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Abstract

The thesis contains three chapters on financial contagion and instability. Chapter 1 is

devoted to a discussion of financial networks and systemic risk. I provide an overview of

the literature that emphasises various channels of shock propagation through network

connections, such as networks of contractual obligations or overlapping asset holdings.

Two topics are discussed: interconnectedness and liquidity. Chapter 2 is concerned

with post-trade netting in derivatives markets. We focus on two types of post-trade

risk reduction (PTRR) services that apply multilateral netting techniques: portfolio re-

balancing and portfolio compression. We first provide a mathematical characterisation

of their netting mechanisms and then analyse the effects from a network perspective by

considering contagion arising from defaults on variation margin payments. We provide

sufficient conditions for systemic risk reduction and illustrate that post-trade netting

can be harmful. We also explore the consequences when institutions strategically react

to liquidity stress by delaying their payments. Chapter 3 deals with financial vulner-

ability. I introduce an index that formulates financial vulnerability from a systemic

perspective. It is derived from a model that captures spillover losses in the system

caused by deleveraging and joint liquidation of illiquid assets. Using data on U.S.

banks around the Great Depression and the Global Financial Crisis, I show that the

index is easy to implement and can be used for monitoring financial instability, setting

the countercyclical capital buffer, and analysing historical banking crises.
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Chapter 1

Introduction

In this chapter, I provide an overview of research on financial networks and systemic

risk. I discuss two topics: interconnectedness and liquidity.

1.1 Interconnectedness

Most people use the word “systemic” to describe a catastrophic event. The financial

world is no exception. While no precise definition exists, the term “systemic risk” has

been used to represent many aspects of a crisis. Interconnectedness is one of them.

The International Monetary Fund (2009, p. 73) summarises the necessity of assessing

the systemic implications of financial linkages as follows:

While more extensive linkages contribute to economic growth by smoothing

credit allocations and allowing greater risk diversification, they also increase

the potential for disruptions to spread swiftly across markets and borders.

In addition, financial complexity has enabled risk transfers that were not

fully recognized by financial regulators or by institutions themselves, com-

plicating the assessment of counterparty risk, risk management, and policy
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responses.

Identifying important institutions and exposures is closely related to the abundant

academic research on measuring systemic risk. Conceptually, there are two broad cat-

egories of importance: systemicness and vulnerability. Measures have different math-

ematical forms, but both concepts are associated with characteristics such as size,

leverage, etc. A fundamental difference is that the former indicates the influence on

the rest of the network (contribution to extreme events), whereas the latter reflects the

influence by the rest of the network (participation in extreme events). See Bisias et al.

(2012) and Benoit et al. (2017) for comprehensive surveys.

The types of methodology depend, to some extent, on the availability of data.

Bisias et al. (2012, Section 4) discuss the data issues associated with systemic risk

measurement. Centrality measures in social network analysis are intuitive and easy to

interpret but need granular exposure data. Popular market-based measures have the

advantage of high frequency and public availability for a wide range of institutions. At

the same time, they can be noisy. Benoit et al. (2017, p. 134) comment in their survey

that market-based approaches can detect changes in market conditions in real time but

lack theoretical foundation because they “generally do not permit to clearly identify

the source of risk at play.” Nevertheless, those measures can be useful as a summary

statistic for empirical evaluation.

In short, any measure may be subject to criticism because it neglects the impli-

cations of some aspect of systemic risk, depending on the modellers’ presumptions

and toolkits. None of the proposed measures can be proved superior to all others be-

cause, understandably, no uniform criterion for comparison exists. From a practical

perspective, the appropriate choice should take into account the policy objective.

The topic of systemic risk measurement is closely related to the mathematical mod-

elling of financial contagion. This thesis builds on the abundant literature that em-

9



phasises various channels of shock propagation through network connections, such as

networks of contractual obligations or overlapping asset holdings (see Glasserman &

Young (2016) for a comprehensive review). A distinctive feature of financial network

models is that they incorporate a contagion mechanism to reflect real-world features.

In the case of interbank liabilities, this can manifest as the equilibrium characterisation

via a fixed-point problem which embeds various clearing rules.

Theoretical contributions concentrate on the relationship between network struc-

ture and the extent of loss propagation. The development of complicated models and

advanced techniques plays a crucial role in this area. The main message is that net-

work fragility is affected by interconnections, shocks, and other potential variables in

a nonlinear way. Empirical studies also attempt to understand the network origins

of instability. One way is to learn the network topology from data. Another way is

to estimate contagion by simulating hypothetical scenarios—for example, using stress

tests to investigate the effects of various contagion mechanisms. Upper (2011) sum-

marises the early contributions and provides some insightful comments from a policy

perspective. Borio et al. (2014) also provide an assessment of stress testing, with an

emphasis on how best to make it useful. Parenthetically, network analysis is only part

of the methodologies for macroprudential stress testing, which targets the entire finan-

cial system and its interactions with the real economy; see Aikman et al. (2023) for an

extensive survey.

1.2 Liquidity

Liquidity was at the heart of the Global Financial Crisis. Some observers interpret liq-

uidity as security. From a theoretical perspective, liquidity has many ramifications in

financial markets. The literature on understanding the causes and explaining the eco-
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nomic mechanisms underlying liquidity crises is voluminous (see Sufi & Taylor (2022)

for a review). One recurring theme is the “vicious spirals” between institutions and

asset values. Kindleberger (1978, p. 107), for example, notes that “[t]o the extent that

speculators are leveraged with borrowed money, the decline in price leads to further

calls on them for margin or cash, and to further liquidation.”

Substantial theories and empirical evidence in the academic literature enrich this de-

scription. Of particular importance is the financial accelerator hypothesis of Bernanke

& Gertler (1989). The basic story is that a drop in asset prices deteriorates the bal-

ance sheet condition of borrowers (or lenders), further pushing down asset prices due

to some economic constraints. Brunnermeier (2009) provides a clear interpretation of

the theoretical underpinnings of potential channels in the case of the Global Financial

Crisis.

Asset fire sales are a vivid example of the “illiquidity spirals.” When an institution,

say a bank, experiences a shock, its equity is eroded. To remain functioning, it may

be forced to deleverage by selling assets. Selling under pressure, however, can depress

asset prices because the potential buyers may have difficulty absorbing the sales, espe-

cially during the market meltdown. Because banks in the system that have incentives

for diversification invest in similar assets, the price impact of one bank’s selling affects

not only itself but also other banks with overlapping portfolios. Moreover, many dis-

tressed banks attempt to dump assets during the same period, further exacerbating

the spillover.

The phenomenon of fire sales draws much attention in the financial network litera-

ture, which uses a bipartite graph as the cornerstone for modelling such price-mediated

contagion. The economic constraints are essential to the model. In this regard, be-

havioural assumptions are made to capture realistic scenarios. Of course, the network

of overlapping portfolios and the network of contractual obligations can be treated
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simultaneously in a holistic fashion, as stress testing does. In a nutshell, network

models allow for treating the system as a whole and therefore can be useful from a

macroprudential perspective.

1.3 An integrated perspective

The two topics discussed so far have a long history in academic research. This is not

surprising. For example, Leontief (1936) pioneered the input-output models to analyse

the economic structure of the United States; in some sense, the literature on financial

contagion inherits his spirit. In the following, I briefly introduce the topics of this

thesis.

Chapter 2 analyses the implications of Post-trade Risk Reduction (PTRR) services

on systemic risk. These services use multilateral netting techniques to mitigate op-

erational and counterparty risks in derivatives markets, leading to a change in the

structure of contractual obligations. We model payment networks in the form of vari-

ation margin obligations, which should be fulfilled with highly liquid assets within a

short time. In this sense, we focus on illiquidity contagion due to margin calls in a

systemic context. Partly influenced by stress testing models, we also explore the im-

plications under the assumption that institutions strategically react to liquidity stress

by delaying their payments.

Chapter 3 introduces an index of financial vulnerability using a model of fire sales

in the banking system. The index is expressed in terms of the size-weighted leverage

and the illiquidity-weighted Herfindahl-Hirschman Index, making it easy to implement.

Keeping a systemic perspective, I aim to balance theoretical development and practical

applications while connecting measurement to instability monitoring, macroprudential

regulation, and historical banking crises.
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Chapter 2

Post-trade netting and contagion

2.1 Introduction

Recent regulatory reforms to enhance the resilience of over-the-counter (OTC) deriva-

tives markets have provided incentives for market participants to use post-trade risk

reduction (PTRR) services, which apply multilateral netting techniques to help miti-

gate risks and manage collateral obligations.1 PTRR services consist mainly of port-

folio compression and portfolio rebalancing. Portfolio compression reduces gross no-

tional positions; portfolio rebalancing reduces counterparty exposures. They share the

property of keeping each participant’s net position unchanged to ensure market risk

neutrality.

With the aim of mitigating operational and counterparty risks in existing derivatives

portfolios, PTRR services can reduce the complexity of the intermediation chains.

However, this may not imply that they reduce all dimensions of systemic risk stemming

from the interconnections. In this work, we will use a network approach to explore the

systemic implications of the PTRR services.

1See Duffie (2018) for an overview of post-crisis regulatory reforms.
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We start by providing a definition of post-trade netting (PTN-) exercise. Our math-

ematical characterisation allows for analysing the PTRR services in a unified way. We

focus on contagion in variation margin payment networks, extending the analysis from

the previous literature on the relationship between portfolio compression and systemic

risk (see below). Following Veraart (2022), we compare the set of defaulting banks

under the clearing framework of Veraart (2020) from an ex post point of view. We

say that a PTN-exercise reduces systemic risk if there is no default that arises only

in the PTN-network but not in the original network—in other words, default is not

propagated. Our main result, Theorem 2.4.2, shows that when considering the great-

est equilibrium, no default among participants is sufficient for PTN-exercises to reduce

systemic risk. Moreover, this insight also holds in an ex ante analysis.

We also consider the least equilibrium, which is particularly relevant in the context

of derivatives markets. According to Paddrik et al. (2020) and Bardoscia et al. (2021),

financial institutions can react strategically to liquidity stress by delaying their varia-

tion margin payments. Bardoscia et al. (2019) develop a clearing framework to capture

this feature. We show that its output is mathematically equivalent to the least equilib-

rium under zero recovery rates (Proposition 2.5.2). Then, we show that some previous

results do not carry over to this “worst” equilibrium unless an additional assumption

is made. We use an example to illustrate that despite some potential benefits already

mentioned, post-trade netting could distort loss propagation and therefore does not

guarantee to mitigate contagion risk from a network perspective.

The rest of this chapter is organised as follows. The remainder of this section

discusses the related literature. Section 2.2 introduces the PTRR services and the

mathematical characterisations. Section 2.3 presents the framework for assessing sys-

temic risk. Sections 2.4 and 2.5 contain the main analyses, followed by the concluding

remarks in Section 2.6. Appendix A.1 describes the algorithmic characterisations of
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the clearing frameworks mentioned in Section 2.5. Appendix A.2 provides the omitted

proofs.

2.1.1 Related literature

The literature on modern netting activities has focused mainly on centralised netting by

central counterparties (CCPs). For example, Duffie & Zhu (2011) point out a trade-

off in netting efficiency between multilateral central clearing and bilateral clearing;

Glasserman et al. (2016) analyse illiquidity associated with netting by multiple CCPs;

and Amini et al. (2016) show that partial multilateral netting can have adverse effects

on network contagion.

The literature on PTRR services has been scarce. We are unaware of any work

exploring the implications of portfolio rebalancing for systemic risk. There are two

strands of literature on portfolio compression. The first strand focuses on compression

algorithms. O’Kane (2017) proposes several optimisation-based algorithms for portfolio

compression and compares their performance in exposure reduction. Similarly, D’Errico

& Roukny (2021) study the netting efficiency of portfolio compression under different

levels of preference and use a transaction-level data set to demonstrate how much

market excess can be eliminated.

The second strand focuses on the risk implications of portfolio compression using

network models. Veraart (2022) derives several necessary conditions for portfolio com-

pression to be harmful to the system and shows how the harmfulness can potentially

arise. Schuldenzucker & Seuken (2020) apply the Rogers & Veraart (2013) model to

investigate compression incentives and when compression can bring adverse effects to

the detriment of the system. Amini & Feinstein (2023) formulate an optimal network

compression problem in which systemic risk measures are incorporated in the objec-

tive function. Amini & Minca (2020) have looked further into the change of seniority
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structure of claims induced by central clearing as well as portfolio compression.

2.2 Post-trade netting

2.2.1 The derivatives market

We consider a financial system comprised of institutions N = {1, 2, ..., N} (N ≥ 3).

These institutions (hereafter called “banks”) are typically dealer banks active in global

derivatives markets. (Of course, our discussion also applies to a wide range of non-

banks that use PTRR services.)

Banks are connected by derivatives contracts, represented by a notional matrix

C ∈ [0,∞)N×N , where Cij denotes the notional amount of liabilities of bank i to bank

j, and Cii = 0 for all i ∈ N . The derivatives contracts are fungible and traded over-

the-counter (OTC). Consider, for example, single-name Credit Default Swap (CDS)

contracts written on the same reference entity with the same maturity date.2 In this

case, Cij can be the notional amount that bank i has promised to bank j if a credit

event of the underlying reference entity occurs.

Given a notional matrix C, the net exposures of C are given by C⊤1−C1, where 1 is

the column vector containing only 1s. The bilaterally netted notional matrix associated

with C is denoted by Cbi, where Cbi
ij = max (Cij − Cji, 0) for all i, j ∈ N . Note that

the net exposures of C and Cbi are the same.

2The derivatives contracts are comparable in the sense that they have the same fundamental
characteristics such as maturity and underlying. CDS contracts have been standardised in terms of
coupons and maturity dates. Trade positions on these contracts can be bucketed by the reference
entity (single name or index) and maturity.
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2.2.2 Post-trade risk reduction services

We first provide some background information.3 Then, we use simple examples to

introduce the basic ideas of PTRR services.

Institutional background

A PTRR exercise can be divided into three steps: First, participants submit their port-

folio information to a third-party service provider (not a party to the transactions) and

specify risk tolerances. Second, the service provider runs its optimisation algorithms

and informs each participant of its new portfolio positions. Third, the new positions

are established once all participants agree (otherwise, the exercise is void).

The development of PTRR services can be divided into a few stages.4 Before the

Global Financial Crisis, the volume of outstanding derivatives contracts proliferated.

Concerns about counterparty risk drove the increase in the CDS market near the crisis.

According to Vause (2010), the subsequent fall in notional amounts can be partly

attributed to portfolio compression. Following the mandatory clearing of standardised

derivatives contracts, services like the triReduce introduced by TriOptima in 2003 for

the interest rate swap (IRS) market compresses bilateral swaps and products in the

centrally cleared markets.5 The International Swaps and Derivatives Association (2012)

reports that the progress on eliminating outstanding IRS notional positions since 2011

is significant.

3Because of the frequent updates, we also refer interested readers to the service providers’ websites
for the latest information. See, e.g., https://osttra.com/. At the time of writing, CME’s TriOptima—
one of the leading PTRR service providers—is part of OSTTRA, a joint venture formed on 1st
September 2021 between IHS Markit and CME Group. (IHS Markit was acquired by S&P Global on
1st March 2022.)

4Post-trade netting mechanisms have been developed throughout Europe since the thirteenth cen-
tury. Merchants used them in early modern fairs to clear bills of exchange. See Börner & Hatfield
(2017) for the historical background.

5TriOptima collaborates with LCH.Clearnet on SwapClear; see https://www.lch.com/services/
swapclear/enhancements/compression.
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Although regulatory reforms are intended to make financial markets more resilient,

their implementation is costly. The recent development of PTRR services is attributable

to these reforms, such as the Uncleared Margin Rules (UMRs), capital requirements

(the SA-CCR and G-SIBs’ capital surcharges), and leverage ratio requirements. Be-

cause margin and capital costs are often aligned with common risk metrics, portfolio

rebalancing that optimises counterparty exposures could potentially reduce the all-in

cost of trading derivatives. Meanwhile, technological factors also spur the development

of PTRR services. Equipped with advanced optimisation techniques and data process-

ing skills, the Fintech vendors can in principle achieve efficient outcomes by accessing

information submitted by a large network of market participants.

Examples

Figure 2.1 shows an example of portfolio rebalancing, also known as counterparty risk

rebalancing, which injects market risk-neutral transactions to “reduce counterparty

risk by reducing the exposure between two counterparties” (European Securities and

Markets Authority, 2020, p. 7). The process of injecting transactions can be illustrated

in matrix form as follows:
0 10 0

0 0 10

10 0 0

+


0 0 5

5 0 0

0 5 0

 =


0 10 5

5 0 10

10 5 0

 .

Two observations are in order. First, the initial net exposures of the three banks are

(0, 0, 0)⊤, which coincide with the net exposures after portfolio rebalancing. Second,

portfolio rebalancing increases the gross notional positions from 30 to 45, but it de-

creases the sum of bilateral exposures from 30 to 15. In this sense, portfolio rebalancing

can decrease aggregate variation margin requirements (which are netted bilaterally).
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Figure 2.1. Example of portfolio rebalancing.
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Figure 2.2. Example of portfolio compression.

Figure 2.2 shows an example of portfolio compression, which “aims to reduce the

number of contracts and/or the notional amounts of derivatives contracts in a partic-

ular asset class/product without changing the market risk of the portfolio” (European

Securities and Markets Authority, 2020, p. 7). In our case, the gross notional amounts

decrease from 30 to 15.

2.2.3 The mathematical characterisation

Next, we introduce the general mathematical characterisation that embeds the main

features of PTRR services.

Definitions

Definition 2.2.1 (Post-trade-netting-exercise). Let P ⊆ N and C,CP ∈ [0,∞)N×N .

We refer to any element of P as a participant and to (C,P , CP) as a post-trade-netting
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exercise (PTN-exercise) if CP
ij = Cij ∀ (i, j) /∈ P × P and

∑
j∈P

(CP
ji − CP

ij ) =
∑
j∈P

(Cji − Cij) ∀ i ∈ P . (PTN-constraint)

According to the definition, derivatives positions can only change between partic-

ipants. In addition, the PTN-constraint ensures that the net exposures remain the

same after the PTN-exercise.

Remark 2.2.2. (C,P , CP) is a PTN-exercise if and only if (CP ,P , C) is a PTN-

exercise.

We say a PTN-exercise is a rebalancing exercise if CP = C+R for some rebalancing

matrix R ∈ [0,∞)N×N , where Rij = 0 for all (i, j) /∈ P ×P and
∑

j∈P Rji =
∑

j∈P Rij

for all i ∈ P . Otherwise, we call the exercise a compression exercise and refer to

the matrix CP as the compressed notional matrix. Consequently, the rebalancing

matrix represents the transactions to be injected into the original portfolio, while the

compressed notional matrix represents the resulting portfolio with some transactions

compressed. The result below formalises the relationship between netting by portfolio

rebalancing and netting by portfolio compression.

Proposition 2.2.3 (The rebalancing-compression parity). Let C be a notional matrix

and P ⊆ N . For any compressed notional matrix K, define a matrix R by

Rij = max{0, (Kij −Kji)− (Cij − Cji)} ∀ i, j ∈ N . (2.1)

Then R is a rebalancing matrix and satisfies

(C +R)bi = Kbi. (2.2)
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Conversely, if R is a rebalancing matrix, then K = (C +R)bi is a compressed notional

matrix.

Proof. We first show that R defined by (2.1) is a rebalancing matrix and satisfies

equation (2.2). By construction, R is non-negative and satisfies

∑
j∈P

(Rij −Rji) =
∑
j∈P

(Kij −Kji)−
∑
j∈P

(Cij − Cji) = 0 ∀ i ∈ P ,

where the last equality follows from the definition of the compressed notional matrix.

In addition, Rij = Rji = 0 for all (i, j) /∈ P × P . Therefore, matrix R is a rebalancing

matrix. Moreover, for all i, j ∈ N ,

(C +R)biij = max{0, (Cij − Cji) + (Rij −Rji)}

= max{0, (Cij − Cji) + (Kij −Kji)− (Cij − Cji)}

and hence (C +R)bi = Kbi.

We next show that K = (C + R)bi is a compressed notional matrix if R is a

rebalancing matrix. First, K is non-negative. Second, for all i ∈ P ,

∑
j∈P

(Kji −Kij) =
∑
j∈P

[
(C +R)biji − (C +R)biij

]
=
∑
j∈P

(Cji +Rji − Cij −Rij)

=
∑
j∈P

(Cji − Cij).

It follows that K is a compressed notional matrix.
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Constraints

Proposition 2.2.3 holds because our mathematical characterisation considers only one

constraint on the net exposures. Post-trade netting can certainly include additional

constraints. In practice, a diverse set of participants impose risk tolerances according

to their preferences. Although a further discussion along this line is beyond the scope

of our work and our main results in Section 2.4 do not depend on the additional

constraints, we find it useful to discuss some examples below.

First, if the objective is to reduce counterparty risk, the bilateral net exposure is

an appropriate metric. The constraint on one counterparty pair could be, for example,

|CP
ji − CP

ij | ≤ |Cji − Cij|. (2.3)

If this holds for all participants, then

∑
j∈N

(CP)biij ≤
∑
j∈N

Cbi
ij ∀ i ∈ P .

As for the notional amount reduction, one constraint could be

CP
ij ≤ Cij, (2.4)

which is similar to the loop compression in O’Kane (2017) and the conservative com-

pression in D’Errico & Roukny (2021).

Note that these constraints need not be applied to all participants. Due to diverse

needs, one would expect the delivery of the optimisation services to be a combination

of compression and rebalancing. For example, a bank sensitive to the leverage ratio

requirement prefers compression, while another bank concerned about the capital re-

quirement chooses rebalancing. The advantage of the service provider is that it can
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pool all the information and optimise over several metrics simultaneously.

Consider the example in Figure 2.3. Suppose that bank B only participates in com-

pression. Also, suppose that bank D’s portfolio is non-compressible—the reason might

be that the transactions belong to a different asset class ineligible for compression. It

is straightforward to check that the net exposures remain unchanged, constraints (2.3)

and (2.4) are satisfied, and the sum of the bilateral exposures is reduced. In this ex-

ample, it seems important that banks A and C accept transaction injection; otherwise,

the efficiency of exposure optimisation would be hampered.

A

B C

D

3

5

3

1

2

(a) Before.

A

B C

D
1

1

31

2

(b) After.

Figure 2.3. A combination of portfolio compression and portfolio rebalancing. The
numbers next to the arrows represent notional amounts. The dotted and dashed lines
indicate the new transactions resulting from compression and rebalancing, respectively.

An optimisation-based characterisation

Lastly, we note that post-trade netting can also be characterised from an optimisation

perspective. A natural objective is to minimise the aggregate obligations.

Definition 2.2.4 (Optimal post-trade-netting-exercise). Let P ⊆ N and C ∈ [0,∞)N×N .
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The PTN-optimisation problem is defined as

min
C̃

∑
i∈N

∑
j∈N

C̃ij

s.t.
∑
j∈P

(C̃ji − C̃ij) =
∑
j∈P

(Cji − Cij) ∀ i ∈ P ,

C̃ij = Cij ∀ (i, j) /∈ P × P .

Let C∗ be a solution to the PTN-optimisation problem. We refer to the triple (C,P , C∗)

as an optimal PTN-exercise.

The PTN-optimisation problem is a linear programming problem and admits a

solution since the feasible region is non-empty (matrix C satisfies all constraints, and

the objective function is bounded from below by zero). In addition, when P = N ,

this problem is equivalent to the non-conservative compression problem in D’Errico &

Roukny (2021) (see also the method of minimising the l1-norm in O’Kane (2017)).

2.3 Assessing systemic risk

In this section, we describe the framework for analysing the effects of PTN-exercises

on systemic risk.

2.3.1 The payment network

We model the network of payment obligations in the form of variation margins as in

Paddrik et al. (2020) and Veraart (2022). Given a notional matrix C, we define the

liabilities matrix L associated with C by

L = ψCbi,
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where the parameter ψ (ψ > 0) can be thought of as capturing the magnitude of

variation margins in reduced form. Due to mark-to-market valuations of derivatives

contracts, variation margins are exchanged on short notice to protect counterparties

from current exposures. We have in mind, for example, the case of American Interna-

tional Group, Inc. (AIG) in the CDS market during the Global Financial Crisis. The

protection seller faced tremendous pressure on the margin calls from the protection

buyers after a sudden shock to the credit markets.

Remark 2.3.1. A more general definition is L = f(C), where f : [0,∞)N×N →

[0,∞)N×N could be f(C) = ψCbi or f(C) = ψC. It can be extended to incorporate

multiple assets. Consider, for example, CDS contracts on the same reference entity with

k (k > 1) different maturity dates and the corresponding notional matrices C1, . . . , Ck.

The liabilities matrix can then be written as L = f(C1, . . . , Ck), where f : [0,∞)N×N ×

. . . × [0,∞)N×N → [0,∞)N×N maps the notional positions to the variation margin

requirements. One simple example is that f is a linear function in all k arguments.

While post-trade netting works on notional positions, we find it mathematically

convenient to define the PTN-exercise using matrices representing the associated lia-

bilities (here, the variation margin payment obligations). We will use Lemma 2.3.2 to

focus on the liabilities matrices and refer to (L,P , LP) as a PTN-exercise.

Lemma 2.3.2. Let (C,P , CP) be a PTN-exercise. Given ψ > 0, let L = ψCbi and

LP = ψ(CP)bi. Then, (L,P , LP) is a PTN-exercise.
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Proof. Note that

∑
j∈P

(
ψ(CP)biji − ψ(CP)biij

)
= ψ

 ∑
CP

ji≥CP
ij

(
CP

ji − CP
ij

)
−

∑
CP

ji<CP
ij

(
CP

ij − CP
ji

)
= ψ

∑
j∈P

(
CP

ji − CP
ij

)
= ψ

∑
j∈P

(Cji − Cij)

=
∑
j∈P

(
ψCbi

ji − ψCbi
ij

)
.

Therefore, the PTN-constraint in Definition 2.2.1 holds for (ψCbi,P , ψ(CP)bi).

We assume that each bank holds a liquidity buffer Ab
i ≥ 0, which may represent

cash or high-quality liquid assets to the extent that they can be readily exchanged as

variation margins. We summarise banks’ liquidity buffers in the N -dimensional vector

Ab = (Ab
1, . . . , A

b
N)

⊤. We shall refer to the pair (L,Ab) as the original network and to

the pair (LP , Ab) as the PTN-network.

2.3.2 The clearing equilibrium

To characterise the clearing equilibrium, we apply the network model of Veraart (2020),

which is used by Veraart (2022) to analyse portfolio compression.

Denote by 1{·} the indicator function. The model’s key ingredient is a valuation

function V : R → [0, 1] defined by

V(y) = 1{y≥1+k} + 1{y<1+k}r(y),

where k ≥ 0 and r : (−∞, 1 + k) → [0, 1] is a non-decreasing and right-continuous

function. The specification can summarise various types of asset valuation rules via

particular functional forms of V. It conveniently nests several network clearing models
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as special cases. For example, Veraart (2020) shows that the clearing vector in the

Eisenberg & Noe (2001) model can be expressed using VEN(y) = 1 ∧ y+. A definition

that will be used later is the zero recovery rate valuation function in Veraart (2022):

Vzero (y) = 1{y≥1+k}.

Since a valuation function is used for risk assessment, for any PTN-exercise (L,P , LP),

we also refer to (L,Ab;V) as the original network and (LP , Ab;V) as the PTN-network.

The clearing equilibrium is defined by a quantity called re-evaluated equity. The

underlying idea is that each bank’s available assets—the liquidity buffer plus the in-

coming payments from its counterparties—depend on the payments that other banks

in the network can make. As a result, the re-evaluated equity is characterised as a

fixed point.

Definition 2.3.3 (Re-evaluated equity). Given the original network (L,Ab;V), let

E = [−L̄, Ab + Ā− L̄], where L̄ = L1 and Ā = 1⊤L. Define the function Φ = Φ(·;V) :

E → E as

Φi(E) = Φi(E;V) = Ab
i +

∑
j:L̄j>0

LjiV

(
Ej + L̄j

L̄j

)
− L̄i ∀ i ∈ N . (2.5)

We refer to a vector E ∈ E satisfying E = Φ(E) as a re-evaluated equity in the original

network.

Analogously, we can define the re-evaluated equity in the PTN-network, which is

provided in Appendix A.2.1 to simplify the exposition. As noted by Veraart (2020),

(E ,≤) is a complete lattice, and the functions Φ is non-decreasing, so the existence

of a re-evaluated equity is guaranteed by Tarksi’s fixed-point theorem (Theorem 1 in

Tarski (1955)). Moreover, one can always find the greatest and the least re-evaluated
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equity. In Sections 2.4 and 2.5, we will discuss the implications of post-trade netting

under these fixed points.

2.3.3 The default set

A few concepts are necessary before explaining what we mean by systemic risk reduc-

tion. Given the original network (L,Ab;V), the initial equity, denoted as Einitial(L),

is

Einitial
i (L) = Ab

i +
∑
j∈N

Lji − L̄i ∀ i ∈ N .

The fundamental default set, denoted as F(L,Ab;V), is the set of banks that default

even if all banks in the network make their payments in full, i.e.,

F(L,Ab;V) = {i ∈ N |Einitial
i (L) < 0}.

Let E be a re-evaluated equity (i.e., a fixed point of Φ in equation (2.5)). Then, the

default set is

D(L,Ab;V) = D(E) = {i ∈ N |Ei < 0},

and the contagious default set is D(L,Ab;V) \ F(L,Ab;V). Clearly, they both depend

on the fixed point.

Remark 2.3.4. The default set in Veraart (2022) is defined as {i ∈ N |Ei < kL̄i},

where k is the parameter in the valuation function (see Remark A.1 in Veraart (2022)

for further discussion). Here, we set k = 0 and interpret this choice as modelling

illiquidity in the context of variation margin payments. Note that each bank’s total

assets consist only of its liquidity buffer and margin payments received, which are

highly liquid assets. In other words, we do not intend to model the full balance sheet.

We analyse from an ex post point of view, as in Veraart (2022). Specifically, we

28



compare the default set in the original network and the PTN-network, assuming that

the PTN-exercise is completed before a shock. (We abstract away from the source of

the shock, which is not our focus.)

Definition 2.3.5. For any PTN-exercise, let E be a re-evaluated equity in the original

network with default set D(E) and EP be a re-evaluated equity in the PTN-network

with default set D(EP). We say that the PTN-exercise (i) reduces systemic risk if

D(EP) ⊆ D(E); (ii) strongly reduces systemic risk if D(EP) ⊊ D(E); and (iii) is

harmful if D(EP) \ D(E) ̸= ∅.

This definition, consistent with that of Veraart (2022), implies that a PTN-exercise

reduces systemic risk if and only if it is not harmful. We leave the discussion about

the interpretation of systemic risk reduction to Section 2.6.1.

It is important to note that since there can be more than one re-evaluated equity in

a network, Definition 2.3.5 makes sense only if the re-evaluated equities in the original

and the PTN-network are comparable. Put differently, we cannot compare the two

networks using random fixed points. In what follows, we shall focus on the cases where

both re-evaluated equities correspond to the greatest fixed points or the least fixed

points.

2.4 Main results

In this section, we analyse when post-trade netting reduces systemic risk. We first con-

sider a special case and then present the general conditions sufficient for risk reduction.

2.4.1 The intermediation chains

We start by looking at the case of optimal PTN-exercise in which all banks are partic-

ipants. This is unlikely to happen in practice, but the result is useful for providing an
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insight about the mechanism of post-trade netting.

Proposition 2.4.1. Consider an optimal PTN-exercise with P = N . Let Ẽ be the

greatest re-evaluated equity in the original network with default set D(Ẽ) and ẼP be

the greatest re-evaluated equity in the PTN-network with default set D(ẼP). Then,

D(ẼP) is the fundamental default set in the PTN-network and D(ẼP) ⊆ D(Ẽ).

Any default in the PTN-network (if it exists) is a fundamental default, and hence,

this optimal PTN-exercise reduces systemic risk under the greatest re-evaluated equity.

To prove Proposition 2.4.1, we exploit a result of D’Errico & Roukny (2021), who show

in the case of portfolio compression that the graph with the minimum total exposures

is bipartite. As a result, the situation in which bank i should pay bank j and bank j

should pay a different bank k does not exist.

Figure 2.4 provides a stylised illustration of an optimal PTN-exercise. Banks are

simply classified into dealers and end-users. All dealers participate in the exercise.

The direction of the arrows indicates the net variation margin owed between coun-

terparties. In Figure 2.4a, feedback loops in the dealers’ section may amplify default

cascades, whereas they disappear in Figure 2.4b since this PTN-exercise breaks up

possible contagion channels between dealers. (Nevertheless, the contagious default of

a dealer remains possible when it is hit by a shock from an end-user.)

End-users Dealers End-users

4

(a) The original network.

End-users Dealers End-users

5

(b) The (optimal) PTN-network.

Figure 2.4. Stylised networks of variation margin flows.
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2.4.2 Sufficient conditions for risk reduction

We next provide results on the sufficient conditions for post-trade netting to reduce

systemic risk. The first condition assumes that no participant defaults in the original

network.

Theorem 2.4.2. Given a PTN-exercise, let Ẽ be the greatest re-evaluated equity in

the original network that satisfies

{i ∈ P | Ẽi < 0} = ∅, (2.6)

i.e., no participant defaults in the original network. Then, Ẽ is also the greatest re-

evaluated equity in the PTN-network. Therefore, the default sets in the two networks

are the same. Moreover, the exercise leads to systemic risk reduction, although not a

strong reduction.

Remark 2.4.3. In the proof of Theorem 2.4.2, we show that under condition (2.6),

any re-evaluated equity in the original network is a re-evaluated equity in the PTN-

network. However, if Ẽ is the least re-evaluated equity in the original network, it may

not be the least re-evaluated equity in the PTN-network (an example can be easily

constructed).

Veraart (2022) shows that for portfolio compression which “removes cycles” accord-

ing to constraint (2.4), condition (2.6) is sufficient for systemic risk reduction under

the greatest fixed points. Theorem 2.4.2 above establishes that the statement holds for

post-trade netting exercises in general. In particular, it suggests that these exercises

are not likely to increase contagion risk in normal times when participants are not

likely to default.

Theorem 2.4.2 can also be interpreted using clearing payments. Veraart (2020)
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shows that given a re-evaluated equity Ẽ in (L,Ab;V), the clearing payment of bank i

(with positive liabilities) can be written as

L̃i(Ẽ) = V

(
Ẽi + L̄i

L̄i

)
L̄i.

The following proposition shows the implication of Theorem 2.4.2 on the clearing pay-

ments.

Proposition 2.4.4. Given a PTN-exercise (L,P , LP), let Ẽ be a re-evaluated equity

in the original network that satisfies (2.6). Then for all i ∈ N ,

L̃P
i (Ẽ) + (L̄i − L̄P

i ) = L̃i(Ẽ), (2.7)

where L̃(Ẽ) and L̃P(Ẽ) are the clearing payments in the original and the PTN-network,

respectively.

Proof. By the proof of Theorem 2.4.2, Ẽ is also a re-evaluated equity in the PTN-

network. In addition, for all i ∈ N with L̄P
i > 0,

L̃P
i (Ẽ) = V

(
Ẽi + L̄P

i

L̄P
i

)
L̄P
i .

First, equation (2.7) holds for all i ∈ N \ P because non-participants have the same

payment obligations in both networks. Second, the result follows immediately for i ∈ P

with L̄i × L̄P
i = 0. Third, for i ∈ P with L̄i × L̄P

i > 0,

V

(
Ẽi + L̄i

L̄i

)
= 1 = V

(
Ẽi + L̄P

i

L̄P
i

)

by condition (2.6). Therefore, equation (2.7) holds for all i ∈ N .

Proposition 2.4.4 says that as long as no participant defaults in the original net-
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work, clearing the PTN-network is equivalent to clearing the original network and then

subtracting (L̄− L̄P) from the clearing payments in the original network. This means

that under condition (2.6), the order of clearing and netting does not matter—the

difference in payments is equal to the amount of reduced liabilities.

Proposition 2.4.5. Given a PTN-exercise, let ẼP be the greatest re-evaluated equity

in the PTN-network that satisfies

{i ∈ P | ẼP
i < 0} = ∅, (2.8)

i.e., no participant defaults in the PTN-network. Then, ẼP is also the greatest re-

evaluated equity in the original network. Therefore, the default sets in the two networks

are the same. Moreover, the exercise leads to systemic risk reduction, although not a

strong reduction.

Proof. Since (LP ,P , L) is a PTN-exercise (see Remark 2.2.2), Proposition 2.4.5 follows

immediately by applying Theorem 2.4.2 to (LP ,P , L).

Proposition 2.4.5 states the second sufficient condition for systemic risk reduction.

Combined with Theorem 2.4.2, the result implies that if the PTN-exercise strongly

reduces systemic risk, then both the original and the PTN-network contain default-

ing participant(s). More importantly, this implies that the exercise cannot eliminate

existing default(s) among participants. In such a case, at least one participant is in

fundamental default.

2.4.3 Ex ante analysis

In the following, we present an ex ante analysis. It relies on the work of Glasserman

& Young (2015), who build on the Eisenberg & Noe (2001) model to estimate the
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magnitude of contagion based on three bank characteristics: (i) net worth; (ii) outside

leverage; and (iii) financial connectivity.

Net worth, denoted as w, coincides with our definition of initial equity. (It is

assumed that wi > 0 for all i ∈ N .) Outside leverage is defined as the ratio of liquidity

buffer and net worth:

λi =
Ab

i

wi

∀ i ∈ N .

For the last characteristic, suppose that the entity indexed by N is an external node

such that the liabilities matrix L in the original network satisfies LNj = 0 for all j ∈ N

(so this external node can be interpreted as banks’ customers), then the financial

connectivity of bank i is defined by

θi =
L̄i − LiN

L̄i

,

i.e., the proportion of bank i’s total liabilities to other banks in the network. (We set

θi = 0 if L̄i = 0.) Note that if the PTN-exercise satisfies

L̄P
i ≤ L̄i ∀ i ∈ N , (2.9)

then it reduces the financial connectivity of all banks. On the other hand, post-trade

netting can affect neither net worth nor outside leverage.

Next, we explain how to apply the results of Glasserman & Young (2015) in our

context. Their first result (Proposition 1) says that if the aggregate net worth of a fixed

set of banks is larger than the contagion index for the single shocked bank, say bank i,

defined as wiθi(λi− 1), then contagion from bank i to that set is impossible, regardless

of the assumption on the shock distribution. The implication is that once condition

(2.9) is satisfied, contagion is impossible in the original network and the PTN-network.
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To some extent, our assumption of whether there exists a default in P is similar in

spirit to the condition based on the bank characteristics mentioned above.

Similarly, we can apply other results of Glasserman & Young (2015), which account

for some specific shock distributions. The takeaway is that because the amount of

total liabilities is reduced for every bank (i.e., condition (2.9)), the sufficient condition

satisfied in the original network also holds in the PTN-network.

2.4.4 Numerical example

Having discussed the conditions for systemic risk reduction, we now show a harmful

PTN-exercise in Figure 2.5.

B

A

C D

5

10 7

(a) The original network.

B

A

C D

5

5 7

(b) The PTN-network.

Figure 2.5. A PTN-exercise under zero recovery rate. The liabilities are next to the
arrows. The liquidity buffers are (1, 10, 1, 0)⊤.

It is straightforward to check that Ẽ = (−4, 0, 4, 7)⊤ is the unique re-evaluated

equity in the original network and ẼP = (−4, 5,−1, 0)⊤ is the unique re-evaluated

equity in the PTN-network. Hence, this PTN-exercise is harmful. In the original
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network, bank A is the only bank in fundamental default, which does not lead to

additional defaults. In contrast, bank A’s default triggers the contagious default of

bank C in the PTN-network. This difference is due to the fact that after shortening

the intermediation chains, bank C now faces bank A directly and receives no payment

from A. In short, the example illustrates that post-trade netting can be harmful by

reallocating the risk-sharing relationships.

2.5 The worst equilibrium

In this section, we move on to analyse post-trade netting under a special case of the

least re-evaluated equity, which can be interpreted as the worst equilibrium.

2.5.1 The least fixed point

So far, we have made comparisons using the greatest re-evaluated equities. The lit-

erature on network clearing often focuses on the greatest fixed point, which reflects

the best possible outcome for the system. However, multiplicity can be a concern to

the extent that it contributes to network instability. Theoretically, Rogers & Veraart

(2013) distinguish between the greatest and the least fixed points by interpreting the

difference as spreading insolvency versus spreading solvency.6 In a similar setting,

Csóka & Herings (2018) rationalise the least fixed point with a decentralised clearing

procedure.

6The greatest fixed point can be derived by considering a fixed point iteration starting with the
assumption that every bank satisfies its payment obligations in full, and then tracking whether there
are any fundamental defaults that then might cause contagious defaults. Hence, the greatest fixed
point is the result of a spread of insolvency that started from the best possible situation. However,
if one starts with the assumption that initially no banks receive any payments from others, then
they can only use their liquidity buffers to make payments. If these are enough to satisfy the payment
obligations, then solvency starts to spread through the network, and potentially some banks can avoid
default. Hence, the least fixed point is the result of a spread of solvency that started from the worst
possible situation.
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In the context of derivatives markets, Paddrik et al. (2020) and Bardoscia et al.

(2021) point out that there are situations in which financial institutions under stress

can take defensive actions not to meet their payment obligations in a timely manner.

Bardoscia et al. (2019) introduce the Full Payment Algorithm (FPA) to embed such

a phenomenon. They assume that banks with insufficient liquidity buffers wait for

potential payments from their counterparties and only make payments in full once

they receive enough liquid assets. This dictates that even if a bank can obtain extra

liquidity to fulfil its obligations, it would do nothing but wait. In this sense, payments

are made in sequence: at each iteration, each bank either pays in full or pays nothing.

The algorithm ends if no more banks can make any payment. The vector of cumulative

payments is the output of the FPA. (The formal definition is provided in Appendix A.1.)

Theorem 2.5.1 is useful for relating the FPA to our framework.

Theorem 2.5.1. For any given financial network, the output of the FPA is the least

clearing vector in the Rogers & Veraart (2013) model with default cost parameters

equal to zero.

Given a financial network (L,Ab), the relative liabilities matrix Π is defined by

Πij = Lij/L̄i if L̄i > 0, and Πij = 0 otherwise for all i, j ∈ N . A clearing payment

vector in the Rogers & Veraart (2013) model with default cost parameters α, β ∈ [0, 1]

is a fixed point of the function ΨRV : [0, L̄] → [0, L̄] defined by

ΨRV
i (L̃) =


L̄i, if Ab

i +
∑

j∈N ΠjiL̃j ≥ L̄i,

αAb
i + β

∑
j∈N ΠjiL̃j, otherwise.

By Theorem 2.5.1, the least fixed point in the Rogers & Veraart (2013) model under

zero recovery rates can be interpreted as the worst equilibrium as a result of a strategic

response to stress. Proposition 2.5.2 gives the corresponding re-evaluated equity, which
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is directly related to our framework.

Proposition 2.5.2. For any given financial network (L,Ab), the re-evaluated equity

under the worst equilibrium, denoted as Ew, can be written as

Ew
i = Ab

i +
∑

j:L̄j>0

Lji

L∗
j

L̄j

− L̄i ∀ i ∈ N ,

where L∗ is the output of the FPA.

Proof. We omit the proof of this result because it is a minor variation on the proof of

Theorem 2.9 in Veraart (2020), which shows how the clearing payment vector in the

Rogers & Veraart (2013) model can be rewritten in terms of the re-evaluated equity.

2.5.2 Conservative netting

Having shown why the least fixed point under zero recovery rates is relevant to our

analysis, we introduce a constraint important for the following result. We refer to a

PTN-exercise (L,P , LP) as conservative if

LP
ij ≤ Lij ∀ i, j ∈ N . (2.10)

The constraint means that counterparty relationships are preserved so that if one bank

is a net seller to (or a net buyer from) another bank, this remains after the exercise.

Theorem 2.5.3. Suppose that V = Vzero. For any conservative PTN-exercise that

satisfies (2.10),

E∗ ≤ EP;∗, (2.11)

where E∗ and EP;∗ are the greatest re-evaluated equity in the original and the PTN-

network, respectively. The inequality also holds when E∗ and EP;∗ are the correspond-
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(b) The PTN-network.

Figure 2.6. A harmful PTN-exercise under the worst equilibrium. The liabilities
are next to the arrows. The liquidity buffers are (0.5, 5.5, 1.5, 0.5)⊤. The numbers in
brackets represent the clearing payments.

ing least re-valuated equities.

Theorem 2.5.3 for PTN-exercises under the greatest equilibrium is a general version

of Proposition 4.12 in Veraart (2022) which considers compression cycles. Moreover,

the result suggests that in situations where banks react strategically to liquidity stress

by delaying their payments, conservative PTN-exercises bring systemic risk reduction.

However, this does not generally apply to non-conservative exercises. To illustrate,

consider the example of a harmful PTN-exercise in Figure 2.6. Although there is

no default in the original network, three banks default in the PTN-network. This

outcome is impossible under the greatest re-evaluated equities (by Theorem 2.4.2).

The example suggests that in a worst-case situation, simply reducing overall exposures

(through rewiring the network) while neglecting how the liquidity flows is insufficient

to mitigate contagion.

2.6 Concluding remarks

While an enriched framework is outside the scope of the present work, we hope to

suggest some alternative perspectives on the topic of post-trade netting.
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2.6.1 Risk measurement

Our definition of the default set allows for a meaningful comparison between two net-

works of different sizes. It tells who defaults and not just the number of defaults. As

discussed in Veraart (2022), a strong reduction in systemic risk can be interpreted as a

Pareto improvement: the PTN-exercise does not cause any new default, while at least

one bank that defaults in the original network becomes better off in the PTN-network.

In this sense, our definition of risk reduction does not favour a trade-off—for example,

an exercise that significantly reduces the number of defaults but also introduces a small

number of new defaults. Since market participants can decide on which services to use

and proposals to accept, we believe it is reasonable to take a conservative view and

define risk reduction in the spirit of mitigating the extent of risk propagation.

In addition to our risk measurement based on the re-evaluated equity, it is also

of interest to compare the clearing payments, as mentioned in Section 2.4. However,

since PTN-exercises can increase or decrease total payment obligations, we need to

ensure that the risk measure is suitably normalised. For this, one can use the actual

payments made to the external node (see also Amini & Feinstein (2023)). Since the

external node does not participate in the PTN-exercise, the total liabilities to the

external node cannot change. Therefore, the payments it receives can also be used as a

normalised measure. More specifically, the total payments made to the external node

in the original network and the PTN-network, respectively, are given by

∑
i∈N :L̄i>0

V

(
Ẽi + L̄i

L̄i

)
LiN ,

∑
i∈N :L̄P

i >0

V

(
ẼP

i + L̄P
i

L̄P
i

)
LiN .

Therefore, it boils down to comparing V
(

Ẽi+L̄i

L̄i

)
, which models the proportion of bank

i’s repayment in the original network under re-evaluated equity Ẽ, to V
(

ẼP
i +L̄P

i

L̄P
i

)
,
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which models the proportion of bank i’s repayment in the PTN-network under re-

evaluated equity ẼP . See Veraart (2020, 2022) for further details.

2.6.2 Margin requirements

Our analysis has focused on illiquidity propagation triggered by defaults on variation

margin calls. These margin calls are intended to reduce counterparty risk, but the fact

that they are inherently procyclical can increase the stress on market participants in

adverse market conditions (European Systemic Risk Board, 2017). With this in mind,

PTRR services might be useful in mitigating the procyclicality of margin requirements.

In particular, these services can reduce the magnitude of the variation margins that

must be exchanged when market conditions change. In March 2020, the COVID-

19 pandemic caused significant liquidity stress in financial markets, with considerable

variation margins due precisely when liquidity was already under strain (International

Swaps and Derivatives Association, 2022). The results in Section 2.4 suggest that

PTRR services could reduce parts of these pressures without increasing contagion risk

at normal times.

Our analysis does not touch on the initial margins. In the event that a counterparty

has defaulted, the entity to the defaulting counterparty would replace the transactions

with the defaulter using the collected initial margins to mitigate the adverse change in

the value of contracts. Replacement loss occurs if the replacement cost under volatile

market conditions exceeds the margin received from the defaulting counterparty. As

introduced in the beginning, portfolio rebalancing allows market participants to alle-

viate the pressure of tightened collateral requirements. However, reducing cost is not

equivalent to reducing risk. The consultation paper of the European Securities and

Markets Authority (2020) asks: provided that market participants are incentivised to

use PTRR services to optimise their use of collateral, would these services cause the
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market to be “under collateralised” or increase any risk? In this regard, the framework

of Jackson & Manning (2007) may be useful to assess PTRR services while capturing

pre-settlement risk. In addition, Ghamami et al. (2022) build a clearing framework in

the spirit of Eisenberg & Noe (2001) to study contagion in networks with collateral

requirements. Veraart (2022) also proposes a valuation function to model payment

obligations protected by initial margins. In any case, more information on the netting

algorithms is needed to better understand the risk implications of collateral optimisa-

tion.
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Chapter 3

Financial vulnerability

3.1 Introduction

Monitoring financial vulnerability is crucial for financial stability. In 2008, the G20

initiated the Early Warning Exercise jointly conducted by the International Monetary

Fund (IMF) and the Financial Stability Board (FSB) to identify vulnerabilities and

provide policy recommendations (see IMF (2010)). The first input into the assessment

framework of the FSB (2021) is a set of surveillance indicators. In this chapter, I

introduce an index of financial vulnerability for the banking sector through the lens of

fire sales, motivated by two well-known observations: first, forced asset liquidation is

a common feature of crisis episodes, and second, bank failures have devastating effects

on the economy.

Substantial efforts have been made to use various indicators to analyse the causes of

economic crises, such as the currency and banking crises in the 1990s (e.g., Kaminsky &

Reinhart (1999)). Although there is obviously no single choice of a suitable indicator,

identifying vulnerabilities is not straightforward (see Borio & Drehmann (2009) and

Adrian et al. (2015)). Composite indicators based mainly on asset prices are good at
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reflecting concurrent market conditions, but are unlikely to reveal vulnerabilities in

advance (e.g., Shin, 2014). In addition, the definition of vulnerability by the Financial

Stability Board (2021, p. 5) concerns systemic disruption and therefore warrants taking

into account propagation mechanisms.

Measurement is essential for economic analysis and is involved in many traditions

of the macroeconomic literature (e.g., Burns & Mitchell (1946); Friedman & Schwartz

(1963)). Given the orientation towards financial vulnerability, this work follows the

tradition from Leontief (1936), who analyses structural changes of the system by input-

output tables. In my view, the perspective of treating the system as a whole is particu-

larly relevant. Moreover, the idea is pragmatic. It was developed by Stone (1947) into

the Social Accounting Matrix and applied in a wide range of areas (such as regional

science and managerial science).

Methodologically, this work takes advantage of recent advances in systemic risk

measurement, following the spirit of Koopmans (1947, p. 162), who advocates for “fuller

utilization of the concepts and hypothesis of economic theory [...] as part of the process

of observation and measurement.” I use the “vulnerable banks” model of Greenwood,

Landier & Thesmar (2015), who assume that banks offset exogenous shocks by selling

assets and derive an aggregate vulnerability (AV) measure for spillover losses in the

system as a consequence of joint liquidation.1 By decomposing the measure, I construct

a Financial Vulnerability Index (FVI):

FVI = Leverage× Illiquidity.

1See, for example, Acharya et al. (2017) for a model-based systemic risk measure and Bisias et al.
(2012) for a review of the literature. For network models on fire sales, see Cifuentes et al. (2005),
Cont & Schaanning (2019), among many others. This work approaches fire sales from a fundamentally
different angle: it focuses on deleveraging and price impact, the causes of contagion as described by
Kiyotaki & Moore (2002), rather than how losses propagate through the overlapping portfolios.
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The former refers to the degree of banks’ deleveraging; the latter arises from assets’ illiq-

uidity, whereby fire-selling illiquid assets leads to spillover losses. The distinguishing

feature of the FVI is the expression in terms of size-weighted leverage and illiquidity-

weighted Herfindahl-Hirschman Index, while the link with contagion is underpinned by

the model. The index brings computational simplicity, which is advantageous in prac-

tice, and is intuitively appealing in the sense that monitoring leverage and illiquidity

jointly and severally is consistent with crisis policies.

To illustrate the empirical feasibility and informativeness, I apply the index to

the large U.S. bank holding companies (BHCs) from 1996Q1 to 2021Q4 (Section 3.3).

Retrospectively, the FVI issues signals ahead of vulnerabilities materialise in the run-up

to the Global Financial Crisis (GFC) and aligns with the turmoil during the COVID-19

pandemic. The index is well suited for monitoring purposes by conveying information

about vulnerability in a relatively concise form and can be interpreted jointly with

other indicators of sources of systemic risk.

In addition to monitoring instability, the identification of vulnerabilities is also use-

ful for the implementation of macroprudential instruments, such as buffer requirements.

The Basel Committee on Banking Supervision (2017, p. 2) notes that “the link between

the indicators selected and how they contribute to assessments of ‘excess’ credit giving

rise to systemic risk is not always clearly spelled out.” Regarding this, the theoretical

rationale for using the FVI stems from its relevance to pecuniary externalities (e.g.,

Lorenzoni (2008)). Consequently, the index satisfies the three criteria for the selection

of indicators listed in the report by the Committee on the Global Financial System

(2012): (i) relevance for macroprudential instruments; (ii) ease of data availability;

and (iii) simplicity. In Section 3.4, I compare the FVI with the credit-to-GDP gap and

demonstrate that it can be helpful to set the countercyclical capital buffer.

Lastly, this work contributes to research on historical banking crises (see Frydman &
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Xu (2023) for a literature review). Historical accounts of fire sales are often accounted

for by studies on financial crises (e.g., Kindleberger (1978)). Theories of fire sales date

at least to Irving Fisher’s (1933) debt-deflation explanation of the Great Depression;

similar amplification mechanisms have been extensively studied in the macro-finance

literature (e.g., Bernanke & Gertler (1989)). Based on above, the FVI that provides a

proxy for financial vulnerability can be expected to be used in empirical research. In

Section 3.5, I implement the index for national banks in the United States in 1928 and

1933 and discuss the related academic research.

The remainder of this chapter is organised as follows. Section 3.2 describes the

derivation of the FVI. Section 3.3 conducts the empirical analysis for the U.S. banking

system during 1996–2021, followed by some validation exercises. Section 3.4 further

discusses operationalising the index for policy purposes. Section 3.5 illustrates an

implementation in the context of banking panics during the Great Depression. Finally,

Section 3.6 concludes.

3.2 The Financial Vulnerability Index

3.2.1 Insight from the Great Fire of London in 1666

I find it instructive to draw an analogy before introducing my index. In my view, a

burning house resembles a deleveraging bank. The house’s vulnerability to catching

fire depends largely on the material—a wooden house is more vulnerable than a brick

house. Likewise, a bank with higher leverage is more likely to suffer from fire-sale

losses. Asset illiquidity can be interpreted as street width: Wide streets insulate the

spreading flames. Adequate liquidity absorbs shocks to the market. In addition, the

structure of asset portfolios is analogous to the city layout (which differs from the

street width). The houses are connected by streets that can spread fires. Banks are
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connected by asset holdings that can incur indirect losses. In both cases, the structure

affects how the losses propagate.

On 2 September 1666, a fire broke out in a baker’s house in Pudding Lane, a narrow

street of wooden houses in the City of London, causing severe damage. A Rebuilding

Act was passed in the following year, requiring the building of brick houses and the

widening of streets. Nevertheless, London was rebuilt according to the old layout—

none of the new designs were adopted. The rebuild predominantly addressed London’s

fundamental weakness, a tinderbox full of wooden houses and narrow streets. Ideally, it

provided an opportunity to redesign the layout to better prevent future fires. However,

in reality, many factors impeded new proposals and prompted a quick rebuild.

The lesson for fire sales in financial markets, perhaps, is that addressing leverage

and illiquidity separately promotes making timely decisions in response to changing

conditions. At least, this is consistent with crisis policies such as capital injection and

liquidity provision during the GFC.

3.2.2 Measurement with theory

Leverage and illiquidity are preponderant in the discussion of fire sales in finance and

macroeconomics (for an overview, see Shleifer & Vishny (2011)). In deriving my index,

I think of these vulnerabilities as corresponding to externalities: banks create fire-sale

externalities when they do not internalise the effects of their behaviours and make

investments in illiquid assets via taking on excessive leverage.

Specifically, I use the model of Greenwood et al. (2015) under the following assump-

tions: (i) banks respond to exogenous asset shocks by selling assets proportionally to

return to the pre-shock leverage; (ii) the selling of illiquid assets has a linear price im-

pact on the same asset class; and (iii) banks holding the fire-sold assets are exposed to

spillover losses caused by the deleveraging. Greenwood et al. (2015) justify the leverage
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targeting by referring to the empirical findings of Adrian & Shin (2010). In addition,

while selling assets proportionally is a simplifying theoretical assumption, the precise

form of asset shrinkage is undetermined at the empirical level and does not invalidate

the mathematical model.

Most importantly, the objective of this work is to introduce an index, not to model

contagion. Studies quantifying fire-sale losses must take a stance on the modelling

assumptions; how seriously the estimates are taken depends on the specific perspec-

tive on the model. It is worth noting the distinction between measuring vulnerability

and assessing systemic risk: the former formalises the concept by providing an an-

alytical structure; the latter applies a modelling framework to quantify the effect of

changes in model inputs. In summary, this work aims to identify vulnerabilities from a

systemic perspective with an accounting framework that incorporates bank and asset

heterogeneity.2

At time t, there are N banks and K asset classes; each bank has total assets ant and

equity ent. Leverage bnt is defined as the debt-to-equity ratio. The assets and equity of

the system are given by at =
∑

n ant and et =
∑

n ent, respectively. The asset matrix

Mt = (mnkt) is the N ×K matrix of portfolio weights, i.e., mnkt is the fraction of asset

k in bank n’s total assets. The total value of asset k is thus vkt =
∑

n antmnkt. The

asset shock is characterised by Ft = (f1t, . . . , fKt)
⊤. The aggregate vulnerability (AV)

defined by Greenwood et al. (2015) is

AVt =
1⊤AtMtLtM

⊤
t BtAtMtFt

et
,

2Despite the mathematical structure, different models can lead to similar messages. For example,
Calomiris & Wilson (2004) incorporate adverse selection between banks and depositors into the model
of Black & Scholes (1973) to identify the dynamic process of balance sheet adjustment, where banks
choose the level of asset risk (defined as the standard deviation of asset returns) through risky loans.
By assuming that banks target the riskiness of deposits (i.e., default premiums), they show that the
deposit risk increases with asset risk and decreases with capital ratio.
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where At = diag(a1t, . . . , aNt), Bt = diag(b1t, . . . , bNt), and 1 is the column vector

containing only 1s. More specifically, AtMtFt translates the shock into losses so that

BtAtMtFt tells the amounts to be sold to return to the target leverage. The vector

is then premultiplied by M⊤
t , which means that banks sell assets proportionately to

their original holdings. For each asset class, the sale has a linear price impact that

depends on its illiquidity, which is captured by Lt. Finally, AVt calculates the fraction

of aggregate equity lost as spillover losses beyond the direct impact of the shock.

I assume that the price impact is inversely proportional to the wealth of outside

investors to capture the idea that the industry peers of distressed institutions may

be financially constrained themselves and that there are outside investors with deep

pockets to absorb liquidations (Shleifer & Vishny, 1992). (Consider, for example, a

mortgage-backed security that has limited potential buyers upon the default of some

mortgages because only a few institutions have the expertise to evaluate it accurately.)

Formally, the k-th diagonal entry of Lt is lk/wt, where wt is the outside wealth at time

t, and lk represents the illiquidity of asset k. I will normalise the measure and focus

on the trend to facilitate comparison. While a shortcoming due to data constraints is

that the admittedly imprecise time-varying trend of aggregate liquidity is imputed as

the size of potential buyers, the magnitude of the price impact is less of a concern here

than it might be elsewhere.3

In addition, I apply a constant shock to all assets, i.e., fkt = f , and drop f from the

expression henceforth. This setting is strong but appropriate because it is essential to

ensure the consistency of identification over time. Moreover, the focus is on vulnera-

bilities, not shocks or triggers of the crisis, which are inherently challenging to forecast

(FSB, 2021).

3To the extent that there have been changes across asset classes over time, it is better to consider
time-varying lk. However, estimating price impacts remains a challenging empirical question that
requires a wide range of data. In Greenwood et al. (2015), all asset classes have the same price
impact—$10 billions of asset sales generate a price change of 10 basis points.
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3.2.3 Index construction

Banks’ common exposures can be described heuristically by a bipartite graph: the two

sets of nodes are banks and assets, and the edges represent portfolio allocations. The

goal is to isolate the nodes from the edges.

The key step is to construct a counterfactual AV measure by assuming that all

banks have the same allocation of portfolio weights, i.e.,

mH
nkt =

vkt∑
j vjt

∀ k.

The aggregate vulnerability of the hypothetical system is immediately given by

AVH
t =

∑
n antbnt∑
n ent

×
∑
k

lk
wt/at

m2
kt,

while the total value of each asset does not change (
∑

n antm
H
nkt = vkt). The ratio

AVt/AV
H
t can be thought of as portfolio diversity in the sense of Wagner (2011), who

assumes that investors tend to hold diverse portfolios to differentiate themselves from

each other and mitigate the impact of joint liquidation. Moreover, AVH
t yields the

following expression for AVt:

AVt =
∑
n

ant
et
bnt︸ ︷︷ ︸

leverage

×
∑
k

lk
wt/at

m2
kt︸ ︷︷ ︸

illiquidity

× AVt

AVH
t︸ ︷︷ ︸

heterogeneity

.

This decomposition breaks down the contagious effect of fire sales into three factors

identified by the three terms on the right. Next, I elaborate on each of these factors.

The first factor, which can be rewritten as the product of a size-weighted average

leverage (
∑

n(ant/at)bnt) and system leverage (at/et), reflects the vulnerability that

arises when large banks carry the most excessive leverage. Accounting for this cross-
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sectional dimension of risk build-up is compatible with the concern of so-called “too-

big-to-fail”: the reaction by complex big banks could foster deleveraging during market

downturns, causing larger effects than smaller banks.4

The second factor measures the overall level of system illiquidity, which is high

when the system portfolio is made up of relatively illiquid assets of large size and/or

aggregate liquidity (wt/at) is low. It has a conventional interpretation in terms of the

illiquidity-weighted Herfindahl-Hirschman Index (HHI) and therefore captures illiq-

uidity concentration at the asset class level.5 Indeed, there are broad interests from

regulators and academics on measuring risk concentration; for example, the European

System Risk Board (ESRB) lists the HHI of asset classes as a metric for measuring

the structural systemic risk stemming from amplification channels (see Table 4.4 and

Annex 4.2 in ESRB (2018)).

The third factor, the AV ratio, indicates the effect of portfolio heterogeneity. Ar-

guably, it is an important aspect in explaining fire-sale contagion, but the factor is

not underlined here due to two drawbacks. First, banks’ portfolio choice (mnkt) plays

a negligible role in affecting the level of aggregate vulnerability.6 Second, the ratio

4This perspective is akin to the analysis in Adrian & Brunnermeier (2016) and Brownlees & Engle
(2017), where larger size and higher leverage predict systemic risk. Bernanke (2012) notes that the
cause of the disproportionate effects in the mortgage markets during the subprime crisis, in contrast
to the dot-com bubble, is that the losses were not dispersed as desired—they concentrated on several
prominent institutions, which engaged in disorderly liquidation and precipitated abrupt plummet of
market confidence.

5 An alternative decomposition of the AV measure in the sense of Duarte & Eisenbach (2021) leads
to

AVt =
at
wt

× (bt + 1)b̄t ×
∑
k

m2
ktlk

∑
n

µnktβntαnt,

where bt = at/et − 1, b̄t = (1/N)
∑

n bnt, µnkt = mnkt/mkt, βnt = bnt/b̄t, and αnt = ant/at. They
interpret the last term as capturing “illiquidity concentration.” However, it is conceptually the same
as the definition of aggregate vulnerability in Greenwood et al. (2015) because extracting aggregate
terms from the cross-sectional AV measure does not qualitatively alter its information content. (The
logic of this argument is not affected by the fact that Duarte & Eisenbach (2021) incorporate an
additional factor into the Greenwood et al. (2015) model.)

6 Note that by definition, MtFt = f1 if fkt = f for all k. In Section 3.3, Figure 3.4 shows that the
FVI captures the change in AV almost precisely, verifying that the AV ratio (which is of value around
one) cannot determine the evolution of aggregate vulnerability by introducing meaningful variation.
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does not clearly tell where the vulnerability emerges, making it less appropriate for

identification over time.

Having explained the individual factors, I now define the Financial Vulnerability

Index (FVI) as

FVIt =
∑
n

ant
et
bnt ×

∑
k

lk
wt/at

m2
kt.

The index needs only aggregate bank-specific and asset-specific variables—it does not

require knowing the asset holding at any individual bank. This is an attractive feature

and benefits implementation with data from different sources. Moreover, the FVI

can be interpreted as a model-free index in that financial factors such as leverage

and illiquidity largely contributed to the disruption of intermediation during financial

crises, as informed by empirical studies (for discussions, see Calomiris (1993); Gertler

& Gilchrist (2018)).

3.2.4 Remarks

I conclude this section with two remarks. The takeaway is that the FVI can be adapted

to incorporate other instability risks.

Funding illiquidity. Banks create liquidity by financing illiquid assets with liquid

liabilities. However, funding may be unstable—consider the run on repo during the

GFC (see, e.g., Gorton & Metrick (2012)). As a result, borrowers who lack sufficient

short-term funding often have to sell illiquid assets rapidly. This funding illiquidity

can be reinforced by market illiquidity, leading to the “margin spiral” coined by Brun-

nermeier & Pedersen (2009). The FVI can account for the liability side of the balance

sheet by changing the assumption; for example, the more liquid the liabilities, the less
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price impact.7

Non-bank financial institutions. Despite the pivotal role of the banking sector, it

is important to identify emerging risks from structural changes to the financial system.8

The FVI can be adapted to capture vulnerabilities from non-banks where the general

principle of the illiquidity spirals applies. In Appendix B.1, I show how to construct a

vulnerability index for mutual funds in a similar way.

3.3 Financial instability monitoring

Balance-sheet leverage and illiquidity are determinants of financial instability in the

hypothesis of Minsky (1964). Although they are not sufficiently representative of fi-

nancial instability, the latter is more complex to measure. This section demonstrates

the plausibility of the FVI for monitoring financial instability. I first describe the data

and present the time series. Then, I investigate the information content of the FVI

and compare it with related indicators, aiming to distinguish the role of quantity and

price from an operational perspective.

3.3.1 Data

I obtain the balance sheet data at a quarterly frequency for U.S. BHCs that file a FR

Y-9C report with the Federal Reserve (I will refer to them as banks for convenience).

The sample covers the top one hundred banks (by total assets) each quarter from

7Berger & Bouwman (2009) and Brunnermeier et al. (2012) (see also Bai et al. (2018)) propose
measures of liquidity mismatch by assigning different weights to items on both sides of the balance
sheet.

8Of course, it is important to also track household debt (see, e.g., the U.S. debt-income ratios in
Mason & Jayadev (2014)). Mishkin (1978) points out that household balance sheets can help explain
the severity of the Great Depression. For more empirical evidence on the relation between household
debt and output growth, see Mian & Sufi (2018) and the references therein.
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1996Q1 to 2021Q4. It does not consist of a fixed sample of banks and in particular,

excludes banks which report negative equity.9

Total assets and equity (Tier 1 capital) are directly available from the data. The

outside wealth is the difference between the total assets in financial sectors obtained

from the Financial Accounts of the United States and the total assets in the sample

subtracted by cash. Following Duarte & Eisenbach (2021), I use the net stable funding

ratio (NSFR) to capture varying degrees of asset illiquidity (lk), which are listed in

Table 3.1.10 The value of lk for the U.S. Treasuries is normalised to 1. The details of

the mapping between asset categories and codes in FR Y-9C are relegated to Appendix

B.2.

3.3.2 Trends

Figure 3.1 shows the evolution of the FVI. It started rising noticeably in early 2004

and expanded for four years before its peak, reflecting that a build-up of vulnerability

had accompanied the banking system before the 2007–2008 financial turmoil. Between

2008Q3 and the end of 2009, the index plunged considerably, with a magnitude com-

parable to the surge. The prolonged decline was substantial, and the FVI flattened

out from 2015. The FVI increased sharply near 2020Q1, but the magnitude was much

lower than that during the GFC, presumably because the distress during the COVID-

9TAUNUS CORPORATION (RSSD ID: 2816906) is excluded from the data during 1999Q2–
2011Q4 for consistency reason, although it was one of the top ten banks (by total assets) in that
period. It reported thin equity during 1999Q2–2001Q1 and negative equity during 2001Q2–2011Q4.
TD BANKNORTH (RSSD ID: 1249196), which reported negative equity throughout 2008, is excluded
from the data in 2009Q1 due to thin equity. As a result, the average fraction of total assets of all BHCs
covered by the sample during 1996Q1–2011Q4 and 2012Q1–2021Q4 is 0.88 and 0.93, respectively. In
addition, the leverage of BARCLAYS GROUP US (RSSD ID: 2914521) in the sample is capped at
32. This large bank reported very thin capital during 2004Q4–2010Q3.

10The NSFR requires banks to maintain a sustainable funding structure to reduce risks resulting
from short-term liquidity outflows (Basel Committee on Banking Supervision, 2014). Note that using
these estimates is imperfect because the categories for the NSFR do not correspond exactly to those
shown in the table.
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Table 3.1. Asset illiquidity

Asset class lk
Cash 0
U.S. Treasuries 1
Repo & fed funds sold 2
Agency securities 3
Agency mortgage-backed securities 3
Agency-backed securities & other debt securities 7
Equities & other securities 11
Municipal securities 12
Residential real estate loans 12
Nonagency mortgage-backed securities 13
Commercial real estate loans 15
Other real estate loans 15
Commercial and industrial loans 15
Consumer loans 15
Lease financings 15
Residual loans 15
Residual securities 20
Residual assets 20

19 pandemic did not originate from within the banking sector. The trend returned to

the pre-pandemic level in 2021, consistent with normalising market conditions.

Figure 3.2 shows the evolution of the two factors. As one would expect, both were

elevated in the run-up to the GFC. Illiquidity increased steadily, while leverage built up

slowly and then rose sharply. Leverage peaked at the end of 2007, coinciding with the

crisis, before falling precipitously in 2008. It then rebounded, but fell persistently from

2010 onwards. (The fluctuation in 2009 comes partly from the fact that some banks

close to failure reported very low equity.) Illiquidity exhibited a relatively moderate

decline until 2014 when it started to level off. (The temporary increase in 2009 is due to

an artefact of the composition of banks in the sample: several large investment banks

became BHCs in 2008.) In contrast, leverage has slightly trended upward since 2016.

In the wake of the pandemic, the upward trend of leverage remained, whereas system
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Figure 3.1. Crisis indicators. The figure shows the FVI (solid line) together with
another crisis indicator (dashed line): EBP, BEX, VIX, and JLN (see text). All time
series are normalised to have zero mean and unit standard deviation. The EBP is
Gilchrist & Zakraǰsek’s (2012) excess bond premium updated in Favara et al. (2016)
(available for download at https://www.federalreserve.gov/econres/notes/feds-notes/
updating-the-recession-risk-and-the-excess-bond-premium-20161006.html). The BEX
is Bekaert, Engstrom & Xu’s (2022) risk aversion index obtained from Xu’s web-
site (https://www.nancyxu.net/risk-aversion-index). The VIX is the CBOE Volatil-
ity Index obtained from Federal Reserve Economic Data (https://fred.stlouisfed.org/
series/VIXCLS). The JLN is Jurado, Ludvigson & Ng’s (2015) 3-month ahead
macroeconomic uncertainty index obtained from Ludvigson’s website (https://www.
sydneyludvigson.com/macro-and-financial-uncertainty-indexes). The sample period is
1996Q1–2021Q4. The monthly indicators are averaged within the quarter to obtain a
quarterly time series. Shaded areas correspond to the National Bureau of Economic
Research (NBER) recession dates (available at https://www.nber.org/research/data/
us-business-cycle-expansions-and-contractions).
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Figure 3.2. Vulnerability evolution during 1996Q1–2021Q4. The figure shows the
time series of leverage and illiquidity in the FVI. They are normalised to 100 at the
start of the sample period. Shaded areas correspond to the NBER recession dates.

liquidity was enhanced. In addition, rapid stabilisation reflects substantial intervention

through the banking system.

To quantify the relative contribution of the two factors, I apply a variance decom-

position:

var(log FVIt) = var(log LEVt) + var(log ILLIQt) + 2cov(log LEVt, log ILLIQt).

I compare between two sub-periods outside the GFC: 2002Q1–2006Q4 (pre-crisis) and

2010Q1–2014Q4 (post-crisis). Figure 3.3 presents the result. The pre-crisis effect of
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Figure 3.3. Variance decomposition.

illiquidity is pronounced, with the change accounting for a considerable share (about

40%). In the post-crisis period, the contribution of leverage is approximately equal

to that of illiquidity (about 25%), which might be attributed to a stringent leverage

regulation under the Basel III framework. In contrast, illiquidity plays a relatively less

role in the second period. The correlation between leverage and illiquidity also matters,

explaining about half of the total variation in both periods. Overall, the results are

consistent with the patterns shown in the figure.

Figure 3.4 plots the FVI with the AV measure. The AV ratio (not shown) fluctuates

around its mean of 0.98, so on average the aggregate vulnerability is 2% lower due to

heterogeneous portfolio allocations. The figure makes clear that the variation in AVt is

substantially determined by the distributions of bank and asset characteristics (leverage

and illiquidity), while the distribution of bank-level portfolio composition (portfolio

heterogeneity) plays essentially no role.11 Reassuringly, the comparison reveals that

11This argument also applies to the framework of Duarte & Eisenbach (2021) which assumes constant
asset shock. See Footnote 6.
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Figure 3.4. FVI and AV.

the simple FVI is a reasonably good candidate for monitoring aggregate vulnerability

in lieu of the AV measure.

Despite the benchmark setting, it may be plausible to be concerned about the

robustness to other specifications. Does the index continue to yield a similar pattern of

vulnerability evolution when the model assumptions change? Two points arise. First,

the asset matrix, which connects the assumption of selling behaviour (liquidation rules)

with the AV measure.12 Second, the level of asset illiquidity at any time (mentioned

12Selling assets proportionately is a simplifying assumption at the theoretical level. Presumably,
banks are forced against several binding constraints (such as the risk-weighted capital requirement)
and find it notoriously hard to raise equity in times of distress. In this case, they have incentives to
deleverage through selling assets with greater risk weights, for example. It is also plausible that banks
may be inclined to sell liquid assets first, given that this will lead to less price decline.
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previously), which determines the price impact. The question can be addressed by

noting that Duarte & Eisenbach (2021) have conducted a battery of comprehensive

robustness checks, showing that the trends would not be significantly affected by various

assumptions (see Section I in their Internet Appendix for details). I have shown and

explained that the FVI approximates AV remarkably well in the benchmark setting of

Greenwood et al. (2015). Therefore, the alternative model specifications do not change

the qualitative patterns of the FVI, and similar checks do not need to be repeated.

3.3.3 The financial frictions

Abundant theories have been developed to explain the asymmetry and nonlinearity

associated with financial frictions and the macroeconomy. Motivated by this line of

research, I investigate the conditional relationship between future economic growth

and current financial vulnerability, using the quantile regression of Koenker & Bassett

(1978). Relatedly, the approach is applied by Giglio et al. (2016) to study the recession-

relevant information content of systemic risk measures, and by Adrian et al. (2019) to

propose a framework of “vulnerable growth” to quantify downside risks to GDP growth.

Unlike their use of composite indices constructed from a large number of measures with

predictive power, I focus on the FVI as a “pure” proxy for vulnerability and examine

the link between “vulnerable banks” and “vulnerable growth.”

I use the pre-2020 sample and follow the specification of Adrian et al. (2019).13

Denote the annualised average growth rate of GDP between t and t + h by yt+h and

the vector containing the predictive variable(s) and a constant by xt ∈ Rk. The goal

13The regression stops at 2019Q4 to avoid the substantial swings in growth during the COVID-
19 pandemic. The data on real GDP is downloaded from Federal Reserve Economic Data (https:
//fred.stlouisfed.org/series/A191RL1Q225SBEA).
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is to estimate the quantile function of yt+h conditional on xt:

Q̂τ (yt+h |xt) = x⊤t β̂τ .

The regression coefficient, β̂τ , is obtained by minimising the sum of absolute errors

weighted by τ :

argmin
βτ∈Rk

T−h∑
t=1

(
τ · 1{yt+h≥x⊤

t βτ}|yt+h − x⊤t βτ |+ (1− τ) · 1{yt+h<x⊤
t βτ}|yt+h − x⊤t βτ |

)
,

where 1{·} is the indicator function.

As a first look, the left plot in Figure 3.5 shows the ordinary least squares (OLS)

regression line and the univariate quantile regression lines for the fifth, fiftieth, and

ninety-fifth quantiles. The regression slopes appear to differ from the OLS slope at

τ = 5% and τ = 95%. At high quantiles, the FVI is positively associated with (one-

quarter-ahead) GDP growth, suggesting that an increase in FVI predicts an increase in

GDP growth. This makes sense during the booms. The relationship becomes negative

at low quantiles, suggesting that increased vulnerability may be followed by severe

recessions.

To more formally evaluate the information content of the FVI, the right plot in

Figure 3.5 shows the coefficients for the quantile regression where conditioning vari-

ables are the FVI and the current GDP growth. The estimates are flat over a large

range of quantiles. Estimated coefficients outside the confidence bounds would suggest

a nonlinear relationship between GDP growth and the FVI.14 Therefore, the result

implies that the estimated slope is significantly different from the OLS slope only at

τ = 95%.

14As in Adrian et al. (2019), the confidence bounds are computed under the hypothesis of constant
slopes, using 1000 bootstrapped samples generated by a vector autoregression with 4 lags, Gaussian
errors, and a constant, fitted to the sample of the FVI and GDP growth.
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Figure 3.5. Quantile regressions (FVI). The sample period is 1996Q1–2019Q4. The
left plot shows the one-quarter-ahead GDP growth against the FVI, along with the OLS
regression line and the fitted univariate quantile regression lines for the fifth, fiftieth,
and ninety-fifth quantiles. The right plot shows the estimated quantile regression
coefficients in regressions of one-quarter-ahead GDP growth on the FVI and current
GDP growth. As in Adrian et al. (2019), the confidence bounds (at the 75%, 90%, and
95% level) are obtained under the hypothesis of constant slopes and computed from
1000 bootstrapped samples, which are generated using a vector autoregression with 4
lags fitted to the sample of the FVI and GDP growth.

For comparison, I also use the Chicago Fed’s National Financial Conditions Index

(NFCI) as the predictive variable.15 The NFCI uses a weighted average of about

one hundred indicators of financial activity to reflect financial conditions in the U.S.

banking system (Brave & Butters, 2012). Based on the sample from 1973Q to 2015Q4,

Adrian et al. (2019) find that the nonlinear relationship between the NFCI and GDP

growth is statistically significant at both the high and low quantiles. Figure 3.6 shows

that during 1996Q1–2019Q4, it is above the significance level only at low quantiles. In

addition, the figure suggests negative effects on the GDP growth at both low and high

quantiles. This is different from the observation in Adrian et al. (2019), where there is

a positive effect at high quantiles.

In conclusion, the quantile effect of vulnerability on GDP growth is weak. How-

15The NFCI at the quarterly frequency is obtained by averaging the weekly observations. The data is
available for download from Federal Reserve Economic Data (https://fred.stlouisfed.org/series/NFCI).
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Figure 3.6. Quantile regressions (NFCI). This figure shows the results on quantile
regressions when using the NFCI as the predictive variable. See text.

ever, the interpretation deserves some caution because the regressions seem sensitive

to the sample period and a long time span is important when evaluating the predictive

ability of financial indicators for macroeconomic outcomes. In addition, balance sheet

measures generally have difficulty in generating enough statistical power. For these

reasons, I cannot say much more.

3.3.4 Comparison with other indicators

There are various explanations for the increasing vulnerability. In general, a higher

risk appetite should induce intermediaries to take on more risk, and higher risk taking

is associated with larger balance sheets and higher leverage.16 Next, I confront the FVI

to U.S. proxies of stress and uncertainty, which capture risk appetite in credit markets

in different dimensions. The Gilchrist & Zakraǰsek’s (2012) excess bond premium is a

measure of risk appetite in the corporate bond market with high information content for

future economic developments; it captures variation in corporate credit spreads beyond

the compensation for expected defaults. The Bekaert, Engstrom & Xu’s (2022) risk

16Theories predict a causal link between risk taking and risk appetite, although an exploration of
this issue is beyond the scope of this work. See the literature on the risk-taking channel of monetary
policy transmission (Borio & Zhu (2012)).
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Table 3.2. Correlations among the indicators

FVI EBP BEX VIX JLN
FVI 1.00
EBP 0.17* 1.00
BEX 0.17* 0.79*** 1.00
VIX 0.25*** 0.74*** 0.91*** 1.00
JLN 0.08 0.48*** 0.63*** 0.59*** 1.00

Notes: The table shows the correlation coefficients between the FVI and the indicators mentioned in
the main text (data sources are mentioned in Figure 3.1). The monthly indicators are averaged within
the quarter to obtain a quarterly time series. The sample period is 1996Q1–2021Q4. * p < .1; **
p < .05; *** p < .01.

aversion index is based on the equity variance risk premium. The VIX is constructed

using the implied volatilities of a broad range of S&P 500 index options and often

used as a proxy for uncertainty. The Jurado, Ludvigson & Ng’s (2015) macroeconomic

uncertainty index is an aggregate of the conditional volatility of the unforecastable

component of a series of economic variables.

The dashed lines in Figure 3.1 show these four market-based indicators, normalised

using the full-sample mean and standard deviation. They were low in the boom period

before the GFC and spiked simultaneously. In addition, they are comparatively more

volatile than the FVI. Table 3.2 reports the correlations. The FVI is moderately

correlated with VIX at 0.25, but the correlations with others are generally low and

not statistically significant. On the other hand, the cross correlations among the four

market-based indicators are high and statistically significant, although they are derived

from different methods. (The notions of risk appetite and uncertainty are difficult to

distinguish semantically and are sometimes used as synonyms in measuring “financial

strains.”) In short, the FVI is not directly related to the larger economy and exhibits

independent variation compared to popular measures of stress and uncertainty.

The comparison has implications for decision making. Consider two analogies be-

tween measurement in atmospheric science and economics: first, atmospheric chem-
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istry analyses the interaction between the atmosphere and organisms by tracing the

composition of the atmosphere, as tracing the composition of financial accounts; sec-

ond, measuring atmospheric temperature and pressure for weather forecasting can be

thought of as measuring financial stress for forecasting macroeconomic activity. Fol-

lowing this logic, quantities tell latent vulnerabilities, while asset prices help signal

distress.17 From the perspective of operationalising macroprudential regulation, the

use of indicators depends largely on the objective, a point that will be revisited in the

next section.

3.4 Countercyclical capital buffer

This section demonstrates that the FVI can be used to set the countercyclical capital

buffer (CCyB), an instrument designed to protect the banking sector from periods of

excessive growth associated with a build-up of systemic risk.

3.4.1 Comparison with the benchmark

According to the reference guide (Basel Committee on Banking Supervision (2010)), the

benchmark buffer rate of CCyB varies between 0 and 2.5% and increases linearly when

the value of the credit-to-GDP gap (henceforth the “gap”), defined as the deviation of

the credit-to-GDP ratio from its long-term trend, exceeds a threshold. Specifically, it

17This dichotomy is consistent with the literature (Borio & Lowe (2002)): Schularick & Taylor
(2012) show that bank-loan growth is a near-universal precursor of financial crises; Baron et al. (2021)
show that substantial declines in returns provide information on the timing of banking crises. Along
this line, Greenwood et al. (2022) define an indicator by looking at excess credit growth and booming
asset prices. This line of early warning literature relies on predictive power in a statistical model to
explain the causes of crises (see, e.g., Demirgüç-Kunt & Detragiache (2005) for a review). The FVI
starts from an accounting perspective and addresses vulnerabilities in the evolving financial structure,
which consists of assets and liabilities, rather than asset prices that are more related to macroeconomic
conditions. Benoit et al. (2017, p. 134), for example, note that market-based approaches may lack a
theoretical foundation and “generally do not permit to clearly identify the source of risk at play”.
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is computed as

BufferGAP
t (%) =


0, if GAPt < GAPlow,

2.5×
(

GAPt−GAPlow

GAPhigh−GAPlow

)
, if GAPlow ≤ GAPt ≤ GAPhigh,

2.5, if GAPt > GAPhigh,

where GAPlow and GAPhigh equal to 2% and 10%, respectively. Using historical data

from a wide range of countries, Drehmann et al. (2011) show that the gap presents good

signalling properties without generating large noise and can perform well in setting the

CCyB.

Because the CCyB is designed to restrict risk build-up among banks, the FVI can

reasonably be expected to play a role in the task. For comparison, I set the buffer rate

based on the FVI as follows:

BufferFVI
t (%) =


0, if FVIt < FVIlowt ,

2.5×
(

FVIt−FVIlowt

FVIhight −FVIlowt

)
, if FVIlowt ≤ FVIt ≤ FVIhight ,

2.5, if FVIt > FVIhight ,

where FVIlowt and FVIhight are the 65th percentile and the 80th percentile of FVIt up

to time t, respectively. Note that only the information available up to that date is

used. Also note that the result depends on the thresholds. The exercise is merely

for illustrative purposes, so I will not address robustness but rather refer to the work

of the ESRB (Detken et al., 2014, Section 5) for practical challenges and alternative

analytical methods.

The top plot of Figure 3.7 shows the estimated buffers from 2004Q1 to 2021Q4.

BufferFVI
t is triggered in 2004Q2, then reaches maximum in 2004Q4 and remains high
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Figure 3.7. Mapping indicators into buffers. The vertical line indicates the start date
of the crisis according to the chronology of Laeven & Valencia (2020). The credit-to-
GDP data are available from the BIS website (https://data.bis.org/topics/CREDIT
GAPS).

for nearly four years. It drops to zero in 2008Q4, increases temporarily in 2009Q2, and

is constant thereafter. BufferGAP
t rises steadily from 2005Q1 and reaches maximum in

2006Q4. It decreases from 2008Q2 and drops to zero in 2009Q4. The two indicators

demonstrate comovement (see the bottom plot of Figure 3.7), and both could trig-

ger buffer requirements before the GFC. The results suggest that given banks’ active

adjustments, the FVI could reflect changes in the banking sector in a timely fashion

and, therefore, could be one of the potential anchors to build macroprudential capital

buffers in good times.
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However, both indicators are worse at signalling the proper timing of the release.

The vertical line indicates the start date of the crisis. BufferFVI
t responds with a delay

(due to changes in the composition of banks in the sample) before dropping to zero

in one quarter. BufferGAP
t decreases promptly but falls to zero only after two years

when the crisis is less pronounced. Drehmann et al. (2011), for example, show that

market indicators are better at signalling the proper timing of the release. In a nutshell,

quantities that reflect sources of weakness and prices that capture market stress can

work jointly for different phases of financial cycles.

Turning to the end of the sample period, BufferFVI
t does not respond because the

abrupt change in FVI is mild, while the gap surges in 2020Q1 and triggers BufferGAP
t by

attaining a level that almost parallels 2004Q1. However, unlike the GFC, the economic

crisis during the COVID-19 pandemic is caused by an exogenous shock. Moreover, the

gap’s soar is mainly the consequence of the contraction in GDP and increased lending

due to the policy response (which also causes the FVI to rise). The upward trend of the

gap does not last long and is close to zero in 2021Q3. In reality, the Basel Committee

on Banking Supervision (2021, p. 33) finds that the accumulated CCyBs among most

of its member jurisdictions were limited at the onset of the pandemic.

3.4.2 Comments

The current CCyB policy framework differs between jurisdictions; it is implemented in a

manner of “guided discretion” that combines evaluating indicators to identify systemic

risk build-up with expert judgement (Basel Committee on Banking Supervision, 2017).

For example, the Financial Policy Committee at the Bank of England (2023) chooses

the CCyB buffer rate in two stages: (i) assessing financial vulnerabilities and (ii)

assessing banks’ resilience to potential shocks. In this context, the FVI can be helpful

for decision-making in the first stage before further analytical approaches are applied
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(such as macroprudential stress tests).

Meanwhile, an emphasis on indicators comes with caveats. First, the selection of

indicators in an early warning system can change over time and depends on the devel-

opment of the financial system. Second, the index lacks a cost-benefit analysis, which

requires additional parameter estimation. Simple measures do not help to assess the

appropriate level and effectiveness of the CCyB. In this regard, Van Oordt (2023) uses

a statistical approach based on systemic risk measures to calibrate the magnitude of

CCyB for six advanced economies, and Elenev et al. (2021) apply a general equilibrium

model to study the welfare gains of the buffer requirements.

3.5 Historical banking crises

The starting point of this work is to formulate financial vulnerability from a systemic

perspective. The construction of the index suggests that it transcends implementation

restricted to a specific period. So far, attention has been focused on the current banking

system. This section illustrates an implementation for the United States in 1928 and

1933.

3.5.1 Empirical implementation

I digitalise balance sheet data in the Annual Report of the Office of the Comptroller

of the Currency (OCC). The sample consists of all nationally chartered banks in 48

states (excluding Alaska and Hawaii) recorded in the report. Equity is the sum of

capital, surplus and undivided profits (see Figure 3.8), and there are 15 asset classes

(see Figure 3.9).18

18The leverage factor of the FVI uses Table No. 97 in the 1928 annual report and Table K in the 1933
annual report. The illiquidity factor of the FVI uses Table No. 60 in the 1929 annual report and Table
No. 66 in the 1934 annual report. “U.S. Government securities” and “Securities fully guaranteed by
U.S. Government” in Table No. 66 are combined to make the asset classes in the two years identical.
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Figure 3.8. Excerpt from the OCC Annual Report, 1928.

Figure 3.9. Excerpt from the OCC Annual Report, 1929.
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Due to the lack of data, the parameter lk is omitted from the mathematical expres-

sion. In addition, the price impact is assumed to be inversely proportional to aggregate

liquidity, which is defined as the sum of vault cash, reserves with the Federal Reserve

banks, outside checks, and other cash items. These liquid assets are relatively easy

to meet withdrawal demands, so the assumption can be interpreted as being consis-

tent with “cash-in-the-market” pricing (Allen & Gale, 1994). Of course, alternative

assumptions are worth further exploration, given that different definitions of illiquidity

are possible, but the one used here can be seen as a plausible benchmark.

Table 3.3 reports the result. Four Mountain states (Arizona, Utah, Idaho, and

Montana) had high FVI on the eve of the Great Depression. This is mainly because,

in each of these states, a few large banks dominated the local market. On average, the

FVI was high in the West, followed by the Midwest, South, and Northeast. The com-

parison between 1928 and 1933 indicates deleveraging in most states. A more obvious

observation is the widespread reduction of illiquidity. Asset concentration, measured

as the HHI, decreased in all states (results not shown). According to the study of

Wicker (1996), banking panics during the Great Depression were concentrated in a

few regions; Chicago, for example, experienced a wave of bank suspensions in 1931.

The table shows that the liquidity condition in Illinois was significantly improved as

of December 1933. To check the association between distress and change in illiquidity,

I calculate the bank suspension rate by state as the ratio of total number of banks

suspended during 1929–33 and the total number of banks in 1928.19 The OLS regres-

sion shows that the degree of suspension during 1929–33 is statistically significant in

explaining the cross-sectional percentage decrease in illiquidity in the same period (the

The files are available for download on the St. Louis Fed website (Federal Reserve Archival System
for Economic Research).

19The Federal Reserve Bulletin (September 1937) contains the statistics of bank suspensions, which
“comprise all banks closed to the public, either temporarily or permanently by supervisory authorities
or by the banks’ boards of directors on account of financial difficulties.”
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t-statistic is 3.49 with adjusted R2 of 0.192).

Table 3.3. Financial vulnerability by states

State 1928 1933

Leverage Illiquidity FVI Leverage Illiquidity FVI

AL 49.1 5.5 270.0 25.3 2.8 70.8

AZ 239.5 3.2 766.4 107.7 2.3 247.7

AR 70.7 4.7 332.3 51.9 2.0 103.8

CA 77.3 5.2 402.0 68.5 4.7 322.0

CO 136.0 3.3 448.8 101.5 1.7 172.5

CT 37.6 6.5 244.4 47.3 4.0 189.2

DE 23.6 5.5 129.8 14.4 5.9 85.0

FL 69.0 3.9 269.1 66.1 2.6 171.9

GA 59.1 5.4 319.1 61.4 3.6 221.0

ID 159.6 4.1 654.4 99.5 1.2 119.4

IL 81.3 4.6 374.0 86.6 1.1 95.3

IN 62.9 4.5 283.0 62.1 1.6 99.4

IA 99.2 4.5 446.4 79.6 1.7 135.3

KS 85.8 3.9 334.6 63.7 2.1 133.8

KY 65.6 6.5 426.4 58.2 3.2 186.2

LA 77.0 5.8 446.6 99.1 2.6 257.7

ME 66.9 7.1 475.0 60.5 1.4 84.7

MD 61.0 4.8 292.8 75.8 1.8 136.4

MA 66.6 5.1 339.7 44.1 2.5 110.2

MI 83.1 5.2 432.1 65.7 2.2 144.5

MN 103.9 3.8 394.8 84.3 2.6 219.2
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Table 3.3 Continued

State 1928 1933

Leverage Illiquidity FVI Leverage Illiquidity FVI

MS 89.1 5.3 472.2 66.1 1.9 125.6

MO 77.3 4.8 371.0 104.2 1.6 166.7

MT 142.1 4.0 568.4 68.7 1.8 123.7

NE 120.9 4.7 568.2 80.0 2.2 176.0

NV 106.4 5.0 532.0 215.8 2.2 474.8

NH 39.9 4.3 171.6 33.6 3.1 104.2

NJ 65.0 6.3 409.5 60.0 4.0 240.0

NM 158.1 3.5 553.4 82.7 1.4 115.8

NY 78.3 4.0 313.2 40.6 2.3 93.4

NC 48.5 6.6 320.1 33.4 2.0 66.8

ND 123.8 4.3 532.3 61.7 3.0 185.1

OH 51.8 5.3 274.5 48.4 3.2 154.9

OK 152.4 3.5 533.4 68.7 2.0 137.4

OR 100.2 3.7 370.7 124.2 2.3 285.7

PA 40.4 5.4 218.2 34.5 3.6 124.2

RI 30.0 5.5 165.0 20.0 4.8 96.0

SC 72.0 5.7 410.4 57.2 1.8 103.0

SD 113.8 3.8 432.4 60.3 3.2 193.0

TN 73.4 6.2 455.1 67.8 2.9 196.6

TX 76.4 4.4 336.2 62.1 1.9 118.0

UT 158.7 4.1 650.7 82.4 2.5 206.0

VT 59.6 7.0 417.2 29.5 3.7 109.2
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Table 3.3 Continued

State 1928 1933

Leverage Illiquidity FVI Leverage Illiquidity FVI

VA 45.9 8.5 390.1 47.1 4.0 188.4

WA 114.6 3.9 446.9 63.3 2.5 158.2

WV 42.8 6.8 291.0 37.3 3.7 138.0

WI 87.5 6.1 533.8 58.9 2.7 159.0

WY 97.2 3.9 379.1 67.4 1.7 114.6

The OCC Annual Report also allows for implementing the FVI for each Federal

Reserve district, shown in Table 3.4. Consistent with the state-level result, districts

in the West and Midwest had high FVI in 1928, and the seventh district saw a big

improvement in liquidity. In addition to different disaggregation, extending the sample

using similar balance sheet information is also possible. Exploring structural changes

in the banking system from a long-run perspective can be the next step.

Table 3.4. Financial vulnerability by Federal Reserve districts

District 1928 1933

Leverage Illiquidity FVI Leverage Illiquidity FVI

1 58.8 5.4 317.5 43.3 2.8 121.2

2 77.7 4.1 318.6 43.2 2.7 116.6

3 35.2 6.0 211.2 32.9 4.1 134.9

4 51.7 4.9 253.3 42.5 3.6 153.0

5 51.8 6.2 321.2 52.4 2.9 152.0

6 62.5 5.3 331.2 57.6 3.0 172.8

7 82.0 4.9 401.8 78.7 1.8 141.7
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Table 3.4 Continued

District 1928 1933

Leverage Illiquidity FVI Leverage Illiquidity FVI

8 70.7 5.0 353.5 75.9 2.5 189.8

9 108.2 3.9 422.0 77.3 3.3 255.1

10 124.3 3.8 472.3 82.5 2.2 181.5

11 78.8 4.4 346.7 64.9 2.8 181.7

12 86.5 4.8 415.2 71.7 4.5 322.7

3.5.2 Discussion

I now discuss the connection with the literature. The potential improvement and

application mentioned are left for future research.

Influenced in part by theoretical models of financial contagion through contractual

obligations (e.g., Allen & Gale (2000)), researchers have rekindled interest in the role of

interbank networks in historical crises. They have attempted to apply network analysis

to contexts where a common thread is the pyramid structure and the propagation of

withdrawal through the correspondence relationship (see, e.g., White (1983) for an

introduction to the American banking system in the early 20th century). An example

is the work of Anderson et al. (2019), who use an interbank clearing model to study the

effect of the National Banking Acts on financial stability. The accounting structure

of the FVI does not appear to speak prima facie to contagion but its elements are

implicitly invoked in many contagion models. The index can be blended with more

institutional details as a next step. For example, the definition of liquid assets can

include interbank assets of country banks to incorporate the assumption that they
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withdraw deposits at reserve city banks and central reserve city banks during panics.20

Meanwhile, abundant literature has studied the role of financial frictions in finan-

cial crises.21 It is well-established that severe recessions are often preceded by credit

expansions (e.g., Reinhart & Rogoff, 2009). Rajan & Ramcharan (2015), for example,

study the role of leverage in asset price inflation in the 1920s. The FVI is related to

the line of research on how well vulnerability and shock can account for the severity of

financial crises (Krishnamurthy & Muir (2020)). Provided data availability, the index

could be extended to cross-country studies along the lines of Jordà et al. (2021), which

explores the relationship between bank capital and crisis risk via balance sheet ratios.

In sum, the FVI could be used as a proxy for financial vulnerability while providing a

systemic perspective on the anatomy of financial crises.

3.6 Conclusion

I have introduced an index of financial vulnerability based on a general law of economic

motion, for which voluminous theories have been discussed for a long time. I have

also used U.S. data to show the empirical implementation in different areas. The

demonstration of indicators is widespread in media and policy reports. Against the

background of macroprudential regulation, the FVI adds value from both the systemic

and operational perspectives. While the index is not, of course, perfect, it could be

preferred because of its simplicity and communicability.

20For example, see Mitchener & Richardson (2019) for empirical evidence on the behaviour of banks
in different locations during the Great Depression.

21See Sufi & Taylor (2022) for a recent survey and Calomiris & Gorton (1991) for an earlier discussion
on the origins of banking panics.
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Appendix A

Appendix for Chapter 2

A.1 Algorithmic equilibrium characterisations

This section presents the two algorithmic equilibrium characterisations for the models

discussed in Section 2.5.

Algorithm 1 Full Payment Algorithm (FPA) in Bardoscia et al. (2019)

1: Set e(0) := Ab, l(0) := 0, and A(0) := ∅. Set t = 1.
2: For all i ∈ N , set

ei(t) = ei(t− 1) +
∑
j∈N

lj(t− 1)Πji − li(t− 1). (A.1.1)

3: Determine

A(t) = {i ∈ N | ei(t) ≥ L̄i} \
t−1⋃
s=0

A(s). (A.1.2)

4: if A(t) ≡ ∅ then
5: return l̃∗ =

∑t−1
s=0 l(s).

6: else
7: set li(t) = L̄i for all i ∈ A(t), and li(t) = 0 otherwise.
8: end if
9: Set t = t+ 1 and go back to step 2.

Algorithm 1 corresponds to the Full Payment Algorithm (FPA) by Bardoscia et al.
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(2019). It computes a vector l̃∗ that corresponds to the payments made by all banks

in the network. The mechanism can be understood as follows. At time t, e(t) consists

of the available liquid assets (including received payments), and A(t) is the set banks

that can pay in full. Step 7 incorporates the assumption that banks either make full

payment or pay nothing.1 Therefore, the modelling assumption results in a sequence

of payments, and banks can only pay in full if they have received sufficient liquidity.

Algorithm 2 Least Clearing Vector Algorithm (LA) for Rogers & Veraart (2013)
model with α = β = 0

1: Set t = 0, l(0) := 0, and D(−1) := N .
2: For all i ∈ N , determine

v
(t)
i := Ab

i +
∑
j∈N

l
(t)
j Πji − L̄i. (A.1.3)

3: Define

D(t) := {i ∈ N | v(t)i < 0} and S(t) := {i ∈ N | v(t)i ≥ 0}. (A.1.4)

4: if D(t) ≡ D(t−1) then
5: return l∗ = l(t−1).
6: else
7: set l

(t+1)
i = L̄i for all i ∈ S(t), and l

(t+1)
i = 0 for all i ∈ D(t).

8: end if
9: Set t = t+ 1 and go back to step 2.

Algorithm 2 corresponds to the least clearing vector in the Rogers & Veraart (2013)

model with α = β = 0, in which case the defaulting banks make zero payments. We

refer to Algorithm 2 as the Least Clearing Vector Algorithm (LA). The algorithm starts

by assuming that initially there is no solvent bank that would be able to make any

payment. S(0) is the set of banks that would be able to pay liabilities in full even if

all other banks did not meet their obligations. Similar to the construction in Rogers &

1Note that an important difference between the FPA and the hard default in Paddrik et al. (2020)
is that in the former setting, it is assumed that—unlike the Eisenberg & Noe (2001) model in finding
an equilibrium payment vector—there is no coordination among banks in the FPA to determine the
payments.
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Veraart (2013, Theorem 3.7), the output of the algorithm is the least clearing vector.

A.2 Proofs

This section provides the remaining proofs for Chapter 2.

A.2.1 Preliminaries

The following definition is a continuation of Section 2.3.2.

Definition A.2.1. Let (LP , Ab;V) be the PTN-network. Define the function ΦP =

ΦP(·;V) : EP → EP as

ΦP
i (E) = ΦP

i (E;V) = Ab
i +

∑
j:L̄P

j >0

LP
jiV

(
Ej + L̄P

j

L̄P
j

)
− L̄P

i ∀ i ∈ N , (A.2.1)

where EP = [−L̄P , Ab + ĀP − L̄P ], L̄P = LP1, and ĀP = 1⊤LP . We refer to a vector

E ∈ EP satisfying E = ΦP(E) as a re-evaluated equity in the PTN-network.

We use the following lemmas to prove the main results in Section 2.4.

Lemma A.2.2. For any PTN-exercise (L,P , LP), L̄i = L̄P
i for all i ∈ N \ P and

∑
j∈P

Lji − L̄i =
∑
j∈P

LP
ji − L̄P

i ∀ i ∈ N . (A.2.2)

Proof of Lemma A.2.2. The first result is a direct consequence of Definition 2.2.1. In

addition, equation (A.2.2) is equivalent to

∑
j∈P

Lji − L̄i +
∑

j∈N\P

Lji =
∑
j∈P

LP
ji − L̄P

i +
∑

j∈N\P

LP
ji︸︷︷︸

=Lji

,

which holds because of the PTN-constraint in Definition 2.2.1.
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Lemma A.2.3. Given a PTN-exercise (L,P , LP), let E(0) = Einitial(L) and EP(0) =

Einitial(LP) be the initial equity in the original network and the PTN-network, respec-

tively. For n ∈ N, we define two sequences recursively by

E(n) = Φ
(
E(n−1)

)
, EP(n) = ΦP (EP(n−1)

)
, (A.2.3)

where the functions Φ and ΦP are defined in (2.5) and (A.2.1), respectively. Then

1. E(0) = EP(0) ;

2. the sequences
(
E(n)

)
and

(
EP(n)

)
are non-increasing, i.e., for all n ∈ N0,

E(n) ≥ E(n+1), EP(n) ≥ EP(n+1);

3. the sequences
(
E(n)

)
and

(
EP(n)

)
converge to the greatest re-evaluated equities,

i.e.,

lim
n→∞

E(n) = E∗, lim
n→∞

EP(n) = EP;∗,

where E∗ and EP;∗ are the greatest fixed point of Φ and ΦP , respectively.

Proof of Lemma A.2.3. For all i ∈ N , the initial equities in the two networks can be

written as

E
(0)
i = Ab

i +
∑

j∈N\P

(Lji − Lij) +
∑
j∈P

(Lji − Lij),

E
P(0)
i = Ab

i +
∑

j∈N\P

(Lji − Lij) +
∑
j∈P

(LP
ji − LP

ij).

Therefore, E(0) = EP(0) follows from the PTN-constraint in Definition 2.2.1. The

second statement follows from Theorem 2.6 in Veraart (2020) because the functions Φ
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and ΦP are non-decreasing by Lemma A.1 in Veraart (2020). The third statement also

follows from Theorem 2.6 in Veraart (2020).

A.2.2 Proof of Proposition 2.4.1

We use Lemma A.2.4 (similar to Lemma B.4 in Veraart (2022)) to prove Proposition

2.4.1.

Lemma A.2.4. For any PTN-exercise (L,P , LP), let F = {i ∈ N |Einitial
i (L) < 0}

and FP = {i ∈ N | Einitial
i (LP) < 0} be the fundamental default set in the original

network and the PTN-network, respectively. Let Ẽ be the greatest re-evaluated equity

in the original network with default set D(Ẽ) and ẼP be the greatest re-evaluated

equity in the PTN-network with default set D(ẼP). Then F = FP , F ⊆ D(Ẽ), and

FP ⊆ D(ẼP).

Proof of Lemma A.2.4. First, by Lemma A.2.3, Einitial(L) = Einitial(LP), so F = FP .

Second, fix i ∈ F and consider the sequence
(
E(n)

)
defined by (A.2.3). Then Lemma

A.2.3 implies that ∀m ∈ N, 0 > E
(0)
i ≥ E

(m)
i ≥ limn→∞E

(n)
i = Ẽi, where Ẽ is the

greatest fixed point of Φ. Therefore, i ∈ D(Ẽ). Finally, FP ⊆ D(ẼP) can be proved

similarly by considering the sequence (EP(n)).

Proof of Proposition 2.4.1. Given the fundamental default set in the PTN-network,

denoted as FP , we know from Lemma A.2.4 that FP ⊆ D(ẼP). We prove FP = D(ẼP)

by showing that D(ẼP) ⊆ FP . Let i ∈ D(ẼP). Then

0 > ẼP
i = Ab

i +
∑

j∈MP

LP
jiV

(
ẼP

j + L̄P
j

L̄P
j

)
− L̄P

i .

Hence, L̄P
i > 0. Since P = N , the graph corresponding to the optimal PTN-network
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is bipartite by Lemma 1 in D’Errico & Roukny (2021).2 This implies that LP
ji = 0 for

all j ∈ MP . It follows that

∑
j∈MP

LP
jiV

(
ẼP

j + L̄P
j

L̄P
j

)
= 0 =

∑
j∈N

LP
ji,

and hence

0 > ẼP
i = Ab

i − L̄P
i = Einitial

i (LP).

Therefore FP = D(ẼP). Furthermore, FP = D(ẼP) ⊆ D(Ẽ) by Lemma A.2.4

A.2.3 Proof of Theorem 2.4.2

Proof. Given the PTN-exercise (L,P , LP), set

M = {i ∈ N | L̄i > 0}, MP = {i ∈ N | L̄P
i > 0}.

1. Recall that for (L,Ab;V) and (LP , Ab;V) we consider the functions

Φi(E) = Ab
i +

∑
j∈M

LjiV

(
Ej + L̄j

L̄j

)
− L̄i ∀ i ∈ N ,

ΦP
i (E) = Ab

i +
∑

j∈MP

LP
jiV

(
Ej + L̄P

j

L̄P
j

)
− L̄P

i ∀ i ∈ N

on E = [−L̄, Ab + Ā− L̄], and EP = [−L̄P , Ab + ĀP − L̄P ], respectively.

It holds that Ẽ ∈ E . We need Ẽ ∈ EP before showing that Ẽ is a fixed point of

ΦP . First, note that the PTN-constraint implies that EP = [−L̄P , Ab + Ā− L̄].

Hence, E and EP have the same upper bound but different lower bounds. To

see that Ẽ ∈ EP , note that for all i ∈ N \ P it holds that L̄i = L̄P
i and hence

2As mentioned before, the optimal PTN-optimisation problem in Definition 2.2.4 is identical to
the non-conservative compression problem in D’Errico & Roukny (2021) when P = N .
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the corresponding lower bound for Ẽi is the same in E and EP . Furthermore,

by assumption (2.6), Ẽi ≥ 0 for all i ∈ P and hence the lower bound does not

matter. Therefore, Ẽ ∈ EP .

Since Ẽ is a fixed point of Φ, we have

Ẽi = Φi(Ẽ) = Ab
i +

∑
j∈M

LjiV

(
Ẽj + L̄j

L̄j

)
− L̄i ∀ i ∈ N .

We show that Ẽ is also a fixed point of ΦP .

First, let i ∈ N \ P . Then, L̄i = L̄P
i and

Ẽi = Ab
i +

∑
j∈M\P

LjiV

(
Ẽj + L̄j

L̄j

)
+

∑
j∈M∩P

LjiV

(
Ẽj + L̄j

L̄j

)
− L̄P

i

= Ab
i +

∑
j∈MP\P

LP
jiV

(
Ẽj + L̄j

L̄j

)
+

∑
j∈M∩P

LP
jiV

(
Ẽj + L̄j

L̄j

)
− L̄P

i ,

where the last equality holds because M\P = MP \ P and Lji = LP
ji for all j.

By assumption,

V

(
Ẽj + L̄j

L̄j

)
= 1 ∀ j ∈ M∩P , V

(
Ẽj + L̄P

j

L̄P
j

)
= 1 ∀ j ∈ MP ∩ P .

It follows that

Ẽi = Ab
i +

∑
j∈MP\P

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
+

∑
j∈MP∩P

LP
ji − L̄P

i

= Ab
i +

∑
j∈MP\P

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
+

∑
j∈MP∩P

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
− L̄P

i

= Ab
i +

∑
j∈MP

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
− L̄P

i = ΦP
i (Ẽ).
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Second, let i ∈ P . Then,

Ẽi = Ab
i +

∑
j∈M\P

LP
jiV

(
Ẽj + L̄j

L̄j

)
+

∑
j∈M∩P

LjiV

(
Ẽj + L̄j

L̄j

)
− L̄i

= Ab
i +

∑
j∈MP\P

LP
jiV

(
Ẽj + L̄j

L̄j

)
+

∑
j∈M∩P

Lji − L̄i,

where the last equality uses the fact that V
(

Ẽj+L̄j

L̄j

)
= 1 for all j ∈ M ∩ P .

Using equation (A.2.2) and V
(

Ẽj+L̄P
j

L̄P
j

)
= 1 for all j ∈ MP ∩ P , we obtain

Ẽi = Ab
i +

∑
j∈MP\P

LP
jiV

(
Ẽj + L̄j

L̄j

)
+

∑
j∈MP∩P

LP
ji − L̄P

i

= Ab
i +

∑
j∈MP\P

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
+

∑
j∈MP∩P

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
− L̄P

i

= Ab
i +

∑
j∈MP

LP
jiV

(
Ẽj + L̄P

j

L̄P
j

)
− L̄P

i = ΦP
i (Ẽ).

Hence, Ẽ is a fixed point of ΦP .

2. We next show that if Ẽ satisfying (2.6) is the greatest fixed point of Φ, then it

is also the greatest fixed point of ΦP . Let ẼP be the greatest fixed point of ΦP .

Since Ẽ is a fixed point of ΦP , we have Ẽ ≤ ẼP and 0 ≤ Ẽi ≤ ẼP
i for all i ∈ P

by (2.6). Therefore, {i ∈ P | ẼP
i < 0} = ∅. It follows that ẼP is also a fixed

point of Φ (see the proof of Proposition 2.4.5) and hence ẼP ≤ Ẽ. This implies

Ẽ = ẼP . Furthermore, under these greatest re-valuated equities,

D(L,Ab;V) = {i ∈ N | Ẽi < 0} = D(LP , Ab;V),

so there is systemic risk reduction but no strong reduction.
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A.2.4 Proof of Theorem 2.5.1

We use Lemma A.2.5 to prove Theorem 2.5.1.

Lemma A.2.5. Consider the FPA (Algorithm 1) and the LA (Algorithm 2) for a given

financial network. Fix an iteration t ∈ N0. Then

t+1⋃
s=0

A(s) = S(t), (A.2.4)

i.e., the banks that make payments in the FPA up to time t+ 1 are identical to those

that make payments in the LA up to time t+ 1.

Proof of Lemma A.2.5. We prove the result by induction. Let t = 0. By plugging the

initial values of Algorithm 1 into equations (A.1.1) and (A.1.2), we get

1⋃
s=0

A(s) = A(0) ∪ (A(1) \ A(0)) = A(1) = {i ∈ N | ei(1) ≥ L̄i} = {i ∈ N |Ab
i ≥ L̄i}

and

S(0) = {i ∈ N |Ab
i − L̄i ≥ 0}.

Therefore,
⋃1

s=0 A(s) = S(0).

Now suppose (A.2.4) holds for a fixed t ∈ N. We show that it also holds for t + 1,

i.e.,
⋃t+2

s=0A(s) = S(t+1). Because

t+2⋃
s=0

A(s) =
t+1⋃
s=0

A(s) ∪ A(t+ 2), S(t+1) = S(t) ∪
(
S(t+1) \ S(t)

)
,

it is sufficient to prove A(t+2) = S(t+1) \S(t). According to Algorithm 1, we can write
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ei(t+ 1) as

ei(t+ 1) = ei(t) +
∑
j∈N

lj(t)Πji − li(t)

= ei(t− 1) +
∑
j∈N

lj(t− 1)Πji − li(t− 1) +
∑
j∈N

lj(t)Πji − li(t)

= · · ·

= Ab
i +
∑
j∈N

Πji

t∑
s=0

lj(s)−
t∑

s=0

li(s).

By steps 3-7 in Algorithm 1,
∑t

s=0 lj(s) > 0 implies j ∈
⋃t

s=0A(s). It follows that

ei(t+ 1) = Ab
i +

∑
j∈
⋃t

s=0 A(s)

Πji

t∑
s=0

lj(s)−
t∑

s=0

li(s).

Because
∑t

s=0 lj(s) = L̄j for all j ∈
⋃t

s=0A(s), the equation above can be rewritten as

ei(t+ 1) = Ab
i +

∑
j∈
⋃t

s=0 A(s)

L̄jΠji −
t∑

s=0

li(s).

First, we show that S(t+1) \ S(t) ⊆ A(t+ 2). Let i ∈ S(t+1) \ S(t). By the induction

hypothesis, i /∈
⋃t+1

s=0A(s), which implies that
∑t+1

s=0 li(s) = 0. Note that equation

(A.1.3) at t+ 1 is written as

v
(t+1)
i = Ab

i +
∑
j∈N

l
(t+1)
j Πji − L̄i = Ab

i +
∑
j∈S(t)

L̄jΠji − L̄i.
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Therefore, we obtain

0 ≤ v
(t+1)
i = Ab

i +
∑
j∈S(t)

L̄jΠji − L̄i −
t+1∑
s=0

li(s)

= Ab
i +

∑
j∈
⋃t+1

s=0 A(s)

L̄jΠji −
t+1∑
s=0

li(s)− L̄i

= ei(t+ 2)− L̄i.

Hence, i ∈ A(t+ 2).

Second, we show that A(t + 2) ⊆ S(t+1) \ S(t). Let i ∈ A(t + 2). Again, by the

induction hypothesis, i /∈
⋃t+1

s=0A(s), which implies that
∑t+1

s=0 li(s) = 0. It follows that

0 ≤ ei(t+ 2)− L̄i = Ab
i +

∑
j∈
⋃t+1

s=0 A(s)

L̄jΠji −
t+1∑
s=0

li(s)− L̄i

= Ab
i +

∑
j∈S(t)

L̄jΠji − L̄i = v
(t+1)
i .

Hence, i ∈ S(t+1) \ S(t).

Proof of Theorem 2.5.1. Suppose that A(t) = ∅ at iteration t > 0 . Then l̃⋆ =∑t−1
s=0 l(s), where l̃⋆,i = L̄i if i ∈

⋃t−1
s=0 A(s) and 0 otherwise. Since

⋃t−1
s=0A(s) = S(t−2)

by Lemma A.2.5, A(t) = ∅ is equivalent to D(t) = D(t−1) in the LA. Furthermore, the

LA returns l⋆ = l(t−1), where l⋆,i = L̄i if i ∈ S(t− 2) and 0 otherwise.

Therefore, both algorithms terminate when the same set of banks are selected,

leading to the identical clearing payment vector. According to Rogers & Veraart (2013),

the LA generates a sequence of vectors increasing to the least clearing vector, so the

statement follows immediately.
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A.2.5 Proof of Theorem 2.5.3

We use Lemma A.2.6 to prove Theorem 2.5.3. Its proof is based on a modification of

the proof of Proposition 4.12 in Veraart (2022).

Lemma A.2.6. Consider a PTN-exercise (L,P , LP) that satisfies (2.10). Let E(n) ∈ E

and EP(n) ∈ EP be such that EP(n) ≥ E(n). Then,

ΦP
i (E

P(n);Vzero) ≥ Φi(E
(n);Vzero) ∀ i ∈ N .

Proof of Lemma A.2.6. Note that if EP(n) ≥ E(n), then

1{EP(n)
j ≥0} ≥ 1{E(n)

j ≥0} ∀ j ∈ N . (A.2.5)

First, let i ∈ N \ P . Then,

ΦP
i (E

P(n);Vzero) = Ab
i +

∑
j∈MP

LP
jiV

zero

(
E

P(n)
j + L̄P

j

L̄P
j

)
− L̄P

i

= Ab
i +
∑
j∈N

Lji1{EP(n)
j ≥0} − L̄i.

Inequality (A.2.5) leads to

ΦP
i (E

P(n);Vzero) ≥ Ab
i +
∑
j∈N

Lji1{E(n)
j ≥0} − L̄i

= Ab
i +

∑
j∈M

LjiV
zero

(
E

(n)
j + L̄j

L̄j

)
− L̄i

= Φi(E
(n);Vzero).

88



Second, let i ∈ P . Then by (A.2.5),

ΦP
i (E

P(n);Vzero) = Ab
i +
∑
j∈N

LP
ji1{EP(n)

j ≥0} − L̄P
i ≥ Ab

i +
∑
j∈N

LP
ji1{E(n)

j ≥0} − L̄P
i .

Moreover, by (A.2.2),

ΦP
i (E

P(n);Vzero) ≥ Ab
i +

∑
j∈N\P

LP
ji︸︷︷︸

=Lji

1{E(n)
j ≥0} +

∑
j∈P

LP
ji1{E(n)

i ≥0} − L̄P
i

= Ab
i +

∑
j∈N\P

Lji1{E(n)
j ≥0} +

∑
j∈P

LP
ji1{E(n)

j ≥0} − L̄i +
∑
j∈P

Lji −
∑
j∈P

LP
ji

= Ab
i +
∑
j∈N

Lji1{E(n)
j ≥0} − L̄i +

∑
j∈P

(Lji − LP
ji)︸ ︷︷ ︸

≥0 by (2.10)

(1− 1{E(n)
j ≥0})

≥ Ab
i +
∑
j∈N

Lji1{E(n)
j ≥0} − L̄i

= Ab
i +

∑
j∈N :L̄j>0

LjiV
zero

(
E

(n)
j + L̄j

L̄j

)
− L̄i = Φi(E

(n);Vzero).

Taken together, ΦP
i (E

P(n);Vzero) ≥ Φi(E
(n);Vzero) for all i ∈ N .

Proof of Theorem 2.5.3. First, we prove inequality (2.11) for the greatest equilibrium.

As in the proof of Proposition 4.12 in Veraart (2022), we consider a fixed point iteration.

Let Ẽ(0) = Einitial(L) and ẼP(0) = Einitial(LP). We define the sequences (Ẽ(n))n∈N0 and

(ẼP(n))n∈N0 recursively under V = Vzero as in Lemma A.2.3. Then, using Lemma A.2.6,

we can show by induction that ẼP(n) ≥ Ẽ(n) for all n ∈ N0. Finally, Lemma A.2.3

implies that for all i ∈ N , EP;∗
i = limn→∞ Ẽ

P(n)
i ≥ limn→∞ Ẽ

(n)
i = E∗

i , where E
∗ and

EP;∗ are the greatest re-valuated equity in the original network and the PTN-network,

respectively.

Second, we prove inequality (2.11) for the least equilibrium. Let E(0) = Ab − L̄.

Define the sequence (E(n))n∈N0 recursively by E(n) = Φ(E(n−1);Vzero). We show by
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induction that it is a non-decreasing sequence, i.e.,

E
(n+1)
i ≥ E

(n)
i ∀ i ∈ N . (A.2.6)

Let n = 0. It follows directly from the definition of Φ that for all i ∈ N ,

E
(1)
i = Φi(E

(0);Vzero) = Ab
i +

∑
j∈N :L̄j>0

LjiV
zero

(
E

(0)
j + L̄j

L̄j

)
︸ ︷︷ ︸

≥0

−L̄i ≥ E
(0)
i .

Now fix n ∈ N and assume that E(n) ≥ E(n−1). Then for all i ∈ N ,

E
(n+1)
i = Ab

i+
∑

j∈N :L̄j>0

LjiV
zero

(
E

(n)
j + L̄j

L̄j

)
︸ ︷︷ ︸
≥Vzero

(
E
(n−1)
j

+L̄j

L̄j

)
−L̄i ≥ Φi(E

(n−1);Vzero) = E
(n)
i , (A.2.7)

which completes the induction proof. Then, let EP(0) = Ab − L̄P . As above, we can

show that the sequence (EP(n))n∈N0 defined by EP(n) = ΦP(EP(n−1);Vzero) is non-

decreasing (we omit the details). Hence, both (E(n))n∈N0 and (EP(n))n∈N0 converge to

a limit because they are non-decreasing and bounded from above.

Next, we prove by induction that

EP(n) ≥ E(n) ∀n ∈ N0. (A.2.8)

For n = 0, since the PTN-exercise satisfies (2.10), we have L̄P ≤ L̄ and therefore

EP(0) = Ab − L̄P ≥ Ab − L̄ = E(0). Now fix n ∈ N. The induction step follows directly

from Lemma A.2.6. Hence, we obtain that

lim
n→∞

E
P(n)
i ≥ lim

n→∞
E

(n)
i ∀ i ∈ N .
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If limn→∞EP(n) is a fixed point of ΦP and limn→∞E(n) is a fixed point of ΦP , then

there is nothing left to prove. However, since Vzero is not left-continuous, there is no

guarantee that limn→∞E(n) is a fixed point of Φ or that limn→∞EP(n) is a fixed point

of ΦP .

As discussed in Section 3.1 in Rogers & Veraart (2013), if one of the limit is not a

fixed point, then one will need to restart the iteration from this limit. For n ∈ N0, we

set

Ê(0) = lim
m→∞

(E(m)), Ê(n+1) = Φ(Ê(n)),

ÊP(0) = lim
m→∞

(EP(m)), ÊP(n+1) = Φ(ÊP(n)).

Then, we repeat the previous arguments. If the initial element of such a sequence (Ê(0)

or ÊP(0)) is a fixed point, then the sequence is just constant. The situation that the

limit is not a fixed point can only occur at a point where a bank just becomes solvent

in the limit. This can happen at most N times since there are N banks, meaning at

most N − 1 restarts of this fixed point iteration could become necessary, as discussed

in Rogers & Veraart (2013). Then, after at most N − 1 restarts, the limits of the

iterations are indeed the least fixed points. If we need to restart the iteration, the same

argument can be used to show the equivalence of (A.2.8) for the next two sequences.

This sequence of arguments can be repeated until the fixed points are obtained.

91



Appendix B

Appendix for Chapter 3

B.1 An index for mutual funds

This section demonstrates how to construct an index of vulnerability for mutual funds.

It builds on the Cetorelli et al. (2016) model, which applies the setting of Greenwood

et al. (2015) in the context of fund redemptions.

Specifically, there are N funds and K asset classes; each fund has total assets

an, average duration dn, and flow-performance sensitivity bn.
1 After an interest rate

shock ∆r, fund n experiences a negative return of dn∆r on its total assets. Since the

investors are sensitive to funds’ performance, fund n with decreasing asset values suffers

from investors’ redemptions, i.e., outflows bndn∆r. In response, fund n sells its assets

proportionately to its original holdings, represented by the asset matrix M = (mnk),

where mnk is the fraction of asset k in fund n’s total assets. By assumption, the price

impact of asset k’s liquidation is linear and has no effect on other asset classes, so the

matrix L that characterises price impacts is diagonal, i.e., L = diag(l1, . . . , lN). Finally,

1The use of bn follows the notation in Cetorelli et al. (2016). The notation in this section should
not be confused with that of the Greenwood et al. (2015) model; the meaning is clear from the context.
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the total spillover losses in the system is given by

SL = 1⊤AMLM⊤ABDF,

where A = diag(a1, . . . , aN), B = diag(b1, . . . , bN), D = diag(d1, . . . , dN), and F =

(∆r)1.

Next, I show how to derive an index similar to what have been done in Section 3.2.

Consider a system with homogeneous portfolio allocations by setting

mH
nk =

vk∑
j vj

=: mk ∀ k,

where vk =
∑

n anmnk is the value of asset k. Then, the decomposition of SL can be

written as

SL =
∑
n

an ×
∑
n

anbndn ×
∑
k

lkm
2
k ×

SL

SLH
,

where SLH is the total spillover losses in the hypothetical system. (The constant

shock ∆r is dropped from the expression.) Accordingly, the vulnerability index can be

defined as
∑

n an ×
∑

n anbndn ×
∑

k lkm
2
k, where the three terms capture system size,

fund characteristics, and illiquidity concentration, respectively. Again, the index does

not depend on portfolio composition at the individual level.2

2The decomposition in Cetorelli et al. (2016) follows Duarte & Eisenbach (2021). See Footnote 5.
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B.2 FR Y-9C variables

Category Consolidated (Schedual HC), Securites (Schedule HC-B), and Loans (Schedule HC-C) Trading assets (Schedule HC-D)

Total assets Entire sample BHCK2170

Equity Up to 2013Q4 BHCK8274

2014Q1 - Present BHCK8274 or BHCA8274

Cash Entire sample BHCK0081 + BHCK0395 + BHCK0397

U.S. Treasuries Up to 2007Q4 BHCK0211 + BHCK1287 BHCK3531

2008Q1 - Present BHCK0211 + BHCK1287 BHCM3531

Agency securities Up to 2007Q4 BHCK1289 + BHCK1293 + BHCK1294 + BHCK1298 BHCK3532

2008Q1 - 2018Q1 BHCK1289 + BHCK1293 + BHCK1294 + BHCK1298 BHCM3532

2018Q2 - Present BHCKHT50 + BHCKHT53 BHCM3532

Municipal securities Up to 2000Q4 BHCK8531 + BHCK8534 + BHCK8535 + BHCK8538 BHCK3533

2001Q1 - 2007Q4 BHCK8496 + BHCK8499 BHCK3533

2008Q1 - Present BHCK8496 + BHCK8499 BHCM3533

Agency MBS Up to 2007Q4 BHCK1698 + BHCK1702 + BHCK1703 + BHCK1707 + BHCK3534 + BHCK3535

BHCK1714 + BHCK1717 + BHCK1718 + BHCK1732

2008Q1 - 2009Q1 BHCK1698 + BHCK1702 + BHCK1703 + BHCK1707 + BHCM3534 + BHCM3535

BHCK1714 + BHCK1717 + BHCK1718 + BHCK1732
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2009Q2 - 2010Q4 BHCKG300 + BHCKG303 + BHCKG304 + BHCKG307 + BHCKG379 + BHCKG380 + (BHCKG382)/2

BHCKG312 + BHCKG315 + BHCKG316 + BHCKG319 +

(BHCKG324 + BHCKG327 + BHCKG328 + BHCKG331)/2

2011Q1 - Present BHCKG300 + BHCKG303 + BHCKG304 + BHCKG307 + BHCKG379 + BHCKG380 + BHCKK197

BHCKG312 + BHCKG315 + BHCKG316 + BHCKG319 +

BHCKK142 + BHCKK145 + BHCKK150 + BHCKK153

Nonagency MBS Up to 2007Q4 BHCK1709 + BHCK1713 + BHCK1733 + BHCK1736 BHCK3536

2008Q1 - 2009Q1 BHCK1709 + BHCK1713 + BHCK1733 + BHCK1736 BHCM3536

2009Q2 - 2010Q4 BHCKG308 + BHCKG311 + BHCKG320 + BHCKG323 + BHCKG381 + (BHCKG382)/2

(BHCKG324 + BHCKG327 + BHCKG328 + BHCKG331)/2

2011Q1 - Present BHCKG308 + BHCKG311 + BHCKG320 + BHCKG323 + BHCKG381 + BHCKK198

BHCKK146 + BHCKK149 + BHCKK154 + BHCKK157

ABS & other debt securities Up to 2000Q4 BHCK8539 + BHCK8542 + BHCK8545 + BHCK8548 BHCK3537

2001Q1 - 2005Q4 BHCKB838 + BHCKB841 + BHCKB842 + BHCKB845 + BHCK3537

BHCKB846 + BHCKB849 + BHCKB850 + BHCKB853 +

BHCKB854 + BHCKB857 + BHCKB858 + BHCKB861 +

BHCK1737 + BHCK1741 + BHCK1742 + BHCK1746

2006Q1 - 2007Q4 BHCKC026 + BHCKC027 + BHCK3537

BHCK1737 + BHCK1741 + BHCK1742 + BHCK1746
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2008Q1 - 2009Q1 BHCKC026 + BHCKC027 + BHCM3537

BHCK1737 + BHCK1741 + BHCK1742 + BHCK1746

2009Q2 - 2018Q1 BHCKC026 + BHCKC027 + BHCKG336 + BHCKG339 + BHCKG383 + BHCKG384 +

BHCKG340 + BHCKG343 + BHCKG344 + BHCKG347 + BHCKG385 + BHCKG386

BHCK1737 + BHCK1741 + BHCK1742 + BHCK1746

2018Q2 - Present BHCKC026 + BHCKC027 + BHCKHT58 + BHCKHT61 + BHCKHT62 + BHCKG386

BHCK1737 + BHCK1741 + BHCK1742 + BHCK1746

Equities & other securities Up to 2000Q4 BHCK8544 + BHCK8550 + BHCKA511 BHCK3541

2001Q1 - 2007Q4 BHCKA511 BHCK3541

2008Q1 - 2020Q3 BHCKA511 BHCM3541

2020Q4 - Present BHCM3541

Repo and fed funds sold Up to 1996Q4 BHCK0276 + BHCK0277

1997Q1 - 2001Q4 BHCK1350

2002Q1 - Present BHDMB987 + BHCKB989

Residential real estate loans Up to 2007 Q4 BHDM1797 + BHDM5367 + BHDM5368

2008Q1 - 2018Q1 BHDM1797 + BHDM5367 + BHDM5368 BHDMF606 + BHDMF607 + BHDMF611

2018Q2 - Present BHDM1797 + BHDM5367 + BHDM5368 BHCKHT63

Commercial real estate loans Up to 2007Q4 BHDM1415 + BHDM1460 + BHDM1480

2008Q1 - 2018Q1 BHCKF158 + BHCKF159 + BHDM1460 + BHCKF160 + BHCKF161 BHDMF604 + BHDMF612 + BHDMF613
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2018Q2 - Present BHCKF158 + BHCKF159 + BHDM1460 + BHCKF160 + BHCKF161

Other real estate loans Up to 2007Q4 BHCK1410 - all real estate loans above (from HC-C)

2008Q1 - 2018Q1 BHCK1410 - all real estate loans above (from HC-C) BHCKF610 - all real estate loans above (from HC-D)

2018Q2 - Present BHCK1410 - all real estate loans above (from HC-C) BHCKHT64

C & I loans Up to 2007Q4 BHCK1763 + BHCK1764

2008Q1 - 2019Q3 BHCK1763 + BHCK1764 BHCKF614

2019Q4 - Present BHCK1763 + BHCK1764 + BHCKKX56 BHCKF614

Consumer loans Up to 2000Q4 BHCK2008 + BHCK2011

2001Q1 - 2007Q4 BHCKB538 + BHCKB539 + BHCK2011

2008Q1 - 2010Q4 BHCKB538 + BHCKB539 + BHCK2011 BHCKF615 + BHCKF616 + BHCKF617

2011Q1 - 2018Q1 BHCKB538 + BHCKB539 + BHCKK137 + BHCKK207 BHCKF615 + BHCKF616 +

BHCKK199 + BHCKK210

2018Q2 - Present BHCKB538 + BHCKB539 + BHCKK137 + BHCKK207 BHCKHT65

Lease financings Up to 2006Q4 BHCK2182 + BHCK2183

2007Q1 - 2019Q3 BHCKF162 + BHCKF163

2019Q4 - Present BHCKF162 + BHCKF163 + BHCKKX58

Residual loans Up to 2007Q4 BHCK2122 - all loans above (from HC-C)

2008Q1 - Present BHCK2122 - all loans above (from HC-C) BHCKF618

Residual securities Up to 2000Q4 BHCK1754 + BHCK1773 + BHCK8553 + BHCK8556 - BHCK3545 - all securities above (from HC-D)
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all securities above (from HC-B)

2001Q1 - Present BHCK1754 + BHCK1773 - BHCK3545 - all securities above (from HC-D) -

all securities above (from HC-B) all loans above (from HC-D)

Residual assets Entire sample BHCK2170 - all assets above

Notes: The following abbreviations are used: “Repo” is securities purchased under agreements to resell, “MBS” is mortgage-backed securities, “ABS” is agency-backed securities, “RRE”

is residential real estate, and “C & I” is commercial and industrial. Firms that are required to report also include savings and loan holding companies, securities holding companies, etc. The

report form is completed by firms on a quarterly basis with total assets over $150 million before 2006Q1, over $500 million between 2006Q1 and 2014Q4, over $1 billion between 2014Q4 and

2018Q3, and over $3 billion thereafter. I use amortised cost for held-to-maturity securities and fair value for available-for-sale securities. I categorise trading assets - securities from Schedule

HC-D into corresponding categories under securities (HC-B). I categorise trading assets - loans from Schedule HC-D into corresponding categories under loans (HC-C). During 2009Q2–2010Q4,

I follow Duarte & Eisenbach (2021) in allocating commercial MBS to agency MBS and nonagency MBS 50-50. I replace negative values of “ABS & other debt securities” and “Residual loans”

with zero. The sample period is 1996Q1–2021Q4.
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