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Abstract

This thesis explores factors that in�uence �rms' incentives to invest in R&D and

innovate.

The �rst chapter examines the e�ect of patent term on innovation. Leveraging

a US policy change that varied patent term across technological �elds, I estimate

that unanticipated adoption of a longer patent term stimulates R&D and innovation.

However, if �rms anticipate a longer patent term for future inventions, R&D and

innovation decline, also due to technology disclosure externalities. A new structural

model highlights that normative evaluation of patent term changes should consider

both transitional dynamics and potential anticipation. Moreover, it shows that the

unanticipated extension of US patent term to 26 years would increase US welfare

compared to current policy.

The second chapter studies the role of new-product quality for the dynamics of

durable-goods expenditures around the Great Recession. We assemble a rich dataset

on US new-car markets during 2004-2012, combining data on transaction prices with

detailed information about vehicles' technical characteristics. During the recession, a

reallocation of expenditures away from high-quality new models accounts for a signif-

icant decline in the dispersion of expenditures. In turn, car manufacturers introduced

new models of lower quality, which persistently depressed the technology embodied

in vehicles.

The third chapter examines the interaction between innovation, productivity, and

technological standards. The latter integrate �rms' disclosures of standard-essential

patents into documents that provide technical and informational coordination on how

to combine technologies to achieve interoperability and overcome innovation comple-

mentarities that may harm growth. I empirically show that the number of disclosed

patents negatively correlates with productivity growth across sectors. I develop a

Schumpeterian growth model featuring complementarity, standards, and patents dis-
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closures, and identify conditions under which more disclosures lead to slower produc-

tivity growth. Namely, when the degree of complementarity is strong enough. Lastly,

I show that this prediction holds in the data.
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Abstract

This paper investigates the impact of anticipated quasi-experimental variation in

US patent term across technological �elds on R&D, innovation, and welfare. Through

a di�erence-in-di�erence analysis, I �nd that R&D and innovation (i) decline after

news and before adoption of a future extension in patent protection and (ii) remain

lower for 5 years after implementation. At news, innovators reduce R&D as they wait

for the more favorable upcoming policy. After implementation, this leads to lower

aggregate creation of new projects due to the cumulative nature of innovation. The

latter outweighs the positive direct e�ect of a longer patent term's implementation on

R&D and invention, which I empirically identify once controlling for heterogeneous

innovation patterns induced by the news shock. The paper develops and estimates a

novel semi-endogenous growth model. Counterfactual policy experiments show that

policy anticipation and transitional dynamics to patent term changes have sizable

welfare implications.
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1.1 Introduction

The patent term, i.e., the duration of legal monopoly granted by patents, is a crucial

policy instrument for promoting innovation and long-term growth. However, there

is limited empirical evidence on its impact on Research and Development (R&D),

innovation, and welfare (Budish, Roin and Williams, 2016). Normative models pre-

scribe a patent term range that varies from zero (Boldrin and Levine, 2013) to in�nite

protection (Gilbert and Shapiro, 1990), and in most jurisdictions, the o�cial patent

term is determined by a rule-of-thumb approach.1

This paper contributes to the literature in two ways. Firstly, it presents new

quasi-experimental empirical evidence on the e�ects of patent term on R&D and

innovation, emphasizing the impact of policy anticipation. While an unanticipated

longer patent term leads to a signi�cant increase in R&D and innovation, the same

policy generates�perhaps surprisingly�a prolonged decline in these outcomes if �rms

anticipate the intervention. Secondly, the paper identi�es theoretical channels that

drive these results and formalizes them in a novel semi-endogenous growth model,

which allows for the quanti�cation of key welfare trade-o�s. Negative news e�ects

are driven by intertemporal substitution of costly innovative investment on existing

projects. Ampli�cation of these e�ects occurs due to a technology disclosure exter-

nality, wherein a decline in knowledge di�usion dampens the ability to create new

projects.

The empirical analysis leverages quasi-experimental variation in e�ective patent

term across technological �elds resulting from an anticipated policy intervention,

speci�cally the rati�cation of the international agreement on Trade-Related Aspects

1US patent term was introduced in 1790 and set to 14 years after the grant date in line with
English law. In turn, the English term was based on the expected training period of two sets of
apprentices, as reported by Nordhaus (1969), and not on any welfare considerations. In 1861, the
US patent term was changed to 17 years, and Nordhaus (1969) reports that this change was the
result of a political compromise.
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of Intellectual Property Rights (TRIPs) by the US.2 TRIPs standardized US patent

term from 17 years after the patent grant date to 20 years after the application day.

As legal monopoly is only enforceable after grant, e�ective US patent term changed

from 17 years to 20 years minus the pending period, i.e., the time between applica-

tion and grant dates, when the US Patent and Trademarks O�ce (USPTO) examines

application materials. Identi�cation exploits two sources of variation: Cross-sectional

variation in average pending period across technological �elds due to heterogeneous

congestion of technical units that within the USPTO examine distinct technologies,

and time variation due to two policy shocks: the news shock at the of 1992 when US

innovators learned of the future intervention, and the implementation shock in June

1995. Figure 1.1 shows the distribution of the change in e�ective patent term across

technical �elds. On average, most �elds gained protection from the policy (positive

values) but variation is wide.

A Di�erence-in-Di�erence (DiD) analysis compares R&D, patenting, and other in-

novative outcomes across �elds with heterogeneous patent term changes over the two

policy shocks. The results reveal three empirical facts. Firstly, Fact 1 demonstrates

that news of a patent term extension on future patents leads to a contemporaneous

decrease in patenting before policy implementation. Consistent e�ects on �rm-level

R&D expenditures and sectoral TFP suggest that this represents a change in actual

innovation. This �nding is interpreted as �rms intertemporally substituting costly

investments in ongoing projects until after the implementation of the longer patent

term, when expected rewards are higher. Secondly, Fact 2 shows that the decline in

R&D and innovation arising from the news persists for at least �ve years following

policy implementation. This outcome results from the combined action of two forces

2TRIPs were part of the Uruguay Round of negotiations of the General Agreement on Trade and
Tari�s (GATT), which laid the ground to the formation of the World Trade Organization (WTO).
TRIPs set common intellectual property protection rules with which WTO members had to comply.
As the 20-years-from-application patent term was the most common among initial members, it was
taken as a standard.
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Figure 1.1: Distribution of the expected change in e�ective protection time
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The histogram shows the distribution of the TRIPs-induced change in average e�ective patent term
across technical �elds. The units on the x-axis are days and positive values denote an expected
patent term extension. Subsection 1.2.3 reports additional details on measurement.

that are empirically documented. On the one hand, the implementation of the new,

longer patent term increases R&D and innovation as a direct e�ect, which is Fact

3. On the other hand, the cumulative nature of the innovation process leads to a

temporary decline in innovation after implementation because there are fewer novel

technologies on which to build. Using backward citations among patents to capture

technical links, the study provides suggestive evidence that this e�ect is due to a

decline in the di�usion of new knowledge through patent documents, which is re-

ferred to as a technology disclosure externality, consistent with evidence from Hedge,

Herkenho� and Zhu (2022). Various analyses address the main endogeneity concerns,

supporting a causal interpretation of these results.

The paper formalizes the intertemporal substitution of costly investment on on-

going projects and the technology disclosure externality in a novel semi-endogenous

growth model, showing that both channels are key to replicate the empirical e�ect

of an anticipated patent term extension. The model features two key ingredients.

Firstly, it distinguishes Research and Development as separate activities, with re-
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search discovering abstract ideas whose value lies in obtaining a new product in the

future. Development, on the other hand, transforms these ideas into actual patentable

technologies at a cost. Firms trade o� the cost of faster development with the value

of obtaining a patented technology at di�erent points in time, capturing the intertem-

poral substitution channel. Secondly, the model assumes that a faster average speed

of development increases aggregate productivity of research through an externality

because the di�usion of new knowledge is more frequent.

Upon receiving news of an upcoming increase in patent term, �rms tend to reduce

their development e�ort prior to policy implementation, as the value of future patents

becomes higher relative to current ones. Although the incentive to slow down devel-

opment terminates with the policy's implementation, the news e�ect leads to lower

knowledge di�usion and aggregate research productivity for some time. As a result,

research investment remains depressed even after implementation, despite longer pro-

tection enhances incentives to generate new ideas as a direct e�ect. In the long run,

the latter dominates, increasing R&D and innovation.

Through a structural estimation, this study successfully matches the DiD empir-

ical evidence and identi�es key parameters of the innovation process. Speci�cally,

it �nds severe decreasing returns to discovering new ideas and mild cost convexity

of developing existing projects at a faster pace. Furthermore, counterfactual policy

experiments uncover two previously overlooked channels that impact the welfare ef-

fects of a patent term change. While most of the literature focuses on long-term

outcomes, the model highlights that the transitional dynamics of the economy to the

new long-run equilibrium can also signi�cantly a�ect welfare. Additionally, the the-

ory con�rms that news e�ects are crucial, as even short anticipation can undermine

the welfare gains that would result from an unanticipated implementation of a longer

patent term (26 years) in the US.
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1.1.0.0.1 Structure of the paper The remainder of the paper proceeds follows.

Subsection 1.1.1 relates the contribution to existing literature. Section 1.2 presents

the institutional setting of TRIPs and Section 1.3 data and measurement. Section 1.4

shows the main empirical facts and Section 1.5 empirically documents the externality.

Section 1.6 presents the model, Section 1.7 its structural estimation, and Section 1.8

counterfactual policy scenarios and the quanti�cation of normative trade-o�s. Section

1.9 concludes.3

1.1.1 Connection to the literature

Evidence on the e�ect of patent term on innovation and R&D is limited, partly due

to lack of variation in policy. The latest empirical contribution on the topic is by

Budish, Roin and Williams (2015), who document that in the US pharmaceutical

sector R&D is disproportionately directed towards treatments with shorter clinical

trials, which implicitly o�er longer e�ective protection time. However, the paper

cannot disentangle the importance of the policy instrument, i.e. the �nite patent term,

relative to �rms' preference for projects with faster return from investment. Other

papers examine more comprehensive measures of patent protection strength (Lerner

(2009), Moser (2005), Moser and Voena (2012), Sakakibara and Branstetter (2001),

Schankerman and Schuett (2017), Moscona (2021), Kyle and McGahan (2012)), but

not patent term speci�cally. This paper uses one source of variation due to a major

policy change (TRIPs) and exploits the heterogeneity in its impact across �elds.

Abrams (2009) uses the same quasi-experimental strategy but assumes that the

policy intervention was unanticipated, which leads to di�erent econometric speci�-

cations and divergent reduced-form results. Speci�cally, Abrams (2009) estimates a

two-period DiD speci�cation comparing patenting in a narrow window of data (6, 12,

or 24 months) before and after the implementation shock of June 1995. In contrast,

3Appendix 1.A and 1.D describe the data, Appendix 1.B and 1.E report additional empirical
results, and Appendix 1.C and 1.F include further theoretical results.
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I provide documental evidence from several sources that US �rms anticipated the

TRIPs. In Appendix 1.B.1 I discuss at length that disregarding potential news e�ects

may lead to an incorrect interpretation of implementation e�ects and I reconcile the

results of the two papers. Moreover, Section 1.4 shows that an anticipated patent

term extension leads to a decline in R&D and innovation, which is opposite to what

would happen absent anticipation and contrary to conventional wisdom. Finally, this

paper develops a novel structural semi-endogenous growth model and quanti�es the

key normative trade-o�s of patent term.

To do so, it builds on Jones (1995) and it borrows the modelling of a �nite patent

term from Lin and Shampine (2018). However, it introduces signi�cant modi�cations

to the engine of growth, modeling distinct trade-o�s of Research and Development

activities and embedding a new externality. The two-step structure of the innova-

tion process is similar to Comin and Gertler (2006a), but the interpretation of the

two stages is di�erent. Section 1.6 and Appendix 1.C.5 discuss that this departure is

crucial for rationalizing the empirical evidence. In addition, di�erently from the sev-

eral theoretical papers that study the normative consequences of patent term (Nord-

haus (1967), Gilbert and Shapiro (1990), Klemperer (1990), Futagamia and Iwaisako

(2007), Acemoglu and Akcigit (2012)), this paper tightly links the model to quasi-

experimental empirical evidence that informs the key structural parameters used for

normative analysis.

Finally, the paper contributes to the large empirical and theoretical literature on

innovation related spillovers, which include: Knowledge accumulation spillovers, at

the core of Romer (1990), and recently re-examined by Bloom et al. (2020) and Aghion

and Jaravel (2015); spillovers from basic to applied research (Akcigit, Hanley and

Serrano-Velarde (2020)); geographic spillovers (Moretti (2020), Lychagin et al. (2016),

Lanahan and Myers (2022)); externalities at the inventor level (Bell et al. (2019),

Akcigit et al. (2020)); and spillovers in the technological space (Bloom, Schankerman
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and Van Reenen (2013), Moretti, Steinwender and Van Reenen (2019)). This paper

provides evidence of a technology disclosure externality acting through the di�usion of

novel knowledge, which can be seen as a �standing on the shoulders of young giants�

e�ect. This is close to evidence in Hedge, Herkenho� and Zhu (2022), who document

that a more timely publication of patent application increases the rate of follow-up

innovation.

1.2 Nature and timing of the TRIPs policy change

1.2.1 Content of the policy change

The paper's empirical analysis utilizes quasi-experimental variation in the US e�ective

patent term resulting from the adoption of The Agreement on Trade-Related Aspects

of Intellectual Property Rights (TRIPs) in the US. TRIPs standardized intellectual

property protection rules across trading partners as a part of the Uruguay Round of

agreements that established the World Trade Organization (WTO). The US statutory

patent was modi�ed by the TRIPs, changing the expiry date of patents from 17 years

after grant date to 20 years after application date. During the pending period, de�ned

as the time between application and grant dates when the patent o�ce examines

applications, monopoly power is not legally enforceable. Thus, the policy modi�ed

the e�ective patent term from 17 years before the TRIPs to 20 years minus the

pending period after the TRIPs. The paper's identi�cation strategy, explained in

Subsection 1.2.3, exploits the interaction between this time variation and pre-existing

heterogeneity in the average pending period across technological �elds. Additionally,

the paper argues in the following subsection that US innovators anticipated the TRIPs

adoption.
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1.2.2 Timing: News and implementation shocks

The Uruguay Round Agreements Act (URAA) of December 8, 1994 o�cially rati�es

the TRIPs provisions in the US, which came into full e�ect on June 8, 1995.4 Despite

this, various o�cial documents and articles indicate that US �rms were aware of the

impending policy change well before its formal adoption.

First, the US business sector played a direct role in the TRIPs negotiation process

from the beginning of the Uruguay Round in 1986. According to Morgese (2009)

and Matthews (2002), the US Advisory Committee on Trade Policy and Negotiations

(ACTPN), which included CEOs of companies like IBM and P�zer, had signi�cant

in�uence on the US delegation's position. Second, the adjustment of the US patent

term was �rst mentioned in a �nal draft for the whole Uruguay Round circulated by

the GATT Director-General at the end of 1991.5 Third, as Montalvo (1996) notes, the

Advisory Committee on Patent Law Reform took the �rst step towards this change

in August 1992 by issuing a report to the Secretary of Commerce recommending a

twenty-year term from the �ling date of the �rst complete United States application.6

This report, jointly signed by several representatives of the business community, ex-

4The Uruguay Round Agreements Act (URAA), which rati�ed the TRIPs provisions in the US,
brought four major changes to US patent law. The �rst change examined in this paper is the patent
term change. The �nal version of the URAA included a retro-activity clause for patents �led before
the June 1995 policy implementation that would have had longer e�ective protection under the
new policy regime. This crucial implementation detail was unknown before the formal signing in
December 1994, so innovators' incentives were not a�ected by the retro-activity clause before then.
The second relevant policy change was a non-discrimination rule for foreign inventors. The third
change was the introduction of provisional applications, which are preliminary applications that
anticipate the o�cial one but are not examined. While the data may be a�ected by substitution
to the new type of applications, provisional applications must be turned into o�cial ones within
one year to avoid being considered abandoned, which limits potential measurement error to a one-
year re-timing of innovation, at worst. The TRIPs also broadened the patentable subject matter in
developing countries and increased protection for developed country innovators. The e�ects of this
aspect of the policy are studied by Delgado, Kyle and McGahan (2013) and Kyle and McGahan
(2012). Subsection 1.4.2 discusses the potential confounding e�ects arising from these concomitant
changes, �nding overall support for the validity of the results.

5GATT doc. MTN.TNC/W/FA, Draft Final Act Embodying the Results of the Uruguay Round
of Multilateral Trade Negotiations, 20/12/91

6The Implementation of the Uruguay Round Agreement on Trade-Related Aspects of Intellectual
Property�the TRIPs Agreement: Hearings on S.2368 and H.R. 4894 before the Subcomm. on Patents,
Copyrights and Trademarks of the Senate Judiciary Comm. and the Subcomm. on Intellectual
Property and Judicial Administration of the House Judiciary Comm., 103rd Cong., 2d Sess.
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plicitly referred to the 1991 TRIPs draft.7 Fourth, early academic articles in law

journals, such as those by Reichman (1993), Martin and Amster (1994), and Doane

(1994), examined various aspects of the TRIPs draft. Finally, an article in the New

York Times also mentioned the policy change in September 1992.8 Therefore, US in-

novators were aware of the negotiation content and could anticipate the policy change.

Moreover, according to historical records of the Uruguay Round negotiations, the

Blair House Accord signing in November 1992 signi�cantly reduced the uncertainty

surrounding the adoption of the agreements, with the resolution of the agricultural

trade dispute between European countries and the US being a key factor in this

development.9 Therefore, the paper considers two separate policy shocks: A news

shock in November 1992 and an implementation shock in June 1995.10

In Appendix 1.B.1, I address the issue of neglecting anticipation, which can po-

tentially result in biased inference on implementation e�ects. I also reconcile the

empirical results of my paper with those of Abrams (2009), who studied the e�ects of

patent term using TRIPs but assumed no anticipation.11

7Representatives of IBM, 3M, P&G, Motorola, and Garret&Dunner signed the report, among the
others.

8Panel Proposes Patent Changes, New York Times, Late Edition (East Coast); New York, 15 Sep
1992.

9This is reported by Morgese (2009) and at https://en.wikipedia.org/wiki/Uruguay_Round,
where it reads: �The round was supposed to end in December 1990, but the US and EU disagreed on
how to reform agricultural trade and decided to extend the talks. Finally, In November 1992, the US
and EU settled most of their di�erences in a deal known informally as the �Blair House accord�, and
on 15 April 1994, the deal was signed [...]�

10The URAA, signed on December 8th, 1994, allowed innovators �ling patent applications between
December 8th, 1994 and June 7th, 1995 to choose whichever policy regime was more favorable to
them. All empirical results are una�ected by an additional anticipation of one or two quarters.

11When assuming the absence of policy anticipation, the e�ects of the news shock are essentially
assumed to be zero. However, Appendix 1.B.1 demonstrates that if this assumption fails to hold,
the di�erence-in-di�erences (DiD) comparison of R&D and innovation before and after policy im-
plementation can result in confounded estimates of the policy's e�ect. In fact, if the news shock
does indeed alter R&D and innovation before policy implementation, the pre-implementation levels
of these outcomes, which are used as the reference for the pre-post comparison in the DiD exercise,
can themselves become endogenous to the treatment. Section 1.4 presents evidence of anticipation
e�ects, while Appendix 1.B.1 illustrates how these confound the DiD estimates of Abrams (2009).
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1.2.3 Cross-sectional variation in patent term across technical

�elds

Subsection 1.2.1 explained that TRIPs modi�ed the e�ective patent term from T pre =

17 years to T post = 20 years minus the pending period, the length of which was cru-

cial in determining the sign and magnitude of the policy change. A shorter (longer)

pending period than three years resulted in an extension (reduction) of the e�ective

patent term. To identify the e�ects of the TRIPs policy change, my paper exploits the

interaction of the TRIPs-induced time variation with pre-existing cross-sectional het-

erogeneity in the average pending period across technical �elds, which are de�ned as

the 621 4-digit patent classes of the International Patent Classi�cation (IPC) scheme

that categorizes patents based on their technological content.12 The variation in the

average pending period across �elds is a result of the examination process within the

US Patent and Trademark O�ce (USPTO), as patents in di�erent �elds are examined

by distinct technical units that di�er in congestion levels, due to sta�ng or intensity

of foreign �lings, and technical examination complexity.13

Therefore, I de�ne the change in e�ective patent term for �eld j as

∆Tj = 20 years× 365 − PP j − 17 years× 365 (1.1)

12For example, the 4-digit IPC �A23� is �Edible Oils or Fats, e.g. Margarines Shortenings, Cooking
Oils�. It is included in the 3-digit IPC �A23�, �Food or Foodstu�s; Their Treatment, not covered
by other classes� and in the 1-digit IPC �A�, �Human Necessities�. It further includes two 8-digit
IPCs: �A23D 7/00�, �Edible oil or fat compositions containing an aqueous phase, e.g. margarines�,
and �A23D 9/00�, �Other edible oils or fats, e.g. shortenings, cooking oils�.

13Classi�cation of patent applications into �elds is made by the USPTO rather than by the appli-
cant, but the pending period also depends on the responsiveness of patent applicants to the inquiries
of the patent o�ce during the examination process Lemus and Marshall (2018) document that appli-
cants became strategically quicker after the TRIPs. This would constitute a concern for the validity
of the empirical analysis of this paper if the strategic adjustment correlated with the pre-existing
heterogeneity in the pending period across �elds. Section 1.4 discusses that this is not the case.
Moreover, Table 1.A.4 of Appendix 1.A.2 shows that the average pending period across technical
�elds does not correlate with the �eld-speci�c growth rate of patenting before the TRIPs news. How-
ever, it positively correlates with proxies of congestion�such as the share of patent �lings by foreign
applicants seeking to extend patent protection in the US�and of examination di�culty�i.e., the
average pending period at the European Patent O�ce.
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where PP j is the average pending period, in number of days, for patents classi�ed

in �eld j before the TRIPs news.14 The interactions of∆Tj with quarterly �xed e�ects

constitute the treatment variables in the �eld-level DiD empirical analysis of Section

1.4.15

Figure 1.1 displays how ∆Tj is distributed across technical �elds, revealing that

most �elds experienced an anticipated increase in the average e�ective patent term due

to TRIPs, whereas a few �elds saw a projected decrease. The mean of the distribution

is roughly +473 days, or about 15 months, with a standard deviation of 177 days. As

shown by Table 1.A.5 in Appendix 1.A.2, average ∆Tj varies across broad technical

areas, with �Chemistry and Metallurgy� obtaining the shortest average extension and

�Fixed Construction� the longest. Importantly for the empirical strategy, Subsection

1.4.2 discusses that this variation does not correlate with unobserved factors that may

heterogeneously a�ect innovation across �elds after policy shocks.

14As I describe in Section 1.3.1, I use PATSTAT to compute PP j as the average of the pending
period�i.e., the di�erence between grant date and application date�across all granted US patent
applications that (i) belong to technical �eld j; (ii) whose earliest application is �led at the USPTO;
and (iii) whose grant date is between January 1st, 1990 and May 31st, 1992. I impose the second
restriction to capture the examination time of a novel patent, rather than that of applications already
examined at another foreign patent o�ce or at the USPTO itself. The third condition restricts the
calculation of the average pending period to a time window that is both una�ected by the policy news
and recent enough to be representative of applicants expectations. Moreover, the third condition
implicitly requires that, for ∆Tj to be representative of the actual change in protection after news
and implementation, the average pending period does not endogenously adjust to the policy change.
I show that this is the case in subsection 1.4.1.

15Subsection 1.4.2 performs several checks to support the exogeneity of ∆Tj and its representa-
tiveness of the actual e�ective patent term after news and implementation shocks. First, it shows
that post-TRIPs quarter-speci�c average pending period does not endogenously change with ∆Tj .
Second, it directly employs in the main DiD analysis a �eld- and quarter-speci�c version of ∆Tj
based on the �eld- and quarter-speci�c average pending period, instrumented by the pre-news ∆Tj .
The instrument is strong and all the results are identical to using ∆Tj directly. Lastly, it shows that
the raw correlation between the ex-ante and the ex-post average pending period is generally above
0.6.
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1.3 Data and measurement

1.3.1 Data sources

The empirical investigation includes analyses by (i) technological �eld of patents, (ii)

�rm, and (iii) NAICS 6-digit industry. The analyses by technical �eld are primarily

based on patent data from PATSTAT (EPO, 2017), which I complement with data

from the NBER Patent database (Hall, Ja�e and Trajtenberg, 2001) and data on

patent value from Kogan et al. (2017). The quarterly panel sample includes the

universe of 621 4-digit International Patent Classes, which de�ne technical �elds in

the paper, over the period 1985Q1-2000Q4, around the TRIPs shocks. I stop the

sample period in 2000 due to additional changes to patent regulation.16 The average

quarterly number of patents and 5-year forward citations-weighted patents are 36 and

195, respectively, with standard deviations of 136 and 1,070. Table 1.A.1 in Appendix

1.A provides additional summary statistics.

The �rm-level dataset is a yearly panel that includes 2,421 listed US �rms from

the NBER-Compustat matched dataset by Hall, Ja�e and Trajtenberg (2001) over

the period 1985-2000, with balance-sheet data from Compustat (Standard&Poor's,

2022). The yearly average number of patents �led per �rm is approximately 14, and

the average yearly R&D expenditure is $61 million, with standard deviations of 95

and $359 million, respectively. Table 1.A.2 presents additional summary statistics at

the �rm level.

The sectoral analysis uses data on Total Factor Productivity (TFP), producer

prices, and other aggregates from the NBER CES manufacturing database (Becker,

Gray and Marvakov, 2021) for 428 6-digit NAICS industries from 1985-2000. Ad-

16In 2000, the American Inventors Protection Act (AIPA) introduced mandatory publication of
patent applications after 18 months from the application date. The AIPA was signed on 11/29/1999
and entered into force for patents �led after 11/29/2000. Hedge, Herkenho� and Zhu (2022) studies
the e�ects of the AIPA on innovation and it suggests that the AIPA did not have e�ects on patenting
behavior before actual policy implementation at the end of year 2000.
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ditionally, it employs patent variables that I aggregate from the technical-�eld level

sample using the �Algorithmic Links with Probabilities� crosswalks by Goldschlag,

Lybbert and Zolas (2019), which map technological �elds into industrial sectors. Ta-

ble 1.A.3 presents summary statistics of sectoral aggregates.

1.3.2 Measurement

1.3.2.0.1 Innovation I primarily use patent-based measures to capture innova-

tion outcomes, speci�cally (i) raw patent counts, (ii) patents weighted by the number

of forward citations within �ve years of publication (which is a standard measure of

scienti�c patent quality), and (iii) patents weighted by private economic value ac-

cording to Kogan et al. (2017). However, patents may not fully capture genuine

innovation, so I also examine how policy-induced variation in patenting a�ects Total

Factor Productivity (TFP) and producers' prices at the sectoral level, which more

directly re�ect the real e�ects of successful innovation. This issue is especially impor-

tant for the research question at hand because a change in patent term may a�ect

both incentives to innovate and incentives to patent. Empirically, I �nd that changes

in TFP and prices align with the estimated impact of patent term on patent-based

innovation measures, indicating that the latter capture genuine innovation to some

extent. I also examine this issue theoretically, proposing a simple extension of Section

1.6's model in Appendix 1.C.8 that incorporates both patenting and trade-secrecy.

1.3.2.0.2 R&D To measure �eld-level R&D e�ort, I use the headcount of re-

searchers working in a �eld over time, which I estimate based on the number of

inventors listed on patents while avoiding double-counting of individuals appearing

on more than one patent in the same quarter-�eld combination. While this measure is

admittedly imperfect, it relates to researcher payroll, a signi�cant component of R&D

expenditures, and is measurable by technical �eld. This approach enables me to avoid

the coarseness of sectoral R&D investment data by the National Science Foundation,
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which would not capture the �ne-grained policy variation I use for identi�cation. In

addition to �eld-level results, I also examine �rm-level data using direct balance-sheet

measures of yearly R&D expenditures from Compustat. Empirical �ndings are con-

sistent across R&D proxies, and most importantly, align with estimated e�ects of

patent term changes on patent-based innovation measures. These results suggest that

the patent-based measures capture genuine changes to innovation rather than mere

adjustments to patenting strategies.

Appendix 1.D reports construction details for all variables used in the paper.

1.4 Estimating the e�ects of a change in patent term

This section presents the primary empirical evidence of the paper. Subsection 1.4.1

outlines the di�erence-in-di�erence (DiD) strategy and presents the results. Subsec-

tion 1.4.2 addresses endogeneity concerns, while Subsection 1.4.3 establishes a link

between changes in patenting outcomes and actual R&D expenditures and produc-

tivity. Subsection 1.4.4 isolates the direct e�ect of an unanticipated e�ective patent

term extension, controlling for news e�ects. Subsection 1.4.5 estimates elasticities and

examines their heterogeneity by broad technical areas. Finally, 1.4.6 summarizes and

interprets the key takeaways.

1.4.1 Di�erence-in-Di�erence analysis by technical �eld

1.4.1.1 Speci�cation

The DiD strategy involves the comparison of innovation outcomes and R&D inputs (i)

across di�erent technical �elds with heterogeneous ∆Tj and (ii) before and after the

two policy shocks: News in 1992Q4 and implementation in 1995Q2. Speci�cally, I es-

timate the preferred linear speci�cation (1.2) or the Poisson model for count variables
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(1.3).17

Yj,t = αj +

2000Q4∑
k=1985Q1
k ̸=1992Q3

γk1(t=k) +

2000Q4∑
k=1985Q1
k ̸=1992Q3

βk1(t=k)∆Tj + εj,t (1.2)

Yj,t = exp

{
αj +

2000Q4∑
k=1985Q1
k ̸=1992Q3

γk1(t=k) +

2000Q4∑
k=1985Q1
k ̸=1992Q3

βk1(t=k)∆Tj + εj,t

}
(1.3)

where Yj,t is technical �eld-j and application quarter-t dependent variable in levels,

i.e., number of patents, number of quality-adjusted patents, or number of inventors.

αj are technical �eld �xed e�ects. 1(t=k) are quarter-speci�c dummy variables, with

the γk coe�cients capturing the e�ect of any quarter-speci�c factor common to all

technical �elds and unrelated to treatment. εj,t is the �eld- and quarter-speci�c error

term.

The βk's are the DiD coe�cients of interest, whose interpretation depends on the

speci�cation and on the sub-sample to which k refers. In the linear model (1.2) each

βk represents quarter-k e�ect of a one-day increase in e�ective patent term on the level

of Y , in deviation from its baseline value in the pre-news quarter 1992Q3. In Poisson

model (1.3), each βk represents quarter-k e�ect of a one-day increase in e�ective

patent term on the log-deviation (percentage deviation) of Y from its baseline value

in 1992Q3.

17In analyzing patent count data, it is important to consider models that account for the non-
negativity, right-skewedness, and large probability mass at zero of the dependent variable. Mullahy
and Norton (2022) discuss di�erent classes of models and show that linear regression models that
use log or inverse hyperbolic sine transformation of the dependent variable may estimate incorrect
marginal e�ects. On the other hand, linear regressions with untransformed dependent variable or
Poisson models yield the correct marginal e�ects. Thus, I choose speci�cations (1.2) and (1.3) for my
analysis. To further justify my choice of speci�cation, I conduct a time-series analysis of patenting
behavior in the late 1980s and early 1990s. I �nd that arithmetic growth describes patenting by
�eld more accurately than exponential growth. To demonstrate this, I �t a model with �eld-speci�c
intercepts and a �eld-speci�c linear time-trend on (i) the levels of quarterly granted patent applica-
tions and (ii) a log-one-plus transformation of the same series over the period of 1985Q1-1989Q4. I
then make out-of-sample predictions for the levels of quarterly patenting by �eld in 1990Q1-1992Q4
based on the two models, and I compute the mean-squared error. The level regression has a higher
in-sample R2 (0.97 vs. 0.93) and a 25% lower mean-squared prediction error. Therefore, I choose
(1.2) as the preferred speci�cation for my analysis.
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Moreover, for k ≤1992Q3, β̂k measures the e�ect of a positive one-day change

in patent term before any news about the policy, and values close to zero indicate

the absence of pre-trends. For k ∈ [1992Q4; 1995Q2], β̂k represents the quarter-

speci�c marginal impact of the news that patent term will be one-day longer for future

applications �led after 1995Q2. Finally, for k ≥ 1995Q3, β̂k estimates the marginal

impact of an anticipated one-day increase in patent term at di�erent times after its

implementation. These coe�cients re�ect both the direct e�ect of implementing a

longer term and the dynamic impact of news on subsequent innovation, which is a

cumulative process (Romer, 1990). To isolate the direct e�ect, I propose an empirical

strategy in Subsection 1.4.4.

In Appendix 1.B.1, I show that multi-period speci�cations (1.2) and (1.3) can

�exibly capture potential news e�ects. On the other hand, a standard two-period

DiD analysis comparing outcomes before and after policy implementation would lead

to biased treatment e�ect estimates.

1.4.1.2 Reduced-form DiD results

1.4.1.2.1 Innovation outcomes Figure 1.2 presents the estimated marginal ef-

fects of a one-day anticipated increase in patent term on the number of granted patent

applications (Pj,t) classi�ed in �eld j and applied for in quarter t. The �gure consists

of two panels: panel (a) shows OLS estimates of the βk coe�cients of the linear spec-

i�cation (1.2), and panel (b) presents pseudo-maximum-likelihood estimates of the

βk's in the Poisson model (1.3). The bands represent 95% con�dence intervals, with

standard errors clustered by technical �eld. The �gure highlights three key takeaways.

First, the estimated β̂k k ≤ 1992Q2 values are close to zero before the news

shock, indicating the absence of pre-trends. In addition, formal tests based on Roth

(2022) reveal that economically signi�cant pre-trends are rejected with high power.18

18I examine several alternatives. A linear trend with a quarterly slope of -0.005 (equal to 2000Q4
point estimate divided by the number of post-news quarters) would be detected with a power of 1.
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This suggests that there is no correlation between ∆Tj and unobserved heterogeneous

innovation patterns pre-dating the policy news.19 However, there may be endogeneity

concerns arising from other confounding factors contemporaneous to policy shocks,

which I discuss in Subsection 1.4.2.

Second, the β̂k k ∈ [1992Q4; 1995Q2] coe�cients are negative, indicating a con-

temporaneous decline in patenting resulting from the news that future patent appli-

cations �led after policy implementation will obtain a longer term of protection. This

is referred to as Fact 1. The magnitude of the e�ect is small initially but grows

signi�cantly as implementation approaches. For example, one year after news and

two years before implementation, an upcoming positive one-month change in patent

term generates a decline in patent �lings of 0.5 units per technical �eld×quarter,

which is approximately -1.5% of the 1992Q3 baseline. The magnitude almost triples

two years after news and one year before implementation and further increases by a

factor of four in the pre-implementation quarter 1995Q2. Inspection of the raw data

reveals that the latter e�ect is almost entirely driven by a dramatic rise in patenting

in �elds that are more exposed to a reduction in e�ective patent term. Intuitively,

for innovators at risk of having a patent protection loss (∆Tj < 0) starting from June

1995, 1995Q2 represents the last chance to �le an application under the old, more

advantageous policy regime, which generates the strongly negative DiD estimate in

1995Q2.20

Third, the post-implementation β̂k k ∈ [1995Q3; 200Q4] coe�cients remain nega-

tive, which I refer to as Fact 2. The reduced-form impact of an anticipated patent

A linear trend with a quarterly slope of -0.001 (equal to the upper bound of 2000Q4's con�dence
interval divided by the number of post-news quarters) would be detected with a power of 0.92.
A linear trend with a slope of -0.0008, which would be detected with power 0.5, would induce a
downward bias as small as 10% in 2000Q4 DiD estimate.

19A natural concern is that the length of the pending period is negatively correlated with the
maturity of the �eld. This would be the case if before the TRIPs more recent �elds have both fast
growth in innovation and a longer average pending period because of congestion. This would bias
the DiD estimates, but pre-news coe�cients would be negative and signi�cant. Figure 1.2 shows
that this is not the case.

20Appendix 1.B.2.1 investigates bunching in greater detail.
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term extension is negative for at least �ve years after implementation. The aver-

age e�ect is signi�cant, with a one-month patent term increase being related to -3.7

quarterly patents per �eld, which is around 12% of the baseline. However, a sample

extension to 2010 (Appendix 1.B.2.6) suggests that this negative e�ect is temporary,

as the estimated coe�cients gradually revert to zero. It is important to note that the

negative post-implementation estimates should not be interpreted as a direct causal

e�ect of the implementation of a longer patent term on a decrease in patenting. The

post-implementation estimates may also be in�uenced by the heterogeneous innova-

tion patterns that were induced by the news shock.

Patent-based measures of innovation focusing on scienti�c value, measured by

patents weighted by the number of forward citations received within 5 years from

grant, or private economic value deliver consistent results with the main �ndings.

Appendices 1.B.2.2 and 1.B.2.3 present evidence for these alternative measures, re-

spectively. Additionally, I provide results for claims-weighted patents in Appendix

1.B.2.4. These �ndings suggest that the policy had null or mild e�ects on average

patent quality.

Patent-based measures of innovation have limitations, and the policy change could

lead to estimated DiD coe�cients resulting from (i) a genuine e�ect of the policy

on actual innovation, (ii) an e�ect on patenting choices as an alternative to trade

secrecy, absent any changes in innovation, or (iii) a mix of both. However, I argue

against case (ii) through several empirical analyses that reveal a tight connection

between policy-induced variation in patenting and real variables. In Subsection 1.4.3,

I show that the estimated policy-induced reduction in patenting outcomes corresponds

to an economically signi�cant decline in Total Factor Productivity and to a rise in

producers' prices at the sectoral level. Additionally, �rms with more exposure to �elds

anticipating a patent term extension reduced their balance-sheet R&D expenditures

after both policy news and implementation. This evidence complements the �eld-level
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analysis of R&D e�ort, which I present next.

1.4.1.2.2 R&D e�ort I measure �eld-level R&D e�ort as the headcount of in-

ventors who contributed to any patents classi�ed in a given �eld-j and quarter-t.21

Results for R&D e�ort as an outcome of interest are presented in panels (a) and

(b) of Figure 1.3, which display DiD estimates of speci�cations (1.2) and (1.3), re-

spectively. The �ndings mirror those discussed earlier for patent-based innovation

outcomes: R&D e�ort decreases after the announcement of a future patent term in-

crease and remains lower after implementation. The magnitudes are similar as well:

news of a one-month increase in patent term on future patents leads to a decline of

4.1 active inventors (roughly -7% of the 1992Q3 baseline) one year before implemen-

tation. Post-implementation estimates indicate a reduction of 9.2 inventors per �eld

and quarter, which is equivalent to -15% of the baseline.

1.4.2 Identifying assumptions and endogeneity concerns

In this subsection, I �rst outline conditions necessary for a causal interpretation of

the results. Subsequently, I address various endogeneity concerns.

1.4.2.1 Identifying assumptions

To interpret the results of Subsection 1.4.1 causally, it is necessary to rule out reverse

causation and omitted variable bias. Concerning the former, Section 1.2 explained

the origin of the TRIPs-related patent term adjustment in the US, making it unlikely

that technical �elds experienced di�erential changes in e�ective patent term due to

di�erences in future innovation outcomes. As for the latter, I need to ensure that,

given the control variables, the change in patent term ∆Tj is not correlated with

21To compute inventors count, I use disambiguated STAN harmonized identi�ers by the EPO
Worldwide Bibliographic Database, available in PATSTAT. I compute the number of inventors listed
on �eld j patents �led in quarter t. To avoid in�ating the R&D proxy, I count inventors just once
per �eld×quarter if they appear on multiple patents.
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Figure 1.2: Marginal e�ect of e�ective patent term on granted patents

(a) Linear model
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(b) Poisson model
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Panel (a) and panel (b) show the β̂k estimates of speci�cations (1.2) and (1.3), respectively, having
as dependent variable the number of granted patent applications. The �rst (second) vertical line
denotes the news (implementation) quarter 1992Q4 (1995Q3). In panel (a), each point-estimate
represents the change in the number of granted patents �led in quarter-k, relative to the 1992Q3
baseline reported at the bottom of the plot, due to a one-day positive variation in ∆Tj . In panel
(b), each point-estimate represents the percentage deviation of the number of granted patents �led
in quarter-k from the 1992Q3 baseline due to a one-day positive variation in ∆Tj . Standard errors
are clustered by technical �eld and 95% con�dence bands are plotted.
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Figure 1.3: Marginal e�ect of e�ective patent term on the number of inventors

(a) Linear model
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(b) Poisson model
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Panel (a) and panel (b) show the β̂k estimates of speci�cations (1.2) and (1.3), respectively, having
as dependent variable �eld- and quarter-speci�c inventors headcount. The �rst (second) vertical
line denotes the news (implementation) quarter 1992Q4 (1995Q3). In panel (a), each point-estimate
represents the change in quarter-k inventors' headcount, relative to the 1992Q3 baseline reported at
the bottom of the plot, due to a one-day positive variation in ∆Tj . In panel (b), each point-estimate
represents the percentage deviation of quarter-k inventors' headcount from the 1992Q3 baseline due
to a one-day positive variation in ∆Tj . Standard errors are clustered by technical �eld and 95%
con�dence bands are plotted.
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any unobserved factors that di�erentially a�ect R&D or innovation across �elds at

the same time or after the policy shocks. While �eld �xed e�ects account for time-

invariant heterogeneity and a lack of signi�cant pre-trends suggests a limited role

for pre-existing omitted variables, in the following subsection, I discuss several time-

varying confounders that may occur contemporaneously or subsequent to the policy

shocks.22

1.4.2.2 Discussion of endogeneity concerns

1.4.2.2.1 Macroeconomic factors To address potential bias from macroeco-

nomic changes that may have a�ected innovation outcomes heterogeneously across

technical �elds, I add quarter-by-three-digit International Patent Class (IPC) �xed

e�ects to speci�cations (1.2) and (1.3).23 These �xed e�ects control for any quarter-

speci�c unobserved factor whose e�ect is speci�c to a three-digit IPC and estimate

β̂k using variation in innovative outcomes across four-digit �elds within the same

three-digit IPC. Given that the latter provide a relatively granular level of control,

the approach e�ectively mitigates the in�uence of several macroeconomic confounders

such as the rise of Information Technologies during the 1990s, the recovery from the

1991 recession, Clinton's tax increases, reductions in defense spending after the end

of the Cold War, and changes to nominal interest rates. Figures 1.B.19 and 1.B.21

in Appendix 1.B.2.12 display DiD estimates of this enriched speci�cation for granted

patents as outcomes, using both linear and Poisson models. Results remain similar

to those of Figure 1.2.

22For instance, �eld �xed e�ects control for time-invariant di�erences, such as average size or patent
examination complexity, which could in�uence congestion and generate pending period heterogeneity
that is crucial for the proposed identi�cation strategy. Additionally, Table 1.A.4 indicates that ∆Tj
does not correlate with variables such as the growth rate of patenting, which would suggest the
existence of pre-trends.

23For example, a 3-digit IPC C21 is �Metallurgy of Iron�, which includes three 4-digit IPCs among
which C21B �Manufacture of Iron or Steel�, C21C �Processing or Pig-Iron (...)�, and C21D �Modifying
the Physical Structure of Ferrous Metals (...)�. Examples of other 3-digit IPCs are C25 �Electrolytic
or Electrophoretic Procceses�, A43 �Footwear�, D03 �Weaving�, etc.
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1.4.2.2.2 Additional factors related to TRIPs and Uruguay Round The

primary concern arises from alterations in maximum tari�s that occurred as a result

of the Uruguay Round of agreements. As Coelli, Moxnes and Ulltveit-Moe (2022)

shows that tari� reduction positively a�ected innovation in several countries, if trade-

related factors have a correlation with ∆Tj across �elds the estimates obtained using

DiD would be biased for the e�ect of interest. To mitigate this issue, I leverage WTO

data to measure the change in import tari� intensity by technical �eld between 1996

and 2001 for the US, European countries, and China. In speci�cations (1.2) and (1.3),

I control for these variations, interacted with quarterly �xed e�ects.24 Figures 1.B.28

and 1.B.29 in Appendix 1.B.2.15 present identical estimates to Figure 1.2. The reason

being, Appendix 1.B.2.15 illustrates that tari� changes had a negligible correlation

with ∆Tj across �elds.

The second concern arises from the fact that patent protection in several Low- and

Middle-Income countries (LMICs) was strengthened by TRIPs, thereby bene�ting

the US �rms' access to these markets.25 If a relation exists between enhanced patent

protection in LMICs and ∆Tj across �elds, the DiD estimates from speci�cations (1.2)

and (1.3) could capture a biased e�ect of ∆Tj. However, Appendix 1.B.2.7 argues

against this possibility. Using speci�cation (1.2), I test whether ∆Tj has any relation

to the access of US innovators to LMICs' markets where TRIPs strengthened patent

rights. I measure it by the �eld- and quarter-speci�c share of US patents for which

applicants �le additional applications in those jurisdictions, and I �nd no e�ect.

The third concern is that TRIPs may have increased applicants' responsiveness to

24The analysis uses WTO data on tari� intensity by HS-2002 product categories, a standard
classi�cation scheme for traded products. Using the crosswalks by Goldschlag, Lybbert and Zolas
(2019), I compute exposure to tari�s by technical �eld as a weighted average of the share of HS-2002
product codes with a reported tari� on imports from WTO members above 5%.

25Kyle and McGahan (2012) argue that US pharmaceutical �rms increased their innovation in-
vestment after TRIPs due to their ability to enforce patents in new developing markets. Appendix
1.B.2.16 shows that Subsection 1.4.1.2's results are robust to excluding from the sample �elds re-
lated to the pharmaceutical products and bio-technologies. Bloom�eld et al. (2022) shows that the
introduction of stronger patents in LMICs favored scienti�c knowledge �ows to developed countries.
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USPTO's inquiries during examination, resulting in a reduction of the pending pe-

riod ex-post.26 If this responsiveness is correlated with ∆Tj across �elds, it may bias

DiD estimates. However, Appendix 1.B.2.5 indicates that ∆Tj does not correlate with

variation in the �eld- and quarter-speci�c average pending period after TRIPs shocks.

This �nding suggests that changes in applicants' responsiveness do not impact DiD

estimates.27 Additionally, results in Appendix 1.B.2.8 show that the measurement er-

ror caused by using ∆Tj instead of ∆Tj,t (i.e., the patent term change computed using

a pre-TRIPs average pending period instead of a quarter-speci�c one) is negligible.28

Lastly, to address potential endogeneity concerns arising from unobserved at-

tributes of the US innovation environment, such as di�erential lobbying or political

connections across �elds, that could correlate with ∆Tj and lead to di�erential inno-

vation outcomes after the TRIPs, an instrumental variable (IV) strategy is proposed.

This IV strategy isolates variation in ∆Tj from two external instruments that mea-

sure (i) the �eld-speci�c complexity of patent examination, proxied by the pre-TRIPs

�eld-speci�c average pending period at the European Patent O�ce (EPO), and (ii)

the congestion of technical units, proxied by the �eld-speci�c share of USPTO appli-

cations by non-US applicants before the TRIPs.29 The 2SLS DiD estimates for the

26Lemus and Marshall (2018) show this for the pharmaceutical sector.
27I replicate the analysis of speci�cation (1.2) using the quarter- and �eld-speci�c average pend-

ing period as the dependent variable. The resulting βk estimates for the post-news and post-
implementation periods capture the impact of ∆Tj on deviations of the outcome variable from
the pre-TRIPs average pending period used to compute ∆Tj . Figure 1.B.11 displays the �ndings,
indicating that ∆Tj is not correlated with (i) �eld-speci�c heterogeneous trends in average pending
period prior to the TRIPs news, or (ii) signi�cant level- or trend-changes following the TRIPs shocks.

28In Appendix 1.B.2.8, I address measurement error concerns by using an instrumental variable
speci�cation. Speci�cally, I instrument the quarter- and �eld-speci�c policy-induced change in ef-
fective patent term (∆Tj,t) with ∆Tj interacted with quarterly dummy variables. This allows for
a more accurate measurement of the treatment variable, while also reducing endogeneity concerns.
The results are consistent with those reported in subsection 1.4.1.2, and the �rst-stage regressions
con�rm that ∆Tj is a statistically strong predictor of the ex-post average change in patent term.
Additionally, the raw correlation between ∆Tj and ∆Tj,t is generally between 0.5 and 0.6.

29To minimize reverse causation concerns, both instruments are based on patents granted prior to
the policy news in 1992Q4. For the IV strategy to be valid, it is necessary for confounding factors
to be orthogonal to the excluded instruments, i.e., for US lobbying activity or political connections
to be uncorrelated with the average patent examination time at the EPO and with foreign �rms'
decisions to seek patent protection in the US.
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Figure 1.4: Marginal e�ect of e�ective patent term on granted patents � IV
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The plot shows the 2SLS DiD estimates of βk coe�cients in speci�cation (1.2) when ∆Tj
is instrumented by (i) congestion by non-US applicants and (ii) technical complexity of
examination. Appendix 1.B.2.10 reports all the details of the analysis. The �rst (second)
vertical line denotes the news (implementation) quarter 1992Q4 (1995Q3). Each point-
estimate represents the change in the number of �eld-speci�c granted patents applied for
in quarter-k, relative to the 1992Q3 baseline reported at the bottom of the plot, due to a
one-day positive variation in ∆Tj . Bands represent 95% con�dence bands, with standard
errors are clustered by technical �eld.

number of granted patents as an outcome are shown in Figure 1.4, which are analo-

gous to the OLS DiD results of Figure 1.2. Further details and additional results are

reported in Appendix 1.B.2.10.30

1.4.2.2.3 Additional analyses Appendices 1.E.1.1, 1.E.1.2, and 1.E.1.3 show

that the change in patent term did not a�ect average patent quality. Appendices

1.B.2.13 and 1.B.2.9 demonstrate that the magnitude of DiD estimates is more pro-

nounced in �elds that are (i) expected to be more responsive to patent term changes,

based on their higher rate of renewal fees payment up to the maximum term, and (ii)

where the inference on the TRIPs-induced change in average patent term was more

precise due to lower dispersion of patent-speci�c pending periods around �eld-average.

Appendix 1.B.2.14 presents a placebo analysis supporting the validity of the results.

30Appendix 1.B.2.10 presents the 2SLS DiD regression speci�cation and con�rms the consistency of
results for the R&D e�ort as an outcome variable with the OLS DiD evidence. In addition, Appendix
1.B.2.11 provides further evidence of consistency by demonstrating similar results obtained using an
IV-control function approach in the Poisson model (1.3).
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1.4.3 From patents to �rm-level R&D and sectoral TFP

In this subsection, I demonstrate that the impact of the TRIPs patent term change

on direct measures of R&D inputs and innovative output is in line with the observed

e�ect of the policy on patenting and patent-based R&D measures. This indicates

that the latter re�ect, to some extent, actual changes in innovation rather than just

adjustments in patenting strategies. To begin with, I conduct a �rm-level analysis of

R&D expenditures. I then establish a connection between patenting variations and

Total Factor Productivity (TFP) as well as producers' prices.

1.4.3.1 Firm-level evidence on R&D

I compile a yearly panel sample comprising 2,421 listed US �rms included in the

NBER-Compustat matched dataset by Hall, Ja�e and Trajtenberg (2001) for the

period 1985-2000. For each �rm i, I calculate the TRIPs-induced change in patent

term ∆Ti as a weighted average of �eld-speci�c e�ective patent term changes ∆Tj,

where the weights correspond to �rm i's technological exposure to �eld j before the

TRIPs. To compute weights, I use the fraction of �rm i's patents �led in �eld j during

1971-1991. To supplement this information, I gather balance-sheet data on �rm-level

R&D expenditures (xrd in Compustat) and other relevant details from Compustat

(Standard&Poor's, 2022). The �rm-level Poisson DiD speci�cation is

R&Di,t =exp

{
αi +

2000∑
k=1987
k ̸=1991

γk1(t=k) +
2000∑

k=1987
k ̸=1991

βk1(t=k)∆Ti + θ′Xi,t + εi,t

}
(1.4)

and compares R&D investment between �rms heterogeneously exposed to the

TRIPs patent term change before and after the policy shocks. Model (1.4) includes

�rm �xed e�ects αi, year �xed e�ects, a vector of controls Xi,t comprising �rm-

age �xed e�ects, 3-digit SIC industry × year �xed e�ects, and a 3-digit-SIC-speci�c
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Figure 1.5: Marginal e�ect of 1 more day of protection on �rm-level R&D
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The plot shows the βk coe�cients of regression (1.4) having as dependent variable R&Di,t, i.e., year-t
and �rm-i R&D expenditure. Point estimates refer to the marginal e�ect of a one-day anticipated
change in patent term on percent deviations of the outcome variable from its baseline value in 1992Q3.
Standard errors are clustered by �rm and 95% con�dence bands are plotted. The �rst vertical line
lies just before the news year (1992) and the second vertical line lies just before the implementation
year (1995).

quadratic trend in age. The idiosyncratic error term is εi,t. Each DiD coe�cient

βk captures the impact of an expected one-day positive change ∆Ti = +1 on the

log-deviation (approximate percentage change) of R&D expenditures from their 1991

baseline level.

Figure 1.5 shows the pseudo-ML estimates β̂k of (1.4) with 95% con�dence bands

clustered by �rm. The results are in agreement with those of Subsection 1.4.1.2

based on patent-based proxy of R&D e�ort. According to the �ndings, the announce-

ment of a one-month increase in patent term to be implemented in 1.5 years leads

to a contemporaneous decrease of 4% in yearly �rm-level R&D expenditures (Fact

1). Additionally, the DiD estimates remain negative after implementation, which is

consistent with the previous Fact 2.31

Appendix 1.B.4.2 reports consistent results for �rm-level patenting, citations, and

31The magnitudes of the e�ects are smaller compared to the technical �eld analysis, possibly due to
three reasons. Firstly, the e�ect estimated for patent-based R&D may include changes in patenting
decisions that are not related to innovative e�ort. Secondly, �rm-level results do not include net entry,
which is present in aggregate innovation and R&D. Thirdly, balance sheet R&D data re�ects policy
e�ects more promptly than patent-based inventors headcount, which partly re�ects past e�orts.
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patent value, and placebo analyses of �rm-level variable costs, capital expenditures,

and sales. Moreover, Appendix 1.B.4.5 shows consistent evidence of reallocation of

innovation within �rms between technical �elds.

1.4.3.2 Industry-level evidence on TFP and prices

This subsection presents evidence that changes in patenting due to the TRIPs patent

term change led to consistent variation in sectoral Total Factor Productivity (TFP)

and producers' prices, which are used as an inverse measure of consumer welfare.

To do so, I construct a yearly panel of 428 6-digit NAICS industries over 1985-

2000. This involves observing TFP estimates, price de�ators, and other aggregates

from the NBER CES Manufacturing database (Becker, Gray and Marvakov, 2021),

and using crosswalks by Goldschlag, Lybbert and Zolas (2019) to construct sectoral

patenting outcomes and the sectoral patent term change ∆Ts from the technical-�eld

measures. Appendix 1.B.6 provides additional details.

I conduct two analyses. Firstly, I estimate the e�ect of TRIPs-induced changes in

patenting on TFP and prices through the following second-stage panel regression

{tfps,t ; vsds,t} = αs + γt + βP̂ats,t + ΞXs,t + εs,t (1.5)

Here, the dependent variables are the natural logarithm of either TFP or the value

of shipments de�ator in industry s and year t. The model includes industry- and

year-�xed e�ects, denoted by αs and γt, respectively. Additionally, Xs,t comprises

industry-speci�c time-varying controls, namely the (log of) energy inputs de�ator and

energy costs. Finally, εs,t represents the idiosyncratic error term. P̂ ats,t represents

the �tted values of the �rst stage regression

Pats,t = κs + ιt + ψt ×∆Ts + ΛXs,t + us,t (1.6)
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which is a sectoral version of (1.2) augmented by the second-stage controls Xs,t.

The coe�cient β in equation (1.5) represents the e�ect of policy-induced changes

in patenting on TFP and producers' prices. In Appendix 1.B.6, Tables 1.B.9 and 1.B.8

report estimates for both outcomes and various patenting measures. The results show

that a yearly and sectoral increase of 100 patents (36% of the sample average) induced

by the patent term change leads to a 3.3% increase in TFP and a 2.7% decrease in

prices. The implied pass-through of TFP gains into lower prices is approximately

0.83. These �ndings indicate that the estimated impact of patent term on patenting

corresponds to economically signi�cant e�ects on productivity and welfare.

In the second analysis, I examine the dynamics of the e�ects of TRIPs patent

term change on TFP and prices. To do so, I estimate (1.6) with the natural loga-

rithm of either TFP or the value of shipments de�ator as the dependent variables.

Figures 1.B.53 and 1.B.54 in Appendix 1.B.6.2 plot DiD estimates that are consis-

tent with Facts 1-2, as TFP declines and producers' prices rise after both news and

implementation of an anticipated patent term extension.

1.4.4 Direct e�ects of patent term without anticipation

I will now proceed to analyze the direct e�ects of an unexpected implementation of a

patent term extension, which I discover increases both R&D and innovation. As dis-

cussed in Subsection 1.4.1.2, two factors potentially impact the post-implementation

DiD estimates of speci�cations (1.2) and (1.3). The �rst is the direct e�ect of the

policy implementation shock, while the second factor originates from any changes in

innovation and R&D that occur as a result of the news shock. The baseline speci�-

cations do not directly account for the latter, and therefore rely on ∆Tj to indirectly

capture the e�ects of any such changes.32 Following Angrist and Pischke (2009), it

seems therefore relevant to control for �eld-speci�c innovation histories through past

32This is the case because the post-implementation e�ects of news-driven changes in innovation
patterns are mechanically correlated with ∆Tj , which is responsible for heterogeneous news e�ects.
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outcomes, which requires dropping �eld �xed e�ects because their inclusion would re-

sult in inconsistent DiD estimates (Nickell, 1981). Hence, I estimate the speci�cation

Yj,t =
∑

k ̸=′92Q3

Zpre,j1(t=k)ηk +
∑

k ̸=′92Q3

γk1(t=k) +
∑

k ̸=′92Q3

ϕk1(t=k)∆Tj+

+
∑

k ̸=′92Q3

ψk1(t=k) Y j,k−A−1:k−1︸ ︷︷ ︸
≡ 1

A
∑k−1

q=k−A−1 Yj,q

+ψ0 Y j,t−A−1:t−1︸ ︷︷ ︸
≡ 1

A
∑t−1

q=t−A−1 Yj,q

+vj,t
(1.7)

To control for �eld-speci�c time-invariant characteristics, I introduce a vector Zpre,j

consisting of pre-determined attributes interacted with quarterly �xed e�ects, replac-

ing the �eld-�xed e�ects. Zpre,j includes data on �eld size, average forward citations

per patent, and average inventors per patent from 1980-1985. Separate analyses con-

�rm that substituting �xed e�ects with Zpre,j controls does not alter the �ndings of

Subsection 1.4.1.2. In addition, I account for the quarter-speci�c impact of lagged

outcomes in the second line of equation (1.7), where Y j,k−A−1:k−1 denotes the average

outcome variable in the A quarters before k, and ψk represents the deviation of its

quarter-speci�c impact from ψ0. I set A equal to 10, which corresponds to the number

of TRIPs anticipation quarters.33

The DiD coe�cients ϕk re�ect the marginal e�ect of ∆Tj on quarter-k outcome,

conditional on �eld-speci�c innovation histories up to that point, which also includes

the in�uence of policy shocks themselves on past outcomes. Thus, the ϕ̂k estimates

for the anticipation period 1992Q4-1995Q2 primarily capture the impact of the news

shock, while the post-implementation ϕ̂k estimates clean original DiD estimates' cu-

mulative news e�ects and isolate the impact of the implementation shock only.

Figures 1.6a and 1.6b display OLS estimates of ϕk coe�cients for the number of

granted patent applications and patent-based R&D e�ort as the dependent variables,

respectively.34 Both �gures con�rm that the direct e�ect of a positive patent term

33Results are robust to choosing a smaller A = 8 or larger A = 16 number of quarters.
34In a robustness analysis shown in Appendix 1.B.2.17, I estimate (1.7) by 2SLS instrumenting

lagged outcomes Y j,k−A−1:k−1 by the �tted values of DiD speci�cation (1.2) having Y j,k−A−1:k−1 as
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change on R&D and innovation is positive after implementation, denoted as Fact

3. This e�ect remains stable throughout the sample period, indicating that absent

anticipation, the implementation of a patent term extension increases both R&D and

innovation. On average, a one-month extension generates +0.64 patents per quarter,

approximately 2% of the 1992Q3 baseline, while the average e�ect on R&D e�ort

is +1.4 inventors per quarter, which is +2.7% of the baseline. Additionally, pre-

implementation coe�cients remain negative, consistent with Fact 1, which suggests

that the news of the patent term increase on patents �led in the future results in a

decline in current R&D and innovation until implementation.35

1.4.5 Key elasticity estimates and heterogeneity by broad tech-

nologies

To summarize results and investigate heterogeneity by broad technical area, I propose

two elasticity measures of R&D and innovation to patent term news and implemen-

tation shocks.

The �rst elasticity, denoted as enewsy−1,T , captures the percentage change in outcome

y at time t due to the news of a 1% increase in patent term T for future patents

�led after one year from t. To compute this measure, I use the estimate β̂1994q2 of

the marginal e�ect of a 1-day increase in Tj on y, obtained from speci�cation (1.2).

Speci�cally, enewsy−1,T
is calculated as

β̂1994Q2/y1994Q2

1/(365×17)
, where the numerator is the ratio of

the marginal variation in y to the average outcome y1994Q2 across �elds in the same

quarter, and the denominator is the ratio of the 1-day change in Tj to the pre-TRIPs

e�ective patent term of 17 years. The results show that news of a 1% future increase

dependent variable. Therefore, I exploit variation in lagged outcomes Y j,k−A−1:k−1 that originates
from the policy change only. Results are fully consistent with OLS estimation of (1.7) presented in
Figure 1.6.

35Appendix 1.B.2.17 shows similar evidence for citations-weighted patents. Appendix 1.B.2.18
shows that innovation histories in other �elds are quantitatively negligible for identifying the post-
implementation direct e�ects of ∆Tj . Appendix 1.B.2.19 extends the empirical strategy of this
subsection to a Poisson speci�cation.
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Figure 1.6: Marginal e�ect of patent term controlling for anticipation
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Panel (a) and panel (b) show the ϕk coe�cients of OLS estimation of speci�cation (1.7) with Y being
the raw count of patents or the number of inventors, respectively. Inventors count avoids multiple
counting of the same individual appearing on more than one patent in the same �eld and quarter.
The �rst (second) vertical line denotes the news (implementation) quarter 1992Q4 (1995Q3). Each
point-estimate represents the change in the level of the outcome variable in quarter-k, relative to
the 1992Q3 baseline reported at the bottom of the plots, due to a one-day positive variation in ∆Tj .
Standard errors are clustered by technical �eld and 95% con�dence bands are plotted.

50



in e�ective patent term leads to a decline in R&D and patenting of approximately -

12.1% and -8.6%, respectively, one year before policy implementation. These elasticity

measures represent new �ndings in the innovation literature.36

The second elasticity of interest, denoted by epost,dy+5,T , measures the percentage

change in outcome y �ve years after the unanticipated implementation of a 1% patent

term increase. To compute it, I use the estimate of the direct patent term e�ect

ϕ̂2000Q3 from speci�cation (1.7) for k =2000Q3 divided by the average level of the

outcome y in the same quarter (y2000Q3) and re-scaled by the ratio of ∆Tj = +1 day

to 17 years. The resulting 5-year elasticity of R&D and innovation to an unantic-

ipated 1% patent term extension is 4.2 for both outcomes, with standard errors of

1.34 and 1.54, respectively.37 This estimate is a novel contribution to the literature

and can be related to the elasticity of innovation to market size, which, similarly to

a patent term extension, increases pro�ts. Using Chinese manufacturing data, Beerli

et al. (2020) �nd that the elasticity of �rm-level productivity to market size is 0.46.

Interestingly, this is remarkably close to the elasticity of sectoral TFP to patent term

that I estimate to be 0.4 based on the results of Subsections 1.4.4 and 1.4.3.2.38

Table 1.B.3 reports considerable variation in both elasticity measures across broad

technological areas. The largest values are found in �Chemistry, Metallurgy� (8.09

and 9.75 for patenting and R&D, respectively), which includes pharmaceutical tech-

nologies, consistent with Budish, Roin and Williams (2015)'s �nding that drugs are

highly sensitive to patent protection. Additionally, �Human necessities� and �Electric-

36In addition, standard errors reported in Table 1.B.3 in Appendix 1.B.3 demonstrate that the
e�ect is not only economically but also statistically signi�cant. I compute the latter based on the
clustered standard errors of β̂k and ϕ̂k, re-scaled using the same formulae used to compute the
elasticity.

37Estimates are similar using the coe�cient estimates from Poisson model (1.3) in Appendix
1.B.2.19. The computation is analogous to the one used in the text but does not re-scale by ȳ,
because Poisson model's coe�cients already express approximate percentage deviations. enews

y−1,T
is

-7.3 for patenting and -8.3 for R&D e�ort. epost,directy+5,T
is 2.9 for patenting and 1.8 for R&D e�ort.

38I compute this �gure as follows. Subsection 1.4.3.2's results imply that +100 patents induce
+3.3% yearly TFP increase, which corresponds to an elasticity of 0.0924. Moreover, this subsection
infers that the direct elasticity of patenting to patent term is 4.2. Therefore, the elasticity of TFP
to patent term is computed as 0.0924 × 4.2.
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ity� also exhibit high responsiveness to patent term incentives (4.44 and 3.58 elasticity

of patenting to patent term, respectively). Conversely, estimates for other �elds are

either close to zero (�Performing Operations; Transporting�, �Mechanical Engineering;

Lighting; Heating; Weapons; Blasting�, �Physics�) or imprecisely estimated.

1.4.6 Key takeaways and interpretation

This section presented three empirical facts. Fact 1 shows that the announcement

of a future patent term extension leads to a contemporaneous reduction in patent-

ing and R&D expenditures prior to the policy's implementation. This change in

patenting implies a genuine e�ect on innovation, as indicated by consistent changes

in �rm-level R&D expenditures and sectoral TFP. I interpret this as a result of �rms

intertemporally substituting costly investments in ongoing projects until after the im-

plementation of the longer patent term, when the expected rewards are higher. Fact

2 demonstrates that the decline in R&D and innovation observed after the announce-

ment persists for at least �ve years following policy implementation. This is due to

the combined e�ects of (i) the direct e�ect of the new patent term, which enhances

innovation and R&D (Fact 3), and (ii) the dynamic impact of �eld-speci�c innovation

patterns induced by the news shock across di�erent sectors on subsequent R&D and

inventive outcomes. As the latter e�ect dominates the former, Fact 2 emerges. In the

next section, I present suggestive evidence on the transmission channel of dynamic

news e�ects related to the cumulative nature of innovation and a technology disclosure

externality, which is a key feature of the model presented in Section 1.6.

1.5 Transmission channel of news e�ects

In this section, I �rst discuss the technology disclosure externality and present sug-

gestive evidence of its role in transmitting anticipation e�ects to post-implementation
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outcomes. In Subsection 1.5.2, I also explore alternative channels, including compe-

tition.

1.5.1 Cumulative innovation and technology disclosure exter-

nality

The cumulative nature of innovation has been a central focus in growth literature

since Romer (1990). While standard �standing on the shoulders of giants� externality

concerns the stock of knowledge, recent studies highlight the signi�cance of recent

inventions, indicating for instance that more timely publication of patent applications

generates more follow-up innovation (Hedge, Herkenho� and Zhu, 2022). As new

technologies build upon previous ones, inventors learn about them through direct

interaction or detailed technical descriptions disclosed by patent documents. This is

particularly relevant in the context of transitory news shocks, which a�ect the �ow of

novel inventions and the disclosure and di�usion of their technological content.

To investigate whether patterns of technological dependence and knowledge dis-

closure drive the dynamic e�ect of the news shock on post-implementation outcomes,

the empirical analysis leverages cross-�eld heterogeneity in the degree to which new

inventions build on previous ones. Motivated by Subsection 1.4.4's results and tech-

nological proximity, attention is restricted to the reliance of �eld-j advances on recent

ones from the same �eld and technological links among inventions are proxied by

patents backward citations.39 The preferred measure is Bjj, which represents the av-

erage number of backward citations made by �eld-j citing patents to previous �eld-j

39Patent classes are useful for identifying inventions with similar technological contents. However,
other measures of technological similarity exist, such as Ja�e (1986)'s distance. This measures
the distance between two �elds based on the cosine similarity of their patent citation vectors. An
extension of the analysis in Appendix 1.B.2.18 distinguishes the e�ect of same-�eld past innovation
and a weighted aggregation of innovation from other �elds based on their distance from the focal
�eld. I �nd that the within-�eld channel is the primary driver of the transmission of the news shock
to post-implementation outcomes. This is likely because the impact of ∆Tj news on same-�eld
innovation is clear, while the news e�ect on the weighted aggregation of other �elds' innovation
combines positive and negative changes across �elds, which partially cancel each other out.
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patents published within three years from the application date of the citing docu-

ment.40

In equation (1.8), I interact the change in patent term ∆Tj with Bjj and quarterly

�xed e�ects. I observe two empirical patterns. First, the negative triple di�erence

estimates θ̂k in Figure 1.7a suggest that in �elds with stronger dependence, the ini-

tial drop in innovation due to anticipation is followed by a larger additional decline

after implementation. Second, the positive DiD post-implementation estimates β̂k in

Figure 1.7b show that with zero technological dependence (Bjj = 0), a patent term

extension (∆Tj > 0) increases innovation after implementation. Similar results hold

for R&D e�ort and quality-adjusted patent measures (see Appendix 1.B.5.6). These

�ndings imply that the post-implementation e�ect of the patent term change is neg-

atively related to the reliance on recent technologies, and are positive in �elds where

technological dependence is su�ciently low.

Pj,t = αj +

2000Q4∑
k=1985Q1
k ̸=1992Q3

γk1(t=k) +

2000Q4∑
k=1985Q1
k ̸=1992Q3

ηk1(t=k)Bjj

+

2000Q4∑
k=1985Q1
k ̸=1992Q3

βk1(t=k)∆Tj +

2000Q4∑
k=1985Q1
k ̸=1992Q3

θk1(t=k)∆Tj ×Bjj + εj,t

(1.8)

Additionally, I present further empirical evidence highlighting the signi�cance of

the proposed transmission channel. Firstly, Appendix 1.B.5.7 demonstrates that time-

varying measures of technological dependence decrease after implementation in �elds

that experience an average patent term extension. This implies that patents with

high technological dependence contribute disproportionately to the negative DiD post-

implementation e�ect in equation (1.2). The evidence also suggests that the techno-

logical disclosure externality has a half-life of four years, which I use in the model's

40The variable is computed using patents whose application is �led between 1980Q1 and 1989Q4,
i.e., before the news shock of the policy.
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Figure 1.7: Heterogeneity analysis based on within-�eld technological dependence

(a) Triple di�erence coe�cients θ̂k
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(b) Di�erence-in-Di�erence coe�cients β̂k
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Panel (a) and panel (b) show the θ̂k and β̂k coe�cient OLS estimates of speci�cation (1.8) with
outcome of interest being the raw count of �eld- and quarter-speci�c patents. The former coe�cients
represent the change in the marginal e�ect of a one-day increase in patent term ∆Tj = +1 on
the number of patents corresponding to an increment of one in the average number of within-�eld
backward citations per patent ∆Bjj = +1. The DiD estimates β̂k represent the marginal e�ect of
a one-day increase in patent term ∆Tj = +1 on the number of patents conditional on the average
number of within-�eld backward citations per patent being zero Bjj = 0. Standard errors are
two-way clustered by technical �eld and treatment period (pre-news: 1985Q1-1992Q2; news: 199Q4-
1995Q2; post-implementation: 1995Q3-2000Q4) and 95% con�dence bands are plotted. The �rst
vertical line refers to the quarter before the policy news (1992Q3) and the second vertical line refers
to the quarter before the policy implementation (1995Q2).
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quanti�cation.41 Secondly, Appendix 1.B.5.8 shows a decrease in the intensity with

which patents �led during the news period of 1992Q4-1995Q2 are cited by patents

�led in the same �eld during the post-implementation phase. Thirdly, Appendix

1.B.5.9 �nds that the proposed channel occurs entirely between �rms, rather than

within them, supporting its interpretation as an externality.42 The magnitude of

this channel is measured by the elasticity of future innovation to current innovation

shocks, estimated to be 2.1 in Appendix 1.B.5.11. Finally, Appendix 1.B.5.10 utilizes

�rm-level balance-sheet data to demonstrate that R&D expenditure is relatively lower

after implementation for �rms more exposed to technological �elds where aggregate

R&D has fallen more during the news period.

1.5.2 Alternative channels

This subsection presents evidence on alternative channels through which patent term

changes may impact innovation. Two potential channels are considered: Manipulation

of patenting strategies and quality, and competition.

As to the former, for instance, a patent term loss may lead to breakup of ap-

plications and staggered �ling thereof, inducing a downward bias in DiD estimates.

However, this should result in a decline in measures of patent quality, such as average

citations, originality, and generality, which I do not �nd in the data.43

41I calculate �eld- and quarter-speci�c technological dependence Bjj,t using applicant-made cita-
tions from �eld-j patents applied for in quarter-t. To capture technical knowledge �ows, I use Bjj,t

as the outcome of interest in the DiD speci�cation (1.2). The negative estimates of β̂k in Figure
1.B.52 indicate a decline in within-�eld technological dependence in �elds with a patent term ex-
tension, which experienced a decrease in innovation during the anticipation period. This e�ect is
strongest about four years after implementation, which I interpret as the half-life of the e�ect. The
timing is consistent with a knowledge di�usion lag of two years, which is the approximate average
time between invention and patent publication before TRIPs, and R&D gestation of two years. The
estimate of 1.5 years by Pakes and Schankerman (1984) is close to the latter.

42The exercise involves (i) replicating the analysis from Subsection 1.4.4 on aggregated �rm-level
data, and (ii) taking advantage of the observation that new entrants in the post-implementation
period do not experience a within-�rm technological dependence e�ect upon entry. This implies that
any innovation generated by these entrants cannot depend on their own past innovation.

43In addition, changes in patent term may a�ect incentives to patent irrespective of actual inven-
tive activity. Subsection 1.4.3 already discussed that estimated e�ects on patenting correspond to
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Competition is another potential channel, as competitive pressure may a�ect the

desirability of patent protection and, thus, the e�ects of the policy change. Longer

patent terms may a�ect the degree of competition by better shielding past innovators

from new entrants and favoring the adoption of anti-competitive foreclosure practices,

which could reduce further innovation. However, the analysis �nds that higher ex-ante

competitive pressure enhances the response of innovators to the patent term change,

but it does not a�ect the degree of competition at the �eld level, suggesting that this

is not the prevalent source of transmission.44

1.6 Model

This section introduces a semi-endogenous growth model with two novel features.

Firstly, it distinguishes between research of new abstract ideas and the costly de-

velopment of actual technologies, which allows for a representation of the intertem-

poral trade-o� underlying the observed e�ects of the news shock on patenting and

R&D. Secondly, it formalizes the technology disclosure externality underlying post-

implementation e�ects by assuming that a faster aggregate speed of development

enhances knowledge di�usion, thus increasing research productivity.

The new model is related to the workhorse semi-endogenous growth framework

of Jones (1995) and to the two-stage R&D model of Comin and Gertler (2006a). In

Appendix 1.C.5, I discuss the e�ects of an anticipated patent term change in these

models and argue that the new theoretical elements are jointly crucial to correctly

consistent changes in R&D and TFP rather than re�ecting bad measurement.
44Appendix 1.B.5.3 and 1.B.5.4 indicate that the policy treatment ∆Tj has no e�ect on the con-

centration of patents across innovators, as measured by the �eld-speci�c Her�ndahl-Hirschman Index
of quarterly patents �ow, or on the �eld- and quarter-speci�c entry rate of new applicants, which
is the percentage of patents granted to applicants that �le for the �rst time in the �eld. For dis-
ambiguation, I use STAN harmonized applicant's identi�ers from the EPO Worldwide Bibliographic
Database, available in PATSTAT. Appendix 1.B.5.1 and 1.B.5.2 suggest that the e�ect of ∆Tj on
innovation outcomes may be stronger with higher competitive pressure. Furthermore, Appendix
1.B.5.5 shows that the average quality of incumbents' patents does not decline with ∆Tj > 0, and
Appendix 1.E.1.4 documents that the renewal rate of patents up to the maximum term does not
increase with ∆Tj > 0. For the details of variables' construction, refer to Appendix 1.D.
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infer the policy e�ects documented in Section 1.4.

The remainder of the section is organized as follows. Subsection 1.6.1 outlines

the environment and the standard parts of the model. Subsection 1.6.2 describes

research and development activities, which are distinct and determine the endogenous

growth rate of the economy. Subsection 1.6.3 de�nes the competitive equilibrium, and

Subsection 1.6.4 provides a qualitative description of the economic forces shaping the

response of R&D and innovation to an anticipated patent term increase in the model.

Appendices 1.C.1-1.C.4 contain derivations, computational and estimation details,

and the analysis of key channels. Appendix 1.C.7 extends the model to a multi-�eld

environment that closely matches the empirical setting of Section 1.4 and estimates

it. Finally, Appendix 1.C.8 theoretically examines the role of trade-secrecy.

1.6.1 Environment

Time is continuous. and the economy is populated by a measure L(t) of identical indi-

viduals. These individuals consume and invest out of a homogeneous �nal good, which

is produced competitively using labor and intermediate capital varieties. Productiv-

ity growth is driven by research, which generates abstract ideas for new varieties,

and development, which transforms these ideas into actual technologies. Innovators

obtain patents on their inventions, and earn pro�ts over the �nite patent term T .

As a result, only an endogenous fraction ζ of varieties is monopolistic, while the rest

are competitively produced because their patents have expired. The representative

consumer inelastically supplies labor and owns all the �rms in the economy.

1.6.1.0.1 Consumers The representative consumer is characterized by linear util-

ity u(c(t)) = c(t) in per-capita consumption and inelastic labor supply. The consumer

discounts the future at rate ρ, saves in real assets at interest rate r(t), and its aggre-

gate labor supply coincides with population L(t), which exogenously grows at a rate
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of n.45 Appendix 1.C.1.1 presents the household's maximization problem and shows

that the Euler equation is r(t) = ρ for all t.

1.6.1.0.2 Final good production Identical �rms competitively produce the ho-

mogeneous �nal good solving the pro�t-maximization problem

max
L(t),{X(i,t)}i

{
(h(t)L(t))1−α

∫ V (t)

0

X(i, t)αdi− w(t)L(t)−
∫ V (t)

0

z(i, t)X(i, t)di
}

(1.9)

where Y (t) = (h(t)L(t))1−α
∫ V (t)

0
X(i, t)αdi is the production function of the �nal

good, h(t) is an exogenous productivity term, L(t) is labor, i indexes the measure

V (t) of intermediate capital varieties, X(i, t) is the amount of i used in production,

z(i, t) is its price, and w(t) is the wage rate. Final good producers take input prices

as given.

1.6.1.0.3 Intermediate capital varieties production Firms produce interme-

diate capital varieties using a linear technology in raw capital K(t), which they rent

from households at a competitive rate r(t) + δ, where δ is capital depreciation rate.

As the patent term is �nite, the production of intermediate varieties can be either

monopolistic or competitive. In the former case, producers maximize pro�ts by taking

the inverse demand for each variety as given and solve

max
X(i,t),z(i,t)

{
z(i, t)X(i, t)− (r(t) + δ)X(i, t)

}
s.t. z(i, t) = αh(t)1−αL(t)1−αXα−1(i, t)

(1.10)

where the constraint equals the price z(i, t) of intermediate variety i to �nal good

producers' inverse demand. The value of problem (1.10) represents the equilibrium

�ow of pro�ts that new varieties guarantee over the �nite patent term T .

45The economy features multiple assets, such as physical capital and �rms' stocks. No arbitrage
conditions ensure that, in the absence of uncertainty in this economy, the real rate of return is equal
across assets. Appendix 1.C.1.1 precisely de�nes total assets for the household.
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When it expires, production of the intermediate variety becomes perfectly com-

petitive. Therefore, in maximization problem (1.10), the inverse-demand constraint

is replaced by z(i, t) = r(t) + δ, as perfect competition drives the price to marginal

cost, resulting in zero pro�ts.

1.6.1.0.4 Capital market Capital market clearing requires that the stock of cap-

ital supplied by households, K(t), equals the quantity demanded for production of

the V (t) existing varieties, i.e., K(t) =
∫ V (t)

0
X(i, t)di. Furthermore, aggregate cap-

ital stock evolves according to K̇(t) = IK(t) − δK(t), where capital growth K̇(t) is

determined by the �ow of new investment IK(t) and by depreciation δK(t).

1.6.2 Research and Development

R&D activity generates new varieties through costly investments in units of the �nal

good.46 Identical �rms engage in research activity to originate abstract ideas for new

varieties, and those that successfully obtain a new idea have the exclusive possibility

to develop it into a new patentable technology.

1.6.2.0.1 Research A unit measure of atomistic identical �rms invest IR(t) units

of the �nal good to discover new ideas, with the stock of ideas in the economy denoted

as N(t) and their price as P (t), re�ecting the option value of exclusively developing

a new variety from the idea at a future date, net of development costs. The research

investment problem is

max
IR(t)

{
P (t)

[
E(t)χV (t)ϕ1IR(t)

ϕ2
]
− IR(t)

}
(1.11)

where E(t)χV (t)ϕ1IR(t)
ϕ2 is the production function of ideas and the last term is

the cost of research investment.47 The production function assumes that new ideas

46Appendix 1.F.1 proposes an equivalent model where R&D uses labor rather than �nal good.
47In an extension of the model used for welfare analysis, the production function of projects

is transformed into (1 − ζ(t))ϕ1ηE(t)χV (t)ϕ1IR(t)
ϕ2 , where (1 − ζ(t))ϕ1η is a distortion term that
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increase with: (i) research investment IR(t), subject to decreasing returns governed

by ϕ2; (ii) the mass of existing varieties V (t), which represents the standard �standing

on the shoulders of giants� externality of the stock of existing knowledge on the

creation of new ideas, with decreasing returns governed by ϕ1 < 1; and (iii) the new

technology disclosure externality term E(t)χ. E(t) represents the average speed of

development in the economy in the recent past and it is formally de�ned by E(t) ≡

d−1
∫ t
t−dN(s)−1

∫ N(s)

0
ιD(j, s)djds, where d is the maximum memory of externality

calibrated to d = 8 years, in line with Section 1.5's evidence, ιD(j, s) is the speed of

development on project j ∈ [0, N(s)] at instant s, and N(s) is the total number of

projects. A faster average pace of development increases the frequency with which

novel technical knowledge di�uses to innovators, enhancing learning and inspiration

for new ideas. This highlights a separate role of recent advances compared to standard

�standing on the shoulders of giants e�ect� that relates to the stock V (t).

1.6.2.0.2 Development Once �rms originate new ideas, they must decide how

quickly to develop them into patented intermediate varieties of value υ(t). Consistent

with Lin and Shampine (2018), I assume that a patent's life is �nite and that a �rm's

monopoly power over a variety lasts at most T years. Therefore, the value of a new

patent issued at t is given by the equation:

υ(t) =

∫ t+T

t

e−
∫ s
t (r(t

′)+λ(t′))dt′π(s)ds (1.12)

where π(s) is the equilibrium pro�t stream of the patented technology over its life,

discounted by the real interest rate r(t′) and the endogenous instantaneous probability

of creative destruction λ(t′). This probability is assumed to be proportional to the

percentage growth rate of novel technologies V̇ (t)
V (t)

and de�ned as λ(t) ≡ ψ V̇ (t)
V (t)

, where

represents the probability of not having an idea blocked by an existing monopoly. It is decreasing
in the share of varieties that are monopolistic and in the parameter η, which captures the severity
of the distortion.
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ψ is a parameter.48 Development problem is symmetric and independent across ideas,

and de�ned by the value function

r(t)P (t)− Ṗ (t) = max
ιD(t)

{
ιD(t)

[
υ(t)− P (t)

]
− µιD(t)

θυ(t)
}

(1.13)

where ιD(t) represents the pace of development, or the instantaneous probability

of transforming a project into a product. To achieve a given development pace, total

investment required is assumed to be proportional to the value of the innovation υ(t),

and can be expressed as ID(t) = µιD(t)
θυ(t). Here, µ is a scaling parameter, while

θ > 1 re�ects the convex costs of increasing development pace. The expression within

square brackets highlights that a successful �rm generates a new variety valued at υ(t)

but forfeits the worth P (t) of the initial idea or project, which terminates. Crucially,

�rms do not account for the bene�cial impact of an accelerated pace of development

on the overall research productivity through E(t)χ.

1.6.2.0.3 Evolution of innovation state variables Total varieties V (t) evolve

according to

V̇ (t) = ιD(t)N(t)− ψV̇ (t) (1.14)

The �rst addend represents the increase in varieties due the successful development

of ideas. As they are symmetric and independent, the mass of new inventions equals

the common instantaneous success probability ιD(t) times the measure of projects

N(t). The second addend represents creative destruction, with ψV̇ (t) varieties de-

stroyed by the new ones.

The evolution of the stock of ideas N(t) follows satis�es

Ṅ(t) =
[
d−1

∫ t

t−d
ιD(s)ds

]χ
V (t)ϕ1IR(t)

ϕ2 − ιD(t)N(t) (1.15)

48t is worth noting that the e�ective patent term can be shorter than the maximum statutory
patent term T , as evident from (1.12). Along the balanced growth path equilibrium, the expected
patent duration is given by T e ≡ 1

λ∗ (1 − e−λ∗T ), where λ∗ denotes the endogenous rate of creative
destruction.
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The �rst addend represents the mass of new ideas generated by research in equi-

librium, where
[
d−1

∫ t
t−d ι

∗
D(s)ds

]χ
replaces the externality term E(t)χ in ideas' pro-

duction function using its de�nition. The second term is the mass of ideas turned into

varieties at instant t.

The share of monopolistic varieties ζ(t) endogenously evolves over time due to

new patented innovations and to the expiration of patent rights on old ones after T

periods. The law of motion is

ζ̇(t) = (1− ζ(t))
V̇ (t)

V (t)
− (1 + ψ)

V̇ (t− T )

V (t)
e−

∫ t
t−T λ(t

′)dt′ (1.16)

The �rst term captures the positive net contribution of new inventions produced

at time t, i.e., V̇ (t), to the growth of patent-protected varieties. The second term

captures the fall of monopolistic varieties due to the expiration of patent protection

on the fraction e−
∫ t
t−T λ(t

′)dt′ of intermediates generated at t−T , i.e., (1+ψ)V̇ (t−T ),

that have survived creative destruction until t. Appendix 1.C.1.8 derives expression

(1.16) in detail.

1.6.3 De�nition of the competitive equilibrium

A competitive equilibrium equilibrium for this economy is a sequence of quantities

{V ∗(t), N∗(t), {X∗(i, t)}V
∗(t)

i=0 , {ι∗D(j, t)}
N∗(t)
j=0 , I∗R(t), I

∗
K(t), C

∗(t), K∗(t), π∗(t), ζ∗(t)}∞t=0,

prices {r∗(t), w∗(t), {z∗(i, t)}V
∗(t)

i=0 }∞t=0, and values {P ∗(t), υ∗(t)}∞t=0, such that, given

the exogenous evolution of {h(t), L(t)}∞t=0, (i) r
∗(t) = ρ (ii) C∗(t) and I∗K(t) solve

consumer's utility maximization problem; (iii) L(t) and {X∗(i, t)}V
∗(t)

i=0 solve problem

(1.9); (iv) X∗(i, t) and z∗(i, t) solve problem (1.10) ∀i ∈ [0, V ∗(t)]; (v) I∗R(t) solves

problem (1.11); (vi) ι∗D(t) solves problem (1.13) for all j ∈ [0, N∗(t)]; (vii) υ∗(t)

satis�es equation (1.12); (viii) π∗(t) = (ρ + δ)−
α

1−α

(
α

1+α
1−α − α

2
1−α

)
h(t)L(t) from the
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solution of problem (1.10); (ix) P ∗(t) satis�es

P ∗(t) =

∫ ∞

t

e−
∫ s
t [ρ+ι

∗
D(t′)]dt′ [ι∗D(s)− µι∗D(s)

θ]υ∗(s)ds (1.17)

(x) ζ∗(t) satis�es equation (1.16), (xi) K∗(t) satis�es K∗(t) =
∫ V ∗(t)

0
X∗(i, t)di and

K̇∗(t) = I∗K(t)− δK∗(t);(xii) the aggregate resource constraint (1.18) holds

Y (t) = C(t) + IK(t) + IR(t) + µυ(t)ιD(t)
θN(t) (1.18)

(xiii) V ∗(t) satis�es (1.14); and(xiv) N∗(t) satis�es (1.15).

Along the balanced growth path (b.g.p.) equilibrium, each variable x(t) grows at a

constant rate gx, so that x(t) = egxtx̃(t), where x̃(t) is the stationary version of x(t).

Appendix 1.C.1 derives the solution, shows that the economy admits a balanced

growth path, and pins down equilibrium growth rates.

1.6.4 Model's response to an anticipated patent term change

In this subsection, I explore the fundamental economic mechanisms that underlie

the model's ability to reproduce the observed e�ects of an anticipated extension of

patent term. Speci�cally, I consider a scenario where at time t = τ , innovators receive

information that patent term will increase from To to T
′ > To beginning at τ + A. I

examine the response of R&D and patenting in three sub-periods: the news period

t ∈ [τ, τ + A), the implementation period t ≥ τ + A, and the long run t → ∞.

Additional discussion and a graphical illustration of key variables' responses can be

found in Appendix 1.C.4.

1.6.4.0.1 News During the news period t ∈ [τ, τ + A), the model predicts a de-

cline in total R&D and innovation as �rms reduce costly development e�orts prior

to implementation. This response stems from the di�erent reaction of the patent

value υ∗(t) and idea value P ∗(t) during the anticipation phase. Speci�cally, the
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value of patent in equation (1.12) remains unchanged because the pro�ts associ-

ated with a new variety obtained in the news stage are discounted according to the

old patent term To until implementation. In contrast, equilibrium value of ideas

P ∗(t) =
∫∞
t
e−

∫ s
t [ρ+ι

∗
D(t′)]dt′ [ι∗D(s) − µι∗D(s)

θ]υ∗(s)ds increases on impact as it re�ects

higher expected value of obtaining an innovation in the future, net of development

costs, i.e., a higher υ∗(s) for s ≥ τ +A in the integral expression of P ∗(t). Contempo-

raneous changes in patent and idea values in�uence optimal development intensity and

optimal research investment according to equations (1.19) and (1.20), respectively.

ι∗D(t) =

[
(υ∗(t)− P ∗(t))

θµυ∗(t)

] 1
θ−1

(1.19)

I∗R(t) =
(
P ∗(t)

[
d−1

∫ t

t−d
ι∗D(s)ds

]χ
V ∗(t)ϕ1

) 1
1−ϕ2 (1.20)

As the value of holding and transforming ideas in the future increases relative to

the value of immediately developing them, it is optimal to slow down the pace of

development and patenting. This decrease in development outweighs the positive

impact of higher value of ideas on research investment. Consequently, aggregate R&D

declines.

1.6.4.0.2 Implementation After the implementation of the new policy (T ′ >

To), the incentive to substitute development e�ort intertemporally ends. This is be-

cause the value of a new variety υ∗(t) for t ≥ τ + A increases and fully re�ects the

new patent term. Since υ(t) and P (t) are proportional in the new equilibrium, the

optimal speed of development ιD(t) in equation (1.19) reverts to its previous level.

However, the slowdown in development during the anticipation phase continues to

reduce knowledge di�usion and depress research productivity through the externality

term E(t)χ. This e�ect lasts for d = 8 years after policy implementation. Overall, this

negative e�ect dominates the positive e�ect of the higher value of ideas on research

investment, which remains temporarily lower.
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1.6.4.0.3 Long run After the implementation of a longer patent term, R&D and

innovation levels remain low until research productivity recovers. This recovery oc-

curs when two conditions are met: (i) the technology disclosure externality forgets

the initial drop in development pace, and (ii) the missing varieties caused by the news

shock are gradually replenished.49 However, over the long run, the increased value

of ideas resulting from a longer patent term promotes greater investment in research,

leading to higher total R&D and innovation. This occurs because the �ow of new

inventions, ι∗D(t)N
∗(t), increases with the larger stock of projects N(t). Thus, while

the long-run behavior of the model is similar to standard frameworks, the novel in-

gredients are essential for qualitatively replicating the empirical patterns of Section

1.4. The next section assesses the model's quantitative performance by estimating its

structural parameters.

1.7 Model estimation

In this section, I describe the estimation strategy (Subsection 1.7.1) and illustrate the

quantitative performance of the model and the key �ndings from estimated parameters

(Subsection 1.7.2).

1.7.1 Estimation

I use a mix of estimation via generalized method of moments for eight parameters

(ϕ1, ϕ2, θ, µ, ψ, χ, α, δ) and calibration for (ρ, n, gh).

1.7.1.0.1 Calibrated parameters I calibrate ρ = 0.04 and �x population growth

rate at n = 1.1%, its yearly average in the US during the post-war period. The growth

49The importance of spillovers in generating persistence can be observed by comparing the re-
sponses of innovation and R&D �ow in a model with the externality channel switched o�. In such
a scenario, innovation and R&D �ow increase immediately after the implementation of the longer
patent term. This point is illustrated in Figure 1.C.3 of Appendix 1.C.5.2.
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rate gh of exogenous productivity is set to match a growth rate of output-per-capita

equal to 2%.50

1.7.1.0.2 GMM To estimate the remaining structural parameters, I use general-

ized method of moments to minimize the loss function (m−mt)′W (m−mt). Here,

mt is a vector of targets, m represents their counterparts in the model, and W is

a diagonal positive de�nite weighting matrix. mt includes two sets of targets: (i)

the quarterly empirical responses of patenting and R&D e�ort to a 100-day patent

term extension anticipated by 2 years and 8 months, based on post-news and post-

implementation DiD estimates of Poisson speci�cation (1.3) plotted in Figures 1.2b

and 1.3b (33+33 moments); and (ii) three restrictions that capture the characteristics

of the US economy in the 1990s, namely a private R&D-output ratio equal to 0.017,

a consumption-output ratio of 0.65, and a capital-output ratio of 3.

To match the �rst set of targets, I simulate the same policy change in the stationary

model and derive the quarterly evolution of patenting and patent-based R&D e�ort,

expressed as deviations from the pre-news steady state. I assume that the economy

is at this steady state before the news shock. The model counterpart of patenting is

ι∗D(t)N
∗(t), i.e., the symmetric probability that each project is successfully developed

into a patented technology ι∗D(t) times the number of projects N(t). Moreover, I

derive time-t patent-based R&D e�ort as

R&D(t) =

∫ t

−∞

[
IR(τ)/n(τ, τ) +

∫ t

τ

µι∗D(s)
θυ∗(s)ds

]
︸ ︷︷ ︸

≡r&d(t,τ)

×
(
ι∗D(t)n(t, τ)

)
dτ (1.21)

The term r&d(t, τ) represents the R&D expenditure on projects of vintage τ , suc-

50In the extended model with blocking innovation, η is calibrated so that the steady-state block
probability 1− (1− ζss)

ηϕ1 is equal to 1%, which is computed by combining information on patent
litigation rates (1.5%) and plainti� win or voluntary settlement rates (65%). Patent litigation rates
are taken from Figure S9 of WIPO report "Special theme - An overview of patent litigation systems
across jurisdictions" (https://www.wipo.int/edocs/pubdocs/en/wipo_pub_941_2018-chapter1.
pdf). Plainti� win and settlement rates are taken from https://law.stanford.edu/wp-content/

uploads/2016/07/Revised-Stanford-August-4-2016-Class-Presentation.pdf
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cessfully developed at time t. It assumes that each of the n(τ, τ) new ideas created

at time τ absorbs an equal share of total research investment IR(τ) and accumulates

development costs µι∗D(s)
θυ∗(s) over the development period s ∈ [τ, t]. Total R&D in

equation (1.21) is the integration of r&d(t, τ) across vintages τ , weighted by the mea-

sure of patents from that vintage that are successfully developed at t, i.e., ι∗D(t)n(t, τ).

Since development activity is symmetric and independent across projects, the latter is

the product of the common ι∗D(t) and the measure of vintage-τ ideas still undeveloped

at t (n(τ, t)).

1.7.1.0.3 Identi�cation of key parameters The rich dynamics of reduced-form

DiD estimates and long-run restrictions provide valuable insights into key structural

parameters of the model, consistent with the economic forces discussed in Subsec-

tion 1.6.4. Firstly, the adjustment of R&D and innovation to the news shock informs

the development cost convexity parameter θ. When faced with news of a future

patent term extension, innovators may slow down the pace of development on ex-

isting projects, and the extent of this adjustment informs the mildness of the cost

convexity. Secondly, the research parameters (χ, ϕ1, ϕ2) are determined by the post-

implementation e�ects and the long-run R&D-output ratio. A stronger technology

disclosure externality (higher χ) results in a deeper post-implementation trough of

R&D and innovation. A smaller �standing on the shoulders of giants� externality (ϕ1)

results in a quicker recovery of R&D and innovation to the new long-run equilibrium.

Finally, a higher ϕ2 parameter implies less severe decreasing returns to research invest-

ment, which results in a larger R&D-output ratio, given other R&D parameters, as

returns to larger research investment decrease less quickly. Appendix 1.C.6 illustrates

previous arguments graphically.

1.7.1.0.4 Solution algorithm To estimate the model, it is necessary to solve for

the transitional dynamics of the stationary model to the anticipated policy. However,

this is non-standard due to the presence of the delayed di�erential equation (1.16).
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Appendix 1.C.2 describes the details of the solution algorithm, which guesses λ(t) and

iterates over its dynamics until convergence.

1.7.1.0.5 Limitations and multi-�eld model While Subsection 1.7.2 illustrates

the e�ectiveness of the approach, there is a limitation in that it uses a one-�eld model

to match empirical DiD estimates resulting from the comparison of R&D and patent-

ing across �elds. To address potential concerns regarding this limitation, an extended

version of the model is proposed in Appendix 1.C.7, which includes 621 �elds with

varying sizes and pending periods. This extended model is then used to simulate an

exact replication of the TRIPs patent term change, and the �eld-speci�c model-based

responses are used to re-estimate the DiD Poisson model (1.3) on simulated data. The

resulting estimates are then used as theoretical counterparts to the empirical DiD es-

timates in the proposed GMM setting. The performance of the extended model is

reported in Appendix 1.C.7, and the results show remarkable similarity to those of

the one-�eld model.

1.7.2 Quantitative performance and estimation results

Figure 1.8 illustrates the performance of the model in comparison to the targeted DiD

empirical estimates of patenting (left panel) and R&D e�ort (right panel). The black

solid lines represent the responses to an anticipated 100-day patent term increase as

suggested by the model's optimal parameter estimates, while the red dashed lines

display the 95% con�dence bands of the DiD coe�cients in Figures 1.2b and 1.3b.

The model closely replicates both the initial decline in R&D and innovation observed

upon news and the additional negative e�ect estimated after policy implementation.

As discussed in 1.6.4, a reduction in the pace of development is responsible for news

e�ects, while post-implementation dynamics are driven by research investment. Ini-

tially, research investment drops due to the technology disclosure externality, but it

converges to a higher long-run level (not plotted) due to the longer patent term. Addi-
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Figure 1.8: Model-based simulation of the policy and targeted reduced-form estimates

(a) New patents (b) R&D Investment

The left panel of the �gure shows the model-based responses of patenting, while the right panel shows
the responses of R&D e�ort, both represented by black solid lines. The responses are in percentage
deviation from the pre-news steady state, assumed to be at t = 0 when the news shock occurs. The
shock considered is a 100-day patent term increase anticipated by 2 years and 8 months, similar to the
TRIPs case. The second dashed blue vertical line represents the policy implementation. Parameter
values are reported in Table 1.1. The red dashed lines show the 95% con�dence bands of the DiD
estimates of the Poisson model (1.3) in response to the same shock.

tionally, Figure 1.C.3 demonstrates that the model without the technology disclosure

externality (χ = 0) closely matches the (untargeted) positive post-implementation

estimates of the augmented DiD speci�cation in Subsection 1.4.4.

Table 1.1 presents the estimated parameters and their corresponding standard

errors, which are computed in Appendix 1.C.2. These estimates reveal key charac-

teristics of the innovation process. Firstly, the cost convexity of development pace is

mild, with θ nearly equal to 1. The point estimate of θ = 1.06 implies an optimal aver-

age project duration of approximately 3 years that is slightly longer than the two-year

average research lag estimated by Pakes and Schankerman (1984), potentially re�ect-

ing the increased complexity of modern projects. Secondly, the estimated value of

ϕ2 = 0.12 suggests that the returns to research investment decrease signi�cantly as

aggregate investment levels increase. In other words, the marginal dollar spent on

�nding new ideas becomes relatively unproductive for low levels of investment. Fi-
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Table 1.1: Estimated and Calibrated Structural Parameters

Symbol Value S.E. Parameter Target/Source
A: Calibration

ρ 0.04 Discount rate
gh 0.009 Exog. Prod, Growth 2% p.c. Output Growth
n 0.011 Population Growth World Bank

B: Estimation
α 0.5089 0.0225 Capital share
δ 0.0710 0.0010 Capital Depreciation
ϕ1 0.6475 0.0983 Research V -Curvature
ϕ2 0.1227 0.0146 Research IR-Curvature
χ 8.2937 1.7825 Spillover Exponent
θ 1.0557 0.0437 Dev.'t Curvature
µ 0.5310 0.1317 Dev.'t M. Cost
ψ 0.0001 0.2346 Endog. Creative Destruction

C: Extension
η 0.0846 Curv. Monopoly Distortion 1% Block Probability

The table presents the calibrated parameters (ρ, n, and gh), along with the GMM estimates for the
other parameters. The GMM estimation targets include two main objectives: (i) the reduced form
DiD estimates of granted patents and R&D e�ort in the Poisson speci�cation (1.3); and (ii) three
long-run restrictions, namely a Capital-output ratio equal to 3, a consumption-output ratio equal
to 0.65, and a private R&D investment-output ratio equal to 0.017. In addition, parameter η of
the model with blocking innovation is calibrated to match a 1% block probability of new projects.
Subsection 1.7.1. reports details on estimation and calibration.

nally, the estimated value of ϕ1 = 0.65 implies strong �standing on the shoulders of

giants� e�ects, meaning that marginal gains in research productivity slowly decline as

the knowledge stock expands.51

Furthermore, the model allows for inference on the long-run elasticity of innovation

and R&D to patent term, which could not be directly identi�ed in the empirical

estimates. Speci�cally, a 1% increase in patent term from the base of 17 years results

in a +0.45% increase in patents and a +1.3% increase in total R&D in the new steady

state. Additionally, I estimate that the elasticity of long-run aggregate TFP to patent

term is 0.4, which is close to the elasticity of �rm-level TFP to market size estimated

by Beerli et al. (2020) using Chinese data.52

51Bloom et al. (2020) �nd similar evidence for some US sectors, but, di�erently from the present
setting, they infer ϕ1 close to 0 for the aggregate US economy.

52In the steady state of the stationary model �nal output can be written as Yss = Vss(α
αζss +

(1− ζss))L
1−α
0 Xα

nm,ss, where L0 is de-trended labor, Xnm,ss is the amount of capital used for non-
monopolistic varieties, and Vss(α

αζss + (1− ζss)) is TFP.
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1.8 Policy simulations and normative analysis

In this section, I �nally employ the estimated model to examine and quantify the

normative trade-o�s of patent term. The analysis proceeds in three steps. Firstly,

in Subsection 1.8.1, the welfare e�ects of a change in patent term are examined by

focusing on the steady state of the model. Previous literature has mostly focused on

long-run outcomes of innovation policies, but this approach implicitly assumes that

the economy immediately jumps to its new long-run equilibrium. Secondly, Subsec-

tion 1.8.2 studies welfare if the full transitional dynamics induced by the unanticipated

adoption of a new patent term are considered. The optimal policy is derived in this

case, and it is argued that the transition is as important as the long-run outcomes

for normative considerations. Finally, Subsection 1.8.3 investigates the role of policy

anticipation and shows how the impact of optimal patent term derived in Subsection

1.8.2 changes if news of it precedes implementation. Due to the action of the tech-

nology disclosure externality, even small anticipation o�sets any welfare and output

gains.

1.8.1 Steady-state trade o�

The steady-state trade-o� of patent term is similar to the one identi�ed by Nordhaus

(1967). A longer patent term T leads to more varieties Vss in any steady-state equilib-

rium, but it also results in a larger share ζss of sub-optimally produced varieties due

to monopoly power granted by patents. While welfare considerations pertain to �nal

consumption C, the expression of aggregate output in the steady-state highlights the

two key forces that a�ect it:

Yss = Vss (ααζss + (1− ζss))︸ ︷︷ ︸
≈0.95

L1−α
0 Xα

nm,ss (1.22)
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The �rst force increases output by generating more varieties Vss, while the second force

depresses output. A higher share of monopolistic varieties ζss reduces the distortion

term (ααζss + (1− ζss)) ∈ [αα, 1] by placing greater weight on αα < 1, which re�ects

the severity of the under-supply of intermediates. Because the distortions are small in

the pre-TRIPs steady-state, the �rst positive force dominates the second. Therefore,

in the benchmark model, the patent term that maximizes steady-state consumption

(welfare) is 138 years.

The third column of Table 1.2 presents variations of the optimal steady-state

patent term under alternative parameter values, with associated welfare change re-

ported in brackets as percent deviations from the pre-TRIPs status quo of T = 17

years. Furthermore, the �fth column shows that in a model with �blocking innova-

tions�, where patent term leads to additional distortions by impeding with probability

1− (1− ζ(t))ϕ1η the development of new ideas that infringe on patented technologies,

the optimal policy is uniformly shorter.53

1.8.2 Transitional-dynamics trade o�

The second trade-o� concerns the transitional dynamics of the model following the

unanticipated implementation of a new patent term. As discussed in the previous

subsection, a longer patent term generates higher output and consumption in the

long run due to an expanded stock of varieties. However, the transition to this new

steady state requires a consumption sacri�ce to �nance R&D investment needed to

increase productivity. Therefore, development lags that characterize the creation of

new varieties are important not only from a positive perspective but also from a

normative one.

53The block probability 1−(1−ζ(t))ϕ1η increases as the share of monopolistic varieties ζ(t) grows,
which, in turn, is higher for longer patent terms T . The impact of this e�ect is determined by the value
of parameter η, which I calibrate to ensure a block probability of 1%. As �rms anticipate the possi-
bility of being blocked, the production function of projects becomes (1−ζ(t))ϕ1ηE(t)χV (t)ϕ1IR(t)

ϕ2 ,
where (1− ζ(t))ϕ1η represents the probability of not being blocked by an existing monopoly.
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To balance short-run losses and long-run gains, I use the representative agent's

time-zero utility expressed as

Θ =

∫ ∞

0

e−(ρ−g∗c )tc̃(t)dt (1.23)

where c̃(t) is per-capita consumption in the stationary model, g∗c is its growth rate

along the balanced growth path, and ρ is the discount rate.

I estimate the patent term that would maximize (1.23) in the absence of antic-

ipation, starting from a status quo of T0 = 17 years. To do so, I assume that the

economy is in the steady-state and simulate the unanticipated adoption of a new

patent term T ′ ≥ 0. For each T ′, I compute the welfare index Θ(T ′) along the transi-

tion to the new steady-state and express the welfare gain/loss in percentage deviation

from Θ(T0) = c̃T0,ss/(ρ− g∗c ), which is index (1.23) if no policy change occurs, and the

economy remains at the old steady-state.54 I similarly compute output and innovation

changes relative to the status quo.

My analysis reveals that in the absence of anticipation, the optimal patent term

is 26 years, leading to a +0.3% increase in welfare and a +1.2% increase in output

compared to the current status quo. This suggests that extending patent terms in the

US would increase welfare. The second column of Table 1.2 shows that the optimal

policy varies with key parameters, with the severity of decreasing returns to research

investment (governed by ϕ2) being the most signi�cant driver of optimal T . A lower

ϕ2 leads to a signi�cant reduction in the optimal patent term. This implies that

protection is most bene�cial in sectors with high returns to innovation. The optimal

policy is not particularly sensitive to (i) the cost convexity θ of development pace,

(ii) the �standing on the shoulders of giants� parameter ϕ1, and (iii) the technology

disclosure externality parameter χ (not reported in Table 1.2).

54I simulate T ′ on a yearly grid [5, 50] and I compute the transition for 2,000 years, after which
the economy is assumed to be at the new steady state.
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Table 1.2: Optimal patent term - Transitional dynamics vs. steady state

Speci�cation Benchmark Blocking innovation

Dynamic Steady State Dynamic Steady State

Baseline 26 (+0.3%) 138 (+54.6%) 22 (+0.1%) 62 (+29.9%)

θ = 1.01 26 (+0.3%) 136 (+54.0%) 22 (+0.2%) 62 (+29.6%)

θ = 1.10 27 (+0.3%) 140 (+55.5%) 23 (+0.1%) 63 (+30.3%)

ϕ2 = 0.07 16 (+0.0%) 109 (+21.7%) 15 (+0.0%) 61 (+13.1%)

ϕ2 = 0.17 37 (+1.7%) 177 (+115.0%) 29 (+0.9%) 62 (+56.1%)

ϕ1 = 0.55 26 (+0.3%) 121 (+35.1%) 24 (+0.2%) 71 (+23.9%)

ϕ1 = 0.75 26 (+0.4%) 181 (+121.5%) 20 (+0.1%) 50 (+41.9%)

The table presents optimal patent terms under various conditions. Rows represent di�erent model
parameters. The �rst row uses the parameter values from Table 1.1. For subsequent rows, the �rst
column shows which parameter is changed while keeping others constant. The second and third
columns present results from the benchmark model. The second column shows the optimal patent
term, accounting for transitional dynamics and unanticipated implementation, in bold. Figures
in brackets indicate the percent change in welfare relative to the status quo. The third column
reports the patent term that maximizes steady-state consumption, with �gures in brackets indicating
the percent change in consumption relative to the pre-TRIPs steady state. The fourth and �fth
columns report the same �gures as columns three and four but assume that existing patents block
the development of 1% of new ideas in an extended model.

1.8.3 The role of anticipation

Finally, I examine the impact of news e�ects on the optimal patent term by sim-

ulating a policy change from T0 = 17 years to T ′ = 26, derived in the previous

subsection, with varying degrees of anticipation. Figure 1.9 shows the percent change

in consumption (left panel) and output (right panel) relative to the status quo as

anticipation changes. The role of the technology disclosure externality is highlighted

in a comparative statics exercise with respect to χ. Results indicate that even a slight

anticipation completely dissipates the welfare and output gains estimated without

news e�ects. A 6-month anticipation period results in a 1.75% welfare loss.55 Fur-

thermore, a stronger technology externality exacerbates the news e�ects, amplifying

and prolonging the temporary decline in R&D and innovation. Therefore, this analy-

sis emphasizes the importance of policy implementation details in determining output

55The change in welfare and output is computed as the utility index (1.23) under the simulated
policy in percentage deviation from its value absent any policy change.
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Figure 1.9: Change in output and welfare from T =26 years by anticipation

(a) Output per capita (b) Consumption per capita

The left (right) panel shows how the change in output-per-capita (consumption-per-capita) due to
the anticipated implementation of a 26-year patent term varies with anticipation. The changes are
expressed in percentage deviation from the pre-TRIPs status quo featuring a 17-year patent term.

and welfare consequences of patent term changes and other innovation policies. Using

Appendix 1.C.7's multi-�eld model, I estimate that TRIPs led to 5.96% consumption

loss and 6.78% output loss but its unanticipated adoption would have induced 0.21%

higher output and negligible change in consumption.

1.9 Concluding remarks

This paper makes three important contributions to the innovation and growth liter-

ature. Firstly, it provides quasi-experimental evidence on the impact of anticipated

patent term changes on R&D and innovation. Consistent with the literature, a direct

positive e�ect of a +1% patent term extension is estimated to increase R&D and

innovation by 4.2% in �ve years, but the paper demonstrates that policy anticipa-

tion overturns this result. Speci�cally, innovators initially reduce the pace at which

existing projects are developed into patented technologies to �le applications under

the more pro�table future policy, thus reducing R&D and innovation at news. As

innovation is cumulative, this decline in knowledge di�usion reduces the ability to
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create new projects due to a technology disclosure externality, thus further depressing

R&D and innovation for at least �ve years after implementation. This highlights the

crucial role of news e�ects and externalities in the estimation of patent term changes

or other innovation policy interventions.

Secondly, the paper develops a novel semi-endogenous growth model that formal-

izes the intertemporal substitution mechanism and the technology disclosure external-

ity, and shows that both are necessary to match empirical evidence with the theory.

The model distinguishes between research and development activities as two distinct

steps and assumes that faster di�usion of new knowledge increases productivity in

�nding new ideas. A structural estimation reveals severe decreasing returns to dis-

covering new ideas but mild cost convexity of developing existing projects at a faster

pace.

Finally, the paper conducts counterfactual policy experiments that shed light on

two overlooked channels that in�uence welfare e�ects of a patent term change. It

shows that the transitional dynamics of the economy to the new long-run equilibrium

can be equally important for welfare, and con�rms that news e�ects are key. Even

short anticipation dissipates the welfare gains that would occur with unanticipated

implementation of a longer patent term in the US. These �ndings have important

implications for policy design and suggest that the devil is in the implementation

details.
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Appendices

Appendix 1.A Data description

1.A.1 Data sources

I utilized six data sources for the empirical analysis. PATSTAT was used to build

technical �eld-level innovation and treatment variables. The NBER Patent Database

was used to obtain patent information and match applicants to �rm identi�ers in

COMPUSTAT, which reports balance sheet and �nancials for selected subsample of

innovating �rms responsible for a relevant share of the aggregate US GDP, R&D,

and innovation. The fourth data source was the economic value of patents, obtained

from Kogan et al. (2017), which estimated the private economic value of patents by

exploiting the stock market reaction to patent grants. For sectoral analyses, the �fth

data source was the NBER CES manufacturing database, containing annual industry-

level data for 1958-2011 by 6-digit NAICS industries. Finally, the 'Algorithmic Links

with Probabilities' crosswalk by Goldschlag, Lybbert and Zolas (2019) was used to

map technical �eld (4-digit IPC classes) into industries (6-digit NAICS) and vice

versa, based on text-analysis of patents abstracts and descriptions of di�erent sectors.

For more information on variable construction, please refer to the additional materials

in Appendix 1.D.
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1.A.2 Summary Statistics

Summary statistics by technical �eld, �rm, and industry are reported below.

Table 1.A.1: Summary statistics by technical �eld and quarter

Variable Mean S.D. 10th p. 90th p.

Granted Patents 36.09 136.35 0 78
5 years Citations 195.15 1070.1 0 360
Patent value (Million Dollars) 351.01 3341.87 0 406.01
Pending Days (days) 1022.1 496.2 558.93 1660.94
Change in patent length (days) 472.66 117.42 343.55 590.79
Standard dev. of ∆ patent term (days) 37.13 38.93 11.53 72.55
Patents share w. p.p.>3y. .06 .08 0 .12
Share of patents renewed to max. term .29 .26 0 .63
Share of entrant applicants .54 .21 .28 .82
Share of patents granted to entrants .49 .23 .2 .8
Patents-based HHI 1191.51 1982.33 116.35 2800
N. Patent with w.-�eld bckwd. cit.s 4.89 27.07 0 10
Sh. Patent with w.-�eld bckwd. cit.s .19 .28 0 .59
Patents at EPO 1.47 4.65 0 4
Avg. Pending Period at EPO (days) 1702.43 272.63 1386.5 2012.84
Share of second �ling applications .56 .15 .37 .73

The Table reports the summary statistics of di�erent variables used in the paper by technical �eld
(4-digit IPC class) and quarterly date

Table 1.A.2: Summary statistics by �rm and year

Variable Mean S.D. 10th p. 90th p.

Granted Patents 13.57 94.75 0 12
Citations-weighted Patents 199.02 1589.75 0 173.72
Patents value (Million Dollar) 287.16 3434.04 0 74.8
Expected change in protection time 445.02 118.57 273.29 571.4
Sales (Million Dollar) 2337.66 9997.57 2.59 4456.27
Age 14.73 13.88 1 37
Employment (Thousands) 10.85 42.01 .05 22.92
R&D Expenditure (Million Dollar) 60.87 359.06 0 58.78

The Table reports the summary statistics of di�erent variables used in the paper by �rm
(COMPUSTAT �rms) and year
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Table 1.A.5: Patent term change and variation across technical areas

Technical Section Nb. Fields ∆Tj S.D.(∆Tj) Pr(∆Tj < 0) S.D.(Pr(∆Tj < 0))

A Human Necessities 83 484.99 104.01 .06 .06

B Operations, Transp. 163 489.22 91.87 .05 .05

C Chemistry, Metallurgy 84 376.41 158.87 .13 .12

D Textiles, Paper 37 465.31 98.84 .05 .06

E Fixed Constructions 29 554.15 44.22 .03 .02

F Mechanical Engineering 98 531.53 94.48 .04 .03

G Physics 78 434.05 123.6 .08 .12

H Electricity 49 462.77 75.43 .06 .04

The table reports the number �elds, i.e., 4-digit IPC classes (column 2), the average change in
patent term (column 2), the standard deviation in average pending period (column 4), the average
probability of losing protection time from TRIPs (column 5), and the standard deviation of this
probability (column 6) across 1-digit IPC technical areas (column 1).

Table 1.A.3: Summary statistics by industry and year

Variable Mean S.D. 10th p. 90th p.

Granted Patents 199.23 591.3 .44 491.7
Citations-weighted Patents 1433.73 6930.68 1.4 2656.01
Patents value (Million Dollar) 3015.86 16684.91 .38 4595.21
Expected change in protection time 474.27 87.17 377.46 564.72
Avg. TFP Growth (p.p.) .39 6.43 -6.09 6.86
Avg. In�ation (p.p.) 1.89 4.87 -1.53 6.26

The Table reports the summary statistics of di�erent variables used in the paper by industry
(6-digit NAICS) and year

Table 1.A.4: Correlation between Pending Period and Field Characteristics

Variable Correlation Weighted Corr.

Number of Applications .13
Number of Second Filings .18
Perc. Growth of Patents -.02
Number of First Grants .08
Patents at EPO .14
Avg. Pending Period EPO .27 .44
Share of Second Filings .3 .3

The �rst column reports the simple correlation between the average ex-ante pending period by �eld
and several average characteristics of the �eld. The second column reports the same correlations,
weighted by the �eld-speci�c number of patents.
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Appendix 1.B Additional empirical evidence

1.B.1 Anticipation and di�erences with Abrams (2009)

The objective of this subsection is to reconcile the divergent �ndings between Abrams

(2009) and this paper by taking into account the fact that Abrams (2009) assumed

the absence of policy anticipation, while I argue that �rms were aware of the pol-

icy change approximately 2.5 years before its implementation. Abrams (2009) made

three key assumptions: (i) no policy anticipation, (ii) a narrow sample window (6, 12,

or 24 months) around the policy implementation, and (iii) a two-period DiD speci�-

cation with a �eld-speci�c linear trend. I explain below how these assumptions led

to the positive e�ect of patent term on innovation found in Abrams (2009) and the

discrepancies with the current paper. To clarify the di�erences and facilitate compre-

hension, I �rst present a scheme. Next, I perform various analyses to demonstrate

that Abrams (2009)'s assumptions are likely to result in a violation of the parallel

trends assumption that underlies the DiD methodology.

1.B.1.1 Graphical scheme to build intuition

Panel (a) of Figure 1.B.1 presents a graphical representation of the DiD empirical

�ndings of the current paper, while panel (b) provides a view of the conclusions that

one can draw by focusing on a narrow window of data around policy implementation,

as in Abrams (2009). In panel (a), two signi�cant shocks from the policy change

are highlighted: the news at the end of 1992 (�rst vertical line) and implementation

in June 1995 (second vertical line). Section 1.4 of the paper demonstrates that the

marginal e�ect of a relative increase in patent term, represented by the solid dark

blue line in the scheme, is negative between news and implementation (Fact 1) and

negative after implementation (Fact 2). The sign of the two e�ects is relative to the

baseline innovation level just before the �rst news shock. Panel (b) narrows in on a
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Figure 1.B.1: Graphical illustration of di�erences with Abrams (2009)

(a)

(b)

small window around implementation and illustrates that the di�erence between the

post-implementation and pre-implementation policy e�ects is positive, even though

both e�ects are negative relative to the pre-news baseline. This is because the magni-

tude of the post-implementation e�ect is initially weak. This pre-post comparison is

similar to assuming no policy anticipation and using a traditional pre-post DiD com-

parison around the event, as in Abrams (2009). Hence, this provides a preliminary

understanding of why Abrams (2009) �nds a positive reduced-form DiD coe�cient

after implementation rather than a negative one.

The present paper suggests that a patent term increase has a direct positive e�ect

on innovation and R&D, either in the long-run or in the short run if the policy is im-

plemented without anticipation. However, Section 1.4 reveals that with anticipation,

a patent term increase may lead to a protracted decline in innovation, while Section

1.8 demonstrates that anticipation is crucial not only from a positive standpoint but

also from a normative perspective.
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1.B.1.2 Formal analyses

As an initial step, I begin by replicating the results of Abrams (2009) using my own

data. Speci�cally, I estimate the two-period di�erence-in-di�erence (DiD) speci�ca-

tion

Yj,t = αj + Postt + δ∆Tj + βPostt∆Tj + χjt+Xj,tγ + εj,t (1.24)

which is equivalent to Speci�cation (2) in Abrams (2009), and report the results in

Table 1.B.1. In this speci�cation, j indexes technical �elds�which are represented by

4-digit IPC classes in my setting�while t identi�es a speci�c month. The outcome

variable Yj,t represents either the number of patents �led or the number of citations-

weighted patents in month-t and �eld-j. The �eld �xed e�ects αj are included, and

the dummy variable Postt takes a value of 1 if month-t comes after the policy imple-

mentation of June 1995 and 0 otherwise. ∆Tj is the policy-induced change in patent

term, and χjt represents a �eld-speci�c monthly linear trend. Additionally, Xj,t in-

cludes �eld-speci�c controls, such as the average number of inventors per patent and

the average number of claims per patent. The di�erence-in-di�erence coe�cient of

interest is β, which is the coe�cient of the interaction term between ∆Tj and the

post-implementation dummy variable.

Columns (1) and (2) of Table 1.B.1 present the results for the number of granted

patents as the outcome variable, and they are consistent with the sign of Abrams

(2009)'s estimates. However, the magnitude of the estimates is smaller in my repli-

cation due to two reasons. First, Abrams (2009) restricts the sample to technical

�elds with at least thirty patents in every year, while I do not impose this restriction.

Second, Abrams (2009) de�nes technical �elds as USPC classes, which are slightly

broader than the 4-digit IPC classes that I use. Consequently, the baseline average

number of patents in each �eld is smaller in my sample than in Abrams (2009), leading

to smaller marginal e�ects. When I impose the same restriction as Abrams (2009), I
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Table 1.B.1: Replication of Abrams (2009)'s results

(1) (2) (3) (4)
Patents Patents Citations Citations

Postt -12.238∗∗∗ -17.261∗∗∗ -55.151∗∗ -76.602∗∗

(3.106) (4.051) (22.098) (31.091)

Postt × ∆Tj 0.020∗∗∗ 0.029∗∗∗ 0.072∗ 0.109∗

(0.006) (0.008) (0.041) (0.059)

Avg. Num. of Inventors 0.216∗∗∗ 4.121∗∗∗

(0.048) (0.539)

Avg. Num. of Claims -0.005 0.537∗∗∗

(0.004) (0.080)

Constant 14.640∗∗∗ 16.980∗∗∗ 108.129∗∗∗ 111.448∗∗∗

(0.200) (0.235) (1.763) (2.372)
Field F.E. Y Y Y Y
Field-speci�c Trend Y Y Y Y
Observations 14904 12603 14904 12603

Columns (1) and (2) report the OLS estimates of speci�cation (1.24) using granted patents

�led in month-t and classi�ed in �eld-j as dependent variable. Columns (3) and (4) report

the OLS estimates of speci�cation (1.24) using citations-weighted granted patents �led in

month-t and classi�ed in �eld-j as dependent variable. Standard errors are clustered by

technical �eld. Statistical signi�cance levels: ∗(p < 0.05),∗∗ (p < 0.01),∗∗∗ (p < 0.001)

obtain estimates that are approximately four times larger than those in Table 1.B.1

and are in line with the original results. Columns (3) and (4) present the results for

citations-weighted patents as the outcome variable.

In the second step of the analysis, it is demonstrated that assuming the absence of

anticipation creates con�icts with the employed two-period DiD speci�cation, leading

to problems with the parallel trends assumption and causing upward bias in the

estimates of β. To illustrate this, two technical �elds, C12R and A01H, are taken as

examples. The expected change in protection time for C12R is negative (-75 days),

while A01H shows a slightly positive change in patent term (+50 days).

The number of granted patents in the two �elds over the period 1990-2000 is

plotted in Figure 1.B.2. The �rst vertical line represents the policy news of November

1992, the second refers to the formal rati�cation of TRIPs in the US in December

1994, and the third line represents the date of policy implementation in June 1995.
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Figure 1.B.2: Number of monthly patents in a losing and a gaining �eld
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The plot shows the time series of granted patents applied for in month-t and classi�ed in
�eld C12R, the "losing �eld", and �eld A01H, the "marginally gaining �eld".

The �gure shows that patenting in the �eld losing protection began to accelerate well

before December 1994.

Figure 1.B.3 depicts the implications of this anticipation for the estimated �eld-

speci�c time trend in Abrams (2009)'s speci�cation. The vertical lines in the �gure

represent the bounds of the outer 12-month estimation window used in Abrams (2009),

with an inner gap of 2 months before and after June 1995. The estimated trends for

the �eld losing and gaining protection are represented by the red solid and dashed

lines, respectively. As the �gure shows, these trends do not accurately capture the

long-run behavior of patenting in the two �elds.

The interpretation of the β DiD estimate of speci�cation (1.24) is signi�cantly

impacted by these �ndings. According to the Frisch-Waugh-Lowell theorem, β can

be obtained from the residuals regression of the outcome variable and the regressors

on a �eld-speci�c linear trend. In practice, it is important to con�rm that the pre-

trends assumption underlying the DiD exercise holds in the residuals of the patenting

outcomes from the estimated linear trend.

Figure 1.B.4 shows the time series of these residuals for the two �elds of interest. It

is evident from the plot that while the parallel trend assumption appears to hold in the
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Figure 1.B.3: Number of monthly patents in a losing and a gaining �eld - Fitted
trends from Abrams (2009)
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The plot shows the time series of granted patents applied for in month-t and classi�ed in
�eld C12R, the "losing �eld", and �eld A01H, the "marginally gaining �eld". In red, it also
plots the �tted �eld-speci�c time trends implied by Abrams (2009) speci�cation and sample
restriction.

raw data, as con�rmed by section 1.4 of the paper, the same is not true when focusing

on the trend-deviations. This signi�cantly undermines any causal interpretation of

the static di�erence-in-di�erence estimates in Abrams (2009).

The paper identi�es two main issues with Abrams (2009)'s assumptions. Firstly,

the assumption of no policy anticipation is overly restrictive, and the paper argues that

assuming anticipation is a more conservative approach. A dynamic DiD speci�cation

like equation (1.2) can capture reactions to news or the absence thereof during the pre-

implementation period. Secondly, the narrow time-window sample used in Abrams

(2009) means that the �tted �eld-speci�c trend does not capture the overall behavior

of the series, which leads to a violation of the parallel trends assumption in trend-

deviations. This makes cross-�eld comparisons misleading because �elds become bad

counterfactuals of one another. The simplest solution is to extend the estimation

window to improve the representation of the series and reduce concerns related to

the violation of the parallel trends assumption. Therefore, Figure 1.B.5 replicates the

plot of Figure 1.B.3 but extends the sample from June 1990 to November 1994 and
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Figure 1.B.4: Number of monthly patents in a losing and a gaining �eld - Trend
deviations
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The plot shows the time series of the deviation of granted patents from a �eld-speci�c linear
trend on a time-window of data corresponding to April 1994 to April 1995 and from August
1995 to July 1996. Field C12R is the "losing �eld" and �eld A01H is the "marginally gaining
�eld". The �tted �eld-speci�c time trends are those implied by Abrams (2009) speci�cation
and sample restriction.

from December 1995 to June 2000, expanding both the outer and inner window. The

rationale for expanding the inner window is to further reduce anticipation concerns

by excluding the six months between the formal signing of the URAA (December

1994) and policy implementation. As shown in Figure 1.B.5, the �tted trends better

represent the behavior of the series in the sample.

After observing the improvement in the representation of the behavior of the

patenting series by extending the estimation window, I proceed to replicate the esti-

mation of speci�cation (1.24) used by Abrams (2009) on the extended sample of June

1990 - November 1994 and December 1995 - June 2000. The results of this exercise are

reported in Table 1.B.2, which shows that after correcting for the problems discussed

earlier, the DiD coe�cient changes sign compared to Abrams (2009) analysis. These

�ndings are consistent with the reduced-form estimates of Section 1.4 of the paper,

providing further support for my argument.
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Figure 1.B.5: Number of monthly patents in a losing and a gaining �eld - Fitted
trends on extended sample

0

50

100

150

1990m1 1992m1 1994m1 1996m1 1998m1 2000m1

Monthly application date

Losing IPC Trend Ext. Window, losing

Marginally gaining IPC Trend Ext. Window, gaining

The plot shows the time series of granted patents applied for in month-t and classi�ed in �eld
C12R, the "losing �eld", and �eld A01H, the "marginally gaining �eld". In red, it also plots
the �tted �eld-speci�c time trends obtained on an extended sample compared to Abrams
(2009). The new sample overs the periods June 1990 to November 1994 and December 1995
to June 2000.

Table 1.B.2: Replication of Abrams (2009)'s results - Extended Sample

(1) (2) (3) (4)
Patents Patents Citations Citations

Postt 1.357∗∗∗ 1.975∗∗∗ 122.192∗∗∗ 170.237∗∗∗

(0.440) (0.568) (8.691) (11.239)

Postt × ∆Tj -0.003∗∗∗ -0.005∗∗∗ -0.226∗∗∗ -0.320∗∗∗

(0.001) (0.001) (0.018) (0.023)

Avg. Num. of Inventors 0.152∗∗∗ 3.489∗∗∗

(0.045) (0.900)

Avg. Num. of Claims 0.002 0.649∗∗∗

(0.005) (0.093)

Constant 13.444∗∗∗ 15.681∗∗∗ 110.019∗∗∗ 114.221∗∗∗

(0.059) (0.130) (1.168) (2.574)
Field F.E. Y Y Y Y
Field-speci�c Trend Y Y Y Y
Observations 72657 60969 72657 60969

Columns (1) and (2) report the OLS estimates of speci�cation (1.24) using granted patents

�led in month-t and classi�ed in �eld-j as dependent variable. Columns (3) and (4) report

the OLS estimates of speci�cation (1.24) using citations-weighted granted patents �led in

month-t and classi�ed in �eld-j as dependent variable. The sample is extended to the period
June 1990 - November 1994 and December 1995 - June 2000. Standard errors are clustered

by technical �eld. Statistical signi�cance levels: ∗(p < 0.05),∗∗ (p < 0.01),∗∗∗ (p < 0.001)
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1.B.2 Technical �eld-level analyses

1.B.2.1 Discussion of bunching in the pre-implementation quarter

In this subsection, I examine the bunching of patent applications in 1995Q2, the

last quarter before policy implementation. As previously discussed in Subsection

1.4.1.2, I relate the bunching behavior to the policy implementation details of the

policy. The URAA was formally signed in December 1994, and the new policy had

full e�ectiveness in June 1995. However, until June 1995, innovators could bene�t

from the most favorable regime. This had a dual e�ect. Firstly, it encouraged all

innovators at risk of receiving lower protection under the new regime to �le their

applications before implementation. Secondly, it allowed innovators in �elds with

a longer term to obtain the more favorable policy before the �nal implementation.

Both groups had an incentive to �le more, but the pressure to increase innovation

intensity and �le applications before implementation was stronger in �elds about to

lose protection from the policy. Section 1.4 shows a markedly negative DiD estimate

in 1995Q2 for this reason.

To illustrate this point, Figure 1.B.6 presents the quarterly number of granted

patents by quarter of applications in two �elds with opposite exposure to the policy

change. Panel (a) shows the 4-digit technical �eld C12N, related to microorganisms

and enzymes (red solid line), and the 4-digit �eld F01B, related to internal combus-

tion engines (green dashed line). Field C12N had a longer average pending period

of approximately 3 years and 2 months before 1992, thus losing on average 2 months

of e�ective patent term from the policy. In contrast, examination in �eld F02B was

quicker, around 1.5 years. Therefore, the policy change induced an average increase in

patent term of 1.5 years in this �eld. The �gure demonstrates that patenting activity

was remarkably similar in the two �elds before the policy news (�rst vertical line) but

diverged afterwards. Between the policy news and implementation (second vertical

line), patenting in the �eld expected to lose protection time in the future experi-
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enced a marked acceleration, culminating in the pre-implementation quarter. This

corresponds to incentives to �le applications under the old policy regime, resulting in

bunching in 1995Q2. On the contrary, patenting in the �eld expected to receive longer

protection from the new policy declined slightly relative to the pre-news trend. After

implementation, patenting in microorganisms and enzymes remained higher than in

internal combustion engines for at least 5 years, despite a shorter e�ective patent

term.

Panel (b) of the �gure shows the di�erence between the green line (patenting in the

�eld gaining protection) and the red line (patenting in the �eld losing protection). This

represents what the di�erence-in-di�erence estimates of Section 1.4 capture, a relative

comparison of �elds with a larger versus smaller change in patent term. Since the

increase in patenting rates in the losing �eld is considerably larger than in the gaining

�eld, the DiD estimate of the pre-implementation quarter is signi�cantly negative.

To expand on this idea for the other technical �elds in the sample, I examine

the excess mass of innovation in 1995Q2 for each �eld and its relationship to the

policy-induced change in patent term. The excess mass is de�ned as the absolute

di�erence between the actual number of granted applications applied for in 1995Q2

and the number predicted by a �eld-speci�c linear trend estimated from the quarterly

patenting series prior to policy news. These �ndings are presented in Figure 1.B.7.

Panel (a) of the �gure depicts the negative correlation between �eld-speci�c ex-

cess mass and the policy-induced change in average e�ective patent term. This result

aligns with the discussion in the previous section, which suggested that �elds with a

worse patent term adjustment from the policy were more likely to experience stronger

bunching before policy implementation. Panel (b) of the �gure presents a complemen-

tary perspective by plotting the correlation between innovation excess mass and the

�eld-speci�c share of patents �led before the policy news that experienced a pending

period longer than three years, which is the critical threshold for losing vs. gaining
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Figure 1.B.6: Patenting in �elds with positive vs. negative change in patent term

(a) Patents by application quarter
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Panel (a) of the �gure shows the number of granted patents by application quarter in the

4-digit IPC C12N �MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF;

PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTA-

TION OR GENETIC ENGINEERING; CULTURE MEDIA" (red solid line) and in the

4-digit IPC F02B �INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION EN-

GINES IN GENERAL" (green dashed line). Field C12N's policy-induced change in e�ective

patent term is -56 days. Field F02B's policy-induced change in e�ective patent term is

+558 days. The �rst vertical line marks the news date in 1992Q3 and the second vertical

line marks implementation in 1995Q2. Panel (b) of the �gure plots the di�erence between

patenting in �eld F02B�gaining protection�and in �eld C12N�losing protection.
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Figure 1.B.7: Correlation between bunching and policy treatment
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Panel (a) of the �gure shows the correlation between the TRIPs-induced change in average

e�ective patent term across technical �elds and the excess mass of granted patents applied

for in 1995Q2. The latter is computed as the level di�erence between the number of granted

patents applied for in 1995Q2 and a baseline level implied by a �eld-speci�c linear trend

�tted on the series of quarterly patents by application date in the period 1985Q1-1992Q3.

Panel (b) of the �gure shows the correlation between the �elds-speci�c share of patents with

a pending period longer than 3 years�computed using patents whose application date falls

between 1985Q1 and 1992Q3�and the excess mass of granted patents applied for in 1995Q2.

For graphical readability, both panels restrict the sample to �elds with more than 15 granted

applications per quarter. Evidence is analogous on the full sample.
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protection from the policy change. The correlation is positively correlated, and con-

sistent with the �nding of panel (a). Fields with a relatively smaller change in patent

term in panel (a) are also those where, on average, the probability of facing a pending

period longer than three years is higher. This, in turn, increases the incentives to �le

applications before implementation.

1.B.2.2 Citations-weighted patents

Figure 1.B.8 presents DiD estimates of speci�cations (1.2) and (1.3), where citations-

weighted patents by application quarter and �eld are used as the outcome variable.

Forward citations are a widely used measure of patent quality and indicate the sci-

enti�c value of a patent, as they capture how many other technologies the patent is

relevant to. The outcome of interest is computed by counting the number of forward

citations received by each patent within �ve years from the grant date.

The DiD estimates shown in Figure 1.B.8 exhibit similar dynamics to those seen for

patents in the paper. However, the magnitude of the e�ects is stronger. Speci�cally,

news of a 1-month increase in patent term leads to a decline of 10.5 citations-weighted

patents (approximately 6.6% of the 1992Q3 baseline) one year before implementation.

After implementation, the average quarterly e�ect is -75 citations-weighted patents,

which represents 47% of the baseline.

1.B.2.3 Private economic value of patents

Results of speci�cation (1.2) with patent value as dependent variable are in Figure

1.B.9.

1.B.2.4 Claims-weighted patents

Results of regression (1.2) with claims-weighted patents as outcome are in Figure

1.B.10.
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Figure 1.B.8: Marginal e�ect of e�ective patent term on citations-weighted patents

(a) Linear model
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(b) Poisson model
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Panel (a) and panel (b) show the βk coe�cients of speci�cation (1.2) and (1.3), respectively, having
as dependent variable quarter-t and �eld-j number of citations-weighted patents. Point estimates in
panel (a) refer to the marginal e�ect of a one-day anticipated change in patent term on the level of
the outcome variable, relative to its baseline value in 1992Q3, reported at the bottom of the �gure.
Point estimates in panel (b) refer to the marginal e�ect of a one-day anticipated change in patent
term on the percent deviation of the outcome variable from its baseline value in 1992Q3, reported at
the bottom of the �gure. Standard errors are clustered by technical �eld and 95% con�dence bands
are plotted. The �rst vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).
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Figure 1.B.9: E�ect of 1 more day of protection on patents value
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The plot shows the βk coe�cients of speci�cation (1.2). Dependent variable is quarter-t and
�eld-j dollar value of granted patents built from Kogan et al. (2017). Point estimates refer
to the marginal e�ect of a one-day anticipated change in patent term on the level of the
outcome variable, relative to its baseline value in 1992Q3, reported at the bottom of the
�gure. Standard errors are clustered by technical �eld. 95% con�dence bands are plotted.
The �rst vertical line refers to the quarter before the policy news (1992Q3) and the second
vertical line refers to the quarter before the policy implementation (1995Q2).

Figure 1.B.10: E�ect of 1 more day of protection on claims-weighted patents
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The plot shows the βk coe�cients of speci�cation (1.2). Dependent variable is quarter-t
and �eld-j claims-weighted granted patents. Standard errors are clustered by technical �eld.
95% con�dence bands are plotted. Point estimates refer to the marginal e�ect of a one-day
anticipated change in patent term on the level of the outcome variable, relative to its baseline
value in 1992Q3, reported at the bottom of the �gure. The �rst vertical line refers to the
quarter before the policy news (1992Q3) and the second vertical line refers to the quarter
before the policy implementation (1995Q2).
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Figure 1.B.11: Average pending time around the treatment date
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The plot shows the βk coe�cients of speci�cation (1.2) having as dependent variable quarter-t and
�eld-j average pending period. Point estimates refer to the marginal e�ect of a one-day anticipated
change in patent term on the level of the outcome variable, relative to its baseline value in 1992Q3,
reported at the bottom of the �gure. Standard errors are clustered by technical �eld and 95%
con�dence bands are plotted. The �rst vertical line refers to the quarter before the policy news
(1992Q3) and the second vertical line refers to the quarter before the policy implementation (1995Q2).

1.B.2.5 Reaction of the average pending period to the policy

The βk coe�cients of the di�erence-in-di�erence speci�cation (1.2), with the average

pending period of patents �led in a given quarter t and classi�ed in �eld j as the

dependent variable, are plotted in Figure 1.B.11. The results indicate that changes

in the average pending period after policy shocks are not associated with ex-ante

di�erences in the average pending period across �elds before the news.

1.B.2.6 Extension of the analysis to 2010Q4

Figure 1.B.12 presents the results of the speci�cation (1.2) with citations-weighted

patents as the dependent variable. The sample has been extended up to 2010Q4, and

the results indicate a recovery trend of the DiD coe�cients towards zero towards the

end of the sample period.

1.B.2.7 Market access to developing countries

This subsection examines the impact of stronger patent rights induced by TRIPs in

Low and Middle-Income Countries (LMICs) on the DiD estimates in Section 1.4 of the
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Figure 1.B.12: E�ect of 1 more day of protection on cit.s-weighted patents
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The plot shows the βk coe�cients of speci�cation (1.2) having as dependent variable quarter-t
and �eld-j 5-years citations-weighted patents. The sample is extended to 2010Q4. Standard
errors are clustered by technical �eld. Point estimates refer to the marginal e�ect of a one-
day anticipated change in patent term on the level of the outcome variable, relative to its
baseline value in 1992Q3, reported at the bottom of the �gure. Standard errors are clustered
at the �eld-level and 95% con�dence bands are plotted. The �rst vertical line refers to the
quarter before the policy news (1992Q3) and the second vertical line refers to the quarter
before the policy implementation (1995Q2).

paper. As discussed earlier, TRIPs strengthened intellectual property protection in

many developing countries, facilitating the access of US innovators to foreign markets.

If the pre-news average pending period correlates with �eld-speci�c bene�ts of access-

ing new markets, then the DiD estimates in Subsection 1.4.1.2 would be impacted

by the patent term change as well as the access to new markets. In this subsection,

evidence is presented to demonstrate that this is not the case.

The access of US innovators to new markets is measured by the �eld- and quarter-

speci�c share of US patents for which applicants �le additional applications in LMICs

where TRIPs compliance necessitated strengthened patent rights. A list of such coun-

tries is obtained from Kyle and McGahan (2012), with the main ones being China,

India, Brazil, and South Korea. For each US patent application, the additional patent

applications to national o�ces of LMICs countries in the same patent family are

checked, and the outcome of interest is the share of �eld-j and quarter-t US patents

with at least one additional foreign �ling in LMICs adopting the TRIPs, denoted by

SLMICs
j,t .
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Figure 1.B.13: Marginal e�ect of patent term on the share of patents to LMICs
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The plot shows the βk coe�cients of speci�cation (1.2). Dependent variable is quarter-t
and �eld-j share of US �st �lings seeking an extension of patent protection to low- and
middle-income countries where the TRIPs strengthened patent rights. Point estimates refer
to the marginal e�ect of a one-day anticipated change in patent term on the level of the
outcome variable, relative to its baseline value in 1992Q3, reported at the bottom of the
�gure. Standard errors are clustered by technical �eld. 95% con�dence bands are plotted.
The �rst vertical line refers to the quarter before the policy news (1992Q3) and the second
vertical line refers to the quarter before the policy implementation (1995Q2).

Figure 1.B.13 displays the βk coe�cients of speci�cation (1.2) with SLMICs
j,t as

the dependent variable. The estimated coe�cients are close to zero before the policy

news, indicating the absence of pre-trends, and remain null after the implementation

of TRIPs. This indicates that the TRIPs-related change in e�ective patent term is

not related to TRIPs-induced access to new LMICs across technical �elds. Similar

results are obtained when focusing on individual countries such as China, India, South

Korea, and Brazil, and when using a Poisson model instead of a linear speci�cation

or using the share of citations-weighted patents rather than the share of patents.

1.B.2.8 Ex-post e�ective treatment instrumented by ex-ante treatment

This subsection employs an IV regression to address concerns about the represen-

tativeness of the ex-ante pending period in computing the policy-induced change in

patent term. Speci�cally, the change in patent term is now based on the ex-post

realized average pending period for patents �led in quarter-t and �eld-j, which is in-

strumented by the �eld-speci�c change in patent term, as computed using the ex-ante
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pending period, interacted with quarterly dummy variables. This approach ensures

that the analysis utilizes the ex-post e�ective change in patent term in the second stage

regression, while leveraging the ex-ante pending period to induce plausibly exogenous

variation in the ex-post patent term change.

The speci�cation of the second stage regression is

Yj,t = αj +

2000Q4∑
k=1985Q1

γk1(t=k) +

2000Q4∑
k=1985Q1

βk1(t=k)∆T̃j,t + εj,t (1.25)

where all the variables have the same meaning as in speci�cation (1.2), and ∆̃T j,t

is the change in patent term based on the ex-post, realized e�ective average pending

period computed for patents �led in quarter-t and classi�ed in �eld-j. In turn, the

�rst stage regressions are

1(t=k)T̃j,t = ηj +

2000Q4∑
k=1985Q1

ψk1(t=k) +

2000Q4∑
k=1985Q1

δk1(t=k)∆Tj + uj,t ∀k (1.26)

Figure 1.B.14 displays the βk coe�cients of (1.25) where the number of granted

patents serves as the dependent variable. The �ndings are fully consistent with the

primary evidence presented in Section 1.4, which applies to citations-weighted patents

as well. However, due to space constraints, results for citations-weighted patents are

not reported here.

1.B.2.9 Triple di�erence analysis with the standard deviation of the pend-

ing period

In this subsection, I propose that the impact of TRIPs-induced patent term changes on

R&D and innovation is more pronounced when �rms can more accurately anticipate

the change in patent term. To support this argument, I utilize a triple di�erence

speci�cation that interacts the expected change in protection time (∆Tj) for �eld j
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Figure 1.B.14: Marginal e�ect of 1 more day of e�ective ex-post protection change on
granted patents
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The plot shows the βk coe�cients of speci�cation (1.25) having as dependent variable
quarter-t and �eld-j number of granted patents. I omit the dummy for 1992Q3, which
is the pre-treatment quarter. Point estimates in panel (a) refer to the marginal e�ect of
a one-day anticipated change in patent term on the level of the outcome variable, relative
to its baseline value in 1992Q3, reported at the bottom of the �gure. Standard errors are
clustered by technical �eld and 95% con�dence bands are plotted. The �rst vertical line
refers to the quarter before the policy news (1992Q3) and the second vertical line refers to
the quarter before the policy implementation (1995Q2).

with a dummy variable that takes on a value of 1 if the standard deviation of the

average pending period, as computed using patents granted before the policy news,

exceeds the median value across technical �elds. The speci�cation of the regression is

Yj,t = αj +

2000Q4∑
k=1985Q1

γ1,k1(t=k) +

2000Q4∑
k=1985Q1

γ2,k1(t=k)dσj≤σm+

+

2000Q4∑
k=1985Q1

ψk1(t=k)∆Tj +

2000Q4∑
k=1985Q1

θk1(t=k)∆Tjdσj≤σm + εj,t

(1.27)

where all the variables follow the usual notation, σj is the �eld-speci�c standard

deviation of the pre-policy-news pending period, and σm is the median value of such

standard deviation across technical �elds.

Figure 1.B.15 displays the θ̂k coe�cients obtained from the previous regression

where the number of granted applications is the dependent variable. The negative

triple-di�erence coe�cients indicate that the negative e�ect of the policy change is

greater when dσj≤σm = 1, which implies that the standard deviation of the average
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Figure 1.B.15: Marginal e�ect of 1 more day of protection on granted patents - Triple
di�erence speci�cation
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The plot shows the θk coe�cients of regression (1.27) having as dependent variable Pj,t,
i.e. quarter-t and �eld-j number of granted patents. I omit the dummy for 1992Q3, which
is the pre-treatment quarter. Point estimates in panel (a) refer to the marginal e�ect of
a one-day anticipated change in patent term on the level of the outcome variable, relative
to its baseline value in 1992Q3, reported at the bottom of the �gure. Standard errors are
clustered by technical �eld and 95% con�dence bands are plotted. The �rst vertical line
refers to the quarter before the policy news (1992Q3) and the second vertical line refers to
the quarter before the policy implementation (1995Q2).

pending period is below the median. This suggests that the impact of the policy-

induced change in patent term is more accurately estimated in this case.

1.B.2.10 IV strategy

This subsection presents the IV DiD speci�cation discussed in Subsection 1.4.2 of the

paper. To isolate variation in the average pre-TRIPs pending period that is unrelated

to �eld-speci�c conditions of the US innovative environment after the TRIPs, the

IV strategy employs two external instruments: Z1,j and Z2,j. The �rst instrument

exploits heterogeneity in the congestion of di�erent technical units due to the nu-

merosity of secondary patent applications from foreign applicants relative to domestic

US inventors. This approach is motivated by the focus of the analysis on novel US

patents, i.e., US domestic invention. The second instrument relates to the technical

examination complexity that varies across �elds and is proxied by the technical �eld-

speci�c average pending period at the European Patent O�ce. Both instruments are
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computed using patents granted between January 1, 1990, and May 31, 1992, before

the policy news in 1992Q4, in order to minimize potential endogeneity concerns.

The �rst stage regressions are

∆Tj1(t=h) = ϕh,j +

2000Q4∑
k=1985Q1

ωh,k1(t=k) +

2000Q4∑
k=1985Q1

ηh,k,11(t=k)Z1,j

+

2000Q4∑
k=1985Q1

ηh,k,21(t=k)Z2,j + uh,j,t ∀h = 1985Q1,...,2000Q4

(1.28)

The left-hand-side variable of the regression is the product of the policy-driven

patent term change ∆Tj in �eld j and a dummy variable for quarter h. As such,

h indexes all �rst-stage equations ranging from 1985Q1 to 2000Q4, and subscripts

on the coe�cients indicate their associated variables. Speci�cally, ϕh,j represents the

�eld �xed e�ects for equation h, ωh,k denotes the quarterly e�ects for equation h, and

ηh,k,1 and ηh,k,2 correspond to the quarter-speci�c impact of instruments Z1,j and Z2,j

on the treatment variable in quarter h. The error term uh,j,t captures the residual

variation.

The second stage regression follows the same form as regression (1.2), but the

∆Tj1(t=h) terms on the right-hand side of the equation are replaced with �tted values

from (1.28). Results of the second stage regression are presented in Figure 1.B.16

for citations-weighted patents and in Figure 1.B.17 for R&D e�ort, proxied by the

number of inventors listed on patents.

1.B.2.11 IV Poisson model

In this subsection, I present the results of an IV Poisson model estimated using the

control function approach suggested by Wooldridge (1997). The aim of this empirical

exercise is to isolate variation in ∆Tj that is plausibly unrelated to US-speci�c factors

that may a�ect �eld-speci�c post-implementation innovation patterns beyond ∆Tj.
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Figure 1.B.16: Marginal e�ect of patent term on citations-weighted patents - IV
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The plot shows the βk coe�cients of 2SLS estimation of (1.2) following the IV strategy
detailed in appendix 1.B.2.10. External instruments are proxies of (i) congestion by foreign
secondary patent applications and (ii) technical examination complexity. The dependent
variable is 5-years citations-weighted patents �led in �eld j and quarter t. Point estimates
refer to the marginal e�ect of a one-day anticipated change in patent term on the level of
the outcome variable, relative to its baseline value in 1992Q3, reported at the bottom of
the �gure. Standard errors are clustered by technical �eld and 95% con�dence bands are
plotted. The �rst vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).

Figure 1.B.17: Marginal e�ect of patent term on R&D e�ort - IV
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The plot shows the βk coe�cients of 2SLS estimation of (1.2) following the IV strategy
detailed in appendix 1.B.2.10. External instruments are proxies of (i) congestion by foreign
secondary patent applications and (ii) technical examination complexity. The dependent
variable is the unique number of inventors operating on patents �led in �eld j and quarter t.
Point estimates refer to the marginal e�ect of a one-day anticipated change in patent term
on the level of the outcome variable, relative to its baseline value in 1992Q3, reported at the
bottom of the �gure. Standard errors are clustered by technical �eld and 95% con�dence
bands are plotted. The �rst vertical line refers to the quarter before the policy news (1992Q3)
and the second vertical line refers to the quarter before the policy implementation (1995Q2).
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To achieve this, the �rst external instrument Z1,j exploits heterogeneity in the

congestion of di�erent technical units due to the numerosity of secondary patent

applications from foreign applicants relative to domestic US inventors56. The second

external instrument Z2,j relates to heterogeneous technical examination complexity

across �elds, which I proxy by the technical �eld-speci�c average pending period at

the European Patent O�ce. Both instruments are computed using patents granted

between January 1, 1990 and May 31, 1992, i.e., before the policy news in 1992Q4, to

minimize potential endogeneity concerns.

The �rst stage equation is

∆Tj = γ1Z1,j + γ2Z2,j + uj

which I estimate by OLS to get residuals ûj. The control function approach consists

in pseudo-maximum likelihood estimation of the second stage Poisson model

Yj,t = exp
{
αj +

2000Q4∑
k=1985Q1

γk1(t=k) +

2000Q4∑
k=1985Q1

βk1(t=k)∆Tj +

2000Q4∑
k=1985Q1

θk1(t=k)ûj + εj,t

}
(1.29)

which augments speci�cation (1.3) to control for residuals ûj.

Figure 1.B.18 displays the β̂k estimates of (1.29) for raw patent count (panel

a) and number of unique inventors (panel b) as outcome variables. These results are

consistent with the DiD estimates of Subsection 1.4.1.2. Additionally, the θ̂k coe�cient

estimates for ûj terms are largely insigni�cant (p-values above 0.4), indicating the

exogeneity of ∆Tj.

56A patent application is de�ned as a second �ling if its application date at the USPTO is subse-
quent to its priority date, i.e., its earliest �ling date is determined at some foreign patent o�ce.
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Figure 1.B.18: Marginal e�ect of e�ective patent term on granted patents
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(b) R&D e�ort
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Panel (a) and panel (b) show the βk coe�cients of the IV Poisson model (1.29) having as dependent
variable quarter-t and �eld-j number of granted patents or number of unique inventors, respectively.
Point estimates refer to the marginal e�ect of a one-day anticipated change in patent term on the
percent deviation of the outcome variable from its baseline value in 1992Q3, reported at the bottom
of the �gures. Standard errors are clustered by technical �eld and 95% con�dence bands are plotted.
The �rst vertical line refers to the quarter before the policy news (1992Q3) and the second vertical
line refers to the quarter before the policy implementation (1995Q2).
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1.B.2.12 Inclusion of a �exible trend by 3-digit IPC class

To account for the potential impact of unobserved macroeconomic shocks that may

di�erentially a�ect innovation across sectors, I augment the DiD speci�cations (1.2)

and (1.3) with 3-digit IPC × quarterly �xed e�ects. Although a broader classi�cation

of technological patents compared to the 4-digit IPC de�ning �elds, the three-digit

IPC is su�ciently detailed to control for macroeconomic confounders such as the rise

of Information Technologies during the 1990s, the recovery from the 1991 recession,

Clinton's tax increases, reductions in defense spending after the end of the Cold War,

and changes to nominal interest rates.57 Therefore, the richer speci�cation is

Yj,t = αj +

2000Q4∑
k=1985Q1

γk1(t=k) +

2000Q4∑
k=1985Q1

βk1(t=k)Tj +
∑
f

2000Q4∑
k=1985Q1

dj∈f1(t=k) + εj,t

(1.30)

where all the terms have the same meaning as in (1.2). The new term
∑

f

∑2000Q4
k=1985Q1 dj∈f1(t=k)

collects all the interactions between 3-digit IPC dummy variables dj∈f and quarterly

dummies. 3-digit IPCs are indexed by f and dj∈f takes value one if 4-digit �eld j

belongs to the 3-digit �eld f . The coe�cients of interest remain the βk's. Figures

1.B.19 and 1.B.20 plot them for granted patents and citations-weighted patents as

outcome variables, respectively. Results are fully consistent with Section 1.4.

Moreover, the same holds when the batter of 3-digit times quarter �xed e�ects is

included in Poisson model (1.3). The speci�cation is

57For example, the 4-digit IPC "A23D" is "Edible Oils or Fats, e.g. Margarines Shortenings,
Cooking Oils". It is included in the 3-digit IPC "A23", "Food or Foodstu�s; Their Treatment, not
covered by other classes" and in the 1-digit IPC "A", "Human Necessities". It further includes
two 8-digit IPCs: "A23D 7/00", "Edible oil or fat compositions containing an aqueous phase, e.g.
margarines", and "A23D 9/00", "Other edible oils or fats, e.g. shortenings, cooking oils".
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Figure 1.B.19: E�ect of 1 more day of protection on granted patents

−.4

−.3

−.2

−.1

0
N

um
be

r o
f G

ra
nt

ed
 P

at
en

ts

19
85

q1

19
85

q3

19
86

q1

19
86

q3

19
87

q1

19
87

q3

19
88

q1

19
88

q3

19
89

q1

19
89

q3

19
90

q1

19
90

q3

19
91

q1

19
91

q3

19
92

q1

19
92

q3

19
93

q1

19
93

q3

19
94

q1

19
94

q3

19
95

q1

19
95

q3

19
96

q1

19
96

q3

19
97

q1

19
97

q3

19
98

q1

19
98

q3

19
99

q1

19
99

q3

20
00

q1

20
00

q3

Quarterly Dates

Baseline at (t−1): 31.184

The plot shows the βk coe�cients of speci�cation (1.30) having as dependent variable quar-
terly number of patents. Point estimates refer to the marginal e�ect of a one-day anticipated
change in patent term on the level of the outcome variable, relative to its baseline value in
1992Q3, reported at the bottom of the �gure. Standard errors are clustered by technical
�eld and 95% con�dence bands are plotted. The �rst vertical line refers to the quarter before
the policy news (1992Q3) and the second vertical line refers to the quarter before the policy
implementation (1995Q2).

Figure 1.B.20: E�ect of 1 more day of protection on citations-weighted patents
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The plot shows the βk coe�cients of speci�cation (1.30) having as dependent variable quar-
terly citations-weighted patents. Point estimates refer to the marginal e�ect of a one-day
anticipated change in patent term on the level of the outcome variable, relative to its base-
line value in 1992Q3, reported at the bottom of the �gure. Standard errors are clustered
by technical �eld and 95% con�dence bands are plotted. The �rst vertical line refers to the
quarter before the policy news (1992Q3) and the second vertical line refers to the quarter
before the policy implementation (1995Q2).
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Figure 1.B.21: E�ect of 1 more day of protection on granted patents
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The plot shows the βk coe�cients of speci�cation (1.31) having as dependent variable the
quarterly number of patents. Point estimates refer to the marginal e�ect of a one-day
anticipated change in patent term on the percent deviation of the outcome variable from its
baseline value in 1992Q3, reported at the bottom of the �gure. Standard errors are clustered
by technical �eld and95% con�dence bands are plotted. The �rst vertical line refers to the
quarter before the policy news (1992Q3) and the second vertical line refers to the quarter
before the policy implementation (1995Q2).

Yj,t = exp
{
αj +

2000Q4∑
k=1985Q1

γk1(t=k) +
∑
f

2000Q4∑
k=1985Q1

dj∈f1(t=k) +

2000Q4∑
k=1985Q1

βk1(t=k)∆Tj + εj,t

}
(1.31)

Figures 1.B.21 and 1.B.22 show that results remain fully analogous.

1.B.2.13 Triple di�erence with maintenance fees

In this subsection, I demonstrate that �elds with a greater proportion of patents

maintained until the maximum patent term display a stronger response to changes

in patent term. To accomplish this, I employ a triple di�erence speci�cation where

I interact the alteration in patent term ∆Tj with a binary variable that indicates

whether the �eld-speci�c proportion of patents for which maintenance fees are paid

at 11.5 years from grant is above 0.25. The speci�cation of the regression is
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Figure 1.B.22: E�ect of 1 more day of protection on citations-weighted patents
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The plot shows the βk coe�cients of speci�cation (1.31) having as dependent variable the
quarterly number of citations-weighted patents. Point estimates refer to the marginal e�ect
of a one-day anticipated change in patent term on the percent deviation of the outcome
variable from its baseline value in 1992Q3, reported at the bottom of the �gure. Standard
errors are clustered by technical �eld and 95% con�dence bands are plotted. The �rst vertical
line refers to the quarter before the policy news (1992Q3) and the second vertical line refers
to the quarter before the policy implementation (1995Q2).

Pj,t = αj +

2000Q4∑
k=1985Q1

γ1,k1(t=k) +

2000Q4∑
k=1985Q1

γ2,k1(t=k)dRj>25%+

+

2000Q4∑
k=1985Q1

ψk1(t=k)∆Tj +

2000Q4∑
k=1985Q1

βk1(t=k)∆TjdRj>25% + εj,t

(1.32)

where Pj,t is quarter-t and �eld-j number of granted applications, ∆Tj is the

�eld-speci�c change in patent term, and dRj>25% is the renewal dummy variable. I

omit the dummy for 1992Q3, which is the pre-treatment quarter. Standard errors

are clustered by technical �eld and 95% con�dence bands are plotted. Figure 1.B.23

plots the triple-di�erence coe�cients and shows that indeed �elds where renewal rate

is higher, the negative magnitude of DiD estimates is larger.

1.B.2.14 Placebo date

In this subsection, I present the results of a placebo test conducted at the technical

�eld-level to further examine the robustness of the �ndings. Speci�cally, I apply the

same speci�cation (1.2) as in Subsection 1.4.1.1, but I shift the analysis back in time
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Figure 1.B.23: E�ect of 1 more day of protection on granted patents - Triple di�erence
speci�cation
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The plot shows the βk coe�cients of speci�cation (1.32) having as dependent variable
quarter-t and �eld-j number of granted patents. Point estimates refer to the marginal e�ect
of a one-day anticipated change in patent term on the level of the outcome variable, relative
to its baseline value in 1992Q3, reported at the bottom of the �gure. Standard errors are
clustered by technical �eld. 95% con�dence bands are plotted. The �rst vertical line refers
to the quarter before the policy news (1992Q3) and the second vertical line refers to the
quarter before the policy implementation (1995Q2).

by 10 years, to a period where no treatment e�ect is expected to be observed. The

results, depicted in Figure 1.B.24, con�rm the validity of the estimated treatment

e�ects by showing no signi�cant changes in the outcome variables during the placebo

period.

1.B.2.15 TRIPs-related changes in tari�s

In this subsection, I demonstrate that the Uruguay Round of agreements-induced

changes in tari�s do not a�ect the DiD estimates of Section 1.4.

Firstly, I illustrate in Figures 1.B.25, 1.B.26, and 1.B.27 that there is no correlation

between the TRIPs-induced change in patent term ∆Tj and tari� intensity across

technical �elds for the US, Europe, and China, both in terms of pre-TRIPs 1996 level

(left panels) and post-TRIPs 1996-2001 change (right panels). Tari� intensity by 4-

digit IPC technical �elds is computed as a weighted average of the share of HS-2002

product codes with a reported tari� on imports from WTO members above 5%, and
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Figure 1.B.24: Marginal e�ect of 1 more day of protection on granted patents
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The plot shows the βk coe�cients of the speci�cation (1.2) having as dependent variable
quarter-t and �eld-j number of granted patents. The sample covers 1975Q1-1990Q4. Point
estimates refer to the marginal e�ect of a one-day anticipated change in patent term on
the level of the outcome variable, relative to its baseline value in 1982Q3, reported at the
bottom of the �gure. Standard errors are clustered by technical �eld. 95% con�dence bands
are plotted. The �rst vertical line refers to the quarter before the policy news (1982Q3) and
the second vertical line refers to the quarter before the policy implementation (1985Q2).

the data source for tari� pro�les is the WTO.58.

This con�rms that the paper's quasi-experimental cross-sectional variation in patent

term, which is based on the heterogeneous pending period across technical �elds, is

exogenous with respect to levels of and changes in import protection in the US and

other countries.

Furthermore, I con�rm that tari� changes do not bias DiD estimated by modifying

the DiD speci�cation (1.2) as follows

Yj,t = αj +

2000Q4∑
k=1985Q1
k ̸=1992Q3

γk1(t=k) +

2000Q4∑
k=1985Q1
k ̸=1992Q3

βk1(t=k)∆Tj+

+
∑

c={US,CH,EU}

2000Q4∑
k=1985Q1
k ̸=1992Q3

ζk,c1(t=k)∆Tariffc,j + εj,t

(1.33)

to control for the quarter-speci�c e�ect of the 2001-1996 change in tari� intensity in

region c (USA, China, Europe) and �eld j on innovation outcome Yj,t. Figures 1.B.28

and 1.B.29 plot the DiD estimates β̂k for patents and citations-weighted patents as

58Data were downloaded at the link http://tao.wto.org/ExportReport.aspx on 21/01/2022
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Figure 1.B.25: Correlation between US tari� intensity and change in patent term
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The left panel shows a scatter plot of a proxy of US tari� intensity by technological �eld
on the x-axis, and of the TRIPs-induced change in US patent term by technological �eld on
the y-axis. US tari� intensity by technological �eld is computed as a weighted average by
�eld of the the share of HS-2002 product codes that had a US tari� on imports from WTO
members above 5% in 1996. The data source for tari� pro�les is the WTO website at the
link http://tao.wto.org/ExportReport.aspx. Weights are the Algorithmic Probability
Links by Goldschlag, Lybbert and Zolas (2019). The right panel shows a scatter plot of the
change in the tari� intensity proxy over 1996-2001 on the x-axis, and of the TRIPs-induced
change in US patent term by technological �eld on the y-axis.
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Figure 1.B.26: Correlation between EU tari� intensity and change in patent term
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The left panel shows a scatter plot of a proxy of European tari� intensity by technological
�eld on the x-axis, and of the TRIPs-induced change in US patent term by technological
�eld on the y-axis. European tari� intensity by technological �eld is computed as a weighted
average by �eld of the the share of HS-2002 product codes that had a EU tari� on imports
from WTO members above 5% in 1996. The data source for tari� pro�les is the WTO
website at the link http://tao.wto.org/ExportReport.aspx. Weights are the Algorithmic
Probability Links by Goldschlag, Lybbert and Zolas (2019). The right panel shows a scatter
plot of the change in the tari� intensity proxy over 1996-2001 on the x-axis, and of the
TRIPs-induced change in US patent term by technological �eld on the y-axis.
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Figure 1.B.27: Correlation between Chinese tari� intensity and change in patent term
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The left panel shows a scatter plot of a proxy of Chinese tari� intensity by technological �eld
on the x-axis, and of the TRIPs-induced change in US patent term by technological �eld on
the y-axis. European tari� intensity by technological �eld is computed as a weighted average
by �eld of the the share of HS-2002 product codes that had a Chinese tari� on imports
from WTO members above 5% in 1996. The data source for tari� pro�les is the WTO
website at the link http://tao.wto.org/ExportReport.aspx. Weights are the Algorithmic
Probability Links by Goldschlag, Lybbert and Zolas (2019). The right panel shows a scatter
plot of the change in the tari� intensity proxy over 1996-2001 on the x-axis, and of the
TRIPs-induced change in US patent term by technological �eld on the y-axis.
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Figure 1.B.28: Marginal e�ect of 1 more day of protection on granted patents
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The plot shows the βk coe�cients of the speci�cation (1.33) having as dependent variable
quarter-t and �eld-j number of granted patents. Point estimates refer to the marginal e�ect
of a one-day anticipated change in patent term on the level of the outcome variable, relative
to its baseline value in 1992Q3, reported at the bottom of the �gure. Standard errors are
clustered by technical �eld and 95% con�dence bands are plotted. The �rst vertical line
refers to the quarter before the policy news (1992Q3) and the second vertical line refers to
the quarter before the policy implementation (1995Q2).

outcome variables. Results are fully consistent with those in the main text.

1.B.2.16 Dropping technical �elds related to the pharmaceutical sector

According to Kyle and McGahan (2012), US pharmaceutical �rms increased their

R&D investments after the implementation of TRIPs, which mandated that develop-

ing countries allow patenting of several pharmaceutical products. To address concerns

about the potential in�uence of a speci�c sector on the �ndings presented in Section

1.4 of this paper, I have re-estimated the speci�cation 1.2 on a restricted sample.

This sample excludes all technical �elds, such as A01H, A61K, A61P, C07D, C02F,

C07G, C07H, C07J, C07K, C12M, C12N, C12P, C12Q, C12S, and G01N, that may be

related to the pharmaceutical and biotech industries. The results, as shown in Figure

1.B.30, indicate that DiD estimates for granted patents as a dependent variable are

nearly identical to those presented in Section 1.4.
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Figure 1.B.29: Marginal e�ect of 1 more day of protection on granted patents
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The plot shows the βk coe�cients of the speci�cation (1.33) having as dependent variable
quarter-t and �eld-j number of citations-weighted patents. Point estimates refer to the
marginal e�ect of a one-day anticipated change in patent term on the level of the outcome
variable, relative to its baseline value in 1992Q3, reported at the bottom of the �gure.
Standard errors are clustered by technical �eld and 95% con�dence bands are plotted. The
�rst vertical line refers to the quarter before the policy news (1992Q3) and the second vertical
line refers to the quarter before the policy implementation (1995Q2).

Figure 1.B.30: E�ects of patent term on granted patent excluding pharmaceutical
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The plot shows the βk coe�cients of the speci�cation (1.2) having as dependent variable
quarter-t and �eld-j number of granted patents. Pharma-related technical �elds A01H,
A61K, A61P, C07D, C02F, C07G, C07H, C07J, C07K, C12M, C12N, C12P, C12Q, C12S,
and G01N are dropped from the sample. Point estimates refer to the marginal e�ect of a
one-day anticipated change in patent term on the level of the outcome variable, relative to its
baseline value in 1992Q3, reported at the bottom of the �gure. Standard errors are clustered
by technical �eld and 95% con�dence bands are plotted. The �rst vertical line refers to the
quarter before the policy news (1992Q3) and the second vertical line refers to the quarter
before the policy implementation (1995Q2).
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1.B.2.17 Isolating direct implementation e�ect � Linear model IV

In this subsection, an extension of the empirical strategy discussed in Subsection 1.4.4

is analyzed in an instrumental variable (IV) setting.

The second stage equation of the IV strategy is identical to speci�cation (1.7).

However, 2SLS estimation employs as excluded instruments for the Y j,k−A−1:k−1 terms

the �tted values of the two regressions

P j,t−A−1:t−1 = ωPj +
∑
k

θPk 1(t=k) +
∑
k

ηPk 1(t=k)∆Tj + uPj,t (1.34)

and

Cj,t−A−1:t−1 = ωCj +
∑
k

θCk 1(t=k) +
∑
k

ηCk 1(t=k)∆Tj + uCj,t (1.35)

where P j,t−A−1:t−1 and Cj,t−A−1:t−1 are the average of quarterly �eld-j patents and

citations-weighted patents over the A quarters preceding t. The use of �tted values of

(1.34) and (1.35) as instruments for Y j,k−A−1:k−1 controls for the e�ect that changes

in the evolution of the outcome variable due to the impact of news shock on the

innovative environment of �eld j.

Figures 1.B.31 and 1.B.32 display the 2SLS DiD estimates of regression (1.7) for

patent count and R&D e�ort (inventors), respectively. The results demonstrate that

they are equivalent to those presented in Subsection 1.4.4 using OLS estimation of

(1.7).

1.B.2.18 Isolating direct implementation e�ect � In�uence of other �elds

In this subsection, I extend the analysis from Subsection 1.4.4 to consider the potential

impact of news-driven innovation patterns across �elds, rather than within them.

Although prior analyses have concentrated on the within-�eld aspect of potential

dynamic news e�ects, innovative outcomes within a �eld may also be in�uenced by
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Figure 1.B.31: Marginal e�ect of patent term on patents controlling for anticipation
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The �gure shows the β̂k coe�cients of 2SLS estimation of speci�cation (1.7) with Y being the number
of patents in �eld j and applied for in quarter t. Each point-estimates represents the marginal e�ect
of a one-day change in patent term ∆Tj = +1 on the number of patents in absolute deviation from
the 1992Q3 baseline level. Standard errors are clustered by technical �eld and 95% con�dence bands
are plotted. The �rst vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).

Figure 1.B.32: Marginal e�ect of patent term on inventors controlling for anticipation
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The �gure shows the β̂k coe�cients of 2SLS estimation of speci�cation (1.7) with Y being the
number of inventors listed on �eld j patents applied for in quarter t. Each point-estimates represents
the marginal e�ect of a one-day change in patent term ∆Tj = +1 on the number of inventors in
absolute deviation from the 1992Q3 baseline level. Standard errors are clustered by technical �eld
and 95% con�dence bands are plotted. The �rst vertical line refers to the quarter before the policy
news (1992Q3) and the second vertical line refers to the quarter before the policy implementation
(1995Q2).
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developments in other technologically-related �elds.ù Therefore, I enrich speci�cation

(1.7) with new controls that represent the quarter-speci�c impact of innovation in

other �elds as follows

Yj,t =
∑

k ̸=′92Q3

Zpre,j1(t=k)ηk +
∑

k ̸=′92Q3

γk1(t=k) +
∑

k ̸=′92Q3

ϕk1(t=k)∆Tj+

+
∑

k ̸=′92Q3

ψk1(t=k)Y j,k−A−1:k−1 + ψ0Y j,t−A−1:t−1

+
∑

k ̸=′92Q3

λk1(t=k)Y −j,k−A−1:k−1 + λ0Y −j,t−A−1:t−1 ++vj,t

(1.36)

where: Yj,t is the outcome of variable in �eld j and quarter t; 1(t=k) are quarterly

�xed e�ects estimated by γk; ∆Tj is �eld-j change in e�ective patent term whose quar-

terly marginal e�ect on Yj,t is estimated by βk's; Zpre,j is a vector of pre-determined

�eld characteristics, i.e., (i) �eld size, (ii) average number of forward citations per

patent and (iii) average number of inventors per patent, in 1980-1985; Y j,k−A−1:k−1 is

the average value of the outcome over the previous A quarters, whose quarter-speci�c

e�ect on the outcome is captured by ψk's; Y −j,k−A−1:k−1's are the new terms de�ned

below, whose quarter-speci�c e�ect on the outcome is captured by λk's; and vj,t is an

error term. Y −j,k−A−1:k−1 is de�ned as

Y −j,k−A−1:k−1 =
∑
h̸=j

ρh,jY h,k−A−1:k−1 (1.37)

where ρh,j is Ja�e (1986)'s measure of technological proximity between �eld h and

�eld j and Y h,k−A−1:k−1 is the average value of the outcome over A quarters before k

in �eld h. In turn, Ja�e (1986)'s technological proximity is

ρh,j =
fhf

′
j√

(fhf ′h)(fjf
′
j)

(1.38)
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where fh (fj) is the vector that collects the �eld-speci�c number of backward

citations from �eld h (j) patents. The greater the overlap between the distribution of

citations from �elds h and j, the closer ρi,j is to unity. Hence, the new Y −j,k−A−1:k−1

terms capture the e�ect of other �elds' innovation, weighted by their technological

proximity to �eld j.

The regression results indicate that the impact of other �elds on �eld j is sta-

tistically signi�cant, but economically insigni�cant. Figure 1.B.33 shows that the

direct e�ect of ∆Tj on granted patents is similar to that shown in Figure 1.6a in

Subsection 1.4.4. Thus, the richer speci�cation (1.36), which includes cross-�eld ef-

fects, produces comparable results to the original (1.7) speci�cation that focuses only

on within-�eld e�ects. A formal test on the joint statistical signi�cance of λ0 and

λk for k ∈ [1995Q3; 2000Q4] rejects the null hypothesis that they are jointly null

with a p-value of 0.007. However, their magnitude is much smaller compared to the

within-�eld channel. For example, a one-standard deviation increase in Y j,k−A−1:k−1

for k = 1995Q3 leads to a +77.4 increase in �eld j granted applications �led in

quarter k, while a one-standard deviation increase in Y −j,k−A−1:k−1 for k = 1995Q3

leads to a -3.3 change in the same outcome, which is of opposite sign to the within-

�eld e�ect and 23 times smaller in absolute value. Similar results are obtained when

focusing on k = 2000Q3, which is �ve years after policy implementation. A one-

standard deviation increase in Y j,2000Q3−A−1:2000Q3−1 leads to a +154.9 increase in

�eld j granted applications �led in 2000Q3, while a one-standard deviation increase

in Y −j,2000Q3−A−1:2000Q3−1 leads to a change in the same outcome that is more than

80 times smaller (+1.9). These �ndings suggest that Section 1.5's analysis on the

structural transmission channels of news e�ects should focus on within-�eld forces.
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Figure 1.B.33: Marginal e�ect of patent term on patent count for anticipation e�ects
within- and across-�elds
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The �gure shows the β̂k coe�cients of OLS estimation of speci�cation (1.36) with Yj,t being the
number of patents in �eld j and applied for in quarter t. Point estimates refer to the marginal e�ect
of a one-day anticipated change in patent term on the level of the outcome variable, relative to its
baseline value in 1992Q3, reported at the bottom of the �gure. Standard errors are clustered by
technical �eld and 95% con�dence bands are plotted. The �rst vertical line refers to the quarter
before the policy news (1992Q3) and the second vertical line refers to the quarter before the policy
implementation (1995Q2).

1.B.2.19 Isolating direct implementation e�ect � Poisson model

This subsection describes the extension of the empirical strategy of Subsection 1.4.4

to a Poisson model for count variables. The model is

Yj,t = exp
{ ∑
k ̸=′92Q3

Zpre,j1(t=k)ηk +
∑

k ̸=′92Q3

γk1(t=k) +
∑

k ̸=′92Q3

βk1(t=k)∆Tj+

+
∑

k ̸=′92Q3

ψk1(t=k) lnY j,k−A−1:k−1 + ψ0 lnY j,t−A−1:t−1 + vj,t

} (1.39)

where: Yj,t is �eld-j and quarter-t outcome of interest; 1(t=k) are quarterly dummies

whose e�ects is captured by γk's; ∆Tj is �eld-j change in average patent term, whose

quarter-speci�c e�ect is estimated by βk's; ; Zpre,j is a vector of pre-determined �eld

characteristics, i.e., (i) �eld size, (ii) average number of forward citations per patent

and (iii) average number of inventors per patent, in 1980-1985; and vj,t is the error

term.
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The Poisson model results for raw patent count and R&D e�ort are displayed

in Figure 1.B.34. As with the linear model, the evidence supports the �ndings of

Subsection 1.4.4. After controlling for the impact of the news shock on �eld-speci�c

innovation patterns, it is evident that the implementation of a patent term exten-

sion leads to an increase in R&D and innovation, as demonstrated by the positive

post-implementation β̂k estimates. Additionally, the news of a future patent term

extension is still observed to have a negative e�ect on R&D and innovation prior

to implementation, as indicated by the negative pre-implementation, post-news β̂k

estimates.

1.B.3 Heterogeneity in elasticity of innovation to patent term

Table 1.B.3 presents heterogeneity in the elasticity estimates of Subsection 1.4.5 by

broad technological area, identi�ed by one-digit IPC sections. The �rst column lists

the technical sections, while the second and third columns report the elasticity es-

timates of patenting and R&D e�ort to a news shock of +1% patent term change

one year before implementation, respectively (standard errors in parentheses). The

fourth and �fth columns show the elasticity estimates of patenting and R&D e�ort

to the unanticipated implementation of a +1% change in patent term �ve years after

implementation, respectively (standard errors in parentheses).

1.B.4 Firm-level analyses

1.B.4.1 Number of patents

In Figure 1.B.35, I present the results of �rm-level DiD speci�cation (1.4) having as

dependent variable the number of patents. The �gure depicts the βk coe�cients cap-

turing the e�ect of a one-day increase of patent term on yearly �rm-level patenting

in percent deviation from the 1991 baseline average. The �ndings are consistent with
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Figure 1.B.34: Marginal e�ect of patent term controlling for anticipation

(a) Number of patents
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(b) Number of inventors (R&D e�ort)
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Panel (a) and panel (b) show the β̂k coe�cients of the Poisson model (1.39) with outcome variables
being raw count of patents or the number of inventors, respectively. Inventors count avoids multiple
counting of the same individual appearing on more than one patent in the same �eld and quarter.
Point estimates refer to the marginal e�ect of a one-day anticipated change in patent term on the
percent deviation of the outcome variable from its baseline value in 1992Q3, reported at the bottom
of the �gure. Standard errors are clustered by technical �eld and 95% con�dence bands are plotted.
The �rst vertical line refers to the quarter before the policy news (1992Q3) and the second vertical
line refers to the quarter before the policy implementation (1995Q2).
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Table 1.B.3: Elasticity of R&D and innovation to patent term

Technical Section enewsy−1,T
eposty+5,T

Patents R&D (Inventors) Patents R&D (Inventors)

All �elds -8.56 -12.09 4.20 4.19

( 2.31 ) ( 3.13 ) ( 1.34 ) ( 1.54 )

A Human Necessities -9.32 -9.90 5.97 2.15

( 7.57 ) ( 2.57 ) ( 2.03 ) ( 1.87 )

B Performing Operations, Transporting -1.15 -18.37 -0.37 1.51

( 1.84 ) ( 4.76 ) ( 1.89 ) ( 1.83 )

C Chemistry, Metallurgy -12.00 -9.14 8.07 5.26

( 4.68 ) ( 2.37 ) ( 2.56 ) ( 2.20 )

D Textiles, Paper -1.76 -45.94 2.54 -0.07

( 5.16 ) ( 11.91 ) ( 4.74 ) ( 7.95 )

E Fixed Constructions 0.58 -18.73 -3.67 -5.93

( 5.72 ) ( 4.85 ) ( 7.20 ) ( 9.82 )

F Mechanical Engineering, etc 2.97 -23.72 -0.60 -6.15

( 1.95 ) ( 6.15 ) ( 1.84 ) ( 2.82 )

G Physics -8.62 -7.65 0.00 0.93

( 5.69 ) ( 1.98 ) ( 2.64 ) ( 2.11 )

H Electricity -8.83 -5.96 0.14 1.82

( 4.89 ) ( 1.54 ) ( 1.67 ) ( 1.55 )

The table reports the elasticity of R&D and innovation to (i) news of +1% future patent term change
implemented in one year and (ii) an unanticipated +1% patent term extension 5 years after imple-
mentation. Subsection 1.4.5 describes computation details. Standard errors clustered by technical
�eld in parentheses. Rows refer to 1-digit technical sections of the International Patent Classi�cation
(IPC) scheme.
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Figure 1.B.35: E�ect of one-day longer patent term on �rm-level patenting
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The plot shows the βk coe�cients of regression (1.4) having as dependent variable Pi,t, i.e., year-t
and �rm-i number of granted patents. Point estimates refer to the marginal e�ect of a one-day
anticipated change in patent term on the percent deviation of the outcome variable from its baseline
value in 1991, reported at the bottom of the �gure. Standard errors are clustered by �rm and 95%
con�dence bands are plotted. The �rst vertical line lies just before the news year (1992) and the
second vertical line lies just before the implementation year (1995).

the observed behavior of patenting at the technical �eld level. Prior to implementa-

tion, a 30-day future increase of patent term decreases yearly patenting by 2.6% at

the �rm level on average. This estimate is consistent with the �eld-level e�ect. Post-

implementation, the impact of the same policy change leads to a decrease of yearly

�rm-level patenting of 2.1%.

1.B.4.2 Citations-weighted patents

Figure 1.B.36 con�rms the robustness of �rm-level results by using citation-weighted

patents as a measure of innovation. The citation-weighted patent count is obtained

from the NBER Patent database, and calculated following the method of Hall, Ja�e

and Trajtenberg (2001).

1.B.4.3 Private economic value of patents

I merge the dataset provided by Kogan et al. (2017) with the NBER patent database

using USPTO patent numbers and then aggregate the patent values at the �rm-level

and by year. The βk coe�cients of speci�cation (1.4) are then plotted in Figure
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Figure 1.B.36: E�ect of one-day longer patent term on �rm-level forward citations

−.008

−.006

−.004

−.002

0

.002

Fi
rm

−l
ev

el
 C

ita
tio

ns

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

Year

Baseline at (t−1): 287.524

The plot shows the βk coe�cients of regression (1.4) having as dependent variable year-t and
�rm-i citations-weighted granted patents. Point estimates refer to the marginal e�ect of a
one-day anticipated change in patent term on the percent deviation of the outcome variable
from its baseline value in 1991, reported at the bottom of the �gure. Standard errors are
clustered by �rm and 95% con�dence bands are plotted. The �rst vertical line lies just before
the news year (1992) and the second vertical line lies just before the implementation year
(1995).

1.B.37, where the dependent variable is �rm-level yearly patent value. The estimated

e�ects are in line with the evidence obtained for patents, providing further support

for the robustness of the �ndings.

1.B.4.4 Placebo analyses: Costs, Capital Expenditures, and Sales

In this subsection, I present a placebo analysis of the e�ect of TRIPs patent term

change on �rm-level variables costs (cogs in COMPUSTAT), capital expenditures

(capx in COMPUSTAT), and sales (sale in COMPUSTAT). In principle, the patent

term change should have no (immediate) e�ect on previous variable, while a�ecting

R&D and patenting activity, as shown before.

Figures 1.B.38, 1.B.39, and 1.B.40 show the DiD estimates for costs, capital ex-

penditures, and sales, respectively, con�rming that the patent term change does not

immediately a�ect those �rm-level variables.
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Figure 1.B.37: E�ect of one-day longer patent term on �rm-level patent value
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The plot shows the βk coe�cients of regression (1.4) having as dependent variable year-
t and �rm-i total patent value. Point estimates refer to the marginal e�ect of a one-day
anticipated change in patent term on the percent deviation of the outcome variable from its
baseline value in 1991, reported at the bottom of the �gure. Standard errors are clustered by
�rm and 95% con�dence bands are plotted. The �rst vertical line lies just before the news
year (1992) and the second vertical line lies just before the implementation year (1995).

Figure 1.B.38: E�ect of one-day longer patent term on �rm-level variable costs
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The plot shows the βk coe�cients of regression (1.4) having as dependent variable year-t and
�rm-i variable costs (cogs in COMPUSTAT). Point estimates refer to the marginal e�ect of
a one-day anticipated change in patent term on the percent deviation of the outcome variable
from its baseline value in 1991, reported at the bottom of the �gure. Standard errors are
clustered by �rm and 95% con�dence bands are plotted. The �rst vertical line lies just before
the news year (1992) and the second vertical line lies just before the implementation year
(1995).
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Figure 1.B.39: E�ect of one-day longer patent term on �rm-level capital expenditures
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The plot shows the βk coe�cients of regression (1.4) having as dependent variable year-t and
�rm-i capital expenditures (capx in COMPUSTAT). Point estimates refer to the marginal
e�ect of a one-day anticipated change in patent term on the percent deviation of the outcome
variable from its baseline value in 1991, reported at the bottom of the �gure. Standard errors
are clustered by �rm and 95% con�dence bands are plotted. The �rst vertical line lies just
before the news year (1992) and the second vertical line lies just before the implementation
year (1995).

Figure 1.B.40: E�ect of one-day longer patent term on �rm-level sales
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The plot shows the βk coe�cients of regression (1.4) having as dependent variable year-t
and �rm-i sales (sale in COMPUSTAT). Point estimates refer to the marginal e�ect of a
one-day anticipated change in patent term on the percent deviation of the outcome variable
from its baseline value in 1991, reported at the bottom of the �gure. Standard errors are
clustered by �rm and 95% con�dence bands are plotted. The �rst vertical line lies just before
the news year (1992) and the second vertical line lies just before the implementation year
(1995).
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1.B.4.5 Within-�rm analysis of innovation outcomes

To study the e�ect of the patent term change on the reallocation of innovation across

technical �elds within �rms, I construct a panel dataset with the cross-sectional unit

being a �rm × technical �eld. To reduce computational burden, I aggregate the

sample over �ve periods: (0) 1983-1985, (1) 1986-1988, (2) 1989-1991, (3) 1992-1995,

and (4) 1996-1999. Periods 0 and 1 are used to check for pre-trends, period 2 is the

pre-treatment period, period 3 is the period between the policy news and the policy

implementation of 1995, and period 4 is the post-implementation period. I begin

with the NBER Patent Database, matching patents to COMPUSTAT identi�ers of

applicant �rms, and then aggregate granted patents, citations-weighted patents, and

patent value by �rm, technical �eld, and time period, using the 4-digit IPC class

reported in the NBER Patent Database for each patent. The speci�cation of the

Poisson DiD regression is

Yi,j,p =exp

{
αi + χj + ωi,j +

∑
age∈A

δage +
4∑
p=1

γk1(p=k) +
4∑
p=1

βk1(p=k)(∆Tj/100) + εi,j,p

}
(1.40)

where i indexes �rms, j technical �elds, and p the time period. αi are �rm �xed

e�ects, χj are technical �eld �xed e�ects, ωi,j are �rm × �eld �xed e�ects, δage are

�xed e�ects by median age of the �rm during the period, 1(p=k) is an indicator taking

value 1 when period p = k, ∆Tj is technical �eld j's change in patent term, and εi,j,p

is an idiosyncratic error term. Through �rm×�eld �xed e�ects the model controls

for any pre-existing �rm- and �eld-speci�c di�erences, such as �rm's technological

expertise. The dependent variables Yi,j,p used in the regression include the number

of patents granted to �rm i in �eld j with application �led in period p (Pi,j,p), the

citations-weighted patents granted to �rm i in �eld j with application �led in period p

(Ci,j,p), and the economic value of patents granted to �rm i in �eld j with application

�led in period p (Vi,j,p).
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Table 1.B.4: Within-�rm cross-technical �elds e�ect of a patent term change

(1) (2) (3)
Patents Citations Value

1(p=0) × (∆Tj/100) 0.01171 -0.00114 0.05283
(0.01302) (0.03500) (0.05426)

1(p=1) × (∆Tj/100) 0.00969 -0.00862 0.06708
(0.00831) (0.03115) (0.04152)

1(p=3) × (∆Tj/100) -0.02329∗∗∗ -0.08448∗∗∗ -0.17461∗∗∗

(0.00898) (0.02012) (0.03437)

1(p=4) × (∆Tj/100) 0.00264 -0.11445∗∗∗ -0.14546∗∗∗

(0.01115) (0.02979) (0.03992)
Observations 238,939 229,450 208,767

The Table reports the pseudo maximum likelihood estimates of speci�cation (1.40). See

subsection 1.B.4.5 for details. Statistical signi�cance levels: ∗(p < 0.05),∗∗ (p < 0.01),∗∗∗ (p <
0.001)

Pre-trends coe�cients in Table 1.B.4 con�rm that the change in patent term is

unrelated to di�erential trends in innovation across technical �elds. The post-news

and post-implementation DiD coe�cients capture the baseline e�ect of the policy and

provide evidence that, at news of ∆Tj > 0, �rms tend to reallocate innovation e�ort

towards technical �elds expected to lose protection after implementation and that this

negative e�ect continues post-implementation. This is consistent with the patterns

documented in Section 1.5.

1.B.5 Evidence on transmission channels

1.B.5.1 Evidence on concentration as interactor

To test whether the patent term change has stronger e�ects on innovation in more

competitve �elds, I run the following triple di�erence speci�cation

Yj,t = αj +

2000Q4∑
k=1985Q1

γk1(t=k) +

2000Q4∑
k=1985Q1

ηk1(t=k)HHIj

+

2000Q4∑
k=1985Q1

θk1(t=k)∆Tj +

2000Q4∑
k=1985Q1

βk1(t=k)∆TjHHIj + εj,t

(1.41)
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Figure 1.B.41: Triple di�erence analysis of patents with HHI as interactor

−.0001

0

.0001

.0002

.0003

N
um

be
r o

f G
ra

nt
ed

 P
at

en
ts

19
85

q1

19
85

q3

19
86

q1

19
86

q3

19
87

q1

19
87

q3

19
88

q1

19
88

q3

19
89

q1

19
89

q3

19
90

q1

19
90

q3

19
91

q1

19
91

q3

19
92

q1

19
92

q3

19
93

q1

19
93

q3

19
94

q1

19
94

q3

19
95

q1

19
95

q3

19
96

q1

19
96

q3

19
97

q1

19
97

q3

19
98

q1

19
98

q3

19
99

q1

19
99

q3

20
00

q1

20
00

q3

Quarterly Dates

Baseline at (t−1): 30.02

The plot shows the βk coe�cients of regression (1.41) having as dependent variable quarter-t
and �eld-j number of granted patents. Point estimates refer to the marginal e�ect of a one-
day anticipated change in patent term × a unit-increase in HHI on the level of the outcome
variable, relative to its baseline value in 1992Q3, reported at the bottom of the �gure.
Standard errors are clustered by technical �eld and 95% con�dence bands are plotted. The
�rst vertical line refers to the quarter before the policy news (1992Q3) and the second vertical
line refers to the quarter before the policy implementation (1995Q2).

where Yj,t is either the number of patents or citations-weighted patents, αj are tech-

nical �eld �xed e�ects, 1(t=k) are quarterly dummy variables, HHIj is the Her�ndahl-

Hirschman Index of concentration based on the share of patents granted to di�erent

applicants in a given �eld before the policy news, and ∆Tj is the policy-induced, �eld-

speci�c change in e�ective patent term.To con�rm whether innovators respond more

strongly to patent protection time in less concentrated technical �elds, it is important

to check if the βk coe�cients in the previous regression are positive. This is because

the HHI is smaller in less concentrated technical �elds.

Figure 1.B.41 plots the estimated β̂k coe�cients of the previous speci�cation for the

number of granted patents as the outcome. The results show that the β̂k coe�cients

are positive, indicating that the treatment has a stronger e�ect on innovation in more

competitive �elds. Similar evidence is observed for citations-weighted patents, as

shown in Figure 1.B.42.
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Figure 1.B.42: Triple di�erence analysis of citations with HHI as interactor
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The plot shows the βk coe�cients of regression (1.41) having as dependent variable quarter-t
and �eld-j 5-years citations-weighted patents. See Appendix 1.B.5.1 for all the details about
the empirical strategy and the speci�cation. Point estimates refer to the marginal e�ect
of a one-day anticipated change in patent term × a unit-increase in HHI on the level of
the outcome variable, relative to its baseline value in 1992Q3, reported at the bottom of
the �gure. Standard errors are clustered by technical �eld and 95% con�dence bands are
plotted. The �rst vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).

1.B.5.2 Evidence on entry rates as interactor

To test whether the change in patent term a�ects innovation more strongly in more

competitive �elds, I conducted a further analysis using the triple di�erence speci�ca-

tion (1.41). In this analysis, I replaced HHIj with the share sEj of patents granted to

applicants who have never patented in a given �eld, calculated before the policy news.

Higher values of sEj indicate a higher entry intensity in a technical �eld. Negative β̂k

coe�cients would suggest that innovators are more responsive to patent term in more

competitive �elds.

The estimated β̂k coe�cients are plotted in Figure 1.B.43, and the results indicate

that the e�ects are not stronger in more competitive �elds. Similar results were

obtained when citations-weighted patents were used as the outcome variable (see

Figure 1.B.44).
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Figure 1.B.43: Triple di�erence analysis of patents with entry rate as interactor
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The plot shows the βk coe�cients of regression (1.41) having as dependent variable quarter-t
and �eld-j number of granted patents and sEj as interactor of ∆Tj . Point estimates refer

to the marginal e�ect of a one-day anticipated change in patent term × a +100% increase
in entry rate on the level of the outcome variable, relative to its baseline value in 1992Q3,
reported at the bottom of the �gure. Standard errors are clustered by technical �eld and
95% con�dence bands are plotted. The �rst vertical line refers to the quarter before the
policy news (1992Q3) and the second vertical line refers to the quarter before the policy
implementation (1995Q2).

Figure 1.B.44: Triple di�erence analysis of citations with entry rate as interactor
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The plot shows the βk coe�cients of regression (1.41) having as dependent variable quarter-t
and �eld-j 5-years citations-weighted patents and sEj as interactor of ∆Tj . See Appendix
1.B.5.2 for all the details about the empirical strategy and the speci�cation. Point estimates
refer to the marginal e�ect of a one-day anticipated change in patent term × a +100%
increase in entry rate on the level of the outcome variable, relative to its baseline value in
1992Q3, reported at the bottom of the �gure. Standard errors are clustered by technical
�eld and 95% con�dence bands are plotted. The �rst vertical line refers to the quarter before
the policy news (1992Q3) and the second vertical line refers to the quarter before the policy
implementation (1995Q2).

133



Figure 1.B.45: E�ect of 1 more day of protection on concentration
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The plot shows the βk coe�cients of regression (1.2) having as dependent variable quarter-t
and �eld-j Her�ndahl�Hirschman index. Point estimates refer to the marginal e�ect of a
one-day anticipated change in patent term on the level of the outcome variable, relative to its
baseline value in 1992Q3, reported at the bottom of the �gure. Standard errors are clustered
by technical �eld and 95% con�dence bands are plotted. The �rst vertical line refers to the
quarter before the policy news (1992Q3) and the second vertical line refers to the quarter
before the policy implementation (1995Q2).

1.B.5.3 Evidence on concentration as outcome

To examine whether a change in patent term a�ects competition, I estimate speci�ca-

tion (1.2) with HHIj,t, the Her�ndahl�Hirschman Index based on the �ow of patents

�led by di�erent applicants in quarter t and classi�ed in �eld j, as the dependent vari-

able. If a longer patent term results in reduced competition, DiD post-implementation

estimates of β̂k in speci�cation (1.2) should be positive. However, Figure 1.B.45 illus-

trates that concentration is not a�ected by the change in patent term.

1.B.5.4 Evidence on entry as outcome

To examine the impact of patent term on competition, an alternative test is conducted

using entry rate as the outcome. To construct the entry intensity measure, new appli-

cants in quarter-t and �eld-j are identi�ed as entrants.59 The entry intensity is de�ned

as the share of granted patents �led by new applicants. The regression in speci�cation

59New applicants at the quarterly level are determined using STAN harmonized applicant's identi-
�ers from the EPO Worldwide Bibliographic Database available in PATSTAT and selecting, among
the applicants observed in a given �eld-quarter, those that are never observed before.
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Figure 1.B.46: E�ect of 1 more day of protection on entry rates
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The plot shows the βk coe�cients of regression (1.2) having as dependent variable quarter-t
and �eld-j share of granted patents �led by new applicants (entrants). Point estimates refer
to the marginal e�ect of a one-day anticipated change in patent term on the level of the
outcome variable, relative to its baseline value in 1992Q3, reported at the bottom of the
�gure. Standard errors are clustered by technical �eld. 95% con�dence bands are plotted.
The �rst vertical line refers to the quarter before the policy news (1992Q3) and the second
vertical line refers to the quarter before the policy implementation (1995Q2).

(1.2) is run using entry as the outcome variable. The results in Figure 1.B.46 suggest

that entry does not respond to the policy change, providing an alternative perspective

on the impact of patent term on competition.

1.B.5.5 Evidence on the average quality of incumbents' patents

An extension of patent term may lead to incumbents using their patent rights to

exclude other innovators from the market. However, this should be re�ected in a

decline in the average quality of patents granted to incumbents, both in absolute

terms and relative to those granted to new entrants. To examine this, I estimate

speci�cation (1.2) using the average quality of patents granted to incumbent �rms

as the dependent variable. Figure 1.B.47 shows that, in absolute terms, the average

quality of incumbents' patents decreases slightly in response to an increase in patent

term. However, this e�ect is quantitatively weak and not statistically signi�cant. To

assess the relative quality of incumbents' patents, I estimate the same regression using

the average quality of patents granted to incumbent �rms divided by the average
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Figure 1.B.47: E�ect of 1-day longer patent term on the average citations per patent
received by incumbents
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The plot shows the βk coe�cients of regression (1.2) having as dependent variable the average
number of forward citations received by quarter-t and �eld-j patents granted to incumbent
innovators. Point estimates refer to the marginal e�ect of a one-day anticipated change in
patent term on the level of the outcome variable, relative to its baseline value in 1992Q3,
reported at the bottom of the �gure. Standard errors are clustered by technical �eld and
95% con�dence bands are plotted. The �rst vertical line refers to the quarter before the
policy news (1992Q3) and the second vertical line refers to the quarter before the policy
implementation (1995Q2).

quality of patents granted to new applicants. Figure 1.B.48 shows that, in relative

terms, the average quality of incumbents' patents does not respond to the policy

change. Overall, these results suggest that there is no evidence of anti-competitive

behavior by incumbent innovators in response to longer patent terms.

1.B.5.6 Within-�eld backward citation intensity as interactor

In this subsection, I replicate the triple-di�erence speci�cation (1.8) having as depen-

dent variables the number of inventors, as a proxy of R&D e�ort at the �eld level,

and the number of citations-weighted patents, as a quality-adjusted patent-based in-

novation measure. Figure 1.B.49 and 1.B.50 show the triple-di�erence θ̂k and the

di�erence-in-di�erence β̂k estimates for inventors and citations, respectively. Results

are widely consistent with those shown for granted patents in Subsection 1.5.1.
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Figure 1.B.48: E�ect of 1-day longer patent term on the average citations per patent
received by incumbents relative to entrants
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The plot shows the βk coe�cients of regression (1.2) having as dependent variable the average
number of forward citations received by quarter-t and �eld-j patents granted to incumbent
innovators divided by the average number of forward citations received by quarter-t and
�eld-j patents granted to new entrants. Point estimates refer to the marginal e�ect of a
one-day anticipated change in patent term on the level of the outcome variable, relative
to its baseline value in 1992Q3, reported at the bottom of the �gure. Standard errors are
clustered by technical �eld and 95% con�dence bands are plotted. The �rst vertical line
refers to the quarter before the policy news (1992Q3) and the second vertical line refers to
the quarter before the policy implementation (1995Q2).

1.B.5.7 Within-�eld backward citations as an outcome

This subsection presents evidence that within-�eld technological dependence mea-

sures decline in �elds with a positive patent term change after implementation. Two

measures of within-�eld dependence are considered: the average number of backward

citations made by applicants to previous patents from the same �eld of the citing

patent, denoted by Bjj,t, and the share of patents �led in quarter-t and classi�ed in

technical �eld-j that report at least one applicant-made backward citation to previous

patents also classi�ed in �eld j, denoted by Sjj,t. Using either of these variables as

outcomes of interest, the benchmark DiD regression (1.2) is run. Figures 1.B.51 and

1.B.52 report the DiD estimates for Bjj,t and Sjj,t, respectively. Both �gures provide

consistent evidence with the narrative proposed in Section 1.5 of the paper, showing

that time-varying measures of technological dependence decline in �elds that experi-

ence an increase in average patent term. This suggests that patents that would have
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Figure 1.B.49: Marginal e�ect on inventors and within-�eld dependence
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(b) Di�erence-in-Di�erence coe�cients β̂k
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Panel (a) and panel (b) show the θ̂k and β̂k coe�cient OLS estimates of speci�cation (1.8) with
outcome of interest being the count of unique inventors listed on �eld-j patents whose application
is �led in quarter t. The former coe�cients represent the change in the marginal e�ect of a one-day
increase in patent term ∆Tj = +1 on the number of inventors corresponding to an increment of one
in the average number of within-�eld backward citations per patent ∆Bjj = +1. The DiD estimates

β̂k represent the marginal e�ect of a one-day increase in patent term ∆Tj = +1 on the number of
inventors conditional on the average number of within-�eld backward citations per patent being zero
Bjj = 0. Standard errors are two-way clustered by technical �eld and treatment period (pre-news:
1985Q1-1992Q2; news: 199Q4-1995Q2; post-implementation: 1995Q3-2000Q4) and 95% con�dence
bands are plotted. The �rst vertical line refers to the quarter before the policy news (1992Q3) and
the second vertical line refers to the quarter before the policy implementation (1995Q2).
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Figure 1.B.50: Marginal e�ect on citations and within-�eld dependence

(a) Triple di�erence coe�cients θ̂k
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(b) Di�erence-in-Di�erence coe�cients β̂k
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Panel (a) and panel (b) show the θ̂k and β̂k coe�cient OLS estimates of speci�cation (1.8) with
outcome of interest being the citations-weighted count of �eld- and quarter-speci�c patents. The
former coe�cients represent the change in the marginal e�ect of a one-day increase in patent term
∆Tj = +1 on the number of 5-year forward citations-weighted patents corresponding to an increment
of one in the average number of within-�eld backward citations per patent ∆Bjj = +1. The DiD

estimates β̂k represent the marginal e�ect of a one-day increase in patent term ∆Tj = +1 on the
number of 5-year forward citations-weighted patents conditional on the average number of within-�eld
backward citations per patent being zero Bjj = 0.Standard errors are two-way clustered by technical
�eld and treatment period (pre-news: 1985Q1-1992Q2; news: 199Q4-1995Q2; post-implementation:
1995Q3-2000Q4) and 95% con�dence bands are plotted. The �rst vertical line refers to the quarter
before the policy news (1992Q3) and the second vertical line refers to the quarter before the policy
implementation (1995Q2).
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Figure 1.B.51: E�ect of patent term on average within-�eld applicants' citations
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The plot shows the β̂k coe�cients of speci�cation (1.2) having as dependent variable the average
number of applicant-made backward citations per patent classi�ed in �eld j and �led in quarter t.
The reported coe�cients represent the marginal e�ect of a one-day anticipated increase in patent
term on the level of the outcome variable relative to its pre-news average baseline, reported at the
bottom of the �gure. Clustered 95% con�dence bands are plotted. The �rst vertical line refers to
the quarter before the policy news (1992Q3) and the second vertical line refers to the quarter before
the policy implementation (1995Q2).

built on previous inventions from the same �eld disproportionally contribute to the

post-implementation innovation decline, potentially due to the unavailability of the

material to build on caused by the e�ects of the news shock.

1.B.5.8 Direct within-�eld links among pre- and post-implementation in-

novations

In this subsection, I demonstrate a direct link between innovations created in the pre-

and post-implementation periods within the same technology �eld. To establish this

connection, I count the number of applicant's backward citations from patents �led

between 1995Q3 and 1999Q4 to patents �led between 1992Q4 and 1995Q2, which

are classi�ed in the same technological �eld as the citing patent. I then relate the

change in protection by technical �eld to three outcomes: (i) the average number of

such citations per patent �led in the post-implementation period; (ii) the proportion

of patents �led in the post-implementation phase that have at least one applicant-

made, within-�eld, backward citation to a patent �led in the pre-implementation
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Figure 1.B.52: E�ect of patent term on within-�eld technological dependence
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The plot shows the β̂k coe�cients of speci�cation (1.2) having as dependent variable the share of
patents classi�ed in �eld j and �led in quarter t that have at least one applicant-made backward
citation to patents also classi�ed in �eld j. The reported coe�cients represent the marginal e�ect
of a one-day anticipated increase in patent term on the level of the outcome variable relative to its
pre-news average baseline, reported at the bottom of the �gure. Clustered 95% con�dence bands are
plotted. The �rst vertical line refers to the quarter before the policy news (1992Q3) and the second
vertical line refers to the quarter before the policy implementation (1995Q2).

period; (iii) the proportion of applicant-made citations from patents �led in the post-

implementation phase to a patent �led in the pre-implementation period and classi�ed

in the same �eld. To establish a control group, I use the same technical �elds ten years

before, i.e. between 1985Q3 and 1989Q4 and 1982Q4 and 1985Q2. The di�erence-in-

di�erence regression equation is presented in equation (1.42),

Yj,p = dp + δ∆Tj + βdp∆Tj + εj,p (1.42)

where dp is a dummy variable indicating whether the outcome refers to the 1992Q4-

1999Q4 period or the 1982Q4-1989Q4 period. ∆Tj is the policy-driven change in

patent term for technical �eld j, and β is the di�erence-in-di�erence coe�cient of

interest. Table 1.B.5 reports the estimated coe�cients of the regression for the share

of patents, the number of backward citations, and the number of patents satisfying

the criteria outlined above. Standard errors are clustered by technological �eld. The

negative di�erence-in-di�erence estimates suggest that �elds with an expected patent

term extension, i.e. those with a decrease in innovation during the pre-implementation
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Table 1.B.5: Direct evidence on within-�eld intertemporal technology link

(1) (2) (3) (4) (5) (6)
Avg. Bckwd. Cit. Avg. Bckwd. Cit. Pat. Share Pat. Share Cit. Share Cit. Share

dpost 1.42091∗∗∗ 1.45996∗∗∗ 0.24389∗∗∗ 0.25251∗∗∗ 0.05182∗∗∗ 0.05404∗∗∗

(0.00413) (0.17865) (0.02435) (0.03523) (0.00612) (0.00862)

∆Tj -0.00007 -0.00005 -0.00000
(0.00018) (0.00003) (0.00001)

dpost × Tj -0.19126∗∗∗ -0.19912∗∗∗ -0.02676∗∗∗ -0.02867∗∗∗ -0.00250∗∗ -0.00298∗

(0.00078) (0.03430) (0.00473) (0.00681) (0.00123) (0.00170)

Constant 0.00044 0.00011 0.00026 0.00024 0.00003 0.00005
(0.00091) (0.01210) (0.00018) (0.00257) (0.00003) (0.00097)

Tech. �eld F.E. Y Y Y
Obs. 1206 1206 1206 1206 1206 1206

The Table reports the OLS estimates of speci�cation (1.42). See 1.B.5.8 for all the

details. Standard errors are clustered by technical �eld. Statistical signi�cance levels:
∗(p < 0.10),∗∗ (p < 0.05),∗∗∗ (p < 0.01)

phase, exhibit a lower backward citation intensity to patents produced in the same

technological �eld during the pre-implementation period. This indicates the existence

of a technology disclosure externality.

1.B.5.9 Does the technology link act within-�rm or between-�rms?

In this subsection, I detail the steps of the decomposition of the technology disclosure

externality e�ect in within vs between �rms. Firstly, I de�ne the theoretical objects

of the decomposition.

∆P̂A
j,p ≡ E[Pj,p|∆T = ∆Tj]− E[Pj,p|∆T = 0] (1.43)

is the di�erence between expected patents��led in period p and �eld j (conditional

on the policy-induced change in protection time∆Tj) and expected patents absent any

treatment. This represents the aggregate impact of the policy change on innovation in

period p. ∆P̂A
j,p can be decomposed in two parts. The �rst is policy-driven innovation

by incumbent �rms (∆P̂A,I
j,p ), and the second is the contribution of entrant �rms
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(∆P̂A,E
j,p ), i.e.

∆P̂A
j,p = ∆P̂A,I

j,p +∆P̂A,E
j,p (1.44)

Further, I assume that ∆P̂A,I
j,p can be broken down into: 1) the direct impact of

the patent term change on innovation ∆P̂A,I,∆T
j,p , 2) the between-�rms component

generated by the aggregate policy-driven innovation from the previous period ∆P̂A
j,p−1,

and 3) the within-�rm component driven by within-�rm technological linkages between

past and present innovation ∆P̂A,I,W
j,p . So,

∆P̂A,I
j,p = ∆P̂A,I,∆T

j,p +∆P̂A,I,B
j,p +∆P̂A,I,W

j,p (1.45)

I assume that for entrant �rms the within-�rm component of their contribution to the

aggregate e�ect is 0. This leads to the following decomposition

∆P̂A,E
j,p = ∆P̂A,E,∆T

j,p +∆P̂A,E,B
j,p (1.46)

Finally, de�ne the relative contribution of incumbents to the total e�ect of the

policy in period p as

sIp =
∆P̂A,I

j,p

∆P̂A
j,p

(1.47)

The second step concerns the estimation of these objects. The main dataset for this

is the �rm × technical �eld panel dataset described in Appendix 1.B.4.5. The cross-

sectional unit is a �rm in a given technical �eld (�rm × technical �eld) and there are

5 time-periods: (0) 1983-1985, (1) 1986-1988, (2) 1989-1991, (3) 1992-1995, (4) 1996-

1999. To estimate ∆P̂A
j,3, i.e. the aggregate policy impact in period (3), I consolidate

the data by technical �eld and period and estimate by OLS the speci�cation

Pj,p =
3∑

k=0

γk1(p=k) +
3∑

k=0

βk1(p=k)∆Tj +
3∑

k=0

1(p=k)Xpre,jθ
′
k + εj,p (1.48)
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All the variables have the same meaning as in speci�cation (1.2) of Section 1.4, and

Pj,p is the number of granted patents �led in period p and classi�ed in technical

�eld j. Moreover, Xpre,j includes �eld-speci�c controls comprising �eld size (number

of patents), average citations, and average patent value in years 1980-1982, and re-

places �eld �xed e�ects, as the empirical strategy will requires the inclusion of lagged

patents among regressors in speci�cation (1.48). The post-implementation period is

excluded from estimation and the sample aggregates patents from all �rms regardless

of when they enter. ∆P̂A
j,3 is estimated according to de�nition (1.43) using the linear

speci�cation (1.48).

Then, I estimate P̂A,I
j,3 , i.e. the contribution of incumbent �rms to the total e�ect

in period (3), by aggregating the data by technical �eld as above, but excluding

patents by �rms that start innovating in period (3) itself, i.e. the entrants in period

(3). I run speci�cation (1.48) on such sample, and I estimate ∆P̂A,I
j,3 using expression

(1.43), given the new parameter estimates. Finally, the contribution of entrants to

the aggregate policy e�ect in period (3) can be determined residually using (1.44).

Under the assumption that the between-�rms policy-driven spillover is at work

in the post-implementation period only, for period (3) expressions (1.45) and (1.46)

can be rewritten as ∆P̂A,I
j,3 = ∆P̂A,I,∆T

j,3 and ∆P̂A,E
j,3 = ∆P̂A,E,∆T

j,3 . Once we have the

estimated ∆P̂A,I
j,3 and ∆P̂A,E

j,3 from the previous steps, these coincide with the direct

policy e�ect.

To estimate ∆P̂A
j,4, i.e. the aggregate policy impact in period (4), I consolidate the

data by technical �eld and period and I estimate by OLS the speci�cation

Pj,p =
3∑

k=0

γk1(p=k) +
3∑

k=0

βk1(p=k)∆Tj +
3∑

k=0

1(p=k)Xpre,jθ
′
k +

3∑
k=0

ψk1(p=k)Pj,p−1 + εj,p

(1.49)

All the variables have the same meaning as in speci�cation (1.48) of Section 1.4, but

the new regression also includes period (4). Again, all �rms are included, regardless
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of when they start innovating. ∆P̂A
j,4 is estimated according to de�nition (1.43) using

the linear speci�cation (1.49).

Then, I estimate P̂A,I
j,4 , i.e., the contribution of incumbent �rms to the total e�ect

in period (4), by aggregating the data by technical �eld as above, but excluding

patents by �rms that start innovating in period (4) itself, i.e., the entrants in period

(4). I run speci�cation (1.49) on such sample, and I estimate ∆P̂A,I
j,4 using expression

(1.43), given the new parameter estimates. Finally, the contribution of entrants to the

aggregate policy e�ect in period (4) can be determined residually using (1.44). The

relative contribution of incumbents to the total post-implementation policy e�ect is

ŝI4 =
∆P̂A,I

j,4

∆P̂A
j,4

.

To isolate the direct e�ect of the policy on innovation in the post-implementation

period for the case of incumbents, I follow the strategy described in subsection 1.4.4

and I augment the baseline di�erence-in-di�erence speci�cation by lagged patenting in

the �eld in the previous period, interacted with period-speci�c dummy variables. The

latter terms are instrumented by policy-induced variation in patenting and citations

estimated using (1.49). These terms capture the impact of the lagged spillover on

innovation. So, the speci�cation is

Pj,p = αj +
4∑

k=0

γk1(p=k) +
4∑

k=0

βk1(p=k)∆Tj +
4∑

k=0

ηk1(p=k)Pj,p−1 + χPj,p−1 + εj,p

(1.50)

The regression is run excluding from the sample patents from new entrants. Using

de�nition (1.43) once more, I isolate the direct e�ect of the policy on incumbents, net

of the intertemporal e�ects generated by the within and between components, i.e.,

∆P̂A,I,∆T
j,4 . I assume that the direct e�ect of the policy a�ects entrants proportionally

to their contribution to the total post-implementation e�ect. Therefore, I compute

∆P̂A,E,∆T
j,4 =

1−ŝI4
ŝI4

∆P̂A,I,∆T
j,4 .
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Equation (1.46) can be used to infer ∆P̂A,E,B
j,4 = ∆P̂A,E

j,4 − ∆P̂A,E,∆T
j,4 , i.e., the

contribution of the between-�rms technological spillover to aggregate entrants' post-

implementation innovation. Assuming that such e�ect is proportional to the aggregate

policy-induced innovation from the previous period, I can retrieve such coe�cient

of proportionality as κ̂B =
∆P̂A,E,B

j,4

∆P̂A
j,3

, and use it to infer ∆P̂A,I,B
j,4 , i.e., the between-

�rms component of the aggregate policy impact for incumbent �rms in period (4),

as ∆P̂A,I,B
j,4 = κ̂B

ŝI4
1−ŝI4

∆P̂A
j,3. The �nal step is to residually infer from expression

(1.45) the contribution of the within-�rm internality in period (4) as ∆P̂A,I,W
j,4 =

∆P̂A,I
j,4 −∆P̂A,I,∆T

j,4 −∆P̂A,I,B
j,4 , where all the terms on the right hand side are known

from previous calculations.

Therefore, the aggregate policy impact in period (4) can be decomposed as

∆P̂A
j,4 = ∆P̂A,I,∆T

j,4 +∆P̂A,E,∆T
j,4︸ ︷︷ ︸

Direct policy e�ect

+∆P̂A,I,B
j,4 +∆P̂A,E,B

j,4︸ ︷︷ ︸
Between-�rms spillover

+ ∆P̂A,I,W
j,4︸ ︷︷ ︸

Within-�rm internality

Estimation of the di�errent terms of previous expression implies that the direct

policy e�ect is equivalent to -15% of the total change ∆P̂A
j,4. The negative e�ect

is entirely driven by the between-�rm component, which is equivalent to 115% of

the (negative) left hand side term. The within component is quantitatively negligible,

suggesting that the observed dynamic e�ect of the news shock on post-implementation

innovation acts as an externality.

1.B.5.10 Technology disclosure externality: Firm-level analysis of post -

implementation R&D investment

In this subsection, I present further evidence of the proposed technology disclosure

externality by demonstrating that �rms with greater exposure to technological �elds

that experience a decrease in R&D due to news of a future patent term extension

have lower �rm-level R&D expenditures in the post-implementation period.

To conduct the empirical exercise, I assume that the proposed externality does
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not a�ect the response of R&D to the news shock, which is solely driven by the �rm-

level treatment ∆Ti. Furthermore, I investigate whether policy-driven changes to

R&D investment in the news period impact post-implementation �rm-level R&D. If

such changes, conditioned on the direct e�ect of ∆Ti, exist, I consider it as empirical

evidence in support of the proposed transmission channel.

The analysis proceeds in steps. I aggregate the �rm-level sample over the 4 time

windows: 1986-1988, 1989-1991, 1992-1995, and 1995-1999, that correspond to con-

trol (-2), pre-news (-1), news (0), and post-implementation (1) periods, respectively.

Under the �rst assumption, it is possible to use the speci�cation adapt the Poisson

DiD speci�cation (1.4) to estimate the e�ect of ∆Ti on �rm-level R&D in the pre-

implementation periods (-2),(-1), and (0) only, disregarding the lagged spillover e�ect.

The post-implementation period (p = 1), when the spillover should be in action, is

excluded from estimation. The �tted values of the treatment-induced R&D for �rm i

in period p are computed and denoted by R̂i,p. To develop a �rm-speci�c measure of

spillover, I compute Ja�e (1986)'s measure of technological proximity, denoted by ρi,j,

for every pair of �rms (i, j). The formula for the technological proximity measure is

ρi,j =
fif

′
j√

(fif ′i)(fjf
′
j)
, where fi is a vector that reports the number of patents obtained by

�rm i in a given class over the period 1971-1991. The externality measure for �rm i

in period p is then computed as Ei,p =
∑

j ̸=i ρi,jR&Dj,p, which can also be calculated

using the �tted R&D measure R̂i,p as Êi,p. Finally, the regression of interest esti-

mates the period-speci�c e�ect of the lagged spillover measure and of the �rm-speci�c

treatment on �rm-level R&D spending. The speci�cation is

ln(1 +R&Di,p) =αi +
1∑

k=0

γk1(p=k) +
1∑

k=0

βk1(p=k)∆Ti + θ′Xi,p+

1∑
k=0

δk1(p=k) ln(Ei,p−1) + ζ ln(Ei,p−1) + εi,t

(1.51)

and it includes �rm �xed e�ects αi, period �xed e�ects, a vector of controls Xi,t
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comprising �rm-age �xed e�ects, 3-digit SIC industry × period �xed e�ects, and a

3-digit-SIC-speci�c quadratic trend in age. The idiosyncratic error term is εi,t. The

results are presented in Table 1.B.6, which includes the OLS estimates in the �rst

column and the IV speci�cation estimates in the second column. The implementation

of the IV strategy motivates the use of a log-one-plus transformation of the outcome

variable in a linear model rather than the use of a Poisson model. The IV uses the

externality measure based on the �tted values of the e�ect of ∆Ti on �rm-level R&D

an en external instrument for ln(1+Ei,p−1) and its interactions. Columns 3 to 5 report

the �rst-stage regression estimates of ln(1 +Ei,p−1) alone and its interaction with the

1989-1991 and 1992-1995 dummies. In all �rst-stage regressions, the F-statistic of the

excluded instruments exceeds 30.

The �rm-speci�c treatment remains negative in the pre-implementation phase but

becomes positive (though not statistically signi�cant) in the post-implementation pe-

riod. These �ndings support the proposed narrative.

1.B.5.11 Elasticity of current innovation to past innovation

To analyze the magnitude of the technology disclosure externality discussed in Section

1.5, this subsection derives a synthetic elasticity measure. The sample is aggregated

into four periods: (1) 1985Q1-1988Q4 (control period); (2) 1989Q1-1992Q3 (pre-news

period); (3) 1992Q4-1995Q2 (post-news, pre-implementation period); and (4) 1995Q3-

2000Q4 (post-implementation period). This aggregation is done to precisely capture

innovation during the news and post-implementation periods. The �rst step is to

estimate the DiD speci�cation (1.2) with the number of patents Pj,p and citations-

weighted patents Cj,p as dependent variables for each �eld j and applied for in period

p = 1, 2, 3, 4. The estimated coe�cients of the original DiD (1.2) for granted patents as

the outcome variable are reported in Column (1) of Table 1.B.7. In the second step,

the speci�cation (1.7) is replicated on the aggregate sample, and the speci�cation
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Table 1.B.6: Firm-level evidence on R&D externality

(1) (2) (3) (4) (5)
OLS IV FS1 FS2 FS3

d92−95 × ∆Ti -0.00019 -0.00011 -0.00003∗∗ 0.00002∗∗ -0.00005∗

(0.00028) (0.00028) (0.00001) (0.00001) (0.00003)

d96−99 × ∆Ti 0.00034 0.00050 0.00000 0.00004 0.00002
(0.00040) (0.00042) (0.00001) (0.00002) (0.00005)

d92−95 × R&D Ext.(t−1) 0.00859 0.00150
(0.01595) (0.01658)

d96−99 × R&D Ext.(t−1) 0.03549 0.02921
(0.02336) (0.02365)

R&D Ext.(t−1). -0.01505 0.31755
(0.19155) (0.28432)

d92−95 × ̂R&D Ext.(t−1) 1.00569∗∗∗ 0.00010 0.01529∗∗∗

(0.00180) (0.00039) (0.00304)

d96−99 × ̂R&D Ext.(t−1) 0.00014 1.00067∗∗∗ 0.01063∗∗

(0.00062) (0.00154) (0.00468)

̂R&D Ext.(t−1) 0.01586 0.06208∗∗ 1.13118∗∗∗

(0.01055) (0.02465) (0.05231)
Firm F.E. Y Y Y Y Y
Period F.E. Y Y Y Y Y
Age F.E. Y Y Y Y Y
Industry×Period F.E. Y Y Y Y Y
Observations 4921 4921 4921 4921 4921

Column (1) reports the OLS estimates of the speci�cation (1.51). Column (2) reports the results
of IV estimation of the same speci�cation where the externality variable and its interaction terms
are instrumented with the externality measure computed using the �tted value from a regression
of �rm-level R&D on the �rm-speci�c change in protection based on the 1986-1988, 1989-1991, and
1992-1995 periods. Columns (3), (4), and (5) report the �rst stage regressions coe�cients. Statistical
signi�cance levels: ∗(p < 0.10),∗∗ (p < 0.05),∗∗∗ (p < 0.01)
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(1.52) is estimated using OLS. Column (2) reports the estimated coe�cients.

Pj,p = γp +
4∑

k=2

1p=kZjηk + β0∆Tj +
4∑

k=2

βk1p=k∆Tj +
4∑

k=2

θk1p=kPj,p−1 + θ0Pj,p−1 + εj,t

(1.52)

The vector Zj comprises �eld-speci�c characteristics observed prior to the be-

ginning of the sample period (1980Q1-1984Q4), such as (i) the average number of

citations per patent, (ii) the average number of inventors per patent, and (iii) the size

of the �elds, measured by the total number of patents. Since the outcome variable in-

cludes lags among regressors, �eld �xed e�ects must be excluded, and these variables

serve as substitutes.

In the �nal step, speci�cation (1.52) is estimated by 2SLS using the lagged �tted

values of the estimation of (1.2) as external instruments for Pj,p−1. The estimated

coe�cients are reported in column (3). As in the analysis of subsection 1.4.4, the

direct impact of ∆Tj on innovation in the post-implementation period is positive and

statistically signi�cant.

Furthermore, the IV estimates of θ0 and θk=96−00 in column (3) provide information

on the elasticity of current innovation to past innovation. Speci�cally, θ̂0 + θ̂k=96−00

captures the impact of a shift in past innovation on current innovation outcomes

in the post-implementation period. Because the proposed IV strategy exploits only

variation that originates from the impact of the news shock, the shift in past innovation

is plausibly exogenous. The point estimate of θ̂0+ θ̂k=96−00 implies that an increase of

past innovation by 1 patent leads to a current innovation increase of approximately 5.1

patents. Given the average number of patents in the news period (408), +1 patent is

equivalent to a +0.0245 percent increase, while given the average number of patents in

the post-implementation period (1000), +5.1 patents is equivalent to a +0.51 percent

increase. Therefore, the implied elasticity is 2.1.
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Table 1.B.7: Decomposition of the post-implementation e�ect

(1) (2) (3)
(DiD) (Augmented DiD OLS) (Augmented DiD IV)

185−89 × ∆Tj 0.10328
(0.07427)

193−95 × ∆Tj -0.58255∗∗∗ -0.59537∗∗∗ -0.59694∗∗∗

(0.13934) (0.13718) (0.13505)

196−00 × ∆Tj -3.13164∗∗∗ 0.54082 0.87689∗

(1.13146) (0.40044) (0.50444)

Pj,t−1 1.42867∗∗∗ 1.77714∗∗∗

(0.10966) (0.18164)

193−95 × Pj,t−1 -0.04022 -0.00115
(0.18083) (0.26824)

196−00 × Pj,t−1 3.05545∗∗∗ 3.35558∗∗∗

(0.89086) (0.78411)
Period F.E. Y Y Y
Field F.E. Y
Observations 2484 1856 1856

Column (1) reports the OLS estimates of the DiD speci�cation (1.2) estimated on an aggregated
sample over periods: 1985Q1-1988Q4; 1989Q1-1992Q3; 1992Q4-1995Q2; 1995Q3-2000Q4. Column
(2) reports the OLS estimates of speci�cation (1.52) over the same aggregate sample. Column (3)
reports the IV 2SLS estimates of speci�cation (1.52) over the same aggregate sample. In all columns,
standard errors are clustered by technical �eld. Statistical signi�cance levels: ∗(p < 0.10),∗∗ (p <
0.05),∗∗∗ (p < 0.01)
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1.B.6 Evidence by industry

1.B.6.1 The e�ect of innovation on welfare and TFP

In this subsection, I present empirical �ndings regarding the impact of innovation (as

measured by patents, citations-weighted patents, and patent value) on productivity

and welfare. To this end, I conduct a sectoral-level analysis employing the NBER CES

manufacturing database and utilizing the most �nely-grained sectoral classi�cation

available, namely the 6-digit NAICS.60

To isolate the impact of innovation on welfare and productivity, I exploit in an

IV setting the variation in innovation induced by the news and the subsequent im-

plementation of the TRIPs-related patent term change. I measure productivity by

the 5-factors Total Factor Productivity (TFP) and (inverse) measure of welfare is

the value of shipments de�ator. To focus on the policy-related window, the time

dimension of the panel is restricted to 1985-2000. The second stage regression is

ys,t = αs +
2000∑

k=1985

γk1(t=k) + βIs,t + ΞXs,t + εs,t (1.53)

where ys,t denotes the natural logarithm of either the value of shipments de�ator

or TFP for industry s in year t, αs are industry �xed e�ects, 1(t=k) are yearly dummy

variables, Xs,t is a matrix of controls that include: 4-digit NAICS industry × yearly

e�ects, the log of the energy price de�ator and, and the log of energy consumption.

εs,t is an idiosyncratic error term. (1.5) is estimated by weighted least squares with

weights representing the number of patents produced in the sector in 1985, to take

into account heterogeneous innovation-related industry sizes. Is,t is the innovation

measure for industry s and year t. To aggregate measures of innovation by 6-digit

60An example of the depth of the sectoral classi�cation I use in the analysis is the following. 31-
33 is the aggregate 2-digit classi�cation for Manufacturing ; 324 is the 3-digit Petroleum and Coal
Products Manufacturing, 3241 is the 4-digit Petroleum and Coal Products Manufacturing ; which
includes the 5-digit 32412 Asphalt Paving, Roo�ng, and Saturated Materials Manufacturing, which
includes the 6-digit sectors 324121 Asphalt Paving Mixture and Block Manufacturing and 324122
Asphalt Shingle and Coating Materials Manufacturing.
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NAICS and year, I start from measures of innovation by technical �eld at the yearly

level, and I map them into 6-digit NAICS through the formula Is,t =
∑

j Ij,tπs|j. Ij,t

is innovation in 4-digit IPC �eld j and year t, and πs|j is the probability that a patent

classi�ed in technical �eld j is linked to sector s. πs|j is taken from the 'Algorithmic

Links with Probabilities' crosswalk by Goldschlag, Lybbert and Zolas (2019).

The �rst stage regression is

Is,t = κs +
2000∑

k=1985

ιk1(t=k) +
2000∑

k=1985

ψk1(t=k)∆Ts + ΛXs,t + us,t (1.54)

where the LHS innovation variables used are patents, citations-weighted patents,

or patent value. ∆Ts is the policy-induced change in protection time in sector s. The

technical �eld level treatment ∆Tj is converted into a sectoral treatment Ts by the

formula ∆Ts =
∑

j ∆Tjπj|s, where πj|s is the probability that, given that a patent is

assigned to NAICS s, it comes from technical �eld j. These probabilities are again

taken from Goldschlag, Lybbert and Zolas (2019).

Table 1.B.8 presents the estimated impact of innovation on the natural logarithm

of the value of shipments price de�ator. Speci�cally, the results indicate that an

industry×year increase of 100 patents leads to a 2.7% reduction of the value of ship-

ment de�ator, while an industry×year increase of 1,000 citations-weighted patents

implies a 1.5% lower value of shipment de�ator. It is worth noting that the sectoral

averages of industry×year patents and citations-weighted patents in the pre-treatment

year 1991 are 280 and approximately 1,450, respectively. Additionally, the F-statistics

for the �rst stage regressions are always above 10.

Table 1.B.9 presents the estimated impact of innovation on the natural logarithm of

5-factors TFP estimated by the NBER. An increase of 100 industry×year patents im-

plies a 3.3% increase in TFP.61 Similarly, an increase of 1,000 industry×year citations-
61The sectoral average of industry×year patents in the pre-treatment year 1991 is 280.
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Table 1.B.8: Sectoral evidence on prices

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Patents/100 -0.024∗∗∗ -0.027∗∗∗

(0.003) (0.008)

Citations/1000 -0.012∗∗∗ -0.015∗∗∗

(0.001) (0.003)

Patent value (M)/1000 -0.002∗∗∗ -0.007∗∗

(0.001) (0.003)

6-d NAICS f.e. Y Y Y Y Y Y
Year f.e. Y Y Y Y Y Y
4-d NAICS × Year f.e. Y Y Y Y Y Y
Observations 6684 6684 6684 6684 6684 6684

Columns (1), (3), and (5) report the OLS estimates of the β coe�cient of speci�cation

(1.5) having as dependent variable the natural logarithm of the price of shipment de�ator,

normalized to 100 in 1997. Columns (2), (4), and (6) report the 2-stage estimates of the IV

regression. Standard errors are clustered by 3-digit NAICS × year. Statistical signi�cance

levels: ∗(p < 0.05),∗∗ (p < 0.01),∗∗∗ (p < 0.001)

weighted patents implies a 1.8% increase in productivity.62 The �rst stage regressions

have F-statistics that are always above 10.

1.B.6.1.1 Pass-through of productivity gains The ratio of the estimated im-

pact of innovation on TFP to the estimated impact of innovation on the value of

shipments de�ator (with sign �ipped) can provide insight into the pass-through of

productivity gains to higher consumer welfare. Based on the estimates presented

in Tables 1.B.8 and 1.B.9, the pass-through of TFP gains from an increase of 100

patents is around 83% and 84% for citations-weighted patents. When using the pri-

vate economic value of patents, the pass-through drops to 76%. These results suggest

a high and consistent pass-through of TFP gains into lower prices across the di�erent

measures of innovation.

62The sectoral average of industry×year citations-weighted patents in the pre-treatment year 1991
is approximately 1,450.
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Table 1.B.9: Sectoral evidence on TFP

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Patents/100 0.027∗∗∗ 0.033∗∗∗

(0.003) (0.008)

Citations/1000 0.013∗∗∗ 0.018∗∗∗

(0.001) (0.003)

Patent value (M)/1000 0.003∗∗∗ 0.009∗∗

(0.001) (0.004)

6-d NAICS f.e. Y Y Y Y Y Y
Year f.e. Y Y Y Y Y Y
4-d NAICS × Year f.e. Y Y Y Y Y Y
Observations 6684 6684 6684 6684 6684 6684

Columns (1), (3), and (5) report the OLS estimates of the β coe�cient of speci�cation (1.5)

having as dependent variable the natural logarithm of the 5-factors TFP, normalized to

100 in 1997. Columns (2), (4), and (6) report the 2-stage estimates of the IV regression.

Standard errors are clustered by 3-digit NAICS × year. Statistical signi�cance levels: ∗(p <
0.05),∗∗ (p < 0.01),∗∗∗ (p < 0.001)

1.B.6.2 The dynamic e�ect of the policy on welfare and TFP

This subsection investigates the dynamic e�ects of the policy on welfare and TFP at

the industry level using a di�erence-in-di�erence analysis. The measures of welfare

and productivity and the sectoral treatment are the same as in the previous subsection.

The policy-relevant time-window is 1985-2000 and the speci�cation of the regression

is

ys,t = αs +
2000∑

k=1985

γk1(t=k) +
2000∑

k=1985

βk1(t=k)∆Ts + ΞXs,tεs,t (1.55)

where the dependent variable ys,t for sector s and year t is the natural logarithm of

either of the two outcomes described above, αs are industry �xed e�ects, 1(t=k) denotes

yearly dummies, Xs,t is matrix of controls that including 4-digit NAICS industry ×

year e�ects, the natural logs of the energy price de�ator, and the natural logs of

material costs de�ator. ∆Ts is the sectoral treatment and εs,t is the error term.

Speci�cation (1.55) is estimated by weighted least squares with weights being the

number of patents produced in the sector in 1985 to take into account heterogeneous
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Figure 1.B.53: Marginal e�ect of 1 more day of protection on sectoral TFP

−.006

−.004

−.002

0

.002

ln
(T

FP
)

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

Year

Baseline at (t−1): −.07

The plot shows the βk coe�cients of regression (1.55) having as dependent variable the
natural logarithm of TFP in sector s and year t. Point estimates refer to the marginal e�ect
of a one-day anticipated change in patent term on the percent deviations of the outcome
variable. Clustered 95% con�dence bands by 3-digit NAICS industry and year are plotted.
The �rst vertical line lies just before the news year (1992) and the second vertical line lies
just before the implementation year (1995).

innovation-related industry sizes.

Figure 1.B.53 illustrates the results of a di�erence-in-di�erence analysis, which

examines the dynamic e�ect of a change in patent protection term on the logarithm

of sectoral TFP. The plot displays the di�erence-in-di�erence coe�cients for various

industries. When ∆Ts < 0, the point-estimates are initially very close to zero and

gradually increase over time, indicating a slow but positive impact of higher policy-

induced innovation on the level of productivity.

Figure 1.B.54 illustrates the di�erence-in-di�erence coe�cients depicting the dy-

namic impact of a change in patent protection term on the logarithm of the value of

shipments de�ator, which serves as the inverse measure of welfare. The �gure reveals

that the gains in welfare resulting from innovation take time to materialize, as TFP

gains are gradual in nature.
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Figure 1.B.54: Marginal e�ect of 1 more day of protection on sectoral value of ship-
ments de�ator

−.002

0

.002

.004

.006

ln
(V

al
ue

 o
f S

hi
pm

en
ts

 D
ef

la
to

r)

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

Year

Baseline at (t−1): −.09

The plot shows the βk coe�cients of regression (1.55) having as dependent variable the
natural logarithm of the values of shipments de�ator in sector s and year t. Point estimates
refer to the marginal e�ect of a one-day anticipated change in patent term on the percent
deviations of the outcome variable. Clustered 95% con�dence bands by 3-digit NAICS
industry and year are plotted. The �rst vertical line lies just before the news year (1992)
and the second vertical line lies just before the implementation year (1995).

Appendix 1.C Additional theoretical results

1.C.1 Model derivations

This section presents the details and the derivations of the model of Section 1.6.

1.C.1.1 Consumers

The consumer has linear utility u(c(t)) = c(t) in per-capita consumption c(t), invests

in real-assets a(t), and inelastically supplies labor. The maximization problem of the

representative agent is

max
c(t),a(t)

∫ ∞

0

e−ρc(t)dt (1.56)

subject to ȧ(t) = r(t)a(t)− c(t) + w(t) (1.57)

where c(t) is de�ned as aggregate consumption divided by population, i.e. c(t) ≡

C(t)/L(t), and a(t) ≡ A(t)/L(t) are total assets per capita. Aggregate real assets are
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and A(t) ≡ K(t) +
∫∞
0
υ(t − s, t)S(t − s, t)ds. The �rst term is the total stock of

physical capital. The second term represent the total value of �rms owning patents

on pro�t-generating intermediate capital varieties.

In particular, the last term is de�ned by the following expressions

υ(t− s, t) =

∫ t−s+T

t

π(t′)e−
∫ t−s+T
t′ (ρ+λ(z))dzdt′ if s ≤ T

υ(t− s, t) = 0 if s ≥ T

and it represents the residual value at time t of a patent generated at time t−s.The

term S(t− s, t) represents the mass of patents generates at time t− s that have not

been creatively destroyed up to time t and it is de�ned by the expression

S(t− s, t) = (1 + ψ)V̇ (t− s)e−
∫ t
t−s λ(t

′)dt′

No arbitrage conditions ensure that all the real assets give a net real return equal

to r(t). The solution of problem (1.56) gives the Euler equation r(t) = ρ.

1.C.1.2 Final good production

The �nal good is produced by a competitive �rm that optimally chooses labor and

each of the intermediates to maximize pro�ts. The problem is

max
{X(i,t)}i∈[0,V (t)],L(t)}

[
h(t)L(t)

]1−α[ ∫ V (t)

0

Xα(i, t)di
]
−
∫ V (t)

0

z(i, t)X(i, t)di− w(t)L(t)

Equation (1.58) is the production function.

Y (t) =
[
h(t)L(t)

]1−α[ ∫ V (t)

0

Xα(i, t)di
]

(1.58)

The �rst order conditions of the problem are
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w(t) = (1− α)h(t)1−αL(t)−α
[ ∫ V (t)

0

Xα(i, t)di
]

(1.59)

z(i, t) = αh(t)1−αL(t)1−αXα−1(i, t) ∀ i ∈ [0, V (t)] (1.60)

Equation (1.59) is the inverse labor demand and determines the equilibrium wage

rate. (1.60) is the inverse demand for intermediate i.

1.C.1.3 Monopolistic intermediate goods production

The existing V (t) intermediate good varieties are protected by a valid patent, with

a share ζ(t) being granted a monopoly. The monopolistic producer of each variety

i maximizes pro�ts subject to the inverse demand given by (1.60) and a linear pro-

duction function that uses one unit of raw capital K(t). Raw capital is rented from

households at a rate of rK(t) = r(t) + δ, where δ represents the depreciation rate of

physical capital. The maximization problem is

max
X(i,t),z(i,t)

{
z(i, t)X(i, t)− (r(t) + δ)X(i, t)

}
s.t. z(i, t) = αh(t)1−αL(t)1−αXα−1(i, t)

and the �rst order condition implies

z(i, t) = α(h(t)L(t))1−αX(i, t)α−1 =
1

α
(r(t) + δ) (1.61)

i.e. the price is a constant markup 1/α over the marginal cost (r(t) + δ). The

produced quantity and the pro�ts are symmetric across monopolistic i's and satisfy

X(i, t) = Xp(t) = α
2

1−α (r(t) + δ)−
1

1−αh(t)L(t) ∀ i ∈ [0, ζ(t)V (t)] (1.62)

π(i, t) = π(t) =
( 1
α
− 1
)
(r(t) + δ)Xp(t) (1.63)
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1.C.1.4 Non-monopolistic intermediate goods production

A fraction 1− ζ(t) of intermediates are competitively produced because legal patent

protection on them has expired after the maximum patent term T . These non-

monopolistic varieties are produced in a regime of Bertrand competition and therefore

the price z(i, t) is driven to the marginal cost of production (r(t) + δ). It follows

from the inverse demand function (1.60) that the production of these competitively-

produced intermediate varieties is symmetric and given by

Xnp(t) = α
1

1−α (r(t) + δ)−
1

1−αh(t)L(t) ∀ i ∈ (ζ(t)V (t), V (t)] (1.64)

which implies that Xp(t) = αXnp(t). Since α ∈ (0, 1) by assumption, this im-

plies that the quantity produced of monopolistic varieties is lower than the one of

competitive varieties, which is the main distortion from monopoly in the model.

1.C.1.5 Physical capital market clearing condition

Physical capital market clearing requires that the quantity of capital supplied by

households K(t) is equal to the quantity of capital demanded by �rms to produce the

intermediate capital goods, i.e.

K(t) =ζ(t)V (t)Xp(t) + (1− ζ(t))V (t)Xnp(t)

=[αζ(t) + (1− ζ(t))]V (t)Xnp(t)

(1.65)

1.C.1.6 Research investment to discover new projects

The model features an unit mass of identical �rms that invest in research. The output

of research investment is new ideas that need subsequent development by successful

�rms. The research investment problem of the representative research �rm is

max
IR(t)

{
P (t)E(t)χV (t)ϕ1IR(t)

ϕ2 − IR(t)
}
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P (t) is the economic value of a new idea, or, alternatively, it can be thought as

the exclusivity value of a development project. The optimal research investment is

given by
IR(t) =

[
ϕ2P (t)E(t)

χV (t)ϕ1
] 1

1−ϕ2

1.C.1.7 Investment in development of projects

Development occurs independently on each existing project, even in the case of a

single �rm running multiple projects. The project-speci�c maximization problem can

be written in recursive form as

r(t)P (t)− Ṗ (t) = max
ιD(t)

{
ιD(t)

[
υ(t)− P (t)

]
− µιD(t)

θυ(t)
}

(1.66)

where the equation captures the fact that if the project is successful with instan-

taneous probability ιD(t), the �rm receives a value υ(t) for the intermediate variety

obtained but it loses the value of the project P (t), which expires after completion.

υ(t) is the value of a patent on a variety, and it is de�ned by (1.12) in the paper. The

optimal development project completion rate is

ιD(t) =

[
1

θµ

(
1− P (t)

υ(t)

)] 1
θ−1

(1.67)

The process of creative destruction captured by the λ(t) term is endogenous, and

it is driven by the rate of growth of the number of varieties V (t). It is de�ned as

λ(t) ≡ ψ V̇ (t)
V (t)

, i.e. in times when the rate of growth of varieties is higher, the rate of

creative destruction is higher.

1.C.1.8 Evolution of aggregate quantities

Previous optimal policies determine the evolution of aggregate quantities. First, the

number of varieties V (t) evolves according to
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(1 + ψ)V̇ (t) = ιD(t)N(t) (1.68)

where ψV̇ (t) is by how much creative destruction reduces the mass of intermediate

goods available, and ιD(t)N(t) is the number of development projects successfully

turned into a variety. ιD(t) is the instantaneous probability that each of the existing

projects N(t) is successfully completed. Since it is identical and independent across

projects, a suitable law of large numbers applies and the aggregate representation

provided holds. Second, the evolution of projects is given by

Ṅ(t) = E(t)χV (t)ϕ1IR(t)
ϕ2 − ιD(t)N(t) (1.69)

where the �rst term captures the mass of new projects generated by research in-

vestment, and the second term captures the destruction of projects due to successful

completion.

The evolution of the share of existing varieties that are covered by monopoly, i.e.

ζ(t), is given by

ζ̇(t) = (1− ζ(t))
V̇ (t)

V (t)
− (1 + ψ)

V̇ (t− T )

V (t)
e−

∫ t
t−T λ(t

′)dt′ (1.70)

where the �rst term captures the additions to monopolistic varieties due to new

patented innovations, and the second term captures the fact that all those varieties

that have not already been creatively destroyed become competitive when the maxi-

mum patent term T expires.

The derivation of equation (1.70) is the following. Let Vp(t) be the mass of existing

varieties covered by monopoly. Then, ζ(t) ≡ Vp(t)

V (t)
. Re-organizing the de�nition of ζ(t)

and taking time derivatives, we get

ζ̇(t)V (t) + ζ(t)V̇ (t) = V̇p(t)
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V̇p(t) is given by the in�ow of new varieties in the stock of monopolistic ones,

minus the out�ow from this stock, due to the expiration of the maximum patent term

T . This is what needs to be derived. At every instant t, the gross production of new

varieties (which are monopolistic upon creation) is given by (1+ψ)V̇ (t) = ιD(t)N(t). I

assume for simplicity that all creatively destroyed varieties ψV̇ (t) come from the pool

of monopolistic ones. This simpli�es things because it implies that the net addition to

the stock of existing varieties. V̇ (t) also coincides with the net addition to the stock

of monopolistic varieties Vp(t). Therefore, the net in�ow component of V̇p(t) is simply

V̇ (t). As to the out�ow, we need to consider that the mass of varieties of vintage

t−T , i.e. (1+ψ)V̇ (t−T ), which go out of monopoly at instant t, has been eroded by

creative destruction over time. Let S(t0) be the stock of such patents issued at time

t0. In practice, take S(t0) = (1 + ψ)V̇ (t0). Due to creative destruction, the evolution

of this stock responds to the following law of motion: S(t+ dt) = S(t)− (λ(t)dt)S(t),

which can be re-written as a �rst order di�erential equation Ṡ(t) = λ(t)S(t). Its

solution, for two generic points in time t0 and t1, is S(t1) = S(t0)e
−

∫ t1
t0
λ(t′)dt′ . Now,

the out�ow from the mass of monopolistic varieties is given by the residual mass

of gross varieties produced at t − T and survived from t − T up to t. Therefore,

replacing S(t0) = (1 + ψ)V̇ (t0), t0 = t− T , and t1 = t, we get that the out�ow from

the mass of monopolistic varieties is the right hand side of the last equation. i.e.

(1 + ψ)V̇ (t− T )e−
∫ t
t−T λ(t

′)dt′ . Therefore,

ζ̇(t)V (t) + ζ(t)V̇ (t) = V̇ (t)− (1 + ψ)V̇ (t− T )e−
∫ t
t−T λ(t

′)dt′

Moving the second LHS addend to the right, and dividing everything by V (t), we

get exactly (1.70).

The evolution of aggregate capital satis�es K̇(t) = IK(t) − δK(t), where IK(t) is

the investment in physical capital done by the households out of the �nal good, and

δK(t) is the depreciation of the existing stock.
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1.C.1.9 Final good market clearing

Given the production decisions of intermediate producers and �nal good producers,

GDP for this economy can be rewritten as

Y (t) = [ααζ(t) + (1− ζ(t))]V (t)h(t)1−αL(t)1−αXα
np(t) (1.71)

where [ααζ(t) + (1− ζ(t))]V (t)h(t)1−α is the measured TFP. The productivity of the

economy grows with the number of varieties available, and decreases with the share

of monopolistic varieties, as αα < 1. On the other hand, the total production of the

�nal good must also satisfy the resource constraint

Y (t) = C(t) + IK(t) + IR(t) + µιD(t)
θυ(t)N(t) (1.72)

1.C.1.10 Balanced growth path

Population L(t) and the productivity term h(t) exogenously grow at constant rate

n and gh, respectively. Since r(t) = ρ, the real interest rate is constant. From

equations (1.62), (1.64), and (1.63) the growth rate of Xp(t), Xnp(t), and pro�ts is

identical in the b.g.p and equal to gh+n. From the de�nition of υ(t), the patent value

must grow at the same rate of pro�ts. In addition, the rate of creative destruction

λ(t) is constant along the balanced growth path. From the value function of the

development investment problem, P (t) must grow at the same rate of υ(t), i.e. gP =

n + gh, and the development speed ιD(t) must be constant. A constant ιD(t) also

implies that the externality term E(t) is constant in the b.g.p. The evolution of V (t)

in (1.68) implies that gV = gN , and the evolution of N(t) in (1.69) requires that

gN = ϕ1gV + ϕ2gIR . From (1.72), the rate of growth of C(t), IK(t), and IR(t) must

be the same as output, i.e. gY = gC = gIK = gIR . In addition, from (1.70), ζ(t)

is constant in the b.g.p., and therefore the equilibrium production function (1.71)

requires gY = (1 − α)(gh + n) + gV + αgX . Since gX = n + gh, we then obtain
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gY = gV +n+ gh. Using gIR = gY and gV = gN , and plugging the last expression into

gN = ϕ1gV +ϕ2gIR , gV can be solved as gV = ϕ2
1−ϕ1−ϕ2 (n+ gh). The latter can be used

to solve explicitly for all the other growth rates.

1.C.2 Transitional dynamics computational algorithm

I solve the stationary version of the system, which can be obtained by re-scaling each

variable by its growth rate along the balanced growth path, as computed in Subsection

1.C.1.10. The stationary version of the variables of the model is denoted with a tilde,

as in the main text. In any solution of the model r(t) = ρ, which gives an explicit

solution for the full dynamic path of X̃p(t), X̃np(t), and π̃(t). For the other variables,

I setup a mesh that goes from t0 = 0 to tmax = 2000, and I assume that (i) just before

t0, the stationary version of the system is in the pre-policy news steady state, and (ii)

by tmax it has reached the post-policy change steady state.

I start from a guess of λ̃(t) from t0 = 0 to tmax = 2000, which I initially �x to be

equal to ψgV = ψ gh+n
1−ϕ1−ϕ2 at any time. Given λ̃(t), I can solve for the full dynamic

path of υ̃(t) using equation (1.12). I impose the terminal condition on P̃ (t), i.e., that

it must be at the post-policy steady state at tmax. Then, for each P̃ (t+dt), I solve the

development investment problem given υ̃(t), obtaining ιD(t) and P̃ (t). I use the full

sequence of ιD(t) to build the delayed externality term and, given the computed P̃ (t),

I solve for the optimal ĨR(t) at every instant using the fact that both Ñ(t) and Ṽ (t)

are assumed to be at the old steady state at t0, as they are state variables. With all

previous objects, I solve forward (1.15) and (1.14) obtaining Ñ(t+ dt) and Ṽ (t+ dt)

∀t. Also, given the full series of λ̃(t), I solve forward for ζ(t), again assuming that

this state variable is at the pre-policy steady state at t0. With Ṽ (t), ζ(t), and Xnp(t),

I use the capital market clearing condition to compute the aggregate series for K̃(t)

and, subsequently, the series ĨK(t) that is required to sustain K̃(t), assuming that at

t0 the level of physical capital is at the old steady state. Using the exogenous L̃(t)
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and h̃(t) with X̃np(t), Ṽ (t) and ζ(t), I solve for Ỹ (t) and C̃(t) using the resource

constraint. As a �nal step, I use the series Ṽ (t) to update the guess for λ̃(t) according

to λ̃(t) = ψ
(
gV +

˙̃V (t)

Ṽ (t)

)
, and I iterate the previous steps until convergence of the λ̃(t)

series.

1.C.3 Computation of standard errors

The quadratic loss function used for simulated method of moments estimation is

F = g′(Γ)Wg(Γ), where Γ is the vector of estimated parameters and g(Γ) is the

vector of the deviation of model-based moments computed at Γ from the empirically

estimated moments. Overall, there are 69 moment restrictions. 33 are the post-

announcement reduced-form estimates of the e�ect of the reform on patenting activity,

33 are the post-announcement reduced-form estimates of the e�ect of the reform on

patent-read R&D e�ort, and 3 are the long-run moment restrictions on the capital-

output ratio, the consumption-output ratio, and the R&D spending-output ratio. In

estimation, W is a diagonal matrix giving unit weight to the �rst 66 moments, and

weights 0.01, 0.1, and 10,000, to the K/Y , C/Y , and R&D/Y long-run restrictions,

to correct for their respective scale. The variance-covariance matrix of the estimated

parameters for the resulting GMM estimator is

V̂ = (D(Γ̂)WD′(Γ̂))−1D(Γ̂)Wg(Γ)g′(Γ)W ′D′(Γ̂)(D(Γ̂)WD′(Γ̂))−1/69

whereW was de�ned above and D′(Γ̂) is de�ned as D′(Γ̂) = ∂g(Γ)
∂Γ′

∣∣∣∣
Γ=Γ̂

. The latter

is computed numerically around the optimal Γ̂. The standard errors of the parameters

are computed as the square root of the main diagonal elements of V̂.

1.C.4 The mechanism at work in the model

The plots illustrate how various theoretical objects respond to an anticipated increase

in patent term of 100 days, starting from a 17-year patent term. The anticipation
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Figure 1.C.1: Evolution of aggregates

(a) Patent value: υ(t) (b) Ideas value: P (t)

(c) Development pace: ιD(t) (d) Research investment: IR(t)

period is assumed to be 2 years and 8 months, consistent with the TRIPs anticipation.

The news is assumed to break at time t = 0, with the vertical line indicating the policy

implementation. The red horizontal line represents the steady state in the old regime,

while the blue horizontal line represents the steady state in the new regime. The

black solid lines depict the response of the variables of interest. Speci�cally, the top-

left panel of Figure 1.C.1 shows the evolution of patent value υ(t), the top-right panel

shows project value P (t), the bottom-left panel shows development pace ιD(t), and

the bottom-right panel shows research investment IR(t).

167



1.C.5 New ingredients and comparison with existing models

In this Appendix subsection, I examine the role of the two novel ingredients introduced

by the semi-endogenous growth model of Section 1.4: the distinction of Research and

Development activity into two di�erent steps and the technology disclosure external-

ity. The objective of the subsection is twofold. Firstly, I argue that the joint action of

both ingredients is crucial to empirically replicate the e�ects of an anticipated patent

term change documented by Section 1.4. Secondly, I show how the proposed frame-

work nests workhorse models in the endogenous growth literature and illustrate that,

in those models, an anticipated patent term change generates e�ects inconsistent with

the data. I proceed in two steps. In subsection 1.C.5.1, I examine a model with nei-

ther ingredient and show that it reduces to the semi-endogenous growth framework

�rst proposed by Jones (1995). I discuss that it cannot replicate the new e�ects of the

policy (Fact 1) because it misses the intertemporal trade-o� on the development of

existing projects. Next, in Subsection 1.C.5.2, I examine a model that distinguishes

research and development but mutes the technology disclosure externality. The math-

ematical structure of the two-stage R&D model is close to Comin and Gertler (2006a),

but the setups di�er in the interpretation of two stages and in the technology disclo-

sure externality. Absence of the latter from Comin and Gertler (2006a) implies that

R&D and innovation would immediately increase after the implementation of a longer

patent term, even in the presence of anticipation. This is in contrast with empirical

Fact 2.

1.C.5.1 Research and Development as a single activity

I begin by presenting a simpli�ed version of the model where Research and Develop-

ment are combined into a single step, and there is no technology disclosure externality.

To achieve this, I set the development cost parameter µ = 0, which implies that the

value of an undeveloped idea P (t) is equal to the value of a patented technology υ(t)
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at any point in time. In other words, the whole R&D process collapses to a single

stage when the cost of development is zero. Therefore, the R&D activity can be

described by the maximization problem

max
IR(t)

υ(t)V (t)ϕ1IR(t)
ϕ2 − IR(t) (1.73)

which is equivalent to the formulation of the R&D problem in the standard semi-

endogenous growth model by Jones (1995). Moreover, the coincidence of ideas and

varieties implies that the measures thereof are equal at any instant, i.e., N(t) = V (t),

and varieties evolve according to the law of motion

(1 + ψ)V̇ (t) = V (t)ϕ1I∗R(t)
ϕ2 (1.74)

where I∗R(t) is optimal R&D investment solving problem (1.73).

In this model, I simulate a policy episode involving a one-o� patent term increase

of 100 days with an anticipation of 2 years and 8 months, identical to that used for

structural estimation. Figure 1.C.2 presents the evolution of innovation V (t)ϕ1I∗R(t)
ϕ2

(panel a) and the value of innovations υ(t) (panel b) in this model. Unlike empirical

estimates, innovation does not decrease between the news and policy implementation

but rises immediately afterward. The evolution of patent value υ(t) and problem

(1.73) explain this outcome. Assuming that innovators �le a patent application im-

mediately after obtaining a new technology, υ(t) does not vary upon news because

the old patent term still applies until the new policy's implementation. If innovators

delay the �ling of applications, υ(t) could even increase upon news of a longer patent

term in the future. Therefore, the optimal R&D investment remains constant or even

increases after the news shock, contrary to the empirical DiD estimates.

The model proposed in Section 1.6 successfully predicts the decline in R&D and

innovation following news of a future patent term extension by accurately capturing
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Figure 1.C.2: TRIPs e�ect without distinction of Research and Development

(a) Patenting (b) Patent value υ(t)

In panel (a), the black solid line represents the response of innovation (patents) to a 100-days patent
term increase anticipated by 2 years and 8 months in Jones (1995)'s model with �nite patent term.
The news shock occurs at time t = 0. The red dashed lines represent the 95% con�dence intervals
implied by the reduced-form DiD estimates of Section 1.4. In panel (b), the black solid line shows
the response of patent value in the same model. The red (blue) dashed line represents the pre-TRIPs
(post-TRIPs) steady-state value.

the intertemporal trade-o� involved. This is achieved by introducing a distinction

between ideas and technologies, made possible by the separation of R&D activity into

two steps. While the research problem re�ects the standard trade-o� between invest-

ment and the resulting idea's value, development activity represents a new economic

force.

Innovators who successfully generate a new idea in research want to develop it

into a patented technology as quickly as possible, as this allows them to begin earning

pro�ts sooner. At any given moment, the relative value of new patented technologies

and ideas provides information about how pro�table it is to complete the project in

that moment, as opposed to keeping the idea and attempting to develop it at a later

time. However, faster development is subject to convex costs due to factors such

as declining productivity as developers work more intensely, laboratory equipment

depreciation, or the increasing cost of reducing the time required for activities.

Upon the news of a future patent term increase, the optimal speed of develop-
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ment declines due to the decreasing relative value of newly patented technologies and

ideas. As explained earlier, the news shock does not a�ect the value of new patents

obtained before implementation, but it increases the value of future patents obtained

thereafter. Consequently, the value of new ideas, which represents the expected value

of obtaining a patented technology at some future date net of development costs,

increases. However, being fast becomes less attractive but remains equally costly,

leading to a decline in the optimal development pace.

Therefore, the model's two-stage representation of R&D, which generates an in-

termediate output with a distinct value from �nal technologies, is crucial to correctly

capture this intertemporal trade-o�.

1.C.5.2 Technology disclosure externality

In their study, Comin and Gertler (2006a) present an endogenous growth model with

a two-stage R&D structure that bears similarities to the model proposed in Section

1.6. However, there are two key di�erences between the two setups. Firstly, Comin

and Gertler (2006a) interpret the �rst stage as encompassing the entire R&D process

from idea generation to patenting of developed technologies, as discussed in the pre-

vious Subsection 1.C.5.1. The second stage pertains to adoption, which refers to the

incorporation of patented technologies into a consumption good. Since the adoption

decision is assumed to be independent of the TRIPs patent term change, the model's

response to the policy is analogous to that depicted in Figure 1.C.2, which contradicts

the empirical evidence. Speci�cally, the patent term change a�ects the value of both

technology and adoption symmetrically. Therefore, optimal second-stage decisions

remain unchanged following the shock, and �rst-stage investment only increases with

policy implementation. This �nding is consistent with the discussion in Subsection

1.C.5.1.

The model in Section 1.4 and Comin and Gertler (2006a) di�er in a second key
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way: the technology disclosure externality documented in Section 1.5. To clarify the

role of this externality, I simulated a version of the model with χ = 0, muting the new

externality. The black solid lines in Figure 1.C.3 show the responses of innovation

(panel a) and R&D e�ort (panel b) in this version of the model to a 100-day patent

term increase anticipated 2 years and 8 months in advance, while the red dashed lines

represent the empirical 95% con�dence bands of speci�cation 1.3 in response to an

equivalent shock.

Before the policy implementation, both R&D and innovation decline due to the

intertemporal trade-o� described in the previous subsection, which is consistent with

the empirical evidence. However, absent the externality, R&D and innovation increase

shortly after the implementation of the new, longer, patent term, which is in stark

contrast with the empirical estimates. This increase occurs because of the joint action

of three forces: (i) the incentive to slow down development ends, which was the main

reason for the decline in R&D and innovation during the anticipation period; (ii) a

higher value of ideas stimulates research investment and innovation as a direct e�ect;

and (iii) since the stock of knowledge V (t) is temporarily lower due to the news shock,

productivity of research is also lower than normal due to the standard "standing on

the shoulders of giants" externality. However, because the decline in innovation due to

news is small relative to the overall stock of knowledge, the direct e�ect (ii) dominates

(iii) and total R&D investment increases.

In contrast, while the decline in innovation due to news may not have a signi�cant

impact on overall R&D investment, it has a signi�cant e�ect on the di�usion of new

knowledge, which is the main focus of the new externality. As a result, when χ > 0,

the decline in knowledge di�usion caused by the news shock leads to a decrease in

research productivity that is strong enough to o�set the direct positive e�ect of higher

idea value. This explains the observed decline in total R&D investment and lower

innovation in the data.

172



Figure 1.C.3: TRIPs e�ect without technology disclosure externality

(a) Patenting (b) R&D

The black solid lines represent the response of patenting and R&D e�ort to a 100-days patent term
increase anticipated by 2 years and 8 months in the model of Section 1.6 with χ = 0 and other
parameters �xed to the values of Table 1.1. The red dashed lines represent the 95% con�dence
intervals implied by the reduced-form DiD estimates of Section 1.4. The economy is assumed to be
at the steady state before the news shock.

Figure 1.C.4: TRIPs e�ect without technology disclosure externality

(a) Patenting (b) R&D

The black solid lines represent the response of patenting and R&D e�ort to a 100-days patent term
increase anticipated by 2 years and 8 months in the model of Section 1.6 with χ = 0 and other
parameters �xed to the values of Table 1.1. The red dashed lines represent the 95% con�dence
intervals implied by the DiD estimates of the augmented Poisson model (1.39) controlling for lagged
news e�ects. The economy is assumed to be at the steady state before the news shock.
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Figure 1.C.5: Policy simulation in a model with θ = 1.055 or θ = 2 vs. empirical
estimates

(a) Innovation (Patents) (b) Patent-read R&D e�ort

The black solid line is the model-based responses of the model with parameter values reported in
Table 1.1. The dashed line refers to θ = 2. The red dashed lines are 95% con�dence bands of the
reduced form estimates of Section 1.4. The system is assumed to be at the pre-policy change steady
state at t = 0, when the news of 100-days increase in protection time implemented after 2 years and
8 months (blue vertical line) happens.

1.C.6 Identi�cation of key structural parameters

In this subsection, I will discuss how variations in key model parameters a�ect the

model-based responses of patenting and R&D to TRIPs, supporting the identi�cation

of key structural parameters.

Figure 1.C.5 illustrates the response of innovation and patent-read R&D e�ort, in

the model and in the data, while �xing θ at two di�erent values: θ = 2 or θ = 1.055,

which is the point estimate from Section 1.7. Increasing θ from 1.055 to 2 means

moving from a mild to a severe cost convexity of the pace of development. As a

result, the adjustment of the pace of development becomes much more costly for

innovators. This leads to a much more subdued response of innovation and R&D

to the news shock in the model. Therefore, the strong response of both variables

observed in the data is informative about the mild cost convexity estimated in the

model.

Figure 1.C.6 illustrates the response of innovation and patent-read R&D e�ort in

the model and in the data, holding χ constant at two di�erent values: χ = 8.2937 and
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Figure 1.C.6: Policy simulation in a model with χ = 8.2937 or χ = 2 vs. empirical
estimates

(a) Innovation (Patents) (b) Patent-read R&D e�ort

The black solid line is the model-based responses of the model with parameter values reported in
Table 1.1. The dashed line refers to χ = 2. The red dashed lines are 95% con�dence bands of the
reduced form estimates of Section 1.4. The system is assumed to be at the pre-policy change steady
state at t = 0, when the news of 100-days increase in protection time implemented after 2 years and
8 months (blue vertical line) happens.

χ = 2. By reducing χ from the estimated value in Table 1.1, we move from a strong

technology disclosure externality to a milder one. This results in a weaker maximum

decline in innovation and R&D in the model during the post-implementation period.

Thus, the substantial response of both variables observed in the data provides valuable

information about the strength of the spillover, which supports the estimation of a

high χ.

1.C.7 Multi-�eld model

In this subsection, I extend the model of Section 1.6 to a setting with F = 621 �elds

that di�er in terms of (i) size and (ii) average pending period. The extended model

allows me to exactly replicate the TRIPs policy change and infer model's structural

parameters by replicating the DiD Poisson regression (1.3) on model-based simulated

data. I start by presenting the model in Subsection 1.C.7.1. Next, Subsections 1.C.7.2

and 1.C.7.3 illustrate the policy experiment and the estimation results, which are

remarkably close to those obtained using the simple one-�eld model of the paper.
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1.C.7.1 Model environment

Let f index di�erent �elds. I assume that competitive production of the �nal good

employs varieties Vf (t) from each of the f �elds and labor L(t) according to the

production function

Y (t) =
(
h(t)L(t)

)1−α[ F=621∑
f

ωf

∫ Vf (t)

0

Xf (i, t)
αdi

]
(1.75)

where h(t) is an exogenous productivity term, i indexes capital varieties and Xf (i, t)

is the quantity of �eld-f 's variety i used in production, and ωf is the weight of �eld-f

technologies in the production of the �nal good. ωf 's directly map to the size of the

�eld and will be calibrates to replicate the pre-TRIPs �eld size distribution.

Therefore, the �nal good pro�t maximization problem becomes

max
L(t),{X(i,t)}i

{(
h(t)L(t)

)1−α[ F=621∑
f

ωf

∫ Vf (t)

0

Xf (i, t)
αdi

]
−w(t)L(t)−

F=621∑
f

∫ Vf (t)

0

zf (i, t)Xf (i, t)di

}

where zf (i, t) is the price of �eld-f variety i at time t and w(t) is the wage rate. The

optimal input choice of competitive �nal good producers generates an inverse demand

for intermediate monopolistic varieties which patent owners take into account when

maximizing pro�ts as follows

max
Xf (i,t),zf (i,t)

{
zf (i, t)Xf (i, t)− (r(t) + δ)Xf (i, t)

}
s.t. zf (i, t) = ωfαh(t)

1−αL(t)1−αXα−1
f (i, t)

As in the one-�eld model, this problem determines non-negative per-variety pro�ts

πf (t) > 0, which are in this setting �eld-speci�c due to the heterogeneous weights ωf .

In contrast, competition drives the price of varieties not protected by patents to the

marginal cost of production, i.e., zf (i, t) = r(t) + δ, and pro�ts to zero.

Equilibrium πf (t) determine the value of patented technologies in �eld f . In the
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extended model, I assume that (i) pro�ts cannot be collected during the pending

period, consistently with the discussion of Section 1.2.1, and (ii) the pending pe-

riod di�ers across �elds. Therefore, the pre-TRIPs value of a �eld-f patent whose

application is �led at time t is

υpref (t) =

∫ t+Wh
f +17

t+Wh
f

πf (t)e
−

∫ s
t (r(t

′)+λf (t
′))dt′ds (1.76)

and the post-TRIPs patent value is

υpostf (t) =

∫ t+20

t+Wh
f

πf (t)e
−

∫ s
t (r(t

′)+λf (t
′))dt′ds (1.77)

Field-speci�c values of undeveloped ideas Pf (t) and R&D activity are a simple spe-

cialization of their one-�eld counterparts. Therefore, in �eld f the research problem

is

max
IR,f (t)

{
Pf (t)

[
Ef (t)

χVf (t)
ϕ1IR,f (t)

ϕ2
]
− IR,f (t)

}
and the development problem is

r(t)Pf (t)− Ṗf (t) = max
ιD,f (t)

{
ιD,f (t)

[
υf (t)− Pf (t)

]
− µιD,f (t)

θυf (t)
}

The evolution of �eld-speci�c state variables Nf (t), Vf (t), ζf (t), and others is analo-

gous to the main model.

1.C.7.2 Calibration of additional parameters and policy simulation

I calibrate weights ωf to match the relative size of the �ow of patents ιf (t)Nf (t) in

di�erent �elds. In particular, ιf (t) is symmetric across �elds in the balanced growth

path and the ratio of patent �ows is equivalent to the ratio of projects stocks Nf (t),

which is proportional to the ratio of ωf weights. Therefore, I �x ωf=1 = 1 and I

calibrate ωf =
Patf,1992Q3

Pat1,1992Q3
, where the terms of the ratio are the number of patents in
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�eld f and �eld 1 in 1992Q3.

Moreover, I calibrate the �eld-speci�c pending period Wf as the average pre-

TRIPs pending period used in the empirical part of the paper to construct the change

in patent term ∆Tj.

I simulate in the model the TRIPs-induced patent term change by assuming an

anticipated change of �eld-speci�c patent term Tf from 17 years for all �elds to 20

years minus the �eld-speci�c pending period Wf . I solve the transition of the model

to the new balanced growth path equilibrium following the shock and I aggregate the

series for �eld-speci�c patenting ιD,f (t)Nf (t) and patent-based R&D is

R&Df (t) =

∫ t

−∞

(
IR,f (τ)/nf (τ, τ)+

∫ t

τ

µιD,f (s)
θυf (s)ds

)[
ιD,f (t)nf (t, τ)

]
dτ (1.78)

at quarterly frequency. In expression (1.78), nf (τ, τ) de�nes the measure of new �eld-

f ideas discovered at time τ and nf (t, τ) the measure of these �eld-f ideas created at

time τ that have survived undeveloped until time t.

1.C.7.3 Estimation and results

In this section, I replicate the calibration strategy from Section 1.7 of the paper.

Speci�cally, I set ρ = 0.04, n = 0.011, and calibrate the growth rate of exogenous

productivity h(t) to match a 2% per capital output growth in the balanced growth

path. Moreover, I set the delay d of the externality term to 8 years to match the 4-

year half-life observed in the data. The remaining parameters (α, δ, ϕ1, ϕ2, χ, θ, µ, ψ)

are estimated using GMM to match the Poisson DiD estimates of speci�cation (1.3)

and restrictions on R&D-output, consumption-output, and capital-output ratios along

the balanced growth path. To estimate (1.3), I use the quarterly aggregations of the

model-implied responses of patenting and patent-based R&D to the TRIPs shock

as dependent variables, and I search for the vector of parameters that yields DiD

178



Figure 1.C.7: Model-based vs empirical DiD estimates

(a) New patents (b) R&D Investment

The black solid lines represent the model-based DiD estimates of the e�ect of the TRIPs on patenting
(left panel) and R&D e�ort (right panel). The red dashed lines represent 95% con�dence bands of
the reduced form DiD estimates of speci�cation (1.3). Model parameters are reported in Table 1.1.
I assume that the system is on the pre-policy change balanced growth path at t = 0 and that the
anticipation period is 2 years and 8 months (blue vertical line).

coe�cients based on the model that are as close as possible to those of Figure 1.2b.

Figure 1.C.7 presents the multi-sector model's performance relative to the data.

The solid line in the left (right) panel of the �gure shows the DiD point-estimates for

patenting (R&D) based on the model's simulated response to the TRIPs shock. The

red dashed lines in both panels report the 95% con�dence bands of the original DiD

empirical estimates from Figure 1.2b. The model replicates the empirical evidence

very closely.

In the multi-�eld model, the point estimates of the structural parameters are

presented in Table 1.C.1, and are found to be very similar to those obtained for the

one-�eld model framework. The main di�erence is that the cost of a faster speed of

development is almost linear in ιD,f , and the marginal cost µ is larger. Despite this,

the insights from the estimated one-�eld model remain unchanged.
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Table 1.C.1: Estimated and Calibrated Structural Parameters

Symbol Value Parameter Target/Source
A: Calibration

ρ 0.04 Discount rate
gh 0.0083 Exog. Prod, Growth 2% p.c. Output Growth
n 0.011 Population Growth World Bank

B: Estimation
α 0.5089 Capital share
δ 0.0745 Capital Depreciation
ϕ1 0.6755 Research V -Curvature
ϕ2 0.1227 Research IR-Curvature
χ 8.2937 Spillover Exponent
θ 1.0001 Dev.'t Curvature
µ 0.9828 Dev.'t M. Cost
ψ 0.0001 Endog. Creative Destruction

The table reports the calibrated parameters (ρ, n, and gh) and the structural estimates for the other
parameters, obtained by GMM targeting (i) the reduced form DiD estimates of granted patents
and R&D e�ort of speci�cation (1.3) and (ii) three restrictions on balanced growth path rations: a
capital-output ratio of 3, a consumption-output ratio of 0.65, and a private R&D investment-output
ratio of 0.017. Appendix subsection 1.C.7.3 reports additional details on estimation.

1.C.8 Patenting vs trade secrecy in the model

In Section 1.4, it was discussed that the TRIPs-induced change in patent term may

have a�ected both innovation incentives and patenting incentives, given any level of

innovative e�ort. While a signi�cant proportion of innovations are kept as trade se-

crets and not patented, it is challenging to measure their relevance in the data and

estimate their response to the TRIPs. However, in the empirical analysis, it was ar-

gued that some of the observed impact of the TRIPs on patenting is associated with

actual changes in innovation, as �rm-level R&D expenditures and sectoral productiv-

ity measures respond consistently with variations in patenting. In this Appendix, a

simple extension of the model is proposed that considers trade secrecy and an explicit

patenting decision. The aim of this exercise is to illustrate the potential mechanisms

at play.63

Consider the trade-o� faced by innovators when deciding whether or not to patent

their technology. On one hand, patenting provides protection against any form of

imitation for the duration of the patent term, which lasts for a speci�ed number of

63While estimation of the extended version of the model would allow a quanti�cation of the inno-
vation vs. patenting responses to the TRIPs, this is beyond the scope the present application.
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years, denoted as T . However, the technical details of the invention are disclosed

in the patent documents, allowing competitors to perfectly imitate the technology

as soon as the patent expires. On the other hand, choosing trade secrecy entails a

non-zero probability of being imitated, but allows the innovator to potentially extend

their monopoly inde�nitely, as they do not have to disclose the details of the invention

through patent documents. The two choices can be represented by the values

υ(t) =

∫ t+T

t

e−
∫ s
t (r(t

′)+λ(t′))dt′π(s)ds (1.79)

and

secret(t) =

∫ ∞

t

e−
∫ s
t (r(t

′)+λ(t′)+ξ)dt′π(s)ds (1.80)

Equation (1.79) derived in Subsection 1.6.2 of the paper gives the value of a patent,

while equation (1.80) provides the value of a trade secret at time-t. Notably, there

are two key di�erences between these equations. First, the upper limit of the integral

in (1.79) is t + T , where T is the �nite patent term, while in (1.80), the upper limit

is unbounded, but future pro�ts are discounted by a factor of ξ > 0. This discount

accounts for the positive probability of imitation faced by innovators who choose trade

secrecy, whereas with patenting, the imitation probability is zero.

Considering for simplicity (1.79) and (1.80) along the balanced growth path, we

can rewrite the two values as

υ̃ =
[
1− e−(ρ+ψgV +gπ)T

] e−gπtπ̃

ρ+ ψgV + gπ

and

˜secret =
e−gπtπ̃

ρ+ ψgV + gπ + ξ

where π̃ is the �ow of pro�ts in the balanced growth path detrended by is growth rate

gπ, gV is the growth rate of varieties, and ρ is the discount rate. Therefore, patenting
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is preferable to trade secrecy if the the patent term is long enough, i.e.,

T > −
ln
(
1− ψgV +ρ+gπ

ψgV +ρ+gπ+ξ

)
ψgV + ρ+ gπ

(1.81)

In the case of homogeneous innovations, patenting decisions are symmetric. How-

ever, if the imitation rate ξ varies across inventions while the patent term T remains

constant, only innovations with a su�ciently high imitation risk would be patented.

Thus, absent any changes to the imitation probability, a patent term extension would

increase the share of patented inventions.

To understand the extent to which observed changes in patenting are due to gen-

uine changes in innovation as opposed to patenting decisions, we can examine the

relative magnitudes of the responses of patenting and R&D e�ort to a change in

patent term. In this simple setup, we can calculate that approximately two-thirds of

the estimated e�ect of patenting corresponds to genuine changes in innovation, based

on the estimated e�ect of policy news on �rm-level R&D expenditures and patenting.

Pre-implementation DiD coe�cients suggest that news of a 1-day increase in future

patent term generates a 0.05% decline in R&D and a 0.075% decline in the number

of patents, which are in a ratio of 2/3.
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Appendix 1.D Variables construction

1.D.1 Number of granted patents by �eld

Using PATSTAT table tls201, which contains information on patent applications, I

select "patent of invention" applications for which the reported application authority

is the USPTO, and for which the application �ling date is the same as the priority

date, i.e. the earliest �ling date in PATSTAT. This is because, in the main analysis,

I want to focus on innovations that primarily refer to the US, excluding technologies

that are developed and protected elsewhere at �rst, and subsequently try to obtain

protection in the US too. In addition, I just keep applications tha are subsequently

granted. Then, using PATSTAT table tls209, I attach to each patent application

information on the IPC classes associated to the invention, and I truncate the IPC

codes to the 4-digit level. A patent to which multiple 4-digit IPC codes are associated

is counted once for each of them in my dataset. Finally, in order to compute the

quarterly measure, I build synthetic quarterly dates that better �t the timing of the

TRIPs implementation. In particular, since the TRIPs was formally adopted in the

US system on December 8, 1994, and the new patent law entered into force on June 8,

1995, I de�ne quarters starting from the eighth day of the month. Hence, for example,

1995Q1 starts on January 8, 1995 and ends on March 7, 1995. A patent is counted

in quarter t if its priority date falls in that quarter. Finally, the variable Patj,t is the

total count of granted patent applications satisfying the conditions outlined above,

i.e. patents classi�ed in IPC class j, and whose priority date falls in quarter t.

1.D.2 Number of citations-weighted granted patents by �eld

Citations-weighted patent counts are usually employed to weigh patents by their sci-

enti�c quality, as measured by their relevance for subsequent technological develop-

ments. In order to build this measure, I follow the same steps described in subsection
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1.D.1, and I stop before the IPC-quarterly aggregation step. I assign to the selected

patent applications the associated patent publications using PATSTAT table tls211,

which contains publication information. PATSTAT table tls212, instead, reports for

each publication the list of applications and publications that cite it. I use informa-

tion in tls212 to assign to each patent application the publications or applications

that cite publications associated with it. I select as a citation date the publishing

date of the citing publication, and I just keep citations that occur within 5 years from

the application date. This is done to avoid truncation bias in the citation-weighted

patent measure. In a robustness check, not reported, I keep citations that occur

within 3 years from the application date, and results are fully robust. Finally, I count

for each patent application the number of forward citations received, and I build the

citation-weighted patent measure by summing this citations count by IPC and quarter

of priority date of the focal patent application.

1.D.3 Pending period and treatment by �eld

In order to build this measure, I follow the same steps described in subsection 1.D.1,

and I stop before the IPC-quarterly aggregation step. When I build the treatment

variable, I restrict the sample to patents whose priority date is between January 1,

1990 and May 31, 1992, in order to focus on a time-window close enough to the

news of the policy change, but also una�ected by it. For this sample of patents, I

compute the pending period by counting the number of days between the grant date,

i.e. the publication date of the o�cial document granting the patent, and the priority

date reported in PATSTAT, which, given my sample restriction, coincides with the

application date. I compute an average of such patent-level pending time at the IPC

level, and I subtract it to 1095, which is 3 years in number of days. Therefore, the

treatment variable is negative if the average pending period computed for applications

�led between 1/1/1990 and 5/31/1992 is longer than 3 years, and positive otherwise.
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When I build the quarterly version of the pending period underlying Figure 1.B.11, I

still compute the patent-speci�c pending time in the same way described above, and I

compute its average at the IPC×quarter level, with quarters de�ned as in subsection

1.D.1. Finally, as a measure of treatment precision that I use to conduct a triple

di�erence analysis, I compute the standard deviation of the average pending period

by technical �eld.

1.D.4 Patent renewal rate by �eld

To build the patent renewal rate, I use information on legal events related to patents

reported in the PATSTAT LEGAL section of PATSTAT and, speci�cally, in table

tls803. This dataset reports, for each US granted patent application, whether main-

tenance fees at 3.5 years, 7.5 years, and 11.5 years since patent grant have been paid

in order to maintain the patent active. Therefore, for each patent selected according

to the criteria explained in subsection 1.D.1, I can compute whether or not the main-

tenance fees at 11.5 years since grant have been paid. This indicates whether, for the

speci�c patent, the maximum patent term was binding or not. In order to compute

the IPC-speci�c pre-policy change measure of incidence of the maximum patent term,

I focus again only on patents whose priority date is between January 1, 1990 and

May 31, 1992, and I average out at the 4-digit IPC level the indicator variable that

takes value 1 if the 11.5 years maintenance fees have been paid for a patent and 0

otherwise. The resulting IPC-speci�c measure is the ratio of patents classi�ed in the

IPC for which the maximum patent term was binding.

1.D.5 Unique number of inventors by �eld

PATSTAT table tls207 associates to each application a list of personal id's that cor-

respond to the inventors and to the applicants listed on the patent. Table tls206,

instead, reports, for each of these personal id's, details such as the full name listed on
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the patent, the address of the inventor or the applicant, and other information. Since

these personal id's assigned by PATSTAT do not uniquely identify a person or a �rm,

a substantial harmonization e�ort has been done by the EPO, the OECD, and other

researchers. Among the harmonized id's available in table tls206, I chose the STAN

harmonized applicant's identi�ers developed starting from the EPO Worldwide Bib-

liographic Database. Hence, combining tls207 and tls206 with patent application

information as selected in subsection 1.D.1, I can assign to each patent the unique

(up to harmonization errors) identi�ers of the inventors listed on the patent. In order

to build the quarterly measure of unique inventors working in a given IPC, I simply

count the number of id's that are associated to a patent classi�ed in the IPC and with

priority date in the quarter, dropping from this count multiple records of the same

inventor in multiple patents in the same IPC-quarter.

1.D.6 Entry rate by �eld

In order to compute the number of new applicants and measures associated to this

concept, I follow a similar approach as the one just described in subsection 1.D.5,

and I attach to each patent application selected according to the rules of subsection

1.D.1 the harmonized identi�ers of the applicants associated to the patent according

to table tls207. To determine whether an applicant is a new or an incumbent one,

for each quarter and IPC I build a list of applicant's ids that have already appeared at

least once in the speci�c IPC and, for each applicant, I check whether the id belongs

to this list or not. If the id does not belong to the list, the applicant is assigned a �ag

of 1 as a new entrant for that IPC-quarter pair. The unique number of new applicants

is computed by counting the unique number of ids for which the �ag is 1 by IPC and

quarterly priority date of the application. Similarly, the number of granted patents

attributable to new applicants is computed by assigning a value of 1 to a dummy

variable in case at least one of the applicants is an entrant, and 0 otherwise. Then,
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the number of patents with such dummy equal to 1 is counter by IPC and quarter.

Finally, the share of patents attributable to new applicants is simply computed by

dividing the absolute �gure just described by the total number of patents �led in the

corresponding IPC-quarter.

1.D.7 Her�ndahl-Hirschman Index of concentration by �eld

In order to compute the HHI by technological �eld, I follow a similar approach as in

subsection 1.D.5, and I attach to each patent application, selected according to the

rules of subsection 1.D.1, the harmonized identi�ers of the applicants associated to

the patent, taken from table tls207. Then, I compute the total number of patents (or

citations-weighted patents) made by a speci�c applicant in a given technical �eld and

quarter, and the total number of patents (or citations-weighted patents) generated in

the same technical �eld and quarter by any applicant. Let si,j,t be the share of patents

made by applicant i over the total number of patents in �eld j and quarter t. Then,

the concentration index is

HHIj,t =
∑
i

s2i,j,t100
2

1.D.8 Within-�eld backward citations by �eld

To compute the number of backward citations by �eld and quarter, I start from the

pool of patents selected according to the criteria of Subsection 1.D.1, and I follow

Subsection 1.D.2 to relate, to each patent application, the associated publications

and the citations information of table tls212. However, in this case, rather than

keeping the list of citing publications, I keep the list of documents that each appli-

cation (or publications associated to each application) cite. Also, I separately keep

track of citations directly made by the applicant (citn_origin='APP') rather than

added by examiners or during search. This distinction may be important because pre-
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vious literature has pointed out that only backward citations made by applicants are

representative of genuine knowledge �ows. Therefore, for each patent, I compute the

overall number of patent documents backward cited (overall and by applicants only),

and the number of backward-cited patents (overall and by applicants only) that are

classi�ed in the same �eld of the patent considered. I aggregate both variables by �eld

and quarterly priority date of the citing patent application. The aggregation of the

latter variable is called in the main text within-�eld backward citations. The intensity

measures are computed either as the average number of citations per patent or as the

fraction of patents where the applicant makes at least one backward citation directed

to another patent in the same �eld over the number of patents having at least one

backward citation.

To compute the number and the intensity of within-�eld backward citations made

by patents �led during the post-implementation period July 1995 - July 2000 and

directed to patents �led during the pre-implementation period November 1992 - June

1995, I repeat the same steps described above, but I restrict my attention to patents

satisfying previous timing criteria. Obviously, the steps are the same for the control

group of patents �led during July 1985 - July 1990 and backward citing other patents

classi�ed in the same technical �eld and �led during the period November 1982 - June

1985.

1.D.9 Private economic value of innovation by �eld

To compute a measure of economic value of patents by technical �eld and quarter, I

start from the data provided in the replication package of Kogan et al. (2017). The

variables relevant for the present analysis are: i) the 7-digit US patent number, ii) the

private economic value of a patent ξ, and iii) the application date of the patent. Using

the 7-digit US patent number, I merge the dataset with the NBER patent database

and, speci�cally, with the dataset which contains information on International Patent
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Classi�cation classes assigned to the patent. Then, using the original application �ling

date and the IPC classes from the NBER database, I add up the economic value of

patents by quarterly application date and technical �eld.

1.D.10 Firm-level number of patents and citations

For the �rm-level dataset, I rely on the NBER Patent Database merged with COM-

PUSTAT using the applicant-gvey cross-walk provided in the NBER Database itself.

In particular, the NBER Database provides a list of gvey identi�ers associated to

each patent over its life. Multiple gvey's over time indicate that the ownership of

the patent has changed. However, here I am just interested in the �rm which has

originated the invention through its R&D e�ort, and this is why I just keep the gvey

associated to the patent in the year of application. Then, I download from COMPU-

STAT �rm-level information, and I match this dataset with the gvey's retrieved from

the NBER Database. I build the patent count and the citations-weighted patent vari-

able by summing for each gvey and year the number of patents applied for by the �rm

and the truncation-adjusted citations variable available in the database, respectively.

Truncation adjustment is performed in the original dataset by applying to citations

the weights proposed by Hall, Ja�e and Trajtenberg (2001).

1.D.11 Firm-level R&D expenditure

Data on �rm-level R&D expenditure is downloaded from COMPUSTAT and merged

with information on patents using the gvey link. The name of the original R&D

expenditure variable in COMPUSTAT is xrd.

1.D.12 Firm-level change in patent term

In order to build the treatment at the �rm level, I start from the patent-level dataset

of the NBER Database, which reports also information on the 4-digit IPC classes

189



associated to the patents. Then, for each gvey identi�er, I just keep those patents

with application year between 1971 and 1991, in order to have enough patenting-

related information for each �rm and to exclude possible e�ects of the policy news.

Then, for each �rm, I compute the share of the total number of patents, �led during

this period, that is classi�ed in each of the 4-digit IPC. Let's call it si,j, where i

indexes �rms and j IPCs. I interpret this fraction as the exposure of �rm i to the

technical �eld j before the policy news. The �rm-level treatment is then built as a

weighted average of the �eld-speci�c treatment described in subsection 1.D.3, i.e.

∆Ti =
∑
j

si,j∆Tj

I take this approach because the main source of ex-ante heterogeneity in pending

period is linked to the di�erent technical �elds and, relatedly, to the di�erent technical

o�ces and examination di�culties. Therefore, I still want to use �eld-level hetero-

geneity, interacting it with heterogeneity in the technological location of �rms. An

alternative would be to compute the �rm-level treatment by computing the average

pending period of patents �led by �rm i, i.e. a pending period based on the speci�c

experience of the �rm. I do not follow this route because I think this treatment vari-

able would be more prone to endogeneity concerns that the one I propose: In this

case, the treatment might be correlated with the quality of innovation performed by

the �rm, or with the responsiveness of the �rm to the inquiries of the patent o�ce.

1.D.13 Other COMPUSTAT variables

I compute �rm age using the begyr NBER patent database variable, and I use 2-digit

SIC industry code assigned to each �rm in the database. Firm's yearly sales are taken

from COMPUSTAT using the variable sales.
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1.D.14 Firm-level aggregate investment externality

To compute the �rm-level externality measure used in Section 1.5 of the paper, I try

to follow what has been done in the literature on the topic. Therefore I compute, for

the period 1971-1991, the total number of patents obtained by each of the �rms in

my sample in any 4-digit IPC. This information is included in �rm-speci�c vector fi,

which stacks, in each entry, the number of patents obtained by �rm i in IPC j in the

above-mentioned period. Then, based on these vectors, I compute for every pair of

�rms (i, k) a technological distance measure proposed by Ja�e (1986)

di,k =
fif

′
k√

(fif ′
i)(fkf

′
k)

The externality measure for �rm i at time t is then

Ei,t =
∑
k ̸=i

di,kR&Dk,t

i.e. it is an aggregation of the �rm-level R&D expenditure of other �rms that

uses as aggregation weights the Ja�e (1986) measure of technological distance across

�rms. The idea underlying such externality variable is that the in�uence of other

�rms' R&D is stronger if such �rms are technologically closer to the �rm of interest.

1.D.15 Sectoral productivity and welfare

The productivity and price variables used in the sectoral welfare analysis are directly

taken from the NBER CES manufacturing database. Productivity is measured as

5-factors TFP, whose constructions is detailed in the technical paper Bartelsman

and Gray (1996). Welfare is (inversely) measured by the value of shipments price

de�ator, which is built aggregating product-speci�c de�ators computed by the Bureau

of Economic Analysis.
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Figure 1.E.1: Marginal e�ect of 1 more day of protection on average citations
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The plot shows the βk coe�cients of the speci�cation (1.2) having as dependent variable the
average number of forward citations obtained by patents �led in quarter-t and �eld-j. Point
estimates refer to the marginal e�ect of a one-day anticipated change in patent term on the
level of the outcome variable, relative to its baseline value in 1992Q3, reported at the bottom
of the �gure. Standard errors are clustered by technical �eld and 95% con�dence bands are
plotted. The �rst vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).

Appendix 1.E Additional empirical results

1.E.1 Results at the technical �eld level

1.E.1.1 Average number of citations per patent

Figure 1.E.1 plots the βk coe�cients of regression (1.2) having as dependent variable

the average number of forward citations per patent, for patents �led in quarter-t and

classi�ed in �eld-j.64 Fields with zero patents in at least one quarter are excluded

from the estimation sample because the average number of citations is not well-de�ned

in such cases. Results are analogous, however, when just excluding the �eld-quarter

observation which is not well-de�ned.

1.E.1.2 Average number of claims per patent

Figure 1.E.2 plots the βk coe�cients of regression (1.2) having as dependent variable

the average number of claims per patent, for patents �led in quarter-t and classi�ed

64I count citations obtained within 5 years from application, to avoid truncation bias.
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Figure 1.E.2: Marginal e�ect of 1 more day of protection on average number of claims
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The plot shows the βk coe�cients of the speci�cation (1.2) having as dependent variable
the average number of claims made by patents �led in quarter-t and �eld-j. Point estimates
refer to the marginal e�ect of a one-day anticipated change in patent term on the level of
the outcome variable, relative to its baseline value in 1992Q3, reported at the bottom of
the �gure. Standard errors are clustered by technical �eld and 95% con�dence bands are
plotted. The �rst vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).

in �eld-j. Fields with zero patents in at least one quarter are excluded from the esti-

mation sample because the average number of claims is not well-de�ned in such cases.

Results are analogous, however, when just excluding the �eld-quarter observation

which is not well-de�ned.

1.E.1.3 Average originality and average generality

Figure 1.E.3 plots the βk coe�cients of regression (1.2) having as dependent variable

the average originality of patents �led in quarter-t and classi�ed in �eld-j. The

originality index of each patent i is taken from the NBER patent database and it is

computed as

Oi = 1−
n∑
j=1

s2i,j

where si,j denotes the percentage of citations made by patent i that belong to patent

class j, out of n patent classes. The results show that the policy does not a�ect the

average originality of patents, which is often taken as a proxy of patent quality.

Figure 1.E.4 plots the βk coe�cients of regression (1.2) having as dependent vari-
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Figure 1.E.3: Marginal e�ect of 1 more day of protection on average originality
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The plot shows the βk coe�cients of the speci�cation (1.2) having as dependent variable
the average originality of patents �led in quarter-t and �eld-j. Point estimates refer to the
marginal e�ect of a one-day anticipated change in patent term on the level of the outcome
variable, relative to its baseline value in 1992Q3, reported at the bottom of the �gure.
Standard errors are clustered by technical �eld and 95% con�dence bands are plotted. The
�rst vertical line refers to the quarter before the policy news (1992Q3) and the second vertical
line refers to the quarter before the policy implementation (1995Q2).

able the average generality of patents �led in quarter-t and classi�ed in �eld-j. The

generality index of each patent i is taken from the NBER patent database and it is

computed as

Gi = 1−
n∑
j=1

s2i,j

where si,j denotes the percentage of citations received by patent i that belong to

patent class j, out of n patent classes. The results show that the policy does not

a�ect the average generality of patents, which is often taken as a proxy of patent

quality.

1.E.1.4 Maintenance fee payment probability

In order to keep patent protection active, patent owners must pay fees after 3.5 years,

7.5 years, and 11.5 years from the grant. The payment of renewal fees is commonly

linked to the quality of patents�i.e., higher quality patents are renewed for longer�

and to the rate of creative destruction. If a technology is competed away by a new

invention, it is pointless to pay fees to keep alive the patent on an old technology
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Figure 1.E.4: Marginal e�ect of 1 more day of protection on average generality
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The plot shows the βk coe�cients of the speci�cation (1.2) having as dependent variable
the average generality of patents �led in quarter-t and �eld-j. Point estimates refer to the
marginal e�ect of a one-day anticipated change in patent term on the level of the outcome
variable, relative to its baseline value in 1992Q3, reported at the bottom of the �gure.
Standard errors are clustered by technical �eld and 95% con�dence bands are plotted. The
�rst vertical line refers to the quarter before the policy news (1992Q3) and the second vertical
line refers to the quarter before the policy implementation (1995Q2).

that will not generate pro�ts. In this subsection I examine whether a patent term

extension has any e�ects on the average renewal rate of patents at later stages of

their maintenance. Figure 1.E.5 plots the βk coe�cients of regression (1.2) having

as dependent variable the share of patents �led in quarter-t and classi�ed in �eld-j

that are renewed up to the maximum patent term. The results show that a patent

term extension does not induce innovators to renew their patents for longer. Since

other analyses showed that the average quality of patents was not changing due to the

policy, I interpret this �nding as suggestive of the fact that the pressure of creative

destruction does not fall in �elds getting a patent term extension. Figure 1.E.6 shows

that results are analogous when using as the outcome variable the share of patents

�led in quarter-t and classi�ed in �eld-j that are renewed until 11.5 years since the

grant.
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Figure 1.E.5: E�ect of 1-day longer patent term on average patent renewal rate
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The plot shows the βk coe�cients of the speci�cation (1.2) having as dependent variable
the share of patents �led in quarter-t and classi�ed in �eld-j that are renewed up to the
maximum patent term. Point estimates refer to the marginal e�ect of a one-day anticipated
change in patent term on the level of the outcome variable, relative to its baseline value in
1992Q3, reported at the bottom of the �gure. Standard errors are clustered by technical
�eld and 95% con�dence bands are plotted. The �rst vertical line refers to the quarter before
the policy news (1992Q3) and the second vertical line refers to the quarter before the policy
implementation (1995Q2).

Figure 1.E.6: E�ect of 1-day longer patent term on average patent renewal rate
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The plot shows the βk coe�cients of the speci�cation (1.2) having as dependent variable the
share of patents �led in quarter-t and classi�ed in �eld-j that are renewed up to 11.5 years
since the grant. Point estimates refer to the marginal e�ect of a one-day anticipated change
in patent term on the level of the outcome variable, relative to its baseline value in 1992Q3,
reported at the bottom of the �gure. Standard errors are clustered by technical �eld and
95% con�dence bands are plotted. The �rst vertical line refers to the quarter before the
policy news (1992Q3) and the second vertical line refers to the quarter before the policy
implementation (1995Q2).
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Figure 1.E.7: E�ect of 1-day longer patent term on granted patents
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The plot shows the βk coe�cients of the speci�cation (1.2) having as dependent variable
granted patents in quarter-t and �eld-j. The sample is restricted to technical �elds that,
in all quarters, have not less than 25 patents and not more than 500. Point estimates
refer to the marginal e�ect of a one-day anticipated change in patent term on the level of
the outcome variable, relative to its baseline value in 1992Q3, reported at the bottom of
the �gure. Standard errors are clustered by technical �eld and 95% con�dence bands are
plotted. The �rst vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).

1.E.1.5 Alternative sample restrictions

A potential concern with the empirical results of Section 1.4 is the strong skewness

of the distribution of patenting outcomes across �elds. In this subsection, I verify

that very large or very small �elds do not in�uence the empirical evidence by showing

how the DiD βk coe�cients of speci�cation (1.2) vary when the sample is restricted

to technical �elds that, in all quarters, have not less than 25 patents and not more

than 500.65 Figures 1.E.7 and 1.E.8 show for granted patents and citations-weighted

patents, respectively, that the results are identical to those obtained on the full sample.

65For sake of clarity, these �gures refer to the number of applications that are subsequently granted.
As in the other parts of the paper, the count of patents is done based on the quarter when the
applications is �led, irrespective of the subsequent grant quarter.
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Figure 1.E.8: E�ect of 1-day longer patent term on citations-weighted patents
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The plot shows the βk coe�cients of the speci�cation (1.2) having as dependent variable
citations-weighted granted patents in quarter-t and �eld-j. The sample is restricted to
technical �elds that, in all quarters, have not less than 25 patents and not more than 500.
Point estimates refer to the marginal e�ect of a one-day anticipated change in patent term
on the level of the outcome variable, relative to its baseline value in 1992Q3, reported at the
bottom of the �gure. Standard errors are clustered by technical �eld and 95% con�dence
bands are plotted. The �rst vertical line refers to the quarter before the policy news (1992Q3)
and the second vertical line refers to the quarter before the policy implementation (1995Q2).

1.E.2 Results at the sector-level

1.E.2.1 Evidence on innovation outcomes

In this subsection I provide evidence on the e�ect of the policy on innovation outcomes,

as measured by patents, citations-weighted patents, and patent value, at the NAICS

6-digit industry level.66 This layer of analysis requires aggregation of innovation mea-

sures by industry, and the adaptation of the technical-�eld level treatment variable,

i.e. the policy-induced change in patent protection time, at the industry-level.

To build measures of innovation by 6-digit NAICS and year, I start from measures

of innovation, i.e. number of granted patents, number of citations-weighted patents,

and private economic value of patents, by technical �eld and quarter. The �rst step is

to aggregate previous innovation measures at the yearly level. The second step involves

66An example of the depth of the sectoral classi�cation I use in the analysis is the following. 31-
33 is the aggregate 2-digit classi�cation for Manufacturing ; 324 is the 3-digit Petroleum and Coal
Products Manufacturing, 3241 is the 4-digit Petroleum and Coal Products Manufacturing ; which
includes the 5-digit 32412 Asphalt Paving, Roo�ng, and Saturated Materials Manufacturing, which
includes the 6-digit sectors 324121 Asphalt Paving Mixture and Block Manufacturing and 324122
Asphalt Shingle and Coating Materials Manufacturing.
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mapping them into 6-digit NAICS. This is done through the following formula

Is,t =
∑
j

Ij,tπs|j

Is,t is innovation in 6-digit NAICS sector s and year t, Ij,t is innovation in 4-digit

IPC �eld j and year t, and πs|j is the probability that a patent classi�ed in techni-

cal �eld j is linked to sector s or, alternatively, contributes to innovation in sector

s. πs|j is directly taken from the 'Algorithmic Links with Probabilities' crosswalk

by Goldschlag, Lybbert and Zolas (2019), which exactly compute these conditional

probabilistic links between sectors and technical �eld based on text analysis.

To convert the technical �eld-level treatment into a 6-digit NAICS sectoral treat-

ment, I rely again on probabilistic links between 4-digit IPC classes and 6-digit NAICS

industries computed by Goldschlag, Lybbert and Zolas (2019). Speci�cally,

∆Ts =
∑
j

∆Tjπj|s

The treatment ∆Ts for sector s is the sum of technical �eld-level treatments ∆Tj's,

weighted by the probability that, given that a patent is assigned NAICS s, it comes

from technical �eld j.

The speci�cation of the di�erence-in-di�erence regression at the industry-level is

analogous to the one by technical �eld

Ys,t = αs +
2000∑

k=1985

γk1(t=k) +
2000∑

k=1985

βk1(t=k)∆Ts + ΞXs,t + εs,t (1.82)

where αs are industry �xed e�ects, 1(t=k) are yearly dummy variables, ∆Ts is the

sectoral treatment, Xs,t is matrix of controls that includes 4-digit NAICS industry

× year e�ects, the natural logarithm of the energy price de�ator, and the natural

logarithm of the material costs de�ator, εs,t is an idiosyncratic error term. Standard

errors are clustered by 3-digit NAICS industry× year in this case and the regressions.
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Figure 1.E.9: E�ect of one-day longer patent term on sectoral patents
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The plot shows the βk coe�cients of regression (1.82) Ps,t = αs +
∑2000

k=1985 γk1(t=k) +∑2000
k=1985 βk1(t=k)∆Ts + εs,t. Ps,t is the number of patents attributable to sector s and �led

for in year t, and Ts is the industry-speci�c treatment. I omit the dummy for 1991, which is
the pre-treatment year. Point estimates refer to the marginal e�ect of a one-day anticipated
change in patent term on the level of the outcome variable, relative to its baseline value
in 1992Q3, reported at the bottom of the �gure. Standard errors are clustered by 3-digit
NAICS industry and year and 95% con�dence bands are plotted. The �rst vertical line lies
just before the news year (1992) and the second vertical line lies just before the implemen-
tation year (1995).

Figure 1.E.9 plots the di�erence-in-di�erence βk coe�cients of interest, together

with their 95% con�dence bands, for speci�cation (1.82) run having the number of

granted patents by industry and year as dependent variable. The pre-treatment coe�-

cients are remarkably close to 0, con�rming the absence of pre-trends, and the pattern

of post-treatment estimated marginal e�ects is similar to the evidence by technical

�eld presented in Section 1.4 of the paper. Figures 1.E.10 and 1.E.11 plot the same

coe�cients for citations-weighted patents and patent value as dependent variables ,

respectively. Again, the evidence is very consistent with previous one, even though

con�dence bands are larger in this case.
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Figure 1.E.10: E�ect of one-day longer patent term on sectoral citations-weighted
patents
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The plot shows the βk coe�cients of regression (1.82) Cs,t = αs +
∑2000

k=1985 γk1(t=k) +∑2000
k=1985 βk1(t=k)Ts + εs,t. Cs,t is the number of citations-weighted patents attributable to

sector s and �led for in year t, and Ts is the industry-speci�c treatment. I omit the dummy
for 1991, which is the pre-treatment year. Point estimates refer to the marginal e�ect of
a one-day anticipated change in patent term on the level of the outcome variable, relative
to its baseline value in 1992Q3, reported at the bottom of the �gure. Standard errors are
clustered by 3-digit NAICS industry and year and 95% con�dence bands are plotted. The
�rst vertical line lies just before the news year (1992) and the second vertical line lies just
before the implementation year (1995).

Figure 1.E.11: E�ect of one-day longer patent term on sectoral patent value
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The plot shows the βk coe�cients of regression (1.82) Vs,t = αs +
∑2000

k=1985 γk1(t=k) +∑2000
k=1985 βk1(t=k)Ts + εs,t. Vs,t is the private economic value of patents attributable to sec-

tor s and �led for in year t, and Ts is the industry-speci�c treatment. I omit the dummy
for 1991, which is the pre-treatment year. Point estimates refer to the marginal e�ect of
a one-day anticipated change in patent term on the level of the outcome variable, relative
to its baseline value in 1992Q3, reported at the bottom of the �gure. Standard errors are
clustered by 3-digit NAICS industry and year and 95% con�dence bands are plotted. The
�rst vertical line lies just before the news year (1992) and the second vertical line lies just
before the implementation year (1995).
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Appendix 1.F Additional model extensions

1.F.1 Model with labor as R&D input

In this section, I will introduce an alternative model speci�cation to the one presented

in Section 1.6. Instead of using units of the �nal good, research and development ac-

tivities are carried out by hiring labor at the competitive wage w(t). Following the

approach in subsection 1.C.1, I will begin with the agents' maximization problem,

derive the aggregate laws of motion, and establish the balanced growth path. The

consumer behavior remains the same as in the main model, with a risk-neutral repre-

sentative agent maximizing utility by choosing consumption and savings and supplying

L(t) units of labor. The labor is allocated to production of the �nal good in quantity

LP (t), research in quantity LR(t), and development in quantity LD(t). Equilibrium

wage rates for all three types of labor are equal. The agent can save in either physical

capital or shares of intermediate good �rms, with both assets delivering the same net

rate of return under the no-arbitrage condition. Therefore, the equilibrium condition

r(t) = ρ is derived from the dynamic consumer's problem, indicating that the net

return of savings must equal the consumer's discount rate.

1.F.1.1 Final good production

The �nal good is produced by a competitive �rm that chooses labor and the optimal

quantity of each of the intermediate goods in the economy to maximize pro�ts. The

problem is

max
{X(i,t)}i∈[0,V (t)],LP (t)}

[
h(t)LP (t)

]1−α[ ∫ V (t)

0

Xα(i, t)di
]
−
∫ V (t)

0

z(i, t)X(i, t)di−w(t)LP (t)

where output is
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Y (t) =
[
h(t)LP (t)

]1−α[ ∫ V (t)

0

Xα(i, t)di
]

(1.83)

and it is determined by h(t), which is an exogenous labor-augmenting technology

term that grows exponentially at a given constant rate gh, LP (t), which is the hours

devoted to production, exponentially growing at constant rate n, and a mass of V (t)

intermediate capital goods varieties. w(t) is the wage rate and z(i, t) is the instant-t

price of intermediate variety i. The �rst order conditions of the problem are

w(t) = (1− α)h(t)1−αLP (t)
−α
[ ∫ V (t)

0

Xα(i, t)di
]

(1.84)

and

z(i, t) = αh(t)1−αLP (t)
1−αXα−1(i, t) ∀ i ∈ [0, V (t)] (1.85)

The former equation determines the equilibrium wage rate and it is the inverse

demand for production labor, while the latter equation is the inverse demand for

intermediate i.

1.F.1.2 Monopolistic intermediate goods production

A share ζ(t) of the existing V (t) intermediate goods varieties are protected by a

monopoly, granted by a valid patent. The monopolistic producer of variety i chooses

the quantity to produce in order to maximize pro�ts subject to the inverse demand

given by (1.85), and subject to the production function. In particular, one unit of

each of the intermediate goods can be produced by using one unit of raw capital

K(t), which can be rented from households at a rate rK(t) = r(t) + δ, where δ is the

depreciation rate of physical capital. Therefore, the maximization problem is
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max
X(i,t),z(i,t)

{
z(i, t)X(i, t)− (r(t) + δ)X(i, t)

}
s.t. z(i, t) = αh(t)1−αLP (t)

1−αXα−1(i, t)

and the �rst order condition implies

z(i, t) = α(h(t)LP (t))
1−αX(i, t)α−1 =

1

α
(r(t) + δ) (1.86)

i.e. the price is a constant markup 1/α over the marginal cost (r(t) + δ). This

implies that the price of each of the monopolistically-produced intermediate capital

varieties is the same and, therefore, also the produced quantity and the pro�ts will

be symmetric. In particular, these will satisfy

X(i, t) = Xp(t) = α
2

1−α (r(t) + δ)−
1

1−αh(t)LP (t) ∀ i ∈ [0, ζ(t)V (t)] (1.87)

π(i, t) = π(t) =
( 1
α
− 1
)
(r(t) + δ)Xp(t) (1.88)

1.F.1.3 Non-monopolistic intermediate goods production

A fraction 1 − ζ(t) of intermediates are not monopolistically produced because legal

patent protection on it has expired. These non-monopolistic varieties are produced

in a regime of Bertrand competition, and therefore the price z(i, t) is equal to the

marginal cost of production (r(t) + δ). It follows from the inverse demand function

(1.85) that the production of these competitively-produced intermediate varieties is

symmetric and given by

Xnp(t) = α
1

1−α (r(t) + δ)−
1

1−αh(t)LP (t) ∀ i ∈ (ζ(t)V (t), V (t)] (1.89)
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which implies that Xp(t) = αXnp(t). Since α ∈ (0, 1) by assumption, this im-

plies that the quantity produced of monopolistic varieties is lower than the one of

competitive varieties, which is what the distortion of monopoly consists in.

1.F.1.4 Physical capital market clearing condition

The equilibrium in the physical capital market requires that the quantity of capital

supplied by households K(t) is equal to the quantity of capital demanded by �rms to

produce the intermediate capital goods, i.e.

K(t) =ζ(t)V (t)Xp(t) + (1− ζ(t))V (t)Xnp(t)

=[αζ(t) + (1− ζ(t))]V (t)Xnp(t)

(1.90)

1.F.1.5 Research investment to discover new projects

The model features an unit mass of identical �rms that invest in research. The output

of research investment is new ideas, on which the successful �rm can exclusively invest

in order to develop the idea into a new intermediate variety. The research investment

problem of the representative research �rm is

max
LR(t)

{
P (t)E(t)χV (t)ϕ1LR(t)

ϕ2 − w(t)LR(t)
}

Research requires LR(t) units of labor for the production of E(t)χV (t)ϕ1LR(t)
ϕ2

new ideas, where E(t)χ is the delayed externality term already discussed in Sections

1.5 and 1.6, and V (t)ϕ1 is an externality from existing varieties that is common in

endogenous growth models. Parameters are constrained so that ϕ1 + ϕ2 < 1. ϕ1 < 1

captures the fact that ideas become harder to �nd as the knowledge frontier expands,

and ϕ2 < 1 captures the degree of decreasing returns to scale in research investment.

Finally, P (t) is the economic value of a new idea, or, alternatively, it can be thought

as the exclusivity value of a development project. The optimal research investment is
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given by

LR(t) =
[ ϕ2

w(t)
P (t)E(t− d)χV (t)ϕ1

] 1
1−ϕ2

1.F.1.6 Development of projects

Development occurs independently on each existing project, even in the case when a

single �rm is running multiple projects. Therefore, for each project �rms hire labor

to obtain a patentable intermediate variety, and �rms are successful with a Poisson

arrival rate of (
lD(t)V (t)

L(t)

) 1
θ

where θ > 1 still captures the cost-convexity of the intensity with which devel-

opment is carried out. lD(t) can be interpreted as development labor intensity. The

innovation arrival rate is re-scaled by the total labor force, so that lD(t)/L(t) can

be interpreted as the share of the labor force on each development project, and it

is increasing in the number of existing varieties V (t), to make sure that a balanced

growth path is admissible for this economy. Then, the development problem can be

written in recursive form as

r(t)P (t)− Ṗ (t) = max
lD(t)

{( lD(t)V (t)

L(t)

) 1
θ
[
υ(t)− P (t)

]
− w(t)lD(t)

}
(1.91)

where the equation captures the fact that if, with instantaneous probability
(
lD(t)V (t)
L(t)

) 1
θ

the project is successful, the investing �rm receives a value υ(t) for the intermediate

variety obtained, but it loses the value of the project P (t), which expires after com-

pletion. The expected value of a newly patented variety, which is what the developing

�rm cares about when working on the project, is
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υ(t) =

∫ t+T

t

e−
∫ s
t (r(t

′)+λ(t′))dt′π(s)ds (1.92)

where π(t) is the �ow of pro�ts at instant t, r(t) is the real interest rate, and λ(t)

is an endogenous Poisson rate at which, depending on aggregate innovation intensity,

a monopoly can be creatively destroyed. Therefore, υ(t) is the expected net present

discounted value of pro�ts on a variety. The optimal labor hiring decision on each

development project is

lD(t) =

[
1

θ

(V (t)

L(t)

) 1
θ
(
υ(t)− P (t)

) 1

w(t)

] 1

1− 1
θ

(1.93)

The dynamic spillover term must be re-de�ned here as

E(t) ≡ d−1

∫ t

t−d

( lD(s)V (s)

L(s)

) 1
θ
ds

which is identical in spirit the the expression of the benchmark model of Sec-

tion 1.6, because the externality is simply a function of the development completion

probability.

The process of creative destruction captured by the λ(t) term is endogenous and

it is driven by the rate of growth of the number of varieties V (t). Speci�cally, it is

de�ned as

λ(t) ≡ ψ
V̇ (t)

V (t)

i.e. in times when the rate of growth of varieties is higher, the rate of creative de-

struction is higher. This strategy to model entry and creative destruction is motivated

by the fact that, in the data, I observe that innovation by new applicants increases

when overall innovation rate increases, but their relative weight does not change.
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1.F.1.7 Evolution of aggregate quantities

The decisions resulting from the previous optimization problems shape the evolution

of aggregate quantities as follows. First, the number of varieties V (t) evolves according

to

(1 + ψ)
V̇ (t)

V (t)
=
( lD(t)V (t)

L(t)

) 1
θ
N(t) (1.94)

where ψ V̇ (t)
V (t)

is by how much creative destruction reduces the mass of intermediate

goods available, while
(
lD(t)V (t)
L(t)

) 1
θ
N(t) is the number of development projects success-

fully turned into a variety. This is the case because
(
lD(t)V (t)
L(t)

) 1
θ
is the instantaneous

probability that each of the existing projects N(t) is successfully completed, generat-

ing varieties. Since this instantaneous probability is identical and independent across

projects, a suitable law of large numbers applies, and the aggregate representation

provided holds.

The evolution of projects is instead given by

Ṅ(t) = E(t− d)χV (t)ϕ1LR(t)
ϕ2 −

( lD(t)V (t)

L(t)

) 1
θ
N(t) (1.95)

where the �rst term captures the mass of new projects generated by research

investment and the second term captures the destruction of projects due to successful

completion.

The evolution of the share of existing varieties that are covered by monopoly, i.e.

ζ(t), is given by

ζ̇(t) = (1− ζ(t))
V̇ (t)

V (t)
− (1 + ψ)

V̇ (t− T )

V (t)
e−

∫ t
t−T λ(t

′)dt′ (1.96)

where the �rst term captures the additions to the monopolistic varieties due to

current innovation, and the second term captures the fact that all those varieties that
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have not already been creatively destroyed become competitive when the maximum

patent term T expires.

The evolution of aggregate capital satis�es

K̇(t) = IK(t)− δK(t) (1.97)

where IK(t) is the investment in physical capital done by the households out of

the �nal good, and δK(t) is the depreciation of the existing stock.

1.F.1.8 Market clearing in the goods market

Given the production decisions of the intermediate varieties producers and of the �nal

good producer, GDP for this economy can be rewritten as

Y (t) = [ααζ(t) + (1− ζ(t))]V (t)h(t)1−αLP (t)
1−αXα

np(t) (1.98)

where [ααζ(t) + (1− ζ(t))]V (t)h(t)1−α is the measured TFP. Notice that the pro-

ductivity of the economy grows with the number of varieties available, and decreases

with the share of monopolistic varieties, as αα < 1.

On the other hand, the total production of the �nal good must also satisfy

Y (t) = C(t) + IK(t) (1.99)

as consumption and capital investment are funded out of the �nal good.

1.F.1.9 Market clearing in the labor market

Market clearing of labor market requires that the exogenous amount of labor avail-

able L(t) equals the sum of labor used in production, research, and development in

equilibrium.
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L(t) = LP (t) + LR(t) + LD(t) (1.100)

where LD(t) = lD(t)N(t) is the total labor used in development, given by the labor

lD(t) optimally hired on each project times the number of projects.

1.F.1.10 Balanced growth path

Population L(t) and the productivity term h(t) exogenously grow at constant rate n

and gh, respectively. Also, since r(t) = ρ, the real interest rate is constant. From the

labor market clearing condition, it follows that production labor LP (t) and research

labor LR(t) must also grow at rate n, while labor employed in each single project

lD(t) must grow at less than n, namely at n minus the growth rate of projects. From

equations (1.87), (1.89), and (1.88), it follows that the growth rate of Xp(t), Xnp(t),

and pro�ts along the balanced growth path is identical and equal to gh + n. Also,

from the de�nition of υ(t), it follows that the patent value must grow at the same rate

of pro�ts, i.e. gh+n, and that, as a consequence, the rate of creative destruction λ(t)

is constant along the balanced growth path. In addition, from the value function of

the development problem, it follows that, for a b.g.p. to be possible, P (t) must grow

at the same rate of υ(t), i.e. gP = n + gh, and that the arrival rate of innovations(
lD(t)V (t)
L(t)

) 1
θ
must be constant. This implies that the rate of growth of lD(t) must be

equal to population growth n minus the rate of growth of varieties. Notice that a

constant
(
lD(t)V (t)
L(t)

) 1
θ
is consistent with the optimality condition (1.93), and it implies

that also the externality term E(t) is constant in the b.g.p.. The evolution of the

stock varieties in equation (1.94) implies that gV = gN , and the evolution of the stock

of projects in equation (1.95) requires that

gN = ϕ1gV + ϕ2n (1.101)
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Since gV = gN , it follows that the rate of growth of endogenous productivity is

gV = gN = ϕ2
1−ϕ1n, and the rate of growth of labor devoted to each development

project is

glD = n− gV =
(
1− ϕ2

1− ϕ1

)
n =

(1− ϕ1 − ϕ2

1− ϕ1

)
n

which is smaller than population growth as long as ϕ2 > 0. From (1.99), the rate

of growth of consumption and capital investment must be the same as output. Hence,

gY = gC = gIK =. In addition, from (1.96), it follows that ζ(t) is constant along the

b.g.p. and, as a consequence, the equilibrium production function (1.98) requires

gY = (1− α)(gh + n) + gV + αgX

But gX = n+ gh, and therefore the last implies gY = ϕ2
1−ϕ2n+ n+ gh, i.e.

gY =
1− ϕ1 + ϕ2

1− ϕ2

n+ gh

which fully solves for balanced growth path growth rates, and shows that the

previous model admits a balanced growth path.
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Chapter 2

Dynamics of Expenditures on

Durable Goods: the Role of

New-Product Quality
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Abstract

We study the role of new-product quality for the dynamics of durable-goods ex-

penditures around the Great Recession. We assemble a rich dataset on US new-car

markets during 2004-2012, combining data on transaction prices with detailed infor-

mation about vehicles' technical characteristics. During the recession, a reallocation

of expenditures away from high-quality new models accounts for a signi�cant decline

in the dispersion of expenditures. In turn, car manufacturers introduced new models

of lower quality. The drop in new-model quality persistently depressed the technology

embodied in vehicles, and likely contributed to the slow recovery of expenditures.
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2.1 Introduction

Households adopt new technologies by purchasing new durable goods, such as vehicles.

During the Great Recession of 2008-2009, consumer expenditures on durable goods

dropped by approximately 17%. Expenditures on motor vehicles�which constitute

approximately 35% of durable-goods expenditures�accounted for more than half of

this decrease and remained low during the recovery.

The goal of this paper is to empirically investigate the role of new-product quality

for these dynamics. Our descriptive analysis suggests that complementary demand

and supply factors contributed to a downward quality adjustment in durable-goods

purchases during the recession. Speci�cally, households reallocated their purchases

of new cars toward cheaper models�which tend to be continuing models, of lower

quality than new models�or delayed their purchases. Amid this decline in demand,

manufacturers introduced new models of low quality, persistently depressing the path

of technology.

Cars represent an ideal object for our analysis for two reasons. First, they are

a large and procyclical component of durable-goods expenditures. Second, detailed

information on car markets allows us to measure quality dynamics, providing evidence

on the importance of new products. To this end, we assemble a rich dataset on

US new-car markets, combining two data sources. The �rst dataset contains the

universe of new-car transactions in several US states between 2004 and 2012 and

reports transaction prices as well as car features, such as make and model. The

second dataset contains detailed information on the technical characteristics of each

vehicle model sold in the US during the same period.

We exploit these data to provide new evidence about the distribution of vehicle

expenditures and quality around the Great Recession. Our analysis proceeds in four

steps, each yielding a main �nding.

First, we document a drop in the dispersion of new-car expenditures during the
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Great Recession�and a smaller decline in the average price�due to a decline in the

volume of high-price transactions.

Second, we show that the drop in dispersion is due to expenditure reallocation

across models�speci�cally, a decline in expenditures on expensive newly introduced

models. Furthermore, exploiting geographical variation, we relate this drop in demand

for high-quality models with the severity of the recession. Because the supply of

vehicles does not vary across locations, this �nding shows that shocks to household

demand play a primary role in the downward quality adjustment.

Third, we connect car prices and characteristics. We use hedonic regressions to

construct a measure of vertical quality that summarizes vehicle technical character-

istics (Griliches, 1961). We show that compositional changes in the characteristics of

cars sold account for the drop in expenditures. Furthermore, vehicle quality, based

on pre-recession hedonic prices, displays no growth during the recovery.

Fourth, we estimate the level of technology embodied in vehicles using only data

on car characteristics. We document that new models introduced during the Great

Recession featured a signi�cantly worse trade-o� between their main attributes than

models introduced in other years. This �nding is consistent with an endogenous

response of manufacturers that contributed to the drop in durable-goods quality.

Moreover, this technological slowdown had persistent e�ects throughout the recovery,

reducing the quality of the stock of registered vehicles.

Overall, our analysis highlights the complementary role of demand and supply

forces for quality dynamics. The narrative that emerges from our �ndings is that a

drop in household demand for quality led to an endogenous response on the supply

side, with a decrease in both volume and quality of new products, which further

reduced technology adoption.

Our �ndings have several implications. Most directly, the motor vehicle indus-

try experienced a deep crisis in 2008-2009, which led to a drop in employment and
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government bailouts. Moreover, because of the centrality of this industry in the US

production structure, the e�ects of this crisis spread across di�erent sectors.1 Thus,

understanding the micro dynamics of expenditures on vehicles is an important step

toward understanding the Great Recession and the subsequent slow recovery.

Furthermore, our �ndings have broader implications, contributing to several strands

of the literature. First, we provide evidence for the complementary roles of demand

and supply factors for innovation and technology adoption. Several papers show that

downward adjustment in consumer demand for quality is an important margin in the

Great Recession (Jaimovich, Rebelo and Wong, 2019; Argente and Lee, 2021).2 A

related literature emphasizes the entry and exit of retail products as an important

margin for the evolution of technology around the same period (Argente, Lee and

Moreira, 2018; Jaravel, 2019; Granja and Moreira, 2020).3 Whereas these studies

mainly focus on services and nondurable goods, we analyze one of the most impor-

tant household durable goods, building on the insights of Bils and Klenow (2001) and

Bils (2009). The evidence on complementarity between demand and supply is also

consistent with the mechanism in Shleifer (1986).4

Second, a large literature studies the role of durable goods for business cycles

(for seminal contributions, see Mankiw, 1982; Bernanke, 1985; Caballero, 1993). An

important force in models of durables demand (Barsky, House and Kimball, 2007;

Berger and Vavra, 2015; Dupor et al., 2018; Attanasio et al., 2020; Gavazza and

Lanteri, 2021; McKay and Wieland, 2021; Beraja and Wolf, 2022) is intertemporal

substitution, which implies that pent-up demand may induce strong recoveries after

1Atalay (2017) and vom Lehn and Winberry (2022) document that the auto industry plays a
central role in the US production network.

2Fisher, Johnson and Smeeding (2013) and Meyer and Sullivan (2013) �nd that consumption
inequality declined during the Great Recession.

3Broda and Weinstein (2010) documents that product creation is procyclical during the period
1999-2003.

4Acemoglu and Linn (2004) provides related evidence from the pharmaceutical industry and Einav
(2007) from the motion picture industry.
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drops in expenditures on durables.5 However, expenditures on durables recovered

sluggishly after the Great Recession. Our �nding that new-car quality was persis-

tently depressed during the recovery may partially account for the slow recovery in

expenditures.

Relatedly, our �ndings on the persistent implications of the downward quality

adjustment during the Great Recession are consistent with the literature on medium-

run business cycles (e.g., Comin and Gertler, 2006b; Benigno and Fornaro, 2018; An-

zoategui et al., 2019; Bianchi, Kung and Morales, 2019; Vinci and Licandro, 2020).

Our contribution is to measure the medium-run e�ects of new-product introduction

around the Great Recession.

2.2 Data

Our empirical analysis exploits two datasets on new-car transactions and model char-

acteristics, respectively. We introduce them in this section.

2.2.0.0.1 New-car Prices, Dominion Dealer Solutions (2019). This dataset

(henceforth Dominion dataset) reports the universe of new-car sales in �ve states�

Colorado, Idaho, North Dakota, Ohio, and Texas�for the period 2004-2012. For each

sale, the dataset reports the transaction price, the month of the transaction, and the

make, model, body type, and trim of the vehicle. The dataset contains more than

16.5 million vehicle transactions.6

2.2.0.0.2 New-car Model Characteristics, IHSMarkit (2020). This dataset

(henceforth IHS dataset) reports detailed characteristics of all new passenger-car mod-

5Several papers build on Eberly (1994) and Attanasio (2000), which abstract from business cycles.
Adda and Cooper (2000, 2006) and Gavazza, Lizzeri and Roketskiy (2014) develop quantitative
models of car replacement.

6For North Dakota, prices are reported for 2008-2012 only. Transaction prices in Colorado exhibit
some unusually low values than those in the other states; all our empirical �ndings are robust to
excluding transactions in Colorado.
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els sold during 2003-2012, including make, model, trim, body type, generation year,

dimensions, as well as engine attributes, such as size and horsepower, fuel type, fuel

consumption, transmission, and turbo injection.7

The dataset also reports the aggregate number of US sales for each model at annual

frequency during 2003-2012. We exclude pick-up trucks from our analysis because the

dataset does not have comprehensive information about them.

The product life cycle of cars typically features the replacement of a �generation� of

a car model with a new generation on average every 5.8 years. For example, all 2007�

2011 Toyota Camry models belong to the 2007 generation. Whereas small changes

in characteristics happen at annual frequency within a generation, a new generation

features a larger redesign. Hence, we de�ne a vehicle model in the IHS data as a

triplet of make, model, and generation. We further de�ne a new model in year t as a

model for which we observe the �rst transaction in year t or t− 1, to account for the

fact that the �rst transaction on a new model tends to appear in the second half of

the year. This de�nition of a new model encompasses entirely new model names.

Based on this de�nition, we merge the Dominion and IHS datasets by matching

vehicle models across the two datasets and allocating each transaction in the Dominion

dataset to a model generation in the IHS dataset. Appendix 2.A provides more details

on our model de�nition and procedure to merge the datasets.

We thus obtain a rich dataset on car sales that combines information on prices

and technical characteristics. Throughout the paper, we refer to a car model as a

make-model-generation triplet. According to this industry-wide de�nition, our dataset

contains over 500 models.

7Information about weight is missing in approximately 40% of models. Thus, we use all models
for which we observe their weight to estimate a log-linear relationship between weight and other
physical dimensions: wheelbase, width, height, and number of seats. This regression has an R2 of
0.93. We use its predicted values to impute the weight whenever we do not observe it.
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2.3 Empirical Patterns

In this section, we describe several empirical patterns: (i) we document the dynamics

of the distribution of expenditures on new cars around the Great Recession; (ii) we

decompose the dispersion in expenditures highlighting the role of new models; (iii) we

relate expenditures to car characteristics; and (iv) we analyze the level of technology

embodied in cars. Appendix 2.B reports additional details and robustness checks.

2.3.1 Dynamics of the Distribution of Expenditures on New

Vehicles

We begin by describing the distribution of expenditures on new cars in the Dominion

dataset. Figure 2.1 displays the main features of this distribution during 2004-2012.

The transactions in this dataset provide a representative account of the dramatic

e�ects of the Great Recession on US car markets: The top-left panel shows that the

total number of new-car sales drops by approximately 30% during the recession and

only returns to pre-recession levels in 2012, similar to the US aggregate dynamics.

We thus exploit the dataset to analyze the micro dynamics of the expenditure

distribution. The top-right panel plots the average transaction price; the bottom-left

panel the standard deviation; and the bottom-right panel the 10th, 50th, and 90th

percentiles of the distribution, all normalized to zero in 2007.

Both �rst and second moments of the expenditure distribution display an increas-

ing trend. On average, transaction prices increase by 1.6% annually between 2004

and 2012. However, during the Great Recession, we observe a decline in the aver-

age price and a larger decline in the dispersion of prices. Notably, the average price,

which equals $27,226 in 2007, displays a peak-to-trough decline of approximately 2%.

The standard deviation, which equals $13,614 in 2007, declines by approximately 5%.

Relative to their respective trends, the average price drops by approximately 3% and
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Figure 2.1: Dynamics of New-Vehicle Expenditures
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Notes: The �gure displays the number of new-car sales (top-left panel), the average (top-right

panel), the standard deviation (bottom-left panel), and three percentiles�10th, 50th, and

90th�(bottom-right panel) of the distribution of transaction prices from the Dominion dataset.

Horizontal axes report years (2004-2012); vertical lines highlight recession years (2008 and 2009).

the standard deviation by approximately 6% during the recession. In summary, our

�rst main �nding is that the decrease in dispersion during the recession is about twice

as large as the decrease in average expenditures.

The evidence on the �rst two moments of the distribution suggests that house-

holds reallocated their expenditures away from expensive vehicles during the recession.

Di�erent percentiles of the distribution con�rm this pattern. Consistent with the low-

frequency dynamics of average prices, all percentiles increase over time between 2004
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and 2012. However, the median and the 90th percentile decline signi�cantly during

the recession, both in absolute terms and relative to their trends. In contrast, the 10th

percentile remains on its trend. This analysis suggests that a drop in expenditures on

intermediate- and high-quality cars accounts for the declines in the average and the

dispersion of expenditures.

These �ndings are consistent with the evidence on household expenditures based

on the Consumer Expenditure Survey. Meyer and Sullivan (2013) documents a low-

frequency increase in consumption inequality and a decrease in dispersion during the

Great Recession, with lower percentiles of expenditures displaying smaller declines

than higher percentiles. However, our dataset allows us to take further steps to

connect the distribution of expenditures with features of the goods purchased.

2.3.2 Decomposing the Dispersion of Expenditures

We perform several decompositions of the variance of prices to investigate the drivers

of the cyclical dynamics of the distribution of expenditures. Our second main �nding

is that reallocation of expenditures between car models�speci�cally a drop in expen-

ditures on newly introduced models with high price�accounts for the compression in

the distribution in the recession. In contrast, average prices conditional on vehicle

model do not display signi�cant changes relative to their trend.

2.3.2.1 Between versus Within Models

We decompose the total variance of expenditures on new vehicles in year t, Vt, as

follows:

Vt = V B
t + V W

t ,
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where V B
t denotes the between-models component of the total variance and V W

t de-

notes the within-model component.8 Formally, we have

Vt ≡ 1

Nt

∑
i∈Mt

∑
j∈Xit

(pijt − pt)
2 ,

V B
t ≡

∑
i∈Mt

sit (pit − pt)
2 ,

V W
t ≡ 1

Nt

∑
i∈Mt

∑
j∈Xit

(pijt − pit)
2 ,

where i ∈Mt denotes a model sold in year t, j ∈ Xit denotes a transaction on model

i in year t, with market share sit; Nt is the total number of transactions in year t; pijt

are individual prices; pit is the average price of model i in year t; and pt is the average

price in year t.

The top-left panel of Figure 2.2 displays the total variance Vt (solid line) and its

components: between models V B
t (dashed line) and within models V W

t (dashed-dotted

line). The between-models component accounts for almost 80% of total variation

in prices before the recession, whereas within-model dispersion in transaction prices

accounts for approximately 20% of total variation.9 Notably, the between-models

component accounts for the entire reduction in total dispersion during the recession.

In contrast, during the same period there are no signi�cant changes in the dispersion

of prices within models. This evidence establishes that households reallocated their

expenditures toward models with a price close to the average.

2.3.2.2 New versus Old Models

The reallocation of expenditures away from expensive models prompts us to analyze

the role of newly introduced models. New models tend to be more expensive than

8The covariance term equals zero.
9Variation in prices within models is mostly due to di�erent trims within each model. This

variation does not appear to be relevant for the cyclical dynamics, which con�rms that our approach
of merging the Dominion and IHS datasets at the model level is sound.
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Figure 2.2: Variance Decomposition
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Notes: The �gure displays several decompositions of the variance of transaction prices in the

Dominion dataset. The top-left panel displays the decomposition of the variance of new-vehicle

transaction prices Vt (solid line) into the following components: between models V B
t (dashed line)

and within models VW
t (dashed-dotted line). The top-right panel displays the decomposition of the

variance Vt (solid line) into two components: new models sNt V
N
t (dashed-dotted line) and old

models (1− sNt )V O
t (dashed line). The bottom-left panel displays the variance of expenditures on

new models V N
t (solid line) and its decomposition into between-models component V N,B

t (dashed

line) and within-models component V N,W
t (dashed-dotted line). The bottom-right panel displays

the share of transactions on new models sNt . Horizontal axes report years (2004-2012); vertical

lines highlight recession years (2008 and 2009).

continuing models, fueling the long-run growth in the average price.

Based on our de�nition of a new model (Section 3.4.1), we �nd that new models
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play a prominent role in the dynamics of the expenditure distribution. Strikingly,

between 2005 and 2007, the average transaction price for new models is $28,080,

which is higher than the average for old models, $26,144. However, in 2008, the

average price of new models drops to $25,764, which is lower than the average for old

models, $26,927.

We analyze the contribution of new models to the variance of expenditures, using

the following variance decomposition:

Vt = sNt V
N
t + (1− sNt )V

O
t ,

where sNt is the share of transactions on new models in year t and V N
t (V O

t ) is the

variance of expenditures on new (old) models. In turn, these variances equal:

V N
t ≡ 1

NN
t

∑
i∈MN

t

∑
j∈Xit

(pijt − pt)
2 ,

V O
t ≡ 1

NO
t

∑
i∈MO

t

∑
j∈Xit

(pijt − pt)
2 ,

where MN
t and MO

t are the sets of new and continuing models in year t, and NN
t and

NO
t = Nt −NN

t are the respective number of transactions.

The top-right panel of Figure 2.2 displays the decomposition of the total vari-

ance of expenditures Vt into expenditures on new models, sNt V
N
t , and on old models,

(1 − sNt )V
O
t . The component due to new models displays a sharp drop during the

recession, fully accounting for the drop in total variance. This pattern arises for two

concurring reasons. First, the dispersion of prices of new models drops by nearly one-

half during the recession. The bottom-left panel of Figure 2.2 portrays the dynamics

of the variance of expenditures on new models V N
t , showing that its between-model

component accounts for its drop, consistent with the same decomposition for all mod-

els.

Second, the share of transactions on new models sNt decreases sharply, from a
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peak in 2007 of approximately 35% to less than 20% in 2009, as the bottom-right

panel of Figure 2.2 shows, despite the fact that new models were cheaper during the

recession.10 This pattern suggests a drop in the quality of new models during the

recession, which is thus the focus of the following subsections. Nonetheless, we do not

observe large changes in the variance of expenditures on old models, V O
t , relative to

its trend, suggesting that households did not substitute the �missing� new models of

high quality with old models of high quality�most likely delaying their purchases.

In the aftermath of the recession, the dispersion of expenditures on new models

V N
t returns to its trend. However, Figure 2.2, as well as Figure 2.B.9 in Appendix

2.B, show that neither the share of transactions on new models sNt nor the fraction of

new models on sale overshoots during the recovery. This evidence suggests that car

manufacturers did not simply respond to the recession by delaying the introduction

of high-quality new models; rather, there was a missing generation of new products,

likely contributing to the slow recovery of expenditures.

In Appendix 2.B, we analyze cross-sectional heterogeneity in new-model intro-

duction across carmakers. We divide carmakers in three groups, depending on their

geographical origin (Europe, Asia, and US). This analysis reveals two patterns. First,

all groups of carmakers decreased the volume of new-model introduction during the

recession. Second, European carmakers specialize in the introduction of high-quality

models. As a result, they largely account for the drop in high-quality new models

during the recession.

We also decompose the margin of new-model introduction between new model

names, which may expand the set of models available to consumers (horizontal inno-

vation), and new generations of existing model names, which improve on past gener-

ations of existing products (vertical innovation). Before the recession, both margins

10The 2007 peak in the market share of new models is due to the simultaneous introduction of new
generations of three popular models: Toyota Camry, Nissan Altima, and Chevrolet Tahoe. Figure
2.B.9 in Appendix 2.B displays the time series of the number of transactions on new models NN

t , as
well as the share of models we classify as new.
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account for approximately half of new-model introduction. During the recession, both

margins decline, but the bulk of the overall drop in new models is due to missing new

generations of existing models. This evidence (tentatively) suggests that the vertical

margin of product introduction is more responsive to the drop in demand. However,

we acknowledge that it is challenging to tightly associate these categories of new prod-

ucts to di�erent types of innovation because carmakers may launch a new model name

to refresh the image of a new generation of an existing model.

2.3.2.3 Geographical Variation: Ohio versus Texas

We now exploit geographical variation across states to connect the dynamics of the

dispersion of expenditures with the depth of the recession. This decomposition isolates

the role of household demand for quality, because the set of products is constant

across states. In particular, we observe variation in the magnitude of the drop in the

dispersion of expenditures and a larger quality adjustment in states where households

were hit more strongly by the recession.

To document this pattern, we compare Ohio and Texas, for two main reasons.

First, they are the two largest states in our data and account for the bulk of trans-

actions (approximately 80%). Second, Ohio and Texas experienced starkly di�erent

macroeconomic dynamics during the Great Recession, making the comparison of these

two states insightful.

To highlight the macroeconomic di�erences between Ohio and Texas, we follow the

approach of Gertler and Gilchrist (2018a), which analyzes state-level variation in the

intensity of the Great Recession, focusing on house-price and employment dynamics

(see also the related approach of Mian, Rao and Su�, 2013). The top panels of Figure

2.3 portray the Federal Housing Authority house-price index (top-left) and total non-

farm employment (top-right) in Ohio (solid lines) and Texas (dashed lines). Ohio

experienced a deep recession, with a 10% home price decline and an 8% employment
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Figure 2.3: Ohio versus Texas
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Notes: The �gure displays the dynamics of house prices, employment, and dispersion of

expenditures on new cars in Ohio and Texas around the Great Recession. The top-left panel

displays the quarterly Purchase Only Index of house prices from the Federal Housing Authority

and the top-right panel displays monthly Total Nonfarm Employment from the Bureau of Labor

Statistics (Gertler and Gilchrist, 2018b). Both series are normalized to equal 100 in both states at

the beginning of 2004. The bottom panel displays the standard deviation of the distribution of

transaction prices from the Dominion dataset. Horizontal axes report years. Solid lines refer to

Ohio, dashed lines to Texas.

decline. In contrast, Texas did not experience any housing bust and its decline in

employment was less signi�cant.

Geographical heterogeneity in the depth of the recession is likely associated with

variation in household demand for durable-goods quality. Accordingly, Ohio experi-
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enced a downward adjustment in the demand for quality more sizable than Texas:

The bottom panel of Figure 2.3 displays the standard deviation of the distribution

of transaction prices in these two states and shows that the dispersion in Ohio (solid

line) dropped more signi�cantly than in Texas (dashed line) during the Great Reces-

sion. Consistent with a di�erential drop in demand for quality, we also �nd that the

compression in the distribution of expenditures in Ohio is primarily due to a rela-

tive decline in the median and in higher percentiles, whereas these changes are less

pronounced in Texas.

2.3.3 Dynamics of the Distribution of Quality

Our decompositions establish that the heterogeneity between models and, critically,

new models are the main drivers of the dynamics of the distribution of new-car ex-

penditures. Moreover, quality di�erences between new and continuing models were

lowest during the recession. These patterns spur us to study vehicle characteristics.

To this end, we use hedonic regressions to estimate the function that maps vehicle

characteristics to prices (for a seminal contribution, see Griliches, 1961). Formally,

let the average price pit of car model i in year t equal:

pit = ht(Xit,Wit, ηit),

where ht(·) is the hedonic function; Xit are observed continuous vehicle attributes,

such as fuel e�ciency, horsepower, engine size, weight, and wheelbase; Wit are ob-

served discrete attributes, such as indicator variables for make, four-wheel drive,

number of gears, manual transmission, turbo injection, number of cylinders, diesel,

number of seats, and number of doors; and ηit are unobserved determinants of prices.

We transform all continuous variables in logarithms and assume that the log of the
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hedonic function ht(·) is linear:

log pit = βt logXit + γtWit + ηit, (2.1)

where βt and γt are the vectors of coe�cients, or �hedonic prices� of car characteristics.

We observe detailed characteristics of di�erent trims of each model in the IHS

dataset, whereas we observe transaction prices at a coarser level of aggregation�

namely car models�in the merged dataset. Thus, we aggregate all continuous char-

acteristics of di�erent trims of each model, weighting di�erent trims according to

their transaction shares in the IHS dataset, whereas we consider di�erent discrete

characteristics as di�erent observations, or, equivalently, di�erent models.

We consider three subsamples: pre-recession (2004-2007), recession (2008-2009),

and post-recession (2010-2012), assuming the coe�cients are constant within each

subsample but are potentially di�erent across subsamples. We use these hedonic

regressions to implement decompositions between the di�erences in the mean charac-

teristics of vehicles over time and the di�erences in the hedonic prices of these charac-

teristics over time (Oaxaca, 1973; Blinder, 1973). We leverage these estimates to track

the evolution of the distribution of quality, by assigning a predicted value based on

characteristics to each model. Formally, given the estimated hedonic prices β̂2004−2007

and γ̂2004−2007, we measure the quality of vehicle j in year t = 2004, 2005, ..., 2012 as

β̂2004−2007 logXjt + γ̂2004−2007Wjt. This prediction represents the value of the bundle

of characteristics contained in model j in year t, based on the dollar value of these

characteristics implicit in pre-recession prices.

The left panel of Figure 2.4 displays our third main �nding, which relates the

dynamics of average price and average quality during and after the recession. The

panel shows that they grow at a similar rate until the recession and, crucially, quality

predicts the decline in the average price during the recession. In fact, the decline

in average quality between 2007 and 2008 is slightly larger than the decline in the
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Figure 2.4: Hedonics and Vehicle Quality
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(b) Time-varying Hedonic Prices

Notes: The �gure displays the dynamics of average (log) transaction price in the merged

Dominion-IHS dataset (solid lines) and the average (log) value predicted with a hedonic

regression�equation (2.1)�(dashed lines). Each model is weighted according to its transaction

share in the IHS dataset. The left panel refers to constant pre-recession hedonic prices (2004-2007);

the right panel to time-varying hedonic prices, estimated in three subsamples: pre-recession

(2004-2007), recession (2008-2009), and post-recession (2010-2012). Horizontal axes report years

(2004-2012); vertical lines highlight recession years (2008 and 2009).

average price. We relate the dynamics of prices to the dynamics of selected charac-

teristics during the recession analyzing the evolution of several variables associated

with high quality based on our hedonic regressions, such as wheelbase, horsepower,

and engine size. The averages of all these characteristics decline during the recession,

which suggests a reallocation of expenditures toward smaller and less powerful cars,

consistent with the dynamics of prices displayed in Figure 2.1.

However, the left panel of Figure 2.4 displays a striking pattern from 2009 onward.

Speci�cally, the average price grows at a rate of approximately 2% per year, whereas

the average value implied by car characteristics declines protractedly, diverging from

the average price until the end of our sample. Notably, average quality shows no

growth in 2007-2012, while the average price grows by 7%.

This apparent decoupling between prices and predicted quality, based on pre-

recession prices, indicates that the post-recession hedonic prices of some characteristics
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are higher than their pre-recession values. Di�erent car attributes or brands may have

di�erent costs or may be valued di�erently over time, implying that changes in the

state of the economy likely a�ect hedonic prices (Pakes, 2003). Accordingly, we re-

estimate equation (2.1) separately in the three subsamples, and use these di�erent

estimates to compute a second measure of average quality. The right panel of Figure

2.4 displays the dynamics of this second measure of average quality, based on time-

varying hedonic prices. The panel shows that this measure of average quality tracks

the average price closely in all sub-periods.

The di�erence between our �rst and our second measures of quality con�rms that

the hedonic prices of some characteristics increased over time. Speci�cally, the hedonic

prices of two important characteristics�wheelbase and horsepower�increased by over

20% in the post-recession sample relative to the pre-recession sample. Changes in the

hedonic prices of characteristics associated with high quality have di�erent potential

explanations, including a relative scarcity of models in the most expensive segments or

time-varying markups. Nevertheless, this increase in the price of quality may partially

account for the slow recovery in new-car sales after the Great Recession.

Critically, we �nd that pre-recession hedonic prices accurately predict the dy-

namics of expenditures on new models during the recession. The hedonic regression

accounts for approximately 98% of the observed drop in between-model dispersion of

new-model prices, though it slightly overpredicts the decrease in their average price.

These results con�rm that reallocation across di�erent levels of quality accounts for

the dynamics of the distributions of expenditures on all and new models.

In Appendix 2.B, we analyze geographical heterogeneity in the dynamics of car

quality, estimating separate hedonic regressions in Ohio and Texas. Both states ex-

perience a decline in average prices relative to their respective trends. However, in

Ohio�where the recession was deeper�we observe a larger substitution toward mod-

els with lower quality, as well as a larger and more persistent gap between price and
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quality, which buttresses the primary role of household demand for quality.

Finally, we investigate any di�erential e�ects between US and foreign carmak-

ers. While the hedonic regressions show that the point estimates of US carmaker

�xed e�ects are lower than those of Asian and European carmakers, respectively, the

estimates do not show di�erential changes across periods.

Overall, our hedonic regression analysis highlights some striking dynamics in the

quality of vehicles and con�rms a reallocation in expenditures away from high-quality

new models. In the next subsection we present a complementary analysis that focuses

on technological trade-o�s in the set of models available on the market, abstracting

from information on prices. This analysis allows us to address some potential limi-

tations of the hedonic methodology, such as the di�culty of disentangling changes in

marginal costs from changes in markups and in preferences for di�erent models that

may occur around the recession.

2.3.4 New Models and Technological Progress

We now analyze the level of technology embodied in vehicles and document a sharp

drop in the quality of new models introduced during the Great Recession. This analy-

sis allows us to isolate the role of supply factors for the downward quality adjustment

in durable goods.

We follow Knittel (2011) to measure the technological trade-o� between fuel ef-

�ciency, weight, and engine power, and to estimate its evolution over time. This

methodology posits a marginal-cost function that depends on vehicle attributes and

estimates the level sets of this function, using time �xed e�ects to capture the evolu-

tion of the technological frontier. Speci�cally, the marginal cost function for vehicle i

in year t equals:

cit = c1t (mpgit, hpit, wit, Z
1
it, INit ) + c2t (Z

2
it),
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where c1t (·) is the component of marginal cost related to fuel economy, which depends

on fuel e�ciencympgit, horsepower hpit, weight wit, a subset of characteristics Z
1
it that

are relevant for the trade-o� of interest, and INit is an indicator variable for new models;

c2t (·) is the component of the marginal cost that depends on other characteristics that

are less related to fuel economy, Z2
it. We include a large set of indicator variables

for vehicle characteristics Z1
it, such as make, diesel engine, turbo injection, manual

transmission (also interacted with a time trend).

We further assume that vehicle attributes enter the marginal-cost function c1t (·) in

a log-linear form�i.e., the cost function is Cobb-Douglas�and that time t a�ects this

function in multiplicative form�i.e., technological progress is input neutral. Under

these assumptions, we estimate the level sets of the marginal cost c1t (·) with the

following speci�cation:

logmpgit = αhp log hpit + αw logwit + αZZ
1
it + αNINit + Tt + Tt × INit + εit, (2.2)

where Tt is a year �xed e�ect; Tt × INit is the interaction between time �xed e�ects

and the indicator variable for new models, which allows the regression (2.2) to �exibly

capture a di�erential e�ect of the recession on new models; and εit are unobservables.

Whereas the hedonic approach combines the reallocation of demand and changes

in the supply of quality, the marginal-cost estimation likely highlights quality changes

that originate on the supply side of the market. We estimate equation (2.2) in two

ways, �rst weighting models by the number of transactions, and then without sales

weights, which further isolates changes in the quality of products supplied.11

Figure 2.5 displays the estimated year �xed e�ects for new models (clear markers)

and old models (dark markers), relative to their pooled baseline value in 2004, nor-

malized to zero. The left panel portrays the estimates of the sales-weighted regression

11In both cases, for consistency with our analysis of Section 2.3.3, we aggregate all continuous
characteristics of di�erent trims of each model at the model level, weighting di�erent trims according
to their transaction shares, and we consider di�erent discrete characteristics as di�erent observations.
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Figure 2.5: Technology of New and Old Models
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Notes: The �gure displays the estimated average level of technological e�ciency for new models

(clear markers) and old models (dark markers), measured as the estimated time �xed e�ects in

regression equation (2.2). The left panel refers to a regression with weights based on the number of

transactions in the IHS dataset, whereas the right panel refers to a regression without weights. The

horizontal axis reports years (2004-2012); vertical lines highlight recession years (2008 and 2009).

and the right panel refers to the unweighted regression. In both cases, we �nd that,

typically, the level of technology grows over time, with new models displaying supe-

rior technology than old models. However, our fourth main �nding is that, during

the Great Recession, the growth rate of quality of new models declines: In 2008, the

estimated quality of new models is similar to the quality of old models, which implies

a halt in the adoption of frontier technologies embodied in new vehicles. Consistent

with this drop in technology adoption, we estimate that the quality of continuing

models also declines in 2008 due to an inferior mix of characteristics.

Quantitatively, the coe�cients displayed in Figure 2.5 mean that the average level

of technology of new models declines by almost 5% between 2006 and 2008. The

similarity of the left and right panels supports the notion that the main driver of this

decline is that the quality of newly introduced vehicles drops in the recession.

We further estimate the technology levels separately for models introduced by

European, Asian, and US carmakers. We �nd that the drop in new-product quality is

234



largest for European carmakers, which on average specialize in high-quality models.

This �nding, along with our �nding on the crucial role of European carmakers for

high-quality models (Section 2.3.2.2), supports our interpretation that the downward

quality adjustment on the supply side is likely an endogenous response to the drop

in demand, and less likely due to other shocks hitting carmakers, such as �nancial

shocks, which were more severe for US manufacturers.12

Although the technological level of new models recovers sharply from 2010, the

low quality of new models introduced during the recession�which remain in the set of

available models for several years�persistently drags the average level of technology

for the continuing models, which remains on a lower path throughout the recovery.

Overall, the technological level of old models breaks its pre-recession 2007 level only

at the end of our sample, as models introduced during the recession are gradually

replaced.

Accordingly, we perform a back-of-the-envelope calculation of the e�ects of these

dynamics on the average quality of the overall stock of registered cars, combining our

estimated level of technology for new cars with information on new-car registrations

during the period of our analysis. Appendix 2.B.4 provides the details of this calcu-

lation. We estimate that by 2012, the quality of the car stock was 1.3% lower than

if new-car technology and new-car registrations had remained on their pre-recession

trends. The drop in new-car quality accounts for almost one percentage point of this

decline.

2.4 Concluding Remarks

Our analysis shows that both demand and supply factors contributed to a downward

quality adjustment in expenditures during the Great Recession. Amid a decline in

12Furthermore, we �nd that the technology level evolves similarly for new model names and new
generations of existing model names.
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demand and a reallocation of expenditures away from expensive models, automakers

introduced models of low quality, leading to a persistent decline in technology.

We argue that alternative mechanisms that a�ect exclusively demand or supply

cannot fully account for all patterns on quality dynamics that we uncover. Geo-

graphical variation in expenditures highlights the critical role of household demand

for quality, thus inconsistent with supply shocks hitting only manufacturers�such

as �nancial shocks�determining quality dynamics. Our �nding that manufacturers

modi�ed the path of technology embodied in new models points to an important role

for supply, inconsistent with an explanation based exclusively on household demand,

through substitution toward lower quality within a �xed set of products.

We believe that this evidence will prove useful in informing quantitative models

of innovation over the business cycle.
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Appendices

Appendix 2.A Data and Measurement

In this appendix, we describe our procedure for merging the Dominion dataset and

the IHS dataset and explain our de�nitions of vehicle models.

2.A.1 Merging Dominion and IHS Datasets

For each transaction in the Dominion dataset, we observe a string for make name�

e.g., �TOYT� for Toyota�and a string for model name�e.g., �Camry��as well as the

corresponding model-year, which may or may not correspond with the calendar year

in which the transaction takes place because new models marketed as model-year t

are often introduced in year t− 1.

For each vehicle model in the IHS dataset, we observe a string for make name�e.g.,

�Toyota��and a string for model name�e.g., �Toyota Camry��as well as a variable

named generation-year, which allows us to identify di�erent generations of a same

model�e.g., �rst generation, second generation, etc. Moreover, we also observe the

total number of US transactions by calendar year.

1. In the Dominion dataset we identify all strings corresponding to make and model

names.

2. We perform the same step, identifying make and model names in the IHS

dataset.
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3. For all make-model names in the Dominion dataset (point 1), we �nd a single

corresponding make-model name in the IHS dataset (point 2). Whenever we do

not �nd a match for the make-model name (approximately 19% of cases), we

assign as model name the combination of make name and the �rst word of the

model string from the Dominion dataset.

4. For each make-model name in the Dominion dataset, we identify the correspond-

ing set of model-years for which we observe a positive number of transactions.

For example, in the case of the Toyota Camry, these model-years are 2003, 2004,

..., 2013.

5. For each make-model-generation in the IHS dataset, we identify the �rst model-

year with a positive number of transactions in the IHS dataset. If the �rst year

with a positive number of transactions of a make-model-generation is year t, we

infer that the �rst model-year for that make-model-generation is year t + 1, to

account for the fact that vehicles marketed as model-year t are typically �rst

introduced in the market in year t− 1.

6. We merge the dataset of Dominion make-model-years (point 4) with the Dominion-

IHS matched list of make-model names (point 3).

7. We assign each make-model-year from the Dominion dataset (point 6) to the cor-

responding make-model-generation (point 5) as follows: Toyota Camry model-

years 2007-2011 are assigned to the generation-year 2007 and Toyota Camry

model-years 2012 through 2013 are assigned to generation-year 2012.

2.A.2 Model De�nitions

We de�ne a vehicle model as a triplet of make, model, and generation obtained fol-

lowing the merging procedure described above�e.g., Toyota Camry generation-year

2007.
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We de�ne a new model in year t as a model for which we observe the �rst trans-

action in year t or in year t − 1, to account for the fact that the �rst transaction on

a new model tends to appear in the second half of the year. Speci�cally, this implies

that we consider a model as new whenever its model year in the Dominion dataset

corresponds with its generation year, and possibly also whenever we observe a trans-

action for this model that occurs in a calendar year preceding its model year. Thus,

this de�nition includes new model names as the �rst generation of a model, as well

as new generations of existing model names. We exclude 2004 from our analysis of

new models because this is the �rst year in the Dominion dataset, and thus we cannot

cleanly identify new models.

We should point out that because we observe transaction prices at the model level

in the Dominion dataset and, thus, we merge information from the Dominion dataset

and the IHS dataset at the model level, there remains some residual heterogeneity

in vehicle characteristics across di�erent trims of each model in the IHS dataset. To

deal with this heterogeneity, in our analyses of car characteristics in Sections 2.3.3 and

2.3.4, we average all continuous car characteristics across di�erent trims of each model

using their respective transaction shares in the IHS dataset, whereas we treat vehicles

with di�erent values of discrete characteristics�such as diesel, or turbo injection�as

di�erent models. In Appendix 2.B we consider an alternative approach, aggregating

both continuous and discrete characteristics at the model level using their transaction

shares. As Figures 2.B.12 and 2.B.13 show, our main �ndings are robust to this

alternative approach, suggesting that the level of aggregation of car characteristics,

as well as the exact number of models, do not a�ect our results.
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Appendix 2.B Additional Empirical Evidence

In this appendix, we provide additional empirical evidence and document several

robustness checks.

2.B.1 Dynamics of the Distribution of Expenditures

Figure 2.B.1 displays aggregate consumer expenditures on durable goods (left panel)

and on vehicles (right panel) during 2004-2012 (US Bureau of Economic Analysis,

2022) and shows the large drop in these components of household expenditures during

the Great Recession.

During July and August of 2009, the Car Allowance Rebate System, commonly

known as �Cash for clunkers,� subsidized the replacement of highly polluting cars with

new ones, potentially a�ecting the pool of new-car buyers (Hoekstra, Puller and West,

2017). Figure 2.B.2 reproduces the �ndings displayed in Figure 2.1, but excluding the

months of July and August in each year to show that the patterns of the distribution

of expenditures on new vehicles are not signi�cantly a�ected by the Cars Allowance

Rebate System. Figure 2.B.3 displays the same variables, but excludes �eet sales�

which account for approximately 4.4% of transactions�to show that our main �ndings

are unchanged if we restrict attention to consumer sales only.
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Figure 2.B.1: Consumer Expenditures on Durable Goods and on Motor Vehicles
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Notes: The �gure displays personal consumption expenditures on durable goods (left panel) and on

motor vehicles and parts (right panel), at quarterly frequency, seasonally adjusted annual rate,

from the Bureau of Economic Analysis during 2004-2012.
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Figure 2.B.2: Dynamics of New-Vehicle Expenditures, Excluding July and August of
Each Year
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Notes: The �gure displays the number of new-car sales (top-left panel), the average (top-right

panel), the standard deviation (bottom-left panel), and three percentiles�10th, 50th, and

90th�(bottom-right panel) of the distribution of transaction prices from the Dominion dataset,

excluding the months of July and August of each year. Horizontal axes report years (2004-2012);

vertical lines highlight recession years (2008 and 2009).
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Figure 2.B.3: Dynamics of New-Vehicle Expenditures, Excluding Fleet Sales
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Notes: The �gure displays the number of new-car sales (top-left panel), the average (top-right

panel), the standard deviation (bottom-left panel), and three percentiles�10th, 50th, and

90th�(bottom-right panel) of the distribution of transaction prices from the Dominion dataset,

excluding �eet sales. Horizontal axes report years (2004-2012); vertical lines highlight recession

years (2008 and 2009).

2.B.2 Decomposing the Dispersion of Expenditures

Figures 2.B.4 and 2.B.5 reproduce the �ndings displayed in Figure 2.2 under the same

two robustness checks described above: namely, removing July and August to exclude

the e�ects of �Cash for clunkers� and removing �eet sales, respectively.
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Figure 2.B.6 portrays the path of the average transaction price for ten popular

models. Speci�cally, we select the �ve models with the highest sales volume with

price below the overall sample median, and the �ve models with highest sales volume

with price above the median. For all of these models, the �gure shows that prices

did not signi�cantly deviate from trend during the Great Recession. This con�rms

that reallocation between models, instead of price changes at the model level, account

for changes in the distribution of expenditures during the recession. Consistent with

this evidence, Gavazza and Lanteri (2021) show that price changes during the Great

Recession were concentrated in used-car markets.

We further verify that a reallocation of market shares across di�erent models

accounts entirely for our �ndings on the dynamics of between-model price variance�

as well as average price�by performing the following analysis. We decompose the

di�erence between the between-model variance in year t, V B
t , and the between-model

variance in the whole sample, V B, as follows:

V B
t − V B =

∑
i∈Mt

sit (pit − pt)
2 −

∑
si (pi − p)2 (2.3)

=
∑
i∈Mt

(sit − si) (pi − p)2 +
∑
i∈Mt

si
[
(pit − pt)

2 − (pi − p)2
]
+

+
∑
i∈Mt

(sit − si)
[
(pit − pt)

2 − (pi − p)2
]
,

where the index i refers to models, t denotes years, and we use bars to denote averages

of prices pit and market shares sit.

The �rst term on the second line of equation (2.3) measures the role of reallocation

of expenditures across models; the second term on the second line measures the role

of changes in model prices; and the �nal term denotes the covariance term between

changes in market shares and prices.

Figure 2.B.7 shows that between 2007 and 2009, the component due to realloca-

tion (dashed line) accounts for the entire decline in between-model variance. This
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�nding buttresses our interpretation of the variance decompositions in Section 2.3.2:

A reallocation of expenditures toward models of lower quality accounts for the drop

in dispersion of expenditures.

We also perform the same decomposition for the average price in year t (equation

(2.4)) and obtain again a tight match between the overall average-price dynamics

around the recession and the component due to reallocation of market shares across

models, as Figure 2.B.8 shows.

pt − p =
∑
i∈Mt

sitpit −
∑

sipi (2.4)

=
∑
i∈Mt

(sit − si) pi +
∑
i∈Mt

si (pit − pi) +
∑
i∈Mt

(sit − si) (pit − pi) .

Furthermore, we obtain similar results when we restrict attention to the variance

of prices of new models.

Figure 2.B.9 displays the time series of the total number of sales and the number

of sales of new models (left panel) and the share of models we classify as new models

(right panel). These two �gures show that both the share of transactions on new

models and the �ow of new-product introduction are procyclical, peaking in 2007 and

dropping during the Great Recession.

Figure 2.B.10 displays our �ndings on the patterns of new-model introduction

across carmakers of di�erent geographical origin (Europe, Asia, and US). The left

panel shows that the number of new models dropped for all three groups during the

recession. Between 2007 and 2009, the volume of new-model introduction dropped

by for European carmakers, by for Asian carmakers, and by for US carmakers. As

a result, there is a missing generation of new models across all makes. After the

recession, we observe some heterogeneity in the speed of recovery, with European

carmakers increasing new-model introduction faster than Asian and US carmakers.
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The right panel of Figure 2.B.10 focuses on new models with an average price above

$40,000, which approximately corresponds to the 90th percentile of the distribution

in 2007. In this range, we observe that European carmakers account for the majority

of new models. In 2007, out of 24 new models introduced by European carmakers, 17

are above the $40,000 price threshold. In contrast, out of 26 new models introduced

by US carmakers, only 5 are above the same threshold; the fraction of high-price new

models introduced by Asian carmakers is even smaller. As the right panel of Figure

2.B.10 shows, high-price new-model introduction from European carmakers dropped

almost by half during the recession, which largely accounts for the missing generation

of high-quality new models in 2008 and 2009.

Figure 2.B.11 displays the decomposition of new-model introduction into new

model names and new generations of existing model names.
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Figure 2.B.4: Variance Decomposition, Excluding July and August of Each Year
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Notes: The �gure displays several decompositions of the variance of transaction prices in the

Dominion dataset, excluding the months of July and August of each year. The top-left panel

displays the decomposition of the variance of new-vehicle transaction prices Vt (solid line) into the

following components: between models V B
t (dashed line) and within models VW

t (dashed-dotted

line). The top-right panel displays the decomposition of the variance Vt (solid line) into two

components: new models sNt V
N
t (dashed-dotted line) and old models (1− sNt )V O

t (dashed line).

The bottom-left panel displays the variance of expenditures on new models V N
t (solid line) and its

decomposition into between-models component V N,B
t (dashed line) and within-models component

V N,W
t (dashed-dotted line). The bottom-right panel displays the share of transactions on new

models sNt . Horizontal axes report years (2004-2012); vertical lines highlight recession years (2008

and 2009).
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Figure 2.B.5: Variance Decomposition, Removing Fleet Sales
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Notes: The �gure displays several decompositions of the variance of transaction prices in the

Dominion dataset, excluding �eet sales. The top-left panel displays the decomposition of the

variance of new-vehicle transaction prices Vt (solid line) into the following components: between

models V B
t (dashed line) and within models VW

t (dashed-dotted line). The top-right panel displays

the decomposition of the variance Vt (solid line) into two components: new models sNt V
N
t

(dashed-dotted line) and old models (1− sNt )V O
t (dashed line). The bottom-left panel displays the

variance of expenditures on new models V N
t (solid line) and its decomposition into between-models

component V N,B
t (dashed line) and within-models component V N,W

t (dashed-dotted line). The

bottom-right panel displays the share of transactions on new models sNt . Horizontal axes report

years (2004-2012); vertical lines highlight recession years (2008 and 2009).
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Figure 2.B.6: Average Price of Ten Popular Models
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Notes: The �gure displays the average transaction price of ten popular models in the Dominion

dataset. Speci�cally, we select the �ve models with the highest levels of sales and price below the

median, and the �ve models with the highest levels of sales and price above the median. Horizontal

axes report years (2004-2012); vertical lines highlight the recession years (2008 and 2009).
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Figure 2.B.7: Decomposition of Between-Model Variance: Role of Expenditure Real-
location
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Notes: The �gure displays the results of the decomposition of the between-model variance de�ned

in equation (2.3). The solid line refers to the overall between-model variance, whereas the dashed

line refers to the component due to reallocation of expenditures across models, for �xed deviations

of prices from their average. Horizontal axes report years (2004-2012); vertical lines highlight

recession years (2008 and 2009).
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Figure 2.B.8: Decomposition of Average Price: Role of Expenditure Reallocation
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Notes: The �gure displays the results of the decomposition of the average transaction price de�ned

in equation (2.4). The solid line refers to the overall average price, whereas the dashed line refers to

the component due to reallocation of expenditures across models, for �xed average prices at the

model level. Horizontal axes report years (2004-2012); vertical lines highlight recession years (2008

and 2009).
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Figure 2.B.9: Transactions and Share of New Models
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Notes: The left panel displays the number and compositions of new-car sales in the Dominion

dataset during 2004-2012. The solid line refers to all sales; the dashed line refers to sales of new-car

models only. The right panel displays the time series of the share of models we classify as new

models. Horizontal axes report years (2004-2012); vertical lines highlight the recession years (2008

and 2009).

Figure 2.B.10: Introduction of New Models by Origin of Carmakers
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Notes: The �gure displays the volume of new-model introduction by origin of carmakers. The left

panel refers to all new models, whereas the right panel refers to new models with a price above

$40,000. Solid lines denote European carmakers; dashed lines denote US carmakers; and dotted

lines denote Asian carmakers. Horizontal axes report years (2004-2012); vertical lines highlight

recession years (2008 and 2009).
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Figure 2.B.11: Introduction of New Model Names
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Notes: The �gure displays a decomposition of the volume of new-model introduction between new

model names and new generations of existing model names. The solid line refers to the total share

of models that we classify as new and the dashed line refers to the share of models with a new

model name in the Dominion dataset. Horizontal axes report years (2004-2012); vertical lines

highlight recession years (2008 and 2009).

2.B.3 Dynamics of the Distribution of Quality

Table 2.B.1 reports the results of our hedonic-regression analysis. Speci�cally, column

(1) in Panel A of Table 2.B.1 reports the hedonic prices of the main continuous

attributes Xit in the pre-recession subsample. Columns (2) and (3) in Panel A report

the hedonic prices of the main continuous attributes Xit in the recession and post-

recession subsamples, respectively.

These hedonic regressions are well suited for accounting for the dispersion of ex-

penditures. Car characteristics capture a large share of the between-model variance

in prices: R2 coe�cients of the hedonic regressions exceed 0.93 in all subsamples.

The table shows that the coe�cients of some attributes, most notably engine

size, are not precisely estimated. The reason is that our regression equation (2.1)
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includes some discrete characteristics Wit, such as indicator variables for the number

of cylinders, which absorb almost all variation in engine size. Hence, the residual

variation in engine size is minimal and its coe�cient estimate is noisy.

Panel B of the table reports the peak-to-trough dynamics of expenditures and

quality of newly introduced models.
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Table 2.B.1: Hedonic Regressions

Panel A: Coefficient Estimates of Continuous Attributes

(1) (2) (3)
Pre-Recession Recession Post-Recession

Log(Wheelbase) 1.138 1.273 1.495
(0.133) (0.168) (0.162)

Log(Horsepower) 0.487 0.488 0.612
(0.039) (0.051) (0.051)

Log(Weight) 0.090 0.153 0.035
(0.060) (0.078) (0.077)

Log(Fuel Efficiency) -0.080 -0.058 -0.062
(0.051) (0.044) (0.047)

Log(Engine Size) 0.095 0.028 -0.038
(0.051) (0.066) (0.064)

Observations 2,055 1,084 1,671
R2 0.939 0.958 0.950

Panel B: Quality of New Models

(1) (2) (3)
Data Constant Time-Varying

Prices Prices

Average 2008 − Average 2007 -0.044 -0.052 -0.059

St. Dev. 2008 − St. Dev. 2007 -0.073 -0.072 -0.072

Notes: Panel A reports the estimated coe�cients of the log of continuous characteristics Xjt in
equation (2.1), with standard errors in parentheses, in three subsamples: column (1) refers to the
pre-recession subsample (2004-2007); column (2) to the recession subsample (2008�2009); and
column (3) to the post-recession subsample (2010�2012). Panel B reports the peak-to-trough
dynamics of expenditures and quality of newly introduced models, weighted according to their

transaction shares in the IHS dataset. Column (1) reports the di�erence between the average log
price of new models in the 2008 and the average log price of new models in 2007 (�rst row) and the
di�erence between the standard deviation of log prices of new models in 2008 and the standard
deviation of log prices of new models in 2007 (second row). Column (2) reports the di�erence
between the average (�rst row) and the standard deviation (second row) of predicted log prices,
based on constant hedonic prices estimated in the pre-recession subsample, applied to new models

introduced in 2008 and to new models introduced in 2007. Column (3) reports the di�erence
between the average (�rst row) and the standard deviation (second row) of predicted log prices,
based on recession hedonic prices applied to new models introduced in 2008 and pre-recession

hedonic prices applied to new models introduced in 2007.

Figure 2.B.12 displays the results of robustness analyses of average quality dynam-

ics measured with hedonic regressions. Speci�cally, while we produce Figure 2.4 in

Section 2.3.3 by aggregating continuous characteristics of di�erent trims at the model

level, but considering trims with di�erent discrete characteristics�such as diesel, or
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turbo injection�as distinct models, in these robustness analyses we aggregate both

continuous and discrete characteristics of di�erent trims of each model.

We consider two alternative speci�cations of the hedonic regressions. The �rst

speci�cation (top panels) is more �exible and uses indicator variables for discrete

characteristics, as in equation (2.1). Within each model, we average the discrete char-

acteristics weighting di�erent trims according to their transaction shares. We then

round the average to the closest discrete value, and set the corresponding indicator

variable equal to one. The second speci�cation (bottom panels) treats all characteris-

tics that vary across trims�including discrete ones�as continuous variables and as-

sumes a log-linear relationship between prices and all of these characteristics. Within

each model, we average the discrete characteristics weighting di�erent trims according

to their transaction shares and treat the average as the value of a continuous char-

acteristic. Because make and body type do not vary across trims within each model,

we control for these two attributes with indicator variables as in equation (2.1).

The �rst speci�cation has an overall better �t, because the indicator variables

better capture the nonlinearities in the relation between discrete attributes�such as

the number of cylinders�and prices, whereas the second speci�cation features a �ner

measurement of discrete variables�as it does not rely on rounding�but imposes a

linear relation between all attributes and prices.

Critically, in both cases we �nd that quality growth is stagnant after the Great

Recession when we measure it with pre-recession hedonic prices (left panels), whereas

average quality tracks the average price more closely when we use time-varying he-

donic prices (right panels). These results suggest that the level of aggregation of car

characteristics, as well as the exact number of models, do not a�ect our main �ndings.

Table 2.B.2 reports selected coe�cients of our hedonic regressions, with the same

level of aggregation as in Section 2.3.3, when we focus exclusively on new models.

Consistent with our baseline speci�cation that pools all models (top panel of Table
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2.B.1), we measure an increase in several hedonic prices of characteristics associated

with high quality between the pre-recession and the post-recession periods.

We also explore geographical heterogeneity in the dynamics of the distribution of

car quality. To this end, we reproduce the hedonic-regression analysis separately for

transactions in Ohio and Texas. We �rst estimate the hedonic prices of car charac-

teristics in the pre-recession period for each state. We then use these hedonic prices

to measure the quality of all cars sold during and after the recession. Both states

experience a decline in average prices relative to their respective trends. However,

our estimates reveal that in Ohio the substitution toward lower-quality models during

the recession is stronger than in Texas: The peak-to-trough decline in average quality

is approximately equal to 2% in Ohio and 1.4% in Texas. Moreover, starting during

the recession, Ohio features a larger gap between price and quality than Texas.
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Figure 2.B.12: Hedonics and Vehicle Quality, Aggregating All Characteristics
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(b) Time-varying Hedonic Prices,

Rounding

1
0
.0

5
1
0
.1

1
0
.1

5
1
0
.2

1
0
.2

5
L
o
g
 P

ri
c
e
 A

v
e
ra

g
e
 −

 L
o
g
(D

o
lla

rs
)

2004 2006 2008 2010 2012
year

Actual Predicted by Characteristics
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(d) Time-varying Hedonic Prices,

Continuous

Notes: The �gure displays the dynamics of average (log) transaction price in the merged

Dominion-IHS dataset (solid lines) and the average (log) value predicted with a hedonic regression

(dashed lines), when we aggregate both discrete and continuous characteristics of di�erent trims at

the model level. Top panels refer to a �exible speci�cation with indicator variables for discrete

characteristics, as in equation (2.1). Within each model, we average the discrete characteristics

weighting di�erent trims in proportion to their transaction shares. We then round the average to

the closest discrete value, and set the corresponding indicator variable equal to one. Bottom panels

refer to an alternative speci�cation that treats all characteristics that vary across trims�including

discrete ones�as continuous variables and assumes a log-linear relationship between prices and

characteristics. Within each model, we average the discrete characteristics weighting di�erent trims

in proportion to their transaction shares and treat the average as the value of a continuous

characteristic. Because make and body type do not vary across trims within each model, we control

for these two attributes with indicator variables as in equation (2.1). Left panels refer to constant

pre-recession hedonic prices (2004-2007); right panels to time-varying hedonic prices, estimated in

three subsamples: pre-recession (2004-2007), recession (2008-2009), and post-recession (2010-2012).

Horizontal axes report years (2004-2012); vertical lines highlight recession years (2008 and 2009).
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Table 2.B.2: Hedonic Regressions: New Models

(1) (2) (3)
Pre-Recession Recession Post-Recession

Log(Wheelbase) 1.375 2.456 1.815
(0.272) (0.456) (0.511)

Log(Horsepower) 0.409 0.324 0.483
(0.084) (0.142) (0.112)

Log(Weight) 0.340 0.933 0.554
(0.143) (0.205) (0.216)

Log(Fuel Efficiency) 0.051 0.307 -0.253
(0.083) (0.118) (0.131)

Log(Engine Size) 0.006 -0.288 -0.135
(0.104) (0.166) (0.130)

Observations 457 215 306
R2 0.965 0.969 0.982

Notes: The table reports the estimated coe�cients of the log of continuous characteristics Xjt in
equation (2.1), with standard errors in parentheses, using data on new models only in three
subsamples: column (1) refers to the pre-recession subsample (2004-2007); column (2) to the

recession subsample (2008�2009); and column (3) to the post-recession subsample (2010�2012).

2.B.4 New Models and Technological Progress

Figure 2.B.13 reports several robustness checks of our estimates of the technology

level for new and old models. Speci�cally, the top-left panel reports the results we

obtain by replacing the variable weight with three geometric dimensions�wheelbase,

width, and height�in regression equation (2.2). Estimates of the technology level

for new and old models are remarkably similar to the ones we show in Figure 2.2.

Di�erent from Knittel (2011), our dataset does not contain information about torque;

thus, we measure engine power with horsepower across all of the speci�cations.

The top-right panel of Figure 2.B.13 displays our estimates of the technological

level of new models and old models under the assumption of a translog cost function.

Under this assumption, we recover the path of technological progress by estimating
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the following regression equation:

logmpgit = α′
hp log hpit + α′

w logwit + α′
ZZ

1
it + α′

NINit + Tt + Tt × INit + (2.5)

α′
hp2(log hpit)

2 + α′
w2(logwit)

2 + α′
hp,w log hpit × logwit + εit.

The results are qualitatively and quantitatively similar to those we obtain in Figure

2.5 under the assumption of a Cobb-Douglas cost function.

The bottom panel of Figure 2.B.13 displays our estimates of the technological level

of new models and old models when we aggregate both continuous and discrete char-

acteristics of di�erent trims of each model, using their transaction shares in the IHS

dataset, consistent with the hedonic analysis displayed in Figure 2.B.12. Our results

are robust to this di�erent level of aggregation of car characteristics, buttressing our

argument that the level of aggregation of car characteristics and the exact number of

models do not a�ect our results.

We also perform our estimation of the evolution of the technology frontier dividing

carmakers by their geographical origin (Europe, Asia, and US). This strategy is useful

for two main reasons. First, these groups of manufacturers are vertically di�erenti-

ated in terms of average vehicle quality in the US market, as our hedonic-regression

analysis con�rms. Notably, European manufacturers specialize in higher-quality mod-

els. Second, these groups of manufacturers were likely di�erentially a�ected by the

�nancial crisis. Speci�cally, US manufacturers were hit most directly by the crisis,

which led to government bailouts.

Exploiting this heterogeneity, we �nd that European carmakers played a crucial

role for the aggregate downward adjustment in the level of technology of new models

that we discuss in Section 2.3.4. Notably, Figure 2.B.14 displays the estimates of the

year �xed e�ects in the regression equation (2.2), which we estimate separately for

European, Asian, and US carmakers. The level of technology of new models declined
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for all three groups during the recession, but European carmakers experienced the

largest decline. This evidence suggests that the �nancial shock hitting US manufac-

turers is not a primary driver of the overall downward quality adjustment that we

document.

We further estimate the level of embodied technology separately for new model

names and new generations of existing model names. We �nd that the dynamics of

average quality are similar for these two groups of models in all periods, including the

quality drop during the recession. These results suggest that vertical and horizontal

innovations contribute similarly to aggregate quality growth. We display the results

of this new analysis in Figure 2.B.15.

Figure 2.B.16 displays the results we obtain by estimating regression equation (2.2)

without an interaction term between year �xed e�ects and the indicator function for

new models, without sales weights (left panel) and with sales weights (right panel). In

this analysis, we e�ectively pool all models to estimate a common level of technology,

and still �nd a substantial decrease in quality during the Great Recession.

Finally, we perform a back-of-the-envelope calculation of the e�ects of low new-

product quality during the recession for the quality of the overall stock of registered

cars in the US. First, we leverage the estimates displayed in the right panel of Figure

2.B.16 to obtain a measure of the average annual growth rate in new-car quality, x,

during 2004-2007, as well as the average technological level of new cars sold in year t,

qNt . We normalize qN2004 = 1 and assume that the economy in 2004 is on a balanced-

growth path with constant in�ow of new cars and constant growth in new-car quality

equal to x. Thus, in 2004 the quality of cars of age a is given by qa,2004 = (1 + x)−a.

Between 2005 and 2012, we combine these assumptions with our estimates of new-car

quality and update the quality of cars of age a as follows: q0,t = qNt and qa,t = qa−1,t−1

for a > 0.

Second, we obtain data on new-vehicle registrations (automobiles and light trucks)
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from the Bureau of Economic Analysis during 2004-2012 (US Bureau of Economic

Analysis, 2022). We assume that vehicles are scrapped at age a = 15 (our main

�ndings are similar in a range of values for this parameter) and that the initial age

distribution of vehicles is uniform. We update the distribution of vehicle age during

2005-2012 as follows. Let na,t be the number of cars of age a in year t. We set

n0,t equal to the empirical �ow of new registrations in year t and na,t = na−1,t−1 for

a = 1, ..., 14.

We then obtain the average quality of the stock, qt, as follows: qt =
∑14

a=0 na,tqa,t∑14
a=0 na,t

.

Figure 2.B.17 displays the time-series of qt. We �nd that at the end of the sample

the estimated quality of the stock (solid line) is 1.3% lower than if new-car quality

and new-car sales had remained on their pre-recession trend (dashed-dotted line).

We further decompose the di�erence between the estimated quality of the stock and

its pre-recession trend in its two components�i.e., changes in the volume of new-

car sales and changes in new-product quality. Speci�cally, the dashed line assumes

that new-product quality qNt remains on its pre-recession trend, whereas new-car sales

follow their empirical path, dropping during the recession. As the �gure shows, this

counterfactual scenario accounts for approximately 0.4 percentage points of the overall

decline in quality of the stock at the end of the sample, and thus almost one percentage

point of the decline is due to the endogenous drop in new-product quality qNt .

262



Figure 2.B.13: Technology of New and Old Models: Robustness

−
.0

5
0

.0
5

.1
.1

5
C

a
r 

Q
u

a
li
ty

 (
%

 D
e

v
ia

ti
o

n
 R

e
l.
 t

o
 2

0
0

4
)

2004 2006 2008 2010 2012
Year

Old Models Old M. − 95% C.I.

New Models New M. − 95% C.I.

(a) Replacing Weight with Geomet-

ric Dimensions

−
.0

5
0

.0
5

.1
.1

5
C

a
r 

Q
u

a
li
ty

 (
%

 D
e

v
ia

ti
o

n
 R

e
l.
 t

o
 2

0
0

4
)

2004 2006 2008 2010 2012
Year

Old Models Old M. − 95% C.I.

New Models New M. − 95% C.I.

(b) Translog Cost Function

−
.0

5
0

.0
5

.1
.1

5
C

a
r 

Q
u

a
li
ty

 (
%

 D
e

v
ia

ti
o

n
 R

e
l.
 t

o
 2

0
0

4
)

2004 2006 2008 2010 2012
Year

Old Models Old M. − 95% C.I.

New Models New M. − 95% C.I.

(c) Aggregating All Characteris-

tics

Notes: The �gure displays several robustness checks of our measure of technology level for new and

old models. Speci�cally, the top-left panel displays the results we obtain by replacing the variable

weight in equation (2.2) with the variables wheelbase, width, and height. The top-right panel

displays the estimates we obtain for regression equation (2.5)�i.e., assuming a translog cost

function. The bottom panel displays the estimates we obtain when we aggregate both continuous

and discrete characteristics of di�erent trims of each model using their transaction shares.

Horizontal axes report years (2004-2012); vertical lines highlight recession years (2008 and 2009).
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Figure 2.B.14: Technology of New and Old Models by Origin of Carmakers
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(c) US

Notes: The �gure displays the estimated average level of technological e�ciency for new models

(clear markers) and old models (dark markers), measured as the estimated time �xed e�ects in

regression equation (2.2). The left panel refers to European carmakers; the middle panel to Asian

carmakers; and the right panel to US carmakers. Horizontal axes report years (2004-2012); vertical

lines highlight recession years (2008 and 2009).
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Figure 2.B.15: Technology of New Model Names and New Generations
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Notes: The �gure displays the estimated average level of technological e�ciency for new

generations of existing model names (clear markers), new model names (intermediate-darkness

markers), and continuing models (dark markers). Horizontal axes report years (2004-2012); vertical

lines highlight recession years (2008 and 2009).

Figure 2.B.16: Technology of All Models
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Notes: The �gure displays the estimated average level of technological e�ciency for all models,

based on equation (2.2), removing the interaction term between new models and time. The left

panel refers to a regression with weights based on the number of transactions in the IHS dataset,

whereas the right panel refers to a regression without weights. Horizontal axes report years

(2004-2012); vertical lines highlight recession years (2008 and 2009).
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Figure 2.B.17: Evolution of the Quality of the Stock of Cars
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Notes: The �gure displays the results of our back-of-the-envelope calculations for the quality of the

stock of registered cars, relative to the quality of new cars in 2004. The solid blue line refers to the

quality of the stock qt; the dashed red line refers to a counterfactual scenario with a constant

growth in the quality of new cars, but the empirical in�ow of new cars; the dashed-dotted black

line refers to a counterfactual with a constant growth in the quality of new cars and a constant

in�ow of new cars. Horizontal axes report years (2004-2012); vertical lines highlight recession years

(2008 and 2009).
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Chapter 3

The Good and the Bad of Patents

Disclosures

267



Abstract

This paper investigates how the disclosure of �standard-essential� patents, which rep-

resent the technical content of technical standards like 5G, a�ects sectoral productiv-

ity growth. A Schumpeterian growth model is developed where innovation requires

combining technological components owned by di�erent �rms (complementarity) that

can disclose their patents to standards. In the model, disclosures enhance innovation

e�ciency and growth by helping combine existing technologies but also hinder im-

plementation due to higher royalty payments. The �rst positive e�ect dominates if

complementarity or bargaining power of disclosing �rms are low enough. An empir-

ical analysis of 16 industries in 10 European countries over 2000-2010 reveals that,

on average, more disclosed patents are negatively related to TFP growth. The ef-

fect, however, varies across industries, with those with the strongest complementarity

driving the average negative e�ect.
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3.1 Introduction

Major technological upgrades, such as the shift from 4G to 5G communication tech-

nology, may require the integration of technical components owned by various �rms,

a feature known as �complementarity� in the innovation economics literature. Com-

plementarity has increased over time, posing signi�cant challenges to innovation and

productivity growth, potentially due to the di�usion of Information Technologies (IT)

over the 1980s and 1990s (Shapiro, 2001). Technological standards aim to overcome

these challenges by specifying how �rms can combine �essential� components that

have been disclosed to create the standard. This paper focuses on the disclosed tech-

nologies and patents that determine the technological content of the standard and

investigates their e�ect on productivity growth, both theoretically and empirically.1

This paper presents a Schumpeterian endogenous growth model that captures the

fundamental trade-o� between disclosures and growth as identi�ed by the innovation

and industrial organization literature. The model highlights that, while more dis-

closed patents contribute to building richer standards that increase the e�ciency and

e�ectiveness of the innovation process for the �nal technology, they also lead to larger

royalty payments for all �rms adhering to the standard. Since some disclosed com-

ponents may not be genuinely essential from a technological standpoint, these higher

royalty payments may be ine�cient and could impede growth.

The model in this paper incorporates complementarity, disclosures, and two types

of �rms: those that innovate on speci�c technologies and those that innovate on

generic technologies. Incumbent �rms invest in R&D to improve the quality of their

1This topic gained relevance in the policy debate in both Europe and the United States.
The European Commission included interoperability and standards in Pillar II of the �Digital
Agenda for Europe�, available online at http://ec.europa.eu/digital-agenda/en/ourgoals/

pillar-ii-interoperability-standards. Standardization is also mentioned as a crucial com-
ponent of the �Strategy for American Innovation� elaborated by the Executive O�ce of the Presi-
dent (2012) Memorandum for the heads of executive departments and agencies, Issued 17 January
2012, [Online], Available: http://www.whitehouse.gov/sites/default/files/omb/memoranda/

2012/m-12-08.pdf
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product, and to do so, they need to develop k technological components speci�c to

their variety, where k represents the degree of complementarity. Alternatively, they

can substitute the development of a new speci�c component by adapting generic

technologies. The second category of �rms, who do not have direct access to �nal cus-

tomers, develop generic components for royalties paid by incumbent producers and

decide whether to disclose them to the standard that forms in every period in the

industry. Disclosed technologies help incumbents' R&D activity but require ex-ante

royalty payments, while undisclosed technologies do not help �nal innovation and

may generate royalties ex-post if they become a technological bottleneck. The split of

monopolistic pro�ts and R&D decisions are determined by Nash bargaining for roy-

alties among �rms, which subsequently impact innovation outcomes and productivity

growth.

Using the model, I characterize the impact of disclosed technologies on Total Fac-

tor Productivity (TFP) growth in equilibrium. The direction of the e�ect depends on

the degree of complementarity and the bargaining power of generic innovators when

negotiating royalties with incumbent �rms. When the latter have strong bargaining

power, more disclosures have a negative e�ect on TFP growth because the excess-

royalty e�ect dominates the e�ciency improvement. The paper also shows that a

higher degree of complementarity a�ects TFP growth through two channels in equi-

librium. First, it has a direct negative e�ect because it makes innovation on �nal

technologies more costly. Second, it a�ects growth by stimulating more disclosures,

which can either foster or hinder growth, as explained earlier.

In the empirical application, a panel dataset is constructed to evaluate the relation-

ship between disclosures, complementarity, and TFP growth using data from 10 Eu-

ropean countries across 16 NACE 2-digit sectors between 2000 and 2010. The dataset

is created by combining data from the dSEP database by Bekkers et al. (2012) for dis-

closed patents, PATSTAT for sectoral measures of complementarity based on patents
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backward citations, and the CompNet database for sectoral productivity growth esti-

mates and other industry-speci�c aggregates for several European countries.

The empirical �ndings indicate that, on average, disclosures have a negative rela-

tionship with TFP growth across sectors. Speci�cally, an increase of 10 yearly and

sectoral disclosures (equal to the sample mean of disclosed patents) is associated with

a 0.045 percentage points increase in sectoral TFP growth, which is equivalent to 8% of

the 0.54 percentage points sample mean. However, this average e�ect masks substan-

tial cross-industry variation in the sign and magnitude of the coe�cient. As predicted

by the model, industries with the strongest degree of complementarity are more likely

to exhibit a negative correlation between disclosures and TFP growth. For instance,

the sign of the relation is markedly negative in the computer and machinery manu-

facturing sectors, where innovation complexity is high. Finally, the paper proposes an

instrumental variable strategy that utilizes three distinct measures of complementar-

ity, two of which are particularly related to the standardization process, to quantify

the direct and indirect e�ects of complementarity on TFP growth. The results sug-

gest that the direct e�ect of complementarity on TFP growth is negative, although

imprecisely estimated, and the coe�cient on disclosures remains unchanged in terms

of sign and magnitude, as observed in OLS evidence.

3.1.1 Connection to existing literature

This paper contributes to multiple literature strands. Firstly, it examines the aggre-

gate implications of complementarity and disclosures for growth in a general equilib-

rium model that formalizes some of the insights of the innovation economics and indus-

trial organizations literature on the topic. Simcoe (2005) o�ers a comprehensive ex-

amination of the disclosure phenomenon, outlining the signi�cant surge in disclosures

since 1990 and exploring potential drivers, such as the fragmentation of the innova-

tion process within certain industries and the emergence of small �rms that specialize
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in patent licensing to larger companies that integrate their technology into products.

These dynamics are integral to how complementarity and disclosure operate in my

model. Moreover, several studies provide empirical evidence on the disclosure strat-

egy of �rms, including Simcoe, Graham and Feldman (2009) and Kang and Bekkers

(2015), while others analyze the consequences of disclosures in terms of citations and

litigation rates for patents, such as Rysman and Simcoe (2008). Additionally, Baron,

Pohlmann and Blind (2016) examine the evolution of technical standards depend-

ing on the number of essential patents included. On the theoretical side, Shapiro

(2001) is the �rst paper to study the negative consequences of complementarity in

innovation, highlighting the existence of a �patent thicket�, i.e., �an overlapping set

of patent rights requiring that those seeking to commercialize new technology obtain

licenses from multiple patentees�, which becomes particularly harmful for innovation

when combined with the risk of hold up.2 This is the e�ect of complementarity in my

model absent disclosure. Other authors, such as Lerner and Tirole (2015) and Lerner,

Tabakovic and Tirole (2016), present game-theoretic models of the disclosure process,

examining the incentives of di�erent types of �rms to opt for speci�c versus generic

disclosures depending on the value of the patent they hold. In contrast, this paper's

model provides a general equilibrium representation that abstracts from the speci�cs

of the disclosure process. Finally, while patent pools are a related topic, they are not

the focus of this work.3

Secondly, this paper contributes to the applied macroeconomics literature on the

productivity growth. I focus on the e�ect of standard's technological content, i.e.,

disclosed patents, on TFP growth. To my knowledge, Baron and Schmidt (2014) is

the closest paper to my empirical analysis. It builds a quarterly series of the number of

technological standards released by American Standard Setting Organizations (SSOs)

2A thorough study of the e�ects of patent thickets and fragmentation is found in Galasso and
Schankerman (2010).

3Lerner and Tirole (2004), Shapiro (2001), Dequiedt and Versaevel (2013) study patent pools.
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in the �eld of Information and Communication Technologies and it includes this series

in a Bayesian VAR with output, investment, and TFP. Identi�cation assumes that

shocks to the number of standards are genuine technology shocks�i.e., advancements

to the technical state of the art that do not a�ect TFP and other aggregates on impact.

Ordering the count of standards last in the VAR, the paper identi�es technology shocks

through a Choleski decomposition of the variance-covariance matrix. Their evidence

shows that a shock to standards a�ects TFP negatively at �rst but positively in the

long run, and that investment and output follow a similar S-shaped dynamics. They

argue that new standards create a clash between new and old technologies, which

initially translates into a fall in TFP that reverts once the new technology di�uses.

Di�erently from Baron and Schmidt (2014), I provide more direct measurement of

the technological content of standards and I use an empirical strategy that considers

both the time-series and the cross-industry variation of the phenomenon.

Finally, the paper contributes to the macro theory literature explicitly introduc-

ing patenting in Schumpeterian growth models, such as O'Donoghue and Zweimüller

(2004), or models of sequential innovations and blocking R&D as Cozzi and Galli

(2014).

In the remainder of the paper, Section 3.2 presents details of the disclosure process,

Section 3.3 presents the model and derives its key theoretical predictions, Section 3.4

discusses the data and illustrates the empirical analyses, Section 3.5 concludes.

3.2 Institutional setting

This section outlines the critical aspects of the standard-setting process and patent

disclosure, which underlie the prominent features of the theoretical model discussed

in Section 3.3.

Standard Setting Organizations (SSOs) strive to create comprehensive technical
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documents, or standards, that describe how to combine several technological compo-

nents to implement a complex innovation. This requires both technological and in-

formational coordination among �rms due to complementarity. Multiple components

must be developed and combined to operate e�ciently in the same technology, and

di�erent �rms may own intellectual property on di�erent components. For example,

the 3GPP standard consortium aimed to develop and maintain the 3G communication

technology, which includes hundreds of components owned by dozens of �rms.

During the standard formation process, �rms that own a technology and consider

it essential for the new upgrade may decide to disclose the patent that protects it to

the SSO.4 For instance, in 2009, Magnolia Broadband Inc. and VirnetX disclosed US

patents 7,327,801 and 7,133,930, respectively, to build the 3G standard. After dis-

closures, the SSO selects relevant technological components and provides a detailed

description of how to combine them to implement a major innovation. The techni-

cal components protected by disclosed patents represent the essential technological

content of the standard.

Previous research in the �elds of innovation economics and industrial organization

has investigated the ways in which increased disclosures can both help and hinder

innovation. In the former case, more disclosures can prevent bottlenecks that may

obstruct the innovation process. Disclosed patents can provide information on which

technological components have already been developed, thereby reducing R&D du-

plication costs and preventing relevant intellectual property rights from blocking the

implementation of a major innovation ex-post. This, in turn, not only directly pro-

motes innovation by removing roadblocks but also enhances the ex-ante incentive of

�rms to invest in R&D. Additionally, disclosures often come with a commitment from

4There are two types of disclosures. The �rst is �blanket� disclosures. They consist in a document
where the disclosing �rm declares to own intellectual property rights on one or more technologies
essential for the standard, but omits the patent or patent application numbers thereof. The second
category refers to �speci�c� disclosures, which di�er from the blanket ones because the �rm also
speci�es patent or patent application numbers that protect declared-essential technologies. The
paper focuses on speci�c disclosures and Subsection 3.4.1.1 discusses measurement at length.
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disclosing �rms to license under Fair, Reasonable and Non-Discriminatory (FRAND)

terms, which provides a secure negotiation environment that facilitates agreement on

royalties and the implementation of the �nal innovation.

However, more disclosures may also have a negative impact on innovation and

growth. Royalty-seeking �rms may have an incentive to disclose patents that are not

truly essential for the standard. If included, these patents may impose an additional

burden on �rms implementing the standardized technology, reducing their ex-ante

R&D e�orts and hindering innovation.

Therefore, the e�ect of disclosures on innovation and productivity growth is am-

biguous. While more disclosed patents lead to richer standards that provide better

technological coordination, they also impose a larger royalty burden on implementing

�rms. The next section presents a novel endogenous growth model that formalizes

this trade-o�.

3.3 Model

This section presents a novel Schumpeterian endogenous growth model that incor-

porates complementarity in innovation and patents disclosure. I �rst describe the

model environment in Subsection 3.3.1, followed by the de�nition of the equilibrium

in Subsection 3.3.2. I then derive two propositions in Subsection 3.3.3 that shed light

on the impact of disclosures and complementarity on growth in the model. Appendix

3.B reports a detailed exposition of model's assumptions, optimization problems, and

solution.

3.3.1 Environment

The model is an extension of the basic framework introduced by Aghion and Howitt

(1997) that incorporates complementarity in innovation, modeled following Shapiro
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(2001) and Simcoe (2005), and patents disclosure to standards. The conventional

parts of the model, i.e., consumers and �nal good producers, are presented �rst,

followed by the R&D activity and disclosure.

3.3.1.1 Consumers

A representative consumer derives utility from consumption of a homogeneous �nal

good Ct according to the function u(Ct), with limC→0+ u
′(C) = +∞ and u′(C) > 0

and u′′(C) < 0 ∀C. She is endowed with Lt = L units of labor in every period t,

which she supplies inelastically in the labor market. The consumer owns all the �rms

in the economy and gets income from pro�ts and labor. Therefore, the time-0 utility

maximization problem is

max
Ct,At+1

∞∑
t=0

(
1

1 + ρ

)t

u(Ct)

s.t. Wt+1 = rtWt +Πt + wtL− Ct

(3.1)

where ρ is the discount rate, rt is the real interest rate, and Wt is the value of

asset holdings at the end of period t. Under the assumption that patent rights expire

within the period, Wt = 0 ∀t in equilibrium and the agent consumes all her income

period-by-period.

3.3.1.2 Final good production

A perfectly-competitive sector produces the �nal good Yt according to the production

function

Yt = L(1−α)
∫ 1

0

A1−α
i,t xαi,tdi

Production is Cobb-Douglas in labor L and a unit measure of intermediate varieties

indexed by i whose quality is Ai,t and whose quantity used in production is xi,t. The
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price of the �nal good is normalized to one and pro�t maximization by �nal good

producers generates demand for labor and demand for intermediate goods. The latter

is

xi,t = (αzi,t)
1

1−αAi,tL (3.2)

where zi,t is the price of intermediate variety i, which the �nal good producers

take as given.

3.3.1.3 Intermediate goods producers

In every intermediate product line i there is an incumbent and a fringe of competi-

tors. The production technology is common across the two groups and linear in the

�nal good, with unit marginal cost. However, the incumbent can escape competition

through innovation, i.e., by improving on the quality of the variety Ai,t and obtain-

ing a patent on this technological upgrade. Patents provide a legal monopoly to the

incumbent for one period, after which fringe competitors can perfectly imitate the

improved technology. The production problem of a monopolistic intermediate good

producer is

max
xi,t

zi,txi,t − xi,t

s.t. xi,t = (αzi,t)
1

1−αAi,tL

(3.3)

which implies that total pro�ts from variety i are

Πi,t = [α
1+α
1−α − α

2
1−α ]Ai,tL = πAi,tL (3.4)

in equilibrium. In contrast, if incumbents do not successfully innovate, Bertrand

competition with fringe �rms pushes the price zi,t to the unit marginal cost and pro�ts

to zero.
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3.3.1.4 R&D and innovation

Types of innovations and complementarity

The model distinguishes between two types of innovation: implementable and generic.

Implementable innovation improves the existing quality Ai,t−1 of a speci�c variety i

by a step-size γ > 1 and is monopolized by the incumbent intermediate producer. All

variables related to implementable innovations are denoted by I. I assume that k > 1

small technologies of step-size ψ = γ/k are required to achieve an implementable

upgrade, thus k measures the degree of complementarity in innovation.

Generic innovation, denoted by G, results in a new technology that is ψ-times

better than the average quality At−1 of existing varieties, where

At ≡
∫ 1

0

Ai,tdi (3.5)

A measure K of �rms generates these innovations, but they cannot directly produce

and sell them to �nal good �rms due to their smaller step-size improvement and lack

of contribution to the quality improvement of any speci�c variety i.

Relation among innovation types, disclosure, and standards

I assume that any generic innovation can replace one of the k components of an

implementable innovation, provided it is adapted to variety i. However, to achieve

this, the incumbent �rm on variety i needs to �specialize� the generic technology, using

its technical expertise to integrate it with its existing product. To compensate the

generic innovator, the incumbent pays a royalty, determined through Nash bargaining.

The disclosure of generic innovations during the standard formation process signif-

icantly a�ects the substitution between speci�c components of implementable inno-

vations and generic technologies. I model the disclosure process based on real-world

standards formation, assuming that it occurs within a single period. A standard-
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setting organization encourages disclosure of technologies that may be essential for

establishing a common technological basis for new implementable innovations. Since

implementable technologies are speci�c to a variety, they are not suitable for inclusion

in the standard. In contrast, generic innovations can be adapted to individual cases

and replace speci�c components of any implementable bundle. As a result, generic

R&D �rms with successful patents must decide whether or not to disclose their tech-

nology, as this decision a�ects the use and pro�tability of the generic technology.

Undisclosed generic innovations are not visible to incumbent intermediate produc-

ers during the innovation process, so ex ante substitution is not possible. However,

these generic technologies have an exogenous probability δ ∈ (0, 1) of being ex post

blocking for one of the k components of any implementable innovation. In such a

scenario, successful incumbents must pay royalties to the blocking generic innova-

tor determined through Nash bargaining over pro�ts. Negotiations often fail in this

hostile environment, which I model by assuming a probability θ(mu
t ) ∈ [0, 1] of break-

down, increasing with the total measure of undisclosed generic innovations mu
t . If

negotiations fail, the quality upgrade of intermediate varieties is blocked.

If a generic innovation is disclosed, it is included in the new standard with a

probability that depends on the aggregate measure of disclosed technologies, denoted

by md
t . The probability of inclusion of any disclosed innovation j ∈ [0,md

t ] is

νj,t = νt =


1 if md

t ≤ k

k/md
t if md

t > k

(3.6)

If the number of disclosed technologies is less than or equal to the number required

to create an implementable innovation, then inclusion is certain. However, if the

number of disclosed technologies exceeds this threshold, k generic innovations are

chosen with equal probability from the md
t disclosed. The standard speci�es the

optimal way to combine these technologies to create implementable innovations for
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intermediate varieties i ∈ [0, 1] and provides a secure negotiation environment for

incumbents and generic innovators. As disclosure usually involves a commitment to

license the technology under Fair, Reasonable, and Non-Discriminatory (FRAND)

terms, I assume that Nash bargaining over disclosed technologies never fails.

Generic R&D problem and patents disclosure

A measure K of identical �rms indexed by j invests RG
j,t ∈ R+ units of the �nal good

in R&D activity to generate generic innovations. Upon successful innovation, each

�rm decides whether to disclose (dj,t = 1) their patent to the standard. Let P e,d
j,t

and P e,u
j,t denote the expected royalties that a �rm receives if it discloses or does not

disclose, respectively. Firm j solves

max
RG

j,t,dj,t∈{0,1}

{
ϕ

(
RG
j,t

ψAt−1

)[
dj,tP

e,d
j,t + (1− dj,t)P

e,u
j,t

]
−RG

j,t

}
(3.7)

where ϕ(·) represents the probability to achieve the generic innovation as a function

of generic R&D intensity nGj,t ≡ RG
j,t/(ψAt−1). The function ϕ(·) satis�es standard

assumptions: ϕ′(0) = 0, limn→+∞ ϕ(n) = 1, ϕ′(·) > 0, limn→0+ ϕ
′(n) = +∞, and

ϕ′′(·) < 0.

Once the generic innovation is disclosed and included in the standard, the �rm

engages in Nash bargaining with each incumbent that has developed an implementable

innovation, with a probability of success σi determined by incumbents' R&D. This

results in the determination of a royalty payment pi,j,t for each incumbent. The

expected royalty payments for the �rm are then calculated as the product of the

inclusion probability in the standard νj,t and the sum of expected royalties from each

incumbent, i.e.,

P e,d
j,t = νj,t

∫ 1

0

σi,tpi,j,tdi (3.8)
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In contrast, if the generic innovation is not disclosed the expected royalty is

P e,u
j,t = δ(1− θ(mu

t ))

∫ 1

0

σi,tpi,j,tdi (3.9)

where δ is the exogenous probability that the generic innovation is blocking, (1−

θ(mu
t )) is the probability that ex-post Nash bargaining on royalties does not fail, and

the integral represents the sum of expected royalties bargained with each incumbent.

The optimal policies for generic R&D �rms are twofold: (i) to disclose the inno-

vation if and only if the expected royalties from disclosing to the standard exceed the

expected royalties from not disclosing, i.e., if P e,d
j,t > P e,u

j,t , and (ii) to choose RG
j,t such

that R&D intensity satis�es the following �rst-order condition

ϕ′(nGj,t)max{P e,d
j,t , P

e,u
j,t } = ψAt−1 (3.10)

Nash bargaining

I assume that Nash bargaining over royalties occurs among (i) any incumbent interme-

diate producer i which successfully innovated and (ii) any generic innovator j whose

technology has either been employed ex-ante to develop an implementable upgrade or

resulted ex-post blocking. Firms decide how to split total pro�ts Πi,t in equation (3.4)

with bargaining weights β (incumbent) and 1 − β (generic innovator). The problem

is

max
pi,j,t

(
Πi,t − pi,j,t

)β(
pi,j,t

)1−β
(3.11)

where Πi,t − pi,j,t and pi,j,t are the payo�s of the incumbent and the generic inno-

vator, respectively, and the outside option is null for both.
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Implementable R&D problem

Each incumbent intermediate producer can invest RI
i,t units of the �nal good in R&D

to achieve an innovation that improves by a factor γ = kψ > 1 the quality Ai,t−1

of her variety. In the process, the incumbent can integrate the md
t disclosed generic

technologies combined by the standard. This reduces the innovation step-size to au-

tonomously achieve from γ = kψ to (k −md
t )ψ but requires the payment of a mass

of md
t pi,t royalties to generic innovators licensing the technologies.5 If md

t exceeds k,

only k generic innovations are used. Moreover, incumbents may ex-post discover that

their implementable innovation infringes on a share δ of mu
t undisclosed generic tech-

nologies. If this is the case, negotiations with the blocking �rm fail with an aggregate

probability θ(mu
t ) or lead to a successful agreement on total royalties min{δmu

t , k}pi,t

with probability 1− θ(mu
t ). Therefore, expected pro�ts for a successful intermediate

�rm are

Πe
i,t = (1− θ(mu

t ))[Πi,t −min{md
t , k}pi,t −min{δmu

t , k}pi,t] (3.12)

and the optimal R&D investment decision solves the problem

max
RI

i,t

{
ϕ

(
RI
i,t

(k −md
t )ψAi,t−1

)
max{Πe

i,t, 0} −RI
j,t

}
s.t. RI

i,t ≥ 0 (3.13)

where the innovation probability function ϕ(·) is the same as for the generic in-

novators.6 The second term represents expected pro�ts that the incumbent obtains

through innovation, conditional on them being positive. In fact, equation (3.12) high-

lights that Πe
i,t may turn negative if the amount of royalty payments is too high, in

which case the incumbent prefers to abandon the innovation. The last term represents

the cost of R&D investment in units of the �nal good.

5I drop the subscript j from pi,t because pi,j,t = pi,t ∀j due to the assumed symmetric of generic
innovators.

6I assume throughout that functional forms and parameters of the model are such that, in equi-
librium, md

t is always strictly smaller than k.
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Optimal R&D intensity nIi,t de�ned as

nIi,t ≡
RI
i,t

γAi,t−1

=
RI
i,t

kψAi,t−1

solves, if interior, the optimality condition

ϕ′
( k

k −md
t

nIi,t

)
Πe
i,t = (k −md

t )ψAi,t−1 (3.14)

3.3.2 Equilibrium

In this subsection, I de�ne the model's equilibrium and I derive its key characteristics.

3.3.2.1 De�nition

The symmetric Cournot-Nash competitive equilibrium of the model is de�ned by

quantities {C∗
t ,W

∗
t+1,{x∗i,t}i∈[0,1],{{p∗i,j,t}i∈[0,1]}j∈[0,K],{nG∗

j,t , d
∗
j,t}j∈[0,K],{nI∗i,t}i∈[0,1], ν∗t , md∗

t ,

mu∗
t , {σ∗

i,t}i∈[0,1], Π∗
t } and prices {r∗t , w∗

t , {z∗i,t}i∈[0,1] } such that: (i) {C∗
t ,W

∗
t+1} solves

problem (3.1); (ii) {x∗i,t} solves problem (3.3) for all monopolistic i's and equation

(3.2) for all competitive i's; (iii) royalties {{p∗i,j,t}i}j solve problem (3.11) ∀i ∈ [0, 1]

and ∀j ∈ [0, K]; (iv) {nG∗
j,t , d

∗
j,t}j solves problem (3.7) ∀j ∈ [0, K]; (v) {nI∗i,t} solves

problem (3.13) ∀i ∈ [0, 1]; (vi) ν∗t satis�es (3.6); (vii) md∗
t =

∫ K
0
d∗j,tϕ(n

G∗
j,t )dj; (viii)

mu∗
t =

∫ K
0
(1 − d∗j,t)ϕ(n

G∗
j,t )dj; (ix) σ

∗
i,t = (1 − θ(mu∗

t ))ϕ
(

k
k−md

t
nI∗i,t

)
∀i ∈ [0, 1]; (x)

Π∗
t =

∫ 1

0
σ∗
i,tΠ

∗
i,tdi, where Π∗

i,t satis�es (3.4) ∀i ∈ [0, 1] (xi) the asset market clears

W ∗
t = 0; (xii) the resource constraint of the economy (3.15) holds.

L(1−α)
∫ 1

0

A1−α
i,t (x∗i,t)

αdi = C∗
t +

∫ 1

0

nI∗i,tkψAi,t−1di+

∫ K

0

nG∗
j,t ψAt−1dj (3.15)

3.3.2.2 Characterization of the equilibrium

In this subsection, I will discuss the equilibrium allocations' distinctive features and

their in�uence on productivity growth. Appendix 3.B provides all the derivations.
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First, R&D intensity is symmetric across incumbent innovators i ∈ [0, 1], and

royalties paid by incumbent i are linear in Πi,t and symmetric across generic innova-

tors. Nash bargaining results in a fraction β of pro�ts Πi,t going to the incumbent,

and the remainder going to the generic innovator. Additionally, pro�ts are linear in

Ai,t = γAi,t−1 conditional on innovation. Thus, Π
e
i,t is linear in Ai,t−1, and the optimal

R&D intensity on implementable innovations does not depend on i.

Second, all generic innovations are disclosed. Under the assumption that for any

chosen functional forms and parameters the measure of generic �rms K is small

enough, the probability of being included in the standard conditional on disclosure

is larger than the probability of blocking implementable innovations ex-post without

disclosure.7 Additionally, with disclosure, Nash bargaining is not subject to failure.

Evaluating expression (3.8) for expected royalties and optimality condition (3.10) for

generic R&D intensity in the equilibrium reveals that both are independent of j, thus

verifying the symmetry assumption.

Therefore, an interior equilibrium in the R&D sector solves the equations

ϕ′(nG∗
t )(1− β)ν∗t µ

∗
tπL = ψ

m∗
t = m∗d

t = ϕ(nG∗
t )K

ϕ′
( k

k −md∗
t

nI∗t

)
(1− (1− β)min{m∗d

t , k})πL = (k −m∗d
t )ψ

µ∗
t = ϕ

( k

k −md∗
t

nI∗t

)
where µ∗

t represents the equilibrium share of intermediate varieties on which innovation

occurs and ν∗t is determined by equation (3.6).

Furthermore, analyzing two extreme cases sheds light on the equilibrium outcomes.

The �rst case represents an equilibrium where the disclosure process successfully coor-

dinates technical and information aspects, thereby overcoming complementarity hur-

7The formal condition on K and parameters is formalized by Assumption 1 in Appendix 3.B.1.
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dles and avoiding R&D duplication costs across varieties. If md
t > k and k ≤ 1

1−β ,

intermediate �rms are willing to pay royalties to implement a quality upgrade on all

intermediate varieties, and nIt = 0 but µ∗
t = 1. The second case features md

t > k but

k > 1
1−β . Therefore, incumbents �nd it unpro�table to pay royalties on generic tech-

nologies (Πe
i,t < 0), resulting in µ∗

t = 0. However, this is not an equilibrium because

this outcome contradicts m∗d
t > k, and the degree of complementarity is too strong,

leading to a failure to innovate through disclosure.

In the next subsection, I will employ these �ndings to demonstrate how the dis-

closed innovations relate to productivity growth.

3.3.2.3 Productivity growth

I de�ne TFP growth for this economy as the growth rate of the average productivity

level, i.e.,

gt ≡ At+1/At − 1 (3.16)

For the interior equilibrium, it is possible to write gt as

gt = ϕ
( k

k −md∗
t

nI∗t

)
(γ − 1) (3.17)

where nI∗t solves

ϕ′
( k

k −md∗
t

nI∗t

)
(1− (1− β)min{m∗d

t , k})πL = (k −m∗d
t )ψ (3.18)

Equation (3.17) shows that productivity growth depends on the net quality im-

provement (γ− 1) and the success probability of incumbents' innovative e�ort nI∗t , as

determined by equation (3.18). The latter expression reveals two channels through

which disclosed technologiesmd∗
t impact growth. Firstly, more disclosures increase the

innovation probability ϕ(·), thanks to technical coordination. Secondly, they induce
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higher R&D intensity by reducing its marginal cost, as shown on the right-hand side

of (3.18). However, more disclosures also reduce the e�ective payo� for incumbents,

as they have to pay more royalties, which can decrease R&D intensity. Depending

on the relative strength of these channels, disclosures may either enhance or hinder

productivity growth. Proposition 1 in Subsection 3.3.3 characterizes the sign of the

e�ect based on the model's parameters.

Moreover, disclosures endogenously depend on the degree of complementarity

k, which motivates the standard-setting process because the proliferation of small

technologies increases the risk of hold up. To highlight the separate e�ect of com-

plementarity and disclosures, I examine TFP growth in two alternative economies

nested in the current model. Firstly, in a setting with complementarity (k > 1)

and potentially blocking innovations (K > 0) but without disclosures to standards

(dj,t = 0 ∀j ∈ [0, K]), growth satis�es


gns,t = (1− θ(mu

t ))ϕ(n
I
t )(γ − 1)

ϕ′(nIt )(1− θ(mu
t ))[1− (1− β)min{δmu

t , k}]πL = kψ

(3.19)

Secondly, in an economy without complementarity (k = 1) and without blocking

innovations and, hence, disclosures (K = 0), growth is


gnc,t = ϕ(nIt )(γ − 1)

ϕ′(nIt )πL = ψ

(3.20)

The comparison of conditions (3.19) and (3.20) reveals that complementarity, in

the absence of disclosure, unambiguously reduces growth due to several reasons. First,

it directly increases the cost of innovation for intermediate �rms. Second, it creates

a hold-up probability as undisclosed generic technologies may block the adoption

of implementable innovations ex post. Third, it lowers implementers' ex-ante R&D

intensity as hold-up risk and royalties reduce its expected payo� from innovation.
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Furthermore, the comparison of equations (3.17) and (3.18) with (3.19) highlights

the role of technologies disclosed to standards in promoting growth. Firstly, they elim-

inate the possibility of failed negotiation because disclosing �rms commit to license.

Secondly, they reduce the implicit marginal cost of the incumbent's R&D intensity

thanks to technical coordination. Thirdly, they may reduce the expected incumbent's

payo� by in�ating royalty payments. The �rst and second forces promote growth,

while the third hinders it.

Finally, the comparison of (3.17) and (3.18) with (3.20) emphasizes the same

channels, but also highlights that their relative strength may depend on the value of

k. The next subsection formalizes this intuition with two propositions.

3.3.3 Theoretical predictions

Proposition 1 provides a simple condition to determine the e�ect of disclosures on

growth and derives this e�ect.

Proposition 1. At interior equilibria, the e�ect of the mass of disclosed patents on

TFP growth satis�es

dgt
dmd∗

t

= −(ϕ′
I)

2

ϕ′′
I

[
1

k
− k −md∗

t

k

(1− β)

(1− (1− β)md∗
t )

]
(γ − 1)

where ϕ′
I = ϕ′

(
k

k−md∗
t
nI∗t

)
and ϕ′′

I = ϕ′′
(

k
k−md∗

t
nI∗t

)
.

Moreover, dgt
dmd∗

t
is negative if k(1 − β) > 1, i.e., if product of complementarity k

and generic innovators' bargaining power (1− β) is large enough.

Intuitively, when complementarity is strong, the cost of paying royalties to use

generic technologies is more likely to outweigh the technological bene�ts, particularly

if the bargaining weight of generic innovators is high.

Proposition 2 investigates the impact of complementarity on growth, which prior

research has identi�ed as a key driver of technical and informational coordination
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needs that underlie disclosures to standards. As discussed earlier, the proposition

con�rms that stronger complementarity directly reduces growth. Moreover, it also

has an indirect e�ect on gt by a�ecting �rms' incentives to invest in R&D and disclose

generic innovations. Similar to Proposition 1, the direction of this e�ect depends on

the values of k and β.

Proposition 2. The degree of complementarity k a�ects TFP growth gt both directly

and indirectly through disclosure of patents. The direct e�ect is unambiguously nega-

tive. The indirect e�ect is negative if k(1− β) > 1.

dgt
dk

=
(ϕ′

I)
2

ϕ′′
I

md∗
t

k(k −m∗d
t )

(γ − 1)︸ ︷︷ ︸
Direct E�ect < 0

− (ϕ′
I)

2

ϕ′′
I

(γ − 1)

[
1

k −m∗d
t

− 1− β

1− (1− β)m∗d
t

]
dm∗d

t

dk︸ ︷︷ ︸
Indirect E�ect

where ϕ′
I = ϕ′

(
k

k−md∗
t
nI∗t

)
and ϕ′′

I = ϕ′′
(

k
k−md∗

t
nI∗t

)
.

Proofs of both propositions are in Appendix 3.C.

3.4 Empirical analysis

This section provides an empirical investigation of the relationship between produc-

tivity growth, patent disclosure to technological standards, and complementarity. In

Subsection 3.4.1, I present the data and describe the key variables used in the analysis.

Subsection 3.4.2 adapts Propositions 1 and 2 to the panel data dimension and maps

theoretical insights to empirical applications. Subsections 3.4.3 and 3.4.4 present the

main results and additional insights.
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3.4.1 Data

To build measures of patents disclosure, complementarity, and productivity growth for

the empirical analysis, I rely on multiple data sources that cover industries, countries,

and time periods. The following subsection provides a description of these sources.

3.4.1.1 dSEP database: Patents disclosure

The Disclosed Standard Essential Patents (dSEP) Database, compiled by Bekkers

et al. (2012), includes 46,906 disclosure documents to 13 major Standard Setting Or-

ganizations (SSOs) from 1975 to 2012. The data consist of two types of disclosures:

blanket disclosures and speci�c disclosures. Blanket disclosures involve a document

where the disclosing �rm declares owning intellectual property rights on one or more

technologies essential for the standard, without specifying the patent or patent appli-

cation numbers. In contrast, speci�c disclosures provide patent or patent application

numbers that protect declared-essential technologies. For the empirical analysis, we

focus on speci�c disclosures.

The speci�c disclosures in Bekkers et al. (2012) identify 14,057 US Patent O�ce

(USPTO) or European Patent O�ce (EPO) patents or patent applications, which

have unique identi�ers in PATSTAT�a worldwide patent database described in Sub-

section 3.4.1.2. PATSTAT provides information on each patent's technological con-

tent, summarized by International Patent Classes (IPCs) that patent examiners at-

tribute to the protected technology. By utilizing Eurostat's concordance tables be-

tween IPCs and NACE industries, I assign each disclosed patent to speci�c industrial

sectors.8

To construct my preferred measure of patents disclosure for industry l in year t,

I count the number of patents whose technological content refers to NACE industrial

8I use Eurostat's concordance table IPCV8-NACE Rev.2 Update (version 2.0) avail-
able at https://ec.europa.eu/eurostat/ramon/documents/IPC_NACE2_Version2_0_20150630.

pdf. Table downloaded in February 2023. If a patent covers more than one IPC and/or if the IPCs
link to more than one NACE industry, I count one disclosed patent in each of the NACE industries.
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sector l and whose �rst disclosure event occurs in year t. The �nal sample consists of

5,805 such patents covering 16 2-digit NACE industrial sectors from 2000 to 2012.9

On average, there were 28 disclosed patents per year and sector, with a standard

deviation of approximately 120.

Figure 3.1 displays the time-series of disclosed patents in each industry. Across

all sectors, disclosures increased over time. Additionally, the �gure highlights that

industries related to Information and Communication Technologies (ICT) and ma-

chinery had the highest number of disclosed patents.10 For instance, manufacturing

of computer, electronic, and optical products had an average yearly count of 388 dis-

closed patents, re�ecting the numerous technological components that these products

comprise, with intellectual property owned by various �rms.

The sectoral focus of the disclosure process does not diminish its overall signi�-

cance, as the industries in question represent 17% of GDP in my sample and make a

substantial contribution to overall investment dynamics. Additionally, the prolifera-

tion of �smart� systems is expected to increase the demand for technological coordi-

nation in other industries, expanding the potential for disclosure and standardization.

I will now discuss three limitations of the proposed disclosure measure. First, the

measure may not capture potential consequences of blanket disclosures or patents that

are essential for the standard but not disclosed. Unfortunately, appropriate measure-

ment of these unobserved factors is unavailable, which may introduce a downward

bias in the estimated e�ect of disclosed patents on productivity growth. To partly

address this issue, the instrumental variable strategy discussed in Subsection 3.4.3.3

is used. Second, the classi�cation of disclosed patents into NACE sectors based on

9The sample starts in 2000 because TFP growth measures will be available starting from this
year. The number of patents in the �nal sample is lower than the total patent count in the dSEP
database because of this sample restriction and because for some patents IPC classes or disclosure
year are missing. Moreover, Table 3.A.2 in Appendix 3.A.2 reports covered sectors.

10I classify as ICT industries NACE codes 26, 27, 28, and 62, i.e., �Manufacture of computer,
electronic and optical products�, �Manufacture of electrical equipment�, �Manufacture of machinery
and equipment n.e.c.�, �Computer programming, consultancy and related activities�, respectively.
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IPCs may generate measurement error and, hence, attenuation bias in the empirical

estimates of the e�ect of disclosures on growth. The strategy discussed in Subsection

3.4.3.3 makes some progress in this direction.11 Third, the raw count of disclosed

patents may merely re�ect heterogeneous patenting trends across industries rather

than di�erences in disclosure intensity. To account for this, I construct an alternative

disclosure intensity measure that re-scales the raw count of disclosed patents by the

total number of patent applications per year and industry.12 I use it in Section 3.4.3

alongside the preferred measure and in Appendix 3.D, and all empirical �ndings are

equivalent. Figure 3.2 presents disclosure intensity over time and across industries

graphically.

3.4.1.2 PATSTAT: Patenting and complementarity measures

PATSTAT is a global patent database that provides bibliographic information on

published patent documents from major patent o�ces worldwide. To measure com-

plementarity in innovation, I use data on patent citations between patents.

However, there is no agreement in the innovation literature on how to measure

complementarity in innovation. Based on the de�nition of complementarity in the

theoretical framework of Section 3.3, I propose a method that relies on backward

citations between patents. I will �rst describe my preferred measures and then discuss

their drawbacks.

In the model, the degree of complementarity is determined by the number of small

technologies required to develop a larger, implementable innovation. This creates

technological links among patented technologies, which are measured through cita-

11Moreover, in an additional analysis available upon request, I check that empirical evidence is
robust to using an alternative classi�cation scheme based on the sector of activity of the patent
owner. I use the disclosed patent number to match the patent to its owner in �ORBIS - Bureau Van
Dijk�, which reports �rm's industry of activity. Next, I assign each patent to the its owner's NACE
industrial sector. Results are broadly consistent with the those presented in the paper.

12I compute the total number of applications by NACE-year by combining the tls201 and the
tls229 PATSTAT tables. The robustness analysis using �scaled� disclosure measures refers just to
the Eurostat IPC-based classi�cation case used in PATSTAT.
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tions among patent documents in the innovation literature. Speci�cally, a citation

from patent x to a previous patent y is believed to indicate the use of technical

knowledge contained in y for the creation of x. Given the model's de�nition, small

generic innovations would be represented as y, and implementable innovations would

be represented as x. Thus, a larger number of backward citations would indicate more

links and a higher degree of complementarity (k).

As Proposition 2 demonstrates, complementarity has both direct and indirect ef-

fects on TFP growth. Therefore, I construct three alternative measures of complemen-

tarity that serve two purposes: (i) to control for the direct e�ect and (ii) to generate

variation in disclosures to estimate the indirect e�ect.

To capture cross-industry heterogeneity in the overall number of links among

patents over time and di�erential trends in innovation complexity due to the pen-

etration of �smart� technologies across sectors, I �rst calculate the industry- and

year-speci�c average number of backward citations per patent, denoted by AvgCitl,t.

For the second and third measures, I focus on narrower subsets of backward cita-

tions that re�ect two important aspects of complementarity for the disclosure process.

The �rst aspect relates to the within-industry dimension of the standardization pro-

cess, which has been emphasized by previous literature in innovation economics and

industrial organization. Accordingly, the second measure, denoted by WCitl,t, counts

the number of backward citations that occur among patents classi�ed within the same

industry l at time t.

The second distinctive aspect of disclosure is the need to consider patents that

are essential for the development and implementation of a new broader technology.

Therefore, for the third measure of complementarity, I use the World Intellectual

Property Organization (WIPO) classi�cation of patent citations into �non-derivative�

and �derivative� to isolate backward citations capturing technical links vital for the
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creation of the citing innovation.13 Speci�cally, I calculate the average number of

derivative backward citations per patent made within the same industry l at time t,

denoted by AvgWDCitl,t.
14

Figures 3.3, 3.4, and 3.5 provide a visual representation of the evolution of the

�rst, second, and third complementarity measures, respectively, over time and across

industries. Across all industries, there is a substantial increase in the average number

of backward citations per patent over time. The growth rate signi�cantly accelerates

in most industries between 2000 and 2005, leading to a doubling or tripling of the

measure in 2005 compared to 1990. However, for most sectors, there is a slowdown,

if not a reversal of this increase between 2005 and 2012. Figure 3.4 displays a similar

trend for within-industry citations, although the evolution is less noisy and does not

decline after 2005. On the other hand, Figure 3.5 reveals a more irregular evolution

of average within-industry derivative citations per patent. In certain industries such

as �Manufacture of wearing apparel�, the third complementarity measure is low and

stable over time, whereas in others such as �Manufacture of machinery and equipment�,

AvgWDCitl,t grows markedly until 2000 and declines thereafter. The heterogeneous

evolution of complementarity measures across industries and over time indicates that

they indeed capture di�erent characteristics of the innovation process.

13The WIPO classi�es citations into several categories. The main are �A�, which denotes �non-
derivative� citations, and �X� and �Y�, which denote a "derivative" citations. A citation is classi�ed
in category �A� if the document cited in the European search report represents state of the art not
prejudicial to the novelty or inventive step of the invention claimed by the citing document. In
contrast, if a document cited in the European search report is particularly relevant, it is indicated
by the letters �X� and �Y�. Category �X� applies if the invention claimed by the citing patent cannot
be considered novel or involving a su�cient inventive step absent the citing document. Category
�Y� applies where the invention claimed by the citing document cannot be considered to involve an
inventive step if the cited document is combined with one or more other documents of the same
category, such combination being obvious to a person skilled in the art.

14Appendix Subsection 3.A.4 provides detailed information on how the three measures are con-
structed.
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3.4.1.3 CompNet: Productivity and other industry characteristics

I use data from the European Central Bank CompNet database (4th round) to ob-

tain industry-speci�c measures of Total Factor Productivity (TFP) growth and other

sectoral characteristics across ten European countries over time. The time-coverage

of the data varies by country (Austria: 2000-2012; Belgium: 2000-2011; Finland:

2000-2012; Germany: 2000-2012; Estonia: 2000-2012; Italy: 2001-2012; Lithuania:

2000-2011; Portugal: 2006-2012; Romania: 2003-2012; Slovenia: 2000-2012), result-

ing in a yearly unbalanced panel with a cross-sectional unit of country × NACE

industry pair.

To estimate TFP, CompNet employs Wooldridge (2009)'s approach, which in-

volves estimating a Cobb-Douglas production function on �rm-level data using real

value added as output and controlling for capital measurement error through a GMM

framework. The resulting TFP estimates have a yearly sectoral average growth rate

of 0.54% in the sample, with a standard deviation of 0.2 percentage points.

In addition to TFP, I include industry-speci�c measures of labor productivity,

capital productivity, hours worked, real capital stock, real value added, the Her�nd-

ahl�Hirschman index of market concentration, and the price-cost margin as controls

in the empirical analysis of Section 3.4.3. These additional characteristics are also

obtained from the CompNet database.

3.4.1.4 Estimation sample

To obtain my empirical estimates, I merge disclosure and complementarity measures

from dSEp and PATSTAT with productivity and other industry characteristics from

CompNet. While disclosure and complementarity measures vary at the industry ×

year level, productivity and other characteristics vary at the country × industry ×

year level. To address this, I assign the same industry- and year-speci�c values of

disclosure and complementarity measures to all countries in the CompNet sample.
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This re�ects the global nature of the disclosure process and the industry-speci�c

nature of complementarity, which is unlikely to vary signi�cantly across countries.

Appendix 3.A provides industry coverage in the merged sample in Table 3.A.2, as

well as industry-speci�c summary statistics for the main variables used in the analysis.

Finally, I limit the estimation sample to years up to 2010 due to truncation problems

observed in the disclosure measures after that year.

3.4.2 Adapting theoretical predictions to the empirical setting

In this subsection, I adapt Propositions 1 and 2 to the variation present in the data.

In fact, while the theoretical model includes one industry and a single country, the

empirical setting features cross-industry variation in complementarity and disclosures

as well as additional cross-country heterogeneity in productivity growth. This allows

me to connect theoretical predictions to the empirical analyses of Subsection 3.4.3.

I index industries by l and I assume that aggregate �nal output Ct is an equal-

shares Leontief aggregate of industry-speci�c consumption Cl,t. As market clearing

requires Cl,t = Yl,t at any time, the model of Section 3.3 now describes production of

industry-speci�c output Yl,t and innovation in industry l.15

As a consequence, Proposition 1 can be specialized to each industry l and we can

write the relation between industry-l TFP growth and disclosed patents as

dgl,t
dmd∗

l,t

= −
(ϕ′

l,I)
2

ϕ′′
l,I

[
1

kl
−
kl −md∗

l,t

kl

(1− βl)

(1− (1− βl)md∗
l,t)

]
(γl − 1) (3.21)

whose implication is that the e�ect of disclosures on growth is more likely to be

negative if the industry-speci�c degree of complementarity is large.16 Moreover, the

15This simple adaptation of the model abstracts from cross-industries e�ects, which might be
relevant in the real world. The advantage of keeping the model tractable is that it features a closed
form solution that has intuitive theoretical predictions. As to the drawbacks, I try to control for
cross-industry e�ects in the empirical analysis directly.

16I express this relationship in probabilistic terms because, di�erently from the setup of Section
3.3, in the multi-industry framework also β may vary across sectors.
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linearization of the industry-speci�c version of equations (3.17) and (3.18) around the

time-average of growth (gl,·) and disclosures (md
l,·), yields the implementable speci�-

cation

gl,t = gl,· + ωl(m
d
l,t −md

l,·) (3.22)

which motivates the initial OLS speci�cation (3.23) of Subsection 3.4.3.1.

The empirical analysis is divided into three steps. Firstly, in Subsection 3.4.3.1, I

estimate a cross-industry average of equation (3.22) with additional controls, using a

common ω coe�cient across industries. Secondly, Subsection 3.4.3.2 investigates the

heterogeneity in ωl highlighted by equation (3.22), by leveraging cross-country vari-

ation in TFP growth data. This heterogeneity in ωl is then related to the degree of

complementarity across industries, with Proposition 1 suggesting that industries with

stronger innovation complementarity are more likely to have a negative estimated ωl.

Finally, Subsection 3.4.3.3 explores the direct e�ect of complementarity and its indi-

rect impact through disclosures, in line with the insight of Proposition 2. To achieve

this, I propose an empirical strategy that uses measures of complementarity presented

in Subsection 3.4.1.2 to (i) control for the direct e�ect and (ii) induce variation in sec-

toral disclosures plausibly related to complementarity only. Proposition 2 predicts a

negative direct e�ect and an indirect e�ect with the same sign as the one estimated

by OLS on (3.23).

3.4.3 Empirical Evidence

This subsection provides empirical results that demonstrate the relationship between

the number of disclosed patents and productivity growth.
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3.4.3.1 Preliminary �ndings

Table 3.1 shows OLS estimates for di�erent extensions of equation (3.22). These

extensions demonstrate a consistent negative relationship between TFP growth and

the number of disclosed patents across industries.

The benchmark speci�cation, whose results are reported in the �rst column of the

table, includes sector-, year-, and country-�xed e�ects as controls, i.e.,

gi,l,t = ct + ci + cl + β(Disclosuresl,t)/10 + +εi,l,t (3.23)

where the left hand side is TFP growth in country i, sector l, and year t (gi,l,t);

ct, ci, and cl are year-t, country-i, and sector-l �xed e�ects; and disclosed patents in

sector l and year t are rescaled by 10. The estimates in the second, third, and fourth

columns of the table refer to speci�cations where I incrementally add to (3.23) (i) a

rich set of industry-speci�c time-varying controls including concentration, price-cost

margin, value added, growth in pro�t margin, turnover, average wage share on total

costs, investment ratio, hours worked, and leverage; (ii) country×year �xed e�ects,

and (iii) country×sector �xed e�ects. In all columns, standard errors are clustered by

sector.17

The estimated β̂ coe�cient is consistently negative and statistically signi�cant

across all speci�cations. The most conservative estimate indicates that a 10-unit in-

crease in disclosures corresponds to an approximate 0.045 percentage point decrease

in TFP growth by country-industry pair. In other words, a 35% increase in disclosed

patents is associated with an 8% reduction in TFP growth, relative to their sector- and

year-speci�c averages, respectively (corresponding to 28 disclosures and 0.54 percent-

age points). These �ndings suggest that, on aggregate, the negative complementarity

e�ect between disclosures and TFP growth dominates the positive coordination e�ects

17I check the robustness of the results to using two-way clustered standard errors by sector×year
or heteroskedasticity robust standard errors. Results are available upon request.
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of disclosing technical information to standards. Furthermore, the estimated e�ect

remains stable across speci�cations, even when controlling for time-varying measures

of pro�tability, which may jointly increase both implementable innovations (i.e., TFP

growth) and disclosures.

However, this evidence may obscure signi�cant heterogeneity across industries.

As shown in equation (3.22), the relationship between disclosures and TFP growth

is contingent upon complementarity and other sector-speci�c factors. In the next

subsection, I address this issue by examining cross-industry heterogeneity.

3.4.3.2 Sectoral heterogeneity

I investigate sectoral heterogeneity in the relation between disclosures and TFP growth

by re-estimating the following modi�cation of (3.22)

gi,l,t = ct + ci + cl + βl(Disclosuresl,t)/10 + +εi,l,t (3.24)

where βl can now vary across industries. Figure 3.6 plots estimates of β̂l's for 16

industries in my sample. For a better graphical comparison, I re-scale estimates so

they represent the e�ect of a 1% increase in the yearly and industry-speci�c average

of disclosed patents.18

The �gure demonstrates the notable heterogeneity in the sign and magnitude of

the relationship between disclosures and TFP growth across industries. The results

are consistent with the aggregate evidence, as the number of industries with a statis-

tically signi�cant negative relationship between disclosures and TFP growth is larger

than those with a positive β̂l (6 and 3, respectively). Furthermore, the observed em-

pirical patterns align with Proposition 1's prediction on the sign of the e�ect based

18The proposed re-scaling a�ects the relative magnitude of plotted coe�cients across sectors, but
not the sign. This allows to better highlight industries with a small marginal e�ect of one additional
disclosed patent but with a large number of disclosures, while preserving the possibility to evaluate
model's prediction on the direction of the e�ect.
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on complementarity. Figure 3.6 shows a substantial positive relationship in manufac-

turing of basic metals and manufacturing of rubber and plastic products, where new

innovations typically do not require the combination of multiple technological com-

ponents. In contrast, the opposite is evident in industries where innovation is more

complex and complementarity is expected to be stronger. For example, the estimated

β̂l is signi�cantly negative in computers manufacturing, where a �nal product com-

prises several technological parts, and intellectual property rights on the components

are often dispersed. Similarly, the construction of airplanes or vessels, which falls

into the category of �other transportation�, involves a high degree of complexity and

software components that may contribute to the estimated negative β̂l.

The results of a formal test support the insight that the sign of the estimated

relationship between TFP growth and disclosures is more likely to be negative in in-

dustries with a high degree of complementarity. The test estimates the correlation

between the indicator variable 1β̂l>0, which takes a value of 1 if the estimated β̂l is pos-

itive for industry l and 0 otherwise, and sector-speci�c measures of complementarity

that were computed before the estimation sample. To leverage the greater informa-

tiveness of sectors where disclosure is more intense, a least squares estimator is used

that weighs sectors by the sample average of yearly disclosures. The results, shown

in Table 3.2, indicate that for all measures of complementarity�i.e., backward cita-

tions per patent, derivative backward citations, and within-sector derivative backward

citations per patent�the estimated correlation is statistically negative. This �nding

provides empirical support for Proposition 1.

3.4.3.3 Direct and indirect e�ects of complementarity

In this subsection, I propose an empirical strategy that aims to disentangle the direct

e�ect of complementarity on TFP growth, which theory predicts to be negative, and

the indirect e�ect through disclosure, whose sign should retain that estimated in
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speci�cation (3.22). To achieve this, I focus on the �rst measure of complementarity,

i.e., average backward citations per patent (AvgCitl,t), and use it as a control for the

direct e�ect. Additionally, I use long lags of two alternative proxies, i.e., the number of

within-sector backward citations WCitl,t−5 and the average number of within-sector

derivative backward citations AvgWDCitl,t−5, to generate variation in disclosures

that is related to sectoral complementarity and less in�uenced by other factors.19

The proposed instrumental variable approach also addresses two major endogeneity

concerns: measurement error in the disclosure variable, as discussed in Subsection

3.4.1.1; and reverse causation, as disclosing �rms' expectations on productivity growth

may directly in�uence their disclosure decisions. Moreover, I ensure that the external

instruments have a mutual correlation of 0.09, which avoids collinearity concerns and

allows the implementation of overidenti�cation tests on the �rst-stage regression.

First and second stage regressions are

Discll,t
10

= dl + dt+ di+ψAvgCitl,t+ δ1
WCitl,t−5

103
+ δ2AvgWDCitl,t−5 + ui,l,t (3.25)

gi,l,t = cl + ct + ci + β
D̂iscll,t

10
+ γAvgCitl,t + εi,l,t (3.26)

where the baseline speci�cation includes country, sector, and year �xed e�ects. Stan-

dard errors are clustered by sector. Table 3.3 shows the estimation results.

In the �rst column of Table 3.3, I present the results of the �rst stage regression

(3.25). The external instruments used to instrument for disclosures are strong and

positively related to the number of disclosed patents, with an F-statistic of joint sig-

ni�cance of 27.54. In the second column, I report the results of the second stage

regression (3.26). The estimated relationship between disclosed patents and TFP

growth is negative and statistically signi�cant. Notably, the magnitude of the e�ect is

19Results are robust to the use of alternative lags. Shorter lags may have more power, but they are
also more prone to endogeneity concerns. Using a 5-year lag strikes a reasonable balance between
the two trade-o�s.
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very similar to the OLS estimate of Subsection 3.4.3.1. To further test the robustness

of the results, I report additional speci�cations in columns 3-5 of Table 3.3. Column

3 adds industry-speci�c time-varying controls speci�ed in Subsection 3.4.3.1, column

4 adds country×year �xed e�ects, and column 5 includes country×sector �xed ef-

fects. Across all speci�cations, the estimated e�ect of disclosed patents on TFP

growth remains similar in size and statistically signi�cant. As for the direct e�ect of

complementarity on TFP growth, it is generally negative, although not statistically

signi�cant.

In addition, I conduct overidenti�cation tests to examine the validity of the IV

strategy. Table 3.4 reports the test statistics and the associated p-values for the

Sargan and the Basmann tests for overidentifying restrictions. The tests do not reject

the null hypothesis that either of the two instruments is exogenous conditional on the

exogeneity of the other, providing further support for the validity of the IV approach.

3.4.4 Additional results and robustness

In this subsection, I present additional results that both complement previous �ndings

and verify their robustness. I investigate the heterogeneity in the impact of disclosures

on TFP growth over the �rm-level distribution of disclosures. I �nd that the negative

relationship between disclosures and average TFP growth is primarily driven by �rms

with the fastest productivity growth, whereas TFP growth for �rms at the bottom

of the distribution is positively related to disclosures. To conduct this analysis, I

use CompNet's data on selected percentiles of the TFP growth distribution, which I

employ as the second-stage dependent variable in the IV strategy of Subsection 3.4.3.3.

Table 3.5 shows the estimation results. The �rst column pertains to the average

of the TFP growth distribution, con�rming a negative and statistically signi�cant

relation between disclosures and productivity.20 Subsequent columns refer to selected

20The estimated coe�cient is di�erent from Table 3.3 because the dependent variable changes in
the two speci�cations. In Subsection 3.4.3.3, the outcome variable was the growth rate of the average
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percentiles, indicating that the e�ect of disclosures is positive for �rms with the lowest

TFP growth and it turns sizably negative at the top of the distribution.21 These

�ndings suggest that the aggregate negative e�ect is due to a drag on �rms with

very fast productivity growth, which is consistent with the narrative of the proposed

model.

I also present additional robustness results to further support the �ndings. In

Appendix 3.D.1, Tables 3.D.1 and 3.D.2 replicate the analyses of Subsections 3.4.3.1

and 3.4.3.3, but this time using a measure of disclosed patents re-scaled by the sectoral

�ow of new patents as the regressor of interest. Results are broadly consistent with

the main analysis, with re-scaled disclosures losing their statistical signi�cance in the

OLS estimation, but retaining it in the IV analysis.

Moreover, Tables 3.D.3 and 3.D.4 in Appendix 3.D.2 show the results of the analy-

ses of Subsections 3.4.3.1 and 3.4.3.3 using labor-productivity growth as an alternative

dependent variable. Results are qualitatively very similar to those in the main paper.

3.5 Conclusions

This paper presents a novel endogenous growth model that incorporates innovation

complementarity and patents disclosure to technological standards. It identi�es a cru-

cial trade-o� of disclosed technologies for productivity growth, where more disclosures

lead to richer standards that enhance the e�ectiveness and e�ciency of implementing

major technological improvements, but also impose potentially unnecessary royalty

payments on �rms implementing the new technology, thus harming innovation and

growth. The net e�ect can be negative if complementarity and/or the bargaining

power of licensors are high enough.

of the TFP distribution, while here, it is the average of the TFP growth distribution.
21The sample mean of the 99th percentile of the growth-rate distribution is around 2.5%, and

therefore, each disclosed patent reduces the within-�rm TFP growth of �star� �rms by around 10%
of its value.
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The empirical results show that, on average, more disclosures are negatively related

to TFP growth across industries. However, there is considerable sectoral heterogene-

ity, which is consistent with the model's theoretical predictions. Sectors with low

complementarity tend to exhibit a positive relationship between disclosures and TFP

growth, while the opposite is true for sectors with high complementarity. These �nd-

ings have important implications for the desirability of rich disclosure in sectors with

high complementarity.

While the model has some simpli�cations, it generates insights that are supported

by the data. Moreover, the model provides a useful general equilibrium framework

to study the growth-e�ect of standards and disclosures, which will be increasingly

important in the future due to the di�usion of smart systems in many industries.
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3.6 Tables and Figures

Figure 3.1: Total number of disclosed patents by industry

The �gure shows the evolution of the number of disclosed patents by industry. The measure if build by counting

the number of disclosed patents by 4-digit IPC class and year and then using the 4-digit IPC�NACE Rev.2 industry

crosswalk provided by Eurostat to convert the series from patents classes to industrial sectors. NACE legend: 10

Food; 14 Wearing apparel; 18 Printing; 20 Chemicals; 21 Pharmaceutical; 22 Rubber and plastic; 24 Basic metals;

25 Fabricated metal products (except machinery and equipment); 26 Computer, electronic and optical products; 27

Electrical equipment; 28 Machinery and equipment; 29 Motor vehicles; 30 Other transport equipment; 31 Furniture;

32 Other manufacturing; 62 Computer programming, consultancy.
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Figure 3.2: Scaled measure of disclosed patents by industry

The �gure shows the evolution of the scaled number of disclosed patents by industry. The variable represents the

number of disclosed patents per year and industry relative to the total number of patent applications in the same

year and industry. NACE legend: 10 Food; 14 Wearing apparel; 18 Printing; 20 Chemicals; 21 Pharmaceutical; 22

Rubber and plastic; 24 Basic metals; 25 Fabricated metal products (except machinery and equipment); 26 Computer,

electronic and optical products; 27 Electrical equipment; 28 Machinery and equipment; 29 Motor vehicles; 30 Other

transport equipment; 31 Furniture; 32 Other manufacturing; 62 Computer programming, consultancy.
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Figure 3.3: Average number of backward citations per patent

by industry

The �gure shows the evolution of the average number of backward citations per patent by industry. The count of

citations includes both citations to patents classi�ed in the same industry of the citing patent and citations to patents

classi�ed in di�erent industries. In formulae, AvgCitl,t =

∑Nl,t
p=1 cp,l,t

Nl,t
, where l indexes industries, p indexes patents,

and t years. Nl,t is the cardinality of the set of patents classi�ed in industry l published in year t, and cp,l,t is the

number of backward citations made by patent p. NACE industry legend: 10 Food; 14 Wearing apparel; 18 Printing;

20 Chemicals; 21 Pharmaceutical; 22 Rubber and plastic; 24 Basic metals; 25 Fabricated metal products (except

machinery and equipment); 26 Computer, electronic and optical products; 27 Electrical equipment; 28 Machinery and

equipment; 29 Motor vehicles; 30 Other transport equipment; 31 Furniture; 32 Other manufacturing; 62 Computer

programming, consultancy.
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Figure 3.4: Aggregate number of within-industry backward citations by industry

The �gure shows the evolution of the aggregate number of within-industry backward citations by industry. The plotted

measure is computed by summing, for all the patents classi�ed in a given industry l, the number of backward citations

directed to patents classi�ed in the same industry l. The year time dimension is obtained from the publication year

of the citing patent. In formulae, WCitl,t =
∑Nl,t

p=1 c
l
p,l,t, where l indexes industries, p indexes patents, and t years.

clp,l,t is the number of patent-p backward citations to other patents classi�ed in industry l and Nl,t is the cardinality

of the set of patents classi�ed in industry l and published in year t. The plots express quantities in thousands. NACE

industry legend: 10 Food; 14 Wearing apparel; 18 Printing; 20 Chemicals; 21 Pharmaceutical; 22 Rubber and plastic;

24 Basic metals; 25 Fabricated metal products (except machinery and equipment); 26 Computer, electronic and optical

products; 27 Electrical equipment; 28 Machinery and equipment; 29 Motor vehicles; 30 Other transport equipment;

31 Furniture; 32 Other manufacturing; 62 Computer programming, consultancy.
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Figure 3.5: Average within-industry derivative backward citations per patent

The �gure shows the evolution of the average number of within-industry derivative citations, by industry. The latter

is computed as AvgWDCitl,t =

∑Nl,t
i=1 cli,l,t(d)

Nl,t
, where l indexes industries, p indexes patents, and t years. cli,l,t(d)

is the total number of derivative citations made by patent p to patents classi�ed in the same industry l as p. Nl,t

is the cardinality of the set of patents classi�ed in industry l and published in year t. NACE industry legend: 10

Food; 14 Wearing apparel; 18 Printing; 20 Chemicals; 21 Pharmaceutical; 22 Rubber and plastic; 24 Basic metals;

25 Fabricated metal products (except machinery and equipment); 26 Computer, electronic and optical products; 27

Electrical equipment; 28 Machinery and equipment; 29 Motor vehicles; 30 Other transport equipment; 31 Furniture;

32 Other manufacturing; 62 Computer programming, consultancy.
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Table 3.1: Correlation between disclosed patents and TFP Growth

gi,l,t gi,l,t gi,l,t gi,l,t

Disclosuresl,t/10 -0.0517∗∗ -0.0458∗∗ -0.0452∗∗ -0.0452∗∗

(0.0178) (0.0158) (0.0166) (0.0166)

Country F.E. Y Y Y Y
Year F.E. Y Y Y Y
Sector F.E. Y Y Y Y
Controls Y Y Y
Country×Year F.E. Y Y
Country×Sector F.E. Y
Observations 1386 1170 1170 1170

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table shows the OLS estimates of the correlation between disclosed patents and the growth rate of the mean of
the �rm-level TFP distribution. The �rst column refers to speci�cation (3.22). The second, third, and fourth column
reports estimates of speci�cation (3.22) incrementally augmented by (i) time-varying sector-speci�c controls described
in Subsection 3.4.3.1; (ii) country×year �xed e�ects; (iii) country×sector �xed e�ects, respectively. Standard errors
clustered at the industry-level are shown in parenthesis.

Figure 3.6: Industry-speci�c correlation between TFP growth and disclosures

The �gure shows the industry-speci�c estimates of the correlation between the number of disclosed patents and TFP

growth from speci�cation (3.24), scaled by the inverse of the industry-speci�c average number of disclosed patents.

Therefore, every dot represents the e�ect of a 1% increase in disclosures at the industry level. Bands reports 95%

rescaled con�dence intervals.
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Table 3.2: Marginal e�ect of disclosed patents and sectoral complementarity measures

Sign of NACE-speci�c β
Mean Aggr. Within Cit. (`75-`80) -0.0066∗∗∗

(0.0008)

Mean Aggr. Within Cit. (`81-`85) -0.0052∗∗∗

(0.0005)

Mean Aggr. Within Deriv. Cit. (`75-`80) -1.0370∗∗∗

(0.1719)

Mean Aggr. Within Deriv. Cit. (`81-`85) -0.0855∗∗∗

(0.0106)

Mean Average Within Deriv. Cit. (`75-`80) -105.5851∗∗∗

(15.9304)

Mean Average Within Deriv. Cit. (`81-`85) -7.3854∗∗∗

(1.6027)

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table shows the estimated correlations between long lags of sectoral complementarity measures and the sign of

the sector-speci�c correlation between disclosures and TFP growth. The regression coe�cients reported in the table

result from the weighted least-squares estimation�with frequency weights being the sample average of the industry-

speci�c number of disclosures�of a linear speci�cation where the dependent variable is a dummy variable taking value

one if the sign of estimated β̂l from speci�cation (3.24) is positive and the regressor of interest is either of the past

complementarity measures reported in the �rst column. The latter are computed on the periods 1975-1980 and 1981-

1985. Each row refers to a separate regression including just one of the regressor at a time.
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Table 3.3: Direct and indirect e�ects of complementarity on TFP growth

Discli,l,t gi,l,t gi,l,t gi,l,t gi,l,t

Disclosuresl,t/10 -0.0571∗∗ -0.0522∗∗ -0.0521∗∗ -0.0521∗∗

(0.0269) (0.0251) (0.0252) (0.0252)
AvgCitl,t -0.2133 -0.1845 -0.1721 -0.1719 -0.1719

(0.3891) (0.2257) (0.2161) (0.2252) (0.2231)
WCitl,t−5 0.0301∗∗∗

(0.0024)
AvgWDCitl,t−5 31.2911∗∗

(11.3491)

Country F.E. Y Y Y Y Y
Year F.E. Y Y Y Y Y
Sector F.E. Y Y Y Y Y
Controls Y Y Y
Country×Year F.E. Y Y
Country×Sector F.E. Y
Observations 1386 1386 1170 1170 1170

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table shows the estimation results of speci�cations (3.25) and (3.26). The �rst column reports the results of

�rst stage estimation. The second column refers to the second stage estimates. The third, fourth, and �fth column

reports the second stage estimates from speci�cations (3.25) and (3.26) augmented by (i) time-varying industry-

speci�c controls described in Subsection 3.4.3.1; (ii) country×year �xed e�ects; and (iii) country×sector �xed e�ects,

respectively. Standard errors clustered at the industry level are reported.

Table 3.4: Overidenti�cation tests

Test Statistic Value p-value
Sargan χ2

(1) 1.3949 0.2376

Basmann χ2
(1) 1.3560 0.2442

Standard errors in parentheses

The table reports the test statistics and p-values for Sargan and Basmann tests for overidentifying restrictions, based

on the 2SLS estimates of speci�cations (3.25) and (3.26).
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Table 3.5: Direct and indirect e�ects of complementarity on TFP growth

Mean 1st perc. 10th perc. Median 90th perc. 99th perc.

Disclosuresl,t/10 -0.1003∗ 0.0597 0.0811∗∗ -0.0311 -0.2028 -2.5841∗∗∗

(0.0633) (0.0499) (0.0394) (0.0346) (0.1617) (1.0789)
AvgCitl,t -0.1345 0.8613∗∗ 0.1815 -0.0474 -1.7520 4.4443

(0.3327) (0.3751) (0.3632) (0.2131) (1.2691) 8.8391

Country F.E. Y Y Y Y Y Y
Year F.E. Y Y Y Y Y Y
Sector F.E. Y Y Y Y Y Y
Controls
Country×Year F.E.
Country×Sector F.E.
Observations 1386 1386 1386 1386 1386 1386

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table reports estimation results of speci�cation (3.25) having as dependent variable the growth rates of TFP at

di�erent points of its year-, industry-, and country-speci�c �rm-level distribution. The �rst column reports the results

for the growth rate of average TFP, the second column for the growth rate of the 1st percentile, the third column for

the growth rate of the 10th percentile, the fourth column for the growth rate of the median, the �fth column for the

growth rate of the 90th percentile, and the sixth column for the growth rate of the 99th percentile. All regressions

include industry-, year- and country-�xed e�ects. Standard errors are clustered at the industry level.
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Appendices

Appendix 3.A Data Description

3.A.1 Disclosures by Standard Setting Organization

Table 3.A.1: Disclosures by Standard Setting Organization

Standard Setting Organization N Disclosures % Disclosures
ANSI 911 2.01
ATIS 675 1.49
BBF 142 0.31
CEN 22 0.05
CENELEC 17 0.04
ETSI 28,940 63.82
IEC 367 0.81
IEC - JTC1 1,368 3.02
IEEE 2,507 5.53
IETF 2,723 6.00
ISO 503 1.11
ISO - JTC1 2,256 4.97
ITU 2,962 6.53
OMA 1,001 2.21
TIA 955 2.11

The table reports in the �rst column the names of the 13 SSOs covered by the dSEP database. The second and third
columns report the number of disclosures and their percentage over the total by SSO.
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3.A.2 Industry Coverage

Table 3.A.2: Industries in the sample based on IPC classi�cation

NACE Code Description

10 Manufacture of food products

14 Manufacture of wearing apparel

18 Printing and reproduction of recorded media

20 Manufacture of chemicals and chemical products

21 Manufacture of basic pharmaceutical products and pharmaceutical preparations

22 Manufacture of rubber and plastic products

24 Manufacture of basic metals

25 Manufacture of fabricated metal products, except machinery and equipment

26 Manufacture of computer, electronic and optical products

27 Manufacture of electrical equipment

28 Manufacture of machinery and equipment n.e.c.

29 Manufacture of motor vehicles, trailers and semi-trailers

30 Manufacture of other transport equipment

31 Manufacture of furniture

32 Other manufacturing

62 Computer programming, consultancy and related activities

NACE Rev.2 2-digit represented in the merged sample where the classi�cation criterion used to build the disclosure
measure is based on the International Patent Classi�cation Codes associated to each patent. NACE legend: 10
Food; 14 Wearing apparel; 18 Printing; 20 Chemicals; 21 Pharmaceutical; 22 Rubber and plastic; 24 Basic metals;
25 Fabricated metal products (except machinery and equipment); 26 Computer, electronic and optical products; 27
Electrical equipment; 28 Machinery and equipment; 29 Motor vehicles; 30 Other transport equipment; 31 Furniture;
32 Other manufacturing; 62 Computer programming, consultancy.

3.A.3 Summary Statistics

Table 3.A.3 reports industry-speci�c summary statistics for disclosed patents, com-

plementarity measures, and productivity. The table reveals high variability in the

productivity variables as well as in the disclosure measure. The sector with the high-

est disclosure measure is "Manufacture of computer, electronic and optical products"

and the one with lowest disclosure intensity is "Manufacture of wearing apparel". The

ranking of industries by intensity of the disclosure phenomenon re�ects that innovation

complementarity is stronger for Information and Comunication Technologies (ICTs),

where a large number of technological components must be combined and must jointly

operate in any individual innovation.
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Figure 3.A.1: Her�ndahl-Hirschman Index

HH Index of concentration at the industry level. Values closer to 1 imply more concentration in the industry. Source:
CompNet. NACE industry legend: 10 Food; 14 Wearing apparel; 18 Printing; 20 Chemicals; 21 Pharmaceutical; 22
Rubber and plastic; 24 Basic metals; 25 Fabricated metal products (except machinery and equipment); 26 Computer,
electronic and optical products; 27 Electrical equipment; 28 Machinery and equipment; 29 Motor vehicles; 30 Other
transport equipment; 31 Furniture; 32 Other manufacturing; 62 Computer programming, consultancy.
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Figure 3.A.2: Price-Cost margin

Price-Cost Margin at the industry level. Source: CompNet. NACE industry legend: 10 Food; 14 Wearing apparel;
18 Printing; 20 Chemicals; 21 Pharmaceutical; 22 Rubber and plastic; 24 Basic metals; 25 Fabricated metal products
(except machinery and equipment); 26 Computer, electronic and optical products; 27 Electrical equipment; 28 Ma-
chinery and equipment; 29 Motor vehicles; 30 Other transport equipment; 31 Furniture; 32 Other manufacturing; 62
Computer programming, consultancy.

3.A.4 Construction of complementarity variables

3.A.4.0.1 Average number of backward citations per patent Let cp,l,t be

the total number of patents cited by patent p published in year t and classi�ed in

industry l, and let Nl,t be the total number of patents published in year t and classi�ed

in industry l. I compute the variable as

AvgCitl,t =

∑Nl,t

p=1 cp,l,t

Nl,t
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3.A.4.0.2 Total number of within-industry citations Let clp,l,t be the number

of industry-l patents cited by patent p published in year t and classi�ed in industry l.

Also, let Nl,t be the number of patents published in year t and industry l. I compute

the variable as

WCitl,t =

Nl,t∑
p=1

clp,l,t

and it represents a measure of the absolute intensity of within-sector connections

among technologies. This is one of the two variables whose long-lags are used as

excluded instruments for disclosed patents.

Similarly I build a variable measuring the aggregate number of within-industry

�derivative� citations by counting by NACE and year only those citations that are

classi�ed as either type �X� or �Y�. I call this variable WDCitl,t and plot its evolution

by industry in Figure 3.A.3. I verify that the results of Subsection 3.4.3.3 of the paper

are robust to using WDCitl,t rather than WCitl,t as an excluded instrument. Results

of this robustness check are available upon request.
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Figure 3.A.3: Aggregate within-industry derivative citations

The �gure plots the industry-speci�c evolution of the aggregate number of derivative citations among patents classi�ed

in the same industry. NACE industry legend: 10 Food; 14 Wearing apparel; 18 Printing; 20 Chemicals; 21 Pharma-

ceutical; 22 Rubber and plastic; 24 Basic metals; 25 Fabricated metal products (except machinery and equipment); 26

Computer, electronic and optical products; 27 Electrical equipment; 28 Machinery and equipment; 29 Motor vehicles;

30 Other transport equipment; 31 Furniture; 32 Other manufacturing; 62 Computer programming, consultancy.

3.A.4.0.3 Average number of within-industry derivative citations Let cl,dp,l,t

be the number of patents classi�ed in industry l that are cited with a type �X� or �Y�

citation by patent p granted in year t and classi�ed in industry l. Also, let Nd
l,t be

the total number of patents granted in year t, classi�ed in industry l, and making at

least one type �X� or �Y� citation. I build the variable as

AvgWDCitl,t =

∑Nd
l,t

p=1 c
l,d
p,l,t

Nd
l,t
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It represents an industry-speci�c measure of the intensity of within-industry com-

plementarity in innovation. This measure is meant to capture variation in comple-

mentarity that is particularly relevant for the patents disclosure process and stan-

dardization.

Figure 3.3 shows the industry-speci�c evolution of average citations per patent.

The increasing trend observed for most industries con�rms that there is a general

rise in the degree of complementarity in innovation. Di�erences in slope and in level

suggest that such increase, possibly induced by the spread of Information and Com-

munication Technologies, is very heterogeneous across sectors. Figure 3.4 plots the

aggregate number of within-industry patents citations and it shows that, for most in-

dustries, the relevance of within-industry complementarity is also growing over time.

Finally, Figure 3.5 plots the average number of within-industry �derivative� citations

by patent. In this case, the behavior observed across di�erent industries is more

mixed and, while it shows an increase up to 2000, it seems to be generally declining

thereafter.

Appendix 3.B Assumptions, optimization problems,

and solution

3.B.1 Assumptions

Assumption 1. Parameters (k,K, α, L, β) and the function ϕ(·) are such that (nI∗t , nG∗
t )

solving the system


ϕ′
(

k
k−ϕ(nG∗

t )K
nI∗t

)
(1− (1− β)ϕ(nG∗

t ))πL = (k − ϕ(nG∗
t )K)/k

ϕ′(nG∗
t )ϕ

(
k

k−md∗
t
nI∗t

)
(1− β)πLk = 1

verify the condition ϕ(nG∗
t ) < min{k, (1− β)−1}
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3.B.2 Bargaining Problem

The bargaining problem between an intermediate �rm i ∈ [0, 1] and a generic innova-

tor j ∈ [0, K] is

max
ppi,j

(Π∗
i,t − ppi,j)

β(ppi,j)
1−β

where Π∗
i,t are total monopolistic pro�ts in industry i and p

p
i,j is the royalty payment

from i to j for the use of a generic innovation patented by j. Equilibrium royalty is

p∗,pi,j,t = p∗,pi,t = (1− β)Π∗
i,t

(3.27)

which is the same across every j ∈ [0, K]. By assumption, the bargaining problem

is the same whether or not the generic technology is disclosed. Therefore, the royalty

payment is the same. The di�erence between the two cases is that, in the absence of

disclosure, bargaining may fail with exogenous probability θ(md∗
t ), in which case the

transfer is zero.

3.B.3 Final good production problem

max
xi,t,L

Yi,t − pi,txi,t − wtL

subject to Yt = L(1−α)
∫ 1

0

A1−α
i,t xαi,tdi

which pins down equilibrium wages and the inverse demand function faced by

monopolistic producers of each variety xi,t according to:

p∗i,t = αL1−αA1−α
i,t xα−1

i,t

w∗
t = (1− α)L−αA1−α

i,t xαi,t

(3.28)
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3.B.4 Intermediate good production problem

The pro�t maximization problem of the producer of intermediate input i conditional

on being a monopolist on it is

max
xi,t

p∗i,txi,t − xi,t

s.t. p∗i,t = αL1−αA1−α
i,t xα−1

i,t

(3.29)

which implies the following equilibrium quantities

x∗i,t = α
2

1−αAi,tL

Π∗
i,t = [α

1+α
1−α − α

2
1−α ]Ai,tL = πAi,tL

(3.30)

For a competitive producer of intermediate i, the constraint on pro�t maximization

is di�erent from (3.29). In fact, Bertrand competition drives the price to the unitary

marginal cost, thus p∗i,t = 1 and Π∗
i,t = 0 in the absence of successful innovation ob

variety i.

3.B.5 Characterization of the Cournot-Nash symmetric bal-

anced growth path equilibrium

From the discussion of Subsection 3.3.1 of the paper and using the solution to the

bargaining problem (3.27) and equilibrium pro�ts (3.30) conditional on innovation, we

know that optimal R&D intensity for intermediate innovators is positive conditional

on

Πe
i,t = (1− θ(mu

t ))[1−min{md
t , k}(1− β)−min{δmu

t , k}(1− β)]Π∗
i,t > 0

where Π∗
i,t = πLγAi,t−1, as productivity improves by a factor γ conditional on

innovation. Πe
i,t > 0 requires that mu

t and/or md
t are small enough in equilibrium.
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Assumption 1 ensures that this is the case. Then, optimal R&D intensity nI∗i,t is

interior and satis�es the condition

ϕ′
( k

k −md
t

nIi,t

)
Πe
i,t = (k −md

t )ψAi,t−1 (3.31)

which, given the linearity of Πe
i,t in Ai,t−1 and the independence of all other terms

from i, implies that R&D intensity is symmetric across intermediate innovators, i.e.,

nI∗i,t = nI∗t ∀i ∈ [0, 1]. Therefore, since R&D outcomes are independent across i's, by

a suitable law of large number the equilibrium measure of varieties where a successful

quality upgrade is potentially feasible is µ∗
t = ϕ

(
k

k−md
t
nI∗t

)
.

I assume that identical innovators on generic technologies are atomistic and take

the behavior of other generic innovators and of intermediate �rms as given. Therefore,

the comparison of equations (3.8) and (3.9) shows that, for any given equilibrium

decisions of intermediate �rms and other generic innovators, it is individually optimal

to disclose as long as k/md∗
t > δ(1−θ(m∗u

t ). In a symmetric equilibrium featuring full

disclosure, this requires k/md∗
t > δ, which is veri�ed under Assumption 1. As a result,

combining equations (3.8), (3.10), equilibrium royalties, and intermediate innovation

rate, it is possible to express generic R&D intensity as

ϕ′(nG∗
j,t )ν

∗
t

∫ 1

0

ϕ′
( k

k −md∗
t

nI∗t

)
(1− β)πLγAi,t−1di = ψAt−1

ϕ′(nG∗
j,t )ν

∗
t ϕ

′
( k

k −md∗
t

nI∗t

)
(1− β)πLγAt−1 = ψAt−1

which shows that generic R&D intensity is also symmetric across j ∈ [0, K] and

satis�es

ϕ′(nG∗
t )ϕ

( k

k −md∗
t

nI∗t

)
(1− β)πLk = 1 (3.32)

because γ = kψ and ν∗t = 1 under assumption 1.

Given equation (3.32) and full disclosure, the equilibrium measure of disclosed
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generic technologies is

md∗
t = ϕ(nG∗

t )K (3.33)

and expected pro�ts for implementing �rms are

Πe∗
i,t = (1− (1− β)md∗

t )Π∗
i,t (3.34)

which is strictly positive as long as (1 − (1 − β)md∗
t ) > 0, i.e., md∗

t < (1 − β)−1.

Therefore, at the interior equilibrium optimal symmetric R&D intensities (nI∗t , n
G∗
t )

solve the system of equations


ϕ′
(

k
k−ϕ(nG∗

t )K
nI∗t

)
(1− (1− β)ϕ(nG∗

t ))πL = (k − ϕ(nG∗
t )K)/k

ϕ′(nG∗
t )ϕ

(
k

k−md∗
t
nI∗t

)
(1− β)πLk = 1

(3.35)

Under Assumption 1, in the equilibrium intermediate innovators still need to in-

vest in R&D despite disclosed technologies and have the incentive to implement the

�nal innovation even after paying royalties. At the same time, innovators on generic

technologies �nd it pro�table to invest in R&D because they have a pro�table outlet

for their inventions and prefer to disclose them to the standard.

Appendix 3.C Proofs

3.C.1 Proof of Proposition 1

From

gt = ϕ
( k

k −md∗
t

nI∗t

)
(3.36)
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I get

dgt
dmd∗

t

=

[
ϕ′
( k

k −md∗
t

nI∗t

) k

(k −md∗
t )2

nI∗t +

+ϕ′
( k

k −md∗
t

nI∗t

) k

k −md∗
t

dnI∗t
dmd∗

t

]
(γ − 1)

(3.37)

Next, I derive
dnI∗

t

dmd∗
t

from the intermediate innovator's R&D �rst order condition.

Di�erentiating (3.18) I get:

ϕ′′
( k

k −md∗
t

nI∗t

) k

(k −md∗
t )2

nI∗t
k

k −md∗
t

(1− (1− β)md∗
t )πL+

+ϕ′
( k

k −md∗
t

nI∗t

) k

(k −md∗
t )2

(1− (1− β)md∗
t )πL+

−(1− β)ϕ′
( k

k −md∗
t

nI∗t

) k

k −md∗
t

πL+

+ϕ′′
( k

k −md∗
t

nI∗t

) k2

(k −md∗
t )2

(1− (1− β)md∗
t )πL

dnI∗t
dmd∗

t

= 0

(3.38)

Denote ϕ′
(

k
k−md∗

t
nI∗t

)
by ϕ′

I and ϕ
′′
(

k
k−md∗

t
nI∗t

)
by ϕ′′

I . Then

dnI∗t
dmd∗

t

= − nI∗t
k −m∗

t

− 1

k

ϕ′
I

ϕ′′
I

+
(1− β)

(1− (1− β)md∗
t )

k −md∗
t

k

ϕ′
I

ϕ′′
I

(3.39)

Using (3.39) into (3.37), I get a �nal expression for dgt
dmd∗

t
.

dgt
dmd∗

t

=

{
ϕ′
I

k

(k −md∗
t )2

nI∗t + ϕ′
I

k

k −md∗
t[

− nI∗t
k −md∗

t

− 1

k

ϕ′
I

ϕ′′
I

+
(1− β)

(1− (1− β)md∗
t )

k −md∗
t

k

ϕ′
I

ϕ′′
I

]}
(γ − 1) =

= −(ϕ′
I)

2

ϕ′′
I

[
1

k
− k −md∗

t

k

(1− β)

(1− (1− β)md∗
t )

]
(γ − 1)

(3.40)

which is negative as long as:
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1

k
− k −md∗

t

k

(1− β)

(1− (1− β)md∗
t )

< 0

which can be rewritten as:

1− (1− β)md∗
t < (1− β)(k −md∗

t )

which is equivalent to

k >
1

1− β

which ends the proof.

3.C.2 Proof of Proposition 2

I start from

gt = ϕ
( k

k −md∗
t

nI∗t

)
(γ − 1)

and I di�erentiate both sides by k, obtaining:

dgt
dk

= ϕ′
I(γ − 1)

[
− md∗

t

(k −md∗
t )2

nI∗t

]
+ ϕ′

I(γ − 1)
md∗
t

k −md∗
t

dnI∗t
dk

(3.41)

Also, di�erentiating equation (3.18) by k on both sides I get
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−ϕ′′
( k

k −md∗
t

nI∗t

)[ md∗
t

(k −md∗
t )2

nI∗t

]
k

k −md∗
t

(1− (1− β)md∗
t )πL+

−ϕ′
( k

k −md∗
t

nI∗t

)[ md∗
t

(k −md∗
t )2

nI∗t

]
(1− (1− β)md∗

t )πL+

+ϕ′′
( k

k −md∗
t

nI∗t

)[ md∗
t

k −md∗
t

]2
dnI∗t
dk

(1− (1− β)md∗
t )πL+

+

[
ϕ′′
( k

k −md∗
t

nI∗t

) k2

(k −md∗
t )3

nI∗t (1− (1− β)md∗
t )πL+

+ϕ′
( k

k −md∗
t

nI∗t

) k

(k −md∗
t )2

(1− (1− β)md∗
t )πL+

−ϕ′
( k

k −md∗
t

nI∗t

) k

k −md∗
t

(1− β)πL

]
dmd∗

t

dk
= 0

(3.42)

which gives
dnI∗

t

dk
as a function of

dmd∗
t

dk
:

dnI∗t
dk

=
[ md∗

t

k(k −md∗
t )
nI∗t +

ϕ′
I

ϕ′′
I

md∗
t )

k2

]
+

−
[ nI∗t
k −md∗

t

+
ϕ′
I

ϕ′′
I

1

k
− ϕ′

I

ϕ′′
I

k −md∗
t

k

1− β

1− (1− β)md∗
t

]dmd∗
t

dk

(3.43)

where again ϕ′
(

k
k−md∗

t
nI∗t

)
is denoted by ϕ′

I and ϕ
′′
(

k
k−md∗

t
nI∗t

)
by ϕ′′

I .

Using equation (3.43) into (3.41) I get:

dgt
dk

=
(ϕ′

I)
2

ϕ′′
I

md∗
t

k(k −md∗
t )

(γ − 1)︸ ︷︷ ︸
Direct E�ect < 0

− (ϕ′
I)

2

ϕ′′
I

(γ − 1)

[
1

k −md∗
t

− 1− β

1− (1− β)md∗
t

]
︸ ︷︷ ︸

Indirect E�ect

dmd∗
t

d

which gives the key relation presented in Proposition 2. As to the sign of the

indirect e�ect, notice that since ϕ′′
I < 0 by assumption, then the term − (ϕ′I)

2

ϕ′′I
(γ − 1)

is positive. Therefore, the indirect e�ect is negative as long as:
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1

k −md∗
t

− 1− β

1− (1− β)md∗
t

< 0

which rearranged becomes:

(1− β)k − (1− β)md∗
t > 1− (1− β)md∗

t ⇔ k >
1

1− β

which concludes the proof.

Appendix 3.D Additional Empirical Results

3.D.1 Scaled Disclosure Measures

Table 3.D.1: Correlation of scaled disclosures with TFP growth

gi,l,t gi,l,t gi,l,t gi,l,t

Scaled Disclosuresl,t -0.1024 -0.0981 -0.0970 -0.0970
(0.1887) (0.1583) (0.1711) (0.1720)

Country F.E. Y Y Y Y
Year F.E. Y Y Y Y
Sector F.E. Y Y Y Y
Controls Y Y Y
Country×Year F.E. Y Y
Country×Sector F.E. Y
Observations 1386 1170 1170 1170

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Correlations of the scaled disclosure variable with growth rate of the mean and selected percentiles of the �rm-level

distribution of TFP, labor productivity and capital productivity. The regression speci�cation is gi,l,t = c0 + β ∗
(ShDisclosuresl,t)/10 + ct + ci + cl + ϵi,l,t. Industry classi�cation is based on �rm's sector of activity. Coe�cient

shows the marginal e�ect of 10 more disclosures on percent growth rates of the dependent variable. All the coe�cients

shown refer to a linear regression with country-, industry- and year-�xed e�ects. Standard errors clustered at the

industry-level are shown in parenthesis.
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Table 3.D.2: Direct and indirect e�ects of complementarity on TFP growth

Scaled Discli,l,t gi,l,t gi,l,t gi,l,t gi,l,t

Scaled Disclosuresl,t -0.5751∗∗ -0.5351∗∗ -0.5191∗∗ -0.5202∗∗

(0.2649) (0.2501) (0.2527) (0.2528)
AvgCitl,t 0.2694 -0.0112 -0.0231 -0.0220 -0.0228

(0.1831) (0.2757) (0.2800) (0.2752) (0.2876)
WCitl,t−5 0.0021∗∗∗

(0.0005)
AvgWDCitl,t−5 4.6741

(3.6711)

Country F.E. Y Y Y Y Y
Year F.E. Y Y Y Y Y
Sector F.E. Y Y Y Y Y
Controls Y Y Y
Country×Year F.E. Y Y
Country×Sector F.E. Y
Observations 1386 1386 1170 1170 1170

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Correlations of the scaled disclosure variable with growth rate of the mean and selected percentiles of the �rm-level

distribution of TFP, labor productivity and capital productivity. The regression speci�cation is gi,l,t = c0 + β ∗
(ShDisclosuresl,t)/10 + ct + ci + cl + ϵi,l,t. Industry classi�cation is based on �rm's sector of activity. Coe�cient

shows the marginal e�ect of 10 more disclosures on percent growth rates of the dependent variable. All the coe�cients

shown refer to a linear regression with country-, industry- and year-�xed e�ects. Standard errors clustered at the

industry-level are shown in parenthesis.

3.D.2 Labor productivity growth

This appendix subsection replicates the main analyses of Subsections 3.4.3.1 and

3.4.3.3 of the paper using as dependent variable labor productivity growth rather

than TFP growth. The former is computed as the yearly growth of country-speci�c

sectoral values added divided by number of workers.
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Table 3.D.3: Correlation of scaled disclosures with labor productivity growth

gi,l,t gi,l,t gi,l,t gi,l,t

Disclosuresl,t/10 -0.1345∗∗∗ -0.1017∗∗∗ -0.1019∗∗∗ -0.1019∗∗∗

(0.0173) (0.0156) (0.0171) (0.0172)

Country F.E. Y Y Y Y
Year F.E. Y Y Y Y
Sector F.E. Y Y Y Y
Controls Y Y Y
Country×Year F.E. Y Y
Country×Sector F.E. Y
Observations 1498 1355 1355 1355

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Correlations of the scaled disclosure variable with growth rate of the mean and selected percentiles of the �rm-level

distribution of TFP, labor productivity and capital productivity. The regression speci�cation is gi,l,t = c0 + β ∗
(ShDisclosuresl,t)/10 + ct + ci + cl + ϵi,l,t. Industry classi�cation is based on �rm's sector of activity. Coe�cient

shows the marginal e�ect of 10 more disclosures on percent growth rates of the dependent variable. All the coe�cients

shown refer to a linear regression with country-, industry- and year-�xed e�ects. Standard errors clustered at the

industry-level are shown in parenthesis.

Table 3.D.4: Direct and indirect e�ects of complementarity on labor productivity
growth

Discli,l,t gi,l,t gi,l,t gi,l,t gi,l,t

Disclosuresl,t/10 -0.1237∗∗∗ -0.1137∗∗∗ -0.1159∗∗∗ -0.1158∗∗

(0.0279) (0.0294) (0.0295) (0.0295)
AvgCitl,t -0.2133 -0.2833 -0.2437 -0.2420 -0.2421

(0.3891) (0.2156) (0.2471) (0.2472) (0.2470)
WCitl,t−5 0.0301∗∗∗

(0.0024)
AvgWDCitl,t−5 31.2911∗∗

(11.3491)

Country F.E. Y Y Y Y Y
Year F.E. Y Y Y Y Y
Sector F.E. Y Y Y Y Y
Controls Y Y Y
Country×Year F.E. Y Y
Country×Sector F.E. Y
Observations 1386 1386 1355 1355 1355

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Correlations of the scaled disclosure variable with growth rate of the mean and selected percentiles of the �rm-level

distribution of TFP, labor productivity and capital productivity. The regression speci�cation is gi,l,t = c0 + β ∗
(ShDisclosuresl,t)/10 + ct + ci + cl + ϵi,l,t. Industry classi�cation is based on �rm's sector of activity. Coe�cient

shows the marginal e�ect of 10 more disclosures on percent growth rates of the dependent variable. All the coe�cients

shown refer to a linear regression with country-, industry- and year-�xed e�ects. Standard errors clustered at the

industry-level are shown in parenthesis.
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