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Abstract

Change point analysis, broadly defined, concerns the setting in which one observes time

indexed data whose distribution is liable to change at a certain number of unknown locations

in time. These locations are known as change points, and data indexed between change

point locations can be understood to be in some sense homogeneous. This thesis studies two

relatively neglected problems in change point analysis. Namely, statistical inference and

causal structure discovery. For the first problem, we propose two methods for recovering

disjoint intervals each contain a change point location uniformly at some significance which

may be tuned by the user. We focus principally on the piecewise polynomial change point

model, in which the data are modeled as weakly dependent noise fluctuating around a

piecewise trend. For the second problem we consider a multivariate time series and model

change points across the series as arrival times of a marked point process. We introduce a

procedure for recovering a graph which encodes causal information about the process, in the

sense that an edge in the graph can be (under some conditions) understood as indicating

that change points in one time series cause change points in another time series.
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s, . . . , Ľ
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1 Introduction

This thesis studies the problems of statistical inference and causal structure discovery

in change point models. We focus principally on the piecewise polynomial change point

model, in which the data are modeled as weakly dependent noise fluctuating around a

piecewise trend. The piecewise polynomial model is popular in applied work, as piecewise

polynomial functions allow to model temporal trends in the data. However, compared to

the canonical problem in which the signal is piecewise constant, the piecewise polynomial

model has received comparatively little attention on the theoretical front. Besides, the

piecewise polynomial problem is not a straightforward extension of the canonical problem:

whereas the latter problem is purely local in the sense that the error in estimating each

change point location does not depend on the sample size, the former problem is global

and the estimation error depends in a precise way on the sample size and the smoothness

of the trend. In Chapter 2 we introduce the relevant literature on change point analysis,

change point inference, and causal structure discovery. The main original contributions

occur in Chapters 3, 4, and 5 and are summarized below. Finally, in Chapter 6 we give a

brief summary of our contributions and discuss potential directions for future research.

Chapter 3. Fast and Optimal Inference for Change Points in Piecewise Polynomials

via Differencing We consider the problem of uncertainty quantification in change point

regressions, where the signal can be piecewise polynomial of arbitrary but fixed degree. That

is we seek disjoint intervals which, uniformly at a given confidence level, must each contain a

change point location. We propose a procedure based on performing local tests at a number

of scales and locations on a sparse grid, which adapts to the choice of grid in the sense

that by choosing a sparser grid one explicitly pays a lower price for multiple testing. The
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procedure is fast as its computational complexity is always of the order O(n log(n)) where

n is the length of the data, and optimal in the sense that under certain mild conditions

every change point is detected with high probability and the widths of the intervals returned

match the mini-max localisation rates for the associated change point problem up to log

factors. A detailed simulation study shows our procedure is competitive against state of the

art algorithms for similar problems.

Chapter 4. Robust Inference for Change Points in Piecewise Polynomials using Confi-

dence Sets We revisit the problem of uncertainty quantification in the piecewise polyno-

mial model, and consider the setting in which the contaminating noise may be arbitrarily

distributed with, for example, atoms in its distribution, an arbitrary number of finite mo-

ments, and non-constant variance. We focus on the case where the polynomial degree of the

underlying signal is either 0 or 1 on stationary segments. We present a procedure which,

under minimal assumptions, returns localized regions of a data sequence which must contain

a change point at some global significance level chosen by the user. The procedure works by

performing local tests for the presence of a change point at a variety of scales and locations,

and recursively retaining the narrowest region on which a change is detectable. The local

tests in turn are based on properties of confidence sets for an underlying regression function

obtained by inverting certain robust multi-resolution tests. We work implicitly with signs

of the data sequence, and as a result we only require sign symmetry and sign independence

of the contaminating noise for accurate inference. Despite this we attain the best possible

rates in the minimax sense (up to logarithms) for change point detection and localization

in both the piecewise constant and piecewise linear and continuous signal settings.

Chapter 5. Recovering Dependence Structures in Change Point Regressions with a View

to Causality We propose a method for estimating graphs which encode causal information

about change points occurring in a moderate number of data streams. That is, the presence

of an edge in the graph signifies that change points in one series cause changes in another.

Typically after performing change point analysis relationships between estimated change

points can only be described qualitatively, since in general change point locations are held
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to be unknown but non-stochastic. From the perspective of practitioners this is a limitation,

since in many settings it is reasonable to believe change points will be causally linked.

We model unobserved change point locations as arrival times of a marked point process,

for which (non) causality is well understood (Didelez, 2008), and propose a method for

consistently estimating the underlying causal graph.

25





2 Literature Review

2.1 Change point analysis

This section reviews the statistical literature on offline change point analysis, with a par-

ticular emphasis on the piecewise polynomial change point problem which is the focus of

the thesis. We begin with a description of the generic change point problem, and introduce

the piecewise polynomial problem as a special case. We then introduce the three main

problems in change point analysis, namely testing, estimation, and inference, and survey

various methods for solving the first two problems for the piecewise polynomial change

point model. Methods for change point inference are surveyed in Section 2.2.

2.1.1 Problem statement and motivation

The generic change point problem

In the generic change point problem the analyst observes data Y = (Y1, . . . , Yn)
′, where

for t = 1, . . . , n each Yt has marginal distribution Ft. Given a transformation H (·) and

writing θt = H (Ft) the interest lies in understanding whether the sequence θ1, . . . , θn is

constant or contains changes. An integer η is called a change point location if θη ̸= θη+1.

Throughout the thesis the number of change points in such a sequence will be denoted by

N , the set of change point locations will be denoted by Θ = {η1, . . . , ηN}, and we follow

the convention that η0 = 0 and ηN+1 = n. Given a distance measure d (·, ·) the size of

the change at the k-th change point location will be denoted by ∆k = d (θηk , θηk+1). It is

worth noting that in applications N is typically unknown, and that in theoretical analyses

N , Θ, and {∆k | k = 1, . . . , N} may depend on the sample size n. Change point analysis
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is principally concerned with the following three problems.

1. Testing: deciding whether at least one change exists in the sequence θ1, . . . , θn.

2. Estimation: accurately estimatingN , the number of changes, and Θ, their locations.

3. Inference: quantifying the uncertainty around estimates ofN , the number of changes,

around estimates of Θ, their locations, and around estimates of {∆k | k = 1, . . . , N},

the jump sizes.

The above formulation is quite general and appears for example in Pilliat et al. (2023).

Typically one has in mind a particular transformation, and some restrictions are placed on

the sequence of distribution functions. To fix the idea, two examples are given below.

Example 2.1.1. Consider the process {Yt = θt + ζt | t = 1, . . . , n} for some n ∈ N

where the ζ’s are mutually independent with marginal N (0, 1) distribution and the

sequence {θt | t = 1, . . . , n} is piecewise constant. Then, the process has piecewise con-

stant mean and the transformation of interest is: Ht (F ) =
∫
xF (dx). A sample path

Y = (Yt | t = 1, . . . , 750)′ with θt = 1 + 2× 1{250<t≤500} is shown in Figure 2.1a.

Example 2.1.2. Consider the process {Yt = θt × ζt | t = 1, . . . , n} for some n ∈ N

where the ζ’s and θ’s are as in Example 2.1.1. Then, the process has zero mean

and piecewise constant variance, and the transformation of interest is: Ht (F ) =∫
x2F (dx). A sample path Y = (Yt | t = 1, . . . , 750)′ again with θt = 1+2×1{250<t≤500}

is shown in Figure 2.1b.

The process described in Example 2.1.1, in which the data are Gaussian with common

variance and the sequence of means is piecewise constant, is referred to as the canonical

change point problem in the statistics literature. For historical reasons this problem has

attracted a significant amount of attention (Yao, 1988; Venkatraman, 1992; Fryzlewicz,

2014; Wang et al., 2020; Verzelen et al., 2023); throughout this chapter the canonical

problem shall be used as a running example. Other change point problems which have
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2.1 Change point analysis

Figure 2.1: Sample paths of two processes with change points. Black dashed lines (- - -)
represent the unobserved sequence of θ’s; that is, the parameter in which the
change occurs. Light grey lines (—) represent the observed data sequence. See
Examples 2.1.1 and 2.1.2 for details.

(a) Piecewise constant mean: θt (b) Piecewise constant variance: θ2t

beed studied include detecting mean changes in a sequence of high-dimensional vectors

(Wang and Samworth, 2018; Cho, 2016; Enikeeva and Harchaoui, 2019), detecting changes

in regression coefficients in linear models (Bai and Perron, 1998, 2003), detecting changes

in covariance matrices (Wang et al., 2021; Li et al., 2023b; Avanesov and Buzun, 2018),

detecting changes in factor loadings in time series factor models (Barigozzi and Trapani,

2020; Barigozzi et al., 2018; Ma and Su, 2018), and detecting changes in sequences of

random networks (Padilla et al., 2022; Wang et al., 2021; Chu and Chen, 2019), to name

just a few example.

The piecewise polynomial change point problem

This thesis will be principally concerned with the piecewise polynomial change point prob-

lem, in which the data can be written as the sum of a signal component and a noise

component:

Yt = f◦ (t/n) + ζt t = 1, . . . , n.
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The signal f◦ : [0, 1] 7→ R is known to be a piecewise polynomial function of arbitrary but

fixed degree p. That is, associated with f◦(·) are N integer valued change point locations

Θ, such that for each k = 1, . . . , N we have that ηk − ηk−1 > p and the function can be

described as a degree p polynomial on the sub-interval [(ηk − p− 1)/n, ηk/n] but not on

[(ηk − p)/n, (ηk + 1)/n]. We emphasis that the setup allows for the polynomial degree to

change between segments, and indeed p should be understood as the maximum polynomial

degree across all segments. The aim is to detect changes in the derivatives of f◦ (·) up to

order p. For now we do not place any restriction on the ζ’s, however the contaminating

noise should be thought of as an appropriately centered (e.g. mean centered or median

centered) stochastic sequence. To fix the idea we give a concrete example below.

Example 2.1.3. Consider the process {Yt = f◦ (t/n) + ζt | t = 1, . . . , n} where f◦ (·)

is piecewise polynomial as described above and the ζ’s are mutually independent with

common distribution function

F ∈
{
G | ∃C > 0 s.t.

∫
exp

(
x2/C2

)
G (dx) ≤ 2 and

∫
xG (dx) = 0

}
.

Then, the process is sub-Gaussian with piecewise polynomial mean, and the transforma-

tion of interest is: H (F ) =
(

dj

d(t/n)jj!

∫
xF (dx) | j = 0, . . . , p

)′
for each t = 1, . . . , n.

The piecewise polynomial change point problem generalizes the canonical change point

problem in two directions: the data are no longer restricted to be Gaussian, and the

sequence of centrality parameters now forms a piecewise polynomial, as opposed to a piece-

wise constant, sequence. Relative to the canonical change point problem, the question of

change point analysis for piecewise polynomials has attracted comparatively little attention

in the statistics literature. Nevertheless, in applications piecewise polynomial change point

modeling is a particularly appealing choice since:

1. The methodology is flexible enough to capture complex trends in data.

2. Between change point locations the parametric trend is easily interpretable.
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3. The change point locations themselves are often of interest to practitioners.

The piecewise polynomial change point model has found practical applications in areas as

diverse as finance (Liu et al., 2018; McZgee and Carleton, 1970; Schröder and Fryzlewicz,

2013) where time series of (log) prices can be modeled as fluctuating around a piecewise

linear trend, aerospace engineering (Cunis et al., 2019) where coefficients in full-envelope

models of flight dynamics can be modeled as piecewise polynomial, light transmittance

(Abramovich et al., 2007) where light availability under long-leaf pines can be modeled

as a higher order piecewise polynomial function of time with jump discontinuities caused

by passing clouds, climatology (Aue et al., 2009) where global near-surface temperatures

can be modeled with piecewise quadratics, and epidemiology (Jiang et al., 2020, 2021)

where COVID-19 infection curves can be modeled as piecewise linear, to name just a few

examples.

In addition to the above, we mention three datasets which are particularly amenable

to analysis using the piecewise polynomial change point model and which will be analyzed

throughout in this thesis using the novel methods proposed. Each dataset presents a unique

statistical challenge, in addition to the problem of change point detection, and we highlight

how these challenges can be overcome using the methods proposed in this thesis.

Bone mineral density acquisition curves

Figure 2.2 shows bone mineral acquisition curves for males and females between the

ages of 9 and 25. The data are obtained from a longitudinal study of 423 healthy males

and females in which four consecutive yearly measurements of bone mass by dual energy

x-ray absorptiometry were taken from each subject. The data can be downloaded from

hastie.su.domains. There is some disagreement over the age at which peak bone mass

density is attained in adolescents (Kröger et al., 1993; Theintz et al., 1992; Lu et al., 1996).

One possible solution is to model the data in Figure 2.2 as following a piecewise linear trend,

and to infer this information from any estimated change point locations. The number of

available data points is however quite small after aggregating by gender and age, and as will
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be discussed in Section 2.1.1 estimates of change points in the piecewise polynomial model

are not consistent in the usual sense. That is, the estimation error does not decay zero to

with the sample size. A method which additionally quantifies the uncertainty around each

estimated change point is therefore particularly useful in this setting, and we propose two

such methods in Chapters 3 and 4 of this thesis.

Figure 2.2: Bone density acquisition curves based on data from 423 healthy males and
females aged between 9 and 25. Data were obtained from hastie.su.domains;
see the main text for details.

(a) male bone density acquisition (b) female bone density acquisition

Ozone concentration in the Los Angeles basin

Figure 2.3 shows a time series of daily Ozone concentration levels (maximum of one hour

averages) in the Los Angeles basin during 1976. The data is available through the mlbench

package and was initially studied by Breiman and Friedman (1985). It is well documented

that Ozone concentrations in the Northern hemisphere follow a pronounced yearly cycle

with the maximum occurring towards the middle of the year (Monks, 2000). In terms of

signal estimation, one visually appealing option is to model the data as piecewise linear with

a single change point where concentration levels peaks. However, the data exhibit heavy

tails and heteroskedasticity, and as a result a non-robust change point detection method
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is likely to estimate many spurious change points. In Chapter 4 we propose a method for

robust change point detection and inference, which acts implicitly on signs of the data and

as such is robust to heteroskedasticity and arbitrarily heavy tails, and in adition is able to

localize change points at the mini-max optimal rate.

Figure 2.3: Time series of daily Ozone concentration (maximum of one hour averages) in
the Los Angeles basin during 1976.

Nitrogen dioxide concentrations in Madrid, Barcelona, Valencia, and Sevilla during

COVID-19 lockdowns

Figure 2.4 shows time series of nitrogen dioxide concentrations in the four largest cities

in Spain - Madrid, Barcelona, Valencia, and Sevilla - during the year 2020. In this year the

World Health Organization declared a Public Health Emergency of International Concern

in response to the spread of the COVID-19 virus. The data were obtained via the European

air quality portal, and consist of daily averages of hourly nitrogen dioxide concentra-

tion readings across all monitoring sites available for a particular city. In response to the

COVID-19 virus the Spanish government declared a state of alarm on March 14 lasting

until June 21, requiring all citizens to remain at home except to buy food and medicine
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and all non-essential businesses to close. There is evidence supporting improvements in

air quality in urban centers during COVID-19 lock downs in various countries (Slezakova

and Pereira, 2021; Jephcote et al., 2021). One approach to testing this hypothesis wold be

to fit a change point model to the data in Figure 2.3 and check whether estimate change

points align with the start and end of the state of emergency; inspecting Figure 2.4 a

piecewise linear model seems appropriate. However, it is well know that time series of

nitrogen dioxide concentrations are strongly serially correlated, and therefore change point

methods which ignore this dependence are likely to estimate many spurious change points.

In Sections 3.2.4 and 4.4.1 of the thesis we propose methods for change point detection

which exploit strong invaraince results, by which partial sums of a dependent process can

be approximated well by increments of a Wiener process, and as such are robust to serial

dependence in the data.

2.1.2 Fundamental statistical limits

In modern change point estimation problems the difficulty associated with recovering all N

change points is typically quantified via a global signal to noise ratio (Chan and Walther,

2013; Wang et al., 2020; Fryzlewicz, 2014), which can be defined as follows:

NSR = τ−1
√
δ∆.

Here δ = mink δk where δk = min (ηk − ηk−1, ηk+1 − ηk) measures the effective sample size

associated with the k-th change point, ∆ = mink ∆k, and τ is some measure of dispersion

for the data. Some recent papers (Cho and Kirch, 2022b; Verzelen et al., 2023; Fryzlewicz,

2023) characterize the difficulty of recovering each individual change point via a local signal

to noise ratio, which can be defined as follows:

SNR (k) = τ−1
√
δk∆k k = 1, . . . , N.

Methods which measure the difficulty of the problem via NSR implicitly require the effective

sample sizes and change sizes to be bounded by the same quantities for each change point
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Figure 2.4: Daily concentrations of nitrogen dioxide in four Spanish cities during 2020; red
dashed lines (- - -) represent the start and end dates of the Spanish national
state of alarm imposed due to the COVID-19 pandemic.

(a) Madrid (b) Barcelona

(c) Valencia (d) Sevilla
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location, and for this reason can be described as homogeneous, by contrast, methods which

measure the difficulty of the problem via SNR (k) for k = 1, . . . , N allow for a combination

of small changes over large intervals and large changes over small intervals, and for this

reason can be described as multi-scale (Cho and Kirch, 2021). For the problem of change

point estimation, there are two fundamental quantities of interest:

1. Detection lower bound: a quantity such that, if the signal to noise ratio falls below

this level, no algorithm is guaranteed to detect all change points consistently.

2. Localization lower bound: the best rate at which any algorithm may localize

change points under the worst possible configuration of the data for which the changes

are still detectable.

There are some subtlties involved in defining the SNR in the piecewise polynomial change

point problem, since at each change point location up to p+1 different changes in derivative

may occur. It is useful to parameterize the signal between change point locations as follows:

f◦ (t/n) =


∑p

j=0 αj,k (t/n− ηk/n)j if ηk−1 < t ≤ ηk∑p
j=0 βj,k (t/n− ηk/n)

j if ηk < t ≤ ηk+1

k = 1, . . . , N,

where moreover it holds that βj,k = αj,k+1 for all j and each k < N . Then, the absolute

change in the j-th derivative of f◦(·) at the k-th change point location can be written as

∆j,k = |αj,k − βj,k|, and at the k-th change point location we have up to p + 1 non-zero

changes {∆0,k, . . . ,∆p,k}. To define the SNR it makes intuitive sense to use the largest or

“most prominent” change in derivative. The index of most prominent change in derivative

at each change point location can be defined as follows:

p∗k ∈ argmax
0≤j≤p

{
∆j,k

(
δk
n

)j
}

k = 1, . . . , N.

The above quantity may not be unique; although any element in the set of maximizers could

be used to define the SNR, a sensible convention is to use the smallest element. Then, the
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global and local signal to noise ratios can respectively be defined as follows:

SNR = τ−1
√
δ

[
min

1≤k≤N
∆p∗k,k

(
δk
n

)p∗k
]
,

SNR (k) = τ−1
√
δk∆p∗k,k

(
δk
n

)p∗k
k = 1, . . . , N.

Fundamental limits in the piecewise polynomial problem have been studied by Yu et al.

(2022) when the contaminating noise is sub-Gaussian and independently distributed. The

detection lower bound in terms of SNR was found to be of the order
√
log(n). The lo-

calization lower bound for the same problem was found by Yu et al. (2022) to be of the

order

n
2p∗k

2p∗
k
+1

(
τ2

∆2
p∗k,k

) 1
2p∗

k
+1

k = 1, . . . , N.

The localization lower bounds reveals that, provided the jumps sizes do not diverge with

the sample size, estimates of each change point location will not be consistent in the usual

sense: that is, the estimation error does not decay zero to with the sample size. The local-

ization lower bounds also reveal an interesting transition between change point detection in

piecewise constant signals and in higher order piecewise polynomials: for piecewise constant

signals the estimation problem is local and in fact the error in estimating each change point

location does not depend on the sample size, whereas for piecewise polynomial signals the

problem can be thought of as global as the estimation error does depend on the sample

size.

2.1.3 Change point testing

In change point testing problems one typically assumes the data contain at most one change,

and the aim is to test apart the following hypotheses:

H0 : θ1 = · · · = θn

H1 : ∃η ∈ {1, . . . , n− 1} s.t. θη ̸= θη+1.
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The general approach is to begin with the two sample testing problem in which the change,

if it exists, occurs at some known location η. That is:

H1,η : θ1 = · · · = θη ̸= θη+1 = · · · = θn.

Then, if Sη (·) is a test statistic for testing H0 against H1,η, the problem of testing for an

unknown change point location can be resolved with the statistic S (·) = maxη∈I {Sη (·)}

where I is some ordered subset of {1, . . . , n}. Natural choices for Sη (·) include the likelihood

ratio, Wald, and Lagrange statistics, as well as various U-statistics. For establishing the

behavior of S (Y) under H0 there are three main approaches.

1. If I = {n0, . . . , n− n0} and n0 diverges with n in such a way that n0/n→ C ∈ [0, 1/2),

or the local statistics involve weights such that Sη (·)’s with η close to the boundaries

1 and n are down-weighted, it is often possible to show that S (Y) converges to some

functional of a Bridge process Andrews (1993).

2. If |I| = O (n) and the data are either independent and Gaussian or satisfy the con-

ditions of a strong approximation theorem, it is often possible to show that after

appropriate centering and scaling S (Y) converges to an extreme value distribution

Csörgö et al. (1997).

3. If I is sufficiently sparse, and / or enough is know about the sequence of distribution

functions F1, . . . , Fn, concentration inequalities may be used to tightly bound S (Y)

on a high probability set (Enikeeva and Harchaoui, 2019; Liu et al., 2021; Verzelen

et al., 2023).

To fix the idea we give a concrete example below.

Example 2.1.4. Consider a sample Y = (Yt | t = 1, . . . , n)′ from the canonical change

point process introduced in Example 2.1.1, where additionally the sequence of means

{θt | t = 1, . . . , n} is piecewise constant with at most one change. The square root of

the log likelihood ratio statistic, also known as the CUSUM statistic, for testing H0
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against H1,η has the form:

Sη (Y ) =

√
η (n− η)

n

∣∣∣∣∣∣1η
η∑

t=1

Yt −
1

n− η

n∑
t=η+1

Yt

∣∣∣∣∣∣ .
Moreover putting an =

√
2 log log(n) and bn = 1

2 log log log(n) − log (
√
π) it can be

shown (Csörgö et al., 1997) that as n→∞, under H0, for any fixed z ∈ R

P (anS (Y )− bn ≤ z)→ e−2e−z

where in particular S (Y ) = argmax1≤η<n Sη (Y ).

In the context of change point testing for piecewise polynomials (Jarusková, 1999; Aue

et al., 2008, 2009) have studied the supremum of likelihood ratio test statistics for testing

each of {H1,η | (p+ 1) ≤ η ≤ n− (p+ 1)} against the null of no change points. The latter

papers establish the convergence of the maximum of local test statistics to an extreme value

distribution, whereas the paper by Jarusková (1999) makes use of an analytic approximation

for the tail of the maximum.

If the goal is to test for change points in a sequence of centrality parameters, an alternative

approach to change point testing involves applying a transformation to partial sums of the

data is such a way that the transformed sequence of partial sums is invariant to changes

in the centrality parameter of interest. Then, the facts that the transformed partial sum

process is pivotal, and that under H0 and some technical conditions scaled partial sums

of the data will satisfy a functional central limit theorem, can be used to construct a test

with asymptotically correct size. We give a concrete example below.

Example 2.1.5. Consider a sample path Y = (Yt | t = 1, . . . , n)′ from the canonical

change point process introduced in Example 2.1.1, and define the partial sum process
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as Yn =
{

1√
n

∑[ns]
t=1 (Yt) | 0 ≤ s ≤ 1

}
. Then writing

Q (Yn) =

 1√
n

[ns]∑
t=1

Yt −
1√
n

[ns]

n

n∑
t=1

Yt | 0 ≤ s ≤ 1


it is clear that the distribution of Q (Yn) is invariant to constant shifts in the mean of

the Y ’s, and under the null of no change points Q (Yn)⇒ {B (s)− sB (1) | 0 ≤ s ≤ 1}

as n→∞ where “⇒” denotes weak convergence and {B (s) | 0 ≤ s ≤ 1} is a standard

Wiener process.

This approach was pioneered by Kuan and Hornik (1995), and has been applied to the

specific problem of testing for changes in piecewise polynomials in Kuan (1998). A natural

way to eliminate a polynomial trend is to work with residuals from a least squares fit, and

the empirical processes obtained from the sequence of partial sums of such residuals has been

studied by (Jandhyala and Minogue, 1993; Jandhyala and MacNeill, 1997; MacNeill, 1978)

who again establish convergence to a Bridge-like process under some technical condition

on the contaminating noise.

2.1.4 Change point estimation

In change point estimation problems the goal is to accurately recover the number of change

points and their locations. Methods for change point estimation can be broadly divided it

two classes, global segmentation methods and greedy or local segmentation methods.

Global segmentation methods

Global segmentation methods aim to recover Θ, the set of change point locations, and

as a consequence also N , the number of change points, in one step by solving a single

optimization problem. We review the two most common approaches to global segmentation:

algorithms based ℓ0 penalization and algorithms based on their convex relaxations.

Algorithms based on ℓ0 penalization
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For integers s < e let Y s:e denote the sub-vector of Y consisting of all elements in-

dexed by t = s + 1, . . . , e. Moreover let C (Y s:e; θ) denote a loss function measuring the

level of agreement between the data on the segment {s+ 1, . . . , e} and a given θ. Global

segmentation methods estimate the number of change points and their locations by solving:

Θ̂ = argmin
Θ

N∑
k=0

{
min
θk
C
(
Y ηk:ηk+1

; θk
)}

+ pen (Θ) . (2.1)

The minimization is over all subsets of the set {1, . . . , n− 1}, and the dependence of N on

Θ is left implicit. Finally, pen (·) stands for a penalty function which penalizes a proposed

segmentation of the data in terms of its complexity. As long as the loss function and cost

function are additive, the above optimization problem can be solved efficiently via dynamic

programming (Killick et al., 2012; Maidstone et al., 2017). To fix the idea, we give a

concrete example below.

Example 2.1.6. Consider a sample path Y = (Yt | t = 1, . . . , n)′ from the canonical

change point process introduced in Example 2.1.1. Estimating the number of change

points and their locations by minimizing twice the negative log-likelihood with a penalty

linear in the number of change points leads to:

Θ̂ = argmin
Θ

N∑
k=0

min
θk∈R

∑
ηk≤t<ηk+1

(Yt − θk)2
+ λN

where λ is a constant to be tuned.

Putting θ̂ =
(
θ̂1, . . . , θ̂n

)′
for the vector of estimated θ’s associated with the solution

to the generic optimization problem given in (2.1), it is clear that the estimated number

of change points can be written as N̂ =
∑n−1

t=1 1{θ̂t ̸=θ̂t+1}. Consequently, penalizing the

estimated number of change points is equivalent to penalizing the ℓ0 norm of the first

difference of the vector θ̂.

The most common choice of penalty is the Schwartz penalty which was first studied by

Yao (1988) and is given by pen
(
Θ̂
)
= λN̂ log (n). Here, λ is a parameter which must be
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tuned by the user, and which generally involves the some measure of the data’s dispersion.

Schwartz-like penalties are generally optimal for localizing change points in homogeneous

problems (using the language of Section 2.1.1), however they can be sub-optimal for multi-

scale change point problems. Some authors have proposed penalties which additionally

account for the spacing of estimated change points (Zhang and Siegmund, 2007; Davis et al.,

2006). Recently Verzelen et al. (2023) proposed only multi-scale which in the piecewise

constant mean problem was proven to estimate multi-scale change points optimally, and

in certain settings is even able to recover change points when SNR is of the order of a

constant.

In terms of change point detection in the piecewise polynomial model, Fearnhead et al.

(2019) showed that an estimator basted on optimizing the ℓ0 penalized least squares func-

tion, similar to Example 2.1.6, is optimal for detecting change points in piecewise linear

and continuous signals. The generic piecewise polynomial model has been studied by (Yu

et al., 2022), who showed that an estimator likewise based on ℓ0 penalized least squares

can detect and localize change points at optimal rates in most regimes. However, the al-

gorithm proposed by Yu et al. (2022) has cubic time complexity in the worst case, making

it impractical for larger datasets. Moreover, the optimal penalty discussed in the paper

in fact depends on the number of change points, which is a quantity that is not typically

known in advance.

Convex relaxations of ℓ0 constraints

In order to gain in computational efficiency, some authors suggest using a convex relax-

ation of the original ℓ0 constraint, and instead penalizing the total variation semi-norm

of the vector of estimated θ’s. This approach has been taken by (Harchaoui and Lévy-

Leduc, 2007, 2010; Lin et al., 2017) among others, and results in the following optimization

problem for change point detection in signals with piecewise constant means:

θ̂ = argmin
θ∈Rn

∥Y − θ∥22 + λ

n∑
t=2

|θt − θt−1| .
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Penalizing the total variation semi-norm encourages a piecewise constant structure in θ̂.

The number of change points and their locations can be extracted from the estimated θ̂

respectively via N̂ =
∑n−1

t=1 1{θ̂t ̸=θ̂t+1} and Θ̂ =
{
η | θ̂η ̸= θ̂η+1

}
. Moreover, the solution to

the above can be efficiently computed using the LARS algorithm proposed by Efron et al.

(2004).

The above procedure naturally extends to the setting of piecewise polynomial signals of

general degrees, by replacing the penalty on the fist difference of the sequence of θ’s with

a penalty on their (p+ 1)-th difference. This approach is known as ℓ1 trend filtering, and

was studied independently by Kim et al. (2009) and Tibshirani (2014). The optimization

problem to be solved becomes:

θ̂ = argmin
θ∈Rn

∥Y − θ∥22 + λ
n∑

t=p+2

∣∣∣∣∣
p+1∑
i=0

(−1)i
(
p+ 1

i

)
θt−i

∣∣∣∣∣ .
We stress that the original ℓ1 trend filtering algorithm was developed for the purpose of

signal estimation, and not change point detection. Nevertheless, estimates for the number of

change points and their locations can be extracted from θ̂, and some recent works (Mehrizi

and Chenouri, 2021, 2020) have studied the performance of ℓ1 trend filtering for change

point detection in the generic piecewise polynomial model.

While they are attractive from the computational perspective, the algorithms discussed

in this section tend to offer sub-optimal statistical guarantees. For example Cho and Fry-

zlewicz (2011) show that the total variation penalty is sub-optimal for change point detec-

tion in piecewise constant signals by appealing to results on the efficiency of various change

point tests discussed in Brodsky and Darkhovsky (1993). Moreover, Rojas and Wahlberg

(2014) observe that for the same problem the method may be altogether inconsistent if the

data contain a so called staircase pattern; that is, multiple changes in mean all having the

same sign.
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Greedy or local segmentation methods

In contrast to global segmentation methods, greedy or local segmentation methods aim to

recover the change point locations one at a time by solving a separate optimization problem

for each change point estimated. We review the two most common such approaches: binary

segmentation algorithms and scanning algorithms.

Binary segmentation

The binary segmentation algorithm was originally studied by (Vostrikova, 1981; Venka-

traman, 1992) for change point detection in the canonical setting, but can be generalized

to more complex change point problems. Using the language of Section 2.1.3 let Ss,η,e (·)

be a test statistic for testing apart

Hs:e
0 : θs = · · · = θe

Hs:e
1,η : θs = · · · = θη ̸= sη+1 = · · · = θe.

The main idea behind binary segmentation is that the quantity η̂ = argmax1≤η<n S1,η,n (Y)

will generally be consistent for one of the change point locations in the data. The generic

binary segmentation algorithm estimates the first change point in this way, then recursively

repeats the search for the next most likely change point location to the left and right of η̂

until no more statistically significant significant change points can be found. Pseudo code

for the generic binary segmentation algorithm is given below in Algorithm 1, where λ is a

tuning parameter chosen such that the probability of the following event, under the global

null of no change points, is small:

E =

{
max

1≤s<e≤n
max
s≤η<e

Ss,η,e (Y ) > λ

}
. (2.2)

Binary segmentation is computationally efficient and easy to code, but suffers from

several drawbacks: the procedure lacks power and in general will not be able to esti-

mate change points at the best rate (Fryzlewicz, 2014), and in some change point models
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Algorithm 1: The generic binary segmentation algorithm for change point es-
timation. Inputting start and end points {s, e} and a threshold λ the algorithm
recursively estimates the locations of any change points in the data Y in the
ordered set {s, . . . , e}.
function BinarySegmentation(s, e, λ):

if e− s < 1 then
STOP

end
η̂ ← argmaxs≤η<e Ss,η,e (Y )

if Ss,η̂,e (Y ) > λ then
RecordChangePoint(η̂)
BinarySegmentation(s, η̂, λ)
BinarySegmentation(η̂ + 1, e, λ)

end
else

STOP
end

return

η̂ = argmax1≤η<n S1,η,n (Y) may not be a consistent estimator for any change point loca-

tion in the data (Baranowski et al., 2019a). These issues arise because the algorithm may

inspect a stretch of the data containing more than one change point, but each statistic

Ss,η,e (·) is designed to test against the alternative of exactly one change point at location

η. We give a concrete example of this problem below.

Example 2.1.7. Figure 2.5 shows a sample path Y = (Yt | t = 1, . . . , 1250)′ from

the canonical change point problem introduced in Example 2.1.1 with θt = 1 + 1.1 ×

1{500<t≤750} along with the CUSUM statistic from Example 2.1.4 calculated on the en-

tire sample path (2.5a) and on two sub-intervals each containing a single change point

location (2.5b). The threshold λ =
√
8 log(n) with n = 1250, shown in Baranowski

et al. (2019b) to control the event ( 2.2), is also plotted. The CUSUM statistic cal-

culated on the entire sample does not exceed the threshold anywhere, whereas the two

statistics calculated on localized intervals do exceed the threshold and their maxima

occur close to the true change point locations.

To correct the drawbacks of binary segmentation, modern variants of the algorithms
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Figure 2.5: CUSUM statistic computed on a sample path from the canonical change point
problem. Light grey lines (—) represent the observed data sequence, and black
dashed lines (- - -) represent the unobserved piecewise constant mean. Coloured
lines (— / —) represent the value of the CSUSM statistic, and black dotted lines
(· · · ) represent the

√
8 log(n) threshold. See Example 2.1.7 for more details.

(a) CUSUM statistic computed on the
entire data sequence

(b) CUSUM statistic computed on lo-
calized intervals

focus on localizing the procedure by applying it to a grid of intervals designed in such a

way that for each change point location there is likely to be one interval in the grid which

contains only that change point. This is generally possible under some mild assumptions

on the distance between change points (Yu et al., 2022). For example (Fryzlewicz, 2014;

Baranowski et al., 2019a) propose to use intervals with start and end points drawn uni-

formly at random from {1, . . . , n}, Kovács et al. (2023) propose a deterministic grid of

intervals with exponentially decaying lengths, and (Anastasiou and Fryzlewicz, 2022; Fang

and Siegmund, 2020) propose to use a sequence of gradually expanding intervals. All of the

aforementioned variants of binary segmentation are able to estimate change points in the

piecewise constant signal setting with optimal rates. Moreover, the works of Baranowski

et al., Kovács et al., and Anastasiou and Fryzlewicz are optimal for estimating change

points in piecewise linear and continuous signals. However, we are unaware of any variant

of binary segmentation which has been proved to estimate change points optimally in the

generic piecewise polynomial model.
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Scanning algorithms

The main idea behind scanning algorithms is to scan through the data with a window of

fixed length say 2W , where W is referred as the bandwidth, and at each point test whether

the window contains a change point location. In the language of Section 2.1.3 let SW,η (·)

be a test statistic for testing apart:

HW,η
0 : θη−W+1 = · · · = θη+W

HW,η
1,η : θη−W+1 = · · · = θη ̸= θη+1 = · · · = θη+W .

Then heuristically the local maxima of the process SW = {SW,η (Y ) |W ≤ η ≤ n−W} are

likely to occur near locations of any change points in the data. Such scanning algorithms

have historically been used for change point testing (Hušková and Slabỳ, 2001; Chu et al.,

1995; Bauer and Hack1, 1980) when the data may contain multiple change points, however

recent papers have applied the same approach to the problem of change point estimation.

The typical approach to change point estimation with scanning algorithms is to choose

a threshold λ such that under the null of no change points the probability of the event

{maxW≤η≤n−η SW,η (Y ) > λ} is small. Then, letting MW be the set of all integer pairs

(L,R) satisfying:

1. R− L ≥ cW for some c ∈ (0, 1/2)

2. SW,η (Y ) > λ for η ∈ {L, . . . , R}

3. SW,η (Y ) ≤ λ for η ∈ {L− 1, R+ 1}

Then the number of change points in the data can be estimated via N̂ = |MW | and

the change point locations can be estimated via η̂k = argmaxLk≤η≤Rk
Sw,η (Y ) for each

k = 1, . . . , N̂ .

When the bandwidth is carefully chosen, the above approach to is generally able to

estimate change points at the optimal rate. For example, Eichinger and Kirch (2018)

propose a scanning algorithm for change point detection in piecewise constant signals and
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Kim et al. (2022) propose an algorithm for change point detection in piecewise linear

(though not necessarily continuous) signals, and both attain the respective optimal rates

discussed in Section 2.1.1. As with binary segmentation algorithms, we are unaware of

any scanning algorithm which has been proved to estimate change points optimally in the

generic piecewise polynomial model.

A crucial limitation of scanning algorithms is the need to choose a bandwidth parameter.

In order to attain best rates for change point estimation, the bandwidth should be chosen to

be as large as possible without exceeding the minimum distance between change points in

the data. However, this information is not generally know to the analyst. If the bandwidth

is chosen to be too small the procedure will lack power and may not be able to detect all

change points, whereas if the bandwidth is chosen to be too large the procedure may not

be able to distinguish between adjacent change points which are too close. We illustrate

this problem with a concrete example below.

Example 2.1.8. Figure 2.6 shows a sample path Y = (Yt | t = 1, . . . , 1250)′ from the

canonical change point problem introduced in Example 2.1.1, with the same sequence

of θ’s as in Example 2.1.7. The process SW employing the test statistic from example

2.1.4 (known in the literature as the MOSUM process) with bandwidths W = 20 and

W = 50 is also plotted. We additionally plot the threshold

λ =
√

2 log(n/W ) +

1
2 log log(n/W ) + log( 3

2
√
π
) + zα√

2 log(n/W )
(2.3)

proposed in Eichinger and Kirch (2018), where zα = log
(
−2 log−1 (1− α)

)
and α =

0.05. The MOSUM statistic calculated using the smaller bandwidth only exceeds the

threshold in the vicinity of one of the change points, whereas the statistic using the

larger bandwidth exceeds the threshold in the vicinity of both change points.

A handful of recent papers have proposed solutions to the bandwidth selection problem.

For example, Cho and Kirch (2022b) propose using a grid of bandwidths and pruning

the list of estimated change points via an additional model selection step. The paper by
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Levajković and Messer (2023) considers using all possible bandwidths from 1 to n− 1.

Figure 2.6: MOSUM statistic computed on a sample path from the canonical change point
problem. Light grey lines (—) represent the observed data sequence, and black
dashed lines (- - -) represent the unobserved piecewise constant mean. Coloured
lines (— / —) represent the value of the MOSUM statistic, and black dotted
lines (· · · ) represent the threshold proposed in Eichinger and Kirch (2018) with
α = 0.05. See Example 2.1.8 for details.

(a) MOSUM statistic with bandwidths
W = 20

(b) MOSUM statistic with bandwidths
W = 50

2.2 Change point inference

This section reviews the literature on statistical inference in change point problems, where

the aim is to quantify the level of uncertainty around one or more of: the number of

changes N ; their locations Θ; the jump sizes {∆k | k = 1, . . . , N}. We review the four

main approaches to change point inference, namely: post selection inference, simultane-

ous inference and selection, inference without selection, and inference through Bayesian

analysis.

2.2.1 Post selection inference

Having obtained an estimate Θ̂ for the change point locations from data, a naive approach

to change point inference would involve applying two sample homogeneity tests to data
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in a neighborhood of each estimated change point location in order to test whether each

estimated change is in fact “real”. However, such tests would not have correct level, since

the data would have effectively been used twice: once to decide where to carry out each test,

and a second time to carry out the test itself. Therefore, viewing change point estimation

as a model selection problem, the question of change point inference translates to post

selection inference.

The simplest practical solution is to use sample splitting (Fithian et al., 2014). For

example, one could use odd indexed data points to estimate the number of change points

and their locations, then perform tests for the significance of each change point on the

remaining even indexed data. A modern alternative to sample splitting is data thinning

(Rasines and Young, 2023; Neufeld et al., 2023). For random variables from the natural

exponential family data thinning takes a random variable Y and decomposes into two

independent random variables Y (1) and Y (2) such that: (i) Y
d
= Y (1) + Y (2), and (ii) Y (1)

and Y (2) follow the same distribution as Y up to a known scaling factor. Given a sample

path Y from a change point model, one could therefore use the first half of the thinned

path, say Y (1), for change point estimation, and the second half of the thinned path, say

Y (2), for testing. An application of data thinning to change point detection is given in

Dharamshi et al. (2023).

Both sample splitting and data thinning suffer from a loss of accuracy and power. The

loss of accuracy occurs in the first stage, where only part of the sample is used for change

point estimation leading to less accurate estimates of the change point locations. In the

second stage each test carried out suffers from a loss of power, since again not all of the data

is being used. A refinement involves using the entire sample for estimation and testing,

but carefully conditioning on the model selection step when each test is carried out. Most

research in this direction has focused on the piecewise constant mean model. For example

Duy et al. (2020) compute valid conditional p-values for when the change point locations

are estimated vai ℓ0 penalized least squares, Hyun et al. (2021) do the same when the

change point locations are estimated via binary segmentation or ℓ1 trend filtering, and

(Jewell et al., 2022; Carrington and Fearnhead, 2023) do the same when the change point
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are estimated by either (wild) binary segmentation or ℓ0 penalized least squares. Finally,

in the more general piecewise polynomial setting Mehrizi and Chenouri (2021) obtain valid

conditional p-values when the change point locations are estimated via ℓ1 trend filtering.

A different but complementary approach involves the fact that if each change point lo-

cation can be localized at a fast enough rate then a limit distribution for the change point

estimator can be obtained. Based on this, a confidence interval for each estimated change

point location can be calculated. This approach goes back to (Antoch, 1999; Antoch et al.,

1995), who studied the distribution of the estimated change point location in the piecewise

constant mean model with a single change. Bai (1995); Bai and Perron (1998) give the

asymptotic distribution of estimated change point locations in the piecewise linear regres-

sions model when N is fixed. Recently (Kaul and Michailidis, 2023; Kaul et al., 2021)

studied the asymptotic distribution of change point location estimates in the high dimen-

sional mean shift model. In the piecewise constant mean model Cho and Kirch (2022a)

develop bootstrap confidence intervals for the change point locations. We emphasize the

difference between this inference problem and the one above: in the paragraph above the

goal was to quantify the uncertainty about the existence of each change point, whereas

here the goal is to quantify uncertainty about the location.

The inference methods discussed so far suffer from an important practical limitation: they

are only valid conditional the number of change points being correctly estimated, which

in a finite sample is not guaranteed to occur. Therefore, confidence statements for change

point problems arrived at via post selection inference can be problematic to interpret in

practice.

2.2.2 Simultaneous inference and selection

Rather than performing the change point estimation and inference steps sequentially, one

may do the two simultaneously. This line of research was initiated with the work of Frick

et al. (2014) who studied change point models from the one parameter exponential family,

with piecewise constant parameter θ. That is:

• Each Yt ∼ Fθt for t = 1, . . . , n.
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• The sequence {θt}nt=1 is piecewise constant.

• {Fθ}θ∈Γ is a one dimensional exponential family.

Frick et al. introduce the Simultaneous MUltiscale Change-point Estimator (SMUCE),

which estimates the change point locations by minimizing the number of jumps in the

estimated sequence of θ’s subject to the constraint that the empirical residuals pass a

multi-scale test having size α. More precisely, they solve the optimization problem

min
θ̂

n−1∑
t=1

1
{
θ̂t ̸= θ̂t+1

}
s.t. Tn

(
Y , θ̂

)
≤ q (2.4)

where the minimization is over all piecewise constant vectors, and the multi-scale test is

Tn

(
Y , θ̂

)
= max

1≤s<e≤n

θ̂t=θ̄ for t∈(s,e]

{
Ts:e

(
Y , θ̄

)
−
√
2 log

en

e− s

}
. (2.5)

Finally, Ts:e
(
Y , θ̄

)
is the square root of the twice the log-likelihood ratio statistic for testing

apart the local hypotheses

Hs:e
0 : θt = θ̄ ∀ t = s+ 1, . . . , e

Hs:e
1 : θt ̸= θ̄ ∀ t = s+ 1, . . . , e.

An appealing property of the SMUCE estimator is that solving (2.4) produces a confi-

dence set for all admissible piecewise constant vectors of θ’s, from which uniform confidence

sets for the change point locations can be extracted. The parameter q can be chosen such

that at the true vector of θ’s we have limn→∞ P (Tn (Y ,θ) ≤ q) ≥ 1−α. Therefore, with a

proper choice of q the SMUCE estimator can produce asymptotically 1−α level confidence

sets for the change point locations.

To fix the idea, below we give a concrete example of the local tests used by the SMUCE

estimator for a particular exponential family distribution.
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Example 2.2.1. Let Y = (Y1, . . . , Yn)
′ be a sample path from the canonical change

point problem introduced in Example 2.1.1. Then the local likelihood ratio test statistics

used in the SMUCE algorithm will be of the form

Ts:e
(
Y , θ̄

)
=

1√
e− s

∣∣∣∣∣
e∑

s=s+1

(
Yt − θ̄

)∣∣∣∣∣ . (2.6)

We stress that in (2.5) the local test statistics are only calculated on stretches of the

data where the proposed vector of θ’s is constant.

Many variants of the original SMUCE procedure have been proposed. For example: Pein

et al. (2017) proposes a heterogeneous extension of SMUCE, called H-SMUCE, in which

the multi-scale test involves a local variance estimator and therefore permits a certain

degree of heterogeneity in the data; Jula Vanegas et al. (2021) propose the Multi-scale

Quantile Segmentation procedure (MQS), in which the authors look for change points in

the quantiles of a data sequence, and use a variant of the SMUCE procedure in which

the multi-scale test is based on signs of empirical residuals and therefore requires almost

no assumptions on the distribution of the data; Dette et al. (2020) extend the SMUCE

estimator to serially dependent data sequences (Dep-SMUCE) scaling the basic SMUCE

statistic (2.6) by a consistent estimator of the data’s long-run variance and appealing to

strong approximation results by which partial sums of the data can be approximated well

by a Gaussian process.

Although the family of SMUCE estimators seem to have avoided the post selection

inference problem by doing estimation and inference simultaneously, in practice this is not

strictly true. In fact, they suffer from the following drawback which was first noted by

Chen et al. (2014): letting α, through q, determine both the nominal coverage level and

the estimated piecewise constant vector of θ’s leads to the counter-intuitive situation in

which larger nominal coverage may reduce actual coverage.
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2.2.3 Inference without selection

A further approach to change point inference involves skipping the model selection step

altogether, and focusing exclusively on inference via detecting intervals which each contain

a change point location with high probability. Consider the generic change point problem

introduced in Section 2.1.1. Let Ts:e : (Ys, . . . , Ye)
′ 7→ {0, 1} test the local null hypothesis

Hs:e
0 : θs = · · · = θe

and let T (Y ) = {Ts:e (Y ) | (s, e) ∈ G} be a collection of such tests indexed over some grid

G of (s, e) pairs. If the collection of tests has family-wise error bounded by some α ∈ (0, 1)

it is immediate that uniformly with probability at least 1 − α each (s, e) pair for which a

local null is rejected must correspond to an interval {s, . . . , e} which contains at least one

change point location. Methods which perform inference based on this idea proceed in two

steps:

1. A gird G is specified, and a collection of suitably powerful local tests with bounded

family-wise error on the chosen gird is proposed.

2. An algorithm is introduced for turning the collection of local tests into a collection of

mutually disjoint intervals with the following properties: (i) the corresponding local

null is rejected on each interval, and (ii) each interval is as short as possible.

Intervals recovered in this way can be understood as simultaneously quantifying the uncer-

tainty around the existence and around the location of each putative change point.

Such a general scheme is discussed in Pilliat et al. (2023), who study in detail the problem

of detecting changes in the mean of high dimensional sub-Gaussian data. The authors

propose local tests based on symmetric differences in means, indexed over a grid of sub-

intervals of {1, . . . , n} for which each interval in the grid has dyadic length. They suggest an

algorithm for interval recovery based on inspecting intervals in their grid from the smallest

to the largest, and merging overlapping intervals which each detect a change. Fang et al.

(2020) and Fang and Siegmund (2020) obtain analytic approximations to the supremum of
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likelihood ratio statistics for testing changes in the mean and changes in the linear trend

of a sequence of independent Gaussian random variables at all scales and locations, under

the null of no change points. This can be seen to correspond to the complete grid of all

sub-interval of the index set {1, . . . , n}. The authors propose an algorithm based on testing

gradually expanding sub intervals of the index set, which is similar to the Isolate Detect

procedure for change point estimation proposed by Anastasiou and Fryzlewicz (2022).

Fryzlewicz (2023) proposed the Narrowest Significance Pursuit (NSP) procedure for in-

ference it the linear regression model with piecewise constant coefficients: Yt = β′tXt+ζt for

t = 1, . . . , n with {βt | t = 1, . . . , n} being a piecewise constant sequence of vectors. This

model includes as a special case the piecewise polynomial regression model. The procedure

is based on the following local tests:

T λ
s:e (Y ) = 1

{
min
β̂

max
s≤i≤j≤e

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

(
Yt − β̂′Xt

)∣∣∣∣∣ > λ

}
, for 1 ≤ s ≤ e ≤ n (2.7)

These tests have the appealing property that, uniformly over all intervals free from change

points and for any sequence of design matrices {Xt | t = 1, . . . , n}, it must hold that

min
β̂

max
s≤i≤j≤e

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

(
Yt − β̂′Xt

)∣∣∣∣∣ ≤ max
1≤i≤j≤n

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

ζt

∣∣∣∣∣ . (2.8)

Kabluchko and Wang (2014) study the limiting distribution of standardized increments

of partial sum of random variables belonging to a range of distributions. Therefore, with

knowledge of the distribution of the ζ’s their results can be used to select a λ which

asymptotically controls the family-wise error of the collection of tests (2.7) at a desired

level.

For recovering intervals with the local tests (2.7) Fryzlewicz proposed the Narrowest

Significance Pursuit algorithm, which we describe in detail here as it will be used in the

change point inference procedure proposed in Chapter 4. Pseudo code for the algorithm

is provided in Algorithm 2 below. The algorithm is defined recursively, and begins by

generating a gird of sub-intervals indexing the stretch of data being inspected via the
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function subIntervalsGrid. Then, each sub-interval is tested for a change point using

a pre-specified local test. The intervals are tested from shortest to longest, and among

intervals with the same lengths the order of testing is determined by the the left endpoint

of the interval, with intervals having smaller values being inspected first. If all sub-intervals

pass their respective tests the algorithm terminates. Else, on the first sub-interval for

which a local test is not passed the algorithm starts a second exhaustive search for the

narrowest sub-interval on which a change can be detected. This is done by inspecting

intervals generated by the function allSubIntervals, which given start and end values

which draws all contiguous sub-intervals in the range. The order of testing is the same as

previously described. Once such an interval is found it is recorded, and the algorithm recurs

to the left and to the right of the afore mentioned interval. The coarse first stage search

allows for efficient inspection of the data in the event of no change points being present,

whereas the exhaustive second stage search guarantees the intervals ultimately returned by

the algorithm are the narrowest possible.

For future reference, we stress the difference between the Narrowest Significance Pursuit

algorithm, which can be used in conjunction with any collection of change point tests having

bounded family-wise error, and the NSP procedure which refers explicitly to Algorithm 2

used in conjunction with the local tests proposed in Fryzlewicz (2023).

2.2.4 Bayesian inference

Finally, Bayesian approaches to change point detection provide an alternative approach

to uncertainty quantification, via credible intervals derived from the posterior distribution

of the change point locations recovered. Bayesian approaches to the task of change point

detection include Cappello and Padilla (2022) who study data sequences with piecewise

constant variance, Cappello et al. (2023) who study the canonical change point problem,

Liu et al. (2017) who study the piecewise polynomial change point problem, and Hahn et al.

(2020) who study changes in means of high dimensional data. However, choosing sensible

priors and sampling from the posterior remain non-trial and in the case of the first problem

highly controversial tasks. Posterior distributions can be approximated via MCMC (Chib,
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Algorithm 2: The generic narrowest significance pursuit algorithm. Inputting
start and end points {s, e} and a collection of local tests with family-wise error
bounded by some α ∈ (0, 1) the algorithm returns the narrowest disjoint collection
of sub intervals {s, . . . , e} such that with probability at least 1− α each interval
returned contains a change point location.

function NSP(Y, s, e):
if e− s < 1 then

STOP
end
G1 ← subIntervalsGrid(s,e)
for (t1, t2) in G1 do

if Tt1:t2 (Y ) = 1 then
G2 ← allSubIntervals(t1, t2)
for (u1, u2) in G2 do

if Tu1,u2 (Y ) = 1 then
recordIntervals(u1, u2)
NSP(Y, s, u1)
NSP(Y, u2, e)
BREAK

end

end

end

end

return
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1998), however this can be computationally demanding. Modern computationally efficient

methods for evaluating the posterior have been studied by (Rigaill et al., 2012; Fearnhead,

2006; Nam et al., 2012).

2.3 Dynamic causal structure discovery

2.3.1 Problem statement and motivation

We review selected articles from the causality literature relating specifically to dynamic

causal structure discovery. That is, a collection of random variables is observed over time,

and the interest lies in understanding whether the behavior of some variables is causing

the behavior of others. We will be particularly interested in notions of association which

are testable from data. The ideas presented here will become relevant in Chapter 5, where

we study a multivariate time series model in which the change point locations are random,

and seek to understand whether changes in one time series actively cause change points in

another series.

Pearl (2009) draws an important distinction between statistical parameters, which are

any parameters which can be estimated in terms of a joint probability distribution over the

variables observed (for example expectations), and causal parameters which are parameters

from a causal model in which each variable is written as a function of the variables which

cause it. In the following sections we introduce two notions of statistical association, which

however can be interpreted causally if additional assumptions about the data are made.

2.3.2 Granger causality: causality for time series processes

In his seminal papers Granger (1969, 1980) introduced the concept of Granger causality

as a testable notion of causal feedback in econometric models. Let Yt = (Y1,t, . . . , Yd,t)
′

be a multivariate time series process and put Ft = σ (Ys | s ≤ t) for the natural filtration

generated by the Y’s up to time t. Without loss of generality we assume Y is a centered

process. Moreover put Yt\j = (Yi,t | i ̸= j)′ and Ft\j = σ
(
Ys\j | s ≤ t

)
. Then, Yj is said to
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Granger cause Yk if

E
[(
Yt,k − E

(
Yt,k | F(t−1)

))2]
< E

[(
Yt,k − E

(
Yt,k | F(t−1)\j

))2]
,

in which case we write j → k. Else, Yj does not Granger cause Yk and we write j ̸→

k. Intuitively, Yj does not Granger cause Yk if knowledge of Yj ’s past is not useful for

predicting Yk’s future. The notion of Granger causality be extended to collections of time

series. Let A, B, and C be disjoint subsets of {1, . . . , d} and put Yt,A = (Yi,t | i ∈ A)′ and

Ft,A = σ (Ys,A | s ≤ t). Then YA is said to Granger cause YB given YC if

E
[(
Yt,B − E

(
Yt,B | F(t−1),A∪B∪C

))2]
< E

[(
Yt,B − E

(
Yt,B | F(t−1),B∪C

))2]
, (2.9)

in which case we write A → B | C. Else, YA does not Granger case YB given YC and we

write A ̸→ B | C. For concreteness we give an example below.

Example 2.3.1. Let Yt be generated according to the Vector Auto-Regression

Yt = AYt−1 + Et,

where E is a white noise process with variance-covaraince matrix Σ and A is a d × d

matrix. Then Yj Granger causes Yk if and only if Ak,j ̸= 0.

Granger causality is asymmetric, since A→ B | C does not necessarily imply B → A | C.

Moreover, it is quite different from the concept of conditional independence, since A ̸→ B |

C does not imply YB ⊥⊥ YA | YC . A particular useful concept is the Granger causal graph

or network, G, with vertex set V = {1, . . . , j} and edge set E ∈ {0, 1}d×d given by

Ej,k =


1 if j → k

0 if j ̸→ k

.

The presence of an edge between two vertices indicates a potential causal link and the

absence of an edge indicates non-causality.
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Besides Example 2.3.1, we briefly mention that the notion of Granger causality has been

applied to several interesting non-standard time series processes including: categorical time

series Tank et al. (2021), non-linear time series (Henderson and Michailidis, 2014; Wu et al.,

2014), and mixed-frequency time series (Danks and Plis, 2013; Schorfheide and Song, 2015).

2.3.3 Local independence: causality for marked point processes

Next we review the concept of local independence, which provides a testable notion of

dynamic dependence between arrival times of point processes. Before introducing local

independence we briefly review point processes on the positive real line, and introduce

some concepts which will be of use in Chapter 5.

Point processes on the real line

A point process on the positive real line admits three equivalent definitions (Daley and

Vere-Jones, 2003, 2008). It can be defined in terms of:

1. A sequence Θ = {ηk | k ≥ 1} of strictly positive ordered random variables denoting ar-

rival times, which satisfy: (i) P (0 < η1 ≤ η2 ≤ . . . ) = 1, (ii) P (ηk < ηk+1, ηk <∞) =

P (ηk <∞) for all k ≥ 1, and (iii) P (limk→∞ ηk =∞) = 1.

2. A sequence of strictly positive random variables {δk | k ≥ 1} with δ1 = η1 and δk =

ηk − ηk−1 for k > 1 denoting the inter-arrival times of the η’s.

3. A random counting measure N (·) on the real line, which counts the number of η’s

in an interval. That is, for any (a, b] ⊂ R+ we have N(a, b] =
∑∞

k=1 1{a<ηk≤b}. For

convenience we will occasionally write N (b) for N(0, b].

A point process is called simple if the number of points in a bounded region is al-

most surely finite, it is called stationary if the distribution of N(a, b] depends only on the

length b − a for any 0 ≤ a < b < ∞, and it is called orderly (Khinchin et al., 1995) if

P (N(0, q] > 1) = o(q) as q ↓ 0. A highly useful tool when working with point processes is

60



2.3 Dynamic causal structure discovery

the conditional intensity function. Let Ft− be the natural filtration generated by the η’s

up to but not including time t. Then, the conditional intensity function is given by

λ∗j (t) = lim
h↓0

E (N [t, t+ h) | Ft−)

h
. (2.10)

The conditional intensity function exists under fairly general conditions, and when it exists

it uniquely determines the probability structure of the point process (Daley and Vere-Jones

2003, Proposition 7.2.IV).

For modeling multiple event types occurring on the positive real line, we introduce the

multi-type point process N (·) = (N1 (·) , . . . , Nd (·))′, associated with which is the se-

quence of arrival times {ηj,k | j = 1, . . . , d, k ≥ 1}. Therefore, each component measure

Nj (·) counts the number of arrivals of the associated ηj ’s. The conditional intensities

for the component measures are defined as in (2.10), except we condition on the natural

filtration of all ηj,k’s up to but not including time t. Multi-type point processes can be

equivalently defined as a marked point process (Jacobsen and Gani, 2006), where we have

the double sequence {(jk, ηk) | k ≥ 1} taking values in the space {1, . . . , d}×R+. Here the

ηk’s mark the time of the k-th event, and jk’s marks the type of event.

Local independence for marked point processes

We are now in a position to introduce the concept of local independence for marked point

processes. The definition we will use is due to Didelez (2008), however as pointed out by

Didelez a similar idea was proposed by Schweder (1970) for Markov processes.

Let Ft be the natural filtration generated by all of the η’s up to time t and let Ft\j be

the filtration generated by ηk’s for k ∈ {1, . . . , d} \ {j}. The random measure Nk (·) is

said to be locally independent of Nj (·) if the conditional intensity function λ∗k (t) is Ft\j

measurable for all t > 0. In which case we write j ̸→ k. Else we speak of local dependence,

and write j → k. The definition extends naturally to collections of random measures: let

A, B, and C be disjoint subsets of {1, . . . , d}, put NA (·) = (Nj (·) | j ∈ A)′ and let Ft,A

be the filtration generated by the corresponding η’s. Then NB (·) is said to be locally
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independent of NA (·) given NC (·) if λ∗j (t) is Ft,B∪C measurable for all j ∈ B and all

t > 0, in which case we write A ̸→ B | C. Else we speak of conditional local dependence,

and write A→ B | C. For concreteness, we give an example below.

Example 2.3.2. Let point process N (·) = (N1 (·) , . . . , Nd (·))′ be generated according

to a multivariate Hawkes process (Hawkes, 1971) with conditional intensities

λ∗j (t) = νj +
d∑

i=1

∫ ∞

0
gj,i (t− u) dNi(u), j = 1, . . . , d.

Where νj > 0 and gj,i : R+ 7→ R+ for each i, j ∈ {1, . . . , d}. Then Nk (·) is locally

independent of Nj (·) if and only if
∫∞
0 gk,j (u) du = 0. We stress that if N (·) is fully

observed then
∫∞
0 gk,j (u) d is a causal parameter in the sense of Pearl (2009), since if

the quantity is non-zero events in the past of Nj (·) are responsible for future changes

in the intensity of Nk (·).

The concept of local independence is closely linked to Granger causality. Observe that

under general conditions (Medvegyev, 2007) a point process on the real line will admit

Doob-Meyer decomposition as: N (t) =
∫ t
0 λ

∗ (u) du+M (t), where M (t) is an Ft martin-

gale. In light of this decomposition, the statement A ̸→ B | C can again be understood in

terms the past of NA (·) being useful for predicting the future of NB (·) once the past of

NC (·) is observed.

Similarly to Granger causality, local independence is asymmetric, since A → B | C

does not necessarily imply B → A | C, and different from conditional independence, since

A ̸→ B | C does not imply NB (·) ⊥⊥ NA (·) | NC (·). Didelez (2008) also proposed

the concept of a local independence graph, in which the absence of an edge indicates

local independence between two component processes of a marked point process, and the

presence of an edge may be indicative of causality. We briefly mention that specifically for

Hawkes processes as briefly defined in Example 2.3.2, such a graph was also introduced by

Embrechts and Kirchner (2016) under the name Hawkes skeleton.
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Methods for recovering local independence graphs

There are several approaches in the literature for recovering local independence graphs

from data. For the case of Markov processes, procedures based on maximum likelihood

estimation have been proposed (Didelez, 2007, 2001). Bayesian methods have been pro-

posed by Nodelman et al. (2012). Most notably, when the point processes are Hawkes

processes as in Example 2.3.2 very many estimating procedures exist, and we mention just

a few (Achab et al., 2018; Chen et al., 2017; Hansen et al., 2015). Finally we mention

the work of Thams and Hansen (2023). The authors point out that Hawkes processes are

not closed under marginalization, in the sense that if one of the component processes is

not observed the remaining processes processes will necessarily not be Hawkes processes.

Instead, the authors test for the presence of an edge in the graph using basis expansions of

the (potentially) marginalized intensities.
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3 Fast and Optimal Inference for Change

Points in Piecewise Polynomials via

Differencing

3.1 Introduction and problem statement

In this chapter we study the setting in which an analyst observes data Y = (Y1, . . . , Yn)
′

on an equi-spaced grid which can be written as the sum of a signal component and a noise

component:

Yt = f◦ (t/n) + ζt t = 1, . . . , n. (3.1)

The signal component f◦ : [0, 1] 7→ R is known to be a piecewise polynomial function of

arbitrary but fixed degree p, and associated with f◦ (·) there are N integer-valued change

points at locations Θ = {η1, . . . , ηN}. Both Θ and N are unknown. Our goal is to simul-

taneously quantify the level of uncertainty the around the existence and location of each

putative change point in the generic piecewise polynomial model. This is a worthwhile task

since estimates of the change point locations are not consistent in the usual sense of the

estimation error tending to zero with the sample size. Moreover, since most algorithms

for change point estimation do not quantify the uncertainty around the change points they

recover, it is difficult to say whether these change points are real or spuriously estimated.

We propose a procedure which aims to return the narrowest possible disjoint sub-intervals

of the index set {1, . . . , n} in such a way that each must contain a change point location

uniformly at some confidence level chosen by the user. Examples of such intervals are
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Figure 3.1: the piecewise constant blocks signal, piecewise linear waves signal, and piece-
wise quadratic hills signal each contaminated with i.i.d. Gaussian noise (left
column). Intervals of significance with uniform 90% coverage returned by our
procedure (right column). Black dashed lines (- - -) represent underlying piece-
wise polynomial signal, light grey lines (—) represent the observed data se-
quence, red shaded regions (■) represent intervals of significance returned by
our procedure, red dotted lines (· · ·) represent split points within each inter-
val associated with the piecewsie polynomial fit providing the lowest sum of
squared residuals.

(a) the blocks signal (b) intervals returned by our procedure

(c) the waves signal (d) intervals returned by our procedure

(e) the hills signal (f) intervals returned by our procedure
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shown in the right column of Figure 3.1. This is done by testing for a change at a range

of scales and locations belonging to a sparse grid, and tightly bounding the supremum of

local test statistics over the same grid which guarantees sharp family-wise error control. We

initially study the setting in which the noise components are independent with marginal

N
(
0, σ2

)
distribution and later in Section 3.2.4 extend our results to dependent and non-

Gaussian noise. Motivated by the fact that taking (p + 1)-th differences will eliminate a

degree p polynomial trend (Chan et al., 1977), we consider tests based on differences of

(standardised) local sums of the data sequence. There are several advantages to working

with tests based on local sums as opposed to for example likelihood ratio or Wald statistics,

which we list below.

• Each of our local test can be completed in O(1) time in a straightforward manner,

regardless of the degree of the underlying polynomial or the scale at which the test is

performed, leading to a procedure with worst case complexity O (n log(n)) when test

are carried out on a sparse grid.

• Local averaging brings the contaminating noise closer to Gaussianity, which is a

feature we exploit in Section 3.2.4 when studying the behaviour of the our procedure

under non-Gaussian and possibly dependent noise.

• Unlike procedures based on differencing the raw data, which are known to be sub-

optimal, as we show in Theorem 3.3.1 the combination of local averaging followed by

differencing leads to a procedure which is optimal in a mini-max sense.

• The asymptotic analysis is by design uncomplicated, as it boils down to analysing

the high excursion probability of a stationary Gaussian field whose local structure

depends on the polynomial degree in a straightforward way.

The remainder of the chapter is structured as follows. In Section 3.2 we introduce local

tests for the presence of a change based on differences of local sums of the data, and study

their behaviour under the null of no change points in terms of the family-wise error when the

test are applied over a sparse grid. In Section 3.3 we introduce a fast algorithm for turning
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our local tests into a collection of disjoint intervals which each must contain a change at a

prescribed significance level, and show the algorithm’s consistency and optimality in terms

of recovering narrow intervals which each contain a change point location. In Section 3.4 we

compare the performance of our algorithm with that of existing procedures when applied

to simulated data. Finally in Section 3.5 we show the practical use of our algorithm via

two real data examples.

3.2 Difference based tests with family-wise error control

3.2.1 Local tests for a change point

We begin by describing tests for the presence of a change on a localised segment of the data.

Motivated by the fact that a polynomial trend will be eliminated by differencing, if it were

suspected that a segment of the data contained a change point location one could divide

the segment into p+2 chunks of roughly equal size and take the (p+1)-th difference of the

sequence of local sums on each chunk. Since summing boosts the signal from the change

point, and differencing eliminates the polynomial trend, one could then declare a change

if the resulting quantity coming from the summed and differenced sequence, appropriately

scaled, was large in absolute value. By contrast, simply differencing the data on the segment

would reduce the signal from the change, and any statistic based on the differenced data

only would be sub-optimal for detecting the change.

For each local test we write l for the location of the data segment being inspected for a

change point and w for the width of the data segment. Following the reasoning above, to

test for the presence of a change point on the interval {l, . . . , l + w − 1} we first compute

the following non-overlapping local sums:

Ȳ j
l,w = Y

l+j
⌊

w
p+2

⌋ + · · ·+ Y
l+(j+1)

⌊
w

p+2

⌋
−1
, j = 0, . . . , p+ 1.

We then declare a change if the test statistic defined below, which corresponds to the the

(p+ 1)-th differences of the sequence Ȳ 0
l,w, . . . , Ȳ

p+1
l,w scaled so that its variance is constant
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independent of l and w when the noise is homoskedastic and independently distributed, is

large in absolute value.

Dp
l,w (Y ) =

{⌊
w

p+ 2

⌋ p+1∑
i=0

(
p+ 1

i

)2
}−1/2 p+1∑

j=0

(−1)p+1−j

(
p+ 1

j

)
Ȳ j
l,w (3.2)

The functional introduced in (3.2) enjoys the following properties, which make it well suited

for the task of change change point testing on piecewise polynomials:

• Additivity: for any two vectors f , g ∈ Rn it holds that Dp
l,w (f + g) = Dp

l,w (f) +

Dp
l,w (g) for all admissible l’s and w’s.

• Annihilation of polynomials: if the entries of f ∈ Rn are from a polynomial of degree

no larger than p then Dp
l,w (f) = 0 for all admissible l’s and w’s.

• Large for discontinuous functions: if the entries of f ∈ Rn are from a piecewise mono-

mial with a single discontinuity at location η then |Dp
l,w (f) | > 0 for all l’s and w’s

such that η ∈ {l, . . . , l + w − 1}.

The first two properties ensure (3.2) is small under the local null of no change, whereas the

third property can be used to show that for some admissible (l, w) pair the the statistic

will be large in absolute value in the presence of a change.

Consequently, for some λ > 0 to be chosen later on, each local test for the presence of a

change on an interval {l, . . . , l + w − 1} takes the following form:

T λ
l,w (Y) = 1

{
|Dp

l,w (Y ) | > λ
}
. (3.3)

When p = 0 the statistic (3.2) recovers the moving sum filter used for change point detection

in the piecewise constant model Eichinger and Kirch (2018). This also corresponds to the

(square root of) the likelihood ratio statistic for testing the null of a constant mean on the

segment under Gaussian noise, as well as the Wald statistic for the same problem. Typical

approaches for generalising to higher order polynomial change point problems involve local

likelihood-ratio or Wald statistics for testing the null of a polynomial mean on the segment
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(Baranowski et al., 2019a; Fang et al., 2020; Anastasiou and Fryzlewicz, 2022; Kim et al.,

2022), which however are hard to stochastically control. We show that simply extending

the order of differencing leads to simple and powerful tests.

3.2.2 Local tests on a sparse gird

For the purpose of making inference statements about an unknown number of change point

locations, we would like to apply the local tests (3.3) over a grid which is both dense enough

to cover all potential change point locations well and sparse enough to allow all local tests

to be computed quickly. Given a suitable grid G of (l, w) pairs, if λ were chosen to control

the family-wise error of the collection of tests

T λ
G (Y) =

{
T λ
l,w (Y) | (l, w) ∈ G

}
(3.4)

at some level α, we could be sure that with probability 1 − α every (l, w) pair on which

a test rejects corresponds to a segment of the data containing at least one change point

location.

We propose to use the following grid, which is parameterised by a minimum grid scale

parameterW , controlling the minimum support of the detection statistic (3.2), and a decay

parameter a > 1, controlling the density of the grid:

G (W,a) =
{
(l, w) ∈ N2 | w ∈ W(W,a), 1 ≤ l ≤ n− w

}
(3.5)

W (W,a) =
{
w =

⌊
ak
⌋
| ⌊loga(W )⌋ ≤ k ≤ ⌊loga(n/2)⌋

}
.

Associated with the grid is the collection of sub-intervals of {1, . . . , n} whose length is

larger than W and can be written as an integer power of a. For example, the collection

of intervals {l, . . . , l + w − 1} associated with the (l, w) pairs in the grid obtained when

n = 20 and setting W = 2 and a = 2 is shown in Figure 3.2 below. For this configuration

of a and W , the associated collection of intervals consists of all contiguous sub-interval of

{1, . . . , 20} having dyadic length.
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Figure 3.2: Intervals associated with the G (W,a) with minimum grid scale W = 2 and
decay parameter a = 2, for a sample size of n = 20.

The grid defined by (3.5) is similar to several grids already proposed for different change

point detection problems (Kovács et al., 2023; Chan and Walther, 2013; Pilliat et al.,

2023), in that the size of scales decays exponentially. Pilliat et al. mention that “from a

purely statistical perspective, it is difficult to appreciate the respective benefits of denser

or sparser grids” and this motivated us to study a procedure which is in fact adaptive to

the chosen grid through the decay parameter a. Two key differences between our grids

and previously proposed grids are that: (i) for any scale w all possible locations l are

considered, and (ii) that all scales with w = o (W ) are excluded from the grid. Regarding

the minimum grid scale, if the noise were known to be independently distributed and

Gaussian we could take W = O(1) and still retain family-wise error control using our

proof technique. However, under dependent or non-Gaussian noise letting the minimum

grid scale diverge at an appropriate rate with n is necessary for controlling the family-wise

error, as this allows local sums of the noise to be treated as approximately uncorrelated

and Gaussian.
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3.2.3 Family-wise error control under Gaussianity

As a starting point for family-wise error analysis in more general noise settings, we first

show how to control the family-wise error of the local tests (3.3) over the grid (3.5) when

the noise terms are independently distributed and Gaussian. The approach is to tightly

bound the maximum of the local test statistics (3.2) under the null of no change points,

and use this bound to select an appropriate threshold λ for (3.4). We impose the following

assumptions on the minimum grid scale and on the noise components.

Assumption 3.2.1. The noise terms ζ1, . . . , ζn are mutually independent with marginal

N (0, σ2) distribution for some σ > 0.

Assumption 3.2.2. The minimum grid scale W satisfies W/ log(n) → d for some d ∈

(0,∞).

With these assumption in place we have the following result on the behaviour of the

maximum of local test statistics (3.2) under the null of no change points.

Theorem 3.2.1. Let Y = (Y1, . . . , Yn)
′ be from model (3.1) with signal component

having no change points and grant Assumptions 3.2.1 - 3.2.2 hold. For fixed a > 1

introduce the following quantity:

Mσ
G(W,a) (Y ) = max

(l,w)∈G(W,a)

{
1

σ
Dp

l,w (Y )

}
.

(i) Putting an =
√

2 log(n) and bn = 2 log(n)− 1
2 log log(n)− log(2

√
π) the sequence of

random variables
{
anM

σ
G(W,a) (Y )− bn | n ∈ N

}
is tight, and there are constants H1,1

and H1,2 depending only on a, p, and d such that for fixed x ∈ R the following holds

o(1) + exp
(
−H1,1e

−x
)
≤ P

(
anM

σ
G(W,a) (Y )− bn ≤ x

)
≤ exp

(
−H1,2e

−x
)
+ o(1).

(ii) Moreover the result in (i) continues to hold if σ is replaced with any consistent

estimator σ̂ which satisfies |σ̂/σ − 1| = oP
(
log−1(n)

)
.
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Note that for large values of n the quantity

Lσ
G(W,a) (Y ) = max

(l,w)∈G(W,a)

{
1

σ

∣∣∣Dp
l,w (Y )

∣∣∣}

behaves asymptotically like the maximum of two independent copies of Mσ
G(W,a) (Y ). We

do not give a formal proof of this statement, however the statement can be understood

intuitively by writing Lσ
G(W,a) (Y ) = Mσ

G(W,a) (Y ) ∨Mσ
G(W,a) (−Y ) and then using the well

known fact that order statistics are asymptotically independent (Falk and Reiss, 1988;

Kabluchko and Wang, 2014). Therefore, in light of Theorem 3.2.1 it follows that under

Assumptions 3.2.1 - 3.2.2, for any α ∈ (0, 1), choosing λ = σ̂λα with σ̂ satisfying the

condition given in part (ii) and λα defined as follows

λα =
√

2 log(n) +
−1

2 log log(n)− log (2
√
π/H1,2) + log

(
−2 log−1 (1− α)

)√
2 log(n)

(3.6)

will result in the collection of tests T λ
G(W,a) (Y) having family-wise error asymptotically no

larger than α. In Section 3.3.2 we given an example of an estimator which satisfies condition

(ii) in Theorem 3.2.1 above, even if the data contains change points, provided the number

of change points does not grow too quickly with the n.

Importantly, the threshold (3.6) explicitly accounts for the grid used, in the sense that

if one chooses a coarser gird a lower price is paid for multiple testing. More specifically,

if one chooses a coarser grid by increasing a the constant H1,2 adjusts which reduces the

size of (3.6). As a result, each local test performed will have higher power with the same

family-wise error guarantee. Naturally, on a coarser grid the collection of tests may overall

have lower power for detecting all change point locations, since fewer tests are carried out

in total.

The constants H1,1 and H1,2 are defined explicitly below, where we put b1 = 1/a and
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b2 = 1, and Φ̄ (·) for the tail function of a standard Gaussian random variable.

H1,i =

∞∑
j=0

p2∞

(
2Cp

ajbid

)
i = 1, 2 (3.7)

p∞ (x) = exp

(
−

∞∑
k=1

1

k
Φ̄
(√

kx/4
))

Cp = (p+ 2)

1 +

p+1∑
j=1

(
p+ 1

j

)(
p+ 1

j − 1

)/ p+1∑
i=0

(
p+ 1

i

)2


The effect of the decay parameter a on H1,1 and H1,2 can now be understood via (3.7)

using the additional fact that (Kabluchko, 2007, Corollary 3.18) for any C > 0 the quantity

p2∞ (C/x) behaves like C/(2x) when x is large.

We now explain the origin of the double inequality in Theorem 3.2.1, and why it is

sufficient for strong family-wise error control. In Theorem 3.2.1 we are only able to establish

tightness of the normalised maximum, as opposed to convergence to an extreme value

distribution, for the following reason: the maximum over standardised increments of a

sequence of Gaussian variables will be achieved on scales of the order O (log(n)) as was

shown by Kabluchko (2007) and Kabluchko and Wang (2014), but scales of this order

cannot necessarily be expressed as integer powers of a. Consequently the choice of grid

introduces small fluctuations in the maximum, which persist in the limit, and correspond to

the difference between log(n) and the closest integer power of a. However for a sub-sequence

of n’s on which the quantity bn = a⌊loga(W )⌋/W converges the normalised maximum does

converge. The constants H1,1 and H1,2 therefore correspond to the largest and smallest

constants which may appear in the extreme value limit on a sub-sequence of n’s on which

bn converges to some constant.

3.2.4 Extension to dependent and non-Gaussian noise

We now extend the result of Theorem 3.2.1 to dependent and non-Gaussian noise. This

is done through the standard approach (Hušková and Slabỳ, 2001; Kirch and Klein, 2023;

Eichinger and Kirch, 2018) of computing local tests only on scales large enough such that
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partial sums of the data can be replaced by increments of a Wiener process without affecting

the asymptotics. Therefore, we impose the following assumptions on the minimum grid

scale and the noise component.

Assumption 3.2.3. The noise terms are mean zero and weakly stationary, with auto-

covariance function γh = Cov (ζ0, ζh) and strictly positive long run variance τ2 = γ0 +

2
∑

h>0 γh.

Assumption 3.2.4. There exists a Wiener process {B(t)}t>0 such that for some ν > 0,

possibly after enlarging the probability space, it holds P-almost surely that
∑n

t=1 ζt−τB(n) =

O
(
n

1
2+ν

)
.

Assumption 3.2.5. With the same ν as in Assumption 3.2.4, the minimum grid scale W

satisfies n/W →∞ and n
2

2+ν log(n)/W → 0.

Assumption 3.2.4 holds under a wide range of common dependence conditions such as

β-mixing, functional dependence, and covaraince decay (Berkes et al., 2014; Philipp et al.,

1975; Kuelbs and Philipp, 1980); these dependence conditions in turn hold for a range

of popular time series models such as ARMA, GARCH, and bilinear models (Doukhan,

2012; Wu, 2005). If the noise terms are independently distributed Assumption 3.2.4 holds

as long as their (2 + ν)-th moment is bounded (Komlós et al., 1975; Csörgo and Révész,

2014). With these assumption in place we have the following result on the behaviour of

the maximum of local test statistics (3.2) under the null of no change points.

Theorem 3.2.2. Let Y = (Y1, . . . , Yn)
′ be from model (3.1) with signal component

having no change points and grant Assumptions 3.2.3 - 3.2.5 hold. For fixed a > 1

introduce the following quantity:

M τ
G(W,a) (Y ) = max

(l,w)∈G(W,a)

{
1

τ
Dp

l,w (Y )

}
.

(i) Putting an,W =
√
2 log(n/W ) and bn,W = 2 log(n/W ) + 1

2 log log(n/W )− log(
√
π)

the sequence of random variables
{
an,WM

τ
G(W,a) (Y )− bn,W | n ∈ N

}
is tight, and there
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are constants H2,1 and H2,2 depending only on a and p such that for fixed x ∈ R the

following holds

o(1) + exp
(
−H2,1e

−x
)
≤ P

(
an,WM

τ
G(W,a) (Y )− bn,W ≤ x

)
≤ exp

(
−H2,2e

−x
)
+ o(1).

(ii) Moreover the result in (i) continues to hold if τ is replaced with any consistent

estimator τ̂ which satisfies |τ̂ /τ − 1| = oP
(
log−1(n/W )

)
.

By the same reasoning used in Section 3.2.3 under assumptions 3.2.3 - 3.2.5 Theorem

3.2.2 guarantees that choosing λ = τ̂λα, with τ̂ satisfying the condition given in part (ii),

and with λα defined as follows

λα =
√
2 log(n/W ) +

1
2 log log(n/W )− log (

√
π/H2,2) + log

(
−2 log−1 (1− α)

)√
2 log(n/W )

(3.8)

will result in the collection of tests T λ
G(W,a) (Y) having family-wise error asymptotically

no larger than α. In Section 3.3.2 we give examples of variance and long run variance

estimators which satisfy condition (ii) in Theorem 3.2.2, even in the presence of change

points, provided the number of change points does not grow too quickly with n.

By the same mechanism as in Theorem 3.2.1 the threshold (3.8) is adaptive to the chosen

grid. The constants H2,1 and H2,2 in Theorem 3.2.2 are as shown below, where Cp and bi

are as in Section 3.2.3:

H2,i =
b−1
i Cp

1− a−1
i = 1, 2.

The proofs of Theorems 3.2.1 and 3.2.2 reveal that maxima achieved over different scales

in the grid (3.5) will be asymptotically independent. This combined with the tightness

of the normalised maximum shows that the thresholds (3.6) and (3.8) are the sharpest

possible for each scale in the grid, under their respective sets of assumptions. That is,

if one were to restrict tests to a single scale of the order O (W ) the threshold needed to

control the family-wise error of the collection of tests would be asymptotically equivalent

to the thresholds presented for controlling the family-wise error of test conducted on the
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3.3 A fast algorithm for change point inference

whole grid.

3.3 A fast algorithm for change point inference

3.3.1 The algorithm

We now present an algorithm, based on the tests introduced in Section 3.2, for efficiently

recovering disjoint sub-intervals of the index set {1, . . . n} in such a way that each must

contain a change point uniformly at some prescribed significance level α. The algorithm is

motivated by the Narrowest Significance Pursuit proposed by Fryzlewicz (2023), in that the

focuses is on recovering theses intervals through a series of local tests so that each interval

is the narrowest possible. However, there are several important differences between our

approach and the approach in Fryzlewicz (2023), which we outline below before presenting

the algorithm.

• Each of our local tests can be computed in constant time as a function of the sample

size and independently of the scale of the computation. This is not the case for

Fryzlewicz (2023), where each local test requires solving a linear program.

• We compute local tests over the sparse grid defined in (3.5), whereas Fryzlewicz (2023)

uses a two stage procedure where local tests are initially performed over a coarse grid

and intervals flagged in the first stage are exhaustively sub-searched. In the worst

case the former leads to O (n log(n)) tests being carried out, whereas the latter may

lead to O
(
n2
)
test being performed.

• The thresholds used in our local tests are designed to adapt to the chosen grid,

which accounts for the statistical-computational trade off in large scale change point

problems. However, the threshold used in Fryzlewicz (2023) does not depend on the

chosen grid.

Given a grid of (l, w) pairs G (W,a) constructed according to (3.5) our approach is to

greedily search for a pair on which the associated local test (3.3) declares a change, start-

ing from the finest scale in the grid. When such a pair is found the associated interval
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{l, . . . , l + w − 1} is recorded and the search is recursively repeat to the left and right of

this interval. This approach can be seen as a hybrid between a scanning algorithm where

one scans through the data with test statistic having fixed support, and a binary segmen-

tation algorithm.

Pseudo code for the procedure is given below in Algorithm 3. In the pseudo code given

integers s and e which satisfy 1 ≤ s < e ≤ n we write Gs,e (W,a) for the set of (l, w) pairs in

G (W,a) which can be associated with an interval satisfying {l, . . . , l + w − 1} ⊆ {s, . . . , e}.

We write λα for either of the thresholds (3.6) or (3.8), depending on whether we are

operating under Assumptions 3.2.1 - 3.2.2 or Assumptions 3.2.3 - 3.2.5. Finally we write

τ̂ for a generic estimator of the (long run) standard deviation of the noise which satisfies

either the of the conditions in of part (ii) of Theorem 3.2.1 or in part (ii) of Theorem 3.2.2,

depending on the set of assumptions we are operating under.

Algorithm 3: The greedy interval search algorithm for change point inference in
piecewise polynomials. Given an appropriate threshold, the algorithm returns a
collection of mutually disjoint intervals which each must contain a change point
uniformly with probability at least 1− α+ o(1).

function greedyIntervalSearch(Y , s, e):
if e− s < min (W,p+ 1) then

STOP
end
detection ← False

for (l, w) in Gs,e (W,a) do
if
∣∣∣Dp

l,w (Y )
∣∣∣ > τ̂λα then

RecordInterval(l, w)
greedyIntervalSearch(Y, s, l)
greedyIntervalSearch(Y, l + w − 1, e)
detection ← True

end
if detection then

BREAK
end

end

return

A consequence of using thresholds (3.6) and (3.8) in Algorithm 3 is that with no assump-
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tions on the number of change points in the data or their spacing, with high probability,

every interval returned is guaranteed to contain at least one change point. The number of

intervals returned therefore functions as an assumption free lower bound on the number of

change points in the data. This behaviour is summarised in Corollary 3.3.1 below.

Corollary 3.3.1. Let Î1, . . . , ÎN̂ be intervals returned by Algorithm 3. On a set with

probability asymptotically larger than 1− α the following events occur simultaneously:

E∗
1 =

{
N̂ ≤ N

}
,

E∗
2 =

{
Îk ∩Θ ̸= ∅ | k = 1, . . . , N̂

}
.

Although the coverage guarantee provided by Corollary 3.3.1 is asymptotic in nature,

in practice we find that Algorithm 3 provides accurate coverage in finite samples, and in

fact tends to deliver over coverage. The worst case run time of Algorithm 3 is always

of the order O (n log(n)), independent of the number of change points in the data, their

spacing, and the polynomial degree of the signal. This is because the worst case run time

will be attained when a test has to be carried out for every (l, w) pair in the grid G (W,a).

However, for any fixed a > 1 the the grid contains at most of the order O (n log(n)) such

pairs, and by first calculating all cumulative sums of the data, which can be done in O (n)

time, each local test can be carried out in constant time.

We finally remark that many existing procedures for change point detection make use of

thresholds which involve unknown constants other than the scale of the noise. In general

these constants are either chosen sub-optimally, or calibrated via Monte Carlo. See for

instance the implementation of Verzelen et al. (2023) by Liehrmann and Rigaill (2023)

for an example in in the piecewise constant setting, and the discussion on the practical

selection of tuning parameters in Kim et al. (2022) for an example in the piecewise linear

setting. Meanwhile, the thresholds used in Algorithm 3 are the sharpest possible, and do

not rely on any unknown constants other than the scale of the noise.
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3.3.2 Variance and long run variance estimation

In general the scale of the noise will not be known, and to make Algorithm 3 operational the

(long run) standard deviation of the noise will need to be estimated consistently, according

to the conditions given in part (ii) of either Theorem 3.2.1 or Theorem 3.2.2. In this section

we give several strategies for consistently estimating the noise level in the presence of an

unknown piecewise polynomial signal.

Variance estimation under Gaussian noise

In change point problems where the noise is independently distributed, homoskedastic, and

Gaussian the standard deviation is commonly estimated using the median absolute devia-

tion (MAD) estimator (Hampel, 1974). To account for the unknown piecewise polynomial

signal we propose to use the following generalisation of the MAD estimator based on the

(p + 1)-th difference of the data. Letting Xp+2, . . . , Xn be the (p + 1)-th difference of the

sequence Y1, . . . , Yn the estimator is defined as follows:

σ̂MAD =
median {|Xp+2| , . . . , |Xn|}

Φ−1 (3/4)
√∑p+1

j=0

(
p+1
j

)2 . (3.9)

As shown by the following lemma, when the assumptions of Theorem 3.2.1 hold the

modified MAD estimator satisfies the condition in part (ii) of the Theorem 3.2.1 as long as

the number of change points grows more slowly than n/ log(n).

Lemma 3.3.1. If the noise terms are independently distributed and Gaussian with

common variance σ2 it holds that

|σ̂MAD − σ| = OP

(
1√
n
∨ N
n

)
.
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Variance estimation under non-Gaussian noise

For variance estimation under independently distributed light tailed homoskedastic noise,

difference based estimators are often used (Dümbgen and Spokoiny, 2001; Rice, 1984; Gasser

et al., 1986). To account for the unknown piecewise polynomial signal we propose to use the

following estimator based on the (p+ 1)-th difference of the data sequence. The estimator

is defined as follows:

σ̂2DIF =
1

n− (p+ 1)

n∑
t=p+2

 X2
t∑p+1

j=0

(
p+1
j

)2
 . (3.10)

As shown by the following lemma, under some mild conditions on signal component the

difference based estimator satisfies condition (ii) in Theorem 3.2.2 as long as the number

of change points again grows more slowly than n/ log(n).

Lemma 3.3.2. If the function f◦ (·) is bounded and the noise terms are independently

distributed with common variance σ2 and bounded fourth moments it holds that

∣∣σ̂2DIF − σ2
∣∣ = OP

(
1√
n
∨ N
n

)
.

Long-run variance estimation

For estimating the long run variance we extend the estimator proposed in Wu and Zhao

(2007), based on first order differences of local sums of the data, to (p+ 1)-th differences.

To form the estimator we choose a scale W ′, which is not necessarily related to any of the

scales in the grid (3.5), and form the following local sums:

Ȳt,W ′ = Y(t−1)W ′+1 + · · ·+ YtW ′ , t = 1, . . . ,
⌊
n/W ′⌋ (3.11)
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Then, putting X̄p+2,W ′ , . . . , X̄⌊n/W ′⌋,W ′ for the (p+1)-th difference of the sequence of ȲW ′ ’s,

the estimator is defined as follows:

τ̂2DIF =
1

⌊n/W ′⌋ − (p+ 1)

⌊n/W ′⌋∑
t=p+2

{
X̄2

t,W ′

W ′∑p+1
i=0

(
p+1
i

)2
}
. (3.12)

In order to show consistency of our long run variance estimator we need to impose the

following assumption, which states that the sequence of auto-covariances for the noise

decay sufficiently fast and can be estimated well from a finite sample.

Assumption 3.3.1. The auto-covariances decay fast enough that
∑

h>1 h |γh| < ∞, and

for any fixed integer h and any ordered subset of {1, . . . , n− h}, say M , it holds that

|M |−1∑
t∈M ζtζt+h = γh +OP

(
1/
√
|M |

)
.

With the above assumption in place, we have the following guarantee on the consistency

of the estimator.

Lemma 3.3.3. If the function f◦ (·) is bounded and the noise terms satisfy Assumption

3.2.3 and Assumption 3.3.1 it holds that

∣∣τ̂2DIF − τ2
∣∣ = OP

(
W ′
√
n
∨ 1

W ′ ∨
NW ′2

n

)
.

Lemma 3.3.3 shows that if, for example, W ′ is chosen to be of the order W ′ = O
(
nθ
)
for

some θ < 1/2 then (3.12) satisfies the condition in part (ii) of Theorem 3.2.2 as long as the

number of change points grows more slowly than n1−2θ log−1 (n/W ). In practice we follow

Wu and Zhao (2007) in setting W ′ = n1/3.

3.3.3 Consistency of the algorithm

We now investigate the conditions under which algorithm Algorithm 3 is consistent, in

the sense that with high probability it is able to detect all change points and returns no
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spurious intervals. For ease of reading we re-introduce the parametrization of the signal in

model (3.1) between change point locations as follows:

f◦ (t/n) =


∑p

j=0 αj,k (t/n− ηk/n)j if ηk−1 < t ≤ ηk∑p
j=0 βj,k (t/n− ηk/n)

j if ηk < t ≤ ηk+1

k = 1, . . . , N. (3.13)

Therefore, the absolute change in the j-th derivative of f◦(·) at the k-th change point

location can be written as ∆j,k = |αj,k − βj,k|. Putting η0 = 0 and ηN+1 = n we write

δk = min (ηk − ηk−1, ηk+1 − ηk) for the effective sample size associated with the k-th change

location. The most prominent change in derivative at each change point location can

therefore be defined as follows:

p∗k ∈ argmax
0≤j≤p

{
∆j,k

(
δk
n

)j
}

k = 1, . . . , N. (3.14)

In order to show the consistency of Algorithm 3 we impose two restriction on the signal.

The first states that the changes in derivative at each change point location are bounded.

The second states that although multiple changes in the derivatives of f◦ (·) can occur

at each change point location, there is always one dominating change. This excludes the

possibility of signal cancellation occurring.

Assumption 3.3.2. There is a constant C∆ > 0 such that |∆jk| < C∆ for each j, k.

Assumption 3.3.3. For each k = 1, . . . , N the quantity p∗k is uniquely defined, and for

any sequence (ρk,n)n≥1 with the property ρk,n ≤ δk/n for all n ≥ 1 it holds that ∆j,kρ
j
k,n ≤

Cp∗k
∆p∗k,k

ρ
p∗k
k,n for all j ̸= p∗k, where Cp∗k

= 1

2
p∗
k
+2

(p∗+1)p
.

For example, Assumption 3.3.3 would be violated by the piecewise linear signal shown in

(3.15) for which n = 8 and η = 4, and the scaled difference in slopes between the first four

entries and the last four had the same magnitude but the opposite sign to the corresponding

difference in levels. That is: ∆0 = ∆1 (δ/n).

f = (−7/8,−6/8,−5/8,−4/8, 3/8, 2/8, 1/8, 0)′ (3.15)
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In practice, in situations when Assumption 3.3.3 is violated our procedure is still able to

detect the corresponding change point. This is because although signal cancellation such

as in (3.15) may occur on a particular interval considered by Algorithm 3, it is unlikely

to occur on every interval considered. In the above example, if we were to look at the

sub-vector (−5/8,−4/8, 3/8, 2/8)′ no cancellation would occur. See also Remark 3.6.10 in

the Proofs section, where we show how the assumption can be relaxed for piecewise linear

functions, and show good practical performance via simulation on higher order piecewise

polynomials which violate the assumption. With these assumptions in place we have the

following result.

Theorem 3.3.1. Let Î1, . . . , ÎN̂ be intervals returned by Algorithm 3 run on data

Y = (Y1, . . . , Yn)
′ from model (3.1), with parameters a > 1, W , and α ∈ (0, 1). Grant

Assumptions 3.3.2-3.3.3 and either of Assumptions 3.2.2-3.2.1 or 3.2.3-3.2.5 hold, and

let the threshold λα chosen according to (3.6) or (3.8) accordingly. If the the effective

sample size at each change point location satisfies

δk > C1

W ∨ n 2p∗k
2p∗

k
+1

(
τ2 log(n)

∆2
p∗k,k

) 1
2p∗

k
+1

 k = 1, . . . , N (3.16)

then on the set with probability 1−α+ o(1) the following events occur simultaneously:

E∗
3 =

{
N̂ = N

}
,

E∗
4 =

{
Îk ∩Θ = {ηk} | k = 1, . . . , N

}
,

E∗
5 =

∣∣∣Îk∣∣∣ ≤ C2

W ∨ n 2p∗k
2p∗

k
+1

(
τ2 log(n)

∆2
p∗k,k

) 1
2p∗

k
+1

∣∣k = 1, . . . , N

 .

Here C1 and C2 depend only on α, a and p (and d in the case of Gaussian noise).

Theorem 3.3.1 states that on a set with probability asymptotically larger than 1 − α,

where α can be tuned by the user, the number of intervals returned by Algorithm 3 coincides

with the true number of change points (event E∗
3), and every interval returned contains
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exactly one change point (event E∗
4). Event E

∗
5 provides bounds on the widths of intervals

returned. In Yu et al. (2022) it was shown that, under independent and light tailed noise,

the mini-max localisation rate for each change point in the generic piecewsie polynomial

model is of the order

O

n 2p∗k
2p∗

k
+1

(
τ2

∆2
p∗k,k

) 1
2p∗

k
+1

 , k = 1, . . . , N. (3.17)

Therefore, under Assumptions 3.2.1- 3.2.2 where W is of the order O (log(n)), the bounds

guaranteed by E∗
5 can be seen to be optimal up to to log terms. That is, the width

of each interval returned matches (up to log terms) the best possible rate at which the

corresponding change point can be localised. Under Assumptions 3.2.3-3.2.5, where W

grows slightly faster than n2/(2+ν), the bounds provided by event E∗
5 are again optimal as

long as ν > 1 and the most prominent change occurs in derivatives of order 1 or higher.

However, whenever p∗k = 0 comparing to (3.17) it is clear the bounds are no longer optimal.

The aforementioned lack of optimality is due to Assumption 3.2.5, which requires the

minimum support of our detection statistic to be relatively larger. This is needed in or-

der that a strong approximation result may be invoked for a range of noise distributions.

However, the requirement that W grows at a polynomial rate with n can be overly conser-

vative. For example, if the noise terms are independently distributed with finite moment

generating function in a neighbourhood of zero, which is the setting studied by Yu et al.

(2022), then Theorem 1 in Komlós et al. (1975) states that after enlarging the probability

space
n∑

t=1

ζt − τB(n) = O (log(n)) , P-almost surely.

Consequently, in this setting the results of Theorem 3.3.1 continue to hold with W of the

order o
(
log3(n)

)
. In which case, setting λα accordingly, the bound provided by event E∗

5

again results optimal up to the log factors.

Regarding condition (3.16) in Theorem 3.3.1 above, the requirement is essentially un-

avoidable for the following reason: up to the W term and the logarithmic terms (3.16)
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agrees with the mini-max detection lower bound for change points in piecewise polyno-

mials discussed in Yu et al. (2022). Therefore, were the spacing between change points

any smaller, no method would be able to detect them. The term multi-scale refers to the

fact that the condition is formulated for each change point individually, and allows for a

combination of small changes over large intervals and large changes over small intervals.

The width of the k-th interval depends (up to constants) only on the order of the deriva-

tive at which the most prominent change occurs, and not on the overall polynomial degree

of the signal. This shows the intervals adapt locally to the smoothness of the signal. In-

terestingly the rate O
(
n2p

∗/(2p∗+1)
)
is the same as the mini-max bound on the sup-norm

risk for p∗-smooth Holder regression functions (Tsybakov, 2004, Theorem 2.10). The er-

ror probability α does not appear explicitly in Theorem 3.3.1 as it is absorbed into the

constants C1 and C2. Indeed for different but fixed choices of α all thresholds constructed

according to the rules discussed in Sections 3.2.3 and 3.2.4 will be asymptotically equiva-

lent. However in finite samples there is a clear price to pay for requesting higher coverage

since as α ↓ 0 we have that −2 log−1 (1− α) ∼ 2/α.

Theorem 3.3.1 leads to the following large sample consistency result.

Corollary 3.3.2. Let Î1, . . . , ÎN̂ be intervals returned by Algorithm 3 under the same

conditions as Theorem 3.3.1 but with threshold λ = (1 + ε) aW,n for some fixed ε > 0,

where aW,n is as defined in Theorem 3.2.2. Then on a set with probability 1− o(1) the

events E∗
1 , E

∗
2 , and E

∗
3 occur simultaneously.

An important consequence of Theorem 3.3.1 and Corollary 3.3.2 is that any point-wise

estimator η̂k for the k-th change point location which lies in an interval Îk will inherit the

optimal localisation rate implied by event E∗
5 . This extends to the naive estimator formed

by setting η̂k to the midpoint of the interval Îk. However, more sophisticated estimators

can be used; for example one may choose η̂k to be the split point which results in the

lowest sum of squared residuals when a piecewise polynomial function is fit over Îk (see for

example Figure 3.1).
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3.3.4 On the polynomial order of the signal

We emphasis that in the problem statement p refers to the maximum polynomial order

of the signal on any stationary segment, and that the polynomial order of the signal is

permitted to vary between segments. We observe that in applications analysts usually

have in mind a reasonable idea of p motivated by knowledge of the problem at hand.

However, it may be unreasonable to assume that the maximum polynomial order is known

exactly. Therefore, we present two methods for determining p from data given upper and

lower bounds p and p such that p ∈
{
p, . . . , p

}
. The methods are designed the setup in

Sections 3.2.3 and 3.2.4 respectively.

Estimating p via the strengthened Schwarz Information Criterion

Fryzlewicz (2014) introduced the strengthened Schwarz Information Criterion (sSIC) for

consistently estimating the number of change points in the canonical change point model

for which the signal is piecewise constant and the contaminating noise is independently

distributed and Gaussian. The same approach can be extended to estimating p in the

piecewise polynomial model.

Given data Y = (Y1, . . . , Yn)
′ from model (3.1) and some p′ ∈

{
p, . . . , p

}
let Î1, . . . , ÎN̂p′

be the output of Algorithm 3 under the assumption that the maximum polynomial degree

is p′, run with threshold λ = (1 + ε)aW,n for some fixed ε > 0. Let η̂1, . . . , η̂N̂p′
be the

split points within each interval associated with the piecewsie polynomial fit providing the

lowest sum of squared residuals and let f̂p′ (·) be the function estimated via least squares

between these knots. Following Section 3.4 in Fryzlewicz (2014) for some arbitrary but

fixed α > 1 the sCIC at p′ is defined as

sSIC
(
p′
)
=
n

2
log
(
σ̂2p′
)
+ (N̂p′ + 1)

(
p′ + 1

)
logα (n) ,

where in particular

σ̂2p′ =
1

n

n∑
t=1

(
Yt − f̂p′(t/n)

)2
.
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Consequently, the maximum polynomial degree of the signal can be estimated as

p̂ = argmin
p≤p′≤p

sSIC
(
p′
)
. (3.18)

Regarding the large sample consistency of p̂, we have the following result.

Lemma 3.3.4. Let p̂ be the estimator defined in (3.18). Grant Assumptions 3.2.2

and 3.2.1 as well as condition (3.16) hold, and moreover assume moreover that: (i)

p ≤ p ≤ p and (p − p) = O(1), (ii) N = O(1), and (iii) the coefficients in (3.13) are

all of the order O(1). Then P (p̂ = p)→ 1 as n→∞.

Estimating p via recursive testing on null intervals

The finite difference functional which has so far been used to test for the presence of a

change point can itself be used to estimate the maximum degree of the signal. For some

p′ ∈
{
p, . . . , p

}
let K be a contiguous subset of {1, . . . , n} for which |K| is a multiple of

(p′ + 2). Therefore, introduce the statistic

Dp′

K (Y ) =


⌊
|K|
p′ + 2

⌋ p′+1∑
i=0

(
p′ + 1

i

)2


−1/2
p′+1∑
j=0

(−1)p
′+1−j

(
p′ + 1

j

)
Ȳ j
K (3.19)

where in particular letting K have elements
{
k1, . . . , k|K|

}
we write

Ȳ j
K = Y

k1+j
|K|
p′+2

+ · · ·+ Y
(j+k1)

|K|
p′+2

, j = 0, . . . , p′ + 1

for non-overlapping sums of the data over the (p′ + 2) equally sized contiguous partitions

of K. Note that if K corresponds to a stretch of data which contains no change points and

p′ < p then (3.19) will be large in (absolute) expectation, whereas if p′ ≥ p then (3.19) will

be small.

Using the above intuition, to estimate p we first run Algorithm 3 with threshold λ =

(1 + ε)aW,n for some small but fixed ε > 0 assuming the maximum polynomial order of

the signal is p. We then obtain sets K̂ = {K̂1, K̂2, . . . } by retaining indices between each
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interval returned, and trimming either the first or last few indices so that the number of

elements in each K̂ is a multiple of (p+ 1). Note that since p ≥ p by Corollary 3.3.2 with

high probability each K̂ corresponds to a stretch of data which contains no change points.

Finally we test whether |Dp−1

K̂
(Y ) | > (1 + ε)aW,n for each K̂. If any such test is not

passed we conclude that p = p. Else, we repeat the procedure with p − 1. The procedure

automatically ends once p is reached, since we assume p ≥ p, and by this point we have

concluded that p < p′ for all p′ > p. The procedure is sumarized in Algorithm 4. Regarding

the large sample consistency of the output of Algorithm 4 we have the following result.

Algorithm 4: An algorithm for determining the maximum polynomial order of
the signal by progressively estimating intervals of significance and testing null
intervals for the presence of a change points in a lower degree polynomial.

function maxDegreeEstimation(Y , p, p):
p′ ← p
Detection ← False

while p′ > p do

Obtain intervals K̂ = {K̂1, K̂2, . . . } from Algorithm 3 using
threshold λ = (1 + ε)aW,n and assuming maximum degree p′.

for K̂ ∈ K̂ do

if |Dp′−1

K̂
(Y ) | > (1 + ε)aW,n then

Detection ← True

end

end
if Detection then

BREAK
end
p′ ← (p′ − 1)

end

return

Lemma 3.3.5. Let p̂ be the output of Algorithm 4. Grant Assumptions 3.2.3, 3.2.4,

and 3.2.5 as well as condition (3.16) hold, and moreover assume moreover that: (i)

p ≤ p ≤ p and (p − p) = O(1), (ii) N = O(1), and (iii) the coefficients in (3.13) are

all of the order O(1). Then P (p̂ = p)→ 1 as n→∞.

89



3 Fast and Optimal Inference for Change Points in Piecewise Polynomials via Differencing

3.4 Simulation studies

3.4.1 Alternative methods for change point inference

We will compare our proposed methodology with existing algorithms with publicly avail-

able implementations, which each promise to return intervals containing true change point

locations uniformly at a significance level chosen by the user. These are: the Narrow-

est Significance Pursuit (NSP) procedure of Fryzlewicz (2023), its self-normalised variant

(NSP-SN), and its extension to auto-regressive signals (NSP-AR); the bootstrap confidence

intervals for moving sums (MOSUM) of Cho and Kirch (2022a) using a single bandwidth

(uniscale) and multiple bandwidths (multiscale); the simultaneous multiscale change point

estimator (SMUCE) of Frick et al. (2014), as well as its extension to heterogeneous noise

(H-SMUCE) developed by Pein et al. (2017), and its extension to dependent noise (Dep-

SMUCE) developed by Dette et al. (2020). We also consider the conditional confidence

intervals of Bai and Perron (1998) (B&P) with significance level Bonferroni-corrected for

the estimated number of change-points. For our own procedure we write DIF1 for Algo-

rithm 3 run under the assumptions of Theorem 3.2.1 and DIF2 for the algorithm run under

the assumption of Theorem 3.2.2. Additionally we write MAD if the scale of the noise is

estimated using the median absolute deviation estimator (3.9), SD if the scale is estimated

using the difference based estimator of the standard deviation (3.10), and LRV if the long

run variance is estimated using (3.12). Each of the methods considered is designed for

different noise types and different change point models, and we summarise this information

in Table 3.1 below.

Throughout the simulation studies, whenever a method requires the user to specify a

minimum support parameter we set this toW = 0.5n1/2. Exceptions occur for Dep-SMUCE

for which we follow the authors’ recommendation in setting W = n1/3, for DIF1-MAD in

which we set W = log(n) following the results of Theorem 3.2.1, and for the multiscale

MOSUM procedure for which we generate a grid of bandwidths using the bandwidths.auto

function in the MOSUM package Meier et al. (2021). For our own procedure we set the

decay parameter regulating the density of the grid to a =
√
2 as was done in Kovács et al.
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Table 3.1: Suitability of each method to non-Gaussian noise, dependent noise, and change
point detection in higher order polynomial signals. The the letter e indicates
that no theoretical guarantees are given but the authors observe good empirical
performance of the method.

Method
non-Gaussian

noise
dependent

noise
higher order
polynomials

DIF1-MAD ✗ ✗ ✓

DIF2-SD ✓ ✗ ✓

DIF2-LRV ✓ ✓ ✓

NSP ✗ ✗ ✓

NSP-SN ✓ ✗ ✓

NSP-AR ✗ ✓ ✓

B&P ✓ ✗ ✗

MOSUM (uniscale) ✓ ✗ ✗

MOSUM (multiscale) ✓ ✗ ✗

SMUCE ✗ ✗ ✗

H-SMUCE e ✗ ✗

Dep-SMUCE ✓ ✓ ✗

(2023) for the grid proposed therein.

3.4.2 Coverage on null signals

We first investigate empirically the coverage provided by our algorithm and the alternatives

introduced in 3.4.1. To investigate coverage we apply each method to a vector of pure noise

with length n = 750 generated according to each of the noise types listed below, setting the

noise level to σ = 1 , and over 500 replications record the proportion of times no intervals of

significance are returned. For each procedure we set appropriate tuning parameters in order

that the family-wise error is nominally controlled at the level α = 0.1. Where applicable

we ask each procedure to test for change points in polynomial signals of degrees 0, 1, and

2.

• (N1): ζt ∼ N (0, σ2) i.i.d.

• (N2): ζt ∼ t5 × σ
√
0.6 i.i.d.

• (N3): ζt = ϕζt−t + εt with ϕ = 0.5 and εt ∼ N (0, σ2/(1− ϕ2) i.i.d.
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• (N4): ζt = ϕζt−t + εt with ϕ = 0.5 and εt ∼ t5 × σ
√
0.6/(1− ϕ2) i.i.d.

The results of the simulation study are reported in Tables 3.2. We also highlight whether

each method comes with theoretical coverage guarantees for each noise type, where the

letter c indicates that the method should give correct coverage conditional on the event

that the number of change points is correctly estimated. With the exception of Dep-

SMUCE, which occasionally provides under coverage, all methods tested keep the nominal

size well for noise types consistent with the assumptions under which they were developed

and in general tend to provide over coverage. The coverage provided by our procedure is

likewise accurate, and in particular under Gaussian noise tends to provide coverage closer

to the level requested than that provided by competing methods. This shows that the

asymptotic results in Theorems 3.2.1 and 3.2.2 hold well in finite samples, and that that

our procedure is generally better calibrated than other available methods; see also the

additional simulation study in Section 3.4.4 of the appendix, which shows that the same

results hold for a range of signal lengths.

3.4.3 Performance on test signals

Next we investigate the performance of our method and its competitors on test signals

containing change points. To investigate performance we apply each method to 500 sample

paths from the change point models M1, M2, and M3 listed below, contaminated with each

of the four noise types introduced in Section 3.4.2 above. On each iteration we record for

each method: the number of intervals which contain at least one change point location

(no. genuine), the proportion of intervals returned which contain at least one change point

location (prop. genuine), the average length of intervals returned (length), and whether all

intervals returned contain at least once change point location (coverage). We report the

average of these quantities, and again highlight whether each method comes with theoretical

coverage guarantees for each noise type (guarantee).

• (M1): the first n = 512 values of the piecewise constant blocks signal from Donoho

and Johnstone (1994), shown in Figure 3.1a, with N = 4 change points at locations
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Table 3.2: Proportion of times out of 500 replications each method returned no intervals of
significance when applied to a noise vector of length n = 750, as well as whether
each method is theoretically guaranteed to provide correct coverage. The letter
c indicates that the method should give correct coverage conditional on the
event that the number of change points is correctly estimated. The the letter e
indicates that no theoretical guarantees are given but the authors observe good
empirical performance of the method.

guarantee degree 0 degree 1 degree 2

DIF1-MAD ✓ 0.91 0.91 0.93
DIF2-SD ✓ 1.00 1.00 1.00
DIF2-LRV ✓ 0.99 0.95 0.97
NSP ✓ 0.96 0.98 0.98
NSP-SN ✓ 1.00 1.00 1.00
NSP-AR ✓ 0.99 1.00 1.00
B&P c 0.99 - -
MOSUM (uniscale) c 0.99 - -
MOSUM (multiscale) c 0.95 - -
SMUCE ✓ 0.97 - -
H-SMUCE ✓ 0.98 - -
Dep-SMUCE ✓ 0.97 - -

(a) Coverage on noise type N1 with σ = 1.
guarantee degree 0 degree 1 degree 2

DIF1-MAD ✗ 0.39 0.40 0.39
DIF2-SD ✓ 0.96 0.95 0.96
DIF2-LRV ✓ 0.95 0.90 0.90
NSP ✗ 0.05 0.05 0.07
NSP-SN ✓ 1.00 1.00 1.00
NSP-AR ✗ 0.15 0.17 0.17
B&P c 0.96 - -
MOSUM (uniscale) c 1.00 - -
MOSUM (multiscale) c 0.96 - -
SMUCE ✗ 0.18 - -
H-SMUCE e 0.98 - -
Dep-SMUCE ✓ 0.89 - -

(b) Coverage on noise type N2 with σ = 1.
guarantee degree 0 degree 1 degree 2

DIF1-MAD ✗ 0.00 0.00 0.00
DIF2-SD ✗ 0.00 0.00 0.00
DIF2-LRV ✓ 0.98 0.98 0.98
NSP ✗ 0.00 0.00 0.00
NSP-SN ✗ 0.55 0.65 0.79
NSP-AR ✓ 0.99 1.00 0.99
B&P ✗ 0.11 - -
MOSUM (uniscale) ✗ 0.14 - -
MOSUM (multiscale) ✗ 0.00 - -
SMUCE ✗ 0.00 - -
H-SMUCE ✗ 0.24 - -
Dep-SMUCE ✓ 0.90 - -

(c) Coverage on noise type N3 with σ = 1.
guarantee degree 0 degree 1 degree 2

DIF1-MAD ✗ 0.00 0.00 0.00
DIF2-SD ✗ 0.00 0.00 0.00
DIF2-LRV ✓ 0.97 0.96 0.96
NSP ✗ 0.00 0.00 0.00
NSP-SN ✗ 0.54 0.67 0.78
NSP-AR ✗ 0.13 0.15 0.15
B&P ✗ 0.09 - -
MOSUM (uniscale) ✗ 0.17 - -
MOSUM (multiscale) ✗ 0.01 - -
SMUCE ✗ 0.00 - -
H-SMUCE ✗ 0.30 - -
Dep-SMUCE ✓ 0.87 - -

(d) Coverage on noise type N4 with σ = 1.
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Θ = {205, 267, 308, 472}

• (M2): the first n = 600 values of the piecewise linear waves signal from Baranowski

et al. (2019a), shown in Figure 3.6c, with N = 3 change points at locations Θ =

{150, 300, 450}

• (M3): the piecewise quadratic hills signal with length n = 400, shown in Figure 3.6e,

with N = 3 change points at locations Θ = {100, 200, 300}

The results of the simulation study are reported in Tables 3.3 - 3.5. On the piecewise con-

stant blocks function, among the methods which provide correct coverage, our algorithm

is generally among the top performing methods in terms the number of change points de-

tected and the lengths of intervals recovered. In fact, is only outperformed by the MOSUM

procedure with multiscale bandwidth under noise types N1 and N2. The family of SMUCE

algorithms, as well as the B&P procedure, all suffer from under coverage on noise types

for which they should give accurate coverage. Among the methods compared to only the

family of NSP algorithms is applicable to higher order piecewise polynomial signals. On the

piecewise polynomial waves and hills signals our methods deliver correct coverage where

theoretical guarantees are available and consistently outperform the only competitor, the

family of NSP algorithms.

3.4.4 Additional numerical illustrations

To further investigate the coverage provided by our method in finite samples, in this

section we reproduce the simulation study in Section 3.4.2 for signals of length n ∈

{100, 500, 1000, 2000}. The results are shown in Tables 3.6-3.7, and confirm that for a

range of signal lengths our procedure continues to provide accurate coverage.
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Table 3.3: Average of the number of intervals which contain at least one change point
location (no. genuine), the proportion of intervals returned which contain at
least one change point location (prop. genuine), the average length of intervals
returned (length), and whether all intervals returned contain at least once change
point location (coverage), on the piecewise constant blocks signal contaminated
with noise N1-N4 over 500 replications. The noise level was set to σ = 10 for
noise types N1-2and to σ = 5 for noise types N3-4. We also report whether each
method is theoretically guaranteed to provide correct coverage.

N1 N2 N3 N4

no. genuine 3.68 3.80 3.63 3.70
prop. genuine 0.98 0.90 0.27 0.23

DIF1-MAD length 34.78 27.50 12.30 10.64
coverage 0.93 0.59 0.00 0.00
guarantee ✓ ✗ ✗ ✗

no. genuine 3.30 3.28 3.74 3.83
prop. genuine 1.00 1.00 0.44 0.47

DIF2-SD length 42.92 41.57 19.74 19.44
coverage 1.00 0.99 0.00 0.00
guarantee ✓ ✓ ✗ ✗

no. genuine 2.14 2.10 1.87 2.27
prop. genuine 1.00 1.00 1.00 1.00

DIF2-LRV length 61.83 61.40 63.06 58.90
coverage 1.00 1.00 1.00 1.00
guarantee ✓ ✓ ✓ ✓

no. genuine 3.20 3.36 3.86 3.86
prop. genuine 1.00 0.63 0.41 0.25

NSP length 62.03 34.32 19.08 13.23
coverage 1.00 0.17 0.00 0.00
guarantee ✓ ✗ ✗ ✗

no. genuine 1.85 1.87 2.91 3.01
prop. genuine 1.00 1.00 1.00 1.00

NSP-SN length 119.97 115.08 75.98 69.22
coverage 1.00 1.00 1.00 0.99
guarantee ✓ ✓ ✗ ✗

no. genuine 0.10 0.76 0.13 0.75
prop. genuine 0.10 0.46 0.13 0.42

NSP-AR length 15.41 59.56 14.94 47.05
coverage 1.00 0.44 1.00 0.45
guarantee ✓ ✗ ✓ ✗

no. genuine 3.88 3.90 3.77 3.88
prop. genuine 0.96 0.96 0.54 0.57

B&P length 16.94 17.43 16.52 15.70
coverage 0.86 0.85 0.06 0.07
guarantee c c ✗ ✗

no. genuine 1.75 1.94 3.36 3.53
prop. genuine 0.78 0.84 0.54 0.60

MOSUM (uniscale) length 13.48 13.87 13.16 11.43
coverage 0.90 0.93 0.06 0.09
guarantee c c ✗ ✗

no. genuine 3.93 3.93 4.04 4.11
prop. genuine 0.97 0.98 0.42 0.48

MOSUM (multiscale) length 21.91 21.22 20.98 19.67
coverage 0.89 0.91 0.01 0.02
guarantee c c ✗ ✗

no. genuine 3.70 3.65 3.31 2.84
prop. genuine 0.95 0.73 0.34 0.20

SMUCE length 38.70 25.61 14.95 11.37
coverage 0.89 0.32 0.00 0.00
guarantee ✓ ✗ ✗ ✗

no. genuine 3.09 3.07 3.17 3.54
prop. genuine 0.86 0.87 0.89 0.92

H-SMUCE length 45.67 45.87 47.78 40.72
coverage 0.69 0.70 0.74 0.82
guarantee ✓ e ✗ ✗

no. genuine 2.18 2.29 3.47 3.75
prop. genuine 0.82 0.82 0.87 0.91

Dep-SMUCE length 78.05 73.10 44.60 37.20
coverage 0.64 0.62 0.61 0.69
guarantee ✓ ✓ ✓ ✓
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Table 3.4: Average of the number of intervals which contain at least one change point
location (no. genuine), the proportion of intervals returned which contain at
least one change point location (prop. genuine), the average length of intervals
returned (length), and whether all intervals returned contain at least once change
point location (coverage), on the piecewise linear waves signal contaminated with
noise types N1-N4 over 100 replications. The noise level was set to σ = 5 for all
noise types. We also report whether each method is theoretically guaranteed to
provide correct coverage.

N1 N2 N3 N4

no. genuine 2.85 2.66 1.30 1.32
prop. genuine 0.98 0.83 0.09 0.08

DIF1-MAD length 124.94 98.11 17.61 14.52
coverage 0.93 0.52 0.00 0.00
guarantee ✓ ✗ ✗ ✗

no. genuine 2.68 2.67 1.35 1.31
prop. genuine 1.00 0.99 0.15 0.16

DIF2-SD length 145.58 144.37 25.30 25.85
coverage 1.00 0.96 0.00 0.00
guarantee ✓ ✓ ✗ ✗

no. genuine 2.64 2.61 1.75 1.82
prop. genuine 0.99 0.98 1.00 0.99

DIF2-LRV length 145.92 142.67 216.18 198.82
coverage 0.98 0.93 1.00 0.98
guarantee ✓ ✓ ✓ ✓

no. genuine 2.80 2.37 1.87 1.66
prop. genuine 1.00 0.66 0.31 0.17

NSP length 143.84 84.95 43.90 27.58
coverage 1.00 0.24 0.01 0.00
guarantee ✓ ✗ ✗ ✗

no. genuine 2.34 2.37 2.16 2.41
prop. genuine 1.00 1.00 1.00 1.00

NSP-SN length 163.03 160.86 163.71 153.61
coverage 1.00 1.00 1.00 1.00
guarantee ✓ ✓ ✗ ✗

no. genuine 0.33 1.08 0.01 0.60
prop. genuine 0.31 0.60 0.01 0.39

NSP-AR length 74.63 109.75 2.08 80.46
coverage 1.00 0.46 1.00 0.43
guarantee ✓ ✗ ✓ ✗
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Table 3.5: Average of the number of intervals which contain at least one change point
location (no. genuine), the proportion of intervals returned which contain at
least one change point location (prop. genuine), the average length of intervals
returned (length), and whether all intervals returned contain at least once change
point location (coverage), on the piecewise quadratic hills signal contaminated
with noise types N1-N4 over 100 replications. The noise level was set to σ = 1 for
all noise types. We also report whether each method is theoretically guaranteed
to provide correct coverage.

N1 N2 N3 N4

no. genuine 2.37 2.39 1.48 1.46
DIF1-MAD prop. genuine 0.98 0.86 0.18 0.15

length 103.50 83.64 21.90 17.84
coverage 0.95 0.65 0.00 0.00
guarantee ✓ ✗ ✗ ✗

no. genuine 2.08 2.09 1.61 1.56
DIF2-SD prop. genuine 1.00 0.99 0.29 0.28

length 120.44 119.57 31.56 30.62
coverage 1.00 0.98 0.00 0.00
guarantee ✓ ✓ ✗ ✗

no. genuine 2.06 2.04 0.76 1.02
DIF2-LRV prop. genuine 0.99 0.98 0.61 0.78

length 121.59 120.27 90.69 116.77
coverage 0.99 0.96 0.99 0.98
guarantee ✓ ✓ ✓ ✓

no. genuine 2.11 2.26 2.20 1.99
NSP prop. genuine 1.00 0.80 0.58 0.36

length 117.56 81.50 54.89 35.28
coverage 1.00 0.50 0.14 0.01
guarantee ✓ ✗ ✗ ✗

no. genuine 1.50 1.57 1.42 1.68
NSP-SN prop. genuine 1.00 1.00 0.99 1.00

length 152.72 150.39 147.75 137.51
coverage 1.00 1.00 1.00 1.00
guarantee ✓ ✓ ✗ ✗

no. genuine 0.07 0.69 0.02 0.50
NSP-AR prop. genuine 0.07 0.49 0.02 0.36

length 11.76 65.02 3.64 54.29
coverage 1.00 0.64 1.00 0.55
guarantee ✓ ✗ ✓ ✗
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Table 3.6: Proportion of times out of 500 replications each method returned no intervals of
significance when applied to a noise vector of length n ∈ {100, 500, 1000, 2000},
as well as whether each method is theoretically guaranteed to provide correct
coverage.

guarantee degree 0 degree 1 degree 2

DIF1-MAD ✓ 0.91 0.89 0.92
n = 100 DIF2-SD ✓ 1.00 1.00 1.00

DIF2-LRV ✓ 0.98 0.97 0.96

DIF1-MAD ✓ 0.87 0.92 0.91
n = 500 DIF2-SD ✓ 1.00 1.00 1.00

DIF2-LRV ✓ 0.97 0.97 0.95

DIF1-MAD ✓ 0.93 0.91 0.91
n = 1000 DIF2-SD ✓ 0.99 0.99 1.00

DIF2-LRV ✓ 0.97 0.98 0.95

DIF1-MAD ✓ 0.89 0.91 0.90
n = 2000 DIF2-SD ✓ 0.99 1.00 0.99

DIF2-LRV ✓ 0.97 0.97 0.98

(a) Coverage on noise type N1 with σ = 1.

guarantee degree 0 degree 1 degree 2

DIF1-MAD ✗ 0.76 0.67 0.78
n = 100 DIF2-SD ✓ 1.00 0.98 0.99

DIF2-LRV ✓ 0.97 0.89 0.93

DIF1-MAD ✗ 0.54 0.46 0.53
n = 500 DIF2-SD ✓ 0.99 0.97 0.96

DIF2-LRV ✓ 0.96 0.95 0.90

DIF1-MAD ✗ 0.39 0.32 0.33
n = 1000 DIF2-SD ✓ 0.97 0.97 0.95

DIF2-LRV ✓ 0.95 0.95 0.89

DIF1-MAD ✗ 0.26 0.21 0.20
n = 2000 DIF2-SD ✓ 0.99 0.96 0.97

DIF2-LRV ✓ 0.99 0.94 0.92

(b) Coverage on noise type N2 with σ = 1.
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Table 3.7: Proportion of times out of 500 replications each method returned no intervals of
significance when applied to a noise vector of length n ∈ {100, 500, 1000, 2000},
as well as whether each method is theoretically guaranteed to provide correct
coverage.

guarantee degree 0 degree 1 degree 2

DIF1-MAD ✗ 0.01 0.01 0.04
n = 100 DIF2-SD ✗ 0.11 0.13 0.18

DIF2-LRV ✓ 0.97 0.96 0.96

DIF1-MAD ✗ 0.00 0.00 0.00
n = 500 DIF2-SD ✗ 0.00 0.00 0.00

DIF2-LRV ✓ 0.99 0.98 0.98

DIF1-MAD ✗ 0.00 0.00 0.00
n = 1000 DIF2-SD ✗ 0.00 0.00 0.00

DIF2-LRV ✓ 0.99 0.97 0.99

DIF1-MAD ✗ 0.00 0.00 0.00
n = 2000 DIF2-SD ✗ 0.00 0.00 0.00

DIF2-LRV ✓ 0.99 0.98 0.99

(a) Coverage on noise type N3 with σ = 1.

guarantee degree 0 degree 1 degree 2

DIF1-MAD ✗ 0.01 0.00 0.01
n = 100 DIF2-SD ✗ 0.11 0.10 0.16

DIF2-LRV ✓ 0.95 0.94 0.98

DIF1-MAD ✗ 0.00 0.00 0.00
n = 500 DIF2-SD ✗ 0.00 0.00 0.00

DIF2-LRV ✓ 0.97 0.95 0.95

DIF1-MAD ✗ 0.00 0.00 0.00
n = 1000 DIF2-SD ✗ 0.00 0.00 0.00

DIF2-LRV ✓ 0.96 0.95 0.96

DIF1-MAD ✗ 0.00 0.00 0.00
n = 2000 DIF2-SD ✗ 0.00 0.00 0.00

DIF2-LRV ✓ 0.97 0.96 0.97

(b) Coverage on noise type N4 with σ = 1.
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3.5 Real data examples

3.5.1 Application to bone mineral density acquisition curves

We analyse data on bone mineral acquisition in 423 healthy males and females aged between

9 and 25. The data is available from hastie.su.domains and was first analysed in Bachrach

et al. (1999). The data was originally collected as part of a longitudinal study where four

consecutive yearly measurements of bone mass by dual energy x-ray absorptiometry were

taken from each subject. We obtain bone density acquisition curves for males and females

by grouping measurements by gender and age and averaging over measurements in each

grouping. The processed data are plotted in the first row of Figure 3.3. There is some

disagreement over the age at which peak bone mass density is attained in adolescents

Kröger et al. (1993); Theintz et al. (1992); Lu et al. (1996). One possible solution is

to model the data in Figure 3.3 as following a piecewise linear trend, and to infer this

information from any estimated change point locations.

We apply the procedure DIF2-SD to the data, with the tuning parameters specified in

Section 3.4, because as the data are strictly positive the assumption of Gaussian noise is

unlikely to hold. We additionally estimate change point locations using five state of the art

algorithms for recovering changes in piecewise linear signals which however do not come

with any coverage guarantees. These are: the Narrowest-Over-Threshold algorithm (NOT)

of Baranowski et al. (2019a), and the same algorithm run with the requirement that the

estimated signal be continuous (NOT-cont), the Isolate Detect algorithm (ID) of Anastasiou

and Fryzlewicz (2022), the dynamic programming based algorithm of Bai and Perron (1998)

(BP), and the Continuous-piecewise-linear Pruned Optimal Partitioning algorithm (CPOP)

of Fearnhead et al. (2019). When applying each method we use the default parameters in

their respective R packages.

The results of the analysis are shown in in the second row of Figure 3.3. On both bone

density acquisition curves all methods for change point detection estimate a single change

point location, save for CPOP. However, on the male bone density acquisition data there is

considerable disagreement among the methods regarding the location of the change point
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detected. Since the methods do not quantify the uncertainty around each estimated change

point, it is difficult to say which estimate is closest to the truth. DIF2-SD also returns a

single interval of significance when applied to each data set, and each interval returned

contains all change point locations recovered by the other methods on each respective data

set save the extraneous change point detected by CPOP. By Corollary 3.3.1 one can be

certain each interval contains at least one true change point location with high probability.

We therefore re-apply the aforementioned change point detectors to this interval only. The

results are shown in the third row of Figure 3.3, where this time there is much greater

agreement among the methods. We also note that the corresponding intervals returned by

NSP-SN (not shown), which is the only competing method from Section 3.4.1 applicable

to the data, cover essentially the entire range of the data.

3.5.2 Applications to nitrogen dioxide concentration in London

We analyse daily average concentrations of nitrogen dioxide (NO2) at Marylebone Road

in London between September 2, 2000 and September 30, 2020. The data are available

from uk-air.defra.gov.uk and were originally analysed from a change point perspective,

assuming a piecewsie constant mean, by Cho and Fryzlewicz (2023). We follow their anal-

ysis in Cho and Fryzlewicz (2022) by taking the square root transform of the data and

removing seasonal and weekly variation. The processed data is plotted in Figure 3.4. Cho

and Fryzlewicz (2023) identify three historical events which are likely to have affected NO2

concentration levels in London during the period in question, which are summarised below.

• February 2003: installation of particulate traps on most London buses and other heavy

duty diesel vehicles.

• April 8, 2019: introduction of Ultra Low Emission zones in central London.

• March 23, 2020: beginning of the nation-wide COVID-19 lockdown.

We apply the procedure DIF2-LRV to the data with tuning parameters specified in

Section 3.4, since time series of NO2 concentrations are known to be strongly serially cor-

related. For comparison we additionally estimate change point locations using three state
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Figure 3.3: black / grey solid lines (— / —) represents bone density acquisition curves
for males and females between the ages of 9 and 25, red shaded regions (■)
represent intervals of significance returned by DIF2-SD, dashed coloured lines
represent change point locations recovered by NOT (- - -), NOT-cont (· · · ), ID
(- - -), BP (- - -), and CPOP (- - -)

(a) male bone density acquisition (b) female bone density acquisition

(c) estimated change point locations (d) estimated change point locations

(e) change points on sub-interval (f) change points on sub-interval
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of the art algorithms for recovering changes in piecewise constant signals in the presence of

serially correlated noise, which however do not come with coverage guarantees. These are:

the algorithm of Romano et al. (2022) for Detecting Changes in Autocorrelated and Fluc-

tuating Signals (DeCAFS), the algorithm of Chakar et al. (2017) for estimating multiple

change-points in the mean of a Gaussian AR(1) process (AR1seg), and the Wild Contrast

Maximisation and gappy Schwarz algorithm (WCM.gSa) of Cho and Fryzlewicz (2023).

When applying each method we use default parameters in their respective R packages save

for the DeCAFS algorithm for which our choice of tuning parameters is guided by the

guidedModelSelection function in the DeCAFS R package.

Figure 3.4: daily average concentrations of NO2 at Marylebone Road after square root
transform and with seasonal variation removed, red dashed lines (- - -) and
dark red shaded region (■) represent dates of events which are likely to have
affected NO2 concentration levels

The results of the analysis are shown in Figure 3.5. DIF2-LRV returns four intervals,

among which the first, third, and fourth cover the dates of important events identified by

Cho and Fryzlewicz (2023). Within each of these three intervals AR1seg, DeCAFS, and

WCM.gSa each identify one change point, with the exception of WCM.gSa which identifies

two change points in the third interval returned. However, when we re-apply WCM.gSa
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over the third interval only one change point is detected, suggesting the second change point

in this interval was spuriously estimated. DeCAFS detects a change point between the first

and second intervals returned by DIF2-LRV. However, re-applying the algorithms to data

between the two intervals no change points are detected suggesting the original change

points were also spuriously estimated. We finally note that the data analysed consists of

n = 7139 observations, and running DIF2-LRV on a desktop computer with a 3.20GHz Intel

(R) Core (TM) i7-8700 CPU took 4.1 seconds. Running Dep-SMUCE and NSP-AR, which

are the only competing methods from Section 3.4.1 applicable to the data, on the same

machine took 15.1 seconds and 145.8 seconds respectively. Dep-SMUCE returns similar

intervals to DIF2-LRV, whereas NSP-AR does not detect any change points in the data.

3.6 Proofs

For sequences {an}n>0 and {bn}n>0 we write an <∼ bn if there is a constant C > 0 for which

an ≤ Cbn for every n > 0. We write an ∼ bn if an/bn → 1 as n→∞. We write |A| for the

cardinality of a set A. The density, cumulative density, and tail functions of a standard

Gaussian random variable are written respectively as ϕ (·), Φ (·), and Φ̄ (·).

3.6.1 Preparatory results

Definition 3.6.1 (Leadbetter et al. 2012, Section 12.1). Let {ξ(t)}t>0 be a centred Gaussian

process with unit variance, then if there are constants Cξ > 0 and α ∈ (0, 2] such that for

all t > 0 the following holds

Cov (ξ(t), ξ(t+ s)) = 1− Cξ |s|α + o (|s|α) , |s| → 0,

the process is called stationary with index α and local structure Cξ. Moreover, the process

has almost surely continuous sample paths and for any compact K ⊂ R+ the quantity

MK = supt∈K {ξ (t)} is well defined.

Lemma 3.6.1 (Berman’s lemma). Let ζ1, . . . , ζn and ζ̃1, . . . , ζ̃n be two sequences of Gaus-
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Figure 3.5: grey lines (—) represent daily average concentrations of NO2 at Marylebone
Road after square root transform and with seasonal variation removed, red
shaded regions (■) represent intervals of significance returned by DIF2-LRV,
blue dashed lines (- - -) represent change points recovered by a given algorithm,
blue solid lines (—) represent the corresponding fitted piecewise constant signal.

(a) change points and piecewise constant signal recovered by DeCAFS

(b) change points and piecewise constant signal recovered by AR1seg

(c) change points and piecewise constant signal recovered by WCM.gSa
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sian random variables with marginal N (0, 1) distribution and covariances Cov (ζi, ζj) = Λij

and Cov
(
ζ̃i, ζ̃j

)
= Λ̃ij. Define ρij = max

(
|Λij | ,

∣∣∣Λ̃ij

∣∣∣). For any real numbers u1, . . . , un

the following holds:

∣∣∣P (ζj ≤ uj | 1 ≤ j ≤ n)− P
(
ζ̃j ≤ uj | 1 ≤ j ≤ n

)∣∣∣
≤ 1

2π

∑
1≤i<j≤n

∣∣∣Λij − Λ̃ij

∣∣∣ (1− ρ2ij)−1/2
exp

− 1
2

(
u2i + u2j

)
1 + ρij

 .

Proof. See Theorem 4.2.1 in Leadbetter et al. (2012).

Lemma 3.6.2 (Khintchine’s lemma). Let {Mn}n>0 be a sequence of random variables and

let G be a non-degenerate distribution. If {(cn, dn)}n>0 are scaling and centring sequences

such that (Mn − cn) /dn → G then for any alternative sequences {(c′n, d′n)}n>0 satisfying

dn/d
′
n ∼ 1 and (cn − c′n) /dn = o(1) we also have that (Mn − c′d) /d′n → G.

Proof. See Theorem 1.2.3 in Leadbetter et al. (2012).

Lemma 3.6.3 (Pickand’s lemma, continuous version). Let {ξ(t)}t>0 be a stationary Gaus-

sian process with index α ∈ (0, 2] and local structure Cξ > 0. There is a constant Hα > 0

such that for any compact K ⊂ R+ the following holds:

P
(
sup
t∈K
{ξ (t)} > u

)
∼ HαC

1/α
ξ |K|u2/α−1ϕ (u) .

Moreover the values H1 = 1 and H2 = 1/
√
π are known explicitly.

Proof. See Theorem 9.15 in Piterbarg (2015), and Remark 12.2.10 in Leadbetter et al.

(2012) for the values of Hα.

Lemma 3.6.4 (Pickand’s lemma, discrete version). Let {ξ(t)}t>0 be a stationary Gaussian

process with index α ∈ (0, 2] and local structure Cξ > 0. If q → 0 and u → ∞ in such a
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way that u2/αq → a > 0 the following holds for any compact K ⊂ R+:

P

(
sup

t∈K∩Zq
{ξ (t)} > u

)
∼ Fξ (a) |K|u2/α−1ϕ (u) .

The function Fξ (·) is defined as follows

Fξ (a) = lim
T→∞

1

T
E

[
exp

(
sup

s∈[0,T ]∩aZ
Z (s)

)]
.

Where {Z(s)}s>0 is a stationary Gaussian process with first and second moments as follows

E (Z(s)) = −Cξ |s|α ,

Cov (Z(s1), Z(s2)) = Cξ |s1|α + Cξ |s2|α − Cξ |s1 − s2|α .

Proof. See Lemma 12.2.1 in Leadbetter et al. (2012).

Lemma 3.6.5. Let {B (t)}t>0 be standard Brownian motion and define the function F (·)

as follows:

F (x) = lim
T→∞

1

T
E

[
exp

(
sup

s∈[0,T ]∩xZ
{B(s)− s/2}

)]
.

(i) For x > 0 it holds that F (x) = p2∞ (x) /x where p∞ (·) is defined as follows.

p∞ (x) = exp

(
−

∞∑
k=1

1

k
Φ̄
(√

kx/4
))

(ii) Putting G (y) = (1/y)F (C/y) for any fixed C > 0 it holds that G (y) ∼ 1/2y as y →∞.

Proof. See Theorem 7.2 and Corollary 3.18 respectively in Kabluchko (2007).
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3.6.2 Intermediate results

Lemma 3.6.6. Let {B (t)}t>0 be standard Brownian motion and define the process {ξ (t)}t>0

as follows:

ξ (l) =

{(
1

p+ 2

) p+1∑
i=0

(
p+ 1

i

)2
}−1/2 p+1∑

j=0

(−1)p+1−j

(
p+ 1

j

)
Yl,j ,

Yl,j =
[
B

(
l +

j + 1

p+ 2

)
−B

(
l +

j

p+ 2

)]
.

(i) The process {ξ (l)}l>0 is the continuous time analogue of 1
σD

p
l,w (Y ) under Assumption

3.2.1 and the null of no change points, in the sense that for a given scale w the following

holds: {
1

σ
Dp

l,w (Y ) | 1 ≤ l ≤ n− w
}

d
= {ξ (l/w) | 1 ≤ l ≤ n− w} .

(ii) According to Definition 3.6.1 the process is locally stationary with index α = 1 and

local structure Cp defined as follows:

Cp = (p+ 2)

1 +

∑p+1
j=1

(
p+1
j

)(
p+1
j−1

)
∑p+1

j=0

(
p+1
j

)2
 .

Proof. Part (i) can be verified by inspection. To show part (ii) note that for all l > 0 we

have E (ξ (l)) = 0 and E
(
ξ2 (l)

)
= 1, so it remains to calculate the covariance between ξ (l)

and ξ (l + sl) for |sl| → 0. First, taking sl > 0 we have the following:

Cov (ξ(l), ξ(l + sl)) =

((
1

p+ 2

) p+1∑
i=0

(
p+ 1

i

)2
)−1 p+1∑

j=0

p+1∑
k=0

(−1)j+k Cov (Yl,j ,Yl+sl,k)

=

((
1

p+ 2

) p+1∑
i=0

(
p+ 1

i

)2
)−1


p+1∑
j=0

(
p+ 1

j

)2

Cov (Yl,j ,Yl+sl,j)

+

p+1∑
j=1

(−1)
(
p+ 1

j

)(
p+ 1

j − 1

)
Cov (Yl,j ,Yl+sl,j−1)

 .
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Using the fact that Cov (B(l1), B(l2)) = min (l1, l2) gives the following:

Cov (Yl,j ,Yl+sl,j) =
1

p+ 2
− sl,

Cov (Yl,j ,Yl+sl,j−1) = sl.

Therefore for sl → 0 with sl > 0 we have the following:

Cov (ξ(l), ξ(l + sl)) = 1− (p+ 2)

1 +

∑p+1
j=1

(
p+1
j

)(
p+1
j−1

)
∑p+1

j=0

(
p+1
j

)2
 sl.

The same calculations can be repeated for the case sl < 0 and so ultimately we have that

Cov (ξ(l), ξ(l + sl)) = 1− Cp|sl| as |sl| → 0.

Lemma 3.6.7. Consider the problem of testing for the presence of a change point on the

interval I = {1, . . . ,m} where m satisfies (p+ 2)δ′ ≤ m < (p+ 2)(δ′ + 1) for some integer

δ′ > 1. If the interval contains a single change point at location δ′ with change sizes

∆0, . . . ,∆p then the test

T λ
1,m = 1

{
|Dp

1,m (Y ) | > λ
}

with threshold λ = τ̂ × λ̄, for some λ̄ > 0, will detect the change on the event

{
Lτ̂
G(W,a) (ζ) ≤ λ̄

}
∩ {τ̂ < 2τ} (3.20)

as long as it holds that

δ′ > n
2p∗

2p∗+1

(
16C2

p,p∗τ
2λ̄2

∆2
p∗

) 1
2p∗+1

,

where

Cp,p∗ = 2p
∗+2(p∗ + 2)

√√√√p+1∑
i=0

(
p+ 1

i

)2

.
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Proof. By the linearity of the difference operator and the triangle inequality the change

will be detected if the following occurs:

∣∣∣Dp
1,m (f)

∣∣∣ > ∣∣∣Dp
1,m (ζ)

∣∣∣+ λ. (3.21)

Moreover on (3.20) we must have that
∣∣∣Dp

1,m (ζ)
∣∣∣ + λ < 4τ λ̄. Writing Bk for the k-th

Bernoulli number we have the following by Faulhaber’s formula for any integers p > 0 and

δ′ > 1:

1

δ′

δ′∑
t=1

(
1− t/δ′

)p
= (δ′)−(p+1)

δ′−1∑
s=1

sp

=

(
1

p+ 1

)(
δ′ − 1

δ′

)p+1 p∑
k=0

(
p+ 1

k

)
Bk

(
δ′ − 1

)−k

≥
(

1

p+ 1

)(
δ′ − 1

δ′

)p+1

≥ 1

2p+1(p+ 1)
. (3.22)

Using the above along with Assumption 3.3.3 and the fact that the test statistic (3.2) is

invariant to the addition of arbitrary degree p polynomials we have the following:

∣∣∣Dp
1,m (f)

∣∣∣
=

{
δ′

p+1∑
i=0

(
p+ 1

i

)2
}− 1

2

∣∣∣∣∣∣
p∑

j=0

sign (αj − βj)∆j

δ′∑
t=1

(
t

n
− δ′

n

)j
∣∣∣∣∣∣

≥
√
δ′∆p∗

(
δ′

n

)p∗
 1

δ′
∑δ′

t=1

(
1− t

δ′

)p∗√∑p+1
i=0

(
p+1
i

)2
− ∑

0≤j≤p
j ̸=p∗

√
δ′∆j

(
δ′

n

)j
 1

δ′
∑δ′

t=1

(
1− 1

δ′

)j√∑p+1
i=0

(
p+1
i

)2

(3.23)

≥ C−1
p,p∗∆p∗(δ

′)
2p∗+1

2 n−p∗ . (3.24)

Therefore combining (3.21) and (3.24) we have that on the event (3.20) the change will be

detected if C−1
p,p∗∆p∗(δ

′)
2p∗+1

2 n−p∗ > 4τ λ̄, and the desired result follows by rearranging.
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Theorem 3.6.1. Put w = ⌊c log(n)⌋ for some constant c > 0 and introduce maximum of

the local test statistics (3.2) appropriately standardised and restricted to scales w as follows:

Mσ
c log(n) (Y) = max

{
1

σ
Dp

l,w (Y) | 1 ≤ l ≤ n− w
}
.

Then under Assumption 3.2.1 and the null of no change points for any fixed x ∈ R the

following holds, where an and bn are defined as in Theorem 3.2.1:

P
(
anM

σ
c log(n) (Y)− bn ≤ x

)
∼ exp

(
−
(
2Cp

c

)
F

(
2Cp

c

)
e−x

)
.

Proof. Omitting dependence on x introduce notation

un =
√

2 log(n) +

(
−1

2
log log(n)− log

(
2
√
π
)
+ x

)
/
√

2 log(n).

For some ρ ∈ (0, 1) we decompose the index set {1, . . . , n} into disjoint blocksA0, B0, A1, B1, . . .

respectively of size w and wρ as

Ai = {l | i (w + wρ) < l ≤ (i+ 1)w + iwρ} ,

Bi = {l | (i+ 1)w + iwρ < l ≤ (i+ 1)(w + wρ)} .

The proof proceeds in three steps.

STEP 1: we first show that the behavior of small blocks is asymptotically unimportant

for the maximum. Putting Bn = ∪iBi and using the fact |Bn| ∼ nwρ/(w + wρ) and

u2n = 2 log(n)− log log(n) +O (1) it follows that

P
(
max
l∈Bn

{
1

σ
Dp

l,w (Y)

}
> un

)
≤
∑
l∈Bn

P
(
1

σ
Dp

l,w (Y) > un

)
= |Bn| Φ̄ (un)

<∼
wρ

w + wρ
.
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STEP 2: next we show that the any dependence between larger blocks is asymptotically

unimportant for the the maximum. Write

Λl1,l2 = Cov

(
1

σ
Dp

l1,w
(Y) ,

1

σ
Dp

l2,w
(Y)

)
,

and let σ−1D̃p
l,w (Y) be random variables with the same marginal distributions as σ−1Dp

l,w (Y)

and covariances given by

Λ̃l1,l2 =


Λl1,l2 l1 ∈ Ai1 , l2 ∈ Ai2 with i1 = i2

0 else

.

For any l1, l2 write j1,2 = |{l1, . . . , l1 + w − 1} ∩ {l2, . . . , l2 + w − 1}| and put Λl1,l2 = Λj1,2 .

Writing An = ∪iAi and using Lemma 3.6.1 we have the following:

∣∣∣∣P(max
l∈An

{
1

σ
Dp

l,w (Y)

}
≤ un

)
− P

(
max
l∈An

{
1

σ
D̃p

l,w (Y)

}
≤ un

)∣∣∣∣ (3.25)

≤ 1

2π

∑
l1∈Ai,l2∈Aj

i ̸=j

∣∣∣Λl1,l2 − Λ̃l1,l2

∣∣∣ (1− Λ2
l1,l2

)−1/2
exp

(
− u2n
1 + Λl1,l2

)

<∼

|An|/|A0|∑
i=0

∑
l1∈Ai

l2∈Ai+1

∣∣∣Λl1,l2 − Λ̃l1,l2

∣∣∣ (1− Λ2
l1,l2

)−1/2
exp

(
− u2n
1 + Λl1,l2

)

<∼
|An|
|A0|

|A0|∑
l=1

l∑
j=1

Λj

(
1− Λ2

j

)−1/2
exp

(
−2 log(n)− log log(n)

1 + Λj

)

<∼ log(n)
|An|
|A0|

|A0|∑
l=1

l∑
j=1

Λj

(
1− Λ2

j

)−1/2
exp

(
−2 log(n)

1 + Λj

)
.

Note that for some fixedK > 0 depending on p it must hold that Λj ≤ min (jK,w − wρ) /w.
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Therefore the first term after the double sum can be bounded as follows:

Λj

(
1− Λ2

j

)−1/2 ≤ Λj (1− Λj)
−1/2

≤ min (jK,w − wρ) /
√
(w −min (jK,w − wρ))w

≤ min (jK,w − wρ) /
√
w. (3.26)

For the exponential term put 2/(1 + Λj) = 1 + δj . The following holds:

δj = (1− Λj) / (1 + Λj)

≥ (w −min (jK,w − wρ)) / (w +min (jK,w − wρ))

≥ (w −min (jK,w − wρ)) /2w. (3.27)

Therefore substituting (3.26) and (3.27) into (3.25) we obtain

(3.25) <∼

√
log(n)

n

|An|
|A0|

l∑
j=1

min (jK,w − wρ)
(
n

1
2w

)−(w−min(jK,w−wρ))
,

=

√
log(n)

n

|An|
|A0|


⌊|A0|/K⌋∑

l=1

l∑
j=1

jK
(
n

1
2w

)−(w−jK)
+

|A0|∑
l=⌊|A0|/K⌋+1

l∑
j=1

(w − wρ)
(
n

1
2w

)wρ

 .

(3.28)

The first sum in (3.28) can be bounded as follows:

⌊|A0|/K⌋∑
l=1

l∑
j=1

jK
(
n

1
2w

)−(w−jK)
<∼ n

−1/2

∫ ⌊|A0|/K⌋+1

1

∫ y+1

1
x
(
n

1
2w

)Kx
dxdy

<∼ wn
−w−(1−ρ)/2. (3.29)
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The second sum in (3.28) can be bounded as follows:

|A0|∑
l=⌊|A0|/K⌋+1

l∑
j=1

(w − wρ)
(
n

1
2w

)wρ

<∼ wn
−w−(1−ρ)/2

|A0|∑
l=⌊|A0|/K⌋+1

(l)

<∼ w
3n−w−(1−ρ)/2. (3.30)

Finally plugging (3.29) and (3.30) into (3.25) and using the fact that |An|/|A0| ∼ n/(w+wρ)

we obtain the following for some C > 0 depending on ρ as long as n is sufficiently large:

(3.25) <∼

√
log(n)

n

|An|
|A0|

{
n−w−(1−ρ)/2

(
w + w3

)}
<∼ log5/2(n)n−w−(1−ρ)/2 <∼ exp (−C logρ(n)) .

STEP 3: we now prove Theorem 3.6.1. Using Lemma 3.6.4 and part (i) of Lemma 3.6.6

and noting that u2n/w ∼ 2/c gives the following:

P
(
max
l∈Ai

{
1

σ
Dp

l,w (Y)

}
> un

)
∼
(w
n

)(2Cp

c

)
F

(
2Cp

c

)
e−x, i = 0, . . . , |An| − 1.

(3.31)

The following inequality is evident:

P
(
Mσ

c log(n) (Y) ≤ un

)
≤ P

(
max
l∈An

{
1

σ
Dp

l,w (Y)

}
≤ un

)
.

Therefore (3.31), the results of step 2, and that |An|/|A0| ∼ n/w imply that

lim sup
n→∞

P
(
Mσ

c log(n) (Y) ≤ un

)
≤ lim

n→∞

{
P
(
max
l∈An

{
1

σ
D̃p

l,w (Y)

}
≤ un

)
+O (exp (−C logρ(n)))

}
= lim

n→∞

(
1−

(w
n

)(2Cp

c

)
F

(
2Cp

c

)
e−x

)|An|/|A0|

= exp

(
−
(
2Cp

c

)
F

(
2Cp

c

)
e−x

)
.

Going the other way the following inequality is also evident:

P
(
Mσ

c log(n) (Y) ≤ un

)
≥ P

(
max
l∈An

{
1

σ
Dp

l,w (Y)

}
≤ un

)
− P

(
max
l∈Bn

{
1

σ
Dp

l,w (Y )

}
> un

)
.
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Using (3.31) and the results of Steps 1 and 2 gives that

lim inf
n→∞

P
(
Mσ

c log(n) (Y) ≤ un

)
≥ lim

n→∞

{
P
(
max
l∈An

{
1

σ
D̃p

l,w (Y )

}
≤ un

)
−O (exp (−C logρ(n)))−O

(
wρ

w + wρ

)}
= lim

n→∞

(
1−

(w
n

)(2Cp

c

)
F

(
2Cp

c

)
e−x

)|An|/|A0|

= exp

(
−
(
2Cp

c

)
F

(
2Cp

c

)
e−x

)
.

Therefore, the theorem is proved.

3.6.3 Proof of Theorem 3.2.1

Proof. Given the result in part (i), part (ii) follows immediately from Lemma 3.6.2. For

the proof of part (i) write kn = ⌊loga(W )⌋ and for some A > 0 introduce the restrictions

of the a-adic grid defined in (3.5) to scales no larger than WaA:

G− (A) =
{
(l, w) ∈ N2 | w ∈ W−(A), 1 ≤ l ≤ n− w

}
,

W− (A) =
{
w =

⌊
ak
⌋
| kn ≤ k ≤ kn +A

}
.

Introduce also the restriction of (3.5) to scales strictly larger than WaA:

G+ (A) =
{
(l, w) ∈ N2 | w ∈ W+(A), 1 ≤ l ≤ n− w

}
,

W+ (A) =
{
w =

⌊
ak
⌋
| kn +A < k ≤ ⌊loga(n/2)⌋

}
.

The proof proceeds in four steps.

STEP 1: we first show that the behaviour of the tests statistic on large scales is asymp-
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totically unimportant for the maximum. Making use of lemma 3.6.3 we have that

P
(

max
(l,w)∈G+(A)

{
1

σ
Dp

l,w (Y)

}
> un

)

≤
⌊loga(n/2)⌋∑
k=kn+A

⌊n/ak⌋−1∑
i=0

P
(
max

{
1

σ
Dp

l,⌊ak⌋ (Y) | i×
⌊
ak
⌋
< l ≤ (i+ 1)×

⌊
ak
⌋}

> un

)

≤
⌊loga(n/2)⌋∑
k=kn+A

( n
ak

)
P

(
sup

t∈[0,1)
{ξ (t)} > un

)

<∼

⌊loga(n/2)⌋∑
k=kn+A

( n
ak

)
une

−u2n/2

<∼
a−A

1− a−1
.

Finally, sending A→∞ the claim is proved.

STEP 2: next we show that for any fixed A the dependence between maxima occurring

over different scales in W−(A) is asymptotically unimportant for the overall maximum.

Write

Λl1,w1,l2,w2 = Cov

(
1

σ
Dp

l1,w1
(Y),

1

σ
Dp

l2,w2
(Y)

)
,

and let σ−1D̃
(p)
l,w (Y) be random variables with the same marginal distribution as σ−1Dp

l,w (Y)

and covariance given by

Λ̃l1,l2,w1,w2 =


Λl1,l2,w1,w2 if w1 = w2

0 else

.

Note that for each a > 1 there will be a Λa ∈ (0, 1) depending only on a such that for any

w1 ̸= w2 and all permissible l1, l2 it holds that Λl1,w1,l2,w2 ≤ Λa. Therefore using Lemma
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3.6.1 we have the following:

∣∣∣∣P( max
(l,w)∈G−(A)

{
1

σ
Dp

l,w (Y)

}
≤ un

)
− P

(
max

(l,w)∈G−(A)

{
1

σ
D̃p

l,w (Y)

}
≤ un

)∣∣∣∣
≤ 1

2π

∑
w1,w2∈W−(A)

w1 ̸=w2

∑
1≤l1≤n−w1
1≤l2≤n−w2

∣∣∣∣Λl1,w1
l2,w2

− Λ̃l1,w1
l2,w2

∣∣∣∣
(
1− Λ2

l1,w1
l2,w2

)−1/2

exp

− u2n
1 + Λ2

l1,w1
l2,w2



<∼
∑

w1,w2∈W−(A)
w1 ̸=w2

∑
1≤l1≤n−w1
1≤l2≤n−w2

|l1−l2|<max(w1,w2)

Λl1,w1
l2,w2

(
1− Λ2

l1,w1
l2,w2

)−1/2

exp

− u2n
1 + Λ2

l1,w1
l2,w2



<∼ log(n)
∑

w1,w2∈W−(A)
w1 ̸=w2

∑
1≤l1≤n−w1
1≤l2≤n−w2

|l1−l2|<max(w1,w2)

(
Λa√
1− Λ2

a

)
exp

(
−2 log(n)

1 + Λa

)

<∼ (1 +A)2 aA log2(n)× n−
1−Λa
1+Λa .

Since Λa < 1 the statement is proved.

STEP 3: we now show that if we pass to a sub-sequence of n’s on which the quantity

bn = a⌊loga(W )⌋/W converges to some constant b the sequence of normalised maxima

{
anM

σ
G(W,a) (Y)− bn | n ∈ N

}
(3.32)

converges weakly to a Gumbel distribution. On such a sub-sequence for each j ∈ N we

have that akn+j ∼ ajbd× log(n). Therefore from Theorem 3.6.1 we have the following:

P

(
max

1≤l≤n−⌊akn+j⌋

{
1

σ
Dp

l,⌊akn+j⌋ (Y)

}
≤ un

)
∼ exp

(
−
(
2Cp

ajbd

)
F

(
2Cp

ajbd

)
e−τ

)
.

The following inequality is evident:

P
(
Mσ

G(W,a) (Y) ≤ un

)
≤ P

(
max

(l,w)∈G−(A)

{
1

σ
Dp

l,w (Y)

}
≤ un

)
.
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Therefore (3.6.3) and the result from step 2 imply that

lim sup
n→∞

P
(
Mσ

G(W,a) (Y) ≤ un

)
≤ exp

− ∞∑
j=0

(
2Cp

ajbd

)
F

(
2Cp

ajbd

)
e−x

 .

Note that because a > 1 by part (ii) of Lemma 3.6.5 the above sum converges. Going the

other way the following inequality is also evident:

P
(
Mσ

G(W,a) (Y) ≤ un

)
≥ P

(
max

(l,w)∈G−(A)

{
1

σ
Dp

l,w (Y)

}
≤ un

)
− P

(
max

(l,w)∈G+(A)

{
1

σ
Dp

l,w (Y)

}
> un

)
.

Therefore (3.6.3) and the result from steps 1 and 2 imply that

lim inf
n→∞

P
(
Mσ

G(W,a) (Y) ≤ un

)
≥ exp

− ∞∑
j=0

(
2Cp

ajbd

)
F

(
2Cp

ajbd

)
e−x

 .

Therefore, the statement is proved.

STEP 4: we now prove the result in part (i). Since bn may have any sub-sequential

limit between 1/a and 1 it follows from step 4 that the sequence of random variables (3.32)

is tight. Using part (i) of Lemma 3.6.5 the constants in (3.7) are easily recognised as the

largest and smallest constants which may appear in the extreme value limit.

3.6.4 Proof of Theorem 3.2.2

Proof. With W satisfying Assumption 3.2.5 and omitting dependence on x introduce the

notation

un,W =
√
2 log (n/W ) +

(
1

2
log log(n/W )− log(

√
π) + x

)
/
√

2 log (n/W ).

We first investigate the be behaviour of local test statistics (3.2) restricted to a particular

scale of the order O(W ) under the null of no change points. For some c > 0 put w = ⌊cW ⌋,
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and write

M τ
cW (Y) = max

{
1

τ
Dp

l,w (Y) | 1 ≤ l ≤ n− w
}
.

Putting B = (B(1), . . . , B(n))′, where {B(t)}t>0 is the process introduced in Assumption

3.2.4, making use of Assumption 3.2.4 the following holds:

M τ
n,W (Y) = max

{
Dp

l,w (B) | 1 ≤ l ≤ n− w
}
+OP

(√
n

2
2+ν /W

)
. (3.33)

Moreover, using Lemma 3.6.3 and arguing as in the proof of Theorem 3.6.1, or equivalently

directly applying Theorem 12.3.5 in Leadbetter et al. (2012), it holds that

P
(
M1

cW (B) ≤ un,W
)
∼

⌊n/w⌋∏
i=0

P
(
max

{
Dp

l,w (B) | i× w < l ≤ (i+ 1)× w
}
≤ un,W

)

∼

[
1− P

(
sup

l∈[0,1)
{ξ (l)} > un,W

)]⌊n/w⌋

∼ exp

(
−Cp

c
e−x

)
. (3.34)

Therefore, combining (3.33) and (3.34) and arguing as in the proof of Theorem 3.2.1, we

immediately have that

P (M τ
cW (Y) ≤ un,W ) ∼ exp

(
−Cp

c
e−x

)
.

On a sub-sequence of n’s for which the quantity bn = a⌊loga(W )⌋/W converges to some

constant b, arguing as in the proof of Theorem 3.2.1, we therefore have under the null of

no change points that

P
(
M τ

G(W,a) (Y) ≤ un,W

)
→ exp

(
−
(
b−1Cp

1− a−1

)
e−x

)
.

However, it is again clear that bn can have any sub-sequential limit between a−1 and 1, so

part (i) of the theorem is proved. Part (ii) again follows from Lemma 3.6.2.
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3.6.5 Proof of Lemma 3.3.1

Proof. Putting m = (n− p− 1) / (p+ 1), we will prove that

P (|σ̂MAD − σ| > δ) ≤ 2(p+ 1) exp
(
−2m [(3/2)× (δ/σ)−N/m]2

)
from which the lemma is evident. We only show the upper bound for the above inequality

as the lower bound can be derived analogously. For simplicity assume n − (p + 1) is a

multiple of (p+ 1) and introduce the following sets:

Ij = {p+ 1 ≤ t ≤ n | (t+ j) mod (p+ 1) = 0} ,

Iη = ∪Nk=1 {ηk, . . . , ηk + (p+ 1)} ,

Ij,1 = Ij \ Iη,

Ij,2 = Ij ∩ Iη.

Introducing also the random variables Bδ
t = 1

{
|Xt| > Φ−1(3/4)

√∑p+1
i=0

(
p+1
i

)2
[σ + δ]

}
and put pδ = E

(
Bδ

t | t ̸∈ Iη
)
. The following holds via Hoeffding’s inequality:

P (σ̂MAD − σ > δ) = P

median {|Xp+1|, . . . , |Xn|}

Φ−1 (3/4)

√∑p+1
i=0

(
p+1
i

)2 > σ + δ


≤

p∑
j=0

P

∑
t∈Ij,1

Bδ
t +

∑
t∈Ij,2

Bδ
t >

n− (p+ 1)

2(p+ 1)


≤

p∑
j=0

P

∑
t∈Ij,1

(
Bδ

t − pδ
)
>
n− (p+ 1)

2(p+ 1)
− |Ij,2| − pδ |Ij,1|


≤ (p+ 1) exp

(
−2 [m (1/2− pδ)−N ]2

m−N

)
≤ (p+ 1) exp

(
−2m [1/2− pδ −N/m]2

)
. (3.35)
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Turning to pδ we have the following bound where we put Z ∼ N (0, 1):

pδ = P
(
|Z| > Φ−1(3/4) [1 + δ/σ]

)
= 2

(
1−

∫ Φ−1(3/4)

−∞
ϕ (x [1 + δ/σ]) dx [1 + δ/σ]

)
≥ 2

(
1− Φ

(
Φ−1(3/4)

)
[1 + δ/σ]

)
.

= 1/2− (3/2)× (δ/σ) (3.36)

Substituting (3.36) into (3.35) we obtain the desired result.

3.6.6 Proof of Lemma 3.3.2

Proof. Write γi = max1≤t≤n E |ζt/σ|i for each i = 2, 3 and put Dp = D̃
′
pD̃p where D̃p

is the n × n difference matrix such that each entry in the vector Dpx is the (p + 1)-th

difference of the corresponding entry in the n-vector x scaled by

1/

√√√√p+1∑
i=0

(
p+ 1

i

)2

.

Writing Y = f + ζ the equation below follows directly from equation (6) in Dette et al.

(1998).

E
[∣∣σ̂2DIF − σ2

∣∣2] ≤ [(f ′Dpf
)2

+ 4σ2f ′D2
pf + 4f ′ (Dpdiag (Dp)1)σ

3γ3

+ σ4trace
{
diag (Dp)

2
}
(γ4 − 3) + 2σ4trace

(
D2

p

)]
/ (n− p− 1)2 .

Since the noise terms have bounded fourth moment and function f◦(·) is assumed to be

bounded the it must hold that

σ4trace
{
diag (Dp)

2
}
(γ4 − 3) + 2σ4trace

(
D2

p

)
= O (n) ,(

f ′Dpf
)2

+ 4σ2f ′D2
pf + 4f ′ (Dpdiag (Dp)1)σ

3γ3 = O
(
N2
)
.
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It therefore follows that

E
[∣∣σ̂2DIF − σ2

∣∣2] ≤ O( 1

n
∨ N

2

n2

)
,

and as such the desired result follows by Chebyshev’s inequality.

3.6.7 Proof of Lemma 3.3.3

Proof. Write Ȳ =
(
Ȳ1,W ′ , . . . , Ȳ⌊n/W ′⌋,W ′

)′
and let f̄ and ζ̄ be defined analogously. Let Dp

be as defined in the proof of the last lemma, with its dimensions suitably adjusted. Finally

put m = ⌊n/W ′⌋ − (p+ 1). We can therefore write τ̂2DIF = 1
mW Ȳ ′DpȲ , and the absolute

difference between our estimator and the truth can be bounded as follows:

∣∣τ̂2DIF − τ2
∣∣ = ∣∣∣∣ 1

mW ′
(
f̄ + ζ̄

)′
Dp

(
f̄ + ζ̄

)
− τ2

∣∣∣∣
<∼

∣∣∣∣ 1

mW ′ ζ̄
′Dpζ̄ −

1

mW ′E
(
ζ̄′Dpζ̄

)∣∣∣∣+ ∣∣∣∣ 1

mW ′E
(
ζ̄′Dpζ̄

)
− τ2

∣∣∣∣
+

1

mW ′
∣∣f̄ ′Dpf̄

∣∣+ 1

mW ′
∣∣f̄ ′Dpζ̄

∣∣
= T1 + T2 + T3 + T4.

We now bound each of the terms in turn. Introducing the notation

ψp,j = (−1)p+1−j

(
p+ 1

j

)
/

√√√√p+1∑
i=0

(
p+ 1

i

)2

.

We can therefore write

1

mW ′ ζ̄
′Dpζ̄ =

1

m

⌊n/W ′⌋∑
s=p+2

p+1∑
j=0

ψp,j

(
ζ̄s−j,W ′/

√
W ′
)2

=
1

m

⌊n/W ′⌋∑
s=p+2

p+1∑
j=0

ψ2
p,j

(
ζ̄s−j,W ′/

√
W ′
)2

+
∑
k ̸=l

0≤k,l≤p+1

ψp,kψp,l

(
ζ̄s−k,W ′/

√
W ′
)(

ζ̄s−l,W ′/
√
W ′
) .
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From which it follows that

1

mW ′E
(
ζ̄′Dpζ̄

)
=

p+1∑
j=0

ψ2
p,j

(
γ0 + 2

W ′−1∑
h=1

(
1− h

W ′

)
γh

)

+
∑
k ̸=l

0≤k,l≤p+1

ψp,kψp,l

(
γW ′|k−l| + 2

W ′−1∑
h=1

(
1− h

W ′

)
γW ′|k−l|+h

)
.

Using these facts term T1 can be bounded as follows

T1 ≤

∣∣∣∣∣∣ 1m
⌊n/W ′⌋∑
s=p+2

p+1∑
j=0

ψ2
p,j

((
ζ̄s−j,W ′/

√
W ′
)2
− γ0 − 2

W ′−1∑
h=1

(
1− h

W ′

)
γh

)∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
1

m

⌊n/W ′⌋∑
s=p+2

∑
k ̸=l

0≤k,l≤p+1

ψp,kψp,l

((
ζ̄s−k,W /

√
W ′
)(

ζ̄s−l,W ′/
√
W ′
)

− γW ′|k−l| − 2
W ′−1∑
h=1

(
1− h

W ′

)
γW ′|k−l|+h

)∣∣∣∣∣
= T1,1 + T1,2.
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For the first term we have that

T1,1 =

∣∣∣∣∣∣ 1m
⌊n/W ′⌋∑
s=p+2

p+1∑
j=0

ψ2
p,j

 1

W

W ′(s−j)∑
t=W ′(s−j−1)+1

ζ2t

+
2

W ′

W ′−1∑
h=1

W ′(s−j)−h∑
t=W ′(s−j−1)+1

ζtζt+h − γ0 − 2

W ′−1∑
h=1

(
1− h

W ′

)
γh

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1m
⌊n/W ′⌋∑
s=p+2

p+1∑
j=0

ψ2
p,j

 1

W ′

W ′(s−j)∑
t=W ′(s−j−1)+1

(
ζ2t − γ0

)

+

W ′−1∑
h=1

1

(W ′ − h)

W ′(s−j)−h∑
t=W ′(s−j−1)+1

(
1− h

W ′

)
(ζtζt+h − γh)

∣∣∣∣∣∣
≤

p+1∑
j=0

ψ2
p,j


∣∣∣∣∣∣ 1

mW ′

⌊n/W ′⌋∑
s=p+2

W ′(s−j)∑
t=W ′(s−j−1)+1

(
ζ2t − γ0

)∣∣∣∣∣∣
+

W ′−1∑
h=1

∣∣∣∣∣∣ 1

m (W ′ − h)

⌊n/W ′⌋∑
s=p+2

W ′(s−j)−h∑
t=W ′(s−j−1)+1

(ζtζt+h − γh)

∣∣∣∣∣∣


=

p+1∑
j=0

ψ2
p,j

{
OP

(
1√
mW ′

)
+

W ′∑
h=1

OP

(
1√

m (W ′ − h)

)}

≤ OP

(
W ′
√
n

)
.

Where in the last line we have used the fact that m ∼ n/W ′ along with the fact that

W ′−1∑
h=1

1√
n
(
1− h

W ′

) < 1√
n

(∫ W ′−1

1

1√
1− x

W ′
dx+

√
W ′

)
=

2W ′
√
n

(1 + o(1)) .
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Arguing analogously we likewise have that T1,2 ≤ OP

(
W ′
√
n

)
. For the second term we have

that

T2 =

∣∣∣∣∣γ0 + 2
W ′−1∑
h=1

(
1− h

W ′

)
γh

+
∑
k ̸=l

0≤k,l≤p+1

ψp,kψp,l

(
γW ′|k−l| + 2

W ′−1∑
h=1

(
1− h

W ′

)
γW ′|k−l|+h

)
− γ0 − 2

∞∑
h=1

γh

∣∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣
W ′−1∑
h=1

(
1− h

W ′

)
γh −

{
W ′−1∑
h=1

+

∞∑
h=W ′

}
γh

∣∣∣∣∣+ 2
∑
k ̸=l

0≤k,l≤p+1

ψp,kψp,l

∣∣∣∣∣
W ′−1∑
h=0

γW ′|k−l|+h

∣∣∣∣∣
≤ 2

W ′−1∑
h=1

h

W ′ |γh|+ 2

∞∑
h=W ′

|γh|+ 2
∑
k ̸=l

0≤k,l≤p+1

ψp,kψp,l

W ′−1∑
h=0

∣∣γW ′|k−l|+h

∣∣

<
2

W ′

 ∞∑
h=1

h |γh|+
∑
k ̸=l

0≤k,l≤p+1

ψp,kψp,l

W ′−1∑
h=0

(
W ′|k − l|+ h

) ∣∣γW ′|k−l|+h

∣∣


= O
(
W ′−1

)
.

For the third term we have that T3 ≤ O
(
NW ′2

n

)
and for the fourth term we likewise have

that T4 ≤ O
(
NW ′2

n

)
. Combining the bounds on terms T1, T2, T3, and T4 the stated result

follows.

3.6.8 Proof of Theorem 3.3.1

Proof. With slight abuse of notation write I ∈ G (W,a) if I = {l, . . . , l + w − 1}, where

(l, w) ∈ G (W,a). For each k = 1, . . . , N introduce the set of all intervals containing the

k-th change point ηk, and with 1/(p+1) of the points in the interval tying to the left of ηk

and the remaining (p+ 1)/(p+ 2) points lying to the right of ηk:

Ik =

{
I ∈ G (W,a) | ηk ∈ I,

⌊
|I ∩ {1, . . . , ηk}|

p+ 2

⌋
= (p+ 1)

⌊
|I ∩ {ηk + 1, . . . , n}|

p+ 2

⌋}
.

125



3 Fast and Optimal Inference for Change Points in Piecewise Polynomials via Differencing

Moreover assume that

δk > 2a (p+ 2)

W ∨ n 2p∗k
2p∗

k
+1

(
16C2

p,p∗k
τ2λ2α

∆2
p∗k,k

) 1
2p∗

k
+1

 , k = 1, . . . , N.

Since λα = O
(√

log(n)
)
for any fixed α and either of threshold (3.6) or threshold (3.8),

this assumption can be seen to correspond to condition (3.16) in Theorem 3.3.1. For ease

of reading introduce the notation

V α
k (n) = n

2p∗k
2p∗

k
+1

(
16C2

p,p∗τ
2λ2α/∆

2
p∗k,k

) 1
2p∗

k
+1
, k = 1, . . . , N.

Due to lemma 3.6.7, testing for a change point on an interval I ′ ∈ Ik using (3.3) with

threshold λα the k-th change point will be detected as long as |I ′| > (p+ 1)V α
k (n) on the

event {
Lτ̂
G(W,a) (ζ) ≤ λα

}
∩ {τ̂ < 2τ} . (3.37)

Therefore, there must be an interval I ′′ ∈ Ik with |I ′′| < a (p+ 2) (W ∨ V α
k (n)) on which

the k-th change can be detected. By the assumption on the δ’s and the above discussion,

the shortest interval in G (W,a) on which the k-th chaneg point can be detected will not

overlap with the shortest intervals on which the (k − 1)-th and (k + 1)-th changes will be

detected. Finally, on the event (3.37) no test carried out on a sub-interval which are free

from change points will spuriously reject. Therefore, events E∗
3 , E

∗
4 , and E

∗
5 are verified.

126



3.6 Proofs

3.6.9 Proof of Lemma 3.3.4

Proof. We must show that sSIC(p′) > sSIC(p) for all p′ ̸= p in the set
{
p, . . . , p

}
. We begin

with the case p′ > p for which we have that

sSIC(p′)− sSIC(p)

=
n

2
log

(
1−

σ̂2p − σ̂2p′
σ̂2p

)
+
[(
N̂p′ + 1

) (
p′ + 1

)
−
(
N̂p + 1

)
(p+ 1)

]
logα(n)

:= T1 + T2.

Observe that by Corollary 3.3.2 on a set with probability 1 + o(1) we will have that N̂p′ =

N̂p = N . Therefore, the fact that the ζ’s are Gaussian combined with the ℓ2 risk of

constrained least squares spline estimators, which can be found for example in Shen et al.

(2022), guarantee that on a set with probability 1 + o(1) we will have that |σ̂2p′ − σ2| <∼
n−1 log(n) for each p′ ≥ p. Consequently

T1 >∼ −
n

2

(
σ̂2p − σ̂2p′

)
/σ̂2p ≥ −

n

2

(∣∣σ̂2p − σ2∣∣+ ∣∣σ̂2p′ − σ2∣∣) /σ̂2p >∼ − log(n).

Again by Corollary 3.3.2 we have that with high probability

T2 = (N + 1)
(
p′ − p

)
logα(n)≫ log(n).

Consequently, for n sufficiently larger we have that with high probability sSIC(p′)−sSIC(p) >

0 for p′ > p. Next we consider the case p′ < p for which we have that

sSIC(p′)− sSIC(p)

=
n

2
log

(
σ̂2p′

σ̂2p

)
+
[(
N̂p′ + 1

) (
p′ + 1

)
−
(
N̂p + 1

)
(p+ 1)

]
logα(n)

:= T1 + T2. (3.38)
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By condition (iii) on a high probability set we must have that T1 is negative and of the

order O (n log(n)), while N̂p′ will be of the order O(n/ log(n)). Therefore, since α > 1

we are done. Since (p − p) = O(1) a union bound argument is sufficient to establish that

with n sufficiently large, on a high probability set, sSIC(p′) > sSIC(p) for all p′ ̸= p. This

completes the proof.

3.6.10 Remark on Assumption 3.3.3

We remark that 3.3.3 was made for ease of technical exposition, and although it does not

seem straightforward to relax the assumption in full generality we conjecture that Algorithm

3 is able to localize all change points at the optimal rate when the assumption is violated,

albeit with different leading constants in (3.16). The reason for the claim is the following:

Assumption 3.3.3 is made to avoid the possibility of signal cancellation, however examining

(3.23) in the proof of Lemma 3.6.7 it can be seen that there are only p values of δ′ for which

exact signal cancellation, and for any such δ′ increasing or decreasing δ′ by a constant will

result in an interval of the same order for which no signal cancellation occurs.

Here we show that Algorithm 3 can localize change points at the optimal rate in the

absence of Assumption 3.3.3 the when signal is piecewise linear. Moreover we provide some

simulated examples of piecewise polynomial signals which violate Assumption 3.3.3 and

show that the change points are still detected.

Relaxing Assumption 3.3.3 for piecewise linear signals signals

Here we show that for piecewise linear signals Algorithm 3 is able to localize all changes at

the minimax optimal rate when Assumption 3.3.3 does not hold, provided the remaining

assumption in Theorem 3.3.1 hold. Without loss of generality we consider the case of a

single change:

f◦ (t/n) =


α0 + α1 (t/n− η/n) if t ≤ η

β0 + β1 (t/n− η/n) else

.
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Therefore we will show that using the threshold λ = τ̂ λ̄, for some λ̄ > 0, on a high

probability set the change can be detected on an interval of length at most

Cn
2p∗

2p∗+1
(
16τ2λ̄2/∆2

p∗
) 1

2p∗+1 ,

where C is a sufficiently large constant and p∗ ∈ {0, 1} is defined as in (3.14). If sign(α0 −

β0) = sign(α1− β1) this can be shown precisely as in Lemma 3.6.7. Therefore, we examine

the setting in which sign(α0 − β0) ̸= sign(α1 − β1), for which there are three possible cases

of interest:

• Case I: ∆0 = ∆1 (δ/n)

• Case II: ∆0 > ∆1 (δ/n)

• Case III: ∆0 < ∆1 (δ/n)

Similar to Lemma 3.6.7, without loss of generality we let δ′ be an integer such that the

change occurs at location δ′ and put m = (p + 2)δ′. We therefore need to show that the

statistic |D1
1,m (Y ) | can detect the change point with high probability for an appropriately

chosen δ′. For ease of reading introduce the notation

C1 = 1/

√√√√ 2∑
i=0

(
2

i

)2

gδ′ =
1

δ′

δ′∑
t=1

(
1− t/δ′

)
for δ′ ∈ N.

Case I: let δ′ be an integer for which δ′ < δ/2. Using the facts that ∆1/∆0 = n/δ and

gδ′ < 1/2 for all δ′ we have that

∣∣D1
1,m (f)

∣∣ ≥ C1

√
δ′
(
∆0 − gδ′∆1

(
δ′/n

))
= C1

√
δ′
(
∆0 − gδ′∆0

(
δ′/δ

))
≥ 3C1

4

√
δ′∆0

and the desired result follows by rearranging (3.21).

Case II: this can be treated similarly to Case I.
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Case III: note that there is a δ′′ for which ∆0 = ∆1 (δ
′′/n). We first consider the setting

where δ′′ < (2/C1)
2 (16τ2λ̄2/∆2

1

)1/3
, in which case letting δ′ be such that δ′ > 24δ′′, and

using the fact that gδ′ ≥ 1/12 for all δ′ > 1 by (3.22), we have that

∣∣D1
1,m (f)

∣∣ ≥ C1

√
δ′
(
gδ′∆1

(
δ′/n

)
−∆0

)
≥ C1

12

√
δ′
(
∆1

(
δ′/n

)
− 12∆0

)
≥ C1

24

√
δ′∆1

(
δ′/n

)
.

Therefore, rearranging (3.21) and accounting fort the facts that we must have δ′ > 24δ′′,

along with the fact that (2/C1)
2 > (24/C2)

2/3, we obtain that the change will be detected

as soon as

δ′ ≥ 24 (2/C1)
2 (16τ2λ̄2/∆2

1

)1/3
.

Finally we consider the case δ′′ ≥ (2/C1)
2 (16τ2λ̄2/∆2

1

)1/3
. In this case, letting δ′ ≤ δ′′ and

using the fact that ∆0 ≥ ∆1 (δ
′/n) for all such δ′ we obtain that

∣∣D1
1,m (f)

∣∣ ≥ C1

√
δ′
(
∆0 − gδ′∆1

(
δ′/n

))
≥ C1

2

√
δ′∆0 ≥

C1

2

√
δ′∆1

(
δ′/n

)
,

and as in the previous cases the desired result follows by rearranging (3.21).

Examples of higher order polynomials which violate 3.3.3

Here we give simulated examples of higher order piecewise polynomial signals which violate

Assumption 3.3.3, and show that Algorithm 3 is still able to detect the change points in

practice. Specifically we consider three piecewise quadratic signals with a single change

point at location η:

f◦ (t/n) =


α0 + α1 (t/n− η/n) + α2 (t/n− η/n)2 if t ≤ η

β0 + β1 (t/n− η/n) + β2 (t/n− η/n)2 else

(3.39)

We consider three instances of (3.39) where in each case the sample size is n = 500, the

change point occurs at location η = n/2, and changes occur in two derivatives of different

order in such a way that the changes work against each other in the sense that they have

different signs and the signal strengths as measured by ∆j (δ/n)
j for j = 0, 1, 2 exactly
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match. The three models are denoted by M1, M2, and M3 and the values of the α’s and β’s

are given in Table 3.8.

Table 3.8: Values of α’s and β’s for three instances of (3.39) which violate Assumption
3.3.3 when the sample size is n = 500 and the change point occurs at location
η = n/2.

α0 β0 α1 β1 α2 β2
M1 −1/2 1/2 −2 2 0 0

M2 0 0 6 −6 −12 12

M3 1/2 −1/2 0 0 −2 2

We contaminate the signals with independent noise having marginal N
(
0, 0.52

)
distribu-

tion and apply Algorithm 3 with parameter α = 0.1. The results of this experiment, which

was run with random seed 42 in R, are shown in Figure 3.6. In all three cases Algorithm 3

returns a single interval which contains the true change point location.
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Figure 3.6: Piecewise polynomial signals which violate Assumption 3.3.3 with coefficients
specified in Table 3.8, contaminated with i.i.d. Gaussian noise having standard
deviation σ = 0.5 (left column). Intervals of significance with uniform 90%
coverage returned by our procedure (right column). Black dashed lines (- - -)
represent underlying piecewise polynomial signal, light grey lines (—) repre-
sent the observed data sequence, red shaded regions (■) represent intervals of
significance returned by our procedure.

(a) M1 + Gaussian noise (b) intervals returned by our procedure

(c) M2 + Gaussian noise (d) intervals returned by our procedure

(e) M3 + Gaussian noise (f) intervals returned by our procedure
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Confidence Sets

4.1 Introduction and problem statement

In this chapter we return to the problem of performing inference on the unobserved change

point locations in the piecewise polynomial change point model. However, we restrict

our attention to signal which are either piecewise constant or piecewise linear. Motivated

by the fact that real data are often messy, exhibiting heavy tails, heteroskedasticity, and

distributions with arbitrary atoms, we develop a robust inference procedure which requires

almost no assumptions on the distribution of the contaminating noise entering the model.

On a high level we model the data’s median as piecewise polynomial, and recover disjoint

intervals which must each contain a change point location at a prescribed confidence level

by performing a larger number of local homogeneity tests. The tests in turn are based

on approximations of confidence sets for the underlying regression function obtained by

inverting certain multi-scale tests which act on the signs of the data. By working implicitly

with signs of the contaminating noise, which are automatically bounded independent of the

data’s distribution, we are able to develop a procedure which gives accurate inference on

the unobserved change point locations with almost no assumptions the data’s distribution.

In Section 4.1.1 below we motivate our procedure with a real data example. The remain-

der of the chapter is structured as follows. In Section 4.2 we introduce the change point

model, and present our method for recovering disjoint intervals which must each contain a

change point location at a prescribed confidence level. In Section 4.3 we present theoretical

properties of the procedure, including coverage guarantees and large sample guarantees on
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the recovery of all change point locations. In Section 4.4 we extend the procedure to set-

tings in which the contaminating noise is serially dependent, and discuss the procedure’s

behavior in settings when the data have non-unique median. Finally, in Section 4.5 we

show the the practical value of our procedure compared to the state of the art via two

simulation studies and two real data examples.

4.1.1 A motivating example: the yearly Ozone concentration cycle

We motivate then need for robust uncertainty quantification in change point problems

via the following data example. Consider the time series of daily Ozone concentration

(maximum of one hour averages) in the Los Angeles basin during 1976; the data is available

through the mlbench package (Leisch and Dimitriadou, 2021) and was initially studied by

Breiman and Friedman (1985). The data is plotted in Figure 4.1a and exhibits heavy tails

and heteroskedasticity, as well as a visually obvious trend. It is well documented that

Ozone concentrations in the Northern hemisphere follow a pronounced yearly cycle with

the maximum occurring towards the middle of the year (Monks, 2000). In terms of signal

estimation using change point algorithms a piecewise constant fit is clearly not appropriate,

however one may consider modeling the data as piecewise linear with a single change point

where concentration level peaks.

We estimate the underlying signal using six state of the art algorithms for recovering

piecewise linear trends, which however do not not quantify the uncertainty around the

number of change points they recover or their locations, and show the results in Figures

4.1b and 4.1c. In particular we consider the narrowest-over-threshold (NOT) algorithm

of Baranowski et al. (2019a) with and without imposing continuity of the underlying sig-

nal (+cont), the Isolate-Detect (ID) algorithm of Anastasiou and Fryzlewicz (2022), the

Wald-type test for structural change (SC) of Bai and Perron (2003), free knot splines

(FKS) proposed by Spiriti et al. (2013), and finally multivariate adaptive regression splines

(MARS) proposed by Friedman (1991).

The plots show uncertainty among the methods regarding the locations and even the

number of change points present in the data, most likely due to the fact that the typical
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4.1 Introduction and problem statement

Figure 4.1: (a) Daily Ozone concentration in the Los Angeles basin during 1976; (b) es-
timated piecewise linear signals using NOT-cont ( - - -), NOT (- - -), and ID
(- - -); (c) estimated piecewise linear signals using MARS (- - -), FKS (- - -),
and SC (- - -); (d) 90% interval of significance obtained with our procedure
together with the estimated change point location taken to be the midpoint
of the interval and the estimated piecewise linear signal recovered via quantile
regression.

(a) (b)

(c) (d)
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4 Robust Inference for Change Points using Confidence Sets

assumptions of light tailed homoskedastic noise are violated. Since none of the methods

considered quantify the uncertainty around the objects they recover, it is difficult to judge

which is closest to the truth. Figure 4.1d shows regions obtained by running our procedure

searching for change points in a piecewise linear parametric description of the median, with

a nominal coverage level of %90. In this case a single interval is returned, and we estimate

the change point location as the centre of this interval then estimate the signal using a

median regression to the left and right of this point. This is justified since, under certain

mild conditions set out in Section 4.3, every interval returned by the algorithm contains

exactly one change point. The fitted signal agrees with the stylized facts regarding Ozone

concentration cycles, and unlike the other methods no change points are estimated at

locations which seem to correspond to local extremes in the contaminating noise.

4.2 Methodology

4.2.1 Model set-up

We first describe the data model, and our inference task, more formally. We work in the

setting where the data Y = (Y1, . . . , Yn)
′ are observed on an equi-spaced grid, and can be

written as the sum of a signal component and an noise component:

Yt = f◦ (t/n) + ζt , t = 1, . . . , n. (4.1)

The function f◦ : [0, 1]→ R is piecewise polynomial with known degree p ∈ {0, 1} and un-

known break locations. That is to say, associated with f◦ (·) are N , possibly diverging with

n, integer valued change point locations Θ = {η1, . . . , ηN} such that for each k = 1, . . . , N

the function f◦ (·) can be described as a degree p polynomial on [(ηk − p− 1)/n, ηk/n]

but not on [(ηk − p)/n, (ηk + 1)/n]. The aim is to recover sub-intervals of the index set

{1, . . . , n} such that, uniformly at some prescribed significance level, every interval contains

at least one change point location.

In order to ensure our inference procedure is robust to the distribution of the contami-
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nating noise we will only impose the two assumptions shown below. We do not impose any

restrictions regarding existence of moments or homogeneity of distribution, and stress that

the distribution of the contaminating noise does not need to be known.

Assumption 4.2.1. P (ζt > 0) = P (ζt < 0) for each t.

Assumption 4.2.2. sign (ζt) ⊥⊥ sign (ζs) for all s ̸= t.

The above assumptions are very mild. Assumption 4.2.1 requires the noise to be sign

symmetric, which automatically holds for all continuous (median centered) distributions.

Sign symmetry implies the median is a set containing zero, therefore we look for change

points in the piecewise polynomial parametrization of the data’s median. Issues concerning

possible non-uniqueness of the median are dealt with in Section 4.4.2. Assumption 4.2.2

requires the signs of the contaminating noise to be independent, which in fact allows for

a certain degree of serial dependence in the raw noise; for instance, if ζt = σt × εt with

ε1, . . . , εn being a sequence of symmetric and mutually independent random variables and

each σt being an Ft−1 measurable function, then the signs of the ζ’s are serially independent

whereas the ζ’s themselves are not. In Section 4.4.1 we relax Assumption 4.2.2 at the cost

of introducing some additional assumptions on the serial dependence in the sequence of

signs.

4.2.2 Main idea for change point inference

The main idea for change point inference follows from the idea of inference without selection

introduced in Section 2.2.3. Let {Ts:e}1≤s≤e≤n be a series of local tests, where each Ts:e :

(Ys, . . . , Ye)
′ 7→ {0, 1} tests the local null hypothesis

Hs:e
0 : f◦ (·) is a degree p polynomial on [s/n, e/n]. (4.2)

If the family-wise error of the tests tests is bounded by a given α ∈ (0, 1) it is clear that

with probability at least 1 − α the only (s, e) pairs on which a local null is rejected will

correspond to stretches of the data which contain at least one change point location. In

Section 4.2.3 below we construct a series of such tests subject to the requirements that:
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• The tests are robust to the distribution of the contaminating noise, in the sense of

their family-wise error being bounded by a given α, as long as the noise distribution

satisfies Assumption 4.2.1 and Assumption 4.2.2.

• The tests can be computed efficiently for any polynomial degree p ∈ {0, 1}, and on

any local stretch of the data.

In order to efficiently recover the narrowest sub-intervals of the index set which each contain

a change point location, we embedding our local tests in the Narrowest Significance Pursuit

algorithm which was described in detail in Section 2.2.3 and Algorithm 2. In numerical

experiments we use the following method for constructing a grid of sub-intervals, which

corresponds to the function subIntervalsGrid in Algorithm 2. We first select an integer

M which determines how many intervals will be in the grid, then draw all sub-intervals

from a restricted index set, and finally re-scale the intervals so they cover the original index

set. Pseudo-code is provided in Algorithm 5. In practice we always set M = 1000.

Algorithm 5: Algorithm for drawing a coarse grid of contiguous sub-intervals
from the interval {s, . . . , e}.
function subIntervalsGrid(s, e,M):

nM ←
⌊(
1 +
√
1 + 8M

)
/2
⌋
∨ (e− s+ 1)

δM ← ⌊(e− s) / (nM − 1)⌋
for (s, e) in allSubIntervals(1, nM) do

(s, e)← ((s− 1)δM + 1, (e− 1)δM + 1)
end

return

4.2.3 Construction of local tests

Our starting point for a local test is the robustified test of Fryzlewicz (2023), which corre-

sponds to locally fitting the degree p polynomial which produces empirical residuals whose

signs have the smallest (absolute) standardized partial sums, then checking whether the
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same quantity exceeds a given threshold:

T λ
s:e (Y ) = 1

{
min
f̂

max
s≤i≤j≤e

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

sign
(
Yt − f̂ (t/n)

)∣∣∣∣∣ > λ

}
, 1 ≤ s ≤ e ≤ n.

(4.3)

The minimisation is over all polynomials of degree p. This test has the appealing property

that, for any sub-interval on which a change point does not occur, the following inequality

must hold:

min
f̂

max
s≤i≤j≤e

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

sign
(
Yt − f̂ (t/n)

)∣∣∣∣∣
≤ max

1≤i≤j≤n

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

sign (ζt)

∣∣∣∣∣ . (4.4)

Under Assumptions 4.2.1 and 4.2.2 partial sums of sign (ζt) will always be stochastically

bounded by partial sums of Rademacher random variable regardless of the distribution of

the ζ’s. It is therefore straightforward to stochastically bound (4.4) and so obtain a λ which

controls the family-wise error of (4.3).

Unfortunately due to the non-linearity of the sign function this local test cannot be

computed efficiently. An exception occurs for the case p = 0, which is studied in Fryzlewicz

(2021), where it is shown that allO
(
n2
)
possible local tests can be computed inO

(
n3
)
time.

However, for general p computing (4.3) as described in Fryzlewicz (2023) has computational

complexity O
(
(e− s+ 1)p+3

)
for ever (s, e) pair. This is because for every candidate f̂

which produces a unique sequence of residual signs, of which there are at least of the order(
e−s+1
p+1

)
, it is necessary to compute all partial sums of the same residual signs, which is an

O
(
(e− s+ 1)2

)
operation.

To avoid these computational challenges we relax the parametric assumption on (4.3)

and invert the resulting test to obtain a local confidence set for f◦ (·). By the duality

of hypothesis tests and confidence regions we can equivalently test whether the resulting

confidence set contains a polynomial of degree p. Conceptually, a local confidence set can

be built as follows. For a candidate regression function f : [0, 1] → R write the empirical
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residuals as ζ̂ft = Yt − f(t/n). In light of (4.3) we say the empirical residuals look locally

like noise if they pass the test

ψf
s:e (Y ) = 1

{
max

s≤i≤j≤e

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

sign
(
ζ̂ft

)∣∣∣∣∣ > λ

}
. (4.5)

Then, if λ is chosen using (4.4) to control the family-wise error of (4.3) at some level

α, a local 1 − α level confidence set for f◦ (·) is immediately given by Cs:e (Y , α) ={
f | ψf

s:e (Y ) ̸= 1
}
. The following test is therefore equivalent to the computationally infea-

sible test (4.3):

Ts:e (Y ) = 1 {Cs:e (Y , α) does not contain degree p polynomials} , (4.6)

We propose to calculate conservative point-wise upper and lower bounds on the set

Cs:e (Y , α) using existing methods from the shape constrained function estimation literature

(Davies and Kovac, 2001; Dümbgen and Johns, 2004), then approximate the local test (4.6)

by checking whether a degree p polynomial may pass between these bounds. This procedure

is described in detail below.

Point-wise bounds on confidence sets

We describe how conservative point-wise bounds on the set Cs:e (Y , α) =
{
f | ψf

s:e (Y ) ̸= 1
}

can be efficiently computed, using a procedure introduced by Dümbgen and Johns (2004).

Since the polynomial degree of the underlying signal is either 0 or 1 on stationary segments,

when inverting (4.5) we can naturally restrict attention to candidate f (·)’s which are either

non-increasing or non-decreasing. To show the main idea assume that on the interval

[s/n, e/n] it is known that f◦ (·) belongs to F↑, the set of all non-decreasing functions.

Obvious modifications will give bounds for non-increasing functions. With the additional

information that the regression function is non-decreasing, for each k ∈ {s, . . . , e} we care
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about computing the following point-wise upper and lower bounds:

L↑
k = inf {f (k/n) | f ∈ Cs:e (Y, α) ∩ F↑} (4.7)

U↑
k = sup {f (k/n) | f ∈ Cs:e (Y, α) ∩ F↑} .

The presence of the absolute value in (4.5) means that the bounds (4.7) cannot be

computed with a single pass through the data. Notice however that the test (4.5) can

be thought of as performing a two sided test at all scales and locations on the vector

of empirical residuals
(
ζ̂fs , . . . , ζ̂

f
e

)′
. For computing the lower bound we only care about

testing the right tail, and for computing the upper bound we only care about the left tail.

This naturally leads to the following bounds based on a one sided version of (4.5):

Ľ↑
k = inf

{
f (k/n) | f ∈ F↑, max

s≤i≤j≤e

1√
j − i+ 1

j∑
t=i

sign (Yt − f(t/n)) ≤ λ

}
, (4.8)

Ǔ↑
k = sup

{
f (k/n) | f ∈ F↑, max

s≤i≤j≤e

1√
j − i+ 1

j∑
t=i

sign (f(t/n)− Yt) ≤ λ

}
.

For each k ∈ {s, . . . , e} it necessarily holds that Ľ↑
k ≤ L↑

k and Ǔ↑
k ≥ U↑

k , therefore any

coverage guarantees for a test based on (4.7) will hold for the same test based on (4.8).

Importantly, as explained in detail in in Dümbgen and Johns (2004), these new bounds can

be computed with a single pass through the data using the recursions:

Ľ↑
k = min

{
f̌ ∈ {−∞, Ys, Ys+1, . . . , Yk} | f̌ ≥ Ľ↑

k−1, max
s≤i≤j≤k

1√
j − i+ 1

j∑
t=i

sign(Yt − f̌) ≤ λ

}
,

Ǔ↑
k = max

{
f̌ ∈ {∞, Ye, Ye−1, . . . , Yk} | f̌ ≤ Ǔ↑

k+1, max
k≤i≤j≤e

1√
j − i+ 1

j∑
t=i

sign
(
f̌ − Yt

)
≤ λ

}
.

(4.9)

We remark that using (4.9) the vectors Ľ↑
s:e =

(
Ľ↑
s, . . . , Ľ

↑
e

)′
and Ǔ↑

s:e =
(
Ǔ↑
s , . . . , Ǔ

↑
e

)′
can be computed in quadratic time by pre-sorting the candidate set of f̌ ’s at each step k

and using the fact that it is only necessary to check the value of partial sums with index
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pairs (i, j) that were not previously considered at any step k′ < k. Algorithm 6 below

provides pseudo code for the computation of Ľ↑
s:e from data; the vectors Ǔ↑

s:e, Ľ↓
s:e and Ǔ↓

s:e

can be computed in a similar fashion with obvious modifications. We stress however that

the algorithm is due to Dümbgen and Johns (2004), and that the main technical innovation

in this Chapter is the application of (4.9) to the problem of change point inference.

Algorithm 6: Algorithm for constructing a uniform lower bound on an unknown
isotonic function. Given data Ys, . . . , Ye and a threshold λ the algorithm returns
a sequence of point-wise lower bounds Ľ↑

s, . . . , Ľ
↑
e constructed according to (4.9).

function lowerBound({Ys, . . . , Ye} , λ):
Ľ↑
s ← −∞

for k ∈ {s+ 1, . . . , e} do
Ľ↑
k ← Ľ↑

l−1

j ← k
end
while j > s do

if j = k then
S← 0
rNew←∞

end

if min (Yt | j + 1 ≤ t ≤ e) > Ľ↓
k then

S← S+ 1
rNew← min (rNew,min (Yt | j + 1 ≤ t ≤ e))

end
else

S← S+ 1
end
d← k − j + 1
if S > λ

√
d then

j ← j − 1
end
else

Ľ↑
k ← rNew

j ← k
end

end

return
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Explicit local tests based on confidence sets

We are finally in a position to describe our local test. If we knew the (initial) monotonicity

of f◦ (·) on the interval under consideration we would pick the appropriate test from

T ↑
s:e (Y ) = 1

{
Ľ↑
s:e and Ǔ↑

s:e seperable by degree p polynomial
}
,

T ↓
s:e (Y ) = 1

{
Ľ↓
s:e and Ǔ↓

s:e seperable by degree p polynomial
}
.

Since the monotonicity of f◦ (·) is not known, when p = 0 we reject the local null (4.2) if

both tests of the above tests reject. However, when p = 0 the monotonicity of f◦ (·) under

the local null is known. In this case it is enough to take the maximum, as opposed to the

minimum, of the two test in (4.10). Finally, our local tests have the form:

Ts:e (Y ) =


T ↑
s:e (Y ) ∨ T ↓

s:e (Y ) if p = 0

T ↑
s:e (Y ) ∧ T ↓

s:e (Y ) if p = 1

. (4.10)

In practice having computed appropriate point-wise bounds, each local tests can be

evaluated very quickly. For example, with p = 0 we simply check whether the minimum

upper bound exceeds the maximum lower bound, which can be done in constant time. With

p = 1 we check whether the convex hulls of the lower and upper bounds intersect, which

can be done in logarithmic time using for example the algorithm in Barba and Langerman

2014. Consequently, the computational complexity of testing an interval {s, . . . , e} for a

change point in the underlying picewise polynomial signal of degree p ∈ {0, 1} is of the order

O (e− s+ 1)2. This compares favourably to the time complexity of the naive procedure

described in Section 4.2.3, which is of the order O
(
(e− s+ 1)p+3

)
for generic p’s.
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4.3 Theoretical properties

4.3.1 Coverage guarantees

We first investigate the choice of threshold λ which guarantees the local tests (4.10) will have

correct coverage when embedded in the generic Narrowest Significance Pursuit algorithm.

Achieving correct coverage boils down to stochastically bounding all standardized partial

sums of the sign of the noise terms in model (4.1), since the proof of Theorem 4.3.1 reveals

that on the event that all such partial sums are smaller than the chosen λ the function

f◦ (·) will be contained within the lower and upper bounds constructed according to 4.2.3

on any stretch of the data free from change points. As such, on this event no test of the

form (4.10) will wrongly reject.

Kabluchko andWang (2014) study the limiting distribution of the maximum standardized

partial sum of a sequence of independently and identically distributed random variables,

for a range of distributions. From their Theorem 1.1 we have that under Assumptions 4.2.1

and 4.2.2, and the additional requirement that P (ζt = 0) = 0, for any fixed constant z it

holds that

lim
n→∞

P

(
max

1≤i≤j≤n

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

sign (ζt)

∣∣∣∣∣ > an + z/an

)
→ 1− exp

(
−2Λe−z

)
(4.11)

as n → ∞. Here Λ is a numeric constant and an =

√
2 log

(
n log−

1
2 n
)
. Therefore, for a

given α ∈ (0, 1) we propose to use the following threshold in our local tests:

λ =

√
2 log

(
n log−

1
2 n
)
+ log

 1

log
(

1
1−α

)
/2Λ

 /

√
2 log

(
n log−

1
2 n
)
. (4.12)

A value for Λ is not explicitly given by Kabluchko and Wang, and we follow Fryzlewicz

(2021) in setting Λ = 0.274 which is a numeric approximation to the unknown constant

obtained via simulation. The threshold (4.12) can be used even if the contaminating noise

has an atom at zero. This is because putting ζ̃t = ζt | ζt ̸= 0 for the sequence of ζ’s with

ζ’s taking value zero removed, putting I = {t | ζt ̸= 0}, and letting P (I) stand for all
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contiguous partitions of I, the following double inequality must hold

max
1≤i≤j≤n

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

sign (ζt)

∣∣∣∣∣
≤ max

I∈P(I)

1√
|I|

∣∣∣∣∣∑
t∈I

sign (ζt)

∣∣∣∣∣ ≤ max
1≤i≤j≤n

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

sign
(
ζ̃t

)∣∣∣∣∣ . (4.13)

The first inequality is due to the fact that each partial sum on the left hand side of (4.13)

has a corresponding larger or equal in magnitude partial sum in the right hand side of (4.13)

constructed by removing the zeros from its numerator and decreasing (or not increasing)

its denominator. The second inequality holds trivially since the maximum on the right

hand side is taken over a set which contains the set over which the maximum on the left

hand side is taken. Consequently, (4.11) can be applied to the quantity appearing on the

right hand side of (4.13) and via (4.12) an asymptotically conservative threshold can be

obtained.

Under very mild assumptions we therefore have the following result, which states that

with high probability every interval returned by embedding the local tests (4.10) into

Algorithm 2 contains at least one change point location.

Theorem 4.3.1. Let assumption (Y1, . . . , Yn)
′ be a data vector from (4.1) and grant

Assumptions 4.2.1 and 4.2.2 hold. Let
{
Î1, . . . ÎN̂

}
be intervals returned by Algorithm

2 using any sub-sampling scheme, local test (4.10), and threshold (4.12). Then on a

set with probability 1 − α + o(1) every interval returned contains at least one change

point location.

In light of Theorem 4.3.1 above, we observe that the number of intervals returned can be

treated as an assumption free lower bound on the number of change points in the data.

4.3.2 Detection and localization guarantees

This section provides conditions under which our method is consistent, in the sense that

with high probability every interval returned contains exactly one change point and the
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number of intervals returned matches the number of change points. Since we aim to detect

changes in the median we need some control over the behaviour of the noise terms around

their medians. This is provided by the following assumption.

Assumption 4.3.1. The noise terms ζ1, . . . , ζt all have a unique median value of zero,

and there is a non-decreasing function H : [0, 1] → R+ with H (u) = ∞ if u = 1 and a

constant cH ∈ (0, 1) for which H is convex on [0, cH ] such that for any u ∈ [0, 1] it holds

that P (ζt ≤ H(u)) ∧ P (ζt ≥ −H(u)) ≥ (1 + u) /2.

If the noise terms are identically distributed with quantile function Q (·) we may simply

take H (u) = Q
(
1+u
2

)
. To simplify the exposition we consider a variant of the generic

Narrowest Significance Pursuit which acts on all contiguous sub-intervals of the index set

in its first stage search (lines 5-8). In practice such an algorithm would be prohibitively

slow, however no generality is lost. Indeed the same results (with different constants) could

have been obtained by considering an algorithm acting on any grid which is multi-scale in

the sense of Nemirovskii (1985); see also Definition 1 in Li et al. (2019).

Piecewise constant signals

We begin with the canonical setting in which the signal is piecewise constant. Here the

signal is a step function and can be written as

f◦ (t/n) =
N+1∑
k=1

µk1 {ηk−1 < t ≤ ηk} , µk ̸= µk+1.

Denote the size of each jump in the signal by ∆k = |µk − µk+1|. Following the discussion in

Section 4.2.3 our local test has the following explicit form in the piecewise constant setting:

Ts:e (Y ) = 1

{
min
s≤t≤e

Ǔ↑
t < max

s≤t≤e
Ľ↑
t

}
∨ 1

{
min
s≤t≤e

Ǔ↓
t < max

s≤t≤e
Ľ↓
t

}
. (4.14)

We have the following result, stating that under certain conditions our procedure detects

all change points and isolates them to their own interval with high probability.
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Theorem 4.3.2. Let (Y1, . . . , Yn)
′ be a data vector from (4.1) with piecewise constant

signal component, and grant assumptions 4.2.1 - 4.2.2 and 4.3.1 hold. Let
{
Î1, . . . , ÎN̂

}
be the intervals returned by a version of Algorithm 2 which acts on all sub intervals of

the index set, using threshold (4.12) local test (4.14). Assume the following condition

holds

δk > C1

(
log(n) ∨ log(n)

∆2
k

)
, k = 1, . . . , N. (4.15)

Then with probability 1− α+ o(1) the following events occurs simultaneously:

E∗
2 =

{
N̂ = N

}
,

E∗
3 =

{
∀k = 1, . . . , N Îk ∩Θ = ηk

}
,

E∗
4 =

{∣∣∣Îk∣∣∣ ≤ C2

(
log(n) ∨ log(n)

∆2
k

) ∣∣1 ≤ k ≤ N} .
Here C1, C2 satisfy C1 > 2C2.

The event E∗
4 gives the asymptotic rate at which our detection intervals expand, and this

matches the minimax localization rate for change point detection in the canonical piecewise

constant mean model. We note that Theorem 3.1 can easily be turned into standard a large

sample consistency result by choosing a threshold λ = (1 + ε) an for some small but fixed

ε > 0. In this case, the events {E∗
2 , E

∗
3 , E

∗
4} would hold on a set with probability 1− o (1).

Condition (4.15) gives the minimum signal to noise ratio which allows our method to

detect all change points with high probability. As shown by Wang et al. (2020) in the light

tailed noise setting no algorithm can consistently detect all change points when the signal

strength
√
δk∆k grows slower than the rate

√
log(n) and in this sense up to the O (log (n))

term condition (4.15) is unavoidable. The scale of the noise does not appear explicitly in

Theorem 4.3.2 since we work with the signs of the data. We note however that the leading

constants C1 and C2 do depend on the distribution of the noise through the function H(·).

The price to pay for this is precisely that even arbitrarily large jumps will be undetectable

if the minimum distance between change points is smaller that O (log (n)).
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Piecewise linear and continuous signals

Next we consider the setting in which the signal is piecewise linear, and continuous at each

change point location. Between adjacent change points the signal can be written as follows:

f◦ (t/n) =


µk + αk (t/n− ηk/n) if ηk−1 < t ≤ ηk

µk + βk (t/n− ηk/n) if ηk < t ≤ ηk+1

. (4.16)

The effect of the change is now measured in terms of the difference in slopes before and

after the change point, that is ∆k = |αk − βk|. Write HL,↑
s:e (Y ) for the convex hull of the

points
(
s/n, Ľ↑

s

)
, . . . ,

(
e/n, Ľ↑

e

)
. Following the discussion in Section 4.2.3 the local test in

this setting is as shown below:

Ts:e (Y ) = 1
{
vol
(
HU,↑

s:e ∩HL,↑
s:e

)
> 0
}
∧ 1

{
vol
(
HU,↓

s:e ∩HL,↓
s:e

)
> 0
}
. (4.17)

We have the following result, stating that under certain conditions our procedure detects

all change points and isolates them to their own interval with high probability.

Theorem 4.3.3. Let (Y1, . . . , Yn)
′ be a data vector from (4.1) with piecewise linear

and continuous signal component, and grant assumptions 4.2.1 - 4.2.2 and 4.3.1 hold.

Let
{
Î1, . . . , ÎN̂

}
be the intervals returned by a version of Algorithm 2 which acts on

all sub intervals of the index set, using threshold (4.12) local test (4.17). Assume the

following condition holds

δk > C1

(
log(n) ∨ n2/3

(
log(n)

∆2
k

)1/3
)
, k = 1, . . . , N. (4.18)
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Then with probability 1− α+ o(1) the following events occurs simultaneously:

E∗
5 =

{
N̂ = N

}
,

E∗
6 =

{
∀k = 1, . . . , N Îk ∩Θ = ηk

}
,

E∗
7 =

{∣∣∣Îk∣∣∣ ≤ C2

(
log(n) ∨ n2/3

(
log(n)

∆2
k

)1/3
)∣∣1 ≤ k ≤ N} .

Here C1, C2 satisfy C1 > 2C2.

Assuming ∆k = O (1) we obtain intervals with width of order O
(
n2/3 log1/3(n)

)
which

matches the localization rate in Baranowski et al. (2019a) and trails the minimax rate es-

tablished by Raimondo (1998) by a logarithmic factor. This again reveals that the intervals

returned are the narrowest possible (up to log factors). For the same reason as in Theorem

4.3.2 the scale of the noise does not appear in the result.

4.4 Extensions

4.4.1 Serially dependent noise

The local tests described so far are designed with (sign) independent noise in mind, and

may break down in the presence of serially dependent noise. We therefore propose a variant

of the local tests (4.10) which come with theoretical family-wise error guarantees in the

presence of serially dependent noise. We additionally provide some practical approaches

to inference in the presence of serially dependent noise, which work well but do not come

with any theoretical guarantees.

Construction of local tests under serially dependent noise

The main idea is to invert a non-parametric relaxation of the local test (4.3) where, for

some W which diverges with n, partial sums of the signs of empirical residuals are taken

only over scales of size W or larger. That is, we replace the point-wise bounds in (4.10)
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with the new bounds:

Ľ↑
W,k = inf

f (k/n) | f ∈ F↑, max
s≤i≤j≤e
j−i>W

1√
j − i+ 1

j∑
t=i

sign (Yt − f(t/n)) ≤ λ

 ,

Ǔ↑
W,k = sup

f (k/n) | f ∈ F↑, max
s≤i≤j≤e
j−i>W

1√
j − i+ 1

j∑
t=i

sign (f(t/n)− Yt) ≤ λ

 . (4.19)

In order to control the family-wise error of this new collection of tests, we need an

analogue of the result (4.11) for standardized partial sum of signs of the noise calculated at

scales larger than or equal to W . In order to obtain such a result, we impose the following

additional assumptions.

Assumption 4.4.1. The signs of the noise terms constitute a weakly stationary process

with auto-covariance function γh = Cov (sign (ζt) , sign (ζt+h)) and strictly positive long run

variance τ2 = γ0 + 2
∑

h>0 γh.

Assumption 4.4.2. There exists a Wiener process {B(t)}t>0 such that for some ν > 0,

possibly after enlarging the probability space, it holds P-almost surely that
∑n

t=1 sign (ζt)−

τB(n) = O
(
n

1
2+ν

)
.

Assumption 4.4.3. With the same ν as in Assumption 4.4.2 the quantity W satisfies (i)

n/W →∞ and (ii) n
2

2+ν log(n)/W → 0.

Crucially, Assumption 4.4.2 allows partial sums of the sign process taken over scales of

size W or larger to be replaced by increments of a Wiener process without affecting the

asymptotics. Therefore, the serial dependence in the noise can be safely ignored. With

these assumptions in place we have the following result.

Theorem 4.4.1. Let Assumption 4.2.1 and Assumptions 4.4.1 -4.4.3 hold, and intro-

duce the quantity

Ln,W (ζ) = max
1≤i≤j≤n
j−i>w

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

sign (ζt)

∣∣∣∣∣ .
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(i) For any fixed z ∈ R it holds that P
(
an,W τ

−1Ln,W (ζ)− bn,W ≤ z
)
→ exp (−2e−z)

as n→∞, where the scaling and centring sequences are given by an,W =
√

2 log (n/W )

and bn,W = 2 log (n/W ) + 3
2 log log (n/W ) − log (2

√
π). (ii) Moreover, the result in

(i) continues to hold if τ is replaced by a consistent estimator satisfying |τ̂ /τ − 1| =

oP
(
log−1(n/W )

)
.

In light of Theorem 4.4.1 above, for a given α we propose to use the following threshold:

λ = τ̂

(√
2 log(n/W ) +

3
2 log log(n/W )− log (2

√
π) + log

(
−2 log−1 (1− α)

)√
2 log(n/W )

)
. (4.20)

Arguing as in the proof of Theorem 4.3.1 it is clear that local tests based on (4.10) built

the using bounds (4.19) and threshold (4.20) will have family-wise error no larger than

1− α+ o(1). In numerical experiences we find that using a scale W of the order O
(
n1/3

)
results in our test having good practical performance, in terms of detection power and the

tests maintaining the desired level, across a range of noise types and test signals.

Long run variance estimation

In order to make the threshold defined in (4.20) operational, it is necessary to estimate the

long run variance of the sequence of signs of the noise at the rate specified in part (ii) of

Theorem 4.4.1. We propose to estimate the time average variance constant (TAVC, Wu

2009) at a particular scale W ′. The TAVC at a given scale W ′ is defined as follows:

TAVC
(
W ′) = E

( 1√
W ′

W ′∑
t=1

sign (ζt)

)2
 .

As long as W ′ diverges the TAVC is consistent for the long run variance. Moreover, as

argued by McGonigle and Cho (2023) scaling by the (square root of) the TAVC, in place of

the long run variance, can improve the performance of change point tests since the TAVC

at an appropriately chosen scale will better accounting for the local variability of the test

statistic used. Our estimator for the TAVC is based on local block-wise estimates of f◦ (·)

and its construction proceeds in three steps:
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1. Divide the index set {1, . . . , n} into mutually disjoint blocks I1, . . . , I⌊n/W ′⌋ and

likewise mutually disjoint blocks J1, . . . , J⌊n/W ′2⌋ where |Ij | = W ′ for each j =

1, . . . , ⌊n/W ′⌋ and |Jk| =W ′2 for each k = 1, . . . ,
⌊
W ′2⌋.

2. On each of the Jk’s form an estimator f̂Jk (·) for f◦ (·) based on the observations

{Yt | t ∈ Jk} via some base method, such as for example quantile regression.

3. On each of the Ij ’s form the sequence of empirical residuals according to {ζ̂t,j =

Yt − f̂Jσ(j)
(t/n) | t ∈ Ij}, where in particular σ(j) = inf {k | 2× |Ij ∩ Jk| ≥ |Ij |},

Finally, our estimator for the TAVC at scale W ′ is defined as follows:

T̂AVC
(
W ′) = ⌊n/W ′⌋−1

⌊n/W ′⌋∑
j=1

 1√
W ′

∑
t∈Ij

sign
(
ζ̂t,j

)2

. (4.21)

In order to show consistency of (4.21) for the long run variance of the sign process we

need the following assumption on the noise and on the local estimator of the regression

function.

Assumption 4.4.4. The ζ’s have absolutely continuous and bounded density functions.

Assumption 4.4.5. The auto-covariances decay fast enough that
∑

h>1 h |γh| < ∞, and

for any integer h and any ordered subset of {1, . . . , n− h}, say M , it holds that

|M |−1
∑
t∈M

sign (ζt) sign (ζt+h) = γh +OP

(
1/
√
|M |

)
.

Assumption 4.4.6. There is an absolute constant Cf such that if f̂J (·) is obtained from

the sample {Yt | t ∈ J} which is free from change points then it holds with probability at

least 1− |J |−1 that ∥∥∥f̂J − f◦∥∥∥
J,∞

< Cf

√
log (|J |) / |J |,

where ∥f∥J,∞ = supt∈J |f (t/n)|.
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Assumption 4.4.4 is purely technical, and in fact is relaxed in the simulation study pre-

sented in Section 4.5. Assumption 4.4.5 requires that the auto-covariance for the sequence

of signs decays sufficiently fast, and can be estimated well from a finite sample. Finally

Assumption 4.4.6 requires that f◦ (·) can be estimated accurately on a stretch of the data

free from change points. With these assumption in place we have the following result.

Lemma 4.4.1. Grant Assumption 4.2.1 and Assumptions 4.4.4-4.4.6 hold, then the

estimator for the TAVC at the scale W ′ satisfies

T̂AVC
(
W ′) = τ2 +OP

(
NW ′3

n
∨
√

log(W ′)

W ′

)
.

Lemma 4.4.1 reveals that if W ′ is chosen to be of the order O
(
nθ
)
for some θ < 1/3 then

(4.21) will satisfy part (ii) of Theorem 4.4.1 as long as the number of change points grows

more slowly than n1−3θ log (n/W ). In practice, in light of our preferred choice for W , we

choose W ′ to be of the order O
(
n1/3−ε

)
for some small fixed ε > 0.

Empirical alternatives to inference under dependent noise

Finally, we discuss two practical approaches to handling serially dependent noise. These

approaches do not come with any theoretical guarantees, however when applied in the real

data example presented in Section 4.5.2 we find they compare favorably to the theoretically

justified solution proposed above.

• If one has access to a stretch of data known to be free from change points, it is often

possible to fit a parametric model to the change point free data then use the model

to pre-white the data being screened for change points prior to applying the original

local tests.

• One may pre-average the data over non-overlapping blocks of size h, obtaining a new

data set of length ⌊n/h⌋, then apply the original tests for sign independent noise to

153



4 Robust Inference for Change Points using Confidence Sets

the new data set. The motivation for this being that local averaging will reduce the

degree of serial dependence in the data.

4.4.2 Noise with non-unique median

It is desirable to have change point detection guarantees when the contaminating noise

terms have medians which are not unique. Removing Assumption 4.3.1 and keeping only

Assumptions 4.2.1 and 4.2.2 we can at best claim that the medians are sets which contains

zero. That is, there are constants θt ≤ 0 and θt ≥ 0 such that

median (ζt) =

{
θ ∈ R | P (ζt ≥ θ) ∧ (ζt ≤ θ) ≥

1

2

}
=
[
θt, θt

]
, t = 1, . . . , n. (4.22)

Our proofs of the theorems in Section 4.3.2 rely on the observation that once the mono-

tonicity of the signal has been correctly established under Assumption 4.3.1 there is always

a point where the upper and lower bounds respectively are “not too far” from the signal.

Under (4.22) it is clear that with probability 1− α+ o(1) uniformly on any interval I the

upper bound will never be closer than min
(
θt | t ∈ I

)
and the lower bound will never be

closer than −max (θt | t ∈ I). To allow for a non-unique median we introduce the following

generalization of Assumption 4.3.1.

Assumption 4.4.7. The noise terms ζ1, . . . , ζt have medians given by (4.22) with θt ≤

0 ≤ θt, and there is a non-decreasing function H : [0, 1] → R+ with H (u) = ∞ if u = 1

and a constant cH ∈ (0, 1) for which H is convex on [0, cH ] such that for any u ∈ [0, 1] it

holds that P
(
ζt ≤ θt +H(u)

)
∧ P (ζt+ ≥ − (θt +H(u))) ≥ 1+u

2 .

With this assumption in place we can prove consistency of our method for any sign

symmetric noise. However, the weakest detectable jump will now also depend on the the

width of the median intervals. For example, we have to following counterpart to Theorem

4.3.2.

Corollary 4.4.1. Let Assumptions 4.2.1, 4.2.2 and 4.4.7 hold. Define the the widest

median interval around the j-th change point location as: Ξk = maxηk−1<t≤ηk+1

(
θt − θt

)
.

154



4.5 Numerical illustrations

Then Theorem 4.3.2 still holds by replacing the definition of the jump size by ∆′
k =

∆k − Ξk.

A similar analogue to Theorem 4.3.3 can likewise be obtained. In Corollary 4.4.1 above

one can even allow for ∆′
k = 0 as long as ∆k > 0. This is because with discrete valued noise

it is possible to obtain a stretch of data around a change point location on which the upper

and lower bounds perfectly interpolate the noise. That is, we may have Lt = f◦(t/n) + θt

and Ut = f◦(t/n) + θt for t ∈ {. . . , ηk − 1, ηk, ηk + 1, . . . }. Supplied with these bounds

the local test (4.14) will not declare a change point while ∆′
k = 0. However, if perfect

interpolation occurs and we test for a deviation from a polynomial of degree p ∈ {0, 1, }

it is clear that there is exactly one such polynomial which separates the upper and lower

bound. Therefore, we can perform a second stage test for whether this unique polynomial,

say f̂ (·), produces empirical residuals which pass test (4.5). If the test is not passed, we

declare a change point on the interval being inspected.

The second stage test gives our procedure non-trivial power even when ∆′ = 0 and more-

over does not affect the coverage guarantees. This is because on null intervals, uniformly

with probability 1−α+ o(1), the upper and lower bounds contain all functions which pro-

duce empirical residual that pass test (4.5). However if f̂ (·) is the only degree p polynomial

which separates the upper and lower bounds then we must have that f̂ (·) ≡ f◦ (·) on the

interval being tested.

4.5 Numerical illustrations

4.5.1 Simulation studies

Since existing methods for robust change point inference are mostly limited to the piecewise

constant setting, for the sake of comparison we present simulations in this setting. The

main take away message from this section is that despite being designed with generality

in mind our method is competitive with respect to state of the art methods designed

specifically for the piecewise constant setting. We compare our method to the robust

Narrowest Significance Pursuit (RNSP) algorithm of Fryzlewicz (2021), the non-robust
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Narrowest Significance Pursuit algorithm of Fryzlewicz (2023) with local tests based on

self-normalized partial sums (NSP-SN), the multi-scale quantile segmentation algorithm

(MQS) of Jula Vanegas et al. (2021), and finally the heterogeneous simultaneous multi-

scale change point estimator (HSMUCE) of Pein et al. (2017). All of these methods return

intervals whose nominal coverage can be specified by the user. MQS can be tuned to detect

changes in any quantile, and throughout we select tuning parameters such that it looks for

change points in the median. We write SET when describing the performance our main

procedure, and SET-DEP when describing the performance of the local tests introduced in

Section 4.4.1 designed to deal with serially dependent noise.

Coverage

We first investigate the finite sample coverage for our method and the competing methods

described above. This is done by applying each method to a vector of pure noise 100

times, and recording the number of times no intervals of significance are returned. For

each method we select tuning parameters so that the output is a set of intervals with

nominal 90% coverage. We investigate six noise types, described below, which conform to

Assumptions 4.2.1 and 4.2.2, and each time simulate noise vectors having length n = 512.

• Gaussian: ζt ∼ N (0, 10) i.i.d.

• Cauchy: ζt ∼ Cauchy (0, 1) i.i.d.

• Sym. Poisson: ζt = rt × Pt with rt ∼ Rademacher i.i.d. and Pt ∼ Poisson (7) i.i.d.

• GARCH: ζt = εtσt with εt ∼ N (0, 1) i.i.d. and σ2t = 10 + 0.45ζ2t−1 + 0.45σ2t−1

• TV-Variance: ζt = 6 (1 + sin (tπ/n)) εt and εt ∼ t3 i.i.d.

• Mix: ζt ∼ Rademacher i.i.d. if 0 < t ≤ ⌊n/3⌋; ζt ∼ Sym. Poisson i.i.d. if ⌊n/3⌋ < t ≤

⌊2n/3⌋; ζt ∼ t3 i.i.d. else

The results of the simulation study are presented in Table 4.1. Both of our proposed

methods, along with RNSP and MQS, keep their coverage guarantees across all noise types
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and in fact tend to deliver over coverage. NSP-SN maintains desired coverage for all

noise types apart from ‘Cauchy’ which makes sense since it only promises statistical size

control when the noise is in the basin of attraction of the Gaussian distribution. H-SMUCE

maintains coverage when the noise is continuous, but breaks down in the presence of discrete

noise. This again makes sense since it was designed with Gaussian noise in mind, and with

discrete noise the local variance estimator can become unstable when calculated on short

intervals.

Table 4.1: Proportion of times out of 100 replications each method returned no intervals
of significance when applied to a pure noise vector, satisfying Assumptions 4.2.1
and 4.2.2, with length n = 512.

Method Gauss Cauchy Sym. Poisson GARCH TV-Variance Mix

SET 0.97 0.98 0.98 0.98 1.00 0.89
SET-DEP 1.00 1.00 0.98 1.00 0.99 0.99
NSP-SN 1.00 0.53 1.00 1.00 1.00 0.94
RNSP 1.00 0.99 0.99 1.00 1.00 0.93

HSMUCE 0.98 1.00 0.17 0.98 1.00 0.22
MQS 0.97 0.98 1.00 0.99 0.98 0.90

We additionally investigate the finite sample coverage of the above methods in the pres-

ence of serially dependent noise. We repeat the experiment from Table 4.1 with five serially

dependent noise types described below. Among these INAR stands for the Integer Valued

Auto-regressive model proposed by Al-Osh and Alzaid (1987, 1988), which we briefly de-

scribe. INAR processes replace the operation of regressing on past values, as is done in

classical auto-regressive processes, with thinning. The thinning operator ◦ is in turn de-

fined as follows: if X is a non-negative integer-valued random variable and ϕ ∈ [0, 1], then

ϕ◦X =
∑X

i=1 Yi where the Yi’s are independently distributed Bernoulli distributed random

variables with success probability ϕ.

• AR(1)-A: ζt = 0.25ζt−1 + εt with εt ∼ N (0, 1) i.i.d.

• AR(1)-B: ζt = 0.5ζt−1 + εt with εt ∼ N (0, 1) i.i.d.

• ARMA(2,6): ζt = 0.75ζt−1 − 0.5ζt−2 + εt + 0.8εt−1 + 0.7εt−2 + 0.6εt−3 + 0.5εt−4 +

0.4εt−5 + 0.3εt−6 with εt ∼ N (0, 1) i.i.d.
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• INAR(1)-A: ζt = 0.25 ◦ ζt−1 + εt with εt ∼ Poisson (1) i.i.d.

• INAR(1)-B: ζt = 0.5 ◦ ζt−1 + εt with εt ∼ Poisson (1) i.i.d.

The results of the simulation study are given in Table 4.2. As guaranteed by Theorem

4.4.1 SET-DEP maintains the desired coverage level across each of the noise types. The

remaining methods break down in the presence of serially dependent noise, which of course

is to be expected as they are all designed to work in the setting of (sign) independent noise.

Table 4.2: Proportion of times out of 100 replications each method returned no intervals of
significance when applied to a vector of serially dependent noise having length
n = 512.

Method AR(1)-A AR(1)-B ARMA(2,6) INAR(1)-A INAR(1)-B

SET 0.77 0.21 0.00 0.50 0.09
SET-DEP 1.00 1.00 0.99 0.90 0.92
NSP-SN 0.94 0.62 0.07 0.33 0.23
RNSP 0.90 0.51 0.03 0.89 0.35

H-SMUCE 0.92 0.44 0.00 0.38 0.31
MQS 0.83 0.23 0.00 0.96 0.52

Detection power

Next we test the performance of our methods and their competitors on two test signals

contaminated with each of the noise types described above. The signals are described in

detail below, and examples of the two signals contaminated with the independent Gaussian

noise with standard deviation σ = 10 are shown in Figure 4.2.

• blocks: the first n = 512 values of the blocks signal from Donoho and John-

stone (1994), as shown in Figure 4.2a, with N = 4 change points at locations

Θ = {205, 267, 308, 472}

• staircase: a signal with length n = 500 as shown in Figure 4.2c, with initial value

zero and N = 4 jumps each of size ∆ = 12.5 at locations Θ = {100, 200, 300, 400}

We again run 100 simulations, and choose tuning parameters so that each method returns

intervals with nominal 90% coverage. On each iteration we record for each method the total

158



4.5 Numerical illustrations

length of intervals returned (length), the number of intervals which contain at least one

change point location (no. genuine), the proportion of intervals returned which contain at

least one change point location (prop. genuine), and whether all intervals returned contain

at least once change point location (coverage).

Figure 4.2: Sample paths of the blocks and staircase signals contaminated with indepen-
dent Gaussian noise with standard deviation σ = 10 (left column) and intervals
of significance returned by running SET with α = 0.1.

(a) the blocks signal (b) intervals returned by SET

(c) the staircase signal (d) intervals returned by SET

Tables 4.3 and 4.4 present the results of the simulation study for each of the signals

contaminated with noise conforming to Assumptions 4.2.1 and 4.2.2 introduced in the

previous section. In terms of the length of intervals returned and number of genuine
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intervals returned our method is frequently among the top two performing methods. Its

performance is similar to to that of RNSP, which is not surprising given the our local

test is essentially a non-parametric relaxation of the test used in Fryzlewicz (2021). We

finally remark that NSP-SN and H-SMUCE, the two methods based on self-normalization,

generally performed poorly; the extra flexibility provided by the local variance estimator

leads to a loss of power, and compared to other methods these methods consistently detected

fewer change points and returned longer intervals of significance.

Table 4.3: Average length of intervals returned (length), average of the number of inter-
vals returned which contain at least one change point location (no. genuine),
proportion of intervals returned which contain at least one change point loca-
tion (prop. genuine), and whether all intervals returned contain at least once
change point location (coverage), on the blocks signal contaminated with noise
satisfying Assumptions 4.2.1 and Assumption 4.2.2, over 100 replications.

Method Metrics Gaussian Cauchy Sym. Poisson GARCH TV-Variance Mix

length 65.35 30.80 51.85 44.86 77.58 44.76
SET no. genuine 2.93 3.99 3.03 3.66 2.33 3.93

prop. genuine 1.00 1.00 1.00 1.00 0.99 0.99
coverage 1.00 1.00 1.00 1.00 0.98 0.96

length 118.07 61.49 92.25 87.89 121.14 72.09
SET-DEP no. genuine 1.47 2.93 2.10 2.27 1.35 2.60

prop. genuine 0.99 1.00 1.00 1.00 0.88 1.00
coverage 0.99 1.00 1.00 1.00 0.88 1.00

length 117.94 135.58 76.21 95.86 149.55 37.04
NSP-SN no. genuine 1.85 1.50 2.46 2.40 0.92 2.90

prop. genuine 1.00 0.94 0.83 1.00 0.81 0.50
coverage 1.00 0.91 0.57 1.00 0.81 0.12

length 72.11 33.23 58.04 49.24 85.82 47.49
RNSP no. genuine 2.73 3.99 3.01 3.58 2.16 3.89

prop. genuine 1.00 1.00 1.00 1.00 1.00 1.00
coverage 1.00 1.00 1.00 1.00 1.00 1.00

length 83.87 26.60 33.88 50.52 144.07 8.94
H-SMUCE no. genuine 1.56 1.92 0.04 1.72 1.49 0.00

prop. genuine 0.80 0.96 0.04 0.86 0.89 0.00
coverage 0.63 0.92 0.04 0.73 0.85 0.00

length 105.38 40.68 87.60 66.74 128.08 49.75
MQS no. genuine 2.83 3.99 3.03 3.64 2.28 3.93

prop. genuine 1.00 1.00 1.00 1.00 1.00 1.00
coverage 1.00 1.00 1.00 1.00 0.99 1.00
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Table 4.4: Average length of intervals returned (length), average of the number of intervals
returned which contain at least one change point location (no. genuine), propor-
tion of intervals returned which contain at least one change point location (prop.
genuine), and whether all intervals returned contain at least once change point
location (coverage), on the staircase signal contaminated with noise satisfying
Assumptions 4.2.1 and Assumption 4.2.2, over 100 replications.

Method Metrics Gaussian Cauchy Sym. Poisson GARCH TV-Variance Mix

length 76.44 31.28 83.91 50.47 87.31 42.16
SET no. genuine 3.56 4.00 3.29 3.98 3.05 3.97

prop. genuine 1.00 1.00 1.00 1.00 1.00 0.98
coverage 1.00 1.00 0.99 1.00 1.00 0.89

length 136.49 66.20 143.99 104.17 151.17 80.43
SET-DEP no. genuine 2.19 4.00 1.86 2.87 2.09 3.87

prop. genuine 1.00 1.00 1.00 1.00 1.00 1.00
coverage 1.00 1.00 1.00 1.00 1.00 1.00

length 125.61 137.06 76.14 104.15 163.21 17.63
NSP-SN no. genuine 2.51 2.32 2.95 3.03 1.80 2.81

prop. genuine 1.00 1.00 0.76 1.00 1.00 0.22
coverage 1.00 1.00 0.37 1.00 1.00 0.00

length 82.69 33.60 91.26 54.83 95.81 45.80
RNSP no. genuine 3.39 4.00 3.00 3.97 2.85 4.00

prop. genuine 1.00 1.00 1.00 1.00 1.00 1.00
coverage 1.00 1.00 1.00 1.00 1.00 1.00

length 78.32 22.32 28.63 54.02 87.03 9.76
H-SMUCE no. genuine 1.86 2.00 0.23 1.98 1.68 0.00

prop. genuine 0.93 1.00 0.16 0.99 0.84 0.00
coverage 0.87 1.00 0.09 0.98 0.76 0.00

length 99.65 39.32 109.78 66.23 118.86 49.62
MQS no. genuine 3.53 4.00 3.19 4.00 2.99 3.99

prop. genuine 1.00 1.00 1.00 1.00 1.00 1.00
coverage 1.00 1.00 1.00 1.00 1.00 0.99

Tables 4.5 and 4.6 present the results of the simulation study for each of the signals

contaminated with serially dependent noise introduced above. Although some methods

maintain the desired coverage level under weakly dependent noise, such as AR(1)-A and

INAR(1)-A, all of the methods designed with (sign) independent noise in mind break down

in the presence of strongly dependent noise. Meanwhile, SET-DEP maintains the desired

coverage level across all noise types.
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4 Robust Inference for Change Points using Confidence Sets

Table 4.5: Average length of intervals returned (length), average of the number of intervals
returned which contain at least one change point location (no. genuine), propor-
tion of intervals returned which contain at least one change point location (prop.
genuine), and whether all intervals returned contain at least once change point
location (coverage), on the blocks signal contaminated with serially dependent
noise, over 100 replications.

Method Metrics AR(1)-A AR(1)-B ARMA(2,6) INAR(1)-A INAR(1)-B

length 28.59 32.29 32.87 30.28 33.19
SET no. genuine 4.00 4.00 3.84 4.00 3.94

prop. genuine 0.99 0.90 0.61 0.94 0.78
coverage 0.94 0.54 0.04 0.74 0.17

length 66.26 84.03 110.36 60.98 78.54
SET-DEP no. genuine 2.90 1.94 1.02 2.98 2.21

prop. genuine 1.00 1.00 1.00 1.00 1.00
coverage 1.00 1.00 1.00 1.00 1.00

length 41.41 42.51 56.06 7.01 7.58
NSP-SN no. genuine 4.00 4.00 3.92 0.54 0.58

prop. genuine 1.00 1.00 0.98 0.02 0.02
coverage 1.00 1.00 0.89 0.00 0.00

length 30.31 33.06 35.38 30.50 33.31
RNSP no. genuine 4.00 4.00 3.96 4.00 4.00

prop. genuine 1.00 0.94 0.69 0.99 0.93
coverage 0.98 0.70 0.10 0.96 0.66

length 16.66 20.66 34.84 14.47 12.11
H-SMUCE no. genuine 1.97 1.78 0.72 0.00 0.00

prop. genuine 0.98 0.89 0.36 0.00 0.00
coverage 0.97 0.79 0.13 0.00 0.00

length 38.09 43.63 39.80 35.57 38.51
MQS no. genuine 3.98 3.96 3.65 3.99 3.96

prop. genuine 0.99 0.92 0.59 1.00 0.97
coverage 0.96 0.64 0.03 0.99 0.85
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Table 4.6: Average length of intervals returned (length), average of the number of intervals
returned which contain at least one change point location (no. genuine), pro-
portion of intervals returned which contain at least one change point location
(prop. genuine), and whether all intervals returned contain at least once change
point location (coverage), on the staircase signal contaminated with serially
dependent noise, over 100 replications.

Method Metrics AR(1)-A AR(1)-B ARMA(2,6) INAR(1)-A INAR(1)-B

length 28.07 29.09 30.58 28.52 30.34
SET no. genuine 4.00 3.98 3.87 3.99 3.98

prop. genuine 1.00 0.95 0.66 0.97 0.86
coverage 1.00 0.75 0.07 0.83 0.45

length 67.91 83.42 110.03 64.75 79.80
SET-DEP no. genuine 4.00 3.99 2.36 4.00 4.00

prop. genuine 1.00 1.00 1.00 1.00 1.00
coverage 1.00 1.00 1.00 1.00 1.00

length 34.94 37.16 57.09 6.96 7.67
NSP-SN no. genuine 4.00 4.00 4.00 0.58 0.55

prop. genuine 1.00 1.00 1.00 0.02 0.02
coverage 1.00 1.00 1.00 0.00 0.00

length 30.08 30.61 32.64 30.07 30.78
RNSP no. genuine 4.00 4.00 3.92 4.00 3.99

prop. genuine 1.00 0.98 0.73 1.00 0.97
coverage 1.00 0.88 0.13 1.00 0.83

length 10.56 13.16 21.75 14.14 14.06
H-SMUCE no. genuine 1.98 1.83 1.05 0.02 0.04

prop. genuine 0.99 0.92 0.53 0.02 0.03
coverage 0.98 0.84 0.18 0.02 0.02

length 36.58 37.11 38.16 33.12 34.86
MQS no. genuine 4.00 3.97 3.62 4.00 3.96

prop. genuine 1.00 0.95 0.61 1.00 0.96
coverage 1.00 0.78 0.03 1.00 0.83
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4 Robust Inference for Change Points using Confidence Sets

4.5.2 Real data analysis: air quality during COVID-19 lock downs

We analyze daily concentrations of nitrogen dioxide as a proxy for air quality for the

four largest cities in Spain - Madrid, Barcelona, Valencia, and Sevilla - during the year

2020. The data were obtained from EuroAir (2022), and consist of daily averages of hourly

nitrogen dioxide concentration readings across all monitoring sites available for a particular

city. There is significant evidence supporting improvements in air quality in urban centres

following COVID-19 lock downs in various countries (Slezakova and Pereira 2021, Jephcote

et al. 2021). We choose data from Spain as there is strong a-priori evidence for two change

point locations: the Spanish government declared a state of alarm on March 14 lasting

until June 21, requiring all citizens to remain at home except to buy food and medicine

and all non-essential businesses to close. Figure 4.3 shows a plot of the data, and indeed

an abrupt change is clearly visible for all four cities around March 14 with a gradual return

to base line levels starting in early June. The data exhibits heavy tails, heteroskdasticity,

and some degree of auto-correlation, and is therefore a suitable test for the robustness of

our method.

Analysis with piecewise constant signal

We initially model the time series as following model (4.1) with a piecewise constant signal

component. Air quality during COVID-19 lock downs has been modeled in a similar fashion

by Cho and Fryzlewicz (2023) and Grange et al. (2021) among others. We apply SET and

SET-DEP with local test (4.14) and parameter α = 0.1. We also apply the four competing

methods discussed in Section 4.5.1, and select corresponding tuning parameters so that

each produces intervals with 90% coverage. We apply SET-DEP to the raw data. For the

remaining methods, which may fail in the presence of serially dependent noise, we first

remove the bulk of the auto-correlation in the data by working with residuals from an

AR(1) fit with parameter 0.5; this particular choice is justified by inspecting the robust

ACF of suitably de-trended data from the year 2018, which we assume to be free from

change points.

The intervals of significance returned by each method, and their widths, are shown in
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4.5 Numerical illustrations

Figure 4.3: Black solid lines (—) represent daily concentrations of nitrogen dioxide in four
Spanish cities during 2020; red dashed lines (- - -) represent the start and end
dates of the Spanish national state of alarm.

(a) Madrid (b) Barcelona

(c) Valencia (d) Sevilla
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4 Robust Inference for Change Points using Confidence Sets

tables 4.7a and 4.7d. For all four cities both SET and SET-DEP return exactly two intervals

of significance. This is in contrast to RNSP which fails to detect the end of the national

state of alarm in Barcelona returning only one interval. In general, pre-whitening the data

and applying SET results in slightly shorter intervals than applying SET-DEP to the raw

data. We note however that SET frequently returns intervals which are either the shortest

or very close in length to the shortest.

Table 4.7: Intervals of significance and their lengths (in brackets) returned by each method
when applied to daily nitrogen dioxide concentration level data for four Spanish
cities during the year 2020. The method SET-DEP was applied to the raw data,
while all other methods were applied to pre-whitened data; see the main text for
details.

SET SET-DEP NSP-SN RNSP HSMUCE MQS

Feb 14 - Mar 31 (47) Jan 24 - Apr 30 (97) Feb 06 - Apr 17 (72) Feb 09 - Mar 31 (52) Feb 04 - Apr 06 (63) Feb 09 - Mar 29 (49)
Jul 07 - Nov 25 (142) May 22 - Dec 04 (196) Jun 02 - Nov 27 (179) Jul 01 - Nov 25 (148) Jun 11 - Oct 31 (143) Apr 10 - Oct 22 (195)

(a) Madrid
SET SEt-DEP NSP-SN RNSP H-SMUCE MQS

Jan 13 - Apr 01 (80) Jan 06 - Apr 21 (106) Jan 06 - Apr 15 (101) Jan 13 - Apr 01 (80) Feb 04 - Apr 06 (63) Jan 13 - Mar 30 (77)
Apr 01 - Dec 20 (264) May 07 - Dec 20 (227) Apr 21 - Dec 03 (227) Apr 08 - Nov 16 (223) Apr 01 - Dec 03 (246)

(b) Barcelona
SET SET-DEP NSP-SN RNSP HSMUCE MQS

Feb 17 - Apr 04 (48) Jan 30 - Apr 13 (74) Jan 29 - Apr 15 (78) Feb 12 - Apr 05 (54) Feb 04 - Apr 06 (63) Feb 11 - Apr 04 (53)
May 26 - Nov 25 (184) Apr 19 - Dec 01 (226) May 02 - Dec 02 (215) May 11 - Nov 25 (199) May 16 - Sep 13 (121) Apr 17 - Nov 28 (225)

(c) Valencia
SET SET-DEP NSP-SN RNSP H-SMUCE MQS

Feb 16 - Apr 10 (55) Jan 25 - Apr 22 (88) Jan 27 - Apr 17 (82) Jan 29 - Apr 09 (72) Feb 20 - Mar 29 (39) Jan 07 - Apr 04 (88)
May 25 - Nov 05 (165) Apr 26 - Nov 05 (193) Apr 17 - Oct 07 (174) Jun 01 - Nov 20 (173) May 10 - Sep 13 (127) Apr 09 - Oct 08 (182)

(d) Sevilla

Analysis with piecewise linear signal

Next we model the data as coming from model (4.1) with a piecewise linear signal com-

ponent. There is some evidence that climate data is best modeled as piecewise linear

(Banesh et al., 2019) and besides a piecewise linear function seems visually to better fit the

data in Figure 4.3. We first attempt to locate any change points using methods for piece-

wise linear signals which however do not provide any coverage guarantees for the change

point location. In particular we consider the narrowest-over-threshold (NOT) algorithm of

Baranowski et al. (2019a) with and without imposing continuity of the underlying signal
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(+cont), isolate-detect (ID) of Anastasiou and Fryzlewicz (2022), the Wald-type test for

structural change (SC) of Bai and Perron (2003), free knot splines (FKS) of Spiriti et al.

(2013), multivariate adaptive regression splines (MARS) of Friedman (1991), trend filter-

ing (TF) of Tibshirani (2014) and Kim et al. (2009)), and finally the ℓ0 penalization based

algorithm (CPOP) of Maidstone et al. (2017).

The data exhibits heavy tails and is therefore not appropriate for use by any of the above

methods. We bring the data back to the light tailed domain by applying the Anscombe

transform, and again work with the empirical residuals from an AR(1) fit. The change point

locations obtained from the thus transformed data are reported in Table 4.8. Even in this

relatively simple setting where the change point is visible by eye the need for uncertainty

quantification is clear: there is considerable disagreement among the methods about the

location and even the number of change points present.

Next we apply our methods, SET and SET-DEP, again setting α = 0.1 but this time

testing for changes in a piecewise polynomial signal of degree 1. We apply SET-DEP to the

raw data. Prior to applying SET to the data we attempt to remove the bulk of the serial

correlation by pre-average the data using non-overlapping blocks of length 3. The intervals

obtained are shown in the final row to Table 4.8. The intervals cover the state of alarm

on March 14 as well as its relaxation on June 21. Importantly, the intervals appear to be

centered at regions of the data where a large proportion of the methods described above

agree a change point occurred. As a proportion of the total sample size the intervals are

indeed wide, however this reflects the observed uncertainty over change point locations and

is consistent with the larger asymptotic width for piecewise linear signals given in Theorem

4.3.3.

4.6 Proofs

4.6.1 Preparatory results

Proposition 4.6.1. For λ as in (4.12) with α ∈ (0, 1) fixed, for any constant Cα >
√
2

there is an integer n0 such that for all n > n0 it holds that λ < Cα
√
log n.
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4 Robust Inference for Change Points using Confidence Sets

Table 4.8: Estimated change point locations in pre-whitened and Anscombe transformed
time series of daily nitrogen dioxide concentrations in four Spanish cities in 2020,
obtained by change point detection and signal estimation methods suitable for
data having a piecewise linear trend. The final two rows represent intervals of
significance obtained by applying SET and SET-DEP to the data, testing for
change points in a piecewise polynomial signals of degree 1; see the main text
for details.

Method Madrid Barcelona Valencia Sevilla

NOT Mar 12 Mar 13 Mar 12 Mar 12

NOT (+cont) Apr 19 Apr 16 Apr 07 Apr 15

ID
Jan 28
Mar 10 14 Apr 18 Apr 12 Apr 19

SC Mar 13 Mar 13 Mar 12 Mar 12

MARS

Apr 17
Nov 03,23
Dec 03

Apr 17
Dec 18

Apr 04
Dec 21 Apr 12

FKS

Jan 30,31
Feb 01,02
Apr 07,08

Apr 17,18
Dec 16,17

Jan 14,15,16,17
Feb 24,25,28,29
Mar 10,11,12,13
Dec 20,21 Apr 12,13

CPOP

Jan 21
Feb 28,29
Mar 11,14
Sep 27,28
Oct 02,09,10,13
Dec 31

Apr 19
Dec 17,31

Mar 12,13
Dec 31 Apr 13, Dec 31

TF

Jan 20 27
Jan 20,27
Mar 21
Apr 09,29
Jul 26
Aug 31
Sep 23
Nov 22
Dec 05

Feb 19
Mar 31
Apr 12,17
Aug 21
Nov 17,22

Jan 19
Feb 20
Mar 30
Apr 29
Jul 13
Oct 01
Nov 18

Feb 23
Apr 10,13
Jun 05
Jul 06
Oct 28
Dec 06

SET Jan 30 - Aug 06 Jan 30 - Jul 16 Jan 30 - Aug 06 Feb 14 - Jul 31

SET-DEP Jan 25 - Nov 12 Jan 31 - Nov 12 Jan 25 - Aug 10 Jan 01 - Jul 30
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Proof. For α fixed it is clear that λ ∼
√
2 log(n).

Proposition 4.6.2. For any ϵ > 0 but not necessarily fixed and for Cα chosen as in 4.6.1

the following event holds with probability 1− o(1):

E2 (ϵ) =

{
max

1≤s≤e≤n

1√
e− s+ 1

∣∣∣∣∣
e∑

t=s

(
1{ζt≤ϵ} − P (ζt ≤ ϵ)

)∣∣∣∣∣ ≤ Cα

√
log n

}
.

Proof. See Theorem 1 in Shao (1995).

Theorem 4.6.1. Let {B(t)}t>0 be standard Brownian motion, and introduce the field of

its standardised incremetns as follows:

X (x, y) =
B(x+ y)−B(x)

√
y

x, y > 0. (4.23)

Introduce also the triangualr region H (n) =
{
(x, y) ∈ R2 | x ∈ [0, n], y ∈ [1, n− x]

}
. Then

putting an =
√
2 log(n) and bn = 2 log(n) + 3

2 log log(n)− log(2
√
π), for any z ∈ R it holds

that:

lim
n→∞

P

(
an

[
sup

(x,y)∈H(n)
X (x, y)

]
− bn ≤ z

)
= exp

(
−e−z

)
.

Proof. See Theorem 4.2 in (Kabluchko, 2007).

4.6.2 Intermediate results

Lemma 4.6.1. For any underlying f◦ (·) uniformly over all sub intervals of I ⊂ {1, . . . , n}

containing |I| > max
(
(4Cα/cH)2 log(n), λ2

)
points the bounds constructed according to

(4.9) satisfy

E3 (I) =

{
min
t∈I

(
f◦(t/n)− Ľ↑

t

)
∨
(
Ǔ↑
t − f◦(t/n)

)
≤ CH

√
log(n)

|I|

}

with probability 1− α+ o(1). Here CH > 0 is finite but may depend on the distribution of

ζ1, . . . , ζn.
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Note: the proof of the lemma is almost identical to the proof of Proposition 3.1 (b) in

Dümbgen (1998). However, it is not clear that this should be the case since Dümbgen’s

paper is based on the inversion of a different test. We therefore show a proof below.

Proof. We only show the part of the statement involving the lower bound. Assume there is

a quantity vn (I) = H
(
un/

√
|I|
)
such that for all t ∈ I we have

(
f◦(t/n)− Ľ↑

t

)
> vn (I).

By proposition 4.6.2 it follows that with high probability

1√
|I|

∑
t∈I

sign
(
Yt − Ľ↑

t

)
≥ 1√

|I|

∑
t∈I

(
21{ζt≥−vn(I)} − 1± 2P (ζt ≥ −vn (I))

)
≥ 1√

|I|

∑
t∈I

(2P (ζt ≥ −vn (I))− 1)− 2

(
max

1≤s≤e≤n

1√
e− s+ 1

∣∣∣∣∣
e∑

t=s

(
1{ζt≥−vn(I)} − P (ζt ≥ −vn (I))

)∣∣∣∣∣
)

≥ un − 2Cα

√
log n.

However this will not be consistent with the construction of Ľ↑ as specified in (4.9) unless

we also have un−2Cα
√
log n ≤ λ which combined with 4.6.1 implies that un ≤ 3Cα

√
log n.

Combining with Assumption 4.3.1 and the fact that |I| > (4Cα/cH)2 log(n) we finally

obtain that

min
t∈I

(
f◦ (t/n)− Ľ↑

t

)
≤ H

(
4Cα

√
log(n)

|I|

)
≤
{
4H (cH)Cα

cH

}√
log(n)

|I|
:= CH

√
log(n)

|I|
.

Lemma 4.6.2. Uniformly with probability 1− α+ o(1) for any interval I ⊆ {1, . . . , n} on

which f◦(·) is non-decreasing it holds that f◦(·) must lie between the bounds Ľ↑
I and Ǔ↑

I .

Likewise for any interval I on which f◦(·) is non-increasing it holds that f◦(·) must lie

between the bounds Ľ↓
I and Ǔ↓

I .

Proof. It is immediate from the construction in (4.8) that on any such I the function

Ľ↑ : I → R is point-wise smaller than the smallest non-decreasing function which produces
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empirical residuals which pass the test (4.5) and Ǔ↑ : I → R is point-wise larger than the

largest non-decreasing function which produces empirical residuals which pass the same

test. Finally by (4.11) with probability 1 − α + o(1) the function f◦(·) produces residuals

which pass the test (4.5). Therefore, on this event the true regression function must lie

between the bounds. The same argument for f◦(·) non-increasing on I.

Lemma 4.6.3. Let f◦ (·) be continuous, differentiable, and monotone on some interval

I ⊆ {1, . . . , n} containing at least

|I| ≥ λ2 ∨ C (n/ψ)2/3 log1/3 (n)

contiguous points, where ψ = inft∈I |f ′◦ (t/n)| and C depends on the constant CH from

Lemma 4.6.1. Then with probability 1− α + o(1) using the bounds (4.9) the monotonicity

of f◦ (·) can be correctly established on I.

Proof. Let f◦ (·) be non-increasing on such an interval I containing |I| := υ points; for

simplicity we assume υ/3 is an integer. On this interval construct Ľ↑
I and Ǔ↑

I using (4.9).

Partition I = I1 ∪ I2 ∪ I3 with |I1| = |I2| = |I3| = υ/3. By Lemma 4.6.1 with probability

1− α+ o(1) we must have

min
t∈I1

(
f◦ (t/n)− Ľ↑

t

)
≤ CH

√
3 log(n)/υ,

min
t∈I3

(
Ǔ↑
t − f◦ (t/n)

)
≤ CH

√
3 log(n)/υ.

By their monotonicity the bounds will cross if for any t1, t2 ∈ I with t1 > t2 we have

Ľ↑
t1
> Ǔ↑

t2
. Using the above we will surely have that Ľ↑

υ/3 > Ǔ↑
2υ/3 whenever

f◦ (υ/3n)− CH

√
3 log(n)/υ > f◦ (2υ/3n) + CH

√
3 log(n)/υ

⇒ − (υ/3n)

[
f◦ (2υ/3n)− f◦ (υ/3n)

υ/3n

]
> 2CH

√
3 log(n)/υ

⇒ (υ/3n) inf
t∈I

∣∣f ′◦ (t/n)∣∣ > 2CH

√
3 log(n)/υ

⇒ υ > C (n/ψ)2/3 log1/3 (n) .
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Next by Lemma 4.6.2 on the same interval Ǔ↓ and Ǔ↓ will not cross. Therefore on I we we

establish f◦ (·) is non-increasing.

4.6.3 Proof of Theorem 4.3.1

Proof. This follow immediately from Lemma 4.6.2.

4.6.4 Proof of Theorem 4.3.2

Proof. Consider testing for the k-th change point, with jump size ∆k, on an interval I

symmetric about the change point location containing |I| = υ > λ2 points and w.l.o.g.

assume f◦ (·) is non-decreasing on I. Partition I = I1 ∪ I2 where |I1| = |I2| = υ/2. See

also Figure 4.4 for graphical intuition. By Lemma 4.6.1 with probability 1 − α + o(1) for

all t ∈ I we have Ľ↑
t ≤ f◦ (t/n) ≤ Ǔ

↑
t and moreover

min
t∈I1

(
Ǔ↑
t − f◦(t/n)

)
≤ CH

√
2 log(n)/υ,

min
t∈I2

(
f◦(t/n)− Ľ↑

t

)
≤ CH

√
2 log(n)/υ.

Therefore using (4.11) and Proposition 4.6.2, with high probability the change point is

detected as long as ∆k > CH

√
8 log(n)/υ or equivalently as long as υ > 8CH log(n)/∆2

k.

By the condition on the constants in Theorem 4.3.2 such an interval will not interfere with

the intervals needed to detect the (k − 1)-th and (k + 1)-th change points which verifies

event E∗
4 . Finally by Theorem 4.3.1 with high probability no spurious change points are

detected.

4.6.5 Proof of Theorem 4.3.3

Proof. Consider testing for the k-th change point, with jump size ∆k, on an interval I

symmetric around the change point location and containing |I| = υ > λ2 points. We can

assume f◦ (·) is non-decreasing on I, since if the change point induces a local maximum

/ minimum Lemma 4.6.3 reveals this would be detected under the same conditions as
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Figure 4.4: graphical intuition for the proof of Theorem 4.3.2.

stated in Theorem 4.3.3. Note that if the change point is detected using
(
Ľ↑, Ǔ↑) it will

automatically be detected using
(
Ľ↓, Ǔ↓).

Without loss of generality let the change point occur in re-scaled time on the interval

[0, υ/n] and hence ηk = ⌊υ/2⌋. Consider partitioning I =
⋃5

j=1 Ij with I3 symmetric about

the change point location and |I1| = · · · = |I5| = υ/5. See also Figure 4.5 for graphical

intuition. Lemma 4.6.1 again gives that with high probability we will have

min
t∈I1

(
f◦(t/n)− Ľ↑

t

)
≤ CH

√
5 log(n)/υ ≡ ϵn,υ,

min
t∈I5

(
f◦(t/n)− Ľ↑

t

)
≤ CH

√
5 log(n)/υ ≡ ϵn,υ.

Next, introduce the strip Sx1,x2 =
{
(x, y) ∈ R2 | x1 ≤ x ≤ x2

}
and Hx1,x2 the open half

plane consisting of all points which lie below the line interpolating (x1, f◦(x1)− ϵn,υ) and

(x2, f◦(x2)− ϵn,υ). To fix the argument say the points in I1 and I5 at which Ľ↑ is closest to

f◦ are t1 and t5 and put xi = ti/n. Then if at any point on I3 the upper bound enters the

trapezoid Tx1,x5 = Hx1,x5∩Sx1,x5 the change point will be detected. Notice however that for

x′1 < x1 and / or x′5 > x5 we must have that Tx1,x5 ⊂ Tx′
1,x

′
5
. Therefore, the least favourable
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4 Robust Inference for Change Points using Confidence Sets

points at which Ľ↑ can be close to f◦ (·) are t∗1 = max(t | t ∈ I1) and t∗5 = min(t | t ∈ I5)

and for this combination, recalling the parametrization (4.16), we have that

Hx∗
1,x

∗
5
=

{
(x, y) ∈ R2 | y < µk +

1

2
(βk + αk)x−

(
1

2
· 3
5
· υ
n

)
αk − CH

√
5 log n/υ

}
.

For the interval I3 which contains the change point Lemma 4.6.1 again gives that

min
t∈I3

(
Ǔ↑
t − f◦(t/n)

)
≤ CH

√
5 log(n)/υ.

One of the two least favorable points at which this may occur is t∗3 = min(t | t ∈ I3).

Substituting we find that the point (x∗3, f◦(x
∗
3) + ϵn,υ) will lie inside Tx∗

1,x
∗
5
if for some C

depending on CH and powers of 5 we have that (βk − αk) υ
3/2 = ∆kυ

3/2 > Cn
√
log n. By

the conditions on the constants such an interval will not interfere with the intervals needed

to detect the (k− 1)-th and (k+1)-th change points and on by Theorem 4.3.1 no spurious

change points are detected. Therefore, the events E∗
5 , E

∗
6 , E

∗
7 are verified.

Figure 4.5: graphical intuition for the proof of Theorem 4.3.3.
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4.6.6 Proof of Theorem 4.4.1

Proof. For any fixed z ∈ R, omitting dependence on z, write un,W = (bn,W + z) /an,W .

Writing also Sx =
∑x

t=1 sign (ζt) with S0 ≡ 0 for the random walk generated by the sign

process. We have by Assumption 4.4.2 that

Mn,W (ζ) ≡ max
0≤x≤n−W
W≤y≤n−x

Sx+y − Sx√
y

= τ

 max
0≤x≤n−W
W≤y≤n−x

X (x, y)

+ oP

(√
log (n/W )

)
(4.24)

where τ is as defined in Assumption 4.4.1. Without loss of generality we may take τ = 1.

We first consider the probability that first term on the left hand side of (4.24) is smaller

than un,W . We have that:

lim inf
n→∞

P

 max
0≤x≤n−W
W≤y≤n−x

X (x, y) ≤ un,W

 ≥ lim
n→∞

P

(
sup

(x,y)∈H(n/W )
X (x, y) ≤ un,W

)
= exp

(
−e−z

)
.

(4.25)

Where we have used the scaling property of Brownian motion after the first inequality, and

Theorem 4.6.1 for the first equality. We additionally have that:

P

 max
0≤x≤n−W
W≤y≤n−x

B (x+ y)−B (x)
√
y

≤ un,W

 ≤ P

 sup
x∈[0,n/W ]

y∈[1,n/W−x]

X (x, y) ≤ un,W

−R. (4.26)

Where R is defined as follows:

R = P

 sup
x∈[0,n/W−1]∩Z⌊W ⌋−1

y∈[1,n/W−x]∩Z⌊W ⌋−1

X (x, y) ≤ un,W

− P

 sup
x∈[0,n/W−1]
y∈[1,n/W−x]

X (x, y) ≤ un,W

 .
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4 Robust Inference for Change Points using Confidence Sets

Further, for some A > 1 and a > 2 the term can be further bounded as follows:

|R| ≤
⌊n/W ⌋−2∑

i=0

P
 sup

x∈[i,i+1)\Z⌊W ⌋−1

y∈[1,A]\Z⌊W ⌋−1

X (x, y) > un,W , sup
x∈[i,i+1)∩Z⌊W ⌋−1

y∈[1,A]∩Z⌊W ⌋−1

X (x, y) ≤ un,W




+ P

 sup
x∈(n/W−1,n/W ]

y∈[1,A]

X (x, y) > un,W

+ P

 sup
x∈[0,n/W ]

y∈(A,n/W−x]

X (x, y) > un,W



≤
⌊n/W ⌋−2∑

i=0

P
 sup

x∈[i,i+1)
y∈[1,A]

X (x, y) > un,W

− P

 sup
x∈[i,i+1)∩Z⌊a log(n/W )⌋−1

y∈[1,A]∩Z⌊a log(n/W )⌋−1

X (x, y) > un,W




+ P

 sup
x∈(n/W−1,n/W ]

y∈[1,A]

X (x, y) > un,W

+ P

 sup
x∈[0,n/W ]

y∈(A,n/W−x]

X (x, y) > un,W


= R1 +R2 +R3.

We now bound each term in turn. Arguing as in the proof of Lemma 4.7 in Kabluchko

(2007) we have that lima→∞ limn→∞R1 = 0. By Example 2.2 in Chan and Lai (2006), or

equivalently Lemma 3.15 in Kabluchko (2007), we have that

R2 =

(
W

n

)(
A− 1

A

)
e−τ (1 + o(1))→ 0 as n→∞.

Arguing as in the proof Lemma 4.4 in Kabluchko (2007) we have that limA→∞ limn→∞R3 =

0. By the above arguments bounding R, and Theorem 4.6.1, we therefore have that:

lim sup
n→∞

P

 max
0≤x≤n−W
W≤y≤n−x

X (x, y) ≤ un,W

 ≤ exp
(
−e−z

)
. (4.27)

Then (4.25) and (4.27) together imply that the first term in (4.24), appropriately scaled,

converges to an extreme value distribution. By Khintchine’s lemma, see Lemma 3.6.2

in Chapter 3, we have that (4.24) converges to an extreme value distribution. By the

discussion in Section 3.2.3, Ln,W (ζ) behaves asymptotically live two independent copies of
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Mn,W (ζ), which proves part (i) of Theorem 4.4.1. A further application of Khintchine’s

lemma proves part (ii) of the theorem.

4.6.7 Proof of Lemma 4.4.1

Proof. Since the noise terms are assumed to have absolutely continuous densities we have

the following for the signs of the residuals on each Ij block:

sign
(
ζ̂t,j

)
= 2× 1{

ζt>f̂Jσ(j)
(t/n)−f◦(t/n)

} − 1

= 2× 1{ζt>0} − 1 + 2

[
1{

ζt>f̂Jσ(j)
(t/n)−f◦(t/n)

} − 1{ζt>0}

]
= sign (ζt) + 2

[
1{

ζt>f̂Jσ(j)
(t/n)−f◦(t/n)

} − 1{ζt>0}

]
= sign (ζt) + Vt,j .

We also have the following bound for each Vt,j :

|Vt,j | ≤ 2× 1{|ζt|≤∣∣∣f̂Jσ(j)
(t/n)−f◦(t/n)

∣∣∣} ≤ 2× 1{
|ζt|≤

∥∥∥f̂Jσ(i)
−f◦

∥∥∥
J,∞

}. (4.28)

For ease of notation introduce the following sets:

J =
{
j ∈ N | 1 ≤ j ≤

⌊
n/W ′⌋} ,

K =
{
k ∈ N | 1 ≤ k ≤

⌊
n/W ′2⌋} ,

JΘ =
{
j ∈ J |

∣∣Θ ∩ Jσ(j)∣∣ > 0
}
.

Based on the inequality (4.28) we have that for any j ∈ J \ JΘ

1√
W ′

∑
t∈Ij

Vt,j = OP

(√
log(W ′)

W ′

)
. (4.29)
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To show this we define the events

Et,j =

{
|ζt| ≤

∥∥∥f̂Jσ(j)
− f◦

∥∥∥
J,∞

}
,

At =
{
|ζt| ≤ Cf

√
2 log(W ′)/W ′

}
,

Bt,j =

{∥∥∥f̂Jσ(j)
− f◦

∥∥∥
J,∞
≤ Cf

√
2 log(W ′)/W ′

}
.

Then, for any δ > 0 and any j ∈ J \ JΘ we have that

P

∣∣∣∣∣∣ 1√
W ′

∑
t∈Ij

Vt,j

∣∣∣∣∣∣ > δ

 ≤ 2δ−1 1√
W ′

∑
t∈Ij

P (Et,j)

= 2δ−1 1√
W ′

∑
t∈Ij

[
P (Et,j | Bt,j)P (Bt,j) + P

(
Et,j | Bc

t,j

)
P
(
Bc

t,j

)]
≤ 2δ−1 1√

W ′

∑
t∈Ij

[
P (At ∩Bt,j)P (Bt,j)

P (Bt,j)
+ P

(
Bc

t,j

)]
≤ 2δ−1 1√

W ′

∑
t∈Ij

[
P (At) + P

(
Bc

t,j

)]
= 2δ−1 1√

W ′

∑
t∈Ij

[
O

(√
log(W ′)

W ′

)
+O

(
W ′−1

)]

= O

(
δ−1

√
log(W ′)

W ′

)
,

which proves the statement. In the penultimate line we have used the fact that since the ζ’s

have bounded and continuous densities for any x > 0 we must have that P (|ζt| ≤ x) ≤ O (x).

To prove the main result we simply bound the absolute difference between our estimator
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for the TAVC and the long run variance:

∣∣∣T̂AVC (W ′)− τ2∣∣∣ =
∣∣∣∣∣∣⌊n/W ′⌋−1

 ∑
j∈J\JΘ

+
∑
j∈JΘ

 1√
W ′

∑
t∈Ij

sign
(
ζ̂t,j

)2

− τ2
∣∣∣∣∣∣

≤

∣∣∣∣∣∣⌊n/W ′⌋−1
∑

j∈J\JΘ

 1√
W ′

∑
t∈Ij

sign
(
ζ̂t,j

)2

− τ2
∣∣∣∣∣∣

+

∣∣∣∣∣∣⌊n/W ′⌋−1
∑
j∈JΘ

 1√
W ′

∑
t∈Ij

sign
(
ζ̂t,j

)2∣∣∣∣∣∣
= I1 + I2.

For the second term we have that I2 ≤ O
(
NW ′3

n

)
since

(
1√
W ′

∑
t∈Ij ζ̂t,j

)2
≤ W ′ for each

j and |JΘ| ≤ NW ′. For the second term we have that

I1 ≤
∣∣TAVC (W ′)− τ2∣∣

+

∣∣∣∣∣∣⌊n/W ′⌋−1
∑

j∈J\JΘ

 1√
W ′

∑
t∈Ij

sign (ζt)

2

− TAVC
(
W ′)∣∣∣∣∣∣

+

∣∣∣∣∣∣⌊n/W ′⌋−1
∑

j∈J\JΘ

 1√
W ′

∑
t∈Ij

Vt,j

2∣∣∣∣∣∣
+

∣∣∣∣∣∣⌊n/W ′⌋−1
∑

j∈J\JΘ

2

 1√
W ′

∑
t∈Ij

sign (ζt)

 1√
W

∑
t∈Ij

Vt,j

∣∣∣∣∣∣
= I1,1 + I1,2 + I1,3 + I1,4.

For the first term we have that I1,1 ≤ O
(
W ′−1

)
, which holds because:

I1,1 = 2

∣∣∣∣∣
W ′−1∑
h=1

(
1− h

W ′

)
γh −

{
W ′−1∑
h=1

+
∞∑

h=W ′

}
γh

∣∣∣∣∣
≤ 2

W ′

W ′−1∑
h=1

h |γh|+ 2

∞∑
h=W

|γh| ≤
2

W ′

∞∑
h=1

h |γh| = O
(
W ′−1

)
.
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The passage to the final line follows from Assumption 4.4.5. For the second term we have

that I1,2 ≤ OP

(
W ′
√
n
∨ NW ′2

n

)
since:

I1,2 =

∣∣∣∣∣∣⌊n/W ′⌋−1
∑

j∈J\JΘ

 1√
W ′

∑
t∈Ij

sign (ζt)

2

−

[
1 + 2

W ′−1∑
h=1

(
1− h

W ′

)
γh

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣⌊n/W ′⌋−1
∑
j∈JΘ

 1√
W ′

∑
t∈Ij

sign (ζt)

2∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
⌊
n/W ′⌋−1

∑
j∈J

1

W ′

∑
t,s∈Ij
t̸=s

(sign (ζt) sign (ζs))− 2

W ′−1∑
h=1

(
1− h

W ′

)
γh

∣∣∣∣∣∣∣∣
= OP

(
W ′ |JΘ|

n

)
+

∣∣∣∣∣∣⌊n/W ′⌋−1
⌊n/W ′⌋∑
j=1

2

W ′

W ′−1∑
h=1

jW ′−h∑
t=1+(j−1)W ′

(sign (ζt) sign (ζt+h))−
2

W ′

W ′−1∑
h=1

(W ′ − h)γh

∣∣∣∣∣∣
= OP

(
NW ′2

n

)
+

∣∣∣∣∣∣ 2

⌊n/W ′⌋ (W ′ − h)

W ′−1∑
h=1

(
1− h

W ′

) ⌊n/W ′⌋∑
j=1

jW−h∑
t=1+(j−1)W ′

(sign (ζt) sign (ζt+h)− γh)

∣∣∣∣∣∣
≤ OP

(
NW ′2

n

)
+ 2

W ′−1∑
h=1

∣∣∣∣∣∣ 1

⌊n/W ′⌋ (W ′ − h)

⌊n/W ′⌋∑
j=1

jW−h∑
t=1+(j−1)W ′

(sign (ζt) sign (ζt+h)− γh)

∣∣∣∣∣∣
= OP

(
NW ′2

n

)
+ 2

W ′−1∑
h=1

OP

 1√
n(1− h

W ′ )


= OP

(
NW ′2

n

)
+OP

(
1√
n

)W ′−1∑
h=1

OP

 1√
1− h

W ′


≤ OP

(
NW ′2

n

)
+OP

(
W ′
√
n

)
.

In the last line we have used the fact that

W ′−1∑
h=1

1√(
1− h

W ′

) < ∫ W ′−1

1

1√
1− x

W ′
dx+

√
W ′ = 2W ′ (1 + o(1)) .
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For the third term we have that I1,3 = OP

(
log(W ′)

W ′

)
. This follows directly from (4.29). For

the fourth term we have that I1,4 ≤ OP

(√
log(W ′)

W ′

)
. This holds because

I1,4 =
⌊
n/W ′⌋−1

∑
j∈J\JΘ

OP (1)OP

(√
log(W ′)

W ′

)
≤ OP

(√
log(W ′)

W ′

)
.

Combining the bounds on each of the terms the desired result follows.
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5 Recovering Dependence Structures in

Change Point Regressions with a View to

Causality

5.1 Introduction and problem statement

In this chapter we a study a change point problem in which an analyst observes multivari-

ate data where the change points themselves are random variables, and change points in

one series may cause change points in another series. We introduce an algorithm for esti-

mating graphs which encode causal information about the change points. Typically after

performing change point analysis relationships between estimated change points can only

be described qualitatively, since in general change point locations are held to be unknown

but non-stochastic. From the perspective of practitioners this is a limitation, since in many

settings it is reasonable to believe change points will be causally linked. For example: in

climatology changes in concentrations levels of certain gasses actively cause changes in the

environment (Schmittner et al., 2018), in finance (Schröder and Fryzlewicz, 2013) changes

in the behavior of financial instruments, such as equities and commodities, in one market

can cause changes in the behavior of other such assets in related markets, and in epidemi-

ology (Kartal et al., 2021; Mastakouri and Schölkopf, 2020) changes in the behavior of a

population can cause changes in the spread of a virus.

Previous works (Eichinger and Kirch, 2018) have studied change point problems in which

the change point locations are random variables. Moreover, some authors (Hallgren et al.,

2023; Fotoohinasab et al., 2020) have considered multivariate time series time series indexed
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over a graph, where series belonging to the same community are likely to undergo changes

at similar times. However, to the best of our knowledge the problem of recovering causal

relations among change points has not been studied in the literature.

The remainder of the chapter is structured as follows. In Section 5.2 we introduce the

change point model, and precisely define the causal graph we aim to recover. In Section

5.3 we introduce a procedure for recovering the causal graph from data, and in Section 5.4

we give conditions under which our procedure can consistently recover the graph. Finally,

in Section 5.5 we illustrate the performance of the procedure via a simulation study and a

real data example.

5.2 Model set-up

We introduce a random change point model, in which at each time step a d-dimensional

vector is observed, and each element of the vector is liable to experience a change driven

by an unobserved counting process. To that end briefly review the multi-type Hawkes

process in Section 5.2.1 before presenting in full the data generating mechanism in Section

5.2.2 and formally defining the object we aim to recover in Section 5.2.3. Our goal will

be to recover a graph where the presence of an edge i → j signifies that change points in

the i-th component of the observed vector cause change points in j-th component. On a

high level, our approach to recovering this graph relies on properties of three separate time

scales: the scale at which the data are observed, the scale at which the underlying counting

process generates events, and the scale at which an appropriate algorithm can localize the

unobserved change points. As we show formally in Section 5.4, as soon as these time scales

are sufficiently different the desired graph can be consistently recovered from data.

5.2.1 Review of multi-type Hawkes processes

In the seminal paper Hawkes (1971), Hawkes introduced the mutually exciting point pro-

cess, now commonly referred to as the marked Hawkes process, in which past events are able

to trigger occurrences of future events of different types. Consider a d-dimensional counting
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process N(·) whose j-th component generates events ηj on R+. Let Ft− be the natural

filtration generated by the events from each component process up to but not including

time t. The conditional intensity for the j-th component process is given by

λ∗j (t) = lim
q↓0

E (Nj [t, t+ q) | Ft−)

q
. (5.1)

Under quite general conditions the conditional intensity function exists and completely

characterizes the distribution of the random counting measure Nj (·). The entire process

N(·) is called a multi-type Hawkes process if the conditional intensities of each component

process are of the form

λ∗j (t) = νj +
d∑

i=1

∫ ∞

0
gj,i (t− u) dN(u), j = 1, . . . , d. (5.2)

In (5.2) the constants νj > 0 are called the base-line intensities, and the functions

gj,i : R+ 7→ R+ are are called the Hawkes kernels. Each gj,i (·) captures the effect of a past

event of type i the intensity of a future event of type j; in this sense, the marked Hawkes

process can be seen as the counting process analogue of the vector auto-regression (see

Example 2.3.1). Restricting the Hawkes kernels to be positive is necessary, as otherwise

the conditional intensity function may be negative. Of great importance are the quantities

mj,i =
∫∞
0 gj,i (u) du, which are often referred to as the branching coefficients due to the

Hawkes process’s interpretation as a cluster process in which cluster centers produce off-

spring distributed according to a multi-type branching process; see Definition 5.6.2, as well

as Example 6.3(c) in Daley and Vere-Jones (2003). Provided the largest eigenvalue of the

matrix M = (mj,i)
d
i,j=1 is less than one the number of points in any bounded sub-interval

of R+ is almost surely finite, in which case the Hawkes process is said to be simple.

5.2.2 A random change point model

We now introduce the data generating process proper. We consider a multivariate time

series {Yt = (Y1,t, . . . , Yd,t)
′ | t = 1, . . . , n} where each of the component processes is
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generated by a change point model with piecewise constant mean. That is, associated with

each Yj is a sequence of ordered change point locations Θj =
{
ηj,1, . . . , ηj,Nj

}
, and of the

Yj ’s is generated according to

Yj,t = µj +

Nj∑
k=1

∆j,k1{t>ηj,k} + ζj,t, t = 1, . . . , n. (5.3)

Following the usual convention in change point problems, we additionally have that ηj,0 = 0

and ηj,Nj+1 = n for all j. The µ’s constitute a sequence of finite constants, and we let each

{∆j,k | k = 1, . . . , Nk} be a sequence of random variables where different sequences are not

necessarily independent.

We model the change point locations in (5.3) as arrival times of events associated with

a multi-type Hawkes process on the positive real line: N (·) = (N1 (·) , . . . , Nd (·))′. The

standard Hawkes process generates events which are O(1) apart with high probability.

However, it is well known that consistent change point detection is impossible if the distance

between change points is fixed. We therefore allow the conditional intensities to depend on

the sample size n, and to emphasise the temporal scaling of N(·) we write

λ∗j (t) = νj +
d∑

i=1

∫ ∞

0
g
(n)
j,i (t− u) dN(u), j = 1, . . . , d. (5.4)

where for each (i, j) pair we have that g
(n)
j,i (·) = ξn×gj,i(·×ξn) for some ξn = O(nΨ), where

Ψ > 0 and gi,j(·) is a function which does not depend on n. Therefore, the change points

in each component series are the marginal arrival times of an unobserved process N(·),

and dependence between change points in different series is captured by the branching

coefficients {mi,j =
∫
g
(n)
i,j | i, j ∈ {1, . . . , d}}.

5.2.3 Causal graphs for the Hawkes process

We now formally introduce the object we wish to recover. Didelez (2008) introduced local

independence as a dynamic concept of dependence for marked point processes. For a multi-

type process N (·) = (N1 (·) , . . . , Nd (·))′ we say that Nj (·) is locally independent of Ni (·)
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5.3 Causal structure recovery

if λ∗j (t) is Ft\i measurable for all t > 0. In which case we write i ̸→ j, else we speak of local

dependence and write i→ j. See Section 2.3.3 for a detailed discussion. In case the point

process is completely observed, in the sense of there being no unobserved confounders,

following the reasoning in Granger (1969) the statement i→ j can be interpreted causally

in the sense of the process i causing process j. From (5.2) it is clear that mj,i = 0 is a

necessary and sufficient condition for i ̸→ j in the marked Hawkes process. That is, the

corresponding branching coefficient should be zero. Revisiting the goal stated in Section

5.2.2, we aim more specifically to recover the graph G with vertex set V = {1, . . . , d} and

edge set

Ei,j =


1 if mj,i > 0

0 if mj,i = 0

(5.5)

from observations (5.3). In Section 5.3 below we introduce an algorithm for this task.

5.3 Causal structure recovery

If the Hawkes process generating the change point locations were observable, we would

simply apply any consistent estimation procedure for the parameters of the process to the

observed arrival times then estimate (5.5) according to whether each branching coefficient

obtained from the estimates was significantly different from zero. Since we only have

access to the Hawkes process through (5.3), we first estimate the change point locations

via some generic consistent method, then estimate the branching coefficients by treating

the estimated change point locations as the true unobserved arrival times of the Hawkes

process. A generic algorithm for estimating G in this way is given below in Algorithm 7.

In order to make Algorithm 7 operational we should specify: a change point estimation

procedure Θ̂ (·), a branching ratio estimation procedure M̂ (·), and a set of thresholds λ.

We defer discussion of Θ̂ (·) and λ to Section 5.4, and conclude this section by presenting a

procedure for estimating the branching ratios. Given the estimated change point locations,

we choose to estimate the branching ratios non-parametrically using a procedure based on

conditional least squares which was independently proposed by Kirchner (2017) and Eichler
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Algorithm 7: A generic algorithm for estimating the local independence graph
for random change point locations in model (5.3), where change point locations
are arrival times of a Marked Hawkes process.

Input: The data {Yt | t = 1, . . . , n}; a procedure for estimating change points
from data Θ̂ (·); a procedure for estimating branching ratios M̂ (·); a set
of thresholds λ = {λj,i | j, i = 1, . . . , d}.

Output: An estimator Ĝλ = (V, Ê) for the local independence graph.
begin

Θ̂← Θ̂ (Y)
{m̂j,i}dj,i=1 ← M̂(Θ̂)

for i, j = 1, . . . , d do

Êi,j ← 1{m̂j,i>λj,i}
end

end

et al. (2017). The procedure is described in detail in the following section.

5.3.1 Hawkes process parameter estimation via conditional least squares

In this section only we consider the multi-type Hawkes process from (5.2) observed on the

interval [0, n], whose base line intensities and kernels do not depend on n. The method

proposed by Kirchner (2017) and Eichler et al. (2017) for estimating the parameters of

(5.2) is based on binning the interval [0, n] and counting the number of events in each bin.

Recall that a stationary point process N (·) is said to be orderly if P (N(q) > 1) = o(q) as

q ↓ 0. Let N (·) = (N1 (·) , . . . , Nd (·))′ be a simple, stationary, and orderly marked Hawkes

process. Writing Xq
j,t = Nj (tq)−Nj ((t− 1)q) for q we will have that

E
(
Xq

j,t+1 | Ftq

)
= qνj + q

d∑
i=1

∫ ∞

0
gj,i (qt− u) dNi(u) + o(q)

= qνj + q
d∑

i=1

∞∑
s=1

∫ u

0
gj,i (q(t− s)− u) dNi(u) + o(q)

≈ qνj + q

d∑
i=1

∞∑
s=1

gj,i (sq)X
q
j,t−s. (5.6)
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5.3 Causal structure recovery

Kirchner (2017) and Eichler et al. (2017) therefore truncate the infinite sum in (5.6) at

some value k which diverges with n and estimate the parameters of the Hawkes process

via conditional least squares. More precisely, for some small q which goes to zero with n

write Xq
t =

(
Xq

1,t, . . . , X
q
d,t

)′
for t = 1, . . . ⌊n/q⌋. Then the parameters νq = (qν1, . . . , qνd)

′

and Gq = (Gq
s | 1 ≤ s ≤ k)

′, where each Gq
s is a d × d matrix with (j, i)-th entry Gq

q,j,i =

q × gj,i (sq), can be estimated via

{
ν̂q, B̂

q
}
= argmin

νq ,Bq

⌊T/q⌋∑
t=k+1

∥∥∥∥∥Xq
t − νq −

k∑
s=1

Gq
sX

q
t−s

∥∥∥∥∥
2

. (5.7)

Intuitively, provided the Hawkes kernels do not decay to zero too slowly, k diverges at a

fast enough rate, and q is sufficiently small, the step function

ĝqj,i (u) = q−1
k∑

s=1

Ĝ
q
s,j,i1{(s−1)q≤u<sq}

will approximate the corresponding Hawkes kernel well. Therefore, the branching ratios

can be estimated via m̂j,i =
∑k

s=1 Ĝ
q
s,j,i.

5.3.2 Parameter estimation for Hawkes processes scaling with n

The procedure described above can be adapted to estimate the branching coefficients for a

Hawkes process whose kernels scale with n, as in (5.4). The parameters q and k however

must be chosen differently. For instance, one can no longer allow q to decay to zero. Such

considerations are addressed in the next section. An important consequence of using the

procedure from Section 5.3.1 to estimate the parameters of (5.4) is that, since we work

with binned observations, that provided the localization rate of Θ̂ (·) smaller than the bin

width used, on a high probability set working with the estimated change point locations is

the same as working with the unobserved arrival times of the underlying Hawkes process.
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5.4 Theoretical results

We now study the conditions under which the algorithm proposed is able to recover the local

independence graph for the underlying Hawkes process. In terms of the Hawkes process

generating the change point locations, we require the following assumptions to hold.

Assumption 5.4.1. The number of component series satisfies d = O(1) and in each series

that the ζ’s are mutually independent sub-Gaussian.

Assumption 5.4.2. The base-line intensities for each component process in (5.2) are given

by νj = Cjn
−(1/2+ϕ) where ϕ ∈ (0, 1/2) and each Cj is a finite constant. Additionally, there

are constants m and m, with 0 < m < m < 1 if Ei,j = 1 the associated branching coefficient

satisfies mj,i ∈ (m,m).

Assumption 5.4.3. Put hj,i (·) = g
(n)
j,i (·) /mj,i for the (j, i)-th Hawkes kernel standard-

ized by the associated branching ratio so that it becomes a density function, H̄j,i (u) =∫∞
u hj,i (z) dz, and h̆j,i (u) = supy≥0

∫ y+u
0∨(y−u) hj,i (z) dz. There are quantities Ψ1, Ψ2, and

Ψ3, each diverging with n, which satisfy the following conditions:

(i) Ψ1 = o
(
n2ϕ
)
and Ψ3 = o

(
nϕ
)
,

(ii) Ψ2 = o(Ψ
1/2
1 ) and mΨ2

j,i ∨ H̄j,i (Ψ2) = o
(
nϕ−1/2

)
,

(iii) Ψ3 = o
(
Ψ2

2

)
and h̆j,i (Ψ3) = o

(
nϕ−1/2

)
.

Assumption 5.4.4. The Hawkes kernes are Lipschitz continuous with |gj,i(u)| = O(u−1)

as u→∞, recalling that g
(n)
j,i (·) = ξn × gj,i(· × ξn). Moreover for k and q chosen according

to Assumption 5.4.5 below we have that H̄ji (qk) = o (1).

The first part of Assumption 5.4.2 lets the expected number of change points in the

data diverge with the sample size, but not too quickly. The second part of the assumption

guarantees that the underlying Hawkes process is simple. As can be seen in the proof

of Theorem 5.4.1, Assumption 5.4.3 guarantees that with high probability the distance

between any two change points will not be smaller than nϕ.
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We also need the following assumption on the tuning parameters k and q, the distribution

of the jump sizes in (5.3), and the generic algorithm used to recover the change points.

Assumption 5.4.5. The truncation level and bin width are chosen such the k = O
(
nθ1
)

and q = O
(
nθ2
)
, where θ1 and θ2 satisfy: (i) θ2 ≤ ϕ, (ii) θ1 + θ2 > ϕ + 1/2, and (iii)

θ1/2 + θ2 < ϕ+ 1/2.

Assumption 5.4.6. There is a constant CΘ such that, when applied to data where the

shortest distance between two change points (δ) and the smallest change size (∆) satisfy
√
δ∆ > CΘ

√
log(n), Θ̂ (·) is able to detect all change points and the k-th change point in

the j-th series is localized at least at the rate O
(
log(n)/∆2

j,k

)
, on a set with probability

1− o(1).

Assumption 5.4.7. Each of the ∆j,k’s has marginal distribution Fj,k with support (−∞,−Sj,k)∪

(Sj,k,∞), where Sj,k is at least of the order O
(√

log(n)/nθ3
)
for some θ3 < θ2.

Given that according to Assumption 5.4.1 the number of component series is fixed and the

contaminating noise is sub-Gaussian, Assumption 5.4.6 is quite mild, and would hold if any

rate optimal change point detection algorithm for univariate data was applied component-

wise to the data. Assumption 5.4.7 implies that Θ̂ (·) will be able to localize each change

point at least at the rate O
(
nθ3
)
. Following the discussion around Assumption 5.4.3 we

will therefore have, on a high probability set, that: change point localization rate ≪ bin

width ≪ minimum change point spacing. With these assumptions in place, we have the

following result.

Theorem 5.4.1. Let {Yt | t = 1, . . . , n} be data from model (5.3) and let Ĝλ be the

output from Algorithm 7 run with parameters λ, k, and q, where the change points

are estimates via some generic method Θ̂ (·). Grant Assumptions 5.4.2-5.4.7 holds.

Then if λ is chosen such the smallest element is the set is larger than some λ, where√
kq/n = o (λ), it holds that P

(
Ĝλ = G

)
→ 1 as n→∞.

Regarding practical choices for k and q, if ϕ were known and we were to set q = O
(
nϕ
)

Assumption 5.4.5 would be satisfied if we set k =
⌊
n0.5+ε

⌋
, where ε is some small positive
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constant. In practice we can directly choose k in this way, then set q =
⌊
nϕ̂
⌋
where ϕ̂ is

a rough estimator of ϕ based on the minimum space between any two estimated change

point locations. Regarding the choice of λ, in Remark 1 Kirchner (2017) points out that

the coefficients estimated according to (5.7) will be approximately normally distributed.

Therefore, we can take λj,i = zα× se (m̂j,i), where se (m̂j,i) stands for the standard error of

the estimated branching coefficient. We follow this approach in the numerical experiments

below, using a value of α = 0.1.

5.5 Numerical illustrations

5.5.1 Simulation study

We investigate the performance of Algorithm 7 via a small simulation study. We sim-

ulate d = 5 dimensional time series data from model (5.3), where we let the ζ’s be

mutually independent with marginal N (0, 1) distribution. Regarding the Hawkes pro-

cess generating the change point locations, we let its local independence graph be as

shown in Figure 5.1 below. We set all of the base line intensities equal to n−0.6 and

when non-zero we set each of the Hawkes kernels to g (u) = 0.6n−0.3 exp
(
−0.8n−0.3

)
.

Finally, the ∆’s are generated as mutually independent uniform random variables with

supports
[
C∆/2

√
log(n)/δj,k, C∆

√
log(n)/δj,k

]
, where C∆ is a constant representing the

signal strength of the change points to be chosen later on.

We simulate the data for sample sizes n ∈ {500, 1000, 2000} and for signal strengths

C∆ ∈ {2, 5, 7}. Over 100 replications we estimate the underlying local independence graph

using bid width q =
⌊
n0.1

⌋
and truncation level k =

⌊
n0.501

⌋
, and apply the thresholding

rule discussed at the end of Section 5.4. The results of the simulation study are shown

in Figure 5.2, where each sub-plot displays a graph with edges weighted by the number

of times the corresponding edge appeared in an estimate of the local independence graph.

From the plots we see that, provided the signal strength is large, the local independence

graph can be recovered reasonably well.
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5.5 Numerical illustrations

Figure 5.1: Local independence graph for the Hawkes process generating change point lo-
cations the simulation study presented in Section 5.5.1, with edges weighted by
the value of the associated branching coefficients.

5.5.2 Real data analysis: COVID-19 infection trajectories

We study change points in the number of daily deaths, daily hospitalizations, and daily

infections due to the COVID-19 virus between the years 2020 and 2022, across all London

boroughs. The data we analyze can be obtained from the Office for National Statistics.

We model the data as following a piecewise linear trend, and after applying the Anscombe

transform to correct for the fact that we are working with integer-valued data, estimate the

trend and the change points using the Narrowest Over Threshold algorithm of Baranowski

et al. (2019a). The data, along with the estimated trends, is plotted in Figure 5.3.

It is tempting to think of the change points in the data as causally linked, where perhaps

we would have that: Cases→ Hospitalizations→ Deaths. In Figure 5.4 we plot the times

of the change point locations recovered from the data. Based on this plot alone, no such

pattern is discernible.

We finally apply Algorithm 7 to the data. We choose the thresholds and the truncation

level as discussed at the end of Section 5.4, and set the bin width to q = 1. The estimated

graph is shown in Figure 5.5, and seems to agree with our previous intuition about potential

causal pathways.
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Figure 5.2: Graphs representing the number of times a given edge was present in an estimate
of the local independence graph for data from model (5.3) simulated as described
in Section 5.5.1, over 100 replications, for sample sizes n ∈ {500, 1000, 2000}
and signal strengths C∆ ∈ {2, 5, 7}.

(a) n = 500, C∆ = 2 (b) n = 500, C∆ = 5 (c) n = 500, C∆ = 7

(d) n = 1000, C∆ = 2 (e) n = 1000, C∆ = 5 (f) n = 1000, C∆ = 7

(g) n = 2000, C∆ = 2 (h) n = 2000, C∆ = 5 (i) n = 2000, C∆ = 7
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5.5 Numerical illustrations

Figure 5.3: Anscombe transform of daily COVID-19 trajectories across all London boroughs
along with piecewise linear trend (- - -) recovered using the Narrowest Over
Threshold algorithm (Baranowski et al., 2019a).

(a) Cases (b) Deaths

(c) Hospitalizations

Figure 5.4: Times of estimated change point locations recovered by the Narrowest Over
Threshold algorithm from (Anscombe transformed) time series of daily deaths,
daily hospitalizations, and daily cases of COVID-19 across all London boroughs.
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5 Recovering Dependence Structures in Change Point Regressions with a View to Causality

Figure 5.5: Local independence graph for change points in daily deaths, daily cases, and
daily hospitalizations from COVID-19. In the plot ‘css’ stands for ‘cases’, ‘hps’
stands for ‘hospitalizations’, and ‘dth’ stands for ‘deaths’. Where non-zero,
edges are weighted by estimates of the associated branching ratio.

5.6 Proofs

5.6.1 Preparatory results

Definition 5.6.1. Consider an age dependent pure birth process, originated by a single

particle at time zero, with kernel g : R+ 7→ R+ such that for an individual of age t1

alive at time t2 the probability of a birth in the interval (t2, t2 + dt2) is g (t1) dt2. Let∫
g = m ∈ (0, 1) so that the process is almost surely finite. Let Xn be the number of

offspring in the n-th generation of a standard Galton Watson process, where: X0 = 1,

Xn =
∑Xn−1

j=1 ξ
(n)
j , and ξ

(n)
j ∼ Poisson(m). It holds that:

(i) The total number of offspring in the k-th generation of the pure birth process, say Gk,

is distributed as the number of offspring in the k-th generation of the Galton Watson

process. That is: Gk
d
= Xk.

(ii) The total number of generations in the pure birth process, say τ , is distributed as the

total number of generations in the Galton Watson process. That is: τ
d
= inf {n | Xn = 0}.

Definition 5.6.2. Let N (·) = (N1 (·) , . . . , Nd (·))′ be a simple, stationary, and orderly
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multi-type Hakes process with conditional intensities given by (5.2). One way of construct-

ing this process is to take d independent homogeneous Poisson processes N c
1 (·) , . . . , N c

d (·)

with rates ν1, . . . , νd and let their arrival times stand for cluster centers. At each each

cluster center we place a multi-type age-dependent branching process, where the probability

of a particle of type i of age t1 alive at time t2 producing a particle of type j in the interval

(t2, t2 + dt2) is gj,i (t1) dt2. Then, the superposition of all such points constitutes the arrival

times of the Hawkes process.

Theorem 5.6.1. Let N (·) be a d-dimensional Hawkes process satisfying Assumption

5.4.4 with d fixed, and with constant base-line intensities. Let Ĝ
q
=
(
Ĝ

q
s | 1 ≤ s ≤ k

)′
be estimates of the Hawkes kernels obtained vai conditional least squares and let m̂j,i =∑k

s=1 Ĝ
q
s,j,i, based on events observed in the interval [0, ñ], using bin width q̃ and trunca-

tion parameter k satisfying: (i) kq̃ →∞, (ii) kq̃2 → 0, and (iii) k2/ñ→ 0, all as ñ→∞.

It holds that m̂j,i −mj,i = OP

(√
kq̃/ñ

)
uniformly in j, i = 1, . . . , n.

Proof. This follows from the proof of Theorem 4.2 in Eichler et al. (2017), and can also be

deduced from from Remark 1 in Kirchner (2017).

5.6.2 Intermediate results

Lemma 5.6.1. Let L∞ be the time between the first birth and the last birth in the pure

birth process described in Definition 5.6.1. Putting h = g/m and H̄ (x) =
∫∞
x h (u) du, for

any x > 0 it holds that:

P
(
L∞ > x2

)
≤ m

1−m
H̄ (x) +mx.

Proof. Writing Lk for the maximum of 0 and the time elapsed between the last birth in

the (k − 1)-th generation and the last birth in the k-th generation we have that:

P
(
L∞ > x2

)
= P

( ∞∑
k=1

Lk > x2

)
≤ P (τ > x) + P

(
x∑

k=1

Lk > x2

)
.

197



5 Recovering Dependence Structures in Change Point Regressions with a View to Causality

For the first term, by Markov’s inequality, we have that:

P (τ > x) = P (Xx > 1) ≤ E (Xx) ≤ mx.

Put Lj,k for the time elapsed between the birth of the j-th offspring in the k-th generation

and the time of birth of the particle which generated it from the (k− 1)-th. For the second

term we have that:

P

(
x∑

k=1

Lk > x2

)
≤

x∑
k=1

P
(
∪Gk
j=1Lj,k > x

)
=

x∑
k=1

∞∑
gk=1

gk∑
j=1

P (Lj,k > x)P (Gk = gk)

≤ H̄ (x)

x∑
k=1

∞∑
gk=1

g × P (Gk = gk)

≤ H̄ (x)

∞∑
k=1

E (Gk)

=
m

1−m
H̄ (x) .

This completes the proof.

Lemma 5.6.2. Let T∞ be the shortest time between any two births, including the birth of

the initial particle, in the pure birth process described in Definition 5.6.1. Putting h̆ (x) =

supy≥0

∫ y+x
0∨y−x h (u) du, for any x > 0 it holds that:

P (T∞ ≤ x) ≤ h̆ (x)

[
m

1−m
+

2

(1−
√
m)

2
log (1/m)

]
.

Proof. Put t0 for the time of bith of the first particle and tj,k for the time of birth of the
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k-th offspring in the j-th generation. Introduce the following events:

Ax = ∪∞i=1 ∪∞j=1 ∪
Gi
k=1 ∪

Gj

l=1 {|ti,k − tj,l| ≤ x, (i, k) ̸= (j, l)} ,

Bx = ∪∞i=1 ∪
Gi
j=1 {ti,j ≤ x} .

We therefore have that P (T∞ ≤ x) ≤ P (Ax)+P (Bx) and we bound each of the probabilities

in turn. For the first we have the following:

P (Ax) ≤
∞∑
i=1

∞∑
j=1

∞∑
gi=1

∞∑
gj=1

P
(
∪gik=1 ∪

gj
l=1 {|ti,k − tj,l| ≤ x, (i, k) ̸= (j, l)}

)
P (Gi = gi, Gj = gj)

≤
∞∑
i=1

∞∑
j=1

∞∑
gi=1

∞∑
gj=1

gi∑
k=1

gj∑
l=1

P ({|ti,k − tj,l| ≤ x, (i, k) ̸= (j, l)})P (Gi = gi, Gj = gj)

≤ h̆ (x)
∞∑
i=1

∞∑
j=1

∞∑
gi=1

∞∑
gj=1

gigjP (Gi = gi, Gj = gj)

< h̆ (x)

∞∑
i=1

∞∑
j=1

E (GiGj)

≤ h̆ (x)
∞∑
i=1

√
E
(
G2

i

) ∞∑
j=1

√
E
(
G2

j

)
. (5.8)

We now turn our attention to the two expectations. Using the observation from Defintion

5.6.1 that Gn
d
= Xn we have the following for any n ≥ 0:

E
(
G2

n

)
= E

(
X2

n

)
= E

E

Xn−1∑
i=1

ξ
(n)
i

2
+

Xn−1∑
j ̸=k

ξ
(n)
j ξ

(n)
k | Xn−1


= E

(
Xn−1

(
m+m2

)
+Xn−1 (Xn−1 − 1)m2

)
= mn +m2E

(
G2

n−1

)
.

Hence we have a first order reccurence recurence relation with varying coefficients: E
(
G2

n

)
=

mn + m2E
(
G2

n−1

)
. This can be solved with standard techniques (Gross, 2016), then
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bounded, as follows:

E
(
G2

n

)
= m2n

(
1 +

n−1∑
l=0

m−(l+1)

)
≤ 2m2n−1

∫ n

0

(
1

m

)u

du <
2mn−1

log (1/m)
. (5.9)

Plugging (5.9) into (5.8) we finally have that

P (Ax) < h̆ (x)
∞∑
i=1

√
2mi−1

log(1/m)

∞∑
j=1

√
2mj−1

log(1/m)
=

2h̆ (x)

(1−
√
m)

2
log (1/m)

.

Turning our attention to the second probability we have

P (Bx) ≤
∞∑
i=1

gi∑
j=1

P (ti,j ≤ x)P (Gi = gi)

< h̆ (x)
∞∑
i=1

E (Gi)

= h̆ (x)
m

1−m
.

This completes the proof.

5.6.3 Proof of Theorem 5.4.1

Proof. We consider the cluster process representation of the marked Hawkes process gen-

erating the change point locations, as given in Definition 5.6.2, and argue the proof in five

steps.

STEP 1: No two cluster centers are less than Ψ1 apart. By Assumption 5.4.2 and

standard results on Poisson processes the superposition of the processes generating the

cluster centers, say N c (·), is a Poisson process with rate νc =
(∑d

j=1Cj

)
n−(1/2+ϕ). The

inter-arrival times of this process are mutually independent exponential random variables,

say Zc
k, with rate νZ =

(∑d
j=1Cj

)
n−(1/2+ϕ). Therefore, the probability of two cluster
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centers being less than Ψ1 apart can be bounded as

P
(
∪N

c(n)
k=1 Zc

k ≤ Ψ1

)
≤ P

(
∪2νck=1Z

c
k ≤ Ψ1

)
+ P

(
N c(n) > 2νc

)
≤ 2νc

∫ Ψ1

0
νZe−νZudu+ o(1)

≤ 2νc
[
1− e−νZΨ1

]
+ o(1)

≤ 2νcνZΨ1 + o(1)

= o(1).

SETP 2: The time between the first birth and the last birth in any cluster and is at

most Ψ2
2. Arguing as in Step 1 on a set with probability 1− o(1) there are fewer than 2νc

cluster centres. By construction the clusters are independent. The time between the first

birth and the last birth in a multi-type branching process with kernels {gj,i(·)}dj,i=1 will be

shorter than the time between the first birth and the last birth in regular age dependent

branching using the kernel with the heaviest tail out out each of the gj,i(·)’s. Therefore,

Lemma 5.6.1 and Assumption 5.4.3 give that the probability that the first birth in any

cluster and is greater than Ψ2
2 is of the order o(1).

STEP 3: No two events in any cluster are less that Ψ3 distance apart. Using Lemma

5.6.2 and Assumption 5.4.3 the probability of any two events in a cluster being less than

Ψ3 apart has probability of the order o(nϕ−1/2), but again with high probability there are

of the order O(n1/2−ϕ) clusters, so the statement is proved.

STEP 4: All change points are detected, and the branching ratios are consistently esti-

mated. By Steps 1-3 the distance between any two change points will not be smaller than

nϕ, and by Assumption 5.4.6 all of the change points will be detected and each change point

will be localized at least at the rate o(nϕ). By Assumption 5.4.5, when we bin the interval

[0, n] every bin contains either zero or one change points. Therefore, the X’s used to obtain

the branching coefficients are, on a high probability set, the same as those we would have

if we had observed a Hawkes process with constant base-line intensities C1, . . . , Cd on the

interval [0, n1/2−ϕ], used bin widths q̃ = q/n1/2+ϕ where q is as specified in Assumption
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5.4.5, and used the same truncation level k. Plugging in ñ = n1/2−ϕ and q̃ = q/n1/2+ϕ

Theorem 5.6.1 gives that the branching rations can be estimated at the rate O
(√

kq
n

)
,

from which the result in Theorem 5.4.1 follows.
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6 Concluding Remarks and Future Work

In Chapters 3, 4, and 5 we introduced procedures for solving the problems of statistical

inference and causal structure recovery which often arise in change point analysis. In this

chapter we review our main methodological contributions, and highlight some avenues for

future work.

6.1 Remarks on Chapter 3

In Chapter 3 we studied the problem of statistical inference on the unobserved change point

locations in the piecewise polynomial change point model. Our goal was to recover disjoint

intervals which each contain a change point location, uniformly with some probability

chosen by the user. We introduced two procedures, DIF1 and DIF2, delaing respectively

with the problems of inference in the presence of independently distributed and weakly

dependent light tailed noise. Our procedures followed the principle of inference without

selection (2.2.3), and recovered the aforementioned intervals by performing local tests for

the presence of a change over an exponentially decaying grid. We used tests based on

local averages of the data, which we argued provide an attractive alternative to the more

commonly used likelihood ratio and Wald tests, both from the perspective of computational

efficiency and simpler theoretical analysis. Moreover, the tests themselves were adaptive to

the density of the gid used, thereby providing a solution to the open question (Pilliat et al.,

2023) of the the statistical benefits of using a sparser or denser grid. Finally, our theoretical

results show the lengths of of the intervals returned match the minimax localization rates

(Yu et al., 2022) for change points in the associated change point problem, meaning any

integer within an interval returned by the procedure can be used as an optimal estimator
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for the associated change point location.

A natural avenue for future research would involve extending the procedure to the multi-

variate or high dimensional setting, where each observation constitutes a vector with each

entry having piecewise polynomial mean. The minimax detection and localization bounds

for high dimensional mean shift problems have been studied in the literature (Pilliat et al.,

2023; Liu et al., 2021) however these quantities for the high dimensional piecewise polyno-

mial problem have not been studied. Certainly there are several regimes, depending not

only on the sparsity of the change but also on the smoothness of the regression functions

at each change point location. Recently Li et al. (2023a) proposed a generic change point

detection method based on training neural network classifiers. The authors argued that

likelihood ratio test for the presence of a change can be represented as simple neural net-

works. However, as we showed in Gavioli-Akilagun (2023), the likelihood ratio test for a

change point in the piecewise polynomial model cannot be represented in this way. Never-

theless, the local tests proposed in Chapter 3 can be represented as neural networks, and

using the techniques from the proof of Theorem 3.3.1 it can be shown that their procedure

is near-optimal for localizing change points in this setting. It may therefore be of interest to

further investigate the connection between neural network classifiers and difference based

tests.

6.2 Remarks on Chapter 4

In Chapter 4 we revisited the problem of change point inference in the piecewise polyno-

mial model, but relaxed the assumption of light tailed contaminating noise. Formally, we

looked for change points in the piecewise polynomial parametrization of the data’s median.

We introduced two procedures, SET and SET-DEP, respectively for the settings of (sign)

independent and weakly dependent sign symmetric noise. The local tests employed were

based on non-parametric confidence sets for the underlying regression function (Dümbgen,

1998; Dümbgen and Johns, 2004) obtained by inverting certain multi-scale tests (4.3) act-

ing on signs of empirical residuals. By working implicitly with signs of the data, which
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are automatically bounded regardless of the data’s distribution, our procedures provide

correct inferential statement assuming only sign symmetric noise. Nevertheless, the theo-

retical results show the lengths of of the intervals returned match the minimax localization

rates for change points in the piecewise polynomial model under light tailed independently

distributed noise. This result, though appealing, is non necessarily surprising in light of

the fact that robust non-parametric change point estimators (Bhattacharyya and Johnson,

1968; Dumbgen, 1991) can achieve essentially the same localization rates as their non-robust

counterparts.

There has been some recent interest in detecting change points in data with quntiles other

than the median parametrized as piecewise polynomial (Jiang et al., 2021; Jula Vanegas

et al., 2021; Brantley et al., 2020). A natural question is whether the procedures from

Chapter 4 can likewise be extended to quantiles other than the median. This indeed seems

possible. Consider the data generating process (4.1) where this time the ζ’s are continuously

distributed with γ-th quantile equal to zero. Introduce the following local tests:

T λ
s:e (Y ) = 1

{
min
f̂

max
s≤i≤j≤e

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

1√
γ(1− γ)

(
1{Yt−f̂(t/n)>0} − 1 + γ

)∣∣∣∣∣ > λ

}
.

(6.1)

Notice that by taking γ = 1
2 the test (4.3) is recovered. The following inequality again

holds uniformly over all sub-intervals free from change points:

min
f̂

max
s≤i≤j≤e

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

1√
γ(1− γ)

(
1{Yt−f̂(t/n)>0} − 1 + γ

)∣∣∣∣∣
≤ max

1≤i≤j≤n

1√
j − i+ 1

∣∣∣∣∣
j∑

t=i

1√
γ(1− γ)

(
1{ζt>0} − 1 + γ

)∣∣∣∣∣ .
The random variables 1√

γ(1−γ)

(
1{ζt>0} − 1 + γ

)
are independently distributed centered and

scaled Bernoulli random variables, and Theorem 1.1 in Kabluchko and Wang (2014) can

again be used to obtain the limiting distribution of the maximum of their scaled partial

sums. Such a result can be used to obtain a λ which asymptotically controls the family-wise

error of the local tests (6.1). It remain to invert the local tests, subject to shape constraints,
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as was done in Chapter 4. This can be done efficiently using, for example, the algorithm

proposed in Duembgen and Luethi (2022).

6.3 Remarks on Chapter 5

In Chapter 5 we considered a multi-variate time series in which each of the component

processes undergoes a random number of changes, and studied the problem of recovering

a graph which encodes dependence among the changes in the sense that the presence of an

edge in the graph signifies that changes in one series cause changes in another. Formally,

we modeled the change points in each series as arrival times of a marked Hawkes process

(Hawkes, 1971) and sought to recover the local independence graph (Didelez, 2008) for

the underlying unobserved process. We proposed an algorithm for recovering the graph,

based on first estimating the change points via some base method then applying existing

estimation procedures (Kirchner, 2017; Eichler et al., 2017) treating the estimated change

point locations as the true arrival times of the process, and proved that as the sample size

n tends to infinity the graph can be consistently recovered.

There are a number of directions in which the proposed methodology can be extended.

To begin with, we modeled the change point locations as as arrival times of a marked

point process with mark space {1, . . . , d}. However, associated with each change point

location we also have the magnitude and sign of the change, and these quantities can be

consistently estimated. Therefore, in reality we have a marked process with mark space

{1, . . . , d}×R+×{−1,+1}. Including this information in the estimation procedure may be

beneficial. For example, in the real data example presented in Section 5.5.2 positive changes

in the infection rate are more likely to lead to positive changes in the hospitalization rate.

Second, our proof for the consistency of the estimated graph relied on the high probability

event that all changes are detected. However, in practice this may not happen. Therefore,

there may be some advantage in applying a robust estimation procedure which is not

sensitive to some events being unobserved. In many change point problems the number

of change points can be quite small relative to the sample size. There may therefore be
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some advantage in using estimation procedures, such as the one proposed by Salehi et al.

(2019), which are designed with small sample sizes in mind. Finally, would be worthwhile to

extend the theoretical results to the case of random change points in the generic piecewise

polynomial model. This indeed seems possible, although the rates governing the time scales

presented in Section 5.4 will likely change.
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Dümbgen, L. and Spokoiny, V. G. (2001). Multiscale testing of qualitative hypotheses.

Annals of Statistics, 29(1):124–152. 81

Duy, V. N. L., Toda, H., Sugiyama, R., and Takeuchi, I. (2020). Computing valid p-value

for optimal changepoint by selective inference using dynamic programming. Advances in

Neural Information Processing Systems, 33:11356–11367. 50

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. Ann.

Statist, 32(2):407–499. 43

Eichinger, B. and Kirch, C. (2018). A mosum procedure for the estimation of multiple

random change points. Bernoulli, 24(1):526–564. 18, 47, 48, 49, 69, 74, 183

217



Bibliography

Eichler, M., Dahlhaus, R., and Dueck, J. (2017). Graphical modeling for multivariate

hawkes processes with nonparametric link functions. Journal of Time Series Analysis,

38(2):225–242. 187, 188, 189, 197, 208

Embrechts, P. and Kirchner, M. (2016). Hawkes graphs. arXiv preprint arXiv:1601.01879.

62

Enikeeva, F. and Harchaoui, Z. (2019). High-dimensional change-point detection under

sparse alternatives. Ann. Statist, 47(4):2051–2079. 29, 38

EuroAir, x. (2022). Download of air quality data: download service for e1a and e2a data.

https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm. Accessed: 2022-

03-12. 164

Falk, M. and Reiss, R.-D. (1988). Independence of order statistics. The Annals of Proba-

bility, pages 854–862. 73

Fang, X., Li, J., and Siegmund, D. (2020). Segmentation and estimation of change-point

models: false positive control and confidence regions. Ann. Statist, 48(3):1615–1647. 54,

70

Fang, X. and Siegmund, D. (2020). Detection and estimation of local signals. arXiv preprint

arXiv:2004.08159. 46, 54

Fearnhead, P. (2006). Exact and efficient bayesian inference for multiple changepoint prob-

lems. Statistics and computing, 16:203–213. 58

Fearnhead, P., Maidstone, R., and Letchford, A. (2019). Detecting changes in slope with

an l 0 penalty. Journal of Computational and Graphical Statistics, 28(2):265–275. 42,

100

Fithian, W., Sun, D., and Taylor, J. (2014). Optimal inference after model selection. arXiv

preprint arXiv:1410.2597. 50

218

https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm


Bibliography

Fotoohinasab, A., Hocking, T., and Afghah, F. (2020). A graph-constrained changepoint

detection approach for ecg segmentation. In 2020 42nd Annual International Conference

of the IEEE Engineering in Medicine & Biology Society (EMBC), pages 332–336. IEEE.

183

Frick, K., Munk, A., and Sieling, H. (2014). Multiscale change point inference. Journal of

the Royal Statistical Society: Series B: Statistical Methodology, 76(3):495–580. 51, 52, 90

Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics,

19(1):1–67. 134, 167

Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. Ann.

Statist, 42(6):2243–2281. 28, 34, 44, 46, 87

Fryzlewicz, P. (2021). Robust narrowest significance pursuit: inference for multiple change-

points in the median. arXiv preprint arXiv:2109.02487. 139, 144, 155, 160

Fryzlewicz, P. (2023). Narrowest significance pursuit: inference for multiple change-points

in linear models. Journal of the American Statistical Association, pages 1–14. 34, 55,

56, 77, 90, 138, 139, 156

Gasser, T., Sroka, L., and Jennen-Steinmetz, C. (1986). Residual variance and residual

pattern in nonlinear regression. Biometrika, 73(3):625–633. 81

Gavioli-Akilagun, S. (2023). Invited discussion of “automatic change-point detection in

time series via deep learning” by li, fearnhead, fryzlewicz, and wang. Journal of the

Royal Statistical Society Series B (to appear). 206

Grange, S. K., Lee, J. D., Drysdale, W. S., Lewis, A. C., Hueglin, C., Emmenegger, L., and

Carslaw, D. C. (2021). Covid-19 lockdowns highlight a risk of increasing ozone pollution

in european urban areas. Atmospheric Chemistry and Physics, 21(5):4169–4185. 164

Granger, C. W. (1969). Investigating causal relations by econometric models and cross-

spectral methods. Econometrica: journal of the Econometric Society, pages 424–438. 58,

187

219



Bibliography

Granger, C. W. (1980). Testing for causality: A personal viewpoint. Journal of Economic

Dynamics and control, 2:329–352. 58

Gross, J. L. (2016). Combinatorial methods with computer applications. CRC Press. 199

Hahn, G., Fearnhead, P., and Eckley, I. A. (2020). Bayesproject: Fast computation of a

projection direction for multivariate changepoint detection. Statistics and Computing,

30:1691–1705. 56

Hallgren, K. L., Heard, N. A., and Turcotte, M. J. (2023). Changepoint detection on a

graph of time series. Bayesian Analysis, 1(1):1–28. 183

Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the

american statistical association, 69(346):383–393. 80

Hansen, N. R., Reynaud-Bouret, P., and Rivoirard, V. (2015). Lasso and probabilistic

inequalities for multivariate point processes. Bernoulli, 12(1):83–143. 63
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Kartal, M. T., Depren, Ö., and Depren, S. K. (2021). The relationship between mobility

and covid-19 pandemic: Daily evidence from an emerging country by causality analysis.

Transportation Research Interdisciplinary Perspectives, 10:100366. 183

Kaul, A., Fotopoulos, S. B., Jandhyala, V. K., and Safikhani, A. (2021). Inference on the

change point under a high dimensional sparse mean shift. Electron. J. Statist., 15(1):71–

134. 51

Kaul, A. and Michailidis, G. (2023). Inference for change points in high dimensional mean

shift models. Statistica Sinica (to appear). 51

Khinchin, A. Y., Andrews, D., and Quenouille, M. H. (1995). Mathematical methods in the

theory of queuing. Courier Corporation. 60

Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal detection of changepoints

with a linear computational cost. Journal of the American Statistical Association,

107(500):1590–1598. 41

Kim, J., Oh, H.-S., and Cho, H. (2022). Moving sum procedure for change point detection

under piecewise linearity. arXiv preprint arXiv:2208.04900. 48, 70, 79

Kim, S.-J., Koh, K., Boyd, S., and Gorinevsky, D. (2009). \ell 1 trend filtering. SIAM

review, 51(2):339–360. 43, 167

Kirch, C. and Klein, P. (2023). Moving sum data segmentation for stochastics processes

based on invariance. Statistica Sinica, 33:873–892. 74

222



Bibliography

Kirchner, M. (2017). An estimation procedure for the hawkes process. Quantitative Finance,

17(4):571–595. 187, 188, 192, 197, 208
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