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Abstract

Prophet inequalities have been extensively studied within optimal stopping theory, in
part for their applicability to many online decision-making processes. In this thesis,
we explore the benefits of viewing prophet inequalities as optimisation problems. We
present three main results.

First, we study the classic single-choice prophet inequality problem through a
resource augmentation lens. In this setting, the algorithm faces an additional number
of online independent and identically distributed (i.i.d.) bidders compared to the
prophet. The optimal algorithm has a simple description as it sets carefully chosen
thresholds T(j) for each incoming bidder j and accept a given value from the distribu-
tion if and only if it surpasses T(j). Our goal is to analyse the competition complexity,
which relates to the number of extra resources required in order to approximate the
benchmark by a given factor.

Next, we generalise to arbitrary, independent distributions. Now, the metric asks
for the smallest k such that the expected value of the online algorithm on k copies of
the original instance is at least a (1− ε)-approximation to the expected offline optimum
on a single copy. We show that block threshold algorithms, which set one threshold
per copy, are optimal and give a tight bound of k = Θ(log(log1/ε)). This shows that
block threshold algorithms approach the offline optimum doubly-exponentially fast.
For single threshold algorithms, which set the same threshold throughout, we give a
tight bound of k = Θ(log(1/ε)) establishing an exponential gap between block and
single threshold algorithms.

Finally, we move on to the i.i.d. k-selection prophet inequality problem, which is
a different extension of the single choice setting in the case of i.i.d. distributions. At
each time step, a decision is made to accept or reject the value, under the constraint
of accepting at most k in total. Our work proposes an infinite-dimensional linear
programming formulation that fully characterises the worst-case tight approximation
ratio of the k-selection prophet inequality problem, complementing the recent semi-
infinite linear programming general approach by Jiang et al. [EC 2023]. Notably, we



introduce a nonlinear system of differential equations that generalises Hill and Kertz’s
equation. For small k, we observe that this approach yields the best approximation
ratios to date.
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Chapter 1

Introduction

1.1 Main concepts

1.1.1 Prophet inequalities

The standard prophet inequality as introduced in [57, 58] is about a gambler who is given
the choice of opening one of n treasure boxes, each of which contains a single value.
The values of all boxes are distributed according to known non-negative independent
random variables. As the gambler opens each box in sequence, a value is drawn from
the distribution of that box. Upon seeing this value, the gambler has to make the
choice of accepting it, or forgoing it forever and moving onto the next box. [57, 58]
showed that the optimal strategy for the gambler recovers a tight fraction of 1/2 of
the largest value among all boxes, in expectation. Formally, n agents with values
v1, . . . ,vn ≥ 0 distributed independently according to F1, . . . Fn arrive in online fashion.
For each agent i ∈ [n], upon arrival vi is revealed to the algorithm, which has to
make an immediate and irrevocable decision to either accept it or move on to the
following agent. The first time a value is accepted for some agent i ∈ [n], the algorithm
terminates and hence vi is the welfare it has generated. The expected value of the
algorithm is then compared to the performance of a so-called prophet who sees all
values in advance and thus scores E[maxi∈[n] vi]. We wish to find an algorithm ALG
and the smallest possible constant c for which

c ·Ev∼(F1,...,Fn)[ALG(v)] ≥ E[max
i∈[n]

vi].

Whereas [57, 58] accurately analyzed the optimal stopping rule, [73] proposed a
simple single threshold algorithm that also recovers the tight solution to the problem.
More explicitly, assuming continuous distributions, they choose threshold τ such
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that Pr[maxi∈[n] vi > τ] = 1
2 . The algorithm accepts a value vi if and only if vi ≥ τ.

Although this algorithm is clearly not optimal for every given instance, it is sufficient
to recover the optimal worst case ratio of c = 2 when compared to the benchmark.
More precisely, for some sequences of distributions F, the optimal algorithm achieves
a better approximation ratio than the simple 1/2 quantile of maximum algorithm.
However, there exists an instance where the optimal algorithm also does no better than
c = 2. This instance is given by two agents where the first has value 1 with probability
one and the second has value 1

ε with probability ε and 0 otherwise. In this case, any
algorithm will get expected welfare equal to 1, whereas the offline optimum achieves
2− ε.

By viewing the agents as bidders and the threshold τ as a price set by a seller, it
becomes clear that this result has applications in economics and mechanism design.
Partly due to this connection, there has been much recent work done on extensions
to combinatorial settings of the prophet inequality problem, such as matroids [2,
18, 37, 55], general downward-closed set systems [72] and combinatorial auctions
[20, 27, 29, 34, 36]). Let us consider more closely the setting of combinatorial extensions
given by feasibility constraints and additive valuations. Let F be a downwards
closed set system defined on {1, . . . ,n} along with corresponding known non-negative
independent distributions F1, . . . , Fn. The perspective of the gambler is the same as for
the standard prophet inequality where values drawn from F1, . . . , Fn arrive sequentially
and a decision must be made on each one in online fashion. However, instead of
stopping after accepting a single value, the gambler now collects a set S ∈ F . The
value achieved by the gambler is Ev∼(F1,...,Fn)[∑i∈S vi]. It is compared to the offline
benchmark, Ev∼(F1,...,Fn)[maxT∈F{∑i∈T vi}]. [55] give a remarkable generalization of
the standard prophet inequality by showing that when F is a matroid, the same ratio
of 2 is achieved, that is

2 ·Ev∼(F1,...,Fn)

[
∑
i∈S

vi

]
≥ Ev∼(F1,...,Fn)

[
max
T∈F
{∑

i∈T
vi}
]

.

Another major reason for the renewed interest in prophet inequalities is their
relevance to auctions, specifically posted priced mechanisms (PPM) in online sales [3,
18, 20, 27, 42, 55]. It was implicitly shown by [18] and [42] that every prophet-type
inequality implies a corresponding approximation guarantee in a PPM, and the
converse holds as well [24].
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1.1.2 Competition complexity

In any setting where the goal is to compare the optimal offline algorithm against
an online algorithm, resource augmentation is the general concept of realizing this
analysis while granting only the online algorithm some additional amount of resources.
For example, in the case of an online scheduling problem, the online algorithm could
have access to faster processors compared to the clairvoyant optimum. This type of
resource augmentation was considered in [51], who applied their results to obtain
new insights on the classic uniprocessor CPU scheduling problem. They showed
that at the expense of granting the online algorithm a CPU that is slightly faster
compared to the one used by the optimal offline algorithm, the performance of these
two are within a constant factor of each other, with respect to the number of jobs.
This is remarkable since it is known not to be true when both CPUs have the same
performance. Resource augmentation has a long history of success stories in the design
and analysis of algorithms. It is particularly popular in scheduling [51, 69], but it has
also been studied in many other areas such as paging [75], bin packing [25], or selfish
routing [71]. There are typically several plausible notions of resource augmentation,
which illuminate different aspects of the problem at hand. In the scheduling literature,
for example, we may also grant the online algorithm access to additional machines.
In paging, one can analyze the online algorithm with a larger cache relative to that
used by the offline algorithm; while in bin packing, one may consider giving the
online algorithms larger bins. In selfish routing, comparing the equilibrium flow to
the optimal flow can lead to an arbitrarily large price of anarchy. However, one can
consider the equilibrium flow on an augmented version of the original instance, with
an increased traffic rate. Comparing this to the optimal flow on the original instance
yields interesting results.

In the context of online allocation described above, we grant the online algorithm
access to more samples from the same distributions, say the online algorithm can
choose to allocate the item to one of nk players, where for each distribution Fi, there
are k players whose value is drawn from this distribution. The question we seek to
answer is that of understanding how many additional resources (samples) the online
algorithm needs in order to effectively approximate the performance of the offline
optimum in this stochastic setting. This concept is called competition complexity and has
been the subject of study in some excellent recent work by [30], [11] and [8]. To the
best of our knowledge, our work, published in [13], is the first to consider competition
complexity for posted price auctions. As we will further discuss in the following
section, for example in the setting of allocating an item to several agents with the
intent of maximizing welfare, online allocation mechanisms have practical advantages
over say a more traditional second price auction. Being faced with a take it or leave it
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price is more time efficient and easier to understand since the price paid is fixed and
doesn’t depend on other agent’s bids. Thus it is fair to assume that an online posted
price mechanism may recruit more bidders than the optimal, second price mechanism.

1.2 Overview of our results

In this thesis, we contribute to different extensions of the classic prophet inequality.

1.2.1 Competition complexity of sequential posted pricing, i.i.d dis-
tributions

In the standard prophet inequality setting, the benchmark E[maxi∈[n] vi] can alterna-
tively be viewed as the expected welfare of the optimal, not necessarily sequential,
incentive compatible mechanism. In fact a welfare of E[maxi∈[n] vi] can be achieved
by a second price auction. That is, an auction where upon receiving all bids bi, the
winner is declared to be the agent with the highest bid and their payment is equal
to the second highest bid. It is well known that this auction is strongly incentive
compatible, meaning rational bidders will submit their true value as their bid, bi = vi

[19, 41, 76]. In many practical scenarios where such auctions would be deployed,
it is often the case that a simple posted price sequential auction is more appealing
than the second price auction to a number of buyers. One reason is, having the price
depend on another agent’s bid adds an element of uncertainty. Another is that the
result of a second price auction can only be announced once all agents have submitted
their bid, whereas in the sequential auction, bidders are immediately notified of the
outcome. Soliciting bids can potentially be a time consuming process when it is not
an automated procedure. Thus due to the increased simplicity of the online sequential
posted price auction, it is fair to assume that in a significant portion of instances, it
will attract more participants than the second price auction. In this context, it becomes
important to be able to compare the performance of the second price auction on n
agents with the performance of the optimal sequential posted price auction on m ≥ n
agents. We refer to the dependence of m on n and ε as the competition complexity of
dynamic pricing.

In Chapter 2, this motivation leads us to study the following problem. Let Am(F)
be the expected social welfare achievable by the optimal sequential posted price policy
on m i.i.d. draws from a random variable X with cumulative distribution function
F. We compare it to the expected maximum Mn(F) of n ≤ m i.i.d. draws. We note
that the optimal online policy is indeed sequential posted price. This is easy to see
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when F is continuous. Any online policy is equivalent to a set of prices Pt at time
each time t ≤ m for which the item is sold. Let qt = Pr[X ∈ Pt]. Then we see that the
posted price strategy that posts z(t) := Pr[X ≥ z(t)] = qt has larger or equal expected
welfare. An instance where F may by discontinuous reduces to one with a continuous
distribution in that, if we allow an algorithm to allocate at a given price with any
chosen probability (rather than either allocating with probabilities 0 or 1), then it can
execute any quantile strategy z(t) as above. We find that for any m ≥ n, there exists F
such that Am(F) < Mn(F). In light of this result, we investigate how large the ratio
between these two quantities can become, given the size of m relative to n. For fixed
ε ≥ 0 and fixed n, we want to find the smallest m ≥ n such that for every F we have

(1 + ε) · Am(F) ≥ Mn(F).

The solution is expressed in terms of the function ϕ : R+→R+ given by

ϕ(ε) =
∫ 1

0

1
y(1− log(y)) + ε

dy

where log refers to the natural logarithm. We find that for any ε > 0 and any n, we
have (1 + ε)Am(F) ≥ Mn(F) for every F if m ≥ ϕ(ε)n, and for large n this is tight. To
get some intuition on this function, it can be shown that ϕ(ϵ) is Θ(log(log(1/ε))) as
ε→ 0, with very small constants hidden in the big-O notation.

We now give a brief summary of how the results were obtained, which in part
illustrates the role optimization played in our work. The general approach in this
chapter is to formulate our question as an optimization problem, which we then
analyze precisely, without making much use of approximations. The values of the
sequence (Ai(F))i∈[m] have a simple description in that they satisfy the following
recurrence:

A0(F) = 0, A1(F) = E(X), . . . , Ai+1(F) = E(max{X, Ai(F)}) ∀i ∈ [m− 1].

where X is a random variable distributed according to F as noted and analyzed in
[45]. Further, this formula makes a lot of sense by observing the following. From the
perspective of the algorithm, let us start at the end and assume we have not allocated
the item and there is only a single agent, agent m, remaining. In this case, we definitely
want to allocate the item, thus pricing it at 0. Given that our strategy is clear once
we’re faced with the last agent, what to do at the previous step? For agent m− 1, we
know that if we don’t allocate to this agent, we can always recover expected welfare
E[X] from the following agent. Hence we are interested in allocating the item if and

5



only if agent m − 1 values it more than E[X], and so we sell it at this price, E[X].
Backtracking in this way, we always price the item for a given agent at price exactly
equal to the expected welfare we could obtain from remaining agents. This yields the
formula.

We then observe that the values (Ai(F))i∈N, of the optimal posted prices given
some F only depend on the value of the integral of F on certain intervals, as we will
show in section 2.3. In other words, we find that while every feasible sequence Ai(·)
may be realized by many different probability distributions, there is one distribution
that gives the worst case with respect to our question. As a consequence, for fixed
ε > 0 and m ≥ n > 0, we are able to reduce the question of finding if

min
F∈∆

(1 + ε)Am(F)−Mn(F) > 0, (1.1)

where ∆ is the space of all cumulative distribution functions. Instead, we obtain the
following infinite-dimensional, non-linear optimization problem and ask if it has a
non-negative objective.

minimize (1 + ε)
m−1

∑
i=0

δi −
∞

∑
i=0

(
1−

(
δi+1

δi

)n)
δi

subject to δj+1 ≤ δj for every integer j ≥ 0,

δ2
j ≤ δj−1δj+1 for every integer j ≥ 1,

δ0 = 1 and δj > 0 for every integer j ≥ 1.

(1.2)

In this optimization problem, we should interpret δi as Ai+1(F)− Ai(F). It follows
that clearly the sum ∑m−1

i=0 δi = Am(F). A significant observation that we describe
carefully in Section 2.3 is that in expression (1.1), we only need to consider a simple

subset of ∆ for which indeed Mn(F) = ∑∞
i=0

(
1−

(
δi+1

δi

)n)
δi.

This new formulation of the problem turns out to be useful because although it is
non-linear, we do have convexity, allowing us to use standard optimization tools.
Indeed, first-order methods yield a solution by means of a recurrence relation. Given
ε > 0 and a positive integer n≥ 2, let (ρε,j)j∈N be the sequence defined by the following
recurrence:

ρε,1 = 1, and (n− 1)ρn
ε,j−1 − ε = nρn−1

ε,j for every j ≥ 2 for which (n− 1)ρn
ε,j−1 − ε > 0.

These terms are decreasing in j and we will show that our original question is
equivalent to finding the last term of the sequence, or the largest m such that ρε,m is
well-defined. Finally, we return to continuous methods as we analyze the recurrence
(ρε,j)j∈N by accurately approximating it by an ordinary differential equation (ODE).
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It may seem as if the appearance of an ODE is a bit surprising and not an essential
part of the proof. However, we know that already [45] used the recursion from the
optimal dynamic program in [45] to provide an ODE where the approximation ratio β

is embedded as a unique constant that guarantees crucial analytical properties of the
solution of the ODE:

y′ = y(lny− 1)− 1/β + 1, y(0) = 1, y(1) = 0.

We also observe that in Chapter 4, which addresses a very closely related problem,
ODEs play a central role.

In order to prove existence of a unique solution to the ODE, we will make use of a
simple global extension to the well known Picard-Lindelöf theorem [70] in the case of
Lipschitz functions. We consider solutions to the initial value problem

x′ = f (t, x)

x(t0) = x0

Theorem 1. Let f (t, x) be a continuous function f : D→R, where D ⊂R×R open, and f
is locally Lipschitz with respect to the x variable. Then for any (t0, x0) ∈ D, there is a unique
local solution to φ(t) to the intial value problem. More precisely, there exists some small
interval (a,b) including t0 where φ(t) exists and is unique.

1.2.2 Competition complexity for sequential posted pricing, inde-
pendent distributions.

In Chapter 3, we explore a more general setting, where we drop the assumption that
distributions must be identical. We start by defining the standard prophet inequality
setting, with bidders having independent values drawn respectively from distributions
F1 . . . , Fn. The benchmark becomes Ev∼(F1,...,Fn)[maxi∈[n] vi]. We ask how many copies
of (F1, . . . , Fn) must a sequential algorithm see in order to recover a (1− ε) fraction of
the benchmark. Let us a give a more detailed description of the setting.

The Prophet Inequality Setting. Consider the following game between an online
algorithm (“gambler”) and an offline algorithm (“the prophet”). The online algorithm
gets to observe a sequence of n (non-negative) numbers v1, . . . ,vn one-by-one. Each vi

is drawn independently from a known distribution Fi ∈ ∆, where ∆ is the set of all
distributions over R≥0. We call a sequence of distributions F1, . . . , Fn an instance.
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We refer to the online algorithm as ALG. Upon seeing a value vi the online
algorithm has to immediately and irrevocably decide whether to accept the current
value vi and stop the game, or to proceed to the next value vi+1. Every online algorithm
induces a stopping time ρ ∈ [n] ∪ {null}, where ρ is the index of the value chosen by
the online algorithm (to handle the case where the online algorithm does not accept
any value, we set ρ = null and interpret vnull as zero). The algorithm’s expected reward
is E[ALG(v)] = E[vρ]. The offline algorithm, in contrast, can see the entire sequence
of values v1, . . . ,vn at once and can simply choose the maximum value maxi∈[n] vi. The
offline algorithm’s expected reward is E[maxi∈[n] vi].

In the Prophet Inequality problem the online algorithm is evaluated by its competi-
tive ratio, defined as the worst-possible ratio (over all instances) between the online
algorithm’s expected reward E[ALG(v)] = E[vρ] and the offline algorithm’s expected
reward E[maxi∈[n] vi]. Let α ∈ [0,1]. An online algorithm is α-competitive if

inf
F1,...,Fn∈∆

Ev∼(F1,...,Fn)[ALG(v)]
Ev∼(F1,...,Fn)[maxi∈[n] vi]

≥ α.

We seek to give an upper bound on k such that

max
ALG

Ev∼(F1,...,Fn)k [ALG(v)] ≥ (1− ε) ·Ev∼(F1,...,Fn)[max
i∈[n]

vi].

The Competition Complexity Benchmark. Our goal is to compare the expected
performance of an online algorithm on k independent copies of the original instance,
to the expected value of the offline algorithm on a single instance. This can be done
under different assumptions on how the nk values of the k copies are presented to the
online algorithm.

Our default model is what we call the block model. In this model, the online
algorithm sees the k copies of the original instance one after the other. We refer to
each copy as a block. Within each block, the n values arrive in the same order as in
the original instance.

More formally, when (F1, . . . , Fn) is the original instance, we denote with (F1, . . . , Fn)k

the instance with k copies. The input to the online algorithm consists of kn numbers

v(1)1 , . . . ,v(1)n ,v(2)1 , . . . ,v(2)n , . . . ,v(k)1 , . . . ,v(k)n ,

where each v(j)
i for i ∈ [n] and j ∈ [k] is an independent draw from Fi. The offline

algorithm receives only n numbers v1, . . . ,vn where each vi for i ∈ [n] is an independent
draw from Fi.
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Let A be a family of online algorithms. Let An,k be defined as all the online
algorithms in A that are defined on ∆n,k = {(F1, . . . , Fn)k | F1, . . . , Fn ∈ ∆}.

Definition 1 (Competition complexity). Given ε ≥ 0, the (1− ε)-competition complexity
with respect to a class of algorithms A is the smallest positive integer number k(ε) such that
for every n, every F1, . . . , Fn ∈ ∆, and every k ≥ k(ε), it holds that

max
ALG∈An,k

Ev∼(F1,...,Fn)k [ALG(v)] ≥ (1− ε) ·Ev∼(F1,...,Fn)[max
i∈[n]

vi].

The case ε = 0 is also referred to as exact competition complexity; it was shown
in [12, Theorem 2.1] that the exact competition complexity is unbounded even for the
i.i.d. case (namely, where Fi = Fj for all i, j). So, naturally, our focus will be on the case
ε > 0.

We remark that, as is common in the literature, we focus on a worst-case notion of
competition complexity, which asks for the minimum number of copies that suffices
for a worst-case approximation guarantee. In Appendix B.3, we explore an alternative,
which asks for the expected number of copies that are required to achieve this.

Classes of Online Algorithms. We are particularly interested in three types of online
algorithms. In order of increasing generality these are:

• A single threshold algorithm is defined by a single threshold τ and it accepts the
first value vℓ (indexed according to arrival order) that is at least τ.

• A block threshold algorithm sets k thresholds τ = (τ1, . . . ,τk), i.e., one threshold per
block. It accepts the first value v(j)

i that is larger than the threshold τj for its
block.

• A general threshold algorithm sets nk thresholds τ = (τ1, . . . ,τnk), and accepts the
first value vℓ (again, indexed according to arrival order) that is at least τℓ.

In all of the above cases, we allow the algorithm to accept a value only with a
certain probability in case it exactly meets the threshold. This ability to randomize
is relevant only for distributions with point masses. A standard backward-induction
argument shows that the optimal online algorithm is a general threshold algorithm.

In the classic prophet inequality problem, a single threshold algorithm attains the
best possible competitive ratio [73]. Proposition 8 generalizes this result, and shows
that for the more general competition complexity benchmark, it is without loss to focus
on block threshold algorithms. The main idea behind this reduction is that finding the
competition complexity of general threshold algorithms is, essentially, equivalent to
understanding the competition complexity for instances where every distribution is a
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weighted Bernoulli. For these instances, and within each block, only non-zero values
of a suffix of the block are chosen, and therefore it is sufficient to implement a single
threshold per block. This implies that block threshold algorithms are as powerful as
general threshold algorithms for the block model.

Approximate Stochastic Dominance. We give an introduction to this notion here
because it plays a central role in proving the main result of the chapter. A simplifying
explanation for this is, we find that for the competition complexity setting, it is very
convenient to work with quantile based algorithms. In order to analyze the latter, the
approximate stochastic dominance notion is a natural choice. First-order stochastic
dominance between two random variables can be defined as follows. Consider
two random variables X,Y. Then we say X stochastically dominates Y if for any
outcome x, Pr[X ≥ x] ≥ Pr[Y ≥ x]. We refer to approximate stochastic dominance
as this property being satisfied up to a fixed multiplicative constant. That is, X
approximately stochastically dominates Y up to factor c ≤ 1 if for any outcome x,
Pr[X ≥ x] ≥ cPr[Y ≥ x]. We note that an immediate consequence is that the relation
holds in expectation as well. That is E[X] ≥ c ·E[Y].

A notable difference to our approach in Chapter 2 is that we no longer explicitly
analyze the optimal sequential mechanism. We note that although such optimal
sequential mechanism has a simple, very similar description to that seen in Chapter
2, a direct analysis seems much more complicated. In particular, finding the worst
case F for every sequence Ai(F), leading to an optimization problem such as 1.2
becomes problematic. Instead, we choose a fixed threshold for each of the k copies
of (F1, . . . , Fn). We call these block threshold algorithms. First, we show that the
competition complexity of such block threshold prices is asymptotically the same as
for the larger class of dynamic pricing policies. Second, to pin down the asymptotic
behaviour of the competition complexity in this setting, we choose a set of prices
τ that is not optimal, but more straightforward to analyze. Here it is worth noting
that the results of chapter 3 do not imply those of chapter 2. In 2 we obtain a tight
description of the competition complexity given by ϕ(ε). In particular, for ε = ϕ−1(1),
we recover the optimal approximation factor of ≈ 0.745 of the standard i.i.d prophet
inequality (without resource augmentation). From this perspective, 2 is more relevant
in terms of practical applications. The results of 3 are only asymptotically optimal in
terms of 1

ε .

More specifically, given F1, . . . , Fn ∈ ∆, and τ = (τ1, . . . ,τk) such that p0 = 0 and
pℓ = Prv∼(F1,...,Fn)[maxj∈[n] vj ≥ τℓ] > 0 for every ℓ ∈ {1,2, . . . ,k}. That is, pℓ is the
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quantile of threshold τℓ with respect to the distribution of the largest value. Define

Φ1(F1, . . . , Fn,τ) =
k

∑
ℓ=1

ℓ

∏
j=1

(1− pj),

Φi(F1, . . . , Fn,τ) =
1
pi

i−1

∑
ℓ=1

pℓ
ℓ−1

∏
j=0

(1− pj) +
k

∑
ℓ=i

ℓ

∏
j=0

(1− pj) for every i ∈ {2, . . . ,k}, and

Φk+1(F1, . . . , Fn,τ) =
k

∑
ℓ=1

pℓ
ℓ−1

∏
j=0

(1− pj).

The interpretation of the Φi for i ∈ [n] is

Pr
v∼(F1,...,Fn)k

[ALGτ(v) ≥ x] ≥ Φi(F1, . . . , Fn,τ) Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x].

for x ∈ [τi−1,τi], where we define τ0 = 0. That is, it provides a lower bound on the
algorithm’s performance for the case when the maximum value lies in the interval
[τi−1,τi].

Let Φ(F1, . . . , Fn,τ) = mini∈{1,...,k+1}Φi(F1, . . . , Fn,τ). We say that τ = (τ1, . . . ,τk) is
decreasing if τj > τj+1 for every j ∈ {1, . . . ,k}. Our question becomes how to choose
decreasing threshold prices τi such that Φ(F1, . . . , Fn,τ) is maximized. In this sense, we
have again reduced the initial formulation to an optimization problem over a tangible
search space. However, it remains unclear how to find the optimal solution to this
reduced problem.

Nonetheless, by making a careful choice of quantile thresholds, we conclude again
that it suffices to let k = Θ(loglog(1/ε)). Indeed, we obtain the same asymptotic
result as in Chapter 2 for a strictly more general setting, and one could argue that the
methods used are significantly more simple.

We also analyze the competition complexity of the even simpler class of algorithms
that set a single fixed threshold for all of (F1, . . . , Fn)k. In this case, we find the asymp-
totically tight result of k = Θ(log(1/ε)).

1.2.3 A linear programming approach to the i.i.d k-selection prophet
inequality problem

In Chapter 4, we revisit the well studied i.i.d k-selection prophet inequality problem.
The setting is the same as in the original prophet inequality problem, with the only
difference being that the auctioneer sells up to k items instead of a single one. In recent
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years, there has been substantial progress in understanding the approximation limits
for prophet inequality problems, mainly driven by their applicability in mechanism
design [62]. One of the most prominent settings is the i.i.d. k-selection prophet
inequality problem, where the decision-maker selects at most k values from the n
observed and aims to maximize the expected sum of values selected. The offline
benchmark in this case is ∑n

t=n−k+1 E[X(i)] where X(1) ≤ X(2) ≤ · · · ≤ X(n) are the
ordered statistics of the random values X1, . . . , Xn. Observe that when k = 1, this
setting corresponds to the classic i.i.d. prophet inequality problem. We refer to this
problem as the k-selection prophet inequality. When the length of the sequence is n and
k selections can be made, we refer for short to this problem as (k,n)-PIP.

In a line of work, the value of γn,k has been proven to be at least 1− kke−k/k!≈ 1−
1/
√

2πk (see, e.g., [5, 10, 16, 27, 77]). Using a different approach, [47] introduced very
recently a general optimization framework to characterize worst-case approximation
ratios for prophet inequality problems, including the i.i.d. k-selection setting, but it is
unclear how to use their framework to obtain provable analytical lower bounds for
k ≥ 2. We propose a method to obtain improved approximation ratios, with results for
small k displayed in the following table.

k 1 2 3 4 5

Our approach 0.7454 0.8290 0.8648 0.8875 0.9035
[10] 0.6543 0.7427 0.7857 0.8125 0.8311
[47] 0.7489 0.8417 0.8795 0.9006 0.9143

Table 1.1 Ratio lower bounds for k ∈ {1, . . . ,5} and comparison with other approaches. [10]
offer provable lower bounds, while [47] reports γn,k using their LP approach for n = 8000. We
acknowledge the gap between our bounds and γn,k for n = 8000. We are uncertain whether
the gap arises from suboptimality in our approach or from a possible slow convergence rate of
γn,k as a sequence in n.

We note that in the table above, while [47] compute numerical approximations of
γn,k for up to n = 8000 that seem to be decreasing in n, our results are lower bounds
on liminfn γn,k.

Our proof has some high level elements in common with those seen in Chapters
2 and 3. By interpreting the fixed prices chosen by an algorithm in quantile space,
we give a description of the problem that is the infinite dimensional linear program
[P]n,k. That is, [P]n,k has value γn,k. However, this time we do not analyze the program
directly. Instead, we establish a weak duality relation with respect to a dual program,
[D]n,k. Our task becomes to find a good feasible solution to the dual [D]n,k. It turns out
to be a natural choice to describe such a candidate solution by using the solution to a
closed form system of nonlinear ordinary differential equations, given by equations
(4.1) - (4.3). Then, two major parts remain to be proven. First, we show that this
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system of nonlinear ODEs has a solution. Second, it is still non-trivial to show that our
candidate LP solution is feasible. Once these two facts are established, we immediately
obtain the lower bound on liminfn γn,k. By finding solutions to the system of non-linear
ODE’s (4.1) - (4.3) computationally, we find that for small k, our method provides the
best provable lower bounds on liminfn γn,k to date.

1.3 Related work

The competition complexity of auctions has proven to be an important line of work
at the intersection of Economics and Computation [11, 15, 30, 35]. The resource
augmentation approach it proposes originates in a seminal paper by Bulow and
Klemperer [15], who asked this question for the revenue achievable by the simple
but suboptimal second-price auction and Myerson’s optimal auction. They showed
that for i.i.d. bidders whose valuations are drawn from a regular distribution F, the
second-price auction with n + 1 bidders is guaranteed to achieve at least the expected
revenue of the optimal auction with n bidders. They concluded that rather than going
for the more complicated auction mechanism, one could simply attract one more buyer
to the simpler auction mechanism.

Subsequent work has extended this basic result to a variety of more complex
auction settings [11, 30, 61], and also introduced the idea of approximate competition
complexity where instead of shooting for optimality, one aims at 99% or 99.9% of
optimum [35].

Chapters 2 and 3 examine the relative power of a simple mechanism (dynamic
pricing) to that of an optimal mechanism (the optimal auction) and thus fits under the
broader umbrella of simple vs. optimal mechanisms (e.g., [43, 44]). At the technical core
of our work, we rely on a connection between posted-price mechanisms and prophet
inequalities that was pioneered and explored in the last fifteen years [18, 24, 42]. This
line of work motivated work on prophet inequalities more generally. Most relevant
for us is the work on the i.i.d. single-item prophet inequality [1, 21, 23, 54, 60, 74],
but there is also exciting work on combinatorial extensions such as [27, 29, 36, 55]. A
closely related line of work has examined the gap between various simple mechanisms
including posted-price mechanisms and the optimal mechanism on the same number
of bidders [4, 28, 48–50].

Chapter 3 is more specifically related to the recent work of [1, 60] through the notion
of “frequent instances”. Both of these papers study the frequent prophets problem,
in which each distribution must be repeated at least some number of times: An
instance is m-frequent if each distribution appears at least m times. The inspiration
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behind frequent prophets comes from the difficulty of directly analyzing the general
independent case in random and free-order models, in which the values either arrive
in uniform random order or the algorithm is free to choose the order of observation,
and the idea is to bring the instance closer to the i.i.d. case. Abolhassani et al. [1] show
how to design a 0.738-competitive policy for O(1)-frequent instances in the free-order
model and Θ(logn)-frequent instances in the random-order model. The difference to
our work is that they study ALG and OPT on “frequent instances”, while we compare
the algorithm in a k-frequent instance with the prophet on a standard (1-frequent)
instance. Another difference is that we work in the fixed order setting, whereas the
results in [1, 60] apply to the random and free-order model.

In Chapter 4 we return to the i.i.d. version of the prophet inequality, introduced
by [45], and more specifically to their approach of the problem. Although the Hill and
Kertz equation has been used in various recent works [23, 60, 67], to the best of the
authors’ knowledge, our result for multiple selections, where the approximation ratio
is embedded in a nonlinear system, has not been previously explored.

Lastly, linear and convex programming have been a powerful tool for the de-
sign of online algorithms. For instance, in online and Bayesian matching prob-
lems [39, 63], online knapsack [9, 53], secretary problem [14, 17], factor-revealing
linear programs [37, 59], and competition complexity. [67], similar to us, uses a
quantile-based linear programming formulation to provide optimal policies in the
context of decision-makers with a limited number of actions.
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Chapter 2

The Competition Complexity of
Dynamic Pricing

2.1 Introduction

In this chapter, we study competition complexity in the context of posted pricing.
We focus on the fundamental single-item i.i.d case and compare optimal dynamic
pricing versus the optimal auction. While we study the social welfare case, all our
results translate to revenue maximization under the standard regularity assumption
(see Section 2.2 for a detailed discussion).

Since we are focusing on social welfare, the simplest way to state our question is in
prophet inequality terminology. Our goal is to compare the expected reward Am(F)
achievable by the optimal policy found by backward induction on m ≥ n i.i.d. draws
from a distribution F, to the expected maximum Mn(F) of n i.i.d. draws from F. For
fixed ε ≥ 0 and fixed n, we want to find the smallest m ≥ n such that for every F we
have

(1 + ε) · Am(F) ≥ Mn(F).

We refer to the functional dependence of m on n and ε as the competition complexity
of dynamic pricing. We sometimes refer to the case ε = 0 as exact competition complexity
and to the case ε > 0 as the approximate version.

2.1.1 Warm-up: the uniform case

As a warm-up and to illustrate some of the key ideas in our general competition
complexity analysis, consider the case where F = U[0,1] is a uniform distribution
over [0,1], and convince ourselves that in this case A2n ≥ Mn for all n, so the exact
competition complexity is linear. We have that Mn is just the maximum of n i.i.d. draws
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from a uniform distribution over [0,1], and therefore Mn = n/(n + 1). On the other
hand, we can compute An through the usual backward induction: The recursion is
An+1 = E(max{X, An}) for n≥ 1 and A1 = E(X) where X∼U[0,1]. That is, A1 = 1/2,
and for n ≥ 1,

An+1 = E(max{X, An})
= An Pr(X < An) + E(X | X ≥ An)Pr(X ≥ An)

= A2
n +

(1 + An)

2
(1− An) =

1
2
(1 + A2

n).

Observe that apart from getting an exact formula for the recurrence, we get a simple
expression for An+1− An, that is, the marginal gain of the optimal algorithm when we
add one more buyer: An+1 − An = (1− An)2/2 for n ≥ 1. In particular, this idea will
be further exploited to understand the competition complexity of general distributions.

To analyze the competition complexity for the uniform case, we proceed by induc-
tion. It is easy to verify that the claim holds for n = 1 since A2 = 5/8 > 1/2 = M1. So
we assume A2n ≥Mn, and we want to show A2n+2 ≥Mn+1. Note that if A2n+1 ≥Mn+1

then also A2n+2 ≥ A2n+1 ≥ Mn+1, and there we are done, so we consider the case
A2n+1 < Mn+1. We have

A2n+2 = A2n + (A2n+2 − A2n+1) + (A2n+1 − A2n)

= A2n +
1
2
(1− A2n+1)

2 +
1
2
(1− A2n)

2.

Since the function f (x) = x + 1
2(1− x)2 is increasing in R+, and given that A2n ≥ Mn,

we obtain a lower bound that together with A2n+1 < (n + 1)/(n + 2) yields

A2n+2 ≥ Mn +
1
2

((
1

n + 1

)2

+

(
1

n + 2

)2
)

.

The argument is completed by observing that what we add to Mn on the right-hand
side is at least Mn+1 −Mn = 1/((n + 1)(n + 2)). We conclude that for the uniform
distribution, it suffices to choose m ≥ 2n. A closer examination of the asymptotic
behavior of Am and Mn shows that this analysis is in fact tight. Indeed for large m and
n, Am ≈ 1− 2/(m + log(m) + 1.76799) [38, 64] while Mn ≈ 1− 1/n which roughly
shows that we need m = 2n + o(n).
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2.1.2 Our contribution

The above analysis of the uniform case already rules out a “plus constant” result as in
Bulow and Klemperer [15]. It leaves some hope that the exact competition complexity
of dynamic pricing may be linear or, if not, then at least polynomial with a small
polynomial. Our first main result shows that this hope is unfounded. Indeed, the
exact competition complexity is not only “large,” it is in fact unbounded.

Main Result 1 (exact competition complexity): For any m ≥ n, there exists a distribu-
tion F such that Am(F) < Mn(F).

In light of this strong impossibility, a natural question is whether this impossibility
persists if we relax our goals and aim for 99% or 99.99% of optimal. It turns out
that things change, and quite drastically so. This is formalized by our second main
result, which nails down the approximate competition complexity in terms of function
ϕ : R+→R+ given by

ϕ(ε) =
∫ 1

0

1
y(1− log(y)) + ε

dy.

Main Result 2 (approximate competition complexity): Consider ε > 0 and any n.
Then, we have (1 + ε)Am(F) ≥ Mn(F) for every F if m ≥ ϕ(ε)n, and for large n this is
tight.

While our first main result shows that the exact competition complexity of dynamic
pricing is unbounded, our second main result shows that if we aim for approximate
optimality, then the competition complexity not only drops from being unbounded to
being linear, it is actually linear with a very small constant.

We illustrate this in Figure 2.1. In the technical part of the chapter, we show that
the function ϕ(ϵ) grows as Θ(loglog1/ε) as ε→ 0, with very small constants hidden
in the big-O notation. For example, to obtain 99% of optimal it is sufficient to have
m ≥ 2.30 · n, and to obtain 99.99% of optimal it is sufficient to have m ≥ 2.53 · n.

An interesting implication of our analysis is that it yields the factor 0.745 i.i.d. prophet
inequality [23, 54, 60, 74] and its tightness [45] as a special case. Here is how: Rather
than fixing ε and finding m(n, ε), we may fix m(n, ε) = n and find ε. The equality
m(n, ε) = ϕ(ε)n corresponds to solving ϕ(ε) = 1. This yields ε = ϕ−1(1) and corre-
sponds to an approximation guarantee of 1/(1 + ϕ−1(1)) ≈ 0.745.

2.1.3 Our techniques

Our argument for the uniform distribution F = U[0,1] that we presented above relied
on a formula for the differences between two consecutive terms An+1 and An, and at its
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Fig. 2.1 Plot of ϕ(ε) as a function of ε on the left, and as a function of 1/ε on the right. Plotting
ϕ(ε) as a function of 1/ε serves to illustrate the very slow growth of ϕ(ε) as Θ(loglog1/ε)
when ε→ 0. The dashed blue line in the left plot is at ε = ϕ−1(1) ≈ 0.342 which implies the
optimal factor 1/(1 + ϕ−1(1)) ≈ 0.745 for the i.i.d. prophet inequality. In the other plot the
two blue dashed lines are at 1/ε = 100 and 1/ε = 1000 which correspond to approximation
ratios of 99.9% and 99.99%. The value of ϕ(ε) at these points is the constant required to obtain
these approximation ratios.

core compared A2(n+1)− A2n to Mn+1−Mn. Intuitively, we explored properties of the
rate of growth and curvature of the two sequences A1, A2, . . . , Am and M1, M2, . . . , Mn.

Our general argument builds on this intuition. Our first key observation char-
acterizes the sequences A1, A2, . . . , Am that can arise. Namely, we show that for any
distribution F, the corresponding infinite sequence (Ai(F))i∈N satisfies the follow-
ing three properties. Moreover, for any infinite sequence (Ai)i∈N satisfying these
properties there is a distribution F that leads to this sequence. The three properties
are:

(1) The sequence (Ai)i∈N is non-decreasing,

(2) The sequence (Ai+1 − Ai)i∈N is non-increasing, and

(3) The sequence ((Ai+2 − Ai+1)/(Ai+1 − Ai))i∈N is non-decreasing.

Our second key observation is that given a fixed infinite sequence (Ai)i∈N with
these properties, we can identify the compatible distribution F that maximizes Mn.
This worst-case distribution is a simple piece-wise constant distribution, and allows
us to express the largest possible Mn as a function of the (Ai)i∈N. We thus reduce
the problem of checking whether for a fixed n and m, (1 + ε)Am(F) − Mn(F) ≥ 0
for all F, to an infinite dimensional optimization problem that seeks to minimize
(1 + ε)Am(F)−Mn(F) over all infinite sequences satisfying properties (1)–(3): The in-
equality is satisfied by all F if and only if the objective value of this infinite-dimensional
optimization problem is non-negative. To show our two main results, we then solve
this infinite-dimensional optimization problem optimally. This reduces the problem to
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the analysis of a recursion, which can be pointwise bounded by a differential equation,
which, by a careful analysis, leads to the function ϕ(ε).

2.2 Formal statement of our results

For our analysis, it will be convenient to consider N = {0,1,2, . . .}, the natural num-
bers including zero. We consider distributions F over the non-negative reals with
finite expectation. For a distribution F, we let M0(F) = 0 and for n ≥ 1 we let
Mn(F) = E(max{X1, X2, . . . , Xn}), where X1, . . . , Xn is an i.i.d. sample distributed
according to F. We denote by An(F) the value of the optimal policy and the se-
quence (An(F))n∈N satisfies the following recurrence: A0(F) = 0, A1(F) = E(X) and
An+1(F) = E(max{X, An(F)}), where X is a random variable distributed according
to F. We now formally state our main results.

Theorem 2. For every positive integer n > 1, and every positive integer m ≥ n, there exists a
distribution F such that Am(F) < Mn(F).

Theorem 3. Let ε > 0 and let n be a positive integer. Then, for every m ≥ ϕ(ε)n =

Θ(loglog1/ε)n, and every distribution F we have (1 + ε)Am(F) ≥ Mn(F). Conversely, for
any δ > 0, there exists a distribution G such that for n sufficiently large and m < (ϕ(ε)− δ)n,
we have (1 + ε)Am(G) < Mn(G).

While Theorem 2 shows that the exact competition complexity of dynamic pricing
is unbounded, Theorem 3 shows that the approximate competition complexity not
only drops from being unbounded to being linear, it is actually linear with a very
small constant (see Figure 2.1).

As mentioned in the introduction, Theorems 2 and 3 translate to the case of revenue
by using standard reductions between social welfare and revenue optimization for the
i.i.d. case [18, 24, 42]. Given a distribution F, the virtual valuation of F is the function
ϕF(x) = x − (1− F(x))/ f (x), where f is the probability density function of F. To
construct an algorithm for the revenue setting in the i.i.d. case with distribution F
and n buyers, we reduce to the social welfare case as follows: We run the optimal
dynamic welfare policy for an instance with n buyers identically and independently
distributed according to Fϕ, where Fϕ is the distribution of the random variable
ϕ̃F(X) = max(0,ϕF(X)) when X is distributed according to F. By doing so, the optimal
dynamic welfare policy is defined by thresholds τ1, . . . ,τn, which can be converted
into optimal dynamic revenue prices (a posted price mechanism) with pi = ϕ̃−1

F (τi),
for every i ∈ {1, . . . ,n}}, when F is regular, i.e., ϕF is monotone non-decreasing [42].
We remark that this reduction is based in the classic result of Myerson for revenue
maximizing single-item auctions [65].
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2.3 An equivalent optimization problem

In this section, we develop the main building block of our analysis. The key result
of this section, Theorem 4, shows that the question of whether for a given ε ≥ 0,
n ≥ 1, and m ≥ 1 it holds that (1 + ε)Am(F) ≥ Mn(F) for all F reduces to showing
whether the following infinite-dimensional, non-linear optimization problem has a
non-negative objective.

minimize (1 + ε)
m−1

∑
i=0

δi −
∞

∑
i=0

(
1−

(
δi+1

δi

)n)
δi (2.1)

subject to δj+1 ≤ δj for every integer j ≥ 0, (2.2)

δ2
j ≤ δj−1δj+1 for every integer j ≥ 1, (2.3)

δ0 = 1 and δj > 0 for every integer j ≥ 1. (2.4)

Theorem 4. Let ε ≥ 0, and let n and m be two positive integers. Then, we have (1 +

ε)Am(F)≥Mn(F) for every distribution F if and only if the optimal value of the optimization
problem (2.1)-(2.4) is non-negative.

We prove this theorem by characterizing the sequences (Aj(F))j∈N that can result
from distributions F and by relating the value of Mn(F) to the values of the sequence
(Aj(F))j∈N. The characterization uncovers the properties of the sequences that can
arise. Given a sequence of non-negative real values (Sn)n∈N, we denote by (∂Sn)n∈N

the sequence such that ∂Sn = Sn+1− Sn for every non-negative integer n. Consider the
following properties:

(a) The sequence (Sn)n∈N is strictly increasing.

(b) The sequence (∂Sn)n∈N is non-increasing.

(c) The sequence (∂Sn+1/∂Sn)n∈N is non-decreasing.

Observe that the properties (b)-(c) imply that the sequence (∂Sn+1/∂Sn)n∈N is not
only non-decreasing, but also bounded with ∂Sn+1/∂Sn ≤ 1 for every n ∈N, and
therefore it is convergent to a limit value of at most one. In what follows, given a
distribution F, let ω0(F) = inf{y ∈ R : F(y) > 0} and ω1(F) = sup{y ∈ R : F(y) < 1}
be the left and right endpoints of the support of F.

We need a few lemmas to prove Theorem 4. We also use the following proposition
about the optimal policy.

Proposition 1. For every distribution F the following holds:
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(i) An+1(F) = An(F) +
∫ ∞

An(F)(1− F(y))dy for every n ∈N.

(ii) An+2(F) = An+1(F) +
∫ An+1(F)

An(F) F(y)dy for every n ∈N.

(iii) limn→∞ An(F) = ω1(F).

(iv) If ω0(F)< ω1(F) and F has finite expectation, then An(F)< An+1(F) for every n ∈N.

Proof. Since An+1(F) = E(max{An(F), X}), where X is distributed according to F, we
get

An+1(F) = An(F)F(An(F)) +
∫ ∞

An(F)
s f (s)ds.

By integrating by parts, we have∫ ∞

An(F)
s f (s)ds = (1− F(An(F)))An(F) +

∫ ∞

An(F)
(1− F(s))ds,

and therefore (i) holds since we have

An+1(F) = An(F)F(An(F)) + (1− F(An(F))An(F) +
∫ ∞

An(F)
(1− F(s))ds

= An(F) +
∫ ∞

An(F)
(1− F(s))ds.

To prove (ii), observe that

∫ ∞

An(F)
(1− F(s))ds =

∫ An+1(F)

An(F)
(1− F(s))ds +

∫ ∞

An+1

(1− F(s))ds

= An+1(F)− An(F)−
∫ An+1(F)

An(F)
F(s)ds +

∫ ∞

An+1(F)
(1− F(s))ds,

and therefore, (i) implies that

∫ An+1(F)

An(F)
F(s)ds =

∫ ∞

An+1(F)
(1− F(s))ds = An+2(F)− An+1(F),

where the last equality holds also by (i).
We now show (iii). Let L = limn→∞ An(F) and assume, for the sake of contradiction,

that L < ω1(F). Since (An(F))n∈N is non-decreasing, we have An(F) ≤ L for every n.
Let U = min{L + 1, (L + ω1(F))/2}. From (i), we have
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An+1(F)− An(F) =
∫ ∞

An(F)
(1− F(y))dy

=
∫ ω1(F)

An(F)
(1− F(y))dy

≥
∫ U

L
(1− F(y))dy ≥ (U − L)(1− F(U)) > 0,

where the first inequality holds since An(F)≤ L < U ≤ ω1(F), and the second inequal-
ity holds since F is non-decreasing. The last inequality follows by the definition of
ω1(F) and using that L < U < ω1(F). Since this inequality holds for all n ∈N, it
implies that

An+1(F) =
n

∑
j=0

(Aj+1(F)− Aj(F)) ≥ n + 1
2

(U − L)(1− F(U))→∞

as n→∞, which contradicts that L < ω1(F) ≤∞. Finally, we show (iv). Since F has
a finite expectation, ω0(F) < ω1(F) and the support is contained in the non-negative
reals, we have that A1(F) = E(X)> 0 = A0(F). Then, the property holds by induction
on n and property (ii).

An important implication of Proposition 1(iv) is that the sequence (Aj(F))j∈N is
strictly increasing unless F is a distribution that puts probability one on a single value.
For these distributions F, however, Am(F) = Mn(F) for all m,n ≥ 1, so they trivially
satisfy (1 + ε)Am(F) ≥ Mn(F).

In the remainder, we will consider distributions F with ω0(F) < ω1(F). We begin
by showing that for such distributions F the sequence (Aj(F))j∈N satisfies properties
(a)-(c).

This lemma is a first step towards showing that the optimization problem or
equivalently the inequality (1 + ε)Am(F) ≥ Mn(F) we are studying may be simplified.
That is, we do not need to consider the space of all probability distributions, because for
one, the set of sequences Am(F) actually has a particular structure for any distribution
F. In lemma 2, we strengthen this argument by showing that the other term that
appears, Mn(F), can also be bounded by a rather simple expression.

Lemma 1. For every distribution F with ω0(F)< ω1(F), the sequence (An(F))n∈N satisfies
properties (a)-(c).

Proof. Consider a distribution F with ω0(F) < ω1(F) and a non-negative integer n.
Observe that property (a) holds directly for the sequence (An(F))n∈N from Proposition
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1(iv). By Proposition 1(ii), it holds that

An+2(F)− An+1(F) =
∫ An+1(F)

An(F)
F(y)dy ≤ An+1(F)− An(F),

where the inequality holds since F(y) ≤ 1 for every y ∈ R. Therefore, property (b)
holds. Observe that thanks to Proposition 1(ii) again, we have

An+2(F)− An+1(F)
An+1(F)− An(F)

=
1

An+1(F)− An(F)

∫ An+1(F)

An(F)
F(y)dy,

and since F is monotone non-decreasing, we therefore have

F(An(F)) ≤ An+2(F)− An+1(F)
An+1(F)− An(F)

≤ F(An+1(F)),

from where we conclude that that (An(F))n∈N satisfies property (c).

Next we show that for the type for distributions we are interested in, it is possible
to prove an upper bound on the value of Mn(F) in terms of the values of the sequence
(Aj(F))j∈N.

Lemma 2. For every distribution F with ω0(F) < ω1(F), we have

Mn(F) ≤
∞

∑
j=0

(
1−

(
∂Aj+1(F)

∂Aj(F)

)n)
∂Aj(F).

Proof. Consider the concave function φ : R→R given by φ(x) = 1− xn, and for every
non-negative integer j let µj(y) = 1/∂Aj(F) for every y ∈ [Aj(F), Aj+1(F)) and zero
elsewhere. In particular, µj is a probability density function over [Aj(F), Aj+1(F)).
Then, by Jensen’s inequality, we have

1
∂Aj(F)

∫ Aj+1(F)

Aj(F)
(1− F(y)n)dy =

∫
R

φ(F(y))µj(y)dy

≤ φ

(∫
R

F(y)µj(y)dy
)

= 1−
(

1
∂Aj(F)

∫ Aj+1(F)

Aj(F)
F(y)dy

)n

= 1−
(

∂Aj+1(F)
∂Aj(F)

)n

,
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where the last equality holds by Proposition 1(ii). In particular, for every non-negative
integer j we have

∫ Aj+1(F)

Aj(F)
(1− F(y)n)dy ≤

(
1−

(
∂Aj+1(F)

∂Aj(F)

)n)
∂Aj(F). (2.5)

Therefore, we have

Mn(F) =
∫ ∞

0
(1− F(y)n)dy =

∞

∑
j=0

∫ Aj+1(F)

Aj(F)
(1− F(y)n)dy

≤
∞

∑
j=0

(
1−

(
∂Aj+1(F)

∂Aj(F)

)n)
∂Aj(F),

where the second equality holds by Proposition 1(iii) and the inequality comes from
(2.5).

Our final ingredient is a reverse to the previous two lemmas. It shows that for
any sequence satisfying properties (a)-(c) we can construct a distribution G for which
(Aj(G))j∈N matches the values of the sequence and Mn(G) matches the upper bound
on Mn(G) in terms of the values of the sequence.

Lemma 3. For every (Bn)n∈N with B0 = 0, and satisfying (a)-(c), there exists a distribution
G such that An(G) = Bn for every non-negative integer n. Furthermore, we have

Mn(G) =
∞

∑
j=0

(
1−

(
∂Bj+1

∂Bj

)n)
∂Bj.

Proof. We construct explicitly the distribution G satisfying the statement of the lemma.
Recall that since (Bn)n∈N satisfies properties (b)-(c) the sequence (∂Bn+1/∂Bn)n∈N

converges to a value ρ ∈ (0,1]. We prove the following claim.

Claim 1. Suppose that ρ < 1. Then, there exists a value B > 0 such that limn→∞ Bn = B.

Since the sequence (Bn)n∈N satisfies property (c), we have that ∂Bn ≤ ρ∂Bn−1, and
therefore ∂Bn ≤ ρn∂B0 = ρnB1 for every n ∈N. On the other hand, we have

Bn =
n−1

∑
j=0

(Bj+1 − Bj) =
n−1

∑
j=0

∂Bj ≤ B1

n−1

∑
j=0

ρn ≤ B1

1− ρ
,

which implies that the sequence (Bn)n∈N is upper bounded. Since by property (a)
the sequence (Bn)n∈N is strictly increasing, we conclude that (Bn)n∈N is a convergent
sequence and we call B the value of this limit. This establishes the claim.
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We now construct the distribution G satisfying the conditions of the statement.
Consider G : R→ R defined as follows: G(x) = 0 for every x ∈ (−∞,0), for every
non-negative integer j and every x ∈ [Bj, Bj+1) we have G(x) = ∂Bj+1/∂Bj, and let
G(x) = 1 for every x ≥ limn→∞ Bn. Since the sequence (Bn)n∈N satisfies property (a),
the function G is well defined for every non-negative integer n. Furthermore, since
the sequence (Bn)n∈N satisfies (c), we have that G is non-decreasing, and property (b)
implies that G(x) ≤ 1 for every x ∈R+. If ρ = 1 then limx→∞ G(x) = 1. Otherwise, if
ρ < 1, by Claim 1 there exists a value B > 0 such that limn→∞ Bn = B, and therefore
G(x) = 1 for every x ≥ B. Therefore, we conclude that G is a distribution.

In what follows, we show that An(G) = Bn for every non-negative integer n. We
proceed by induction. By construction, we have A0(G) = 0 = B0. Suppose that
Bi = Ai(G) for every i ∈ {0,1, . . . ,n}. By Proposition 1, for every positive integer n it
holds that ∫ An(G)

An−1(G)
G(y)dy =

∫ ∞

An(G)
(1− G(y))dy = An+1(G)− An(G),

and therefore the inductive step implies that

∫ Bn

Bn−1

G(y)dy = An+1(G)− Bn. (2.6)

On the other hand, by construction of G it holds that

∫ Bn

Bn−1

G(y)dy =
Bn+1 − Bn

Bn − Bn−1
· (Bn − Bn−1) = Bn+1 − Bn = ∂Bn,

and therefore together with (2.6) we conclude that An+1(G) = Bn+1. Finally, we have

Mn(G) =
∫ ∞

0
(1− G(y)n)dy =

∞

∑
j=0

∫ Aj+1(G)

Aj(G)
(1− G(y)n)dy =

∞

∑
j=0

(
1−

(
∂Bj+1

∂Bj

)n)
∂Bj,

where the second equality holds since lim
j→∞

Aj(G) = ω1(G), by Proposition 1(iii).

We are now ready to prove Theorem 4.

Proof. Proof of Theorem 4.
We start by showing that if for some ε ≥ 0, n ≥ 1, and m ≥ 1, there exists a

distribution F such that (1 + ε)Am(F) < Mn(F) then the objective value of the opti-
mization problem (2.1)-(2.4) must be negative. Note that for this distribution F it must
hold that ω0(F) < ω1(F) because otherwise Am(F) = Mn(F), and so we must have
Aj+1(F) > Aj(F) for all j ∈N by Proposition 1(iv).
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We construct a solution (δj)j∈N for the optimization problem as follows. For every
non-negative integer j, let δj(F) = ∂Aj(F)/∂A0(F). We begin by showing that the se-
quence (δj)j∈N satisfies (2.2)-(2.4). By construction we have δ0(F) = ∂A0(F)/∂A0(F) =
1, that is, (2.4) holds. By Lemma 1, the sequence (Aj(F))j∈N satisfies properties (a)-(c).
In particular, the sequence (∂Aj(F))j∈N is non-increasing and therefore δj+1(F)≤ δj(F)
for every integer j ≥ 0, that is, (2.2) is satisfied. The sequence (∂Aj+1(F)/∂Aj(F))j∈N

is non-decreasing, and therefore δj+1(F)/δj(F)≥ δj(F)/δj−1(F) for every integer j≥ 1,
that is, δj(F)2 ≤ δj−1(F)δj+1(F), and therefore (2.3) is satisfied. Finally, observe that

0 >
1

∂A0(F)

(
(1 + ε)Am(F)−Mn(F)

)
= (1 + ε)

m−1

∑
i=0

δi(F)− Mn(F)
∂A0(F)

≥ (1 + ε)
m−1

∑
i=0

δi(F)−
∞

∑
j=0

(
1−

(
∂Aj+1(F)

∂Aj(F)

)n)
∂Aj(F)
∂A0(F)

= (1 + ε)
m−1

∑
i=0

δi(F)−
∞

∑
j=0

(
1−

(
δj+1(F)

δj(F)

)n)
δj(F),

where the first inequality holds by assumption and the second inequality comes from
Lemma 2. So, in particular, the last expression of the above chain, which coincides
with the objective in (2.1) must be negative.

Conversely, suppose that the value of the optimization problem (2.1)-(2.4) is nega-
tive. That is, there exists a sequence (δ⋆j )j∈N satisfying (2.2)-(2.4) such that

(1 + ε)
m−1

∑
i=0

δ⋆i −
∞

∑
i=0

(
1−

(
δ⋆i+1
δ⋆i

)n
)

δ⋆i < 0. (2.7)

Consider the sequence (Bj)j∈N defined as follows: B0 = 0 and Bj = ∑
j−1
i=0 δ⋆i for every

j ≥ 1. In particular, we have

Bj+1 =
j

∑
i=0

δ⋆i >
j−1

∑
i=0

δ⋆i = Bj

for every integer j ≥ 1, and therefore the sequence (Bj)j∈N satisfies (a). Since the
sequence (δ⋆j )j∈N satisfies (2.2)-(2.3), by construction it holds directly that (Bj)j∈N

satisfies (b)-(c), and therefore by Lemma 3 there exists a distribution G such that
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Aj(G) = Bj for every non-negative integer j, and we have

(1 + ε)Am(G) = (1 + ε)Bm

= (1 + ε)
m−1

∑
i=0

δ⋆i

<
∞

∑
i=0

(
1−

(
δ⋆i+1
δ⋆i

)n
)

δ⋆i =
∞

∑
i=0

(
1−

(
∂Bi+1

∂Bi

)n)
∂Bi = Mn(G),

where the last equality also holds by Lemma 1. This finishes the proof of the theorem.

2.4 Exact competition complexity: proof of theorem 2

We show next how to use Theorem 4 to prove the impossibility result in Theorem 2
about the exact competition complexity.

Proof. Proof of Theorem 2. Letting ε = 0 in Theorem 4, it suffices to show that the
value of the optimization problem (2.1)-(2.4) is strictly negative. Consider the sequence
(bi)i∈N defined as follows: b0 = 1, and b1 ∈ (0,1) to be specified later. For every
i ∈ {1, . . . ,m− 1} let

bi+1 = bi

(
n

n− 1

) 1
n
(

bi

bi−1

) n−1
n

, (2.8)

and for every i ≥ m let bi+1 = b2
i /bi−1. We first show that (bi)i∈N is feasible for

the optimization problem (2.1)-(2.4). By construction the sequence satisfies (2.4).
We start with the monotonicity property (2.2). Consider the function h(x) = (n/(n−
1))1/nx(n−1)/n and let h(i) be the function obtained from the composition of h with itself
i times. From (2.8), we get bi+1/bi = h(i)(b1/b0) = h(i)(b1) for every i ∈ {0,1, . . . ,m− 1}.
Observe that h(x) is monotone increasing and continuous on x ∈ [0,1], with h(0) = 0,
and therefore h(i) is also monotone increasing, continuous and h(i)(0) = 0, for every
i ∈ {0,1, . . . ,m− 1}. Since we also know bj+1/bj = bm/bm−1 for every j ≥ m, it suffices
to prove bi/bi−1 ≤ 1 for every i ∈ {1, . . . ,m} in order to show that the sequence
(bi)i∈N satisfies (2.2). To this end, we make any choice of b1 ∈ (0,1) in a way that
maxi∈{0,1,...,m−1} h(i)(b1) < 1. This implies that property (2.2) is satisfied.

Claim 2. For every x ∈ (0,1] we have
( n

n−1

) 1
n x

n−1
n > x.

To see this, consider the function g : R→R given by g(x) =
( n

n−1

) 1
n x

n−1
n − x. This

function is concave in the interval [0,1] and therefore the minimum is attained in
either zero or one. Since g(0) = 0 and g(1) = (n/(n− 1))1/n − 1 > 0, we conclude that
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g(x) > 0 for every x ∈ (0,1], proving the claim.

In particular, for every i ∈ {1, . . . ,m− 1} we have

bi+1

bi
=

(
n

n− 1

) 1
n
(

bi

bi−1

) n−1
n

= g
(

bi

bi−1

)
+

bi

bi−1
>

bi

bi−1
,

where we used the fact that 0 < bi/bi−1 < 1. Since bi+1/bi = bm/bm−1 < 1 for every
i ≥ m, we conclude that (2.3) is also satisfied, and therefore the sequence (bi)i∈N is
feasible for the optimization problem (2.1)-(2.4). We now show that the objective value
of the sequence (bi)i∈N is strictly negative. We first observe that the objective value is
equal to

m−1

∑
i=0

bi −
m−1

∑
i=0

(
1−

(
bi+1

bi

)n)
bi −

∞

∑
i=m

(
1−

(
bi+1

bi

)n)
bi

=
m−1

∑
i=0

(
bi+1

bi

)n
bi −

∞

∑
i=m

(
1−

(
bi+1

bi

)n)
bi

By construction of the sequence we have

m−1

∑
i=0

bi

(
bi+1

bi

)n
= bn

1 +
n

n− 1

m−1

∑
i=1

bi

(
bi

bi−1

)n−1

= bn
1 +

n
n− 1

m−1

∑
i=1

bi−1

(
bi

bi−1

)n
= bn

1 +
n

n− 1

m−2

∑
i=0

bi

(
bi+1

bi

)n
,

and therefore

bn
1 =

m−1

∑
i=0

bi

(
bi+1

bi

)n
− n

n− 1

m−2

∑
i=0

bi

(
bi+1

bi

)n

= bm−1

(
bm

bm−1

)n
+

m−2

∑
i=0

bi

(
bi+1

bi

)n
− n

n− 1

m−2

∑
i=0

bi

(
bi+1

bi

)n

= bm−1

(
bm

bm−1

)n
− 1

n− 1

m−2

∑
i=0

bi

(
bi+1

bi

)n
.
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By rearranging terms we conclude that

m−1

∑
i=0

bi

(
bi+1

bi

)n
= bm−1

(
bm

bm−1

)n
+

m−2

∑
i=0

bi

(
bi+1

bi

)n

= bm−1

(
bm

bm−1

)n
+ (n− 1)

(
bm−1

(
bm

bm−1

)n
− bn

1

)
= nbm−1

(
bm

bm−1

)n
− (n− 1)bn

1 .

Let γ = bm/bm−1. We have γ < 1, bm = γbm−1 and inductively bm+i = γi+1bm−1 for
every non-negative i. Therefore, overall, the objective value of the sequence is equal to

m−1

∑
i=0

(
bi+1

bi

)n
bi −

∞

∑
i=m

(
1−

(
bi+1

bi

)n)
bi

= nbm−1γn − (n− 1)bn
1 − (1− γn)

∞

∑
i=0

γi+1bm−1

= nbm−1γn − (n− 1)bn
1 −

(1− γn)γ

1− γ
bm−1

= nbm−1γn − (n− 1)bn
1 − bm−1

n

∑
i=1

γi

= −(n− 1)bn
1 − bm−1

(
n

∑
i=1

γi − nγn

)
< 0,

which concludes the proof.

We note that the sequence (bn)n∈N defined in the proof of Theorem 2 gives one
possible construction of a distribution such that (1+ ε)Am(F)≥Mn(F). More precisely,
(bn)n∈N is a sequence such that the value of the optimization problem (2.1)-(2.4) is
negative. In other words, it satisfies the properties of (δ⋆j )j∈N (2.7) as defined in (the
converse direction of) the proof of Theorem 4.

2.5 Approximate Competition Complexity: Proof of The-
orem 3

In this section we show how to use Theorem 4 to derive Theorem 3 about the ap-
proximate competition complexity. In particular, we show how to optimally solve the
optimization problem (2.1)-(2.4). For every m,n and ε > 0, we show how to reduce the
task to finding the minimum of a real convex function in finite dimension. Then, using
this reduction, we show that the optimal value of (2.1)-(2.4) is obtained by a recursive
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formula. As a final step, we analyze this recurrence by considering a continuous
counterpart defined by a differential equation.

Consider the function Γε
n,m : Rm−1

+ →R defined by

Γε
n,m(x) = ε + xn

1 +
m−2

∑
i=1

xi

(
ε +

(
xi+1

xi

)n)
− xm−1(n− 1− ε).

Given ε > 0 and positive integer n ≥ 2, let (ρε,j)j∈N be the sequence defined by the
following recurrence:

ρε,1 = 1, and (n− 1)ρn
ε,j−1 − ε = nρn−1

ε,j for every j ≥ 2 such that (n− 1)ρn
ε,j−1 − ε > 0.

(2.9)

For fixed ε and n we say that ρε,j is well defined if (n− 1)ρn
ε,j−1 − ε > 0. Observe that

by letting x = ρε,j in Claim 2, we get that ρε,j is decreasing in j. It follows that if ρε,m is
well defined, then so is ρε,j for j ≤ m. As a first step, we will show that the optimal
value of (2.1)-(2.4) can be obtained in terms of the sequence (ρε,j)j∈N. To prove this
result we require a few propositions.

Proposition 2. Let ε > 0, and let n ≥ 2 and m ≥ 3 be two positive integers such that ρε,m is
well defined. Then, Γε

n,m is convex over Rm−1
+ and it has a unique minimizer Y in this region,

given by

Y1 = ρε,m and Yj =
j−1

∏
k=0

ρε,m−k for every j ∈ {2, . . . ,m− 1}. (2.10)

Furthermore, Γε
n,m(Y) = ε− (n− 1)ρn

ε,m.

Proof. We begin by proving (strict) convexity of Γε
n,m. We proceed by induction on m.

Observe first that when m = 3, we have that Γε
n,3(x1, x2) = ε + xn

1 + p(x1, x2)− x2(n−
1− ε), where p(y,z) = y(ε + (z/y)n). The Hessian of p is

∇2p(y,z) = n(n− 1)zn−2y1−n

(
z2/y2 −z/y
−z/y 1

)
,

and this is a positive semidefinite matrix for every (y,z) ∈R2
+, since one eigenvalue

is equal to zero, and the other is n(n− 1)zn−2y1−n((z/y)2 + 1) > 0. In particular, p
is convex over R2

+. Since the function ε + xn
1 − x2(n− 1− ε) is also convex over R2

+,
we conclude that Γε

n,3 is convex over R2
+. Now consider an integer value m > 3, and

observe that

Γε
n,m+1(x1, . . . , xm) = p(xm−1, xm)− (xm − xm−1)(n− 1− ε) + Γε

n,m(x1, . . . , xm−1),
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and therefore the convexity follows by the inductive step, that is, Γε
n,m convex over

Rm−1
+ , together with p convex over R2

+. Every minimizer y of Γε
n,m over Rm−1

+ is a
solution to the system given by ∇Γε

n,m = 0, that is,

(n− 1)
(

y2

y1

)n
− ε = nyn−1

1 , (2.11)

(n− 1)
(

yi+1

yi

)n
− ε = n

(
yi

yi−1

)n−1

for every i ∈ {2, . . . ,m− 2}, (2.12)

n− 1− ε = n
(

ym−1

ym−2

)n−1

, and y ∈Rm−1
+ . (2.13)

The above system has a unique solution and therefore this proves the first part.
To finish the proof, we show that Y defined in (2.10) is strictly positive, satisfies

the system (2.11)-(2.13), and Γε
n,m(Y) = ε− (n− 1)ρn

ε,m. Since ρε,j is well-defined for all
j ≤ m, we have ρε,j = ((n− 1)ρn

ε,j−1 − ε)1/(n−1) > 0. This implies that Y ∈Rm−1
+ . Next

observe that Y2 = ρε,mρε,m−1 and therefore Y2/Y1 = ρε,m−1. Then, we have

(n− 1)(Y2/Y1)
n − ε = (n− 1)ρn

ε,m−1 − ε = nρn−1
ε,m = nYn−1

1 ,

and therefore (2.11) is satisfied. Similarly, for every j ∈ {2, . . . ,m − 2}, we have
Yj/Yj−1 = ρm−j+1 and Yj+1/Yj = ρm−j. Then, we have

(n− 1)(Yj+1/Yj)
n − ε = (n− 1)ρn

ε,m−j − ε = nρn−1
ε,m−j+1 = n(Yj/Yj−1)

n−1,

and therefore (2.12) is satisfied. Finally, since Ym−1/Ym−2 = ρε,2, we have

n− 1− ε = (n− 1)ρn
ε,1 − ε = nρn−1

ε,2 = n(Ym−1/Ym−2)
n−1,

and therefore (2.13) is satisfied. We now evaluate Γε
n,m(Y). The vector Y satisfies

(2.11)-(2.13) and therefore

(n− 1)
m−2

∑
i=1

Yi

(
Yi+1

Yi

)n
+ (n− 1)Ym−1 − ε

m−1

∑
i=1

Yi = nYn
1 + n

m−1

∑
i=2

Yi

(
Yi

Yi−1

)n−1

= nYn
1 + n

m−1

∑
i=2

Yi−1

(
Yi

Yi−1

)n

= nYn
1 + n

m−2

∑
i=1

Yi

(
Yi+1

Yi

)n
.
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By subtracting the first term of the left hand side we get

m−2

∑
i=1

Yi

(
Yi+1

Yi

)n
= (n− 1)Ym−1 − ε

m−1

∑
i=1

Yi − nYn
1 ,

and by rearranging terms we obtain that

m−2

∑
i=1

Yi

(
ε +

(
Yi+1

Yi

)n)
= (n− 1− ε)Ym−1 − nYn

1 .

Therefore, the minimum of Γε
n,m over Rm−1

+ is equal to

ε + Yn
1 + (n− 1− ε)Ym−1 − nYn

1 − (n− 1− ε)Ym−1 = ε− (n− 1)Yn
1 .

The proof follows since we have Y1 = ρε,m.

Now that we have shown Γε
n,m(Y) = ε− (n− 1)ρn

ε,m, we still need to establish the
connection between Γε

n,m(Y) and our objective (2.1) in order to complete the picture
and show that the value of our optimization problem (2.1)− (2.4) is effectively given
by ε− (n− 1)ρn

ε,m. The following proposition will complete the feasibility of Y of the
constraints in (2.2)− (2.4). Once this is established, in Lemma 4 we find that plugging
Y into the objective (2.1) gives an expression that is upper bounded by Γε

n,m(Y) plus
some remainder.

Proposition 3. Let ε > 0, let n ≥ 2 and m ≥ 3 be two positive integers such that ρε,m is well
defined, and let Y be as defined in (2.10). Then, the following holds:

(a) For every j ∈ {1, . . . ,m− 1} we have that Yj+1 ≤ Yj.

(b) For every j ∈ {2, . . . ,m− 1} we have that Y2
j ≤ Yj−1Yj+1.

Proof. Observe that for every k ∈ {1, . . . ,m− 1}, we have Ym−k+1/Ym−k = ρε,k. For k = 1
we have Ym/Ym−1 = ρε = 1. From the definition of the recurrence, we have

(n− 1)ρn
ε,k−1 ≥ (n− 1)ρn

ε,k−1 − ε = nρn−1
ε,k

for every k ∈ {2, . . . ,m − 1}. By induction, if ρε,k−1 ≤ 1, we have ρn−1
ε,k ≤ (n − 1)/n

and therefore ρε,k ≤ 1. This concludes part (a). Since for every j ∈ {1, . . . ,m − 1}
we have Yj+1/Yj = ρε,m−j, to prove part (b) it suffices to show ρε,k+1 ≤ ρε,k for every
k ∈ {1, . . . ,m− 2}. From the construction of the recurrence, for every k ∈ {1, . . . ,m− 2}
it holds that

ρε,k ≥
(

n
n− 1

) 1
n

ρ
(n−1)/n
ε,k+1 .
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By (a) we have ρε,k+1 ∈ [0,1], which together with Claim 2 implies that

(
n

n− 1

) 1
n

ρ
(n−1)/n
ε,k+1 ≥ ρε,k+1.

Therefore we conclude that ρε,k+1 ≤ ρε,k. This proves part (b).

The other part of Lemma 4 is to give a lower bound on (2.1)− (2.4). That is, we
need to bound the objective (2.1) for any candidate δ that satisfies the constraints.
We find that the objective function can be written as Γε

n,m(δ1, . . . ,δm−1) plus some
remainder in function of δ. To arrive at the desired conclusion, we need to bound this
remainder for any feasible δ. The following proposition gives a convenient way to go
about this task.

Proposition 4. For every sequence (δj)j∈N satisfying (2.2)-(2.4) for which δm/δm−1 < 1,
there exists a sequence (β j)j∈N satisfying (2.2)-(2.4), and such that the following holds:

(a) For every j ∈ {0,1, . . . ,m− 1} we have δj = β j, and βm/βm−1 < 1.

(b)
∞

∑
i=m−1

(
1−

(
δi+1

δi

)n)
δi ≤ βm−1

n−1

∑
i=0

(
βm

βm−1

)i
.

Proof. Suppose we are given (δj)j∈N satisfying (2.2)-(2.4) for which δm/δm−1 < 1. We
claim that then there exists a sequence (β j)j∈N satisfying (2.2)-(2.4) such that (a) holds
and furthermore (i) β j ≥ δj for all j ≥ m and (ii) β j/β j−1 = βm/βm−1 for all j ≥ m.

If (δj)j∈N does not already satisfy these properties, then it must be because of (ii).
In particular, there must be a smallest index j ≥ m such that δj+1/δj > δm/δm−1. We
next describe a procedure that maintains all properties, but extends (ii) so that it holds
for one more index. Applying this procedure iteratively, we obtain (β j)j∈N.

Given (δj)j∈N satisfying (2.2)-(2.4), let k(δ) ≥ m be the first value j such that
δj+1/δj > δm/δm−1. In particular, we have δj/δj−1 = δm/δm−1 for every j∈ {m, . . . ,k(δ)}.
Consider the sequence (Dj)j∈N defined as follows: Dj = δj for every j∈ {0,1, . . . ,m− 1},

Dm = δm−1

(
δk(δ)+1

δm−1

) 1
k(δ)−m+2

,

Dj = Dm(Dm/δm−1)
j−m for every j ∈ {m + 1, . . . ,k(δ)}, and Dj = δj for every j ≥

k(δ) + 1. Observe that from the construction it holds directly that Dj+1/Dj = Dm/δm−1

for every j ∈ {m, . . . ,k(δ)− 1}. Furthermore, we have

δk(δ)+1

Dk(δ)
= Dm

(
Dm

δm−1

)k(δ)−m+1

· 1
Dm

(
δm−1

Dm

)k(δ)−m
=

Dm

δm−1
,
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and therefore, we have Dj+1/Dj = Dm/Dm−1 for every j ∈ {m − 1, . . . ,k(δ)}. By
construction, the sequence (Dj)j∈N satisfies (2.2)-(2.4) and Dm/Dm−1 < 1. We show
next that Dj ≥ δj for every j ∈ {m, . . . ,k(δ)}. Since δj+1/δj ≥ δm/δm−1 for every j ∈
{m, . . . ,k(δ)}, we have

(
δm

δm−1

)k(δ)−m+1

≤
k(δ)

∏
j=m

δj+1

δj
=

δk(δ)+1

δm
,

which implies that δm ≤ δm−1(δk(δ)+1/δm−1)
1

k(δ)−m+2 = Dm. For j ∈ {m + 1, . . . ,k(δ)} we
proceed by induction:

Dj = Dj−1
Dm

δm−1
≥ δj−1

Dm

δm−1
≥ δj−1

δm

δm−1
= δj ·

δj−1

δj
· δm

δm−1
= δj,

where the first equality holds by construction of the sequence, the first inequality
holds by the inductive hypothesis, the second inequality holds since Dm ≥ δm, and the
last equality follows since δj/δj−1 = δm/δm−1 for every j ∈ {m, . . . ,k(δ)}. This finishes
the proof of part (a).

In the remainder we will prove part (b) using the existence of a sequence (β j)j∈N

for which (a) holds as well as (i) and (ii). To this end we need the following definition
and claim. For every sequence (δj)j∈N let

R(δ) =
∞

∑
i=m−1

(
1−

(
δi+1

δi

)n)
δi.

Claim 3. R is non-decreasing in δi for every i ≥ m.

Before proving Claim 3, we show how together with the properties of the sequence
(β j)j∈N it implies property (b). Namely,

∞

∑
i=m−1

(
1−

(
δi+1

δi

)n)
δi ≤

∞

∑
i=m−1

(
1−

(
βi+1

βi

)n)
βi

=

(
1−

(
βm

βm−1

)n) ∞

∑
i=m−1

βi

= βm−1

(
1−

(
βm

βm−1

)n) ∞

∑
i=0

(
βm

βm−1

)i
= βm−1

n−1

∑
i=0

(
βm

βm−1

)i
,

where the inequality holds by Claim 3 and (i), the first equality holds by (ii), and the
second equality holds because (ii) implies βi = βm−1 (βm/βm−1)

i−m+1 for i ≥ m− 1.
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It remains to prove Claim 3. Consider the function φ : R2
+→R+ such that φ(x,y) =

(1− (y/x)n)x. In particular, the derivative of R with respect to δi, with i ≥ m, is equal
to

∂φ

∂y
(δi−1,δi) +

∂φ

∂x
(δi,δi+1)

= −n
(

δi

δi−1

)n−1

+ 1 + (n− 1)
(

δi+1

δi

)n

= n
(

δi+1

δi

)n−1
 1

n

(
δi

δi+1

)n−1

+

(
1− 1

n

)
δi+1

δi
−
(

δ2
i

δi+1δi−1

)n−1


≥ n
(

δi+1

δi

)n−1
1−

(
δ2

i
δi+1δi−1

)n−1
 ≥ 0,

The first inequality holds because for any p∈ [0,1] we have that (1− 1/n)p+ 1/(npn−1)≥
1, and δi−1 ≤ δi ≤ δi+1 for every i ≥ m, and the second holds since (δj)j∈N satisfies
constraint (2.3). This concludes the proof of the claim.

The following lemma relates the optimal value of the optimization problem (2.1)-
(2.4) with the sequence (ρε,j)j∈N. Using Lemma 4 and Theorem 4 we can numerically
find the competition complexity by computing the recurrence (2.9) (see Figure 2.2).
More specifically, given n and ε, we just have to find the last value m for which
the value of the optimization problem is non-negative, and this can be found by
numerically computing the values of the recurrence (2.9).

Lemma 4. Let ε > 0, and let n ≥ 2 and m ≥ 3 be two positive integers such that ρε,m is well
defined. Then, the value of the optimization problem (2.1)-(2.4) is equal to ε− (n− 1)ρn

ε,m.

Proof. Consider Y ∈ Rm−1
+ as defined in (2.10). For every α ∈ (0,1), consider the

sequence (Yj(α))j∈N defined as follows: Y0(α) = 1, Yj(α) = Yj for every j ∈ {1, . . . ,m−
1} and Yj(α) = αj−m+1Ym−1 for every j ≥ m. Thanks to Proposition 2 and Proposition
3, for every α ∈ (0,1) the sequence (Yj(α))j∈N satisfies (2.2)-(2.4). The objective value
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(2.1) of the sequence is equal to

(1 + ε)
m−1

∑
i=0
Yi(α)−

∞

∑
i=0

(
1−

(
Yi+1(α)

Yi(α)

)n)
Yi(α)

= ε + Yn
1 + (1 + ε)Ym−1 +

m−2

∑
i=1

(
ε +

(
Yi+1

Yi

)n)
Yi −

∞

∑
i=m−1

(
1−

(
Yi+1(α)

Yi(α)

)n)
Yi(α)

= ε + Yn
1 + (1 + ε)Ym−1 +

m−2

∑
i=1

(
ε +

(
Yi+1

Yi

)n)
Yi − (1− αn)

∞

∑
i=0
Ym+i−1(α)

= ε + Yn
1 +

m−2

∑
i=1

(
ε +

(
Yi+1

Yi

)n)
Yi −Ym−1

((
(1− αn)

∞

∑
i=0

αi

)
− 1− ε

)

= Γε
n,m(Y) + Ym−1

(
n− (1− αn)

∞

∑
i=0

αi

)

= ε− (n− 1)ρn
ε,m + Ym−1

(
n− (1− αn)

∞

∑
i=0

αi

)
,

where the last equality holds by Proposition 2. In particular, the feasibility of
(Yj(α))j∈N for every α ∈ (0,1) implies that the value of the optimization problem
(2.1)-(2.4) is upper bounded by

ε− (n− 1)ρn
ε,m + Ym−1 inf

α∈(0,1)

{
n− (1− αn)

∞

∑
i=0

αi

}
= ε− (n− 1)ρn

ε,m. (2.14)

Let (δj)j∈N be any sequence satisfying (2.2)-(2.4). We denote by V(δ) the objective
value (2.1), which by rearranging terms, is equal to

V(δ) = Γε
n,m(δ1, . . . ,δm−1) + nδm−1 −

∞

∑
i=m−1

(
1−

(
δi+1

δi

)n)
δi.

Now either δi+1/δi = 1 for all i ≥ m − 1 in which case V(δ) = Γε
n,m(δ1, . . . ,δm−1) +

nδm−1 ≥minx∈Rn−1
+

Γε
n,m(x) = ε− (n− 1)ρn

ε,m, where the last inequality holds by Propo-
sition 2. Otherwise, by Proposition 4, there exists a sequence (β j)j∈N satisfying
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Fig. 2.2 On the left, we have a plot of the competition complexity as a function of n when
ε = 0.1. On the right, we have a plot of the competition complexity as a function of ε when
n = 20.

(2.2)-(2.4) for which the following holds:

V(δ) = Γε
n,m(δ1, . . . ,δm−1) + nδm−1 −

∞

∑
i=m−1

(
1−

(
δi+1

δi

)n)
δi

= Γε
n,m(β1, . . . , βm−1) + nβm−1 −

∞

∑
i=m−1

(
1−

(
δi+1

δi

)n)
δi

≥ Γε
n,m(β1, . . . , βm−1) + nβm−1 − βm−1

n−1

∑
i=0

(
βm

βm−1

)i

≥ min
x∈Rm−1

+

Γε
n,m(x) + βm−1

(
n−

n−1

∑
i=0

(
βm

βm−1

)i
)

≥ ε− (n− 1)ρn
ε,m + βm−1

(
n−

n−1

∑
i=0

(
βm

βm−1

)i
)

,

where the second equality holds by property (a) in Proposition 4, the first inequality
holds by property (b) in Proposition 4, and the last inequality again holds by Propo-
sition 2. Observe that for every (β j)j∈N, the last term of the above inequality can
be lower bounded by zero, and therefore, we get that V(δ) ≥ ε− (n− 1)ρn

ε,m also in
this case. This, together with the upper bound in (2.14), concludes the proof of the
lemma.

As a second step, we study the recurrence (ρε,j)j∈N to find the point in which it
becomes non-positive. More specifically, by Theorem 4 and Lemma 4, our aim is to
find the greatest index m for which ρε,m is well defined, or equivalently the unique m
for which (n− 1)ρn

ε,m − ε ≤ 0. To understand this problem we consider a differential
equation that will serve as an upper bound to our recurrence relation. Recall the
definition of ϕ(ε) =

∫ 1
0 1/(y(1 − log(y)) + ε)dy. Given a value ε > 0, consider the
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following ordinary differential equation:

y′(t) = y(t)(log(y(t))− 1)− ε for every t ∈ (0,ϕ(ε)), (2.15)

y(0) = 1. (2.16)

We define y(ϕ(ε)) = limt↑ϕ(ε) y(t) as the continuous extension of y in ϕ(ε). The follow-
ing lemma summarizes our results for the differential equation and ϕ(ε).

Lemma 5. For every ε > 0, the differential equation (2.15)-(2.16) has a unique solution yε.
Furthermore, the following holds:

(a) For every t ∈ [0,ϕ(ε)) we have y′ε(t) < 0. In particular, yε is decreasing and invertible
on [0,ϕ(ε)) and yε(ϕ(ε)) = 0.

(b) For every integer n ≥ 2, and every j ∈N for which ρε,j is well-defined, we have

n− 1
n

ρn
ε,j −

ε

n
≤ yε

(
j
n

)
.

(c) For every δ ∈ (0,ϕ(ε)), there exists n0 such that for every n≥ n0 we have (n− 1)ρn
ε,k −

ε > 0, where k = ⌊(ϕ(ε)− δ)n⌋.

(d) We have ϕ(ε) = Θ(loglog1/ε) for ε < 1.

Before proving Lemma 5, we show how to use it to establish Theorem 3.

Proof. Proof of Theorem 3. Fix ε > 0 and consider the non-trivial case where n≥ 2. We
begin with the first part of the theorem. By Lemma 4 it suffices to find the largest index
j for which ρε,j is well defined. Suppose for a contradiction that for some m ≥ ϕ(ε)n,
ρε,m is well defined but (n− 1)ρn

ε,m − ε > 0. Define ε′ > 0 such that m/n = ϕ(ε′). Note
that such an ε′ exists and ε′ ≤ ε because ϕ is monotone and continuous.

Claim 4. For every positive integer j, ρε′,j is well defined when ρε,j is well defined, and
ρε′,j ≥ ρε,j.

Using Claim 4, we have

n− 1
n

ρn
ε,m −

ε

n
≤ n− 1

n
ρn

ε′,m −
ε′

n
≤ yε′

(
ϕ(ε′)

)
= 0,

where the second inequality holds by Lemma 5(b) and the final equality holds by
Lemma 5(a). This yields a contradiction. To prove the claim, we consider an inductive
argument. The claim clearly holds for j = 1, and assume that it holds for every
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k ≤ j− 1. If ρε,j is well defined, that is (n− 1)ρn
ε,j−1 − ε > 0, by the inductive step we

have ρε′,j−1 ≥ ρε,j−1 and therefore,

(n− 1)ρn
ε′,j−1 − ε′ ≥ (n− 1)ρn

ε,j−1 − ε > 0,

meaning ρε′,j is also well defined. Furthermore, in this case we have

nρn−1
ε,j = (n− 1)ρn

ε,j−1 − ε ≤ (n− 1)ρn
ε′,j−1 − ε′ = nρn−1

ε′,j ,

which implies that ρε′,j ≥ ρε,j.
By Lemma 5(d) we have ϕ(ε) = Θ(loglog1/ε). The second part of the theorem

holds by Lemma 4 and Lemma 5(c). This finishes the proof of the theorem.

We prove Lemma 5. For (a), (b) and (c) we first need a few propositions.
The following proposition simply proves 5(a).

Proposition 5. For every ε > 0, there exists a unique solution of the differential equation
(2.15)-(2.16), that we denote yε. Furthermore, for every t ∈ [0,ϕ(ε)) we have y′ε(t) < 0. In
particular, yε is decreasing and invertible in [0,ϕ(ε)], and yε(ϕ(ε)) = 0.

Proof. Since y(t)(log(y(t))− 1)− ε as a function of y and t is continuous when y >

0, in this case a solution exists by Peano’s existence theorem [66]. Observe that
for any solution y of the differential equation (2.15)-(2.16), we have y′(0) = −ε < 0.
Furthermore, for every y ∈ (0,1], since log(y) ≤ 0 and ε > 0, y′ < 0. Now we show
uniqueness. Assume the solution is not unique, that is there exist y1(t) ̸= y2(t)
satisfying the ODE conditions. Denote by [0, T) the largest interval on which y1

and y2 exist. Then let t∗ = inft∈[0,T){t : y1(t) ̸= y2(t)}. By continuity, we know that
y1(t∗) = y2(t∗). Now by Picard-Lindelöf theorem [70] that we give for convenience as
theorem 1, there exists some interval [t∗ − δ, t∗ + δ] where the solution to the ODE is
unique. In particular, y1(t) = y2(t) on [t∗ − δ, t∗ + δ], contradicting the choice of t∗.

Denote this unique solution as yε and let yε(T) be the continuous extension of yε.
Now let us find the value of T. In particular, the function yε is strictly decreasing and
thus invertible and we know it has a differentiable inverse in [0,1]. That is, we can
write t as a function of yε. Also, denote T = y−1

ε (0). By standard integration rule, we
may write

t(1) = t(0) +
∫ 1

0

dt
dyε

dyε = 1 +
∫ 1

0

1
dyε

dt

dyε = y−1
ε (0)−

∫ 1

0

1
yε(1− log(yε)) + ε

dyε
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In other words, we get

y−1
ε (1) = T −

∫ 1

0

1
s(1− log(s)) + ε

ds = T − ϕ(ε)

and since y−1
ε (1) = 0 we conclude that y−1

ε (0) = T = ϕ(ε).

The following two propositions are technical and their sole purpose is to help with
the proof of Lemma 5(b). In this lemma, we analyse yε(

j
n ) inductively by expressing it

as a Taylor expansion centered at previous point ( j−1
n ). Although this is conceptually

straightforward, in order to obtain the desired bounds, we need to go all the way up
to the third derivative in the Taylor expansion. There does not seem to be a single
clean proof as to why bounds are achieved for all regimes of j and ε. However, we are
able to make a complete argument by going through an involved case analysis and
achieving the desired bounds in each case, by different methods.

Given ε > 0, consider the function Mε : R→R given by

Mε(x) =
(

log(x)− 1− ε

x

)(
x log2(x) + x log(x)− x− ε

)
.

Proposition 6. Let ε > 0 and let αε = y−1
ε (exp(−1

2(1 +
√

5))). Then, the following holds:

(a) For every t ∈ [0,ϕ(ε)] we have y′′′ε (t) = Mε(yε(t)).

(b) For every t ∈ [0,αε] we have y′′′ε (t) ≥ 0.

(c) When ε ≤ 0.25, we have y′′′ε (t) ≥ −1.173 for every t ∈ [αε,ϕ(ε)].

(d) When ε≤ 0.25, there exists xε ∈ (0.01,0.067) such that y′′′ε is increasing in [y−1
ε (xε),ϕ(ε)].

(e) When ε ≥ 0.25, we have y′′′ε (t) ≥ 0 for every t ∈ [0,ϕ(ε)].

Proof. By a direct computation, we have that

y′′ε (t) = y′ε(t)(log(yε(t))− 1) + yε(t) · y′ε(t)/yε(t) = y′ε(t) log(yε(t)),
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and therefore,

y′′′ε (t) = y′′ε (t) log(yε(t)) + y′ε(t) ·
y′ε(t)
yε(t)

= y′ε(t) log2(yε(t)) + y′ε(t) ·
y′ε(t)
yε(t)

= y′ε(t)
(

log2(yε(t)) + log(yε(t))− 1− ε

yε(t)

)
=
(

yε(t)(log(yε(t))− 1)− ε
)(

log2(yε(t)) + log(yε(t))− 1− ε

yε(t)

)
= Mε(yε(t)),

which proves (a). Consider the function g(x) = x log2(x) + x log(x)− x. We have that
g(x)≤ 0 for every exp(−1

2(1 +
√

5))≤ x ≤ 1, and together with Proposition 5, implies
that g(yε(t))− ε ≤ 0 for every t ∈ [0,αε]. Furthermore, by Proposition 5 we have that
y′ε(t)/yε(t) ≤ 0 for every t ∈ [0,αε] and therefore

y′′′ε (t) = Mε(yε(t)) =
y′ε(t)
yε(t)

(g(yε(t))− ε) ≥ 0,

which proves (b). To prove (c), observe that by Proposition 5 we have that yε(αε) ≥
yε(t)≥ 0 for every t ∈ [αε,ϕ(ε)], and since 0.199 > yε(αε) = exp(−(1 +

√
5)/2)> 0.198,

we have that

min
ε∈(0,0.25)

min
t∈[αε,ϕ(ε)]

y′′′ε (t) = min
ε∈(0,0.25)

min
t∈[αε,ϕ(ε)]

Mε(yε(t)) ≥ min
ε∈[0,0.25],
x∈[0,0.199]

Mε(x) ≈ −1.1722,

where the first equality comes from part (a). We now prove (d). By a direct computa-
tion, we have

M′ε(x) = − ε2

x2 −
2ε

x
− 2ε log(x)

x
+ log3(x) + 3log2(x)− 2log(x)− 1,

M′′ε (x) =
2ε2

x3 +
2ε log(x)

x2 − 2
x
+

3log2(x)
x

+
6log(x)

x
.

Furthermore, we have
min

ε∈[0,0.25],
x∈[0,067]

M′′ε (x) ≈ 0.716,
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and therefore the function M′ε is increasing in (0,0.067] for every ε ∈ (0,0.25]. On the
other hand, we have

M′ε(0.067) > − ε2

(0.067)2 −
2ε

0.067
− 2ε log(0.067)

x
+ 6.57,

and this is a quadratic concave function over [0,0.25] that attains the minimum at
ε = 0.25 with a value of ≈ 5.36. Furthermore, we have

M′ε(0.01) < − ε2

(0.01)2 −
2ε

0.01
− 2ε log(0.01)

x
− 25.83,

and this is a quadratic concave function over [0,0.25] that attains the maximum at
≈ 0.036 with a value of ≈ −12.83. Therefore, for every ε ∈ (0,0.25], the continuity of
M′ε implies the existence of a value xε ∈ (0.01,0.0067) such that M′ε(xε) = 0. Since the
function M′ε is increasing in [0,0.067], we have M′ε(x)≤Mε(xε) = 0 for every x ∈ [0, xε],
and therefore the function Mε is decreasing in the interval [0, xε]. By Proposition 5 we
have that yε is decreasing in [0,ϕ(ε)], and therefore we conclude that y′′′ε = Mε ◦ yε is
increasing in the interval [y−1

ε (xε),ϕ(ε)].
Finally, we prove (e). Recall that g(x) = x log2(x) + x log(x)− x. It is sufficient

to verify that g(x) ≤ ε for every x ∈ (0,1] when ε ≥ 0.25, since we have y′′′ε (t) =
y′ε(t)(g(yε(t))− ε)/yε(t), and y′ε ≤ 0 in [0,ϕ(ε)]. We have

g′(x) = log2(x) + 2x log(x) · 1
x
+ log(x) + x · 1

x
− 1 = log(x)(log(x) + 3).

We have g′(x) ≥ 0 when x ∈ (0, e−3] and g′(x) ≤ 0 when x ∈ [e−3,1]. Therefore, the
maximum of g in (0,1] is attained at e−3 and we conclude that g(x) ≤ 5e−3 − ε ≤
5e−3 − 0.25 < 0 for every x ∈ (0,1]. This concludes the proof of the proposition.

Given ε > 0 and a positive integer n ≥ 2, consider the function Fn,ε : R→R given
by

Fn,ε(x) = x +
x(log(x)− 1)

n
+

log(x)(x(log(x)− 1)− ε)

2n2 .

Proposition 7. Let n ≥ 2 be an integer value and let ε ∈ (0,0.25]. Then, the following holds:

(a) For every x ∈ (0,1] we have Fn,ε(x) ≥
(

n−1
n

)
x

n
n−1 .

(b) For every x ∈ [0.01,0.199] we have Fn,ε(x) ≥
(

n−1
n

)
x

n
n−1 + 1.173

6n6 .

(c) For every x ∈ [0,0.07] we have Fn,ε(x) + Mε(x)
6n6 ≥

(
n−1

n

)
x

n
n−1 .
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Proof. The inequality in (a) holds by [23, Proposition D.1.]. Consider the function
Gn : R→R given by

Gn(x) = 1 +
log(x)− 1

n
+

log(x)(log(x)− 1)
2n2 −

(
n− 1

n

)
x

1
n−1 − 1.173

6xn6 .

To prove (b) it suffices to show that Gn(x) ≥ 0 for every x ∈ [0.01,0.199], since
−ε log(x) ≥ 0 for every x ∈ [0.01,0.199], and therefore

Fn,ε(x)−
(

n− 1
n

)
x

n
n−1 − 1.173

6n6 ≥ x · Gn(x) ≥ 0.

We have that {Gn(0.199)}n∈N is a strictly positive and decreasing sequence, and
therefore it is sufficient to show that Gn is decreasing in the interval [0.01,0.199]. We
have

G′n(x) =
1

nx
+

log(x)
n2x

− 1
2n2x

− 1
n

x
1

n−1−1 +
1.173
6n6x2

=
1

nx2

(
x +

x log(x)− x/2
n

− x
n

n−1 +
1.173
6n5

)
,

and let

hn(x) = x +
x log(x)− x/2

n
− x

n
n−1 +

1.173
6n5 .

It is sufficient to show that hn is non-positive in [0.01,0.199]. We have

h′n(x) = 1 +
log(x) + 1/2

n
−
(

1− 1
n

)
x

1
n−1 ,

h′′n(x) =
1

nx
− 1

n
x

1
n−1−1 =

1
nx

(
1− x

1
n−1

)
,

and therefore h′′n(x) > 0 for every x ∈ [0.01,0.199]. This implies that hn is convex in
the interval [0.01,0.199], and therefore it is sufficient to verify that hn(0.01) < 0 and
hn(0.199) < 0. In fact, we have

hn(0.01) = 0.01 +
0.01log(0.01)− 0.005

n
− 0.01

n
n−1 +

1.173
6n5

≤ 0.01log(0.01)− 0.005
2

+
1.173
6 · 25 < −0.019,

hn(0.199) = 0.199 +
0.199log(0.199)− 0.0995

n
− 0.199

n
n−1 +

1.173
6n5

≤ 0.199log(0.199)− 0.0995
2

+
1.173
6 · 25 < −0.2,
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and therefore we conclude that hn is non-positive in [0.01,0.199], which implies that Gn

is positive in [0.01,0.199]. This proves (b). Finally, to prove (c), consider the function
Ψ : R3

+→R given by

Ψ(x,y, ε) = x +
x(log(x)− 1)

y
+

log(x)(x(log(x)− 1)− ε)

2y2 +
Mε(x)

6y6 −
(

1− 1
y

)
x

y
y−1 .

Then, we have

inf
n≥2,

ε∈(0,0.25],
x∈[0,0.07]

(
Fn,ε(x) +

Mε(x)
6n6 −

(
n− 1

n

)
x

n
n−1

)
≥ min

y≥2,
ε∈(0,0.25],
x∈[0,0.07]

Ψ(x,y, ε) ≥ 0,

which concludes the proof.

Proof. Proof of Lemma 5. Part (a) holds by Proposition 5. To prove (b) we proceed by
induction. When j = 1, we have ρn−1

ε,1 = 1 = yε(0). For every j ≥ 1, we take the Taylor

expansion around point j−1
n to express the function value at j

n . We obtain:

yε

( j
n

)
= yε

( j− 1
n

)
+

1
n

y′ε
( j− 1

n

)
+

1
2n2 y′′ε

( j− 1
n

)
+

1
6n6 y′′′ε (ξ)

= yε

( j− 1
n

)
+

1
n

y′ε
( j− 1

n

)(
1 +

1
2n

log
(

yε

( j− 1
n

)))
+

1
6n6 y′′′ε (ξ)

= yε

( j− 1
n

)
+

yε(
j−1

n )(log(yε(
j−1

n ))− 1)− ε

n

(
1 +

1
2n

log
(

yε

( j− 1
n

)))
+

1
6n6 y′′′ε (ξ)

= Fn,ε

(
yε

( j− 1
n

))
− ε

n
+

1
6n6 y′′′ε (ξ)

where ξ ∈ ((j− 1)/n, j/n), and the second and third equalities come from the ODE
definition. The induction is simply on j, starting at j = 1. However, we need to control
the error term of the Taylor expansion, 1

6n6 y′′′ε (ξ). Depending on the value of ε and j

(since ξ ∈ ( j−1
n , j

n )), we have different guarantees that will help us with the induction
step, established in Proposition 6. We consider four different cases.
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Case 1: Suppose that ε ≥ 0.25. By Proposition 6(e) we have y′′′ε (ξ) ≥ 0, and therefore

yε

( j
n

)
= Fn,ε

(
yε

( j− 1
n

))
− ε

n
+

1
6n6 y′′′ε (ξ)

≥ Fn,ε

(
yε

( j− 1
n

))
− ε

n

≥
(

n− 1
n

)
yε

( j− 1
n

) n
n−1 − ε

n
≥
(

n− 1
n

)
ρn

ε,j −
ε

n
= ρn−1

ε,j+1,

where the second inequality holds from Proposition 7(a), and in the third inequality
we used the inductive step.

Case 2: Suppose that ε ≤ 0.25 and 2≤ j ≤ αεn. In particular, we have j/n ∈ [0,αε]. By
Proposition 6(b) we have y′′′ε (ξ) ≥ 0, and therefore

yε

( j
n

)
= Fn,ε

(
yε

( j− 1
n

))
− ε

n
+

1
6n6 y′′′ε (ξ)

≥ Fn,ε

(
yε

( j− 1
n

))
− ε

n

≥
(

n− 1
n

)
yε

( j− 1
n

) n
n−1 − ε

n
≥
(

n− 1
n

)
ρn

ε,j −
ε

n
= ρn−1

ε,j+1,

where the second inequality holds from Proposition 7(a), and in the third inequality
we used the inductive step.

Case 3: Suppose that ε ≤ 0.25 and αεn + 1 ≤ j ≤ y−1
ε (xε)n + 1, where xε is the value

guaranteed by Proposition 6(d). In particular, we have (j− 1)/n ∈ [αε,y−1
ε (xε)], and

by Proposition 6(d) we have 0.01 < xε, which implies that 0.01 < yε((j− 1)/n) ≤ 0.199.
By Proposition 6(c) we have y′′′ε (ξ) ≥ −1.173, and therefore

yε

( j
n

)
= Fn,ε

(
yε

( j− 1
n

))
− ε

n
+

1
6n6 y′′′ε (ξ)

≥ Fn,ε

(
yε

( j− 1
n

))
− ε

n
− 1.173

6n6

≥
(

n− 1
n

)
yε

( j− 1
n

) n
n−1 − ε

n
≥
(

n− 1
n

)
ρn

ε,j −
ε

n
= ρn−1

ε,j+1,

where the second inequality holds from Proposition 7(b), and in the third inequality
we used the inductive step.

Case 4: Suppose that ε ≤ 0.25 and j ≥ y−1
ε (xε)n + 1. In particular, we have (j− 1)/n ≥

y−1
ε (xε) and yε((j − 1)/n) ≤ xε < 0.067. By Proposition 6(d), y′′′ε is increasing in
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[y−1
ε (xε),ϕ(ε)], and therefore y′′′ε (ξ) ≥ y′′′ε ((j− 1)/n). Then, we have

yε

( j
n

)
= Fn,ε

(
yε

( j− 1
n

))
− ε

n
+

1
6n6 y′′′ε (ξ)

≥ Fn,ε

(
yε

( j− 1
n

))
− ε

n
+

1
6n6 y′′′ε

( j− 1
n

)
= Fn,ε

(
yε

( j− 1
n

))
+

1
6n6 Mε

(
yε

( j− 1
n

))
− ε

n

≥
(

n− 1
n

)
yε

( j− 1
n

) n
n−1 − ε

n
≥
(

n− 1
n

)
ρn

ε,j −
ε

n
= ρn−1

ε,j+1,

where the second inequality holds from Proposition 7(c), and in the third inequality
we used the inductive step.

Part (c) is a direct extension of [52, Corollary 6.9]. Finally we prove (d). By
definition, recall that

ϕ(ε) =
∫ 1

0

1
y(1− log(y)) + ε

dy.

We apply the change of variables x = − log(y) to get that

ϕ(ε) =
∫ ∞

0

1
1 + x + εex dx.

Note that the function f (x) = 1 + x− εex has a unique root in x ∈ [0,∞) for ε < 1, that
we denote rε (i.e., f (rε) = 0). In particular, we have 1 + x ≥ εex for every x ≤ rε, and
1 + x ≤ εex for every x ≥ rε. Then, we have

∫ rε

0

1
2(1 + x)

dx ≤
∫ rε

0

1
1 + x + εex dx

and ∫ ∞

rε

1
2εex dx ≤

∫ ∞

rε

1
1 + x + εex dx.

By adding both inequalities we get

1
2

(∫ rε

0

1
1 + x

dx +
∫ ∞

rε

1
εex dx

)
≤ ϕ(ε).

On the other hand, we have

ϕ(ε) ≤
∫ rε

0

1
1 + x

dx +
∫ ∞

rε

1
εex dx,
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and therefore, by evaluating the integrals, we have

1
2

(
log(1 + rε) +

exp(−rε)

ε

)
≤ ϕ(ε) ≤ log(1 + rε) +

exp(−rε)

ε
.

Observe that rε = log(1 + rε) + log(1/ε), and therefore rε ≥ log(1/ε). Furthermore,
when ε is sufficiently small, we have f (2log(1/ε)) = 1 + 2log(1/ε)− 1/ε < 0, and
therefore rε ≤ 2log(1/ε). Then, for ε sufficiently small we have log(1/ε) ≤ rε ≤
2log(1/ε), which implies that

log
(

1 + log
(

1
ε

))
+

exp(−2log(1
ε ))

ε
≤ log(1 + rε) +

exp(−rε)

ε

≤ log
(

1 + 2log
(

1
ε

))
+

exp(− log(1
ε ))

ε
.

The result now follows from the fact that the leftmost expression is lower bounded as

loglog
(

1
ε

)
≤ log

(
1 + log

(
1
ε

))
+

exp(−2log(1
ε ))

ε
,

and the rightmost is upper bounded as log
(

1 + 2log
(

1
ε

))
+

exp(− log( 1
ε ))

ε ≤ 2loglog
(

1
ε

)
.
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Chapter 3

The Competition Complexity of Prophet
Inequalities

3.1 Introduction

The standard prophet inequality [57, 58] can be interpreted as an allocation problem.
There is a single item, which we need to allocate to one of n players that arrive one-
by-one in an online fashion. Each player has a value vi ≥ 0 for the item. The values
v1, . . . ,vn are drawn independently from known distributions F1, . . . , Fn. We compare
the expected value achievable by an online algorithm that has to allocate the item
in an online fashion, to the expected offline optimum, which can simply choose the
maximum value in the sequence.

3.1.1 The model

In this chapter, we take a resource augmentation approach to prophet inequalities.
We study the prophet inequality problem in a setting where the offline algorithm
is handicapped by having less allocation opportunities. This is particularly well
motivated in the mechanism design and pricing applications, where it is very likely
that the comparatively simpler (sequential) posted-price mechanism attracts additional
buyers compared to the number of buyers that would show up if one was to sell
the item through an auction. For convenience, we now give a summary of essential
concepts and definitions required for understanding the chapter.

A more detailed explanation is given in chapter 1, section 1.2.2.

Prophet Inequality Setting. An online algorithm (ALG) observes a sequence of n non-
negative values v1, . . . ,vn, drawn independently from known distributions F1, . . . , Fn.
ALG must decide immediately upon seeing vi whether to accept it and stop, or
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proceed to vi+1. The stopping time ρ ∈ [n] ∪ {null} determines the algorithm’s reward
E[ALG(v)] = E[vρ]. The offline algorithm (prophet) selects maxi∈[n] vi, achieving
E[maxi∈[n] vi]. ALG’s competitive ratio is the worst-case ratio between its reward and
the prophet’s:

inf
F1,...,Fn

E[ALG(v)]
E[maxi∈[n] vi]

≥ α,

where α ∈ [0,1]. The goal is to find an upper bound on k such that

max
ALG

Ev∼(F1,...,Fn)k [ALG(v)] ≥ (1− ε) ·E[max
i∈[n]

vi].

Competition Complexity. In the block model, ALG observes k independent copies of
the instance (F1, . . . , Fn). Each copy contains n values arriving in sequence. The input
is

v(1)1 , . . . ,v(1)n ,v(2)1 , . . . ,v(2)n , . . . ,v(k)1 , . . . ,v(k)n ,

where v(j)
i is drawn independently from Fi. The offline algorithm sees only the n

values from one instance.
The competition complexity of a class of algorithms A is the smallest k(ε) such that

for any n, F1, . . . , Fn, and k ≥ k(ε):

max
ALG∈An,k

E[ALG(v)] ≥ (1− ε) ·E[max
i∈[n]

vi].

For ε = 0, the competition complexity is unbounded even in the i.i.d. case [12].

Online Algorithms. We consider three types of algorithms:

• Single threshold algorithms: Use a fixed threshold τ and accept the first vi ≥ τ.

• Block threshold algorithms: Assign thresholds τ = (τ1, . . . ,τk), one per block.

• General threshold algorithms: Use thresholds τ = (τ1, . . . ,τnk), one per value.

Our default assumption is a fixed order model, in which the variables arrive in
the same order in each block. Our results continue to hold when variables arrive in
arbitrary order within each block, and each block may have its own arrival order.

We also consider a further relaxation, the γ-displacement model, which is parame-
terized by an integer γ≥ 1. In this model, the algorithm faces γk copies of the original
instance, and an adversary can determine the arrival order, but is constrained by the
fact that in each meta-block of γn variables, each type of variable should appear at
least once. This model interpolates between the block model with arbitrary intra-block
arrivals and the fully adversarial model.
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Similarly to [30] and [11], for ε ≥ 0, we define the (1− ε)-competition complexity as
the smallest k such that the expected value of the online algorithm is guaranteed to
be at least a (1− ε) fraction of the expected maximum value for every instance. This
complexity measure has previously been studied by [12] in the context of prophet
inequalities and posted pricing, but only for the case of i.i.d. distributions. They show
that while for ε = 0 the competition complexity is unbounded, for ε > 0 it scales as
Θ(loglog1/ε). This shows that the optimal online algorithm (dynamic pricing policy),
approaches the optimal offline algorithm (optimal auction) doubly-exponentially fast.

Of course, the competition complexity metric is also interesting when restricted
to a certain class of online algorithms. We consider algorithms from three different
classes: (1) Single threshold algorithms, which set a single threshold and accept the
first value that exceeds the threshold. (2) Block threshold algorithms, which set a
threshold for each copy, and accept the first value that exceeds the threshold for its
copy. (3) General threshold algorithms, which set a threshold for each of the nk steps
and accept the first value that exceeds its threshold.

Naturally, a simple backwards induction argument shows that threshold algorithms
are optimal (in a per instance sense) among all online algorithms. More interestingly,
as a first structural insight, we show that with respect to the competition complexity
metric, block threshold algorithms are optimal (Proposition 8 in Section 3.2). We thus
generalize the classic result of [73], which shows that for k = 1 a single threshold algo-
rithm is optimal. Apart from this, threshold algorithms are of particular importance
because of their simplicity and natural interpretation as posted-price mechanisms.

3.1.2 Our contribution

As our main contribution, we resolve the (1− ε)-competition complexity for the classic
(single-choice) prophet inequality problem with non-identical distributions. We show
that the competition complexity for general distributions exhibits the same asymptotics
as in the i.i.d. case. Moreover, the optimal asymptotics are attained by block threshold
algorithms.

Main Result 1 (Theorem 5): For every ε > 0, the (1− ε)-competition complexity of
the class of block threshold algorithms is Θ(loglog(1/ε)).

Our second main result shows a tight bound for single threshold algorithms.

Main Result 2 (Theorem 6): For every ε > 0, the (1− ε)-competition complexity of
the class of single threshold algorithms is Θ(log(1/ε)).

We thus show that also in the case of general, non-identical distributions the
best online algorithm (dynamic pricing policy) approaches the best offline algorithm
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(optimal auction) doubly exponentially fast. Moreover, this is true even when we don’t
use the full power of dynamic pricing, and prices remain constant within each block.

In addition, our results show that there is an exponential gap between single
threshold algorithms (static pricing policies) and block threshold algorithms (policies
that update prices only periodically).

3.1.3 Our techniques

Our main technical contribution is the upper bound of O(loglog(1/ε)) on the (1− ε)-
competition complexity for block threshold algorithms. The matching lower bound of
Ω(loglog(1/ε)) already applies in the i.i.d. setting and follows from [12].

The main technical ingredient in our proof of the upper bound is an approxi-
mate stochastic dominance inequality that allows us to evaluate the performance of
any block threshold algorithm, with decreasing thresholds τ1 > τ2 > . . . ,τk (Lemma
6). The approximation factor of this stochastic dominance inequality is parameter-
ized by τ1, . . . ,τk, and it is obtained through a careful analysis of the minimum
stochastic-dominance approximation factor achievable on each of the k + 1 sub-
intervals [0,τk), [τk,τk−1), . . . , [τ1,∞) defined by the block thresholds. Then, to find
the best possible approximation guarantee for block threshold algorithms that can
be obtained in this way, we need to solve a (high-degree polynomial) max-min op-
timization problem. Rather than solving this problem exactly, we provide a tight
double-exponentially fast increasing lower bound on the value of this max-min prob-
lem by constructing an explicit set of thresholds (Lemma 7). In combination with the
lower bound, this shows that our stochastic dominance approach provides an optimal
competition complexity bound up to a constant factor.

Our upper bound of O(log(1/ε)) for single threshold algorithms follows in a rather
direct way from the “median rule” proof of [73]. Our key insight for this case is that
the upper bound is asymptotically tight, which we show by providing an explicit
lower bound construction.

3.1.4 Other arrival orders

We also explore the robustness of the (1− ε)-competition complexity metric to dif-
ferent assumptions about the arrival order. To study this effect, we introduce the
γ-displacement model, where γ ≥ 1 is a parameter. In this model, the algorithm faces
γk copies of the original instance. The arrival order is determined by an adversary,
but the adversary is constrained by the requirement that, within each meta-block of
γn variables, each type of variable should appear at least once. While for γ = 1 the
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adversary is restricted to move variables within their block, for γ > 1 the adversary
can also move variables across blocks.

For this model, we show that for every γ ≥ 1, the (1− ε)-competition complexity
of block threshold algorithms is O(γ loglog(1/ε)) (Proposition 23). Comparing this
with the (1− ε)-competition complexity of block threshold algorithms in the default
model, this shows that the competition complexity is increased by a multiplicative
factor of γ, but the scaling behavior in 1/ε remains the same. This shows that the
competition complexity of block threshold algorithms degrades gracefully as we move
away from the default model.

We also show that a comparable result cannot be achieved for single threshold
algorithms. Namely, for this class of algorithms, we show that there exists some γ > 1,
such that the (1− ε)-competition complexity of single threshold algorithms is least
Ω(1/ε1/3) (Proposition 24). This shows that the (1− ε)-competition complexity of
this type of algorithms transitions from growing logarithmically in 1/ε when γ = 1 to
growing (at least) polynomially in 1/ε when γ > 1.

We complement these results, with a lower bound on the (1 − ε)-competition
complexity of general threshold algorithms in the fully adversarial model, showing
that the (1− ε)-competition complexity is at least Ω(1/ε) (Proposition 25).

3.1.5 Extensions

Our work opens up the question of studying resource-augmented prophet inequalities
for richer combinatorial settings. We present some preliminary results for submodular
and XOS combinatorial auctions. The proper generalization of threshold algorithms for
this setting are prices, and similar to the distinction between block threshold algorithms
and single threshold algorithms, we can distinguish between block-consistent prices
which stay fixed within a block and static prices that remain fixed throughout.

Additional Result 1 (Theorem 7): The (1 − ε)-competition complexity of block-
consistent prices for submodular and XOS combinatorial auctions is O(log(1/ε)).

Additional Result 2 (Theorem 8): The (1− ε)-competition complexity of static prices
for submodular and XOS combinatorial auctions is O(1/ε).

Our results present a first glimpse at a potentially rich theory and already show
that the constant-factor that can be shown in the single-shot setting [27, 36] vanishes
exponentially fast with block-consistent prices with additional resources. Whether
this can also be achieved with static prices remains open, just as the question of
whether a double-exponentially fast approach is possible with dynamic prices. More
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generally, it would be interesting to establish a formal separation between static and
dynamic prices. It also remains open whether comparable results can be obtained for
subadditive combinatorial auctions [20, 29].

Of course, the same question can be studied for other combinatorial settings such
as matroids [18, 55] or matching constraints [33, 40]. Finally, we hope that our work
will spark ideas on other notions of resource augmentation.

3.1.6 Organization

The chapter is organized as follows. In Section 3.3 we present our results for block
threshold algorithms. Afterwards, in Section 3.4, we turn our attention to single
threshold algorithms. We discuss combinatorial extensions in Section 3.5. We defer
the discussion of additional arrival orders to Appendix B.2.

3.2 Block threshold reduction

We first show that block threshold algorithms are in fact worst case optimal.

Proposition 8. For every ε ∈ (0,1), the (1− ε)-competition complexity with respect to the
class of block threshold algorithms is the same as the (1− ε)-competition complexity with
respect to the class of general threshold algorithms.

Proof. Let k′ be the (1− ε)-competition complexity of the class of block threshold
algorithms, and let k be the (1− ε)-competition complexity of the class of general
threshold algorithms. Clearly k′ ≥ k, since every block threshold algorithm is a general
threshold algorithm. We next prove the other inequality. By the definition of k′, there
exists an instance (F1, . . . , Fn), such that for every block threshold algorithm ALG, it
holds that

Ev∼(F1,...,Fn)k′−1 [ALG(v)] < (1− ε) ·Ev∼(F1,...,Fn)[max
i∈[n]

vi]. (3.1)

Given a block threshold algorithm ALG, let

α =
1
4

(
(1− ε) ·Ev∼(F1,...,Fn)[max

i∈[n]
vi]−Ev∼(F1,...,Fn)k′−1 [ALG(v)]

)
,

and let
β∗ = inf

{
β ≥ 0 : Ev∼(F1,...,Fn)[max

i∈[n]
vi · 1[max

i∈[n]
vi ≥ β]] ≤ α

}
.

Let m = ⌈β∗/α⌉, and for every i ∈ [m], let pi = Pr[(i− 1) · α ≤maxi∈[n] vi < i · α].
For every i ∈ {1, . . . ,m− 1}, let Di be the weighted Bernoulli distribution that takes

the value i · α with probability pi+1/(1−∑m
j=i+2 pj), and zero otherwise. This is a valid
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probability since

pi+1/(1−
m

∑
j=i+2

pj) ≤ 1⇔
m

∑
j=i+1

pj ≤ 1.

and
m

∑
j=i+1

pj = Pr[i · α ≤max
ℓ∈[n]

vℓ < m · α]

by definition of pj’s. Let M1 = maxi∈[m−1] wi with w ∼ (D1, . . . , Dm−1), and M2 =

maxi∈[n] vi with v ∼ (F1, . . . , Fn). It holds that M1 has the same distribution as ⌊M2 ·
1[M2 < m · α]/α⌋ · α, since for every r ∈ [m− 1] we have

Pr[M1 = r · α] = pr+1

1−∑m
j=r+2 pj

·
m−1

∏
r′=r+1

(
1− pr′+1

1−∑m
j=r′+2 pj

)

=
pr+1

1−∑m
j=r+2 pj

·
m−1

∏
r′=r+1

(
1−∑m

j=r′+1 pj

1−∑m
j=r′+2 pj

)

= pr+1 = Pr
[⌊

M2 · 1[M2 < m · α]
α

⌋
· α = r · α

]
. (3.2)

Thus, for the instance (D1, . . . , Dm−1), it holds that

Ew∼(D1,...,Dm−1)
[maxi∈[m−1] wi] ≥ Ev∼(F1,...,Fn)[maxi∈[n] vi]− 2α, (3.3)

since an α term is lost due to values above m · α ≥ β∗, and another α term is lost due
to the flooring. On the other hand, since the thresholds calculated by the best general
threshold algorithm for (D1, . . . , Dm−1)

k′−1 are monotonically decreasing, and since the
distributions of each block are weighted Bernoulli variables with increasing weights, it
holds that within each block, only non-zero values of a suffix of the block are chosen.
Thus, the optimal algorithm ALG⋆ for instance (D1, . . . , Dm−1)

k′−1 is a block threshold
algorithm.

Let τ⋆
1 ≥ . . .≥ τ⋆

k′−1 be the monotone decreasing thresholds used by ALG⋆. Consider
the algorithm ALG′ that selects a value in block ℓ if it is in the interval [α · (1 +

⌊τ⋆
ℓ /α⌋),m · α). By Equation (3.2), the probability that ALG′ selects an element in

every iteration is the same as ALG⋆, and given that both algorithms stop at block ℓ,
the expectation of ALG′ is at least the expectation of ALG⋆. Thus,

Ew∼(D1,...,Dm−1)k′−1 [ALG⋆(w)] ≤ Ev∼(F1,...,Fn)k′−1 [ALG′(v)] ≤ Ev∼(F1,...,Fn)k′−1 [ALG(v)],

where the second inequality is by noticing that if we select values above m · α, it
can only improve the performance, and the algorithm becomes a block threshold
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algorithm. Therefore,

(1− ε) ·Ew∼(D1,...,Dm−1)
[maxi∈[m−1] wi]−Ew∼(D1,...,Dm−1)k′−1 [ALG⋆(w)]

≥ (1− ε) ·Ew∼(D1,...,Dm−1)
[maxi∈[m−1] wi]−Ev∼(F1,...,Fn)k′−1 [ALG(v)]

= (1− ε) ·Ew∼(D1,...,Dm−1)
[maxi∈[m−1] wi]− (1− ε) ·Ev∼(F1,...,Fn)[maxi∈[n] vi] + 4α

≥ (1− ε)(−2α) + 4α > 0,

where the equality is by definition of α, the first inequality is by Equation (3.3), and
the last inequality is since ε < 1, and since by Equation (3.1), α > 0. Thus, k > k′ − 1,
which concludes the proof.

Beyond the Block Model. Our default model is the block model, according to which
we repeat an instance k times, keeping the arrival order within each block the same.
Our results continue to hold, even if the arrival order within each block is arbitrary.
We discuss this and additional models along with implications for our results in
Appendix B.2.

As is standard in the literature, to simplify the presentation, we generally assume
that the distributions do not admit point masses (i.e., Fi is continuous for every i ∈ [n]).
In Appendix B.1, we discuss how to adjust our algorithms for cases with point masses.

The no point masses assumption simplifies the exposition because in the absence
of point masses every quantile is associated with a threshold. With point masses, this
is not necessarily the case, but the problem can be resolved using randomization.

3.3 Block threshold algorithms

In this section, we study the competition complexity of the class of block threshold
algorithms. The following is the main result of this section.

Theorem 5. For every ε > 0 the (1− ε)-competition complexity of the class of block threshold
algorithms is Θ (loglog(1/ε)).

In what follows, given τ = (τ1, . . . ,τk) we denote by ALGτ the block threshold
algorithm such that for every copy j ∈ {1, . . . ,k} it selects the first element that exceeds
τj, if such element exists. We denote τ0 = ∞ and τk+1 = 0.

The remainder of this section is organized as follows. As a warm-up, we start by re-
solving the case of k = 2, which motivates and presents the main ideas of our approach.
In Section 3.3.1 we establish a lemma that allows us to evaluate the performance of any
block threshold algorithm ALGτ by establishing an approximate stochastic dominance
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inequality that extends the case of k = 2 to every k. This inequality is parameterized
by the thresholds τ = (τ1, . . . ,τk). In order to get the best possible approximation
factor, we need to solve the induced max-min problem. In Section 3.3.2 we solve the
corresponding max-min problem by presenting an explicit feasible solution. Finally,
in Section 3.3.3, we present the full proof of Theorem 5, based on the ingredients
established in previous sections.

Warm-up: The case of k = 2. To design a block threshold algorithm for k = 2, we
compute the thresholds τ1,τ2 by finding the appropriate quantiles of the distribution
of maxi∈[n] vi, with vi ∼ Fi for every i ∈ {1, . . . ,n}. More specifically, for j ∈ {1,2}, let
pj = Prv∼(F1,...,Fn)[maxi∈[n] vi ≥ τj], where τ1 and τ2 will be determined by specifying
the values of p1 and p2. By our assumption of F1, . . . , Fn having no point masses, any
p1, p2 ∈ [0,1] corresponds to a pair of thresholds τ1 and τ2. To establish the competition
complexity result involving the expectations of ALGτ and maxi∈[n] vi, our goal is to
state an approximate stochastic dominance result between these two random variables.
By setting τ1 ≥ τ2 and such that p1 > 0, we can show that

Pr
v∼(F1,...,Fn)2

[ALGτ(v) ≥ x] ≥ ϕ1(p1, p2) Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x] when x ≥ τ1,

Pr
v∼(F1,...,Fn)2

[ALGτ(v) ≥ x] ≥ ϕ2(p1, p2) Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x] when τ1 > x ≥ τ2,

Pr
v∼(F1,...,Fn)2

[ALGτ(v) ≥ x] ≥ ϕ3(p1, p2) Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x] when τ2 > x, (3.4)

where ϕ1(p1, p2) = 1− p1 + (1− p1)(1− p2), ϕ2(p1, p2) = p1/p2 + (1− p1)(1− p2),
and ϕ3(p1, p2) = p1 + p2(1− p1). In particular, we get that

Pr
v∼(F1,...,Fn)2

[ALGτ(v)≥ x]≥min
{

ϕ1(p1, p2),ϕ2(p1, p2),ϕ3(p1, p2)
}

Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi≥ x]

for every x≥ 0. The above inequality is stated in its general form for every k in Lemma
6. Then, in order to get the best possible approximation factor in this way, we solve
the following max-min optimization problem:

max
{

min
{

ϕ1(p1, p2),ϕ2(p1, p2),ϕ3(p1, p2)
}

: 0 < p1 ≤ p2, p1, p2 ∈ [0,1]
}

.

It can be shown that the optimal solution for this problem is attained at p1 = 2/5 and
p2 = 2/3, which yields a factor of 4/5. For the case of general k, we do not solve exactly
this max-min problem as it is a high-dimensional polynomial optimization problem,
but we construct explicitly a feasible solution that yields the optimal competition
complexity guarantee up to a constant factor. This is formalized in Lemma 7.
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3.3.1 Reduction to max-min problem via approximate stochastic dom-
inance

We start by showing a lemma that allows us to evaluate the performance of any
block threshold algorithm ALGτ by establishing an approximate stochastic dominance
inequality that extends (3.4) to every k. When k = 2, the inequalities in (3.4) are
obtained by splitting the domain of x according to the three different sub-intervals
defined by the two thresholds. We exploit this idea to get an approximate stochastic
dominance inequality by studying each of the k + 1 ranges defined by the k block
thresholds.

More specifically, given F1, . . . , Fn ∈ ∆, and τ = (τ1, . . . ,τk) such that p0 = 0 and
pℓ = Prv∼(F1,...,Fn)[maxj∈[n] vj ≥ τℓ] > 0 for every ℓ ∈ {1,2, . . . ,k}, let

Φ1(F1, . . . , Fn,τ) =
k

∑
ℓ=1

ℓ

∏
j=1

(1− pj),

Φi(F1, . . . , Fn,τ) =
1
pi

i−1

∑
ℓ=1

pℓ
ℓ−1

∏
j=0

(1− pj) +
k

∑
ℓ=i

ℓ

∏
j=0

(1− pj) for every i ∈ {2, . . . ,k}, and

Φk+1(F1, . . . , Fn,τ) =
k

∑
ℓ=1

pℓ
ℓ−1

∏
j=0

(1− pj).

Let Φ(F1, . . . , Fn,τ) = mini∈{1,...,k+1}Φi(F1, . . . , Fn,τ). We say that τ = (τ1, . . . ,τk) is de-
creasing if τj > τj+1 for every j ∈ {1, . . . ,k}.

Lemma 6. For every F1, . . . , Fn ∈ ∆, every x ≥ 0, and every decreasing τ = (τ1, . . . ,τk) such
that Prv∼(F1,...,Fn)[maxj∈[n] vj ≥ τ1] > 0, we have

Pr
v∼(F1,...,Fn)k

[ALGτ(v) ≥ x] ≥ Φ(F1, . . . , Fn,τ) Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x].

Proof. Given x ≥ 0, let ℓ(τ, x) = min{ℓ ∈ {1, . . . ,k + 1} : x ≥ τℓ}, that is, ℓ(τ, x) is the
first block ℓ for which x is at least the threshold τℓ. Let B be defined as follows: If
there exists ℓ ∈ {1, . . . ,k} such that maxi∈[n] v

(ℓ)
i > τℓ, then

B = min
{
ℓ ∈ {1, . . . ,k} : max

i∈[n]
v(ℓ)i > τℓ

}
,

and B = k + 1 otherwise. That is, B is equal to the first block for which there exists a
value in the block that surpasses the block threshold, and it is equal k + 1 in case such
value does not exist. Recall that we denote p0 = 0 and pℓ = Prv∼(F1,...,Fn)[maxj∈[n] vj≥ τℓ]

for every ℓ ∈ {1,2, . . . ,k + 1}; in particular pk+1 = 1. The following holds:

58



Pr
v∼(F1,...,Fn)k

[ALGτ(v) ≥ x]

=
k

∑
ℓ=1

Pr
v∼(F1,...,Fn)k

[ALGτ(v) ≥ x and B = ℓ]

=
k

∑
ℓ=1

Pr
v∼(F1,...,Fn)k

[ALGτ(v) ≥ x and max
i∈[n]

v(ℓ)i ≥ τℓ | B > ℓ− 1] Pr
v∼(F1,...,Fn)k

[B > ℓ− 1]

≥
k

∑
ℓ=1

Pr
v∼(F1,...,Fn)k

[v(ℓ)j /∈ [τℓ, x) for all j ∈ [n] and max
i∈[n]

v(ℓ)i ≥ τℓ | B > ℓ− 1]
ℓ−1

∏
j=0

(1− pj)

=
k

∑
ℓ=1

Pr
v(ℓ)∼(F1,...,Fn)

[v(ℓ)j /∈ [τℓ, x) for all j ∈ [n] and max
i∈[n]

v(ℓ)i ≥ τℓ]
ℓ−1

∏
j=0

(1− pj), (3.5)

where in the second equality, we use that B = ℓ is equivalent to the algorithm not
stopping before reaching the block ℓ, and in block ℓ having maxi∈[n] v

(ℓ)
i ≥ τℓ. For the

inequality, we observe that conditioned on B > ℓ− 1, the intersection of the event
ALGτ(v) ≥ x with maxi∈[n] v

(ℓ)
i ≥ τℓ contains v(ℓ)j /∈ [τℓ, x) for all j ∈ [n]. The final

equality follows from independence across copies.
Suppose that ℓ(τ, x) ≥ 2 and let ℓ ∈ {1, . . . ,ℓ(τ, x) − 1}. In particular, we have

τℓ > x, and therefore,

Pr
v∼(F1,...,Fn)k

[v(ℓ)j /∈ [τℓ, x) for all j ∈ [n] and max
i∈[n]

v(ℓ)i ≥ τℓ]

= Pr
v(ℓ)∼(F1,...,Fn)

[max
i∈[n]

v(ℓ)i ≥ τℓ]

= Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x] ·
Prv∼(F1,...,Fn)[maxi∈[n] vi ≥ τℓ]

Prv∼(F1,...,Fn)[maxi∈[n] vi ≥ x]

≥ Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x] ·
Prv∼(F1,...,Fn)[maxi∈[n] vi ≥ τℓ]

Prv∼(F1,...,Fn)[maxi∈[n] vi ≥ τℓ(τ,x)]

= Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x] · pℓ
pℓ(τ,x)

, (3.6)

where the inequality holds since x ≥ τℓ(τ,x).
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Now suppose that ℓ(τ, x) ≤ k and let ℓ ∈ {ℓ(τ, x), . . . ,k}. In particular, we have
x ≥ τℓ, and therefore,

Pr
v(ℓ)∼(F1,...,Fn)

[v(ℓ)j /∈ [τℓ, x) for all j ∈ [n] and max
i∈[n]

v(ℓ)i ≥ τℓ]

≥ Pr
v(ℓ)∼(F1,...,Fn)

[v(ℓ)j /∈ [τℓ, x) for all j ∈ [n] and max
i∈[n]

v(ℓ)i ≥ x]

≥
n

∑
i=1

Pr
v∼(F1,...,Fn)

[vi ≥ x and vj < τℓ for all j ∈ [n] \ {i}]

=
n

∑
i=1

Pr
v∼(F1,...,Fn)

[vi ≥ x] Pr
v∼(F1,...,Fn)

[vj < τℓ for all j ∈ [n] \ {i}]

≥
n

∑
i=1

Pr
v∼(F1,...,Fn)

[vi ≥ x] Pr
v∼(F1,...,Fn)

[max
j∈[n]

vj < τℓ]

= (1− pℓ)
n

∑
i=1

Pr
v∼(F1,...,Fn)

[vi ≥ x]

≥ (1− pℓ) Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x], (3.7)

where the first inequality holds since x ≥ τℓ; the second inequality holds since the
summation in the third line is made of disjoint events whose union has a probability
that lower bounds the probability of the second line; the first equality holds by
independence across the values; the third inequality holds since the upper bound on
maxj∈[n] vj implies the corresponding event in the third line, and the last inequality
holds by the union bound.

Then, when ℓ(τ, x) = 1, from (3.5) and (3.7) we get

Pr
v∼(F1,...,Fn)k

[ALGτ(v) ≥ x] ≥ Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x]
k

∑
ℓ=1

(1− pℓ)
ℓ−1

∏
j=0

(1− pj)

= Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x]
k

∑
ℓ=1

ℓ

∏
j=0

(1− pj)

= Φ1(F1, . . . , Fn,τ) Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x].
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When ℓ(τ, x) ∈ {2, . . . ,k}, from (3.5), (3.6) and (3.7) we get

Pr
v∼(F1,...,Fn)k

[ALGτ(v) ≥ x]

≥

ℓ(τ,x)−1

∑
ℓ=1

pℓ
pℓ(τ,x)

ℓ−1

∏
j=0

(1− pj) +
k

∑
ℓ=ℓ(τ,x)

(1− pℓ)
ℓ−1

∏
j=0

(1− pj)

 Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x]

=

 1
pℓ(τ,x)

ℓ(τ,x)−1

∑
ℓ=1

pℓ
ℓ−1

∏
j=0

(1− pj) +
k

∑
ℓ=ℓ(τ,x)

ℓ

∏
j=0

(1− pj)

 Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x]

= Φℓ(τ,x)(F1, . . . , Fn,τ) Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x].

Finally, when ℓ(τ, x) = k + 1, from (3.5) and (3.6) we get

Pr
v∼(F1,...,Fn)k

[ALGτ(v) ≥ x] ≥ Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x]
k

∑
ℓ=1

pℓ
pk+1

ℓ−1

∏
j=0

(1− pj)

= Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x]
k

∑
ℓ=1

pℓ
ℓ−1

∏
j=0

(1− pj)

= Φk+1(F1, . . . , Fn,τ) Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x],

where the first equality holds since pk+1 = 1.
Overall, we conclude that for every x ≥ 0 we have

Pr
v∼(F1,...,Fn)k

[ALGτ(v) ≥ x] ≥ Φℓ(τ,x)(F1, . . . , Fn,τ) Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x]

≥ min
i∈{1,...,k+1}

Φi(F1, . . . , Fn,τ) Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x]

= Φ(F1, . . . , Fn,τ) Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x],

which finishes the proof of the lemma.

Since Lemma 6 provides an approximate stochastic dominance inequality parame-
terized in the thresholds τ = (τ1, . . . ,τk), in order to get the best possible approximation
factor by using this approach we have to solve the following max-min problem:

max
{

mini∈{1,...,k+1}Φi(F1, . . . , Fn,τ) : τ1 > τ2 > · · · > τk ≥ 0
}

= max
{

Φ(F1, . . . , Fn,τ) : τ1 > τ2 > · · · > τk ≥ 0
}

. (3.8)

In the following subsection we study this max-min problem.
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3.3.2 Lower bound on the max-min problem via an explicit feasible
solution

When k = 2, we can compute exactly the optimal solution of the max-min problem
(3.8). The problem becomes much harder for general k, but our following lemma
establishes a double-exponentially fast increasing lower bound on the optimal value
of (3.8). This lower bounds holds by providing a specific set of thresholds, obtained
after finding a well-chosen set of quantiles p1, . . . , pk.

Lemma 7. For every F1, F2, . . . , Fn ∈ ∆ and every k ≥ 2, let τ = (τ1, . . . ,τk) such that

Pr
v∼(F1,...,Fn)

[max
j∈[n]

vj ≥ τℓ] = 1− (5/4)−(5/4)ℓ

for every ℓ ∈ {1, . . . ,k}. Then, we have Φ(F1, . . . , Fn,τ) ≥ 1− (5/4)−(5/4)k
.

Proof. To prove the lemma, we show that the following holds:

Φi(F1, . . . , Fn,τ) ≥ 1 for every i ∈ {1, . . . ,k}, and

Φk+1(F1, . . . , Fn,τ) ≥ 1− (5/4)−(5/4)k
.

Then, the lemma follows since, overall, we get

Φ(F1, . . . , Fn,τ) ≥ 1− (5/4)−(5/4)k
.

Let p0 = 0, and pℓ = Prv∼(F1,...,Fn)[maxj∈[n] vj ≥ τℓ] for every ℓ ∈ {1, . . . ,k + 1}. When
i = 1, we have

Φ1(F1, . . . , Fn,τ) =
k

∑
ℓ=1

ℓ

∏
j=1

(1− pj)

=
k

∑
ℓ=1

ℓ

∏
j=1

(5/4)−(5/4)j

=
k

∑
ℓ=1

(5/4)5(1−(5/4)ℓ)

≥ (5/4)5(1−(5/4)) + (5/4)5(1−(5/4)2) > 1,
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where the first inequality holds since k ≥ 2. For i = 2,

Φ2(F1, . . . , Fn,τ) =
p1

p2
+

k

∑
ℓ=2

ℓ

∏
j=0

(1− pj) ≥
p1

p2
+ (1− p1)(1− p2)

=
1− (5/4)−5/4

1− (5/4)−(5/4)2 + (5/4)−5/4 · (5/4)−(5/4)2
> 1,

where the first inequality is since k ≥ 2.
For every i ∈ {3, . . . ,k + 1}, we have

i−1

∑
ℓ=1

pℓ
ℓ−1

∏
j=0

(1− pj) =
i−1

∑
ℓ=1

(
ℓ−1

∏
j=0

(1− pj)− (1− pℓ)
ℓ−1

∏
j=0

(1− pj)

)

=
i−1

∑
ℓ=1

(
ℓ−1

∏
j=0

(1− pj)−
ℓ

∏
j=0

(1− pj)

)

= 1−
i−1

∏
j=0

(1− pj)

= 1−
i−1

∏
j=1

(5/4)−(5/4)j
= 1− (5/4)−∑i−1

j=1(5/4)j
= 1− (5/4)5(1−(5/4)i−1).

Thus, for every i ∈ {3, . . . ,k} we have

Φi(F1, . . . , Fn,τ) ≥ 1
pi

i−1

∑
ℓ=1

pℓ
ℓ−1

∏
j=0

(1− pj) =
1− (5/4)5(1−(5/4)i−1)

1− (5/4)−(5/4)i ≥ 1,

where the last inequality holds since i ≥ 3, and when i = k + 1, we have

Φk+1(F1, . . . , Fn,τ) =
k

∑
ℓ=1

pℓ
ℓ−1

∏
j=0

(1− pj) = 1− (5/4)5(1−(5/4)k) ≥ 1− (5/4)−(5/4)k
,

where the last inequality holds for every k ≥ 2. This concludes the proof.

3.3.3 Putting it all together

With Lemma 6 and Lemma 7 at hand, we are now ready to prove our main theorem.

Proof of Theorem 5. Given ε > 0, by Lemma 6 and Lemma 7, we have that for every
F1, . . . , Fn ∈ ∆ and every k ≥ max(2, log5/4 log5/4(1/ε)), by taking τ = (τ1, . . . ,τk) as
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defined in Lemma 7, the following holds:

Ev∼(F1,...,Fn)k [ALGτ(v)] =
∫ ∞

0
Pr

v∼(F1,...,Fn)k
[ALGτ(v) ≥ x]dx

≥ Φ(F1, . . . , Fn,τ)
∫ ∞

0
Pr

v∼(F1,...,Fn)
[max

i∈[n]
vi ≥ x]dx

≥
(

1− (5/4)−(5/4)k
)∫ ∞

0
Pr

v∼(F1,...,Fn)
[max

i∈[n]
vi ≥ x]dx

≥ (1− ε)
∫ ∞

0
Pr

v∼(F1,...,Fn)
[max

i∈[n]
vi ≥ x]dx

= (1− ε) ·Ev∼(F1,...,Fn)[max
i∈[n]

vi],

which implies that the (1− ε)-competition complexity of the class of block threshold
algorithms is O(loglog(1/ε)).

Then, the theorem follows by the fact that [12, Theorem 2.2] show that the (1− ε)-
competition complexity of the class of general threshold algorithms when F1 = F2 =

· · · = Fn is Ω(loglog(1/ε)).

We note that our proof of Theorem 5 actually shows a Θ(loglog(1/ε)) competition
complexity guarantee in an approximate stochastic dominance sense, which is stronger
than the regular competition complexity result, based on comparing expectations. In
particular, our argument strengthens the result of [12] even in the i.i.d. case.

We know from the lower bound on the competition complexity of [12] that one
cannot strengthen Lemma 7 to show that for every c one can devise a series of quantiles
for which Φ≥ 1− c−ck

. However, the proof in [12] is not explicit, and we now present a
simpler proof that shows that one cannot obtain better than 1−Ω(c−ck

) approximation
to the value of the prophet using k blocks in the stochastic dominance sense for c = 3.

Proposition 9. For every k ≥ 1, there exists a positive integer value nk and F1, . . . , Fnk ∈ ∆,
such that for every τ = (τ1, . . ., τk), there exists x ∈R≥0 such that

Pr
v∼(F1,...,Fnk )

k
[ALGτ(v) ≥ x] < (1− εk) Pr

v∼(F1,...,Fnk )
[max
i∈[nk]

vi ≥ x],

where εk = 3−3k
for every k.

Proof. For every k ≥ 1, let nk = 33k+2
, and for every i ∈ [nk], let Fi be the distribu-

tion of the random variable vi = (i − Uniform[0,1]) · Bernoulli(1/i). For ease of
notation, let F = (F1, . . . , Fnk). We first observe that since maxi∈[nk]

i · Bernoulli(1/i)
is distributed uniformly on the set {1, . . . ,nk}, the random variable maxi∈[nk]

vi is
uniformly distributed over the interval [0,nk], and for every x ∈ [0,n], it holds that
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Pr[maxi∈[nk]
vi ≥ x] = (n− x)/n. For this instance, the optimal block threshold algo-

rithm uses monotone decreasing thresholds, since otherwise sorting them leads to
thresholds that stochastically dominates the original ones. Given τ = (τ1, . . . ,τk), let
A = {i ∈ [k] : τi ≤ nk · 3−3i}. If A = ∅, then for x = 0, it holds that

Pr
v∼Fk

[ALGτ(v)] ≥ x] = 1−
k

∏
ℓ=1

Pr
v(ℓ)∼F

[max
i∈[nk]

v(ℓ)i < τℓ]

≤ 1−
k

∏
ℓ=1

τℓ
nk
≤ 1−

k

∏
ℓ=1

3−3ℓ < (1− εk) Pr
v∼F

[max
i∈[nk]

vi ≥ x]

where the first inequality holds since maxi∈[nk]
v(ℓ)i is uniformly distributed on the

interval [0,n], the second inequality is since A = ∅, and the last inequality holds by the
definition of εk, together with Prv∼F[maxi∈[nk]

vi ≥ x] = 1. Else, if A ̸= ∅, let i∗ = min A,

and let x = nk · 3−2·3i∗−1
. Then, we denote by Bℓ (and by Bℓ its complement) the event

in which there exists a value in block ℓ exceeding the threshold τℓ, and by Bx
ℓ the event

that in block ℓ, for all i ∈ [nk] it holds that v(ℓ)i /∈ [τℓ, x). For ℓ ≥ i∗, it holds that

Pr[Bx
ℓ ] = 1− τℓ

⌈τℓ⌉
·

 x

∏
j=⌈τℓ⌉+1

i− 1
i

 = 1− τℓ
x

. (3.9)

Thus, we can bound the probability of the algorithm selecting a value of at least x as
follows:

Pr
v∼Fk

[ALGτ(v) ≥ x] ≤ 1− Pr[Bx
i∗ ∧ B1 ∧ . . . Bi∗−1] = 1−

(
1− τℓ

x

) i∗−1

∏
j=1

Pr[Bj]

≤ 1−
(

1− 3−3i∗

3−2·3i∗−1

)
i∗−1

∏
j=1

3−3j
<
(

1− 3−3i∗
)(

1− 3−2·3i∗−1
)

≤
(

1− 3−3k
)(

1− 3−2·3i∗−1
)
= (1− εk) Pr

v∼F
[max
i∈[nk]

vi ≥ x],

where the first inequality holds since if the algorithm does not select a value in the
first i∗− 1 iterations, and in iteration i∗ there exists a value in [τi∗,x) then the algorithm
selects it; the equality is by Equation (3.9) and by independence of the events; the
second inequality is since τj > nk · 3−3j

for j < i∗, and τi∗ ≤ nk · 3−3i∗
; the third inequality

holds for every i∗ ≥ 1; the fourth inequality holds since i∗ ≤ k; the last equality is
by definition of εk and since maxi∈[nk]

vi is uniformly distributed over the interval
[0,nk].
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3.4 Single threshold algorithms

In this section, we study the competition complexity of the class of single threshold
algorithms. Let ALGτ denote the single threshold algorithm with threshold τ ∈R≥0.
We show the following tight bound on the competition complexity of single threshold
algorithms.

Theorem 6. For every ε > 0 the (1− ε)-competition complexity of the class of static single
threshold algorithms is Θ (log(1/ε)).

We prove Theorem 6 through Lemma 8 and Proposition 10 below. Lemma 8
establishes the upper bound claimed in the theorem, and Proposition 10 shows a
matching lower bound.

We begin with Lemma 8, which shows that for every instance, there exists a single
threshold τ∗ such that for every ε > 0, the (1− ε)-competition complexity of the single
threshold algorithm ALGτ∗ with respect to the instance, is O(log(1/ε)). The upper
bound follows rather directly from the celebrated “median rule” proof of Samuel-
Cahn [73]; we work a bit harder to show that it also holds in a stochastic dominance
sense.

Lemma 8. For every F1, . . . , Fn, there exists a threshold τ∗ such that for every ε > 0, and for
every k ≥ log2(1/ε)

Ev∼(F1,...,Fn)k [ALGτ∗(v)] ≥ (1− ε) ·Ev∼(F1,...,Fn)[max
i∈[n]

vi].

Furthermore, the stronger approximate stochastic-dominance inequality

Pr
v∼(F1,...,Fn)k

[ALGτ∗(v) ≥ x] ≥ (1− ε) Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x]

holds for all x ∈R≥0.

Proof. Consider the unique threshold τ∗ satisfying the following equation

n

∏
i=1

Pr
vi∼Fi

[vi ≤ τ∗] =
1
2

. (3.10)

In what follows, for ease of notation we consider the input sequence of nk values
as v1, . . . ,vnk, where vn(ℓ−1)+i ∼ Fi for every ℓ ∈ [k] and every i ∈ [n]. We next show
that for every number of copies k ≥ 1, given that the algorithm accepts a value, its
expectation is larger than the value of the prophet for a single block, i.e., for every
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k ≥ 1,

Ev∼(F1,...,Fn)k [ALGτ∗(v) | there exists i ∈ [nk] : vi ≥ τ∗] ≥ Ev∼(F1,...,Fn)[max
i∈[n]

vi]. (3.11)

In fact we show the following stronger claim, that for every x ≥ 0 it holds that

Pr
v∼(F1,...,Fn)k

[ALGτ∗(v) ≥ x | there exists i ∈ [nk] : vi ≥ τ∗] ≥ Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x].

(3.12)
Let î be the first index of a value vi that exceeds τ∗ (and î = 0 if no such vi exists),

and let r̂ = ⌈î/n⌉, i.e., the block from which a value is chosen. The LHS of Equa-
tion (3.11) (respectively, Equation (3.12)) can be rewritten as Ev∼(F1,...,Fn)k [ALGτ∗(v) |
r̂ ̸= 0] (respectively, Prv∼(F1,...,Fn)k [ALGτ∗(v) ≥ x | r̂ ̸= 0]). Thus, it is sufficient to prove
that Equation (3.11) holds for every non-zero realization of r̂, i.e., for every k ≥ 1 and
every r ∈ [k],

Ev∼(F1,...,Fn)k [ALGτ∗(v) | r̂ = r] ≥ Ev∼(F1,...,Fn)[max
i∈[n]

vi]. (3.13)

Since the values of v that don’t belong to the r-th n-tuple of values can be ignored,
one can observe that Equation (3.13) is equivalent to the proof of the original prophet
inequality, provided by Samuel-Cahn [73]. We next prove the stronger claim of
Equation (3.12). To this end, we show that for every x ∈ R≥0, and for r ̸= 0 it holds
that

Pr
v∼(F1,...,Fn)k

[ALGτ∗(v) ≥ x | r̂ = r] ≥ Pr
v∼(F1,...,Fn)

[max
i∈[n]

vi ≥ x].

Note, that for x ≤ τ∗, the LHS is 1, thus the inequality holds, and it is sufficient to
prove it for x > τ∗. Thus,

Pr
v∼(F1,...,Fn)k

[ALGτ∗(v) ≥ x | r̂ = r]

=
rn

∑
i=(r−1)n+1

Pr[for all j ∈ [i− 1] : vj < τ∗, and vi > x | r̂ = r]

=
rn

∑
i=(r−1)n+1

Pr[for all j ∈ [i− 1] : vj < τ∗,vi > x and r̂ = r] · 1
Pr[r̂ = r]

= 2r
rn

∑
i=(r−1)n+1

Pr[for all j ∈ [i− 1] : vj < τ∗, and vi > x]

≥ 2r
rn

∑
i=(r−1)n+1

1
2r · Pr[vi > x] ≥ Pr

v∼(F1,...,Fn)
[max

i∈[n]
vi ≥ x],
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where the first equality is since x > τ∗, the third equality is since by definition of
τ∗, r̂ = r with probability 1/2r and since r̂ = r follows from the other events in the
probability, the first inequality is since the Pr[for all j ∈ {1, . . . (r − 1)n} : vj < τ∗] =

1/2r−1, and since Pr[for all j ∈ {(r − 1)n + 1, . . . , i − 1} : vj < τ∗] ≥ 1/2, and all the
events are independent. The last inequality follows since the sum of probabilities that
vi exceeds x, is at least the probability that the maximum exceeds x.

The proof of the lemma then follows by combining Equation (3.11) (respectively
for the “furthermore” part, Equation (3.12)) with the observation that, by definition of
τ∗, it holds that

Pr[there exists i ∈ [nk] : vi ≥ τ∗] = 1− Pr[for all i ∈ [nk] : vi ≤ τ∗]

= 1− Pr[for all i ∈ [n] : vi ≤ τ∗]k = 1− 1
2k ≥ 1− ε,

where the inequality holds for k ≥ log2(1/ε).

Our next result, Proposition 10, shows a matching lower bound of Ω(log(1/ε)) on
the competition complexity of single threshold algorithms. This lower bound holds
even with respect to the case of i.i.d. distributions.

Proposition 10. For every n ≥ 2, and for every ε ∈ (0,1) there exists an instance with n i.i.d.
values that are distributed according to some distribution F, such that for every τ, and every
k < log2(1/ε)

804 , it holds that

Ev∼Fk·n [ALGτ(v)] < (1− ε) ·Ev∼Fn [max
i∈[n]

vi]. (3.14)

Proof. It is sufficient to consider ε < 1/20, since otherwise k = 0, and the claim holds
trivially. Consider the distribution F in which vi = 1 + 200ε · Bernoulli (1/(20n)) +
Uniform[0, ε] for every i ∈ [n] and every ℓ ∈ [k]. The RHS of Equation (3.14) satisfies
that

(1− ε) ·Ev∼Fn [max
i∈[n]

vi] ≥ (1− ε) ·
(

1 + 200ε(1− e−1/20)
)
≥ 1 + 8ε,

where the first inequality is since the maximum is at least 1 + 200ε with probability
greater than 1− e−1/20, and otherwise it is at least 1. The second inequality holds for
every ε ∈ (0,1/20). Now consider a static threshold algorithm with a threshold τ.

Case 1: If τ > 1 + (20n−29)ε
20n , then the LHS of Equation (3.14) satisfies that

Ev∼Fk·n [ALGτ(v)] ≤ Pr[there exists i ∈ [nk] : vi ≥ τ] · (1 + 201ε)

≤ (1− (1− 3/2n)nk)(1 + 201ε) ≤ (1− 16−k)(1 + 201ε) ≤ 1,
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where the first inequality is since the support of F is bounded by 1 + 201ε, the second
inequality is since the probability that vi > τ is at most 3/(2n), the third inequality is
since n ≥ 2, and the last inequality is since k < log2(1/ε)

804 . Thus, Equation (3.14) holds.

Case 2: If τ ≤ 1 + (20n−29)ε
20n , then let q = 1+ε−τ

ε ≥ 29
20n . The LHS of Equation (3.14)

satisfies that

Ev∼Fk·n [ALGτ(v)] ≤ Evi∼F[vi | vi ≥ τ]

= Evi∼F[vi · 1[vi ≥ τ]]/Pr[vi ≥ τ]

≤
(

1
20n

(1 + 201ε) +
20n− 1

20n
q(1 + ε)

)
/
(

1
20n

+
20n− 1

20n
q
)

= ((1 + 201ε) + (20n− 1)q(1 + ε))/ (1 + (20n− 1)q)

< 1 + 8ε,

where the last inequality holds for every n ≥ 2, and q ≥ 29
20n . Thus, Equation (3.14)

holds.

3.5 Combinatorial extensions

In this section, we present a generalization of our model to combinatorial settings,
and discuss some initial results. We present the general model in Section 3.5.1, and
some preliminary results for combinatorial auctions in Section 3.5.2. In Section B.4
we give additional results for bipartite matching with one-sided vertex arrivals. This
latter result is actually implied by the result in Section 3.5.2. The purpose of pre-
senting an alternative proof is to show how a different technique, in this case online
contention resolution schemes, can also be used to study the competition complexity
in combinatorial settings.

3.5.1 A general model

In online combinatorial Bayesian selection problems, there is a series of n decisions
that need to be made. Each decision i ∈ [n] is associated with a set of alternatives Ai

from which the decision-maker needs to choose, and with an information vi drawn
independently from some Fi on support Si that is revealed to the decision-maker at
the time of decision i. We denote by S =×i∈[n] Si, F =×i∈[n] Fi, and A =×i∈[n] Ai.
Additionally, there is a non-empty feasibility constraint F ⊆ A, such that the decision-
maker, must select a tuple of alternatives (a1, . . . , an) that is in F , and there is a reward
function f : A× S→R≥0.
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At each step i ∈ [n], the algorithm observes vi, and needs to select an alternative
ai ∈ Ai in an immediate and irrevocable way. The algorithm’s performance is measured
against the offline optimum. By fixing a class of feasibility constraints CF , a class of
valuation functions C f , and a class of distributions CF, an online algorithm ALG is
α-competitive if

inf
F∈CF

inf
F∈CF

inf
f∈C f

Ev∼F[ f (ALG(v),v) · 1[ALG(v) ∈ F ]]
Ev∼F[maxa∈F f (a,v)]

≥ α,

where ALG(v) is the (possibly random) tuple of alternatives chosen by the algorithm
ALG when observing a sequence of information v.

A simple example of this setting is when for all i ∈ [n] we have Ai = {0,1}, CF =

{{(a1, . . . , an) | ∑i∈[n] ai ≤ 1}}, C f = {{ f (a,v) = ∑i∈[n] ai · vi}}, and CF = ∆n, which
corresponds to the standard (single-choice) prophet inequality setting.

We next describe a generalization of the block model to the combinatorial Bayesian
selection framework. The input to the algorithm is given by k copies of an online
combinatorial Bayesian selection problem, so there are kn decisions in total. For every
j ∈ [kn], the j-th decision is of type i if j ≡ i mod n, and for each decision j of type i,
the information vj is sampled independently according to Fi. For every decision j of
type i we must select an alternative in Ai.

The output of the algorithm is a kn-dimensional vector of alternatives. To define
feasibility, and to evaluate the reward achieved by an output, we require that there is
an infinite series of classes of feasibility constraints (Ci

F )i∈N, and an infinite series of
classes of reward functions (Ci

f )i∈N so that we can evaluate feasibility via Fk ∈ Ck
F

and the reward via fk ∈ Ck
f . For a concrete problem it is typically clear how to define

(Ci
F )i∈N and (Ci

f )i∈N based on CF and C f .
We are interested in comparing the expected reward of the algorithm on k copies

to the expected optimal reward on a single copy.

Definition 2 (Combinatorial competition complexity). Given a series of decisions asso-
ciated with alternatives A = A1 × . . .× An, a class of distributions CF, an infinite series of
classes of feasibility constraints (Ci

F )i∈N, and an infinite series of classes of reward functions
(Ci

f )i∈N, for every ε ≥ 0, the (1− ε)-competition complexity with respect to a class of al-
gorithms A is the smallest positive integer number k(ε) such that for every k ≥ k(ε), every
F ∈ CF, Fk ∈ Ck

F , fk ∈ Ck
f , it holds that

max
ALG∈An,k

Ev∼Fk [ fk(ALG(v),v) · 1[ALG(v) ∈ Fk]] ≥ (1− ε) ·Ev∼F[max
a∈F1

f1(a,v)], (3.15)
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whereAn,k are all algorithms inA that are defined on CF and Ck
F , and ALG(v) is the (possibly

random) tuple of alternatives chosen by ALG when observing a sequence of values v.

For example, to obtain the competition complexity for the standard prophet inequal-
ity setting, we can let Ai = {0,1} for all i ∈ [n], Ck

F = {{(a1, . . . , an·k) | ∑i∈[n·k] ai ≤ 1}},
Ck

f = {{ f (a,v) = ∑i∈[n·k] ai · vi}}, and CF = ∆n.

3.5.2 Combinatorial auctions

In this section, we generalize the static pricing scheme by Feldman et al. [36] for XOS
markets, to a dynamic pricing scheme that has a (1− ε)-competition complexity of
O (log(1/ε)), and a static pricing scheme that has a (1− ε)-competition complexity of
O (1/ε).

In the combinatorial auction setting, there is a set M of m items, and n agents.
Each agent i ∈ [n] is associated with a valuation function vi : 2M→R≥0 that is drawn
independently from a distribution Fi. We consider price-based algorithms, which set a
price pj for each item j ∈ M. The agents then arrive one-by-one, and purchase a set of
available items in their demand. That is, agent i buys a set Ti that maximizes the utility
vi(T)−∑j∈T pj over all T ⊆ M′, where M′ ⊆ M are the items that are available when
agent i arrives. We evaluate the performance of a pricing scheme by the expected
social welfare it achieves, that is Ev∼F[∑i∈[n] vi(Ti)].

We consider a repeated version of the combinatorial auction problem where we
see k independent copies of the buyers. As before we refer to each copy as a block.
The valuation of buyer i ∈ [nk] of type r ∈ [n] is drawn independently according to the
distribution Fr. Each buyer i ∈ [nk] purchases a set of available items Ti that maximizes
their utility. We compare the expected social welfare of a price-based algorithm on k
copies to the expected maximum social welfare on a single copy.

A pricing scheme is called static if the prices of the items are fixed in advance
before the arrival of the agents, and is called dynamic, if the prices may adapt after
each agent has made a purchase (before the arrival of the next agent). We define
block-consistent prices as prices that are static throughout each block but can change
between blocks.

A valuation function v : 2M→R≥0 is called XOS (a.k.a. fractionally subadditive)
if there exists a non-empty set of additive functions G = {g1, . . . gs} for some positive
integer s, such that v(T) = maxt∈[s] ∑j∈T gt(j) for every T ⊆ M. A valuation function
v : 2M→R≥0 is submodular if for every T, T′ with T ⊆ T′ and every j ∈ M \ T′ ⊆ M
it holds that vi(T ∪ {j}) − vi(T) ≥ vi(T′ ∪ {j}) − vi(T′). Every submodular valua-
tion function is XOS, but not vice versa [7]. We refer to combinatorial auctions in
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which all valuation functions are submodular (resp. XOS), as submodular (resp. XOS)
combinatorial auctions.

Theorem 7. For every k ≥ 1, and every XOS combinatorial auction defined by M, n, and
a product distribution F = F1 × . . .× Fn, there exists a block-consistent pricing scheme on k
copies such that

Ev∼Fk

[
∑

i∈[nk]
vi(Ti)

]
≥
(

1− 1
2k

)
·Ev∼F

[
max

(T1,...,Tn)∈P(M)
∑

i∈[n]
vi(Ti)

]
,

where Ti is the demanded set purchased by each agent i ∈ [n], and P(M) is the set of all
partitions of M into n sets. In particular, the (1− ε)-competition complexity of block-consistent
prices for submodular and XOS combinatorial auctions is O(log(1/ε)).

Proof. For every item j ∈ M, and agent i let OPTj,i = Ev∼F[gi(j)(j) · 1[i = i(j)]], where
i(j) is the agent that receives item j in the welfare-maximizing allocation according to
valuation profile v = (v1, . . . ,vn), and gi(j) is the additive function that corresponds to
the definition of XOS valuation that maximizes the value of the set agent i(j) receives
in the optimal allocation according to valuation profile v = (v1, . . . ,vn).

Let p be the the block-consistent pricing scheme where the price during block
t ∈ [k] for item j ∈ M is pt,j = (1− 1

2k+1−t ) ·∑i∈[n] OPTj,i. Let Xj be the block in which
item j is purchased (if it is not purchased, then let Xj = k + 1), and let qt,j = Pr[Xj = t].

The welfare of the mechanism can be decomposed into revenue and surplus. For
the revenue, we have

Ev∼Fk [Revenue] = ∑
j∈M

∑
t∈[k]

qt,j · pt,j = ∑
j∈M

∑
t∈[k]

qt,j ·
(

1− 1
2k+1−t

)
· ∑

i∈[n]
OPTj,i.

For every agent i ∈ [nk], let’s denote by AVi the set of items that is available when i
arrives. For each type r ∈ [n] let’s denote by T∗r the set that agent i of type r receives
in the welfare-maximizing allocation on profile v ∼ F, and by g∗r the additive function
that maximizes agent r’s value with respect to vi and T∗r . Then, if agent i is of type r,
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Ev∼Fk [Surplusi] = ∑
M′⊆M

Pr[AVi = M′] ·Evi∼Fr

[
max
T⊆M′

(vi(T)− p(T))
]

≥ ∑
M′⊆M

Pr[AVi = M′] ·Ev∼F[vr(T∗r ∩M′)− p(T∗r ∩M′)]

≥ ∑
M′⊆M

Pr[AVi = M′] ·Ev∼F

[
∑

j∈T∗r ∩M′
(g∗r (j)− p(j))

]

≥ ∑
j∈M

(
1−

⌈i/n⌉

∑
t=1

qj,t

)
·

OPTj,r

2k+1−⌈ i
n ⌉

,

where the first inequality is since vi and vr are drawn from the same distribution, and
since Ti is the demand set; the second inequality is by the definition of an XOS function;
and the last inequality is by the definition of OPTj,i, and because the probability that
j ∈ AVi is at least 1 minus the sum of probabilities that j was sold up to block ⌈i/n⌉
included.

Since Ev∼Fk [Welfare] = Ev∼Fk [Revenue] + ∑i∈[nk] Ev∼Fk [Surplusi], it is sufficient to
lower bound for each j ∈ M, and i ∈ [n], the sum of the coefficient of OPTj,i in the
revenue with the sum of coefficients of OPTj,i in the surplus, which is

k

∑
t=1

qt,j

(
1− 1

2k+1−t

)
+

k

∑
t=1

1−∑t
t′=1 qj,t′

2k+1−t

= 1− 1
2k +

k

∑
t=1

qt,j

(
1− 1

2k+1−t

)
−

k

∑
t=1

k

∑
t′=t

qj,t

2k+1−t′

= 1− 1
2k .

This concludes the proof.

We next show a similar result with worse guarantees that uses static pricing.

Theorem 8. For every k ≥ 1, and every XOS combinatorial auction defined by M, n, and a
product distribution F = F1 × . . .× Fn, there exists a static pricing scheme on k copies such
that

Ev∼Fk

[
∑

i∈[nk]
vi(Ti)

]
≥
(

1− 1
k + 1

)
·Ev∼F

[
max

(T1,...,Tn)∈P(M)
∑

i∈[n]
vi(Ti)

]
,

where Ti is the demanded set purchased by each agent i ∈ [n], and P(M) is the set of all
partitions of M into n sets. In particular, the (1− ε)-competition complexity of static prices
for submodular and XOS combinatorial auctions is O(1/ε).
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Proof. We define price pj = (1− 1
k+1)∑i∈[n] OPTj,i, where OPTj,i is defined as in the

proof of Theorem 7. Let Xj be the indicator whether item j was sold to one of the nk
agents, and let qj = Pr[Xj = 1]. It holds that

Ev∼Fk [Revenue] = ∑
j∈M

qj · pj = ∑
j∈M

qj ·
(

1− 1
k + 1

)
· ∑

i∈[n]
OPTj,i.

For every agent i ∈ [nk], let’s denote by AVi the set of items that is available when i
arrives. For each type r ∈ [n] let’s denote by T∗r the set that agent i of type r receives
in the welfare-maximizing allocation on profile v ∼ F, and by g∗r the additive function
that maximizes agent r’s value with respect to vi and T∗r . Then, if agent i is of type r,

Ev∼Fk [Surplusi] = ∑
M′⊆M

Pr[AVi = M′] ·Evi∼Fr

[
max
T⊆M′

(vi(T)− p(T))
]

≥ ∑
M′⊆M

Pr[AVi = M′] ·Ev∼F[vr(T∗r ∩M′)− p(T∗r ∩M′)]

≥ ∑
M′⊆M

Pr[AVi = M′] ·Ev∼F

[
∑

j∈T∗r ∩M′
(g∗r (j)− p(j))

]
≥ ∑

j∈M

(
1− qj

)
·

OPTj,r

k + 1
.

Since Ev∼Fk [Welfare] = Ev∼Fk [Revenue] + ∑i∈[nk] Ev∼Fk [Surplusi], it is sufficient to
lower bound for each j ∈ M, and i ∈ [n], the sum of the coefficient of OPTj,i in
the revenue with the sum of coefficients of OPTj,i in the surplus, which is

qj

(
1− 1

k + 1

)
+

k

∑
t=1

(1− qj)

k + 1
= 1− 1

k + 1
.

This concludes the proof.

74



Chapter 4

Splitting Guarantees for Prophet
Inequalities via Nonlinear Systems

4.1 Introduction

Hill and Kertz [45] provided an algorithm that guarantees an approximation ratio
of 1− 1/e and an upper bound of γ ≈ 0.745 on the approximation ratio by studying
the optimal dynamic program for the worst-case distributions. Later, [45] used the
recursion from the optimal dynamic program in [45] to provide an ordinary differential
equation (ODE)—that we termed Hill and Kertz equation for simplicity and in honor
to both authors—where the γ bound is embedded as a unique constant that guarantees
crucial analytical properties of the solution of the ODE: y′ = y(lny− 1)− 1/γ + 1,
y(0) = 1, y(1) = 0. However, the lower bound on the approximation remained 1− 1/e
for many years until [23] used the Hill and Kertz equation to provide an algorithm
that attains an approximation ratio of at least γ for any n.

Over the years, it has remained elusive for k≥ 2 how to get a result on the line of the
Hill and Kertz equation, that is, to obtain provable approximation ratios via studying
a closed-form differential equation related to the optimal dynamic programming
solution. This motivates the central question of this work: Can we find a closed-form
nonlinear system of differential equations to lower bound the optimal asymptotic approximation
ratio for the i.i.d. k-selection prophet inequality?

4.1.1 Our contributions and techniques

Our first main result characterizes the optimal approximation ratio via a new infinite-
dimensional linear program. In our second main result, we provide a closed-form
nonlinear system of differential equations that gives provable lower bounds on the
approximation ratio for (k,n)-PIP as defined in section 1.2.3, when n is large enough.
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In our third result, applying our new provable lower bounds for (k,n)-PIP, we find a
tight approximation ratio for the stochastic assignment problem. Below, we present
more details about our results.
Exact Formulation for (k,n)-PIP. Our first step towards a characterization of the
asymptotic approximation ratio is a new infinite-dimensional linear program that
characterizes the optimal approximation ratio for (k,n)-PIP. This formulation is inspired
by writing the optimal dynamic programming formulation in the quantile space. We
take a minimax approach where we search the worst-case distribution while optimizing
for the dynamic program’s value. We show that in the continuous space of quantiles
[0,1], such a problem is linear; see formulation [P]n,k in Section 4.3 for the details of the
formulation. While there exist other linear programming formulations for (k,n)-PIP
(see, e.g., [47]), using our formulation, we can provide an analysis as n grows that
organically provides the nonlinear system of differential equations that we later use to
get provable lower bounds. In Section 4.3, we provide the exact linear programming
formulation and the proof that characterizes the optimal approximation ratio for
(k,n)-PIP.
Approximation via a Nonlinear System. The analysis of our infinite-dimensional
program as n approaches infinity leads us to introduce a system of k coupled nonlinear
differential equations, extending the Hill and Kertz equation (k = 1). This new
nonlinear system is parameterized by k nonnegative values θ1, . . . ,θk, and we look for
functions y1, . . . ,yk satisfying the following in the interval [0,1):

(Γk(− lnyk))
′ = k! (1− 1/(kθk))− Γk+1(− lnyk), (4.1)

(Γk(− lnyj))
′ = k!− Γk+1(− lnyj)−

θj+1

θj
(k!− Γk+1(− lnyj+1)) for every j ∈ [k− 1],

(4.2)

yj(0) = 1 and lim
t↑1

yj(t) = 0 for every j ∈ [k], (4.3)

where Γℓ(x) =
∫ ∞

x tℓ−1e−t dt is the upper incomplete gamma function. Note that for
k = 1 in (4.1)-(4.3) we recover the Hill and Kertz differential equation. Now, if γn,k

denotes the optimal approximation ratio for (k,n)-PIP, we can prove that there is
n0 = n0(k) such that for n ≥ n0 we have

γn,k ≥
(

1− 24k
ln(n)2

n

) k

∑
j=1

θ⋆j , (4.4)

where θ⋆1 , . . . ,θ⋆k are the values for which there exists a solution to the nonlinear
system of differential equations (4.1)-(4.3). We remark that the lower bound on
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the approximation ratio given by the nonlinear system in inequality (4.4) is simply
obtained by the summation of the k constants that define it. For instance, when k = 2,
the two constants for which the nonlinear system has a solution are θ⋆1 ≈ 0.346 and
θ⋆2 ≈ 0.483, and therefore we get a provable lower bound of ≈ 0.829 on γn,2, the optimal
approximation ratio for 2 selections, for any n large enough.

To prove inequality (4.4) we employ a dual-fitting approach within our infinite-
dimensional linear program. Namely, we introduce a dual infinite-dimensional pro-
gram of our exact formulation, and using the solution of the nonlinear system (4.1)-
(4.3), we explicitly construct feasible solutions for this dual. Then, the theorem is
obtained by a weak-duality argument. The details are presented in Section 4.4. We
remark that our analysis requires a careful study of the nonlinear system (4.1)-(4.3);
which we also provide in Section 4.4. The small multiplicative loss (1− 24k ln(n)2/n)
appears when we construct the dual feasible solution, and it’s needed in our analysis
to ensure feasibility in the dual problem; note that this loss vanishes as n grows. We
finally note that any feasible solution to our dual program can be implemented using
a quantile-based algorithm; therefore, we can implement an algorithm that has an
approximation ratio at least (1− 24k ln(n)2/n)∑k

i=1 θ⋆i .

k 1 2 3 4 5

Our approach (∑k
i=1 θ⋆i ) 0.7454 0.8293 0.8648 0.8875 0.9035

[10] 0.6543 0.7427 0.7857 0.8125 0.8311
Table 4.1 Comparison of known provable lower bounds for γn,k when n is large and k ∈
{1, . . . ,5}. The bounds of [10] hold for every n.

Application to the Stochastic Assignment Problem. Finally, in Section 4.5, as an
application of our new provable lower bounds for (k,n)-PIP we provide the tight
optimal approximation ratio for the classic stochastic sequential assignment problem
(SSAP for short) by [26]. In the SSAP, there are n non-negative values r1, . . . ,rn

and n i.i.d. non-negative values X1, . . . , Xn that are observed one at the time by a
decision-maker. At each time t, the decision-maker must assign irrevocably Xt to
one of the remaining available ri values that have not been assigned yet. Assigning
Xt to ri provides a reward of ri · Xt, and the goal is to maximize the expected sum
of rewards. This problem extends (k,n)-PIP and relates to several online matching
problems [39, 63].

We revisit the SSAP through the lens of prophet inequalities and provide an exact
value of its asymptotic approximation ratio. Specifically, we first characterize the
optimal approximation ratio for SSAP to be equal to αn = mink∈[n] γn,k. This imme-
diately implies that limsupn αn ≤ γ ≈ 0.745. To the best of the authors’ knowledge,
the best current provable lower bounds over γn,k are the following: (1) for k = 1,
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γn,1 ≥ 0.745 [23]; (2) for any k≥ 1, γn,k ≥ 1− kke−k/k! (see, e.g., [10, 27]); (3) the values
reported by [10] in Table 4.1. These three results together imply in principle that
αn ≥ 0.7427; hence, there is a constant gap between the lower and the upper bound on
αn. The 1− kke−k/k! lower bound for the k-selection prophet inequality problem is at
least 0.78 for k≥ 3 which is in particular larger than liminfn γn,1 ≈ 0.745. Nevertheless,
to the best of the authors’ knowledge, no monotonicity in k is known for the values
γn,k. Therefore, our new provable 0.829 lower bound for k = 2 allows us to conclude
that the approximation ratio for the SSAP is exactly γ ≈ 0.745 for n sufficiently large,
fully characterizing the approximation ratio of the problem.

4.1.2 Related work

The basic prophet inequality problem, as introduced by Krengel and Sucheston [57],
was resolved by using a dynamic program that gave a tight approximation ratio of
1/2. Samuel-Cahn [73] later showed that a simple threshold algorithm yields the same
guarantee. Since then, there have been several generalizations spanning combinatorial
constraints, different valuation functions and arrival orders, resource augmentation,
and limited knowledge of the distributions [21, 22, 31, 55].

A major reason for the renewed interest in prophet inequalities is their relevance to
auctions, specifically posted priced mechanisms (PPM) in online sales [3, 18, 20, 27, 42,
55]. It was implicitly shown by [18] and [42] that every prophet-type inequality implies
a corresponding approximation guarantee in a PPM, and the converse holds as well
[24]. Using these well-known reductions, our lower bounds for the i.i.d. k-selection
prophet inequality problem also yield PPM’s for the problem of selling k homoge-
neous goods to n unit-demand buyers who arrive sequentially with independent and
identically distributed valuations.

Linear and convex programming have been a powerful tool for the design of online
algorithms. For instance, in online and Bayesian matching problems [39, 63], online
knapsack [9, 53], secretary problem [14, 17, 68], factor-revealing linear programs [37,
59], and competition complexity [12]. Similar to us, Perez-Salazar et al. [67] use a
quantile-based linear programming formulation to provide optimal policies in the
context of decision-makers with a limited number of actions.

Our analysis provides a new nonlinear system of differential equations, which
extends the ordinary differential equation by Hill and Kertz for k = 1, and provides
provable lower bounds on the asymptotic approximation ratio. Although the Hill
and Kertz equation has been used in various recent works [12, 23, 60, 67] and ODE
methods, have been used in other online selection problems [6, 32, 68] to provide
asymptotic guarantees, to the best of the authors’ knowledge, our result for multiple
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selections, where the approximation ratio is embedded in a nonlinear system, has not
been previously explored.

4.2 Preliminaries

An instance of (k,n)-PIP is given by a tuple (n,k, F), where n is the number of values
X1, . . . , Xn that are drawn i.i.d according to the continuous distribution F supported
on R+. This assumption is commonly made in the literature (e.g., Liu et al. [60]), as
we can perturb a discrete distribution by introducing random noise at the cost of a
negligible loss in the objective. Given an instance of (k,n)-PIP, observe that we can
always scale the values X1, . . . , Xn by a positive factor so the optimal value is equal to
1, and the reward of the optimal policy is scaled by the same amount. In particular,
the approximation ratio of the optimal policy remains the same.

Given an instance (n,k, F), we use dynamic programming to compute the optimal
reward of the optimal sequential policy. Let At,ℓ(F) be the reward of the optimal
policy when ℓ ≤ k choices are still to be made in periods {t, . . . ,n}. Then, for every
t ∈ [n] and ℓ ∈ [k], the following holds:

At,ℓ(F) = sup
x≥0

{
(E[X | X ≥ x] + At+1,ℓ−1(F))Pr[X ≥ x] + At+1,ℓ(F)Pr[X < x]

}
,

(4.5)

An+1,ℓ(F) = 0, and At,0(F) = 0. (4.6)

Equation (4.5) corresponds to the continuation value condition in optimality; the term
in the braces is the expected value obtained when a threshold x is chosen when at
period t and ℓ choices can still be made. In (4.6) we have the border conditions. In
particular, it holds

γn,k = inf
{

A1,k(F) : instances (n,k, F) with OPTn,k(F) = 1
}

. (4.7)

4.3 An infinite-dimensional formulation

In this section, we provide the characterization of the optimal approximation ratio for
(k,n)-PIP, γn,k, via an infinite-dimensional linear program. For every positive integers
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k and n, with n ≥ k, consider the following infinite dimensional linear program:

inf d1,k [P]n,k

s.t. dt,ℓ ≥
∫ q

0
h(u)du+qdt+1,ℓ−1 + (1− q)dt+1,ℓ, for every t ∈ [n],ℓ ∈ [k], and q ∈ [0,1],

(4.8)∫ 1

0
gn,k(u)h(u)du ≥ 1, (4.9)

h(u) ≥ h(w) for every u ≤ w,with u,w ∈ [0,1], (4.10)

dt,ℓ ≥ 0 for every t ∈ [n + 1] and every ℓ ∈ {0} ∪ [k], (4.11)

h(u) ≥ 0 for every u ∈ [0,1] and h is continuous in (0,1), (4.12)

where gn,k(u) = ∑n
j=n−k+1 j(n

j)(1− u)j−1un−j for every u ∈ [0,1]. dt,ℓ represents that
the welfare of the optimal dynamic policy after having seen t ≤ n values and ℓ ≤ k
of them remain to be selected. The family of constraints (4.8) asserts that for any
quantile q, dt,ℓ is at least the welfare obtained by using q as a threshold for selection
in the current round, t. That is, the first two terms of the right hand side cover the
case when the value is indeed selected, whereas the third term covers the case when
it is not. Constraint (4.9) represents a normalization to instances where the optimal
welfare ∑n

t=n−k+1 E[X(i)] ≥ 1. In the program [P]n,k, the variables h(u) represent
the values of a non-negative and non-increasing function h in [0,1], and therefore
we have infinitely many of them, whereas the variables d are finitely many. More
specifically, h(u) represents F−1(1− u), where F is the c.d.f of a probability distribution
and minimizing over all possible choices of h is equivalent to search the worst-case
distribution for (k,n)-PIP. We remark the continuity for h in the program is mainly
for the sake of simplicity in our analysis but does not represent a strict requirement.

The following structural result formalizes the interpretation of the variables pro-
vided in the previous paragraph. The remainder of the section is dedicated to its proof.

Theorem 9. The optimal approximation ratio for (k,n)-PIP is equal to the optimal value of
[P]n,k.

We denote by vn,k the optimal value of [P]n,k. We show that vn,k = γn,k in Theorem
9 by proving both inequalities, vn,k ≤ γn,k and vn,k ≥ γn,k, separately. For the first
inequality, we argue that any instance of (k,n)-PIP with OPTn,k(F) = 1, produces a
feasible solution to [P]n,k with an objective value equal to the reward of the optimal
sequential policy. For the second, we show that any feasible solution (d, f ) to [P]n,k

produces an instance of (k,n)-PIP such that the reward of the optimal policy is no
larger than the objective value of the instance (d, f ).
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Before we prove the inequalities, we leave a proposition with some preliminary
properties that we use in our analysis. The proof can be found in Appendix C.1.

Proposition 11. Let F be a continuous and strictly increasing distribution over the non-
negative reals. Then, the following properties hold:

(i) For every n and k with n ≥ k, we have OPTn,k(F) =
∫ 1

0 gn,k(u)F−1(1− u)du.

(ii) Suppose that X is a random variable distributed according to F. Then, for every x ≥ 0,
it holds E[X | X ≥ x]Pr[X ≥ x] =

∫ q
0 F−1(1− u)du, where q = Pr[X ≥ x].

We use the following two lemmas to prove Theorem 9.

Lemma 9. Let F be a continuous and strictly increasing distribution over the non-negative
reals such that OPTn,k(F) = 1, and let h(u) = F−1(1− u) for every u∈ [0,1]. Then, (A(F), h)
is feasible for [P]n,k, where A(F) = (At,ℓ(F))t,ℓ is defined according to (4.5)-(4.6).

Proof. By construction, we have h ≥ 0 and h is non-increasing, therefore constraints
(4.10)-(4.12) are satisfied by (A(F), h). Furthermore, we have

∫ 1

0
gn,k(u)h(u)du =

∫ 1

0
gn,k(u)F−1(1− u)du = OPTn,k(F) = 1,

where the second equality holds by Proposition 11(i). Then, constraint (4.9) is satisfied
by (A(F), h). Let q ∈ [0,1], and x ≥ 0 such that q = Pr[X ≥ x]. Then, for every t ∈ [n]
and every ℓ ∈ [k], we have

At,ℓ(F) ≥ (E[X | X ≥ x] + At+1,ℓ−1(F))Pr[X ≥ x] + At+1,ℓ(F)Pr[X < x]

=
∫ q

0
h(u)du + qAt+1,ℓ−1(F) + (1− q)At+1,ℓ(F),

where in the first inequality we used condition (4.5), while in the second inequality,
we used that q = Pr[X ≥ x] and Proposition 11(ii). Then, (A(F), h) satisfies constraint
(4.8), and we conclude that (A(F), h) is feasible for [P]n,k.

Lemma 10. Let (d, h) be any feasible solution for [P]n,k. Then, there exists a probability
distribution G, such that dt,ℓ ≥ At,ℓ(G) for every t ∈ [n] and ℓ ∈ [k].

Proof. Given a feasible solution (d, h) for [P]n,k, consider the random variable h(1−Q),
where Q is a uniform random variable over the interval [0,1], and let G be the
probability distribution of h(1 − Q). Then, G is continuous and non-decreasing.
Since h is a non-increasing function, we have Pr[h(1−Q) ≤ h(u)] ≥ Pr[1−Q ≥ u] =
Pr[1− u ≥ Q] = 1− u, and therefore G−1(1− u) ≤ h(u). We prove the inequalities in
the lemma statement for d and the probability distribution G via backward induction
in t ∈ {1, . . . ,n + 1}. For t = n + 1 we have dn+1,ℓ = 0 = An+1,ℓ(G) for any ℓ ∈ [k].
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Assume the result holds true for {t + 1, . . . ,n + 1}. If ℓ = 0, we have dt,ℓ = 0 = At,ℓ(G),
and for ℓ ∈ [k], we have

dt,ℓ ≥ sup
q∈[0,1]

{∫ q

0
h(u)du + qdt+1,ℓ−1 + (1− q)dt+1,ℓ

}
≥ sup

q∈[0,1]

{∫ q

0
h(u)du + qAt+1,ℓ−1(G) + (1− q)At+1,ℓ(G)

}
≥ sup

q∈[0,1]

{∫ q

0
G−1(1− u)du + qAt+1,ℓ−1(G) + (1− q)At+1,ℓ(G)

}
= max

x≥0
{(E[X | X ≥ x] + At+1,ℓ−1(G))Pr[X ≥ x] + At+1,ℓ(G)Pr[X < x]}

= At,ℓ(G),

where the first inequality holds since (d, h) satisfies constraint (4.8); the second in-
equality holds by induction; the third holds since G−1(1− u) ≤ h(u), and the first
equality by Proposition 11(ii). This concludes the proof of the lemma.

Proof of Theorem 9. By Lemma 9, for every probability distribution F we have that
(A(F), h) is feasible for [P]n,k, and its objective value is equal to A1,k(F). This implies
that A1,k(F)≥ vn,k for every F, and therefore γn,k ≥ vn,k. Since in [P]n,k, h only appears
in integrals over some interval, we observe that in fact that the value of [P]n,k does
not change if we restrict the condition on h to be strictly increasing instead of non-
decreasing. In this case, by Lemma 10, for every feasible solution (d, h) in [P]n,k there
exists a probability distribution G such that d1,k ≥ A1,k(G) and G−1(1− u) = h(u).
Thus OPTn,k(G) ≥ 1. Therefore, the optimal value of [P]n,k is lower bounded by the
infimum in (4.7), which is equal to γn,k. We conclude that vn,k ≥ γn,k, and therefore
both values are equal.

4.4 Lower bound on the approximation ratio

In this section, we prove the following result.

Theorem 10. For every k ≥ 1, there exists n0 ∈N, such that for every n ≥ n0 we have

γn,k ≥
(

1− 24k
ln(n)2

n

) k

∑
j=1

θ⋆j ,

where θ⋆1 , . . . ,θ⋆k are the values for which there exists a solution to the nonlinear system of
differential equations (4.1)-(4.3).
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Before proving this theorem, we provide a warm-up for the case of k = 2, i.e., when
2 selections are possible. The goal of Section 4.4.1 is to provide the main insights into
the derivation of the nonlinear system (4.1)-(4.3) and to sktech the main steps in the
proof of Theorem 10. In Section 4.4.2 we provide the full detailed proof of Theorem 10
which holds for every k.

4.4.1 Warm-up: the case of k = 2

In this subsection, we sketch the deduction of the nonlinear system (4.1)-(4.3). We
focus on the case k = 2 and provide a weak dual formulation of [P]n,k. From this weak
dual, we can find a recursion that in the limit converges to a solution of (4.1)-(4.3) with
k = 2. While this approach only gives us a lower bound on liminfn γn,2, we strengthen
this asymptotic result by showing how to transform a solution of the system (4.1)-(4.3)
into a feasible solution to our dual LP by incurring in a slight loss when n is large.

A Dual for k = 2. Consider the following infinite-dimensional linear program:

sup v [D]n,2

s.t.
∫ 1

0
β1,ℓ(q)dq ≤ 12(ℓ), for all ℓ ∈ [2], (4.13)∫ 1

0
βt+1,2(q)dq ≤

∫ 1

0
(1− q)βt,2(q)dq, for all t ∈ [n− 1], (4.14)∫ 1

0
βt+1,1(q)dq ≤

∫ 1

0
(1− q)βt,1(q)dq +

∫ 1

0
qβt,2(q)dq, for all t ∈ [n− 1], (4.15)

vgn,2(u) ≤
n

∑
t=1

∫ 1

u
βt,1(q) + βt,2(q)dq, for u ∈ [0,1], (4.16)

βt,ℓ(q) ≥ 0 for all q ∈ [0,1], t ∈ [n] and ℓ ∈ [2], (4.17)

where 12(ℓ) ∈ {0,1} and 12(ℓ) = 1 if and only if ℓ = 2. This linear program can be
interpreted as follows. Fix an algorithm that makes decisions based on quantiles. Now,
the variables βt,ℓ(q) can be interpreted as the probability densities of the events that
the algorithm chooses quantile q for time t when ℓ items remain to be chosen, observes the t-th
value xt, and selects it if xt ≥ F−1(1− q). Variable v≥ 0 captures the approximation ratio
of such algorithm. Constraints (4.13)-(4.15) capture the valid transitions from time t
to t + 1. Specifically, for the algorithm to observe a value at time t when ℓ items can
still be chosen, it must have observed a value at time t− 1 under one of the following
conditions: Either (1) there are ℓ items that can be chosen at t− 1 but the algorithm
did not select the t− 1 observed value; or (2) there are ℓ+ 1 items that can be chosen at
t− 1 and the algorithm selected the t− 1 observed value. Constraint (4.16) relates the
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offline density of least two out of n values being in the top u quantiles with the density
that the algorithm selects values in the same quantile. Among all possible quantiles
u ∈ [0,1], the largest v such that the ratio of these densities is at least v corresponds to
a lower bound on the approximation ratio of the algorithm.

In Lemma 11, we show that [D]n,2 is a weak dual to the exact formulation [P]n,k,
for k = 2. That is, the optimal value wn,2 of [D]n,2 is at most γn,2, which is the optimal
approximation ratio for 2 selections. Thus, finding solutions to the weak dual provide
a mechanism to give provable lower bounds on γn,2. We remark that [D]n,2 is not
necessarily a strong dual to [P]n,k. Variables βt,ℓ correspond to constraints (4.8) and
variable v corresponds to constraint (4.9); however, in [D]n,2 there are no dual variables
for constraints (4.10).

A Feasible Solution and Its Limit. We now construct a particular feasible solution
to the weak dual [D]n,2 and show that it produces a set of points that converge to a
solution of (4.1)-(4.3) for k = 2. Inspired by the quantile-based solution of [23] and the
LP characterization by [67], we propose the following solution to [D]n,2:

βt,2(q) = θ2 · (−g′n,2(q))1(εt−1,εt)(q), βt,1(q) = θ1 · (−g′n,2(q))1(µt−1,µt)(q), (4.18)

for t = 1, . . . ,n, where θ1,θ2 ≥ 0 and 0 = ε0 < ε1 < · · ·< εn and 0 = µ0 = µ1 < µ2 < · · ·<
µn. Note that if εn = µn = 1, then (β,θ1 + θ2) is a feasible solution to [P]n,k; hence,
θ1 + θ2 ≤ γn,2. Now, assuming that constraints (4.13)-(4.15) are tightened by β, we can
deduce the following implicit recursions for εt and µt:

gn,2(εt+1)− gn,2(εt) = −
1
θ2
− 2

n + 1
(gn+1,3(εt)− (n + 1)) t ∈ {0} ∪ [n], (4.19)

gn,2(µt+1)− gn,2(µt) =
θ2

θ1

2
n + 1

(gn+1,3(ϵt)− (n + 1)) t ∈ {0} ∪ [n], (4.20)

− 2
n + 1

(gn+1,3(µt)− (n + 1))

In other words, by fixing θ2 > 0, we can find a sequence of increasing εt’s. Likewise,
by fixing θ1,θ2 > 0, we can find a sequence of increasing µt’s. Our goal is to find
a pair (θ⋆1 ,θ⋆2) such that εn(θ2) = 1 and µn(θ1,θ2) = 1. A simple inductive argument
shows that εt is decreasing in θ2. Indeed, by differentiating (4.19) in θ2, we obtain
g′n,2(εt+1(θ2))ε

′
t+1(θ2) = 1/θ2

2 + ε′t(θ2)(1− εt(θ2))g′n,2(εt(θ2)). From here, and also us-
ing (4.19), we can show that: (1) εt blows up when θ1 goes to 0 (2) εt tends to 0 when
θ2 goes to +∞ and (2) there this a unique θ⋆2 > 0 such that εn(θ⋆2) = 1. Analogously,
having already found and fixed θ⋆2 > 0, we can show that there is a unique θ⋆1 > 0 such
that µn(θ⋆1 ,θ⋆2) = 1. This shows that our solution (β,θ⋆1 + θ⋆2) is feasible to [D]n,2.
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The pair (θ⋆1 ,θ⋆2) depends non-trivially on n. Thus, to tackle this dependency, we
perform a limit analysis on (4.19) and (4.20). For this, we first perform a change of
variable y1,t = e−nµt and y2,t = e−nεt for all t. We see that for all ℓ ∈ [2], yℓ,t ∈ [0,1],
yℓ,1 = 1, yℓ,n = e−n for all ℓ ∈ [2]. Now, consider the function ŷℓ : [0,1]→ [0,1] such that,
ŷℓ(0) = 1, ŷℓ(t/n) = yℓ,t, for all t ∈ {0}∪ [n], and ŷℓ is linear between in [(t− 1)/n, t/n]
for t∈ [n]. Now using (4.19) and (4.20), the approximation gn,k(u)≈ nΓk(nu)/(k− 1)!,1

and assuming that (θ⋆1 ,θ⋆2) converges when n→∞, we obtain that (ŷ1, ŷ2) converges
to a solution of the nonlinear system (4.1)-(4.3) with k = 2. A formal proof of the
existence of a solution to the nonlinear system (4.1)-(4.3) for general k appears in
Lemma 12.

From the Limit to a Feasible Solution. The limit analysis of the solution β only
bounds liminfn γn,2. To provide an analysis for finite n as in Theorem 10, we construct
an explicit solution to [D]n,2 from the solution (y1,y2) of (4.1)-(4.3). While we are
tempted to take εt = − ln(y2(t/n))/n and µt = − ln(y1(t/n))/n and defining β as
in (4.18), this poses two nontrivial challenges. Firstly, εn and µn are larger than 1 since
y1(1) = y2(1) = 0. Secondly, µ1 is positive; yet for β to be feasible to [D]n,2, µ1 must be
0, due to constraint (4.13).

To address the first challenge, we take n̄ ≤ n, and define εt = − ln(y2(t/n̄))/n̄ for
t∈ {0}∪ [n̄− 1] and ε n̄ = 1 for some n̄≤ n. Similarly, µ0 = µ1 = 0, µt =− ln(y1(t/n̄))/n̄,
for t ∈ [n̄− 1] \ {1}, and µn̄ = 1. The value n̄ appears when approximating g′n,k(u)
with n̄Γk(n̄u)′/(k− 1)! (see Proposition 17); for k = 2 we have n̄ = n− 3. For n large
enough, we show that − ln(yℓ(1− 1/n̄))/n̄ < 1 for ℓ ∈ [2]; hence, our new sequence
of ε’s and µ’s is well-defined.

For the second challenge, on a first read, it might seem that defining µ1 = 0 solves
the problem. However, this is not the case because, in constraint (4.15) for t = 2, the
left-hand side could be larger than the right-hand side as our choice of εt and µt

mimics an Euler approximation of the nonlinear system (4.1)-(4.3); hence, µ2 depends
on µ1 in the Euler approximation; however, we defined it to be 0. To address this,
we add enough mass to β1,2 so constraint (4.15) approximately holds. A complete
description of the solution appears in (4.36).

In general, these two fixes introduce two sources of multiplicative loss in the
objective value θ⋆1 + θ⋆2 . The first is via n̄, and the second is via the mass addition to
β1,2. We show that these multiplicative losses are in the order of 1− c ln(n)2/n for
some constant c, and they vanish as n grows.

1in Proposition 17 we prove formally this approximation for the derivative of gn,k.
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4.4.2 Main Analysis

We now provide the proof of Theorem 10. Our proof is organized into three main
steps. In the first step, we introduce a maximization infinite-dimensional linear program
that we call [D]n,k, and we prove that weak duality holds for the pair [P]n,k and [D]n,k.
Namely, the optimal value of [D]n,k provides a lower bound on the optimal value
of [P]n,k. The program [D]n,k can be formally deduced from [P]n,k by dropping
Constraint (4.10); however, the weak duality still requires a proof as we are dealing
with infinite-dimensional programs.

In the second step, we introduce a second maximization infinite-dimensional linear
program parametrized by a value n̄ ≤ n, namely [D]n,k(n̄). This program is akin
to [D]n,k, but is described by a set of constraints that become more handy when
analyzing the nonlinear system. Furthermore, [D]n,k(n̄) restricts the time horizon
until n̄. We show that the optimal value of [D]n,k(n̄) provides a lower bound on the
program [D]n,k, and therefore, it gives a lower bound on the optimal value of [P]n,k as
well.

In the third step, we build an explicit feasible solution to the problem [D]n,k(n̄) start-
ing from a solution of the nonlinear system of differential equations (4.1)-(4.3). Using
the valid bounds found in the previous two steps, we can provide a lower bound on the
value γn,k for n large enough. In particular, we show, as n grows, that the sequence of
lower bounds provides a lower bound on the optimal asymptotic approximation factor.

First step: Weak duality. For every ℓ ∈ [k], let 1k(ℓ) = 1 if ℓ= k and 1k(ℓ) = 0 for ℓ ̸= k.
Consider the following infinite-dimensional linear program:

sup v [D]n,k

s.t.
∫ 1

0
β1,ℓ(q)dq ≤ 1k(ℓ), for all ℓ ∈ [k], (4.21)∫ 1

0
βt+1,k(q)dq ≤

∫ 1

0
(1− q)βt,k(q)dq, for all t ∈ [n− 1], (4.22)∫ 1

0
βt+1,ℓ(q)dq ≤

∫ 1

0
(1− q)βt,ℓ(q)dq +

∫ 1

0
qβt,ℓ+1(q)dq, for all t ∈ [n− 1],ℓ ∈ [k− 1],

(4.23)

vgn,k(u) ≤
n

∑
t=1

k

∑
ℓ=1

∫ 1

u
βt,ℓ(q)dq, for u ∈ [0,1], (4.24)

βt,ℓ(q) ≥ 0 for all q ∈ [0,1], t ∈ [n] and ℓ ∈ [k]. (4.25)

The variables βt,ℓ(q) represent the probability density of an optimal algorithm choosing
quantile q at time t when ℓ items can still be chosen, and variable v captures the
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approximation factor of the policy. (See also the interpretation of the linear program in
subsection 4.4.1.) We denote by wn,k the optimal value of [D]n,k. The following lemma
shows that weak duality holds for the pair of infinite-dimensional programs [P]n,k and
[D]n,k.

Lemma 11. For every n ≥ 1 and every k ∈ {1, . . . ,n}, we have vn,k ≥ wn,k.

Proof. Consider a feasible solution (d, h) for [P]n,k and a feasible solution (β,v) for
[D]n,k. Since [P]n,k is a minimization problem, we can assume that dn+1,ℓ = 0 for every
ℓ ∈ [k] and d0,ℓ = 0 for every t ∈ [n]; if they are non-zero, we can easily make them
zero without changing the objective value of (d, h). In what follows, we show that
v≤ d1,k. Since (β,v) satisfies constraint (4.24) and h(u)≥ 0 by constraint (4.12), we get

v
∫ 1

0
gn,k(u)h(u)du ≤

∫ 1

0

n

∑
t=1

k

∑
ℓ=1

(∫ 1

u
βt,ℓ(q)dq

)
h(u)du

=
n

∑
t=1

k

∑
ℓ=1

∫ 1

0

∫ 1

u
βt,ℓ(q)h(u)dqdu

=
n

∑
t=1

k

∑
ℓ=1

∫ 1

0
βt,ℓ(q)

∫ q

0
h(u)dudq, (4.26)

where the first equality holds by exchanging the summation and the integrals, and
the second equality holds by exchanging the integration order for u and q. Then,
inequality (4.26) together with constraint (4.9) imply that

v ≤
n

∑
t=1

k

∑
ℓ=1

∫ 1

0
βt,ℓ(q)

∫ q

0
h(u)dudq. (4.27)

On the other hand, from constraint (4.8), for every t ∈ [n] and every ℓ ∈ [k] we have

∫ 1

0
βt,ℓ(q)

∫ q

0
h(u)dudq

≤ dt,ℓ

∫ 1

0
βt,ℓ(q)dq− dt+1,ℓ−1

∫ 1

0
qβt,ℓ(q)dq− dt+1,ℓ

∫ 1

0
(1− q)βt,ℓ(q)dq, (4.28)
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where we used that βt,ℓ ≥ 0, and then we integrated over q ∈ [0,1]. When ℓ = k, note
that

n

∑
t=1

dt,k

∫ 1

0
βt,k(q)dq−

n

∑
t=1

dt+1,k

∫ 1

0
(1− q)βt,k(q)dq

= d1,k

∫ 1

0
β1,k(q)dq +

n

∑
t=2

dt,k

∫ 1

0
βt,k(q)dq−

n

∑
t=1

dt+1,k

∫ 1

0
(1− q)βt,k(q)dq

≤ d1,k +
n−1

∑
t=1

dt+1,k

∫ 1

0
βt+1,k(q)dq−

n

∑
t=1

dt+1,k

∫ 1

0
(1− q)βt,k(q)dq

≤ d1,k +
n−1

∑
t=1

dt+1,k

∫ 1

0
(1− q)βt,k(q)dq−

n−1

∑
t=1

dt+1,k

∫ 1

0
(1− q)βt,k(q)dq ≤ d1,k, (4.29)

where the first inequality holds by constraint (4.21) and by changing the index range
in the first summation, and the second inequality holds by inequality (4.22) and the
fact that dn+1,k = 0. On the other hand, note that

n

∑
t=1

k−1

∑
ℓ=1

dt,ℓ

∫ 1

0
βt,ℓ(q)dq−

n

∑
t=1

k

∑
ℓ=1

dt+1,ℓ−1

∫ 1

0
qβt,ℓ(q)dq−

n

∑
t=1

k−1

∑
ℓ=1

dt+1,ℓ

∫ 1

0
(1− q)βt,ℓ(q)dq

=
n

∑
t=1

k−1

∑
ℓ=1

dt,ℓ

∫ 1

0
βt,ℓ(q)dq−

n

∑
t=1

k−1

∑
ℓ=1

dt+1,ℓ

∫ 1

0
qβt,ℓ+1(q)dq−

n

∑
t=1

k−1

∑
ℓ=1

dt+1,ℓ

∫ 1

0
(1− q)βt,ℓ(q)dq

=
n

∑
t=1

k−1

∑
ℓ=1

dt,ℓ

∫ 1

0
βt,ℓ(q)dq−

n−1

∑
t=1

k−1

∑
ℓ=1

dt+1,ℓ

(∫ 1

0
qβt,ℓ+1(q)dq +

∫ 1

0
(1− q)βt,ℓ(q)dq

)

≤
n

∑
t=1

k−1

∑
ℓ=1

dt,ℓ

∫ 1

0
βt,ℓ(q)dq−

n−1

∑
t=1

k−1

∑
ℓ=1

dt+1,ℓ

∫ 1

0
βt+1,ℓ(q)dq

=
k−1

∑
ℓ=1

d1,ℓ

∫ 1

0
β1,ℓ(q)dq ≤

k−1

∑
ℓ=1

d1,ℓ1k(ℓ) = 0, (4.30)

where the first equality holds by changing the index range of the second summation
and dt+1,0 = 0 for every t ∈ [n], the second equality holds by factoring the summations
and dn+1,ℓ = 0 for every ℓ ∈ [k− 1], the first inequality holds by inequality (4.23), and
the last inequality by constraint (4.21).

Then, by summing over t ∈ [n] and ℓ ∈ [k] in inequality (4.28), we get

n

∑
t=1

k

∑
ℓ=1

∫ 1

0
βt,ℓ(q)

∫ q

0
h(u)dudq

≤
n

∑
t=1

k

∑
ℓ=1

dt,ℓ

∫ 1

0
βt,ℓ(q)dq−

n

∑
t=1

k

∑
ℓ=1

dt+1,ℓ−1

∫ 1

0
qβt,ℓ(q)dq−

n

∑
t=1

k

∑
ℓ=1

dt+1,ℓ

∫ 1

0
(1− q)βt,ℓ(q)dq,

≤ d1,k, (4.31)
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where the second inequality comes from (4.29) and (4.30) together. Finally, (4.27) and
(4.31) imply that v ≤ d1,k, which concludes the proof of the lemma.

Second step: A truncated LP with a useful structure. Consider the following infinite-
dimensional linear program: For n ≤ n, we consider the following LP

sup v [D]n,k(n̄)

s.t.
∫ 1

0
αt,k(q)dq +

∫ 1

0
∑
τ<t

qατ,k(q)dq ≤ 1, for all t ∈ [n̄], (4.32)

∫ 1

0
αt,ℓ(q)dq +

∫ 1

0
∑
τ<t

qατ,ℓ(q)dq ≤
∫ 1

0
∑
τ<t

qατ,ℓ+1(q)dq, for all t ∈ [n̄],ℓ ∈ [k− 1],

(4.33)

vgn,k(u) ≤
n̄k

∑
t=1

k

∑
ℓ=1

∫ 1

u
αt,ℓ(q)dq, for u ∈ [0,1], (4.34)

αt,ℓ(q) ≥ 0 for all q ∈ [0,1], t ∈ [n̄] and ℓ ∈ [k], (4.35)

We will prove that the optimal value of [D]n,k(n̄) is a lower bound to the optimal
value of [D]n,k. The following technical proposition allows us to ensure that any
feasible solution to [D]n,k(n̄) induces a feasible solution to [D]n,k. We present the proof
of the proposition in Appendix C.2.

Proposition 12. For every feasible solution (α,v) to [D]n,k(n̄), there is (α′,v) feasible
to [D]n,k(n̄) for which all constraints (4.32) and (4.33) are tightened.

The following proposition states the lower bound we need in the rest of our analysis.

Proposition 13. For every k < n, and every n̄ ≤ n, the optimal value of [D]n,k(n̄) is at most
the optimal value of [D]n,k.

Proof. Let (α,v) be a feasible solution to [D]n,k(n̄). Moreover, define α0,ℓ = 0 ∀ℓ ∈ [k].
By the previous proposition, we can assume that α tightens all Constraints (4.32)
and (4.33). From here, we can deduce that for 0≤ t < n̄k∫ 1

0
αt+1,k(q)dq = 1− ∑

τ≤t

∫ 1

0
qατ,k(q)dq =

∫ 1

0
αt,k dq−

∫ 1

0
qαt,k dq.

The second equality is equivalent to

1− ∑
τ<t

∫ 1

0
qατ,k(q)dq =

∫ 1

0
αt,k dq.
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where for t = 0 this is the empty sum. This equality holds by Proposition 12 and (4.32).
For ℓ < k, we have

∫ 1

0
αt+1,ℓ(q)dq = ∑

τ≤t

∫ 1

0
qατ,ℓ+1(q)dq− ∑

τ≤t

∫ 1

0
qατ,ℓ(q)dq

=
∫ 1

0
αt,ℓ(q)dq +

∫ 1

0
qαt,ℓ+1(q)dq−

∫ 1

0
qαt,ℓ(q)dq

=
∫ 1

0
(1− q)αt,ℓ(q)dq +

∫ 1

0
qαt,ℓ+1(q)dq.

The second equality is equivalent to

∑
τ<t

∫ 1

0
qατ,ℓ+1(q)dq− ∑

τ<t

∫ 1

0
qατ,ℓ(q)dq =

∫ 1

0
αt,ℓ(q)dq

where for t = 0 this is the empty sum. This equality holds by Proposition 12 and (4.33).
Hence, α satisfies constraint (4.21) by the definition of α0,ℓ and the equalities above.
(4.22) (4.23) follow from the equalities as well, for t < n̄k. If we define ᾱ as follows

ᾱt,ℓ(q) =

αt,ℓ(q), t ≤ n̄k,

0, t > n̄k,

then, (ᾱ,v) is a feasible solution to [D]n,k. From here, the result follows immediately.

Third step: From the nonlinear system to LP. Since γn,k is equal to the value of [P]n,k,
which in turn is at least the value of [D]n,k, the previous result implies that we only
need to provide a feasible solution to [D]n,k(n̄) to provide a lower bound on γn,k. The
latter will be defined by a solution to the non-linear system of equations (4.1)-(4.3). For
a given θ, we denote it by NLSk(θ). The following lemma summarizes some properties
of NLSk(θ) that we use in our analysis.

Lemma 12. For every positive integer k, the following holds:

(i) There exists θ⋆ for which NLSk(θ
⋆) has a solution. We denote such a solution by

(Y1, . . . ,Yk).

(ii) The vector θ⋆ satisfies that 0 < θ⋆1 < θ⋆2 < · · · < θ⋆k < 1/k.

(iii) For every j ∈ [k], the function Yj is non-increasing.

We defer the proof of Lemma 12 to Subsection 4.4.3. Let n̄k = n− k− 1 and let yj,t =

Yj(t/n̄k). Let us define ε j,t = − ln(yj,t)/n̄k, for t ∈ {0,1, . . . , n̄k − 1}, j ∈ {1, . . . ,k}, and
ε j,n̄k = 1. We can show that for n large enough, − ln(yj,t)/n̄k ≤ 1 for t ∈ {0, . . . , n̄k − 1}
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(see Proposition 18); hence, 0 ≤ ε1,j ≤ · · · ≤ ε j,n̄k ≤ 1. Let Bℓ = (ℓ− 1) · (4ck
k + ck/k!)

for ℓ ∈ {1, . . . ,k}, where ck = 24k!max
{

θ⋆ℓ+1/θ⋆ℓ : ℓ ∈ {1, . . . ,k− 1
}
}. Now, consider the

following family of functions:

α⋆t,ℓ(q) =


0, t ≤ k− ℓ,(

1 + 12 ln(n̄k)
2

n̄k

)−(k−ℓ+1)(
Bℓ ln(n̄k)1[0,1/n̄k]

(q)− θ⋆ℓ g′n,k(q)1(0,εℓ,t)
(q)
)

, t = k− ℓ+ 1,(
1 + 12 ln(n̄k)

2

n̄k

)−(k−ℓ+1)(
−θ⋆ℓ g′n,k(q)

)
1(εℓ,t−1,εℓ,t)

(q), t ≥ k− ℓ+ 2.

(4.36)

Note that for all u ∈ [0,1], we have

k

∑
ℓ=1

∫ 1

u
α⋆t,ℓ(q)dq ≥

(
1 + 12

ln(n̄k)
2

n̄k

)−k( k

∑
ℓ=1

θ⋆ℓ

)
gn,k(u)

≥
(

1− 12k
ln(n̄k)

2

n̄k

)( k

∑
ℓ=1

θ⋆ℓ

)
gn,k(u), (4.37)

where in the first inequality we used that (1 + 12ln(n̄k)
2/n̄k)

−(k−ℓ+1) is increas-
ing in ℓ and in the second inequality we used the standard Bernoulli inequal-
ity. Inequality (4.37) guarantees that (α⋆,v⋆) satisfies constraint (4.34) with v⋆ =(
1− 12k · ln(n̄k)

2/n̄k
)

∑k
ℓ=1 θ⋆ℓ . Before proving Theorem 10 we need the following

lemma; we defer the proof to section 4.4.4.

Lemma 13. For n̄k = n− k− 1, and n large enough, α⋆ satisfies constraints (4.32) and (4.33).

Proof of Theorem 10. As a consequence of Lemma 13, we have that (α⋆,v⋆) is a feasible
solution to [D]n,k(n̄). In particular, we obtain the approximation

γn,k ≥ v⋆ =
(

1− 12k
ln(n̄k)

2

n̄k

) k

∑
ℓ=1

θ⋆ℓ ≥
(

1− 24k
ln(n)2

n

) k

∑
ℓ=1

θ⋆ℓ ,

when n is sufficiently large.

4.4.3 Analysis of NLSk(θ) and proof of lemma 12

In this section, we analyze the nonlinear system NLSk(θ) in terms of the existence of
solutions. Given functions y1, . . . ,yk : R→ R+, let y = (y1, . . . ,yk), and for each pair
r,ℓ ∈ [k], define ϕr,ℓ,y(t) = Γr(− lnyℓ(t)) for every t ∈ [0,1). Observe that by simple
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differentiation, we have

ϕ′r,ℓ,y(t) = −Γ′r(− lnyℓ(t))
y′ℓ(t)
yℓ(t)

= (− lnyℓ(t))r−1y′ℓ(t), (4.38)

since Γ′r(x) =−xr−1e−x. Furthermore, when r≥ 2, observe that ϕ′r,ℓ,y(t) =−ϕ′r−1,ℓ,y(t) lnyℓ(t),
which is a consequence of the derivative formula in (4.38). For a vector θℓ:k = (θℓ, . . . ,θk),
we define the system NLSℓ,k(θℓ:k) to be the subsystem of NLSk(θ) that only consider
the differential equations from ℓ, . . . ,k and the terminal conditions, that is,

(Γk(− lnyk))
′ = k! (1− 1/(kθk))− Γk+1(− lnyk),

(Γk(− lnyj))
′ = k!− Γk+1(− lnyj)−

θj+1

θj
(k!− Γk+1(− lnyj+1)) for every j ∈ {ℓ, . . . ,k− 1},

yj(0) = 1 and lim
t↑1

yj(t) = 0 for every j ∈ {ℓ, . . . ,k}.

When ℓ = 1, the system NLS1,k(θ) is exactly the system NLSk(θ). We also remark that,
by replacing, any solution y of NLSℓ,k(θℓ:k) satisfies the following conditions:

ϕ′k,k,y = k!
(

1− 1
kθk

)
− ϕk+1,k,y,

ϕ′k,j,y = k!− ϕk+1,j,y −
θj+1

θj
(k!− ϕk+1,j+1,y) for every j ∈ {ℓ, . . . ,k− 1}. (4.39)

We will use NLSℓ,k(θℓ:k) to inductively show that NLSk(θ) satisfies all properties of
Lemma 12. One key step to showing the existence of a solution to NLSℓ,k(θℓ:k) is to
first establish some properties that any solution of NLSℓ+1,k(θℓ+1:k), provided by the
induction hypothesis, must satisfy. This helps since, a priori, we don’t have a handle
on such solutions and definitely no explicit form. Then we will use these properties to
show the induction step. In Proposition 16 we show 12(ii) and 12(iii). Proposition 15
is useful for showing 12(iii) as it gives a simple sufficient criterion for monotonicity to
hold. The following proposition gives an equivalent formulation of some expressions
used to understand the behaviour of ϕ′k,j,y.

Proposition 14. Consider ℓ ∈ [k − 1], and let θℓ,k be such that there is a solution y =

(yℓ, . . . ,yk) for NLSℓ,k(θℓ:k), and such that y′j(s) ̸= 0 for every j and every s ∈ (0,1). Then,
the following holds:

(i) ϕ′k,k,y(t)exp
(∫ 1

t
lnyk(s)ds

)
= k!

(
1− 1

kθk

)
.
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(ii) For every j ∈ {ℓ, . . . ,k− 1}, we have that ϕ′k,j,y(t)exp
(∫ 1

t
lnyj(s)ds

)
is equal to

k!

(
1−

θj+1

θj

)
+

θj+1

θj

∫ 1

t
ϕ′k,j+1,y(τ) lnyj+1(τ)exp

(∫ 1

τ
lnyj(s)ds

)
dτ.

Proof. We start by observing the following: ϕ′′k,k,y =−ϕ′k+1,k,y =−(− lnyk)
ky′k = ϕ′k,k,y lnyk,

where the first equality holds from the first identity in (4.39), and the other two equal-
ities come from (4.38). From here, by integrating, we have that for every t,r ∈ (0,1)
with r ≥ t, it holds

ϕ′k,k,y(t)exp
(∫ r

t
lnyk(s)ds

)
= ϕ′k,k,y(t)exp

(∫ r

t

ϕ′′k,k,y(s)

ϕ′k,k,y(s)
ds
)

= ϕ′k,k,y(t)exp
(

lnϕ′k,k,y(r)− lnϕ′k,k,y(t)
)
= ϕ′k,k,y(r).

We conclude part (i) by doing r→ 1: We use that yk(r)→ 0 in NLSk(θ), therefore
ϕk+1,k,y(r)→ 0, and then ϕ′k,k,y(r)→ k!(1− 1/(kθk)), using the first equality in (4.39).

For j ∈ {ℓ, . . . ,k− 1}, we proceed in a similar way. From the second equality in
(4.39) we get

ϕ′′k,j,y = −ϕ′k+1,j,y +
θj+1

θj
ϕ′k+1,j+1,y = ϕ′k,j,y lnyk −

θj+1

θj
ϕ′k,j+1,y lnyj+1, (4.40)

where the last equality comes from the observation after the derivative formula in
(4.38). On the other hand, for every r,τ ∈ (0,1) with r ≥ τ, we have

∂

∂τ

(
ϕ′k,j,y(τ)exp

(∫ r

τ
lnyj(s)ds

))
= ϕ′′k,j,y(τ)exp

(∫ r

τ
lnyj(s)ds

)
− ϕ′k,j,y(τ)exp

(∫ r

τ
lnyj(s)ds

)
lnyj(τ)

=
(

ϕ′′k,j,y(τ)− ϕ′k,j,y(τ) lnyj(τ)
)

exp
(∫ r

τ
lnyj(s)ds

)
= −

θj+1

θj
ϕ′k,j+1,y(τ) lnyj+1(τ)exp

(∫ r

τ
lnyj(s)ds

)
,

where the last equality comes from the equality in (4.40). We conclude part (ii) by doing
r→ 1 and then integrating τ between t and one: We use that yj(r)→ 0 in NLSk(θ),
therefore ϕk+1,j,y(r)→ 0, ϕk+1,j+1,y(r)→ 0, and then ϕ′k,j,y(r)→ k!(1− θj+1/θj), using
the second equality in (4.39).
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Proposition 15. Consider ℓ ∈ [k − 1], and let θℓ:k be such that there is a solution y =

(yℓ, . . . ,yk) for NLSℓ,k(θℓ:k), and let j ∈ {ℓ, . . . ,k− 1}. If yj+1 is non-increasing, and if there
is t1 ∈ [0,1) such that y′j(t1) < 0 and yj(t1) < 1, then y′j(t) < 0 for all t ∈ [t1,1).

Proof. We prove the result by contradiction. Suppose there exists t2 ∈ (t1,1) such
that y′j(t2) ≥ 0. By the continuity of yj, the value min{yj(t) : t ∈ [t1, t2]} is well-
defined, the minimum in [t1, t2] is attained at t′ ∈ [t1, t2], and yj(t′)< 1 since yj(t1)< 1
and we are assuming y′j(t1) < 0. Hence there definitely exists some points t′′ in
[t1, t2] where yj(t′′) < yj(t1). Then, in a neighborhood of t′, there is t′1 < t′2 such that
yj(t′1) = yj(t′2) < 1 and y′j(t

′
1) < 0 and y′j(t

′
2) ≥ 0. Then,

0 > (− lnyj(t′1))
k−1y′j(t

′
1) = ϕ′k,j,y(t

′
1) = k!

(
1−

θj+1

θj

)
− ϕk+1,j,y(t′1) +

θj+1

θj
ϕk+1,j+1,y(t′1)

≥ k!

(
1−

θj+1

θj

)
− ϕk+1,j,y(t′2) +

θj+1

θj
ϕk+1,j+1,y(t′2)

= ϕ′k,j,y(t
′
2),

where in the second inequality we used that yj+1 is non-increasing. Also, recall
that ϕk+1,j,y(t′1) = Γk+1(− lnyj(t′1)) = Γk+1(− lnyj(t′2)) = ϕk+1,j,y(t′2). From here, the
contradiction follows since ϕ′k,j,y(t

′
2) = (− lnyj(t2))

k−1y′j(t
′
2) ≥ 0.

Proposition 16. Consider ℓ ∈ [k − 1], and let θℓ:k be such that there is a solution y =

(yℓ, . . . ,yk) for NLSℓ,k(θℓ:k). Then, the following conditions are necessary: For every j ∈
{ℓ, . . . ,k}, yj is strictly decreasing in [0,1), θj < θj+1 for all j < k, and θk < 1/k.

Proof. We proceed by induction. Since yk(0) = 1, yk(t)→ 0 for t→ 1 from the left, and
yk is differentiable in (0,1), there is a value tk ∈ (0,1) such that y′k(tk)< 0 and yk(tk)< 1.
Since ϕ′k,k,y(t) = y′k(t)(− lnyk(t))k−1, we have ϕ′k,k,y(tk) < 0. Then, from Proposition
14(i), it must be that 1− 1/kθk < 0, that is, θk < 1/k. Together with Proposition 14(i),
this implies that for every t ∈ (0,1) it holds ϕ′k,k,y(t) < 0, that is, ϕk,k,y = Γk(− lnyk) is
strictly decreasing in (0,1). We conclude that yk strictly decreases in [0,1).

Assume inductively that yj+1, . . . ,yk are strictly decreasing for some j < k. We will
show that θj < θj+1 and yj is strictly decreasing. Note that for every t ∈ (0,1), we have

ϕ′k,j+1,y(t) lnyj+1(t) = −y′j+1(t)(− lnyj+1(t))k > 0, (4.41)
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where the inequality follows by our inductive assumption and the equality by the
derivative formula in (4.38). Now, if θj+1 ≤ θj, for every t ∈ (0,1) we have

ϕ′k,j,y(t)exp
(∫ 1

t
lnyj(s)ds

)
= k!

(
1−

θj+1

θj

)
+

θj+1

θj

∫ 1

t
ϕ′k,j+1,y(τ) lnyj+1(τ)exp

(∫ 1

τ
lnyj(s)ds

)
dτ

≥
θj+1

θj

∫ 1

t
ϕ′k,j+1,y(τ) lnyj+1(τ)exp

(∫ 1

τ
lnyj(s)ds

)
dτ ≥ 0,

where the first equality holds by Proposition 14(ii), the first inequality holds by
θj+1 ≤ θj, and in the last inequality we used inequality (4.41) and the inductive
assumption. Therefore, for every t ∈ (0,1), we have ϕ′k,j,y(t) ≥ 0, which cannot happen
since the differentiability of yj and the border conditions imply that we can always
find tj ∈ (0,1) such that y′j(tj) < 0 and yj(tj) < 1, i.e.,

ϕ′k,j,y(tj) = y′j(tj)(− lnyj(tj))
k−1 < 0.

We conclude that θj < θj+1.
We prove next the monotonicity of yj. Consider t′ = inf{t ∈ [0,1] : y′j(t) < 0,yj(t) <

1}, which is well-defined since the set is non-empty. If t′ = 0, then there is a sequence
(tn)n∈N in (0,1) such that t′n→ 0, y′j(tn) < 0, and yj(tn) < 1 for all n ∈N. Then, since
yj+1 is strictly decreasing, by Proposition 15 we get that for all n ∈N and every
t ∈ [t′n,1) we have y′j(t) < 0. Since t′n→ 0, we conclude that y′j is strictly decreasing in
[0,1). Otherwise, suppose that t′ > 0. Then, y′j(t) ≥ 0 or yj(t) ≥ 1 for every t ∈ (0, t′).
Assume that yj(s) > 1 for some s ∈ (0, t′). Then, since limq→1 yj(q) = 0, the continuity
of yj and the fact that yj(t′) ≤ 1, imply the existence of a value t′′ ∈ (0, t′] such that
yj(t′′) = 1. Note that 0 = y′j(t

′′)(− lnyj(t′′))k−1 = ϕ′k,j,y(t
′′), and

ϕ′k,j,y(t
′′) = k!− ϕk+1,j,y(t′′)−

θj+1

θj

(
k!− ϕk+1,j+1(t′′)

)
= k!− Γk+1(0)−

θj+1

θj

(
k!− ϕk+1,j+1(t′′)

)
= −

θj+1

θj

(
k!− Γk+1(− lnyj+1(t′′))

)
< 0,

which is a contradiction; the first equality holds from (4.39), the second holds since
yj(t′′) = 1, the third since Γk+1(0) = k!, and the inequality follows from yj+1 being
strictly decreasing. Therefore, we have yj(t)≤ 1 for all t ∈ (0, t′), which further implies
that yj(t) ≤ 1 for all t ∈ (0,1).

95



If yj(s)< 1 for some s ∈ [0, t′], then there exists t′′′ ∈ (0, t′) such that y′j(t
′′′)< 0 and

yj(t′′′) < 1, which contradicts the minimality of t′. Then, yj(t) = 1 for every t ∈ (0, t′].
But this implies that ϕ′k,j,y(t) = 0 and ϕk+1,j,y(t) = k! for every t ∈ (0, t′], and therefore
from (4.39) we get that k! = ϕk+1,j+1,y(t) = Γk+1(− lnyj+1(t)) for every t ∈ (0, t′]. This
implies that yj+1(t) = 1 for every t ∈ (0, t′], which contradicts the fact that yj+1 is
strictly decreasing. We conclude that t′ = 0 and, therefore, yj is strictly decreasing.
This finishes the proof of the proposition.

Proof of Lemma 12. In what follows, we show that there is a choice of θ such that the
system NLSk(θ) has a solution. We proceed inductively. We show that there is a
solution to this system for an appropriate choice of θj:k. Using this solution, we can
extend it to a solution for NLSj−1,k(θj−1:k), where θj−1:k = (θj−1,θj:k) for an appropriate
choice of θj−1. For every ℓ we denote by yℓ(1) the value limt↑1 yℓ(t).

We start with j = k. In this case, the NLSk,k(θk) is the following system:

Γk(− lnyk)
′ = k!− k!/(θkk)− Γk+1(− lnyk),

yk(0) = 1 and yk(1) = 0.

We could analyze this system in the same way as the Hill and Kertz differential
equation when k = 1. However, we will not show uniqueness for all other θj, hence
for the sake of simplicity, we only claim existence. As mentioned earlier, we can also
write the first equality as

ϕ′k,k,y = k!
(

1− 1
kθk

)
− Γk+1(− lnyk)

where

ϕ′k,k,y(t) = −Γ′k(− lnyk(t))
y′k(t)
yk(t)

= (− lnyk(t))k−1y′k(t)

Hence we have a continuous, explicit first-order differential equation for the domain of
y > 0. Moreover, from Proposition 16, we already know yk must be strictly decreasing.
Moreover, yk(t)→ 0 as t→ 1. Note that we used θk <

1
k . Thus we may apply Peano’s

existence theorem [66] and conclude there exists a solution to NLSk,k(θk) on [0,1] for
any θk <

1
k .

Assume inductively that we have found a θ⋆j+1:k where we have a solution (Yj+1, . . . ,Yk)

to NLSj+1,k(θ
⋆
j+1:k) for some j < k. We now show that the system NLSj,k(θj,θ⋆j+1, . . . ,θ⋆k )
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is feasible for a choice of θj. This boils down to finding a solution for the following:

Γk(− lnYj)
′ = k!− Γk+1(− lnYj)−

θ⋆j+1

θj
(k!− Γk+1(− lnYj+1)) (4.42)

Yj(0) = 1, and Yj(1) = 0. (4.43)

where θ⋆j+1 and Yj+1 are given and satisfy Yj+1(0) = 1,Yj+1(1) = 0. By Proposition 16
we have that Yj+1, . . . ,Yk ∈ [0,1] are strictly decreasing and θ⋆j+1 < · · · < θ⋆k < 1/k.

The difference is that these ODE’s depend on the solutions of previous systems,
Yj+1, of which we know little. In order to show existence, our plan is to try to find a
solution to the Euler approximation first. Then taking the limit of this approximation
will give existence of the original system. Let θj > 0 and consider the following Euler
approximation to a candidate solution to (4.42)-(4.43). Let m ∈N be non-negative and
consider the following recursion: ym,j,0 = 1, and Γk(− lnym,j,t+1) is equal to

Γk(− lnym,j,t) +
1
m

(
k!− Γk+1(− lnym,j,t)−

θ⋆j+1

θj

(
k!− Γk+1(− lnYj+1(t/m))

))
.

(4.44)
Note that the sequence is well-defined for ym,j,t > 0. Let t′ = max{t ∈ [m] ∪ {0} :
ym,j,t > 0}. For t = 0, we have Γk(− lnym,j,1) = (k− 1)! and therefore ym,j,1 = 1. For
t = 1, we have

Γk(− lnym,j,2) = (k− 1)!−
θ⋆j+1

θjm
(k!− Γk+1(− lnYj+1(1/m))) < (k− 1)!, (4.45)

which implies that ym,j,2 < 1 for any θj > 0. We note that if θj→∞, then Γk(− lnym,j,2)→
(k − 1)!. Inductively, we can show that for θj → ∞, ym,j,t = 1 for all t; in particular,
t′ = m.

We proceed to show that we have sufficient understanding of the Euler approx-
imation. That is, ym,j,t is decreasing in t. Moreover, we want to show that we can
adjust parameter θj such that ym,j,t decreases at a rate such that it tends to 0 for large
m and t close to m. In short, if these claims hold, then we can find suitable θ for
the Euler approximations. Then, standard arguments show convergence of the Euler
approximation, to a limit that satisfies the constraints of our system of ODE’s. The last
part holds just by definition of the approximation, (4.44). We start by showing that
ym,j,t is decreasing in t as long as ym,j,t ≥ 1/m and m is such that m/ln(m) ≥ 1 which
holds for m≥ 2. We know this is true for t ∈ {1,2}. We assume the result holds from 1
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up to t, and we show next the result holds for t + 1, with t ≥ 2. Observe that

Γk(− lnym,j,t+1)− Γk(− lnym,j,t) (4.46)

=
1
m

(
k!− Γk+1(− lnym,j,t)−

θ⋆j+1

θj
(k!− Γk+1(− lnYj+1(t/m)))

)
(4.47)

=
1
m

t−1

∑
τ=0

(Γk+1(− lnym,j,τ)− Γk+1(− lnym,j,τ+1))

−
θ⋆j+1

mθj

t−1

∑
τ=0

(Γk+1(− lnYj+1(τ/m))− Γk+1(− lnYj+1((τ + 1)/m)))

= Γk(− lnym,j,t)− Γk(− lnym,j,t−1) +
1
m
(Γk+1(− lnym,j,t−1)− Γk+1(− lnym,j,t)) (4.48)

−
θ⋆j+1

mθj
(Γk+1(− lnYj+1((t− 1)/m))− Γk+1(− lnYj+1(t/m))),

where the first equality holds by writing the previous expression using two telescopic
sums, and the third equality holds by rearranging terms and using (4.44). Note that
ym,j,t+1 < ym,j,t if and only if Γk(− lnym,j,t+1) < Γk(− lnym,j,t). Since Yj+1 is strictly
decreasing, the result follows after the following claim. The proof of Claim 5 is in
Appendix C.2.

Claim 5. Γk(− lnym,j,t)− Γk(− lnym,j,t−1) +
1
m (Γk+1(− lnym,j,t−1)− Γk+1(− lnym,j,t))≤

0 for m ≥ 2 and ym,j,t ≥ 1
m .

As noted above, we only need the claim to hold in this regime.
We now show that ∂ym,j,t/∂θj ≥ 0 for all t ≤ t′ and such that ym,j,t ≥ 1/m. Fur-

thermore, we show that for t ≥ 1 as before, we have ∂ym,j,t/∂θj > 0. We proceed by
induction in t. The result is clearly true for t = 0. Suppose that ∂ym,j,t/∂θj ≥ 0 and
let’s show the result for t + 1. By taking the derivative with respect to θj in the Euler
recursion (4.44), we have

(− lnym,j,t+1)
k−1 ∂ym,j,t+1

∂θj

=
∂

∂θj
Γk(− lnym,j,t)−

1
m

∂

∂θj
Γk+1(− lnym,j,t) +

θ⋆j+1

θ2
j m

(k!− Γk+1(− lnYj+1(t/m)))

=
∂

∂θj
Γk(− lnym,j,t)

(
1 +

1
m

lnym,j,t

)
+

θ⋆j+1

θ2
j m

(k!− Γk+1(− lnYj+1(t/m)))

≥
θ⋆j+1

θ2
j m

(k!− Γk+1(− lnYj+1(1/m)))
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where we used that ym,j,t ≥ 1/m for the inequality. Since ym,j,t+1 ∈ (0,1), it follows
that ∂ym,j,t+1/∂θj > 0. Notice that the right-hand side of the inequality is independent
of t and grows as 1/θ2

j . Hence, as θj → 0, we have that t′→ 1 and so ym,j,t → 1 for
t ≤ t′. As a byproduct of this analysis, we also see that t′ is strictly increasing in θj.
Now, let θj(m) be such that 2/m ≥ ym,j,m−

√
m ≥ 1/m. By the work done so far, we can

conclude that such θj(m) exists. In particular, θj(m) > 0. The next claim shows that
θj(m) ≤ θ⋆j+1. We defer its proof to Appendix C.2.

Claim 6. We have θj(m) ≤ θ⋆j+1.

Thus, we have that {θj(m)}m is bounded. Hence we may invoke Bolzano-Weierstrass:
if we let m tend to infinity, we can find a convergent subsequence {θj(mℓ)}ℓ with a
limit denoted as θ⋆j .

Finally, using the Euler approximations, we may construct a family of functions
that contain a converging subsequence to one that satisfies the conditions of our
system. That is, let yℓ,j : [0,1]→ [0,1] be the piece-wise linear interpolation of the
points {ymℓ,j,t}t, where ymℓ,j,t is assigned as the image to the point t/mℓ ≤ 1. That is,
yℓ,j(t) = ymℓ,j,t for t ∈ [mℓ]. This defines yℓ,j on an equally spaced set of points. All
other values of the function are given by the straight line segments connecting these
points. By a standard analysis argument on the convergence of sequences of functions,
we can show that the sequence {yℓ,j}ℓ has a uniformly convergent subsequence to
a function Yj : [0,1]→ [0,1] (see, e.g., [56, Chapter 3]). Furthermore, this function Yj

is differentiable and satisfies (4.42)-(4.43). Hence, we have found θ⋆j:k such that the
system NLSk,j(θ

⋆
j:k) is feasible.

4.4.4 Feasibility Analysis and Proof of Lemma 13

In this subsection, we prove Lemma 13. The crux of the proof follows by analyzing the
functions αt,j(q) = (1 + 12ln(n̄k)

2/n̄k)
k−j+1α⋆t,j(q). These functions hold the following

two claims:

Claim 7. There is n0 ≥ 1 such that for any n ≥ n0 and for any t ∈ {0, . . . , n̄k − 1}, we have

∫ 1

0
αt+1,k(q)dq + ∑

τ≤t

∫ 1

0
qατ,k(q)dq ≤ 1 + 12

ln(n̄k)
2

n̄k
.

Claim 8. There is n0 ≥ 1 such that for any n≥ n0, for any j < k, and for any t ∈ {0, . . . , n̄k −
1}, we have

∫ 1

0
αt+1,j(q)dq + ∑

τ≤t

∫ 1

0
qατ,j(q)dq ≤

(
1 + 12

ln(n̄k)
2

n̄k

)
∑
τ≤t

∫ 1

0
qατ,j+1(q)dq.
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Using these two claims, we show how to conclude Lemma 13 and then prove them.

Proof of Lemma 13. First, we have,

∫ 1

0
α⋆t+1,k(q)dq + ∑

τ≤t

∫ 1

0
qα⋆τ,k(q)dq

=
1

1 + 12ln(n̄k)2/n̄k

(∫ 1

0
αt+1,k(q)dq + ∑

τ≤t

∫ 1

0
qατ,k(q)dq

)
≤ 1,

where we used Claim 7, which shows that α⋆ satisfies constraints (4.32). Additionally,

∫ 1

0
α⋆t,j(q)dq + ∑

τ≤t

∫ 1

0
qα⋆τ,j+1(q)dq

=
1

(1 + 12ln(n̄k)2/n̄k)k−j+1

(∫ 1

0
αt,j(q)dq + ∑

τ≤t

∫ 1

0
qατ,j+1(q)dq

)

≤ 1
(1 + 12ln(n̄k)2/n̄k)k−j ∑

τ≤t

∫ 1

0
qατ,j+1(q)dq

= ∑
τ≤t

∫ 1

0
qα⋆τ,j+1(q)dq,

where in the inequality we used Claim 8; which shows that α⋆ satisfies constraints (4.33).
This concludes the lemma.

We devote the rest of this section to prove Claims 7 and 8. The two claims follow
by a careful analysis of the solution to NLSn,k(θ

⋆) as well as the function gn,k. In the
following proposition, we leave some useful properties satisfied by the function gn,k.
Recall that we set n̄k = n− k− 1. The proof can be found in Appendix C.2.

Proposition 17. For every u ∈ (0,1), the following holds:

(i) g′n,k(u) = −(n− k + 1)(n− k)( n
k−1)(1− u)n−k−1uk−1.

(ii) g′n+1,k+1(u) =
n+1

k ug′n,k(u).

(iii) If n > (k + 1) + 2(k + 1)2, −g′n,k(u) ≤ −n
(

1 + 4 k2

n

)
Γk(n̄ku)′

(k−1)! .

(iv) If n > 4k and u ∈ (0, s), with s ≤ 1
2
√

n̄k
, then −n

(
1− 4 k2

n

)(
1− n̄ks2

1−s

)
Γk(n̄ku)′

(k−1)! ≤
−g′n,k(u).

Recall that for every r,ℓ ∈ [k] we defined Φr,ℓ = Γr(− ln(Yℓ)). Observe that condi-
tions (4.1)-(4.2) for the nonlinear system NLSk(θ

⋆) can be rewritten to get the following
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identities in [0,1):

Φ′k,k = k! (1− 1/(kθ⋆k ))−Φk+1,k, (4.49)

Φ′k,ℓ = k!−Φk+1,ℓ −
θ⋆ℓ+1
θ⋆ℓ

(k!−Φk+1,ℓ+1) for every ℓ ∈ [k− 1], . (4.50)

Furthermore, since the functions Yj are non-increasing, Φk,j are also non-increasing. Re-
call that Γ′r(x) =−xr−1e−x and therefore, when r≥ 2, we have Φ′r,ℓ(t) =−Φ′r−1,ℓ(t) lnYℓ(t).
We use the following technical proposition in the rest of our analysis. For the sake of
presentation, we defer its proof to Appendix C.2.

Proposition 18. For every positive integer k, the following holds:

(i) Let bk = 4k!max
{

θ⋆ℓ+1/θ⋆ℓ : ℓ ∈ {1, . . . ,k− 1}
}

. Then, for every t ∈ (0,1), every ℓ ∈
[k], and every r ∈ {0, . . . ,k− 1}, we have Yℓ(t)(− lnYℓ(t))r ≤ bk(1− t).

(ii) Let dk = min
{

θ∗ℓ+1/θ∗ℓ : ℓ ∈ {1, . . . ,k− 1}
}
− 1 > 0. There exists ∆k > 0 such that for

every t ∈ (∆k,1] and ℓ ∈ [k], it holds Yj(t) ≥ dk(1− t)2.

(iii) Let ck = 6bk. We have Φ′′k,k(t) ≥ 0 for every t ∈ (0,1). Furthermore, there is an integer
Nk, such that for every n ≥ Nk, every ℓ ∈ [k− 1], and every t ∈ (0,1− 1/n], we have
|Φ′′k,ℓ(t)| ≤ ck ln(n).

(iv) Let c̄k = (kck)
1/k and Nk as in (iii). There is δk > 0 such that for any n ≥ Nk, j < k,

and every t ≤min{δk,1− 1/n}, we have Yj(t) ≥ 1− c̄k ln(n)1/kt2/k.

Proof of Claim 7. For t ∈ {0,1, . . . , n̄k − 1}, we have

∫ 1

0
αt+1,k(q)dq + ∑

τ≤t

∫ 1

0
qατ,k(q)dq

= θ⋆k

(∫ εk,t+1

εk,t

(−g′n,k(q))dq +
∫ εk,t

0
q(−g′n,k(q))dq

)
+ Bk

ln(n̄k)

n̄k
. (4.51)
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Now, we bound the term in parenthesis:∫ εk,t+1

εk,t

(−g′n,k(q))dq +
∫ εk,t

0
q(−g′n,k(q))dq

=
∫ εk,t+1

εk,t

(−g′n,k(u))du +
k

n + 1

∫ εk,t

0
(−g′n+1,k+1(u))du

≤
(

1 + 16
k2

n

)(
n

(k− 1)!

∫ εk,t+1

εk,t

−(Γk(n̄ku))′du +
k

n + 1
n + 1

k!

∫ εk,t

0
−(Γk+1(n̄ku))′du

)
=

n
(k− 1)!

(
1 + 16

k2

n

)(
Γk(− lnyk,t)− Γk(− lnyk,t+1) +

1
n
(k!− Γk+1(− lnyk,t)

)
≤ n

(k− 1)!

(
1 + 16

k2

n

)(
1
n̄k

(k!− (k− 1)!
θ⋆k

− Γk+1(− lnyk,t))− (Γk(− lnyk,t+1)− Γk(− lnyk,t))

)
+

n
n̄k

(
1 + 16

k2

n

)
1
θ⋆k

=
n

(k− 1)!

(
1 + 16

k2

n

)(
Φ′k,k(t/n̄k)− n̄k

(
Φk,k((t + 1)/n̄k))−Φk,k(t/n̄k)

))
+

n
n̄k

(
1 + 16

k2

n

)
1
θ⋆k

≤ n
n̄k(k− 1)!

(
1 + 16

k2

n

)(
Φ′k,k

(
t

n̄k

)
− Φk,k((t + 1)/n̄k))−Φk,k(t/n̄k)

1/n̄k

)
+

1
θ⋆k

(
1 + 20

k2

n

)
. (4.52)

The first equality and inequality follow by Proposition 17, where we used implicitly
that 1 + 4(k + 1)2/(n + 1) ≤ 1 + 16k2/n for any k ≥ 1. The next equality follows
by computing the integrals. The next inequality follows by bounding 1/n ≤ 1/n̄k

and adding and subtracting 1/θ⋆k . The last equality follows by rearranging terms
and the last inequality follows by bounding n/n̄k(1 + 16k2/n) ≤ 1 + 20k2/n for n ≥
20k2(k + 1)/(4k2 − k− 1) and any k ≥ 1.

The following claim allows us to bound the first term in (4.52). We defer the proof
of the claim to Appendix C.2.

Claim 9. It holds that Φ′k,k

(
t

n̄k

)
− Φk,k((t + 1)/n̄k))−Φk,k(t/n̄k))

1/n̄k
≤ 0.

Then, in (4.51), we have

∫ 1

0
αt+1,k(q)dq + ∑

τ≤t

∫ 1

0
qατ,k(q)dq ≤

(
1 + 20

k2

n

)
+ Bk

ln(n̄)
n̄
≤ 1 + 12

ln(n̄k)
2

n̄k
,

where the last inequality holds for n large enough. This concludes the proof of
Claim 7.
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Proof of Claim 8. For j < k, and t = k− j, we have

∫ 1

0
αt+1,j(q)dq + ∑

τ≤t

∫ 1

0
qατ,j(q)dq ≤ Bj

ln(n̄k)

n̄k
+ θ⋆j

∫ ε j,k−j+1

0
(−gn,k)

′(q)dq

= Bj
ln(n̄k)

n̄k
+ θ⋆j

∫ ε j,k−j+1

ε j,k−j

(−gn,k)
′(q)dq + θ⋆j

∫ ε j,k−j

0
(−gn,k)

′(q)dq,

and for t > k− j, we have

∫ 1

0
αt+1,j(q)dq + ∑

τ≤t

∫ 1

0
qατ,j(q)dq

≤ Bj
ln(n̄k)

n̄k
+ θ⋆j

(∫ ε j,t+1

ε j,t

(−gn,k)
′(q)dq +

∫ ε j,t

0
q(−gn,k)

′(q)dq

)
.

Then, for any t ≥ k− j, we obtain the inequality

∫ 1

0
αt+1,j(q)dq + ∑

τ≤t

∫ 1

0
qατ,j(q)dq

≤ Bj
ln(n̄k)

n̄k
+ θ⋆j

(∫ ε j,t+1

ε j,t

(−gn,k)
′(q)dq +

∫ ε j,t

0
q(−gn,k)

′(q)dq

)
+ θ⋆j

∫ ε j,k−j

0
(−gn,k)

′(q)dq.

(4.53)

We upper bound separately the last two terms in (4.53). For the first term, we have

[
n

(k− 1)!

(
1 + 16

k2

n

)]−1(∫ ε j,t+1

ε j,t

(−gn,k)
′(u)du +

k
n + 1

∫ ε j,t

0
(−gn+1,k+1)

′(u)du

)

≤ Γk(− lnyj,t)− Γk(− lnyj,t+1) +
1
n̄k

(k!− Γk+1(− lnyj,t))

=
1
n̄k

(
Γk(− lnyj)

′
(

t
n̄k

)
−

Γk(− lnyj,t+1)− Γk(− lnyj,t)

1/n̄k
+

θ⋆j+1

θ⋆j
(k!− Γk+1(− lnyj+1,t))

)

=
1
n̄k

(
Φ′k,ℓ(t/n̄k)−

Φk,ℓ((t + 1)/n̄k)−Φk,ℓ(t/n̄k)

1/n̄k
+

θ⋆j+1

θ⋆j
(k!− Γk+1(− lnyj+1,t))

)
.

(4.54)

The first inequality follows by Proposition 17. The following claim allows us to
guarantee that εℓ,k is close to zero, for all ℓ, which allows us to use 17(iv). The proof
simply uses Proposition 18(iv) for n̄k ≥ Nk and we skip it for brevity.

Claim 10. For any ℓ, we have εℓ,k ≤ 2c̄k ln(n̄k)
1/k/n̄1+2/k

k , where c̄k is defined in Proposi-
tion 18.
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Note that the claim implies that for n large, εℓ,k ≤ (k− 1)/n̄k ≤ 2/
√

n̄k. In addition
to this claim, the following claims allow us to bound the terms in the parenthesis
in (4.54). We defer their proof to Appendix C.2.

Claim 11. It holds that n̄k(Φk,ℓ(t/n̄k)− Φk,ℓ((t + 1)/n̄k)) + Φ′k,ℓ(t/n̄k) ≤ ck ln(n̄k)/n̄k,
where ck > 0 is defined in Proposition 18.

Claim 12. For n sufficiently large, we have

(
1− 4

(k + 1)2

n + 1

)−1(
1−

n̄kε2
j+1,t

1− ε j+1,t

)−1

≤ 1 + 10
ln(n̄k)

2

n̄k
.

Hence, we can further bound (4.54) as follows:

≤ 1
n̄k

(
ck

ln(n̄k)

n̄k
+

θ⋆j+1

θ⋆j
(k!− Γk+1(− lnyj+1,t))

)
(Using Claim 11)

≤ 1
n̄k

ck
ln(n̄k)

n̄k
+

(
1− 4(k + 1)2

n + 1

)−1(
1−

n̄kε2
j+1,t

1− ε j+1,t

)−1
θ⋆j+1

θ⋆j
(k− 1)!

∫ ε j+1,t

0
(−g′n,k(u))udu


(Using 17(iv) and Claim 10)

≤ 1
n̄k

(
ck

ln(n̄k)

n̄k
+

(
1 + 10

ln(n̄k)
2

n̄k

) θ⋆j+1

θ⋆j
(k− 1)!

∫ ε j+1,t

0
(−g′n,k(u))udu

)
(Using Claim 12)

≤ 1
θ⋆j n̄k

(
1 + 10

ln(n̄k)
2

n̄k

)(
θ⋆j ck

ln n̄k
n̄k

+ θ⋆j+1(k− 1)!
∫ ε j+1,t

0
(−g′n,k(u))udu

)
.

From here, we obtain

θ⋆j

(∫ ε j+1,t

ε j,t

(−gn,k)
′(q)dq +

∫ ε j,t

0
q(−gn,k)

′(q)dq

)

≤
(

1 + 12
ln(n̄k)

2

n̄k

)
ck
k!

ln(n̄k)

n̄k
+

(
1 + 12

ln(n̄k)
2

n̄k

)∫ ε j+1,t

0
θ⋆j+1q(−gn,k)

′(q)dq

≤
(

1 + 12
ln(n̄k)

2

n̄k

)
ck
k!

ln(n̄k)

n̄k
+

(
1 + 12

ln(n̄k)
2

n̄k

)(
∑
τ≤t

∫ 1

0
qατ,j+1(q)dq− Bj+1

ln(n̄k)

n̄k

)
.
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We now bound the last term in (4.53). Note that the function−Γk(n̄ku)′= n̄k(n̄ku)k−1e−n̄ku

is increasing in [0, (k− 1)/n̄k] and decreasing in [(k− 1)/n̄k,+∞). Then,

θ⋆j

∫ ε j,k−j

0
(−gn,k)

′(q)dq

≤ 1
k

∫ ε j,k

0
(−gn,k)

′(q)dq (Since ε j,k−j ≤ ε j,k and θ⋆j ≤ 1/k)

≤ n
k!

(
1 + 4

k2

n

)∫ ε j,k

0
(−Γk(n̄ku))′du (Using Proposition 17)

≤ n
k!

(
1 + 4

k2

n

)
n̄k

k

(
2c̄k

ln(n̄k)
1/k

n̄1+2/k
k

)k

(Using Claim 10)

≤ 2kk1/k

k!
ck

k

(
1 + 8

k2

n

)
ln(n̄k)

n̄k

≤ 4ck
k

(
1 + 12

ln(n̄k)
2

n̄k

)
ln(n̄k)

n̄k
,

where we used that 2kk1/k ≤ 4k! for all k ≥ 1 and the bound 8k2/n ≤ 12ln(n̄k)
2/n̄k for

n large. Then,

∫ 1

0
αt+1,j(q)dq + ∑

τ≤t

∫ 1

0
qατ,j(q)dq

≤
(

1 + 12
ln(n̄k)

2

n̄k

)
∑
τ≤t

∫ 1

0
qατ,j+1(q)dq

+ 4ck
k

(
1 + 8

k2

n

)
ln(n̄k)

n̄k
+ Bj

ln(n̄k)

n̄k
+

(
1 + 12

ln(n̄k)
2

n̄k

)
ck
k!

ln(n̄k)

n̄k

−
(

1 + 12
ln(n̄k)

2

n̄k

)
ln(n̄k)

n̄k
Bj+1

≤
(

1 + 12
ln(n̄k)

2

n̄k

)
∑
τ≤t

∫ 1

0
qατ,j+1(q)dq +

(
1 + 12

ln(n̄k)
2

n̄k

)
ln(n̄k)

n̄k

(
4ck

k +
ck
k!

+ Bj − Bj+1

)
=

(
1 + 12

ln(n̄k)
2

n̄k

)
∑
τ≤t

∫ 1

0
qατ,j+1(q)dq,

where we used that Bj = (4ck
k + ck/k!) · (j− 1) for j ≥ 1. This finishes the proof of

Claim 8.

4.5 A tight prophet inequality for sequential assignment

In this section, we show that our new provable lower bounds for the k-selection
prophet inequality imply a tight approximation ratio for the i.i.d. sequential stochastic
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assignment problem by Derman et al. [26], that we call SSAP in what follows. We
provide the proof in two steps. Firstly, we show that SSAP is more general than
(k,n)-PIP in the sense that any policy for the sequential stochastic assignment problem
with n time periods implies a policy for (k,n)-PIP for any k ∈ [n] (Proposition 19).
This shows that the approximation ratio cannot be larger than mink∈[n] γn,k. Secondly,
we match the upper bound by using the structure of the optimal policy for SSAP
(Proposition 20).

In the SSAP, the input is given by n non-negative values (rewards) r1≤ r2≤ · · · ≤ rn

and we observe exactly n non-negative values, presented one after the other in n time
periods, and drawn independently from a distribution F. For notational convenience,
we assume that time starts at t = n and decreases all the way down to t = 1, i.e.,
the value t represents the number of time periods that remain before the next value
is presented. For every period t, we observe the value Xt ∼ F, and we have to
irrevocably assign the value Xt to one of the unassigned rewards rτ’s. The goal is to
find a sequential policy π that maximizes vn,F,r(π) = E

[
∑n

t=1 Xtrπ(t)

]
where π is a

permutation of [n]. Note that the optimal offline value corresponds to ∑n
t=1 rtE

[
X(t)

]
.

We denote by αn the largest approximation ratio that any policy can attain in SSAP for
instances with n time periods.

Proposition 19. For every n, it holds that αn ≤mink∈[n] γn,k.

Proof. Let π be a policy for SSAP with approximation ratio α. Given k ∈ [n], we use π

to construct a policy π′ for (k,n)-PIP. Without loss of generality, we can assume that
OPTn,k = 1. Fix ε ∈ (0,1/n2) and consider the following instance for SSAP: ri = εi for
each i ∈ {1, . . . ,n− k} and ri = 1 for each i ∈ {n− k + 1, . . . ,n}. The policy π′ simulates
π by creating r1 ≤ r2 ≤ · · · ≤ rn as defined before. When π assigns Xt to some ri = 1,
then π′ selects the value Xt, while if π assigns Xt to some ri = εi, then π′ discards Xt.
Then, we have that

E

[
n

∑
t=1

Xt1{t selected by π}

]
≥ αE

[
n

∑
t=1

rtX(t)

]
− εn

≥ αE

[
k

∑
t=1

X(n−t+1)

]
− (1 + α)εn = α− (1 + α)εn.

This shows that the approximation ratio of π′ is at least α− (1 + α)εn. Since this holds
for any ε ∈ (0,1/n2), we conclude that π′ has an approximation ratio of at least α.
Since this holds for any SSAP policy for n time periods and any k ∈ [n], we conclude
the proof.

Proposition 20. For every n, it holds that αn ≥mink∈[n] γn,k.

106



To prove this proposition, we need to use the structure of the optimal dynamic
programming policy for SSAP shown by Derman et al. [26], which we describe
in what follows. For each time distribution F and each time t, there exist values
0 = µ0,t(F) ≤ µ1,t(F) ≤ · · · ≤ µt,t(F), where the value µi,t is the optimal expected value
in problem with t − 1 time periods in which the reward ri is assigned under the
optimal policy. If Xt ∈ [µτ−1,t(F),µτ,t(F)] then, the optimal policy assigns Xt with the
τ-th smallest available reward for τ ∈ {1, . . . , t}. Furthermore, Derman et al. [26] show
that vn,F,r(π

⋆) = ∑n
t=1 rtµt,n+1(F). Note that the values µ are completely independent

of the rewards, and they just depend on the distribution F and n.

Proof of Proposition 20. For every ℓ ∈ [n], let dℓ = rℓ − rℓ−1 where r0 = 0. Since the
rewards rt are non-decreasing in t, we have dℓ ≥ 0 for every ℓ ∈ [n], and rj = ∑

j
ℓ=1 dℓ.

Then, for every distribution F, we have

∑n
t=1 rtµt,n+1(F)

∑n
t=1 rtE[X(t)]

=
∑n

τ=1 dτ ∑n
t=τ µt,n+1(F)

∑n
τ=1 dτ ∑n

t=τ E[X(t)]
≥ min

τ∈[n]

∑n
t=τ µt,n+1(F)

∑n
t=τ E[X(t)]

.

Note that ∑n
t=τ µt,n+1(F) is the reward collected by the optimal policy π⋆ in the

instance r1 = · · · = rτ−1 = 0 < 1 = rτ = · · · = rn. Furthermore, ∑n
t=τ E[X(t)] is the

sum of the n − τ + 1 largest values in a sequence of n i.i.d. samples from F,
i.e., ∑n

t=τ E[X(t)] = OPTn,n−τ+1(F). Therefore, the ratio inside the minimization
operator can be interpreted as the ratio in a (k,n)-PIP with k = n − τ + 1. Since
π⋆ is optimal for the instance r described above, then it must be the case that
vn,F,r(π

⋆) = ∑n
t=τ µt,n+1(F) ≥ γn,n−τ+1OPTn,n−τ+1(F). The proof follows since this

holds for every τ ∈ [n].

Proposition 19 and Proposition 20 imply that αn = mink∈[n] γn,k for every n. The
1− kke−k/k! lower bound on γn,k imply that γn,k is at least 0.78 for k ≥ 3 (see, e.g.,
[10, 27]) which is in particular larger than liminfn γn,1 ≈ 0.745. Since our results imply
that liminfn γn,2 ≥ 0.829, we conclude that liminfn αn = liminfn γn,1 ≈ 0.745.
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Chapter 5

Discussion and Future Work

5.1 Competition complexity for i.i.d values

An additional set of questions that fits the wider theme of chapter 2 concerns the
competition complexity of static pricing. Here—unlike in the case of dynamic pricing—
there are two questions we could ask. The first comparison is between static pricing
A′m and the optimal auction Mn; the other is between static pricing A′m and dynamic
pricing An.

For the first comparison between A′m and Mn, we observe the following. First,
since A′m ≤ Am for all m, our impossibility (Main Result 1) implies that the exact
competition complexity of static pricing is unbounded. Moreover, while the approx-
imate competition complexity of static pricing may be linear (similar to our Main
Result 2 for dynamic pricing), the dependence on ε certainly has to be worse. This
follows from considering the uniform case: For m sufficiently large, we have that
1− 2log(m)/m ≤ A′m ≤ 1− log(m)/(3m) (see Appendix A for a derivation of these
inequalities). Since Mn ≈ 1− 1/n, for large m and n, this means that to ensure that
(1 + ε)A′m ≥ Mn, we approximately need that (1 + ε)(1− log(m)/(3m)) ≥ 1− 1/n.
Then, for ε small with respect to n, say ε = 1/n2, we can approximate by subtracting ε

from the left-hand side. We get 1− (1 + ε) log(m)/(3m) ≥ 1− 1/n, which happens if
and only if 3m/log(m) ≥ n(1 + ε), which for ε of this order implies that we need at
least m = cn with c = Ω(log(1/ε)).

For the other comparison, between A′m and An, observe that for the exact version,
we need m = Ω(n log(n)), even for the uniform distribution. This again follows
from the asymptotic formulas for A′m ≈ 1− 2log(m)/m and An ≈ 1− 2/(n + log(n) +
1.76799), which show that roughly what we need is that m/log(m) ≥ n and therefore
m = Ω(n log(n)). We leave the full resolution of these gaps, which will shed additional
light on the relative power of static and dynamic pricing, to future work.
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5.2 Competition complexity for independent values

In chapter 3, section 3.5.1 obviously leaves more open than answered questions. In
fact, we introduce a quite general model of what we believe is a good way to extend
the study of competition complexity to a combinatorial setting. In theorem 7, we prove
that the (1− ε)-competition complexity of block-consistent prices for submodular
and XOS combinatorial auctions is O(log(1/ε)). It would be very interesting to find,
maybe even for simpler subclasses, if it is possible to get asymptotic results that
lie somewhere between O(log(1/ε)) and the main result of this chapter for a single
item, O(loglog(1/ε)). For example, we could study the competition complexity for
the vertex arrival model in bipartite graphs with one-sided arrival. This problem
falls in the more general XOS combinatorial auctions setting of Section 3.5.2. More
specifically, we want to consider an underlying bipartite graph G = (U,V, E), and
the feasibility constraint is given by the set of matchings in G, that is, F = {S ⊆
E : for all i ∈ U ∪ V, |{e ∈ S : i ∈ e}| ≤ 1}, and the valuation function is additive, i.e.,
f (v,S) = ∑e∈S ve. The vertices of V arrive online, one by one, and upon their arrival,
their edges to all vertices in U are revealed. For every edge e ∈ E, the value ve is
sampled according to a distribution Fe, and we denote F =×e∈E Fe. This setting is
more structured, and it feels quite natural to consider resource augmentation in an
online vertex arrival model. We conclude that it could be of interest and moreover
possible, to further explore this direction.

5.3 K item i.i.d prophets

In chapter 4, we provide a new exact formulation for (k,n)-PIP. From our formulation,
we can derive the nonlinear system of differential equations (4.1)-(4.3) as n tends to
infinity. Using this system, we can obtain provable guarantees for the approximation
ratio of (k,n)-PIP when n is large. We use the nonlinear system (4.1)-(4.3) to provide
new improved bounds for small values of k ∈ {2, . . . ,5}. As a direct application of our
new bounds, we provide a tight approximation ratio for the SSAP.

We also remark that our linear programming formulation offers several character-
istics that make it suitable for a nonlinear analysis. [46] use a different formulation
to provide bounds on the k-selection problem, and for the particular case of k = 1,
they also connect to the Hill and Kertz equation. Nevertheless, they go through an
extra intermediate formulation in their limit analysis. With our approach, we can
directly provide a feasible solution in quantile space that converges to a solution of the
nonlinear system (see Subsection 4.4.1), and furthermore, it works for general values
of k.
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Finding an analytical formula for the approximation ratio of (k,n)-PIP remains an
open problem, but our findings offer a potential avenue toward this goal. Using the
system (4.1)-(4.3), we believe it is possible to characterize the value θ⋆k using an integral
equation and show that θ⋆k ≥ (1− e−k)/k, though we don’t yet have all details for this.
Providing a similar lower bound for j < k becomes nontrivial due to the dependency
with j + 1.

We also remark that, in principle, our solution is suboptimal as we only construct
a feasible solution to the weak dual [D]n,k. Another place where suboptimality could
appear is in the the weak duality between [D]n,k and [P]n,k. However, we believe these
two programs satisfy strong duality. In fact, the following LP:

sup v [Dstrong]n,k

s.t.
∫ 1

0
β1,ℓ(q)dq ≤ 1k(ℓ), for all ℓ ∈ [k],∫ 1

0
βt+1,k(q)dq ≤

∫ 1

0
(1− q)βt,k(q)dq, for all t ∈ [n− 1],∫ 1

0
βt+1,ℓ(q)dq ≤

∫ 1

0
(1− q)βt,ℓ(q)dq +

∫ 1

0
qβt,ℓ+1(q)dq, all t ∈ [n− 1],ℓ ∈ [k− 1],

vgn,k(u) +
dη

du
(u) ≤

n

∑
t=1

k

∑
ℓ=1

∫ 1

u
βt,ℓ(q)dq, for u ∈ [0,1],

βt,ℓ(q) ≥ 0 for all q ∈ [0,1], t ∈ [n] and ℓ ∈ [k],

η(q) ≥ 0 for all q ∈ [0,1],

η(0) = η(1) = 0,

can be shown to be a strong dual to [P]n,k. The weak duality proof is analogous to the
proof of Lemma 11, and the strong duality holds using a discretization argument as
in [67]. We remark that [D]n,k is a restriction of [Dstrong]n,k with η = 0.

Our results are valid for n large enough (n ≥ n0, with n0 depending only on
k); hence, providing a lower bound for all n remains an open problem and will
require additional structural results over the solution of the nonlinear system (4.1)-
(4.3). For instance, for k > 1 and j < k, we observe that the higher-order derivatives
of yj change signs over [0,1], hence, ruling out techniques that work in the case
k = 1 (see, e.g., [12, 23]). We leave the tightness of our approximation result in
Theorem 10 through our nonlinear system (4.1)-(4.3) as an open question, i.e., whether
infn≥1 γn,k = ∑k

ℓ=1 θ⋆ℓ .
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Appendix A

Missing proofs of Chapter 2

In this appendix we show that for sufficiently large values of m, we have 1 −
2log(m)/m ≤ A′m ≤ 1− log(m)/(3m). First observe that the expected welfare with m
buyers, obtained by a static price of T, can be lower bounded by the expected revenue,
which is equal to T ·P(maxj∈{1...,m}Xj > T) = T(1− Tm). Then, the optimal welfare
with static prices can be lower bounded by the revenue of the static price T⋆

m that
maximizes the expected revenue R(T) = T − Tm+1, which is equal to T⋆

m = ( 1
m+1)

1/m.
In particular, the expected revenue with price T⋆

m satisfies that

R(T⋆
m) = T⋆

m − (T⋆
m)

m+1 =

(
1

m + 1

)1/m
−
(

1
m + 1

)(m+1)/m
.

For every m ≥ 1 we have R(T⋆
m) ≥ R((1/m)1/m) = (1/m)1/m − (1/m)1+1/m, and we

have (1/m)1+1/m ≤ 2/m. Therefore, R(T⋆
m) ≥ (1/m)1/m − 2/m. Furthermore, observe

that (1/m)1/m = exp (− log(m)/m) ≥ 1− log(m)/m, where the last inequality holds
since exp(−x) ≥ 1− x for every x ≥ 0. Hence, we conclude that the optimal revenue
is at least 1− log(m)/m− 2/m ≥ 1− 2log(m)/m. For a given static price T > 0, the
expected welfare with m buyers is equal to

W(T) = (1− Tm)T + (1− Tm)(1− T)/2 =
1
2
(1 + T)(1− Tm) =

1
2

(
1
T
+ 1
)

R(T),

If T > T⋆
m, we have R(T) < R(T⋆

m), and therefore

W(T) =
1
2

(
1
T
+ 1
)

R(T) <
1
2

(
1

T⋆
m
+ 1
)

R(T⋆
m) = W(T⋆

m).
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Let Tm be the maximizer of the welfare W. The previous inequality implies that
Tm ≤ T⋆

m, and therefore

w(T) =
1
2
(1 + T⋆

m)(1− T⋆
m)

≤ 1
2
(1 + T⋆

m) =
1
2

(
1 +

(
1

m + 1

)1/m
)
≤ 1− log(m)

3m
,

where the last inequality holds since the function f (x) = 1− log(x)
3x − 1

2(1 + ( 1
x+1)

1/x)

is strictly decreasing in [1,∞)] and limx→∞ f (x) = 0.

120



Appendix B

Missing proofs of Chapter 3

B.1 Dealing with Point Masses

In this appendix, we discuss the adaptions of our results to the case where the
distributions have point masses. To deal with point masses, we can use standard
techniques (e.g., [5]) by allowing our algorithms to select, whenever observing a value
that is equal to the threshold τ, with a fixed probability p, and when the value exceeds
τ, with probability one. In particular, every threshold strategy can be described by
two parameters, τ and p.

To generalize our proofs to the case where there are point masses, we do the follow-
ing: Given distributions F1, . . . , Fn, and a quantile g∈ (0,1), let τ∗= supτ≥0 ∏n

i=1 Prvi∼Fi [vi≤
τ] ≤ g and q = ∏n

i=1 Prvi∼Fi [vi ≤ τ∗]. For every i ∈ [n], let qi = Prvi∼Fi [vi ≤ τ∗], and let
pi = Prvi∼Fi [vi = τ∗].

Then, it holds that ∏n
i=1 qi = q ≥ g ≥∏n

i=1(qi − pi), and both are strict inequalities,
unless pi = 0 for all i ∈ [n]. If pi = 0 for all i ∈ [n], then each threshold should be
interpreted as to select the first element that exceeds τ∗. Otherwise, let p∗ be the
unique value satisfying ∏n

i=1(qi − p∗ · pi) = g. Observe that p∗ must be in [0,1]. Then,
the algorithm should select the first element that exceeds τ∗, and should accept
the value τ∗ with probability p∗. Note that p∗ is independent of the order of the
distributions, and can be computed by only using distributional information.

We next show that if there are point masses, and if the algorithm must use a
deterministic single threshold (i.e., that selects the first value that exceeds it), then
the (1− ε)-competition complexity is in Θ(1/ε). To prove this we first show that the
(1− ε)-competition complexity is bounded from below by Ω(1/ε).

Proposition 21. For every n ≥ 2, and for every ε ∈ (0,1) there exists an instance with n i.i.d.
values that are distributed according to some distribution F with point masses, such that for
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every τ, and every k < 1
60ε , it holds that

Ev∼Fk·n [ALGτ(v)] < (1− ε) ·Ev∼Fn [max
i∈[n]

vi]. (B.1)

Proof. It is sufficient to consider ε < 1/20, since otherwise k = 0, and the claim holds
trivially. Consider the distribution F such that vi = 1+ 10 · Bernoulli(ε/(3n)) for every
i ∈ [n]. The RHS of Equation (B.1) satisfies that

(1− ε) ·Ev∼Fn [max
i∈[n]

vi] = (1− ε)
(

1 + 10
(

1−
(

1− ε

3n

)n))
≥ (1− ε)

(
1 + 10

(
1− e−ε/3

))
≥ 1 + 2ε,

where the last inequality holds for every ε ≤ 1/20. Now consider a static threshold
algorithm with a threshold τ. We have two cases.

Case 1: If τ < 1, then since the algorithm will select the first value v1, and the LHS of
Equation (B.1) satisfies that

Ev∼Fk·n [ALGτ(v)] = Ev∼F[v] = 1 +
10ε

3n
< 1 + 2ε,

where the inequality is since n ≥ 2. Thus, Equation (B.1) holds.

Case 2: If τ ≥ 1, then the algorithm will only accept the value 11, and the the LHS of
Equation (B.1) satisfies that

Ev∼Fk·n [ALGτ(v)] = Prv∼Fk·n [there exists i ∈ [nk] : vi > 1] · 11

= 11 ·
(

1−
(

1− ε

3n

)nk)
≤ 1,

where the last inequality holds for every n ≥ 2, every ε ≤ 1/20, and every k ≤ 1/(60ε).
Thus, (B.1) holds, and this concludes the proof.

We next show that there is deterministic single threshold algorithm that guarantees
a (1− ε)-competition complexity of O(1/ε).

Proposition 22. For every ε > 0 the (1− ε)-competition complexity of the class of deterministic
single threshold algorithms for the case where there are point masses is at most ⌈1/ε⌉.

Proof. Given an instance (F1, . . . , Fn), consider the threshold τ = (1− ε) ·Ev∼(F1,...,Fn)[maxi∈[n] vi],
and let p = Prv∼(F1,...,Fn)[maxi∈[n] vi ≤ τ]. Then, for k = ⌈1/ε⌉, it holds that
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Ev∼(F1,...,Fn)k [ALGτ(v)] = (1− pk)τ +
k

∑
ℓ=1

n

∑
i=1

Ev∼(F1,...,Fn)k [max(v(ℓ)i − τ,0)] · pℓ−1 ∏
j<i

Pr[v(ℓ)j ≤ τ]

≥ (1− pk)τ + pk
k

∑
ℓ=1

n

∑
i=1

Evi∼Fi [max(vi − τ,0)]

≥ (1− pk)τ + pk
k

∑
ℓ=1

Ev∼(F1,...,Fn)[max(max
i∈[n]

vi − τ,0)]

≥ (1− pk)τ + pk · 1
ε
·Ev∼(F1,...,Fn)[max

i∈[n]
vi − τ]

= (1− pk)τ + pk ·Ev∼(F1,...,Fn)[max
i∈[n]

vi]

≥ (1− ε) ·Ev∼(F1,...,Fn)[max
i∈[n]

vi],

which concludes the proof.

B.2 Alternative Arrival Orders

In this appendix, we study the competition complexity of the single-choice problem
beyond the block model. We first observe that our results continue to hold if the
variables in each block arrive in arbitrary order. We then consider a version where
variables can be moved across blocks, but in a limited way. Finally, we establish a
lower bound for the fully adversarial case where the order can be arbitrary.

Displacement Model. In our basic model — the block model — we assumed that
variables arrive in the same order within each block. In the displaced block model,
within each of the k blocks the n values sampled from the distributions F1, . . . , Fn are
presented in arbitrary order.

A first observation is that our proofs of the competition complexity results for
block threshold algorithms and single threshold algorithms continue to hold in the
displaced block model.

Observation 1. In the displaced block model, for every ε > 0 the (1− ε)-competition com-
plexity of the class of block threshold algorithms is Θ (loglog(1/ε)). Furthermore, the
(1− ε)-competition complexity of the class of single threshold algorithms is Θ (log(1/ε)).

Naturally, this motivates the question of studying the competition complexity in a
setting where the values can be displaced across the different blocks. In what follows,
for a pair of natural numbers (n,k) we denote by Sn the set of permutations of [n] and
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by σ(F1, . . . , Fn)k the instance that permutes (F1, . . . , Fn)k according to the permutation
σ ∈ Snk.

We introduce the γ-displacement model in which the adversary may change the
order of γk copies of an instance F = (F1, . . . , Fn), in a way such that if we split up the
γnk variables into γ-blocks of size γn, then within each γ-block every distribution
appears at least once. In what follows, we define a few objects to formally introduce
this model.

Given a positive integer γ and an integer i, let Bγ,n(i) = {(i− 1)γn + j : j ∈ [γn]}
be the i-th γ-block. Given an order σ ∈ Sγnk, and j ∈ [n], let I(σ, j) be the indices of σ

where there is a variable of type j. Finally, let Dγ(n,k) be the subset of permutations
in Sγnk satisfying that, after permutation according to σ, each γ-block, contains at least
one of each index in [n], that is

Dγ(n,k) =
{

σ ∈ Sγnk : for every j ∈ [n] and every i ∈ [k], |I(σ, j) ∩ Bγ,n(i)| ≥ 1
}

.

In the γ-displacement model, we compare minσ∈Dγ(n,k) Ev∼σFγk [ALGτ(v)] to Ev∼F[maxi∈[n] vi],
where F = (F1, . . . , Fn). We remark that the 1-displacement model corresponds to the
displaced model discussed in Observation 1. In the following proposition, we show
that the competition complexity in the γ-displacement model increases by at most a
factor γ in comparison to the 1-displacement model.

Proposition 23. In the γ-displacement model, for every ε > 0 the (1− ε)-competition com-
plexity of the class of block threshold algorithms is O (γ loglog(1/ε)).

Proof. To prove the result, we provide a reduction of the γ-displacement model to the
block model. In the block model with k copies, let τ = (τ1, . . . ,τk) be the thresholds
corresponding to the quantiles pℓ = Prv∼(F1,...,Fn)[maxj∈[n] vj ≥ τℓ] for ℓ ∈ [k]. Given
some permutation σ ∈ Dγ(n,k), define the thresholds τ′ = (τ′1, . . . ,τ′k) to be such that
Prv∼σFγk [maxj∈Bγ,n(ℓ) vj ≥ τ′ℓ] = pℓ for ℓ ∈ [k]. Then, in the instance σ(F1, . . . , Fn)γk with
γk copies, consider the block thresholds τ′ = (τ′1, . . . ,τ′1,τ′2, . . . ,τ′2, . . . ,τ′k, . . . ,τ′k) where
each threshold τ′ℓ for every ℓ ∈ [k] is repeated consecutively γ times. Since σ ∈ Dγ(n,k),
for every x ≥ 0 and every ℓ ∈ [k],

Prv∼σFγk [maxj∈Bγ,n(ℓ) vj ≥ x] ≥ Prv∼F[maxj∈[n] vj ≥ x],

that is, we have a stochastic dominance inequality. We can then adjust the block model
proof in Section 3.3 on γ-blocks instead of single blocks to get that O (γ loglog(1/ε))

copies provides a (1− ε)-competition complexity in the γ-displacement model.
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We next show that an equivalent guarantee for the case of single-threshold algo-
rithms cannot be achieved: namely, the (1− ε)-competition complexity of this type of
algorithms in the γ-displacement model has to scale at least polynomially in 1/ε.

Proposition 24. For the γ-displacement model, there exists a γ > 0 such that the (1− ε)-
competition complexity of any single-threshold algorithm is at least 1/(6ε1/3).

Proof. Consider ε > 0 small enough, such that 0 < ε < 0.076. For ease of presentation,
suppose that 1/ε is an integer. Consider the following problem instance with n = 1

ε + 2
random variables of three different types: There is one random variable of type 1, with
distribution 1 + U[0, ε10]. There is one random variable of type 2, whose distribution
is 1 + ε1/3 + U[0, ε10] with probability ε1/3 and U[0, ε10] otherwise. There are 1/ε

many random variables of type 3, with distribution U[0, ε10]. So we basically have a
deterministic one (type 1), a high value with low probability (type 2), and many zeros
(type 3) — plus some random noise. We denote the distributions of these random
variables by F1, F2, and F3. Let F = F1 × F2 × F3 × . . .× F3.

The prophet can take the high value (the ≈ 1+ ε1/3 value) from the second random
variable if it realizes, or the guaranteed value of ≈ 1 from the first random variable if
it doesn’t. It can thus achieve an expected value of at least

OPT≥ ε1/3 · (1 + ε1/3) + (1− ε1/3) · 1 = 1 + ε2/3.

Consider the γ-displacement model for γ = 3 and k copies. We want to show that
any single-threshold algorithm, in order to achieve a (1− ε)-approximation to the
prophet, must have k ≥ 1/(6ε1/3). Assume towards contradiction that k < 1/(6ε1/3).

Recall that in the γ-displacement model we seek a guarantee that applies for any
possible grouping of the γnk random variables, into k many γ-blocks of size γn each.
We construct a hard instance as follows. The first γ-block is:

(1, . . . ,1︸ ︷︷ ︸
2k+1

,2,2,2,3, . . . ,3︸ ︷︷ ︸
3
ε +2−2k

)

All the remaining γ-blocks are:

(1,2,2,2,3, . . . ,3︸ ︷︷ ︸
3
ε +2

)

Here 1,2, and 3 indicate that the respective random variable is of that type. So in
the first γ-block we have 2k + 1 random variables of type 1, followed by 3 random
variables of type 2, followed by 3/ε + 2− 2k random variables of type 3. Similarly, in
the remaining γ-blocks we have one random variable of type 1, followed by 3 random
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variables of type 2, followed by 3/ε + 2 random variables of type 3. Note that both
types of blocks consist of γn = 3/ε + 6 random variables, and that variables of type 1
and type 2 occur for a total of 3k times while variables of type 3 occur for a total of
3k/ε times. So this forms a valid instance.

Let’s now analyze the performance of an arbitrary single-threshold algorithm ALG.
Let T ≥ 0 be the algorithm’s threshold, and let q = PrX∼F1 [X ≤ T].

Pr[ALG≥ 1] ≤ 1− q3k(1− ε1/3)3k ≤ 1− q3k(1− 3kε1/3),

where the last inequality uses that (1− x)3k ≥ (1− 3kx) for x = ε1/3.
Next we show an upper bound on the probability that the algorithm stops on a

value that is at least 1 + ε1/3. For this the algorithm must skip over all the random
variables of type 1 in the first γ-block. Therefore,

Pr[ALG≥ 1 + ε1/3] ≤ q2k+1 ≤ q2k,

where we used that q ≤ 1. We thus obtain,

E[ALG] ≤ Pr[ALG≥ 1] + ε1/3 · Pr[ALG≥ 1 + ε1/3] + ε10

= 1− q3k(1− 3kε1/3) + ε1/3q2k + ε10.

We need that E[ALG] ≥ (1− ε)OPT. This gives us the following inequality

1− q3k(1− 3kε1/3) + ε1/3q2k + ε10 ≥ (1− ε)(1 + ε2/3),

which by rearrangement gives us that

ε + ε5/3 + ε10︸ ︷︷ ︸
< ε2/3

2

+ ε1/3q2k︸ ︷︷ ︸
≤q1.5kε1/3

+3kε1/3q3k︸ ︷︷ ︸
≤ q3k

2

≥ q3k + ε2/3,

where the underlined inequalities hold since ε < 0.076, q ≤ 1, and k < 1/(6ε1/3).
However, by the short multiplication formula1 we get that

q3k + ε2/3 =
ε2/3

2
+

q3k

2
+

√ ε2/3

2

2

+

√
q3k

2

2
 ≥ ε2/3

2
+

q3k

2
+ q1.5kε1/3.

This yields a contradiction, which implies that k ≥ 1/(6ε1/3).
1The short multiplication formula that we are using here is (a− b)2 = a2− 2ab+ b2. Since (a− b)2≥ 0,

this shows that a2 + b2 ≥ 2ab. We apply this to a =
√

ε2/3/2 and b =
√

q3k/2.
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Fully Adversarial Model. Beyond bounded displacement, a natural question is to
ask what can be said in the case where the adversary is not restricted to choosing
an order among a limited family of permutations, but can instead arrange the nk
distributions in any order. We refer to this as the fully adversarial model. It corresponds
to the case where the instance of the online algorithm is given by σ(F1, . . . , Fn)k, for an
arbitrary σ ∈ Snk. That is, each distribution is used k times to sample values, but the
order in which they are presented to the online algorithm is arbitrary. We show that
in this case the (1− ε)-competition complexity is lower bounded by Ω(1/ε).

Proposition 25. For all n ≥ 2, ε ∈ (0,1) and every k < 1/(4ε), there exist distributions
F1, . . . , Fn and a permutation σ ∈ Snk such that for every sequence of thresholds τ we have

Ev∼σ(F1,...,Fn)k [ALGτ(v)] < (1− ε) ·Ev∼(F1,...,Fn)[maxi∈[n] vi].

Proof. First note that for ε ∈ [1/2,1), the condition k < 1/(4ε) implies k = 0. Hence
we may assume ε ∈ (0,1/2). Let F1 = . . . = Fn−1 = 1 with probability 1, and Fn = 2
with probability 2ε and Fn = 0 otherwise. Let σ be the permutation that sends the k
copies of Fn to be the last k distributions seen by the algorithm. Observe that a single
threshold algorithm is optimal for this instance. Then, consider any single threshold
τ ∈ (1,2]. Then for every ε ∈ (0,1/2) and every k < 1/(4ε), we have

Ev∼σ(F1,...,Fn)k [ALGτ(v)] = (1− (1− 2ε)k) · 2≤ 7/8.

Hence, the optimal threshold is at most 1, and yields Ev∼σ(F1,...,Fn)k [ALGτ(v)] = 1. On
the other hand,

Ev∼(F1,...,Fn)[maxi∈[n] vi] = 2ε · 2 + (1− 2ε) · 1 = 1 + 2ε.

This concludes the proof, as for every ε ∈ (0,1/2), we have (1− ε)(1 + 2ε) > 1.

B.3 Expected Number of Blocks

In this appendix, we make a remark on the expected performance of the single
threshold algorithm. Recall that its competition complexity in the block model is
Θ(log(1/ε)) (Theorem 6).

Proposition 26. There is a single threshold algorithm that, in expectation, terminates after
two blocks and achieves an expected value of at least Ev∼F[maxi∈[n] vi].

Proof. We consider the same algorithm as in Lemma 8, namely a single-threshold
algorithm, with threshold τ∗ satisfying ∏n

i=1 Prvi∼Fi [vi ≤ τ∗] = 1
2 . Equation (3.11) shows
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that the expected value achieved by this algorithm, conditional on stopping, is at least
Ev∼F[maxi∈[n] vi]. We additionally observe that the expected number of blocks after

which it stops is given by ∑∞
i=1 i (1/2)i = 2.

We remark that the preceding result is essentially tight: With k copies, no algorithm
can get a better approximation to Ev∼F[maxi∈[n] vi] than k/2. Thus, the expected
number of blocks to achieve a (1− ε)-approximation, is at least 2− 2ε.

B.4 Matching Feasibility Constraints

In this appendix, we study the competition complexity for the vertex arrival model in
bipartite graphs with one-sided arrival. This problem falls in the more general XOS
combinatorial auctions setting of Section 3.5.2.

More specifically, in this setting there is an underlying bipartite graph G = (U,V, E),
and the feasibility constraint is given by the set of matchings in G, that is, F = {S ⊆
E : for all i ∈ U ∪ V, |{e ∈ S : i ∈ e}| ≤ 1}, and the valuation function is additive, i.e.,
f (v,S) = ∑e∈S ve. The vertices of V arrive online, one by one, and upon their arrival,
their edges to all vertices in U are revealed. For every edge e ∈ E, the value ve is
sampled according to a distribution Fe, and we denote F =×e∈E Fe.

Theorem 7 implies that the (1− ε)-competition complexity of block-consistent
prices for this matching setting is O(log(1/ε)). In what follows, we show how to
obtain this result by a different approach based on online contention resolution
schemes. Our Algorithm 1 extends the one proposed by [33] for vertex arrival model
in bipartite graphs with one-sided arrival2.

Theorem 11. For every k≥ 1, for every bipartite graph G = (U,V, E), and every F =×e∈E Fe,
Algorithm 1 always returns a matching in G, and it holds that

Ev∼Fk [∑e∈ALG(v) ve] ≥
(

1− 1
2k

)
·Ev∼F[maxS∈F ∑e∈S ve],

where F is the set of matchings in G. In particular, the (1− ε)-competition complexity of
Algorithm 1 for the online matching problem with one-sided vertex arrival is O(log(1/ε)).

Proof. First, observe that the algorithm is well defined since 2− ∑j′<j x(j′,u∗) ≥ 2−
∑j′ x(j′,u∗) ≥ 2− 1 = 1. We assume without loss of generality that for every u ∈ U,
it holds that ∑j∈V x(j,u) = 1. This assumption can be made by adding |U| auxiliary
vertices that have edges to all edges in U, and all their edges always have a value of

2Ezra et al. [33] showed that the result holds also with respect to non-bipartite graphs.
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Algorithm 1: Online contention resolution scheme
Initialize ALG← ∅;
for i ∈ {1, . . . ,k} do

for j ∈ {1, . . . , |V|} do
1. Observe v(i)j,u for every u ∈U;
2. Sample ṽe ∼ Fe for every e ∈ E not incident to j;
3. Compute a maximum matching µ⋆ in G with edge-weights w as

follows:
wj,u = v(i)j,u for every u ∈U, and we = ṽe for every other edge;
4. if u∗ ∈U, the partner of j in µ⋆, exists and is available then

Match j with u∗ with probability 1/(2−∑j′<j x(j′,u∗)), where
xe = Pr[e ∈ argmaxS∈F ∑e∈S ve] for every e ∈ E;

Update ALG← ALG∪ {(j,u∗)};
end

end
end
return ALG;

zero. It holds that

Ev∼F

[
max
S∈F ∑

e∈S
ve

]
= ∑

e∈E
Pr

v∼F

[
e ∈ argmax

S∈F ∑
e∈S

ve

]
·Ev∼F

[
ve | e ∈ argmax

S∈F ∑
e∈S

ve

]
. (B.2)

On the other hand, for every i ∈ [k], and every e ∈ E, it holds that

Ev∼Fk [v(i)e | v
(i)
e ∈ ALG(v)] = Ev∼F

[
ve | e ∈ argmax

S∈F ∑
e∈S

ve

]
, (B.3)

since (v(i)
(j,u))u∈U , (ṽ(j′,u))j′∈V\{j},u∈U are distributed the same as v∼ F. We refer to time

(j, i) to the arrival of the j-th node in block i. In what follows, we prove by induction
that for every u ∈U

Pr[u is available at time (j, i)] =
2−∑j′<j x(j′,u)

2i . (B.4)

The base case is when i = 1, and j is the first vertex to arrive, and then it holds that
(2−∑j′<j x(j′,u))/2i = (2− 0)/2 = 1. Assume by induction that it is true if j is not the
first vertex to arrive at block i, then for i and j− 1, and else j is the first to arrive at
block i > 1, then for i− 1 and jlast ∈ V, where jlast is the last vertex to arrive in block
i − 1. If j is not the first vertex of block i, then if we denote by jpre the vertex that
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arrives before j in block i, then

Pr[u is available at time (j, i)]

= Pr[u is available at time (jpre, i)]

(
1− Pr[u is the partner of jpre] ·

1
2−∑j′<jpre x(j′,u)

)

=
2−∑j′<jpre x(j′,u)

2i

(
1− x(jpre,u) ·

1
2−∑j′<jpre x(j′,u)

)

=
2−∑j′<jpre x(j′,u)

2i

(
2−∑j′<j x(j′,u)

2−∑j′<jpre x(j′,u)

)
=

2−∑j′<j x(j′,u)

2i .

Else, if j is the first vertex of block i, then

Pr[u is available at time (j, i)]

= Pr[u is available at time (jlast, i− 1)]

(
1− Pr[u is the partner of jlast] ·

1
2−∑j′<jlast

x(j′,u)

)

=
2−∑j′<jlast

x(j′,u)

2i−1

(
1− x(jlast,u) ·

1
2−∑j′<jlast

x(j′,u)

)

=
2−∑j′<jlast

x(j′,u)

2i−1

(
2−∑j′≤jlast

x(j′,u)

2−∑j′<jlast
x(j′,u)

)
=

2−∑j′<j x(j′,u)

2i ,

where the last equality is since ∑j′<j x(j′,u) = 0, and ∑j′≤jlast
x(j′,u) = 1, which concludes

the proof of the induction. Finally, for every e ∈ E, we have

∑
i∈[k]

Pr[v(i)e ∈ ALG(v)] = xe ·
1

2−∑j′<j x(j′,u∗)
· ∑

i∈[k]
Pr[u∗ is available at time (j, i)]

= xe ·
1

2−∑j′<j x(j′,u∗)
· ∑

i∈[k]

2−∑j′<j x(j′,u∗)

2i = xe ·
(

1− 1
2k

)
,

(B.5)

where the second equality holds by Equation (B.4). The theorem then holds by
combining (B.2), (B.3), and (B.5), together with Prv∼F[e ∈ argmaxS∈F ∑e∈S ve] = xe.
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Appendix C

Missing proofs of Chapter 4

C.1 Missing Proof from Section 4.3

Proof of Proposition 11. We show that for any j ∈ [n],
∫ 1

0 j(n
j)(1 − u)j−1un−jF−1(1 −

u)du = E[X(j)]. This is sufficient since summing over all j ∈ {n − k + 1, . . . ,n} will
then complete the proof. By performing a change of variables x = F−1(1− u), we get

∫ 1

0
j
(

n
j

)
(1− u)j−1un−jF−1(1− u)du

=
∫ 0

∞
j
(

n
j

)
(F(x))j−1(1− F(x)))n−jx(− f (x))dx

=
∫ ∞

0

n!
(j− 1)!(n− j)!

f (x)(F(x))j−1(1− F(x)))n−jx dx = E[X(j)],

where f (x) = F′(x). The final equality simply follows from the known fact that the
probability density function fX(j)

(x) = n! f (x)(F(x))j−1(1− F(x)))n−j/((j − 1)!(n −
j)!). This finishes part (i).

For part (ii), recall that E[X|X ≥ x]Pr[X ≥ x] = E[X1{X≥x}]. On the other hand,
we have that

∫ q

0
F−1(1− u)du =

∫ F−1(1−q)

∞
z(− f (z))dz =

∫ ∞

x
z f (z)dz = E[X1{X≥x}],

where we used the change of variable z = F−1(1− u), and in the second to last equality,
we use that q = Pr[X ≥ x] = 1− F(x). This finished the proof.
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C.2 Missing Proofs from Section 4.4

Proof of Claim 5. By induction ym,j,t−1 > ym,j,t. Then, we can compare the following
ratio

m ·
Γk(− lnym,j,t−1)− Γk(− lnym,j,t)

Γk+1(− lnym,j,t−1)− Γk+1(− lnym,j,t)
= m ·

∫ − lnym,j,t
− lnym,j,t−1

xk−1e−x dx∫ − lnym,j,t
− lnym,j,t−1

xke−x dx

≥ m inf
x∈[− lnym,j,t−1,− lnym,j,t]

1
x

= m · 1
− lnym,j,t

=
m

lnm
≥ 1

From here, the claim follows.

Proof of Claim 6. By contradiction, assume that θj > θ⋆j+1. Let t ≤ t′. Now, note that

1
m

(
k!− Γk+1(− lnym,j,t)−

θ⋆j+1

θj
(k!− Γk+1(− lnYj+1(t/m)))

)

≥
θ⋆j+1

θjm
(
k!− Γk+1(− lnym,j,t)− (k!− Γk+1(− lnYj+1(t/m)))

)
=−

θ⋆j+1

mθj

(
Γk+1(− lnym,j,t)− Γk+1(− lnYj+1(t/m)))

)
On the other hand, using (4.47) and (4.48) and Claim 5, we obtain

1
m

(
k!− Γk+1(− lnym,j,t)−

θ⋆j+1

θj
(k!− Γk+1(− lnYj+1(t/m)))

)

≤−
θ⋆j+1

mθj
(Γk+1(− lnYj+1((t− 1)/m))− Γk+1(− lnYj+1(t/m)))

From here, we deduce Γk+1(− lnYj+1((t− 1)/m)) ≤ Γk+1(− lnym,j,t) or equivalently
Yj+1((t− 1)/m) ≤ ym,j,t. For t = 1, this last inequality implies ym,j,1 ≥ 1 and this is
impossible as we always have ym,j,1 < 1 for any θj > 0. We conclude that θj ≤ θ⋆j+1.

Proof of Proposition 12. In what follows, we use the convention that an empty sum is
equal to zero. We also avoid writing the limits in the integrals and the differentials
“dq” as they are clear from the context. More specifically, we write

∫ 1
0 h(q)dq =

∫
h
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for any integrable function h in [0,1]. We simply say that (α,v) is feasible if (α,v) is
feasible to [D]n,k(n̄). We also use the notation n̄ = n̄k to avoid notational clutter.

We fix v ≥ 0 such that (α,v) is a feasible solution to [D]n,k(n̄). Let’s define the sets

J(α,v)
k = {t ∈ [n̄k] : (α,v) does not tighten constraint (4.32) for t}

J(α,v)
ℓ = {t ∈ [n̄k] : (α,v) does not tighten constraint (4.33) for t,ℓ}, ℓ < k

Let t′(α,v) = max{t ∈ J(α,v)
1 ∪ · · · ∪ J(α,v)

k }. If

J(α,v)
1 ∪ · · · ∪ J(α,v)

k = ∅,

then we define t′(α,v) = n̄ + 1; otherwise, t′ ∈ [n̄]. Let p′(α,v) = |{ℓ ∈ [k] : t′(α,v) ∈ J(α,v)
ℓ }|

be the number of constraints of type (4.32)-(4.33) for which the t′(α,v)-th constraint is
not tight.

Now, among all possible feasible solution (α,v), for a fixed v, choose the one that
maximizes t′(α,v). If t′(α,v) = n̄ + 1, then we are done. Otherwise, let t′ ∈ [n̄] be the
maximum value for such a solution. Among all feasible solutions (α,v) such that
t′(α,v) = t′ choose the one that minimizes p′ = p′(α,v). Note that p′ ≥ 1. Now, we will
modify (α,v) by finitely many mass transfers and additions yielding a new feasible
solution (α′,v) such that either t′(α′,v) > t′ or either t′(α′,v) = t′ and p′(α′,v) < p′. In any
case, we will obtain a contradiction.

Let’s assume first that t′ ∈ J(α,v)
k —the general case is handled similarly; we explain

at the end the minor changes. We analyze two different cases:
Case 1. If t′ = n̄, then, we consider the solution ᾱt,k = αt,k for t < n̄ and ᾱn̄,k =

αn̄,k + ε1(0,1) with ε > 0 such that
∫

αn̄,k + ε + ∑τ<n̄
∫

qατ,k = 1. Also, ᾱt,ℓ = αt,ℓ for
ℓ < k. Note that (ᾱ,v) remains feasible and tightens one more constraint in (4.32); this
contradicts our choice of p′.

Case 2. If t′ < n, we define

ᾱt,k =


αt,k, t < t′,

αt′,k + ∑τ>t′ωtαt,k, t = t′,

(1−ωt)αt,k, t > t′,

where ωt′+1, . . . ,ωn ∈ [0,1]. Let ᾱt,ℓ = αt,ℓ for ℓ < k. Note that (ᾱ,v) satisfies (4.34), it
satisfies (4.32) for t < t′, and for t > t′, we have

∫
ᾱt,k + ∑τ<t

∫
qᾱτ,k =

∫
(1−ωt)αt,k +

∑τ<t
∫

qατ,k + ∑τ≥t ωτ

∫
qατ,k, which is increasing in ωτ for τ > t and decreasing in

ωt.

133



We start with the values ωt′+1, . . . ,ωn = 0 and at this point (ᾱ,v) is feasible. By
the choice of t′, we have

∫
αt′,k + ∑τ>t′ ωτ

∫
ατ,k + ∑τ<t

∫
qατ,k ≤ 1 for ωt′+1, . . . ,ωn > 0

small enough. Now, we increment ωt′+1 as much as possible while keeping feasi-
bility of (ᾱ,v). We repeat the same process in the order ωt′+2, . . . ,ωn. We note that
ωt′+1, . . . ,ωn are not all 0’s.

Suppose that we have
∫

ᾱt′,k +∑τ<t′
∫

qᾱτ,k =
∫

αt′,k +∑τ>t′ ωτ

∫
ατ,k +∑τ<t

∫
qατ,k <

1. Then, we claim that ωt′+1, . . . ,ωn̄ = 1. Indeed, let τ′ > t′ be the smallest τ such that
ωτ < 1. Then, ᾱt,k = 0, for t ∈ {t′ + 1, . . . ,τ − 1}. Furthermore, constraints (4.32) for
t ∈ {t′, t′ + 1, . . . τ − 1} are not tight, because they are dominated by constraint (4.32)
for t = t′ which is not tight. Since increasing ωτ does not affect constraints (4.32) for
t ≥ τ, we can increase slightly ωτ and contradict the choice of ωt′+1, . . . ,ωn̄. From
this analysis, we also deduce that every constraint (4.32) for t = t′, . . . , n̄ is not tight.
Furthermore, ᾱt,k = 0 for t > t′. Define

α̂t,k(q) =

ᾱt,k(q) (= αt,k(q)), t < t′,

ᾱt,k(q) + ctδ{1}(q), t ≥ t′,

where δ{1}(·) is the Dirac delta at one. We define α̂t,ℓ = ᾱt,ℓ = αt,ℓ for ℓ < k. Note that
(α̂,v) satisfies constraints (4.33) and constraints (4.34), and constraints (4.32) for t < t′.
If we define ct′ = 1−

∫
ᾱt′,k−∑τ<t

∫
qᾱτ,k > 0 we have that α̂ satisfies constraint (4.32) at

t = t′ with equality. For t > t′ we define ct = 1−∑τ<t
∫

qα̂τ,k ≥ 0. A small computation
shows that (α̂,v) is again feasible and tightens (4.32) for t′. Furthermore, all the other
constraints (4.33) remain unchanged for t ≤ t′ as they are only affected by terms αj,τ

with τ < t′. This implies that either p′(α̂,v) < p′ if p′ > 1 or t′(α̂,v) > t′ if p′ = 1. In any
case, this leads again to a contradiction to our choice of (α,v).

When t′ /∈ J(α,v)
k , we have t′ ∈ J(α,v)

ℓ for some ℓ < k. In this case, the analysis is the
same with the only difference that the constraints will have the value ∑τ<t

∫
qατ,ℓ+1 on

the right-hand side instead of 1. It is crucial to notice that this value is a non-negative
constant when modifying αt,ℓ; hence, our mass transfers and additions still work.
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Proof of Proposition 17. Part (i) follows directly by computing the derivative:

g′n,k(u) =
n

∑
j=n−k+1

j
(

n
j

)(
−(j− 1)(1− u)j−2un−j + (n− j)(1− u)j−1un−j−1

)
=

n−1

∑
j=n−k+1

j
(

n
j

)
(n− j)(1− u)j−1un−j−1 −

n

∑
j=n−k+1

j(j− 1)
(

n
j

)
(1− u)j−2un−j

=
n

∑
j=n−k+2

(j− 1)
(

n
j− 1

)
(n− j + 1)(1− u)j−2un−j −

n

∑
j=n−k+1

j(j− 1)
(

n
j

)
(1− u)j−2un−j

=
n

∑
j=n−k+2

n!
(j− 2)!(n− j)!

(1− u)j−2un−j −
n

∑
j=n−k+1

n!
(j− 2)!(n− j)!

(1− u)j−2un−j

= −(n− k + 1)(n− k)
(

n
k− 1

)
(1− u)n−k−1uk−1.

In the same line, part (ii) follows by evaluating directly g′n+1,k+1 using the previous
formula:

g′n+1,k+1(u) = −(n− k + 1)(n− k)
(

n + 1
k

)
(1− u)n−k−1uk =

n + 1
k

ug′n,k(u).

For part (iii), we have

−g′n,k(u) = (n− k + 1)(n− k)
(

n
k− 1

)
(1− u)n−k−1uk−1

=
(n− k + 1)

n̄k−1
k

(
n

k− 1

)
(n̄ku)k−1(1− u)n−k−1(n̄k + 1)

=
(n̄k + 2)

n̄k−1
k

n · (n− 1) · · · (n− (k− 1) + 1)
(k− 1)!

(n̄ku)k−1(1− u)n−k−1(n̄k + 1)

≤ n
(k− 1)!

(
n− k/2

n̄k

)k−1

(n̄ku)k−1(1− u)n−k−1(n̄k + 1)

≤ n
(k− 1)!

(
1 +

4k2

n

)
(n̄ku)k−1e−n̄ku(n̄k + 1).

The final inequality follows by the bound (1− u)x ≤ e−ux for u ∈ [0,1] and observing
that (

n− k/2
n̄k

)k−1

=

(
1 +

k/2 + 1
n− k− 1

)k−1

≤
(

1 +
k + 1

n− (k + 1)

)k+1

≤ exp((k + 1)2/(n− (k + 1)))
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Rewrite n = (k+ 1)+ c(k+ 1)2 for some c > 1. We get exp((k+ 1)2/(n− (k+ 1))) =
exp(1/c) and we can compute

(
1 + 4k2/n

)
≥ 1+ 2/c. Thus the inequality holds when

1
c ≤ ln(1 + 2/c), which is true for any c > 2. That is, letting n ≥ (k + 1) + 2(k + 1)2

suffices. This proves the claim as the above inequality can be slightly strengthened by
a factor of n̄k/(n̄k + 1).

For (iv), we have

−g′n,k(u) = (n− k + 1)(n− k)
(

n
k− 1

)
(1− u)n−k−1uk−1

≥
n̄2

k

n̄k−1
k

(
n

k− 1

)
(n̄ku)k−1(1− u)n−k−1

=
n̄2

k

n̄k−1
k

n · (n− 1) · · · (n− (k− 1) + 1)
(k− 1)!

(n̄ku)k−1(1− u)n−k−1

≥ n · n̄k
(k− 1)!

(
1− k

n̄k

)k−1

(n̄ku)k−1(1− u)n−k−1

≥ n · n̄k
(k− 1)!

(
1− 4

k
n

)k
(n̄ku)k−1e−n̄ku/(1−u)

≥ n
(k− 1)!

(
1− 4

k2

n

)(
1− n̄ku2

1− u

)
(n̄ku)k−1e−n̄kun̄k

where in the third equality we use that (1− u)−1 = 1 + u/(1− u) ≤ exp(u/(1− u)),
and in last inequality we use exp(−n̄ku/(1− u)) = exp(−n̄ku− n̄ku2/(1− u)) ≥
exp(−n̄ku)(1− n̄ku2/(1− u)). Observe that Γk(n̄ku)′= Γ′k(n̄ku)n̄k =−(n̄ku)k−1e−n̄kun̄k.
We conclude by noting that the function 1− n̄kx2/(1− x), in [0,1], is decreasing, pos-
itive at zero, and it has a unique root in the value (

√
4n̄k + 1− 1)/(2n̄k). Since this

value is larger than 1/(2
√

n̄k), the conclusion follows.

Proof of Proposition 18. Note that by (4.50), for every t ∈ (0,1) we have

|Φ′k,ℓ(t)| ≤ k! + |Φk+1,ℓ(t)|+
θ⋆ℓ+1
θ⋆ℓ

k! +
θ⋆ℓ+1
θ⋆ℓ
|Φk+1,ℓ+1(t)| ≤ 4k!

θ⋆ℓ+1
θ⋆ℓ

,

where the last inequality holds since Φk+1,r ≤ k! in (0,1) for every r ∈ [k], and θ⋆ℓ < θ⋆ℓ+1
by Proposition 12(ii). Let bk = 4k!maxℓ θ⋆ℓ+1/θ⋆ℓ . Then, since Φk,ℓ(1) = 0, using the
Taylor first-order approximation for Φk,ℓ in one, for every t ∈ (0,1) we have Φk,ℓ(t) ≤
bk(1− t). For each ℓ ∈ [k], by the formula Γk(x) = (k− 1)! · e−x ∑k−1

r=0 xr/r! applied with
x =− ln(Yℓ(t)) we conclude that bk(1− t)≥Φk,ℓ(t) = (k− 1)! ∑k−1

r=0 Yℓ(t)(− lnYℓ(t))r/r!,
and then Yℓ(t)(− lnYℓ(t))r ≤ bk · r!/(k− 1)!≤ bk, where the first inequality holds since
Yℓ(t) ∈ [0,1] for every t ∈ (0,1). This concludes part (i).

136



For the second part, by (4.50), for each ℓ ̸= k we have

−Φk,ℓ(t) =
∫ 1

t
Φ′k,ℓ(τ)dτ =

∫ 1

t

(
k!−Φk+1,ℓ(τ)−

θ⋆ℓ+1
θ⋆ℓ

(k!−Φk+1,ℓ+1(τ))
)

dτ

≤ (1− t)k!
(

1−
θ⋆ℓ+1
θ⋆ℓ

)
+

θ⋆ℓ+1
θ⋆ℓ

∫ 1

t
Φk+1,ℓ+1(τ)dτ.

For each ℓ ̸= k, choose δℓ > 0 such that Φk+1,ℓ+1(t)≤ k!(1− θ⋆ℓ/θ⋆ℓ+1)/2 and Yℓ(t)1/2(− lnYk(t))k−1≤
1 for t ∈ (δℓ,1). Using the first inequality, get

(1− t)k!
(

1−
θ⋆ℓ+1
θ⋆ℓ

)
+

θ⋆ℓ+1
θ⋆ℓ

∫ 1

t
Φk+1,ℓ+1(τ)dτ

≤ (1− t)k!
(

1−
θ⋆ℓ+1
θ⋆ℓ

)
+ (1− t)k!

1
2

(
θ⋆ℓ+1
θ⋆ℓ
− 1
)
= −k!(1− t)

1
2

(
θ⋆ℓ+1
θ⋆ℓ
− 1
)

.

Hence for this interval, using the bound Φk,ℓ(t) = Γk(− lnYℓ(t))≤ k!Yℓ(t)(− lnYℓ(t))k−1,
we have Yℓ(t) ≥ (1− t)2(θ⋆ℓ+1/θ⋆ℓ − 1)2/4. For ℓ = k, we have

(1− t)k!
(

1
kθk
− 1
)
≤ Γk(− lnYk(t)) ≤ k!Yk(t)(− lnYk(t))k−1.

By part (i), we know that Yk(t)≤ bk(1− t). Hence, for some δk > 0, Yk(t)1/2(− lnYk(t))k−1≤
1 for all t ∈ (δk,1). Hence, Yk(t) ≥ (1 − t)2(1/kθk − 1)2. Part (ii) follows by tak-
ing ∆k = max{δ1, . . . ,δk} and dk = min{(θ⋆j+1/θ⋆j ) − 1 : j ∈ {1, . . . ,k − 1}}/4. Using
Lemma 12, we can conclude that dk > 0.

From (4.49) we have Φ′′k,k(t) = −Φ′k+1,k(t) ≥ 0, since Φk+1,k is non-increasing. For
ℓ ̸= k,

|Φ′′k,ℓ(t)| = | −Φ′k+1,ℓ(t) + Φ′k+1,ℓ+1(t)|
≤ |Φ′k,ℓ(t)(− lnYℓ(t))|+ |Φ′k,ℓ+1(t)(− lnYℓ+1(t))|
≤ bk (− lnYℓ(t)− lnYℓ+1(t)) .

Let Nk = max{1/(1− ∆k) + 1,1/dk}. Then, for every n ≥ Nk we have 1− 1/n > ∆k.
By the previous part we have that Yℓ(1− 1/n) ≥ dkn−2 for all ℓ. Let ck = 6bk. Since
− lnYℓ(t)− lnYℓ+1(t) is increasing as a function of t, for every t ∈ (0,1− 1/n) we have
|Φ′′k,ℓ(t)| ≤ bk · 2ln(n2/dk) ≤ bk · 2ln(n3) = ck ln(n). This concludes the proof of part
(iii).
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For (iv), for ℓ ≥ 2, using a Taylor expansion around zero, for some ξ ∈ (0, t) and
t < 1− 1/n, we have

Φk,ℓ(t) = Γk(− lnYℓ(0)) + Γk(− lnYℓ)
′(0)t +

1
2

Γk(− lnYℓ)
′′(ξ)t2

≥ (k− 1)!−
θ⋆ℓ+1
θ⋆ℓ

k!t− ck ln(n)
2

t2

(Using the previous part and Γk(− lnYℓ)(0) = 0 using NLS)

≥ (k− 1)!− ck ln(n)
2

t2,

where we used the properties of NLSk(θ
⋆) and the definition of bk. Since Yℓ(0) = 1, for

some δk > 0 we have that Yℓ(t) = 1− εℓ(t) for t ∈ [0,δ] with εℓ(t) ≤ 1/2 for t ∈ [0,δ]

and εℓ(t)→ 0 when t→ 1. We simply write ε = εℓ(t) for convenience. Then, using the
characterization of the gamma function Γk as a Poisson distribution, we can deduce
that

ck ln(n)
2

t2 ≥
∫ − lnYℓ(t)

0
sk−1e−s ds

≥
∫ ε

0
sk−1e−s ds

= (k− 1)! ∑
j≥k

e−ε εj

j!

≥ (k− 1)!
k!

εke−ε ≥ 1
2
(k− 1)!

k!
εk,

where in the second inequality we used that ln(1− ε) ≤ −ε and the other inequalities
follow by straightforward computations. From here, we obtain that ε ≤ c̄k ln(n)1/kt2/k,
where c̄k = (kck)

1/k. This concludes (iv).

Proof of Claim 9. Using a Taylor expansion, we have

Φ′k,k

(
t

n̄k

)
− Φk,k((t + 1)/n̄k))−Φk,k(t/n̄k)

1/n̄k
= − 1

2n̄k
Φ′′k,k(ξ)

(For some ξ ∈ (t/n̄k, (t + 1)/n̄k))

We have Φ′′k,k = −Γk+1(− lnyk)
′ = −(− lnyk)

ky′k ≥ 0. This concludes the proof of the
claim.
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Proof of Claim 11. Using a Taylor expansion, we have

n̄k(Φk,ℓ((t− 1)/n̄k)−Φk,ℓ(t/n̄k)) + Φ′k,ℓ((t− 1)/n̄k)

= n̄k

(
1
n̄k

Φ′k,ℓ

(
t− 1

n̄k

)
+ Φk,ℓ

(
t− 1

n̄k

)
−Φk,ℓ

(
t

n̄k

))
= −n̄k ·

1
2n̄2

k
Φ′′k,ℓ(ξ) = −

1
2n̄k

Φ′′k,ℓ(ξ),

for some value ξ ∈ ((t− 1)/n̄k, t/n̄k). Since t/n̄k ≤ (n̄k − 1)/n̄k = 1− 1/n̄k, by Propo-
sition 18(iii) we have −Φ′′k,ℓ(ξ)≤ ck ln(n̄k), which concludes the proof of the claim.

Proof of Claim 12. We first verify that for every ℓ ∈ [k], for n̄k ≥ 1/dk, and t ≤ n̄k − 1
we have εℓ,t ≤ 3ln(n̄k)/n̄k, where dk is defined in Proposition 18. Indeed, using
Proposition 18(ii) we obtain

− lnYj(1− 1/n̄k) ≤ − ln(dk)/n̄k + 2ln(n̄k)/n̄k.

For n̄k ≥ 1/dk = 4/min{θ⋆ℓ+1/θ⋆ℓ − 1 : ℓ ∈ {1, . . . ,k− 1}}, we obtain the desired result.
Then

(
1− 4

(k + 1)2

n + 1

)−1(
1−

n̄kε2
j+1,t

1− ε j+1,t

)−1

≤
(

1 + 40
k2

n

)(
1− ln(n̄k)

2

n̄k − ln(n̄k)

)−1

≤ 1 + 10
ln(n̄k)

2

n̄k
,

which holds for n large.
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