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Abstract

This thesis explores the role of finance in facilitating a transition to a greener

economy and the impact of climate risks on markets and corporations.

The first chapter examines how firms respond to transition risks by focusing

on the EU Emissions Trading System (EU ETS) and its impacts. Leveraging

the EU ETS’s inclusion criteria and subsequent regulatory tightening, a fuzzy

regression discontinuity and a difference-in-differences analysis reveal two types

of spillovers: emission spillovers, as firms shift emissions across supply chains,

and technology spillovers, as firms increase their technological activities following

stricter regulations.

The second chapter investigates the pricing of building insurance, a critical mar-

ket for climate adaptation. It studies the price dispersion of building insurance

policies on a UK price comparison website. Using real property data and ficti-

tious customer profiles, the study obtained quoted annual price data from the

website and documented that, even after controlling for differences in policy fea-

tures, individual customers still face considerable price dispersion, and the degree

of dispersion varies significantly across customers. This dispersion is partially ex-

plained by customers’ preferences for certain providers. Further analysis indicates

that variations of risk pricing strategies across providers and the use of random-

ized pricing strategies also contribute to the observed price dispersion patterns.

The third chapter assesses whether corporate green bonds could improve the

greenness of the economy. A simple theoretical framework shows that one po-

tential channel for green bonds to make the world greener is through their use

by financially constrained firms as a commitment device. However, empirical ev-

idence shows that current issuers are typically less financially constrained and

already greener than non-issuers. This suggests that green bonds may not signifi-

cantly influence firms’ environmental behaviors under current market conditions.
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Chapter 1

The Ripple Effects of Carbon

Regulation: Insights from the EU

ETS

Abstract

This paper examines the impacts of the EU Emissions Trading System (EU ETS).

Using a fuzzy regression discontinuity (RD) design that leverages the unique in-

clusion criteria of the EU ETS, this study finds that while regulated firms sig-

nificantly reduced their Scope 1 emission intensity, there was a concurrent more

than twofold increase in Scope 2 emissions, suggesting potential emission spillover

through supply chains. This finding is supported by a decrease in the percentage

of European suppliers, who are typically under stricter environmental regulations.

Further investigation reveals that as the regulation became more stringent, firms

began seeking technological solutions for compliance, evidenced by increased tech-

nological connections, particularly in their role as licensees. Contrary to expec-

tations, regulated firms experienced increases in revenues and profits compared

to their unregulated counterparts. This outcome may be attributed to the over-

supply of allowances in the early phases and the ability of regulated firms to pass

higher costs onto customers.
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1.1 Introduction

With escalating global attention on combating climate change, the interest in

implementing carbon pricing1 to mitigate greenhouse gas (GHG) emissions is on

the rise. As reported by World Bank (2023), as of April 2023, there are 73 carbon

taxes or emission trading systems (ETSs) in operation, covering 23% of global

carbon emissions, with ETSs alone responsible for over 18% of these emissions.

Given the increasing adoption and substantial reach of carbon ETSs, it is im-

perative to gain an in-depth understanding of the effectiveness of these trading

systems in addressing the negative externalities of carbon emissions. Motivated

by this need, this paper aims to shed light on this question by studying the Eu-

ropean Union Emissions Trading System (EU ETS). As the world’s first major

carbon market, the EU ETS serves as a pivotal model for global cap-and-trade

systems, making its study critical for understanding the broader impacts of such

policies.

Since its launch in 2005, the EU ETS has been pivotal in reducing emissions from

regulated entities by 37%, while maintaining the financial stability of these firms

(Dechezleprêtre et al., 2023), as per the European Union’s report2. However, for a

complete evaluation of such environmental policies, it is essential to consider not

just the direct effects on regulated entities but also the potential indirect effects

or spillovers. Two types of spillovers should be considered when it comes to such

environmental regulation and thus are the focus of this paper: The first primary

spillover concern is pollution spillover, in this case, carbon leakage3, which occurs

when firms may shift emissions to avoid expensive emission reduction measures.

Another crucial spillover is innovation, where regulatory pressure leads to the

1According to Timilsina (2022), carbon pricing can be broadly categorized into three types:
fiscal or pricing policies, regulatory policies, and direct public investment. Pricing policies
include instruments such as carbon taxes, emission trading, and subsidies.

2See: https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/
what-eu-ets_en and https://www.oecd.org/environment/

eu-emissions-trading-system-does-not-hurt-firms-profitability.htm/
3The EU characterizes carbon leakage as the risk of businesses in highly competitive sectors

relocating outside the EU to countries with more lenient greenhouse gas emission standards.
Source: https://ec.europa.eu/commission/presscorner/detail/en/IP_09_1338
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development of low-carbon technologies that could also benefit unregulated firms.

This study, focusing on the period between 2005 and 2020, combines detailed data

from various sources to investigate these spillovers. The emissions data from S&P

Trucost include both the direct (Scope 1) and indirect (Scope 2) emissions of

firms, enabling an assessment of potential carbon leakage across firms’ supply

chains. Meanwhile, the supply chain data from FactSet Revere, which includes

information on firms’ technological connections, aids in examining innovation

spillovers.

Identifying the impacts of the EU ETS presents a challenge due to the non-

random nature of its implementation. Firms covered by the EU ETS are likely to

differ inherently from those not covered. To address this issue, this paper employs

a fuzzy regression discontinuity (RD) design, leveraging a unique characteristic

of the EU ETS where only plants with input capacities above a certain threshold

are subject to the regulation. However, the absence of detailed data on plants’

input capacities makes a sharp RD design based on the exact regulatory threshold

infeasible. To circumvent this limitation, the study instead employs the output

capacity data from the WEPP database as the running variable. While output

capacity is not the same as the regulated input capacity, the two are intercon-

nected through plant efficiency, defined as the ratio of output to input capacity.

Assuming the plant efficiency distribution meets specific criteria, the probability

of a plant being regulated based on its output capacity should exhibit a noticeable

jump around the the mode of the efficiency distribution. This observed jump in

the data represents a left-shifted version of the actual input capacity threshold,

effectively serving as an alternative measure for the true regulatory threshold.

A graph depicting the regulation probability against output capacity for eligible

plants confirms a significant discontinuity, establishing the basis for the fuzzy-RD

analysis.

The fuzzy-RD analysis reveals that while EU ETS-regulated firms significantly

lowered their Scope 1 emission intensity (measured as tCO2e/US$mnRevenues),

there is a more than twofold increase in their Scope 2 emissions, implying a pos-

16



sible shift of emissions across supply chains. Upon examining the geographic

distribution of the regulated firms’ supply chains, I find that the number of Eu-

ropean customers has significantly increased. In contrast, there appears to be

a decrease in the number of European suppliers, although this decrease is not

statistically significant. Notably, there is a marked reduction in the percentage

of European suppliers, particularly in the early stages of the EU ETS, with de-

creases of 68.8% in Phase 1 and 36.6% in Phase 2. From a financial perspective,

the EU ETS seems to have had a minimal effect on the overall profitability of

firms, despite recording some increase in revenue. Additionally, the study explores

technological spillovers but identifies no significant effects in this area.

As a robustness check, I further leveraged the different levels of increase in regu-

latory stringency for regulated firms in 2013 as a natural experiment to conduct

a difference-in-differences (DID) analysis on the same outcome variables. Almost

all results are consistent with those found in the fuzzy RD analysis. However,

contrasting with the fuzzy RD results, where no significant impacts of regulation

were found on firms’ technological links, here an increase in regulatory stringency

has led to a notable increase in both the number of technological links and the

turnover of these technological relationships. Detailed examination shows that

while firms under stricter regulation are more actively licensing patents and tech-

nology from other companies, they licensed their own patents and technology to

fewer companies. Furthermore, firms facing a larger increase in regulatory strin-

gency also increased their research collaboration in the first year of the regulation

tightening. This pattern indicates that stricter regulation may foster more ac-

tive technological exchanges, potentially leading to broader innovation spillovers

as firms cannot entirely internalize the effects of the technology diffusion in the

technology market (Arqué-Castells and Spulber, 2022). Besides the differences

in the results for firms’ technological links, the DID results confirm that regula-

tion leads to higher revenue for regulated firms and also reveals that firms facing

tighter regulatory stringency increased their net income.

Overall, the findings of this paper suggest that while the EU ETS has contributed
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to a decrease in GHG emissions among regulated firms, part of this reduction may

be counterbalanced by leakage through supply chains. The rise in non-European

suppliers aligns with the notion of carbon leakage. Financially, the regulation

does not seem to negatively affect regulated firms. On the contrary, the revenues

of regulated firms increased, and their net incomes also rose after the tightening

of the regulation. These results are surprising, as purchasing emission allowances

is akin to paying a tax, which should financially burden firms under stricter regu-

lations. One explanation is that allowance banking since 2008 and the oversupply

from the 2008 financial crisis meant tighter regulation did not immediately harm

financial outcomes. Furthermore, since many regulated firms are large firms with

market power, the demand of their customers is relatively inelastic. Thus, reg-

ulated firms can pass any increased costs to their customers without sacrificing

sales, leading to higher revenue. While this does not fully explain the positive

impacts of tighter regulation on net income, it suggests that increased regulatory

stringency does not hurt firms’ bottom line in the short run. As for impacts on

firms’ technological networks, it seems the EU ETS only has significant impacts

on technological relationships once they are binding. The tighter regulation in-

creased dynamics in the technology market, creating more opportunities for tech-

nology and innovation to spillover through interactions among firms. However, as

this study does not examine other channels of innovation spillovers, a more com-

prehensive understanding of the EU ETS’s overall impact on firms’ innovation

and related spillovers requires further research.

This paper contributes primarily to the existing body of research on the im-

pacts of the EU ETS. While previous studies have explored various effects of

the EU ETS, including emissions, economic performance, and innovation, this

study distinguishes itself in two primary aspects. Firstly, many existing studies

lack robust identification strategies to address endogeneity issues arising from the

non-random nature of the policy. Initial evaluations (e.g., Ellerman and Buchner,

2007, 2008; Anderson and Di Maria, 2011; Bayer and Aklin, 2020) primarily relied

on sector-level data and trend extrapolation to construct counterfactuals. Subse-
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quent research shifted to more granular data, utilizing firm-level (e.g., Calel and

Dechezleprêtre, 2016; Calligaris et al., 2018) or combined firm and plant-level data

(e.g., Petrick and Wagner, 2014; Dechezleprêtre et al., 2023), employing matched

difference-in-differences methods. This was largely due to the unavailability of

specific plant capacity data. To my knowledge, this paper is the first to overcome

this limitation by exploiting the unique inclusion criteria of the EU ETS to iden-

tify its impact on firms. This approach offers a novel method for non-experimental

analysis by leveraging policy design, paving the way for future studies. Secondly,

while most research on the EU ETS focuses primarily on direct impacts on reg-

ulated firms, there is limited exploration of its spillover effects, with a particular

scarcity of evidence beyond carbon leakage. Moreover, the existing results have

been mixed: Naegele and Zaklan (2019) found no evidence of carbon leakage

using sector-level trade flow data, and Dechezleprêtre et al. (2022) observed no

significant geographical shift in emissions within multinational companies. Con-

versely, studies by D’Arcangelo and Galeotti (2022) and Böning et al. (2023)

suggest some degree of carbon leakage. This paper, by conducting an in-depth

analysis, extends the understanding of the EU ETS’s broader impacts, including

both direct effects and spillovers, thus contributing a more nuanced perspective

to the literature.

This research also contributes to the extensive body of work examining the static

and dynamic effects of environmental policies on businesses4. It closely relates

to studies focusing on the impacts of various ETSs, as explored in research by

Liu et al. (2022); Bai and Ru (2022); Shi and Wang (2022); Cui et al. (2023).

Additionally, this paper contributes to a broad strand of studies examining the

implications of different carbon pricing policies. For instance, the work of Aghion

et al. (2016) investigates the role of carbon tax in driving technological changes.

This study also adds to the literature on spillover effects of environmental policies,

both within firms (as seen in Bartram et al., 2022) and across firms (as discussed

4According to Gillingham and Stock (2018), static cost estimates typically focus on the
immediate consequences of environmental policies, while dynamic costs take into account a
broader range of impacts, including indirect effects and the adjustments businesses make over
time in response to these policies.
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by Dasgupta et al., 2023). Furthermore, it contributes to the burgeoning field

analyzing how climate actions are transmitted across firms’ supply chains(e.g.,

Dai et al., 2021; HomRoy and Rauf, 2023), a topic of growing importance.

The rest of the paper is structured as follows. Section 1.2 provides a detailed in-

troduction to the EU ETS, particularly its inclusion rules. Section 1.3 introduces

the datasets used and explains the data cleaning process. Section 1.4 outlines

the empirical strategy, while Section 1.5 presents the empirical results. Finally,

Section 1.6 offers conclusions.

1.2 Institutional Background

1.2.1 Overview of the EU ETS

The EU Emissions Trading System (EU ETS), initiated in 2005, is a cap and

trade system that sets limits on greenhouse gas (GHG) emissions from over 10,000

stationary installations5 and aircraft operators within the EU, covering around

40% of the EU’s emissions. The cap determines the total number of tradeable

allowances, each permitting the emission of one tonne of CO2 equivalent (tCO2e),

thereby facilitating a cost-effective way of reducing GHG emissions.

The EU ETS has progressed through various phases, with the ongoing Phase 4

covering 2021-2030. This paper, however, concentrates on the first three phases.

Figure A.1.1 in Appendix A.1 details the evolution of the coverage of the EU

ETS. In each phase, both the emission caps and the free allocation of allowances

are determined by legislation. Phase 1 (2005-2007) set caps based on historical

emissions data, allocating nearly all allowances for free. This approach led to

5The term “installation” is defined as: ”a stationary technical unit where one or more
activities listed in Annex I are carried out and any other directly associated activities which
have a technical connection with the activities carried out on that site and which could have
an effect on emissions and pollution” (see DIRECTIVE 2003/87/EC Article 3(e)). While
technically an installation is not exactly equivalent to a physical plant, it serves as a reasonable
proxy in the context of this paper.
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an oversupply and a price collapse by 2007 (as shown in Figure 1.1), as banking

of allowances was not permitted until 2008. Phase 2 (2008-2012) saw a 6.5%

reduction in the cap compared to 2005 and a slight decrease in free allocation to

about 90%. A pivotal change occurred in Phase 3 (2013-2020), decreasing the

cap annually by 1.74% for stationary installations and transitioning to auctioning

as the primary method for allocating allowances, with 57% auctioned and the

remainder allocated for free based on benchmarks6. Notably, the reduction in

free allowances varies with sectors. While most electricity providers receive no

free allowances anymore, installations in other sectors receive free allowances

based on the emissions from the most efficient installations in the same product

segment. Compliance within the EU ETS is enforced annually. Regulated entities

are required to report their emissions by the end of March and to surrender an

adequate number of allowances by April 30th each year. Non-compliance incurs

penalties, initially €40/tCO2e in Phase 1 and increased to €100/tCO2e in Phase

2, rising with inflation from 2013.

Figure 1.1: EU Carbon Emissions Allowances Prices

Note: The figure shows the historical trends in EU carbon emissions allowance prices (EUR/allowance) from
early 2005 to the end of 2023. Red vertical lines represent the start of the second, third, and fourth phases
of the EU ETS, respectively.The green horizontal line represents the social cost of carbon (SCC) for the year
2015, estimated by Nordhaus (2017). The estimated value is $31 per ton of CO2 in 2010 US$. (Source:
https://tradingeconomics.com)

6Benchmarks were developed for each product, using the average GHG emissions efficiency
of the top 10% installations producing that product, based on 2007-2008 data.
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The effectiveness of the EU ETS in reducing GHG emissions has been a subject

of debate. Figure 1.2 shows a decline in average verified GHG emissions for all

stationary installations during the first three phases of the EU ETS. However,

attributing this trend solely to the EU ETS is contentious, particularly as the

carbon price necessary to limit global temperature rise to below 1.5C◦ by 2100,

as suggested by scholars, is significantly higher than the allowance prices in the

initial phases of the EU ETS7. Nonetheless, the EU ETS may still motivate firms

to lower their GHG emissions, even with the sub-optimal pricing in its initial

phases, especially if there is an expectation of more stringent regulations in the

future. Indeed, several studies (e.g., Dechezleprêtre et al., 2023; Bayer and Aklin,

2020; Petrick and Wagner, 2014) using plant-level data and matched or synthetic

control methods have provided evidence indicating that, despite low allowance

prices, the EU ETS has contributed to a reduction in GHG emissions.

1.2.2 The Scope of EU ETS

This subsection explains the scope of the EU ETS, a critical element for the

empirical design of this study. While the EU ETS covers both stationary instal-

lations and aircraft operators, the focus here is on the former. An installation

falls under EU ETS regulation based on the activities it conducts, which may not

align with standard industrial classifications like NACE. Regulation is triggered

if an installation exceeds the capacity thresholds for activities listed in Annex I

of the EU ETS Directive. Table A.1.1 in Appendix A.1 displays the regulated

activities and their thresholds for stationary installations from the EU ETS’s in-

ception in 2005, while Table A.1.2 lists additional activities added in 2011. These

thresholds are categorized as either production capacity thresholds or total rated

7The estimated social cost of carbon (SCC) varies greatly with models and scenarios assumed
in the model. The UK Government Economic Service (GES) recommended an illustrative
estimate for the SCC of £70/tonne of carbon (tC), within a range of £35 to £140/tC in 2002.
While the average SCC estimates from the U.S. government range from 4.7to35.1 per tonne of
CO2 in 2007. However, the values from the U.S. government were calculated along a business-
as-usual emissions path, not a socially optimal one (See: https://www.elibrary.imf.org/

display/book/9781616353933/ch04.xml). The general consensus is that most carbon prices
in reality are too low.
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thermal input (RTI)8 thresholds. While production capacity thresholds align

more closely with industrial classifications, reflecting an installation’s production

output, RTI is applicable to combustion9 activities across various NACE cate-

gories. For example, a hospital with its combustion units exceeding 20MWt falls

under EU ETS regulation. For the purpose of this study, however, I only focus on

installations belonging to private business sectors. It’s notable that some instal-

lations engage in both combustion activities and other activities with thresholds

defined by production capacity. These installations become subject to EU ETS

regulation if any of these regulated activities exceed their respective threshold

limits.

Figure 1.2: Verified Emissions for EU ETS Installations by Year

Note: The figure plots the annual average of verified greenhouse gas emissions (GHG) in tCO2e for all stationary
installations covered by the EU ETS, adjusted relative to the 2005 average. This visualization is created using
data from the European Union Transaction Log (EUTL). For each installation, the annual average relative GHG
emissions are calculated, factoring in country, activity, and firm fixed effects. The vertical lines around each
data point denote the 95% confidence interval. The three red vertical lines represent the start of the second,
third and fourth phase of the EU ETS, respectively.

It’s important to note that the EU ETS regulation for stationary installations

is based on their capacity (or installed capacity) rather than actual usage. The

8The rated thermal input (RTI) is the rate at which fuel can be burned at the maximum
continuous capacity of the appliance multiplied by the calorific value of the fuel, expressed as
megawatts thermal (MWt). (Definition from: Scottish Environment Protection Agency (SEPA)
- IED-TG-09 – Guidance)

9”‘combustion’ means any oxidation of fuels, regardless of the way in which the heat, electrical
or mechanical energy produced by this process is used, and any other directly associated activities,
including waste gas scrubbing” (Definition from Article 3(t) in DIRECTIVE 2003/87/EC, 2013)
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capacity is the potential capacity of a plant under maximum possible utilization.

Therefore, a plant falls under EU ETS regulation as soon as its installed capac-

ity crosses the regulatory threshold, regardless of whether its actual operational

capacity is lower. This means that firms cannot easily circumvent the regulation

by adjusting their plant’s capacity, especially in the short term, if the plant’s

activities are regulated by the EU ETS and the installed capacity surpasses the

threshold. This characteristic of the EU ETS creates an ideal scenario for imple-

menting a regression discontinuity design.

1.3 Data

This section introduces the multiple datasets used for the analysis and describes

in details how different datasets were merged and cleaned.

1.3.1 Major Datasets

EU ETS Data

The EU ETS dataset used in this analysis is sourced from EUETS.INFO10, which

compiles its information from the European Union’s Transaction Log (EUTL)11.

The EUTL serves as the primary tool for reporting and monitoring within the

EU ETS, offering public access to data on annual compliance of regulated enti-

ties, participant account details, and transaction records of emission allowances.

While the EU ETS data is openly available on EUTL, direct access can be chal-

lenging due to the data format and the disconnected nature of different tables.

EUETS.INFO addresses this by providing a cleaned, relational database that

maintains all original information while enhancing accessibility and usability.

10EUETS.INFO is a project led by Dr. Jan Abrell, aiming to make the EUTL data more
accessible. Link to EUETS.INFO: https://www.euets.info/

11Link to EUTL: https://ec.europa.eu/clima/ets/
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Power Plants Data

I obtained data on European power plants from the S&P Global Market Intel-

ligence World Electric Power Plants Database (WEPP). WEPP compiles data

from various sources, including direct surveys, power company financial reports

and web pages, power plant data from government ministries, and media outlets

in the trade and business sectors. It has a comprehensive coverage of worldwide

electric power generating units12, especially units for medium- and large-sized

power plants. However, WEPP’s coverage for small units, specifically those with

a generating capacity under 100 kW, is relatively limited. WEPP provides de-

tailed information at the unit level for each power plant, including ownership,

location, technical specifications, and gross generation capacity. Notably, the

gross generation capacity in the WEPP database, measured in megawatts elec-

tric (MWe), differs from the regulated total rated thermal input (RTI), measured

in megawatts thermal (MWt). The former represents the output capacity of a

plant, while the latter indicates its input capacity. Due to the lack of available

data on plants’ input capacity, this study utilizes the output capacity as a key

component of its empirical design, which will be elaborated on in Section 1.4.

Emission Data and Financial Data

Company-level emission data comes from S&P Trucost Environmental Data,

which documents the environmental impacts (such as GHG emissions, waste gen-

eration, air pollutants, etc.) of over 15,000 companies globally, covering approxi-

mately 95% of global market capitalization. Trucost updates this data annually,

relying on both company disclosures and its own modeling to address gaps in self-

disclosure. Additionally, Trucost assigns a disclosure score to each firm, ranging

from 0 to 100%, which reflects the extent of their self-disclosure. This disclo-

sure score can be used for controlling potential biases related to disclosure in

subsequent analyses. An advantage of this dataset is its coverage of both direct

environmental impacts of firms and their indirect impacts along supply chains.

12By general definition, a power plant unit is a prime mover such as a turbine, engine or a
moter, and a power plant can have many units.
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This study focuses specifically on Scope 1 and Scope 2 GHG emissions. According

to the Greenhouse Gas Protocol13, Scope 1 GHG emissions are direct emissions

from sources owned or controlled by the firm14, whereas Scope 2 emissions per-

tain to indirect emissions from the consumption of purchased electricity. Scope

3 emissions, which include indirect emissions across a firm’s entire value chain,

are not considered due to limited reporting. To complement this environmental

data, financial information for the firms is obtained from S&P Capital IQ. This

allows for a direct match with the Trucost data using a common identifier from

the data provider.

Firm Relationship Data

Firm relationship data is obtained from the FactSet Revere Supply Chain Rela-

tionship database, which tracks over 25,000 public companies worldwide, offering

historical data dating back to 2003. This database gathers relationship informa-

tion from key public sources, including SEC filings, investor presentations, and

press releases, categorizing them into four main groups: competitors, suppliers,

customers, and strategic partners. The company relationships in this database

are updated daily to reflect the latest company activities and developments.

1.3.2 Data Cleaning

Merging multiple datasets for analysis poses a significant challenge in this study,

largely due to the lack of common identifiers across most datasets. An exception

is the financial data from Capital IQ and Trucost’s emission data, which share

identifiers as they originate from the same provider. For datasets without common

identifiers, a consistent matching strategy is employed, based on firm or plant

names. This involves first standardizing the names in each dataset, followed by

an initial attempt at exact matching. Names that do not match precisely are

13Developed by the Greenhouse Gas Protocol Initiative, a partnership involving businesses,
NGOs, and governments. More information: https://ghgprotocol.org/

14Excludes direct emissions from biomass combustion, which are reported separately.
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then subjected to fuzzy matching. A critical final step is the manual review and

verification of all matches to ensure accuracy. This meticulous process results

in the creation of a linking file, facilitating the seamless merging of datasets for

future analyses.

The linking file generated in the previous step enables connecting Trucost firms

with their corresponding WEPP plants. This matched set from WEPP encom-

passes both EU ETS-regulated and non-regulated plants. Plant regulation status

is determined by matching WEPP data with EU ETS installations by name and

year, with a plant considered regulated if it matches an EU ETS installation in

a specific year. Subsequently, financial data from Capital IQ, using shared iden-

tifiers with Trucost, is integrated into this data assembly. In line with the focus

of this paper on the first three phases of the EU ETS, any WEPP plants that

began operations post-2020 are excluded. Building on the matched data, this

study then aggregates the relevant plant information to the firm level, synthesiz-

ing key variables including total generation capacity, plant count, and regulatory

status. Firms are classified as regulated if they own at least one plant under

EU ETS jurisdiction. The resulting dataset, comprising 1,321 firms from Tru-

cost and their corresponding WEPP plants with integrated firm-level financials,

emissions, plant information, and regulatory status, lays the groundwork for the

ensuing analysis, subject to further refinement and validation.

Relationship data from FactSet Revere covers 1,073 firms from the previously

matched dataset. In my analysis, I focus on direct links between firms and exclude

competitor-type relationships. I consolidate these firm relationships from a firm-

peer-year basis to a firm-year basis, tallying the total number of connections

for each type of relationship. Furthermore, I assume the continuity of a reported

relationship between two firms from its first to its last reported year, disregarding

any unreported periods in between. For example, if firm A lists firm B as a

supplier from 2004 to 2006 and then again from 2010 to 2012, with no reports

in the intervening years, I treat firm B as firm A’s supplier continuously from

2004 through 2012. This assumption is reasonable considering that firms may
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maintain interactions even if a formal relationship isn’t consistently reported.

In constructing the sample for the regression discontinuity (RD) analysis, I se-

lected only those firms, out of the 1,321-firm sample, whose all ETS-regulated

plants regulate based on thermal input capacity, due to the unavailability of data

on plant production capacities. For instance, a firm with a power plant regulated

by thermal input capacity and a ceramic production plant regulated by produc-

tion capacity is excluded from the RD sample. Additionally, for simplicity, the

analysis is confined to firms that came under EU ETS regulation starting in 2005.

For each qualifying firm, I included a variable representing the gross generation

capacity of its largest eligible plant in 2004, the year preceding the EU ETS’s

launch. This variable serves as the basis for creating the running variable in the

RD design, with a plant qualifying if its activities are regulated based on thermal

input capacity. The final sample comprises 546 unique firms, amounting to 8,736

firm-year observations from 2005 to 2020. However, subsequent analyses may

involve imbalanced samples due to occasional missing values in certain outcome

variables across different years.

1.4 Empirical Strategy

A naive comparison between outcome variables, such as GHG emissions from

firms with and without EU ETS-regulated plants, can be misleading. This is

because regulated and unregulated firms may differ significantly, and some firm

characteristics might be correlated with both the regulatory status and the out-

come of interest. For example, larger, publicly-traded, high-emission firms are not

only more likely to be regulated but also more susceptible to external pressures,

which may make them more likely to reduce their GHG emissions. Therefore,

drawing definitive conclusions on the impacts of environmental regulation solely

based on observed reductions in GHG emissions relative to unregulated coun-

terparts is unwarranted. A more rigorously designed identification strategy is

needed.
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In light of the EU ETS regulatory features, an ideal approach would involve a

multi-dimensional sharp RD design, with the score(s) of a firm being the regulated

thresholds specified by different measures of plant productivity capacity. How-

ever, this approach is hindered by the unavailability of data on plant productivity

capacities. To address this challenge, I focus on firms with plants performing ac-

tivities regulated solely based on total rated thermal input, and use the gross

generation output capacity of each firm’s largest plant as the score to conduct

a fuzzy-RD design. While the output capacity (MWe) is not the input capacity

(MWt) regulated by EU ETS, the two capacities are mechanically linked by the

plant’s efficiency, i.e., the output-to-input capacity ratio15. Therefore, although

the regulated input capacity (MWt) is not observed, one can use the output ca-

pacity (MWe) as the score to conduct a fuzzy-RD analysis. The corresponding

threshold will then be a left-shift of the original 20MWt regulation threshold

and can be found through graphing the regulation probability against the output

capacity.

To understand this, first consider the probability of treatment at the plant level.

Let Pr(T |MWe) be the probability of treatment for a plant given its output

capacity (MWe), and let η denote the efficiency of a plant, where

η =
Output Capacity (MWe)

Input Capacity (MWt)
.

The probability of treatment conditioned on output capacity Pr(T |MWe) is

equivalent to

Pr(MWt ≥ 20|MWe) = Pr(
MWe

η
≥ 20|MWe) = Pr(η ≤ MWe

20
|MWe)

The last equation Pr(η ≤ MWe
20

|MWe) is essentially the conditional CDF of plant

15For instance, a 100 MWe coal-fired power plant with an efficiency of 50% will be rated at
200 MWt, as it requires 200 MW of heat from burning coal for every 100 MW of electricity it
produces. This means that it generates 100 MW of waste heat, usually into a large body of water
or the atmosphere. (From Energy Education: https://energyeducation.ca/encyclopedia/
Megawatts_electric; R. Wolfson, ”Energy and Heat,” in Energy, Environment and Climate,
2nd ed. New York, U.S.A.: Norton, 2012, pp. 86-87 )
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efficiency. Let G denote the distribution of η, and assume that η ∼ G on [η, η],

where η and η are lower and upper bound of efficiency16, respectively. Then

Pr(T |MWe) can be written as a step function of the output capacity MWe:

Pr(T |MWe) =


0 MWe

20
< η

Pr(η ≤ MWe
20

|MWe) = G(MWe
20

|MWe) η ≤ MWe
20

≤ η

1 MWe
20

> η

Whether there are any jumps in the probability of treatment depends on the joint

distribution of plant efficiency η and the output capacity. Although research (e.g.

Bejan et al., 2017) shows a positive correlation between a power plant’s efficiency

and its output capacity, it is reasonable to assume that η is almost independent

and identically distributed within a small range around a given output capacity.

Therefore, any noticeable jumps in Pr(T |MWe) are likely due to jumps in the

distribution of η, G(η). Clearly, if η has a discrete distribution, we can expect

multiple jumps in Pr(T |MWe), with the largest occurring where η’s mode is.

This corresponds to an output capacity of 20ηmode, a left-shift from the origi-

nal 20MWt threshold, considering η ranges between 0 and 1. However, if η is

continuously distributed, the treatment probability Pr(T ) becomes a continuous

function of output capacity, exhibiting kinks at 20η and 20η, rather than distinct

jumps. In such cases, a regression kink design is more appropriate than a re-

gression discontinuity design, due to the absence of a clear discontinuity for any

RD designs. Nevertheless, a fuzzy-RD remains a viable approach if η has a suffi-

ciently small variance. This would result in G(η) having a steep slope where the

probability density of η is highest. In a finite sample, this appears as a discrete

jump at 20ηmode, similar to the discrete scenario. If the distribution of η satisfies

this criterion, conducting a fuzzy-RD around the apparent jump (20ηmode) is still

reasonable. This is because, except for plants with output capacities very close to

16The efficiency of a combustion unit varies based on the technology and fuel type used. For
instance, in 2019, a standard natural gas plant in the United States operated at about 45%
efficiency, compared to a typical coal power plant in the U.S., which had an efficiency of around
32%.
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20ηmode, a distinct jump in Pr(T ) is observable for plants just below and above

this threshold, without other plant characteristics abruptly changing around this

point.

To assess the feasibility for a potential fuzzy-RD design, I have plotted the prob-

ability of treatment against the gross output capacity for all eligible plants in

WEPP , as illustrated in Figure 1.3. Eligible plants are those engaged in activ-

ities regulated solely by thermal input capacity and use major fuels under EU

ETS regulations. However, for plants in WEPP not under EU ETS regulation,

the absence of EU ETS-specific activities makes selection based on these activ-

ities infeasible. Hence, I utilize the ’business type’ variable in WEPP to filter

out plants in sectors not regulated by thermal input. Figure 1.3 reveals a signif-

icant jump in the probability of treatment around 4MWe, with further analysis

indicating a cutoff at 4.2MWe17 This observed discontinuity in the probability

of treatment can be used as the output capacity (MWe) threshold for a fuzzy-

RD analysis to causally identify the impacts of EU ETS on plant-level outcomes.

However, given that most data for this study are at the firm level, and firm-level

outcomes are arguably more insightful, it is necessary to adapt this plant-level

threshold to the firm level. I achieve this by taking the maximum output capacity

across all eligible plants owned by a firm as the firm’s score. Assuming continu-

ity in all other firm characteristics besides the probability of regulation at the

4.2MWe threshold, the local average treatment effect (LATE) can be identified

through a fuzzy-RD analysis18.

17This implies that plant efficiency is most densely distributed around 21%.
18For this to be true, the monotonicity assumption, as proposed by Angrist and Imbens

(1995), is needed. This assumption permits the presence of always-takers and never-takers, but
assumes there are no defiers. Under this assumption, the fuzzy-RD estimate recovers the local
average treatment effect for the compliers.
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Figure 1.3: Probability of Treatment by Output Capacity

Note: The figure presents the conditional probability of being regulated given the score, Pr(T |MWe),
for eligible plants in WEPP with output capacity below 30MWe. The interval is partitioned into
evenly-spaced non-overlapping bins, using method proposed in Cattaneo et al. (2019). There is a
clear jump in probability of treatment around 4.2MWe.

The main analysis of this paper uses the local linear specification as recommended

by Gelman and Imbens (2019). The fuzzy RD equations are given below:

EUETSi = α0 + α1Scorei + α2Scorei × 1{Scorei ≥ 0} (1.1)

+ α31{Scorei ≥ 0}+ νi

Yit = β0 + β1Scorei + β2Scorei × 1{Scorei ≥ 0}+ β3EUETSi + δt + ϵit (1.2)

Equation (1.1) estimates the first-stage effects, where EUETSi is an indicator

that equals to 1 if a firm is regulated by EU ETS starting in 2005. Scorei is the

2004 baseline output capacity of a firm’s largest plant normalized by subtracting

4.2MWe. Since only firms regulated from the beginning of EU ETS and firms

that are never regulated are included, both EUETSi and Scorei are not time

varying. Yit in equation (1.2) is the outcomes of interest for firm i in year t,

where t spans from 2005 to 2020. The year fixed effect δt is included to absorb
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time-varying factors common to all firms. As pointed out by Cattaneo et al.

(2019), if the RD design is valid, the above specification is sufficient without

including any covariates. Therefore, I stick to the above basic specification in

this paper for simplicity.

The coefficient β3 captures the LATE of EU ETS on the outcomes of interest.

This can be interpreted causally, provided that the assumption of monotonicity is

met and all other firm characteristics exhibit continuity, with the exception of the

treatment probability, at the threshold. Given this study’s institutional setup,

monotonicity, which precludes the existence of defiers, is naturally satisfied. To

verify the continuity assumption, I conducted balance checks for predetermined

firm characteristics and a density test for the running variable, following guide-

lines from Cattaneo et al. (2023). Table 1.1 presents the predetermined firm char-

acteristics below and above the observed threshold 4.2MWe. Despite significant

differences in the means of most characteristics on either side of the threshold,

largely due to their positive correlation with maximum plant output capacity,

the RD estimations (the last two columns) do not reject the null hypothesis of

no treatment effect on these predetermined firm characteristics. The graphical

version of the balance check is presented in Figure 1.4, where firms with scores

less than 15 are included. The figure illustrates that while most predetermined

characteristics correlate positively with the score, no significant discontinuity is

observed at the threshold. For the density test, I applied the local-polynomial

method proposed by Cattaneo et al. (2020). The test yields a p-value of 0.6843,

indicating that the null hypothesis of continuous score density at the cutoff is

not rejected. Figure 1.5 provides a graphical representation of the density test,

presenting both a histogram of the score and the density estimate with 95% con-

fidence intervals. As can be seen in (b), the estimated density near the cutoff is

nearly smooth.
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Table 1.1: Summary Statistics for Balance Check

Full Above Below
Difference
of means

p-value
RD

estimate
p-value on
RD estimate

ln Total Assets ($M) 6.861 7.358 6.422 0.936 0.0002 -0.552 0.678
ln Revenue ($M) 6.519 6.990 6.112 0.878 0.0001 0.161 0.890
ln Net Income ($M) 3.616 4.044 3.239 0.805 0.0039 -0.273 0.861
Debt to Equity Ratio 1.282 1.402 1.176 0.226 0.3770 -0.002 0.998
ln Capital Expenditure ($M) 3.594 4.108 3.146 0.962 0.0001 0.072 0.954
Total Output Capacity (MWe) 168.434 217.475 122.008 95.467 0.0340 -98.085 0.347
Number of Plants 1.231 1.607 0.908 0.699 0.0006 -0.936 0.157
Number of Links 36.045 44.533 29.037 15.497 0.0312 -3.266 0.909
Disclosure Score 51.379 54.009 49.123 4.886 0.2240 4.206 0.840

Notes: The table presents mean values for pre-EU ETS (before 2005) firm characteristics. Column 1 presents
the unconditional means for all matched firms with scores less than 15. Column 2-3 present the unconditional
means for firms below and above the observed jump (4.2MWe). Column 4 shows the difference of the
means across columns 2 and 3, while Column 5 presents the p-value of the difference of means. Column 6-7
present the sharp regression discontinuity estimates and their corresponding p-values for pre-determined firm
characteristics, using mean squared error optimal bandwidths and robust bias correction approach following
Calonico et al. (2014). The heteroskedasticity robust standard errors are used.

(a) Total Assets ($M) (b) Revenue ($M) (c) Net Income ($M)

(d) Debt to Equity Ratio (e) CAPEX ($M) (f) Number of Links

(g) Total Output Capacity (h) Number of Plants (i) Disclosure Score (%)

Figure 1.4: Balance Check of Baseline Firm Characters

Note: The figure plots the sharp-RD results in Column 6-7 from Table 1.1 for all pre-EU ETS firm characteristics.
The vertical line in each sub-figure is the observed threshold 4.2MWe, with the score normalized to 0. A linear
regression is performed separately for firms on each side of the threshold.
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(a) Histogram of the Score (b) Density of the Score

Figure 1.5: Histogram and Estimated Density of the Score

Notes: The figures provide a graphical representation of the continuity in density test, in both (a) histogram
of the score and (b) the density estimate with shaded 95% confidence intervals. The score of each firm is
the normalized maximum plant output capacity in 2004, which is obtained by deducting 4.2MWe from the
original value. The vertical line at 0 in both (a) and (b) is where the 4.2MWe threshold lies, normalized to 0.
The local-polynomial density estimator following Cattaneo et al. (2020) is -0.4065 with a p-value of 0.6843.

Figure 1.6 displays the proportion of firms subject to EU ETS regulation across

different score bins. Notably, a distinct jump in the probability of receiving

treatment is observed at the 4.2MWe, which is normalized to 0. This threshold

corresponds to the one identified in Figure 1.3. Furthermore, Table 1.1 details the

first-stage estimates of the coefficient α3, calculated using a variety of bandwidth

options. Both conventional and robust bias-corrected estimates, as suggested by

(Calonico et al., 2014), are included. In line with the graphical representation in

Figure 1.6, there is a marked discontinuity in the probability of treatment when

crossing the 4.2MWe threshold, with an increase of at least 40 percentage points.

This significant jump indicates a robust first-stage effect in the regulatory impact

of the EU ETS on firms.
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Figure 1.6: First-stage Fuzzy RD Graph

Note: The figure plots the probability of being regulated against the score, i.e., the normalized
maximum plant output capacity in 2004. The vertical line at 0 is the normalized threshold
4.2MWe observed in the full sample of eligible plants in WEPP, as shown in Figure 1.3. The
sample contains firms with score less than 15 or with the output capacity of the largest plant
less than 19.2MWe.

Table 1.2: First Stage: Treatment on the Output Capacity (MWe) of the Largest Plant

± 1.5 ± 2.5 ± 4.2 ± [-4.2, 6.5] [-4.2, 7.5] [-4.2, 9.5]

Conventional 0.656*** 0.585*** 0.501*** 0.421*** 0.403*** 0.416***
(0.167) (0.118) (0.090) (0.073) (0.069) (0.061)

Robust 0.402** 0.698*** 0.604*** 0.561*** 0.525*** 0.434***
(0.202) (0.199) (0.138) (0.107) (0.100) (0.090)

Observations 800(L) 897(R) 1346(L) 1473(R) 2210(L) 2353(R) 2210(L) 3490(R) 2210(L) 3890(R) 2210(L) 4610(R)
Polynomial 1 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular Triangular
Bandwidth Type Manual Manual Manual Manual Manual Manual

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table presents the first-stage estimates of the probability of treatment when the maximum output
capacity of a firm is above the observed 4.2MWe threshold. The dependent variable is an indicator that equals
1 if a firm is regulated under EU ETS. The first to the third columns present results for firms whose largest
eligible plants having output capacity that is 1.5, 2.5 and 4.2 below and above the threshold, while the last three
columns expand the right side of the threshold to include firms whose largest eligible plants fall below +6.5,
+7.5 and +9.5 above the threshold, respectively. Both estimates using conventional inference and estimates
using robust bias-corrected inference are reported.
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1.5 Empirical Results

1.5.1 Summary Statistics

Table 1.1 displays the summary statistics for the outcome variables studied in this

paper. The emission outcome variables include both direct (scope 1) and indirect

(scope 2) emissions. The unit of the absolute amount is tonnes of carbon dioxide

equivalent, or tCO2e; while the emission intensity is calculated as the absolute

amount of emissions divided by the firm revenue in millions of dollars. To assess

the impacts of the EU ETS on firms’ financial performance, the revenue, net

income and capital expenditure (all in millions of dollars) are selected as the out-

come variables. Logarithmic scale is used for both the emission and financial out-

come variables because the distribution of pre-scaled variables are right-skewed.

To deal with the negative values in net income when taking logs, I first normalize

the net income for each firm to above 0 and then take logs. Mathematically, for

company i, ln(Net Incomei) = ln(Net Incomei −min(Net Income) + 1), where

min(Net Income) is the minimum net income across all firms and all periods.

To estimate the impacts on firm networks, I investigate the geographic distri-

bution of their networks and compositions of their technological relationships.

Specifically, No. of EU Links shows the total number of business relationships

with European firms for a firm in a given year, where business relationships in-

clude customers, suppliers and strategic partners19. No. of EU Customers (Sup-

pliers) measures the total number of European customers (suppliers) a firm has in

a given year. The non-EU Links are similarly defined. The Share of EU Links is

calculated as No. of EU Links divided by the sum of No. of EU Links and No. of

non-EU Links ; while the Share of EU Customers (Suppliers) is calculated as No.

of EU Customers (Suppliers) divided by the sum of No. of EU Customers (Sup-

pliers) and No. of non-EU Customers (Suppliers). I also examine the regulatory

19Technological relationship is a type of strategic partnership. Other types of relationships
included as strategic partners are: manufacturing, marketing, distribution, investment, joint
venture, integrated product offering. To better capture the geographic dependency of the
supply chains, the investment-type of relationships are excluded.
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impacts on the number of technology relationships and the share of technologi-

cal relationships in all types of relationships (excluding investment-type). There

are two types of technological relationships: one is licensing arrangement where

one firm licenses products, patents, intellectual property, or technology from the

other firm (termed License-From) or vice versa (Licence-To), and the other is

technology partnership where two firms engage in a collaborative research and

development activities.

Table 1.3: Summary Statistics for Outcome Variables

Outcome Variables: Minimum
25th

Percentile
Median

75th
Percentile

Maximum Mean
Standard
Deviation

Emissions Outcomes :
ln Scope 1 (abs) 3.395 10.372 11.638 12.992 18.642 11.615 2.075
ln Scope 1 (int) -4.463 3.268 5.179 6.275 10.493 4.766 2.085
ln Scope 2 (abs) 0.007 8.538 10.189 12.124 17.939 10.083 2.897
ln Scope 1&2 (abs) 4.234 10.942 12.098 13.547 18.679 12.160 2.004
ln Scope 1&2 (int) -1.533 4.015 5.524 6.467 10.236 5.256 1.705

Financial Outcomes :
ln Revenue -2.967 5.340 7.100 8.613 12.852 6.849 2.482
ln Net Income 0.000 9.835 9.837 9.851 11.115 9.860 0.147
ln Capital Expenditure 0.001 2.269 4.108 5.789 10.541 4.071 2.274

Supply Chain Outcomes - Geographic Distribution:
No. of EU Links 0 4.000 14.000 40.000 374 30.291 40.622
No. of non-EU Links 0 4.000 15.000 41.000 374 30.541 40.694
Share of EU Links 0 0.211 0.417 0.647 1.000 0.437 0.278
No. of EU Customers 0 0.000 2.000 9.000 232 6.918 11.739
No. of non-EU Customers 0 0.000 5.000 18.000 597 14.211 25.835
Share of EU Customers 0 0.132 0.324 0.574 1.000 0.382 0.314
No. of EU Suppliers 0 1.000 5.000 19.000 227 15.911 25.432
No. of non-EU Suppliers 0 2.000 8.000 26.000 472 25.490 48.183
Share of EU Suppliers 0 0.167 0.429 0.667 1.000 0.438 0.309

Supply Chain Outcomes - Technological Relationship:
No. of Technology Links 0 0.000 3.000 14.000 500 12.987 25.525
Share of Technology Links 0 0.000 0.083 0.182 1.000 0.125 0.151
No. of License-To Links 0 0.000 0.000 1.000 68 2.147 6.356
No. of License-From Links 0 0.000 0.000 1.000 72 2.003 7.512
No. Tech-Collaboration Links 0 0.000 2.000 10.000 407 8.843 18.332

Notes: This table presents the summary statistics for the outcome variables evaluated in the regression
analyses. Outcome variables measure three aspects of a firm: GHG emissions, financial performance, and
supply chain composition.

1.5.2 Main Results

The findings from the primary analysis outlined in the preceding section are

detailed in Tables 1.4 through 1.7. Recognizing the influence of bandwidth se-

lection on RD results, I adhere to the guidelines set by Cattaneo et al. (2019)

and employ a bandwidth that minimizes the mean squared error (MSE). This is
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paired with a triangular kernel function for each specific analysis. The chosen

MSE-optimal bandwidths aim to reduce the MSE of the RD estimators for a

given polynomial order and kernel function. The formula for determining MSE-

optimal bandwidths involves the outcome variable Y , as explained by Imbens

and Kalyanaraman (2012), leading to varying bandwidths for different regression

analyses based on the respective outcome variables. Consequently, each estimate

is derived from a distinct set of observations. To address potential inconsisten-

cies arising from this and to conduct a thorough robustness check, I also present

estimates using various fixed bandwidths across different outcome variables in

Appendix A.2.

Table 1.4: Impact of EU ETS on GHG Emissions

Full Phase 1 Phase 2 Phase 3

Scope 1 (Absolute) -1.093 -1.022 -0.916 -1.411
(0.941) (0.783) (0.931) (1.488)

Observations 1778(L) 6372(R) 273(L) 1194(R) 483(L) 1990(R) 1100(L) 3188(R)
Bandwidth Length [-3.41, 14.89] [-2.73, 14.89] [-2.92, 14.89] [-4.16, 14.89]

Scope 1 (Intensity) -3.095* -3.338** -3.191** -2.599**
(1.654) (1.672) (1.602) (1.202)

Observations 2194(L) 5074(R) 300(L) 654(R) 578(L) 1405(R) 924(L) 3188(R)
Bandwidth Length [-4.16, 10.55] [-3.15, 6.53] [-3.62, 8.98] [-3.57, 14.89]

Scope 2 (Absolute) 1.242* 2.043* 2.075** 1.339*
(0.749) (1.045) (1.022) (0.790)

Observations 1732(L) 1999(R) 300(L) 765(R) 460(L) 1306(R) 860(L) 881(R)
Bandwidth Length [-3.3, 3.52] [-3.19, 7.86] [-2.76, 8.25] [-3.25, 3.12]

Scope 1 & 2 (Absolute) -0.489 -0.700 -0.269 0.155
(0.900) (0.934) (0.912) (0.740)

Observations 2143(L) 2429(R) 399(L) 510(R) 563(L) 951(R) 884(L) 1175(R)
Bandwidth Length [-4.16, 4.37] [-4.16, 4.94] [-3.5, 5.7] [-3.41, 4.17]

Scope 1 & 2 (Intensity) -1.487 -2.520 -2.074 -0.753
(1.956) (1.885) (1.910) (1.361)

Observations 2079(L) 3913(R) 399(L) 603(R) 568(L) 1221(R) 739(L) 1760(R)
Bandwidth Length [-4.06, 7.56] [-4.16, 6.07] [-3.56, 7.55] [-2.77, 6.76]

Polynomial 1 1 1 1
Kernel Triangular Triangular Triangular Triangular
Bandwidth Type msetwo msetwo msetwo msetwo

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table presents regression discontinuity estimates of the impact of the EU ETS on firms’
GHG emissions in logarithmic scale. The unit of all pre-scaled absolute amounts of emissions is
tonnes of carbon dioxide equivalent (tCO2e), while the unit of the corresponding carbon intensity is
tCO2e/US$mnRevenues, calculated by dividing the absolute amount of emissions by a firm’s annual con-
solidated revenues in millions of US dollars. MSE-optimal bandwidths are used with a triangular kernel.
The inference uses a robust bias correction approach, with heteroskedasticity-robust errors clustered at
the firm level.
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Table 1.4 details the effects of the EU ETS on firms’ direct (Scope 1) and indirect

(Scope 2) GHG emissions. All outcome variables are in logarithmic scale. The

first column shows the results for the entire sample period, spanning 2005 to

2020. Columns 2 to 4 break down these results into the different phases of the

EU ETS. In comparison with non-regulated firms, those under EU ETS regulation

exhibit over a 60% reduction in absolute Scope 1 emissions during the initial three

phases, although this reduction is not statistically significant. Notably, there is

a substantial reduction in Scope 1 emission intensity among regulated firms, a

more than 90% reduction relative to their unregulated counterparts. The drop

in emission intensity aligns with the results found by Petrick and Wagner (2014),

who observed a significant decline in the growth rate of emission intensity using

data from German manufacturing plants. The marked and significant decline in

Scope 1 emission intensity in my study, however, is primarily attributable to firms

located further right of the cutoff. This is evidenced in Tables A.2.3 to A.2.6 in

Appendix A.2, where analyses utilizing different bandwidths are displayed.

Contrarily, the results indicate a marked increase in Scope 2 emissions among

regulated firms, more than doubling in amount compared to their unregulated

counterparts. This substantial increase in Scope 2 emissions remains consistent

across various bandwidth choices, as detailed in the tables in Appendix A.2. To

assess whether the reduction in Scope 1 and the concurrent rise in Scope 2 emis-

sions are attributable to different firms, the last two blocks of Table 1.4 present

the effect on the combined Scope 1 and Scope 2 emissions. While the reduc-

tion in combined Scope 1 and Scope 2 emissions is statistically insignificant, its

smaller magnitude relative to the reduction in Scope 1 emissions alone suggests

that some firms might be mitigating their direct emissions not only through tech-

nical improvements but also by redistributing emissions throughout their supply

chains. These observations provide a nuanced perspective compared to some ear-

lier studies, which suggested no significant transfer of direct emissions outside the

EU by regulated firms, either within the same firms (Dechezleprêtre et al., 2022)

or to external entities (Naegele and Zaklan, 2019). However, recent sector-level
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research by Böning et al. (2023) has indicated some evidence of carbon leakage

to unregulated countries, adding complexity to the understanding of emissions

redistribution under the EU ETS.

Table 1.5 illustrates the effects of the EU ETS on the financial performance of

firms. Notably, firms covered by the EU ETS exhibit an increase in revenue, but

these results are somewhat inconsistent, with only the estimates for the entire

sample period reaching statistical significance at the 90% confidence interval.

Additionally, the study finds no notable effects of the EU ETS on the net income

and capital expenditures of these firms. These outcomes are in line with previous

research, suggesting that the EU ETS, while influential in some financial aspects,

does not substantially alter overall firm profitability.

Table 1.5: Impact of EU ETS on Firm Financials

Full Phase 1 Phase 2 Phase 3

Revenue 2.259* 1.657 1.354 1.529
(1.302) (1.681) (1.469) (1.421)

Observations 1778(L) 6372(R) 411(L) 864(R) 543(L) 1935(R) 868(L) 3188(R)
Bandwidth Length [-3.46, 14.89] [-4.16, 9.42] [-3.34, 14.41] [-3.28, 14.89]

Net Income 0.073 -0.041 -0.021 0.084
(0.061) (0.117) (0.083) (0.145)

Observations 2112(L) 2927(R) 324(L) 737(R) 661(L) 1049(R) 970(L) 1593(R)
Bandwidth Length [-4.16, 5.65] [-3.78, 8.08] [-4.16, 6.51] [-3.8, 6.19]

Capital Expenditure -0.676 0.454 -0.761 -1.041
(2.194) (1.927) (2.195) (1.781)

Observations 1319(L) 4239(R) 259(L) 1012(R) 438(L) 941(R) 608(L) 1286(R)
Bandwidth Length [-2.64, 8.93] [-3.07, 13.08] [-3.04, 5.91] [-2.42, 4.81]

Polynomial 1 1 1 1
Kernel Triangular Triangular Triangular Triangular
Bandwidth Type msetwo msetwo msetwo msetwo

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table presents regression discontinuity estimates of the impact of EU ETS on firms’ financial
performance in logarithmic scale. The unit of all pre-scaled value is millions of US dollars. MSE-optimal
bandwidths are used with a triangular kernel. The inference uses robust bias correction approach, with
heteroskedasticity-robust errors clustered at firm-level.

To gain a deeper understanding of the EU ETS’s effects on firms’ supply chains,

I examine the geographic composition of customers and suppliers for firms with

available supply chain data. The results are shown in Table 1.6. Compared to
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unregulated firms, regulated firms experience a statistically significant decrease

in the number of European peers, whereas their number of non-European peers

remains largely unchanged. This reduction in European peers is particularly pro-

nounced during the first two phases of the EU ETS. A similar trend is observed

in the relative percentage change in European peers. Throughout the sample pe-

riod, regulated firms show a significant reduction of over 50% in their European

supply chain peers, with a more pronounced 70% decrease in Phase 2. Separate

analyses of customers and suppliers reveal that regulated firms have relatively

increased their number of European customers, though this change is not sta-

tistically significant in terms of percentage. Conversely, there is a suggestive

decrease in the number of European suppliers, but this finding is not statistically

significant. However, the concluding part of Table 1.6 indicates a significant rela-

tive decrease in the percentage of European suppliers for firms covered by the EU

ETS, especially in its early years. Overall, the results in Table 1.6 appear to be

consistent with the narrative of emissions being shifted across supply chains, as

indicated by the growing proportion of non-European suppliers among regulated

firms. These non-European suppliers are likely subject to less stringent emission

regulations than their European counterparts. Notably, findings from Tables 1.4

and 1.6 imply a diminishing trend in emissions shifting through supply chains in

Phase 3. This change could be attributed to the revised regulations in the EU

ETS during this phase, which eased conditions for sectors at high risk of carbon

leakage while simultaneously tightening restrictions for others20.

20To mitigate carbon leakage, the EU ETS allocates a higher percentage of free allowances to
sectors and sub-sectors deemed at significant risk of carbon leakage. The first official list of sec-
tors at significant risk was applied in Phase 3 (https://climate.ec.europa.eu/eu-action/
eu-emissions-trading-system-eu-ets/free-allocation/carbon-leakage_en).
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Table 1.6: Impact of EU ETS on Firm Supply Chains

Full Phase 1 Phase 2 Phase 3

No. of Linked European Firms -15.946 -25.863*** -28.295** -10.315
(25.647) (9.101) (12.898) (41.569)

Observations 483(L) 1853(R) 57(L) 478(R) 349(L) 664(R) 265(L) 1058(R)
Bandwidth Length [-1.42, 5.13] [-1.25, 14.89] [-4.16, 7.04] [-1.37, 4.75]

No. of Linked Non-European Firms 2.094 -1.285 2.397 7.700
(32.672) (7.386) (15.155) (52.312)

Observations 455(L) 2335(R) 159(L) 478(R) 124(L) 763(R) 266(L) 1384(R)
Bandwidth Length [-1.35, 6.8] [-4.16, 14.89] [-1.3, 8.57] [-1.34, 6.7]

Linked European Firms (Share) -0.525*** -0.375 -0.701*** 0.114
(0.203) (0.583) (0.251) (0.268)

Observations 772(L) 1837(R) 69(L) 478(R) 349(L) 569(R) 161(L) 1004(R)
Bandwidth Length [-2.32, 5.05] [-1.53, 14.89] [-4.16, 5.97] [-0.81, 4.48]

No. of European Customers 13.039** 2.532 5.329** 21.189**
(5.863) (2.454) (2.283) (9.419)

Observations 503(L) 2963(R) 93(L) 466(R) 147(L) 1097(R) 282(L) 1765(R)
Bandwidth Length [-1.49, 9.46] [-2.26, 13.95] [-1.59, 14.36] [-1.41, 9]

No. of Non-European Customers 2.542 8.431 9.222 -1.483
(11.265) (6.220) (6.369) (17.717)

Observations 964(L) 1989(R) 159(L) 456(R) 219(L) 1123(R) 792(L) 1155(R)
Bandwidth Length [-3.05, 5.76] [-4.16, 13.22] [-2.49, 14.89] [-4.16, 5.28]

European Customers 0.025 -0.002 0.215 0.063
(Share in Customers) (0.297) (0.349) (0.319) (0.306)

Observations 416(L) 2122(R) 109(L) 376(R) 137(L) 512(R) 189(L) 1199(R)
Bandwidth Length [-1.44, 7.51] [-4.09, 14.35] [-1.83, 7] [-1.2, 6.46]

No. of European Suppliers -6.005 -6.861 -6.663 -0.757
(16.056) (4.849) (5.635) (25.482)

Observations 564(L) 1807(R) 72(L) 437(R) 274(L) 660(R) 282(L) 1048(R)
Bandwidth Length [-1.74, 5.69] [-1.72, 14.89] [-3.5, 8.13] [-1.5, 5.3]

No. of Non-European Suppliers -14.578 15.486 2.459 -30.400
(26.937) (15.781) (15.151) (32.319)

Observations 655(L) 2192(R) 66(L) 437(R) 183(L) 1014(R) 434(L) 913(R)
Bandwidth Length [-2.14, 7.13] [-1.61, 14.89] [-2.22, 14.89] [-2.26, 4.6]

European Suppliers -0.161 -0.688** -0.366* 0.131
(Share in Suppliers) (0.199) (0.339) (0.216) (0.344)

Observations 472(L) 2057(R) 78(L) 224(R) 169(L) 557(R) 245(L) 1416(R)
Bandwidth Length [-1.52, 6.69] [-1.9, 5.95] [-1.96, 6.62] [-1.26, 7.73]

Polynomial 1 1 1 1
Kernel Triangular Triangular Triangular Triangular
Bandwidth Type msetwo msetwo msetwo msetwo

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table presents regression discontinuity estimates of the impact of EU ETS on firms’
supply chain for the subset of firms with supply chain data. The inference uses robust bias correction
approach, with heteroskedasticity-robust errors clustered at firm-level.

While emission leakage is one important type of spillovers, over time, technologi-

cal spillovers driven by firm innovation might become increasingly significant. In

the short term, EU ETS-regulated firms might reduce emissions through meth-
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ods like enhancing operational efficiency or outsourcing high-emission production

processes. However, in the long term, innovation in low-carbon technologies is

likely to play a pivotal role in emission reduction. Previous research, such as

the study by Calel and Dechezleprêtre (2016) using patent data and matching

methods, indicates that firms covered by the EU ETS have increased their low-

carbon innovations by about 10% in the early stages of the scheme. This paper

does not directly contribute new evidence to these findings. Rather, it builds

on the understanding that the EU ETS positively influences low-carbon innova-

tion in firms and explores the possibility of technological spillovers within firms’

supply chains. Although the literature on innovation spillovers identifies several

channels, this analysis focuses specifically on spillovers through technological con-

nections between firms. I consider two firms to be technologically linked if there

is a licensing arrangement where one firm licenses products, patents, intellectual

property, or technology from the other firm (termed License-From) or vice versa

(License-To), or if the two firms engage in a collaborative R&D partnership. It’s

important to note that these three types of technological links actually represent

voluntary technology transfers, particularly the licensing arrangements which are

essentially market transactions. However, as Arqué-Castells and Spulber (2022)

demonstrate, the effects of technology diffusing through these voluntary transfers

cannot be fully internalized by firms, suggesting that overlooking the technol-

ogy market might lead to underestimating spillovers and, consequently, the social

returns of R&D.

If the EU ETS has indeed motivated regulated firms to innovate in clean tech-

nologies, this might also be reflected in their technological linkages. Firstly, firms

might venture into new technological domains by establishing connections with

entities that possess expertise in these areas. This could result in an increase

in newly formed technological links for regulated firms and potentially a rise in

dropped links as they move away from previous technological partners. Tech-

nology spillovers might occur through licensing agreements among firms. It is

hypothesized that regulated firms are more likely to license low-carbon patents
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from others in the early years of the EU ETS and, over time, possess more clean

patents to license out to unregulated firms.

Table 1.7: Impact of EU ETS on Network Composition by Technology Links

Full Phase 1 Phase 2 Phase 3

No. of Technological Links -16.477 3.891 -3.690 -22.486
(18.442) (11.854) (10.889) (28.789)

Observations 757(L) 1912(R) 81(L) 478(R) 177(L) 787(R) 517(L) 1155(R)
Bandwidth Length [-2.25, 5.53] [-1.81, 14.89] [-1.81, 9] [-2.59, 5.32]

Technological Links (Share) -0.118 -0.083 -0.139 -0.082
(0.086) (0.171) (0.122) (0.100)

Observations 455(L) 1204(R) 66(L) 209(R) 167(L) 387(R) 423(L) 830(R)
Bandwidth Length [-1.34, 3.24] [-1.51, 5.1] [-1.74, 3.61] [-2.15, 3.58]

No. of Added Technological Links -2.386 0.122 -1.513 -3.332
(3.992) (1.882) (1.788) (7.071)

Observations 964(L) 1901(R) 66(L) 469(R) 192(L) 574(R) 664(L) 1155(R)
Bandwidth Length [-2.93, 5.46] [-1.52, 14.46] [-2.07, 6.03] [-3.36, 5.33]

No. of Dropped Technological Links -1.754 1.843 -0.364 -2.480
(2.086) (1.743) (1.097) (3.316)

Observations 915(L) 1937(R) 81(L) 278(R) 129(L) 1123(R) 792(L) 1163(R)
Bandwidth Length [-2.75, 5.58] [-1.85, 7.03] [-1.35, 14.89] [-4.16, 5.49]

No. of License-To Links -0.518 1.308 -0.233 -1.368
(1.936) (2.069) (2.012) (1.760)

Observations 757(L) 1640(R) 81(L) 447(R) 177(L) 976(R) 364(L) 666(R)
Bandwidth Length [-2.21, 4.4] [-1.86, 13.03] [-1.83, 11.64] [-1.79, 2.95]

No. of License-From Link 2.975 -0.181 -2.094 2.383
(3.834) (8.191) (8.017) (2.830)

Observations 606(L) 2820(R) 75(L) 478(R) 137(L) 1104(R) 533(L) 1949(R)
Bandwidth Length [-1.79, 8.71] [-1.77, 14.89] [-1.44, 14.71] [-2.63, 10.23]

License-To Links (Share in Tech) 0.120 0.257 -0.268 0.250
(0.221) (0.337) (0.353) (0.198)

Observations 811(L) 2023(R) 38(L) 289(R) 183(L) 251(R) 620(L) 1212(R)
Bandwidth Length [-3.72, 8.62] [-1.88, 14.89] [-3.56, 4.08] [-4.1, 7.53]

License-From Links (Share in Tech) 0.306 0.379 0.666 0.289*
(0.313) (0.980) (0.614) (0.153)

Observations 317(L) 1489(R) 42(L) 152(R) 80(L) 307(R) 560(L) 1667(R)
Bandwidth Length [-1.25, 6.04] [-2.11, 6.73] [-1.22, 4.81] [-3.69, 11.48]

Polynomial 1 1 1 1
Kernel Triangular Triangular Triangular Triangular
Bandwidth Type msetwo msetwo msetwo msetwo

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table presents regression discontinuity estimates of the impact of EU ETS on firms’ tech-
nological links for the subset of firms with supply chain data. The inference uses robust bias correction
approach, with heteroskedasticity-robust errors clustered at firm-level.

Table 1.7 presents the effects of the EU ETS on firms’ technological connections,

focusing specifically on License-From and License-To relationships, as the re-

sults for technological collaborations are straightforward to infer. Overall, the
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EU ETS’s impact on firms’ technological links is not significant. There is some

indicative evidence that regulated firms increased the turnover of their techno-

logical connections in Phase 1, but this lacks statistical significance. Similarly,

no significant findings emerge regarding the regulated firms’ licensing relation-

ships. The only exception is a noticeable increase in the proportion of License-

From relationships for regulated firms compared to the control group, significant

only in Phase 3. These findings suggest limited technological spillovers through

technological links. Nevertheless, these results do not completely eliminate the

possibility of innovation spillovers through other channels, nor do they negate

the potential impact of the EU ETS in spurring firms to enhance innovation in

carbon reduction technologies. For a more thorough analysis, investigating firms’

R&D or patent data and other spillover channels would be necessary, but this

falls outside the scope of the current study.

1.6 Robustness Check

1.6.1 Econometric Framework

The primary findings in Section 1.5.2 reveal that firms under the EU ETS have

managed to reduce their direct emissions compared to a control group, yet this

achievement may in part be due to outsourcing emissions across their supply

chains. To enhance the robustness of these findings, I leveraged the transition

from Phase 2 to Phase 3 of the EU ETS as a natural experiment to examine its

impacts on key performance metrics.

This investigation specifically leverages significant regulatory reforms enacted

during Phase 3 (2013-2020) of the EU ETS, as detailed in Section 1.2.1. These

reforms include the introduction of a single, EU-wide emissions cap, reducing an-

nually by 1.75%, and a shift towards auctioning allowances as the main method

of allocation, decreasing the proportion of allowances allocated freely from 90%

in Phase 2 to 43% in Phase 3. Figure 1.7 demonstrates a clear reduction in freely
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allocated allowances at the commencement of Phase 3, highlighting the increased

regulatory stringency due to the reforms.

Figure 1.7: Average Annual Emissions and Allowances

Note: The graph displays the average annual verified emissions and average annual free-allocated al-
lowances for all EU ETS regulated installations, excluding airlines. The red line indicates the average
number of free-allocated allowances, where each allowance corresponds to 1 tonne of CO2 equivalent, and
the blue dotted line represents the average verified emissions. Two gray vertical lines represent the end of
phase 1 and phase 2, respectively.

Additionally, the reduction of free allowances varies across installations. While

installations in the power generating sector no longer get any free allowances, in-

stallations in other sectors get their free allowances based on a newly introduced

benchmarking system. This system sets benchmarks based on the emissions from

the top 10% of the most efficient installations producing each product within

the EU and EEA-EFTA states. Consequently, installations that achieve these

benchmarks are fully compensated for their emissions with free allowances. In

contrast, installations that do not meet the benchmarks are allocated fewer al-

lowances, compelling them to either reduce their emissions or purchase additional

allowances. This reform not only enhanced the stringency of the regulatory frame-

work but also created variability in the intensity of regulation across different

installations and firms. Such variability provides an ideal scenario for conduct-

ing a difference-in-difference analysis with continuous treatment. Specifically, I
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conduct the following analysis for a four-year period from 2012 to 2015:

Yit = δt + αi +X′θ +
∑
t

βt(∆Stringencyit · Tt) + ϵit (1.3)

where Yit represents a particular outcome of interest for firm i in at time t, with t

ranging from 2012 to 2015. δt and αi are year and firm fixed effects, respectively,

and X is a vector of control variables.

The coefficients of interest are βt for the interaction terms ∆Stringencyit · Tt

in the summation. Tt is an indicator variable for year t. This specification

allows an estimation of time-varying effects after the transition into Phase 3.

To measure the change of the EU ETS stringency ∆Stringencyit for a firm, I

use the decrease of free allowances relative to the level in 2012, the last year in

Phase 2. Specifically, it is calculated as Base.Allocationi − Allocationit, where

Base.Allocationi denotes the total free allowances for firm i in year 2012 across

all its EU ETS-regulated plants, and Allocationit is the total free allowances

to these plants in year t. The change of stringency ∆Stringencyit in 2012 is

therefore zero. By this definition, a higher ∆Stringencyit value indicates a larger

reduction in free allowances, and thus, a larger increase in stringency for firm i in

year t after the transition to Phase 3. To comply with the tightened regulation,

a firm needs to either reduce the direct emissions of its EU ETS-covered plants

or purchase additional allowances to offset its direct emissions. A more accurate

measure of the increase in regulation stringency should also account for the price

of allowances and estimate the impacts of the increase in the marginal cost of

emissions on the outcomes of interest as in Martinsson et al. (2024). However,

as shown in Figure 1.1, the price of allowances did not change much around

the phase transition, and the annual price level of allowances is one of the macro

trends absorbed by the year fixed effects. Using ∆Stringencyit is sufficient for the

purpose of this study. Another concern is that firms might react by divesting their

plants, as documented by Berg et al. (2023), then the above measure of change

in regulation stringency will not be accurate. To mitigate this, I also include the
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change in the number of regulated plants as a control, with the change defined as

the number of regulated plants in the current year minus the number of regulated

plants in 2012.

1.6.2 Results

The regression results are shown in Table 1.8 and Table 1.9. In both tables,

column (1) displays the aggregated results on ∆Stringencyit without interacting

with year dummy. Columns (2) to (4) show the coefficients for each year in the

early period of Phase 3. The full results, including coefficients on covariates, are

also included in tables in Appendix A.3.

Table 1.8: Impacts of Regulation Stringency on Firm Outcomes

Early Phase 3 Year = 2013 Year = 2014 Year = 2015
(1) (2) (3) (4)

Emission Outcomes
Scope1 (abs) -0.0138∗∗∗ -0.0020 -0.0150∗∗∗ -0.0196∗∗∗

(0.0022) (0.0024) (0.0026) (0.0025)
Scope1 (int) -0.0256∗∗∗ -0.0037 -0.0235∗∗∗ -0.0397∗∗∗

(0.0022) (0.0025) (0.0025) (0.0031)
Scope2 (abs) 0.0767∗∗∗ -0.0190∗∗ 0.0995∗∗∗ 0.1140∗∗∗

(0.0096) (0.0081) (0.0090) (0.0141)
Scope 1&2 (abs) -0.0109∗∗∗ 0.0019 -0.0111∗∗∗ -0.0181∗∗∗

(0.0023) (0.0025) (0.0027) (0.0026)
Scope 1&2 (int) -0.0227∗∗∗ 0.0003 -0.0196∗∗∗ -0.0382∗∗∗

(0.0024) (0.0026) (0.0025) (0.0032)
Financial Outcomes
Revenue 0.0045∗∗∗ 0.0006 0.0032∗∗∗ 0.0076∗∗∗

(0.0005) (0.0007) (0.0005) (0.0011)
Net Income 0.0073∗∗ 0.0023 0.0022 0.0140∗∗

(0.0033) (0.0044) (0.0032) (0.0059)
Capital Expenditure -0.0640∗∗∗ -0.0029 0.0066 -0.1519∗∗∗

(0.0060) (0.0018) (0.0056) (0.0148)

Clustered (Firm) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table presents estimates of the impacts of increase in regulation stringency on firms’ GHG
emissions and financial performance in logarithmic scale. The unit of all pre-scaled absolute amounts of
emissions is tonnes of carbon dioxide equivalent, or tCO2e, while the unit of the corresponding carbon
intensity is tCO2e/US$mnRevenues, i.e., calculated as dividing the absolute amount of emissions by a
firm’s annual consolidated revenues in millions of US dollars. All explanatory variables are standardized.
The financial outcome variables are also standardized.

In Table 1.8, we can see that the impacts of increased regulation stringency on
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firm emissions are consistent with the findings in Table 1.4. A larger increase

in regulation stringency results in a statistically significant decrease in regulated

firms’ Scope 1 emissions, both in absolute terms and intensity. Specifically, a one

standard deviation increase in ∆Stringency leads to a -0.0138 decrease in log

absolute Scope 1 emissions, or around a 1.37% decrease relative to the year 2012

level and about a 2.53% decrease in Scope 1 intensity. In contrast, a one standard

deviation rise in ∆Stringency leads to a significant 7.97% increase in absolute

Scope 2 emissions. The decrease in Scope 1 and the increase in Scope 2 are mostly

driven by results in 2014 and 2015, suggesting a slight delay in response to the

increased stringency from firms. The effects on combined Scope 1 and Scope 2

emissions in both absolute terms and intensity are statistically significant and

negative. The smaller magnitude relative to the effects on Scope 1 alone confirms

the earlier findings that firms reduced their direct emissions partially through

shifting across their supply chains. Figure 1.8 provides a graphical version of the

impacts of increasing EU ETS stringency on emissions.

Figure 1.8: Effects of Increased Stringency on GHG Emissions

Note: The figure displays the coefficients for emission outcomes in the first three years of the EU ETS
Phase 3. The coefficients capture the change of emission variables relative to their values in 2012, the last
year of the EU ETS Phase 2. The vertical line segments denote the 95% confidence interval. To increase
readability, coefficients from a specific year are drawn around that year to avoid overlapping.
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The second half of Table 1.8 displays the effects of an increase in regulation

stringency on firms’ financial performance, with both independent and depen-

dent variables standardized. Here, the signs of the estimates are consistent with

the signs of fuzzy RD estimates for Phase 3 in Table 1.5. While the coefficients

from the fuzzy RD analysis are not statistically significant, the aggregated esti-

mates for the first three years of Phase 3 are statistically significant even though

their magnitudes are small. Particularly, a one standard deviation increase in

∆Stringencyit leads to an increase of 0.0045 standard deviations in revenue,

0.0073 standard deviations in net income, and a decrease of -0.064 standard de-

viations in capital expenditure. However, the significance is mainly driven by

results in 2015.

These results are somewhat surprising. Given that buying emission allowances

is essentially equivalent to paying a tax, one would expect firms facing larger

regulation tightening to become financially worse off as they now need to spend

more money to buy extra allowances. One potential explanation is that, since

the EU ETS has allowed banking of allowances since 2008, and due to the 2008

financial crisis, there was an oversupply of allowances in Phase 221. Therefore,

while the increased regulation stringency in Phase 3 could still have immediate

impacts on firms’ emissions through the expectation channel, it might not have

any immediate negative impacts on firms’ financial outcomes. Furthermore, since

the results for emissions suggest that part of the reduction in firms’ emissions is

achieved by shifting their direct emissions across supply chains, the regulatory

tightening might have minimal impacts on the financial performance of regulated

firms. In addition, as the recent study by Känzig (2023) shows, EU ETS regulated

firms passed through the costs to their customers. Given that firms under tighter

regulations are those outside of industries that are prone to carbon leakage and

firms in the matched sample are mostly big firms with market power, this suggests

the demand of their customers is relatively inelastic, and thus the increase in their

price due to the pass-through effect will naturally lead to higher revenue. While

21For the development of EU ETS, see: https://climate.ec.europa.eu/eu-action/

eu-emissions-trading-system-eu-ets/development-eu-ets-2005-2020_en
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this does not provide a satisfying explanation for the positive impacts of tighter

regulation on net income, it at least suggests that increased regulatory stringency

does not hurt firms’ bottom line in the short run.

The impacts of increased EU ETS stringency on the networks of firms are dis-

played in Table 1.9. Compared to the results in Table 1.6 for Phase 3, a few

estimates have different signs. However, since most estimated effects in Table

1.6 for Phase 3 are not statistically significant, the different signs here might not

necessarily pose a contradiction. In fact, most results here are consistent with the

overall results of the fuzzy RD analysis. Although firms experiencing more reg-

ulatory tightening had increased links with general European business partners

and with both European customers and European suppliers, the shares of the

links with both general European business partners and with European suppliers

are decreasing when ∆Stringencyit increases. These results support the previous

argument that regulated firms seem to diversify their supply chain by decreasing

their exposure to the EU, where there may be higher transition risks. However,

the effects lack economic significance. An increase of one standard deviation

in ∆Stringencyit only leads to an average 0.94% decrease in general European

business partners and a 0.85% decrease in European suppliers.

The impacts of increased regulation stringency on firms’ technological links stand

in contrast to the results in Table 1.7 from the fuzzy RD analysis. While there are

no statistically significant effects found in the fuzzy RD analysis, here, most of

the estimates are statistically significant, albeit with modest magnitudes. Specif-

ically, the second part of Table 1.9 shows that firms facing a larger increase in

regulation stringency increase their technological links both in absolute numbers

and as a proportion of total links in 2013, the first year of Phase 3. A one stan-

dard deviation rise in ∆Stringencyit leads to an increase of 0.7498 in the number

of technological links and 0.0046 or 0.46% proportionally. Besides the positive

relation between ∆Stringencyit and the stock of technology links, firms experi-

encing a larger increase in regulation stringency also have a larger turnover of

technological connections. A one standard deviation increase in ∆Stringencyit
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corresponds to an increase of 0.1703 in the number of added technological links

and an increase of 0.5116 in the number of dropped technological links during

the first three years of Phase 3. These results indicate that firms facing a larger

regulatory shock are, on average, not only forming more new technological con-

nections but also dropping more of their existing ones. Such behavior is consistent

with the hypothesis that the EU ETS encourages firms to innovate and branch

out into new technological areas by forming new partnerships with knowledgeable

entities.

Table 1.9: Impacts of Regulation Stringency on Firm Network Outcomes

Early Phase 3 Year = 2013 Year = 2014 Year = 2015
(1) (2) (3) (4)

Geographic Composition
No. of European Firms 0.2145∗∗∗ 0.3530∗∗∗ 0.0155 0.2875∗∗∗

(0.0433) (0.0573) (0.0505) (0.0517)
European Firms (Share) -0.0094∗∗∗ -0.0043∗∗∗ -0.0125∗∗∗ -0.0099∗∗∗

(0.0009) (0.0012) (0.0011) (0.0012)
No. of European Customers 0.0532∗ 0.3704∗∗∗ 0.0205 -0.0929∗∗

(0.0317) (0.0356) (0.0327) (0.0429)
European Customers (Share in Customers) 0.0085∗∗∗ 0.0150∗∗∗ 0.0111∗∗∗ 0.0035∗∗

(0.0013) (0.0014) (0.0013) (0.0018)
No. of European Suppliers 0.7741∗∗∗ 0.1611∗∗∗ 0.6148∗∗∗ 1.221∗∗∗

(0.0660) (0.0596) (0.0680) (0.0759)
European Suppliers (Share in Suppliers) -0.0085∗∗∗ -0.0058∗∗∗ -0.0115∗∗∗ -0.0077∗∗∗

(0.0012) (0.0014) (0.0014) (0.0014)
Technology Composition
No. of Technology Links 0.0603 0.7498∗∗∗ 0.0480 -0.3010∗

(0.0807) (0.1587) (0.0934) (0.1616)
Technology Links (Share) 0.0009 0.0046∗∗∗ 0.0004 -0.0007

(0.0009) (0.0015) (0.0012) (0.0013)
No. of Added Technology Links 0.1703∗∗∗ 0.7210∗∗∗ -0.2897∗∗∗ 0.2152∗∗∗

(0.0336) (0.0644) (0.0616) (0.0541)
No. of Dropped Technology Links 0.5116∗∗∗ 0.4665∗∗∗ 0.1719∗∗∗ 0.7876∗∗∗

(0.0188) (0.0383) (0.0195) (0.0276)
No. of License-To Links -0.1148∗∗∗ -0.1058∗∗∗ -0.1632∗∗∗ -0.0838∗∗∗

(0.0154) (0.0209) (0.0194) (0.0176)
No. of License-From Links 0.0993∗∗∗ 0.0122 0.1282∗∗∗ 0.1246∗∗∗

(0.0178) (0.0204) (0.0185) (0.0172)
No. of Research Collaboration 0.0744 0.8430∗∗∗ 0.0807 -0.3431∗∗

(0.0824) (0.1659) (0.0942) (0.1716)
License-To Links (Share in Tech) 0.0003 0.0009 -0.0016 0.0013

(0.0009) (0.0010) (0.0010) (0.0013)
License-From Links (Share in Tech) 0.0035∗∗∗ -0.0013 0.0049∗∗∗ 0.0050∗∗∗

(0.0007) (0.0009) (0.0007) (0.0007)

Clustered (Firm) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table presents estimates of the impacts of the regulatory stringency change on firms’ network
composition. The first part shows the impacts on the geographic composition of firm networks, and the
second part shows the impacts on the composition of firm technology networks. All explanatory variables are
standardized.

A further breakdown of technological relationships by type in Table 1.9 provides
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some insight into how firms change their roles in the technology market after ex-

periencing a tightening of regulation. In the first three years of Phase 3, while a

one standard deviation increase in ∆Stringencyit leads to an addition of 0.0993 in

the number of License-From links, where regulated firms license technology from

their business partners, it leads to a decrease of 0.1148 in the number of License-

To links, where they license technology to others. The increase in License-From

is also significant proportionally. The results on the number of research collab-

orations are mixed, with a positive coefficient of 0.843 in 2013 but a negative

coefficient of -0.3431 in 2015. The rise in License-From links in relation to higher

∆Stringencyit could be a result of firms experiencing larger regulation shocks

seeking technology solutions to stay compliant in the short run, as innovating

by oneself takes time. Given the interconnection of firms through their busi-

ness network, the negative relationship between License-To and ∆Stringencyit

could be due to decreased demands from other firms that are also under regula-

tion. The increase in the number of research collaborations with ∆Stringencyit

in 2013 might also indicate that firms increase their involvement in developing

new technologies to find a longer-term solution.

Overall, the results in Table 1.9 on firms’ technological connections suggest that

there are potential technology or innovation spillovers through firms’ technology

networks in the very beginning of Phase 3. The tighter regulation leads to both

an increasing number of technology links and turnover of technology relation-

ships, suggesting increasing dynamics of technology networks among firms. Such

increased dynamics can create more opportunities for technology and innova-

tion to spill over through interactions between firms. As for potential spillovers

accompanied by firms’ activities in the technology market, the findings suggest

potential spillovers from other firms to firms experiencing larger regulation strin-

gency increases in the short run. However, to gain a more holistic understanding

of the impacts of regulation on firm innovation activities and related spillovers,

further research using patent data or firm R&D expenses is needed.
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Table 1.10: Impacts of Regulation Stringency on Firm Network Outcomes

Early Phase 3 Year = 2013 Year = 2014 Year = 2015
(1) (2) (3) (4)

License-To
No. of License-To Regulated -0.0197∗∗∗ -0.0261∗∗ -0.0332∗∗∗ -0.0062

(0.0054) (0.0103) (0.0083) (0.0038)
License-To Regulated (Share in License-To) -0.1406 -0.3043∗∗∗ -0.2634∗∗ -0.0302

(0.0877) (0.0915) (0.1197) (0.0813)
No. of License-To Added -0.0423∗∗∗ -0.0329∗∗∗ -0.0855∗∗∗ -0.0152∗∗∗

(0.0057) (0.0086) (0.0123) (0.0053)
No. of License-To Regulated Added -0.0049∗∗ -0.0168∗∗∗ -0.0027 -0.0001

(0.0022) (0.0060) (0.0020) (0.0017)
No. of License-To Dropped -0.0224∗∗∗ -0.0237∗∗∗ -0.0248∗∗∗ -0.0200∗∗∗

(0.0058) (0.0074) (0.0056) (0.0073)
No. of License-To Regulated Dropped -0.0023 0.0006 0.0034∗∗ -0.0081∗∗

(0.0019) (0.0023) (0.0015) (0.0034)
License-From
No. of License-From Regulated -0.0027 -0.0043 -0.0035 -0.0013

(0.0050) (0.0066) (0.0056) (0.0045)
License-From Regulated (Share in License-From) -0.1483∗∗∗ -0.0729 -0.0658 -0.0727

(0.0383) (0.1000) (0.1059) (0.0976)
No. of License-From Added -0.0128∗∗ -0.0121 -0.0090 -0.0160∗∗∗

(0.0056) (0.0074) (0.0070) (0.0060)
No. of License-From Regulated Added -0.0055∗∗∗ -0.0121∗∗∗ -0.0015 -0.0049∗∗∗

(0.0013) (0.0031) (0.0013) (0.0017)
No. of License-From Dropped -0.0044 -0.0118 −1.2× 10−6 -0.0036

(0.0096) (0.0104) (0.0099) (0.0104)
No. of License-From Regulated Dropped -0.0042∗∗∗ -0.0074∗∗∗ -0.0014 -0.0045∗∗

(0.0016) (0.0024) (0.0016) (0.0019)

Clustered (Firm) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table presents estimates of the impacts of the regulatory stringency change on firms’ technological
relationships. The first part shows the impacts on the License-To links, and the second part shows the impacts
on the License-From links. All explanatory variables are standardized.

1.7 Conclusion

In this study, I investigate the complex effects of the EU ETS on firms using

a fuzzy RD design that capitalizes on the system’s distinct inclusion criteria.

The analysis reveals that while regulated firms significantly lowered their direct

(Scope 1) emission intensity under the EU ETS, this was paralleled by a marked

increase in indirect (Scope 2) emissions. This pattern raises concerns about poten-

tial carbon leakage through supply chains, a hypothesis bolstered by a noticeable

decrease in the proportion of European suppliers, who are typically subjected to

stricter environmental norms. However, the impacts of the EU ETS on firms’

technological networks only manifest when the regulation was tightened in the

transition to Phase 3. Specifically, an increase in regulatory stringency leads to
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an expansion of firms’ technological networks and an increasing turnover of tech-

nological relationships. This increase in dynamics suggests a surge in voluntary

technology transfers and potential innovation spillovers in response to tighter reg-

ulations. A surprising increase in revenue and net income was found for firms

facing tighter regulation. This is likely due to the oversupply of allowances in

the earlier years of the EU ETS and the ability of those regulated firms to shift

their emissions through supply chains and pass increased costs to their customers

thanks to their market power.

This paper extends beyond the traditional scope of analyzing direct impacts of

the EU ETS on regulated entities, shedding light on its broader ripple effects, an

area not as extensively probed in existing research. These findings carry signif-

icant policy implications, emphasizing the importance of a holistic view in the

cost-benefit assessment of environmental policies like the EU ETS. The evident

risks of carbon leakage and the opportunities for innovation spillovers highlight

the need for comprehensive policies that consider wider market dynamics. It is

noteworthy, however, that this research primarily focuses on one channel of in-

novation spillovers and does not account for emissions further along the supply

chains (Scope 3 emissions). A more thorough understanding of the EU ETS’s

impact necessitates the exploration of these aspects. Future research directions

include probing additional avenues of innovation spillovers and assessing the long-

term viability of firms’ responses to environmental regulations.
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Chapter 2

Unraveling Price Dispersion in

Building Insurance: Evidence

from a UK Price Comparison

Platform

Abstract

This paper investigates the price dispersion of building insurance policies on a

leading price comparison website in the UK. By utilizing real property data and

fictitious customer profiles, I collected annual quoted prices and documented two

facts: First, substantial price dispersion persists for customers even after control-

ling for observable policy features. Second, the extent of this dispersion varies

significantly across different customers. A simple model suggests that these pat-

terns can be partially explained by customers’ preferences for certain providers

based on additional features they offer. However, empirical analysis indicates

that this explanation is insufficient. Further examination reveals that variations

in providers’ risk pricing strategies and the use of randomized pricing also con-

tribute to the observed price dispersion.
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2.1 Introduction

Since the seminal paper by Stigler (1961), price dispersion in homogeneous goods

has attracted significant scholarly attention. Early studies attributed price dis-

persion primarily to consumer search costs (e.g., Rothschild, 1978; Reinganum,

1979; Carlson and McAfee, 1983). Despite the rise of the internet and price com-

parison websites (PCWs) reducing search costs, price dispersion persists even on

these platforms. Later research (e.g., Varian, 1980; Baye and Morgan, 2001) ac-

knowledged the minimal search costs associated with PCWs but continues to rely

on search costs to explain price dispersion, positing that dispersion results from

some consumers lacking access to such ”information clearinghouses”. However,

since firms often charge different prices for identical products across various dis-

tribution channels and customers shopping through PCWs may inherently differ

from those using other channels, search costs may not fully explain the price dis-

persion observed on PCWs. This suggests the need for alternative explanations

beyond traditional search cost theories. This paper examines the price dispersion

of home insurance policies on a leading UK PCW. Home insurance is a crucial

financial product, closely tied to the property market, which is vital to both con-

sumers and policymakers. The importance of home insurance is heightened by

the increasing frequency of extreme weather events globally. Additionally, since

prices often indicate market efficiency, understanding the determinants of home

insurance prices and their dispersion is essential.

To investigate price dispersion, I collected annual quotes for building insur-

ance policies from comparethemarket.com, which compares policies from over 50

providers. I focused on building insurance to simplify data collection and to uti-

lize real property information for data collection. Quoted prices were obtained

using recently transacted properties for property inputs and fictitious individu-

als for personal and household inputs. The use of fictitious individuals enables

controlled experiments by varying one input at a time to study its impact on

the output variables of interest. Unlike previous audit studies (e.g., Bertrand
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and Mullainathan, 2004; Kübler et al., 2018), these quotes were produced by

predetermined pricing algorithms, reducing errors and eliminating the need for

randomization. To minimize the impact of product differentiation, policies re-

ceived by each customer were grouped by their most observable features, and

price dispersion was measured for each group. Here, a customer is defined as

a combination of a real property and a fictitious individual. The data revealed

two key findings: First, there is noticeable price dispersion even among seemingly

identical policies, with the average residual price—defined as the absolute devi-

ation from the group average—being £84.43, about 21% of the average annual

price. Second, the degree of price dispersion varies significantly across customers,

with the standard deviation of the group-level standard deviation being £109.68,

or 1.23 times the average group-level standard deviation across all groups.

While search frictions are often used to explain price dispersion, they do not

appear to play a significant role in this context. Instead, I argue that price

dispersion arises from customers valuing additional features offered by insurance

providers. A simple framework shows that providers offering valued additional

features can charge higher prices for identical policies. If customer preferences

for these features are known, providers can price discriminate, charging higher

prices to those who value the features more. This framework explains both price

dispersion faced by individual customers and the significant differences in price

dispersion across customers. To test this, I collected data on insurance providers,

classifying them as either non-insurance-focused (NIF) or insurance-focused (IF).

NIF providers, with a significant presence in other sectors such as retail, often

offer complementary services and can charge higher prices. Empirical evidence

supports this hypothesis: NIF providers charge on average £67.37 more annually

for seemingly identical policies compared to IF providers. However, the empirical

results do not support the hypothesis that providers price discriminate based on

self-disclosed customer characteristics. Therefore, while customer preferences can

explain the price dispersion faced by a single customer, they cannot account for

the significant heterogeneity in price dispersion across customers.
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An alternative explanation for the variation in price dispersion across customers

is differences in risk pricing. If providers disagree on the risk assessment of the

same customer and this disagreement varies across customers, it can lead to the

observed patterns. To test this, I examined whether certain customer characteris-

tics predict lower but not zero offer rates. Since providers cannot observe the true

risks of customers, they must rely on observable characteristics to estimate risks.

When a customer’s risk cannot be clearly estimated, providers may exit the mar-

ket segment due to concerns about adverse selection. If there were no differences

in risk pricing, one would expect to see either all providers making offers or none

at all to certain customers. However, I found that customers with a history of

bankruptcy or recent claims receive fewer but non-zero quotes, suggesting differ-

ences in risk pricing across providers. Beyond differences in risk pricing, further

investigation reveals that some providers appear to randomize their prices, with

the same characteristic sometimes resulting in higher charges and other times in

lower charges. This price randomness, possibly as a response to changing market

competition, is more likely due to the randomization of markups rather than risk

assessments, as risk assessments for a given characteristic should remain stable

over short periods. Additionally, I found that a few providers price discriminate

based on certain protected characteristics.

Overall, the empirical results suggest that while observed price dispersion can

partly be attributed to customers valuing additional provider features, this cus-

tomer loyalty explanation does not fully account for the considerable differences

in price dispersion across customers. Differences in risk pricing and the random-

ization of markups provide alternative explanations, helping to explain both the

price dispersion faced by individual customers and the variation in price disper-

sion across different customers. Therefore, the existence of price dispersion does

not necessarily suggest market inefficiencies. However, with the current data, I

cannot rule out the possibility that search frictions also contribute to the observed

price dispersion patterns, nor can I disentangle and quantify the proportion of

price dispersion due to differences in risk pricing and that due to differences in
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markups. More data is needed for a further welfare analysis.

This paper contributes to the empirical literature on price dispersion. While most

previous studies focus on testing predictions from search models (e.g., Dahlby and

West, 1986; Brown and Goolsbee, 2002; Chandra and Tappata, 2011; Allen et al.,

2014), this paper explores alternative explanations for price dispersion observed

on PCWs, where search frictions play a less significant role. It thus directly con-

tributes to the body of work seeking explanations beyond search frictions (e.g.,

Carlin, 2009; Woodward and Hall, 2012; Chioveanu and Zhou, 2013). Specifically,

it relates to empirical studies on market power and price dispersion, where most

existing studies focusing on the airline industry (e.g., Gerardi and Shapiro, 2009;

Gaggero and Piga, 2011) and commodity sectors (e.g., Lewis, 2008). Additionally,

this study aligns with research on insurance pricing (e.g., Bundorf et al., 2012;

Koijen and Yogo, 2015) and with studies using field experiments to identify dis-

crimination in labor or consumer markets (e.g., Ahmed and Hammarstedt, 2009;

Edelman et al., 2017; Byrne et al., 2022).

The rest of the paper is structured as follows. Section 2.2 provides institutional

background for the UK home insurance market. Section 2.3 explains the data

collection methods. Section 2.4 investigates the price dispersion in the data,

while Section 2.5 and 2.6 provide explanations for the observed price dispersion

patterns. Finally, Section 2.7 conclusions.

2.2 UK Home Insurance Market

Home insurance policies in the UK generally fall into three categories: buildings

insurance, contents insurance, and a combination of the two. Buildings insurance,

which is the focus of this study, covers damage to the structure, fixtures, and

fittings of a property. Contents insurance, on the other hand, covers loss or

damage to personal belongings within a property that are not part of the building

itself. While there is no legal requirement to purchase home insurance, mortgage
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providers usually require borrowers to have buildings insurance.

Compared to home insurance markets in other major economies, the UK home

insurance market is relatively competitive, with the top five providers accounting

for around 30% of market share as of 20221. Major players include companies

such as Aviva, Direct Line, and AXA, which dominate market share due to their

extensive distribution networks and brand recognition. The majority of UK home

insurance customers (around 75%) shop around before buying a policy2. Addi-

tionally, purchasing home insurance online is becoming increasingly popular in

the UK, as shown in Figure 2.1. More than half (51.6%) of people bought their

home insurance policy online in 2023. While there is no precise data on the

usage of price comparison websites (PCWs), it is reported by the Financial Con-

duct Authority (FCA) that customers often buy insurance from providers after

comparing prices on PCWs.

The retail price of insurance policies is determined by many factors. Broadly

speaking, the price from most insurance providers comprises risk-related costs,

operational costs, and the margin charged to customers. While the cost compo-

nent of the price is relatively stable for a given customer, as it primarily depends

on the design of the insurance policy and customer risks, the margins can vary

substantially due to factors such as distribution channels, market competition,

customer characteristics, and even the duration of a customer’s relationship with

their current insurance provider. The last factor, known as ”price walking,” refers

to the practice of offering new customers low and sometimes ultra-low prices,

which increase significantly upon renewal. This practice has been banned by the

FCA’s General Insurance Pricing Practices (GIPP) since January 20223. Since

then, insurance providers are required to charge the same prices for both new and

existing customers.

1For the home insurance brands dominating the UK market share, see: https://www.

consumerintelligence.com
2UK Home insurance statistics 2024: https://www.confused.com/home-insurance/

home-insurance-statistics
3See PS21/11: General insurance pricing practices (GIPP) - amendments from the Fi-

nancial Conduct Authority (FCA) for details: https://www.fca.org.uk/publications/

policy-statements/ps21-11-general-insurance-pricing-practices-amendments
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Source: Statista

Figure 2.1: Number of UK Home Insurance Policies Sold by Type (2018-2023)

Generally speaking, there are three types of providers in the UK home insurance

market. The first type is insurers who underwrite policies and directly bear the

risks associated with them. The second type is intermediaries other than PCWs,

which usually do not underwrite the risk but may be involved in pricing since

they often design, manufacture, and distribute insurance policies. Both types

play important roles in setting prices for insurance policies. While the major

income source for insurers is premiums charged for each policy, the core income

source for intermediaries is commissions or a portion of the premium. The insur-

ance providers in this study include both insurers and intermediaries, though the

latter constitute the majority. The third type is PCWs, which are essentially in-

termediaries as well. However, instead of participating in the pricing of insurance

policies, most PCWs provide platforms to connect insurance providers and cus-

tomers and earn money through referral fees or cost per acquisition, which may

vary by provider and product. The PCW from which this study collected data

is an example of such a platform 4. Therefore, although PCWs do not directly

participate in the pricing of insurance policies, they can affect the retail prices

4See the description from comparethemarket.com: https://www.comparethemarket.com/

about-us/

63

https://www.comparethemarket.com/about-us/
https://www.comparethemarket.com/about-us/


of policies sold on their platforms through the additional referral fees charged to

their partners.

2.3 Data

The main dataset used in this study is quoted annual prices for building insurance

policies, collected from comparethemarket.com using real property information

and fictitious individual information as inputs. comparethemarket.com is one

of the leading UK price comparison websites, initially focused on offering price

comparison services for various insurance products, particularly car and home

insurance. It has since expanded to include products such as utilities, broadband,

and cars. This study focuses exclusively on building insurance to simplify the data

collection process. The annual quotes data were collected at two different points

in time: August 2020 and March 2024.

2.3.1 Inputs for Data Collection

Similar to most other PCWs, to obtain prices for different building insurance

policies, comparethemarket.com requires each customer to enter detailed prop-

erty, individual, and household information and make choices about the policies.

Figure B.1.1 provides a screenshot of the beginning of the input page, and Table

B.1.1 lists all the questions a customer needs to answer before receiving a list of

policies with quoted prices.

To ensure the quotes obtained are as close as possible to what a customer would

get in reality, I rely on real properties for the required property-related inputs.

Specifically, I obtained a list of recently transacted properties from the UK MH

Land Registry Price Paid Data (PPD)5. For each property, the PPD data reports

its transaction price, transaction date, and most importantly, the detailed ad-

dress. For this study, I restricted the postcodes to those starting with ”BR1,”

5PPD data: https://www.gov.uk/government/collections/price-paid-data
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which refers to the Bromley district, a town in the southeast of Greater London,

to minimize any impact from property location. Given the address of a property,

I then searched online to obtain information to answer other required questions.

Since these are recent transactions, I could easily find detailed information about

these properties on real estate websites such as Rightmove6. For instance, I pro-

vided answers on the number of rooms a property has based on its actual floor

plan. For questions where I could not find answers, I made the best guess based

on accessible information.

Unlike the property inputs, which are based on real properties, the inputs for

policyholders and their households are fabricated. To simplify data collection and

focus on the most relevant characteristics, I keep the answers to some individual-

related questions fixed, as shown at the bottom of Table B.1.1. The remaining

individual-related questions vary and can be categorized into policyholder-related

or household-related questions. For each property, I create a fictitious individual

as the baseline and then vary one individual characteristic at a time, so each

fictitious individual has a counterpart who differs only in one characteristic. This

method allows for counterfactual analysis of the impacts of different individual

characteristics on insurance prices. When creating these fictitious individuals, I

use a fake identity generator website7 to generate names, gender, and birthdate.

This generator allows me to create names based on race; for example, I can specify

that I want an Arabic name, and the website will provide a typical Arabic name.

I also double-check the race information embedded in the name using Google

search results.

Table 2.1 presents the summary statistics for some continuous input variables.

The upper part displays statistics for property-related variables, while the lower

part shows statistics for policyholder- and household-related variables. The dataset

includes 41 unique property-years and 325 unique policyholders or policyholder-

years. Since each property corresponds to multiple fictitious individuals, but not

6Rightmove is a UK-based online real estate portal and property website: https://www.

rightmove.co.uk/
7Website link: https://www.fakenamegenerator.com
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the other way around, there are 325 unique customer-years or customers in the

sample (as a customer is defined as a combination of a property and an individ-

ual). The average purchase price, based on the latest transaction values at the

time of data collection, is £504,630, which aligns with the average house price

in London in December 20238. The rebuild cost, which measures the cost to

completely rebuild a property and typically includes labor and material costs,

averages £287,980 in the sample.

Table 2.1: Summary Statistics of Continuous Input Variables

Variables Count Mean SD Min Median Max
Property Variables
Property Price at Purchase (£000) 41 504.63 379.88 146.00 488.00 1945.00
Number of Rooms 41 6.07 3.56 3.00 4.00 20.00
Rebuild Cost (£000) 41 287.98 141.26 132.00 239.00 700.00

Policyholder Variables
Age on the Quote Day 325 48.16 15.39 24.00 45.00 82.00
Number of Adults 325 1.82 0.85 1.00 2.00 7.00
Number of Children 325 0.87 0.92 0.00 1.00 4.00
Years Without Claims 325 8.50 1.67 1.00 9.00 9.00

Note: The table presents summary statistics for continuous input variables. The first column, labeled Count,
represents the number of unique property-years and the number of unique policyholders (also policyholder-
years). The property variable Property Price at Purchase reflects the most recent real transaction price for a
specific property-year. The Rebuild Cost is the estimation provided by the Building Cost Information Service
(BCIS) as presented on the PCW. Age on the Quote Day refers to the age of a fictitious policyholder on the
date the data was collected.

The lower part of Table 2.1 and Table 2.2 summarize the fictitious individuals

used for data collection. The average age of these individuals is 48.16 years, and

the average longest period without claims for these individuals and their families

is 8.5 years. Note that in Table 2.2, the proportions of individuals with different

characteristics vary significantly. This variation is because I did not randomize

based on these characteristics. Although many field experiments using fictitious

information randomize based on characteristics of interest, randomization is not

necessary for this study for at least two reasons. First, field experiments in

previous research often rely on human responses to generate output data, neces-

sitating the randomization of characteristics to avoid bias. However, this is not

8See UK House Price Index: December 2023
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a concern here, as the outputs are insurance prices determined by pre-specified

pricing algorithms. Second, as mentioned above, when collecting data, I ensure

that each individual has a counterpart who differs in only one dimension. Since

the pairs were collected at the same location and almost simultaneously (only

minutes apart), this method is essentially like conducting controlled experiments.

Table 2.2: Summary Statistics of Categorical Input Variables

Variable Level Count Proportion
Gender Male 140 43.08%

Female 185 56.92%

Name Implied Race Asian 98 30.15%
Black 66 20.31%
White 116 35.69%
Arab 18 5.54%
Other 27 8.31%

Marital Status Married 169 52.00%
Single 82 25.23%
Divorced/Dissolved 55 16.92%
Widowed/Surviving Civil Partner 19 5.85%

Employment Status Full-time Employed 159 48.92%
Part-time Employed 20 6.15%
Unemployed 9 2.77%
Self-employed 62 19.08%
Houseperson 29 8.92%
Retired 44 13.54%
Not Employed Due to Disability/Illness 2 0.62%

Ever Declared Bankrupt No 295 90.77%
Yes 30 9.23%

Claimed in the Past 5 Years No 297 91.38%
Yes 28 8.62%

Besides the property and individual information, customers also need to input

their choices on policy features. This includes how much voluntary excess or

deductible a customer would like to pay before the policy provider covers the rest

of the claim amount. The voluntary excess can be chosen from a drop-down list

ranging from £0 to £500 in increments of £50. Furthermore, customers need to

specify if they want to include add-ons, which are additional coverage options

that may or may not directly relate to the property. The available add-ons are

listed at the bottom of the first part of Table B.1.1.
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2.3.2 Outputs and Summary Statistics

After providing all the required information, a customer will receive a list of

policies with quoted prices from different insurance providers. An example is

given in Figure B.1.2. Although this study focuses on the annual price, a customer

can choose to pay either annually or monthly. In both cases, the policies are sorted

from the lowest to highest price. Key features such as the coverage amount,

excesses, and inclusion of add-ons are summarized in an easy-to-read manner

for each policy. Most policies include a compulsory excess in addition to the

voluntary excess chosen by the customer, so the total excess a customer needs

to cover is the sum of these two amounts. More detailed information about each

add-on, as shown in Figure B.1.3, can be accessed by clicking the ”More details”

button.

Using the 325 unique customers, I collected a sample consisting of 13,916 quoted

annual prices from 89 unique insurance policies provided by 58 different insurance

providers. As shown in Table 2.3, while a majority of 36 providers offer only a

single type of policy, 22 providers offer 2 or 3 types of policies. In addition, I

collected financial and business data for all providers in the sample and catego-

rized them as IF or NIF based on whether they are pure players in the insurance

sector or not. The last two columns in Table 2.3 show the counts for NIF and

IF providers, respectively. Most providers in the sample are pure players in the

insurance sector. Only 15, or 25.86%, of providers are NIF providers, which are

best recognized in sectors other than insurance.

Table 2.3: Overview of Insurance Providers and Policies

Variables Total Non-Insurance-Focused (NIF) Insurance-Focused (IF)
Number of insurance policy 89 25 (28.09%) 64 (71.91%)
Number of insurance provider 58 15 (25.86%) 43 (74.14%)
Number of providers with 1 policy 36 8 28
Number of providers with 2 policies 13 4 9
Number of providers with 3 policies 9 3 6

Table 2.4 presents the summary statistics for quoted annual prices in GBP. The
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average price of a building insurance policy in this sample is £421.55, with a

significant standard deviation of £263.28, which is more than half of the average

price. Furthermore, the average price charged by NIF providers is £474.74, nearly

£70 more than that of IF providers. The second and last parts of Table 2.4 pro-

vide summary statistics at the customer level and policy level, respectively. The

number of policies obtained by a customer averages 42.82, but ranges widely from

a minimum of 6 policies to a maximum of 70 policies. The average of the average

prices faced by a customer is £394.44, which differs from the mean annual price

across the sample due to the varying number of policies across customers. More-

over, there is noticeable price dispersion for each customer, and this dispersion

varies considerably across customers. Specifically, the average price dispersion,

measured by the standard deviation (SD), is £148.11, and the SD of the SD itself

is £96.12, more than half of the mean. I also measure price dispersion using the

coefficient of variation (CV) following Baye et al. (2006) and within-customer

price range. Both measures lead to similar conclusions.

Table 2.4: Summary Statistics for Quoted Annual Prices

Variables Count Mean SD Min Median Max
Across the Sample

Annual Price (All Providers) 13916 421.55 263.28 67.31 347.03 7016.69
Annual Price (NIF Providers) 3377 473.74 281.30 76.75 394.77 2558.29
Annual Price (IF Providers) 10539 404.83 255.00 67.31 332.87 7016.69

Customer-level Variables
Number of Policy 325 42.82 15.91 6.00 39.00 70.00
Average Annual Price (µi) 325 394.44 181.25 120.82 361.29 1159.72
SD OF Annual Price (σi) 325 148.11 96.12 27.94 139.04 968.70
CV of Annual Price (σi/µi) 325 0.36 0.11 0.14 0.35 0.99
Range of Annual Price 325 670.65 546.14 77.50 534.79 6651.57

Policy-level Variables
Policy Offer 89 0.48 0.28 0.00 0.41 1.00
Average Annual Price (µp) 89 432.63 152.06 179.38 418.02 1261.17
SD OF Annual Price (σp) 89 207.56 102.87 21.76 201.93 580.63
CV of Annual Price (σp/µp) 89 0.47 0.16 0.12 0.45 1.10
Range of Annual Price 89 1081.79 878.06 0.00 934.91 6757.42

Note: The table presents summary statistics for quoted annual prices. The first part shows summary statistics
for the entire sample and by provider type. The second part focuses on customer-level variables, and the last
part on policy-level variables. SD stands for standard deviation and CV for coefficient of variation.

At the policy level, the average offer rate across the 89 different types of poli-
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cies is 0.48, with a standard deviation of 0.28, indicating considerable variation.

While some policies are offered to all 325 customers, others are barely offered to

any. Again, there is considerable price dispersion within each policy, and this

dispersion varies significantly across different policies. This is not surprising, as

the former reflects customer differences, and the latter includes policy differences

or product differentiation.

2.4 Identify Residual Price Dispersion

While the summary statistics in Table 2.4 show considerable price dispersion faced

by customers, and that this dispersion varies widely across customers, these find-

ings are not surprising due to unaccounted product differentiation and variations

among customers. Therefore, to make the discussion of price dispersion mean-

ingful, comparisons must be made on a like-for-like basis. To achieve this, I first

match quotes by their data collection date, customer, policy choices, and the most

observable policy features, retaining only observations with at least one match.

This approach allows for comparisons of quotes from seemingly identical policies

obtained on the same date with specific customer input sets. While some hidden

differences among policies within a group may persist, this method addresses the

most significant product differentiation. Customers would otherwise need to read

extensive documentation from different providers, assuming such documents are

easily accessible. I then define the residual price for each policy p as the absolute

deviation of its annual price from the average price of the matched group, given

by:

Residual.Pricep = |Priceiph −
1

NG

∑
p∈G

Priceiph|

where G denotes a matched group and NG the number of policies in the group.

Table 2.5 presents the summary statistics derived from the matched samples,

comprising 8,327 observations with at least one match. Significant dispersion in

residual prices remains, with an average residual price of £84.43 and a standard
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deviation of £106.34. The minimum and maximum residual prices are £0.02

and £1,218.75, respectively. These results suggest that even after controlling for

obvious differences, customers still face different prices for seemingly identical

policies, and the level of price dispersion varies starkly across matched groups.

The second half of Table 2.5 shows statistics at the matched group level, where

each group has an average of 3.64 policies. Within-group price dispersion, mea-

sured by both SD and CV, remains notable. The average SD across all matched

groups is £88.88, and the average CV is 0.21, meaning the SD is, on average, 21%

of the group mean. The large SDs of both group-level SD and group-level CV

compared to their means suggest significant variation in price dispersion across

groups. Additionally, I measured price dispersion using residuals from multiple

fixed effects. The results, shown in Table B.2.1 and visualized in Figure B.2.1,

are consistent with those derived from the matching method.

Table 2.5: Summary Statistics for Residual Prices and Prices of Matched Groups

Variables Count Mean SD Min Median Max
Group of policies by date, property, individual, policy choices and features
Observation-Level

Residual Price 8327 84.43 106.34 0.02 46.83 1218.75
Group-Level

Number of Policies 2286 3.64 2.26 2.00 3.00 18.00
Average Annual Price (µg) 2286 402.76 216.73 70.62 343.75 2169.35
SD of Annual Price (σg) 2286 88.88 109.68 0.04 52.12 1590.42
CV of Annual Price (σg/µg) 2286 0.21 0.17 0.00 0.17 0.98
Range of Annual Price 2286 185.01 233.53 0.05 97.40 2249.20

Note: The table shows summary statistics after matching observations by date, customer (property + individ-
ual), policy choices, and observable features, retaining only those with at least one match. This ensures each
group has at least two observations. The residual price is defined as the absolute deviation of an observation’s
annual price from the group mean.

As a visualization of the group-level price dispersion, Figure 2.2 plots the standard

deviation of annual prices against the average annual price for each matched

group. While a few matched groups exhibit zero price dispersion, most still

experience non-zero, and in some cases, significant price dispersion. Additionally,

for each value of average annual price, there is noticeable variation in the price

dispersion. Overall, the statistics in this section document two key findings:
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First, considerable price dispersion exists for a customer even when observable

product differentiation is controlled for. Second, the level of price dispersion

varies significantly across matched groups. The next two sections will attempt to

explain the observed price dispersion patterns.

Figure 2.2: Group-level Price Dispersion and Average Annual Price

Note: The figure plots group-level price dispersion, measured as the standard deviation of annual prices,
against the group average annual price. Each black dot represents one of the 2,286 matched groups. The
red line is the best-fit line.

2.5 Market Power from Customer Preferences

In a perfectly competitive home insurance market without any frictions, homo-

geneous insurance policies should charge the same price for the same customer.

However, as the statistics in the last section show, price dispersion exists even

for seemingly homogeneous policies in practice. One explanation, as argued by

Stigler (1961), is that there are no absolutely homogeneous products. Even iden-

tical insurance policies can be perceived differently by customers if they are sold

by providers with distinct features that customers also value. For instance, a cus-

tomer may prefer a policy from one provider over another due to complementary
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products or services offered by that provider. If a provider offers certain features

that are highly valued by some customers, then that insurance provider will have

a relatively loyal customer base and can therefore charge higher prices.

2.5.1 Conceptual Framework

Consider a simple framework where two different providers sell buildings insur-

ance policies that are identical in terms of policy features, terms, and conditions.

The marginal cost of providing the policy for provider j ∈ {A,B} is cj. There

are two types of customers i ∈ {1, 2}, who are identical in all aspects except for

their preference towards providers. The willingness to pay (WTP) of type i cus-

tomers to provider j is νij = ν +µij, where ν > cj. Specifically, type 1 customers

attach an additional value µ1A = νA to provider A but nothing to provider B,

i.e., µ1B = 0. Type 2 customers do not attach additional values to any providers,

so µ2j = 0 for both A and B. Customers choose which provider to buy from to

maximize their utility Ui(j) = νij−pij, where pij is the price charged by provider j

and it may vary with customer type. If purchasing from either provider generates

the same utility, a customer will randomly choose one to buy from. Providers

follow Bertrand competition and set prices to maximize their total profits.

A. Pricing With Observable Customer Preferences

If insurance providers know the preferences of each type of customer, they will

compete in market segments divided by customer types and set optimal prices by

solving the following problem:

max
pij

πij = pij − cj

s.t. Ui(j) ≥ 0; πij ≥ 0

Ui(j) ≥ Ui(−j)
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For provider A, this implies that cA ≤ p1A ≤ p1B + νA for price on type 1

customers, and cA ≤ p2A ≤ p2B for price on type 2 customers. For provider B, this

implies that cB ≤ p1B ≤ p1A − νA for price on type 1 customers, and cB ≤ p2B ≤

p2A for price on type 2 customers. It is straightforward to show that the results

depend on the relative marginal costs of the two providers. Specifically, if cA < cB,

provider A has a cost advantage over provider B and can thus always outcompete

provider B and attract all customers in both market segments by charging a price

piA = cB − δ. However, since type 1 customers attach an additional value νA to

provider A, provider A can increase the price by νA and still attract all type 1

customers. Therefore, provider A will set p1A = cB+νA− δ and p2A = cB− δ and

attract all customers, with both types of customers receiving Ui = ν − cB + δ.

However, if cA > cB, whether provider B can attract both types of customers

depends on how large a cost advantage provider B has. If provider B has a large

cost advantage such that cB + νA ≤ cA, then it can charge p1B = cA − νA − δ for

type 1 customers and p2B = cA−δ for type 2 customers, outcompeting provider A

in both market segments. In this case, both type 1 and type 2 customers purchase

from provider B, receiving utility U1 = ν + νA − cA + δ and U2 = ν − cA + δ,

respectively. If the costs are equal, provider A charges p1A = cA and provider B

charges p1B = cA − νA, with type 1 customers randomly choosing between the

two providers and receiving U1 = ν + νA − cA. On the other hand, if provider

B has a relatively small cost advantage such that cB ≤ cA < cB + νA, it cannot

undercut provider A to attract type 1 customers without making a loss, but it

can still charge p2B = cA − δ to attract type 2 customers. In this case, type 1

customers will buy from provider A at a price of p1A = cB + νA − δ and receive

utility U1 = ν−cB+δ, while type 2 customers will buy from provider B at a price

of p2B = cA − δ and receive U2 = ν − cA + δ. When cA = cB, p2A = p2B = cj and

the two providers split the market for type 2 customers equally. Table B.3.1 in

Appendix B.3 summarizes the results by different relative costs between the two

providers. In all cases, provider A is able to charge higher prices than provider

B for type 1 customers.
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B. Pricing With Unobservable Customer Preferences

If insurance providers do not know customer preferences, they cannot price dis-

criminate based on customer types. Instead, they will set a single price to maxi-

mize aggregated profits from both market segments. In this case, the results will

depend on both market size and the relative marginal costs of the two providers.

Assume that the number of type 1 customers is N1 and the number of type 2

customers is N2. Providers now set a price to maximize πj = N(pj)(pj − cj)

subject to similar conditions as in the previous case. Here, N(pj) denotes the

number of customers as a function of price.

Case 1 If provider A has a cost advantage over provider B such that cA ≤ cB
9,

then for any cB ≤ pB ≤ ν, provider A can always charge pA = pB − δ and get

both types of customers, or it can charge a higher price pA = pB+νA−δ and only

attract type 1 customers. Provider A will choose to focus on type 1 customers

if the total profit from that market segment is larger than the total profit from

both market segments. That is, if

N1(pB + νA − δ − cA) > (N1 +N2)(pB − δ − cA)

or pB <
N1νA
N2

+ cA + δ (2.1)

If cB ≤ N1νA
N2

+ cA + δ ≤ ν, to incentivize provider A to compete only for type

1 customers, provider B can set pB = N1νA
N2

+ cA to maximize its profit in the

market segment for type 2 customers. In this case, provider A will set price

pA = N1νA
N2

+ cA + νA − δ to attract only type 1 customers. Note, this requires

that cB − cA− δ ≤ N1νA
N2

or N2(cB − cA− δ) ≤ N1νA. That is, the additional gains

from focusing on the type 1 customer market should be at least the same as the

minimum amount lost due to giving up the type 2 customer market; otherwise,

provider B cannot find a sufficiently low price to urge provider A to focus only

on the market for type 1 customers without suffering a loss. If N1νA
N2

+ cA+ δ > ν,

9It can be shown that when cA = cB , the conclusion is the same for pB > cB . For pB = cB ,
provider A will choose to focus only on the type 1 customer market.
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any pB ≤ ν will give provider A the incentive to focus on the type 1 customer

market. In this case, provider B sets pB = ν to maximize its profit in the type

2 customer market and provider A sets pA = ν + νA − δ to maximize its profit

in the type 1 customer market. The two providers are essentially monopolists in

each market segment. If N1νA
N2

+ cA+ δ < cB, provider B cannot break even at any

prices that incentivize provider A to focus only on the type 1 customer market,

and thus will eventually go out of business10.

Case 2 If provider B has a sufficiently large cost advantage over provider A such

that cA ≥ cB + νA, then for any cA ≤ pA ≤ ν + νA, B can always undercut

A by charging pB = pA − νA − δ and get both types of customers, or charge

pB = min{pA − δ, ν} and only get type 2 customers. Provider B will choose the

latter if:

N2(min{pA − δ, ν} − cB) > (N1 +N2)(pA − νA − δ − cB)

If cA ≤ pA ≤ ν, the above condition becomes:

N2νA > N1(pA − νA − δ − cB) or pA <
N2νA
N1

+ νA + cB + δ (2.2)

Intuitively, if provider A sets a sufficiently low price such that for provider B, the

value lost from charging a lower price to existing type 2 customers is larger than

the value gained from acquiring type 1 customers, then provider B would not want

to compete for both types of customers. Furthermore, if cA ≤ N2νA
N1

+νA+cB ≤ ν,

then provider A charges pA = N2νA
N1

+ νA+ cB to maximize profit and attract type

1 customers, while provider B charges pB = N2νA
N1

+ νA + cB − δ and attracts only

type 2 customers. However, if N2νA
N1

+ νA + cB > ν, or νA > N1

N1+N2
(ν − cB), pA

10Note, if we assume Bertrand competition, B has the incentive to lower its price to compete
with A in the type 1 customer market. This will lead to pB = cB and pA = cB + νA − δ. B still
only gets type 2 customers while A gets type 1 customers. However, if we assume that over
time each provider can learn the cost of their opponent, then B knows that there is no point in
competing for the type 1 customer market. In this case, B will stick to the upper boundary in
Equation (2.1).
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must satisfy the following condition instead:

N2(ν − cB) > (N1 +N2)(pA − νA − δ − cB)

or pA <
N2

N1 +N2

(ν − cB) + νA + cB + δ (2.3)

Since ν < pA ≤ ν + νA must hold, it implies that as long as the number of type

1 customers is sufficiently small such that 0 < νA − N1

N1+N2
(ν − cB) + δ ≤ νA

11,

provider A will charge pA = N2

N1+N2
(ν−cB)+νA+cB and get all type 1 customers,

and provider B will charge pB = ν and attract all type 2 customers. Again, if

N2νA
N1

+ νA + cB + δ < cA, A cannot prevent B from taking both markets12.

Case 3 If provider B has a relatively small cost advantage such that cB < cA <

cB + νA, neither provider can acquire both markets if they intend to compete for

both. Furthermore, it can be shown that there does not exist an equilibrium where

neither provider wants to deviate. In other words, both providers will constantly

adjust their prices. To see this, start with p0B = p, where cB ≤ p < N1νA
N2

+ cA+ δ,

so that (2.1) is satisfied and provider A only wants to target type 1 customers.

Given p0B = p, the profit-maximizing price for A is p0A = p+ νA− δ. If p0A violates

(2.2) or (2.3), B will want to compete for both types of customers. In this case, B

will charge p1B = p0A−νA−δ = p−2δ to try to get type 1 customers from A. As p1B

still satisfies (2.1), provider A will only compete for type 1 customers, lowering its

price to p1A = p+ νA − 3δ. If p1A is still too high so that (2.2) or (2.3) is violated,

this process will continue until piA = piB + νA − δ satisfies (2.2) or (2.3), in which

case provider B no longer wants to acquire both markets but only targets type 2

customers. Given B only wants to acquire type 2 customers, it can increase its

price from piB to pi+1
B = piA − δ to maximize profit while still attracting type 2

customers. If pi+1
B violates (2.1), A will compete for both types again by lowering

its price piA further. B will then respond by also lowering its price pi+1
B . This price

11Given cA ≥ cB + νA and ν > cA, ν > cB + νA or ν − cB > νA must hold.
12Similarly, if pA violates Equation (2.3), B will also compete for type 1 customers with A,

and eventually Equation (2.3) holds again. On the other hand, in a Bertrand competition, A
might lower prices to compete for type 2 customers until pA = cA and pB = cA − δ. However,
A still only gets type 1 customers, and B gets type 2 customers. If costs can be learned over
time, then A will stick to the largest possible price allowed by Equation (2.3).
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competition continues until B’s price satisfies (2.1) again, in which case A only

wants to acquire type 1 customers. However, to maximize its profit in the type 1

customer market, A will increase its price so that pA = pB+νA−δ. If the resulting

pA satisfies (2.2) or (2.3) so that B focuses on the type 2 customer market, B will

have the incentive to increase its price to just below A’s to maximize its profit,

i.e., pB = pA − δ. This continues until the price gets too high and one of the

providers wants to compete for both types again, starting the downward spiraling

of prices. In sum, as long as one of the providers wants to acquire both types of

customers, there will be a price war where both providers lower their prices until

the price is sufficiently low for each to specialize in only one market segment.

However, once they specialize in their own market, they have the incentive to

maximize profits by increasing prices to the level that is just low enough to keep

their customers in their specialized market segment. As the increase of price is

benchmarked at the opponent’s price, this will lead to an upward spiraling of

prices. At some point, the price gets too high and one of the providers wants to

compete for both types again, starting the downward spiraling of prices.

2.5.2 Hypotheses

As demonstrated by the simple framework above, under either observable or

unobservable customer preferences, provider A can charge a higher price for the

same insurance policy than provider B, as long as the marginal cost of provider A

is not too high. This holds even in the dynamic case with unobservable customer

preferences, where both providers constantly adjust their prices. Intuitively, if

an insurance provider offers additional features valued by some customers, it can

incorporate the value of these features into the price, resulting in a higher charge

for the same policy. Furthermore, if customer preferences for these additional

features can be observed, insurance providers can price discriminate based on

these preferences, charging higher prices to customers who place greater value on

the additional features.

78



This framework offers a potential explanation for the existence of price dispersion

faced by individuals and the heterogeneity of price dispersion across individuals.

To test this, ideally, one would need to observe all features from different insurance

providers and determine which features are valued by customers. This is challeng-

ing, if not impossible, in practice. To address this obstacle, I collected detailed

data on each insurance provider, allowing me to distinguish between providers

who are pure players in the insurance market and those who also operate in other

non-insurance sectors. Non-insurance-focused (NIF) providers typically have a

significant presence in sectors beyond insurance, such as big supermarket firms

like Tesco and Sainsbury’s or financial service providers like retail and commercial

banks. Conversely, insurance-focused (IF) providers are pure players, focusing

solely on insurance, though not exclusively on home insurance. Compared to

pure players, NIF providers offer additional services that can complement their

home insurance policies, leading to a higher valuation from some customers. For

instance, insurance products sold by Sainsbury’s Bank can benefit from its loyalty

card scheme used by its grocery shoppers. Thus, NIF providers are more likely

to charge higher prices, all else being equal.

Hypothesis 1 For the same (or seemingly the same) insurance policy,

insurance providers who also operate in other non-insurance sectors

(NIF providers) will charge higher prices than providers who are pure

players.

For heterogeneity in price dispersion to exist, the framework suggests that there

must be price discrimination based on customer preferences. As shown in Table

B.3.1, if insurance providers can identify customer preferences, they will charge

higher prices only to customers who attach higher value to their additional fea-

tures. In this case, customers with different preferences will face different levels

of price dispersion. Those who value different providers similarly will face lower

price dispersion, while those who value different providers differently will face

higher price dispersion. Since customer preferences cannot be directly observed,

insurance providers can only estimate these preferences based on other observ-
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able personal characteristics. Although insurance providers may obtain additional

data on customers from other sources in reality, this is not possible here due to

the fictitious nature of individuals used in this study. Therefore, if the differ-

ences in price dispersion across individuals are due to price discrimination based

on customer preferences, then insurance providers must be using self-disclosed

characteristics to infer these preferences. This leads to the second hypothesis:

Hypothesis 2 If insurance providers can infer customer preferences

from their self-disclosed characteristics, then the price differences charged

by NIF providers and pure-player providers should vary with customer

characteristics.

2.5.3 Empirical Results

To test Hypothesis 1, I first match quotes by data collection date, property, in-

dividual, and observed policy features. This allows me to compare seemingly

identical policies obtained using specific property-individual inputs. In the base-

line regression, I simply regress the quoted annual price on an indicator that

equals 1 if the provider is a NIF provider, controlling for matched group fixed

effects. However, apart from additional services from providers, customers may

also be willing to pay higher prices for policies from providers with higher rep-

utations due to information asymmetry. To control for this, I also search on

major review websites such as Which? 13 and add a dummy variable Received

Top Reviews to indicate whether an insurance provider has received top reviews

in recent years. The results are shown in Table 2.6. Among all matched groups,

only those with both NIF and IF providers and with both top-reviewed and not

top-reviewed providers are included.

It is clear that NIF providers charge significantly higher prices. Column (1) in

Table 2.6 suggests that for a very similar insurance policy, NIF providers charge

an average of £79.46 more annually. The average annual price difference increases

13See: https://www.which.co.uk/
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to £96.37 and remains statistically significant after controlling for provider rep-

utation, as shown in column (2). In column (3), I also include the log of total

assets of providers to account for the possibility that larger firms might enjoy

greater recognition from customers, and the result still holds. To further elim-

inate product differentiation, I repeat the analyses for a subset of quotes on

insurance policies without any add-ons. The results, shown in columns (4) to (6),

indicate that the price differences remain significant and are even enlarged.

Table 2.6: Quoted Annual Price by Provider Type

Dependent Variable: Annual Price
Model: (1) (2) (3) (4) (5) (6)

Variables
Non-Insurance Focus 79.46∗∗∗ 96.37∗∗∗ 67.37∗∗∗ 78.73∗∗∗ 104.4∗∗∗ 90.14∗∗∗

(9.039) (9.169) (8.371) (16.01) (16.00) (15.37)
Received Top Reviews 63.71∗∗∗ 39.80∗∗∗ 78.05∗∗∗ 66.41∗∗∗

(6.942) (7.505) (16.32) (15.02)
In Total Asset (£M) 11.07∗∗∗ 10.43∗∗

(1.517) (4.593)

Fixed-effects
Matched Group Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 3,885 3,885 3,885 923 923 923
R2 0.65497 0.66592 0.67488 0.58815 0.60296 0.60978
Within R2 0.04216 0.07257 0.09744 0.03686 0.07148 0.08745

Clustered (group id) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

If customer preferences for additional provider features are the sole explanation for

price dispersion across customers, then the observed differences in price dispersion

across customers indicate that insurance providers can infer customer preferences

from their self-disclosed characteristics and charge prices accordingly, as stated

in Hypothesis 2 above. To test this hypothesis, I run the following regression for

different customer features:

Annual.Priceig = δg + β1Non-Insurance-Focusedig + β1Customer.Featureig

+ β3Non-Insurance-Focusedig × Customer.Featureig

+ θXig + ϵig
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Each observation here is the quoted annual price for a specific customer (i.e., a

property-individual combination) from a particular insurance provider. Quotes

are matched by data collection date, property, observable policy features, and

all other customer characteristics except for the one under investigation. For

instance, if gender is the characteristic of interest, then quotes are matched by

date, property, observable policy features, and all customer characteristics other

than gender. In each matched group, quotes are obtained for a fictitious indi-

vidual and his/her counterpart, with the only difference between the two being

the characteristic of interest. This setup creates an ideal environment for coun-

terfactual analysis. As in the previous test, only groups with both NIF and

IF providers and top-reviewed and not top-reviewed providers are included. δg

captures the matched group fixed effects. Non-Insurance-Focused indicates

whether the quote is from a provider with significant presence in sectors other

than insurance. Customer.Feature is a categorical variable capturing the specific

customer characteristics of interest, and the third term is the interaction between

the first two terms. Xig includes other controls. If NIF providers can identify

customer preferences through their self-disclosed characteristics, they will charge

higher prices to customers who value the additional services they provide based

on certain characteristics. Thus, the coefficient β3 of the interaction term should

be significant for some customer characteristics.

Table 2.7 presents the results for personal characteristics tied to the policyholder,

who in this case is the fictitious individual requesting quotes through the price

comparison website. The coefficients on the interaction term for the five personal

characteristics—gender, non-white/white, not working/working, and age—are in-

significant, suggesting that the higher prices charged by NIF providers do not vary

with these personal characteristics. However, a further breakdown of race, mari-

tal status, and employment status in Table B.3.2 shows some price discrimination

for certain races and employment statuses. Specifically, while NIF providers gen-

erally charge higher prices, the higher prices are mainly charged to individuals

with white-sounding and Asian-sounding names. Individuals with Arab-sounding
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names are charged significantly lower prices. Regarding employment status, NIF

providers charge significantly higher prices for individuals who are unemployed.

Table 2.7: Results by Provider Type and Policyholder Characteristics

Dependent Variable: Annual Price
Model: (1) (2) (3) (4) (5)

Variables
Non-Insurance Focus 85.96∗ 86.83 32.00 86.62∗∗ 42.19

(43.31) (65.26) (55.74) (37.19) (64.62)
Non-Insurance Focus × Gender (Female) -3.532

(30.75)
Non-Insurance Focus × Race (Non-White) -2.225

(2.359)
Non-Insurance Focus × Not Married -15.18

(12.33)
Non-Insurance Focus × Not Working 21.84

(22.93)
Age by Pricing Date × Non-Insurance Focus 0.4122

(1.284)
Gender (Female) 8.469

(8.269)
Race (Non-White) 2.225

(2.359)
Not Married 14.31

(9.761)
Not Working 30.17∗∗∗

(6.396)
Age by Pricing Date -2.284∗∗∗

(0.5675)
Received Top Reviews 43.64 47.93 178.6∗∗∗ 50.78∗∗ 78.36∗∗∗

(37.58) (78.90) (24.12) (24.78) (23.41)
In Total Asset (£M) 12.95∗ 10.66 2.497 13.90∗ 9.994∗

(7.346) (19.09) (8.789) (7.240) (5.449)

Fixed-effects
Matched Group Yes Yes Yes Yes Yes

Fit statistics
Observations 315 92 192 572 641
R2 0.40454 0.17233 0.41278 0.58338 0.63903
Within R2 0.12959 0.08616 0.27757 0.13984 0.14694

Clustered (Matched Group) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The results for customer characteristics associated with the policyholder’s house-

hold are shown in Table 2.8. Unlike policyholder characteristics, most household

characteristics affect the quoted annual insurance prices from both IF and NIF

providers. However, these household characteristics are more likely to reflect the

risks of a specific customer. In this case, the significant coefficients on the interac-

tion terms simply indicate that NIF providers use these household characteristics
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for risk-pricing. This is further supported by the fact that the coefficients on

Customer.Featuresi, which capture the relationships between household char-

acteristics and the prices from IF providers, are also mostly significant. This

suggests that both types of providers use household characteristics in insurance

pricing. However, with the current data, it is impossible to completely disentan-

gle the effects of risk pricing from preference-based markups in the quoted annual

price.

Table 2.8: Results by Provider Type and Household Characteristics

Dependent Variable: Annual Price
Model: (1) (2) (3) (4) (5) (6)

Variables
Non-Insurance Focus -107.4 115.3∗∗∗ 161.1∗∗∗ 65.60∗∗ 67.84∗∗∗ 9.843

(104.1) (37.98) (50.85) (27.49) (24.46) (23.89)
No. of Adults × Non-Insurance Focus 41.22

(39.63)
No. of Children × Non-Insurance Focus -56.63∗∗

(25.63)
Years No Claims × Non-Insurance Focus -4.914

(4.312)
Non-Insurance Focus × Mortgaged -59.94∗

(34.94)
Non-Insurance Focus × Ever Declared Bankrupt -76.87∗

(38.87)
Non-Insurance Focus × Claimed in Past 5 Years 104.3∗∗

(39.07)
No. of Adults 12.66∗

(5.108)
No. of Children 25.58∗∗

(9.814)
Years No Claims -2.379

(1.591)
Mortgaged 25.58∗∗∗

(8.386)
Ever Declared Bankrupt 54.75∗∗

(20.29)
Claimed in Past 5 Years 63.12∗∗∗

(13.32)
Received Top Reviews -16.76 80.40∗∗ 79.05∗∗∗ 79.81∗∗ -19.53 -29.80

(86.76) (30.89) (21.95) (35.40) (23.36) (26.49)
In Total Asset (£M) 6.018 7.970 6.634 18.18∗∗∗ 2.157 13.43

(33.15) (7.729) (6.741) (6.432) (7.341) (8.166)

Fixed-effects
Matched Group Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 52 256 484 651 239 357
R2 0.17111 0.63985 0.70153 0.75854 0.52021 0.56972
Within R2 0.01360 0.14024 0.18498 0.11927 0.05877 0.19077

Clustered (Matched Group) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Overall, the results show that price dispersion faced by a customer can be par-

tially attributed to customers valuing additional services provided by some insur-
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ers, allowing these insurers to charge higher prices. This is essentially unobserved

product differentiation. However, this does not fully explain the significant dif-

ferences in price dispersion across different customers. Although NIF providers

price discriminate based on household characteristics, as shown in Table 2.8,

these characteristics are likely used, at least partially, for risk pricing rather than

preference-based price discrimination. Consequently, the significant differences in

price dispersion across customers might be due to differences in risk pricing from

different providers varying with customer characteristics. While it is not possible

to disentangle these factors with the current data, it is clear that significant dif-

ferences in price dispersion across customers require that the price disagreement

among different providers must vary across customers.

2.6 Alternative Explanations

To understand the origin of price disagreement, ideally one would like to know

how insurance providers price policies. While the exact pricing function of each

provider is unknown, the FCA (2019) survey on major general insurance providers

indicates that a typical profit-maximizing insurance provider sets prices to max-

imize the difference between expected future income from a customer and the

expected costs, which include both expected claims costs associated with risks

and the provider’s operational costs. This implies that the price charged by in-

surance providers includes not just the expected costs for insuring a customer

but also a margin that might depend on certain characteristics of the customer

correlated with their willingness to pay. Conceptually, the quoted price for an

insurance policy p can be written as:

Priceip = E[Costip|WTPip ≥ Priceip] +Markupip (2.4)

The disagreement on prices for a customer is either due to disagreement on risk

pricing (the first part of Equation (2.4)) or disagreement on the margins charged

to the customer (the second part of Equation (2.4)). Since it is difficult to fully
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disentangle risk pricing and margins in any quoted annual prices, this section will

provide alternative explanations with suggestive evidence.

2.6.1 Differences in Risk Pricing

If different providers price the risk of the same customer differently, and these

differences in risk pricing vary across customers, this can lead to both price dis-

persion faced by an individual customer and differences in price dispersion across

customers. Since it is impossible to quantify the portion of price dispersion due

to risk pricing with the current data, I will only test whether there are any dif-

ferences in risk pricing among different providers.

Insurance providers may price risks differently because they cannot observe the

true risks of their customers. Instead, they estimate customer risks using poten-

tially different variables and models. The question is how and why the disagree-

ment in risk pricing may vary across customers or with customer characteristics.

If a customer’s characteristics can capture all of his/her risks, then there is no

asymmetric information, and the prices on risks across different providers should

be very similar. However, if a customer’s characteristics do not clearly indicate

his/her risks, then the degree of disagreement in risk pricing should be large across

different insurance providers due to higher information asymmetry. Therefore, to

test whether price dispersion faced by customers can be partially attributed to

differences in risk pricing across providers, one can examine whether customers

with characteristics indicating higher levels of asymmetric information face larger

price dispersion. The question then becomes which customer characteristics in-

dicate higher levels of asymmetric information. To answer this question, notice

that the existence of asymmetric information will lead to adverse selection and,

in the worst-case scenario, will lead to market failure where no customers in that

market segment get insured. This happens when:

Priceip < E[Costip|WTPip > Priceip]
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That is, at any given price, the expected costs are higher. Providers with higher

costs and/or lower valuation by customers will exit such market segments and

make no offers to such customers. Therefore, customer characteristics that indi-

cate higher levels of asymmetric information should be those that predict lower

offer rates from providers.

The above reasoning suggests that differences in risk pricing can be tested by

examining whether customers receiving fewer quotes also face higher price dis-

persion. However, the issue with this proposed test is that the observed price

dispersion for customers with higher levels of asymmetric information does not

accurately reflect the actual price dispersion due to differences in risk pricing.

This is because providers with Priceip < E[Costip|WTPip > Priceip] do not offer

any quotes to begin with. As a consequence, the observed price dispersion is cal-

culated from a truncated sample. As a compromise, to test whether differences

in risk pricing exist, I instead test the following hypothesis:

Hypothesis 3 If there are no differences in risk pricing across providers,

there should be no variation in offering decisions across providers for

the same customer. Individuals should either receive quotes from all

providers or none at all.

Note that to account for possible specialization in the housing market, the com-

parison holds fixed for the property. Moreover, the underlying assumption is that

the offering decision depends solely on the relationship between price and the

expected cost at that price. In this case, if we observe some customer character-

istics predict an offer rate that is significantly different from 1 or 0, it suggests

that there are differences in risk pricing across providers. Additionally, it implies

that the differences in price dispersion due to risk pricing vary across customers

since different customers have different combination of characteristics. It is worth

mentioning that while differences in risk pricing can explain both facts observed

in the data, they cannot overrule the explanation based on customer preferences

discussed in the previous section. In other words, differences in risk pricing can-
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not be the only factor causing price dispersion. As shown in Section 2.5.3, NIF

providers consistently charge higher prices to customers. Without higher pref-

erences for those providers, utility-maximizing customers will not purchase the

same policy at a higher price, regardless of the cause of the higher price.

Table 2.9 shows the offer rate differences for different categorical customer char-

acteristics. To eliminate potential specialization in the property market while

investigating the offer rate differences for each characteristic, I match observa-

tions by data collection date, property, and all customer characteristics other

than the characteristic under investigation. For each customer, I calculate the

offer rate as the number of policies they received divided by the total number of

policies available in that year. The first column shows the characteristic under

investigation, and the second column shows the number of matched pairs for that

characteristic. The third and fourth columns show the average percentage offer

rate across all pairs by the characteristic under investigation, and the last column

shows the coefficient from regressing a dummy variable offered on the character-

istic variable under investigation while controlling for matched group/pair fixed

effects. The results show that there are two customer characteristics for which the

offer rates significantly differ from 0 or 1. Specifically, households with someone

who has declared bankruptcy or households with someone who has made claims

in the past 5 years receive significantly fewer quotes. This is particularly pro-

nounced for households with a bankruptcy history, where the offer rate decreases

by nearly 40%.

Table 2.10 presents the results for non-categorical variables, with groups matched

in the same manner as previously described. The offer rate only increases sig-

nificantly with customer age, but with a magnitude of less than 1. However,

when the two insurance policies, Insure4Retirement and Saga, which target se-

nior customers, are excluded, there is no variation in offer rates across fictitious

individuals based solely on age. Overall, the presence of customer characteris-

tics, such as bankruptcy history and claim history, that have significant non-zero

and non-unit (±1) coefficients suggests that providers’ offering decisions based on
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such characteristics differ. Therefore, there are differences in risk pricing across

providers, and since customers have different characteristics, this also suggests

that the differences in risk pricing vary across customers.

Table 2.9: Offer Rate by Customer Characteristics - Categorical Variables

Matched Group
Number of

Matched Pairs

Group 1
Average Offer

Rate

Group 2
Average Offer

Rate

Average Offer Rate
Difference (p-value)

Gender Female Male
Female/Male 10 46.700 46.200 0.005 (0.78338)

Race Non-White White
Non-White/White 3 56.900 57.700 -0.010 (0.80164)

Race Details Asian White
Asian/White 2 47.200 48.300 -0.013 (0.77376)

Arab White
Arab/White 1 76.400 76.400 0.000 (1.00000)

Marital Status Not Married Married
Not Married/Married 5 63.600 64.800 -0.015 (0.60632)

Marital Details Single Married
Single/Married 2 53.400 53.900 -0.006 (0.91389)

Divorced Married
Divorced/Married 3 70.400 72.100 -0.019 (0.57097)

Employment Status Not Working Working
Not Working/Working 23 49.100 50.300 -0.012 (0.38139)

Ownership Mortgaged Owned
Mortgaged/Owned 17 50.200 50.900 -0.007 (0.63919)

Bankruptcy History Bankrupt Non-Bankrupt
Bankrupt/Non-Bankrupt 20 10.900 50.200 -0.391∗∗∗ (0.00000)

Claim in Past 5 Years Claimed Not-Claimed
Claimed/Not-Claimed 15 42.800 46.100 -0.032∗ (0.05819)

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 2.10: Offer Rate by Customer Characteristics - Non-Categorical Variables

Dependent Variable: Annual Price

Variables : Age
Number of
Adults

Number of
Children

Years Without
Claims

Estimate 0.0006∗∗∗ −1.92× 10−17 -0.0095 -0.0009
(Std. Error) (0.0001) (2.81× 10−17) (0.0071) (0.0006)

Fixed-effects
Matched Group Yes Yes Yes Yes

Fit statistics
Observations 4,094 445 2,225 4,183
R2 0.08808 0.11842 0.09108 0.11433

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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2.6.2 Differences in Markups Charged

As Equation (2.4) suggests, the observed price dispersion faced by a customer

and the heterogeneity in price dispersion across customers can both be explained

by different markups charged by various insurance providers. This explanation

aligns with the customer preference theory discussed in Section 2.5. However, the

empirical evidence in Section 2.5.3 fails to account for the significant differences

in price dispersion across customers. The existence of differences in risk pricing

addresses this gap. Nonetheless, this does not imply that the relative differences

in markups charged by different providers do not vary across customers. It only

indicates that these differences do not seem to vary significantly with self-disclosed

customer characteristics and, therefore, are unlikely to be based on customer

preferences. It remains possible that markups and their relative differences vary

across customers in other ways.

One potential alternative explanation is provided by search cost theories (e.g.,

Stigler, 1961; Reinganum, 1979; Carlson and McAfee, 1983; Baye et al., 2006). If

customers face different search costs, they will encounter varying levels of price

dispersion14. However, without knowing the search costs faced by these ficti-

tious individuals, I cannot test any predictions derived from such theories. More

importantly, search cost-based theories do not seem well-suited here, given that

the market studied is an online comparison website. Even if the prices listed on

the website are influenced by sales channels other than the comparison website,

search frictions are still unlikely to be the main cause of the observed price dis-

persion for several reasons. First, as already mentioned in Section 2.2, buying

insurance online is quite common in the UK. More than 50% of people purchase

home insurance online, and many use PCWs to compare prices before making

purchase decisions, making search costs less relevant. Second, the FCA report

found that insurance providers set different markups across different distribution

channels, suggesting prices on PCWs are less likely to be affected by search costs

14Although search cost theories do not usually distinguish costs and markups, they suggest
that markups can vary with search costs.
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faced by customers purchasing through other distribution channels. Furthermore,

customers shopping through PCWs are likely to be different from those shopping

through other channels, and thus even if there are search costs faced by customers

shopping from other channels, they are less likely to explain the price dispersion

patterns observed on the PCW. If search cost-based theories cannot provide a

convincing explanation, then could there be another explanation, besides differ-

ences in risk pricing, for the price dispersion observed on the PCW? Further

investigation shows that some providers seem to randomize their prices.

To understand how different insurance providers vary their prices across different

individuals, I investigate how their prices change with different customer char-

acteristics, all of which are binary-type. To do so, I first match quotes by data

collection date, property, policy, policy choices, and all individual characteristics

except for the one under investigation. Each matched pair therefore only differs

in one individual characteristic15. Each provider will have multiple such matched

pairs for every characteristic under investigation. I then calculate the price dif-

ference for each matched pair and group providers based on the price differences

of all their matched pairs.

The results for the policyholder characteristics are shown in Figure 2.3. Among

the 56 insurance providers with matched pairs that only differ in gender, the

majority—38 providers (29 IF and 9 NIF)—do not price discriminate based on

gender across all their matched pairs, and only one provider consistently charges

more for females across all its matched pairs. Notably, 17 providers adopt mixed

pricing strategies, meaning the price difference across all their matched pairs is

not consistently positive, negative, or zero. Thus, all else being equal, being fe-

male could result in higher, lower, or the same prices as being male. Similarly,

for race, the majority of 42 providers (out of 45) do not vary their prices with

customer race, but one provider consistently charges higher prices for individuals

with non-white-sounding names. Regarding marital status, while most providers

either adopt mixed pricing strategies or do not discriminate based on marital

15For gender, matched individuals also have different first names to match with gender.

91



status, two providers consistently charge more for individuals who are not mar-

ried. For working status, although most insurance providers (46 out of 52) adopt

a relatively random pricing strategy, one provider consistently charges more for

individuals who are not working, three providers charge more for those who are

currently working, and two do not price discriminate based on working status.

Figure 2.3: Pricing Practices by Policyholder Characteristics

Note: The figure summarizes the pricing practices of different providers. The x-axis shows groups of providers
based on the price differences from all eligible pairs of quotes, with each pair matched by all characteristics
except the one under investigation. Providers with all price differences of 0 fall under ”No Price Differences.”
Providers with a mix of positive, negative, and zero price differences fall under ”Mixed.” Otherwise, providers
fall into groups corresponding to the sign of the price differences of all their matched pairs.

Overall, the results in Figure 2.3 suggest that some insurance providers are ran-

domizing their prices, as evidenced by the existence of providers adopting mixed

pricing strategies on certain policyholder characteristics. Such randomization is

more likely to be on markups rather than on risks, as risk pricing should re-

main stable over short periods. Furthermore, the results indicate that a few

providers consistently price discriminate based on protected characteristics such

as gender, race, and marital status16. Consistent with the results in Section 2.5.3,

16According to the UK Equality Act 2010, age, disability, gender reassignment, marriage and
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NIF providers did not consistently price discriminate based on policyholders’ self-

disclosed personal characteristics.

Figure 2.4: Pricing Difference by Policyholder Characteristics

Note: The figure shows the distribution of price differences for providers following mixed-pricing strategies. The
y-axis represents the price differences, and the x-axis represents the provider identifiers. The black dots/lines
centered around each provider indicate the quote pairs with specific levels of price differences. The red diamond-
shaped dot represents the average price difference across all eligible pairs from a provider.

To further investigate how providers adopting mixed pricing strategies price dif-

ferent policyholder characteristics, Figure 2.4 displays the distribution of price

differences for all matched pairs for each provider using mixed pricing strategies.

The x-axis represents the identifier for each provider, and the y-axis represents

civil partnership, pregnancy and maternity, race, religion or belief, sex, and sexual orientation
are protected characteristics and should not be used for insurance pricing except for age and
disability.
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the price difference in British pounds, calculated as indicated by the title of each

subfigure. Each small black dot represents the price difference of a matched

pair, while the average price difference across all pairs is represented by the red

diamond-shaped dot. The subfigure for gender shows that among those adopting

mixed pricing strategies, most providers do not significantly adjust their prices

based on gender, resulting in price differences that are not far from zero. As for

race, only two providers randomize their prices on this dimension, both charg-

ing, on average, higher prices to individuals with non-white-sounding names.

However, a larger sample is needed for statistical inference. Compared to the

above two protected characteristics, providers adopting mixed strategies vary

their prices more based on the marital status of an individual. Lastly, most

providers using mixed pricing strategies do not vary their prices significantly

with working status.

A similar investigation was conducted on three categorical household character-

istics, which are arguably more likely to be used in risk pricing. Figure 2.5

shows that, compared to the pricing on policyholder characteristics, the majority

of insurance providers either consistently price discriminate based on household

characteristics or adopt mixed pricing strategies for household characteristics. If

these household characteristics are indeed used in risk pricing, it is not surpris-

ing that some providers consistently incorporate such characteristics into their

pricing. The fact that not all providers have consistent price differences in the

same direction supports the alternative explanation of differences in risk pric-

ing. More interestingly, however, a significant number of providers adopt mixed

pricing strategies for these characteristics. As argued earlier, the portion of the

price based on risk should be relatively stable over a short time frame; thus, the

randomness in prices from those providers must come from the randomization of

markups.
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Figure 2.5: Pricing Practice by Household Characteristics

Figure 2.6 plots the distribution of price differences for providers adopting mixed

pricing strategies on the three household characteristics. While no statistical

inference is conducted, a glance at the three figures reveals that the average

price differences for most providers are either zero or positive. This suggests that

despite the randomness in prices, most providers tend to price these household

characteristics in a certain direction. More specifically, most providers adopting

mixed pricing strategies tend to charge more on households with a mortgage, a

history of bankruptcy, or claims made in the past five years. These directions of

price differences are consistent with those of the providers who consistently price

in such characteristics in Figure 2.5. Therefore, it is quite likely that the price

differences from those mixed-pricing providers capture both differences in risks

and the randomness in markups.

Overall, the investigation of providers’ pricing practices offers another explanation

for the observed price dispersion in the data: some insurance providers appear

to randomize the markups they charge customers. One caveat, however, is that

the observed randomness might capture modeling errors. If the characteristic un-

der investigation interacts with other customer characteristics, then the observed

inconsistency in price differences might result from these interaction terms. For

instance, suppose a provider prices marital status together with the number of

children. A married customer with no children may receive a higher price than a

similarly situated but unmarried customer, while a married customer with four
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children might receive a lower price than a similarly situated but unmarried cus-

tomer. If this is the case, then the evidence presented above as support for

markup randomization actually suggests that different providers have different

risk-pricing models, thus supporting the first alternative explanation. Unfortu-

nately, without knowing the exact pricing model of each insurance provider, it is

difficult to distinguish between these two possibilities.

Figure 2.6: Pricing Practice by Household Characteristics

2.7 Conclusion

This paper investigates the price dispersion of building insurance policies in the

UK home insurance market. Using real properties and fictitious individuals as

inputs, I obtained quoted annual prices from one of the leading PCWs in the UK

and identified two key facts: First, there is significant price dispersion faced by

individual customers. Second, the degree of price dispersion varies considerably

across different customers.

The primary explanation for these observations is that some customers may value
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additional features offered by certain insurance providers, leading to higher prices

for seemingly identical policies. This indicates a form of unobserved product dif-

ferentiation where customers’ preferences for non-policy features influence their

willingness to pay. However, the empirical results suggest that the preference-

based explanation is not the entire story. Additionally, two alternative expla-

nations account for the observed price dispersion patterns: differences in risk

pricing and the randomization of markups. Differences in risk pricing suggest

that providers assess the risks of insuring customers differently, leading to varia-

tions in quoted prices. Evidence also suggests that some providers may randomize

the markups they charge, adding another layer of price variation.

This paper has certain limitations. With the current data, it is not possible to

entirely rule out the impact of search frictions on price dispersion. Therefore,

the findings should be viewed as complementary to existing search-cost based

theories on price dispersion. Moreover, the study cannot disentangle and quan-

tify the contributions of differences in risk pricing versus markups to the overall

price dispersion. For a more comprehensive understanding and welfare analysis,

additional data on actual transactions and claims is needed.

In summary, while the findings highlight the importance of customer preferences

and reveal the complexities of risk assessment and pricing strategies in the in-

surance market, further research with more granular data is essential to fully

understand the dynamics of price dispersion in this sector.
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Chapter 3

Can Green Bonds Make the

World Greener?

Abstract

Can corporate green bonds make the world greener? To answer this question,

I analyze the corporate green bond market through a theoretical and empirical

approach. Using a simple theoretical framework, I demonstrate that green bonds

can positively impact the economy under certain conditions, particularly when

financially constrained firms use green bonds as a commitment device to invest in

greener but less profitable projects. To empirically test this condition, I measure

the financial constraint of both green bond issuers and non-issuers with available

ESG data. The results reveal that green bond issuers are typically greener and

less financially constrained compared to non-issuers, suggesting that they are less

likely to need green bonds as a commitment device. Consequently, under current

market conditions, the existence of green bonds does not appear to significantly

influence firms’ environmental behavior.
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3.1 Introduction

The corporate green bond market has been growing rapidly ever since a Swedish

property company, Vasakronan, issued the first corporate green bond in 20131.

The aggregate annual issuance amount has increased from approximately $3.97

billion in 2013 to over $162 billion in 2020, according to calculations based on

Bloomberg’s green bonds datab3.Ase. This corresponds to an average annual

growth rate of around 70%2. Despite the existence of several frameworks for

green bond issuance, none are legally binding3. Nonetheless, it has become a

common market practice for green bond issuers to have their bonds verified by

external reviewers and to provide regular reports on their green projects and the

use of proceeds. Most external reviewers follow the framework established by the

Green Bond Principles4. These reviewers ensure that the proceeds raised from

the green bonds are used exclusively for the underlying green projects and provide

their own evaluation reports on the issuers’ green bonds. The average base fee

for third-party review services is around $25,0005.

Given the extra effort and costs associated with issuing green bonds, it is natural

to question whether green bonds effectively contribute to making the economy

greener. This is a challenging question, as it requires comparing current market

outcomes with green bonds to a counterfactual world without them. Alterna-

tively, it could be answered by randomizing the availability of green bonds across

different firms (e.g., through exogenous policies). However, given the endoge-

nous development of the green bond market and the absence of such exogenous

policies, answering this question empirically is very difficult. Even if we observe

that firms become greener after issuing green bonds (e.g., by reducing their GHG

1Information from: https://www.climatebonds.net/market/explaining-green-bonds
2Bloomberg has comprehensive coverage of green bonds. However, the exact numbers might

still vary slightly.
3The European Union is currently developing a green bond standard to unify different frame-

works, but it remains a voluntary standard.
4This is a voluntary process guideline established by the International Capital Market As-

sociation in 2014. The most recent edition was published in June 2021.
5This figure is the average of quotes obtained from several companies that provide external

review services. The exact fees depend on various parameters, such as the timeline of the
issuance and the number of use of proceeds categories.
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emissions), we cannot conclusively attribute this to the green bonds, as these

issuers might have reduced their emissions even without issuing green bonds.

Consequently, most research on green bonds has focused on identifying pricing

premiums or studying the reactions of issuers’ stock prices following the issuance

of green bonds (e.g. Zerbib, 2019; Larcker and Watts, 2020; Tang and Zhang,

2020; Flammer, 2021). The results on pricing premiums are mixed, with most

recent studies finding no significant pricing premium for green bonds, indicating

that investors are not generally willing to pay extra or accept lower returns for

green bonds.

However, this paper demonstrates through a simple model that the existence of a

pricing premium—defined as the difference between the yield of a non-green bond

and that of an otherwise comparable green bond—is neither a necessary nor a

sufficient condition for green bonds to have a positive impact on the environment.

The crucial condition for green bonds to make a positive environmental impact

is that they are used by financially constrained firms as a commitment device

to credibly invest in greener projects that would otherwise not be undertaken,

assuming these projects are financially less attractive than less green alterna-

tives. When there is abundant green capital in the market, there will not be any

pricing premium since the break-even condition for green investors remains the

same with or without green bonds. Conversely, when green capital is scarce, the

pricing premium arises only because issuing green bonds entails additional costs.

However, depending on the assumptions regarding the utility function of green

investors and the specific values of the model parameters, green bonds may not

make any difference even if a pricing premium exists.

To empirically test the implications of the theoretical model, I combine corporate

green bonds data from Bloomberg with Compustat firm financial data and Eikon

ESG data to investigate whether there are financially constrained issuers in the

current corporate green bond market. Using the SA index developed by Hadlock

and Pierce (2010) as a measure of firms’ financial constraints, I find that green

bond issuers are generally less financially constrained and have higher environ-
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mental scores compared to firms that have never issued green bonds. This result

suggests that green bonds are mostly issued by firms that are already relatively

clean and not significantly financially constrained, and thus are less likely to be

used as a commitment device to undertake greener but less profitable projects.

Further investigation reveals that green bond issuers tend to issue green bonds

when they have abundant cash, ruling out the possibility that firms issue green

bonds during periods of greater financial constraint. Consequently, in the cur-

rent corporate green bond market, green bonds do not seem to have a significant

environmental impact, as firms’ behaviors are unlikely to be affected by the ex-

istence of green bonds. I further estimate the pricing premium for a subset of

green bonds matched with non-green bonds from the same issuer. Consistent

with the findings of Flammer (2021), there is no significant pricing premium on

average. Using an even smaller matched sample with ESG data, I also find no

significant relationship between pricing premium and firms’ level of greenness.

These results suggest that the utility investors derive from green bonds might be

independent of firms’ level of greenness, and that the green capital is currently

likely scarce. If this is the case, green bonds could have a more significant impact

in the future when there are enough investors who derive non-pecuniary utility

from green bonds. However, given the small matched sample, this conclusion

remains tentative.

This paper has several limitations. First, the model is static and only explores

one potential channel through which green bonds could positively impact the

environment. Second, the measures of firms’ financial constraints are imperfect.

Ideally, it would be beneficial to have data on the investment opportunities or

potential projects of these firms, but such data is difficult to obtain. Alter-

natively, future studies could leverage quasi-experiments to better capture the

financial constraints and investment behaviors of firms issuing green bonds. The

remainder of the paper is organized as follows: Section 3.2 presents the theoreti-

cal framework, and Section 3.3 describes the data and the empirical results from

testing the implications of the theoretical framework. Section 3.4 concludes.
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3.2 Theoretical Framework

In this section, I use a parsimonious model to show under what circumstances

green bonds can help improve the greenness (or lower GHG emissions) of the

economy. There is an emerging literature on modeling the conditions under which

ESG or impact investing could positively impact society (e.g., Chowdhry et al.,

2019; Landier and Lovo, 2020; Opp and Oehmke, 2020; Pástor et al., 2020). How-

ever, as far as I know, no such model is tailored specifically to the corporate green

bond market. Here, I use a simple framework to study under what conditions the

existence of green bonds can make a positive difference to the environment. I first

evaluate the model assuming both green investors and non-green investors face

a competitive capital market, and then consider the case where green investors

have less aggregate capital than the aggregate demand from firms.

3.2.1 Model Setup

Consider an economy populated with a continuum of firms, with the total mass

normalized to 2. Firms can be ranked by their greenness, λ, where λ ∈ [−1, 1 ],

with the dirtiest firms at -1 and the cleanest at 1. The λ represents the historical

social externality generated by each firm, such as the negative of the total GHG

emissions. For simplicity, I will refer to firms with λ > 0 as green firms (GF) and

firms with λ ≤ 0 as non-green firms (NGF).

Each firm is run by a risk-neutral entrepreneur and can invest in a green project

requiring an initial investment of I today (t = 0). In the next period (t = 1),

the green project generates a pecuniary payoff XG with probability θ, and with

probability 1 − θ, the green project generates 0. Both XG and θ are constant

across all firms. Green projects differ in their level of greenness gG(λ). Assume

that gG(λ) > 0 for λ ∈ [−1, 1 ], g′G(λ) > 0, and g′′G(λ) ≤ 0. This ensures that green

projects of all firms generate positive externalities and that greener firms have

greener projects. Besides the green project, non-green firms (λ ≤ 0) can choose
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a non-green project with the same initial investment I today, and it generates

a pecuniary payoff XNG with probability θ and 0 with probability 1 − θ. The

non-green project also generates an externality gNG(λ). Assume that gNG(λ) ≤ 0

for λ ∈ [−1, 0 ], g′NG(λ) > 0, and g′′NG(λ) ≥ 0. This means the dirtier firms’

non-green projects are also dirtier. The externality from both green and non-

green projects is assumed to be independent of the project’s financial outcomes.

Additionally, for a meaningful trade-off, assume I < θXG < θXNG, so that both

green and non-green projects have positive NPV and that green projects have

lower NPV than non-green projects. Without loss of generality, also assume that

the discount rate r = 0 in this economy.

The entrepreneur of each firm is endowed with A amount of capital. For both

green firms and non-green firms, a proportion ρ ∈ ( 0, 1 ) of firms’ entrepreneurs

have A < I and 1−ρ of firms’ entrepreneurs have A ≥ I. Each firm can choose to

finance an amount F by issuing a security that promises a repayment of k per unit

financed (k is essentially the gross return). Assume that the maximum amount

a firm can finance is I (i.e. F ≤ I). This assumption implies that, although

non-green firms would like to implement both green and non-green projects, given

both are positive NPV projects, only non-green firms with A ≥ I can achieve this.

Non-green firms with A < I cannot implement both due to financial constraints.

Based on the above assumptions, entrepreneurs’ expected utilities can be written

as:

For GF with λ > 0 : UGF (F ) = θ [XG − kF ] + A− (I − F )

For NGF with λ ≤ 0 :

A < I : UNGF,A<I(F | i) = θ [Xi − kF ] + A− (I − F ), i ∈ {G,NG}

A ≥ I : UNGF,A≥I(F ) = θXG + θXNG − I − θkF + A− (I − F )

Firms can finance through a continuum of risk-neutral investors, each of whom

has I for investing. Investors can be categorized into two types t ∈ {GI,NGI}.

NGIs are non-green investors who only care about the financial returns, whereas
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GIs are green investors who not only care about financial returns but also the

overall greenness of the firms they invest in, regardless of the project’s financial

outcomes. Specifically, GIs consider both the historical externality of a firm and

the externality from the firm’s future projects (i.e., λ+
∑

i∈{G,NG} gi(λ)). Assume

that the total greenness of a firm enters into the utility of a green investor linearly

and is proportional to the amount that the green investor invests in the firm. The

expected utility functions of the two types of investors can be written as:

UNGI = θkF − F

UGI = θkF − F + αF [gi(λ) + λ], if invest in GF or in NGF withA < I

UGI = θkF − F + αF [ gG(λ) + gNG(λ) + λ], if invest in NGF withA ≥ I

where α ∈ (0, 1) is a parameter that determines the extent to which green in-

vestors internalize the overall externality generated by a firm they invest in.

Throughout the paper, I assume that non-green investors have more than enough

capital to finance all firms and that they face a competitive capital market, so

that in equilibrium all non-green investors break even (UNGI = 0). This assump-

tion implies that the gross return k that a firm needs to promise to non-green

investors to secure financing is 1
θ
and also implies that a firm’s outside option is

the utility it can get from financing through non-green investors. The assumption

regarding the availability of green capital will be specified in each model.

It is worthwhile to clarify the timeline here before jumping into the models.

There are two periods in the models: t = 0 and t = 1. At t = 0, firms choose

the amount F that they would like to finance and issue securities to finance F.

Investors invest, and k for each firm is determined in equilibrium. Once a firm

secures its financing with a promised k to investors, the firm then makes its

investment decisions. At t = 1, the firm repays investors the promised kF if the

project(s) succeed; otherwise, the firm pays nothing.
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3.2.2 Baseline Model

In the baseline model, I assume that the mass of green investors is larger than

the mass of all firms. Therefore, there is sufficient green capital, and green in-

vestors also face a competitive capital market. The participation constraint (PC)

for green investors (UGI ≥ 0) holds with equality, and green investors break

even. Since green investors incorporate a firm’s overall greenness in their utilities

and firms have different levels of greenness, the break-even condition for green

investors determines the k a firm with a specific λ needs to promise. Mathemat-

ically, green firms choose F through:

max
0≤F≤I

UGF = θXG − θkF + A− (I − F )

s.t. UGI = θkF − F + αF [gG(λ) + λ] = 0

The break-even condition for green investors implies that

k =
1− α[gG(λ) + λ]

θ
≡ kGF (3.1)

Substituting k with kGF , the firm’s optimization problem then becomes:

maxUGF = θXG − I + αF [gG(λ) + λ] + A s.t 0 ≤ F ≤ I

Since gG(λ) + λ > 0 when λ > 0, all green firms would like to exhaust their

financing capacity by choosing F = I to maximize their utilities, regardless of

the level of A their entrepreneurs are endowed with. At the level of kGF in (3.1),

the PC of non-green investors will not be satisfied, and thus green firms will only

finance through green investors. In equilibrium, the expected utility of green

firms will be

U∗
GF = θXG − I + αI[gG(λ) + λ] + A (3.2)

So, in addition to the original capital A, a green firm will also gain the NPV of the

green project plus all of the extra utility green investors derive from investing in
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the green firm. From equations (3.1) and (3.2), one can see that the gross return

kGF required for each green firm decreases with λ, while the expected utility of

the firm increases with λ. Therefore, with sufficient green capital, the greener a

firm is, the lower the financing cost it needs to pay.

Similarly, one can derive the required gross returns from green investors for non-

green firms with A ≥ I and A < I, respectively:

k =
1− α[gG(λ) + gNG(λ) + λ]

θ
≡ kNGF,A≥I (3.3)

k =


1−α[gG(λ)+λ]

θ
≡ kNGF,A<I(G), if green project is chosen

1−α[gNG(λ)+λ]
θ

≡ kNGF,A<I(NG), if non-green project is chosen

(3.4)

Since firms can always finance through non-green investors with k = 1
θ
, they will

only choose green-investor financing if the utility from it is larger than the utility

from non-green investor financing. Furthermore, for a firm with positive overall

greenness (i.e., firms with λ +
∑

i∈G,NG gi(λ) > 0), it is always optimal to set

F = I, given that the firm chooses green-investor financing. Therefore, for firms

with A ≥ I:

U∗
NGF,A≥I = θXG + θXNG − 2I + A+max{0, αI[gG(λ) + gNG(λ) + λ]} (3.5)

For non-green firms with A < I, however, they can only get financed through

non-green investors and receive:

U∗
NGF,A<I = θXNG − I + A (3.6)

This is because capital-constrained non-green firms face a commitment issue.

Since firms invest after they secure financing, non-green firms have an incentive to

choose non-green projects over green projects, as non-green projects have higher

NPV than green projects (i.e., θXNG − I > θXG − I). In a competitive capital

market, where firms receive the project NPV, capital-constrained non-green firms

will always choose the non-green project once they secure financing. Anticipating
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this, green investors will require kNGF,A<I(NG) in (3.4), which is larger than 1
θ
, the

cost of financing through non-green investors. Therefore, in equilibrium, capital-

constrained non-green firms can only secure financing from non-green investors.

3.2.3 A Commitment Device

Suppose now firms can pay a fixed cost c to a credible third party who can

monitor the firms’ investments, ensuring that they invest in the project they

financed. This resembles the option of issuing green bonds with external reviews

in practice. This additional choice is essentially a commitment device. Therefore,

firms that face a commitment issue in the baseline model in Section 3.2.2 (i.e.,

those non-green firms with A < I) could increase their utility by paying for the

commitment device, given the following condition (IC) holds:

θXG − θkI + A− c ≥ θXNG − I + A, that is

k ≤ 1

θ
− XNG −XG

I
− c

θI
or gG(λ) + λ ≥ θ(XNG −XG) + c

αI
(3.7)

The last part of Equation (3.7) is derived by plugging in the required kNGF,A<I(G)

in (3.4). It implies that a financially constrained non-green firm will only pay for

the commitment device (or issue a green bond with external reviews) if its overall

greenness after considering the green project it is financing exceeds a positive

threshold (the right-hand side in Equation (3.7)). A more intuitive way to look at

Equation (3.7) is to rewrite it as αI[gG(λ)+λ] ≥ θ(XNG−XG)+c, which suggests

that a firm will only pay for the commitment device if the benefit it gets from

green investors exceeds the cost. The first component of the cost, θ(XNG −XG),

measures the financial payoff the firm forgoes by choosing a green project over a

more profitable non-green project, and the second component is the cost of the

commitment device. Suppose the parameters in this model are consistent with the
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existence of such financially constrained non-green firms. Then in equilibrium,

non-green firms with A < I and with λ satisfying the above condition will buy

the commitment device and get:

U∗
NGF,A<I = θXG − I + αI[gG(λ) + λ] + A− c (3.8)

through green-investor financing with k = kNGF,A<I(G) in Equation (3.4). More-

over, the existence of such a commitment device also improves the overall green-

ness of the economy (or reduces the amount of GHG emissions) by:

∫
λ∈Λ

[gG(λ)− gNG(λ)] dλ (3.9)

where Λ is the set of λ ≤ 0 that satisfies Equation (3.7) for non-green firms with

A < I. Therefore, under these assumptions, only non-green firms with capital

constraints will issue green bonds (i.e., firms with λ ≤ 0 and A < I). Green

firms can always secure financing from green investors, and non-green firms with

A ≥ I will always invest in both green and non-green projects, regardless of

whether they finance from green investors or not. However, the results could be

generalized to firms with any λ as long as these firms face mutually exclusive

projects, and the greener project is less profitable than the less green one.

3.2.4 Additional Utility

What if green bonds can not only be used as a commitment device but also give

green investors additional utility on top of what they already get from investing

in firms with an overall positive level of greenness? Assume that green investors

receive additional utility b per unit of investment in green bonds. This additional

utility can be viewed as extrinsic rewards, while the original αF [λ+
∑

i∈G,NG gi(λ)]

can be interpreted as utility derived from intrinsic motivation. This assumption

can be justified by the fact that many ESG scores for the financial sector account

for such investments. For instance, a few variables used in Thomson Reuters’ ESG
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score calculation explicitly state that responsible environmental investing, such

as green bonds, is relevant for the financial sector. Although there is no consensus

on how a higher ESG score benefits a firm, there is evidence showing that the

sudden categorization of funds as high-sustainability funds increases demand for

such funds (e.g., Hartzmark and Sussman, 2019; Ceccarelli et al., 2024). With

the additional b per unit of investment, the green investors’ utility from investing

in green bonds issued by different firms is:

UGI = θkF − F + αF [ λ +
∑

i∈{G,NG}

gi(λ) ] + bF

Since once a firm chooses to finance from green investors, it will always exhaust

its financing capacity, the green investors’ utility function can be simply written

as:

UGI = θkI − I + αI [ λ +
∑

i∈{G,NG}

gi(λ) ] + bI (3.10)

Given that the supply of green capital is larger than the demand, the required

gross returns in the competitive market equilibrium for green bonds become:

kGB =
1− α [ λ +

∑
i∈{G,NG} gi(λ) ]− b

θ
(3.11)

Similar to the derivation of Equation (3.7), one can show that the ICs of different

firms imply that the maximum gross returns different firms can accept from green

investors are:

For NGFs with A < I : k ≤ 1

θ
− XNG −XG

I
− c

θI
(3.12)

For GFs and NGFs with A ≥ I : k ≤ 1

θ
− c

θI
(3.13)

All of them decrease by c
θI

compared to their corresponding acceptable maximum

gross returns in a market without green bonds. By substituting (3.11) into (3.12)

and (3.13), one can easily rewrite the ICs as constraints on λ. It is easy to show

that as long as bI − c ≥ 0, all firms’ ICs are relaxed by bI−c
αI

. Specifically, for
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those financially constrained non-green firms, the IC for them becomes:

θXG − I + αI[gG(λ) + λ] + A+ bI − c ≥ θXNG − I + A,

or gG(λ) + λ ≥ θ(XNG −XG)

αI
− bI − c

αI
(3.14)

Therefore, keeping the same assumptions as in Section 3.2.3, the existence of

green bonds enhances the overall greenness of the economy even further, as the

set Λ in Equation (3.9) is larger when the IC of financially constrained non-green

firms is relaxed. Furthermore, green firms and non-green firms with A ≥ I that

could originally secure financing from green investors without issuing green bonds

will now also issue green bonds to obtain the additional utility of bI−c. However,

the green bonds will not change the greenness level of these firms.

3.2.5 Insufficient Green Capital

In the previous models, when there is more green capital than the aggregate

financing capacity of all firms, the existence of green bonds could increase the

greenness of the economy by allowing the green projects of some financially con-

strained non-green firms that otherwise would not be financed to be credibly

financed by green investors. In this section, I deviate from the competitive mar-

ket assumption for green investors and assume that the aggregate supply of green

capital, IG, is less than the aggregate demand from firms that would like to issue

green bonds.

Additional Utility Extension

Keep all other assumptions the same as in Section 3.2.4, except that now firms

need to compete for the scarce green capital. Since green investors obtain addi-

tional utility from green bonds, firms financing from green investors will always

prefer to issue green bonds. Additionally, since, by the assumptions in Section
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3.2.1, both gG(λ) and gNG(λ) are increasing functions of λ, the utility function of

green investors also increases with λ. This suggests that, for the same k, green

investors always prefer firms with larger λ. As a result, firms with larger λ can

lower their k to the point that the utility green investors get from investing in

them is the same as the utility green investors get from investing in the marginal

firm.

Consider the case when IG < I. In this scenario, only the greenest of the green

firms (i.e., those with λ > 0) will issue green bonds and get financed by green

investors in equilibrium. To see this, let λM denote the greenness level of the

marginal firm. Green firms will increase kGF in Equation (3.11) to compete for

the scarce green capital until financing from green investors is no better than

financing from non-green investors, that is, until the utility they get financing

from green investors equal to that when finance from non-green investors. Since

firms with higher λ provide green investors with higher additional utility, they do

not need to increase their promised returns as much as firms with relatively lower

λ. The competition continues until the marginal firm faces kGB = 1
θ
− c

θI
≡ kGB

M

and is indifferent between financing through either type of investor. All firms with

λ > λM can get financed by green investors at returns lower than kGB
M = 1

θ
− c

θI
.

Combining this with Equation (3.10), we can calculate the utility green investors

get from investing in the marginal firm:

U∗
GI = αI[gG(λM) + λM ] + bI − c ≡ M (3.15)

Given this level of utility, all firms with λ > λM will set kGB such that UGI(k
GB) =

M , thereby maximizing their utility while still attracting green investors. That

is:

kGB =
1− α[gG(λ) + λ]− b

θ
+

M

θI
(3.16)

The utility these green-bond issuers get in equilibrium is then given by:

U∗GB
GF = θXG − I + αI[gG(λ) + λ] + A+ bI − c−M (3.17)
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Under the assumption of scarce green capital (IG < I), it can be shown that the

marginal firm remains the same, with or without green bonds. Therefore, the

existence of green bonds does not impact the environment, nor does it increase

the utility of green-bond issuers6. It only benefits green investors by increasing

their utility by bI − c. This is mainly due to the assumption that green investors

obtain higher utility from greener firms. When green capital is scarce, instead of

channeling capital to incentivize capital-constrained non-green firms to undertake

green projects, green investors prioritize investing in green firms that will imple-

ment green projects even in the absence of green capital. However, for IG > I

but still smaller than the aggregate demand for green capital, the existence of

green bonds could help improve the greenness of the economy by allowing finan-

cially constrained firms to commit to green project investments, provided these

firms are not excessively polluting (i.e., λ not too negative). Otherwise, other

financially unconstrained non-green firms may outcompete them and secure the

scarce green capital.

Utility Substitution

One concern about green bonds from critics (e.g. Wighton, 2019) is that exag-

gerating the benefits of green bonds might make investors complacent, choosing

to invest in green bonds rather than engaging in more effective environmental

actions. To analyze this statement, I assume that financially constrained non-

green firms have λ ∈ [−ρ, 0], making them the relatively greener type among the

non-green firms. Furthermore, while still assuming insufficient green capital, I

adjust the assumption in Section 3.2.4 regarding the utility green bonds provide

to green investors. Suppose, instead of giving green investors additional utility b

per unit of investment on top of what they derive from firms’ overall greenness,

issuing green bonds causes investors to ignore the greenness level of a firm, so that

green investors only receive b per unit of investment from holding green bonds.

6One can plug (3.15) into (3.17), and see that U∗GB
GF = θXG − I + αI[gG(λ) + λ] + A −

αI[gG(λM ) + λM ], which is the same as their utilities when there were no green bonds.
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In this case, the utility function for green investors investing in green bonds can

be written as:

UGB
GI = θkGBI − I + bI (3.18)

Therefore, in the presence of green bonds, firms with λ satisfying

bI − c ≥ αI[ λ+
∑

i∈{G,NG}

gi(λ) ] or λ+
∑

i∈{G,NG}

gi(λ) ≤
bI − c

αI
(3.19)

would like to issue green bonds. That is, only those relatively less green firms

would prefer to issue green bonds. Suppose that Equation (3.19) holds even for

some green firms. In other words, there exists a λG > 0 such that gG(λG)+λG =

bI−c
αI

. Additionally, suppose that αI[gG(−ρ) − ρ] ≥ θ(XNG − XG), so that all

financially constrained non-green firms would prefer green-investor financing in

the absence of green bonds (although they face commitment issues and cannot

secure green investor financing). Therefore, all firms with λ < λG would prefer

to issue green bonds if they can be financed by green investors. As a result, the

existence of green bonds increases the demand for green capital.7

However, with insufficient green capital, not all firms can be financed by green

investors. With green bonds, all issuers provide green investors the same level

of utility for a given k (as shown in Equation (3.18)). Assume green investors

randomly allocate their capital across firms when they are indifferent. Note that

green firms with λ > λG can always secure financing from green investors without

issuing green bonds because, for a fixed k, such firms can always offer green

investors a higher utility than any green bond issuers. Therefore, only IG − (1−

λG)I green capital remains for all green bond issuers.

Consider the case where λGI+(1−ρ)I < IG− (1−λG)I < λGI+I, or (2−ρ)I <

IG < 2I. This means the remaining green capital is sufficient for financing the

remaining green firms and the non-financially constrained non-green firms, but

not sufficient for financing all remaining firms. Therefore, since firms need to

7In the absence of green bonds, firms with λ+
∑

i∈G,NG gi(λ) < 0 do not seek green-investor
financing.
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implement green projects if they finance by issuing green bonds, with scarce green

capital, issuing green bonds may risk incurring additional costs (both issuing

costs and foregone higher NPV from non-green projects) without securing a lower

financial cost if the green bond is not purchased by green investors. Suppose

with probability p, a green bond will be purchased by green investors, and with

probability 1 − p, the green bond will be purchased by non-green investors who

attach no additional value to a green bond. Under this condition, financially

constrained non-green firms will issue green bonds if the expected utility from

issuing green bonds is greater than what they would obtain from financing without

a green bond through non-green investors. That is:

p(θXG − θkGBI) + (1− p)(θXG − I) + A− c ≥ θXNG − I + A

or kGB ≤ 1

θ
− c

θIp
− XNG −XG

pI
(3.20)

The IC for green firms with λ < λG and the 1 − ρ non-financially constrained

non-green firms is given as:

p(θXG − θkGBI) + (1− p)(θXG − I)− c ≥ θXG − I

or kGB ≤ 1

θ
− c

θIp
(3.21)

Both (3.20) and (3.21) are more binding compared to (3.12) and (3.13) respec-

tively, due to the fact that p ≤ 1. Intuitively, this is because, for the same cost

c, issuers now face the risk of their green bonds not being purchased by green

investors who attach additional value to green bonds. Therefore, the maximum

k they can accept needs to be lower to compensate for this risk. Furthermore, for

the same p and c, Equation (3.20) is more binding than (3.21) because financially

constrained non-green firms require a sufficiently low financial cost to compen-

sate for foregoing the higher NPV non-green projects. Therefore, green firms and

non-constrained firms can increase kGB to (or just above) 1
θ
− c

θIp
− XNG−XG

pI
(with

p = IG−(1−λG)I
(1+λG)I

≡ p0) instead of the maximum k in (3.12), which is larger than
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the one in (3.20). By doing so, they can all secure finance from green investors,

given such k also satisfies the green investors’ participation constraint:

θI(
1

θ
− c

θIp
− XNG −XG

pI
)− I + bI ≥ 0 or b ≥ c

pI
+

θ(XNG −XG)

pI
(3.22)

If Equation (3.22) holds with p0,
8 all green firms and financially unconstrained

non-green firms can outcompete all financially constrained non-green firms and

have their green bonds invested in by green investors with certainty at (or slightly

above) kGB
0 = 1

θ
− c

θIp0
− XNG−XG

Ip0
first, and obtain ex post a utility of UGB

0 =

θXG − I + c
p0

+ θ(XNG−XG)
p0

− c + A from using green bonds to finance green

projects.9 The financially constrained non-green firms will then compete for the

rest of the green capital if there is any. Their IC is still given by (3.20) except that

p decreases to p1 ≡ IG−(2−ρ)I
ρI

.10 If Equation (3.22) still holds with p1, then they

will set kGB
1 = 1

θ
− c

θIp1
− XNG−XG

Ip1
< kGB

0 . Ex post, a random p1 proportion of the

ρ financially constrained non-green firms will have their green bonds purchased by

green investors and will realize a utility of UGB
1 = θXG−I+ c

p1
+ θ(XNG−XG)

p1
−c+A;

while 1 − p1 of the ρ firms will have their green bonds purchased by non-green

investors at kGB
NGI =

1
θ
and will realize a utility of UGB

NGI = θXG − I − c+ A11.

If Equation (3.22) does not hold with p1 but holds with p0, then green investors

cannot break even with the maximum gross returns that financially constrained

non-green firms can offer. In this case, financially constrained non-green firms

will not issue green bonds and will choose non-green projects with non-green

investor financing, while the remaining green firms and financially unconstrained

non-green firms will have their green bonds invested in by green investors at

kGB
0 . If Equation (3.22) does not hold even with p0, financially constrained non-

8Note that Equation (3.22) might not hold. The assumptions gG(λG) + λG = bI−c
αI for

λG > 0 and αI[gG(−ρ) − ρ] ≥ θ(XNG −XG) above only ensure that bI − c > θ(XNG −XG);

while Equation (3.22) requires bI − c
p ≥ θ(XNG−XG)

p , which is more binding.
9The ex ante expected utility is given by the left-hand side of the first line in Equation

(3.20).
10p1 < p0 as p1 is derived from deducting λGI + (1 − ρ)I from both the numerator and the

denominator of p0
11The ex ante expected utility of financially constrained non-green firms is θXNG − I.
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green firms will not compete for the scarce green capital. In this scenario, green

capital is sufficient for the remaining firms, and they can all secure financing

with kGB = 1−b
θ
, the break-even gross return for green investors investing in

green bonds.

Now, compare this to the scenario when there are no green bonds. The scarcity

of green capital suggests that only the greenest firms can secure financing from

green investors when there are no green bonds. However, with the existence of

green bonds distracting green investors from focusing on the overall greenness of

a firm, only the relatively less green firms will issue green bonds to try to attract

the remaining green capital after the greenest firms have obtained investment.

Whether green bonds can help improve the greenness of the economy depends

on the level of greenness of the financially constrained firms. As long as those

financially constrained firms are not those green firms that could anyway attract

green capital in the absence of green bonds, the existence of green bonds can still

help improve the greenness of the economy by enabling financially constrained

non-green firms to credibly invest in green projects. However, given that these

financially constrained firms face a more binding IC, they cannot compete with

other non-constrained firms. As a result, while green bonds may still help by

acting as a commitment device, this assistance might be limited.12

3.3 Empirical Implications and Tests

Section 3.2 demonstrates that under certain circumstances, green bonds could

positively contribute to the environment. Although the exact outcomes depend

on specific assumptions and parameters, one key feature is consistent across all

model variants discussed: green bonds are used by financially constrained firms

as a commitment device. This prerequisite is also intuitive. If green bond issuers

are investing in green projects they would undertake regardless of the existence of

12However, if non-green investors also derive additional utility from green bonds, then the
results would be similar to the baseline model, except that the extra utility all investors get in
this case is bI.
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green bonds, then green bonds will have no impact. However, if green bonds lead

firms to undertake actions they would not otherwise consider, then their existence

can make a significant difference. Note that this does not require green bonds to

offer lower financing costs for the issuers. As long as green bonds can be used as a

commitment device that allows financially constrained firms to invest in greener

but less profitable projects, they can have a positive environmental impact on

the economy. The lower financing costs come from green investors rather than

green bonds. Therefore, identifying financially constrained green bond issuers

in practice would provide supportive evidence of green bonds’ positive impacts.

Consequently, my goal here is to empirically test whether there are any green

bond issuers facing financial constraints.

3.3.1 Measure of Financial Constraints

Empirically testing or measuring financial constraints has always been challeng-

ing, particularly with accounting variables, as many of these variables are en-

dogenous (Farre-Mensa and Ljungqvist, 2016). Ideally, one would use exogenous

shocks to firms’ available financial resources to identify which firms are finan-

cially constrained based on their reactions (e.g. Xu and Kim, 2020; Chaney et al.,

2012). However, such events are relatively rare and especially hard to find for an

international sample. Another approach, supported by a rich body of literature,

is to measure firms’ financial constraints using text-based analysis (e.g. Kaplan

and Zingales, 1997; Hadlock and Pierce, 2010; Hoberg and Maksimovic, 2015;

Buehlmaier and Whited, 2018).

To empirically test whether green bond issuers are financially constrained, I adopt

the measure of financial constraint from Hadlock and Pierce (2010). Starting with

text-based analysis, Hadlock and Pierce (2010) use an ordered logit model and

find that a nonlinear combination of firm age and size can predict how financially

constrained a firm is. Using the coefficients from their model, they construct a
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size-age (SA) index13 to measure firms’ constraint levels, with a higher index value

indicating more financial constraint. The SA index is chosen due to its relatively

robust performance demonstrated by other researchers (Hoberg and Maksimovic,

2015) and its ease of construction. Unlike Bartram et al. (2021), who categorize

firms as financially constrained if their index value is above the sample median,

I use the SA index value calculated directly using the formula from Hadlock and

Pierce (2010). Thus, the financial constraint level of firms varies continuously.

This approach avoids assigning a constraint tag based on an arbitrary cutoff,

though it is not captured by the models in the previous sections.

3.3.2 Data

The data used for the empirical analysis comes from three sources: corporate

green bond data from Bloomberg’s fixed income datab3.Ase, ESG data from

Thomson Reuters’ Refinitiv Eikon datab3.Ase, and firms’ financial data from the

Compustat Global and North America datab3.Ases.

Green Bond Data

To obtain a sample of corporate green bonds from Bloomberg, I follow a similar

filtering criterion used in Flammer (2021). Specifically, a bond is selected as

a green bond if it includes ”Green Bond/Loan” in the ”Use of Proceeds” field.

Bonds with BICS 1 (Bloomberg Industry Classification System Level 1) equal

to ”Government” are excluded. This yields a sample of 3,000 corporate green

bonds with issue dates between January 1, 2013, and May 26, 2021.14 Table

3.1 shows the summary statistics of selected variables for the resulting sample.

The average issuance amount across 2,985 bonds with this information available

13The index is calculated as (−0.737 ∗ Size) + (0.043 ∗ Size2)− (0.040 ∗Age), where Size is
the log of inflation-adjusted book assets, and age is the number of years the firm has been on
Compustat with a non-missing stock price. Here, I use the years since the firm went IPO to
calculate age instead.

14Since the first corporate green bonds were issued in 2013, any bonds issued before that year
are excluded.
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is $0.24 billion, which is of the same magnitude as the average issuance amount

reported by Flammer (2021). The average maturity for these green bonds is

around 9 years, although the maximum maturity can be as long as 1,000 years.15

Among the 2,649 green bonds with information on external reviews, 83.8% have

external reviews. This suggests that seeking third-party review has become a

common practice in the green bond market.

Table 3.1: Summary Statistics for Corporate Green Bonds

Statistic N Mean St. Dev. Min Max

Ammount ($Billion) 2,985 0.240 0.356 0.00001 4.330
Yield at Issue (%) 964 2.533 2.343 −0.280 15.000
Coupon (%) 2,873 2.696 2.339 −0.260 16.919
Maturity (Years) 2,949 9.020 41.379 0.159 1,000.663
Bloomberg Rating 665 BBB+ CCC+ AAA
With External Reviews 2,649 0.838 0.368
Refinance Purpose 3,000 0.126 0.332

In Table 3.2 and Table 3.3, I summarize the green bond issuance by year and

by BICS1 sector, respectively. Table 3.2 shows that the corporate green bond

market has been rapidly increasing in size. The total amount issued has surged

from $3.9 billion in 2013 to $162.3 billion by 2020. The total amount issued

by May 26, 2021, has already reached $127.5 billion. There are a total of 1,601

issuer-year observations in the sample. After removing repeated issuers, 1,079

unique issuers remain across the entire sample period. Table 3.3 reveals that the

financial sector has the most green bond issuers and also the highest number of

green bonds issued, measured by both the number of issuances and the amount

of issuance. Firms in the utilities sector also rank high in all measures.

15European Energy A/S has issued a green bond that matures in the year 3020.
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Table 3.2: Corporate Green Bond Issuance by Year

Year
Number of
Bonds

With External
Reviews

Amount Issued
($Billion)

Refinance
Purpose

All
Issuers

New
Issuers

Repeated
Issuers

2013 15 3 3.965 0 6 6 0
2014 72 59 14.048 5 34 31 3
2015 202 58 20.934 9 47 38 9
2016 152 115 60.789 14 85 67 18
2017 316 254 79.080 40 164 127 37
2018 409 316 92.975 51 225 165 60
2019 602 497 154.383 75 359 245 114
2020 707 606 162.307 108 380 233 147
2021* 525 313 127.478 76 301 167 134

Total* 3000 2221 715.959 378 1601** 1079 522

*As of May 26th, 2021

**The sum of All Issuers is the total number of issuer-year. The total number of unique issuers is 1079

Table 3.3: Corporate Green Bond Issuance by Sector

Sector (BICS1*)
Number of
Issuers

Number of
Bonds

With External
Reviews

Amount Issued
($Billion)

Financials 525 1620 1336 372.107
Utilities 236 607 423 191.563
Energy 70 315 120 24.195
Industrials 100 188 148 45.913
Consumer Discretionary 58 126 73 33.822
Materials 39 70 57 19.771
Consumer Staples 21 27 22 5.939
Technology 14 27 25 11.802
Communications 12 14 13 8.917
Health Care 4 6 4 1.930

Total** 1079 3000 2221 715.959

*Bloomberg Industry Classification Systems Level 1

**As of May 26th, 2021

In Appendix C.1, I also report the results by sub-sector (BICS2). Table C.1.2

shows that banks are the top issuers of green bonds. The fact that the finan-

cial sector is the top issuer of green bonds may cast doubt on how green bonds

contribute to the environment, given that many green bond issuers are intermedi-

aries. Unfortunately, this question will be left unanswered here, as addressing it

might require a completely different theoretical model and detailed bank lending

data that is usually hard to access. Tables C.1.1 to C.1.5 in the Appendix also

include other summary statistics for the green bond sample. One interesting fact
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is found in Table C.1.1: among issuers with Bloomberg’s BNEF clean energy

exposure rating, most actually have the lowest rating, indicating they have the

least exposure to clean energy. While this does not necessarily mean they are

major polluters, it shows that they are, at best, neutral.

ESG and Compustat Data

The ESG data is obtained from the Refinitiv Eikon datab3.Ase, which is one

of the major ESG datab3.Ases used in similar analyses. The Refinitiv ESG

datab3.Ase provides ESG scores, three pillar scores, and the variables used to

calculate those scores for firms with relevant data. Since the focus here is on

firms’ environmental performance, I selected only the scores and variables related

to the environment. Selected variables and their definitions can be found in Table

C.2.6 in Appendix C.2. I downloaded the selected variables for all firms in the

Refinitiv ESG datab3.Ase from 2006 to 2020. This resulted in 128,415 firm-year

observations and 8,561 unique firms. Firms in this sample that have never issued

green bonds will be used as a comparison group later on in Section 3.3.3.

To obtain financial data from Compustat, I created a list of firms that is a union

of the 8,561 Eikon firms and 1,079 unique green bond issuers. Since Bloomberg

does not share the same firm identifier with Compustat, I first obtained the

names and IDs of all firms in Compustat, and then fuzzy matched Compustat

firm names with Bloomberg issuer names using a fuzzy matching algorithm in R.16

I then used the IDs of the matched firms to obtain financial data from Compustat

North America and Global.

16The Levenshtein edit distance is used as the measure of similarity in this case.
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3.3.3 Empirical Results

Financial Constraint

To test whether green bond issuers are more financially constrained than non-

issuers, I merged the Bloomberg green bond data and Compustat data with the

Eikon ESG data by firm and year. I then filtered out all firms in the financial

sector, as the original SA index also excluded firms in the financial sector. For

the remaining firms with relevant variables available, I calculated the SA index.

Table 3.4 summarizes the SA index and environmental information for issuers

and non-issuers that are not in the financial sector. The results show that the

firm-year average SA index is lower for issuers than for non-issuers, suggesting

that, on average, issuers are less financially constrained than non-issuers. In

terms of environmental performance, green bond issuers score higher on almost

all measures compared to non-issuers. Therefore, on average, green bond issuers

appear to be greener and less financially constrained.

Table 3.4: Summary Statistics for Issuers and Non-Issuers

Issuer Non-Issuer
Statistics N* Mean N* Mean

SA Index 870 −3.0 31,955 −1.1
ESG Score 2,977 56.6 57,455 41.1
Environmental Pillar Score 2,977 55.7 57,446 31.4
Environmental Products 2,977 0.6 57,455 0.3
Eco-Design Products 2,977 0.1 57,454 0.1
Renewable Energy Products 2,977 0.4 57,455 0.1
Sustainable Building Products 2,977 0.1 57,455 0.04
Scope 1 and 2 CO2 (MT) 2,219 5.5 25,871 4.1
Scope 1 and 2 to Rev (T/M$) 2,219 378.0 25,788 486.3
All Scope CO2 (MT) 1,472 10.1 12,090 16.4
All Scope to Rev (T/M$) 1,472 428.9 11,992 1,142.9
Environmental R&D Exp (M$) 351 200.5 2,248 114.0
Percentage of Green Products 23 50.0 123 41.0
Environmental Controversies 12 1.2 88 2.0
Environmental Asset Under Mgt 2,977 0.2 57,455 0.02
Environmental Project Financing 2,977 0.3 57,454 0.03
Fossil Fuel Divestment Policy 2,977 0.02 57,455 0.001

*N is the number of firm-year
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To gain a better understanding of the distribution of both financial constraints

and environmental performance for issuers and non-issuers, I plotted the SA

Index for issuers and non-issuers by year, as shown in Figure 3.1. It can be seen

that green bond issuers not only have a lower median SA Index (represented by

the thick line in the middle of each box) across all years, but their SA index

is also less dispersed. This is especially evident when we look at the outliers

(represented by the dots above the ”whiskers” of each box, defined as 1.5 times

the interquartile range above the upper quartile or below the lower quartile).

Non-issuers have significantly more outliers with much higher SA Index values,

indicating that there are many more firms among non-issuers that tend to be very

financially constrained. This observation holds across all years. The regression

results in Table C.3.7 in Appendix C.3 also support this observation. Column

(1) of Table C.3.7 results from regressing the SA index on a binary indicator of

whether a firm has ever issued green bonds, while controlling for time fixed effects.

The coefficient on the binary indicator is −2.054 and is statistically significant,

indicating that green bond issuers, on average, have an SA index that is 2.054

points lower. This suggests that, on average, they are less financially constrained.

Figure 3.1: Distribution of SA Index for Issuers and Non-Issuers by Year
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I also created a similar graph, this time using the environmental pillar score as

the Y variable while still excluding firms in the financial sector. It is interesting

to see that most issuers have higher E-scores than non-issuers, except for a few

outliers. The observations from Figures 3.1 and 3.2 suggest that green bond

issuers tend to be greener and less financially constrained firms. In this case,

green bonds appear to be used by relatively green firms to finance projects they

could finance even without green bonds, rather than as a commitment device for

financially constrained firms to pursue green projects they would otherwise be

unable to undertake. This contradicts the argument that green bonds significantly

contribute to the environment.

Figure 3.2: Distribution of Environmental Score for Issuers and Non-Issuers by Year

However, it is possible that although green bond issuers are, on average, less

financially constrained compared to non-issuers, they might issue green bonds

when they are more constrained relative to their own past financial status. Since

the SA Index is constructed to be relatively stable over time, it is best used for

cross-sectional comparisons and not suitable for time-series analysis. Therefore, I

adopt another popular measure of financial constraint, cash flow (e.g. Whited and
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Wu, 2006). I regress a binary variable indicating whether an issuer has issued

green bonds in a given year on the firm’s cash flow lagged by one year, while

controlling for year and firm fixed effects. The results are shown in Table 3.5.

Column (1) is at the issuer level, while column (2) is at the CAST parent level.17 I

also include issuers that do not have their CAST parents matched in Compustat,

making the sample in column (2) slightly larger. Both columns suggest a small

but significant positive relationship between the previous year’s cash flow and

green bond issuance in the subsequent year. In other words, firms tend to issue

green bonds when their previous year’s cash flow is high, or when they are less

financially constrained.

Table 3.5: Green Bond Issuance and Cash Flow

Dependent Variable: Whether Issue This Year

(1) (2)

Previous Year Cash Flow 0.00001∗∗∗ 0.00001∗∗∗

(0.00000) (0.00000)

F Statistic 66.99∗∗∗ 41.068∗∗∗

Degree of Freedom (df1; df2) (1; 14) (1; 29)
Observations 166 360
R2 0.057 0.011
Adjusted R2 -0.135 -0.124

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

All the evidence above suggests that green bond issuers tend to be firms that are

less financially constrained, and they also appear to be relatively less constrained

when they issue green bonds compared to their own past financial status. Further-

more, the fact that green bond issuers are, on average, greener than non-issuers

indicates a negative relationship between financial constraints and environmental

scores. The regression of environmental scores on the SA index in Table C.3.8

column (4) in Appendix C.3 confirms this. The coefficient on the SA index is

17CAST parent is a variable in Bloomberg, defined as the ultimate parent of a company for
capital structure, excluding private shareholders, majority shareholders that own the operating
company as an investment, and sovereign owners for government-owned entities where less than
50% of Group debt is guaranteed by the sovereign.
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negative and significant, suggesting that firms with higher SA index values (in-

dicating higher levels of financial constraint) tend to have lower environmental

scores. From the models derived in Section 3.2, the fact that more financially

constrained firms do not issue green bonds and tend to be less green could be due

to them being priced out of the green bond market or being too environmentally

unfriendly to secure green investor financing, even in the absence of green bonds.

The exact scenario depends on how green investors derive non-financial utility

from green bonds. If green investors derive utility from green bonds in the man-

ner assumed in Section 3.2.5, i.e., independent of the firms’ level of greenness,

then it suggests that financially constrained firms have been priced out of the

green bond market due to scarce green capital and their more restrictive IC. If

this is the case, then in the future, when there is more green capital available,

green bonds could incentivize these firms to choose greener projects, thus having

a positive environmental impact.

Pricing Premium

To test how investors derive utility from green bonds, first consider that if green

investors derive utility from green bonds independent of the firms’ level of green-

ness, the results in Section 3.2.5 suggest that with the supply of green capital

being less than the demand, only a random proportion of green bond issuers will

benefit from a lower k (i.e., have a pricing premium), and this pricing premium

will not depend on the firms’ level of greenness. However, if the utility investors

derive depends on the firms’ level of greenness, then the pricing premium should

be larger for greener firms.

Many previous papers on green bonds have focused on identifying a pricing pre-

mium, particularly for municipal green bonds (e.g. Baker et al., 2018; Zerbib,

2019; Larcker and Watts, 2020). However, the findings are mixed. Among these

papers, Larcker and Watts (2020), by matching green municipal bonds with their

non-green counterparts, convincingly found no pricing premium. Flammer (2021)
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conducted a similar analysis for corporate green bonds and also found no pricing

premium. In this study, I conduct the same analysis as Flammer (2021). Fol-

lowing their matching method, I obtained a total of 256 pairs of matched bonds.

Unlike municipal bonds, most corporate green bonds do not have ”brown twins”

(i.e., identical non-green counterparts). Therefore, I keep the closest ”brown sib-

ling” of a green bond if both its issue date and maturity date are within one year

of the green bond, provided they are from the same issuer and have the same

years to maturity.

The t-test result is shown in Figure 3.3. After excluding the matched pairs

with issue dates and maturity dates more than one year apart, 236 matched

pairs remain. The pricing premium, measured in percentage, is calculated as

∆Y ield = Yield(Nongreen Bond) − Yield(Green Bond), with a positive value

indicating a pricing premium. The red dashed line in Figure 3.3 represents the

average green premium over the 236 matched pairs, while the blue dashed line

marks zero. Consistent with the findings in Flammer (2021), there is no significant

pricing premium for green bonds. In fact, the pricing premiums for most green

bonds are concentrated around zero, as shown by the vertical bars on the premium

axis. Figures C.4.1 to C.4.4 in Appendix C.4 display the results for matched

pairs with closer issue and maturity dates. None of these figures suggest any

significant pricing premium. However, as the matching criteria become stricter,

the dispersion of pricing premiums decreases. In Figure C.4.4, with the distance

between dates no more than one month, pricing premiums are closely spread

around zero.

Tables C.4.9 to C.4.12 show the t-test results for the pricing premium across dif-

ferent variables for matched pairs with date differences of two quarters or less.

Almost all results indicate no significant pricing premium, except for green bonds

issued in JPY in Table C.4.11, which on average have a 0.056% yield difference

between the matched non-green bond and green bond, and this difference is sta-

tistically significant. However, since the number of matched pairs becomes very

small when analyzed by categories, the results are not robust.
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Figure 3.3: T-Test Result for Pricing Premium

Lastly, I conduct a simple regression of the pricing premium on the environmental

pillar score of the bond issuer to see if there is any significant relationship. Since

not all issuers have an environmental pillar score, the sample size for this analysis

is rather small. To avoid the sample being too small, I allowed the date difference

between the pairs to be one year or less, but the resulting sample still only

includes 38 bonds. The result is shown in Figure 3.4. There is a positive but

statistically insignificant relationship between the premium of the bonds and their

environmental pillar score. This provides suggestive evidence that investors might

derive utility based on firms’ level of greenness rather than simply from holding

green bonds. Nonetheless, given the small sample size, it is difficult to draw any

definitive conclusions.
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Figure 3.4: Pricing Premium and Environmental Pillar Score

3.4 Conclusion

In this paper, I use a straightforward theoretical framework to identify the condi-

tions under which green bonds could positively impact the environment. Specifi-

cally, I demonstrate that a necessary condition for green bonds to have a positive

impact is the presence of financially constrained firms using green bonds as a

commitment device. This allows them to credibly invest in greener but less prof-

itable projects. To empirically test this, I calculated the SA index as a measure

of financial constraint for both green bond issuers and non-issuers with available

ESG and financial data. The empirical results suggest that, currently, most green

bond issuers are relatively greener and less financially constrained, and thus are

less likely to need to use green bonds as a commitment device. Therefore, in the

current corporate green bond market, green bonds do not appear to significantly

impact the environment by enabling financially constrained firms to undertake

green projects that they otherwise would not pursue.
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However, there are several limitations to this study. First, the models derived

here are based on assumptions that have not yet been empirically verified. Con-

sequently, the model only indicates that green bonds could contribute to the

environment under specific conditions. Second, the model developed here is more

suitable for studying cases where green bond issuers are financing their own green

projects. Given that many green bond issuers are financial intermediaries who

use the proceeds to invest in green projects, it may be necessary to derive a

separate model for issuers in this category. Third, the measures of financial con-

straint used in this study are proxies and may not capture the true financial

constraints of firms. For more robust empirical results, it would be beneficial to

use other measures of financial constraint, preferably those resulting from natural

experiments, rather than relying solely on the SA index. Additionally, while the

analysis provides suggestive evidence that investors might derive utility based on

firms’ level of greenness rather than simply from green bonds, the small sample

size limits the strength of these conclusions. Further research with larger and

more diverse datasets is needed to better understand the relationship between

financial constraints, green bond issuance, and environmental impact.
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Appendix A

Appendix For Chapter 1

A.1 Appendix 1.A

Figure A.1.1: The Development of the EU ETS Legislative Framework

The figure presents a table summarizing the development of the EU ETS legislative framework from
2005 onwards. Information is based on the official websites: https://climate.ec.europa.eu/eu-action/

eu-emissions-trading-system-eu-ets/development-eu-ets-2005-2020_en.
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Table A.1.1: Regulated Activities and Corresponding Thresholds Since 2005

Activities and Thresholds
Energy activities
- Combustion installations with a rated thermal input exceeding 20 MW
(except hazardous or municipal waste installations)
- Mineral oil refineries
- Coke ovens
Production and processing of ferrous metals
- Metal ore (including sulphide ore) roasting or sintering installations
- Production of pig iron or steel (primary or secondary fusion) including continuous casting,
with a capacity exceeding 2.5 tonnes per hour
Mineral industry
- Production of cement clinker in rotary kilns with a production capacity exceeding 500 tonnes per day
- Production of lime in rotary kilns or in other furnaces with a production capacity exceeding 50 tonnes per day
- Manufacture of glass including glass fibre with a melting capacity exceeding 20 tonnes per day
- Manufacture of ceramic products by firing, in particular roofing tiles, bricks, refractory bricks, tiles,
stoneware or porcelain, with a production capacity exceeding 75 tonnes per day, and/or with a kiln capacity
exceeding 4m3 and with a setting density per kiln exceeding 300 kg/m3

Other activities
Industrial plants for the production of
(a) pulp from timber or other fibrous materials
(b) paper and board with a production capacity exceeding 20 tonnes per day

The table presents the regulated activities and their respective thresholds as outlined in ANNEX I of DIREC-
TIVE 2003/87/EC, which was initially published in the Official Journal of the European Union on 13 October
2003.
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Table A.1.2: Changes and Extensions After 30 June 2011

Extended Activities and Thresholds (Stationary Installation Only)
Metal
- Production and processing of ferrous metals (including ferro-alloys) where combustion units with a total rated
thermal input exceeding 20 MW are operated. Processing includes, inter alia, rolling mills, re-heaters, annealing
furnaces, smitheries, foundries, coating and pickling
- Production of primary aluminium
- Production of secondary aluminium where combustion units with a total rated thermal input exceeding 20 MW
are operated
- Production or processing of non-ferrous metals, including production of alloys, refining, foundry casting, etc.,
where combustion units with a total rated thermal input (including fuels used as reducing agents) exceeding
20 MW are operated
Mineral industry
- Production of lime or calcination of dolomite or magnesite in rotary kilns or in other furnaces with a production
capacity exceeding 50 tonnes per day
- Manufacture of ceramic products by firing, in particular roofing tiles, bricks, refractory bricks, tiles,
stoneware or porcelain, with a production capacity exceeding 75 tonnes per day
- Manufacture of mineral wool insulation material using glass, rock or slag with a melting capacity exceeding 20
tonnes per day
- Drying or calcination of gypsum or production of plaster boards and other gypsum products, where combustion
units with a total rated thermal input exceeding 20 MW are operated
Other activities
- Production of carbon black involving the carbonisation of organic substances such as oils, tars, cracker and
distillation residues, where combustion units with a total rated thermal input exceeding 20 MW are operated
- Production of nitric acid
- Production of adipic acid
- Production of glyoxal and glyoxylic acid
- Production of ammonia
- Production of bulk organic chemicals by cracking, reforming, partial or full oxidation or by similar processes,
with a production capacity exceeding 100 tonnes per day
- Production of hydrogen (H2) and synthesis gas by reforming or partial oxidation with a production capacity
exceeding 25 tonnes per day
- Production of soda ash (Na2CO3) and sodium bicarbonate (NaHCO3)
- Capture of greenhouse gases from installations covered by this Directive for the purpose of transport and
geological storage in a storage site permitted under Directive 2009/31/EC
- Transport of greenhouse gases by pipelines for geological storage in a storage site permitted under Directive
2009/31/EC
- Geological storage of greenhouse gases in a storage site permitted under Directive 2009/31/EC

The table presents the expanded activities and associated thresholds as detailed in ANNEX I of DIRECTIVE
2003/87/EC, published in the Official Journal of the European Union in 2013. It includes only those activities
that were newly added or modified in comparison to those listed in Table A.1.1 for stationary installations.
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A.2 Appendix 1.B

Table A.2.3: Impact of EU ETS on Major Outcomes

± 2 ± 4.2 [-4.2, 7] [-4.2, 10] [-4.2, 15]

Scope 1 (Absolute) -0.913 0.552 0.297 0.052 -0.266
(0.727) (0.813) (1.011) (0.955) (0.798)

Scope 1 (Intensity) -0.736 -0.511 -2.043 -3.058** -2.884***
(1.053) (1.401) (1.516) (1.315) (1.032)

Scope 2 (Absolute) 0.693 1.447* 1.266 3.213*** 3.210***
(0.704) (0.772) (1.172) (1.109) (0.921)

Scope 1 & 2 (Absolute) -0.424 0.874 0.708 1.151 1.056
(0.644) (0.644) (0.818) (0.799) (0.701)

Scope 1 & 2 (Intensity) -0.247 0.002 -1.223 -1.654 -1.378
(1.001) (1.316) (1.378) (1.197) (0.955)

Revenue -0.177 1.063 2.341 3.111** 2.618**
(1.346) (1.445) (1.584) (1.443) (1.200)

Net Income 0.041 0.051 0.079 0.101** 0.077*
(0.039) (0.049) (0.054) (0.049) (0.041)

Capital Expenditure -1.223 -0.067 0.688 1.511 1.153
(1.864) (1.759) (1.937) (1.735) (1.426)

Observations 1058(L) 1121(R) 2161(L) 2349(R) 2161(L) 3657(R) 2161(L) 4761(R) 2161(L) 6379(R)
Polynomial 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular
Bandwidth Type Manual Manual Manual Manual Manual

* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.2.3: Impact of EU ETS on Major Outcomes

± 2 ± 4.2 [-4.2, 7] [-4.2, 10] [-4.2, 15]

No. of European Firms -14.748 -18.605 -24.332 -42.208 -40.259*
(22.016) (24.073) (28.509) (25.903) (20.652)

No. of Non-European Firms 0.698 -5.577 -10.968 -27.244 -27.599
(21.367) (24.747) (29.393) (27.060) (21.803)

European Firms (Share) -0.391** -0.450** -0.468* -0.761*** -0.728***
(0.164) (0.196) (0.244) (0.219) (0.162)

No. of European Customers 9.082* 4.688 5.924 4.488 6.299
(5.028) (5.186) (5.845) (5.490) (4.499)

No. of Non-European Customers 12.292 10.638 9.967 15.254 18.177*
(9.527) (10.393) (12.743) (12.589) (10.843)

No. of European Suppliers -8.405 -4.333 -8.691 -12.427 -10.781
(11.597) (13.029) (15.701) (14.509) (12.340)

No. of Non-European Suppliers -1.573 8.878 4.454 18.950 21.231
(32.001) (29.425) (31.672) (28.831) (24.598)

Observations 690(L) 733(R) 1315(L) 1584(R) 1315(L) 2406(R) 1315(L) 3074(R) 1315(L) 4111(R)

European Customers 0.032 -0.097 -0.079 -0.279 -0.248
(Share in Customers) (0.194) (0.227) (0.265) (0.239) (0.196)

Observations 596(L) 584(R) 1090(L) 1317(R) 1090(L) 2026(R) 1090(L) 2614(R) 1090(L) 3471(R)

European Suppliers -0.145 -0.207 -0.213 -0.419** -0.377**
(Share in Suppliers) (0.137) (0.179) (0.218) (0.192) (0.152)

Observations 643(L) 651(R) 1226(L) 1433(R) 1226(L) 2192(R) 1226(L) 2807(R) 1226(L) 3748(R)

Polynomial 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular
Bandwidth Type Manual Manual Manual Manual Manual

* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A.2.3: Impact of EU ETS on Major Outcomes

± 2 ± 4.2 [-4.2, 7] [-4.2, 10] [-4.2, 15]

No. of Technological Links -11.805 -1.361 -6.111 -0.874 -1.634
(14.906) (13.868) (16.962) (16.477) (13.812)

Technological Links (Share) -0.085 -0.065 -0.063 0.022 0.037
(0.077) (0.079) (0.098) (0.095) (0.079)

No. of Added Technological Links -2.811 -0.676 -1.176 -0.050 0.491
(2.900) (2.783) (3.693) (3.694) (3.188)

No. of Dropped Technological Links -1.148 -0.125 -1.090 -0.576 -0.680
(1.724) (1.646) (2.074) (2.013) (1.665)

No. of License-To Links -1.485 -0.415 -1.516 1.961 2.558
(1.504) (1.682) (2.917) (2.949) (2.421)

No. of License-From Links -2.584 1.748 0.881 3.975 2.651
(1.692) (2.646) (4.005) (3.683) (2.735)

Observations 691(L) 733(R) 1316(L) 1584(R) 1316(L) 2406(R) 1316(L) 3074(R) 1316(L) 4111(R)

License-To Links 0.014 -0.022 -0.082 0.038 0.036
(Share in Tech) (0.181) (0.197) (0.237) (0.204) (0.162)

License-From Links 0.016 0.253 0.446 0.609** 0.478***
(Share in Tech) (0.289) (0.353) (0.344) (0.250) (0.168)

Observations 491(L) 503(R) 907(L) 1124(R) 907(L) 1716(R) 907(L) 2220(R) 907(L) 2962(R)

Polynomial 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular
Bandwidth Type Manual Manual Manual Manual Manual

* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.2.4: Impact of EU ETS on Major Outcomes (Phase 1)

± 2 ± 4.2 [-4.2, 7] [-4.2, 10] [-4.2, 15]

Scope 1 (Absolute) -0.774 0.529 0.430 0.111 -0.125
(0.743) (0.832) (1.046) (0.973) (0.815)

Scope 1 (Intensity) -0.831 -0.716 -2.061 -3.129** -2.724**
(1.321) (1.517) (1.633) (1.404) (1.109)

Scope 2 (Absolute) 0.366 1.015 0.897 2.274** 2.171**
(0.667) (0.797) (1.107) (1.078) (0.950)

Scope 1 & 2 (Absolute) -0.433 0.573 0.448 0.617 0.599
(0.682) (0.692) (0.854) (0.816) (0.715)

Scope 1 & 2 (Intensity) -0.491 -0.423 -1.480 -2.139 -1.713*
(1.251) (1.446) (1.520) (1.309) (1.039)

Revenue 0.058 1.245 2.491 3.240** 2.599**
(1.431) (1.502) (1.621) (1.465) (1.215)

Net Income -0.075 -0.047 -0.008 -0.006 -0.027
(0.056) (0.087) (0.102) (0.093) (0.077)

Capital Expenditure -0.700 0.429 1.393 1.925 1.320
(2.289) (2.239) (2.325) (1.966) (1.549)

Observations 198(L) 210(R) 414(L) 441(R) 414(L) 687(R) 414(L) 894(R) 414(L) 1197(R)
Polynomial 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular
Bandwidth Type Manual Manual Manual Manual Manual

* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A.2.4: Impact of EU ETS on Major Outcomes (Phase 1)

± 2 ± 4.2 [-4.2, 7] [-4.2, 10] [-4.2, 15]

No. of European Firms -16.966* -7.891 -9.562 -11.446 -11.942*
(9.072) (7.618) (8.605) (7.888) (6.666)

No. of Non-European Firms -1.619 1.264 0.364 -0.198 -1.004
(7.195) (6.659) (7.670) (7.202) (6.278)

European Firms (Share) -0.622** -0.456* -0.607* -0.845*** -0.821***
(0.249) (0.275) (0.338) (0.308) (0.252)

No. of European Customers 2.435 1.315 1.259 1.478 1.347
(1.984) (2.072) (2.375) (2.394) (2.177)

No. of Non-European Customers 8.071 6.364 8.736 11.820* 10.475*
(5.294) (5.438) (6.705) (6.903) (6.205)

No. of European Suppliers -6.158 -2.351 -2.610 -3.272 -3.696
(5.225) (4.356) (4.857) (4.231) (3.454)

No. of Non-European Suppliers 12.224 18.794 20.172 35.591 30.884*
(27.686) (25.574) (26.864) (22.335) (17.284)

Observations 87(L) 80(R) 162(L) 184(R) 162(L) 278(R) 162(L) 361(R) 162(L) 481(R)

European Customers 0.194 -0.003 -0.070 -0.104 -0.043
(Share in Customers) (0.381) (0.387) (0.414) (0.361) (0.307)

Observations 68(L) 66(R) 112(L) 149(R) 112(L) 228(R) 112(L) 296(R) 112(L) 383(R)

European Suppliers -0.551** -0.392 -0.499 -0.708*** -0.662***
(Share in Suppliers) (0.276) (0.278) (0.321) (0.252) (0.187)

Observations 84(L) 74(R) 154(L) 170(R) 154(L) 260(R) 154(L) 338(R) 154(L) 440(R)

Polynomial 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular
Bandwidth Type Manual Manual Manual Manual Manual

* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.2.4: Impact of EU ETS on Major Outcomes (Phase 1)

± 2 ± 4.2 [-4.2, 7] [-4.2, 10] [-4.2, 15]

No. of Technological Links -11.322 0.034 2.236 10.589 6.676
(7.245) (7.807) (12.108) (11.625) (9.707)

Technological Links (Share) -0.139 -0.098 -0.020 0.121 0.124
(0.110) (0.154) (0.203) (0.187) (0.157)

No. of Added Technological Links -2.666** -0.145 0.340 1.833 1.611
(1.216) (1.595) (2.387) (2.224) (1.789)

No. of Dropped Technological Links -1.062 0.242 0.526 2.087 1.249
(1.097) (1.261) (1.834) (1.652) (1.330)

No. of License-To Links -0.903 1.143 0.721 2.519 1.845
(1.589) (1.643) (2.656) (2.507) (2.056)

No. of License-From Links -4.162 1.497 1.366 4.327 1.299
(2.580) (3.514) (4.994) (4.502) (3.728)

Observations 87(L) 80(R) 162(L) 184(R) 162(L) 278(R) 162(L) 361(R) 162(L) 481(R)

License-To Links 0.496 0.512 0.433 0.616 0.450
(Share in Tech) (0.601) (0.587) (0.628) (0.387) (0.288)

License-From Links -0.391 0.345 0.926 0.874 0.529
(Share in Tech) (1.025) (1.312) (1.081) (0.659) (0.473)

Observations 42(L) 49(R) 77(L) 107(R) 77(L) 161(R) 77(L) 221(R) 77(L) 292(R)

Polynomial 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular
Bandwidth Type Manual Manual Manual Manual Manual

* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A.2.5: Impact of EU ETS on Major Outcomes (Phase 2)

± 2 ± 4.2 [-4.2, 7] [-4.2, 10] [-4.2, 15]

Scope 1 (Absolute) -0.931 0.588 0.404 0.163 -0.104
(0.827) (0.879) (1.076) (1.008) (0.844)

Scope 1 (Intensity) -0.823 -0.373 -1.849 -2.887** -2.652***
(1.019) (1.364) (1.494) (1.296) (1.019)

Scope 2 (Absolute) 0.759 1.622** 1.453 3.088*** 2.961***
(0.703) (0.768) (1.127) (1.084) (0.931)

Scope 1 & 2 (Absolute) -0.406 0.933 0.764 1.084 0.983
(0.716) (0.697) (0.868) (0.842) (0.739)

Scope 1 & 2 (Intensity) -0.298 0.168 -1.025 -1.608 -1.338
(0.971) (1.308) (1.402) (1.219) (0.966)

Revenue -0.108 0.961 2.252 3.050** 2.548**
(1.337) (1.436) (1.592) (1.455) (1.211)

Net Income -0.032 -0.014 0.005 0.013 -0.007
(0.040) (0.064) (0.076) (0.070) (0.059)

Capital Expenditure -1.399 -0.030 0.610 1.362 0.953
(1.907) (1.820) (2.041) (1.833) (1.493)

Observations 330(L) 350(R) 688(L) 735(R) 688(L) 1145(R) 688(L) 1490(R) 688(L) 1995(R)
Polynomial 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular
Bandwidth Type Manual Manual Manual Manual Manual

* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.2.5: Impact of EU ETS on Major Outcomes (Phase 2)

± 2 ± 4.2 [-4.2, 7] [-4.2, 10] [-4.2, 15]

No. of European Firms -13.127 -10.050 -13.889 -21.945* -23.300**
(11.848) (11.689) (13.358) (12.010) (9.496)

No. of Non-European Firms 1.438 0.638 -3.079 -9.892 -12.365
(10.310) (11.596) (13.574) (12.558) (10.302)

European Firms (Share) -0.418** -0.398* -0.527** -0.827*** -0.834***
(0.179) (0.211) (0.267) (0.244) (0.186)

No. of European Customers 3.013* 2.848 3.072 3.511 3.274*
(1.577) (1.894) (2.271) (2.277) (1.988)

No. of Non-European Customers 8.032 4.449 6.846 11.043 11.127
(8.071) (7.166) (8.086) (7.939) (6.869)

No. of European Suppliers -3.795 -1.856 -3.475 -6.631 -7.419
(5.632) (5.866) (6.894) (6.153) (5.091)

No. of Non-European Suppliers 12.458 14.860 15.216 21.650 17.434
(28.214) (24.405) (24.371) (21.090) (17.205)

Observations 192(L) 197(R) 354(L) 437(R) 354(L) 664(R) 354(L) 844(R) 354(L) 1128(R)

European Customers 0.109 0.124 0.118 -0.081 -0.083
(Share in Customers) (0.207) (0.249) (0.300) (0.265) (0.223)

Observations 148(L) 147(R) 260(L) 337(R) 260(L) 512(R) 260(L) 663(R) 260(L) 879(R)

European Suppliers -0.169 -0.227 -0.314 -0.546** -0.515***
(Share in Suppliers) (0.174) (0.216) (0.256) (0.221) (0.170)

Observations 169(L) 175(R) 321(L) 397(R) 321(L) 598(R) 321(L) 764(R) 321(L) 1019(R)

Polynomial 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular
Bandwidth Type Manual Manual Manual Manual Manual

* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A.2.5: Impact of EU ETS on Major Outcomes (Phase 2)

± 2 ± 4.2 [-4.2, 7] [-4.2, 10] [-4.2, 15]

No. of Technological Links -11.599* -1.984 -2.426 2.959 -0.254
(6.963) (6.500) (9.343) (9.156) (7.605)

Technological Links (%) -0.180* -0.138 -0.109 -0.022 -0.021
(0.099) (0.108) (0.137) (0.133) (0.114)

No. of Added Technological Links -1.858 -0.794 -0.896 -0.002 -0.205
(1.473) (1.299) (1.639) (1.592) (1.346)

No. of Dropped Technological Links -1.197 -0.294 -0.172 0.666 0.639
(0.738) (0.709) (1.127) (1.128) (0.919)

No. of License-To Links -1.894 -0.253 -0.842 0.839 0.728
(1.607) (1.375) (2.311) (2.300) (1.881)

No. of License-From Links -3.053 2.150 2.091 4.854 2.093
(1.983) (3.105) (4.521) (4.102) (3.230)

Observations 192(L) 197(R) 354(L) 437(R) 354(L) 664(R) 354(L) 844(R) 354(L) 1128(R)

License-To Links -0.200 -0.368 -0.539 -0.309 -0.199
(% Tech) (0.391) (0.333) (0.365) (0.329) (0.273)

License-From Links 0.228 0.655 1.054 1.270*** 0.894***
(% Tech) (0.662) (0.778) (0.730) (0.449) (0.282)

Observations 121(L) 119(R) 209(L) 271(R) 209(L) 408(R) 209(L) 536(R) 209(L) 713(R)

Polynomial 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular
Bandwidth Type Manual Manual Manual Manual Manual

* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.2.6: Impact of EU ETS on Major Outcomes (Phase 3)

± 2 ± 4.2 [-4.2, 7] [-4.2, 10] [-4.2, 15]

Scope 1 (Absolute) -0.954 0.538 0.181 -0.039 -0.419
(0.753) (0.824) (1.018) (0.974) (0.817)

Scope 1 (Intensity) -0.646 -0.521 -2.160 -3.141** -3.092***
(1.053) (1.424) (1.535) (1.343) (1.059)

Scope 2 (Absolute) 0.773 1.499* 1.288 3.649*** 3.756***
(0.769) (0.834) (1.317) (1.227) (0.977)

Scope 1 & 2 (Absolute) -0.432 0.951 0.774 1.398* 1.275*
(0.676) (0.665) (0.848) (0.833) (0.729)

Scope 1 & 2 (Intensity) -0.124 0.056 -1.248 -1.498 -1.276
(1.007) (1.323) (1.366) (1.197) (0.967)

Revenue -0.308 1.059 2.342 3.103** 2.673**
(1.368) (1.462) (1.596) (1.454) (1.210)

Net Income 0.116 0.115 0.148 0.185 0.160
(0.093) (0.133) (0.153) (0.144) (0.123)

Capital Expenditure -1.290 -0.217 0.540 1.472 1.211
(1.762) (1.656) (1.833) (1.667) (1.391)

Observations 530(L) 561(R) 1108(L) 1177(R) 1108(L) 1834(R) 1108(L) 2386(R) 1108(L) 3196(R)
Polynomial 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular
Bandwidth Type Manual Manual Manual Manual Manual

* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A.2.6: Impact of EU ETS on Major Outcomes (Phase 3)

± 2 ± 4.2 [-4.2, 7] [-4.2, 10] [-4.2, 15]

No. of European Firms -14.096 -25.364 -30.445 -57.177 -53.428*
(32.160) (34.683) (41.815) (38.809) (30.909)

No. of Non-European Firms 1.763 -10.233 -15.395 -40.353 -39.899
(31.726) (35.899) (43.025) (40.012) (31.783)

European Firms (Share) -0.294 -0.463** -0.399 -0.692*** -0.639***
(0.201) (0.224) (0.275) (0.253) (0.196)

No. of European Customers 14.196* 6.539 8.808 6.227 9.485
(8.045) (7.996) (8.861) (8.317) (6.637)

No. of Non-European Customers 15.621 14.730 12.130 18.776 24.323
(14.433) (15.080) (18.424) (18.144) (15.165)

No. of European Suppliers -10.940 -6.275 -12.301 -16.395 -12.971
(17.723) (19.548) (23.359) (21.803) (18.414)

No. of Non-European Suppliers -12.199 3.121 -3.654 15.412 22.666
(36.761) (34.915) (38.989) (36.552) (31.527)

Observations 412(L) 456(R) 800(L) 963(R) 800(L) 1464(R) 800(L) 1869(R) 800(L) 2502(R)

European Customers -0.041 -0.210 -0.160 -0.373 -0.354*
(Share in Customers) (0.210) (0.250) (0.288) (0.265) (0.213)

Observations 380(L) 371(R) 718(L) 831(R) 718(L) 1286(R) 718(L) 1655(R) 718(L) 2209(R)

European Suppliers -0.019 -0.146 -0.107 -0.309 -0.273
(Share in Suppliers) (0.196) (0.221) (0.264) (0.244) (0.200)

Observations 390(L) 402(R) 751(L) 866(R) 751(L) 1334(R) 751(L) 1705(R) 751(L) 2289(R)

Polynomial 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular
Bandwidth Type Manual Manual Manual Manual Manual

* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.2.6: Impact of EU ETS on Major Outcomes (Phase 3)

± 2 ± 4.2 [-4.2, 7] [-4.2, 10] [-4.2, 15]

No. of Technological Links -12.938 -1.543 -8.842 -4.926 -4.221
(23.724) (22.255) (26.501) (25.736) (21.323)

Technological Links (Share) -0.025 -0.020 -0.041 0.025 0.043
(0.094) (0.091) (0.106) (0.102) (0.084)

No. of Added Technological Links -3.417 -0.710 -1.427 -0.346 0.627
(4.588) (4.429) (5.879) (5.928) (5.046)

No. of Dropped Technological Links -1.302 -0.218 -1.760 -1.741 -1.764
(2.819) (2.700) (3.263) (3.140) (2.561)

No. of License-To Links -1.423 -0.857 -2.425 2.395 3.763
(1.833) (2.170) (3.694) (3.782) (3.095)

No. of License-From Links -1.981 1.615 0.244 3.442 3.189
(1.508) (2.390) (3.685) (3.427) (2.445)

Observations 412(L) 456(R) 800(L) 963(R) 800(L) 1464(R) 800(L) 1869(R) 800(L) 2502(R)

License-To Links 0.042 0.037 0.031 0.111 0.077
(Share in Tech) (0.220) (0.226) (0.244) (0.209) (0.160)

License-From Links -0.032 0.072 0.200 0.356* 0.327***
(Share in Tech) (0.129) (0.203) (0.220) (0.182) (0.127)

Observations 328(L) 335(R) 621(L) 746(R) 621(L) 1147(R) 621(L) 1463(R) 621(L) 1957(R)

Polynomial 1 1 1 1 1
Kernel Triangular Triangular Triangular Triangular Triangular
Bandwidth Type Manual Manual Manual Manual Manual

* p < 0.1, ** p < 0.05, *** p < 0.01
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A.3 Appendix 1.C

Table A.3.7: Impact of Regulation Stringency on GHG Emissions

Dependent Variables: Scope1 (abs) Scope1 (int) Scope2 (abs) Scope 1&2 (abs) Scope 1&2 (int)
Model: (1) (2) (3) (4) (5)

Variables
∆Stringency × Y ear = 2013 -0.0020 -0.0037 -0.0190∗∗ 0.0019 0.0003

(0.0024) (0.0025) (0.0081) (0.0025) (0.0026)
∆Stringency × Y ear = 2014 -0.0150∗∗∗ -0.0235∗∗∗ 0.0995∗∗∗ -0.0111∗∗∗ -0.0196∗∗∗

(0.0026) (0.0025) (0.0090) (0.0027) (0.0025)
∆Stringency × Y ear = 2015 -0.0196∗∗∗ -0.0397∗∗∗ 0.1140∗∗∗ -0.0181∗∗∗ -0.0382∗∗∗

(0.0025) (0.0031) (0.0141) (0.0026) (0.0032)
Verified Emissions (tCO2e) -0.0080 -0.0063 0.1114 -0.0031 -0.0014

(0.0173) (0.0162) (0.1482) (0.0161) (0.0154)
Regulated Plants (%) 0.0041 -0.0682 0.1060 0.0537 -0.0186

(0.0675) (0.0484) (0.0842) (0.0582) (0.0408)
∆ No. of Regulated Plants -0.0235 -0.0249 0.0119 -0.0264 -0.0278

(0.0295) (0.0289) (0.0322) (0.0280) (0.0276)
Disclosure 0.0806 0.0586 0.1073∗∗ 0.0470 0.0250

(0.0941) (0.0932) (0.0483) (0.0692) (0.0681)
Total Assets ($M) 0.1859∗∗∗ -0.2301∗∗ -1.978∗∗∗ 0.1320∗∗ -0.2839∗∗∗

(0.0569) (0.0931) (0.4966) (0.0539) (0.0985)
Debt to Equity -0.0124∗ -0.0157∗∗∗ 0.0217∗∗∗ 0.0003 -0.0030

(0.0068) (0.0047) (0.0057) (0.0076) (0.0059)
ln Output Capacity (MWe) 2.178∗∗∗ 0.1227 2.350∗∗∗ 2.171∗∗∗ 0.1157

(0.3228) (0.1326) (0.3033) (0.3215) (0.1072)

Fixed-effects
Firm Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes

Fit statistics
Observations 2,345 2,345 2,345 2,345 2,345
R2 0.98914 0.98021 0.98483 0.99133 0.97801
Within R2 0.08345 0.02855 0.23102 0.08875 0.02650

Clustered (Firm) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table presents the DID estimates of the impacts of the regulatory stringency change on firms’ GHG
emissions in logarithmic scale. The unit of all pre-scaled absolute amount of emissions is tonnes of carbon
dioxide equivalent, or tCO2e; while the unit of the corresponding carbon intensity is tCO2e/US$mnRevenues,
i.e. calculated as dividing the absolute amount of emissions by a firm’s annual consolidated revenues in millions
of US dollars. All explanatory variables are standardized. The units presented for some variables are those
before standardization.
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Table A.3.8: Impact of Regulation Stringency on Financials

Dependent Variables: Revenue Net Income Capital Expenditure
Model: (1) (2) (3)

Variables
∆Stringency × Y ear = 2013 0.0006 0.0023 -0.0029

(0.0007) (0.0044) (0.0018)
∆Stringency × Y ear = 2014 0.0032∗∗∗ 0.0022 0.0066

(0.0005) (0.0032) (0.0056)
∆Stringency × Y ear = 2015 0.0076∗∗∗ 0.0140∗∗ -0.1519∗∗∗

(0.0011) (0.0059) (0.0148)
Verified Emissions (tCO2e) -0.0007 0.1422∗ 0.2164∗∗∗

(0.0028) (0.0849) (0.0787)
Regulated Plants (%) 0.0273 0.0444 0.0272

(0.0200) (0.0329) (0.0349)
∆ No. of Regulated Plants 0.0005 1.64× 10−5 0.0039

(0.0019) (0.0182) (0.0062)
Disclosure 0.0083∗∗∗ 0.0009 0.0114∗∗

(0.0015) (0.0060) (0.0056)
Total Assets ($M) 0.1572∗∗∗ 0.1052 0.0854∗

(0.0445) (0.1642) (0.0454)
Debt to Equity 0.0012 -0.0034 0.0008

(0.0013) (0.0053) (0.0059)
ln Output Capacity (MWe) 0.7767∗∗∗ -0.1006 0.6816∗∗∗

(0.1356) (0.1118) (0.1647)

Fixed-effects
Firm Yes Yes Yes
Year Yes Yes Yes

Fit statistics
Observations 2,345 2,345 2,345
R2 0.99827 0.76929 0.98721
Within R2 0.27525 0.00384 0.59050

Clustered (Firm) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table presents the DID estimates of the impacts of regulation stringency on firms’ financial
performance in logarithmic scale. The unit of all pre-scaled value is millions of US dollars. All variables,
including dependent variables are standardized. The units presented for some variables are those before
standardization.
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Table A.3.9: Impact of Regulation Stringency on Firm Supply Chains

Dependent Variables:
No. of European

Firms

European
Firms
(Share)

No. of European
Customers

European
Customers (Share
in Customers)

No. of European
Suppliers

European
Suppliers (Share in

Suppliers)
Model: (1) (2) (3) (4) (5) (6)

Variables
∆Stringency × Y ear = 2013 0.3530∗∗∗ -0.0043∗∗∗ 0.3704∗∗∗ 0.0150∗∗∗ 0.1611∗∗∗ -0.0058∗∗∗

(0.0573) (0.0012) (0.0356) (0.0014) (0.0596) (0.0014)
∆Stringency × Y ear = 2014 0.0155 -0.0125∗∗∗ 0.0205 0.0111∗∗∗ 0.6148∗∗∗ -0.0115∗∗∗

(0.0505) (0.0011) (0.0327) (0.0013) (0.0680) (0.0014)
∆Stringency × Y ear = 2015 0.2875∗∗∗ -0.0099∗∗∗ -0.0929∗∗ 0.0035∗∗ 1.221∗∗∗ -0.0077∗∗∗

(0.0517) (0.0012) (0.0429) (0.0018) (0.0759) (0.0014)
Verified Emissions (tCO2e) 0.3695 0.0075 0.2133 0.0056 0.0141 0.0035

(0.5041) (0.0102) (0.2948) (0.0124) (0.5593) (0.0084)
Regulated Plants (%) -1.669 -0.0044 -0.3406 -0.0014 -1.310 -0.0070

(1.377) (0.0150) (0.5989) (0.0217) (0.9756) (0.0205)
∆ No. of Regulated Plants 0.1843 0.0007 0.1902∗ 0.0063 -0.0385 -0.0076

(0.2520) (0.0034) (0.1116) (0.0054) (0.1508) (0.0082)
Disclosure -0.5918∗∗ -0.0003 -0.5083∗∗∗ -0.0020 -0.2897∗∗∗ -0.0139∗∗

(0.2421) (0.0025) (0.1079) (0.0052) (0.0512) (0.0062)
Total Assets ($M) -12.54∗∗∗ 0.0687∗∗∗ -1.202 0.0299 4.182∗ 0.1044∗∗∗

(1.714) (0.0239) (1.101) (0.0294) (2.176) (0.0301)
Debt to Equity 0.0882 -0.0018 0.1439∗∗∗ 0.0050 -0.0632 -0.0052

(0.0778) (0.0033) (0.0499) (0.0033) (0.0631) (0.0041)
ln Output Capacity (MWe) 2.757 0.0664 -0.6823 0.0524 2.331 0.0376

(3.231) (0.0791) (1.788) (0.1161) (1.628) (0.0521)
Number of Links 29.38∗∗∗ -0.0263∗∗ 3.677∗∗∗ -0.0315∗∗∗ 20.23∗∗∗ -0.0433∗∗∗

(0.7681) (0.0107) (0.4644) (0.0103) (0.5622) (0.0130)

Fixed-effects
Firm Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 2,169 2,169 2,169 2,015 2,169 2,122
R2 0.99250 0.89874 0.86795 0.90703 0.98956 0.86857
Within R2 0.82046 0.03519 0.11366 0.02697 0.72612 0.05003

Clustered (Firm) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table presents the DID estimates of the impacts of regulation stringency on the geographic distri-
bution of regulated firms’ supply chains. All explanatory variables are standardized. The units presented for
some variables are those before standardization.
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Table A.3.10: Impact of Regulation Stringency on Technological Network (1)

Dependent Variables:
No. of Technology

Links
Technology Links

(Share)
No. of Added

Technology Links
No. of Dropped
Technology Links

Model: (1) (2) (3) (4)

Variables
∆Stringency × Y ear = 2013 0.7498∗∗∗ 0.0046∗∗∗ 0.7210∗∗∗ 0.4665∗∗∗

(0.1587) (0.0015) (0.0644) (0.0383)
∆Stringency × Y ear = 2014 0.0480 0.0004 -0.2897∗∗∗ 0.1719∗∗∗

(0.0934) (0.0012) (0.0616) (0.0195)
∆Stringency × Y ear = 2015 -0.3010∗ -0.0007 0.2152∗∗∗ 0.7876∗∗∗

(0.1616) (0.0013) (0.0541) (0.0276)
Verified Emissions (tCO2e) 0.7986 0.0040 -0.2126 0.4192

(0.6699) (0.0060) (0.6354) (0.5373)
Regulated Plants (%) -3.299 -0.0100 -1.317∗ 0.0632

(2.770) (0.0140) (0.7533) (0.3531)
∆ No. of Regulated Plants -0.0533 0.0005 0.1268 0.0708

(0.5551) (0.0028) (0.1194) (0.0448)
Disclosure -0.0132 -0.0029 -0.0051 -0.0059

(0.2652) (0.0058) (0.1006) (0.0362)
Total Assets ($M) -27.68∗∗∗ -0.2297∗∗∗ -5.436∗∗∗ -0.5094

(8.278) (0.0617) (1.770) (0.4064)
Debt to Equity 0.1467 0.0006 0.0503 0.0104

(0.0959) (0.0025) (0.0651) (0.0326)
ln Output Capacity (MWe) -0.3375 0.0121 -2.573∗ 0.7419

(2.110) (0.0326) (1.500) (0.5964)
Number of Links 34.43∗∗∗ 0.0771∗∗∗ 8.227∗∗∗ 2.911∗∗∗

(2.339) (0.0087) (0.4667) (0.2972)

Fixed-effects
Firm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 2,169 2,169 2,169 2,169
R2 0.94925 0.83598 0.70416 0.76263
Within R2 0.68136 0.15818 0.26165 0.26795

Clustered (Firm) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table provides the DID estimates of how regulatory stringency affects the technological connections
of regulated firms. All explanatory variables in the analysis are standardized. Part (1) of the table displays an
aggregation of all types of technological connections a firm maintains, encompassing three categories: License-
To, License-From, and technology collaboration partnerships.
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Table A.3.10: Impact of Regulation Stringency on Technological Network (2)

Dependent Variables:
No. of License-To

Links
No. of License-From

Links
License-To Links
(Share in Tech)

License-From Links
(Share in Tech)

No. of Research
Collaboration

Model: (1) (2) (3) (4) (5)

Variables
∆Stringency × Y ear = 2013 -0.1058∗∗∗ 0.0009 0.0122 -0.0013 0.8430∗∗∗

(0.0209) (0.0010) (0.0204) (0.0009) (0.1659)
∆Stringency × Y ear = 2014 -0.1632∗∗∗ -0.0016 0.1282∗∗∗ 0.0049∗∗∗ 0.0807

(0.0194) (0.0010) (0.0185) (0.0007) (0.0942)
∆Stringency × Y ear = 2015 -0.0838∗∗∗ 0.0013 0.1246∗∗∗ 0.0050∗∗∗ -0.3431∗∗

(0.0176) (0.0013) (0.0172) (0.0007) (0.1716)
Verified Emissions (tCO2e) 0.0834 -0.0040 0.0932 -0.0038 0.6209

(0.1170) (0.0030) (0.1034) (0.0053) (0.5591)
Regulated Plants (%) 0.5380∗∗ 0.0256∗∗ -0.0071 -0.0166 -3.836

(0.2698) (0.0123) (0.2050) (0.0173) (2.790)
∆ No. of Regulated Plants 0.1233 0.0003 0.1252 0.0031∗∗∗ -0.3895

(0.1102) (0.0007) (0.0834) (0.0012) (0.4916)
Disclosure 0.0505 -0.0033 0.0294 0.0006 -0.0746

(0.0429) (0.0021) (0.0234) (0.0020) (0.2809)
Total Assets ($M) 2.847∗∗∗ 0.0229 0.3850 0.0169 -30.90∗∗∗

(0.5861) (0.0185) (0.2360) (0.0138) (8.875)
Debt to Equity -0.0101 -0.0027∗ 0.0039 0.0012 0.1526

(0.0130) (0.0016) (0.0077) (0.0009) (0.0998)
ln Output Capacity (MWe) 0.6572∗ 0.1672 0.3898 0.1485 -1.344

(0.3987) (0.1395) (0.2796) (0.1136) (2.129)
Number of Links 2.680∗∗∗ 0.0170 0.5953∗∗∗ -0.0231∗∗∗ 31.15∗∗∗

(0.3028) (0.0152) (0.1570) (0.0057) (2.557)

Fixed-effects
company std Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes

Fit statistics
Observations 2,169 1,883 2,169 1,883 2,169
R2 0.94963 0.83102 0.98724 0.92607 0.91268
Within R2 0.21807 0.01033 0.03759 0.04266 0.62844

Clustered (company std) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table provides the DID estimates of how regulatory stringency affects the technological connections
of regulated firms. All explanatory variables in the analysis are standardized. Part (2) of the table specifically
focuses on the results for License-To and License-From links. The units presented for some variables are those
before standardization.
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Table A.3.10: Impact of Regulation Stringency on Technological Network (3)

Dependent Variables:
No. of License-To

Regulated
License-To Regulated
(Share in License-To)

No. of License-From
Regulated

License-From
Regulated (Share in

License-From)
Model: (1) (2) (3) (4)

Variables
∆Stringency × Y ear = 2013 -0.0261∗∗ -0.3043∗∗∗ -0.0043 -0.0729

(0.0103) (0.0915) (0.0066) (0.1000)
∆Stringency × Y ear = 2014 -0.0332∗∗∗ -0.2634∗∗ -0.0035 -0.0658

(0.0083) (0.1197) (0.0056) (0.1059)
∆Stringency × Y ear = 2015 -0.0062 -0.0302 -0.0013 -0.0727

(0.0038) (0.0813) (0.0045) (0.0976)
Verified Emissions (tCO2e) 0.0728 0.2957∗∗ 0.0281 -0.0161

(0.0820) (0.1303) (0.0321) (0.0911)
Regulated Plants (%) 0.0552 0.0063 -0.1350 -0.0331

(0.1499) (0.0137) (0.1514) (0.0252)
∆ No. of Regulated Plants 0.0184 0.0135 0.0175 0.0082

(0.0147) (0.0087) (0.0161) (0.0089)
Disclosure -0.0061 0.0011 0.0086 -0.0156

(0.0058) (0.0052) (0.0119) (0.0126)
Total Assets ($M) 0.3380∗∗∗ -0.0173 0.0348 -0.6579∗∗∗

(0.1201) (0.0199) (0.0773) (0.2188)
Debt to Equity 0.0013 -0.0050 0.0002 -0.0038

(0.0032) (0.0076) (0.0015) (0.0029)
ln Output Capacity (MWe) -0.1070∗ -0.1776∗ -0.0367 -0.2094

(0.0621) (0.0917) (0.0728) (0.2788)
Number of Links 0.2858∗∗∗ 0.0603∗∗∗ 0.2408∗∗∗ 0.0284

(0.0669) (0.0133) (0.0409) (0.0232)

Fixed-effects
company std Yes Yes Yes Yes
year Yes Yes Yes Yes

Fit statistics
Observations 2,169 564 2,169 566
R2 0.86698 0.91271 0.90376 0.85753
Within R2 0.02916 0.09660 0.03245 0.05362

Clustered (company std) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table provides the DID estimates of how regulatory stringency affects the technological connections
of regulated firms. All explanatory variables in the analysis are standardized. Part (3) of the table shows
the results for License-To and License-From with firms that are also regulated. The units presented for some
variables are those before standardization.
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Appendix B

Appendix For Chapter 2

B.1 Appendix 2.A

Figure B.1.1: Example of the Input Page
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Table B.1.1: Inputs Used in Data Collection

Input Variables Questions Asked and Descriptions
Real Property Features

Address What’s the address of the home you’re insuring? UK address including door number and post code.

Property Type What kind of home do you want to insure? Ground floor flat, detached house, etc.

Self-Contained Is it self-contained (no shared rooms) with its own lockable entrance? Yes for all properties.

Year Built What year was your property built? The best estimate of the real property is entered.

Rooms
How many rooms does your property have? Real information about the number of bedrooms, living rooms,
bathrooms, and other rooms is entered based on floor plan.

Wall & Roof
What are the external walls and the roof made of? How much of the roof is flat? Answers based on
the best estimate of the real property.

Rebuild Cost
What would it cost to rebuild your property, excluding land value? Answers are adjusted based on the
automatic estimate given by comparethemarket.com.

Surroundings
Are there any trees taller than 10 metres (33ft) within 5 metres (17ft) of your property? Is your property
within 400 metres (0.25 mile) of water? Answers based on the best estimate.

Fixed Property-Related Inputs

Cover Type
What kind of home insurance policy you need? Choose from: buildings and contents cover, buildings cover,
and contents cover. Fixed value: buildings cover.

Start Date When, within 30 days, would you like your cover to start? Fixed value: fixed days from the data collection date.

Good State Is your property in a good state of repair? Fixed value: Yes.

Building Work Is your property undergoing any building work? Fixed value: No.

Smoke Detector Do you have working smoke detectors? Fixed value: Yes.

Business Use Do you or anyone living in your property use it for business purposes? Fixed value: No.

Listed Building Is your property a listed building? Fixed value: No.

History
Has your property ever been flooded? Has your property ever had cracks on its external walls? Has your
property ever had any underpinning or structural support? Has your flat ever suffered from subsidence or
ground movement? Fixed value: No.

Varying Policy Choice Inputs

Add On Would you like to add Accidental Damage, Home Emergency, Legal Assistance
or cover for Replacement Locks & Keys for your buildings?

Voluntary Excess
If you had to make a claim, what is the maximum voluntary excess (deductible) you’d like to pay? Fixed
value: £250.
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Table B.1.1: Inputs Used in Data Collection

Input Variables Questions Asked and Descriptions
Varying Policyholder-Related Inputs

Title Mr., Mrs., Ms., and Miss. An indicator for gender.

Names First name and Surname. A potential indicator for race.

Birthday Year, month and day. An indicator for age.

Marital
What is your marital status? Choices: Married, Civil partnered, Single, Common law partnered/cohabiting,
Divorced/dissolved, Separated, and Widowed/surviving civil partner.

Employ
What is your employment status? Choices: Employed full-time, Employed part-time, Unemployed, Self-employed,
Houseperson, Full or part-time Education, Retired, Not employed due to disability/illness.

Job Title What is your job title? The list of occupations is provided by the Association of British Insurers (ABI).

Industry What industry do you work in? The list of occupations is provided by the ABI.
Varying Household-Related Inputs

Residents
Who lives in your property? Choices: Policyholder and family members, Policyholder only, Policyholder in a
a shared property, Policyholder and lodgers, Policyholder and students.

People How many people live in your property? Specify the number of adults and children, respectively.

Bankrupt Have you or anyone living in the property ever been declared bankrupt?

Recent Claims
Have you or anyone living in the property made any home insurance claims in the last 5 years? If Yes,
need to specify the reason, time, amount of claim, and in which property.

Year Lived How many years have you lived in your property? Calculated based on property transaction date.

Ownership
Do you own or rent your home? Since buildings cover can only be bought for owned properties, the
only two choices here is ”Mortgaged” or ”Owned”.

No Claims
For how many years have you continuously held buildings insurance without any claims? Choices range
from the minimum of ”None” to the maximum of ”9 years or more”.

Fixed Policyholder and Household-Related Inputs

Other Job Do you have another job or a part-time job too? Fixed value: No.

Other Holders Would you like to add anyone else as a policyholder? Fixed value: No.

Pets Do you have any cats or dogs living with you? Fixed value: No.

Smokers Does anyone living in the property smoke? Fixed value: No.

Empty Will your property be left empty for more than 30 consecutive days? Fixed value: No.

Main Home Is this property your main home? Fixed value: Permanent main residence.

Crime
Have you or anyone living in the property ever been convicted of, or is awaiting trial for, any crime
excluding motoring offences? Fixed value: No.

Refusal
Have you or anyone living in the property had home insurance refused, cancelled, declined or void or had
any conditions imposed? Fixed value: No.

Payment How do you usually pay for your home insurance? Fixed value: One annual payment.
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Figure B.1.2: Example of the Output Page
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Figure B.1.3: Example of the Output Page in Detail
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B.2 Appendix 2.B

Table B.2.1: Baseline Regression Results

Dependent Variable: Annual Price
Model: (1) (2) (3) (4) (5)

Variables
Total Excess -0.4458∗∗∗ -0.4628∗∗∗ -0.4642∗∗∗ -0.4730∗∗∗ -0.0491

(0.1162) (0.0394) (0.1232) (0.1307) (0.0995)
Accidental Damage Included 105.1∗∗∗ 69.98∗∗∗ 73.59∗∗∗ 53.57∗∗∗ 41.08∗∗∗

(22.73) (13.22) (17.91) (12.13) (9.821)
Legal Assistance Included -13.36 9.406 12.86 37.23∗∗∗ 41.19∗∗∗

(20.20) (10.56) (11.58) (8.681) (9.854)
Home Emergency Included 16.15 42.52∗∗∗ 42.53∗∗ 39.87∗∗∗ 35.50∗∗∗

(22.50) (13.70) (18.30) (7.033) (9.934)
Replace Lock & Key Included -138.5∗∗ -34.46 -38.51 -35.42 -35.71

(50.48) (42.58) (49.12) (38.79) (35.97)
Drains, Pipes and Cables Included -0.0081 94.36∗∗∗ 90.06∗∗∗ 86.13∗∗∗ 89.84∗∗∗

(18.52) (25.48) (31.32) (24.19) (32.75)

Fixed-effects
Date Yes Yes Yes Yes Yes
Policy Yes Yes
Property Yes
Policy-Property Yes Yes
Individual-Property Yes

Fit statistics
Observations 13,916 13,916 13,916 13,916 13,916
RMSE 189.35 164.33 160.64 113.12 101.10
Adjusted R2 0.48177 0.60718 0.62381 0.79070 0.82895
Within Adjusted R2 0.11347 0.12044 0.12671 0.21313 0.03417

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Figure B.2.1: Distribution of Price Dispersion

The figure plots the distribution of the log-scaled price dispersion across individuals. The blue
line is the distribution of the log standard deviation of the raw annual prices. The orange line
is the distribution of the log standard deviation of the residual prices from Annual.Priceipt =
γt + λh ∗ αp + βChoicesipt + ϵipt (detailed in column (4) Table B.2.1). The vertical lines represent
log of the average standard deviation, with the value equal to 5.074 for the blue line and 4.239 for
the orange line.

Variables Count Mean SD Min Median Max
Group of individuals by date, property, policy and policy choices
Observation-Level

Residual Price 12211 29.89 74.40 0.00 13.42 5014.87
Group-Level

Number of Individuals 2885 4.23 2.72 2.00 3.00 20.00
Average Annual Price 2885 409.09 244.52 69.07 339.85 2378.61
SD of Annual Price 2885 32.50 70.50 0.00 17.50 2803.78
CV of Annual Price 2885 0.08 0.09 0.00 0.05 1.40
Range of Annual Price 2885 71.63 168.44 0.00 33.94 6313.15
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B.3 Appendix 2.C

Table B.3.1: Pricing With Known Customer Preferences

Provider A Provider B

If cA < cB

Type 1 p1A = cB + νA − δ p1B = cB

Type 2 p2A = cB − δ p2B = cB

Both types buy from A and get Ui = ν − cB + δ

If cB + νA < cA

Type 1 p1A = cA p1B = cA − νA − δ

Type 2 p2A = cA p2B = cA − δ

Both types buy from B and get U1 = ν + νA − cA + δ

and U2 = ν − cA + δ, respectively.

If cB + νA = cA

Type 1 p1A = cA p1B = cA − νA

Type 1 randomly choose between provider A and B

and get U1 = ν + νA − cA

If cB < cA < cB + νA

Type 1 p1A = cB + νA − δ p1B = cB

Type 2 p2A = cA p2B = cA − δ

Type 1 buy from A and get U1 = ν − cB + δ

Type 2 buy from B and get U2 = ν − cA + δ

If cB = cA

Type 2 p2A = cA p2B = cB

Type 2 randomly choose between provider A and B

and get U2 = ν − cA = ν − cB
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Table B.3.2: Annual Price by Individual and Provider Characteristics - Breakdown

Dependent Variable: Annual Price
Model: (1) (2) (3)

Variables
Non-Insurance Focus 92.46 32.53 66.24∗∗

(66.68) (56.13) (29.38)
Non-Insurance Focus × Name Implied Race = Arab -176.4∗∗

(62.47)
Non-Insurance Focus × Name Implied Race = Asian 119.5

(71.56)
Non-Insurance Focus × Marital Status = Divorced -18.32

(17.58)
Non-Insurance Focus × Marital Status = Single -7.032

(94.22)
Non-Insurance Focus × Employment Status = Houseperson -26.56

(41.38)
Non-Insurance Focus × Employment Status = Not Employed 102.5

(68.02)
Non-Insurance Focus × Employment Status = Part-time 10.94

(34.71)
Non-Insurance Focus × Employment Status = Retired -58.31

(43.61)
Non-Insurance Focus × Employment Status = Self-employed -17.33

(30.66)
Non-Insurance Focus × Employment Status = Unemployed 115.2∗∗

(51.66)
Name Implied Race = Arab 49.00∗∗

(17.10)
Name Implied Race = Asian -28.52

(20.54)
Marital Status = Divorced 18.98

(10.97)
Marital Status = Single -3.508

(14.98)
Employment Status = Houseperson 0.6337

(13.00)
Employment Status = Not employed 8.005

(12.35)
Employment Status = Part-time -15.44

(12.39)
Employment Status = Retired 18.04

(14.59)
Employment Status = Self-employed 1.972

(8.421)
Employment Status = Unemployed 35.61

(24.76)

Fixed-effects
Matched Group Yes Yes Yes

Fit statistics
Observations 92 192 963
R2 0.22232 0.41332 0.68023
Within R2 0.14135 0.27823 0.15234

Clustered (group id) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Appendix C

Appendix For Chapter 3

C.1 Appendix 3.A

Table C.1.1: Corporate Green Bond Issuance by BNEF Rating

BNEF Rating
Number of
Issuers

Number of
Bonds

With External
Reviews

Amount Issued
($Billion)

A1 Main Driver 83 307 110 42.534
A2 Considerable 17 32 24 7.326
A3 Moderate 41 110 91 42.481
A4 Minor 333 1038 806 328.175
No Rating 605 1513 1190 295.443

Total* 1079 3000 2221 715.959

*As of May 26th, 2021

The Bloomberg New Energy Finance (BNEF) ‘clean energy exposure’ rating is an estimate of the
percent of an organisation’s value that is attributable to its activities in renewable energy, energy
smart technologies, carbon capture and storage (CCS) and carbon markets. A1 Main Driver are
those with 50 to 100% of their revenues (along with other available metrics such as EBITDA)
derived from clean energy related activities. A2 Considerable is for those with 25 to 49% of their
revenues derived from such activities. A3 Moderate and A4 Minor have 10 to 24% and less than
10% of their revenues derived from such activities, respectively. The rating is at the firm-level not
at the security-level, so the table above might count a firm multiple times in a year if that firm has
issued multiple bonds that year.
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Table C.1.2: Corporate Green Bond Issuance by Sub-Sector

Sector (BICS2*)
Number of
Issuers

Number of
Bonds

With External
Reviews

Amount Issued
($Billion)

Banks 207 731 619 194.646
Real Estate 204 600 486 94.153
Power Generation 125 335 233 78.628
Renewable Energy 59 294 103 20.835
Utilities 110 271 189 112.910
Consumer Finance 22 110 99 25.972
Industrial Other 41 90 67 13.477
Travel & Lodging 18 64 37 14.051
Financial Services 35 63 43 7.341
Diversified Banks 18 56 42 31.271
Transportation & Logistics 25 50 41 21.677
Commercial Finance 24 41 30 7.757
Automobiles Manufacturing 12 31 16 13.245
Waste & Environment Services & Equipment 19 29 25 5.967
Forest & Paper Products Manufacturing 10 28 25 6.563
Refining & Marketing 7 17 15 2.600
Chemicals 11 15 13 4.444
Life Insurance 11 15 13 7.334
Metals & Mining 9 15 9 2.950
Food & Beverage 12 13 11 3.703
Semiconductors 7 11 10 4.495
Hardware 4 10 9 2.467
Containers & Packaging 6 9 7 5.173
Electrical Equipment Manufacturing 8 9 5 1.770
Consumer Products 5 7 5 0.808
Auto Parts Manufacturing 5 6 2 2.159
Machinery Manufacturing 5 6 6 1.531
Supermarkets & Pharmacies 3 6 5 0.859
Wireline Telecommunications Services 6 6 6 3.538
Home Improvement 3 5 4 0.925
Homebuilders 5 5 4 0.498
Wireless Telecommunications Services 3 5 5 3.468
Communications Equipment 1 4 4 4.720
Health Care Facilities & Services 2 4 2 0.518
Railroad 2 4 3 1.591
Funds & Trusts 3 3 3 0.780
Integrated Oils 3 3 1 0.324
Property & Casualty Insurance 3 3 3 2.930
Retail - Consumer Discretionary 3 3 2 0.747
Apparel & Textile Products 2 2 2 0.646
Cable & Satellite 2 2 2 1.112
Construction Materials Manufacturing 2 2 2 0.496
Consumer Services 2 2 1 0.145
Educational Services 2 2 1 0.585
Entertainment Resources 2 2 1 0.142
Manufactured Goods 2 2 2 0.495
Software & Services 2 2 2 0.120
Airlines 1 1 1 0.089
Coal Operations 1 1 1 0.436
Department Stores 1 1 1 0.089
Internet Media 1 1 0 0.800
Managed Care 1 1 1 0.575
Medical Equipment & Devices Manufacturing 1 1 1 0.837
Retail - Consumer Staples 1 1 1 0.569

Total* 1079 3000 2221 715.959

*Bloomberg Industry Classification Systems Level 2

**As of May 25th, 2021
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Table C.1.3: Green Bond Issuer by Year and BNEF Rating

Year A1 Main Driver A2 Considerable A3 Moderate A4 Minor No Rating Total

2013 1 1 0 3 1 6
2014 8 3 2 12 9 34
2015 11 1 3 20 12 47
2016 12 0 3 33 37 85
2017 16 3 11 49 85 164
2018 15 2 7 73 128 225
2019 20 5 19 113 202 359
2020 23 3 10 135 209 380
2021* 19 6 16 88 172 301

Total* 125 24 71 526 855 1601

*As of May 26th, 2021

Table C.1.4: Corporate Green Bond Issuance by Region

Region
Number of
Bonds

With External
Reviews

Amount Issued
($Billion)

Eastern Asia 786 582 203.297
Western Europe 702 587 178.173
Northern Europe 629 562 94.323
Northern America 350 110 109.309
South-Eastern Asia 189 146 9.325
Southern Europe 133 108 68.780
Latin America & Caribbean 85 26 18.053
Southern Asia 40 28 11.993
Australia and New Zealand 32 29 9.169
Eastern Europe 25 20 7.735
Middle East & Africa 20 17 4.896
Other Asia 9 6 0.906

Total* 3000 2221 715.959

*As of May 26th, 2021
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Table C.1.5: Corporate Green Bond Issuance by Currency

Currency Number of Bonds With External Reviews Amount Issued ($Billion)

EUR 757 643 311.868
USD 582 278 185.191
SEK 379 343 31.465
CNY 373 276 111.070
JPY 170 143 14.245
MYR 134 101 1.244
NOK 89 83 7.207
BRL 70 22 2.254
TWD 52 41 4.282
GBP 49 40 12.072
KRW 47 21 3.944
HKD 36 18 3.181
CAD 35 27 9.466
INR 34 25 1.381
AUD 30 23 4.534
CHF 30 29 5.870
THB 26 20 1.714
TRY 25 22 0.358
ZAR 13 13 0.184
NZD 12 12 0.938
MXN 11 5 0.694
IDR 8 7 0.043
PLN 7 5 0.516
DKK 6 5 0.000
SGD 5 5 0.950
HUF 4 2 0.406
PHP 3 2 0.365
CZK 2 2 0.060
KES 2 2 0.065
NGN 2 1 0.065
RON 2 1 0.114
RUB 2 2 0.113
COP 1 1 0.066
NAD 1 0 0.005
PEN 1 1 0.030

Total* 3000 2221 715.959

*As of May 26th, 2021
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C.2 Appendix 3.B

Table C.2.6: List of Output Variables

ESG Variables Descriptions
ESG Score - An overall company score based on the self-reported

information in the environmental, social and corporate
governance pillars.

Environmental - Measures a company’s impact on living and non-living
Pillar Score natural systems, including the air, land and water, as well

as complete ecosystems.
Environmental Products -Does the company report on at least one product line or

service that is designed to have positive effects on the
environment or which is environmentally labeled and marketed?

Eco-Design Products - Does the company report on specific products which are
designed for reuse, recycling or the reduction of environmental impacts?

Renewable Energy Products - Does the company develop products or technologies for use in
the clean, renewable energy (such as wind, solar, hydro and
geo-thermal and biomass power)?

Sustainable Building - Does the company develop products and services that improve
Products the energy efficiency of buildings?

Scope 1 and 2 CO2 (MT) - Direct (scope1) + Indirect (scope 2) carbon dioxide (CO2)
and CO2 equivalents emission in million tonnes
Maximum payment of a policy when a claim is made

Scope 1 and 2 to Rev Total CO2 and CO2 equivalents emission in tonnes divided by
(T/M$) net sales or revenue in US dollars in million.

All Scope CO2 (MT) Total (Scope 1-3) CO2 equivalent emission in million tonnes.
All Scope to Rev (T/M$) Total (Scope 1-3) CO2 equivalent emission in tonnes divided by

net sales or revenue US dollars in million.
Environmental R&D Exp (M$) Total amount of environmental R&D costs (without clean up

and remediation costs).
Percentage of Green Percentage of green products or services as reported by the company.

Products green bonds, green loans, responsible environmental investing can
be considered for financial sector.

Environmental Controversies Number of controversies related to the environmental impact of the
company’s operations on natural resources or local communities since
the last fiscal year company update.

Environmental Asset Does the company report on assets under management which employ
Under Mgt environmental screening criteria or environmental factors in the

investment selection process? (relevant to asset management companies)
Environmental Project Does the company claim to evaluate projects on the basis of environmental

Financing or biodiversity risks as well? (relevant to the financial sector and focus
is on project financing data)

Fossil Fuel Divestment Does the financial company have a public commitment to divest
Policy from fossil fuel?
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C.3 Appendix 3.C

Table C.3.7: SA Index and Green Bond Issuance

Dependent Variable: SA Index

(1) (2)

Green Bond Issuer −2.054∗∗∗

(0.184)
Green Bond Issuer (Cast-Parent Level) −2.084∗∗∗

(0.176)

F Statistic 124.91∗∗∗ 140.34∗∗∗

Degree of Freedom (df1; df2) (1; 2253) (1; 2253)
Observations 27,202 27,202
R2 0.025 0.028
Adjusted R2 0.024 0.027

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table C.3.8: Environmental Pillar Score and Green Bond Issuance

Dependent Variable: Environmental Pillar Score

(1) (2) (3) (4)

GB Issuer 24.568∗∗∗

(1.549)
Issued the First GB 1.362 1.529 0.527

(1.321) (1.792) (5.999)
GB Issue Year −0.287

(1.354)
SA Index −4.129∗∗∗

(0.846)
Issued the First GB * SA Index −0.206

(1.953)

F Statistic 251.49∗∗∗ 1.0635 0.55735 7.9987∗∗∗

Degree of Freedom (df1; df2) (1; 8,560) (1; 8,560) (2; 8,560) (3; 2,230)
Number of Firm-Years 128,414 128,414 128,414 27,202
Number of Firms 8,561 8,561 8,561 2,254
Observations 60,422 60,422 60,422 15,344
R2 0.034 0.0001 0.0001 0.010
Adjusted R2 0.033 -0.165 -0.165 -0.160

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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C.4 Appendix 3.D

Figure C.4.1: T-Test Result for Pricing Premium (Within Three Quarters)
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Figure C.4.2: T-Test Result for Pricing Premium (Within Two Quarters)

Figure C.4.3: T-Test Result for Pricing Premium (Within One Quarter)
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Figure C.4.4: T-Test Result for Pricing Premium (Within One Month)

Table C.4.9: Pricing Premium by Sector (Within 2Qs)

BICS2 Count Mean Std.Err T.Value P.Value

Automobiles Manufacturing 11 0.102 0.110 0.935 0.372
Banks 77 0.027 0.064 0.428 0.670
Chemicals 1 0.100
Coal Operations 1 -0.830
Commercial Finance 10 0.139 0.115 1.217 0.254
Consumer Finance 8 -0.119 0.032 -3.704 0.008
Diversified Banks 1 -0.979
Financial Services 1 0.130
Food & Beverage 2 0.015 0.055 0.273 0.830
Hardware 1 0.010
Homebuilders 1 0.210
Industrial Other 4 0.080 0.084 0.955 0.410
Metals & Mining 1 0.490
Power Generation 15 0.094 0.060 1.576 0.137
Railroad 1 0.058
Real Estate 16 -0.015 0.060 -0.258 0.800
Refining & Marketing 2 -0.214 0.046 -4.591 0.137
Renewable Energy 6 -0.155 0.095 -1.635 0.163
Transportation & Logistics 2 0.282 0.201 1.397 0.396
Travel & Lodging 6 0.074 0.033 2.256 0.074
Utilities 15 0.036 0.033 1.118 0.283
Waste & Environment Services & Equipment 1 0.090
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Table C.4.10: Pricing Premium by Issue Year (Within 2Qs)

Issue Year Count Mean Std.Err T.Value P.Value

2013 2 -0.255 0.405 -0.630 0.642
2014 3 0.087 0.041 2.116 0.169
2015 5 -0.091 0.435 -0.209 0.845
2016 7 0.011 0.045 0.241 0.818
2017 16 -0.112 0.122 -0.913 0.376
2018 21 0.036 0.094 0.385 0.704
2019 31 -0.017 0.045 -0.370 0.714
2020 45 0.107 0.090 1.182 0.244
2021 53 0.039 0.023 1.708 0.094

Table C.4.11: Pricing Premium by Issuing Currency (Within 2Qs)

Currency Count Mean Std.Err T.Value P.Value

AUD 2 0.151 0.052 2.942 0.209
BRL 5 0.052 0.232 0.224 0.833
CHF 1 0.058
CNY 52 0.004 0.054 0.071 0.943
EUR 35 0.116 0.099 1.170 0.250
HKD 10 -0.034 0.074 -0.462 0.655
IDR 2 0.575 0.575 1.000 0.500
INR 9 -0.292 0.185 -1.582 0.152
JPY 19 0.056 0.025 2.280 0.035
KRW 19 -0.022 0.037 -0.605 0.553
MXN 1 0.150
NOK 1 0.100
SEK 2 -0.024 0.084 -0.281 0.825
TRY 3 -0.153 0.258 -0.595 0.612
TWD 13 0.025 0.027 0.908 0.382
USD 8 0.063 0.277 0.226 0.828
ZAR 1 0.410
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Table C.4.12: Pricing Premium by Issuer BNEF Rating (Within 2Qs)

BNEF Rating Count Mean Std.Err T.Value P.Value

A1 Main Driver 7 -0.036 0.070 -0.512 0.627
A2 Considerable 1 0.060
A3 Moderate 5 -0.124 0.097 -1.272 0.272
A4 Minor 103 0.033 0.049 0.676 0.501
No Rating 67 0.031 0.037 0.839 0.405
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