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Abstract

With advancements in technology, the collection and storage of high-dimensional data

have become increasingly common, necessitating tools to analyze such data effectively.

Recovering the latent structure has gained popularity as an approach to dimensionality

reduction, as the latent processes typically have lower dimensionality, making them easier

to analyze and interpret. This thesis explores methods for uncovering the latent structure in

high-dimensional data across three domains.

Chapter 2 proposes a novel estimation method for the blind source separation model, as

introduced in Bachoc et al. (2020). The new method leverages eigenanalysis of a positive

definite matrix constructed from multiple normalized spatial local covariance matrices,

enabling the handling of moderately high-dimensional random fields. The consistency of the

estimated mixing matrix is established with explicit error rates, even under slowly decaying

eigen-gaps.

Chapter 3 examines the factor model framework for time series Lam and Yao (2012a),

with a focus on estimating the number of latent factors. Traditional methods struggle with

varying factor strengths, limiting their applicability. To address this, a non-parametric

hypothesis testing procedure is proposed, capable of identifying the correct number of factors

even when factor strengths differ. The proof on significance level of the test is provided,

and its effectiveness is demonstrated through comparisons with existing methods on both

simulated and real-world datasets.

Chapter 4 addresses the challenge of electricity load forecasting, starting with General-

ized Additive Models (GAM) provided by Électricité de France. The residuals from GAM

forecasts is analyzed and modeled to uncover its latent structure, which not only simplify



x

the modeling process but also enhance GAM estimations. Two approaches are explored:

latent segmentation using TS-PCA Chang, Guo, and Yao (2018a) and Matrix Time Series

Decorrelation Han et al. (2023), and dimensionality reduction with factor models using the

procedure developed in Chapter 3. Applied to national and regional electricity load data in

France, both methods enhance forecast accuracy, as measured by Root Mean Squared Error

(RMSE).
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Chapter 1

Introduction

1.1 Background

In the era of rapid technological advancement, data collection and storage have become more

convenient and widespread, leading to the prevalence of high-dimensional datasets across

various industries. High-dimensional data, defined as having a large number of features

compared to the number of observations, has brought new challenges for analysis, including

issues of over-parameterization, multicollinearity, and heavy computational burden. Tra-

ditional statistical methods, which rely on the assumption of a small number of variables

relative to observations, often struggle in tasks such as model fitting and forecasting under

these conditions. To address these challenges, many dimension reduction techniques have

emerged as powerful tools for finding the lower-dimensional subspace that contains all useful

information of the original dataset. Among these, recovering latent structures has gained

growing attention as an effective approach, as latent structures typically encapsulate the

underlying dynamics of the data in a lower-dimensional representation, enhancing both inter-

pretability and computational efficiency. Latent structure analysis can be viewed as a specific

form of finding a low-dimensional subspace, but with a strong focus on interpretability and

uncovering hidden relationships.

Latent structures represent the hidden processes or variables that drives the observed

data. These structures are analyzed based the assumption that high-dimensional observations



2 Introduction

are generated by a small number of underlying factors or components. Initially introduced

in the context of psychology and social sciences for understanding the potentially existing

unobservable traits, latent structure models have since evolved to address challenges in areas

such as biology, meteorology, and finance. Their development has been driven by the need to

uncover meaningful patterns in noisy or redundant data, providing insights that are otherwise

obscured in high-dimensional spaces.

The use of latent structures offers several advantages. By reducing the dimensionality

of the observed data, these models alleviate computational constraints and improve the

efficiency of further analysis. However, these methods are not without limitations. The

assumption of a well-defined latent structure may not hold in all scenarios, particularly in

datasets with nonlinearity or highly complex relationships. Furthermore, the estimation

of latent components can be sensitive to model specifications and parameter choices, such

as factor strength in factor models, or may require prior knowledge of the dataset. For

instance, in finance, the widely used three-factor model proposed by Fama and French (1993)

assumes prior knowledge of market, size, and value factors as latent variables driving stock

returns, which might not generalize to other domains. Balancing the trade-offs between

interpretability, model complexity, and computational feasibility remains a critical challenge

in the application of latent structure models.

1.2 Structure of Thesis

This thesis is structured as follows: Chapter 2 introduces a method for estimating latent

structures in high-dimensional spatial data. Chapter 3 focuses on latent structure estimation

in high-dimensional time series, with an emphasis on developing an estimator for the number

of latent variables. Chapter 4 demonstrates the application of latent structure analysis to the

real-world problem of electricity load forecasting.
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1.3 Contribution of Each Chapter

The contribution of each chapter in this thesis can be summarized as follows:

Chapter 2 (Blind Source Separation Over Space) proposed a new estimation method

for the blind source separation model of Bachoc et al. (2020). The new estimation is based on

an eigenanalysis of a positive definite matrix defined in terms of multiple normalized spatial

local covariance matrices, and, therefore, can handle moderately high-dimensional random

fields. The consistency of the estimated mixing matrix is established with explicit error rates

even when the eigen-gap decays to zero slowly. The proposed method is illustrated via both

simulation and a real data example.

Chapter 3 (Permutation Tests for Identifying Number of Factors for High-Dimensional

Time Series) presents a non-parametric testing method for determining the number of factors

in high-dimensional time series, developed from the factor model proposed by Lam and Yao

(2012a). Our introduced estimator utilizes permutation testing to identify the number of fac-

tors without relying on assumptions about the underlying factor structure. Unlike traditional

ratio-based estimators, our method demonstrates robustness across various factor strength

levels and is consistent in its estimation, even when the number of variables p exceeds the

number of observations n. Our method is shown to effectively control Type I error and

provides reliable estimates in both low and high-dimensional settings. Through theoretical

analysis and empirical validation, we demonstrate the advantages of our proposed estimator

over existing methods, particularly in scenarios with varying factor strengths. This work

contributes to the literature by offering a more flexible, robust, and interpretable approach to

factor identification in high-dimensional time series data.

Chapter 4 (Electricity Load Forecasting by Factor Models, TS-PCA and Matrix TS

Models) demonstrates the integration of latent structure analysis tools, such as factor models,

into a real-world application of electricity load forecasting. By analyzing residual series

from Generalized Additive Models (GAM), we show how latent structure methodologies

can improve predictive accuracy through dimensionality reduction. Additionally, we propose

model-stacking procedures that combine factor models, time-series principal component

analysis (TS-PCA), and dynamic Kalman filters, capturing both global latent structures
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and local temporal dependencies. Applied to national and regional electricity load datasets

in France, these methods enhance forecast accuracy, providing a practical framework for

utilizing latent structure analysis in high-dimensional data projects.



Chapter 2

Blind Source Separation Over Space

2.1 Introduction

Blind source separation is an effective way to reduce the complexity in modeling p-variant

spatial data (Nordhausen et al. (2015), Bachoc et al. (2020)). Spatial data, denoted as

X(s), refers to multivariate measurements collected at specific spatial locations s1, . . . ,sn,

where each location s lies in a d-dimensional space. For example, consider soil sampling

in a mining field: if we randomly select points on a two-dimensional map and measure

the concentrations of 10 elements (such as iron and aluminum) at each point, then X(s)

constitutes 10-dimensional spatial data, with the spatial locations s ∈ R2.

The approach of blind source separation can be viewed as a version of independent

component analysis (Hyvarinen, Karhunen, and Oja (2001)) for multivariate spatial random

fields. It is used to learn the underlying independent spatial signals or processes that,

when mixed, produce the complex observed data. As spatial data typically exhibit both

spatial dependence and inter-variable correlations, recovering these latent components would

reduce the complexity and dimensionality of the data, which could enhance computational

efficiency in modeling and prediction. Besides, it has the potential of isolating distinct spatial

phenomena, which could be interpreted separately. Further, it also helps filtering out the

noise or redundant information. In general, blind source separation on spatial data makes it

easier to uncover, interpret, and utilize the inherent spatial structures within the data.
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Though only the second moment properties are concerned, the challenge is to un-correlate

p spatial random fields at the same location as well as across different locations. Note that

the standard principal component analysis does not capture spatial correlations, as it only

diagonalizes the covariance matrix (at the same location). Nordhausen et al. (2015) introduced

a so-called local covariance matrix, defined as

M( f ) =
1
n

n

∑
i, j=1

f (si,s j)X(si)X(s j)
⊤,

to represent the dependence across different locations. Unlike conventional covariance

matrices, which compute covariances using all available observations, a local covariance

matrix is constructed by first selecting a subset of observations based on spatial proximity.

This approach leverages the natural tendency of spatial data—where nearby measurements

are typically more similar—to capture the most relevant covariance structure. By focusing on

local neighborhoods, we can reduce computational costs and minimize the impact of noise

from distant, less correlated data.

Kernel functions f (si,s j) serve as a mechanism to select observations based on spatial

distance among observations. Kernel choice is central in spatial blind source separation

because it determines how local covariance matrices are computed, which in turn influences

the separation of latent components. In Nordhausen et al. (2015), they employed the ball

kernel defined as fh(si−s j)=1(||si−s j|| ≤ h), which iwhich includes only those observation

pairs that are within a specified distance h. This selective filtering includes only pairs of

observations within a fixed distance. The only parameter h should be chosen to match

the scale at which significant spatial correlation exists. Another common type of kernel is

called ring kernel, given by f (s) = 1(h1 ≤ ∥s∥ ≤ h2), with inner radius h1 and outer radius

h2. It selectively weights pairs whose separation falls within a specific range, potentially

highlighting intermediate-range interactions. Apart from these 2 basic kernels, there are other

more complicated kernels, such as the squared exponential kernel, which provides a smooth

decay in weight with distance, allowing every pair of points to contribute. The choice and

tuning of the kernel function directly affect how local spatial correlations are quantified.
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Furthermore, Nordhausen et al. (2015) proposed to estimate the mixing matrix, defined

in (2.1) in Section 2.2.1 below, in the blind source separation decomposition based on a

generalized eigenanalysis, which can be viewed as an extension of the principal component

analysis as it diagonalizes a local covariance matrix in addition to the standard covariance

matrix. To overcome the drawback of using the information from only one local covariance

matrix, Bachoc et al. (2020) proposed to use multiple local covariance matrices in the

estimation (see (2.5) in Section 2.2.2). The method of Bachoc et al. (2020) has a clear

advantage in incorporating the spatial dependence information over different ranges. It is

in the spirit of JADE (joint approximate diagonalization of eigenmatrices) in non-spatial

contexts. See Chapter 11 of Hyvarinen, Karhunen, and Oja (2001) and the references

within. Its estimation is based on a nonlinear optimization with p2 parameters. Hence it is

compute-intensive and cannot cope with very large p.

Inspired by Bachoc et al. (2020), we propose a new method also based on multiple

(normalized) local covariance matrices for estimating the mixing matrix. Different from

Bachoc et al. (2020), the new method is computationally efficient as it boils down to an

eigenanalysis of a positive definite matrix which is a matrix function of multiple normalized

spatial local covariance matrices. Therefore it can handle the cases with the dimension of

random fields in the order of a few thousands on an ordinary personal computer. While

the basic idea resembles that of Chang, Guo, and Yao (2018b) which dealt with multiple

time series, the spatial random fields concerned are sampled irregularly and non-unilaterally,

and the spatial correlations spread in all directions. Furthermore, we incorporate the pre-

whitening in our search for the mixing matrix. This implies estimating the covariance matrix

of the process, which is assumed to be an identity matrix in Chang, Guo, and Yao (2018b).

The normalized spatial local covariance matrix, defined in (2.10) below, is a modified version

of the spatial local covariance matrix in Nordhausen et al. (2015), and is introduced to

facilitate the effect of the pre-whitening. All these entail completely different theoretical

exploration; leading to the asymptotic results under the similar setting of Bachoc et al. (2020)

but allowing the dimension of the random field to diverge together with the number of the

observed locations, which is assumed to be fixed in Bachoc et al. (2020).
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The efficiency gain in computing of the proposed method is due to adding together the

information from different normalized local covariance matrices. However, rather than adding

covariance matrices directly such as in TDSEP (Ziehe and Müller (1998)), each term in the

sum of (2.9) in Section 2.2.3 below is the product of a normalized local covariance matrix

and its transpose, which, therefore, is non-negative definite matrix. This avoids the possible

cancellation of the information from different normalized local covariance matrices. Note

covariance matrices are not non-negative definite, and adding them together directly may

leads to volatile performance due to information cancellation; see Table 1 of Ziehe and Müller

(1998). Although the sample fourth moments occur in (2.9) in order to avoid the information

cancellation, our goal is decorrelaton across space via diagonalizing multiple normalized

local covariance matrices. Indeed the way to use the fourth moments and the purpose of using

them are radically different from those of FOBI (forth-order blind identification) algorithms.

See Chapter 11 of Hyvarinen, Karhunen, and Oja (2001) and the references within.

Another new contribution of this chapter concerns the eigen-gap in the eigenanalysis

for estimating the mixing matrix. In order to identify a consistent estimator for the mixing

matrix, the standard condition is to assume that the minimum pairwise absolute difference

among the eigenvalues remains positive. See Assumptions 8 and 9 of Bachoc et al. (2020).

The similar conditions have been imposed in the literature in order to identify factor loading

spaces in factor models in Lam and Yao (2012b). However this condition is invalid under the

setting concerned in this chapter when the dimension of random field p diverges to infinity,

as the maximum order of the eigen-gap is p−1. We show that the identification of the mixing

matrix is still possible when p → ∞ at the rate p = o(n1/3). See Theorem 2.3.2 and Remark

2 in Section 2.3.

The rest of the chapter is organized as follows. We present the spatial blind source

separation model and the new estimation method in Section 2.2. The asymptotic properties

are developed in Section 2.3. Numerical illustration with both simulated data and a real data

set is presented in Section 2.4. All the technical proofs are given in the Appendix A.1-A.2.

The R-package BSSoverSpace, available in the CRAN project, implements the methods

proposed in this chapter.
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2.2 Setting and Methodology

2.2.1 Model

We adopt the spatial blind source separation model of Bachoc et al. (2020). More precisely,

let X(s) = {X1(s), · · · ,Xp(s)}⊤ be a p-variate random field defined on s ∈S ⊂Rd , and X(s)

admits the representation

X(s) = ΩZ(s)≡ Ω{Z1(s), · · · ,Zp(s)}⊤, (2.1)

where Z1(s), · · · ,Zp(s) are p independent latent random fields, and Ω is a p× p invertible

constant matrix and is called the mixing matrix. Furthermore, Bachoc et al. (2020) assumes

that for any s,u ∈ S ,

EZ(s) = µ0, Var{Z(s)}= Ip, Cov{Z(s),Z(u)}= H(s−u), (2.2)

where µ0 is an unknown constant vector, Ip denotes the p× p identity matrix, H(·) is a p× p

diagonal matrix

H(s−u) = diag{K1(s−u), · · · ,Kp(s−u)},

i.e. Cov{Zi(s),Z j(u)}= Ki(s−u) if i = j, and 0 otherwise. Let µ = Ωµ0. Under (2.1) and

(2.2), X(·) is a weakly stationary process as

EX(s) = µ, Var{X(s)}= ΩΩ
⊤, Cov{X(s),X(u)}= ΩH(s−u)Ω⊤. (2.3)

2.2.2 The Existing Methods

Let X(s1), · · · ,X(sn) be available observations. Put

X̃(si) = X(si)−
1
n

n

∑
j=1

X(s j), Z̃(si) = Z(si)−
1
n

n

∑
j=1

Z(s j), i = 1, · · · ,n.
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Then the spatial local covariance matrix of Nordhausen et al. (2015) is defined as

M̃( f ) =
1
n

n

∑
i, j=1

f (si − s j)X̃(si)X̃(s j)
⊤, (2.4)

where f (·) is a kernel function such as the ring kernel f (s) = 1(h1 ≤ ∥s∥ ≤ h2) for some

constants 0 ≤ h1 < h2 < ∞, and 1(·) denotes the indicator function. To recover the mixing

matrix Ω, Bachoc et al. (2020) proposed to estimate the unmixing matrix (i.e. the inverse of

the mixing matrix) Γ = Ω−1 ≡ (γ1, · · · ,γp)
⊤ by

Γ̂ ∈ arg max
ΓM̃( f0)Γ⊤=Ip

k

∑
i=1

p

∑
j=1

{γ
⊤
j M̃( fi)γ j}2, (2.5)

where f0(s) = I(s = 0), and f1, · · · , fk are appropriately specified kernels. This is a nonlinear

optimization problems with p2 variables, which Bachoc et al. (2020) adopted the algorithm

of Clarkson (1988) to solve. When k = 1, the objective function contains only one kernel

function. Then the above optimization can be solved based on a generalized eigenanalysis;

see Nordhausen et al. (2015) and Bachoc et al. (2020), though the estimation based on a

single kernel requires the prior knowledge on which kernel to use for a given problem.

2.2.3 The New Method

We now propose a new method to estimate the mixing matrix using multiple kernels but

based on a single eigenanalysis. To this end, we define, for any given k kernel function

f1(·), · · · , fk(·),

N = E
[1

k

k

∑
h=1

{1
n

n

∑
i, j=1

fh(si − s j)Z̃(si)Z̃(s j)
⊤}{1

n

n

∑
i, j=1

fh(si − s j)Z̃(si)Z̃(s j)
⊤}⊤], (2.6)

W = E
[1

k

k

∑
h=1

{1
n

n

∑
i, j=1

fh(si − s j)Σ
−1/2X̃(si)X̃(s j)

⊤}
Σ
−1

×
{1

n

n

∑
i, j=1

fh(si − s j)X̃(si)X̃(s j)
⊤

Σ
−1/2}⊤],
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where Σ = Var{X(s)} = ΩΩ⊤. Then N and W are p× p non-negative definite matrices.

Furthermore, N is a diagonal matrix, as its (i, j)-th element, for i ̸= j, is

1
n2k

k

∑
h=1

p

∑
ℓ=1

n

∑
i1,i2, j1, j2=1

fh(si1 − s j1) fh(si2 − s j2)E{Z̃i(si1)Z̃ℓ(s j1)Z̃ j(si2)Z̃ℓ(s j2)}= 0,

which is guaranteed by the fact that the components of Z(·) are the p independent random

fields. Since Ω is a p× p full rank matrix, we can rewrite Ω =VΩΛΩUΩ, where VΩ and UΩ

are two p× p orthogonal matrices, and ΛΩ is a diagonal matrix. Then Σ−1/2 =VΩΛ
−1
Ω

V⊤
Ω

.

Combining this and (2.1), we have

W =VΩUΩNU⊤
Ω V⊤

Ω , (2.7)

i.e. the columns of UW ≡ VΩUΩ are the p orthonormal eigenvectors of matrix W with the

diagonal elements of N as the corresponding eigenvalues. As Σ1/2UW =VΩΛΩV⊤
Ω

VΩUΩ = Ω,

this paves the way to identifying mixing matrix Ω. We summarize the finding in the

proposition below.

Proposition 2.2.1. Under the condition (2.2), the mixing matrix Ω defined in (2.1) is of the

form Σ1/2UW , where the columns of UW are the p orthonormal eigenvectors of matrix W.

Moreover, those p eigenvectors are identifiable, upto the sign changes, if the p diagonal

elements of N are distinct from each other.

Note that the sign changes of any columns of UW will not change the independence of

the components of Z(·) in (2.1), as Z(s) =U⊤
W Σ−1/2X(s). By Proposition 2.2.1, we define an

estimator for the mixing matrix as

Ω̂ = Σ̂
1/2ÛW , (2.8)

where Σ̂ = n−1
∑1≤ j≤n X̃(s j)X̃(s j)

⊤, and the columns of ÛW are the p orthonormal eigenvec-

tors of matrix

Ŵ =
1
k

k

∑
h=1

M̂( fh)M̂( fh)
⊤. (2.9)
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In the above expression, M̂( fh) is a normalized local covariance matrix defined as

M̂( f ) =
1
n

n

∑
i, j=1

f (si − s j)Σ̂
−1/2X̃(si)X̃(s j)

⊤
Σ̂
−1/2. (2.10)

This estimation procedure is implemented in Algorithm 1 below. In comparison to the

local covariance matrix (2.4), we replace X(·) by its standardized version Σ̂−1/2X̃(·). This

effectively pre-whitens the data in our search for the mixing matrix.

Algorithm 1: Eigenanalysis approach for BSS over space
Input: X(s1), · · · ,X(sn) and f1(·), · · · , fk(·).
(i) Compute X̃(si) = X(si)− 1

n ∑
n
j=1 X(s j) and Σ̂ = n−1

∑1≤ j≤n X̃(s j)X̃(s j)
⊤.

(ii) Compute Ŵ in (2.9).
(iii) Compute eigenvalues Λ̂W and eigenvectors ÛW of matrix Ŵ .
(iv) Compute Ω̂−1 = Û⊤

W Σ̂−1/2.
Output: Ẑ(si) = Ω̂−1X(si), i = 1, · · · ,n.

Remark 1. The proposed new method makes use of the normalized 4th moments of the

observations while the methods of Bachoc et al. (2020) and Nordhausen et al. (2015) only

depend on the 2nd moments. However the 4th moments occur only in the matrix products

M̂( fh)M̂( fh)
⊤ in defining Ŵ in (2.9), and each of those products is a non-negative definite

matrix. We add together those non-negative definite matrices, instead of M̂( fh) (as suggested

in Ziehe and Müller (1998)), to avoid the information cancellation from different M̂( fh). See

also Chang, Guo, and Yao (2018b). Note that both our way of using the fourth moments and

our purpose of using them are radically different from those of FOBI (Hyvarinen, Karhunen,

and Oja (2001, Chapter 11)).

For example, W in (2.6) is a p× p matrix with the (l,m)-th element

E
[ 1

n2k

k

∑
h=1

p

∑
v=1

n

∑
i, j,c,d=1

fh(si − s j) fh(sc − sd)Z̃l(si)Z̃m(sc)Z̃v(s j)Z̃v(sd)
]
,

while a FOBI algorithm would use instead a p2 × p2 quadricovariance matrix with the

elements being the fourth order cumulants (Ferréol, Albera, and Chevalier (2005)). Our goal
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is to avoid information cancellation while diagonalizing different local covariance matrices.

FOBI is to diagonalize a quadricovariance matrix.

2.3 Asymptotic Properties

We consider the asymptotic behavior of the estimator Ω̂ when n → ∞ and p either remaining

fixed or p = o(n). Since Ω̂−1X(s) = Ω̂−1ΩZ(s), we will focus on Γ̂Ω = Ω̂−1Ω. We introduce

some regularity assumptions first.

Assumption 2.3.1. In model (2.1), Z1(·), · · · ,Zp(·) are p independent and strictly stationary

random fields on Rd , and assumption (2.2) holds. Furthermore, Z(·) is sub-Gaussian in the

sense that there exists a constant C0 > 0 independent of p for which

sup
β≥1,1≤i≤p

β
−1/2{E|Zi(s)|β}1/β ≤C0. (2.11)

Moreover, for any unit vector (a1, · · · ,an)
⊤ ∈ Rn and 1 ≤ ℓ ≤ p, ∑

n
i=1 aiZℓ(si) is sub-

Gaussian.

Assumption 2.3.2. There exist positive constants ∆,α and A (independent of n and p) such

that for any 1 ≤ i ̸= j ≤ n and n ≥ 2, ∥si−s j∥≥ ∆, and for s,u ∈ Rd , 1 ≤ ℓ≤ p and 1 ≤ h ≤ k

(k is fixed),

|Cov{Zℓ(s+u),Zℓ(s)}| ≤ A/(1+∥u∥d+α), (2.12)

| fh(s)| ≤ A/(1+∥s∥d+α). (2.13)

Assumption 2.3.3. Let λ1 ≥ ·· · ≥ λp ≥ 0 be the diagonal elements of matrix N defined in

(2.6), arranged in the descending order. There exist integers 0 = p0 < p1 < · · ·< pm = p for

which

limsup
n→∞

max
1≤i≤m

|λpi−1+1 −λpi|= 0, and (2.14)

liminf
n→∞

min
1≤i<m

|λpi −λpi+1|=C1 > 0, (2.15)



14 Blind Source Separation Over Space

where m ≥ 2 is a fixed integer, and C1 is a constant independent of p.

Assumptions 2.3.1 and 2.3.2 are essentially the same as Assumptions 1-7 of Bachoc et al.

(2020), though we impose only the sub-Gaussianality instead of requiring Z(·) to be normally

distributed. In addition, our setting allows p to diverge together with n. Assumption 2.3.3

is required for distinguishing the columns of the mixing matrix Ω from each other. Those

p columns are completely identifiable when p is fixed and m = p. Then condition (2.14)

vanishes, and (2.15) ensures that the p diagonal elements of matrix N are distinct from each

other (see Proposition 2.2.1). The similar conditions (i.e. with p fixed) were imposed in

Bachoc et al. (2020): see Assumptions 8 and 9 therein. Note that condition (2.15) cannot

hold when m = p → ∞. When p → ∞ together with n, (2.14) and (2.15) ensure that the

estimated mixing matrix Ω̂ transforms X(·) into m independent subvectors; see Theorem

2.3.1 below. Recalling the definition of N in (2.6), we can see that the choice of kernels

should satisfy Assumption 2.3.3. This is the same for Bachoc et al. (2020).

Without the loss of generality, we assume that the p components of Z(·) are arranged in

the order such that the diagonal elements of matrix N in (2.6) are in the descending order.

This simplifies the presentation of Theorem 2.3.1 substantially.

Write Ŵ = ÛW Λ̂WÛ⊤
W as its spectral decomposition, i.e.

Λ̂W = diag(λ̂W,1, · · · , λ̂W,p),

where λ̂W,1 ≥ ·· · ≥ λ̂W,p ≥ 0 are the eigenvalues of Ŵ , and the columns of the orthogonal

matrix ÛW are the corresponding eigenvectors. Consequently,

Γ̂Ω = Ω̂
−1

Ω = Û⊤
W Σ̂

−1/2
Ω. (2.16)

Corollary 2.3.1 below shows that Ω̂−1Ω = Γ̂Ω

P−→ Ip when p is finite and m = p in

Assumption 2.3.3. To state a more general result first, put qi = pi− pi−1 for i = 1, · · · ,m (see
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Assumption 2.3.1), and

Ω̂
−1

Ω = Γ̂Ω =


Γ̂Ω,11 · · · Γ̂Ω,1m

· · · · · · · · ·

Γ̂Ω,m1 · · · Γ̂Ω,mm

 , (2.17)

where submatrix Γ̂Ω,i j is of the size qi ×q j.

Theorem 2.3.1. Let Assumptions 2.3.1-2.3.3 hold. As n → ∞ and p = o(n), it holds that

∥Γ̂Ω,ii∥= 1+Op{n−1/2 p1/2}, ∥Γ̂Ω,ii∥min = 1+Op{n−1/2 p1/2} 1 ≤ i ≤ m, (2.18)

∥Γ̂Ω,i j∥= Op{n−1/2 p1/2}, 1 ≤ i ̸= j ≤ m, and (2.19)

∥Λ̂W −Λ∥= Op(n−1/2 p1/2), (2.20)

where Λ = diag(λ1, · · · ,λp), and λi are specified in Assumption 2.3.3.

Theorem 2.3.1 implies that Γ̂Ω,i j
P−→ 0 for any i ̸= j. Hence the transformed process

Ω̂−1X(·) = Γ̂ΩZ(·) can only be divided into the m asymptotically independent random

fields of dimensions q1, · · · ,qm respectively. This is due to the lack of separation of the

corresponding eigenvalues within each of those m groups; see (2.14). On the other hand,

Theorem 2.3.1 still holds, under some additional conditions, if the components of Z(·) within

each of those m groups are not independent with each other. Then this is in the spirit of the

so-called multidimensional independent component analysis of Cardoso (1998). In practice,

one needs to identify the m latent groups among the p components of Ω̂−1X(·), which can be

carried out by adapting the procedures in Section 2.2 of Chang, Guo, and Yao (2018b). By

(2.20), Λ̂W will indicate how those eigenvalues are different from each other; see Assumption

2.3.3.

Note that Theorem 2.3.1 holds when either p is fixed and finite, or p/n → 0 as n → ∞.

When p is fixed and m = p in Assumption 2.3.3, all Γ̂Ω,i j reduces to a scale and qi = 1. Then

Corollary 2.3.1 below follows from Theorem 2.3.1 immediately.
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Corollary 2.3.1. Let Assumptions 2.3.1-2.3.3 hold with m = p, and p be a fixed integer. Then

as n → ∞, ∥Ip − Ω̂−1Ω∥= Op(n−1/2).

A key condition in Corollary 2.3.1 for identifying all the columns of the mixing matrix is

that the eigengap defined as

vgap = min
1≤i̸= j≤p

|λi −λ j| (2.21)

remains bounded away from 0, which is implied by (2.15) when p=m is fixed. This condition

cannot be fulfilled when p diverges (together with n). To appreciate the performance of the

proposed procedure when p is large in relation to n, we present Theorem 2.3.2 below which

indicates that the mixing matrix can still be estimated consistently but at much slower rates

when the eigengap vgap decays to 0 provided p diverges to ∞ not too fast; see Remark 2

below.

Assumption 2.3.4. limsupn→∞ v−1
gapn−1/2 p1/2 = 0.

Theorem 2.3.2. Let Assumptions 2.3.1, 2.3.2 and 2.3.4 hold. Denote by γ̂Ω,i j the (i, j)-th

entry of matrix Γ̂Ω. Then as n, p → ∞, it holds that

γ̂Ω,i j = Op(n−1/2 p1/2v−1
gap| j− i|−1) for 1 ≤ i ̸= j ≤ p, and (2.22)

γ̂Ω,ii = 1+Op(n−1 pv−2
gap +n−1/2 p1/2) for i = 1, · · · , p. (2.23)

Moreover, (2.20) still holds.

Remark 2. Note that λ1 −λp ≥ (p−1)vgap, and, therefore, vgap = O(p−1). Thus it follows

from Assumption 2.3.4 that p = o(n1/3), i.e. in order to fully identify the mixing matrix, p

cannot be too large in the sense that p/n1/3 → 0.
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2.4 Numerical Illustration

2.4.1 Simulation

We illustrate the finite sample properties of the proposed method by simulation. We set

the dimension of random fields at p =3 and 50, and the sample size n (i.e. the number of

locations) between 100 to 2000. The coordinates of those n locations are drawn independently

from U(0,50)2. Both Gaussian and non-Gaussian random fields are used. Also included

in the simulation is the method of Bachoc et al. (2020). For each setting, we replicate the

simulation 1000 times.

The p-variate random fields X(·) are generated according to (2.1) in which Z1(·), · · · ,Zp(·)

are p independent random fields with either N(0,1) or t5 marginal distributions, and the

Matern correlation function

ρ(s) = 21−κ
Γ(κ)−1(s/φ)κBκ(s/φ),

where κ > 0 is the shape parameter, φ > 0 is the range parameter, Γ(·) is the Gamma function,

and Bκ is the modified Bessel function of the second kind of order κ . We set different values

of (κ,φ) for different Z j. More precisely κ’s are drawn independently from U(0,6), and φ ’s

are drawn independently from U(0,2). The mixing matrix Ω in (2.1) is set to be the p× p

identity matrix.

To measure the accuracy of the estimation for Ω, we define

D(Ω,Ω̂) =
1

2p(
√

p−1)

p

∑
j=1

{(∑1≤i≤p d2
i j)

1/2

max1≤i≤p |di j|
+

(∑1≤i≤p d2
ji)

1/2

max1≤i≤p |d ji|
−2

}
,

where di j is the (i, j)-th element of matrix Ω−1Ω̂. As

p−1/2 ≤ max
1≤i≤p

|di j|
/(

∑
1≤i≤p

d2
i j
)1/2 ≤ 1.
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it holds that D(Ω,Ω̂) ∈ [0,1], and D(Ω,Ω̂) = 0 if Ω̂ is a column permutation and/or column

sign changes of Ω.

We set k = 10 in (2.9), and

fh(s) = 1(ch−1 < ∥s∥ ≤ ch), h = 1, · · · ,10, (2.24)

where 0 = c0 < c1 < · · ·< c10 = ∞ are specified such that for each h = 1, · · · ,10, {(si,s j) :

1≤ i< j ≤ n, ch−1 < ∥si−s j∥≤ ch} contains the 10% of the total pairs (si,s j), 1≤ i< j ≤ n.

The boxplots of D(Ω,Ω̂) obtained in the 1000 replications are presented in Figures 2.1–

2.4. Estimations by the method of Bachoc et al. (2020) are computed using the R-function

sbss, provided in R-package SpatialBSS. In addition to the multiple kernel estimation, we

also compute the estimates with a single kernel, using each of the 10 kernels in (2.24),

For computing the multiple kernel method of Bachoc et al. (2020), we set the maximum

number of iterations at 2000. By using a single kernel, the method of Bachoc et al. (2020)

leads to almost identical estimates as those obtained by the proposed method (with the same

single kernel). Therefore we omit the detailed results.

Figures 2.1 – 2.4 and Tables 2.1 – 2.4 indicate clearly that both the methods with multiple

kernels outperform most of those with a single kernel, and the proposed method outperforms

the multiple kernel method of Bachoc et al. (2020) especially when p is large (i.e. p = 50).

The proposed method with multiple kernels performs about the same as that with the best

single kernel (i.e. Kernel 1 f1(·)). The accuracy of estimation improves with the increase

in the number of observations n, which can be seen as a decrease in D(Ω,Ω̂) in Figures

2.1–2.4. Among all single kernel methods, those using kernel f1 perform the best, as those

estimations include the 10% nearest locations. Indeed the Matern correlation is the strongest

at the smallest distance. On the other hand, the performances for the Gaussian and the

non-Gaussian random fields are about the same. See Figures 2.1 & 2.2, and Figures 2.3 &

2.4.

The iterative algorithm for implementing the multiple kernel method of Bachoc et al.

(2020) is to solve a nonlinear optimization problem with p2 parameters. When p = 50, it
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failed to converge within the 2000 iterations in some of the 1000 simulation replications.

The numbers of failures with n =100, 500, 1000 and 2000 are, respectively, 3,1,2 and 1 for

the Gaussian random fields, and 6,3,3 and 1 for the non-Gaussian random fields. We only

include the results from the converged replications in the figures.

Fig. 2.1 Boxplots of D(Ω,Ω̂) for the proposed method using the 10 kernels (new) in (2.24),
or each of those 10 kernels (Kernel 1, · · · , Kernel 10), and the method of Bachoc et al. (2020)
using the 10 kernels (original) in a simulation with 1000 replications for the Gaussian random
fields. The number of observations n is 100, 500, 1000 or 2000 (from top to bottom), and the
dimension of random fields is p = 3.

Kernel 1 2 3 4 5 6 7 8 9 10 Multiple(new) Multiple(original)

n=100 0.0814 0.2284 0.2707 0.2584 0.2594 0.2617 0.2542 0.2688 0.2619 0.2517 0.0933 0.1298

n=500 0.0248 0.1437 0.2019 0.2051 0.2042 0.1873 0.1830 0.1926 0.2076 0.2071 0.0327 0.0444

n=1000 0.0189 0.1124 0.1992 0.1782 0.1800 0.1746 0.1862 0.1803 0.1823 0.1887 0.0233 0.0324

n=2000 0.0164 0.1194 0.1870 0.1631 0.1686 0.1746 0.1533 0.1761 0.1701 0.1845 0.0204 0.0260

Table 2.1 Median of D(Ω,Ω̂) from the proposed method using the 10 single kernels, or
multiple kernel(including all 10 ring kernels), and the method of Bachoc et al. (2020). using
the multiple kernel (multiple original) in a simulation with 1000 replications for the Gaussian
random fields. The number of observations n is 100, 500, 1000 or 2000 , and the dimension
of random fields is p = 3.
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Fig. 2.2 Boxplots of D(Ω,Ω̂) for the proposed method using the 10 kernels (new) in (2.24),
or each of those 10 kernels (Kernel 1, · · · , Kernel 10), and the method of Bachoc et al. (2020)
using the 10 kernels (original) in a simulation with 1000 replications for the non-Gaussian
random fields. The number of observations n is 100, 500, 1000 or 2000 (from top to bottom),
and the dimension of random fields is p = 3.

Kernel 1 2 3 4 5 6 7 8 9 10 Multiple(new) Multiple(original)

n=100 0.0837 0.2377 0.2656 0.2579 0.2676 0.2664 0.2478 0.2503 0.2440 0.2531 0.0915 0.1194

n=500 0.0244 0.1526 0.2028 0.2001 0.2052 0.1998 0.1923 0.1964 0.2028 0.2107 0.0284 0.0424

n=1000 0.0178 0.1096 0.1767 0.1943 0.1868 0.1812 0.1741 0.1627 0.1885 0.1911 0.0215 0.0326

n=2000 0.0165 0.1230 0.1907 0.1765 0.1676 0.1663 0.1652 0.1625 0.1742 0.1818 0.0194 0.0293

Table 2.2 Median of D(Ω,Ω̂) from the proposed method using the 10 single kernels, or
multiple kernel(including all 10 ring kernels), and the method of Bachoc et al. (2020). using
the multiple kernel (multiple original) in a simulation with 1000 replications for the non-
Gaussian random fields. The number of observations n is 100, 500, 1000 or 2000 , and the
dimension of random fields is p = 3.
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Fig. 2.3 Boxplots of D(Ω,Ω̂) for the proposed method using the 10 kernels (new) in (2.24),
or each of those 10 kernels (Kernel 1, · · · , Kernel 10), and the method of Bachoc et al. (2020)
using the 10 kernels (original) in a simulation with 1000 replications for the Gaussian random
fields. The number of observations n is 100, 500, 1000 or 2000 (from top to bottom), and the
dimension of random fields is p = 50.

Kernel 1 2 3 4 5 6 7 8 9 10 Multiple(new) Multiple(original)

n=100 0.2337 0.2404 0.2433 0.2438 0.2442 0.2442 0.2418 0.2408 0.2405 0.2394 0.2308 0.2339

n=500 0.2295 0.2348 0.2375 0.2378 0.2373 0.2377 0.2356 0.2356 0.2355 0.2369 0.2153 0.2276

n=1000 0.2247 0.2300 0.2326 0.2343 0.2331 0.2323 0.2313 0.2313 0.2321 0.2346 0.2059 0.2228

n=2000 0.2207 0.2254 0.2285 0.2303 0.2293 0.2288 0.2275 0.2275 0.2286 0.2310 0.1993 0.2184

Table 2.3 Median of D(Ω,Ω̂) from the proposed method using the 10 single kernels, or
multiple kernel(including all 10 ring kernels), and the method of Bachoc et al. (2020). using
the multiple kernel (multiple original) in a simulation with 1000 replications for the Gaussian
random fields. The number of observations n is 100, 500, 1000 or 2000 , and the dimension
of random fields is p = 50.
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Fig. 2.4 Boxplots of D(Ω,Ω̂) for the proposed method using the 10 kernels (new) in (2.24),
or each of those 10 kernels (Kernel 1, · · · , Kernel 10), and the method of Bachoc et al. (2020)
using the 10 kernels (original) in a simulation with 1000 replications for the non-Gaussian
random fields. The number of observations n is 100, 500, 1000 or 2000 (from top to bottom),
and the dimension of random fields is p = 50.

Kernel 1 2 3 4 5 6 7 8 9 10 Multiple(new) Multiple(original)

n=100 0.2332 0.2391 0.2425 0.2429 0.2425 0.2425 0.2417 0.2393 0.2390 0.2383 0.2295 0.2336

n=500 0.2292 0.2331 0.2363 0.2374 0.2369 0.2369 0.2359 0.2348 0.2352 0.2372 0.2143 0.2278

n=1000 0.2250 0.2305 0.2324 0.2338 0.2338 0.2327 0.2317 0.2312 0.2328 0.2341 0.2059 0.2228

n=2000 0.2203 0.2249 0.2281 0.2296 0.2292 0.2281 0.2269 0.2277 0.2288 0.2303 0.1990 0.2172

Table 2.4 Median of D(Ω,Ω̂) from the proposed method using the 10 single kernels, or
multiple kernel(including all 10 ring kernels), and the method of Bachoc et al. (2020). using
the multiple kernel (multiple original) in a simulation with 1000 replications for the non-
Gaussian random fields. The number of observations n is 100, 500, 1000 or 2000 , and the
dimension of random fields is p = 50.

The estimated eigengaps for the proposed method for the Gaussian random fields are

presented in Figures 2.5 and 2.6. As n increases, the eigengap also increases. Under low-

dimensional setting p = 3, the estimates based on single kernel f1 entail the largest eigengaps

and the smallest estimation errors D(Ω,Ω̂) (see also Theorem 2.3.2). However when p = 50,

using the multiple kernels leads to the largest eigengaps and the smallest estimation errors.
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The patterns with the non-Gaussian random fields are similar and not reported here to save

space.
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Fig. 2.5 Boxplots of the estimated eigengaps of the proposed method using the 10 kernels
(Multiple kernels) in (2.24), or each of those 10 kernels (Kernel 1, · · · , Kernel 10) for the
Gaussian random fields. Number of observations n is set at 100, 500, 1000 and 2000, the
dimension of random fields is p = 3.

Fig. 2.6 Boxplots of the estimated eigengaps of the proposed method using the 10 kernels
(Multiple kernels) in (2.24), or each of those 10 kernels (Kernel 1, · · · , Kernel 10) for the
Gaussian random fields. Number of observations n is set at 100, 500, 1000 and 2000, the
dimension of random fields is p = 50.



2.4 Numerical Illustration 25

2.4.2 A Real Data Example

We apply the proposed method to the moss data from the Kola project in the R package

StatDa (See P. Filzmoser and M. P. Filzmoser (2015)). The data consists of chemical

elements discovered in terrestrial moss at the 594 locations in northern Europe; see the map

in Fig.D.1 of Bachoc et al. (2020). More information on the data is presented in Reimann

et al. (2011). Following the lead of Nordhausen et al. (2015) and Bachoc et al. (2020),

we apply the so-called isometric-log-ratio transformation to the 31 compositional chemical

elements in the data. The transformed data are used in our analysis with n = 594 and p = 30.

We standardize the data first such that the sample mean is 0 and the sample variance is I30.

We apply the proposed estimation method with 10 kernels specified as in (2.24). The

scores of the first six independent components (IC), corresponding to the six largest eigenval-

ues of Ŵ (see Table 2.5), are plotted in Figure 2.8; showing some interesting spatial patterns.

For example, the 1st IC can be viewed as a contrast between the locations in the west and

those in the east, and the 2nd IC is that between the north and the south. To check if the

proposed estimation method has effectively removed the correlation between components, we

visualized the correlation matrix of the original dataset and the processed dataset, presented in

Figure 2.9. As the figure shows, the correlation matrix on the right is blank for non-diagonal

elements, suggesting that there are no correlation between any two different components.

On the left, the pairwise correlation is easily observable among almost any two different

components. This figure clearly displayed the ability of our proposed method to remove

dependence among components.

Figure 2.10 displays the absolute correlation coefficients between the first twelve ICs and

those obtained in Nordhausen et al. (2015) which was referred as ‘gold standard’ by Bachoc

et al. (2020). While the ICs derived from the two methods differ from each other, the two

sets of ICs correlate with each other significantly. For example the correlation between the

1st IC derived from our new method and the 2nd IC obtained in Nordhausen et al. (2015) is

0.92. Note that the ‘gold standard’estimation was obtained using the kernel specified with

the relevant subject knowledge. In contrast our estimation is based on the multiple kernels

defined generically in (2.24).
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i 1 2 3 4 5 6

λ̂i 1136.50 877.59 444.21 161.34 126.16 81.13

Table 2.5 The six largest eigenvalues of Ŵ (with k = 10) for the real data example.

Fig. 2.7 The estimated eigengaps ∆i = λ̂i−1 − λ̂i for i = 7, · · · ,30 on real data example from
proposed method with multiple kernel.

The six largest eigenvalues of Ŵ are listed in Table 2.5. The eigengaps ∆i = λ̂i−1 − λ̂i

for i = 7, · · · ,30 are plotted in Figure 2.7. It is clear that the eigengaps among the 13 largest

eigenvalues are large. Based on Theorem 2.3.1, we have

Ω̂
−1

Ω = Γ̂Ω =

Γ̂Ω,aa Γ̂Ω,ab

Γ̂Ω,ba Γ̂Ω,bb

 , (2.25)

where Γ̂Ω,aa is a 12×12 matrix satisfying ∥Γ̂Ω,aa − I12∥ = Op(n−1/2 p1/2). Theorem 2.3.1

also shows that ∥Γ̂Ω,ab∥ = Op(n−1/2 p1/2), ∥Γ̂Ω,ba∥ = Op(n−1/2 p1/2) and ∥Γ̂Ω,bb∥ = 1+

Op(n−1/2 p1/2). Thus, we are reasonably confident that the estimated first 12 ICs are reliable.

Moreover, we rewrite Ω̂⊤Ω̂ as

Û⊤
W Σ̂ÛW = Ω̂

⊤
Ω̂ =

Ω̂aa Ω̂ab

Ω̂ba Ω̂bb

 , (2.26)
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where Ω̂aa is a 12×12 matrix. We gain tr(Ω̂aa) = 6.62 and tr(Ω̂⊤Ω̂) = 8.89 by calculating.

Thus, the major variation of the 30 variables are largely reflected by the 12 largest ICs.

Fig. 2.8 The scores of the first six independent components over the 594 observation locations.
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Fig. 2.9 Correlation Matrix between 30 components over 594 observation locations. The
unprocessed data is on the left, and the BSS Over Space processed data is on the right.

Fig. 2.10 The absolute correlation coefficients between the first 12 independent components
derived from the proposed method (New) and those obtained in Nordhausen et al. (2015)
(Original).
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Supplementary Material

We provide the proofs of Theorems 1-2 in Appendix A.1. We also provide an additional

example for simulations in Appendix A.2.





Chapter 3

Permutation Tests for Identifying

Number of Factors for High-Dimensional

Time Series

3.1 Introduction

With the technological advancements over the past decade, high-dimensional time series data

have become increasingly important and accessible. This type of data is now prevalent across

various industries, including finance, climate science, biology, and many others. Given the

high dimensionality p, traditional multivariate methods may not be suitable for analyzing such

large-scale data. When p is large, the number of parameters required by traditional tools, such

as vector autoregressive models, can grow on the order of p2. As a result, dimension reduction

becomes essential. To address this challenge, numerous methods have been developed, which

can be broadly classified into two categories: summarizing and extracting. An example of

a summarizing method is the Principal Component Analysis (PCA) method, proposed by

Wold, Esbensen, and Geladi (1987). PCA reduces dimensionality by transforming the data

and identifying the first few principal components that capture the majority of the variability

within the dataset. While summarizing methods like PCA effectively compress the data and
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reduce its dimensionality, the interpretability of the resulting components can be challenging,

as these components may not have a clear or direct interpretation.

On the other hand, the second class of dimension reduction methods is based on the idea

that the variation across p variables can be modeled by a smaller set of underlying variables.

These methods assume the existence of a latent structure and reduce the dimensionality

of the data by uncovering this low-rank structure. A typical approach in this category is

factor modeling, where the p observed variables are assumed to be linear combinations of

unobserved latent components, referred to as factors. For instance, in finance, Fama and

French (1993) introduced a three-factor model for asset pricing, and subsequently, other asset

pricing models with different numbers of factors have been proposed, such as the five-factor

model introduced by Fama and French (2015). Other examples of factor modeling can be

found in psychology (e.g. personality tests) and genetics research.

While many factor models determine the number of factors based on prior knowledge

(e.g. the three-factor model in Fama and French (1993)), there are situations where little is

known about the underlying latent structure, and the true number of factors must be identified

solely from the observations. In such cases, various methods have been developed. Bai and

Ng (2002) proposed a model selection approach, where the number of factors is estimated by

solving an optimization problem, incorporating penalty terms to prevent overfitting. Another

frequently used approach involves examining the rank of the factor loading matrix, which

captures the linear relationship between factors and observed variables. For instance, Lam

and Yao (2012a) introduced a ratio-based estimator for determining the number of factors,

which is derived through eigenanalysis of a nonnegative definite matrix.

In this chapter, to address the limitations of ratio-based estimators, we introduce a new

estimator based on the concept of permutation testing. Our approach follows the factor model

framework proposed by Lam and Yao (2012a).

The remainder of the chapter is organized as follows: Section 3.2 provides a detailed

description of the factor model and introduces the concept behind our proposed estimator.

Section 3.3 explains the Permutation Testing procedure and discusses its significance level.

Section 3.4 presents simulation results that demonstrate the advantages of our estimator over
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the ratio-based estimator proposed by Lam and Yao (2012a) across five different settings.

Section 3.5 presents an analysis of real data using our proposed estimator. Finally, Section

3.6 concludes the chapter and outlines potential directions for future research.

3.2 Factor Model Theoretical Framework

3.2.1 Introduction to Factor Model

Let yt , t ≥ 1, be a p× 1 time series. In factor model, it is assumed that yt consists of 2

components: a dynamic time series xt with lower dimension, which is called the factors, and

a static component εt , which is seen as noise. More precisely, we assume:

yt
(p×1)

= A
(p×r)

xt
(r×1)

+ εt
(p×1)

, (3.1)

where xt represents the latent factor time series with dimension r, and r denotes the number

of latent factors, which is also unknown, and is independent of p and n. A represents the

unknown factor loading matrix, and εt ∼ WN(µε ,Σε) is a vector white-noise process with

no temporal correlation. Under this model, the dynamics of yt is driven by that of the latent

process xt with much smaller dimension, i.e. r ≪ p. In such case, the decomposition of yt

using factor model can be seen as an effective dimension reduction procedure.

In model (3.1), we could only observe yt , and there is no information on how changes

in factors xt are reflected on observation yt , which is described in the factor loading matrix

A. The extent of influence from factors to observation via factor loading matrix is called

factor strength. A factor is typically considered "strong" if the norm of its corresponding

factor loading vector in factor loading matrix A is large, which means the factor explains

a significant portion of the variance of the observed data. Conversely, a "weak" factor has

a smaller factor loading, and thus, its contribution to the overall variance is minimal. The

strength of a factor is quantified by its loading matrix. We define factor strength in the

following way:

Definition 3.2.1. Factor Strength:
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Let a ≍ a if a = O(a) and a = O(a), assume that for A = (a1, . . . ,ar),

∥a j∥2
2 ≍ p1−δ j , j = 1, . . . ,r,

where δ j ∈ [0,1] is a measure of strength of factor xt, j.

If the factor loading vector has a large magnitude, meaning that δ j = 0, the corresponding

factor xt, j will have the strongest influence on yt via factor loading matrix A, and we call xt, j

strong factor. When δ j > 0, we call the corresponding xt, j as weak factor. The smaller δ j

indicates the stronger factor strength of xt, j. The key to understanding factor strength is the

relative comparison of factors’ contributions. Though by definition, a factor xt, j is not strong

unless δ j = 0, yet it is not necessarily "weak" in an absolute sense. Whether it is weak or not

depends on the specific context and the magnitude of the δ j relative to other factors. δ > 0

suggests that the factor contributes less compared to a factor with δ = 0. However, it still

could explain some portion of the variance in the data.

For the factor loading matrix A, there exists another challenge related to identifiability.

On the right-hand side of model (3.1), the pair (A,xt) can be replaced by (AH,H−1xt) for

any invertible matrix H, while yt remains unchanged. Since xt is not observable, the factor

loading matrix A is not uniquely identifiable. To overcome this issue, one common approach

is to estimate the r−dimensional linear space M (A) spanned by columns of A, which is

uniquely defined. For any invertible matrix H, we have M (A) = M (AH). Based on this,

we may set the following assumption on factor loading matrix A:

Assumption 3.2.1. Factor loading matrix A has rank r, and A⊤A = Ir.

Assumption 3.2.1 can be satisfied easily. If the rank of A is not r, model 3.1 would be

expressed in a different r′, where r′ ̸= r instead. The second part of Assumption 3.2.1 is for

the uniqueness of the factor loading matrix and factor components. Since the pair (A,xt) can

be replaced by (AH,H−1xt) for any invertible matrix H, we can always find an H, such that

(AH)⊤(AH) = Ir. Thus, having Assumption 3.2.1, we could obtain a unique factor loading

matrix A, therefore defining a unique factor process xt as well.
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3.2.2 Estimating Factor Loading Matrix A and Number of Factors r

Our objective is to identify the number of latent factors r. The main idea is to utilize the

information from decomposing the covariance matrix of Y via eigenanalysis. First, the

following assumptions are made:

Assumption 3.2.2. xt is weakly stationary.

Assumption 3.2.3. Cov(xt ,εt+k) = 0 for any k ≥ 0.

Assumption 3.2.2 on factors xt is common among literature for factor modeling on time

series, and Assumption 3.2.3 assumes that future noise has no correlation to factors at current

time t. Define the covariance matrix for yt , xt , εt in model (3.1) in the following form:

ΣΣΣy(k) =Cov(yt+k,yt), ΣΣΣx(k) =Cov(xt+k,xt),

ΣΣΣxε(k) =Cov(xt+k,εt)
(3.2)

From (3.2) and factor model (3.1) above, we could build connection among covariance

matrices of observation yt , the latent factors xt and noise εt as:

ΣΣΣy(k) = AΣΣΣx(k)A⊤+AΣΣΣxε(k), k ≥ 1. (3.3)

To gather information from covariance matrix of Y over multiple lags (up to predeter-

mined lag m), we would need to prevent cancellation of information among them, thus we

introduce the following non-negative square matrix:

M =
m

∑
k=1

ΣΣΣy(k)ΣΣΣy(k)⊤, m ≥ 1. (3.4)

Further, define matrix B to be an p× (p− r) orthogonal matrix that, combining columns

of the factor loading matrix A and columns of B would create a p× p orthogonal matrix.

Hence, B⊤B = Ip−r and A⊤B = 0. Following from (3.2) and the definition of matrix B, we

could reach the result that:
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MB =
m

∑
k=1

ΣΣΣy(k)[AΣΣΣx(k)A⊤+AΣΣΣxε(k)]⊤B

=
m

∑
k=1

ΣΣΣy(k)[ΣΣΣx(k)A⊤+ΣΣΣxε(k)]⊤A⊤B

= 0. (3.5)

Note that matrix B is orthogonal, therefore MB = 0 implies columns of B can be seen as

eigenvectors of M corresponding to zero-eigenvalues. Since matrix B has (p− r) columns,

we could argue that M has r non-zero eigenvalues, which matches the number of columns

for matrix A. Therefore, we could reach the following conclusion:

Eigenvectors of M, which corresponds to non-zero eigenvalues, can be taken as

columns of factor loading matrix A. The uniquely defined linear space M (A) is

spanned by eigenvectors of M which corresponds to non-zero eigenvalues.

Note that k = 0 is not included in equation (3.3). Because at k = 0, Cov(εt+k,εt) =

Var(εt) ̸= 0, and we would have the following result instead:

ΣΣΣy(k) = AΣΣΣx(k)A⊤+AΣΣΣxε(k)+Cov(εt+k,εt),

which would make MB ̸= 0. Consequently, equation (3.5) would be invalid, which is not

desirable.

To estimate the number of factors r, we perform eigendecomposition on sample version

of M:

M̂ =
m

∑
k=1

Σ̂ΣΣy(k)Σ̂ΣΣy(k)⊤, m ≥ 1, (3.6)

where,

Σ̂ΣΣy(k) =
1

n− k

n−k

∑
t=1

(yt+k − ȳ)(yt − ȳ), ȳ =
1
n

n

∑
t=1

yt . (3.7)
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With the eigenanalysis approach, the most direct way of estimating number of factors r

would be to count the number of non-zero eigenvalues of M. However, due to randomness

within M̂, the zero eigenvalues of M might not be exactly 0 in M̂. To overcome this issue,

one popular approach is to list out all estimated eigenvalues of M̂ in the descending order,

and find the position where the estimated eigenvalues is significantly closer to 0 than the

previous eigenvalue. Based on this idea, some methods for estimating number of factors have

been proposed. For example, Lam and Yao (2012a) proposed a ratio-based estimator:

r̂Ratio1 = argmin
1≤i≤R

λ̂i+1

λ̂i
, (3.8)

whereλ̂1 ≥ . . . ≥ λ̂p are eigenvalues from M̂, and r < R < p is a pre-specified constant.

They look for the minimum of ratios of eigenvalues to identify the first zero eigenvalue.

This method has a strong performance in general, yet when factors are weak and factor

strength level varies (δi ̸= δ j, i ̸= j), the factor loading matrix A carries only limited amount

of information about factors xt , it might not be able to provide good estimations consistently.

To be more specific, for their proposed estimator in (3.8) to perform, Lam and Yao

(2012a) sets the condition of δ j = δ for all j ∈ (1, . . . ,r), which means all r factors have

same strength. In the case of multiple factor strength levels, they updated the factor model as

yt = Axt + εt = A1x(1)t +A2x(2)t + εt , (3.9)

where x(1)t consists of r1 factors of same strength δ (1), and x(2)t consists of r2 factors of same

strength δ (2). Based on this model, they proposed a two-step ratio test. The estimation

procedure is described as:

1. Use r̂Ratio1 to obtain an estimation on number of factors r̂1 and corresponding factor

loading matrix Â1.

2. Perform the ratio-based estimation again on y∗t = yt − Â1Â⊤
1 yt to obtain another esti-

mation on number of factors r̂2.

3. The two-step estimation on the total number of factors r̂Ratio2 = r̂1 + r̂2.



38 Permutation Tests for Identifying Number of Factors for High-Dimensional Time Series

The two-step approach is suitable for the case where factors have two factor strength levels.

However, choosing between the one-step and two-step method requires prior knowledge. If

there is only one factor strength level and we used the two-step method, while r̂2 shall be 0,

the minimum output from a ratio-based estimator is 1, thus r̂Ratio2 will overestimate the true

number of factors. We conclude that, the one step estimator r̂Ratio1 could only work if δ j = δ

for all j ∈ (1, . . . ,r), while the 2 step estimator r̂Ratio2 only works if ∃ i, j ∈ (1, . . . ,r)s.t.δi ̸=

δ j, i ̸= j.

The prior knowledge required on factor strength to select the better model is not ob-

servable. We propose a new method which does not require knowledge on factor strength.

Define:

ΓΓΓ = (v1, . . . ,vp), (3.10)

where (v1, . . . ,vp) are eigenvectors of M in descending order of corresponding eigenvalues.

Since matrix Γ includes all eigenvectors of M, it can be seen as a combination of the

factor loading matrix A and matrix B, as eigenvectors corresponding to non-zero and zero

eigenvalues are included. Further, define:

zt = ΓΓΓ
⊤yt . (3.11)

Ignoring the error term, using ΓΓΓ as the factor loading matrix to recover the factors would

give us a vector time series zt with p components, where both factors and noise are included.

Since only the first r eigenvalues of M̂ are non-zero, the first r columns of ΓΓΓ could be seen

as an approximation to the factor loading matrix A. Therefore, we would expect the first r

components of zt to display serial dependence, and the remaining p− r components to be

white noise. Hence, the estimation on number of factors r becomes the estimation of the

number of components in zt with serial dependence. To test for serial dependence of a time

series, we introduce a non-parametric permutation testing procedure in the next session.
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3.3 Permutation Testing for Serial Dependence in Time

Series

When testing for serial dependence in time series, one common tool is the hypothesis test.

Let Z = (Z1, . . . ,Zn) be a univariate time series, we define the null and alternative hypotheses

as:

• H0: Z is white noise, with no serial dependence.

• HA: Z is not white noise, and has serial dependence.

In hypothesis testing, we aim to reject the null hypothesis H0 in favor of the alternative

hypothesis HA, thereby proving the existence of serial dependence within the tested series,

if there is sufficient evidence. Based on this concept, numerous parametric tests have been

developed. Some prevalent examples include the work by Box and Pierce (1970) and Ljung

and Box (1978). Under null hypothesis, the test statistic for these parametric tests follows a

chi-squared distribution. However, these tests typically rely on conditions involving finite

moments to construct a valid distribution for the test statistic. A common assumption is finite

variance, E(x2)< ∞, as discussed in Box and Pierce (1970) and McLeod (1978). Further,

Fisher and Gallagher (2012) introduced a weighted Portmanteau statistic, which, under the

assumption E(x8)< ∞, converges to a standard normal distribution after standardization, in

addition to the chi-squared distribution result under finite variance. These assumptions are

crucial for interpreting the test results and determining the significance level.

In contrast, we propose a non-parametric method that uses an empirical distribution

derived from a large number of permutations, making it non-parametric and free from

reliance on these moment conditions. This flexibility ensures that our test is robust and can

be applied in situations where the assumptions of traditional parametric methods may not

hold, offering valid inference without the need for finite moment assumptions. Thus, the

permutation test provides a more universally applicable and robust alternative to traditional

serial dependence tests.
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3.3.1 Permutation Testing Framework

Permutation testing is a well-known non-parametric method that is relatively easy to imple-

ment. The core idea is to generate new series from the observed series Zobs via permuting

the observations Zobs = Z1, . . . ,Zn, and apply a test statistic T (·) on each of the permuted

series. This generates an empirical distribution of the test statistic, from which the p-value

is calculated. There have been related studies applying permutation testing to time series

data. For example, Romano and Tirlea (2022) proposed a permutation testing procedure and

derived the permutation distribution under their framework. In our work, we simplify this

setting by focusing on the non-parametric aspects of permutation testing and demonstrate

that our proposed procedure can control the Type I error (i.e., the probability of incorrectly

rejecting the null hypothesis) at the desired level α .

The goal is to test whether the observed series is white noise. One commonly adopted

measure for checking serial dependence is the autocorrelation:

ρk =
Cov(Zt+k,Zt)

Var(Zt)
=

E[(Zt −µt)(Zt+k −µt+k)]

E(Zt −µt)2 , (3.12)

where k is the lag k for ρ to be computed on. µt is the population mean for Zt , and µt+k is

the population mean for Zt+k. The sample autocorrelation is defined as:

ρ̂k =
∑

n−k
t=1 (Zt − Z̄)(Zt+k − Z̄)

∑
n
t=1(Zt − Z̄)

, Z̄ =
1
n

n

∑
i=1

Zi, (3.13)

where ρ̂k is the sample correlation at lag k, n is the total number of observation, and Z̄ is the

sample mean. Based on sample autocorrelation, the hypothesis for testing serial dependence

is defined as follows:

H0 : ρk = 0 for all k ≥ 1, v.s. HA : ∃k ≥ 1s.t.ρk ̸= 0. (3.14)

Next, we introduce the idea of permutation testing for the above hypothesis. First, we

define :
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Definition 3.3.1. Permutation Function

Let w be a permutation function defined on Rn. For a time series Z = (Z1, . . . ,Zn) , there

exists at most n! unique permutations, denoted by (w1, . . . ,wn!). Denote the permuted series

by Zwi = (Zwi(1), . . . ,Zwi(n)), where i ∈ (1, . . . ,n!).

The permutation testing procedure is as follows: Given a time series Z = (Z1, . . . ,Zn), let

T (·) be a test statistic, w be the permutation function defined above. For each i ∈ (1, . . . ,n!),

let Zwi = (Zwi(1), . . . ,Zwi(n)) represent a permuted series based on Z. We then calculate the

test statistic for each of the n! permuted series, which gives a sequence of test statistics

T (Zw1), . . . ,T (Zwn!). The p-value of the test is defined as:

p̂ =
∑

n!
i=11{T (Zwi)≥ T (Z)}

n!
, p̂ ∈ [0,1]. (3.15)

The p-value is the proportion of the permuted series where its test statistic is as extreme

as, or more extreme than the test statistic of the observed series Z. By comparing p-value

with the pre-determined significance level α , we decide whether to reject or fail to reject

H0. The test statistic we choose is the weighted Ljung-Box test statistic from Fisher and

Gallagher (2012), defined as:

T (Z) = n(n+2)
m

∑
k=1

m− k+1
m

ρ̂2
k

n− k
, (3.16)

where ρ̂k is the sample autocorrelation of the observed series Z at lag k, and m is the maximal

lag we are interested in.

To perform a permutation test, it is essential to verify that the observed series is exchange-

able under the null hypothesis. Exchangeability is defined as follows:

Definition 3.3.2. Exchangeability of Random Variables

A sequence of random variables (Z1, . . . ,Zn) is said to be exchangeable if the joint

distribution of (Z1, . . . ,Zn) is equal to the joint distribution of any random permutation

wi(Z1, . . . ,Zn):

(Z1, . . . ,Zn)
d
=(wi(Z1, . . . ,Zn)),
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where i ∈ (1, . . . ,n!).

If the observed series to be tested satisfies exchangeability under H0, then the significance

level (i.e., probability of rejecting H0 when H0 is true, also known as Type I Error) can be

controlled at a pre-determined level α . To fulfill this requirement, we make the following

assumption:

Assumption 3.3.1. Under H0, the variables (Z1, . . . ,Zn) within the observed series Z, are

independent and identically distributed, and Z is exchangeable.

Naturally, we would prefer to deplete all possible permutations of Z and perform n!

permutations. However, n! is often too large, and calculating the test statistic for all n!

permuted series will be computationally expensive. In practice, when n! is too large, we are

limited to perform only a smaller number of permutations L, where L< n!. The corresponding

p-value p̂L for having L permuted series is defined as:

Definition 3.3.3. p-value with the number of permutation smaller than n!:

For a series Z = (Z1, . . . ,Zn), let T (·) be a test statistic, let w be the permutation function,

and Zw j be a permutation on Z, where j ∈ 1, . . . ,L and L < n!. Define the function p̂L

satisfying:

p̂L =
1+∑

L
j=11{T (Zw j)≥ T (Z)}

1+L
, p̂L ∈ [

1
1+L

,1].

Note that for p̂L, the denominator and the numerator include an additional "+1". his is

because the observation itself is treated as one of the permutations. When using a limited

number of permutations, n! is typically very large, making it unlikely that any permuted

series will be identical to the observed series within the L permutations.

3.3.2 Significance Level for the Permutation Test

The significance level of a hypothesis test refers to the probability of committing a Type I

Error, which occurs when we reject the null hypothesis H0 while it is actually true. Ideally,

given a pre-determined significance level α ∈ [0,1], the hypothesis testing procedure should

control the probability of making a Type I Error at α . In this section, we show that under
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the null hypothesis H0, the proposed permutation testing procedure for detecting serial

dependence within a single time series controls the significance level at the specified level α .

Theorem 3.3.1. Significance Level of Permutation Test

Let Assumption 3.3.1 hold. For any significance level α ∈ [0,1], the proposed permutation

testing procedure controls probability of committing Type I Error at the desired level α .

When the size of observed series n is large, it’s computationally difficult to use all n!

possible permutations for the test. Thus it’s necessary to study by scenario, where 1) we

use all n! permutation of the observed series, and 2) we use L < n! permutations of the

observed series. In the following sections, we will show that the proposed permutation

testing procedure controls type I error at the desired significance level for both scenarios.

3.3.2.1 Significance Level of Permutation Testing Using n! Permuted Series

In this section, we provide a proof for the significance level of the proposed permutation

testing procedure when using all possible permutations of the observed series Z. The main

idea of the proof is to construct the empirical distribution of the selected test statistic and

evaluate the probability of committing a Type I Error using this constructed empirical

distribution. To begin, we define the permutation distribution for any test statistic as follows:

Definition 3.3.4. Permutation Distribution

Let T : Rn → R be a test statistic on the series Z = (Z1, . . . ,Zn), let w1, . . . ,wn! be the

n! permutations of the observed series. Define the permutation distribution of test statistic

t ∈ R to be:

F̂(t) =
1
n!

n!

∑
i=1
1{T (Zwi)≤ t}, F̂(t) : R→ [0,1].

The permutation distribution F̂Z(t) is constructed based on the empirical distribution of

the test statistic, conditional on the observed series Z = (Z1, . . . ,Zn), and has the following

properties:

1. F̂(t) is non-decreasing and right continuous w.r.t test statistic t.

2. limt→−∞ F̂(t) = 0.
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3. limt→∞ F̂(t) = 1.

Therefore, F̂(t) can be seen as a probability distribution function, and we may define its

inverse as

F̂(t)−1(α) = inf{t|F̂(t)≥ α}, F̂(t)−1(α) : [0,1]→ R,

where α ∈ [0,1] is the pre-specified significance level. Based on the permutation distribution

we have constructed above, we could proceed to prove the following lemma:

Lemma 3.3.1. Significance Level of Permutation Testing (with n! permuted series)

For a permutation test using n! permuted series, the probability of committing a type I

error (falsely rejecting H0) is less than or equal to the significance level α:

P(Rejecting H0|H0 True, Z1, . . . ,Zn)≤ α.

Proof. Given that H0 is true, committing a Type I Error is equivalent to rejecting the null

hypothesis H0, which which occurs when the p-value from permutation testing is below the

significance level α . Under the condition that the series Z = (Z1, . . . ,Zn) is fully observed,

the test statistic T (·) for all n! permuted series of Z should follow a uniform distribution.

Based on this conclusion, we have:

P(Re jectingH0|H0 True) = P(p̂ ≤ α|H0,Z1, . . . ,Zn)

= P(
1
n!

n!

∑
i=1
1{T (Zwi)≥ T (Z)} ≤ α|H0,Z1, . . . ,Zn)

= P(1− F̂(T (Z))≤ α|H0,Z1, . . . ,Zn)

= P(F̂(T (Z))≥ 1−α|H0,Z1, . . . ,Zn)

≤ α

∴ P(Rejecting H0|H0 True)≤ α.

Under the condition that the test statistic is uniform, using the properties of empirical

distribution, we could derive that the probability for T (Z) to be larger than or equal to the (1−
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α)-th quantile of the empirical distribution is less or equal to α , and under Exchangeability

Assumption 3.3.1, T (Z) follows F̂ unconditionally on Z1, . . . ,Zn, thus we could draw that

condition and finish the proof.

3.3.2.2 Significance Level of Permutation Testing Using Less Than n! Permuted Series

In this sub-section, we discuss the case where we did not deplete all possible permutation

of Z to perform permutation test (i.e., use L < n! permuted series). For the observed series

Z = (Z1, . . . ,Zn), define permutation distribution when using less than n! permuted series as:

F̂L(t) =
1
L

L

∑
j=1
1{T (Zw j)≤ t}, F̂L(t) : R→ [0,1]. (3.17)

Let significant permuted series to be those permuted series with test statistic larger than

that of the observed series (i.e. T (Zwi)≥ T (Z)). Define the function for finding number of

significant permuted series among all permuted series to be:

q(Z) :=
n!

∑
i=1
1{T (Zwi)≥ T (Z)}, (3.18)

and the function when using less than n! permutations to be:

qL(Z) :=
L

∑
j=1
1{T (Zw j)≥ T (Z)}, (3.19)

where qL(Z) : Rn → (1, . . . ,L), and q(Z) : Rn → (1, . . . ,n!). The function q and qL gives

the number of significant permuted series. Under H0, we may derive the distribution of q, as

shown in the following proposition:

Lemma 3.3.2. Distribution of q under H0

Given an observed series Z = (Z1, . . . ,Zn), under H0, for any integer g ∈ (1, . . . ,n!),

P(q(Z) = g) =
1
n!
. (3.20)
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Lemma 3.3.2 shows that, the probability of finding exactly g significant permuted series

is a constant, regardless of the value that g takes. Hence we can say that q(Z) is uniformly

distributed on [1,n!].

For Lemma 3.3.2 to hold, we need to introduce an assumption on uniqueness of the test

statistic in permuted series.

Assumption 3.3.2. Uniqueness of Test Statistic

Let T (·) be any sample-autocorrelation-based test statistics, For any pair of different permu-

tations on the observed time series:

T (Zwi) ̸= T (Zwh), i,h ∈ (1, . . . ,n!), i ̸= h,

This uniqueness assumption ensures that the test statistic for different permuted series

will be distinct, meaning no two distinct permuted series will have identical test statistics.

This assumption is likely to hold for any test statistic based on the sample autocorrelation ρ̂k,

because permuting the series changes its autocorrelation structure, thereby altering ρ̂k. The

numerator of ρ̂k, as given in (3.13) directly links to the temporal ordering of the series. When

the series is permuted, the values at time t no longer interact with those at time t + kin the

same way, leading to different values for ρ̂k. Therefore, Assumption 3.3.2 is likely to hold.

Now, we are ready to prove Lemma 3.3.2:
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Proof. Write out LHS of equation (3.20) using all permuted series of the observed series:

P(q(Z) = g) = P(
1
n!

n!

∑
i=1

q(Zwi) = g) (3.21)

=
1
n!

n!

∑
i=1

P(q(Zwi) = g) (3.22)

=
1
n!

n!

∑
i=1

E(1{q(Zwi) = g}) (3.23)

=
1
n!

E(
n!

∑
i=1
1{q(Zwi) = g}) (3.24)

=
1
n!

E(
n!

∑
i=1
1{

n!

∑
h=1

1{T (wh(Zwi))≥ T (Zwi)}= g}) (3.25)

To evaluate the RHS of the last line from above, it’s important to construct an interpreta-

tion towards the following part:

E(
n!

∑
i=1
1{

n!

∑
h=1

1{T (wh(Zwi))≥ T (Zwi)}= g}). (3.26)

To start with, consider the inner indicator function

n!

∑
h=1

1{T (wh(Zwi))≥ T (Zwi)}= g. (3.27)

In equation 3.27, Zwi, i ∈ (1, . . . ,n!) is a permuted series from the observed series Z,

and wh(Zwi),h ∈ (1, . . . ,n!) is a permutation of the permuted series Zwi , and we refer to

them as twice-permuted series. LHS of equation 3.27 counts the number of significant

twice-permuted series, which is defined as T (wh(Zwi))≥ T (Zwi). Therefore, equation 3.27

can be interpreted as follows:

For each of the permuted series Zwi, i ∈ (1, . . . ,n!), the number of significant

twice-permuted series wh(Zwi),h ∈ (1, . . . ,n!), comparing to Zwi , is equal to g,

where g ∈ (1, . . . ,n!).



48 Permutation Tests for Identifying Number of Factors for High-Dimensional Time Series

Equation 3.27 described an event for a permuted series Zwi with a pre-determined integer

g, and equation 3.26 evaluates the expected number of occurrence of such an event among

all possible permuted series Zwi, i ∈ (1, . . . ,n!). If we can show that equation 3.26 equals 1,

then we would have proved Lemma 3.3.2.

For the permuted series and the twice-permuted series from it, under exchangeability

Assumption 3.3.1, we have that:

wh(Zwi) = Zwh,h, i ∈ (1, . . . ,n!).

This result indicates that, the series after 2 permutations wh(Zwi) is equivalent to directly

performing the second permutation on the observed series Z, and therefore a twice-permuted

series Zwh = wh(Zwi) and the series Zwi can be seen as 2 series within one set of possible

permutations h, i ∈ (1, . . . ,n!) on the observed series Z.

Then, following Assumption 3.3.2 on uniqueness of test statistic for permuted series, we

could argue that, for a sequence of permutations n! on the observed series Z, if we order the

test statistics of all permuted series in descending order, we could obtain the following series:

T (Zw(1))> T (Zw(2))> · · ·> T (Zw(n!)). (3.28)

where

Now, consider a permuted series Zwi, i ∈ (1, . . . ,n!) that, g of n! permuted series have test

statistic as large or larger than T (Zwi). The question of finding out how many Zwis would

satisfy the condition of having exactly g series more significant than themselves, is equivalent

to finding a position in the sequence 3.28 and inserting T (Zwi) so that there are g series on its

left. Under Assumption 3.3.2, since each different permuted series has different test statistic,

there will only be only one position to insert T (Zwi), for any pre-specified g. Since in (3.28),

any T (Zw(i)), i ∈ (1, . . . ,n!) is strictly larger or smaller than others, there will only be one

permuted series that satisfies the condition of having g other permuted series in front of itself.
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To express this conclusion in mathematical language, we write that

n!

∑
i=1
1{

n!

∑
h=1

1{T (wh(Zwi))≥ T (Zwi)}= g}= 1, (3.29)

For example, let g = 2, which means we are looking for a permuted series Zwi, i ∈

(1, . . . ,n!) such that there are exactly 2 series with larger test statistic. Among all possible

permutations, there will exist only one unique permutation i satisfying this condition. Now,

using this conclusion, we may proceed with the proof:

P(q(Z) = g) =
1
n!

E(
n!

∑
i=1
1{

n!

∑
h=1

1{T (wh(Zwi))≥ T (Zwi)}= g})

=
1
n!

E(
n!

∑
i=1
1{

n!

∑
h=1

1{T (Zwh)≥ T (Zwi)}= g})

=
1
n!

×1

=
1
n!

The main objective of this subsection is to discuss the significance level of our proposed

permutation testing procedure when only a limited number of permutations is available. To

this end, we introduce the following lemma:

Lemma 3.3.3. Level of significance for Permutation Testing ( Using Less Than n! permuted

series)

Given a series Z = Z1, . . . ,Zn, under H0, for a permutation test with limited L < n! series

available, the probability of committing a Type I Error (falsely rejecting H0) is less than or

equal to the significance level α:

P(Type I Error)≤ α.
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Based on the definitions and lemmas introduced earlier, we are ready to prove Lemma

3.3.3:

Proof. Under H0, we have that

P(Rejecting H0) = P(p̂L ≤ α)

= P(
1+∑

L
j=11{T (Zw j)≥ T (Z)}

1+L
≤ α)

= P(
L

∑
j=1
1{T (Zw j)≥ T (Z)} ≤ α(1+L)−1)

=
n!

∑
g=1

P(
L

∑
j=1
1{T (Zw j)≥ T (Z)} ≤ α(1+L)−1|q(Z) = g)×P(q(Z) = g)

The last line can be evaluated as two parts separately. The latter part P(q(Z) = g) has

been shown in Lemma 3.3.2 that, under H0, equals to 1
n! . The remaining part, which is

P(
L

∑
j=1
1{T (Zw j)≥ T (Z)} ≤ α(1+L)−1|q(Z) = g),

can be better understand by explaining it explicitly. Under the limited permuted series setting,

for each of the permuted series Zw j, j ∈ 1, . . . ,L, the probability of it being significant follows

a Bernoulli distribution:

1{T (Zw j)≥ T (Z)} ∼ Bernoulli(p =
g
n!
).

Further, we impose the condition that out of all n! = n! possible series, there will be g

significant series. Then within the limited permuted series Zw j, j ∈ 1, . . . ,L, the conditional

probability of having the number of significant series less than or equal to α(1+L)− 1,

which is the threshold for rejecting H0, can be seen as sum of Bernoulli random variables,

which follows a Binomial distribution:

L

∑
j=1
1{T (Zw j)≥ T (Z)} ∼ Binom(n = L, p =

g
n!
).
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Proceeding the proof by using the expression of Binomial distribution instead, we have:

P(p̂L(Z1, . . . ,Zn)≤ α) =
n!

∑
g=1

P(
L

∑
j=1
1{T (Zw j)≥ T (Z)} ≤ α(1+L)−1|q(Z) = g)×P(q(Z) = g)

=
n!

∑
g=1

P(X ≤ α(1+L)−1)× 1
n!

=
n!

∑
g=1

1
n!

α(1+L)−1

∑
k=0

(
L
k

)
(

g
n!
)k(1− g

n!
)L−k

=
α(1+L)−1

∑
k=0

1
n!

n!

∑
g=1

(
L
k

)
(

g
n!
)k(1− g

n!
)L−k

=
α(1+L)−1

∑
k=0

(
L
k

)
1
n!

n!

∑
g=1

(
g
n!
)k(1− g

n!
)L−k

Here, if we set x = g
n! , then from the perspective of Riemann Sum Approximation, we

could obtain the following substitution:

1
n!

n!

∑
g=1

xk(1− x)L−k ≈
∫ 1

0
xk(1− x)L−kdx.
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Thus,

P(p̂L(Z1, . . . ,Zn)≤ α) =
α(1+L)−1

∑
k=0

(
L
k

)
1
n!

n!

∑
g=1

(
g
n!
)k(1− g

n!
)L−k

(by Riemann Sum Approximation)≈
α(1+L)−1

∑
k=0

(
L
k

)∫ 1

0
xk(1− x)L−kdx, x =

g
n!

=
α(1+L)−1

∑
k=0

(
L
k

)
Beta(z1 = k+1,z2 = L− k+1)

(by Properties of Beta Function) =
α(1+L)−1

∑
k=0

(
L
k

)
Γ(k+1)Γ(L− k+1)

Γ(L+2)

(by Properties of Gamma Function) =
α(1+L)−1

∑
k=0

(
L
k

)
Γ(k+1)Γ(L− k+1)

Γ(L+1)(L+1)

=
α(1+L)−1

∑
k=0

(
L
k

)
k!(L− k)!
L!(L+1)

=
α(1+L)−1

∑
k=0

(
L
k

)(
L
k

)−1 1
L+1

=
α(1+L)−1

∑
k=0

1
L+1

=
1

L+1
× (α(1+L)−1+1)

= α

Following Lemma 3.3.1 and Lemma 3.3.3, it is sufficient to prove Theorem 3.3.1. There-

fore, we have shown that whether using all n! permuted series or L < n! permuted series,

our proposed testing procedure controls the probability of committing Type I Error below α .

Note that the proof does not rely on properties of the test statistic T (·), thus we could say

that, the significance level of our proposed permutation testing can be controlled by using

any test statistic.
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3.3.3 Identify Number of Factors using Permutation Tests

Using the permutation testing procedure described in the previous section, we test for serial

dependence across all p components of zt , resulting in a sequence of p-values: p̂1, . . . , p̂p.

By comparing each p-value against the pre-specified significance level α , we decide whether

a component of zt exhibits serial dependence. Based on the number of rejections, we then

develop our estimator for the number of factors.

This process involves testing p hypotheses simultaneously, which is known as a multiple

testing procedure. If we were to use a single hypothesis testing procedure, the probability

of committing at least one Type I Error across p trials would be p×α , which exceeds the

desired significance level α . To control the probability of Type I Error in a multiple testing

procedure, we use the concept of False Discovery Rate (FDR), introduced by Benjamini and

Hochberg (1995). The FDR is defined as the expected proportion of rejected null hypotheses

that are incorrectly rejected. The process is carried out as follows:

Let p(1) ≤ p(2) ≤ . . .≤ p(p) be the ordered sequence of p-values p1, . . . , pp, and

H(i) be the null hypothesis of corresponding p(i). Let q be the largest i for which

p(i) ≤ i
pα . Then reject all H(i), i = 1, . . . ,q.

Applying this multiple testing procedure would control the False Discovery Rate at

level α . Define αFDR = i
pα , and compare the sequence of p-values with αFDR to identify

the number of components in zt with serial components, which gives our estimation of

the number of factors. Note that the sequence of p-values from our proposed method is

monotonically increasing. Therefore, we can begin the comparison from p1, and stop when

we find the first pi > αFDR to conclude that r̂ = i− 1. Hence, our proposed estimator for

number of factors is:

r̂PT = argmin
1≤i≤R

{
pi : pi > αFDR

}
−1, (3.30)

where r < R < p is a constant. We usually choose R = p/2 in practice.

The property of monotonic increase for the sequence of p-values originates from the

way it was constructed. When constructing zt from (3.11), the columns of ΓΓΓ were arranged
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in descending order of corresponding eigenvalues λ̂i of M̂. A larger λ̂i indicates higher

likelihood that the i-th component in zt is a factor, which also suggests a higher probability

of serial dependence for the i-th component, leading to smaller pi. Therefore, following the

monotonically decreasing order of λ̂i, pi should be monotonically increasing.

However, there are two exceptions within the sequence of pi’s that might break the natural

ordering, which we refer to as Spurious Correlation and Outliers. Spurious correlation

occurs when a white noise series shows a significant result in the test for serial dependence,

making the p-value from the test lower than expected. Outliers refer to those series that

should have serial dependence but do not yield a significant result from the test, making

the p-value higher than expected. Both cases break the monotonic increasing order of the

sequence of pi’s from the permutation test and affect the estimation process. For the sequence

of p-values p1, . . . , pp from permutation test, We designed the following rules to identify

Spurious Correlation and Outliers from the sequence of p-values:

• Spurious Correlation: For j ∈ 1, . . . , p, call p j Spurious Correlation if p j < α , while

p j−1 > α and p j+1 > α .

• Outliers: For j ∈ 1, . . . , p, call p j an Outlier if p j > α , while p j+1 < α and p j+2 < α .

For our estimator, outliers in the first r components will significantly influence our

estimation, as the monotonic increasing trend of p-values will be interrupted. In contrast,

spurious correlation is of less concern because it typically affects components that are

supposed to be white noise, which would not appear in the first r components and, therefore,

are usually not included in the estimation process. To eliminate the influence of spurious

correlation and outliers, we use the following steps to process outliers without affecting our

estimator:

1. Identify and remove results due to Spurious Correlation to get the sequence of p-values

p̂1, . . . , p̂p

2. Identify outliers from p̂1, . . . , p̂p using the definition above.
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3. Record the amount and position of all outliers, then remove these outliers from the

sequence of p-values to get an updated sequence.

4. Apply multiple testing procedure on updated sequence, and use (3.30) to obtain an

estimator r̂′.

5. If position of the outlier ≤ (r̂′+ #outliers), this outlier should be included. Define

these outliers as important outliers.

6. The estimator after outlier processing is: r̂=r̂′ + #important outliers.

When dealing with outliers, we need to check their position before deciding how to

handle them. Outliers are supposed to be significant results, meaning that the corresponding

component in the series should have serial dependence. In such cases, simply removing

outliers from the sequence of p-values would cause the estimator to underestimate the true

number of factors. In practice, some observations at the end of the sequence of p-values

might be mistakenly identified as outliers due to randomness. Therefore, we classify outliers

that appear at the front of the sequence as important outliers and include these outliers

when estimating the number of factors.

The identification of spurious correlations and outliers is critical for improving the

accuracy of our estimation. By systematically flagging these anomalies, we can reduce the

impact of random noise and ensure that only components with genuine serial dependence

are retained, thereby improving the overall estimation of the number of factors. Moreover,

the criteria for detecting these issues are set very strictly as a precaution for very rare cases.

This strictness minimizes the risk of false identification, thus preserving the robustness and

reliability of our estimation procedure.

3.4 Simulations

To demonstrate the performance of our proposed estimator, we report results from Monte

Carlo simulations. Under model (3.1), we designed 5 different simulation settings, where
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strength of factors varies. In all settings, we set true number of factors r = 9, number of ob-

servations n ∈ (400,900,1600,2500,3600), and number of variates p ∈ (
√

n,0.1n,n). Each

factor xt, j, j ∈ 1, . . . ,r is generated from an AR(1) process, with autoregressive coefficients

randomly drawn from the interval [−0.95,−0.4]∪ [0.4,0.95], and have independent N(0,1)

innovations. Elements of the factor loading matrix A are randomly drawn from N(0,1), and

components of εt are independently drawn from N(0,1). The maximal lag takes value within

m ∈ (1,2,3).

For each setting, we repeat the process for 200 iterations. For our proposed estimator,

we set the number of permutations L = 2000, and we use only the first R = max(20, p/4)

columns of zt to estimate r. The significance level is set at α = 0.01. For comparison, we

also present results from the one-step and two-step ratio-based estimators proposed in Lam

and Yao (2012a). We denote our proposed estimator as r̂PT , and the ratio-based estimators as

r̂Ratio1 and r̂Ratio2.

The selection of the parameter R plays an important role in the effectiveness of our factor

estimation approach. The number of factors r is typically much smaller than the total number

of variates p, thus R should be large enough to capture the relevant structure but not too large

to render the dimension reduction ineffective. A common choice for R is p/2 which balances

capturing the factor structure while avoiding overfitting. However, R should not be too small,

as this could lead to missing important factors. Experimenting with different values of R can

help ensure that the estimated number of factors r remains stable and reliable.

The choice of the number of permutations L is crucial for the accuracy and validity of the

permutation test. Ideally, L should be as large as possible, with n! permutations providing

the most thorough empirical distribution for the test statistic. However, n! is often too large

to compute practically, especially for larger sample sizes. When L is too small, the empirical

distribution generated from the permutations may not adequately represent the true null

distribution, leading to invalid results. The appropriate value of L depends on the desired

precision of the p-value. If a very low p-value is required, a larger L is necessary to ensure

that the approximation 1/L is sufficiently precise. Empirically, L = 2000 is often sufficient to
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obtain reliable p-values, such as those at the 0.05 significance level, providing a reasonable

trade-off between computational efficiency and precision.

The details for each setting are described as follows:

• Setting 1 (1 factor strength level): δ1, . . . ,δ9 = 0.

• Setting 2 (2 factor strength levels): δ1, . . . ,δ4 = 0.5, δ5, . . . ,δ9 = 0.

• Setting 3 (3 factor strength levels): δ1, . . . ,δ3 = 0.7, δ4, . . . ,δ6 = 0.3, δ7, . . . ,δ9 = 0.

• Setting 4 (r factor strength levels, δ ∼Uni f [0,0.9]): Each factor strength δ1, . . . ,δ9

are randomly drawn from ∼Uni f [0,0.9] at the beginning, and the same set of factor

strength is used throughout each iteration in Setting 4.

• Setting 5 (r factor strength levels, δ ∼Uni f [0,0.5]): Each factor strength δ1, . . . ,δ9

are randomly drawn from ∼Uni f [0,0.5], which means that factor strength is stronger

than in Setting 4, and the same set of factor strength is used throughout each iteration

in Setting 5.

The first two settings are designed to fit the model of the two ratio-based estimators.

Setting 1 has one factor strength level, where r̂Ratio1 should perform very well, and Setting

2 has two factor strength levels, where r̂Ratio2 should perform well. Setting 3 challenges

both ratio-based estimators, and Settings 4 and 5 are more extreme, where all factors have

different strengths. The range of factor strengths in Setting 4 is wider than in Setting 5, and

Setting 5 has stronger factors by limiting the factor strength to δ ∼Uni f [0,0.5]. Below, we

report the simulation results by presenting the estimation accuracy via the relative frequency

r̂ = r, and the consistency of estimation via the mean and standard deviation of the estimators

from 200 iterations.

The relative frequency of r̂ = r is reported in Figure 3.1-3.5. Table 3.1-3.5 reports

the means and standard deviations of estimators under different settings. These tables

demonstrate the consistency of estimations within each setting. Overall, our proposed

estimator r̂PT shows strong consistency (low σPT ) within each setting, and is robust across
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different settings. In terms of estimation accuracy, Figure 3.1-3.5 shows that r̂PT performs

well when either p =
√

n or m = 1. When p >
√

n and m > 1, if n increases, r̂PT seems to

converge towards r×m. Considering that m is a parameter we choose, we could always

choose m = 1 to obtain good estimates using r̂PT .

In all figures (Figure 3.1-3.5), we observe that for r̂PT , m = 1 does not always provide

the best estimation. The optimal value of m depends on the generating process of the factors.

Since the factors were generated using an AR(1) model, autocorrelation at lag 2 will also

appear. Given that our proposed method relies directly on testing autocorrelation, it is

reasonable to expect that m = 2 could provide additional information on serial dependence

for r̂PT . However, as m exceeds the optimal value, additional noise is introduced, which

leads to a slight deterioration in the performance of r̂PT .

For r̂Ratio1, the estimator performs nearly perfectly in Setting 1, which was intentionally

designed to achieve this result. As shown in Figures 3.1-3.5, r̂Ratio1 demonstrates improve-

ment as p increases. This phenomenon, often referred to as the "Blessing of Dimensions",

is discussed in Lam and Yao (2012a). However, in other settings where multiple factor

strength levels are present, r̂Ratio1 tends to underestimate the true number of factors r. Its

inconsistency is evident from the high standard deviation, which significantly undermines

the reliability of its estimation.

r̂Ratio2 generally exhibits unstable estimations. Setting 2 was designed to highlight the

advantages of r̂Ratio2, but as shown in Figure 3.2, it only performs well when m > 1 and

p >
√

n. In other setting and scenarios, r̂Ratio2 produces highly volatile estimations. As

observed in Tables 3.1–3.5, the mean estimation is sometimes significantly different from

the true value of r, and the standard deviation can be quite high. Unlike r̂Ratio1, which

consistently underestimates r in Setting 2-5, the direction of mis-estimation for r̂Ratio2 is not

consistent. In Setting 1, r̂Ratio2 always overestimates r, which can be explained. Recall that

r̂Ratio2 takes an additional step based on the residuals of r̂Ratio1. Since there is only one factor

level in Setting 1, r̂Ratio1 would have already identified all estimators, leaving r̂2 dominated

by randomness. Given that minimum value for ratio-based estimators is 1, the estimation
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from second step will always be equal to or greater than 1. Therefore r̂Ratio2 will overestimate

r when all factors have the same strength δ .

Selecting the optimal estimator between r̂Ratio1 and r̂Ratio2 would require prior knowledge

of the number of factor strength levels, which is unobservable. In contrast, our proposed

estimatorr̂PT is robust across any number of factor strength levels, and at m = 1, r̂PT is able

to consistently provide accurate estimations.

Fig. 3.1 Relative frequency estimates for r̂ = r in the simulation with 200 replications for
Setting 1, where r = 9 and δ1, . . . ,δ9 = 0.
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Fig. 3.2 Relative frequency estimates for r̂ = r in the simulation with 200 replications for
Setting 2, where r = 9 and factors have 2 strength levels: δ1, . . . ,δ4 = 0.5, δ5, . . . ,δ9 = 0.

Fig. 3.3 Relative frequency estimates for r̂ = r in the simulation with 200 replications for
Setting 3, where r = 9 and δ1, . . . ,δ3 = 0.7, δ4, . . . ,δ6 = 0.3, δ7, . . . ,δ9 = 0.
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Fig. 3.4 Relative frequency estimates for r̂ = r in the simulation with 200 replications for
Setting 4, where r = 9 and ∼Uni f [0,0.9].

Fig. 3.5 Relative frequency estimates for r̂ = r in the simulation with 200 replications for
Setting 5, where r = 9 and ∼Uni f [0,0.5].
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Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂PT

m=1

p=
√

n 8.84(0.97) 9.14(0.72) 9.19(0.79) 9.19(0.63) 9.3(0.72)

p=0.1n 8.91(1.13) 9.17(1) 9.28(0.98) 9.37(0.99) 9.37(0.93)

p=n 8.77(0.76) 8.95(0.97) 9.07(0.65) 9.07(0.72) 9.13(0.89)

m=2

p=
√

n 8.92(0.44) 9(0.1) 9(0) 9.03(0.17) 9.02(0.12)

p=0.1n 8.98(0.28) 9.02(0.26) 9.04(0.18) 9.07(0.45) 9.15(0.51)

p=n 10.05(1.25) 12.06(1.71) 13.67(1.96) 14.67(1.64) 15.55(1.49)

m=3

p=
√

n 8.96(0.29) 9.02(0.12) 9.02(0.14) 9.01(0.1) 9.02(0.14)

p=0.1n 8.98(0.54) 9.13(0.37) 9.3(0.72) 9.69(1.24) 9.98(1.61)

p=n 12.89(3.53) 20.25(5.55) 24.18(4.44) 26.02(2.89) 26.5(1.71)

Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂Ratio1

m=1

p=
√

n 8.99(0.07) 9(0) 9(0) 9(0) 9(0)

p=0.1n 9(0) 9(0) 9(0) 9(0) 9(0)

p=n 9(0) 9(0) 9(0) 9(0) 9(0)

m=2

p=
√

n 8.36(1.94) 9(0) 9(0) 9(0) 9(0)

p=0.1n 8.93(0.75) 9(0) 9(0) 9(0) 9(0)

p=n 9(0) 9(0) 9(0) 9(0) 9(0)

m=3

p=
√

n 7.86(2.59) 8.8(1.25) 8.96(0.57) 9(0) 9(0)

p=0.1n 8.51(1.86) 8.96(0.57) 9(0) 9(0) 9(0)

p=n 8.96(0.57) 9(0) 9(0) 9(0) 9(0)

Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂Ratio2

m=1

p=
√

n 18.58(1.12) 21.31(3.3) 25(5.13) 26.73(8.46) 30.06(9.75)

p=0.1n 23.02(6.58) 31.5(18) 31.32(29.94) 30.52(39.16) 34.44(52.88)

p=n 11.22(11.87) 10.47(1.12) 10.62(1.94) 10.73(2.81) 10.48(0.98)

m=2

p=
√

n 17.2(3.57) 21.58(3.2) 23.42(6.42) 26.32(8.12) 28.58(10.66)

p=0.1n 23.12(6.62) 27.8(18.22) 36.02(32.41) 32.38(40.88) 28.31(47.11)

p=n 11.19(9.55) 10.49(0.97) 10.57(0.88) 10.62(0.84) 10.65(1.03)

m=3

p=
√

n 16.72(3.92) 21.87(3.34) 24.41(5.81) 26.4(8.41) 29.18(10.49)

p=0.1n 21.79(7.58) 26.55(17.56) 32.18(30.19) 32.98(40.57) 29.47(45.91)

p=n 10.54(0.9) 10.67(0.94) 10.81(0.97) 10.87(1.15) 11.05(1.22)

Table 3.1 Means and standard deviations (in parentheses) for r̂PT , r̂Ratio1 and r̂Ratio2 in the
simulation with 200 replications for Setting 1, where r = 9 and δ1, . . . ,δ9 = 0.
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Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂PT

m=1

p=
√

n 8.88(0.8) 9.11(0.72) 9.22(0.64) 9.24(0.69) 9.37(0.84)

p=0.1n 9.12(0.83) 9.32(0.74) 9.43(0.85) 9.4(1.04) 9.27(0.77)

p=n 9.01(0.63) 9.09(0.68) 9.13(0.63) 9.07(0.56) 9.23(0.9)

m=2

p=
√

n 8.87(0.51) 9.01(0.12) 9.01(0.1) 9.01(0.07) 9.02(0.14)

p=0.1n 9.01(0.32) 9.15(0.46) 9.23(0.59) 9.32(0.86) 9.52(1.12)

p=n 12.22(2.64) 14.62(2.37) 15.91(1.95) 16.3(1.7) 16.82(1.67)

m=3

p=
√

n 8.95(0.55) 9.09(0.39) 9.07(0.27) 9.04(0.22) 9.04(0.32)

p=0.1n 9.14(0.55) 9.52(1.03) 10.32(1.63) 10.8(2.01) 12.03(2.39)

p=n 17.72(4.95) 23.96(3.6) 26.32(2.16) 26.9(1.25) 27.04(1.06)

Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂Ratio1

m=1

p=
√

n 7.85(2.34) 8.68(1.42) 8.95(0.54) 8.96(0.57) 9(0)

p=0.1n 8.2(2.11) 8.87(0.9) 8.9(0.74) 8.92(0.56) 8.92(0.56)

p=n 6.81(2.43) 7.42(1.93) 7.46(1.95) 7.7(1.88) 7.58(1.92)

m=2

p=
√

n 4.86(3.26) 6.5(3.14) 6.86(3.07) 7.62(2.49) 7.47(2.53)

p=0.1n 5.14(2.99) 5.42(2.8) 5.68(2.56) 5.64(2.74) 6.3(2.95)

p=n 5.38(3.22) 5.94(3.7) 6.74(3.82) 6.17(3.11) 5.89(2.7)

m=3

p=
√

n 4.4(3.06) 5.42(3.1) 6.02(3.08) 6.57(2.95) 6.56(2.93)

p=0.1n 4.38(2.92) 4.43(2.92) 5.04(2.54) 5.31(2.33) 5.43(1.91)

p=n 4.26(1.9) 4.86(2.05) 5.1(2.47) 5.42(3.2) 5.53(3.09)

Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂Ratio2

m=1

p=
√

n 16.11(4.56) 20.23(4.92) 24.18(5.93) 27.06(7.67) 26.46(11.44)

p=0.1n 21.07(7.87) 28.84(18.16) 33.04(29.76) 33.9(42.78) 26.68(43.93)

p=n 9.56(1.13) 10.11(3.27) 9.88(0.95) 9.91(0.89) 9.91(1.07)

m=2

p=
√

n 11.3(4.41) 14.85(6.7) 18.05(8.82) 21.06(10.89) 21.66(12.65)

p=0.1n 11.64(6.26) 13.39(12.07) 12.36(13.89) 12.35(13.94) 16.45(30.8)

p=n 10.37(13.62) 9.91(2.27) 10.27(2.57) 9.81(2.12) 9.62(1.91)

m=3

p=
√

n 10.41(3.64) 12.2(5.75) 15.06(8.35) 16.39(10.18) 18.54(12.3)

p=0.1n 11.04(5.87) 11.26(8.37) 11.86(13.18) 12.34(18.11) 11.6(19.1)

p=n 8.79(0.81) 9.04(1.21) 9.21(1.63) 9.48(2.36) 9.51(2.36)

Table 3.2 Means and standard deviations (in parentheses) for r̂PT , r̂Ratio1 and r̂Ratio2 in the
simulation with 200 replications for Setting 2, where r = 9 and factors have 2 strength levels:
δ1, . . . ,δ4 = 0.5, δ5, . . . ,δ9 = 0.
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Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂PT

m=1

p=
√

n 8.86(0.89) 9.1(0.66) 9.15(0.52) 9.19(0.49) 9.22(0.65)

p=0.1n 9.05(0.92) 9.33(0.77) 9.23(0.85) 9.38(1.04) 9.41(0.93)

p=n 9.06(0.61) 9.16(0.7) 9.14(0.74) 9.2(0.8) 9.16(0.87)

m=2

p=
√

n 8.67(0.7) 9.09(0.34) 9.08(0.32) 9.07(0.31) 9.07(0.33)

p=0.1n 9.18(0.96) 10.24(1.39) 10.67(1.44) 11.15(1.44) 11.34(1.33)

p=n 12.16(2.6) 13.77(2.6) 15.29(2.03) 15.87(2.21) 16.5(2.34)

m=3

p=
√

n 8.78(0.74) 9.19(0.58) 9.23(0.57) 9.19(0.56) 9.2(0.54)

p=0.1n 9.34(0.98) 10.85(1.83) 12.38(2.28) 14.08(3.06) 15.8(3.88)

p=n 17.89(3.84) 22.25(2.64) 24.02(2.36) 24.75(2.75) 25.58(2.41)

Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂Ratio1

m=1

p=
√

n 6.7(2.87) 7.66(2.55) 8.32(1.92) 8.3(2.06) 8.8(1.12)

p=0.1n 6.22(3.11) 6.9(2.85) 7.5(2.43) 7.44(2.36) 7.54(2.31)

p=n 4.76(2.3) 5.36(1.9) 5.42(2.19) 5.44(1.97) 5.7(1.93)

m=2

p=
√

n 4.86(2.93) 5.7(2.93) 5.36(3.15) 5.88(2.94) 5.92(2.87)

p=0.1n 3.97(2.8) 4.7(2.6) 4.8(2.54) 4.72(2.29) 4.66(2.35)

p=n 3.73(1.78) 3.61(1.7) 4.07(2.13) 4.28(2.13) 4.77(2.62)

m=3

p=
√

n 3.48(2.59) 4.7(2.95) 5.22(2.92) 4.81(3.01) 5.38(3.08)

p=0.1n 3.9(2.46) 4.4(2.5) 4.34(2.3) 4.41(2.3) 4.52(2.27)

p=n 3.24(1.8) 3.55(1.73) 3.73(1.76) 3.8(1.66) 3.87(1.68)

Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂Ratio2

m=1

p=
√

n 13.53(5.29) 17.98(6.6) 21.3(7.73) 24.12(10.02) 28(11.14)

p=0.1n 15.04(8.85) 19.26(16.5) 23.75(26.08) 27.94(39.66) 22.48(39.59)

p=n 7.92(3.04) 8.22(1.52) 8.3(1.63) 8.31(1.58) 8.56(1.42)

m=2

p=
√

n 10.13(3.9) 11.94(5.72) 12.89(7.27) 13.52(8.68) 14.27(10.21)

p=0.1n 8.97(3.95) 9.58(5.28) 9.32(5.65) 9.02(1.45) 8.89(0.75)

p=n 7.2(1.65) 7.28(1.57) 7.68(1.81) 7.46(1.82) 8(2.18)

m=3

p=
√

n 8.87(2.42) 9.93(3.81) 11.01(5.59) 11.49(6.77) 13.47(10.11)

p=0.1n 8.82(3.38) 9.24(4.32) 8.78(0.84) 9.07(2.4) 10.6(17.54)

p=n 6.88(1.45) 7.11(1.49) 7.22(1.6) 7(1.55) 7.16(1.44)

Table 3.3 Means and standard deviations (in parentheses) for r̂PT , r̂Ratio1 and r̂Ratio2 in the sim-
ulation with 200 replications for Setting 3, where r = 9 and delta1, . . . ,δ3 = 0.7, δ4, . . . ,δ6 =
0.3, δ7, . . . ,δ9 = 0.
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Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂PT

m=1

p=
√

n 8.68(1.09) 9.2(0.59) 9.22(0.67) 9.31(0.9) 9.28(0.79)

p=0.1n 9.12(0.74) 9.29(0.88) 9.3(0.9) 9.42(0.93) 9.3(0.76)

p=n 9.15(0.89) 9.2(0.73) 9.05(0.61) 9.23(1.03) 9.3(0.95)

m=2

p=
√

n 8.65(0.8) 9.07(0.6) 9.23(0.65) 9.23(0.56) 9.16(0.43)

p=0.1n 9.04(0.9) 9.97(1.19) 10.47(1.26) 10.9(1.51) 11.32(1.54)

p=n 11.7(2.32) 13.33(2.58) 14.32(2.39) 15.01(2.08) 15.79(1.74)

m=3

p=
√

n 8.48(0.84) 9.18(0.7) 9.43(0.69) 9.44(0.77) 9.51(0.88)

p=0.1n 9.23(1.11) 10.81(1.86) 12.18(2.39) 13.21(2.61) 15.42(3.44)

p=n 16.3(2.86) 20.66(1.94) 22.8(2.02) 23.58(2.2) 24.11(1.96)

Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂Ratio1

m=1

p=
√

n 5.04(3.25) 5.96(3.34) 6.62(3.23) 7.08(3.05) 7.52(2.78)

p=0.1n 4.12(3.09) 4.86(3.19) 5.04(3.16) 4.77(3.12) 4.61(3.17)

p=n 2.44(1.75) 3.25(2.19) 2.79(2.12) 2.95(2.1) 2.74(2.07)

m=2

p=
√

n 3.88(2.76) 4.3(2.93) 4.62(2.97) 4.5(3) 4.89(3.12)

p=0.1n 3.22(2.53) 3.15(2.29) 2.92(2) 2.98(1.95) 2.74(1.87)

p=n 2.27(1.35) 2.3(1.41) 2.2(1.46) 2.11(1.18) 2.02(1.2)

m=3

p=
√

n 3.18(2.28) 3.74(2.72) 3.99(2.92) 4.24(2.92) 4.04(2.79)

p=0.1n 2.78(2.18) 2.73(1.92) 2.72(1.91) 2.9(1.77) 2.71(1.9)

p=n 2.23(1.28) 2.18(1.18) 2.15(1.28) 2.09(1.21) 2.08(1.3)

Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂Ratio2

m=1

p=
√

n 11.15(5.67) 13.79(6.94) 16.77(8.87) 19.66(10.77) 22.22(12.72)

p=0.1n 9.95(6.84) 13.08(13.32) 13.12(16.21) 13.83(23.96) 11.61(21.33)

p=n 5.76(2.08) 6.26(1.95) 6.26(2.17) 6.29(1.96) 6.17(2.01)

m=2

p=
√

n 9.26(4.02) 9.93(4.5) 10.37(5.03) 11.27(7.14) 12.96(9.48)

p=0.1n 8.25(3.93) 8.09(1.5) 8.16(1.47) 8.64(9.05) 7.93(1.55)

p=n 5.73(1.84) 5.94(1.79) 6.06(1.78) 5.82(1.75) 5.71(1.69)

m=3

p=
√

n 7.86(2.92) 9.35(3.71) 10.05(4.56) 10.47(5.78) 10.38(6.21)

p=0.1n 7.82(3.01) 7.78(1.81) 7.86(1.72) 8.07(1.5) 7.92(1.62)

p=n 5.74(1.78) 5.92(1.74) 5.8(1.79) 5.91(1.77) 5.77(1.87)

Table 3.4 Means and standard deviations (in parentheses) for r̂PT , r̂Ratio1 and r̂Ratio2 in the
simulation with 200 replications for Setting 4, where r = 9 and ∼Uni f [0,0.9].
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Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂PT

m=1

p=
√

n 8.8(1.04) 9.07(0.57) 9.23(0.58) 9.28(0.79) 9.28(0.9)

p=0.1n 9.06(1.05) 9.3(0.96) 9.36(1.1) 9.24(0.61) 9.34(0.85)

p=n 8.98(0.61) 9.19(0.78) 9.11(0.86) 9.16(0.84) 9.08(0.44)

m=2

p=
√

n 8.88(0.49) 9.01(0.2) 9.01(0.07) 9.01(0.1) 9.02(0.28)

p=0.1n 9.04(0.51) 9.01(0.1) 9.04(0.2) 9.08(0.27) 9.11(0.32)

p=n 10.11(1.52) 12.1(3.09) 14.01(2.98) 15.2(2.89) 16(2.51)

m=3

p=
√

n 8.93(0.46) 9.03(0.23) 9.01(0.1) 9.02(0.14) 9.02(0.14)

p=0.1n 9.05(0.36) 9.26(0.66) 9.74(1.1) 10.53(1.61) 11.95(2.29)

p=n 16.31(5) 25.44(3.53) 26.82(1.62) 27.08(0.65) 27(0.57)

Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂Ratio1

m=1

p=
√

n 8.31(2.09) 9(0) 9(0) 9(0) 9(0)

p=0.1n 8.71(1.39) 9(0) 9(0) 8.99(0.07) 9(0)

p=n 8.62(1.59) 8.76(1.23) 8.98(0.22) 8.96(0.57) 8.96(0.57)

m=2

p=
√

n 6.43(3.23) 7.82(2.58) 8.45(1.84) 8.62(1.61) 8.71(1.37)

p=0.1n 6.46(3.23) 7.48(2.71) 7.34(2.95) 7.06(3.01) 7.32(2.82)

p=n 4.68(3.13) 4.66(3) 4.96(2.92) 4.78(2.91) 4.8(2.81)

m=3

p=
√

n 5.03(3.33) 7.12(3.05) 7.56(2.82) 8.01(2.4) 8.31(2.06)

p=0.1n 4.93(3.4) 6.84(3.07) 6.61(3.07) 6.69(3.11) 6.18(3.19)

p=n 3.83(2.7) 4.34(2.95) 4.32(2.67) 4.21(2.72) 3.81(2.61)

Estimator m p n=400 n=900 n=1600 n=2500 n=3600

r̂Ratio2

m=1

p=
√

n 17.45(3.4) 21.8(2.85) 23.76(6.07) 25.95(8.96) 28.36(10.59)

p=0.1n 23.14(6.82) 29.73(18.62) 31.8(28.83) 35.18(42.87) 31.5(49.34)

p=n 10.25(0.93) 10.36(0.84) 10.42(0.77) 10.45(0.84) 10.49(0.86)

m=2

p=
√

n 13.71(4.92) 18.82(6.12) 22.15(7.35) 25.39(9.05) 27.52(11.27)

p=0.1n 16.94(8.77) 22.88(17.72) 24(26.07) 23.05(33.26) 17.87(31.62)

p=n 9.28(1.11) 9.16(0.5) 9.2(0.57) 9.3(1.96) 9.13(0.48)

m=3

p=
√

n 11.66(4.48) 17.26(6.66) 20.24(8.3) 21.75(10.19) 25.04(12.17)

p=0.1n 13.23(7.41) 20.23(16.64) 18.5(22.78) 20.69(31.36) 16.22(29.8)

p=n 9.12(0.53) 9.13(0.44) 9.09(0.41) 9.07(0.39) 9.05(0.26)

Table 3.5 Means and standard deviations (in parentheses) for r̂PT , r̂Ratio1 and r̂Ratio2 in the
simulation with 200 replications for Setting 5, where r = 9 and ∼Uni f [0,0.5].

Although the estimator r̂ may not always provide a precise estimate of the true number

of factors r, it can still be useful depending on the direction of the estimation error. In factor
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models, if r̂ ̸= r, overestimation r̂ > r is generally preferred over underestimation r̂ < r.

When r̂ > r, all factors have been identified, and the additional (r̂− r) factors are effectively

noise. While the inclusion of this extra noise may lower the quality of the estimation, it

ensures that no information about the latent factors is lost. Conversely, if r̂ < r, we would be

missing information from unidentified factors, which is undesirable. Thus, when choosing

between two estimators that perform equally in terms of estimation accuracy, we would prefer

the one that consistently overestimates rather than underestimates. Under this principle, if

r̂ = r+1 is deemed an acceptable estimate, we can re-evaluate the performance of both r̂PT

and the ratio-based estimators from a different perspective. Below, we present the results for

the relative frequency of P(r̂ ∈ (r,r+1)) and r̂ = r for setting 4 at m = 1.

Estimator p n=400 n=900 n=1600 n=2500 n=3600

r̂PT

p=
√

n 0.76(0.66) 0.96(0.81) 0.96(0.84) 0.94(0.79) 0.94(0.79)

p=0.1n 0.92(0.8) 0.92(0.76) 0.95(0.82) 0.92(0.76) 0.95(0.81)

p=n 0.87(0.81) 0.92(0.84) 0.94(0.92) 0.95(0.91) 0.94(0.86)

r̂Ratio1

p=
√

n 0.24(0.24) 0.42(0.42) 0.56(0.56) 0.62(0.62) 0.69(0.69)

p=0.1n 0.17(0.17) 0.22(0.22) 0.24(0.24) 0.23(0.23) 0.2(0.2)

p=n 0(0) 0.01(0.01) 0(0) 0(0) 0(0)

r̂Ratio2

p=
√

n 0.19(0.19) 0.38(0.37) 0.34(0.32) 0.4(0.34) 0.35(0.26)

p=0.1n 0.37(0.36) 0.48(0.42) 0.54(0.48) 0.52(0.45) 0.48(0.42)

p=n 0.1(0.1) 0.12(0.11) 0.21(0.2) 0.14(0.14) 0.14(0.14)
Table 3.6 Relative frequency estimates for P(r̂ ∈ (r,r+1)) and P(r̂ = r) (in parentheses) for
r̂PT , r̂Ratio1 and r̂Ratio2 in the simulation with 200 replications for Setting 4, where r = 9 and
δ = (0.8,0.7,0.3,0.4,0.9,0.5,0.6,0.2,0).

From Table 3.6, we observe that by relaxing our criterion to accept r̂ ∈ (r,r+ 1), the

relative frequency for r̂PT shows significant improvement, reaching a satisfactory level. This

adjustment allows for a broader range of acceptable estimates, acknowledging that slight

overestimation of the number of factors, r̂ = r+1, still retains the essential factors. Overall,
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this approach highlights the effectiveness of r̂PT under less stringent criteria and suggests

that it provides a more reliable estimation compared to other methods under these conditions.

To summarize, our proposed estimator demonstrates strong performance, especially

when p ≤
√

n or m = 1, where it consistently provides accurate estimates. It outperforms

ratio-based estimators in terms of both consistency and robustness, p articularly in settings

with multiple factor strength levels, where the ratio-based estimators struggle to capture the

true number of factors. r̂PT exhibits greater stability in the face of varying factor structures,

making it more adaptable to different scenarios.

Furthermore, when we relax our standard to consider r̂ = r+1 as an acceptable estimate,

our proposed estimator shows considerable improvement.This flexibility allows it to better

handle the inherent variability in the estimation process, especially in cases where slight

overestimation is more beneficial than underestimation, ensuring no factors are missed. Thus,

our method not only outperforms existing ratio-based approaches but also proves to be more

versatile under varying conditions, especially when dealing with complex factor structures

and when slight overestimation is acceptable.

3.5 Real Data Example

In this section, we apply our proposed method to the log-transformed daily returns of 480

stocks from the S&P 500 index, covering the period from 2013-01-01 to 2023-11-30. The

log return Rt of a selected stock is defined as:

Rt = log(
pt

pt−1
), (3.31)

where pt is the closing price of the stock on day t. Log transformation is a common

preprocessing technique for time series data, offering benefits such as variance stabilization

and linearization of trends. It requires the data to exclude zeros or negative values, which

is not a limitation in our case, as the price of a stock pt ≤ 0 occurs only in very extreme

situations for daily stock returns.
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The dataset consists of n = 2748 observations and p = 480 variables, representing 480

stocks selected from the SP 500 index based on the completeness and reliability of their

records. These stocks were chosen to ensure a comprehensive and high-quality dataset

for analysis. We present estimations from three different methods: r̂PT , r̂Ratio1 and r̂Ratio2,

across different maximal lags m = (1,2,3,4,5). These estimations are evaluated to assess

the accuracy and robustness of each method under varying lag structures, providing a

comprehensive comparison of the performance of each estimator in capturing the number of

factors.

m=1 m=2 m=3 m=4 m=5

Ratio Test r̂Ratio1 1 1 1 1 1

Ratio Test r̂Ratio2 2 2 2 2 2

Permutation Test r̂PT 6 7 7 9 8
Table 3.7 Estimation on r for Real Data, maximal lag m = (1,2,3,4,5) for both estimators.

Table 3.7 presents the estimation results from all three estimators across different values

of m. We observe that both r̂Ratio1 and r̂Ratio2 remain invariant as m changes, yet both

are consistently lower than r̂PT for any m. The stable estimation from r̂Ratio2 suggests

the presence of weak factors, as the estimator is not sensitive to the change in lag. The

relationship r̂PT > r̂Ratio2 > r̂Ratio1 further emphasizes that the strength of factors varies

significantly, with r̂PT capturing more factors than the ratio-based estimators. These findings

strongly suggest that the ratio-based estimators tend to underestimate the true number of

factors in this setting, as they fail to account for weaker but still significant factors that r̂PT

identifies more effectively.
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p-value Smaller than αFDR?

1 0.00000 TRUE

2 0.00050 TRUE

3 0.00000 TRUE

4 0.00000 TRUE

5 0.00000 TRUE

6 0.00030 TRUE

7 0.52024 FALSE

8 0.00050 TRUE

9 0.46227 FALSE (outlier)

10 0.00000 TRUE

11 0.00000 TRUE

12 0.01799 FALSE
Table 3.8 First 10 p-values from permutation testing procedure on Real Data at m = 1,
αFDR = 0.000625.

To better understand how our estimator r̂PT is derived, we can examine the intermediate

steps involved. As an example, we listed out the first 12 p-values from the permutation

testing at m = 1 in table 3.8. Here we identify p9 as an outlier because both p10 < αFDR

and p11 < αFDR. However, p9 is not considered a significant outlier. Given that r̂PT = 6 and

6+1 < 9, it indicates that p9 does not fall within the range of important outliers. p7 is not

considered as an outlier because p8 and p9 are not significant at the same time. Consequently,

the estimator ignores this outlier and concludes that r̂PT = 6.

In contrast, for the ratio-based estimators, with r̂Ratio1 = 1 and r̂Ratio2 = 2 across all lags,

we observe that each step of these estimators identifies only one factor. This result suggests

the existence of multiple levels of factor strength. To further illustrate this, we present the

first 10 eigenvalues λ̂is and their ratios ˆλi+1/λ̂i from each step of the estimation process:



3.5 Real Data Example 71

index λ̂i ˆλi+1/λ̂i

1 0.0000474 0.1238725

2 0.0000059 0.1634941

3 0.0000010 0.9265492

4 0.0000009 0.6227170

5 0.0000006 0.7877621

6 0.0000004 0.9287467

7 0.0000004 0.5896377

8 0.0000002 0.9848705

9 0.0000002 0.9277768

10 0.0000002 0.9313042

Table 3.9 First 10 eigenvalues λ̂iof M̂ and their ratios at m = 1 for r̂Ratio1 on Real Data.

index λ̂i ˆλi+1/λ̂i

1 0.0000057 0.1618048

2 0.0000009 0.9190688

3 0.0000008 0.6506619

4 0.0000006 0.7887723

5 0.0000004 0.9271086

6 0.0000004 0.5924685

7 0.0000002 0.9651012

8 0.0000002 0.9383784

9 0.0000002 0.9393057

10 0.0000002 0.8524536

Table 3.10 First 10 eigenvalues λi of M̂ and their ratios at m = 1 for the second step of r̂Ratio2
on Real Data.

In both Table 3.9 and Table 3.10, the ratio λi+1/λi reaches its minimum at i = 1, suggest-

ing that each step identifies only one significant factor. If there were only one factor, or if
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all factors had the same strength δ , r̂Ratio2 would be dominated by randomness. However,

since r̂Ratio2 provides consistent results across m = (1,2,3,4,5), we can conclude that in this

real dataset, there are at least two distinct factor strength δi ̸= δ j, and each δ has at least one

correaponding factor, indicating r ≥ 2.

When comparing the ratio-based estimators with our proposed estimator in Table 3.7, we

observe that r̂PT consistently produces significantly higher estimates. While the ratio-based

estimators suggest the presence of two factors, our method identifies four additional factors.

To validate whether these extra components are indeed valid factors, we recover them using

equation (3.11) and present their autocorrelation and partial autocorrelation functions to

demonstrate the presence of serial dependence.

Fig. 3.6 Autocorrelation of 3rd to 6th component of zt at m = 1 on real data.
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Fig. 3.7 Partial Autocorrelation of 3rd to 6th component of zt at m = 1 with real data.

From Figures 3.6 and 3.7, we observe that both the autocorrelation and partial autocor-

relation of the 3rd to 6th components in zt exhibit clear serial dependence. Based on this

observation, these components should also be considered as factors. Therefore, we conclude

that r̂PT does not overestimate the true number of factors, which suggests that the ratio-based

estimators are underestimating true r.

In conclusion, the application of our proposed estimator r̂PT to real data demonstrates

its robustness and accuracy in identifying the true number of factors, particularly when

compared to ratio-based estimators. While r̂PT captures a broader range of factors and shows

consistency across various lags, the ratio-based estimators tend to underestimate the true

number of factors, especially when factor strengths vary. The validation of the additional

factors identified by r̂PT through autocorrelation and partial autocorrelation further confirms

the reliability of our method in real-world settings.
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3.6 Conclusion and Further Discussion

To summarize, under the assumption of exchangeability, we have introduced a non-parametric

testing method for determining the number of factors in high-dimensional time series. The

proposed procedure is applicable up to the m-th order autocorrelation when p ≤
√

n, and

it demonstrates strong performance at m = 1 for any value of p. A notable advantage

of our method is its robustness across varying levels of factor strength, coupled with its

consistency in estimation. Additionally, we have demonstrated that the proposed estimator

effectively controls Type I error at the desired significance level, ensuring reliable inference

in high-dimensional settings.

There are several open questions concerning the proposed method. First, the power

of the test has not been fully addressed. The power of a hypothesis test is defined as

P(Re ject H0|HA true), and ideally, we would aim for a power of 1. While we have demon-

strated that the significance level of our proposed test is independent of the choice of test

statistic, the power of the test is directly influenced by it. Another key observation pertains to

the behavior of our proposed estimator, r̂PT , when m > 1 and p >
√

n. From Tables 3.1-3.5,

we note that when p >
√

n, r̂PT tends to overestimate the number of factors, with the degree

of overestimation varying across different settings.

The numerical values suggest that as n and p increase, r̂PT appears to approach m×

r. One possible explanation for this behavior is that when p increases faster than
√

n,

the sample autocovariance matrix Σ̂ΣΣy(k) becomes an inconsistent estimator for the true

covariance matrix ΣΣΣy(k), leading to inconsistent estimates of the eigenvalues λ̂i in M̂. Several

studies in random matrix theory have shown that the empirical covariance matrix may not

be a reliable estimator of the population covariance matrix when p is large. If a more

consistent estimator for ΣΣΣy(k) were used, the performance of our proposed estimator would

likely improve at higher lags. For example, Bickel and Levina (2008) proposed a method

for regularizing the covariance matrix via hard thresholding, which is consistent when

log(p)/n→ 0. Nevertheless, covariance is typically captured adequately by lower lags, which

allows our proposed estimator to provide reliable estimates despite the high dimensionality.



Chapter 4

Electricity Load Forecasting by Factor

Models, TS-PCA and Matrix TS Models

4.1 Introduction

Electricity load forecasting is the process of predicting electricity consumption at a specific

place over a defined timeframe. Typical forecasting horizons are categorized as long-term,

mid-term, short-term, and ultra-short-term, corresponding to annual, monthly, daily, and

hourly predictions, respectively (Nti et al. (2020)). Long-term and mid-term forecasts guide

infrastructure planning, while short-term forecasts support load management within energy

systems. Accurate electricity load predictions help optimize energy generation and allocation

to meet demand, minimizing waste and preventing shortages that could destabilize the grid.

In short-term electricity load prediction, various modeling approaches have been studied,

including traditional statistical models, time series models, and machine learning techniques.

Regression models, one of the most widely used traditional statistical methods, are commonly

applied to long-term predictions (Kuster, Rezgui, and Mourshed (2017)) but can also be

effective for short-term forecasts. Specifically, generalized linear models (GLMs) are fre-

quently used for their simplicity and interpretability, making them popular in the industry. For

instance, the French energy company EDF (Pierrot and Goude (2011)), employs a specific

GLM variant called the Generalized Additive Model proposed by Hastie and Tibshirani
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(1987), which models electricity load as an additive combination of functions of dependent

variables. In this model, variables with nonlinear relationships are modeled using smooth

functions. However, the selection of variables to smooth and the choice of smooth functions

are not automated, as they depend on prior knowledge or exploratory data analysis.

Time series models, such as Autoregressive Integrated Moving Average (ARIMA), are

popular in short-term load forecasting. With the increasing availability of high-resolution

electricity load data, aided by the widespread use of smart meters, these models can now

provide more precise forecasts. However, as time series models predict future value based on

past observations solely, they do not incorporate dependent variables, such as temperature

and seasonal factors, into the modeling process, making them relatively less sensitive to

changes in dependent variables.

Recently, neural-network-based models, including Long Short-Term Memory (LSTM)

and transformer-based models (Wang et al. (2022)) have been introduced to electricity load

forecasting. These deep learning models are capable of modeling nonlinear relationships, yet

challenges remain, such as the gradient vanishing issue, which, despite being mitigated in

LSTM, still poses problems in deep time series modeling.

Beside the classification of methods by model, there are other methods from different

perspectives. For instance, probabilistic quantile forecasting by Xu et al. (2020) predicts

a range of potential values with a given confidence level instead of a single estimate. Hi-

erarchical modeling integrates regional forecasts into national-level predictions, offering a

more structured forecasting approach (Brégère and Huard (2022), Antoniadis, Gaucher, and

Goude (2023)) .

Considering that EDF has been using Generalized Additive Model (GAM) as its operating

model for the time being, in order to further enhance the model’s forecasting performance, a

hybrid approach that combines different modeling techniques appears most suitable. Building

on GAM as a foundation, Cho et al. (2013) proposed a method that models the residuals of

GAM as a curve to capture short-term dependencies that GAM might overlook. Similarly,

J. d. Vilmarest et al. (2023) and Obst, De Vilmarest, and Goude (2021) developed a state-

space model that incorporates the smoothed variables from GAM, allowing for adaptive load
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estimation. These approaches use GAM as the first step in a model-stacking process, with

additional methods layered on to enhance predictive accuracy. Likewise, we are interested in

adding time series analysis towards the forecasting of electricity load.

To examine the necessity of adding time series analysis to the modeling of electricity

load data, we conduct some exploratory analysis on the national-level electricity load data.

Given the resolution of the dataset, we have 48 observations within one day’s time, and we

refer to these 48 half-hour intervals as "time of day" (tod for short), where tod = 0 refers

to 00 : 00 ∼ 00 : 30, and tod = 47 refers to 23 : 30 ∼ 00 : 00 within a day. With the given

resolution of data, we were able to find clear intra-day pattern, as well as weekly pattern at

the same time interval of the day. In Figure 4.1, a clear intra-day pattern is visible across

each day within the selected week. Additionally, Figure 4.2 illustrates that different times of

the day exhibit varying median values and inter-quartile ranges, highlighting unique load

patterns at specific intervals within a single day.

Fig. 4.1 France national electricity load (in MW) from 2023/09/23 to 2023/09/30.
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Fig. 4.2 Boxplot of France national electricity load (in MW) at different time of day, from
2023/01/01 to 2023/09/30.

Traditional time series approaches predict the electricity load for day t + 1 using past

observations in chronological order. However, significant intra-day fluctuations make it

challenging to efficiently capture patterns that are unique to different times of the day. It

would be beneficial to perform data decomposition, such that the series can be break down

and modeled by several simpler models, reducing complexity and improving forecasting

performance. One straightforward solution is to break the univariate series into 48 sub time

series by the half-hour interval, and model each of the 48 half-hour intervals independently.

Yet, this approach overlooks interactions between different times of day. Treating the 48

univariate time series as a 48-variate vector time series and applying VAR models could

address these interactions, but the model’s complexity increases with the high dimensionality,

limiting its performance.

Within the framework of model stacking, we propose two time series modeling ap-

proaches to address the high dimensionality of the dataset. Our method involves modeling

the residuals from GAM and reshaping the residual data to preserve its interactive structure.

We propose to reduce the dimension of the reshaped residual data using factor model (Lam

and Yao (2012a)) and principal component analysis for time series data (Chang, Guo, and

Yao (2018a)). Both methods target the latent structure of the residual data, and find a linear
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transformation that recovers the latent process. The factor model assumes the presence

of a lower-dimensional latent process, achieving dimension reduction by recovering this

latent structure. PCA for time series, although also assumes the existence of latent structure,

further assumes that there is a latent segmentation of components, and the groups after

segmentation are independent of each other, allowing separate modeling without the need of

considering cross dependence between groups. In the context of electricity load forecasting,

both approaches demonstrate significant improvements over the baseline GAM forecasts.

The rest of the chapter is organized as follow: Section 4.2 describes the French electricity

load dataset provided by EDF. In Section 4.3, we present the Generalized Additive Model

(GAM) used by EDF and examine the residual information left by the GAM model. Section

4.4 introduces the framework of our proposed method and other methods used for comparison.

In Section 4.5, we present a numerical analysis of the forecasts produced by different models.

Finally, Section 4.6 concludes with our findings on the modeling process, along with remarks

and directions for future research.

4.2 Description of the Dataset

The dataset gathered electricity consumption in France, both at national level and regional

level (12 metropolitan regions only). The electricity load data is collected at half-hour

resolution for 3865 days, ranging from March 2013 to October 2023. Inside the dataset, we

define electricity load as the independent variable, and the rest as the dependent variables.

These dependent variables can be classified into 3 categories: calendar data, electricity load

data, and meteorological data. Calendar data includes basic time variables (date, month

and year, etc.), categorical variables (weekday type, time of day, etc.), and dummy variables

(for holiday, summer, etc.). Meteorological data consists of variables such as temperature,

wind intensity, and nebulosity, sourced from the World Meteorological Organization (WMO).

The electricity load data, as the dependent variable, also includes lagged versions of itself

(with 1-day and 7-day lags) and is measured in megawatts (MW). A complete list of variables
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is provided in Appendix B. Both meteorological and electricity load data are available at the

national and regional levels, enabling modeling at both scales.

4.3 Prediction Model

4.3.1 The Generalized Additive Models Framework

Generalized Additive Model (GAM) is a type of Generalized Linear Models, which models

the independent variable as a sum of smooth non-parametric functions of the dependent

variables. Given observations yt and covariates x(1)t ,x(2)t , where yt is the electricity load at

time t, x(1)t = (x(1)t,1 , . . . ,x
(1)
t,d1

)⊤ and x(2)t = (x(2)t,1 , . . . ,x
(2)
t,d2

)⊤ are dependent variables at time t.

d1 represents the dependent variables with linear relation to yt , d2 represents the dependent

variables with nonlinear relation to yt . GAM model has the form:

yt = β0 +
d1

∑
i=1

βix
(1)
t,i +

d2

∑
j=1

f j(x
(2)
t, j )+ εt , εt ∼ N(0,σ2), (4.1)

where β0 is the intercept, and εt is a i.i.d. random variable following normal distribution. βi

are the coefficients for the linear terms x(1)t , and f j(·) are smooth functions for non-linear

terms x(2)t . Unlike GLM, which assume that the dependent variables have a linear relationship

with the independent, GAM is suitable for modeling nonlinear relationships. The smooth

function transforms nonlinear relationships between x(2)t and yt , allowing model (4.1) to

become linear. Each x(2)t, j have its own smooth function, which is a flexible, non-parametric

way to model the nonlinear relationship. One common type of smooth functions used in

GAMs is called splines, which is a piece-wise polynomial function defined by a set of basis

functions and knots. The basis functions are combined linearly with coefficients, which are

estimated during the model fitting process. For model (4.1), We selected thin plate splines,

which is particularly powerful for multi-dimensional smooths.

By choosing smooth functions to be splines, we could estimate GAM as a GLM via

regression with penalty, in which we aim to minimize the following objective function:
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L (β , f ) =
n

∑
t=1

(yt −β0 −
d1

∑
i=1

βi(x
(1)
t,i )−

d2

∑
j=1

f j(x
(2)
t, j ))

2 +
d2

∑
j=1

λ j f⊤j S j f j, (4.2)

where λ1, . . . ,λd2 is called smoothing parameter, and S j is the penalty matrix for the j-th

smoothing term depending on the spline. λ j controls the balance between model fitness

and smoothness, where λ j = 0 leads to an unpenalized fit, and λ j → ∞ leads to a straight

line estimate for f j(·). This problem can be solved via Restricted Maximum Likelihood

(REML). This method involves both the linear and smooth components x(1)t , x(2)t because

REML estimates the variance components (i.e., the smoothing parameters) while adjusting

for the uncertainty in the fixed effects (which include both linear terms and smooth terms).

We use the R-package mgcv, which has this method implemented for GAM modeling. More

details regarding REML and other sommthing functions can be found in Wood (2017).

4.3.2 Model Specifications for Predicting Electricity Load

The objective is to predict the electricity load for the next day. Based on observations from

Figure 4.1 and 4.2, we see that the electricity load yt,i at tod = i, i ∈ [0, . . . ,47] on day t

is influenced not only by yt,i−1, but also by the load at the same tod one day prior, yt−1,i.

Following this insight, we could perform data decomposition by reshaping the univariate

series yt (dimension 185520×1) into a 48-variate vector time series with n = 3865, where

each variate represents daily observations at the same time of day over the entire period. This

decomposition enables individual modeling for each time of day. Accordingly, we split the

dependent variables into 48 subgroups and fit a separate GAM for each time of day, using

the following model:

yt,i =
7

∑
j=1

m j1day_type_weekt= j + f (temperaturet,i)

+ f (Timet,i)+ f (nebulosityt,i)+ k1day_type_ j ft=1

+ l1period_holidayt=1 + f (Load_d1)+ f (Load_d7)

+ εt,i (4.3)
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where 1 is the indicator function, and the variables are:

• yt,i: electricity load on day t at tod = i of the day.

• day_type_week: Day of the week (factor with levels at 0-6) on day t.

• temperature: Weighted temperature on day t at tod = i.

• Time: Mark the ordering of all 185520 observations by time, with 2013-03-02 00:00:00

labelled as 1, and 2023-09-30 23:30:00 labelled as 185520.

• nebulosity: Describing the cloudiness on day t at tod = i, ranges between 19.38 and

99.33.

• day_type_jf : Binary variable on day t, 1 on bank holidays, else 0.

• period_holiday: Binary variable on day t, 1 on French national holidays (in all regions),

else 0.

• Load_d1: Electricity load at tod = i from 1 day ago.

• Load_d7: Electricity load at tod = i from 7 days ago.

The selection of variables and smoothing function are recommended by the EDF team

based on their past studies. The dataset is split into training data and testing data by year. The

training data, covering March 2013 to December 2022, with ntrain = 172416 observations,

is used to train the selected models. The testing data, spanning January 2023 to September

2023, includes ntest = 13104 observations. To forecast the electricity load for day t + 1,

predictions are first generated from each of the 48 individual GAMs. These predictions are

then combined into a single vector ŷGAM
t+1 , ordered chronologically by time of day.

4.3.3 Residuals of GAM Estimations

In this section, we evaluate the effectiveness of model (4.3) by analyzing the model residual.

The residual series εGAM
t = yt − ŷGAM

t represents the error of GAM forecast, where yt is the
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actual national-level electricity load in the testing data, and ŷGAM
t is the forecast generated

by the GAM model for the testing period. If model (4.3) has fully captured the dynamics

of yt , then εGAM
t should behave as a random variable following N(0,σ2), not carrying any

useful information. To check whether any information remains in the residuals, we use

Quantile-Quantile plots to compare the standardized εGAM
t against the standard normal

distribution N(0,1). A Q-Q plot visualizes how closely the residual data aligns with N(0,1)

by comparing the quantiles of the residuals with those of the standard normal distribution.

Fig. 4.3 Q-Q plot of εGAM from test data against N(0,1).

In Q-Q plot, if the two distributions are similar, then the points should fall on the diagonal

line y = x. However, as shown in Figure 4.3, the points did not align on the y = x line,

indicating a significant deviation from N(0,1). Further, the S-shaped pattern suggests that

εGAM
t is more skewed and has heavier tail. This result confirms that εGAM

t does not follow a

normal distribution, implying that the GAM model in 4.3 did not fully capture the relationship

between yt and xt .

To investigate the potential presence of information within εGAM
t from a time series

perspective, we reshape εGAM
t into 48 residual sub-time series by time of day (tod), and test

for significant autocorrelation within each series using the Ljung-Box test. The Ljung-Box

test is commonly used in time series modeling, and it tests whether any autocorrelations
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up to a specified lag is significantly different from zero. The null hypothesis H0 states that

all autocorrelations up to a given lag k are zero, indicating that the data is independently

distributed (no serial correlation). The alternative hypothesis H1 states that at least one of the

autocorrelations at lags 1 to k is non-zero, meaning that there is some autocorrelation present

in the time series. We set k = 7, and plot the 48 p-values from the Ljung-Box test for all 48

residual sub-series below:

Fig. 4.4 The p-values of 48 residual sub-series εGAM
t from Ljung-Box test. Maximum lag for

Ljung-Box test is set at k = 7.
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Fig. 4.5 ACF plot of 3 residual sub-series at selected tod.

Based on Figure 4.4, we observe that all p-values are significantly lower than the common

critical value p = 0.05, indicating the existence of autocorrelation in each residual sub-series.

To further investigate the pattern of serial correlation, we selected three specific time of day

tod and presented their ACF plots in Figure 4.5. The wave-like pattern in all three ACF

plots strongly indicates the presence of seasonality within each selected series. This result

indicates confirms the existence of time series information within εGAM
t , which implies that

model (4.3) is insufficient to capture time series related characteristics effectively.

Additionally, we are interested in exploring the cross-correlation among all 48 residual

sub-series. The cross-correlation at lag k for any pair of time series zi and z j is defined as:

ρi, j(k) =
Cov(zi,t ,z j,t+k)

σziσz j

, (4.4)

where the approximate critical value of ρi, j(k) at a 95% confidence interval is ±1.96√
n . We

calculated pairwise cross-correlation for all 48 residual sub-series, with maximum lag k = 7,

which allows us to analyze 15 lags in total (k ∈ [−7, . . . ,0, . . . ,7]). The cross correlation at
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any lag k is considered significant if |ρi, j(k)| ≥ 1.96√
273

. Below we present a heat map showing

the number of significant lags for each pair of residual sub-series.

Fig. 4.6 Heat map on number of significant lags for each pair of time series.

Based on Figure 4.6, the lowest number of significant lags across all pairs of residual

sub-series is 7, suggesting that every pair of the 48 residual sub-series exhibits significant

cross-correlation in at least half of the selected lags. Out of 48× 47/2 = 1128 pairs, 645

pairs have all 15 lags identified as significant, accounting for more than half of the total pairs.

This finding indicates a strong cross-correlation among the residual sub-series, restating the

need to model the residual series εGAM
t to capture these dependencies effectively.

4.4 Residual Fitting with Time Series Analysis

In this section, we propose several time-series based methods for modeling the residual

series εGAM
t . Our objective is to model and predict ε̂GAM

t , and use it to refine the electricity

load forecast via ỹt = ŷGAM
t + ε̂GAM

t . We name this 2-step prediction procedure as residual
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stacking model. In practice, the EDF team has implemented a similar approach, where they

developed another model based on dynamic Kalman Filter, stacking on the outcome from

GAM. We refer to this model as the benchmark model, and will introduce more details in

section 4.4.5.

When forecasting electricity load for the next day yt+1, time series methods did not use

information from xt+1 to predict the future residual εGAM
t+1 . During the residual modeling

process, rather than using the univariate εGAM
t series, we model the 48-variate sub-series

instead. A natural choice for multivariate time series modeling would be the vector autore-

gressive (VAR) model. However, with the high-dimensionality and limited observations in

the training dataset, over-parameterization in VAR model becomes a concern. VAR model

requires p+ k× p2 parameters, where p is number of variables, and k is the lag. If p = 48

and k = 2, then the model requires 48+2×482 = 4656 parameters, while the training set

contains only ntrain = 3592 observations, making the model insufficiently supported. To

overcome the over-parameterization issue, we propose 2 models for multivariate time series

modeling on the residual vector time series.

4.4.1 Principal Component Analysis for Vector Time Series

The first method we introduce is Principal Component Analysis for Vector Time Series

(TS-PCA), developed by Chang, Guo, and Yao (2018a). This approach applies principal

component analysis to high-dimensional time series data, segmenting it into smaller, un-

correlated groups. This segmentation allows each group to be modeled independently, thus

alleviating the over-parameterization issue by reducing p in p+ k× p2. The method starts

by transforming the original vector time series via performing an eigenanalysis on a posi-

tive definite matrix derived from the series’ cross-correlation matrix, effectively grouping

components based on their correlations.
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4.4.1.1 Theoretical Framework for TS-PCA

Given yt is a p× 1 weakly stationary time series, TS-PCA assumes that yt has a latent

segmentation, which can be represented as

yt = Axt , (4.5)

where the transformation matrix A is an unknown p× p matrix, and the transformed series xt

is a p×1 unobservable weakly stationary time series, and its p components can be segmented

into q groups of sub-series, denoted as:

xt =


x(1)t

...

x(q)t

 , (4.6)

where each group of sub-series x(i)t is both contemporaneously and serially uncorrelated with

the others; that is, for any i ̸= j, Cov(x(i)t ,x( j)
s ) = 0 for all t,s ∈ 1, . . . ,n. TS-PCA estimates

the transformed series xt in 2 steps:

1. Let Σy(k) = Cov(yt+k,yt) be the autocovariance matrix of yt at lag k. Define Wy =

∑
k0
k=0 Σy(k)Σy(k)⊤, where k0 is the maximum lag considered for autocovariance matri-

ces. To proceed, perform eigenanalysis on Ŵy and let ΓΓΓy be the orthogonal matrix with

columns being eigenvectors of Ŵy.

2. The matrix ΓΓΓy is a column permutation of the transformation matrix A, and zt = ΓΓΓ
⊤
y yt

serves as an approximation to the transformed series xt . The components of zt can be

segmented into q groups of uncorrelated sub-series, allowing for independent modeling

of each group.

Note that ΓΓΓy only estimates the true transformation matrix A up to columns, thus zt

might be different from the true transformed series xt . This discrepancy does not affect our

objective, as we ultimately aim to estimate yt+1 = Axt+1 = ΓΓΓyzt+1. For further details, please

refer to Chang, Guo, and Yao (2018a).
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4.4.1.2 Identifying Sub-groups in zt

The segmentation of components in the estimated transformed series zt , is based on evaluating

the pairwise cross correlations among the 48 components at different time lags. Then, we

connect all correlated components and put them in the same group, based on pairwise cross

correlation in equation (4.4). Using ccf, we compute cross-correlation between zi,t and z j,t at

any given lag k, denote as ρi, j(k) for simplicity.

To determine whether two components zi,t and z j,t are cross-correlated, we conduct the

following hypothesis test to check whether the cross-correlation for all selected lags are zero:

H0 : ρi, j(k) = 0, f or all k =−k0, . . . ,k0, (4.7)

where k0 is pre-specified as the maximum lag in testing cross correlation. If H0 is rejected

for a pair (i, j), we conclude that (zi,t , z j,t) is a connected pair and should be grouped to the

same sub-group.

To test the significance of pairwise cross-correlations, Chang, Guo, and Yao (2018a)

proposed a measure called Maximum Cross-Correlation (MCC), which is defined as:

Ln(i, j) = max
|k|≤k0

|ρi, j(k)|, (4.8)

where ρi, j(k) is the cross correlation defined in (4.4). To determine the significance of MCC,

we could either compare Ln(i, j) with a predetermined threshold value h, where Ln(i, j)> h

indicates significant cross correlation, or use the ratio-based method proposed in Chang, Guo,

and Yao (2018a), which is detailed as:

1. Compute MCC for all p0 = p(p− 1)/2 pairs to get a sequence of Ln. Rank this

sequence by ordering Ln(i, j) in descending order L̂1 ≥ ·· · ≥ L̂p0 .

2. Define the following ratio for the ranked L̂ values:

R̂L = arg max
1≤ j≤p0

L̂ j/L̂ j+1, (4.9)
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and reject H0 in (4.7) for all pairs corresponding to L̂1 ≥ ·· · ≥ L̂R̂L
.

To better explain the idea of this ratio-based approach, we could assume that there are

only c connected pairs among all p0 = p× (p−1) pairs. Hence, the c+1-th pair would be

insignificant, and L̂c+1 should be very close to 0, while L̂c is not, resulting in a large value

for L̂c/L̂c+1 = ∞. As c+2-th pair is also insignificant, L̂c+2 would be close to zero as well,

and the ratio then drops. Thus the ratio is maxed at c, which justifies the above method.

After identifying significantly correlated pairs, groups are created via merging any

connected pairs. For instance, if both (z1,t ,z2,t) and (z2,t ,z3,t) are significantly correlated,

we then merge z1,t ,z2,t and z3,t into a single group. Starting with each component as a

separate group, we iteratively combines groups until all connected pairs are in the same

group. A VAR model can then be applied to each of the q groups to generate predictions

ẑt+1 = (ẑ(1)t+1, . . . , ẑ
(q)
t+1), and the final forecast is obtained as ŷt+1 = ΓΓΓyẑt+1.

In ideal situation, this grouping process would mitigates the over-parameterization issue

by transforming it into several smaller, uncorrelated sub-series, allowing easier analysis and

forecasting. Yet if the underlying latent structure is not well-balanced (e.g. a very large group

and several much smaller group), this method contributes less effectively in reducing the

number of parameters.

To address this, we propose a new grouping method called trimmed grouping, which

sets an upper limit s on the size of each of the q groups. Based on the same hypothesis test

in (4.7), this approach ensures that no group exceeds the specified size limit significantly,

balancing the group sizes to ensure the reduce in complexity of the model.

1. Calculate Ln(i, j) for all pairs of components. Filter those with significant values (e.g.

larger than the threshold h).

2. For each component, record all other components with significant correlation in

descending order of Ln(i, j). This yields p initial groups.

3. Starting with the first group, if its size exceeds g, select the g most correlated compo-

nents, record these and remove them from the remaining p−1 groups.
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4. For the next group, remove any components that were previously selected, then choose

the g most correlated components from the remaining, and remove these from the other

p−2 groups. Repeat until all p components have been assigned.

5. For any groups containing only one component, merge them into existing groups if

they have a significant correlation with other components.

This procedure limits the maximum group size to approximately g, by initially keeping

only the most significant g pairs in each group and removing less significant components.

Although the final group sizes may slightly exceed g due to the last merging step, this excess is

minimal and should not impact the effectiveness of the trimmed grouping method in reducing

parameter counts within the VAR models, thereby ensuring an efficient segmentation that

reduces parameter requirements.

The prediction process then follows the same steps as in the previous methods: a VAR

model is applied to each of the q groups to predict ẑq
t+1, and ŷt+1 = ΓΓΓyẑt+1. We perform the

TS-PCA transformation and segmentation on the 48-variate residual series εGAM
t , and use

the predicted value for refining yGAM
t+1 .

4.4.2 Factor Model with Permutation Testing

Another time-series model for reducing the number of parameters in VAR models is the

factor model. Factor modeling is particularly effective for high-dimensional multivariate

time series, serving as a powerful dimension-reduction tool. This model assumes that the

observed multivariate series is driven by a lower-dimensional latent structure and can be

formulated as:

yt = Axt + εt , (4.10)

where xt is the latent process with dimension r×1, A is the factor loading matrix with

dimension p× r, and εt is noise. It is assumed that the number of latent factors r is much

smaller than the dimension of the observed multivariate series p. This assumption enables us

to describe the serial dependence in yt using a much lower-dimensional latent process xt .
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To estimate the factor loading matrix A and recover the latent process xt , we apply a

similar approach to TS-PCA by defining a non-negative definite matrix based on the summed

lagged autocovariance matrices and then perform eigenanalysis.

1. Let Σy(k) = Cov(yt+k,yt) be the autocovariance matrix of yt at lag k. Define M =

∑
k0
k=1 Σy(k)Σy(k)⊤, where k0 is the maximum lag used for autocovariance matrices.

Perform eigenanalysis on M̂, the sample estimate of M, and let ΓΓΓ be the orthogonal

matrix whose columns are the eigenvectors of M̂.

2. The matrix ΓΓΓ is a column permutation of the factor loading matrix A, and zt = ΓΓΓ
⊤yt

is a p×1 series that can be seen as a combination of the latent series xt and random

noise, containing r factor components and p− r noise components.

3. The estimate of the factor loading matrix consists of the first r columns in ΓΓΓ, denoted

as Â = ΓΓΓ1:r.

The key part in factor model is the estimation on number of factors r, which cannot be

observed directly. Various methods have been proposed for this purpose, including the ratio

test from Lam and Yao (2012a). Their approach estimates r̂ based on the ratio of ordered

eigenvalues from M̂:

r̂Ratio = argmin
1≤i≤p

λ̂i+1/λ̂i. (4.11)

The intuition behind ratio test is, eigenvectors associated with factors will have non-zero

eigenvalues, and those associated with white noise will have zero eigenvalues. Since there are

r factors, we should have r non-zero eigenvalues and p− r zero eigenvalues. As eigenvalues

come with a natural descending order, the ratio λr+1/λr shall be zero. In practice, the

estimated "zero" eigenvalues are slightly greater than zero, so the ratio λr+2/λr+1 will

generally be larger than λr+1/λr. Therefore, by finding the smallest ratio, we can estimate r̂.

The ratio test method works effectively when all factors have similar strengths, where

factor strength refers to the magnitude of influence each latent factor exerts on the observed

data. However, in real-world applications, factors often have varying strengths. To address

this, Lam and Yao (2012a) developed a 2-step ratio test. This method first estimates a factor
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loading matrix Â1 using ratio test, then perform the estimation again on y∗t = yt − Â1Â⊤
1 yt

to obtain a new factor loading matrix Â2, as well as the total number of factors r̂ = r̂1 + r̂2.

However, this approach is only capable of handling 2 different factor strength levels. To

handle a broader range of factor strength levels, we developed a new non-parametric method

for estimating r, which works well under varying factor strengths.

Given the transformed vector time series zt = z1,t , . . . ,zp,t , we are interested in testing the

following hypothesis for each component of zt :

• H0: zi,t is white noise, with no serial dependence.

• H0: zi,t is not white noise, and has serial dependence.

To test this hypothesis, we permute the series zi,t multiple times, and apply a test statistic

on all permuted series. We calculate the p-value of the test via finding the percentile of test

statistic from the original series within the sequence of test statistics from permutations.

p̂ =
∑

n!
j=11{T (zw j,t)≥ T (Z)}

n!
, p̂ ∈ [0,1], (4.12)

where w j is a permutation function on 1, . . . ,n, and zw j,t = (zwi(1),t , . . . ,zwi(n),t).

The choice of test statistic T (·) does not affect the outcome of the test, as the calculation

of p-value does not rely on the theoretical distribution of the selected test statistics. Typically,

T (·) will be based on sample autocorrelation of the series, which is defined as:

ρ̂k =
∑

n−k
t=1 (zt − z̄)(zt+k − z̄)

∑
n
t=1(Zt − z̄)

, z̄ =
1
n

n

∑
i=1

zi, (4.13)

where ρ̂k is the sample correlation at lag k, n is the total number of observation, and z̄ is

the sample mean. To obtain the most accurate empirical distribution, we need to perform n!

permutations on zt . This would quickly becomes computationally intensive for any n > 10.

Instead, a good approximation to the empirical distribution can be achieved with only a few

thousand permutations. It can be shown that, even with a limited number of permutations,
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the significance level of permutation testing can be controlled at the desired level, namely:

P(Rejecting H0|H0 true, z1, . . . ,zn)≤ α. (4.14)

This testing procedure remains effective even with varying factor strengths, enhancing its

capability to estimate r accurately in real-world data.The methodologies of the factor model

and TS-PCA may appear similar, as both employ eigenanalysis on a summed covariance

matrix over multiple lags. However, the underlying assumptions differ between the two

models. TS-PCA assumes that yt can be transformed into several smaller, uncorrelated groups

of sub-series, where factor model assumes the existence of a lower-dimensional latent process

that drives the observed series. Both methods address the issue of over-parameterization, but

the choice of method depends on prior knowledge of the dataset.

4.4.3 Simultaneous Decorrelation of Matrix Time Series (Regional

Data)

For regional data, we fit separate GAMs for each of the 12 regions to predict regional

electricity load. The residuals from these 12 regions then form 12 separate 48-variate time

series, which we reshape into a matrix time series of dimension 12×48, in order to capture

the dynamics across the 12 region. An intuitive approach for modeling this matrix time series

is the Matrix Autoregressive (MAR) model, an extension of the Vector Autoregressive (VAR)

model for matrix-valued series.

The MAR model requires fewer parameters than the VAR model, specifically (m×n+

k(m2 +n2) v.s. (p+ k× p2)×12). The MAR model imposed a shared structure across the

matrix time series, which leads to fewer autoregressive parameters compared to having VAR

models for vectorized series. The reduction is significant because the number of parameters

in the MAR model depends on 122 instead of 482, which is a substantial reduction. Although

there is no over-parameterization, we may still explore the underlying structure of this

residual matrix time series. In Han et al. (2023), they proposed a bilinear transformation

method to simplify the modeling and forecasting of high-dimensional matrix time series.
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This transformation addresses the challenges of modeling matrix time series with large

dimensions by reducing cross-correlations between matrix elements.

Similar to TS-PCA, the core idea is to transform the matrix time series into a set of

uncorrelated sub matrix series through a bilinear transformation. This method allows for

more efficient modeling by decoupling the original series into smaller subseries that can

be modeled independently. The paper by Han et al. (2023) demonstrates that this approach

reduces model complexity while preserving the integrity of the data’s linear dynamics,

making it easier to forecast. Moreover, the transformed matrix time series provides superior

forecasting performance, even when the true dynamics deviate from the assumptions.

Given any p×q matrix time series Yt =Yt,i, j, where i ∈ 1, . . . , p, j ∈ 1, . . . ,q, we look for

a bilinear transformation that can lead to the following segmentation:

Yt = BXtA⊤, (4.15)

where A and B are unknown constant matrix with dimension p× p and q×q. The transformed

matrix time series Xt is unobservable with the structure:

Xt =


Xt,1,1 Xt,1,2 · · · Xt,1,nc

Xt,2,1 Xt,2,2 · · · Xt,2,nc

...

Xt,nr,1 Xt,nr,2 · · · Xt,nr,nc

 , (4.16)

where each Xt,pi,q j is a sub matrix series with dimension pi ×q j, nr and nc are number of

groups in row and columns, and ∑
nr
i pi = p, ∑

nc
j q j = q. All sub matrix series are uncorrelated

with any other sub matrix series across all time lags. By modeling each sub matrix series

independently via MAR model, the modeling process shall be more efficient.

The estimation for A and B follows a similar procedure to factor models and TS-PCA,

where we perform eigenanalysis on non-negative definite matrices that are constructed from

aggregating covariance matrices over multiple time lags:
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1. Standardize Yt by estimating the row-wise and column-wise covariance matrices:

Σ̂
(1)
Y =

1
n× p

n

∑
t=1

Y⊤
t Yt , Σ̂

(2)
Y =

1
n×q

n

∑
t=1

YtY⊤
t ,

where

Yt = Σ
(1)
Y

1/2
B∗X∗

t A∗⊤
Σ
(2)
Y

1/2
, (4.17)

such that A∗ and B∗ are orthogonal.

2. Define cross covariance matrices V̂ (1) and V̂ (2) that capture correlation between rows

and columns:

V̂ (1)
k,i, j = (Σ̂

(1)−1/2

Y )
1

n− k

n−k

∑
t=1

Y⊤
t+kEi, jYt Σ̂

(1)−1/2

Y

V̂ (2)
k,i, j = (Σ̂

(2)−1/2

Y )
1

n− k

n−k

∑
t=1

Yt+kEi, jY⊤
t Σ̂

(2)−1/2

Y ,

where Ei, j is a unit matrix that extracts the element in the (i, j)-th position, and k is the

lag.

3. To estimate A∗ and B∗, construct the following non-negative definite matrices:

Ŵ (1) =
1
p2

k0

∑
k=−k0

p

∑
i=1

p

∑
j=1

V̂ (1)
k,i, j(V̂

(1)
k,i, j)

⊤,

Ŵ (2) =
1
q2

k0

∑
k=−k0

q

∑
i=1

q

∑
j=1

V̂ (2)
k,i, j(V̂

(2)
k,i, j)

⊤.

4. Perform eigenanalysis on Ŵ (1) and Ŵ (2), and eigenvectors corresponding to these

matrices are the columns of A∗ and B∗.

Once A∗ and B∗ are estimated, we can then estimate the transformed matrix series Xt via

X̂t = B∗⊤(Σ̂
(2)
Y )−1/2Yt(Σ̂

(1)
Y )−1/2A∗ (4.18)
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This transformed matrix series X̂t can be segmented into uncorrelated sub matrix series, and

each sub matrix can then be modeled independently. The segmentation of columns of X̂t is

proceeded by the following steps:

1. Define Zt as the matrix series obtained by applying the column transformation matrix

A∗ to the standardized original matrix series:

Zt = Yt(Σ̂
(1)
Y )−1/2A∗. (4.19)

2. Similar to equation (4.8), compute the maximum cross-correlation for each pair of

columns in Zt ,:

ρl,m(k) = max
1≤i, j≤p,|k|≤k0

|
Cov(Zt+k,i,l,Zt, j,m)

σZt,i,l ,σZt, j,m

|. (4.20)

Here, Zt,i,l denotes element in the i-th row and l-th column of matrix series Zt . This

equation finds the maximum cross correlation between column l and m across all time

lags within the range −k0, . . . ,k0.

3. Once all significant pairs are identified, iteratively merge connected columns into the

same block until all connected pairs are grouped together.

4. For row segmentation, use (Σ̂
(2)
Y )−1/2B∗ to replace (Σ̂

(1)
Y )−1/2A∗ in the first step, and

repeat the remaining steps.

With Xt segmented into nr row groups and nc column groups, we obtain nr ×nc blocks

of sub-matrix series. For each block, we fit a MAR model to make predictions at t +1. By

merging predictions from all blocks we could obtain X̂t+1, then following equation (4.17),

we obtain the final prediction Ŷt+1.

4.4.4 Long Short Term Memory

Long Short-Term Memory (LSTM) networks, first introduced in (Hochreiter (1997)), is a

specific type of recurrent neural network (RNN), which is designed to handle sequential data

and long-range dependencies. Compared to traditional RNNs, LSTMs have longer memory,
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making them particularly suitable for time series forecasting tasks with extended temporal

dependencies.

The LSTM architecture includes three main components within its memory cell structure:

the input gate, the forget gate, and the output gate. These gates modulate the flow of informa-

tion through the network, selectively deciding which information to retain or discard. This

gating mechanism enables LSTMs to capture both short-term and long-term dependencies in

data. In this setup, let the input be yt , input gate i, output gate o, forget gate f , memory cell c,

and W and U represent the weight matrices for each gate respectively.

• Input Gate: Controls the extent to which new information enters the memory cell.

it = fReLU(Wiyt +Uiht−1 +bi), (4.21)

where fReLU() = max(x,0) is the ReLU activation function.

• Forget Gate: Determines what proportion of past information in the memory cell is

retained.

ft = fReLU(Wf yt +U f ht−1 +b f ) (4.22)

• Output Gate: Controls how much of the memory cell’s content influences the current

output.

ot = fReLU(Woyt +Uoht−1 +bo) (4.23)

• Memory Cell: Carries information across time steps. ct takes the initial value of 0, and

will be updated at each step via adding or removing information through the 3 gates

above. We first generate a candidate memroy state

c̃t = tanh(Wcyt +Ucht−1 +bc), (4.24)

where tanh() is the hyperbolic tangent function limiting the range of c̃t between [−1,1].

Then we update the memory cell ct by combining the input gate it and the forget gate
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ft with c̃t :

ct = ft ⊙ ct−1 + it ⊙ c̃t , (4.25)

where ⊙ is the element-wise product.

• Hidden State: Short-term memory of the network, complementing the long-term

memory represented by the memory cell state. ht takes the initial value of 0, and is

updated based on the updated memory cell and the output gate, making it a filtered

version of the memory cell that emphasizes important information at each time step.

ht = ot ⊙ tanh(ct) (4.26)

Although LSTMs are known for its ability to handle complex, nonlinear relationships in

time series data, they require a substantial number of parameters, demanding a significant

amount of observations to train effectively. The number of parameters for a single LSTM

layer is calculated as follows:

Total Parameters = 4×hidden units× (input dim+hidden units)+4×hidden units,

where hidden units is the number of neurons in the LSTM layer, input dim is the number of

input features to the LSTM layer, and the number 4 represents the four gates in an LSTM. In

our case, we take the 48-variate residual data εGAM
t as input and predict ε̂GAM

t+1 . A single 50

neuron layer would have 19800 parameters, which is far more than the size of training data.

However, studies including Canatar, Bordelon, and Pehlevan (2021) have shown that, having

more parameters than training samples in neural network based models can surprisingly

lead to an acceptable generalization, which differs from traditional statistical models. Thus,

despite serious over-parameterization, we added LSTM to fit and predict residual series

ε̂GAM
t .
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4.4.5 Benchmark: Dynamic Kalman Filter

Instead of using GAM prediction as the final forecast, the EDF team developed a two-step

method to refine the estimation, where they implemented a method named dynamic Kalman

filter. The Kalman filter, first introduced in Kalman (1960), is designed to estimate the

state of a dynamic system from a sequence of noisy measurements within the framework of

state-space models.

A state-space model is a theoretical framework that describes the behavior of dynamic

systems over time. It represents the system’s internal states and how these states evolve.

Both Kalman filter and state-space model are widely used in control systems, navigation,

signal processing, and time series analysis. The main purpose of the Kalman filter is to

predict the future state of a system while correcting the current state estimation based on

new incoming measurements, even if these measurements are noisy. Connecting GAM with

Kalman filter combines the flexibility of GAM for capturing nonlinear relationships with the

dynamic capabilities of the Kalman filter to handle uncertainties and time-varying behaviors

in electricity load forecasting. To link both methods, we follow the setting used in Obst,

De Vilmarest, and Goude (2021), J. d. Vilmarest et al. (2023), where we employ the Kalman

filter to adaptively estimate and update a vector θt such that:

E[yt |xt ] = θ
⊤
t f (xt), (4.27)

and f (x) is defined as:

f (xt) =

 x(1)t

f (x(2)t )

 ,

where x(1)t = (x(1)t,1 , . . . ,x
(1)
t,d1

)⊤ and f (x(2)t ) = ( f1(x
(2)
t,1 ), . . . , fd2(x

(2)
t,d2

))⊤. For simplicity, we fix

the nonlinear smoothing functions f (·) obtained from training dataset, and assume that the

linear components evolve independently.

To apply Kalman filter on GAM, we transform GAM from a multivariate linear system

into the following Gaussian state-space model:
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θt+1 = θt +wt , wt ∼ N(0,Q), (4.28)

yt = θ
⊤
t f (xt)+ vt , vt ∼ N(0,σ2

v ), (4.29)

Equations 4.28 and 4.29 set up a state-space model for Kalman filtering. In this context,

the Kalman filter is used to estimate the latent state θt of the system. These equations model

the state transitions and observations, where the transition matrix is influenced by the process

noise covariance matrix Q, and the measurement noise is captured by σ2
v . They transform

the GAM model into a recursive state-space model to account for noise and uncertainty in

the system’s behavior. Here Q =

Q1 0

0 Q2

, where Q1,Q2 are for linear state variables x(1)t

and nonlinear state variables x(2)t respectively. vt is the measurement noise representing the

variance of observation, and σ2
v is the space noise variance.

To adaptively estimate θt , we can use the recursive formula of Kalman filter, assuming

the prior distribution of θ1 ∼ N(θ̂1,P1), where P1 ∈ Rd×d, d = d1 + d2 is positive definite.

Then at each time t ∈ 1, . . . ,n, we predict:

E[yt |x1,...,t ,y1,...,t−1] = θ̂
⊤
t f (xt), (4.30)

where θ̂t and Pt are update recursively with:

θ̂t+1 = θ̂t +
Pt f (xt)

f (xt)⊤Pt f (xt)+σ2
v
(yt − θ̂

⊤
t f (xt)), (4.31)

Pt+1 = Pt −
Pt f (xt) f (xt)

⊤Pt

f (xt)⊤Pt f (xt)+σ2
v
+Q. (4.32)

Equations 4.31 and 4.32 describe the recursive updates for the Kalman filter. Equation

4.31 updates the estimate of the state θt , while Equation 4.32 updates the covariance matrix

Pt , both of which evolve over time. These updates allow the Kalman filter to refine the

state estimate by incorporating new observations and reducing uncertainty. In this setting,
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both Q and σv are are unknown. The term dynamic in dynamic Kalman filter refers to a

specific setting, where Q ̸= 0, indicating a non-constant state vector, and similarly, σv not

being constant as well. This allows the system’s behavior to vary over time, which may be

casued by external disturbances, changing conditions, or unmodeled dynamics. A dynamic

Kalman filter estimates Q with an online manner, improving the filter’s ability to track the

state accurately under different noise conditions and adjust to time-varying system behavior.

To be more specific, dynamic Kalman filter initializes Q(0) = 0 and updates its diagonal

elements iteratively by adjusting one entry at a time. For each potential adjustment, we

choose the change that maximizes the likelihood through a grid search over a predefined set

of values. In our setting, we use {2 j,−30 ≤ j ≤ 0} as the candidate of parameter for grid

search updates.

The estimation of Q and σv are conducted through an iterative greedy procedure imple-

mented in the R-package viking (J. d. Vilmarest and Wintenberger (2024)). By estimating

these parameters adaptively, the dynamic Kalman filter is able to handle time-varying or

uncertain system behavior, and can improve the accuracy and reliability of state estimates

over time, which is crucial especially during times such as the COVID-19 pandemic period.

4.5 Performance Analysis

With the numerous methods introduced in the previous section, we now turn to evaluating

each method’s performance in forecasting electricity load. To compare the quality of forecast

from each method, we use the root mean square error (RMSE) as our evaluation metric:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2. (4.33)

Among the methods introduced in section 4.4, all except the Dynamic Kalman Filter

predict the residual ε̂GAM from GAM. We compute the final load forecast by

ỹt+1 = ŷGAM
t+1 + ε̂

GAM
t+1 ,
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and calculate the RMSE to compare forecast accuracy.

When predicting GAM residuals at national level, we treat the input as a 48-variate time

series. For regional-level predictions, we can either treat each of the 12 regions separately,

using approaches such as the Factor Model or TS-PCA, or reshape the data into a matrix

time series to apply Simultaneous Decorrelation of Matrix Time Series. Alternatively, we

can vectorize the matrix time series, and use methods from national level predictions as well.

In the following sections, we present the prediction RMSE for each of these approaches.

For predictions, we use a common time series forecasting technique called One-Step-

Ahead prediction. This approach predicts the time series value at the next time point using

all data available up to the current time. At time t, we use all observations up to t to train

the selected model, and the model predicts only one future time point t +1. As new data

becomes available with each time step, it is added to the training dataset to generate the

next one-step-ahead prediction. This method avoids the compounding errors that occur in

multi-step ahead time series forecasting.

While using all available data allows one to capture long term trends and provides more

observations for model fitting, it also intensifies computational burden. Additionally, if

seasonality or other patterns change over time, older data may no longer be relevant and

could degrade forecast accuracy. To address this, we also experimented with training models

on more recent data only, selected via sliding window approach. In this method, we set a

fixed window length for the training data, which moves forward as new data arrives, ensuring

that the model always trains on the most recent and relevant information.

4.5.1 Prediction on National Level

In this section, we focus on predicting electricity load data at the national level. The national

electricity data is reshaped into a 48-variate time series based on the time of day. We use six

different methods for making predictions on this 48-variate time series: univariate AR model,

vector AR model, TS-PCA, Factor Model, LSTM, and dynamic Kalman filter. The first 5

models predicts the residual series ε̂GAM
t+1 based on residuals of GAM forecasts, refining the

GAM output by capturing additional time-dependent structures within the residuals. The
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dynamic Kalman filter, in contrast, bypasses the residual correction approach, aiming to

directly estimate ŷt+1 by adaptively incorporating new information from new observations.

This array of models provides a comprehensive comparison, allowing us to evaluate their

relative strengths in enhancing GAM estimations. In the sections that follow, we will analyze

the prediction accuracy of each method.

4.5.1.1 Model Specifications

In the univariate AR model, we treat the 48-variate residual series as 48 independent time

series, fitting a separate AR model for each and predicting the value at t + 1 for each

series. The lag for each univariate AR model is automatically selected based on the Akaike

Information Criterion (AIC). The VAR model, in contrast, models the entire residual series

as a single multivariate process, capturing the interactions across all 48 time slots. Like the

univariate AR model, the lag of the VAR model is also automatically chosen using AIC.

For TS-PCA model, we present two prediction results under different grouping settings:

the default ratio-based grouping approach originally proposed in Chang, Guo, and Yao

(2018a), and the proposed trimmed grouping approach in section 4.4.1. We set the threshold

for identifying significant cross-correlation at 0.08, which is the first quartile of maximum

cross-correlation values across all pairs, and cap the group size at 10.

Likewise, for factor model, we also present two prediction results, using different ap-

proach for estimating number of factors. The first approach is the ratio-test based approach

described in Lam and Yao (2012a), and the second being permutation testing approach

described in section 4.4.2, which is a more flexible alternative when factor strength varies.

We set maximum lag m = 1 for both methods, and number of permutation to be 2000.

In the construction of the LSTM model, we constructed a 3-layer LSTM, each layer

consisting of 50 cells. The training procedure involves running the model for 200 epochs

with a batch size of 128. We used the ReLU (rectified linear unit) activation function for

the gating mechanisms in LSTM cells. The use of ReLU facilitates faster convergence and

allows the model to better capture complex temporal patterns. The LSTM model takes the
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48-variate residual series as input, and predicts its value at t +1. The timestep we select is 7,

which allows us to incorporate one week of data into each training iteration.

For dynamic Kalman filter, we process any nonlinear variables using thin plate regression

splines, as inherited from GAM. The iterative estimation of process noise covariance matrix

Q starts from a zero matrix, and space noise variance σ2
v starts from 1.

4.5.1.2 Prediction Performance Comparison

Table 4.1 displays the RMSE of predictions from each method, providing a clear comparison

of forecast quality. All methods achieve lower RMSEs than GAM, indicating that each

method enhances prediction accuracy over the test period. Among the 10 settings, we use

univariate AR and VAR as the benchmark model for time series models. The dynamic

Kalman filter we used is a simplified version of the operating model used by EDF. Overall,

the factor model stands out with the lowest RMSE, surpassing both time series benchmark

models and the EDF operational model. Both AR models showed moderate improvement

relative to GAM. VAR performs well, mostly contributed by its ability to capture interactions

among the different variates. Notably, despite the excessive number of parameters in the

VAR model relative to the sample size, it still achieves a reasonable performance, which is

somewhat surprising given the issue of over-parameterization.
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Data Method RMSE

1 All Time Raw Residual from GAM 1537

2 All Time Dynamic Kalman Filter 1205

3 All Time Uni-AR 1310

4 All Time VAR 1270

5 All Time TS-PCA (Ratio-Based) 1359

6 All Time TS-PCA (Trimmed Grouping) 1301

7 All Time Factor Model (1-Step Ratio) 1340

8 All Time Factor Model (2-Step Ratio) 1237

9 All Time Factor Model (Permutation Testing) 1197

10 All Time LSTM 1351
Table 4.1 RMSE of predictions from each listed methods using all historical data as training
data. Predictions are made from January 2023 to September 2023. All models except
dynamic Kalman filter are trained and used following the One-Step-Ahead approach.

As shown, the TS-PCA method did not outperform VAR, yet the proposed trimmed

grouping approach has better performance than the default ratio-based TS-PCA. For all

listed factor models, the only difference in model specification is the approach for estimating

number of factors. The RMSE results suggest that the permutation testing approach for

identifying the number of factors r̂ has the best performance overall. Further details about

TS-PCA and factor models will be discussed in the next section.

For the LSTM model, the less-accurate performance is expected due to model complexity,

highlighted by its parameter count. As stated earlier, we used a 3-layer LSTM. The first layer,

which takes 48 input features and has 50 neurons, requires 4×50× (48+50)+4×50 =

19800 parameters, and the second and third layer requires 4× 50× (50+ 50)+ 4× 50 =

20200 parameters. Additionally, the output layer has 50 × 48 + 48 = 2448. Summing

up parameters from each layer, the LSTM model has a total of 62648 parameters, which

far exceeds the number of observations. Despite this over-parameterization, the LSTM’s

performance demonstrates its ability to handle complex data and learn effectively even with

a large number of parameters.
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While RMSE gives a measure of accuracy for forecasts from different methods, it does

not provide sufficient evidence to tell if one model is statistically better than another. To

better compare forecasting quality, we employ the Diebold-Mariano (DM) test proposed

by Diebold and Mariano (2002). The DM test is designed to check if the difference in

forecasts from two different models is statistically significant. It tests the null hypothesis that,

given two forecasts from two distinct methods ŷi,t and ŷ j,t , the population mean of the loss

differential series dt = g(ei,t)−g(e j,t) is 0. Here g(·) is the loss function, g(êi,t) = g(yt , ŷi,t)

and g(ê j,t)= g(yt , ŷ j,t) are prediction errors. In Diebold and Mariano (2002), they constructed

a parametric test, with the test statistic designed as follow:

S1 =
d̄√

2π f̂d(0)
T

, (4.34)

where d̄ is the sample mean loss differential. f̂d(0) is an estimation of fd(0), which is the

spectral density of the loss differential at frequency 0. The test statistic S1 follows a standard

normal distribution N(0,1).

The DM test is robust, allowing forecast errors to be non-Gaussian, have nonzero mean,

and exhibit both serial and contemporaneous correlation, making it applicable across a wide

range of scenarios. We apply the DM test on the proposed methods using the R function

dm.test, which is a modified DM Test proposed in Harvey, Leybourne, and Newbold (1997).

Below we present our findings in Table 4.2:

Method 1 Method 2 Test Statistic S1 p-value

GAM Dynamic KF 19.13 0.00

GAM Factor Model (Permutation Testing) 31.63 0.00

Dynamic KF Factor Model (Permutation Testing) 0.44 0.66
Table 4.2 p-value of DM test on selected methods, based on national electricity load data.
Method 1 generates ŷi,t , and Method 2 generates ŷi,t .

Table 4.2 shows that both the dynamic Kalman filter and the Factor Model with Permuta-

tion Testing yield forecasts that are statistically different from those of GAM, and positive
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test statistic S1 indicating that the errors from GAM forecasts are larger. This suggests that

both the dynamic Kalman filter and the Factor Model with Permutation Testing improve

forecast accuracy based on GAM. However, when comparing the dynamic Kalman filter to

the factor model with permutation testing, the DM test does not reject the null hypothesis,

indicating insufficient evidence to conclude that the forecasts from the factor model with

permutation testing are statistically better than those from the dynamic Kalman filter. Thus,

while both methods outperform GAM, their relative performance difference is not statistically

significant based on the DM test results.

The dataset contains 10 years’ electricity consumption, and there might be changes in

electricity consumption patterns. If such changes exist, using all historical data could reduce

model credibility. To address this, we experimented with training models on more recent data,

selected through the sliding window approach discussed earlier. In Table 4.3, we compare

the prediction performance of selected methods when trained on the full dataset versus only

recent data. This comparison allows us to evaluate whether focusing on more relevant, recent

data improves forecast accuracy, as well as inspecting the presence of evolving electrycity

consumption patterns.

Method
Training Data Set

All Time Sliding Window(2Y)

1 Uni-AR 1310 1320

2 VAR 1270 5451

3 TS-PCA (Ratio-Based) 1359 1369

4 TS-PCA (Trimmed Grouping) 1301 1347

5 Factor Model (1-Step Ratio) 1340 1308

6 Factor Model (2-Step Ratio) 1237 1301

7 Factor Model (Permutation Testing) 1197 1286
Table 4.3 RMSE of predictions from each listed methods using sliding window with length =
2 years as training data. Predictions are made from January 2023 to September 2023. All
models are trained and used following the One-Step-Ahead approach.
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Based on RMSEs in Table 4.3, we discover that using more recent data does not improve,

but rather weakens the predictions, possibly due to reduced number of observations. In

VAR models, there is a notable increase in RMSE, highlighting the negative impact of

over-parameterization when training data is limited. This suggests either there is no change

in pattern, or there are multiple changes in both training data sets. The relative performance

ranking among all methods remains roughly the same, except that VAR gets worse by a larger

margin. Such result may also support the effectiveness of factor models with permutation

testing. LSTM is not included in this comparison, as it is well-suited for capturing both

long-term and short-term dependencies, and the issue of over-parameterization will only get

worse with limited observations.

To further compare the characteristics of each method, we breakdown the prediction from

selected methods (dynamic Kalman filter, TS-PCA with trimmed grouping, Factor Model

with Permutation Testing, LSTM) by month of year and time of day, and we present the

results in Figure 4.7 and 4.8:

Fig. 4.7 RMSE of predictions from each model by time of day.
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Fig. 4.8 RMSE of predictions from each model by month of year.

Figure 4.7 presents the average RMSE of different methods for each time of day. The

average is calculated based on 273 predictions. We observe a similar pattern across all

methods: RMSE tends to be higher during morning hours (from tod=12 to 20), and lowest

during late night (tod≥44 and tod≤10). The Factor Model performs particularly well in the

first half of the day, while the dynamic Kalman filter excels in the second half of the day.

Similarly, Figure 4.8 plots the average RMSE of different methods for each month of the

year.Based on our observations, summer months (June to September) appear more predictable

than winter months (January to March). When examining each method individually, either

the dynamic Kalman filter or the Factor Model consistently performs best across different

months.

4.5.1.3 Details in Factor Models: Estimating r̂

In this section, we further investigate the prediction from factor models. Recall that factor

models assume the existence of underlying latent structure, and the key is to estimate the

number of factors within the latent structure. Following the One-Step-Ahead prediction

approach, we generated 273 estimations for r̂ over the testing period, corresponding to each
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prediction step. Figure 4.9 plots the 273 estimations in time order, allowing us to observe

any trends or fluctuations in the estimated number of factors over time.

Fig. 4.9 Estimation of r̂ from all 3 methods on both training datasets.

From Figure 4.9, we observe that permutation testing generally provides higher r̂, with

estimated values varying within a small interval of 6 to 8 with the all time training dataset.

Given that the permutation testing approach achieves a lower RMSE, we can infer that the true

number of factors is likely closer to r̂PT , while the ratio-test based methods under-estimates

true r. This discrepancy in estimation from the two ratio test estimators is likely due to

varying factor strengths. The issue of underestimation of r̂ from ratio tests is probably caused

by the varying factor strength of the underlying latent process. If each factor has a different

strength δi ̸= δ j, i ̸= j, the ratio test may fail, as it only identifies factors with same factor

strength at each step.

Assuming that the underlying latent structure is invariant over time, we may search for

the true number of factors by testing a sequence of candidate r̂ values, and look for the one

that yields the lowest RMSE. Below, we present our findings for the optimal r̂ based on this

RMSE-minimization search.
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Fig. 4.10 Prediction RMSE with fixing r̂ ∈ 1, . . . ,20. The black/red/blue lines represent
the RMSE from TS-PCA/ Dynamic Kalman Filter/ Factor Model with Permutation Testing
respectively.

In Figure 4.10, we observe lowest RMSE=1161 at r̂ = 10. The three dotted line represents

the RMSE from TS-PCA/dynamic Kalman filter/Factor Model with Permutation Testing, and

we can see that any r̂ ≥ 7 gives better RMSE than the best porforming Permutation Testing

(RMSE=1197). As the true r should result in lowest RMSE, the figure suggests that r might

vary between 8 and 17.

4.5.1.4 Details in TS-PCA

In this section, we present the details of TS-PCA in predicting electricity load on national

level. Recall that our objective for deploying TS-PCA and factor model is to reduce the

number of parameters required for VAR modeling on the residual series. TS-PCA helps

via segmenting data into smaller groups, and reduce inter-group cross correlation through a

linear transformation. Below, we present the maximum cross-correlation in (4.8) between

components of the vectorized residual series from national data, before and after applying

the TS-PCA linear transformation. This comparison illustrates the effectiveness of TS-PCA

in simplifying the structure and parameter requirements of the VAR models.
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Fig. 4.11 Heatmap of Maximum Cross Correlation among 48 tod for all-time residual data
(left), and TS-PCA transformed data (right). MCC < cv as "low", cv ≤ MCC < 2× cv as
high, and MCC > 2× cv as "very high". cv = 0.033.

Here in Figure 4.11, we classified the numerical values of MCC into 3 levels: low,

high and very high, which corresponds with their relationship with the critical value. The

critical value is set at 1.96/
√

n = 0.033, which is the 95% confidence level for sample cross-

correlation of two time series, as commonly used in statistical analysis. The heatmap on

the right in Figure 4.11, representing the TS-PCA transformed residual series, shows lower

MCC values across all component pairs, indicating reduced inter-component dependencies.

This figure also helps explain why a simple VAR model can still perform reasonably well, as

many pairs retained significant correlations, even though the TS-PCA transformation reduces

cross-correlation overall.

Next, we examine the segmentation of transformed variates in the TS-PCA model. In

Table 4.1, we present 2 different grouping approach on the transformed series zt = ΓΓΓ
⊤
y yt . The

Ratio-Based approach was originally proposed in Chang, Guo, and Yao (2018a), and the

trimmed grouping method is proposed in section 4.4.1.2. As Table 4.1 shows, the Ratio-Based

method is not as good as the trimmed grouping method. Below we compare the segmentation

result of the Ratio-Based method, threshold grouping method, and our proposed trimmed

grouping method. Threshold is set at 0.08, as stated in model specification section.
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Method Number of Groups Largest Group Size

Ratio-Based Grouping 47 2

Threshold Grouping 12 36

Trimmed Grouping 18 14
Table 4.4 Comparison of grouping result from different approach in grouping the components
of zt .

From Table 4.4, we see that the segmentation of 47 groups from the Ratio-Based method

is very similar to the univariate AR model setting, where we have 48 groups (each component

modeled independently). In contrast, when applying a hard threshold to determine the

significance of pairwise cross-correlation, the number of groups decreases, although still

resulting in groups of unbalanced sizes. Below we present the RMSE of two methods with

manually controlled threshold value, allowing us to evaluate the impact of group size balance

on prediction accuracy:

Fig. 4.12 Comparison of RMSE between thresold grouping method and trimmed grouping
method.

In Figure 4.12, we discover that the proposed trimmed grouping method does not out-

perform the thresold grouping method. More specifically, when the threshold is low, the
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threshold grouping method performs significantly better; when the threshold is high, both

methods yield similar results. With a low threshold, the threshold grouping method com-

bines all components into one large group, making the segmentation identical to the VAR

model. As observed from the plot, the RMSE is nearly the same to RMSE from VAR in

Table 4.1. Conversely, with a high threshold, none of the pairwise correlation is significant

enough to be grouped together, thus the segmentation will be similar to the univariate-AR

like segmentation from ratio-based grouping. The RMSE of both methods in Figure 4.12 is

indeed similar to RMSE of the threshold grouping TS-PCA in Table 4.1. This comparison

highlights the sensitivity of the grouping methods to the choice of threshold, as well as the

difference between different methods.

The primary motivation for using TS-PCA is to address the over-parameterization issue

encountered in VAR modeling. When training on the all-time dataset, the VAR model

achieves a reasonable RMSE despite slight over-parameterization. However, if the number

of observations is further reduced, the performance of the VAR model deteriorates, and

the problem of imbalanced segmentation with the default thresholding method in TS-PCA

becomes more obvious. To illustrate this issue, we reduce the training data to 730 observations

using the sliding-window approach and generate predictions using the One-Step-Ahead

method. Below, we present the RMSE results for TS-PCA under both the trimmed grouping

and threshold grouping methods, using a range of threshold values. For the trimmed grouping

method, we set an upper limit of s = 10 for group size, allowing us to assess how balanced

grouping affects prediction performance in a reduced data setting.

Threshold 0.01 0.05 0.09 0.13 0.17 0.21 0.25 0.29 0.33

Trimmed Grouping 1357 1355 1339 1379 1371 1364 1369 1369 1370

Threshold Grouping 6438 6438 13493 15196 1372 1364 1368 1369 1370
Table 4.5 Comparison of RMSE from different approach in grouping the components of zt ,
training data is selected via sliding window, window length is 2 years.

In Table 4.5, we found that when threshold is low, threshold grouping has extremely high

RMSE, showing similar behavior to VAR model in Table 4.3 under limited observations.
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This issue is alleviated with increasing threshold, preventing variables from being grouped

together. On the other hand, TS-PCA with trimmed grouping showed stable performance all

time, validating its robustness against less-appropriate threshold value and limited sample

size. The optimal choice of group size should depends on the number of observations. Since

we use AR/VAR models to make prediction for each segmented group, we need to be careful

in selecting the upper limit s for groups to ensure that in the VAR model, s+ k× s2 ≤ nobs.

This condition helps maintain a balance between capturing interactions within groups and

avoiding over-parameterization, especially when number of observations are limited

4.5.2 Prediction on Regional Level

In this section, we focus on predicting electricity load at the regional level. The 12 metropoli-

tan regions have the same independent and dependent variables as the national data, enabling

us to apply the methods from Table 4.1 to each region individually. However, treating the

regions separately would have missed the interactions among them.

To process regional data from all 12 regions at the same time, we first fit a separate GAM

model for each region, obtaining a regional residual vector time series with a dimension

of p = 48 for each of the 12 regions. We then combine all 12 regional residual series and

reshape these residual data into a 12× 48 matrix time series with 3865 observations. To

model and predict residuals as matrix time series, we use MAR models as benchmark, and

Matrix Time Series Decorrelation from Section 4.4.3 as the more efficient model that reduces

model complexity. Additionally, we also vectorized the 12× 48 matrix time series into a

p = 576 vector and used VAR, TS-PCA, and factor models for predicting the residual series

as well.

The performance of each method is evaluated using RMSE. For methods that model

each region separately, this forecasting and evaluation process is identical to the national

level forecasting evaluation, where we add the forecast residual from proposed models back

to GAM estimates, and compute the RMSE between estimate and actual electricity load.

For methods applied to the matrix residual series and the vectorized matrix residual series,

predictions require an additional step. Once forecasting are generated, we identify the region
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where each forecasting corresponds to, reconstruct each region-specific residual series, and

then calculate RMSE for each region separately. The only exception is for dynamic Kalman

filter, which applies on regions separately and directly predicts the regional electricity load

instead.

4.5.2.1 Prediction Performance Comparison

Here we present the predictions from selected methods on each region separately. Table 4.6

illustrates the RMSE of predictions from each method. The first two methods, MAR model

and Matrix Time Series Decorrelation, are applied directly on the 12×18 variate residual

matrix time series, and they are marked with (m). The subsequent TS-PCA and VAR model

are based on vectorized residual matrix time series, maked with (v), and the rest are modeled

for each region separately, marked with (r). We also ranked the performance of each method

within every region, and the rank of summation on RMSE over 12 regions. We present the

results in Table 4.7.

Method R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Sum

Mat-Decorr(m) 486 174 156 129 397 529 491 282 321 260 245 214 3684

MAR(m) 532 184 159 138 412 539 504 272 336 272 268 219 3835

TS-PCA(v) 493 178 148 129 412 553 519 307 317 271 247 221 3795

VAR(v) 486 175 158 133 401 541 494 281 323 265 243 215 3715

Factor_perm(r) 621 192 154 129 500 663 524 314 362 267 248 217 4191

Factor_fixed(r) 556 191 144 124 453 560 555 298 335 280 276 216 3988

DKF(r) 449 164 137 115 388 500 398 255 293 228 203 202 3332

GAM(r) 489 175 162 135 406 551 494 282 327 266 243 217 3747

Table 4.6 RMSE of prediction on 12 regions’ electricity load prediction from different
methods.
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Method Avg Rank Sum Rank

Mat-Decorr(m) 2.92 2

MAR(m) 5.88 6

TS-PCA(v) 5.21 5

VAR(v) 3.67 3

Factor_perm(r) 6.62 8

Factor_fixed(r) 6.00 7

DKF(r) 1.00 1

GAM(r) 4.71 4
Table 4.7 Average ranking and ranking of summed RMSE over 12 regions’ electricity load
prediction from different methods.

From Table 4.6 and 4.7, we see that dynamic Kalman filter has the best performance

in summed RMSE over all regions. The basic GAM prediction is only about 12.5% less

accurate than dynamic Kalman filter, which is a smaller gap than on the national level (25.5%

less accurate). The only 2 methods that showed improvement based on GAM is the Matrix

Time Series Decorrelation, and the vectorized VAR model. The simple MAR model, despite

not having the over-parameterization issue, did not perform well. On the other hand, we tried

factor model with 2 different settings: using permutation testing to identify the number of

factors r̂ or inherit r̂ from national level. As the table showed, both factor models did not

perform well, although inheriting r̂ from national data performs slightly better. This result

suggests that the estimated r̂ from permutation testing method was less accurate on regional

data, which could be caused by more noisy observations.

Matrix TS Decorrelation segmented the transformed series into several smaller groups,

both row-wise (1 group of 7) and column-wise (1 group of 4, 3 groups of 2), and has shown

improvement over GAM, while outperforming the MAR model as well. We believe that this

enhancement comes from the bilinear transformation that led to efficient decorrelation of the

regional residual matrix series. We vectorized the 12×48 residual series, and plotted the

heatmap based on MCC before and after matrix TS decorrelation:
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Fig. 4.13 Heatmap of Maximum Cross Correlation among vectorized 12 × 48 variates
for all-time residual residual data (left), and Matrix TS Decorrelation transformed data
(right).MCC < cv as "low", cv ≤ MCC < 2× cv as high, and MCC > 2× cv as "very high".
cv = 0.033.

In Figure 4.13, we observe that MCC has significantly decreased after the bilinear

transformation. This reduction justifies the improvement, as unnecessary connection among

less-related components are no longer included in the model, reducing noise overall.

4.6 Conclusion

In this section, we attempted to enhance the performance of electricity load forecasts from

Generalized Additive Model (GAM). We examined the residual series εGAM
t from GAM, and

has found significance in autocorrelation within each component, as well as cross correlation

among the components. To extract the information remained in residual time series εGAM
t ,

we proposed to recover the residual series’ latent structure, and make predictions ε̂GAM
t+1 using

multivariate time series models based on the latent process. Then, forecast on electricity load

are corrected using predicted residual via ỹt+1 = ŷGAM
t+1 + ε̂GAM

t+1 .

Evaluation has been performed based on the corrected electricity load prediction, using

RMSE as the measure. We apply the methods mentioned above on electricity load data in

France, and compared RMSE of predictions from multivariate time series models, operating

model from EDF, and other miscellaneous methods such as Long Short Term Memory.
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On national level forecasting, factor model recovered the underlying latent structure of

residual series from residuals, and the proposed permutation testing procedure was able to

estimate the number of factors better than the ratio test proposed by Lam and Yao (2012a).

Factor model with permutation testing outperformed both the time series benchmark model

VAR, as well as the EDF operating model dynamic Kalman filter in RMSE. As for TS-

PCA, facing challenges due to the strong cross-correlation among components of εGAM
t , did

not find a clear latent segmentation among transformed components. To address this, we

introduced a new method for segmenting the components of the vector residual time series

into smaller groups with more balanced sizes, which helped alleviate the segmentation issue.

This balanced grouping approach enhances TS-PCA’s ability to manage cross-correlations

effectively, improving its applicability in scenarios with complex dependencies.

For regional-level forecasting, the matrix time series decorrelation method—an adaptation

of TS-PCA for matrix time series—identified a latent segmentation within the regional

matrix residual series. This method enhanced GAM predictions and outperformed the MAR

benchmark model. In contrast, the factor model with permutation testing, applied separately

to each region, did not improve the GAM predictions. Furthermore, the number of factors

identified in the national-level data did not translate effectively to regional data. Since the

permutation testing procedure is designed to handle factors of varying strengths, this outcome

suggests that the regional residual series may lack a distinct latent structure at the regional

level, making factor models less beneficial in this context.

To summarize the characteristics of various methods on electricity load forecasting, while

the GAM framework provides a robust baseline for electricity load forecasting, it has room

for improvement because it does not fully capture the time-varying features of the data.

Simple time series methods, such as the vector autoregressive (VAR) model, also fall short

as they require more parameters than the available number of observations can support.

Similarly, although machine learning approaches like LSTM hold potential for improving

forecasts through their ability to model complex nonlinear relationships, they too suffer from

the issue of over-parameterization. On the other hand, considering the time series nature

of electricity load data, incorporating time-related models should be able to significantly
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enhance forecast quality. For instance, compared to the static Kalman filter, the dynamic

Kalman filter adapts more promptly to changes in the data, leading to better performance.

In a similar vein, our proposed method effectively links GAM with time series techniques

through dimension reduction and data segmentation, thereby overcoming the limitations

associated with high-dimensional parameterization encountered by traditional time series

methods and neural-network based methods, while capturing essential temporal dynamics.

For future work, further investigation into alternative time series approaches for modeling

the residual data obtained after applying TS-PCA or factor models may offer additional

potential for improvement. Specifically, these residuals can be handled by other time series

methods, potentially capturing further hidden structures. Moreover, while the variable

selection process was carried out by the EDF team, an alternative strategy might involve

directly utilizing all available variables when applying TS-PCA or factor models, thereby

revealing new relationships that were previously overlooked. For instance, incorporating

new variables—such as electricity price—could enhance forecast accuracy by integrating

market dynamics into the model. Finally, a deeper focus on regional load forecasting is

warranted. A more detailed examination of the latent structure of the regional matrix residual

series could uncover additional insights into inter-regional dependencies, thereby refining our

understanding of regional load patterns. Additionally, treating the regional data as a network

with 12 nodes and developing network-based time series models, such as the Generalized

Network Autoregressive (GNAR) model proposed by Knight et al. (2019), could offer a fresh

perspective on capturing spatial and temporal interactions, ultimately leading to improved

forecast performance.
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Appendix A

Supplementary Materials for Chapter 2

A.1 Some Useful Lemmas

C0 which is defined in Assumption A1 and A which is defined in Assumption A2 are two

important notations in our proofs. Without loss of generality, we assume that C0 ≤ A. It

means that

sup
β≥1,1≤i≤p

β
−1/2{E|Zi(s)|β}1/β ≤ A. (A.1)

Thus, any fixed moment of Zg(s) can be bounded by a constant only depending on A.

Let Z be the p×n matrix with (Zi(s1), · · · ,Zi(sn)) = Zi as its i-th row.

Lemma A.1.1. Let Assumptions 2.3.1 and 2.3.2 hold, and p = o(n). Then there exists λmax

depending only on A such that

max
1≤g≤p

λg ≤ λmax < ∞. (A.2)

Proof. For any g = 1, · · · , p, (2.6) implies that

λg =
1
k

k

∑
h=1

p

∑
u=1

E[
1
n

n

∑
i, j=1

fh(si − s j)Z̃g(si)Z̃u(s j)]
2 (A.3)

=
1
k

k

∑
h=1

∑
u̸=g

E[
1
n

n

∑
i, j=1

fh(si − s j)Z̃g(si)Z̃u(s j)]
2 +

1
k

k

∑
h=1

E[
1
n

n

∑
i, j=1

fh(si − s j)Z̃g(si)Z̃g(s j)]
2.
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We consider the first part u ̸= g for each h,

∑
u̸=g

E[
1
n

n

∑
i, j=1

fh(si − s j)Z̃g(si)Z̃u(s j)]
2

= ∑
u̸=g

1
n2

n

∑
i, j,ĩ, j̃=1

fh(si − s j) fh(sĩ − s j̃)E[Z̃g(si)Z̃u(s j)Z̃g(sĩ)Z̃u(s j̃)]

= ∑
u̸=g

1
n2

n

∑
i, j,ĩ, j̃=1

fh(si − s j) fh(sĩ − s j̃)E[Z̃g(si)Z̃g(sĩ)]E[Z̃u(s j)Z̃u(s j̃)]

≤ ∑
u̸=g

1
n2

n

∑
i, j,ĩ, j̃=1

A
1+∥si − s j∥d+α

A
1+∥sĩ − s j̃∥d+α

A
1+∥si − sĩ∥d+α

A
1+∥s j − s j̃∥d+α

.

The last inequality is from (2.12) and (2.13). This, together with p = o(n) and ∥si − s j∥ ≥△

for all n ≥ 2 and 1 ≤ i ̸= j ≤ n, implies that

1
k

k

∑
h=1

∑
u̸=g

E[
1
n

n

∑
i, j=1

fh(si − s j)Z̃g(si)Z̃u(s j)]
2 = O(A4n−1 p) = o(1). (A.4)

Thus we only need to consider E[1
n ∑

n
i, j=1 fh(si−s j)Z̃g(si)Z̃g(s j)]

2. Since Zg =(Zg(s1), · · · ,Zg(sn))

and

(Z̃g(s1), · · · , Z̃g(sn)) = Zg[In −n−11n×n]. (A.5)

We can rewrite it as E(1
nZg[In−n−11n×n]Th[In−n−11n×n](Zg)⊤)2, where Th is a n×n matrix

with the (i, j)th entry fh(si − s j)/2 + fh(s j − si)/2. Note that 1
nZg[In − n−11n×n]Th[In −

n−11n×n](Zg)⊤ is a quadratic form and Zg(s) is a sub-Gaussian process. (2.13) implies that

∥Th∥ ≤ C̃, where C̃ only depends on A. These, together with (2.12), imply that there exists a

positive constant C̃1 depending only on A such that

1
k

k

∑
h=1

E[
1
n

n

∑
i, j=1

fh(si − s j)Z̃g(si)Z̃g(s j)]
2 ≤ C̃1.

This, together with (A.3)- (A.4), implies that λg ≤ 2C̃1, for any 1 ≤ g ≤ p. We complete the

proof.
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Lemma A.1.2. Let Assumptions A1 and A2 hold. For any n× n non-random symmetric

matrix Q with bounded ∥Q∥, there exists a constant C > 0 depending only on A and λmax for

which

max
1≤g,u≤p

var[
1
n

n

∑
i, j=1

Qi jZg(si)Zu(s j)]≤C∥Q∥2n−1. (A.6)

Here Qi j is the (i, j)−th entry of Q.

Proof. When g ̸= u, from the independence between Zg(si) and Zu(s j) we have

var[
1
n

n

∑
i, j=1

Qi jZg(si)Zu(s j)]

= n−2
n

∑
i1, j1,i2, j2=1

Qi1 j1Qi2 j2E[Zg(si1)Zu(s j1)Zg(si2)Zu(s j2)]

= n−2
n

∑
i1, j1,i2, j2=1

Qi1 j1Qi2 j2E[Zg(si1)Zg(si2)]E[Zu(s j1)Zu(s j2)]

≤ n−2
n

∑
i1, j1,i2, j2=1

Qi1 j1Qi2 j2
A

1+∥si1 − si2∥d+α

A
1+∥s j1 − s j2∥d+α

≤ C∥Q∥2n−1.

The first inequality is from (2.12) and (2.13). The second inequality is from ∥si−s j∥ ≥△ for

all n ≥ 2 and 1 ≤ i ̸= j ≤ n. When g = u, we note that 1
n ∑

n
i, j=1 Qi jZg(si)Zg(s j) is a quadratic

form and Zg(s) is a sub-Gaussian process. This completes the proof.

Lemma A.1.3. Let Assumptions A1 and A2 hold, and p = o(n). Then there exists a positive

constant CA depending only on A such that

lim
n→∞

P(n−1∥Z∥2 ≤CA) = 1. (A.7)

Proof. For any fixed 1×n unit vector x=(x1, · · · ,xn), we denote xZ⊤ by z(x)=
(

z1(x), · · · ,zp(x)
)

.

Since Z1(·), · · · ,Zp(·) are independent, the elements of z(x) are independent. (2.12) implies

that max1≤ j≤p Ez2
j(x)≤ C̃A where C̃A only depends on A.

xZ⊤Zx⊤ =
p

∑
j=1

[z2
j(x)−Ez2

j(x)]+
p

∑
j=1

Ez2
j(x)≤

p

∑
j=1

[z2
j(x)−Ez2

j(x)]+ pC̃A.
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By the sub-Gaussian property of Z(s), we can conclude that for any fixed 1× p unit vector x

and any c > 0 there exists C̃A,1 depending only on A and c such that

P
(
∥xZ⊤∥2 > C̃A,1(n+ p)

)
≤ cexp(−5(n+ p)). (A.8)

As we know, the unit Euclidean sphere Sn−1 consists of all n-dimensional unit vectors x.

Unfortunately the cardinality of Sn−1 is uncountable cardinal number. We can’t use (A.8)

to derive an upper bound of ∥Z∥2 directly. Thus we introduce a method based on nets to

control ∥Z∥2. The basic idea is as follows. We define a subset of Sn−1 as Sε satisfying

maxx∈Sn−1 miny∈Sε
∥x− y∥ ≤ ε . Sε is a so-called net of Sn−1 and the cardinality of Sε is

bounded by (1 + 2ε−1)n. Thus we can control maxy∈Sε
∥Zy⊤∥ in probability by (A.8).

Finally, we can control the difference between maxy∈Sε
∥Zy⊤∥ and maxx∈Sn−1 ∥Zx⊤∥.

Let Sε be a subset of Sn−1. For any x ∈ Sn−1, there exists x̃ ∈ Sε such that ∥x̃− x∥ ≤ ε .

This, together with (A.8) and |Sε | ≤ (1+2ε−1)n, implies that

P
(

max
x̃∈S1/2

∥Zx̃⊤∥2 > C̃A,1(n+ p)
)
≤ c|S1/2|exp(−5n−5p)≤ c5n exp(−5n−5p). (A.9)

Then if ∥Zx⊤∥= ∥Z∥, there exists x̃ ∈ Sε such that

∥Zx̃⊤∥ ≥ ∥Zx⊤∥−∥Z(x̃− x)⊤∥ ≥ ∥Z∥− ε∥Z∥= (1− ε)∥Z∥.

Let ε = 1/2,

∥Z∥2 ≤ 4 max
x̃∈S1/2

∥Zx̃⊤∥2.

This, together with (A.9), implies that

P
(
∥Z∥2 > 4C̃A,1(n+ p)

)
≤ c|S1/2|exp(−5n−5p)≤ c5n exp(−5n−5p). (A.10)

Then (A.7) is implied by (A.10) and p = o(n).



A.1 Some Useful Lemmas 131

Definition A.1.1.

N̂ =
1
k

k

∑
h=1

{1
n

n

∑
i, j=1

fh(si − s j)Z̃(si)Z̃(s j)
⊤}{1

n

n

∑
i, j=1

fh(si − s j)Z̃(si)Z̃(s j)
⊤}⊤. (A.11)

Lemma A.1.4. Let Assumptions A1 and A2 hold, and p = o(n). Let Mgu be the (g,u)-th

entry of N̂ −N. There exists a positive constant C1 depending only on A such that

max
1≤g,u≤p

EM2
gu ≤C1n−1. (A.12)

Proof. Since N is diagonal, when g ̸= u,

Mgu =
1
k

k

∑
h=1

p

∑
ũ=1

[
1
n

n

∑
i, j=1

fh(si − s j)Z̃g(si)Z̃ũ(s j)][
1
n

n

∑
i, j=1

fh(si − s j)Z̃u(si)Z̃ũ(s j)].

Divide the term on the RHS of the above equation into three terms: (i)ũ = g, (ii)ũ = u

and (iii) ũ ̸= g,u. We control each term as follows. When ũ = g,

E
(
[
1
n

n

∑
i, j=1

fh(si − s j)Z̃g(si)Z̃g(s j)][
1
n

n

∑
i, j=1

fh(si − s j)Z̃u(si)Z̃g(s j)]
)
= 0.

var
(
[
1
n

n

∑
i, j=1

fh(si − s j)Z̃g(si)Z̃g(s j)][
1
n

n

∑
i, j=1

fh(si − s j)Z̃u(si)Z̃g(s j)]
)

= E
(
[
1
n

n

∑
i, j=1

fh(si − s j)Z̃g(si)Z̃g(s j)][
1
n

n

∑
i, j=1

fh(si − s j)Z̃u(si)Z̃g(s j)]
)2

= E
(

n−4
n

∑
i1,i2,i3,i4, j1, j2, j3, j4=1

fh(si1 − s j1) fh(si2 − s j2) fh(si3 − s j3) fh(si4 − s j4)

Z̃g(si1)Z̃g(si1)Z̃g(si1)Z̃g(si1)Z̃g(s j1)Z̃g(s j3)Z̃u(s j2)Z̃u(s j4)
)

≤ n−4
n

∑
i1,i2,i3,i4, j1, j2, j3, j4=1

[
4

∏
v=1

A
1+∥siv − s jv∥d+α

]
A

1+∥s j2 − s j4∥d+α
EZ6

g(s)

≤ C̃1n−1,
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where C̃1 only depends on A. The first inequality is from (2.12)-(2.13) and the independence

between Zg(·) and Zu(·). The second inequality is from (2.11), C0 ≤ A and ∥si − s j∥ ≥△ for

all n ≥ 2 and 1 ≤ i ̸= j ≤ n.

Thus we can control

(
1
n

n

∑
i, j=1

fh(si − s j)Z̃g(si)Z̃g(s j))(
1
n

n

∑
i, j=1

fh(si − s j)Z̃u(si)Z̃g(s j)).

When ũ = u, we can repeat the above method to control

(
1
n

n

∑
i, j=1

fh(si − s j)Z̃g(si)Z̃u(s j))(
1
n

n

∑
i, j=1

fh(si − s j)Z̃u(si)Z̃u(s j)).

Let’s consider the third term

∑
ũ̸=g,u

(
1
n

n

∑
i, j=1

fh(si − s j)Z̃g(si)Z̃ũ(s j))(
1
n

n

∑
i, j=1

fh(si − s j)Z̃u(si)Z̃ũ(s j)).

We can rewrite it as

1
n2 ∑

ũ ̸=g,u

n

∑
i, j,ĩ, j̃=1

fh(si − s j) fh(sĩ − s j̃)Z̃g(si)Z̃u(sĩ)Z̃ũ(s j)Z̃ũ(s j̃)

=
1
n

n

∑
i,ĩ=1

(1
n

n

∑
j, j̃=1

fh(si − s j) fh(sĩ − s j̃) ∑
ũ̸=g,u

Z̃ũ(s j)Z̃ũ(s j̃)
)

Z̃g(si)Z̃u(sĩ).

Let H̃ be a n×n symmetric matrix with (i, ĩ)th entry

1
n

n

∑
j, j̃=1

fh(si − s j) fh(sĩ − s j̃) ∑
ũ̸=g,u

Z̃ũ(s j)Z̃ũ(s j̃).

Recalling (A.5) and (A.6), we define Q = (In −n−11n×n)H̃(In −n−11n×n). Although Q is

random, we can find that Q is independent of Zg(s) and Zu(s). It’s easy to see

E
1
n

n

∑
i, j=1

Qi, jZg(si)Zu(s j) = 0.



A.1 Some Useful Lemmas 133

var[
1
n

n

∑
i, j=1

Qi, jZg(si)Zu(s j)] = E[
1
n

n

∑
i, j=1

Qi, jZg(si)Zu(s j)]
2

=
1
n2

n

∑
i, j,ĩ, j̃=1

E(Qi, jQĩ, j̃)E[Zg(si)Zg(sĩ)]E[Zu(s j)Zu(s j̃)]

≤ 1
n2

n

∑
i, j,ĩ, j̃=1

(EQ2
i, j)

1/2(EQ2
ĩ, j̃)

1/2 A
1+(si − sĩ)

d+α

A
1+(s j − s j̃)

d+α

≤ C̃2

n2

n

∑
i, j=1

EQ2
i, j =

C̃2

n2 E∥Q∥2
F ,

where C̃2 only depends on A and the first inequality is from (2.12). The second inequality is

from ∥si − s j∥ ≥ △ for all n ≥ 2 and 1 ≤ i ̸= j ≤ n. Recalling the definition of Q, we can

rewrite it as

Q =
1
n
(In −n−11n×n)Vh(In −n−11n×n)Z⊤

−g,−uZ−g,−u(In −n−11n×n)V⊤
h (In −n−11n×n),

where Vh has the (i, j)th entry fh(si − s j) and Z−g,−u is a (p−2)×n matrix without Zg and

Zu. Then

∥Q∥2
F ≤ ∥Vh∥4∥1

n
Z⊤
−g,−uZ−g,−u∥2

F ≤ C̃3∥
1
n

Z⊤Z∥2
F ,

where C̃3 only depends on A and the last inequality is from (2.13). Moreover,
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E∥1
n

Z⊤Z∥2
F = E∥1

n
ZZ⊤∥2

F

= E
p

∑
g,u=1

[n−1
n

∑
i=1

Zg(si)Zu(si)]
2

= E ∑
1≤g̸=u≤p

[n−1
n

∑
i=1

Zg(si)Zu(si)]
2 +E

p

∑
g=1

[n−1
n

∑
i=1

Z2
g(si)]

2

= ∑
1≤g̸=u≤p

n−2
n

∑
i, j=1

E[Zg(si)Zg(s j)]E[Zu(si)Zu(s j)]+
p

∑
g=1

n−2
n

∑
i, j=1

E[Z2
g(si)Z2

g(s j)]

≤ ∑
1≤g̸=u≤p

n−2
n

∑
i, j=1

(
A

1+∥si − s j∥d+α
)2 +

p

∑
g=1

EZ4
g(s)

≤ C̃4 p,

where C̃4 only depends on A. The first inequality is from (2.12). The second equation is from

(2.11), C0 ≤ A, p = o(n) and ∥si − s j∥ ≥ △ for all n ≥ 2 and 1 ≤ i ̸= j ≤ n. Then we can

conclude that

E∥Q∥2
F ≤ C̃5 p,

where C̃5 only depends on A. From p = o(n),

var[
1
n

n

∑
i, j=1

Qi, jZg(si)Zu(s j)]≤
C̃2C̃5

n2 p = o(n−1).

Thus we control the third term and prove (A.12) for g ̸= u. When g = u, the proof is

similar.

Definition A.1.2. Let J1 and J2 be two subsets of {1, · · · , p}. Let N̂J1,J2 be the sub-matrix of

N̂ consisting of the rows with the indices in J1 and the columns with the indices in J2. Write

N̂J1 = N̂J1,J1 .
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Lemma A.1.5. Under the conditions of Lemma A.1.3 and J1 ∩ J2 = /0, we define the event

BZ = {n−1∥Z∥2 ≤CA}.

Then there exists a positive constant C2 depending only on A, c and v such that

P
(
∥N̂J1,J2∥

2 >C2n−1v(|J1|+ |J2|)
∣∣∣BZ

)
≤ c(5|J1|+5|J2|)exp(−5|J1|v−5|J2|v). (A.13)

Here v > 0 can be finite or tending to infinite.

Proof. Since k is finite, it’s sufficient to prove (A.13) on

n−2ZJ1(In −n−11n×n)Vh(In −n−11n×n)Z⊤Z(In −n−11n×n)V⊤
h (In −n−11n×n)Z⊤

J2
,

where ZJ1 is a sub-matrix of Z with ith row if and only if i ∈ J1. Vh is a n×n matrix with the

(i, j)th entry fh(si − s j). We define Ṽh = (In −n−11n×n)Vh(In −n−11n×n).

ZJ1ṼhZ⊤ZṼ⊤
h Z⊤

J2

= ZJ1ṼhZ⊤
J1

ZJ1Ṽ
⊤
h Z⊤

J2
+ZJ1ṼhZ⊤

J2
ZJ2Ṽ

⊤
h Z⊤

J2

+ ZJ1ṼhZ⊤
J ZJṼ⊤

h Z⊤
J2
, (A.14)

where J is the complementary set of J1 ∪ J2. At first we deal with ZJ1ṼhZ⊤
J1

ZJ1Ṽ
⊤
h Z⊤

J2
.

∥ZJ1ṼhZ⊤
J1

ZJ1Ṽ
⊤
h Z⊤

J2
∥2

= ∥ZJ2ṼhZ⊤
J1

ZJ1Ṽ
⊤
h Z⊤

J1
ZJ1ṼhZ⊤

J1
ZJ1Ṽ

⊤
h Z⊤

J2
∥

= ∥ZJ2Hh,J1Z⊤
J2
∥,

where

Hh,J1 = ṼhZ⊤
J1

ZJ1Ṽ
⊤
h Z⊤

J1
ZJ1ṼhZ⊤

J1
ZJ1Ṽ

⊤
h
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is a n× n symmetric matrix with rank |J1| at most. Since J1 ∩ J2 = /0, Hh,J1 and Z⊤
J2

are

independent. Moreover, under the event BZ = {n−1∥Z∥2 ≤CA},

∥Hh,J1∥ ≤ ∥Ṽh∥4∥Z⊤
J1

ZJ1∥
3 ≤ ∥Vh∥4∥Z⊤Z∥3 ≤ ∥Vh∥4n3C3

A.

It follows that

lim
n→∞

P(∥Hh,J1∥ ≤ n3C̃A|BZ) = 1, (A.15)

where C̃A only depends on A. Now we recall the rank of Hh,J1 is not larger than |J1|. For

given Hh,J1 , we can do eigen-decomposition on it as follows.

Hh,J1 =Uh,J1Λh,J1U
⊤
h,J1

, (A.16)

where Uh,J1 is a n×|J1| matrix and Λh,J1 is a |J1|× |J1| diagonal matrix. U⊤
h,J1

Uh,J1 = I|J1|.

Then

∥ZJ1ṼhZ⊤
J1

ZJ1Ṽ
⊤
h Z⊤

J2
∥2 ≤ ∥ZJ2Uh,J1∥

2∥Λh,J1∥.

Since ∥Λh,J1∥ can be controlled by (A.15), we only need to consider ∥ZJ2Uh,J1∥2. Let

Y = ZJ2Uh,J1 be a |J2|× |J1| matrix with the (i, j)th entry Yi j. The independence between the

rows of ZJ2 implies the independence between the rows of Y .

For any fixed 1×|J1| unit vector x=(x1, · · · ,x|J1|), we define xY⊤ as Y (x)= (y1(x), · · · ,y|J2|(x)).

Then the elements of Y (x) are independent.

xY⊤Y x⊤ =
|J2|

∑
j=1

[y2
j(x)−Ey2

j(x)]+
|J2|

∑
j=1

Ey2
j(x).



A.1 Some Useful Lemmas 137

Y x⊤ = ZJ2Uh,J1x⊤ and Uh,J1x⊤ is an unit vector independent of ZJ2 . By the sub-Gaussian

property of Z(s), we have

xY⊤Y x⊤ ≤
|J2|

∑
j=1

[y2
j(x)−Ey2

j(x)]+ |J2|C̃A,2,

where C̃A,2 only depends on A. Moreover, we can also deal with ∑
|J2|
j=1[y

2
j(x)−Ey2

j(x)] with

the sub-Gaussian property of Z(s). Thus, for any fixed 1×|J1| unit vector x, any c > 0 and

v > 0, there exists CA,3 depending only on A, c and v such that

P
(
∥xY⊤∥2 >CA,3v(|J1|+ |J2|)

∣∣∣BZ

)
≤ cexp(−5|J1|v−5|J2|v). (A.17)

As we know, the unit Euclidean sphere S|J1|−1 consists of all |J1|-dimensional unit vectors

x. Unfortunately, the cardinality of S|J1|−1 are uncountable cardinal number. We can’t use

(A.17) to conclude the upper bound of ∥Y∥2 directly. Thus we use the method based on Nets

to control ∥Y∥2. Let Sε be a subset of S|J1|−1. For any x ∈ S|J1|−1, there exists x̃ ∈ Sε such

that ∥x̃− x∥ ≤ ε . Then if ∥Y x⊤∥= ∥Y∥, there exists x̃ ∈ Sε such that

∥Y x̃⊤∥ ≥ ∥Y x⊤∥−∥Y (x̃− x)⊤∥ ≥ ∥Y∥− ε∥Y∥= (1− ε)∥Y∥.

Let ε = 1/2,

∥Y∥2 ≤ 4 max
x̃∈S1/2

∥Y x̃⊤∥2.

This, together with (A.17) and |Sε | ≤ (1+2ε−1)|J1|, implies that

P
(
∥Y∥2 > 4CA,3v(|J1|+ |J2|)

∣∣∣BZ

)
≤ c5|J1| exp(−5|J1|v−5|J2|v). (A.18)
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Recalling (A.15), one can conclude that for any c > 0, there exists CA,4 only depending on A

and c such that

P
(
∥n−2ZJ1ṼhZ⊤

J1
ZJ1Ṽ

⊤
h Z⊤

J2
∥2 > 4CA,4vn−1(|J1|+ |J2|)

∣∣∣BZ

)
≤ c5|J1| exp(−5|J1|v−5|J2|v). (A.19)

Others term in (A.14) can be controlled by the same method. This completes the proof.

Lemma A.1.6. Under Assumptions 2.3.1-2.3.3 and p = o(n),

∥N̂Ji −Λi∥= Op(n−1/2q1/2
i ), (A.20)

where Ji = { j ∈ Z : pi−1 < j ≤ pi}, Λi = diag(λpi−1+1, · · · ,λpi), and λi are specified in

Assumption 2.3.3.

Proof. We divide N̂Ji into two terms: (i) the diagonal term N̂Ji,d and (ii) the off-diagonal

term N̂Ji,o. Lemma A.1.4 ensures ∥N̂Ji,d −Λi∥= Op(n−1/2q1/2
i ). Thus we only need to show

∥N̂Ji,o∥= Op(n−1/2q1/2
i ). If qi is finite, Lemma A.1.4 can also ensure it. So we only need to

consider the case qi tends to infinity.

We can rewrite N̂Ji,o and control ∥N̂Ji,o∥ with the following idea.

N̂Ji,o =

V11 V12

V21 V22

=

V11 0

0 V22

+

 0 V12

V21 0

= D1 +Vo,1.

Each block is a qi/2×qi/2 matrix. Note that V12 =V⊤
21 and the norm of the second term Vo,1

(off-diagonal block) can be controlled by ∥V12∥. Moreover, we can control ∥V12∥ by Lemmas

A.1.3 and A.1.5. In details, Lemma A.1.5 implies that

P
(
∥Vo,1∥2 >C2vn−1qi

∣∣∣BZ

)
≤ c(5qi/2 +5qi/2)exp(−5qiv). (A.21)
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For the first term, we can repeat the step on V11 and V22 to get a new matrix with

off-diagonal blocks as follows:

Vo,2 = diag
[ 0 V11,12

V11,21 0

 ,

 0 V22,12

V22,21 0

]
.

Lemma A.1.5 implies that

P
(
∥Vo,2∥2 >C2vn−1qi/2

∣∣∣BZ

)
≤ 2c(5qi/4 +5qi/4)exp(−5qiv/2). (A.22)

Repeat the steps, we can find that Vo, j has 2 j−1 diagonal blocks and each diagonal block has

two 2− jqi ×2− jqi off-diagonal blocks. Lemma A.1.5 implies that

P
(
∥Vo, j∥2 > 21− jC2vn−1qi

∣∣∣BZ

)
≤ 2 j−1c(52− jqi +52− jqi)exp(−5qiv×21− j). (A.23)

We divide it into j0 matrices: N̂Ji,o = ∑
j0
j=1Vo, j, 2 j0−1 ≤ qi and j0 = O(logqi). For different

j, we choose different v to control (A.23). When logqi = o(21− jqi), we choose v = 1. It

follows that

P
(
∥Vo, j∥2 > 21− jC2n−1qi

∣∣∣BZ

)
≤ 2 j−1c(52− jqi +52− jqi)exp(−5qi ×21− j) = o(log−1 qi).

(A.24)

Otherwise, we choose v = q4/5
i log−1 qi. It follows that

P
(
∥Vo, j∥2 >C2n−1qi log−2 qi

∣∣∣BZ

)
(A.25)

≤ P
(
∥Vo, j∥2 > 21− jC2q4/5

i n−1qi log−1 qi

∣∣∣BZ

)
≤ 2 j−1c(52− jqi +52− jqi)exp(−5q9/5

i log−1 qi ×21− j) = o(log−1 qi).

(A.24)-(A.25) and ∥N̂Ji,o∥ ≤ ∑
j0
j=1 ∥Vo, j∥ imply that

P
(
∥N̂Ji,o∥> 5C1/2

2 n−1/2q1/2
i

∣∣∣BZ

)
= o(1). (A.26)
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Lemma A.1.3 implies that limn→∞ P(BZ) = 1. This, together with (A.26) and ∥N̂Ji,d −Λi∥=

Op(n−1/2q1/2
i ), completes the proof.

Lemma A.1.7. Under Assumptions 2.3.1-2.3.2 and p = o(n),

∥Ω
⊤

Σ̂
−1

Ω− Ip∥= Op(n−1/2 p1/2). (A.27)

Proof. Since X̃(s j) = ΩZ̃(s j),

Ω
⊤

Σ̂
−1

Ω− Ip = Ω
⊤[n−1

∑
1≤ j≤n

X̃(s j)X̃(s j)
⊤]−1

Ω− Ip

= [n−1
∑

1≤ j≤n
Z̃(s j)Z̃(s j)

⊤]−1 − Ip.

It suffices to prove

∥n−1
∑

1≤ j≤n
Z̃(s j)Z̃(s j)

⊤− Ip∥= Op(n−1/2 p1/2).

Following the proof of Lemma A.1.6, one can verify the above equation.

A.2 Proofs of Theorems

Recalling (A.11), write N̂ = Γ̂λ̂ Γ̂⊤ as its spectral decomposition, i.e.

λ̂ = diag(λ̂1, · · · , λ̂p),

where λ̂1 ≥ ·· · ≥ λ̂p ≥ 0 are the eigenvalues of N̂, and the columns of the orthogonal matrix

Γ̂ are the corresponding eigenvectors. Recalling the definition of ŵ in (2.9)-(2.10), we can
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find that

ŵ =
1
k

k

∑
h=1

M̂( fh)M̂( fh)
⊤

=
1
k

k

∑
h=1

{1
n

n

∑
i, j=1

fh(si − s j)Σ̂
−1/2X̃(si)X̃(s j)

⊤
Σ̂
−1/2}

{1
n

n

∑
i, j=1

fh(si − s j)Σ̂
−1/2X̃(si)X̃(s j)

⊤
Σ̂
−1/2}⊤

=
1
k

Σ̂
−1/2

Ω

k

∑
h=1

{1
n

n

∑
i, j=1

fh(si − s j)Z̃(si)Z̃(s j)
⊤}

Ω
⊤

Σ̂
−1

Ω

{1
n

n

∑
i, j=1

fh(si − s j)Z̃(si)Z̃(s j)
⊤}⊤

Ω
⊤

Σ̂
−1/2

=
1
k

Σ̂
−1/2

Ω

k

∑
h=1

{1
n

n

∑
i, j=1

fh(si − s j)Z̃(si)Z̃(s j)
⊤}(Ω⊤

Σ̂
−1

Ω− Ip)

{1
n

n

∑
i, j=1

fh(si − s j)Z̃(si)Z̃(s j)
⊤}⊤

Ω
⊤

Σ̂
−1/2 + Σ̂

−1/2
ΩN̂Ω

⊤
Σ̂
−1/2.

Let Σ̂−1/2Ω = V̂Ωλ̂ΩÛΩ where V̂ΩV̂⊤
Ω

= ÛΩÛ⊤
Ω
= Ip and λ̂Ω is a diagonal matrix. Then

ŵ = V̂ΩÛΩΓ̂λ̂ Γ̂
⊤Û⊤

Ω V̂⊤
Ω +

1
k

Σ̂
−1/2

Ω

k

∑
h=1

{1
n

n

∑
i, j=1

fh(si − s j)Z̃(si)Z̃(s j)
⊤}

Û⊤
Ω (λ̂ 2

Ω − Ip)ÛΩ

{1
n

n

∑
i, j=1

fh(si − s j)Z̃(si)Z̃(s j)
⊤}⊤

Ω
⊤

Σ̂
−1/2

+V̂Ω(λ̂Ω − Ip)ÛΩΓ̂λ̂ Γ̂
⊤Û⊤

Ω V̂⊤
Ω +V̂Ωλ̂ΩÛΩΓ̂λ̂ Γ̂

⊤Û⊤
Ω (λ̂Ω − Ip)V̂⊤

Ω .

It follows that

Û⊤
Ω V̂⊤

Ω ŵV̂ΩÛΩ = Γ̂λ̂ Γ̂
⊤+

1
k

Û⊤
Ω λ̂ΩÛΩ

k

∑
h=1

{1
n

n

∑
i, j=1

fh(si − s j)Z̃(si)Z̃(s j)
⊤}

Û⊤
Ω (λ̂ 2

Ω − Ip)ÛΩ

{1
n

n

∑
i, j=1

fh(si − s j)Z̃(si)Z̃(s j)
⊤}⊤Û⊤

Ω λ̂ΩÛΩ

+Û⊤
Ω (λ̂Ω − Ip)ÛΩΓ̂λ̂ Γ̂

⊤+Û⊤
Ω λ̂ΩÛΩΓ̂λ̂ Γ̂

⊤Û⊤
Ω (λ̂Ω − Ip)ÛΩ.
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Then

∥Û⊤
Ω V̂⊤

Ω ŵV̂ΩÛΩ − Γ̂λ̂ Γ̂
⊤∥= O{∥λ̂Ω − Ip∥∥λ̂∥(1+∥λ̂Ω∥)3}. (A.28)

(A.27) implies that ∥λ̂Ω − Ip∥= Op(n−1/2 p1/2) and ∥λ̂Ω∥= Op(1).

Recalling Σ̂−1/2Ω = V̂Ωλ̂ΩÛΩ,

∥Û⊤
W Σ̂

−1/2
Ω−Û⊤

W V̂ΩÛΩ∥ ≤ ∥Û⊤
W V̂⊤

Ω (λ̂Ω − Ip)UΩ∥= Op(n−1/2 p1/2). (A.29)

(A.29) implies that the leading term of Γ̂Ω = Û⊤
W Σ̂−1/2Ω is Û⊤

W V̂ΩÛΩ. (A.28) implies

that Û⊤
W Σ̂−1/2Ω is close to Γ̂⊤.

Thus, the asymptotic properties of Γ̂⊤ is the key point. We will prove the following

theorem for Γ̂ and λ̂ .

Put qi = pi − pi−1 for i = 1, · · · ,m (see Assumption 2.3.3), and

Γ̂ =


Γ̂11 · · · Γ̂1m

· · · · · · · · ·

Γ̂m1 · · · Γ̂mm

 , Λ̂ = diag(Λ̂1, · · · , Λ̂m), (A.30)

where submatrix Γ̂i j is of the size qi ×q j, and Λ̂i is a qi ×qi diagonal matrix.

Theorem A.2.1. Let Assumptions 2.3.1-2.3.1 hold. As n → ∞ and p = o(n), it holds that

∥Γ̂i j∥= Op{n−1/2(qi +q j)
1/2 +n−1 p}, 1 ≤ i ̸= j ≤ m, and (A.31)

∥Λ̂i −Λi∥= Op(n−1/2q1/2
i +n−1 p), 1 ≤ i ≤ m, (A.32)

where Λi = diag(λpi−1+1, · · · ,λpi), and λi are specified in Assumption2.3.3.

(A.28), (A.29), (A.27) and Theorem A.2.1 can conclude Theorem 2.3.1. Thus, we now

need to prove Theorem A.2.1.

Proof of Theorem A.2.1. (2.15) and (A.2) show that m is bounded. Let Ji = { j ∈ Z : pi−1 <

j ≤ pi}. At first we prove (A.32). We only need to prove it when i = 1 and other cases can be
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concluded by a permutation. Define Jc
1 be the complementary set of J1, then we can rewrite

det(λ Ip − N̂) = 0 as follows.

0 = det(λ Ip − N̂) = det

λ Ip1 − N̂J1 −N̂J1,Jc
1

−N̂Jc
1 ,J1 λ Ip−p1 − N̂Jc

1

 . (A.33)

Lemmas A.1.3 and A.1.5 conclude ∥N̂Jc
1 ,J1∥= Op(n−1/2 p1/2) = op(1). Lemmas A.1.3-A.1.6

and the Assumption 2.3.3 imply that there exists a positive constant C̃N such that

lim
n→∞

P(∥λlIp−p1 − N̂Jc
1
∥min > C̃N) = 1 (A.34)

for any 1 ≤ l ≤ p1. Lemma A.1.6 also implies that

lim
n→∞

P
(

λp1 −C̃N/2 < ∥N̂J1∥min ≤ ∥N̂J1∥< λ1 +C̃N/2
)
= 1. (A.35)

If λ ∈ (λp1 −C̃N/2,λ1 +C̃N/2) is a solution of (A.33), it is also (with probability 1) a

solution of

0 = det
(

λ Ip1 − N̂J1 − N̂J1,Jc
1
(λ Ip−p1 − N̂Jc

1
)−1N̂Jc

1 ,J1

)
. (A.36)

Lemma A.1.5 and (A.34) imply that

∥N̂J1,Jc
1
(λ Ip−p1 − N̂Jc

1
)−1N̂Jc

1 ,J1∥= Op(n−1 p). (A.37)

Let λ̃1 ≥ ·· · ≥ λ̃p1 be the eigenvalues of N̂J1 , (A.36)-(A.37) conclude that

λ̃l − λ̂l = Op(n−1 p) (A.38)

for any 1 ≤ l ≤ p1. This, together with (A.20), concludes (A.32).
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Now we consider (A.31). We only need to prove it when j = 1 and i > 1. Other cases

can be concluded by a permutation. From N̂ = Γ̂λ̂ Γ̂⊤ and (A.30), we can find that
∑

m
i=1 N̂J1,JiΓ̂i1

· · ·

∑
m
i=1 N̂Jm,JiΓ̂i1

= N̂


Γ̂11

· · ·

Γ̂m1

=


Γ̂11Λ̂1

· · ·

Γ̂m1Λ̂1

 . (A.39)

Define U11 = N̂J1,J1 , U12 = N̂J1,Jc
1
, U21 = N̂Jc

1 ,J1 and U22 = N̂Jc
1 ,J

c
1
. Similarly, define Γ̃⊤

21 =

(Γ̂⊤
21, · · · , Γ̂⊤

m1)
⊤. Then we can rewrite (A.39) as

U11Γ̂11 +U12Γ̃21

U21Γ̂11 +U22Γ̃21

=

Γ̂11Λ̂1

Γ̃21Λ̂1

 . (A.40)

Γ̃21Λ̂1 = Γ̃21(Λ̂1 −λ1Ip1)+λ1Γ̃21.

Then the second line of (A.40) is equivalent to

(U22 −λ1Ip−p1)Γ̃21 = Γ̃21(Λ̂1 −λ1Ip1)−U21Γ̂11.

Recal that (A.34), U22 −λ1Ip−p1 is invertible with probability 1 as n tends to infinity.

Γ̃21 = (U22 −λ1Ip−p1)
−1

Γ̃21(Λ̂1 −λ1Ip1)− (U22 −λ1Ip−p1)
−1U21Γ̂11.

(2.14)-(2.15) and Lemmas A.1.3-A.1.6 imply that ∥Λ̂1−λ1Ip1∥= op(1) and ∥(U22−λ1Ip−p1)
−1∥=

Op(1). Then (λ1Ip−p1 −U22)
−1U21Γ̂11 is the leading term of Γ̃21. Moreover, ∥Γ̂11∥= O(1).

Thus we only need to consider (λ1Ip−p1 −U22)
−1U21. We rewrite (λ1Ip−p1 −U22)

−1 as


λ1Ip2 − N̂J2,J2 · · · −N̂J2,Jm

· · · · · · · · ·

−N̂Jm,J2 · · · λ1Ipm − N̂Jm,Jm


−1

= (λ1Ip−p1 −U22)
−1 =


V22 · · · V2m

· · · · · · · · ·

Vm2 · · · Vmm

 .
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(2.14)-(2.15) and Lemma A.1.6 ensure ∥(λ1Ipi − N̂Ji,Ji)
−1∥= Op(1) for 2 ≤ i ≤ m. Lemma

A.1.5 ensures ∥N̂Ji,Jt∥ = Op(n−1/2 p1/2) = op(1) for 2 ≤ i ̸= t ≤ m. Since m is finite, we

can find ∥Vii∥= Op(1) and ∥Vit∥= Op(n−1/2 p1/2) for 2 ≤ i ̸= t ≤ m. Recall that ∥N̂Ji,J1∥=

Op(n−1/2(q1 +qi)
1/2) for 2 ≤ i ≤ m and

(λ1Ip−p1 −U22)
−1U21 =


V22 · · · V2m

· · · · · · · · ·

Vm2 · · · Vmm




N̂J2,J1

· · ·

N̂Jm,J1

 .

It follows that ∥ViiN̂Ji,J1∥= Op(n−1/2(q1 +qi)
1/2) and ∥∑t ̸=iVitN̂Jt ,J1∥= Op(n−1 p).

We complete the proof of (A.31).

Now we prove Theorem 2.3.2. By the same idea, we give the following result for N̂.

Theorem A.2.2. Let Assumptions 2.3.1, 2.3.2 and 2.3.4 hold. Denote by γ̂i j the (i, j)-th entry

of matrix Γ̂ in (A.30). Then as n, p → ∞, it holds that

Γ̂i j = Op(n−1/2v−1
gap| j− i|−1) for 1 ≤ i ̸= j ≤ p, and (A.41)

Γ̂ii = 1+Op(n−1v−2
gap) for i = 1, · · · , p. (A.42)

Moreover,

∥Λ̂−Λ∥= Op(n−1/2 p1/2). (A.43)

Proof of Theorem A.2.2. Following the proof of Lemma A.1.6, one can verify that ∥λ̂ −N∥=

Op(n−1/2 p1/2). This, together with A4, implies (A.43).

From N̂Γ̂ = Γ̂λ̂ , we can find that

Γ̂λ̂ −NΓ̂ = (N̂ −N)Γ̂. (A.44)
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(A.44) implies that

Γ̂i j(λ̂ j −λi) =
p

∑
s=1

MisΓ̂s j, (A.45)

where Mis is defined in Lemma A.1.4. The Assumption 2.3.4 and ∥λ̂ −N∥= Op(n−1/2 p1/2)

can control (λ̂ j −λi). Then we can divide the right hand of the above equation into two part.

p

∑
s=1

MisΓ̂s j = ∑
s ̸= j

MisΓ̂s j +Mi jΓ̂ j j. (A.46)

(A.12) implies that E|Mi jΓ̂ j j|2 ≤ E|Mi j|2 ≤ C1n−1. Thus we only need to consider the

order of ∑s ̸= j MisΓ̂s j. Define v = max1≤i≤p max j ̸=i |∑s ̸= j MisΓ̂s j|. Then for any j ̸= i, (A.45)

implies that

|Γ̂i j| ≤ (|i− j|vgap −∥λ̂ −N∥)−1(v+ |Mi j|)

and

|∑
s̸= j

MisΓ̂s j| ≤ ∑
s ̸= j

|Mis||Γ̂s j|

≤ ∑
s ̸= j

|Mis|(|s− j|vgap −∥λ̂ −N∥)−1(v+ |Ms j|)

≤ v ∑
s ̸= j

|Mis|(|s− j|vgap −∥λ̂ −N∥)−1 + ∑
s ̸= j

|Mis||Ms j|(|s− j|vgap −∥λ̂ −N∥)−1.

The Assumption 2.3.4, ∥λ̂ −N∥= Op(n−1/2 p1/2) and (A.12) conclude that

∑
s ̸= j

|Mis|(|s− j|vgap −∥λ̂ −N∥)−1 = O(v−1
gap log p max

1≤i,s≤p
|Mis|) = op(1)

and

∑
s ̸= j

|Mis||Ms j|(|s− j|vgap −∥λ̂ −N∥)−1 = op(n−1/2).
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This, together with the definition of v, implies that v = op(n−1/2).

|Γ̂i j| ≤ (|i− j|vgap −∥λ̂ −N∥)−1[op(n−1/2)+ |Mi j|].

This, together with (A.12), concludes (A.41).

Γ̂
2
ii = 1−∑

j ̸=i
Γ̂

2
i j ≥ 1−∑

j ̸=i
(|i− j|vgap −∥λ̂ −N∥)−2(v+ |Mi j|)2 = 1+Op(n−1v−2

gap).

We complete the proof.

(A.28) and (A.27) imply that

∥Γ̂
⊤Û⊤

Ω V̂⊤
Ω ŵV̂ΩÛΩΓ̂− λ̂∥= Op(n−1/2 p1/2).

This and Theorem A.2.2 can conclude the asymptotic properties of Û⊤
W V̂ΩÛΩΓ̂. Then we

can prove Theorem 2.3.2 by (A.29) and Theorem A.2.2.

A.3 An Additional Example for Numerical Results

In this section, we further present the usefulness of Multiple Ring Kernels by constructing

a special example. In this example, Ring Kernel 1 is no longer the best single kernel. We

achieve this goal by generating latent fields in a mixing way. To generate data, we split the

map of sample locations into 10 rows according to their y coordinates, and all rows have

equal width. For each row, let the sample points within be independent from adjacent rows.

In order to achieve this, for each of the p latent fields, we generate 3 independent candidate

random fields using same set of coordinates and covariance function parameters. The process

for generating each candidate random field is the same as described before. The coordinates

belong to the 1st ,4th,7th and 10th row would take values from the first candidate random field,

those belong to the 2nd,5th,8th row would take values from the second candidate random

field, and the rest of the sample points will take values from the third candidate random field.

In this way, the samples from most adjacent rows are independent to each other, and the
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effectiveness of Ring Kernel 1 is weakened.

We performed simulation using latent random fields constructed from the method above.

Dimension of latent field p = 3. The sample size, sampling method of coordinates, setting

of mixing matrix, and use of matern covariance function is identical to the description of

simulation setting in numerical illustration section. The boxplot of D(Ω,Ω̂) obtained from

1000 replications is presented in figure, and median of D(Ω,Ω̂) is presented in table.

As the Figure shows, kernel 1 is no longer the best-performing single kernel, while

multiple kernel remains very close to the best single kernel, and outperforming most other

single kernels. Yet as sample size increases, D(Ω,Ω̂) did not improve, which might due to

the artificial nature of this special example. More detailed data is presented in Table A.1.

Fig. A.1 Boxplots of D(Ω,Ω̂) for the proposed method using the 10 single kernels, or
multiple kernel(including all 10 ring kernels), and the method of Bachol et el. using the
multiple kernel (original) in a simulation with 1000 replications for the mix Gaussian random
fields. The number of observations n is 100, 500, 1000 or 2000 (from top to bottom), and
the dimension of random fields is p = 3. Latent field is generated in a mixing approach as
described.
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Kernel 1 2 3 4 5 6 7 8 9 10 Multiple Multiple Original
n=100 0.2642 0.2218 0.2718 0.2098 0.2583 0.2663 0.2710 0.2448 0.2510 0.2462 0.2123 0.2242
n=500 0.2218 0.1739 0.1583 0.1335 0.2614 0.1974 0.2489 0.1642 0.2582 0.2348 0.1480 0.1045

n=1000 0.2091 0.1712 0.1627 0.1452 0.2500 0.1813 0.2463 0.1544 0.2638 0.2346 0.1535 0.8800
n=2000 0.2190 0.1763 0.1548 0.1474 0.2455 0.1807 0.2703 0.1590 0.2631 0.2442 0.1506 0.0752

Table A.1 Median of D(Ω,Ω̂) from the proposed method using the 10 single kernels, or
multiple kernel(including all 10 ring kernels), and the method of Bachol et el. using the
multiple kernel (original) in a simulation with 1000 replications for the mixed random fields.
The number of observations n is 100, 500, 1000 or 2000 , and the dimension of random fields
is p = 3.





Appendix B

List of Variables in Dataset for Chapter 4

B.1 Name of 12 Metropolitan Regions:

1. Auvergne-Rhône-Alpes

2. Bourgogne-Franche-Comté

3. Bretagne

4. Centre-Val de Loire

5. Grand Est

6. Hauts-de-France

7. Île-de-France

8. Normandie

9. Nouvelle-Aquitaine

10. Occitanie

11. Provence-Alpes-Côte d’Azur (PACA)

12. Pays de la Loire
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B.2 List of National Level Variables:

Category Variables

Calendar date, Date, tod, month, year, toy, day_type_jf, day_type_ljf,

day_type_vjf, day_type_week, day_type_week_jf,

day_type_hc, period_hour_changed, period_holiday,

period_holiday_zone_a, period_holiday_zone_b,

period_holiday_zone_c, period_christmas, period_summer,

day_type_week_period_hour_changed,

day_type_week_jf_period_holiday, week_number

Electricity Load(MW) Load, Load_d1, Load_d7, Wind_power, Solar_power, DayValidity

Meteorological temperature, temperature_lisse_990, temperature_lisse_950,

wind, nebulosity, wind_by_wind_power_weights.x,

nebulosity_by_solar_power_weights.x
Table B.1 Classification of Variables by Category, National Level

B.3 List of Region-Specific Variables:

Category Variables for Each Region

Electricity Load (MW) Load(region),Load(region)_d1, Load(region)_d7

Meteorological

temperature(region), temperature(region)_lisse_990,

temperature(region)_lisse_950, Wind_power(region),

wind(region), Solar_power(region), nebulosity(region)

Table B.2 Region-Specific Variables by Category
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