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Abstract

This thesis investigates the impact of knowledge spillovers on economic growth, from

both empirical and theoretical angles. It sits at the intersection of Macroeconomics, Public

Economics and Economic Geography.

Chapters 1 to 3 build upon my Job Market Paper. They are concerned with the

consequences of the 60-year decline in publicly funded Research and Development (R&D)

funding in the United States for the productivity growth of private firms. These first

three chapters are organised as follows:

• Chapter 1 presents a new dataset of publicly listed firms matched to patents,

spanning 70 years (1950-2020), that I assembled to document that R&D funded

by the federal government in the US is substantially different from private R&D.

The patents it generates are more likely to rely on science, more likely to open

new technological fields and, most importantly, more likely to generate technology

spillovers.

• Chapter 2 uses two instrumental variable specifications to estimate the impact of

public R&D through spillovers on private firms’ productivities. I find that public

R&D spillovers generate large and persistent increases in the productivity of private

businesses, in particular small ones. Moreover, the impact of publicly funded

R&D spillovers appear to be larger than those from privately funded R&D. The

first instrumental variable strategy relies on historical funding shocks across US

government agencies from 1950 to 2020, while the second instrument uses the

random assignment of patent applications to examiners of varying leniencies to

generate exogenous variation in the exposure of firms to the patents of other firms.
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• Chapter 3 uses the spillover elasticities estimated in chapter 2 to calibrate a general

equilibrium model of endogenous growth with heterogeneous firms and two sources

of funding for R&D–public agencies and private firms. The goal of the model is to

evaluate if the differences between public and private R&D documented in chapter

1 and their heterogeneous impacts on productivity documented in chapter 2 matter

in the aggregate for the trajectory of productivity growth in the US. A calibrated

version of the model suggests that one third of the TFP deceleration observed in the

US since 1960 can be attributed to the decline in publicly funded R&D.

Chapter 4 turns to the study of a different kind of technology spillovers; knowledge

spillovers from multi-national enterprises (MNEs) on the local economy where they invest.

In this joint work with Riccardo Crescenzi2 and Frank Neffke,3 we use four decades

of patent data to estimate the impact of foreign direct investment by innovative MNEs

on the patenting trajectories of the cities where they invest. We use a difference-in-

differences specification on a sample of sub-national regions matched by propensity score,

and we find that FDI by MNEs have a positive impact on the informativeness of local

economies. Surprisingly, the largest and most patent-heavy firms are not necessarily the

most impactful. We investigate the causes of this heterogeneity of impacts in the last part

of the paper.

2London School of Economics, Department of Geography and Environment.
3Complexity Science Hub, Vienna.
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Introduction

The history of American technological progress is rich with examples of successful

applications of government-funded research to the wider market economy. For instance,

the US Department of Energy pioneered the development of lithium-iron batteries in

the 1970s, and today’s fast-growing vertical farming industry builds upon technologies

first developed in the 1990s by NASA to grow plants in space. These public-to-private

technology spillovers have been celebrated by advocates of a state-led approach to

innovation. However, many see them as cherry-picked examples of an inefficient allocation

of resources away from the private sector.

In spite of an extensive body of work on the topic of spillovers and growth, the impact

of the decline in public R&D on productivity has remained an open question for three

reasons. First, studying public-to-private spillovers at the firm level over 70 years is

demanding in terms of data, and existing panels of firms matched to their innovations

(usually measured by patents) are inadequate. These existing panels (i) are either too

short, or (ii) do not contain sufficient information on who is funding R&D, or (iii) do not

have measures of productivity at the firm level. Secondly, comparing the impact of public

and private spillovers in a unified, causal econometric framework has not been attempted,

perhaps because of the difficulty of finding plausible identification strategies for the

3This research benefited from financial support from STICERD (grants #107728 and #108954), which is
gratefully acknowledged.
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impact of public R&D spillovers. Lastly, linking the impact of public R&D spillovers on

firms to their aggregate consequences at the national level requires a cautious treatment

of general equilibrium effects.

In this paper, I address these challenges empirically and theoretically. I combine a

newly assembled panel of firms matched to patents over seven decades (1950-2020) with

two novel instrumental variable strategies to estimate the causal impact of public-to-

private and private-to-private spillovers on firms’ long-term outcomes. I then use the

estimated spillover elasticities to calibrate a general equilibrium model of growth with

heterogeneous firms. From these exercises, four key findings emerge.

The first key finding is that public R&D is different from private R&D, in particular

in how much closer to science it is. I show that, even after controlling for differences in

inputs into the research process, public R&D patents are more than twice as likely to rely

on scientific publications than private R&D patents. Furthermore, I use a new measure of

how ‘ahead of its time’ a patent is to show that public R&D patents are more likely to

open new technological fields. These public R&D patents are also cited across a wider

array of patent classes. Finally, they tend to be disproportionately cited by small firms.

These facts suggest that publicly-funded patents embody ideas that are less appropriable

by the original inventor and are therefore more likely to spill over to the rest of the

economy.

The second key finding is that public-to-private spillovers have a large and positive

causal impact on firms’ productivity and innovative effort. Identification comes from

a historical shift-share instrumental variable setting (SSIV), where I combine firm-level

shares of exposure to R&D funded by US federal agencies with R&D funding shocks

induced by geopolitical factors (such as wars, the Space race, the 1973 oil shock, etc.).

Exposure shares are defined by the overlap in technologies in which a public agency

and a company are active. The identifying assumption is that firm-level outcomes are

2



orthogonal to the federal funding shocks conditional on time, industry, geography and

lagged firm controls. As such, the identification relies on a quasi-experimental SSIV

approach with exogenous shocks (Borusyak et al., 2022).4 I obtain historical estimates

of the elasticity of impact of an increase in exposure to public R&D on long-term firm

outcomes such as productivity, patent production, own R&D and sales over a long period

(1945 to 2005). My estimates suggest that a 1% increase in exposure to public R&D causes

a .025% rise in firm-level productivity. Additionally, public spillovers are more potent

for smaller firms, perhaps because these firms have fewer resources to do in-house R&D

(Acs et al., 1994). As such, a decline in public R&D may be one of the causes of the rising

inequality between firms and the growth of large firms.5

The third finding is that public R&D spillovers are between two to three times as

impactful as private R&D spillovers for firm productivity. To compare the magnitude

of public and private spillovers, I turn to a second identification strategy. I exploit the

random allocation of patent applications to patent examiners of varying leniency to

create measures of exposure to technology spillovers driven uniquely by this ‘patent

lottery’. This instrument is inspired by earlier work on judge leniency (Kling, 2006)

and has been extensively used in the innovation literature (Gaule, 2018; Sampat and

Williams, 2019; Feng and Jaravel, 2020). In contrast to previous studies, I use the patent

lottery to instrument a firm’s exposure to spillovers rather than its own patent grant

decision. The identification assumption is that the variation in leniency at the examiner

level is not correlated with the outcomes of firms that benefit from the spillovers of the

reviewed patents. Previous evidence on the quasi-experimental assigment of applications

to examiners suggest that this assumption is likely to hold (Lemley and Sampat, 2012),

4I follow the latest literature in applied econometrics to implement this SSIV design (Adão et al., 2019;
Borusyak et al., 2022) and use conservative, exposure-robust standard errors that take into account the
correlation of firms’ errors exposed to a similar set of federal agencies.

5Kwon et al. (2022) provide evidence that inequality between American firms, in sales and assets, has
been increasing for most of the 20th century, in particular since the 1960s.
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and I find support for it in the data. The advantage of the patent leniency instrument

is that it allows me to estimate the causal impact of both public and private spillovers

within the same econometric setting.

Finally, I find that the large decline in US public R&D matters quantitatively for

aggregate TFP growth and inequality between firms. I build a general equilibrium,

heterogeneous agent model of growth in the spirit of Luttmer (2007) and Jones and Kim

(2018) to quantify the macroeconomic implications of the decline of public R&D on firm

productivity growth and the rise of superstar firms. In the model, R&D is performed by

firms and by the government who levies taxes on firm profits to fund its R&D expenses.

The model yields two key insights. The first is that aggregate productivity growth

increases in the strength of spillovers while inequality between firms is decreasing in the

strength of spillovers. The second insight is that there is a unique growth-maximizing

corporate tax rate for growth. This tax rate is high enough to support the funding of

public R&D but low enough to not discourage private innovation by firms. To go from

my microeconomic evidence to general equilibrium conclusions, I use the elasticities

obtained from my two empirical strategies to calibrate the model. The model suggest

that the large decline in public R&D in the US in the second half of the 20th century may

account for a third of the observed decline in aggregate TFP growth since the 1950s and a

third of the rise in inequality of productivity between firms.

Related work

This paper relates to three strands of literature; the first of which is the voluminous

set of applied papers on the importance of technology spillovers for innovation and

productivity. Since the review of empirical studies by Griliches (1992) at least, it is

recognized that spillovers from firms’ R&D are common and economically significant.
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Estimates of the wedge between the private and social returns of corporate R&D suggest

that social returns are two to four times as big as private ones (Bloom et al., 2013). The

literature has mostly focused on spillovers from firms’ own R&D to other firms,6 but

recent work has shown that spillovers from the public funding of corporate R&D are also

substantial. In two important contributions to this line of research, Azoulay et al. (2019)

and Myers and Lanahan (2022) exploit quasi-experimental variation in federal agency

funding rules to estimate the impact of public R&D grants on firms’ own innovation

and spillovers. Both studies conclude that spillovers from public R&D grants to firms

are large: firms typically capture at most half of the returns of their own innovation.7

This paper brings complementary evidence about the importance of public spillovers and

extends this line of work in four main ways. First, I directly compare the impact of public

and private spillovers within a unified econometric framework. Second, I go beyond

specific agency programs and time periods by exploiting variation in spillovers across all

patent-filing agencies and, for the historical SSIV, variation from 1945 to 2010. Third, I

use publicly-funded R&D in its broadest sense, regardless of who performs it. In other

words, firms, universities and government labs are all included among the performers of

publicly-funded R&D in my setting.

Moving from the micro-empirical evidence to the aggregate level, this paper also

relates to the macro literature on idea-based growth, which has highlighted the central

role of knowledge spillovers in driving aggregate growth (Romer, 1990; Jones, 1995; Jones

and Williams, 1998; Lucas, 2009).8 The central tenet of these models is that ideas are

6Notable exceptions include Jaffe (1989), Belenzon and Schankerman (2013) and Bergeaud et al. (2022a)
who study knowledge flows from academia to businesses, as well as Moser et al. (2014) and Iaria et al.
(2018), who study spillovers within academia.

7Azoulay et al. (2019) find that a $10 million increase in NIH funding generates 1.4 patent in the medical
area targeted by the grant. But, importantly, it generates 2.2 additional patents in different areas (estimates
from columns 4 and 5 of table 8, p. 145 in Azoulay et al., 2019). Myers and Lanahan (2022) confirm this order
of magnitude: firms capture only between 25 and 50% of the patent-based value of their publicly-funded
R&D.

8See Buera and Lucas (2018) for a review of models of idea flow and growth. See Jones (2022) for a
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special inputs into a production function: they are non-rivalrous, and as such give rise to

increasing returns (Jones, 2022). I show that while ideas generated by public or private

R&D are both non-rival, they differ in how excludable they are: public R&D ideas are less

excludable and therefore less appropriable. This lack of appropriability stems in large

part from the fact that public R&D ideas are more fundamental. To my knowledge, this

paper is the first to document this difference in appropriability between public and private

R&D.9 This point has important consequences for ideas-based growth models: public and

private R&D need to be modelled separately because the spillovers they generate differ.

I use my estimated elasticities to calibrate a model of aggregate growth with spillovers.

In doing so, I provide a micro-to-macro framework that bridges the gap between the

productivity literature on spillovers and macro models of growth. A contribution of this

paper is to provide a tight theoretical link between idea-based models of growth and the

econometric framework used by micro-empirical studies of firm growth. In addition, this

work speaks to a few recent macroeconomics papers showing that reduced spillovers

from market leaders to followers can worsen inequality between firms (Akcigit and Ates,

2019; Olmstead-Rumsey, 2022). My results suggest that reduced spillovers from public

R&D to small firms are another potential explanation of the rise in firm inequality.

Finally, the present work contributes to the burgeoning literature about the role

governments may play in driving productivity growth, either through demand shocks

(Ilzetzki, 2022; Antolin-Diaz and Surico, 2022; Belenzon and Cioaca, 2022) or through large

R&D expenditures (Kantor and Whalley, 2022; Fieldhouse and Mertens, 2023; Moretti

et al., 2023).10 My work directly relates to the second set of papers and complements them.

semi-endogenous growth perspective on the literature.
9See Akcigit et al. (2020) for a related point about basic versus applied R&D and Trajtenberg et al. (1997)

for a comparison of university and corporate patents.
10In addition to academic papers, several general public books have collected case studies to make the

case for a more central role for the government in pushing innovation forward. See for instance the books
by Mazzucato (2015), Janeway (2018) and Gruber and Johnson (2019).

6



While these papers focus on public R&D expenditures, I directly compare the potency of

public and private spillovers for productivity growth. Moreover, I am leveraging detailed

firm-level, balance-sheet data to test a wide array of firm outcomes and uncover important

treatment effect heterogeneity of public spillovers across the firm size distribution. Kantor

and Whalley (2022) and Fieldhouse and Mertens (2023) conduct their analyses at the

county and national levels, respectively. Moretti et al. (2019) provide some firm-level

evidence that businesses that receive government R&D increase their own R&D spending

(and eventually experience higher productivity), but they do not investigate the role that

technology spillovers play in this process.

The next three chapters are structured as follows. In chapter 1, I describe the novel

dataset of publicly listed firms matched to patents that I use, before documenting stylized

facts about patents funded by public R&D. Chapter 2 describes my two empirical IV

strategies and discusses their results. I present a model of growth through heterogeneous

firms and spillovers in chapter 3 and the results of the calibration exercise are further

discussed in that chapter. This chapter also contains a conclusion of the findings in

chapters 1 to 3. Additional results, data description and proofs are relegated to the

appendices.
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Chapter 1

Data and Stylized Facts

1.1 Data

Studying technology spillovers at the firm level over 70 years is demanding in terms

of data. Previous studies have been limited by panels of firms matched to patents that

extend for at most 35 years.1 This is inadequate to study the relevance of spillovers

for growth from 1950 to 2020, the period during which public R&D has declined in

the US. In this section, I describe the panel of publicly listed firms matched to patents

that I assembled with a co-author (Dyèvre and Seager, forthcoming), and that I use in

this paper. This panel spans seven decades and is the longest of its sort, doubling the

time coverage of previous efforts (Arora et al., 2021b). Importantly, it dynamically re-

assigns patents to their current owners following corporate restructuring events (mergers,

acquisitions, de-listings and spinoffs). The data is freely available to use for academic

purposes and can be downloaded here: github.com/arnauddyevre/compustat-patents. A

1Patent data alone cannot be used to study the impact of spillovers on firms because it lacks information
on firm outcomes such as sales, employment and productivity. To my knowledge, the longest panels used
to study spillovers are those created by Arora et al. (2021a) which runs from 1980 to 2015, Lucking et al.
(2019) from the early 1980s to 2006 and Akcigit and Kerr (2018) from 1982 to 1997.
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more detailed description of the data is available in Appendix A.2, and in Dyèvre and

Seager (forthcoming).

Firm characteristics

Annual firm-level data come from Compustat North America, covering all firms

publicly traded on a North American exchange. My final sample of firms consists of

observations with employment, capital investment, operating income before depreciation

and 4-digit SIC sectors. Using data on publicly listed firms has two advantages and one

limitations. On the positives side, using Compustat data enables me to create a decades-

long panel of firms. Secondly, Compustat has been extensively used in the innovation

literature (Bloom et al., 2013; Arora et al., 2021b), which enables one to compares the

results of the present paper to earlier work. A limitation of this data is that Compustat

firms are not representative of the entire American economy. They are typically much

larger than other businesses. The findings of this work, and in particular the results about

firm heterogeneity, need to be taken with this caveat in mind. Nevertheless, conclusions

drawn from this work can be informative about the wider economy due to the economic

importance of Compustat firms in the aggregate economy. Estimates of their importance

show that they account for 26% of US employment and 44% of its GDP (Dinlersoz et al.,

2018).

Patents

Patent information comes from the US Patent and Trademark Office (USPTO). For

patents granted after 1975 and their citations, the data comes from Patentsview, the

USPTO prime portal for patents granted from 1976 onwards. A key feature of Patentsview

is that assignees, locations and inventors’ names are carefully disambiguated. For instance,
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patents assigned to ‘IBM’ and ‘International Business Machines’ are correctly assigned to

the same firm. For patents granted before 1975 and their citations, I use the data scraped

from the original patents files by Fleming et al. (2019), henceforth FGLMY. Lastly, I use

historical CPC technology classes at the time of filing from Bergeaud et al. (2022b) and

the USPC technology classes from PatentsView.

Patent data is an imperfect measure of innovation and appendix A.2 elaborates on

these limitations. However, it has been shown that patent counts correlate strongly with

innovative inputs (R&D expenditures, number of inventors and scientists), other measures

of innovative outputs (inventions rated by scientists) and proxies of firm performance

(productivity, etc.). Moreover, while not all firms file patents, patents are a way to protect

intellectual property that is extensively used by large firms (Mezzanotti and Simcoe, 2023)

like the publicly listed firms in Compustat. Following the literature, I rely on patent

data to quantify innovative outputs and on the overlap between patent technologies a to

measure exposure to innovation.

Matching firms to patents

No unique firm identifier can serve as a joint between the balance-sheet data in

Compustat and the USPTO patent data. Linking firms to patents must thus rely on

matching company names to patent assignee names. Dyèvre and Seager (forthcoming)

use a combination of string cleaning/homogenization, automated string matching, careful

manual matching and reliance on the previous efforts of Arora et al. (2021b) to match

firms to patents. They then rely on data from SDC Platinum, the Center for Research

and Security Prices (CRSP), WRDS Company Subsidiary Data, historical data in Lev and

Mandelker (1972) and manual searches to introduce dynamic reassignments of patents

across firms, over time. Dynamic reassignment of patents is essential to obtain an accurate

picture of firms’ innovativeness at any point in time: patents indeed change hands over
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time through mergers, acquisitions and sales of subsidiaries.

The final matched dataset consists of 9,961 unique firm identifiers (‘gvkeys’) observed

between 1950 and 2020 matched to 3.1 million unique patents. This is the most com-

prehensive dynamic dataset of Compustat firms matched to patents of its kind. Only a

subset of these patents and firms are used in this paper because I need data on firms over

at least 10 years to calculate my outcomes of interest and firms’ exposures to spillovers.

Appendix A.2 and Dyèvre and Seager (forthcoming) provide more details about the

matching procedure and compares the final dataset with existing alternatives such as

Kogan et al. (2017) and Arora et al. (2021b).

Government-funded innovation

I define patents to be financially supported by the US government if they are assigned

to a government entity (‘direct assignee’) or if the non-government assignee of the patent

has received federal funding for the development of the innovation (‘supported assignee’).

Direct assignees are readily identified in PatentsView (post-1975) and FGLMY (pre-1975).

Figure 1.1: Example of a statement of gov-
ernment interest mentioning NASA – patent
#5,992,090

For supported assignees who are not

government agencies, I use two data

sources to identify government support.

For patents filed after 1980, I rely on the

‘government interest’ variable created by

PatentsView. The variable is derived from

the text of patents whose assignees are re-

quired to disclose if they have received fed-

eral funding that contributed, even par-

tially, to the innovation. An example of

such disclosure is included in Figure 1.1, which shows an excerpt from a NASA-supported
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patent. This requirement comes from the Patent and Trademark Law Amendments Act

of 1980, also known as, and henceforth, Bayh-Dole Act. It covers grants to firm, to

universities and to NGOs, as well as procurement contracts between the government and

any private or academic party. For patents granted before the Bayh-Dole Act, I use the

government interest tag from Fleming et al. (2019). This tag comes from machine-read

patent text where acknowledgement of government funding is reported.

Recent work by Gross and Sampat (2024) has shown that inferring government interest

from the patent text or the Bayh-Dole disclosure statements, as I do above, can miss some

relevant patents. In particular, ‘license’ patents which are funded by the government but

assigned to non-government entities can be poorly covered, especially in the the 1950s

and 1960s. I therefore complete the PatentsView and FGLMY datasets by Gross and

Sampat (2024)’s government patent register.

Patent examiners’ leniency scores

To create the examiner leniency instrument, I use data on all patent applications filed

with the USPTO from 2001 to present days. The USPTO provides data on applications

through its Patent Examination Research Dataset (PatEx), which includes information

on special technology classes used for the allocation of applications to examiners called

‘art units’. Crucially, this data contains the names of the patent examiners that I use to

uniquely identify them.2

Department and Agency-specific funding

Historical data on R&D outlays by US agencies comes from the budget tables of

the White House’s Office for Management and Budget (OMB). This dataset needs to be
2The data is freely available on the USPTO website (www.uspto.gov/ip-policy/economic-

research/research-datasets/patent-examination-research-dataset-public-pair). Miller (2020) provides a
comprehensive overview of the data.
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completed because some departments that have historically funded R&D activities are

not included in the White House R&D tables, like the Department for Veterans Affairs

through its ‘VA Technology Transfer Program’ for instance.3

I fetch the additional R&D budgets of agencies not covered by the historical tables

by cleaning a dataset of all government outlays available in the supplementary materials

provided by the OMB, known as a the Public Budget Database. I isolate the R&D-specific

outlays by performing a substring search among the ‘Bureau Name’ and ‘Account Name’

fields; I look for variations of substrings such as ‘INNOVATION’, ‘RESEARCH’ and

‘TECHNOLOGY’. When data on R&D funding is available both in the series provided

by the historical tables and in the detailed outlays, there is a very good overlap between

the two series, as can be seen in panels A.1-A.3 in the Appendix. When both series

are available, the series from the historical is used. Finally, I manually collect R&D

data for the Department of Veterans Affairs and the Small Business Administration from

Congressional Research Service reports. Values are deflated and expressed in 2020 dollars.

1.2 Stylized facts about public R&D patents

In this section, I use all 8.2 million patents granted from 1976 to 2020 by the USPTO to

document three key characteristics of public R&D patents: (1) they rely more on science,

(2) the knowledge they encode tends to be more ahead of its time, and (3) they generate

more spillovers, especially to smaller firms.4 These differences with privately-funded

patents have important consequences on the frequency and strength of spillovers. While

a complete investigation into the causes of these differences is beyond the scope of this

3The Department of Veterans Affairs is active in financing and commercializing technologies that can
benefit Veterans’ well-being. Most of the patents financed by the Department of Veterans Affairs are medical
patents and are typically jointly filed with inventors in academia (Department of Veterans Affairs, 2022).

4The controls I use in my specifications come from data only available in the post-1975 tranche of patent
data. I therefore discard the 1950-1975 patent data for the analysis of this section.
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paper, I briefly discuss plausible reasons at the end of the section.

To test for differences between public R&D and private R&D patents, I regress some

outcomes of interest yi at the patent level, on an indicator variable equal to 1 if a patent

is publicly-funded i.e. assigned to a ‘direct assignees’ or a ‘supported assignee’, and a

comprehensive array of controls Xi. publicly-funded patents can be the result of R&D

performed in government labs, in universities, in firms or any combination thereof

provided that at least part of the R&D money came from public sources. Formally, in

the figures below I report the β̂ coefficients and their 95% confidence intervals from the

following regression, for a gradually more comprehensive set of controls Xi:

yi = α + β × 1[patent i is publicly-funded] + Xiγ + εi (1.2.1)

Evidently, the β̂ coefficients cannot be interpreted as causal. This exercise is however

informative about the differences between public and private R&D, as seen through the

lens of patented innovations. Heterogeneity results across years, performer and funders

of public R&D are presented in Appendix A.3.2, along with robustness checks using

alternative dependent variables.

1.2.1 Fact 1 - Public R&D patents are more reliant on science

The most important difference between publicly-funded patents and privately-funded

ones is in how much more reliant on science public patents are. To measure a patent’s

reliance on science, I follow the common practice in the innovation literature to use

patent citations to proxy for knowledge spillovers.5 Reliance on science is defined here as

5Patent citations can be a noisy proxy for knowledge spillovers. But they have been shown to be strongly
associated with actual spillovers, as reported in surveys by the inventors themselves. Jaffe et al. (2000),
for instance, use a survey of inventors to show that patent citations often capture direct communications
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the share of a patent’s backward citations directed to the scientific literature. Previous

empirical work has shown that citations to the scientific literature are correlated with

actual reliance on science in industrial R&D. For example, using the Carnegie Mellon

Survey of the Nature and Determinants of Industrial R&D, Roach and Cohen (2013)

document that there is a strong correlation at the industry level between the share of

patent citations directed to scientific publications and the extent to which research lab

managers report relying on science.

To calculate the share of citations to science, I rely on data compiled by Marx and

Fuegi (2022) on non-patent citations. Using specification (1.2.1), I find that public R&D

patents tend to rely more on science than private patents. The results are shown in Figure

1.2, where I report point estimates and 95% confidence intervals for the β coefficients

across a suite of specifications with successively more exhaustive controls. In my fullest

specification, I control for 700 CPC patent class dummies, the productivity of inventors,

the productivity of the entity who owns the patent and the estimated total wage bill of

inventors. Standard errors are clustered by year of application and by patent class. I

find that only 6% of citations made by private R&D patents are directed toward scientific

papers, on average. In contrast 22% of citations made by public R&D patents are (+267%).

Appendix A.3.2 shows that this difference is stable over time and it persists even within

R&D performers i.e. firms’ and universities’ innovations are more reliant on science when

their funding is public than when their funding is private.

One interpretation of this greater reliance on science is that publicly-funded innova-

tions tend to use knowledge that is more basic or more fundamental. Basic research is

defined by the OECD ’Frascati manual’ as ’experimental or theoretical work undertaken

between inventors, word-of-mouth and the simple act of reading the cited patent. Moreover, citation
patterns also correlate strongly with the movements of scientists between assignees citing each other’s
patents in my data. This suggests that one of the key channel through which the exchange of ideas
operate–the mobility of inventors–is captured to some extent by citation flows. See section A.2 for a
discussion about the merits and drawbacks of relying on patent citations to measure spillovers.
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primarily to acquire new knowledge of the underlying foundations of phenomena and

observable facts, without any particular application or use in view’ (2015, p. 45). This

definition is used by many public science agencies in their R&D surveys, including the US

National Science Foundation. While there are both basic and applied pieces of scientific

work, it is reasonable to assume that science articles tend to be more detached from

practical applications and commercialization of ideas than patents, whose purpose is

indeed to protect the profits of an invention. By relying on more fundamental knowledge,

publicly-funded patents may themselves embody more fundamental knowledge. Two

pieces of evidence support this interpretation. First, in appendix A.3.2, I also show that

the number of independent claims made by publicly-funded patents is greater, on average.

Patent claims delineate the scope of an innovation and establish which property rights

the assignee is entitled to (Matcham and Schankerman, 2023). The larger this number, the

least specific an innovation is. The number of independent claims can therefore be seen as

a measure of the generality of a patent. Because basic innovations have applications across

many fields, a patent’s generality can be seen as a manifestation of its basicness. Second,

the breakdown of public R&D across basic research, applied research and development is

very different from that of private R&D. Out of each dollar invested in public R&D by

the American government in 2020, 33 cents were dedicated to basic research and 36 were

dedicated to development. The remaining 31 cents were used to fund applied research.

In contrast, a dollar of private R&D in 2020 funded mostly development (78 cents) and

very little basic research (7 cents). This split is shown in the figures of panel A.4 in the

Appendix. I observe the consequences of this divergence of focus in the patent data.
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1.2.2 Fact 2 - Public R&D patents are more impactful

Secondly, to assess a patent’s technological importance, I introduce a new metric of

impact. I measure a patent’s technological novelty by the number of years that separates

its year of application from the date when it is reclassified into a newer patent class.

Disruptive innovation, by definition, is hard to classify using existing taxonomies: patents

that are re-classified into a newer, more relevant patent class after its introduction can

therefore be thought as encoding knowledge that was ‘ahead of its time’. I study the

dynamic reassignment of patents to classes using the evolving US Patent Classification

System (USPCS). It consisted of more than 450 classes and was in use from the early

19th century until 2013.6 The USPTO needs to keep an up-to-date classification of

technologies in order to assess the claimed novelty of patent application against existing

prior art. Because of its important legal role, the USPTO had strong incentives to keep this

classification relevant to the technological landscape of the time. After the introduction

of a new patent class, all previously filed patents that are better described by the new

class are ex post re-classified into the more relevant class. For instance, a patent filed in

1996 and protecting a technology that is relevant for the development of self-driving cars

would be re-classified from, say, ”Data processing: Vehicles, Navigation, and Relative

location” (class 701) to ”Data processing: Artificial Intelligence” (class 708) in 1998, when

the latter is created. This patent would have contributed to open a new technological

field two years before this field is recognized by the USPTO. The list of USPC classes

thus offers an interesting vantage point into the development of new knowledge. Figure

A.13 in the appendix shows the cumulative count of USPC patent classes over time and

6The Cooperative Patent Classification (CPC) system, jointly developed by the USPTO and the European
Patent Office, replaced the USPC in 2013. While the CPC is also regularly updated, its late introduction
makes it less interesting to study patent re-classification over the long term.
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indicates when some selected technologies are introduced.7

As shown in Figure 1.3, I find that publicly-funded patents tend to be 6% more likely

to be ‘ahead of their time’ than privately-funded patents (baseline probability with full

controls: 0.31), even after controlling for the R&D effort, as proxied by the wage bill of

innovators, that goes into the creation of the patent. Looking at the intensive margin, I

restrict the sample to patents that are ahead of their time and compute the difference in

average years between the typical public R&D patent and the typical private R&D patent.

I find that public R&D patents are typically 1.25 more years ahead than private patents

(+19%). This result is reported in the Appendix. When using other common measures

of impact such as forward citations and the Kelly et al. (2021) metric of breakthrough

patents, the results also suggest that publicly-funded patents are more impactful, even

after controlling for R&D effort (see Appendix A.3.2).

1.2.3 Fact 3 – Public R&D patents generate more spillovers

The last fact I document pertains to the breadth of spillovers from public R&D. I find

that public R&D patents tend to generate spillovers across a wider range of patent classes.

The excess number of classes across which a public R&D patent is cited is displayed in

figure 1.4. After controlling for many observables, public R&D patents tend to be cited

by 0.5 more classes, from a baseline of 2.38 for the average private patent (+22%).8 To

disentangle the effect of the breadth of a patent from that of its technological impact, I

also control for the log number of total citations received by the focal patent. The wide

applicability of the knowledge encoded by public R&D patents is likely to stem from

them being more fundamental, as documented in fact 1. This finding has important

7Raw data stored at the following link arnauddyevre.com/files/USPC classes years established.pdf.
Csv file available at arnauddyevre.com/files/timeline detail classes.csv

8This finding echoes that of Babina et al. (2023) who find that patents funded by federal grants are more
‘general’. Generality is defined as 1 − ∑j c2

ij where cij is the share of citations to patent i coming from class j.
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Figure 1.5: Share of small firms among
forward citations

Figure 1.6: Stylized facts about public R&D patents

Notes: The figures show the β coefficients and their 95% confidence intervals from specification 1.2.1. The level of
observation is a patent and standard errors are clustered at the year×patent class level. The dependent variable is, from
top to bottom, the share of citations made by the focal patent to scientific literature (1.2), the probability that a patent
is ‘ahead of its time’ (1.3), the number of CPC patent classes citing the focal patent (1.4) and the share of small firms
among the assignees citing the focal patent (1.5). The construction of the variables ‘inventor productivity’, ‘assignee
productivity’ and ‘wage bill’ is described in Appendix A.3. The sample sizes are N1.2 = 8.2m, N1.3 = 8.2m, N1.4 = 5.2m
and N1.5 = 5.2m. In the ‘ahead of time’ regressions, I am not controlling for years and patent class jointly: the overlap
between historical USPC classes and CPC classes used as controls is high and controlling for CPC classes and year leaves
very little variation in yi .

19



implications for the appropriability of public research, which appears more limited than

that of private research, and will be a key driver of the dynamics of the model.

Moreover, public R&D patents generate spillovers to a different distribution of firms

than private R&D patents. In panel 1.5, I report estimates from regression (1.2.1) where

yi is the share of citations received by patent i from ’small’ firms, defined as firms with

fewer than 500 employees. The data on firm size comes from patent applications, where

firms are asked to report their size in order to determine the patent renewal fees they

need to pay. Smaller firms face lower fees. Patents funded by public R&D money appear

to be more likely to be cited by smaller firms: after controlling for the full suite of controls,

I find that the share of small-firm citations to public R&D patents is 14 percentage points

higher than for private R&D patents (+62%) suggesting that their technology spillovers are

comparatively more relevant for smaller firms. This evidence is consistent with summary

statistics reported by Azoulay et al. (2019), who find that small assignees (i.e. with fewer

than 500 employees) are more likely to cite patents linked to NIH-funded research.9

One plausible interpretation of this finding is that smaller firms lack the resources

and the incentives to perform basic research, unlike large companies such as DuPont,

General Electric, IBM, Xerox or AT&T through Bell Labs which are prominent examples

of firms with once dynamic basic research labs. Another interpretation is that university

spinoffs through which academic researchers can develop commercial applications of

their research have become more common, in particular after the passing of the 1980

Bayh-Dole Act that facilitated university patenting and licensing. Academic startups,

because of their more agile way of doing business and close ties to university research,

may have a comparative advantage in generating inventions, while established firms are

better at exploiting innovations through development and commercialization (Arora et al.,

2018).

9Table 2, p. 133.
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1.2.4 Summary and discussion

In summary, R&D funded by public money tends to be more of a public good: it is more

impactful (as measured by citations, its ability to open new fields), more fundamental

and less appropriable. These differences hold irrespective of who is performing the R&D,

whether it is a university or a firm.10

Why is publicly-funded R&D different? Both the actions of the funder of public R&D

(i.e. the government) and those of researchers receiving public funding offer explanations.

Firstly, public R&D money tends to be much more heavily invested into ‘basic’ research,

as can be seen in the histograms of panel A.4 in the Appendix. This difference in the type

of research being funded has consequences on the types questions being investigated,

and eventually on the type of innovations being patented. Secondly, the incentives of

researchers doing publicly-funded R&D may differ. Inventors doing publicly-funded

research may be driven by prizes, publication-based promotion procedures and the

satisfaction of having one’s ideas widely used. See for instance the review by Williams

(2012) on the effect of prizes in inducing innovation, Reschke et al. (2018) or Jin et al. (2021)

for causal assessments of the importance of prizes in steering scientific research and Brunt

et al. (2012) for their effect in industrial innovation. This interpretation echoes the findings

of Babina et al. (2023), who use administrative data on university researchers matched

to the funding composition of their grants (public or private) and find that researchers

alter the trajectory of their research when their funding gets dominated by private funds.

Their research becomes less open, less basic, more appropriable by the funder and of

lesser academic quality.

10Importantly, the stylized facts highlighted here are not a comparison of university and government lab
patents versus corporate patents. Previous research like Trajtenberg et al. (1997) has for instance highlighted
the relevance of the distinction between corporate and academic patents in determining the basicness and
appropriability of patented technologies. In contrast, the results presented in this section and in Appendix
A.3.2 reveal that the source of R&D funds, even within a university or a firm or a government matters for the
impact, generality and appropriability of innovation.
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Is it due to selection?

Researchers doing public R&D may be more conservative when deciding if the fruit of

their research is worth patenting: they may be less interested in the money they can get

from filing a patent for instance. As a result, the low impact, high appropriability and low

basicness of private patents may simply be driven by a large volume of ‘junk’ corporate

patents that do not exist in universities and government labs’ patent portfolios. While

this hypothesis is inherently hard to test, some evidence suggest that this may not be the

case. Firstly, the conversion rate of patent applications into granted patents are similar for

patents funded by private R&D and those funded by public R&D. Public applications are

only 3 percentage points more likely to be converted than private applications (baseline:

83%). Secondly, when looking a citation-weighted patents, one diminishes the risk that

the average quality of private patents is dragged down by low-quality patents. Only

blockbuster patents, which are arguably very likely to clear the quality threshold for grant,

matter in this exercise. When running the same analysis weighting patents by citations,

the conclusions remain the same (results not reported). Also, looking at the distribution

of patent citations, one finds an almost identical distribution for the bottom 90% of public

and private patents. Thirdly, one may argue that ‘junk’ patents also exist in the public

R&D portfolio.11 Finally, the regressions above are controlling for the effort put into each

patent by including proxies of inventor’s productivities, assignee productivities and the

total wage bill of inventors on the patent. This creates comparisons between patents

which have benefited from the same amount of research. Overall, there is very limited

evidence that the differences between public and private R&D patents documented in

11Some agencies like NASA have an explicit mandate to facilitate the translation of NASA’s research into
civilian development (through its Transfer Technology program and yearly Spinoff publication). While
some of its patented innovations have had successful applications in civilian domains (such as NASA’s
research into LED light), others are simply using the patent system as a way to make these innovations
known to the public and/or facilitate spillovers. See for instance the lunar module landing pad patent
(#3,175,789) or this quite imaginative ‘space spider crane’ (#4,738,583)
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this section are driven by different selection processes of innovations into patents.
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Chapter 2

Estimating the impact of public and

private R&D spillovers

The previous section has shown that privately-funded R&D is different from publicly-

funded R&D. This section lays out the econometric approaches I use to investigate

the consequences of these differences for spillovers, firm growth and innovativeness. I

first ground my estimating equation in the theory of knowledge production functions

commonly used in empirical studies of spillovers (Griliches, 1979; Acs et al., 1994), before

discussing endogeneity issues. I then describe the two quasi-experimental IV strategies

I use to estimate the causal impact of spillovers from government-funded research and

privately-funded research.
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2.1 Research designs

2.1.1 From theory to data

To motivate the equation I am estimating, it is helpful to think of firms as being

endowed with the following productivity process, which is at the heart of the model

presented in chapter 3:

Żit = Eit
ϕΓit with Γit :=

(
∏

a
Psiat

at

)γ(
∏

f
Pf t

si f t

)ε

(2.1.1)

where Eit is the (flow) R&D effort of firm i at time t, ϕ is the elasticity of productivity

growth (Żit) to R&D expenditures and Γit captures the spillovers to which the firm is

exposed. Departing from previous research, I define Γit as being a composite term

capturing spillovers from publicly-funded and privately-funded R&D that i benefits

from. It is made of two Cobb-Douglas aggregators, one for each type of spillover: public

spillovers come from agencies indexed by a and private spillovers come from firms

indexed by f . Pat and Pf t are the (flow) patents of agency a and firm f , respectively. For

each firm i exposed to patents funded by agencies, I remove from Pat the patents that are

funded by a but filed by the focal firm i, if there are any.1 In other words, focal firms are

not exposed to their own innovation in my setting.2 Correspondingly, i is not included in

the set of spillover-generating firms indexed by f , although it may generate spillovers to

other firms.

The shares siat capture the importance of agency a’s knowledge production in firm i’s

spillover aggregator. They sum up to 1 within each type of spillovers and can therefore be

interpreted as follows: si,NASA = .25 means that variation in NASA’s knowledge mediates

1Pat is therefore a slight abuse of notation as it should also be indexed by i.
2The R&D term in equation (2.1.1) already captures a firm’s past innovative effort.
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25% of the variation in firm i’s exposure to publicly-funded spillover and γ × .25 of the

variation in its productivity growth. Shares of exposure to privately-funded R&D, si f t, are

defined analogously as the importance of firm f in firm i’s private spillovers. Importantly

for my purpose, and in contrast with previous work, I allow the elasticity of productivity

to exposure to public R&D, γ, to be different from that of private R&D, ε.

Taking logs, one can estimate equation (2.1.1) as:

∆zit = ϕ eit︸︷︷︸
own ln

R&D flow

+γ ∑
a

siat pat︸ ︷︷ ︸
exposure to

public R&D patents

+ε ∑
f

si f t p f t︸ ︷︷ ︸
exposure to

private R&D patents

+ϵit (2.1.2)

where lowercase variables are the logs of capital letter variables. In what follows, I

discuss the construction of the exposure variables. I also discuss the timing of measure-

ment of the various empirical elements of equation (2.1.2). I have economized on notation

here by indexing all variables by t − 1 and t, but the timing of spillovers relative to their

impact on productivity growth is important and is discussed later.

Shares of exposure

In line with previous work in the spillover literature, I calculate the shares of exposure

siat following the methodology pioneered by Jaffe (1986) and subsequently used by Bloom

et al. (2013) and Bloom et al. (2020). The Jaffe proximity metric relies on the overlap in

technologies between two patent assignees to situate them in technology space. The

more similar the distributions of patents of two assignees across technologies are, the

closer these assignees will be according to the Jaffe metric and the more likely they

will be to benefit from spillovers emanating from each other’s innovations. Formally,

I define Pi := (Pi1, Pi2, . . . , PiN) as the (1 × N) row vector of shares of patents of firm

i across the N technology classes in a given period. Time subscripts are omitted for
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readability. For instance, if a firm i holds only two patents, one in the ‘Soilless cultivation’

class (4-digit CPC class: A01G) and one in ‘Devices for administering medicine orally’

(A61J), then its technology signature vector will have 0 entries everywhere except for

Pi,A01G = Pi,A61J = .5. Pa is defined analogously for agency a. The proximity between i

and a is defined as the uncentered correlation between i and a’s technology shares of

patents:

s̃ia :=
PiP′

a√
PiP′

i

√
PaP′

a

∈ [0, 1] (2.1.3)

s̃ia ranges from 0 (no overlap in technology signature between i and a) to 1 (identical

shares of patents across classes). I calculate these exposure weights using patents over

a period of 5 years, starting 5 years before firms’ outcomes are observed. Therefore, to

estimate the impact of spillovers on a firm’s sales growth from t to t + 5, exposure weights

are calculated using patent data from t − 5 to t. To define the share of exposure to a

particular agency, I normalized the proximity metrics s̃ia such that they sum up to 100%

across agencies i.e. sia :=
s̃ia

∑a′ s̃ia′
. These shares of exposure are interacted with the log of

patent production by agency a, pat, to create the change in exposure to public spillovers. I

define p f t and s f t analogously, as the patent production by firm f at time t, and the shares

of exposure to firms indexed by f , respectively. I show in Figure A.12 in Appendix A.2.5

that shares of exposure are very stable over time: the correlation in shares of exposure

to public agencies measured over one five-year interval with shares in the next five-year

interval is very high for the majority of shares, which are between 0 and .2.

An alternative to using technological overlap is to instead rely on patent citations. This

approach however has several drawbacks. The first is that patent citations are sparse; they

only represent a tiny sliver of the knowledge base used in the creation of an innovation.

The second is that patent citations can be a noisy signal of knowledge flows. Third, there
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are some solid microfoundations behind the use of the technological overlap as a measure

of knowledge flow (see Bloom et al. 2013). Lastly, this makes my approach comparable to

the literature.

Timing

Importantly, the timing of the dependent and independent variables in specification

(2.1.2) needs to be informed by empirical evidence about the delays taken by spillovers to

materialize. In particular, one must take a stand on the time it takes for an idea generated

by an upstream knowledge producer (either a private firm or a public agency) to be

converted into profitable product and services by downstream firms. This dynamic aspect

of spillovers is, surprisingly, rarely discussed in microeconomic studies of spillovers. The

evidence on the so-called ‘invention-innovation’ lags comes from a small literature that

has used surveys, case studies, as well as bibliometric data on patents and academic

papers. Its findings suggest that lags of around five years between the dissemination of

an idea–e.g. through a patent or paper publication–and the introduction of a product or

service that builds on it are common, with significant heterogeneity across industries.

Mansfield (1991) for instance surveyed R&D executives in American manufacturing

firms who used extramural research findings in the development of their products or

processes. The mean reported lag between the publication of a finding and the first

commercial introduction of a product using it was 6.4 years. There is some heterogeneity

across industries though: pharmaceutical firms experience the longest lags (10.3 on

average), firms in ‘Instruments’ experience the shortest (4.2). Similarly, the National

Science Board in the US reports that the mean time between the first conception of an

innovation and the innovation itself is 7.2 years, for a sample of 500 academic innova-

tions used in product or processes by American firms between 1953 and 1973 (National
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Science Board, 1975).3 Mowery et al. (2015) present several case studies of academic

innovations that have been successfully commercialized and offer a detailed description

of their patent-to-product timelines. The co-transformation process, an important appli-

cation of modern genetics, took between four and seven years to be used in biomedical

firms’ productions. The commercial development of LED lights using Gallium nitride–a

semiconductor emitting light over a wide spectrum of colors–took between two and seven

years. The glaucoma drug Xalatan took between nine and 14 years.4 Another piece of

evidence comes from Ahmadpoor and Jones (2017) who use the shortest lag between

the publication of a paper and the publication of a patent that cites it as a measure of

spillover delay. They find an average delay of 6.7 years.

Taken together, the findings of this literature suggest that, in spite of the heterogeneity

in lags, spillovers from inventions to commercialization typically take between five and 10

years. Using patent production of the spillover-generating entities at t, and differences in

the outcomes of interest of firms from t to t + 5 (or flow patent production at t + 5) thus

appears warranted. This timing allows firms in my sample to be exposed to spillovers and

to be impacted by them within a reasonable time frame so that I can observe changes in

productivity. My own empirical work, presented later in the paper (Figure 2.3), provides

a justification for the lag between R&D investments by agencies and patent creation. The

timeline shown in Figure 2.1 summarizes the timing used in the variable creation.

3The report studies 500 ‘major’ technological innovations defined as ‘new products or processes
embodying a significant technological change’. They include technologies like nuclear reactors, lasers and
oral contraceptives. Interestingly, these lags tend to vary by country: the average is 3.6 years in Japan, 5.6
in west Germany, 6.3 in the UK and 7.4 in France (table 1-13 and figure 1-13 in the NSF report).

4These are all examples of lags between the dissemination of an innovation and its application by a
firm, these are not lags between the production of science and productivity externalities accruing to firms
relying on science. These science-to-firm lags are typically found to be much longer than innovation-to-firm.
Adams (1990) estimate this lag to be of the order of 20 years, and Marx and Fuegi (2020) find that the
average time lag between a patent application year and the publication year of the papers it cites is 17 years.
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t − 5 t t + 5

Exposure shares
siat

Productivity growth
∆zit

Agencies’ patents
pat

Firm i’s flow outcomes
(patents, own R&D)

Agency a’s funding shock
gat

Figure 2.1: Timeline
Notes: The figure describes the timeline used to construct the data that I rely on for the estimation of (2.1.2). It is
informed by the literature on the ‘invention-innovation’ lag reviewed in the main text of the paper. It also relies on the
empirical exploration of the lag between funding shocks and patent creation shown in Figure 2.3.

2.1.2 Endogeneity

If a researcher could run the ideal experiment to estimate (2.1.2), she would choose, at

random, how many patents pat and p f t upstream agencies and firms are generating in

year t. In such hypothetical case, the exposures to spillovers ∑a sia pat and ∑ f si f p f t would

be orthogonal to the error ϵit by design. With this ideal experiment, the OLS regression of

firm i’s log productivity change at time t on its exposure to federal and private innovation

yields unbiased estimates γ̂ and ε̂.

Departing from the ideal experiment, firms’ exposures to government-funded inno-

vations may not be random and the exclusion restriction E[ϵ′ ∑∑∑ sp|e] = 0 may not hold.

The most likely threat to identification comes from correlated shocks to technologies

that affect both the propensity of upstream agencies to innovate and the outcomes of

downstream firms. Technological advances like the creation of the personal computer

or the development of mRNA vaccines may present new R&D opportunities for the

Department of Defense and the Department of Health and Human Services, respectively,

while at the same time offering growth opportunities to IT and pharmaceutical firms

exposed to these agencies. This type of correlated shock would bias OLS estimates up-

ward and is a standard manifestation of the ‘reflection problem’ (Manski, 1993). Another
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manifestation of correlated shock would be government demand shocks that may increase

R&D spending of an agency (like the DoD in period of war) and at the same time increase

demand for firms who are both exposed to spillovers and government contractors (like

defense firms).

In addition to correlated shocks, a second threat to identification comes from reverse

causality. The government may be increasing some agencies’ R&D because the productiv-

ity of a given sector has been disappointing. This could be the case of the health sector,

which is exposed to research conducted by the various institutes of the Department of

Health and Human Services, and whose productivity growth, by some accounts, has

been lower than in the wider US economy (Spitalnic et al., 2016).

Several choices are likely to limit the extent of these endogeneity concerns. Firstly,

the choices of time periods used for the variable construction helps in alleviating both

correlated shock and reverse causality issues. Technology spillovers are operating over

relatively long time periods (between five and 10 years according to the literature reviewed

in 2.1.1), while government demand shocks such as those caused by wars or pandemics are

typically short lived and have immediate impacts on government contractors’ performance.

Antolin-Diaz and Surico (2022) find that impulse responses of government spending

following military news are indistinguishable from 0 (at the 68% level) after five years.5 In

a careful causal analysis of a government demand shock on plants’ productivity, Ilzetzki

(2022) shows that demand-induced productivity increases in aircraft manufacturing

plants starts decreasing 15 months after the initial shock with output per worker growth

undistinguishable from 0 after 18 months (95% level).6 Government demand shocks

and government-generated spillovers are working on non-overlapping timeline: while

the short-run effects of an increase in government spending are due to demand, they

5Figure 1, first panel.
6Figure 8(b).
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are due to spillovers at longer horizon. Reverse causality issues are also unlikely to be

serious because of the way in which standard policymaking is conducted: changes in

agencies budget are most likely to be informed by past economic outcomes than economic

outcomes in the future.

Secondly, to mitigate the impact of government demand shocks, I remove from

my sample firms in sectors most likely to be exposed to these shocks. These sectors

are: ‘Guided Missiles & Space Vehicles & Parts’ (SIC4 code: 3760), ‘Aircraft’ (3721),

‘Search, Detection, Navigation, Guidance, Aeronautical Systems’ (3812), ‘Pharmaceutical

Preparations’ (2834), ‘Wholesale-Drugs, Proprietaries & Druggists’ Sundries’ (5122),

‘Services-Computer Integrated Systems Design’ (7373), ‘Ship & Boat Building & Repairing’

(3730) and ‘Biological Products’ (2836). Their exclusion removes arms and aircraft

manufacturers such as Lockheed Martin or Raytheon and all big pharmaceutical firms

such as GSK and Pfizer.

Thirdly, one way to evaluate the extent of correlated shocks and reverse causality is

to exploit the panel nature of my SSIV setting and conducting falsification tests using

lagged outcomes. If the productivity growth of firms more exposed to spillovers is higher

in the pre-period, this would be indicative of a violation of the exclusion restriction. I test

for pre-trends and pre-levels in section 2.2 and find no evidence that more treated firms

are different or on a different growth trajectory than less treated firms.

Lastly, to deal with unobserved heterogeneity, I assume that the error ϵit is the sum

of a 2-digit-sector-specific fixed effect ηs(i), a 5-year period fixed effect τt, a geography

(=state) fixed effect λg(i), and an idiosyncratic component (vit) that I allow to be correlated

across firms exposed to a similar set of agencies (Adão et al., 2019) and heteroskedastic. In

my fullest specifications, I also control for four lagged firm observables, in the matrix Xi:

capital stock, sales, employment and patent count, all in logs. The full structural equation

of my SSIV setting is thus:
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∆zit = ϕeit + γ ∑
a

siat pat + ε ∑
f

si f t p f t + ηs(i) + τt + λg(i) + Xitβ + vit (2.1.4)

Controlling for sector, time and state fixed effects will remove variation common to

firms across sectors (including sector-specific productivity trajectories shocks), states and

period (including aggregate demand shocks). Nevertheless, correlated shocks may still

bias my estimates in spite of these adjustments. In the next two sub-sections, I introduce

two novel instrumental variable strategies to deal with this concern.

2.1.3 Historical SSIV instrument

I construct a historical SSIV instrument that allows me to estimate the causal impact

of spillovers from public R&D on firm productivity from 1950 to 2020. This instrument

has the advantage of covering a long time period. However, it cannot be used to estimate

the causal impact of private R&D spillovers on firm outcomes, a weakness my second

instrument addresses.

The instrument combines agency-specific shocks in federal funding and the shares

of exposure to knowledge spillovers siat. The shocks come from variation in total R&D

outlays by 17 government agencies and departments (henceforth, just ‘agencies’) who

have funded some patented innovations, over 13 five-year periods, from 1950 to 2010.

Following the notation of equation (2.1.2), agencies are indexed by a and periods by t.

The identification thus relies on cross-sectional and time-variation in agencies’ budgets.

They consist of the following departments and agencies, in decreasing order of patenting

activity in 2010: the Department of Defense (including DARPA), the Department of Health

and Human Services (including the National Institutes of Health), the Department of

Energy (including ARPA-E), the National Science Foundation, NASA, the Department of
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Agriculture, the Department of Commerce, the Small Business Administration (including

its SBIR seed fund for innovative startups), the Department of Veterans Affairs, the

Department of Education, the Environmental Protection Agency, the Department of

Transportation, the Department of Homeland Security, the Department of Interior, the

Atomic Energy Commission and the Department of State.7

To better understand where the variation used in my identification come from, panels

A.1, A.2 and A.3 in the Appendix show time series of the budgets of selected agencies.

The figures suggest that there is a large degree of heterogeneity and stochasticity in

budget changes across agencies and over time. Moreover, a lot of the variation is driven

by political decisions or geopolitical events that are plausibly uncorrelated with firm

performance and innovation five to ten years later, unless perhaps through spillovers.

For instance, changes in spending patterns by the Department of Defense, NASA, the

Department of Energy and the Department of Homeland Security are clearly the result of

wars, foreign threats, space races, terrorist attacks, the oil shock and other geopolitical

events. These are some of the most active agencies when it comes to filing patents and

firms are therefore largely exposed to these agencies’ innovations. Even agencies without

a clear strategic or political mission are subject to variations in funding driven by political

events. The National Science Foundation for example, experiences a sluggish budget

growth during the Korea war as resources are directed toward the war effort. Conversely,

its large budget increase that started in the late 1950s is the result of specific laws triggered

by the successful launch of Sputnik in 1957. Similarly, the 1983 increase is due to a sudden

decision by the Reagan administration to increase funding for science and engineering.8

To summarize, changes in federal agencies’ budget offer pausibly random variation that is

7Some agencies do not exist over the whole 1950-2010 period (e.g. NASA, NSF). In periods when an
agency does not exist, the shares sat are equal to 0 and the sum of shares for other agencies are equal to 1.

8For a detailed history of the NSF, see ‘The National Science Foundation: A Brief History’ (1994), by
George T. Mazuzan https://www.nsf.gov/about/history/nsf50/nsf8816.jsp. Retrieved January 2023.
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uncorrelated with firm outcomes. In robustness checks, I also use only a subset of funding

shocks that are most evidently random based on my read of the agencies histories and

the classification of narrative shocks by Fieldhouse and Mertens (2023). This approach

can be seen as a ‘narrative-SSIV’ (more details are provided in 2.2.1).

The funding shocks are calculated as the log yearly R&D budgets of agencies, deflated

using the Bureau of Labor Statistics CPI,9 and measured at t − 5, five years before the

agencies’ patents. The funding shocks are denoted by gat.

gat := ln(R&D budgetat−5) (2.1.5)

These shocks are used to construct the firm-specific instrument, ∑
a

siatgat, for the en-

dogenous exposure to public R&D spillovers, ∑
a

siat pat. Equation (2.1.4) is then estimated

by Two-Stage Least Squares (2SLS). The endogenous exposure to private R&D spillovers

is not instrumented in the SSIV setting.

Out of a theoretical maximum of 221 shocks (|A| × |T| = 13 × 17 = 221), 172 are used

in my empirical exercise because some agencies did not exist for the full period over which

I observe firm outcomes and, in some rare occasions, there is no technological overlap

between firms and some agencies in some periods. The quasi-experimental SSIV design

relies on numerous, uncorrelated and as-good-as-random shocks. To check if shocks are

numerous enough and not dominated by one agency×period cell, I compute the inverse

of the Herfindahl index of average exposure shares at the level of the identifying variation.

A high value of the HHI indicates a dispersed source of variation across agencies and

periods and is a necessary condition for the consistency of the SSIV estimator and the

asymptotic validity of the exposure-robust confidence intervals (Borusyak et al., 2022).

Formally, I calculate:

9Amounts are expressed in 2020 dollars, using the BLS CPI series CUUR0000SA0:
data.bls.gov/timeseries/CUUR0000SA0.
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inverse HHI :=
1

∑A,T
a,t s2

at

where sat :=
1

Nat
∑

i
sait (2.1.6)

that is, I compute the inverse HHI of average shares of exposures of firms, indexed

by i, exposed to a in t.10 Average shares of exposure sat are calculated over all Nat firms

exposed to agency a at t. The inverse HHI in my sample is 138, suggesting a reasonably

dispersed set of shocks.11 For inference, this value is well above threshold of 20 at which

exposure-robust standard errors are close to their asymptotic counterparts (Borusyak et al.

2022, p. 199).

The highest shares of exposure in my sample are informative about the variation I

am using; they show to which agencies, in which periods, firms in my sample are most

exposed. The highest 6 shares are all associated with NASA or the Department of Defense

in the late 1950s to early 1970s, consistent with the importance of these two agencies in

federal R&D funding during this period. The department of Health and Human Services,

the department of Energy and the department of Agriculture in the 1960s and 1970s are

completing the top 10.12 Along with a strong, exposure-robust, first stage F-stat and an

absence of pre-trends (both discussed in section 2.2), the high inverse HHI is indicative of

the appropriateness of the SSIV design.

2.1.4 Patent examiner leniency instrument

While the historical SSIV setting enables me to estimate γ–the impact of public R&D

spillovers on firm productivity growth–exogenous shocks in agencies’ budgets cannot

10I use Borusyak et al. (2022)’s command to transform my dataset at the firm×period level into a dataset
at the level of the identifying variation (agency×period), with corresponding exposure weights.

11If one were to run the SSIV specification at the level of agencies×period, like in the Borusyak et al.
(2022) setting, this would means that the effective sample size used is 138.

12The order is as follows: NASA-1970 (2.8%), Defense-1970 (2.6%), Defense-1965 (2.3%), NASA-1965
(2.0%), Defense-1960 (1.9%), Defense-1955 (1.6%), HHS-1970 (1.6%), Energy-1970 (1.5%), HHS-1965 (1.4%)
and Agriculture-1965 (1.3%).
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be used to estimate ε, the impact of private R&D. In this section, I present another

quasi-experimental identification strategy that addresses this limitation. It relies on

patent examiners’ leniency, defined as their rate of conversion of patent applications into

patent grants, and it enables me to compare the magnitude of spillovers from public

agencies to that of spillovers from private firms. The drawback of this approach is to

not be applicable to the whole period over which I observe firm outcomes. The patent

application data which is used to calculate examiners’ leniency is indeed only available

from 2001 onward. The results of this approach are therefore complements and not

substitutes to the historical SSIV results. I describe this identification strategy in more

details in this sub-section.

Examiners all have the same mandate: grant patents to inventions that are non-obvious,

novel and useful. In practice however, they have some discretion when deciding to grant

a patent. Examiners vary greatly in their average grant rate, even within years and within

the narrow technological categories within which they officiate (‘art units’, which are

different from patent classes). The leniency of an examiner, in turn, has a strong positive

association with the probability a patent application is converted to a patent grant.

Previous work has showed that assignment of applications to examiners can be treated

as random, conditional on years×art unit fixed effects (Sampat and Williams, 2019; Farre-

Mensa et al., 2020). The random allocation of applications to examiners of varying leniency

therefore provides interesting quasi-experimental variation in patent grants, which can

be used to study the impact of being awarded a patent on firm outcomes. The innovation

literature has made extensive use of this ‘patent lottery’ (Farre-Mensa et al., 2020) to study,

among other, patent litigation (Feng and Jaravel, 2020), startup growth (Farre-Mensa et al.,

2020) and, like in the present context, spillovers (Sampat and Williams, 2019). In my

setting, I am using examiners’ leniency in a novel way: not at the level of the focal firm

whose outcomes I am interested in, but at the level of the agencies a focal firm is drawing
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inspiration from.

The patent lottery is used here to affect spillovers. Some firms happen to be exposed

to spillovers by entities who were fortunate to face more lenient examiners. Other firms

are receiving fewer spillovers because upstream patent examiners were more conservative.

The patent examiner instrument acts as a randomizing device for upstream patent

generation, conditional on a suitable set of covariates. It therefore approximates the ideal

experiment of randomizing knowledge production by agencies and firms.

The identification relies on the creation of an instrument for ∑
a

siat pat and ∑
f

si f t p f t,

the exposures to patent production by agencies and firms. The instruments are weighted

average leniencies faced by upstream agencies ∑
a

siala, and by upstream firms ∑
f

si f l f . In

both instruments, the shares are calculated like in the historical shift-share instruments us-

ing (2.1.3). Average leniencies are calculated as la,t = ∑
j∈Jat

le(j),t

|Jat|
: the average of examiners’

leniencies le(j)t across the set of all the applications that agency a submits in year t. This

set is denoted Jat. Applications are indexed by j and examiners by e. Examiner leniencies

for an agency are calculated using all applications submitted to an examiner, excluding

those submitted by the agency in question. This creates leave-one-out leniency indices that

are agency-specific. They are further residualized on art units and years. The exposure

to average leniency of upstream agencies ∑
a

siala can then be used as an instrument for

the change in exposure to spillovers by these same upstream agencies ∑
a

sia pa. The next

section shows that this instrument is strong for both private and public R&D. As for the

exclusion restriction , it is likely to be satisfied due to the quasi-experimental nature of

the allocation of applications to examiners.
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Discussion

What are the mechanisms through which the examiner instrument work? There are

two potential mechanisms. The first is the validation of the quality of an innovation. An

innovation protected by a granted patent is more likely to be of higher quality than a

non-granted innovation because it satisfies the criteria of usefulness, non-obviousness

and novelty used by patent examiners to grant patents. This makes the granted patent a

more powerful vehicle for spillover because of this ‘seal of approval’ from the USPTO.

The second mechanism is the revelation of the innovation to the wider world. Patent ap-

plications are confidential for 18 months from the date of filing. This so-called ‘pendency’

lag covers almost entirely the average lag between patent applications and grant that

USPTO patent applicants have historically experienced (around 20 months). Patents that

are granted before the 18 months of secrecy therefore provide a visibility boost to their

innovation, in addition to the signal of quality. Moreover, patent applicants can decide

to opt out of the automatic disclosure of application. Over the period covered by my

instrument (2000-2010), around 10% of applicants opt out when applying.

One concern about the validity of this IV approach is that aggregating leniency scores

of examiners across all the applications of an agency will lead to a lack of usable variation

in the instrument. Agencies indeed draw successive, plausibly independent and random

examiner leniencies when they submit several patent applications. The average examiner

leniency they are exposed to will therefore converge in probability to 0–the population

mean of leniency scores residualized on art units×year–as their number of applications

grow, by the Law of Large Number. The larger the volume of application an agency files,

the smaller the variation in average leniency scores. This may then lead to a weak first

stage and and invalidate this IV design. The problem may be more severe for the public

R&D instrument because public agencies have typically higher volumes of applications
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than firms.

To mitigate this concern, I define public agencies as the actual assignees and/or

funding agencies of patents as reported in the USPTO data, rather than aggregating

public agencies at the coarse level for which I have data on R&D budgets like in the SSIV

design. Patent applications are therefore linked to entities such as the Lawrence Livermore

National Laboratory or the Advanced Research Projects Agency–Energy (ARPA-E) rather

than the wider Department of Energy to which they belong. There are 200 such fine

agencies compared to the 17 used in the historical SSIV. This step reduces the average

volume of agencies’ applications and thus mitigates the risk of the variation in average

leniencies to collapse to 0. Figure B.1 in the Appendix shows that this step leaves a lot of

useful variation in the average leniencies faced by agencies and firms, if they file fewer

than 20 patent applications. In my data, 90% of firms and 60% of fine agencies file fewer

than 20 patents a year. Shares of exposure to spillovers are appropriately calculated over

these 200 fine agencies and thousands of private patent assignees.

2.2 Results

I now turn to the regression results from the two instrumental variable strategies,

starting with the historical SSIV.

2.2.1 Historical SSIV

My main sample consists of 6,499 firm-by-period observations for which outcome

variables, pre-trend outcomes and controls are not missing. Firms in ‘Finance, Insurance

and Real Estate’ are excluded. Observations are further selected on non-missing exposures

to public or private spillovers. Table B.1 in the Appendix provides summary statistics
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about the sample. Firms are rather large, with a median employment count of 5,000

workers, median yearly sales of 1.2 billion 2020 USD and 4 million in yearly median R&D

expenses. Filing patents in any given year is relatively rare; the median firm files three.

The most represented sectors are in electronic components, lab apparatus & instruments,

and surgical, medical, & dental instruments and supplies.

For all SSIV results, standard errors are robust to arbitrary correlation across firms

that are exposed to a similar distribution of agencies, using the method developed by

Adão et al. (2019). Adão et al. (2019) show that clustered or heteroskedasticity-robust

standard errors may substantially underestimate the variability of IV estimators when the

instrument takes a shift-share form. The reason is that the regression residual vit in (2.1.4)

will include shift-share-like terms with shares correlated with the shift-share instrument.

This leads firms with similar exposure shares to have similar exposures to the shocks and

then similar residuals. This correlation structure is likely to exist in my setting: firms

more exposed to innovation by NASA, for instance, may have correlated productivity

growths that standard errors clustered at the sector or state level may fail to account for.

First stage

The validity of the SSIV identification relies on a strong first stage i.e. a strong relation-

ship between funding shocks at t − 5 and patent production funded by these agencies at

t. Figures 2.2 and 2.3 provide evidence that such a relationship exists. Figure 2.2 shows a

scatterplot of the public R&D spillovers variable, ∑
a

siat pat, residualized on sector, period

and state fixed effects as well as lagged firm controls (R&D, employment, capital and

patent count) on the average of R&D funding shocks, ∑
a

siatgat, also residualized. The

relationship is positive and significant, with an exposure-robust F-stat of 98, suggesting
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that the instrument is strong.13

To gauge the appropriateness of the timing, and in particular the five-year lag sep-

arating funding shocks to patent production by agencies, Figure 2.3 provides a visual

assessment of the dynamic relationship between the two by reporting the impulse re-

sponse of patents to R&D funding at various time horizons. It reports point estimates and

confidence intervals of local projections of yearly patent production by federal agency

(in log patents) on R&D funding levels (in log 2020 dollars), where patent production

is observed at different years relative to the funding. The specification controls for year

and agency fixed effects, and for five lags of funding.14 The regressions are weighted

by patent counts at time t = 0 to account for the greater importance of large agencies in

the composition of federal R&D, and thus in the shares of exposures of firms to federal

innovation. Newey-West standard errors (Heteroskedasticity and Autocorrelation Consis-

tent) with one lag are reported (95% and 90% levels). The figure shows that an agency’s

patents production after a funding shock is positively associated with the (log) amount

of funding at t. The elasticity progressively increases after the funding shock, until it

reaches a maximum of 0.45 at t + 9 before slowly coming back down to its baseline level.

While the impulse response is imprecisely estimated, patent production clearly shows an

upward trend after the shock. Interestingly, patent production before the funding shock

does not appear to be correlated with the shock. This provides some evidence that the

R&D funding variation that I exploit is not a consequence of underlying productivity or

innovation trends (captured by agencies’ patent productions).

13The corresponding sector-clustered Cragg-Donald F-stat is 89.4. The lower value of the exposure-robust
F-stat highlights the relevance of exposure robust inference in my setting.

14For a given lag τ, the estimating equation is:

pa,t+τ = βxat + γ′Xat + δi + τt + ϵit

pa,t+τ is the log count of patents by agency a in year t + τ, xat is the log R&D budget of agency a in focal
year t and the vector Xat contains lags of R&D budgets. The coefficient of interest is β. τ varies from -10 to
+15.
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Figure 2.2: First-stage graph: SSIV
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Figure 2.3: Local projection of patent produc-
tion on agency funding

SSIV first stage

Notes: The left-hand side scatterplot shows the correlation between public R&D spillovers and exposure to funding
shocks for all 6,499 firms×period in my historical SSIV sample. Standard errors and first-stage F-stats are exposure-robust
(Adão et al., 2019). Spillovers and exposure to funding are partialled out on the full set of controls used in (2.1.4).
The right-hand side graph is a local projection of (log) patents by federal agencies on their (log) R&D funding, at
different time horizons. The unit of analysis is a federal agency (N = 17). Standard errors are Heteroskedasticity and
Autocorrelation Consistent (Newey-West with one lag).

The delay between public funding of R&D and patent production is in line with the

evidence reported in previous research. De Rassenfosse et al. (2019) find that the average

gestation lag between a US government procurement contract being awarded to a firm

and the filing of a patent by this firm is 33 months (2.75 years), with 90% of all patents

linked to contracts being filed between 1 and 7.5 years.15 Azoulay et al. (2019) study grants

from the NIH to pharmaceutical firms and find longer delays: two thirds of grantees who

eventually file a patent, file it within 10 years of the award data and nearly all firms who

do file a patent do it within 15 years.16 Overall, the empirical exercise of Figure 2.3 and

previous research provide supporting evidence for the timeline described in Figure 2.1.

15Own calculations based on figure 2A of De Rassenfosse et al. (2019).
16Figure 5, p. 135.
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Main impacts

I report here on three sets of 2SLS regression results, all using a stacked difference

specification that divides the 1950-2020 panel into equally sized 5-year intervals to

estimate equation (2.1.4). The first set of results, shown in Table 2.1, reports changes in

productivity, sales and employment from t to t + 5, and flow variables such as patent

production and R&D investments at t+ 5. I further report the probability of filing a patent

at t + 5 to evaluate the extensive margin impact of public R&D spillovers on innovation.

In all specifications, standard errors are exposure-robust (Adão et al., 2019). To investigate

the sensitivity of my 2SLS estimates, I report coefficients γ̂ across specifications with

increasingly comprehensive controls. All specifications include sector, period and state

fixed effects. To investigate the importance of the coarseness of sector fixed effects

specifically, I present in the last columns coefficients obtained when controlling for 238

fine 3-digit sectors (like ‘382 – Measuring and Controlling Devices’) instead of the 65

coarser 2-digit sector fixed effects (like ‘38 – Instruments and related products’). Starting

from the simplest specification, including only own R&D effort, patents, and period, state

and sector fixed effects, in column (1), I progressively add the endogenous private R&D

spillovers in (2) and lagged firms’ capital, employment and sales in (3). Importantly, all

first stage F-stats are high; they hover at around 100.

Overall, the results shown in Table 2.1 suggest that an increase in exposure to public

R&D spillovers has a positive impact on a broad range of firm-level productivity indicators

and own R&D expenditures. It is however notable that firms do not appear to grow more

in terms of sales or employment. Coefficients are stable across specifications, even when

switching from coarse to fine sector fixed effects.

Productivity at the firm level is estimated using the Olley and Pakes (1996) method
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with the correction suggested by Ackerberg et al. (2015).17 Using this measure of produc-

tivity as my main outcome of interest, I find that a 1% increase in public spillovers causes

a .023% to 0.025% increase in productivity across specifications (first rowm of Table 2.1).

Estimated measures of productivity are also positively impacted: Cobb-Douglas and

translog productivities are all positively impacted with elasticities between .03 and .04

(significant at the 1% level, not reported).

Turning to innovation outcomes, I find that public R&D spillovers positively impact a

firm’s investment in R&D. Each 1% increase in spillovers cause a .023 to .026% increase in

own R&D spending, five years after the shock (penultimate row of Table 2.1). This result

echoes the finding of Moretti et al. (2019) who show that public and private R&D are

complements: an increase in public R&D tends to crowd in private investment in R&D. It

also complements the findings of Fieldhouse and Mertens (2023) that R&D appropriation

for both defense and non-defense shocks cause private R&D investments to increase.

The impact of public R&D spillovers on innovation by the focal firm is also notable.

To deal with the large number of zeroes in the patent count field, I use the Inverse

Hyperbolic Sine of patent counts at time t + 5 rather than the log of patents.18. It appears

that firms increase their own patent production following a positive spillover shock: each

1% increase in spillovers generates a more than 0.02% increase in own patent production.

Finally, the last column of Table 2.1 shows that public R&D spillovers also impact a firm’s

propensity to file patents five years down the road.

17COGS are used as variable inputs, the state variable is the capital stock (PPEGT) and the instrument is
investment (CAPX). Estimation is performed with Stata’s prodest package.

18IHS(x) = ln
(

x
2
+

1
2

√
x2 + 1

)
. The Inverse Hyperbolic Sine behaves like the natural logarithm for

large values of x, but it is defined at x = 0.
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(1) (2) (3) (4)

Productivity
∆5 ln(TFP)t .024** .025*** .025*** .023**

(.009) (.009) (.009) (.011)

Firm sales and employment
∆5 ln(Sales)t .009 .009 .008 .010

(.008) (.008) (.008) (.007)
∆5 ln(Employment)t .007 .008 .008 .009

(.009) (.009) (.009) (.008)

Innovation
IHS Patent countt+5 .021*** .023*** .024*** .026***

(.007) (.008) (.007) (.009)
ln(R&D)t+5 .040*** .029** .031** .035***

(.015) (.013) (.013) (.009)
Pr(Files patents)t+5 .016* .018* .019** .017**

(.009) (.009) (.009) (.008)

First-stage F-stat (exp. robust) 97.34 97.40 98.14 108.14

Period FE ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓
Sectors FE (2-digit) ✓ ✓ ✓
Sectors FE (3-digit) ✓

Own R&D and patents ✓ ✓ ✓ ✓
Private R&D spillovers ✓ ✓ ✓
Lagged firm controls ✓ ✓

N 6,499 6,499 6,499 6,499

Table 2.1: Historical SSIV regression results – 5 years

Notes: The unit of observation is a firm×period. This table shows the estimates for ϵ, the impact of a 1% increase in spillovers
from public R&D on various firm outcomes (listed in the leftmost column). Standard errors and F-stats are exposure-robust
(Adão et al., 2019): they are computed using the authors’ reg ss and ivreg ss commands. Lagged firm controls include
capital, employment, sales and patent counts (all in logs).
***, **, and * indicate two-sided significance at the 1, 5 and 10% levels, respectively.
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Pre-trends and falsifications

To evaluate the validity of the historical SSIV setting, I conduct falsification tests

where I investigate if firms who are more intensively treated were on different growth

trajectories before time t. To do so, I regress lagged outcomes (measured from t − 5 to

t, or at t for flow variables) on the instrumented exposure to spillovers and the suite of

controls of specification (2.1.4). Results are reported in Table 2.2. I find that firms more

exposed to spillovers do not appear to be on a significantly different trajectory than firms

less intensively treated. In the fullest specification (column 3), the coefficient on public

R&D spillovers is never significantly different from 0. Most importantly, firm TFP does

not exhibit any pre-trend. Some pre-trends appear when I control for fine sectors (column

4); firms experiencing larger increases in public R&D spillovers tend to invest more in

R&D already at time t, but they file fewer patents. One explanation for the positive

response of time-t R&D can be that private R&D responds more to public R&D funding

(gat shocks measured at time t − 5) than to public R&D patent production (pat, measured

at time t).

Overall, the absence of pre-trends in my main specification (column 3) provides

some credibility to the SSIV setting by ensuring that the positive productivity impacts

documented in Table 2.1 are not a reflection of an already existing positive increase in

productivity and innovativeness that would have happened irrespective of the treatment.

10-year outcomes

In Appendix B.1.2, I use the same sample of firms to test if the productivity increase

that happens after 5 years persists over longer horizons. The increase in firm TFP is

indeed persistent after 10 years (+.027%, significant at the 5% level), suggesting that

firms experience a durable rise in productivity following a one-time spillover shock.
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(1) (2) (3) (4)

Productivity
∆5 ln(TFP)t−5 .014 .011 .011 .014

(.009) (.009) (.009) (.011)

Firm sales and employment
∆5 ln(Sales)t−5 .003 .003 .002 .004

(.008) (.008) (.007) (.007)
∆5 ln(Employment)t−5 .009 .01 .009 .011*

(.006) (.006) (.006) (.006)

Innovation
IHS Patent countt -.005* -.004 -.004 -.005**

(.003) (.003) (.003) (.003)
ln(R&D)t .026* .018 .019 .021**

(.014) (.013) (.013) (.009)
Pr(Files patents)t -.003 .000 .000 -.003

(.009) (.010) (.010) (.009)

First-stage F-stat (exp. robust) 97.34 97.40 98.14 108.14

Period FE ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓
Sectors FE (2-digit) ✓ ✓ ✓
Sectors FE (3-digit) ✓

Own R&D and patents ✓ ✓ ✓ ✓
Private R&D spillovers ✓ ✓ ✓
Lagged firm controls ✓ ✓

N 6,499 6,499 6,499 6,499

Table 2.2: Historical SSIV regression results – Pre-trend tests

Notes: The unit of observation is a firm×period. Standard errors and F-stats are exposure-robust (Adão et al., 2019): they are
computed using the authors’ reg ss and ivreg ss commands.
***, **, and * indicate two-sided significance at the 1, 5 and 10% levels, respectively.

Interestingly, a greater exposure to public R&D spillovers cause a slight but detectable

reduction in employment after 10 years. In other words, firms benefit from technology
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spillovers by becoming more productive and by economizing on labour, over long-enough

durations.

Narrative approach

If R&D expenditures by federal agencies are reacting to factors affecting productivity

trends, the quasi-experimental SSIV approach I am using may not be appropriate. My

estimates would then capture a (plausibly positive) correlation between investments by

federal agencies in certain technologies and the upward productivity growth of firms

who are active in the use or development of these technologies. The absence of pre-trends

documented in Table 2.2 provides some evidence that this issue is unlikely to be present in

my setting. Nevertheless, I provide further validation for my quasi-experimental approach

by selecting agency funding shocks that are likely to be uncorrelated with other factors

affecting productivity trends. This narrative approach is similar to that of Fieldhouse

and Mertens (2023) and I partly rely on their selection of historical funding shocks to

select mine. I further add shocks experienced by the National Science Foundation and the

department of Homeland Security to my list of narrative shocks. The shocks I keep in my

narrative-SSIV are listed in Tables B.3 and B.4 in Appendix B.1.3, along with a justification

for their inclusion. This procedure gives me a list of 47 shocks. The Department of

Defense is the most represented agency among these shocks (15 shocks in total). It is

followed by the National Science Foundation (9) whose funding is eminently political. For

instance, its research priorities in the 1950s were set by the urge to keep a technological

lead over the USSR, and the NSF is usually one of the first agencies to get its funding

reduced in times of tight budget controls, like after the Budget Control Act of 2011.

Figures 2.4 and 2.5 show how the estimates from the narrative-SSIV approach compare

to those of the standard SSIV for the main productivity outcomes I am interested in. First,

it is notable that the exposure-robust F-stat is slightly lower when using the narrative-
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SSIV; its value is 48.25 compared to 98.14 (column 3 of Table 2.1): the narrative-SSIV

instrument uses less variation than what is available across the intersection of agencies

and time periods and this results in a slightly weaker first stage. The second stage results

are however broadly similar across the two specifications. The narrative-SSIV coefficients

indicate no pre-trend across most outcomes. However, patent production is significantly

negative the pre-period when using the narrative SSIV. Turning to 5-year firm outcomes,

nearly all narrative-SSIV coefficient are very close to the SSIV ones with the exception

of the coefficient on spillovers when patent production is the dependent variable; the

coefficient is indistinguishable from 0 in this specification. Overall, the narrative-SSIV

approach provides some support for the quasi-experimental SSIV approach. With the

exception of the specification when patents are on the right-hand side, restricting shocks

to those that are evidently exogenous does not affect the results much.

It is also notable that the elasticity of productivity to public R&D spillovers is higher

(+.071%) when using the exogenous shocks than when using all shocks (+.025%). This

result is a likely manifestation of heterogeneous impacts across federal agencies.

Treatment heterogeneity

The discussion so far has postulated a constant causal effect of spillovers on firm

growth, across all firms. I present here estimates of treatment effect heterogeneity by firm

size. These results suggest that the impact of public R&D spillovers manifest itself in the

aggregate economy through changes in productivity experienced by smaller firms. This

mechanism is modeled formally in chapter 3.

Several reasons motivate the focus on treatment heterogeneity. Firstly, there has been

a secular trend toward more concentration among American businesses, in particular

since the 1960s, as documented by Kwon et al. (2022). Research into the causes of the

rise in concentration is still very active and of prime policy interest. Previous work has
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Figure 2.4: Pre-trends
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Figure 2.5: 5-year outcomes

Comparison of the SSIV (blue) and narrative-SSIV (orange)

Notes: The figures show point estimates and 95% confidence intervals of the coefficients of exposure to spillovers, instrumented
by the SSIV (in blue) and narrative-SSIV instruments (in orange). Estimates come from my preferred specification of column (4)
in the regression tables. The unit of observation is a firm×period. Standard errors and F-stats are exposure-robust (Adão et al.,
2019): they are computed using the authors’ reg ss and ivreg ss commands.
***, **, and * indicate two-sided significance at the 1, 5 and 10% levels, respectively.

emphasized the role of technology (Autor et al., 2020; Hsieh and Rossi-Hansberg, 2023),

a lack of competition, perhaps caused by a lack of appropriate regulation (Gutiérrez

and Philippon, 2017), increased barriers to entry (Furman, 2015), decreasing spillovers

between market leaders and followers (Akcigit and Ates, 2022; Olmstead-Rumsey, 2022)

or globalization (Feenstra and Weinstein, 2017). My empirical exercise suggests another,

complementary explanations: smaller firms rely more on spillovers from public R&D

than larger firms and the decline in public R&D might therefore put smaller firms at a

disadvantage.

Secondly, as fact 3 in chapter 1 has shown, smaller firms are more likely to cite public

R&D patents which points to he importance of spillovers for them. Prior work has shown

that firms of different sizes use spillovers differently. Acs et al. (1994) for instance, were

the first to document that smaller US firms make a more extensive use of spillovers than

large ones. By contrast, large corporations rely more on their own R&D investments.

The theoretical argument is that, with a lesser capacity to mobilise own R&D funds,
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small firms tend to rely on another complementary input in their knowledge production

function: ideas from other sources. Audretsch and Vivarelli (1996) finds similar results

among Italian firms.

To test if smaller firms in my data benefit more from public R&D spillovers than

larger ones, I modify my estimating equation (2.1.4) by adding the interaction of the

public spillover variable with the natural log of firm employment in t − 5, taken here

to represent firm size. I demean firm size by average log employment. The coefficient

on the interaction term can thus be interpreted as the marginal impact of a 1% increase

in spillovers on the productivity of a firm that is one log-point larger than average. At

the average firm size of 23,000 employees, this one log-point difference corresponds to a

jump to 62,500 employees (an e1-fold increase). Equivalently, this is comparable to the

difference between the median firm (5,000 employees) and a firm at the 70th percentile

(13,500). The estimating equation for the interaction effect is:

∆zit =ϕeit + γ1 ∑
a

siat pat + γ2 ∑
a

siat pat × ln ( ˜empit−5)

+ ε ∑
f

si f t p f t + ηs(i) + τt + λg(i) + Xitβ + vit (2.2.1)

where γ1 is the baseline impact and γ2 is the interaction effect. ln ( ˜empit−5) stands for

demeaned employment at t − 5. Public R&D spillovers and their interaction with size are

instrumented by funding shocks and funding shocks interacted with size, respectively.

Standard errors are exposure-robust. As shown in Table 2.3, heterogeneity of the impact

of spillover matters, and the coefficients on the treatment interacted by firm size have

a negative sign for productivity, sales and employment: larger firms are less likely to

benefit from spillovers from public R&D along these dimensions. The baseline impact
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on TFP is positive, suggesting that all firms benefit from spillovers. Baseline elasticities

of .018% to .023% are in line with the main impacts found in Table 2.1. This positive

effect on productivity is quickly decreasing with firm size though; a firm one log point

larger than its peers experiences a .006% lower increase in value added per worker due to

public R&D spillovers, as can be seen from the point estimate of γ2 in column 3 of Table

2.3. Taken at face value, and assuming that the log-linear relationship between spillovers

and firm size holds further away from the average firm size, this means that a firm 3.6

log-point bigger than the average firm experiences no productivity growth from public

R&D spillovers. While firm sales and employment did not appear to be affected by public

R&D spillovers in the baseline specification, small firms experience large gains in size

according to the coefficients on the interaction term reported in table 2.3. A firm 1-log

point smaller than the average firm grows by .016% (.0035+.0071, column 3) in terms of

sales and by .013% (-.0021+.0146, column 3) in terms of employment count.

Interestingly, larger firms are more likely to file patents following an increase in public

R&D spillovers. This finding points to the greater reliance of large firms on the patent

system to protect their IP (Mezzanotti and Simcoe, 2023). They are also investing in R&D

at a higher rate than smaller firms.

Summary and discussion

This section has reported on several empirical exercises using a historical SSIV identifi-

cation to identify the causal impact of public R&D spillovers on firm productivity. I have

documented that a 1% larger public R&D spillover shocks translate into .025% higher

productivity (TFP estimated via the Olley and Pakes (1996) methodology) at the firm

level. I have also shown that small firms are benefiting much more from these spillovers

when it comes to productivity, sales and employment growth. One drawback of the SSIV

approach is that I cannot compare the magnitude of impact of public spillovers to that of
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private spillovers. The next sub-section turns to my second instrument to make progress

on this front.

2.2.2 Patent examiners regressions

Patent examiner regressions provide interesting evidence that spillovers from public

agencies are between two and three time as impactful as spillovers from the private sector

when it comes to increasing private firms’ productivities.

Examiner leniency instrument first stage

For both the public and private R&D instrument, the first stage is rather strong, with

F-statistics around 18 and 6.4, respectively, as can be seen in figure 2.6 and 2.7 which plots

the endogenous exposure to spillovers as function of the exogenous instrument using

examiners’ leniency, for the private and public exposures to spillovers. Both quantities

are partialled out on the set of controls used in the regression results. The joint F-stat

(Cragg-Donald) is 56.3 for my main specification. Because the identifying variation in

my patent examiner regressions come from the examiners and not the upstream firms or

agencies filing patents, exposure-robust F-stats and standard errors are not indicated. I

therefore use clustered standard errors at the period×sector level.

Patent examiner IV results

In Table 2.4, I report the results of estimating equation (2.1.4) by 2SLS when exposure

to public and private spillovers are instrumented by ∑
a

siatlat and ∑
f

si f tl f t, respectively,

the average leniencies to which upstream patent assignees are exposed to. The sample

consists of 5,846 firm×period observations. In line with equation (2.1.4), I control for
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β = 6.99***  (2.62)
t = 2.67
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Figure 2.6: Private spillovers

β = 10.09***  (2.35)
t = 4.78
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Figure 2.7: Public spillovers

First stages

Notes: The graphs show the correlations between the endogenous treatment, ∑a ln(patentsa) (the average exposure to spillovers
from agencies or firms indexed by a), and the instrument, ∑a leniencya (the average leniency faced by agencies or firms indexed
by a). Both the endogenous treatment and the instruments are residualized on periods, states and 3-digit sectors fixed effects,
as well as lagged R&D capital, employment and patent count. This corresponds to specification (3) in Table 2.4.
***, **, and * indicate two-sided significance at the 1, 5 and 10% levels, respectively. Standard errors are clustered at the period
and 2-digit sector level.

the lagged R&D expenditure of firms to capture increases in own productivity not

directly attributable to spillovers, as well as the progressively more exhaustive suite of

controls used in the historical SSIV regressions. I present results for my main measure of

productivity, as well as a test for pre-trends for this outcome.

The results in Table 2.4 suggest that firm level productivity increases by more following

a shock to public spillovers than after a shock to private spillovers. In my preferred

specification with all controls and SIC2 industry fixed effects (column 4), a 1% increase

in public spillovers causes a 0.08% increase in productivity (significant at the 1% level).

This estimate is not too far from the .07 elasticity that I obtained with the narrative-SSIV

specification, but it is higher than the .025 elasticity from the baseline estimate. One

tentative explanation for the discrepancy is that the period over which the patent examiner

instrument is used (2000-2010) is one of sustained productivity increase in the American

economy. The higher impact of public R&D spillovers here might capture some of this
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effect.

In contrast, a 1% increase in private spillovers causes an increase in productivity of

only a third to a half of that amount. But the estimate of the private spillovers coefficient

is not statistically different from zero and it is imprecisely estimated. The evidence about

the different impacts of public and private R&D spillovers is mixed.

Table 2.4 also reports pre-trend tests on firm productivity, in the spirit of those

reported for the historical SSIV instrument. Across specifications, there is no pre-trend in

productivity.

To evaluate if the micro empirical estimates from the historical SSIV and the patent

examiner instrument matter for aggregate growth and inequality, I now turn to a general

equilibrium model of growth that uses these micro estimates as calibrated parameters.
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(1) (2) (3) (4)

∆5 ln(TFP) Baseline .0205** .0225** .0214** .0183*
(.0092) (.0093) (.0092) (.0107)

Interaction -.0037*** -.0039*** -.0059*** -.007***
(.0001) (.0001) (.0004) (.0003)

∆5 ln(Sales) Baseline -.0009 .001 .0035 .0058
(.0071) (.0073) (.008) (.0072)

Interaction -.0114*** -.0117*** -.0071*** -.0059***
(.0002) (.0002) (.0004) (.0003)

∆5 ln(Emp.) Baseline -.0052 -.0023 -.0021 -.002
(.0079) (.008) (.0082) (.0074)

Interaction -.0148*** -.0152*** -.0146*** -.016***
(.0002) (.0002) (.0004) (.0004)

IHS Patent countt+5 Baseline .0368*** .0359*** .0344*** .0354***
(.0081) (.0082) (.0078) (.0093)

Interaction .0188*** .0189*** .016*** .0146***
(.0003) (.0002) (.0005) (.0005)

ln(R&D)t+5 Baseline .0613*** .0481*** .0445*** .0524***
(.0155) (.0127) (.0131) (.0085)

Interaction .0252*** .0268*** .02*** .0262***
(.0006) (.0003) (.0007) (.0005)

Pr(Patents)t+5 Baseline .0176** .0199** .0202** .0189**
(.0088) (.0095) (.0095) (.0084)

Interaction .0022*** .002*** .0027*** .0032***
(.0002) (.0002) (.0004) (.0004)

First-stage F-stats Baseline 97 98 98 108
(exposure robust) Interaction >1,000 >1,000 >1,000 >1,000

Joint19 863 905 902 898
Period FE ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓
Sectors FE (2-digit) ✓ ✓ ✓
Sectors FE (3-digit) ✓

Own R&D and patents ✓ ✓ ✓ ✓
Private R&D spillovers ✓ ✓ ✓
Lagged firm controls ✓ ✓

N 6,499 6,499 6,499 6,499

Table 2.3: Historical SSIV regression results – Heterogeneity of impact by firm size
Notes: Standard errors and individual F-stats are exposure-robust (Adão et al., 2019): they are computed using the authors’
reg ss and ivreg ss commands.
***, **, and * indicate two-sided significance at the 1, 5 and 10% levels, respectively.
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(1) (2) (3) (4) (5)

Main outcomes – Dependent variable: ∆5 ln(TFP)t

Public spillovers .085** .082*** .084*** .086***
(.037) (.024) (.023) (.022)

Private spillovers -.361 .0303 .0423 .0134
(.576) (.226) (.230) (.447)

Pre-trends – Dependent variable: ∆5 ln(TFP)t−5

Public spillovers -.0197 -.0101 -.0101 -.0142
(.0401) (.0343) (.0376) (.0452)

Private spillovers .185 .204 .187 .122
(.653) (.514) (.555) (.727)

First-stage F-stats
Public spillovers 408 19.1 18.4 16.2
Private spillovers 246 6.4 6.4 6.3
Joint 57.7 56.3 45.9

Period FE ✓ ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓ ✓
Sectors FE (2-digit) ✓ ✓ ✓ ✓
Sectors FE (3-digit) ✓
Own R&D and patents ✓ ✓ ✓ ✓ ✓
Lagged firm controls ✓ ✓

N 5,846 5,846 5,846 5,846 5,846

Table 2.4: Patent examiner regression results
Notes: The unit of analysis is a firm×period. Coefficients and 95% intervals show the results of a 2SLS estimation of (2.1.2),
where private and public R&D spillovers are instrumented by exposures to changes in average leniencies faced by upstream
firms. Lagged firm controls include sales, employment, capital and patent count. ***, **, and * indicate two-sided significance at
the 1, 5 and 10% levels, respectively. Standard errors are clustered at the period and 2-digit sector level.

58



Chapter 3

Model and calibration

3.1 Model

Overview of the model

To evaluate the aggregate consequences of the fall in public R&D, I present here a

tractable general equilibrium model of growth with heterogeneous firms and spillovers,

where public and private R&D are distinct. The theory is inspired by heterogeneous

agent models of long-term growth (Luttmer, 2007; Jones and Kim, 2018) and the main

theoretical contributions of this paper is to formalize the difference between private and

public R&D. This allows me to show how the balance between public and private R&D

determines growth and inequality. My model delivers simple, closed-form relationships

between the share of researchers funded by the government, aggregate productivity

growth and firm inequality.

Unlike in standard endogenous growth models, the central allocative decision does

not oppose production to research. Instead, the allocation of funds to basic or applied

R&D determines long-term growth. The strong complementarity between basic (funded
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by the government) and applied R&D (funded by the private sector) in the generation

of spillovers generates a spillover-maximizing split that is interior. Higher spillovers

then lead to (i) higher growth through an aggregate boost to all firms and (ii) to lower

inequality through easier replacement of incumbents. The main result of the theory

(proposition 2) shows that the growth rate follows an inverted-U relationship in the share

of basic researchers and so does equality between firms. Consequently, there exists a

unique intermediate share of basic researchers that both maximizes BGP growth and

minimizes BGP inequality. Current low levels of productivity growth may be due to a

share of public R&D that is too low (to the left of the peak of the inverted U).

I calibrate the model from the 1950s onward using the values of elasticities of pro-

ductivity with respect to public and private R&D estimated in the previous empirical

part. The tight link between the model and the estimating equation of section 2.1 offers

a direct mapping from the γ and ε parameters to their quasi-experimentally-estimated

counterparts. The calibration exercise suggests that the decline in public R&D matters for

aggregate growth and inequality: it explains around a third of the decline in TFP from

1950 to 2017 and a third of the rise in inequality of profits between firms. To save space,

proofs and derivations are relegated to Appendix C.1. Table C.1 summarizes the notation

used.

3.1.1 Firms

Time is continuous and there are three agents in the economy; researchers (R), workers

(L) and firm owners indexed by i, of which there is a unit mass at all times. Total

population is fixed and equal to N = R+ L+ 1. Firms’ productivity growth is determined

by three forces: their R&D effort, idiosyncratic deviations (’luck’), and an aggregate

component capturing the contribution of spillovers to growth. I first present firms’ static
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problem before turning to their dynamic one.

Static firm problem

Each firm produces one variety in a monopolistically competitive environment. Firms’

output, denoted yi, is then aggregated into a final output good via a CES production

function. This final output good is the numéraire and is equal to GDP (time subscript

omitted).

Y :=
(∫ 1

0
yθ

i di
) 1

θ

0 < θ < 1 (3.1.1)

where θ is the substitution parameter: a higher value of θ implies an easier substi-

tutability between inputs.1 A monopolist’s production technology is linear in labor; with

productivity zi, firm i produces a quantity yi = zili with li workers. A firm’s productivity

zi is made of two components: an aggregate term common to all firms Ψ, and an idiosyn-

cratic term ai such that zi = Ψai. The static problem of firm i is therefore to choose yi, pi

and li in every period to maximize instantaneous profits, given its productivity and the

inverse demand for its variety. Firms take the equilibrium value of the wage rate, w, as

given and solve:

max
yi,pi,li

yi pi − wli subject to yi = zili and pi =

(
Y
yi

)1−θ

(3.1.2)

There is a measure L of workers who supply labor inelastically. The equilibrium allo-

cation of labor across monopolists is constrained by the labor market clearing condition:∫ 1

0
lidi = L. The following lemma summarizes the solution to the static optimization

problem of firms.

1θ = 1 means the goods are perfect substitutes, θ = 0 gives a Cobb-Douglas production function and
θ = −∞ means the yi’s perfect complements. Estimates of θ from the literature suggest that its value lies
between 0 and 1 i.e. intermediate goods are easily substitutable.
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Lemma 1 (Static equilibrium). At any instant

1. The optimal output of firm i is y∗i = Y
( ai

A

) 1
1−θ and labor demand is l∗i =

Y
Ψ

(
aθ

i
A

) 1
1−θ

.

2. Firm i’s profits are π(ai)
∗ = Y

( ai

A

) θ
1−θ

(1 − θ) and its wage bill is wl∗i = Y
( ai

A

) θ
1−θ

θ.

3. The wage rate and aggregate output are equal to w = θAΨ and Y = LAΨ, respectively.

where A :=
(∫ 1

0
a

θ
1−θ

i di
) 1−θ

θ

is the idiosyncratic productivity index of the economy.

Proof. See Appendix C.1.3

Dynamic firm problem

With the static problem of firms solved, I now introduce time subscripts to describe

firms’ productivity dynamics. Firms’ idiosyncratic productivities are stochastic: they

follow a geometric Brownian motion with drift rate α(eit, βit). The drift rate depends on a

firm’s flow research effort, eit and the type of R&D it performs, described by the indicator

βit (for ’basic’). βit = 1 if it performs basic research and βit = 0 otherwise. Formally,

dait

ait
= α(eit, βit)dt + νdBt (3.1.3)

where ν is the standard deviation rate of productivity and dBt denotes the standard

normal Brownian increment. Mirroring the set up of the estimating equation, the drift

rate of firm i’s productivity takes the form: α(eit, βit) := eitϕ(βit), where ϕ(βit) is the

elasticity of productivity growth to R&D effort. A firm doing basic research (β = 1) will

experience a productivity increase of eitϕ1. On the other hand, if β = 0 and the firm funds

applied research, its productivity increases by eitϕ0. To capture the fact that fundamental
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R&D does not translate directly into higher productivity and is harder to appropriate

by the investing firm, I assume that ϕ0 > ϕ1. In other words, firms experience a larger

productivity increase when they invest in applied research.

In reality, the ’basicness’ of R&D is more a continuum than a clear-cut characteristic.

The simple categorization I use here is merely a simplifying assumption. However,

modelling the productivity increase from R&D as a function of a continuous measure of

R&D ’basicness’ can be accommodated by the model.2

These productivity dynamics matter to firm owners insofar as they affect their profits.

Out of their immediate post-production profits denoted by π(ait)
∗, firm owner need to

pay taxes at rate τt, they need to fund R&D expenses at rate eit and they can consume

what remains. They derive log utility from these post-tax and post-R&D profits so that

flow utility is ln π(ait)
∗(1 − eit − τt).

Finally, the last factor affecting firm owners’ utility is the rate of creative destruction.

Firm owners can be replaced in two ways. First, they can be replaced by individuals

who have found a better version of their variety. In the model, this process of creative

destruction materializes through an endogenously determined Poisson rate of exit δt.

This is the classic Schumpeterian creative destruction and it is an equilibrium quantity.

Second, they face a constant and exogenous death rate δ akin to the probability of retiring

or actually dying. This second mechanism is invariant to the amount of innovation in the

economy, unlike δt. There is no outside option for firm owners who are replaced.

Putting it all together, a firm owner solves:

2For instance, if βit is instead the share of R&D expenditures dedicated to basic research, the results
presented in this paper hold if ϕ(βit) is a strictly decreasing function. I.e. the more a firm invests in basic
research, the less it can generate productivity increments from R&D that it benefits from.
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max
eit,βit

E0

∫ ∞

0
e−ρt ln π(ait)

∗(1 − eit − τt)dt

subject to
dait

ait
= α(eit, βit)dt + νdBt

with α(eit, βit) = eitϕ(βit)

and Poisson rate of exit δt + δ (3.1.4)

where ρ is the discount rate. Omitting i and t subscripts here as it does not cause

confusion, one can write the Hamilton-Jacobi-Bellman equation of a firm with productivity

a as

ρv(a, t) = max
e,β

ln π(a)∗(1− e− τ)+ α(e, β)ava(a, t)+
σ2

2
a2vaa(a, t)+ vt(a, t)− (δ+ δ)v(a, t)

(3.1.5)

where va(a, t) and vaa(a, t) stand for the first and second derivatives of v(a, t) with

respect to a, respectively. The value of owning a firm with productivity a is therefore

constituted of the utility flow of profits after taxes and R&D expenditures, the change in

firm value due to research effort and luck, and the expected loss associated with creative

destruction.

3.1.2 New ideas

New ideas play a central role in the model. They are created by researchers hired by

firms or by the government and may come from basic or applied research. Beyond the

larger impact it has on productivity growth, applied R&D also differs from basic R&D

in how it affects ideas. These differences have been documented in the stylized facts of
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chapter 1: applied R&D is less likely to generate ’breakthrough’ innovations (fact 2) and

it is less likely to spill over to the rest of the economy (fact 3). I model these differences

explicitly in this section.

Differences between basic and applied R&D

The generation of new ideas depends on the total number of researchers and the type

of research they do. When firms spend a share e of their profits on R&D, they hire an

aggregate number of researchers R = eΠ/wp . wp is the research wage in the private

sector, which is different from the wage in the public sector, and Π =
∫ 1

0 π(ai)
∗di is

aggregate profits. If R researchers are doing basic R&D, they get new basic ideas at a

Poisson rate of λ ideas per researcher such that I1 = λR. If they conduct applied R&D,

they get applied ideas at the same rate: I0 = λR. In other words, generating the same

flow of basic or applied ideas is equally hard.

Importantly though, when researchers do basic R&D, a subset of the ideas they

generate are breakthroughs, denoted B1 ⊂ I1. Breakthroughs from basic R&D arrive at

rate λ1 such that B1 = λ1R. If instead they work on applied R&D, the breakthrough rate λ0

is lower and breakthroughs are more rare for the same research effort i.e. B0 = λ0R < B1.

This is consistent with the evidence provided in the stylized facts section that has shown

that public R&D (which tends to be more fundamental) produces patents that are more

ahead of their time, even after controlling for the cost of research. Table A.8 in the

appendix also reports evidence that publicly-funded patents score higher on the popular

measure of patent disruptiveness introduced by Kelly et al. (2021).

The second key difference between basic and applied R&D is that basic R&D spills

over more easily to the rest of the economy. To capture this feature, I assume that λR

ideas generated by applied research generate (λR)ε spillovers to the rest of the economy,

while the same number of basic ideas would generate (λR)γ spillovers, with γ > ε. This
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captures the feature that an agent will experience the same growth in patents if it invest

in basic or applied research (both types of research are equally costly), but when the

research is more basic, it spills over more easily to other firms. This is consistent with

fact 3 of chapter 1. The table below summarizes the differences of impact between basic

and applied R&D when the same number of researchers, R, is hired.

Basic Applied

Researchers R
Investment Rwp
Productivity increase Rwpϕ1/π < Rwpϕ0/π
Spillovers (λR)γ > (λR)ϵ

Breakthroughs λ1R > λ0R

Table 3.1: Impacts of R&D on productivity, spillovers and breakthroughs: Basic v. applied

Spillovers

Applied and basic ideas combine in a Cobb-Douglas aggregator to generate productivity-

enhancing spillovers. With R1 basic researchers and R0 applied ones, the total amount

of spillovers in the economy is given by ln(λR1)
γ(λR0)

ϵ, where the log introduces some

curvature in the returns to spillovers. In other words, ideas that can be turned into

productivity-enhancing machines or processes are harder to come by when there are

already a lot of them.

This functional form captures an important aspect of basic and applied R&D; they are

complements in the generation of knowledge spillovers that can be used for productivity

growth. For example, the fundamental insights from Shannon’s information theory are

most useful when combined with the more applied invention of programming languages

in order to create the file-compression algorithms that are so crucial to the digital economy.

This modelling choice is motivated by several pieces of evidence. First, the SSIV results
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of section 2.2 have shown that firm’s own R&D, which is more applied, is positively

impacted by increases in public R&D spillovers, which tend to be more basic. Second,

Moretti et al. (2023) have documented that both at the firm and at the industry level,

private R&D tends to increase when public R&D increases. Third, evidence from quasi-

experimental variation provided by Azoulay et al. (2019) and Myers and Lanahan (2022)

provide compelling evidence that publicly-funded R&D leads to a large increase in the

number of follow-up patents. This aspect of innovative output is consistent with a view

of innovation as being both cumulative and combinatorial: discoveries by others make it

easier to discover new ideas. The flow of new productivity-enhancing ideas generated

through spillovers in the economy at large is then given by ṅt := ln(λR1)
γ(λR0)

ϵ. To

simplify the aggregation, spillovers are assumed to be beneficial to all varieties. They are

common to all firms and truly capture the wider social benefits that cannot be internalized

by firms.

Note that researchers can be in firms, in universities and in governments. They do not

necessarily need to perform the R&D intramurally i.e. where the R&D money comes from.

In the data, this is particularly true for state-funded R&D; A whole 21% of R&D funded

by the US federal government was performed by private businesses in 2021, and 28% was

performed by universities.3

3.1.3 Government

The government also conducts R&D, although with a different objective than firms. It

cares about innovation only insofar as it generates breakthroughs findings. Breakthrough

innovations are used for whichever cause the government is concerned with at a given

instant: like finding a new vaccine to halt the progression of a pandemic, developing

3Data from the National Science Foundation. Table 6, row 145. Accessed January 10th, 2024.
ncses.nsf.gov/data-collections/national-patterns/2021#data
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new batteries because the price of oil is high, or creating a new weapon.4 I assume that,

at all times, the government needs to satisfy a simple budget constraint that equates

expenditures on publicly-funded R&D with aggregate revenue raised by taxing corporate

profits. There is no other source of taxation, no government borrowing (no savings

technology for that matter) and no other government expenditures. This is a simplification

that keeps the model focused and is rather consistent with the recent US fiscal history.5

In other words, corporate tax totally and exclusively funds government R&D in this

model. With its budget raised exclusively from corporate profit tax, the government then

allocates funds to basic and applied research with the aim of maximizing the arrival rate

of breakthroughs. Formally, the government’s problem is

max
Rg1,Rg0

λ1Rg1 + λ0Rg0 subject to τΠ = wg(Rg1 + Rg0) (3.1.6)

where Rg1 and Rg0 are the numbers of publicly-paid researchers doing basic and

applied research, respectively, and wg is the wage of publicly-paid researchers. In line

with the identification assumption of the SSIV exercise, the tax rate τ is taken to be

exogenous and is driven by forces outside of the model. A given tax rate fully determines

government revenues (and thus public R&D expenditures) given an existing distribution

4This breakthrough-oriented objective of government-funded research is consistent with US historical
evidence. It is best illustrated by the general message of the seminal report ‘Science: The Endless Frontier’,
commissioned by president Franklin D. Roosevelt to translate war-time research efforts into impactful
peace-time innovations (Bush, 1945). Its introductory lines read ‘Progress in the war against disease
depends upon a flow of new scientific knowledge. New products, new industries, and more jobs require
continuous additions to knowledge of the laws of nature, and the application of that knowledge to practical
purposes. Similarly, our defense against aggression demands new knowledge so that we can develop
new and improved weapons. This essential, new knowledge can be obtained only through basic scientific
research.’

5From the 1980s onward, corporate income tax as a share of US GDP was between 1 and 2.5%, not too
far from the 0.7 to 1% of GDP dedicated to publicly-funded R&D.6 It is slightly less consistent with the
immediate postwar period, where corporate income tax revenue accounted for 3.5% of GDP on average
between 1950 and 1980, while public R&D was, on average, 1.2% of GDP. Because the two amounts are
fairly close, I maintain this simplifying assumption throughout.
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of firm profits.7

R&D choices

The different properties of basic and applied R&D, combined with the different

objectives of firms and the government lead to a complete specialization of the government

in basic research and of the private sector in applied research. Furthermore the R&D

effort of firms is constant across the firm size distribution. Proposition 1 below and its

proof formalize this result.

Proposition 1 (Endogenous choices of R&D). Given the problem of firms in (3.1.4) and the

problem of the government in (3.1.6):

1. Rg = Rg1: the government performs basic research, exclusively

2. Ri = Ri0 ∀i: firms perform applied research, exclusively

3. The optimal research effort of firms is unique, independent of firm size and is given by

e∗ = 1 − τ − 1 − θ

θ

ρ + δ + δ

ϕ0
(3.1.7)

Proof. See Appendix C.1.6

The first and second points of this proposition capture the well-known issue of

underprovision of public goods. Firms will not be willing to invest in basic R&D if it

costs them more, in terms of lost productivity gains, even though it raises aggregate

7Using τ as an exogenous variable I can adjust rather than the result of an agent’s optimization allows
me to make inequality between firms and aggregate productivity growth direct functions of the allocation
of R&D resources in the economy. It also makes sense to model it in this way if one is thinking about the
government in my model as consisting solely of decision makers in charge of the R&D budgets of federal
agencies. These decision makers receive a research budget from another branch of the government who
sets τ with a different objective function than theirs.
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productivity through spillovers by a lot. This prediction of the model is consistent with

empirical evidence on corporate science. Arora et al. (2021a), for instance, find that

firms do little basic research as proxied by their scientific publications; these scientific

publications are very rare for firms, even the patent-filing ones.8 Complementing this

finding, Akcigit et al. (2020) use survey data on the R&D activities of French firms to

show that only between 4 and 10% of firms invest in basic research, and only very large

firms have non-negligible investments in basic research.9

Point (3) of the proposition shows that research effort does not depend on firm size.

Because the growth rate of firm’s idiosyncradic productivity is constant (da/a = e∗ϕ0),

this result yields Gibrat’s law, the empirical regularity whereby firms of different sizes

grow at the same rate, conditional on survival and age. Moreover, the fact that research

effort among R&D-performing firms scales proportionately with firm size finds strong

empirical support in the data.10

Equation (3.1.7) provides intuitive comparative statics. The R&D effort of firms is

increasing in the substitubability of varieties θ because productivity gains translate into

larger profit gains when θ is high. It also increases in the return to efforts ϕ0. It decreases

in ’impatience’ ρ and the probability of being replaced δ + δ because firm owners enjoy

the marginal profit streams over a shorter period of time, in expectation. Finally, and

perhaps most importantly for this paper, research effort decreases in the tax rate τ. The

negative relationship between research effort and taxes captures the disincentivizing

role of taxes on innovation, which has been well documented in the literature. Akcigit

et al. (2022), for instance, report large elasticities of innovation to the ‘keep rate’ (1 − τ)

8They find that 2,535 firms out of 4,608 who already file patents (55%) have at least a publication in the
1980-2006 period. Moreover, more than 50% of these firms file 0 publications in any given year (table 2, row
6).

9Figure 5 of Akcigit et al. (2020)
10In my sample of firms, investment in R&D typically account for 10% of firm sales and remains a

constant share of sales across the firm size distribution.
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of personal income and corporate taxation in the United States. A 1% increase in the

corporate tax keep rate increases patent production by a whole 0.49% according to their

estimates.11

3.1.4 Creative destruction

Incumbent firm owners can be displaced by workers who discover a better version of

their variety. New ideas occur to them through the spillovers of government and private

research described earlier such that the Poisson rate of new, viable business ideas at each

instant is equal to the amount of spillovers ṅt := ln(λR1)
γ(λR0)

ϵ. I assume that only

a fraction χ of these viable ideas end up being implemented and eventually displace

an incumbent. When a worker replaces an incumbent, they inherit the incumbent’s

idiosyncratic productivity a. The incumbent, once replaced, becomes a worker. This

process leaves the productivity distribution of firms unaffected by creative destruction

on a BGP: incumbents are immediately replaced by new firm owners with the same

productivity. The shape of a productivity distribution under a high equilibrium rate of

creative destruction will however be different than under a low one.

The rate of endogenous creative destruction is therefore equal to the rate of spillovers

from new ideas, scaled down by the fraction of successfully implemented ideas

δ := χṅt (3.1.8)

More spillovers make the entry of new businesses easier.

Finally, firm owners can also be replaced at an exogenous rate δ, already previewed

in the firm problem. In that case, they are replaced by new, young firm owners with

11The corresponding elasticity for the personal income tax rate is even bigger, at 0.8% more patents by
1% increases in the keep rate. Both of these effects, of corporate and personal income tax, are larger at the
state level due to migration and R&D re-location responses.
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productivity a0 set to be equal to the lowest idiosyncratic productivity at a given instant.

In other words, a0 is a reflecting barrier for firm productivity. This exogenous replacement

process yields well-behaved productivity distributions (Gabaix, 2009) and is used here for

tractability.

3.1.5 The distribution of firms

At all times, the number of entrants is equal to the number of firms who exit so that

the total mass of active firms remains equal to 1. With the creative destruction process

described in section 3.1.4 and the random productivity process (3.1.3), the following

known result follows;12 the distribution of firm productivities, f (a, t), evolves over time

according to the Kolmogorov Forward Equation (KFE) given by

∂t f (a, t) = −δ f (a, t)− α∂a[a f (a, t)] +
ν2

2
∂aa[a2 f (a, t)] (3.1.9)

where ∂t f = ∂ f /∂t, ∂a f = ∂ f /∂a, and ∂aa f = ∂2 f /∂a2. To economize on notation, α

stands for α(e∗, β∗). On a balanced-growth path, the distribution of firm productivities is

stationary i.e. f (a, t) = f (a) ∀a, t. This stationary distribution must therefore follow the

stationary version of the KFE:

0 = −δ f (a)− α∂a[a f (a)] +
ν2

2
∂aa[a2 f (a)] (3.1.10)

Lemma 2 below shows that the distribution of firm productivities satisfying (3.1.10) is

a power law. It also shows that the Pareto tail exponent is a function of α (which depends

on δ through e).

Lemma 2 (Stationary distribution of firms). On a balanced-growth path

12See for instance Dixit and Pindyck (1994), p. 89 for a derivation.
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• The stationary distribution of productivities is a power law with density f (a) = Ca−ζ−1

over the support [a0, ∞).

• The Pareto tail exponent ζ is given by

ζ = − α

ν2 +
1
2
+

√(
α

ν2 − 1
2

)2

+
2δ

ν2 (3.1.11)

• and C = ζa0
ζ

Proof. See Appendix C.1.7

ζ is decreasing in α (i.e. inequality is increasing in the drift). This means that inequality

is accentuated when the rewards to innovating are higher such as when ϕ0 and θ are

higher. Inequality decreases when innovation is disincentivized, for instance when firm

owners are more likely to be replaced (higher δ + δ), when the tax rate is higher, or

when they are more impatient (higher ρ). The split between public and private R&D will

affect inequality through endogenous creative destruction δ: a high probability of being

replaced makes firms less likely to grow very large and thus decreases inequality.

Notably, the distribution of a is stationary on a BGP, while the distribution of π(a) is

a non-stationary travelling wave. This highlights where aggregate growth comes from

in the model; spillovers are a ’tide that lift all boats’ by multiplicatively scaling up firm

idiosyncratic productivities (and thus profits) by Ψ.

3.1.6 Equilibrium

I can now relate aggregate growth and inequality to the allocation of researchers. To

do so, I first describe how spillovers affect aggregate growth, I then show how the tax

rate determines the key allocation of the model–the split of researchers between public
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and private R&D–before defining the BGP equilibrium and proving the main result of the

paper.

The common productivity term takes the form Ψt = Γnt , where Γ is the step size of

productivity increments and nt is the stock of spillovers at time t. This is the standard

quality ladder of endogenous growth models. Hence firm productivity is zit = Γnt ait.

From lemma 1, the aggregate productivity growth rate of the economy is the same as that

of GDP per capita and is equal to

g = ṅt ln Γ (3.1.12)

where ṅt = ln(λR1)
γ(λR0)

ε as established earlier. Taking logs and time differences of

zit = Γnt ait, I get the estimating equation of section 2.1.

∆ ln(zit) = ϕ0 eit︸︷︷︸
own

R&D flow

+γ ln(λR1)︸ ︷︷ ︸
flow of

basic ideas

+ε ln(λR0)︸ ︷︷ ︸
flow of

applied ideas

(3.1.13)

Researchers hired by firms receive a proportional wage premium Λ over what they

would earn if they were funded by the government, such that wp = Λwg. This is a

reduced-form way of capturing a well-documented feature of the labor market: private-

sector workers typically enjoy a 5-to-30% wage premium over what they would earn in

the public sector (Murphy et al., 2020). The research wage bill of firms is eΠ = wpRp and

the research wage bill of the government is τΠ = wgRp. Given an exogenous tax rate τ

and the research labor constraint R = Rg + Rp, the wage rates for researchers adjusts to

clear the market. The number of researchers in each sector is then given by two simple

relationships;

Rg =
R

e/Λτ + 1
and Rp =

R
Λτ/e + 1

(3.1.14)
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The comparative statics are as follows. Publicly-funded researchers become more

numerous when τ increases. They also become more numerous when the premium paid

to private researchers is bigger, all else equal, because firms can hire fewer researchers

and thus leave more of them to the public sector. In contrast, a bigger research effort by

firms increases the number of private researchers to the detriment of publicly-funded

ones.

The BGP equilibrium is characterized by 12 key endogenous variables–Y, yi, ai, L, li, e,

Rp, Rg, ṅ, δ, βg, βi–and an equal number of equations, listed in Table C.2 in the appendix.

The definition of a BGP equilibrium is standard. Given a tax rate τ, (i) firm owners

choose yi, li, ei and βi to maximize the present discounted value of owning a firm, (ii) the

government chooses the type of R&D that maximizes the arrival rate of breakthroughs,

(iii) workers and researchers supply labour inelastically and (iv) the wage rates of workers

and researchers clear their respective labor markets. These interactions yield two coupled

functions ( f , v) : [a0, ∞) → R which are the stationary density of firm productivities and

the value function of firm owners. On a BGP, aggregate productivity, wages and output

per capita grow at g. Incumbents’ profits and wage bills grow at g +
θ

1 − θ
eϕ0, on average,

as long as they do not exit.

Through its effect on the allocation of researchers to basic (public) R&D and applied

(private) R&D, τ affects the strength of spillovers in the economy, which in turn affects

aggregate growth via Γnt and inequality via δ. Proposition 2 below shows how growth

and firm inequality evolve as a function of the allocation of researchers to basic and

applied research.

Proposition 2 (Taxes, growth and inequality). On balanced-growth paths:

1. Inequality of productivity between firms is U-shaped in the share of researchers in the private

sector.
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2. The aggregate productivity growth rate of the economy is inverted U-shaped in the share of

researchers in the private sector.

3. There is a unique, growth-maximizing and inequality-minimizing tax rate given by

τ∗ =
γe∗

εΛ
(3.1.15)

and the associated share of government researchers is
Rg

∗

R
=

1
ε/γ + 1

Proof. See Appendix C.1.8.

Two properties of spillovers are key to explaining proposition 2: the complementarity

between the two types of R&D and the decreasing marginal impact of each on the flow

of overall spillovers. At low levels of tax, spillovers are dominated by spillovers from

private research because the government has little resources to fund basic research and

because R&D by firms is strongly incentivized by low taxes. As the tax rate rises, the

level of spillovers increases because public spillovers get larger and have a high marginal

impact on overall spillovers. At τ∗, the marginal impacts of basic and applied spillovers

are equalized. Finally, when the tax rate is getting too high, research by private firms is

disincentivized and private spillovers fall out of balance. Aggregate spillovers are falling

too.

The growth-maximizing tax rate τ is increasing in the strength of publicly-funded

spillovers (γ) and decreasing in the strength of privately-funded spillovers (ε). Interest-

ingly, it is increasing in private research effort: just like private R&D is complementary to

public R&D, the reverse is also true and high levels of private R&D make public R&D

more impactful. Finally, it decreases in the private wage premium because a lower tax

rate is needed to fund the optimal number of public researchers when Λ is low.
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3.2 Calibration

I now evaluate the ability of the model to explain (part of) the decline in TFP and

the increase in firm inequality, from 1950 to 2017. To do so, I calibrate it with standard

parameter values taken from the literature such that it matches the growth rate of TFP (g)

and the Pareto tail exponent (ζ) in the immediate postwar period. The model is stylized

and the causes of the secular decline in productivity in the US are multiple. My goal

is therefore not to explain all of the TFP deceleration in the US postwar history but to

highlight the role public R&D may play as one cause of the slowdown. Complementary

explanations of the decline in TFP growth and the rise in firm inequality are discussed at

the end of this section. I present here a sequence of BGP equilibria and I elaborate more

on the calibration exercise in Appendix C.2.

Set up

The tractability of the model makes the calibration exercise straightforward. I have

indeed obtained closed-form expressions for the two quantities I am interested in; the

Pareto tail exponent of inequality between firms (3.1.11) and the growth rate of aggregate

productivity (3.1.12). Given parameter values of ν, θ, ϕ0, γ, ε, ρ, Γ, λ, Λ, χ, δ and a time

series of tax rates τt, I can obtain the values of equilibrium quantities e∗, δ, ṅt, which give

me a sequence of values for g and ζ.

Values of ρ, ν, θ, Λ, Γ and δ are taken from the macro literature, γ and ε are taken

from my empirical exercises, χ is calibrated so that the exit rate takes on a realistic value,

λ and ϕ0 are internally calibrated to match the values of g and ζ at the beginning of the

period. τ, the main exogenous input to the model is set equal to the effective corporate

tax rate in the US at the beginning of the period. It is then set to follow the share of

public R&D in overall R&D. The tax rate set in this way closely follow the historical time
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series of the effective corporate tax rate (see Figure C.1 in the Appendix). Appendix C.2

describes the data sources used in the exercise and provides more information about the

calibration procedure. Table 3.2 lists the parameter values and motivates their choices.

Parameter Value Source/Meaning

Government
τ 0.34 Set equal to the effective corporate tax rate in 1947

Then inferred from the changes in the public
R&D budget share of total R&D in the US

Λ 1.25 Public-private wage gap at 50th percentile
from Murphy et al. (2020), p. 284

Firms
ν 0.4 Luttmer (2007), p.1132
ϕ0 0.1 Middle-of-the-road value of estimates of VA elasticity to R&D,

from review by Hall et al. (2010)
ρ 0.01 Standard
δ 0.035 Employment-weighted exit rate

from Decker et al. (2016) (p. 9)
ζ0 1.109 Observed in the data (tail exponent in 1952)
g0 0.033 Observed in the data (average TFP growth rate in 1950-1955)
Γ 1.4 Jones and Kim (2018), p.1809
θ 3/4 Standard

Research and spillovers
γ 0.04 Middle-of-the road estimate from the two IV specifications
ε γ/3 A third of γ, from section 2.2.2
λ 0.12 Internally calibrated to match ζ0

χ 0.05 Internally calibrated to match g0

Table 3.2: Calibrated parameter values

Results

The results of the calibration exercise suggest that the decline in the share of GDP

dedicated to public R&D can explain a substantial share of the deceleration in TFP and a

substantial share of the rise in inequality between firms. Starting with TFP growth, Figure
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3.1 shows how the growth rate of aggregate TFP predicted by the model compares to the

data. Both series start at the same growth rate of 3.3% in the early 1950s, by construction.

Immediately after, the growth rate predicted by the model increases as spillovers from

the rise in public R&D in the 1950s bear fruits and drive private firms’ productivity up.

Soon after though, the balance of spillovers starts to tilt toward spillovers from private

R&D. Because the elasticity of applied spillovers (from the private sector) is lower than

that of basic spillovers (from the public sector), the growth-maximizing mix of spillovers

will have more public than private R&D. The model reflects this shift by lowering the

equilibrium growth rate of TFP from the 70s to present days. Over the entire period,

gmodel decreases from 3.33% to 2.46%, a 0.86 percentage point decrease. In the data, TFP

growth fell from 3.33% to 0.86% (-2.47pp). In other words, the model accounts for slightly

more than a third of the fall in TFP growth over the period (35%).

Turning to inequality between firms, the historical data shows a continuous increase

in inequality from 1952 to 2018, as documented by Kwon et al. (2022) and shown in 3.2. It

is more intuitive to refer to power law inequality, defined as ξ := 1/ζ, when describing

changes in inequality between firms rather than to the Pareto tail exponent ζ. Higher

levels of inequality yield higher ξ and the calibration exercise uses power law inequality

rather than the Pareto tail exponent as an object of interest. I rely on Kwon et al. (2022)’s

series on corporate assets here as this series spans the entire period I am interested in.

Series on receipts and net income (which would have a more direct counterpart in my

model) are unfortunately not available for the full period. It is however notable that all

three series on inequality of assets, receipts and net income yield almost identical Pareto

exponents over the periods when they overlap. The increase in inequality predicted by

the model, in contrast to the data, is not monotonic. After starting from the same level

in the beginning of the 1950s (by construction), it decreases down to its lowest level in

the middle of the 1960s. The model ascribes this decrease in inequality to the rise of
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spillovers in the late 1950s and early 1960s. After this temporary fall, inequality increases

until 2017 up to a value of ξ implying that the top 1% share of firms by assets owns 72%

of all firm assets. The corresponding figure in the data is 95% in 2018. In sum, the model

can explain 37% of the rise in inequality between firms from the 1950s to 2017.

g

Model g

Model:
35% of decline in TFP

0

1

2

3

4

1950 1960 1970 1980 1990 2000 2010 2020

TFP growth rate: g

Figure 3.1: TFP growth

ξ

Model ξ

Model:
37% of increase in inequality

.85

.9

.95

1

1950 1960 1970 1980 1990 2000 2010 2020

Pareto firm inequality: ξ

Figure 3.2: Firm inequality ξ = ζ−1

Figure 3.3: Calibration results
Notes: Parameter values are either estimated in my empirical exercises or taken from the literature. See Table 3.2 for
more details. The Pareto firm inequality parameter ξ can be given an intuitive interpretation by using the following
property of Pareto distributions. The top share of the p% biggest firms is given by (100/p)ξ−1. Applying this insight to
the empirical time series of 3.2, one gets that the top 1% share of firm assets was around 60% in the early 1950s and 95%
in the late 2010s.

Discussion

While the calibration exercise suggests that the change in R&D funding can account for

a large part of the decline in TFP growth, it is unlikely to be the only driver of long-term

changes in TFP. An alternative, yet related, explanation builds upon the idea that ‘ideas

are getting harder to find’ (Bloom et al., 2020): innovation-driven improvements in TFP

were easier to achieve in previous decades. My theory offers a potential cause of the

‘ideas are harder to find’ hypothesis: maybe the rate of growth of ideas is a function of

the type of research conducted by a society, applied or basic. The steady decline in public

R&D in the US could be a cause of the fact that ideas are harder to find.
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Over shorter time horizons, other theories may be better at explaining variations in

TFP. TFP growth is indeed fairly cyclical and the decline in public R&D is more of a

long-term trend. De Ridder (Forthcoming), for instance, ascribes the large productivity

growth of the late 1990s and its subsequent decline to the rise of corporate investments

in intangible assets (like software). Alternatively, Liu et al. (2022) build a theory linking

the decline in interest rates to a stronger investment response by market leaders than by

followers, which leads to a joint rise in concentration and a slowdown of growth.

Alongside these theories, my model and its calibration serve as a proof of concept

that the decline in public R&D may be an alternative (and complementary) mechanism

behind the fall in productivity growth and the rise in firm inequality.
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Conclusions of the first three chapters

Through the lens of a 70-year panel of firms matched to patents, two quasi-experimental

IV strategies and a calibrated model of growth, this project has provided evidence that the

split between publicly and privately-funded R&D matters for the intensity of knowledge

spillovers in an economy. It has also shown that this public v. private split has an impact

on the growth rate of productivity and on how unequal the firm size distribution is. The

core distinction between publicly and privately-funded R&D that drives these results

stems from the fact that the former is more fundamental than the latter. The two empirical

exercises show that public R&D positively impacts private firms’ productivity growth

through spillovers over the long run (SSIV), and there is tentative evidence that this

impact is at least twice as big as that of private R&D (patent examiner instrument). This

difference of impact matters in the aggregate, as evidenced by the fact that the decline

in public R&D in the US can explain a third of the deceleration in TFP from the 1950s

to present days, and a third of the rise in inequality between firms, according to my

calibrated model of growth. While the causes of the secular decline in TFP growth are

multifaceted, my findings point to an underappreciated factor: public R&D as a source of

impactful spillovers for private firms.

This line of research can contribute to the ongoing debate in the US and Europe about

the role of public R&D investments in fostering productivity growth and the relevance of

basic R&D investments in industrial policy. However, the extent to which the conclusions
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of this project can be generalized to countries other than the US (or other advanced

economies) is an open question. The American economy over the post-WWII period

is indeed unique in two important ways. First, the US has been at the technological

frontier in many domains over this period. In this respect, fundamental R&D funded

by the government may be the most appropriate tool to push the frontier. For instance,

Ahmadpoor and Jones (2017) and the stylized facts of section 1.2 provide evidence that

patents drawing heavily on scientific papers tend to be the most impactful (as measured

by their citation counts). In contrast, funding or subsidizing applied R&D may be the

most adequate strategy for an economy trying to catch up with the frontier. Second, the

US innovation system has been distinctively capable of translating insights from basic

R&D into innovative products and services due to a strong innovation pipeline from

universities to corporate labs and to final production, at least until the 1980s (Arora et al.,

2020).

Understanding the roles government can play in accelerating productivity growth

is a fertile ground for future research. In particular, the research presented here can be

extended in several ways. Valuable extension of this work include a deeper exploration

of the specific mechanisms whereby publicly-funded R&D generates more spillovers.

Previous evidence suggests that the different incentives researchers face when their work

is funded by public versus private money may be important (Babina et al., 2023). The

exact ways in which these spillover operate (through the movement of scientists or public-

private partnerships for instance) is another question worthy of exploration. Finally, it

would also be interesting to jointly assess the respective impacts of publicly-funded R&D

spillovers and government demand shocks on productivity growth, within a unified

empirical framework.
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Chapter 4

Innovation Catalysts: How

Multinationals Reshape the Global

Geography of Innovation

Joint work with Riccardo Crescenzi and Frank Neffke.1

1The authors would like to thank Ricardo Hausmann who has greatly contributed to shaping many of
the arguments in this article. The authors are also grateful to participants in seminars held in Cambridge
(NBER Productivity Seminar, Harvard CID Seminars, and MIT Innovation Lab), Boston (AAG Conference
2017), Birmingham (Birmingham Business School Seminars) and London (LSE Annual SERC Conference).
The research leading to these results has received funding from the European Research Council under the
European Union Horizon 2020 Program H2020/2014-2020 [Grant Agreement No. 639633-MASSIVE-ERC-
2014-STG]. This work was supported by the Österreichische Forschungsförderungsgesellschaft [project #
873927: ESSENCSE]. LSE internal Ethics Review procedure has been followed. The checklist reveals no
further need for full ethical review of the project.
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Cross-border research and development (R&D) investments have expanded drastically

in recent years. Between 2003 and 2017, the number of investment projects and the capital

invested roughly doubled, from projects worth $US 18.7 billion to $US 34.4 billion.2

Cities and regions compete fiercely over such projects, in the hope that they will create

high-quality jobs, help develop local innovation capabilities, and put the region on the

map as a recognized center of technological excellence. However, all too often this strategy

overlooks that the multinational enterprises (MNEs) behind these investments have few

incentives to share their knowledge and know-how. On the contrary, technologically

advanced firms have often much to lose and little to gain from local knowledge spillovers.

It is therefore a priori unclear if, and under which conditions, attracting MNEs helps

upgrade a location’s technology base. In this article, we therefore study whether and when

research activities by foreign firms trigger the emergence of new centers of technological

excellence. We hypothesize that R&D activities by foreign MNEs can create spillovers

to the local economy that set in motion a process of collective learning (Athreye and

Cantwell, 2007; Fu, 2007; Phelps, 2008; Ning et al., 2016; Blit, 2018). However, just because

firms invest abroad to access knowledge assets outside their home regions (Phelps

and Fuller, 2000; Belderbos et al., 2011; Crescenzi et al., 2014), they do not necessarily

want to share their own knowledge assets with potential competitors. On the contrary,

several authors (Shaver and Flyer, 2000; Cassiman and Veugelers, 2002; Iammarino and

McCann, 2006; Alcácer and Chung, 2007) have argued that firms value inward spillovers

that allow them to learn from others, but shun outward spillovers through which their

own knowledge leaks to competitors. The underlying cost-benefit trade-off between

inward and outward spillovers will depend on the knowledge gradient between the

originators and the recipients of such knowledge flows. Although technology leaders

2Own calculations based on fDi Markets data (Financial Times) for FDI (foreign direct investment)
projects in the following innovation functions (Sturgeon, 2008; Crescenzi et al., 2014): Design, Development
& Testing, Education & Training, and Research & Development.
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may in principle be capable of generating the largest knowledge spillovers, they have

least to gain and most to lose from them. Therefore, they will try hardest to prevent

their know-how from leaking to competitors. In contrast, for companies further down

the technological ladder, the balance tilts in favor of engaging more fully in reciprocal

local learning processes. We argue that, to understand how MNEs affect local learning

processes, it is indispensable to consider these strategic trade-offs. We test this idea on

data from the US Patent and Trademark Office (USPTO), covering patenting activity in

regions from virtually all countries of the world. First, we identify all inventors who file

patents on behalf of foreign firms. We take such patents to signal that a foreign firm has

developed R&D activities in a location and consider these events as treatments to the local

economy. To focus on knowledge diffusion from frontier to technologically less advanced

economies, we limit the analysis to treatments by foreign firms headquartered in OECD

countries. Next, we contrast regions with and without such treatments in a matched

difference-in-differences estimation design to assess the causal impact of foreign firms

on a region’s innovation rate. Over a five-year period, patenting rates in treated regions

increase by roughly 0.13 log-points faster than in untreated regions. This effect is large:

it means that, on average, treated regions climb fourteen centiles higher in the global

innovation ranks than if they had remained on the counterfactual development path on

which no foreign R&D activities would have taken place. In part, this is attributable to

local knowledge spillovers: the emergence of R&D activities by a foreign MNE causes an

increase in patenting by domestic firms. Another part is due to demonstration effects: the

fact that an MNE is able to produce patentable inventions signals to other foreign firms

that the region is capable of supporting high-tech R&D activities, attracting further R&D

activities from other foreign firms. However, not all foreign firms increase local innovation

rates equally. Contrary to much received wisdom,3 technology leaders are not the main

3See Harris and Robinson (2003) and Haskel et al. (2007) for examples of this view in the academic
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contributors to local innovation capabilities. On the contrary, the arrival of technology

leaders generates fewer spillovers to the local economy than the arrival of MNEs that rank

lower in their technology field’s patenting distribution. A closer inspection of some of the

channels through which knowledge spillovers materialize corroborates this conclusion.

Our results suggest that foreign technology leaders engage in fewer local alliances than

lower-ranking MNEs, and they exchange fewer workers with local firms. Instead, they

rely more on their headquarters as a source of labor and see their patents cited less

frequently by local firms. Finally, technology leaders locate disproportionally in regions

with comparatively limited absorptive capacity (Cohen and Levinthal, 1990). Although

firms’ incentives play a central role in studies on the location decision of MNEs in the field

of international business, this literature is generally silent about how MNEs affect the

technological capabilities of the regions that host their foreign subsidiaries. Conversely,

the growing literature in economic geography on the role of foreign firms as agents of

regional structural change (Isaksen et al., 2018; Trippl et al., 2018; Elekes et al., 2019) rarely

considers the incentives and strategic motivations of MNEs. Furthermore, the literature on

global production networks (GPNs),4 which explicitly studies strategic couplings between

foreign firms and their host economies, mostly relies on case studies and does not provide

statistical estimates of the relative importance of foreign firms in the emergence of new

technology centers. Our contribution, therefore, consists of three parts. First, we combine

insights from the fields of economic geography and strategic management to show that,

to understand the evolution of innovation clusters, we need to take the heterogeneity

in incentives of key actors into account. Second, we apply a statistical framework that

balances external validity with internal validity. Internal validity tends to be high in case

studies of individual regions, whereas external validity is higher in statistical studies

literature and What Works Centre for Local Economic Growth (2017) for an example in the mainstream
policy discourse.

4For a recent overview of this literature, see Coe and Yeung (2019).
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that cover many regions. The balance we strike combines large-scale data that cover

regions from around the globe over a period of over thirty years, with a careful analysis

of counterfactual development paths. Therewith, our findings provide a useful statistical

benchmark for how foreign R&D activities facilitate the emergence of new technology

centers. Third, we corroborate our main findings on the reduced spillovers that leading

MNEs generate by showing that various knowledge spillover channels are more muted

when R&D activities are undertaken by technology leaders instead of by less-established

MNEs.

In doing so, our study relates to five ongoing debates. First, our study adds to our

understanding of cluster emergence and evolution (Feldman and Braunerhjelm, 2006;

Menzel and Fornahl, 2010), drawing special attention to the role of MNEs. Second, our

findings relate to the discussion on knowledge spillovers in local economies (Glaeser

et al., 1992; Jaffe et al., 1993; Henderson et al., 1995), highlighting the role of knowledge

transmission through corporate networks. Third, our study is related to the work on

how knowledge diffuses through the internationalization of firms (Fosfuri et al., 2001;

Javorcik, 2004; Saxenian, 2007; McCann and Acs, 2011; Crescenzi et al., 2015), in particular

to Blit (2018), who shows that firms located in the countries of an MNE’s R&D satellites

disproportionately cite patents filed at the MNE’s headquarter location. Fourth, by

highlighting the importance of firms’ strategic motivations, our study links to the work

on agents of regional change (Isaksen et al., 2018; Neffke et al., 2018; Trippl et al., 2018),

on MNE location choice (McCann and Mudambi, 2004; Crescenzi et al., 2014; Castellani

and Lavoratori, 2020) and on strategic couplings (see the literature on GPNs, e.g, Coe

et al. (2004)) between MNEs and a local economy. Finally, our work has important

implications for public policy that aims at attracting high-tech foreign direct investment

(FDI) to catalyze local economic development. In particular, it implies that flagship R&D

investments may have a lower pay-off than the knowledge intensity of such investment
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projects suggests.

4.1 Stylized Facts and Conceptual Framework

4.1.1 Stylized Facts on the Global Geography of Innovation

Participation in the global innovation contest is a privilege reserved for only a handful

of regions. Figure 4.1 (left) shows population-weighted spatial Lorenz curves for income

(dashed curve) and patenting in the year 2005. The dotted curve depicts total patenting

output, the solid curve excludes patents by US inventors. The already high spatial

concentration of global income pales against the concentration of innovation activity: in

2012, the ten most innovative regions in the world together accounted for 39 percent of

all patents and for 45 percent of patents filed by inventors outside the US.

Figure 4.1: Inequality and stability of innovation output across regions.

Notes: Left: Population weighted spatial Lorenz curves of patent and income shares for the year 2005. Shares of patents are
based on unweighted counts of USPTO patents assigned to inventors residing in each region. Regional population data come
from Gennaioli et al. (2014). Right: Stability of regional innovation ranks. Circles represent one of the 1,456 regions in the
data set for which we have GDP data. Circles’ sizes are proportional to average regional gross domestic product (GDP) over
the period 1975–93. Horizontal axis: number of patents filed between 1975 and 1993. Vertical axis: number of patents filed
between 1994 and 2012. Colors refer to World Bank macro regions. Persistence is lowest in Asia and South-East Asia, with the
following region-specific correlations between the two periods: South Asia: 0.92; East Asia and Pacific: 0.92; Latin America and
Caribbean: 0.94; North America: 0.97; MENA (Middle East and North Africa): 0.98; Europe and Central Asia: 0.98; sub-Saharan
Africa: 0.98.
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The distribution of innovative activity is not only skewed, it also hardly changes

over time. The right panel of Figure 4.1 shows regions’ patenting output in the period

1994–2012 against the period 1975–1993. Most regions are on or close to the forty-five-

degree line, implying that few regions manage to forge ahead of or fall behind their

competitors. However, some positive exceptions exist. These exceptions, highlighted by

the triangular overlay, represent locations that are becoming new contenders in the global

innovation race.

Figure 4.2 shows where such new centers of technological excellence have emerged.

It displays the global geography of innovation as expressed in USPTO patents in 1975

and in 2012. Patenting rates have grown most prominently in regions in Korea, Taiwan,

India, and China, and to a lesser extent in Eastern Europe, Canada, and Israel. These

regions increased their patent production and rose in the world’s innovation ranks.

Conceptually, they form the motivation for our study: to what extent did foreign R&D

activities kick-start such growth accelerations?

4.1.2 Conceptual Framework and Hypotheses

How new innovation clusters emerge is a topic of substantial debate. Some authors

stress the role of factors endogenous to the region. For instance, Feldman and Brauner-

hjelm (2006) point to entrepreneurial experimentation and local policies aimed at creating

and maintaining a strong local knowledge base. Others point to the same Marshallian

externalities that also drive the success of traditional industrial clusters or to face-to-face

interactions that help reproduce at a systemic (i.e., cluster) level the spontaneous learning

processes that are usually confined within a firm’s boundaries (Storper and Venables,

2004). Yet another set of scholars in evolutionary economic geography (EEG) have shown

that, like industrial diversification, technological diversification in terms of patented
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Figure 4.2: Patent distribution in 1975 and 2012.

Notes: Total number of patents filed with the USPTO in 1975 and 2012, by region of residence of their inventors. Countries for
which other regional data are missing are colored gray, even though a small number of inventors resides in these countries.

innovations follows a path of related diversification (e.g, Kogler et al. (2017)).

However, the main focus in these studies is endogenous factors—factors internal to

a region—not exogenous forces: ‘[a]ccounts of the development of [prominent regional

hotspots] have emphasized their endogenous dynamism rather than exogenous linkages’

(MacKinnon, 2012). Similarly, Trippl et al. (2018) point out that ‘EEG has been sharply

criticized for ignoring exogeneous stimuli and the multi-scalar interrelatedness and

embeddedness of firms.’ Taking this criticism to heart, several recent studies have shown

that important structural transformation is indeed induced by agents of change from
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outside the region (e.g, Neffke et al. (2018); Elekes et al. (2019)).

The globalization of R&D has added an extra layer of complexity to this discussion.

As the global body of knowledge grows, it becomes increasingly distributed across people

and places (Neffke, 2019). Under such conditions, clusters must combine their local

buzz with global pipelines (Bathelt et al., 2004). These pipelines help a cluster tap into

knowledge bases outside the region and mitigate against cognitive lock-in. They can be

sustained by various types of global actors, from diasporic communities (Saxenian, 2007),

to universities, star scientists Zucker et al. (1998), and MNEs (e.g, Blomström and Kokko

(1998); Javorcik (2004); Haskel et al. (2007); Keller and Yeaple (2009); McCann and Acs

(2011); Crescenzi et al. (2015); Cortinovis et al. (2020)).

Our analysis focuses on the latter actors, MNEs. With their networks of R&D facilities,

MNEs represent strong conduits for the diffusion of advanced technological know-how

(Athreye and Cantwell, 2007). We therefore expect that cross-border R&D activities by

MNEs help regions acquire new technological capabilities, providing the seed for new

innovation clusters. This suggests the following hypothesis:

H1: The development of R&D activities by foreign MNEs in a region leads to an increase in local

patenting by domestic firms.

MNEs can also act as anchor firms. Anchor firms (Agrawal and Cockburn, 2003; Feld-

man, 2003) ‘attract skilled labor pools, specialized intermediate industries and provide

knowledge spillovers that benefit new technology intensive firms in the region’ (Feldman,

2003). Attracting innovative MNEs and anchoring them in the regional innovation system

may therefore be key to local economic development, especially in peripheral regions

(Tödtling and Trippl, 2005). Moreover, anchor firms generate strong demonstration

effects. When foreign MNEs innovate with local inventors, they signal that adequate
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knowledge resources are present, aiding regional self-discovery Hausmann and Rodrik

(2003). We hypothesize that these demonstration effects attract further MNEs to the region:

H2: The development of R&D activities by foreign MNEs in a region attracts further MNEs that

raise local innovation rates through their own R&D activities.

However, spillovers from FDI are by no means automatic (Blomström and Kokko, 1998;

Liu and Buck, 2007). To ‘[d]iffuse knowledge and enhance collective learning in clusters’

(Giuliani, 2007), intra-and interfirm international networks must become embedded in

a region’s local networks (Maskell and Malmberg, 1999), echoing the importance that

the GPN literature attributes to strategic couplings (e.g, Coe et al. (2004)). In this context,

Phelps et al. (2003) argue that MNEs’ branch plants often source most inputs and know-

how from within the wider corporation instead of from the local environment. As a

result, these MNEs create enclaves instead of embedding their innovation efforts within

the local innovation system. This raises an important, yet often ignored, question: do

foreign firms have an incentive to participate in local innovation networks?

Outside the literature on GPNs (e.g, Coe et al. (2004); Yeung (2015); Coe and Yeung

(2019)), to which we will turn below, the economic geography literature often remains

silent on the topic of firms’ incentives to participate in regional innovation systems.5. What

shapes MNEs’ strategic behavior vis-à-vis the local innovation system is rarely addressed.

However, the internationalization strategies pursued by MNEs have been an important

topic of debate in international business and strategic management. This literature argues

that one reason why MNEs invest abroad is so that they can access knowledge assets in

other locations (Cantwell, 2005). This yields several benefits: by internationalizing their

5MacKinnon (2012), for instance, contends that ‘while networks and organizational routines of firms are
key themes of EEG research, there is no explicit theory of the firm.’ Similarly, none of the articles referenced
above discusses the trade-offs that anchor firms face in deciding where to set up new establishments.
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R&D activities firms can bring products to market faster (Von Zedtwitz and Gassmann,

2002), hire global talent at reduced costs (Lewin et al., 2009), and tap into foreign centers

of technological excellence (Cantwell and Janne, 1999). However, even if MNEs engage

in R&D activities abroad to tap into local knowledge and know-how–a strategy known

as strategic asset seeking–this does not necessarily mean that they desire to engage in

reciprocal collective learning. On the contrary, firms balance the benefits from inward

knowledge spillovers with the costs of outward spillovers–that is, of knowledge leaking to

competitors (Shaver and Flyer, 2000; Cassiman and Veugelers, 2002). Alcácer and Chung

(2007) therefore posit that MNEs try to maximize, not spillovers per se, but net spillovers.

Because technology leaders have least to gain and most to lose from knowledge sharing,

they may not generate many local spillovers, in spite of their advanced knowledge assets.

We therefore hypothesize:

H3: The more technologically advanced the foreign MNE is, the smaller the spillovers to the local

economy will be.

If technology leaders indeed generate fewer spillovers, we would expect to find cor-

roborating evidence when analyzing traces of knowledge spillovers in patent citations

and prominent channels of knowledge transmission between MNEs and local firms,

such as local labor circulation (Song et al., 2003; Singh and Agrawal, 2011), and R&D

collaborations. This yields the following set of hypotheses:

H4: Ceteris paribus, technologically more advanced foreign MNEs (4a) exchange fewer R&D

workers with local firms, (4b) engage in fewer local collaborations with local firms, and (4c) are

less often cited as a source of knowledge by local firms.

94



Why would technology leaders be better able to curb knowledge spillovers than

others would? On the one hand, they may be able to pay higher salaries or use more

sophisticated legal means to keep key R&D workers from leaving the firm. Furthermore,

they may be able to forgo external collaborations and, instead, leverage advanced internal

knowledge assets through their own corporate networks (McCann and Mudambi, 2004).

This resonates with the GPN literature’s emphasis on bargaining between globally op-

erating firms and the local economies where they invest, which may lead to drastically

different value-capture outcomes across regions (e.g, Coe et al. (2004)). On the other hand,

technology leaders can use their location decisions strategically to curtail spillovers. In

line with this, Alcácer and Chung (2007) show that technologically advanced firms are

more likely to avoid the vicinity of the most competent competitors than less advanced

firms are. Under such circumstances, spillovers are low because there are simply few

opportunities to hire workers from, or collaborate with, local firms.

Although our data do not allow us to determine the full range of strategies that

technology leaders may employ to minimize outward spillovers, we can observe their

location choices. Based on the arguments above, we expect that advanced MNEs will

locate their R&D activities in places with low absorptive capacity and less well-established

innovation systems to mitigate risks of accidental knowledge spillovers. This leads to the

following hypothesis:

H5: Technologically advanced foreign MNEs will locate disproportionately in less developed

regions.

Note that hypothesis 5 predicts that technologically advanced MNEs avoid places that

could spawn competitors who would be able to absorb unintended knowledge spillovers.

However, these MNEs may still select locations with research capacity in public-sector
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institutions (Alcácer and Chung, 2007). For instance, the opportunity to engage in

university–industry linkages (e.g, D’Este and Patel (2007); Crescenzi et al. (2017)) would

yield the benefits of inward local knowledge spillovers without the costs of outward

spillovers that erode the MNE’s technological edge over competitors.

4.2 Methodology

Saxenian (2007) describes how some of the most prominent new centers of techno-

logical excellence originated with the help of foreign actors who connected these new

locations to existing technology centers. Figure 4.3 corroborates this. It takes the largest

positive outlier (i.e., the region-technology combination with the fastest growth) for each

macro region in Figure 4.1 (right) and then shows how its patenting output evolved over

time. Dashed vertical lines mark the first local patent that was assigned to a foreign MNE.

In most graphs, accelerations in innovation rates are preceded by a patent assigned

to a foreign firm. Like Saxenian’s case studies, these graphs first identify successful

regions and then look for traces of foreign research activities in their past. However,

this research strategy risks selection bias. To avoid such bias we will identify all regions

where foreign MNEs file patents with local inventors, irrespective of whether they ever

become successful innovation centers. Next, we compare growth paths of regions with

such foreign R&D activities to otherwise similar counterfactual development paths of

regions without foreign R&D activities.

4.2.1 Data

We use data on 6 million patents granted by the USPTO between 1975 and 2015 from

PatentsView.6 This data set covers 3.6 million unique inventors with their geocoded places
6https://www.patentsview.org
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Figure 4.3: Patent accelerations

Notes: Patenting output for region-technology cells with largest patenting growth. Titles list region names and broad technology
classes. Vertical axes display patent counts. Dashed vertical lines indicate the cell’s first patent assigned to a foreign MNE.

of residence and 314,366 unique primary assignee identifiers. We date each patent by its

application year, not the year in which it was granted. Furthermore, because the USPTO

publishes patents with a processing lag, we limit the analysis to patent applications filed

before 2013.

PatentsView records the location of residence of all inventors, which allows us to

determine where research activities take place. However, to determine an assignee’s

primary research—or home—location, we do not use the location of its headquarters as

listed in PatentsView, but rather the modal country of residence of its inventors. This way,

we identify the country in which an assignee carries out most of its R&D, not where it
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reports its legal headquarters to be.7 For instance, we reclassify the phone maker ZTE

from an American to a Chinese firm and the home furniture group IKEA from a Dutch to

a Swedish company. For the sake of brevity, we will still refer to these primary research

locations as companies’ headquarters. Furthermore, we only use private-sector patents,

excluding patents assigned to government agencies such as the US Navy, the American

Air Force, or the French Commissariat à l’Energie Atomique. Finally, we limit the analysis

to foreign R&D activities by firms headquartered in OECD countries.8 This allows us

to concentrate on knowledge diffusion from frontier to lagging regions. It also ensures

that different regions’ foreign research activities involve similarly advanced countries of

origin.

Next, we assign all patents to one of 1,549 regions and add data provided by Gennaioli

et al. (2014) on national and regional gross domestic product (GDP) per capita, average

years of education, and population size. Together, these regions cover 97.2 percent of all

USPTO patents and about 95 percent of global GDP. Appendix A in the online material

describes both data sets in detail.

Relying on patents as a measure of regional innovation output has some well-

understood limitations (e.g, Archibugi (1992); Crescenzi et al. (2017)). For instance, patents

only capture patented innovations, and their efficacy and use in protecting intellectual

property varies across firms and sectors. Moreover, not all patented inventions are equally

valuable, and not all inventors contribute equally to an invention. Finally, patents are

essentially a defensive strategy aimed at limiting competition. However, the intensity of

7These locations are by definition the places where most technological know-how is produced, and they
often coincide with a firm’s main locus of decision-making. Moreover, doing so avoids issues that arise
when firms place their official headquarters in countries with favorable tax or regulatory regimes, without
moving any substantial production or decision-making activity there.

8We use the organization’s 1985 composition: Australia, Austria, Belgium, Canada, Denmark, Finland,
France, Germany, Great-Britain, Greece, Iceland, Ireland, Italy, Japan, Luxembourg, the Netherlands, New
Zealand, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, and the US. Because there are also lagging
regions in OECD countries, we do include OECD regions among the potential hosts of foreign research
activities.
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patent races will differ across fields and firms. Therefore, raw patent counts represent

only a rough and possibly biased approximation of the technological capabilities of firms

and regions.

In spite of these limitations, the USPTO patent database offers a unique lens on the

internationalization of knowledge production and its geography. Its long coverage allows

us to explore the emergence of new technology centers over the course of several decades

as well as the firms and inventors involved therein. Moreover, because, for most of the

period under study, the US represents the largest market in which firms can protect their

intellectual property, firms anywhere in the world have strong incentives to file their

inventions with the USPTO. Finally, because patents are filed for the same market and

with the same patent office, our data are highly comparable across regions and countries.

However, protecting inventions in the home market may be qualitatively different from

protecting inventions in foreign markets. We therefore exclude US regions (but not US

firms!) and focus on technology centers that emerge outside the US. This leaves data for

922,459, or 25.6 percent, of the overall number of inventors.

4.2.2 Defining Foreign Research Activities

To identify foreign research activities, we select all patents whose inventors reside

outside the country of the assignee’s headquarters. These patents are considered as

signs of foreign research activities. We consider the first foreign patents, that is, patent

applications by local inventors but assigned to foreign, OECD-based firms, as treatments to

a technology in a region, where technologies refer to one of the thirty-seven technological

subcategories in Hall et al. (2001). Therefore, our sample in principle consists of all

combinations of 1,549 regions and 37 technological subcategories, defining 57,313 region-

technology cells. However, we drop all cells that had already hosted foreign R&D
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activities between 1975 and 1985.9 In the remaining cells, we record all patents filed by

local inventors, from five years before to five years after a treatment. This limits our study

to treatments between 1985 and 2007, as depicted in Figure 4.4.

1975 1985 2007 2012

Treatments

Patent data

Figure 4.4: Data timeline

Notes: Data are available for patents filed between 1975 and 2012. The first ten years of this period are used to identify which
region-technology cells are untreated, that is, had no local patents assigned to foreign firms. For each treatment, we require an
observation window from five years before to five years after the treatment.

4.2.3 Nature of the Treatment

What do these treatments represent? First, it is important to note that our data capture

the original assignees, not the current owners of a patent. The role of these original

assignees in the research must have been sufficiently large to warrant ownership of the

invention; instances where foreign firms just buy intellectual property from local inventors

are excluded by design. Second, 93 percent of inventors on treatment patents are locals.

The main research effort thus takes place in the region itself, not in the MNE’s home

country. Third, local inventors typically maintain a long-lived relation with the treatment

firm. This follows from the fact that 86 percent of the local inventors on treatment patents

who patent at least once more within the subsequent five years (multipatent inventors) do

9This at-risk sample consists of cells with, on average, a lower income and education than cells with
preexisting foreign R&D activities. The geographic composition is as follows: Europe & Central Asia:
55 percent; East Asia & Pacific: 26 percent; Latin America & the Caribbean: 6 percent; North America
(excluding the US): 5 percent; South Asia: 5 percent; Middle East & North Africa: 2 percent; sub-Saharan
Africa: 1 percent. The technological breakdown is Electrical & Electronics: 21 percent; Computers &
Communications: 20 percent; Others technologies: 18 percent; Mechanical: 16 percent; Chemicals: 15
percent; Drugs & Medical: 11 percent.
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so for the treatment firm. This represents an extraordinarily high employee retention rate.

Local inventors thus provide the main input in the research efforts associated with our

treatments and do not maintain short-lived relations, but rather form durable connections

with the MNE that suggest the existence of formal employment relations. Taken together,

this strongly suggests that the MNEs are materially involved in the treatments in this

study.

4.2.4 Timing of Treatments and Treatment Effects

Finally, we explore whether we can find evidence that our treatments are associated

with formal FDI. To do so, we match our treatment patents to firms in ORBIS using

patent identifiers. ORBIS is a commercial database maintained by Bureau van Dijk that

covers some 200 million companies worldwide. Among other things, it lists the patents

that companies own. Using patent identifiers, we can identify current owners of 79.6

percent of all treatment patents in ORBIS. For 61 percent of these patents, we also find

that the owner has a subsidiary in the treatment region,10 supporting the notion that our

treatments often involve actual FDI.

To get a sense of how accurately we capture the timing of treatments and the size

of the investments associated with treatments, we also match treatments to greenfield

R&D investment projects recorded in fDi Markets between 2004 and 2012. The fDi Markets

database does not contain patent identifiers. We therefore match on company names

and are able to identify R&D investment projects for 173 treatments (5.85 percent). The

median of these treatments is associated with an investment of $US 37.3 million and

the creation of 207 jobs. However, given the fDi Markets database’s bias toward large

investment projects, this will overstate the size of the typical treatment. Furthermore,

10Considering that ORBIS has incomplete coverage and only of company branches that are still active
today, this match rate is high.
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we find that investment projects predate treatment patents by 1.7 years on average. This

suggests that our treatments trail investments by between one and two years, which is

reasonable given the expected time it takes for these investments to bear fruit. However,

because local firms will require a similar amount of time to transform any potential

spillovers into higher patenting rates, we expect that the consequences of a treatment will

emerge around the same time that we observe the filing of the treatment patent.

4.2.5 Dependent Variable

Our variable of interest is the patenting output by inventors who report a region as

their place of residence. If a patent lists inventors in multiple regions, we attribute a

fraction
# inventors on patent in region

# inventors on patent
to each region. Moreover, we focus on spillovers

from treatment firms to other firms in a region-technology cell. We therefore disregard

all patents assigned to treatment firms: foreign firms to which the treatment patent was

assigned.

To reduce the skewness in a variable that often equals zero, we use the inverse

hyperbolic sine (IHS) of a cell’s patent count:

yrθt = ln
1
2

(
Prθt +

√
1 + P2

rθt

)
where Prθt represents the fractional count11 of patent applications filed in technology

field θ in year t by inventors residing in region r. The advantage of this metric is

that, unlike ln(0), IHS(0) is well defined, while the IHS rapidly approximates the natural

logarithm: for Prθt ≥ 3, the difference between ln(Prθt) and IHS(Prθt) is below 2.5 percent.

11Fractional count is defined as the sum across all local patents of the shares of inventors that reside in
the region.
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4.2.6 Causal Effects of Foreign Research Activities

Foreign firms may not only help regions develop technological capabilities, they

may also be attracted by such capabilities. As a consequence, the direction of causation

between receiving FDI and developing technological capabilities is, a priori, unclear. To

address this problem, we combine matching with difference-in-differences estimation.

That is, we first select for each treated region-technology cell a set of untreated cells with

otherwise similar characteristics. These matched cells offer counterfactual development

paths for how the treated cells would have fared, had they not been treated. Next, we

study whether the performance of treated and control cells diverge after the treatment.

The matching exercise uses a mixture of propensity score and exact matching. First,

we estimate a cell’s propensity to be treated using a probit regression with, as explanatory

variables, the average years of education in the region and in the country, the region’s

population size, and several lags of country-level and region-level GDP per capita. The

latter provide a flexible way to control for trends in income growth, which should in

principle capture all improvements in a region’s capability base that are directly relevant

to its productivity. This is important, because changes in a region’s productivity may

not only result from foreign investments but also attract them. Next, we select up to five

counterfactual cells that match the treated cell’s propensity score most closely, while also

sharing that cell’s exact same year and technology subcategory. Finally, we require that

treated and nontreated regions do not belong to the same country. This ensures that

counterfactual cells are not treated indirectly, through within-country spillovers.

In a second step, we estimate the following difference-in-differences model:

yrθt = αrθ +
5

∑
k=−5

Frθτk
1 +

5

∑
k=−5

τk
0 + γt + ϵrθt (4.2.1)

where αrθ represents region-technology fixed effects, Frθ a dummy for whether or not
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a region-technology cell was treated, and γt year fixed effects. The parameters of interest

are collected in τk
1 . The k encodes event time, and runs from −5 to +5, that is, from five

years before to five years after foreign research activities emerge in the patent data. They

express the difference in average innovation output between treated and nontreated cells

in each year.

4.2.7 Balancing External and Internal Validity

With this empirical strategy, we aim to strike a balance between internal validity,

that is, how confidently we can determine the causes behind the patenting dynamics

in the regions of our sample and external validity—the extent to which our findings

generalize to other regions. To do so, we use observable characteristics to identify

plausible counterfactual development paths for each treated region.

The difference-in-differences design allows us to assess how well we succeeded at this.

To see this, note that we do not match cells on their pretreatment patenting performance.

Therefore, before the treatment, treated and nontreated cells, in principle, could be on

very different patenting trajectories. However, as long as treated and control cells exhibit

indistinguishable innovation trajectories before the arrival of foreign R&D activities (i.e.,

τ̂k
1 ≈ 0 for k < 0), the control cells arguably provide a reliable counterfactual development

path for the treated cells, had they not hosted any foreign R&D activities. Under such

circumstances, estimated effects are likely to be causal. Yet, it is still possible that some

unobserved event—for instance, a change in government policy—triggers a sudden

increase in a cell’s technological capabilities as well as making this cell more attractive

for foreign firms. To minimize such confounding, we match on a region’s entire GDP

trajectory, which should control for any changes in a region’s capabilities that matter to

its productivity. However, any remaining confounding factors would affect our study’s
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internal validity, and our results should be interpreted with this caveat in mind.

The approach outlined above has several advantages. First, we do not select successful

regions a priori and are less likely to over-fit observed patterns that are merely incidental

to a causal narrative. Second, we avoid some pitfalls of statistical analyses in which the

direction of causation is unknown. Third, the wide range of regions and technologies in

our sample enhances our study’s external validity.

However, our approach also involves a compromise. We can neither explore the

intricate causal pathways that explain a particular region’s success—as in a well-crafted

case study—nor do we exploit a real or natural experiment that guarantees a causal

interpretation of our estimates. Moreover, we have only limited information on each

region and on the strategic behavior of foreign MNEs. Yet, we believe that the resulting

balance between internal and external validity is useful, because it allows us to formulate

qualified conclusions about the typical (i.e., in a statistical sense, expected) causal role that

foreign R&D activities play in the emergence of new centers of technological excellence.

4.3 Findings

4.3.1 Difference-in-Differences Estimations

In total, we identify 5,731 treated region-technology cells, that is, cells in which the

first foreign research activities are detected between 1985 and 2007. This number drops

to 3,134 after we exclude cells outside the matching support without sufficiently close

counterfactuals, based on a caliper of 0.0002. At this caliper, treated and nontreated cells

have similar pretreatment trends. Stricter calipers do not yield improvements but lead to

less precisely estimated effects. On average, we match 2.35 control cells to each treated

cell.
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Before Matching After Matching

Treated Control t-stat Treated Control t-stat

Variable N = 5, 731 N = 3, 134 N = 7, 369

Country
GDP/cap (2005 USD) 20,310 17,830 5.06 20,740 19,320 3.43
Average yrs. of education 8.66 8.36 3.53 8.58 8.46 1.67
3-year av. GDP/cap growth 2.53% 2.54% -0.07 2.42% 2.61% -2.71

Region
GDP/cap (2005 USD) 19,350 16,370 6.06 19,410 17,940 3.89
Average yrs. of education 8.62 7.92 6.77 8.5 8.38 1.38
3-year av. GDP/cap growth 2.41% 2.47% -0.55 2.32% 2.44% -1.66

Table 4.1: Balance on observable characteristics

Notes: Treated cells are region-technology combinations where a foreign OECD-based firm starts patenting with local inventors
between 1985 and 2007. The matched samples only retain matched treated and non-treated (‘control’) cells. The reported
averages refer to the year preceding the treatment year for treated and matched controls and to 1996–the year preceding the
average treatment year–for cells in the non-treated column. GDP per capita is measured in 2005 purchasing power parity (PPP)
terms, and years of education are counted from primary school onward, for the population fifteen years and older.

Table 4.1 compares some key variables in treated and nontreated cells. Treated cells are

on average substantially richer and more educated than nontreated cells. This corroborates

our concern that foreign firms may be attracted to regions with advanced technological

capabilities. Matching improves the balance between treated and nontreated cells for

most variables, although some differences remain.

These differences prove inconsequential for our difference-in-differences estimates, τ̂k
1

(solid lines in Figure 4.5): before treatment, patenting output does not differ significantly

between treated and nontreated cells. However, after the treatment, patenting rates in

treated cells start outpacing the ones in nontreated cells. After five years, the average local

fractional patent counts in treated cells exceed their counterfactuals by 0.15 IHS points.

Using the natural logarithm to approximate the IHS, this means that patent counts in

treated regions are about 16 percent (e0.15 − 1 = 0.161) above their counterfactuals.12

12Note that this excludes patents filed on behalf of the treatment firm itself. If we include these patents,
the effect increases by twenty-nine percentage points (pp) in t = 1, 23 pp in t = 2, and 12 pp in t = 3.
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The difference between the treatment effects on total patenting and on domestic

patenting must be attributed to further foreign firms following the treatment firm to the

region. This can be interpreted as a demonstration effect: the entry of the first foreign

MNE signals to other foreign firms that one can successfully develop R&D activities in

the region. This demonstration effect is larger than the spillover effect. Of the overall

effect of 16 percent, only 7 percent is due to increased patenting by domestic firms. The

remaining 9 percent consists of additional patenting by foreign MNEs.13

This corroborates hypothesis 2: the entry of foreign MNEs attracts further foreign

entrants who contribute to a region’s patenting output.

4.3.2 Heterogeneity in Treatment Effects

Do all treatments yield similar spillovers? To answer this question within a difference-

in-differences framework, we would have to estimate separate difference-in-differences

curves for different subsamples. The modest number of treatments in our sample makes

such a strategy impractical. Instead, we exploit the fact that the difference-in-differences

graphs can be broken down into a flat part until the treatment year and a more-or-less

linear increase thereafter. This suggests that we can collapse the data into a period before

and a period after the treatment to estimate the following cross-sectional regression

equation:

∆yrθt = τFrθ + FrθZrθγ1 + Zrθγ0 + Xrθt−1β + ηrθt (4.3.1)

Treatment effects in t = 4 and t = 5 are all but unchanged, suggesting that, in the longer term, the treatment
firm’s own contribution is limited.

13That is not to say that the treatment effect on patents of foreign firms is 9 percent. Because, by definition,
before treatment, the number of patents assigned to foreign firms is zero, this effect is undefined. Given that

the total effect is
Pfor

rθt+5+Ploc
rθt+5

Pfor
rθt−5+Ploc

rθt−5
=

Pfor
rθt+5

Ploc
rθt−5

+
Ploc

rθt+5
Ploc

rθt−5
≈ 1.16, we have:

Ploc
rθt+5

Ploc
rθt−5

≈ 1.07 = 0.09. Patenting by foreign

firms thus raises the treatment effect by about another nine pp. Due to Jensen’s inequality, the effect will in
fact be somewhat larger.
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Figure 4.5: Difference-in-differences estimates

Notes: Difference-in-differences estimates, τ̂k
1 . These estimates reflect the differences in the IHS of fractional patent count

between treated and control cells in the matched sample of 3,134 treated and 7,369 control cells. Vertical lines depict 95 percent
confidence intervals, using standard errors clustered by region. Point estimates that are statistically significantly different from
zero (p ≤ 0.05) are shown in orange, insignificant point estimates in blue. The series with solid markers and vertical lines refers
to the effect on all patents in the region, the series with hollow markers and dashed vertical lines refer to the effect on patents
by domestic firms only.

where ∆yrθt = yrθt+5 − yrθt−1 represents the growth in the IHS of patenting in region

r and technology θ from one year before to five years after the treatment, and the

matrix Xrθt−1 includes control variables. To explore if there is any heterogeneity in

treatment effects, we interact the treatment dummy, Frθ, with variables that describe a

cell’s macroregion, technology, or treatment firm. These variables are collected in the

matrix Zrθ.

Table 4.2 summarizes results. Odd columns report the effect on total patenting, even

columns on patenting by domestic firms only. All models control for all variables used in

the propensity scores calculations as well as for year and country fixed effects. The first
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two columns show that foreign research activities increase overall patenting output five

years after the treatment by about 14 percent.14 The effect on patenting by domestic firms

is just 6 percent. The difference between the two estimates is due to patents filed by local

inventors on behalf of other foreign firms that subsequently enter the region.

Columns 3 and 4 interact the treatment dummy with macroregion dummies. Treatment

effects are strongest in East Asia, implying a 23 percent increase in overall patenting and

a 13 percent increase in patenting by domestic firms. Foreign research activities also

lead to a substantial rise in patenting in Europe and Central Asia (the omitted category),

increasing overall patenting by 11 percent and patenting by domestic firms by 4 percent.

Point estimates for South Asia are large, but imprecisely estimated, whereas treated cells

in the MENA (Middle East and North Africa) region do not seem to experience any

significant treatment effects.

Columns 5 and 6 interact the treatment dummy with dummies for six broad technology

classes, with other as the base category. Large and significant treatment effects exist in

medical, electrical, and computer technologies.

14Treatment effects are calculated as eτ̂ − 1, where τ̂ is the treatment effect. Note that for small τ̂,
eτ̂ − 1 ≈ τ̂.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Treatment effects All Domestic All Domestic All Domestic All Domestic All Domestic

T .1320*** .0585*** .1030*** .0395** .0477 .0126 .1590*** .0867*** .0427 .0158
(.0136) (.0125) (.0176) (.0164) (.0294) (.0281) (.0180) (.0167) (.0327) (.0314)

T×East Asia .1010*** .0833** .1040*** .0866***
(.0353) (.0327) (.0348) (.0324)

T×L. America -.0163 -.0217 -.0052 -.0144
(.0332) (.0276) (.0333) (.0277)

T×MENA -.2040** -.0147 -.1240 .0321
(.0800) (.0283) (.0866) (.0439)

T×South Asia .0904 -.0458 .0675 -.0561
(.0763) (.0597) (.0746) (.0611)

T×SS Africa .0325 .0220 .0373 .0249
(.0786) (.0765) (.0798) (.0781)

T×Mechanical .0694 .0345 .0725 .0369
(.0479) (.0459) (.0479) (.0460)

T×Chemical .0125 .0026 .0194 .0093
(.0405) (.0387) (.0407) (.0388)

T×Computers .1990*** .0936** .2070*** .1030**
(.0445) (.0410) (.0447) (.0413)

T×Medical .1740*** .1420** .1730*** .1410**
(.0497) (.0463) (.0498) (.0464)

T×Electrical .0908** .0445 .0957** .0490
(.0415) (.0384) (.0417) (.0385)

T×Top 5 -.0795*** -.0760*** -.0869*** -.0758***
(.0284) (.0262) (.0287) (.0266)

T×Top 6–19 -.0018 -.0296 -.0001 -.0254
(.0520) (.0464) (.0522) (.0466)

Matching vars? yes yes yes yes yes yes yes yes yes yes
Country FE (46) yes yes yes yes yes yes yes yes yes yes
Year FE (21) yes yes yes yes yes yes yes yes yes yes

N 10,476 10,476 10,476 10,476 10,476 10,476 10,476 10,476 10,476 10,476
R2 .077 .066 .079 .067 .090 .073 .079 .068 .093 .075

Table 4.2: Analysis of effect heterogeneity
Notes: ***: p < .01; **: p < .05, *: p < .1. Dependent variable: growth in IHS of fractional patent count from one year before to five years after treatment. Uneven columns
(‘all’) count all local patents, even columns (‘domestic’) only patents assigned to domestic firms. MENA: Middle-East and North Africa, SS Africa: sub-Saharan Africa. Top 5
is a dummy variable that codes treatments by MNEs in the top 5 percent of their technology’s patenting distribution, Top 6–19, codes treatments by MNEs in the sixth to
nineteenth percentile of this distribution. Standard errors, clustered at the matched group level, in parentheses.
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Finally, we identify all treatments by firms who are technology leaders. To do so,

we count the number of patents filed between 1975 and 1985 on behalf of each firm

in our data set. Firms ranked in the top 5 percent for this count in their technology

category will be considered technology leaders. Lists of technology leaders by aggregate

technology category are provided in Appendix B in the online material. To contrast

technology leaders to other foreign MNEs, we create two further classes: firms in the

sixth to nineteenth percentile and firms in the bottom 80 percent of their technology class.

Although technology leaders arguably have most to offer in terms of technological

know-how, their treatments affect local innovation rates significantly less than those of

lower-ranking firms. The treatment effect on overall patenting (column 7) halves when

the treatment firm is a technology leader compared to treatments by midtier firms or

firms at the bottom of the patenting distribution. These differences are even more striking

when focusing on patenting by domestic firms (column 8). Whereas foreign firms at the

bottom of the patenting distribution raise domestic patenting rates by about 9 percent,

technology leaders generate no spillovers whatsoever. This difference in treatment effects

barely changes when all interaction terms enter the model simultaneously (columns 9

and 10). This corroborates hypothesis 3: the more advanced the MNE, the smaller the

spillovers to the local economy are.

If technology leaders really generate fewer spillovers than lower-ranking firms, we

should be able to corroborate this by looking at spillover channels and patent citations.

Below, we focus on two well-known channels through which knowledge spillovers

materialize: technological alliances and labor circulation. Next, we look at citation

patterns. Finally, we analyze foreign firms’ location choices.
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4.3.3 Alliances

Do technology leaders engage in fewer local alliances abroad than lower-ranking

MNEs? To answer this question, we collect all patents assigned to potential treatment

firms. That is, we take all patents assigned to OECD-based MNEs that were filed by

inventors outside the MNEs’ home countries. Next, we create one dummy variable that

takes a value of one if these patents are the result of a collaboration, that is, if the patent

lists multiple firms as assignees, and another dummy that identifies collaborations with

domestic firms. We regress both dummy variables on a dummy that captures whether a

firm is a technology leader.

Table 4.3 reports results. The upper panel reports estimates from linear probability

models (LPMs), while the lower panel reports marginal effects from logit regressions.

Columns 1 and 3 show the unconditional association between firms’ propensity to engage

in alliances and their being a technology leader. On average, technology leaders are 3.1

percentage points (pp) less likely to engage in alliances, equivalent to 63 percent of the

average alliance rate (baseline propensity). Technology leaders are also underrepresented in

alliances with domestic firms: technology leaders are 1.2 pp less likely to engage in such

alliances than other MNEs, equivalent to 52 percent of the average rate. Logit models and

models with further control variables yield similar results.

4.3.4 Labor Mobility

Working at MNEs allows workers to acquire advanced skills and organizational

know-how that become available to local firms once these workers leave the MNE (Poole,

2013; Csáfordi et al., 2018). To explore whether technology leaders and lower-ranking

MNEs differ with respect to labor circulation in their foreign R&D locations, we use the

disambiguated inventor identifiers in PatentsView to approximately map how inventors
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All Alliances Alliances with
domestic firms

(1) (2) (3) (4)

Baseline alliance propensity .0512 (.0024) .0228 (.0016)

Linear probability models
Top 5% treatment firm -.031*** -.027*** -.012*** -.016***

(.0078) (.0074) (.0042) (.0057)
Dummies MNE’s headquarters (HQ) country? Yes Yes
Destination country dummies? Yes Yes
Technology category dummies? Yes Yes

N 15,772 15,772 15,772 15,772
R2 .007 .060 .002 .035

Logit regressions
Top 5% treatment firm -.031*** -.019*** -.012*** -.007***

(.0078) (.0043) (.0042) (.0021)
Dummies MNE’s HQ country? Yes Yes
Destination country dummies? Yes Yes
Technology category dummies? Yes Yes

N 15,772 15,772 15,772 15,772
Pseudo R2 .023 .137 .012 .169

Table 4.3: Alliances
Notes: ***: p < .01; **: p < .05, *: p < .1. Dependent variable: dummy variable equal to 1 if the patent lists at least one
other firm (alliance, columns (1) and (2)) or one other domestic firm (alliance with domestic firms, columns (3) and (4)) as a
co-assignee. Sample: all patents by potential treatment MNEs in regions outside an MNE’s home country. Baseline alliance
propensity: average likelihood that a patent is the result of an alliance. Columns (2) and (4) control for fixed effects for treatment
firms’ home countries, for the countries of treated regions and for six broad technology categories. Marginal effects of logit
specifications are evaluated at regressor sample-averages. Standard errors (in parentheses) are clustered at the region level.

move between firms.

First, we ask how often foreign firms bring their own inventors to R&D locations

abroad. To do so, we identify all inventors who filed patents outside their firm’s home

country (and outside the US). For each of these inventors, we ask if they filed an earlier

patent with this same firm inside its home country. Next, we determine whether this

was more often the case for inventors working for technology leaders than for inventors

working for lower ranking firms. Because the likelihood of observing job switches
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depends on how many patents inventors file, we control for the total patenting output

throughout an inventor’s career. Furthermore, we add dummies for the firm’s home

country and for the inventor’s country of residence.

Results are reported in Table 4.4. Being a technology leader has a positive and

significant effect on the likelihood that inventors are sourced from a firm’s headquarters.

The LPM shows that technology leaders source inventors 1.8 pp more often from their

headquarter locations than technologically less advanced MNEs. The logit regression

yields a comparable marginal effect. Technology leaders thus bring more of their own

inventors to their foreign R&D locations than lower-ranking MNEs do.

LPM Logit

Baseline HQ sourcing propensity .023 (.003)

Top 5 percent firm .0177*** .0140***
(.0031) (.0019)

ln(total # patents by inventor) .0078*** .0056***
(.0010) (.0007)

Dummies MNE’s HQ country? Yes Yes
Technology category dummies? Yes Yes
Destination country dummies? Yes Yes

N 421,392 421,392
R2/pseudo R2 .016 .050

Table 4.4: Inventor sourcing from headquarter country
Notes: ***: p < .01; **: p < .05, *: p < .1. Dependent variable: dummy variable equal to 1 if an inventor patented in the
treatment firm’s home country before patenting with that same firm abroad. The sample consists of all inventors who file
a patent outside the primary assignee’s home country between 1975 and 2012 (excluding the U.S.). Top 5 percent treatment
firm: dummy variable for whether the MNE ranks in the top 5 percent in its technology category. 2.4 percent of patents have
multiple assignees. In these cases, the dummy’s value is determined by the rank of the patent’s primary assignee. Total #
patents by inventor: total number of patents across an inventor’s career. Baseline HQ sourcing propensity: average likelihood
that inventors are sourced from their firm’s headquarters. LPM: linear probability model, logit: marginal effects of a logit
specification evaluated at regressor sample averages. Standard errors (in parentheses) are clustered at the region level.

Do technology leaders also exchange fewer inventors with other firms in the local

economy? To answer this question, we select all inventors who file two or more patents

in a region-technology cell, at least one of which for a foreign firm. We control for the
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inventor’s total number of patents in the cell to account for the fact that, the more patents

an inventor files, the easier it is to detect job switches.

Results, shown in Table 4.5, are striking. Technology leaders exchange workers with

other firms in the local economy at a much lower rate than lower-ranking MNEs do. The

rate at which they hire inventors from domestic firms (columns 1 and 2) is 4.9 pp lower,

against an average mobility rate of 17 percent. Furthermore, inventors leave technology

leaders for domestic firms at a 1.6 pp lower rate (baseline rate: 9 percent) and for other

foreign firms at a 4.6 pp lower rate (baseline rate: 20 percent) than lower-ranking MNEs.

Domestic to Foreign Foreign to Domestic Foreign to Foreign

(1) (2) (3) (4) (5) (6)
LPM Logit LPM Logit LPM Logit

Baseline propensity .1711 (.0023) .0872 (.0017) .1797 (.0024)

Top 5% firm -.0490*** -.0410*** -.0161*** -.0151*** -.0457*** -.0501***
(.0083) (.0055) (.0048) (.0046) (.0087) (.0170)

ln(total # patents by inventor) .1537*** .0854*** .0177*** .0124*** .1255*** .1030***
in tech-reg cell (.0189) (.0057) (.0052) (.0038) (.0113) (.0077)
MNE’s HQ country? Yes Yes Yes Yes Yes Yes
Technology dummies? Yes Yes Yes Yes Yes Yes
Destination dummies? Yes Yes Yes Yes Yes Yes

N 36,416 36,416 36,416 36,416 36,416 36,416
R2/pseudo R2 .214 .250 .038 .067 .108 .106

Table 4.5: Local job-switching patterns
Notes: ***: p < .01; **: p < .05, *: p < .1. Dependent variable: dummy variable equal to 1 if a local inventor in a region-
technology cell: first patents for a domestic firm and then for a foreign firm (columns (1) and (2)), first patents for a foreign
firm and then for a domestic firm (columns (3) and (4)) or first patents for a foreign firm and then for another foreign firm
(columns (5) and (6)). When inventors file patents for several firms, the earliest patent determines the direction of the move.
Sample and control variables as in Table 5. Top 5 percent firm: dummy variable for whether the foreign firm is a technology
leader. In columns (5) and (6), the dummy refers to the origin firm. Baseline propensity: average likelihood that an inventor
makes the job switch at hand. Marginal effects of logit specifications are evaluated at regressor sample-averages. Standard
errors (in parentheses) are clustered at the region level.
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4.3.5 Citations

Knowledge spillovers may also leave traces in citation patterns. Although citations

do not necessarily imply knowledge flows, a large literature starting with Jaffe et al.

(1993) interprets the fact that patents disproportionately cite other patents filed in nearby

locations as a sign that knowledge flows are geographically bounded. Following this

literature, we analyze whether treatment patents of foreign technology leaders are cited

less within the local economy than those of lower-ranking MNEs.

To do so, we match all patents in treated regions to observationally similar patents in

other regions, using propensity-score matching (see Appendix C in the online material).

Next, we calculate the ratio between the frequencies with which the treatment patent

is cited (1) by patents from the treated cells and (2) by control patents. The higher this

ratio, the stronger the evidence of local knowledge spillovers becomes. We estimate this

spillover intensity once for patents in cells treated by technology leaders and once in cells

treated by MNEs in the bottom ninety-five percentiles of the patenting distribution.

Table 4.6 compares results in these two samples. Both samples provide evidence for

local knowledge spillovers: treatment patents are cited more often by local patents as

by control patents. However, whereas treatment patents of technology leaders are cited

only twice as often by local than by control patents, this ratio is 5-to-1 for patents of

lower-ranking firms. This suggests that technology leaders generate markedly fewer

spillovers than less prominent MNEs.

The same pattern emerges when we focus on spillovers to domestic firms only (i.e.,

when we focus on citations by domestic firms). However, because there are no control

patents that cite any of the treatment patents, we cannot calculate the citation ratio in this

case. Nevertheless, the absolute numbers of citations (8-to-1 versus 1-to-0) still suggest

that lower-ranking firms generate more spillovers than technology leaders.
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All Domestic Foreign

T5 cells B95 cells T5 cells B95 cells T5 cells B95 cells

Patents in treated cells .005% .020% .004% .018% .009% .045%
(6) (46) (5) (38) (1) (8)

Control patents .002% .004% .003% .004% .000% .006%
(3) (9) (3) (8) (0) (1)

N 125,609 234,278 115,549 216,478 10,060 17,800
T/C ratio 2.00 5.11 1.67 4.75 undefined 8.00

Table 4.6: Citations from local patents to treatment patents
Notes: Percentage of patents in treated cells and of control patents that cite the treatment patent. T5 cells: region- technology
cells treated by a technology leader and matched controls. B95 cells: region-technology cells treated by other firms and matched
controls. All: all patents in treated cells and their controls; Domestic: patents by domestic firms only; Foreign: patents by
foreign firms only. Absolute numbers of citing patents in parentheses. T/C ratio: ratio of citation propensities of patents in
treated cells to control patents.

4.3.6 Location Choice

Alcácer and Chung (2007) suggest that firms choose investment locations strategically

to balance the costs and benefits of technology spillovers. These authors show that,

whereas technologically less advanced firms locate preferentially in regions with high

absorptive capacity, technology leaders tend to steer clear of such locations.

Table 4.7 corroborates Alcácer and Chung’s findings. It shows that the socioeconomic

structure of regions treated by technology leaders differs markedly from regions treated

by technologically less advanced MNEs. Technology leaders tend to choose regions with

lower levels of GDP per capita, lower levels of schooling, and lower patenting rates than

less advanced firms. This supports hypothesis 5: technology leaders locate in regions

with low levels of absorptive capacity.15

Why then do technology leaders choose the regions they do? Table 4.7 offers some

answers to this question. First, although technology leaders are more likely to choose less

15Note that these low levels of absorptive capacity may explain why technology leaders do not exchange
many workers and engage in few technological alliances: in the regions where they invest, opportunities to
do so are low, regardless of MNEs’ willingness to embed themselves in the local innovation system.
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developed regions compared to other MNEs, they still select regions with an intermediate

level of development, not regions at the bottom of the distribution. Region-technology

cells that are dismissed by all types of foreign MNEs (column 3) exhibit the lowest levels

of education and the lowest GDP per capita. Second, technology leaders do not seem

to compromise on the presence of public research institutes in the host region.16 In

fact, whereas untreated cells host 25 percent fewer public-sector research institutes than

treated cells, there is no statistically significant difference in this respect between cells

that were treated by technology leaders and cells treated by lower-ranking MNEs. This

corroborates the finding by Alcácer and Chung (2007) that technologically advanced firms

avoid regions with strong private-sector, but not public-sector, research capabilities.

4.4 Conclusion

How do new centers of technological excellence emerge? In this article, we provide

one possible answer: due to the arrival of foreign firms. R&D activities of foreign

MNEs can act as powerful catalysts in the development of local technological capabilities.

These capabilities can spill over to local firms and attract further foreign MNEs to the

region, if MNEs decide to participate in local learning processes. Research in strategic

management, however, has shown that MNEs aim to maximize net not total spillovers. For

the technologically most advanced MNEs, the balance between learning from, and leaking

knowledge to, competitors tilts in favor of the latter, reducing MNEs’ incentives to embed

themselves into the local innovation system. We test this hypothesis by studying whether

technology leaders that start R&D activities in the region generate fewer spillovers than

16Data on the presence of public research institutes are taken from the GRID database: www.grid.ac.
The GRID database collects information on all institutes that perform academic research, using large-scale
information on publications and grants. We exclude private-sector research institutes and only use records
for which we could determine that the institute had been founded before the year of the treatment.
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Top 5% Bottom 80% Untreated
(N = 1,073) (N = 1,798) (N = 4,302)

Regional GDP/cap (2005 USD) 18,610 20,610 16,370
(330) (280) (170)

Country GDP/cap (2005 USD) 19,930 21,940 17,830
(350) (290) (180)

Population (millions) 5.22 4.53 7.17
(0.47) (0.33) (0.26)

Average education 8.24 8.80 7.92
(0.08) (0.06) (0.04)

GDP growth 2.46% 2.48% 2.60%
(0.08) (0.06) (0.03)

Patents/1 million inhabitants 1.44 1.73 0.50
(0.23) (0.21) (0.05)

Public research institutes/1 million inhabitants 18.82 20.59 14.80
(0.87) (0.69) (0.33)

Table 4.7: Location choices
Notes: Mean regional characteristics of cells treated by technology leaders and lower-ranking firms in the year before the
treatment, as well as in untreated cells. The sample in the first two columns consists of all treated cells used in the difference-
in-differences analysis (N = 3,134, 1,073 cells are treated by top 5 percent firms, 1,798 cells by bottom 80 percent firms); the
sample in the last column consists of at-risk cells that received no treatments. Standard errors in parentheses. All pairwise
differences are statistically significant at the 1 percent level, except for the difference between top 5 percent and bottom 80
percent cells in population, patents/1 million inhabitants and public research institutes/1 million inhabitants, where differences
are insignificant at any conventional level.

lower-ranking MNEs.

In terms of methodology, we complement the existing literature on the role of foreign

MNEs in cluster genesis by means of an estimation strategy that strikes a careful balance

between external and internal validity. To improve external validity, we analyze how

regions around the globe become active in a wide range of technologies over a period of

over thirty years. At the same time, we improve internal validity by combining matching

and difference-in-differences estimation, which allows us to compare the performance

of regions with foreign R&D activities to their likely counterfactual development paths

without these R&D activities.

The effect of R&D activities by foreign multinationals on local innovation rates turns

out to be sizeable and positive. A combination of knowledge spillovers to domestic firms
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and the attraction of new foreign firms to the region sets the host economy on a trajectory

with persistently higher innovation rates. However, as predicted, host economies benefit

less from the R&D activities of technology leaders than from those of lower-ranking MNEs.

Corroborating this result, we find that technology leaders tend to invest in regions with

lower absorptive capacity than lower-ranking firms do. Possibly because of this, we find

that technology leaders also engage in fewer alliances and exchange fewer workers with

domestic firms. However, whereas technology leaders shun the presence of private-sector

research—which holds the risk that know-how spills over to competitors—they seem

to value public research activities. These findings support the warning by others that

strategic couplings between globally operating firms and the regional economy may lack

depth (MacKinnon, 2012) and that foreign branch plants do not automatically become

embedded in the local economy (Phelps et al., 2003). Instead, as extensively documented

in the literature on GPNs (e.g, Yeung (2015)), the interaction between MNEs and their

host economies is dynamic and involves strategic considerations on both sides.

Our article has certain limitations related to the intrinsic shortcomings of studying

innovation through the lens of patent data and to the rudimentary characterization of

firm strategies. For instance, we do not observe firm-internal processes such as the

competition for repeat investments among an MNE’s establishments described by Phelps

et al. (2003). Our approach therewith follows many of the existing quantitative analyses

on the topic that only take into consideration rough characteristics of investing firms

such as their location choices (as in the literature on global value chains) or their home

countries (as in the literature on emerging market MNEs). Although we were able to

add some other elements of corporate strategy, such as MNEs’ propensity to engage in

local alliances or aspects of their human resource management, a deeper analysis of the

strategic decision-making that affects the internationalization of R&D activities is beyond

the scope of our study.
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A further limitation of our study is that our theoretical framework focuses on the

strategic investment decisions by MNEs. It therewith neglects the strategic response

to such investments by local actors. This interaction between MNEs and their host

environments and the strategic couplings that emerge from it are more exhaustively

studied in the literature on GPNs (e.g, Coe et al. (2004); Coe and Yeung (2019)). However,

our findings echo some issues that are raised in this literature. In particular, there are

important parallels with GPN research when it comes to the differences between advanced

and lagging regions in terms of the extent to which host economies manage to create a

strategic coupling between local resources and MNE investments. For instance, our study

highlights the importance of ensuring that foreign firms connect to the local economy

when it comes to exchanging workers or engaging in strategic alliances.

A particularly important aspect of strategic coupling is public policy. Innovation

is often considered to be an important aspect of economic development, and many

regions have developed a range of local innovation policies. Analyzing the role of

such policies in detail would have required documenting them in a comparable way

for regions across the world. Although this effort is beyond the scope of the current

article, understanding the role of public policy constitutes an important avenue for future

research. For instance, regions often invest in public research and education through

universities and other knowledge infrastructures. We showed that this public knowledge

infrastructure is equally well developed in regions that host leading or lower-tier MNEs.

Furthermore, many regions subsidize FDI, in particular in R&D-intensive activities.

However, these subsidies may have unintended consequences. For instance, large MNEs

will develop strategies to find and benefit from such subsidy schemes. These subsidies

may therefore distort investment decisions and lead to poor matches between the available

local resources and those required by the MNE. As a result, weaker local economies may

end up attracting investments from firms for which they struggle to provide adequate
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resources (Midelfart-Knarvik and Overman, 2002). In response, these firms may end up

accessing such resources elsewhere through their corporate network. This, in turn, can

weaken the interactions between foreign firms and their host economy, a pattern that we

documented in our analysis and that echoes findings in the literature on GPNs (Coe and

Yeung, 2019).

Furthermore, by focusing on the effects of foreign research activities on patenting

output within a specific region, we ignore spillovers beyond the region’s boundaries.

Similarly, we do not study spillovers between technologies, even though benefits may

extend to related technological fields. In this sense, our estimates put a lower bound on

the spillovers that foreign MNEs generate.

Finally, regarding our identification strategy, we cannot exclude that a change in

regional conditions both attracts foreign firms and increases local innovation output.

Without a source of exogenous variation in R&D investments, our estimates may therefore

still suffer from some bias. However, we believe that such imperfections are justified by the

improved external validity that analyzing the emergence of new centers of technological

excellence across a wide range of technologies and countries affords.

The article also advances our conceptual understanding of how such new technology

centers emerge by systematically linking insights from economic geography on innovation

clusters, from international economics and international business on MNEs’ location

decisions, and from strategic management on MNEs’ incentives to participate in local

learning processes. The resulting framework yields a set of hypotheses on the formation

and growth of innovation clusters. Crucially, it suggests that, to understand knowledge

circulation in clusters, we cannot ignore the incentives and strategic choices of the actors

involved. In spite of the convincing case for studying agency in regional innovation

systems made by, among others, Coenen et al. (2017), the literature often ignores how the

competition among profit-seeking firms affects their willingness to take part in reciprocal
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learning. Against this backdrop, our findings support a vast body of research on GPNs

(see, for instance, Coe and Yeung (2019)) that emphasizes the crucial importance of

considering the strategic trade-offs that firms and other actors face in participating in

local innovation systems when analyzing cluster dynamics.

Finally, the article offers a number of lessons for public policy. First, we show that

foreign firms’ R&D activities can help regions acquire new technological capabilities.

This supports the view that attracting globally operating firms represents an important

policy element to support emerging clusters (e.g, Tödtling and Trippl (2005)). In fact, the

impact of foreign R&D activities is sizeable: on average, they help a region rise fourteen

percentiles in the world’s innovation ranks. To make the most of foreign investments,

regions need to flank them by local policy. For instance, our findings point to the

importance of labor pooling and strategic alliances between foreign and local firms. These

interactions may be hindered by barriers associated with organizational, cultural and–

often–cognitive distance. Public policy should therefore aim at reducing transaction costs

between MNEs and local actors, in particular in less technologically advanced regions.

For instance, regions can (co-)invest in human-capital–building institutions that reduce

the gap between the local pool of human resources and the requirements of foreign firms,

or they can leverage dedicated local organizations, such as regional investment promotion

agencies, to facilitate the search and matching to local suppliers or to other potential local

partners (Crescenzi et al., 2021).

However, whether or not knowledge transfers from foreign firms materialize depends

not only on the strength of the local innovation system and its absorptive capacity but

also, and crucially, on the type and strategic considerations of foreign firms themselves.

This echoes words of caution about dark sides to FDI (MacKinnon, 2012) and findings that

foreign firms often end up creating enclaves or extended enclaves in their host economies

(Phelps et al., 2003). In other words, information asymmetries and poor bargaining
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positions may make strategic coupling harder for less-developed regions. In fact, these

regions risk brain drain, not gain, when foreign firms ring fence the most talented human

capital in the region. Where they fail to engage with local actors, foreign firms may

therefore further fragment the investment ecosystems of less-developed regions. When

attracting foreign companies, policy makers should therefore consider complementing

such efforts by policies that promote knowledge transfers, such as workforce training and

local sourcing agreements. Finally, we find that the risk of a lack of embeddedness is

highest when attracting technology leaders. In contrast, less prominent MNEs tend to

become better connected to the local economy. Therefore, whereas policy makers often

try to attract technology leaders, our study suggests that the value of such flagship FDI

may be overestimated. A more prudent approach would focus on less visible players.

This may not only require less generous incentives but also generate more spillovers to

the local economy.
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4.5 Supplementary material

Supplemental data for this article can be accessed here.
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Crescenzi, R., A. Dyèvre, and F. Neffke (2022): “Innovation Catalysts: How Multinationals
Reshape the Global Geography of Innovation,” Economic Geography, 0, 1–29. [Cited on page 161.]

Crescenzi, R., A. Filippetti, and S. Iammarino (2017): “Academic inventors: Collaboration and
proximity with industry,” Journal of Technology Transfer, 42, 730–762. [Cited on pages 96 and 98.]

129



Crescenzi, R., L. Gagliardi, and S. Iammarino (2015): “Foreign multinationals and domestic
innovation: Intra-industry effects and firm heterogeneity,” Research Policy, 44, 596–609. [Cited on
pages 88 and 92.]

Crescenzi, R., C. Pietrobelli, and R. Rabellotti (2014): “Innovation drivers, value chains and
the geography of multinational corporations in Europe,” Journal of Economic Geography, 14,
1053–1086. [Cited on pages 85 and 88.]
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American Economic Review, 104, 3222–55. [Cited on page 5.]

Mowery, D. C., R. R. Nelson, B. N. Sampat, and A. A. Ziedonis (2015): Ivory tower and industrial
innovation: University-industry technology transfer before and after the Bayh-Dole Act, Stanford
University Press. [Cited on page 29.]

Murphy, P., D. Blackaby, N. O’Leary, and A. Staneva (2020): “Understanding What Has Been
Happening to the Public-Sector Pay Premium in Great Britain: A Distributional Approach
Based on the Labour Force Survey,” British Journal of Industrial Relations, 58, 273–300. [Cited on
pages 74 and 78.]

Myers, K. R. and L. Lanahan (2022): “Estimating Spillovers from Publicly Funded R&D: Evidence
from the US Department of Energy,” American Economic Review, 112, 2393–2423. [Cited on pages 5
and 67.]

Narin, F. (1995): “Patents as indicators for the evaluation of industrial research output,” Sciento-
metrics, 34, 489–496. [Cited on page 161.]

136



National Science Board, N. (1975): Science Indicators, 1974: Report of the National Science Board,
US Government Printing Office. [Cited on page 28.]

Neffke, F., M. Hartog, R. Boschma, and M. Henning (2018): “Agents of structural change:
The role of firms and entrepreneurs in regional diversification,” Economic Geography, 94, 23–48.
[Cited on pages 88 and 92.]

Neffke, F. M. H. (2019): “The value of complementary co-workers,” Science Advances, 5, eaax3370.
[Cited on page 92.]

Nelson, R. R. (1959): “The simple economics of basic scientific research,” Journal of political
economy, 67, 297–306. [Cited on page 172.]

Ning, L., F. Wang, and J. Li (2016): “Urban innovation, regional externalities of foreign direct
investment and industrial agglomeration: Evidence from Chinese cities,” Research Policy, 45,
830–843. [Cited on page 85.]

NSF National Science Board (2022): “Research and Development: U.S. Trends and International
Comparisons,” Science and Engineering Indicators NSB-2022-5, National Science Foundation,
Alexandria, VA. [Cited on page 145.]

OECD (2021): “R&D Tax Incentives: United States, 2021,” . [Cited on page 144.]

Olley, G. S. and A. Pakes (1996): “The Dynamics of Productivity in the Telecommunications
Equipment Industry,” Econometrica, 64, 1263–1297. [Cited on pages 44 and 53.]

Olmstead-Rumsey, J. (2022): “Market Concentration and the Productivity Slowdown,” Working
paper. [Cited on pages 6 and 51.]

Phelps, N. A. (2008): “Cluster or capture? Manufacturing foreign direct investment, external
economies and agglomeration,” Regional Studies, 42, 457–473. [Cited on page 85.]

Phelps, N. A. and C. Fuller (2000): “Multinationals, intracorporate competition, and regional
development,” Economic Geography, 76, 224–243. [Cited on page 85.]

Phelps, N. A., D. MacKinnon, I. Stone, and P. Braidford (2003): “Embedding the multination-
als? Institutions and the development of overseas manufacturing affiliates in Wales and North
East England,” Regional Studies, 37, 27–40. [Cited on pages 93, 120, and 123.]

Poole, J. P. (2013): “Knowledge transfers from multinational to domestic firms: Evidence from
worker mobility,” Review of Economics and Statistics, 95, 393–406. [Cited on page 112.]

Rao, N. (2016): “Do tax credits stimulate R&D spending? The effect of the R&D tax credit in its
first decade,” Journal of Public Economics, 140, 1–12. [Cited on page 146.]

Reschke, B. P., P. Azoulay, and T. E. Stuart (2018): “Status spillovers: The effect of status-
conferring prizes on the allocation of attention,” Administrative Science Quarterly, 63, 819–847.
[Cited on page 21.]

137



Roach, M. and W. M. Cohen (2013): “Lens or prism? Patent citations as a measure of knowledge
flows from public research,” Management Science, 59, 504–525. [Cited on page 15.]

Romer, P. M. (1990): “Endogenous technological change,” Journal of political Economy, 98, S71–S102.
[Cited on page 5.]

Sampat, B. and H. L. Williams (2019): “How do patents affect follow-on innovation? Evidence
from the human genome,” American Economic Review, 109, 203–36. [Cited on pages 3 and 37.]

Saxenian, A. (2007): The new Argonauts: Regional advantage in a global economy, Cambridge, MA:
Harvard University Press. [Cited on pages 88, 92, and 96.]

Shaver, J. M. and F. Flyer (2000): “Agglomeration economies, firm heterogeneity, and foreign
direct investment in the United States,” Strategic Management Journal, 21, 1175–1193. [Cited on
pages 85 and 94.]

Singh, J. and A. K. Agrawal (2011): “Recruiting for ideas: How firms exploit the prior inventions
of new hires,” Management Science, 57, 129–150. [Cited on page 94.]

Song, J., P. Almeida, and G. Wu (2003): “Learning by hiring: When is mobility more likely to
facilitate interfirm knowledge transfer?” Management Science, 49, 351–365. [Cited on page 94.]

Spitalnic, P., S. Heffler, B. Dickensheets, and M. Knight (2016): “Hospital multifactor
productivity: An updated presentation of two methodologies,” Office of the Actuary, Centers for
Medicare & Medicaid Services, US Department of Health and Human Services. [Cited on page 31.]

Storper, M. and A. J. Venables (2004): “Buzz: Face-to-face contact and the urban economy,”
Journal of Economic Geography, 4, 351–370. [Cited on page 90.]

Sturgeon, T. J. (2008): “Mapping integrative trade: Conceptualising and measuring global value
chains,” International Journal of Technological Learning, Innovation and Development, 1, 237–257.
[Cited on page 85.]

Trajtenberg, M., R. Henderson, and A. Jaffe (1997): “University versus corporate patents: A
window on the basicness of invention,” Economics of Innovation and new technology, 5, 19–50.
[Cited on pages 6 and 21.]

Trippl, M., M. Grillitsch, and A. Isaksen (2018): “Exogenous sources of regional industrial
change: Attraction and absorption of non-local knowledge for new path development,” Progress
in Human Geography, 42, 687–705. [Cited on pages 87, 88, and 91.]
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Appendix A

Appendix to chapter 1 (data and facts)

A.1 Historical trends in R&D funding

A.1.1 Productivity growth and the funding of R&D in the United States

The debate about the importance of public R&D spillovers is made more relevant by

the fact that, in modern growth theory, spillovers play a critical role in driving productivity

growth. Understanding how spillovers from private R&D differ from those of public R&D

is therefore essential to assess the consequences of the secular decline in US public R&D

as a share of GDP over the past 60 years (shown in Figure A.3, left panel).1 If public and

private R&D differ in their ability to generate spillovers, then this large compositional shift

in R&D should have important consequences for innovation and productivity growth.2

1In 1960, federal R&D–which accounts for nearly all public R&D in the US–accounted for 1.7% of GDP.
In contrast, it was just .7% in 2020. Over the same period, the GDP share of private R&D tripled from .8 to
2.4%. While federal R&D has declined as a share of US GDP, its amount has steadily risen: it went from
$78 billion in 1960 to $148 billion in 2020, both expressed in 2020 dollars.

2Over the same period, aggregate Total Factor Productivity (TFP) growth decelerated from a high of
2.1% per year in the early 1960s to .9% in the late 2010s as can be seen in the right panel of Figure A.3.
Many other countries have experienced similar declines in public R&D over the last 40 years. See Figure
A.11 in the Appendix.
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Figure A.1: R&D expenditures, by type of fun-
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Figure A.2: Aggregate TFP growth

Figure A.3: R&D funding and TFP growth in the US

Notes: Series on R&D expenditures come from the Bureau of Economic Analysis (pre-1953) and from the National Center for
Science and Engineering Statistics, a National Science Foundation body (post-1953). Appendix A.1.2 breaks down federal R&D
by departments and agencies. The aggregate TFP growth series comes from Bergeaud et al. (2016): each bar in the left panel is
the geometric average of the aggregate TFP growth rate taken over five-year bins.

A.1.2 Breakdown of public R&D funding over the past 70 years in the

US

Figure A.6 shows the breakdown of federal R&D expenditures as a share of US GDP,

across agencies. The left panel shows all agencies and the right panel focuses on the those

with the smallest R&D expenditures.

A.1.3 Public R&D funding: the US and the rest of the world

The US government is not alone in investing in public R&D, and international

spillovers from other countries may affect American firms’ performance (Liu and Ma,

2023). However, the US appears to be the most important player when it comes to public

R&D. The OECD provides data on government-funded R&D over the last 40 years: it

shows that the US public R&D budget has been as large as the sum of all other OECD
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Figure A.6: Federal R&D expenditures, by department and agency

Notes: Time series come from the database of historical trends in federal R&D assembled by the American Association for the
Advancement of Science. The agency funding the R&D is not necessarily performing the R&D.

countries’ public R&D budgets, from 1981 to 2022.3

Furthermore, the American economy relies relatively little on spillovers from other

countries. In a recent working paper exploring cross-industry spillovers, Liu and Ma (2023)

document that countries are heterogeneous in their degree of reliance on domestically

produced knowledge. The US and Japan exhibit large shares of patent citations to

domestically produced patents (around 70% for both countries) while countries like

France and the United Kingdom have a majority of their patent citations directed toward

international patents. Taking these citation patterns as indicators of knowledge spillovers,

the authors conclude that the US is a large net exporter of knowledge to other countries.

Lastly, knowledge spillovers are usually very localized and do not travel far. A

voluminous literature about knowledge spillovers started by Jaffe and Trajtenberg (1999)

3The other countries in the data are Australia, Austria, Belgium, Canada, Chile, Colombia, Czech
Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy,
Japan, Korea, Latvia, Lithuania, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland,
Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. Budgets
are expressed in 2015 dollars. The data is from the ‘Gross domestic expenditure on R-D by sector of
performance and source of funds’ series.
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has documented that they decay very rapidly with distance. When measured by patent

citations, most spillovers occur in the immediate vicinity of where the knowledge was

produced and do not travel much further than the region around a city. This effect is

particularly true for more advanced, less codified knowledge.

These three facts lend support to the choice of this paper to focus on spillovers from

US public R&D only. Including international spillovers could be an interesting extension

of the present work. The most important reason why one would want to look into

international spillovers is the recent rise of China’s public R&D budget over the last 20

years. Indeed, the US budget was six times as big as the Chinese one in 2003, the first

year when OECD data is available, but it is only 1.2 times as big in 2022.

A.1.4 The (un)importance of R&D tax credits

R&D tax credits are used in many countries to incentivize private R&D spending. This

section assesses if the federal and local R&D credits available to US firms are likely to

have fueled the rise in private R&D. Because of the limited generosity of the federal tax

credit, its late introduction in 1981 and the unavailability of local state credits in some

state, I conclude that it is unlikely that R&D tax credits are behind the secular rise in

private R&D in the US.

Introduced in 1981 as part of the Economic Recovery Tax Act, the ‘Credit for Increasing

Research Activities’ is the tax relief scheme used by the federal government to foster

private R&D in the United States. It enables firms to claim a tax relief of up to 20% of

R&D expenses (in excess of a base amount), provided the expenses satisfy eligibility

criteria. Qualified research expenses include wages, material costs and rental cost of

certain scientific property and equipment used in research. The two main components of
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the scheme are the Regular Research Credit (RRC), typically used by larger firms with a

history of R&D, and the Alternative Simplified Credit (ASC), typically used by smaller

and younger firms. In addition, firms can claim refunds on basic research expenses

and energy research expenses. If a company’s tax liability is insufficient to fully utilize

the credit, the unused portion can be carried forward for up to 20 years. Addition-

ally, since 2016, eligible start-ups have the option to apply a portion of their research

credit, up to $250,000, against their payroll tax liability instead of their income tax lia-

bility. Wages paid to do in-house R&D constitute the largest expense eligible for the credit.

R&D tax credits are unlikely to have fueled a significant proportion of the secular

increase in private R&D shown in figure A.1. Firstly, they have been introduced only

in 1981, more than three decades after the rise in private R&D has been first recorded.

Secondly, the American federal tax credit is not particularly generous compared to similar

fiscal incentives in OECD countries (OECD, 2021) and it accounts for a small share of

total private R&D.4 To gauge the importance of federal tax credits in aggregate private

R&D, figure A.7 plots the total amount of tax credits claimed by businesses, as a share of

GDP (data is only available from 1990 to 2013). In 2013, American corporations claimed

only $11 billion in R&D tax credits. In contrast, total private R&D spending was $297

billion that year. R&D credits can thus hardly explain the large increase in private R&D.

Federal tax credits are not the only fiscal incentives R&D-performing firms have access

4The OECD rates the US R&D tax credit as less generous than the average OECD R&D tax credit, with
an implied subsidy rate of 7% compared to 20% for the average OECD country (OECD, 2021). The implied
subsidy rate is calculated as 1 − Bindex where Bindex is the level of pre-tax profit a representative company
needs to make to break even on a marginal, unitary outlay on R&D. In other words, a Bindex of 100% means
that firms need to generate one dollar of profit to break even after one dollar of R&D expense. In 2021,
American firms needed to make $0.93 of profits to justify a marginal dollar of R&D. French and German
firms, on the other hand, only needed to make $0.60 and $0.80 of profits, respectively, because the taxes
and subsidies there are more advantageous for R&D performing firms.
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Figure A.7: R&D tax credits and R&D expenses

Notes: Series on R&D expenditures come from the Bureau of Economic Analysis (pre-1953) and from the National Center for
Science and Engineering Statistics, a National Science Foundation body (post-1953). Note that R&D expenditures by firms
with fewer than 5 employees (‘microbusinesses’) are not counted in the NSF surveys on R&D spending before 2016. See
NSF National Science Board (2022), footnote 5, p. 73. The inclusion of microbusiness R&D in total private R&D makes little
difference: it accounted for only $4 to $5 billion in 2016 (out of $375 billion, i.e. 1.3%), year of its inclusion.
Data on tax credits claims come from the IRS’s Statistics of Income – Corporation Research Credit webpage.

to; as many as 36 states had their own R&D credit scheme in 2023. It is however unlikely

that state tax credit matter much for several reasons. The first is that state tax credit rate

is typically lower than the federal credit rate (from 1% to 20% according to Wilson et al.

(2005)). Secondly, not all states offer R&D tax credits and very few were offereing tax

credits in the 1980, shortly after the introduction of the federal tax credit. Until 1984,

only Maryland had a state tax credit. The number of states with credit then gradually

increased to reach 31 in 2005. Lastly, careful analysis of the aggregate effects of state R&D

tax credits by Wilson (2009) find that increases in private R&D ascribed to state credits

come almost entirely from drawing away R&D from other states, such that changes in tax

credits essentially leave aggregate R&D spending unchanged. Most state schemes follow

federal guidelines to determine what constitute a qualified research expense and how

generous the state credit should be. While no database of state tax credits exists, one may
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look at California, the most R&D-intensive state in the United States, to evaluate how

important state tax credits are for total private R&D investment. California introduced

its owned tax credit in 1987, six years after the federal one was enacted. It covers R&D

activities performed in California only and allows firm to reduce their tax liability by 15%

to 24% of their R&D expenses. In 2014, Californian firms claimed $1.5 billion in research

credit (Melass et al., 2021). This represents 12% of the $12.6 billion claimed in federal R&D

credits that year (Guenther (2022), table 3, p. 16). To put this number in perspective,

private R&D in California accounts for one third of all private R&D in the US in 2019.5 In

other words, while Californian firms represent a third of all private R&D, they claimed

an amount equivalent to roughly one tenth of federal credits in state credits. Given the

unavailability of local R&D credits in some states, the delay in the introduction of local

credits compared to federal credits and the Californian experience with local credits,

making the assumption that local R&D credits are as important as federal tax credits is

likely to yield an upper bound on the total amount of tax credits claimed by US firms. If

one makes this assumption, total tax credits in 2013 amount to $22 billion (less than 5%

of total R&D spending). Recent estimates of the elasticity of own-R&D spending to R&D

tax credit suggest that $1 in credit leads to a $2 increase in R&D (Rao, 2016; Agrawal et al.,

2014; ?). Using this elasticity and our upper bound estimate of $22 billion in tax credit,

one can estimate the increase in private R&D due to state and federal credits as being $44

billion in 2013, or 13% of all private R&D. Arguably not a large share, even for an upper

bound estimate. Furthermore, federal tax credits have remained flat through the period

for which data is available, while private R&D has grown monotonically, further reducing

the explanatory power of R&D credits as a driver of private R&D. For all these reasons, it

seems unlikely that R&D credits are a major force behind the rise in private R&D.

Another worry one might have is that R&D tax credits are incentivizing firms to

5See this 2021 note by the State Science & Technology Institute (SSTI).
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re-classify non-research expenses into research expenses. The existing set of papers

quantifying the extent of reallocation is small, but their message is fairly consensual:

there seems to be little reallocation of non-R&D expenses to R&D expenses following the

introduction of tax credits. ? use the introduction of a more advantageous tax regime

in the UK aimed at increasing the innovation of small enterprise to evaluate the impact

of R&D tax credits. They find that treated firms did not experience a decrease in the

quality (citations) of the average patent after the introduction of the policy. This indirectly

supports the idea that re-labeling of non-R&D expenses may not be severe. However,

in an analysis of a Chinese R&D tax credits (China’s InnoCom program), Chen et al.

(2021) find that re-labeled expenses may account for a quarter of all of the change in R&D

expenses. All in all, the evidence on R&D expenses re-labeling, while not exhaustive,

suggests that re-labeling is a real, but not large margin of response of firms.

A.1.5 R&D budgets of US federal agencies

Panels A.1, A.2 and A.3 show the raw R&D budgets of the agencies I use in the

construction of my SSIV instrument. Values are expressed in billions of 2020 dollars

(deflated using the CPI from the Bureau of Labor Statistics).
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Table A.1: R&D budgets over time, federal agencies (1)
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Table A.2: R&D budgets over time, federal agencies (2)
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Table A.3: R&D budgets, federal agencies (3)
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A.1.6 Breakdown of public and private R&D

How $1 of public R&D is spent in 2020 How $1 of private R&D is spent in 2020
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Table A.4: How public R&D differs from private R&D and trends over time
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A.1.7 Public R&D trends in other countries

Outside of the US several advanced countries have also experienced a decline in public

R&D as a share of GDP. The OECD provides data about government spending on R&D

for several countries. The panels of Figure A.11 show public R&D expenditures as a

share of GDP for all countries for which data is available. Countries are classified in three

groups depending on the growth trajectory of their public R&D as a share of GDP.
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Figure A.8: Increasing
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Figure A.10: Decreasing

Figure A.11: Historical public R&D trends in selected countries

Notes: Data come from the OECD, series ‘Gross domestic expenditure on R&D by sector of performance and source of funds’.
Available here.
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A.2 Data appendix

A.2.1 Other datasets of patents matched to firms

6

There are two other main datasets of Compustat firms matched to patents: Arora et al.

(2021b) and Kogan et al. (2017). Arora et al. (2021b) match USPTO patents to Compustat

firms from 1985 to 2015, carefully reassigning patents from one firm to another after

M&As, name changes and re-listings. Dyèvre and Seager (forthcoming) build on the

work of Arora et al. (2021b), who themselves extend the matching efforts of Hall et al.

(2001). We improve it in four ways. We first extend it temporally by matching USPTO

patents to Compustat firms from 1950 to 2020, thereby covering the immediate postwar

period which has experienced large swings in both federal budgets and patent production

by agencies like NASA and the Department of Defense. We then improve the matching

quality by manually reviewing matches between firm names in Compustat and assignee

names in the USPTO datasets. Third, we add dynamic re-assignment events in the

pre-1980 period. Finally, we add government interest tags to all patents.

We improve upon Kogan et al. (2017), which covers the period 1926-2022 in five ways:

(i) by extending the coverage to 2020, (ii) by correcting many false positive matches in

the original data due to the reliance of Kogan et al. (2017) on automated string cleaning

algorithms, (iii) by adding government interest data, (iv) by using disambiguated patent

data and most importantly, (v) by re-assigning patents after corporate events. While

our dataset covers only three fourth of the period covered by KPSS’s data, we are

encompassing as many patents and a larger number of firms. Table A.5 summarizes the

strengths of each dataset, including ours. The large coverage of firms over the 1950-2020

6In this section, ‘we’ refer to Arnaud Dyèvre and Oliver Seager, who have assembled the dataset used in
this paper for another project.
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Coverage Dynamic Firms Patents Disambiguated

DS 2023 1950-2020 ✓ 9,961 3.115m PatentsView +
Used in this paper unique GVKEYs Harmonization w/ FGLMY

+ Extensive manual checks

ABS 2021 1980-2015 ✓ 4,985 1.349m Extensive manual checks
unique PERMNOs

KPSS 2023 1926-2023 No 8,547 3.160m Some manual checks
unique PERMNOs

KPSS 2023 1950-2020 No 8,448 2.918m Some manual checks
Restricted to 1950-2020 unique PERMNOs

NBER 2001 1963-1999 No 2,487 0.835m Automatic
unique CUSIPs

Table A.5: Datasets of publicly-listed firms matched to patents

Notes: The numbers of patents and PERMNOs (unique firm identifier tied to a firm’s stock) available in ABS 2021 are
obtained from the patent 1980 2015.dta dataset from the authors (available here). The numbers for KPSS come from
their Match patent permco permno 2022.csv dataset (available here). The numbers for the NBER dataset come from the
authors’ apat63 99.dta dataset (available here).

period and the dynamic nature of patent stocks make the DS dataset uniquely suited for

the analyses performed in this paper.

A.2.2 Algorithm to match patents to Compustat firms

Due to the absence of firm identifiers that can join Compustat and the USPTO data,

one has to rely on name matching to link firms to patent assignees. Our name matching

algorithm, described in more details in Dyèvre and Seager (forthcoming), proceeds in

four steps, and produces two datasets. The first dataset is called the static match. It

assigns a firm in Compustat to each patent, at the time of filing. This dataset can be used

to infer the flow of patents produced by a firm in a given year. The second dataset is a

dynamic match. It provides associations between unique firm identifiers over ranges of
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years such that one can observe the evolution of a firm’s patent stock over time.

To build this dataset, we combine data from nine sources: (i) patent data comes from

PatentsView for patents filed between 1976 and 2020, (ii) patent data from 1950 to 1975

comes from Fleming et al. (2019), (iii) firm balance sheet data comes from Compustat

North America, (iv) name changes and M&A data comes from the Center for Research and

Security Prices (CRSP), (v) post-1985 corporate restructuring information comes from SDC

Platinum, (vi) some data on firm ownership comes from Arora et al. (2021b), henceforth

ABS, (vii) data from Wharton Research Data Services complements this information on

corporate structure (because subsidiaries are listed in SEC 10-K filings), (viii) earlier data

on corporate events comes from the list of acquisitions by publicly listed firms, from 1952

to 1963, compiled by Lev and Mandelker (1972) and finally (ix) a manually curated list of

M&As, re-listings and spinoffs complements SDC Platinum (which starts in 1985) and

Lev and Mandelker (1972) (which covers 1952-1963). With these datasets at hand, our

merging effort proceeds in four steps. Our code is available in the project repository.

A.2.2.1 Name cleaning

Even within our two patent datasets, the same patent assignee may appear under

different names because there are no unified reporting requirements. For instance, the

technology firm IBM appears under ‘I.B.M’, ‘IBM’, ‘International Business Machines’,

‘IBM Intellectual property’ and many other names in the patent data. Furthermore,

the FGLMY dataset contains a substantial amount of inaccurate firm names due to the

authors’ reliance on Optical Character Recognition (OCR) techniques to extract text from

the patents PDFs. OCR is the only viable method to get patent information pre-1976, but

further cleaning is required for this dataset. For instance, the machine-read text of a patent

assignee field is ‘Assignors to Reliance Electric and Engineering of Ohio Application

March 22 1947 Serial No. 736532’ instead of ‘Reliance Electric and Engineering’. We clean
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these firm names as best as we can before running the general name-cleaning algorithm

on the combined patent datasets. To create a unique firm name for each relevant assignee,

we homogenize names by removing leading and trailing white spaces, replacing non-

standard characters such as ‘é’ or ‘å’ by standard ones, condensing acronyms such as

‘Limited Liability Company’ into ‘LLC’, replacing the names of large companies by a

common name using a substring match (e.g. ‘IBM’ in ‘IBM Intellectual Property’) and

finally removing all white spaces. As a result, 98.9% of all firm names in the patent

datasets and 99.7% in the balance-sheet data are altered.

A.2.2.2 Harmonization of firm names across patent datasets

Even after cleaning firm names, we may still have discrepancies between the PatentsView

and the FGLMY parts of the patent data. For instance, a firm may be reported as ‘ABC

Technologies’ in FGLMY and ‘ABC’ in Compustat. In such cases, we leverage the joint

coverage of both datasets from 1976 to 2017 and assign a new common name to assignees

from PatentsView and FGLMY with significant overlap in patents. All assignees with

significant overlap are subject to a careful manual review before being given a joint clean

name. For the 250 firm names associated with the most patents, we also conduct online

searches to find alternative names associated with the firm.

At the end of these three steps, we have 8,651,808 patents associated with 633,530

standardized firm names, from 1926 to 2020. We then proceed to match the assignee

names to Compustat firm names

A.2.2.3 Obtaining all the names under which a company trades

A firm who files a patent under one name in a given year may not trade under the

same name in another. Furthermore, patents filed by subsidiaries of a bigger firms need
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to be counted in the patent stock of the larger firm. The fourth step in our merging

procedure consist in identifying all the names associated with each GVKEY-year pairs in

Compustat. Following the methodology of Arora et al. (2021b), we fetch information on

firm names from the CRSP Daily Stock file and CRSP-Compustat Linking Tables. 38%

of all GVKEYs in our sample have at least two trading names over the 1950-2020 period.

We then follow Bessen (2009) in attributing a patent to the highest level in a corporate

structure by using subsidiary data from WRDS (which comes from SEC 10-K filings over

the 1993-2019 period). We also rely on the work of ABS and Lev and Mandelker (1972)

to get data on ownership and acquisitions of private subsidiaries, respectively. Finally,

we add corporate events coming from a manually curated list covering the period from

1950 to 1980. All steps are subject to careful manual checks on the names of firms and the

validity of the corporate events we identified.

A.2.2.4 Dynamic match

To then assign a patent to all the GVKEYs it is linked to, we fetch data on mergers,

acquisitions, re-listings and spinoffs (henceforth ‘corporate events’) from four sources.

First, SDC Platinum provides 414 corporate events, from 1985 to 2020. Then, the CRSP-

to-Compustat crosswalk provides an additional 570 corporate events over the whole

period covered by Compustat. Third, we manually search for corporate events when

we observe several GVKEYs associated with one standardized name. This step yields

an additional 296 corporate events. Lastly, we review several lists of high-value M&A

activity to complete the list of corporate events from 1950 to 1989 (a period with little to

no coverage by SDC Platinum). This last step adds 700 additional corporate events.
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A.2.3 Detailed data description

Firms

I select companies headquartered in the US or Canada over 1950-2020. Nominal values

are deflated using the CPI from the Bureau of Labor Statistics.

Patents

Patensview considerably improves upon previous disambiguation efforts by using

hierarchical agglomerative clustering–a machine learning algorithm–to group differently

spelled assignees into relevant categories (Monath et al., 2021).7

Government interest

Both cases are identified separately. For direct assignees, I use the classification

of Patentsview and Fleming et al. (2019) of assignees as government entities.8 When

necessary, I aggregate assignees to the highest level using the hierarchical table of

government entities provided by PatensView9 so that patents assigned to agencies like

DARPA are aggregated up to the level of the Department of Defense for instance. This

step ensures that the source of variation of federal budget funding is at the same level as

the variation in patent production.

7Previous disambiguation efforts typically rely on ‘edit-distance’ techniques that assign a percentage
of similarity between two strings based on how many characters need to be changed to transform one
string into the other. For instance, an edit-distance procedure would assign high similarity scores to long
assignee names with many characters in common such as ‘The United States of America as represented
by the secretary of the Navy’ and ‘The United States of America as represented by the secretary of the
Army’. Such conflations would be problematic when assigning patents to government agencies. Conversely,
assignees values ‘I.B.M.’ and ‘International Business Machines’ would not be paired. This type of false
negative is the main reason behind my improvement over (Kogan et al., 2017).

8It is common for government agencies to be assigned patents, even those producing innovations with a
strategic interest.

9Table g gov interest.tsv provided by PatentsView
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Patent examiner scores

The American Inventors Protection Act (AIPA) of 1999 mandates the public disclosure

of most USPTO patent applications filed on or after November 29, 2000, regardless of

whether the patents are eventually granted. Such applications are published in the public

record within 18 months of the filing date, with few exception such as applications

which are national security classified or which are explicitly asked not to be published

by the applicant.10 The 2021 version of PatEx includes information on over 12.5 million

non-provisional and provisional USPTO patent applications that are publicly viewable, as

well as more than 1 million Patent Cooperation Treaty (PCT) applications. The data used

for this version of PatEx was obtained by OCE from the Patent Examination Data System

(PEDS) in June 2022. Coverage of patent applications is most reliable from December 2000

onward, when the AIPA enters in force: 83% of all post-AIPA applications are available

in PatEx. Pre-AIPA coverage is only slightly less comprehensive, with three quarters of

applications available (Graham et al., 2018).

R&D Budgets

For agencies with no R&D budgets reported in these tables like the Department for

Veterans Affairs, I recover their historical budgets from The first is the White House’s

website where R&D spending by agencies over the 1962-2022 period is reported in statis-

tical tables.11 The second is the official 2013 federal budget documents by the Office of

Management and Budget which contained detailed accounts of expenditures by agencies

10Applications that are not published 18 months after filing may be published 60 months after filing
instead. Although some US patent applications may choose to opt out of publication, according to Graham
and Hegde’s 2013 study, only around 8 percent of US applications have chosen to do so for pre-grant
secrecy of patent applications.

11www.whitehouse.gov/omb/budget/historical-tables/, table 9.8.
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from 1940 onward. I manually enter these numbers and, when missing, estimate R&D

spending by scaling agencies’ total budgets by the share of R&D in the federal govern-

ment’s total budget.

Other patent-related datasets. Dates of creation of technological fields come from data

available on the USPTO website about the years of introduction of new USPC classes,12

and patents disruptiveness scores come from Kelly et al. (2021).13

A.2.4 Using patents to measure innovation and spillovers

Patent documents contain detailed information about an innovation, its inventors,

its assignees, and its technological content. The main limitation to the use of patents to

measure innovation is that not all innovations are patented, either because the innovation

does not meet one of the three main criteria for being protected by a patent (usefulness,

novelty and non-obviousness) or because the invention is better protected by alternative

means such as secrecy. However, there is a broad consensus that patent counts are a good,

if noisy, indicator of the innovativeness of an inventor, a firm, a city or a country.

Patent counts are typically strongly correlated with measures of inputs into the

innovation process such as R&D expenses or the number of researchers in a firm. There

is also evidence that a firm’s patent count is positively associated with many metrics of

firm performance. For instance, the patent yield of R&D expenses (measured as the ratio

of patents to R&D expenditure) is positively associated with a firm’s Tobin q (Hall et al.,

2005).

12Raw data stored at the following link arnauddyevre.com/files/USPC classes years established.pdf.
Csv file available at arnauddyevre.com/files/timeline detail classes.csv

13Data made available by the authors at dimitris-papanikolaou.github.io/website/
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Moreover, citations are a good indicator of the economic value of a patent, a evidenced

by the positive association between the average citation count received by patents and the

filing firm’s Tobin’s q Hall et al. (2005). They are also good proxies for the technological

value of patents as: expert valuations of the merits of patents correlate positively with

their citation counts (Albert et al., 1991) and patents who are ‘Hall of Fame’ or identified

by patent offices as being important are highly cited (Narin, 1995). In contrast, patents

expertly idenified as futile receive fewer citations (Czarnitzki et al., 2011). Benson and

Magee (2015) also show that the citation counts of patents in some technological domains

is positively associated with the rate of progress (the reduction in costs for instance) in

these domains. When studying the strategic decisions of firms of different sizes to expose

themselves to outward spillover, Crescenzi et al. (2022) find that the quantity of citations

to foreign firms in a region is a signal of spillovers that is correlated with other signals

such as inventor movements between firms and joint patenting.

See Jaffe and De Rassenfosse (2017) for a recent overview of best practices.
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A.2.5 Shares of proximity in technology space over time

The shares of proximity si f t and siat used in my empirical exercises are time-varying

but they appear to be extremely sticky in the data. Figure A.12 shows the correlation

between shares of exposure to federal agencies in one five-year period (on the x-axis) and

shares of exposure in the next five-year period (y-axis). All shares are very close to the

45 degree line. Shares in future periods are larger due to the increase in the number of

federal agencies over time.
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Figure A.12: Stability of shares of exposures to public R&D

Notes: The figure plots a binscatter of firm-to-agency exposure shares, from each 5-year period to the next. Each dot represent
approximately 170 firm × period observations. The plot uses 1,000 bins, defined at t, to facilitates legibility. The correlation
between shares over time is 0.61. The top 3 agencies with the highest average firm exposures are the Department of Defense
(firms exposed to the DoD have a 17.8% exposure on average), NASA (13.7%), the Department of Agriculture and the
Department of Energy (both at 10.8%).
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A.3 Additional results on public & private R&D patents

A.3.1 Historical USPC classes

Figure A.13 shows the cumulative shares of USPC patent classes is use over time. The

blue time series uses the date of introduction of classes while the red one uses the data of

the first patent in the new classes. Because patents are ex post re-classified into the most

relevant patent class, the blue time series first order stochastically dominates the red one.

See Lafond and Kim (2019) for a detailed history of the USPTO classification system.

Figure A.13: Timeline of the introduction of new USPC patent classes
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A.3.2 All results - publicly-funded vs. privately-funded patents

Adding controls Difference over time Performed by firms v. unis Heterogeneity by funder
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Table A.6: Fact 1 – Publicly-funded patents are more fundamentals (all results)
Notes: The unit of analysis is a patent. Coefficients and 95% confidence intervals come from a regression of an outcome of interest (yi) on a dummy equal to one
if the innovation protected by the patent benefited from public funding. Formally: yi = α + β × 1[patent i is publicly-funded] + Xiγ + εi . Standard errors are
clustered at the class and year levels. Graphs in the first column show how β varies when successively more exhaustive arrays of controls are used. Graphs in
the second column report β coefficients for different years. Graphs in the third column show how the β coefficient varies within performers of R&D: universities
or firms. The last graphs report coefficient heterogeneity across R&D funders.
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Adding controls Difference over time Performed by firms v. unis Heterogeneity by funder
Probability of opening a new technological class N = 8, 216, 965
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Table A.7: Fact 2 – Publicly-funded patents are more impactful (all results)
Notes: The unit of analysis is a patent. Coefficients and 95% confidence intervals come from a regression of an outcome of interest (yi) on a dummy equal to one
if the innovation protected by the patent benefited from public funding. Formally: yi = α + β × 1[patent i is publicly-funded] + Xiγ + εi . Standard errors are
clustered at the class and year levels. Graphs in the first column show how β varies when successively more exhaustive arrays of controls are used. Graphs in
the second column report β coefficients for different years. Graphs in the third column show how the β coefficient varies within performers of R&D: universities
or firms. The last graphs report coefficient heterogeneity across R&D funders.
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Adding controls Difference over time Performed by firms v. unis Heterogeneity by funder
Kelly et al. (2021) measure of patent disruptiveness (rfsim010) N = 2, 557, 885
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Table A.8: Fact 2 (continued) – Publicly-funded patents are more impactful (all results)
Notes: The unit of analysis is a patent. Coefficients and 95% confidence intervals come from a regression of an outcome of interest (yi) on a dummy equal to one
if the innovation protected by the patent benefited from public funding. Formally: yi = α + β × 1[patent i is publicly-funded] + Xiγ + εi . Standard errors are
clustered at the class and year levels. Graphs in the first column show how β varies when successively more exhaustive arrays of controls are used. Graphs in
the second column report β coefficients for different years. Graphs in the third column show how the β coefficient varies within performers of R&D: universities
or firms. The last graphs report coefficient heterogeneity across R&D funders.
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Adding controls Difference over time Performed by firms v. unis Heterogeneity by funder
Count of classes citing the focal patent N = 5, 223, 228
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Table A.9: Fact 3 – Publicly-funded patents generate more spillovers, especially to small firms (all results)
Notes: The unit of analysis is a patent. Coefficients and 95% confidence intervals come from a regression of an outcome of interest (yi) on a dummy equal to one
if the innovation protected by the patent benefited from public funding. Formally: yi = α + β × 1[patent i is publicly-funded] + Xiγ + εi . Standard errors are
clustered at the class and year levels. Graphs in the first column show how β varies when successively more exhaustive arrays of controls are used. Graphs in
the second column report β coefficients for different years. Graphs in the third column show how the β coefficient varies within performers of R&D: universities
or firms. The last graphs report coefficient heterogeneity across R&D funders.
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A.3.3 Some case studies

To fix ideas, and to better understand which publicly-funded patents do well across

the outcome variables used in section 1.2, it is informative to study a few patents in more

details. I present here three case studies of government-supported technologies. The first

case study describes the government-supported patent that relies most heavily on science

in my sample. The second is the one that is most ’ahead of its time’, and the last one is

the government-supported patent cited by the largest number of patent classes.

A.3.3.1 Case study 1 – An innovation in immunotherapy that relies on medical science

Figure A.14: A DNA sequence provided in patent
#5,833,975

In my sample of patents,

patent number 5,833,975 is the one

with the highest share of citations

to scientific articles. Only five of

its citations are directed to pre-

vious patents and the remaining

492 are directed to scientific pa-

pers (99% of the total).

The process protected by this

patent is one whereby medical re-

searchers can modify poxviruses

in order to use them as insertion

and expression vehicles for genes

in a host body. These genes are

used in immunization processes;

they enable the expression of an
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‘antigenic protein’ that can induce

an immunological response in the host. An important application of this technology is

the development of immunotherapy for patients treated for cancers. Figure A.14, taken

from the patent, shows one of several DNA sequences of genes that can be expressed by

the modified poxviruses.

The original patent assignee is a pharmaceutical firm, Virogenetics Corp, that received

financial support from the US government. Unfortunately, government funding for this

patent cannot be traced back to a specific agency: the statement of government interest is

too generic, as can be seen in Figure A.15.

Figure A.15: Statement of government interest in
patent #5,833,975

Most of the citations to aca-

demic work are to articles pub-

lished in virology, molecular biol-

ogy and immunology journals. It

is worth noting that pharmaceuti-

cal and medical patents are heav-

ily represented among patents with large shares of citations to scientific papers. Out of the

top 10 patents in shares of citations to science, eight of them are either supported by the

Department of Health and Human Services or are protecting health-related technologies.

This reliance of medical patents on science can also be seen in the heterogeneity analysis

in the top-right corner of panel A.6.

A.3.3.2 Case study 2 – A random number generator before the computer era

Patent number 4,183,088, entitled ‘Random number generator’, is the publicly-funded

patent that predates the creation of its patent class by the longest time in my sample.14 It

14The sample of patents is restricted to patents filed after 1950 and to patents that are filed before their
latest class is created (i.e. patents that are ’ahead of their time’) here.
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was filed in 1962 by the US Navy, 37 years before being re-classified into the ’Electrical com-

puters: arithmetic processing and calculating’ USPC class upon its introduction, in 1999.

Figure A.16: Drawing of the random number genera-
tor device of patent #4,183,088

Originally, it was filed under the

’Oscillators’ patent class in the

USPC system (class number: 331).

Its subclass was ’Electrical noise

or random wave generator’ (78).

The technology described in the

patent indeed relies on a noise

signal fed into a device that then

combines it with another signal

supplied by a pulse generator.

Through a sequence of mechan-

ical and electrical transformations

of the two signals, the device provides a random sequence of ones and zeroes with a

specific probability distribution to its user.

This patent predates the computer era by several decades. The first mention of the

word ’Computer’ in a USPC patent class title was in 1993 in the ’Computer graphics

processing and selective visual display systems’ class.

A.3.3.3 Case study 3 – A shape-memory alloy with applications across many technolo-

gies

The publicly-funded patent cited across the largest number of patent classes is patent

number 5,061,914, entitled ’Shape-memory alloy micro-actuator’. It was funded by NASA

but the R&D was performed by a private firm. The patent was filed in 1989 and is cited

by 36 distinct patent classes.
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Figure A.17: Statement of government interest in
patent #5,061,914

The technology described in

this patent is a type of micron-

sized mechanical switch. Such

minuscule switches are made of

metal alloys that change shape

or size when heated. They re-

turn to their original state when

the temperature drops back down.

This innovation is useful for cre-

ating surfaces that alternate in

shape, and applications of shape-

memory micro-actuator are mul-

tiple. In medicine, they are used to navigate through winding paths in the body; they

change shape during surgeries. In the aerospace and automotive industries, these actua-

tors are used to adjust components like air vents or flaps without relying on complicated

mechanical systems. In consumer electronics, they can be used to protect some critical

components if the device heats up above a certain temperature. NASA also uses larger

scale actuators to adjust the flight performance of aircrafts and space shuttles under

changing temperature conditions (NASA technology transfer program website, accessed

November 24, 2023).
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A.4 A discussion of the linear model of innovation

The interpretation of the science-technology nexus presented in section 1.2 is often

described as the linear model of innovation (Bush, 1945; Maclaurin, 1953; Nelson, 1959). It

posits that intellectual progress goes from science to applied research, to development, to

commercialization and to diffusion. In spite of its simplicity, the linear model has been

shown to be a powerful tool to explain the interaction between fundamental research

and applied innovation (Godin, 2006; Balconi et al., 2010; Ahmadpoor and Jones, 2017),

and most modern research takes the upstreamness of basic research vis-à-vis applied

innovation as given (Akcigit et al., 2020; Arora et al., 2021a).
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Appendix B

Appendix to chapter 2 (estimation)

B.1 Historical SSIV – Additional results

B.1.1 Summary statistics

Table B.1 shows summary statistics on the sample of firms used in the SSIV specifica-

tions.
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Variable Mean SD Min p10 p25 p50 p75 p90 Max

Monetary values – million of 2020 USD
Sales 7,844 25,028 1 71 313 1,273 5,235 16,067 498,518
Capital 4,428 16,692 0 15 70 352 2,220 9,257 375,924
Market value 8,226 27,492 0 41 170 962 4,385 16,300 702,025
R&D expenses 185 831 0 0 0 4 49 251 14,245

Counts
Employment (’000s) 23 66 0.003 0.3 1 5 18 51 2,100
Patent count at t (flow) 47 202 0 0 0 3 19 80 4,437

Endogenous treatments and instruments
Public spillovers 4.391 0.782 0.000 3.702 3.998 4.339 4.708 5.238 7.971
Public R&D funding 7.018 1.438 0.000 5.133 6.653 7.284 7.787 8.364 11.210
Private spillovers 0.280 0.113 0.005 0.137 0.206 0.273 0.340 0.421 1.067

States (top 5) Periods (top 5)
CA 10.5 % 2005 12.9 %
NY 8.0 % 2010 11.9 %
TX 7.8 % 2000 10.9 %
OH 7.6 % 1990 9.4 %
IL 7.4 % 1995 9.3 %

Sectors (top 5)
367 – Electronic Components & Accessories 6.0 %
382 – Lab Apparatus & Analytical, Optical, Measuring, & Controlling Instruments 4.6 %
384 – Surgical, Medical, & Dental Instruments and Supplies 4.4 %
371 – Motor Vehicles and Motor Vehicle Equipment 3.9 %
357 – Computer & Office Equipment 3.1 %

Table B.1: Summary Statistics – SSIV sample

Notes: The unit of observation is a firm × year. Summary statistics are computed on the sample used in Table 2.1 for the SSIV
regressions (N = 7, 631). Monetary values are deflated using the BLS Consumer Price Index and expressed in 2020 USD.
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(1) (2) (3) (4)

Productivity
∆10 ln(TFP) .024* .027** .027** .024*

(.013) (.013) (.013) (.014)

Firm sales and employment
∆10 ln(sales) -.020* -.015 -.017 -.015

(.011) (.011) (.012) (.010)
∆10 ln(employment) -.026** -.021** -.023** -.02**

(.011) (.010) (.011) (.010)

First-stage F-stat (exp. robust) 97.34 97.40 98.14 108.14

Period FE ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓
Sectors FE (2-digit) ✓ ✓ ✓
Sectors FE (3-digit) ✓

Own R&D and patents ✓ ✓ ✓ ✓
Private R&D spillovers ✓ ✓ ✓
Lagged firm controls ✓ ✓

N 6,499 6,499 6,499 6,499

Table B.2: Historical SSIV regression results – 10-year outcomes

Notes: The unit of observation is a firm × period. Standard errors and F-stats are exposure-robust (Adão et al., 2019): they are
computed using the authors’ reg ss and ivreg ss commands.
***, **, and * indicate two-sided significance at the 1, 5 and 10% levels, respectively.

B.1.2 10-year outcomes

B.1.3 Narrative shocks

This section describes the funding shocks I use in my robustness SSIV result. The

selection of shocks is based on the historical description of R&D funding appropriations

in the appendix of Fieldhouse and Mertens (2023) and my own reading of the histories of

federal agencies. Table B.3 and B.4 below describes the shocks included in the instrument
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used for this robustness check, along with a justification for their inclusion.

NSF

1950 USSR’s first atomic test in 1949 + Scientific and technological competition with
the USSR (ballistic missiles) + Sputnik (1957)1955

1960
1980 Reagan’s expansion of NSF
1990 Human Genome Project + 21st Century Research Fund initiative + Anthrax

terrorist attacks of 20011995
2000

2010 Recovery Act

Department of Energy and Environmental Protection Agency

1950 Eisenhower’s ‘Atoms for Peace’ (advance domestic energy production,
re-purpose breakthrough in fusion obtained during WWII)1955

1960
1970 Oil shock → more research into alternative sources of energy (motivated by

energy inflation and concerns over national security)1975
2005 07-08 oil price shock

2010 Budget Control Act of 2011 (debt ceiling crisis)

Department of Homeland Security

2000 9/112005

Table B.3: Shocks kept in the narrative approach (NSF, Department of Energy + Environ-
mental Protection Agency, Department of Homeland Security)

Notes: The table shows the set of funding shocks kept in the construction of the SSIV instrument used in the ‘narrative’
approach robustness check. Shocks are selected based on the historical description of R&D funding across federal agencies
in the appendix of Fieldhouse and Mertens (2023), and my own reading of the histories of the agencies. The right column
provides a justification for the inclusion of the shock in the narrative-SSIV instrument. Justifications that are used for several
consecutive five-year periods within agencies are give the same color (light gray or white).
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Department of Defense

1940 WWII
1945 WWII drawdown

1950 Korean War (1950-1953)
1955

Vietnam war (1955-1975) and drawdown (post 1975)
1960
1965
1970
1975

1980

Reagan’s buildup + Russian invasion of Afghanistan + Cold War drawdown
1985
1990
1995
2000

9/11 + Iraq + Afghanistan2005
2010

NASA

1955 Creation of NASA
1960 Sputnik (1957) + Apollo space program

1965 Apollo space program drawdown
1970 Loss of interest in spaceflight by Congress after the moon landing

1985 George H.W. Bush’s push for NASA funding + MIR space station1990
2010 Budget Control Act of 2011 (debt ceiling crisis)

Department of Health and Human Services

1970 Nixon’s ‘war on cancer’
1985 Reagan’s push for funding during the AIDS/HIV epidemic

1990 Human Genome Project + 21st Century Research Fund initiative + Anthrax
terrorist attacks of 20011995

2000
2005 Recovery Act of 2009 + Budget Control Act of 2011 (debt ceiling crisis)2010

Table B.4: Shocks kept in the narrative approach (DoD, NASA, Department of HHS)
Notes: The table shows the set of funding shocks kept in the construction of the SSIV instrument used in the ‘narrative’
approach robustness check. Shocks are selected based on the historical description of R&D funding across federal agencies
in the appendix of Fieldhouse and Mertens (2023), and my own reading of the histories of the agencies. The right column
provides a justification for the inclusion of the shock in the narrative-SSIV instrument. Justifications that are used for several
consecutive five-year periods within agencies are give the same color (light gray or white).
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B.2 Patent examiner regressions – additional results

B.2.1 Sample of firms: Summary statistics
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Variable Mean SD Min p10 p25 p50 p75 p90 Max

Monetary values – million of 2020 USD
Sales 7,009 24,259 0 32 166 976 4,039 14,795 498,518
Capital 4,072 14,726 0 5 35 254 1,877 8,940 294,387
Market value 9,113 30,348 0 28 148 924 4,425 18,157 702,025
R&D expenses 162 852 -0 0 0 0 19 142 13,045

Counts
Employment (’000s) 18 63 0 0 1 3 12 43 2,100
Patent count 33 201 0 0 0 0 3 30 4,437

Endogenous treatments and instruments
Private spillovers 0.137 0.164 0.000 0.000 0.000 0.000 0.299 0.356 0.722
Public spillovers 1.057 1.289 0.000 0.000 0.000 0.000 2.323 2.684 6.447
Private leniency 0.000 0.001 -0.013 -0.001 0.000 0.000 0.000 0.001 0.014
Public leniency -0.003 0.009 -0.162 -0.011 -0.005 0.000 0.000 0.000 0.082

States (top 5) Periods
CA 11.0 % 2005 34.3 %
TX 9.7 % 2010 33.3 %
NY 7.5 % 2015 32.4 %
OH 4.6 %
MA 4.5 %

Sectors (top 5)
737 – Computer Programming, Data Processing, & other Computer Services 6.7 %
367 – Electronic Components & Accessories 4.6 %
283 – Drugs 4.0 %
491 – Electric Services 3.8 %
384 – Surgical, Medical, & Dental Instruments and Supplies 3.6 %

Table B.5: Summary Statistics – Patent examiner IV sample

Notes: The unit of observation is a firm × year. Summary statistics are computed on the sample used in Table 2.4 for the patent
examiner IV regressions (N = 2, 118). Monetary values are deflated using the BLS Consumer Price Index and expressed in 2020
USD.
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(1) (2) (3)

Application is publicly-funded 0.0001 0.0004 0.0005
(0.0010) (0.0009) (0.0009)

Art unit FE ✓ ✓ ✓
Art unit × year FE ✓ ✓
Patent count of applicant in current year ✓

Mean dep. var. 0.73 0.73 0.73
R2 0.552 0.620 0.6120
N 681,023 681,023 681,023

Table B.6: Are government applicants favored by USPTO examiners?

Notes: The unit of observation is a patent application × year. The table shows the results of a regression of examiner leniency
on a dummy variable equal to 1 if the application is funded by public R&D. The years in the sample are those used in the
patent examiner regressions i.e. 2001, 2005 and 2010. ***, **, and * indicate two-sided significance at the 1, 5 and 10% levels,
respectively.
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Figure B.1: Diminishing strength of the first stage for large entities
Notes: The graph shows how the strength of the relationship between the growth of patents of a firm and the patent examiner
instrument (changes in average leniency) evolves as entities submit more and more applications. The unit of analysis is an
entity (firm or agency) j in a five-year period t. The orange line and shaded area show the coefficients and 95% confidence
intervals coming from a regression of ∆pjt on ∆ljt. This is the variation underlying the patent examiner IV strategy. In my
regressions reported in the main text, ∆pjt and ∆ljt are then aggregated across receiving firms (indexed by i in the main text).
The solid and dashed lines show the cumulative distributions of entities × year across their numbers of applications, for firms
and public entities respectively. The distribution of agencies first-order stochastically dominates that of firms because firms
tend to file fewer patents than agencies.
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Figure B.2: Average examiner leniency faced
by firms
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Figure B.4: 5-year difference in firm leniency
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Figure B.5: 5-year difference in agency leniency

Figure B.6: Histograms describing the patent examiner variation

Notes: The histograms show the distributions of average leniencies faced by firms and agencies (panels B.2 and B.2 respectively)
and the 5-year differences in average leniencies faced by firms and agencies (panels B.4 and B.4 respectively). By construction,
the average leniency is centered around 0; it is the firm- or agency-level average of residuals of a regression of an examiner
leniency on art unit fixed effects.
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Appendix C

Appendix to chapter 3 (model)

C.1 Proofs and derivations

C.1.1 Summary of the notation used in the model

Table C.1 summarizes the notation used in the theory section.
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Government
τ Tax rate on firms’ profits

Production
w Production wage rate
α Drift of firms’ productivity
ν SD of firms’ productivity
σ SD of firms’ normalized profits
g Growth rate of the aggregate economy
e Private research effort
ϕ0 Returns to (applied) R&D effort
ρ Discount rate of firm owners
ζ Pareto tail exponent
ξ Power law inequality (ξ = 1/ζ)
A Aggregate productivity index
δ Endogenous exit rate (’creative destruction’)
δ Exogenous (baseline) exit rate

Innovation and spillovers
βg and βi Indicators of the type of research funded by the government and firms
ε Elasticity of productivity to applied spillovers
γ Elasticity of productivity to basic spillovers
Γ Innovation step size
Ψ Aggregate growth component
wg Research wage, publicly-funded researchers
wp Research wage, privately-funded researchers
Λ Private=public wage premium
λ Arrival rate of ideas
χ Share of ideas from spillovers successfully turned into businesses

Households
Lt Population at t
θ Substitution parameter of intermediate varieties (elasticity of subs. = 1/(1 − θ))

Table C.1: Notation used in the model

C.1.2 Key model equations
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Description Equation

Optimization
Intermediate output choice yi = Y (ai/A)

1
1−θ

Labor choice li =
(
aθ

i /A
) 1

1−θ Y/Ψ

Research effort e = 1 − τ − 1 − θ

θ

ρ + δ + δ

ϕ0
Choices of type of research βg = 1 and βi = 0 ∀i
Law of motion of productivity dait/ait = eϕ0dt + νdBt

Resource constraint

Allocation of research personnel Rg =
R

e/Λτ + 1
and Rp =

R
Λτ/e + 1

Aggregation and equilibrium objects
Labour market clearing condition L :=

∫ 1
0 lidi

Definition of aggregate output Y :=
(∫ 1

0 yθ
i di
) 1

θ

Effect of spillovers on the economy
Definition of spillovers ṅt := ln(λRg)γ(λRp)ϵ

Definition of creative destruction δ := χṅt

Table C.2: Key model equations
Notes: The endogenous variables of interest are Y, yi , ai , L, li , e, Rp, Rg, ṅ, δ, βg, βi . Time subscripts are omitted when it does not
cause confusion.

C.1.3 Proof of lemma 1

Proof. Labor demand and intermediate output The final sector’s problem is:

max
yi

(∫ 1

0
yθ

i di
) 1

θ

−
∫ 1

0
piyidi ∀i ∈ [0, 1] (C.1.1)

First order conditions with respect to yi give θyθ−1
i

1
θ

(∫ 1
0 yθ

i di
) 1

θ −1
− pi = 0 and the

inverse demand for yi is thus:

pi =

(
Y
yi

)1−θ

(C.1.2)
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Plugging (C.1.2) into the objective function of monopolist i, replacing li by yi/zi and

taking first order conditions with respect to yi, I obtain the profit-maximizing output

level for a firm with productivity zi:

y∗i = Y
(

θ

w

) 1
1−θ

z
1

1−θ

i (C.1.3)

and because y∗i = zil∗i , labor demand is:

l∗i = Y
(

θ

w

) 1
1−θ

z
θ

1−θ

i (C.1.4)

Equilibrium wage w and aggregate output Y. The equilibrium wage w is obtained by

plugging (C.1.3) into the definition of final output (3.1.1), which gives:

w = θAΨ (C.1.5)

where A =

(∫ 1

0
a

θ
1−θ

i di
) 1−θ

θ

is the (idiosyncratic) productivity index of the economy.1

The value of Y in (C.1.3) and (C.1.4) can be obtained by plugging the expression for l∗i

(C.1.4) into the labor market clearing condition
∫ 1

0
lidi = L and using the expression

for the wage rate (C.1.5). I obtain the following expression for the equilibrium value of

aggregate output:

Y = LAΨ (C.1.6)

This proves part 3 of lemma 1. Then, using (C.1.5), intermediate output and labor

demand can be written more simply as:

1The productivity index of the economy is the power mean of firms’ idiosyncratic productivities, where
the power θ

1−θ increases in the substitutability of varieties. By properties of power means, A is increasing
in subsitutability: the intuition is that when substitution between varieties becomes easier, the final good
producer buys more from the highest-productivity firm (exclusively from it when θ = 1 i.e. in the case
where varieties are perfect substitutes).
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y∗i = Y
( ai

A

) 1
1−θ and l∗i =

Y
Ψ

(
aθ

i
A

) 1
1−θ

Which proves part 1 of lemma 1.

Firm profits π∗
i and wage bill wl∗i . Firm profits are, by definition,

π∗
i = piy∗i − wl∗i (C.1.7)

and their value as a function of real variables is given by replacing pi by (C.1.2), l∗i

by (C.1.4) and w by its equilibrium value (C.1.5). Then, replacing yi by (C.1.3) and
θ

w
by

1
AΨ

(from (C.1.5)) gives a simple expression of profits, which are equal to a 1 − θ share

of revenues:

π∗
i = Y

( ai

A

) θ
1−θ

(1 − θ) (C.1.8)

Conversely, the wage bill of firm i is a θ share of its revenues. Its expression is obtained

by plugging the equilibrium value of l∗i in (C.1.4) into wl∗i and then replacing w by its

expression given by equation (C.1.5)

wl∗i = Y
( ai

A

) θ
1−θ

θ (C.1.9)

This proves part 2 of lemma 1 and thus completes the proof.
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C.1.4 A useful lemma regarding the law of motion of profits

Lemma 3 (Law of motion of profits). On a balanced growth path, if productivity evolves as

(3.1.3), then profits evolve as
dπit

πit
= µ(eit, βit)dt + σdBt (C.1.10)

with drift µ(eit, βit) :=
θ

1 − θ
(α(eit, βit) + gΨ) and standard deviation rate σ :=

θ

1 − θ
ν

C.1.5 Proof of lemma 3

Proof. From lemma 1, I know that profits are π∗
it = Yt

(
ait

At

) θ
1−θ

(1 − θ). Taking logs and

time derivatives, I get that the long-run growth rate of a firm’s profits is equal to

gπ = gY +
θ

1 − θ
ga

where gx stands for the instantaneous growth rate of variable x. At is constant because,

on a BGP, the distribution of idiosyncratic firm productivities is stationary. Therefore, At

does not contribute to the growth of profits.

To find the value of gY, I rely on the expression of Yt provided by lemma 1 which has

shown that Yt = Lt AtΨt, so gY = gΨ on a BGP where there is no population growth.

A firm’s idiosyncratic productivity drift is given by ga = α(eit, βit). Therefore,

gπ = gΨ +
θ

1 − θ
α(eit, βit)

Turning to the standard deviation of normalized profits, I note that its value depends

on the only stochastic term in the expression of πit: ait. Noting that, on a BGP, ait =

ai,0eα(e,β)t+νBt , I get that a
θ

1−θ

it =
(

ai,0eα(e,S)t+νBt
) θ

1−θ . Therefore the standard deviation rate

of a
θ

1−θ

it is
θ

1 − θ
ν. Consequently,

θ

1 − θ
ν is the standard deviation rate of profits.
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C.1.6 Proof of proposition 1

The proof of this proposition proceeds in four steps. I start by showing that the

government invests exclusively in basic R&D because this maximizes the arrival rate of

breakthrough innovations. Then turning to firms, I provide a closed-form expression of

the value function of firms that is then used to show that firms only invest in applied

research. Finally, I shows that the level of research effort exerted by firms is a constant

share of profits for all firms and that it is decreasing in the tax rate τ at a given level of

spillovers.

Proof. I start by showing that Rg = Rgb, that is, all researchers paid by the government

are doing basic research.

Given an exogenous tax rate τ, the government raises revenues τΠ where Π is the

aggregate flow of profits in the economy. The government seeks to maximize the arrival

rate of breakthroughs which is the sum of the flows of breakthroughs from basic and

applied research: λ1R1 + λ0R0. Because the breakthrough Poisson rate per researcher is

higher for basic research than for applied research (λ1 > λ0) and the wage of researchers

is common across basic and applied researchers, the allocation of researchers that max-

imizes breakthrough flow is, trivially, a corner solution where all government-funded

researchers are doing basic research.

This proof follows the argument in the proof of proposition 1 in Jones and Kim (2018).

The HJB reads
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(ρ+ δ+ δ)v(a, t) = max
e,β

ln(Ψa
θ

1−θ )+ ln(1− e− τ)+ α(e, β)ava(a, t)+
ν2

2
a2vaa(a, t)+ vt(π, t)

Taking first order conditions of the HJB with respect to e gives

1
1 − e − τ

= ϕ(β)ava(a, t) (C.1.11)

I guess and verify that the value function takes the form v(a, t) = α0 + α1t + α2 ln(a).

Using this functional form for v(a, t), (C.1.11) becomes

1
1 − e − τ

= ϕ(β)α2 (C.1.12)

Using (C.1.12) and the guess for the functional form of the HJB gives

(ρ+ δ+ δ)(α0 + α1t+ α2 ln(a)) =
θ

1 − θ
ln(a)+ ln(Y(1− θ)A

θ
θ−1 )+ ln(1− e− τ)+ eϕ(β)α2 −

ν2

2
α2 + α1

Equating coefficients on ln(a) gives: α2 =
θ

(1 − θ)(ρ + δ + δ)
. Plugging this value of

α2 into (C.1.12) gives the optimal R&D effort level

e∗ = 1 − τ − 1 − θ

θ

ρ + δ + δ

ϕ(β)
(C.1.13)

This proves the third point of proposition 1.

To show that the HJB equation is linear in t, as posited by the conjecture, I first note

that the only term other than ln(a) that depends on time is ln(Y). As shown in lemma 1,

Y = LAΨ with Ψ = Γnt . In a balanced-growth path equilibrium, the flow rate of ideas ṅt

190



is constant, so nt is linear in t. This proves that ln(Y) is linear in t.

For completeness, the value function of a firm with productivity a is v(a, t) = α0 +

α1t + α2 ln(a) with

α0 = C ln
(

L(1 − θ)A
θ

θ−1+1(1 − e∗ − τ)
)
+ C2

(
e∗ϕ(β)− ν2

2

)
θ

1 − θ
+ Cα1

α1 = C ln(Γ) ln((λRp)
ε(λRb)

γ)

α2 = C
θ

1 − θ

with C =
1

ρ + δ + δ
(C.1.14)

This step completes the derivation of the value function.

To prove that firms only invest in applied research, one notes that the value function is

strictly increasing in ϕ(β) at every level of research effort. Because ϕ0 > ϕ1, firm owners

only invest in applied research. This proves part (2) of the proposition.

C.1.7 Proof of lemma 2

Proof. To find the stationary distribution of firms satisfying the KFE (3.1.10), guess that

f takes the form f (a) = Ca−ζ−1, where C is a positive constant. Insert this candidate

solution in (3.1.10) and get

191



0 = −δCa−ζ−1 − α∂a[Ca−ζ ] +
ν2

2
∂aa[Ca−ζ+1] (C.1.15)

0 = −δCa−ζ−1 + αζCa−ζ−1 − ν2

2
(1 − ζ)ζCa−ζ−1 (C.1.16)

0 = −δ + αζ − ν2

2
(1 − ζ)ζ (C.1.17)

where α is shorthand for α(e∗, β∗).

This equation admits two solutions for ζ which are

ζ± = − α

ν2 +
1
2
±

√(
α

ν2 − 1
2

)2

+
2δ

ν2

The positive root is the only one consistent with a CDF that is a convergent integral.

Furthermore, the constant C is given by the requirement that the mass of firms

integrates to 1.

∫ ∞

a0

Ca−ζ−1da = 1

C
[

a−ζ

−ζ

]∞

a0

= 1

C

(
lim
z→∞

z−ζ

−ζ
+

a−ζ
0
ζ

)
= 1

C = ζa0
ζ
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C.1.8 Proof of proposition 2

Proof. On a BGP, the rate of creative destruction is δ = χṅ = ln((λRg)γ(λRp)ε). Replacing

Rg and Rp by the expressions in (3.1.14), taking derivatives with respect to τ and noting

that ∂e∗/∂τ = −1 from (3.1.7), I obtain:

∂δ

∂τ
= R

γ

Λ
1

e∗/τΛ + 1
τ + e∗

τ2︸ ︷︷ ︸
marginal gain from public R&D

− RεΛ
1

τΛ/e∗ + 1
τ + e∗

e∗2︸ ︷︷ ︸
marginal loss from private R&D

The first term in the difference capture the (positive) impact of raising the tax rate on cre-

ative destruction through the contribution of publicly-funded research. The second term

captures the declining contribution of privately-funded research to creative destruction

when the tax rate increases.

Setting
∂δ

∂τ
equal to 0 and solving for τ gives

τ∗ =
γe∗

εΛ

For values of τ in [0, τ∗), ∂δ

∂τ
is positive and the rate of creative destruction is increasing

in the tax rate. For values of τ in (τ∗, 0],
∂δ

∂τ
is negative. This shows that δ is inverted-U-

shaped in the tax rate.

From (3.1.11), one gets that ζ is increasing in δ and thus Pareto inequality η is decreas-

ing in δ. Inequality is minimized when δ is highest i.e. when τ∗ =
γe∗

εΛ
. Plugging the

value of τ∗ into (3.1.14) gives Rg
∗. This proves (1) and the inequality part of (3).

To show that the growth rate is inverted-U-shaped in the tax rate, I note that
∂g
∂τ

=
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1 − θ

θ
ln(γ)

∂δ

∂τ
because δ = ṅt. Hence the comparative statics of g with respect to τ are

the same as those for δ. Therefore g is growing in τ ∈ [0, τ∗), decreasing in τ ∈ (τ∗, 0]

and maximized at τ∗. This proves (2) as well as the growth part of (3) and thus completes

the proof.
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C.2 Calibration

C.2.1 Data

Data is annual. The historical TFP series come from Bergeaud et al. (2016) and is

calculated assuming a Cobb-Douglas aggregate production function with capital and

labor inputs.2 Data on inequality between firms come from Kwon et al. (2022), who

digitized archival records from the US Internal Revenue Service. I use their series on firm

assets to measure firm inequality as it is continuous over the period of study (unlike their

series on net income and receipts). I then calculate the empirical Pareto tail exponent

ζdata by using an insight from Chen (2022): with the share of assets sx of the top x% firms,

one can estimate the tail exponent as:

ζdata =

(
1 − ln(sx1/sx2)

ln(x1/x2)

)−1

In my application, I use x1 = 10 and x2 = 1 so that inequality between firms is a

function of inequality between the top 10 and the top 1% of firms, by assets.

The tax rate τ (the main exogenous parameter of interest) is set to be a direct function

of public R&D spending: it evolves in concert with public R&D as a share of total R&D.

I set the value of τ equal to the effective corporate tax rate in the US in 1947, when the

2Formally, TFP =
Y

KαL1−α
. Aggregate capital is the sum of ‘equipment’ and ‘buildings’, from the

National Accounts (BEA). Aggregate labor is the total number of hours worked (from various academic
sources).

195



data is first available3. The value of τ in the following years is then given by

τ = share of public R&D in total R&D × effective corporate tax rate at t = 0
share of public R&D in total R&D at t = 0

The tax rate calculated in this way closely follows the effective tax rate, as can be seen in

Figure C.1.

Data
Implied.1

.2

.3

.4

.5

1950 1960 1970 1980 1990 2000 2010 2020

Figure C.1: Effective tax rate in the US (orange) and tax rate used in the model (blue)
Notes: The effective corporate tax rate is

aggregate profits before tax - aggregate profits after tax
aggregate profits before tax

. The effective tax rate will be

lower than the statutory tax rate if deductions, tax credits (from previous losses or from R&D credits for instance) and tax
avoidance schemes lower the tax burden of firms. It is a more representative measure of the tax burden faced by firms. Data on
total corporate profits before and after tax come from the BEA series ‘Corporate profits before tax (without IVA and CCAdj)’
and ‘Corporate Profits After Tax (without IVA and CCAdj)’, respectively.

3The effective corporate tax rate is
aggregate profits before tax - aggregate profits after tax

aggregate profits before tax
. The effec-

tive tax rate will be lower than the statutory tax rate if deductions, tax credits (from previous losses or
from R&D credits for instance) and tax avoidance schemes lower the tax burden of firms. It is a more
representative measure of the tax burden faced by firms. Data on total corporate profits before and after tax
come from the BEA series ‘Corporate profits before tax (without IVA and CCAdj)’ and ‘Corporate Profits
After Tax (without IVA and CCAdj)’, respectively.
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