consequence of the seller’s limited commitment

power, but also of the restricted contract space.

Figure 2.1 also plots the seller’s largest equilibrium profit in the model of Doval and

Skreta (2020) as a function of the discount factor. Note that when the discount factor

is small, this profit level is larger than the one generated by the stationary contract de-

scribed in Lemma 4. However, the profit induced by the aforementioned equilibrium

contract is larger than the maximum profit in Doval and Skreta (2020) irrespective of δ.

Lomys and Yamashita (2022) consider a contracting game similar to ours. Let us para-

phrase the description of their model using the terminology of our paper. In the initial

period, their seller has access to the same set of contracts as our seller does. However,

once the initial contract is abandoned, the seller in Lomys and Yamashita (2022) loses

access to dynamic contracts and can offer only one-period contracts. A natural question

to ask is: How does the seller’s largest equilibrium payoffs compare in the two mod-

els? Observe that the seller’s willingness to redeploy a contract depends on the payoff

she expects in the continuation game following the abandonment of that contract. Intu-

itively, if the seller’s smallest equilibrium payoff in such a continuation game is low, the

set of those contracts she can credibly promise to deploy forever is large and, in turn,

her highest equilibrium payoff is also large. In general, we don’t know what the worst

payoff of the seller is in either of these models except if the seller’s posterior is so low

that the static monopoly price is vl. In that case, clearing the market at vl is the unique

equilibrium in both contracting games. Lomys and Yamashita (2022) show that if the

fraction of high-type buyers is low enough, the optimal contract is the solution of a re-

laxed problem where the seller’s payoff from abandoning the contract is assumed to be
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vl. Moreover, this contract specifies trade with the high-type buyer with a large enough

probability in the initial period, so that the static monopoly price becomes vl ever after.

Consequently, the seller’s payoff from abandoning this contract is indeed vl. Therefore,

in this case, the seller’s largest equilibrium payoff coincides in the two models.

Implementation.— As explained in the Introduction, the contracts considered in our

model have features resembling those of smart contracts used in digital markets. For our

main result to hold, it is essential that the buyer communicates his willingness-to-pay to

the contract privately. While communications on blockchain-based software platforms,

such as Ethereum, are typically public, there are numerous examples for smart contracts

involving private communication.25 Implementing such communication is not hard us-

ing the cryptographic technology already employed in those markets. One way to do

this is to encrypt the buyer’s messages and let the buyer retain the decryption key. Then,

in each period, the buyer can input the decryption key and an allocation is determined.

Inputting an incorrect key would simply be treated as rejecting the contract.26

Continuous Types.— We now explain that the arguments in our paper can be extended

to the case where the buyer’s type is continuously distributed on an interval [v, v] ⊂

R++.27 The idea is to construct a contract similar to the abiding contract of Lemma 4

which treats the buyer as if his type was binary. More specifically, we consider the same

set of contracts described by parameter triples, (α, p, β)’s, except that vl and vh are also

determined by design. In particular, vl is set to be v and vh ∈ (v, v). Effectively, the

contract asks the buyer to report whether his valuation is below or above the threshold

vh. That is, sending the message vl (vh) in the initial period is interpreted such that the

buyer’s valuation is below (above) vh. If the buyer reports vh the contract specifies trade

with probability α at price p ∈ (v, vh) immediately. In any subsequent period, the buyer

trades with probability β at a price equal to the initial report. Of course, the parameters

can be chosen so that the threshold type, vh, is indifferent between sending either of the

messages. Moreover, it is not hard to show that, if α is large enough and vh is sufficiently

close to v, the static monopoly price becomes v conditional on not trading in the initial

period. In this sense, such a contract is abiding and a result analogous to Lemma 3

25Examples for digital protocols where such private communication is implemented in practice include Tor-
nado.Cash and Aztec.Network.

26For discussions of implementing private communications on public blockchains, see Kerber, Kiayias, and
Kohlweiss (2021), Steffen et al. (2019) or Bünz et al. (2020).

27For formal proofs, see the Online Appendix.
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implies that the seller’s value generated by it is a lower bound of her largest equilibrium

payoff. Finally, observe that if such a contract is deployed forever, the seller’s payoff

is the same as if the buyer’s valuation was binary: vl with the probability that his true

valuation is below vh and vh with the remaining probability. Therefore, a computation

similar to the one in the proof of Lemma 4 implies that the contract can be defined so

that the seller’s payoff is π (> v) irrespective of the discount factor.

Side-Contracts.— If the seller decides not to proceed with the previous period’s con-

tract, the information content of the contract is lost. This feature enables the seller to

redeploy contracts which implement allocations which are dominated from the view-

points of both contracting parties. For example, in the context of the simple and direct

contract of Lemma 4, dδ , the buyer trades with probability β∗ (< 1) at the price of the

reported valuation in all but the initial periods. Of course, both the seller and the buyer

would be (weakly) better off if this probability was larger. However, if the seller wants to

replace the contract with another one with larger trading probabilities, she would need

to pay information rent to the buyer again which makes such a deviation non-profitable.

A possible way to circumvent such ex-post inefficiencies associated to a contract would

be to consider the possibility of writing side-contracts. That is, the seller continues to

redeploy the previous period’s contract but can offer a side-contract which conditions

on the outcome of the redeployed contract. We next discuss the robustness of our main

result to the introduction of such side-contracts.

Our arguments do not depend on the exact details of a model of side-contracts. How-

ever, one must specify what happens if the original contract and a side-contract recom-

mend to implement different allocations in a certain period. In what follows, we assume

that contracts can be written so that they have priority over contracts offered later. That

is, if the seller offers such a priority contract and later a side-contract, the side-contract

can affect the terms of trade only if the original contract is abandoned.

To argue that the Coase Conjecture fails even in a model with side-contracts, it is

enough to establish that the value generated by dδ , v (dδ, δ), is still a lower bound on

the seller’s largest equilibrium payoff. In our model without side-contracts, Lemma 3

implies that, if the seller’s payoff is less than v (dδ, δ) in an equilibrium, there is another

equilibrium in which the contract dδ is offered and accepted in each period, so the seller’s

payoff is v (dδ, δ). We extend the equilibrium construction in the proof of Lemma 3 by
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specifying an assessment at information sets following the offer of a side-contract. To

this end, consider the continuation game following a period of no trade. Recall, we con-

structed equilibrium strategies so that the seller deploys dδ even after multiple periods

of rejection and the buyer always accepts it. There is, however, another equilibrium in

this continuation game. Observe that, if the buyer expects the seller to always clear the

market at price vl, he rejects any contract that generates a payoff less than that from buy-

ing the object at vl a period later. Since, conditional on not trading in the initial period,

the static monopoly price is vl, the seller best-responds by trading with both types at vl

immediately. Let us now assume that this continuation play ensues whenever a side-

contract is offered and that dδ is offered with priority. Then, in each period, the seller’s

temptation to offer a side-contract is maximal right after the buyer accepted dδ but before

it determines the allocation of that period. Since dδ has priority, the optimal side-contract

of that moment would implement trade at price vl if the outcome of the original contract

is no trade.28 Observe now that the abiding constraint (2.4) implies that, conditional on

not trading in any given period, the seller’s continuation value generated by dδ exceeds

her payoff from clearing the market at vl. Therefore, the seller cannot gain from offering

a side-contract.

Buyer-participation.— In our model, the buyer’s participation is voluntary even at

interim stages because he can send a message in each period that triggers autarky in

that period. Notably, sending this message does not force the seller to abandon the re-

jected contract and consequently, its information content is not necessarily lost. In a

sense, our modelling choice provides the seller with maximal bargaining power while

still respecting the buyer’s interim participation constraints. This is consistent with our

primary objective: to model dynamic principal-agent relationships without intertempo-

ral commitment. In particular, our contracting game is meant to capture the principal’s

identifying feature of having full bargaining power.

Let us also point out that our assumption regarding the buyer’s voluntary participa-

tion may appear to be particularly plausible in the context of dynamic option contracts.

Indeed, by relabelling the buyer’s action of sending the reject message to not sending a

message, our contracts can be reinterpreted as general dynamic options. In each period,

28If dδ had no priority, it can be used as a signal generating device. For example, a side-contract offered in
the initial period could ask the buyer to report his type. If the buyer reports vl and dδ recommends trade at p∗

the side-contract could punish the buyer for inconsistent reports by implementing trade at an arbitrary high
price.
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the buyer must send a message to exercise the option. The terms of trade in that period,

i.e., probability and transfer, may depend on the entire history of messages. If, in a cer-

tain period, the buyer does not send a message, the option is not triggered and trade

does not take place. In this case, the seller may decide to abandon the current option

contract and offer a new one. However, assuming that the buyer forces her to do so just

by not exercising the option might be controversial.

Finally, we explain that whether our main result remains valid in a model where

the buyer’s rejection decision forces the seller to abandon her contract may depend on

the equilibrium concept of the model. To this end, consider the abiding contract, dδ ,

described in the proof of Lemma 4. In order to show that the seller’s largest equilibrium

payoff is bounded away from vl, we need to modify the proof of Lemma 3 and construct

an equilibrium in which dδ is offered in each period. Recall that, conditional on not

trading in the initial period of deployment of dδ , the seller becomes so pessimistic that

the static monopoly price becomes vl. The high-type buyer may be tempted to exploit

this fact by rejecting dδ and hope that the seller will clear the marker at vl in the next

period. However, since the low-type buyer has no strict incentive to reject, the seller

may make an inference from observing the rejection about the buyer’s willingness-to-

pay. Therefore, one can specify the assessment so that, after the buyer rejects dδ , the

seller becomes fully convinced that the buyer is of high type and sets price vh ever after.

Moreover, the high-type buyer responds by accepting trade at vh while the low-type

buyer rejects it. In turn, the high-type buyer no longer benefits from rejecting dδ . This

modified assessment is a Weak Perfect Bayesian Equilibrium. Furthermore, it is not hard

to show that the seller’s beliefs are limit points of beliefs derived by Bayes’ rule along a

sequence of totally mixed strategies of the buyer converging to his equilibrium strategy

profile. However, the convergence is not uniform across the seller’s information sets, so

the construction above may not survive stronger equilibrium refinements.29

29Myerson and Reny (2020) suggest that, in the context of infinite games, the refinement concept correspond-
ing to sequential equilibrium should require uniform convergence. Otherwise, the fully mixed strategies in the
sequence may not be close to the limit strategy.
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Chapter 3

Economic Growth in a

Cooperative Economy

3.1 Introduction

For the first time in many decades the capitalist organization of production is under dis-

cussion in several Western societies. In the United States, avowed socialists are among

the most popular politicians in the country - and one of them has been a leading can-

didate to be nominated by a major party in the last two Presidential elections. Mean-

while, historically unprecedented percentages of opinion-poll respondents express pos-

itive views of socialism. Perhaps more significantly for future developments, socialism

is viewed more favorably than capitalism among the youngest cohorts.1 In the United

Kingdom, leaders with a Marxist background, and with a recent history of advocating

worker ownership of the means of production, have recently led the major opposition

party, and might have succeeded in winning power had they not chosen an unpopu-

lar stance on Brexit. Disaffection with capitalism is also affecting political dynamics in

several other countries.

A similar, vigorous debate is taking place among academics and public intellectuals.

New books about the failures of capitalism appear on a monthly basis, and columns on

the same topic are featured daily on the major newspapers. Major research programs,

involving management scientists, sociologists, political scientists, and economists repu-

1E.g. Pew Research centre, 2019
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diate Friedmanite shareholder value and attempt to redefine the role and purpose of

corporations.2 Campaigns to redistribute power from shareholders to workers attract

support from thousands of academics in social science disciplines.3

Macroeconomists have yet to make significant contributions to this important de-

bate, and yet the institutional changes under discussion cry out for rigorous analysis of

their general equilibrium and dynamic implications. What do they imply for aggregate

productivity? How do they affect economic growth? This paper attempts to take a first

step towards filling this gap.4

The alternative to shareholder capitalism that we study in this paper is the worker

cooperative. This is a natural starting point for several reasons. First, cooperatives are

frequently cited as possible remedies to the perceived crisis of capitalism, making an

assessment of their growth implications directly relevant for the ongoing debate. Re-

cent influential books which contain expressions of support for producer cooperatives

as part of the needed revamp of the economic system include Block (2018), Cass (2018),

and Collier (2018), which all appeared within a few months of each other. The ear-

lier blockbuster on the consequences of inequality by Wilkinson and Pickett (2010) de-

votes its entire “normative” section to producer cooperatives, to the exclusion of all other

remedies for the problems the book highlights. As we show in Appendix C.1, the phrase

“worker cooperatives” has appeared more and more frequently among newly published

(digitized) books since the mid-2000s. Positive media coverage of producer cooperatives

seems also to have become more frequent, with stories centering on their ability to sup-

port the income and employment of their members during recent crisis periods; or on

owner-managers transferring ownership to the workers as their individual contribution

towards the transition to a post-capitalist model [for examples in prominent media, see

Financial Times (2019) and New York Times (2021)].

Second, worker cooperatives have existed for nearly 200 years, and continue to exist

virtually everywhere in the world.5 This provides a real-world basis to build the model

on, and some confidence that the alternative to capitalism being studied has a chance

2E.g. the British Academy’s Future of the Corporation programme, lead by Colin Mayer.
3E.g. the Democratizing Work campaign of the Summer of 2020.
4Microeconomists have been quicker to the mark, and have produced important normative insights in a

partial equilibrium context (e.g. Magill, Quinzii, and Rochet (2015) and Hart and Zingales (2017)). But these
contributions cannot substitute for positive assessments of the dynamic and general equilibrium consequences
of alternative arrangements.

5The worker cooperative movement has its origins in the industrial revolution. Then as now it emerged as
a response to the perceived shortcomings of subordinate-labour capitalism.
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to survive impact with reality. Third, as we discuss shortly, there is a pre-existing (if

largely forgotten) tradition of economic modelling of worker cooperatives which we can

relate our work to. Fourth, and perhaps most importantly, worker cooperatives can be

thought of as a limiting case of many of the more nuanced ideas advanced by would-be

reformers, which typically include less complete reallocations of control and ownership

rights away from shareholders (or, essentially equivalently, reallocations of the weights

of different stakeholders in corporation decision making). We submit that studying this

limiting case is a useful first step towards a framework suitable for the study of more

“interior” forms of organization.6

We study a production economy inhabited by two-period lived overlapping gener-

ations, where only the young work, while both old and young consume. The capital-

ist version of this economy, characterized by individual property of capital and profit-

maximizing firms, is entirely standard and its dynamic properties are well known. Con-

sistent with real-world arrangements, we conceptualize cooperatives as labor-managed

entities which allow no individual ownership of their assets. In our model this implies

that cooperatives, and not any individuals, own their own capital stock, and that young

workers come together to produce and collectively choose investment plans. Given that

the firm is managed by young workers, its objective is to maximize the present value of

their (common) lifetime utility. As in the capitalist economy, these cooperatives supply

their output on a perfectly competitive product market.

Real-world cooperatives differ in the claims former workers have in the distribu-

tion of income, with traditional cooperatives tending to severe all links upon a worker’s

retirement or withdrawal from the membership, and other, often more successful coop-

eratives where former workers continue to receive payments. Coops in the celebrated

Mondragon system, for example, which employs nearly 100,000 people in the Basque

region of Spain, belong to the latter category.7 Our modelling choices mimic this model:

old workers continue to participate in the distribution of income of the cooperative to

which they were attached when young. As was noted in the early economics literature

on labour-managed firms, in traditional cooperatives members’ horizon when voting

over investment is limited to their expected remaining time with the coop, and this tends

6Early statements of the view that worker cooperatives are limiting cases of models of codetermination
and/or collective bargaining include Law (1977), Aoki (1980), Svejnar (1982), and Miyazaki (1984).

7Classic economic analyses of the (still thriving) Mondragon experience include Bradley and Gelb (1983)
and Whyte and Whyte (2014).
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to depress cooperative investment. By lengthening the planning horizon of young work-

ers our institutional setup encourages greater investment by the coop, and potentially

explains the apparent greater success of those coops which continue to confer distri-

bution rights to former workers. Importantly, in an appendix we endogenize this ar-

rangement and show that it can emerge as a feature of the equilibrium in the dynamic

inter-generational game among subsequent cohorts of workers in the coop.

One of our main goals is to identify an appropriate equilibrium concept for a dy-

namic cooperative economy. This is challenging because it is not a priori obvious how

young workers will sort themselves into the cooperatives that exist when they join the

labor market, and also under what conditions they will decide to form new cooperatives

rather than joining an existing one. Furthermore, any worker allocation mechanism has

repercussions for investment, as a cooperative’s current workers incentive to invest de-

pends on the expected employment of the cooperative in the future. We solve these

challenges by developing a “minimum rationality” constraint on the admissible alloca-

tions. Part of this criterion is that workers in one cooperative cannot improve their life-

time utility by attracting a willing worker from another cooperative. After establishing

the general equilibrium notion, we also provide an equilibrium-selection criterion which

minimizes informational requirements. We explain later how our equilibrium concept

borrows from and extends existing ideas in cooperative game theory, as well as how it

relates to the literature on matching.

After developing the framework and the equilibrium concepts for a cooperative econ-

omy, we study a couple of examples. In these examples, we characterize the growth path

of the cooperative economy and compare it to the growth path of the same economy

when production takes place in the “standard” capitalist firms which feature in neoclas-

sical growth theory. Our analysis is based on choices of technology and preferences for

which we are able to develop qualitative, or at least quantitative results.

In our examples, the cooperative economy converges to a steady state level of in-

come per efficiency unit of labor - just as the capitalist economy is well known to do. In

general, steady state income, consumption, and welfare can be higher or lower in the

cooperative economy, depending on parameter values. Still, there are some systematic

differences. We uncover a form of static inefficiency in the cooperative economy: for a

given aggregate capital stock, worker cooperatives are inefficiently small (or, equiva-
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lently, there are too many firms in the cooperative economy). On the other hand, in our

one fully-solved example the capitalist economy features potential over-accumulation

of capital, while the cooperative economy is always dynamically efficient. We provide

an exact decomposition of steady-state income differences between the cooperative and

the capitalist economy into a static efficiency component and a capital accumulation com-

ponent. The static efficiency component always favours the capitalist economy but, if

the cooperative economy saves considerably more than the capitalist one, this can more

than compensate for its lesser static efficiency, resulting in higher steady-state output

and welfare.

We calibrate our model’s preference and technology parameters by matching the cap-

italist version of the model to relevant US data moments. In our baseline calibration

the steady state output of the cooperative economy is 73% of what it is in the capital-

ist economy, resulting in a 28% welfare loss. All of this output gap is due to the static

inefficiency of cooperatives: the aggregate saving rate is in fact slightly higher in the co-

operative economy. Needless to say these results are illustrative and more in the nature

of a “proof of concept” for the modelling framework. As we discuss in the Conclusions,

their robustness will have to be assessed against a number of modelling extensions.

The Golden Era of the theoretical economic analysis of worker cooperatives was the

period between the late 1950s and the late 1970s, when some of the stars of the profes-

sion took an interest in the topic. Ward (1958), Domar (1966), and Sen (1966) set up static,

partial equilibrium models focused on the determination of cooperative labor input (on

the extensive and/or intensive margin). Vanek (1970), Drèze (1976, 1989), Ichiishi (1977),

Greenberg (1979), Drèze and Greenberg (1980), and Laffont and M. Moreaux (1983) pro-

vided general equilibrium analyses, and established conditions for the existence and

Pareto optimality of equilibria in economies constituted by worker cooperatives.8 How-

ever, their analyses were still static. Furubotn and Peyovich (1973) and Furubotn (1976)

argued that this gave them a blind spot for the anti-investment bias arising from the lim-

ited planning horizons of traditional cooperative members, who lose property rights in

the cooperative’s assets when they leave the firm.9

8Or “labor-managed firms,” as earlier writers prefer to call them, or the less politically-loaded “partner-
ships” which features most frequently in post-1990 writings. We use “worker cooperative,” “producer coop-
erative,” and “labor-managed firm” interchangeably.

9Atkinson (1973) and Sapir (1980) also attempted to inject dynamic considerations in the Ward (1958) model,
but were not able to produce significant insights. The contributions cited here are only the landmarks of what
became a huge literature full of extensions and generalizations of the results in the key papers. The Journal
of Comparative Economics, in particular, was largely devoted to the study of labor-managed organizations well
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Conceptually, our paper can be understood as a step towards marrying Vanek and

Dreze’s general equilibrium analysis with Furubotn and Peyovich’s dynamic (but partial

equilibrium) one - while at the same time proposing a solution to the Furubotn and Pey-

ovich critique (in the form of giving former workers a claim on current distributions).10

However the modelling framework is completely different and much more in line with

recognizable modern macroeconomic practice.

Subsequent theoretical developments have returned to concerns, originally voiced

by Alchian and Demsetz (1972), with cooperative members’ incentives to provide effort

(e.g. Holmström, 1982, Kremer, 1997). Solutions to this problem have been identified

in peer monitoring (e.g. Mirrlees, 1976, Putterman, 1982),11 and the repeated nature

of the interaction among coop members, giving rise to the extension of the Folk The-

orem to so-called “partnership games” (Radner, 1986, Radner, Myerson, and Maskin,

1986, Fudenberg, Levine, and Maskin, 1994, and a conspicuous following). In order to

keep the focus on the macroeconomic implications, in this paper we abstract from the

intensive margin of effort. We do however note that, as pointed out by Bonin, Jones,

and Putterman (1993), and confirmed in many successive surveys, shirking by workers

or managers is virtually never reported as a concern in studies of real-world producer

cooperatives.12

In the last two or three decades the focus of the research effort on worker cooperatives

(and more generally of forms of worker participation in profit and/or management)

has shifted from the development of theoretical models to the mobilization of empirical

evidence. Excellent recent surveys of this large literature, which collectively covers a

large variety of countries and industries, can be found in Pencavel (2013), and Jones

(2018). Generally speaking, the evidence suggests that worker cooperatives tend to be

into the 1980s. A very comprehensive review of this literature (up to the mid-1980s) is in Bonin and Putterman
(1987).

10The implicit assumption being that, if our society turns to the cooperative mode of production, it will do
so based on the best practice available.

11In particular, cooperative workers have much greater incentives to monitor each other’s effort than subor-
dinate employees on a fixed salary.

12Our deterministic environment also means that we abstract from differences in risk diversification be-
tween capitalist and cooperative economies. The theoretical literature has generally pointed to countervailing
risk-diversification mechanisms operating in the two economies. Capitalist firms do a superior job with the
diversification of capital income (e.g. Meade, 1972), but cooperatives are more likely to insulate workers from
labor income volatility, particularly as arising from unemployment risk (Steinherr and Thisse, 1979, Miyazaki
and Neary, 1983, Bonin, 1984) and, thanks to their more equalitarian pay structure, provide better insurance
against idiosyncratic productivity shocks (e.g. Lang and Gordon, 1995, Kremer, 1997). Hansmann (1996) re-
views empirical evidence showing that cooperatives have more stable employment and that they are often
found in highly capital-intensive and high-volatility industries, and concludes that, on balance, differences
in risk diversification are probably not first order in comparing the two types of institutions. See also Drèze
(1989) for equivalence results between stochastic capitalist and cooperative economies.
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(somewhat) more productive than conventional firms, to afford their workers greater

income stability and job satisfaction, and to display comparable exit and investment

rates. It must be acknowledged, however, that only rarely are these empirical results

immune from concerns regarding selectivity.13

The paper is organized as follows. Section 3.2 describes the physical environment,

including technology, demographics, and preferences. Section 3.3 describes the insti-

tutional setup with which we represent the “capitalist” system, and the maximization

problems and equilibrium conditions that derive from it. These are familiar to all eco-

nomic students. Section 3.4 sets out institutions, maximization problems, and equilib-

rium conditions for a cooperative economy. This is the main conceptual and method-

ological contribution of the paper. Section 3.5 solves the model, both under capitalist

and under cooperative institutions, for the case in which individuals derive log utility

from consumption and production is Cobb-Douglas. For this example we are able to

develop closed from solutions and make a number of general statements about the com-

parative growth paths of the two economies. Section 3.6 presents a calibration of the

model with slightly more realistic preferences and derive the main quantitative results.

Section 3.7 evaluates the dependence of our numerical results on variations in the pa-

rameters and performs comparative statics exercises. Section 3.8 discusses some of the

many directions in which we hope to take this project in future work, both to probe

the robustness of our preliminary results and to investigate additional issues, such as

inequality.

3.2 Physical Environment

As noted in the Introduction, a critical economic feature of producer cooperatives is the

finite planning horizon of self-managing workers. These workers know that benefits ac-

cruing to the coop after they have left may escape them, potentially leading to severe

under-investment (and failure to implement other choices with back-loaded returns).

These considerations need to be taken into account when choosing the appropriate mod-

elling of demographic. The simplest option is a two-period overlapping-generations

13We should mention a healthy parallel literature on other types of cooperatives. For example, Rey and Tirole
(2007) study cooperative investment by groups of firms, and Hart and Moore (1996, 1998) study consumer
cooperatives. We should also cite an important 1980s research program on profit sharing (e.g. Weitzman, 1984,
1985, Meade, 1986), which had a particular focus on its potential role in dealing with stagflation.
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framework, in which agents only work when young (for a profit-maximizing firm in

the capitalist economy; as members of a cooperative in the cooperative economy), but

consume when both young and old. This means that young cooperative workers make

decisions which will affect cooperative outcomes after they have stepped down from

their membership, as is the case in real-world cooperatives. The fact that all the workers

making decisions within a cooperative are identical allows to identify an unambiguous

objective for the coop, namely the maximisation of the utility of all its current workers.14

Formally, we endow agents with utility function

U(cY , cO),

where cY (cO) is consumption of the economy’s final good when young (old). All agents

in a generation are identical, and each young agent supplies one unit of labour inelasti-

cally. For simplicity, we assume that the population is constant and denote L the mass

of each generation.

There exists a technology that uses capital and labour as inputs to produce the final

good according to the production function

F (k, l).

The capital used for production fully depreciates across periods, while investment of the

final good generates new capital on a one-for-one basis.

14In a model with a more general dynamic structure different workers in the same cooperative would have
different horizons and different employment histories. Since workers accumulate claims on their previous co-
operatives’ revenues, these would create heterogeneity in preferences within the decision makers of a coopera-
tive regarding investment decisions. For example workers closer to retirement may have different preferences
vis-à-vis investment to workers further away from retirement. The problem of heterogeneous horizons might
be solved within an infinite-horizon framework by using a dynastic model à la Barro or a perpetual-youth
model à la Blanchard, but still additional “tricks” would be required to make former employment histories
(namely the fact that workers will have accumulated claims of potentially differing expected value against
previous employers) irrelevant for their preferences regarding the firm’s current investment decisions. While
clever devices along these lines could certainly be introduced, we do not think that pursuing them would
move the model in the direction of greater realism. Having said all this, it has to be acknowledged that conflict
of interest among workers has been stressed as a key weakness of cooperatives by Hansmann (1996), though
we don’t know of compelling empirical evidence in support of this view. Other than the omission of an anal-
ysis of such potential conflicts, we struggle to conceive of insights about growth in a cooperative economy
which would be fundamentally different in a more complex demographic framework, or an infinite-horizon
one, from those we identify in our simpler OLG model.
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3.3 Capitalist Economy

Our capitalist benchmark is a standard competitive equilibrium where profit-maximizing

firms can enter and exit freely; young workers supply labour, consume and save in the

form of capital; old workers rent out the capital they saved and use the proceeds to

finance consumption; and all agents are price takers.

The prices of labour and capital at time t are denoted wt and rt, and they are in

terms of the final good, which acts as numéraire. Conditional on entry, individual firms

maximize profits taking current prices as given:

π(rt, wt) = max
k,l

{F (k, l)− rtk − wtl},

with factor demands denoted: k(rt, wt) and l(rt, wt). We assume that these factor de-

mands are single-valued so that all active firms behave symmetrically, and we can omit

firm subscripts.

Capital is owned by individuals. We assume that each period-0 old agent is endowed

with some initial capital stock κ0.15 In each subsequent period, old workers can sell their

savings in the form of capital stock κt at the market price rt. At the same time, young

workers become old capitalists by saving some of their labor income. In particular, the

young solve the following program:

max
cY ,cO,κt+1

U(cY , cO)

s.t. cY + κt+1 = wt

cO = rt+1κt+1.

The solution to this problem defines the optimal capital investment as a function of the

prices wt and rt+1:

κt+1 = K(wt, rt+1).

In equilibrium, markets for capital, labour and the final good clear, and free entry and

exit drive firms’ profits to zero. DenotingNt the equilibrium measure of operating firms,

15Heterogeneous capital endowments among the initial old could trivially be allowed for, but all hetero-
geneity would immediately disappear with the first young generation.
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the competitive equilibrium in each period is characterised by the following system:

πt(rt, wt) = 0

Ntl(rt, wt) = L

Ntk(rt, wt) = Lκt.

A solution to this system defines the equilibrium prices and the number of firms as

functions of the state variable κt: rt = r(κt), wt = w(κt), Nt = N(κt). It follows that

the dynamics in this economy are characterised by the following capital accumulation

equation:

κt+1 = K
(
w(κt), r(κt+1)

)
.

3.4 Cooperative Economy

This section works its way to the construction of a general-equilibrium concept for a

dynamic cooperative economy. We begin by formalizing the concept of cooperative, and

identifying the decisions which cooperative members make. Then we take up the more

complex task of analysing how these decisions interact at the aggregate level and, in

particular, we discuss the allocation of labour in the absence of a wage rate.

3.4.1 Concept of a Cooperative

Our conceptualization of cooperatives stresses two features which seem to most clearly

distinguish this mode of organization from standard, externally-owned corporations:

collective decision making by workers (labour management) and the non-tradability of

productive assets. Self-management implies that decisions concerning the cooperative’s

size and investment are made collectively by the current workers of the cooperative.

In our simplified context, where all workers are identical, this means that the objective

function of the cooperative is the maximization of the present value of the lifetime util-

ity of its current workers. Non-tradability means that capital is directly owned by the

cooperative.

Any period t begins with a set of incumbent cooperatives, indexed by i. An incumbent

cooperative i is characterized by an inherited capital stock kit and a set of former workers

lit−1. Each incumbent cooperative is allocated a set of workers lit via a mechanism which
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we describe later (Section 3.4.3). These workers produce output yit = F (kit, lit). A share

τ of this output is immediately distributed to the former workers. Next, the current-

period workers decide how much of the cash flow (net of payments to the old) should

be invested to put in place capital to be used in the next period, kit+1. All non-retained

earnings are distributed equally among current-period workers. These assumptions re-

sult in the following consumption levels for a representative young worker of incumbent

cooperative i in period t:

cYit =
(1− τ)yit − kit+1

lit
,

cOit+1 =
τyit+1

lit
.

The sharing rule τ provides young workers with an incentive to agree on the reten-

tion of earnings for the purposes of investment. It should be clear from the equations

above that if τ = 0 young workers will wish to set kit+1 to 0 as well. This is the Furubotn-

Peyovich critique of traditional cooperatives as it manifests itself in our model. In our

view this critique largely explains why many traditional cooperatives tend to remain

small over their life cycle, while those with post-retirement attachment (such as those in

the Mondragon system) tend to flourish.

In the main text we treat τ as a constitutional principle of the cooperative, which en-

titles former workers to keep sharing in the coop’s distributions. However in Appendix

C.9 we generalize our model to nest an intergenerational game in which, in each period,

the decisions whether to honor the payment τ is taken optimally by the young. The

construct is in the spirit of a literature on endogenous pay-as-you-go social-security sys-

tems, conceived as time consistent equilibria in infinite-horizon intergenerational games

(e.g. Kandori (1992), Cooley and Soares (1999)). In those models, as in ours, these trans-

fers from the young to the old are supported by trigger strategies: young workers not

making the transfer forego access to the transfer themselves when old. The difference

from that literature is that our arrangement is essentially a within firm pay-as-you go sys-

tem - rather than a society-wide one. We show that all of the analysis presented in the

text of the paper is robust to the generalized version with endogenous τ . In particular,

the cooperative problem is subject to an additional constraint which ensures adherence

by the young to the payment τ . We state conditions under which this constraint is not

binding and verify that these hold in the quantitative analysis.
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We focus on symmetric equilibria in which cooperatives adopt a perfectly egalitarian

pay structure (within current workers and within former workers). We conjecture that

standard arguments used in the context of capitalist economies could still be deployed to

rule out equilibria with inequality within generations. In particular, workers receiving

below-average pay in one cooperative could offer to undercut workers receiving above-

average pay at another cooperative.

3.4.2 Continuation, Entry and Exit

The previous subsection describes the consumption of workers allocated to a continuing

incumbent cooperative, which in our framework is an incumbent cooperative which is

allocated some positive young membership lit.

Our model also allows for entry and exit of cooperatives. Entering cooperatives have

no capital stock, so they produce with labour only. They also have no former workers.

Hence, young-worker consumption in an entering cooperative is cY0t = F (0,l0t)−k0t+1

l0t
-

where we use the subscript 0 for workers belonging to, or inputs and outputs of, entering

cooperatives.

An exiting cooperative at time t is an incumbent which is assigned no workers by the

worker-allocation mechanism. Such a cooperative produces zero output and its capital

stock is left idle. Because of full depreciation this cooperative does not continue to period

t+ 1. Note that the consumption of old workers attached to exiting cooperatives is 0.

3.4.3 General Equilibrium Concept for Cooperative Economies

We now discuss, jointly, how labour is allocated to cooperatives and how cooperatives

make their investment decisions. Informally, we have in mind a decentralized mecha-

nism in which workers are able to move freely into cooperatives, as long as these are

willing to accept them. Therefore, workers sort into the cooperatives which generate

highest utility levels until the market clears. This process takes into account the possi-

bility that groups of workers might create a new cooperative without any initial capital.

On the other hand, any remaining cooperative without any worker willing to join ex-

its. Once workers have been allocated to cooperatives and production has taken place,

workers collectively decide on the amount of earnings that should be retained to put in

place as capital for the next period. In making this decision workers take into account
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the implications of the worker-allocation mechanism for the number of young workers

joining the cooperative in that period.

Formally, in each period, the economy is characterised by a set of incumbent coop-

eratives It, and by a distribution of initial capital stocks: {kit}i∈It . For convenience, we

assume the set of cooperatives is located on a continuum, and that in each period the set

of incumbents It is a subset of the real line with finite Lebesgue measure. Denote Ī = R,

with the interpretation that Ī \ It is the set of potential entrants. An arbitrary allocation

of workers is a measurable function l : Ī → R+ with support of finite measure, such that:

∫
Ī

lidi = L.

Note that entry and exit are captured by the fact that the support of l is not restricted to

coincide with It. Note also that we impose full employment, assuming that any group

of unemployed workers would optimally create a new cooperative.16 The set of all such

allocations is denoted L. Our relevant equilibrium object is a worker allocation mecha-

nism, that is a mapping:

(It, {ki,t}i∈It) 7→ L(It, {ki,t}i∈It) ∈ L.

Though the state of the economy (It, {ki,t}i∈It) is a complex object, we emphasise that

we restrict attention to stationary worker allocation mechanisms.

Given such a mechanism and any current allocation of workers, the continuation

of the economy is characterised by optimal investment decisions taking as given the be-

haviour of other cooperatives. Denote Ui(l) the continuation utility of the young workers

assigned to cooperative i ∈ Ī by allocation l, with the convention that Ui(l) = −∞ if i is

not allocated workers by l. That is, for an incumbent cooperative:

Ui(l) = max
ki,t+1

U

(
(1− τ)F (ki,t, li)− ki,t+1

li
,
τF (ki,t+1,Li

(
It+1, {kj,t+1}j∈It+1

)
)

li

)
,

16We do not mean to suggest that a cooperative economy would be less (or more) prone to some frictional
unemployment than a private-ownership economy. Our omission of search frictions is purely to focus on
long-run analysis, as is standard in growth theory. We regard the addition of search and matching frictions to
a model of a cooperative-based economy as an interesting area of research to learn more about the business-
cycle properties of these economies. Such an endeavor would be particularly fruitful since, as mentioned
earlier, empirical evidence suggests that employment is less cyclical in worker cooperatives.
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while for an entering cooperative:

Ui(l) = max
ki,t+1

U

(
F (0, li)− ki,t+1

li
,
τF (ki,t+1,Li

(
It+1, {kj,t+1}j∈It+1

)
)

li

)
.

The last two expressions define the utility level workers can rationally expect by join-

ing the various cooperatives in the economy. At the same time, they provide information

to workers who have joined a particular cooperative about the consequences of allowing

further workers to join in. Hence, we can use these objects to define an equilibrium as

one in which there exist no reallocation in which the transfer of a worker to a different

cooperative makes both this worker and the original members of this cooperative better

off.

Formally, for any state (It, {kι,t}ι∈It), any allocation l ∈ L, and any two cooperatives

i, j ∈ Ī , if li < Li(It, {kι,t}ι∈It) and lj > Lj(It, {kι,t}ι∈It), then:

Ui

(
L(It, {kι,t}ι∈It)

)
≥ Ui(l), (3.1)

and

either Ui

(
L(It, {kι,t}ι∈It)

)
≥ Uj(l), (3.2)

or Uj

(
L(It, {kι,t}ι∈It)

)
> Uj(l). (3.3)

In words, we are considering a feasible reallocation of workers from cooperative i to

cooperative j. Condition (3.1) says that in an equilibrium this reallocation must not be

beneficial to the remaining workers of cooperative i (or these workers would wish to

reduce the membership). Furthermore, either the reallocation does not make the reallo-

cated workers better off [condition (3.2)], or it makes the workers of the receiving coop-

erative worse off [condition (3.3)]. Note that the subscripts i and j can equally apply to

continuing, entering, and exiting cooperatives.

Our equilibrium concept for a dynamic cooperative economy has elements in com-

mon with equilibrium concepts in cooperative game theory as well as in models of

matching. Cooperative game theorists study coalition formation and typically seek sta-

ble coalition structures which, like in our model, are robust to defection from subsets of

agents.17 However in our model the “coalition formation game” is re-played in every

17Indeed the tools of cooperative game theory have been deployed for the study of (static) cooperative
economies. See, e.g., Ichiishi (1977), Greenberg (1979), Drèze and Greenberg (1980), and Farrell and Scotchmer
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period by a new set of agents and, more importantly, the entire distribution of invest-

ment decisions taken by the coalitions that exist at time t operate as state variables for

the time t+ 1 game, and in turn this game’s outcome is payoff relevant for agents mak-

ing decisions at time t. In this sense, the coalition-formation aspect of the model is much

more complex than in typical cooperative games, and the definition of equilibrium had

to be generalized accordingly. This is compensated to a considerable extent by the fact

that we work with a homogeneous-agent model.

In the previous paragraph the first reference to a “coalition formation game” was

hedged by quotation marks, because this terminology is arguably slightly misleading.

In typical cooperative games coalitions are formed in a sort of vacuum, and the output

of the coalition depends exclusively on its size and composition. In our model, however,

workers form coops around and inside existing lumps of capital. They don’t so much

form coalitions but they attach themselves to an existing coop – represented by the stock

of capital inherited from the past (and its former workers). In this sense, our equilibrium

concept is as much about forming coalition as it is about matching workers to incumbent

coops – hence the link with the matching literature. Compared to the matching literature,

however, we offer a somewhat axiomatic definition of equilibrium (based on stability

from deviations) rather than the more standard description of a search environment.18

3.4.4 Operational Equilibrium Concept for Cooperative Economies

The general concept of equilibrium in the previous section is inspired by minimal re-

quirements of rationality and efficiency. Needless to say, these general principles are

hardly sufficient as a basis for a study of economic growth in a cooperative economy.

What is needed is a more operational refinement allowing us to focus on a subset of

equilibria which are tractable for the modeller, and do not impose unrealistic informa-

tion requirements on the agents in the model. In particular, the generic decentralization

of the equilibrium definition in the previous section requires knowledge by each agent

of the strategies of all agents in all future generations. This is in sharp contrast to the

equilibrium in the capitalist economy where agents need only know current wages and

interest rates.

(1988).
18See, however, Sasaki and Toda (1996), and a small following literature on matching with externalities. Our

mechanism to assign workers to coops is similar to the concept of Optimistic Stability in the working paper
version of their article.
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The particular restriction we impose on our equilibria is as follows: the worker al-

location mechanism assigns to each incumbent cooperative a number of workers which

depends only on that cooperative’s capital stock kit. Formally, we only consider equilib-

ria in which, for t > 0, there is a mapping L(kjt) such that Lj

(
It, {kit}i∈It

)
= L(kjt) for

j ∈ It. Note that the above is a statement about the allocation of workers only to incum-

bent cooperatives on path. We do not impose restrictions on the allocation of workers to

entering cooperatives.

It can easily be seen that if L(kjt) is an allocation mechanism in an equilibrium as

defined in the previous section, then each cooperative has an investment policy rule

which also depends only on that cooperative’s capital stock, K(kjt). Furthermore, in

Appendix C.2 we establish the following hugely useful property of L(kjt) and K(kjt):

(
L(kjt),K(kjt)

)
∈ argmax

l,k
U

(
(1− τ)F (kjt, l)− k

l
,
τF
(
k,L(k)

)
l

)
. (3.4)

In words, focusing only on equilibria in which an incumbent’s allocation of work-

ers depends only on that incumbent’s initial capital stock is equivalent to focusing on

equilibria in which each incumbent cooperative chooses current employment and in-

vestment so as to maximize the utility of current young workers, taking as given the fact

that all future generations will follow the same strategy. Importantly, this maximization

is unconstrained.

It is important to stress some implications and limitations of our operational equi-

librium concept. Equation (3.4) implies that, for t > 0, incumbent cooperatives are

never constrained in the number of members they can attract, i.e. we are implicitly rul-

ing out growth paths along which cooperatives would like to attract more members,

but are prevented from doing so because all workers are already “taken up” by other

coops. Nevertheless, in Sections 3.5 and 3.6 we show by example that under standard

growth-theoretic assumptions about preferences and technology equilibria fulfilling our

operational concept emerge naturally.

Importantly, in our operational equilibrium concept the independence of the labour

allocation from the full distribution of capital stocks to incumbents only applies for t > 0.

Hence, we allow for the possibility that, at time 0, there are “too many coops for too few

workers,” in the sense that the unconstrained optimal membership of at least some coops

exceeds the number of members the coop can attract. In the examples we work out later,
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we will see that this can result in a burst of exit at time 0. The possibility of exit at time 0

due to insufficient access to workers is generally useful because it makes the existence of

equilibria independent of the initial distribution and size of the capital stock, and thus

makes it potentially possible to study “MIT-type” shocks, i.e. unanticipated permanent

changes in endowments or technology.

Another important feature of our operational equilibrium concept is that it is fully

consistent with entry and imposes no restriction on the allocation of workers to cooper-

atives - other than the restriction imposed by the aggregate labour supply. In particular,

it must be the case that:

∀t,
∫
It

L(kit)di ≤ L.

Therefore, in any period, once incumbents have been allocated workers, new entering

cooperatives are created and allocated workers. This allocation of workers to new coop-

eratives follows the restrictions imposed in section 3.4.3, and in particular takes into ac-

count the economy’s resource constraint in terms of labour supply. Importantly though,

cooperatives may be constrained only upon entry, but expect to be allocated workers as

incumbents in future periods according to the mapping L.

In an equilibrium as defined in this section all behaviour is pinned down by an ini-

tial distribution of capital stocks and the mappings L and K. The capital accumulation

dynamics within a cooperative are pinned down by the equilibrium mapping:

kjt+1 = K(kjt).

As cooperatives in the economy may differ only in their capital stock, we can then eas-

ily study aggregate dynamics as resulting from the sum of individual independent de-

cisions using the same mapping K. The precise algorithm we follow to solve for the

equilibrium is detailed in Appendix C.3.

3.5 An Example with Closed Forms

In this section, we use specific functional forms for preferences and the production tech-

nology which allow us to characterise analytically employment as well as the capital

accumulation dynamics both in the capitalist and cooperative economies. We use these
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results to compare the two economies in terms of output, efficiency, and welfare.

The production function for production units with positive inputs (k, l > 0) takes the

form

F (k, l) = Akα(l − l)β , (3.5)

where A > 0, l ∈ (0, L), α > 0 and β > 0 are constant parameters.

Relative to the familiar neoclassical growth model, this production function features

the slightly unusual property that there is a fixed cost, in the form of a minimum of l

units of labor which are required independently of the scale of operation. This assump-

tion is a direct legacy of the older static literature on cooperatives, which showed that

in the absence of a fixed cost of production there is no equilibrium with positive cooper-

ative size.19 The intuition will be apparent below. Needless to say the assumption that

production involves fixed costs is entirely realistic.

Since fixed costs of production introduce a form of increasing returns to scale, in

order for the model to have an equilibrium under the capitalist form of organization we

need decreasing returns to scale in the variable inputs, i.e.

α+ β < 1.

The assumption of decreasing returns to variable inputs is also realistic, and it is usually

motivated by span-of-control considerations.

Since the cooperative model features potential entry, we will also need an assumption

for production in production units with k = 0. However, it will turn out that we do not

need a specific functional form. Hence, for now we simply assume that F (0, l) > 0. We

will add some mild restrictions to this below.

As for preferences, in order to derive closed form results we assume for now that

agents obtain log-utility from consumption, with a discount factor δ ∈ (0, 1]:

U(cY , cO) = log cY + δ log cO.

19More accurately the existence of cooperatives requires that at low levels of membership the marginal
product of labour exceeds average income. In models of capitalist economies the omission of fixed costs of
production is without loss of generality due to the replication argument. This is not the case in modelling
cooperatives.
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3.5.1 Capitalist Economy

Using these functional forms, we can solve for the capitalist equilibrium as outlined

in section 3.3. The procedure to find the equilibrium is entirely standard and hence

we relegate the details to Appendix C.4. Here we only discuss the main aspects of the

equilibrium.

The only sightly unfamiliar feature of the capitalist equilibrium is that, because of the

fixed production cost, it features an optimal firm size:

lcap =
1− α

1− α− β
l, (3.6)

where the subscript capwill be helpful later to distinguish firm size in a capitalist equilib-

rium from firm size in the cooperative economy. The optimal firm size would generally

depend on state variables, such as the aggregate capital stock. This will be the case in the

example in the next section. However, under the particular combination of functional

forms in this section, the optimal firm size is constant over time both under capitalist and

under cooperative arrangements. It is this constancy that allows us to solve the model

in closed form, and hence it is a valuable simplification.

Despite this slightly unfamiliar feature the dynamics of the economy are qualitatively

the ones we have come to expect from standard growth models. In particular, individual

capital holdings evolve according to

κt+1 =
δ

1 + δ
A(1− α)αββ

(1− α− β

l

)1−α−β

καt , (3.7)

where, recall, κt is the savings decision by a member of the period t young. It follows

from this functional form that κt converges to a steady-state value.

3.5.2 Cooperative Economy

We study the cooperative economy following the approach presented in section 3.4.4.

We follow a “conjecture and verify” strategy. The conjecture is that in the equilibrium,

if one exists, cooperative firm size is constant, or L(k) = lcoop. If this is so, then the
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cooperative solves the problem:

max
lt,kt+1

log

(
(1− τ)Akαt (lt − l)β − kt+1

lt

)
+ δ log

(
τAkαt+1(lcoop − l)β

lt

)
. (3.8)

The necessary and sufficient first-order conditions for this problem are:

− 1

(1− τ)Akαt (lt − l)β − kt+1
+

αδ

kt+1
= 0, (3.9)

β(1− τ)Akαt (lt − l)β−1

(1− τ)Akαt (lt − l)β − kt+1
− 1 + δ

lt
= 0. (3.10)

Equation (3.9) describes the optimal reinvestment of earnings. The first term is the

marginal utility loss from diminished current consumption from an extra unit of in-

vestment, while the second term is the marginal utility gain from the extra output that

investment will deliver next period. First order condition (3.10) determines the optimal

current employment level lt. Here the trade-off is that an extra worker has a positive

marginal impact on current output (first term) but also a negative marginal impact on

the share of other workers both in the current period and in the next period, both of

which effects are captured in the second term.

This system is easy to solve and yields:

lt =
1 + δ

1 + δ − β(1 + αδ)
l ≡ lcoop,

kt+1 =
αδ

1 + αδ
(1− τ)Akαt (lt − l)β .

(3.11)

The first of these two equations shows that, when expecting a constant labour input in

the next period, cooperatives choose a constant labour input in the current period. This

both verifies our conjecture and defines the equilibrium cooperative size, lcoop. The sec-

ond equation characterizes the investment policy of cooperatives. This policy inherits

the conventional proportionality to current income associated with log utility. Plugging

in the form of lt = lcoop, we obtain the capital accumulation equation for a single coop-

erative:

kt+1 =
αδ

1 + αδ
(1− τ)A

(
β(1 + αδ)

1 + δ − β(1 + αδ)
l

)β

kαt , (3.12)

which has the same qualitative features as those derived for the capital accumulation

process of individuals in the capitalist economy. We define k∗coop the steady state cooper-
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ative capital implied by (3.12). For later reference we also define U(kit) as the maximized

value of (3.8). It is trivial (but important) to see that U(kit) is an increasing function:

workers prefer joining incumbents with larger capital stocks.

To move now to a full characterization of the dynamics of the economy, as well as to

complete the argument that the equilibrium sketched thus far exists, we must now con-

sider the possibility of entry. It is easy to see that, in the equilibrium we are constructing,

the allocation of labour to an entrant and the entrant’s investment policy must maximize

the objective

log

(
F (0, l)− k

l

)
+ δ log

(
τAkα (lcoop − l)

β

l

)
. (3.13)

Note that this problem is time invariant, so both entry size and the utility afforded to a

young worker who helps forming a new cooperative are also time invariant. To facilitate

the discussion of dynamics we label Le the size of an entrant, Ke its investment policy,

and Ue the utility experienced by a worker joining an entrant.

At any time t, it may conceivably be the case that Ue > U(kit) for some incumbents

i with sufficiently low capital stock. In this case, these incumbents will not be able to

attract any workers and will have to exit. We define as I+t ⊆ It the set of incumbents

at time t such that Ue ≤ U(kit). We can think of I+t as the set of viable incumbents.

As we will soon see, the key assumption we need to make to insure the existence of a

cooperative equilibrium fulfilling put operational criteria is that Ue ≤ U(k∗coop). In other

words, an incumbent endowed with the steady state level of capital is viable. We refer

to this as Assumption 1.20

Define

Ncoop ≡ L

lcoop

as the measure of incumbent cooperatives consistent with full employment when each

cooperative operates at its optimal size lcoop. The dynamics of the economy, as well as

the further assumptions (if any) required to establish the existence of the equilibrium,

are slightly different in the case in which Ncoop is smaller or larger than the initial en-

dowment of viable cooperatives, |I+0 |, where we use |x| for the measure of set x.

Case 1: Ncoop ≤ |I+0 |

In this case the Ncoop incumbents with the largest capital stocks will scoop up all the

20This is an assumption that F (0, l) is not too productive. If F (0, l) = BG(l) one can always choose B low
enough that Assumption 1 is verified.
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workers in the economy at time 0, and each of them will employ lcoop workers. The

|I0| − Ncoop coops with the smallest capital stock (including some viable ones) will exit.

No entry will occur as all continuing incumbents afford workers more utility. Moving to

period 1, there are no non-viable incumbents. Those incumbents which had capital stock

less than k∗coop have experienced capital growth, so they are a fortiori viable in period

1. Even those incumbents which started in period 0 with capital in excess of k∗coop are

still viable in light of Assumption 1. Furthermore, since the existing viable incumbents

are exactly Ncoop, there are no workers left out and forced to create a new cooperative.

Hence, there is neither entry nor exit, and the same is true in all subsequent periods.

Hence, each coop’s capital stock evolves according to (3.12), and eventually, the entire

measure Ncoop of cooperatives converge to the identical steady state level k∗coop. Note that no

further assumptions on F (0, l) were required.

Case 2: Ncoop > |I+0 |

In this case the economy is not initially endowed with a measure of viable incum-

bents sufficient to absorb the entire young-worker population. Hence, while each vi-

able incumbent will be assigned lcoop workers, there will have to be entry to employ

the remaining L − |I+0 |lcoop workers. To fully describe the dynamics and establish ex-

istence of the equilibrium we then need further restrictions on F (0, l). The first restric-

tion (Assumption 2) is that the size of entrants is no less than the size of incumbents,

or Le ≥ lcoop.21 The second restriction (Assumption 3) is that entrants become viable

incumbents in the period after entry, or U (Ke) ≥ Ue.22

With these assumptions, consider first the special case in which Le = lcoop. In this

case there will be exactly a measure Ncoop − |I+0 | of entrants at time 0. From there, just

as in Case 1, there is no further entry or exit, and each coop once again converges to the

capital stock k∗coop. If instead Le > lcoop, the size of period-0 entrants will drop to lcoop in

period 1, necessitating a further round of entry in that period to insure full-employment.

This pattern of residual entry and subsequent shrinkage will continue until the measure

of entrants shrinks to 0. From then on no further entry or exit occurs and once again we

21It may seem counter-intuitive to have entrants which are larger than incumbents, but our intuitions are
based on observations of capitalist economies. There is no empirical basis to form a prior on whether entering
cooperatives would be larger or smaller than incumbent ones.

22A sufficient condition for Assumption 2 is that F (0, l) = B(l − le)
γ , γ ∈ (0, (1 + α)/(1 + αδ)), and

le ≥ [1 + δ − γ(1 + αδ)] / [1 + δ − β(1 + αδ)] l. This can be verified by substituting these assumptions into
(3.13) and solving the maximization problem. If γ = β and le = l then Le = lcoop. As regards Assumption 3,
if F (0, l) = BG(l) one can always find a B small enough that the assumption is verified. Notice that since Le

does not depend on B there is no possible tension between Assumptions 1, 2, and 3.
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converge to a steady state with Ncoop identical cooperatives, all with capital k∗coop.23,24

3.5.3 Comparison

In this section, we compare economic performance in the two models along two dimen-

sions: (i) static organization of production and efficiency, and (ii) capital accumulation.

We also show how differences in steady state output can be exactly decomposed into

two terms reflecting differences in these dimensions. We also include a quantitative

comparison as a prelude to the subsequent quantitative section, which uses more realis-

tic preferences.

Firm Size and Static Efficiency

Consider the choices of a planner whose intention is to make the economy statically ef-

ficient, i.e. to maximize aggregate output for a given aggregate stock of capital K. Because

of the concavity of the production function, the planner will distribute the capital and

labor endowments equally across whatever number of production units she chooses to

have, so her problem is equivalent to identifying the optimal firm size.25 In this sub-

section we identify this statically-efficient firm size, and compare it to firm sizes in the

capitalist and cooperative economies. Of course the welfare significance of static effi-

ciency is limited, because overall efficiency also depends on the amount of capital in the

economy, which in turn depends on dynamic considerations (which we take up in the

next sub-section). Still, in our quantitative exercises differences in static efficiency turn

out to play an important role.

Using our functional assumption, the statically-efficient firm size is the solution to

max
l

A
(l − l)β

l1−α
KαL1−α.

23To understand why Assumption 2 is needed consider the consequences of entrants having scale smaller
than lcoop. These entrants would have to grow in size to satisfy the conjectured equilibrium property that all
incumbents are allocated lcoop workers. But this is clearly incompatible with the labor resource constraint,
because there are not enough workers in the economy to allow all entrants to grow to size lcoop. Similarly,
a violation of Assumption 3 would imply re-exit at time 1 of cooperatives which entered at time 0, but this
violates the equilibrium requirement that all incumbents have membership lcoop for t > 0.

24In the text we have implicitly assumed that incumbent firms do not have access to technology F (0, l). This
is clearly immaterial for Case 1. In Case 2 one could wonder whether non-viable incumbents might be able
to avoid exit by switching to the labor-only technology. The answer is no, as any young worker joining an
incumbent “inherits” the incumbent’s stock of former workers and is thus subject to the sharing rule. She is
thus always better off striking out with a new venture.

25Aggregate output is NF (K/N,L/N), where N is the number of production units the planner chooses to
have. Using l = L/N this rewrites as L/lF (lK/L, l), and static efficiency is achieved by maximizing this with
respect to l.
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As a result, the aggregate variables K and L do not affect the maximisation problem,

and we can define

Z(l) = A
(l − l)β

l1−α

as a measure of static efficiency associated with any arbitrary firm size. Indeed, the social

planner’s objective is simply to maximiseZ(l) with respect to l. The largerZ(l), the more

statically efficient the economy. The socially optimal firm size trades off the following

considerations: smaller firms allows the economy to spread variable inputs across more

units, thereby reducing the impact of diminishing returns to variable inputs. On the

other hand, the larger the measure of firms, the larger the amount of labor “wasted”

because of the fixed cost l.

The firm size leff (for “efficient”) which maximizes Z(l) is easily derived from the

first order condition, and the verdict on static effciency is as follows:

leff = lcap > lcoop,

(where the last inequality is proved in Appendix C.5). Hence, the capitalist economy

is statically efficient, but the cooperative economy features firm sizes which are ineffi-

ciently small.

There are two reasons why cooperatives are inefficiently small. First, unlike the so-

cial planner, cooperatives take their current capital stock as given. When they consider

adding extra workers they only perceive the impact on the average product of labor.

Instead, the social planner also takes into account that an extra worker increases the

marginal product of capital, and that he can therefore counter the decline in the marginal

product of labor by reallocating some extra capital to the production unit. The same

happens in the capitalist economy, because extra workers induce the firm to rent extra

capital.

The second reason why cooperatives are inefficiently small (in a static sense) is the

existence of the sharing rule. An extra worker today is an extra claimant to the payments

that will accrue to old workers tomorrow. This is why the firm size in the cooperative
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economy is decreasing in the weight agents give to old-age consumption, δ.26,27

Capital Accumulation and Dynamic Efficiency

Aggregating the capitalist law of motion (3.7) over individuals and the cooperative law

of motion (3.12) over cooperatives, and making the appropriate substitutions, we easily

see that both economies have laws of motion for the aggregate capital stock Kt of the

form

Kt+1 = sF (Kt, L),

with the corresponding aggregate savings rates

scap =
δ

1 + δ
(1− α), (3.14)

and

scoop =
αδ

1 + αδ
(1− τ). (3.15)

It is worth discussing the qualitative similarities and differences between these two sav-

ing rates.

In both economies, a higher preference for the future increases the saving rate – which

is hardly surprising. However, a higher elasticity of output to capital reduces the saving

rate in the capitalist economy, while it increases it in the cooperative economy. In the

capitalist economy all savings are financed out of labor income, so a larger capital share

reduces resources available for saving. In the cooperative economy, the share of income

received by young workers is 1− τ , independent of α. However, workers in the cooper-

ative economy internalize the concavity of the production function. The less steeply the

marginal product of capital declines with the capital stock (i.e. the higher is α) the more

they wish to invest.28

26We can confirm these intuitions by considering the case α = δ = 0, i.e. when labor is the only input and
agents discount old age completely. In this case, we can readily check that lcoop = lcap = leff = l/(1 − β).
Firm size in all scenarios depends exclusively on how rapidly diminishing returns to labor set in (the more so,
the smaller the firm size). If δ = 0 but α > 0, firm size in the cooperative economy is still l/(1 − β), which
maximizes firm output per worker keeping firm capital constant, but the efficient and capitalist firm size is the
larger expression we have derived above, and is increasing in α. Finally, if α = 0 but δ > 0 the efficient size is
l/(1− β), but the cooperative size drops to l(1 + δ)/(1 + δ − β).

27An additional known reason why cooperative size may be inefficiently small is worker heterogeneity in
the presence of strictly egalitarian pay rules (Farrell and Scotchmer, 1988; Levin and Tadelis, 2005).

28The following stylized version of the problems faced by workers in the two economies further clarifies this
point. In the capitalist economy workers essentially maximize log(w− k) + δ log(rk), which as is well known
means that r, and hence α, is irrelevant to the chosen level of k, since income and substitution effect cancel
each other out. Instead, if workers maximize log(w − k) + δ log(Akα) the solution will directly depend on α
and indeed it is clear that the term αδ will be critical. Outside of the log case (e.g. in the next section), α affects
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It is well established that capitalist economies can exhibit dynamic inefficiency, in the

sense that a reduction in saving can improve the consumption and hence the welfare of

all generations. This of course applies to the capitalist version of the economy studied

here. But can the cooperative economy also be dynamically inefficient?

The standard analysis of dynamic efficiency begins by establishing a golden rule level

of the capital stock (or, equivalently, of the saving rate) which maximizes total consump-

tion (the sum of the consumption of the young and of the old) subject to enough output

being reinvested to keep the total capital stock constant. In our context this problem can

be stated as

max
K,N

cY + cO

subject to

NF

(
K

N
,
L

N

)
= L(cY + cO) +K.

Now it is clear that, for any K, the optimal N in the problem just stated must be the

output-maximizing one which we identified in the previous subsection. Using this and

maximizing with respect toK we find the familiar Cobb-Douglas golden ruleK = αY . It

follows from comparison with (3.15) that the cooperative economy can never be dynamically

inefficient as scoop < α. (Comparison with (3.14) confirms that the capitalist economy can

be.)

The intuition is closely linked to our discussion of saving in the two economies in the

earlier part of this subsection. As is (now) well understood, in the capitalist economy

the potential dynamic inefficiency is due to a pecuniary externality: the young do not

internalize the fact that by increasing saving they lower the return to capital for every-

one.29 In contrast, as we have seen, young cooperative members fully take into account

the consequences of their accumulation decision on the marginal product of capital, and

this prevents them from over-accumulating.30

individual saving decisions in the capitalist economy as well, indirectly through r.
29Acemoglu (2009, pp. 338-339) discusses the evolution of thinking about the sources of dynamic inefficiency

in OLG economies.
30It is well known that introducing a pay-as-you-go social security system in a capitalist OLG economy can

reduce excess savings and, depending on the quantitative strength of this effect, lessen the risk of dynamic in-
efficiency. Since our cooperatives operate an internal pay-as-you go system, it may be tempting to interpret our
finding that they are dynamically efficient as arising from the same mechanism. But this would be inaccurate:
in the capitalist economy the reduction in savings occurs simply because the existence of the system reduces
the young workers’ perceived need (and income available) to save, and thus depends on the size of the social-
security tax. In the cooperative economy, as discussed, dynamic efficiency arises from the internalization of
the effect of investment on the rate of return, and is independent of the size of the transfer τ .
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Table 3.1: Calibrated parameters

Concept Parameter Target Data Value for σ = 1 Value for σ = 2

Capital share α rK/Y 0.33 0.33 0.33
Variable labor elasticity β l/lcap 0.18 0.55 0.55
Discount rate δ K/Y 3/25 0.22 0.13
Sharing Rule τ Max U 0.12 0.15

Note: σ is the elasticity of intertemporal substitution in preferences over consumption paths (see Equation
(3.17)), so σ = 1 is the log-utility case.

Steady State Output

If an economy with our Cobb-Douglas technology features a steady state in which all

firms are identical and operate with constant inputs k∗ and l∗, then steady-state aggre-

gate output per worker can be written as

Y ∗

L
= (s∗)

α
1−α (Z∗)

1
1−α , (3.16)

where Z is the measure of static efficiency we derived in Section 3.5.3, and s∗ = K∗/Y ∗ is

the saving rate in steady state.31

The interpretation is straightforward after the discussions in the last two subsections.

An economy’s steady-state output per worker is driven by two factors: how efficiently

it produces in a static sense, and how much it saves.

Under our log-utility assumption both the capitalist and the cooperative economy

have constant saving rates and constant firm sizes l, the latter implying constant Zs. We

have seen that we cannot sign the difference between scoop and scap, and that Zcoop ≤

Zcap. Despite this disadvantage, because cooperative economies could potentially save

at a higher rate, which economy has a higher output per worker is a quantitative matter.

Quantification

In this subsection we calibrate the log-utility economy for a first set of quantitative in-

sights on the comparison between capitalist and cooperative economies. In the next

section we quantify an example with more realistic preferences (but no closed-form so-

lutions).

We do not observe a cooperative-based economy but we do observe economies which

31To see this write aggregate output as Y ∗ = L
l
F (k∗, l∗). The capital input of each individual firm is

given by: k∗ = l∗

L
K∗ = l∗

L
s∗Y ∗. Plugging this into Y ∗ and using the functional form for F we get the

decomposition in the text.
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are broadly organized according to capitalist principles. Hence, we calibrate the param-

eters of the model so that the capitalist economy in steady-state matches corresponding

moments of the US economy in recent decades. Table 3.1 summarises the values chosen

for the parameters of the model in the column titled “Value for σ = 1” (σ being defined

later as the intertemporal elasticity of substitution in consumption, and hence σ = 1 be-

ing the log case). The parameter α maps as usual into the share of capital in national

income. Given α, a choice of β in (3.6) uniquely determines the share of fixed labour in

total firm employment, l/lcap. We match this to the share of non-production workers in

the economy, from the Bureau of Labor Statistics. Finally, given α a choice of δ uniquely

determines the saving rate in the capitalist economy, and in turn this saving rate equals

the capital-output ratio in steady state, for which we use the standard value of 3 (with

an adjustment for a putative 25-year duration of a model period.) The parameter τ is

unique to the cooperative economy and thus cannot be calibrated on any kind of data.

Hence, we select the value of τ that maximises steady-state lifetime utility of the rep-

resentative consumer in the cooperative economy.32 Simple calculations show that this

value is:

τ =
δ

1 + δ
(1− α).

(This happens to also be the saving rate in the capitalist economy - but we do not have a

compelling intuition for this coincidence.)33

The implications of this calibration are presented in Table 3.2. First, cooperatives are

only around a third as large as capitalist firms, or lcoop/lcap = 0.35. This large size differ-

ence implies a significant disparity in static efficiency: (Zcoop/Zcap)
1/(1−α) = 0.78. Sec-

ond, the cooperative economy also saves half as much as the capitalist one, as we have

scap = 0.12 and scoop = 0.06. (Note that the capitalist economy is dynamically efficient).

Hence, the contribution of saving to the output gap is (scoop/scap)
α

1−α = 0.71. When

combined, the static inefficiency and the lower saving rate of the cooperative economy

imply that steady state output per worker is 55% of steady state output per worker in

the capitalist economy.

We can also evaluate the welfare consequences of a transition to a cooperative econ-

32In the version of the model with endogenous τ presented in the Appendix, there is a continuum of values
of τ which can be sustained in equilibrium. The implicit assumption in our calibration is thus that the first
generation of young who set the value of τ do so with steady-state welfare in mind.

33The fixed cost l cancels out in all the ratios of capitalist-to-cooperative outcomes we wish to present, so it
does not need to be calibrated here. Similarly, there is no need to choose values for the size of the population
L and the productivity factor A.
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Table 3.2: Numerical results

Value for σ = 1 Value for σ = 2(
Zcoop

Zcap

) 1
1−α

0.78 0.69(
scoop
scap

) α
1−α

0.71 1.05(
Ycoop

Ycap

)
0.55 0.73

Note: σ is the elasticity of intertemporal substitution in preferences over consumption paths (see Equation
(3.17); σ = 1 is the log-utility case).

omy. In particular, we can compute the total amount of consumption which a worker

in the cooperative economy would need to be given to obtain the same utility as in the

capitalist economy. This calculation is made on the assumption that the worker is free to

allocate this transfer as she wishes over her lifetime. In steady state, this welfare loss as

a percentage of GDP in the coop economy is 51% (in the current log case).34

3.6 An Example with Numerical Computations

The assumption of log preferences in the previous section was extremely useful in de-

riving a closed-form characterisation of the equilibrium, and analytical formulas to com-

pare steady states in the cooperative and capitalist economies. However, most macroe-

conomic applications use

U(cY , cO) =
(cY )1−σ

1− σ
+ δ

(cO)1−σ

1− σ
, (3.17)

with an elasticity of intertemporal substitution σ closer to 2. It turns out that, if σ is

exactly 2, we can still produce analytical solutions for the capitalist steady state, which

is extremely useful for calibration purposes. Hence, this is the case we study in this

section.

The competitive equilibrium in the capitalist economy is unaffected by the assump-

tion on preferences, which only affects the saving rule. As a result, the derivation of

equilibrium prices and number of firms in the previous section is still valid. Importantly,

34We can also compute the dynamic path of output and welfare following the introduction of the cooperative
organisation of production. Suppose that we begin with a capitalist economy initially in steady-state. At some
initial period, all capital is seized and distributed equally to N = L/lcoop cooperatives. Old agents in the initial
period receive a share τ of output. From then on, the economy evolves according to our model of cooperative
economy. Under our baseline calibration, relative output of the cooperative economy steadily and gradually
declines towards its steady state level, while the compensation required by the current generation to be as well
off as in the steady state of the capitalist economy steadily rises towards the steady state.
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Figure 3.1: Cooperative labour input as a function of initial capital stock – numerical
solution to problem (3.4).

this implies that firm size is still constant and takes the same value derived above, lcap.

Among other things this means that α and β do not need to be re-calibrated.

In Appendix C.6 we study the consumption-saving decision of young workers in the

capitalist economy. We show that the capitalist economy converges to a steady state,

and, for the case σ = 2, the aggregate steady state saving rate is

s∗cap =
4(1− α)((

α
δ(1−α)

)1/2
+
(
4 + α

δ(1−α)

)1/2)2 .

As in the previous example, s∗ = K∗/Y ∗, and as we already have a calibration for α,

this equation can be used to re-calibrate δ, as reported in the last column of Table 3.1.

While we have closed form characterizations of the (steady state of the) capitalist

economy, for the cooperative economy we must proceed numerically. We begin as before

with the problem of an incumbent. In particular, we use policy function iteration to find

a (numerical) fixed point for the mapping L(k) which solves problem (3.4). This is done

using the already calibrated α, β, and δ, as well as normalized values for l, A and L.

(Appendix C.7 shows that comparison of steady state values among the two economies

is independent of l. That A and L can be normalized is obvious.) We also re-calibrate τ ,

to maximise, as before, the steady-state lifetime utility of the representative agent under

the new preferences (and the new value of δ).

The policies L(k) and K(k) implied by our calibration are plotted in Figures 3.1 and
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Figure 3.2: Cooperative capital investment as a function of initial capital stock – numer-
ical solution to problem (3.4).

3.2. L(k) is decreasing in k, while K(k) is increasing and concave. This last property im-

plies that there exists a steady state for the cooperative economy in which all coops have

the same capital stock k∗, the same membership L(k∗), and their measure is L/L(k∗).35

Given the existence of a steady state where identical incumbents maximize the un-

constrained -cooperative problem, and given the allocation criterion L(k) and the in-

vestment function K(k), sufficient conditions for convergence to this steady state can be

identified using a reasoning similar to the one we used in Section 3.5.2. In particular, if

(i) all initial incumbents start with a capital stock ki0 ≤ k∗; (ii) in any period, entrants’

worker allocation le and optimal investment ke satisfy (a) le ≥ L(ke) and (b) ke ≤ k∗;

and (iii) one-period-old coops are viable; then every coop’s capital stock grows over

time towards the steady-state level, while every coop’s labour input decreases over time

towards the steady-state, generating entry but no exit.

Recall now that that decomposition (3.16) is valid for any economy featuring a steady

state with identical firm sizes, and is thus still valid – with the same interpretation – in

the current example. The terms of the decomposition are reported in the last column of

Table 3.2. With the alternative choice of preferences the cooperative economy features

an even stronger bias towards small firms, meaning that its static inefficiency cause an

even greater disadvantage relative to the capitalist economy: the term in Z drops to

0.69. On the other hand, the higher elasticity of intertemporal substitution boosts the

35The existence of this steady state is established only numerically via the numerical properties of the policy
function. Its uniqueness is not established in any formal sense. All we can say is that our policy function
iteration converges to the same fixed point from a wide variety of initial guesses we have attempted.
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relative savings rate of the cooperative economy, which is now 10 per cent higher than

the capitalist one (resulting in a 5 per cent higher term in s). As a consequence of this

latter feature, the relative output of the cooperative economy rises to 0.73. Welfare is

correspondingly much less impacted than in the log case: the welfare loss from moving

to a coop economy is now 28% of the coop economy’s GDP.

3.7 Comparative Statics

In this section we explore the dependence of relative output and welfare to changes in

some of the parameters of the model. These exercises can be be interpreted as robustness

checks on the benchmark numerical results of the previous section or, perhaps more

usefully, as numerical comparative-static results for our model of cooperatives.

When varying the parameters of technology or preferences, a choice needs to be

made about whether to hold τ constant at its benchmark level, or allow it to vary so

that, for each configuration of parameters, the inter-generational transfer is always the

one that maximizes steady state welfare. Because both strategies are defensible, we do

both.

In Figure 3.3 we present a series of plots showing the numerical dependence of the

output ratio Y ∗
coop

Y ∗
cap

, as well as its two components, on the parameters α, β, γ, without

changing the value of τ . We also of course look at the impact of different values of τ

holding the other parameters constant. In Appendix C.8 we show the analogous sensi-

tivity graphs for α, β, and γ when we re-calculate the value of τ as the other parameters

vary. The qualitative patterns are virtually identical and even quantitatively the sensi-

tivities are quite similar to those in Figure 3.3. Hence, the commentary which follows

applies almost equally well to comparative statics with and without re-optimization.

The top-left plots reveal that relative steady state cooperative output is first decreas-

ing and then increasing in the elasticity of output to capital α. Looking at the two sub-

components reveals why: static efficiency steadily declines with α, while the saving rate

increases with it - for the reasons we discussed in Section 3.5.3. Clearly the former effect

dominates at low level of the output elasticity of capital, while the latter dominates for

larger values.

The top-right panel shows relative cooperative output to be monotonically decreas-

ing in the elasticity to variable labour, β. Inspection of equations (3.6) and (3.11) shows
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Figure 3.3: Steady-state output ratio Y ∗
coop

Y ∗
cap

and its static
((Zcoop

Zcap

) 1
1−α
)

and dynamic(( scoop
scap

) α
1−α
)

components, as functions of the model’s parameters.

that, as β increases, firm size increases in both economies, but proportionally more so in

the capitalist (and statically efficient) economy. This leads to an exacerbation of the static

inefficiency of cooperative economies. Quantitatively this is clearly the main driver of

the decline of the output ratio with β, though the graph shows that the relative saving

rate is also slightly decreasing in this parameter. Another interesting feature of this panel

is that it confirms that there actually exist combinations of parameter values such that steady

state output in the cooperative economy is higher than in the capitalist economy. In this par-

ticular case, this happens when the static inefficiency is minimized (through a very low

value of β) so that the entire difference in incomes is due to the higher saving rate of the

cooperative economy.

The static inefficiency also dominates the dependence of relative output on the dis-

count factor δ. As seen in Section 3.5.3, the more importance workers give to the future,

the more they wish to limit current employment. This negative effect is quantitatively

much stronger than the positive effect of δ on relative saving, which goes in the opposite

direction.

Finally, a larger share of output devoted to former workers, τ , directly reduces the

cooperative economy’s saving rate, leading again to a reduction in relative cooperative-

economy output. This is despite the effect that an increase in τ improves somewhat the

cooperative economy’s static allocative efficiency.

The corresponding sensitivity plots for the welfare loss from moving to a cooperative
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Figure 3.4: Amount of consumption to be given to agents in the cooperative economy to
equalize their utility to agents in the capitalist economy, in steady state.

economy are presented, both with and without re-calculation of τ , in Figure 3.4. Quali-

tatively the welfare losses tend to be mirror-images of the output-ratio graphs in Figure

3.3: the lower the relative output of the cooperative economy, the larger the welfare loss

to adopting this growth model. Quantitatively however the welfare losses are quite sen-

sitive to parameter values. For example, agents are virtually indifferent between the two

economies if α is very small, even though there is a significant difference in GDP. This is

due to the very poor consumption-smoothing properties of capitalism when the capital

share is very small. The strong dependence of the welfare loss on τ is also likely related

to consumption smoothing (this time in the coop economy).36

3.8 Conclusions

In light of the current crisis in the perceived legitimacy of corporation-based capitalism it

is important to investigate the macroeconomic consequences of alternative institutional

arrangements for the production of goods and services. This paper has taken a first step

towards developing a theoretical and quantitative framework towards this goal, with

a particular focus on worker cooperatives as the engine of economic activity. We have

also provided quantitative examples of comparisons of macroeconomic outcomes under

corporation-based capitalism and under labor-management.

36For the avoidance of confusion, there is no contradiction between the fact that the optimal τ in the cooper-
ative economy (0.15) is not the τ which minimizes the welfare loss to moving to a cooperative economy. The
objective functions are conceptually completely different.
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Much work needs to be done for a proper qualitative and quantitative comparison of

capitalist economies and cooperative-based economies. In the rest of these Conclusions

we outline the agenda for future research.

Our cooperative economy differs from the capitalist economy in the following main

respects: (i) there is a non-wage mechanism which assigns workers to firms in a manner

that is collectively rational and yet decentralized; (ii) former workers retain rights to the

distribution of the cooperative’s income; (iii) investment decisions are made by worker

collectives to maximize the lifetime utility of current workers; (iv) the capital used in pro-

duction by each cooperative is the result of past cooperative investments from retained

earnings.

We don’t think there is much scope to investigate alternatives to (i) if the productive

units in our economy must continue to be recognizable as worker cooperatives. Indeed

we think of the conceptualization of the worker-allocation mechanism in a cooperative

economy as one of the key contributions of the paper. Similarly, dropping (ii) while

leaving (iii) in place would trivially lead to an economy with zero investment.

A more feasible alternative might seem to be to drop (iii) and return the investment

decision to the individuals. In particular, we could have young workers save in the form

of capital, and cooperatives renting capital from old individuals. It is apparent, however,

that such an alternative would be isomorphic to the capitalist model – at least in our OLG

framework. This is because the rental rate on capital would be the marginal product of

capital, so young workers would be the residual claimants of the same share of income

as in the capitalist version.

This leaves us with (iv), and it is here that a truly important and fruitful alternative

could potentially lie. In particular, it would be useful to investigate the consequences

of opening up a market on which cooperatives could rent capital from each other. We

have noted earlier that one reason for the inefficiently small size of cooperatives is that

they take their capital stock as given. The existence of a rental market for capital might

therefore lead to different decisions. Unfortunately, extending our framework to feature

an inter-cooperative rental market for capital is challenging, as the worker-allocation

rule for each cooperative would have to depend on the indefinite future history of rental

rates. Hence, we leave this task for future work.

From a quantitative perspective, future work should also assess the implications of
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canonical variants of the OLG framework, such as economies with alternative stores of

value, like money, or with social security. Always within the current setup, it would also

be interesting to identify strategies to study the possible coexistence of capitalist and

cooperative firms - or whether one type of firm would necessarily drive the other from

the market.

However, the true, long-term payoff of this research agenda will only come from

much richer qualitative and quantitative descriptions of the economy. A more complex

demographic structure is only a minor aspect of this quest. Introducing realistic dis-

tortions to the capitalist economy (monopoly power, monopsony power, short-termism

in decision-making, etc.) would put the comparison of efficiency and production on a

more even playing field. Considerations of externalities (e.g. pollution) would similarly

be informative on the relative welfare properties of the two systems. Most important

of all, introducing realistic sources of heterogeneity (in skills, in initial wealth, in access

to schooling and high-return assets) would allow to compare corporation-based capi-

talism and cooperative-based alternatives not only on their implications for aggregate

productivity but also on their implications for income and wealth inequality. Since it

is aversion to the consequences of extreme inequality which has fostered much of the

current push back against capitalism, it is essential that efficiency losses associated with

a cooperative-based system (if any) be evaluated against the likely benefits in terms of

lower inequality. We hope that our paper will prove to be a first step on this (long) road.
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Appendix A

Appendix to Chapter 1

A.1 Introductory Example Derivations

This appendix section provides details of the derivations of the results presented in the

introductory example. The set up fits the description of the model in Section 1.2 with

the functional assumption F (y) =
√
y. We apply the constructions of Sections 1.5.1 and

1.5.2 to describe solutions to the designer’s problem when her utility function is convex

and concave respectively.

Consider first the case in which the designer’s utility function is convex. Since the

prior cumulative distribution function F is concave, it coincides with F . Recall also that

the no-information optimal action is x∗ = 1/4 in this case. The optimal unconditional

distribution over the decision maker’s actions is given by equation (1.6), yielding in this

case:

Hvex(x) =


0 if x < 1/4,

1− 1
2
√
x

if 1/4 ≤ x < 1,

1 if x = 1.

Next, we construct the posterior distributions (Gvex
x )x for x ≥ 1/4. Using equation (1.7)

and the construction in Lemma 2, we obtain:

Gvex
x (y) = min

{
2
√
y, 1− x+ y, 1

}
.

Next, we describe the construction of ⟨(Gcave
x )x, H

cave⟩, solving the designer’s prob-
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lem when her utility function is concave. Observe that F satisfies Assumption 3. The

mapping θ is solution to:

−θ′(x) x− θ(x)

2θ(x)
√
θ(x)

=
1√
x
, θ(1) =

1

4
.

It is easy to verify that θ can be implicitly described by:

x

θ(x)
=

(
√
2− 1 + 2

√
2

3−
√
2

3+
√
2(

4θ(x)
)√2/2 − 3−

√
2

3+
√
2

)2

.

Furthermore, we define the lowest action a by θ(a) = a. We can compute:

a =
1

4

(√
2 + 1/2√
2− 1/2

)√
2

.

We can then define:

Hcave(x) =


0 if x < a,

1

2
√

θ(x)
if x ≥ a.

In particular, Hcave possesses an atom of size ≈ 0.59 at a. Let us now describe the

posterior cumulative distribution functions (Gcave
x )x for x ≥ a. Using the construction

of Lemma 2, define γ on [0, 1/4] by:

√
y − y =

1

4
+
√
1 + y − γ(y)− 1 + y − γ(y)

2
√
θ
(
1 + y − γ(y)

) −
√
θ
(
1 + y − γ(y)

)
2

.

Then:

Gcave
x (y) =



min
{
1− x+ y, γ(y)

}
if y ≤ 1/4,

1− x+ y if 1/4 ≤ y ≤ θ(x),

1− x+ θ(x) if θ(x) ≤ y < x,

1 if y ≥ x.

A.2 Proofs

Proof of Lemma 1.— Let ⟨(Gx)x, H⟩ an outcome satisfying (BP) and (IC) and (X,Y )

the random vector formed by the decision maker’s action X and the threshold Y . We
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construct the outcome ⟨(Ĝx)x, Ĥ⟩ associated to (X̂, Y ) where X̂ = X + 1(X ≤ Y ≤

1)(Y −X). Then, we show that it is an element of O and is weakly better for the seller.

For x ∈ [0, 1], let:

Ĥ(x) =

∫ x

0

[1−Gz(1) +Gz(x)]dH(z).

The alternative unconditional distribution over actions is such that the decision maker’s

action is below x whenever the initial outcome specified an action below x and the

threshold was not in (x, 1]. Next we define the associated conditional distributions of the

threshold given each action. Observe that dĤ(x) ≥ [1−Gx(1)+Gx(x)]dH(x) ≥ xdH(x),

where the second inequality follows from (IC). With the convention 0/0 = 0, define:

Ĝx(y) =


Gx(y)dH(x)/[dĤ(x)] if y < x,

1− [1−Gx(1)]dH(x)/[dĤ(x)] if x ≤ y ≤ 1,

1− [1−Gx(y)]dH(x)/[dĤ(x)] if y > 1.

Note that Ĥ first-order stochastically dominate H . So, if ⟨(Ĝx)x, Ĥ⟩ is feasible, it would

be preferred to ⟨(Gx)x, H⟩ by the designer. The following arguments establish that it is

indeed feasible by verifying that ⟨(Ĝx)x, Ĥ⟩ satisfies the constraints (BP) and (IC).

Let us first show that (BP) is satisfied. We check two cases. If y ≤ 1, then:∫ 1

0

Ĝx(y)dĤ(x) =

∫ y

0

(
1−

[
1−Gx(1)

]dH(x)

dĤ(x)

)
dĤ(x) +

∫ 1

y

Gx(y)
dH(x)

dĤ(x)
dĤ(x)

= Ĥ(y)−
∫ y

0

[
1−Gx(1)

]
dH(x) +

∫ 1

y

Gx(y)dH(x)

=

∫ y

0

[
1−Gx(1) +Gx(y)

]
dH(x)−

∫ y

0

[
1−Gx(1)

]
dH(x) +

∫ 1

y

Gx(y)dH(x)

=

∫ 1

0

Gx(y)dH(x)

= F (y),

where the first equality uses the definition of (Ĝx)x, the second simplifies the expression,

the third uses the definition of Ĥ , the fourth collects terms and the fifth concludes using

the fact that ⟨(Gx)x, H⟩ satisfies (BP). Similar steps are used when y > 1. Computations
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go as follows:

∫ 1

0

Ĝx(y)dĤ(x) =

∫ 1

0

(
1−

[
1−Gx(y)

]dH(x)

dĤ(x)

)
dĤ(x)

= Ĥ(1)−
∫ 1

0

[
1−Gx(y)

]
dH(x)

=

∫ 1

0

dH(x)−
∫ 1

0

[
1−Gx(y)

]
dH(x)

=

∫ 1

0

Gx(y)dH(x)

= F (y).

Next, we show that (IC) is satisfied. Due to the fact that, for each x ∈ [0, 1], Ĝx places

no mass between x and 1, upward deviations cannot be tempting for the decision maker.

Therefore, it suffices to check that downward deviations are not tempting either. That is,

we need to show that for x̃ < x, we have:

Ĝx(x̃)− x̃ ≤ Ĝx(x)− x.

Using the definition of Ĝx, the above inequality rewrites:

dH(x)

dĤ(x)
Gx(x̃)− x̃ ≤ 1−

[
1−Gx(1)

]dH(x)

dĤ(x)
− x,

or equivalently:
dH(x)

dĤ(x)

[
1−Gx(1) +Gx(x̃)

]
≤ 1− x+ x̃.

The inequality is trivially satisfied if dH(x)/[dĤ(x)] = 0. Otherwise, we use the fact that

dĤ(x) ≥ [1−Gx(1) +Gx(x)]dH(x) to obtain:

dH(x)

dĤ(x)

[
1−Gx(1) +Gx(x̃)

]
≤ 1−Gx(1) +Gx(x̃)

1−Gx(1) +Gx(x)
.

Since ⟨(Gx)x, H⟩ satisfies (IC), it must also be the case that:

1−Gx(1) +Gx(x̃)

1−Gx(1) +Gx(x)
≤ 1−Gx(1) +Gx(x)− x+ x̃

1−Gx(1) +Gx(x)
= 1− x− x̃

1−Gx(1) +Gx(x)
.
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Finally, since x > x̃ and 1−Gx(1) +Gx(x), it must be that:

1− x− x̃

1−Gx(1) +Gx(x)
≤ 1− x+ x̃.

The chain of inequalities allows to conclude that (IC) is indeed satisfied by ⟨(Ĝx)x, Ĥ⟩.

Complement to the Proof of Theorem 1.— We made the following claim after the

statement of Theorem 1.

Claim 1. For x ∈ [0, 1],

G∗ ∈ arg min
G∈Gx

∫ x

0

λ(y)dG(y)

subject to ∀y ∈ [0, x], G(y)− y ≤ 1− x,

if and only if:

(i) For all y ∈ [0, x], if y ∈ suppG∗, then ∀z ∈ [y, x], λ(y) ≤ λ(z).

(ii) For all y ∈ [0, x], if ∀z ∈ (y, x] λ(y) < λ(z), then G∗(y)− y = 1− x.

Furthermore, the value to the minimisation problem writes:

Λ(x) = (1− x) min
0≤z≤x

λ(z) +

∫ x

0

[
min

y≤z≤x
λ(z)

]
dy.

Proof. Suppose that the two conditions (i) and (ii) are satisfied. For G ∈ Gx satisfying the

constraints, since λ(y) ≥ miny≤z≤x λ(z), it must be that:

∫ x

0

λ(y)dG(y) ≥
∫ x

0

[
min

y≤z≤x
λ(z)

]
dG(y).

In the case of G∗, the inequality must be an equality by condition (i). Performing inte-

gration by parts:

∫ x

0

[
min

y≤z≤x
λ(z)

]
dG(y) = G(x)λ(x)−

∫ x

0

G(y)d
[

min
y≤z≤x

λ(z)
]
.

Furthermore, G(y) ≤ G(x)− x+ y, so:

∫ x

0

[
min

y≤z≤x
λ(z)

]
dG(y) ≥ G(x)λ(x)−

∫ x

0

[G(x)− x+ y]d
[

min
y≤z≤x

λ(z)
]
.
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In the case of G∗, this is again an equality by condition (ii). Performing integration by

parts again:

G(x)λ(x)−
∫ x

0

[G(x)−x+y]d
[

min
y≤z≤x

λ(z)
]
= [G(x)−x] min

0≤z≤x
λ(z)+

∫ x

0

[
min

y≤z≤x
λ(z)

]
dy.

Since G(x) = Gx(x), this final expression on the right-hand side does not depend on the

specific choice of G. Therefore, for an arbitrary G, we have obtained:

∫ x

0

λ(y)dG(y) ≥ [Gx(x)− x] min
0≤z≤x

λ(z) +

∫ x

0

[
min

y≤z≤x
λ(z)

]
dy =

∫ x

0

λ(y)dG∗(y).

Reciprocally, we show that conditions (i) and (ii) are necessary. Let us start with

condition (i). Suppose there exists y such that λ(y) > miny≤z≤x λ(z). If y ∈ suppG∗,

then G∗ places positive mass on the neighbourhoods of y. By lower-semicontinuity,

λ(ŷ) > minŷ≤z≤x λ(z) if ŷ is in a sufficiently small neighbourhood of y. As a result, the

inequality: ∫ x

0

λ(u)dG∗(u) >

∫ x

0

[
min

u≤z≤x
λ(z)

]
dG∗(u)

must be strict.

Next, suppose that there exists y such that λ(y) < λ(z) for all z ∈ (y, x]. If G∗(y) <

G∗(x)− x+ y, let:

y = min
{
z ∈ [0, x] : G∗(z) ≥ G∗(x)− x+ y

}
.

Note that y exists since G∗(x) ≥ G∗(x)−x+ y when y ≤ x. By assumption, y < y. So we

can move a mass G∗(x)− x+ y−G∗(y) contained in (y, y] to y. That is, create a G̃ which

behaves like G∗ below y, binds the constraint at y, is flat on [y, y), and behaves like G∗

above y. Then, it is easy to see that G̃ is a strict improvement upon G∗.

Proof of Lemma 2.— For part (A), note that no-information indifference implies that:

∫ 1

0

(1− x)dH(x) =

∫ 1

0

[Gx(x
∗)− x∗]dH(x).

SinceGx(x
∗) ≤ 1, this equality can only hold if x ≥ x∗ on the support ofH . Furthermore,

the set of elements x such that Gx(x
∗) − x∗ < 1 − x must have zero mass under H .

Therefore, replacing those by G̃x(y) = 1− x+ y on [0, x] does not affect the feasibility of
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the outcome.

For part (B), we set, for each x, Gx = Γx on [x∗, x]. Then, we need to complete Gx

below x∗. Let:

Ψ : C 7→
∫

min
{
1− x,C

}
dH(x).

Note that Ψ is non-decreasing and concave on R. Furthermore, forC sufficiently large, Ψ

becomes stationary at
∫
[1− x]dH(x) = F (x∗)− x∗. Therefore, for any z ∈ (−∞, F (x∗)−

x∗], Ψ−1(z) = min{C : Ψ(C) ≥ z} is well-defined and continuous. Denote F the concave

envelope of F on [0, x∗]. Note that F
′
(x∗) ≥ 1. For y ∈ [0, x∗], we define:

γ(y) = y − F (y)− F (y)

F
′
(y)

+ Ψ−1

(
F (y)− y +

F (y)− F (y)

F
′
(y)

)
.

Note that y 7→ F (y) − y + F (y)−F (y)

F
′
(y)

is non-decreasing in y and reaches F (x∗) − x∗ at

y = x∗. So γ is well-defined. In addition, y 7→ y − F (y)−F (y)

F
′
(y)

is also non-decreasing in

y, so γ is non-decreasing. Moreover, γ(0) = 0 + Ψ−1(0) = 0, where the second equality

follows from 1− x ≥ 0 for all x. We use γ to define, for all x ∈ [x∗, 1] and y ∈ [0, x∗]:

Gx(y) = min

{
1− x+ y − F (y)− F (y)

F
′
(y)

, γ(y)

}
.

Note that (IC) is satisfied. Furthermore,Gx(x
∗) = 1−x+x∗ so the definition is consistent

with the construction ofGx above x∗. To see this, note that Ψ−1
(
F (x∗)−x∗

)
≥ Gx(x)−x

for all x. Moreover, Gx is indeed non-decreasing and continuous on [0, x∗]. It suffices to

check (BP):

∫
Gx(y)dH(x) = y − F (y)− F (y)

F
′
(y)

+

∫
min

{
1− x, γ(y)− y +

F (y)− F (y)

F
′
(y)

}
dH(x)

= y − F (y)− F (y)

F
′
(y)

+ Ψ ◦Ψ−1

(
F (y)− y +

F (y)− F (y)

F
′
(y)

)

= F (y).

Proof of Proposition 2.— We first verify that the constraints (IC) and (BP) are satisfied

on [x∗, 1] (which is sufficient by Lemma 2). Then, we construct shadow prices λ : [0, 1] →

R and verify the conditions of Theorem 1 to conclude.

It is obvious from the definition of Gvex
x that (IC) holds, since F is always below F .
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Now, for y ∈ [x∗, 1], we have:

∫ 1

x∗
Gvex

x (y)dHvex(x) =

∫ 1

x∗
min

{
1, 1− x+ y − F (y)− F (y)

F
′
+(y)

}
dHvex(x)

= Hvex(y) +

∫ 1

y

(
1− x+ y − F (y)− F (y)

F
′
+(y)

)
dHvex(x).

Using integration by parts, we can then compute:

∫ 1

x∗
Gvex

x (y)dHvex(x) = Hvex(y) + y −
F (y)− F (y)

F
′
+(y)

−
(
1−

F (y)− F (y)

F
′
+(y)

)
Hvex(y) +

∫ 1

y
Hvex(x)dx.

Using equation (1.6), we obtain:
∫ 1

x∗
Gvex

x (y)dHvex(x) = y−
F (y)− F (y)

F
′
+(y)

F
′
+(y)+

∫ 1

y
[1−F

′
+(x)]dx = y−F (y)+F (y)−y+F (y) = F (y).

It follows that (BP) is also satisfied.

Next, we construct λ : [0, 1] → R. For y ≤ x∗, we set λ(y) = 0. For y > x∗, consider

three cases. First, if F (y) < F (y), define a = sup{z ≤ y : F (y) = F (y)} and b = sup{z ≥

y : F (y) = F (y)}. Since F and F are both continuous, a < y < b. Therefore, we can

define:

λ(y) =
v(b)− v(a)

b− a
.

Second, if F (y) = F (y) and there exists ε > 0 such that for all z ∈ (y− ε, y), F (z) < F (z),

set:

λ(y) = lim
z→−y

λ(z),

where for z ∈ (y − ε, y), λ(z) was defined by the previous case and constant, so the

definition is unambiguous. Finally, in all other cases, set λ(y) = v′−(y), which is the

left-derivative of v at y, which is well-defined since v is convex.

Observe that the above construction guarantees that λ is lower-semicontinuous. Fur-

thermore, since v is convex, λ is weakly increasing on [0, 1]. As a result, condition (i)

of Theorem 1 is automatically satisfied. Next, we show that conditions (ii) and (iii) also

hold.

For x ∈ [0, 1] and y ∈ [0, x], if ∀z ∈ (y, x] λ(y) < λ(z), then either y = x or F (y) =

F (y). In either case, we have Gvex
x (y) = 1− x+ y, so condition (ii) is satisfied.
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Finally, since λ is non-decreasing, we have:

Λ(x) = (1− x) min
0≤z≤x

λ(z) +

∫ x

0

[ min
y≤z≤x

λ(z)]dy

=

∫ x

0

λ(y)dy

Observe that Λ is flat on [0, x∗]. Since v is increasing, the maximisers of v − Λ must be

weakly above x∗. On an interval [a, b] such that ∀y ∈ (a, b), F (y) > F (y), and with

equality at the boundaries, Λ increases at constant rate v(b)−v(a)
b−a . Therefore, since v is

convex, we have:

∀x ∈ [a, b], v(x)− Λ(x) ≤ v(a)− Λ(a) = v(b)− Λ(b).

Finally, a point where F (x) = F (x) is either a right boundary of an interval of the form

above or satisfies Λ′(x) = λ(x) = v′−(x). Therefore, it must be the case that:

argmax
x

{v(x)− Λ(x)} = {x ≥ x∗ : F (x) = F (x)}.

Therefore, condition (iii) is satisfied.

Complement to the Construction of Section 1.5.2.— Let us show that a and θ are well

defined. Consider first the Cauchy problem:

Z ′(u) = F ′′(u)
(
F−1

(
Z(u)

)
− u
)
, Z(x∗) = 1,

where F−1 is the inverse of F on [0, 1]. Under Assumption 3, the Cauchy–Lipschitz the-

orem applies, guaranteeing the existence of solutions on an interval of the form [x∗, u],

where Z(u) = F (u). Furthermore, such a solution is strictly decreasing on [x∗, u]. There-

fore, define a = F (u) and:

∀x ∈ [a, 1], θ(x) = Z−1 ◦ F (x).

It is easy to verify that θ satisfies the properties required for the construction of Section

1.5.2.
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Proof of Proposition 3.— We first verify that the constraints (IC) and (BP) are satisfied.

Then, we construct shadow prices λ and use Theorem 1 to conclude.

It is clear from the definition in equation (1.9) that the constraint (IC) is satisfied. Let

us now verify that (BP) holds on [x∗, 1]. There are two cases. If y ≥ a, we have:

∫ 1

0

Gcave
x (y)dHcave(x) = 1−

∫ 1

y

[x− θ(x)]dHcave(x),

where we have used the definition in equation (1.9). Since a = θ(a) and Hcave has

density θ′(x)F ′′(θ(x)) on (a, 1), we can rewrite this expression:

∫ 1

0

Gcave
x (y)dHcave(x) = 1−

∫ 1

y

[x− θ(x)]θ′(x)F ′′(θ(x))dx.
We recognise under the integral the left-hand-side of the differential equation defining

θ. Therefore: ∫ 1

0

Gcave
x (y)dHcave(x) = 1−

∫ 1

y

F ′(x)dx = F (y).

Now suppose y < a. Since θ is monotonic and continuous, its inverse is well-defined.

Using equation (1.9), we can write:

∫ 1

0

Gcave
x (y)dHcave(x) =

∫ 1

0

[
1− x+ θ(x)

]
dHcave(x) +

∫ θ−1(y)

0

[
y − θ(x)

]
dHcave(x).

Observe that the first term in the sum corresponds to
∫ 1

0

[
1 − x + θ(x)

]
dHcave(x) =∫ 1

0
Gcave

x (a)dHcave(x) = F (a) by the treatment of the case y ≥ a above. The second term

can be computed using integration by parts. We obtain:

∫ 1

0

Gcave
x (y)dHcave(x) = F (a)+

∫ θ−1(y)

0

Hcave(x)θ′(x)dx = F (a)+

∫ θ−1(y)

a

F ′(θ(x))θ′(x)dx.
The integral can now be easily computed and we find:

∫ 1

0

Gcave
x (y)dHcave(x) = F (a) + F (y)− F (a) = F (y).

We conclude that (BP) holds for all y ≥ x∗.

Let us now explain how to construct shadow prices λ : [0, 1] → R such that conditions

(i), (ii) and (iii) of Theorem 1 are satisfied. First, we set λ(x) = 0 if x ≤ x∗. On (x∗, 1], we
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will construct λ to be increasing until a and then decreasing, such that it satisfies:

∀x ≥ a, λ(x) = λ
(
θ(x)

)
.

This feature guarantees that conditions (i) and (ii) of the Theorem are satisfied. Indeed,

condition (i) requires that y ∈ suppGcave
x only if λ(y) = miny≤z≤x λ(z), which will be the

case exactly for y ≤ θ(x) or y = x, consistently with the definition of Gcave
x . Moreover,

condition (ii) requires that Gcave
x (y) = 1 − x + y when λ(y) < λ(z) for all z ∈ (y, x], that

is for y ∈
[
x∗, θ(x)

)
or y = x, again consistently with the definition of Gcave

x in equation

(1.9). Next, we discuss how to construct λ satisfying condition (iii).

If we can construct λ as specified in the previous paragraph, the implementation cost

of any action x will write:

Λ(x) = (1−x) min
0≤z≤x

λ(z)+

∫ x

0

[
min

y≤z≤x
λ(z)

]
dy =


0 if x ≤ x∗,∫ x

x∗ λ(y)dy if x∗ ≤ x ≤ a,∫ θ(x)

x∗ λ(y)dy + [x− θ(x)]λ(x) if x ≥ a.

In particular, for x ∈ (a, 1), we have:

Λ(x) = Λ
(
θ(x)

)
+
[
x− θ(x)

]
Λ′(θ(x)).

In order to satisfy condition (iii), x 7→ v(x)−Λ(x) must be maximised on [a, 1]. Define α

to be the constant value of v(x)− Λ(x) on [a, 1]. The previous equation rewrites:

∀x ∈ (a, 1), v(x)− α = Λ
(
θ(x)

)
+
[
x− θ(x)

]
Λ′(θ(x)).

This motivates considering the differential equation:

∀t ∈ (x∗, a), v
(
θ−1(t)

)
= q(t) +

[
θ−1(t)− t

]
q′(t). (A.1)

For a solution q on (x∗, a), we can set Λ(t) = q(t) − α. It will follow that λ(t) = q′(t)

on (x∗, a). Since we wish to construct λ increasing on [x∗, a] with λ(x∗) = 0, the so-

lution q must be increasing and convex. Furthermore, q′(t) must remain bounded as t

approaches a, so we can define λ(a) = limt→a q
′(t). Then for x ∈ (a, 1), it suffices to set

λ(x) = λ
(
θ(x)

)
, and λ(1) = limt→x∗ q′(t). Note that since q′ remains bounded, it will
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have to be the case that limt→a q(t) = v
(
θ−1(a)

)
= v(a). Finally, in order to guarantee

that condition (iii) holds, we must have:

∀t ∈ (x∗, a), v(t)− Λ(t) ≤ α,

or equivalently:

∀t ∈ (x∗, a), v(t) ≤ q(t).

Since q will be convex with limt→a q(t) = v(a), a sufficient condition for this inequality

to hold is:

∀t ∈ (x∗, a), v(t) ≤ v(a) + (t− a) lim
s→a

q′(s),

and since v is concave, it will be sufficient to have lims→a q
′(s) ≤ v′−(a), the left-derivative

of v at a.

To summarise, it suffices to show that the differential equation (A.1) possesses an

increasing and convex solution q with lims→a q
′(s) ≤ v′−(a). This is what we do next by

exhibiting a solution. Let us first introduce a notation. For t ∈ (x∗, a), define:

ζ(t) =

∫ t

x∗

du

θ−1(u)− u
.

Observe that t 7→
[
θ−1(t) − t

]
eζ(t) is positive and decreasing on (x∗, a).1 Therefore its

limit as t→ a is well defined, and we denote it ℓ ≥ 0. Then we can define:

q(t) = v
(
θ−1(t)

)
− e−ζ(t)

(
ℓv′+(a)−

∫ a

t

F ′′(u)

F ′
(
θ−1(u)

)(θ−1(u)− u
)
eζ(u)v′+

(
θ−1(u)

)
du

)
.

(A.2)

In the integral, F ′′(u)

F ′
(
θ−1(u)

) ,
(
θ−1(u) − u

)
eζ(u) and v′+

(
θ−1(u)

)
are all bounded, so the

integral is well-defined. Furthermore, q is everywhere right-differentiable. Noting that:

(
θ−1
)′
(u) =

F ′′(u)

F ′
(
θ−1(u)

)(θ−1(u)− u
)
,

by the differentiable equation defining θ, simple algebra establishes that:

q′+(t) =
v
(
θ−1(t)

)
− q(t)

θ−1(t)− t
,

1To see this, differentiate to obtain: d
dt
[(θ−1(t)− t)eζ(t)] = (θ−1)′(t)eζ(t) < 0.
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for all t ∈ (x∗, a). It follows that q solves equation (A.1). Furthermore, from equation

(A.2), we have:

v
(
θ−1(t)

)
− q(t) = e−ζ(t)ℓv′+(a) + e−ζ(t)

∫ a

t

−F ′′(u)

F ′
(
θ−1(u)

)(θ−1(u)− u
)
eζ(u)v′+

(
θ−1(u)

)
du,

which is a sum of positive terms. As a result, q′+ ≥ 0, so q is increasing. Using this

expression, we write:

q′+(t) =
ℓv′+(a) +

∫ a

t
−F ′′(u)

F ′[θ−1(u)]

(
θ−1(u)− u

)
eζ(u)v′+

(
θ−1(u)

)
du(

θ−1(t)− t
)
eζ(t)

.

As explained previously, the denominator in this ratio is a positive and decreasing term

in t.
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Appendix B

Appendix to Chapter 2

B.1 An Equilibrium when C = D

This appendix is concerned with constructing an equilibrium when the seller’s contract

space is restricted to include only simple and direct contracts. In section B.1.1, we use

a fixed-point argument to define a set of contracts D∗(µ) parameterised by µ ∈ [0, 1],

such that the seller deploys a contract in D∗(µ) when her belief about the buyer having

high valuation is µ. In section B.1.2, we describe and analyse a class of auxiliary games

whose sequential equilibria map to off-path parts of our equilibrium assessment. Finally

in section B.1.3, we use the results from sections B.1.1 and B.1.2 to build a complete

assessment and prove that it constitutes an equilibrium.

B.1.1 Deployed Contracts

Let vh > vl > 0 and δ ∈ (0, 1). For µ ∈ [0, 1], let J̄(µ) = max{vl, µvh} and

J(µ) =


vl if µ < 1,

vh if µ = 1.

A function J : [0, 1] → R is piece-wise linear if [0, 1] can be partitioned into countably

many intervals such that J is affine on each of these intervals. We denote by J the set of

non-decreasing, piece-wise linear and convex functions J : [0, 1] → [vl, vh] such that, for

all µ ∈ [0, 1], J̄(µ) ≥ J(µ) ≥ J(µ).
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Given J ∈ J , we construct a function AJ ∈ J . We set AJ(0) = vl and AJ(1) = vh.

For µ ∈ (0, 1), AJ(µ) is the value to the maximisation problem described below.

Fix µ ∈ (0, 1). A trading time s is a random time whose distribution ⟨s⟩ depends on

the buyer’s valuation v ∈ {vl, vh}. We identify ⟨s⟩ = (qh, ql) ∈ Q × Q, where Q =
{
q ∈

[0, 1]N :
∑

t≥0 qt ≤ 1
}

. For t ≥ 0 and i ∈ {h, l}, qit is interpreted as the probability that

trade occurs in period t if the buyer’s valuation in vi. Given ⟨s⟩ ∈ Q × Q and t ≥ 0, if

P(s ≥ t) = 1−
∑t−1

k=0

(
µqhk + (1− µ)qlk

)
> 0, we define:

µt = P(v = vh|s ≥ t) =
µ
(
1−

∑t−1
k=0 q

h
k

)
µ
(
1−

∑t−1
k=0 q

h
k

)
+ (1− µ)

(
1−

∑t−1
k=0 q

l
k

) .
Define, for ⟨s⟩ ∈ Q ×Q, the objective function:

Ω
(
⟨s⟩
∣∣µ) = ∞∑

k=0

δk
(
qhkµvh + qlk(vl − µvh)

)
,

and for t ≥ 1, the constraint mapping:

Gt

(
⟨s⟩
∣∣µ, J) =


P
(
s ≥ t

)
J(µt)−

∑∞
k=t δ

k−t
(
qhkµvh + qlk(1− µ)vl

)
if P
(
s ≥ t

)
> 0,

0 if P
(
s ≥ t

)
= 0.

Note that Ω(·|µ) is linear and, for each t ≥ 1,Gt(·|µ, J) is convex on the convex set Q×Q.

Denoting G
(
⟨s⟩
∣∣µ, J) = (Gt

(
⟨s⟩
∣∣µ, J))

t≥1
, the maximisation problem is given by:

AJ(µ) = max
⟨s⟩∈Q×Q

Ω
(
⟨s⟩
∣∣µ)

s.t. G
(
⟨s⟩
∣∣µ, J) ≤ 0.

(B.1)

If µ ≤ vl
vh

, an obvious solution is given by s = 0, that is qh0 = ql0 = 1. Thus, in

this case, AJ(µ) = vl. Therefore, we focus on the case µ > vl
vh

. We first prove prelimi-

nary results which help describe a candidate solution ⟨s∗⟩(µ, J) to (B.1). Then, we prove

that ⟨s∗⟩(µ, J) indeed solves the maximisation problem, and we verify that AJ indeed

belongs to J .

Lemma 5. For µ̃ ∈ (0, 1), there exists µ̃′ ∈ [0, µ) such that:

δJ(µ̃′) = vh − 1− µ̃′

1− µ̃

(
vh − J(µ̃)

)
,
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if and only if µ̃ ≥ (1−δ)vl
vh−δvl

≡ µ̄ ∈ (0, vl
vh
). In this case, µ̃′ is unique.

Proof. Uniqueness is guaranteed by the fact that J is convex, and δJ(µ̃) < J(µ̃). If

δJ(0) ≥ vh − vh−J(µ̃)
1−µ̃ , then a solution exists by the intermediate value theorem. Other-

wise, no solution exists, by convexity. Therefore, a solution exists if and only if:

J(µ̃) ≤ µ̃vh + (1− µ̃)δvl.

This inequality is satisfied if µ̃ ≥ vl
vh

since J(µ̃) ≤ max{µ̃vh, vl}. For µ̃ < vl
vh

, J(µ̃) = vl

and the inequality is equivalent to µ̃ ≥ µ̄.

In view of lemma 5, define on [0, 1) the function µ̃′ such that µ̃′(µ̃) = 0 if µ̃ ≤ µ̄, and:

δJ(µ̃′) = vh − 1− µ̃′

1− µ̃

(
vh − J(µ̃)

)
,

otherwise. Now, given µ1 ∈ (0, 1), we construct the non-increasing sequence (µk)k≥1

such that, for k ≥ 1, µk+1 = µ̃′(µk).

Lemma 6. There exists T ≥ 1 such that µT < µ̄.

Proof. Otherwise, (µk)k≥1 has a limit µ∞ ∈ [µ̄, 1). Since J is continuous on [0, 1), the

limit must satisfy:

δJ(µ∞) = J(µ∞),

which is impossible since J ≥ vl > 0 and δ < 1.

We define T = min{t ≥ 1 : µt < µ̄}. Now, let:

ρJ(µ1) =
vl

vh − vl

T∏
t=1

(
1 +

1− δ

δ

vh
vh − J(µt)− (1− µt)J ′

+(µt)

)
∈ (0,∞],

where J ′
+ is the right-derivative of J . By convexity and piece-wise linearity of J , ρJ is

a non-decreasing and right-continuous step function, which may take infinite values if

vh = J(µ1) + (1− µ1)J
′
+(µ1).

Lemma 7. For any µ1 ∈ (0, 1), ρJ(µ1) >
µ1

1−µ1
.

Proof. If T = 1, then:

µ1

1− µ1
<

µ̄

1− µ̄
=

(1− δ)vl
vh − vl

=
ρJ(µ1)

1
1−δ + 1

δ
vh

vh−vl

< ρJ(µ1).
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If T > 1, note that for t < T , since µt+1 < µt and J is convex:

J ′
+(µt) ≥

J(µt)− J(µt+1)

µt − µt+1
.

As a result:

1+
1− δ

δ

vh
vh − J(µt)− (1− µt)J ′

+(µt)
≥ (µt − µt+1)vh − δ(1− µt+1)J(µt) + δ(1− µt)J(µt+1)

δ
[
(µt − µt+1)vh − (1− µt+1)J(µt) + (1− µt)J(µt+1)

] .
Substitute in the numerator δJ(µt+1) = vh− 1−µt+1

1−µt

(
vh−J(µt)

)
, and in the denominator

J(µt) = vh − 1−µt

1−µt+1

(
vh − δJ(µt+1)

)
, to obtain:

1 +
1− δ

δ

vh
vh − J(µt)− (1− µt)J ′

+(µt)
≥ (1− µt+1)J(µt)

δ(1− µt)J(µt+1)
.

As a result:

ρJ(µ1) ≥
1− µT

δT
vh − δvl
(vh − vl)2

J(µ1)

1− µ1
.

Since J(µ1) = vh − 1−µ1

1−µ2

(
vh − δJ(µ2)

)
, we have:

1− µT

δT
vh − δvl

(vh − vl)2
J(µ1)

1− µ1
−

µ1

1− µ1

=
1− µT

δT−1

vh − δvl

(vh − vl)2
J(µ2)

1− µ2
−

µ2

1− µ2
+

(
1− µT

δT
vh − δvl

(vh − vl)2
vh − 1

)(
1

1− µ1
−

1

1− µ2

)
.

Now, since µT < µ̄ = (1−δ)vl
vh−δvl

:

1− µT

δT
vh − δvl
(vh − vl)2

vh − 1 >
1

δT
vh

vh − vl
− 1 > 0,

and since µ1 > µ2, we obtain:

1− µT

δT
vh − δvl
(vh − vl)2

J(µ1)

1− µ1
− µ1

1− µ1
>

1− µT

δT−1

vh − δvl
(vh − vl)2

J(µ2)

1− µ2
− µ2

1− µ2
.

The same argument applies by induction to establish:

1− µT

δT
vh − δvl
(vh − vl)2

J(µ1)

1− µ1
− µ1

1− µ1
>

1

δ

vh − δvl
(vh − vl)2

vl −
µT

1− µT

>
vl

vh − vl

(1− δ)vh + δ2(vh − vl)

δ(vh − vl)
> 0.
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To summarise:

ρJ(µ1) >
1− µT

δT
vh − δvl
(vh − vl)2

J(µ1)

1− µ1
>

µ1

1− µ1
,

which proves the claim.

Now, given the prior µ ∈ ( vl

vh
, 1), let:

µ∗
1 = min

{
µ1 ∈ [0, 1) : ρJ(µ1) >

µ

1− µ

}
.

As above, we iterate on µ̃′ to construct the path (µ∗
1, µ

∗
2, ..., µ

∗
T∗), where µ∗

T∗ ∈ [0, µ̄).

Defining µ∗
0 = µ and µ∗

T∗+1 = 0, the candidate solution ⟨s∗⟩(µ, J) is characterised by:

∀t ∈ {0, ..., T ∗}, q∗ht =
1− µ

µ

( 1

1− µ∗
t

− 1

1− µ∗
t+1

)
,

q∗lT∗ = 1− q∗lT∗+1 =
(1− δ)vl − µ∗

T∗(vh − δvl)

(1− δ)(1− µ∗
T∗)vl

.

Proposition 4. ⟨s∗⟩(µ, J) solves problem (B.1).

Proof. To simplify notations, we omit the dependence on µ and J of ⟨s∗⟩, Ω and G. We

first define a sequence of non-negative Lagrange multipliers (λt)t≥1 as follows.

If:
vl

vh − vl

T∗∏
t=1

(
1 +

1− δ

δ

vh
vh − J(µ∗

t )− (1− µ∗
t )J

′
−(µ

∗
t )

)
≤ µ

1− µ

<
vl

vh − vl

T∗∏
t=1

(
1 +

1− δ

δ

vh
vh − J(µ∗

t )− (1− µ∗
t )J

′
+(µ

∗
t )

)
,

where J ′
−(0) = 0, then there exists

(
J ′
∗(µ

∗
t )
)
1≤t≤T∗ ∈

∏
1≤t≤T∗

[
J ′
−(µ

∗
t ), J

′
+(µ

∗
t )
]

such

that:
µ

1− µ
=

vl
vh − vl

T∗∏
t=1

(
1 +

1− δ

δ

vh
vh − J(µ∗

t )− (1− µ∗
t )J

′
∗(µ

∗
t )

)
.

Otherwise, it must be that µ∗
T∗ = 0, and:

vl
vh − vl

T∗−1∏
t=1

(
1 +

1− δ

δ

vh
vh − J(µ∗

t )− (1− µ∗
t )J

′
−(µ

∗
t )

)
≤ µ

1− µ

<
vl

vh − vl

T∗∏
t=1

(
1 +

1− δ

δ

vh
vh − J(µ∗

t )− (1− µ∗
t )J

′
−(µ

∗
t )

)
.

Then, we define J ′
∗(µ

∗
t ) = J ′

−(µ
∗
t ) for all t ∈ {1, ..., T ∗}.
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In both cases, for t ∈ {1, ..., T ∗}, let:

λt =
1− δ

δ

vh
vh − J(µ∗

t )− (1− µ∗
t )J

′
∗(µ

∗
t )

t−1∏
k=1

(
1 +

1− δ

δ

vh
vh − J(µ∗

k)− (1− µ∗
k)J

′
∗(µ

∗
k)

)
,

and for t > T ∗, let λt = 0. We also introduce the notation, for t ≥ 0:

Λt =

t∑
k=1

λk = −1 +

min{T∗,t}∏
k=1

(
1 +

1− δ

δ

vh
vh − J(µ∗

k)− (1− µ∗
k)J

′
∗(µ

∗
k)

)
.

With these definitions, we establish below that ⟨s∗⟩ maximises on Q × Q the La-

grangian:

Ω
(
⟨s⟩
)
−

∞∑
t=1

δtλtGt

(
⟨s⟩
)
.

It follows that ⟨s∗⟩ solves problem (B.1), since for any ⟨s⟩ feasible, G
(
⟨s⟩
)
≤ 0, so:

Ω
(
⟨s⟩
)
≤ Ω

(
⟨s⟩
)
−

∞∑
t=1

δtλtGt

(
⟨s⟩
)
≤ Ω

(
⟨s∗⟩

)
−

∞∑
t=1

δtλtGt

(
⟨s∗⟩

)
= Ω

(
⟨s∗⟩

)
.

For ⟨s⟩ ∈ Q ×Q, let:

f⟨s⟩ : [0, 1] → R

α 7→ Ω
(
α⟨s⟩+ (1− α)⟨s∗⟩

)
−

∞∑
t=1

δtλtGt

(
α⟨s⟩+ (1− α)⟨s∗⟩

)
.

The desired result is implied if, for any ⟨s⟩ ∈ Q × Q, f⟨s⟩ is maximised at α = 0. Since

f⟨s⟩ is concave, it is sufficient to show that f⟨s⟩ is differentiable at α = 0, with f ′⟨s⟩(0) ≤ 0.

Fix ⟨s⟩ ∈ Q × Q and denote ⟨sα⟩ = α⟨s⟩ + (1 − α)⟨s∗⟩. Ω is linear and λt = 0 when

t > T ∗, thus it is sufficient to show differentiability of the term α 7→ Gt

(
⟨sα⟩

)
, when

t ∈ {1, ..., T ∗}. In this case, if P(s ≥ t) > 0, then:

Gt

(
⟨sα⟩

)
=P(sα ≥ t)J

(
α

P(s ≥ t)

P(sα ≥ t)
µt + (1− α)

P(s∗ ≥ t)

P(sα ≥ t)
µ∗
t

)
− α

(
P(s ≥ t)J(µt)−Gt

(
⟨s⟩
))

− (1− α)
(
P(s∗ ≥ t)J(µ∗

t )−Gt

(
⟨s∗⟩

))
,

where P(sα ≥ t) = αP(s ≥ t) + (1 − α)P(s∗ ≥ t). This expression has a right- and left-

derivative at any α, which coincide if α P(s≥t)
P(sα≥t)µt + (1− α) P(s

∗≥t)
P(sα≥t)µ

∗
t is not at a kink of J
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and write:

∂Gt

(
⟨sα⟩

)
∂α

=
P(s ≥ t)P(s∗ ≥ t)

P(sα ≥ t)
(µt − µ∗

t )J
′

(
α

P(s ≥ t)

P(sα ≥ t)
µt + (1− α)

P(s∗ ≥ t)

P(sα ≥ t)
µ∗
t

)

+
(
P(s ≥ t)− P(s∗ ≥ t)

)
J

(
α

P(s ≥ t)

P(sα ≥ t)
µt + (1− α)

P(s∗ ≥ t)

P(sα ≥ t)
µ∗
t

)

−

((
P(s ≥ t)J(µt)−Gt

(
⟨s⟩
))

−
(
P(s∗ ≥ t)J(µ∗

t )−Gt

(
⟨s∗⟩

)))
,

Now, using the fact that Gt

(
⟨s⟩
)
= P

(
s ≥ t

)
J(µt)−

∑∞
k=t δ

k−t
(
qhkµvh + qlk(1−µ)vl

)
and

Gt

(
⟨s∗⟩

)
= 0, we obtain:

∂Gt

(
⟨sα⟩

)
∂α

∣∣∣∣
α=0

= P(s ≥ t)
(
J(µ∗

t )+ (µt−µ∗
t )J

′
→µt

(µ∗
t )
)
−

∞∑
k=t

δk−t
(
qhkµvh+ q

l
k(1−µ)vl

)
,

(B.2)

or equivalently:

∂Gt

(
⟨sα⟩

)
∂α

∣∣∣∣
α=0

=µ
(
1−

t−1∑
k=0

qhk

)(
J(µ∗

t )

+ (1− µ∗
t )J

′
→µt

(µ∗
t )
)
+ (1− µ)

(
1−

t−1∑
k=0

qlk

)(
J(µ∗

t )− µ∗
tJ

′
→µt

(µ∗
t )
)

−
∞∑
k=t

δk−t
(
qhkµvh + qlk(1− µ)vl

)
,

where:

J ′
→µt

(µ∗
t ) =


J ′
−(µ

∗
t ) if µt < µ∗

t ,

J ′
+(µ

∗
t ) if µt > µ∗

t ,

J ′
∗(µ

∗
t ) if µt = µ∗

t .

This expression is valid if P(s ≥ t) = 0, in which case Gt

(
⟨sα⟩

)
= (1− α)Gt

(
⟨s∗⟩

)
= 0, if

we extend the definition J ′
→µt

(µ∗
t ) = J ′

∗(µ
∗
t ) when P(s ≥ t) = 0. Thus, the derivative at

α = 0 of f⟨s⟩ writes:

f ′
⟨s⟩(0) =− Ω

(
⟨s∗⟩

)
+

∞∑
k=0

δk
(
qhkµvh + qlk(vl − µvh)

)

−
T∗∑
t=1

δtλt

(
µ
(
1−

t−1∑
k=0

qhk

)(
J(µ∗

t ) + (1− µ∗
t )J

′
→µt

(µ∗
t )
)

+ (1− µ)
(
1−

t−1∑
k=0

qlk

)(
J(µ∗

t )− µ∗
tJ

′
→µt

(µ∗
t )
)
−

∞∑
k=t

δk−t
(
qhkµvh + qlk(1− µ)vl

))
.
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Rearranging, we get:

f ′⟨s⟩(0) =− Ω
(
⟨s∗⟩

)
+

∞∑
k=0

δk

[
qhkµvh(1 + Λk) + qlk

(
vl − µvh + (1− µ)vlΛk

)]

+

T∗−1∑
k=0

(
µqhk

T∗∑
t=k+1

δtλt

(
J(µ∗

t )

+ (1− µ∗
t )J

′
→µt

(µ∗
t )
)
+ (1− µ)qlk

T∗∑
t=k+1

δtλt

(
J(µ∗

t )− µ∗
tJ

′
→µt

(µ∗
t )
))

−
T∗∑
t=1

δtλt

(
J(µ∗

t ) + (µ− µ∗
t )J

′
→µt

(µ∗
t )
)
.

(B.3)

Using equation (B.2), note that: f ′⟨s⟩(0) ≤ H
(
⟨s⟩
)
, where:

H
(
⟨s⟩
)
=− Ω

(
⟨s∗⟩

)
+

∞∑
k=0

δk

[
qhkµvh(1 + Λk) + qlk

(
vl − µvh + (1− µ)vlΛk

)]

+

T∗−1∑
k=0

(
µqhk

T∗∑
t=k+1

δtλt

(
J(µ∗

t )

+ (1− µ∗
t )J

′
∗(µ

∗
t )
)
+ (1− µ)qlk

T∗∑
t=k+1

δtλt

(
J(µ∗

t )− µ∗
tJ

′
∗(µ

∗
t )
))

−
T∗∑
t=1

δtλt

(
J(µ∗

t ) + (µ− µ∗
t )J

′
∗(µ

∗
t )
)
.

(B.4)

H is linear on Q × Q. Denote, for all t ≥ 0, γht and γlt the terms multiplying qht and

qlt respectively. If t ≥ T ∗, γht = µvhδ
t(1 + ΛT∗) is positive and decreasing in t. If t ∈

{1, ..., T ∗}:

γht = µvhδ
t(1 + Λt) + µ

T∗∑
k=t+1

δkλk

(
J(µ∗

k) + (1− µ∗
k)J

′
∗(µ

∗
k)
)

= γht−1 − (1− δ)µvhδ
t−1(1 + Λt−1) + µδt

(
vh − J(µ∗

t )− (1− µ∗
t )J

′
∗(µ

∗
t )
)
λt

= γht−1,

where we have used the fact that:

λt = 1 + Λt − (1 + Λt−1) =
1− δ

δ

vh
vh − J(µ∗

t )− (1− µ∗
t )J

′(µ∗
t )
(1 + Λt−1).
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Now, for t ∈ {1, ..., T ∗}:

γlt = δt
(
vl − µvh + (1− µ)vlΛt

)
+ (1− µ)

T∗∑
k=t+1

δkλk

(
J(µ∗

k)− µ∗
kJ

′
∗(µ

∗
k)
)

= γlt−1 + (1− µ)δtλt

(
vl − J(µ∗

t ) + µ∗
tJ

′
∗(µ

∗
t )
)

+ (1− δ)δt−1
(
µ(vh − vl)− (1− µ)vl(1 + Λt−1)

)
.

By convexity, vl = J(0) ≥ J(µ∗
t )− µ∗

tJ
′
∗(µ

∗
t ). In addition:

1 + Λt−1 ≤ 1 + ΛT∗−1 ≤ vh − vl
vl

µ

1− µ
.

It follows that γlt ≥ γlt−1. If t ≥ T ∗, γlt = δt
(
vl − µvh + (1 − µ)vlΛT∗

)
. When µ∗

T∗ > 0,

1 + ΛT∗ = vh−vl
vl

µ
1−µ , so γlt = 0 for all t ≥ T ∗. In any case, 1 + ΛT∗ ≥ vh−vl

vl

µ
1−µ , and γlt is

non-negative and non-increasing in t for t ≥ T ∗.

It follows that H is maximised at ⟨s∗⟩, that is, for any ⟨s⟩ ∈ Q ×Q:

f ′⟨s⟩(0) ≤ H
(
⟨s⟩
)
≤ H

(
⟨s∗⟩

)
= f ′⟨s∗⟩(0) = 0,

which proves the desired result.

Remark 1. For each µ and J , we have described a solution ⟨s∗⟩(µ, J). If there exists µ1 ∈ [0, 1)

such that ρJ(µ1) =
µ

1−µ , we can describe an alternative solution ⟨ŝ∗⟩(µ, J) by setting:

µ̂∗
1 = min

{
µ1 ∈ [0, 1) : ρJ(µ1) =

µ

1− µ

}
,

and the continuing path of beliefs as before. All the arguments in the proof of proposition (4)

directly apply. Since ρJ is a step function, ⟨ŝ∗⟩(µ, J) is only defined for a discrete set of priors µ.

Remark 2. For each µ and J , there exists a direct and simple contract that implements ⟨s∗⟩(µ, J).

The probabilities of trade for each type of the buyer are given by q∗h and q∗l. For every t ≥ 1,

the trading price if the buyer’s report was vi is pit = vi. In the initial period of deployment, the

low-valuation buyer trades at price pl0 = vl, while the price for the high-valuation buyer is such

that:

q∗h0 (vh − ph0 ) = δT
∗(
q∗lT∗ + δ(1− q∗lT∗)

)
(vh − vl).

The same applies to ⟨ŝ∗⟩(µ, J). We denote D(µ, J) the set of those contracts (which contains
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either one or two elements).

Proposition 5. AJ belongs to J .

Proof. For µ ≤ vl

vh
, AJ(µ) = vl. For µ ∈

(
vl
vh
, ρJ (0)
1+ρJ (0)

]
, AJ(µ) = (1 − δ)µvh + δvl. Note

that AJ is thus continuous at vl
vh

. Similarly, if µ∗
1 is a point of discontinuity of ρJ , and

(µ∗
1, ..., µ

∗
T∗) the corresponding path of beliefs obtained by iteration on µ̃′, then for every

µ ∈
[

ρJ
−(µ∗

1)

1+ρJ
−(µ∗

1)
,

ρJ (µ∗
1)

1+ρJ (µ∗
1)

]
, where ρJ−(µ∗

1) denotes the left limit of ρJ at µ∗
1, we have:

AJ(µ) =
(
(1− δ)

T∗∑
t=1

δt−1

1− µ∗
t

+ δT
∗ µ∗

T∗

1− µ∗
T∗

vh − vl
vl

)
µvh

+

(
1− (1− δ)

T∗∑
t=1

δt−1

1− µ∗
t

− δT
∗

1− µ∗
T∗

vh − vl
vh

)
vh.

Thus AJ is piece-wise linear. In addition, by continuity at the boundaries, AJ is non-

decreasing. The term
(
(1−δ)

∑T∗

t=1
δt−1

1−µ∗
t
+δT

∗ µ∗
T∗

1−µ∗
T∗

vh−vl
vl

)
is increasing in µ∗

1, therefore

AJ is convex. It is clear that AJ ≥ vl. Now, for µ > vl
vh

and ⟨s⟩ ∈ Q ×Q:

µvh − Ω
(
⟨s⟩
∣∣µ) = (1− ∞∑

k=0

δkqhk

)
µvh +

∞∑
k=0

δkqlk(µvh − vl) ≥ 0,

so AJ ≤ J̄ .

Lemma 8. For all J, Ĵ ∈ J , if for all µ ∈ [0, 1], J(µ) ≥ Ĵ(µ), then for all µ ∈ [0, 1], AJ(µ) ≤

AĴ(µ).

Proof. Under the assumption of the lemma, for any ⟨s⟩ ∈ Q×Q and µ ∈ [0, 1],G
(
⟨s⟩
∣∣µ, J) ≥

G
(
⟨s⟩
∣∣µ, Ĵ). Thus ⟨s∗⟩(µ, J) is feasible in problem (B.1) for Ĵ , from which the conclusion

follows.

Proposition 6. The operator A : J → J has a unique fixed point J∗.

Proof. By lemma 8, and since J̄ is an upper bound on any element of J , any fixed point

J∗ of A must satisfy:

AJ̄ ≤ J∗ ≤ J̄ ,

and by immediate induction:

∀n ≥ 0, A2n+1J̄ ≤ J∗ ≤ A2nJ̄ .
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Therefore, existence and uniqueness of a fixed point are guaranteed if (AnJ̄)n≥0 con-

verges in J . Note that for all n,m ≥ 0, AnJ̄ and AmJ̄ coincide on [0, µ̂0), where µ̂0 = vl
vh

.

Therefore, ρA
nJ̄ and ρA

mJ̄ also coincide on [0, µ̂0), thus An+1J̄ and Am+1J̄ coincide

on [0, µ̂1), where µ̂1 =
ρJ̄
−(µ̂0)

1+ρJ̄
−(µ̂0)

> µ̂0. By immediate induction, for every k ≥ 0 and

n,m ≥ k, AnJ̄ and AmJ̄ coincide on [0, µ̂k), where the sequence (µ̂k)k≥0 is constructed

such that µ̂k+1 =
ρAkJ̄
− (µ̂k)

1+ρAkJ̄
− (µ̂k)

. (µ̂k)k≥0 is an increasing sequence. By lemma 7, its limit

must be µ̂∞ = 1. It follows that for every µ ∈ [0, 1], AnJ̄(µ) remains constant for n

sufficiently large (recall that AnJ̄(1) = vh for all n ≥ 0). Denote J∗(µ) this constant.

By construction, J∗ ∈ J and AJ∗ = J∗.

For µ ∈ [0, 1], we denote D∗(µ) = D(µ, J∗). If a contract d ∈ D∗(µ) is deployed

actively and truthfully in every period, the seller’s payoff is J∗(µ) and the low-valuation

buyer’s payoff is always Ul(µ) = 0. The high-valuation buyer’s payoff depends on the

contract, and we denote Uh(µ) the convex-hull of those payoffs. Finally, denote d∗(µ) ∈

D∗(µ) the contract such that maxUh(µ) is achieved.

B.1.2 Auxiliary Games

Given a contract d = (xτ , pτ )
∞
τ=0 ∈ D and belief µ ∈ [0, 1], let Γ(d, µ) be the discontinuous

dynamic psychological game defined as follows. The two players are the seller and the

buyer. As in the main text, the buyer has two types vl or vh, and µ is the seller’s common

knowledge belief that the buyer has a high valuation. The game is played in discrete

time. In the initial period, the contract d is deployed with τ = 0. That is, the buyer

chooses among {h, l, r}. If r is chosen, it is observed by the seller and the game proceeds

to the next period. If instead i ∈ {h, l} is selected, trade occurs with probability x0(vi)

at price p0(vi), in which case the game ends. If trade does not occur, the game proceeds

to the next period and the index in d is updated to τ = 1. In any following period, the

seller chooses among {C, S}. If S is selected, the game ends. If C is selected, the contract

d is deployed again. That is, the buyer makes a report in {h, l, r} if τ = 0 or in {a, r} if

τ ≥ 1. As above, when r is selected, it is observed by the seller and the game proceeds

to the next period. Otherwise, trade may occur or not as specified by the contract d.

The game ends either when trade occurs or when the seller chooses S. If trade occurs

in period t ≥ 0 at price p, the seller’s payoff is δtp and the buyer’s payoff is δt(v −

p), where v ∈ {vh, vl} is his valuation. If the game ends when the seller chooses S in
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period t, the payoffs are partially determined and depend on the seller’s belief about the

buyer’s valuation at that information set µ̂. In particular, we use the approach of Simon

and Zame (1990) and specify payoffs if the seller chooses S in period t with belief µ̂ as(
δtJ∗(µ̂), δtUl(µ̂), δ

tUh(µ̂)
)

for the seller, low-valuation buyer and high-valuation buyer

respectively. Since Uh is a correspondence, which element of Uh(µ̂) actually determines

the high-valuation buyer’s payoff is part of the solution concept.

As a result, we define a payoff selection u to be a mapping from terminal nodes fol-

lowing S to the real numbers. An augmented assessment is a triple (σ, α, u), where σ is

a strategy profile, α is the seller’s belief system and u is a payoff selection for the high-

valuation buyer. u is said to be consistent with α if, at every terminal history h following

S, if the seller’s belief that the buyer has a high valuation is µh, then u(h) ∈ Uh(µh).

A sequential equilibrium of Γ(d, µ) is an augmented assessment (σ, α, u) such that (i) α is

consistent with σ and the prior µ in the usual sense, (ii) u is consistent with α and (iii) σ

is sequentially rational1 given α and u.

Proposition 7. Suppose that d specifies bounded transfers (pτ )τ≥0. Then Γ(d, µ) has a sequen-

tial equilibrium.

Proof. We first consider the truncated version of the game ΓT (d, µ) such that the game

coincides with Γ(d, µ) until period T is reached, and for any period t ≥ T , the seller’s

action space is restricted to {C} and the buyer’s action space is restricted to {r}.

For any ε > 0, there exists a continuous function Uε
h : [0, 1] → [0, vh − vl] such

that any point
(
µ̃, Uε

h(µ̃)
)

in the graph of Uε
h is at a distance less than ε to the graph of

Uh. Let Γε
T (µ, d) be the psychological game corresponding to ΓT (µ, d) in which the high-

valuation buyer’s payoff after the seller chooses S with belief µ̂ isUε
h(µ̂). By Theorem 9 of

Battigalli and Dufwenberg (2009), Γε
T (d, µ) has a sequential equilibrium (σε, αε) (where

the first component refers to the strategy profile and the second to the belief system).

Given (σε, αε), let µ⃗ε the vector listing the seller’s beliefs that the buyer has a high

valuation at all her information sets in Γε
T (d, µ), and Uε

h(µ⃗
ε) the vector of high-valuation

payoffs whenever S is chosen. Since
(
σε, αε, Uε

h(µ⃗
ε)
)
ε

lives in a compact set, it possesses

an accumulation point (σT , αT , uT ) as ε→ 0.

We claim that (σT , αT , uT ) is a sequential equilibrium of ΓT (d, µ). Indeed, α must be

consistent for σ since αε is consistent for σε for any ε > 0. Moreover, at every terminal
1The notion of sequential rationality extends naturally to psychological games. The reader is referred to

Battigalli and Dufwenberg (2009) for details.
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node following S, the seller’s belief µ̂ε converges to µ̂, while the limit of
(
µ̂ε, Uε

h(µ̂
ε)
)

must belong to the graph of Uh. Thus uT must be a payoff selection for the high-

valuation buyer. Finally, since the terminal payoffs of any player converge together

with the assessment, for any strategy si of any player i, the evaluation of player i’s

expected payoff at any of her information sets under (si, σε
−i) also converges to that un-

der (si, σ−i). Since no profitable deviation exists under σε, the same is true in the limit

under σ.

σT specifies a full profile in Γ(d, µ). We can also extend αT and uT to construct a

full assessment and payoff selection in Γ(d, µ). For the belief system α, take the limit of

the belief system induced by a fully mixed buyer strategy after period T such that both

types make a mistake with the same small probability at every decision node. Given the

completed infinite vector µ⃗, whenever the seller chooses S after period T with belief µ̂,

select U∗
h(µ̂) = maxUh(µ). Denote

(
σ̄T , ᾱT , ūT

)
the completed assessment and payoff

selection in the infinite-horizon game Γ(d, µ).

Since transfers are bounded, discounting guarantees that
(
σ̄T , ᾱT , ūT

)
is a p̄δT - equi-

librium in Γ(d, µ). In addition, the set of augmented assessments is compact in the topol-

ogy of Fudenberg and Levine (1983) (note that, given a belief system, a payoff selection

is isomorphic to choosing a mixture between maxUh(µ̂) and minUh(µ̂) at every infor-

mation set of the seller, where µ̂ is her belief at that information set). Thus
(
σ̄T , ᾱT , ūT

)
has a converging subsequence, which must be a sequential equilibrium in Γ(d, µ).

B.1.3 Equilibrium Assessment

We construct an equilibrium in the version of the game presented in the main text in

which the seller’s contract space is restricted to include only simple and direct contracts,

with the additional assumption that all transfers are bounded. Specifically, we assume

that any transfer must be in the set [p, p̄], where p < 0 and p̄ > vh.

The seller’s prior is µ. Throughout we maintain that the seller’s belief does not up-

date following her own deviations. At the beginning of the game, the seller deploys the

contract d∗(µ). Consider a history h at which the seller’s belief is µh and the seller offers

a new contract d. If d ∈ D∗(µh), the buyer accepts the contract and reports his valuation

truthfully. In every following period, as long as trade does not occur, the seller’s belief

updates according to Bayes’ rule, she deploys again d and the buyer accepts. If the buyer

119



ever rejects d, the seller’s belief does not update and she deploys d again. If d /∈ D∗(µh),

the continuing assessment until the game ends or d is replaced is constructed as follows.

First note that, by the axiom of choice and proposition 7, we can select a sequen-

tial equilibrium of the auxiliary game Γ(d, µh) for any (d, µh). Let (σ, α, u) the chosen

equilibrium. Note that, as long as d is deployed, all the decision nodes of the buyer are

identical in Γ(d, µh) and in the original game. Thus, the buyer’s strategy at those nodes

can be taken directly from the profile σ. Now, we translate the seller’s strategy in σ to

a strategy in the original game. We interpret the action C as deploying the contract d

again. Note that, as long as d has been deployed, the seller’s belief at every information

set can be taken directly from α. Finally, when the seller chooses S in the auxiliary game,

with belief µ̂, u specifies a payoff selection for the high-valuation buyer û ∈ Uh(µ̂). We

specify that the contract d is replaced by a contract d̂ ∈ D∗(µ̂), which results from the

unique mixture across the contracts in D∗(µ̂) that delivers expected payoff û to the high-

valuation buyer (recall that D∗(µ̂) contains at most two contracts), if d̂ is to be deployed

actively and truthfully forever after. Once d is replaced, the continuing assessment is

described in the previous paragraph.

Next, we prove that the above assessment is indeed an equilibrium. By construction,

the assessment satisfies updating consistency in the sense of Perea (2002). Therefore the

one-shot deviation principle applies. It is clear that the buyer has no incentive to deviate.

Next, we establish that the seller has no profitable one-shot deviation at any information

set.

It is sufficient to show that, at any history h with belief µh, the seller’s payoff from

deploying a new contract cannot exceed J∗(µh) given the buyer’s strategy. Then, by

construction, it is clear that the seller’s behaviour is sequentially rational.

Suppose that the seller’s belief is µh and a new contract is offered. This is a one-

shot deviation, thus the continuation path is that specified in the above assessment. In

particular, at every subsequent history ĥ, if the seller’s belief is µĥ, her continuation

payoff is at least J∗(µĥ). Let s the random time at which trade occurs induced by the

continuation path. Denoting by V , θh and θl the continuation payoffs for the seller, the

high-valuation buyer and the low-valuation buyer respectively, we can express the total

continuation surplus as:

V + µhθh + (1− µh)θl = E0[δ
s|h]µhvh + E0[δ

s|l](1− µh)vl.
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Since a new contract is deployed, the high-valuation buyer could mimic the low-valuation

buyer’s strategy, thus:

θh ≥ θl + E0[δ
s|l](vh − vl).

In addition, the buyer can guarantee a non-negative payoff by rejecting the contract in

every period, thus:

θl ≥ 0.

Together, these inequalities imply that the seller’s continuation payoff satisfies:

V ≤ E0[δ
s|h]µhvh + E0[δ

s|l](vl − µhvh).

Finally, since J∗ is convex, in any period, the total continuation surplus must exceed

J∗(µt), where µt is the average belief of the seller across all histories reaching period t.

That is:

Et

[
δs|h

]
µtvh + Et

[
δs|l
]
(1− µt)vl ≥ J∗(µt).

In other words, it must be the case that V ≤ AJ∗(µh) = J∗(µh). Thus the seller has

no profitable one-shot deviation, which concludes the proof.

B.2 Continuous Types

In this appendix we will show how to modify the analysis in the main text to demon-

strate that our result is robust in the case of continuous types. In particular, we first

construct an abiding contract which achieves a payoff strictly bounded above the mar-

ket clearing profit. This contract resembles the contract of Lemma 2 in the main text by

treating the buyer as if his type was binary. In particular, the contract specifies a cut-off

type v̂ ∈ (v, v) and treats all types v < v̂ as the ‘low type,’ and all types v ≥ v̂ as the ‘high

type.’ The allocation probabilities and prices across ‘high’ and ‘low’ types are structured

similarly to the abiding contract in Lemma 2: only ‘high’ types trade in the initial period

at a discount. Conditional on no trade in the initial period, all types trade at the same

random time. ‘High’ types trade at the ‘high’ valuation, v̂, while ‘low’ types trade at the

‘low’ valuation, v.

The only significant difference is the abidance constraint. After no trade in the initial
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period the seller faces a residual market and we need to guarantee that the optimal

monopoly price is the lowest valuation, v. This is accomplished by choosing the cut-

off type, v̂, and the probability of trade in the initial period appropriately, so that the

residual market is sufficiently deteriorated. Moreover, the payoff from continuing with

the contract must exceed v.

Proposition 8 shows that for each δ such an abiding contract can be found which

delivers payoff greater than some π > v. Finally, in Proposition 9 we show that this π is

a lower bound to the seller’s best equilibrium profit. The argument proceeds similarly

to the proof of Lemma 1 in the main text.

The Contract

Let F be the cdf of valuations on [v, v], with v > 0. We assume that f(v) > 0, for all

v ∈ [v, v] and that the revenue function R(p) := p · (1 − F (p)) satisfies R′(v) > 0. Note

that this implies that market clearing is not the optimal monopoly price, maxpR(p) > v.

We consider the following stationary cut-off mechanism.

• The buyer submits a report v ∈ [v, v].

• If v ≥ v̂, there is trade with probability α in the first period, at price p.

• In any future period trade occurs with probability β at price v̂.

• If v < v̂, there is no trade in the initial period.

• In any future period trade occurs with probability β at price v.

We introduce the notation:

ψ =
βδ

1− δ + βδ
∈ [0, δ]

for the expected present value of the discount factor at the time of trade.

Incentive Compatibility

First, we note that this contract is IC whenever:

α · (v − p) + (1− α) ·max
{
ψ · (v − v̂), 0

}
≥ ψ · (v − v) ⇐⇒ v ≥ v̂
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where the max{·} controls for the buyer’s participation decision in future periods.

Then, the IC is written as:

α · (v − p) + (1− α) · ψ · (v − v̂) ≥ ψ · (v − v) for all v ≥ v̂

and

ψ · (v − v) ≥ α · (v − p) for all v ≤ v̂

The following lemma gives sufficient conditions for incentive compatibility.

Lemma 9. The contract (v̂, α, ψ, p) ∈ (v, v)× [0, 1]× [0, δ]× R+ is IC if:

α · (v̂ − p) = ψ · (v̂ − v) (IC+)

and

α ≥ ψ (IC-)

Proof. Let ∆+(v) = α · (v − p) + (1 − α) · ψ · (v − v̂) − ψ · (v − v). The IC for v ≥ v̂ is

satisfied whenever ∆+(v) ≥ 0 for v ≥ v̂. First, note that (IC+) implies that ∆+(v̂) = 0.

Hence, it is sufficient to verify that ∆+(v) is increasing in v. We have:

∆′
+(v) = α+ (1− α)ψ − ψ = α · (1− ψ) ≥ 0

Therefore, the IC for v ≥ v̂ is satisfied.

Let ∆−(v) = ψ · (v − v)− α · (v − p), so that the IC for v ≤ v̂ is satisfied if ∆−(v) ≥ 0

for v ≤ v̂. Given (IC+) we have that the price p must be given by:

α · p = (α− ψ) · v̂ + ψ · v

and thus:

∆−(v) = (ψ − α) · v − ψv + αp = (α− ψ) · (v̂ − v) ≥ 0

for v ≤ v̂, since α− ψ ≥ 0 by (IC-).
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Abidance

Abidance comprises of two features: (i) The monopoly price on the residual market is

v (market clearing); and (ii) the seller’s continuation payoff within the mechanism is

greater than v.

First, we compute the seller’s continuation payoff. This is given by:

ψ ·
[
P(v < v̂|¬ trade) · v + P(v ≥ v̂|¬ trade) · v̂

]
Given the trading probabilities specified above, we have:

P(v ≥ v̂|¬ trade) =
(1− α) · (1− F (v̂))

F (v̂) + (1− α) · (1− F (v̂))

The abidance constraint is hence given by:2

ψ · (δ − ψ)

[
v +

(1− α) · (1− F (v̂))

F (v̂) + (1− α) · (1− F (v̂))
· (v̂ − v)

]
≥ (δ − ψ) · v (AC1)

Residual Market

We now compute the residual market conditional on no trade in the initial period. In

particular, we are interested in P(v ≥ p|¬ trade), which is given by:

P(v ≥ p|¬ trade) =

∫ v

p

[
1− α · 1v≥v̂

]
dF (v)∫ v

v

[
1− α · 1v≥v̂

]
dF (v)

Hence, we get the residual market:

D(p |α, v̂) = P(v ≥ p|¬ trade) =



(1−α)·(1−F (p))
F (v̂)+(1−α)·(1−F (v̂)) , if p ≥ v̂

(1−α)·(1−F (v̂))+F (v̂)−F (p)
F (v̂)+(1−α)·(1−F (v̂)) if p < v̂

2Note that this is equivalent to the constraint in Lemma 2 of the main text. That is, continuing in the mecha-
nism delivers more than the payoff from running the mechanism for a period more, and clearing immediately
conditional on no trade.
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Ex-ante payoffs

We now compute the seller’s ex-ante payoff from a contract (v̂, α, ψ, p) ∈ (v, v)× [0, 1]×

[0, δ]× R+:

Π(v̂, α, ψ, p) = (1− F (v̂)) · (α · p+ (1− α)ψv̂) + F (v̂) · ψv

We can use (IC+) to eliminate the price, and re-write the problem as:

Π(v̂, α, ψ) = (1− ψ)α ·R(v̂) + ψv

with the following constraints:

α ≥ ψ (IC-)

ψ · (δ − ψ) [F (v̂) · v + (1− α) ·R(v̂)] ≥
[
1− α ·

(
1− F (v̂)

)]
(δ − ψ) · v (AC1)

sup
p

p ·D(p |α, v̂) = v (AC2a)

D(p |α, v̂) =



(1−α)·(1−F (p))
F (v̂)+(1−α)·(1−F (v̂)) , if p ≥ v̂

(1−α)·(1−F (v̂))+F (v̂)−F (p)
F (v̂)+(1−α)·(1−F (v̂)) if p < v̂

(AC2b)

Parameters

We are looking for parameters (v̂, α, ψ) ∈ (v, v) × [0, 1] × [0, δ] satisfying the following

conditions:

α ·R(v̂) > v

ψ < 1

α ≥ ψ

125



ψ · [F (v̂) · v + (1− α) ·R(v̂)] ≥
[
1− α ·

(
1− F (v̂)

)]
v

sup
p

p ·D(p |α, v̂) = v

The first two conditions guarantee the failure of the Coase Conjecture. The third

ensures incentive compatibility for v ≤ v̂. The fourth is the abidance constraint for the

seller. Note that the way this is written implicitly assumes that we can take ψ < δ. This

will turn out to be the case for sufficiently high δ—which is the relevant case. Finally,

the last condition guarantees that market clearing is the monopoly price on the residual

market.

Intuitively for all sufficiently low v̂, there is a high enough α which deteriorates the

residual market enough for market clearing to be the monopoly price.

We use this idea to specify for each v̂, the following:

1− ψv̂ = (v̂ − v)2

1− αv̂ = (v̂ − v)2

with the intention of converging as v̂ ↓ v.

With this specification as v̂ converges to v, then v̂ − v converges to 0, slower than α

and ψ are converging to 1. Note that αv̂ = ψv̂ so (IC-) is taken care of;3 while for v̂ > v,

ψv̂ < 1.

We now consider the remaining conditions.

Lemma 10. There exists ε1 > 0 such that for all v̂ > v with v̂ − v ≤ ε1,

αv̂ ·R(v̂) > v

Proof. Suppose that the inequality fails for all v̂ > v. That is:

3In particular, this means that p = v.
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αv̂ ·R(v̂) ≤ v

αv̂ ·
[
R(v̂)−R(v)

]
≤ (1− αv̂)v

αv̂ ·
[
R(v̂)−R(v)

]
≤ (v̂ − v)2v

αv̂ ·
R(v̂)−R(v)

(v̂ − v)
≤ (v̂ − v)v

where R(v) = v. Taking limits as v̂ ↓ v we arrive at:

R′(v) ≤ 0

which contradicts the hypothesis that R′(v) > 0.

Lemma 11. There exists ε2 > 0 such that for all v̂ > v such that v̂ − v ≤ ε2,

ψv̂ · [F (v̂) · v + (1− αv̂) ·R(v̂)] ≥
[
1− αv̂ ·

(
1− F (v̂)

)]
v

Proof. Re-writing the inequality we have:

1− ψv̂ ≤ (1− αv̂)
(v̂ − v) · (1− F (v̂)

[F (v̂) · v + (1− αv̂) ·R(v̂)]

Suppose the inequality fails for all v̂ > v. We then have:

1− ψv̂ > (1− αv̂)
(v̂ − v) · (1− F (v̂)

[F (v̂) · v + (1− αv̂) ·R(v̂)]
⇒ 1 >

(v̂ − v) · (1− F (v̂))

[F (v̂) · v + (v̂ − v)2 ·R(v̂)]

which can be re-arranged to:

[
F (v̂)

(v̂ − v)
· v + (v̂ − v) ·R(v̂)

]
> (1− F (v̂))

⇒
[
f(v) · v + o((v̂ − v))

(v̂ − v)
+ (v̂ − v) ·R(v̂)

]
> (1− F (v̂))
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Taking limits as v̂ ↓ v we arrive at:

f(v) · v ≥ 1

This is a contradiction to R′(v) > 0 since:

R′(x) = 1− F (x)− f(x) · x⇒ R′(v) = 1− f(v) · v > 0

Lemma 12. There exists ε3 > 0 such that for all v̂ > v such that v̂ − v ≤ ε3,

sup
p

p ·D(p |αv̂, v̂) = v

Proof. First, we have that for any p ≥ v̂,

R(p|v̂) := p ·D(p|αv̂, v̂) ≤ v · (v̂ − v)2 · (1− F (v̂))

F (v̂) + (v̂ − v)2 · (1− F (v̂))

since the RHS is the profit from trading with all v ≥ v̂ at a price p = v. Dividing both the

numerator and the denominator by (v̂ − v) > 0, we have:

v · (v̂ − v) · (1− F (v̂))

F (v̂)/(v̂ − v) + (v̂ − v) · (1− F (v̂))
→ 0

since F (v̂)/(v̂−v) converges to f(v) > 0. Consequently, profits from prices p ≥ v̂ become

arbitrarily small as v̂ ↓ v, so for sufficiently small (v̂ − v) > 0 the optimal prices must be

below v̂.

We now consider prices p < v̂. First note that:
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R′(v|v̂) · (v̂ − v) =
v̂ − v

F (v̂) + (v̂ − v)2 · (1− F (v̂))
·
[
(v̂ − v)2 · (1− F (v̂))

+ F (v̂)− F (v)− v · f(v)
]

=
1

F (v̂)
v̂−v + (v̂ − v) · (1− F (v̂))

·
[
(v̂ − v)2 · (1− F (v̂))

+ F (v̂)− F (v)− v · f(v)
]

→ 1

f(v)
·
[
− v · f(v)

]
= −v as v̂ ↓ v

Moreover, for v < p < v̂, we have:

R(p|v̂)−R(v|v̂) = R′(v|v̂) · (p− v) + o(p− v)

< R′(v|v̂) · (v̂ − v) + o(p− v)

Since the RHS converges to a strictly negative limit as v̂ ↓ v, we can find ε3 > 0, such

that for all v̂ > v with v̂ − v ≤ ε3,

R(p|v̂)−R(v|v̂) < 0, for all v < p < v̂

The claim follows since R(v|v̂) = v.

We now put lemmata 6-8 together to prove the failure of the Coase Conjecture:

Lemma 13. There exists δ̄ < 1 such that for all δ ≥ δ̄, we can pick a single abiding contract

(v̂∗, α∗, ψ∗, p∗) ∈ (v, v)× [0, 1]× [0, δ]× R+ with Π(v̂∗, α∗, ψ∗, p∗) > v.

Proof. We pick v̂∗ such that 0 < (v̂∗−v) < min{ε1, ε2, ε3} and set α∗ = 1−(v̂∗−v)2 = ψ∗,

and p∗ = v given by (IC+). Lemma 3 and Lemma 4 imply that the contract is abiding.

Lemma 2 delivers Π(v̂∗, α∗, ψ∗, p∗) > v.

Finally, setting δ̄ = 1 − (v̂∗ − v)2 the feasibility constraint ψ∗ ≤ δ, is satisfied for all

δ ≥ δ̄.

129



Finally, we prove the analogue of Lemma 2 in the main text:

Proposition 8. For each δ ∈ (0, 1), there exists a δ-abiding contract dδ ∈ D such that v(dδ, δ) >

π > v.

Proof. If δ ≥ δ̄ where δ̄ the cut-off in Lemma 13 we use the contract (v̂∗, α∗, ψ∗, p∗). If

δ < δ̄, we consider the contract (v̂, α, ψ, p) = (v̂∗, 1, δ, p̃), with p̃ = v̂ − δ · (v̂ − v). This is

abiding and delivers payoff:

(1− δ)R(v̂) + δv > v

The payoff from the contract (v̂∗, 1, δ, p̃) is strictly decreasing in δ so the payoff it gener-

ates for δ < δ̄ is at least as large as Π(v̂∗, 1, δ̄, p̃).

We set π = min{Π(v̂∗, 1, δ̄, p̃),Π(v̂∗, α∗, ψ∗, p∗)} > v. Consequently, for each δ we can

construct an abiding contract dδ such that v(dδ, δ) ≥ π > v.

Lower bound

We now prove that the best equilibrium payoff to the seller is bounded below by π. To

prove this we need to strengthen the equilibrium concept. In particular, an assessment is

an equilibrium if it is a Weak PBE, and in addition, after any initial contract offer the con-

tinuation assessment forms a Weak PBE.4 We will assume that for any prior distribution

of types G ∈ ∆([v, v]) such an equilibrium exists.

4Note that this is equivalent to a subgame-perfect Weak PBE assessment in a game-tree where Nature draws
the type after every contract offer—at which point a well-specified subgame starts.
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Proposition 9. We have π(C, δ) ≥ π.

Proof. Suppose in anticipation of a contradiction that π(C, δ) < π. The argument follows

exactly the same steps of Lemma 1 in the main text, apart from what happens along a

history where only dδ has been offered.

Note that dδ is abiding so no matter what payoffs the seller gets from deviating to

c ̸= dδ , as long as they are consistent with sequential rationality, they cannot exceed

market clearing which is the commitment payoff. So the best deviation payoff consistent

with equilibrium in the continuation game is v. Consequently, it is enough to show that

some equilibrium assessment can be defined after any offer of contract c ̸= dδ when the

seller’s belief (residual demand) is given by D(p |α∗, v̂∗).

The continuation game where c ̸= dδ is offered after τ periods of deployment of dδ ,

is clearly isomorphic to the one arising from an initial offer of c, in a game where the

prior is D(p |α∗, v̂∗). By assumption, an assessment exists in such a game which induces

a Weak PBE after the contract offer c ̸= dδ . We can therefore specify the corresponding

assessment to complete the proof.
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Appendix C

Appendix to Chapter 3

C.1 Appearances of “worker cooperatives” in digitized books

Figure C.1 shows an increasing trend in the occurrence of the phrase “worker coopera-

tives” among newly published digitized books since the mid-2000s. For reference, we

also added “stakeholder capitalism”. We do not interpret the figure as showing that

worker cooperatives are necessarily a more prominent alternative than stakeholder cap-

italism, as other terms are probably used to refer to the concept. However, cooperatives

are certainly as prominent nowadays as they were in the heydays of work on the subject,

i.e. the 1980s.
1The figure was generated using the Google Ngram Viewer (https://books.google.com/ngrams).

Details on the corpus are presented by Michel et al (2011).

Figure C.1: Appearances of “worker cooperatives” in digitized books

Note: Frequency of the (case-insensitive) bigrams “worker cooperatives” and “stakeholder capitalism”
among all bigrams contained in the sample of English-language books digitized by Google, by date of
publication.1
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C.2 Proof that (3.4) holds under the Operational Equilib-

rium Concept

For k > 0 and l > 0, denote:

U(k, l) = max
k′

U

(
(1− τ)F (k, l)− k′

l
,
τF
(
k′,L(k′)

)
l

)
.

The result we wish to prove is that

L(k) ∈ argmax
l

U(k, l).

We will prove this by contradiction.

Consider an incumbent ī ∈ It, and suppose that L(kīt) does not coincide with the

argmax. Condition (3.1) implies that if l ≤ L(kit) then U(kit, l) ≤ U
(
kit,L(kit)

)
, so the

argmax must be strictly greater than L(kīt).

Now apply conditions (3.2) and (3.3) to j = ī and i ∈ It+1 an arbitrary cooperative.

If there is a feasible reallocation in which ī is allocated l > L(kīt) workers and i fewer

workers than in the original allocation Li, then either:

U(kīt, l) < U(kīt,L(kīt)),

or:

U(kit,Li) ≥ U(kīt, l).

Since L(kīt) is strictly less than the argmax, there must exist l > L(kīt) such that the

first condition is violated. It follows that the second condition must hold for any other

cooperative i ∈ It+1. In particular, since we take l such that U(kīt,L(kīt)) < U(kīt, l), it

follows that:

∀i ̸= ī ∈ It+1, U(kit,Li) > U(kīt,L(kīt)).

So any incumbent that is not allocated its optimal labour input must be the cooper-

ative that provides the lowest utility level to its workers among all cooperatives in the

economy. But being such a cooperative depends not only on that cooperative’s own cap-

ital stock, but on the capital stock of all other cooperatives. This then contradicts the
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premise that the allocation of workers to incumbent cooperatives depends exclusively

on each cooperative’s own initial capital.

C.3 Algorithm to solve for the equilibrium

In practice, we solve for equilibria as follows. The first step is to obtain the equilibrium

choices of labour input and capital investment of a cooperative:

(
L(k),K(k)

)
∈ argmax

l,k′
U

(
(1− τ)F (k, l)− k′

l
,
τF
(
k′,L(k′)

)
l

)
,

as well as the optimal capital investment level of an entering cooperative with an arbi-

trary labour input l:

K(l) ∈ argmax
k′

U

(
(1− τ)F (0, l)− k′

l
,
τF
(
k′,L(k′)

)
l

)
.

The value of this problem is denoted U0(l). Then, given any initial distribution of capital

{ki0}i∈I0 , one can construct the growth path of the economy and check for feasibility.

Specifically, in each period, all incumbents i ∈ It are allocated L(kit) workers. If∫
It
L(kit)di > L, feasibility is violated so the initial distribution cannot lead to an equi-

librium satisfying the requirement. If
∫
It
L(kit)di = L, then It+1 = It and ki,t+1 = K(kit).

If
∫
It
L(kit)di < L, define:

l∗ ∈ argmax
l

U0(l).

Then a set of entrantsEt of measure |Et| =
L−

∫
It

L(kit)di

l∗ is created. That is, new coopera-

tives are created with li = l∗ workers. Finally, It+1 = It ∪Et where Et is the set of newly

created cooperatives, and for i ∈ It, ki,t+1 = K(kit), while for i ∈ Et, ki,t+1 = K(l∗).

C.4 Derivation of capitalist equilibrium with log utility

Conditional factor demands from individual firms take the form:

k(rt, wt) =

[
A
( α
rt

)1−β( β
wt

)β] 1
1−α−β

,

l(rt, wt) =l +

[
A
( α
rt

)α( β
wt

)1−α
] 1

1−α−β

,
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while profits write:

π(rt, wt) = (1− α− β)

[
A
( α
rt

)α( β
wt

)β] 1
1−α−β

− wtl.

As a result, we can solve the system of equilibrium conditions to derive:

r(κt) = A
α

(1− α)1−α
ββ
(1− α− β

l

)1−α−β

κα−1
t ,

w(κt) = A(1− α)αββ
(1− α− β

l

)1−α−β

καt ,

N(κt) ≡ N =
1− α− β

1− α

(L
l

)
.

Note that the number of firms is constant over time and hence independent of the size of

the capital stock, or equivalently, capitalist firms have the constant size given in equation

(3.6).

The solution to the Young’s consumption-saving problem leads to the well known

log-utility saving rule

κt+1 =
δ

1 + δ
wt.

Substituting from the equations above this delivers the capital accumulation equation

(3.7).

C.5 Proof that cooperatives are smaller than capitalist firms

Capitalist firms have 1−α
1−α−β l employees, while cooperatives have 1+δ

1+δ−β(1+δα) l workers.

Since α ∈ (0, 1), it must be the case that:

1 + δ ≥ (1− α)(1 + δα).

It follows that 1
1−α ≥ 1+δα

1+δ , which implies that:

1− β

1− α
≤ 1− β(1 + δα)

1 + δ
.

Therefore:
1− α

1− α− β
l ≥ 1 + δ

1 + δ − β(1 + δα)
l.
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C.6 Capitalist dynamics with IES = 2

Solving the consumption-saving problem of young agents yields the following saving

rule:

κt+1 =
δ

1
σ r

1−σ
σ

t+1

1 + δ
1
σ r

1−σ
σ

t+1

wt.

As a result, capital accumulation dynamics are characterised by the following equation:

[
1 + δ−

1
σ

(
A

α

(1− α)1−α
ββ
(1− α− β

l

)1−α−β

κα−1
t+1

)− 1−σ
σ

]
κt+1

= A(1− α)αββ
(1− α− β

l

)1−α−β

καt .

(C.1)

If σ > 1 and α ∈ (0, 1), equation (C.1) defines κt+1 as an increasing and concave function

of κt, with a first-order derivative which is infinite at 0 and vanishes at infinity.

To simplify notations, denote:

a = δ−
1
σ

(
A

α

(1− α)1−α
ββ
(1− α− β

l

)1−α−β
)− 1−σ

σ

,

b = A(1− α)αββ
(1− α− β

l

)1−α−β

,

θ = α+
1− α

σ
.

Then equation (C.1) rewrites:

κt+1 + aκθt+1 = bκαt ,

or equivalently:

κt+1 = f−1(κt),

where f(x) =
(

1
b

) 1
α
(
x + axθ

) 1
α

is strictly increasing and strictly convex on (0,∞), and

satisfies:

lim
x→0

f(x) = lim
x→0

f ′(x) = 0,

lim
x→∞

f(x) = lim
x→∞

f ′(x) = ∞,

if we restrict attention to the case σ > 1, so that θ ∈ ( 1σ , 1).
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Indeed, these properties are easily derived from differentiating twice, which yields:

f ′(x) =
(1
b

) 1
α (

1 + aθxθ−1
)(
x+ axθ

) 1−α
α ,

and:

f ′′(x) =
(1
b

) 1
α (
x+ axθ

) 1−α
α −1

[1− α

α
+ θ
(
θ − 3 +

2

α

)
axθ−1 + θ

( θ
α
− 1
)(
axθ−1

)2]
,

where θ
α − 1 = 1−α

ασ > 0, and θ − 3 + 2
α = (1− α)

(
2−α
α + 1

σ

)
> 0.

It follows that capital accumulation follows standard dynamics with a unique strictly

positive attractive steady-state.

In the special case where σ = 2, the steady-state capital stock per old worker takes a

simple algebraic form:

κ∗ =

((4A(1− α)αββ
(

1−α−β
l

)1−α−β
)1/2

(
α

δ(1−α)

)1/2
+
(
4 + α

δ(1−α)

)1/2
) 2

1−α

.

It follows that the discount factor δ can still be identified from the targeting of the capital-

output ratio:
K

Y
=

4(1− α)((
α

δ(1−α)

)1/2
+
(
4 + α

δ(1−α)

)1/2)2 .

C.7 Fixed-cost Normalization

We use the following functional form for the production technology:

Fl(k, l) = Akα(l − l)β .

In this appendix, we show that the specific value of the parameter l does not affect the

quantitative comparison between the two economies.

For any given l, we can implement the following change of variables. Any quantity

of labour l can be renormalized as:

l̃ =
l

l
,
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while any quantity of capital k can be renormalized as:

k̃ = l−
β

1−α k.

It follows that the production output is also renormalized as:

Fl(k, l) = l
β

1−αF1(k̃, l̃).

In our model of capitalist economy, the problem of the firm is completely unchanged

as long as the wage is suitably renormalized to:

w̃ = l1−
β

1−αw.

The consumer’s problem is unchanged either (note that each consumer now supplies 1/l

units of labour). The renormalization implies that consumption level c is to be renormal-

ized as: c̃ = l−
β

1−α c. Given that preferences are of the form:

U(cY , cO) =
(cY )1−σ

1− σ
+ δ

(cO)1−σ

1− σ
,

the renormalization amounts to multiplying the utility function by a positive constant,

thus does not affect choices. Note also that in the log case, the renormalization simply

corresponds to adding a constant to the utility function, so the argument is also valid.

Similarly, in the cooperative model, consumption levels per consumer write:

cY = l
β

1−α
(1− τ)F1(k̃, l̃)− k̃′

l̃
,

cO = l
β

1−α
τF1(k̃

′, l̃′)

l̃
.

Therefore, choices are unaffected by the same renormalization. Since the normalization

affects the levels of relevant quantities in the same way in the two models, no quantita-

tive comparison is affected by the level of l.
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C.8 Sensitivity Analysis with τ recalculated

Figure C.2: Steady-state output ratio Y ∗
coop

Y ∗
cap

and its static
((Zcoop

Zcap

) 1
1−α
)

and dynamic(( scoop
scap

) α
1−α
)

components, as functions of the model’s parameters, with τ chosen to max-
imize steady state utility for each combination of parameters.

C.9 Endogenous Sharing Rule

In this appendix, we present an extended version of our model of cooperatives in which

we relax the assumption that old workers automatically receive a share of current rev-

enues. Instead, in each period, current workers decide by a vote whether to implement

a sharing-rule. We describe those sharing-rules that can be sustained as an equilibrium

of the dynamic game played by the different generations of workers within a coopera-

tive. In equilibrium, each generation expects to receive payments when old only if they

agree to pay their old workers when young. Therefore agreement to a sharing-rule arises

endogenously. Our approach follows closely that of Cooley and Soares (1999), who

introduce endogenous pay-as-you-go social security systems in a general-equilibrium

overlapping-generations model.

Specifically, we assume that, upon creation of a cooperative i, the initial workers

choose a linear sharing rule τi ∈ [0, 1]. Following generations of workers are not com-

mitted to abide by the policy designed by their predecessors, but may vote only for or

against its implementation. That is, in each following period, if cooperative i is assigned

workers, those workers choose, once production has taken place, whether to distribute

a share τi of revenues to the old workers or to keep all revenues. Then, the maintained
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share is split between investment and payment to the young workers as in the main text.

Our general equilibrium concept can be adapted to include decisions regarding the

sharing-rule. We call a sharing-rule sustainable if its implementation in every period can

be supported by trigger strategies such that every generation of workers in cooperative

i chooses to implement the sharing rule τi as long as every previous generation has done

so. If workers of cooperative i in period t deviate from τi, they expect to be punished by

the following generation of workers and not to receive any payment as old. As a result,

they have no incentive to invest at all. It follows that the sharing-rule τi is sustainable if,

on path:

U

(
(1− τi)F (ki,t, li,t)− ki,t+1

li,t
,
τiF (ki,t+1, li,t+1)

li,t

)
≥ U

(
F (ki,t, li,t)

li,t
, 0

)
. (∗)

An important consequence is that no sharing rule is sustainable in a cooperative that

exits in equilibrium, and conversely, a cooperative with non-sustainable sharing rule

immediately exits after its first period of existence2.

Now, the definition of an equilibrium follows naturally from that of section 4.3. An

equilibrium is characterised by a worker allocation mechanism, investment decisions,

and sharing-rules. Investment decisions are required to be optimal subject to condition

(∗), taking as given the worker allocation mechanism. In turn, the worker allocation

mechanism takes as input the set of incumbent cooperatives, their current capital stock

and the sharing rule in place in each of them, and operates according to the same re-

quirements as in the main text. In particular, when we consider reallocations, we take

into account the potential creation of a new cooperative iwith any arbitrary sharing rule

τi. In this sense, sharing rules are chosen optimally upon the creation of a cooperative.

As in section 4.4, we may impose restrictions in order to define an operational equi-

librium concept. First, we require that an incumbent cooperative’s allocation of workers

depends only on its capital stock and its sharing rule. That is, given the sharing rule

τi, there is a mapping Lτi(ki,t) such that, on path, incumbent cooperative i is allocated

Lτi(ki,t) in any state in which its capital stock is ki,t and its sharing rule τi. Second, we

impose that, given the mapping Lτi(·), the resulting optimal investment path implies

that τi is a sustainable sharing rule. That is, condition (∗) is satisfied in every period,

2This follows from noting that the last generation of workers before a cooperative exits would have no in-
centive to distribute revenues to old workers. In anticipation, the previous generation would have no incentive
to implement a sharing rule either, and so on by backward induction.
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when every generation of workers invests as if τi was to be automatically implemented

in every future period. This second restriction is in line with the limited rationality re-

quirements that motivate our operational equilibrium concept in the main text, as work-

ers do not need to anticipate the behaviour of every future generation when they invest,

only that of the next generation when they vote on the implementation of the sharing

rule. Importantly though, it limits the set of sharing rules that can be selected by the

first generation of workers in a cooperative, since those must choose among those shar-

ing rules that are indeed sustainable given the optimal investment path. If they do not

choose such a sharing rule, they must understand it and the cooperative immediately

exits. Then, as mentioned above, exit does not have to be ruled out for an operational

equilibrium concept, but it may occur only to newly created cooperatives.

It is easy to establish under these restrictions that equation (4) is still valid for a sus-

tainable sharing rule τ . If we further impose symmetry across cooperatives regarding

their initial choice of sharing rule, the rest of our analysis applies without modification

to this model with endogenous sharing rules. In particular, in the examples of sections 5

and 6, any sharing rule τ ∈ (0, 1) is sustainable. This result follows from the fact that the

workers’ utility goes to −∞ if consumption goes to 0 in any period. Therefore condition

(∗) has to hold.
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Dizdar, D., & Kováč, E. (2020). A Simple Proof of Strong Duality in the Linear Persuasion

Problem. Games and Economic Behavior, 122, 407-412.

Domar, E. D. (1966). The Soviet Collective Farm as a Producer Cooperative. The American

Economic Review, 56(4), 734–757.

Doval, L., & Skreta, V. (2020). Optimal Mechanism for the Sale of a Durable Good. (arXiv

preprint arXiv:1904.07456)

Doval, L., & Skreta, V. (2022). Mechanism Design with Limited Commitment. Economet-

rica, 90(4), 1463–1500.
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