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Abstract

In this thesis, we investigate the applications of singular stochastic control

in two optimization problems. In the first part, we consider a two-sided singular

stochastic control problem with a risk-sensitive ergodic criterion. In particular,

we consider a stochastic system whose uncontrolled dynamics are modelled by

a linear diffusion. The control that can be applied to this system is modelled by

an additive finite variation process. The objective of the control problem is to

minimise a risk-sensitive long-term average criterion that penalises deviations

of the controlled process from a given interval as well as the expenditure of

control effort. We derive the complete solution to the problem under general

assumptions by deriving a C2 solution to its HJB equation. To this end, we

use the solutions to a suitable family of Sturm-Liouville eigenvalue problems.

In the second part of this thesis, we study a risk-sharing equilibrium with

proportional transaction costs. We consider an economy with two agents, each

of whom receive a cumulative endowment flow which is modelled as a stochastic

integral of a deterministic continuous function of the economy’s state, which

is modelled by means of a general Itô diffusion. Each of the two heterogeneous

agents have mean-variance preferences and can also trade a risky asset to

hedge against the fluctuations of their endowment streams. We determine

the agents’ optimal (Radner) equilibrium trading strategies in the presence of

proportional transaction costs. In particular, we derive a new free-boundary

problem that provides the solution to the agents’ optimisation problem in

equilibrium. Furthermore, we derive the explicit solution to this free-boundary

problem when the problem data is such that the frictionless optimiser is a

strictly increasing or a strictly increasing and then strictly decreasing function

of the economy’s state. Finally, we derive small transaction cost asymptotics.
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1

Introduction

A wide variety of theoretical aspects and applications of singular stochas-

tic control to optimisation problems in mathematical finance and economics

have been studied. This thesis aims to contribute to the study of the opti-

mality of singular stochastic controls in two types of optimisation problems:

risk-sensitive control problems and equilibrium asset pricing with proportional

transaction costs. In this chapter, we give an overview of singular stochastic

control problems and some of their applications, followed by an overview of

control problems with a risk-sensitive criterion. Finally, we give an overview

of equilibrium asset pricing with transaction costs.

1.1 Singular stochastic control problems

Singular stochastic control problems are a class of stochastic control prob-

lems in which the displacement of the state due to control effort is not abso-

lutely continuous in time. Such a problem was first formulated by Bather and

Chernoff [5] and [6] (known as the finite fuel problem), in which a spaceship is

controlled such that its path is as close to a target as possible, while expending

a minimal amount of fuel. In this thesis, we focus on infinite horizon singu-

lar stochastic control problems involving one-dimensional diffusion processes.

Therefore, we give a brief overview of one-dimensional infinite horizon singular

stochastic control problems, based on Chapter VIII of Fleming and Soner [44]

(the cases of Rn-valued diffusions and finite horizon problems can be found in
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1.1. Singular stochastic control problems

references such as Fleming and Soner [44] and Pham [100]). We will first out-

line what it means for a stochastic control problem to be singular, as opposed

to a regular control problem, through a specific simple example. We then in-

troduce singular controls, a type of control that is optimal for such singular

stochastic control problems, which are essentially solutions to a Skorokhod

problem.

Fix a filtered probability space
(
Ω,F , (Ft),P

)
satisfying the usual condi-

tions and supporting a standard one-dimensional (Ft)-Brownian motion W .

Suppose that X is a real-valued state process whose dynamics satisfy the

stochastic differential equation (SDE)

dXt =
(
b(Xt) + ut

)
dt+ σ(Xt) dWt, X0 = x ∈ R,

where the process u is the control variable. Suppose we have an infinite horizon

with discounting rate r > 0, and an objective functional

Jx(u) = Ex

[∫ ∞

0

e−rt
(
h(Xt) +K|ut|

)
dt

]
that we wish to minimise, where h is the running cost, and K represents the

costs incurred from expenditure of effort. We define the value function by

V (x) = inf
u∈A

Jx(u),

where A is the set of (Ft)-progressively measurable R-valued processes. By

the dynamic programming principle, V should satisfy the HJB equation

rV (x) +H
(
x, V ′(x), V ′′(x)

)
= 0,

where H is the Hamiltonian defined by

H(x, p,M) = sup
v∈R

[
−p
(
b(x) + v

)
− 1

2
Mσ2(x)− h(x)−K|v|

]
= −pb(x)− 1

2
Mσ2(x)− h(x) + sup

v∈R

[
−(p+K)v+ + (p−K)v−

]
,

2



1. Introduction

where v± > 0 are the positive and negative parts of v. We observe that

H(x, p,m)

= ∞, if |p| > K,

<∞, if |p| ≤ K.

Hence, the control problem is called singular due to the singularity of the

Hamiltonian. The value function V should then satisfy

|V ′(x)| ≤ K and rV (x)− b(x)V ′(x)− 1

2
σ2(x)V ′′(x)− h(x) ≤ 0

for all x ∈ R. If |V ′(x)| < K for some x ∈ R, then, in a neighbourhood of x,

the unique maximiser in the Hamiltonian is zero. Hence, the optimal control

should also be equal to zero in a neighbourhood of x, in which case, we expect

that

rV (x)− b(x)V ′(x)− 1

2
σ2(x)V ′′(x)− h(x) = 0, whenever |V ′(x)| < K.

In other words, the HJB equation takes the form of the following variational

inequality:

max

{
rV (x)− b(x)V ′(x)− 1

2
σ2(x)V ′′(x)− h(x), |V ′(x)| −K

}
= 0

for all x ∈ R.

The optimal strategy can be characterised as follows. The controller should

wait and take no action for as long as the state process X takes values in the

set in which |V ′(x)| < K (the “no-action” region). Otherwise, the controller

should take minimal action to keep the state process X outside the interior of

the set in which |V ′(x)| = K (the “push” region) at all times. Starting from

the push region, the optimal state process X is moved impulsively into the no-

action region, and reflections at the boundaries of the no-action region in the

appropriate directions prevent X from exiting the no-action region. In order

to obtain such an optimal control process, we first reformulate the original

3



1.1. Singular stochastic control problems

problem. To this end, we define the increasing (finite-variation) processes

ξ+t =

∫ t

0

(us)
+ ds, ξ−t =

∫ t

0

(us)
− ds, and ξt =

∫ t

0

us ds = ξ+t − ξ−t ,

where ξ± are the unique increasing processes such that ξ = ξ+− ξ−. Denoting

by |ξ| = ξ+ + ξ− the total variation process of ξ, we observe that

|ξ|t = ξ+t + ξ−t =

∫ t

0

|us| ds.

The dynamics of X can now be written as

dXt = b(Xt) dt+ dξt + σ(Xt) dWt, X0 = x ∈ R,

where ξ is now the control variable. The objective functional and correspond-

ing value function can be written as

Jx(ξ) = Ex

[∫ ∞

0

e−rth(Xt) dt+K

∫
[0,∞[

e−rtd|ξ|t
]

and V (x) = inf
ξ∈A

Jx(ξ),

where A is the set of admissible controls. In order to obtain optimal controls,

the class of admissible controls has to be enlarged to consider controlled finite-

variation processes ξ which are not absolutely continuous functions of t (in

other words, singular with respect to the Lebesgue measure).

In the context of the finite fuel problem, X represents the deviation of the

spaceship from the target, where the target is modelled by an uncontrolled

diffusion with drift b and volatility σ, and h is the running cost of these de-

viations. The controlled process ξ represents the cumulative expenditure of

fuel to minimise these deviations, and costs proportional to the expenditures

are incurred, where K > 0 is the proportionality constant. In the finite fuel

problem, there is an additional constraint that |ξ|t ≤ y for all t ≥ 0, where

y > 0 is a constant.
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1. Introduction

A common approach to solving this problem is to construct a (classical)

C2 solution w satisfying the HJB equation

max

{
rw(x)− b(x)w′(x)− 1

2
σ2(x)w′′(x)− h(x), |w′(x)| −K

}
= 0

for all x ∈ R, and through a verification theorem, prove that w = V . A general

verification theorem for singular control problems for classical solutions w can

be found in Fleming and Soner [44, Chapter VIII Theorem 4.1]. In some

cases, it is possible to solve for w explicitly. For example, Benes, Shepp and

Witsenhaussen [7] obtain explicit solutions to a one-dimensional problem, and

establish a principle of smooth fit property that implies that w is C2. However,

in more general settings such as the multi-dimensional case, w may not be

smooth, and it is instead shown (in Fleming and Soner [44, Chapter VIII

Theorem 5.1] for example) that V is a viscosity solution of the HJB equation.

In both problems considered in this thesis, the underlying diffusion is one-

dimensional, and we obtain explicit classical solutions.

When w is a classical solution of the HJB equation, the optimal control ξ⋆

can be constructed explicitly. In the above example, it is the solution to the

following Skorokhod problem, satisfying

dX⋆
t = b(X⋆

t ) dt+ dξ⋆t + σ(X⋆
t ) dWt, X0 = x ∈ R, (1.1)

X⋆
t ∈ cl

{
x ∈ R : |w′(x)| < K

}
and

∫
[0,t)

(
|w′(X⋆

s )| −K
)
dξ⋆s = 0 for all t ≥ 0. (1.2)

If D =
{
x ∈ R : |w′(x)| ≥ K

}
, then (1.2) is equivalent to∫

[0,t)

1{X⋆
s∈D} dξ

⋆
s = ξ⋆t , for all t ≥ 0.

SDEs with reflecting boundary conditions such as (1.1) were first considered by

Skorokhod [105], where solutions on the half-line R+ with a reflecting bound-

ary condition at 0 are constructed via a deterministic mapping (called the

Skorokhod map) on the space C[0,∞[ of continuous functions on [0,∞[. This

was extended to a multi-dimensional setting with reflecting boundary condi-
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1.1. Singular stochastic control problems

tions in convex regions by Tanaka [108]. An explicit formula for the Skorokhod

map on [0, a] for any a > 0 is derived by Kruk et al. [76]. In the case b ≡ 0

and σ(x) = σ > 0 in (1.1) and w′(x) = K whenever x ∈ ]a, b[, the solution to

(1.1) is a Brownian motion reflected at the boundary of ]a, b[ and ξ⋆ is the sum

of the local times (which are not absolutely continuous in t) of the Brownian

motion X⋆ at a and b (see (3.8) in Chapter 6 of [71]).

Singular stochastic control problems have been studied extensively, both

from a theoretical point of view and as an applied problem. Such problems

have been motivated by applications in several areas in mathematical finance

and economics such as target tracking, optimal investment in the presence of

proportional costs, optimal harvesting and management of public debt and

exchange rates. We mention a few of these papers; the list of papers is not

exhaustive for the sake of brevity.

The earliest papers on singular stochastic control were by Benes et al. [7]

and Karatzas [68], who study the optimal tracking of a Brownian motion by

a finite-variation process and derive explicit solutions. Benes et al. [7] con-

siders a discounted infinite horizon criterion and Karatzas [68] extends the

study to ergodic and finite horizon criterion, and establishes Abelian and Ce-

saro limits. Menaldi and Robin [89] extend the problem considered by [68] to

diffusion processes and establish existence results, as well as analyse asymp-

totically the discounted problem. Menaldi, Robin and Taksar [91] extend the

study by [68] to multidimensional Gaussian processes, which is followed up

on by Menaldi and Robin [90] to consider multidimensional Gaussian-Poisson

processes. Weerasinghe [112] considers an ergodic singular control problem

where the controller additionally chooses the drift and volatility of the diffu-

sion process. Weerasinghe [113] considers a discounted problem for diffusion

processes with general (not necessarily convex) running cost functions, and

finds that for unbounded cost functions, the value function is C2 and the op-

timal control is of Skorokhod reflection (local time) type, while for bounded

cost functions, the value function is only C1 and the optimal control is a mix-

ture of jumps and local time processes. This is followed up by Weerasinghe

[114] that considers the ergodic (via Abelian limits) and finite time horizon

problems. Kunwai et al. [77] develop a new approach to establish Abelian and

Cesaro limits, without the assumption of symmetry properties satisfied by the

6



1. Introduction

drift and volatility made in [68] and [114]. In Jack and Zervos [61], an ergodic

singular stochastic control problem is explicitly solved, where the proportional

costs are state-dependent, and considers a pathwise performance criterion in

addition to the usual expected performance criterion.

Hynd [59] studies an n-dimensional elliptic PDE which is the HJB equation

corresponding to the (risk-neutral) ergodic singular control problem for an n-

dimensional Brownian motion, calling it an eigenvalue problem. He shows that

there is a unique eigenvalue corresponding to a viscosity solution of the PDE,

and this eigenvalue is the optimal (minimal) long-term average cost for the

singular control problem. In [59] it is assumed that the running cost function

is convex and superlinear. Wu and Chen [118] consider weaker assumptions on

the running cost function and use a shooting method to solve the problem. We

note that in our risk-sensitive ergodic singular control problem where we have

a one-dimensional diffusion, we have an ODE which has a classical solution

and the eigenvalue is a Sturm-Liouville eigenvalue.

Connections between singular control problems and optimal stopping prob-

lems and Dynkin games have been studied, where the stopping times are given

by the times that the controlled process hits the reflection boundaries. It is

shown that the value function of the optimal stopping problem is the derivative

(with respect to initial condition of the controlled diffusion) of the value func-

tion of optimal stopping problems and Dynkin games. Karatzas and Shreve

[69] and [70] are the first to explore this connection with optimal stopping prob-

lems for Brownian motion, and this is extended to diffusions by Boetius and

Kohlmann [10]. The connections with Dynkin games are studied by Karatzas

and Wang [72] and Boetius [9].

One of the earliest applications of singular control (after the finite fuel

problem) was considered by Taksar, Klass and Assaf [107], which is a portfolio

selection problem with proportional transaction costs, in a market consist-

ing of a riskless and risky asset whose dynamics are governed by a geometric

Brownian motion. The optimal policy to maximise the expected growth rate

of funds is a reflection type policy that keeps the ratio of funds in the risky

to the riskless asset within a certain interval with minimal effort. This was

followed soon after by Davis and Norman [29], who study the Merton problem

of optimal investment and consumption with proportional transaction costs,

7



1.1. Singular stochastic control problems

formalising the model introduced by Magill and Constantinides [85]. It is op-

timal to trade in such a way that the fraction of wealth invested in the risky

asset is within an interval around the constant fraction that is optimal in the

frictionless case (without transaction costs). This is followed up on by Shreve

and Soner [104], who study the regularity of the value function using the theory

of viscosity solutions. Irle and Sass [60] transform the problem of maximis-

ing asymptotic growth rate under fixed and proportional transaction costs to

an impulse control problem of a (0, 1)-valued diffusion, which represents the

fraction of wealth invested in the risky asset. The corresponding singular con-

trol problem of this (0, 1)-valued diffusion was then studied by Christensen et

al. [24], by letting the fixed costs vanish. Martin [87] considers this problem

where the drift and volatility of the traded risky asset are driven by stochastic

factors. More recently, an extension of the Merton problem with proportional

transaction costs from power and logarithmic utility to Epstein-Zin stochastic

differential utility was first studied by Melnyk, Muhle-Karbe and Seifried [88]

for small transaction costs, and then followed up on by Herdegen, Hobson and

Tse [55].

Apart from the above-mentioned portfolio selection problems, other opti-

mal investment problems in the presence of proportional costs have also been

studied. For example, in Løkka and Zervos [82], the liquid reserves of a com-

pany are decreased and increased in a “singular” manner by dividend payments

and issuance of a new equity respectively, and the objective is to maximise the

expected discounted dividend payments minus the expected discounted costs

of issuing new equity. Merhi and Zervos [92], Løkka and Zervos ([83] and [84])

and Federico and Pham [33] also consider optimal adjustments of capacity

levels in investment projects to maximise certain payoffs, subjected to propor-

tional costs of adjustment. Koch and Vargiolu [74] consider a company which

aims to optimally increase its electricity generation through the installation

of solar panels, which in turn has a permanent impact on the spot electricity

price. Federico, Ferrari and Rodosthenous [31] study a problem of optimal

inventory management with unknown demand trend, which gives rise to a

singular stochastic control problem with partial observation.

Singular control has also been applied in optimal harvesting problems in

papers such as Alvarez and Hening [1], where the controlled finite variation

8



1. Introduction

process represents the cumulative harvested quantity and the controlled diffu-

sion process is the population, and the objective is to maximise the expected

and almost sure long-term harvested yield. The optimal harvesting strategy

is to harvest in such a way that the population density is maintained below

a certain optimal threshold. This generalises the result by Hening et al. [54],

where the harvesting rate is bounded, which results in a bang-bang type op-

timal harvesting strategy. Hu, Øksendal and Sulem [58] also study a similar

optimal harvesting problem in a mean-field setting, but in a finite time horizon

setting and using a BSDE approach to establish a maximum principle.

Singular control problems have also been applied in macroeconomic prob-

lems. Ferrari [34] investigates optimal debt reduction policy by a government

to minimise total expected cost of having a debt as well as the cost of inter-

ventions on the debt-to-GDP ratio. This is extended to an N -state regime

switching economy by Ferrari and Rodosthenous [35], and to a setting with

partial observation of economic growth by Callegaro, Ceci and Ferrari [18].

Ferrari and Vargiolu [36] study the problem of a central bank that buys and

sells foreign currency in order to manage the exchange rate between the do-

mestic and foreign currency.

Singular control problems have also been studied in mean field settings,

such as Hu, Øksendal and Sulem [58], Fu and Horst [46] and Cao, Dianetti

and Ferrari [19]. Fu and Horst [46] establishes existence of solutions to mean

field games with singular controls (in a finite time horizon setting) through an

approximation by solutions to mean field games with regular controls. Cao,

Dianetti and Ferrari [19] study the infinite horizon problem, using the charac-

terisations of the stationary distributions of reflected diffusions by their speed

measure in determining mean field equilibria.

9



1.2. Risk-sensitive control problems

1.2 Risk-sensitive control problems

In this section, we define the notion of risk-sensitivity and risk-sensitive

control problems, based on Chapter VI of Fleming and Soner [44], as well as

give a brief overview of risk-sensitive control problems in the existing literature.

Suppose that J is a random variable that represents costs that depend on the

sample paths of a Markov process X (in the case of a control problem, the

controlled Markov process X). However, as not all values of J may be equally

significant, a nonlinear function F may be applied to J to account for this

by, for example, giving greater weight to larger values of J . The function F

satisfies F ′(x), F ′′(x) ̸= 0, and we define the risk-sensitivity parameter rF by

rF (x) =
|F ′′(x)|
|F ′(x)|

,

where larger values of rF indicate greater risk-sensitivity. F can also be viewed

as a disutility function, with rF being the coefficient of absolute risk aversion.

Moreover, minimising E[F (J )] is equivalent to minimising the certainty equiv-

alent expectation defined by

E(J ) = F−1 (E[F (J )]) ,

which is the value that gives the same disutility as the expected disutility of

costs. For most of Chapter VI of Fleming and Soner [44] as well as the risk-

sensitive ergodic singular control problem that we study, F is assumed to be

of exponential form F (J ) = exp(θJ ), for some θ > 0. For such a function

F , the risk-sensitivity is constant and rF (x) = θ, and F is also known as a

constant absolute risk aversion (CARA) disutility function. In this case,

E(J ) =
1

θ
ln
(
E[exp(θJ )]

)
,

and a Taylor expansion about θ = 0 of this certainty equivalent expectation

reveals that

E(J ) = E(J ) +
θ

2
Var(J ) +O

(
θ2
)
.

10



1. Introduction

This indicates that for small values of θ, the certainty equivalent expectation

is approximately the (risk-neutral) expectation with a penalty on the variance

of costs proportionate to the risk-sensitivity. It can also be shown that this

certainty equivalent expectation can be rewritten as an ordinary expectation

via a change in probability measure.

Define the conditional expectations

Etx
(
J
)
= E

(
J
∣∣Xt = x

)
and Etx

(
J
)
= E

(
J
∣∣Xt = x

)
,

where J is a random variable. Suppose that

V (t, x) := Etx
(∫ T

t

h(s,Xs) ds+ψ(XT )

)
= E

(∫ T

t

h(s,Xs) ds+ψ(XT )

∣∣∣∣Xt = x

)
=

1

θ
ln

(
E

[
exp

(
θ

(∫ T

t

h(s,Xs) ds+ψ(XT )

))∣∣∣∣∣Xt = x

])

=
1

θ
ln

(
Etx

[
exp

(
θ

(∫ T

t

h(s,Xs) ds+ψ(XT )

))])
=:

1

θ
ln
(
ϕ(t, x)

)
,

where X is a Markov diffusion process. It can be shown that ϕ is the solution

to a linear PDE using the Feynman-Kac formula. Moreover, the certainty

equivalent expectation V is a logarithmic transformation of ϕ and satisfies a

nonlinear PDE. When X is a regularly controlled Markov process, the HJB

equation is characterised by this nonlinear PDE. In the risk-sensitive ergodic

singular control problem that we study, we minimise the long-term certainty

equivalent expectation

Jx(ξ) = lim sup
T↑∞

1

T
E
(∫ T

0

h(Xt) dt+K|ξ|T
)

= lim sup
T↑∞

1

θT
lnE

[
exp

(
θ

(∫ T

0

h(Xt) dt+K|ξ|T
))]

,

where |ξ| is the total variation of the process ξ and K > 0 is a proportionality

constant associated with effort expenditure costs. This is an extension of the
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1.2. Risk-sensitive control problems

risk-neutral problem studied by Jack and Zervos [61]. To solve this problem,

we use the same logarithmic transformation to convert a nonlinear first order

ODE satisfied in the continuation region to a second order linear ODE.

Risk-sensitive problems have been studied in a variety of settings. In [41],

[42] and [43], Fleming and Sheu consider optimal investment models in which

long-term growth of expected HARA utility of wealth is maximised, and refor-

mulate the problem as a risk-sensitive control problem with regular controls,

the control variable being the fraction of wealth invested in the risky asset(s).

Pham [99] shows that ergodic risk-sensitive regular stochastic control problems

are dual problems to optimal investment problems in which the probability of

beating a given index is maximised (a large deviation probability control prob-

lem), and this is used by Hata and Iida [52] to solve an optimal investment

problem with partial information. Lepeltier [79] develops a martingale op-

timality principle to establish the existence of optimal (regular) controls in

risk-sensitive stochastic control problems. Arapostathis and Biswas [4] study

infinite horizon risk-sensitive problems (with regular controls) under minimal

assumptions, by relating it with the eigenfunctions and eigenvalues of a mul-

tiplicative Poisson equation. Optimal stopping problems with risk-sensitive

criteria have been studied by Jelito et al. [64] and [65], and risk-sensitive

Dynkin games with heterogeneous Poisson random intervention times in by

Liang and Sun [80]. Fleming and McEneaney ([40] and [37]) consider a totally

risk-sensitive limit (with regular controls), in which the noise becomes smaller

as the risk-sensitivity increases. In the limit, a deterministic differential game

is obtained, where there is a convergence in the Hamiltonians.

Most of the risk-sensitive control problems in the literature are restricted

to regular controls. Moreover, in most singular control problems, only the

risk-neutral criterion is considered (such as those mentioned in Section 1.1).

To the best of our knowledge, there are only two papers that have studied

risk-sensitive singular stochastic control problems. The first is by Park [97] in

his PhD thesis, where he establishes general existence and uniqueness results

for singular control problems with risk-sensitive ergodic criteria in a multi-

dimensional setting, but it is assumed that the volatility matrix is constant.

In our paper, we restrict to the one-dimensional setting, but we consider state-

12



1. Introduction

dependent volatility and obtain explicit results. The second paper that studies

risk-sensitive singular stochastic control problems that we know of is by Chala

[20], who establishes a singular risk-sensitive stochastic maximum principle in

a finite time horizon setting through a BSDE approach.

1.3 Equilibrium asset pricing with transaction

costs

We give a brief introduction to the concept of equilibria of financial mar-

kets in continuous time in the case of complete markets, which is adapted

from Chapter 7 of Dana and Jeanblanc [28]. Fix a filtered probability space(
Ω,F , (Ft),P

)
satisfying the usual conditions and supporting a standard d-

dimensional (Ft)-Brownian motion W . Suppose the financial market consist

of a riskless asset and d risky assets. The dynamics of the price process of the

riskless asset S0 is given by

dS0(t) = r(t)S0(t) dt, S0(0) = 1,

where r is the interest rate and we denote the discount factor by R(t) =

exp
(
−
∫ t
0
r(s)ds

)
. The price process of the d risky assets is denoted by S =

(S1, . . . , Sd) and these assets pay cumulative dividends D = (D1, . . . , Dd).

The price and dividends process are assumed to follow an Itô process. We

define the discounted cumulative dividend process Dd by dDd(t) = R(t)dD(t),

Dd(0) = 0 and the discounted gains process by Gd = RS +Dd. The market is

arbitrage-free and there exists an equivalent martingale measure. The economy

consist of a single consumption good (associated with consumption process c)

and m agents, and each Agent i receives an endowment stream ei and aims to

maximise her utility given by

Ui(c) = EP

[∫ T

0

ui(t, c(t)) dt+ ũi(T, c(T ))

]
,

for given functions ui and ũi. Denote the portfolio of Agent i by ϑi = (ϑ0
i , ϑi)

and S = (S0, S). Admissible trading strategies and consumption policies are

13



1.3. Equilibrium asset pricing with transaction costs

defined as follows:

Definition 1.1. Given the discounted gains process of the assets, the pair

(ϑi, ci) is admissible for Agent i if it satisfies

R(t)
(
ϑi(t) · St

)
=

∫ t

0

ϑi(s) dG
d(s)−

∫ t

0

R(s)
(
ci(s)− ei(s)

)
ds

Q− a.s. for all t ∈ [0, T ],

where Q is an equivalent martingale measure, and

ϑi(T ) · ST = ϑ0
i (T )S

0(T ) + ϑi(T ) · ST ≥ 0 a.s..

In other words, the discounted wealth is the the sum of discounted gains

or losses from trades of the risky asset and consumption, and there is no debt

remaining at the end of the period. The pair (ϑ, c) is optimal for Agent i if it

is admissible and maximises the utility function Ui over the set of admissible

strategies. We can now define a Radner equilibrium.

Definition 1.2. For a given dividend process D, (ϑi, ci, S) is a Radner equi-

librium if:

1. the pair (ϑi, ci) is optimal for all i = 1, . . . ,m,

2. the stock and consumption goods markets clear:

(a)
m∑
i=1

ϑi = 0 P⊗ dt–a.s..

(b)
m∑
i=1

ci =
m∑
i=1

ei +
d∑
j=1

Dj P⊗ dt–a.s..

The pair (ϑi, ci) that is optimal and satisfies the market clearing conditions

determines the equilibrium price S. Further technical details can be found in

Chapter 7 of Dana and Jeanblanc [28]. In an equilibrium model with trans-

action costs, the discounted payments due to transaction costs are deducted

from the discounted wealth.

In the model that we consider, we make some simplifying assumptions

for tractability. Firstly, the agents do not have a consumption policy, and

14



1. Introduction

the utility function is a function of the wealth of the agents instead. The

market clearing condition then reduces to the clearing of the stock market

only. Secondly, we assume that there is only one risky asset, which does not pay

dividends. Finally, as there is no market clearing condition for consumption

goods, we can assume without loss of generality (and for notational simplicity)

that the interest rate r = 0 and the price of the riskless asset is constant and

equal to 1.

The dependence of liquidity on asset prices has been a topic of interest

in finance and economics, and has been empirically studied in papers such

as Amihud and Mendelson [2], Brennan and Subrahmanyam [13] and Pastor

and Stambaugh [98]. The effects of illiquidity due to the presence of transac-

tion costs on optimal trading strategies, asset returns, volatility and interest

rates have been studied extensively. Different types of transaction costs have

different impacts on trading behaviour. Costs on the trading rate leads to

sluggishness of trading, fixed costs lead to infrequency of trades and propor-

tional costs cause a reduction in trading volume and frequency, and models

aim to quantify such effects through deriving theoretical results or conducting

numerical studies.

The impact of transaction costs on asset returns, volatility and interest

rates are determined by endogenising these variables in equilibrium models.

Equilibrium prices are determined through the stock market clearing condi-

tion under which the total demand of each traded asset is equal to its supply

and equilibrium interest rates are determined by the consumption goods mar-

ket clearing condition. We highlight a few papers that have adopted a more

mathematical approach. Bouchard et al. [12] develop an equilibrium model

where mean-variance investors subjected to quadratic costs on their trading

rates, assuming constant exogenous volatility, and obtain a unique equilibrium

that is the unique solution to a system of coupled but linear forward-backward

stochastic differential equations (FBSDEs) for the optimal trading strategies.

The sluggishness of the frictional portfolios induced by the quadratic costs re-

sults in mean-reverting equilibrium returns. Herdegen et al. [57] extend this

model to one that endogenizes volatility by matching an exogenous terminal

condition for the risky asset. This results in a system of nonlinear fully cou-

pled FBSDEs, to which a unique solution exists if the risk aversion of the two
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1.3. Equilibrium asset pricing with transaction costs

agents are sufficiently similar. Gonon et al. [51] determine equilibrium return

rates under general convex costs on trading rates as well as the limiting case

of proportional costs. In the case of exogenous volatility, equilibrium return

rates are given explicitly by solutions to an ODE. The BSDE approach is also

used by Weston in [116], where equilibria in which some agents have more

access to the financial markets than others is studied. Equilibria with propor-

tional costs where agents are incentivized to trade towards a targeted number

of shares have been studied in Noh and Weston [96] and Choi, Duraj and We-

ston [23]. Other equilibrium models without transaction costs have also been

studied in papers such as [119], [73], [22], [117] and [116].

Equilibrium models are notoriously intractable, and simplifying assump-

tions are often made to improve tractability. For example, Lo et al. [81]

assume that the equilibrium price is a constant (with zero market volatility)

in their study of an equilibrium with fixed transaction costs. Vayanos and

Vila [110] also assume zero market volatility, whereby two riskless assets (one

being liquid and the other carrying proportional transaction costs) are traded

in the economy, and determine interest rates endogenously. Similarly, We-

ston [115] studies an equilibrium with proportional transaction costs where

interest rates are determined endogenously, assuming that there is zero mar-

ket volatility, where the asset being traded is a deterministic annuity. The

case of a stochastic annuity is studied by Weston and Zitkovic [117], but the

model does not include transaction costs. Intractable models are also stud-

ied numerically, for example, in the case of endogenous volatility in [51], the

system of nonlinear FBSDEs is solved numerically using a simulation based

deep-learning approach. Other papers where numerical methods are adopted

include Heaton and Lucas [53], Buss and Dumas [14] and Buss et al. [15].

In this paper, we assume for tractability that the volatility and interest rate

are exogenous (as is done in Bouchard et al. [12], Gonon et al. [51], Vayanos

[109], Sannikov and Skrzypacz [102] and Zitkovic [119]), in order to determine

expected returns endogenously. For tractability, we assume that there are two

agents in the economy having tractable mean-variance preferences who trade

a safe and a risky asset.

It has been established that for small proportional transaction costs, the

no-trade region has a width proportional to λ1/3, where λ is the proportional
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1. Introduction

transaction cost parameter. These small cost asymptotics were first observed

by Constantinides [27] and then calculated by Rogers [101] for the classical

Davis-Norman problem for optimal investment and consumption, and was fur-

ther developed by Schachermayer [103] in the context of shadow price pro-

cesses. Such asymptotics have been studied in both equilibrium and non-

equilibrium settings with different types of transaction costs, examples of pa-

pers include Shreve and Soner [104], Kallsen and Muhle-Karbe ([66] and [67]),

Herdegen and Muhle-Karbe [56], Choi and Larsen [21], Martin [87], Gerhold

et al. ([49] and [50]) and Muhle-Karbe, Shi and Yang [94].

We develop an equilibrium model with proportional transaction costs that

generalises the setting of Gonon et al. [51]. We adopt a similar but more

general singular control approach, and solve a novel free-boundary problem.

We also derive small transaction cost asymptotics.
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2

The explicit solution to a risk-sensitive

ergodic singular stochastic control

problem

We consider a stochastic dynamical system whose state process satisfies

the SDE

dXt = b(Xt) dt+ dξt + σ(Xt) dWt, X0 = x ∈ R, (2.1)

where W is a standard one-dimensional Brownian motion and ξ is a controlled

finite-variation process. Given a positive function h, K > 0 a proportionality

constant associated with effort expenditure costs, and θ > 0 the risk-sensitivity

parameter, we associate with each controlled process ξ the risk-sensitive long-

term average performance index

Jx(ξ) = lim sup
T↑∞

1

θT
lnE

[
exp

(
θ

(∫ T

0

h(Xt) dt+K|ξ|T
))]

, (2.2)

where |ξ| denotes the total variation process of ξ. The objective of the resulting

ergodic risk-sensitive singular stochastic control problem is to minimise (2.2)

over all admissible controlled processes ξ.

This stochastic control problem has been partly motivated by the problem

faced by a central bank that wishes to control the exchange rate between

its domestic currency and a foreign currency so that this fluctuates within

a suitable target zone. In this context, the state process X models the log
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exchange rate’s stochastic dynamics, while the controlled process ξ models

the cumulative effect of the bank’s interventions in the FX market to buy or

sell the foreign currency. Furthermore, the running cost function h penalises

deviations of the log exchange rate from a desired nominal value, while K

models proportional transaction costs resulting from the bank’s interventions.

Similar models, which endogenise an exchange rate’s target zone by formu-

lating its management as a stochastic control problem, have been studied by

Jeanblanc- Picqué [62], Mundaca and Øksendal [95], Cadenillas and Zapatero

[16], [17], Ferrari and Vargiolu [36], and references therein. The stochastic

control problems solved in these references involve expected discounted per-

formance criteria. Discounting is commonly used to estimate the present value

of an asset or to model an economic agent’s impatience. Since an exchange

rate is not an asset and a central bank can be viewed as an institution as well

as a regulator, a long-term average criterion may be more appropriate for this

kind of applications.

Singular stochastic control problems have been motivated by several ap-

plications in areas including target tracking, optimal harvesting, optimal in-

vestment in the presence of proportional transaction costs and others. Sin-

gular stochastic control problems with risk-neutral ergodic criteria have been

studied by Karatzas [68], Menaldi and Robin [89, 90], Taksar, Klass and As-

saf [107], Menaldi, Robin and Taksar [91], Weerasinghe [112, 114], Jack and

Zervos [61], Løkka and Zervos [83, 84], Hynd [59], Wu and Chen [118], Hen-

ing, Nguyen, Ungureanu and Wong [54], Alvarez and Hening [1], Kunwai, Xi,

Yin and Zhu [77], listed in rough chronological order, and several references

therein. On the other hand, Park [97, Chapter I] and Chala [20] study singular

stochastic control problems with finite time horizon risk-sensitive criteria. In

the context of this paper, Park [97, Chapter II] studies a risk-sensitive singular

stochastic control problem with an ergodic criterion in Rn, but with constant

σ. In this reference, the existence of a suitable solution to the problem’s HJB

equation is established and a limiting connection with the solution to a certain

deterministic ergodic differential game is established. This chapter extends

the PhD thesis of Park (1996) [97, Chapter II] in the one-dimensional case by

obtaining explicit solutions for more general σ. For other ergodic risk-sensitive

control problems, see the recent review paper by Biswas and Borkar [8].
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2. The explicit solution to a risk-sensitive ergodic singular
stochastic control problem

In this chapter, we derive the complete solution to the problem that we

consider. In particular, we derive a C2 solution w to the problem’s HJB equa-

tion that determines the optimal strategy, which reflects the state process in

the endpoints of an interval [α⋆, β⋆]. To this end, we first use a suitable loga-

rithmic transformation that gives rise to a family of Sturm-Liouville eigenvalue

problems parametrised by their boundary points α < β. We then use the op-

timality conditions suggested by the so-called smooth-fit of singular stochastic

control, namely, the C2 continuity of w, to derive the optimal free-boundary

points α⋆ < β⋆. Furthermore, we show that the control problem’s optimal

growth rate identifies with the maximal eigenvalue of the corresponding Sturm-

Liouville problem.

2.1 Problem formulation

Fix a filtered probability space
(
Ω,F , (Ft),P

)
satisfying the usual condi-

tions and supporting a standard one-dimensional (Ft)-Brownian motion W .

We consider a dynamical system, the uncontrolled stochastic dynamics of

which are modelled by the SDE

dX t = b(X t) dt+ σ(X t) dWt, X0 = x ∈ R. (2.3)

We make the following assumption, which also ensures that (2.3) has a unique

strong solution up to a possible explosion time.

Assumption 2.1. The functions b, σ : R → R are C1 and there exists con-

stants C1 > 0 and ζ ≥ 1 such that

0 < σ2(x) ≤ C1

(
1 + |x|ζ

)
for all x ∈ R. (2.4)

The growth condition (2.4) ensures that certain stochastic integrals and

stochastic exponentials are true martingales, which we require to perform a

measure change in the verification theorem. We require that b and σ are C1

because solving the free-boundary problem will involve differentiating these

functions. We next consider the stochastic control problem defined by (2.1)–

(2.2). Given a finite variation (Ft)-adapted process ξ with càglàd sample paths
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2.1. Problem formulation

such that the SDE (2.1) has a unique non-explosive strong solution, we denote

by Mξ the family of all local martingales M ξ,g defined by

M ξ,g
T =

∫ T

0

σ(Xt)g(Xt) dWt, (2.5)

which is parametrised by all continuous functions g : R → R such that

lim
x↓−∞

g(x) = −K and lim
x↑∞

g(x) = K. (2.6)

Furthermore, we define the stochastic exponential

ET
(
θM ξ,g

)
= exp

(
−1

2
θ2
〈
M ξ,g

〉
T
+ θM ξ,g

T

)
. (2.7)

The requirement for E
(
θM ξ,g

)
to be a martingale motivates an integrability

condition (so that Novikov’s condition is satisfied) in the following definition

of admissible controls.

Definition 2.2. The family of all admissible control strategies A is the set of

all finite variation (Ft)-adapted process ξ with càglàd sample paths such that

ξ0 = 0 and the SDE (2.1) has a unique non-explosive strong solution satisfying

E

[
exp

(
C

∫ T

0

|Xt|ζ dt
)]

<∞ for all C, T > 0, (2.8)

where ζ ≥ 1 is as in Assumption 2.1, as well as

lim sup
T↑∞

1

θT
lnEP̃T

[
exp
(
−θK|XT |

)]
= 0 for all P̃T ∈ Pξ

T , (2.9)

where Pξ
T is the family of all probability measures P̃T on (Ω,FT ) with Radon-

Nikodym derivative with respect to P given by dP̃T/dP = ET
(
θM ξ,g

)
, for

M ξ,g ∈ Mξ.
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2. The explicit solution to a risk-sensitive ergodic singular
stochastic control problem

Remark 2.3. In view of (2.4), (2.6), (2.8) and Jensen’s inequality, we can see

that

E
[〈
M ξ,g

〉
T

]
= E

[∫ T

0

σ2(Xt)g
2(Xt) dt

]
≤ C1 sup

x∈R
g2(x)

(
1 + E

[∫ T

0

|Xt|ζ dt
])

<∞.

Therefore, the processM ξ,g is a square-integrable martingale for all ξ ∈ A and

all continuous g satisfying (2.6). Furthermore, the observation that

E

[
exp

(
1

2

〈
M ξ,g

〉
T

)]
≤ E

[
exp

(
1

2
C1 sup

x∈R
g2(x)

(
1 +

∫ T

0

|Xt|ζ dt
))]

<∞

implies that E
(
θM ξ,g

)
is a martingale because it satisfies Novikov’s condition.

Remark 2.4. Given points α < β in R, let ξα,β be the controlled process

that, beyond an initial jump at time 0 of size ∆ξα,β0 = (x − β)+ ∨ (α − x)+,

reflects the corresponding state process Xα,β at α in the positive direction and

at β in the negative direction. Such a controlled process indeed exists (e.g.,

see Tanaka [108, Theorem 4.1]). The process Xα,β satisfies the integrability

condition (2.8) as well as the transversality condition (2.9) because Xα,β
t ∈

[α, β] for all t > 0. Therefore, ξα,β ∈ A. Moreover, due to the fact that

Xα,β takes values in a compact set, we observe that the processes M ξα,β ,g and

E
(
θM ξα,β ,g

)
are martingales for any b and σ such that (2.3) has a unique strong

solution up to a possible explosion time. Therefore, if we restrict ourselves to

controlled processes ξα,β, the growth condition (2.4) on σ may be relaxed, and

we may assume instead that the C1 functions b and σ satisfy the conditions of

the Yamada-Watanabe pathwise uniqueness theorem.

Assumption 2.5. K > 0. The function h is C1 and positive. Furthermore,

if we define

H±(x) =
1

2
θK2σ2(x)±Kb(x) + h(x), for x ∈ R, (2.10)
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2.1. Problem formulation

then

lim
x↓−∞

H−(x) = lim
x↑∞

H+(x) = ∞ (2.11)

and there exist constants α− ≤ α+ such that

the function H− is strictly


decreasing and positive in ]−∞,α−[,

negative in ]α−,α+[, if α− < α+,

increasing and positive in ]α+,∞[,

(2.12)

as well as constants β− ≤ β+ such that

the function H+ is strictly


decreasing and positive in ]−∞,β−[,

negative in ]β−,β+[, if β− < β+,

increasing and positive in ]β+,∞[.

(2.13)

Remark 2.6. If h = 0, then ξ = 0 clearly minimises the objective functional

(2.2), and we therefore only consider non-trivial functions h.

Example 2.7. Suppose that X = x+ σW for some constant σ > 0. Also, let

h(x) = cx2 for some constant c > 0. In this context, the functions H± defined

by (2.10) are given by

H+(x) = H−(x) = cx2 +
1

2
θσ2K2

and the conditions required by Assumptions 2.1 and 2.5 are satisfied with

α− = α+ = β− = β+ = 0.

Example 2.8. Suppose that X is an Ornstein-Uhlenbeck process with the

dynamics

dX t = γ(µ−X t) dt+ σ dWt, X0 = x ∈ R,

for some constants γ,σ > 0 and µ ∈ R. Also, let h(x) = cx2 for some constant
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2. The explicit solution to a risk-sensitive ergodic singular
stochastic control problem

c > 0. In this context, the functionsH± defined by (2.10) admit the expressions

H+(x) = c

(
x− γK

2c

)2

+
1

2
θσ2K2 − 1

4c
γ2K2 + γµK

and H−(x) = c

(
x+

γK

2c

)2

+
1

2
θσ2K2 − 1

4c
γ2K2 − γµK.

If 1
2
θσ2K2 − 1

4c
γ2K2 − γµK ≥ 0, then α− = α+ = − 1

2c
γK, otherwise

α± = −γK
2c

±

√
−1

c

(
1

2
θσ2K2 − 1

4c
γ2K2 − γµK

)
.

Similarly, if 1
2
θσ2K2 − 1

4c
γ2K2 + γµK ≥ 0, then β− = β+ = 1

2c
γK, otherwise,

β± = −γK
2c

±

√
−1

c

(
1

2
θσ2K2 − 1

4c
γ2K2 + γµK

)
.

In all cases, the conditions required by Assumptions 2.1 and 2.5 are all satisfied.

2.2 The control problem’s HJB equation and

its associated Sturm-Liouville eigenvalue

problem

We will solve the control problem that we consider by constructing a C2

function w and finding a constant λ such that the HJB equation

min

{
1

2
σ2(x)w′′(x)+

1

2
θ
(
σ(x)w′(x)

)2
+b(x)w′(x)+h(x)−λ, K−

∣∣w′(x)
∣∣} = 0

(2.14)

holds true for all x ∈ R. Given such a solution (w, λ) to this HJB equation,

inf
ξ∈A

Jx(ξ) = λ for all x ∈ R,

where Jx is defined by (2.2). Furthermore, an optimal strategy can be charac-

terised as follows. The controller should wait and take no action for as long as
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2.2. The control problem’s HJB equation and its associated
Sturm-Liouville eigenvalue problem

the state process X takes value in the set in which
∣∣w′(x)

∣∣ < K. Otherwise,

the controller should take minimal action to keep the state process X outside

the interior of the set in which
∣∣w′(x)

∣∣ = K at all times.

We will prove that the optimal control strategy is characterised by two

points α < β and takes the following form. If the initial state x is strictly

greater than β (resp., strictly less than α), then it is optimal to push the state

process in an impulsive way down to level β (resp., up to level α). Beyond

such a possible initial jump, it is optimal to take minimal action to keep the

state process X inside the set [α, β] at all times, which amounts to reflecting

X in β in the negative direction and in α in the positive direction. In view of

the discussion in the previous paragraph, the optimality of such a strategy is

associated with a solution (w, λ) to the HJB equation (2.14) such that

w′(x) = −K, for x ∈ ]−∞, α], (2.15)

1

2
σ2(x)w′′(x) +

1

2
θ
(
σ(x)w′(x)

)2
+ b(x)w′(x) + h(x)− λ = 0, for x ∈ ]α, β[,

(2.16)

and w′(x) = K, for x ∈ [β,∞[, (2.17)

To determine the points α < β, we consider the so-called “smooth pasting”

condition of singular stochastic control, which suggests that w should be C2,

in particular, at the free-boundary points α and β. This condition gives rise

to the equations

lim
x↓α

w′(x) = −K, lim
x↓α

w′′(x) = 0, (2.18)

lim
x↑β

w′(x) = K and lim
x↑β

w′′(x) = 0. (2.19)

In view of (2.16), these free-boundary equations can be satisfied if and only if

H−(α) ≡
1

2
θK2σ2(α)−Kb(α) + h(α) = λ (2.20)

and H+(β) ≡
1

2
θK2σ2(β) +Kb(β) + h(β) = λ. (2.21)
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The ODE (2.16) is a Riccati equation. If we write

w′(x) =
u′(x)

θu(x)
, for x ∈ ]α, β[, (2.22)

then w is a solution to the ODE (2.16) only if u is a solution to the second

order linear ODE

1

2
σ2(x)u′′(x) + b(x)u′(x) + θ

(
h(x)− λ

)
u(x) = 0,

which is equivalent to

d

dx

(
q(x)u′(x)

)
+

2θ

σ2(x)

(
h(x)− λ

)
q(x)u(x) = 0, (2.23)

where

q(x) = exp

(∫ x

0

2b(y)

σ2(y)
dy

)
. (2.24)

In view of this transformation and the boundary conditions (2.18) and (2.19),

we are faced with the regular Sturm-Liouville eigenvalue problem defined by

the ODE (2.23) with boundary conditions

θKu(α) + u′(α) = 0 and θKu(β)− u′(β) = 0. (2.25)

This problem has infinitely many simple real eigenvalues

λ0 > λ1 > · · · > λn > · · · such that lim
n↑∞

λn = −∞

and no other eigenvalues, while the eigenfunction un corresponding to λn has

exactly n zeros in the interval ]α, β[ (e.g., see Walter [111, Theorem VI.27.II]).

Furthermore, the eigenvalues are related to their corresponding eigenfunctions

27



2.2. The control problem’s HJB equation and its associated
Sturm-Liouville eigenvalue problem

by means of the Rayleigh quotient

λn =

(
q(β)un(β)u

′
n(β)− q(α)un(α)u

′
n(α)

+

∫ β

α

q(y)

(
2θh(y)

σ2(y)
u2n(y)−

(
u′n(y)

)2)
dy

)
×
(∫ β

α

2θ

σ2(y)
q(y)u2n(y) dy

)−1

. (2.26)

The eigenfunction u0 is the only one that has no zeros in ]α, β[. The function

w′ given by (2.22) is therefore clearly well-defined only for u = u0. In other

words, if we write

w′(x) =
u′0(x)

θu0(x)
, for x ∈ ]α, β[,

then w is a solution to the ODE (2.16) if and only if u0 is the solution to the

ODE (2.23) corresponding to the maximal eigenvalue λ0. In view of this ob-

servation, we consider the maximal eigenvalue λ0 and its corresponding eigen-

function u0 in what follows. We also write λ(α, β) and ϕα,β instead of λ0 and u0

to stress their dependence on the free-boundary points α and β. Furthermore,

we assume that ϕα,β has been normalised by a multiplicative constant, so that∫ β

α

2θ

σ2(y)
q(y)ϕ2

α,β(y) dy = 1, (2.27)

and we note that the boundary conditions (2.25) and the expression (2.26)

imply that

λ(α, β) = θK
(
q(α)ϕ2

α,β(α) + q(β)ϕ2
α,β(β)

)
+

∫ β

α

q(y)

(
2θh(y)

σ2(y)
ϕ2
α,β(y)−

(
ϕ′
α,β(y)

)2)
dy. (2.28)

Lemma 2.9. The function λ defined by (2.28) for α < β is C1,1 and such that

λα(α, β) =
2θq(α)ϕ2

α,β(α)

σ2(α)

(
λ(α, β)−H−(α)

)
(2.29)

and λβ(α, β) = −
2θq(β)ϕ2

α,β(β)

σ2(β)

(
λ(α, β)−H+(β)

)
, (2.30)
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where the functions H± are defined by (2.10). Furthermore, given any points

α < β in R,
λ(α, β) = Jx

(
ξα,β

)
> 0 for all x ∈ R, (2.31)

where Jx is defined by (2.2) and ξα,β ∈ A is the controlled process discussed in

Remark 2.4.

Proof. We first prove (2.29) and (2.30) using a technique inspired by Kong

and Zettl [75]. Given any ε > 0, we use integration by parts and the ODE

(2.23) to calculate

q(β)
(
ϕα,β(β)ϕ

′
α+ε,β(β)− ϕ′

α,β(β)ϕα+ε,β(β)
)

− q(α + ε)
(
ϕα,β(α + ε)ϕ′

α+ε,β(α + ε)− ϕ′
α,β(α + ε)ϕα+ε,β(α + ε)

)
=

∫ β

α+ε

(
ϕα,β(y)

(
qϕ′

α+ε,β

)′
(y)− ϕα+ε,β(y)

(
qϕ′

α,β

)′
(y)
)
dy

=
(
λ(α + ε, β)− λ(α, β)

) ∫ β

α+ε

2θ

σ2(y)
q(y)ϕα,β(y)ϕα+ε,β(y) dy.

In view of the boundary conditions (2.25), these identities imply that

(
λ(α + ε, β)− λ(α, β)

) ∫ β

α+ε

2θ

σ2(y)
q(y)ϕα,β(y)ϕα+ε,β(y) dy

= q(α + ε)
(
θKϕα,β(α + ε) + ϕ′

α,β(α + ε)
)
ϕα+ε,β(α + ε).

Using integration by parts, the ODE (2.23) and the boundary conditions (2.25)

once more, we obtain

q(α + ε)
(
θKϕα,β(α + ε) + ϕ′

α,β(α + ε)
)

=

∫ α+ε

α

(
θK
(
qϕα,β

)′
(y) +

(
qϕ′

α,β

)′
(y)
)
dy

=

∫ α+ε

α

2θq(y)ϕα,β(y)

σ2(y)

(
λ(α, β) +

1

2
Kσ2(y)

ϕ′
α,β(y)

ϕα,β(y)
+Kb(y)− h(y)

)
dy.
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It follows that

(
λ(α + ε, β)− λ(α, β)

) ∫ β

α+ε

2θ

σ2(y)
q(y)ϕα,β(y)ϕα+ε,β(y) dy

= ϕα+ε,β(α + ε)

·
∫ α+ε

α

2θq(y)ϕα,β(y)

σ2(y)

(
λ(α, β) +

1

2
Kσ2(y)

ϕ′
α,β(y)

ϕα,β(y)
+Kb(y)− h(y)

)
dy.

Dividing by ε and passing to the limit as ε ↓ 0 using (2.25) as well as (2.27),

we can see that the right-hand derivative λα+(α, β) exists and is equal to the

expression on the right-hand side of (2.29).

Replacing α and α+ ε by α− ε and α, respectively, in the analysis above,

we can see that the left-hand derivative λα−(α, β) also exists and is equal to

λα+(α, β).

The proof of (2.30) follows the same arguments.

To establish (2.31), we first consider a C1 function w : R → R that is

piece-wise C2 and an admissible control strategy ξ ∈ A. Using Itô-Tanaka’s

formula for general semimartingales and the identity ∆Xt ≡ Xt+ −Xt = ∆ξt,

we obtain

w(XT+) = w(x) +

∫ T

0

(
1

2
σ2(Xt)w

′′(Xt) + b(Xt)w
′(Xt)

)
dt+

∫
[0,T ]

w′(Xt) dξt

+
∑

0≤t≤T

(
w(Xt+)− w(Xt)− w′(Xt)∆Xt

)
+MT

= w(x) +

∫ T

0

(
1

2
σ2(Xt)w

′′(Xt) + b(Xt)w
′(Xt)

)
dt+

∫ T

0

w′(Xt) dξ
c+
t

−
∫ T

0

w′(Xt) dξ
c−
t +

∑
0≤t≤T

(
w(Xt+)− w(Xt)

)
+MT ,

where M is defined by (2.5) for g = w′, while ξc+, ξc− are the continuous

parts of the increasing processes ξ+, ξ− providing the unique decomposition

ξ = ξ+ − ξ− and |ξ| = ξ+ + ξ−. In view of the identity

w(Xt+)− w(Xt) =

∫ ∆ξ+t

0

w′(Xt + r) dr −
∫ ∆ξ−t

0

w′(Xt − r) dr,
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we can see that∑
0≤t≤T

(
w(Xt+)− w(Xt) +K∆|ξ|t

)
=
∑

0≤t≤T

∫ ∆ξ+t

0

(
K + w′(Xt + r)

)
dr +

∑
0≤t≤T

∫ ∆ξ−t

0

(
K − w′(Xt − r)

)
dr.

It follows that∫ T

0

h(Xt) dt+K|ξ|T

= λ(α, β)T + w(x)− w(XT+)−
1

2
θ⟨M⟩T +MT

+

∫ T

0

(
1

2
σ2(Xt)w

′′(Xt) + b(Xt)w
′(Xt) +

1

2
θ
(
σ(Xt)w

′(Xt)
)2

+ h(Xt)

− λ(α, β)
)
dt

+

∫ T

0

(
K + w′(Xt)

)
dξc+t +

∫ T

0

(
K − w′(Xt)

)
dξc−t

+
∑

0≤t≤T

∫ ∆ξ+t

0

(
K + w′(Xt + r)

)
dr +

∑
0≤t≤T

∫ ∆ξ−t

0

(
K − w′(Xt − r)

)
dr.

(2.32)

The controlled process ξα,β and the corresponding state process Xα,β dis-

cussed in Remark 2.4 are such that

Xα,β
T ∈ [α, β], ξα,β,+T =

∫
[0,T ]

1{Xα,β
t =α} dξ

α,β,+
t

and ξα,β,−T =

∫
[0,T ]

1{Xα,β
t =β} dξ

α,β,−
t (2.33)

for all T > 0. Let w be a function whose first derivative is given by

w′(x) =


−K, if x ≤ α,

1
θ

d
dx

ln
(
ϕα,β(x)

)
, if x ∈ ]α, β[,

K, if x ≥ β.
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In view of (2.22), (2.25) and the in-between arguments, we can see that w is C2

in R\{α, β} and C1 at both of α and β. Furthermore, recalling that the eigen-

function u0 ≡ ϕα,β and the eigenvalue λ0 ≡ λ(α, β) provide a solution to the

Sturm-Liouville eigenvalue problem defined by the ODE (2.23) with boundary

conditions (2.25), we can see that w satisfies the ODE (2.16). Combining these

observations with (2.32) and (2.33), we obtain∫ T

0

h
(
Xα,β
t

)
dt+K|ξα,β|T = λ(α, β)T +w(x)−w

(
Xα,β
T+

)
− 1

2
θ
〈
Mα,β

〉
T
+Mα,β

T ,

where Mα,β is defined by (2.5) for ξ = ξα,β and g = w′. It follows that

1

θT
lnE

[
exp

(
θ

(∫ T

0

h
(
Xα,β
t

)
dt+K|ξα,β|T

))]

= λ(α, β) +
w(x)

T
+

1

θT
lnE

[
exp

(
θ

(
−w
(
Xα,β
T

)
− 1

2
θ
〈
Mα,β

〉
T
+Mα,β

T

))]

= λ(α, β) +
w(x)

T
+

1

θT
lnEP̃

α,β
T

[
exp
(
−θw

(
Xα,β
T

))]
.

Here, P̃
α,β

T is the probability measure on (Ω,FT ) with Radon-Nikodym deriva-

tive with respect to P given by dP̃
α,β

T /dP = ET
(
θMα,β

)
(see also (2.7)). Finally,

using the fact that the process w(Xα,β) is bounded, we can pass to the limit

as T ↑ ∞ to obtain Jx(ξ
α,β) = λ(α, β). □
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2.3 The solution to the control problem

Theorem 2.10. In the presence of Assumptions 2.1 and 2.5, the following

statements hold true:

(I) There exists a unique pair (α⋆, β⋆) such that

α⋆ < α−, β+ < β⋆ and λ⋆ := λ(α⋆, β⋆) = H−(α⋆) = H+(β⋆), (2.34)

where the function λ is defined by (2.28) and the functions H± are defined by

(2.10).

(II) The function w that is defined by

w′(x) =


−K, if x ≤ α⋆,

1
θ

d
dx

ln
(
ϕα⋆,β⋆(x)

)
, if x ∈ ]α⋆, β⋆[,

K, if x ≥ β⋆,

(2.35)

modulo an additive constant, is C2. Furthermore, this function and λ⋆ provide

a solution to the HJB equation (2.14).

Proof. The conditions (2.11)–(2.13) in Assumption 2.5 imply that there exists

a unique function Γ : [β+,∞[ → ]−∞,α−] such that H+(β) = H−
(
Γ(β)

)
for

all β ≥ β+. In particular, Γ(β+) = α−. In view of this observation, we can

see that, if the equation

Λ(β) := λ
(
Γ(β), β

)
= H+(β) (2.36)

has a unique solution β⋆ > β+, then part (I) of the theorem holds true with

α⋆ = Γ(β⋆).

To show that the equation (2.36) has a unique solution β⋆ > β+, we first

use (2.29) and (2.30) in Lemma 2.9, as well as the identity H+(β) = H−
(
Γ(β)

)
,
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to calculate

d

dβ

(
Λ(β)−H+(β)

)
= λα

(
Γ(β), β

)
Γ′(β) + λβ

(
Γ(β), β)−H ′

+(β)

= 2θ

(
q
(
Γ(β)

)
ϕ2
Γ(β),β

(
Γ(β)

)
σ2
(
Γ(β)

) Γ′(β)−
q(β)ϕ2

Γ(β),β(β)

σ2(β)

)(
Λ(β)−H+(β)

)
−H ′

+(β)

=: ϱ(β)
(
Λ(β)−H+(β)

)
−H ′

+(β), for β > β+. (2.37)

The solution to this first-order ODE is such that

I(β)
(
Λ(β)−H+(β)

)
= Λ(β+)−H+(β+)−

∫ β

β+

I(u)H ′
+(u) du

= λ(α−,β+)−
∫ β

β+

I(u)H ′
+(u) du =: F (β),

where I(β) = exp
(
−
∫ β
β+
ϱ(u) du

)
. The second equality here follows from the

fact that Γ(β+) = α− and the assumption that H+(β+) = 0. It follows that

equation (2.36) is equivalent to the equation

F (β) = 0. (2.38)

In view of the inequalities

F ′(β) = −I(β)H ′
+(β) < 0 for all β > β+ and F (β+) = λ(α−,β+)

(2.31)
> 0,

we can see that equation (2.38) has a unique solution β⋆ > β+ if and only

if limβ↑∞ F (β) < 0. To see that this inequality is indeed true, we argue by

contradiction. To this end, we assume that limβ↑∞ F (β) ≥ 0, which can be

true only if

Λ(β)−H+(β) =
F (β)

I(β)
> 0 for all β > β+ (2.39)

because F ′(β) < 0 and I(β) > 0 for all β > β+. In view of the inequalities

Γ′ < 0 and q > 0, we can see that the function ϱ introduced in (2.37) is such
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that ϱ(β) < 0 for all β > β+. In view of this inequality and the contradiction

hypothesis (2.39), we can see that (2.37) implies that Λ′(β) < 0 for all β > β+.

However, this conclusion and (2.11) imply that

lim
β↑∞

(
Λ(β)−H+(β)

)
≤ Λ(β+)− lim

β↑∞
H+(β) = −∞,

which contradicts (2.39). Thus, we have proved that equation (2.38), which

is equivalent to equation (2.36), has a unique solution β⋆ > β+ and we have

established part (I) of the theorem.

By construction, we will prove that the function w given by (2.35) is a C2

solution to the HJB equation (2.14) if we show that

1

2
θK2σ2(x) +Kb(x) + h(x)− λ⋆ ≥ 0 for all x ∈ ]−∞, α⋆[ ∪ ]β⋆,∞[ (2.40)

and
∣∣w′(x)

∣∣ ≤ K for all x ∈ ]α⋆, β⋆[. (2.41)

The inequality (2.40) follows immediately from (2.12), (2.13) in Assumption 2.5

and the observation that

1

2
θK2σ2(x) +Kb(x) + h(x)− λ⋆ =

H−(x)−H−(α⋆), if x < α⋆,

H+(x)−H+(β⋆), if x > β⋆,

where we have used the definition (2.10) of the functions H± and part (I) of

the theorem.

To establish (2.41), we first note that the C1 continuity of the functions b,

σ and h implies that the restriction of w in ]α⋆, β⋆[ is C
3. In particular, we

note that differentiation of the ODE (2.16) that w satisfies in ]α⋆, β⋆[ implies

that

1

2
σ2(x)w′′′(x) +

(
b(x) + σ(x)σ′(x) + θσ2(x)w′(x)

)
w′′(x)

+ θσ(x)σ′(x)
(
w′(x)

)2
+ b′(x)w′(x) + h′(x) = 0.

In view of this calculation, the inequalities in (2.34), the assumptions (2.12),
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(2.13) and the free-boundary equations (2.18), (2.19), we can see that

lim
x↓α⋆

w′′′(x) = − 2

σ2(α⋆)
H ′

−(α⋆) > 0 and lim
x↑β⋆

w′′′(x) = − 2

σ2(β⋆)
H ′

+(β⋆) < 0.

It follows that there exists ε > 0 such that

w′′(x) > 0 for all x ∈ ]α⋆, α⋆ + ε[ ∪ ]β⋆ − ε, β⋆[. (2.42)

We next argue by contradiction, we assume that there exist x ∈ ]α⋆, β⋆[

such that w′(x) > K and we define

α⋆ < γ := min
{
x ∈ ]α⋆, β⋆[ | w′(x) = K

}
< max

{
x ∈ ]α⋆, β⋆[ | w′(x) = K

}
=: γ < β⋆, (2.43)

where the inequalities follow once we combine (2.42) with the boundary con-

ditions w′(α⋆) = −K and w′(β⋆) = K. The points γ and γ are such that

w′′(γ) =
2

σ2(γ)

(
H+(β⋆)−H+(γ)

)
≥ 0

and w′′(γ) =
2

σ2(γ)

(
H+(β⋆)−H+(γ)

)
≤ 0.

However, these inequalities and the ones in (2.43) contradict (2.13) in Assump-

tion 2.5, and (2.41) follows. □

We can now prove the main result of the paper.

Theorem 2.11. Suppose that Assumptions 2.1 and 2.5 hold true. If (α⋆, β⋆)

and λ⋆ are as in Theorem 2.10, then, given any x ∈ R,

inf
ξ∈A

Jx(ξ) = Jx
(
ξα⋆,β⋆

)
≡ lim

T↑∞

1

θT
lnE

[
exp

(
θ

(∫ T

0

h(X⋆
t ) dt+K|ξα⋆,β⋆|T

))]
= λ⋆ > 0,

(2.44)
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where ξα⋆,β⋆ ∈ A is as in the statement of Lemma 2.9 and X⋆ is the corre-

sponding solution to the SDE (2.1).

Proof. Fix any x ∈ R and any ξ ∈ A. Also, let w be a function defined

by (2.35) in Theorem 2.10. Since w satisfies the HJB equation (2.14), the

expression (2.32) in the proof of Lemma 2.9 implies that∫ T

0

h(Xt) dt+K|ξ|T ≥ λ⋆T + w(x)− w(XT+)−
1

2
θ
〈
M ξ,w′〉

T
+M ξ,w′

T ,

where M ξ,w′
is defined by (2.5) for g = w′. In view of this observation, we can

see that

1

θT
lnE

[
exp

(
θ

(∫ T

0

h(Xt) dt+K|ξ|T
))]

≥ λ⋆ +
w(x)

T
+

1

θT
lnE

[
exp

(
−θw(XT+)−

1

2
θ2
〈
M ξ,w′〉

T
+ θM ξ,w′

T

)]

= λ⋆ +
w(x)

T
+

1

θT
lnEP̃T

[
exp
(
−θw(XT )

)]
, (2.45)

where P̃T is the probability measure on (Ω,FT ) that has Radon-Nikodym

derivative with respect to P given by dP̃T/dP = ET
(
θM ξ,w′)

(see also (2.7)).

In view of the inequality
∣∣w′(x)

∣∣ ≤ K, we can see that

EP̃T

[
exp
(
−θw(XT )

)]
≥ EP̃T

[
exp
(
−θ
∣∣w(0)∣∣− θK|XT |

)]
.

In view of this observation and the admissibility condition (2.9), we can pass

to the limit as T ↑ ∞ in (2.45) to obtain Jx(ξ) ≥ λ⋆. Finally, the identity

Jx
(
ξα⋆,β⋆

)
= λ⋆ follows from Lemma 2.9. □
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3

Equilibrium asset pricing with

proportional transaction costs in a

stochastic factor model

In this chapter, we study a risk-sharing equilibrium similar to Gonon et

al. [51] where the agents trade to hedge against the fluctuations of their ran-

dom endowment streams, while subjected to proportional transaction costs.

Our aim is to generalise the setting in [51], where endowment rates are scalar

multiples of a Brownian motion, to continuous functions of a one-dimensional

diffusion. This allows us to investigate new qualitative behaviours of opti-

mal trading strategies and incorporate new effects captured by the underlying

diffusion such as seasonality.

In [51], a singular stochastic control approach specialised to their partic-

ular choice of endowment rate is adopted, and solutions to the associated

free-boundary problem are available in closed form - the solution to the ODE

is a cubic function and the free-boundaries are linear functions, and the de-

viations of the frictional from the frictionless optimiser (as well as the liq-

uidity premium) is a doubly reflected Brownian motion with constant end

points. We develop a more general dynamic programming approach where

we obtain an explicit system of equations characterising the free-boundaries.

The free-boundaries are no longer available in closed form, but existence and

uniqueness results can still be proven. Moreover, the deviation of the frictional

from the frictionless optimiser is a doubly reflected diffusion with non-constant
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end points that depend on the number of shares of risky asset held. To the

best of our knowledge, the two-dimensional singular stochastic control prob-

lem and corresponding free-boundary problem providing the solution to the

agents’ optimisation problems are novel and non-standard, as we do not have

the usual variational inequality in standard singular control problems. How-

ever, similar equations for the free-boundaries are still obtained. Examples of

two-dimensional singular control problems in the literature include [84], [92],

[30], [32], [31] and [74]. The problems considered by Løkka and Zervos [84] and

Merhi and Zervos [92] are more closely related to our problem in the sense that

the two variables in the two-dimensional problem are taken to be the controlled

finite variation process and a one-dimensional diffusion whose dynamics are not

affected by the controlled process. Merhi and Zervos [92] similarly considers a

discounted infinite horizon problem, but specialises to a geometric Brownian

motion as the state process, while we consider one-dimensional diffusions. In

Løkka and Zervos [84], an ergodic criterion is considered and the underlying

diffusion is assumed to be ergodic. In our setting, we consider a discounted

infinite horizon criterion and do not assume ergodicity of the diffusion, and

only require that the discount factor is sufficiently large. Moreover, in our

setting, our “running cost” function does not satisfy the assumptions of the

running payoff functions in [84] and [92].

The no-trade region in Gonon et al. [51] is exactly a constant multiplied

by λ1/3, due to the linearity of the free-boundary functions and the solution

to the free-boundary problem being a cubic function. The free-boundaries in

our setting are not available in closed form, but we can compute transaction

cost asymptotics explicitly using the system of free-boundary equations. The

calculation is similar to that in Schachermayer [103], through the inversion of

the Taylor expansion of the transaction cost parameter, expressed as a function

of the boundary.

The remainder of this chapter is organised as follows: Section 3.1 describes

the model in the frictionless case as well as the case with proportional trans-

action costs. Section 3.2 establishes sufficient conditions for the existence of

an equilibrium return rate with corresponding optimal trading strategies, as

well as the associated free-boundary problem. In Sections 3.3 and 3.4, the

free-boundary problem is solved when the problem data is such that the fric-
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tionless optimiser is a strictly increasing, and a strictly increasing and then

strictly decreasing function of the economy’s state respectively. In Section 3.5

the solution to the control problem is constructed. In Section 3.6, small trans-

action cost asymptotics are derived for the free-boundaries. Finally, Appendix

A reviews results on ODEs and one-dimensional diffusions frequently used in

our analysis.

3.1 Problem formulation

Fix a probability space
(
Ω,F , (Ft),P

)
satisfying the usual conditions and

supporting two independent standard one-dimensional (Ft)-Brownian motions

W1 and W2. We set W = W1 and B = ρW1 +
√

1− ρ2W2, so that W and

B are correlated Brownian motions with correlation coefficient ρ ∈ [0, 1]. We

note that the correlation coefficient ρ does not affect the remainder of our

analysis. We consider two agents who start with 0 initial endowments at time

0 and have an infinite horizon as well as the same discounting rate r > 0. For

i = 1, 2, Agent i receives a cumulative random endowment that is given by

Ξit =

∫ t

0

ξis dWs, for t ≥ 0. (3.1)

Assumption 3.1. For i = 1, 2, the processes ξi are (Ft)-progressive and such

that

E
[∫ ∞

0

e−rt
(
ξit
)2
dt

]
<∞.

For the best part of our analysis, we are going to assume that

ξit = hi(Xt), for t ≥ 0 and i = 1, 2,

where h1, h2 : R → R are given functions and X is the solution to the SDE

dXt = α(Xt) dt+ β(Xt) dBt, X0 = x ∈ R. (3.2)

In this context, the process X represents the state of the economy in which the

two agents operate, while the functions hi reflect the sensitivity of the agents’

endowment rates to the state of the economy. We note that, in [51], ρ = 1,
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3.1. Problem formulation

hi(x) = ξix where ξi ∈ R and X is a standard one-dimensional Brownian

motion (that is, α = 0 and β = 1).

Assumption 3.2. The functions α : R → R and β : R → R are continuous,

the functions h1, h2 : R → R are C1 and there exist constants C,K > 0 and

p ≥ 1 such that

∣∣α(x)− α(y)
∣∣ ≤ K|x− y|,

∣∣β(x)− β(y)
∣∣ ≤ K|x− y|, (3.3)∣∣xα(x)∣∣+ 2p− 1

2
β2(x) ≤ C

(
1 + x2

)
(3.4)

and
∣∣h1(x)∣∣+ ∣∣h2(x)∣∣ ≤ K

(
1 + |x|p

)
(3.5)

for all x, y ∈ R. Furthermore, these constants are such that

r > 2pC. (3.6)

Remark 3.3. The Lipschitz continuity assumption (3.3) ensures that the SDE

(3.2) has a unique strong solution and the growth conditions (3.4) imply that

E
[
|Xt|2p

]
≤ 2p−1

(
1 + |x|2p

)
e2pCt for all t ≥ 0 (3.7)

(see Mao [86, Chapter 2.4, Theorem 4.1]). Furthermore, this estimate, the

growth conditions (3.5) and (3.6) as well as Fubini’s theorem imply that the

endowment rates ξi = hi(X) satisfy Assumption 3.1, in other words, for i =

1, 2,

E
[∫ ∞

0

e−rth2i (Xt)dt

]
<∞. (3.8)

Remark 3.4. If h1 and h2 are bounded, then we can relax the requirement

(3.6) on the discounting rate (that is, taking p = 0 in (3.5) and (3.6)), since

the integrability condition (3.8) is clearly satisfied for any r > 0.

We assume that the two agents are risk-averse and have mean-variance

preferences with risk-aversion parameters γ1 > 0 and γ2 > 0. Accordingly,

the mean-variance payoff that Agent i expects from their individual income
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stream is given by

lim
T↑∞

E
[∫ T

0

e−rt
(
dΞit −

γi
2
d
〈
Ξi
〉
t

)]
= −γi

2
E
[∫ ∞

0

e−rt
(
ξit
)2

dt

]
.

To hedge against the random fluctuations of their individual endowments, the

two agents may enter a risk-sharing agreement to trade a risky asset that is in

zero-net supply. The stochastic dynamics of the risky asset’s price process S

are given by

dSt = µt dt+ σ dWt, (3.9)

where the constant absolute volatility σ > 0 and the initial price S0 ∈ R are

determined as part of the risk-sharing agreement. On the other hand, the drift

process µ will be determined in equilibrium. In this context, if we denote by

ϑit the number of shares held by Agent i at time t, then the market clearing

condition

ϑ1
t + ϑ2

t = 0 (3.10)

should be satisfied at all times because the asset is in zero-net supply. Fur-

thermore, if we denote by Y i the total wealth process of Agent i, then

Y i
t = θi0S0 +

∫ t

0

ϑiu dSu +

∫ t

0

ξiu dWu

= θi0S0 +

∫ t

0

ϑiuµu du+

∫ t

0

(
σϑiu + ξiu

)
dWu, (3.11)

where θi0 = ϑi0− are the number of the risky asset shares with which Agent i

enters the agreement. If the two agents enter the risk-sharing agreement at

time 0, then it is natural to assume that their starting holdings of the risky asset

are null, namely, θ10 = θ20 = 0, particularly so, in the presence of transaction

costs, which is the focus of the paper. However, assuming non-zero such values

is essential for our analysis, which will be based on dynamic programming.

3.1.1 Frictionless equilibrium

In the frictionless setting, the agents face no transaction costs during their

mutual trading. We note that this section is very closely based on the friction-
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3.1. Problem formulation

less setting in [12]. In this context, the objective of Agent i is to maximise the

performance index

I0,i
(
ϑi | µ0

)
= lim

T↑∞
E
[∫ T

0

e−rt
(
dY i

t −
γi
2
d
〈
Y i
〉
t

)]
= E

[∫ ∞

0

e−rt
(
ϑitµ

0
t −

γi
2

(
σϑit + ξit

)2)
dt

]
(3.12)

over all trading strategies ϑi satisfying suitable integrability conditions. Here,

we write µ0 in place of µ to stress the absence of any transaction costs. Point-

wise maximisation of the integrand on the right-hand side of (3.12) yields

ϑ̂it =
1

σ2γi
µ0
t −

1

σ
ξit. (3.13)

This result and the market clearing condition (3.10) imply that the frictionless

equilibrium mean-rate of return is given by

µ0
t = σ

γ1γ2
γ1 + γ2

(
ξ1t + ξ2t

)
=: σγ̃

(
ξ1t + ξ2t

)
.

Substituting this expression for µ0
t into (3.13), we obtain

ϑ̂0,1
t =

γ2ξ
2
t − γ1ξ

1
t

σ(γ1 + γ2)
and ϑ̂0,2

t =
γ1ξ

1
t − γ2ξ

2
t

σ(γ1 + γ2)
.

Furthermore, the optimal mean-variance payoffs that the two agents receive in

equilibrium are

I0,1
(
ϑ̂0,1 | σγ̃(ξ1 + ξ2)

)
=

γ̃

γ1 + γ2
E
[∫ ∞

0

e−rt
(
ξ1t + ξ2t

)(γ2
2
ξ2t −

(
γ1 +

γ2
2

)
ξ1t

)
dt

]
and I0,2

(
ϑ̂0,2 | σγ̃(ξ1 + ξ2)

)
=

γ̃

γ1 + γ2
E
[∫ ∞

0

e−rt
(
ξ1t + ξ2t

)(γ1
2
ξ1t −

(
γ2 +

γ1
2

)
ξ2t

)
dt,

]
which are well-defined and real-valued, thanks to Assumption 3.1.
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It is straightforward to verify that

I0,i
(
ϑ̂0,i | σγ̃(ξ1 + ξ2)

)
=
γi
2
E
[∫ ∞

0

e−rt
((
σϑ̂0,i

t

)2 − (ξit)2) dt]
≥ −γi

2
E
[∫ ∞

0

e−rt
(
ξit
)2

dt

]
.

This inequality holds with equality if and only if

γ1
γ1 + γ2

ξ1 =
γ2

γ1 + γ2
ξ2,

namely, if and only if the agents’ individual endowment rates are equal if

weighted by the agents’ relative risk aversions. In this case, ϑ̂i = 0 and the

risk-sharing agreement presents no benefit to either of the two parties. In the

absence of this identity, entering the risk-sharing agreement strictly increases

the expected mean-variance payoff of either of the two agents.

In the presence of the assumption that ξi = hi(X), the frictionless op-

timisers, as well as the frictionless equilibrium mean-rate of return, are also

functions of X and are given by

ϑ̂0,1
t =

γ2h2(Xt)− γ1h1(Xt)

σ(γ1 + γ2)
=: Θ(Xt), ϑ̂

0,2
t =

γ1h1(Xt)− γ2h2(Xt)

σ(γ1 + γ2)
= −Θ(Xt)

(3.14)

and µ0
t = σ

γ1γ2
γ1 + γ2

(
h1(Xt) + h2(Xt)

)
=:M(Xt). (3.15)

In view of these expressions, the first agent’s optimal strategy is to ensure that

the joint process (ϑ̂0,1, X) takes values in the set
{
(θ, x) ∈ R2 | θ = Θ(x)

}
at all

times. Unless Θ is identically equal to a constant, such a strategy is of infinite

variation because the process X is. As a result, it cannot be optimal in the

presence of proportional transaction costs because it would incur infinite losses.

We note that (3.8) implies that Θ(X) satisfies the integrability condition

E
[∫ ∞

0

e−rtΘ2(Xt) dt

]
≤ E

[∫ ∞

0

e−rt
(

γ22 + γ1γ2
σ2(γ1 + γ2)2

h22(Xt) +
γ21 + γ1γ2
σ2(γ1 + γ2)2

h21(Xt)
)
dt

]
<∞. (3.16)
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3.1. Problem formulation

3.1.2 Proportional transaction costs

We now assume that the agents’ transactions are subject to transaction

costs that are proportional to the volume of their trades with a given propor-

tionality constant λ > 0. In this context, trading strategies must be of finite

variation because, otherwise, they would incur infinite costs. We assume that

the admissible trading strategies of either of the two agents belong to the class

introduced by the following definition.

Definition 3.5. Given an initial condition (θ, x) ∈ R2, a trading strategy ϑ

is admissible if it is a càglàd (Ft)-adapted process of finite variation such that

ϑ0− = θ and

E
[
|ϑ|T

]
<∞ for all T ≥ 0 and E

[∫ ∞

0

e−rtϑ2
t dt

]
<∞, (3.17)

where, if we denote by |ϑ| the total variation process of ϑ, then ϑ± are the

unique (Ft)-adapted càglàd increasing processes satisfying

ϑt = θ + ϑ+
t − ϑ−

t and |ϑ|t = ϑ+
t + ϑ−

t for all t ≥ 0. (3.18)

We denote by A(θ) the family of all admissible trading strategies that is

parametrised by the convention ϑ0− = θ, where θ ∈ R is a constant.

Remark 3.6. The integrability condition (3.17) implies the transversality con-

dition

lim inf
T↑∞

e−rT E
[
ϑ2
T

]
= 0. (3.19)

To see this, we observe that since ϑ is a càglàd process, its sample paths can

have at most countable discontinuities. This observation, Fubini’s theorem and

(3.17) imply that∫ ∞

0

e−rt E
[
ϑ2
t+

]
dt = E

[∫ ∞

0

e−rtϑ2
t+ dt

]
= E

[∫ ∞

0

e−rtϑ2
t dt

]
<∞,

which implies (3.19).

The level of the proportionality constant λ > 0 plainly influences the opti-

mal strategies in equilibrium. We therefore denote by µλ the frictional equilib-
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rium mean-rate of return in what follows. Accordingly, we write the dynamics

of the risky asset price process in the form

dSt = µλt dt+ σ dWt

instead of (3.9). In the presence of proportional transaction costs, the objective

of Agent i is to maximise the performance index

E
[∫ ∞

0

e−rt
(
ϑitµ

λ
t −

γi
2

(
σϑit + ξit

)2)
dt− λ

∫
[0,∞[

e−rt d|ϑi|t
]

(3.20)

over all admissible trading strategies ϑi, where |ϑi| is the total variation process

of ϑi.

Using completion of squares and substituting the formulae derived in the

previous section for the frictionless optimal equilibrium strategies and mean-

rate of return, we obtain

ϑitµ
λ
t −

γi
2

(
σϑit+ξ

i
t

)2
= ϑ̂0,i

t µ
0
t −

γi
2

(
σϑ̂0,i

t +ξit
)2
+ϑit

(
µλt −µ0

t

)
− 1

2
σ2γi

(
ϑit− ϑ̂

0,i
t

)2
.

In view of this identity, we can see that maximising the performance index in

(3.20) is equivalent to maximising

I0,i
(
ϑ̂0,i | σγ̃(ξ1 + ξ2)

)
− E

[∫ ∞

0

e−rt
(
1

2
σ2γi

(
ϑit − ϑ̂0,i

t

)2 − ϑit
(
µλt − µ0

t

))
dt+ λ

∫
[0,∞[

e−rt d|ϑi|t
]
,

where I0,i is defined by (3.12). Therefore, the objective of Agent i is to min-

imise the performance index

Iλ,iθi,x
(
ϑi | µλ

)
= E

[∫ ∞

0

e−rtf i
(
ϑit, Xt, µ

λ
t −M(Xt)

)
dt+ λ

∫
[0,∞[

e−rt d|ϑi|t
]

over all admissible strategies ϑi ∈ A(θi), where

f i(θi, x,m) =

 1
2
σ2γ1

(
θ1 −Θ(x)

)2 − θ1m, if i = 1,

1
2
σ2γ2

(
θ2 +Θ(x)

)2 − θ2m, if i = 2,

47



3.2. Sufficient conditions for the existence of an equilibrium

with Θ and M being defined by (3.14) and (3.15).

We are now faced with the Radner equilibrium problem that is introduced

by the following definition, which incorporates the market clearing condition

(3.10).

Definition 3.7. Fix any (θ, x) ∈ R2. A mean-rate of return process µλ and a

strategy ϑ̂ ∈ A(θ) present an equilibrium if

Iλ,1θ,x

(
ϑ | µλ

)
≥ Iλ,1θ,x

(
ϑ̂ | µλ

)
and Iλ,2−θ,x

(
−ϑ | µλ

)
≥ Iλ,2−θ,x

(
−ϑ̂ | µλ

)
for all ϑ ∈ A(θ). In particular, the agents’ optimal trading strategies in equi-

librium are given by ϑ̂λ,1 = ϑ̂ and ϑ̂λ,2 = −ϑ̂.

Due to the symmetry arising from the market clearing condition, it is suffi-

cient to solve for the optimal strategy for Agent 1. In a (θ, x)-graph depicting

the optimal strategies of the agents, the optimal strategy of Agent 2 is obtained

by reflecting the optimal strategy of Agent 1 about the x-axis. The next section

establishes sufficient conditions for the existence of an equilibrium with corre-

sponding optimal trading strategies, and formulates the relevant free-boundary

problem.

3.2 Sufficient conditions for the existence of

an equilibrium

Fix any initial state (θ, x) ∈ R2. Given any trading strategies ϑ, ϑ̂ ∈ A(θ),

we first observe that

Iλ,1θ,x

(
ϑ | µλ

)
= Iλ,1θ,x

(
ϑ̂ | µλ

)
+ γ1Q1(ϑ, ϑ̂) +Q2(ϑ, ϑ̂, µ

λ)

+ Jθ,x(ϑ, ϑ̂)− Jθ,x(ϑ̂, ϑ̂)

and Iλ,2−θ,x
(
−ϑ | µλ

)
= Iλ,2−θ,x

(
−ϑ̂ | µλ

)
+ γ2Q1(ϑ, ϑ̂)−Q2(ϑ, ϑ̂, µ

λ)

+ Jθ,x(ϑ, ϑ̂)− Jθ,x(ϑ̂, ϑ̂),
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where

Q1(ϑ, ϑ̂) =
1

2
σ2 E

[∫ ∞

0

e−rt
(
ϑt − ϑ̂t

)2
dt

]
,

Q2(ϑ, ϑ̂, µ
λ)

= E
[∫ ∞

0

e−rt
(
1

2
σ2(γ1 − γ2)

(
ϑ̂t −Θ(Xt)

)
+M(Xt)− µλt

)(
ϑt − ϑ̂t

)
dt

]
and Jθ,x(ϑ, ϑ̂)

= E
[
1

2
σ2(γ1 + γ2)

∫ ∞

0

e−rt
(
ϑ̂t −Θ(Xt)

)
ϑt dt+ λ

∫
[0,∞[

e−rt d|ϑ|t
]
.

If we can determine a process ϑ̂ ∈ A(θ) such that

Jθ,x(ϑ, ϑ̂) ≥ Jθ,x(ϑ̂, ϑ̂) for all ϑ ∈ A(θ), (3.21)

then these expressions imply immediately that the mean-rate of return process

defined by

µλ =M(X) +
1

2
σ2(γ1 − γ2)

(
ϑ̂−Θ(X)

)
and the optimal strategy ϑ̂ present an equilibrium, and we note that µλ has the

same form as in [51]. To this end, we consider the following free-boundary prob-

lem, where we determine a C1,2 function v that satisfies v(θ, x)θ = Jθ,x(ϑ̂, ϑ̂).

In the complement of the domain of this free-boundary problem, vθ(θ, x) = 0

and v(θ, x) is the partial derivative of Jθ,x(ϑ̂, ϑ̂) with respect to the initial

position θ of the process ϑ̂, having a magnitude of λ.

Problem 3.8. Determine a continuous function v : R2 → R such that v(·, x)
is C1 for all x ∈ R,

∣∣v(θ, x)∣∣ ≤ λ for all (θ, x) ∈ R2 (3.22)

and

L v(θ, x) +
1

2
σ2(γ1 + γ2)

(
θ −Θ(x)

)
= 0 for all (θ, x) ∈ C, (3.23)

where L is the infinitesimal generator of the diffusion associated with the SDE
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(3.2) that is killed at a rate r, which is defined by

Lw(x) =
1

2
β2(x)wxx(x) + α(x)wx(x)− rw(x),

for C2 functions w, and

C =
{
(θ, x) ∈ R2 |

∣∣v(θ, x)∣∣ < λ
}
.

Given a solution v to this free-boundary problem, we define

B =
{
(θ, x) ∈ R2 | v(θ, x) = −λ

}
and S =

{
(θ, x) ∈ R2 | v(θ, x) = λ

}
.

(3.24)

In what follows, we denote by cl C the closure of a set C ⊆ R2 in R2. Fur-

thermore, given any ϑ ∈ A(θ), we recall the convention ϑ0− = θ that we have

adopted as well as the unique processes ϑ± satisfying (3.18). We can now prove

the verification theorem.

Theorem 3.9. Suppose that v is a solution to Problem 3.8. Also, suppose

that, given any (θ, x) ∈ R2, there exists a process ϑ̂ ∈ A(θ) such that

(ϑ̂t, Xt) ∈ cl C, ϑ̂+
t =

∫
[0,t]

1{(ϑ̂s,Xs)∈B} dϑ̂
+
s and ϑ̂−

t =

∫
[0,t]

1{(ϑ̂s,Xs)∈S} dϑ̂
−
s

(3.25)

for all t ≥ 0. Then, for any process ϑ ∈ A(θ), (3.21) holds true. Moreover,

v(θ, x)θ = Jθ,x(ϑ̂, ϑ̂) ∈ R.

Proof. Fix any initial state (θ, x) ∈ R2 and consider any ϑ ∈ A(θ) as well

the process ϑ̂ that is as in the statement of the theorem. The C1 continuity of

v(·, x) and the definitions of the regions B, C and S imply that

vθ(θ, x) = 0 for all (θ, x) ∈ (B ∩ cl C) ∪ (S ∩ cl C).

On the other hand, the ODE (3.23) that v(θ, ·) satisfies in C and Assump-

tion 3.2 imply that the first two derivatives of v(θ, ·) exist in the limit as (θ, x)

tends to the boundary of C and (3.23) is satisfied for all (θ, x) ∈ cl C, acord-
ingly. In view of these observations, we use Itô’s and the integration by parts
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formulae to calculate

e−rTv(ϑ̂T , XT )ϑT

= v(θ, x)θ +

∫ T

0

e−rtL v(ϑ̂t, Xt)ϑt dt+

∫
[0,T ]

e−rtvθ(ϑ̂t, Xt)ϑt dϑ̂t

+

∫
[0,T ]

e−rtv(ϑ̂t, Xt) dϑt +

∫ T

0

e−rtβ(Xt)vx(ϑ̂t, Xt)ϑt dBt

= v(θ, x)θ − 1

2
σ2(γ1 + γ2)

∫ T

0

e−rt
(
ϑ̂t −Θ(Xt)

)
ϑt dt

+

∫
[0,T ]

e−rtv(ϑ̂t, Xt) dϑt +

∫ T

0

e−rtβ(Xt)vx(ϑ̂t, Xt)ϑt dBt.

This expression implies that

e−rTv(ϑ̂T , XT )ϑT ≥ v(θ, x)θ − 1

2
σ2(γ1 + γ2)

∫ T

0

e−rt
(
ϑ̂t −Θ(Xt)

)
ϑt dt

− λ

∫
[0,T ]

e−rt d|ϑ|t +
∫ T

0

e−rtβ(Xt)vx(ϑ̂t, Xt)ϑt dBt

as well as

e−rTv(ϑ̂T , XT )ϑ̂T = v(θ, x)θ − 1

2
σ2(γ1 + γ2)

∫ T

0

e−rt
(
ϑ̂t −Θ(Xt)

)
ϑ̂t dt

− λ

∫
[0,T ]

e−rt d|ϑ̂|t +
∫ T

0

e−rtβ(Xt)vx(ϑ̂t, Xt)ϑ̂t dBt.

(3.26)

It follows that

1

2
σ2(γ1 + γ2)

∫ T

0

e−rt
(
ϑ̂t −Θ(Xt)

)
ϑ̂t dt+ λ

∫
[0,T ]

e−rt d|ϑ̂|t

≤ 1

2
σ2(γ1 + γ2)

∫ T

0

e−rt
(
ϑ̂t −Θ(Xt)

)
ϑt dt+ λ

∫
[0,T ]

e−rt d|ϑ|t

+ e−rTv(ϑ̂T , XT )
(
ϑT − ϑ̂T

)
+

∫ T

0

e−rtβ(Xt)vx(ϑ̂t, Xt)
(
ϑ̂t − ϑt

)
dBt.
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Taking expectations, we obtain

E
[
1

2
σ2(γ1 + γ2)

∫ T∧τn

0

e−rt
(
ϑ̂t −Θ(Xt)

)
ϑ̂t dt+ λ

∫
[0,T∧τn]

e−rt d|ϑ̂|t
]

≤ E
[
1

2
σ2(γ1 + γ2)

∫ T∧τn

0

e−rt
(
ϑ̂t −Θ(Xt)

)
ϑt dt+ λ

∫
[0,T∧τn]

e−rt d|ϑ|t
]

+ E
[
e−r(T∧τn)v(ϑ̂T∧τn , XT∧τn)

(
ϑT∧τn − ϑ̂T∧τn

)]
, (3.27)

where (τn) is a localising sequence of (Ft)-stopping times for the stochastic

integral with respect to the Brownian motion B. For each n, (3.22) implies

that ∣∣∣e−r(T∧τn)v(ϑ̂T∧τn , XT∧τn)
(
ϑT∧τn − ϑ̂T∧τn

)∣∣∣ ≤ λ
(
|ϑ̂|T + |ϑ|T

)
.

Since ϑ, ϑ̂ ∈ A(θ) satisfy (3.17), we can pass to the limit as n → ∞ using the

dominated convergence theorem to obtain

lim
n→∞

E
[
e−r(T∧τn)v(ϑ̂T∧τn , XT∧τn)

(
ϑT∧τn − ϑ̂T∧τn

)]
= E

[
e−rTv(ϑ̂T , XT )

(
ϑT − ϑ̂T

)]
.

Moreover, by (3.22),∣∣∣E[e−rTv(ϑ̂T , XT )
(
ϑT − ϑ̂T

)]∣∣∣ ≤ λe−rT E
[∣∣ϑ̂T − ϑT

∣∣]
≤ λe−rT

(
1 + E

[(
ϑ̂T − ϑT

)2])
≤ λe−rT

(
1 + 2E

[
ϑ̂2
T + ϑ2

T

])
for all T > 0.

By the transversality condition (3.19), there exists a sequence (Tn) such that

Tn ↑ ∞ as n→ ∞ and

lim inf
n→∞

e−rTn E
[
ϑ̂2
Tn + ϑ2

Tn

]
= lim

n→∞
e−rTn E

[
ϑ̂2
Tn + ϑ2

Tn

]
= 0.
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Moreover, for each n,∣∣∣E[e−rTnv(ϑ̂Tn , XTn)
(
ϑTn − ϑ̂Tn

)]∣∣∣ ≤λe−rTn(1 + 2E
[
ϑ̂2
Tn + ϑ2

Tn

])
→ 0 as n→ ∞,

which implies that

lim inf
T↑∞

E
[
e−rTv(ϑ̂T , XT )

(
ϑT − ϑ̂T

)]
= 0.

Next, for any ϑ ∈ A(θ), by monotone convergence we may let n → ∞ and

then T ↑ ∞ to obtain

lim
n→∞,T↑∞

E
[∫

[0,T∧τn]
e−rt d|ϑ|t

]
= E

[∫
[0,∞[

e−rt d|ϑ|t
]
.

Finally, for any ϑ ∈ A(θ),∣∣∣∣∫ T∧τn

0

e−rt
(
ϑ̂t −Θ(Xt)

)
ϑt dt

∣∣∣∣ ≤ 1

2

∫ ∞

0

e−rt
(
ϑ̂2
t +Θ2(Xt) + 2ϑ2

t

)
dt,

and, by (3.16) and (3.17),

E
[∫ ∞

0

e−rt
(
ϑ̂2
t +Θ2(Xt) + 2ϑ2

t

)
dt

]
<∞.

Therefore, by dominated convergence, we may let n→ ∞ and then T ↑ ∞ to

obtain

lim
n→∞,T↑∞

E
[∫ T∧τn

0

e−rt
(
ϑ̂t −Θ(Xt)

)
ϑt dt

]
= E

[∫ ∞

0

e−rt
(
ϑ̂t −Θ(Xt)

)
ϑt dt

]
.

Therefore, by passing to the limit as n → ∞ and then to the limit inferior as

T ↑ ∞ in (3.27), we obtain (3.21).

Finally, we use (3.26) and perform similar calculations as above to obtain

v(θ, x)θ = Jθ,x(ϑ̂, ϑ̂), which is clearly real-valued by the fact that v is a solution

to Problem 3.8. □
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3.3 Solving the free-boundary Problem 3.8 when

ΘΘΘ is strictly increasing

We first derive explicit solutions to the free-boundary Problem 3.8 in the

special cases that arise if the problem data is such that the function Θ pro-

viding the agent’s frictionless optimiser is strictly increasing. Economically,

this means that as the value of the process X increases, the optimal number

of shares held by Agent 1 (Agent 2) in the frictionless setting increases (de-

creases). This situation can arise for example when the gradients of h1 and

h2 are both positive and h2 is steeper than h1 at all values of x - economi-

cally, Agent 2’s endowment rate is more sensitive to changes to the state of

the economy, in all states of the economy. Moreover, we also consider the

case where Θ has horizontal asymptotes (economically, there is a maximal or

minimal number of shares in the frictionless optimal trading strategy).

3.3.1 The structure of the solution

We first postulate the structure of the solution. To this end, we define

θ = lim
x↓−∞

Θ(x) and θ = sup
x∈R

Θ(x) = lim
x↑∞

Θ(x), (3.28)

We postulate that the continuation region C is characterised by points θ˜ ≤ θ̃

in
[
θ, θ
]
, θ̂ ≤ θ and θ̌ ≥ θ such that

θ̂

< θ, if θ > −∞,

= −∞, if θ = −∞,
θ˜
> θ, if θ > −∞,

= −∞, if θ = −∞,

θ̃

< θ, if θ <∞,

= ∞, if θ = ∞,
and θ̌

> θ, if θ <∞,

= ∞, if θ = ∞,

as well as by strictly increasing continuous functions F :
]
θ˜, θ̌[ → R and

G :
]
θ̂, θ̃
[
→ R such that

F(θ) < Θ−1(θ) < G(θ) for all θ ∈
]
θ˜, θ̃[, lim

θ↓θ˜ F(θ) = −∞ and lim
θ↑θ̃

G(θ) = ∞.
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In particular, we will show that C = Cℓ ∪ Cm ∪ Ch, where

Cℓ =
{
(θ, x) ∈ R2 | θ̂ < θ ≤ θ˜ and x < G(θ)

}
,

Cm =
{
(θ, x) ∈ R2 | θ˜ < θ < θ̃ and F(θ) < x < G(θ)

}
and Ch =

{
(θ, x) ∈ R2 | θ̃ ≤ θ < θ̌ and F(θ) < x

}
,

while the selling and buying regions are respectively given by

S =
{
(θ, x) ∈ R2 | θ̌ ≤ θ

}
∪
{
(θ, x) ∈ R2 | θ˜ < θ < θ̌ and x ≤ F(θ)

}
and B =

{
(θ, x) ∈ R2 | θ ≤ θ̂

}
∪
{
(θ, x) ∈ R2 | θ̂ < θ < θ̃ and G(θ) ≤ x

}
.

Figure 1: Regions for Θ strictly increasing

Figure 1 provides an illustration of the three regions arising in the context of

this case. After an initial jump such that (ϑ0, x) ∈ cl C, the frictional optimiser

ϑ reflects in the negative θ-direction whenever Xt = F(ϑt) for some t ≥ 0, and

reflects in the positive θ-direction whenever Xt = G(ϑt) for some t ≥ 0, so that

the joint process (ϑ,X) remains in cl C at all times. We will show that when

θ <∞ and θ > −∞ (when Θ is bounded), there will be one-sided boundaries

(and hence one-sided optimal strategies) in Cℓ ∪ Ch and two-sided boundaries

(with two-sided optimal strategies) in Cm. Moreover, once the joint process

(ϑ,X) reaches Cm, it will remain there indefinitely. We will also show that
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when θ = ∞ and θ = −∞, there will only be the region Cm, in other words,

only two-sided boundaries. If θ = ∞ and θ > −∞ (θ <∞ and θ = −∞), then

we will have the continuation region Cℓ∪Cm (Ch∪Cm). Moreover, when θ <∞
and θ > −∞ and the transaction cost parameter λ is large enough, we will only

have one-sided boundaries with continuation region as Cℓ∪Ch. In Gonon et. al

[51], where Θ is linear and X is a standard one-dimensional Brownian motion,

there is only the region Cm with linear F and G. In our more general setting,

we consider non-linear Θ and a one-dimensional diffusion X. In particular, we

will observe that even when Θ is linear, F and G are non-linear when X is a

one-dimensional diffusion.

To proceed further, we note that the general solution to the ODE (3.23)

that v satisfies inside the continuation region C is given by

v(θ, x) = A(θ)φ(x) +B(θ)ψ(x)− r

ζ
RΘ(x) +

θ

ζ
, (3.29)

for some functions A and B, where φ, ψ are as in Appendix A, RΘ is defined

by (A.10) for h = Θ and

ζ =
2r

σ2(γ1 + γ2)
. (3.30)

In view of the structures of the continuation region C that we have postulated

above (see Figure 1), we are faced with the following three “building blocks”

associated with the functions that determine the boundary of C.

Case I. Suppose that there exist points θ˜ < θ̃ in [−∞,∞] and strictly

increasing functions F,G :
]
θ˜, θ̃[→ R such that

F(θ) < G(θ) for all θ ∈
]
θ˜, θ̃[,{

(θ, x) | θ ∈
]
θ˜, θ̃[ and x ≤ F(θ)

}
⊆ S,{

(θ, x) | θ ∈
]
θ˜, θ̃[ and F(θ) < x < G(θ)

}
⊆ C

and
{
(θ, x) | θ ∈

]
θ˜, θ̃[ and G(θ) ≤ x

}
⊆ B.

In this context, the requirement that v(·, x) should be C1 for all x ∈ R suggests
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the free-boundary conditions

v
(
θ,F(θ)

)
= λ, v

(
θ,G(θ)

)
= −λ,

vθ
(
θ,F(θ)

)
= 0 and vθ

(
θ,G(θ)

)
= 0,

which, combined with (3.29), give rise to the system of equations

A(θ)φ
(
F(θ)

)
+B(θ)ψ

(
F(θ)

)
− r

ζ
RΘ

(
F(θ)

)
+
θ

ζ
= λ,

A(θ)φ
(
G(θ)

)
+B(θ)ψ

(
G(θ)

)
− r

ζ
RΘ

(
G(θ)

)
+
θ

ζ
= −λ,

A′(θ)φ
(
F(θ)

)
+B′(θ)ψ

(
F(θ)

)
+

1

ζ
= 0

and A′(θ)φ
(
G(θ)

)
+B′(θ)ψ

(
G(θ)

)
+

1

ζ
= 0.

Differentiating the first two of these equations with respect to θ and using the

last two of these equations to eliminate A′(θ) and B′(θ), we obtain

A(θ)φ′(F(θ))+B(θ)ψ′(F(θ)) = r

ζ
R′

Θ

(
F(θ)

)
and A(θ)φ′(G(θ)

)
+B(θ)ψ′(G(θ)

)
=
r

ζ
R′

Θ

(
G(θ)

)
because we have made the ansatz that F and G are strictly increasing. In view

of (A.10) in Appendix A, it follows that

A(θ) = rλ

∫ F(θ)

−∞
Ψ(y) dy − r

ζ

∫ F(θ)

−∞
Ψ(y)

(
θ −Θ(y)

)
dy

= −rλ
∫ G(θ)

−∞
Ψ(y) dy − r

ζ

∫ G(θ)

−∞
Ψ(y)

(
θ −Θ(y)

)
dy

and B(θ) = rλ

∫ ∞

F(θ)

Φ(y) dy − r

ζ

∫ ∞

F(θ)

Φ(y)
(
θ −Θ(y)

)
dy

= −rλ
∫ ∞

G(θ)

Φ(y) dy − r

ζ

∫ ∞

G(θ)

Φ(y)
(
θ −Θ(y)

)
dy,

where

Φ(x) =
2φ(x)

Cβ2(x)p′(x)
and Ψ(x) =

2ψ(x)

Cβ2(x)p′(x)
.
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These expressions imply the system of equations

H1

(
θ,F(θ),G(θ), λ

)
= 0 and H2

(
θ,F(θ),G(θ), λ

)
= 0, (3.31)

for the free-boundary points F(θ) and G(θ), where

H1(θ, F,G, λ) =

∫ G

F

Ψ(y)
(
θ −Θ(y)

)
dy

+ ζλ

(∫ F

−∞
Ψ(y) dy +

∫ G

−∞
Ψ(y) dy

)
(3.32)

and H2(θ, F,G, λ) =

∫ G

F

Φ(y)
(
θ −Θ(y)

)
dy

− ζλ

(∫ ∞

F

Φ(y) dy +

∫ ∞

G

Φ(y) dy

)
, (3.33)

as well as the expressions

A(θ) = −r
ζ

∫ F(θ)

−∞
Ψ(y)

(
θ −Θ(y)− ζλ

)
dy (3.34)

and B(θ) = −r
ζ

∫ ∞

F(θ)

Φ(y)
(
θ −Θ(y)− ζλ

)
dy. (3.35)

Case II. Suppose that there exist points θ̂ < θ˜ in [−∞,∞[ and a strictly

increasing function G :
]
θ̂, θ˜[→ R such that

{
(θ, x) | θ ∈

]
θ̂, θ˜[ and x < G(θ)

}
⊆ C

and
{
(θ, x) | θ ∈

]
θ̂, θ˜[ and G(θ) ≤ x

}
⊆ B.

In this context, we must have A(θ) = 0 in (3.29) because, otherwise, (3.22)

cannot be satisfied. Furthermore, the requirement that v(·, x) should be C1

for all x ∈ R suggests the free-boundary conditions

v
(
θ,G(θ)

)
= −λ and vθ

(
θ,G(θ)

)
= 0,
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which give rise to the system of equations

B(θ)ψ
(
G(θ)

)
− r

ζ
RΘ

(
G(θ)

)
+
θ

ζ
= −λ and B′(θ)ψ

(
G(θ)

)
+

1

ζ
= 0.

Making calculations that are similar to the ones of the previous cases, we

conclude this case with the algebraic equation

H
(
θ,G(θ), λ

)
= 0 (3.36)

for the free-boundary point G(θ), where

H
(
θ,G, λ

)
=

∫ G

−∞
Ψ(y)

(
θ −Θ(y) + ζλ

)
dy, (3.37)

as well as the expressions

A(θ) = 0 and B(θ) = −r
ζ

∫ ∞

G(θ)

Φ(y)
(
θ −Θ(y) + ζλ

)
dy. (3.38)

Case III. Suppose that there exist points θ̃ < θ̌ in ]−∞,∞] and a strictly

increasing function F :
]
θ̃, θ̌
[
→ R such that

{
(θ, x) | θ ∈

]
θ̃, θ̌
[
and x ≤ F(θ)

}
⊆ S

and
{
(θ, x) | θ ∈

]
θ̃, θ̌
[
and F(θ) < x

}
⊆ C.

The same arguments and calculations as in the previous case give rise to the

equation

H
(
θ,F(θ), λ

)
= 0, (3.39)

where

H
(
θ, F, λ

)
=

∫ ∞

F

Φ(y)
(
θ −Θ(y)− ζλ

)
dy, (3.40)

and the expressions

A(θ) = −r
ζ

∫ F(θ)

−∞
Ψ(y)

(
θ −Θ(y)− ζλ

)
dy and B(θ) = 0. (3.41)

59



3.3. Solving the free-boundary Problem 3.8 when ΘΘΘ is strictly
increasing

3.3.2 The functions determining the boundary of the

continuation region

We now derive the solution to the free-boundary equations arising in

Cases I-III that we considered in Section 3.3.1. We first study the solvability

of the system of equations (3.31) in the context of Case I in Section 3.3.1, as

illustrated in Figure 2.

Figure 2: Case I (Θ strictly increasing)

Lemma 3.10. Suppose that the function Θ is strictly increasing and recall the

definitions of θ, θ in (3.28). Consider the system of equations (3.31), where

H1 and H2 are defined by (3.32) and (3.33). Then, there exist continuous

functions F ⋆, G⋆ : D → R, where

D =

{
(θ, λ) ∈ R× R+ | θ + ζλ < θ < θ − ζλ and 0 < λ <

1

2ζ

(
θ − θ

)}
,

such that

F ⋆(θ, λ) < Θ−1(θ − ζλ) < Θ−1(θ + ζλ) < G⋆(θ, λ) (3.42)

and H1

(
θ, F ⋆(θ, λ), G⋆(θ, λ), λ

)
= H2

(
θ, F ⋆(θ, λ), G⋆(θ, λ), λ

)
= 0. (3.43)

Furthermore, given any λ ∈
]
0, θ−θ

2ζ

[
,

F ⋆
θ (θ, λ) > 0, G⋆

θ(θ, λ) > 0, lim
θ↓θ+ζλ

F ⋆(θ, λ) = −∞, and lim
θ↑θ−ζλ

G⋆(θ, λ) = ∞.

(3.44)
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Moreover, if θ = −∞, then

lim
θ↓−∞

G⋆(θ, λ) = −∞, (3.45)

and if θ = ∞, then

lim
θ↑∞

F ⋆(θ, λ) = ∞, (3.46)

Given any θ ∈ ]θ, θ
[
,

F ⋆
λ (θ, λ) < 0, G⋆

λ(θ, λ) > 0 and lim
λ↓0

F ⋆(θ, λ) = lim
λ↓0

G⋆(θ, λ) = Θ−1(θ).

(3.47)

Proof. We organise the proof in five steps.

Step 1: Solvability of the equation H1(θ, F,G, λ) = 0H1(θ, F,G, λ) = 0H1(θ, F,G, λ) = 0 for G > Θ−1(θ)G > Θ−1(θ)G > Θ−1(θ).

Fix any θ ∈
]
θ, θ
[
, 0 < λ < 1

2ζ

(
θ − θ

)
and F ∈

[
−∞,Θ−1(θ)

]
. Recalling that

Ψ > 0, we calculate

H1(θ, F, F, λ) = 2ζλ

∫ F

−∞
Ψ(y) dy

> 0, if F > −∞,

= 0, if F = −∞,

and
∂H1

∂G
(θ, F,G, λ) = Ψ(G)

(
θ −Θ(G) + ζλ

)> 0, if Θ(G) < θ + ζλ,

< 0, if θ + ζλ < Θ(G).

These calculations imply that the equation H1(θ, F,G, λ) = 0 for G > F

has a unique solution if and only if

lim
G↑∞

H1(θ, F,G, λ) < 0, (3.48)

in which case, G ∈
]
Θ−1(θ + ζλ),∞

[
.

We are now faced with the following two cases.

Case 1: θ = ∞. Lemma A.1 implies that

lim
G↑∞

H1(θ, F,G, λ) = −∞ for all λ > 0.

It follows that (3.48) is satisfied for all F ≤ Θ−1(θ) and λ > 0. Furthermore,
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the equation H1(θ, F,G, λ) = 0 defines uniquely a continuous function g :

D1 → R such that

F ≤ Θ−1(θ) < Θ−1(θ + ζλ) < g(θ, F, λ) and H1

(
θ, F, g(θ, F, λ), λ

)
= 0

(3.49)

for all (θ, F, λ) ∈ D1, where

D1 =
{
(θ, F, λ) ∈ R3 | θ ∈

]
θ,∞

[
, F ∈

[
−∞,Θ−1(θ)

]
and λ > 0

}
. (3.50)

For later reference, we stress that

g(θ,−∞, λ) <∞ for all θ ∈
]
θ,∞

[
and λ > 0. (3.51)

Case 2: θ <∞. In this case, for θ < θ − ζλ, Lemma A.1 implies that

lim
G↑∞

H1(θ, F,G, λ) = −∞ for all 0 < λ <
θ − θ

ζ
.

It follows that the equation H1(θ, F,G, λ) = 0 defines uniquely a continuous

function g : D2 → R such that

F ≤ Θ−1(θ) < Θ−1(θ + ζλ) < g(θ, F, λ) and H1

(
θ, F, g(θ, F, λ), λ

)
= 0

(3.52)

for all (θ, F, λ) ∈ D2, where

D2 =

{
(θ, F, λ) ∈ R3 | θ ∈

]
θ, θ − ζλ

[
, F ∈

[
−∞,Θ−1(θ)

]
and 0 < λ <

θ − θ

ζ

}
. (3.53)

For later reference, we stress that

g(θ,−∞, λ) <∞ for all θ ∈
]
θ, θ − ζλ

[
and 0 < λ <

θ − θ

ζ
. (3.54)
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Step 2: Common calculations for Cases 1 and 2.

Differentiation of the identity in (3.49) or (3.52) implies that

gθ(θ, F, λ) = −
∫ g(θ,F,λ)

F
Ψ(y) dy

Ψ
(
g(θ, F, λ)

)(
θ −Θ

(
g(θ, F, λ)

)
+ ζλ

) , (3.55)

gF (θ, F, λ) =
Ψ(F )

(
θ −Θ(F )− ζλ

)
Ψ
(
g(θ, F, λ)

)(
θ −Θ

(
g(θ, F, λ)

)
+ ζλ

) (3.56)

and gλ(θ, F, λ) = −ζ
∫ F
−∞ Ψ(y) dy +

∫ g(θ,F,λ)

−∞ Ψ(y) dy

Ψ
(
g(θ, F, λ)

)(
θ −Θ

(
g(θ, F, λ)

)
+ ζλ

) . (3.57)

Furthermore, (3.56), the definition (3.33) of H2 and the definitions of Φ, Ψ in

(A.8) imply that

∂H2

∂F

(
θ, F, g(θ, F, λ), λ

)
= Φ

(
g(θ, F, λ)

)(
θ −Θ

(
g(θ, F, λ)

)
+ ζλ

)
gF (θ, F, λ)

− Φ(F )
(
θ −Θ(F )− ζλ

)
= Ψ(F )

(
φ
(
g(θ, F, λ)

)
ψ
(
g(θ, F, λ)

) − φ(F )

ψ(F )

)(
θ −Θ(F )− ζλ

)
.

(3.58)

Step 3: Existence and uniqueness of F ⋆F ⋆F ⋆ and G⋆G⋆G⋆ satisfying (3.42) and

(3.43) in either Case 1 or Case 2 of Step 1.

Recalling the definition (3.50) of g’s domain D1 in Case 1 of Step 1 and the

definition (3.53) of g’s domain D2 in Case 2 of Step 1, we fix any θ ∈
]
θ, θ−ζλ

[
(in Case 1 of Step 1, this is equivalent to fixing θ ∈ ]θ,∞[) and consider the

equation H2

(
θ, F, g(θ, F, λ), λ

)
= 0 for F ≤ Θ−1(θ). We first note that, since

θ −Θ(y) < 0 for all y > Θ−1(θ),

H2

(
θ,Θ−1(θ), g

(
θ,Θ−1(θ), λ

)
, λ
)

=

∫ g(θ,Θ−1(θ),λ)

Θ−1(θ)

Φ(y)
(
θ −Θ(y)

)
dy

− ζλ

(∫ ∞

Θ−1(θ)

Φ(y) dy +

∫ ∞

g(θ,Θ−1(θ),λ)

Φ(y) dy

)
< 0.

Furthermore, we use (3.58), the inequalities in (3.49) and the fact that φ/ψ is
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strictly decreasing to see that

∂H2

∂F

(
θ, F, g(θ, F, λ), λ

)< 0, if F < Θ−1(θ − ζλ),

> 0, otherwise.
(3.59)

These calculations imply that the equation H2(θ, F, g(θ, F, λ), λ) = 0 for F has

a unique solution if and only if

lim
F↓−∞

H2

(
θ, F, g(θ, F, λ), λ

)
> 0, (3.60)

in which case, F ∈
]
−∞,Θ−1(θ − ζλ)

[
.

We are now faced with the following two cases.

Case 1: θ = −∞. Lemma A.1 and (3.51) imply that

lim
F↓∞

H2(θ, F, g(θ, F, λ), λ) = ∞ for all λ > 0.

It follows that (3.60) is satisfied for all θ ∈ ]−∞, θ − ζλ[ and λ > 0.

Case 2: θ > −∞. Lemma A.1 and (3.54) imply that, for all θ > θ + ζλ,

lim
F↓−∞

H2

(
θ, F, g(θ, F, λ), λ

)
= lim

F↓−∞

∫ g(θ,−∞,λ)

F

Φ(y)
(
θ −Θ(y)− ζλ

)
dy − 2ζλ

∫ ∞

g(θ,−∞,λ)

Φ(y) dy = ∞.

(3.61)

It follows that there exists a unique F ⋆(θ, λ) ∈
]
−∞,Θ−1(θ)

[
such that

H2

(
θ, F ⋆(θ, λ), g

(
θ, F ⋆(θ, λ), λ

)
, λ
)
= 0 (3.62)

for all

θ ∈
]
θ + ζλ, θ − ζλ

[
.

If we define G⋆(θ, λ) = g
(
θ, F ⋆(θ, λ), λ

)
, then (3.49), (3.52) and (3.62) imply

that the functions F ⋆ and G⋆ satisfy (3.42) and (3.43). Finally, we note that

θ + ζλ < θ − ζλ if and only if λ < 1
2ζ

(
θ − θ

)
.
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Step 4: Proof of the monotonicity of the functions F ⋆F ⋆F ⋆ and G⋆G⋆G⋆.

Differentiating the identity in (3.62) with respect to θ and λ, and using (3.55),

(3.56) and (3.57), we obtain

F ⋆
θ (θ, λ) =

∫ G⋆(θ,λ)

F ⋆(θ,λ)
Φ(y) dy − φ(G⋆(θ,λ))

ψ(G⋆(θ,λ))

∫ G⋆(θ,λ)

F ⋆(θ,λ)
Ψ(y) dy

Ψ
(
F ⋆(θ, λ)

)(
φ(F ⋆(θ,λ))
ψ(F ⋆(θ,λ))

− φ(G⋆(θ,λ))
ψ(G⋆(θ,λ))

)(
θ −Θ

(
F ⋆(θ, λ)

)
− ζλ

) > 0,

G⋆
θ(θ, λ) = gF

(
θ, F ⋆(θ, λ), λ

)
F ⋆
θ (θ, λ) + gθ

(
θ, F ⋆(θ, λ), λ

)
=

∫ G⋆(θ,λ)

F ⋆(θ,λ)
Φ(y) dy − φ(F ⋆(θ,λ))

ψ(F ⋆(θ,λ))

∫ G⋆(θ,λ)

F ⋆(θ,λ)
Ψ(y) dy

Ψ
(
G⋆(θ, λ)

)(φ(F ⋆(θ,λ))
ψ(F ⋆(θ,λ))

− φ(G⋆(θ,λ))
ψ(G⋆(θ,λ))

)(
θ −Θ

(
G⋆(θ, λ)

)
+ ζλ

) > 0,

as well as (writing F ⋆ and G⋆ in place of F ⋆(θ, λ) and G⋆(θ, λ) respectively for

notational simplicity)

F ⋆
λ (θ, λ) = ζ

∫∞
F ⋆ Φ(y) dy +

∫∞
G⋆ Φ(y) dy +

φ(G⋆)
ψ(G⋆)

(∫ F ⋆

−∞ Ψ(y) dy +
∫ G⋆

−∞Ψ(y) dy
)

Ψ
(
F ⋆
)(φ(G⋆)

ψ(G⋆)
− φ(F ⋆)

ψ(F ⋆)

)(
θ −Θ

(
F ⋆
)
− ζλ

)
< 0

and

G⋆
λ(θ, λ) = gF

(
θ, F ⋆(θ, λ), λ

)
F ⋆
λ (θ, λ) + gλ

(
θ, F ⋆(θ, λ), λ

)
= ζ

∫∞
F ⋆ Φ(y) dy +

∫∞
G⋆ Φ(y) dy +

φ(F ⋆)
ψ(F ⋆)

(∫ F ⋆

−∞ Ψ(y) dy +
∫ G⋆

−∞Ψ(y) dy
)

Ψ
(
G⋆
)(φ(G⋆)

ψ(G⋆)
− φ(F ⋆)

ψ(F ⋆)

)(
θ −Θ

(
G⋆
)
+ ζλ

)
> 0,

where the inequalities follow from the facts that φ/ψ is strictly decreasing,

F ⋆(θ, λ) < Θ−1(θ − ζλ) and G⋆(θ, λ) > Θ−1(θ − ζλ). We have proven the

inequalities in (3.44) and (3.47).

Step 5: Proof of the limits in (3.44), (3.45), (3.46) and (3.47).

To establish the limits in (3.44), we argue by contradiction. By the inequalities

in (3.44), F ⋆ and G⋆ are strictly increasing in θ, and therefore their limits when

θ goes to θ − ζλ exist. Assume for a contradiction that G⋆(θ, λ) ↑ G < ∞ as

θ ↑ θ − ζλ. Since F ⋆(θ, λ) < G⋆(θ, λ) for all θ, F ⋆(θ, λ) ↑ F < ∞ as well. We
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first suppose that θ = ∞. Then, by (3.43) and the limit in (3.44),

ζλ = lim
θ↑∞

∫ G⋆(θ,λ)

F ⋆(θ,λ)
Ψ(y)

(
θ −Θ(y)

)
dy∫ F ⋆(θ,λ)

−∞ Ψ(y) dy +
∫ G⋆(θ,λ)

−∞ Ψ(y) dy
= ∞,

which is a contradiction. If instead θ <∞, we obtain

lim
θ↑θ−ζλ

H1(θ, F
⋆(θ, λ), G⋆(θ, λ), λ)

=

∫ G

F

Ψ(y)
(
θ −Θ(y)

)
dy + 2ζλ

∫ F

−∞
Ψ(y) dy > 0,

which contradicts (3.43). The other limit in (3.44) is proved similarly. To

establish (3.45), we argue by contradiction. Recalling that G⋆ is strictly in-

creasing in θ, we suppose that θ = −∞ and G⋆(θ, λ) ↓ G > −∞ as θ ↓ −∞.

Then, by (3.43) and the limit in (3.44),

ζλ = lim
θ↓−∞

∫ G⋆(θ,λ)

F ⋆(θ,λ)
Ψ(y)

(
θ −Θ(y)

)
dy∫ F ⋆(θ,λ)

−∞ Ψ(y) dy +
∫ G⋆(θ,λ)

−∞ Ψ(y) dy
= −∞,

which is a contradiction. Therefore, when θ = −∞, G⋆(θ, λ) ↓ −∞ as θ ↓ −∞,

and similar arguments establish (3.46) when θ = ∞.

To establish the limits in (3.47), we first show that the system of equations

H1(θ, F,G, 0) ≡
∫ G

F

Ψ(y)
(
θ −Θ(y)

)
dy

= H2(θ, F,G, 0) ≡
∫ G

F

Φ(y)
(
θ −Θ(y)

)
dy = 0 (3.63)

can be satisfied only if F = G. To prove this claim, we argue by contradiction

and we assume that there exist F < G that satisfy (3.63). Using the fact that

ψ/φ is strictly increasing, we can see that

0 =

∫ G

F

Ψ(y)
(
θ −Θ(y)

)
dy <

ψ
(
Θ−1(θ)

)
φ
(
Θ−1(θ)

) ∫ G

F

Φ(y)
(
θ −Θ(y)

)
dy = 0,

which is a contradiction. Combining the fact that the system of equations
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(3.63) is satisfied by any choice F = G, and only such a choice, with (3.42)

and the continuity of the functions F ⋆, G⋆, we obtain the limits in (3.47). □

We next study the solvability of equations (3.36) and (3.39) that arise in

the context of Cases II and III of Section 3.3.1. To this end, we first make the

following observation: if θ > −∞ and θ <∞, we observe that

lim
λ↑ 1

2ζ

(
θ−θ
) θ + ζλ = lim

λ↑ 1
2ζ

(
θ−θ
) θ − ζλ =

1

2

(
θ + θ

)
.

This implies that when θ > −∞, θ < ∞ and λ ≥ 1
2ζ

(
θ − θ

)
, there are no

solutions to the system of equations (3.31) in the context of Case I, and we

only have solutions to equations (3.36) and (3.39) that arise in the context of

Cases II and III. On the other hand, if θ = −∞ and θ = ∞, there are no

solutions to equations (3.36) and (3.39) that arise in the context of Cases II

and III, and there are only solutions to the system of equations (3.31) in the

context of Case I. This is illustrated in Figures 3 and 4.

Figure 3: 0 < λ < θ−θ
2ζ

Figure 4: λ ≥ θ−θ
2ζ

In the next result, we study the solvability of equations (3.36) and (3.39).

Lemma 3.11. The following statements hold true:

(a) Suppose that −∞ < θ and let

θ˜ =
 θ + ζλ, if λ < 1

2ζ
(θ − θ),

1
2
(θ + θ), if λ ≥ 1

2ζ
(θ − θ),
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Given any θ ∈
]
θ − ζλ, θ˜[, there exists a unique point G†(θ, λ) ∈

]
Θ−1(θ),∞

[
such that H

(
θ,G†(θ, λ), λ

)
= 0, where H is defined by (3.37). Furthermore, if

λ < 1
2ζ
(θ−θ), then G†(θ˜, λ) = G⋆

(
θ˜, λ), where G⋆ is as defined in Lemma 3.10.

G†
θ(θ, λ) > 0, G†

λ(θ, λ) > 0 and lim
θ↓θ−ζλ

G†(θ, λ) = −∞. (3.64)

(b) Suppose that θ <∞ and let

θ̃ =

 θ − ζλ, if λ < 1
2ζ
(θ − θ),

1
2
(θ + θ), if λ ≥ 1

2ζ
(θ − θ),

Given any θ ∈
]
θ̃, θ+ζλ

[
, there exists a unique point F †(θ, λ) ∈

]
−∞,Θ−1(θ)

[
such that H

(
θ, F †(θ, λ), λ

)
= 0, where H is defined by (3.40). Furthermore, if

λ < 1
2ζ
(θ−θ), then F †(θ̃, λ) = F ⋆

(
θ̃, λ
)
, where F ⋆ is as defined in Lemma 3.10.

F †
θ (θ, λ) > 0, F †

λ(θ, λ) < 0 and lim
θ↑θ+ζλ

F †(θ, λ) = ∞. (3.65)

Proof. In the context of (a), we can combine the observations that

H(θ,Θ−1(θ + ζλ), λ) =

∫ Θ−1(θ+ζλ)

−∞
Ψ(y)

(
θ −Θ(y) + ζλ

)
dy > 0

and HG(θ,G, λ) = Ψ(G)(θ −Θ(G) + ζλ) < 0 for all G > Θ−1(θ + ζλ)

with the limit

lim
G↑∞

H(θ,G, λ) = −∞ for all λ > 0 and θ ∈
]
θ − ζλ, θ˜[,

which follows from Lemma A.1, to see that there exists a unique point

G†(θ, λ) ∈
]
Θ−1(θ + ζλ),∞

[
such that H(θ,G†(θ, λ), λ) = 0. The equality

G†(θ˜, λ) = G⋆
(
θ˜, λ) when λ < 1

2ζ
(θ − θ) follows from the continuity of the

functions F ⋆ and H1 as well as the limits

lim
θ↓θ+ζλ

F ⋆(θ, λ) = −∞ and lim
F↓−∞

H1(θ, F,G, λ) = H(θ,G, λ).

Differentiating the equation H(θ,G†(θ, λ), λ) = 0 with respect to θ and λ, we
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obtain the inequalities in (3.64):

G†
θ(θ, λ) = −

∫ G†(θ,λ)

−∞ Ψ(y) dy

Ψ
(
G†(θ, λ)

)(
θ −Θ(G†(θ, λ)) + ζλ

) > 0

and G†
λ(θ, λ) = −

ζ
∫ G†(θ,λ)

−∞ Ψ(y) dy

Ψ
(
G†(θ, λ)

)(
θ −Θ(G†(θ, λ)) + ζλ

) > 0,

where the inequalities follows from the fact that G†(θ, λ) > Θ−1(θ + ζλ).

Moreover, taking the limit θ ↓ θ − ζλ, we obtain

lim
θ↓θ−ζλ

H(θ,G†(θ, λ), λ) = lim
θ↓θ−ζλ

∫ G†(θ,λ)

−∞
Ψ(y)

(
θ −Θ(y)

)
dy = 0,

which implies that limθ↓θ−ζλG
†(θ, λ) = −∞ by continuity of H. Finally, the

proof of (b) follows symmetric arguments.

□

We conclude the section with growth estimates of the free-boundary func-

tions in Lemma 3.10.

Lemma 3.12. Fix λ > 0 and recall the free-boundary functions F ⋆ and G⋆ in

Lemma 3.10, as well as the constant p ≥ 1 in Assumption 3.2.

(a) Suppose that θ = ∞. Then, there exists a constant CF > 0 such that

F ⋆(θ, λ) > CF θ
1
p for all θ ≫ 0. (3.66)

(b) Suppose that θ = −∞. Then, there exists a constant CG > 0 such that

G⋆(θ, λ) < −CG(−θ)
1
p for all θ ≪ 0. (3.67)

Proof. In the context of (a), by the same arguments in the proof of Lemma

3.11, there exists a unique function F ♯ such that H(θ, F ♯(θ, λ), λ) = 0 for all

θ ∈ R and F ♯(θ, λ) < Θ−1(θ − ζλ), where H is defined by (3.40). By Lemma

3.10, F ⋆(θ, λ) < Θ−1(θ − ζλ) and

H(θ, F ⋆(θ, λ), λ) =

∫ ∞

G⋆(θ,λ)

Φ(y)
(
θ −Θ(y) + ζλ

)
dy < 0,
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where the inequality follows from (3.42). This inequality combined with the

fact that HF < 0 for all F < Θ−1(θ − ζλ) imply that F ⋆(θ, λ) > F ♯(θ, λ). We

therefore prove (3.66) by proving that F ♯(θ, λ) > CF θ
1
p for θ ≫ 0.

By (3.5), there exists a constant Č > 0 such that Θ(x) ≤ Č(1+xp) for x≫ 0.

We first note that, by (3.6) and (3.7),

E
[∫ ∞

0

e−rt|Xt|p dt
]
<∞.

Therefore, by (A.10),

xp
∫ ∞

x

Φ(y) dy ≤
∫ ∞

x

Φ(y)yp dy <∞ for all x > 0,

which implies that

lim
x↑∞

xp
∫ ∞

x

Φ(y)dy = 0.

By L’Hôpital’s theorem, we calculate

lim sup
x↑∞

∫∞
x

Φ(y)Θ(y) dy

xp
∫∞
x

Φ(y) dy
≤ lim sup

x↑∞

(
Č

xp
+
Č
∫∞
x

Φ(y)yp dy

xp
∫∞
x

Φ(y) dy

)

= Č lim sup
x↑∞

Φ(x)xp

Φ(x)xp + pxp−1
∫∞
x

Φ(y) dy
≤ Č,

where the final inequality follows from the strict positivity of Φ. This implies

that

2Č
(
F ♯(θ, λ)

)p ∫ ∞

F ♯(θ,λ)

Φ(y) dy >

∫ ∞

F ♯(θ,λ)

Φ(y)Θ(y) dy

= (θ − ζλ)

∫ ∞

F ♯(θ,λ)

Φ(y) dy,

where the equality follows from the fact that H(θ, F ♯(θ, λ), λ) = 0. Therefore,

for θ ≫ 0 sufficiently large, there exists a constant C̃ > 0 such that

F ♯(θ, λ) >

(
θ − ζλ

2Č

) 1
p

>

(
C̃θ

2Č

) 1
p

,
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and we obtain (3.66) with CF =
(
C̃
2Č

) 1
p . The proof of (b) follows symmetric

arguments. □

3.3.3 The solution to the free-boundary problem

We now outline the solution to the free-boundary problem, having solved

for the free-boundary functions. In view of Lemmas 3.10 and 3.11, the points

θ˜ < θ̃ ∈
[
θ, θ
]
, θ̂ ≤ θ and θ̌ ≥ θ considered in Section 3.3.1 are given by

θ̂ =

−∞, if θ = −∞,

θ − ζλ, if θ > −∞,
θ̌ =

∞, if θ = ∞,

θ + ζλ, if θ <∞,

θ̃ =


∞, if θ = ∞,

θ − ζλ, if θ <∞ and λ < θ−θ
2ζ
,

θ+θ
2
, otherwise,

and θ˜ =


−∞, if θ = −∞,

θ + ζλ, if θ > −∞ and λ < θ−θ
2ζ
,

θ+θ
2
, otherwise.

Furthermore, the functions F and G separating the continuation region C from

the sell region S and the buy region B, are given by

F(θ) =

F †(θ), if θ̃ < θ̌ and θ ∈
[
θ̃, θ̌
[

F ⋆(θ), if θ˜ < θ̃ and θ ∈
]
θ˜, θ̃[,

and G(θ) =

G†(θ), if θ˜ > θ̂ and θ ∈
]
θ̂, θ˜]

G⋆(θ), if θ˜ < θ̃ and θ ∈
]
θ˜, θ̃[,

as illustrated in Figures 5 and 6.

In these expressions, as well as the rest of this section, we suppress the

dependence of F ⋆, G⋆, F † and G† on λ, which we consider fixed. In this
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Figure 5: 0 < λ < θ−θ
2ζ

Figure 6: λ ≥ θ−θ
2ζ

context, we are faced with the solution v to the ODE (3.23) that is given by

v(θ, x) =


A(θ)φ(x) +B(θ)ψ(x)− r

ζ
RΘ(x) +

θ
ζ
, if (θ, x) ∈ cl C,

v
(
θ,F(θ)

)
= λ, if (θ, x) ∈ intS,

v
(
θ,G(θ)

)
= −λ, if (θ, x) ∈ intB,

(3.68)

where

A(θ) = 0, if θ̂ < θ˜ and θ ∈
]
θ̂, θ˜],

A(θ) = −r
ζ

∫ F(θ)

−∞
Ψ(y)

(
θ −Θ(y)− ζλ

)
dy, if θ˜ < θ̃ and θ ∈

]
θ˜, θ̌[,
(3.69)

B(θ) = 0, if θ̃ < θ̌ and θ ∈
[
θ̃, θ̌
[
,

and B(θ) = −r
ζ

∫ ∞

F(θ)

Φ(y)
(
θ −Θ(y)− ζλ

)
dy, if θ˜ < θ̃ and θ ∈

]
θ̂, θ̃
[
.

(3.70)

Lemma 3.13. The function v given by (3.68) is well-defined in the sense that

the integrals in (3.69) and (3.70) are well-defined and real-valued. Further-

more, v is a C1,2 solution to the ODE (3.23) that satisfies |v(θ, x)| < λ for all

(θ, x) ∈ C.
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Proof. By the growth condition (3.5) and integrability condition (A.7),

ζ

r
|A(θ)| ≤ |θ − ζλ|ψ′(F(θ))

Cp′(F(θ))
+K

∫ F(θ)

−∞
Ψ(y)(1 + |y|p) dy <∞

and
ζ

r
|B(θ)| ≤ |θ − ζλ|φ′(F(θ))

Cp′(F(θ))
+K

∫ ∞

F(θ)

Φ(y)(1 + |y|p) dy <∞,

which proves that v is well-defined and real-valued. To prove that |v(θ, x)| < λ

in C, we first observe that we can write, for all (θ, x) ∈ Cm,

v(θ, x) =
φ(x)ψ′(F(θ))− ψ(x)φ′(F(θ))

Cp′(F(θ))
λ

+
r

ζ

(
φ(x)

∫ x

F(θ)

Ψ(y)(θ −Θ(y)) dy − ψ(x)

∫ x

F(θ)

Φ(y)(θ −Θ(y)) dy

)
=
ψ(x)φ′(G(θ))− φ(x)ψ′(G(θ))

Cp′(G(θ))
λ

− r

ζ

(
φ(x)

∫ G(θ)

x

Ψ(y)(θ −Θ(y)) dy − ψ(x)

∫ G(θ)

x

Φ(y)(θ −Θ(y)) dy

)
.

For (θ, x) ∈ Cm such that θ > Θ(x), the fact that φ is strictly decreasing, ψ is

strictly increasing and ψ/φ is strictly increasing implies that

v(θ, x) <
φ(F(θ))ψ′(F(θ))− ψ(F(θ))φ′(F(θ))

Cp′(F(θ))
λ = λ.

Similarly, for (θ, x) ∈ Cm such that θ < Θ(x),

v(θ, x) >
ψ(G(θ))φ′(G(θ))− φ(G(θ))ψ′(G(θ))

Cp′(G(θ))
λ = −λ.

Therefore, |v(θ, x)| < λ for all (θ, x) ∈ Cm by continuity of v. Assuming that
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θ > −∞ (otherwise Cℓ = ∅), we can write, for all (θ, x) ∈ Cℓ,

v(θ, x) =
ψ(x)φ′(G(θ))

Cp′(G(θ))
λ

+
r

ζ

(
φ(x)

∫ x

−∞
Ψ(y)(θ −Θ(y)) dy + ψ(x)

∫ G(θ)

x

Φ(y)(θ −Θ(y)) dy

)
=
ψ(x)φ′(G(θ))− φ(x)ψ′(G(θ))

Cp′(G(θ))
λ

− r

ζ

(
φ(x)

∫ G(θ)

x

Ψ(y)(θ −Θ(y)) dy − ψ(x)

∫ G(θ)

x

Φ(y)(θ −Θ(y)) dy

)
,

where the second equality follows from (3.36). Proving that v(θ, x) > −λ
for (θ, x) ∈ Cℓ such that θ > Θ(x) is therefore analogous to the proof for

(θ, x) ∈ Cm. To prove that v(θ, x) < λ, using the fact that φ is strictly

decreasing and the fact that |θ −Θ(x)| ≤ θ˜− θ = ζλ,

v(θ, x) <
r

ζ

(
φ(x)

∫ x

−∞
Ψ(y)(θ˜− θ) dy + ψ(x)

∫ ∞

x

Φ(y)(θ˜− θ) dy

)
= λ.

The proof that |v(θ, x)| < λ for (θ, x) ∈ Ch follows symmetric arguments to

those for Cℓ. □

3.4 Solving the free-boundary Problem 3.8 when

ΘΘΘ is strictly increasing and then strictly

decreasing

We now derive explicit solutions to the free-boundary Problem 3.8 if the

problem data is such that the function Θ providing the agent’s frictionless

optimiser is strictly increasing and then strictly decreasing. Economically, this

means that as the value of the process X increases up to a certain point, the

optimal number of shares held by Agent 1 in the frictionless setting increases

until it reaches a maximum number of shares at this point, and once the value

of X increases beyond this point, the optimal number of shares decreases.

This situation can arise for example when the gradients of h1 and h2 are both

positive, with h2 being steeper than h1 up to a certain point, and h1 being
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steeper than h2 after this point. In this case, there are two regimes in the

economy, one where Agent 2’s endowment rate is more sensitive to changes

to the state of the economy, and another where Agent 1’s endowment rate is

more sensitive to changes to the state of the economy.

3.4.1 The structure of the solution

We first postulate the structure of the solution. To this end, we first make

the following assumption.

Assumption 3.14. There exists a point x† ∈ ]−∞,∞[ such that

Θ′(x)

> 0, if x < x†,

< 0, if x > x†.

This implies that

θ ≡ sup
x∈R

Θ(x) = Θ(x†).

We also assume that

θ ≡ lim
x↓−∞

Θ(x) = lim
x↑∞

Θ(x) = −∞. (3.71)

Furthermore, given any θ ∈
]
θ, θ
[
, we define

χ(θ) = min
{
x ∈ R | Θ(x) = θ

}
and χ(θ) = inf

{
x > χ(θ) | Θ(x) = θ

}
,

(3.72)

with the usual convention that inf ∅ = ∞.

In this case, we postulate that the continuation region C is characterised

by points θ̃ ∈
]
−∞, θ

[
and θ̌ > θ as well as by strictly increasing continuous

functions Fℓ :
]
−∞, θ̌

]
→ R, Gℓ :

]
−∞, θ̃

]
→ R and strictly decreasing
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continuous functions Gr :
]
−∞, θ̃

]
→ R, Fr :

]
−∞, θ̌

]
→ R such that

Fℓ
(
θ̃
)
< χ

(
θ̃
)
< Gℓ

(
θ̃
)
= Gr

(
θ̃
)
< χ

(
θ̃
)
< Fr

(
θ̃
)
,

Fℓ(θ) < χ(θ) < Gℓ(θ) < Gr(θ) < χ(θ) < Fr(θ) for all θ ∈
]
−∞, θ̃

[
,

Fℓ(θ̌) = x† = Fr(θ̌), Fℓ(θ) < Fr(θ) for all θ ∈
]
θ̃, θ̌
[

lim
θ↓−∞

Fℓ(θ) = lim
θ↓−∞

Gℓ(θ) = −∞ and lim
θ↓−∞

Fr(θ) = lim
θ↓−∞

Gr(θ) = ∞.

In particular, we will show that C = Cℓ ∪ Ch ∪ Cr, where

Cℓ =
{
(θ, x) ∈ R2 | −∞ < θ ≤ θ̃ and Fℓ(θ) < x < Gℓ(θ)

}
,

Ch =
{
(θ, x) ∈ R2 | θ̃ < θ < θ̌ and Fℓ(θ) < x < Fr(θ)

}
,

and Cr =
{
(θ, x) ∈ R2 | −∞ < θ ≤ θ̃ and Gr(θ) < x < Fr(θ)

}
while the selling and buying regions are respectively given by

S =
{
(θ, x) ∈ R2 | θ̌ < θ

}
∪
{
(θ, x) ∈ R2 | −∞ < θ ≤ θ̌ and x ≤ Fℓ(θ) or Fr(θ) ≤ x

}
,

and B =
{
(θ, x) ∈ R2 | −∞ < θ ≤ θ̃ and Gℓ(θ) ≤ x ≤ Gr(θ)

}
.

Figure 7 provides an illustration of the three regions arising in the context of

Figure 7: Regions for Θ strictly increasing and then strictly decreasing
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this case. After an initial jump such that (ϑ0, x) ∈ cl C, the frictional optimiser

ϑ reflects in the negative θ-direction whenever Xt = Fℓ(ϑt) or Xt = Fr(ϑt) for

some t ≥ 0, and reflects in the positive θ-direction whenever Xt = Gℓ(ϑt) or

Xt = Gr(ϑt) for some t ≥ 0, so that the joint process (ϑ,X) remains in cl C
at all times. In the region Ch, we observe that there are “sell-sell” boundaries

defined by the functions Fℓ and Fr, and “buy-sell” boundaries in Cℓ ∪ Cr.
Moreover, we observe that, once the joint process (ϑ,X) reaches Cℓ∪Cr, it will
remain there indefinitely, and will never enter Ch again.

Similarly as before, the general solution to the ODE (3.23) that v satisfies

inside the continuation region C is given by

v(θ, x) = A(θ)φ(x) +B(θ)ψ(x)− r

ζ
RΘ(x) +

θ

ζ
,

for some functions A and B, where φ, ψ are as in Appendix A, RΘ is defined

by (A.10) for h = Θ and

ζ =
2r

σ2(γ1 + γ2)
.

In view of the structures of the continuation region C that we have postulated,

we are faced with the following three “building blocks” associated with the

functions that determine the boundary of C.

Case I. Suppose that there exists a point θ̃ ∈
[
−∞, θ

[
and strictly in-

creasing functions Fℓ,Gℓ :
]
−∞, θ̃

]
→ R such that

Fℓ(θ) < Gℓ(θ) for all θ ∈
]
−∞, θ̃

]
,{

(θ, x) | θ ∈
]
−∞, θ̃

]
and x ≤ Fℓ(θ)

}
⊆ S,{

(θ, x) | θ ∈
]
−∞, θ̃

]
and Gℓ(θ) ≤ x

}
⊆ B

and
{
(θ, x) | θ ∈

]
−∞, θ̃

]
and Fℓ(θ) < x < Gℓ(θ)

}
⊆ C.

Case II. This case is symmetric to the previous one: suppose that there ex-

ists a point θ̃ ∈
[
−∞, θ

[
and strictly decreasing functions Fr,Gr :

]
−∞, θ̃

]
→
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R such that

Gr(θ) < Fr(θ) for all θ ∈
]
−∞, θ̃

]
,{

(θ, x) | θ ∈
]
−∞, θ̃

]
and x ≤ Gr(θ)

}
⊆ B,{

(θ, x) | θ ∈
]
−∞, θ̃

]
and Fr(θ) ≤ x

}
⊆ S

and
{
(θ, x) | θ ∈

]
−∞, θ̃

]
and Gr(θ) < x < Fr(θ)

}
⊆ C.

In Cases I and II, making calculations that are similar to the ones made in Case

I of Section 3.3.1, we can see that the two pairs of free-boundary points Fℓ(θ)

and Gℓ(θ), as well as Gr(θ) and Fr(θ), should satisfy the system of equations

(3.31), while A(θ) and B(θ) should admit the expressions (3.34) and (3.35).

Case III. Suppose that there exists points θ̃ < θ < θ̌ in ]−∞,∞[, a

strictly increasing function Fℓ :
]
θ̃, θ̌
]
→ R and a strictly decreasing function

Fr :
]
θ̃, θ̌
]
→ R such that

Fℓ(θ) < Fr(θ) for all θ ∈
]
θ̃, θ̌
[
, Fℓ(θ̌) = x† = Fr(θ̌),{

(θ, x) | θ ∈
]
θ̃, θ̌
]
and x ≤ Fℓ(θ) or Fr(θ) ≤ x

}
⊆ S

and
{
(θ, x) | θ ∈

]
θ̃, θ̌
[
and Fℓ(θ) < x < Fr(θ)

}
⊆ C.

In this context, the requirement that v(·, x) should be C1 for all x ∈ R suggests

the free-boundary conditions

v
(
θ,Fℓ(θ)

)
= λ, v

(
θ,Fr(θ)

)
= λ,

vθ
(
θ,Fℓ(θ)

)
= 0 and vθ

(
θ,Fr(θ)

)
= 0.

Making similar calculations to the ones made in Case I of the previous subsec-

tion, we obtain the system of equations

H3

(
θ,Fℓ(θ),Fr(θ), λ

)
= 0 and H4

(
θ,Fℓ(θ),Fr(θ), λ

)
= 0 (3.73)
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for the free-boundary points Fℓ(θ) and Fr(θ), where

H3(θ, Fℓ, Fr, λ) =

∫ Fr

Fℓ

Ψ(y)(θ −Θ(y)− ζλ) dy (3.74)

and H4(θ, Fℓ, Fr, λ) =

∫ Fr

Fℓ

Φ(y)(θ −Θ(y)− ζλ) dy, (3.75)

as well as the expressions

A(θ) = −r
ζ

∫ Fℓ(θ)

−∞
Ψ(y)(θ −Θ(y)− ζλ) dy (3.76)

and B(θ) = −r
ζ

∫ ∞

Fℓ(θ)

Φ(y)(θ −Θ(y)− ζλ) dy. (3.77)

3.4.2 The functions determining the boundary of the

continuation region

We now derive the solution to the free-boundary equations arising in

Cases I-III that we considered in the Section 3.4.1. This will be done in two

major steps. In the first major step, we study the solvability of the system

of equations (3.73) in the context of Case III of Section 3.4.1 as illustrated in

Figure 8: given any θ̃ ∈
[
−∞, θ+ ζλ

[
, there exists free-boundary functions F †

ℓ

and F †
r such that v

(
θ, F †

ℓ (θ)
)
= v
(
θ, F †

r (θ)
)
= λ for all θ ∈

]
θ̃, θ + ζλ

]
.

Figure 8: Case III
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We will then show that for each θ ∈
]
θ̃, θ + ζλ

]
and x ∈

]
F †
ℓ (θ), F

†
r (θ)

[
that

v(θ, x) < λ and there exists a unique function H such that v(θ,H(θ)) is mini-

mal for each θ, and that there exists θ̃ such that v(θ̃, H(θ̃)) = −λ. Moreover,

we will obtain that

H1

(
θ̃, F †

ℓ (θ̃), H(θ̃), λ
)
= 0, H2

(
θ̃, F †

ℓ (θ̃), H(θ̃), λ
)
= 0,

H1

(
θ̃, F †

r (θ̃), H(θ̃), λ
)
= 0, and H2

(
θ̃, F †

r (θ̃), H(θ̃), λ
)
= 0,

which leads us to the second major step where we study the solvability of the

system of equations (3.31) in the context of Cases I and II of Section 3.4.1 for

functions F ⋆
ℓ , G

⋆
ℓ , F

⋆
r and G⋆

r. This is illustrated in Figure 9.

Figure 9: Cases I and II

In the following result, we study the solvability of the system of equations

(3.73) in the context of Case III of Section 3.4.1.

Lemma 3.15. Suppose that the function Θ satisfies Assumption 3.14. Con-

sider the system of equations (3.73), where H3 and H4 are defined by (3.74)

and (3.75). Then, given any θ̃ ∈
[
−∞, θ+ζλ

[
, there exist continuous functions

F †
ℓ , F

†
r : D → R, where

D =
{
(θ, λ) ∈ R× R+ | θ̃ < θ < θ + ζλ and λ > 0

}
,
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such that

F †
ℓ (θ, λ) < χ(θ − ζλ) < χ(θ − ζλ) < F †

r (θ, λ) (3.78)

and H3

(
θ, F †

ℓ (θ, λ), F
†
r (θ, λ), λ

)
= H4

(
θ, F †

ℓ (θ, λ), F
†
r (θ, λ), λ

)
= 0. (3.79)

Furthermore, given any λ > 0,

∂F †
ℓ

∂θ
(θ, λ) > 0,

∂F †
r

∂θ
(θ, λ) < 0, lim

θ↑θ+ζλ
F †
ℓ (θ, λ) = lim

θ↑θ+ζλ
F †
r (θ, λ) = x†,

(3.80)

lim
θ↓−∞

F †
ℓ (θ, λ) = −∞ and lim

θ↓−∞
F †
r (θ, λ) = ∞. (3.81)

Given any θ ∈ ]θ̃, θ + ζλ
[
,

∂F †
ℓ

∂λ
(θ, λ) < 0 and

∂F †
r

∂λ
(θ, λ) > 0. (3.82)

Proof. We organise the proof in four steps.

Step 1: Solvability of the equation H3(θ, Fℓ, Fr, λ) = 0H3(θ, Fℓ, Fr, λ) = 0H3(θ, Fℓ, Fr, λ) = 0 for Fr > χ(θ)Fr > χ(θ)Fr > χ(θ).

Fix any λ > 0 and θ ∈
]
θ̃, θ + ζλ

[
. We calculate

H3(θ, χ(θ − ζλ), χ(θ − ζλ), λ) =

∫ χ(θ−ζλ)

χ(θ−ζλ)
Ψ(y)(θ −Θ(y)− ζλ) dy < 0

and
∂H3

∂Fr
(θ, Fℓ, Fr, λ) = Ψ(Fr)(θ −Θ(Fr)− ζλ)

> 0, if Θ(Fr) < θ − ζλ,

< 0, otherwise.

Assumption (3.14) and Lemma A.1 imply that

lim
Fr↑∞

H3(θ, Fℓ, Fr, λ) = ∞ for all λ > 0 and θ ∈ R.

Similarly,

∂H3

∂Fℓ
(θ, Fℓ, Fr, λ) = −Ψ(Fℓ)(θ −Θ(Fℓ)− ζλ)

< 0, if Θ(Fℓ) < θ − ζλ,

> 0, otherwise,
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and

lim
Fℓ↓−∞

H3(θ, Fℓ, Fr, λ) <∞ for all λ > 0 and θ ∈ R.

We are faced with two possible cases:

• If H3(θ,−∞, χ(θ − ζλ), λ) < 0, then H3(θ, Fℓ, χ(θ − ζλ), λ) < 0 for all

Fℓ ∈ [−∞, χ(θ − ζλ)].

• If H3(θ,−∞, χ(θ − ζλ), λ) ≥ 0, then there exists F (θ, λ) ∈ [−∞, χ(θ −
ζλ)[ such that

H3(θ, F (θ, λ), χ(θ − ζλ), λ) = 0 (3.83)

and H3(θ, Fℓ, χ(θ − ζλ), λ) < 0 if and only if Fℓ ∈ ]F (θ, λ), χ(θ − ζλ)].

In either case, there exists a continuous function f : D3 → R such that

Fℓ ≤ χ(θ − ζλ) < χ(θ − ζλ) < f(θ, Fℓ, λ) and H3

(
θ, Fℓ, f(θ, Fℓ, λ), λ

)
= 0

(3.84)

for all (θ, Fℓ, λ) ∈ D3, where

D3 =
{
(θ, Fℓ, λ) ∈ R3 | H3(θ,−∞, χ(θ − ζλ), λ) ≥ 0,

F (θ, λ) < Fℓ ≤ χ(θ − ζλ) and λ > 0
}

∪
{
(θ, Fℓ, λ) ∈ R3 | H3(θ,−∞, χ(θ − ζλ), λ) < 0,

Fℓ ≤ χ(θ − ζλ) and λ > 0
}
. (3.85)

We note that when H3(θ,−∞, χ(θ− ζλ), λ) < 0, f(θ,−∞, λ) <∞. Moreover,

differentiating the identity in (3.84) implies that

fθ(θ, Fℓ, λ) = −
∫ f(θ,Fℓ,λ)

Fℓ
Ψ(y) dy

Ψ
(
f(θ, Fℓ, λ)

)(
θ −Θ(f(θ, Fℓ, λ))− ζλ

) , (3.86)

fFℓ
(θ, Fℓ, λ) =

Ψ(Fℓ)(θ −Θ(Fℓ)− ζλ)

Ψ
(
f(θ, Fℓ, λ)

)(
θ −Θ(f(θ, Fℓ, λ))− ζλ

) (3.87)

and fλ(θ, Fℓ, λ) = ζ

∫ f(θ,Fℓ,λ)

Fℓ
Ψ(y) dy

Ψ
(
f(θ, Fℓ, λ)

)(
θ −Θ(f(θ, Fℓ, λ))− ζλ

) . (3.88)

Step 2: Existence and uniqueness of F †
ℓF
†
ℓF
†
ℓ and F †

rF
†
rF
†
r satisfying (3.78) and

(3.79). Recalling the definition (3.85) of f’s domain D3, we fix any λ > 0
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and θ ∈
]
θ̃, θ + ζλ

[
and consider the equation H4(θ, Fℓ, f(θ, Fℓ, λ), λ) = 0 for

Fℓ ≤ χ(θ − ζλ). Recalling the definitions of Φ and Ψ in Appendix A, as well

as the fact that φ (resp., ψ) is strictly decreasing (resp., strictly increasing),

we can use the inequalities

θ −Θ(y)− ζλ

< 0, if y ∈ ]χ(θ − ζλ), χ(θ − ζλ)[,

> 0, if y > χ(θ − ζλ),

to obtain

H4(θ, χ(θ − ζλ), f(θ, χ(θ − ζλ), λ), λ)

=

∫ f(θ,χ(θ−ζλ),λ)

χ(θ−ζλ)
Φ(y)(θ −Θ(y)− ζλ) dy

<
φ(χ(θ − ζλ))

ψ(χ(θ − ζλ))

∫ f(θ,χ(θ−ζλ),λ)

χ(θ−ζλ)
Ψ(y)(θ −Θ(y)− ζλ) dy = 0,

where the final equality follows from the identity in (3.84). Using (3.87), the

definition (3.75) of H4 and the definitions of Φ and Ψ in (A.8), we obtain

∂H4

∂Fℓ
(θ, Fℓ, f(θ, Fℓ, λ), λ) = Ψ(Fℓ)

(
φ(f(θ, Fℓ, λ)

ψ(f(θ, Fℓ, λ))
− φ(Fℓ)

ψ(Fℓ)

)
(θ −Θ(Fℓ)− ζλ)< 0, if Θ(Fℓ) < θ − ζλ,

> 0, otherwise,

where the inequality follows from the fact that φ/ψ is strictly decreasing.

Then, if H3(θ,−∞, χ(θ − ζλ), λ) < 0, we observe that by Lemma (A.1) and

the fact that f(θ,−∞, λ) <∞ that

lim
Fℓ↓−∞

H4(θ, Fℓ, f(θ, Fℓ, λ), λ) = ∞.
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On the other hand, if H3(θ,−∞, χ(θ − ζλ), λ) ≥ 0,

lim
Fℓ↓F (θ,λ)

H4(θ, Fℓ, f(θ, Fℓ, λ), λ)

= lim
Fℓ↓F (θ,λ)

∫ f(θ,Fℓ,λ)

Fℓ

Φ(y)(θ −Θ(y)− ζλ) dy

> lim
Fℓ↓F (θ,λ)

∫ χ(θ−ζλ)

Fℓ

Φ(y)(θ −Θ(y)− ζλ) dy

=

∫ χ(θ−ζλ)

F (θ,λ)

Φ(y)(θ −Θ(y)− ζλ) dy

>
φ(χ(θ − ζλ))

ψ(χ(θ − ζλ))

∫ χ(θ−ζλ)

F (θ,λ)

Ψ(y)(θ −Θ(y)− ζλ) dy
(3.83)
= 0.

In either case, we conclude that there exists a unique F †
ℓ (θ, λ) < χ(θ − ζλ)

such that

H4

(
θ, F †

ℓ (θ, λ), f(θ, F
†
ℓ (θ, λ), λ), λ

)
= 0. (3.89)

If we define F †
r (θ, λ) = f

(
θ, F †

ℓ (θ, λ), λ
)
, then (3.84) and (3.89) imply that the

functions satisfy (3.78) and (3.79).
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Step 3: Proof of the monotonicity of the functions F †
ℓF
†
ℓF
†
ℓ and F †

rF
†
rF
†
r . Dif-

ferentiating the identity in (3.89) with respect to θ and λ, and using (3.86),

(3.87), and (3.88), we obtain

∂F †
ℓ

∂θ
(θ, λ) =

∫ F †
r (θ)

F †
ℓ (θ)

Φ(y) dy − φ(F †
r (θ))

ψ(F †
r (θ))

∫ F †
r (θ)

F †
ℓ (θ)

Ψ(y) dy

Ψ
(
F †
ℓ (θ)

)(φ(F †
ℓ (θ))

ψ(F †
ℓ (θ))

− φ(F †
r (θ))

ψ(F †
r (θ))

)(
θ −Θ

(
F †
ℓ (θ)

)
− ζλ

) > 0,

(3.90)

∂F †
r

∂θ
(θ, λ) = fθ(θ, F

†
ℓ (θ), λ) + fFℓ

(θ, F †
ℓ (θ), λ)

∂F †
ℓ

∂θ
(θ, λ)

=

∫ F †
r (θ)

F †
ℓ (θ)

Φ(y) dy − φ(F †
ℓ (θ))

ψ(F †
ℓ (θ))

∫ F †
r (θ)

F †
ℓ (θ)

Ψ(y) dy

Ψ
(
F †
r (θ)

)(φ(F †
ℓ (θ))

ψ(F †
ℓ (θ))

− φ(F †
r (θ))

ψ(F †
r (θ))

)(
θ −Θ

(
F †
r (θ)

)
− ζλ

) < 0,

∂F †
ℓ

∂λ
(θ, λ) = ζ

φ(F †
r (θ))

ψ(F †
r (θ))

∫ F †
r (θ)

F †
ℓ (θ)

Ψ(y) dy −
∫ F †

r (θ)

F †
ℓ (θ)

Φ(y) dy

Ψ
(
F †
ℓ (θ)

)(φ(F †
ℓ (θ))

ψ(F †
ℓ (θ))

− φ(F †
r (θ))

ψ(F †
r (θ))

)(
θ −Θ

(
F †
ℓ (θ)

)
− ζλ

) < 0

and
∂F †

r

∂λ
(θ, λ) = fλ(θ, F

†
ℓ (θ), λ) + fFℓ

(θ, F †
ℓ (θ), λ)

∂F †
ℓ

∂λ
(θ, λ)

= ζ

φ(F †
ℓ (θ))

ψ(F †
ℓ (θ))

∫ F †
r (θ)

F †
ℓ (θ)

Ψ(y) dy −
∫ F †

r (θ)

F †
ℓ (θ)

Φ(y) dy

Ψ
(
F †
r (θ)

)(φ(F †
ℓ (θ))

ψ(F †
ℓ (θ))

− φ(F †
r (θ))

ψ(F †
r (θ))

)(
θ −Θ

(
F †
r (θ)

)
− ζλ

) > 0,

where the inequalities follow from the facts that φ/ψ is strictly decreasing,

F †
ℓ (θ, λ) < χ(θ−ζλ) and F †

r (θ, λ) > χ(θ−ζλ). We have proven the inequalities

in (3.80) and (3.82).
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Step 4: Proof of the limits in (3.80) and (3.81). To establish the limits

in (3.80), we first observe that the system of equations

H3(θ + ζλ, Fℓ, Fr, λ) ≡
∫ Fr

Fℓ

Ψ(y)
(
θ −Θ(y)

)
dy

= H4(θ + ζλ, Fℓ, Fr, λ) ≡
∫ Fr

Fℓ

Φ(y)
(
θ −Θ(y)

)
dy = 0

(3.91)

can be satisfied only if Fℓ = Fr. Combining the fact that the system of

equations (3.91) is satisfied by any choice Fℓ = Fr, and only such a choice,

with (3.78) and the continuity of the functions F †
ℓ , F

†
r , we obtain the limits in

(3.80).

To establish the limits in (3.81), we argue by contradiction. By the inequality

in (3.80), F †
ℓ is strictly increasing in θ and F †

r is strictly decreasing in θ.

Suppose that F †
ℓ (θ, λ) ↓ −∞ and F †

r (θ, λ) ↑ F r < ∞ as θ ↓ −∞. Then, by

(3.79),

ζλ = lim
θ↓−∞

∫ F †
r (θ,λ)

F †
ℓ (θ,λ)

Ψ(y)
(
θ −Θ(y)

)
dy∫ F †

r (θ,λ)

F †
ℓ (θ,λ)

Ψ(y) dy
= −∞,

which is a contradiction. Therefore, F †
r (θ, λ) ↑ ∞ as θ ↓ −∞. Similarly, we

can prove that F †
ℓ (θ, λ) ↓ −∞ as θ ↓ −∞. □

In what follows, we suppress the dependence of F †
ℓ and F †

r on λ and deter-

mine θ̃ < θ such that |v(θ, x)| < λ for all

{
(θ, x) | θ ∈

]
θ̃, θ + ζλ

[
and F †

ℓ (θ) < x < F †
r (θ)

}
, (3.92)

Moreover, the limits in (3.80) imply that limθ↑θ+ζλ v(θ, ·) is only defined for

x = x†, and limθ↑θ+ζλ v(θ, x
†) = λ. We will first show that v(θ, x) < λ for all

(θ, x) in the set (3.92) for any choice of θ̃. To proceed further, we observe that
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we can write, using (3.29) and the expressions (3.76) and (3.77),

v(θ, x) + λ

=
r

ζ

(
φ(x)

(∫ x

−∞
Ψ(y)(θ −Θ(y) + ζλ) dy −

∫ F †
ℓ (θ)

−∞
Ψ(y)(θ −Θ(y)− ζλ) dy

)
+ ψ(x)

(∫ ∞

x

Φ(y)(θ −Θ(y) + ζλ) dy −
∫ ∞

F †
ℓ (θ)

Φ(y)(θ −Θ(y)− ζλ) dy

))
.

Differentiating with respect to x, we obtain

vx(θ, x)

=
r

ζ

(
φ′(x)

(∫ x

−∞
Ψ(y)(θ −Θ(y) + ζλ) dy −

∫ F †
ℓ (θ)

−∞
Ψ(y)(θ −Θ(y)− ζλ) dy

)
+ ψ′(x)

(∫ ∞

x

Φ(y)(θ −Θ(y) + ζλ) dy −
∫ ∞

F †
ℓ (θ)

Φ(y)(θ −Θ(y)− ζλ) dy

))
.

Using (A.12), we observe that vx(θ, F
†
ℓ (θ)) = 0. Similar calculations show that

vx(θ, F
†
r (θ)) = 0 as well. Moreover, by the ODE (3.23),

vxx(θ, F
†
ℓ (θ)) = −σ

2(γ1 + γ2)(θ −Θ(F †
ℓ (θ))− ζλ)

β2(F †
ℓ (θ))

< 0,

where the inequality follows from (3.78). Similarly, vxx(θ, F
†
r (θ)) < 0. We are

now ready to prove the following lemma, which shows that, for each θ, there is

exactly one minimum point of v(θ, ·) between F †
ℓ (θ) and F

†
r (θ) and no other sta-

tionary points, which in turn shows that v(θ, x) < λ for all x ∈ ]F †
ℓ (θ), F

†
r (θ)[,

because v(θ, F †
ℓ (θ)) = v(θ, F †

r (θ)) = λ, vx(θ, F
†
ℓ (θ)) = vx(θ, F

†
r (θ)) = 0 and

vxx(θ, F
†
ℓ (θ)), vxx(θ, F

†
r (θ)) < 0.

Lemma 3.16. Let F †
ℓ and F †

r be the functions in Lemma 3.15. Then, for any

θ̃ < θ,

v(θ, x) < λ for all (θ, x) ∈
{
(θ, x) | θ ∈

]
θ̃, θ + ζλ

[
and F †

ℓ (θ) < x < F †
r (θ)

}
.

(3.93)

Proof. Fix θ ∈
]
θ̃, θ+ζλ

[
. We prove (3.93) by proving that there exists exactly
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one point x⋆ ∈ ]F †
ℓ (θ), F

†
r (θ)[ such that vx(θ, x

⋆) = 0 and vxx(θ, x
⋆) > 0 (that is,

x⋆ is the unique minimum point of v(θ, ·)). The existence of x ∈ ]F †
ℓ (θ), F

†
r (θ)[

such that vx(θ, x) = 0 is implied by the fact that v(θ, F †
ℓ (θ)) = v(θ, F †

r (θ)) = λ

and the mean value theorem. The fact that vx(θ, F
†
ℓ (θ)) = vx(θ, F

†
r (θ)) = 0 and

vxx(θ, F
†
ℓ (θ)), vxx(θ, F

†
r (θ)) < 0 implies there exists at least one minimum point

of v(θ, ·). We assume for a contradiction that there exists two local minimum

points x < x, such that vx(θ, x) = vx(θ, x) = 0 and vxx(θ, x), vxx(θ, x) > 0.

Then, there exists x̂ ∈ ]x, x[ such that vx(θ, x̂) = 0 and vxx(θ, x̂) < 0 (in

other words, x̂ is a local maximum point), such that v(θ, x) < v(θ, x̂) and

v(θ, x) < v(θ, x̂). By the ODE (3.23),

0 <
1

2
β2(x)vxx(θ, x)−

1

2
β2(x̂)vxx(θ, x̂)− r

(
v(θ, x)− v(θ, x̂)

)
=

1

2
σ2(γ1 + γ2)

(
Θ(x)−Θ(x̂)

)
,

which implies that Θ(x) > Θ(x̂). Similarly, we obtain that Θ(x̂) < Θ(x).

However, this contradicts the assumption that Θ is strictly increasing and

then strictly decreasing. Therefore, there is a unique minimum point x⋆ of

v(θ, ·) and no other stationary points, which proves that v(θ, x) < λ for all

x ∈ ]F †
ℓ (θ), F

†
r (θ)[. □

We now determine θ̃ such that v(θ, x) > −λ for all (θ, x) in the set (3.92).

Lemma 3.16 implies that there exists a unique function H such that F †
ℓ (θ) <

H(θ) < F †
r (θ) and wx(θ,H(θ)) = 0 for each θ < θ + ζλ. Having shown that

for each θ, v(θ, ·) has a unique minimum, we will determine in the following

lemma θ̃ < θ as the maximal θ satisfying

min
x∈
]
F †
ℓ (θ),F

†
r (θ)
[ v(θ, x) = −λ.

Lemma 3.17. Define the function w by w(θ, x) = v(θ, x) + λ. Then, there

exists θ̃ < θ − ζλ such that w(θ̃, H(θ̃)) = 0 and w(θ,H(θ)) > 0 for all θ > θ̃.
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Proof. We first calculate

wx(θ, x)

=
r

ζ

(
φ′(x)

(∫ x

−∞
Ψ(y)(θ −Θ(y) + ζλ) dy −

∫ F †
ℓ (θ)

−∞
Ψ(y)(θ −Θ(y)− ζλ) dy

)
+ ψ′(x)

(∫ ∞

x

Φ(y)(θ −Θ(y) + ζλ) dy −
∫ ∞

F †
ℓ (θ)

Φ(y)(θ −Θ(y)− ζλ) dy

))
and observe that wx(θ,H(θ)) = 0 implies that

w(θ,H(θ))

=
r

ζ

(
φ(H(θ))− ψ(H(θ))φ′(H(θ))

ψ′(H(θ))

)
·

(∫ H(θ)

−∞
Ψ(y)(θ −Θ(y) + ζλ) dy −

∫ F †
ℓ (θ)

−∞
Ψ(y)(θ −Θ(y)− ζλ) dy

)

=
rp′(H(θ))

ζψ′(H(θ))

(∫ H(θ)

−∞
Ψ(y)(θ −Θ(y) + ζλ) dy

−
∫ F †

ℓ (θ)

−∞
Ψ(y)(θ −Θ(y)− ζλ) dy

)
(3.94)

= − rp′(H(θ))

ζφ′(H(θ))

(∫ ∞

H(θ)

Φ(y)(θ −Θ(y) + ζλ) dy

−
∫ ∞

F †
ℓ (θ)

Φ(y)(θ −Θ(y)− ζλ) dy

)
. (3.95)

We observe that, for all θ ≥ θ − ζλ,

w(θ,H(θ)) ≥ rp′(H(θ))

ζψ′(H(θ))

(∫ H(θ)

F †
ℓ (θ)

Ψ(y)(θ−Θ(y)) dy+2ζλ

∫ F †
ℓ (θ)

−∞
Ψ(y) dy

)
> 0.

(3.96)

Next, (3.78) and (3.79) imply that

∫ F †
ℓ (θ)

−∞
Ψ(y)(θ −Θ(y)− ζλ) dy > 0 and

∫ ∞

F †
ℓ (θ)

Ψ(y)(θ −Θ(y)− ζλ) dy > 0
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for all θ < θ + ζλ, which implies that

w(θ, x) <
r

ζ

(
φ(x)

(∫ x

−∞
Ψ(y)(θ −Θ(y) + ζλ) dy

+ ψ(x)

∫ ∞

x

Φ(y)(θ −Θ(y) + ζλ) dy

)
for each θ < θ + ζλ and all x ∈

]
F †
ℓ (θ), F

†
r (θ)

[
. Since H(θ) is the minimum of

w(θ, ·) for each θ,

w(θ,H(θ)) ≤ w(θ, x†)

<
r

ζ

(
φ(x†)

(∫ x†

−∞
Ψ(y)(θ −Θ(y) + ζλ) dy

+ ψ(x†)

∫ ∞

x†
Φ(y)(θ −Θ(y) + ζλ) dy

)
→ −∞ as θ ↓ −∞.

This limit, together with (3.96), imply that there exists θ̃ < θ − ζλ such that

w
(
θ̃, H(θ̃)

)
= 0 and w

(
θ,H(θ)

)
> 0 for all θ > θ̃. □

By Lemmas 3.15 and 3.17, v
(
θ̃, H(θ̃)

)
= −λ, and (3.94) and (3.95) imply that

∫ H(θ̃)

−∞
Ψ(y)(θ̃ −Θ(y) + ζλ) dy =

∫ F †
ℓ (θ̃)

−∞
Ψ(y)(θ̃ −Θ(y)− ζλ) dy (3.97)

=

∫ F †
r (θ̃)

−∞
Ψ(y)(θ̃ −Θ(y)− ζλ) dy (3.98)

and

∫ ∞

H(θ̃)

Φ(y)(θ̃ −Θ(y) + ζλ) dy =

∫ ∞

F †
ℓ (θ̃)

Φ(y)(θ̃ −Θ(y)− ζλ) dy (3.99)

=

∫ ∞

F †
r (θ̃)

Φ(y)(θ̃ −Θ(y)− ζλ) dy. (3.100)

In other words, the following system of equations is satisfied:

H1

(
θ̃, F †

ℓ (θ̃), H(θ̃), λ
)
= 0, H2

(
θ̃, F †

ℓ (θ̃), H(θ̃), λ
)
= 0,

H1

(
θ̃, F †

r (θ̃), H(θ̃), λ
)
= 0 and H2

(
θ̃, F †

r (θ̃), H(θ̃), λ
)
= 0.
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Moreover, by the ODE (3.23) and the fact that H(θ) is the minimum of w(θ, ·),

0 <
1

2
β2
(
H(θ̃)

)
wxx
(
θ̃, H(θ̃)

)
=
r

ζ

(
Θ(H(θ̃))− θ̃ − ζλ

)
,

which implies that

χ
(
θ̃ + ζλ

)
< H

(
θ̃
)
< χ

(
θ̃ + ζλ

)
.

We are now ready to prove the next result, where we study the solvability

of the equations (3.31) in the context of Cases I and II of Section 3.4.1. We

note that θ̃ = θ̃(λ) depends on λ, but we consider λ > 0 to be fixed in the

following lemma, so we write θ̃ in place of θ̃(λ) wherever possible for notational

simplicity.

Lemma 3.18. Suppose that the function Θ satisfies Assumption 3.14 and

recall the definitions of F †
ℓ and F †

r in Lemma 3.15 as well as the definitions

of H and θ̃ in Lemma 3.17. Consider the system of equations (3.31), where

H1 and H2 are defined by (3.32) and (3.33). Then, there exist continuous

functions F ⋆
ℓ , G

⋆
ℓ , F

⋆
r , G

⋆
r : D → R, where

D =
{
(θ, λ) ∈ R× R+ | −∞ < θ ≤ θ̃(λ) and λ > 0

}
,

such that, for each λ > 0,

F ⋆
ℓ (θ̃, λ) = F †

ℓ (θ̃, λ), G⋆
ℓ(θ̃, λ) = H(θ̃, λ) = G⋆

r(θ̃, λ), F ⋆
r (θ̃, λ) = F †

r (θ̃, λ),

(3.101)

and, for all θ < θ̃,

F ⋆
ℓ (θ, λ) < F †

ℓ (θ̃, λ) < χ(θ − ζλ) < χ(θ − ζλ) < F †
r (θ̃, λ) < F ⋆

r (θ, λ), (3.102)

χ(θ + ζλ) < G⋆
ℓ(θ, λ) < H(θ̃, λ) < G⋆

r(θ, λ) < χ(θ + ζλ), (3.103)

H1

(
θ, F ⋆

ℓ (θ, λ), G
⋆
ℓ(θ, λ), λ

)
= H2

(
θ, F ⋆

ℓ (θ, λ), G
⋆
ℓ(θ, λ), λ

)
= 0 (3.104)

and H1

(
θ, F ⋆

r (θ, λ), G
⋆
r(θ, λ), λ

)
= H2

(
θ, F ⋆

r (θ, λ), G
⋆
r(θ, λ), λ

)
= 0.
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Furthermore, given any λ > 0,

∂F ⋆
ℓ

∂θ
(θ, λ) > 0,

∂G⋆
ℓ

∂θ
(θ, λ) > 0,

∂F ⋆
r

∂θ
(θ, λ) < 0,

∂G⋆
r

∂θ
(θ, λ) < 0, (3.105)

lim
θ↓−∞

F ⋆
ℓ (θ, λ) = lim

θ↓−∞
G⋆
ℓ(θ, λ) = −∞ (3.106)

and lim
θ↓−∞

F ⋆
r (θ, λ) = lim

θ↓−∞
G⋆
r(θ, λ) = ∞.

Given any θ < θ̃,

∂F ⋆
ℓ

∂λ
(θ, λ) < 0,

∂G⋆
ℓ

∂λ
(θ, λ) > 0,

∂F ⋆
r

∂λ
(θ, λ) > 0,

∂G⋆
r

∂λ
(θ, λ) < 0, (3.107)

lim
λ↓0

F ⋆
ℓ (θ, λ) = lim

λ↓0
G⋆
ℓ(θ, λ) = χ(θ) and lim

λ↓0
F ⋆
r (θ, λ) = lim

λ↓0
G⋆
r(θ, λ) = χ(θ).

(3.108)

Proof. We prove the results for F ⋆
ℓ and G⋆

ℓ only, as the proofs of the results

for F ⋆
r and G⋆

r follow symmetric arguments. We organise the proof in three

steps.

Step 1: Solvability of H1(θ, F,G, λ) = 0H1(θ, F,G, λ) = 0H1(θ, F,G, λ) = 0 for G ∈
]
χ(θ + ζλ), H(θ̃)

[
G ∈

]
χ(θ + ζλ), H(θ̃)

[
G ∈

]
χ(θ + ζλ), H(θ̃)

[
. We

fix any λ > 0 and θ < θ̃. The calculation ∂H1

∂θ
(θ, F,G, λ) =

∫ G
F
Ψ(y) dy > 0

implies that

H1

(
θ, F †

ℓ (θ̃), H(θ̃), λ
)
< H1

(
θ̃, F †

ℓ (θ̃), H(θ̃), λ
)
= 0.

We calculate

∂H1

∂F
(θ, F,G, λ) = −Ψ(F )

(
θ −Θ(F )− ζλ

)
< 0 for all F ≤ F †

ℓ (θ̃),

because F †
ℓ (θ̃) < χ(θ − ζλ), and

∂H1

∂G
(θ, F,G, λ) = Ψ(G)

(
θ −Θ(G) + ζλ

)
< 0 for all G ∈

]
χ(θ + ζλ), H(θ̃)

[
.
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We then observe that for all F ≤ F †
ℓ (θ̃) < χ(θ − ζλ),

H
(
θ, F, χ(θ + ζλ), λ

)
=

∫ χ(θ+ζλ)

F

Ψ(y)(θ −Θ(y) + ζλ) dy

+ 2ζλ

∫ F

−∞
Ψ(y) dy > 0.

We are now faced with two possible cases:

• If H1

(
θ,−∞, H(θ̃), λ

)
≤ 0, then H1(θ, F,H(θ̃), λ) < 0 for all F ≤ F †

ℓ (θ̃).

• If H1

(
θ,−∞, H(θ̃), λ

)
> 0, then there exists F (θ, λ) ∈ [−∞, F †

ℓ (θ̃)[ such

that

H1

(
θ, F (θ, λ), H(θ̃), λ

)
= 0 (3.109)

and H1

(
θ, F,H(θ̃), λ

)
< 0 if and only if F ∈ ]F (θ, λ), F †

ℓ (θ̃)].

In either case, there exists a continuous function ĝ : D̂ → R such that

ĝ(θ, F, λ) ∈
]
χ(θ + ζλ), H(θ̃)

[
and H1(θ, F, ĝ(θ, F, λ), λ) = 0 (3.110)

for all (θ, F, λ) ∈ D̂ , where

D̂ =
{
(θ, F, λ) ∈ R3 | θ ∈

]
−∞, θ̃(λ)

[
, H1

(
θ,−∞, H(θ̃(λ)), λ

)
> 0,

F ∈
[
F (θ, λ), F †

ℓ (θ̃(λ))
]
and λ > 0

}
∪
{
(θ, F, λ) ∈ R3 | θ ∈

]
−∞, θ̃(λ)

[
, H1

(
θ,−∞, H(θ̃(λ)), λ

)
≤ 0,

F ∈
[
−∞, F †

ℓ (θ̃(λ))
]
and λ > 0

}
. (3.111)

Differentiation of the identity in (3.110) implies that

ĝF (θ, F, λ) =
Ψ(F )

(
θ −Θ(F )− ζλ

)
Ψ(ĝ(θ, F, λ))

(
θ −Θ(ĝ(θ, F, λ)) + ζλ

) . (3.112)

Furthermore, we observe that

H1

(
θ̃, F †

ℓ (θ̃), H(θ̃), λ
)
−H1

(
θ, F †

ℓ (θ̃), H(θ̃), λ
)

= H1

(
θ, F, ĝ(θ, F, λ), λ

)
−H1

(
θ, F †

ℓ (θ̃), H(θ̃), λ
)
,
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in other words,

(
θ̃ − θ

) ∫ H(θ̃)

F †
ℓ (θ̃)

Ψ(y) dy =

∫ F †
ℓ (θ̃)

F

Ψ(y)(θ −Θ(y)− ζλ) dy

−
∫ H(θ̃)

ĝ(θ,F,λ)

Ψ(y)(θ −Θ(y) + ζλ) dy.

Step 2: Existence and uniqueness of F ⋆
ℓF
⋆
ℓF
⋆
ℓ and G⋆

ℓG
⋆
ℓG
⋆
ℓ satisfying (3.101)–

(3.104). We first observe that (3.101) follows directly from equations (3.97)–

(3.100). Recalling the definition (3.111) of ĝ’s domain D̂ in Step 1, we fix

any θ ∈
]
−∞, θ̃[ and consider the equation H2

(
θ, Fℓ, ĝ(θ, Fℓ, λ), λ

)
= 0 for

Fℓ ≤ F †
ℓ (θ̃). We calculate, using (3.112), the definition (3.33) of H2 and the

definitions of Φ, Ψ in (A.8),

∂H2

∂F

(
θ, F, ĝ(θ, F, λ), λ

)
= Φ

(
ĝ(θ, F, λ)

)(
θ −Θ

(
ĝ(θ, F, λ)

)
+ ζλ

)
ĝF (θ, F, λ)

− Φ(F )
(
θ −Θ(F )− ζλ

)
= Ψ(F )

(
φ
(
ĝ(θ, F, λ)

)
ψ
(
ĝ(θ, F, λ)

) − φ(F )

ψ(F )

)(
θ −Θ(F )− ζλ

)
< 0

for all F ≤ F †
ℓ (θ̃) < χ(θ − ζλ). Next, the calculation ∂H2

∂θ
(θ, F,G, λ) =∫ G

F
Φ(y) dy > 0 implies that

H2

(
θ, F †

ℓ (θ̃), H(θ̃), λ
)
< H2

(
θ̃, F †

ℓ (θ̃), H(θ̃), λ
)
= 0.

Then,

H2

(
θ̃, F †

ℓ (θ̃), H(θ̃), λ
)
−H2

(
θ, F †

ℓ (θ̃), H(θ̃), λ
)

=
(
θ̃ − θ

) ∫ H(θ̃)

F †
ℓ (θ̃)

Φ(y) dy


<
(
θ̃ − θ

)φ(F †
ℓ (θ̃))

ψ(F †
ℓ (θ̃))

∫ H(θ̃)

F †
ℓ (θ̃)

Ψ(y) dy,

>
(
θ̃ − θ

)φ(H(θ̃))

ψ(H(θ̃))

∫ H(θ̃)

F †
ℓ (θ̃)

Ψ(y) dy.
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and

H2

(
θ, F, ĝ(θ, F, λ), λ

)
−H2

(
θ, F †

ℓ (θ̃), H(θ̃), λ
)

=

∫ F †
ℓ (θ̃)

F

Φ(y)(θ −Θ(y)− ζλ) dy −
∫ H(θ̃)

ĝ(θ,F,λ)

Φ(y)(θ −Θ(y) + ζλ) dy.

We first observe that, when F = F †
ℓ (θ̃),

(
θ̃ − θ

)φ(H(θ̃))

ψ(H(θ̃))

∫ H(θ̃)

F †
ℓ (θ̃)

Ψ(y) dy

= −φ(H(θ̃))

ψ(H(θ̃))

∫ H(θ̃)

ĝ(θ,F †
ℓ (θ̃),λ)

Ψ(y)(θ −Θ(y) + ζλ) dy

> −
∫ H(θ̃)

ĝ(θ,F †
ℓ (θ̃),λ)

Φ(y)(θ −Θ(y) + ζλ) dy,

which implies that

H2

(
θ, F †

ℓ (θ̃), ĝ(θ, F
†
ℓ (θ̃), λ), λ

)
< H2

(
θ̃, F †

ℓ (θ̃), H(θ̃), λ
)
= 0.

Next, we consider the case H1

(
θ,−∞, H(θ̃), λ

)
> 0. We observe by (3.109)

that

ĝ(θ, F (θ, λ), λ) = H(θ̃),

which implies that

(
θ̃ − θ

)φ(F †
ℓ (θ̃))

ψ(F †
ℓ (θ̃))

∫ H(θ̃)

F †
ℓ (θ̃)

Ψ(y) dy =
φ(F †

ℓ (θ̃))

ψ(F †
ℓ (θ̃))

∫ F †
ℓ (θ̃)

F (θ,λ)

Ψ(y)(θ −Θ(y)− ζλ) dy

<

∫ F †
ℓ (θ̃)

F (θ,λ)

Φ(y)(θ −Θ(y)− ζλ) dy,

which implies that

H2

(
θ, F (θ, λ), ĝ(θ, F (θ, λ), λ), λ

)
= H2

(
θ, F (θ, λ), H(θ̃), λ

)
> H2

(
θ̃, F †

ℓ (θ̃), H(θ̃), λ
)
= 0.
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On the other hand, if H1

(
θ,−∞, H(θ̃), λ

)
≤ 0, Lemma A.1 implies that

lim
F↓−∞

(
H2

(
θ, F, ĝ(θ, F, λ), λ

)
−H2

(
θ, F †

ℓ (θ̃), H(θ̃), λ
))

= lim
F↓−∞

(∫ F †
ℓ (θ̃)

F

Φ(y)(θ −Θ(y)− ζλ) dy

−
∫ H(θ̃)

ĝ(θ,F,λ)

Φ(y)(θ −Θ(y) + ζλ) dy

)
= ∞.

In either case, we conclude that there exists a unique F ⋆
ℓ (θ, λ) < F †

ℓ (θ̃) such

that

H2

(
θ, F ⋆

ℓ (θ, λ), ĝ(θ, F
⋆
ℓ (θ, λ), λ), λ

)
= 0. (3.113)

If we define G⋆
ℓ(θ, λ) = ĝ(θ, F ⋆

ℓ (θ, λ), λ), then (3.110) and (3.113) imply that

the functions F ⋆
ℓ and G⋆

ℓ satisfy (3.102), (3.103) and (3.104).

Step 3: Proof of the monotonicity of the functions F ⋆
ℓF
⋆
ℓF
⋆
ℓ and G⋆

ℓG
⋆
ℓG
⋆
ℓ and

limits in (3.106) and (3.108). The inequalities in (3.105) and (3.107),

as well as the limits in (3.106) and (3.108) follow the same calculations and

arguments as those in Lemma 3.10. □

We conclude the section with growth estimates of the free-boundary func-

tions in Lemma 3.18.

Lemma 3.19. Fix λ > 0 and recall the free-boundary functions F ⋆
ℓ , G

⋆
ℓ , F

⋆
r

and G⋆
r in Lemma 3.18, as well as the constant p ≥ 1 in Assumption 3.2.

Then, there exists constants Cℓ, Cr > 0 such that

G⋆
ℓ(θ, λ) < −Cℓ(−θ)

1
p and G⋆

r(θ, λ) > Cr(−θ)
1
p for all θ ≪ 0. (3.114)

Proof. We first prove that for θ ≪ 0, there exists a unique function G♯
ℓ such
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that H
(
θ,G♯

ℓ(θ, λ), λ
)
= 0, where H is defined by (3.37). The calculations

H
(
θ, χ(θ + ζλ), λ

)
=

∫ χ(θ+ζλ)

−∞
Ψ(y)

(
θ −Θ(y) + ζλ

)
dy > 0,

HG(θ,G, λ) = Ψ(G)
(
θ −Θ(G) + ζλ)

< 0, if G ∈
]
χ(θ + ζλ), χ(θ + ζλ)

[
,

≥ 0, otherwise,

∂H
∂θ

(
θ, χ(θ + ζλ), λ

)
=

∫ χ(θ+ζλ)

−∞
Ψ(y) dy > 0

and lim
θ↓−∞

∫ χ(θ+ζλ)

−∞
Ψ(y) dy

(A.11)
= ∞

imply that for θ ≪ 0, there exists G♯
ℓ(θ, λ) ∈

]
χ(θ + ζλ), χ(θ + ζλ)

[
such that

H
(
θ,G♯

ℓ(θ, λ), λ
)
= 0. By Lemma 3.18, G⋆

ℓ(θ, λ) ∈
]
χ(θ + ζλ), χ(θ + ζλ)

[
and

H
(
θ,G⋆

ℓ(θ, λ), λ
)
=

∫ F ⋆
ℓ (θ,λ)

−∞
Ψ(y)

(
θ −Θ(y)− ζλ

)
dy > 0,

where the inequality follows from (3.102). This inequality combined with the

fact that HG < 0 for all G ∈
]
χ(θ + ζλ), χ(θ + ζλ)

[
imply that G⋆

ℓ(θ, λ) <

G♯
ℓ(θ, λ). We therefore prove the first inequality in (3.114) by proving that

G♯
ℓ(θ, λ) < −Cℓ(−θ)

1
p for θ ≪ 0.

By (3.5), there exists a constant Č > 0 such that |Θ(x)| ≤ Č(1 + |x|p) for

x≪ 0. By similar arguments as in Lemma 3.12,

|x|p
∫ x

−∞
Ψ(y) dy ≤

∫ x

−∞
Ψ(y)|y|p dy <∞ for all x < 0,

which implies that

lim
x↓−∞

|x|p
∫ x

−∞
Ψ(y) dy = 0.

By L’Hôpital’s theorem, we calculate

lim inf
x↓−∞

∫ x
−∞Ψ(y)Θ(y) dy

|x|p
∫ x
−∞ Ψ(y) dy

≥ lim inf
x↓−∞

(
− Č

|x|p
−
Č
∫ x
−∞Ψ(y)|y|p dy

|x|p
∫ x
−∞ Ψ(y) dy

)

= −Č lim inf
x↓−∞

Ψ(x)|x|p

Ψ(x)|x|p + p|x|p−1
∫ x
−∞ Ψ(y) dy

≥ −Č,

97



3.4. Solving the free-boundary Problem 3.8 when ΘΘΘ is strictly
increasing and then strictly decreasing

where the final inequality follows from the strict positivity of Ψ. This implies

that

−2Č
(
−G♯

ℓ(θ, λ)
)p ∫ G♯

ℓ(θ,λ)

−∞
Ψ(y) dy <

∫ G♯
ℓ(θ,λ)

−∞
Ψ(y)Θ(y) dy

= (θ + ζλ)

∫ G♯
ℓ(θ,λ)

−∞
Ψ(y) dy,

where the equality follows from the fact that H(θ,G♯
ℓ(θ, λ), λ) = 0. Therefore,

for θ ≪ 0 sufficiently negative, there exists a constant C̃ℓ > 0 such that

−G♯
ℓ(θ, λ) >

(
−θ + ζλ

2Č

) 1
p

>

(
−C̃ℓθ

2Č

) 1
p

,

and we obtain the first estimate in (3.114) with Cℓ =
(
C̃ℓ

2Č

) 1
p . For the second

estimate in (3.114), we first prove in a similar way as before that for θ ≪ 0,

there exists a unique function G♯
r such that G♯

r(θ, λ) ∈
]
χ(θ + ζλ), χ(θ + ζλ)

[
and ∫ ∞

G♯
r(θ,λ)

Φ(y)
(
θ −Θ(y) + ζλ

)
dy = 0.

The remaining arguments are analogous to the previous ones, by considering

x≫ 0. □

3.4.3 The solution to the free-boundary problem

We now outline the solution to the free-boundary problem, having solved

for the free-boundary functions. In view of Lemmas 3.15, 3.16 and 3.17, the

points θ̃ < θ̌ considered in Section 3.4.1 are given by θ̌ = θ + ζλ, and θ̃ is as

in Lemma 3.17. Furthermore, the functions Fℓ, Fr, Gℓ and Gr separating the

continuation region C from the sell region S and the buy region B, are given
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by

Fℓ(θ) =

F †
ℓ (θ), if θ ∈

]
θ̃, θ + ζλ

]
,

F ⋆
ℓ (θ), if θ ∈

]
−∞, θ̃

]
,

and Fr(θ) =

F †
r (θ), if θ ∈

]
θ̃, θ + ζλ

]
,

F ⋆
r (θ), if θ ∈

]
−∞, θ̃

]
.

and the functions Gℓ and Gr are the functions G⋆
ℓ and G⋆

r respectively in

Lemma 3.18. This is illustrated in Figure 10.

Figure 10: Free-boundaries when Θ strictly increasing and then strictly de-
creasing

In this context, we are faced with the solution v to the ODE (3.23) that is

given by

v(θ, x) =



Aℓ(θ)φ(x) +Bℓ(θ)ψ(x)− r
ζ
RΘ(x) +

θ
ζ
, if (θ, x) ∈ cl Ch ∪ cl Cℓ,

Ar(θ)φ(x) +Br(θ)ψ(x)− r
ζ
RΘ(x) +

θ
ζ
, if (θ, x) ∈ cl Ch ∪ cl Cr,

v
(
θ,Fℓ(θ)

)
= v
(
θ,Fr(θ)

)
= λ, if (θ, x) ∈ intS,

v
(
θ,Gℓ(θ)

)
= v
(
θ,Gr(θ)

)
= −λ, if (θ, x) ∈ intB,

(3.115)
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where, for all θ ∈
]
−∞, θ + ζλ],

Aℓ(θ) = −r
ζ

∫ Fℓ(θ)

−∞
Ψ(y)

(
θ −Θ(y)− ζλ

)
dy, (3.116)

Ar(θ) = −r
ζ

∫ Fr(θ)

−∞
Ψ(y)

(
θ −Θ(y)− ζλ

)
dy, (3.117)

Bℓ(θ) = −r
ζ

∫ ∞

Fℓ(θ)

Φ(y)
(
θ −Θ(y)− ζλ

)
dy (3.118)

and Br(θ) = −r
ζ

∫ ∞

Fr(θ)

Φ(y)
(
θ −Θ(y)− ζλ

)
dy, (3.119)

where, for all θ ∈
[
θ̃, θ + ζλ

[
, Aℓ(θ) = Ar(θ) and Bℓ(θ) = Br(θ), because F

†
ℓ

and F †
r satisfy the system of equations (3.73).

Lemma 3.20. The function v given by (3.115) is well-defined in the sense

that the integrals in (3.116), (3.117), (3.118) and (3.119) are well-defined and

real-valued. Furthermore, v is a C1,2 solution to the ODE (3.23) that satisfies

|v(θ, x)| < λ for all (θ, x) ∈ C.

Proof. The proof that the integrals in (3.116), (3.117), (3.118) and (3.119)

are well-defined and real-valued, as well as the proof that |v(θ, x)| < λ for all

(θ, x) ∈ Cℓ ∪ Cr are analogous to the proofs in Lemma 3.13. The proof that

|v(θ, x)| < λ for all (θ, x) ∈ Ch follows from Lemmas 3.16 and 3.17. □

3.5 The solution to the control problem

In this section, we construct the optimal trading strategies correspond-

ing to the solution to the free-boundary Problem 3.8, in the case where Θ is

strictly increasing, and the case where Θ is strictly increasing and then strictly

decreasing.

3.5.1 Optimal trading strategy when ΘΘΘ is strictly in-

creasing

Suppose first that Θ is strictly increasing. In this case, the construction is

exactly the same as in Løkka and Zervos [84] (similar constructions can also
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be found in Merhi and Zervos [92] and Kruk et al. [76]) - we reproduce the

construction here for completeness of exposition. The free-boundary functions

that we obtained previously suggests the trading strategy introduced by the

following definition.

Definition 3.21. Consider the functions F and G and the associated domains

B, S and C = Cℓ ∪ Cm ∪ Ch appearing in Section 3.3.3. Given any initial

condition (θ, x) ∈ R2, we denote by ϑ̂ the trading strategy that instantaneously

buys or sells shares to the closest boundary point of C if (θ, x) /∈ C, and then

takes minimal action so as to reflect the process (ϑ̂, X) in the boundaries G in

the positive θ-direction and in the boundaries F in the negative θ-direction. In

particular, the process ϑ̂ has a positive jump of size G−1(x)− θ if G−1(x) > θ,

and a negative jump of size θ − F−1(x) if θ > F−1(x) at time 0, and satisfies

dϑ̂t =
[
1{ϑ̂t=G−1(Xt)} − 1{ϑ̂t=F−1(Xt)}

]
dϑ̂t for all t > 0. (3.120)

The solution to Skorokhod’s equation (see Karatzas and Shreve [71, Lemma

3.6.C.14]) inspires the iterative construction of the process ϑ̂ in a pathwise sense

as follows. First, we fix a sample path X(ω) of any continuous real-valued

stochastic process X and drop the argument “ω” for notational simplicity. We

then define the times

τ+0 = inf
{
t ≥ 0 : Xt > G(θ)

}
and τ−0 = inf

{
t ≥ 0 : Xt < F(θ)

}
,

and we assume that τ+0 < τ−0 in what follows; if τ−0 < τ+0 , then only straight-

forward revisions of the arguments are required. We define

ϑ
(1)+
t =

[
G−1

(
sup
u≤t

Xu

)
− θ
]+

1{0<t}, ϑ
(1)−
t = 0, ϑ

(1)
t = θ + ϑ

(1)+
t − ϑ

(1)−
t

and τ1 = inf
{
t ≥ 0 : Xt < F

(
ϑ
(1)
t

)}
,

and we note that (ϑ(1), X) is reflecting in G in the positive θ-direction,

(ϑ(1), X) ∈ cl C for all t ≤ τ1 and ϑ(1)
τ1

= F−1(Xτ1).

If θ <∞, θ > −∞ and λ ≥ θ−θ
2ζ

, then F and G identify with the functions F †
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and G† as depicted by Figure 6 and τ1 = ∞, and the construction is complete.

On the other hand, if θ <∞, θ > −∞ and λ < θ−θ
2ζ

(as depicted in Figure 5),

or either θ = ∞ or θ = −∞, then τ1 < ∞ and we continue the construction

as follows. We define

ϑ
(2)+
t = ϑ

(1)+
t∧τ1 , ϑ

(2)−
t =

[
ϑ(1)
τ1

− F−1
(

inf
τ1≤u≤t

Xu

)]
1{τ1≤t},

ϑ
(2)
t = θ + ϑ

(2)+
t − ϑ

(2)−
t and τ2 = inf

{
t ≥ 0 : Xt > G

(
ϑ
(2)
t

)}
> τ1.

An inspection of these definitions reveals that (ϑ(2), X) is reflecting in G in the

positive θ-direction and in F in the negative θ-direction up to time τ2,

ϑ
(2)
t = ϑ

(1)
t for all t ≤ τ1, (ϑ

(2)
t , Xt) ∈ cl C for all t ≤ τ2

and ϑ(2)
τ2

= G−1(Xτ2).

We then iterate these constructions by defining

ϑ
(2n+1)+
t = ϑ

(2n)+
t∧τ2n +

[
G−1

(
sup

τ2n≤u≤t
Xu

)
− ϑ(2n)+

τ2n

]
1{τ2n≤t},

ϑ
(2n+1)−
t = ϑ

(2n)−
t∧τ2n , ϑ

(2n+1)
t = θ + ϑ

(2n+1)+
t − ϑ

(2n+1)−
t ,

τ2n+1 = inf
{
t ≥ 0 : Xt < F

(
ϑ
(2n+1)
t

)}
> τ2n,

ϑ
(2n)−
t = ϑ

(2n−1)−
t∧τ2n−1

+
[
ϑ(2n−1)+
τ2n−1

− F−1
(

inf
τ2n−1≤u≤t

Xu

)]
1{τ2n−1≤t},

ϑ
(2n)+
t = ϑ

(2n−1)+
t∧τ2n−1

, ϑ
(2n)
t = θ + ϑ

(2n)+
t − ϑ

(2n)−
t

and τ2n = inf
{
t ≥ 0 : Xt > G

(
ϑ
(2n)
t

)}
> τ2n−1

for n ≥ 1, and we note that, given any m, k ≥ 1,

ϑ
(m+k)
t = ϑ

(m)
t = θ + ϑ

(m)+
t − ϑ

(m)−
t and (ϑ

(m)
t , Xt) ∈ cl C for all t ≤ τm

and limn→∞ τn = ∞. Therefore, we can define ϑ̂+, ϑ̂− and ϑ̂ by

ϑ̂+
t = ϑ

(m)+
t , ϑ̂−

t = ϑ
(m)−
t and ϑ̂t = ϑ

(m)
t

for any m ≥ 1 such that t < τm. The finite-variation function ϑ̂ constructed
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satisfies (3.121) because this is true for all of the functions ϑ(n). Indeed, an

inspection of the iterative algorithm that we have developed reveals that ϑ(n)

increases (resp., decreases) on the set{
t ≥ 0 : ϑ

(n)
t = G−1

(
sup
0≤u≤t

Xu

)
and Xt = sup

0≤u≤t
Xu

}
(
resp.,

{
t ≥ 0 : ϑ

(n)
t = F−1

(
inf

0≤u≤t
Xu

)
and Xt = inf

0≤u≤t
Xu

})
.

3.5.2 Optimal trading strategy when ΘΘΘ is strictly in-

creasing and then strictly decreasing

Suppose now that Θ is strictly increasing and then strictly decreasing.

The construction of the corresponding optimal trading strategy is adapted

from Løkka and Zervos [84]. The free-boundary functions that we obtained

previously suggests the trading strategy introduced by the following definition.

Definition 3.22. Consider the functions Fℓ, Gℓ, Gr and Fr and the associated

domains B, S and C = Cℓ ∪ Ch ∪ Cr appearing in Section 3.4.3, and recall

the definitions of θ̃ and H(θ̃) in Lemma 3.17. Given any initial condition

(θ, x) ∈ R2, we denote by ϑ̂ the trading strategy that instantaneously buys or

sells shares to the closest boundary point of C if (θ, x) /∈ C, and then takes

minimal action so as to reflect the process (ϑ̂, X) in the boundaries Gℓ and

Gr in the positive θ-direction and in the boundaries Fℓ and Fr in the negative

θ-direction. In particular, the process ϑ̂ has a positive jump of sizeG−1
ℓ (x)− θ, if G−1

ℓ (x) > θ and x ≤ H(θ̃),

G−1
r (x)− θ, if G−1

r (x) > θ and x ≥ H(θ̃)

at time 0, has a negative jump of size θ − F−1
ℓ (x), if θ > F−1

ℓ (x) and x ≤ x†,

θ − F−1
r (x), if θ > F−1

r (x) and x ≥ x†
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at time 0, and, for all t > 0, satisfies

dϑ̂t =
[
1{ϑ̂t=G−1

ℓ (Xt)} + 1{ϑ̂t=G−1
r (Xt)} − 1{ϑ̂t=F−1

ℓ (Xt)} − 1{ϑ̂t=F−1
r (Xt)}

]
dϑ̂t.

(3.121)

Before we construct the trading strategy ϑ̂, we need to extend the functions

F−1
ℓ , F−1

r , G−1
ℓ and G−1

r in the following way. Let

F
−1

ℓ (x) =

F−1
ℓ (x), if x ≤ x†,

F̂−1
ℓ (x), if x ≥ x†,

F
−1

r (x) =

F−1
r (x), if x ≥ x†,

F̂−1
r (x), if x ≤ x†,

G
−1

ℓ (x) =

G−1
ℓ (x), if x ≤ H(θ̃),

Ĝ−1
ℓ (x), if x ≥ H(θ̃),

and G
−1

r (x) =

G−1
r (x), if x ≥ H(θ̃),

Ĝ−1
r (x), if x ≤ H(θ̃),

where F̂−1
ℓ : [x†,∞[→ [θ + ζλ,∞[ and Ĝ−1

ℓ : [H(θ̃),∞[→ [θ̃,∞[ are strictly

increasing functions and F̂−1
r : ]−∞, x†] → [θ+ζλ,∞[ and Ĝ−1

r : ]−∞, H(θ̃)] →
[θ̃,∞[ are strictly decreasing functions such that

F̂−1
ℓ (x†) = F−1

ℓ (x†) = F−1
r (x†) = F̂−1

r (x†) = θ̌,

Ĝ−1
ℓ (H(θ̃)) = G−1

ℓ (H(θ̃)) = G−1
r (H(θ̃)) = Ĝ−1

r (H(θ̃)) = θ̃.

Since F−1
ℓ andG−1

ℓ are strictly increasing functions and F−1
r andG−1

r are strictly

decreasing functions, this implies thatF
−1

ℓ (x) < F
−1

r (x), if x < x†,

F
−1

ℓ (x) > F
−1

r (x), if x > x†,
and

G
−1

ℓ (x) < G
−1

r (x), if x < H(θ̃),

G
−1

ℓ (x) > G
−1

r (x), if x > H(θ̃),

as illustrated in Figure 11. As before, we perform a pathwise iterative con-

struction of the process ϑ̂. For notational simplicity, we write F−1
ℓ ,F−1

r ,G−1
ℓ

and G−1
r in place of F

−1

ℓ ,F
−1

r ,G
−1

ℓ and G
−1

r . We define the times

τ+0 = inf
{
t ≥ 0 : θ < θ̃ and Gℓ(θ) < Xt < Gr(θ)

}
and τ−0 = inf

{
t ≥ 0 : θ < θ + ζλ and Xt < Fℓ(θ) or Xt > Fr(θ)

}
,

and we assume that τ+0 < τ−0 in what follows; if τ−0 < τ+0 , then only straight-
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Figure 11: Extending functions

forward revisions of the arguments are required. Moreover, we note that after

the initial jump, ϑ̂t ≤ θ+ ζλ for all t ≥ 0, and once ϑ̂ hits θ̃, it will not exceed

θ̃ again. We define

ϑ
(1)+
t =

[
G−1
ℓ

(
sup
u≤t

Xu

)
∧G−1

r

(
inf
u≤t

Xu

)
− θ
]+

1{0<t}, ϑ
(1)−
t = 0,

ϑ
(1)
t = θ + ϑ

(1)+
t − ϑ

(1)−
t ,

τ1 = inf
{
t ≥ 0 : Xt < Fℓ

(
ϑ
(1)
t

)
or Xt > Fr

(
ϑ
(1)
t

)}
,

and we note that (ϑ(1), X) is reflecting in Gℓ and Gr in the positive θ-direction,

(ϑ(1), X) ∈ cl C for all t ≤ τ1 and ϑ(1)
τ1

= F−1
ℓ (Xτ1) ∧ F−1

r (Xτ1).

Next, we define

ϑ
(2)−
t =

[
ϑ(1)
τ1

− F−1
ℓ

(
inf

τ1≤u≤t
Xu

)
∧ F−1

r

(
sup

τ1≤u≤t
Xu

)]
1{τ1≤t},

ϑ
(2)+
t = ϑ

(1)+
t∧τ1 , ϑ

(2)
t = θ + ϑ

(2)+
t − ϑ

(2)−
t

and τ2 = inf
{
t ≥ 0 : ϑ

(2)
t < θ̃ and Gℓ

(
ϑ
(2)
t

)
< Xt < Gr

(
ϑ
(2)
t

)}
> τ1.

An inspection of these definitions reveals that (ϑ(2), X) is reflecting in Gℓ and

Gr in the positive θ-direction and in Fℓ and Fr in the negative θ-direction up
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to time τ2,

ϑ
(2)
t = ϑ

(1)
t for all t ≤ τ1, (ϑ

(2)
t , Xt) ∈ cl C for all t ≤ τ2

and ϑ(2)
τ2

= G−1
ℓ (Xτ2) ∧G−1

r (Xτ2).

We then iterate these constructions by defining

ϑ
(2n+1)+
t = ϑ

(2n)+
t∧τ2n +

[
G−1
ℓ

(
sup

τ2n≤u≤t
Xu

)
∧G−1

r

(
inf

τ2n≤u≤t
Xu

)
− ϑ(2n)+

τ2n

]
1{τ2n≤t}

ϑ
(2n+1)−
t = ϑ

(2n)−
t∧τ2n , ϑ

(2n+1)
t = θ + ϑ

(2n+1)+
t − ϑ

(2n+1)−
t ,

τ2n+1 = inf
{
t ≥ 0 : Xt < Fℓ

(
ϑ
(2n+1)
t

)
or Xt > Fr

(
ϑ
(2n+1)
t

)}
> τ2n,

ϑ
(2n)−
t = ϑ

(2n−1)−
t∧τ2n−1

+
[
ϑ(2n−1)+
τ2n−1

− F−1
ℓ

(
inf

τ2n−1≤u≤t
Xu

)
∧ F−1

r

(
sup

τ2n−1≤u≤t
Xu

)]
1{τ2n−1≤t}

ϑ
(2n)+
t = ϑ

(2n−1)+
t∧τ2n−1

, ϑ
(2n)
t = θ + ϑ

(2n)+
t − ϑ

(2n)−
t

and τ2n = inf
{
t ≥ 0 : ϑ

(2n)
t < θ̃ and Gℓ

(
ϑ
(2n)
t

)
< Xt < Gr

(
ϑ
(2n)
t

)}
> τ2n−1

for n ≥ 1, and we note that, given any m, k ≥ 1,

ϑ
(m+k)
t = ϑ

(m)
t = θ + ϑ

(m)+
t − ϑ

(m)−
t and (ϑ

(m)
t , Xt) ∈ cl C for all t ≤ τm

and limn→∞ τn = ∞. Therefore, we can define ϑ̂+, ϑ̂− and ϑ̂ by

ϑ̂+
t = ϑ

(m)+
t , ϑ̂−

t = ϑ
(m)−
t and ϑ̂t = ϑ

(m)
t

for any m ≥ 1 such that t < τm. The finite-variation function ϑ̂ constructed

satisfies (3.121) because this is true for all of the functions ϑ(n). Indeed, an

inspection of the iterative algorithm that we have developed reveals that ϑ(n)
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increases (resp., decreases) on the set{
t ≥ 0 : ϑ

(n)
t = G−1

ℓ

(
sup
0≤u≤t

Xu

)
and Xt = sup

0≤u≤t
Xu < H(θ̃)

}
∪
{
t ≥ 0 : ϑ

(n)
t = G−1

r

(
inf

0≤u≤t
Xu

)
and Xt = inf

0≤u≤t
Xu > H(θ̃)

}
(
resp.,

{
t ≥ 0 : ϑ

(n)
t = F−1

ℓ

(
inf

0≤u≤t
Xu

)
and Xt = inf

0≤u≤t
Xu < x†

}
∪
{
t ≥ 0 : ϑ

(n)
t = F−1

r

(
sup
0≤u≤t

Xu

)
and Xt = sup

0≤u≤t
Xu > x†

})
.

3.5.3 Admissibility of optimal trading strategies

Either of the above constructions define operators F+(θ; ·), F−(θ; ·) and

F(θ; ·) mapping the set Cr(R) of all continuous functions g : R → R into the set

of all càglàd finite-varation functions that are continuous in R. In particular,

given an initial condition (θ, x) ∈ R2 and the solution (Ω,F , (Ft),P, B,X) of

(3.2) that we have associated with it, a process ϑ̂ that is as in Definition 3.22

is given by

ϑ̂t = Ft(θ;X) = θ + F+
t (θ;X)− F−

t (θ;X) for all t ≥ 0,

where, e.g., Ft(θ; g) is the evaluation of the function F(θ; g) at t, for g ∈ Cr(R).
By Theorem 3.9, we prove that the strategy ϑ̂ we constructed is optimal

(that is, it satisfies (3.21)) if we prove that ϑ̂ ∈ A(θ). By Definition 3.5 and

Remark 3.6, we only need to prove that ϑ̂ satisfies the integrability condition

(3.17). If Θ is strictly increasing with θ > −∞ and θ < ∞, then ϑ clearly

satisfies (3.17), as ϑt is bounded for all t ≥ 0. If θ = −∞ and θ = ∞, then by

Definition 3.21 and the growth estimates in Lemma 3.12,

E
[∫ ∞

0

e−rtϑ̂2
t dt

]
≤ E

[∫ ∞

0

e−rt
((

F−1(Xt)
)2

+
(
G−1(Xt)

)2)
dt

]
≤
(
C−2p
F + C−2p

G

)
E
[∫ ∞

0

e−rt|Xt|2p dt
]
<∞.

The cases where θ = −∞ and θ < ∞ and θ > −∞ and θ = ∞ are similar.

If Θ is strictly increasing then strictly decreasing, then by Definition 3.22 and
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the growth estimates in Lemma 3.19,

E
[∫ ∞

0

e−rtϑ̂2
t dt

]
≤ E

[∫ ∞

0

e−rt
(
(θ + ζλ)2 +

(
G−1
ℓ (Xt)

)2
+
(
G−1
r (Xt)

)2)
dt

]
≤ (θ + ζλ)2

r
+
(
C−2p
ℓ + C−2p

r

)
E
[∫ ∞

0

e−rt|Xt|2p dt
]
<∞.

Moreover, in either case, a stronger transversality condition than (3.19) is

satisfied. By the growth estimates as well as (3.6) and (3.7), there exists a

constant Ĉ > 0 such that

lim
T↑∞

e−rT E
[
ϑ2
T

]
≤ Ĉ lim

T↑∞
e−rT E

[
|XT |2p

]
≤ Ĉ2p−1

(
1 + |x|2p

)
lim
T↑∞

e−(r−2pC)T = 0.

3.6 Transaction cost asymptotics

We first derive small transaction cost asymptotics in the case where Θ is

strictly increasing. We first note that when θ > −∞ and θ < ∞, λ < θ−θ
2ζ

for

small enough λ and

lim
λ↓0

θ˜ = lim
λ↓0

(θ + ζλ) = θ and lim
λ↓0

θ̃ = lim
λ↓0

(θ − ζλ) = θ.

In other words, the continuation regions Cℓ and Ch vanish in the limit as λ goes

to 0. Therefore, we only derive asymptotics for the functions F ⋆ and G⋆ which

define the continuation region Cm. The properties of the function F ⋆ in (3.47)

imply that for each θ, the function λ 7→ F ⋆(θ, λ) is invertible and its inverse λ

is such that

λF (θ, F ) < 0 for all F < Θ−1(θ) and lim
F↑Θ−1(θ)

λ(θ, F ) = 0. (3.122)

Furthermore, if we define

G(θ, F ) = G⋆ (θ, λ(θ, F )) for F < Θ−1(θ), (3.123)
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then λ and G satisfy the system of equations

H1

(
θ, F,G(θ, F ), λ(θ, F )

)
=

∫ G(θ,F )

F

Ψ(y) (θ −Θ(y)) dy

+ ζλ(θ, F )

(∫ F

−∞
Ψ(y) dy +

∫ G(θ,F )

−∞
Ψ(y) dy

)
= 0,

(3.124)

H2

(
θ, F,G(θ, F ), λ(θ, F )

)
=

∫ G(θ,F )

F

Φ(y) (θ −Θ(y)) dy

− ζλ(θ, F )

(∫ ∞

F

Φ(y) dy +

∫ ∞

G(θ,F )

Φ(y) dy

)
= 0.

(3.125)

Furthermore, the properties of G⋆ in (3.47) and (3.122) imply that

lim
F↑Θ−1(θ)

G⋆ (θ, λ(θ, F )) = Θ−1(θ). (3.126)

Similarly, we can define the inverse λ̃ of the function G⋆ in (3.47) satisfying

λ̃G(θ,G) > 0 for all G > Θ−1(θ) and lim
G↓Θ−1(θ)

λ̃(θ,G) = 0, (3.127)

as well as

F(θ,G) = F ⋆
(
θ, λ̃(θ,G)

)
for G > Θ−1(θ),

satisfying

H1

(
θ,F(θ,G), G, λ̃(θ,G)

)
= H2

(
θ,F(θ,G), G, λ̃(θ,G)

)
= 0. (3.128)

The following result provides the asymptotic behaviour of the free-boundary

functions F ⋆ and G⋆ as λ ↓ 0.
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Theorem 3.23. Suppose Θ is strictly increasing and fix any θ ∈
]
θ˜, θ̃[ such

that Θ′ (Θ−1(θ)) > 0. Assuming the functions hi are C
1, we have

F ⋆(θ, λ) = Θ−1(θ)−
(

3β2 (Θ−1(θ))

σ2 (γ1 + γ2)Θ′ (Θ−1(θ))

)1/3

λ
1/3 +O

(
λ

2/3
)

(3.129)

and G⋆(θ, λ) = Θ−1(θ) +

(
3β2 (Θ−1(θ))

σ2 (γ1 + γ2)Θ′ (Θ−1(θ))

)1/3

λ
1/3 +O

(
λ

2/3
)
.

(3.130)

Proof. Differentiating the equations (3.124) and (3.125) with respect to F ,

we obtain

Ψ (G(θ, F ))Q[1](θ, F )GF (θ, F ) + ζQΨ(θ, F )λF (θ, F ) = Ψ(F )Q[2](θ, F )

and Φ (G(θ, F ))Q[1](θ, F )GF (θ, F )− ζQΦ(θ, F )λF (θ, F ) = Φ(F )Q[2](θ, F ),

where

Q[1](θ, F ) = θ −Θ(G(θ, F )) + ζλ(θ, F ), Q[2](θ, F ) = θ −Θ(F )− ζλ(θ, F ),

QΨ(θ, F ) =

∫ F

−∞
Ψ(y) dy +

∫ G(θ,F )

−∞
Ψ(y) dy

and QΦ(θ, F ) =

∫ ∞

F

Φ(y) dy +

∫ ∞

G(θ,F )

Φ(y) dy.

This system of equations is equivalent to

ζQ[0](θ, F )λF (θ, F ) = Q[2](θ, F )Q[3](θ, F ) (3.131)

and Ψ (G(θ, F ))Q[1](θ, F )GF (θ, F ) = Ψ(F )Q[2](θ, F )− Q[2](θ, F )Q[3](θ, F )

Q[0](θ, F )
,

(3.132)

where

Q[0](θ, F ) = φ (G(θ, F ))QΨ(θ, F ) + ψ (G(θ, F ))QΦ(θ, F )

and Q[3](θ, F ) = φ (G(θ, F ))Ψ(F )− ψ (G(θ, F )) Φ(F ).
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In view of the limits in (3.122) and (3.126), the identity (A.4) in the appendix

and the definition (3.30) of ζ, we can see that

ζ lim
F↑Θ−1(θ)

Q[0](θ, F ) =
2ζ

r

(φ (Θ−1(θ))ψ′ (Θ−1(θ))− ψ (Θ−1(θ))φ′ (Θ−1(θ)))

Cp′ (Θ−1(θ))

=
2ζ

r
=

4

σ2 (γ1 + γ2)

and

lim
F↑Θ−1(θ)

Q[1](θ, F ) = lim
F↑Θ−1(θ)

Q[2](θ, F ) = lim
F↑Θ−1(θ)

Q[3](θ, F ) = 0, (3.133)

These limits imply that

lim
F↑Θ−1(θ)

λF (θ, F ) = 0. (3.134)

Furthermore, we differentiate (3.131) to obtain

ζQ[0](θ, F )λFF (θ, F ) = Q[2](θ, F )Q
[3]
F (θ, F ) +Q

[2]
F (θ, F )Q[3](θ, F )

− ζQ
[0]
F (θ, F )λF (θ, F ),

where

Q
[2]
F (θ, F ) = −Θ′(F )− ζλF (θ, F )

and Q
[3]
F (θ, F ) =

(
2

Cβ2(F )p′(F )

)′

(φ (G(θ, F ))ψ(F )− ψ (G(θ, F ))φ(F ))

+ 2
φ (G(θ, F ))ψ′(F )− ψ (G(θ, F ))φ′(F )

Cβ2(F )p′(F )

+ 2
φ′ (G(θ, F ))ψ(F )− ψ′ (G(θ, F ))φ(F )

Cβ2(F )p′(F )
GF (θ, F ).

In light of (3.134), this expression implies that

lim
F↑Θ−1(θ)

λFF (θ, F ) = 0. (3.135)

Differentiating (3.131) twice and taking the limit F ↑ Θ−1(θ), and using the
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limits (3.134) and (3.135), we obtain

4 limF↑Θ−1(θ) λFFF (θ, F )

σ2 (γ1 + γ2)
= 2 lim

F↑Θ−1(θ)
Q

[2]
F (θ, F )Q

[3]
F (θ, F )

= −4Θ′(Θ−1(θ))

β2(Θ−1(θ))

(
1− lim

F↑Θ−1(θ)
GF (θ, F )

)
. (3.136)

Moreover, differentiating (3.132) and using the limits (3.133) and (3.134), we

obtain

lim
F↑Θ−1(θ)

Θ′(G(θ, F ))G2
F (θ, F ) = Θ′(Θ−1(θ)).

It follows that

lim
F↑Θ−1(θ)

G2
F (θ, F ) = 1,

thanks to (3.126). Combining this result with the identity

GF (θ, F ) = G⋆
λ(θ, λ(θ, F ))λF (θ, F ),

which follows from differentiation of (3.123) and the inequalities (3.47) and

(3.122), we can see that

lim
F↑Θ−1(θ)

GF (θ, F ) = −1.

This limit and (3.136) implies that

lim
F↑Θ−1(θ)

∂3λ

∂F 3
(θ, F ) = −2σ2 (γ1 + γ2)Θ

′(Θ−1(θ))

β2(Θ−1(θ))
.

In light of (3.134) and (3.135), we obtain the Taylor expansion

λ(θ, F ) = −σ
2 (γ1 + γ2)Θ

′ (Θ−1(θ))

3β2 (Θ−1(θ))

(
F −Θ−1(θ)

)3
+O

((
F −Θ−1(θ)

)4)
.

Inverting this expansion, we obtain (3.129). To obtain the higher order terms,

the Taylor expansion of λ can be expanded further, and the O(λ2/3) coefficients
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can be computed using the Lagrange-Bürmann formula (from the Lagrange

inversion theorem). By symmetric calculations on (3.128), we obtain

lim
G↓Θ−1(θ)

∂3λ̃

∂G3
(θ,G) =

2σ2 (γ1 + γ2)Θ
′ (Θ−1(θ))

β2 (Θ−1(θ))
,

from which we obtain (3.130). □

Remark 3.24. In [51], where X is a one-dimensional standard Brownian

motion and hi(x) = ξix, the frictionless optimiser is a linear function given

by Θ(x) = δx, where δ = γ2ξ2−γ1ξ1
σ(γ1+γ2)

and F ⋆ and G⋆ are also linear:

F ⋆(θ, λ) =
θ

δ
−
(

3λ

δσ2(γ1 + γ2)

)1/3

and G⋆(θ, λ) =
θ

δ
+

(
3λ

δσ2(γ1 + γ2)

)1/3

,

which is (3.129) and (3.130) with β = 1 and without any higher order terms.

In other words, ϑ − δX is a doubly reflected Brownian motion with constant

end points ±ℓ, where

ℓ =

(
3δ2λ

σ2(γ1 + γ2)

)1/3

=

(
3λ(γ2ξ2 − γ1ξ1)

2

σ4(γ1 + γ2)3

)1/3

.

In our setting, ϑ−Θ(X) is a doubly reflected diffusion but with non-constant

end points that depend on the position of ϑ.

We now consider the case where Θ is strictly increasing and then strictly

decreasing. Recalling Lemma 3.15 and (3.96) in Lemma 3.17, we observe that

θ̃ ↑ θ and θ + ζλ ↓ θ as λ goes to 0. In other words, the continuation region

Ch vanishes in the limit. Economically, θ represents the maximal number of

shares for the frictionless optimiser, while θ̃ represents the maximal number of

shares for the frictional optimiser once the joint process (ϑ,X) is in Cℓ∪Cr (we
recall that, once (ϑ,X) reaches Cℓ ∪ Cr, it will never return to the region Ch).
Indeed, as the proportional transaction costs decrease, the gap between the

maximal shares for the frictionless and frictional optimiser should decrease.

Therefore, we only derive asymptotics for the functions F ⋆
ℓ and G⋆

ℓ , which

113



3.6. Transaction cost asymptotics

define the continuation region Cℓ, as well as the functions F ⋆
r and G⋆

r, which

define the continuation region Cr. The asymptotics are derived analogously to

the case where Θ is strictly increasing.

Theorem 3.25. Suppose Θ is strictly increasing and then strictly decreasing

and fix any θ ∈
]
−∞, θ̃

[
such that Θ′ (χ(θ)) > 0 and Θ′ (χ(θ)) < 0. Assuming

the functions hi are C
1, we have

F ⋆
ℓ (θ, λ) = χ(θ)−

(
3β2

(
χ(θ)

)
σ2 (γ1 + γ2)Θ′

(
χ(θ)

))1/3

λ
1/3 +O

(
λ

2/3
)
,

G⋆
ℓ(θ, λ) = χ(θ) +

(
3β2

(
χ(θ)

)
σ2 (γ1 + γ2)Θ′

(
χ(θ)

))1/3

λ
1/3 +O

(
λ

2/3
)
,

F ⋆
r (θ, λ) = χ(θ) +

(
3β2 (χ(θ))

σ2 (γ1 + γ2)Θ′ (χ(θ))

)1/3

λ
1/3 +O

(
λ

2/3
)

and G⋆
r(θ, λ) = χ(θ)−

(
3β2 (χ(θ))

σ2 (γ1 + γ2)Θ′ (χ(θ))

)1/3

λ
1/3 +O

(
λ

2/3
)
.
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Appendix: Results on ODEs and

one-dimensional diffusions

In this section, we review a number of results on the solution of the ODE

L u(x)− ru(x) + h(x) = 0,

where L is the second order differential operator defined by L = 1
2
β2(x) ∂

2

∂x2
+

α(x) ∂
∂x

(the infinitesimal generator of the homogeneous diffusion X). All of

the claims that we do not prove are standard and can be found in several

references such as [11, Chapter II.1.10,II.1.11,II.4.24].

In the presence of Assumption (3.2), the general solution to the second

order linear homogeneous ODE L u(x)− ru(x) = 0 is given by

u(x) = Aφ(x) +Bψ(x)

for some constants A,B ∈ R. The functions φ and ψ are the unique, modulo

multiplicative constants, C2 functions such that

0 < φ(x) and φ′(x) < 0 for all x ∈ R, (A.1)

0 < ψ(x) and ψ′(x) > 0 for all x ∈ R, (A.2)

lim
x↓−∞

φ(x) = lim
x↑∞

ψ(x) = ∞ and lim
x↑∞

φ(x) = lim
x↓−∞

ψ(x) = 0. (A.3)
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To simplify the notation, we assume that φ(0) = ψ(0) = 1. Also, these

functions satisfy the identity

φ(x)ψ′(x)− φ′(x)ψ(x) = Cp′(x) for all x ∈ R, (A.4)

where C = ψ′(0)− φ′(0) > 0 and p is the scale function of X defined by

p′(x) = exp

(
−
∫ x

0

2α(y)

β2(y)
dy

)
.

Combining (A.3) with the inequalities

0 <
φ(x)ψ′(x)

Cp′(x)
< 1 and 0 < −φ

′(x)ψ(x)

Cp′(x)
< 1,

which follow from (A.1), (A.2) and (A.4), we can see that

lim
x↓−∞

ψ′(x)

p′(x)
= lim

x↑∞

φ′(x)

p′(x)
= 0. (A.5)

By Corollary 4.5 of Lamberton and Zervos [78], a Borel measurable function

h satisfies

E
[∫ ∞

0

e−rt
∣∣h(Xt)

∣∣ dt] <∞, (A.6)

where X is the solution to the SDE

dXt = α(Xt) dt+ β(Xt) dBt, X0 = x ∈ R,

if and only if it satisfies the integrability condition∫ x

−∞
Ψ(y)

∣∣h(y)∣∣ dy + ∫ ∞

x

Φ(y)
∣∣h(y)∣∣ dy <∞ for all x ∈ R, (A.7)

where

Φ(x) =
2φ(x)

Cβ2(x)p′(x)
and Ψ(x) =

2ψ(x)

Cβ2(x)p′(x)
. (A.8)

Given such a function h, if we define

Rh(x) = E
[∫ ∞

0

e−rth(Xt) dt

]
(A.9)

116



A. Appendix: Results on ODEs and one-dimensional diffusions

then the function Rh admits the analytic representation

Rh(x) = φ(x)

∫ x

−∞
Ψ(y)h(y) dy + ψ(x)

∫ ∞

x

Φ(y)h(y) dy (A.10)

and satisfies the ODE LRh(x)− rRh(x) + h(x) = 0, Lebesgue-a.e..

In our analysis, we have used the following result.

Lemma A.1. In the presence of Assumption 3.2,

lim
x↓−∞

∫ ∞

x

Φ(y) dy = lim
x↑∞

∫ x

−∞
Ψ(y) dy = ∞, (A.11)

φ′(x)

p′(x)
= −rC

∫ ∞

x

Φ(y) dy and
ψ′(x)

p′(x)
= rC

∫ x

−∞
Ψ(y) dy. (A.12)

Furthermore, if h is a Borel measurable function satisfying the equivalent inte-

grability conditions (A.6) and (A.7) such that h(x) ≤ −ε for all x ≥ xε (resp.,

h(x) ≥ ε for all x ≤ xε), for some ε > 0 and xε ∈ R, then

lim
x↑∞

∫ x

−∞
Ψ(y)h(y) dy = −∞

(
resp., lim

x↓−∞

∫ ∞

x

Φ(y)h(y) dy = ∞
)
. (A.13)

Proof. To establish the second limit in (A.11), we argue by contradiction.

To this end, assume that

lim
x↑∞

∫ x

−∞
Ψ(y) dy <∞. (A.14)

For h ≡ 1, the expressions (A.9) and (A.10) imply that

φ(x)

∫ x

−∞
Ψ(y) dy + ψ(x)

∫ ∞

x

Φ(y) dy =
1

r
.

Since limx↑∞ φ(x) = 0 and limx↑∞ ψ(x) = ∞, the hypothesis (A.14), L’Hôpital’s

lemma and the definitions in (A.8) imply that

1

r
= lim

x↑∞

∫∞
x

Φ(y) dy

ψ−1(x)
= lim

x↑∞

Φ(x)

ψ−2(x)ψ′(x)
= lim

x↑∞

φ(x)ψ(x)

ψ′(x)
Ψ(x).
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These identities imply that, given any ε ∈
]
0, 1

r

[
, there exists xε ∈ R such that

Ψ(x) >

(
1

r
− ε

)
ψ′(x)

φ(x)ψ(x)
for all x > xε.

It follows that

lim
x↑∞

∫ x

−∞
Ψ(y) dy > lim

x↑∞

∫ x

−∞

(
1

r
− ε

)
ψ′(y)

φ(y)ψ(y)
dy

≥
(
1

r
− ε

)
lim
x↑∞

∫ x

xε

ψ′(y)

φ(y)ψ(y)
dy

>

(
1

r
− ε

)
1

φ(xε)
lim
x↑∞

∫ x

xε

ψ′(y)

ψ(y)
dy

=

(
1

r
− ε

)
1

φ(xε)
lim
x↑∞

ln

(
ψ(x)

ψ(xε)

)
= ∞.

However, this result contradicts (A.14). Using the same reasoning with sym-

metric calculations, we can show that the first limit in (A.11) is also equal to

∞. The calculation
d

dx

1

p′(x)
=

2α(x)

β2(x)p′(x)

and the fact that ψ solves the ODE L ψ(x)− rψ(x) = 0 imply that

d

dx

ψ′(x)

p′(x)
=

2α(x)ψ′(x)

β2(x)p′(x)
+

(
2rψ(x)− 2α(x)ψ′(x)

)
β2(x)p′(x)

=
2rψ(x)

β2(x)p′(x)
= rCΨ(x).

This result and (A.5) imply the second identity in (A.12). The proof of the

first identity in (A.12) is similar.

If h is a Borel measurable function satisfying the equivalent integrability

conditions (A.6) and (A.7) such that h(x) ≤ −ε for all x ≥ xε, for some ε > 0

and xε ∈ R, then

lim
x↑∞

∫ x

−∞
Ψ(y)h(y) dy ≤

∫ xε

−∞
Ψ(y)h(y) dy − ε lim

x↑∞

∫ x

xε

Ψ(y) dy

=

∫ xε

−∞
Ψ(y)

(
h(y) + ε

)
dy − ε lim

x↑∞

∫ x

−∞
Ψ(y) dy = −∞,

the last identity following from the second limit in (A.11). The other limit in

(A.13) is proved similarly. □
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