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Abstract

In this thesis, we investigate stochastic optimal control problems motivated by (a) the
optimal sustainable exploitation of an ecosystem, and (b) trading in a financial market with
proportional transaction costs.

In the context of optimal harvesting, we study two models. The first one is an impulse
control problem with a discounted performance criterion. In this problem, the objective
is to maximise a discounted performance criterion that rewards the effect of control action
but involves a fixed cost at each time of a control intervention. The second problem is a
singular control one, with an expected discounted criterion, an expected ergodic criterion
and a pathwise ergodic criterion. We derive the explicit solutions to these stochastic control
problems under general assumptions. We solve these problems by first constructing suitable
solutions to their associated HJB equations. It turns out that the solution to the impulse
control problem can take four qualitatively different forms, several of which have not been
observed in the literature. We also show that the boundary classification of 0 may play a
critical role in the solution of the problem. In the singular ergodic control problems, we
develop a suitable new variational argument. Furthermore, we establish the convergence of
the solution of the discounted control problem to the one of the ergodic control problems as
the discounting rate function tends to zero in an Abelian sense.

In the portfolio optimisation problem, we determine the growth optimal portfolio under
proportional transaction costs for an investor trading a risk-free asset and a risky asset with
stochastic investment opportunities given by a linear diffusion. Despite extensive research,
our results are the first that construct optimal trading strategies in continuous time beyond
the restrictive setting of constant parameters. This allows us to investigate the tradeoff
between active trading due to the random parameters and the proportional transaction
costs. We solve this problem by explicitly constructing a shadow price process and provide
the asymptotic expansions of the non-trade region, the stock-cash ratio and the proportion
of wealth invested in the risky asset.
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Chapter 1

Introduction

In the first and second parts of the thesis, we consider two types of stochastic control prob-
lems motivated by the optimal sustainable exploitation of an ecosystem, such as a natural
fishery. In particular, we consider a stochastic system whose uncontrolled state dynamics
are modelled by a non-explosive positive linear diffusion. The control that can be applied to
the first type of problems takes the form of one-sided impulsive action. In the second part of
the thesis, we study the singular stochastic control problems of the monotone follower type.

We consider a stochastic dynamical system whose controlled state process satisfies the
SDE

dXζ
t = b(Xζ

t ) dt− dζt + σ(Xζ
t ) dWt, Xζ

0− = x > 0, (1.1)

where W is a standard one-dimensional Brownian motion and ζ is a controlled càdlàg in-
creasing process. Furthermore, ζ is piece-wise constant in the impulse control problem. The
objective of the impulse optimisation problem is to maximise over all admissible processes ζ
the performance criterion

Jx(ζ) = Ex

[∫ ∞
0

e−Λζth(Xζ
t ) dt+

∑
t≥0

e−Λζt

(∫ ∆ζt

0

k(Xζ
t− − u) du− c1{∆ζt>0}

)]
, (1.2)

where ∆ζt = ζt − ζt−, with the convention that ζ0− = 0, and

Λζ
t =

∫ t

0

r(Xζ
u) du. (1.3)

Throughout the thesis, we write Ex to denote expectation so that we account for the depen-
dence of Xζ on its initial value x. In the singular control problems, we associate, with each
controlled process ζ, the expected discounted performance index

Ix(ζ) = Ex

[∫ ∞
0

e−Λζth(Xζ
t ) dt+

∫ ∞
0

e−Λζt k(Xζ
t ) ◦ dζt

]
, (1.4)
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the expected long-term average performance index

Je
x(ζ) = lim sup

T↑∞

1

T
E

[∫ T

0

h(Xζ
t ) dt+

∫ T

0

k(Xζ
t ) ◦ dζt

]
, (1.5)

as well as the pathwise long-term average performance criterion

Jp
x (ζ) = lim sup

T↑∞

1

T

(∫ T

0

h(Xζ
t ) dt+

∫ T

0

k(Xζ
t ) ◦ dζt

)
, (1.6)

where ∫ T

0

k(Xζ
t ) ◦ dζt =

∫ T

0

k(Xζ
t ) dζc

t +
∑

0≤t≤T

∫ ∆ζt

0

k(Xζ
t− − u) du. (1.7)

In the last of these definitions, ζc is the continuous part of the càdlàg increasing process ζ.
The objective of the resulting singular stochastic control problems is to maximise each of
the objective criteria (1.4), (1.5) and (1.6) over all admissible controlled processes ζ.

In the context of optimal management of a natural resource, the state process Xζ models
the population density of a harvested species, while ζt is the cumulative amount of the
species that has been harvested by time t. The constant c > 0 models a fixed cost associated
with each harvesting cycle, while the function k models the marginal profit arising from
each harvest. On the other hand, the function h models the utility arising from having a
population level Xt of the harvested species at time t, which could reflect the role that the
species plays in the stability of the overall ecosystem. Alternatively, the function h can be
used to model running costs.

In the third part of the thesis, we study the optimal portfolio allocation under transaction
costs. We consider a financial market consisting of a bond with a constant price equal to 1
and a stock, whose price is modelled by the strong solution to the SDE

dSt
St

= µ(St) dt+ σ(St) dWt, S0 = s0 > 0, (1.8)

under proportional transaction costs λ ∈ ]0, 1[, namely, the investor pays the ask price S
when buying the stock, but receives the bid price (1 − λ)S when selling it. We denoted by
ϑ0 (resp., ϑ) the number of shares held in the bond (resp., stock) and

Vt(ϑ
0, ϑ) = ϑ0

t + (ϑt ∧ 0)St + (1− λ)(ϑt ∨ 0)St = ϑ0
t +

(
1− λ1{ϑt>0}

)
ϑtSt (1.9)

is the liquidation value. With each trading strategy (ϑ0, ϑ), we associate the expected growth
rate

J(ϑ0, ϑ) = lim sup
T↑∞

1

T
E
[
ln
(
VT (ϑ0, ϑ)

)]
. (1.10)

The objective of the optimisation problem is to maximise (1.10) over all admissible self-
financing strategies (see Definition 4.1 in Section 2.1).
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1.1 Stochastic impulse control problems

Stochastic impulse control problems arise in various fields. In the context of mathematical
finance, economics and operations research, notable contributions include Harrison, Sellke
and Tayor [36], Harrison and Taksar [42], Mundaca and Øksendal [71], Korn [54, 55], Bi-
elecki and Pliska [12], Cadenillas [16], Bar-Ilan, Sulem and Zanello [15], Bar-Ilan, Perry and
Stadje [10], Ohnishi and Tsujimura [72], Cadenillas, Sarkar and Zapatero [22], LyVath, Mnif
and Pham [62], and several references therein. Also, impulse control models motivated by
the optimal management of a natural resource have been studied by Alvarez [1, 2], Alvarez
and Koskela [4] and Alvarez and Lempa [5], and several references therein. In view of the
wide range of applications, the general mathematical theory of stochastic impulse control is
well-developed: apart from the contributions mentioned above, see also Richard [77], Stet-
tner [81], Lepeltier and Marchal [59], Perthame [75], Egami [30], Davis, Guo and Wu [25],
Djehiche, Hamadène and Hdhiri [26], Christensen [17], Helmes, Stockbridge and Zhu [43, 44],
Menaldi and Robin [70], Palczewski and Stettner [74], Christensen and Strauch [23], as well
as the books by Bensoussan and Lions [11], Davis [24], Øksendal and Sulem [73], Pham [76],
and several references therein.

Relative to related references, such as the ones mentioned in the previous section, we
generalise by considering (a) state-space discounting, (b) a state-dependent, rather than
proportional, payoff associated with each harvest size, and (c) a running payoff such as the
one modelled by the function h. On the other hand, the assumptions that we make are of a
rather similar nature.

In light of standard impulse control theory, a “β-γ” strategy should be a prime candidate
for an optimal one in the problem that we study here. Such a strategy is characterised by
two points γ < β in ]0,∞[, which are both chosen by the controller, and can be described
informally as follows. If the state process takes any value x ≥ β, then it is optimal for the
controller to push it in an impulsive way down to level γ. On the other hand, the controller
should wait and take no action at all for as long as the state process takes values in the
interval ]0, β[.

We show that a β-γ strategy is indeed optimal, provided that a critical parameter x is
finite and the fixed cost c is sufficiently small (see Case I of Theorem 2.4.5 in Section 2.4).
Otherwise, we show that only ε-optimal strategies may exist (see Case II or Case IV of
Theorem 2.4.5) or that never making an intervention may be optimal (see Case III of The-
orem 2.4.5). The absence of an optimal strategy in Case IV of Theorem 2.4.5 is due to
the relatively rapid growth of the function k at infinity. It can therefore be eliminated if
we make a suitable additional growth assumption. On the other hand, the absence of an
optimal strategy in Case II of Theorem 2.4.5 is due to the nature of the problem that we
solve.

The family of admissible controlled strategies that we consider do not allow for the state
process to hit the boundary point 0 and be absorbed by it, which would amount to “switching
off” the system. If we enlarged the set of admissible controls to allow for such a possibility
and 0 were a natural boundary point, then we would face only the following difference: a β-0
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strategy would be optimal in Case II of Theorem 2.4.5 and we would not need to consider
ε-optimal strategies. On the other hand, the situation would be radically different if 0 were
an entrance boundary point: in this case, β-0 strategies would become an indispensable part
of the optimal tactics. We discuss these observations more precisely in Remark 2.1 at the
end of Section 2.4. To the best of our knowledge, this is the first stochastic control problem
in which the boundary classification of the problem’s state space has such a fundamental
influence on the problem’s solution. We do not investigate this issue any further because
this would require substantial extra analysis that would go beyond the scope of the present
article.

The evolution of an impulse control problem’s state process is quite intuitive, provided
that the corresponding uncontrolled dynamics are well-posed. For this reason, several ref-
erences simply assume the existence of such processes. In the context of SDEs in Rd, the
state process of an impulse control problem can be derived by pasting together suitable
strong solutions to the underlying uncontrolled SDE with random initial conditions (e.g.,
see Bensoussan and Lions [11, Section 6.1.1]). In the context of general Markov processes,
the classical construction of an impulse control strategy is substantially more technical and
may involve countable products of canonical spaces (e.g., see Stettner [81] and Lepeltier
and Marchal [59]). If the uncontrolled state space process is a general Markov process with
continuous sample paths, then comprehensive constructions of impulse control models have
been derived by Helmes, Stockbridge and Zhu [44].

Impulse control problems with SDEs in Rd can be formulated as in (1.1)–(1.3). In it-
self such a formulation is straightforward. Indeed, an SDE in Rd such as (1.1) has a unique
strong solution under suitable Lipschitz assumptions on b and σ for a wide class of controlled
processes ζ (e.g., see Krylov [56, Theorem 2.5.7]). On the other hand, a rigorous construc-
tion of an optimally controlled process ζ, such as a β-γ strategy, is rather non-trivial. In the
context of this chapter, we construct a unique strong solution to the SDE (1.1) when the
controlled process ζ is a β-γ strategy (see Theorem 2.3.1 in Section 2.3). Despite the central
role that such strategies play in stochastic impulse control, we are not aware of any such
rigorous SDE result. Furthermore, this construction allows for a probabilistic derivation of
the optimal expected discounted running reward as well as the optimal expected discounted
reward from control exdenditure functionals (see (2.48) and (2.49) in Theorem 2.3.1). The
construction that we make can most easily be adapted to derive the existence of strong solu-
tions to optimally controlled SDEs that arise in other stochastic impulse control problems,
even in dimensions higher than one.

1.2 Singular stochastic control problems of the mono-

tone follower type

Motivated by applications to the optimal harvesting of stochastically fluctuating populations,
similar singular stochastic control problems with h = 0, constant k and with a discounted
performance criterion with constant r have been studied by Alvarez [6, 7], Alvarez and
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Shepp [9], and Lungu and Øksendal [60]. Extensions of these earlier works have been studied
by Framstad [32], who considers a state process X with jumps, Song, Stockbridge and
Zhu [80], who consider a state process X with regime switching, Morimoto [65], who considers
the finite time horizon case, Alvarez, Lungu and Øksendal [8] and Lungu and Øksendal [61],
who consider multidimensional state processes X, Hening, Tran, Phan and Yin [41], who
consider multidimensional state processes X as well as allow for the modelling of both seeding
and harvesting, and Gäıgi, Ly Vath and Scotti [33], who consider constraints of no-take areas.
On the other hand, control problems with an expected ergodic performance criterion, similar
to the one that we study here with h = 0 and constant k, have been solved by Hening,
Nguyen, Ungureanu and Wong [45], Alvarez and Hening [3], as well as Cohen, Hening and
Sun [18], who consider a performance criterion with model ambiguity. Several other closely
related contributions can be found in the literature of all these papers.

We solve the control problems that we consider by deriving explicit solutions to their
corresponding HJB equations. In generalising the special cases arising when h = 0 and
k is constant, our main contributions include (a) the determination of sufficiently general
assumptions on the functions h and k that give rise to threshold optimal strategies with-
out making extra assumptions on the data b and σ of the underlying diffusion, and (b) the
derivation of explicit solutions to the problems’ HJB equations that are way more compli-
cated than the ones associated with the special case arising when h = 0 and k is constant
(e.g., we are faced with integral equations, such as (3.24), instead of algebraic equations,
such as the one in Remark 3.3 from Alvarez and Hening [3]).

We derive the solution to the discounted singular stochastic control problem in Sec-
tion 3.3. On the other hand, we solve the ergodic singular stochastic control problems in
Sections 3.4 and 3.5. The analysis of these problems, which are in the so-called monotone
follower singular stochastic control setting, has been influenced by Karatzas [49], Menaldi,
Robin and Taksar [69], Weerasinghe [85], and Jack and Zervos [48], who consider different
formulations. In the solution to the ergodic control problems that we solve, a notable dif-
ficulty arises from the fact that the solution (w, λ?) to their corresponding HJB equation
may involve functions w that are unbounded from below (see Remark 3.4), which makes the
establishment of a suitable verification theorem intractable. We overcome this complication
by means of a variational argument involving suitable pairs (wλ, λ) with bounded from be-
low functions wλ that converge to (w, λ?) as λ ↓ λ?. The introduction of this technique is a
further contribution of this chapter.

In Section 3.6, we establish the convergence of the solution to the discounted control
problem to the one of the ergodic control problems as the discounting rate function r tends
to 0 in an Abelian sense. In particular, we will prove that, if r depends on a parameter ι > 0
and tends to zero as ι ↓ 0 in the sense of Assumption 3.7, then

lim
ι↓0

β?(ι) = β?, lim
ι↓0

r(y; ι)w(x; ι) = λ? and lim
ι↓0

w′(x; ι) = w′(x) for all x, y > 0, (1.11)

where β?(ι) (resp., β?) is the threshold point characterising the optimal strategy of the
discounted problem (resp., the ergodic problems) and w(·; ι) (resp., (w, λ?)) is the solution
to the HJB equation of the discounted problem (resp., ergodic problems). In a singular
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stochastic control setting, Abelian limits, such as the first two ones in (1.11), have been
obtained for constant r by Karatzas [49], Weerasinghe [86], Hynd [37], Alvarez and Hening [3],
and Kunwai, Xi, Yin and Zhu [53] using different techniques. To the best of our knowledge,
no results (a) with non-constant discounting rate r(ι), or (b) such as the third limit in
(1.11), exist in the singular stochastic control literature, with the exception of Karatzas [49,
Proposition 6], who establishes a limit such as the third one in (1.11) for a model with a
standard Brownian motion and constant r.

1.3 Portfolio maximization under proportional trans-

action costs

In the frictionless market when λ = 0, Merton’s seminal works [66, 67] have shown that it is
optimal to invest fraction Θ(S) of wealth in the stock, i.e.

ϑS

V (ϑ0, ϑ)
= Θ(S), (1.12)

where

Θ(s) =
µ(s)

σ2(s)
. (1.13)

Magill and Constantinides [68] introduced the proportional transaction costs into Merton’s
problem. Maximization of the expected growth rate under proportional transaction costs in
the Black-Scholes model has been studied by Taksar, Klass and Assaf [83]. They use the
classical way of solving the Hamilton-Jacobi-Bellman (HJB) equation, and find that it is
optimal to do minimal action to keep the fraction of wealth in the stock in an interval [A,B]

A ≤ ϑS

V (ϑ0, ϑ)
≤ B,

for some A < Θ < B. Other works that use the HJB equation in the Black-Scholes model
include Davis and Norman [28], who consider the infinite time consumption problem, also
extensions have been studied by Shreve and Soner [82], Janeček and Shreve [47] and Hobson,
Tse and Zhu [40], Dumas and Luciano [27], who consider the power utility of the terminal
wealth on long-term asymptotics, Liu and Loewenstein [57], who consider the finite time hori-
zon case approximated by exponentially distributed horizon, Dai and Yi [29], who consider
the finite time horizon problem.

An alternative approach to tackle this problem is to construct a shadow price process Ŝ
(see Definition 4.3 in Section 4.3) in a fictitious frictionless market. The idea of the shadow
price process goes back to Cvitanivic and Karatzas [19] and Jouini and Kallal [46]. The
investor trade a bond with a constant price equal to 1 and a stock modelled by a price
process Ŝ that takes value in the bid-ask spread

[
(1− λ)S, S

]
. The objective of the control
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problem is to maximise over all admissible self-financing strategy in this fictitious frictionless
market the expected growth rate

Ĵ(ϑ̂0, ϑ̂) = lim sup
T↑∞

1

T
E
[
ln
(
V̂T (ϑ̂0, ϑ̂)

)]
, (1.14)

where ϑ̂0 (resp., ϑ̂) denotes the number of shares held in the bond (resp., stock) and

V̂T (ϑ̂0, ϑ̂) = ϑ̂0
T + ϑ̂T ŜT (1.15)

is the total wealth in the fictitious market. If Ŝ is a shadow price process in the bid-ask
spread

[
(1−λ)S, S

]
, then the investor will have an identical optimal trading strategy between

trading a price process Ŝ in the frictionless shadow market and trading the price process S
in the original market, and the optimal growth rate will be the same. The optimal trading
strategy is such that the investor only buys (resp., sells) when Ŝ = S (resp., Ŝ = (1− λ)S).

We construct explicitly a shadow price process Ŝ of the form g(S,A,B, λ). The process
A (resp., B) is the buying (resp., selling) boundary, i.e. the investor only buys (resp., sells)
when S = A (resp., S = B). The shadow price in the Black-Scholes model has been studied
by Gerhold, Muhle-Karbe and Schachermayer [34]. In such a case B = cA for some c > 1, if
0 < Θ < 1, or 0 < c < 1, if Θ > 1, and they scale the boundaries and the price process S and
construct a shadow price process in the domain [1, c], if 0 < Θ < 1, or [c, 1], if Θ > 1. Such a
process is a doubly reflected geometric Brownian motion. Other works that use the shadow
price include Kallsen and Muhle-Karbe [50], who construct the shadow price process for
the infinite time consumption problem with logarithmic utility, and extensions to the power
utility have been studied by Choi, Ŝırbu and Žitković [21], and Herczegh and Prokaj [38],
Gerhold, Guasoni,Muhle-Karbe and Schachermayer [35], who consider the power utility of
the terminal wealth, and Czichowsky, Peyre, Schachermayer and Yang [20],who consider a
model based on fractional Brownian motion, etc.. Recently, an extension of earlier works
has been studied by Herdegen, Hobson and Tse [39], who consider the Epstein-Zin stochastic
differential utility.

The main contribution of this chapter is that it is the first work solve explicitly the
Merton’s problem under transaction beyond the Black-Scholes model. The main difficulty
for the problem is that the optimal strategy is no longer static, since Θ is not constant. We
consider general assumptions on the problem data, which includes a plenty of well-known
processes, for instance exponential Ornstein-Uhlenbeck process, mean-reverting square-root
process, Verhulst-Pearl logistic process, etc..

We will show in Section 4.3.2 that under our assumptions, A and B are continuous and
A∧B ≤ S ≤ A∨B on {A 6= ρ} ∪ {B 6= η̄}, for some turning points ρ and η̄. When B = η̄,
A could have jumps, while A = ρ, B could have jumps. If At+ ∧At− < St < At+∨ < At−, or
Bt+ ∧ Bt− < St < Bt+ ∨ Bt−, then the investor should take no action. When S = A (resp.,
S = B), the investor should do minimum action to keep the stock-cash ratio

Qt :=
ϑt
ϑ0
t

1{ϑ0
t 6=0} = Q(At) = Q(Bt) (1.16)
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for some continuous function Q (resp., Q). Furthermore, ρ (resp., η̄) is a turning point of

Q (resp., Q). In view of the Merton’s proportion (1.12), we can see that in the frictionless
market when λ = 0, the stock-cash ratio is

Qt = Q(St) :=
Θ(St)

(1−Θ(St))St
. (1.17)

As a matter of fact, the turning points ρ and η̄ arise from the turning point of Q.



Chapter 2

The solution to an impulse control
problem motivated by optimal
harvesting

The chapter is organised as follows. Section 2.1 presents the precise formulation of the control
problem that we solve, including all of the assumptions that we make. In Section 2.2, we
derive several results associated with a linear ODE that we need for the solution to the
stochastic control problem we consider. In Section 2.3, we prove that the SDE (1.1) has a
unique strong solution when the controlled process ζ is a β-γ strategy and we derive analytic
expressions for certain associated functionals using probabilistic techniques. We derive the
complete solution to the control problem that we consider in Section 2.4. Finally, we present
several examples illustrating the assumptions that we make and the results that we establish
in Section 2.5.

2.1 Formulation of the stochastic control problem

Fix a filtered probability space
(
Ω,F , (Ft),P

)
satisfying the usual conditions and carrying a

standard one-dimensional (Ft)-Brownian motion W . We consider a dynamical system, the
uncontrolled stochastic dynamics of which are modelled by the SDE

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x > 0, (2.1)

and we make the following assumption.

Assumption 2.1 The functions b, σ : [0,∞[ → R are locally Lipschitz continuous and
σ(x) > 0 for all x > 0.

14
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This assumption implies that the scale function p and the speed measure m of the diffusion
associated with the SDE (2.1), which are given by

p(1) = 0 and p′(x) = exp

(
−2

∫ x

1

b(s)

σ2(s)
ds

)
(2.2)

and m(dx) =
2

σ2(x)p′(x)
dx, (2.3)

are well-defined. Additionally, we make the following assumption on the boundary classifi-
cation of the diffusion associated with (2.1).

Assumption 2.2 The boundary point 0 is inaccessible while the boundary point ∞ is
natural.

The state space of the linear diffusion associated with the SDE (2.1) is the interval I = ]0,∞[.
Recall that the boundary point p ∈ {0,∞} of I is called inaccessible if Px(Tp <∞) = 0 for
all x ∈ I and accessible otherwise. Furthermore, if the boundary p is inaccessible, then it is
natural if

lim
x∈I, x→p

Px(Ty < t) = 0 for all y ∈ I and t > 0

and entrance otherwise, namely, if

lim
x∈I, x→p

Px(Ty < t) > 0 for some y ∈ I and t > 0

(e.g., see Revuz and Yor [78, Definition VII.3.9]). In these expressions, Ty is the first hitting
time of the set {y}, which is defined by

Ty = inf {t ≥ 0 | Xt = y} , for y > 0. (2.4)

In Borodin and Salminen [13, II.1.6], an inaccessible boundary point is called not-exit , while a
natural (resp., entrance) boundary point is called natural (resp., entrance-not-exit). Integral
conditions for the classification of a boundary point p ∈ {0,∞} of I in terms of the scale
function p and the speed measure m can be found in this reference.

We next consider the stochastic control problem defined by (1.1)–(1.3).

Definition 2.1 The family of all admissible controlled strategies is the set of all (Ft)-
adapted càdlàg processes ζ with increasing and piece-wise constant sample paths such that
the SDE (1.1) has a unique non-explosive strong solution and

Ex

[∑
t≥0

e−Λζt1{∆ζt>0}

]
<∞. (2.5)

Assumption 2.3 The discounting rate function r is bounded and continuous. Also, there
exists r0 > 0 such that r(x) ≥ r0 for all x ≥ 0.
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To complete the set of our assumptions, we consider the operator L acting on C1 func-
tions with absolutely continuous first-order derivatives that is defined by

Lw(x) =
1

2
σ2(x)w′′(x) + b(x)w′(x)− r(x)w(x). (2.6)

In the presence of Assumptions 2.1, 2.2 and 2.3, the second-order linear ODE Lw(x) = 0
has two fundamental C2 solutions ϕ and ψ such that

0 < ϕ(x) and ϕ′(x) < 0 for all x > 0, (2.7)

0 < ψ(x) and ψ′(x) > 0 for all x > 0 (2.8)

and lim
x↓0

ϕ(x) = lim
x↑∞

ψ(x) =∞. (2.9)

If 0 is a natural boundary point, then

lim
x↓0

ϕ′(x)

p′(x)
= −∞, lim

x↓0
ψ(x) = 0 and lim

x↓0

ψ′(x)

p′(x)
= 0, (2.10)

while, if 0 is an entrance boundary point, then

lim
x↓0

ϕ′(x)

p′(x)
> −∞, lim

x↓0
ψ(x) > 0 and lim

x↓0

ψ′(x)

p′(x)
= 0. (2.11)

Symmetric results hold for the boundary point∞ (e.g., see Borodin and Salminen [13, II.10]).
The functions ϕ and ψ admit the probabilistic representations

ϕ(y) = ϕ(x)Ey
[
e−ΛTx

]
and ψ(x) = ψ(y)Ex

[
e−ΛTy

]
for all x < y, (2.12)

where Λ is defined by (1.3) with X in place of Xζ and Ty is defined by (2.4).
Furthermore, ϕ and ψ are such that

ϕ(x)ψ′(x)− ϕ′(x)ψ(x) = Cp′(x) for all x > 0, (2.13)

where C = ϕ(1)ψ′(1) − ϕ′(1)ψ(1) and p is the scale function defined by (2.2). To simplify
the notation, we also define

Φ(x) =
2ϕ(x)

Cσ2(x)p′(x)
=

1

C
ϕ(x)

m(dx)

dx
and Ψ(x) =

2ψ(x)

Cσ2(x)p′(x)
=

1

C
ψ(x)

m(dx)

dx
. (2.14)

Beyond involving standard integrability and growth assumptions, the conditions in the
following assumption may appear involved. However, they are standard in the relevant
literature and are satisfied by a wide range of problem data choices (see Examples 2.1-2.4 in
Section 2.5).
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Assumption 2.4 The following conditions hold true:

(i) The function h is continuous as well as bounded from below. Also, the limit limx↓0 h(x)/r(x)
exists in R and

Ex
[∫ ∞

0

e−Λt
∣∣h(Xt)

∣∣ dt] <∞.
(ii) The function k is absolutely continuous,∫ 1

0

∣∣k(s)
∣∣ ds <∞ and the function x 7→

∫ x

0

k(s) ds is bounded from below. (2.15)

Furthermore,

Ex
[∫ ∞

0

e−Λt
∣∣K(Xt)

∣∣ dt] <∞ and lim sup
x↑∞

1

ψ(x)

∫ x

0

k(s) ds ∈ R+ (2.16)

hold true, where

K(x) = L

(∫ ·

0

k(s) ds

)
(x), for x > 0. (2.17)

(iii) If we define
Θ(x) = h(x) + K(x), (2.18)

then Θ is continuous and there exists a constant ξ ∈ ]0,∞[ such that the restriction of Θ/r
in ]0, ξ[ (resp., in ]ξ,∞[) is strictly increasing (resp., strictly decreasing).

2.2 Results associated with a linear ODE

Unless stated otherwise, the results in this section hold true if the coefficients of (2.1) satisfy
the usual Engelbert and Schmidt conditions, rather than the stronger Assumption 2.1, and
the boundary points 0, ∞ are inaccessible. We start by recalling some standard results that
we will need and can be found in, e.g., Lamberton and Zervos [63, Section 4]. Consider a
Borel measurable function F : ]0,∞[→ R such that

Ex
[∫ ∞

0

e−Λt
∣∣F (Xt)

∣∣ dt] <∞ for all x > 0, (2.19)

where Λ is defined by (1.3) for Xζ = X. This integrability condition is equivalent to∫ x

0

∣∣F (s)
∣∣Ψ(s) ds+

∫ ∞
x

∣∣F (s)
∣∣Φ(s) ds <∞ for all x > 0, (2.20)

where Φ and Ψ are defined by (2.14). Given such a function F , we define

RF (x) = Ex
[∫ ∞

0

e−ΛtF (Xt) dt

]
, for x > 0. (2.21)
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The function RF admits the analytic presentation

RF (x) = ϕ(x)

∫ x

0

F (s)Ψ(s) ds+ ψ(x)

∫ ∞
x

F (s)Φ(s) ds (2.22)

and satisfies the ODE LRF + F = 0. Furthermore,

lim
x↓0

∣∣RF (x)
∣∣

ϕ(x)
= 0 and lim

x↑∞

∣∣RF (x)
∣∣

ψ(x)
= 0. (2.23)

Conversely, consider any function f : ]0,∞[→ R that is C1 with absolutely continuous
first-order derivative and such that

Ex
[∫ ∞

0

e−Λt
∣∣L f(Xt)

∣∣ dt] <∞, lim sup
z↓0

∣∣f(z)
∣∣

ϕ(z)
<∞ and lim sup

z↑∞

∣∣f(z)
∣∣

ψ(z)
<∞.

Such a function is such that

both of the limits lim
z↓0

f(z)

ϕ(z)
and lim

z↑∞

f(z)

ψ(z)
exist (2.24)

and f(x) = lim
z↓0

f(z)

ϕ(z)
ϕ(x)−RL f (x) + lim

z↑∞

f(z)

ψ(z)
ψ(x) for all x > 0. (2.25)

Part (ii) of the following result will be important in appreciating the role that the bound-
ary classification of 0 has on whether switching off the system might be optimal (see Re-
mark 2.1 at the end of Section 2.4). In general, (2.26) is not true if 0 is an entrance boundary
point (see (2.97) in Example 2.8 in Section 2.5).

Lemma 2.2.1 Suppose that Assumptions 2.1 and 2.3 hold true. Also, suppose that the
boundary points 0 and∞ of the diffusion associated with the SDE (2.1) are both inaccessible.
Let F be any Borel measurable function satisfying the equivalent integrability conditions
(2.19) and (2.20), and consider the function RF defined by (2.21) and (2.22). The following
statements hold true:

(i) Suppose that F is bounded from below. If K is any constant such that F (x)/r(x) ≥ K
for all x > 0, then RF (x) ≥ K for all x > 0.

(ii) If 0 is a natural boundary point, then

lim inf
x↓0

F (x)

r(x)
≤ lim inf

x↓0
RF (x) ≤ lim sup

x↓0
RF (x) ≤ lim sup

x↓0

F (x)

r(x)
. (2.26)

Proof. Part (i) of the lemma follows immediately from the calculation

inf
x>0

RF (x) = inf
x>0

Ex
[∫ ∞

0

e−ΛtF (Xt) dt

]
≥ inf

x>0

F (x)

r(x)
Ex
[∫ ∞

0

e−Λtr(Xt) dt

]
= inf

x>0

F (x)

r(x)
,
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where we have used the definition (1.3) of Λ.
To establish part (ii) of the lemma suppose in what follows that 0 is a natural boundary

point. Assuming that lim supx↓0 F (x)/r(x) ∈ R, fix any ε > 0 and let xε > 0 be any point
such that

F (x)

r(x)
≤ lim sup

x↓0

F (x)

r(x)
+ ε for all x ∈ ]0, xε].

In view of (2.21), (2.22), the definition (1.3) of Λ and the second limit in (2.10), we can see
that

lim sup
x↓0

RF (x)− lim sup
x↓0

F (x)

r(x)
− ε

= lim sup
x↓0

Ex
[∫ ∞

0

e−Λt

(
F (Xt)

r(Xt)
− lim sup

x↓0

F (x)

r(x)
− ε
)
r(Xt) dt

]
= lim sup

x↓0

(
ϕ(x)

∫ x

0

(
F (s)

r(s)
− lim sup

x↓0

F (x)

r(x)
− ε
)
r(s)Ψ(s) ds

+ ψ(x)

∫ ∞
x

(
F (s)

r(s)
− lim sup

x↓0

F (x)

r(x)
− ε
)
r(s)Φ(s) ds

)

≤ lim
x↓0

ψ(x)

∫ ∞
xε

(
F (s)

r(s)
− lim sup

x↓0

F (x)

r(x)
− ε
)
r(s)Φ(s) ds

)
= 0,

which implies that lim supx↓0RF (x) ≤ lim supx↓0 F (x)/r(x) because ε has been arbitrary.
Similarly, we can show that limx↓0RF (x) = −∞ if limx↓0 F (x)/r(x) = −∞, and the third
inequality in (2.26) follows. Using similar arguments, we can establish the first inequality in
(2.26). �

Lemma 2.2.2 Suppose that Assumptions 2.1 and 2.3 hold true, suppose that the boundary
points 0 and ∞ of the diffusion associated with the SDE (2.1) are both inaccessible and
consider any Borel measurable function F satisfying the equivalent integrability conditions
(2.19) and (2.20). The function GF : ]0,∞[→ R defined by

GF (x) := RF (x)− R′F (x)

ψ′(x)
ψ(x) =

Cp′(x)

ψ′(x)

∫ x

0

F (s)Ψ(s) ds (2.27)

is such that

lim inf
x↓0

F (x)

r(x)
≤ lim inf

x↓0
GF (x) ≤ lim sup

x↓0
GF (x) ≤ lim sup

x↓0

F (x)

r(x)
. (2.28)

Furthermore, if the boundary point ∞ is natural, then

lim inf
x↑∞

F (x)

r(x)
≤ lim inf

x↑∞
GF (x) ≤ lim sup

x↑∞
GF (x) ≤ lim sup

x↑∞

F (x)

r(x)
. (2.29)
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Proof. We first note that the equality in (2.27) follows immediately from the definition
(2.22) of RF and the identity (2.13). In view of (2.10) and (2.11), the assumption that the
boundary point 0 is inaccessible implies that

lim
x↓0

ψ′(x)

p′(x)
= 0. (2.30)

This limit and the calculation

d

dx

ψ′(x)

p′(x)
=

2

σ2(x)p′(x)

(
1

2
σ2(x)ψ′′(x) + b(x)ψ′(x)

)
=

2r(x)ψ(x)

σ2(x)p′(x)
= Cr(x)Ψ(x)

imply that ∫ x

0

r(s)Ψ(s) ds =
ψ′(x)

Cp′(x)
. (2.31)

Similarly, the calculation
d

dx

ϕ′(x)

p′(x)
= Cr(x)Φ(x) (2.32)

and the assumption that the boundary point ∞ is inaccessible imply that∫ ∞
x

r(s)Φ(s) ds = − ϕ′(x)

Cp′(x)
. (2.33)

In view of (2.31) and the expression of GF on the right-hand side of (2.27), we can see that

GF (x) ≥ Cp′(x)

ψ′(x)
inf
y<x

F (y)

r(y)

∫ x

0

r(s)Ψ(s) ds = inf
y<x

F (y)

r(y)

and GF (x) ≤ Cp′(x)

ψ′(x)
sup
y<x

F (y)

r(y)

∫ x

0

r(s)Ψ(s) ds = sup
y<x

F (y)

r(y)
.

These inequalities imply (2.28).
Next, we additionally assume that ∞ is a natural boundary point, which implies that

limx↑∞ ψ
′(x)/p′(x) = ∞ (e.g., see Borodin and Salminen [13, II.10]). The expression of GF

on the right-hand side of (2.27), the strict positivity of Ψ and the identity (2.31) imply that,
given any x > z > 0,

Cp′(x)

ψ′(x)

∫ z

0

F (s)Ψ(s) ds+ inf
y>z

F (y)

r(y)

(
1− p′(x)

ψ′(x)

ψ′(z)

p′(z)

)
=
Cp′(x)

ψ′(x)

∫ z

0

F (s)Ψ(s) ds+ inf
y>z

F (y)

r(y)

Cp′(x)

ψ′(x)

∫ x

z

r(s)Ψ(s) ds

≤ GF (x) ≤ Cp′(x)

ψ′(x)

∫ z

0

F (s)Ψ(s) ds+ sup
y>z

F (y)

r(y)

Cp′(x)

ψ′(x)

∫ x

z

r(s)Ψ(s) ds

=
Cp′(x)

ψ′(x)

∫ z

0

F (s)Ψ(s) ds+ sup
y>z

F (y)

r(y)

(
1− p′(x)

ψ′(x)

ψ′(z)

p′(z)

)
.
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Combining these observations, we can see that

inf
y>z

F (y)

r(y)
≤ lim inf

x↑∞
GF (x) ≤ lim sup

x↑∞
GF (x) ≤ sup

y>z

F (y)

r(y)
for all z > 0,

and (2.29) follows. �

Lemma 2.2.3 Suppose that Assumption 2.1 and 2.3 hold true. Also, suppose that the bound-
ary points 0 and∞ of the diffusion associated with the SDE (2.1) are both inaccessible. Given
any Borel measurable function F satisfying the equivalent integrability conditions (2.19) and
(2.20), if the boundary point 0 (resp., ∞) is inaccessible, then

lim inf
x↓0

R′F (x)

ϕ′(x)
≤ 0 ≤ lim sup

x↓0

R′F (x)

ϕ′(x)

(
resp., lim inf

x↑∞

R′F (x)

ψ′(x)
≤ 0 ≤ lim sup

x↑∞

R′F (x)

ψ′(x)

)
. (2.34)

Furthermore, if there exists x† > 0 (resp., x† > 0) such that the restriction of F/r in ]0, x†[
(resp., ]x†,∞[) is a monotone function, then

lim
x↓0

R′F (x)

ϕ′(x)
= 0

(
resp., lim

x↑∞

R′F (x)

ψ′(x)
= 0

)
. (2.35)

Proof. To establish the very first inequality in (2.34), we argue by contradiction. To this
end, we assume that lim infx↓0R

′
F (x)/ϕ′(x) > 0, which implies that there exist ε > 0 and

xε > 0 such that

R′F (x)

ϕ′(x)
> ε ⇔ R′F (x) < εϕ′(x) for all x ∈ ]0, xε[.

However, this observation and the fact that limx↓0 ϕ(x) =∞ imply that limx↓0RF (x)/ϕ(x) ≥
ε, which contradicts (2.23). The proof of the other inequalities in (2.34) is similar.

To proceed further, we first note that (2.13) and the fact that Lϕ = L ψ = 0, where L
is the differential operator defined by (2.6), imply that

ψ′(x)ϕ′′(x)− ϕ′(x)ψ′′(x) =
2Cr(x)

σ2(x)
p′(x). (2.36)

In view of this observation and the definition (2.22) of RF , we can see that the function
R′F/ψ

′ is absolutely continuous with derivative

(σ(x)ψ′(x))2

2Cr(x)p′(x)

d

dx

R′F (x)

ψ′(x)
=

(∫ x

0

F (s)Ψ(s) ds− F (x)

r(x)

ψ′(x)

Cp′(x)

)
=: QF (x). (2.37)
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Now, suppose that there exists a point x† > 0 such that F/r is monotone in [x†,∞[. Given
any points x1 < x2 in [x†,∞[, we use (2.31) to calculate

QF (x2)−QF (x1) =

∫ x2

x1

F (s)Ψ(s) ds− F (x2)

r(x2)

ψ′(x2)

Cp′(x2)
+
F (x1)

r(x1)

ψ′(x1)

Cp′(x1)

=

∫ x2

x1

(
F (s)

r(s)
− F (x2)

r(x2)

)
r(s)Ψ(s) ds+

ψ′(x1)

Cp′(x1)

(
F (x1)

r(x1)
− F (x2)

r(x2)

)
{
≥ 0, if F/r is decreasing in [x†,∞[,

≤ 0, if F/r is increasing in [x†,∞[.
(2.38)

Therefore, QF is monotone in [x†,∞[ and the limit limx↑∞QF (x) exists in [−∞,∞]. However,
this observation and (2.37) imply that there exists x̃ ≥ x† such that R′F/ψ

′ is monotone in
[x̃,∞[. Therefore, the limit limx↑∞R

′
F (x)/ψ′(x) exists, which, combined with the last two

inequalities in (2.34), implies the corresponding limit in (2.35).
Finally, we can establish the other limit in (2.35) using symmetric arguments and (2.32).

�

The following result will play a critical role in our analysis. Example 2.9 in Section 2.5
shows that the point x introduced in part (i) of the lemma can be equal to∞ if the sufficient
conditions in (2.41) fail to be true. Also, in contrast to the limit in (2.39), Examples 2.5
and 2.6 in Section 2.5 show that the limit limx↓0R

′
Θ(x)/ψ′(x), which characterises part (iii)

of the lemma, can take any value in ]−∞,∞].

Lemma 2.2.4 Suppose that Assumption 2.1 and 2.3 hold true. Also, suppose that the bound-
ary points 0 and ∞ are both inaccessible. Given a function Θ satisfying the conditions of
Assumption 2.4.(iii), as well as the equivalent integrability conditions (2.19) and (2.20), the
following statements are true:

(i) There exists a unique x ∈ ]ξ,∞] such that

d

dx

R′Θ(x)

ψ′(x)

{
< 0 for all x ∈ ]0, x[,

> 0 for all x ∈ ]x,∞[,
and lim

x↑∞

R′Θ(x)

ψ′(x)
= 0, (2.39)

where we adopt the convention ]∞,∞[ = ∅.
(ii) x <∞ if and only if limx↑∞QΘ(x) > 0, where

QΘ(x) =

∫ x

0

Θ(s)Ψ(s) ds− Θ(x)

r(x)

ψ′(x)

Cp′(x)
. (2.40)

In particular, this is the case if

lim
x↑∞

Θ(x)

r(x)
= −∞ or lim

x↓0

Θ(x)

r(x)
> lim

x↑∞

Θ(x)

r(x)
. (2.41)
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(iii) If x <∞ and we define

x̄ = inf

{
s > 0

∣∣∣ R′Θ(s)

ψ′(s)
> lim

x↓0

R′Θ(x)

ψ′(x)

}
, (2.42)

with the usual convention that inf ∅ =∞, then x̄ > x,

x̄ =∞ ⇔ lim
x↓0

R′Θ(x)

ψ′(x)
≥ 0 (2.43)

and lim
x↓0

Θ(x)

r(x)
= −∞ ⇒ lim

x↓0

R′Θ(x)

ψ′(x)
=∞ ⇒ x̄ =∞. (2.44)

Proof. The limit in (2.39) follows from Lemma 2.2.3 and the assumption that Θ/r is strictly
decreasing in ]ξ,∞[. Using (2.31) and (2.37), we can see that

d

dx

R′Θ(x)

ψ′(x)
=

2Cr(x)p′(x)

(σ(x)ψ′(x))2

∫ x

0

(
Θ(s)

r(s)
− Θ(x)

r(x)

)
r(s)Ψ(s) ds =

2Cr(x)p′(x)

(σ(x)ψ′(x))2
QΘ(x).

These expressions imply that

d

dx

R′Θ(x)

ψ′(x)
< 0 and QΘ(x) < 0 for all x ≤ ξ

because Θ/r is strictly increasing in ]0, ξ[. On the other hand, (2.38) for F = Θ implies that
QΘ is strictly increasing in [ξ,∞[ because Θ/r is strictly decreasing in [ξ,∞[. It follows that
there exists a unique x ∈ ]ξ,∞] such that the inequalities in (2.39) hold true. Furthermore,
x <∞ if and only if limx↑∞QΘ(x) > 0.

To establish the sufficient conditions in part (ii) of the lemma, we first use the integration
by parts formula and (2.31) to observe that

QΘ(x) =

∫ ξ

0

Θ(s)Ψ(s) ds− Θ(ξ)

r(ξ)

ψ′(ξ)

Cp′(ξ)
−
∫ x

ξ

ψ′(s)

Cp′(s)
d

Θ(s)

r(s)

≥
∫ ξ

0

Θ(s)Ψ(s) ds− Θ(x)

r(x)

ψ′(ξ)

Cp′(ξ)
for all ξ < x. (2.45)

This inequality reveals that limx↑∞QΘ(x) =∞ if limx↑∞Θ(x)/r(x) = −∞.
The identity (2.31) implies that, given any constant K,∫ x

0

Kr(s)Ψ(s) ds− Kr(x)

r(x)

ψ′(x)

Cp′(x)
= 0

Combining this observation with the definition of QΘ, we can see that QΘ = QΘ+Kr. If Θ/r
satisfies the inequality in (2.41), then, for all K such that

− lim
x↓0

Θ(x)

r(x)
< K < − lim

x↑∞

Θ(x)

r(x)
,
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there exists η(K) ∈ ]ξ,∞[ such that

Θ
(
η(K)

)
+Kr

(
η(K)

)
= 0 and QΘ+Kr

(
η(K)

)
=

∫ η(K)

0

(
Θ(s) +Kr(s)

)
Ψ(s) ds > 0.

It follows that
lim
x↑∞

QΘ(x) = lim
x↑∞

QΘ+Kr(x) > 0,

thanks to the fact that QΘ is strictly increasing in [ξ,∞[.
The equivalence (2.43) follows immediately from (2.39) and the definition (2.42) of x̄. To

establish the implications in (2.44), we first note that (2.32) implies that the function ϕ′/p′

is strictly increasing, so the limit limx↓0 ϕ
′(x)/p′(x) exists in [−∞, 0[. Therefore,

lim
x↓0

ψ′(x)

ϕ′(x)
= lim

x↓0

ψ′(x)

p′(x)
lim
x↓0

p′(x)

ϕ′(x)
= 0, (2.46)

where we have also used (2.30). Using the first of these two observations, the definition (2.22)
of RΘ, (2.33), (2.36) and integration by parts, we can see that, if limx↓0 Θ(x)/r(x) = −∞,
then

lim
x↓0

(σ(x)ϕ′(x))2

2Cr(x)p′(x)

d

dx

R′Θ(x)

ϕ′(x)
= − lim

x↓0

(∫ ∞
x

Θ(s)Φ(s) ds+
Θ(x)

r(x)

ϕ′(x)

Cp′(x)

)
= −

∫ ∞
1

Θ(s)Φ(s) ds− Θ(1)

r(1)

ϕ′(1)

Cp′(1)
+ lim

x↓0

∫ 1

x

ϕ′(s)

Cp′(s)
d

Θ(s)

r(s)

= −∞.

On the other hand, we use (2.36) to calculate

d

dx

ψ′(x)

ϕ′(x)
= − 2Cr(x)p′(x)

(σ(x)ϕ′(x))2
.

In view of (2.35) and (2.46), these calculations and L’ Hôpital’s formula imply that

lim
x↓0

R′Θ(x)

ψ′(x)
= lim

x↓0

d
dx

R′Θ(x)

ϕ′(x)

d
dx

ψ′(x)
ϕ′(x)

=∞.

The implications in (2.44) follow from this analysis and the definition (2.42) of x̄. �

2.3 The “βββ-γγγ” strategy

In this section, we consider the β-γ strategy that is characterised by two points 0 < γ < β <
∞ and takes the following form. If the state process takes any value x ≥ β, the controller
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pushes it in an impulsive way down to the level γ. For as long as the state process takes
values inside the interval ]0, β[, the controller waits and takes no action. Accordingly, such
a strategy is characterised by a controlled process ζ such that

∆ζt =
(
Xζ
t− − γ

)
1{Xζ

t−≥β}
for all t ≥ 0, (2.47)

where Xζ is the associated solution to the SDE (1.1).

Theorem 2.3.1 Suppose that Assumptions 2.1 and 2.3 hold true. Also, suppose that the
boundary points 0 and ∞ of the diffusion associated with the uncontrolled SDE (2.1) are
both inaccessible. Given any points γ < β in ]0,∞[, there exists a controlled process ζ =
ζ(β, γ) that is admissible in the sense of Definition 2.1 and is such that (2.47) holds true.
Furthermore, given any x ∈ ]0, β[,

Ex

[∫ ∞
0

e−Λζth(Xζ
t ) dt

]
= Rh(x) +

ψ(x)

ψ(β)− ψ(γ)

(
Rh(γ)−Rh(β)

)
(2.48)

and

Ex

[∑
t≥0

e−Λζt1{∆ζt>0}

]
=

ψ(x)

ψ(β)− ψ(γ)
. (2.49)

Proof. We start with a recursive construction of the required process ζ and its associated
solution to the SDE (2.1). To this end, we first consider any initial state x ∈ ]0, β[, we
denote by X1 the solution to the uncontrolled SDE (2.1) and we define

τ1 = inf
{
t ≥ 0 | X1

t ≥ β
}

and ζ1
t = (β − γ)1{τ1≤t}. (2.50)

Given ` ≥ 1, suppose that we have determined Xj, τj and ζj, for j = 1, . . . , `.

The process W̃ `+1 defined by W̃ `+1
t =

(
Wτ`+t − Wτ`

)
1{τ`<∞} is a standard (Fτ`+t)-

Brownian motion that is independent of Fτ` under the conditional probability measure

P(· | τ` < ∞) (see Revuz and Yor [78, Exercise IV.3.21]). We denote by X̃`+1 the unique

solution to the uncontrolled SDE (2.1) with X̃`+1
0 = γ that is driven by the Brownian motion

W̃ `+1 and is defined on the probability space
(
Ω,F , (Fτ`+t),P(· | τ` < ∞)

)
. Since (t − τ`)+

is an (Fτ`+t)-stopping time for all t ≥ 0,

τ` + (t− τ`)+ = t ∨ τ` and W̃ `+1
(t−τ`)+ =

(
Wt∨τ` −Wτ`

)
1{τ`<∞},

we can see that, on the event {τ` <∞},

X̃`+1
(t−τ`)+ = γ +

∫ (t−τ`)+

0

b
(
X̃`+1
s

)
ds+

∫ (t−τ`)+

0

σ
(
X̃`+1
s

)
dW̃ `+1

s

= γ +

∫ t

0

b
(
X̃`+1

(s−τ`)+

)
d(s− τ`)+ +

∫ t

0

σ
(
X̃`+1

(s−τ`)+

)
dW̃ `+1

(s−τ`)+

= γ +

∫ t∨τ`

τ`

b
(
X̃`+1

(s−τ`)+

)
ds+

∫ t∨τ`

τ`

σ
(
X̃`+1

(s−τ`)+

)
dWs,
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where we have time changed the Lebesgue as well as the Itô integral (see Revuz and Yor [78,
Propositions V.1.4, V.1.5]). It follows that, if we define

X
`+1

t = X̃`+1
(t−τ`)+1{τ`<∞}, for t ≥ 0, (2.51)

then

X
`+1

t = γ +

∫ t∨τ`

τ`

b
(
X
`+1

s

)
ds+

∫ t∨τ`

τ`

σ
(
X
`+1

s

)
dWs. (2.52)

Furthermore, we define

X`+1
t = X`

t1{t<τ`} +X
`+1

t 1{τ`≤t}, (2.53)

τ`+1 = inf
{
t > τ` | X`+1

t ≥ β
}

and ζ`+1
t = ζ`t + (β − γ)1{τ`+1≤t}. (2.54)

Also, we note that
τ`+1 − τ` = T̃ `+1

β := inf
{
t ≥ 0 | X̃`+1

t ≥ β
}
. (2.55)

Given the recursive construction we have just considered, we define

Xζ
t =

∞∑
`=0

X`+1
t 1{τ`≤t<τ`+1} and ζt =

∞∑
`=0

ζ`+1
t 1{τ`≤t<τ`+1}. (2.56)

In view of (2.52)–(2.54), the process Xζ given by (2.56) provides the unique solution to the
SDE (1.1) for ζ being as in (2.56). Furthermore, these processes are such that (2.47) holds
true. In the case that arises when the initial state x ≥ β, the only modification of the
arguments above involves X1 being the solution to the uncontrolled SDE (2.1) for x = γ
and ζ1 being the same as in (2.50) translated by adding the constant x− γ to it.

We next establish (2.49), which implies the admissibility condition (2.5). The process

X̃`+1 introduced at the beginning of the proof is independent of Fτ` under the conditional
probability measure P(· | τ` < ∞) and its distribution under P(· | τ` < ∞) is the same as
the distribution of the solution X to the uncontrolled SDE (2.1) with initial state X0 = γ
under P. In particular,

EP(·|τ`<∞)
[
F
(
X̃`+1

)]
= Eγ

[
F (X)

]
for every bounded measurable functional F mapping continuous functions on R+ to R+,
where we denote by EP(·|τ`<∞) expectations computed under the conditional probability
measure P(· | τ` < ∞). In view of these observations and the definition of conditional
expectation,

Eγ
[
F
(
X̃`+1

) ∣∣Fτ`]1{τ`<∞} = Eγ
[
F (X)

]
1{τ`<∞}. (2.57)

To see this claim, we first note that the Radon-Nikodym derivative of P(· | τ` < ∞) with
respect to P is given by

dP(· | τ` <∞)

dP
=

1

P(τ` <∞)
1{τ`<∞}.
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Given any event Γ ∈ Fτ` ,

1

P(τ` <∞)
Eγ
[
Eγ
[
F (X)

]
1{τ`<∞}1Γ

]
= Eγ

[
F (X)

] 1

P(τ` <∞)
Eγ
[
1{τ`<∞}∩Γ

]
= EP(·|τ`<∞)

[
F
(
X̃`+1

)]
EP(·|τ`<∞)

[
1Γ

]
= EP(·|τ`<∞)

[
F
(
X̃`+1

)
1Γ

]
=

1

P(τ` <∞)
Eγ
[
F
(
X̃`+1

)
1{τ`<∞}1Γ

]
,

and (2.57) follows.
In view of (2.51)–(2.57), we can see that

Ex
[
e−Λζτ`+1

]
= Ex

[
e−Λζτ` Eγ

[
exp

(
−
∫ τ`+1

τ`

r(Xζ
u) du

) ∣∣∣Fτ`]1{τ`<∞}]
= Ex

[
e−Λζτ` Eγ

[
exp

(
−
∫ τ`+1

τ`

r
(
X
`+1

u

)
du

) ∣∣∣Fτ`]1{τ`<∞}]
= Ex

[
e−Λζτ` Eγ

[
exp

(
−
∫ T̃ `+1

β

0

r
(
X̃`+1
u

)
du

) ∣∣∣Fτ`]1{τ`<∞}]
= Ex

[
e
−ΛζT` Eγ

[
exp

(
−
∫ Tβ

0

r(Xu) du

)]
1{τ`<∞}

]
= Ex

[
e−Λζτ`

]
Eγ
[
e−ΛTβ

]
,

where Λ is defined by (1.3) with X in place of Xζ and Tβ is defined as in (2.4). Given any
x ∈ ]0, β[, we iterate this result and use (2.12) to obtain

Ex
[
e−Λζτ`+1

]
= Ex

[
e−ΛTβ

](
Eγ
[
e−ΛTβ

])`
=
ψ(x)

ψ(β)

(
ψ(γ)

ψ(β)

)`
. (2.58)

It follows that

Ex

[∑
t≥0

e−Λζt1{∆ζt>0}

]
= Ex

[
∞∑
`=1

e−Λζτ`

]

=
∞∑
`=1

Ex
[
e−Λζτ`

]
=
ψ(x)

ψ(β)

∞∑
`=0

(
ψ(γ)

ψ(β)

)`
=

ψ(x)

ψ(β)− ψ(γ)
,

which establishes (2.49).
To show (2.48), we consider any x ∈ ]0, β[ and we use (2.51)–(2.57) as well as (2.58) to
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derive the expression

Ex
[ ∫ τ`+1

τ`

e−Λζth(Xζ
t ) dt

]
= Ex

[
e−Λζτ` Eγ

[∫ τ`+1

τ`

exp

(
−
∫ t

τ`

r
(
X
`+1

u

)
du

)
h(X

`+1

t ) dt
∣∣∣Fτ`]]

= Ex
[
e−Λζτ`

]
Eγ
[∫ Tβ

0

e−Λth(Xt) dt

]
= Ex

[
e−Λζτ`

](
Rh(γ)− Eγ

[
e−ΛTβ

]
Rh(β)

)
=
ψ(x)

ψ(β)

(
ψ(γ)

ψ(β)

)`−1(
Rh(γ)− ψ(γ)

ψ(β)
Rh(β)

)
.

Similarly, we can show that

Ex
[∫ τ1

0

e−Λζth(Xζ
t ) dt

]
= Rh(x)− ψ(x)

ψ(β)
Rh(β).

Recalling the assumption that h is bounded from below, we can use the monotone conver-
gence theorem and these results to obtain

Ex
[ ∫ ∞

0

e−Λζth(Xζ
t ) dt

]
= Ex

[∫ τ1

0

e−Λζth(Xζ
t ) dt

]
+
∞∑
`=1

Ex
[∫ τ`+1

τ`

e−Λζth(Xζ
t ) dt

]

= Rh(x)− ψ(x)

ψ(β)
Rh(β) +

ψ(x)

ψ(β)

(
Rh(γ)− ψ(γ)

ψ(β)
Rh(β)

) ∞∑
`=1

(
ψ(γ)

ψ(β)

)`−1

,

which proves (2.48). �

2.4 The solution to the control problem

We will solve the control problem we have considered by deriving a C1 with absolutely
continuous first-order derivative function w : ]0,∞[→ R that satisfies the HJB equation

max

{
Lw(x) + h(x), −c+ sup

z∈[0,x[

∫ x

x−z

(
k(s)− w′(s)

)
ds

}
= 0, (2.59)

Lebesgue-a.e. in ]0,∞[. Given such a solution, the optimal strategy can be characterised as
follows. The controller should wait and take no action for as long as the state process X
takes values in the interior of the set in which the ODE

Lw(x) + h(x) = 0
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is satisfied and should take immediate action with an impulse in the negative direction if the
state process takes values in the set of all points x > 0 such that

−c+ sup
z∈[0,x[

∫ x

x−z

(
k(s)− w′(s)

)
ds = 0.

We first consider the possibility for a β-γ strategy with γ < β in ]0,∞[ to be optimal.
The optimality of such a strategy is associated with a solution w to the HJB equation (2.59)
such that

Lw(x) + h(x) = 0, for x ∈ ]0, β[, (2.60)

and w(x) = w(γ) +

∫ x

γ

k(s) ds− c, for x ∈ [β,∞[. (2.61)

To determine such a solution w, we first consider the so-called “principle of smooth fit”,
which requires that w′ should be continuous, in particular, at the free-boundary point β.
This condition suggests the free-boundary equation

lim
x↑β

w′(x) = k(β). (2.62)

Next we consider the inequality

−c+ sup
z∈[0,x[

∫ x

x−z

(
k(s)− w′(s)

)
ds ≤ 0,

which is associated with impulsive action. For x = β and z = β − u, we can see that this
implies that

−c+

∫ β

u

(
k(s)− w′(s)

)
ds ≤ 0 for all u ∈ ]0, β].

This inequality and the identity

−c+

∫ β

γ

(
k(s)− w′(s)

)
ds = 0, (2.63)

which follows from (2.61), can both be true if and only if the function u 7→
∫ β
u

(
k(s)−w′(s)

)
ds

has a local maximum at γ. This observation gives rise to the free-boundary condition

w′(γ) = k(γ). (2.64)

Every solution to (2.60) that can satisfy the so-called “transversality condition”, which
is required for a solution w to the HJB equation to identify with the control problem’s value
function, is given by

w(x) = Rh(x) + Aψ(x), (2.65)
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for some constant A, where Rh is given by (2.21) and (2.22) for F = h. In view of the defini-
tion (2.18) of Θ in Assumption 2.4, the expression of RΘ as in (2.22) and the representation
(2.25), we can see that

Rh(x) = RΘ(x) +

∫ x

0

k(s) ds− K∞ψ(x), (2.66)

where

K∞ = lim
x↑∞

1

ψ(x)

∫ x

0

k(s) ds ∈ R+. (2.67)

Note that the limit K∞ indeed exists in R+, thanks to the last condition in Assumption 2.4.(ii)
and (2.24). The identity (2.66) implies that (2.65) is equivalent to

w(x) = RΘ(x) +

∫ x

0

k(s) ds+ (A− K∞)ψ(x).

Therefore, the solution to (2.60) that satisfies the boundary condition (2.62) is given by

w(x) =

∫ x

0

k(s) ds+RΘ(x)− R′Θ(β)

ψ′(β)
ψ(x)

= Rh(x) +

(
K∞ −

R′Θ(β)

ψ′(β)

)
ψ(x), for x ∈ ]0, β[. (2.68)

Furthermore, the boundary conditions (2.64) and (2.63) are equivalent to

R′Θ(γ)

ψ′(γ)
=
R′Θ(β)

ψ′(β)
and F (γ, β) = −c, (2.69)

respectively, where

F (γ, β) := GΘ(β)−GΘ(γ) =

∫ β

γ

(
R′Θ(s)

ψ′(s)
− R′Θ(β)

ψ′(β)

)
ψ′(s) ds, (2.70)

and GΘ is defined by (2.27) in Lemma 2.2.2.
The following result is about the solvability of the system of equations given by (2.69)

for the unknowns γ and β. Note that Lemma 2.2.4.(i) implies that a pair 0 ≤ γ < β < ∞
satisfying the first equation in (2.69) might exist only if x <∞.

Lemma 2.4.1 Consider the stochastic control problem formulated in Section 2.1 and sup-
pose that the point x introduced in Lemma 2.2.4.(i) is finite. There exist a unique strictly
decreasing function γ? : ]0, c?[→ ]0, x[ and a unique strictly increasing function β? : ]0, c?[→
]x, x̄[, where c? > 0 is defined by (2.80) in the proof below and x, x̄ are as in Lemma 2.2.4,
such that

R′Θ(x)

ψ′(x)
−
R′Θ
(
β?(c)

)
ψ′
(
β?(c)

)

> 0, if x ∈

]
0, γ?(c)

[
,

= 0, if x = γ?(c),

< 0, if x ∈
]
γ?(c), β?(c)

[
,

and F
(
γ?(c), β?(c)

)
= −c (2.71)
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for all c ∈ ]0, c?[. There exist no other points 0 < γ < β < ∞ satisfying the system of
equations (2.69). The functions β? and γ? are such that

lim
c↓0

β?(c) = lim
c↓0

γ?(c) = x, (2.72)

lim
c↑c?

β?(c) = x̄ and lim
c↑c?

γ?(c)


> 0, if limx↓0

R′Θ(x)

ψ′(x)
> 0 (x̄ =∞),

= 0, if limx↓0
R′Θ(x)

ψ′(x)
= 0 (x̄ =∞),

= 0, if limx↓0
R′Θ(x)

ψ′(x)
< 0 (x̄ <∞).

(2.73)

Furthermore, c? <∞ if and only if

either (I) x̄ <∞ or (II) x̄ =∞ and lim
x↑∞

Θ(x)

r(x)
> −∞. (2.74)

Proof. In view of (2.39) and (2.42) in Lemma 2.2.4, we can see that there exists a point
γ ∈ ]0, β[ such that the first equation in (2.69) holds true if and only if β ∈ ]x, x̄[, in
which case, γ ∈ ]0, x[. In particular, there exists a unique strictly decreasing function
Γ : ]x, x̄[→ ]0, x[ such that

R′Θ(x)

ψ′(x)
− R′Θ(β)

ψ′(β)


> 0, if x ∈

]
0,Γ(β)

[
,

= 0, if x = Γ(β),

< 0, if x ∈
]
Γ(β), β

[
,

(2.75)

(
R′Θ
ψ′

)′(
Γ(β)

)
< 0,

(
R′Θ
ψ′

)′
(β) > 0, (2.76)

lim
β↓x

Γ(β) = x and lim
β↑x̄

Γ(β)


> 0, if limx↓0

R′Θ(x)

ψ′(x)
> 0 (x̄ =∞),

= 0, if limx↓0
R′Θ(x)

ψ′(x)
= 0 (x̄ =∞),

= 0, if limx↓0
R′Θ(x)

ψ′(x)
< 0 (x̄ <∞).

(2.77)

It follows that the system of equations (2.69) has a unique solution γ < β if and only if the
equation

F
(
Γ(β), β

)
= −c (2.78)

has a unique solution β?(c) ∈ ]x, x̄[. Using the first expression in (2.70), the identity in
(2.75), the second of the inequalities in (2.76) and the fact that ψ is strictly increasing, we
calculate

d

dβ
F
(
Γ(β), β

)
= −

(
R′Θ
ψ′

)′
(β)ψ(β) +

(
R′Θ
ψ′

)′(
Γ(β)

)
ψ
(
Γ(β)

)
Γ′(β)

= −
(
R′Θ
ψ′

)′
(β)
(
ψ(β)− ψ

(
Γ(β)

))
< 0.
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Combining this result with the fact that

lim
β↓x

F
(
Γ(β), β

)
= 0, (2.79)

which follows from the first limit in (2.77), we can see that the equation F
(
Γ(β), β

)
= −c

has a unique solution β?(c) ∈ ]x, x̄[ if and only if

c < − lim
β↑x̄

F
(
Γ(β), β

)
=: c?. (2.80)

We conclude this part of the analysis by noting that the points β?(c) ∈ ]x, x̄[ and γ?(c) :=
Γ
(
β?(c)

)
∈ ]0, x[ provide the unique solution to the system of equations (2.69) if c ∈ ]0, c?[,

while the system of equations (2.69) has no solution such that 0 < γ < β <∞ if c ≥ c?. In
particular, the inequalities in (2.71) follow from the corresponding ones in (2.75).

The fact that the function β 7→ F
(
Γ(β), β

)
is strictly decreasing, which we have es-

tablished above, implies that the function c 7→ β?(c) is strictly increasing because β?(c) is
the unique solution to equation (2.78) for each c ∈ ]0, c?[. In turn, this result and the fact
that Γ is strictly decreasing imply that the function γ? = Γ ◦ β? is strictly decreasing. The
first limit in (2.73) follows immediately from (2.80). On the other hand, the second limit
in (2.73) follows immediately from the first limit in (2.73) and the second limit in (2.77).
Furthermore, the identities in (2.72) follow from the first limit in (2.77) and (2.79).

To establish the equivalence of the inequality c? < ∞ with the condition in (2.74), we
first use the first expression of F in (2.70) and the definition (2.80) of c? to observe that

c? = − lim
β↑x̄

(
GΘ(β)−GΘ

(
Γ(β)

))
.

We next use the second limit in (2.77) as well as Lemmas 2.2.2 and 2.2.4. If x̄ <∞, then

c? = −GΘ(x̄) + lim
x↓0

GΘ(x)
(2.28)
= −G(x̄) + lim

x↓0

Θ(x)

r(x)
<∞,

the inequality following because Θ/r is strictly increasing in ]0, ξ[. If x̄ = ∞ and
limx↓0R

′
Θ(x)/ψ′(x) = 0, then limx↓0 Θ(x)/r(x) > −∞ thanks to the first implication in

(2.44). In this case,

c?
(2.29)
= − lim

x↑∞

Θ(x)

r(x)
+ lim

x↓0

Θ(x)

r(x)

{
<∞, if limx↑∞

Θ(x)
r(x)

> −∞,
=∞, if limx↑∞

Θ(x)
r(x)

= −∞,

where we have also used the assumption that Θ/r is strictly decreasing in ]ξ,∞[. Finally, if

x̄ =∞ and limx↓0
R′Θ(x)

ψ′(x)
> 0, then limx↑∞ Γ(x) > 0 (see (2.77)),

c?
(2.29)
= − lim

x↑∞

Θ(x)

r(x)
+ lim

x↑∞
G
(
Γ(x)

){<∞, if limx↑∞
Θ(x)
r(x)

> −∞,
=∞, if limx↑∞

Θ(x)
r(x)

= −∞,
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and the proof is complete. �

In light of (2.61), (2.68) and the previous lemma, we now establish the following result,
which provides the solution to the HJB equation (2.59) identifying with the control problem’s
value function when a β-γ strategy with γ < β in ]0,∞[ is indeed optimal.

Lemma 2.4.2 Consider the stochastic control problem formulated in Section 2.1 and sup-
pose that the point x introduced in Lemma 2.2.4.(i) is finite. Also, fix any c ∈ ]0, c?[, where
c? > 0 is as in Lemma 2.4.1. The function w defined by

w(x) =

{
Rh(x) +

(
K∞ −

R′Θ(β?)

ψ′(β?)

)
ψ(x), for x ∈ ]0, β?[,

w(γ?) +
∫ x
γ?
k(s) ds− c, for x ∈ [β?,∞[,

(2.81)

where we write γ? and β? in place of the points γ?(c) and β?(c) given by Lemma 2.4.1, is
C1 in ]0,∞[ and C2 in ]0,∞[ \ {β?}. Furthermore, this function is a solution to the HJB
equation (2.59) that is bounded from below.

Proof. The boundedness from below of w follows immediately from Assumption 2.3, the
conditions in (i) and (ii) of Assumption 2.4 and Lemma 2.2.1.(i).

By construction, we will establish all of the lemma’s other claims if we prove that

−c+

∫ x

u

(
k(s)− w′(s)

)
ds ≤ 0 for all 0 < u < x < β? (2.82)

and Lw(x) + h(x) ≤ 0 for all x > β?. (2.83)

To this end, we use the first expression of w in (2.68) and (2.71) to note that

k(s)− w′(s) = ψ′(s)

(
R′Θ(β?)

ψ′(β?)
− R′Θ(s)

ψ′(s)

){
< 0 for all s ∈ ]0, γ?[,

> 0 for all s ∈ ]γ?, β?[.

The inequality (2.82) follows from this observation and the fact that

−c+

∫ β?

γ?

(
k(s)− w′(s)

)
ds = 0.

To show (2.83), we first use the expression

w(x) = w(β?) +

∫ x

β?
k(s) ds, for x > β?,

the definition (2.18) of Θ in Assumption 2.4 and the first expression in (2.68) to calculate

Lw(x) + h(x) = −r(x)w(β?) + L

(∫ ·

0

k(s) ds

)
(x) + r(x)

∫ β?

0

k(s) ds+ h(x)

= Θ(x)− r(x)

(
RΘ(β?)− R′Θ(β?)

ψ′(β?)
ψ(β?)

)
= Θ(x)− r(x)GΘ(β?), (2.84)
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where GΘ is given by (2.27) in Lemma 2.2.2 for F = Θ. In view of the calculations

G′Θ(x) = −ψ(x)
d

dx

R′Θ(x)

ψ′(x)
= −2Cr(x)p′(x)ψ(x)

(σ(x)ψ′(x))2

(∫ x

0

Θ(s)Ψ(s) ds− Θ(x)

r(x)

ψ′(x)

Cp′(x)

)
,

the inequalities (2.39) in Lemma 2.2.4 and the fact that β? > x, we can see that

GΘ(x) < GΘ(β?) and

∫ x

0

Θ(s)Ψ(s) ds >
Θ(x)

r(x)

ψ′(x)

Cp′(x)
for all x > β?. (2.85)

The second of these inequalities and the second expression of GΘ in (2.27) imply that

GΘ(x) =
Cp′(x)

ψ′(x)

∫ x

0

Θ(s)Ψ(s) ds >
Θ(x)

r(x)
for all x > β?.

However, this result, (2.84) and the first inequality in (2.85) yield

Lw(x) + h(x) < r(x)

(
Θ(x)

r(x)
−GΘ(x)

)
< 0 for all x > β?,

and (2.83) follows. �

To proceed further, we assume that the problem data is such that c? <∞, which is the
case if and only if one of the two conditions of (2.74) in Lemma 2.4.1 holds true. In the first
case, when x̄ < ∞, the limits in (2.73) suggest the possibility for the function w defined
by (2.61) and (2.68) for γ = 0 and some β > x̄ to provide a solution to the HJB equation
(2.59) that identifies with the control problem’s value function. In this case, a free-boundary
condition such as (2.64) is not relevant anymore and we are faced with only the free-boundary
condition (2.63) with γ = 0, which is equivalent to the equation F (0, β) = −c, where F is
defined by (2.70).

Lemma 2.4.3 Consider the stochastic control problem formulated in Section 2.1 and sup-
pose that the point x introduced in Lemma 2.2.4.(i) is finite. Also, suppose that the problem
data is such that x̄ < ∞, where x̄ is defined by (2.42) in Lemma 2.2.4. The following
statements hold true:

(I) There exists c◦ ∈ ]c?,∞] and a strictly increasing function β◦ : [c?, c◦[→ [x̄,∞[ such that

F
(
0, β◦(c)

)
= −c for all c ∈ [c?, c◦[ and lim

c↑c◦
β◦(c) =∞, (2.86)

where c? ∈ ]0,∞[ is as in Lemma 2.4.1.

(II) c◦ =∞ if and only if limx↑∞Θ(x)/r(x) = −∞.

(III) Given any c ∈ [c?, c◦[, the function w defined by

w(x) =

Rh(x) +
(
K∞ −

R′Θ(β◦)

ψ′(β◦)

)
ψ(x), for x ∈ ]0, β◦[,

Rh(0) +
(
K∞ −

R′Θ(β◦)

ψ′(β◦)

)
ψ(0) +

∫ x
0
k(s) ds− c, for x ∈ [β◦,∞[,

(2.87)

where we write β◦ in place of β◦(c), is C1 in ]0,∞[ and C2 in ]0,∞[ \ {β◦}. Furthermore,
this function is a solution to the HJB equation (2.59) that is bounded from below.
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Proof. The definition of GΘ as in (2.27), the limits (2.28) in Lemma 2.2.2 and the im-
plications (2.44) in Lemma 2.2.4 imply that the limit limx↓0GΘ(x) exists in R thanks to
Assumption 2.4.(iii). On the other hand, (2.39) and (2.43) in Lemma 2.2.4 imply that the
limit limx↓0R

′
Θ(x)/ψ′(x) exists in ]−∞, 0[. In view of these observations and the defini-

tion of GΘ as in (2.27), we can see that the limit limx↓0RΘ(x) exists in R. Therefore, the
limit Rh(0) := limx↓0Rh(x) exists in R thanks to (2.66). It follows that the function w is
well-defined.

The second expression in (2.71) and the limits in (2.73) imply that

F (0, x̄) ≡ GΘ(x̄)− lim
x↓0

GΘ(x) = −c? ∈ ]−∞, 0[.

Part (I) of the lemma follows from this observation and the calculation

d

dβ
F (0, β) = −

(
R′Θ
ψ′

)′
(β)
(
ψ(β)− ψ(0)

)
< 0 for all β ≥ x̄,

where the inequality follows from (2.39) in Lemma 2.2.4 and the fact that the strictly positive
function ψ is strictly increasing, for c◦ = − limβ↑∞ F (0, β). Furthermore, this definition of
c◦, Assumption 2.4.(iii) and the limits (2.29) in Lemma 2.2.2 imply immediately part (II) of
the lemma.

Finally, we can show the rest of the claims on w by using exactly the same arguments as
in the proof of Lemma 2.4.2 (see (2.82) and (2.83) in particular). �

To close the “gap” in the parameter space, we still need to derive a solution to the HJB
equation (2.59) if

x < x̄ =∞, c? <∞ and c ≥ c?, or x̄ <∞, c◦ <∞ and c ≥ c◦, or x =∞ and c > 0.

In the first case, the first limit in (2.73) implies that limc↑c? β
?(c) =∞. In the second case, the

limit in (2.86) implies that limc↑c◦ β
◦(c) =∞. In all cases, we are faced with the possibility

for the problem’s value function to identify with a solution to the ODE Lw(x) + h(x) = 0
for all x > 0.

Lemma 2.4.4 Consider the stochastic control problem formulated in Section 2.1 and sup-
pose that the problem data is such that one of the following cases holds true:

(a) The point x introduced in Lemma 2.2.4.(i) is finite,

lim
x↑∞

Θ(x)

r(x)
> −∞ ⇔ either (x̄ =∞ and c? <∞) or (x̄ <∞ and c◦ <∞) (2.88)

and c ≥ c? or c ≥ c◦, depending on the case in (2.88).

(b) The point x introduced in Lemma 2.2.4.(i) is equal to infinity.

In either of these two cases, the function w defined by

w(x) = Rh(x) + K∞ψ(x), for x > 0, (2.89)

is a C2 solution to the HJB equation (2.59) that is bounded from below.
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Proof. The equivalence (2.88) follows immediately from the statement related to (2.74) in
Lemma 2.4.1 and part (II) of Lemma 2.4.3. On the other hand, the boundedness from below
of w follows immediately from Assumption 2.3, the conditions in (i) and (ii) of Assump-
tion 2.4 and Lemma 2.2.1.(i).

To establish the fact that w satisfies the HJB equation (2.59), we have to show that∫ x

u

(
k(s)− w′(s)

)
ds ≤ c ⇔ RΘ(u)−RΘ(x) ≤ c for all 0 < u < x <∞, (2.90)

where the equivalence follows from the identity (2.66) and the definition (2.89) of w. To this
end, fix any u < x in ]0,∞[. First, suppose that x̄ =∞ and c? <∞. In this case, the limits
in (2.73) imply that x < β?(c) for all c < c? sufficiently close to c?. For such a c, the identity
(2.66) and the fact that the function w defined by (2.81) in Lemma 2.4.2 satisfies the HJB
equation (2.59) imply that

RΘ(u)−RΘ(x) ≤ c+
R′Θ
(
β?(c)

)
ψ′
(
β?(c)

) (ψ(u)− ψ(x)
)
.

Passing to the limit as c ↑ c? and using the fact that limc↑c? β
?(c) = ∞ together with the

limit in (2.39), we can see that RΘ(u)−RΘ(x) ≤ c?. It follows that (2.90) holds true for all
c ≥ c?.

If x̄ < ∞, c◦ < ∞ and c ≥ c◦, then we can show that the function w given by (2.89)
satisfies the HJB equation (2.59) in exactly the same way using the results of Lemma 2.4.3.

Finally, suppose that the point x introduced in Lemma 2.2.4.(i) is equal to infinity and
consider any points u < x < β in ]0,∞[. In this case, the inequalities in (2.39) imply that

R′Θ(s)− R′Θ(β)

ψ′(β)
ψ′(s) = ψ′(s)

(
R′Θ(s)

ψ′(s)
− R′Θ(β)

ψ′(β)

)
> 0 for all s < β.

In view of this observation, we can see that

RΘ(u)−RΘ(x) ≤ −R
′
Θ(β)

ψ′(β)

(
ψ(x)− ψ(u)

)
.

Passing to the limit as β →∞, we can see that RΘ(u)− RΘ(x) ≤ 0, thanks to the limit in
(2.39). It follows that (2.90) holds true for all c > 0. �

We conclude the section with the main result of the chapter.

Theorem 2.4.5 Consider the stochastic control problem formulated in Section 2.1. Depend-
ing on the problem data, the function w defined by (2.81), (2.87) or (2.89) in Lemmas 2.4.2,
2.4.3 or 2.4.4, respectively, identifies with the control problem’s value function, namely,

w(x) = sup
ζ∈A

Jx(ζ). (2.91)
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Furthermore, the following cases hold true:

(I) If the problem data is as in Lemma 2.4.2, then the β-γ strategy characterised by the points
β? and γ? in Lemma 2.4.2 is optimal.

(II) If the problem data is as in Lemma 2.4.3, then there exists no optimal strategy. In this
case, if (εn) is any sequence such that ε1 < β◦ and limn↑∞ εn = 0, then the β-γ strategies
characterised by the points β = β◦ and γ = εn, where β◦ is as in Lemma 2.4.3, provide a
sequence of ε-optimal strategies.

(III) If the problem data is as in Lemma 2.4.4 and K∞ = 0, then ζ? = 0 is an optimal
strategy.

(IV) If the problem data is as in Lemma 2.4.4 and K∞ > 0, then there exists no optimal
strategy. In this case, if γ is an arbitrary point in ]0,∞[ and (εn) is any sequence such that
ε−1

1 > γ and limn↑∞ ε
−1
n = ∞, then the β-γ strategies characterised by the points β = ε−1

n

and γ provide a sequence of ε-optimal strategies.

Proof. Fix any initial value x > 0, consider any admissible controlled process ζ ∈ A and
denote by Xζ the associated solution to the SDE (1.1). Using Itô’s formula, we obtain

e−ΛζTw(Xζ
T ) = w(x) +

∫ T

0

e−ΛζtLw(Xζ
t ) dt+

∑
0≤t≤T

e−Λζt
(
w(Xζ

t )− w(Xζ
t−)
)
1{∆ζt>0} +M ζ

T ,

where

M ζ
T =

∫ T

0

e−Λζtσ(Xζ
t )w′(Xζ

t ) dWt.

Since ∆Xζ
t ≡ Xζ

t −X
ζ
t− = −∆ζt ≤ 0, we can see that

w(Xζ
t )− w(Xζ

t−) +

∫ ∆ζt

0

k(Xζ
t− − u) du− c1{∆ζt>0}

=

(∫ Xζ
t−

Xζ
t−−∆ζt

(
k(u)− w′(u)

)
du− c

)
1{∆ζt>0}.

In view of these observations and the fact that w satisfies the HJB equation (2.59), we derive∫ T

0

e−Λζth(Xζ
t ) dt+

∑
t∈[0,T ]

e−Λζt

(∫ ∆ζt

0

k(Xζ
t− − u) du− c1{∆ζt>0}

)

= w(x)− e−ΛζTw(Xζ
T ) +

∫ T

0

e−Λζt

(
Lw(Xζ

t ) + h(Xζ
t )
)

dt

+
∑

0≤t≤T

(
e−Λζt

∫ Xζ
t−

Xζ
t−−∆ζt

(
k(u)− w′(u)

)
du− c

)
1{∆ζt>0} +M ζ

T

≤ w(x)− e−ΛζTw(Xζ
T ) +M ζ

T . (2.92)
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We next consider any sequence (τn) of bounded localising times for the local martingale
M ζ . Recalling Assumption 2.4.(ii) as well as the fact that h and w are both bounded from
below, we use Fatou’s lemma, the monotone convergence theorem and the admissibility
condition (2.5) to observe that (2.92) implies that

Jx(ζ) ≤ lim inf
n↑∞

Ex

[∫ τn

0

e−Λζth(Xζ
t ) dt+

∑
t∈[0,τn]

e−Λζt

(∫ ∆ζt

0

k(Xζ
t− − u) du− c1{∆ζt>0}

)]

≤ lim
n↑∞

Ex
[
w(x) + e−Λζτnw−(Xζ

τn)
]

= w(x), (2.93)

where w−(x) = −min
{

0, w(x)
}

.

Proof of (I). First, consider any x ∈ ]0, β[. In view of the results in Theorem 2.3.1, the
β-γ strategy ζ? characterised by the points β? and γ? is such that

Jx(ζ
?) = Rh(x) +

ψ(x)

ψ(β?)− ψ(γ?)

(
Rh(γ

?)−Rh(β
?) +

∫ β?

γ?
k(s) ds− c

)
. (2.94)

On the other hand, the identity F (γ?, β?) = −c and the definition (2.70) of F imply that

R′Θ(β?)

ψ′(β?)
=
RΘ(β?)−RΘ(γ?) + c

ψ(β?)− ψ(γ?)
.

In view of the identity (2.66), this expression is equivalent to

R′Θ(β?)

ψ′(β?)
=

1

ψ(β?)− ψ(γ?)

(
Rh(β

?)−Rh(γ
?)−

∫ β?

γ?
k(s) ds+ c+ K∞

(
ψ(β?)− ψ(γ?)

))
.

However, this result, the definition (2.81) of w and (2.94) imply that Jx(ζ
?) = w(x), which,

combined with (2.93), establishes (2.91) as well as the optimality of ζ?. The corresponding
claims for x ≥ β are immediate.

Proof of (II). In this case, the identity F (0, β◦) = −c implies that the sequence (cn)
defined by cn = −F (εn, β

◦) is such that limn↑∞ cn = c. By following reasoning similar to the
one in the previous part of the proof, we can see that, given any x ∈ ]0, β[, the β-γ strategy
ζεn characterised by the points β = β◦ and γ = εn is such that

Jx(ζ
εn) = w(x)− (c− cn)ψ(x)

ψ(β◦)− ψ(εn)
,

and the required results follow.

Proof of (III). This case follows immediately from (2.93) and the probabilistic expression
of Rh as in (2.21).

Proof of (IV). In view of the results in Theorem 2.3.1, the β-γ strategy ζεn characterised
by the points β = ε−1

n and γ is such that

Jx(ζ
εn) = Rh(x) +

ψ(x)

ψ(ε−1
n )− ψ(γ)

(
Rh(γ)−Rh(ε

−1
n ) +

∫ ε−1
n

γ

k(s) ds− c
)
.
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Combining this observation with the second limit in (2.23) and the definition (2.67) of K∞,
we can see that limn↑∞ Jx(ζ

εn) = Rh(x) +K∞ψ(x). However, this limit and (2.93) imply the
required results. �

Remark 2.1 Suppose that we enlarged the family of admissible strategies to allow for
switching the system off. In particular, suppose that we allowed for the controlled pro-
cess Xζ to hit 0 at some time and be absorbed by 0 after that time. In this context, we
would face the HJB equation

max

{
Lw(x) + h(x), −c+ sup

z∈[0,x[

∫ x

x−z

(
k(s)− w′(s)

)
ds,

−w(0)− c+
h(0)

r(0)
+

∫ x

0

(
k(s)− w′(s)

)
ds

}
= 0, (2.95)

where we assume that both of the limits h(0) := limx↓0 h(x) and r(0) := limx↓0 r(x) exist in R,
instead of just the limit limx↓0 h(x)/r(x). The third term of this HJB equation incorporates
the inequality

w(x) ≥ −c+

∫ x

0

k(s) ds+

∫ ∞
0

e−r(0)sh(0) ds

that should hold with equality for those values x of the state space at which it is optimal to
switch off the system.

In view of the second limit in (2.10) and Lemma 2.2.1.(ii), if 0 is a natural boundary
point, then, in all of the cases appearing in Lemmas 2.4.2-2.4.4,

w(0) = Rh(0) =
h(0)

r(0)

and the inequality associated with the third term of (2.95) follows from the one associated
with the second term of (2.95). In view of this observation, we can see that the results of
Theorem 2.4.5 hold true with the following modification: in Case II, the β-0 strategy that
switches off the system as soon as the uncontrolled process X takes any value greater than
or equal to β = β◦ is optimal. In Case IV of the theorem, an optimal strategy still does not
exist.

The situation is entirely different if 0 is an entrance boundary point. In this case, The-
orem 2.4.5 with a modification such as the one in the previous paragraph still provides the
solution to the control problem if the problem data is such that the solution w to the HJB
equation (2.59) satisfies the inequality w(0) ≥ h(0)/r(0). In Example 2.8 in the next section,
we can see that this inequality may or may not be true. In particular, a β-0 strategy that
may switch the system off can indeed be optimal and be associated with a payoff that is
strictly greater than the value function derived in Theorem 2.4.5. Investigating the solu-
tion to the control problem if we allowed for the system to be switched off would require
substantial extra analysis that goes beyond the scope of the present article. �
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2.5 Examples

The first four examples that we consider in this section present choices for the problem data
that satisfy our assumptions. In these examples, the functions r and k are strictly positive
constants, so the function Θ introduced in Assumption 2.4 takes the form

Θ(x) = h(x) + kb(x)− rkx.

Furthermore, limx↑∞Θ(x) = −∞ in each of the Examples 2.1-2.4, which implies that x <∞
thanks to Lemma 2.2.4.(ii), where x ∈ ]ξ,∞] is as in Lemma 2.2.4.(i).

Example 2.1 Suppose that the uncontrolled dynamics of the state process are modelled by
the SDE

dXt = bXt dt+ σXt dWt, X0 = x > 0, (2.96)

for some constants b and σ > 0. Furthermore, if r > b and h is any bounded from below
strictly concave function such that

lim
x↓0

h′(x) > k(r − b) and lim
x↑∞

h′(x) = 0,

then Θ is strictly concave and satisfies the requirements of Assumption 2.4.

Example 2.2 Suppose that the uncontrolled dynamics of the state process are modelled by
the SDE

dXt = κ(γ−Xt)Xt dt+ σX`
t dWt, X0 = x > 0,

for some strictly positive constants κ, γ, σ and ` ∈ [1, 3
2
]. Note that the celebrated stochastic

Verhulst-Pearl logistic model of population growth arises in the special case ` = 1. Assump-
tions 2.1-2.3 hold true if ` ∈ ]1, 3

2
] or if ` = 1 and kγ − 1

2
σ2 > 0. Furthermore, if h is any

bounded from below concave function such that

lim
x↓0

h′(x) > k(r − κγ),

then Θ is strictly concave and satisfies the requirements of Assumption 2.4. �

Example 2.3 Suppose that the uncontrolled dynamics of the state process are modelled by
the SDE

dXt =

(
κγ +

1

2
σ2 − κ ln(Xt)

)
Xt dt+ σXt dWt, X0 = x > 0,

for some constants κ,γ,σ > 0, namely, the logarithm of the uncontrolled state process is the
Ornstein-Uhlenbeck process given by

d ln(Xt) = κ
(
γ− ln(Xt)

)
dt+ σ dWt, ln(X0) = ln(x) ∈ R.

Furthermore, if h is any bounded from below concave function, then Θ is strictly concave
and satisfies the requirements of Assumption 2.4. �
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Example 2.4 Suppose that the uncontrolled dynamics of the state process are modelled by
the SDE

dXt = κ(γ−Xt) dt+ σX`
t dWt, X0 = x > 0,

for some strictly positive constants κ, γ, σ and ` ∈ [1
2
, 1]. Note that, in the special case that

arises for ` = 1
2

and κγ− 1
2
σ2 > 0, the process X identifies with the short rate process in the

Cox-Ingersoll-Ross interest rate model. Assumptions 2.1-2.3 hold true if ` ∈ ]1
2
, 1] or if ` = 1

2

and kγ − 1
2
σ2 > 0. Furthermore, if h is any bounded from below strictly concave function

such that
lim
x↓0

h′(x) > k(r + κ) and lim
x↑∞

h′(x) = 0,

then Θ is strictly concave and satisfies the requirements of Assumption 2.4. �

The next three examples illustrate the four different cases that appear in Theorem 2.4.5,
our main result. In the next three ones, X is the geometric Brownian motion that is given
by (2.96). In this context, it is well-known that

ϕ(x) = xm, ψ(x) = xn and p′(x) = xm+n−1,

where the constants m < 0 < n are given by

m,n =
1

2
− b

σ2
∓

√(
1

2
− b

σ2

)2

+
2r

σ2
,

while the constant C defined by (2.13) is equal to n−m. Furthermore, the identities

mn = −2r

σ2
and m+ n = 1− 2b

σ2

hold true, while
r < b ⇔ 0 < n < 1 and b = r ⇔ 1 = n.

Example 2.5 Suppose that r > b and consider the functions

h(x) = xα and k(x) = 1, for x > 0,

where α ∈ ]0, 1[ is a constant. In this case, the function Θ defined by (2.18) is given by

Θ(x) = xα − (r − b)x,

and all of the conditions in Assumption 2.4 hold true. Furthermore,

RΘ(x) =
2

σ2(α−m)(n− α)
xα − x,
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which implies that

lim
x↓0

R′Θ(x)

ψ′(x)
= lim

x↓0

(
2α

σ2n(α−m)(n− α)
xα−n − 1

n
x1−n

)
=∞

because m < 0 < α < 1 < n. In view of Lemmas 2.2.4 and 2.4.1, we can see that

x < x̄ = c? =∞.

Therefore, a β-γ strategy is optimal (Case I of Theorem 2.4.5) for all c > 0. �

Example 2.6 Suppose that r + b − σ2 > 0 ⇔ m < −1 and b > r. Also, consider the
functions

h(x) =

{
−αx, if x ∈ ]0, 1[,

−α, if x ≥ 1,
and k(x) =

{
3− 2x, if x ∈ ]0, 1[,

x−2, if x ≥ 1,

for some constant α ∈
]
−∞, 3(b− r)

[
. In this case,

Θ(x) =

{
(r − 2b− σ2)x2 + (3b− 3r − α)x, if x ∈ ]0, 1[,

(r + b− σ2)x−1 − 3r − α, if x ≥ 1,

and all of the conditions in Assumption 2.4 hold true. In view of the assumption that
m < −1 and the identity in (2.45), we can see that limx↑∞QΘ(x) = ∞, which implies that
x <∞ thanks to Lemma 2.2.4.(ii). Furthermore,

RΘ(x) = Rh(x)−
∫ x

0

k(s) ds =

{
x2 +

(
α
b−r − 3

)
x− 2α

σ2(n−m)n(1−n)
xn, if x ∈ ]0, 1[,

−α
r
− 3 + x−1 − 2α

σ2(n−m)m(1−m)
xm, if x ≥ 1,

which implies that

lim
x↓0

R′Θ(x)

ψ′(x)
= − 2α

σ2(n−m)n(1− n)
∈
]
− 6(b− r)
σ2(n−m)n(1− n)

,∞
[
.

In view of Lemmas 2.2.4, 2.4.1, 2.4.3 and 2.4.4, we can see that, if α ≤ 0, then

x̄ =∞, and c? ∈ ]0,∞[,

while, if α ∈
]
0, 3(b− r)

[
, then

x̄ <∞ and 0 < c? < c◦ = 3 +
α

r
.

If α ≤ 0 and c ∈ ]0, c?[, then a β-γ strategy is optimal (Case I of Theorem 2.4.5), while, if
α ≤ 0 and c ≥ c?, then no intervention at all is optimal (Case III of Theorem 2.4.5). On
the other hand, if α ∈

]
0, 3(b− r)

[
, then any of the Cases I, II or III of Theorem 2.4.5 arises

depending on whether 0 < c < c?, c? ≤ c < 3 + α
r

or c ≥ 3 + α
r

is the case, respectively. �
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Example 2.7 Suppose that b = r > 1
2
σ2, which implies that m < −1 and n = 1. Also,

consider the functions

h(x) =

{
axα, if x ∈ ]0, 1[,

a, if x ≥ 1,
and k(x) =

{
4− 2x, if x ∈ ]0, 1[,

x−2 + 1, if x ≥ 1,

for some constants α ∈ ]1, 2] and a ∈
]
0, 3

2
(2b + σ2)(1 − 1

α
) ∨ 3r

[
. In this case, all of the

conditions in Assumption 2.4 hold true,

lim
x↑∞

ψ−1(x)

∫ ∞
0

k(s)ds = 1, Θ(x) =

{
(r − 2b− σ2)x2 + axα, if x ∈ ]0, 1[,

(r + b− σ2)x−1 − 3r + a, if x ≥ 1,

and RΘ(x) =

{
x2 + 2a

σ2(n−α)(α−m)
xα −

(
3 + 2aα

σ2(n−m)n(n−α)

)
x, if x ∈ ]0, 1[,

a
r
− 3 + x−1 + 2aα

σ2(n−m)m(α−m)
xm, if x ≥ 1.

Furthermore,

lim
x↓0

R′Θ(x)

ψ′(x)
= −3 +

2aα

(2b+ σ2)(α− 1)
< 0.

In view of Lemmas 2.2.4, 2.4.1, 2.4.3 and 2.4.4, we can see that

x < x̄ <∞ and 0 < c? < c◦ = 3− a

r
.

Any of the Cases I, II or IV of Theorem 2.4.5 may arise, depending on whether 0 < c < c?,
c? ≤ c < 3− a

r
or c ≥ 3− a

r
is the case, respectively. �

The next example shows that (2.26) in Example 2.2.1 is not necessarily true if 0 is an en-
trance boundary point. Furthermore, it shows that β-0 strategies would be an indispensable
part of the optimal tactics if we allowed for switching off the system and 0 were an entrance
boundary point (see Remark 2.1 at the end of the previous section).

Example 2.8 Suppose that X is the mean-reverting square-root process that is given by

dXt = α(2−Xt) dt+
√

2αXt dWt, X0 = x > 0,

for some constant α > 0. Also, suppose that

r(x) = α, h(x) =

{
ex − 1, if x ∈ ]0, 1[,

e− eγ+3 − 1 + eγx+3, if x ≥ 1,
and k(x) = κ, for x > 0,

for some constants γ < 0 and κ ∈
]
0, 1

2α

[
. In this case,

ϕ(x) =
1

x
, ψ(x) =

ex − 1

x
and p′(x) =

1

x2
ex−1.
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In particular, 0 is an entrance boundary point. The function Θ defined by (2.18) is given by

Θ(x) =

{
2ακ− 1− 2ακx+ ex, if x ∈ ]0, 1[,

2ακ+ e− eγ+3 − 1− 2ακx+ eγx+3, if x ≥ 1,

all of the conditions in Assumption 2.4 hold true,

lim
x↓0

Rh(x) =
1

α

(
1 +

γ

1− γ
eγ+2

)
=:

1

α
f(γ) and lim

x↓0

R′Θ(x)

ψ′(x)
=

1

α
f(γ)− 2κ.

The function f is strictly decreasing in the interval
]
−∞, (1−

√
5)/2

[
, strictly increasing in

the interval
]
(1−

√
5)/2, 0

[
,

lim
γ↓−∞

f(γ) = 1, f

(
1−
√

5

2

)
= 1− 1

2

(
3−
√

5
)
e(5−

√
5)/2 < 0 and f(0) = 1.

Therefore, there exist constants (1 −
√

5)/2 < γ1 < γ2 < 0 such that f(γ) < 0 for all
γ ∈

[
(1 −

√
5)/2, γ1

[
and f(γ) ∈ ]0, 2ακ[ for all γ ∈ ]γ1, γ2[. In view of these observations,

we can see that

lim
x↓0

Rh(x) 6= 0 = lim
x↓0

h(x)

r(x)
for all γ ∈

[
(1−

√
5)/2, γ1

[
\ {γ2}, (2.97)

which shows that (2.26) in Lemma 2.2.1 is not in general true if 0 is an entrance boundary
point. On the other hand, Lemma 2.2.4 implies that, if γ ∈

[
(1−

√
5)/2, γ1

[
, then 0 < x <

x̄ <∞ and we are in the context of Lemma 2.4.3 with c◦ =∞. In this context, (2.87) yields
the expression

w(0) = lim
x↓0

w(x) =
1

α
f(γ)− R′Θ(β◦)

ψ′(β◦)
.

In view of (2.39) in Lemma 2.2.4, (2.86) in Lemma 2.4.3, Remark 2.1 and the analysis thus
far, we can see the following:
(a) If γ ∈ ]γ1, 0[, then w(0) > 0 = h(0)/r(0) and a β-0 strategy would be strictly sub-optimal.
(b) If γ ∈

]
(1 −

√
5)/2, γ1

[
, then w(0) < 0 = h(0)/r(0) for all c sufficiently large, in which

case, a β-0 strategy would be optimal. �

Our final example shows that the conditions in (2.41) are only sufficient for the point x
introduced in part (i) of Lemma 2.2.4 to be finite.

Example 2.9 Suppose that X is the geometric Brownian motion that is given by (2.96)
with b = 1

4
and σ = 1√

2
. Also, suppose that r = 1, so that m = −2, n = 2 and C ≡ n−m = 4.

The functions defined by

k(x) =

{
6− 5x, if x ≤ 1,

x−5, if x > 1,
and h(x) =

{
7x, if x ≤ 1,

6 + x−4, if x > 1,
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are such that

Θ(x) =

{
5
2
x, if x ≤ 1,

9
4

+ 1
4
x−4, if x > 1,

and the function QΘ defined by (2.40) satisfies limx↑∞QΘ(x) = −1
6
. In this case, the nec-

essary and sufficient condition of Lemma 2.2.4.(ii) implies that x =∞. On the other hand,
the functions defined by

k(x) =

{
6− 5x, if x ≤ 1,

x−5, if x > 1,
and h(x) =

{
5x, if x ≤ 1,

4 + x−4, if x > 1,

are such that

Θ(x) =

{
1
2
x, if x ≤ 1,

1
4

+ 1
4
x−4, if x > 1,

and the function QΘ defined by (2.40) satisfies limx↑∞QΘ(x) = 1
6
. In this case, the necessary

and sufficient condition of Lemma 2.2.4.(ii) implies that x <∞. �



Chapter 3

Singular stochastic control problems
motivated by the optimal sustainable
exploitation of an ecosystem

The chapter is organised as follows. In Section 3.1, we introduce the singular stochastic
control problems that we solve and present three examples satisfying the assumptions that
we make. In Sections 3.2–3.4, we derive the solutions to the problems’ HJB equations that
characterises the optimal strategy by solving suitable free-boundary problems. We fully
characterise the solution to all the control problems in Section 3.5. Finally, we establish the
Abelian limits in Section 3.6.

3.1 Problem formulation

In this chapter, we consider a biological system, the uncontrolled stochastic dynamics of
which are also modelled by the SDE (2.1), for some deterministic functions b, σ : ]0,∞[→ R.
We make some similar assumptions as in Section 2.1, but with additional smooth require-
ments.

Assumption 3.1 The function b is C1 and the limit b(0) := limx↓0 b(x) exists in R. On the
other hand, the function σ is C1, the limit σ(0) := limx↓0 σ(x) exists in R and

0 < σ2(x) ≤ C1(1 + xη) for all x > 0, (3.1)

for some constant C1, η > 0.

This assumption implies that the scale function p given by (2.2) and the speed measure
m given by (2.3) of the diffusion associated with the SDE (2.1) are well-defined. We also
make the following assumption, which, together with Assumption 3.1, implies that the SDE
(2.1) has a unique non-explosive strong solution (e.g., see Karatzas and Shreve [52, Propo-
sition 5.5.22]).

46
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Assumption 3.2 The scale function p and the speed measure m defined by (2.2) and (2.3)
satisfy

lim
x↓0

p(x) = −∞, lim
x↑∞

p(x) =∞ and m
(
]0, 1[

)
<∞.

For the solution to the ergodic control problems, we need the following additional assumption,
which implies that the diffusion associated with the SDE (2.1) is ergodic.

Assumption 3.3 The integrability condition∫ ∞
0

(
sη + 1

)
m(ds) <∞

holds true, where η > 0 is as in (3.1).

If the system is subject to harvesting, then its state process X satisfies the controlled
one-dimensional SDE (1.1).

Definition 3.1 An admissible harvesting strategy is any (Ft)-adapted process ζ with càdlàg
increasing sample paths such that ζ0− = 0 and the SDE (1.1) has a unique non-explosive
strong solution. We denote by A the family of all admissible strategies.

With each admissible harvesting strategy ζ ∈ A, we associate the expected discounted
performance index Ix(ζ) given by (1.4), the expected ergodic performance index Je

x given by
(1.5) and the pathwise performance criterion Jp

x given by (1.6). The objective of the control
problem that we consider is to maximise each of Ix(ζ), Je

x(ζ) and Jp
x (ζ) over all ζ ∈ A.

Assumption 3.4 (i) The function h is C1 as well as bounded from below and the limit
h(0) := limx↓0 h(x) exists in R.

(ii) The function k is positive, bounded and C2. Also, the limits k(0) := limx↓0 k(x) and
k′(0) := limx↓0 k

′(x) both exists in R+.

For the discounted control problem, we make the following additional assumption.

Assumption 3.5 (i) The discounting rate function r is bounded and C1. Also, there exists
r0 > 0 such that r(x) ≥ r0 for all x ≥ 0.

(ii) The limit limx↓0 h(x)/r(x) exists in R and

Ex
[∫ ∞

0

e−Λt
∣∣h(Xt)

∣∣ dt] <∞.
(iii) The conditions in (2.16) hold true.

(iv) The limit limx↓0 K(x)/r(x) exists in R, where K is given by (2.17), and there exists a
constant ξ ∈ ]0,∞[ such that

d

dx

Θ(x)

r(x)

{
> 0, for x ∈ ]0, ξ[,

< 0, for x ∈ ]ξ,∞[,
and lim

x↑∞

Θ(x)

r(x)
<

Θ(0)

r(0)
,

where Θ is defined by (2.18).
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For the ergodic control problems, we make the following additional assumption.

Assumption 3.6 (i) The following integrability condition is satisfied:∫ ∞
0

|h(s)|m(ds) <∞.

(ii) If we define

K(x) =
1

2
σ2(x)k′(x) + b(x)k(x), for x > 0, (3.2)

then there exists a constant ξ ∈ ]0,∞[ such that

K ′(x) + h′(x)

{
> 0, for x ∈ ]0, ξ[,

< 0, for x ∈ ]ξ,∞[,
and lim

x↑∞

(
K(x) + h(x)

)
< K(0) + h(0).

Remark 3.1 In the presence of Assumptions 3.2 and 3.4.(ii), the definitions of the scale
function p and the speed measure m imply that∫ x

0

b(s)k(s)m(ds) =

∫ x

0

k(s)

(
1

p′

)′
(s) ds =

k(x)

p′(x)
− 1

2

∫ x

0

σ2(s)k′(s)m(ds).

In turn, these identities and the definition (3.2) of K imply that∫ x

0

K(s)m(ds) =
k(x)

p′(x)
. (3.3)

Remark 3.2 In view of Assumption 3.6.(ii), we define

λ = lim
x↑∞

K(x) + h(x) and λ = K(ξ) + h(ξ), (3.4)

and we note that the equation K(x) + h(x)− λ = 0 has
- no strictly positive solutions if λ > λ,
- two strictly positive solutions if λ ∈

]
K(0) + h(0), λ

[
, and

- one strictly positive solution if λ ∈
]
λ, K(0) + h(0)

]
or λ = λ

(see also Figure 3.1). In particular, there exists a unique function % such that

ξ < %(λ) and K
(
%(λ)

)
+ h
(
%(λ)

)
− λ = 0 for all λ ∈ ]λ, λ[. (3.5)

Furthermore, this function is such that

K(x) + h(x)− λ

{
> 0, for all x ∈

[
ξ, %(λ)

[
,

< 0, for all x > %(λ),
(3.6)

and
K ′
(
%(λ)

)
+ h′

(
%(λ)

)
< 0 for all λ ∈ ]λ, λ[. (3.7)
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Figure 3.1: Notation associated with the graph of the function K(·) + h(·).

On the other hand, there is a unique function ρ such that

0 < ρ(λ) < ξ and K
(
ρ(λ)

)
+ h
(
ρ(λ)

)
− λ = 0 for all λ ∈

]
K(0) + h(0), λ

[
. (3.8)

Given any λ ∈
]
K(0) + h(0), λ

[
, this function is such that

K(x) + h(x)− λ < 0 for all x ∈
]
0, ρ(λ)

[
. (3.9)

We conclude this section with the following three examples.

Example 3.1 Suppose that the uncontrolled dynamics of the state process are modelled by
the SDE

dXt = κ(γ−Xt)Xt dt+ σX`
t dWt, X0 = x > 0,

for some strictly positive constants κ, γ, σ and ` ∈ [1, 3
2
]. Note that the celebrated stochastic

Verhulst-Pearl logistic model of population growth arises in the special case ` = 1. The
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derivative of the scale function admits the expression

p′(x) = x−2κγ/σ2

exp

(
2κ

σ2
(x− 1)

)
, if ` = 1,

p′(x) = exp

(
κγ

(`− 1)σ2

[
x−2(`−1) − 1

]
+

2κ

(3− 2`)σ2

[
x3−2` − 1

])
, if ` ∈ ]1, 1.5[,

and p′(x) = x2κ/σ2

exp

(
2κγ

σ2
(x−1 − 1)

)
, if ` = 1.5.

Assumptions 3.1–3.3 hold true if ` ∈ ]1, 3
2
] or if ` = 1 and κγ − 1

2
σ2 > 0. Furthermore, if

r, k are constant and either (a) h = 0 and r < κγ, or (b) h is a strictly concave function
satisfying the Inada conditions

lim
x↓0

h′(x) =∞ and lim
x↑∞

h′(x) = 0, (3.10)

as well as the inequality h(0) > −∞, then all of the conditions in Assumptions 3.4–3.6 are
satisfied.

Example 3.2 Suppose that the uncontrolled dynamics of the state process are modelled by
the SDE

dXt =

(
κγ +

1

2
σ2 − κ ln(Xt)

)
Xt dt+ σXt dWt, X0 = x > 0,

for some constants κ,γ,σ > 0, namely, the logarithm of the uncontrolled state process is the
Ornstein-Uhlenbeck process given by

d ln(Xt) = κ
(
γ− ln(Xt)

)
dt+ σ dWt, ln(X0) = ln(x) ∈ R.

In this case, the derivative of scale function admits the expression

p′(x) = x
κ

σ2 ln(x)− 2κγ

σ2 −1

and all of Assumptions 3.1–3.3 hold true. Furthermore, if r, k are constant and either h = 0
or h is a strictly concave function satisfying the Inada conditions (3.10), as well as the
inequality h(0) > −∞, then all of the conditions in Assumptions 3.4–3.6 are satisfied.

Example 3.3 Suppose that the uncontrolled dynamics of the state process are modelled by
the SDE

dXt = κ(γ−Xt) dt+ σX`
t dWt, X0 = x > 0,

for some strictly positive constants κ, γ, σ and ` ∈ [1
2
, 1]. Note that, in the special case that

arises for ` = 1
2

and κγ − 1
2
σ2 > 0, the process X identifies with the short rate process in
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the Cox-Ingersoll-Ross interest rate model. The derivative of the scale function admits the
expression

p′(x) = x−2κγ/σ2

exp

(
2κ

σ2
(x− 1)

)
, if ` = 0.5,

p′(x) = exp

(
2κγ

(2`− 1)σ2

(
x−(2`−1) − 1

)
+

κ

(1− `)σ2

(
x2(1−`) − 1

))
, if ` ∈ ]0.5, 1[,

and p′(x) = x2κ/σ2

exp

(
2κγ

σ2
(x−1 − 1)

)
, if ` = 1.

Assumptions 3.1–3.3 hold true if ` ∈ ]1
2
, 1] or if ` = 1

2
and kγ− 1

2
σ2 > 0. Furthermore, if r,

k are constant and h is any strictly concave function satisfying the Inada conditions (3.10),
as well as the inequality h(0) > −∞, then all of the conditions in Assumptions 3.4–3.6 are
satisfied.

3.2 The HJB equations of the control problems

We will solve the discounted control problem by deriving a suitable C2 solution w to the
HJB equation

max

{
Lw(x) + h(x), k(x)− w′(x)

}
= 0, (3.11)

where L is the differential operator defined by (2.6), that identifies with the control prob-
lem’s value function. In particular, we will construct a solution to this HJB equation such
that

sup
ζ∈A

Ix(ζ) = w(x) for all x > 0.

On the other hand, we will solve both of the ergodic control problems by constructing a C2

function w and finding a constant λ such that the HJB equation

max

{
1

2
σ2(x)w′′(x) + b(x)w′(x) + h(x)− λ, k(x)− w′(x)

}
= 0 (3.12)

holds true for all x > 0. Given such a solution, we will prove that

sup
ζ∈A

Je
x(ζ) = λ and sup

ζ∈A
Jp
x (ζ) = λ for all x > 0.

Given suitable solutions to the HJB equations, the optimal strategies can be characterised
as follows. In the discounted control problem, the controller should wait and take no action
for as long as the state process X takes values in the interior of the set in which the ODE

Lw(x) + h(x) = 0 (3.13)
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is satisfied. On the other hand, the “no-action” region of the ergodic control problems is the
interior of the set in which the ODE

1

2
σ2(x)w′′(x) + b(x)w′(x) + h(x)− λ = 0 (3.14)

is satisfied. In all problems, the controller should take the minimal action required so that
the state process is kept outside the interior of the set defined by w′(x) = k(x) at all times.

We are going to establish that, in all of the problems that we consider, the optimal
strategy takes the following qualitative form. There exists a point β in the state space ]0,∞[
such that it is optimal to push in an impulsive way the state process down to level β if the
initial state x is strictly greater than β and otherwise take minimal action so that the state
process X is kept inside the set ]0, β] at all times, which amounts at reflecting X in β in
the negative direction. In view of the discussion in the previous paragraph, the optimality
of such a strategy is associated with a solution w to the HJB equation (3.11) such that

Lw(x) + h(x) = 0, for x ∈ ]0, β[,

w′(x) = k(x), for x ∈ [β,∞[,

and a solution (w, λ) to the HJB equation (3.12) such that

1

2
σ2(x)w′′(x) + b(x)w′(x) + h(x)− λ = 0, for x ∈ ]0, β[,

w′(x) = k(x), for x ∈ [β,∞[.

In both cases, we will determine the free-boundary point β using the so-called “smooth
pasting condition” of singular stochastic control, which requires that w should be C2, in
particular, at the free-boundary point β. This condition suggests the free-boundary equations

lim
x↑β

w′(x) = k(β) and lim
x↑β

w′′(x) = k′(β). (3.15)

3.3 The solution to the discounted harvesting problem

In view of the arguments in Section 2.4, we consider the solution to the ODE (3.13) that is
given by

w(x) =

∫ x

0

k(s) ds+RΘ(x)− R′Θ(β)

ψ′(β)
ψ(x)

= Rh(x) +

(
K∞ −

R′Θ(β)

ψ′(β)

)
ψ(x), for x ∈ ]0, β]. (3.16)

Furthermore, this function satisfies the second boundary condition in (3.15) if and only if
β > 0 is a solution to the algebraic equation

R′′Θ(β)− R′Θ(β)

ψ′(β)
ψ′′(β) = 0. (3.17)
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Lemma 3.3.1 Consider the discounted control problem formulated in Section 3.1. There
exists a unique point β? ∈ ]ξ,∞[ satisfying equation (3.17), which is equivalent to∫ β

0

Θ(s)Ψ(s) ds =
Θ(β)

r(β)

∫ β

0

r(s)Ψ(s) ds. (3.18)

Furthermore, the function w defined by

w(x) =

{
Rh(x) +

(
K∞ −

R′Θ(β?)

ψ′(β?)

)
ψ(x), for x ∈ ]0, β?],

w(β?) +
∫ x
β?
k(s) ds, for x ∈ ]β?,∞[,

(3.19)

is a C2 solution to the HJB equation (3.11) that is bounded from below.

Proof. In the presence of the assumptions that we have made, Lemma 2.2.4.(i) shows that
that there exists a unique point β? = x ∈ ]ξ,∞[ such that

d

dx

R′Θ(x)

ψ′(x)

{
< 0 for all x ∈ ]0, β?[,

> 0 for all x ∈ ]β?,∞[,
and lim

x↑∞

R′Θ(x)

ψ′(x)
= 0.

The first set of these inequalities and the continuity of the derivative (R′Θ/ψ
′)′ imply that β?

is the unique solution to equation (3.17). To establish the equivalence of (3.17) and (3.18),
we use (2.37) to see that that (3.17) is equivalent to∫ β

0

Θ(s)Ψ(s) ds =
Θ(β)

r(β)

ψ′(β)

Cp′(β)
.

Combining this observation with (2.31), we obtain the equivalence of (3.17) and (3.18).
The rest results are straightforward by using arguments similar to the ones in Lemma 2.4.2.

�

Theorem 3.3.2 Consider the discounted control problem formulated in Section 3.1. If the
point β? ∈ ]ξ,∞[ and the function w are as in Lemma 3.3.1, then

w(x) = sup
ζ∈A

Jx(ζ) for all x > 0, (3.20)

while the harvesting strategy ζ? ∈ A that has a jump of size ∆ζ?0 = (x− β?)+ at time 0 and
then reflects the state process X? at the level β? in the negative direction is optimal.

Proof. Fix any initial value x > 0, consider any admissible controlled process ζ ∈ A and
denote by Xζ the associated solution to the SDE (1.1). Using Itô’s formula, we obtain

e−ΛζTw(Xζ
T ) = w(x) +

∫ T

0

e−Λζt

(
1

2
σ2(Xζ

t )w′′(Xζ
t ) + b(Xζ

t )w′(Xζ
t )− r(Xζ

t )w(Xζ
t )

)
dt

−
∫

[0,T ]

e−Λζtw′(Xζ
t−) dζt +

∑
0≤t≤T

e−Λζt

(
w(Xζ

t )− w(Xζ
t−)− w′(Xζ

t−) ∆Xζ
t

)
+M ζ

T ,
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where

M ζ
T =

∫ T

0

e−Λζtσ(Xζ
t )w′(Xζ

t ) dWt.

Since ∆Xζ
t ≡ Xζ

t −X
ζ
t− = −∆ζt ≤ 0, we can see that

w(Xζ
t )− w(Xζ

t−) +

∫ ∆ζt

0

k(Xζ
t− − u) du =

∫ Xζ
t−

Xζ
t

(
k(u)− w′(u)

)
du.

In view of the facts that ζc is an increasing process, Xζ
t < Xζ

t− and w satisfies the HJB
equation (3.11), we can see that these observations imply that∫ T

0

e−Λζth(Xζ
t ) dt+

∫ T

0

e−Λζt k(Xζ
t ) ◦ dζt

= w(x)− e−ΛζTw(Xζ
T )

+

∫ T

0

e−Λζt

(
1

2
σ2(Xζ

t )w′′(Xζ
t ) + b(Xζ

t )w′(Xζ
t )− r(Xζ

t )w(Xζ
t ) + h(Xζ

t )

)
dt

+

∫ T

0

e−Λζt
(
k(Xζ

t )− w′(Xζ
t )
)

dζc
t +

∑
0≤t≤T

e−Λζt

∫ Xζ
t−

Xζ
t

(
k(u)− w′(u)

)
du+M ζ

T

≤ w(x)− e−ΛζTw(Xζ
T ) +M ζ

T . (3.21)

We next consider any sequence (τn) of bounded localising stopping times for the local
martingale M ζ . Recalling that h and w are both bounded from below, k is positive and ζ
is an increasing process, we use the dominated and the monotone convergence theorems to
observe that (3.21) implies that

Ix(ζ) = lim
n↑∞

Ex

[∫ τn

0

e−Λζth(Xζ
t ) dt+

∫ τn

0

e−Λζt k(Xζ
t ) ◦ dζt

]
≤ lim

n↑∞
Ex
[
w(x) + e−Λζτnw−(Xζ

τn)
]

= w(x), (3.22)

where w−(x) = −min
{

0, w(x)
}

.
Consider the harvesting strategy ζ? ∈ A that is as in the statement of the theorem: such

a strategy indeed exists (see Tanaka [84, Theorem 4.1]). This strategy is such that (3.21)
holds true with equality, namely,∫ T

0

e−Λ?th(X?
t ) dt+

∫ T

0

e−Λ?t k(X?
t ) ◦ dζ?t = w(x)− e−Λ?Tw(X?

T ) +M?
T .

Furthermore, the processes h(X?), k(X?) and w(X?) are all bounded because X?
t ∈ ]0, β?]

for all t > 0. In view of these observations, we can use the dominated convergence theorem
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to obtain

Ix(ζ
?) = lim

n↑∞
Ex

[∫ τ?n

0

e−Λ?th(X?
t ) dt+

∫ τ?n

0

e−Λ?t k(X?
t ) ◦ dζ?t

]
= lim

n↑∞
Ex
[
w(x)− e−Λ?

τ?nw
(
X?
τ?n

)]
= w(x),

where (τ ?n) is a sequence of bounded localising stopping times for the local martingale M?.
However, these identities and (3.22) imply (3.20) as well as the optimality of ζ?. �

3.4 The solution to the ergodic problem’s HJB equa-

tion

In view of (3.3) in Remark 3.1, we can verify that a solution to the ODE (3.14) is given by

w′(x) ≡ w′(x;λ) = p′(x)

∫ x

0

(
λ− h(s)

)
m(ds) = k(x)− p′(x)Ξ(x, λ), (3.23)

where

Ξ(x, λ) =

∫ x

0

(
K(s) + h(s)− λ

)
m(ds). (3.24)

This function satisfies the boundary conditions (3.15) if and only if

Ξ(β, λ) = 0 and K(β) + h(β)− λ = 0. (3.25)

In the next result, we derive a unique solution to the system of equations in (3.25) as well
as a solution to the HJB equation (3.12). It turns out that the solution to the HJB equation
(3.12) may be unbounded from below (see Remark 3.4 at the end of the section), which
gives rise to a non-trivial complication in the verification arguments we use for the proof of
Theorem 3.5.1. Part (III) of the next result provides a way to overcome this complication.

Proposition 3.4.1 In the presence of Assumptions 3.1, 3.2, 3.4 and 3.6, the following
statements hold true:

(I) There exists a unique pair (β?, λ?) with β? > 0 satisfying the system of equations (3.25).
This pair is such that

K(0) + h(0) < λ? =
1

m
(
]0, β?[

) ∫ β?

0

(
K(s) + h(s)

)
m(ds) < λ and β? = %(λ?), (3.26)

where λ and % are given by (3.4) and (3.5).

(II) The unique, modulo an additive constant, function w that is defined by

w′(x) =

{
k(x)− p′(x)Ξ(x, λ?), for x ∈ ]0, β?[,

k(x), for x ≥ β?,
(3.27)
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is a C2 solution to the HJB equation (3.12).

(III) Given any λ ∈ ]λ?, λ[, there exists a point α(λ) ∈
]
0, ρ(λ)

[
, where ρ is as in (3.8), such

that the unique, modulo an additive constant, function wλ that is defined by

w′λ(x) =

{
k(x)− p′(x)

∫ x
α(λ)

(
K(s) + h(s)− λ

)
m(ds), for x ∈

]
α(λ), %(λ)

[
,

k(x), for x ∈
]
0, α(λ)

]
∪
[
%(λ),∞

[
,

(3.28)
is C1 in R+ and C2 in R+ \

{
α(λ), %(λ)

}
,

lim
λ↓λ?

α(λ) = 0, lim
λ↓λ?

%(λ) = β? and lim
λ↓λ?

w′λ(x) = w′(x) for all x > 0. (3.29)

Furthermore, this function is such that

w′λ(x) ≥ k(x), if x ∈
]
α(λ), %(λ)

[
, (3.30)

1

2
σ2(x)w′′λ(x) + b(x)w′λ(x) + h(x)− λ

{
= 0, if x ∈

]
α(λ), %(λ)

[
,

< 0, if x ∈
]
0, α(λ)

[
∪
]
%(λ),∞

[
,

(3.31)

and
∣∣w′λ(x)

∣∣ ≤ C2 for all x > 0, (3.32)

for some constant C2 = C2(λ) > 0.

Proof. We develop the proof in four steps.

Preliminary results . Given any β > 0, the definition (3.24) of Ξ implies that

λ(β) =
1

m
(
]0, β[

) ∫ β

0

(
K(s) + h(s)

)
m(ds)

is the unique solution to the equation Ξ(β, λ) = 0. In light of Assumption 3.6.(ii) (see also
Figure 3.1), a straightforward inspection of the definition of Ξ reveals that this solution is
such that one of the following two cases holds true:

(i) K(0) + h(0) < λ(β) < λ or (ii) λ < λ(β) ≤ K(0) + h(0) and %
(
λ(β)

)
< β, (3.33)

where λ < λ are defined by (3.4) and % is introduced by (3.5). In particular, we note that
λ(β) ∈ ]λ, λ[, which is the domain of the function %.

Differentiating the identity

Ξ
(
β, λ(β)

)
= 0, for β > 0, (3.34)

which defines λ, with respect to β, we calculate

λ′(β) =
2

σ2(β)p′(β)m
(
]0, β[

)(K(β) + h(β)− λ(β)
)
.
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On the other hand, differentiating the identity

K
(
%
(
λ(β)

))
+ h
(
%
(
λ(β)

))
− λ(β) = 0,

which follows from (3.5), with respect to β, we derive the expression

λ′(β) =
(
K ′
(
%
(
λ(β)

))
+ h′

(
%
(
λ(β)

))) d

dβ
%
(
λ(β)

)
.

Combining these calculations, we obtain

d

dβ
%
(
λ(β)

)
=

2
(
K(β) + h(β)− λ(β)

)
σ2(β)p′(β)m

(
]0, β[

)(
K ′
(
%(λ(β))

)
+ h′

(
%(λ(β))

)) .
In view of this result and the inequality

K ′
(
%
(
λ(β)

))
+ h′

(
%
(
λ(β)

))
< 0 for all β > 0,

which follows from (3.7), we can see that

sgn

(
d

dβ
%
(
λ(β)

))
= − sgn

(
K(β) + h(β)− λ(β)

)
for all β > 0, (3.35)

where sgn is the sign function defined by

sgn(x) =

{
x
|x| , for x 6= 0,

0, for x = 0.

Proof of (I). In view of (3.34), we can see that there exists a pair (β?, λ?) with β? > 0
satisfying the system of equations (3.25) if and only if

K(β?) + h(β?)− λ? = 0 and λ? = λ(β?). (3.36)

The structure of the function K + h, which we have discussed in Remark 3.2 (see also
Figure 3.1), implies that there exists no β? satisfying (3.36) if λ(β?) is as in case (ii) of (3.33).
We therefore need to show that there exists β? > 0 such that, if we define λ? = λ(β?), then
λ? satisfies the inequalities (3.26), and

either β? = ρ
(
λ(β?)

)
= ρ(λ?) or β? = %

(
λ(β?)

)
= %(λ?), (3.37)

where %, ρ are as in (3.5), (3.8). Furthermore, the resulting solution (β?, λ?) to the system of
equations (3.25) is unique if and only if only one of the two equations in (3.37) has a unique
solution and the other one has no solution.

If the equation β = ρ
(
λ(β)

)
had a solution β? > 0, then (3.9) would imply that

K(s) + h(s)− λ(β?) < 0 for all s < ρ
(
λ(β?)

)
= β?,
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which would contradict the identity

Ξ
(
β?, λ(β?)

)
≡
∫ β?

0

(
K(s) + h(s)− λ(β?)

)
m(ds) = 0.

To establish part (I) of the theorem, we therefore have to prove that there exists a unique
point β? > 0 such that

λ(β?) ∈
]
K(0) + h(0), λ

[
and β? = %

(
λ(β?)

)
. (3.38)

To prove that there exists a unique β? > 0 satisfying (3.38), we first observe that the
inequality in (3.5) implies that

β < %
(
λ(β)

)
for all β ≤ ξ. (3.39)

We next argue by contradiction and we assume that there is no β? > 0 satisfying the equation
in (3.38). In view of (3.39) and the continuity of the functions % and λ, we can see that such
an assumption implies that

β < %
(
λ(β)

)
for all β > ξ. (3.40)

In turn, this inequality and (3.6) imply that

K(β) + h(β)− λ(β) > 0 for all β > ξ.

Combining this observation with (3.35), we obtain d
dβ
%
(
λ(β)

)
< 0 for all β > ξ. Therefore,

d

dβ

(
β − %

(
λ(β)

))
> 1 for all β > ξ,

which contradicts (3.40). It follows that there exists β? > 0 satisfying the equation in (3.38).
To see that the solution β? > ξ to the equation in (3.38) is indeed unique, we note that

(3.5) implies that K(β) + h(β) − λ(β) = 0 for all β > ξ such that β = %
(
λ(β)

)
. This

observation and (3.35) imply

d

dβ

(
β − %(β)

)
= 1 for all β > ξ such that β = %

(
λ(β)

)
.

Based on this result, we can develop a simple contradiction argument to show that the
equation in (3.38) has at most one solution β? > ξ.

We conclude this part of the proof by noting that the first statement in (3.38) can be
seen by a straightforward inspection of the equation (3.24) that

(
β?, λ(β?)

)
satisfies in light

of the identity in (3.38) and Figure 3.1.
Proof of (II). By construction, we will show that the function w given by (3.27) is a C2

solution to the HJB equation (3.12) if we prove that

w′(x) ≥ k(x) for all x ∈ ]0, β?[

and
1

2
σ2(x)w′′(x) + b(x)w′(x) + h(x)− λ? ≤ 0 for all x ∈ ]β?,∞[.
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In view of the identities λ? = λ(β?) and β? = %
(
λ(β?)

)
, the second of these inequalities is

equivalent to
K(x) + h(x)− λ(β?) ≤ 0 for all x > β? = %

(
λ(β?)

)
,

which is true thanks to (3.6). On the other hand, the first of these inequalities follows
immediately from the expression of w′ in (3.27) and the inequalities

d

dx

∫ x

0

(
K(s) + h(s)− λ?

)
m(ds)

{
< 0 for all x ∈

]
0, ρ(λ?)

[
,

> 0 for all x ∈
]
ρ(λ?), β?

[
,

which hold true thanks to the identities λ? = λ(β?) and β? = %
(
λ(β?)

)
, the inequalities in

(3.26) and Assumption 3.6.(ii) (see also Figure 3.1).

Proof of (III). Fix any λ ∈ ]λ?, λ[. In view of Assumption 3.6.(ii) and the properties of
the functions %, ρ in (3.5), (3.8), we can see that∫ %(λ)

0

(
K(s) + h(s)− λ

)
m(ds) <

∫ %(λ)

0

(
K(s) + h(s)− λ?

)
m(ds)

<

∫ β?

0

(
K(s) + h(s)− λ?

)
m(ds) = 0

and

∫ %(λ)

ρ(λ)

(
K(s) + h(s)− λ

)
m(ds) > 0,

which imply that there exists a unique point α(λ) ∈
]
0, ρ(λ)

[
such that∫ %(λ)

α(λ)

(
K(s) + h(s)− λ

)
m(ds) = 0.

For this choice of α(λ), we can see that the function w′λ defined by (3.28) is indeed C1. In
particular, the limits in (3.29) all hold true. Furthermore,∫ x

α(λ)

(
K(s) + h(s)− λ

)
m(ds) < 0 for all x ∈

]
α(λ), %(λ)

[
. (3.41)

The inequality (3.30) follows immediately from (3.41). On the other hand, it is straight-
forward to check that the function w′λ defined by (3.28) satisfies the equality in (3.31), while
the inequality in (3.31) is equivalent to

K(x) + h(x)− λ < 0, for x ∈
]
0, α(λ)

[
∪
]
%(λ),∞

[
,

which is true thanks to the inequalities (3.6), (3.9) and the fact that α(λ) ∈
]
0, ρ(λ)

[
.

Finally, (3.32) follows immediately from the continuity of w′λ and the boundedness of k.
�



60

Remark 3.3 The model studied by Alvarez and Hening [3] is the special case that arises
when h = 0 and k = 1. In this case, the identity (3.3) in Remark 3.1 impies that∫ x

0

K(s)m(ds) =

∫ x

0

b(s)m(ds) =
1

p′(x)
. (3.42)

In view of this identity, we can see that the system of equations in (3.25), which determines
(β?, λ?), and (3.27) reduce to

λ = b(β), λ =
1

p′(β)m
(
]0, β[

) and w′(x) =

{
λ?p′(x)m

(
]0, x[

)
, for x ∈ ]0, β?[,

1, for x ≥ β?,

which are precisely the expressions (8) and (9) in Alvarez and Hening [3].

Remark 3.4 Consider the function w′ defined by (3.27) and suppose that X is as in Ex-
ample 3.1. Using L’Hôpital’s formula, we calculate

lim
x↓0

(
xw′(x)

)
= − lim

x↓0

d
dx

(
x
∫ x

0

(
K(s) + h(s)− λ?

)
m(ds)

)
d

dx

(
1/p′(x)

)
≥ − lim

x↓0

K(x) + h(x)− λ?

κ(γ− x)
=
λ? −K(0)− h(0)

κγ
> 0.

It follows that, in the context of Example 3.1, limx↓0w(x) = −∞.

3.5 The solution to the ergodic harvesting problem

Theorem 3.5.1 Consider the ergodic control problems formulated in Section 3.1, and let
(β?, λ?) be as in Proposition 3.4.1. Given any x > 0, the following statements hold true:

(I) Je
x(ζ) ≤ λ? and Jp

x (ζ) ≤ λ? for all admissible harvesting strategies ζ ∈ A.

(II) If ζ? ∈ A is the harvesting strategy that has a jump of size ∆ζ?0 = (x − β?)+ at time 0
and then reflects the state process X? at the level β? in the negative direction, then

Je
x(ζ

?) ≡ lim
T↑∞

1

T
E

[∫ T

0

h(X?
t ) dt+

∫ T

0

k(X?
t ) ◦ dζ?t

]
= λ?

and Jp
x (ζ?) ≡ lim

T↑∞

1

T

(∫ T

0

h(X?
t ) dt+

∫ T

0

k(X?
t ) ◦ dζ?t

)
= λ?.

Proof. Fix any initial state x > 0, let ζ ∈ A be any admissible harvesting strategy and let
X be the associated solution to the SDE (1.1). Also, consider the function wλ defined by
(3.28) for λ ∈ ]λ?, λ[. Using Itô’s formula, we calculate

wλ(X
ζ
T ) = wλ(x) +

∫ T

0

(
1

2
σ2(Xζ

t )w′′λ(X
ζ
t ) + b(Xζ

t )w′λ(X
ζ
t )

)
dt−

∫
[0,T ]

w′λ(X
ζ
t−) dζt

+
∑

0≤t≤T

(
wλ(X

ζ
t )− wλ(Xζ

t−)− w′λ(X
ζ
t−) ∆Xζ

t

)
+M ζ

T ,
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where

Mλ,ζ
T =

∫ T

0

σ(Xζ
t )w′λ(X

ζ
t ) dWt.

Since ∆Xζ
t ≡ Xζ

t −X
ζ
t− = −∆ζt ≤ 0 and

wλ(X
ζ
t )− wλ(Xζ

t−) +

∫ ∆ζt

0

k(Xζ
t− − u) du =

∫ Xζ
t−

Xζ
t

(
k(u)− w′λ(u)

)
du,

it follows that∫ T

0

h(Xζ
t ) dt+

∫ T

0

k(Xζ
t ) ◦ dζt

= λT + wλ(x)− wλ(Xζ
T ) +

∫ T

0

(
1

2
σ2(Xζ

t )w′′λ(X
ζ
t ) + b(Xζ

t )w′λ(X
ζ
t ) + h(Xζ

t )− λ
)

dt

+

∫ T

0

(
k(Xζ

t )− w′λ(X
ζ
t )
)

dζc
t +

∑
0≤t≤T

∫ Xζ
t−

Xζ
t

(
k(u)− w′λ(u)

)
du+Mλ,ζ

T .

Since ζc is an increasing process, Xζ
t < Xζ

t− and the pair (wλ? , λ
?) (resp., (wλ, λ)) satisfies

the HJB equation (3.12) (resp., the inequalities (3.30) and (3.31)), we can see that∫ T

0

h(Xζ
t ) dt+

∫ T

0

k(Xζ
t ) ◦ dζt ≤ λT + wλ(x)− wλ(Xζ

T ) +Mλ,ζ
T . (3.43)

Proof of the inequality Je
x(ζ) ≤ λ?. Fix any λ ∈ ]λ?, λ[ and let (τn) be a sequence of

localising times for the corresponding local martingale Mλ,ζ . Recalling the assumptions that
h is bounded from below and k is positive, as well as the facts that ζ is an increasing process
and wλ is bounded from below (see (3.32) in Proposition 3.4.1.(III)), we take expectations
in (3.43) and we use the monotone and the dominated convergence theorems to calculate

1

T
E

[∫ T

0

h(Xζ
t ) dt+

∫ T

0

k(Xζ
t ) ◦ dζt

]
=

1

T
lim
n↑∞

E

[∫ τn∧T

0

h(Xζ
t ) dt+

∫ τn∧T

0

k(Xζ
t ) ◦ dζt

]
≤ 1

T
lim
n↑∞

E
[
λ(τn ∧ T ) + wλ(x) + w−λ (Xζ

τn∧T )
]

= λ+
wλ(x)

T
+

1

T
E
[
w−λ (Xζ

T )
]
,

where w−λ (x) = −min
{
wλ(x), 0

}
. Using the fact that w−λ is bounded once again, we can

pass to the limit as T ↑ ∞ to obtain the inequality Je
x(ζ) ≤ λ, which implies the required

inequality Je
x(ζ) ≤ λ? by passing to the limit as λ ↓ λ?.

Proof of the inequality Jp
x (ζ) ≤ λ?. Making a slight modification of the proof of the com-

parison Theorem V.43 in Rogers and Williams [79], we can show that Xζ
t ≤ Xt for all t ≥ 0,
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P-a.s., where X is the solution to the SDE (2.1). In view of this observation, we can see
that, given any λ ∈ ]λ?, λ[,〈
Mλ,ζ

〉
T

=

∫ T

0

(
σ(Xζ

t )w′λ(X
ζ
t )
)2

dt ≤ C1C
2
2

∫ T

0

(
1 +

(
Xζ
t

)η)
dt ≤ C1C

2
2

(
T +

∫ T

0

Xη
t dt

)
,

where C1, η and C2 = C2(λ) are the constants in (3.1) and (3.32). Furthermore, the ergodic
Theorem V.53 in Rogers and Williams [79] implies that

lim sup
T↑∞

〈
Mλ,ζ

〉
T

T
≤ C1C

2
2

(
1 + lim

T↑∞

1

T

∫ T

0

Xη
t dt

)
= C1C

2
2

(
1 +

1

m
(
]0,∞[

) ∫ ∞
0

sηm(ds)

)
=: C3 <∞, (3.44)

with the second inequality following thanks to Assumption 3.3.
The Dambis, Dubins and Schwarz theorem (e.g., see Revuz and Yor [78, Theorem V.1.7])

asserts that there exists a standard Brownian motion B, which may be defined on a pos-
sible enlargement of the probability space (Ω,F ,P), such that Mλ,ζ = B〈Mλ,ζ〉. Using this
representation, (3.44) and the fact that limT↑∞BT/T = 0, we can see that

lim
T↑∞

∣∣Mλ,ζ
T

∣∣
T

1{〈Mλ,ζ〉∞=∞} ≤ C3 lim
T↑∞

|B〈Mλ,ζ〉T |〈
Mλ,ζ

〉
T

1{〈Mλ,ζ〉∞=∞} = 0.

On the other hand,

lim
T↑∞

∣∣Mλ,ζ
T

∣∣
T

1{〈Mλ,ζ〉∞<∞} = 0

because Mλ,ζ converges in R on the event {
〈
Mλ,ζ

〉
∞ <∞}. In view of these results, we can

pass to the limit as T ↑ ∞ in (3.43) to obtain

Jp
x (ζ) ≤ lim

T↑∞

(
λ+

wλ(x)

T
+
w−λ (Xζ

T )

T
+
Mλ,ζ

T

T

)
= λ.

The inequality Jp
x (ζ) ≤ λ? now follows by passing to the limit as λ ↓ λ?.

Proof of (II). Let the harvesting strategy ζ? ∈ A be as in the statement of the theorem:
such a strategy indeed exists (see Tanaka [84, Theorem 4.1]). If we define

NT =

∫ T

0

σ(X?
t ) dWt,

then 〈N〉T/T ≤ maxs∈[0,β?] σ(s) < ∞. Therefore, N is a square integrable martingale and
E
[
NT

]
= 0 for all T > 0. Furthermore, reasoning as above, we can see that limT↑∞NT/T = 0.

In view of these observations, the expression

ζ?T
T

=
x

T
− X?

t

T
+

1

T

∫ T

0

b(X?
t ) dt+

NT

T
, (3.45)
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and the fact that, beyond its possible initial jump, ζ? increases on the set {X?
t = β?}, we

can see that

Je
x(ζ

?) = lim
T↑∞

1

T
E

[∫ T

0

h(X?
t ) dt+ k(β?)ζ?T

]
= lim

T↑∞

1

T
E

[∫ T

0

(
h(X?

t ) + k(β?)b(X?
t )
)

dt

]
and

Jp
x (ζ?) = lim

T↑∞

1

T

(∫ T

0

h(X?
t ) dt+ k(β?)ζ?T

)
= lim

T↑∞

1

T

∫ T

0

(
h(X?

t ) + k(β?)b(X?
t )
)

dt.

These expressions and standard ergodic theorems (e.g., see Borodin and Salminen [14, Sec-
tion II.6] and Rogers and Williams [79, Theorem V.53]) imply that

Je
x(ζ

?) = Jp
x (ζ?) =

1

m
(
]0, β?[

) ∫ β?

0

(
h(s) + k(β?)b(s)

)
m(ds).

Combining these observations with the identities

k(β?)

∫ β?

0

b(s)m(ds)
(3.42)
=

k(β?)

p′(β?)

(3.3)
=

∫ β?

0

K(s)m(ds),

we obtain

Je
x(ζ

?) = Jp
x (ζ?) =

1

m
(
]0, β?[

) ∫ β?

0

(
K(s) + h(s)

)
m(ds)

(3.26)
= λ?.

�

3.6 Abelian limits

In this section, we allow for the discounting rate function r to depend on a parameter ι > 0
and we establish the convergence of the solution to the discounted control problem to the
one of the ergodic control problems in an Abelian sense. In particular, we make the following
assumption, which is the same as Assumption 3.5.(i) for each individual ι > 0.

Assumption 3.7 The discounting rate function (x, ι) 7→ r(x; ι) is continuous. Also, given
any ι > 0, the function r(·; ι) is C1 and such that

r(ι) ≤ r(x; ι) ≤ r(ι) for all x ≥ 0, (3.46)

for some r(ι) and r(ι) such that

0 < r(ι) < r(ι) <∞ for all ι > 0, lim
ι↓0

r(ι)

r(ι)
= 1 and lim

ι↓0
r(ι) = 0. (3.47)
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The dependence of r on the parameter ι implies that the functions K, Θ, ϕ, ψ and Rh that
we have considered in our analysis also depend on ι. Throughout this section, we will make
such dependences explicit for clarity of the arguments.

The functions ϕ and ψ introduced at the beginning of Section 3.3 are unique up to a
multiplicative constant. In this section, we assume that they have been scaled so that

ϕ(1; ι) = 1 and ψ(1; ι) = 1 for all ι > 0, (3.48)

without loss of generality.

Lemma 3.6.1 In the presence of Assumptions 3.1 and 3.2, the scaled as in (3.48) functions
(x, ι) 7→ ϕ(x; ι) and (x, ι) 7→ ψ(x; ι) are continuous,

lim
ι↓0

ϕ(x; ι)

ϕ(y; ι)
= lim

ι↓0

ψ(x; ι)

ψ(y; ι)
= 1 for all x, y > 0 (3.49)

and lim
ι↓0

ψ′(x; ι)

r(y; ι)ψ(x; ι)
= p′(x)m

(
]0, x[

)
for all x, y > 0. (3.50)

In the presence of the assumptions we have made in Section 3.1 and Assumption 3.7,

lim
ι↓0

r(y; ι)

(
Rh(x; ι)− R′h(β; ι)

ψ′(β; ι)
ψ(x; ι)

)
=

1

m
(
]0, β[

) ∫ β

0

h(s)m(ds) (3.51)

for all β > 0, x ∈ ]0, β] and y > 0.

Proof. The continuity of the functions ϕ and ψ, as well as (3.49), follow immediately from
(2.12) and the dominated convergence theorem. In turn, (3.50) follows from the definition
(2.14), the identity (2.31), the limit (3.49) and Assumption 3.7, which imply that

lim
ι↓0

ψ′(x; ι)

r(y; ι)ψ(x; ι)
= p′(x) lim

ι↓0

∫ x

0

r(s; ι)

r(y; ι)

ϕ(s; ι)

ϕ(x; ι)
m(ds) = p′(x)m

(
]0, x[

)
.

Using the definitions (2.22) and (2.14), we can see that

Rh(x; ι)− R′h(β; ι)

ψ′(β; ι)
ψ(x; ι)

=
1

C
ϕ̃β(x; ι)

∫ x

0

h(s)ψ(s; ι)m(ds) +
1

C
ψ(x; ι)

∫ β

x

h(s)ϕ̃β(s; ι)m(ds),

where

ϕ̃β(x; ι) = ϕ(x; ι)− ϕ′(β; ι)

ψ′(β; ι)
ψ(x; ι).

In view of the observation that

ϕ̃β(x; ι)

ϕ̃β(β; ι)
= 1 +

(
ϕ(x; ι)

ϕ(β; ι)
− 1

)
ϕ(β; ι)ψ′(β; ι)

ϕ(β; ι)ψ′(β; ι)− ϕ′(β; ι)ψ(β; ι)

+

(
ψ(x; ι)

ψ(β; ι)
− 1

)
−ϕ′(β; ι)ψ(β; ι)

ϕ(β; ι)ψ′(β; ι)− ϕ′(β; ι)ψ(β; ι)
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and the fact that the two long fractions on the right-hand side of this expression take values
in ]0, 1[, we can see that limι↓0 ϕ̃β(x; ι)/ϕ̃β(β; ι) = 1, thanks to (3.49). On the other hand,
we can use the probabilistic expression (2.21) to obtain

Rr(·;ι)(x) = Ex
[∫ ∞

0

exp

(
−
∫ t

0

r(Xu; ι) du

)
r(Xt; ι) dt

]
= 1 for all x, ι > 0.

Combining these observations with (3.49) and the fact that

lim
ι↓0

r(x; ι)

r(y; ι)
= 1 for all x, y > 0, (3.52)

which follows from Assumption 3.7, and using the dominated convergence theorem, we obtain

lim
ι↓0

r(y; ι)

(
Rh(x; ι)− R′h(β; ι)

ψ′(β; ι)
ψ(x; ι)

)
= lim

ι↓0
r(y; ι)

Rh(x; ι)− R′h(β;ι)

ψ′(β;ι)
ψ(x; ι)

Rr(·;ι)(x; p)−
R′
r(·;ι)(β;ι)

ψ′(β;ι)
ψ(x; ι)

= lim
ι↓0

∫ x
0
h(s)ψ(s;ι)

ψ(x;ι)
m(ds) +

∫ β
x
h(s)

ϕ̃β(s;ι)

ϕ̃β(x;ι)
m(ds)∫ x

0
r(s;ι)
r(y;ι)

ψ(s;ι)
ψ(x;ι)

m(ds) +
∫ β
x

r(s;ι)
r(y;ι)

ϕ̃β(s;ι)

ϕ̃β(x;ι)
m(ds)

=

∫ β
0
h(s)m(ds)

m
(
]0, β[

) ,

namely, (3.51). �

Theorem 3.6.2 Consider the control problems formulated in Section 3.1 and suppose that
Assumption 3.7 also holds. If β?(ι), w(·; ι) are as in Lemma 3.3.1 and (β?, λ?), w are as in
Proposition 3.4.1, then

lim
ι↓0

β?(ι) = β?, lim
ι↓0

r(y; ι)w(x; ι) = λ? and lim
ι↓0

w′(x; ι) = w′(x) for all x, y > 0.

(3.53)

Proof. In view of the definitions in (2.14), the equation (3.18) that β?(ι) > 0 satisfies takes
the form∫ β?(ι)

0

(
K(s; ι) + h(s)

) ψ(s; ι)

ψ
(
β?(ι); ι

) m(ds)

=
(
K
(
β?(ι); ι

)
+ h
(
β?(ι)

)) ∫ β?(ι)

0

r(s; ι)

r
(
β?(ι); ι

) ψ(s; ι)

ψ
(
β?(ι); ι

) m(ds).

The functions r, K, h and ψ are all continuous, while limι↓0 K(x; ι) = K(x) (see the definitions
(2.17) and (3.2) of K and K). Therefore, we can use (3.49), (3.52) and the dominated
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convergence theorem to come to the conclusion that the limit β?(0) = limι↓0 β
?(ι) exists and

satisfies the equation∫ β?(0)

0

(
K(s) + h(s)

)
m(ds) =

(
K
(
β?(0)

)
+ h
(
β?(0)

))
m
(]

0, β?(0)
[)
.

It follows that the first limit in (3.53) holds true because this is the equation that β? satisfies
(see (3.26)).

The second limit in (3.53) follows immediately from the first expression for w(·; ι) in
(3.16), Assumption 3.7 and (3.51) with K(·; ι) + h in place of h. Finally, we use (2.13) and
(3.49) to note that

lim
ι↓0

(
R′K+h −

ψ′

ψ
RK+h

)
(x; ι) = −p′(x) lim

ι↓0

∫ x

0

(
K(s; ι) + h(s)

)ψ(s; ι)

ψ(x; ι)
m(ds)

= −p′(x)

∫ x

0

(
K(s) + h(s)

)
m(ds).

In light of this limit, the fact that limι↓0 β
?(ι) = β?, (3.50) and (3.51) with K(·; ι)+h in place

of h, we can see that

lim
ι↓0

(
R′K+h(x; ι)−

R′K+h

(
β?(ι); ι

)
ψ′
(
β?(ι); ι

) ψ′(x; ι)

)
= lim

ι↓0

(
R′K+h −

ψ′

ψ
RK+h

)
(x; ι)

+ lim
ι↓0

r(y; ι)

(
RK+h(x; ι)−

R′K+h

(
β?(ι); ι

)
ψ′
(
β?(ι); ι

) ψ(x; ι)

)
lim
ι↓0

ψ′(x; ι)

r(y; ι)ψ(x; ι)

= p′(x)

(
m
(
]0, x[

)
m
(
]0, β?[

) ∫ β?

0

(
K(s) + h(s)

)
m(ds)−

∫ x

0

(
K(s) + h(s)

)
m(ds)

)
.

The third limit in (3.53) follows from this result, the first expression for w(·; ι) in (3.16) and
the second expression for w′ in (3.23). �



Chapter 4

Portfolio optimisation with
proportional transaction costs and
stochastic investment opportunities

The chapter is organised as follows. In Section 4.1, we introduce the formulation of the
optimal portfolio selection problem we solve, including all the assumptions we make, and
present three examples that satisfy our assumptions. In Section 4.2, we discuss the properties
of the stock-cash ratio and the related functions, and present the optimal strategy without
proof. In Section 4.3, we establish the stochastic control problem in the shadow market and
introduce the shadow price process. We construct a shadow price process, find the buying
and selling boundaries and derive the optimal trading strategy. Section 4.4 presents some
asymptotic results. In Section 4.5, we discuss more cases of sufficient conditions for our
results, and examples of each case are presented.

4.1 Formulation of the stochastic control problem

We first consider the assumptions on the dynamics of the price process S modelled by the
SDE (1.8). The following conditions are satisfied by a wide variety of problem data choices
(see Examples 4.1–4.3 at the end of this section).

Assumption 4.1 The following statements hold true:

(i) The functions µ, σ : ]0,∞[ → R are locally Lipschitz continuous and σ(x) > 0 for all
x > 0.

(ii) The function Θ given by (1.13) is C1 and decreasing, and there exists ξ > 0 such that
Θ(ξ) = 0.

67
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(iii) There exist 0 < ρ < η such that

Q′(s) =
Γ(s)

(1−Θ(s))2


> 0, for s < ρ,

< 0, for ρ < s < η,

> 0, for s > η,

where Q is as in (1.17) and

Γ(s) =
−Θ(s) + Θ2(s) + sΘ′(s)

s2
. (4.1)

In the frictionless market when λ = 0, it is optimal to keep the stock-cash ratio Q = Q(S)
(see (1.17)). Furthermore, we will show in the next section that if the stock price S crosses
the turning points ρ and η, then the investor would change the trading behaviour (see
Remark 4.5). How the turning points ρ and η influence the optimal trading strategy for the
market with λ > 0 will also be illustrated in Section 4.2. In Section 4.5, we will modify
Assumption 4.1 and consider the problem data such that Q has less turning points, i.e. ρ or
η are either 0 or infinity.

Remark 4.1 In light of the definition (1.17) of Q, if Assumption 4.1 holds true, then

lim
s↓0

Θ(s) > 1 and ρ < ζ := Θ−1(1) < ξ < η. (4.2)

Given any a > 0, Assumption 4.1 implies that the scale function pa and the speed measure
ma of the diffusion associated with the SDE (1.8), which are given by

pa(a) = 0 and p′a(s) = exp

(
−2

∫ s

a

Θ(u)

u
du

)
, for s > 0, (4.3)

and

ma(ds) =
2

s2σ2(s)p′a(s)
ds, (4.4)

are well-defined. Furthermore, lims↓0 pa(s) = −∞ and lims↑∞ pa(s) = ∞. These limits and
(i) in Assumption (4.1) imply that the SDE (1.8) has a unique non-explosive strong solution
with the state space ]0,∞[ (see e.g., Karatzas and Shreve [51, Proposition 5.22, Ch 5]).

Remark 4.2 Given any a, b, c > 0, the definitions (4.3) and (4.4) of p and m imply that

pa(b) = −pb(a)

p′b(a)
and pa(c) =

pb(c)

p′b(a)
+ pa(b)
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To simplify the notations, we define

p(s) := p1(s) = pa(s)p
′(a) + p(a) and m(ds) :=

2

s2σ2(s)p′(s)
ds =

ma(ds)

p′(a)
. (4.5)

Additionally, we make the following assumption so that the optimal growth rate for the
frictionless market is finite (see also Lemma 4.3.2 in Section 4.3).

Assumption 4.2 The problem data is such that

lim sup
T↑∞

1

T
E

[∫ T

0

µ2(St)

σ2(St)
dt

]
<∞.

Remark 4.3 If the problem data is such that

either (i)
µ2

σ2
≤ C, for some C > 0,

or (ii) m
(
]0,∞[

)
<∞ and

∫ ∞
0

µ2(s)

σ2(s)
m(ds) <∞,

then Assumption 4.2 holds true. The geometric Brownian motion (gBm) is an example such
that the condition in (i) holds true but the conditions in (ii) fails. In such a case, m(]0,∞[) =
∞. The gBm does not satisfy Assumption 4.1, and will be discussed in Section 4.5. However,
Examples 4.1–4.3 in this section satisfy the conditions in (ii) in Remark 4.3, as well as
Assumption 4.1.

In addition, we make the following assumption

Assumption 4.3 If m(]0,∞[) =∞, then |Θ| < C1 for some C1 > 0.

Definition 4.1 An admissible self-financing trading strategy under transaction cost λ ∈
]0, 1[ belonging to Aλ(x, y) is a predictable finite variation process (ϑ0, ϑ) with initial position
(ϑ0

0−, ϑ0−) = (x, y) such that
(i) (self-financing condition)

dϑ0,+
t = (1− λ)St dϑ−t and dϑ0,−

t = St dϑ+
t .

(ii) (admissibility) The liquidation value Vt(ϑ
0, ϑ) as in (1.9) is positive P-a.s. for all t ≥ 0.

If we denote by |ϑ0| (resp., |ϑ|) the total variance of ϑ0 (resp., ϑ), then ϑ0,± (resp., ϑ±) are
the unique processes such that ϑ0 = ϑ0,+−ϑ0,− and |ϑ0| = ϑ0,++ϑ0,− (resp., ϑ = ϑ+−ϑ− and
|ϑ| = ϑ+ + ϑ−). With each admissible self-financing trading strategy (ϑ0, ϑ) ∈ Aλ(x, y), we
associate the expected growth rate J given by (1.10). The objective of the control problem
that we consider is to maximise J over all (ϑ0, ϑ) ∈ Aλ(x, y). The following result shows
that different initial values do not influence the optimal growth rate. Therefore, we use Aλ
in place of Aλ(x, y) in the rest of the chapter.
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Lemma 4.1.1 Given any (x, y) such that x + (1 − λ1{y>0})ys0 > 0, the following identity
holds true:

sup
Aλ(x,y)

J(ϑ0, ϑ) = sup
Aλ(1,0)

J(ϑ0, ϑ).

Proof. Given any (ϑ0, ϑ) ∈ Aλ(x, y) and c > 0, we can see that

J(ϑ0, ϑ) = lim sup
T↑∞

1

T
E
[
ln
(
VT (ϑ0, ϑ)

)]
= lim sup

T↑∞

1

T
E
[
ln
(
cVT (ϑ0, ϑ)

)]
= J(cϑ0, cϑ). (4.6)

It follows that
sup
Aλ(x,y)

J(ϑ0, ϑ) = sup
Aλ(cx,cy)

J(ϑ0, ϑ).

Let c1 = x + (1 − λ1{y>0})ys0 and c2 = x + ys0. Note that a trading strategy in Aλ(x, y)
(resp., in Aλ(c2, 0)) can be liquidating (resp., buying y shares of stock) at time 0 and follows
a strategy in Aλ(c1, 0) (resp., in Aλ(x, y)). It follows that

sup
(c1,0)

J(ϑ0, ϑ) ≤ sup
Aλ(x,y)

J(ϑ0, ϑ) ≤ sup
Aλ(c2,0)

J(ϑ0, ϑ).

Combining this observation with (4.6), we obtain

sup
Aλ(x,y)

J(ϑ0, ϑ) = sup
Aλ(1,0)

J(ϑ0, ϑ).

�
We conclude this section with the following three examples that satisfy Assumptions 4.1

and 4.2.

Example 4.1 Suppose that the price process S is modelled by the SDE

dSt =

(
κγ +

1

2
σ2 − κ ln(St)

)
St dt+ σSt dWt, S0 = s0 > 0,

for some constants κ,γ,σ > 0, namely, the logarithm of the uncontrolled state process is the
Ornstein-Uhlenbeck process given by

d ln(St) = κ
(
γ− ln(St)

)
dt+ σ dWt, ln(S0) = ln(s0) ∈ R.

In such a case

Θ(s) =
κγ

σ2
+

1

2
− κ

σ2
ln(s)

is decreasing and ξ = eγ+σ2

2κ . Furthermore,

Γ(s) =
4κ2(γ2 − 2γ ln(s) + ln(s)2)− σ4 − 4κσ2

4σ4s2
> 0, for 0 < s < eγ−

σ
κ

√
4σ2+κ,

< 0, for eγ−
σ
κ

√
4σ2+κ < s < eγ+σ

κ

√
4σ2+κ,

> 0, for s > eγ+σ
κ

√
4σ2+κ,
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and Assumption 4.1 holds true. The derivative of scale function admits the expression

p′(s) = s
κ

σ2 ln(s)− 2κγ

σ2 −1.

Example 4.2 Suppose that the price process S is modelled by the SDE

dSt = κ(γ− St)St dt+ σS`+1
t dWt, S0 = s0 > 0,

for some strictly positive constants κ, γ, σ and ` ∈ [0, 1
2
]. Furthermore, if ` = 0, then

κγ > 1
2
σ2. In such a case,

Θ(s) =
κ

σ2

(
γs−2` − s1−2`

)
is strictly decreasing and ξ = γ. Furthermore, we calculate

Γ(s) =
κs−4`−2

σ4

(
κ(s− γ)2 + σ2(2`s2`+1 − (1 + 2`)γs2`)

)
=:

κs−4`−2

σ4
u(s),

u(γ) = −σ2γ2`+1 < 0, lim
s↑∞

u(s) =∞

u(0) =

{
(κγ− σ2)γ, if ` = 0,

κγ2 > 0, if 0 < ` ≤ 1
2

and u′(s) = (s− γ)
(

2κ+ 2`(2`+ 1)σ2s2`−1
)
.

It follows that there exist γ < η < ∞ such that Γ(η) = 0, and if ` = 0 and κγ − σ2 > 0,
or 0 < `, then Assumption 4.1 holds true. The derivative of the scale function admits the
expression

p′(x) = exp

(
κγ

`σ2

(
x−2` − 1

)
+

2κ

(1− 2`)σ2

(
x1−2` − 1

))
,

if ` ∈ ]0, 1
2
[,

p′(s) =

(
1

s

) 2κγ

σ2

exp

(
2κ

σ2
(s− 1)

)
,

if ` = 0, and

p′(s) = s
2κ
σ2 exp

(
2κγ

σ2
(s−1 − 1

)
,

if ` = 1
2
.

Example 4.3 Suppose that the price process S is modelled by the SDE

dSt = κ(γ− St) dt+ σS`+1
t dWt, S0 = s0 > 0,

for some strictly positive constants κ, γ, σ and ` ∈ [−1
2
, 0]. Furthermore, if ` = −1

2
, then

κγ > 1
2
σ2. In such case, the function Θ is the same as Example 4.2.
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4.2 The stock-cash ratio

In this section, we will discuss the stock-cash ratio processQ defined by (1.16). An advantage
of the stock-cash process, compared to the proportional wealth process investing in stocks,
is that it keeps constant if the investor does not trade. If the investor trades, then we
differentiate Q and obtain

dQt = 1{ϑ0
t 6=0}

1

ϑ0
t

(
ϑ0
t + ϑtSt
ϑ0
t

dϑ+
t −

ϑ0
t + (1− λ)ϑtSt

ϑ0
t

dϑ−t

)
(4.7)

= 1{ϑ0
t 6=0}

1

ϑ0
t

((
1 + StQt

)
dϑ+

t −
(
1 + (1− λ)StQt

)
dϑ−t

)
. (4.8)

The first identity and the admissible condition Definition 4.1.(ii) imply that if the investor
buys (resp., sells), then Q increases (resp., decreases). Furthermore, a self-financing trading
strategy is admissible if and only if (ϑ0, ϑ) is in one of the following trading regions (denoted
by TR) 

TR0 = {(ϑ0, ϑ) | ϑ > 0 and ϑ0 = 0},
TR+ = {(ϑ0, ϑ) | 1 + SQ > 0 and ϑ0 > 0},
TR− = {(ϑ0, ϑ) | 1 + (1− λ)SQ < 0 and ϑ0 < 0}.

(4.9)

In the frictionless market when λ = 0, the optimal strategy is such that Qt = Q(St) (see
(1.17)), if S 6= ζ, and ϑ0 = 0, if S = ζ, where ζ is given by (4.2). We present the graph of
Q and the optimal strategy in Figure 4.1 (see also Remarks 4.4 and 4.5 ).

Figure 4.1: The function Q(s) = 7−50 ln s
(−3+50 ln s)s in the context of Example 4.1 for κ = 0.5, γ = 0.1 and σ = 0.2.

In this context, (ρ,Q(ρ)) ≈ (0.83056,−1.5961), (ξ,Q(ξ)) = (e0.06, 0) and (η,Q(η)) ≈ (1.47058,−0.51296).
In the frictionless market, where λ = 0, the investor keeps the stock-cash ratio Q identical to Q(S). The
optimal trading behaviour is as in Remark 4.5.
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Remark 4.4 If Assumption 4.1 holds true (see also Remark 4.1), then 1 + sQ(s) > 0 for all
s > ζ and 1+Q(s)s < 0 for all s < ζ. Furthermore, lims↑ζ Q(s) = −∞ and lims↓ζ Q(s) =∞,
where ζ is defined by (4.2).

Remark 4.5 When the stock price S increases (resp., decreases), it is optimal to (i) buy
(resp., sell) stocks if S < ρ, (ii) sell (resp., buy) stocks if ρ < S < η, (iii) buy (resp., sell)
stocks if S > η, and keep Q = Q(S).

These remarks (see also Figure 4.1) imply that the optimal portfolio is in TR− when S < ζ,
in TR0 when S = ζ and in TR+ when S > ζ. Furthermore, the turning point ρ and η of Q
are the signals for the investor to change their trading behaviours.

In the following subsections, we will provide a brief introduction of the optimal strategies
characterized by the stock-cash ratio for λ > 0. The proofs of the optimality will be given
in Section 4.3.

In Lemma 4.3.6 and Theorem 4.3.7, we will construct the buying boundary Q and the

selling boundary Q associated with the stock-cash ratio Q. The optimal strategy for the
optimal growth rate problem is characterized by Q an Q as in Figure 4.2. We next provide

more details of Q, Q and the associated notations in Figure 4.2. The functions Q and Q
converge to Q when λ goes to 0 and are characterized as follows. There exist ρ̄`(λ) < ρ(λ) <

ρ̄r(λ) < ζ̄(λ) and ζ(λ) < η
`
(λ) < η̄(λ) < η

r
(λ) such that

ρ(λ) < ζ(λ) < ζ < ζ̄(λ) < η̄(λ), lim
λ↓0

ζ(λ) = lim
λ↓0

ζ̄(λ) = ζ (4.10)

lim
λ↓0

ρ̄`(λ) = lim
λ↓0

ρ(λ) = lim
λ↓0

ρ̄r(λ) = ρ and lim
λ↓0

η
`
(λ) = lim

λ↓0
η̄(λ) = lim

λ↓0
η
r
(λ) = η. (4.11)

The functions Q and Q are such that

lim
s↓ζ

Q(s) = lim
s↓ζ̄

Q(s) =∞, lim
s↑ζ

Q(s) = lim
s↑ζ̄

Q(s) = −∞, (4.12)

Q(s) < Q(s), for s ∈ ]0, ζ[ ∪ ]ζ,η
`
[ ∪ ]η

r
,∞[ (4.13)

(1− λ)Q(b) > Q(b), for b ∈ ]0, ρ̄`[ ∪ ]ρ̄r, ζ[ ∪ ]ζ̄,∞[. (4.14)

Q(s) < Q(s), for s ∈ ]0, ζ[ \ {ρ}, Q(s) > Q(s), for s ∈ ]ζ̄,∞[ \ {η̄}, (4.15)

1 + (1− λ)Q(s)s < 0, for s ∈ ]0, ζ̄[, and 1 + sQ(s) > 0 for s ∈ ]ζ,∞[, (4.16)

Q′(s)


= 0, for s ∈ ]η

`
,η
r
[,

< 0, for s ∈ ]ρ,η
`
[\{ζ},

> 0, for s ∈ ]0, ρ[ ∪ ]η
r
,∞[,

and Q
′
(s)


= 0, for s ∈ ]ρ̄`, ρ̄r[,

< 0, for s ∈ ]ρ̄r, η̄[\{ζ̄},
> 0, for s ∈ ]0, ρ

`
[ ∪ ]η̄,∞[,

(4.17)

All these observations (see also Figure 4.2) are consistent with Remarks 4.4 and 4.5 (see
also Figure 4.1) as λ goes to 0. In a market with proportional transaction costs, the signals
for the investor to change their trading behaviours are ρ and η̄, as well as ρ̄`, ρ̄r, η` and η

r
.
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Figure 4.2: The optimal strategy is such that (S,Q) is kept inside the blue and yellow areas or on their
boundaries. The investor trades continuously, and only buys on the red curve, i.e. (S,Q) = (S,Q(S)),

and sells on the blue curve i.e. (S,Q) = (S,Q(S)), and takes no actions inside the yellow and green areas.
When (Q, S) hits the red (ress., blue) boundary from the yellow region, the investor buys (resp., sells) when
the stock price increases (resp., decreases) and keeps (S,Q) = (S,Q(S)) (resp., (S,Q) = (S,Q(S))). While
(Q, S) hits the red (ress., blue) boundary from the green region, the investor buys (resp., sells) when the
stock price decreases (resp., increases).

The optimal trading strategy (ϑ0,?, ϑ?) for the optimal growth rate problem is such that

ϑ?,+T =

∫ T

0

ϑ0,?
t

1 + StQ(St)
1{Qt=Q(St)}∩{St 6=ζ} dQ(St) (4.18)

and ϑ?,−T =

∫ T

0

ϑ0,?
t

1 + (1− λ)StQ(St)
1{Qt=Q(St)}∩{St 6=ζ̄} dQ(St), (4.19)

for T > 0. Such a strategy also satisfies (4.8).

4.3 The optimal problem in the shadow market

In this section, we will consider the optimal control problem in a fictitious frictionless market
with objective (1.14). We will show that there exists an optimal strategy in the fictitious fric-
tionless market which is also optimal for the original problem formulated in the Section 4.1.
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Definition 4.2 An admissible self-financing trading strategy (ϑ̂0, ϑ̂), with initial condition
(ϑ̂0

0−, ϑ̂0−) = (x, y) belonging to Âλ(x, y) is associated with a price process Ŝ such that
(i) (self-financing condition)

ϑ̂0
T = ϑ̂0

0 +

∫ T

0

Ŝt dϑ̂t.

(ii) (admissibility) The liquidation value V̂ given by (1.15) is positive P-a.s. for all t ≥ 0.

With each admissible self-financing trading strategy (ϑ̂0, ϑ̂) ∈ Â, we associate the ex-
perted growth rate Ĵ given by (1.14). The objective of the optimal problem is to maximise
Ĵ over all (ϑ̂0, ϑ̂) ∈ Âλ(x, y). In light of Lemma 4.1.1, we write Âλ in place of Âλ(x, y) unless
otherwise stated. We will show in Lemma 4.3.1 that if the optimal strategy is such that the
controller only buys (resp., sells) when Ŝ = S (resp., Ŝ = (1 − λ)S), then this strategy is
also the optimal strategy for the original growth rate problem.

Definition 4.3 A price process Ŝ is a shadow price for the bid-ask spread
[
(1 − λ)S, S

]
with associate optimal strategy (ϑ̂0,?, ϑ̂?) ∈ Â , if the following statements hold true.

(i) The price process Ŝ takes values in
[
(1− λ)S, S

]
.

(ii) The optimal problem in the fictitious frictionless market formulated in this section has
an optimal trading strategy (ϑ̂0,?, ϑ̂?) such that ϑ̂? only increases (resp., decreases) on the
set {Ŝ = S} (resp., {Ŝ = (1− λ)S}).
(iii) The process (ϑ̂0,?, ϑ̂?) is of finite variation.

Lemma 4.3.1 Consider the stochastic control problem formulated in Section 4.1 and 4.3.
Suppose that Ŝ is a shadow price process for the bid-ask spread

[
(1− λ)S, S

]
with associate

optimal strategy (ϑ̂0,?, ϑ̂?). Suppose that one of the following statements hold true:

(i) If m(]0,∞[) <∞, then

E[τk] <∞ for all k = 0, 1, 2, . . . , and Ĵ(ϑ̂0,?, ϑ̂?) = lim
T↑∞

1

T
E
[
ln
(
V̂T (ϑ̂0,?, ϑ̂?)

)]
,

where τk = inf {t > k | ϑ̂0,?
t , ϑ̂?t > 0}.

(ii) If m(]0,∞[) =∞, then ∣∣∣∣ ϑ̂?ST

VT (ϑ̂0,?, ϑ̂?)

∣∣∣∣ ≤ C2, (4.20)

for some C2 > 0.
For sufficiently small λ, the equalities

and sup
Aλ

J(ϑ0, ϑ) = sup
Âλ

Ĵ(ϑ̂0, ϑ̂) = Ĵ(ϑ̂0,?, ϑ̂?). (4.21)

hold true.
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Proof. Given any (ϑ0, ϑ) ∈ Aλ(x, y), let ϑ̂ = ϑ, which implies ϑ̂Ŝ ≥ ϑ(1− λ1{ϑ>0})S, and a

self-financing trading strategy (ϑ̂0, ϑ̂) is such that

ϑ̂0,+
T =

∫ T

0

Ŝt dϑ̂−t ≥
∫ T

0

(1−λ)St dϑ−t = ϑ0,+
T and ϑ̂0,−

T =

∫ T

0

Ŝt dϑ̂+
t ≤

∫ T

0

St dϑ+
t = ϑ0,−

T .

It follows that ϑ̂0
T ≥ ϑ0

T and V̂T (ϑ̂0, ϑ̂) ≥ VT (ϑ0, ϑ) for all T ≥ 0, and

sup
Aλ

J(ϑ0, ϑ) ≤ sup
Âλ

Ĵ(ϑ̂0, ϑ̂) = Ĵ(ϑ̂0,?, ϑ̂?). (4.22)

Other other hand, if ϑ̂0,?
T , ϑ̂?T ≥ 0, then

VT (ϑ̂0,?, ϑ̂?) ≥ (1− λ)V̂T (ϑ̂0,?, ϑ̂?).

This observation and (i) in this lemma imply that

sup
Aλ

J(ϑ0, ϑ) ≥ Ĵ(ϑ̂0,?, ϑ̂?) + lim
T↑∞

ln(1− λ)

T
= Ĵ(ϑ̂0,?, ϑ̂?).

If (ii) in this lemma holds true and λ < 1
C2

, then

1 ≥ VT (ϑ̂0,?, ϑ̂?)

V̂T (ϑ̂0,?, ϑ̂?)
= 1−

ϑ̂?(ŜT − (1− λ1{ϑ̂?>0})ST )

V̂T (ϑ̂0,?, ϑ̂?)
≥ 1− λ |ϑ̂?|ST

VT (ϑ̂0,?, ϑ̂?)
≥ 1− C2λ

and

sup
Aλ

J(ϑ0, ϑ) ≥ Ĵ(ϑ̂0,?, ϑ̂?) + lim
T↑∞

ln(1− C2λ)

T
= Ĵ(ϑ̂0,?, ϑ̂?).

�

Remark 4.6 If the optimal strategy is as described in Section 4.2 (see also Figure 4.2)
and Assumption 4.1 holds true, then the first condition in (i) in this lemma holds. We
will show in Theorem 4.3.8 that the limit in (i) is indeed the case. We will show in the
proof of Theorem 4.3.7 that (ϑ̂0,?, ϑ̂?) constructed in Section 4.3.2 satisfies (ii) thanks to
Assumption 4.3.

4.3.1 Heuristic derivation of the shadow price function

We will construct a shadow price process Ŝ of the form Ŝ = g(S,A,B, λ) within the bid-ask
spread [(1 − λ)S, S] with associated optimal strategy (ϑ̂0,?, ϑ̂?), where A and B are càdlàg
(Ft)-adapted processes of finite variation such that

At =

∫ t

0

1{Su=Au}∪{Su=Bu} dAu and Bu =

∫ t

0

1{Su=Au}∪{Su=Bu} dBu, for t > 0. (4.23)
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The process A (resp., B) denotes the buying (resp., selling) boundary, i.e.

ϑ̂?,+t =

∫ t

0

1{Su=Au} dϑ̂?,+u

(
resp., ϑ̂?,−t =

∫ t

0

1{Su=Bu} dϑ̂?,−u

)
for all t > 0. (4.24)

The investor only buys (resp., sells) stocks when S = A (resp., S = B). The function g is
C2 with respect to s and satisfies the so-called “principle of smooth fit”

g(A,A,B, λ) = A, gs(A,A,B, λ) = 1, (4.25)

g(B,A,B, λ) = (1− λ)B and gs(B,A,B, λ) = 1− λ. (4.26)

Furthermore, the function g and the processes A and B are such that

gs(S,A,B, λ) > 0

and ga(A,A,B, λ) = ga(B,A,B, λ) = gb(A,A,B, λ) = gb(B,A,B, λ) = 0. (4.27)

In such a case, we use Itô’s formula to calculate

dŜt

Ŝt
= µ̂t dt+ σ̂t dWt, (4.28)

where

µ̂t =
gs(St, At, Bt, λ)µ(St)St + 1

2
gss(St, At, Bt, λ)σ2(St)S

2
t

g(St, At, Bt, λ)
(4.29)

and σ̂t =
gs(St, At, Bt, λ)σ(St)St

g(St, At, Bt, λ)
> 0. (4.30)

For examples of the shadow price function see Figure 4.3 and Figure 4.4.
We will show in Section 4.3.2 that A ∧B ≤ S ≤ A ∨B, and A and B are continuous on

{A 6= ρ} ∪ {B 6= η̄}, where ρ and η̄ are the turning points of Q and Q as in Section 4.2.
When B = η̄, A could have jumps, while A = ρ, B could have jumps. We will show that for
an appropriate turning point, the controller should not trade when the jumps happen. The
optimal trading strategy is as illustrated in Table 4.1. The turning points ρ, ρ̄`, ρ̄r, η̄, η

`

and η
r

of Q and Q, which come from the turning points ρ and η of Q, are signals where the
controller changes their trading behaviours. See also Figures 4.2 and 4.4 for these points.

The following lemma gives a sufficient condition for (ϑ̂0,?, ϑ̂?) to be optimal.

Lemma 4.3.2 Consider the stochastic control problem formulated in Section 4.1 and 4.3.
Suppose that Ŝ of the form g(S,A,B, λ) is a shadow price process for the bid-ask spread[
(1− λ)S, S

]
such that A and B are of finite variation and satisfy (4.23), and the boundary

conditions (4.25)–(4.27) hold true. If (ϑ̂0,?, ϑ̂?) ∈ Âλ satisfies (4.24) and is such that

ϑ̂?t Ŝt

V̂t(ϑ̂0,?, ϑ̂?)
=
µ̂t
σ̂2
t

, (4.31)
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Table 4.1: Optimal Trading Strategy for λ > 0.

Domain Trading signal Trading action

S < ρ or S > η
r

S = A and S increases Buy and keep Q = Q(A) and A = S

S < ρ̄` or S > η̄ S = B and S decreases Sell and keep Q = Q(B) and B = S

ρ < S < η
`

S = A and S decreases Buy and keep Q = Q(A) and A = S

ρ̄r < S < η̄ S = B and S increases Sell and keep Q = Q(B) and B = S

where µ̂ and σ̂ are given by (4.29) and (4.30), then

δλ := sup
Âλ

Ĵ(ϑ̂0, ϑ̂) = Ĵ(ϑ̂0,?, ϑ̂?) = lim sup
T↑∞

1

T
E

[∫ T

0

1

2

µ̂2
t

σ̂2
t

dt

]
≤ δ0, (4.32)

where

δ0 = sup
A0

J(ϑ0, ϑ)

{
≤ C, if (i) in Remark 4.3 is true,

= 1
m(]0,∞[)

∫∞
0

µ2(s)
σ2(s)

m(ds), if (ii) in Remark 4.3 is true,

is the optimal growth rate for the original frictionless market with λ = 0.

Proof. Let (ϑ̂0, ϑ̂) be any strategy in Âλ. With loss of generality, we assume V̂0(ϑ̂0, ϑ̂) = 1.
Using Itô’s formula, we calculate

ln V̂T (ϑ̂0, ϑ̂) =

∫ T

0

(
ϑ̂tµ̂tŜt

V̂t(ϑ̂0, ϑ̂)
− 1

2

ϑ̂2
t σ̂

2
t Ŝ

2
t

V̂ 2
t (ϑ̂0, ϑ̂)

)
dt+ M̂T ≤

∫ T

0

1

2

µ̂2
t

σ̂2
t

dt+ M̂T , (4.33)

where

M̂T =

∫ T

0

ϑ̂tσ̂tŜt

V̂t(ϑ̂0, ϑ̂)
dWt,

and the equality holds true if and only if

ϑ̂tŜt

V̂t(ϑ̂0, ϑ̂)
=
µ̂t
σ̂2
t

. (4.34)

Consider any sequence (τn) of localizing times of local martingale M̂ and let

tm := inf

{
t > 0

∣∣∣∣ V̂t(ϑ̂0, ϑ̂) <
1

m

}
.

Using the monotone convergence theorem and Fatou’s lemma, (4.33) implies that

E
[
ln V̂T (ϑ̂0, ϑ̂)

]
≤ lim

m↑∞
lim inf
n↑∞

E
[
ln V̂T∧tm∧τn(ϑ̂0, ϑ̂)

]
≤ E

[∫ T

0

1

2

µ̂2
t

σ̂2
t

dt

]
.
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On the other hand, we use the monotone convergence theorem and Fatou’s lemma again to
obtain

E
[
ln V̂T (ϑ̂0,?, ϑ̂?)

]
≥ lim

m↑∞
lim sup
n↑∞

E
[
ln V̂T∧t̃m∧τn(ϑ̂0,?, ϑ̂?)

]
= E

[∫ T

0

1

2

µ̂2
t

σ̂2
t

dt

]
,

where

t̃m := inf

{
t > 0

∣∣∣∣V̂t(ϑ̂0, ϑ̂) > m

}
.

These two inequalities imply the equality

E
[
ln V̂T (ϑ̂?,0, ϑ̂?)

]
= E

[∫ T

0

1

2

µ̂2
t

σ̂2
t

dt

]
and the equality in (4.32) holds true. Furthermore, if we consider a frictionless market with
price process S and let ϑf = ϑ̂?, then we have ϑ0,f

T ≥ ϑ̂0,?
T and

E
[
lnVT (ϑ̂?,0, ϑ̂?)

]
≤ E

[
lnVT (ϑ̂f,0, ϑ̂f )

]
≤ E

[∫ T

0

1

2

µ2(St)

σ2(St)
dt

]
(4.35)

for all T > 0. Furthermore, if (i) in Remark 4.3 holds true, then

lim sup
T↑∞

1

T
E

[∫ T

0

1

2

µ2(St)

σ2(St)
dt

]
≤ C.

If (ii) in Remark 4.3 holds true, then we use the ergodic results (see e.g., Borodin and
Salminen [14, Ch II.6]) to obtain.

lim
T↑∞

1

T
E

[∫ T

0

1

2

µ2(St)

σ2(St)
dt

]
=

1

m(]0,∞[)

∫ ∞
0

µ2(s)

σ2(s)
m(ds).

�
The Merton proportion condition (4.31) shows that

µ̂t
σ̂2
t

= g(St)
gs(St)µ(St)St + 1

2
gss(St)σ

2(St)S
2
t

g2
s(St)σ

2(St)S2
t

=
ϑ̂tŜt

ϑ̂0
t + ϑ̂tŜt

=
htg(St)

1− Atht + htg(St)
(4.36)

=
h̄tg(St)

1− (1− λ)Bth̄t + h̄tg(St)
, (4.37)

where we write g(·) in place of g(·, A,B, λ) to simplify the notation, and

ht =
ϑ̂t

ϑ̂0
t + ϑ̂tAt

and h̄t =
ϑ̂t

ϑ̂0
t + ϑ̂t(1− λ)Bt

=
ht

1 + ((1− λ)Bt − At)ht
. (4.38)
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Figure 4.3: The shadow price function in the context of Example 4.1 for κ = 0.5, γ = 0.1, σ = 0.2, λ = 0.2,
a = 0.7930 and b = 1.3595.

If At ∧ Bt < St < At ∨ Bt, for some τ1 < t < τ2, where τ1 and τ2 are (Ft)-stopping times,
then A,B, h and h̄ are constant, and the Merton proportion condition yields the ODE

gss(s) =
2g2

s(s)h

1− ah+ hg(s)
− 2gs(s)

Θ(s)

s
=

2g2
s(s)h̄

1− (1− λ)bh̄+ h̄g(s)
− 2gs(s)

Θ(s)

s
, (4.39)

for a ∧ b < s < a ∨ b, where

a = At, b = Bt, h = ht, h̄ = h̄t and g(s) = g(s, a, b, λ),

and Θ is as in (1.13). In the following lemma, we show the existence of the solution to the
ODE (4.39). See Figure 4.3 for an example of the shadow price function with some given
a, b > 0.

Lemma 4.3.3 Define

g(s, a, b, λ) = a+
pa(s)

1− h(a, b, λ)pa(s)
, (4.40)

for a, b, s > 0, a 6= b, a 6= (1− λ)b and 1− h(a, b, λ)pa(s) 6= 0, where pa is as in (4.3), and

h = h(a, b, λ) =
1

pa(b)
− 1

(1− λ)b− a
. (4.41)

If
G(a, b, λ) :=

√
1− λpa(b)− ((1− λ)b− a)

√
p′a(b) = 0, (4.42)

then 
gss(s) = 2g2

s(s)h(a,b,λ)
1−ah(a,b,λ)+h(a,b,λ)g(s)

− 2gs(s)
Θ(s)
s
, for s ∈ ]a ∧ b, a ∨ b[,

g(a) = a, g(b) = (1− λ)b, gs(a) = 1, gs(b) = 1− λ,
ga(a) = ga(b) = gb(a) = gb(b) = 0,

(4.43)
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Figure 4.4: Shadow price curves in the context of Example 4.1 for κ = 0.5, γ = 0.1, σ = 0.2 and λ = 0.2,
for different pair (a, b). In such a case, ρ ≈ 0.7930, ρ̄` ≈ 0.5608, ρ̄r ≈ 1.3595, η̄ ≈ 1.5403, η

`
≈ 0.8984

and η
r
≈ 2.1778. The investor only buys on the red curve (g(a) = a) and sells on the blue curve i.e.

g(b) = (1 − λ)b). For the shadow price curves in the yellow region, the investor buys (resp., sells) when
(S, g(S)) hits the red (resp., blue) curve and the stock price increases (resp., decreases). Furthermore, A
(resp., B) increases (resp., decreases) and A = S (resp., B = S). For the shadow price curves in the green
region, the investor buys (resp., sells) when (S, g(S)) hits the red (resp., blue) curve and the stock price
decreases (resp., increases). Furthermore, A (resp., B) decreases (resp., increases) and A = S (resp., B = S).
The shadow price curves do not exist in the orange and cyan regions for the optimal growth rate problem,
but we could construct them in a similar way for the finite time scenario. Furthermore, the investor only
buys (resp., sells) when (S, g(S)) hits the red (resp., blue) curve from the orange (resp., cyan) region. This
would require substantial extra analysis that goes beyond the scope of the present chapter.

where we write g(·) in place of g(·, a, b, λ). Furthermore, the following statements hold true.

(i) Either b < a or a < (1− λ)b holds true, and

1− h(a, b, λ)pa(s) ≥ min

{
1 ∧ pa(b)

(1− λ)b− a

}
> 0 for all s ∈ ]a ∧ b, a ∨ b[. (4.44)

(ii) gs(s, a, b, λ) > 0 for all s ∈ ]a ∧ b, a ∨ b[.
(iii) The function g can be rewritten as

g(s, a, b, λ) = (1− λ)b+
(1− λ)pb(s)

1− (1− λ)h̄pb(s)
, (4.45)

where

h̄(a, b, λ) :=
1

(1− λ)pb(a)
+

1

(1− λ)b− a
=

h

1 + ((1− λ)b− a)h
. (4.46)
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The function G can be rewritten as

G(a, b, λ) = p′a(b)G(a, b, λ) := p′a(b)
(
−
√

1− λpb(a)−
(
(1− λ)b− a

)√
p′b(a)

)
, (4.47)

Also, the inequities

1− h̄(a, b, λ)pb(s) ≥ min

{
1 ∧ pb(a)

a− (1− λ)b

}
> 0 for all s ∈ ]a ∧ b, a ∨ b[ (4.48)

hold true.

Proof. If we define

f(s) =
1

1− ah+ hg(s)
, (4.49)

for some constant h, then we can calculate

f ′(s) = − h

(1− ah+ hg(s))2
gs(s)

and f ′′(s) =
h

(1− ah+ hg(s))2

(
−gss(s) +

2g2
s(s)h

1− ah+ hg(s)

)
,

and the ODE and the first set of boundary conditions in (4.43) becomes{
f ′′(s) = −2Θ(s)

s
f ′(s),

f(a) = 1, f(b) = 1
1−ah+(1−λ)bh

, f ′(a) = −h and f ′(b) = − (1−λ)h
(1−ah+(1−λ)bh)2 .

(4.50)

If

h =
1

pa(b)
− 1

(1− λ)b− a
and G(a, b, λ) = 0,

then the solution to the ODE (4.50) is given by

f(s) = 1− hpa(s) ⇐⇒ g(s) = a+
pa(s)

1− hpa(s)
.

To show the second set of boundary conditions in (4.43), we first use Remark 4.2 to show
that

∂

∂a
pa(s) = −1 +

2Θ(a)

a
pa(s). (4.51)

Using this calculation and the definitions of g and h, we calculate

ha(a, b, λ) =
1

p2
a(b)

(
1− 2Θ(a)

a
pa(b)

)
− 1

((1− λ)b− a)2
(4.52)

and ga(s) = 1−
1− p2

a(s)
p2
a(b)

+ p2
a(s)

((1−λ)b−a)2 − 2Θ(a)
a

(1− pa(s)
pa(b)

)pa(s)

(1− pa(s)
pa(b)

+ pa(s)
((1−λ)b−a)

)2
. (4.53)
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It follows that ga(a) = ga(b) = 0. Also, we calculate

gb(s) =
p2
a(s)hb

(1− hpa(s))2

= G(a, b, λ)

√
1− λpa(b) + ((1− λ)b− a)

√
p′a(b)

p2
a(b)((1− λ)b− a)2

p2
a(s)

(1− hpa(s))2
= 0 (4.54)

for all s.
The first statement in (i) follows from the fact thatG(a, s, λ) > 0 for any 0 < a < s < a

1−λ .
To show (4.44), we use the definitions of (4.3), (4.41) of p and h, and the equation (4.42) to
calculate

1− h(a, b, λ)pa(a) = 1 and 1− h(a, b, λ)pa(b) =
pa(b)

(1− λ)b− a
=

√
p′a(b)√
1− λ

> 0,

and notice that p′a(s) > 0 for all s > 0. The proof of (4.48) is similar. The result in (ii)
follows from

gs(s) =
p′a(s)

(1− h(a, b, λ)pa(s))2
> 0.

The proof of (4.45)–(4.47) is straightforward by using Remark 4.2 and (4.42). �

Remark 4.7 An alternative solution to the ODE (4.43) is g given by the lemma, with (a, b)
satisfies √

1− λpa(b) + ((1− λ)b− a)
√
p′a(b) = 0.

However, this equation implies that a < b < (1− λ)a, and there exists a < s < b such that
1− hpa(s) = 0.

Lemma 4.3.3, together with (4.36), (4.37) and Lemma 4.3.2, suggest that the buying and
selling boundaries A and B should satisfy G(A,B, λ) = 0, and the trading strategy (ϑ̂0, ϑ̂)
is optimal if

h(At, Bt, λ) =
ϑ̂t

ϑ̂0
t + ϑ̂At

⇔ h̄(At, Bt, λ) =
ϑ̂t

ϑ̂0
t + (1− λ)ϑ̂Bt

. (4.55)

The process Ah(A, b, λ) (resp., (1− λ)Bh̄(A, b, λ)) is the proportion of wealth invested into
the stock when the price process S is on the buying (resp., selling) boundary A (resp., B).
In the presence of G(a, b, λ) = G(a, b, λ) = 0, we can rewrite h and h̄ as follow.

h(a, b, λ) =
1

(1− λ)b− a

(√
1− λ√
p′a(b)

− 1

)
(4.56)

and h̄(a, b, λ) =
1

(1− λ)b− a

(
1− 1√

p′b(a)
√

1− λ

)
=

√
p′a(b)√
1− λ

h(a, b, λ). (4.57)
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Furthermore, if we define

L(a, b, λ) =
√

1− λb
√
p′a(b)− a (4.58)

and Q̂(a, b, λ) =
1−
√
p′a(b)
√

1−λ√
1− λb

√
p′a(b)− a

=
h(a, b, λ)

1− ah(a, b, λ)
=

h̄(a, b, λ)

1− (1− λ)bh̄(a, b, λ)
, (4.59)

then

1− ah(a, b, λ) =

√
1− λ√
p′a(b)

1

(1− λ)b− a
L(a, b, λ) (4.60)

and 1− (1− λ)bh̄(a, b, λ) =
1

(1− λ)b− a
L(a, b, λ), (4.61)

and the optimality condition can be equivalently characterized by the stock-cash ratio as
follows:

ϑ0
t = 0, if L(At, Bt, λ) = 0 (4.62)

and Qt =
ϑt
ϑ0
t

1{ϑ0
t 6=0} = Q̂(At, Bt, λ), if L(At, Bt, λ) 6= 0. (4.63)

When ϑ0 6= 0, (4.63) suggests us to construct the buying boundary Q and the selling bound-

ary Q associated with the stock-cash ratio, that satisfy the equalities

Q(A) = Q̂(A,B, λ) = Q(B). (4.64)

The investor only buys when Q(S) = Q (⇔ S = A) and only sells when Q(S) = Q
(⇔ S = B).

In the following subsections, we will construct the shadow price by (I) finding the solutions
to the algebraic equation G(a, b, λ) = 0, (II) deciding suitable solutions such that the shadow
price process is within the bid-ask spread, (III) constructing the buying (resp., selling)
boundary Q (resp., Q) associated with the stock-cash ratio Q, (IV) constructing A and
B. To facilitate the exposition of our analysis, we collect all the results and proofs in
Appendix 4.6.

4.3.2 The existence of the shadow price process

We will first consider the solutions to the algebraic equation G(a, b, λ) = 0, where G is given
by (4.42) in Lemma 4.3.3. To this end, we consider the families of functions G(a, ·, λ) and
G(·, b, λ). We will show in Proposition 4.3.4 that, fix λ ∈ ]0, 1[, there exists η

`
(λ) < η < η

r
(λ)

(resp., 0 < ρ̄`(λ) < ρ < ρ̄r(λ)) such that

lim
λ↓0

η
`
(λ) = lim

λ↓0
η
r
(λ) = η

(
resp., lim

λ↓0
ρ̄`(λ) = lim

λ↓0
ρ̄r(λ) = ρ

)
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and

G(a, ., λ)


has 3 zeroes β1(a, λ) < β2(a, λ) < β3(a;λ), if a ∈]0, η

`
(λ)[ ∪ ]η

r
(λ),∞[,

has 2 zeroes β1(a, λ) < β2(a, λ) = β3(a, λ), if a ∈ {η
`
(λ), η

r
(λ)},

has 1 zero β1(a, λ), if a ∈]η
`
(λ), η

r
(λ)[,

(resp.,

G(., b, λ)


has 3 zeroes α1(b, λ) < α2(b, λ) < α3(b, λ), if b ∈]0, ρ̄`(λ)[ ∪ ]ρ̄r(λ),∞[,

has 2 zeroes α1(b, λ) = α2(b, λ) < α3(b, λ), if b ∈ {ρ̄`(λ), ρ̄r(λ)},
has 1 zero α3(b, λ), if b ∈]ρ̄`(λ), ρ̄r(λ)[).

See Figures 4.5, 4.6 and 4.7 for examples. An outline of our proof of finding zeros (Propo-
sition 4.3.4) is in Figure 4.7.

Figure 4.5: Function G(a, ·, λ) in the context of Example 4.1 for κ = 0.5, γ = 0.1, σ = 0.2
and λ = 0.2. Graphs from left to right are such that a = 0.89, a = η

`
≈ 0.944414, a = 1.2,

a = η
r
≈ 2.0473255 and a = 2.1.

Figure 4.6: Function G(·, b, λ) in the context of Example 4.1 for κ = 0.5, γ = 0.1, σ = 0.2
and λ = 0.2.. Graphs from left to right are such that b = 0.57, b = ρ̄` ≈ 0.596585, b = 1.1,
b = ρ̄r ≈ 1.29329 and b = 1.4.
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We include more properties related to points η
`
(λ), η

r
(λ), ρ̄`(λ), ρ̄r(λ) and the functions

G(a, ·, λ) and G(·, b, λ) in Proposition 4.3.4. In addition, we will show that

ρ̄r(λ) < β3

(
η
r
(λ), λ

)
< η < β2

(
η
`
(λ), λ

)
and α2

(
ρ̄r(λ), λ

)
< ρ < α1

(
ρ̄`(λ), λ

)
< η

`
(λ)

and the restriction and inverse of βi (resp., αi), for i = 1, 2, 3, are as in Table 4.2 (resp.,
Table 4.3) below.

Proposition 4.3.4 Suppose that Assumptions 4.1 holds true. There exist η
`
, η

r
, ρ̄`, ρ̄r :

]0, 1[→ ]0,∞[ such that the following statements hold true:

(i) ρ̄`(0) = ρ̄r(0) = ρ and η
`
(0) = η

r
(0) = η.

(ii) The restriction of η
`

and ρ̄` (resp., η
r

and ρ̄r) on [0, 1[ are strictly decreasing (resp.,
increasing).

In the following statements, we fixed λ ∈ [0, 1[ and write ρ̄`, ρ̄r, η`, ηr, βi(·) and αi(·) in
place of ρ̄`(λ), ρ̄r(λ), η

`
(λ), η

r
(λ), βi(·, λ) and αi(·, λ), for i = 1, 2, 3.

(iii) For a fixed λ ∈ [0, 1[, there exist β1 : ]0,∞[→ ]0,∞[ and β2, β3 : ]0, η
`
]∪ [η

r
,∞[→]0,∞[

(resp., α3 : ]0,∞[→]0,∞[ and α1, α2 :]0, ρ̄`] ∪ [ρ̄r,∞[→ ]0,∞[) such that

G
(
a, βi(a), λ

)
= 0 (resp., G

(
αi(b), b, λ

)
= 0), (4.65)

for i = 1, 2, 3, if a ∈ ]0, η
`
] ∪ [η

r
,∞[ (resp., b ∈ ]0, ρ̄`] ∪ [ρ̄r,∞[) and for i = 1 (resp., i = 3)

, if a ∈ ]η
`
, η

r
[ (resp., b ∈ ]ρ̄`, ρ̄r[). Furthermore,

β1(a) < β2(a) < β3(a), for a ∈ ]0, η
`
[ ∪ ]η

r
,∞[,

β2(η
`
) = β3(η

`
), β2(η

r
) = β3(η

r
) and Gb(η`, β2(η

`
), λ) = Gb(ηr, β3(η

r
), λ) = 0

(resp., α1(b) < α2(b) < α3(b), for b ∈ ]0, ρ̄`[ ∪ ]ρ̄r,∞[,

α1(ρ̄`) = α2(ρ̄`), α1(ρ̄r) = α2(ρ̄r) and Ga

(
ρ̄`, α1(ρ̄`), λ

)
= Ga

(
ρ̄r, α2(ρ̄r), λ) = 0

)
.

(iv) The following inequities hold true.

G(a, b, λ)

{
< 0, for b ∈ ]0, β1(a)[ ∪ ]β2(a), β3(a)[,

> 0, for b ∈ ]β1(a), β2(a)[ ∪ ]β3(a),∞[,
(4.66)

where we denote ]β2(a), β3(a)[ = ∅ and ]β1(a), β2(a)[ ∪ ]β3(a),∞[ = ]β1(a),∞[ if a ∈ ]η
`
, η

r
[,

and

G(a, b, λ)

{
> 0, for a ∈ ]0, α1(b)[ ∪ ]α2(b), α3(b)[,

< 0, for a ∈ ]α1(b), α2(b)[ ∪ ]α3(b),∞[,
(4.67)

where we denote ]α1(b), α2(b)[ = ∅ and ]0, α1(b)[ ∪ ]α2(b), α3(b)[ = ]0, α3(a)[, if b ∈ ]ρ̄`, ρ̄r[.

(v)

α1(ρ, 0) = α2(ρ, 0) = ρ and β2(η, 0) = β3(η, 0) = η,

and α2(ρ̄r) < ρ < α1(ρ̄`) < η
`

and ρ̄r < β3(η
r
) < η < β2(η

`
).

(vi) The range, restriction and inverse of βi (resp., αi), for i = 1, 2, 3, are as in Table 4.2
(resp., Table 4.3).
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Unless otherwise stated, we write ρ̄`, ρ̄r, η`, ηr, βi(·) and αi(·) in place of ρ̄`(λ), ρ̄r(λ),
η
`
(λ), η

r
(λ), βi(·, λ) and αi(·, λ), for i = 1, 2, 3, for λ > 0. In the following lemma, we choose

suitable candidates βi and αi such that the shadow price is in the bid-ask spread.

Table 4.2: Restriction and inverse of βi.

Zeroes

Domain
]0, α2(ρ̄r)[ ]α2(ρ̄r), α1(ρ̄`)[ ]α1(ρ̄`), η

`
[ ]η

`
, η
r
[ ]η

r
,∞[

β1 incr. (α1|]0,ρ̄`[)
−1 decr. (α2|]0,ρ̄`[)

−1

β2 decr. (α1|]0,ρ̄r [)
−1 incr. (α2|]ρ̄r,β2(η

`
))
−1 undefined decr. (α3|]0,β3(η

r
)[)
−1

β3 decr. (α2|]β2(η
`
),∞[)

−1 undefined incr. (α3|]β3(η
r
),∞[)

−1

We denote by decr.(resp., incr. ) the restriction of the function on the corresponding interval is strictly
decreasing (resp., increasing).
We write ρ̄`, ρ̄r, η`, ηr, βi(·) and αi(·) in place of ρ̄`(λ), ρ̄r(λ), η

`
(λ), η

r
(λ), βi(·, λ) and αi(·, λ), for

i = 1, 2, 3.

Table 4.3: Range, restriction and inverse of αi.

Zeroes

Domain
]0, ρ̄`[ ]ρ̄`, ρ̄r[ ]ρ̄r, β3(η

r
)[ ]β3(η

r
), β2(η

`
)[ ]β2(η

`
),∞[

α1 incr. (β1|]0,α1(ρ̄`)[)
−1 undefined decr. (β2|]0,α2(ρ̄r)[)

−1

α2 decr. (β1|]α1(ρ̄`),∞[)
−1 undefined incr. (β2|]α2(ρ̄r),η

`
[)
−1 decr. (β3|]0,η

`
[)
−1

α3 decr. (β2|]η
r
,∞[)

−1 incr. (β3|]η
r
,∞[)

−1

We denote by decr.(resp., incr.) the restriction of the function on the corresponding interval is strictly

decreasing (resp., increasing).

We write ρ̄`, ρ̄r, η`, ηr, βi(·) and αi(·) in place of ρ̄`(λ), ρ̄r(λ), η
`
(λ), η

r
(λ), βi(·, λ) and αi(·, λ), for

i = 1, 2, 3.

Lemma 4.3.5 Suppose that Assumption 4.1 holds true and fix a, b > 0 and λ ∈ ]0, 1[ such
that G(a, b, λ) = 0, we have

(1− λ)s ≤ g(s, a, b, λ) ≤ s for all s ∈]a ∧ b, a ∨ b[ if and only if either

(i.a) a ∈ [α2(ρ̄r), η`] and b = β2(a) > a,

or (ii.a) a ∈ ]0, α1(ρ̄`)] and b = β1(a) < a,

or (iii.a) a ∈ [η
r
,∞[ and b = β3(a) < a,

or equivalently either

(i.b) b ∈ [ρ̄r(λ), β2(η
`
)] and a = α2(b) < b,

or (ii.b) b ∈ ]0, ρ̄`] and a = α1(b) > b,

or (iii.b) b ∈ [β3(η
r
),∞[ and a = α3(b) > b,

holds true.
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Figure 4.7: Function G(0.944413, ·, λ) (left) and G(·, 1.29329, λ) (right) in the context of Example 4.1 for
κ = 0.5, γ = 0.1, σ = 0.2 and as well as λ = 0 (black curve), λ = 0.1 (orange curve) and λ = 0.2 (red curve).
In the proof of Proposition 4.3.4, we show that G(a, ·, 0) (resp., G(·, a, 0)) has three zeroes except a (resp.,b)
equals ρ or η, where two of the three zeroes coincide. Furthermore, G(s, s, 0) = for all s > 0 implies that
a (resp., b) itself is a zero. When λ become bigger, the graph of G(a, ·, λ) (resp., G(·, a, λ)) goes up, which
indicate the possible existence of the zeros of G(a, ·, λ) (resp., G(·, a, λ)).

This lemma, together with Table 4.2 and 4.3, reveals that if a ∈ [α2(ρ̄r), α1(ρ̄`)] (resp.,
b ∈ [β3(η

r
), β2(η

`
)]), then the corresponding b (resp., a), such that G(a, b, λ) = 0, has two

possibilities, i.e. β1 and β2 ( resp., α2 and α3). However, if we construct

β(a, λ) =


β1(a), for a ∈ ]0, α2(ρ̄r)[,

β1(a) or β2(a), for a ∈ ]α2(ρ̄r), α1(ρ̄`)[,

β2(a), for a ∈ ]α1(ρ̄`), η`[,

where we write β(·) in place of β(·, λ), then β has at least one jump point α2(ρ̄r) ≤ ρ ≤ α1(ρ̄`)
since ρ̄` = β1(α1(ρ̄`)) < ρ < ρ̄r = β2(α2(ρ̄r)), and β1 and β2 are increasing. Also, note
that an admissible trading should be of finite variation and the optimal trading strategy is
characterized Q̂ as in (4.59). These observations suggest us to find a (unique) jump point
α2(ρ̄r) < ρ < α1(ρ̄`) (resp., β3(η

r
) < η̄ < β2(η

`
) ) such that

Q̂(ρ, ρ̄`, λ) = Q̂(ρ, ρ̄r, λ)
(
resp., Q̂(η

`
, η̄, λ) = Q̂(η

r
, η̄, λ)

)
, (4.68)

where
ρ̄` = β1(ρ) < ρ < ρ̄r = β2(ρ) and η

`
= α2(η̄) < η̄ < η

r
= α3(η̄). (4.69)

See also Figures 4.2 and 4.4. We provide a sketch proof of determining ρ and η̄ in Figure 4.8.
Furthermore, the continuity of the shadow prices process suggests us to show that

g(s,η
`
, η̄, λ) = g(s,η

r
, η̄, λ) for all s ∈ [η

`
,η

r
] (4.70)

and g(s, ρ̄`,η, λ) = g(s, ρ̄r,η, λ) for all s ∈ [ρ̄`, ρ̄r]. (4.71)
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We construct β and α as follows.

β(a) =


β1(a) < a, for a ∈ ]0, ρ[,

β2(a) > a, for a ∈ [ρ,η
`
],

β3(a) < a, for a ∈ [η
r
,∞[,

and α(b) =


α1(b) > b, for b ∈ ]0, ρ̄`],

α2(b) < b, for b ∈ [ρ̄r, η̄],

α3(b) > b, for b ∈ ]η̄,∞[.

(4.72)

These construction and Tables 4.2 and 4.3 imply that

β
(
α(b)

)
= b, for b ∈ ]0, ρ̄`[ ∪ [ρ̄r,∞[ (4.73)

and α
(
β(a)

)
= a, for a ∈ ]0, η

`
] ∪ ]η

r
,∞[. (4.74)

In light of (4.64), we define Q and Q by

Q(a) =

{
Q̂
(
a,β(a), λ

)
, for a ∈ ]0,η

`
[ ∪ ]η

r
,∞[ \ {ζ},

Q̂
(
η
`
, η̄, λ

)
, for a ∈ [η

`
,η

r
],

(4.75)

and Q(b) =

{
Q̂
(
α(b), b, λ

)
, for b ∈ ]0, ρ̄`[ ∪ ]ρ̄r,∞[ \ {ζ̄},

Q̂
(
ρ, ρ

r
, λ
)
, for b ∈ [ρ

`
, ρ

r
],

, (4.76)

where
ζ =

{
a | L

(
a,β(a, λ), λ

)
= 0
}
∈ ]ρ̄r, ζ[ and ζ̄ = β(ζ) ∈ ]ζ,η

`
[, (4.77)

with L given by (4.58), will be given in the next lemma. The point ζ (resp., ζ̄) is the place

where Q (resp., Q) crosses infinity. In view of these definitions and Section 4.2, we will show
that

L
(
a,β(a), λ

)
> 0, for a ∈ ]0, ρ[ ∪ ]ζ,η

`
[,

< 0, for a ∈ ]ρ, ζ[ ∪ ]η
r
,∞[,

= 0, for a = ζ,

(4.78)

and (4.12)–(4.17) in Section 4.2 hold true.

Lemma 4.3.6 Suppose that Assumption 4.1 holds true. There exist unique ρ,η
`
,η

r
, η̄, ρ̄`, ρ̄r :

]0, 1[ → ]0,∞[ such that α2(ρ̄r) < ρ < α1(ρ̄`) and β3(η
r
) < η̄ < β2(η

`
), and (4.68)–(4.71)

hold true, where αi and βi, for i = 1, 2, 3, is as in Proposition 4.3.4. If we define β and α as
in (4.72), as well as Q and Q as in (4.75) and (4.76), then (4.77), (4.78) and (4.12)–(4.16)
hold true. Furthermore,

lim
λ↓0

Q
(
a,β(a, λ), λ

)
= Q(a), for a ∈ R+ \ {ζ}. (4.79)

The final step to establish the shadow price process is to construct A and B mentioned
at the beginning of Section 4.3.2. We define sequences of stopping times (τn) and (en) as
well as A and B recursively as follows (see also Table 4.1 and Figure 4.4), as follows

τ0 = 0, A0 =

{
s0, if s0, /∈ ]η

`
,η

r
],

η
`

if s0 ∈ ]η
`
,η

r
],

B0 = β(A0), (4.80)
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Figure 4.8: Sketch of determining ρ, η̄, ζ and ζ̄. We denote by Q̂redi , Q̂redi , the functions Q̂(·, βi(·), λ)

and Q̂(αi(·), ·, λ), for i = 1, 2, 3. We will show that Q̂red1 (α1,2(ρ̄`)) = Q(α1,2(ρ̄`)) (resp., Q̂red2 (α1,2(ρ̄r)) =

Q(α1,2(ρ̄r))) and the restriction of Q̂red1 (resp., Q̂red2 ) on ]0, α1,2(ρ̄`)[ (resp., ]α1,2(ρ̄r), ζ[ ∪ ]ζ, η
`
[ ) is strictly

increasing (resp., decreasing). Similarly, (1−λ)Q̂blue2 (β2,3(η
`
)) = Q(β2,3(η

`
)) (resp., (1−λ)Q̂blue2 (β2,3(η

r
))) =

Q(β2,3(η
r
))) and the restriction of Q̂blue2 on ]ρ̄r, ζ̄[ ∪ ]ζ̄, β2,3(η

`
)[ (resp., ]β2,3(η

r
),∞[) is strictly decreasing

(resp., increasing). These observations imply the existence of ρ, η̄, (see the intersections) ζ and ζ̄ (see the
crossing of ±∞).


At = (Mt ∧ ρ)1{Aτk≤ρ} + (mt ∨ ρ̄)1{ρ<Aτk<η

`
}

+
(
(η

`
∧mt ∨ ρ)1{Mt≤ηr}

+ Mt1{Mt>η
r
}
)
1{Aτk=η

`
} + Mt1{Aτk>η

r
},

Bt = β(At),

ek = inf{t > τk | St = Bt and Bt 6= η̄, or At = ρ and St < ρ̄`},

(4.81)

for t ∈ [τk, ek[, and


Bt = (mt ∨ η̄)1{η̄≤Bek} + (Mt ∧ η̄)1{ρ̄r<Bek<η̄}

+
(
(ρ̄r ∨Mt ∧ η̄)1{mt≥ρ̄`} + mt1{mt<ρ̄`}

)
1{Bek=ρ̄r} + mt1{Bek≤ρ̄`},

At = α(Bt),

τk+1 = inf{t > ek | St = At and At 6= ρ, or Bt = η̄ and St > η
r
},

(4.82)
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for t ∈ [ek, τk+1[, where

mt =
∞∑
k=0

(
min
τk≤u≤t

Su1{τk≤t<ek} + min
ek≤u≤t

Su1{ek≤t<τk+1}

)
(4.83)

and Mt =
∞∑
k=0

(
max
τk≤u≤t

Su1{τk≤t<ek} + max
ek≤u≤t

Su1{ek≤t<τk+1}

)
. (4.84)

For such A and B, we present the optimal strategy as follows. Without loss of generality,
we let

ϑ?0 = 1 and ϑ0,?
0 =

1

Q(A0)
1{A0 6=ζ}, (4.85)

thanks to Lemma 4.1.1. The strategy (ϑ̂0,?, ϑ̂?) as in Figures 4.2 and 4.4 is given by

Q?T =
ϑ?T
ϑ0,?
T

1{ϑ0,?
T 6=0} = Q(BT )1{BT 6=ζ̄} = Q(AT )1{AT 6=ζ}, (4.86)

ϑ?,+T =

∫ T

0

ϑ0,?
t

1 + StQ(St)
1{St=At} dQ(St), (4.87)

ϑ?,−T =

∫ T

0

ϑ0,?
t

1 + (1− λ)StQ(St)
1{St=Bt} dQ(St), (4.88)

ϑ̂0,?,+
T =

∫ T

0

(1− λ)St dϑ̂?,−t and ϑ̂0,?,−
T =

∫ T

0

St dϑ̂?,+t , (4.89)

for T > 0. Such a strategy also satisfies (4.8).
We conclude the section with the main result of the chapter.

Theorem 4.3.7 Consider the stochastic control problem formulated in Section 4.1 and 4.3.
The processes A and B, given by (4.80)–(4.82) are of finite variation, and the process Ŝ =
g(S,A,B, λ), where g is given by (4.40) in Lemma 4.3.3, is a shadow price for the bid-
ask spread

[
(1 − λ)S, S

]
with associated optimal strategy (ϑ0,?, ϑ?) given by (4.85)–(4.89).

Furthermore, either condition (i) or (ii) in Lemma 4.3.1 holds true, and (ϑ0,?, ϑ?) is optimal
for the original market.

4.3.3 A lower bound of the optimal growth rate

In this section, we give a lower bound of the optimal growth rate. This bound goes to the
optimal growth rate of the frictionless market as λ goes to 0.

Theorem 4.3.8 Consider the stochastic control problem formulated in Section 4.1 and 4.3.
The optimal growth rate δλ satisfies the inequalities

δ0 ≥ δλ ≥ lim sup
T↑∞

1

T

∫ T

0

1

2
H2(St, λ) dt (4.90)
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where where δ0 is the optimal growth rate of the frictionless market as in Lemma 4.3.2 and

H(s, λ) =
(
h
(
s,β(s), λ

)
1]0,ξ[(s) + (1− λ)h̄

(
α(s), s, λ

)
1[ξ̄,∞[(s)

)
σ(s)s,

with
ξ = sup{s > 0 | Q(s) ≥ 0}, ξ̄ = sup{s > 0 | Q(s) ≥ 0} = β(ξ). (4.91)

The function H is such that

lim
λ↓0
H(s, λ) =

µ(s)

σ(s)
and lim

λ↓0
lim sup
T↑∞

1

T

∫ T

0

1

2
H2(St, λ) dt = δ0. (4.92)

If m(]0,∞[) < 0, then

lim
T↑∞

1

T

∫ T

0

1

2

µ̂2
t

σ̂2
t

dt (4.93)

exists and

lim
T↑∞

1

T

∫ T

0

1

2
H2(St, λ) dt =

1

m(]0,∞[)

∫ ∞
0

1

2
H2(s, λ)m(ds). (4.94)

Proof. In view of (4.28)–(4.30), (4.39) and (4.40), we can see that

µ̂2
t

σ̂2
t

=
µ2
t

σ2
t

+
gss
gs
µ(St)St +

1

4

g2
ss

g2
s

σ2(St)S
2
t = U2(St, At, Bt, λ)σ2(St)S

2
t , (4.95)

where

U(s, a, b, λ) =
p′a(s)h(a, b, λ)

1− h(a, b, λ)pa(s)
.

Using (4.41), (4.51), (4.52) and (4.107) in Appendix 4.6, we calculate

d

da
U
(
s, a,β(a), λ

)
= −2Ga

(
a,β(a), λ

)√p′a(β(a))p′a(s)

(1− hpa(s))2

1

((1− λ)β(a)− a)2
. (4.96)

This result and Corollary 4.6.1 in Appendix 4.6 imply that

d

da
U
(
s, a,β(a), λ

){> 0, if a > β(a),

< 0, if a < β(a).
(4.97)

Note that (4.59) implies that

h(a, b, λ) =
Q̂(a, b, λ)

1 + aQ̂(a, b, λ)
. (4.98)

This observation, (4.64), (4.12)–(4.17) in Section 4.2 (see also Figure 4.2) and Lemma 4.3.3
imply that

h
(
s, a,β(a), λ

)
< 0 ⇐⇒ U

(
s, a,β(a), λ

)
< 0 ⇐⇒ a > ξ.
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Combining this result with (4.57), the definitions (4.91) of ξ and ξ̄, (4.97), (4.98) and the
fact that G(α(s), s, λ) = 0, we obtain

U2
(
s, a,β(a), λ

)
≥ U2

(
s, ξ, ξ̄, λ

)
= 0, if ξ < s < ξ̄

U2(s, a,β(a), λ) ≥ U2(s, s,β(s), λ) = h2(s, s,β(s), λ), if s ≤ ξ,

and U2(s, a,β(a), λ) ≥ U2(s,α(s), s, λ) =
(
(1− λ)2h̄(s,α(s), s, λ))2, if s ≥ ξ̄.

The inequality (4.90) follows from these inequalities, (4.32) and (4.95).
In view of (4.57), (4.79) in Lemma 4.3.6 and (4.98), we obtain the first limit in (4.92).

The second limit in (4.92) follows from the first limit in (4.92), (4.90) and Fatou’s Lemma.
We again use the ergodic results (see e.g., Borodin and Salminen [14, Ch II.6]) to obtain
(4.94). Finally, we show (4.93). Given any b ≤ ρ̄` ∧B0 and a ≥ η

r
∨ A0, we define

M0 = inf{t > 0 | St = a}, Nk = inf{t > Mk | St = b} and Mk+1 = inf{t > Nk | St = a},

for k = 0, 1, 2, · · · . In view of the definitions of A and B in Theorem 4.3.7, we can see that

SMk
= a, AMk

= a, BMk
= β(b), SNk = b, ANk = α(b) and BNk = b.

Combining this observation with (4.32) and (4.95), we use similar arguments in the proof of
the ergodic results in Rogers and Williams [79, Theorem V53] to obtain the required results.

�

4.4 Asymptotics

In this section, we derive the asymptotic expansion of the buying and selling boundaries.
Note that around ρ, the function β could be β1 and β2, and

β1(a, 0)

{
= a, for a ≤ ρ,

< a, for ρ < a,
and β2(a, 0)

{
> a, for a < ρ,

= a, for ρ ≤ a ≤ η.
(4.99)

It follows that

lim
λ↓0

β1(a, λ)

{
= a, for a ≤ ρ,

< a, for ρ < a,
and lim

λ↓0
β2(a, λ)

{
> a, for a < ρ,

= a, for ρ ≤ a ≤ η.
(4.100)

Also, similar phenomenon happens for α around η. These observations inspire us to deter-
mine the asymptotic expansions of the functions βi and αi, for i = 1, 2, 3 in Proposition
4.3.4, in three different domains. We organize them in the following three propositions.

Proposition 4.4.1 Consider the stochastic control problem formulated in Section 4.1 and 4.3.
For sufficiently small λ > 0, the following statements hold true.
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(i)

βi(a, λ) = a− a
(

6

Γ(a)

) 1
3

λ
1
3 +

3aΓ(a)− a2Γ′(a)

6
1
3 Γ

5
3 (a)

λ
2
3 +O(λ),

ah
(
a, βi(a, λ), λ

)
= Θ(a)−

(
3

4
Γ2(a)

) 1
3

λ
1
3 + aΓ′(a)

(
1

48Γ2(a)

) 1
3

λ
2
3 +O(λ),

and Q̂(a, βi(a, λ), λ) = Q(a) +
1

a(1−Θ(a))2

(
3

4
Γ2(a)

) 1
3

λ
1
3

+

(
1

(1−Θ(a))2
Γ′(a)

(
1

48Γ2(a)

) 1
3

+
1

a(1−Θ(a))3

(
3

4
Γ2(a)

) 2
3

)
λ

2
3 +O(λ),

where Γ(a) = a2Γ(a), for i = 1, if a ∈ ]0, ρ[, i = 2, if a ∈ ]ρ, η
`
(λ)], and i = 3, if

a ∈ [η
r
(λ),∞[, and we exclude the point a = Θ−1(1) = ζ in the last expansion.

(ii)

αi(b, λ) = b+ b

(
6

Γ(b)

) 1
3

λ
1
3 +

3aΓ(b)− b2Γ′(a)

6
1
3 Γ

5
3 (b)

λ
2
3 +O(λ),

(1− λ)bh̄(αi(b, λ), b, λ) = Θ(b) +

(
3

4
Γ2(b)

) 1
3

λ
1
3 + bΓ′(b)

(
1

48Γ2(b)

) 1
3

λ
2
3 +O(λ),

and Q̂(αi(b, λ), b, λ) = Q(b)− 1

b(1−Θ(b))2

(
3

4
Γ2(b)

) 1
3

λ
1
3

+

(
1

(1−Θ(b))2
Γ′(b)

(
1

48Γ2(b)

) 1
3

+
1

b(1−Θ(b))3

(
3

4
Γ2(b)

) 2
3

)
λ

2
3 +O(λ),

for i = 1, if b ∈ ]0, ρ̄`(λ)], i = 2, if b ∈ [ρ̄r(λ), η[, and i = 3 if b ∈ ]η,∞[, and we exclude the
point b = Θ−1(1) = ζ in the last expansion.

Proof. We only prove the case for the expansion of β1 and the proof of other cases are similar.
In view of (4.99) and (4.100) and the facts that G(a, β1(a, λ), λ) = 0 and G(a, β1(a, 0), 0) = 0,
we can see that λ = Λ(a, β1(a, λ)), where

Λ(a, b) = 1− a

b
−
p2
a(b) + pa(b)

√
p2
a(b) + 4abp′a(b)

2b2p′a(b)
and Λ(a, β1(a, 0)) = 0.

Furthermore, Λb(a, β1(a, λ)) = Λb(a, a) = 0. Given any a, b > 0, G(a, b,Λ(a, b)) = 0 holds
true. We differentiate G(a, b,Λ(a, b)) = 0 with respect to b and use Faá di Bruno’s formula
to obtain

dnG

dbn
(
a, b,Λ(a, b)

)
=
∑ n!

k0!k1!k2! · · · kn!

∂k0+k1+···+kn

∂bk0∂λk1+···kn
G
(
a, b,Λ(a, b)

) n∏
j=1

(
1

j!

∂jΛ

∂bj
(a, b)

)kj
= 0, (4.101)
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where the sum is over all non-negative integers k0, k1, · · · , kn such that

k0 +
n∑
j=1

nkn = n.

Using the identities in (4.111)–(4.113) in Appendix 4.6, we calculate

G(a, a, 0) =
∂G

∂b
(a, a, 0) = B(a, a, 0) =

∂2G

db2
(a, a, 0) =

∂B

∂b
(a, a, 0) = 0 (4.102)

and
∂nG

∂bn
(
a, b,Λ(a, b)

)
=

n−1∑
j=0

(n− 1)!

j!(n− 1− j)!
∂jB

∂bj
(
a, b,Λ(a, b)

)∂n−1−jp′a
∂bn−1−j (b), (4.103)

for n ≥ 3. The identities in (4.101) and (4.102) imply that

∂Λ

∂b
(a, a) =

∂2Λ

∂b2
(a, a) = 0

and
∑ n!

k0!k3! · · · kn!

∂k3+···+kn∂k0G

∂λk3+···kn∂k0b
(a, a, 0)

n∏
j=3

(
1

j!

∂nΛ

∂bn
(a, a)

)kj
= 0, for n ≥ 3,

where the sum is over all non-negative integers k0, k3, · · · , kn such that k0 +
∑n

j=3 nkn = n.
Combining these results with (4.102), (4.103), (4.112), (4.113) and (4.126) we obtain

∂3Λ

∂b3
(a, a) = −

∂3G
∂b3

(a, a, 0)

Gλ(a, a, 0)
= −Γ(a)

a
,

and
∂4Λ

∂b4
(a, a) = −

∂4G
∂b4

(a, a, 0) + 4 ∂2G
∂b∂λ

(a, a, 0)∂
3Λ
∂b3

(a, a)

Gλ(a, a, 0)
=

2Γ(a)

a2
− 2Γ′(a)

a
,

and the analytic expressions of ∂nΛ
∂bn

(a, a) for n ≥ 5 can also be derived recursively. Now, we
can see that the function Λ has the expansion

Λ
(
a, β1(a, λ)

)
= −Γ(a)

6a

(
β1(a, λ)−a

)3
+

(
Γ(a)

12a2
− Γ′(a)

12a

)(
β1(a, λ)−a

)4
+O

((
β1(a, λ)−a

)5
)
.

It follows that β1(a, λ) has the expansion

β1(a, λ) = a+
∞∑
k=1

Υkλ
k
3 ,

where

Υ1 = −
(

6a

Γ(a)

) 1
3

= −a
(

6

Γ(a)

) 1
3

and Υ2 =
Γ(a)− aΓ′(a)

6
1
3a

1
3 Γ

5
3 (a)

=
3aΓ(a)− a2Γ′(a)

6
1
3 Γ

5
3 (a)
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and

1

(1− λ)β1(a, λ)− a
=
λ−

1
3

Υ1

(
1− Υ2

Υ1

λ
1
3 +

(
Υ2

2

Υ2
1

− Υ3 − a
Υ1

)
λ

2
3 +O(λ)

)
. (4.104)

Also, we derive the expansion

1√
p′a(β1(a, λ))

= 1 +
Θ(a)

a

(
β1(a, λ)− a) +

1

2
Γ(a)

(
β1(a, λ)− a)2

+
1

6

(
Θ(a)

a
Γ(a) + Γ′(a)

)(
β1(a, λ)− a)3

= 1 +
∞∑
k=1

Υ̌k, λ
k
3 ,

where

Υ̌1 =
Θ(a)

a
Υ1, Υ̌2 =

Θ(a)

a
Υ2 +

1

2
Γ(a)Υ2

1

and Υ̌3 =
Θ(a)

a
Υ3 + Γ(a)Υ1Υ2 +

1

6

(
Θ(a)

a
Γ(a) + Γ′(a)

)
Υ3

1.

It follows that
√

1− λ√
p′a(β1(a, λ))

− 1 = λ
1
3

(
Υ̌1 + Υ̌2λ

1
3 +

(
Υ̌3 −

1

2

)
λ

2
3 +O(λ)

)
.

Using the definitions (4.56) and (4.59) of h and Q̂, we calculate

ah
(
a, β1(a, λ), λ

)
= Θ(a)−

(
3

4
a4Γ2(a)

) 1
3

λ
1
3 +

(
a2

48

) 1
3 2Γ(a) + aΓ′(a)

Γ
2
3 (a)

λ
2
3 +O(λ)

= Θ(a)−
(

3

4
Γ2(a)

) 1
3

λ
1
3 + aΓ′(a)

(
1

48Γ2(a)

) 1
3

λ
2
3 +O(λ)

and

Q̂(a, β1(a, λ), λ)

=
h(a, β1(a, λ), λ)

1− ah(a, β1(a, λ), λ)

=Q(a) +
1

a(1−Θ(a))2

(
3

4
Γ2(a)

) 1
3

λ
1
3

+

(
1

(1−Θ(a))2
Γ′(a)

(
1

48Γ2(a)

) 1
3

+
1

a(1−Θ(a))3

(
3

4
Γ2(a)

) 2
3

)
λ

2
3 +O(λ).

�
Use similar arguments as the ones in Proposition 4.4.1, we obtain the following two

propositions.
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Proposition 4.4.2 , Consider the stochastic control problem formulated in Section 4.1
and 4.3. Suppose that Γ′(ρ) < 0 and Γ′(η) > 0. For sufficient small λ > 0, the follow-
ing statements hold true.

(i)

β1,2(ρ, λ) = ρ∓ ρ
3
4

(
− 12

Γ′(ρ)

) 1
4

λ
1
4 −
√

3ρ

20

17Γ′(ρ)− 3Γ′′(ρ)

(−Γ′(ρ))
3
2

λ
1
2 +O

(
λ

3
4

)
,

ρh
(
ρ, β1,2(ρ, λ), λ

)
= Θ(ρ) +

√
−3ρΓ′(ρ)

3
λ

1
2 ± 1

5

(
ρΓ′′(ρ)

Γ′(ρ)
+ 1

)(
−ρΓ

′(ρ)

12

) 1
4

λ
3
4 +O(λ)

and Q̂
(
ρ, β1,2(ρ, λ), λ

)
= Q(ρ) +

1

ρ(1−Θ(ρ))2

√
−3ρΓ′(ρ)

3
λ

1
2

−

(
1

(1−Θ(ρ))3

Γ′(ρ)

3
∓ 1

5ρ(1−Θ(ρ))2

(
ρΓ′′(ρ)

Γ′(ρ)
+ 1

)(
−ρΓ

′(ρ)

12

) 1
4

)
λ

3
4 +O(λ).

(ii)

α2,3(η, λ) = η ∓ η
3
4

(
12

Γ′(η)

) 1
4

λ
1
4 +

√
3ρ

20

17Γ′(η)− 3Γ′′(η)

(Γ′(η))
3
2

λ
1
2 +O

(
λ

3
4

)
,

ηh
(
η, α2,3(η, λ), λ

)
= Θ(η) +

√
ηΓ′(η)

3
λ

1
2 ± 1

5

(
ηΓ′′(η)

Γ′(η)
− 4

)(
ηΓ′(η)

12

) 1
4

λ
3
4 +O(λ),

and Q̂
(
η, α2,3(η, λ), λ

)
= Q(η) +

1

η(1−Θ(η))2

√
3ηΓ′(η)

3
λ

1
2

+

(
1

(1−Θ(η))3

3Γ′(η)

3
± 1

5η(1−Θ(η))2

(
ηΓ′′(η)

Γ′(η)
− 4

)(
ηΓ′(η)

12

) 1
4

)
λ

3
4 +O(λ).

Proposition 4.4.3 Consider the stochastic control problem formulated in Section 4.1 and 4.3.
For sufficient small λ > 0, the following statements holds true.

(i)

βi(a, λ) = βi(a, 0)− Gλ(a, βi(a, 0), 0)

Gb(a, βi(a, 0), 0)
λ+O(λ2),

ah
(
a, βi(a, λ), λ

)
= ah(a, βi(a, 0), 0) + F (a)λ+O(λ2)

and Q̂
(
a, βi(a, λ), λ

)
= Q̂

(
a, βi(a, λ), 0

)
+

F (a)

a(1− ah(a, βi(a, 0), 0))2
λ+O(λ2),
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for i = 1, if a ∈ ]ρ, α1(ρ̄`(λ))[, and i = 2, if a ∈ ]α2(ρ̄r(λ)), ρ[, where

F (a) = − a

(βi(a, 0)− a)
√
p′a(βi(a, 0))

(
Θ(βi(a, 0))

βi(a, 0)

Gλ(a, βi(a, 0), 0)

Gb(a, βi(a, 0), 0)
+

1

2

)
+

a

(βi(a, 0)− a)2

(
Gλ(a, βi(a, 0), 0)

Gb(a, βi(a, 0), 0)
+ βi(a, 0)

)(
1√

p′a(βi(a, 0))
− 1

)
.

(ii)

αi(b, λ) = αi(b, 0)− Gλ(αi(b, 0), b, 0)

Ga(αi(b, 0), b, 0)
λ+O(λ2),

(1− λ)bh̄
(
αi(b, λ), b, λ

)
= bh̄

(
αi(b, 0), b, 0

)
+ F(b)λ+O(λ2)

and (1− λ)Q̂
(
αi(b, λ), b, λ

)
= Q̂

(
αi(b, 0), b, 0

)
+

F(b)

b(1− bh̄
(
αi(b, 0), b, 0

)
)2
λ+O(λ2),

for i = 2, if b ∈ ]η, β2(η
`
(λ))[ and i = 3, if b ∈ ]β3(η

r
(λ)), η[, where

F(b) = −bh̄
(
αi(b, 0), b, 0

)
− b

(αi(b, 0)− b)
√
p′b(αi(b, 0))

(
Θ(αi(b, 0))

αi(b, 0)

Gλ(αi(b, 0), b, 0)

Ga(αi(b, 0), b, 0)
− 1

2

)
+

b

(αi(b, 0)− b)2

(
Gλ(αi(b, 0), b, 0)

Ga(αi(b, 0), b, 0)
− αi(b, 0)

)(
1√

p′b(αi(b, 0))
− 1

)
.

Remark 4.8 All the functions have expansions of the form
∑∞

k=0 νkλ
k
3 in Proposition 4.4.1,∑∞

k=0 νkλ
k
4 in Proposition 4.4.2, and

∑∞
k=0 νkλ

k in Proposition 4.4.3. However, all the coef-
ficients can be calculated explicitly.

4.5 Other cases of the problem data

In this section, we will break some of the conditions in Assumption 4.1, and divide the
problem data into 5 different cases. The derivation of the shadow price process, the buying
boundary, the selling boundary and the optimal strategy will be similar to the procedure in
Section 4.3. On this account, we just provide the results and do not dive into details.

Assumption 4.4 The following conditions hold true:
(i) The function Θ is C1 and decreasing. Furthermore, ξ > ζ, where

ξ = sup{s > 0 | Θ(s) > 0} ∈ ]0,∞] and ζ = sup{s > 0 | Θ(s) > 1} ∈ [0,∞],

with the usual convention that sup ∅ = 0.
(ii) There exist 0 ≤ ρ ≤ ζ ≤ ξ ≤ η such that

Γ(s)


> 0, for s < ρ,

< 0, for ρ < s < η,

> 0, for s > η.

.
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Note that Q is the form of (1.17). We denote by Case 1, the case when

0 = ρ = ζ < ξ < η <∞ ⇒ 1 ≥ Θ(0) > 0 > Θ(∞),

Case 2 the case when

0 < ρ < ζ < ξ = η =∞ ⇒ Θ(0) > 1 > Θ(∞) ≥ 0,

Case 3 the case when

0 < ρ < ζ = ξ = η =∞ ⇒ Θ(∞) = 1,

Case 4 the case when
ρ = ζ = ξ = η =∞ ⇒ Θ(∞) ≥ 1,

and Case 5 the case when

0 = ρ = ζ < ξ = η =∞ ⇒ 1 ≥ Θ(0) ≥ Θ(∞) > 0.

See Figure 4.9 for the function Q for Cases 1–5.

Figure 4.9: From left to right, the graphs are the function Q for Case 1–5

In Cases 1 and 5,
1 +Q(s)s > 0 for all s > 0.

In Case 2,

1 + (1− λ)Q(s)s < 0 for all s < ζ and 1 +Q(s)s > 0 for all s > ζ.

In Cases 3 and 4,
1 + (1− λ)Q(s)s < 0 for all s > 0.

The buying boundary, selling boundary, the shadow price process and the optimal strat-
egy are similar to the ones we demonstrated in Section 4.2 and 4.3, but with the points
ρ̄`, ρ, ρ̄r, ζ, ζ̄, ξ, ξ̄,η`, η̄, and η

r
given by Lemma 4.3.6 and (4.91) as in Table 4.4. See also

Figure 4.10 for the trading areas of the optimal strategy.
We conclude the section by providing some examples for Cases 1–5. Example 4.2 with

` = 0 and κγ− σ2 ≤ 0 is in Case 1.
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Table 4.4: ρ̄`, ρ, ρ̄r, ζ, ζ̄, ξ, ξ̄,η`, η̄, and η
r

for Cases 1–5

Case 1 0 = ρ̄` = ρ = ρ̄r = ζ = ζ̄ < ξ < ξ̄ < η
`
< η̄ < η

r
<∞

Case 2 0 < ρ̄` < ρ < ρ̄r < ζ < ζ̄ < ξ = ξ̄ = η
`

= η̄ = η
r

=∞
Case 3 0 < ρ̄` < ρ < ρ̄r < ζ = ζ̄ = ξ = ξ̄ = η

`
= η̄ = η

r
=∞

Case 4 ρ̄` = ρ = ρ̄r = ζ = ζ̄ = ξ = ξ̄ = η
`

= η̄ = η
r

=∞
Case 5 0 = ρ̄` = ρ = ρ̄r = ζ = ζ̄ < ξ = ξ̄ = η

`
= η̄ = η

r
=∞

Figure 4.10: From left to right, the graphs are the buying boundary Q and selling boundary Q for
Cases 1–5. The coloured areas reflect the optimal strategy as in Figure 4.2.

Example 4.4 (Cases 2 and 4) Suppose that the price process S is modelled by the SDE.

dSt = (γ + µSt)dt+ σSt dWt

for some µ, σ, γ > 0 such that µ < 1
2
σ2. In such a case,

Θ(s) =
µ

σ2
(γ + s−1), p′(s) = s−

2µ

σ2 exp

(
2µγ

σ2

(
s−1 − 1

))
and Γ(s) =

µ

σ2

((
µγ

σ2
− 1

)
γs2 + 2

(
µγ

σ2
− 1

)
s+

µ

σ2

)
s−4.

If µγ < σ2, then the problem data is in Case 2, and if µγ ≥ σ2, then the problem data is in
Case 4.

Example 4.5 (Case 3) Suppose that the price process S is modelled by the SDE.

dSt = (σ2S2α+1
t + µSt)dt+ σSα+1

t dt

for some µ, σ > 0 and α > 1
2
. In such a case,

Θ(s) = 1 +
µ

σ2
s−2α, p′(s) =

1

s2
exp

(
µγ

ασ2

(
s−2α − 1

))
and Q′(s) =

(
(2α− 1)σ2

µ
s2α − 1

)
s−4.
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The geometric Brownian motion is an example such that the problem data could be in
either Case 4 or 5. The model has been studied by Gerhold, Muhle-Karbe and Schacher-
mayer [34]. In such a case, we can calculate explicitly that

β(a) = ca and Q(s) = Q(cs) =
1− c−Θ

√
1−λ

(c1−Θ − 1)s
,

for some c > 0. Furthermore,

c < 1, if Θ > 1 (Case 4), and c > 1, if 0 < Θ < 1 (Case 5).

4.6 Appendix

In this section, we give the proofs of the results in Sections 4.3.2.
Proof of Proposition 4.3.4 We develop the proof in 4 main steps
Step 1: Preliminary results . We will first provide some preliminary results and show the

limits (see also Figures 4.5 and 4.6)

lim
b↓0

G(a, b, λ) = −∞, and lim
b↑∞

G(a, b, λ) =∞ for all a ∈ ]0,∞[ (4.105)

and lim
a↓0

G(a, b, λ) =∞ and lim
a↑∞

G(a, b, λ) = −∞ for all b ∈ ]0,∞[, (4.106)

where G and G are given by (4.42) and (4.47). In view of the definition (4.3) of p and note
that Θ(∞) < 0. We can see that

lim
a↑∞

p′b(a) =∞, lim
a↑∞

∫ a

b

1

u

Θ(u)√
p′b(u)

du = lim
a↑∞

1√
p′b(a)

− 1 = −1.

Using this result L’Hôpital’s rule, we obtain

lim
a↑∞

a
√
p′b(a)

pb(a)
= lim

a↑∞

1−Θ(a)√
p′b(a)

= 0.

It follows that

lim
a↑∞

G(a, b, λ) = lim
a↑∞
−pb(a)

(√
1− λ+

((1− λ)b− a)
√
p′b(a)

pb(a)

)
= −∞ for all b > 0.

Also note that Θ(0) > 1 (see Remark 4.1), we use L’Hôpital’s rule to obtain

lim
a↓0

pb(a)√
p′b(a)

= lim
a↓0
−

exp(
∫ a

1
1
s

ds)
√
p′b(a)

Θ(a)
= −∞.
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It follows that

lim
a↓0

G(a, b, λ) = lim
a↓0

√
p′b(a)

(
−
√

1− λ pb(a)√
p′b(a)

− (1− λ)b+ a

)
=∞ for all b > 0.

Using similar arguments, we obtain (4.105).
We next derive the first and second order partial derivatives of G and G. Differentiate

G with respect to a, we obtain

∂

∂a
G(a, b, λ) = p′b(a)A(a, b, λ) (4.107)

where

A(a, b, λ) = −
√

1− λ+
1√
p′b(a)

+ ((1− λ)b− a)
1√
p′b(a)

Θ(a)

a
. (4.108)

It follows that
∂

∂a
A(a, b, λ) =

(1− λ)b− a√
p′b(a)

Γ(a), (4.109)

where Γ is as in (4.1). In the presence of (4.47), the partial derivative Ga can be alternatively
expressed by

Ga(a, b, λ) = p′b(a)Ga(a, b, λ)− 2Θ(a)

a
p′b(a)G(a, b, λ). (4.110)

Similarly, we have
∂

∂b
G(a, b, λ) = p′a(b)B(a, b, λ), (4.111)

where

B(a, b, λ) =
√

1− λ− 1− λ√
p′a(b)

+ ((1− λ)b− a)
1√
p′a(b)

Θ(b)

b
(4.112)

and
∂

∂b
B(a, b, λ) =

(1− λ)b− a√
p′a(b)

Γ(b). (4.113)

Step 2: Results in the Proposition when λ = 0. In view of the definitions (4.42), (4.47),
(4.108) and (4.112) of G, G, A and B, as well as (4.109), (4.113) and Assumption 4.1, we
can see that

G(a, a, 0) = G(a, a, 0) = A(a, a, 0)B(b, b, 0) = Aa(a, a, 0) = Bb(b, b, 0) = 0 (4.114)

for all a, b ∈ ]0,∞[. Also, we can see that

G(a, b, 0) = 0 ⇐⇒ G(b, a, 0) = 0. (4.115)

We will prove all the results in this proposition for λ = 0 by showing that the function
G(a, ·, 0) = 0 (resp., G(·, b, 0) = 0) has 2 or 3 zeroes, and has 2 zeroes if and only if a (resp.,
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b) is ρ or η. The zeroes satisfy the property in Table 4.6 and 4.7. Furthermore, there exists
0 < ρ\(a) < η\(a) and ρ](b) < η](b) such that

ρ\, ρ](s)


= ρ, for s = ρ,

< ρ, for s > ρ

> ρ (< η), for s < ρ

and η\, η](s)


= η, for s = η,

< η (> ρ), for s > η,

> η, for s < η,

(4.116)

and if a 6= b, then

Gb(a, b, 0)


> 0, for b < ρ\(a),

< 0, for ρ\(a) < b < η\(a),

> 0, for b > η\(a)

(4.117)

and Ga(a, b, 0)


< 0, for a < ρ](b),

> 0, for ρ](b) < a < η](b)

< 0, for a > η](b)).

(4.118)

We will show the results for λ = 0 in three sub-steps.
Step 2.1: On the interval ]ρ, η[.
Fix a ∈ ]ρ, η[ (resp., b ∈ ]ρ, η[). In view of (4.105) (reps., (4.106)), (4.114), as well as

(4.113), (resp., (4.109)), and Assumption 4.1, we can see that (4.117) (resp., 4.118)) holds
true for some ρ\(a) < ρ < a < η < η\(a) (resp., ρ](b) < ρ < b < η < η](a) ), and there
exists β1(a, 0) < ρ\ < β2(a, 0) = a < η\ < β3(a, 0) (resp., α1(b, 0) < ρ] < α2(b, 0) = b < η] <
α3(b, 0)) such that the equation (4.65) holds true. Furthermore,

lim
a↓ρ

β1(a, 0) = lim
a↓ρ

β2(a, 0) = lim
a↓ρ

ρ\(a) = ρ

and lim
a↑η

β1(a, 0) = lim
a↑η

β2(a, 0) = lim
a↑η

η\(a) = η

(resp., lim
b↓ρ

α1(b, 0) = lim
b↓ρ

α2(b, 0) = lim
b↓ρ

ρ](b) = ρ

and lim
b↑η

α1(b, 0) = lim
b↑η

α2(b, 0) = lim
b↑η

η](b) = η).

In addition, we can also show the restriction of β1(·, 0) on ]ρ, η[ is strictly decreasing by
contradiction. If β1(·, 0) is not strictly decreasing, then there exists b < ρ = β1(ρ, 0) < a1 <
a2 < η such that G(a1, b, 0) = G(a2, b, 0) = 0. In view of (4.106) and (4.118), we can see that
the exists at most one zero for G(., b, 0) on [ρ, η] for any b > 0, which leads to contradiction.
Similarly, we can show that the restriction of β3(·, 0), α1(·, 0) and α3(·, 0) on ]ρ, η[ are strictly
decreasing. In view of (4.115), we can see that

x1 := β1(η, 0) = α1(η, 0) < ρ =: x0 and x̄1 := β3(ρ, 0) = α3(ρ, 0) > η =: x̄0.

A summary of the zeroes and their restrictions see the second column of Table 4.5.
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Table 4.5: Range and restriction of βi(·., 0) and αi(·., 0) .

Zeroes
Domain

]x0, x̄0[ ]x1, x0[ ]x̄0, x̄1[ ]xn+1, xn[ ]x̄n, x̄n+1[

β1(·, 0), α1(·, 0) ]x1, x0[ decr. ]x1, x0[ incr. ]x1, x2[ decr. ]xn+1, xn[ incr. ]xn+1, xn+2[ decr.

β2(·, 0), α2(·, 0) ]x0, x̄0[ incr. ]x0, x̄0[ decr. ]x0, x̄0[ decr. ]x̄n−1, x̄n[ decr. ]xn, xn−1[ decr.

β3(·, 0), α3(·, 0) ]x̄0, x̄1[ decr. ]x̄1, x̄2[ decr. ]x̄0, x̄1[ incr. ]x̄n+1, x̄n+2[ decr. ]x̄n, x̄n+1[ incr.

We denote by decr.(resp., incr.) the restriction of the function on the corresponding interval is strictly

decreasing (resp., increasing).

n = 1, 2, 3, · · ·

Step 2.2: On the interval ]x1, ρ[ ∪ ]η, x̄1[. Combining (4.115) with the results and similar
arguments in Step 2.1, we can see that for a, b ∈ ]x1, ρ[ (resp., a, b ∈ ]η, x̄1[ ) there exists

β1(a, 0) = a < ρ < β2(a, 0) =
(
α1(·, 0)

)−1
(a) < η < β3(b, 0)

and α1(b, 0) = b < ρ < α2(b, 0) = (β1(·, 0))−1(b) < η < α3(b, 0)

(resp., β1(a, 0) < ρ < β2(a, 0) = (α3(·, 0))−1(a) < η < β3(a, 0) = a

and α1(b, 0) < ρ < α2(b, 0) = (β3(·, 0))−1(b) < α3(b, 0) = b),

where (α1(·, 0))−1, (β1(·, 0))−1, (α3(·, 0))−1 and (β3(·, 0))−1 are the inverse functions of
α1(·, 0), β1(·, 0), α3(·, 0) and β3(·, 0) given in Step 2.1. Furthermore,

β2(x1, 0) = α2(x1, 0) = η and β2(x̄1, 0) = α2(x̄1, 0) = ρ, (4.119)

(4.116)–(4.118) holds true on ]x1, ρ[ ∪ ]η, x̄1[, and the restriction of β2(·, 0)(resp., α2(·, 0)) is
strictly decreasing on ]x1, ρ[ ∪ ]η, x̄1[.

The restrictions of β3(·, 0) and α3(·, 0) (resp., β1(·, 0) and α1(·, 0) ) on ]x1, ρ[ (resp., ]η, x̄1[)
are either strictly decreasing or strictly increasing. We will show that β3(·, 0) (resp., α1(·, 0))
is strictly decreasing on ]x1, ρ[ (resp., ]η, x̄1[) by contradiction. If β3(·, 0) is strictly increasing
on ]x1, ρ[, then for any a ∈ ]x1, ρ[,we have β3(a, 0) ∈ ]η, x̄1[. In view of this observation and
(4.115)–(4.118), we can see that α1(·, 0) should be strictly increasing on ]η, x̄1[. Furthermore,

β3(x1, 0) = η and α1(x̄1, 0) = ρ.

Combing this observation with (4.119), we have

η\(x1) = η and ρ](x̄1) = ρ,

which contradicts to (4.116). Similarly, we can show that the restriction of α3(·, 0) (resp.,
β1(·, 0)) on ]x1, ρ[ (resp., ]η, x̄1[) is strictly decreasing. We define

x2 = β1(x̄1, 0) = α1(x̄1, 0) < x1 and x̄2 = β3(x1, 0) = α3(x1, 0) > x̄1.

For a summary of the zeroes and their restrictions see the third and fourth columns of Table
4.5.
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Step 2.3: On the interval ]0, x1[ ∪ ]x̄1,∞[. Use arguments similar to the ones in Step
2.2, we can define recursively a strictly deceasing (resp., increasing) sequence xn (resp., x̄n),
given by

xn = β1(x̄n−1, 0) = α1(x̄n−1, 0) < xn−1 (resp., x̄n = β3(xn−1, 0) = α3(xn−1, 0) > x̄n−1),

such that the solutions β1(·, 0) < β2(·, 0) < β3(·, 0) (resp., α1(·, 0) < α2(·, 0) < α3(·, 0) ) to
the equalities (4.65) exist and satisfy the properties in Table 4.5 on ]xn, xn−1[ ∪ ]x̄n−1, x̄n[.
Furthermore, (4.116)–(4.118) hold true. The sequences {xn} and {x̄n} also satisfy

xn = β2(x̄n+1, 0) = α2(x̄n+1, 0) and x̄n = β2(xn+1, 0) = α2(xn+1, 0).

We only need to show that x∞ := limn↑∞ xn = 0 and x̄∞ := limn↑∞ x̄n =∞ to complete
the proof of this step. We prove the limits by contradiction. To this end, we first notice that

G(xn±1, x̄n, 0) = 0, Ga(xn+1, x̄n, 0) < 0 and Ga(xn−1, x̄n, 0) > 0, (4.120)

and G(xn, x̄n±1, 0) = 0, Gb(xn, x̄n−1, 0) < 0 and Gb(xn, x̄n+1, 0) > 0. (4.121)

In view of (4.108) and the facts that xn < ρ < ξ = Θ−1(0) < η, for n = 1, 2, 3, · · · , and Θ is
strictly decreasing, we can see that

∂

∂b
A(xn−1, b, 0) =

√
p′xn−1

(b)

(
−Θ(b)

b
+

Θ(xn−1)

xn−1

− (b− xn−1)
Θ(b)

b

Θ(xn−1)

xn−1

)
> 0.

for all η < b. This observation and (4.120) imply that If x∞ = 0 and x̄∞ <∞, we have

Ga(xn−1, x̄∞, 0) > 0 for all n > 1,

which contradicts to the fact that lima↓0 G(a, x̄∞, 0) = ∞ (see (4.106)). The contradiction
arguments are similar if x∞ > 0 and x̄∞ = ∞. If x∞ > 0 and x̄∞ < ∞, then we can use
(4.120), (4.121) and arguments similar to the ones above to show that

Ga(x∞, x̄∞, 0) = Gb(x∞, x̄∞, 0) = 0 ⇐⇒ A(x∞, x̄∞, 0) = B(x∞, x̄∞, 0) = 0. (4.122)

Using the definitions (4.56) and (4.108) of h and A, we calculate

Θ(a)

a
− h(a, b, λ) =

1

((1− λ)b− a)
√
p′a(b)

A(a, b, λ), (4.123)

Similarly, we use definitions (4.57) and (4.112) of h̄ and B,

Θ(b)

b
− (1− λ)h̄(a, b, λ) =

Θ(b)

b
−
√

1− λ
√
p′a(b)h(a, b, λ)

=
1

((1− λ)b− a)
√
p′b(a)

B(a, b, λ). (4.124)
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Combining the identities in (4.122)–(4.124), we obtain

h(x∞, x̄∞, λ) =
Θ(x∞)

x∞
=

1
√

1− λ
√
p′x(x̄∞)

Θ(x̄∞)

x̄∞
,

which contradicts to the fact that Θ(x∞) < 0 < Θ(x̄∞). A summary of the zeroes and their
restrictions see the fifth and sixth columns of Table 4.5. See also Table 4.6 for an overview.
From the construction of zeroes, we can also derive the inverse functions in Table 4.7.

Table 4.6: Range and restriction of βi(·, 0) and α(·, 0).

Zeroes

Domain
]0, ρ[ ]ρ, η[ ]η,∞[

β1(·, 0), α1(·, 0) ]0, ρ[ incr. ]0, ρ[ decr.

β2(·, 0), α2(·, 0) ]ρ,∞[ decr. ]ρ, η[ incr. ]0, η[ decr.

β3(·, 0), α3(·, 0) ]η,∞[ decr. ]η,∞[ incr.

We denote by decr.(resp., incr.) the restriction of the function on the corresponding interval is strictly

decreasing (resp., increasing).

Table 4.7: Inverse of βi(·, 0) and αi(·, 0).

Zeroes

Domain
]0, ρ[ ]ρ, η[ ]η,∞[

β1(·, 0), α1(·, 0) (α1(·, 0)|]0,ρ[)
−1, (β1(·, 0)|]0,ρ[)

−1 (α2(·, 0)|]0,ρ[)
−1, (β2(·, 0)|]0,ρ[)

−1

β2(·, 0), α2(·, 0) (α1(·, 0)|]ρ,∞[)
−1, (β1(·, 0)|]ρ,∞[)

−1 (α2(·, 0)|]ρ,η[)
−1, (β2(·, 0)|]ρ,η[)

−1 (α3(·, 0)|]0,η[)
−1, (β3(·, 0)|]0,η[)

−1

β3(·, 0), α3(·, 0) (α2(·, 0)|]η,∞[)
−1, (β2(·, 0)|]η,∞[)

−1 (α3(·, 0)|]η,∞[)
−1, (β3(·, 0)|]η,∞[)

−1

Step 3: The proof of (ii)–(v). In this step, we will first show that there exist a unique
Λ :]0,∞[→ [0, 1[ and β : ]0,∞[→]0,∞[ such that

G
(
a, β(a),Λ(a)

)
= 0, B

(
a, β(a),Λ(a)

)
= 0 and β(a)

{
> a for a < η

< a, for a > η
(4.125)

To this end, we first calculate

∂

∂λ
G(a, b, λ) = − 1

2
√

1− λ
pa(b) + b

√
p′a(b) =

(1− λ)b+ a

2(1− λ)

√
p′a(b)−

G(a, b, λ)

2(1− λ)
(4.126)

and
∂2

∂λ2
G(a, b, λ) = −1

4
(1− λ)−

3
2pa(b).
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Combining these results and the definition of G, we obtain

∂

∂λ
G(a, b, λ) > 0, if b ≤ a or G(a, b, λ) ≤ 0, (4.127)

∂2

∂λ2
G(a, b, λ) < 0 and lim

λ↑1

∂

∂λ
G(a, b, λ) = −∞, if b > a,

and
∂2

∂λ2
G(a, b, λ) ≥ 0 and lim

λ↑1

∂

∂λ
G(a, b, λ) =∞, if b ≤ a.

In view of these observations, we can see that for a fixed a and b, there exists λab ∈ [0, 1]
such that

∂

∂λ
G(a, b, λ)

{
> 0, for λ < λab,

< 0. for λ > λab,
and λab

{
= 1, if b ≤ a,

< 1, if b > a.
(4.128)

Furthermore,
λab > 0, if G(a, b, 0) ≤ 0. (4.129)

For a fixed a > 0,
lim
λ↑1

G(a, b, λ) = a
√
p′a(b) > 0 for all b > 0. (4.130)

Combining this observation with (4.128), (4.129) and (iv) for λ = 0 in this Proposition, as
well as Lemma 4.3.3.(i), (4.112), (4.113) and Assumption 4.1.(iii), we can see that for a fixed
a > 0, there exists Λ and β such that

G
(
a, β(a),Λ(a)

)
= 0, B

(
a, β(a),Λ(a)

)
= 0, β(η) = η, Λ(η) = 0, (4.131)

and


a < β2(a, 0) < β(a) < β3(a, 0) and η < β(a), if a < ρ,

β2(a, 0) = a < β(a) < β3(a, 0) and η < β(a), if ρ < a < η,

β2(a, 0) < β(a) < a = β3(a, 0) and ρ < β(a) < η, if η < a.

(4.132)

Using these results, (4.107)–(4.110) and Assumption 4.1.(iii), we have

Ga

(
a, β(a),Λ(a)

){< 0, for a > η,

> 0, for ρ < a < η.
(4.133)

Furthermore, we can show

Ga

(
a, β(a),Λ(a)

)
> 0, for a ≤ ρ, (4.134)

by contradiction. If this is not true, then there exists a1 ≤ ρ such that Ga(a1, β(a1),Λ(a1)) =
0 thanks to (4.133). In view of the definitions (1.17) and (4.59) of Q and Q̂, we can see that
if G(a, b, λ) = 0, then

Q(a)− Q̂(a, b, λ) =
1√

1− λ
A(a, b, λ)

(
√

1− λb
√
p′a(b)− a)(1−Θ(a))

(4.135)

and
Q(b)

1− λ
− Q̂(a, b, λ) =

√
p′a(b)

1− λ
B(a, b, λ)

(
√

1− λb
√
p′a(b)− a)(1−Θ(b))

. (4.136)
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Combining these calculations with the fact that Ga(a1, β(a1),Λ(a1)) = Gb(a1, β(a1),Λ(a1)) =
0, we obtain (1 − λ)Q(a1) = Q(β(a1)), which contradicts to Remark 4.4, since a1 ≤ ρ but
β(a1) > η.

We next show that Λ(∞) := lima↑∞ Λ(a) = 1 by contradiction. Differentiating
G
(
a, β(a),Λ(a)

)
= 0 with respect to a, we use (4.127), (4.110), (4.133) and (4.134) to

obtain

Λ′(a) = −Ga(a, β(a),Λ(a))

Gλ(a, β(a),Λ(a))

{
> 0 if a > η,

< 0 if a < η.
(4.137)

Note that given any λ ∈ ]0, 1[ and b > 0, there exists a > b such that G(a, b, λ) = 0 (see
(iv) for λ = 0, the limits in (4.106), (4.126) and (4.128)). If λ = Λ(∞) < 1, then we let
b > η and G(a, b,Λ(∞)) = 0 for some a > b. Furthermore, G(a, u, λ) < 0 for all u ∈ ]b, a[.
Combining this observation with (4.128) and (4.129), we can see that Λ(a) > λ, which leads
to contradiction. Similarly, we have lima↓0 Λ(a) = 1. Also, note the last two identities in
(4.131). For any λ ∈ ]0, 1[, there exist 0 < η

`
(λ) < η < η

r
(λ) such that

Λ(η
`
(λ)) = Λ(η

r
(λ)) = λ.

Combining these observations with (4.128)–(4.130), (4.137) as well as this proposition for
λ = 0 with η

`
(0) = η

r
(0) = η, we can see that for any a ∈ ]0, η

`
(λ)[ ∪ ]η

r
(λ),∞[, there exist

β1(a, λ) < β1(a, 0) < β2(a, 0) < β2(a, λ) < β3(a, λ) < β3(a, 0) (4.138)

such that (iii) and (iv) for βi hold true, and for a ∈ ]η
`
(λ), η

r
(λ)[ there exists β1(a, λ) < β1(0)

such that (iii) and (iv) hold true for β1. Furthermore,

β2

(
η
`
(λ)
)

= β3

(
η
`
(λ)
)
> η > β2

(
η
r
(λ)
)

= β3

(
η
r
(λ)
)
> ρ. (4.139)

We have the inequities thanks to (4.131) and (4.132). Similarly, we can show that there exist

α1(b, 0) < α1(b, λ) < α2(b, λ) < α2(b, 0) < α3(b, 0) < α3(b, λ) (4.140)

for ]0, ρ̄`(λ)[ ∪ ]ρ̄`(λ),∞[ such that (iii) and (iv) hold true for αi, and there exist α3(a, λ) >
α3(a, 0) such that (iii) and (iv) hold true for α3. Furthermore, we have the equalities 0 <
ρ̄`(λ) < ρ < ρ̄r(λ) as well as

η > α1

(
ρ̄`(λ)

)
= α2

(
ρ̄`(λ)

)
> ρ > α1

(
ρ̄r(λ)

)
= α2

(
ρ̄r(λ)

)
. (4.141)

The results in (v) follow from (4.138)–(4.140). We conclude this step by showing that
the restriction of η

`
is strictly decreasing and proof of the rest of (ii) is similar. For any

1 > λ̃ > λ > 0, we have

G(η
`
(λ), s, λ̃)

{
> 0, for s > β1

(
η
`
(λ), λ̃

)
,

< 0, for s < β1

(
η
`
(λ), λ̃

)
,
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thanks to (4.127)–(4.130) and (iv). Using this observation, η
`
(λ) > η

`
(λ̃) follows from (iii)

and (iv).
Step 4: The proof of (vi). We only prove the restriction, range and inverse of β1(·, λ) and

proof of other cases are similar. In view of (4.138), (4.140) as well as Table 4.6, we can see
that β1(·, 0) increases on ]0, ρ[, decreases on ]ρ,∞[, β1(ρ, 0) = ρ and β1(·, λ) < β1(·, 0) ≤ ρ.
Furthermore, for sufficient small a,

a = α1

(
β1(a, λ)

)
, Ga(a, β1(a, λ), λ) < 0, and Gb(a, β1(a, λ), λ) > 0, (4.142)

thanks to (4.109), (4.113), (iv) and Assumption 4.1, and

(β1)′(a) = −Ga(a, β1(a, λ), λ)

Gb(a, β1(a, λ), λ)
> 0. (4.143)

The sign of (β1)′ changes only around {a > 0 | Ga(a, β1(a, λ), λ) = 0}, for which is only
possible when β1(a, λ) = ρ̄` or β1(a, λ) = ρ̄r. In view of (4.138), (4.139), (4.141) and
Table 4.6, we can see that

G
(
α1(ρ̄`, λ), ρ̄`, λ

)
= 0, ρ̄` < ρ < α1(ρ̄`, λ) < η and β2(a, λ) > β2(a, 0) ≥ a, for a ≤ η.

It follows that β1(α1(ρ̄`, λ), λ) = ρ̄`. Furthermore, β1 is strictly increasing on ]0, α1(ρ̄`, λ)[,
since G(a, ρ̄`(λ), λ) > 0 for all a ∈ ]0, β3(ρ̄`)[ \ {α1(ρ̄`)}, and β1(α1(a, λ), λ) = a for all
a < α1(ρ̄`, λ), thanks to (4.142) and the fact that β1(a, λ) < β2(a, λ). The

Note that for a fixed b ∈ ]ρ̄`, ρ̄r[, the function G(., b, λ) only has one zero α3(b, λ) >
α3(b, 0) ≥ η > α1(ρ̄`, λ). Using similar arguments above, we obtain that the restriction of β1

on ]α1(ρ̄`),∞[ is strictly decreasing,

Gb(a, β1(a, λ), λ) > 0, Ga(a, β1(a, λ), λ) > 0 and a = α2

(
β1(a, λ)

)
(4.144)

for all a > α1(ρ̄`, λ) = α2(ρ̄`, λ).
�

The following corollary is straightforward by using (4.107)–(4.113) and Assumption 4.1,
as well as (iii)–(vi) in Proposition 4.3.4.

Corollary 4.6.1 Suppose that Assumption 4.1 holds true. Fix λ ∈ [0, 1[, we write η
`
, η

r

and ρ̄`, ρ̄r, in place of ρ̄`(λ), ρ̄r(λ), η
`
(λ), η

r
(λ). The following statements hold true:

(I)

β1(a) ≤ a, for a > 0, and β2,3(a)

{
≥ a, for a ≤ η

`
,

≤ a, for a ≥ η
r
.

Furthermore, the equalities hold true if and only if λ = 0 and (i) a ≤ ρ for the β1, (ii) ρ ≤ a ≤ η
for β2 and (iii) a ≥ η for β3.
(II)

α1,2(b)

{
≥ b, for b ≤ ρ̄`,
≤ b, for b ≥ ρ̄r,

and α3(b) ≥ b, for b > 0.

Furthermore, the equalities hold true if and only if λ = 0 and (i) b ≤ ρ for the first equality, (ii)
ρ ≤ b ≤ η for the second equality and (iii) b ≥ η for the third equality.
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(III)

Gb
(
a, β1(a), λ

)
> 0 for all a > 0

and Gb
(
a, β2(a), λ

)
< 0 and Gb

(
a, β2(a), λ

)
> 0, for a ∈]0, η

`
[ ∪ ]η

r
,∞[.

(IV)

Ga

(
α3(b), b, λ

)
< 0, for all b > 0

and Ga

(
α2(b), b, λ

)
> 0 and Ga

(
α1(b), b, λ

)
< 0, for b ∈ ]0, ρ̄`[ ∪ ]ρ̄r,∞[.

Proof of Lemma 4.3.5. We first show that

(1− λ)s ≤ g(s) for all s ∈ ]a ∧ b, a ∨ b[⇐⇒


(i) a ∈ ]0, η

`
] and b = β2(a) > a, or

(ii) a ∈ ]0, η
r
[ and b = β1(a) < a, or

(iii) a ∈ [η
r
,∞[ and b = β3(a) < a.

(4.145)

In light of (i) in Lemma 4.3.3, we first consider the case that (1− λ)b > a. In such a case, a ≤ η
`

and b = β2(a) or β3(a), thanks to Corollary 4.6.1.(I). Note that Lemma 4.3.3 implies that

g(s) > a > (1− λ)s, for s ∈
[
a,

a

1− λ

]
.

For s > a
1−λ , we calculate

g(s)− (1− λ)s =
((1− λ)s− a)pa(s)

1− h(a, b, λ)pa(s)

(
h(a, b, λ)− h(a, s, λ)

)
, (4.146)

where

h(a, s, λ) =
1

pa(s)
− 1

(1− λ)s− a
,

and

hs(a, s, λ) = G(a, s, λ)

√
1− λpa(s) + ((1− λ)s− a)

√
p′a(s)

p2
a(s)((1− λ)s− a)2

. (4.147)

Combining these results with (i) in Lemma 4.3.3 and (iv) in Proposition 4.3.4, we can see that
g(s) ≥ (1− λ)s if and only if b = β2(a).

When a > b, it is either (I) b = β1(a) or (II) a ≥ η
r
(λ) and b = βi(a), for i = 2, 3. In view of

(4.146) and (4.147), we can see that if (a, b) is in (II) for b = β2(a), then the inequity g(s) ≤ (1−λ)s
holds true. While if (a, b) is either in (I) for a ≤ η

r
, or (II) for b = β3(a), then g(s) ≥ (1− λ)s. We

next exclude the possibility when (a, b) is (I) for a ≥ η
r
. In light of (4.146), we only need to show

that
h(a, β3(a), λ) < h(a, β1(a), λ). (4.148)

Note that α2(β1(a)) = a and α3(β3(a)) = a (see Table 4.2). This observation and Corol-
lary 4.6.1.(IV) imply that

Ga

(
a, β1(a), λ

)
= Ga

(
α2(β1(a)), β1(a), λ

)
< 0

and Ga

(
a, β3(a), λ

)
= Ga

(
α3(β3(a)), β3(a), λ

)
> 0.
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Combining these inequities with (4.123), we obtain

h(a, β3(a), λ) <
Θ(a)

a
< h(a, β1(a), λ)

We next show that

g(s) ≤ s for all s ∈ ]a ∧ b, a ∨ b[⇐⇒


(i) b ∈ [ρ̄r,∞[ and a = α2(b) < b, or

(ii) b ∈ ]0, ρ̄`] and a = α1(b) > b, or

(iii) b ∈ [ρ̄`,∞[ and a = α3(b) > b.

(4.149)

To this end, we use the form of g in Lemma 4.3.3.(iii) to calculate

g(s)− s = −(1− λ)((1− λ)b− s)pb(s)
1− h̄(a, b, λ)pb(s)

(
h̄(a, b, λ)− h̄(a, s, λ)

)
,

where

h̄(s, b, λ) =
1

(1− λ)pb(s)
+

1

(1− λ)b− s
,

and

h̄s(s, b, λ) = G(s, b, λ)
((1− λ)s− a)

√
p′b(s)−

√
(1− λpb(s)

p2
a(s)((1− λ)s− a)2

. (4.150)

The required results as well as the equivalence are straightforward by using (4.145), (4.149) and
Tables 4.2 and 4.3.

�
Proof of Lemma 4.3.6. We prove the theorem in the following 6 main steps.
Step 1: Properties of Q̂(., β1(.), λ) (resp., Q̂(α1(.), ., λ) ) on ]0, α1(ρ̄`)[ (resp., ]0, ρ̄`[ ). In view

of the deification (4.59) of Q̂, (iv) in Proposition 4.3.4, and (4.123), (4.124), (I) and (IV) in Corol-
lary 4.6.1, Tables 4.2 and 4.3 and the fact that Ga(a, β1(a), λ) + Gb(a, β1(a), λ)β′1(a) = 0, we can
see that

Θ(α1(ρ̄`))

α1(ρ̄`)
= h(α1(ρ̄`), β1(α1(ρ̄`)), λ) = h(α1(ρ̄`), ρ̄`, λ), (4.151)

Ga
(
a, β1(a), λ

)
< 0 and Gb

(
a, β1(a), λ

)
> 0 for all a ∈ ]0, α1(ρ̄`)[, (4.152)

Θ(a)

a
> h

(
a, β1(a), λ

)
>

1
√

1− λ
√
p′a(β1(a))

Θ(β1(a))

β1(a)
for all a ∈ ]0, α1(ρ̄`)[, (4.153)

and
dQ̂(a, β1(a), λ)

da
= − 2Ga(a, β1(a), λ)
√

1− λ(
√

1− λβ1(a)
√
p′a(β1(a))− a)2

> 0, (4.154)

for a ∈ ]0, α1(ρ̄`)[\Ξ0, where

Ξ0 := {a ∈ ]0, α1(ρ̄`)[|L
(
a, β1(a), λ

)
= 0},

with L as in (4.58). We next show that

h(a, β1(a), λ) >
1

a
⇔ L

(
a, β1(a), λ

)
> 0 for all a ∈ ]0, α1(ρ̄`)[ (4.155)
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by contradiction. In view of (4.153) and the fact that ρ̄` < ρ, if

h
(
a, β1(a), λ

)
≤ 1

a
⇔

√
1− λβ1(a)

√
p′a(β1(a))− a ≤ 0, for some a ∈ ]0, α1(ρ̄`)[,

then

1 ≥ ah
(
a, β1(a), λ

)
>

a
√

1− λβ1(a)
√
p′a(β1(a))

Θ
(
β1(a)

)
≥ Θ

(
β1(a)

)
> Θ(ρ) > 1, (4.156)

which leads to contradiction.
Using (4.135), (4.136), (4.151)–(4.155) and Remarks 4.1 and 4.4, we can see that

α1(ρ̄`) < ρ < ζ, Q̂
(
α1(ρ̄`), β1

(
α1(ρ̄`)

)
, λ
)

= Q̂
(
α1

(
ρ̄`
)
, ρ̄`, λ) = Q(α1(ρ̄`)

)
, (4.157)

and
Q(β1(a))

1− λ
< Q̂

(
a, β1(a), λ

)
< Q(a), for a ∈ ]0, α1(ρ̄`)[. (4.158)

Furthermore,
Q̂
(
α1(b), b, λ

)
= Q̂

(
α1(b), β1

(
α1(b)

)
, λ
)

for all b ∈]0, ρ̄`[,

and

Q(b)

1− λ
< Q̂

(
α1(b), b, λ

)
< Q

(
α1(b)

)
, L

(
α1(b), b, λ

)
> 0 and

dQ̂(α1(b), b, λ)

db
> 0, (4.159)

for b ∈]0, ρ̄`[, thanks to Table 4.2.
Step 2: Properties of Q̂(·, β2(·), λ) (resp., Q̂(α2(·), ·, λ) ) on ]α2(ρ̄r), η`[ (resp., on ]ρ̄r, β2(η

`
)[) .

Using arguments similar to the ones in Step 1, we obtain

Q̂
(
α2(ρ̄r), β2(α2(ρ̄r)), λ

)
= Q

(
α2(ρ̄r, )

)
, (1− λ)Q̂

(
η
`
, β2(η

`
), λ
)

= Q
(
β2(η

`
)
)
, (4.160)

Θ(a)

a
> h(a, β2(a), λ) >

1
√

1− λ
√
p′a(β1(a))

Θ(β1(a))

β1(a)
for a ∈ ]α2(ρ̄r), η`[, (4.161)

and
dQ̂(a, β2(a), λ)

da
< 0, for a ∈ ]α2(ρ̄r), η`[\Ξ

†, (4.162)

where
Ξ† := {a ∈ ]α2(ρ̄r), η`[|L(a, β2(a), λ) = 0}.

Note that if ζ > a ∈ Ξ†, then β2(a) > ζ by using arguments similar to the ones in (4.156).
Furthermore,

d

da
L
(
a, β2(a), λ

)
= Θ(a)− 1 +

√
1− λ

√
p′a
(
β2(a)

)(
1−Θ(β2(a)

)
(β2)′(a) > 0.

Combining all these results above in this step with Assumption 4.1 and Remarks 4.1 and 4.4 and
the definition (4.59) of Q̂, we can show that there exists α2(ρ̄r) < ζ < η

`
such that

Ξ† = {ζ}, lim
a↑ζ

Q̂(a, β2(a), λ) = −∞, lim
a↓ζ

Q̂(a, β2(a), λ) =∞, (4.163)

h(a, β2(a), λ)

{
> 1

a , for a ∈ ]α2(ρ̄r), ζ[,

< 1
a , for a ∈ ]ζ, η

`
[,

L(a, β2(a), λ)

{
< 0, for a ∈ ]α2(ρ̄r), ζ[,

> 0, for a ∈ ]ζ, η
`
[,

(4.164)

and Q̂(a, β2(a), λ)

{
< Q(a), for a ∈ ]α2(ρ̄r), ζ[ ∪ ]Θ−1(1), η

`
[,

> Q(a), for a ∈ ]ζ,Θ−1(1)[.
(4.165)
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On the other hand, if we define
ζ̄ = β2(ζ),

then we have

Q̂(α2(ρ̄r), ρ̄r, λ) = Q(α2(ρ̄r)) = Q(α2(ρ̄r)), (1− λ)Q̂(α2(β2(η
`
)), β2(η

`
), λ) = Q(β2(η

`
)), (4.166)

dQ̂(α2(b), b, λ)

db
< 0, for a ∈ ]ρ̄r, ζ̄[ ∪ ]ζ̄, β2(η

`
)[, (4.167)

lim
b↑ζ̄

Q̂
(
α2(b), b, λ

)
= −∞, lim

b↓ζ̄
Q̂(α2(b), b, λ) =∞, (4.168)

L
(
α2(b), b, λ

){< 0, for b ∈ ]ρ̄r, ζ̄[,

> 0, for b ∈ ]ζ̄, β2(η
`
)[,

(4.169)

and (1− λ)Q̂(α2(b), b, λ)

{
> Q(b), for a ∈ ]ρ̄r,Θ

−1(1)[ ∪ ]ζ̄, ρ̄r[,

< Q(b), for a ∈ ]Θ−1(1), ζ̄[.
(4.170)

Step 3: Properties of Q̂(·, β3(·), λ) (resp., Q̂(α3(·), ·, λ) ) on ]η
r
,∞[ (resp., on ]β3(η

r
),∞[) . Use

arguments similar to the ones in Step 1, we obtain

β3(η
r
) > ζ, (1− λ)Q̂

(
α3(b), b, λ

){= Q(b), for b = β3(η
r
),

> Q(b), for b ∈ ]β3(η
r
),∞[,

(4.171)

and L
(
α3(b), b, λ

)
< 0 and

dQ̂(α3(b), b, λ)

db
> 0, for b ∈ [β3(η

r
),∞[, (4.172)

as well as

L
(
a, β3(a), λ

)
< 0, Q̂

(
a, β3(a), λ

)
< Q(a) and

dQ̂(a, β3(a), λ)

db
> 0, for a ∈ [η

r
,∞[. (4.173)

Step 4: ρ, η
`
, η

r
, ρ̄`,ρ̄r and η̄. In view of (4.154), (4.157) (4.158), (4.160), (4.162), (4.163),

(4.165) and the fact that α2(ρ̄r) < ρ < α1(ρ̄`), we can see that

Q̂(α2(ρ̄r), β1(α2(ρ̄r)), λ)− Q̂(α2(ρ̄r), β2(α2(ρ̄r)), λ) < 0,

lim
a↑α1(ρ̄`)∧ζ

(
Q̂(a, β1(a), λ)− Q̂(a, β2(a), λ)

)
> 0,

and
d

da

(
Q̂(a, β1(a), λ)− Q̂(a, β2(a), λ)

)
> 0, for a ∈ ]α2(ρ̄r), α1(ρ̄`) ∧ ζ[.

It follows that there exists α2(ρ̄r) < ρ < α1(ρ̄`) ∧ ζ such that

Q̂(ρ, ρ̄`, λ) = Q̂(ρ, ρ̄r, λ) and ρ̄` < ρ̄` < ρ̄r < ρ̄r,

where
ρ̄` = β1(ρ) and ρ̄` = β2(ρ). (4.174)

Similarly, that there exists β3(η
r
) ∨ ζ̄ < η̄ < β2(η

`
) such that

Q̂(η̄,η
`
, λ) = Q̂(η̄,η

r
, λ) and η

`
< η

`
< η

r
< η

r
, (4.175)
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where
η
`

= α2(η̄) and η
r

= α3(η̄).

Combining all the arguments in Step 1–4, and in addition the calculations

1 + aQ̂
(
a,β(a), λ

)
=

1√
1− λ

(1− λ)β(a)− a
√

1− λβ(a)
√
p′a(β(a))− a

and 1 + (1− λ)bQ̂(α(b), b, λ) =
(1− λ)b− α(b)

√
1− λb

√
p′
α(b)(b)− α(b)

,

we obtain all the required results expect (i), (4.70) and (4.71).
Step 5: Proof of (4.70) and (4.71).

In view of the definitions (4.40) and (4.59) of g and Q̂ and Lemma 4.3.6, we can see that

h
(
ρ, ρ̄`, λ

)
= h

(
ρ, ρ̄r, λ

)
and g

(
s, ρ, ρ̄`, λ

)
= g
(
s, ρ, ρ̄r, λ

)
for all s ∈ [ρ̄`, ρ̄r].

Similarly, we use the third identity in (4.59) and the alternative expression (4.45) of g in Lemma
4.3.3.(iii) to obtain

h̄
(
η
`
, η̄, λ

)
= h̄

(
η
r
, η̄, λ

)
and g

(
s,η

`
, η̄, λ

)
= g
(
s,η

r
, η̄, λ

)
for all s ∈ [η

`
,η
r
].

Step 6: Proof of (i) In view of the definition (4.72) of β and Step 1 in the proof of Proposi-
tion 4.3.4, we can see that

lim
λ↓0

β(a, λ) = a for all a > 0.

Combining this result with the definition (4.56) of h, we use L’Hôpital’s rule to compute

lim
λ↓0

h
(
a,β(a, λ), λ

)
= lim

λ↓0

√
pβ(a,λ)(a)(−Θ(a)

a + Θ(β(a,λ))
β(a) β′(a, λ))

β′(a, λ)− 1
=

Θ(a)

a
, (4.176)

and (i) follows. �
Proof of Theorem 4.3.7. The only results left to be proven is A and B are of finite variation

and the condition (i) in Lemma 4.3.1 is true. We first notice that the restriction of A on [τk, ek[ is
increasing (resp., decreasing) if Sτk ∈ ]0, ρ[ ∪ ]η

r
,∞[ (resp., Sτk ∈ [ρ,η

`
[). If Sτk ∈ [η

`
,η
r
[, then

P({mek < η
`
} ∪ {Mek > η

r
}) = 1.

Furthermore, if Mt > η
r

(resp., mt < η
`
) for some τk < t < ek, then

max
t≤u≤ek

Su > η
r

and min
t≤u≤ek

Su ≥ β(Mt) > β(η
r
) = η̄ > η

`

(resp., min
t≤u≤ek

Su < η
`

and max
t≤u≤ek

Su ≤ β(Mt) < β(η
`
) = η̄ < η

r
).

It follows that if Sτk ∈ [η
`
,η
r
[, then {mek < η

`
} ∩ {Mek > η

r
} = ∅ and A is increasing (resp.,

decreasing) if Mek > η
r

(resp., mek < η
r
). In particular, A has a positive jump from η

`
to η

r
at

inf {t > τk |Mt > η
r
}. Combining all these observations above and the fact the restriction of β on

]0,η
`
] ∪ [η

r
,∞[ is increasing, we obtain the corresponding results in Table 4.8. Similarly, we can
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Table 4.8: Restriction of A and B on time interval [τk, ek] and [ek, τk+1]

Sτk A and B on [τk, ek[ Sek A and B on [ek, τk+1[

]0, ρ[ incr. ]0, ρ̄`[ decr.

[ρ,η
`
[ decr. [ρ̄`, ρ̄r] 1) decr.(mτk+1

< ρ̄`) or 2) incr.(Mτk+1
> ρ̄r)

[η
`
,η
r
] 1) incr.(Mek > η

r
) or 2) decr.(mek < η

`
) ]ρ̄r, η̄] incr.

]η
r
,∞] incr. ]η̄,∞[ decr.

We denote by decr.(resp., incr.) the restriction of the process A and B on the time interval [τk, ek] and
[ek, τk+1] is decreasing (resp., increasing).

obtain the restriction of B on [ek, τk+1[ in Table 4.8. These two tables imply that the processes A
and B are of finite variation.

We will prove the condition (ii) in Lemma 4.3.1, if we show that (4.20) for sufficiently small
and sufficiently big ST hold true. If ST is sufficiently small, then Lemma 4.3.6 and (4.9) imply that
QT < 0, ϑ0,?

T < 0, ϑ?T > 0, BT < ST < AT and Q(AT ) < Q(AT ). Combining these observations
with Assumption 4.3, we obtain

0 <
ϑ̂?ST

VT (ϑ̂0,?, ϑ̂?)
≤

Q(AT )AT

1 +Q(AT )AT
≤ Q(AT )AT

1 +Q(AT )AT
= Θ(AT ) ≤ C1.

If ST is sufficiently large, then we use similar arguments to obtain

0 >
(1− λ)ϑ̂?ST

VT ((1− λ)ϑ̂0,?, ϑ̂?)
≥

(1− λ)Q(BT )BT

1 + (1− λ)Q(BT )AT
≥ Q(BT )BT

1 +Q(BT )BT
= Θ(BT ) ≥ −C1.

�



Chapter 5

Conclusion and future work

In Chapter 2, we consider a classical one-sided impulse control problem for a linear diffusion on the
positive half axis. The problem is motivated by the optimal exploitation of a renewable resource
with a fixed cost at each time of a control action. The controlled process models the population
density of a harvested species, where the decision-maker determines the timing and magnitude of
harvesting interventions while accounting for fixed costs and state-dependent profits. The main
contribution of the chapter is a complete characterization of the solution under general assumptions
on the problem data. We find that a β-γ strategy, where the system is controlled impulsively when
the state process reaches an upper threshold β and reset to a lower level γ, can be optimal under
certain conditions. In cases where an optimal strategy does not exist, we identify a sequence of
ε-optimal strategies that approximate the optimal payoff. Furthermore, we find the problem data
with which it is optimal to take no intervention at all. Another novel contribution of this study
is the analysis the boundary classification of the problem’s state space, which may influence the
optimal strategy. In addition, we give an SDE construction of the optimally controlled processes.

In Chapter 3, we study singular stochastic control problems in the context of optimal harvest-
ing, extending previous works by incorporating sufficiently general problem data. The model is
similar to Chapter 2 but does not involve a fixed cost. Three performance criteria are considered:
an expected discounted performance criterion, an expected ergodic performance criterion, and a
pathwise ergodic performance criterion. We deriving explicit solutions to the HJB equations as-
sociated with the three variants, and characterize the optimal payoff. The optimal strategy is to
take the minimal action required to keep the state process below a certain threshold β. We de-
velop a novel argument to address the potential unboundedness below of the solution to the HJB
equation, which gives rise to a non-trivial complication in the verification arguments. Additionally,
the discounted and ergodic versions of the problem are connected between the Abelian limits, with
non-constant discounting rate functions.

A natural extension of Chapter 2 is the impulse control problem with an expected ergodic
performance criterion and a pathwise ergodic performance criterion. In addition, we could extend
impulse control problems to a mean field game (MFG), which studies the strategic interactions of
a large number of harvesting companies. A representative player could follow with the dynamics
and controls of the form of the controller in Chapter 2.

Future research of Chapter 3 could explore the extension of the results to game settings, in-
corporating interactions between multiple decision-makers. One player in such a game could be
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the harvesting company, while the other player could be a government agency, cooperative, inter-
national organization or private enterprise that leases or provides access to a harvesting area and
manages harvesting with sustainability standards. An other possible extension to this game is to
add a fixed cost associated each intervention as in Chapter 2.

In Chapter 4, we explored the Merton’s problem of maximizing the long-term growth rate
under transaction costs. The risky asset we considered is modelled by a linear diffusion, beyond
the Black-Scholes model. By constructing a shadow price process, we could reformulate the portfolio
optimization problem in a fictitious frictionless market while maintaining the optimal strategy and
the expected growth rate. We construct explicitly a shadow price process, as well as the buying
boundary and the selling boundary. The key insight from our analysis is that transaction costs
create a dynamic no-trade region where investors refrain from adjusting their portfolios unless stock
prices reach the boundaries. The derivation of an explicit shadow price process and the trading
boundaries are way more complicated than the Black-Scholes setting, where the no-trade region
is static. Furthermore, the asymptotic expansions of arbitrary order for the non-trade region, the
stock-cash ratio and the proportion of wealth invested in the risky asset are also provided.

Future research may extend this framework by considering different optimization objectives,
such as power utility of terminal wealth and/or consumption. Additionally, the price impact on
the risky asset could be incorporated. Another extension is to consider a multi-asset model, where,
for instance, a geometric Brownian motion asset without transaction costs is introduced into the
market.
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lae, Birkhäuser, pp. 37–38.

[14] A. N. Borodin and P. Salminen (2002), Handbook of Brownian Motion - Facts and Formu-
lae, Birkhäuser.
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