
Directional High Frequency Trading in the
Kyle-Back Model

A thesis presented for the degree of

Doctor of Philosophy

Eduardo Ferioli Gomes

Department of Statistics

The London School of Economics and Political Science

United Kingdom

February 2025



Declaration

I certify that the thesis I have presented for examination for the PhD degree of the London

School of Economics and Political Science is solely my own work other than where I have

clearly indicated that it is the work of others (in which case the extent of any work carried

out jointly by me and any other person is clearly identified in it). The copyright of this thesis

rests with the author. Quotation from it is permitted, provided that full acknowledgement

is made. This thesis may not be reproduced without my prior written consent. I warrant

that this authorisation does not, to the best of my belief, infringe the rights of any third party.

I declare that my thesis consists of 47573 words.

Statement of co-authored work

I confirm that a version of all chapters was co-authored jointly with Professor Umut Çetin.
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Abstract

In traditional Kyle-Back models, the only source of information is a static or dynamic signal

about the price of a risky asset received by the insider. We consider a more realistic version

of the Kyle-Back model with a private and a public signal. The insider builds a linear com-

bination of the public and private signals to make their valuation about the risky asset. The

market maker uses the public signal and the total demand to set a linear pricing rule that is a

martingale on their filtration. We show that any optimal strategy in equilibrium is such that

the mispricing, the difference between the price process and the insider’s valuation, converges

to zero almost surely in the insider’s probability measure. We introduce a particular linear

admissible trading strategy to show the existence of equilibrium in the economy. Moreover,

we use numerical analysis to show that the insider’s ex-ante expected profit relies on the

public signal and how this setting is able to explain a high-frequency trading pattern at the

end of the trading period.
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Introduction

In this thesis, we develop a Kyle-Back model with a public signal. In the traditional literature

of Kyle-Back models, the only source of exogenous information is the insider. The seminal

work Back (1992) presents the original Kyle-Back model (an extension for continuous time

of Kyle (1985)) considering an insider who knows in advance the value, which will only be

made public later, of a risky asset. Later, Back, Pedersen (1998) considers a setting in which

the insider receives a dynamic signal throughout the trading period such that the uncertainty

about the price of the asset will be known by the end of the trading period. However, in

all those cases and all the Kyle-Back models so far, the market maker only learns about the

price of the asset by trading with an insider (or several insiders as in Holden, Subrahmanyam

(1992), Foster, Viswanathan (1996), and Back et al. (2000)). If it were not for the existence

of someone with legal or illegal information, the market makers would not know anything

about the asset that is being traded.

Therefore, we understand that we should fill this gap in the literature. The idea behind

the setting of this model, that is introduced in Section 1.2, is that the market maker does

receive exogenous information about the price of the asset throughout the trading period. In

fact, as actual market makers, they have access to trading technologies, research divisions,

and other relevant sources such that they are able to process a lot of information coming from

outside the model that will be taken into account while they make their valuation of the asset.

As a consequence of that, we suppose that instead of having all the information released at

the end of the trading period, there is a signal that is public to all market participants so

that the uncertainty about the true value of the asset considering only the public signal will

be zero at the end of the trading period. That is, if we call XM the public signal, as we do

in Equation (1.1), we shall have V ar(V |FXM

t ), where V is the price of the asset at the end

of the trading period and η ∼ N(µ, σ2V ), to be such that limt→1 V ar(V |FXM

t ) = 0.
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There are quite a few interesting mathematical questions we had to deal with while

expanding the Kyle-Back model to introduce a public signal. The first one is the issue of

the insider’s valuation of the asset. In the previous literature, the insider’s valuation of the

risky asset was either given by her dynamic private signal as in Danilova (2010) or completely

inexistent1, as in the original Back (1992), since the insider already knew the final value of

the asset since the beginning of the trading period. Conversely, now the insider must take

into account both her private signal and the public signal to make her valuation of the risky

asset.

In Chapter 2 we study the insider’s valuation of the risky asset. Since we make a lot

of use of the theory of stochastic filtering, we take the opportunity to review some of its

basic aspects; but, most importantly, we present some theoretical results that will be used

throughout the thesis in section 2.1 to make it more accessible to the reader. In section 2.2,

we conjecture that the linear combination of two Markov bridges with the same terminal

condition could be written as a Markov bridge with the same terminal condition itself and

show what the coefficients of such a linear combination should be for it to be true. This

conjecture will greatly help us in proving the main theorem of the chapter, Theorem 2.3,

in section 2.3. In this section, we discuss that this result is slightly more general than

we need, but it is fundamental to us as it provides that Zt := E[η|F I
t ] can be written as

Zt = λ0(t)X
I
t + λ1(t)X

M
t , where λ0(t) = 1−ΣZ(t)

1−ΣI(t)
, λ1(t) = 1−ΣZ(t)

1−ΣM (t) , ΣZ(t) =
∫ t
0 σ

2
Z(s)ds =∫ t

0

((
1−ΣZ(s)
1−ΣI(s)

)2
σ2I (s) +

(
1−ΣZ(s)
1−ΣM (s)

)2
σ2M (s)

)
ds, and ΣM and ΣI are given by equations (1.1)

and (1.2) respectively.

In Chapter 3 we study the insider’s optimisation problem. According to Definition 1.3,

the insider’s objective is to maximize her expected profit at the end of the trading period.

We applied the dynamic programming principle to the value function of the insider, so we

find the related Hamilton–Jacobi–Bellman equation. From that procedure, we are able to

derive the value function for the insider under some assumptions on the price function. As a

consequence, we can prove Theorem 3.1, which establishes the conditions for any admissible

trading strategy to be optimal. The main condition turns out to be such that limt→1(St −

σV Zt − µ)2 = 0, Pz-a.s..

That is in fact in line with the literature, as one can see from condition (ii) of Theorem

1Inexistent in the sense that one does not need to estimate the value of something they already know the
value of. Alternatively, it is possible to call it trivial valuation
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6.1 in Çetin, Danilova (2018). This condition is often referred to as saying that the insider

makes a bridge so that the price converges to the true price of the asset at the end of the

trading period. Let us consider the static case for a moment to ease the explanation. The

idea is that the insider always buys when the price is below the actual price of the asset (i.e.,

the price that they know the price process is going to converge to) and sells every time the

price is above it. Every time the insider buys, she drives the price up, and every time she

sells, she drives the price down. Therefore, if by the end of the trading period the price is

below the final value, it means that the insider could have bought more stocks at a cheap

price during the trading period, and the other way around if the price of the asset reaches

the end of the trading period and is above the final value. Therefore, it is in the insider’s

best interest - hence its optimal strategy - to drive the price to the final value of the asset.

However, we cannot say the same when dealing with a public signal. Indeed, condition

limt→1(St − σV Zt − µ)2 = 0, Pz-a.s. means that in equilibrium the price will be driven by

the final value of the asset. But by whom? Now, if the insider did not trade, the price would

still converge to the true value of the asset since the public signal XI will be enough to do

so. Therefore, in a way, the interpretation changes a lot as now what we can say is that it

is optimal for the insider to not drive the price away from the true value of the asset at the

end of the trading period.

Although we have proven in Theorem 3.1 for admissible trading strategies are such that

the price would be driven to the final value of the asset, we restrict ourselves to a smaller

class of trading strategies. As we do not claim that any equilibrium is unique, we allowed

ourselves to consider only linear trading strategies as described in equation (4.4). Hence,

from Chapter 4 onwards we consider only trading strategies of the form given by (4.4). We

do not add this restriction to the class of admissible trading strategies in Definition 1.2 as

we do for the linear pricing rules in Definition 1.2 because we wanted to make Theorem 3.1

more general.

In Chapter 4 we address the issue of the rationality condition for the market maker. As we

compare the rationality condition in other Kyle-Back models, it becomes clear that our task

is much more complex. In particular, it is interesting to note that as there was no non-trivial

projection of η into the insider’s filtration. Traditional Kyle-Back models did not have to

concern themselves with the matter of how to project η into the market maker’s filtration.

Now we need to handle the fact that there is a projection of η directly into the market maker’s
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filtration, and there is the projection of Z, the projection of η into the insider’s filtration,

into the market maker’s filtration. In Chapter 4 not only do we calculate these projections,

but we need to worry about how they can be combined together. The consequence of this

is a much more complex system of ODEs for the variance of the price process than what is

usually seen in the literature. As we point out in section 1.3, we need to develop substantial

machinery to prove the existence and uniqueness of the system.

In Chapter 5 we show that for the particular pair of admissible trading strategy and

rational pricing rule, we have that the condition that limt→1(St − σV Zt − µ)2 = 0, Pz-a.s.

is satisfied. The major tool we have used in this proof was the Doob’s h-transform. Once

again, in order to keep this thesis more self-contained, we present a very brief review of this

tool in section 5.1.

Once we understand the conditions for an admissible pricing rule to be rational and have

shown that our candidate trading strategy is optimal, we can add those solutions together

and prove the existence of an equilibrium for our economy. That is done in Chapter 6.

We believe that the addition of a public signal will be able to expand substantially the

application of the Klye-Back framework for a variety of situations. In particular, we believe

that variations of the current model we are presenting will be useful to deal with toxic

arbitrage (see Foucault et al. (2017)) and multiple insiders (see Back et al. (2000)). However,

this initial version is already substantially robust to deal with high-frequency trading as

presented by Foucault et al. (2016).

Motivated by a series of empirical findings from several authors, Foucault et al. (2016)

concludes that directional high-frequency trading is done based on soon-to-be-released in-

formation. However, as the authors mention, the findings of Carrion (2013) suggest that

“directional HFTs realize a large fraction of their profits on aggressive orders over relatively

long horizons” (Foucault et al. (2016), p. 336). We believe our model can reconcile these two

empirical findings.

As we explain in Section 1.1, directional high-frequency trading means that the insider’s

strategy is based on the long-term value of the asset, as it is in our and other Kyle-Back

models. Therefore, the insider’s strategy is applied over the entire trading period. Neverthe-

less, we are able to integrate that with the fact that the insider also trades on information

that is about to be revealed.

Let us now consider what happens when time approaches the end of the trading period,
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which in our model means that t approaches one. The price process as given by (4.7) is

dSt = σV w(t)dN
(1)
t + β2(t)σM (t)dN

(2)
t ,

where N (1) is the innovation process in the filtration of the market maker related to the

demand process and N (2) is the one related to the public signal. In Proposition 4.2 we know

that t→1w(t) = 0 and the numerical analysis developed in Chapter 7 show that t→1β2(t) = 1.

This means that insider trading becomes less influential in the price process when the

end of the trading period is approaching. Hence, the market becomes more and more liquid

towards the end of the trading period, converging to perfect liquidity at the end of it.

It is important to recall that one of the main features of the Kyle and Back framework

is the so-called feedback effect. This means that the insider can affect prices when trading.

Indeed, even in Kyle (1985) if the volume of the insider’s trading was unable to affect the price,

the insider’s profit would be infinite. Obviously, that would not be a reasonable hypothesis;

as for the insider to have finite but high enough profits, it would require a volume of trading

that would affect the price process. However, some of the intuition remains in our case.

As the market becomes more liquid the feedback effect declines, the insider is able to trade

aggressively, in a high-frequency manner, towards the end of the trading period when the

information about the asset is about to become public.
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Chapter 1

The Model

The study of Market Microstructure is dedicated to understanding, according to O’Hara

(1998), “the desire to know how prices are formed in the economy” (p. 1). Therefore, the

aim of this research field is to go beyond the traditional asset pricing theories that assume

no liquidity risk and perfect competition and study more realistic models that describe the

stylised facts that emerge from the real world in which bubbles and crashes seem to be

more the rule than the exception. Embedded in the assumption of perfect competition is

the assumption of symmetry of information. However, if one asks practitioners in the City

of London or Wall Street, they most likely are going to say that asymmetry of information

would be a much more realistic modelling choice.

The seminal work Kyle (1985) is a milestone in the development of the study of asymmetric

information using market microstructure. Kyle develops a model in discrete time in which

there is a single asset being traded by three different types of agents: market makers, noise

traders, and an insider. The latter agent has perfect information about the value of the asset

at the beginning of the trading period and exploits this advantage to maximize their expected

profits as they are risk neutral. On the other end of the spectrum, the noise traders buy and

sell their stocks non-strategically based on exogenous reasons. In his original model, noise

traders’ demand follows a random walk.

The market makers - like the insider - trade strategically. They observe the total demand

and clear the market under a fair-price rule, considering that the uncertainty about the

final value of the asset follows a normal distribution. These agents cannot observe directly

the insider’s demand as they cannot distinguish between the trades of the insider and the

1



non-strategic trades of the noise traders.

The work of Kyle was extended to a more realistic continuous-time version by Back (1992).

As should be expected, the discrete-time random walk trades of the noise traders become a

Brownian motion, and the initial distribution of the asset can be extended to other than

Gaussian distributions. The relevance of this extension is so great that since its publication,

this paper, the research field is known as the Kyle-Back framework; hence the title of the

present work.

Therefore, it is worth mentioning the equilibrium of the basic Kyle-Back framework afore-

mentioned. The first one is that equilibrium is defined in a Nash-type equilibrium in which

a pair of a trading strategy and pricing rule is optimal if, given the fair-pricing rule, the

strategy is optimal and, given the pricing rule, the strategy is the one that maximises the

insider’s profit. It is shown that equilibrium is reached for a pair of a fair-pricing rule and

a strategy that drives the price to be a Markov bridge converging to the value of the asset

known in advance by the insider.

The price process is a martingale in the market maker’s filtration since E(V |FM ), where

V is the price of the asset at the end of the trading period and FM is the market maker’s

filtration, is a martingale. Furthermore, the demand in equilibrium is a Brownian motion

which makes the insider’s trading inconspicuous. As a consequence, it is not possible to know

in equilibrium what the insiders’ orders are or the noise traders’ orders are.

So far, the motivation behind these models was the intuitive meaning of insider trading:

a market participant who has information inaccessible to others via lawful means trading

with the goal of taking advantage of this illegal advantage. However, in Back, Pedersen

(1998) and later in Danilova (2010) we are presented with models in which the insider is

fed their private information through a continuous Gaussian signal. This version became

known as the dynamic information version of the Kyle-Back model. Besides the mathematical

relevance of those improvements in the original Kyle-Back model, there is a relevant change

in the interpretation of what an insider may be. Not only may the insider receive privileged

information in a continuous fashion, but it could also be interpreted as genuine participants

in the market that have either or both better access to information - in a lawful way -

or can process the information publicly available faster than others. Therefore, insiders in

this context could be seen as large investment banks with research divisions that update

their valuation of the asset based on a large flow of information. Another advantage of this
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approach under a modelling perspective is the fact that we can consider a larger time horizon,

as with a continuous stream of information, we allow the insider to use information that did

not exist in the beginning of the trading period.

The takeaways of the model are quite similar. Taking into consideration Danilova (2010),

all the considerations made above are contemplated, but one. The only major difference is

that now the static Markov bridge is now a dynamic bridge (See Campi et al. (2011) and

Çetin, Danilova (2018) for a comprehensive approach on dynamic Markov bridges). Danilova

(2010) manages to find very mild conditions for the construction of the bridge. If V defines

the cumulative volatility of the dynamic signal of the insider, the only major condition is

that the insider’s informational advantage,V (t)− t, to be positive. Therefore, as long as the

insider has some informational advantage to share, she will exploit it.

In the following section, we are going to describe the model proposed by Foucault et al.

(2016) which was a previous development of high frequency trading modelling using the Kyle-

Back framework. In Section 1.2 we shall present the setting of our model, considering both

a public and private signal that will be used throughout the thesis.

In section 1.3 we summarize the main challenges of adding a public signal to the Kyle-Back

model introduced to our model and how we addressed those issues mathematically.

1.1 High Frequency in Kyle-Back

To the best of our knowledge, the greatest attempt to model high frequency trading so far

was made by Foucault et al. (2016).

In their work, the insider receives a private signal, as is the norm in the literature, about

the fundamental value of the asset. The market maker, on the other hand, receives a noisy

version of the private signal that the authors named “news”. As is required for a model from

the Kyle-Back framework, there are also noise or liquidity traders. They buy and sell for

liquidity reasons, and their cumulative demand is given by a Brownian motion.

Their analysis consists in comparing two flow-execution models: the fast and slow models.

In an infinitesimal time interval [t, t + dt] the market maker receives two signals about the

value of the asset: the news flow and the insider order flow. The market maker knows that the

total order flow is given by the sum of the insider’s demand and the noise trader’s demand.

Therefore, it is a noisy version of the insider’s demand hence it is informative of the insider’s
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strategy and ultimately of their private signal.

A market maker is said to be fast if she updates her valuation of the asset before executing

the order flow, and she is said to be slow if she updates her knowledge after executing the

order flow. As the insider is the focal agent of this model, the model is said to be fast if the

market maker is slow, and it is said to be slow if the market maker is fast. Therefore, the

model is said to be fast if the insider is able to trade ahead of the news.

As a consequence, we get the concept of directional and non-directional trading in high-

frequency models. Let us take a moment to introduce a toy example to understand the

concepts of directional and non-directional trading. Suppose that the insider knows the true

value of the asset and it is $100. If the asset is being traded at $110 the long-term knowledge

of the insider would tell that she should reduce her inventory of the asset. However, if she

knows that before converging to $100 in the long term the price of the asset will go up in the

short term - lets say to $120 - the insider will trade non-directionally using her short-term

information to increase her inventory now and than to sell in the near future when the price

of the stock reaches $120.

In traditional Kyle-Back models, the insider can only trade directionally as the only source

of information is either their knowledge about the true value of the asset, as in Back (1992),

or they receive a signal about the asset, as in Back, Pedersen (1998). However, in our model,

all market participants also receive a signal about the value of the asset simultaneously that

plays an analogous role to the news in the slow model of Foucault et al. (2016).

Returning to Foucault et al. (2016), in the slow model, there is only directional trading as

the insider is unable to anticipate the news. Indeed, that is their Proposition 1. In the fast

model, on the other hand, the insider is able to profit from both the news and the long-term

information about the asset.

The conclusions of the paper claim that the increase in the trading volume as a conse-

quence of the more aggressive trading of the insider derives from the fact that she is able

to trade ahead of news. Therefore, they conclude that, in a purely directional model, there

would not be an increase in the trading volume at any point.

Indeed, one should consider that the trading strategy we have found in equilibrium by

Theorem 6.1 is a directional one, as it is neither correlated with the Brownian motion of

equation (1.1) nor takes advantage of short deviations of XM . Note that the optimal strategy

we have in equilibrium is such that only considers the mispricing of the asset - that is, it is
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possible to write θ∗ having as the only stochastic term σV Zt +µ−St, which is the difference

between the insider’s valuation of the asset, σV Zt + µ, and the market maker’s valuation of

the asset, St, at time t.

However, our findings show that there is an increase in the market’s liquidity toward the

end of the trading period, even though we have an equilibrium that is a purely directional

one.

In Chapter 4, the price process in the filtration of the market maker is given by equation

(4.7), reproduced below:

dSt = σV w(t)dN
(1)
t + β2(t)σM (t)dN

(2)
t ,

where N (i)s are the innovations processes given by (4.2). In particular, N (1) is the innovation

process that comes from the demand component. Furthermore, in Proposition 4.2 we show

that w is such that w > 0 in [0, 1) and limt→1w(t) = 0. Therefore, as times approach one,

the liquidity of the market increases such that it converges to a perfect liquid one at the end

of the trading period.

The liquidity of the market is a keystone in Kyle-Back models. As we mentioned earlier,

if the market were completely liquid at some point in [0, 1), the insider would be able to

make infinite profits. That is, if the insider was able to trade any amount of stocks without

affecting the price, they would trade an infinite amount of it, making any mispricing enough

to provide infinite profits. That is actually one of the reasons why it is so important for

our model to show that w > 0 in [0, 1). The amount of insider influence on the price is the

feedback effect.

Therefore, the findings of this thesis that we mentioned above show that the feedback

effect decreases as the end of the trading period approaches, allowing the insider to trade

more aggressively.

One of the main stylised facts that the authors of Foucault et al. (2016) were trying to

model is that high-frequency trading often occurs in soon-to-be-released news. As discussed

above and much further in detail in Chapters 4 and 7, our model is a directional one that

models this soon-to-be-released-news phenomenon as we see the increase in the volatility of

the trading when the information is about to be released, which happens in time one.
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1.2 Setting of the Model

Before proceeding to the description of the model, we establish that we are working in the

filtered probability space (Ω,F , (Ft)t≥0),P) satisfying the usual conditions of right continuity

and P completeness. This probability space must contain three Brownian motions: B, BM ,

and BI .

In this model, we are considering a risky asset that is traded between moments 0 and 1 in

an economy where the risk-free interest rate is set to be 0. At the end of the trading period,

information about the true value of the asset, V , will be made public to market participants.

V is supposed to be a Gaussian random variable, hence we write V = σV η + µ such that η

is a standard Gaussian random variable. η and hence V is assumed to be independent of all

Brownian motions B,BM , BI .

The hypothesis that V will be made public at time 1 is aligned with the theory since

the early works of Kyle (1985) and Back (1992). The main innovation of this thesis is how

information is distributed to the public. Instead of being presented at all at once at the end

of the trading period, the following continuous bridge gives a public signal that converges to

η:

XM
t =

∫ t

0
σM (s)dBM

s +

∫ t

0
σ2M (s)

η −XM
s

1− ΣM (s)
ds (1.1)

such that ΣM (t) =
∫ t
0 σ

2
M (s)ds and ΣM (1) = 1. In the sake of generality one may be tempted

to allow ΣM (t⋆) = 1 for some t⋆ < 1. However, note that if we allowed that, we would allow

to have the full disclosure of the information about V before the moment we set to be the

one of the release of the information t = 1. Hence, we require that ΣM (t) < 1 ∀ t ∈ [0, 1).

Furthermore, the precision of the public signal is given by 1
1−ΣM (t) . As discussed before, it

will become perfectly accurate at the end of the trading period.

The insider, on the other hand, has access not only to the public information but also

to their own stream of information. Since Back, Pedersen (1998), it is traditional in the

literature to allow for a dynamic private signal. Not only could the extension of the model

developed by Danilova (2010) be cited, but also Campi et al. (2013) that extends the model

of a private dynamic signal for the trading of a risky asset that may default show that the

seminal work of Back, Pedersen (1998) established the dynamic signal as the benchmark for

Kyle and Back models. As discussed previously, the dynamic signal is also fundamental for
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the high-frequency behaviour we aim to model.

Therefore, we can define the private signal, XI , given by the continuous bridge also

converging to η as follows:

XI
t = XI

0 +

∫ t

0
σI(s)dB

I
s +

∫ t

0
σ2I (s)

η −XI
s

1− ΣI(s)
ds (1.2)

where ΣI(t) = c2 +
∫ t
0 σ

2
I (s)ds, ΣI(1) = 1. It is also important to point out that BI is a

Brownian motion that is independent of BM . Moreover, we require that η ∼ N(0, 1) can be

expressed as the sum of two independent random variables such that η = XI
0 + η1 where XI

0

is a F0-measurable random variable such that XI
0 ∼ N(0, c2).

Often in the literature, we may want to separate the static and dynamic cases as is done

in Çetin, Danilova (2018). The so-called static case being the one in which the insider has

perfect information about the asset that is being traded, and the dynamic case being the one

in which the insider receives the information throughout the trading period (see Chapter 7

of Çetin, Danilova (2018)). One of the roles of c in this setting is to allow the static case to

be a particular case of our model when c = 1. All the results we present in the thesis hold

without any problem in the case when ΣI(0) = 1. Furthermore, we also allow the private

signal to converge before one, even if c < 1. There is nothing that prevents us from having an

explosion in precision of the private signal 1
ΣI(t)

at any point in the trading period t ∈ [0, 1].

On the other hand, we ask c not to be set at zero, as it would create a situation at t = 0 in

which the insider does not have a better signal than the insider.

We shall make some regularity assumptions about the functions σI and σM :

Assumption 1.1. The functions σI : [0, 1] → R+ and σM : [0, 1] → (0,∞) are continuous.

It is important to realise that XI is not the insider’s signal. If that were the case, it would

be natural to demand ΣI(t) ≥ ΣM (t) ∀t ∈ [0, 1]. In fact, as will be discussed in Chapter 2,

we are able to find the optional projection of η into the insider’s filtration. In fact, the main

theorem of the chapter, Theorem 2.3, shows that it is given by a linear combination of both

signals. The precision of the insider’s signal will be given by 1
ΣZ(t) where, as expected, as

long as c > 0, we have ΣZ(t) ≥ ΣM (t) ∀t ∈ [0, 1] as given by Corollary 2.1.

We can now proceed to describe the microstructure of the market, that is comprised

of three different types of agents: noise/liquidity traders, market makers and the informed

trader:
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• Noise/liquidity trade trade for reasons that are exogenous to the model. Their cumula-

tive demand is given by a standard (Ft)-Brownian motion B independent of both BM

and BI .

• Market makers: observe the total demand given by

Y = θ +B, (1.3)

where θ is the demand of the informed trader, and also observe the public signal given

by (1.1). As it is the tradition in the literature of Kyle-Back model, see for example

Back (1992), Campi, Cetin (2007), and Campi et al. (2013), the market maker uses the

information from the demand process to set their price process, but as they have access

to a public stream of information they also incorporate it to the price process, S, such

that

S(Y[0,t], X
M
[0,t], t) = H(t,Xt, X

M
t ) ∀ t ∈ [0, 1) (1.4)

where X is the unique strong solution to

dXt = w(t)dYt +
(
r0(t) + r1(t)Xt + r2(t)X

M
t

)
dt ∀ t ∈ [0, 1) (1.5)

for some deterministic functions w and (ri)
2
i=0 that will satisfy the admissibility condi-

tions specified in Definition 1.1. Furthermore, we shall require that, in equilibrium, we

must have a pricing rule that given the optimal trading strategy for the insider will be

a so-called rational pricing rule, i.e. H(t,Xt, X
M
t ) = E[V |FM

t ].

It is interesting to notice that the structure ofX allows the market makers to incorporate

not only the contemporary levels of the demand and the public signal, but also the

cumulative level of the demand without losing its Markov property. In a modelling

point of view, one should consider that the market maker must take into consideration

two signals. The cumulative level of any of those signals must be relevant to weight the

level of each of the signals as their own uncertainty about the final value of the asset

vanishes.

Furthermore, the above definition of X allows more flexibility to the model so we can

address two issues separately. One should note that equations (1.8) and (1.5) could
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be combined so at the end of the day we shall have a pricing rule that indeed satisfies

equation (1.4). However, such separation allow us to first solve the HJB equation of the

insider setting (ri)
2
i=0 for any set of (βi)

2
i=0 according to Assumption 3.2. After that,

we can both find the values of (βi)
2
i=0 that satisfy the rationality condition Chapter 4

henceforth the correspondent values of (ri)
2
i=0.

Moreover, a pricing rule H must also be admissible in the sense of definition 1.1. This

pricing rule is enforced via a Bertrand competition: Market makers are willing to buy

or sell any quantity offered to them under their pricing rule. Furthermore, one can

note that the market maker’s filtration, which shall be denoted by FM , the minimal

right-continuous and complete filtration generated by the demand, Y , and the public

signal XM .

• The informed investor: observes the price process S, given by equation (1.4), the public

signal, XM , given by equation (1.1), and a private signal, XI , given by equation (1.2).

As we assume the insider to be risk-neutral, her objective is to maximize her expected

final wealth

sup
θ∈A(H)

Ez[W θ
1 ] (1.6)

where

W θ
1 = (V − S1−)θ1− +

∫ 1−

0
θs−dSs, (1.7)

A(H) is the set of admissible strategies for the given pricing rule H as defined in

Definition 1.1. Ez is the expectation with respect to Pz, which is the regular conditional

distribution of (Bs, X
I
s , X

M
s ; s ≤ 1) given B0 = XM

0 = 0 and XI
0 = z.

The existence of the probability measure Pz is ensured by Theorem 44.3 in Bauer (1996).

Note that F must be rich enough to contain all the null sets of F I . The insider filtration

F I is the universal completion of the filtration generated by XI , XM and S. Hence, the

cited theorem guarantees the existence and uniqueness of P|F I . Section 2 of Cetin, Danilova

(2021) provides a detailed discussion of the expectation operator in this case and the filtration

F I .

We can now proceed to set the requirements for equilibrium. Hence, as mentioned above,

we must define both the set of admissible pricing rules and the set of admissible trading

9



strategies. The first will be defined in Definition 1.1 and the latter in Definition 1.2. When

considering the price process in equilibrium, one should note that H(t,Xt, X
M
t ) = E[V |FM

t ]

is a projection of a Gaussian random variable into the market maker’s filtration that is

comprised of Gaussian processes X and XI (provided that Y is Gaussian, which will be true

due to the fact that in equilibrium α will be defined by (4.4) as a linear equation of X, XM

and Z). As will be clarified in Chapter 2, such a projection is a linear one, ultimately leading

to the fact that E[V |FM
t ] must be a Gaussian process itself.

In a mathematical point of view, it is important to point out that we do not claim that

there would not be a more general set of pricing rules and strategies that would also lead to

other equilibria. The main focus of our research is to show the existence of an equilibrium.

Definition 1.1. An admissible pricing rule is any quintuple (H,w, r0, r1, r2) fulfilling the

following conditions:

1. w and (ri)
2
i=0 are continuously differentiable real valued functions defined on [0, 1].

Moreover, w takes values in (0,∞).

2.

H(t, x, x1) = β0(t) + β1(t)x+ β2(t)x1, (1.8)

where βi ∈ C1([0, 1)) for i = 0, 1 and 2.

3. x 7→ H(t, x, u) is strictly increasing for every t ∈ [0, 1) and u ∈ R. That is, β1 > 0 on

[0, 1).

We will write (H,w, r) in short to denote (H,w, r0, r1, r2).

One of the key features in the literature regarding the insider’s optimal strategy is that

she can invert the pricing rule to know exactly the value of the demand Y at it, which is

explained in Section 6.2 of Çetin, Danilova (2018). That will also be the case in our model.

As a consequence of Proposition 4.2, the value of w never vanishes (note that according to

the previous definition w takes positive values). Therefore, since we also require β1 to be

positive, the insider can invert the price process to know exactly the value of Yt at any given

moment t ∈ [0, 1]. As given by the sum of the insider strategy and the demand process for

noise traders, the insider has perfect knowledge of (Bs)s≤t at any t ∈ [0, 1].
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Since Back (1992) it is very well established in the literature (see, e.g. Campi et al.

(2013), Cho (2003), and Wu (1999)) that the optimal strategy for the insider should be one

that is absolutely continuous with respect to the Lebesgue measure, as martingale and jump

components in trading strategies are known to be suboptimal. There is no reason to believe

that the insider would profit from being able to perform jumps in their strategy, as is clear

from the proof of Theorem 6.1 in Çetin, Danilova (2018). However, with the introduction

of a public signal XM it is not possible to be sure that a nontrivial martingale part is still

suboptimal. Indeed, one could conjecture that by correlating their strategy to the public

signal (or the private one), the insider would be able to filter the flux of information that the

market maker gets. Therefore, in the admissible trading strategies, we have strategies of the

following form:

dθt = αtdt+ γ0(t)dβ
I
t + γ1(t)dβ

M
t

Note that the Brownian motions above are not the ones we define in equations (1.2) and

(1.1). That is because the bridges are defined in a filtration that considers the knowledge

of η. Indeed, each of the bridges is a martingale in their own filtration. For the insider, as

long as c < 1, they do not observe η. As a consequence, they also do not observe neither

BI nor BM (i.e., BI and BM are not F I -adapted) that are defined in a filtration enlarged

with σ(η). Therefore, the insider’s strategy must be defined with respect to the innovation

processes in the insider’s filtration, namely βI nor βM . As will be clear in Chapter 2, βI is

the innovation process with respect to BI and βM is the one with respect to βM .

Furthermore, we write αt to keep the notation simple. In fact, α should not only be

considered a function of time. We allow the insider to use all the information available to her

in order to build her strategy. Therefore, we should consider that each admissible strategy α

is potentially a function of t,X,XI , XM and Z. As we shall see in Theorem 3.1, any strategy

that drives the mispricing to zero at time one is an optimal strategy. In Chapter 4, we restrict

ourselves to a particular class of linear trading strategies given by Equation (4.4). Since Z is

a linear combination of XM and XI , we write α as a linear combination of t,X,XM and Z

with coefficients that depend on time. At the expense of being repetitive, our main theorem,

Theorem 6.1, shows the existence of an equilibrium that does not claim uniqueness.

Definition 1.2. A continuous F I-semimartingale θ is said to be an admissible trading strat-
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egy for a given pricing rule (H,w, r) if it satisfies the following:

1. It has an F I-Doob-Meyer decomposition given by

dθt = αtdt+ γ0(t)dβ
I
t + γ1(t)dβ

M
t , (1.9)

where the first term is the finite variation component, βI and βM are the Brownian

motions from Theorem 2.3 , and γ0 and γ1 are F I-predictable processes.

2. There exists a unique strong solution to (1.5) on [0, 1).

3. The following integrability conditions hold to rule out doubling strategies:

Ez

∫ 1

0
H2(s,Xs, X

M
s )ds <∞, (1.10)

Ez

∫ 1

0
(H−1(s, σV Zs + µ,XM

s )−Xs)
2β

2
2(s)σ

2
M (s) + σ2Z(s)

w2(s)
ds <∞, (1.11)

where H−1(t, z, u) is the unique solution of H(t, x, u) = z and X is the unique strong

solution of (1.5).

The set of admissible trading strategies for a given (H,w, r) is denoted by A(H,w, r).

Once we have established what are the requirements for both a price rule and an admissible

strategy, we can now define the equilibrium. That will be a Nash-type of equilibrium in which

a pair of admissible strategy and an admissible pricing rule is an equilibrium if at the same

time given the pricing rule the insider’s strategy is optimal and given that strategy the pricing

rule satisfies a rationality rule. The rationality rule given by equation (1.12) guarantees that

the market makers are trading at a price that is exactly their valuation of the risky asset.

Obviously, one should recall that the fairness is of the market maker’s on making. By the

Bertrand competition hypothesis we have set previously, implies that the perfect competition

among market makers is such that if anyone is willing to sell at a discounted price, the demand

will be infinite for the risky asset as well as if someone is willing to buy at a premium price.

Therefore, one can understand the Bertrand competition hypothesis as the output of perfect

competition among indefinitely many equally informed risk-neutral market makers.

We decided to label the equilibrium as a Nash-type equilibrium because in the original

paper Nash (1951) a (Nash) equilibrium is defined as one in which all agents maximise
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their payoffs. Therefore, an equilibrium is reached if given the other players’ best strategies,

every player is maximising their own payoff. As a consequence, we should not call the

equilibrium in our model a proper Nash equilibrium. In this game, on the other hand, only

the insider is maximising their payoff while the market maker’s requirement is only that

the price follow their valuation of the price of the asset. The justification for naming it a

Nash-type equilibrium comes from the fact that there is no incentive for any of the players

to deviate from their strategy. From the point of view of the insider, she is maximising her

payoff and, regarding the market maker’s perspective, they should not deviate from their

strategy as they are trading the risky asset at a fair price.

A final remark about the rational pricing rule is that as the price is enforced in the market

by the market makers at that level, the liquidity traders also buy and sell the risky asset at a

fair price. By that, we mean that they always trade the asset at the proper valuation of the

asset given the information that is available to the public. That is the reason why they are

known as liquidity traders: they do not trade strategically; instead, they buy and sell the risky

asset as a consequence of their consumption and investment decisions. Furthermore, they are

also known as noise traders, as if it weren’t for their existence, the market makers would

trivially identify who the insider is since they would be the only other agent they would be

trading with. As can be easily observed from equation (1.3), if there was no demand coming

from the noise traders, the market makers would be able to observe θ directly. As is the case

in the literature, we shall see that the insider is able to trade inconspicuously because the

market maker cannot identify whether the orders come from the insider or noise traders.

Without further remarks,, we are now able to define the equilibrium in our economy:

Definition 1.3. A couple ((H∗, w∗, r∗), θ∗) is said to form an equilibrium if (H∗, w∗, r∗) is

an admissible pricing rule, θ∗ ∈ A(H∗, w∗, r∗), and the following conditions are satisfied:

1. Market efficiency condition: given θ∗, (H∗, w∗, r∗) is a rational pricing rule, i.e.

H∗(t,Xt, X
M
t ) = E[V |FM

t ]. (1.12)

2. Insider optimality condition: given (H∗, w∗, r∗), θ∗ solves the insider optimisation prob-

lem for all z:

Ez[W θ∗
1 ] = sup

θ∈A(H∗,w∗,r∗)
Ez[W θ

1 ] <∞.
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It is worth pointing out the language of Definition 1.3 that only defines what is a possible

equilibrium. In the main theorem of the thesis, Theorem 6.1, we show that there exists an

equilibrium, but do not claim the uniqueness for it.

1.3 Challenges and Contributions

Adding a public signal to the Kyle-Back model introduced several additional challenges to

it. In this section, we will make a summary of the main obstacles and the innovations we

present to deal with them. As a summary, we expect it to be supplemented by the remarks

presented throughout this thesis, in particular, at the beginning of each chapter.

In Chapter 2, we introduce the insider’s valuation of the risky asset. In the literature on

Kyle-Back models, we have two types of information delivery: static and dynamic. In the

static case, as presented in Kyle (1985) and Back (1992), the insider observes the value of the

asset at the beginning of the trading period. Therefore, there is no point in talking about

the insider’s valuation of the risky asset, as she already knows the value of it from t = 0.

The dynamic case was first presented by Back, Pedersen (1998) and later extended by

Danilova (2010). In this case, the insider receives a dynamic signal as described by XI in

Equation 1.2. However, since there is obviously no public signal, we can interpret η solely as

the distribution of XI
1 . In our case, we have two bridges given by 1.1 and 1.2 converging to

the same final condition; hence, there is a bridge component taking place here. However, if

there were no public signal, all we would be saying is 1.2 would be converging to some final

condition XI
1 that we are calling η. Hence, if there was no public signal 1.1 could have been

written as

XI
t = XI

0 +

∫ t

0
σI(s)dB

I
s +

∫ t

0
σ2I (s)

XI
1 −XI

s

1− ΣI(s)
ds

which in turn is just a bridge representation of the process

XI
t = XI

0 +

∫ t

0
σI(s)dB

I
s .

Therefore, if there were no public signals, we would have a special case of the model of

Danilova (2010) in which the only signal the observer inside is the process XI as described

above.

Furthermore, the main theorem of Chapter 2, Theorem 2.3, is more general than the
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application we present in this context. In fact, it works for every two martingales that share

the same final condition. It is interesting to note that the F I -decompositions of XI and of

XM are dynamic Markov bridges (see Chapter 5 of Çetin, Danilova (2018)).

In our particular case, Theorem 2.3 gives us that Zt := Ez[η|F I
t ] is given by Zt =

λ0(t)X
I
t +λ1(t)X

M
t , where λ0(t) =

1−ΣZ(t)
1−ΣI(t)

, λ1(t) =
1−ΣZ(t)
1−ΣM (t) . Hence, the insider’s valuation

of the risky asset that is being traded is a linear combination of both the public signal and

the private signal instead of just the private signal as in the previous literature.

Chapter 3 follows the literature on Kyle-Back models more closely. We have a more

complex task, but we do not use technology that is far from what has been done previously.

The structure of the value function given by (3.53) is not far from what is usually done in the

literature, as can be seen from equation (6.30) of Çetin, Danilova (2018). Obviously, there are

additional challenges to the model while incorporating an extra signal. Firstly, as we allow

the insider to correlate her strategies with the Brownian motions coming from the signals,

the insider’s optimisation problem now involves not only the α component as it is the norm

in the literature (as, for example, in condition (ii) of Theorem 7.1 of Çetin, Danilova (2018)),

but also the γ0 and γ1 components. That particular task is simplified by the fact that we find

it suboptimal for the insider to correlate their strategies. Furthermore, the value function for

the insider that used to be a function of time, the demand, and either the value of the asset,

in the static case, or the insider’s signal, in the dynamic case, now is a function of time, the

demand, the public signal, and Z, the linear combination of the public and private signals.

As Z is a linear combination of XI and XM , knowing any two of the three is equivalent to

knowing all three.

One can note that in the model presented in Çetin, Danilova (2018), there is an analytical

solution to the value function, as both H and w in there do not follow very restrictive

functional forms. From equation (3.53) it may seem that we have a very clear closed form

for our value function as well, but it depends on w which will have its form discussed later in

Chapter 4. Indeed, after quite some work we are able to prove the existence and uniqueness

of w in Theorem 4.4.

The main theorem of Chapter 3, Theorem 3.1, shows the conditions for the optimality of

a given trading strategy. From Chapter 4 forward, we concentrate on showing the existence

of an equilibrium for the model in terms of Definition 1.3. In particular, we concentrate our

efforts on showing the existence of equilibrium for a particular functional form of α. We have
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left Theorem 3.1 in a more general form because it could be used for other models in this

research agenda in generalizations of this model.

Chapter 4 has imposed several mathematical difficulties. As we mentioned previously in

this section, even in the dynamic information setting, there is no projection of η into the

insider’s filtration. The insider would observe XI and the realization of η at the end of the

trading period would be just XI
1 . Therefore, while dealing with the projection of η into the

filtration of the market maker, we are left with two projections: the projection of η into

the filtration of the market maker and the projection of Zt, which is itself the projection of

η into the insider’s filtration into the filtration of the market maker. Obviously, those two

projections must coincide in some sense. Therefore, we had to go deeper into the theory of

stochastic filtering than is usually necessary in the literature. Furthermore, the ODE system

given by (4.29) resulting from the combination of both projections was much more complex

than what we would normally encounter; see, for example, equation (3.30) in Campi et al.

(2011).

In fact, a lot of effort was necessary to prove the existence and uniqueness of the system

given by (4.29). Firstly, we had to show the existence and uniqueness of a modified version

of the system given by (4.1), which would be equivalent to the original system if a particular

condition of the initial condition of the function w was satisfied. This condition, given by

equation (4.33), would be satisfied if equation (4.37) held. However, since we do not have a

closed form for w, we had to use a fixed-point algorithm to prove the existence of a solution

(4.29) for an initial condition given by (4.37). The use of all this technology mentioned in

this paragraph is necessary because we have a public signal, and none of it has been used in

the previous literature.

The use of Doob’s h-transform is not new in the literature to prove that a given trading

strategy is indeed optimal. As it was the case in Chapter 3, the fact that the market maker

observes a public signal makes this task much more complex. Even if we did not have to use

different mathematical tools, we certainly had to use the same ones more heavily.

Once we have found all the conditions for a pair of strategies to be optimal, all that is

left to do is to add them together to prove the equilibrium. That is basically what we do in

Chapter 6. However, some of the findings of the model need additional research beyond the

analytical results.

The fact that we only had existence and uniqueness results, but not a closed form for v
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and w as defined by (4.29) did not allow us to know some things that were quite important

for our analysis. The first was about the ex-ante value of information, i.e., the E(W1) in

equilibrium. An interesting fact about this quantity is that, as is the case in previous models

in the literature, it does not depend on the signal XI , not even if there is a signal XI or we

are dealing with the so-called static case. Therefore, we are interested to know if that is also

the case for XM . Furthermore, for the high-frequency trading that motivates the name of this

thesis, we need to understand the behaviour of the price process, that is given by equation

(4.7). As a consequence, we need to understand the behaviour of β2, which itself depends on

v as given by equation (4.26). Therefore, we had to use an ODE solver to find a numerical

approximation of the functions v and w and, hence, of the quantities we were interested in

studying. In order to do so, we developed a code in R. Although the code developed was

neither computationally nor mathematically difficult, since the purpose of the code is to find

approximations for the functions given by (4.29), it does not rely on the previous literature.
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Chapter 2

Stochastic Filtering

This chapter has two main purposes. The first is to introduce the technology used in the

thesis regarding the Theory of Stochastic Filtering. Such task is developed in Section 2.1. In

this section, we briefly explain the main ideas behind the Theory of Stochastic Filtering and

summarise the main results of Khalil (2002) that are most commonly used throughout the

thesis. That is particularly important for us because we deal with quite a few projections

of η (the stochastic part of V ). In Section 2.3 we do the projection of η into the insider’s

filtration. We define such projection to be called Z. In Chapter 4, we both project η directly

into the market maker’s projection and project Z into the same filtration. As a consequence,

we see the need to expose the reader to the collection of results in stochastic filtering so that

we can clearly show the innovations we develop in this thesis.

The second purpose is to prove our main contribution we have made in this chapter,

Theorem 2.3. It is a well-known fact that for Markov bridges such as the ones represented

in equations (1.1) and (1.2), we have XM
t = E

(
η|FXM

t

)
and XI

t = E
(
η|FXI

t

)
. One could

find the projection of η into the filtration containing both XM and XI using the theory that

we present in Section 2.1. Our contribution is to show that this projection E
(
η|FXM ,XI

t

)
is

a linear combination Z, as given by the equation (2.11) of XM and XI . Furthermore, the

structure of this linear combination is such that Zt = E
(
η|FXM ,XI

t

)
= E

(
η|FZ

t

)
. The first

step we take is to find the coefficients of the linear structure that return a Markov bridge.

Hence, in section 2.2 we find the coefficients λ0 and λ1 such that Zt = λ0(t)X
I
t + λ1(t)X

M
t

is a Markov bridge. The linear structure of the optional projection given by Theorem 2.1

will ensure to us that Zt = E
(
η|FXM ,XI

t

)
which is developed in section 2.3. Indeed, from a

18



mathematical point of view, one could claim that the role of section 2.2 is almost a motivating

one except for the form of ΣZ that must coincide with the variance of the projection found

in the following section. Apart from that, one could skip it and only read 2.3 ignoring where

the values of λ0 and λ1 are coming from.

As it is the norm in applied mathematics, Theorem 2.3 is true for any two Markov bridges

with the same terminal condition, but our motivation is to find the insider’s valuation of the

risky asset. Once we are able to do it under the conditions explained here, σV Z + µ will be

equivalent to the insider’s signal about the final value of the asset.

Unlike most chapters in this thesis, there is no counterpart to this chapter in the literature.

As one can see in Chapters 6 and 7 of Çetin, Danilova (2018), the traditional Kyle-Back

models with dynamic information are such that the insider observes a martingale such that

its state at t = 1 will determine the price of the final value of the asset. In order to keep the

same notation we are using here, it would be the case that there is no public signal so XI

would be a martingale dXI
t = σI(t)dW

I
t such that the final price of the asset would be given

by f(XI
1 ) for some function f . Therefore, since XI would be the only source of information

for the insider, it would be obvious that XI
t = E

(
XI

1 |FXI

t

)
= E

(
XI

1 |FI
t

)
where FI stands for

the insider’s filtration so there would not be a point in talking about the insider’s projection

of an η that would be just XI
1 . On the other hand, once the insider has two sources of

information, it makes sense to talk about the insider’s filtration and her valuation about the

final value of the asset that is being traded.

It is also interesting to note that often in the literature there are significant differences

between the settings of the case when the insider has perfect foreknowledge of the value of

the asset or when she receives a signal that converges to it, as explained in Çetin, Danilova

(2018). However, as it is also the case in the literature, one can understand the static case

as a particular case of the dynamic signal. In fact, the very last corollary of this section,

Corollary 2.2, states that if any of the signals converge to η also will Z, the signal given

by the linear combination of the signals. Obviously, the interesting case is when the private

signal converges to η before one being the static case when Zt = η for all t.
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2.1 Review of Stochastic Filtering

Before anything else, it is necessary to understand the problem it is addressing. Suppose that

one is working in a filtered probability space (Ω,F , (Ft)t∈[0,T ] ,P) and wants to study a process

Y that is adapted to the filtration Ft under a smaller filtration that is generated by some

Ft-adapted processes. Such processes are denoted by X and are known as the observational

processes. The intuition here is quite obvious: we consider agents that do not have access to

Ft and therefore must estimate Y with the information available to them.

The process of interest Y is called the signal process. Therefore, our aim is to find

E
(
f(Yt)|FX

t

)
, where FX

t is the minimal filtration generated by X and f is an FX
t -measurable

function.

Before proceeding with any calculation, it is important to address the issues of existence

and uniqueness. Beginning with the latter, as an immediate consequence of Kolmogorov’s

theorem on conditional expectations (see Williams (1991) Theorem 9.2) is defined almost

surely. However, it is possible to define the optional projection of (f(Yt))t∈[0,T ]:

Definition 2.1. Let Y be an (Ft)-adapted integrable process. The (FX
t )-optional projection

of Y is an (FX
t )-optional process, oY , such that for any (FX

t )-stopping time τ ,

E
(
Yτ |FX

τ

)
=o Yτ .

Theorem IV.5.5 of Revuz, Yor (2004) guarantees uniqueness up to indistinguishability.

The role of indistinguishability is very-well discussed by Karatzas et al. (1988) in page its

section 1.1. The proof of the existence of the optional projection can be found in Theorem

VI.7.1 of Rogers, Williams (2000). As is standard, in the literature, we denote the optional

projection of a process Y as Ŷ . Furthermore, throughout this thesis, every time we refer

to the conditional expectation of a process given the minimal filtration of an observation

process, we are referring to its optional projection. Hence,

E
(
f(Yt)|FX

t

)
=o f(Yt) = ˆf(Yt)

for any measurable function f .

We can now introduce the so-called innovation approach to filtering. We shall now assume

that the observation process is of the form
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Xt =

∫ t

0
hsds+Wt,

where W is an {Ft}-Brownian motion in Rn, W0 = 0, and h is an {Ft}-adapted process with

values in Rn such that

E
∫ 1

0
|hs|2ds <∞.

The innovation approach is named this way because of the definition of innovation process,

presented here in Definition 2.2 that is a consequence of Theorem 2.1 first published at Fujisaki

et al. (1972). A proof of the following theorem can be found in Rogers, Williams (2000) as

Theorem VI.8.4.

Theorem 2.1 (Fujisaki, Kallianpur and Kunita).

• The process

Nt ≡ Xt −
∫ t

0
ĥsds (2.1)

is a FX
t -Brownian motion in Rn.

• If Z is an L2-bounded FX
t -martingale, Z0 = 0, then there exists a FX

t -previsible process

C = (C1, . . . , Cn) such that:

E

[∫ 1

0

n∑
i=1

(Ci
s)

2ds

]
<∞,

and such that:

Zt =

∫ t

0
(Cs, dNs) ≡

∫ t

0

n∑
i=1

Ci
sdN

i
s.

We are now ready to define the innovation process as follows:

Definition 2.2. The FX
t -Brownian motion N defined by the equation (2.1) is called the

innovation process.

It is interesting to note that in our model we are going to work with two Markov bridges.

For example, the public signal is a bridge given by:

XM
t =

∫ t

0
σM (s)dWM

s +

∫ t

0
σ2M (s)

η −XM
s

1− ΣM (s)
ds
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where W is an Ft-Brownian motion. All agents observe XM
t , but not all observe W and η.

Hence, Theorem 2.1 says that

XM
t =

∫ t

0
σM (s)dNM

s +

∫ t

0
σ2M (s)

η̂t −XM
s

1− ΣM (s)
ds

where now N is an FX
t-Brownian motion, the innovation process, and η̂t is the optional

projection of η into FX
t . Once we are motivated to understand why it is relevant to understand

the optional projection of the observation process, we can now proceed to the more obvious

one: the optional projection of the signal process. The connection between Markov bridges

and the enlargement of flirtations is explored at length in Çetin, Danilova (2018).

We take the same approach as Wu (1999) and summarise the main results of Kallianpur

(2013) used in this thesis in a single theorem:

Theorem 2.2. (Modified from Kallianpur (2013)) Let the m-dimensional signal process

(Yt)t≥0 and the n-dimensional observation process (Xt)t≥0 be given by the stochastic dif-

ferential equations:

dYt = [A0(t) +A1(t)Yt +A2Xt]dt+B(t)dWt (2.2)

dXt = [C0(t) + C1(t)Yt + C2Xt]dt+D(t)dWt (2.3)

with initial randon variable X0 independent of (FX
t ), and X0 = 0 a.s.. Besides that, (Wt) is

a q-dimensional standard Brownian motion and Ai, Ci, U and V (i = 0, 1, 2) are nonrandom

matrices of appropriate dimensions. The entries in coefficients Ai and Ci (i = 0, 1, 2) are

integrable and those in B and D are square-integrable. Then,

dŶt = [A0(t) +A1(t)Ŷt +A2Xt]dt

+[v(t)C∗
1 (t) +B(t)D∗(t)][D(t)D∗(t)]−

1
2dNt (2.4)

where Ŷt is the optional projection of Y with into (FX
t ). Furthermore, the innovation process

Nt defined as following:

Nt := Xt −
∫ t

0

(
C0(s) + C1(s)Ŷs + C2(u)Xs

)
ds
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is an (FX
t )-martingale.

Moreover, let v(t) = E
[
Y 2
t − Ŷt

2|FX
t

]
. Then,

dv(t)

dt
= A1(t)v(t) + v(t)A∗

1(t) +B(t)B∗(t)− [v(t)C∗
1 (t)

+B(t)D∗(t)][D(t)D∗(t)]−1[C1(t)v(t) +D(t)B∗(t)]. (2.5)

Note that the equation (2.4) above is Equation (10.3.11a) and equation (2.5) is Equation

(10.3.15) of Kallianpur (2013).

2.2 Linear Combination of Markov Bridges

We are considering a Kyle-Back model with private and public information. The flow of

information delivered to all participants in the market is denoted by (XM
t )t∈[0,1], while the

information that is provided exclusively to the insider is denoted by (XI
t )t∈[0,1].

Both (XM
t )t∈[0,1] and (XI

t )t∈[0,1] are Markov bridges converging to the true value of the

asset η. We should take a moment to discuss what we mean by a Markov bridge in this

context. If we take either of the signals XM or XI on their own, there is not much to

say. If we take into account the public signal, for example, a martingale dXM
t = σ(t)dW I

s

with initial condition XM
0 = 0, ΣM (t) =

∫ t
0 σ

2
M (s)ds and ΣM (1) = 1, one would get XM

1 ∼

N(0, 1). Therefore, considering only equation (1.1), what we have is just a Markov bridge

representation of a martingale labelling XM
1 as η. The real bridge component here is when

we consider both signals given by equations (1.1) and (1.2) together as their final value is the

same. One would be tempted to say that what we have here for say XM is a dynamic Markov

bridge with final value given by another stochastic process XI , but after reading this chapter

it should be clear that it is not the case, even though the rationale would not be so far off.

As a sufficient condition, the first requirement in Assumption 5.1 of Çetin, Danilova (2018)

for dynamic bridges is not here and can be broken. Indeed, once we are done presenting the

theory in this chapter, we shall have two dynamic Markov bridges given by equations (2.34)

and (2.35). The F I -decomposition of XI and of XM are dynamic Brownian bridges with

the same bridge condition Z.

The purpose of this section is to show that a linear combination of two Markov bridges
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that share the same final condition is a Markov bridge converging to such a terminal condition.

However, one could say that this is an optional section. In fact, when combined with the

other sections of this chapter, what we are really doing is showing how we have found the

linear coefficients in Theorem 2.3.

It is interesting to note that (XM
t )t∈[0,1] is not a delayed version of (XI

t )t∈[0,1], so we

are not dealing with an insider who is able to receive the public information in advance.

Instead, we consider that the insider has access to a stream of information of their own. As

a consequence, Corollary 2.1 shows that the insider’s uncertainty with respect to the final

value of the asset is always smaller or equal to the market maker’s uncertainty.

We sake generality when presenting the setting of the main theorem of this chapter,

Theorem 2.3. Suppose that we have two static Markov bridges converging to the same final

value. We show the equivalence between the optimal projection of the minimal filtration of

the two bridges and the optional projection of a particular linear combination of the two of

them.

We can summarise the basic hypotheses of the Markov bridges in the above equations.

Let (Ω,F , (Ft)t∈[0,T ] ,P) be a filtered probability space and

η = = η0 + η1 (2.6)

η0 = XI
0 ∼ N(0, c2), (2.7)

η ∼ N(0, 1), (2.8)

XI
t = XI

0 +

∫ t

0
σI(s)dW

I
s +

∫ t

0
σ2I (s)

η −XI
s

1− ΣI(s)
ds, s. t.

ΣI(t) = c2 +

∫ t

0
σ2I (s)ds, ΣI(1) = 1,

XM
t =

∫ t

0
σ(s)dWM

s +

∫ t

o
σ2M (s)

η −XM
s

1− ΣM (s)
ds, s. t.

ΣM (t) =

∫ t

0
σ2M (s)ds and ΣM (1) = 1

where W I
t and WW

t are independent Ft-Brownian motions.

Now, we want to find a process Z that satisfies two conditions. The first is that Z is a

Markov bridge with terminal condition η itself. Hence, Z must be written as follows:
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Zt = Z0 +

∫ t

0
σZ(s)dWs +

∫ t

0
σ2Z(s)

η − Zs

1− ΣZ(s)
ds (2.9)

ΣZ(t) = c2 +

∫ t

0
σ2Z(s)ds and ΣZ(1) = 1, (2.10)

where W is a Ft-Brownian motions and η is as described in equation (2.8).

Furthermore, the second aim is that Z be a linear combination of the two Markov bridges

with terminal condition η. As a consequence, we would like that Zt be written in the following

form:

Zt = λ0(t)X
I
t + λ1(t)X

M
t (2.11)

for some time-dependent functions λ0 and λ1.

In order to do so, we shall start applying the Itô formula to the above equation to find

the functional forms of λ0 and λ1 such that we can write Z as in equation (2.9):

dZt = λ′0(t)X
I
t dt+ λ0(t)dX

I
t + λ′1(t)X

M
t dt+ λ1(t)dX

M
t (2.12)

= λ′0(t)X
I
t dt+ λ0(t)

(
σI(t)dW

I
t + σ2I (t)

η −XI
t

1− ΣI(t)
dt

)
+λ′1(t)X

M
t dt+ λ1(t)

(
σM (t)dWM

t + σ2M (t)
η −XM

t

1− ΣM (t)
dt

)
= λ′0(t)X

I
t dt+ λ0(t)

(
σ2I (t)

η −XI
t

1− ΣI(t)
dt

)
+λ′1(t)X

M
t dt+ λ1(t)

(
σ2M (t)

η −XM
t

1− ΣM (t)
dt

)
+λ0(t)σI(t)dW

I
t + λ1(t)σM (t)dWM

t

= λ′0(t)X
I
t dt+ λ0(t)σ

2
I (t)

η

1− ΣI(t)
dt− λ0(t)σ

2
I (t)

XI
t

1− ΣI(t)
dt

+λ′1(t)X
M
t dt+ λ1(t)σ

2
M (t)

η

1− ΣM (t)
dt− λ1(t)σ

2
M (t)

XM
t

1− ΣM (t)
dt

+λ0(t)σI(t)dW
I
t + λ1(t)σM (t)dWM

t

(2.13)
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Hence,

dZt = λ′0(t)X
I
t dt+

λ0(t)σ
2
I (t)

1− ΣI(t)
ηdt−

λ0(t)σ
2
I (t)

1− ΣI(t)
XI

t dt

+λ′1(t)X
M
t dt+

λ1(t)σ
2
M (t)

1− ΣM (t)
ηdt−

λ1(t)σ
2
M (t)

1− ΣM (t)
XM

t dt

+λ0(t)σI(t)dW
I
t + λ1(t)σM (t)dWM

t

=

(
λ′0(t)−

λ0(t)σ
2
I (t)

1− ΣI(t)

)
XI

t dt+

(
λ′1(t)−

λ1(t)σ
2
M (t)

1− ΣM (t)

)
XM

t dt

+

(
λ0(t)σ

2
I (t)

1− ΣI(t)
+
λ1(t)σ

2
M (t)

1− ΣM (t)

)
ηdt

+λ0(t)σI(t)dW
I
t + λ1(t)σM (t)dWM

t .

=

(
λ′0(t)

λ0(t)
−

σ2I (t)

1− ΣI(t)

)
λ0(t)X

I
t dt+

(
λ′1(t)

λ1(t)
−

σ2M (t)

1− ΣM (t)

)
λ1(t)X

M
t dt (2.14)

+

(
λ0(t)σ

2
I (t)

1− ΣI(t)
+
λ1(t)σ

2
M (t)

1− ΣM (t)

)
ηdt (2.15)

+λ0(t)σI(t)dW
I
t + λ1(t)σM (t)dWM

t . (2.16)

Our strategy is to match equations (2.14), (2.15), and (2.16) with their respective parts

in equations (2.9) and (2.10). We may start by aggregating both Brownian motions into one

as it must be in (2.9). Hence, we have the following:

σZ(t)dWt = λ0(t)σI(t)dW
I
t + λ1(t)σM (t)dWM

t

=
√
λ20(t)σ

2
I (t) + λ21(t)σ

2
M (t)dWt (2.17)

As a consequence, we get that for any functions λ0 and λ1 we must have that

σ2Z(t) = λ20(t)σ
2
I (t) + λ21(t)σ

2
M (t). (2.18)

In the final part of this section, we show that for the functions λ0 and λ1 we will find

shortly, they will be such that the conditions in equation (2.10) will be satisfied.

We can now begin to find the functional form of λ0. One should note that in order to the
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linear form we proposed (2.14) be a Markov bridge, we must have

−σ2Z(t)
1− ΣZ(t)

(λ0(t)X
I
t + λ1(t)X

M
t ) =

(
λ′0(t)

λ0(t)
−

σ2I (t)

1− ΣI(t)

)
λ0(t)X

I
t

+

(
λ′1(t)

λ1(t)
−

σ2M (t)

1− ΣM (t)

)
λ1(t)X

M
t (2.19)

In particular, taking into consideration only the parts that multiply XI
t we find that we

need to have

(
λ′0(t)

λ0(t)
−

σ2I (t)

1− ΣI(t)

)
=

−σ2Z(t)
1− ΣZ(t)

. (2.20)

Therefore, we can rewrite the above equation as

ln

(
λ0(t)

λ0(0)

)
+ ln

(
1− ΣI(t)

1− ΣI(0)

)
= ln

(
1− ΣZ(t)

1− ΣZ(0)

)
.

Therefore, we may rewrite it as follows:

λ0(t)

λ0(0)
=

1− ΣZ(t)

1− ΣI(t)

1− ΣI(0)

1− ΣZ(0)
.

If we set k0 = λ0(0)
1−ΣI(0)
1−ΣZ(0) , we can write the above equation as

λ0(t) =
1− ΣZ(t)

1− ΣI(t)
k0. (2.21)

Analogously, doing the same calculations for λ1, we get

λ1(t)

λ1(0)
=

1− ΣZ(t)

1− ΣM (t)

1− ΣM (0)

1− ΣZ(0)
.

Therefore,

λ1(t) =
1− ΣZ(t)

1− ΣM (t)
k1. (2.22)

where k1 = λ1(0)
1−ΣM (0)
1−ΣZ(0) .

There are two possible ways to proceed now. We could either find the initial conditions

of λ0 and λ1 by considering what should be the initial conditions of the Markov bridge of Z

and check that the final restriction involving (2.15) matches, or the other way around. The
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latter has a simpler way of presenting.

Therefore, we shall analyse what the values of k0 and k1 should be in order to have (2.15)

that match the part that multiplies η in the equation (2.9). I.e.,

σ2Z(t)

1− ΣZ(t)
=
λ0(t)σ

2
I (t)

1− ΣI(t)
+
λ1(t)σ

2
M (t)

1− ΣM (t)

Combining the above equation with equations (2.21) and (2.22), we get the following:

σ2Z(t) =
λ20(t)σ

2
I (t)

k0
+
λ21(t)σ

2
M (t)

k1
.

However, by equation (2.18) we must have that

λ20(t)σ
2
I (t) + λ21(t)σ

2
M (t) =

λ20(t)σ
2
I (t)

k0
+
λ21(t)σ

2
M (t)

k1
.

Matching the denominators of the coefficients on the right-hand side with those on the

left-hand side, we get k0 = k1 = 1.

Therefore, we find that λ0 must be such that:

λ0(t) =
1− ΣZ(t)

1− ΣI(t)
(2.23)

and

λ1(t) =
1− ΣZ(t)

1− ΣM (t)
. (2.24)

Indeed, one can double-check the solution by noticing that :

λ′1(t) =
(1− ΣZ(t))σ

2
M (t)− (1− ΣM (t))σ2Z(t)

(1− ΣM (t))2

Therefore,
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λ′1(t)

λ1(t)
−

σ2M (t)

1− ΣM (t)
=

(1− ΣZ(t))σ
2
M (t)− (1− ΣM (t))σ2Z(t)

1−ΣZ(t)
1−ΣM (t)(1− ΣM (t))2

−
σ2M (t)

1− ΣM (t)

=
σ2M (t)

1− ΣM (t)
−

σ2Z(t)

1− ΣZ(t)
−

σ2M (t)

1− ΣM (t)

=
−σ2Z(t)

1− ΣM (t)
. (2.25)

Hence, doing the analogous calculations for λ1, we can rewrite (2.14) as

(
λ′0(t)

λ0(t)
−

σ2I (t)

1− ΣI(t)

)
λ0(t)X

I
t dt

+

(
λ′1(t)

λ0(t)
−

σ2M (t)

1− ΣM (t)

)
λ1(t)X

M
t dt =

−σ2Z(t)
1− ΣI(t)

XI
t dt+

−σ2Z(t)
1− ΣM (t)

XM
t dt

=
−σ2Z(t)

1− ΣZ(t)

(
λ0(t)X

I
t dt+ λ1(t)X

M
t dt

)
=

−σ2Z(t)
1− ΣZ(t)

Ztdt. (2.26)

We can now proceed to show that our proposed solution also satisfies that (2.15) is equal

to
σ2
Z(t)

1−ΣZ(t)ηdt.

(
λ0(t)σ

2
I (t)

1− ΣI(t)
+
λ1(t)σ

2
M (t)

1− ΣM (t)

)
ηdt =

1− ΣZ(t)

1− ΣZ(t)

(
λ0(t)σ

2
I (t)

1− ΣI(t)
+
λ1(t)σ

2
M (t)

1− ΣM (t)

)
ηdt

=
1

1− ΣZ(t)

(
λ0(t)σ

2
I (t)

1− ΣZ(t)

1− ΣI(t)
+ λ1(t)σ

2
M (t)

1− ΣZ(t)

1− ΣM (t)

)
ηdt

=
1

1− ΣZ(t)

(
λ20(t)σ

2
I (t) + λ21(t)σ

2
M (t)

)
ηdt

=
1

1− ΣZ(t)
σ2Z(t)ηdt (2.27)

Therefore, we can rewrite (2.12) the following way:
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dZt =
−σ2Z(t)

1− ΣZ(t)
Ztdt

+
1

1− ΣZ(t)
σ2Z(t)ηdt

+σZ(t)dWt

=
−σ2Z(t)

1− ΣZ(t)
Ztdt+

1

1− ΣZ(t)
σ2Z(t)ηdt+ σZ(t)dWt

= σ2Z(t)
η − Zt

1− ΣZ(t)
dt+ σZ(t)dWt

Therefore, combining the solutions (2.23) and (2.24) with (2.11) leads to the conclusion

that Z must be

Zt =
1− ΣZ(t)

1− ΣI(t)
XI

t +
1− ΣZ(t)

1− ΣM (t)
XM

t . (2.28)

As we mentioned above, while setting the values for k0 and k1 we have implicitly chosen

a particular initial condition for our Z. It should be clear from equation (2.28) that given

XI
0 and XM

0 for this particular choice of λ’s we have an initial condition Z0 for Z. As we

aim for Z to be the optimal projection of η into the filtration consisting of the processes of

XI and XM , by the calculations we will make in equations (2.45) and (2.46), we must have

V ar
(
η|FXM ,XI

0

)
= V ar(η|XI

0 , X
M
0 )) = 1− ΣZ(0) = 1− c2. The rationale behind it is that

since the only information available considering both XI and XM is that coming from XI
0

that must be fully used to reduce the uncertainty about η when considering both filtrations.

Therefore, now one must show that if one assumes that ΣZ(0) = c2 the final condition of

ΣZ is such that it does not violate the hypothesis that ΣZ(1) = 1 given by Equation (2.10)

which in turn is necessary to have a Markov bridge.

We can begin by rewriting Equation (2.18) as

Σ′
Z(t)

(1− ΣZ(t))2
=

Σ′
I(t)

(1− ΣI(t))2
+

Σ′
M (t)

(1− ΣM (t))2
.

Or equivalently in integral form:

ΣZ(t)

1− ΣZ(t)
=

ΣI(t)

1− ΣI(t)
+

ΣM (t)

1− ΣM (t)
+ k. (2.29)
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Since ΣI(0) = c2 and ΣM (0) = 0, if ΣZ(0) = c2 then k = 0.

If we set

ΣZ(x)

1− ΣZ(x)
= a,

we have that

ΣZ(x) = a(1− ΣZ(x)) = a− aΣZ(x) ⇒ ΣZ(x)(1 + a) = a⇒ ΣZ(x) =
a

1 + a
(2.30)

In this case, we would have that,

a =
ΣI(x) + ΣM (x)− 2ΣI(x)ΣM (x)

(1− ΣI(x))(1− ΣM (x))
(2.31)

1 + a = 1 +
ΣI(x) + ΣM (x)− 2ΣI(x)ΣM (x)

(1− ΣI(x))(1− ΣM (x))

= 1 +
ΣI(x) + ΣM (x)− 2ΣI(x)ΣM (x)

(1− ΣI(x))(1− ΣM (x))

=
(1− ΣI(x))(1− ΣM (x)) + ΣI(x) + ΣM (x)− 2ΣI(x)ΣM (x)

(1− ΣI(x))(1− ΣM (x))

=
1− ΣI(x)− ΣM (x) + ΣI(x)ΣM (x) + ΣI(x) + ΣM (x)− 2ΣI(x)ΣM (x)

(1− ΣI(x))(1− ΣM (x))

=
1− ΣI(x)ΣM (x)

(1− ΣI(x))(1− ΣM (x))
(2.32)

Therefore, we can replace equations (2.31) and (2.32) in equation (2.30)

ΣZ(t) =
ΣI(t) + ΣM (t)− 2ΣI(t)ΣM (t)

1− ΣI(t)ΣM (t)
(2.33)

As ΣI(1) = ΣM (1) = 1, we have that

ΣZ(1) =
ΣI(1) + ΣM (1)− 2ΣI(1)ΣM (1)

1− ΣI(1)ΣM (1)
=

0

0

Hence, we can apply L’Hôpital to check the limit
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lim
t→1

Σ′
I(t) + Σ′

M (t)− 2Σ′
I(t)ΣM (t)− 2Σ′

M (t)ΣI(t)

−Σ′
I(t)ΣM (t)− Σ′

M (t)ΣI(t)
=

Σ′
I(1) + Σ′

M (1)− 2Σ′
I(1)− 2Σ′

M (1)

−Σ′
I(1)− Σ′

M (1)

=
−Σ′

I(1)− Σ′
M (1)

−Σ′
I(1)− Σ′

M (1)
= 1

ultimately leading to the conclusion that ΣZ(1) = 1. Therefore, equation (2.33) is a solution

to equation (2.18) with initial condition ΣZ(0) = c2 and final condition ΣZ(1) = 1.

2.3 Main Result

Once we managed to show that the sum of two Markov bridges as of equation (2.28) is a

Markov bridge itself, we can proceed to show the main result of this chapter: to show that

the sum of (2.28) is such that it is equivalent to both signals.

Our innovation is to show that Zt = E(η|FZ
t ) = E

(
η|FXM ,XI

t

)
where Z is as described

in equations (2.9) and (2.10). Furthermore, we also show that η|FXM ,XI

t has the same

distribution as η|FZ
t .

By Corollary 3.1 of Çetin, Danilova (2018) it is clear that Zt is a martingale in its own

filtration and since the final condition of Z is η, Zt = E(η|FZ
t ). By Theorem 3.4 also of Çetin,

Danilova (2018) given FZ
t , η is normally distributed with mean Zt and variance 1 − ΣZ(t)

for each t ∈ [0, 1]. A more pedagogical explanation can be found in section 4 of Çetin (2018).

Our motivation to prove this theorem is to find the insider’s valuation of the risky asset,

i.e. σV E
(
η|F I

)
+ µ. As the insider observes both public and private signals and there is

no other external information, it is obvious that F I = FXI ,XM
. As a consequence, we are

ultimately proving that Z as given by equation (2.28), is the insider’s valuation of the asset.

This will be very helpful in the following chapters of this thesis as we will be able to consider

σV Z + µ as equivalent to the insider’s signal about the value of the asset.

Therefore, we can proceed to the main theorem of this chapter showing that if Z is as in

(2.28), then Zt = E
(
η|FXM ,XI

t

)
and η|FXM ,XI

t ∼ N(Zt, 1− ΣZ(t)):
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Theorem 2.3. The F I-decomposition of XI and of XM are given by

XI
t = XI

0 +

∫ t

0
σI(s)dβ

I
s +

∫ t

0
σ2I (s)

Zs −XI
s

1− ΣI(s)
ds, (2.34)

XM
t =

∫ t

0
σM (s)dβMs +

∫ t

0
σ2M (s)

Zs −XM
s

1− ΣM (s)
ds, (2.35)

where βI and βM are independent F I-Brownian motions and Zt := Ez[η|F I
t ].

Moreover, Zt = λ0(t)X
I
t + λ1(t)X

M
t , where

λ0(t) =
1− ΣZ(t)

1− ΣI(t)
, λ1(t) =

1− ΣZ(t)

1− ΣM (t)
.

Furthermore, [Z,Z] = ΣZ , ΣZ(t) = c2 +
∫ t
0 σ

2
Z(s)ds, limt→1ΣZ(t) = 1, where

σ2Z(t) =

(
1− ΣZ(t)

1− ΣI(t)

)2

σ2I (t) +

(
1− ΣZ(t)

1− ΣM (t)

)2

σ2M (t), (2.36)

Finally, given F I
t , η is normally distributed with mean Zt and variance 1 − ΣZ(t) for each

t ∈ [0, 1].

Proof. Let us begin identifying the observation processes and the signal process. In the

notation of Theorem 2.2 in which the signal process is given by Y and the observation

process is given by X, we see that

Yt = η

Xt =

XI
t

XM
t


Therefore, following the notation of the theorem, the coefficients are as follows:

33



A0(t) = A1(t) = A1(t) = A2(t) = B(t) = 0 (2.37)

C1(t) =

 σ2
I (t)

1−ΣI(t)

σ2
M (t)

1−ΣM (t)

 (2.38)

C2(t) =

 −σ2
I (t)

1−ΣI(t)
0

0
−σ2

M (t)

1−ΣM (t)

 (2.39)

D(t) =

0 σI(t) 0

0 0 σM (t)

 (2.40)

We can find the optimal projection of the signal process applying equation (2.4) of The-

orem 2.2:

dŶt = v(t)
[

σ2
I (t)

1−ΣI(t)

σ2
M (t)

1−ΣM (t)

] 1
σI(t)

0

0 1
σM (t)

 dN I,M
t

= v(t)
[

σI(t)
1−ΣI(t)

σM (t)
1−ΣM (t)

]
dN I,M

t

= v(t)

(
σI(t)

1− ΣI(t)
dN I,M

t
(1) +

σM (t)

1− ΣM (t)
dN I,M

t
(2)

)
= v(t)

1− ΣZ(t)

1− ΣZ(t)

(
σI(t)

1− ΣI(t)
dN I,M

t
(1) +

σM (t)

1− ΣM (t)
dN I,M

t
(2)

)
= v(t)

1

1− ΣZ(t)

(
λ0(t)σI(t)dN

I,M
t

(1) + λ1(t)σM (t)dN I,M
t

(2)
)

where N I,M is a two-dimensional FXI ,XM

t -Brownian motion, the innovation process, with

coordinates N I,M
t

(1) and N I,M
t

(2). Moreover, v(t) = E
[
Y 2
t − Ŷt

2|FXI ,XM

t

]
and ∗ stand for

the transpose matrix.

Just as in (2.17), we can rewrite the linear combination of Brownian motions with coeffi-

cients λ0(t)σI(t) and λ1(t)σM (t) in the following way:

σZ(t)dN̄t = λ0(t)σI(t)dN
I,M
t

(1) + λ1(t)σM (t)dN I,M
t

(2) (2.41)

=
√
λ20(t)σ

2
I (t) + λ21(t)σ

2
M (t)dN̄t
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where N̄t is a FXI ,XM

t -Brownian motion. Consequently, we have that

dŶt = v(t)
1

1− ΣZ(t)
σZ(t)dN̄t (2.42)

Theorem 2.2 also provides a formula for the variance of the process v(t) as defined above

through equation (2.5):

dv(t)

dt
= −(v(t)2)[C∗

1 (t)][D(t)D∗(t)]−1[C1(t)]

If we consider equations (2.37)-(2.40) and the fact that v(t) is unidimensional, we can apply

equation (2.5) for our particular setting as follows:

dv(t)

dt
= −(v(t)2)

[
σ2
I (t)

1−ΣI(t)

σ2
M (t)

1−ΣM (t)

] 1
σ2
I (t)

0

0 1
σ2
M (t)

 σ2
I (t)

1−ΣI(t)

σ2
M (t)

1−ΣM (t)


= −(v(t)2)

[
1

1−ΣI(t)
1

1−ΣM (t)

] σ2
I (t)

1−ΣI(t)

σ2
M (t)

1−ΣM (t)


= −(v(t)2)

[(
σI(t)

1− ΣI(t)

)2

+

(
σM (t)

1− ΣM (t)

)2
]

= −(v(t)2)
(1− ΣZ(t))

2

(1− ΣZ(t))2

[(
σI(t)

1− ΣI(t)

)2

+

(
σM (t)

1− ΣM (t)

)2
]

= −(v(t)2)
1

(1− ΣZ(t))2
[
λ20(t)σ

2
I (t) + λ21(t)σ

2
M (t)

]
Hence, by equation (2.36), we have that

v(t)

dt
= −(v(t)2)

σ2Z(t)

(1− ΣZ(t))2
= −

(
v(t)σZ(t)

1− ΣZ(t)

)2

(2.43)

Thus, v(t) must satisfy the following differential equation:

v(t) = v(0)−
∫ t

0

(
v(s)σZ(s)

1− ΣZ(s)

)2

ds. (2.44)

We may now study the initial condition of the ODE. Since all the information available

at time t = 0 is XI
0 , FXI ,XM

0 = σ(XI
0 ), by equations (2.6), (2.7), and (2.8), we know that
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v(0) = V ar(η|XI
0 , X

M
0 )

= V ar(η0 + η1|XI
0 , X

M
0 )

= V ar(XI
0 + η1|XI

0 , X
M
0 )

= V ar(η1) (2.45)

the last equality being true because we assume that η0 ⊥⊥ η1. Since η ∼ N(0, 1) and η0 ∼

N(0, c2), we have that:

V ar(η) = V ar(η0 + η1)

= V ar(η0) + V ar(η1)

1 = c2 + V ar(η1)

1− c2 = V ar(η1) (2.46)

Therefore, we find that since 1 − ΣZ(0) is v(t), it must be equal to 1 − c2. Indeed, one

can realise that 1− ΣZ(t) = v(t) is in fact a solution applying it to equation (2.43):

−σ2Z(t) = v′(t) = −
(
(1− ΣZ(t))σZ(t)

1− ΣZ(t)

)2

= −σ2Z(t).

Therefore, we can rewrite Equation (2.44) as follows:

v(t) = 1− c2 −
∫ t

0
σ2Z(s)ds.

Once we have found that 1 − ΣZ(t) is a solution for v(t), it is possible to replace it in

Equation (2.42) as follows:

Ŷt = Ŷ0 +

∫ t

0
σZ(s)

(
1− ΣZ(s)

1− ΣZ(s)

)
dBs = Ŷ0 +

∫ t

0
σZ(s)dN̄s

By Theorem 2.1 we know that the innovation process, N I,M
t , is the difference between

the observation process and its projection. Therefore, we have the following:
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dN
I,M(1)
t = d

XI
t

σI(t)
−

(
−σ′I(t)
σ2I (t)

XI
t + σI(t)

Ŷt −XI
t

1− ΣI(t)

)
dt

=
−σ′I(t)
σ2I (t)

XI
t dt+

1

σI(t)
dXI

t +
σ′I(t)

σ2I (t)
XI

t dt− σI(t)
Ŷt −XI

t

1− ΣI(t)
dt

=
1

σI(t)
dXI

t − σI(t)
Ŷt −XI

t

1− ΣI(t)
dt

Hence,

λ0(t)σI(t)dN
I,M(1)
t = λ0(t)dX

I
t − λ0(t)σ

2
I (t)

Ŷt −XI
t

1− ΣI(t)
dt (2.47)

Analogously,

λ1(t)σM (t)dN
I,M(2)
t = λ1(t)dX

M
t − λ1(t)σ

2
I (t)

Ŷt −XI
t

1− ΣI(t)
dt (2.48)

If we sum (2.47) and (2.48) and replace it using (2.41), we have the following:

σZ(t)dN̄t = λ0dX
I
t − λ0σ

2
I (t)

Ŷt −XI
t

1− ΣI(t)
dt

+λ1dX
M
t − λ1σ

2
M (t)

Ŷt −XM
t

1− ΣM (t)
dt

= λ0dX
I
t + λ1dX

M
t

−Ŷt
(
λ0σ

2
I (t)

1− ΣI(t)
+

λ1σ
2
M (t)

1− ΣM (t)

)
dt

+
λ0σ

2
I (t)X

I
t

1− ΣI(t)
dt+

λ1σ
2
M (t)XM

t

1− ΣI(t)
dt

= λ0dX
I
t + λ1dX

M
t

−Ŷt
σZI (t)

1− ΣZ(t)
dt

+
λ0σ

2
I (t)X

I
t

1− ΣI(t)
dt+

λ1σ
2
M (t)XM

t

1− ΣI(t)
dt
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by equation (2.27). Replacing equation (2.12) into the above equation one gets that

σZ(t)dN̄t = dZt − λ′0(t)X
I
t dt− λ′1(t)X

M
t dt

−Ŷt
σZI (t)

1− ΣZ(t)
dt

+
λ0σ

2
I (t)X

I
t

1− ΣI(t)
dt+

λ1σ
2
M (t)XM

t

1− ΣI(t)
dt

= dZt − Ŷt
σZI (t)

1− ΣZ(t)
dt

−
(
λ0σ

2
I (t)

1− ΣI(t)
− λ′0(t)

)
XI

t dt

−
(
λ1σ

2
M (t)

1− ΣI(t)
dt− λ′1(t)

)
XM

t dt

= dZt − Ŷt
σ2Z(t)

1− ΣZ(t)
dt

−
−σ2Z(t)
1− ΣI(t)

XI
t dt−

−σ2Z(t)
1− ΣM (t)

XM
t dt

by equations (2.20) and (2.25).Consequently, placing equation (2.26) into it, we have that

σZ(t)dN̄t = dZt − σ2Z(t)
Ŷt − σ2Z(t)

1− ΣZ(t)
dt

Since by equation (2.42) we have that dŶt = σZ(t)dN̄t, we may write

dŶt = dZt − σ2Z(t)

(
Ŷt − Zt

1− ΣZ(t)

)
dt

Notice that Ŷt is a solution to equation (2.49) given XI and XM . As (2.49) is a linear

SDE, Ŷ = Z is the unique solution. Hence Z is a FXI ,XM
-martingale given by

Zt = Z0 +

∫ t

0
σ2Z(s)dN̄s

Furthermore, equations (2.34) and (2.35) become an immediate consequence of Theorem

2.1 since Ŷ = Z.

Also, recall that η is Gaussian by equation (2.8) so the claims about the mean and variance

are a consequence of the definition of optional projection.
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2.3.1 Properties of ΣZ

This subsection brings two very relevant corollaries to understanding Theorem 2.3. The first

one, Corollary 2.1, shows that the remaining variance of the linear combination of Markov

bridges is always at least as small as either of them. Therefore, our application makes sense

as the insider must always have at least as much information about the true value of the

asset as the market maker. Furthermore, due to 2.1 we also have that both (2.34) and (2.35)

are such that ΣZ(t) > ΣM (t) and ΣZ(t) > ΣM (t) for all t ∈ (0, 1).

Corollary 2.2 shows that if one of the signals is such that V ar(η|FXI

t ) = 0 or V ar(η|FXM

t ) =

0 then V ar(η|FZ
t ) = 0. That is, if any of the signals is such that there is a disclosure of the

true value of the asset, the insider will know about it. By hypothesis, we know that the asset

will have its value made public at t = 1, so we are not really interested in the possibility that

ΣM (t) = 1 for some t < 1, but with the possibility that ΣI(t
⋆) = 1 for some t⋆ < 1.

With respect to our model, there is a particular setting that is very interesting to us. If

ΣI(0) = 1 we have the so-called static case. In this case, the insider knows the true value of

the asset at the beginning of the trading period, as was the case with Back (1992). Obviously,

the latter does not consider a public signal.

It is also worth mentioning that both corollaries are indeed just immediate consequences

of equation (2.33).

Corollary 2.1. ΣZ(t) ≥ ΣM (t) ∀t ∈ [0, 1].

Proof. By Equation (2.29):

ΣZ(t)

1− ΣZ(t)
≥ ΣM (t)

1− ΣM (t)
∀t ∈ [0, 1]

Now suppose that there exist some t⋆ ∈ [0, 1] such that ΣM (t⋆) > ΣZ(t
⋆), then

ΣZ(t
⋆)

1− ΣZ(t⋆)
<

ΣM (t⋆)

1− ΣM (t⋆)
(2.49)

which leads to a contradiction.

Corollary 2.2. If ΣI(t) = 1 or ΣM (t) = 1 for any t ∈ [0, 1], then ΣZ(t) = 1.

Proof. Since the case of the existence of a t⋆ in which ΣI(t
⋆) = 1 and ΣM (t⋆) = 1, but

ΣI(t
⋆−) < 1 and ΣM (t⋆−) < 1 is already covered, consider ΣI(t) = 1 and ΣM (t) < 1, then by
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(2.33):

ΣZ(t) =
1 + ΣM (t)− 2ΣM (t)

1− ΣM (t)
=

1− ΣM (t)

1− ΣM (t)
= 1 (2.50)
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Chapter 3

Insider’s Optimisation Problem

In Chapter 2 we have found the insider’s valuation of the price of the risky asset we are

studying as it is given by σV Zt + µ. It is a Markov bridge that converging to V = σV η + µ

in t = 1, or whenever t⋆ is such that ΣZ(t
⋆) = 1, as described by equation (2.9) and (2.10).

We can now go back to Chapter 1 in order to analyse the insider’s maximisation problem.

Recall that in order to have an equilibrium we must find a pair of a strategy in which the

insider is maximising their final wealth for a given pricing rule and a pricing rule that is a

rational one.

In this chapter, we devote our attention to the insider’s maximisation problem. The main

theorem of this chapter is Theorem 3.1. It gives the conditions for an admissible strategy

to be optimal given a pricing rule. Besides the fact that it is suboptimal for the insider to

correlate their strategy with the Brownian motions driving XI and XM , the second condition

is that the difference between the price process, St, and the insider’s valuation about the price

of the asset, σV Zt + µ, goes to zero at some rate almost surely. The conditions under which

we are able to prove that such a requirement is fulfilled are developed in Chapter 4 and the

final proof of the almost sure convergence of the mispricing is developed in Chapter 5.

It is interesting to mention that in Chapter 4 we shall restrict ourselves to a particular

form of trading strategies given by equation (4.4). However, Theorem 3.1 is more general

than we will later use.

The path to Theorem 3.1 begins in Section 3.1. In this section, we find the expected

wealth of the insider at the end of the trading period. From there, in Section 3.2 we establish

the value function of the insider associated with the optimal insider trading strategy. We
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are able to apply the dynamic programming principle to obtain the associated Hamilton-

Jacobi-Bellman equation. The HJB equation provides a series of conditions both for the

value function of the insider and for the optimality condition of her controls. Upon finding

these conditions, we face a problem of overparameterization due to the structure of X given

by equation (1.5) combined with the price process given by equation (1.8). This issue is

addressed in Section 3.3 and is unravelled by Assumption 3.1.

The linear structure of the price process given by equation (1.8) combined with the fact

that there is a closed form for the derivative of the value function with respect to X as

one realises by equation (3.11) leads to a closed form for the value function for the insider.

The form of equation (3.11) is not particular to our model. It is analogous, for example,

to equation (6.31) of Çetin, Danilova (2018) when dealing with the dynamic version of the

Kyle-Back model and equivalent to the static case. On the other hand, the closed form of the

value function comes from the closed form of the price process. As one may lose in generality,

one gains in interpretability, which will be tackled as the thesis progresses to other chapters.

In the final section of the chapter, Section 3.4, we find this value function as described in

Equation (3.53) that provides all the results we need to prove Theorem 3.1.

3.1 Wealth

As we have discussed in Chapter 1, the insider’s goal as a risk-neutral agent is to maximise her

expected profit. All sections of this chapter, except this, are devoted to finding the conditions

under which we have an optimal strategy. However, before we are able to proceed with such

a task, we must find the expected wealth of the insider as a function of her controls α, γ0,

and γ1.

The final wealth of the insider is given by (1.7) where it becomes clear that the insider

has two sources of profit: from the trading in the time interval [0, 1) and from the gain from

the price jump from S1− to V times her holding θ1− of the risky asset at time 1.

We shall begin our derivation by noting that the final condition of Z is such that Z1 = η,

hence σV Z1 + µ = σV η + µ = V , and applying integration by parts to the processes θS and
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θZ. By doing so, it is possible to rewrite equation (1.7) as:

W1 =

∫ 1

0
θtdSt + θ1(V − S1)

= θ1V −
∫ 1

0
Stdθt − [θ, S]1

= σV

∫ 1

0
θtdZt +

∫ 1

0
(σV Zt + µ)dθt + σV [θ, Z]1 −

∫ 1

0
Stdθt − [θ, S]1

= σV

∫ 1

0
θtdZt +

∫ 1

0
(σV Zt + µ− St)dθt + σV [θ, Z]1 − [θ, S]1 (3.1)

Applying the expectation leads to:

Ez(W1) = Ez

(∫ 1

0
(σV Zt + µ− St)αtdt+

∫ 1

0
(σV Zt + µ− St)(γ0(t)dW

I
t + γ1(t)dW

M
t )

+σV

∫ 1

0
θtdZt + σV [θ, Z]1 − [θ, S]1

)
= Ez

(∫ 1

0
(σV Zt + µ− St)αtdt+ σV [θ, Z]1 − [θ, S]1

)
(3.2)

From Theorem 2.3, we have that N (1) and N (2) are the innovation processes respectively

related to BI and BM , hence the projection of θ into the insider’s filtration is be given by

dθt = αtdt+ γ0(t)dN
(1)
t + γ1(t)dBN

(2)
t . (3.3)

It is now possible to calculate both [θ, Z]1 and [θ, S]1. From equation (3.3) and the projected

version of equation (1.8) into the insider’s filtration,

d[θ, S]t = β1(t)w(t)d[θ, θ]t + β2(t)σM (t)γ1(t)dt

= β1(t)w(t)(γ
2
0(t) + γ21(t))dt+ β2(t)σM (t)γ1(t)dt (3.4)

and because of the martingale representation of Z, given by equation (2.17), and equation

(3.2),

d[θ, Z]t = λ0(t)γ0(t)σI(t)dt+ λ1(t)γ1(t)σM (t)dt (3.5)
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As both quadratic covariations are only functions of time, we can rewrite equation (3.2) as

E(W1) = E
(∫ 1

0
(σV Zt + µ− St)αtdt

+σV

∫ 1

0
(λ0(t)γ0(t)σI(t) + λ1(t)γ1(t)σM (t)) dt

−
∫ 1

0

(
β1(t)w(t)(γ

2
0(t) + γ21(t)) + β2(t)σM (t)γ1(t)

)
dt

)
(3.6)

3.2 HJB Equation

In this section, we begin the study of the value function of the insider. It will be key in

proving Theorem 3.1 not only because it will provide the insider’s expected wealth at the end

of the trading period, but we show that any strategy that achieves this threshold given by

the value function is optimal. In fact, the mispricing condition mentioned in the beginning

of this chapter derives from the fact that limT→1 J(T,XT , X
M
T , ZT ) = 0 a.s., where J is the

value function of the insider.

We can now start our task by setting the insider’s problem. Recall that α, γ0 and γ1 are

the controls of the insider. Hence, the insider’s problem is to maximise the function (3.6)

with respect to her controls as defined below:

sup
α,γ0,γ1

Ez(W1) = sup
α,γ0,γ1

[
E
(∫ 1

0
(σV Zt + µ− St)αtdt

+σV

∫ 1

0
(λ0(t)γ0(t)σI(t) + λ1(t)γ1(t)σM (t)) dt

−
∫ 1

0

(
β1(t)w(t)(γ

2
0(t) + γ21(t)) + β2(t)σM (t)γ1(t)

)
dt

)]
(3.7)

The value function of the insider, J , is the expected profit of the insider under her optimal

controls. Therefore, J must be equal to the r.h.s of equation (3.8). However, one may be

asking what J should be a function of. At any given moment between 0 and 1 the value

function must provide the final expected wealth given the states of the processes the insider

is able to observe. Taking into account insider filtration, these processes should be X, XM ,
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XI , and Z. However, we recall from Theorem 2.3 that any one of the processes Z, XM , and

XI is just a linear combination of the other two. As a consequence, one may select two of

them to be incorporated in the value function. Therefore, we establish J to be a function of

time, X, XM , and Z. Hence, one should interpret J(t,Xt, X
M
t , Zt) as the wealth obtained

by the insider from trading between time t and 1 given that the state of the processes X,

XM , and Z are respectively Xt, X
M
t , and Zt. Moreover, under this interpretation of J , the

requirement that limT→1 J(T,XT , X
M
T , ZT ) = 0 a.s. becomes quite intuitive as one would

expect that the profit in the remaining trading period from t to 1 should go to zero as t

approaches 1.

Once we have established the parameters J should be a function of, we can write it as

follows:

J(t, x, u, z) = ess sup
α,γ0,γ1

[
E
(∫ 1

t
(σV Zt + µ− St)αtds

+ σV

∫ 1

t
(λ0(t)γ0(t)σI(t) + λ1(t)γ1(t)σM (t)) ds

−
∫ 1

t

(
β1(t)w(t)(γ

2
0(t) + γ21(t)) + β2(t)σM (t)γ1(t)

)
ds

∣∣∣∣Xt = x,XM
t = u, Zt = z

)]
(3.8)

The application of the dynamic programming principle leads to the following Hamil-

ton–Jacobi–Bellman equation:

0 = sup
α,γ0,γ1

[(Jxw(t) + σV z + µ−H(t, x, u))α

+Jxzw(t)(λ0(t)γ0(t)σI(t) + λ1(t)γ1(t)σM (t))

+Jxuw(t)λ1(t)γ1(t)σM (t) +
1

2
Jxx(γ

2
0(t) + γ21(t))

+σV (λ0(t)γ0(t)σI(t) + λ1(t)γ1(t)σM (t))

−
(
β1(t)w(t)(γ

2
0(t) + γ21(t)) + β2(t)σM (t)γ1(t)

)]
+Jt + Jx (r0(t) + r1(t)x+ r2(t)u)

+Juσ
2
M (t)

z − u

1− ΣM (t)
+ Jzuλ1σ

2
M (t)

+
1

2
Jxxw

2(t) +
1

2
Juuσ

2
M (t) +

1

2
Jzz
(
λ20σ

2
I (t) + λ21σ

2
M (t)

)
. (3.9)
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In order to simplify our analysis, we may define the following differential operator:

L = (r0 + r1x+ r2u)
∂

∂x
+ σ2M

z − u

1− ΣM

∂

∂u
+
β21w

2

2

∂2

∂x2
+
σ2M
2

∂2

∂u2
+
σ2Z
2

∂2

∂z2
+ λ1σ

2
M

∂2

∂z∂u
.

As one may note from the equation above, we can establish such operator as it does not

contain any of the insider’s controls so it does not provide any information about them. As

a consequence, we can rewrite Equation (3.11) as

0 = Jt + LJ + sup
α,γ0,γ1

{
(Jxw + σV z + µ−H)α+ Jxzw(λ0γ0σI + λ1γ1σM )

+ Jxuwλ1γ1σM +
1

2
Jxxw

2(γ20 + γ21 + σV (λ0γ0σI + λ1γ1σM ) (3.10)

−
(
σV w(γ

2
0 + γ21) + β2σMγ1

) }
As it is recurrent in the literature of Kyle-Back models (see, for example, Equation (6.18)

of Çetin, Danilova (2018)), in order to guarantee the existence of an optimal α and the

finiteness of the value function, we must have that the following equation must be satisfied:

0 = Jxw(t) + σV z + µ−H(t, x, u). (3.11)

One should note from equation (3.7) that if it were not for the equation above, the

maximisation problem would not have a solution. Indeed, suppose that one claims that there

is an optimal strategy α⋆. It would always be possible to find another strategy α⋆⋆ > α⋆ that

would be more profitable for the insider1.

Furthermore, the first order condition of the maximisation of γ0 gives

0 = Jxzw(t)λ0(t)σI(t) + Jxxw
2(t)γ0(t) + σV λ0(t)σI(t)− 2β1(t)w(t)γ0(t) (3.12)

1The reader should be remainder that α’s are functions so α⋆⋆ > α⋆ has the ordinary meaning of pointwise
dominance in the domain of the functions.
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and the first order condition of the maximisation of γ1 is

0 = Jxzw(t)λ1(t)σM (t) + Jxuw(t)σM (t) + Jxxw
2(t)γ0(t)

+σV λ1(t)σM (t)− 2β1(t)w(t)γ1(t))− β2(t)σM (t) (3.13)

From equation (3.11), we have that:

Jxw(t) = β0(t) + β1(t)x+ β2(t)u− z (3.14)

Jxzw(t) = −σV (3.15)

Jxxw(t) = β1(t) (3.16)

Jxuw(t) = β2(t). (3.17)

As a consequence, we can rewrite Equation (3.12) as

0 = −λ0(t)σI(t) + β1(t)w(t)γ0(t) + σV λ0(t)σI(t)− 2β1(t)w(t)γ0(t) (3.18)

hence, −β1(t)w(t)γ0(t) = 0. Since β1(t)w(t) > 0 for all t ∈ (0, 1) we have that γ0(t) = 0.

Moreover, we have that the second order condition for the maximisation is −β1(t)w(t) < 0.

Likewise, we can rewrite equation (3.13) as

0 = −λ1(t)σM (t) + β2(t)σM (t) + β2(t)w(t)γ0(t) + σV λ1(t)σM (t)

−2β1(t)w(t)γ1(t))− β2(t)σM (t). (3.19)

Like the previous case, −β1(t)w(t)γ1(t) = 0 and −β1(t)w(t) < 0 guarantee that γ1(t) = 0 is

the maximum.

Once we have proven the validity of equations (3.11), (3.12), and (3.13), it is possible to

replace them into equation (3.11) to rewrite it as
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0 = Jt + Jx (r0(t) + r1(t)x+ r2(t)u) + Juσ
2
M (t)

z − u

1− ΣM (t)
+ Jzuλ1(t)σ

2
M (t)

+
1

2
Jxxw

2(t) +
1

2
Juuσ

2
M (t) +

1

2
Jzz
(
λ20σ

2
I (t) + λ21σ

2
M (t)

)
(3.20)

That in the sense of the operator defined above means that

Jt + LJ = 0 (3.21)

One can note that equation (3.11) shows a relationship between the derivative of the value

function with respect to x and the coefficients of H and w. In equation (3.22) we differentiate

(3.20) with respect to x so we can do two things at the same time: first we find a relationship

between the coefficients of J and those given by (3.11) and secondly, as long as the function

f defined in equation (3.34) does not depend on x, satisfying equation (3.22) will also satisfy

(3.20).

Therefore, we can take the derivative (3.20) with respect to x again to find that

0 = Jxt + Jxx (r0(t) + r1(t)x+ r2(t)u) + Jxr1(t)x+ Jxuσ
2
M (t)

z − u

1− ΣM (t)

+Jxzuλ1σ
2
M (t) +

1

2
Jxxxw

2(t) +
1

2
Jxuuσ

2
I (t) +

1

2
Jxzz

(
λ20σ

2
I (t) + λ21σ

2
M (t)

)
(3.22)

The linear structure of H is inherited by Jx, as we can see in Equation (3.14). As a

consequence, Jxzu = Jxxx = Jxuu = Jxzz = 0, hence,

Jxzuλ1σ
2
M (t) +

1

2
Jxxxw

2(t) +
1

2
Jxuuσ

2
I (t) +

1

2
Jxzz

(
λ20σ

2
I (t) + λ21σ

2
M (t)

)
= 0.

Furthermore, one can find the coefficients of Jxt by its relationship with Jx as developed

here:

Jxt =
β′0(t) + σV β

′
1(t)x+ β′2(t)u

w(t)
− β0(t) + β1(t)x+ β2(t)u− z

w2(t)
w′(t) (3.23)

The same can be done with the other coefficients of (3.22) considering equation (3.11)
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and (1.8):

Jxx =
σV β1(t)

w(t)

Jxz =
β2(t)

w(t)

Jxxx = Jxzz = Jxzu = Jxuu = 0

As a consequence, we can rewrite Equation (3.22) as

0 =
β′0(t) + β′1(t)x+ β′2(t)u

w(t)
− (β0(t) + β1(t)x+ β2(t)u− zσV − µ)

w′(t)

w2(t)
+

+r1(t)

(
β0(t) + β1(t)x+ β2(t)u− zσV − µ

w(t)

)
+
β1(t)

w(t)
(r0(t) + r1(t)x+ r2(t)u)

+β2(t)
σ2M (t)

1− ΣM (t)

z − u

w(t)
(3.24)

One way to be sure that regardless of the values of x, u, and z equation (3.24) is satisfied

is to make sure that all coefficients of the above equation are set to be zero. Therefore, we

would like to have

0 =
β′0(t)

w(t)
− (β0(t)− µ)

w′(t)

w2(t)
+ r1(t)

β0(t)− µ

w(t)
+ r0(t)

β1(t)

w(t)
(3.25)

0 =
β′1(t)

w(t)
− β1(t)

w′(t)

w2(t)
+ 2r1(t)

β1(t)

w(t)
(3.26)

0 =
w′(t)

w2(t)
− r1(t)

w(t)
+
β2(t)

w(t)

σ2M (t)

1− ΣM (t)
(3.27)

0 =
β′2(t)

w(t)
− β2(t)

w′(t)

w2(t)
+ r1(t)

β2(t)

w(t)

+r2(t)
β1(t)

w(t)
− β2(t)

w(t)

σ2M (t)

1− ΣM (t)
(3.28)

which leads to equation (3.24) being satisfied. Rearranging the terms of the equations above

one gets that
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r0(t) =
1

β1(t)

(
(β0(t)− µ)

w′(t)

w(t)
− β′0(t)− (β0(t)− µ)r1(t)

)
, (3.29)

r1(t) =
1

2

(
w′(t)

w(t)
− β′1(t)

β1(t)

)
=
w′(t)

w(t)
+
β2(t)

σV

σ2M (t)

1− ΣM (t)
, (3.30)

r2(t) =
β2(t)

β1

((
1− β2(t)

σV

) σ2M (t)

1− ΣM (t)
− β′2(t)

β2(t)

)
. (3.31)

3.3 Overparametrization

We can take a moment to realise that we are dealing with an overparameterization. Indeed,

the first step one should take to note that is applying Itô formula to the price process:

dSt = (β′0(t) + β′1(t)Xt + β′2(t)X
M
t )dt

+β1(t)w(t)α̂tdt

+β1(t)
(
r0(t) + r1(t)Xt + r2(t)X

M
t

)
dt

+β2(t)σ
2
M (t)

St−µ
σV

−XM
t

1− ΣM (t)
dt

+β1(t)w(t)dN
(1)
t + β2(t)σM (t)dN

(2)
t (3.32)

where N (1) and N (2) are innovation processes given by equations (4.2) and α̂ the projection

of α into the market maker’s filtration also given by (4.2). Those innovation processes are

relevant as the price process is defined by the market maker following a rational pricing rule.

Now the overparameterization becomes clear when substituting equation (3.24) into the one

above to get the following price process:

dSt = β1(t)w(t)α̂tdt+ β1(t)w(t)dN
(1)
t + β2(t)σM (t)dN

(2)
t . (3.33)

One can note that w and β1 are not distinguishable for the market maker regarding the

price process. The market maker aims to follow a rational pricing rule, so she will set the

values of the βs in order to do so. Hence, for any function w there will be an β1 such that the

above equation follows a rational pricing rule. However, it should be noted that the process

X is also built by the market maker. As both w and β1 work analogously as controls for the
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market maker2, it is irrelevant to her what values each one of the functions are taking at any

given moment as long as the pricing rule is rational. Therefore, instead of allowing w to be

almost anything, we shall set the value of β1 to be equal to a constant σV and ask w to do

the job of ensuring that the market maker’s goal is achieved.

Therefore, we can, without loss of generality, make the following assumption:

Assumption 3.1. β1 ≡ σV , where β1 is the function appearing in the representation of the

pricing rule as defined in Definition 1.1.

The above assumption becomes quite relevant to us at this point because we may now

simplify the conditions on the r’s to have Equation (3.24) satisfied. We can rewrite equations

(3.29), (3.30), and (3.31) under the conditions of the above assumption, as of Assumption

3.2 below:

Assumption 3.2. The functions (ri)
2
i=0 and (βi)

2
i=0 satisfy the following relationships for

all t ∈ [0, 1):

r0(t) = σ−1
V (β0(t)− µ)

w′(t)

w(t)
− β′0(t)σ

−1
V − σ−1

V (β0(t)− µ)r1(t),

r1(t) =
w′(t)

2w(t)
=
w′(t)

w(t)
+
β2(t)

σV

σ2M (t)

1− ΣM (t)
,

r2(t) =
β2(t)

σV

((
1− β2(t)

σV

) σ2M (t)

1− ΣM (t)
− β′2(t)

β2(t)

)
.

3.4 The Value Function

Once we know the conditions the value function must satisfy, we can now show what functional

form it should take. From the previous section, we know that the γ’s optimal controls are

such that γ0 = γ1 = 0. Furthermore, equation (3.11) ensures that the derivative of J with

respect to x must be such that Jx = H(t,x,u)−σV z+µ
w(t) and we also have a form for the derivative

of J with respect to t given by equation (3.21).

This structure allows us to wonder about the actual form of J as a function of time, X,

XM , and Z. Equation (3.11) ensures that J is such that there should be an integral as in the

r.h.s of (3.34). Furthermore, the choice of the lower limit of integration comes from the fact

2Note that it does not make sense to say that they are controls for the market maker as they are not solving
any maximisation problem. They work analogously as controls because the market maker sets those functions
so that they can satisfy the rationality condition
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that J must be such that limT→1 J(T,XT , X
M
T , ZT ) = 0 a.s.. Furthermore, from equation

(3.24) we know that equation (3.37) below is satisfied for φ defined as the integral in (3.34).

As a consequence, f in Equation (3.34) must be a function that depends only on time. We

go further in this section and show the functional form of f .

Therefore, we can now conjecture that J must be of the form below for some function f

that will be found also in this section:

J(t, x, u, z) =

∫ x

H−1(t,σV z+µ,u)

H(t, y, u)− σV z − µ,

w(t)
dy + f(t), (3.34)

for some function f to be determinate where H follows equation (1.8) and H−1(t, y, u) is such

that H(t,H−1(t, y, u) = y, hence H(t,H−1(t, σV z + µ, u) = σV z + µ. Therefore,

H−1(t, y, u) =
z − β0(t)− β2(t)y

σV
. (3.35)

Let us begin by defining

φ(t, x, u, z) =

∫ x

H−1(t,σV z+µ,u)

H(t, y, u)− σV z − µ

w(t)
dy. (3.36)

Note that by the previous calculations, we must have that φ is such that

φt + φx (r0(t) + r1(t)x+ r2(t)u) + φuσ
2
M (t)

z − u

1− ΣM (t)
= 0. (3.37)

which is equivalent to satisfying the equation (3.22). As a consequence, the role of f is to

make sure that once (3.22) is satisfied, it also will be (3.20).

Let us start by recalling that, by the structure of (3.36), it is trivial that:

φx(t, x, u, z) =
H(t, x, u)− σV z − µ

w(t)
(3.38)

hence we can see that equation (3.11) is fulfilled. Furthermore, we have that

φxx(t, x, u, z) =
Hx(t, x, u)− σV z − µ

w(t)
=

σV
w(t)

(3.39)
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We may now proceed by calculating φu:

φu(t, x, u, z) =

∫ x

H−1(t,σV z+µ,u)

Hu(t, y, u)

w(t)
dy

−H−1
u (t, σV z + µ, u)

(
H(t,H−1(t, σV z + µ, u), u)− σV z − µ

w(t)

)
=

∫ x

H−1(t,σV z+µ,u)

Hu(t, y, u)

w(t)
dy

−H−1
u (t, σV z + µ, u)

(
σV z + µ− σV z − µ

w(t)

)
=

∫ x

H−1(t,σV z+µ,u)

Hu(t, y, u)

w(t)
dy (3.40)

=

∫ x

H−1(t,σV z+µ,u)

β2(t)

w(t)
dy

=
β2(t)

w(t)

(
x−H−1(t, σV z + µ, u)

)
=

β2(t)

w(t)

(
x− σV z + µ− β0(t)− β2(t)u

σV
.

)
(3.41)

This also allows us to calculate φuu:

φuu(t, x, u) =

∫ x

H−1(t,σV z+µ,u)

Huu(t, y, u)

w(t)
dy

−H−1
u (t, σV z + µ, u)

(
Hu(t,H

−1(t, σV z + µ, u), u)

w(t)

)
= 0−

(
−β2(t)
σV

)
β2(t)

w(t)
=

β22(t)

w(t)σV
(3.42)

We can finish calculating all the coefficients that do not depend on t by calculating φz

and its second derivatives:
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φz(t, x, u, z) =

∫ x

H−1(t,σV z+µ,u)

∂

∂z

(
H(t, y, u)− σV z − µ

w(t)

)
dy

−H−1
z (t, σV z + µ, u)

(
H(t,H−1(t, σV z + µ, u), u)− σV z − µ

w(t)

)
=

∫ x

H−1(t,σV z+µ,u)
− σV
w(t)

dy

−H−1
z (t, σV z + µ, u)

(
σV z + µ− σV z − µ

w(t)

)
= −σV

(
x−H−1(t, σV z + µ, u)

)
w(t)

= −
(
σV x− σV z + µ− β0(t)− β2(t)u

w(t)

)
(3.43)

Which also allow us to the calculate φzu:

φzu(t, x, u, z) = − ∂

∂u

(
σV

(
x−H−1(t, σV z + µ, u)

)
w(t)

)
=

−β2(t)
w(t)

(3.44)

and φzz:

φzz(t, x, u, z) = − ∂

∂z

((
x−H−1(t, σV z + µ, u)

)
w(t)

)
=

σV
w(t)

(3.45)

We must also have the calculations of the derivative of φ with respect to t. First note

that

φt(t, x, u, z) =

∫ x

H−1(t,σV z+µ,u)

∂

∂t

(
H(t, y, u)

w(t)

)
dy

−H−1
t (t, σV z + µ, u)

(
H(t,H−1(t, σV z + µ, u), u)− σV z − µ

w(t)

)
=

∫ x

H−1(t,z,u)

∂

∂t

(
H(t, y, u)

w(t)

)
dy

−H−1
t (t, z, u)

(
σV z + µ− σV z − µ

w(t)

)
=

∫ x

H−1(t,σV z+µ,u)

∂

∂t

(
H(t, y, u)

w(t)

)
dy (3.46)
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so we can now perform the calculations on the derivative inside the integral above:

∂

∂t

(
H(t, y, u)

w(t)

)
=

Ht(t, y, u)w(t)− (H(t, y, u))w′(t)

w2(t)

=
Ht(t, y, u)w(t)− (H(t, y, u))w′(t)

w2(t)
(3.47)

which can be written as:

Ht(t, y, u)w(t)−H(t, y, u)w′(t)

w2(t)
=

β′0(t)w(t)− β0(t)w
′(t)

w2(t)

+

(
−σV w′(t)

w2(t)

)
y

+

(
β′2(t)w(t)− β2(t)w

′(t)

w2(t)

)
u

Therefore,

φt(t, x, u, z) =
β′0(t)w(t)− β0(t)w

′(t)

w2(t)

(
x−H−1(t, σV z + µ, u)

)
+

(
−σV w′(t)

w2(t)

)
1

2

(
x2 − (H−1(t, σV z + µ, u))2

)
+

(
β′2(t)w(t)− β2(t)w

′(t)

w2(t)

)
u
(
x−H−1(t, σV z + µ, u)

)
=

[
β′0(t)w(t)− β0(t)w

′(t)

w2(t)

+
1

2

(
−σV w′(t)

w2(t)

)(
x+H−1(t, σV z + µ, u)

)
+

(
β′2(t)w(t)− β2(t)w

′(t)

w2(t)

)
u

] (
x−H−1(t, σV z + µ, u)

)
.

Now, one can note that

(
x+H−1(t, σV z + µ, u)

)
=

(
x+

σV z + µ− β0(t)− β2(t)u

σV

)
=

(
2x+

σV z + µ− β0(t)− σV x− β2(t)u

σV

)
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As a consequence,

φt(t, x, u, z) =

[
β′0(t)w(t)− β0(t)w

′(t)

w2(t)

+

(
−σV w′(t)

w2(t)

)
x+

(
β′2(t)w(t)− β2(t)w

′(t)

w2(t)

)
u

+
1

2

−w′(t)σV
w2(t)

(
σV z + µ− β0(t)− σV x− β2(t)u

σV

)]
×
(
x−H−1(t, σV z + µ, u)

)
We can replace the equation for r1 in Assumption 3.2 into the equation above so we have

that

φt(t, x, u, z) =

[
β′0(t)w(t)− β0(t)w

′(t)

w2(t)

+

(
−σV w′(t)

w2(t)

)
x+

(
β′2(t)w(t)− β2(t)w

′(t)

w2(t)

)
u

+r1(t)

(
σV z + µ− β0(t)− σV x− β2(t)u

w(t)

)]
×
(
x−H−1(t, σV z + µ, u)

)
Moreover, note that

H(t, x, u)− σV z − µ

w(t)
=

σV
w(t)

(
x−H−1(t, σV z + µ, u)

)
(3.48)

Hence, if we define φ̃(t) = φt + φx (r0(t) + r1(t)x+ r2(t)u) + φuσ
2
M (t) z−u

1−ΣM (t)

φ̃(t) =

[
β′0(t) + β′2(t)u

w(t)
− (β0(t) + σV )x+ β2(t)u− σV z − µ)

w′(t)

w2(t)
+

+r1(t)

(
β0(t) + σV x+ β2(t)u− σV z − µ

w(t)

)
+
σV
w(t)

(r0(t) + r1(t)x+ r2(t)u)

+
β2(t)

w(t)

σ2M (t)

1− ΣM (t)
(z − u)

] (
x−H−1(t, σV z + µ, u)

)
As a consequence of equation (3.24), we have that φ̃(t) = 0.
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Hence, in order to make equation (3.20) true we need to set

−f ′(t) = φzuλ1(t)σ
2
M (t) +

1

2
φxxw

2(t) +
1

2
φuuσ

2
M (t) +

1

2
φzz

(
λ20σ

2
I (t) + λ21σ

2
M (t)

)
(3.49)

Thus,

−f ′(t) = −β2(t)
σV w(t)

1− ΣZ(t)

1− ΣM (t)
σ2M (t) +

1

2
σV w(t) +

1

2

β22(t)

σV w(t)
σ2M (t) +

1

2

1

σV w(t)
σ2Z(t) (3.50)

As a consequence, we may define the integral:

f(t) =
1

2

∫ 1

t
σV w(s) +

β22(s)σ
2
M (s)

σV w(s)
+

σ2Z(s)

σV w(s)
−

2σ2M (s)β2(s)λ1(s)

σV w(s)
ds (3.51)

Therefore, we can rewrite equation (3.34) as

J(t, x, u, z) =

∫ x

H−1(t,z,u)

H(t, y, u)− σV z − µ

w(t)
dy

+
1

2

∫ 1

t
σV w(s) +

β22(s)σ
2
M (s)

σV w(s)
+

σ2Z(s)

σV w(s)
−

2σ2M (s)β2(s)λ1(s)

σV w(s)
ds

(3.52)

The calculations above prove the following proposition:

Proposition 3.1. Suppose that the integral

∫ 1

0
σV w(s) +

β22(s)σ
2
M (s)

σV w(s)
+
σV σ

2
Z(s)

w(s)
−

2σ2M (s)β2(s)λ1(s)

w(s)
ds

exists and is finite. Then, the function J : [0, 1)× R3 → R defined by

J(t, x, u, z) =

∫ x

H−1(t,σV z+µ,u)

H(t, y, u)− σV z − µ

w(t)
dy

+
1

2

∫ 1

t
σV w(s) +

β22(s)σ
2
M (s)

σV w(s)
+
σV σ

2
Z(s)

w(s)
−

2σ2M (s)β2(s)λ1(s)

w(s)
ds

(3.53)

solves (3.21) with Jx = H(t,x,u)−σV z−µ
w(t) .

We can now proceed to prove the main theorem of this chapter. Equation (3.53) is
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equivalent to ψ in Equation (6.30) of Çetin, Danilova (2018). In the Kyle-Back models

without a public signal, we still have the same structure for the derivative of the value function

with respect to the process X, so some version of equation (3.11) is present. Therefore, the

first integral in the above equation is quite equivalent to what we have in our case. With

some subtleties, the same could be said about the second integral. However, it is true that

a lot of care was taken to ensure that the second integral would depend only on time in our

case. Furthermore, as is traditional in the literature, the form of the value function depends

on the price process. In both Equation (6.30) of Çetin, Danilova (2018) and Equation (3.53)

in our case, the form of the pricing rule H provides the form of the value function. Therefore,

the main innovation of the theorem below is not how it is different from the previous Kyle-

Back models but how we are able to adapt a public signal without completely changing the

structure of the value function.

There is also an interesting debate about the fact that in the literature it is said that the

insider drives the price to the final value of the asset almost surely. Indeed, the price goes

to V when time goes to one, as we need that limt→1 ϕ(t,Xt, X
M
t , Zt) = 0, Pz-a.s.. However,

it is no longer clear whether that is insider-made. Since now the market maker has her own

signal XM about the final value of the asset, she no longer depends on the insider driving the

price to V at the end of the trading period. If the insider did not trade, the price would also

go to the same value. In Chapters 5 to 7 we address this issue a few times. In those chapters,

we discuss whether at the end of the trading period the market maker is relying on her own

(public) signal or if she is being driven by the information coming from the process X.

Theorem 3.1. Suppose that the hypothesis of Proposition 3.1 is valid. Let (H,w, r) be an

admissible pricing rule and define

ϕ(t, x, u, z) =

∫ x

H−1(t,σV z+µ,u)

H(t, y, u)− σV z − µ

w(t)
dy

If θ is an admissible trading strategy for this pricing rule with γ0 = γ1 ≡ 0 and limt→1 ϕ(t,Xt, X
M
t , Zt) =

0, Pz-a.s., then it is optimal. Moreover, the expected terminal wealth associated with any op-
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timal strategy is given by

J(0, 0, 0, z) =
(β0(0)− z)2

2w(0)

+
1

2

∫ 1

0
σV w(s) +

β22(s)σ
2
M (s)

σV w(s)
+
σV σ

2
Z(s)

w(s)
−

2σ2M (s)β2(s)λ1(s)

w(s)
ds.

(3.54)

Proof. Note that for any admissible strategy θ, we can apply Itô’s formula to obtain

dJ(t,Xt, X
M
t , Zt) = Jtdt+ JxdXt + JudX

M
t + JzdZt

+Jxud[X,X
M ]t + Jxzd[X,Z]t + Juzd[X

M , Z]t

+
1

2
Jxxd[X,X]t +

1

2
Juud[X

M , XM ]t +
1

2
Jzzd[Z,Z]t

= (φt − f ′(t))dt

+Jx
[
w(t)(dBt + dθt) + r(t,Xt, X

M
t )dt

]
+Ju(z − u)

σ2M (t)

1− ΣM (t)
dt+ JuσM (t)dBM

t

+JxuσM (t)γ1(t)w(t)dt+ Jxzw(t)(λ0(t)γ0(t)σI(t) + λ1(t)γ1(t)σM (t))dt

+
1

2
Jxxw

2(t)(1 + γ20(t) + γ21(t))dt+
1

2
Juuσ

2
M (t)dt

+
1

2
Jzz(λ

2
0(t)σ

2
I (t) + λ21(t)σ

2
M (t))dt (3.55)

Note that Jt(t, x, u, z) = φt(t, x, u, z)− f ′(t) having φ being defined as in equation (3.36).

Thus, Jx = φx, Ju = φu, and φ̃(t) ≡ φt+Jxr(t, x, u)+Juσ
2
M (t) z−u

1−ΣM (t) = 0 as a consequence

of equation (3.24).

Furthermore, as

f ′(t) = φzuλ1(t)σ
2
M (t) +

1

2
φxxw

2(t) +
1

2
φuuσ

2
M (t) +

1

2
φzz

(
λ20σ

2
I (t) + λ21σ

2
M (t)

)
, (3.56)
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equation (3.55) can be rewritten as

dJ(t,Xt, X
M
t , Zt) = Jxw(t) (dBt + dθt) + JuσM (t)dβMt

+Jz(t,Xt, X
M
t , Zt)dZt

+JxuσM (t)γ1(t)w(t)dt

+Jxzw(t)(λ0(t)γ0(t)σI(t) + λ1(t)γ1(t)σM (t))dt

+
1

2
Jxxw

2(t)(γ20(t) + γ21(t))dt (3.57)

or, equivalently, in the integral form

J(t,Xt, X
M
t , Zt) = J(0, 0, 0, z) +

∫ 1

0
Jxw(t)dBt +

∫ 1

0
Jxw(t)dθt

+

∫ 1

0
JuσM (t)dBM

+

∫ 1

0
Jz(t,Xt, X

M
t , Zt)dZt

+

∫ 1

0
β2(t)σM (t)γ1(t)dt

−
∫ 1

0
(λ0(t)γ0(t)σI(t) + λ1(t)γ1(t)σM (t))dt

+
1

2

∫ 1

0
σV w(t)(γ

2
0(t) + γ21(t))dt (3.58)

Next, for T < 1, let

WT :=

∫ T

0
θtdZt +

∫ T

0
(Zt − St)dθt + [θ, Z]T − [θ, S]T ,

and recall from (3.1) that limT→1WT =W1; which the terminal wealth of the insider.

Moreover, applying equations (3.4), (3.5), and (3.58) into the above equation, we get that

J(T,XT , X
M
T , ZT ) = J(0, 0, 0, z)−WT +

∫ T

0
Jx(t,Xt, X

M
t , Zt)w(t)dBt

+

∫ T

0
Ju(t,Xt, X

M
t , Zt)σM (t)dβMt − 1

2
σV

∫ T

0
w(t)(γ20(t) + γ21(t))dt

+

∫ T

0
Jz(t,Xt, X

M
t , Zt)dZt.
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Observe that limT→1 ϕ(T,XT , X
M
T , ZT ) ≥ 0, where the existence of limits follow from the

continuity of (Wt)t∈[0,1] and the stochastic integrals. Thus,

W1 ≤ J(0, 0, 0, z) +

∫ 1

0
Jx(t,Xt, X

M
t , Zt)w(t)dBt +

∫ 1

0
Ju(t,Xt, X

M
t , Zt)σM (t)dβMt

+

∫ 1

0
Jz(t,Xt, X

M
t , Zt)dZt −

1

2
σV

∫ T

0
w(t)(γ20(t) + γ21(t))dt.

The admissibility conditions in equations (1.10) and (1.11) imply that the stochastic integrals

above have zero mean. Therefore,

Ez[W1] ≤ J(0, 0, 0, z)− 1

2
σV Ez

[ ∫ T

0
w(t)(γ20(t) + γ21(t))dt

]
,

where if γ0 = γ1 = 0 then the inequality is an equality if and only if limT→1 J(T,XT , X
M
T , ZT ) =

0. Therefore, an admissible strategy with the properties given in the statement is optimal.
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Chapter 4

Rationality Condition

In this chapter, we address the issue of the rationality condition of the market maker. At first

glance, it should not be so different than what we had in the previous case of the literature:

the market maker projects V into her filtration to find her valuation of the risky asset.

Therefore, we aim to find E(V |FM
t ) for any given optimal strategy of the insider1, but now

the complexity of this task is much greater.

Indeed, the original condition Back (1992) has found for the price process to be a martin-

gale in the market maker’s filtration was that the pricing rule should follow a heat equation -

since H was originally just a function of the demand, it would mean that in equilibrium the

pricing rule should be such that Ht+
1
2σ

2Hyy = 0 where σ2 was the variance of η ∼ N(0, σ2).

Proceeding further in the literature we can mention Campi et al. (2011) where the market

maker also uses a statistic for the demand process such that dXt = w(t,Xt)dYt where Y

is the demand process. In this model, the rationality condition is satisfied in equilibrium if

Ht(t, x)+
w(t,x)2

2 +Hxx(t, x) = 0 and wt(t, x)+
w(t,x)2

2 +wxx(t, x) = 0. As we shall see in this

chapter, even with some simplifying hypothesis, such as the one given by Equation (1.8), we

have a more complex task.

In Chapter 2 we mentioned that there was no counterpart in the literature to the insider’s

projection of η into her filtration because either she would know the outcome of this random

variable from the start of the trading period or she would receive a private signal such that

her valuation of the risky asset would trivially follow this process.

However, now the projection of V into the market maker is much more complex than

1Recall that any strategy that satisfies the conditions of Theorem 3.1 is optimal.
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before. The market maker now has two sources of information. An endogenous one, resulting

from her interaction with the insider by trading with her, as in the cited previous literature,

and an exogenous one, XI .

Furthermore, one can say that now there are two possible ways to project η into the

filtration of the market maker. The first is η directly into the filtration of the market maker,

but the second is the projection of η first into the insider’s filtration, hence Zt, and further

into the filtration of the market maker. As we shall discuss shortly, not only do we have to

deal with both projections now, but also they must coincide in some sense. In the previous

cases in the literature, there would be no projection of the projection as, without XM , XI

would determine the insider’s valuation of the asset, and we would only worry about the

projection of XI into the market maker’s projection.

Let us first note that the price process should follow the projection of V directly into the

market maker’s filtration as follows:

E(V |FM
t ) = σV E(η|FM

t ) + µ.

How we find this projection is discussed in Section 4.2. However, as we mentioned before,

since FM
t ⊂ F I

t for all t in [0, 1], it is immediate from the tower property that

E(V |FM
t ) = σV E(η|FM

t ) + µ = σV E(E(η|F I
t )|FM

t ) + µ = σV E(Zt|FM
t ) + µ (4.1)

The projection of Z into the market maker’s filtration is developed in section 4.3. The

fact that those projections must coincide is also discussed in that section. As presented in

section 2.1, the stochastic filtering gives us an ODE for the variance of the projection of the

signal process. As in our case, not only do we have to make sure that the projections coincide

but also that we have made an important assertive about the form of the r1 coefficient in

Assumption 3.2 while solving the insider’s maximization problem, we end up with a system

of ODEs to be solved.

The solution of the ODEs is not trivial. In fact, we developed an innovative strategy to

prove the existence of a modified version of the system in Section 4.4. The equivalence to

the modified version with the original relies on a particularly suitable initial condition to the

system that is defined in a circular manner itself. We developed a fixed-point algorithm to
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prove the existence of such an initial condition in Section 4.5 and ultimately the existence

and uniqueness of the whole system. Hence, we use non-standard machinery in both sections

4.4 and 4.5 to prove the existence and uniqueness of this system of ODEs.

In Section 4.6 we investigate some further results on w that will be relevant to prove the

existence of equilibrium in Chapter 6. In addition to that, those results are also required to

show that limt→1 ϕ(t,Xt, X
M
t , Zt) = 0, Pz-a.s. in Chapter 5. Section 4.7 is a small optional

section showing that indeed the price process converges to V . We call it optional as we use

some more robust mathematical techniques to prove that limt→1 ϕ(t,Xt, X
M
t , Zt) = 0, Pz-a.s.

in Chapter 5 which is what we actually need to prove the existence of an equilibrium.

However, before all that, we restrict ourselves to a smaller class of trading strategies than

we have so far. From section 4.1 onwards we only consider linear strategies as will be defined

in equation (4.4). Our aim in this model is to show the existence of an equilibrium such that

it satisfies definition 1.3. We do not claim that the equilibrium we present in Theorem 6.1 is

in any form unique, as is the case in the literature (see Section 7.2 of Çetin, Danilova (2018)).

The only reason why we do not embed such restriction in equation (1.9) in Definition 1.2 is

because we want to make sure that it is clear that such hypothesis is not necessary to prove

Theorem 3.1.

4.1 Linear Strategy

Before we proceed presenting the linear strategies to which we restrict ourselves, let us recall

two important facts that will be relevant to our discussion of the linear strategies.

The first fact is that the admissibility condition for the insider’s strategy given by Def-

inition 1.2, in particular Equation (1.9), and Theorem 3.1 ensure us that γ0 = γ1 = 0. As

a consequence, we have that any optimal admissible trading strategy must be of the form

dθt = αtdt.

The second is from Theorem 2.1 we can find the innovation processes associated with the

observation processes for the market maker. Indeed, applying the theorem mentioned above

in equations (1.1) and (1.3) considering equation (1.9) with γ0 = γ1 = 0 we have that:
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dN
(1)
t = dBt + (αt − α̂t)dt, and

dN
(2)
t = dBM

t + σM (t)
XM

t − η̂t
1− ΣM (t)

dt.
(4.2)

where N (1) and N (2) are innovation processes associated with the filtration of the market

maker. In line with the notation developed in Chapter 2, we denote by α̂ the FM -optional

projection of α, which makes α̂ a version of E(α|FM
t ). Furthermore, we denote the optional

projection of Zt with respect to the insider’s filtration by Ẑt.

Replace the above equations with (1.1) and (1.5), one gets the following:

dXM
t = σM (t)dN

(2)
t + σ2M (t)

η̂t −XM
t

1− ΣM (t)
dt

dXt = w(t)
(
α̂tdt+ dN

(1)
t

)
+
(
r0(t) + r1(t)Xt + r2(t)X

M
t

)
dt,

(4.3)

Recall from the conditions of Theorem 3.1 that if γ0 = γ1 = 0 a sufficient and necessary

condition for an admissible strategy that is absolutely continuous with respect to the Lebesgue

measure to be optimal is that limt→1 ϕ(t,Xt, X
M
t , Zt) = 0, Pz-a.s.. Since our aim in this

chapter is to show that there exists at least one optimal strategy, we shall do so by showing

that there is an optimal linear strategy of the form:

αt = α0(t) + α1(t)Xt + α2(t)X
M
t + α3(t)Zt, (4.4)

for some measurable deterministic functions αi, i = 0, 1, 2 and 3. Before we explain why we

have chosen such functional form, let us take a moment to look at α̂, the projection α into

the market maker’s filtration under the above condition:

α̂t = α0(t) + α1(t)Xt + α2(t)X
M
t + α3(t)Ẑt. (4.5)

Therefore, the first interesting fact we get from this linear structure is that due to the

linear statement of Theorem 2.1 and the fact that both X and XM are observable to the

market maker, we have that as long as we know the projection of Z into the market maker’s

filtration, we can easily get the value of α̂.
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Furthermore, from the very definition of a rational pricing rule given in Definition 1.3, the

price process must be a martingale in the filtration of the market maker. As a consequence,

from Equation (3.33), we have that a necessary condition to have St as a martingale is that

β1(t)w(t)αt is equal to zero for all t ∈ [0, 1]. Therefore, in the next section, Section 4.2, we

shall find the coefficients of (αi)
3
i=1 such that the price process is a martingale.

4.2 Optional Projection of V

As we mentioned at the end of the last section, by the very definition of a rational pricing rule

given by Definition 1.3, the projection of V into the market maker’s filtration, hence the price

process, must be a martingale in the market maker’s filtration. Furthermore, equation (3.33)

shows that a necessary condition for it is that β1(t)w(t)αt is equal to zero for all t ∈ [0, 1].

Our strategy in this section to ensure that S is a martingale is to find the coefficients of

(αi)
3
i=1 such that α̂t = 0 for all t ∈ [0, 1]. In fact, Lemma 4.1 below shows exactly that this

is the case if we set (αi)
3
i=1 to be as in (4.6).

Lemma 4.1. Suppose (H,w, r) is an admissible pricing rule and Assumption 3.2 holds.

Assume further that the insider’s trading strategy from (4.4) satisfies the following:

α0(t) = (µ− β0(t))
α3(t)

σV
,

α1(t) = −α3(t),

α2(t) = −β2(t)
α3(t)

σV
.

(4.6)

Then, the price process S admits the following FM -dynamics if St = H(t,Xt, X
M
t ) for each

t and (H,w, r) is a rational pricing rule:

dSt = σV w(t)dN
(1)
t + β2(t)σM (t)dN

(2)
t , (4.7)

where N (i)s are the innovations processes given by (4.2).

Proof. First, we can apply the Ito formula to the price process as we did in the previous

chapter and rewrite the equation (3.32) under the conditions of Assumptions 3.1 and 3.2:
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dSt = σV w(t)

(
α0(t) + α1(t)Xt + α2(t)X

M
t + α3(t)

St − µ

σV

)
dt

+σV w(t)dN
(1)
t + β2(t)σM (t)dN

(2)
t .

Applying the coefficients (4.6): one gets:

dSt = w(t)
(
α3(t)(µ− β0(t))− α3(t)σVXt − α3(t)β2(t)X

M
t + α3(t)(St − µ)

)
dt

+σV w(t)dN
(1)
t + β2(t)σM (t)dN

(2)
t

= w(t)α3(t)
(
−(β0 − µ)− σVXt − β2(t)X

M
t + (St − µ)

)
dt

+σV w(t)dN
(1)
t + β2(t)σM (t)dN

(2)
t

= w(t)α3(t) (−(St − µ) + (St − µ)) dt

+σV w(t)dN
(1)
t + β2(t)σM (t)dN

(2)
t

= σV w(t)dN
(1)
t + β2(t)σM (t)dN

(2)
t .

Therefore, the price process is a martingale in the filtration of the market maker. As a

consequence, so must the projection of Z into the filtration of the market maker. We shall

address such projection in the next section.

However, before that, as an immediate consequence of the fact that the price process is a

martingale in the market maker’s filtration, we have that so the demand is. In fact, we call

the next proposition a corollary because they are the same parameters that make the price a

martingale that also make the demand a martingale because E(αt|FM
t ) = 0 for all t ∈ [0, 1].

Corollary 4.1. Under the conditions of Lemma 4.1, the demand process, Y , is a FM -

Brownian motion.

Proof. From equation (4.3), we have dYt = α̂tdt+dN
(2)
t . Combining that with equation (4.5)

and (4.6), we have that
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dYt =
(
α0(t) + α1(t)Xt + α2(t)X

M
t + α3(t)Ẑt

)
dt+ dN

(2)
t

=

(
(µ− β0(t))

α3(t)

σV
− α3(t)Xt − β2(t)

α3(t)

σV
XM

t + α3(t)Ẑt

)
dt+ dN

(2)
t

=
α3(t)

σV

(
−β0(t)− σVXt − β2(t)X

M
t + σV Ẑt + µ

)
dt+ dN

(2)
t

=
α3(t)

σV
(−St + St) dt+ dN

(2)
t = dN

(2)
t (4.8)

4.3 Optional Projection of Zt

As we mentioned in the beginning of the chapter, we can now proceed to find the projection

of Z into the market maker’s filtration. We can now apply the theory of stochastic filtering

to find the distribution of Ẑt = E
[
Zt|FM

t

]
as we did in Chapter 2 for the insider’s filtration.

Before we proceed, it is important to realise that the distribution of Zt|FM
t is not the

same as the distribution of η|FM
t as they only share the same expectation. In this section, we

will also discuss the distribution of η|FM
t . As they are both Gaussian random variables, the

only thing that remains to be shown is the variance as we know, from the previous section,

in particular Lemma 4.1, that

E
[
Zt|FM

t

]
= E

[
E[η|F I

t ]|FM
t

]
= E

[
η|FM

t

]
=
St − µ

σV

Let us now define v(t) := E[Z2
t |FM

t ] − Ẑ2
t . Now we can easily find the distribution of

η|FM
t . Indeed, applying the law of total variance to η into the market maker’s filtration one

gets

V ar(η|FM
t ) = E[V ar(η|F I

t )|FM
t ] + V ar(E[η|F I

t )]|FM
t )

= E[1− ΣZ(t)|FM
t ] + V ar(Zt|FM

t )

= 1− ΣZ(t) + v(t) (4.9)

An immediate consequence of it that will be relevant to us in the next section is that

since V ar(η|FM
0 ) is the unconditional variance of η, we have that
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1 = 1− ΣZ(0) + v(0). (4.10)

Now we can proceed with the projection of Z into the market maker’s filtration through

Lemma 4.2 below. This lemma is just an application of Theorem 2.2. Usually, one would go

further to find a process that would be a solution for the system given by (4.11) as we did

for the insider. However, we cannot do it yet because, as we discussed previously, there are

other requirements we need to fulfil as we need the projection of η directly into the market

maker’s filtration to coincide with the projection of η first into the insider’s filtration than

further into the market maker’s filtration.

Lemma 4.2. Suppose that (H,w, r) is an admissible pricing rule and α satisfies (4.4). Then,

for each t ∈ [0, 1], the conditional distribution of Zt given FM
t is Gaussian with mean Ẑt and

variance vt, where

dẐt = v(t)α3(t)dN
(1)
t +

σM (t)

1− ΣM (t)
(v(t) + 1− ΣZ(t)) dN

(2)
t , Ẑ0 = 0;

σ2Z(t)− v′(t) = v2(t)α2
3(t) +

σ2M (t)

(1− ΣM (t))2
(v(t) + 1− ΣZ(t))

2 , v(0) = ΣZ(0).

(4.11)

Proof. We shall use the same setting as we did in Chapter 2 to find the optional projection

of Z into the market maker’s filtration. First, note that now we have Zt as the signal process

and Xt and X
M
t as the observational processes; we can rewrite it in terms of Zt, Xt and X

M
t :

dZt = [A0(t) +A1(t)Zt +A2X̄t]dt+B(t)dWt (4.12)

dXt = [C0(t) + C1(t)Zt + C2X̄t]dt+D(t)dWt (4.13)

where

X̄t =

XM
t

Xt

 (4.14)
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and Wt is a (m+ n)-dimensional Brownian motion given by

Wt =


βIt

βMt

Bt

 . (4.15)

In our case, we can apply the filtering equations from the insider’s filtration into the

market maker’s filtration. As we have seen, we can write Zt as

dZt = λ0(t)σI(t)dβ
I
t + λ1(t)σM (t)dβMt

where dβI and dβM are independent Brownian motions in the insider’s filtration. Further-

more, according to Theorem 2.3, in particular (2.34), we have that the public signal can be

written as

dXM
t = σM (t)dβMt + σ2M (t)

Zt −XM
t

1− ΣM (t)
dt

and the demand process as

dXt = w(t)
[(
α0(t) + α1(t)Xt + α2(t)X

M
t + α3(t)Zt

)
dt+ dBt

]
+
(
r0(t) + r1(t)Xt + r2(t)X

M
t

)
dt (4.16)

Therefore, the coefficients of Theorem 2.2 are as follows:
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A0(t) = A1(t) = A1(t) = A2(t) = 0 (4.17)

B(t) =
[
λ0(t)σI(t) λ1(t)σM (t) 0

]
(4.18)

C0(t) =

w(t)α0(t) + r0(t)

0

 (4.19)

C1(t) =

w(t)α3(t)

σ2
M (t)

1−ΣM (t)

 (4.20)

C2(t) =

w(t)α1(t) + r1(t) w(t)α2(t) + r2(t)

0
−σ2

M (t)

1−ΣM (t)

 (4.21)

D(t) =

0 0 w(t)

0 σM (t) 0

 (4.22)

Equation (2.4) of Theorem 2.2 gives the general form

dẐt = [A0(t) +A1(t)Ŷt +A2Xt]dt

+[v(t)C∗
1 (t) +B(t)D∗(t)][D(t)D∗(t)]−

1
2dNt (4.23)

since the innovation process must have the same dimension as the observational process, Nt

is a two-dimensional FM
t -Brownian motion with coordinates N

(1)
t and N

(2)
t .

Moreover, ∗ stands for the transpose matrix. Applying (2.4) to our particular case, we

have the following.
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dẐt =
{
v(t)

[
w(t)α3(t)

σ2
M (t)

1−ΣM (t)

]

+
[
λ0(t)σI(t) λ1(t)σM (t) 0

]
0 0

0 σM (t)

w(t) 0



 1

w(t) 0

0 1
σM (t)

 dNt

=
{[
v(t)w(t)α3(t) v(t)

σ2
M (t)

1−ΣM (t)

]
+
[
0 λ1(t)σ

2
M (t)

]} 1
w(t) 0

0 1
σM (t)

 dNt

=
{[
v(t)w(t)α3(t) v(t)

σ2
M (t)

1−ΣM (t) + λ1(t)σ
2
M (t)

]} 1
w(t) 0

0 1
σM (t)

 dNt

=
{[
v(t)α3(t) v(t) σM (t)

1−ΣM (t) + λ1(t)σM (t)
]}

dNt

= v(t)α3(t)dN
(1)
t +

(
v(t)

σM (t)

1− ΣM (t)
+ λ1(t)σM (t)

)
dN

(2)
t

= v(t)α3(t)dN
(1)
t + σM (t)

(
v(t)

1− ΣM (t)
+ λ1(t)

)
dN

(2)
t

= v(t)α3(t)dN
(1)
t + σM (t)

(
v(t)

1− ΣM (t)
+

1− ΣZ(t)

1− ΣM (t)

)
dN

(2)
t

= v(t)α3(t)dN
(1)
t +

σM (t)

1− ΣM (t)
(v(t) + 1− ΣZ(t)) dN

(2)
t . (4.24)

Recall that (2.5) from Theorem 2.2 also provides a formula for the variance of the process

v(t) as follows:

dv(t)

dt
= A1(t)v(t) + v(t)A∗

1(t) +B(t)B∗(t)− [v(t)C∗
1 (t)

+B(t)D∗(t)][D(t)D∗(t)]−1[C1(t)v(t) +D(t)B∗(t)]

Replacing equations (4.17) - (4.22) in them gives us the following.
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dv(t)

dt
= λ20(t)σ

2
I (t) + λ21(t)σ

2
M (t)

−
[
v(t)α3(t) v(t) σM (t)

1−ΣM (t) + λ1(t)σM (t)
] 1

w2(t)
0

0 1
σ2
M (t)

 v(t)α3(t)

v(t) σM (t)
1−ΣM (t) + λ1(t)σM (t)


= σ2Z(t)

−
[
v(t)α3(t)

σM (t)
1−ΣM (t) (v(t) + 1− ΣZ(t))

] 1
w2(t)

0

0 1
σ2
M (t)

 v(t)α3(t)

σM (t)
1−ΣM (t) (v(t) + 1− ΣZ(t))

 .
Hence,

σ2Z(t)− v′(t) = v2(t)α2
3(t) +

σ2M (t)

(1− ΣM (t))2
(v(t) + 1− ΣZ(t))

2 (4.25)

Now note that v(0) = V ar(Z0|FM
0 ) which is the unconditional variance of Z0. Since

V ar(Z0) = ΣZ(0), then v(0) = ΣZ(0).

4.4 Existence and Uniqueness

We now have all the ingredients to set the system of ODEs that must be solved to find the

solution of v, hence the distribution of η|FM
t .

The first thing to mention is that from equation (4.1), we have

dSt = σV dẐt

Combining the above equation with equation (4.11) from Lemma 4.2, which gives us the

projection of η into the market maker’s filtration through the projection of Z into the market

maker’s filtration, with equation (4.7) from Lemma 4.1 obtained by projecting η directly into

the market maker’s filtration and the martingale requirement given by the rational pricing

rule, gives us the following equality:

dSt = σV w(t)dN
(1)
t + β2(t)σM (t)dN

(2)
t .

dSt = σV v(t)α3(t)dN
(1)
t + σV

σM (t)

1− ΣM (t)
(v(t) + 1− ΣZ(t)) dN

(2)
t .
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Therefore, we must have, for all t < 1:

σV
σM (t)

1− ΣM (t)
(v(t) + 1− ΣZ(t)) = β2(t)σM (t) (4.26)

v(t)α3(t) = β1(t)w(t) (4.27)

However, before setting the system, one should recall that from Assumption 3.2 the

following identity also holds for all t < 1:

−w
′(t)

w(t)
= 2

β2(t)

σV

σ2M (t)

1− ΣM (t)
, (4.28)

Therefore, considering the ODE for the variance given by equation (4.11), we have an

ODE system that can be summarised by the following:

w′(t)

w(t)
= −2(v(t) + 1− ΣZ(t))

σ2M (t)

(1− ΣM (t))2
,

σ2Z(t)− v′(t) = w2(t) +
σ2M (t)

(1− ΣM (t))2
(v(t) + 1− ΣZ(t))

2, v(0) = c2.

(4.29)

for some initial condition w(0) yet to be determined.

Indeed, we cannot look at this system purely from an ODE point of view. Recall from

equation (4.9) that v + 1 − ΣZ is the variance of η|FM
t . Therefore, we do not want any

solution to v. We need a solution for v such that v+1−ΣZ is such that v(0)+1−ΣZ(0) = 1,

v(1) + 1− ΣZ(1) = 0, and v + 1− ΣZ are decreasing.

The main result of this section, Proposition 4.1, proves the existence and uniqueness of

a solution for a modified version of the above system that only considers the positive part of

v+1−ΣZ with all the above requirements satisfied. Furthermore, this proposition shows that

if w− 1
2 (0) ≥

∫ t
0 w

3
2 (s)ds, ∀t ∈ [0, 1), then v(t) + 1− ΣZ(t) > 0 for all t ∈ [0, 1). Therefore, if

the initial condition of w is such that the above inequality holds, the positive part restriction

we set for v + 1− ΣZ is not triggered.

As a consequence, in section 4.5 we develop a fixed point algorithm to find w(0) such that

w(0) =
(∫ t

0 w
3
2 (s)ds

)−2
. Therefore, we are able to show that under that particular initial

condition the system has a unique solution such that v + 1 − ΣZ is indeed the variance of
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η|FM
t .

In order to keep this thesis self-contained, we present two important results from Khalil

(2002) that will be the key to proving Proposition 4.1. Indeed, the major result that allows

us to show the existence and uniqueness of our case is the following:

Theorem 4.1 (Theorem 3.2 of Khalil (2002)). Suppose that f(t, x) is piecewise continuous

in t and satisfies

∥f(t, x)− f(t, y)∥ ≤ L∥x− y∥

for all x, y ∈ Rn, ∀ t ∈ [t0, t1]. Then, the state equation ẋ = f(t, x), with x(t0) = x0, has a

unique solution over [t0, t1].

As a consequence of the above theorem, it becomes clear that a key element in the proof

of the existence and uniqueness of the system in (4.30) is to show that the solutions are

indeed Lipschitz. The way we use to prove that the pair of solutions is indeed Lipschitz is

by showing that the equations in (4.30) are uniformly bounded and by evoking the following

lemma:

Lemma 4.3 (Lemma 3.3 of Khalil (2002)). If f(t, x) and [∂f/∂x] (t, x) are continuous on

[a, b]×Rn, then f is globally Lipschitz in x on [a, b]×Rn if and only if [∂f/∂x] is uniformly

bounded on [a, b]× Rn.

We can now state and prove the main proposition of this section:

Proposition 4.1. Consider the system

w′(t)

w(t)
= −2(v(t) + 1− ΣZ(t))

+ σ2M (t)

(1− ΣM (t))2
,

σ2Z(t)− v′(t) = w2(t) +
σ2M (t)

(1− ΣM (t))2
(v(t) + 1− ΣZ(t))(v(t) + 1− ΣZ(t))

+, v(0) = c2,

(4.30)

where x+ := max{x, 0} for any x ∈ R. For any initial condition w(0) > 0, there exists a

unique continuous solution (w, v) to (4.30) on [0, 1]. Moreover, the following statements are

valid:

1. w and v + 1− ΣZ are decreasing and v ≤ ΣZ .

2. w and v + 1− ΣZ do not depend on ΣZ .
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3. For all t ≤ 1,

v(t) + 1− ΣZ(t) = w
1
2 (t)

(
w− 1

2 (0)−
∫ t

0
w

3
2 (s)ds

)
, and (4.31)

w(t) = w(0) exp

(
−2

∫ t

0
(v(s) + 1− ΣZ(s))

+ σ2M (s)

σV (1− ΣM (s))2
ds

)
(4.32)

4. If

w− 1
2 (0)−

∫ t

0
w

3
2 (s)ds ≥ 0, ∀t ∈ [0, 1), (4.33)

then 0 < v(t) + 1− ΣZ(t) ≤ 1− ΣM (t) for all t ∈ [0, 1).

Proof. We shall begin the proof by the existence and uniqueness of the system given by (4.30).

Let us fix T < 1 and define

x = (w, u) (4.34)

where w and u are the solutions of (4.30) defined on [0, 1). In particular, we denote v+1−ΣZ

by u. Hence, as a consequence of equation (4.10), we have that u(0) = 1. Therefore, the

system (4.30) can be written as

∇x(t) = f(t, x) (4.35)

where ∇x(t) := (w′(t), u′(t)) and f(t, x) = (f1(t, x), f2(t, x)) with

f1(t, x) = −2wu+
σ2M (t)

(1− ΣM (t))2
, f2(t, x) = −w2 − uu+

σ2M (t)

(1− ΣM (t))2
.

Note that both derivatives of the system are negative, so w and u are nonincreasing. In

particular, note that

w(t) ≥ w(0) exp

(
2

σV

ΣM (t)

1− ΣM (t)

)
which is finite for all t ≤ T < 1.

Now, suppose that there is an to < T such that u(to) = 0. Then for all t such that

to < t < T

u(t) = −
∫ t

to
w2(s)ds
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as the second term in the r.h.s. of the second equation of (4.30) has disappeared. Since we

have just seen that w cannot be negative, u will remain negative. However, if that is the

case, the rate of w becomes zero by the first equation of (4.30). Recall also that w(0) ≥ w(t)

for all t ∈ [0, t]. Hence, as a limiting case, suppose that u(0) = 0, then the farthest u(t) can

go up to time T is −w2(0)T .

Hence, the images of w and u are in compacts [0, w(0)] and [−w2(0)T, 1], hence making

the derivatives w′ and u′ uniformly bounded. Next, observe that, for each t ≤ T , the function

f(t, ·) : [0, w(0)]×[−w2(0)T, 1] → R is Lipschitz since σM is continuous. Therefore, by Lemma

4.3 we find that f as defined above is globally Lipschitz.

As a consequence, it allows us to claim Theorem 4.1 to guarantee the existence and

uniqueness of the system given by (4.30) in [0, T ].

At this point, we do not need to calculate the limits of W and u as they go to one. All

that is relevant now is that since they are both monotonic functions, Theorem 4.29 of Rudin

(1976) guarantees the existence of the limit.

Now, note that since u is decreasing, we have u ≤ u(0) = 1, hence v+ 1−ΣZ ≤ 1, which

implies that v ≤ ΣZ .

Note that u does not depend on ΣZ even through its initial condition. Therefore, if u is

the solution of (4.30) and ΣZ is an exogenous function, we can define

v ≡ u− (1− ΣZ).

Since w is only a function of u, which is independent of ΣZ , it also does not depend on

ΣZ .

Let us now prove (4.32), take w as given by it. Obviously ∂
∂t lnw(t) is indeed the first

equation of (4.35). Since (w, v) is a unique solution for the system, we have the desired result.

Let w be the unique solution of of (4.35) as defined above. Lets define ū as the following:

ū(t) =
√
w(t)

(
k −

∫ t

0
w3/2(s)ds

)
(4.36)

for some k ∈ R.
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ū′(t) =
1

2

w′(t)√
w(t)

(
k −

∫ t

0
w3/2(s)ds

)
−
√
w(t)w3/2(t)

=
1

2

w′(t)

w(t)

√
w(t)

(
k −

∫ t

0
w3/2(s)ds

)
− w2(t)

=
1

2

w′(t)

w(t)
ū(t)− w2(t)

= −
σV σ

2
M (t)

(1− ΣM (t))2
ū(t) (v(t) + 1− ΣZ(t))

+ − w2(t)

the last equation being true because of the first equation of (4.30). Set k = 1√
w(0)

, so we

have ū(0) = 1 Since now ū is one solution to u′, by the uniqueness of u, we must have ū = u.

Now suppose (4.33) holds; then

w− 1
2 (0)−

∫ t

0
w

3
2 (s)ds > 0, ∀t ∈ [0, 1).

As we did before, suppose that there is t0 < 1 such that the above equation is zero. Since

w does not vanish in [0, T ], we have
∫ t
t0 w

3
2 (s) > 0 making the above integral negative. Hence,

by Equation (4.31), we have u > 0 in [0, T ]. In fact, if the above is 0 for some t0 < 1, it will

become strictly negative for all t > to since w never is 0. Thus, u > 0. Therefore, if (4.33)

holds, we have

σ2Z(t)− v′(t) = w2(t) +
σ2M (t)

(1− ΣM (t))2
(v(t) + 1− ΣZ(t))(v(t)

2

Hence,

∂

∂t

(
1

u(t)

)
≥

σ2M (t)

(1− ΣM (t))2

Therefore,

1

u(t)
− 1 ≥

∫ t

0

σ2M (s)

(1− ΣM (s))2
=

1

(1− ΣM (t)
− 1

Rearranging the terms and recalling that we have already concluded that, if (4.33) holds,

u > 0 leads to our statement.

We have proven the existence and uniqueness of a system that coincides with (4.29) if
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u > 0 for all t in [0, 1). As we have seen in the proof of the last proposition, such a condition

is satisfied when equation (4.33) is satisfied. Therefore, our next task, that we shall develop

in the next section, is to find an initial condition such that (4.33) is satisfied.

4.5 Initial Condition

From Proposition 4.1 we see that as long as w(0) ≤
(∫ 1

0 w
3/2(t)ds

)−2
, there is a unique

solution to (4.29) such that v + 1− ΣZ behaves as a variance should.

Therefore, if we are able to set the initial condition such that

w(0) =

(
1∫ 1

0 w
3/2(t)dt

)2

. (4.37)

we would be able to finally guarantee the existence and uniqueness of the system given by

(4.29).

However, one may note that there is a circular reasoning in the above equation: w(0) is

determined by the function w, which obviously depends on knowing the value of w(0) to be

calculated. In order to show that equation (4.37) has a solution, we present a fixed point

algorithm in Theorem 4.3 to show that there is a fixed point function for the ODE system

(4.30) with initial condition v(0) + 1− ΣZ(0) = 1 and w(0) given by equation (4.37).

With the result provided by Theorem 4.3, we are able to prove the main theorem of this

section, which is Theorem 4.4. It shows that under the conditions of Theorem 4.3 all the first

three numbered statements of Proposition 4.1 are true.

Before explaining the steps of the fixed point algorithm, note that, in view of equation

(4.30), we may rewrite equation (4.37) as follows:

w(0) =
(∫ 1

0
exp

(
−3

∫ t

0
(v(s) + 1− ΣZ(s))

+ σ2M (s)

(1− ΣM (s))2
ds

)
dt
)− 1

2
. (4.38)

We can easily check that the above equation is true by noticing that if w(0) is defined as

above, we have that
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√
w(0) =

w2(0)

w3/2(0)

=
1∫ 1

0 w
3/2(0) exp

(
−3
∫ t
0 (v(s) + 1− ΣZ(s))+

σ2
M (s)

(1−ΣM (s))2
ds
)
dt

=
1∫ 1

0 w
3/2(t)dt

(4.39)

which is equivalent to (4.37).

We can now move on to the description of the fixed-point algorithm we use in this section.

Let us begin the description by defining the operator T . Denote by C([0, 1) the space of

continuous functions in [0, 1) and let the function T : (0,∞) → C([0, 1)×C([0, 1) defined by

T (r) = (T 1(r), T 2(r)) = (w, v),

where (w, v) is the unique solution of (4.30) with w(0) = r. Therefore, for any initial condition

w(0) = r, the operator provides the solution to our system (4.30).

We can now consider the initial value for our algorithm. If we start with r0 =
Γ
2 where Γ

is given by

Γ =

(∫ 1

0
exp

(
− 3

ΣM (t)

1− ΣM (t)

)
dt

)− 1
2

(4.40)

so that w0 = T 1(r0) and v0 = T 2(r0). Note that Γ < ∞ since
∫ 1
0 (1 − ΣM (s))3ds = 0 if and

only if ΣM (0) = 1 which goes against the condition that ΣM (t) < 1 for all t < 1 - recall

that we impose this condition because if ΣM (t) = 1 for some t < 1 we would have the public

information about the true value of the asset being released before time 1.

Once we have the initial condition for our algorithm, we can move forward presenting it

by showing its updating rule. Define for n ≥ 1,

rn =
(∫ 1

0
exp

(
−3

∫ t

0
(vn−1(s) + 1− ΣZ(s))

+ σ2M (s)

(1− ΣM (s))2
ds

)
dt
)− 1

2
. (4.41)

Hence, applying the operator T defined above, we can define the sequence ϕ such that

T (rn) = ϕn(t) = (vn + 1− ΣZ , wn) (4.42)
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on [0, 1] where vn(t) + 1− ΣZ and wn(t) are the solution to the following system of ODEs:

w′
n(t)

wn(t)
= −2 (vn(t) + 1− ΣZ(t))

+ σ2M
(1− ΣM )2

(4.43)

σ2Z − v′n = w2
n(t) + σ2M

(
vn(t) + 1− ΣZ(t)

(1− ΣM (t))2

)
(vn(t) + 1− ΣZ(t))

+ (4.44)

with initial conditions given by vn(0) + 1− ΣZ(0) = 1 for all n ∈ N ∪ {0} and wn(0) = rn−1

for all n ∈ N and w0(0) =
Γ
2 .

Our goal is to show that one can extract a convergent subsequence (rn, wn.vn) so that the

limit (w, v) solves (4.30) satisfying (4.33). That will be the case because rn has a limit.

It should be clear now what the rationale is behind the fixed-point algorithm. Every iter-

ation of the algorithm produces a new value for wn(0) and following produces new functions

wn and vn + 1 − ΣZ . If at some step we find that the value wn(0) = wn+1(0) the functions

wn and vn + 1− ΣZ will not be updated any more and we will have reached a fixed point.

As the initial value of ϕn, wn(0) depends only on the functions wn−1(0) and vn−1(0), so

that the operator T such that

ϕn+1 = TϕN .

Our strategy to show the existence of a fixed point is to show that there exists a sequence

of (v′n(t) + σZ(t), w
′
n(t)) that converges uniformly on [0, T ] for any T < 1 and that (wn(0))

converges to (w(0)). By doing that, we can apply theorem 4.2 below to guarantee that there

exists a limit function such that the limit function is indeed the derivative of the limit of ϕn.

Theorem 4.2 (Rudin (1976) 7.17 ). Suppose {fn} is a sequence of functions differentiable

from [a, b] and such that {fn(x0)} converges for some point x0 on [a, b]. If {f ′n} converges

uniformly in [a, b], then {fn} converges uniformly in [a, b], to a function f , and

f ′(x) = lim
n→n

f ′n(x) (a ≤ x ≤ b).

We have a lengthy lemmata until we are able to reach Theorem 4.3. The structure of it

is such that each lemma is used to prove the following. Hence, the reader could first read the

proof of Theorem 4.3 to check why every lemma is important and work it backwards until

they come back to this point. Our task begins by showing that ϕn is bounded.
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Lemma 4.4. (ϕn)
∞
i=0 as defined by equation (4.42) is a bounded sequence of functions.

Proof. Note from equation (4.42) that the sequence (rn)
∞
i=0 defines a sequence of functions

(ϕn)
∞
i=0. By Proposition 4.1, we find that (ϕn)

∞
i=0 is bounded as long as (rn)

∞
i=0 is bounded.

Therefore, all we need to show is that the sequence (rn)
∞
i=0 is bounded.

First, note that by the construction of (4.43)

w′
n(t)

wn(t)
= −2 (vn(t) + 1− ΣZ(t))

+ σ2M
(1− ΣM )2

≤ 0

therefore, we have r2n ≥ 1.

Moreover, equation (4.43) also shows that since (vn(t) + 1− ΣZ(t))
+ ≤ 1:

r−2
n =

(
−3

∫ t

0
u+(s)

σ2M (s)

(1− ΣM (s))2
ds

)
≥ exp

(
−3

∫ t

0

σ2M (s)

(1− ΣM (s))2
ds

)
= exp

(
− 3

ΣM (t)

1− ΣM (t)

)
.

Thus, for n ≥ 1,

1 ≤ r2n ≤ 1∫ 1
0 exp

(
− 3 ΣM (t)

1−ΣM (t)

)
dt

= Γ2 <∞. (4.45)

The previous lemma guarantees that ϕn with image in [0, 1]× [0,Γ] is well-defined for all

n ∈ N ∪ {0}. (i.e., ϕn : R → [0, 1]× [0,Γ]).

We can now show that the sequence of functions defined by our algorithm,(vn+1−ΣZ , wn),

is indeed equicontinuous.

Lemma 4.5. (vn+1−ΣZ , wn) are equicontinuous sequences of functions [0, T ] for any T < 1.

Proof. One may start by noticing that by equation (4.44):

|v′n(t)− σZ | = w2
n + σ2M

(
(vn + 1− ΣZ)

+

1− ΣM

)2

≤ Γ2 +
σ̄2M

1− ΣM (T )
(4.46)
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where σ̄2M is an upper bound for σ2M .

The above shows that (vn+1−ΣZ) is a bounded sequence of Lipschitz continuous functions

with the same Lipschitz constant, so it is equicontinuous.

Analogously, by equation (4.43)

|w′
n| = 2wn (vn + 1− ΣZ)

+ σ2M
(1− ΣM )2

≤ 2Γ̄
σ̄2M

(1− ΣM (T ))2
(4.47)

for any T ∈ [0, 1). Like the previous case, (wn) is a bounded sequence of Lipschitz continuous

functions and hence it is equicontinuous.

Once we have established that both (wn) and (vn+1−ΣZ) are equicontinuous sequences

of functions on [0, T ] for any T < 1 by Lemma 4.5, we can proceed to show that since their

derivatives are linear combinations of them, they are also equicontinuous.

Lemma 4.6. (v′n − σZ , w
′
n) are bounded equicontinuous sequences of functions [0, T ] for any

T < 1 .

Proof. As both wn and vn + 1−ΣZ are nonincreasing functions, their derivatives are always

bounded from above by 0. In addition to that, (4.46) shows that v′n is also bounded from

below and equation (4.47) does the same for w′
n.

Since (wn) and (vn + 1−ΣZ) are equicontinuous sequences of functions on [0, T ] for any

T < 1, ∀ ϵ > 0 ∃ δ > 0 s.t.

d(w2
n(t1), w

2
n(t2)) < ϵ/2

and

d(vn(t1) + 1− ΣZ(t1), vn(t2) + 1− ΣZ(t2)) <
(1− ΣM (T ))2

2σ̄2M
ϵ

whenever d(t1, t2) < δ.

As a consequence, for all n:

d(σZ(t1)− v′n(t1), σZ(t2)− v′n(t2) ≤
ϵ

2
+

σ̄2M
(1− ΣM (T ))2

(1− ΣM (T ))2

2σ̄2M
ϵ = ϵ
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for d(t1, t2) < δ making σZ − v′n itself an equicontinuous sequence of functions.

Analogously, ∀ ϵ > 0 ∃ δ > 0 s.t.

d(vn(t1) + 1− ΣZ(t1), vn(t2) + 1− ΣZ(t2)) <
(1− ΣM (T ))2

2σ̄2M Γ̄
ϵ

whenever d(t1, t2) < δ, so for all n

d(vn(t1) + 1− ΣZ(t1), vn(t2) + 1− ΣZ(t2)) <
(1− ΣM (T ))2

2σ̄2M Γ̄

2σ̄2M Γ̄

(1− ΣM (T ))2
ϵ = ϵ

for d(t1, t2) < δ also making w′
n an equicontinuous sequence of functions.

As a consequence of the equicontinuity of the functions and the fact that (wn(0))
∞
n=0 is

bounded, we can prove the following lemma that guarantees the existence of a converging

subsequence of our functions.

One should bear in mind that due to the fixed point nature of the algorithm, a convergence

subsequence will be enough to make it work properly, as we shall see in Theorem 4.3.

Lemma 4.7. There exists a converging subsequence (wnijk
(0), ϕnijk

) of (wn(0), ϕn) that con-

verges to (w(0), ϕ) such that the convergences of (wnijk
(0)) and (v′nijk

− σZ) are uniform.

Proof. The algorithm constructed in the beginning of this section defined by equations (4.43),

(4.44), and (4.41) defines a bounded sequence (wn(0))
∞
n=0. Therefore, by the Bolzano-

Weierstrass theorem (see Bartle, Sherbert (2011) Theorem 3.4.8) there exists a converging

subsequence (wni(0)).

Since (w′
n) is a bounded sequence of equicontinuous functions in [0, T ] for any T < 1

by Lemma 4.6, (w′
ni
) is also. Therefore, by the Arzelà-Ascoli theorem (see Rudin (1976)

Theorem 7.17) there is a converging subsequence (w′
nij

).

Analogously, (v′n−σZ) is a bounded sequence of equicontinuous functions in [0, T ] for any

T < 1 by Lemma 4.6, (v′nij
− σZ) is also. Therefore, by the Arzelà-Ascoli theorem, there is a

converging subsequence (v′nijk
− σZ).

Theorem 4.3. There exists a fixed point ϕ such that the system of ODEs given by the

equations (4.30) is satisfied with the initial conditions given by v(0)+1−ΣZ(0) = 1 and w(0)
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given by equation (4.38).

Proof. For a matter of notation, let’s rearrange the terms of the subsequence given in Lemma

4.7 such that we have that

lim
n→∞

rn = w(0)

lim
n→∞

σ2Z − v′n = σ2Z − v′ uniformly

lim
n→∞

w′
n = w′ uniformly

Therefore, there is a limit to equations (4.43) and (4.44). Theorem 4.2 guarantees that

(wn) converges to a function such that the ODEs (4.38) are satisfied in [0, 1) as they are

the limits of equations (4.43) and (4.44). Furthermore, the theorem also guarantees that

limn→∞wn(0) = w(0) are their initial conditions with that v(0) + 1− ΣZ(0) = 1.

As a consequence, we have that if we apply the ODEs to the initial condition w(0) given

by equation (4.37) we would get the output w(0) =

(
v(0)+1−ΣZ(0)∫ 1

0 w3/2(t)dt

)2

again.

Therefore, the fixed point property is satisfied for (v(t) + 1− ΣZ(t), w(t)) with initial

conditions (4.37) and v(0) + 1− ΣZ(0) = 1.

Or equivalently

ϕ = Tϕ.

Now that we have a suitable value of w(0) that can guarantee that v+1−ΣZ > 0 for all

t in [0, 1), we are ready to prove the main theorem of this section:

Theorem 4.4. There exists a pair (w, v) that solves (4.29) and satisfies

w− 1
2 (0) =

∫ 1

0
w

3
2 (s)ds <∞.

Moreover, the following statements are valid:

1. w and v + 1− ΣZ are decreasing, and v ≤ ΣZ − ΣM .

2. w and v + 1− ΣZ do not depend on ΣZ .
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3. For all t ≤ 1,

v(t) + 1− ΣZ(t) = w
1
2 (t)

(
w− 1

2 (0)−
∫ t

0
w

3
2 (s)ds

)
, and (4.48)

w(t) = w(0) exp

(
−2

∫ t

0
(v(s) + 1− ΣZ(s))

σ2M (s)

(1− ΣM (s))2
ds

)
(4.49)

Proof. The first claim is the same as the one in Theorem 4.3. Recall that finiteness is a

consequence of the existence of the limit in the previous theorem and Lemma 4.4.

The existence of a fixed point in the previous theorem also guarantees that the limit

functions inherit the second and third statements of Proposition 4.1.

Note that the equations in (4.30) would be the same as (4.48) and (4.49) if u > 0. However,

that is the case for w as described in the statement of this theorem due to Proposition 4.1.

The fact that u > 0 also leads to the fact that

∂

∂t

(
1

u(t)

)
≥

σ2M (t)

(1− ΣM (t))2

As a consequence,

1

u(t)
− 1 ≥

∫ t

0

σ2M (s)

(1− ΣM (s))2
=

1

(1− ΣM (t)
− 1

So, v + 1− ΣZ ≤ 1− ΣM , which leads to the final claim.

4.6 Further Results on w

In this section, we show two propositions related to the behaviour of the function w that will

be relevant in further discussions on the equilibrium. We have already established that w

does not vanish in [0, T ] for any T < 1. Perhaps the most interesting fact of this section is

that limt→1w(t) = 0.

Together, these two facts are quite relevant for our high-frequency motivation. First, the

fact that w(t) > 0 for all t in [0, 1) shows that the changes in the level of the cumulative

demand are always relevant in the trading period, but the fact that the limit of w is zero

when time approaches one also shows that such impact is very reduced close to the end of

the trading period.
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Proposition 4.2. Let w be the function of Theorem 4.4. Then, limt→1w(t) = 0. Moreover,

w(t)

w(0)
≥ (1− ΣM (t))2. (4.50)

Proof. Using integration by parts and the ODE (4.29), we have

∫ t

0
(v(s) + 1− ΣZ(s))

σ2M (s)

(1− ΣM (s))2
ds ≥ −1 +

∫ t

0

w2(s)

1− ΣM (s)
ds

≥ −1 +
w2(t)

K

∫ t

0

σ2M (s)

1− ΣM (s)
ds

= −1− w2(t)

K
ln(1− ΣM (t)),

whereK is an upper bound for σ2M on [0, 1], since w is decreasing. Now, suppose limt→1w(t) >

0. Then, as ΣM (1) = 1,

lim
t→1

w(t) ≤ e2 lim
t→1

exp
(2w2(t)

K
ln(1− ΣM (t)),

)
= 0,

which is a contradiction.

Similarly, since v + 1− ΣZ ≤ 1− ΣM by Theorem 4.4, we have

ln
w(t)

w(0)
≥ −2

∫ t

0

σ2M (s)

1− Σm(s)
ds = 2 ln(1− ΣM (t)).

This proves the remaining claim.

We can now prove a proposition that, even though it seems rather ordinary, will be very

important in showing the equilibrium condition of our model.

Proposition 4.3. Let w and v be the functions from Theorem 4.4. Assume σM (1) ̸= 0.

Then,

lim
t→1

v(t) + 1− ΣZ(t)

w(t)
= 0. (4.51)

Proof. Let u = v + 1− ΣZ . Note that

u(t)

w(t)
=

1√
w(0)

−
∫ t
0 w

3/2(s)ds√
w(t)

≤
1√
w(0)

−
∫ t
0 w

3/2(s)ds√
w(0)(1− ΣM (t))

.
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Then, L’Hospital’s rule yields

lim
t→1

u(t)

w(t)
≤ w−1/2(0) lim

t→1

w3/2(t)

σ2M (t)
,

which converges to 0 by Proposition 4.2.

4.7 Price Process for the Market Maker

This section should be considered optional. We are not addressing anything relevant to equi-

librium. As we have mentioned before, what we actually need to have an admissible strategy

to be optimal is that it drives the mispricing to zero almost surely, i.e. limt→1 ϕ(t,Xt, X
M
t , Zt) =

0, Pz-a.s.. This question will finally be addressed in the pages following this section in Chap-

ter 5. As will be presented in the chapter, we use Doob’s h-transform to show that the

strategy given by equation (4.6) in Lemma 4.1 is indeed optimal to the insider.

However, as a consequence of equation (5.2) we find that the mispricing requires that

the price converges to V Pz-a.s. Combining that with the fact that the market maker now

observes a signal that converges to a linear function of the final price, it would be expected

that the price process converges to V also in the market maker’s filtration. In this section, we

show that this is indeed the case. As an exercise that is not required to prove the equilibrium

of the model, one should not find a counterpart to this section in other Kyle-Back models.

Furthermore, the end of this section is dedicated to showing an interesting result on the

coefficient β2. In equilibrium, it either converges to zero or one. That means that by the end of

the trading period, the market maker is either absorbing all the marginal information coming

from the public signal or ignoring it completely. Each possibility has different consequences

on the liquidity of the market during the final moments of the trading period and will be

carefully investigated in Chapter 7.

Before we proceed to the next proposition, we need to collect the following result:

Lemma 4.8. Under the conditions of Theorem 4.4 and β2 as defined in equation (4.26), i.e.,

β2(t) = σV
v(t) + 1− ΣZ(t)

ΣZ(t)
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Then,

lim
t→1

1− ΣM (t)

β2(t)
= 0 (4.52)

Proof. Suppose that there is k ∈ R++ such that limt→1
1−ΣM (t)

β2(t)
= 1

k . As a consequence,

limt→1
β2(t)

1−ΣM (t) = k. Therefore, ∀ ϵ > 0 ∃ t∗ : ∀ t > t∗

β2(t)

1− ΣM (t)
≤ k + ϵ. (4.53)

Therefore, by equation (4.28), w′(t)
w(t) ≥ −2(k + ϵ)σ2M (t). Hence,

ln
w(t)

w(t∗)
≥ −2(k + ϵ)(ΣM (t)− ΣM (t∗)) ≥ −2(k + ϵ) (4.54)

leading to

w(t) ≥ w(t∗) exp (−2(k + ϵ) > 0 (4.55)

the above equation is in contradiction to Proposition 4.2. As a consequence, the limit of

equation (4.52) is true.

With the previous lemma proved, we can now investigate the limit of the process Xt in

the market maker’s filtration. This limit will be key in proving Proposition 4.4.

Lemma 4.9. Under the conditions of Theorem 4.4, then

lim
t→1

Xt = −σ−1
V β0(1) +

(
1− β2(t)

σV

)
η a.s.

Proof. Firstly, note that under the assumption 3.2, we have

r1(t) =
1

2

w′(t)

w(t)
(4.56)

As a consequence, r0 and r2 can be rewritten as

r0(t) = σ−1
V (β0(t)− µ)

1

2

w′(t)

w(t)
− σ−1

V β′0(t) (4.57)

r2(t) =
1

2

w′(t)

w(t)

(
β2(t)

σV
− 1

)
− β′2(t)

σV
(4.58)
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Now note that

d exp

(
−
∫ t

0
r1(s)ds

)
Xt = −r1(t)Xt exp

(
−
∫ t

0
r1(s)ds

)
dt+ exp

(
−
∫ t

0
r1(s)ds

)
dXt

= exp

(
−
∫ t

0
r1(s)ds

)
(dXt − r1(t)Xtdt) (4.59)

Due to equation (4.56),

exp

(
−
∫ t

0
r1(s)ds

)
= exp

(
−
∫ t

0

1

2

w′(s)

w(s)
ds

)
= exp

(
−
∫ t

0

1

2

w′(s)

w(s)
ds

)
= exp

(
−1

2
ln
w(t)

w(0)

)
=

√
w(0)

w(t)
(4.60)

Therefore,

d

√
w(0)

w(t)
Xt =

√
w(0)

w(t)
(dXt − r1(t)Xtdt)

=

√
w(0)

w(t)

(
w(t)dBt + r0(t)dt+ r2(t)X

M
t dt

)
by the definition of the process X. Using equation (4.58), we have that

r2(t)√
w(t)

=
1

2

w′(t)

(w(t))3/2

(
β2(t)

σV
− 1

)
− β′2(t)

σV
√
w(t)

Furthermore, applying Itô formula,

d
(1− β2(t)

σV
)√

w(t)
XM

t =

(
−β′2(t)
σV
√
w(t)

+
1

2

w′(t)

(w(t))3/2

(
β2(t)

σV
− 1)

)
XM

t dt+
(1− β2(t))

σV
)√

w(t)
dXM

t

=
r2(t)√
w(t)

XM
t dt+

(1− β2(t))
σV

)√
w(t)

dXM
t (4.61)
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Combining the last equation with equation (4.61) and considering the fact that

∂

∂t

−(β0(t)− µ)

σV
√
w(t)

=
−β′0(t)
σV
√
w(t)

+ (β0(t)− µ)
1

2

w′(t)

σV (w(t))(3/2)
,

we have that

d

√
1

w(t)
Xt =

√
w(t)dBt+d

(
−(β0(t)− µ)

σV
√
w(t)

)
+d

(
(1− β2(t)

σV
)√

w(t)
XM

t

)
+
(β2(t)

σV
− 1)√

w(t)
dXM

t (4.62)

Lets define Ft =
∫ t
0

√
w(s)dBs and Gt =

∫ t
0

(β2(s)−1)√
w(s)

dXM
s . Then, we know that Ft ∼

N(0,
∫ t
0 w(s)ds) which has a finite variance as w is bounded by w(0). Regarding the inte-

grability of G, it does not depend on the filtration we consider the process. In the filtration

generated by XM , we have that Gt =
∫ t
0

(
β2(s)
σV

−1)√
w(s)

σM (s)dIMs , where I is the innovation pro-

cess of that filtration and hence a Brownian motion. We can now consider two scenarios, the

first one is if
∫ 1
0

(
β2(s)
σV

−1)2

w(s) σ2M (s)ds <∞. In this case, G1 is integrable.

In the second case, if
∫ 1
0

(
β2(s)
σV

−1)2

w(s) σ2M (s)ds = ∞ the quadratic covariance of
√
w(1)Z1

seems to be unspecified as

lim
t→1

∫ t
0

(
β2(s)
σV

−1)2

w(s) σ2M (s)ds

1
w(t)

=
∞
∞
.

However, if we apply L’Hopital rule to the above equation, one gets that

lim
t→1

∫ t
0

(
β2(s)
σV

−1)2

w(s) σ2M (s)ds

1
w(t)

= lim
t→1

(
β2(t)
σV

−1)2σ2
M (s)

w(t)

−w′(t)
w2(t)

= lim
t→1

(β2(t)
σV

− 1)(1− ΣM (t))

2β2(t)

= 0 (4.63)

the second equality being true due to equation (4.28) considering Assumption 3.2 and the

last one being true due to lemma 4.8 . Therefore, in both cases
√
w(t)Gt converges to zero

as t→ 1. We can now proceed to write equation (4.62) in its non-differential form:
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Xt√
w(t)

=
X0 + σ−1

V (β0(t)− µ)− (1− β2(0)
σV

)XM
0√

w(0)
+ Ft +Gt

+
−σ−1

V (β0(t)− µ)√
w(t)

+
(1− β2(t)

σV
)√

w(t)
XM

t

Hence,

Xt =
√
w(t)

(
X0 + σ−1

V (β0(t)− µ)− (1− β2(0)
σV

)XM
0√

w(0)
+ Ft +Gt

)

−σ−1
V β0(t) +

(
1− β2(t)

σV

)
XM

t

Since
X0+σ−1

V (β0(t)−µ)−(1−β2(0)
σV

)XM
0√

w(0)
+ Ft + Gt is just a real-valued random variable, by

proposition 4.2 the limit of
√
w(t)

(
X0+σ−1

V (β0(t)−µ)−(1−β2(0)
σV

)XM
0√

w(0)
+ Ft +Gt

)
when t → 1

must be zero. As a consequence, the limit of Xt given by equation (4.64) when t → 1 is

−σ−1
V (β0(t)− µ) + (1− β2(0)

σV
)XM

1 .

Proposition 4.4. Under Assumption 3.2, then, in equilibrium, the price process is an FM -

martingale converging to σV η + µ.

Proof. Considering Assumption 3.2, the price process becomes St = β0(t)+σVX
M
t +β2(t)X

M
t .

Since, by Proposition 4.9, X1 = σ−1
V (β0(t)− µ) + (1− β2(1)

σV
XM

1 ), we have that

lim
t→1

St = β0(1)− (β0(1)− µ) + (σV − β2(t))X
M
1 + β2(1)X

M
1 = µ+ σVX

M
1

hence, S1 = σV η+µ = V since XM is a Markov Bridge converging to η by construction.

Even though we do not need to study the behaviour of β2 as time goes to one as Theorem

4.4 does not require any particular value of β2 in the limit, it is interesting to notice that

under the very reasonable assumption that σ2M (1) > 0 it could be either 0 or 1.

One can start by noticing that

lim
t→1

β2(t) = lim
t→1

v(t) + 1− ΣZ(t)

1− ΣM (t)
=

0

0
.
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Therefore, to find the limit of β2 when t goes to 1 one must apply L’Hopital rule:

lim
t→1

β2(t) = lim
t→1

v′(t)− σ2Z(t)

−σ2M (t)

= lim
t→1

w2(t) + σ2Mβ
2
2(t)

σ2M (t)

= lim
t→1

w2(t)

σ2M (t)
+ lim

t→1
β22(t) (4.64)

By Proposition 4.2, that the limit of w is zero when time goes to one, as long as limt→1 σ
2
M (t) ̸=

0 the limit of w2

σ2
M

goes to zero. Hence, equation (4.64) shows that the only two possible limits

such that the limits for β2 are either zero or one. In our numerical analysis, we only found

the β2 converging to one, but one cannot ensure that there is not a setting in which β2 could

go to zero.
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Chapter 5

Mispricing

In this chapter, we finally address the issue of the mispricing of the market maker. Recall

that from Theorem 3.1 we see that for any strategy to be optimal, we need that γ0 = γ1 = 0

and limt→1 ϕ(t,Xt, X
M
t , Zt) = 0, Pz-a.s.. In the last chapter, we have confined ourselves to

the set of linear strategies of the form of equation (4.4). In the previous chapter, we have

also seen that such a strategy could only be compatible with a rational pricing rule if the

coefficients of (α)2i=0 follow equations (4.6). Therefore, the main aim of this chapter is to

show that the strategy θ such that

dθt = w(t)
Zt −Xt − β2(t)

σV
XM

t

v(t)
dt, θ0 = 0

is indeed optimal for the insider for the functions v and w from Theorem 4.4.

We shall in a moment explain in words what the misprice means in terms of the model,

but, in order to do so, note that by equation (1.8), we have that the function H is given by

H(t, x, x1) = β0(t) + β1(t)x+ β2(t)x1. Therefore, we find that ϕ, as defined in Theorem 3.1,

is:

ϕ(t, x, u, z) =

∫ x

H−1(t,σV z+µ,u)

β0(t) + β1(t)y + β2(t)x1 − σV z − µ

w(t)
dy

As a consequence,
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ϕ(t, x, u, z) = (x−H−1(t, σV z + µ, u))
β0(t) + β2(t)x1 − σV z − µ

w(t)

+
β1(t)

w(t)

1

2
(x2 − (H−1(t, σV z + µ, u))2)

= (x−H−1(t, σV z + µ, u))×(
β0(t) + β2(t)x1 − σV z − µ

w(t)

+
β1(t)

w(t)

1

2
(x+ (H−1(t, σV z + µ, u))

)
(5.1)

Now, one can note that

(
x+H−1(t, σV z + µ, u)

)
=

(
x+

σV z + µ− β0(t)− β2(t)u

β1(t)

)
=

(
2x+

σV z + µ− β0(t)− β1(t)x− β2(t)u

β1(t)

)

and

(
x−H−1(t, σV z + µ, u)

)
=

(
x− σV z + µ− β0(t)− β2(t)u

β1(t)

)
=

(
−σV z − µ+ β0(t) + β1(t)x+ β2(t)u

β1(t)

)
=

H(t, x, x1)− σV z − µ

w(t)

Therefore,

ϕ(t, x, u, z) =
(H(t, x, x1)− σV z − µ)

w(t)

(H(t, x, x1)− σV z − µ)

2

=
(H(t, x, x1)− σV z − µ)2

2w(t)
. (5.2)

First, note that from a modelling point of view, we can only have limt→1 ϕ(t,Xt, X
M
t , Zt) =

0, Pz-a.s. if limt→1(St − σV Zt − µ)2 = 0, Pz-a.s.. If we consider that (St − σV Zt − µ)2 is the
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mispricing of the asset under a quadratic loss function, it is a necessary condition1 that this

mispricing goes to zero as the trading period ends.

The misprice condition is not uncommon in the literature (see, for example, condition

(ii) in Theorem 6.1 of Çetin, Danilova (2018)). However, when there is no public signal, one

can say that the insider drives the price process to the final value of the asset at the end

of the trading period. In our case, on the other hand, one cannot say the same. Since the

market maker observes a public signal that is itself a Markov bridge converging to a linear

combination of the correct value of the asset, one cannot claim that the insider is the one

bridging the price as the market maker no longer needs the insider to do so and still has the

misprice condition satisfied.

Furthermore, if we are able to show that limt→0

Ez((Zt−St−µ
σV

)2)

w(s) = 0, then by Fatou’s

lemma, limt→1 ϕ(t,Xt, X
M
t , Zt) = 0, Pz-a.s..

The way we are going to deal with that is through the use of Doob’s h transform. The

role of it will be explained in Section 5.1. In Section 5.2 we describe the law of the process

X in the filtration of the market maker, and in Section 5.3 we use the technology described

in the previous section to find the law of the mispricing in the filtration of the insider.

5.1 Doob’s h-transform

In this section, we develop the intuition for the role of Doob’s h-transform for the change

of measure necessary to find the law of a bridge related to a given Markov process. The

reader is invited to read Chapter 4 of Çetin, Danilova (2018) for a much more formal and

wholesome review of this tool. However, for the sake of formality, we also borrow from the

aforementioned book the required theorem, Theorem 5.1, to properly prove Theorem 5.2

which is the main theorem of this chapter that will be proven in Section 5.3.

Suppose that we have a Markov processX defined in a filtered probability space (Ω,F , (Ft)t≥0,P)with

transition density p(·, ·, ·). If we want to find the density of this process given time t condi-

tional on its position in s and 1 we could easily do it by conditioning

P x(Xs ∈ dv,Xt ∈ dy,X1 ∈ dz)

P x(Xs ∈ dv,X1 ∈ dz)
= p(t− s, v, y)

p(1− t, y, z)

p(1− s, v, z)
dy (5.3)

1Yet not sufficient since we know from Proposition 4.2 that limt→1 w(t) = 0, we need the mispricing to go
to zero at least at a certain speed.
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for 0 ≤ s < t ≤ 1 where P x is the law of the process starting at x.

The above conditioning defines a relationship between the stochastic process X and what

we call its bridge. Indeed, 5.3 defines a new law, P x→z
0→1 , for every pair x, z that is the law of

the Markov bridge starting at x and ending at z at time 1. Therefore, for every measurable

function F : C([0, t],R) 7→ R, we have

Ex→z
0→1 [F (Xs; s ≤ t)] = Ex

[
F (Xs; s ≤ t)

p(1− t,Xt, z)

p(1, x, z)

]
.

One may have noticed that the role of the coefficient p(1−t,Xt,z)
p(1,x,z) is to define a change

in measure from P x to P x→z
0→1 . Indeed, if we define h(t, x) = p(1 − t, x, z), one can rewrite

equation (5.3) as:

p(t− s, x, y)
h(t, y)

h(0, x)
.

In fact, we can define a probability measure, QT , using the density above in FT by

dQT

dP x

∣∣∣
FT

=
h(T,XT )

h(0, x)
for T ∈ [0, T ],

where T < 1. The process (Xt)t∈[0,T ] under the new measure QT is called the h-transformed

of X and the function h is called h-transform. One should note that in fact by doing that we

have a martingale Z such that

Zt ≡
dQT

dP x

∣∣∣
Ft

=
h(t,Xt)

h(0, x)

The remark about the martingale is relevant as in practice what we aim at in this chapter

is to show that a candidate martingale, as properly defined in definition 5.1, defines a law

that is indeed the law of a Markov bridge. That is exactly what we do in Theorem 5.2 which

cuts many corners in the general theory presented in Çetin (2018).

Such a procedure is allowed us due to the Girsanov Theorem (see Theorem 38.4 of Rogers,

Williams (2000)). Basically, if Z is a continuous density process as above. Then, for any

continuous P x-local martingale M the process

M ′ =M −
∫ t

0

1

Z
d[M,Z]
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is a QT -local martingale. Therefore, if a candidate h is such that

dM ′
t = dMt −

h(0, x)

h(t,Xt)
hx(t,Xt)d[M,M ]t,

where hx is the derivative of h with respect to the second component, it defines the SDE of

a Markov bridge, then the measure it defines QT is indeed P x→z
0→1 .

As a consequence, we may now properly define an h-transform as the following:

Definition 5.1. (Definition 4.1 of Çetin, Danilova (2018)) We call a function h : [0, T ∗]×

E 7→ [0,∞), an h-function if it is strictly positive on [0, T ∗)×E, belongs to C1,2([0, T ∗]×E),

and

(h(t,Xt)t≥0, (Bt)t≥0)

is a martingale under every P 0,x.

The main theorem we shall use to prove the main result of this chapter is the following:

Theorem 5.1. (Theorem 4.1 of Çetin, Danilova (2018), modified) Let X be a strong Markov

process under any P s,µ for all s ≥ 0, where µ is a probability measure on E and T ∗ < ∞.

Let h be an h-function such that h(T ∗, ·) > 0 and h ∈ C1,2([0, T ∗] × E). Define P h;s,x on

(Ω,BT ∗) by
dP h;s,x

dP s,x
=
h(T ∗, XT ∗)

h(s, x)
.

Then, P h;s,x is the unique solution of the local martingale problem for Ah starting from x at

s, where

Ah
t = At +

d∑
i,j=1

aij(t, x)

∂h
∂xj

(t, x)

h(t, x)

∂

∂xi
. (5.4)

and

At =
1

2

d∑
i,j=1

aij(t, ·)
∂2

∂xi∂xj
+

d∑
i=1

bi(t, ·)
∂

∂xi
,

is the generator associated with the transition function (Ps,t).

Consequently, X is a strong Markov process under every P h;s,x for s, T ∗, and x ∈ E, and

the associated transition function (P h
s,t) is related to (Ps,t) via

P h
s,t(x,A) =

1

h(s, x)

∫
A
h(t, y)Ps,t(x, dy), x ∈ E, A ∈ E , t ∈ Ts. (5.5)
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A couple of remarks about the above theorem are needed, as we took it out of context.

The first one is that as things are defined above we do not claim that P h
s,t is a Markov bridge.

What it is saying is that every martingale h(T,XT ) defines a change of measure and that the

original process has density P h
s,t and operator Ah

t . The second one is that in both equations

(5.4) and (5.5) should be clear the role of the change of measure as we very briefly discussed

above. In particular, in Equation (5.4) the role of the Girsanov theorem should be clear.

5.2 Equilibrium demand process

In this section, we shall take a deeper look into market makers’ signal X that is expected to

appear in equilibrium. Given the hypothesis of the results in the previous section, we shall

assume the following throughout.

Assumption 5.1. w and v are the functions from Theorem 4.4, β0 ≡ µ, and equations

(4.26) and (4.27) are satisfied. Moreover, Assumption 3.2 holds and αis satisfy (4.6).

All assumptions, except the one of β0 ≡ µ have already been made at some point before.

Since all r0 does is adapt to changes in β0, we can set such a restriction. Furthermore, one

can note that as we reach the last fundamental result of the thesis and we have not required

to impose any further restriction on β0 what we are doing is to kill a free parameter that we

do not need to use.

Moreover, setting β0 ≡ µ also sets r0 ≡ 0.

Given the above condition, let us consider the following SDE on (Ω,F , (F I
t )t∈[0,1],P):

dXt = w(t)dBt + {r1(t)Xt + r2(t)X
M
t }dt+ w(t)α3(t)

(
Zt −Xt −

β2(t)

σV
XM

t

)
dt. (5.6)

One should note that all the coefficients of the above SDE depend only on time. Moreover, all

coefficients are bounded for any t ∈ [0, T ] with T < 1. As a consequence, the linear structure

implies the existence of a unique strong solution on [0, 1) by Theorem 2.7 of Çetin, Danilova

(2018).

Once we have the uniqueness of equation (5.6), we can be sure that the process X as

defined above is indeed the same as the one in equation (4.3) under the conditions given by

(4.6), the restrictions given by equations (4.26) and (4.27), and the processes XM and the

Brownian motion B. Therefore, we may apply Lemmas 4.1 and 4.2. Furthermore, recalling
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that Ẑ is the FM -optional projection of Z, we may summarise both lemmas in Proposition

5.1:

Proposition 5.1. Suppose Assumption 5.1 holds and consider X in (5.6). Then, S :=

β0 + σVX + β2X
M is a (FM ,P) martingale. Moreover,

dXt = w(t)dN
(1)
t + {r0(t) + r1(t)Xt + r2(t)X

M
t }dt

dXM
t = σM (t)dN

(2)
t + σ2(t)

Ẑt −XM
t

1− ΣM (t)
dt,

(5.7)

where (N (1), N (2)) is a two-dimensional (P,FM )-Brownian motion. In particular, S = µ +

σV Ẑ, and the random variable St ∼ N(µ,ΣS(t)) for every t ∈ [0, 1], where

ΣS(t) :=

∫ t

0
σ2V w

2(s)ds+

∫ t

0
β22(s)σ

2
M (s)ds. (5.8)

Proof. First note that Lemma 4.2 shows that, given FM
t , Zt is normally distributed with

mean Ẑt and variance v in view of Theorem 4.4 and the particular form of w given by equation

(4.27).

Equation (4.27) with Assumption 3.2 sets the conditions for the application of Lemma

4.1 that shows the martingale property for S, which readily yields the identity S−µ
σV

= Ẑ.

Moreover, from Lemma 4.1 we have that

dSt = σV w(t)dN
(1)
t + β2(t)σM (t)N

(2)
t .

Therefore, V ar(η|FM
t ) = [S, S]t = ΣS(t) as defined in (5.8). Furthermore, recall that E(η) =

0, so E(St) = µ.

We can now address the issue of the second moment of St−µ−σV Zt that we have raised

in the beginning of this section.

Recall from Theorem 3.1 that the optimality condition on insider strategy requires seem-

ingly strong conditions on the second moment of mispricing, that is, St−µ−σV Zt, under the

insider’s probability measure. Our next goal is to show that this condition will be satisfied

under the existing conditions for the candidate equilibrium strategy of the insider.
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5.3 On the second moments of mispricing

In this section, we shall find the second moment of mispricing, St − µ − σV Zt, under the

insider’s probability measure. Our strategy for doing so is to define a process with the same

law of St − µ − σV Zt under the equilibrium condition by a h-transform of (X,XM ) under

the probability measure P.

We shall start with the case when the insider has the perfect knowledge of V ; that is the

private signal is such that ΣI ≡ 1.

Recall that Pz is the law of (B,XM , XI) given that z = XI
0 . As a result of ΣI ≡ 1,

we replace Z by η in (5.6) as a consequence of 2.3. Now, we can find the dynamics of XM

under P using the theory of enlargement of filtrations theory (see, e.g., Theorem 4.2 in Çetin,

Danilova (2018) that

dXM
t = σM (t)dβMt + σ2M (t)

η −XM
t

1− ΣM (t)
dt, (5.9)

for some (P,F I)-Brownian motion βM . Therefore, writing the dynamics under the measure

Pz and assuming that Assumption 5.1 is satisfied, leads to the following system:

dXt = w(t)dBt + {r0(t) + r1(t)Xt + r2(t)X
M
t }dt+ w2(t)

v(t)

(
z −Xt −

β2(t)

σV
XM

t

)
dt

dXM
t = σM (t)dβMt + σ2M (t)

z −XM
t

1− ΣM (t)
dt,

(5.10)

where (w, v) are the functions from Theorem 4.4 with ΣZ ≡ 1, and βM is (with an abuse of

notation) a (Pz,F I)-Brownian motion.

To get a description of the Pz-moments of St−V , we shall apply a particular h-transformation

to (X,XM ) from (5.7). The first step is to show that our candidate h-transform is indeed an

h-transform. That will be done by Lemma 5.1 showing that our transformation is a martin-

gale. Theorem 5.2 shows that the h-transformation to (X,XM ) has the same law of (X,XM )

under Pz.

Lemma 5.1. Let q be the transition density of a standard Brownian motion; that is,

q(t, x, z) = (2πt)−1/2 exp(−(x− z)2/(2t)).

Let (X,XM ) be the solution of (5.7) on (Ω,F , (FM
t ),P) and fix z ∈ R. Then, for any T < 1,
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(Lt(z))t∈[0,T ] is (P,FM )-martingale, where

Lt(z) := q(v(t), Xt + σ−1
V β2(t)X

M , z) (5.11)

and (w, v) is the pair from Theorem 4.4 with ΣZ ≡ 1.

Proof. Note, under the hypothesis of the lemma, that for any t < 1, P(η ∈ dz|FM
t ) =

q(v(t), Xt + σ−1
V β2(t)X

M , z)dz by Proposition 5.1. Thus, for any test function,

E[f(η)|FM
t ] =

∫
R
f(z)q(v(t), Xt + σ−1

V β2(t)X
M , z)dz.

Since the left-hand side is a martingale, so is the right-hand side. This yields the martingale

property for almost all z due to the arbitrariness of f , and thus for all z due to the joint

continuity of the transition density.

Since L is a P-martingale, one can use it to change the probability measure using Theorem

5.1.

Theorem 5.2. Suppose Assumption 5.1 holds and consider the solution (X,XM ) of (5.7)

on (Ω,F , (FM
t ),P). For any T < 1, define Qz on FT by dQZ

dP = LT (z), where L(z) is given

by (5.11). Then, for any bounded and measurable F

EQz
[F ((Xt)t∈[0,T ], ((X

M
t )t∈[0,T ]))] = L−1

0 (z)E[LT (z)F ((Xt)t∈[0,T ], ((X
M
t )t∈[0,T ]))].

Moreover, under Qz

dXt = w(t)dW
(1)
t + {r1(t)Xt + r2(t)X

M
t }dt+ w2(t)

v(t)

(
z −Xt −

β2(t)

σV
XM

t

)
dt

dXM
t = σM (t)dW

(2)
t + σ2M (t)

z −XM
t

1− ΣM (t)
dt,

(5.12)

where (W (1),W (2)) is a two-dimensional (Qz,FM )-Brownian motion, and (w, v) is the pair

from Theorem 4.4 with ΣZ ≡ 1 .

Proof. First lets rewrite the dynamic of the process X given by equation (5.7) under the new
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generator given by (5.4) from Theorem 5.1 under Assumption 5.1:

dXt = w(t)dW
(1)
t + {r1(t)Xt + r2(t)X

M
t }dt+ w2(t)

v(t)

(
z −Xt − β2(t)

σV
XM

t

)
dt

since

∂L(z)(x1, x2)

∂x1
= −L(z)(x1, x2)

x1 +
B2(t)x2

σV
− z

v(t)

and a11 = w and, by the Independence of the original Brownian motions, a12 = 0 from the

original generator.

Before we proceed it is worth recalling that Ẑt =
St−µ
σV

, hence,

Ẑt =
St − µ

σV

=
β0(t) + σVXt + β2(t)X

M
t − µ

σV

= Xt +
β2(t)

σV
XM

t

Furthermore, since ΣI ≡ 1 implies that ΣZ ≡ 1 by Corollary 2.2 leading to the fact that

equation (4.26) becomes β2

σv
= v

1−ΣM
.

Now, as we did for the signal X, we can find the dynamic for XM given by Equation (5.7)

under the new generator given by (5.4) from Theorem 5.1 under Assumption 5.1.

Furthermore, also from the original generator we have a21 = 0 and a22 = σM . Likewise,

∂L(z)(x1, x2)

∂x2
= −L(z)(x1, x2)

β2(t)

σV

x1 +
β2(t)x2

σV
− z

v(t)

Therefore,

dXM
t = σM (t)dW

(2)
t + σ2M (t)

Ẑt −XM
t

1− ΣM (t)
dt

+
β2(t)

σV

σ2M (t)

v(t)

(
z −Xt −

β2(t)

σV
XM

t

)
dt

= σM (t)dW
(2)
t + σ2M (t)

Ẑt −XM
t

1− ΣM (t)
dt

+
σ2M (t)

1− ΣM (t)

(
z − Ẑt

)
dt
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As a consequence, (X,XM ) follow the dynamic given by (5.12) for some (W (1),W (2)) is

a two-dimensional (Qz,FM )-Brownian motion

Note that since (5.12) has a unique strong solution in [0, T ], the law of the solution

coincides with that of (X,XM ) in Pz, where (X,XM ) has the dynamics given by (5.10).

This leads to the following representation of the second moment of Ẑ − z under Pz.

Corollary 5.1. Suppose Assumption 5.1 holds and ΣI ≡ 1. Let (X,XM ) be as in (5.10) and

consider Ẑ = X + β2

σV
XM . Then,

Ez[(Ẑt − z)2] =
q(ΣS(t)σ

−2
V + v(t), 0, z)

q(1, 0, z)

( v(t)ΣS(t)σ
−2
V

v(t) + ΣS(t)σ
−2
V

+
v2(t)z2

(v(t) + ΣS(t)σ
−2
V )2

)
,

where v is the function of Theorem 4.4 with ΣZ ≡ 1.

Proof. In view of the absolute continuity relationship in Theorem 5.2 and the distribution of

Ẑ from Proposition 5.1,

Ez[(Ẑt − z)2] =
1

q(1, 0, z)

∫
R
q(v(t), x, z)q(ΣS(t)σ

−2
V , 0, x)(x− z)2dx.

However, using the explicit structure of the Gaussian density, we can rewrite the above as

Ez[(Ẑt − z)2] = −2v(t)
d

dr

1

q(1, 0, z)

1√
r

∫
R
q(r−1v(t), x, z)q(ΣS(t)σ

−2
V , 0, x)dx

= −2
v(t)

q(1, 0, z)

d

dr

1√
r
q(r−1v(t) + (ΣS(t)σ

−2
V , 0, z)

= 2
v(t)

q(1, 0, z)

(1
2
r−3/2q(r−1v(t) + ΣS(t)σ

−2
V , 0, z) + r−5/2qt(r

−1v(t) + ΣS(t)σ
−2
V , 0, z)v(t)

)
.

Note that the above is independent of r. Thus, we may take r = 1 and arrive at the claim

using the fact that
qt(t, x, y)

q(t, x, y)
= − 1

2t
+

(x− y)2

2t2
.

Although the above corollary computes the second moment when the insider has full

information about the value of η, it also yields the result for the general case. To see this,

first observe that in general

Pz =

∫
R
Qzq(1− c2, 0, z)dz,
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where Qz is the law of (B,XM , XI) given that XI
0 = z and ΣI ≡ 1. Then, the following

result is immediate in view of the independence of v + 1− ΣZ from ΣZ by Theorem 4.4.

Corollary 5.2. Suppose Assumption 5.1 holds. Let (X,XM ) be as in (5.10) and consider

Ẑ = X + β2

σV
XM . Then,

Ez[(Ẑt−Z1)
2] =

∫
R

q(1− c2, 0, z)q(ΣS(t)σ
−2
V + u(t), 0, z)

q(1, 0, z)

( u(t)ΣS(t)σ
−2
V

u(t) + ΣS(t)σ
−2
V

+
u2(t)z2

u(t) + ΣS(t)σ
−2
V

)2
dz,

(5.13)

where u = v + 1− ΣZ with v being the function from Theorem 4.4.

Corollary 5.3. Suppose Assumption 5.1 holds. Let (X,XM ) be as in (5.10) and consider

Ẑ = X + β2

σV
XM . Then, limt→1 ϕ(t,Xt, X

M
t , Zt) = 0, Pz-a.s.

Proof. First note that,

Ez((Zs − Ẑs)
2) = Ez[Z2

s + (Ẑ)2s − 2ZsẐs] = Ez[Z2
s + (Ẑ)2s − 2Z1Ẑs]

= Ez[Z2
s − Z2

1 + (Ẑs − Z1)
2] = Ez[(Ẑs − Z1)

2]− (1− ΣZ(s))

≤ Ez[(Ẑs − Z1)
2] (5.14)

Observe that ϕ(t, x, u, z) = (H∗(t,x,u)−σv−µ)2

2σV w(t) by equation (5.2). Therefore, ϕ(t,Xt, X
M
t , Zt) =

σV
(Ẑt−Zt)2

w(t) .

Now, note that in equation (5.13) for every t ∈ [0, 1), we calculate the second moment of

a random variable with kernel
q(1−c2,0,z)q(ΣS(t)σ

−2
V +u(t),0,z)

q(1,0,z) . Hence, as long as the second part

of the integral goes to zero as time goes to one, we have limt→0
Ez((Zs−Ẑs)2)

w(s) = 0, which is a

consequence of Proposition (4.3) that states limt→1
u(t)
v(t) = 0.

Since we have the expectation of non-negative stochastic process converging to zero, the

above implies limt→1 ϕ(t,Xt, X
M
t , Zt) = 0, Pz-a.s. by Fatou’s lemma.
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Chapter 6

Equilibrium

We are now ready to obtain an equilibrium for this economy. We have collected all the results

we need to show that there is a pair of an admissible pricing rule, as given by Definition 1.1,

and an admissible strategy, as given by Definition 1.2, that is an equilibrium under Definition

1.3.

First, let us recall that Theorem 3.1 guarantees that any trading strategy of the form given

by equation (1.9) is optimal if γ0 = γ1 ≡ 0 and limt→1 ϕ(t,Xt, X
M
t , Zt) = 0, Pz-a.s. where

ϕ(t, x, u, z) =
∫ x
H−1(t,σV z+µ,u)

H(t,y,u)−σV z−µ
w(t) dy. In Corollary 5.3 we prove that the above limit

is achieved for a trading strategy given by equation (4.4) where Z is given by Theorem 2.3

and the coefficients of (αi)
2
i=0 are given by(4.6) and a particular pricing rule.

The particular pricing rule we show provides the equilibrium with the mentioned trading

strategy, which must be a linear one as given in equation (1.8) of Definition 1.1. Furthermore,

in order to be a pair for the given trading strategy, it is also required that the coefficients

(ri)
2
i=0 of the process X given by (1.5) follow Assumption 3.2 and the coefficients of (βi)

2
i=0

are such that β0 ≡ µ, β1(t) = σV , as of Assumption 3.1, and β2 = σV
v+1−ΣZ
1−ΣM

from equation

(4.26).

Note that all the coefficients of the α’s, r1, r2 and of β2 depend on the pair of functions

(w, v). The existence and uniqueness of these functions are given by Theorem 4.4.

Therefore, we have used all the major theorems of this thesis to show that there is a pair

of an admissible pricing rule and an admissible trading strategy such that for this trading

strategy the pricing rule is rational and given the pricing rule the trading strategy is optimal.

We can now combine everything we just mentioned in one single theorem that will prove
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the equilibrium for the particular pair ((H∗, w∗, r∗), (θ∗, γ∗0 , γ
∗
1):

Theorem 6.1. Suppose that Assumptions 3.1 and 3.2 hold, w∗ and v∗ are the functions w

and v, respectively, from Theorem 4.4, γ0 ≡ γ1 ≡ 0, β0 ≡ µ, and β2 = σV
v∗+1−ΣZ
1−ΣM

. Then,

((H∗, w∗, r∗), θ∗) is an equilibrium, where

H∗(t, x, u) = µ+ σV x+ β2(t)u

dθ∗t = w∗(t)
Zt −Xt − β2(t)

σV
XM

t

v∗(t)
dt, θ∗0 = 0,

r∗0 ≡ 0, r∗1 =
dw∗

dt

2w
, and r∗2 =

β2
σV

((
1− β2

σV

) σ2M
1− ΣM

− β′2
β2

)
.

Moreover, the expected wealth of the insider in equilibrium is given by

σV

(
z2

2w(0)
+

∫ 1

0
w(t) dt− c2

2w(0)

)

Proof. Note that given θ∗, (H∗, w∗, r∗) is admissible as it satisfies all the condition of 1.1.

Moreover, it is a rational pricing rule by Proposition 5.1.

Next, given H∗, θ∗ is an admissible trading strategy for the insider as satisfying all the

conditions of Definition 1.2. First note that θ∗ satisfies equation (1.9). In the previous chapter

we have seen that X as defined in (5.6) has indeed an strong solution. To guarantee that no

doubling strategies are allowed just note that (H∗)−1(s, σV Zs + µ,XM
s )−Xs = Zs − Ẑs. by

equation (5.2).

Moreover, by equation (5.14), we have that Ez((Zs− Ẑs)
2) ≤ Ez[(Ẑs−Z1)

2]. Proposition

4.3 says that limt→1
u(t)
v(t) = 0 which in turn implies that Ez((Zs−Ẑs)2)

w(s) is bounded on [0, 1]. This

yields the desired admissibility since β2 is bounded in view of Theorem 4.4.

Corollary 5.3 says that limt→1 ϕ(t,Xt, X
M
t , Zt) = 0, Pz-a.s., hence establishing the opti-

mality of θ∗ via Theorem 3.1.

Theorem 3.1 gives a sufficient condition for the optimality of the insider provided an

additional integrability property is valid. In particular, we need to check that the integral in

equation (3.54) is finite. The strict positivity and continuity of w implies we only need to

check that

lim
t→1

∫ t

0

{
σV w(s) +

β22(s)σ
2
M (s)

σV w(s)
+
σV σ

2
Z(s)

w(s)
−

2σ2M (s)β2(s)λ1(s)

w(s)

}
ds <∞.
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Indeed, letting βV := β2

σV
, we have

f̄(t) :=
σV
2

∫ t

0

w2(s) + β2V (s)σ
2
M (s) + σ2Z(s)− 2σ2M (s)βV (s)λ1(s)

w(s)
ds

=
σV
2

∫ t

0

2w2(s) + 2β2V (s)σ
2
M (s) + v′(s)− 2σ2M (s)β2(s)λ1(s)

w(s)
ds

=
σV
2

∫ t

0
2w(s) +

v′(s) + 2βV (s)σ
2
M (s)(βV (s)− λ1(s))

w(s)
ds.

However,

βV (t)− λ1(t) =
v(t) + 1− ΣZ(t)

1− ΣM (t)
− 1− ΣZ(t)

1− ΣM (t)
=

v(t)

1− ΣM (t)
.

Consequently,

f̄(t) =
σV
2

∫ t

0
2w(s) +

v′(s)

w(s)
+

2βV (s)σ
2
M (s)v(s)

w(s)(1− ΣM (t))
ds

=
σV
2

∫ t

0
2w(s) +

v′(s)

w(s)
− w′(s)v(s)

w2(s)
ds

= σV

∫ t

0
w(s)ds+

σV
2

(
v(t)

w(t)
− v(0)

w(0)

)

= σV

∫ t

0
w(s)ds+

σV
2

v(t)

w(t)
− σV

2

v(0)

w(0)
.

The above limit is finite due to Proposition 4.3 that shows that limt→1
v(t)+1−ΣZ(t)

w(t) =

0.

The next corollaries collect some properties of the equilibrium above. The first has two

relevant statements. The first statement is that the equilibrium demand is a martingale in

the filtration of the market maker, as is the case in the literature since Back (1992), which

is relevant to the model, as it shows that the market maker cannot predict any movement of

the demand. This is a direct consequence of the rational pricing rule, as we have shown in

Corollary 4.1.

The second statement of the first corollary says that in equilibrium the price process con-

verges almost surely to the final value of the asset in the insider’s filtration. This has always

been the case since the very first continuous-time version of Kyle-Back models. However,
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there is an important fact about the interpretation of it. In the previous models before this

thesis, the only source of information would come from the insider - or insiders as in Holden,

Subrahmanyam (1992), Foster, Viswanathan (1996), and Back et al. (2000) - hence it was

clear that the insider was the one driving the price to V at the end of the trading period.

However, in our model, if the insider did not trade, the final price of the asset would

also go to V at t = 1 because the market maker’s signal would drive the price by its own.

Therefore, we can no longer say that the insider drives the price, but rather that the price is

driven - both by the insider and the market maker’s public signal - to V at the end of the

trading period.

Corollary 6.1. Let ((H∗, w∗, r∗), θ∗) be the equilibrium in Theorem 6.1. Then, the following

statements are valid.

1. Y ∗ := B + θ∗ is an (P,FM )-Brownian motion.

2. limt→1H
∗(t,Xt, X

M
t ) = V, Pz-a.s., where X is the unique strong solution of (1.5) with

Y replaced by Y ∗.

Proof. The first statement is a consequence of Corollary 4.1 under the optimality condition of

the Theorem above. The second is a consequence of the fact that limt→1 ϕ(t,Xt, X
M
t , Zt) =

0, Pz-a.s..

The second statement is about the ex-ante expected wealth of the insider. We have added

a proof of the corollary just to remind the reader that P is the unconditional probability

measure in our filtered probability space.

Both insider’s expected wealth in equilibrium and her ex-ante expected wealth have a

closed form in the literature, as is possible to see in Theorem 6.1 of Çetin, Danilova (2018)

and in the discussion at the end of Chapter 6 of the cited book. The ex-ante expected wealth

is also known as the value of information. Since the insider is risk neutral, that is the value

that an agent would be willing to pay to become an insider, hence it is the price the agent is

willing to pay to observe Z.

It is interesting to note that the value of the information does not depend on the insider’s

private signal, as is the case in the literature. In our case, it is even more remarkable to

realize that the value of information depends only on the weighted value of the demand for

the market maker when applying the rational pricing rule in equilibrium. Since we only
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know that there exists a function w such as presented in equilibrium, but we do not have

an analytical solution to it, we estimate this value in the numerical analysis developed in

Chapter 7.

Corollary 6.2. Under the equilibrium conditions of Theorem 6.1, the ex-ante expected wealth

of the insider, i.e. the expected wealth of the insider under P, is

E(W1) = σV

(∫ 1

0
w(t)

)
. (6.1)

Proof. Recall that from Theorem 2.3 that Z0 ∼ N(0, c2). Hence, combining it with the

definition of Pz and applying the tower property, we get that

E(W1) = E(EZ0(W1) = E(E(W1|Z0))

= E
(
σV

(
Z2
0

2w(0)
+

∫ 1

0
w(t) dt− c2

2w(0)

))
= σV

(∫ 1

0
w(t)

)
.
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Chapter 7

Numerical Analysis

In Chapter 6, we have shown that a specific pair of an admissible trading strategy and an

admissible pricing rule is an equilibrium for our model. However, both the strategy and the

pricing rule depend on a pair of functions (w, v) for which we do not have a closed form.

Therefore, one would like to know how those functions would look like for different values of

public and private signals.

Moreover, it is not only curiosity that drives one to want to know the form of both w

and v. They are also important with respect to the interpretability of the model we have at

hand.

Let us begin recalling that in Corollary 6.2 states that the ex-ante value of information -

i.e., the maximum amount a risk-neutral agent would be willing to pay to become an insider

in our model - would be given by

σV

∫ 1

0
w(t)dt

according to equation (6.1) which depends on knowing the value of the function w. Therefore,

if we would like to know the expected advantage that the insider has by receiving the signal

XI . Furthermore, we also would like to understand whether the speed with which the insider

receives XI would affect their expected wealth.

The second matter we would like to address is the limiting behaviour of β2 when time

goes to one. From equation (4.64), we see that in equilibrium the limit of β2 must be either

zero or one. This is particularly important to understand the liquidity of the model. Recall

that equation (4.7) tells us that the price process is given by
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dSt = σV w(t)dN
(1)
t + β2(t)σM (t)dN

(2)
t ,

From Proposition 4.2 we already know that limt→1w(t) = 0, therefore if we want to know

what the behaviour of the price is towards the end of the trading period, we must understand

what happens with β2. If it goes to zero, then the analysis is rather complicated. The speed in

which w and β2 could change a lot from what one could expect. However, if limt→1 β2(t) = 0

we would have a price that was still going to V because it would be driven by the public

signal, but, on the other hand, the liquidity of the market would increase to a perfect liquid

one.

As a consequence, we would expect the two elements to behave in the same way as we

have seen in Foucault et al. (2016). There would still be some room for profit, as there would

be an opening in (V − St), but very little feedback effect, as the marginal trading of the

insider would affect the price very little. As a consequence, we would have the insider trading

very aggressively towards the end of the trading period as predicted by the mentioned paper.

Again, it is interesting to point out that unlike in Foucault et al. (2016) the insider does

not trade aggressively because she has short-lived information, but because the life of the

information she possesses is ending.

Therefore, we are very interested in knowing what the behaviour is like for β2 towards

the end of the trading period.

If we go back to Chapter 4, we will see that there are two things we would like to know

to have the solution for the system in (4.29). The first is the functional form of v and the

second would be the initial condition w(0).

As a consequence, the aim of this section would be to analyse the behaviour of (w, v)

and therefore of the ex-ante value of information and β2 for different speeds of XI and XM .

However, from Theorem 4.4, we know that ΣZ is independent of v+1−ΣZ therefore, we do

not need to conjugate different public and private signals to understand the behaviour of the

aforementioned parameters.

The fact that the parameters w are β2 are not influenced if the signal of the insider is

static or dynamic allows us to compare v + 1 − ΣZ with the static case. Recall from Back

(1992) that when the signal is static, then v + 1− ΣZ = v = 1− t. We should not take that

benchmark as an iron law once as long as the insider strategy drives the price process to V
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that we have optimally1. We refer to Çetin (2018) for a specific study of the static case and

to Çetin, Danilova (2018) for a more wholesome analysis of the dynamic case. The rule of

v = 1− t is used as a reference for the static case, as we have a constant trading rate for the

insider, making it the most smooth trading strategy among inconspicuous ones.

Therefore, the aim of this chapter becomes to find the initial value of w and to solve the

ODE system (4.29) for different values of 1− ΣM . In particular, we set 1− ΣM to be equal

to t(1− ln(t)), 1−
√
t, 1− t ,1− t2, 1− t6, and 1− t12.

The most complicated step in this task is to find w(0). For each value of 1 − ΣM , we

must implement the fixed-point algorithm we developed in Chapter 4. The details on how

we implement the algorithm will be left to sections 7.1 and 7.2, however the basic ideas are

the same in the cases developed in both sections.

The first step would be to find a suitable starting value for r0 our updating scheme. In

Chapter 4, as we were concerned with the computational efficiency of the algorithm, we have

set r0 to be given by Γ
2 where Γ is given by the equation (4.40). However, now that we are

concerned with efficiency, we suggest a different method to begin the algorithm in sections

7.1 and 7.2.

Once we have an initial value w0(0), we can describe the update scheme for w(0). Suppose

that you have wn(0) as the initial condition of w for the n-th step of the algorithm. We use

an ODE solver package to find the solutions of (w, u), where u is defined by equation (4.30)

as v+1−ΣZ , as given by (4.29) for the initial value wn(0). Now we can update the value of

w(0) as described by equation (4.39) as follows:

rn = wn+1(0) =

(∫ 1

0
w3/2
n (t)dt

)−2

. (7.1)

As described in Lemma 4.7, there is a suitable converging subsequence for (ri)
∞
i=0 such that

from Theorem 4.3 we know it converges to w(0). Once we know the value (ri)
∞
i=0 converges

to, we can use the ODE solver again to find (w, u) as the proper solutions to (4.30) and

perform all the mentioned analysis.

As we can see in figure 7.1, all of the functions we considered for 1−ΣM start at one for

t = 0 and go to zero as time approaches one. The difference between them is the speed at

1It is relevant to mentioned that there is also not uniqueness for the pricing rule as well. Considering the
model presented in Chapter 6 of Çetin, Danilova (2018), which is a generalisation of Back (1992), any pricing
rule that satisfies equations (6.24) and (6.25) is a rational pricing rule. However, it is important to note that
these functions are generally affected by demand that is an output of a given trading strategy.
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Figure 7.1: 1− ΣM

which they go to zero. Compared with the linear case, both convex functions t(1 − ln(t)),

1 −
√
t start to go much faster to zero than 1 − t and start to decelerate when approaching

one. This means that a lot of information is released at the beginning of the trading period,

but the speed with which this information is released diminishes as time evolves.

On the other hand, 1−ΣM equals 1−t2, 1−t6, and 1−t12 have the opposite behaviour: they

start delivering very little information and the closer they get to the end of the trading period,

they give a lot of information. As we shall discuss later, we believe that 1 − ΣM = 1 − t12

would work almost as a benchmark for the case where the insider trades without a public

signal for most of the trading period.

In a modelling point of view the convex cases are not as interesting as the concave ones.

By delivering a lot of information through the public signal at the beginning of the trading

period, it only reduces the uncertainty about the final value of the asset V very early in the

game. As an exercise, suppose what would happen if all the information was delivered at the
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very beginning of the trading period, that is, ΣM (0) = 1. In this case, both the insider and

the market maker would agree on the valuation of the risky asset. Furthermore, at t = 1, it

would be made public that their valuation is indeed the price of the asset at the end of the

trading period. It is also interesting to point out that this limiting case is exactly the one in

which there is no insider. If ΣM (0) = 1 there is no uncertainty for the insider, but there is also

no uncertainty for the market maker throughout the trading period. Therefore, the insider

has no informational advantage with respect to the market maker from t = 0 onwards, and

hence no way to profit from this trading. As a consequence, we know that in this limiting

case, the ex-ante profit of the insider is zero as no one would be interested in paying for

information that brings no advantage for those who possess it. Obviously, that is a limiting

case. It could be the case that the insider could explore their informational advantage in the

beginning of the trading period so fiercely that her expected outcome profit-wise would be

the same. As will be made clear by the end of this chapter, that is not the case and the

insider makes less profit as the information is released very quickly close to t = 0.

On the other hand, as more information is delivered later in time, the greater the in-

sider’s informational advantage. Our numerical studies also show that the later in time the

information is released, the higher the insider’s profit.

We can now proceed to the specifics of our numerics. The convex functions impose some

additional challenges when solving the ODEs. Therefore, we have developed a specific code

for dealing with them, which is explained in Section 7.2. In that section, we also discuss the

conclusions regarding both the estimates for (6.1) and the behaviour of β2 when 1 − ΣM is

concave. Obviously, we also want to understand how v + 1 − ΣZ behaves for the different

concave functional forms of 1−ΣM as it is proportional to the uncertainty the market maker

has about the value of V . In Section 7.2 we also address that.

In the following section, Section 7.1, we explain the details of the algorithm we developed

for convex functions. As we do for the concave functions in Section 7.2, we analyse how

the behaviour of 1 − ΣM affects the values of β2, the value of information, and v + 1 − ΣZ

for the convex functions in Section 7.1. In both concave and convex cases, simulations were

performed on the software R, R Core Team (2021).

We collect all the takeaways from our numerical analysis so we can finally say in Section

7.3 how the speed at which 1−ΣM goes from one to zero affects, if it does, the shape of β2,

particularly the value of limt→1 β2(t), the behaviour of the function v+1−ΣZ , and the value

115



of the integral (6.1) that is the ex-ante value of information.

We once again mention the independence between ΣZ and u = v+1−ΣZ given by Theorem

4.4 to explain that the numerical analysis developed in Section 7.4 is more an illustration of

how the function v would behave for the approximation of u we have performed. Since ΣZ

and u are independent, we obtain the estimated value of V ar(Zt|FM ) simply by taking the

value of 1− ΣZ(t) from the value of u(t) we have found for all the values of t in our grid.

7.1 Convex case

In this section, we are going to describe the algorithm we develop to study the convex cases

we have selected. As is also the case for the concave functions of 1− ΣM , the most difficult

task we have is to find the initial value of w. Therefore, as discussed in the previous section,

we must implement the algorithm we developed in Chapter 4.

Let us begin by describing how we performed any given step of the algorithm. The method

used to solve the ODEs was ode45 from the package deSolve. We have made a time grid to

input in the function of size 20 from 0.01 to 0.99 with lengths of the same size. Using this

grid as input to the package with initial conditions u(0) = 1 and some wn(0), the package

returned us approximate values for v and w. We do not use an index for neither the functions

u nor w because we do not keep track of these functions before we find the limiting value of

wn(0) to which the algorithm converges.

Therefore, the next step of the algorithm would be to find a new value of wn+1(0) according

to the update scheme given by equation (7.1). Due to the fact that we have estimated the

function w and the time lengths are also the same size, we could calculate the above equation

in an ordinary way. With the values of w applied to the time grid, we could calculate w
3/2
n

applying the correct exponential. After that, we took the average value of w
3/2
n (t) for every

t in the time grid. By doing that, we would be therefore calculating
∫ 1
0 w

3/2
n (t)dt. Finally,

once we have the integral value, all that was left to do to find the updated value wn+1(0) was

apply the exponential −2.

It is important to note that any package developed to solve the ODEs system does not

aim to produce an integral as described before, so we may have the error propagation from

the estimate solutions to the integral, particularly because we are not only integrating, but

also applying transformations before and after the integration.
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As we mentioned in the previous section, while developing the fixed-point algorithm,

we did not need to worry about computational efficiency, as all we needed for Lemma 4.7

was a convergent subsequence. Considering that and the fact that while producing the

approximation for the functions u and w with the computational package, we may have a

propagation of errors when finding the integral in equation (7.1), we have made an effort to

start the algorithm in a suitable candidate for the value of w(0). Otherwise, starting too far

away from the value the algorithm should converge to, we could have it diverging due to the

aforementioned possible propagation of error.

In addition to that, it is interesting to note that 1 is a lower bound for the sequence rn

for all t as given by equation (4.45) in the proof of the lemma 4.4. While performing the

algorithm we have notice that if the sequence rn would increase by a certain threshold that

lower bound would be reached. Furthermore, often by applying 1 to a given rn we would get

below 1 again by rn+2. Therefore, I think it is safe to say that the propagation of error could

be big enough to prevent our algorithm to converge if we started r0 very far away from the

limit value w(0).

On that account, we have decided to add an additional routine to our code. This routine

sets the initial value r0 to perform the algorithm mentioned above.

We developed a grid starting from the lower bound 1 up to 3 by steps of size 0.1. For each

candidate value for r0 we recorded if r1 would be smaller or greater than r0. We then select

the smaller value of r0 so that it generates an updated value r1 smaller than r0. Taking into

account the function 1− ΣM = t(1− ln(t)), such a value was 2.5. I.e., all r0’s from 1 to 2.4

generated values of r1 greater than their respective r0’s. On the other hand, values from 2.5

and above would generate values smaller than themselves. Since we are interested in a value

that is the result of an converging subsequence, we know that for 1− ΣM = t(1− ln(t)) the

converging value w(0) should be in the interval from 2.5 to 2.6.

For that reason, the same procedure was repeated for the values between 2.5 and 2.6 with

steps of size 0.01 for the case 1 − ΣM = t(1 − ln(t)). The value we found was 2.57. The

approach was repeated for the following decimal term such that we have found an initial

value to start the proper algorithm of 2.570.

Accordingly, we could now start the algorithm described in Chapter 4 with an initial value

r0 = 2.570 for 1 − ΣM = t(1 − ln(t)). However, to manage the instability of the algorithm,

we decided to work with a moving average of size seven. Hence, the input to calculate rn
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Figure 7.2: Evolution of wn for 1− ΣM = t(1− ln(t))

for any given n was the average of the previous seven results. All the values for (rn)
6
n=0

in the actual code were just the initial condition developed in the previous term, that is,

ri = 2.570 ∀ i = 0, . . . , 6.

From figure 7.2 we can see that our attempts to avoid volatility paid off as we managed

to get convergence for the case when 1 − ΣM = t(1 − ln(t)). Note that, as expected due to

our initial routine, we have found a value quite close to the initial condition we started with:

2.570948.

Now that we have found our estimate for the initial value w(0), we can now apply the

function ode45 from the package deSolve to find the approximation for the functions u =

v + 1 − ΣZ and w. In figure 7.3 we can see the estimated function w for w(0) = 2.570948.

Such function led to an integral
∫ 1
0 w(t)dt of 0.57. The estimated function v + 1 − ΣZ is

represented in figure 7.4.

In figure 7.4 it is possible to see that the market maker takes a lot of information from

the public signal as a lot of information is delivered in the beginning of the trade period.

Throughout the entire trading period the uncertainty of the market maker is much smaller

than she would have without a public signal. However, it is interesting to note that she also
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Figure 7.3: w for 1− ΣM = t(1− ln(t))

uses quite some information coming from the trading as the estimated curve is substantially

smaller than she would have without any information coming from the demand.

This behaviour is in line with the estimate function β2. As will be the case in all numerics,

we have a β2 beginning at one. That is because in order to perform the numerical analysis

we have set σV to be equal to one. As a consequence, since u(0) = v(0) + 1−ΣZ(0) = 1 and

1− ΣM (0) = 1 we have from (4.26) that β2(0) = 1.

In this particular case, as one can see in Figure 7.5, we have β2 with relatively high

values showing that during most of the trading period the market maker heavily relies on the

information coming from the public signal to build their valuation about the risky asset.

We can now move forward to the case when 1 − ΣM = 1 −
√
t. Let us begin with our

search method for the candidate r0. The same package in R and the same time grid used for

the previous case was used for this case. By performing an analogous code for the previous

case, we have found a suitable value for r0 of of 2.248. The main algorithm has started with

a little bit less volatility than in the previous case, as it is possible to see in Figure 7.6, and

with 1000 iterations we had already found convergence for w(0) = 2.248458. Again, our

efforts in finding a candidate that would produce a stable candidate for the algorithm have
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Figure 7.4: v + 1− ΣZ for 1− ΣM = t(1− ln(t))

Figure 7.5: β2 for 1− ΣM = t(1− ln(t))
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Figure 7.6: Evolution of wn for 1− ΣM = 1−
√
t

been successful, as r0 is very close to w(0).

The estimated value of the integral
∫ 1
0 w(t)dt was 0.6650335. This shows a trend that

will be confirmed with the other cases: the slower the speed of ΣM in the beginning of the

trading period, the higher is the value of
∫ 1
0 w(t)dt and the smaller is the value of w(0).

With the information provided by the other numerics in this chapter, the implications of this

consideration will be addressed in Section 7.3.

Again, once we have the value of w(0) we can produce the approximations of (u,w) using

ode45 now to evaluate the behaviour of u, w and β2.

The behaviour of β2 is quite similar as in the previous case as we can see by comparing

the figure 7.5 with the figure 7.7.The main difference is that the minimum value of β2 is

a little longer in time, occurring about t = 0.7. From figure 7.1 it is possible to see that

the square root case has a delivery quite slower than the previous case. We understand

that the behaviour for the case when 1 − ΣM = t(1 − ln(t)) has a minimum early because

the uncertainty for the market maker becomes small very fast so she does not use a lot of

incremental information.

On the other hand, figure 7.8 shows that the uncertainty for the market maker is quite
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Figure 7.7: β2 for 1− ΣM = 1−
√
t

similar in both convex cases. Again, the value of v+1−ΣZ is quite small from the beginning,

but the gain from having access to the information coming from trading with the insider is

far from negligible, as it is possible to see from the difference between the red dotted line and

the black line in Figure 7.8.

The estimate function w when 1−ΣM = 1−
√
t is also quite similar to the previous case

as it is possible to see in figure 7.9.

We can proceed to the next section, where we analyse the remaining cases for 1 − ΣM ,

1− t,1− t2, 1− t6, and 1− t12.

7.2 Concave Cases

We can now start describing the numerics we developed for the linear and concave cases. The

main challenge of the ODEs solver package is the fact that we have two stiff equations, i.e.

they have fast-varying parameters. As we can see in the images 7.3 and 7.9, in the convex

cases, the estimated w decreases very fast in the beginning of the trading period, but towards

the end of the period, it becomes more flat. Therefore, we had to use a specific method to

deal with the convex cases, as we explained in Section 7.1.
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Figure 7.8: v + 1− ΣZ for 1− ΣM = 1−
√
t

Figure 7.9: w for 1− ΣM = 1−
√
t
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However, for the concave cases, as it is possible to see from figures 7.10, 7.11, 7.19, and

7.22, the behaviour of w is much more stable than in the previous cases, particularly in the

beginning of the trading period.

To develop our numerical analysis for these cases we have also used the software R, but

now we have used the function ode78 of the package pracma. We have opted for this package

because it produces more accurate results than the DeSolve. Hence, we took advantage of

the stability of the concave functions to improve the accuracy. Recall that any estimation

errors we have on the estimates of the solutions of the ODEs are propagated when calculating

the integral of (7.1), hence it is important to seek accuracy whenever it is possible.

To further increase the precision of the estimates, we use the function ode78 to estimate

v+1−ΣZ and ln(w) instead of w. It is interesting to mention that, unlike DeSolve, pracma

has the time grid as an output of the function. In particular, for the linear case, we also had

a time vector of size 20.

From the estimated function of w - i.e. the exponential of the estimated curve for ln(w) -

in figures 7.10 and 7.11 it is possible to see that the R functions produce trapeziums below the

curve of the functions. Indeed, the trapezium shape comes from the fact that the estimated

values of w are connected to each other in a straight line.

The trapezoidal shape will be key for us to estimate rn for all the steps. At every step

of the algorithm, we are given two functions v + 1 − ΣZ and ln(w). Now, the first step to

find rn is applying the transformation x 7→ 3
2 exp(x) to the function ln(w), which gives us an

estimate for w3/2(t) to every t belonging to the time grid the package provided as an output.

Let (ti)
k
i=1 be the times provided by the time grid. Note that we have k − 1 trapeziums

with sides w3/2(ti) and w3/2(ti+1) and height ti+1 − ti. Therefore, we can easily calculate

rn by finding the area of each trapezium, then summing all the areas of the trapeziums and

finally applying the exponential −2 as required by equation (7.1).

Since the output produced by the function is now ln(w) we adapted our search mechanism

for the initial value of w. Now we do the same procedure with a grid starting at zero up to

one with steps of size 0.1 likewise the searching algorithm for the concave case.

The smallest value for ln(w) that generated an updated value smaller than itself for

1−ΣM = 1− t was now 3. Due to the greater variability of the logarithm, we extended our

search procedure up to 10−4. Therefore, we initialised our main algorithm with an initial

condition ln(w0(0)) = 0.3261, or equivalently, w0(0) = 1.385554.
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Figure 7.10: w for 1− ΣM = 1− t

Figure 7.11: w for 1− ΣM = 1− t2

125



Figure 7.12: Evolution of wn for 1− ΣM = 1− t

Our efforts to increase the accuracy have shown their role while performing the algorithm

as well. We managed to reduce the moving average from the previous algorithm, for concave

functions, from seven to three. Furthermore, note from figure 7.12 that even in the linear

scale for w the convergence was much faster.

Even though we have performed 300 iterations of the algorithm, it is possible to see that

by about 100 iterations we already had almost reached convergence. Again, the value found

by the main algorithm for w(0), 1.385647 was quite close to the initial condition. Indeed,

one by now could say that the proper algorithm to find w(0) is acting more as an inspection

criterion for the search algorithm.

Again, once we have reached an initial condition for w, we can use package pracma once

more to produce the approximation functions w and u. We do that by applying function

ode78 on R. In each iteration of the algorithm, we have calculated
∫ 1
0 w

3/2(t)dt for a different

function w; hence now we can use the same procedure we used to calculate
∫ 1
0 w

3/2(t)dt to

find
∫ 1
0 w(t)dt, but now instead of applying the transformation x 7→ 3

2 exp(x), we apply the

transformation x 7→ exp(x).

From figure 7.10 we can see that w for the linear case decays much slower than the ones
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Figure 7.13: v + 1− ΣZ for 1− ΣM = 1− t

represented in figures 7.3 and 7.9, almost in a linear fashion. It is interesting to note that

concave values for the public information produce concave functions w and convex functions

of 1−ΣM produce convex functions of w. The linear case is still convex, but it is very close

to linear.

It is not possible to compare the estimate of the integral
∫ 1
0 w(t)dt with the previous

ones as it is a different method, but we shall compare the estimate of 0.5663463 that was

calculated for the linear case with the convex cases.

The uncertainty of the market maker with respect to η is quite interesting in the linear

case. This is so because both the benchmark when there is no public signal and the case

when the market maker only receives the public signal coincide. One can see from figure 7.14

that the gap between both benchmarks opens, reaching the maximum around 0.4, which is a

little bit before the minimum for β2 in this case. As we will confirm later, indeed the more

delayed the information is the further in time is the minimum of β2.

Once we are done with the numerics for the linear case, we can proceed with our numerical

analysis for the case when 1− ΣM = 1− t2.

While performing the search algorithm for 1−t2 we have reached an interesting case. The
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Figure 7.14: β2 for 1− ΣM = 1− t

value found for r0 was 1.061837, which is very close to the lower bound found by equation

(4.45). Indeed, after performing the main algorithm with the same moving average of three we

got an estimate of 1.063186 as we can see in figure 7.15. That would allow us to conjecture

that for convex cases in which the delivery of information would happen quite late in the

trading period we would have w(0) going to one. Once again the searching mechanism for

the initial value of the algorithm allowed us to start in a very close neighbourhood of the

final solution.

However, the most interesting thing about the case when 1−ΣM = 1− t2 was to consider

the estimate of v+1−ΣZ . Note in figure 7.16 that before time t = 0.8 we have the estimate

for v + 1− ΣZ crossing the curve of 1− t.

This behaviour could mean that the public information comes at a certain speed such

that the uncertainty for the market maker is greater than it would be if there were no public

signal. We need to be cautious about the previous assertive as it could be the case that our

estimate for v + 1 − ΣZ is not accurate enough to say that for sure. However, we cannot

dismiss this hypothesis now. As the market maker receives two different signals: the direct

one coming from the public signal and an indirect one coming from their interaction with

128



Figure 7.15: Evolution of wn for 1− ΣM = 1− t2

Figure 7.16: v + 1− ΣZ for 1− ΣM = 1− t2
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Figure 7.17: β2 for 1− ΣM = 1− t2

the insider by trading. The market maker knows she is learning about the price of V , but

she does not know what she knows; hence it could be the case that she gets more puzzled by

the different sources of information so her uncertainty increases by receiving a public signal.

That is a matter that requires further investigation in future research in the theme of this

thesis.

In figure 7.17 is possible to see that at the same time β2 starts to increase and goes quite

steeply to one. Going back to figure 7.16 we can see that after the crossing with 1 − t the

variance attaches to the curve representing the public signal. Therefore, we can conclude

that the market maker in the ending of the trading period relies most heavily on the public

signal rather than trying to extract information from the demand.

The aforementioned conclusion is quite in line with the motivation of high-frequency

trading. When approaching the end of the trading period, the market maker gives much

more weight to the public signal while w is going to zero, hence making the feedback effect

for the insider diminish. Therefore, the insider is able to trade very aggressively without

affecting the price process, so she does that in order to maximise her profit.

The numerical value found for
∫ 1
0 w(t)dt was 0.6465513. Again, while dealing with the
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Figure 7.18: Evolution of wn for 1− ΣM = 1− t6

release of the information, we increased the ex-ante expected profit. We can also see from

figure 7.11 that the function w became clearly concave.

As the reader may now expect, while performing the searching algorithm for the initial

value r0 for the public signal such that 1− ΣM = 1− t6, we could not find a value that was

greater than one that would produce an updated value also greater than one.

Therefore, the logical thing to do was to use 1 as the initial value r0 and perform the

algorithm to check what would be the limit of (rn)
∞
i=1. The results are shown in figure 7.18.

As we can see from the figure, the algorithm has also found equilibrium below the lower

bound of 1 given by equation (4.45). It is very interesting to note that the value found of

0.856 is substantially smaller than the lower bound. As a consequence, we have used 1 as the

initial value of w(0).

In figure 7.19 we can see the behaviour of the function w. Even though it has started in

the lowest of all values studied in this chapter, it has stayed almost flat during the first half

of the trading period, hence also very clearly concave.

The behaviour of v+1−ΣZ for the case when 1−ΣM = 1− t6 also tells us an interesting

story. Like was the case when 1 − ΣM = 1 − t2, the uncertainty of the insider follows very
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Figure 7.19: w for 1− ΣM = 1− t6

Figure 7.20: v + 1− ΣZ for 1− ΣM = 1− t6
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Figure 7.21: β2 for 1− ΣM = 1− t6

closely the constant rate line, but, by the end of the trading period, we have it attaching to

the public signal line. Again, that movement of relying very closely on the public signal is

represented by a sharp rise of the parameter β2.

It is also very interesting to note that the presence of an uninformative signal actually

increased the uncertainty of the market maker. Unlike the square case in which the function

v + 1−ΣZ only crosses the 1− t curve at the end of the trading period to attach itself with

the public signal, in this case, when 1−ΣM = 1− t6, we have the curve v+1−ΣZ above the

1− t line throughout the whole trading period. One could say that the role of an informative

signal seems to be working more like noise.

There was a substantial increase in the value of the ex-ante profit of the insider in this

case, going to 0.7204667.

If 1−ΣM = 1− t6 was already quite elucidating of the limit behaviour when there is a big

flow of information released by the end of the trading period. From figure 7.1, it is possible

to observe that the line 1 − ΣM = 1 − t12 is almost flat until at least 60% of the trading

period.

The numerics for the case when 1 − ΣM = 1 − t12 were much simpler than the previous
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Figure 7.22: w for 1− ΣM = 1− t12

cases. That is because if both the searching algorithm when started at 1 would lead to an r0

below one and the proper algorithm for (rn)
∞
i=1 would lead to an initial value below one as well

for 1−ΣM = 1− t6, that would be aggravated in the case when 1−ΣM = 1− t12. Therefore,

all the numerics the reader sees for 1− ΣM = 1− t12 were done considering w(0) = 1.

By comparing figure 7.22 with the other estimated values functions w it becomes clear

that in the limit case when all public information is delayed at the latest possible moment,

w would be a flat line over the value one. As a consequence,
∫ 1
0 w(t)dt would be one. Indeed,

the estimated value of the integral for 1− ΣM = 1− t12 was 0.9787778.

Furthermore, the value of beta2 decreased as the insider gathered information about the

value of the asset through the demand process and increased as the public information became

more relevant.

The behaviour of the uncertainty is also very interesting. As during most of the period

there is almost no information coming from the public signal, v+1−ΣZ follows the benchmark

of the 1 − t line. Unlike the case in which 1 − ΣM = 1 − t6, when the existence of an

uninformative signal would increase the level of uncertainty, there is so little information

during most of the trading period that the market maker’s uncertainty just follows the 1− t
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Figure 7.23: β2 for 1− ΣM = 1− t12

Figure 7.24: v + 1− ΣZ for 1− ΣM = 1− t12
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line, which is smaller than the uncertainty of the case when 1 − ΣM = 1 − t6. One could

wonder whether the market maker does not take into account the value of the public signal,

but not only do we know that limt→1w(t) = 0, but also we can see in figure 7.22 that our

numerics capture that feature of the model.

Analysing back figures 7.3 and 7.9 it becomes clear that the greater the speed of the flow

of information in the beginning of the trading period, the faster we have w going to zero.

As a consequence, we shall postulate that
∫ 1
0 w(t)dt should be zero if all the information was

made public at the beginning of the trading period. Such conjecture is very intuitive. In

the limit, if all the information was made public at t = 0 the insider would have no relevant

information to exploit; hence, her profit should be zero.

7.3 Conclusions of the Numerical Analysis

In this section we discuss and summarize our main findings from the previous two sections

of this chapter. In those sections we were concerned with describing the algorithm we imple-

mented and how all of the outputs for every functional form for 1 − ΣM were. Now we are

interested in describing the general trends for every parameter we were interested in studying

across the different functional forms for 1− ΣM .

Let us begin with the functional form of w. In figures 7.3, 7.9, 7.10 we have w being

convex functions. The faster the signal XM in the beginning of the trading period, the faster

the function w decreases in that period. Figures 7.11, 7.19, and 7.22 show the same pattern.

In those functions the speed at which w decreases is so slow that those functions became

concave. Another interesting aspect of w is its initial value w(0) for the different shapes of

1− ΣM . The slower XM in the beginning of the trading period, the higher the initial value

w(0). That is interesting because just by the form of the function w one would not be able to

say if the ex-ante profit of the insider increases or decreases as 1−ΣM goes to zero faster. If

on one hand the faster is the signal, the faster w goes to zero in the beginning of the trading

period, on the other hand, the smaller is the initial value w(0). Fortunately, we did estimate

the value of
∫ 1
0 w(t)dt.

As we mentioned previously, we know that if ΣM (0) = 1 the insider would not have

any ex-ante profit as the information would also be public, hence she would not have any

informational advantage. However, it was not clear considering only the analytical results of
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this thesis if the insider could profit greatly in the beginning of the trading period while the

market maker is receiving a lot of information, but has not acquired a substantial amount

of it. That case would be analogous to the dynamic case when Back, Pedersen (1998) and

later Danilova (2010) in which the ex-ante value of information does not depend on how

the information is revealed. Nevertheless, our numerical analysis shows that the slower the

information is made public the greater the insider’s expected profit. Indeed, since the later the

information is released the smaller is the initial value w(0) such that we are able to reach the

lower bound given by equation (4.45) we can say that the maximum of the integral
∫ 1
0 w(t)dt

is one. Therefore, the maximum the insider’s ex-ante expected profit is σV . Conversely, our

numerics suggest that the minimum of such expectation is actually zero.

Perhaps the most unclear conclusion we can take is that depending on how fast ΣM goes

to one, the uncertainty about V could be greater than what it would be if there were no

public signal. In the original paper Back (1992) considers a strategy for the insider such

that η|FM would variance of 1 − t. Indeed, the literature has shown that there are several

optimal strategies such that v, the variance of E(η|FM ), goes from v(0) = 1 to v(1) = 0.

Nevertheless, v(t) = 1− t is the one with a constant rate that represents an insider’s strategy

in which she does not increase or decrease the volume of stocks traded for no reason. As a

consequence, one can use 1 − t as the benchmark for the market maker’s uncertainty about

η if there was no public signal. Recall that v + 1 + ΣZ is independent of ΣZ , hence there is

no difference between a dynamic and a static signal when regarding this matter.

In two occasions, our numerics have given v(t) + 1+ΣZ(t) > 1− t for at least some t. In

figures 7.16 and 7.20 it is possible that it happened for 1−ΣM = 1− t2 and 1−ΣM = 1− t6.

The conjecture that this could be possible because the market maker has difficulties dealing

with both the direct public signal and the information she learns by trading with someone

with greater knowledge about the value of η is supported by figure 7.24. There we can see

that when the information is delayed greatly we have v(t) + 1 + ΣZ(t) very close to 1 − t

throughout most of the trading period. As a result, we can conjecture that depending on the

shape of ΣM , the uncertainty about V could be greater than what it would be if there were

no public signal.

One of the reasons we have decided to implement numerical analysis for our model was

due to the discussion about the limit of β2. From equation (4.64), we know that the limit

of β2 must be either zero or one. In all the cases we considered, both packages DeSolve and
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pracma have given as output β2 going to one as time goes to one, as we can see from figures

7.5, 7.7, 7.14, 7.17, 7.21, and 7.23.

This is particularly interesting because it is quite relevant regarding the price process.

Recall that the price process given by (4.7) reads:

dSt = σV w(t)dN
(1)
t + β2(t)σM (t)dN

(2)
t .

Furthermore, from Proposition 4.2 we know that limt→1w(t) = 0. Therefore, as time gets

closer to one we have the price process start relying more on the public signal as β2 gets

closer to one and less on the information coming from the demand as w goes to zero. This

behaviour is so powerful that in all the cases studied, we have v+1−ΣZ attaching to 1−ΣM

- as it is possible to see in figures 7.4, 7.8, 7.13, 7.16, 7.20, and 7.24 - suggesting that by the

end of the trading period the market maker relies almost solely on the information coming

from the public signal.

Since Kyle (1985) the reason the insider does not have infinite profits is because there

is a feedback effect in the trading of the insider. That means that if the insider knows the

price is below the value of the asset (recall that in Kyle (1985) the insider knows the value of

the asset in advance) she will buy the cheap stock and increase the price by doing so. If the

market were perfectly liquid the insider’s profit would be infinite. In our model, the market

is never perfectly liquid as, also by Proposition 4.2, w(t) > 0 for all t ∈ (0, 1), but the effect

of the insider trading declines over time. For that reason, the insider can trade more and

more aggressively as the end of the trading period approaches.

Furthermore, by Corollary 5.3, as it is the case in the literature, the price is converging

to the true price of the risky asset. Therefore, as time approaches one, the gap between the

price in which the price is being traded and the final value is closing, making the marginal

profit on each transaction relatively small. Hence, the insider must have plenty of volume to

compensate for the reduced marginal profit.

Like Foucault et al. (2016) we have found that as the informational advantage of the insider

is about to expire, she trades more aggressively, in a high-frequency fashion. However, in

contrast with the authors, we show that such behaviour does not depend on the existence

of short-term information being fed to the insider. It can also happen when the long-lived

information is about to become void when competing with a public signal. Therefore, high-
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frequency trading does not mean high-frequency information.

7.4 Dynamic Comparison

In the very last section of this thesis, we present another optional topic. By Theorem 4.4, we

know that u = v+1−ΣZ and w do not depend on ΣZ . That is a very interesting result for us

as it shows that the market maker’s uncertainty about η does not depend on the signal XI .

In particular, the variance of η|FM does not depend if the insider has a dynamic or a static

signal. As a consequence, we developed all the numerics of this chapter without worrying

about either the signal XI nor the function v which is the variance of Zt|FM , as given by

Lemma 4.2.

However, one may be interested in analysing the behaviour of the function v. Once we

have the estimates for u, we can find the function v by just doing u−(1−ΣZ). The only thing

that one must be cautious of while doing that is that given ΣM , ΣZ cannot be anything. Note

that by the construction of the model we have as impute two different signals that determine

Z. Indeed, we have from equation (2.36) that

ΣZ(t) = c2 +

∫ t

0
σ2Z(s)ds = c2 +

∫ t

0

((
1− ΣZ(s)

1− ΣI(s)

)2

σ2I (s) +

(
1− ΣZ(s)

1− ΣM (s)

)2

σ2M (s)

)
ds.

As a consequence, we have from Corollary 2.1 that ΣZ(t) ≤ ΣM (t) ∀t ∈ [0, 1]. For this

reason, while pairing two functions for ΣZ and ΣM one must make sure they are compatible.

Indeed, Theorem 4.4 gives us a more restrictive condition, which is that v+1−ΣZ ≤ 1−ΣM .

Therefore, our task here was to find values of ΣZ that were compatible with the above

restriction. In figure 7.25 it is possible to see the several possible private signals,1 − ΣI , for

the public signal 1− ΣM = 1− t2. Hence, what we did was to pick a private signal for each

function v + 1− ΣZ such that v would never be negative.

In figures 7.26 and 7.27, it is possible to see the value of v for the public signal 1−ΣM =

1−t2 for 1−ΣZ = 0.7(1−t) and 1−ΣZ = 0.7(1−
√
t) respectively. One interesting fact about

those images is that, as it is the case in figure 7.27, we may have the variance of Zt|cFM

increasing over time as the variance of Zt may increase more than it is revealed for the market

maker. The rationale behind the fact that v is exactly the same as the restriction that s(t),
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Figure 7.25: 1− ΣM = 1− t2

the variance of η with respect to the insider’s filtration when she receives a dynamic signal,

in Danilova (2010) must be smaller than 1− t as the uncertainty about the final value of the

asset must be always greater for the market maker than it is for the insider.

While we performed several combinations of ΣZ and ΣM , we believe that the most inter-

esting one is the one with 1 − ΣM = 1 − t2. In figure 7.25 it is possible to check that the

combinations did not lead to a clash with our analytical discoveries, so we assume there are

private signals that would lead to those pair of signals.

Analysing v for ΣZ = 0.7(1− t) and ΣM − t2 in figure 7.26 we see what one would expect:

as times goes by the uncertainty about Z reduces. However, one must be aware that variance

of Z increases over time. Indeed, v for ΣM = t2 and ΣZ = 0.7t(1− ln(t)) shows an increase

in the variance before going to zero.

Indeed, if we keep ΣZ = 0.7t(1−ln(t)), but change ΣM to t6 we get a considerable increase

before going to zero.
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Figure 7.26: v for ΣM = t2 and ΣZ = 0.7(1− t)

Figure 7.27: v for ΣM = t2 and ΣZ = 0.7t(1− ln(t))
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Figure 7.28: v for ΣM = t6 and ΣZ = 0.7t(1− ln(t))
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Çetin Umut. Mathematics of Market Microstructure under Asymmetric Information // arXiv

preprint arXiv:1809.03885. 2018.

143



Çetin Umut, Danilova Albina. Dynamic Markov Bridges and Market Microstructure: Theory

and Applications. 90. 2018.

Cetin Umut, Danilova Albina. On Pricing Rules and Optimal Strategies in General Kyle–

Back Models // SIAM Journal on Control and Optimization. 2021. 59, 5. 3973–3998.

Cho Kyung-Ha. Continuous auctions and insider trading: uniqueness and risk aversion //

Finance and Stochastics. 2003. 7, 1. 47–71.

Danilova Albina. Stock market insider trading in continuous time with imperfect dynamic

information // Stochastics An International Journal of Probability and Stochastics Pro-

cesses. 2010. 82, 1. 111–131.

Foster F. Douglas, Viswanathan S. Strategic Trading When Agents Forecast the Forecasts

of Others // The Journal of Finance. 1996. 51, 4. 1437–1478.

Foucault Thierry, Hombert Johan, Rosu Ioanid. News Trading and Speed // The Journal of

Finance. 2016. 71, 1. 335–381.

Foucault Thierry, Kozhan Roman, Tham Wing Wah. Toxic arbitrage // The Review of

Financial Studies. 2017. 30, 4. 1053–1094.

Stochastic differential equations for the non linear filtering problem. // . 1972.

Holden Craig W, Subrahmanyam Avanidhar. Long-lived private information and imperfect

competition // The Journal of Finance. 1992. 47, 1. 247–270.

Kallianpur Gopinath. Stochastic filtering theory. 13. 2013.

Karatzas I., Karatzas J., Shreve S.E. Brownian Motion and Stochastic Calculus. 1988. (Grad-

uate texts in mathematics).

Khalil H.K. Nonlinear Systems. 2002. (Pearson Education).

Kyle Albert S. Continuous auctions and insider trading // Econometrica: Journal of the

Econometric Society. 1985. 1315–1335.

Nash John. Non-Cooperative Games // Annals of Mathematics. 1951. 54, 2. 286–295.

O’Hara M. Market Microstructure Theory. 1998. (Blackwell business).

144



R Core Team . R: A Language and Environment for Statistical Computing. Vienna, Austria,

2021.

Revuz D., Yor M. Continuous Martingales and Brownian Motion. 2004. (Grundlehren der

mathematischen Wissenschaften).

Rogers L Chris G, Williams David. Diffusions, Markov processes and martingales: Volume
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