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Abstract

We design and analyse nonparametric techniques for understanding the structure of network

data, inference on network statistics, and testing for shape constraints.

In the first chapter, I look at symmetric binary exchangeable networks. Any such network

can be characterised by a distribution over characteristics of nodes and a linking (graphon)

function which gives the probability of link between any two nodes. To learn about the network

structure, I propose a nonparametric estimator of the linking function. I provide conditions

under which the estimator is uniformly consistent and a numerical procedure for choosing a

tuning parameter. My procedure makes minimal assumptions and allows for moderate sparsity

levels.

In the second chapter, I propose a bootstrap procedure which allows for valid inference

on network statistics. It uses my nonparametric linking function estimator from Chapter 1

to generate bootstrap networks with a similar dependence structure to the original network.

I prove that the distribution of the bootstrap network is consistent for the distribution of

the original network, and I provide conditions under which bootstrap consistently recovers

distributions of a class of functions related to U-statistics. I find good performance in Monte

Carlo simulations and apply my procedure to the data from Banerjee, Chandrasekhar, Duflo,

and Jackson (2013).

In the third chapter, we propose a test for whether a nonparametric regression mean satisfies

a shape restriction that varies within the domain of the regressor (e.g. (inverted) U-shaped,

S-shaped). Our procedure extends the methodology of Komarova and Hidalgo (2023) to the

setting where the points at which the shape changes are unknown and must be estimated,

and the shapes may only appear after controlling for covariates. We provide a generalised

transformation which achieves the same asymptotic distribution but adds robustness to the

test and credibility to the conclusions.
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Chapter 1

Nonparametric linking probabilities estimator

for exchangeable networks

Abstract

Network data is gaining popularity in economic applications, but using it for estimation and

inference remains challenging due to the complicated dependence structure. Many economic

networks take the form of symmetric binary exchangeable networks, and any such network can

be characterised by a distribution over characteristics of nodes and a linking (graphon) function

which gives the probability of link between any two nodes. We explore this representation which

allows summarising the dependence in a more tractable way, and to learn about the network

dependence structure, we propose a nonparametric estimator for the linking probabilities. We

provide conditions under which the estimator is uniformly consistent and we give a numerical

procedure for choosing a tuning parameter. Our procedure makes minimal assumptions and

allows for moderate sparsity levels. In Chapter 2 we explore the use of our estimator for

inference on networks.
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1.1 Introduction

Network data is becoming more prevalent in economics, especially in fields such as development

or labour economics. It allows for modelling e.g. the spread of information (Banerjee, Chan-

drasekhar, Duflo, and Jackson (2013)) or spillover effects (Carter, Laajaj, and Yang (2021)),

but it comes with a challenge: because the observations within a network exhibit strong de-

pendence, standard techniques for estimation and inference which rely on the assumptions of

independence or weak dependence become invalid. There is a need to develop approaches which

account for the network structure.

One way forward relies on assuming that the complicated dependence can be summarised us-

ing a simpler representation. One such representation exists for symmetric binary exchangeable

networks. Symmetric means the relationship is not directed (as opposed to directed networks

in which e.g. an influencer has many followers but does not follow them back); binary means

there either is a connection or there is not, the strength of the connection is not weighted; and

exchangeable means that all individuals come from the same distribution, the distribution of

the network is invariant under finite permutations of individuals (an exception could be a net-

work with a ‘superstar’: an individual who is fundamentally different from everyone else, there

is always precisely one person like that in any network). Many economically-relevant networks,

such as collaboration networks (e.g. between co-authors publishing in a given journal) or social

networks (e.g. friendship relationships on facebook, Chetty et al. (2022) or connections between

households in a village, Breza and Chandrasekhar (2019)) can be naturally represented in this

framework.

Assuming we are working with a network of this form, we can represent its distribution

using two objects: a distribution over characteristics of individuals (nodes) and a binary linking

(graphon) function which takes the characteristics of any two nodes as inputs and outputs the

probability with which they are linked. Our focus is providing an estimate of the linking

probabilities for any pair of individuals observed in our sample.

We propose a nonparametric method to estimate the linking probabilities which takes ad-

vantage of the information provided by the set of observed connections. We start by borrowing

a distance from Auerbach (2022) (see also Zhang, Levina, and Zhu (2017)), which can be intu-

itively summarised as: people with similar sets of friends are similar to each other. If we observe

two people with similar sets of neighbours, it likely happened because the linking function gave

similar probabilities for their links with other individuals. This way we can identify people sim-

ilar to any person i. We can then determine what proportion of these ‘counterfactuals’ of i are

linked to a person j, providing an estimate of the link probability between i and j. Similarly,

by swapping the roles of i and j, we can find what proportion of individuals similar to j are

10



linked to i. Assuming that links are symmetric, we take the average of these two estimates as

an estimate of the link probability between i and j.

We provide conditions under which our estimator achieves uniform consistency. These are

mostly concerned with the allowed level of sparsity and the smoothness of the linking function.

As is common in real-life networks, we assume sparsity, which means that the linking probability

grows at a slower rate than the number of individuals in a network. However, to allow for

estimation, we need to put bounds on the allowed sparsity level: if the network was too sparse

we would not be getting enough information to ensure convergence of our estimators. The

level we assume is typical in this literature. We also assume that the estimated function allows

us to find sufficiently many good counterfactuals for any individual we could observe. This

assumption is closely related to the assumptions of “Bi-Lipschitz” or “Piecewise-Lipschitz”

used by e.g. Zhang, Levina, and Zhu (2017), Auerbach (2022).

Our estimator takes a form of a nonparametric kernel estimator which requires the researcher

to choose a tuning bandwidth parameter: we need to indicate how similar the potential coun-

terfactuals of i need to be to be given a positive weight in the estimation procedure. One of our

contributions is proposing a cross-validation procedure for choosing a bandwidth parameter for

our estimator.

Our estimator has many potential uses. In Chapter 2 we show that it may be used as an

input in a bootstrap procedure, allowing us to generate new networks with a structure similar

to that of an observed network, which we can use for valid inference on network statistics.

Another potential use, which we showcase in the application in Chapter 2 and plan to extend

in future work, relies on the fact that the estimator can be seen as a proxy for the strength of

connections between individuals in a network and it can be used directly in forming models of

network interactions. This could help mitigate tha bias resulting from observing only binary

information on links when it is thought that the observed links provide a noisy signal about

the real determinant of behaviour: the strength of connections between individuals. We believe

the estimator may prove to have many more potential applications.

In Section 1.2 we summarise the related literature. The setup of the model is described

in Section 1.3, where we also provide a definition of our estimator. Section 1.4 includes the

statement of our main result: the uniform consistency of the linking probabilities estimator in

Theorem 1. Section 1.5 shows results of Monte Carlo simulations. Section 1.6 concludes. The

appendix start with a list of all notation. Section 1.A includes all proofs.

11



1.2 Related literature

Our idea for the nonparametric linking probabilities estimator was inspired by Auerbach (2022),

who provides a way of controlling for a network-dependent latent covariate in a partially linear

regression setting. Our estimator has been previously proposed by Zeleneev (2020) (whose focus

is different than ours and who does not analyse the theoretical properties of the estimator).

The closest paper to ours is Zhang, Levina, and Zhu (2017). They provide an estimator

based on a very similar idea but using nearest neighbours instead of kernels and a different

norm for the distance. The key distinction is that they do not directly model sparsity (instead

they allow the linking function to come from a family of Piecewise-Lipschitz functions which

becomes richer as the sample size increases) and their choice of a tuning parameter is motivated

by the asymptotic rates (rather than done numerically from the sample).

One motivation for providing a kernel estimator is that we wish to use our linking probabil-

ity estimator in conjunction with our bootstrap procedure developed in Chapter 2. Abadie and

Imbens (2008) show that bootstrapping nearest neighbours estimators can lead to invalid infer-

ence. Our estimator can be seen as a smoothed-out version of a nearest-neighbour estimator,

where observations that provide a worse fit are given a lower weight, which could lead to more

stable behaviour when used with bootstrap. We begin to explore this idea in the application

in Chapter 2 and we plan to extend it in future work.

Other approaches to estimating the linking function usually rely on imposing a parametric

structure. One of the most popular parametric forms is the stochastic block models: it assumes

that each node belongs to one of finitely many blocks, and the probability of a link between

any two nodes is fully determined by the blocks the nodes belong to. There have been many

procedures proposed for these kinds of models, e.g. Lei and Rinaldo (2015) analyse the statis-

tical properties of spectral clustering algorithms for community detection in stochastic block

models like in Rohe, Chatterjee, and Yu (2011), Amini, Chen, Bickel, and Levina (2013) pro-

vide a pseudo-likelihood procedure for community detection and Guédon and Vershynin (2016)

proposed a procedure based on Grothendieck’s inequality.

A recent addition to this literature is Kitamura and Laage (2024) who develop a method

of incorporating observed covariates (in addition to an adjacency matrix) when estimating

stochastic block models. This extension has a lot of economic relevance, as in many applications

we do have access to observed covariates and we should take advantage of this information in

estimating our model. Using a similar framework with our procedure would be an interesting

extension of our model.

Other parametric frameworks include the assumption of a dot product linking function as

in Levin and Levina (2019) see Athreya et al. (2018) for a survey of work on estimation and

12



statistical properties.

1.3 Model: setup and definitions

1.3.1 Setup

We follow the standard setup in the literature known as the latent space model.

We observe an adjacency matrix A which corresponds to an undirected, unweighted graph on

n nodes (also referred to as individuals) indexed by i ∈ {1, 2, . . . , n}. The matrix is symmetric,

has zeros on the main diagonal and ones in positions corresponding to edges in the graph

(Aij = 1 if and only if there is an edge between nodes i and j). Each node i is characterised

by a vector of unobserved features1 ξi, drawn independently from their common distribution

F0 with support Supp(ξi). We denote the vector of all {ξi}ni=1 by ξ. We assume that the

distribution has no point mass,2 i.e. for ξi, ξj ∼ F0 we have PF0(ξi = ξj) = 0. We impose more

assumptions3 on F0 in Assumption 1.2.

Let h0,n : Supp(ξi)× Supp(ξi) −→ [0, 1] be a symmetric, measurable linking function4 which

can be decomposed as:

h0,n(u, v) = ρnw0(u, v) (1.1)

where
∫
w0(u, v)dF0(u)dF0(v) = 1.

For each pair of nodes i, j, h0,n(ξi, ξj) maps their unobserved characteristics ξi, ξj into the

probability of a link (edge) between them, i.e. the probability with which Aij = 1. We treat the

linking function as unknown, making minimal assumptions on its properties in Assumption 1.2:

we require that for each input there is a neighbourhood of sufficiently large measure in which

the behaviour of the function remains similar. Importantly, we do not require a specific form

(e.g. random dot product structure: h0,n(ξi, ξj) = ξ′iξj like in Levin and Levina (2019)), we do

not impose any shape constraints (e.g. that the function is strictly increasing in its inputs).

The decomposition into ρn and w0 can be seen as a normalisation which allows us to interpret

ρn as the expected edge density (the marginal probability of an edge between two nodes). We

assume ρn −→ 0 as n −→ ∞, which captures the common feature of real economic networks

known as sparsity. Intuitively, it says that the number of expected friends grows at a slower

1This corresponds to the vector of latent positions Xi in Levin and Levina (2019).
2This is without loss of generality: if we had a distribution with a point mass we could define a new support

of ξ and a new F0 in which the point mass would be replaced by a region of ξ of total measure equal to the
probability at the original point.

3The assumptions are implicit and would be implied by F0 bounded above and separated away from zero
with h0,n piecewise Lipschitz.

4The linking function has been referred to as the coupling function g(., .) in Zeleneev (2020) and the graphon
function in Green and Shalizi (2022).
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rate than the size of the network: no matter how large the potential pool of friends is, people

tend to have a fairly small friendship group. This causes issues for estimation because, even as

the size of the network grows at a rate n, the amount of information about the links of a specific

node i grows at a slower rate of ρnn. In the extreme case of ρnn being bounded we cannot

hope to get consistency of our estimates. In our results we specify bounds on the rate at which

ρn approaches zero which still allow us to reliably estimate parameters and their distributions.

For the linking probabilities estimator we require that the density decreases at a slower rate

than
√

log(n)
n (see Assumption 1.1).

w0 is the underlying linking/graphon function after accounting for sparsity. While w0 cannot

be interpreted directly as a probability, it has similar properties, e.g. it is bounded.5 This is the

function which determines the data generating process and the function the statistics of which

we want to analyse. Although in a sample of size n we encounter its rescaled version h0,n, for

any asymptotic results we need to remove the effect of sparsity and we look at normalisations

which are function of
h0,n

ρn
.

To capture the way in which the linking function h0,n is translated into the observed links in

A we introduce a random noise parameter: for 1 ≤ i ≤ j ≤ n let ηij
ind∼ U [0, 1] be independent

of ξ. We denote the vector of ηij by η. We assume:6

Aij = Aji = 1 (h0,n(ξi, ξj) ≥ ηij)

Aii = 0.

(1.2)

Note that E(Aij |ξi, ξj) = P (Aij = 1|ξi, ξj) = h0,n(ξi, ξj) = ρnw0(ξi, ξj). To distinguish between

adjacency matrices based on the true and estimated/simulated inputs we sometimes explicitly

write A as a function: A(h0,n(ξ), η).

Our goal is to find a good estimator ĥn of the linking function h0,n at all observed pairs

ξi, ξj .

Remark. We treat the model as the true data generating process, but our results could be

considered more general: by the Aldous-Hoover Theorem (originally proven independently in

Aldous (1981) and Hoover (1979), see also discussion in Kallenberg (1989) and Orbanz and Roy

(2014)), as long as the distribution of the infinite array X = (Xij , i, j ∈ N) of random variables

5This is a common assumption in the literature, though it is sometimes relaxed to allow w0(u, v) ∈ R+ and
let h0,n(u, v) = min{w0(u, v), 1}. This affects the interpretation of ρn as the density and makes it more difficult
to infer h0,m from h0,n. Our results could be generalised to allow for unbounded w0 at the expense of more
complicated proofs and additional assumptions on bounded moments of w0 or its functions.

6This is one specific way of achieving:

Aij |ξ = Aji|ξ
ind∼ Bernoulli (h0,n(ξi, ξj))

Aii = 0
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(corresponds to the limit of our A for a fixed level of sparsity ρn) is invariant under joint

permutations of the rows and columns (i.e. if (pi) is a permutation of indices, the distribution

of (Xij) is the same as that of
(
Xpi,pj

)
: the distribution is invariant to relabelling of the

individuals) there exist i.i.d. random variables α, ξi, ηij, i, j ∈ N and a measurable function f

for which:

Xij = f(α, ξi, ξj , ηij), i, j ∈ N.

If, as in our case, Xij are binary and symmetric, the representation simplifies7 to:

Xij = 1 (w(α, ξi, ξj) ≥ ηij) , i, j ∈ N, i ̸= j;

Xii = 0.

We treat the underlying binary jointly exchangeable infinite array as a mixture of processes of

the form in Eq. (1.2). To obtain the representation in Eq. (1.2), we condition on the realised

value of α.

1.3.2 Distance: definition and estimator

Based on the observed matrix A, we want to estimate the linking probability for any pair

of nodes. We start by defining a distance between individuals i and j, taking the measure8

from Auerbach (2022). Intuitively, if two people have similar friendship groups, they should be

similar to each other: they likely ended up with similar friendship groups because their linking

functions were similar. We let φ(ξi, ξt) = E (w0 (ξi, ξs)w0 (ξt, ξs)| ξi, ξt) = E
(

Ais

ρn

Ats

ρn

∣∣∣ ξi, ξt)
be a function measuring the probability of a common friend between i and t, normalised to

remove the effect of sparsity. Similarly, φ(ξj , ξt) gives a normalised measure of the probability

of common friends between j and t. To measure the similarity in friendship groups between i

and j we look at the expected difference φ(ξi, ξt)−φ(ξj , ξt) for any individual t. This motivates

7We can set

w(α, x, y) =

∫ 1

0
f(α, x, y, η)dη;

see Corollary III.6. in Orbanz and Roy (2014).
8Auerbach (2022) refers to φξi (τ) = φ(ξi, τ) as the codegree function of agent i. In his model there is no

sparsity: ρn = 1, which is why he does not need the normalisation by 1
ρn

.
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the definition of distance between i and j:

dij =

√
E
(
(φ(ξi, ξt)− φ(ξj , ξt))

2
∣∣∣ ξi, ξj) (1.3)

=

√
E
(
(E (w0 (ξt, ξs) (w0 (ξi, ξs)− w0 (ξj , ξs))| ξi, ξj , ξt))2

∣∣∣ ξi, ξj) (1.4)

=

√√√√E

(
E

(
Ats

ρn

(
Ais

ρn
− Ajs

ρn

)∣∣∣∣ ξi, ξj , ξt)2
∣∣∣∣∣ ξi, ξj

)
. (1.5)

After an appropriate normalisation by the sparsity level ρn, we get an expression in terms of

the linking function h0,n = ρnw0 at sample size n:

ρ2ndij =

√
E
(
(E (h0,n (ξt, ξs) (h0,n (ξi, ξs)− h0,n (ξj , ξs))| ξi, ξj , ξt))2

∣∣∣ ξi, ξj) (1.6)

=

√
E
(
E (Ats (Ais −Ajs)| ξi, ξj , ξt)2

∣∣∣ ξi, ξj). (1.7)

Eq. (1.6) highlights the close relation between the normalised distance and the similarity be-

tween the linking functions of i and j at sample size n: a low value of ρ2ndij means i and j are

similar to each other in the sense that their h0,n(ξi, ·) and h0,n(ξj , ·) are close. We exploit this

when defining an estimator for h0,n. The normalised expression is also attractive because the

sample equivalent of its representation in Eq. (1.7) provides us with an estimate of ρ2ndij :

ρ2nd̂ij =

√√√√ 1

n

n∑
t=1

(
1

n

n∑
s=1

Ats (Ais −Ajs)

)2

. (1.8)

Remark. If we needed to estimate d̂ij without the normalisation we could substitute the esti-

mated density:

ρ̂n =
1(
n
2

) ∑
i≤i<j≤n

Aij (1.9)

for the unknown ρn. However, in practice the way we use the distance is with a normalisation

by a bandwidth parameter an (chosen by the researcher), we look at functions of:
ρ4
nd̂

2
ij

an
≡ d̂2

ij

bn
,

and we can think of the ρn as being absorbed into the renormalised bandwidth bn.

Remark. We could also consider estimators of related distances from Zeleneev (2020), who took

it from Zhang, Levina, and Zhu (2017): ρnd̂
(∞)
ij =

(
maxt ̸=i,j

∣∣∣ 1n ∑s̸=i,j,t Ats(Ais −Ajs)
∣∣∣) 1

2

and

from Lovász (2012) (sections 13.4, 15.4): ρ2nd̂
(1)
ij = 1

n

∑n
t=1

∣∣∣ 1n ∑s̸=i,j,t Ats(Ais −Ajs)
∣∣∣ . All of

these distances are based on the same idea but average φ(ξi, ξt) − φ(ξj , ξt) using L2, L∞ and

L1 distances, respectively.

Alternative distances could be used as well. However, note that the direct comparison of the
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friendship groups does not provide a good distance.9

The distance we use looks at the number of second-order connections (friends of friends).

We could consider comparing higher order connections, but this would come at a cost of more

difficult computation and it would require stronger assumptions on the allowed sparsity level (the

reason why we need ρn to go to zero slower than
√

log(n)
n rather than log(n)

n is closely related to

the fact that our estimate of distance requires a normalisation by ρ2n).

1.3.3 Linking probabilities estimator

We are now ready to define an estimator ĥn for the linking function h0,n at all pairs of realised

ξi, ξj . We sometimes refer to this object as the ‘linking function estimator,’ since it provides an

approximation to the true linking function, but note that we provide the approximation only

at specific points and we do not characterise the estimator as a function of its latent inputs

ξi, ξj . Hence we usually call it the ‘linking probabilities estimator,’ since it is estimating the

probabilities of links between all pairs of observed individuals. We rely on a kernel approxima-

tion: let K(·) be a kernel function (for properties see Assumption 1.3), let an be a bandwidth

parameter (for its rates of convergence see Assumption 1.4, see Section 1.3.4 for a method of

choosing a bandwidth). We can estimate h0,n(ξi, ξj) as:

ĥn(ξi, ξj) =
h̃n(ξi, ξj) + h̃n(ξj , ξi)

2
(1.10)

where

h̃n(ξi, ξj) =

∑n
t=1

t ̸=j

K
(

ρ4
nd̂

2
it

an

)
Atj∑n

t=1
t ̸=j

K
(

ρ4
nd̂

2
it

an

) . (1.11)

h̃n(ξi, ξj) is a local weighted average which puts the highest weights on the individuals most

9This could be defined as:

ρnd
s
ik =

√
El

[
(Ali −Alk)

2
∣∣∣ ξi, ξk], ρnd̂

s
ik =

√√√√ 1

n

n∑
l=1

(Ali −Alk)
2

Suppose h0,n(ξi, ξj) = 1
2

for all ξi, ξj . Since all individuals share te same linking probabilities, we would like
their distance to be zero. But i and k are expected to have around n

2
friends each, with only n

4
overlapping.√√√√ 1

n

n∑
l=1

(Ali −Alk)
2 =

√√√√ 1

n

n∑
l=1

A2
li +A2

lk − 2AliAlk =

√√√√ 1

n

n∑
l=1

Ali +
1

n

n∑
l=1

Alk −
2

n

n∑
l=1

AliAlk

p−→
√
E[Ali] + E[Alk]− 2E[AliAlk] =

√
1

2
+

1

2
− 2

1

4
=

1

4
̸→ 0

Since the expected size of i’s and k’s common neighbourhood with any l is around n
4
, our original distance is

close to 0.
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similar to i. The bandwidth an controls the required level of similarity beyond which we use

zero weights. Each person t with d̂it sufficiently close to zero can be seen as a counterfactual

to i, someone with a very similar linking function (i.e. a small h0,n(ξi, ·) − h0,n(ξt, ·)). The

proportion of people similar to i who are linked to j gives an estimate of the link probability

between i and j. The observation with t = j is excluded because we assume there are no

self-link: Ajj = 0 is not defined in terms of h0,n. Adding a non-zero weight on this observation

would introduce bias.

To get ĥn(ξi, ξj) we take advantage of the symmetry of links, we repeat the estimation

swapping the roles of i and j and take an average of the two estimates.

We show that this estimator is uniformly consistent for h0,n in Theorem 1.

Remark. The estimator ĥn has been proposed, but not analysed by Zeleneev (2020). We could

also use a related estimator:

ĥ(K2)
n (ξi, ξj) =

∑n
t=1

∑n
s=1

t̸=s

K
(

ρ4
nd̂

2
it

an

)
K

(
ρ4
nd̂

2
js

an

)
Ats

∑n
t=1

∑n
s=1

t ̸=s

K
(

ρ4
nd̂

2
it

an

)
K

(
ρ4
nd̂

2
js

an

) .

Zhang, Levina, and Zhu (2017) propose a closely related estimator which uses the nearest-

neighbour idea:

ĥ(NN1)
n (ξi, ξj) =

h̃
(NN1)
n (ξi, ξj) + h̃

(NN1)
n (ξj , ξi)

2
where h̃(NN1)

n (ξi, ξj) =

∑
t∈Ni

Atj

∥Ni∥

where Ni denotes the set of neighbours of i. They show that the optimal size of the neigh-

bourhood, ∥Ni∥, should grow at the rate of (n ln(n))1/2. We could also use a nearest-neighbour

approach in both inputs simultaneously (again, mentioned, and this time analysed, by Zeleneev

(2020)):

ĥ(NN2)
n (ξi, ξj) =

∑
t∈Ni

∑
s∈Nj

Ats

∥Ni∥∥Nj∥
.

1.3.4 Choice of bandwidth

The linking probabilities estimator relies on a bandwidth parameter chosen by the researcher.

We propose a cross-validation procedure which allows choosing the bandwidth in an automated

way from the observed sample.

The idea is to choose a bandwidth for which ĥn best explains the observed network A, if

we leave out Aij when estimating Aij . The reason for leaving out Aij is that if we do not, we

are trying to estimate Aij using a set of observations which include Aij , hence we can estimate
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it perfectly. We just need to choose an ≃ 0, this puts weight one on Aij and zero on all other

observations, leading to a perfect prediction of A but a poor choice of bandwidth. This issue

of overfitting can be avoided by removing the observation Aij from the model predicting Aij .

We firstly define a leave-one-out version of ĥn:

h̃−
n (ξi, ξj) =

∑n
t=1

t ̸=i,j

K
(

ρ4
nd̂

2
it

an

)
Atj∑n

t=1
t ̸=i,j

K
(

ρ4
nd̂

2
it

an

)
ĥ−
n (ξi, ξj) =

h̃−
n (ξi, ξj) + h̃−

n (ξj , ξi)

2
.

and then use it to obtain an estimate for the log-likelihood:

ℓ(A, an) =

n∑
i=1

n∑
j=1

Aij log
(
ĥ−
n (ξi, ξj)

)
+ (1−Aij) log

(
1− ĥ−

n (ξi, ξj)
)
. (1.12)

We choose an which maximises the above expression to be our bandwidth:

â = max
an

ℓ(A, an). (1.13)

1.4 Main result

In this section we state our main result which characterises the conditions under which the

linking probabilities estimator is consistent.

1.4.1 Consistency of the linking probabilities estimator

We start by listing our assumptions.

Assumption 1 (The Assumptions for Uniform Consistency of the Linking Function Estimator).

We make the following assumptions:

1.1 1
ρn

= o

(√
n

log(n)

)
.

1.2 Let N(ξj , δ) =
{
ξk : supξt |w0(ξt, ξk)− w0(ξt, ξj)| < δ

}
denote the neighbourhood of ξj of

size δ and let ω(δ) = infξj∈Supp(ξj) P (ξk ∈ N(ξj , δ)| ξj). There exist some α,C > 0 such

that ω(δ) ≥
(
δ
C

) 1
α for all δ > 0.

1.3 K(·) is a kernel function which is

� a continuous bounded probability density function (non-negative: K(u) ≥ 0, inte-

grates to 1:
∫
K(u)du = 1),
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� non-zero on a bounded support: there exists a D ∈ R such that ∀|u| > D : K(u) = 0,

� positive close to 0: there exist positive constants C1, C2 such that K(u) ≥ C1 when-

ever |u| ≤ C2,

� Lipschitz continuous: there exists C > 0 such that |K(u)−K(v)| ≤ C|u− v|.

1.4 The bandwidth can be written as an = ρ4nbn for some bn = o (1) and

1
bn

= o

((
nρ2

n

log(n)

) α
1+2α

)
.

We now discuss the assumption and provide intuition.

Assumption 1.1 is our sparsity assumption. It gives a lower bound on how sparse a model

can be for our estimator to remain consistent. Intuitively, the only informative observations are

the links, and their number grows at a slower rate than the sample size: we expect on average

nρn links in a sample of n individuals. Our model works well if the number of links increases

at a rate faster than
√

n log(n). This is analogous to the assumption in Zhang, Levina, and

Zhu (2017), with the exception that they model the increasing difficulty in estimation with n

by allowing δ(n) −→ 0 instead of having a sparsity parameter ρn −→ 0.

Assumption 1.2 ensures that the neighbourhoods for all observations are sufficiently large.

We can think of it as a “continuity” condition for w0, analogous to that assumed by Auerbach

(2022): for all δ > 0:

inf
ξj∈Supp(ξj)

Pξk∼F0

(
sup
ξt

|w0 (ξt, ξk)− w0 (ξt, ξj)| < δ

∣∣∣∣∣ ξj
)

≥
(

δ

C

) 1
α

.

i.e., for each ξj ∈ Supp(ξj) there exists a sufficiently large positive measure of ξk with very sim-

ilar friendship groups: such that |w0 (ξt, ξk)− w0 (ξt, ξj)| < δ holds for all ξt. The consequences

of this assumption are similar to those of the Piecewise-Lipschitz assumption in Definition 2

of Zhang, Levina, and Zhu (2017) (in the proof of Theorem 2.4.1 in Chapter 2 we show that

under Assumption 1.2 ∀ε > 0 ∃K < ∞ such that Supp(ξi) can be split into K disjoint regions,

each of size at least
(

ε
C

) 1
α , such that for any two points u, v which fall in the same region we

have supξt |w0 (ξt, u)− w0 (ξt, v)| ≤ 2ε and there exists a set of points ak, each from a different

region, such that if k ̸= j we have supξt |w0 (ξt, ak)− w0 (ξt, aj)| > ε).

The example below shows that we can also think of this assumption as ensuring that the

distribution of ξi is bounded away from zero while w0 is sufficiently smooth:

Example. For an example of Assumption 1.2 and some intuition on what α means, suppose

that ξi ∈ [0, 1]2 and w0(ξi, ξj) = 2ξi · ξj. ξk satisfies supξt |w0 (ξt, ξk)− w0 (ξt, ξj)| < δ if it falls

within a region in [0, 1]2 centred at ξj with a radius proportional to δ and area proportional to

δ2. If ξj is at least δ away from all boundaries of the support, the region has the following shape:
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ξk1

ξk2

ξj

1

1

δ

δ

δ

δ

and area 3δ2. If the point ξj is closer to the boundary, we get the subset of this region which

overlaps with [0, 1]2. The smallest area possible is δ2

2 . If the distribution of ξi is uniformly

bounded away from zero, the measure of ξj that satisfy the condition is at least proportional

to δ2, hence ω(δ) ≥
(
δ
C

)2
. A sufficient condition for our assumption is if the distribution of

ξi is uniformly bounded away from zero and w0 is piecewise Lipschitz. If w0 is a well-behaved

function and Supp(ξi) ⊂ Rd, we would expect 1
α = d. We can think of 1

α as a measure of

complexity of the feature space: the more complex ξi are the harder the estimation.

Assumption 1.3 gives a list of fairly standard assumptions on the form of the kernel function.

These are not restrictive as the kernel is chosen by the researcher and many of the standard

kernels (e.g. the Epanechnikov kernel: K(u) = 3
4 (1 − u2)1(|u| < 1) or the triangular kernel:

K(u) = (1− |u|)1(|u| < 1)) satisfy all the requirements.

Assumption 1.4 specifies the range of bandwidths for which we can guarantee the correct

asymptotic behaviour. The bandwidth an is a product of ρ4n, which cancels out the normali-

sation in
(
ρ2nd̂it

)2
, and bn −→ 0 which ensures that

ρ4
nd̂

2
it

an
=

d̂2
it

bn
−→ ∞ for all i ̸= t. ρn can be

estimated and bn is chosen by the researcher. As the effective dimension of the support of ξi

increases, i.e. α decreases, the estimation becomes more difficult and we need bn to go to zero

at a slower rate.

Theorem 1. Under Assumption 1:

max
i,j

∣∣∣∣∣ ĥn(ξi, ξj)− h0,n(ξi, ξj)

ρn

∣∣∣∣∣ p−→ 0.

Remark. Notice that we can write h0,n(ξi, ξj) = ρnw0(ξi, ξj), decomposing the linking function

into a bounded function w0 which does not depend on n and the sparsity ρn −→ 0. Without the

normalisation by 1
ρn

, the difference ĥn−h0,n would trivially go to zero because both components

go to zero at the rate ρn. In the statement of Theorem 1 we normalise by 1
ρn

to show that, even

after removing the trend to zero, the estimate of the linking function approaches its true value.
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Remark. Note on notation: we use maxi,j to refer to maximising over indices in a specific

sample of size n: it is a shorthand notation for maxi,j∈{1,2,...,n}. We later use maxξi which

refers to maximising over all ξi ∈ Supp(ξi), i.e. all possible values in the support, not the set

of realised values in a specific sample.

Remark. Theorem 1 shows uniform convergence of ĥn(ξi, ξj) to h(ξi, ξj), where “uniform”

refers to convergence over all pairs of nodes in the original graph. The reason why we do not

look at uniformity10 over all general points in the underlying sample space of ξi is because our

estimator of distance d̂ij is defined in terms of similarity of friendship groups, hence it can only

be estimated for one of the observed individuals. In our procedure we never estimate ξi directly,

we do not put strong assumptions on the space it comes from, and we do not have a way of

estimating d̂, and hence ĥn, at a general point (u, v) outside of our realised set of observed

individuals.

However, the results we show later in Theorem 2.4.1 can be seen as an extension of Theo-

rem 1 to the whole support of ξi: under the assumption Assumption 1.2, for any ξi ∈ Supp(ξi),

if n is high enough, with high probability we can observer ξj similar enough to ξi that ĥn eval-

uated at ξj provides a good approximation to ξi and the frequencies with which we observe

different values of ĥn is representative of the frequencies of similar values of the true h0,n over

the support of ξi.

One may be interested in using an alternative notion of distance. In the result below we the

characterise conditions a distance needs to satisfy to get the conclusions of Theorem 1.

Lemma 1. Let dij be a distance between ξi, ξj such that there exist constants C1, C2 < ∞,

β > 0, γ > 0, µ > 1 for which ∀ξi, ξt ∈ Supp(ξi):

C1d
β
it ≤ sup

ξj

|w0 (ξt, ξj)− w0 (ξi, ξj)| ≤ C2d
γ
it

and let d̂ij be a consistent estimate of dij and let µ ∈ R be the smallest constant11 for which

ρµn max
i,j

∣∣∣d̂ij − dij

∣∣∣ p−→ 0.

Under Assumption 1 with Assumption 1.1 replaced with 1
ρn

= o

((
n

log(n)

) 1
µ

)
and the final

condition in Assumption 1.4 replaced with 1
bn

= o

((
nρµ

n

log(n)

) α
2β+2α

)
we get the conclusions of

Theorem 1 for ĥn based on d̂ij.

10For example, if ξi ∼ U [0, 1] we could be interested in showing supu,v∈[0,1]

∣∣∣∣ ĥn(u,v)−h0,n(u,v)

ρn

∣∣∣∣ p−→ 0.

11In our case the normalisation is µ = 2 because we are looking at second order friendship groups: comparing
number of common friends. If we looked at higher order statistics (e.g. numbers of friends of friends of friends)
we would need a higher normalisation and we would get a stronger restriction on allowed sparsity level.
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The main change is to the allowed level of sparsity: the harder the estimate of distance is to

obtain, the stronger assumptions on sparsity we need to impose. The change in the assumptions

on the rate of convergence of the bandwidth bn is not important as this value is chosen by the

researcher.

1.5 Simulations

We test the performance of our procedure by simulating a number of networks with known

linking functions and checking how well our method can recover the probabilities of links. We

consider ξi uniformly distributed between 0 and 1 and the following linking functions:

1. dot product function: h(ξi, ξj) = ρnξiξj . This is the parametric form assumed by Levin

and Levina (2019), it is a relatively simple function and a good benchmark.

2. horseshoe function: h(ξi, ξj) =
ρn

2

(
e−200(ξi−ξ2j )

2

+ e−200(ξj−ξ2i )
2)

. This function was also

used by Green and Shalizi (2022) and Wang (2016), who described it as “a challenging

example for graphon estimation.”

3. high-density function:

h(ξi, ξj) =
ρn

0.975

(
1− 1

(∣∣ 1
2 − ξi

∣∣ ≤ 1
20

)
1
(∣∣ 1

2 − ξj
∣∣ ≤ 1

20

)) (
1− 1

2

(∣∣ 1
2 − ξi

∣∣+ ∣∣ 12 − ξj
∣∣)).

The previous two functions had relatively low density (by construction, ρn ≤ 0.25 for the

dot product function and ρn ≤ 0.113 for the horseshoe function). This final function has

ρn ≤ 0.759, allowing us to test the performance with higher density levels.

In the estimation procedure we use the normal kernel:12 K(u) = e−
u2

2 and the bandwidth â

chosen by maximising ℓ(A, an), as described in Section 1.3.4. We look at sample sizes between

n = 100 and n = 1000. We plot the heat maps showing the true function alongside the estimated

ones.

Fig. 1.1 shows the comparison of the oracle value, the observed binary matrix, our method

with the chosen bandwidth and with double the chosen bandwidth, our alternative method

ĥ(K2), the estimator of Zhang, Levina, and Zhu (2017) and the dot product estimator used in

Levin and Levina (2019) (with different dimensions k of the vector xii) at two different sample

sizes.

The performance of all methods improves with sample size. Our methods at the default

bandwidth tend to do a decent job, but they verge on the side of overfitting the observed

12The theoretical part of the paper imposes an assumption that the support of the kernel should be
bounded. This is not satisfied for the normal kernel, but we chose not to rerun all the simulations to save
computational cost. A smaller run of simulations comparing the performance with normal and quartic kernel

(K(u) = 15
16

(
1− u2

)2
1(|u| < 1)) confirmed that the choice of the kernel has minimal impact on the results.

The choice of bandwidth is significantly more important.
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(a) Comparison of different methods in estimating the horseshoe function at n = 100, ρn = 0.113.

(b) Comparison of different methods in estimating the horseshoe function at n = 500, ρn = 0.063.

Figure 1.1: Comparison of different methods in estimating the horseshoe linking function. Each
half of a square corresponds to a different matrix: ‘true’ is the oracle true values (first plot lower
half), ‘observed’ is the binary matrix A used for estimation (first plot upper half), ‘HK1’ is
our method based on the chosen bandwidth â (second plot lower half), ‘HK1 c2’ is our method
based on double the chosen bandwidth 2â (second plot upper half), ‘HK2’ is our alternative

method based on the linking function estimator ĥ(K2) (third plot lower half), ‘HNN1’ uses the
nearest neighbour estimator of Zhang, Levina, and Zhu (2017) with their optimal choice of
neighbourhood size (third plot upper half), ‘DPk’ are the dot product estimators as in Levin
and Levina (2019) based on assuming a k-dimensional ξi (fourth plot, lower half based on k = 1,
upper half based on k = 5).

sample. For the larger sample size (Fig. 1.1b) the version which uses doubled bandwidth

provides a better approximation than the default. The performance of ĥ(K2) is very similar to

that of our main method. The estimator of Zhang, Levina, and Zhu (2017) is similar to ours

with doubled bandwidth and it verges on the side of oversmoothing, which is causing some

higher estimates for probabilities (the second arc above the main one). This gets better but

is not completely fixed for the larger sample size. The dot product functions are not expected

to perform well as they are misspecified, but the one with a larger dimension could provide a

better approximation. We can see that at k = 1 the fit is very poor and at k = 5 it creates

a pattern different from the true one. We have checked larger values (up to k = 20) and they

tend to give similar results to k = 5. Note also that the dot product estimation is not bounded

between 0 and 1, which explains why the estimates exceed these bounds.

Fig. 1.2 compares the same methods for other objective functions, both of which have

denser connections. We can see that our method is again performing well when we use doubled

bandwidth, but the original choice of â appears to be too low: the estimate is overfitting and

too similar to the observed adjacency matrix. ĥ(K2) has a similar performance for the product
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(a) Comparison of different methods in estimating the product linking function at n = 500, ρn = 0.25.

(b) Comparison of different methods in estimating the high density linking function at n = 500,
ρn = 0.759.

Figure 1.2: Comparison of different methods in estimating the linking functions. Each half
of a square corresponds to a different matrix: ‘true’ is the oracle true values (first plot lower
half), ‘observed’ is the binary matrix A used for estimation (first plot upper half), ‘HK1’ is
our method based on the chosen bandwidth â (second plot lower half), ‘HK1 c2’ is our method
based on double the chosen bandwidth 2â (second plot upper half), ‘HK2’ is our alternative

method based on the linking function estimator ĥ(K2) (third plot lower half), ‘HNN1’ uses the
nearest neighbour estimator of Zhang, Levina, and Zhu (2017) with their optimal choice of
neighbourhood size (third plot upper half), ‘DPk’ are the dot product estimators as in Levin
and Levina (2019) based on assuming a k-dimensional ξi (fourth plot, lower half based on k = 1,
upper half based on k = 5).

function and better for the high density linking function, avoiding the issue of overfitting at the

chosen bandwidth. The estimator of Zhang, Levina, and Zhu (2017) performs very well in both

cases. The dot product estimator is very good when correctly specified but does not have much

advantage over ours with wider bandwidth or Zhang, Levina, and Zhu (2017)’s when we use

incorrect k = 5. It does a surprisingly good job at some sections of the high density function

estimation but it cannot handle the discontinuous jump. The higher k = 5 does not provide

any advantage over k = 1.

Fig. 1.3 provides a comparison of our method at different bandwidths. The original choice

is c = 1 and we can see that it makes a big difference in the performance of the procedure.

At lower values the estimates tend to overfit the original observed adjacency matrix and lack

the smoothness of the true function. Unfortunately, it appears that the choice based on our

numerical optimisation procedure tends to be a bit too low: the wider bandwidths with c = 2 or

even c = 10 (Fig. 1.3b) provide a better approximation to the true function. This is especially

true when the fitted function is relatively simple: in those cases it is easier to find a close match

to any observation, one which is close not only in terms of the underlying features but also
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(a) Comparison of different bandwidths in estimating the horseshoe linking function at n = 1000,
ρn = 0.113.

(b) Comparison of different bandwidths in estimating the product linking function at n = 1000, ρn =
0.25.

Figure 1.3: Comparison of different bandwidths in estimating the linking functions. Each
half of a square corresponds to a different matrix: ‘true’ is the oracle true values (first plot

lower half), the remaining plots look our estimator ĥ using bandwidths of the form c × â for
c ∈ {0.01, 0.1, 0.5, 1, 2, 10, 100} marked above the corresponding plots.

the realised randomness. This is why the method performs worse for the relatively simple dot

product function while it does well at estimating the more challenging horseshoe function.

Possible solutions to this issue include using an alternative objective function for bandwidth

selection which either adds a penalty term for lack of smoothness (provided that we expect the

true linking function to be smooth) or use cross-validation to avoid overfitting. Both of these

are promising but require choosing further parameters for the penalty size or the number of

subsamples for cross-validation.

Figure 1.4: Comparison of different sparsity levels in estimating the horseshoe linking function
at n = 1000. Each half of a square corresponds to a different matrix: the lower halves show the
true oracle values, the upper halves show our estimator ĥ using bandwidths â. The first plot
has ρn = 0.113, the second ρn = 0.054, the third ρn = 0.026.
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Fig. 1.4 shows that the performance gets worse as the true model becomes more sparse,

which is what we should expect. For the example with n = 1000 at ρn = 0.113 the performance

is still very good, at lower values it gets worse but still recovers positive values in the correct

locations, just with a tendency to overfit and predict more extreme values of probabilities (close

to 0 or 1, depending on the realised value). This likely happens because when there are few

observations that provide a good match the procedure relies on giving a high weight to the

original observation only, without relying on close neighbours.

1.6 Conclusion and Extensions

In this paper we propose a nonparametric linking probabilities estimator and provide conditions

for its uniform consistency.

This paper is a contribution in its own right, but it is also intended to provide a building

block for further projects. Having a general framework for estimating the key component cap-

turing the dependence structure in a network can be useful for replicating a similar dependence

structure, which can be used for bootstrapping network data. In models where we believe the

latent linking probability is a determinant of agents’ behaviour, we may be able to treat the

estimated linking probabilities as a proxy to form models with lower bias than those using only

binary information on the observed links.

An important extension would be to consider estimation with observed covariates, like in

the case of Kitamura and Laage (2024). Natural ways of implementing this would involve

firstly restricting attention to individuals with similar observable characteristics to those whose

probability of match we wish to estimate, and then applying our procedure on the subgraph,

or using our procedure with a distance which is a weighted average of our current distance

and one based on similarity in observables. Apart from complicating the technical derivation

of the results, this modification could require higher computational costs and observing higher

sample sizes to ensure the same quality of estimation (it would be harder to find good matches

in terms of both observables and network position). We are not aware of results similar to

the Aldous-Hoover representation theorem for the case with observable covariates (perhaps

conditional on covariates), which could limit the applicability of the method. Developing these

kinds of representations or showing why they do not arise would be another valuable extension.

Another possible direction would be exploring extensions of this model to the directed case:

for this we would not average the two one-sided estimates. These one-sided estimates could

also be informative about signals sent by one agent to another that determine links in models

of strategic network formation.
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Appendix

List of all notation

The notation in this file can get a bit heavy so we provide this list for reference.

� n – sample size, number of individuals in the network.

� A – an n× n adjacency matrix. Binary, symmetric, observed.

� Aij – i, jth entry of the matrix A: 1 if i, j are connected (are neighbours), 0 if they are

not.

� i, j, k, s, t – usually used to refer to one of the n individuals.

� ξi – vector of characteristics of individual i, enters the linking function.

� F0 – distribution of ξi.

� h0,n – linking function, takes characteristics ξi, ξj as inputs and outputs the probability

with which individuals i and j are linked. If the inputs are vectors ξ(ι) = (ξι1, ξι2, . . . , ξιm)

of characteristics of multiple individuals it outputs the matrix of linking probabilities.

� ρn – density/sparsity parameter. Density in the sense that it is the expected edge density,

sparsity in the sense that as n −→ ∞ the density of edges decreases: ρn −→ 0.

� w0 – underlying linking probability before accounting for sparsity: ρnw0 = h0,n.

� φ(ξi, ξt) = E
(

AisAts

ρ2
n

|ξi, ξt
)
– a function measuring the probability of a common friend

between i and j normalised by the sparsity level.

� dij =

√
E
(
E (w0 (ξt, ξs) (w0 (ξi, ξs)− w0 (ξj , ξs))| ξi, ξj , ξt)2

∣∣∣ ξi, ξj) – theoretical distance

between i and j.

� d̂ij =
1
ρ2
n

√
1
n

∑n
t=1

(
1
n

∑n
s=1 Ats (Ais −Ajs)

)2
– estimated distance between i and j.
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� ĥn – estimated linking function:

ĥn(ξi, ξj) =
h̃n(ξi, ξj) + h̃n(ξj , ξi)

2
where h̃n(ξi, ξj) =

∑n
t=1

t ̸=j

K
(

ρ4
nd̂

2
it

an

)
Atj∑n

t=1
t ̸=j

K
(

ρ4
nd̂

2
it

an

)

� K – kernel function used in estimating linking probability.

� an – a bandwidth parameter, chosen by the researcher.

� ˆ – an estimate.

� maxi,j ≡ maxi,j∈{1,2,...,n} – maximum over indices in a specific sample of size n.

� maxξi ≡ maxξi∈Supp(ξi) – maximum over all ξi ∈ Supp(ξi).

� N(ξj , δ) =
{
ξk : supξt |w0(ξt, ξk)− w0(ξt, ξj)| < δ

}
– the neighbourhood of ξj of size δ.

� ω(δ) = infξj∈Supp(ξj) P (ξk ∈ N(ξj , δ)| ξj) – the infimum over all possible ξi of the mea-

sures of their neighbourhoods of size δ.

� bn = an

ρ4
n

– a bandwidth parameter normalised by sparsity; the effective bandwidth size

after accounting for the rate at which density goes to zero.

� ĥ−
n – leave-one-out version of ĥn, evaluated in the same way as ĥn but without the

observations t = i, j. Used for numerically choosing the optimal bandwidth.

� ℓ(A, an) – log-likelihood used for numerically choosing the optimal bandwidth. Defined

in Eq. (1.12).

� â – numerically chosen optimal bandwidth. Defined in Eq. (1.13).

� η – a vector of random variables which together with the linking function determine the

realised links in A. We assume ηij
ind∼ U [0, 1] for 1 ≤ i ≤ j ≤ n and η independent of ξ.

� C – generic positive constant, its value may change between different expressions in which

it is used.

� Cε – a positive constant which depends on ε > 0. Its value may change between different

expressions in which it is used.

� Tn – a remainder term used in the proof of Theorem 1.

� Mw – an upper bound on the value of w0: supξi,ξj |w0(ξi, ξj)| ≤ Mw.

� rn(i) = E
(
K
(

d2
it

bn

)∣∣∣ ξi) – the shorthand notation for the expected kernel weights based

on the distance between i and other individuals used in the estimation of ĥn (ξi, ξj).
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� r̂n(i) =
1

n−1

∑n
t=1

t ̸=j

K
(

d̂2
it

bn

)
– the estimate of rn(i).

� rn = infξi rn(i) – the smallest possible expected kernel weight. We need to ensure it is

not too small or we would not be able to successfully estimate h0,n (ξi, ξj).
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Appendix 1.A Proofs

Subsection 1.A.1 Proof of uniform consistency of the linking function

estimator

Proof of Theorem 1. Throughout this argument we use Cε to denote a positive constant which

depends on ε > 0. The value of Cε may change between different expressions in which it is

used.

By definition,

max
i,j

∣∣∣∣∣ ĥn(ξi, ξj)− h0,n(ξi, ξj)

ρn

∣∣∣∣∣ = max
i,j

∣∣∣∣∣∣∣∣
1

n−1

∑n
t=1

t ̸=j

K
(

d̂2
it

bn

)(
Atj−h0,n(ξi,ξj)

ρn

)
1

n−1

∑n
t=1

t̸=j

K
(

d̂2
it

bn

)
∣∣∣∣∣∣∣∣

= max
i,j

∣∣∣∣∣∣∣∣∣∣
1

n−1

∑n
t=1

t ̸=j

K
(

d̂2
it

bn

)(
Atj−h0,n(ξi,ξj)

ρn

)
E
(
K
(

d2
it

bn

)∣∣∣ ξi)+( 1
n−1

∑n
t=1

t̸=j

K
(

d̂2
it

bn

)
− E

(
K
(

d2
it

bn

)∣∣∣ ξi))
∣∣∣∣∣∣∣∣∣∣

≤

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t ̸=j

K
(

d̂2
it

bn

)
rn(i)

(
Atj − h0,n(ξi, ξj)

ρn

)∣∣∣∣∣∣∣∣

1 + max

i,j

∣∣∣∣∣∣∣∣1−
E
(
K
(

d2
it

bn

)∣∣∣ ξi)
1

n−1

∑n
t=1

t̸=j

K
(

d̂2
it

bn

)
∣∣∣∣∣∣∣∣

(1.14)

The inequality follows from max
∣∣∣ a
b+c

∣∣∣ ≤ max
∣∣a
b

∣∣ +max
∣∣∣ ac
b(b+c)

∣∣∣ ≤ (max
∣∣a
b

∣∣) (1 + max
∣∣∣ c
b+c

∣∣∣),
where b = E

(
K
(

d2
it

bn

)∣∣∣ ξi). In Lemma 1.A.1 we show that the second factor converges almost

surely to one.

We now focus on the first factor. SinceK(·) is Lipschitz continuous with a Lipschitz constant

C (by Assumption 1.3):

K

(
d̂2it
bn

)
≤ K

(
d2it
bn

)
+

∣∣∣∣∣K
(
d̂2it
bn

)
−K

(
d2it
bn

)∣∣∣∣∣ ≤ K

(
d2it
bn

)
+ C

∣∣∣∣∣ d̂2it − d2it
bn

∣∣∣∣∣ .
It follows that
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max
i,j

∣∣∣∣∣∣∣∣
1

(n− 1)rn(i)

n∑
t=1
t̸=j

K

(
d̂2it
bn

)(
Atj − h0,n(ξi, ξj)

ρn

)∣∣∣∣∣∣∣∣
≤ max

i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=j

K
(

d2
it

bn

)
rn(i)

(
Atj − h0,n(ξi, ξj)

ρn

)
+ C

∣∣∣∣∣ d̂2it − d2it
bnrn(i)

∣∣∣∣∣
(
Atj − h0,n(ξi, ξj)

ρn

)∣∣∣∣∣∣∣∣
≤ max

i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=j

K
(

d2
it

bn

)
rn(i)

(
Atj − h0,n(ξi, ξj)

ρn

)∣∣∣∣∣∣∣∣
+ C max

i,j,t,t ̸=j

∣∣∣∣∣ d̂2it − d2it
bnrn(i)

∣∣∣∣∣max
i,j

1

n− 1

n∑
t=1
t ̸=j

∣∣∣∣Atj − h0,n(ξi, ξj)

ρn

∣∣∣∣
︸ ︷︷ ︸

≤2Mw+ Tn︸︷︷︸
a.s.−−→0

.

Mw < ∞ is defined in Lemma 1.A.1. In Lemma 1.A.2 we define Tn and show that the last

factor in the last expression is almost surely bounded, hence

max
i,j

∣∣∣∣∣∣∣∣
1

(n− 1)ρnrn(i)

n∑
t=1
t ̸=j

K

(
d̂2it
bn

)
(Atj − h0,n(ξi, ξj))

∣∣∣∣∣∣∣∣
≤ max

i,j

∣∣∣∣∣∣∣∣
1

(n− 1)ρnrn(i)

n∑
t=1
t ̸=j

K

(
d2it
bn

)
(Atj − h0,n(ξt, ξj) + h0,n(ξt, ξj)− h0,n(ξi, ξj))

∣∣∣∣∣∣∣∣
+ C(2Mw + Tn)

1

bnrn

(
max
i,j

∣∣∣d̂2ij − d2ij

∣∣∣)

≤ max
i,j

∣∣∣∣∣∣∣∣
∑n

t=1
t̸=j

K
(

d2
it

bn

)
(Atj − h0,n(ξt, ξj))

(n− 1)ρnrn(i)

∣∣∣∣∣∣∣∣
+max

i,j

∣∣∣∣∣∣∣∣
∑n

t=1
t ̸=j

K
(

d2
it

bn

)
(h0,n(ξt, ξj)− h0,n(ξi, ξj))

(n− 1)ρnrn(i)

∣∣∣∣∣∣∣∣
+ C(2Mw + Tn)

1

bnrn

(
max
i,j

∣∣∣d̂2ij − d2ij

∣∣∣) .

where Tn
a.s.−−→ 0. We complete the proof by showing that the three terms go to zero in

probability in Lemma 1.A.3, Lemma 1.A.4 and Lemma 1.A.5.
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Lemma 1.A.1. Under the assumptions of Theorem 1, for any ε > 0:

∞∑
n=3

P


∣∣∣∣∣∣∣∣max

i,j

∣∣∣∣∣∣∣∣1−
E
(
K
(

d2
it

bn

)∣∣∣ ξi)
1

n−1

∑n
t=1

t ̸=j

K
(

d̂2
it

bn

)
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ > ε


= O

( ∞∑
n=3

n2 exp (−nrnCε) +

∞∑
n=3

n4 exp
(
−nb2nr

2
nρ

2
nCε

))
= O(1).

hence

max
i,j

∣∣∣∣∣∣∣∣1−
E
(
K
(

d2
it

bn

)∣∣∣ ξi)
1

n−1

∑n
t=1

t ̸=j

K
(

d̂2
it

bn

)
∣∣∣∣∣∣∣∣

a.s.−−→ 0.

Proof. Take any ε > 0. We start by using a union bound:

P

max
i,j

∣∣∣∣∣∣∣∣1−
E
(
K
(

d2
it

bn

)∣∣∣ ξi)
1

n−1

∑n
t=1

t ̸=j

K
(

d̂2
it

bn

)
∣∣∣∣∣∣∣∣ > ε

 ≤ n2P


∣∣∣∣∣∣∣∣1−

E
(
K
(

d2
it

bn

)
|ξi, ξj

)
1

n−1

∑n
t=1

t ̸=j

K
(

d̂2
it

bn

)
∣∣∣∣∣∣∣∣ > ε



Let rn(i) = E
(
K
(

d2
it

bn

)∣∣∣ ξi) ≥ rn ≥ 0 and r̂n(i) =
1

n−1

∑n
t=1

t̸=j

K
(

d̂2
it

bn

)
. We have:

P

(∣∣∣∣1− rn(i)

r̂n(i)

∣∣∣∣ > ε

)
≤ P (|r̂n(i)− rn(i)| > ε|r̂n(i)|)

≤ P

(
|r̂n(i)− rn(i)| > ε|r̂n(i)| and |r̂n(i)| ≥

rn(i)

2

)
+ P

(
|r̂n(i)− rn(i)| > ε|r̂n(i)| and |r̂n(i)| <

rn(i)

2

)
≤ P

(
|r̂n(i)− rn(i)| > ε

rn(i)

2

)
+ P

(
|r̂n(i)| <

rn(i)

2

)
≤ P

(∣∣∣∣ r̂n(i)rn(i)
− 1

∣∣∣∣ > ε

2

)
+ P

(∣∣∣∣ r̂n(i)rn(i)
− 1

∣∣∣∣ > 1

2

)

where the last line follows from:

P

(
|r̂n(i)| <

rn(i)

2

)
≤ P

(
r̂n(i) <

rn(i)

2

)
= P

(
r̂n(i)− rn(i) < −rn(i)

2

)
= P

(
rn(i)− r̂n(i) >

rn(i)

2

)
≤ P

(
|rn(i)− r̂n(i)| >

rn(i)

2

)
≤ P

(∣∣∣∣ r̂n(i)rn(i)
− 1

∣∣∣∣ > 1

2

)
.

We use the above derivation and the law of iterated expectations to get am upper bound of the
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form:

P

max
i,j

∣∣∣∣∣∣∣∣1−
E
(
K
(

d2
it

bn

)∣∣∣ ξi)
1

n−1

∑n
t=1

t̸=j

K
(

d̂2
it

bn

)
∣∣∣∣∣∣∣∣ > ε

 ≤ n2E

P


∣∣∣∣∣∣∣∣

1

n− 1

n∑
t=1
t̸=j

K
(

d̂2
it

bn

)
rn(i)

− 1

∣∣∣∣∣∣∣∣ >
ε

2

∣∣∣∣∣∣∣∣ ξi, ξj



+ n2E

P


∣∣∣∣∣∣∣∣

1

n− 1

n∑
t=1
t̸=j

K
(

d̂2
it

bn

)
rn(i)

− 1

∣∣∣∣∣∣∣∣ >
1

2

∣∣∣∣∣∣∣∣ ξi, ξj

 .

The last two terms are identical, up to the value of ε. We use K(·) Lipschitz continuous and

separate out the terms with t = i, j, so that the remaining average is of i.i.d terms that only

depend on t.

n2E

P


∣∣∣∣∣∣∣∣

1

n− 1

n∑
t=1
t ̸=j

K
(

d̂2
it

bn

)
rn(i)

− 1

∣∣∣∣∣∣∣∣ >
ε

2

∣∣∣∣∣∣∣∣ ξi, ξj



≤ n2E

P


∣∣∣∣∣∣∣∣

1

n− 1

n∑
t=1
t̸=j

K
(

d2
it

bn

)
rn(i)

− 1 +
1

n− 1

n∑
t=1
t ̸=j

C

∣∣∣∣∣ d̂2it − d2it
rn(i)bn

∣∣∣∣∣
∣∣∣∣∣∣∣∣ >

ε

2

∣∣∣∣∣∣∣∣ ξi, ξj



≤ n2E

P


∣∣∣∣∣∣∣∣

1

n− 1

n∑
t=1
t ̸=j

K
(

d2
it

bn

)
rn(i)

− 1

∣∣∣∣∣∣∣∣ >
ε

4

∣∣∣∣∣∣∣∣ ξi, ξj



+ n2E

(
P

(∣∣∣∣∣max
i,t

(
d̂2it − d2it
rn(i)bn

)∣∣∣∣∣ > ε

4C

∣∣∣∣∣ ξi, ξj
))

≤ n2E

P


∣∣∣∣∣∣∣∣

1

n− 2

n∑
t=1
t̸=i,j

K
(

d2
it

bn

)
rn(i)

− 1

∣∣∣∣∣∣∣∣ >
ε

4
− 2C

(n− 2)rn

∣∣∣∣∣∣∣∣ ξi, ξj

+O

(
n4 exp

(
−nb2nr

2
nρ

2
nCε

))

where the last rate follows from Lemma 1.A.5. For the first term we apply Bernstein’s inequality:

conditional on ξi, ξj ,
1

rn(i)
K
(

d2
it

bn

)
− 1 are i.i.d., mean zero, bounded by 2C

rn
, with variance

O
(

1
rn

)
:

V ar

K
(

d2
it

bn

)
rn(i)

− 1

∣∣∣∣∣∣ ξi
 ≤

E

((
K
(

d2
it

bn

))2∣∣∣∣ ξi)
rn(i)2

≤
CE

(
K
(

d2
it

bn

)∣∣∣ ξi)(
E
(
K
(

d2
it

bn

)∣∣∣ ξi))2
=

C

E
(
K
(

d2
it

bn

)∣∣∣ ξi) ≤ C

rn
= O

(
1

rn

)
,
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hence for any ε > 0:

n2P


∣∣∣∣∣∣∣∣

1

n− 2

n∑
t=1
t̸=i,j

K
(

d2
it

bn

)
rn(i)

− 1

∣∣∣∣∣∣∣∣ >
ε

4
− 2C

(n− 2)rn

∣∣∣∣∣∣∣∣ ξi, ξj


≤ 2n2 exp

−
(n− 2)

(
ε
4 − 2C

(n−2)rn

)2
2
(
O
(

1
rn

)
+ 1

3
C
rn

(
ε
4 − 2C

(n−2)rn

))


≤ n2 exp (−nrnCε) .

where Cε > 0 is some constant dependent on ε. Note that the final value does not depend on

the choice of ξi, ξj , hence it does not change when we take expectation over ξi, ξj .

It remains to show that the following expression:

∞∑
n=3

P

max
i,j

∣∣∣∣∣∣∣∣1−
E
(
K
(

d2
it

bn

)∣∣∣ ξi)
1

n−1

∑n
t=1

t̸=j

K
(

d̂2
it

bn

)
∣∣∣∣∣∣∣∣ > ε


≤ O

( ∞∑
n=3

n2 exp (−nrnCε) +

∞∑
n=3

n4 exp
(
−nb2nr

2
nρ

2
nCε

))

is bounded. The last sum is bounded by arguments shown in Lemma 1.A.5. For the first sum

we have:

∞∑
n=3

n4e−nrnCε =

∞∑
n=3

n2e−nrnCε log(n) 1
log(n) =

∞∑
n=3

n2
(
elog(n)

)−Cε
nrn

log(n)

=

∞∑
n=3

n2−Cε
nrn

log(n) .

It remains to show nrn
log(n) −→ ∞. We start by showing rn ≥ Cb

1
2α
n :

rn = inf
ξi

rn(i) = inf
ξi

E

(
K

(
d2it
bn

)∣∣∣∣ ξi) ≥ C1 inf
ξi

P

(
d2it
bn

≤ C2

∣∣∣∣ ξi)
≥ C1 inf

ξi
P

(
Es

(
(w0 (ξi, ξs)− w0 (ξt, ξs))

2
∣∣∣ ξi, ξt) ≤ C2

M2
w

bn

∣∣∣∣ ξi)
≥ C1 inf

ξi
P

(
ξt ∈ N

(
ξi,

√
C2

M2
w

bn

)∣∣∣∣∣ ξi
)

= C1ω

(√
C2

M2
w

bn

)
≥ Cb

1
2α
n .

In the first inequality we use the part of Assumption 1.3 which says the kernel is separated

from 0 for input values sufficiently close to 0. The second inequality comes from:

d2ij = Et

(
(Es (w0 (ξt, ξs) (w0 (ξi, ξs)− w0 (ξj , ξs))| ξi, ξj , ξt))2

∣∣∣ ξi, ξj)
≤ Et

(
Es

(
w2 (ξt, ξs) (w0 (ξi, ξs)− w0 (ξj , ξs))

2
∣∣∣ ξi, ξj , ξt)∣∣∣ ξi, ξj)

≤ M2
wEs

(
(w0 (ξi, ξs)− w0 (ξj , ξs))

2
∣∣∣ ξi, ξj) ≤ M4

w < ∞
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where the first inequality is due to Jensen’s inequality and the second follows from the fact that

for any ξi, ξj ∈ Supp(ξ) w0(ξi, ξj) is bounded; we denote the bound by Mw < ∞. To see this,

recall that ρnw0(u, v) = h0,n(u, v) ∈ [0, 1], hence we have w0(u, v) ∈
[
0, 1

ρn

]
for all n ∈ N. Then

also w0(u, v) ∈
⋂∞

n=1

[
0, 1

ρn

]
⊂
[
0, 1

supn ρn

]
. supn ρn exists since ρn, which can be interpreted

as the marginal probability of an edge, is bounded above by 1. Let Mw = 1
supn ρn

denote the

upper bound on the size of w0, i.e. for any ξi, ξj ∈ Supp(ξ) we have |w0(ξi, ξj)| ≤ Mw.

The third inequality follows from the fact that if for some ξt we have supξs |w0(ξt, ξs) −

w0(ξi, ξs)| < δ, then Es

(
(w0 (ξi, ξs)− w0 (ξt, ξs))

2
∣∣∣ ξi, ξt) < δ2, i.e. ξt ∈ N (ξi, δ). For the final

steps we use Assumption 1.2. The required divergence follows from Assumption 1.4:

nrn
log(n)

≥ C
nb

1
2α
n

log(n)
−→ ∞.

Lemma 1.A.2. Under the assumptions of Theorem 1, there exists a sequence of random vari-

ables Tn such that

∞∑
n=3

P (|Tn| > ε) = O

( ∞∑
n=3

n2 exp (−nρnCε)

)
= O(1) hence Tn

a.s.−−→ 0

and

max
i,j

1

n− 1

n∑
t=1
t̸=j

∣∣∣∣Atj − h0,n(ξi, ξj)

ρn

∣∣∣∣ ≤ 2Mw + Tn.

Proof. We start by looking at a representative term inside the summation.

∣∣∣∣Atj − h0,n(ξi, ξj)

ρn

∣∣∣∣ ≤ ∣∣∣∣Atj

ρn

∣∣∣∣+ ∣∣∣∣h0,n(ξi, ξj)

ρn

∣∣∣∣
=

Atj

ρn
+ w0(ξi, ξj)

=
Atj

ρn
− w0(ξt, ξj) + w0(ξt, ξj) + w0(ξi, ξj)

≤ Atj

ρn
− w0(ξt, ξj) + 2Mw.

We use triangle inequality, the fact that Atj and h0,n(ξi, ξj) are non-negative and the defi-

nition of w0(ξi, ξj). We add and subtract w0(ξt, ξj) and use the fact that all possible values of

w0 are bounded by Mw.

Going back to the sum:
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max
i,j

1

n− 1

n∑
t=1
t ̸=j

∣∣∣∣Atj − h0,n(ξi, ξj)

ρn

∣∣∣∣ ≤ 2Mw +max
i,j

1

n− 1

n∑
t=1
t ̸=j

Atj

ρn
− w0(ξt, ξj)

≤ 2Mw + max
i,j,i ̸=j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=j

Atj

ρn
− w0(ξt, ξj)

∣∣∣∣∣∣∣∣+max
i

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=i

Ati

ρn
− w0(ξt, ξi)

∣∣∣∣∣∣∣∣ = 2Mw + Tn.

In the second step we split into cases with i ̸= j and i = j. We apply union bound and

Bernstein’s theorem to the averages. For the first one, we separate out the term with t = i (we

later condition on ξi, ξj , we want the remaining terms in the sum to be i.i.d. after conditioning).

Atj

ρn
− w0(ξt, ξj) for t ̸= i, j are, conditional on ξi, ξj , independent, zero mean:

E

(
Atj

ρn
− w0(ξt, ξj)

∣∣∣∣ ξi, ξj) = E

(
E

(
Atj

ρn
− w0(ξt, ξj)

∣∣∣∣ ξi, ξj , ξt)∣∣∣∣ ξi, ξj)
= E

(
E

(
Atj

ρn

∣∣∣∣ ξi, ξj , ξt)− w0(ξt, ξj)

∣∣∣∣ ξi, ξj) = E (w0(ξt, ξj)− w0(ξt, ξj)| ξi, ξj) = 0

and bounded by 1
ρn

: since A and h0,n take values in [0, 1], we have∣∣∣Atj

ρn
− w0(ξt, ξj)

∣∣∣ = ∣∣∣Atj−h0,n(ξt,ξj)
ρn

∣∣∣ ≤ 1
ρn

. The second moments are O
(

1
ρn

)
:

V ar

(
1

ρn
(Atj − h0,n(ξt, ξj))

∣∣∣∣ ξi, ξj) = E

((
1

ρn
(Atj − h0,n(ξt, ξj))

)2
∣∣∣∣∣ ξi, ξj

)

= E

(
1

ρ2n
(h0,n(ξt, ξj) (1− h0,n(ξt, ξj)))

∣∣∣∣ ξi, ξj) = E

(
w0(ξt, ξj)

(
1

ρn
− w0(ξt, ξj)

)∣∣∣∣ ξj)
= O

(
1

ρn

)
+O(1) = O

(
1

ρn

)
.
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For any ε > 0:

P

max
i,j,i ̸=j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=j

Atj

ρn
− w0(ξt, ξj)

∣∣∣∣∣∣∣∣ > ε



≤ P

max
i,j,i ̸=j

∣∣∣∣∣∣∣∣
1

n− 2

n∑
t=1
t ̸=i,j

Atj

ρn
− w0(ξt, ξj)

∣∣∣∣∣∣∣∣ > ε− 1

(n− 2)ρn



≤ n(n− 1)E

P


∣∣∣∣∣∣∣∣

1

n− 2

n∑
t=1
t ̸=i,j

Atj

ρn
− w0(ξt, ξj)

∣∣∣∣∣∣∣∣ > ε− 1

(n− 2)ρn

∣∣∣∣∣∣∣∣ ξi, ξj



≤ 2n(n− 1) exp

−
(n− 2)

(
ε− 1

(n−2)ρn

)2
2
(
O
(

1
ρn

)
+ 1

3
1
ρn

(
ε− 1

(n−2)ρn

))


≤ n2 exp (−nρnCε).

Similarly,

P

max
i

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=i

Ati

ρn
− w0(ξt, ξi)

∣∣∣∣∣∣∣∣ > ε



≤ nE

P


∣∣∣∣∣∣∣∣

1

n− 1

n∑
t=1
t ̸=i

Ati

ρn
− w0(ξt, ξi)

∣∣∣∣∣∣∣∣ > ε

∣∣∣∣∣∣∣∣ ξi



≤ 2n exp

− (n− 1)ε2

2
(
O
(

1
ρn

)
+ 1

3
1
ρn

ε
)


≤ n exp (−nρnCε).

This is dominated by the previous term. Combining the above results, for any ε > 0:

∞∑
n=3

P

max
i,j

1

n− 1

n∑
t=1
t̸=j

∣∣∣∣Atj − h0,n(ξi, ξj)

ρn

∣∣∣∣ > 2Mw + ε

 ≤
∞∑

n=3

P (|Tn| > ε)

≤ O

( ∞∑
n=3

n2 exp (−nρnCε)

)
< ∞.

For the last claim, note that under Assumption 1.1 we have log(n)
ρnn

−→ 0. Then:

∞∑
n=3

n2e−nρnCε =

∞∑
n=3

n2e−nρnCε log(n) 1
log(n) =

∞∑
n=3

n2
(
elog(n)

)−Cε
ρnn

log(n)

=

∞∑
n=3

n2−Cε
ρnn

log(n) < ∞
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for any Cε > 0, since 2 − Cε
ρnn

log(n) −→ −∞. Hence Tn
a.s−−→ 0 and the term of interest is almost

surely bounded above by 2Mw.

Lemma 1.A.3. Under the assumptions of Theorem 1, for any ε > 0:

∞∑
n=3

P

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=j

K
(

d2
it

bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣ > ε


≤ O

( ∞∑
n=3

n2 exp (−nrnρnCε)

)
< ∞

hence

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t ̸=j

K
(

d2
it

bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣
a.s.−−→ 0.

Proof. We start by separating the cases when i ̸= j and i = j:

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=j

K
(

d2
it

bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣
≤ max

i,j,i ̸=j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t ̸=j

K
(

d2
it

bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣
+max

i

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t ̸=i

K
(

d2
it

bn

)
rn(i)

(
Ati − h0,n(ξt, ξi)

ρn

)∣∣∣∣∣∣∣∣ .

We split the first sum into the term with t = i and the rest the rest (which is i.i.d. over

t), use the triangle inequality and the fact that Aij and h0,n(ξi, ξj) take values in [0, 1] for any
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choice of i, j while the kernel function is absolutely bounded.

max
i,j,i ̸=j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=j

K
(

d2
it

bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣
≤ max

i,j,i ̸=j

∣∣∣∣∣∣∣∣
n− 2

n− 1

1

n− 2

n∑
t=1
t̸=i,j

K
(

d2
it

bn

)
rn(i)

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣∣∣

+ max
i,j,i ̸=j

1

n− 1


∣∣∣∣∣∣
K
(

d2
ii

bn

)
rn(i)

∣∣∣∣∣∣︸ ︷︷ ︸
≤ C

rn

∣∣∣∣Aij − h0,n(ξi, ξj)

ρn

∣∣∣∣︸ ︷︷ ︸
≤ 1

ρn



≤ max
i,j,i ̸=j

n− 2

n− 1

∣∣∣∣∣∣∣∣
1

n− 2

n∑
t=1
t ̸=i,j

K
(

d2
it

bn

)
rn(i)

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣∣∣+
C

(n− 1)rnρn
.

The expression inside the sum in the first term is bounded by C
rnρn

, hence after conditioning

on ξi, ξj we can apply the Bernstein’s inequality for bounded i.i.d. random variables. The

conditional expectation of that term is zero:

E

K
(

d2
it

bn

)
rn(i)

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣ ξi, ξj


= E

K
(

d2
it

bn

)
rn(i)

(
1

ρn
E (Atj | ξi, ξj , ξt)− w0(ξt, ξj)

)∣∣∣∣∣∣ ξi, ξj


= E

K
(

d2
it

bn

)
rn(i)

(w0(ξt, ξj)− w0(ξt, ξj))

∣∣∣∣∣∣ ξi, ξj
 = 0

where the first equality is due to the law of iterated expectations, the second uses the fact that

d2it, rn(i) and h0,n(ξt, ξj) are not random after conditioning on ξi, ξj , ξt. Atj is independent of ξi,

hence E (Atj | ξi, ξj , ξt) = E (Atj | ξj , ξt) which by definition equals h0,n(ξt, ξj) = ρnw0(ξt, ξj).
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The conditional variance is O
(

1
rnρn

)
:

V ar

K
(

d2
it

bn

)
rn(i)

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣ ξi, ξj


= E


K

(
d2
it

bn

)
rn(i)

2

E

((
Atj − h0,n(ξt, ξj)

ρn

)2
∣∣∣∣∣ ξi, ξj , ξt

)∣∣∣∣∣∣∣ ξi, ξj


= E


K

(
d2
it

bn

)
rn(i)

2(
w0(ξt, ξj)

(
1

ρn
− w0(ξt, ξj)

))∣∣∣∣∣∣∣ ξi, ξj


≤ Mw

ρn

E

((
K
(

d2
it

bn

))2∣∣∣∣ ξi)
rn(i)2︸ ︷︷ ︸
=O( 1

rn
)

= O

(
1

rnρn

)

where in the last line we use that the kernel function is bounded (K(·) ≤ C by Assumption 1.3)

and hence

E

((
K
(

d2
it

bn

))2∣∣∣∣ ξi)
rn(i)2

≤
CE

(
K
(

d2
it

bn

)∣∣∣ ξi)(
E
(
K
(

d2
it

bn

)∣∣∣ ξi))2 =
C

E
(
K
(

d2
it

bn

)∣∣∣ ξi) ≤ C

rn
= O

(
1

rn

)
.

By union bound and Bernstein’s inequality, for any ε > 0 and n ≥ 3:

P

max
i,j,i ̸=j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=j

K
(

d2
it

bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣ > ε



≤ n(n− 1)E

P


∣∣∣∣∣∣∣∣

1

n− 2

n∑
t=1
t ̸=i,j

K
(

d2
it

bn

)
rn(i)

Atj − h0,n(ξt, ξj)

ρn

∣∣∣∣∣∣∣∣ > ε− C

(n− 2)ρnrn

∣∣∣∣∣∣∣∣ ξi, ξj



≤ 2n(n− 1) exp

 −(n− 2)
(
ε− C

(n−2)ρnrn

)2
2
(
O
(

1
rnρn

)
+ C

3rnρn

(
ε− C

(n−2)ρnrn

))


≤ n2 exp (−nrnρnCε)

for some Cε > 0. We can proceed in a very similar way for the case of i = j to get:

P

max
i

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=i

K
(

d2
it

bn

)
rn(i)

Ati − h0,n(ξt, ξi)

ρn

∣∣∣∣∣∣∣∣ > ε

 ≤ O (n exp (−nrnρnCε)) .

Combining all the terms gives the required result: for any ε > 0
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∞∑
n=3

P

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=j

K
(

d2
it

bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣ > ε


≤ O

( ∞∑
n=3

n2 exp (−nrnρnCε)

)
< ∞

under Assumption 1.1 and Assumption 1.4 which, by derivation similar to that at the end of

the proof of 1.A.1, give:

nρnrn
log(n)

≥ C
nρnb

1
2α
n

log(n)
−→ ∞.

Hence

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t ̸=j

K
(

d2
it

bn

)
rn(i)

(
Atj − h0,n(ξt, ξj)

ρn

)∣∣∣∣∣∣∣∣
a.s.−−→ 0.

Lemma 1.A.4. Under the assumptions of Theorem 1, for any ε > 0:

P


∣∣∣∣∣∣∣∣max

i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t ̸=j

K
(

d2
it

bn

)
rn(i)

(
h0,n(ξt, ξj)− h0,n(ξi, ξj)

ρn

)∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ > ε


≤ O

(
n2 exp (−nrnCε)

)
+O

(
b

α2

(2α+1)2

n

)
−→ 0.

hence

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=j

K
(

d2
it

bn

)
rn(i)

(
h0,n(ξt, ξj)− h0,n(ξi, ξj)

ρn

)∣∣∣∣∣∣∣∣
p−→ 0.

Proof. Intuitively, this result holds because as n increases
d2
it

bn
becomes large, and hence K

(
d2
it

bn

)
becomes zero, unless ξi and ξt are very close to each other in the sense that their h0,n(ξt, ξj)

and h0,n(ξi, ξj) are similar for all ξj .

We start by showing that whenever h0,n(ξt, ξj) and h0,n(ξi, ξj) are not close, their distance

dit will be separated away from zero.

We follow the ideas from Auerbach (2022)’s proof of Lemma 1 which shows that for any

i, t, n and any ε > 0 we can find a δ > 0 such that

√
E
(
(w0(ξi, ξj)− w0(ξt, ξj))

2
∣∣∣ ξi, ξt) ≥
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ε =⇒ dit =

√
E
(
(φ(ξi, ξj)− φ(ξt, ξj))

2
∣∣∣ ξi, ξt) ≥ δ.

Our idea is to add an extra step at the beginning: if for given i, j, t there is a ν > 0 for

which we have |w0(ξt, ξj)− w0(ξi, ξj)| ≡
∣∣∣h0,n(ξt,ξj)−h0,n(ξi,ξj)

ρn

∣∣∣ > ν, then there exists an ε > 0

such that

√
E
(
(w0(ξi, ξj)− w0(ξt, ξj))

2
∣∣∣ ξi, ξt) ≥ ε (which in turn implies dit ≥ δ). In other

words, |w0(ξt, ξj)− w0(ξi, ξj)| can be large only if dit is large, in which case the weight placed

on that term is small.

In our case, the issue is that in

√
E
(
(w0(ξi, ξj)− w0(ξt, ξj))

2
∣∣∣ ξi, ξt) we take an expectation

with respect to j, but the initial statement is given for a fixed j. To get around it, we replace

the fixed j with a random element of a neighbourhood of j, then take an expectation with

respect to an element of that neighbourhood, and use an upper bound which takes expectation

over all possible values, not just those in the neighbourhood of j.

Recall from Assumption 1.2 that N(ξj , δ) =
{
ξk : supξt |w0(ξt, ξk)− w0(ξt, ξj)| < δ

}
denotes

the neighbourhood of ξj of size δ. We fix i, j, t, k where k ∈ N
(
ξj ,

ν
3

)
. Then

1 (|w0(ξt, ξj)− w0(ξi, ξj)| > ν)

= 1 (|w0(ξt, ξj)− w0(ξt, ξk) + w0(ξt, ξk)− w0(ξi, ξk) + w0(ξi, ξk)− w0(ξi, ξj)| > ν)

≤ 1
(
|w0(ξt, ξj)− w0(ξt, ξk)| >

ν

3

)
︸ ︷︷ ︸

=0

+1
(
|w0(ξt, ξk)− w0(ξi, ξk)| >

ν

3

)

+ 1
(
|w0(ξi, ξk)− w0(ξi, ξj)| >

ν

3

)
︸ ︷︷ ︸

=0

= 1

(
(w0(ξt, ξk)− w0(ξi, ξk))

2
>

ν2

9

)
.

If the above holds for any fixed i, j, t and for any ξk ∈ N
(
ξj ,

ν
3

)
, it also holds if we take expec-

tation over ξk ∈ N
(
ξj ,

ν
3

)
. Recall from Assumption 1.2 that ω(δ) = infξj P (ξk ∈ N(ξj , δ)| ξj)

and ω(δ) ≥
(
δ
C

) 1
α for all δ > 0. We use E(X|A) = E(1AX)

P (A) .

1 (|w0(ξt, ξj)− w0(ξi, ξj)| > ν)

≤ 1
(
E
(
(w0(ξt, ξk)− w0(ξi, ξk))

2
∣∣∣ ξk ∈ N

(
ξj ,

ν

3

)
, ξi, ξj , ξt

)
>

ν2

9

)

= 1

E
(
(w0(ξt, ξk)− w0(ξi, ξk))

2
1
(
ξk ∈ N

(
ξj ,

ν
3

))∣∣∣ ξi, ξj , ξt)
P
(
ξk ∈ N

(
ξj ,

ν
3

)∣∣ ξj) >
ν2

9


≤ 1

(
E
(
(w0(ξt, ξk)− w0(ξi, ξk))

2
1
(
ξk ∈ N

(
ξj ,

ν

3

))∣∣∣ ξi, ξj , ξt) >
ν2

9
ω
(ν
3

))
≤ 1

(
E
(
(w0(ξt, ξk)− w0(ξi, ξk))

2
∣∣∣ ξi, ξt) >

ν2

9
ω
(ν
3

))
= 1

(√
E
(
(w0(ξt, ξk)− w0(ξi, ξk))

2
∣∣∣ ξi, ξt) >

ν

3

√
ω
(ν
3

))
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We set ε = ν
3

√
ω
(
ν
3

)
, which completes the argument.

Like Auerbach (2022),13 we assume there exist some α,C > 0 such that for any δ we have

ω(δ) ≥
(
δ
C

) 1
α (this is our Assumption 1.2). Then:

1 (|w0(ξt, ξj)− w0(ξi, ξj)| > ν) ≤ 1

(√
E
(
(w0(ξt, ξk)− w0(ξi, ξk))

2
∣∣∣ ξi, ξt) >

ν

3

√( ν

3C

) 1
α

)

= 1

(
3C

1
2α+1

(
E
(
(w0(ξt, ξk)− w0(ξi, ξk))

2
∣∣∣ ξi, ξt)) α

2α+1

> ν

)
.

hence

|w0(ξt, ξj)− w0(ξi, ξj)| ≤ 3C
1

2α+1

(
E
(
(w0(ξt, ξk)− w0(ξi, ξk))

2
∣∣∣ ξi, ξt)) α

2α+1

.

Combining with Auerbach (2022) result:14

√
E
(
(w0(ξt, ξk)− w0(ξi, ξk))

2
∣∣∣ ξi, ξt) ≤ 2C

1
4α+2 d

α
2α+1

it .

we get

|w0(ξt, ξj)− w0(ξi, ξj)| ≤ C̃d
2α2

(2α+1)2

it

for C̃ = 3× 2
2α

2α+1 × C
3α+1

(2α+1)2 .

We can now return to the term of interest.

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=j

K
(

d2
it

bn

)
rn(i)

(w0(ξt, ξj)− w0(ξi, ξj))

∣∣∣∣∣∣∣∣ ≤ max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t ̸=j

K
(

d2
it

bn

)
rn(i)

C̃d
2α2

(2α+1)2

it

∣∣∣∣∣∣∣∣
≤ C̃

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t ̸=j

K
(

d2
it

bn

)
rn(i)

d
2α2

(2α+1)2

it − E

K
(

d2
it

bn

)
rn(i)

d
2α2

(2α+1)2

it

∣∣∣∣∣∣ ξi

∣∣∣∣∣∣∣∣ +

+max
i

∣∣∣∣∣∣E
K

(
d2
it

bn

)
rn(i)

d
2α2

(2α+1)2

it

∣∣∣∣∣∣ ξi
∣∣∣∣∣∣
 .

The first term goes to zero by the union bound and Bernstein’s inequality, where, conditionally

on ξi, ξj and after separating out the term with t = i, the terms inside the average are i.i.d.,

13One major difference is that Auerbach (2022) does not allow for sparsity in his model, in his case ρn = 1.
Hence we impose an assumption analogous to his to w0, not h0,n. If we were to define everything in terms of h0,n,
we would need Nn(ξj , δ) =

{
ξk : supξt |h0,n(ξt, ξk)− h0,n(ξt, ξj)| < δ

}
, ωn(δ) = infξj P ( ξk ∈ Nn(ξj , δ)| ξj) and

ωn(δ) ≥
(

δ
ρnC

) 1
α
.

14This is Auerbach (2022) Lemma A1 restated in our notation. To account for the fact that Auerbach (2022)
does not allow for sparsity we replace their f , which is equivalent to our h0,n, with a w0 and their δ with our
equivalent term d.
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mean zero, bounded by r−1
n CM

4α2

(2α+1)2

w = O
(
r−1
n

)
and have variance O

(
r−1
n

)
. For any ε > 0:

P

max
i,j

∣∣∣∣∣∣∣∣
1

n− 1

n∑
t=1
t̸=j

K
(

d2
it
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)
rn(i)

d
2α2

(2α+1)2

it − E
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(
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it
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)
rn(i)

d
2α2

(2α+1)2

it

∣∣∣∣∣∣ ξi

∣∣∣∣∣∣∣∣ > ε



≤ 2n(n− 1) exp

−
(n− 2)

(
ε− CM

4α2

(2α+1)2
w

(n−2)rn

)2

2

(
O
(
r−1
n

)
+ CM

4α2

(2α+1)2
w

3rn

(
ε− CM

4α2

(2α+1)2
w

(n−2)rn

))


+ 2n exp

− (n− 1)ε2

2

(
O
(
r−1
n

)
+ CM

4α2

(2α+1)2
w ε
3rn

)


≤ n2 exp (−nrnCε) −→ 0.

The last convergence was shown at the end of the proof of Lemma 1.A.1.

It remains to show that the last term goes to zero too. By Assumption 1.3, there exists a

D ∈ R such that ∀|u| > D : K(u) = 0. If dit ̸= 0:
d2
it

bn
= O

(
1
bn

)
−→ ∞, so eventually, as n −→ ∞,

d2
it

bn
> D and K

(
d2
it

bn

)
= 0 (and if dit = 0 the whole term is identically equal to zero). We have:

max
i

∣∣∣∣∣∣E
K

(
d2
it

bn

)
rn(i)

d
2α2
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it

∣∣∣∣∣∣ ξi
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i

∣∣∣∣∣∣E
K

(
d2
it

bn

)
rn(i)

d
2α2

(2α+1)2

it 1

(
d2it
bn

≤ D

)∣∣∣∣∣∣ ξi
∣∣∣∣∣∣

≤ max
i

∣∣∣∣∣∣(Dbn)
α2

(2α+1)2 E

K
(

d2
it

bn

)
rn(i)

∣∣∣∣∣∣ ξi
∣∣∣∣∣∣

= max
i

∣∣∣∣∣∣∣∣(Dbn)
α2

(2α+1)2

E
(
K
(

d2
it

bn

)∣∣∣ ξi)
rn(i)︸ ︷︷ ︸
=1

∣∣∣∣∣∣∣∣
≤ D

α2

(2α+1)2 b
α2

(2α+1)2

n = O

(
b

α2

(2α+1)2

n

)
−→ 0.

The last expression goes to zero by Assumption 1.4. Note however that under Assumption 1.4

the rate of convergence to zero is too slow to ensure almost sure convergence of this term. This

is the reason why we only get uniform convergence in probability in Theorem 1 and convergence

weakly in probability in Theorem 2.4.2.
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Lemma 1.A.5. Under the assumptions of Theorem 1, for any ε > 0:

∞∑
n=3

P

(
1

bnrn
max
i,j

∣∣∣d̂2ij − d2ij

∣∣∣ > ε

)
= O

( ∞∑
n=3

n2 exp
(
−nb2nr

2
nρ

2
nCε

))
= O(1)

hence

1

bnrn
max
i,j

∣∣∣d̂2ij − d2ij

∣∣∣ a.s.−−→ 0.

Proof. We follow the same steps as in Lemma B1 in Auerbach (2022). By definition:

d̂ij =

√√√√ 1

n

n∑
t=1

(
1

n

n∑
s=1

Ats

ρn

(
Ais −Ajs

ρn

))2

d̃ij =

√√√√ 1

n

n∑
t=1

(φ(ξi, ξt)− φ(ξj , ξt))
2

dij =

√
Et

(
(φ(ξi, ξt)− φ(ξj , ξt))

2
∣∣∣ ξi, ξj).

Take any ε > 0. We have:

P

(
1

bnrn
max
i,j

∣∣∣d̂2ij − d2ij

∣∣∣ > ε

)
= P

(
max
i,j

∣∣∣d̂2ij − d2ij

∣∣∣ > εbnrn

)
= P

(
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i,j

∣∣∣d̂2ij − d̃2ij + d̃2ij − d2ij

∣∣∣ > εbnrn

)
≤ P

(
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i,j

∣∣∣d̂2ij − d̃2ij

∣∣∣ > εbnrn
2

)
+ P

(
max
i,j

∣∣∣d̃2ij − d2ij

∣∣∣ > εbnrn
2

)
(1.15)

where the last inequality follows from the fact that |a + b| > ε implies |a| > ε
2 or |b| > ε

2 and

hence P (|a+ b| > ε) ≤ P (|a| > ε
2 ) + P (|b| > ε

2 ).

For the first term in (1.15), we plug in the definitions, then use a2 − b2 = (a− b)(a+ b) and
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the fact that the second bracket approaches a limit bounded by 4M2
w:

P

(
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∣∣∣∣∣ > 8M2
w

)

where the last equality follows from the fact that ab > ε implies b ≥ M or a > ε
M . For the first

term, we again note that |a + b| > ε implies |a| > ε
2 or |b| > ε

2 , we split the expression into a

part with terms that only depend on i and a part with terms that only depend on j. We then

get:

P

(
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i,j

∣∣∣∣∣ 1n
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)
where the second inequality follows from the union bound applied to maxi and the fact that

1
n

∑n
t=1 xt ≤ n−1

n
1

n−1

∑n
t=1

t ̸=i

maxt,t̸=i xt +
1
nxi =

n−1
n

(
maxt,t̸=i xt +

1
n−1xi

)
. In this case xi =

1
n

∑n
s=1

A2
is

ρ2
n

− φ(ξi, ξi) and |xi| ≤ 1
ρ2
n
(since A and ρ2nφ both belong to [0, 1]). We also use the

fact that n−1
n |a| > ε implies |a| > ε. Next, notice that

∣∣∣a± 1
(n−1)ρ2

n

∣∣∣ > ε implies that either

|a| ≥ a > ε ± 1
(n−1)ρ2

n
> ε − 1

(n−1)ρ2
n
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n
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n
, so in either
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case we get |a| > ε − 1
(n−1)ρ2

n
. For the third inequality, we again apply the union bound, this

time over t ̸= i, and separate out the terms with s = i or s = t, similarly to the previous

step. The final inequality follows from Bernstein’s inequality with
∣∣∣AtsAis
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and
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.

For the second term, take any 0 < ε < 2M2
w and use similar arguments.
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We show that the second term in (1.15) goes to zero almost surely by applying the union

bound and Bernstein’s inequality. We also use that, by definition, dii = d̃ii = 0.

P

(
max
i,j

∣∣∣d̃2ij − d2ij

∣∣∣ > εbnrn
2

)
≤ P

(
max
i,j,i ̸=j

∣∣∣d̃2ij − d2ij

∣∣∣ > εbnrn
2

)
+ P

(
max

i

∣∣∣d̃2ii − d2ii

∣∣∣︸ ︷︷ ︸
=0

>
εbnrn
2

)
︸ ︷︷ ︸

=0

≤ n(n− 1)E

(
P

(∣∣∣d̃2ij − d2ij

∣∣∣ > εbnrn
2

∣∣∣∣ ξi, ξj))
= n(n− 1)E

(
P

(∣∣∣∣∣ 1n
n∑

t=1

(
(φ(ξi, ξt)− φ(ξj , ξt))

2 − E
(
(φ(ξi, ξt)− φ(ξj , ξt))

2
∣∣∣ ξi, ξj))

∣∣∣∣∣
>

εbnrn
2

∣∣∣∣ ξi, ξj))

≤ n(n− 1)E

P


∣∣∣∣∣∣∣∣

1

n− 2

n∑
t=1
t̸=i,j

(
(φ(ξi, ξt)− φ(ξj , ξt))

2

−E
(
(φ(ξi, ξt)− φ(ξj , ξt))

2
∣∣∣ ξi, ξj))∣∣∣ >

εbnrn
2

− 2

(n− 2)ρ2n

∣∣∣∣ ξi, ξj))

≤ 2n(n− 1) exp

−(n− 2)
(

εbnrn
2 − 2

(n−2)ρ2
n

)2
2 +

2

(
εbnrn

2 − 2
(n−2)ρ2n

)
3

 ≤ n2 exp
(
−nb2nr

2
nCε

)
.

50



The conclusion follows since
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n=3
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The last term is bounded for any Cε > 0 because under Assumption 1.4 log(n)
nb2nr

2
nρ

2
n
−→ 0.

Subsection 1.A.2 Useful results

For reference, we list some results which we use in our proofs:

Theorem (Bernstein’s inequality for bounded random variables15). Let Z1, . . . , Zn be indepen-

dent random variables. Assume that there exist some positive constant M such that |Zi| ≤ M

with probability one for each i. Let also σ2 = 1
n

∑n
i=1 V (Zi). Then, for all ε > 0:

P

(∣∣∣∣∣ 1n
n∑

i=1

(Zi − E(Zi))

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− nε2

2
(
σ2 + 1

3Mε
)) . (1.16)

Appendix 1.B Additional tables, codes

Subsection 1.B.1 Tables

15Copied after Zeleneev (2020).
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observed HK1 for c = HK2 HNN1 dot product for k =
0.01 0.1 0.5 1 2 10 100 1 5

n function ρn

100 high density 0.45 0.483 0.483 0.483 0.483 0.483 0.483 0.066 0.010 0.484 0.021 0.015 0.073
0.59 0.462 0.462 0.462 0.462 0.462 0.461 0.063 0.014 0.461 0.023 0.018 0.072
0.76 0.342 0.342 0.342 0.274 0.074 0.024 0.021 0.022 0.048 0.017 0.023 0.061

horseshoe 0.07 0.102 0.102 0.102 0.093 0.054 0.016 0.021 0.023 0.043 0.017 0.023 0.025
0.09 0.121 0.121 0.121 0.107 0.052 0.019 0.035 0.038 0.042 0.022 0.037 0.034
0.11 0.134 0.134 0.134 0.114 0.048 0.023 0.056 0.063 0.040 0.028 0.060 0.047

product 0.15 0.221 0.221 0.219 0.178 0.083 0.013 0.009 0.014 0.067 0.009 0.006 0.035
0.19 0.256 0.256 0.253 0.195 0.064 0.010 0.012 0.023 0.071 0.011 0.006 0.041
0.25 0.281 0.281 0.277 0.136 0.018 0.009 0.015 0.038 0.061 0.012 0.006 0.042

500 high density 0.24 0.357 0.357 0.357 0.357 0.357 0.357 0.003 0.002 0.357 0.005 0.003 0.014
0.42 0.477 0.477 0.477 0.477 0.477 0.477 0.111 0.006 0.477 0.007 0.007 0.021
0.76 0.338 0.338 0.338 0.317 0.145 0.008 0.009 0.018 0.030 0.004 0.018 0.028

horseshoe 0.04 0.062 0.062 0.062 0.060 0.037 0.006 0.006 0.006 0.030 0.003 0.006 0.005
0.06 0.098 0.098 0.098 0.093 0.042 0.005 0.015 0.019 0.032 0.004 0.018 0.012
0.11 0.136 0.136 0.136 0.084 0.009 0.005 0.035 0.061 0.010 0.007 0.056 0.033

product 0.08 0.134 0.134 0.132 0.108 0.063 0.005 0.002 0.003 0.057 0.002 0.001 0.006
0.14 0.209 0.209 0.208 0.178 0.114 0.006 0.002 0.010 0.097 0.003 0.001 0.009
0.25 0.279 0.279 0.278 0.247 0.141 0.005 0.002 0.011 0.060 0.004 0.001 0.011

1000 high density 0.18 0.287 0.287 0.287 0.287 0.287 0.025 0.001 0.001 0.286 0.001 0.006
0.37 0.455 0.455 0.455 0.455 0.455 0.455 0.148 0.004 0.455 0.005 0.012
0.76 0.335 0.335 0.335 0.320 0.176 0.007 0.002 0.016 0.015 0.017 0.022

horseshoe 0.03 0.047 0.047 0.047 0.045 0.028 0.005 0.003 0.003 0.024 0.003 0.002
0.05 0.087 0.087 0.087 0.084 0.040 0.003 0.010 0.014 0.031 0.013 0.008
0.11 0.137 0.137 0.136 0.027 0.003 0.003 0.027 0.060 0.005 0.056 0.032

product 0.06 0.104 0.104 0.102 0.086 0.057 0.007 0.001 0.002 0.049 0.000 0.002
0.12 0.188 0.188 0.187 0.160 0.105 0.006 0.001 0.007 0.089 0.001 0.004
0.25 0.277 0.277 0.276 0.249 0.162 0.004 0.001 0.003 0.030 0.001 0.005

Table 1.1: MSE for simulated fits for different true generated functions at different density levels and sample sizes. Observed is the binary adjacency matrix, HK1
is our method with different bandwidths of the form c× â, HK2 is our alternative specification. HNN1 is the nearest neighbours method of Zhang, Levina, and
Zhu (2017). Some values are missing due to too high memory requirements. dot product is the method from Levin and Levina (2019) with k-dimensional ξi.
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Subsection 1.B.2 Codes

In this section we present some of the codes used for simulations. A full package should

eventually become available online.

We start with the definitions of different distances and estimators of the linking functions:

def D2(A):

#a function which maps A into a matrix of distances D2

n= len(A)

V=(1/n)*np.matmul(A,A)

C=(1/n)*np.matmul(V,V)

B=np.matmul(np.diag(np.diag(C)),np.ones((n,n)))

D = B+B.T-2*C

return D

def Dmax(A):

#a function which maps A into a matrix of distances Dmax

n = len(A)

V = (1/n)*np.matmul(A,A)

F = torch.tensor(np.tensordot(np.ones(n),V,0))

G = torch.transpose(F, 1,0)

H = F-G

J=1-torch.transpose(np.fmax(torch.eye(n).repeat(n, 1, 1),np.tensordot(np.eye

(n),np.ones(n),0)),2,1)

D = np.array(torch.amax(np.fmin(abs(H),J), dim=2))

return D

def HK1h(D,A,h):

# gives a kernel approximation to the linking function based on a one -way

normal kernel , with bandwidth h,

based on distance D

n= len(A)

K = np.exp(-0.5*(D/h)**2)

K[np.isnan(K)] = 0

T=np.matmul(K,A)

B=np.matmul(K,np.ones((n,n)))-K

H = T/B

H=(H+np.transpose(H))/2

return H

def HK2h(D,A,h):

# gives a kernel approximation to the linking function based on a two -way

normal kernel , with bandwidth h,

based on distance D

n= len(A)
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K = np.exp(-0.5*(D/h)**2)

K[np.isnan(K)] = 0

H=np.matmul(K,np.matmul(A,K))/np.matmul(K,np.matmul(1-np.eye(n),K))

return H

def HNN1(D,A):

#gives a kernel approximation to h based on one -way nearest neighbours , with

bandwidth h, based on distance D

#uses the optimal neighbourhood size (n log(n))^{1/2}

n= len(A)

N_size = round(np.sqrt(n*np.log(n)))

N=np.argpartition(D, N_size+1)[:,:N_size+1]

mask = np.ones((n,N_size+1), dtype=bool)

mask[range(n), np.argmax(N==np.array(range(n)).reshape(n,1), axis=1)] =

False

N = N[mask].reshape(n, N_size)

mask2 = np.zeros((n,n), dtype=bool)

mask2[np.tile(np.array(range(n)).reshape(n,1),N_size), N] = True

mask_long=np.tile(mask2 ,(n,1))

A_long=np.tile(A,(1,n)).reshape(n*n,n)

Amlong = A_long[mask_long].reshape(n,n, N_size)

H=np.sum(Amlong ,2)/N_size

H=(H+np.transpose(H))/2

return H

In simulations we generate the true matrices using one of the following functions:

def high_rho_generate(n, r, rep):

# generates a rep number of true n by n matrices from the high rho function

with density r/1.35 , outputs only

the adjacency matrices

A_true = []

for s in range(rep):

w = np.random.uniform(0,1,(n))

u = np.random.uniform(0,1,(n,n))

eta = np.tril(u) + np.tril(u, -1).T

Wi = np.tensordot(w,np.ones(n),0)

Wj = np.tensordot(np.ones(n),w,0)

A = (eta < r*(1-((abs(0.5-Wi)<0.05) & (abs(0.5-Wj)<0.05)))*(1-0.5*(abs(0

.5-Wi)+abs(0.5-Wj)))/(0.975))*1

np.fill_diagonal(A, 0)

A_true.append(A)

return A_true

def horse_generate(n, r, rep):
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# generates a rep number of true n by n matrices from the horseshoe function

with density r/4.44 , outputs only

the adjacency matrices

A_true = []

for s in range(rep):

w = np.random.uniform(0,1,(n))

u = np.random.uniform(0,1,(n,n))

eta = np.tril(u) + np.tril(u, -1).T

Wi = np.tensordot(w,np.ones(n),0)

Wj = np.tensordot(np.ones(n),w,0)

A = (eta < r*((np.exp(-200*(Wi-Wj ** 2)** 2)+np.exp(-200*(Wj-Wi **2)**2))/2)

)*1

np.fill_diagonal(A, 0)

A_true.append(A)

return A_true

def product_generate_A_h_xi(n, r, rep):

# generates a rep number of true n by n matrices from the product function

with density r/4, outputs the

adjacency matrices , the true linking

function , and the true values of

the underlying characteristics $\

xi_i$

A_true = []

xi_true = []

h_true = []

for s in range(rep):

w = np.random.uniform(0,1,(n))

u = np.random.uniform(0,1,(n,n))

eta = np.tril(u) + np.tril(u, -1).T

Wi = np.tensordot(w,np.ones(n),0)

Wj = np.tensordot(np.ones(n),w,0)

h = r*Wi*Wj

A = (eta < h)*1

np.fill_diagonal(A, 0)

np.fill_diagonal(h, 0)

A_true.append(A)

h_true.append(h)

xi_true.append(list(w))

return (A_true , h_true , np.array(xi_true))

Code for finding the optimal bandwidth:

def HK1h_loo(D,A,h):

#gives a leave -obe -out kernel approximation to h based on a one -way
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normal kernel , with bandwidth h,

based on distance D

n= len(A)

K = np.exp(-0.5*(D/h)** 2)

K[np.isnan(K)] = 0

T = np.matmul(K,A) - np.matmul(np.diag(np.diag(K)),np.ones((n,n)))*A

B = np.matmul(K,np.ones((n,n)))-(K-np.diag(np.diag(K)))-np.matmul(np.

diag(np.diag(K)),np.ones((n,n)))

H = T/B

H=(H+np.transpose(H))/2

return H

def log_likelihood(A,H):

#the log - likelihood estimation for an adjacency matrix A under the

assumption it comes from a

distribution with linking

probabilities in H

log_likelihood = np.sum(A*np.log(H)+(1-A)*np.log(1-H))

return log_likelihood

def ll(h, A):

#the leave -one -out log - likelihood objective function for use in minimising

procedures

return -log_likelihood(A,HK1h_loo(D2(A),A,h))

Code for simulations:

# simulations . loop over:

NN = [100 , 200 , 500 , 1000]

rho_type = [’high’, ’boundary ’,’constant ’]

function = [’product ’, ’horseshoe ’, ’high density ’]

methods = [’true’, ’observed ’, ’HK1’, ’HK2’,’HK1_penalty ’, ’HNN1’, ’dot_prod_1 ’,

’dot_prod_5 ’]

# bandwidth choice: only for HK1

CC = [0.01, 0.1, 0.5, 1, 2, 10, 100]

#loop:

for n in NN:

for rt in rho_type:

if rt == ’constant ’:

r=1

elif rt == ’high’:

r=np.sqrt(np.sqrt((25/np.log(25))))*np.sqrt(np.sqrt(np.log(n)/n))

elif rt == ’boundary ’:
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r=np.sqrt((25/np.log(25)))*np.sqrt(np.log(n)/n)

for fun in function:

np.random.seed(27)

w=np.linspace(0,1,n)

u = np.random.uniform(0,1,(n,n))

eta = np.tril(u) + np.tril(u, -1).T

Wi = np.tensordot(w,np.ones(n),0)

Wj = np.tensordot(np.ones(n),w,0)

if fun == ’product ’:

H = r*Wi*Wj

elif fun == ’horseshoe ’:

H = r*((np.exp(-200*(Wi-Wj ** 2)**2)+np.exp(-200*(Wj-Wi **2)**2))/2

)

elif fun == ’high density ’:

H = r*(1-((abs(0.5-Wi)<0.05) & (abs(0.5-Wj)<0.05)))*(1-0.5*(abs(

0.5-Wi)+abs(0.5-Wj)))/(0

.975)

A = (eta < H)*1

np.fill_diagonal(A, 0)

for met in methods:

if met == ’HK1’:

h_guess = 0.2090189845643738*0.1 **1.38258532*n **(-1.55268817

)*np.log(n) ** 1.

82661653

res = minimize(ll , h_guess , args=A, method = ’Nelder -Mead’,

tol=1e-7, bounds=((0

,1.1),))

h = res.x[0]

for c in CC:

Matrix = HK1h(D2(A),A,c*h)

np.savetxt(’matrices_simulation/’+’Matrix_ ’+’n_’+str(n)+

’_’+’r_’+rt+’_’+

fun+’_’+met+’_c_

’+str(c)+’.csv’,

Matrix ,

delimiter=",")

if met != ’HK1’:

if met == ’true’:

Matrix = H

elif met == ’observed ’:

Matrix = A

elif met == ’HK2’:

res = minimize(ll_HK2 , h, args=A, method = ’Nelder -Mead’
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, bounds=((0,1.1

),))

h2 = res.x[0]

Matrix = HK2h(D2(A),A,h2)

elif met == ’HNN1’:

Matrix = HNN1(Dmax(A),A)

elif met == ’dot_prod_1 ’:

d=1

Z=np.linalg.eigh(A)[0]

Z[np.isnan(Z)]=0

Xhat = np.matmul ((np.flipud(np.linalg.eigh(A)[1].T).T)[:

,0:d],np.diag(np

.sqrt(np.flip(Z)

[0:d])))

Xhat[np.isnan(Xhat)] = 0

Matrix = np.matmul(Xhat ,Xhat.T)

elif met == ’dot_prod_5 ’:

d=5

Z=np.linalg.eigh(A)[0]

Z[np.isnan(Z)]=0

Xhat = np.matmul ((np.flipud(np.linalg.eigh(A)[1].T).T)[:

,0:d],np.diag(np

.sqrt(np.flip(Z)

[0:d])))

Xhat[np.isnan(Xhat)] = 0

Matrix = np.matmul(Xhat ,Xhat.T)

print(’Matrix_ ’+’n_’+str(n)+’_’+’r_’+rt+’_’+fun+’_’+met)

np.savetxt(’matrices_simulation/’+’Matrix_ ’+’n_’+str(n)+’_’+

’r_’+rt+’_’+fun+’_’+

met+’.csv’, Matrix ,

delimiter=",")

Code for generating heatmap pictures:

def plot_triangular_combined_heatmaps(matrices , labels):

k = len(matrices)

vmin = np.min(matrices)

vmax = np.max(matrices)

assert k % 2 == 0, "Number of matrices (k) must be even."

# Number of combined heatmaps

num_heatmaps = k // 2

# Create a figure with subplots arranged horizontally

fig , axes = plt.subplots(1, num_heatmaps , figsize=(6 * num_heatmaps , 5))
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if num_heatmaps == 1:

axes = [axes] # Ensure axes is iterable for a single heatmap

for i in range(num_heatmaps):

# Extract the pair of matrices

lower_matrix = matrices[2 * i]

upper_matrix = matrices[2 * i + 1]

n = lower_matrix.shape[0] # Assuming square matrices

# Create a combined matrix filled with zeros (or another placeholder

value)

combined_matrix = np.zeros_like(lower_matrix)

# Fill the lower triangle with the first matrix

combined_matrix[np.tril_indices(n)] = lower_matrix[np.tril_indices(n)]

# Fill the upper triangle with the second matrix

combined_matrix[np.triu_indices(n)] = upper_matrix[np.triu_indices(n)]

# Plot the combined matrix as a heatmap

ax = axes[i]

im = ax.imshow(combined_matrix , cmap=’viridis ’, vmin=vmin , vmax=vmax ,

interpolation=’nearest ’)

ax.set_title(f"{labels[2 * i]} (L) & {labels[2 * i + 1]} (U)", fontsize=

25)

ax.axes.get_xaxis ().set_ticks([])

ax.axes.get_yaxis ().set_ticks([])

cbar = plt.colorbar(im, ax=ax)

cbar.ax.tick_params(labelsize=25)

plt.tight_layout ()

plt.show()

Example of code used to generate plots from simulations:

#plot different methods at different sample sizes

NN = [100 , 500]

methods = [’true’, ’observed ’, ’HK1_c_1 ’,’HK1_c_2 ’,’HK2’,’HNN1’, ’dot_prod_1 ’, ’

dot_prod_5 ’]

labels = [’true’, ’observed ’, ’HK1’,’HK1_c2 ’,’HK2’,’HNN1’, ’DP1’, ’DP5’]

rho_type = [’constant ’, ’high’, ’boundary ’]

function = [’product ’, ’horseshoe ’, ’high density ’]

for n in NN:
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for rt in rho_type:

for fun in function:

matrices = []

for met in methods:

my_data = genfromtxt(’Matrix_ ’+’n_’+str(n)+’_’+’r_’+rt+’_’+fun+’

_’+met+’.csv’, delimiter

=’,’)

matrices.append(my_data)

plot_triangular_combined_heatmaps(matrices , labels , ’heatmap_ ’+’n_’+

str(n)+’_’+’r_’+rt+’_’+fun)
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Chapter 2

Nonparametric bootstrap for exchangeable

networks

Abstract

Inference on network data is challenging due to the strong dependence between observations,

which renders standard techniques incorrect. To address this, we propose a valid bootstrap

procedure for network data based on a nonparametric linking probabilities estimator. We

prove that the distribution of the bootstrap network is consistent for the distribution of the

original network in terms of a Wasserstein distance. We also provide conditions under which

distributions of a class of functions related to U-statistics on the bootstrapped networks consis-

tently replicate the distributions of the corresponding statistics on the original network. Monte

Carlo simulations show good confidence interval coverage for a wider class of network functions

than those accounted for by our theory. We apply our method to the data from Banerjee,

Chandrasekhar, Duflo, and Jackson (2013): we replicate their findings, but also show that our

method works under weaker assumptions and with a significantly smaller sample size. Finally,

we propose an alternative specification of their model which takes advantage of our linking

probabilities estimator and may be of interest independently of our bootstrap procedure.
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2.1 Introduction

Many papers in economics studying information diffusion (e.g. Banerjee, Chandrasekhar, Du-

flo, and Jackson (2013), Alatas et al. (2016)), impact of the most influential individuals (e.g.

Banerjee, Chandrasekhar, Duflo, and Jackson (2019), Breza and Chandrasekhar (2019)), inher-

ent features of networks (e.g. Chetty et al. (2022), Banerjee et al. (2024)) and other models

on network data run into the issue that it is very difficult to conduct statistical inference on

complex, interconnected data structures represented by networks. In this paper, we propose a

solution: a bootstrap procedure which does not impose strong assumptions on the form of the

network-generating function and can be applied to a wide range of network statistics.

The default approach when analysing the behaviour of statistics is finding an asymptotic

approximation to their distribution, a technique easiest to apply to simple models and data

with limited dependence. Unfortunately, the models built on networks are often complex and

the networks themselves tend to exhibit a deeply interconnected structure. All individuals in

a network are closely related: the concept of “six degrees of separation” shows that nearly

all users of social media platforms like Facebook or Twitter are at most six connections away

from each other, while the average distance is below four. At the same time, the number of

connections grows more slowly than the network size. This phenomenon is known as sparsity

and can be illustrated by the fact that, during their peak growth periods, social media platforms

gained new users at a faster rate than individual users gained new connections. Because of the

issues of strong connectedness, sparsity, and complicated functional forms of network statistics,

asymptotic theory for network statistics tends to be complicated, specialised to certain classes

of estimators, and, in many cases, still underdeveloped.

For similar reasons, standard bootstrap techniques are not valid for network data: there

is a need for a specialised bootstrap procedure specifically designed to deal with this kind of

dependence. The few existing methods for bootstrapping network data suffer from either limited

applicability (they tend to focus on specific classes of network statistics and cannot be easily

extended to e.g. regressions controlling for the dependence structure defined by the network)

or restrictive parametric functional form for the components of the network-generating process.

We address both of those concerns.

We propose a bootstrap procedure which takes a given network, uses it to approximate the

data-generating process, and creates new networks with a similar structure to the original one.

If we are interested in the distribution of a particular statistic of the original network, we can

approximate it by estimating the same statistic on a large number of bootstrapped networks.

We assume a general form of a network-generating process in which the observed network

is determined by an unknown distribution over types of individuals and an unknown function
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determining the the probability of a link between any pair of individuals. Under this assumption,

each person is characterised by a set of (possibly unobserved) features that are independent of

the features of others. The links are assumed to come from independent draws with probabilities

determined by a binary linking function which takes the features of any two individuals as inputs

and outputs the probability of a link between them.

If we knew the linking function, we could generate networks similar to the observed one by

firstly resampling from the original set of individuals and then adding links based on proba-

bilities determined by the linking function. However, as the linking function is unknown, we

replace it with a consistent estimate which we proposed in Chapter 1. The estimator takes

advantage of the information provided by the set of observed connections to identify similar

individuals and to estimate linking probabilities based on a kernel-style estimator which takes a

form of a local weighted average of the number of links between any person j and those similar

(in terms of their linking behaviour) to person i.

Having developed a method to generate bootstrap networks, we can repeat any analysis

we were doing on the original network on each of the bootstrap networks. This provides a

bootstrap for network statistics. We provide conditions under which our procedure achieves

consistency. We show this in two ways: we borrow a notion of Wasserstein distance between

network generating distributions from Levin and Levina (2019) and we show that the distance

between the bootstrap network generating process and the true network generating process goes

to zero in probability as we increase the sample size. Unfortunately, this is not sufficient to

ensure that the distribution of any statistic on a bootstrap network replicates the corresponding

distribution of that statistic on the original network. We show this directly for a class of statistics

which are closely related to U-statistics. The motivation for this is twofold: this is a wide class

of functions and includes some estimators we may be directly interested in, for example the

density of connections within a network. Additionally, this class includes motif densities, i.e.

the densities of different patterns (e.g. triangles, stars, cycles of length m) on subgraphs of

the adjacency matrix. These are sometimes referred to as “network moments” because they

characterise the network generating distribution: if two networks match on densities of all

possible patterns, they come from the same distribution. Hence proving that our bootstrap

procedure correctly recovers the distributions of all motif densities implicitly shows that the

bootstrap networks share the same asymptotic network generating distribution as the original

network.

While we do not currently have explicit asymptotic theory for other classes of network

functions, for example measures of centrality, clustering, eigenvalues of the adjacency matrix,

or parameters of regressions on networks, our simulations suggest that our method is more

63



widely applicable and can be used to recover distributions of these kinds of statistics.

In our application, we provide an illustration of how our bootstrap method can be extended

to an information diffusion model over a network using data from Banerjee, Chandrasekhar,

Duflo, and Jackson (2013). Under the setup of the original paper, we are able to provide slightly

narrower confidence intervals. Additionally, our method allows us to perform estimation on a

significantly smaller sample: while the original paper relies on asymptotics in the number of

networks and requires observing many villages, our method is asymptotic in the village size,

meaning that we can construct confidence intervals given data on a single village. This has

the potential to drastically lower data collection costs. We also propose an alternative model

specification which uses our linking function estimator as a proxy for the strength of connection

and which could be of interest independently of the bootstrap procedure.

In Section 2.2 we summarise the related literature. The setup of the model is described in

Section 2.3, where we also provide our bootstrap procedure. Section 2.4 includes the statements

of our main results: a Wasserstein distance convergence in Theorem 2.4.1 and a bootstrap

consistency result for a specific class of estimators related to U-statistics in Theorem 2.4.2.

Section 2.5 shows results of Monte Carlo simulations and Section 2.6 describes an application

to the data from Banerjee, Chandrasekhar, Duflo, and Jackson (2013). Section 2.7 concludes.

The appendices start with a list of all notation. Section 2.A includes all proofs, Section 2.B

provides the codes, additional tables, plots for simulations, Section 2.C includes extensions.

2.2 Related literature

2.2.1 Network Bootstrap

There are a few existing bootstrap procedures for different functions on networks. Most of the

literature focuses on bootstrapping a class of network functions closely related to U-statistic,

or their subset, motif densities (i.e. the proportions of subgraphs of a given size which take the

form of a specific pattern or ‘motif,’ e.g. the proportion of subgraphs of size three which are

fully connected, or the proportion of subgraphs of size four in which there is only one link).

Our procedure can be applied to a much wider class of functions.

Green and Shalizi (2022) propose two types of bootstrap: the empirical bootstrap, in which

they resample individuals and put a link between them if they were linked in the original graph,

and a parametric histogram bootstrap. The empirical bootstrap can be seen as a special case of

ours (with a very small bandwidth), it is simple and computationally attractive, but it suffers

from a few types of bias: whenever an individual gets resampled more than once, these copies

are not linked (as there were no self-links in the original graph), and they share the same link
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patterns with all other individuals (there is correlation between link formation in the bootstrap

graph which was not present in the original graph). In our case, the resampled copies of the

same individual form links with identical probabilities, but their link formation is independent,

allowing their realised links to differ. We can also compute the probability of a link between

two copies of the same individual, allowing them to be linked in the bootstrap graph. Green

and Shalizi (2022) prove that this dependence and bias is asymptotically negligible for motif

densities, but this is not necessarily true for other functions. Our simulations show that their

procedure does not perform well e.g. for eigenvalues other than the highest one.

Levin and Levina (2019) assume a specific functional form of the linking function.1 They

propose two methods: one in which they directly estimate a U-statistic and one in which they

generate a full network that can be used for estimating more general functions of a network,

including eigenvalues and measures of small-world behaviour. This is the only paper we are

aware of which provides results for functions of the entire network: they show that the entire

bootstrapped network converges to an independent copy of the original network in terms of a

new notion of Wasserstein network distance they define. Under our more general nonparametric

specification we are able to show convergence in terms of the same distance (see Theorem 2.4.1).

Lin, Lunde, and Sarkar (2020) propose a computationally efficient multiplier bootstrap for

motif densities, based on approximating the first (for large sparse graphs) or first and second

(for smaller denser graphs) order terms of a Hoeffding decomposition of the U-statistic. Their

method is specific to this class and, unlike ours, it cannot be extended to other types of network

functions. They show higher-order accuracy of their quadratic bootstrap using an Edgeworth

expansion. The theory of Edgeworth expansion for motif densities is developed Zhang and Xia

(2022) who show higher order correctness of a studentised version of the empirical bootstrap

of Green and Shalizi (2022). We believe similar methods could be used to show higher-order

accuracy of our method, but we do not pursue this direction in the current work.

Shao and Le (2024) provide a parametric bootstrap in a setting different from all the pre-

viously mentioned papers, where the nodes are non-exchangeable. In our notation this corre-

sponds to a situation in which the ξ and the matrix of link probabilities are fixed, h0,n takes

a known parametric form, and the randomness comes only from η. Their analysis focuses on

quantifying the bias and providing bias-corrected bootstrap procedure for motif densities.

The network setup is a special case of an exchangeable array.2 Papers which propose boot-

strap for exchangeable arrays include Davezies, D’Haultfœuille, and Guyonvarch (2021), whose

1They assume a random dot product graph with a linking function: h0,n(ξi, ξj) = ξ′iξj where ξi is a vector
of latent positions which can be interpreted as characteristics of individual i.

2Using notation from Davezies, D’Haultfœuille, and Guyonvarch (2021), our model is a special case of an
exchangeable and dissociated array with k = 2 and Uij corresponding to the randomness due to Bernoulli
trials τ(ui, uj , uij) = 1(h(ui, uj) ≤ uij). The kernels of U-statistics on networks can be represented as higher-
dimensional (2 ≤ k <∞) exchangeable arrays.
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method in our setting is identical to empirical bootstrap, and Menzel (2021), who proposes

a new wild bootstrap procedure based on splitting the statistic of interest into orthogonal

components, estimating them by sample analogues, and resampling each component with ap-

propriate scaling. Menzel (2021) also points out that, depending on the dependence structure,

the limiting distribution may be nonstandard. Their LLN and CLT results apply to functions

of finite k-dimensional subgraphs which take a form of U- or V-statistics (including degenerate

cases), their smooth functionals and Z-estimators. Their methods are local, they can be applied

to functions of finite subgraphs and cannot account for dependence over the whole adjacency

matrix, as in the case of eigenvalues or some centrality measures covered by our method.

In terms of the allowed level of sparsity, we impose a stronger requirement for acyclic motifs

than both models in Green and Shalizi (2022) as well as Lin, Lunde, and Sarkar (2020), but

our requirement is the same as for cycles in Lin, Lunde, and Sarkar (2020) and is weaker than

that for general motifs for Green and Shalizi (2022) empirical graphon. In comparison with

Green and Shalizi (2022) histogram graphon, our sparsity condition for general motifs becomes

weaker only when m > 4, and we also impose weaker conditions than L-Lipschitz on the linking

function. Levin and Levina (2019) only include sparsity considerations in one result, for acyclic

motifs and cycles. Their assumption is weaker than ours, which is not surprising given their

model is parametric.

Apart from bootstrap, other ways of estimating distributions of network statistics include the

asymptotic theory for motif densities provided byBickel, Chen, and Levina (2011). Subsampling

methods have been proposed by Bhattacharyya and Bickel (2015), who give results for motif

densities, and Lunde and Sarkar (2022), who provide consistency results for general functions

and specify them to two classes: motif densities and eigenvalues of graphons of finite rank.

Their methods require minimal assumptions and allow for sparser graphs than ours.

2.2.2 Other

In the proofs that our bootstrap procedure is reliable we use a framework inspired by Politis

et al. 1999. Our results can be seen as an extension of Bickel and Freedman (1981), the classic

paper providing conditions for consistency of bootstrap for U-statistics. We extend their analysis

to the case where the objective function becomes a U-statistic only after taking expectation

conditional on a vector of unobserved characteristics and after substituting the true linking

function for its estimator as the input to the kernel function. We show that our linking function

estimator converges to the true linking function in a sense which is sufficient for the bootstrap

equivalent to converge weakly in probability to the same limiting distribution as the object of

interest in the original sample. Because of the additional levels of approximation, we achieve a
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weaker notion of convergence than convergence weakly almost surely (see Definition 2.4.3) in

Bickel and Freedman (1981), but our result is still sufficient to provide asymptotically correct

bootstrap confidence intervals.

For our empirical application, we use the data and some of the codes from Banerjee, Chan-

drasekhar, Duflo, and Jackson (2013). We confirm their results using our method and we repeat

a part of their analysis under weaker assumptions: where the original paper performs the esti-

mation aggregating over many villages, we are able to provide estimates and confidence intervals

on individual village level. This way we relax the assumption that the parameter values are the

same across all villages and we show that there is heterogeneity between them. We are also able

to run a related model based on the strength of connections between household rather than the

less informative binary information on presence or lack of connection. We find that removing

this one level of approximation has a significant effect on our conclusions.

2.3 Model: setup, definitions and the bootstrap proce-

dure

2.3.1 Setup

We follow the standard setup in the literature (see e.g. Green and Shalizi (2022), Bhattacharyya

and Bickel (2015), Zeleneev (2020) and Auerbach (2022)) known as the latent space model. This

is the same setup as in Chapter 1.

We observe an adjacency matrix A which corresponds to an undirected, unweighted graph on

n nodes (also referred to as individuals) indexed by i ∈ {1, 2, . . . , n}. The matrix is symmetric,

has zeros on the main diagonal and ones in positions corresponding to edges in the graph

(Aij = 1 if and only if there is an edge between nodes i and j). For a vector of index numbers

ι = (ι1, . . . , ιm)
′
with ιi ∈ {1, 2, . . . , n} we let A(ι) denote the corresponding submatrix defined

on nodes in ι (i.e. A from which we remove rows and columns not in ι). Each node i is

characterised by a vector of unobserved features3 ξi, drawn independently from their common

distribution F0 with support Supp(ξi). We denote the vector of all {ξi}ni=1 by ξ and we let

ξ(ι) = (ξι1 , . . . , ξιm). We assume that the distribution has no point mass, i.e. for ξi, ξj ∼ F0 we

have4 PF0(ξi = ξj) = 0. We impose more assumptions5 on F0 in Assumption 1.2.

Let h0,n : Supp(ξi)× Supp(ξi) −→ [0, 1] be a symmetric, measurable linking function6 which

3This corresponds to the vector of latent positions Xi in Levin and Levina (2019).
4This is without loss of generality: if we had a distribution with a point mass we could define a new support

of ξ and a new F0 in which the point mass would be replaced by a region of ξ of total measure equal to the
probability at the original point.

5The assumptions are implicit and would be implied by F0 bounded above and separated away from zero
with h0,n piecewise Lipschitz.

6The linking function has been referred to as the coupling function g(., .) in Zeleneev (2020) and the graphon
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can be decomposed as:

h0,n(u, v) = ρnw0(u, v) (2.1)

where
∫
w0(u, v)dF0(u)dF0(v) = 1.

For each pair of nodes i, j, h0,n(ξi, ξj) maps their unobserved characteristics ξi, ξj into the

probability of a link (edge) between them, i.e. the probability with which Aij = 1. For concise

notation, we use h0,n(ξ(ι)) to mean the collection of pairwise linking probabilities between the

elements of ξ(ι). We treat the linking function as unknown, making minimal assumptions on

its properties in Assumption 1.2: we require that for each input there is a neighbourhood of

sufficiently large measure in which the behaviour of the function remains similar. Importantly,

we do not require a specific form (e.g. random dot product structure: h0,n(ξi, ξj) = ξ′iξj like in

Levin and Levina (2019)), we do not impose any shape constraints (e.g. that the function is

strictly increasing in its inputs).

The decomposition into ρn and w0 can be seen as a normalisation which allows us to interpret

ρn as the expected edge density (the marginal probability of an edge between two nodes). We

assume ρn −→ 0 as n −→ ∞, which captures sparsity. We specify bounds on the rate at which

ρn approaches zero which still allow us to reliably estimate parameters and their distributions.

For the linking function estimator we require that the density decreases at a slower rate than√
log(n)

n (see Assumption 1.1), while in other sections we may strengthen this requirement, e.g.

in Theorem 2.4.2 the allowed level of sparsity depends on how complicated the statistic we are

estimating is.

w0 is the underlying linking/graphon function after accounting for sparsity. While w0 cannot

be interpreted directly as a probability, it has similar properties, e.g. it is bounded.7 This is the

function which determines the data generating process and the function the statistics of which

we want to analyse. Although in a sample of size n we encounter its rescaled version h0,n, for

any asymptotic results we need to remove the effect of sparsity and we look at normalisations

which are function of
h0,n

ρn
.

To capture the way in which the linking function h0,n is translated into the observed links in

A we introduce a random noise parameter: for 1 ≤ i ≤ j ≤ n let ηij
ind∼ U [0, 1] be independent

function in Green and Shalizi (2022).
7This is a common assumption in the literature, though it is sometimes relaxed to allow w0(u, v) ∈ R+ and

let h0,n(u, v) = min{w0(u, v), 1}. This affects the interpretation of ρn as the density and makes it more difficult
to infer h0,m from h0,n. Our results could be generalised to allow for unbounded w0 at the expense of more
complicated proofs and additional assumptions on bounded moments of w0 or its functions.
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of ξ. We denote the vector of ηij by η. We assume:8

Aij = Aji = 1 (h0,n(ξi, ξj) ≥ ηij) (2.2)

Aii = 0. (2.3)

Note that E(Aij |ξi, ξj) = P (Aij = 1|ξi, ξj) = h0,n(ξi, ξj) = ρnw0(ξi, ξj). To distinguish between

adjacency matrices based on the true and estimated/simulated inputs we sometimes explicitly

write A as a function: A(h0,n(ξ), η).

2.3.2 The object of interest

We are interested in some property of the network and we have an estimate of this prop-

erty which is a function of the adjacency matrix. In order to learn about the property

of interest we want to approximate the distribution of its estimator. More precisely, let

fn(A(h0,n(ξ), η), ρn, F0), or fn(A) in short, be a function of the observed adjacency matrix

A based on Bernoulli trials with probabilities determined by a linking function h0,n of i.i.d

observations ξ from the distribution F0, on the sparsity ρn, and on the distribution F0 itself.

The distribution we would like to approximate is:

Jn (t, h0,n, F0) = P (fn (A (h0,n (ξ) , η) , ρn, F0) ≤ t) . (2.4)

Example. To fix ideas, suppose we want to learn about the density ρn = E(Aij). We may

want to test if it takes a specific value predicted by our theory, or we may wish to test if two

networks (or perhaps the same network at two points in time) have the same density level. We

can estimate the density using the density estimator from the observed adjacency matrix A:

ρ̂n =
1(
n
2

) ∑
1≤i<j≤n

Aij . (2.5)

We could use fn(A) = ρ̂n directly, or we could recentre and normalise the above expression:

fρn
n (A(h0,n(ξ), η), ρn, F0) =

√
n(

n
2

)
ρn

∑
1≤i<j≤n

Aij − EF0(h0,n(ξi, ξj)) (2.6)

to get a function which has a well-defined asymptotic distribution. The results in Theorem 2.4.2

imply that ρ̂n is consistent for ρn and fρn
n (A(h0,n(ξ), η), ρn, F0) is asymptotically normal. The

8This is one specific way of achieving:

Aij |ξ = Aji|ξ
ind∼ Bernoulli (h0,n(ξi, ξj))

Aii = 0
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finite-sample distribution is non-trivial and depends on F0.

Our goal is to find a good approximation to this finite-sample distribution, e.g. in order to

form confidence intervals for ρn. We do it by defining estimators ĥn of the linking function h0,n;

F̂n of the distribution of ξ; and ρ̂n of the density parameter. We use these estimates to form

B bootstrap adjacency matrices A
(
ĥn (ξ

∗
b ) , η

∗
b

)
, where the bth bootstrap adjacency matrix is

evaluated using ĥn based on ξ∗b from F̂n, the bootstrap equivalent of ξ, and η∗b is the bootstrap

equivalent of η.

We evaluate fn

(
A
(
ĥn (ξ

∗) , η∗
)
, ρ̂n, F̂n

)
for B bootstrap samples to get the simulated

distribution:

Ĵn,B

(
t, ĥn, F̂n

)
=

1

B

B∑
b=1

1
(
fn

(
A
(
ĥn (ξ

∗
b ) , η

∗
b

)
, ρ̂n, F̂n

)
≤ t
)
. (2.7)

For B large enough this provides an arbitrarily good approximation9 to Jn

(
t, ĥn, F̂n

)
and can

be used to approximate Jn (t, h0,n, F0).

In the reminder of this section we define all the estimators and the bootstrap procedure.

2.3.3 Linking probabilities estimator

To estimate linking probabilities we employ the estimator from Chapter 1. See there for details,

here we just restate the definitions.

Our estimator takes the form of a kernel estimator (weighted average of the presence of links

between individuals similar to i and j, weighted by the level of similarity to i). To capture the

similarity we use the distance between i and j:

dik =

√√√√E

(
E

(
Alm

ρn

(
Aim

ρn
− Akm

ρn

)∣∣∣∣ ξi, ξk, ξl)2
∣∣∣∣∣ ξi, ξk

)
.

We can estimate its normalised version from the observed adjacency matrix:

ρ2nd̂ik =

√√√√ 1

n

n∑
l=1

(
1

n

n∑
m=1

Alm (Aim −Akm)

)2

.

We let K(·) be a kernel function and an be a bandwidth parameter. We can estimate

h0,n(ξi, ξj) as:

9

PF0

(
sup
t

∣∣∣Ĵn,B(t, ĥn, F̂n)− Jn
(
t, ĥn, F̂n

)∣∣∣ > ε

)
≤ 4

√
2e−2Bε2 ,

see references on p.5 of Politis et al. (1999) for more details.
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ĥn(ξi, ξj) =
h̃n(ξi, ξj) + h̃n(ξj , ξi)

2

where

h̃n(ξi, ξj) =

∑n
t=1

t ̸=j

K
(

ρ4
nd̂

2
it

an

)
Atj∑n

t=1
t ̸=j

K
(

ρ4
nd̂

2
it

an

) .

We show that this estimator is uniformly consistent for h0,n in Theorem 1.

We propose a way to choose the bandwidth based on the observed sample: we pick an for

which the kernel estimator best justifies the observed ones and zeros. We define a leave-one-out

version of ĥn:

h̃−
n (ξi, ξj) =

∑n
t=1

t ̸=i,j

K
(

ρ4
nd̂

2
it

an

)
Atj∑n

t=1
t ̸=i,j

K
(

ρ4
nd̂

2
it

an

)
ĥ−
n (ξi, ξj) =

h̃−
n (ξi, ξj) + h̃−

n (ξj , ξi)

2
.

and use it to obtain an estimate for the log-likelihood:

ℓ(A, an) =

n∑
i=1

n∑
j=1

Aij log
(
ĥ−
n (ξi, ξj)

)
+ (1−Aij) log

(
1− ĥ−

n (ξi, ξj)
)
.

We choose an which maximises the above expression to be our bandwidth:

â = max
an

ℓ(A, an).

2.3.4 Empirical distribution function estimator

The formation of matrix A is determined by an initial sample of ξ from F0 and a linking

probability between any pair of elements from ξ. We have defined a way to estimate the linking

probabilities, but we still need a way to recreate the formation of ξ. This follows a very standard

procedure, with one twist. Since the elements of ξ are i.i.d. from F0, we should be able to use

a standard bootstrap (resample from the values from the original sample, with replacement) to

create a bootstrap equivalent. The non-standard part is that ξi are unobserved. We get around

it by resampling not directly from the set of ξi, but from the set of original nodes: we let each

bootstrap node correspond to one of the original nodes and we assign the set of characteristics

of a bootstrap node (ξ∗i ) to be equal to the set of characteristics of the resampled original node.
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The resulting distribution is an empirical distribution function F̂n defined as the CDF which

corresponds to the probability mass function:10

P (ξ∗i = x) =


1
n if x ∈ {ξ1, . . . , ξn}

0 otherwise.

(2.8)

Each bootstrap node corresponds to one of the original nodes and inherits its characteristics.

The result is the same as if we formed the set of bootstrap characteristics ξ∗ by resampling

from the original set of characteristics ξ, with replacement.

2.3.5 Nonparametric network bootstrap procedure

We now describe the bootstrap procedure for fn(A(h0,n(ξ), η), ρn, F0). Just for this section,

we introduce simplified notation for the matrix of estimated distances (D) and the matrix of

estimated linking probabilities (H).

1. Calculate the distance between each pair of nodes i, j ∈ {1, 2, . . . , n}:

Dij =
1

n

n∑
t=1

(
1

n

n∑
s=1

Ats (Ais −Ajs)

)2

.

2. Calculate the optimal bandwidth parameter â as described in Eq. (1.13).

3. Calculate the probability of a link between each pair of nodes i, j ∈ {1, 2, . . . , n}:

ĥn(ξi, ξj) =
1

2


∑n

t=1
t ̸=j

K
(
Dit

â

)
Atj∑n

t=1
t ̸=j

K
(
Dit

â

) +

∑n
t=1

t̸=i

K
(

Djt

â

)
Ati∑n

t=1
t ̸=i

K
(

Djt

â

)


4. Calculate the density estimate of the original graph: ρ̂n as described in Eq. (2.5).

5. For each b = 1, . . . , B:

(a) draw an i.i.d. sample {ξ∗b,i}ni=1 of size n from F̂n, i.e. resample from the original set

of nodes {1, 2, . . . , n} with equal probabilities and with replacement, then assign the

unobserved characteristics of the bootstrap node to be the same as the unobserved

characteristics of its corresponding original node. Let ξ∗b =
(
ξ∗b,1, . . . , ξ

∗
b,n

)′
.

(b) draw η∗b,ij
ind∼ U [0, 1] for 1 ≤ i ≤ j ≤ n.

10We would like to use the standard definition of an empirical distribution function:

F̂n(x) =
1

n

n∑
i=1

1 (ξi < x)

but unfortunately ξi are not observed, and may in general not be scalar, hence this notation does not apply.
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(c) form the bootstrap adjacency matrix A∗
b :

A∗
b,ij = A∗

b,ji = 1
(
ĥn(ξ

∗
b,i, ξ

∗
b,j) ≥ η∗b,ij

)
(2.9)

A∗
b,ii = 0. (2.10)

(e.g. if ξ∗b,i = ξt, ξ
∗
b,j = ξs then ĥn(ξ

∗
b,i, ξ

∗
b,j) = ĥn(ξt, ξs)).

(d) calculate the object of interest on the bootstrap adjacency matrix:

fn(A
∗
b) ≡ fn

(
A
(
ĥn(ξ

∗
b ), η

∗
b

)
, ρ̂n, F̂n

)
. (2.11)

6. Form a (1 − α)% confidence interval for fn(A(h0,n(ξ), η), ρn, F0) by taking the interval

between α
2 and 1− α

2 quantiles of {fn (A∗
b)}

B
b=1.

For a description of how we used this procedure in simulations see Section 2.5. For the codes

used in simulation see Section 2.B.1.

2.4 Main results

In this section we state our main results which characterise the conditions under which the

distribution of the bootstrap network and our entire bootstrap procedure are consistent. Since

we rely on the consistency of the liking probabilities estimator from Chapter 1, we operate

under the same set of assumptions:

Assumption 1 (The Assumptions for Uniform Consistency of the Linking Function Estimator).

We make the following assumptions:

1.1 1
ρn

= o

(√
n

log(n)

)
.

1.2 Let N(ξj , δ) =
{
ξk : supξt |w0(ξt, ξk)− w0(ξt, ξj)| < δ

}
denote the neighbourhood of ξj of

size δ and let ω(δ) = infξj∈Supp(ξj) P (ξk ∈ N(ξj , δ)| ξj). There exist some α,C > 0 such

that ω(δ) ≥
(
δ
C

) 1
α for all δ > 0.

1.3 K(·) is a kernel function which is

� a continuous bounded probability density function (non-negative: K(u) ≥ 0, inte-

grates to 1:
∫
K(u)du = 1),

� non-zero on a bounded support: there exists a D ∈ R such that ∀|u| > D : K(u) = 0,

� positive close to 0: there exist positive constants C1, C2 such that K(u) ≥ C1 when-

ever |u| ≤ C2,
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� Lipschitz continuous: there exists C > 0 such that |K(u)−K(v)| ≤ C|u− v|.

1.4 The bandwidth can be written as an = ρ4nbn for some bn = o (1) and

1
bn

= o

((
nρ2

n

log(n)

) α
1+2α

)
.

2.4.1 Consistency of the bootstrap procedure in terms of Wasserstein

distance

To show that the distribution of the bootstrap network approaches that of the original network

we follow the approach from Levin and Levina (2019) (see their Section 4 for more details

and motivation). We start by defining an appropriate notion of convergence between network

distributions. Firstly, let the graph matching distance be the proportion of edges that differ

between two graphs after their vertices have been aligned to minimise the number of such

differences:

Definition 2.4.1 (Graph matching distance). Let A1, A2 be two n × n adjacency matrices,

Πn be the set of n × n permutation matrices and let ∥A∥1,1 =
∑n

i=1

∑n
j=1 |Aij |. The graph

matching distance is:

dGM (A1, A2) = min
P∈Πn

(
n

2

)−1 ∥A1 − PA2P
′∥1,1

2
. (2.12)

Equipped with a distance between graphs we can define a distance between two distributions

over graphs by using the Wasserstein distance:

Definition 2.4.2. Let A1, A2 be the adjacency matrices of two random graphs on n vertices

and let Γ (A1, A2) be the set of all couplings of A1 and A2 (i.e. all joint distributions with

marginal distributions matching those of A1 and A2). For p ≥ 1 the Wasserstein p-distance is

given by:

Wp(A1, A2) = inf
ν∈Γ(A1,A2)

(∫
dpGM (A1, A2)dν

) 1
p

. (2.13)

Theorem 2.4.1. Let A be the observed adjacency matrix, let H be another adjacency matrix

drawn independently from the distribution of A and let A∗ be a bootstrap adjacency matrix

derived from A. Under Assumption 1:

W p
p (A∗, H) = op (ρn) . (2.14)

The graph matching distance is an upper bound on the cut metric, which in turn metrises

convergence of subgraph densities, hence Theorem 2.4.1 implies that all subgraph densities of
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A∗ converge to the same limit as those of H, proving that the bootstrap network distribution

converges to the original network’s distribution.

Remark. As noted by Levin and Levina (2019), this notion of convergence is not sufficient to

ensure that f(A∗) converges to the same distribution as f(H) for a general function f(·).

2.4.2 Consistency of the bootstrap procedure for U-statistics

Because the result of Theorem 2.4.1 is not sufficient to guarantee that the distribution of a

function of A∗ is close to the distribution of the same function of A, we show this directly for

an important class of functions with known limiting distributions.

Throughout this argument we use stars to denote the bootstrap equivalent, e.g. ξ∗i ∼ F̂n.

Appropriate notions of convergence

We start by introducing the definitions used in this section.

We choose fn that has a distribution limit (usually a normal random variable), i.e. we

assume Jn(t, h0,n, F0) ⇒ J(t, w0, F0) for some non-degenerate distribution J(t, w0, F0), where

“⇒” denotes weak convergence. One convenient way to characterise weak convergence is though

the following distance between measures: let P and Q be probability measures on a common

metric space S equipped with a distance dS and let

f(S) =

{
f : S −→ R : |f(x)− f(y)| ≤ dS(x, y), sup

x∈S
|f(x)| ≤ 1

}

be the set of (Lipschitz) continuous and bounded real-valued functions on S, then:

dW (P,Q) ≡ sup
f∈f(S)

∣∣∣∣∫ f(x)dP (x)−
∫

f(x)dQ(x)

∣∣∣∣ .
It can be shown11 that Pn ⇒ P if and only if dW (Pn, P ) −→ 0 as n −→ ∞.

In order to prove consistency of the bootstrap procedure we would like to show that the

distribution Jn

(
t, ĥn, F̂n

)
, the bootstrap equivalent of Jn(t, h0,n, F0), achieves the same asymp-

totic distribution J(t, w0, F0). Unfortunately, the concept of weak convergence cannot be ap-

plied directly to the bootstrap statistic because both the bootstrap distribution F̂n and the

estimator ĥn are random functions depending on the realisation of ξ, hence Jn

(
t, ĥn, F̂n

)
and

d
(
Jn(t, ĥn, F̂n), J(t, w0, F0)

)
are also random. To proceed, we define two new concepts which

generalise weak convergence to account for this randomness:

11See e.g. Proposition (M) in Chapter I of Hahn (1993)
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Definition 2.4.3. We say that Pn converges weakly to P almost surely, denoted by Pn
a.s.⇒ P ,

if dW (Pn, P )
a.s.−−→ 0. For Xn ∼ Pn, X ∼ P we write Xn

d−→ X almost surely.

Analogously,

Definition 2.4.4. we say that Pn converges weakly to P in probability, denoted by Pn
p⇒ P ,

if dW (Pn, P )
p−→ 0. For Xn ∼ Pn, X ∼ P we write Xn

d−→ X in probability.

Although this is a weaker requirement than regular convergence in distribution, Gine and

Zinn (1990), who introduced the concept of weak convergence in probability, show that this

notion is sufficient for the construction of asymptotically correct confidence intervals.

Distributions of intermediate terms

Since the elements of A exhibit dependence (e.g. Aij and Ajk both depend on ξj), it is relatively

difficult to work with fn(A(h0,n(ξ), η), ρn, F0) directly. We can instead consider its expectation

taken with respect to the Bernoulli trials with probabilities determined by h0,n(ξ):

f̃n (h0,n (ξ) , ρn, F0) ≡ Eh0,n
(fn(A(h0,n(ξ), η), ρn, F0)|ξ) (2.15)

where we have taken the expectation over η and the remaining object becomes a function of

the i.i.d. ξi.

Let J̃n denote the distribution of f̃n:

J̃n(t, h0,n, F0) = PF0

(
f̃n(h0,n(ξ), ρn, F0) ≤ t

)
. (2.16)

The limit of J̃n is easier to find than that of Jn, and the limits coincide if we can show that

fn − f̃n is negligible.

Remark. We often work with conditional expectations and switch between variables that fol-

low different distributions (e.g. the true distribution F0 and the estimated empirical distri-

bution F̂n). When we think it is beneficial to clarify, we add subscripts to the expectation

operator indicating with respect to which distribution we are taking the expectation. For ex-

ample, Eh0,n(fn(A(h0,n(ξ), η), ρn, F0)|ξ) =
∫
fn(A(h0,n(ξ), η), ρn, F0)dη indicates that we are

taking expectation with respect to the independent Bernoulli trials with probabilities deter-

mined by h0,n while Eh0,n,F0
(fn(A(h0,n(ξ), η), ρn, F0)) denotes the expectation with respect to

both the Bernoulli trials and the true distribution of ξ. The latter can also be written as

EF0

(
f̃n(h0,n(ξ), ρn, F0)

)
, where f̃n(h0,n(ξ), ρn, F0) has already been integrated over the

Bernoulli trials, hence its randomness only comes from F0, the true distribution of ξ.
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To illustrate the need for these intermediate terms we introduce an important class of

statistics for which f̃n take the form of a U-statistic.

Definition 2.4.5. Let ι be a set of m unique nodes, ξ be an n-dimensional vector of i.i.d.

draws from a distribution F and η an n-dimensional vector of independent draws from U [0, 1],

and ρ ∈ [0, 1] be the sparsity level. Denote the adjacency matrix on the subgraph with nodes in

ι by A(h(ξ(ι)), η(ι)).

Let g(A(ι)) : {0, 1}(
m
2 ) −→ R be a non-degenerate symmetric function from a subgraph on

m < ∞ nodes to the real line such that Eh0,n,F0(g(A(ι))) = θ, where θ is a parameter of

interest. We can estimate θ on the whole network A by

θ̂ =
1(
n
m

) ∑
1≤ι1<ι2<···<ιm≤n

g(A(ι)). (2.17)

To get the corresponding fn(A(h(ξ), η), ρ, F ) with a well-defined distribution we recentre and

normalise the above expression:

fU
n (A(h(ξ), η), ρ, F ) =

√
n(

n
m

)
ρτ(g)

∑
1≤ι1<···<ιm≤n

(g(A(h(ξ(ι)), η(ι)))− Eh,F (g(A(h(ξ(ι)), η(ι)))))

(2.18)

and

f̃U
n (h(ξ), ρ, F ) =

√
n(

n
m

)
ρτ(g)

∑
1≤ι1<···<ιm≤n

(g̃(h(ι))− EF (g̃(h(ι)))) (2.19)

where g̃(h(ξ(ι))) ≡ Eh(g(A(h(ξ(ι)), η(ι)))|ξ(ι)) and we choose τ(g) to get a normalisation for

which there exists a non-degenerate bounded function ˜̃g such that

g̃(h0,n(ι))

ρ
τ(g)
n

= ˜̃g(w0(ι)) +O (ρn) .

The choice of τ(g) is quite simple: it is the smallest number of ones such that g(·) evaluated

at a vector of τ(g) ones and
(
m
2

)
− τ(g) zeros is non-zero. The normalisation is not important

for practical applications. We introduce it in the definition because it is necessary to get a well-

defined asymptotic distribution (see Theorem 2.4.2, without the normalisation the limiting

value of the θ̂ would be 0), but we do not need it if our interest is in constructing a confidence

interval for θ. To see this, suppose θ and θ̂ are as above and let the bootstrap equivalent

of the estimator be θ̂∗b = 1

(n
m)

∑
1≤ι1<···<ιm≤n g(A

∗
b(ι)). We can calculate the estimator for B

bootstrap adjacency matrices and find a confidence interval for θ as
[
2θ̂ − θ̂∗U , 2θ̂ − θ̂∗L

]
where
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θ̂∗L = qα
2

({
θ̂∗b

}B

b=1

)
and θ̂∗U = q1−α

2

({
θ̂∗b

}B

b=1

)
. This way we get:

1− α ≃ P
(
2θ̂ − θ̂∗U < θ < 2θ̂ − θ̂∗L

)
≃ P

( √
n

ρ̂
∗τ(g)
n

(
θ̂∗L − θ̂

)
<

√
n

ρ̂
τ(g)
n

(
θ̂ − θ

)
<

√
n

ρ̂
∗τ(g)
n

(
θ̂∗U − θ̂

))
.

The above confidence interval for θ is a close approximation to the confidence interval for
√
n

ρ̂
τ(g)
n

(
θ̂ − θ

)
of the form

[ √
n

ρ̂
∗τ(g)
n

(
θ̂∗L − θ̂

)
,

√
n

ρ̂
∗τ(g)
n

(
θ̂∗U − θ̂

)]
. The consistency of ρ̂n and ρ̂∗n for

ρn follows from the proof of Theorem 2.A.2.

Example. We now show the relation between fn and f̃n on an example. Suppose m = 3, e.g.

ι = (1, 2, 3), and the function g only depends on two entries12 in A: g(A(ι)) = g(A1,2, A2,3).

Conditional on ξ, the Bernoulli trials that determine the entries of A are independent.

Hence, for example,

P (Aij = 1, Ajk = 1|ξ) = P (Aij = 1|ξ)P (Ajk = 1|ξ) = h0,n(ξi, ξj)h0,n(ξj , ξk).

It follows that

g(A1,2, A2,3)|ξ =



g(0, 0) with probability (1− h0,n(ξ1, ξ2))(1− h0,n(ξ2, ξ3))

g(0, 1) with probability (1− h0,n(ξ1, ξ2))h0,n(ξ2, ξ3)

g(1, 0) with probability h0,n(ξ1, ξ2)(1− h0,n(ξ2, ξ3))

g(1, 1) with probability h0,n(ξ1, ξ2)h0,n(ξ2, ξ3).

The conditional expectation is a function of h0,n(ξ(ι)):

E(g(A1,2, A2,3)|ξ) ≡ g̃(h0,n(ξ1, ξ2), h0,n(ξ2, ξ3))

= g(0, 0)(1− h0,n(ξ1, ξ2))(1− h0,n(ξ2, ξ3))

+ g(0, 1)(1− h0,n(ξ1, ξ2))h0,n(ξ2, ξ3) + g(1, 0)h0,n(ξ1, ξ2)(1− h0,n(ξ2, ξ3))

+ g(1, 1)h0,n(ξ1, ξ2)h0,n(ξ2, ξ3).

If g(0, 0) ̸= 0, the first term on the right is O(1) and dominates over the next terms. In

this case we choose τ(g) = 0. If g(0, 0) = 0 but g(0, 1) ̸= 0 or g(1, 0) ̸= 0, the dominating

12For simplicity in this example we used a function which is not necessarily symmetric. Before plugging it
into Eq. (2.18) we should symmetrise it in the following way:

ḡ(A(ι)) =
g(A1,2, A2,3) + g(A1,2, A1,3) + g(A1,3, A2,3) + g(A2,3, A1,2) + g(A1,3, A1,2) + g(A2,3, A1,3)

6
.
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term is proportional to (1 − h0,n(ξi, ξj))h0,n(ξj , ξk) = (1 − ρnw0(ξi, ξj))ρnw0(ξj , ξk) = O(ρn),

hence we choose τ(g) = 1 to normalise it. If g(0, 0) = g(0, 1) = g(1, 0) = 0 but g(1, 1) ̸= 0,

the dominating term is proportional to h0,n(ξi, ξj)h0,n(ξj , ξk) = ρ2nw0(ξi, ξj)w0(ξj , ξk) = O(ρ2n),

hence the correct normalisation is τ(g) = 2. When ρn −→ 0, only the dominating term influences

the limiting behaviour. We call this dominating term ˜̃g. In this example:

˜̃g(h0,n(ξ1, ξ2), h0,n(ξ2, ξ3)) =

=


g(0, 0) if g(0, 0) ̸= 0

g(0, 1)h0,n(ξ2, ξ3) + g(1, 0)h0,n(ξ1, ξ2) if g(0, 0) = 0, g(0, 1) ̸= 0, g(1, 0) ̸= 0

g(1, 1)h0,n(ξ1, ξ2)h0,n(ξ2, ξ3) if g(0, 0) = g(0, 1) = g(1, 0) = 0, g(1, 1) ̸= 0.

In all cases we have:

g̃(h0,n(ξ1, ξ2), h0,n(ξ2, ξ3))

ρ
τ(g)
n

= ˜̃g(w0(ξ1, ξ2), w0(ξ2, ξ3)) +O (ρn)

where the first term is O(1) and does not depend on the sample size n.

We will later do Taylor expansion of g̃, for which it is interesting to note that regardless of

whether g is a nice function (continuous, differentiable, etc.) of A, g̃ is (infinitely many times)

continuously differentiable in h0,n and has bounded derivatives. Taking a derivative of g̃ with

respect to h0,n lowers the power on the h0,n terms by one, hence if g̃ ∼ ρ
τ(g)
n then g̃

′ ∼ ρ
τ(g)−1
n

and g̃
′

ρ
τ(g)
n

= 1
ρn

.

Then

f̃n(h0,n(ξ), ρn, F0) =

√
n(

n
m

)
ρ
τ(g)
n

∑
1≤ι1<ι2<···<ιm≤n

(¯̃g(h0,n(ι))− EF0
(¯̃g(h0,n(ι)))) . (2.20)

We can think of the above as a function of the i.i.d. ξ. If g is symmetric, so is g̃(h0,n(·)), and the

f̃n(h0,n(ξ), ρn, F0) takes the form of a (normalised) U-statistic, for which we have results such as

LLN and CLT. Hence it is much easier to work with than the original fn(A(h0,n(ξ), η), ρn, F0)

(which was not a U-statistic due to the dependence in A).

Remark. It is usually not the case that f̃n has the same form as fn with Aij replaced with

h0,n(ξi, ξj), but it can happen in some special cases. One such example are motif densities, for

which the g function is a product of terms of the form Aij (if the motif has an edge between nodes

i and j) and (1−Aij) (if the edge is supposed to be missing). For example, if the motif of interest

is a triangle, we have g(Aij , Ajk, Aki) = AijAjkAki. This is 1 if all inputs are equal to 1 and 0 in

all other cases, hence g̃(h0,n(ξi, ξj), h0,n(ξj , ξk), h0,n(ξk, ξi)) = h0,n(ξi, ξj)h0,n(ξj , ξk)h0,n(ξk, ξi).
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Remark. Because in the proof of Theorem 2.4.2 we rely on a CLT for U-statistics applied to f̃n

instead of fn, the normalisation by 1

ρ
τ(g)
n

is chosen to balance the rate of growth of the variance

of g̃ rather than g. Take a simple example of g(Aij) = Aij. Then τ(g) = 1 and:

E

(g(Aij)

ρ
τ(g)
n

)2
 =

E (h0,n(ξi, ξj))

ρ
2τ(g)
n

=
1

ρ
τ(g)
n

−→ ∞

E

(E (g(Aij)| ξ)
ρ
τ(g)
n

)2
 =

(E (h0,n(ξi, ξj)))
2

ρ
2τ(g)
n

= O(1).

The following notation simplifies the statement of the theorem:

Definition 2.4.6. Set Mm: Let Mm be the set of all possible multisets13 of cardinality m

with elements from {1, 2, . . . ,m}.

That is, Mm contains all possible combinations of index numbers from 1 to m that are of

length m and can be all unique or have any value repeated any number of times.

We are now ready to state the final main result, which shows that for statistics which can

be represented as in Definition 2.4.5 and are non-degenerate (i.e. σ2
1 ̸= 0): 1. the limiting

distribution in probability of the bootstrap statistic is asymptotically normal and the same

as the limiting distribution of the original statistic and 2. the bootstrap is consistent, in the

sense that the finite-sample distribution of the bootstrap statistic approaches the finite-sample

distribution of the original statistic as the sample size increases.

Theorem 2.4.2. Let fU
n (A(h(ξ), η), ρ, F ) be as in Eq. (2.18). There exists a normalisation14

τ(g) and a function ˜̃g : Supp(ξ)m −→ R such that
g̃(h0,n(ξ(ι)))

ρ
τ(g)
n

= ˜̃g(w0(ξ(ι))) +O (ρn) and

0 < E (|˜̃g(w0(ξ(j)))|) < ∞ for all j ∈ Mm. If Assumption 1 holds and:

V arF0
(EF0

(˜̃g(w0(ξ(ι)))|ξι1)) ≡ σ2
1 > 0

n(
n
m

)
ρ
τ(g)
n

−→ 0

then

1. fU
n (A(h0,n(ξ), η), ρn, F0)

d−→ N(0,m2σ2
1) and

fU
n

(
A
(
ĥn (ξ

∗) , η∗
)
, ρ̂n, F̂n

)
d→ N(0,m2σ2

1) in probability.

2. supt

∣∣∣P (fU
n

(
A
(
ĥn (ξ

∗) , η∗
)
, ρ̂n, F̂n

)
≤ t
)
− P

(
fU
n (A (h0,n (ξ) , η) , ρn, F0) ≤ t

)∣∣∣ p−→ 0.

13A multiset is like a set but allows for repeated elements.
14For m = 2, if g(0) ̸= 0 we set ρ

−τ(g)
n = 1, ˜̃g (w0 (ξi, ξj)) = g(0) and if g(0) = 0 but g(1) ̸= 0 we set

ρ
−τ(g)
n = 1

ρn
and ˜̃g (w0 (ξi, ξj)) = g(1)w0 (ξi, ξj). More generally, for m ≥ 2, ρ

−τ(g)
n = 1

ρkn
where k is the

smallest number of ones such that g(·) evaluated at a vector of k ones and
(m
2

)
− k zeros is non-zero.
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In the above theorem we add two new assumptions on top of those in Assumption 1. The first

one, σ2
1 ̸= 0, restricts our attention to non-degenerate U-statistics. Levin and Levina (2019)

claim that in the case of degenerate U-statistics the approximation error is of a comparable

size to the leading term, implying that their bootstrap cannot recover the distributions of

degenerate U-statistics. As explained in Serfling (2009) section 5.5, in the degenerate case the

correct normalisation would be of the form n
c
2

(n
m)ρ2

n

for some c ≥ 2 and we would expect a more

complicated limiting distribution than normal. In that case fn − f̃n = O

(√
nc

(n
m)ρ2

n

)
, which

could go to zero sufficiently fast to remain negligible. We suspect that recovering distributions

of degenerate U-statistics could still be possible with our method but we leave the detailed

analysis for future work.

The other condition: n

(n
m)ρ

τ(g)
n

−→ 0 gives a restriction on the allowed level of sparsity. We

require 1
ρn

= o
(
n

m−1
τ(g)

)
, where τ(g) ∈ {0, 1, . . . ,

(
m
2

)
}. For sufficiently large τ(g) this condition

may be stronger than Assumption 1.1. This is not surprising: large τ(g) means that the function

g takes non-zero values only for very rare events, and these events are even less common in

sparser graphs. Hence to be able to maintain consistency we need to restrict the allowed level

of sparsity.

This condition is needed to ensure that the fn − f̃n term does not affect the limiting distri-

bution. If n

(n
m)ρ

τ(g)
n

= O(1), the limit of this term would affect the resulting distribution and the

overall limit would be the current one plus the limit of this adjustment term. If n

(n
m)ρ

τ(g)
n

−→ ∞

this adjustment term would dominate the asymptotic behaviour. In that case we would need

to use normalisation by n

(n
m)ρ

τ(g)
2

n

. The currently dominating term under the new normalisation

would go to zero. Deriving the distribution of the new dominating term is difficult due to a

high level of dependence between the elements of A.

Remark. Green and Shalizi (2022) specify the maximal allowed level of sparsity in two cases:

when the motif is acyclic they assume 1
ρn

= o (n) and for a general motif they require 1
ρn

=

o
(
n

1
2m

)
for the empirical graphon and the weaker condition of 1

ρn
= o

(
n

2
m

)
for a general

linking function estimator, e.g. their histogram graphon.

These conditions are weakly stronger than our 1
ρn

= o
(
n

m−1
τ(g)

)
: when g(·) corresponds to

an acyclic motif15 we have τ(g) ≤ m − 1, hence m−1
τ(g) ≥ 1; when g(·) corresponds to a general

motif16 we have τ(g) ≤
(
m
2

)
, hence m−1

τ(g) ≥ 2
m ≥ 1

2m .

However, for consistency of our linking function estimator we require 1
ρn

= o

(√
n

log(n)

)
,

which is stronger than the 1
ρn

= o (n) condition for acyclic motifs. For general motifs, our

condition is always weaker than the condition needed for the empirical graphon. In comparison

15τ(g) corresponds to the number of edges in the motif and m denotes the number of vertices. The maximal
number of edges in an undirected acyclic graph on m nodes is m− 1.

16The maximal number of edges in an undirected graph on m nodes is
(m
2

)
.
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with 1
ρn

= o
(
n

2
m

)
for histogram graphon, our condition is weaker when m > 4 and stronger

for m ≤ 4.

One of the motivations for looking at this class of functions on networks is that it contains

subgraph densities, which can be viewed as ‘network moments,’ in the sense that if two networks

match on the densities of all subgraphs they come from the same network generating distribu-

tion. Theorem 2.4.2 implicitly shows that the bootstrap network distribution converges to the

distribution of the original network. However, as the subgraphs become more complicated we

need to impose stronger conditions on sparsity, meaning that full convergence of all subgraphs

would only follow for dense models in which ρn does not go to 0.

There are other linking function estimators (e.g. Zhang, Levina, and Zhu (2017)) and

alternative ways to resample nodes. The next result characterises the conditions needed for

consistency of the class of functions considered in Theorem 2.4.2 when we replace the (ĥn, F̂ )

in our procedure with alternative estimators of (h0,n, F0).

Lemma 2.4.1. Theorem 2.4.2 holds for any estimators (hn, Fn) of (h0,n, F0) which satisfy:

1. EFn

((
1
ρn

(
hn(ξ

∗
i , ξ

∗
j )− h0,n(ξ

∗
i , ξ

∗
j )
))2) p−→ 0.

2. EFn (f (ξ∗(ι)))
p−→ EF0 (f (ξ(ι))) for all f : Supp(ξ)k −→ R such that EF0 (|f (ξ(ι))|) < ∞

for all ι ∈ Mk, for any k ≤ 2m− 1.

In the proofs in Section 2.A we restate Theorem 2.4.2 in a generalised way which incorporates

the conditions given in Lemma 2.4.1.

A consequence of Theorem 2.4.2 is that the bootstrap procedure can consistently recover

critical values and asymptotically valid confidence intervals, as stated in Corollary 2.4.1. In

order to be able to define the confidence intervals and comment on their coverage we need an

inverse of the bootstrap distribution, but Jn

(
t, ĥn, F̂n

)
may not necessarily be continuous or

strictly increasing in t, hence it may not be invertible in the standard sense. Because of this we

define the inverse of a distribution in the following way:

Definition 2.4.7. Let:

J−1(α, h, F ) ≡ inf {t : J(t, h, F ) ≥ α} (2.21)

be the αth quantile of the distribution J(t, h, F ).

Corollary 2.4.1. Under the conditions of Theorem 2.4.2:

1. J−1
n

(
1− α, ĥn, F̂n

)
p−→ c1−α, where c1−α is the 1− α critical value17 from N(0,m2σ2

1).

17I.e. Φ

(
c1−α

m2σ2
1

)
= 1− α where Φ(·) denotes the CDF of N(0, 1).
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2. If F0 does not enter the function fU
n directly but only through a parameter18 θ:

fU
n (A(h0,n(ξ), η), ρn, θ),

then the (1− α) confidence interval for θ constructed as:

CIn

(
1− α,A, ĥn, F̂n

)
=
{
θ : J−1

n

(α
2
, ĥn, F̂n

)
≤ fU

n (A, ρ̂n, θ) ≤ J−1
n

(
1− α

2
, ĥn, F̂n

)}
(2.22)

is asymptotically valid:

Ph0,n,F0

(
θ ∈ CIn

(
1− α,A, ĥn, F̂n

))
p−→ 1− α. (2.23)

In defining the bootstrap statistic and forming confidence intervals we do not normalise the

fn(·) by the estimated variance. This is in part because the variance estimators may not be

readily available, and even when they are, they tend to be complicated (e.g. for the subclass

of motif densities Green and Shalizi (2022) Lemma 2 gives an expression for an estimator of

variance. It is derived combinatorially by considering all motifs that can be achieved by merging

two copies of the motif of interest on partially overlapping sets of nodes). Another reason is

that, as pointed out by Hahn (1993), convergence weakly in probability ensures convergence of

moments over the set of bounded and Lipschitz continuous functions, which does not include

f(x) = x2, meaning that weak convergence in probability of our bootstrap estimator does

not guarantee the consistency of its variance. When properties of the variance estimate are

unknown, it is safer to use the percentile method for the construction of confidence intervals.

However, when a reliable variance estimate is known, normalising the statistic of interest

by the estimate of its standard deviation could improve the performance of the bootstrap

procedure. While we do not analyse the rates theoretically, the logic should be close to the

case of standard bootstrap, where Edgeworth expansion arguments show that a normalised

bootstrap with a pivotal limiting distribution can achieve a faster rate of convergence, see e.g.

Hansen (2014) sections 10.8-10.11.

2.5 Simulations

We test the performance of our procedure using Monte Carlo simulations. We simulate the true

adjacency matrices for ξi
iid∼ U [0, 1] and one of the following linking functions:

1. dot product function: h(ξi, ξj) = ρnξiξj . This is the parametric form assumed by Levin

18For example in equation (2.18) we have θ = Eh0,n,F0
(g(A(ι))).
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and Levina (2019), it is a relatively simple function and a good benchmark.

2. horseshoe function: h(ξi, ξj) =
ρn

2

(
e−200(ξi−ξ2j )

2

+ e−200(ξj−ξ2i )
2)

. This function was also

used by Green and Shalizi (2022). They borrow it from Wang (2016), who described it

as “a challenging example for graphon estimation.”

3. high-density function:

h(ξi, ξj) =
ρn

0.975

(
1− 1

(∣∣ 1
2 − ξi

∣∣ ≤ 1
20

)
1
(∣∣ 1

2 − ξj
∣∣ ≤ 1

20

)) (
1− 1

2

(∣∣ 1
2 − ξi

∣∣+ ∣∣ 12 − ξj
∣∣)).

The previous two functions had relatively low density (by construction, ρn ≤ 0.25 for the

dot product function and ρn ≤ 0.113 for the horseshoe function). This final function has

ρn ≤ 0.759, allowing us to test the performance with higher density levels.

The plots of these functions are included in Section 2.B.3.

In the estimation procedure we use the normal kernel: K(u) = e−
u2

2 and the bandwidth â

chosen by maximising ℓ(A, an), as described in Section 1.3.4.

We test the performance of the algorithm for a range of statistics which have economic

interpretation, some of them are covered by our Theorem 2.4.2 while other are not, including

some which are much more complicated to compute.

� density: fn(A) = 1

(n2)

∑∑
1≤i<j≤n

Aij , i.e. the number of edges divided by the number of

possible edges. This function is useful for normalisation and is an example of a U-statistic.

� triangle density: fn(A) =
(
n
3

)−1 ∑∑∑
1≤i<j<k≤n

AijAjkAik, i.e. the proportion of all subsets of

3 nodes that are fully connected. This is another example of a U-statistic, but of a more

complicated form. It can be used to measure clustering.

� transitivity: fn(A) = 3#triangles
#triads =

tr(A3)∑n
i=1

∑n
j=1(A

2)ij−tr(A2) , i.e. the ratio of fully con-

nected triples to connected triples. This statistic can be seen as the extent of triadic

closure (the tendency of people who have a common friend to become friends with each

other) and can be used as a measure of the ability of a group of people to maintain

cooperation.

� kth largest eigenvalue of the adjacency matrix: fn(A) = λk(A). The eigenvector of the

largest eigenvalue can be used as a measure of centrality, or the level of influence of

individuals in a network. The other eigenvalues are also informative, e.g. the second

eigenvalue of a normalised adjacency matrix, known as spectral homophily, can be seen

as a measure of cohesiveness (Chetty et al. 2022), similar to transitivity.

� maximal betweenness centrality:

fn(A) = maxi
∑

j,k
# shortest paths between j and k through i

# shortest paths between j and k . This is another measure of
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how influential a person is, how well they are connected, which is an important deter-

minant of, for example, how effective they would be at spreading information (Banerjee,

Chandrasekhar, Duflo, and Jackson 2019) or holding someone accountable in their saving

goal (Breza and Chandrasekhar 2019).

� modularity of the Louvain community detection algorithm: for a given partition of nodes

into communities, modularity is defined as the proportion of edges within communities

minus the proportion if the edges were distributed at random. The Louvain community

detection algorithm aims to find a partition which maximises modularity by iteratively

moving nodes to communities and aggregating communities until no further improvement

is possible. We used functions ‘louvain communities’ and ‘modularity’ from the Python

networkx package, see their documentation for precise definitions.

A difficulty in running Monte Carlo simulations is that for each confidence interval coverage

we need to generate 1000 true graphs, and for each of those we need 1000 bootstrap graphs,

hence for each data point in our plots and tables we need to evaluate the statistic of interest a

million times. Some of the above statistics take a bit of time to estimate, making the simulation

process slow. To overcome this issue and to speed up the simulations we obtain the confidence

interval coverage using the WARP procedure from Giacomini, Politis, and White (2013). The

idea is that the distribution of deviations between the true graph and its bootstrap version

should be similar for each true graph, hence we can generate 1000 true graphs, get only one

bootstrap graph for each of them, and calculate the deviations for each true-bootstrap pair.

Then we can pretend we got 1000 bootstrap graphs for each true graph by adding these devia-

tions to the true graph. It is a clever trick which allows us to generate only one bootstrap graph

for each true graph, making the computation time close to 500 times faster. The procedure is

as follows:

1. Generate S true adjacency matrices on n nodes using the same true linking function

(usually S = 1000, n between 25 and 1000).

2. For each true adjacency matrix As:

(a) Find the optimal bandwidth âs = maxa ℓ(As, a).

(b) Calculate the matrix ĥn,s based on As with bandwidth âs.

(c) Resample n nodes of As to form the nodes of the bootstrap graph.

(d) Generate a single bootstrap adjacency matrix A∗
s,1 by adding an edges between nodes

with probabilities determined by ĥn,s.

Note that the number of bootstrap replications is B = 1.
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3. Estimate the true value by the average of the statistic evaluated for the true graphs:

f
(true)
n = 1

S

∑S
s=1 fn(As) (or use the theoretical true value, if known).

4. Calculate the deviation of the statistic in the bootstrapped graph from the statistic eval-

uated for the corresponding true graph: fn(A
∗
s,1)− fn(As) for all s ∈ {1, . . . , S}. Denote

the αth quantile of the empirical distribution of this set by q̂α

({
fn(A

∗
s,1)− fn(As)

}S
i=1

)
.

5. Calculate the confidence intervals as: CLs = [CLl
s, CLu

s ], where

CLl
s = fn(As)− q̂1−α

2

({
fn(A

∗
s,1)− fn(As)

}S
i=1

)
CLu

s = fn(As)− q̂α
2

({
fn(A

∗
s,1)− fn(As)

}S
i=1

)
.

6. Store the empirical coverage, i.e. the proportion of confidence intervals which cover the

true value: 1− α(emp) = 1
S

∑S
s=1 1

(
CLl

s ≤ f
(true)
n ≤ CLu

s

)
.

The following plots and tables show results of some of our simulations. The code used in the

simulations can be found in Section 2.B.1 and tables with more results are in Section 2.B.2.

(a) Confidence interval coverage for density. (b) Confidence interval coverage for λ1.

Figure 2.1: Confidence interval coverage for different sample sizes n based on Monte Carlo
simulations using the product generating function and ρn = 0.1875.

We start by looking at the confidence interval coverage for different values of n, ρn and α.

From Fig. 2.1 we can see that performance at different α is quite similar, but larger values

have proportionally larger deviations and allow us to see the trend more clearly. This is why,

although in practice we tend to be most interested in the 95% confidence intervals, we present

results for 70% or 80% in most of our plots. From Fig. 2.2 we can see that at a constant

density level (no sparsity, ρn does not decrease with n) the performance improves with sample

size. For n ≥ 250 all statistics achieve good confidence interval coverage levels, although not

always perfect: we may get coverage of e.g. 60% instead of 70%. As the sparsity level increases

(ρn −→ 0), the performance tends to get worse, but remains close to desired for statistics which

are easier to estimate (e.g. density, triangle density, or the highest eigenvalue) while it gets
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significantly worse for more complicated statistics (e.g. λ10). To some extent, we may be able to

overcome these issues by changing the choice of bandwidth, as we describe below. The bottom

two panels check performance for sparsity levels at which our theoretical results do not give

any performance guarantees: as expected, the performance is poor in those cases.

Figure 2.2: 70% confidence interval coverage for a range of statistics for the horseshoe generating
function at different levels of sparsity. The sparsity levels are normalised to ρn = 0.113 at n = 25
and go down with n at the rates indicated above each subplot.

Next we compare the performance of different variations of our method and some of the

existing competitor methods. Fig. 2.3a shows that variations of our method (HK1 and HK2)

perform very similarly: we choose to use HK1 as the main method since HK2 is more com-

putationally intensive and HK1 shows slight advantage for sparse graphs. Our method with

Zhang, Levina, and Zhu (2017) linking function estimator (HNN1) performs slightly worse and

its performance drops more significantly for sparser graphs. We believe this is mostly due to the

choice of bandwidth (the estimator in Zhang, Levina, and Zhu (2017) relies on the theoretical

optimal bandwidth instead of our numerically chosen â). For U-statistics the empirical boot-

strap of Green and Shalizi (2022) performs very well and remains good even at sparsity levels

our methods cannot handle. This suggests that for sparse graphs we may want to consider

lower bandwidth choice than â, which would make our method more similar to the empirical

bootstrap. The dot product bootstrap of Levin and Levina (2019) is presented for the correctly
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specified case of k = 1, as well as for k = 3. This method should have an advantage over the

other ones since it is parametric and for k = 1 it is based on a correctly specified functional

form of the linking function. However, it achieves coverage which is too high, over 90% instead

of the required 70%. In simulations, we have seen that many estimates of linking probabilities

ended up outside of the [0, 1] region, which we believe is the reason why Levin and Levina

(2019) estimators ended up biased. Their method should work better at larger sample sizes.

The linear and quadratic methods from Lin, Lunde, and Sarkar (2020) are very similar to each

other and suffer from the same issue of giving confidence intervals with higher coverage than

desired.

(a) Density: 70% confidence interval coverage
across different methods.

(b) Triangle density: 80% confidence interval
coverage across different methods.

Figure 2.3: Confidence interval coverage for different methods using the product generating
function. We compare: HK1 (our main method based on ĥ ≡ ĥ(K1) with â), HK2 (our boot-

strap method but using the linking function estimator ĥ(K2) with a(optK2) based on ĥ(K2)),

HNN1 (our bootstrap method but but using the linking function estimator ĥ(NN1) from Zhang,
Levina, and Zhu (2017) with their optimal choice of neighbourhood size), emp (empirical boot-
strap from Green and Shalizi (2022)), dot prod k (the bootstrap method from Levin and Levina
(2019) based on assuming a k-dimensional ξi), asymptotic estimated variance (the asymptotic
distribution from Bickel, Chen, and Levina (2011) with variance estimated according to the for-
mula in Green and Shalizi (2022)), asymptotic infeasible variance (the asymptotic distribution
from Bickel, Chen, and Levina (2011) with the true theoretical variance), LLS L and LLS Q
(the linear and quadratic methods from Lin, Lunde, and Sarkar (2020)).
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Most of the competitor methods can only be applied to U-statistics. An exception is the

empirical bootstrap, which can be seen as a limiting case of our procedure with bandwidth

close to 0. From Fig. 2.4 and Fig. 2.5 we can see that the empirical bootstrap would perform

very poorly for statistics such as lower eigenvalues, max betweenness centrality and Louvain

CDA modularity. There is also a version of the dot product bootstrap Levin and Levina (2019)

which applies to more general functions, but, probably due to our bad coding or relatively

small sample sizes, we were getting many estimated probabilities outside of [0, 1] which led to

very bad performance, likely not representative of the quality of their method, and is hence not

presented here.

We have seen poor coverage for some of the more complicated statistics of interest, and in the

final set of simulations we explore if this could be improved by choosing a different bandwidth

than â. We look at câ for a range of constants c. In Fig. 2.4 the confidence interval coverage

for simple statistics such as density, triangle density or the largest eigenvalue is good at the

default bandwidth and not too sensitive to the bandwidth choice: the performance remains

good between 0.01â to 4â. However, other statistics, such as eigenvalues below the largest one

(e.g. λ2, λ3 and λ10 in Fig. 2.4) have poor coverage for the default choice of with c = 1, and low

values of c. Luckily, in those cases we can fix the problem by choosing a wider bandwidth: the

confidence interval coverage for c ≃ 2 remains very good. Hence for more complicated statistics,

we need to be careful and check the performance not only at the default bandwidth choice but

also at e.g. half or twice the default bandwidth.

Figure 2.4: Confidence interval coverage for different bandwidths c× â: comparison of different
statistics at α = 0.3, n = 300 and ρn = 0.1875 based on Monte Carlo simulations using the
product generating function.

These issues do not always arise: Fig. 2.5 shows an example when all statistics perform well
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for our default choice. For most statistics using a smaller bandwidth is not an issue: they do

reasonably well for c ≤ 1, even as small as c = 0.01, although they do not perform as well as

for c close to 1. However, this is not universally true: some statistics, such as λ10 and maximal

betweenness centrality, have very poor coverage outside of the region of 0.9 ≤ c ≤ 1.25. The

coverage for all statistics gets significantly worse when we use wider bandwidths (c ≥ 10).

Figure 2.5: Confidence interval coverage for different bandwidths c× â: comparison of different
statistics at α = 0.3, n = 500 and ρn = 0.1125 based on Monte Carlo simulations using the
horseshoe generating function.

(a) Confidence intervals for different statistics
for the product generating function at n = 300
and ρn = 0.125.

(b) Confidence intervals for different statistics
for the horseshoe generating function at n =
500 and ρn = 0.1125

Figure 2.6: Confidence intervals for different statistics and for bandwidths c × â based on
B = 1000 bootstrap graphs.

When the graph is sufficiently large and dense, c close to 1 gives good performance of most

statistics we have checked. However, the performance does depend on the bandwidth choice and

some statistics may be estimated poorly with the default bandwidth, especially when the graph
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is relatively sparse and the statistic is more complicated. In those cases, experimenting with

different values of c could give more reliable results. This is one advantage of our method over

the empirical bootstrap (which can be seen as a limiting case of our model with c = 0): while

at the default setting both algorithms may be bad at estimating confidence intervals for lower

eigenvalues, the performance of our method can be improved by selecting a larger bandwidth

(oversmoothing) while the empirical bootstrap does not depend on any parameters that could

be tweaked in a similar way.

The possibility of a poor performance at â raises a question: how can we choose the best

bandwidth in an application, when we only have one observed network and no way to run a

Monte Carlo simulation confirming the coverage? Luckily, there is an easy rule-of-thumb way

to verify our choice. Fig. 2.6 shows an example of bootstrap confidence intervals formed from

B = 1000 bootstrap replications for different statistics of a specific single true graph A esti-

mated using different bandwidths. We can use it in the following way: if the statistic estimate

from the original graph is in the middle of the confidence interval formed by bootstrapped

graphs, the choice of the bandwidth is good. In Fig. 2.6a we see that density is always esti-

mated relatively well, transitivity remains well-estimated for smaller than optimal bandwidths

but is underestimated when the bandwidth is too large, and λ3 is overestimated for smaller

than optimal bandwidths but remains well estimated for larger than optimal bandwidth. In

simulations, we have noticed a pattern that when the true value is above the estimated confi-

dence interval lowering the bandwidth tends to improve the performance, while when the value

from the original graph is below the confidence interval increasing the bandwidth often solves

the problem. However, this is not always true: the lowest panel in Fig. 2.6b shows that λ10 is

overestimated when bandwidth is either too low or too high compared to the optimal one. The

middle panel also shows that the choice of a statistic does not determine the behaviour: for the

horseshoe function λ3 is better estimated for lower bandwidths and underestimated for higher

ones, which is a different pattern than that of λ3 from the product generating function in the

bottom of Fig. 2.6a.

2.6 Application: the Diffusion of Microfinance

For our application, we use the data from Banerjee, Chandrasekhar, Duflo, and Jackson (2013),

a paper which analyses how information about microfinance spreads through social networks

in 43 villages in India.

Prior to the introduction of a microfinance program they surveyed households in these

villages and formed a network of connections based on 12 binary signals indicating if households
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knew each other (e.g. did they visit each other’s homes, lend each other money, etc.). Each

of these variables could be seen as a our A matrix, or we could combine them by taking a

union, like in the original paper, to get an overall adjacency matrix. This is compatible with

out framework: the closer two households are, the higher the probability that they will report

each other as connected, hence we can view the reporting of a connection (Aij = 1) as a signal

from a Bernoulli distribution with probability of success proportional to the closeness of their

friendship (h0,n(ξi, ξj)).

Once the microfinance program entered the villages, they observed a set of first-informed vil-

lagers (injection points, chosen because they were village leaders who tend to be well-connected)

and subsequent participation by households over a number of years.

One of the goals of the paper is to understand how the information about the program

was spreading through the villages. This is modelled by a parametric diffusion model. Firstly,

the probability pit of household i with characteristics Xi participating when first informed is

estimated from the logistic function:

log

(
pit

1− pit

)
= X

′

iβ.

The parameter β̂ is estimated using the information about the leaders only. The aim is to

estimate the probability of transferring information about a microfinance program by people

who participate in it themselves (qP ) and by those who know about it but do not participate

(qN ). This is done by simulating the information spreading over time discretised into T periods

(trimesters). In each period the newly informed decide whether to participate (mit = 1) with

probability pit, then each informed household spreads the information to its neighbours with

probability mitq
P + (1−mit)q

N .

For each village v and for each set of discretised parameter values
(
qP , qN

)
they simulate

the spread of information and adoption decisions, and then calculate moments msim,v

(
qP , qN

)
based on the final set of participating households (e.g. the fraction of households that have

no participating neighbours but participate themselves, or the covariance of households par-

ticipating in the program with the share of second neighbours that are participating). The

average of these simulated moments across S simulations is compared to the observed empirical

moments for the given village, memp,v. They then choose the parameter values which minimise

the average of a function of deviation of simulated moments from empirical moments across all
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villages:

(q̂P , q̂N ) =

= arg min
qP ,qN

(
1

43

43∑
v=1

msim,v

(
qP , qN

)
−memp,v

)′

Ŵ

(
1

43

43∑
v=1

msim,v

(
qP , qN

)
−memp,v

)
.

where Ŵ = 1
43

∑43
v=1

(
msim,v

(
q̃P , q̃N

)
−memp,v

) (
msim,v

(
q̃P , q̃N

)
−memp,v

)′
for a first-stage

estimates q̃P , q̃N obtained by using I as the weighting matrix. To form confidence intervals

they use bootstrap which resamples whole villages. The resulting estimates are shown as the

“Original” ones in Fig. 2.7.

Figure 2.7: Estimates of qP (left) and qN (right) with 95% confidence intervals based on
aggregating all villages: a comparison of the original result from Banerjee, Chandrasekhar,
Duflo, and Jackson (2013) and our two methods.

The original paper considers a few variations of the model, including one which allows for

endorsement effects. We only consider the information model without endorsement because

it is less computationally demanding (the parameters are identified using a grid search and

increasing the dimension of the parameter space by one leads to an exponential growth in the

number of required simulations) and the original paper did not find evidence of a significant

endorsement effect.

In our replication we use the same procedure for finding the parameters but we use our

bootstrap to form confidence intervals. Instead of resampling whole villages we can estimate

the matrix ĥn for each of the villages19 and use it to generate B = 1000 new sets of 43 villages

with structures similar to the original ones. We can then repeat the whole estimation procedure

for each new set of villages and obtain bootstrap estimates (q̂∗Pb , q̂∗Nb ). The confidence intervals

are formed by taking the α
2 and 1 − α

2 quantiles for the distributions of q̂∗Pb and q̂∗Nb . These

19The villages are assumed to be independent due to relatively large geographical distances between them.
If they were not independent we could treat all households as belonging to one larger network.
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estimates are presented in Fig. 2.7 as the “A bootstrap”. They are very similar to the original

estimates, with slightly narrower confidence intervals.20

The replication of the original result indicates that our method performs well, though it

would not be advised in this situation because it is much more computationally demanding than

the original bootstrap. However, with our setup we can do more. It is reasonable to assume that

the spread of information is more likely between households which have a stronger connection

(higher h0,n), i.e. we can view the current model as an approximation to the true model in which

the probability of spreading information depends not on the binary connection status Aij , but

on the actual strength of connection h0,n (ξi, ξj). Since ĥn estimated as part of our procedure is

a consistent estimate of h0,n, we can repeat the simulations using a diffusion model based on ĥn

rather than on A (the imperfect signal about h0,n). We assume that in any period t ∈ {1, . . . , T}

the informed individual i spreads the information to another individual j with probability

ĥn (ξi, ξj)
(
mitq

P + (1−mit)q
N
)
. The rest of the estimation procedure remains unchanged.

The resulting estimates are reported as the “ĥ bootstrap” estimates in Fig. 2.7. The confidence

intervals are now much narrower than in the previous two cases and the conclusions differ as

well: qP is estimated to be higher (point estimate 0.45, 95% confidence interval [0.4, 0.55]) while

qN is essentially zero (point estimate 0.002, 95% confidence interval [0, 0.009]).

This contrasts with the findings of Banerjee, Chandrasekhar, Duflo, and Jackson (2013)

who highlight the importance of non-participants in the diffusion process by showing that

constraining qN to be equal to zero leads to simulated participation dropping21 from 20.0% to

13.97%. Our model shows that if we use a diffusion model based on ĥn instead of A the estimated

value of qN is not distinguishable from zero and the simulated participation drops from 18.46%

at the optimal values to 18.21% when we restrict qN to 0, a drop of one seventy-fifth instead

of one third. Using the more realistic assumption that the likelihood of spreading information

depends on how well the households know each other removes the need for information spreading

by non-participants.

Another extension made possible by our model is performing the analysis on individual

village level. So far, we have assumed that the parameters are common across all villages,

and with the original bootstrap resampling whole villages there was no way to form confidence

intervals on at the village-level. With our bootstrap method, instead of minimising a (weighted)

average of deviations of simulated moments from empirical moments across all villages, we can

minimise them for each individual village. This allows us to:

1. Check if all the villages come from the same network generating distribution.

20Note that the confidence intervals for qN cannot get much narrower because of the discretisation of the
parameter space.

21The actual observed participation rate was 19.38%. It is not used as one of the moments matched in the
parameter estimation.
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Figure 2.8: Densities of all 43 villages with bootstrap confidence intervals plotted against village
size on the horizontal axis.

We bootstrap each village separately, find confidence intervals for some network statistics

(e.g. density, or the largest eigenvalue) and see if these intervals overlap for all villages.

2. Estimate the qP and qN parameters (and their confidence intervals) for each

village separately, see if there are systematic differences between villages. If

there are differences, see if the hypotheses (qN > 0 and qP > qN ) hold in each village.

We firstly look at densities of all the 43 villages. Our bootstrap method allows us to not

only obtain their point estimates but also add confidence intervals to see if the villages are

systematically different from each other. Fig. 2.8 shows that the villages become more sparse

as their size increases (consistent with the assumption that ρn −→ 0 as n −→ ∞). The confidence

intervals in this graph are formed using the same bootstrapped villages that were used for

estimating the model parameters.

Moving on to the model parameters, we have repeated the estimation using the original

diffusion model based on the adjacency matrix A (Fig. 2.9) and the new diffusion model based

on the linking probabilities ĥn (Fig. 2.10). We can see that the two methods produce similar

though not identical results. For some villages the estimation is very imprecise, leading to very

wide confidence intervals. At least half of the villages have qN precisely estimated to be zero,

even in the model based on A: this may suggest that it is the imprecisely measured villages

which drive the aggregate estimate to be positive.

In the last panels we can see that one of the predictions of the model, qP − qN > 0, cannot

be concluded for most of the villages as we cannot reject the hypothesis that qP − qN = 0

(mostly due to imprecise measurements, in some part due to low numbers of participants in

individual villages).

A practical extension of the current analysis would be to identify the village characteristics
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Figure 2.9: Estimates of qN (top), qP (middle) and qN − qP (bottom) with 95% confidence
intervals for individual villages using an optimal weight matrix and empirical moments for the
original villages, A-version.

which help predict the estimated ranges of qP and qN . This would help policymakers choose

villages in which the microfinance programs would have the highest chance of success or per-

sonalise the way in which the initial group of informed leaders is chosen depending on the

information transmission characteristics in a given village.

2.7 Conclusion and Extensions

In this chapter we have proposed a network bootstrap procedure based on the nonparametric

linking function estimator from Chapter 1 and we have provided conditions under which it

consistently recovers the distribution of the original network and the distributions of a class of

network functions related to U-statistics.

In the future projects we aim to provide a theoretical justification for consistency of our

bootstrap method over a wider class of statistics, which is suggested by the promising results
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Figure 2.10: Estimates of qN (top), qP (middle) and qN − qP (bottom) with 95% confidence
intervals for individual villages using an optimal weight matrix and empirical moments for the
original villages, H-version.

in our simulations. Most importantly, we would like to extend our results to regression models

in which the outcome depends, possibly in a complicated way, on the entire adjacency matrix

(e.g. spillover effects from neighbours). Unfortunately, it looks like in these cases the behaviour

is not well approximated by that of an average of i.i.d. random variables, which makes deriving

asymptotic results tricky. This is both an obstacle in proving bootstrap consistency and a

reason why bootstrap methods are particularly needed when it comes to strongly dependent

data structures such as networks.

One way in which we may be able to get around this issue is by looking for another notion

of network distance than the Wasserstein metric proposed by Levin and Levina (2019). More

specifically, one which would be sufficient for proving that the convergence is preserved after a

transformation.

A less closely related future project inspired by this paper could be formulating a fast
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numerical procedure which allows for the selection of an objective-specific optimal bandwidth

in two-step procedures. As in our setup, suppose we have a two-step estimation procedure

where in the first step we estimate some parameter dependent on a tuning parameter (like ĥn

based on an), which we then plug into a (possibly random) second-step estimation (e.g. density

in the resulting network). We ultimately care about the result of the second step (for us, the

bootstrap confidence interval coverage of the statistic estimated in the second step) and we

wish to optimise its performance by choosing an optimal tuning parameter in the first step. In

this paper we have relied on optimising the first-step estimation (â was chosen to optimise the

estimation of ĥn), but this was shown not to provide the best results in the second step across

all second-step statistics. We have considered some algorithms which do rely on the second

step performance (e.g. the approximate average MSE approach), but which are too slow to be

useful in practice.
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Appendix

List of all notation

The notation in this file can get a bit heavy so we provide this list for reference.

� n – sample size, number of individuals in the network.

� A – an n× n adjacency matrix. Binary, symmetric, observed.

� Aij – i, jth entry of the matrix A: 1 if i, j are connected (are neighbours), 0 if they are

not.

� i, j, k, s, t – usually used to refer to one of the n individuals.

� ξi – vector of characteristics of individual i, enters the linking function.

� F0 – distribution of ξi.

� h0,n – linking function, takes characteristics ξi, ξj as inputs and outputs the probability

with which individuals i and j are linked. If the inputs are vectors ξ(ι) = (ξι1, ξι2, . . . , ξιm)

of characteristics of multiple individuals it outputs the matrix of linking probabilities.

� ρn – density/sparsity parameter. Density in the sense that it is the expected edge density,

sparsity in the sense that as n −→ ∞ the density of edges decreases: ρn −→ 0.

� w0 – underlying linking probability before accounting for sparsity: ρnw0 = h0,n.

� φ(ξi, ξt) = E
(

AisAts

ρ2
n

|ξi, ξt
)
– a function measuring the probability of a common friend

between i and j normalised by the sparsity level.

� dij =

√
E
(
E (w0 (ξt, ξs) (w0 (ξi, ξs)− w0 (ξj , ξs))| ξi, ξj , ξt)2

∣∣∣ ξi, ξj) – theoretical distance

between i and j.

� d̂ij =
1
ρ2
n

√
1
n

∑n
t=1

(
1
n

∑n
s=1 Ats (Ais −Ajs)

)2
– estimated distance between i and j.

� Dij – shorthand notation for ρ4nd̂
2
ij used in the description of the bootstrap procedure.
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� ĥn – estimated linking function:

ĥn(ξi, ξj) =
h̃n(ξi, ξj) + h̃n(ξj , ξi)

2
where h̃n(ξi, ξj) =

∑n
t=1

t ̸=j

K
(

ρ4
nd̂

2
it

an

)
Atj∑n

t=1
t ̸=j

K
(

ρ4
nd̂

2
it

an

)

� K – kernel function used in estimating linking probability.

� an – a bandwidth parameter, chosen by the researcher.

� F̂n – the empirical distribution function of ξi; assigns equal probability to each of the

original observations.

�
∗ – a bootstrap equivalent, e.g. ξ∗i ∼ F̂n is the bootstrap version of ξi ∼ F0.

� ˆ – an estimate.

� maxi,j ≡ maxi,j∈{1,2,...,n} – maximum over indices in a specific sample of size n.

� maxξi ≡ maxξi∈Supp(ξi) – maximum over all ξi ∈ Supp(ξi).

� N(ξj , δ) =
{
ξk : supξt |w0(ξt, ξk)− w0(ξt, ξj)| < δ

}
– the neighbourhood of ξj of size δ.

� ω(δ) = infξj∈Supp(ξj) P (ξk ∈ N(ξj , δ)| ξj) – the infimum over all possible ξi of the mea-

sures of their neighbourhoods of size δ.

� bn = an

ρ4
n

– a bandwidth parameter normalised by sparsity; the effective bandwidth size

after accounting for the rate at which density goes to zero.

� ĥ−
n – leave-one-out version of ĥn, evaluated in the same way as ĥn but without the

observations t = i, j. Used for numerically choosing the optimal bandwidth.

� ℓ(A, an) – log-likelihood used for numerically choosing the optimal bandwidth. Defined

in Eq. (1.12).

� â – numerically chosen optimal bandwidth. Defined in Eq. (1.13).

� B – number of bootstrap replications.

� fn(An(h0,n(ξ), η), ρn, F0) – a function whose distribution we are interested in.

� η – a vector of random variables which together with the linking function determine the

realised links in A. We assume ηij
ind∼ U [0, 1] for 1 ≤ i ≤ j ≤ n and η independent of ξ.

� f̃n (h0,n (ξ) , ρn, F ) ≡ E(fn(An(h0,n(ξ), η), ρn, F0)|ξ) – a function whose distribution we

are interested in after averaging out the variation due to observing A instead of h0,n.
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� Eh0,n
, e.g. in Eh0,n

(fn(An(h0,n(ξ), η), ρn, F0)|ξ) =
∫
fn(An(h0,n(ξ), η), ρn, F0)dη – expec-

tation taken with respect to the independent Bernoulli trials with probabilities determined

by h0,n.

� Eh0,n,F0
– expectation taken with respect to both the Bernoulli trials and the true distri-

bution of ξ.

� ι – a vector of m nodes from {1, . . . , n}.

� A(ι) – the adjacency matrix of the subgraph with nodes ι (i.e. A from which we remove

n−m rows and columns not in ι).

� m – usually denotes the size of a subgraph or an order of U-statistic.

� g – a kernel function (in the U-statistic sense); a function of a subset of A.

� g̃ – a kernel function (in the U-statistic sense); a function of a subset of h0,n. Equal to g

after averaging out the variation due to observing A instead of h0,n.

� τ(g) – a normalisation chosen to ensure
Eh0,n,F0

(g(An(ι)))

ρ
τ(g)
n

= Op(1).

� ˜̃g – the leading term in the normalised g̃; a function of a subset of w0. Op(1).

� J̃n – the distribution of f̃n.

� Jn – the distribution of fn.

� Ĵn,B – an estimate of the distribution of fn based on B bootstrap samples.

� J – limiting distribution of Jn as n
∞−→: Jn(t, h0,n, F0) ⇒ J(t, w0, F0).

� ⇒ – weak convergence.

�
a.s.⇒ – weak convergence almost surely, see Definition 2.4.3.

�
p⇒ – weak convergence in probability, see Definition 2.4.4.

� dW – distance between measures which metrises weak convergence.

� f(S) = {f : S −→ R : |f(x)− f(y)| ≤ dS(x, y), supx∈S |f(x)| ≤ 1} – the set of Lipschitz

continuous and bounded real-valued functions on a metric space S equipped with dis-

tance dS .

� Cw,F,ρ – the set of non-random sequences of pairs of functions and distributions

{(hn, Fn)}∞n=1 which satisfy a set of conditions on convergence of moments, see Defini-

tion 2.A.1.
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� CIn – a bootstrap confidence interval as defined in Eq. (2.22).

� Mm – the set of all possible multisets of cardinality m with elements from {1, 2, . . . ,m}

� ρ̂n – estimator of density; the density of the observed adjacency matrix A.

� λk(A) or λk – the kth largest eigenvalue of matrix A.

� q̂α – the estimate of αth quantile.

� qP – in the application, the probability of transferring information about a microfinance

program by program’s participants

� qN – in the application, the probability of transferring information about a microfinance

program by those who do not participate the program themselves.

� C – generic positive constant, its value may change between different expressions in which

it is used.

� Cε – a positive constant which depends on ε > 0. Its value may change between different

expressions in which it is used.

� Tn – a remainder term used in the proof of Theorem 1.

� Mw – an upper bound on the value of w0: supξi,ξj |w0(ξi, ξj)| ≤ Mw.

� rn(i) = E
(
K
(

d2
it

bn

)∣∣∣ ξi) – the shorthand notation for the expected kernel weights based

on the distance between i and other individuals used in the estimation of ĥn (ξi, ξj).

� r̂n(i) =
1

n−1

∑n
t=1

t ̸=j

K
(

d̂2
it

bn

)
– the estimate of rn(i).

� rn = infξi rn(i) – the smallest possible expected kernel weight. We need to ensure it is

not too small or we would not be able to successfully estimate h0,n (ξi, ξj).

Appendix 2.A Proofs

Proof of Theorem 2.4.1. We start by constructing a particular coupling in Γ (A∗, H). Let γ̃ be

a particular joint distribution over F̂n and F0, the details of which we specify later in the proof.

We use γ̃ to construct a coupling between A∗ and H: we draw pairs {(ξ∗i , ξi)}
n
i=1

i.i.d.∼ γ̃. We

also independently draw {ηij}ni<j

i.i.d.∼ U [0, 1] and set η∗ij = ηij . We denote (A∗, H) ∼ ν̃ and
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note that this construction gives correct marginal distributions of A∗ and H, hence:

W p
p (A∗, H) ≤

∫
dpGM (A∗, H) dν̃ ≤

∫ ((
n

2

)−1 ∥A∗ −H∥1,1
2

)p

dν̃

≤
∫ (

n

2

)−1∑
i<j

∣∣A∗
ij −Hij

∣∣p dν̃ =

(
n

2

)−1∑
i<j

∫ ∣∣A∗
ij −Hij

∣∣ dν̃ =

∫ ∣∣A∗
ij −Hij

∣∣ dν̃
where the second inequality is due to the definition of dGM , the third follows from the definition

of 1
2 ∥A

∗ −H∥1,1 =
∑

i<j

∣∣A∗
ij −Hij

∣∣ and Jensen’s inequality. The first equality is due to the

fact that both adjacency matrices are binary (1p = 1, 0p = 0) and the linearity of expectation.

The final equality follows from the identity of distribution over all pairs (i, j). Expanding the

final term:

∫ ∣∣A∗
ij −Hij

∣∣ dν̃ = ν̃
({

A∗
ij ̸= Hij

})
= ν̃

({
1
(
ĥn

(
ξ∗i , ξ

∗
j

)
≥ ηij

)
̸= 1 (h0,n (ξi, ξj) ≥ ηij)

})
=

∫ 1

0

∫ ∫ ∣∣∣1(ĥn

(
ξ∗i , ξ

∗
j

)
≥ ηij

)
− 1 (h0,n (ξi, ξj) ≥ ηij)

∣∣∣ dγ̃ (ξ∗i , ξi) dγ̃ (ξ∗j , ξj) dηij
=

∫ ∫ ∣∣∣ĥn

(
ξ∗i , ξ

∗
j

)
− h0,n (ξi, ξj)

∣∣∣ dγ̃ (ξ∗i , ξi) dγ̃ (ξ∗j , ξj)
≤
∫ ∫ ∣∣∣ĥn

(
ξ∗i , ξ

∗
j

)
− h0,n

(
ξ∗i , ξ

∗
j

)∣∣∣ dγ̃ (ξ∗i , ξi) dγ̃ (ξ∗j , ξj)
+

∫ ∫ ∣∣h0,n

(
ξ∗i , ξ

∗
j

)
− h0,n (ξi, ξj)

∣∣ dγ̃ (ξ∗i , ξi) dγ̃ (ξ∗j , ξj)
The fourth equality follows from the fact that the two indicator functions differ in value only if

ηij falls into the interval between h0,n (ξi, ξj) and ĥn

(
ξ∗i , ξ

∗
j

)
, which happens with probability∣∣∣ĥn

(
ξ∗i , ξ

∗
j

)
− h0,n (ξi, ξj)

∣∣∣. In the last line we use triangle inequality.

We now look at the last two terms:

∫ ∫ ∣∣∣ĥn

(
ξ∗i , ξ

∗
j

)
− h0,n

(
ξ∗i , ξ

∗
j

)∣∣∣ dγ̃ (ξ∗i , ξi) dγ̃ (ξ∗j , ξj)
=

∫ ∫ ∣∣∣ĥn

(
ξ∗i , ξ

∗
j

)
− h0,n

(
ξ∗i , ξ

∗
j

)∣∣∣ dF̂n (ξ
∗
i ) dF̂n

(
ξ∗j
)

=
1

n2

n∑
i=1

n∑
j=1

∣∣∣ĥn

(
ξAi , ξ

A
j

)
− h0,n

(
ξAi , ξ

A
j

)∣∣∣
≤ max

i,j

∣∣∣ĥn

(
ξAi , ξ

A
j

)
− h0,n

(
ξAi , ξ

A
j

)∣∣∣ = op(ρn)

by Theorem 1, where ξAi ∼ F0 refers to the unobserved characteristics used in the formation of

the matrix A which A∗ is bootstrapped from.
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For the other term we use Assumption 1.2, which says:

inf
ξj∈Supp(ξi)

P

(
ξk ∈

{
sup

ξt∈Supp(ξi)

|w0(ξt, ξk)− w0(ξt, ξj)| < δ

})
≥
(

δ

C

) 1
α

.

We have:

∫ ∫ ∣∣h0,n

(
ξ∗i , ξ

∗
j

)
− h0,n (ξi, ξj)

∣∣ dγ̃ (ξi, ξ∗i ) dγ̃ (ξj , ξ∗j )
≤ ρn

∫ ∫ ∣∣w0

(
ξ∗i , ξ

∗
j

)
− w0

(
ξi, ξ

∗
j

)∣∣ dγ̃ (ξi, ξ∗i ) dF̂n

(
ξ∗j
)

+ ρn

∫ ∫ ∣∣w0

(
ξi, ξ

∗
j

)
− w0 (ξi, ξj)

∣∣ dF0 (ξi) dγ̃
(
ξj , ξ

∗
j

)
≤ ρn

∫
sup

ξ∗j∈Supp(ξi)

∣∣w0

(
ξ∗i , ξ

∗
j

)
− w0

(
ξi, ξ

∗
j

)∣∣ dγ̃ (ξi, ξ∗i )
+ ρn

∫
sup

ξi∈Supp(ξi)

∣∣w0

(
ξi, ξ

∗
j

)
− w0 (ξi, ξj)

∣∣ dγ̃ (ξj , ξ∗j )
= 2ρn

∫
sup

ξi∈Supp(ξi)

∣∣w0

(
ξi, ξ

∗
j

)
− w0 (ξi, ξj)

∣∣ dγ̃ (ξj , ξ∗j )
The first inequality is due to the definition of h0,n = ρnw0 and triangle inequality. In the

second inequality we take a supremum over the repeated index and note that the support of F̂n

is a subset of the support of F0. As the terms no longer depend on ξ∗j and ξi respectively, we

integrate over their distributions. The resulting two terms are equal (note that w0 is symmetric).

Fix ε > 0. For every ξ∗j ∈ Supp(ξi) there exists a neighbourhood N(ξ∗j , ε) of measure at least(
ε
C

) 1
α such that for all ξj ∈ N(ξ∗j , ε): supξi∈Supp(ξi)

∣∣w0

(
ξi, ξ

∗
j

)
− w0 (ξi, ξj)

∣∣ < ε. Our task is to

show that there exists a coupling γ̃ which aligns ξ∗j with their corresponding neighbourhoods.

To that end, define

dS(a, b) ≡ sup
ξi∈Supp(ξi)

|w0 (ξi, a)− w0 (ξi, b)| . (2.24)

dS is a pseudometric, i.e. it may fail positivity (the distance between two distinct points may

be zero) but it satisfies all other properties of a distance (in particular the triangle inequality).

Take K points {a1, . . . aK} ∈ Supp(ξi) which are at least ε apart: ∀1 ≤ i < j ≤ K :

dS(ai, aj) > ε. Form a ε
2 -neighbourhood around each ak.

These neighbourhoods are non-overlapping: suppose there was a b ∈ N
(
ai,

ε
2

)
and b ∈

N
(
aj ,

ε
2

)
for i ̸= j. Then by triangle inequality: dS(ai, aj) ≤ dS(ai, b) + dS(aj , b) ≤ ε. But we

have assumed dS(ai, aj) > ε, a contradiction.

By Assumption 1.2 we know that each of these neighbourhoods has a measure at least
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(
ε
2C

) 1
α . It follows that:

1 ≥ Pb∼F0

(
b ∈

K⋃
i=1

N
(
ai,

ε

2

))
=

K⋃
i=1

Pb∼F0

(
b ∈ N

(
ai,

ε

2

))
≥ K

( ε

2C

) 1
α

or K ≤
(

ε
2C

)− 1
α < ∞, so the set of {a1, . . . aK} has finite cardinality.

Take the largest K possible. Then for all b ∈ Supp(ξi)∃k ≤ K such that dS(b, ak) ≤ ε, or in

other words
⋃K

i=1 N (ai, ε) is a finite cover of Supp(ξi). Hence we can assign each b ∈ Supp(ξi) to

one of the k ∈ {1, . . . ,K}: start with N
(
ak,

ε
2

)
for all k, then for each point not yet assigned to a

region add it to the region with (not necessarily unique) k which minimises the dS distance from

that point to ak. This way we form K disjoint regions, say {Nk}Kk=1, each of size at least
(

ε
2C

) 1
α

and such that whenever b1, b2 ∈ Nk ⊆ N (ak, ε) we have dS(b1, b2) ≤ dS(b1, ak)+dS(b2, ak) ≤ 2ε.

Now instead of ξi report k(ξi) such that ξi ∈ Nk(ξi). This means we are replacing F0

with an empirical distribution function Gε which takes only K values, each with probability

Pb∼F0
(b ∈ Nk) ≥

(
ε
2C

) 1
α ; and we replace F̂n with an empirical distribution function Ĝε,n from

Gε. We choose γ̃ to be any coupling of F0, F̂n consistent with the following: for y ∼ U [0, 1] set

k (ξj) = G−1
ε (y), k

(
ξ∗j
)
= Ĝ−1

ε,n(y).

Then:

∫
sup

ξi∈Supp(ξi)

∣∣w0

(
ξi, ξ

∗
j

)
− w0 (ξi, ξj)

∣∣ dγ̃ (ξj , ξ∗j ) ≤ 2ε+Mw

∫
1
(
k(ξj) ̸= k(ξ∗j )

)
dγ̃
(
ξj , ξ

∗
j

)
For the first inequality we note that either ξj , ξ

∗
j fall in the same Nk and hence ds

(
ξ∗j , ξj

)
≤ 2ε,

or they come from different subsets of the domain, in which case their maximal possible distance

is Mw. For the final term:

∫
1
(
k(ξj) ̸= k(ξ∗j )

)
dγ̃
(
ξj , ξ

∗
j

)
≤
∫ ∣∣k(ξj)− k(ξ∗j )

∣∣ dγ̃ (ξj , ξ∗j )
=

∫ 1

0

∣∣∣G−1
ε (y)− Ĝ−1

ε,n(y)
∣∣∣ dy

=

∫ K

1

∣∣∣Gε(x)− Ĝε,n(x)
∣∣∣ dx

≤ K sup
x

∣∣∣Gε(x)− Ĝε,n(x)
∣∣∣ a.s.−−→ 0.

The first inequality is due to the fact that k ∈ N so if the terms are not equal their distance

is at least 1. The next equality is by construction of γ̃, noting that y ∼ U [0, 1]. We then

do a change of variable (we switch from integrating the horizontal distance to the vertical

distance between the plots of Gε and Ĝε,n), noting that the plots can only differ on the domain
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x ∈ [1,K]. We use an upper bound in terms of a supremum over x and conclude that the

final expression goes to zero almost surely by Glivenko-Cantelli Theorem. Hence for all n large

enough
∫
1
(
k(ξj) ̸= k(ξ∗j )

)
dγ̃
(
ξj , ξ

∗
j

)
≤ ε

Mw
with probability one.

Since ε was arbitrary, the overall expression is op(ρn), as required.

For the proofs of the next section, in the appendix we split the argument into more steps

and provide intermediate results which lead to the conclusions in Theorem 2.4.2, Lemma 2.4.1

and Corollary 2.4.1. The advantage of the additional steps is that they characterise moment

conditions sufficient for bootstrap consistency which could be verified for other classes of func-

tions or alternative estimators of the network-generating function. They have been left out of

the main text to avoid introducing more complicated notation and improve the readability.

We begin with a general result, not specific to U-statistics. Because the many levels of

randomness can get confusing very quickly, we have decided to tackle them one at a time: we

firstly characterise a class of non-random estimators and distributions for which we get weak

convergence of our statistic to the correct limit. We denote these generic non-random statistics

and distribution as e.g. hn, Fn and we can think of them as specific realisations of their random

equivalents, e.g. Fn can be the empirical distribution F̂n|ξ we get for a specific draw of ξ.

In practice, the classes of hn, Fn will often be wider and also contain elements which cannot

be achieved as a specific realisation of our random procedure. Once we have characterised

the class which ensures weak convergence to the desired limit, we show that, once we allow

for randomness in ξ, the statistics based on the random ĥn, F̂n belong that class with high

probability, hence they converge weakly to the same limit either almost surely or in probability.

Definition 2.A.1. Set Cw,F,ρ. Let h denote a set of linking functions, let F denote a set

of distributions, and let (0, 1]N denote a set of sequences of densities {ρn}∞n=1, 0 < ρn ≤ 1.

Let (w,F, ρ) ∈ h × F × (0, 1]N be a triple of a function w0, a distribution F , and a sparsity

sequence ρ. Let ξ ∼ F and ξ∗ ∼ Fn. For each (w,F, ρ) ∈ h × F × (0, 1]N let Cw,F,ρ be the set

of non-random sequences of pairs of functions and distributions {(hn, Fn)}∞n=1 characterised

by a set of conditions on convergence of moments of the form EFn

(
f
(

hn

ρn
(ξ∗), w(ξ∗)

))
−→

EF (f (w(ξ), w(ξ))) as n −→ ∞ for some class of functions f ∈ f. That is:

Cw,F,ρ =
{
{(hn, Fn)}∞n=1 : ∀n ∈ N,∀f ∈ f : (2.25)

(hn, Fn) ∈ h ×F and lim
n−→∞

EFn

(
f

(
hn

ρn
(ξ∗), w(ξ∗)

))
= EF (f (w(ξ), w(ξ)))

}
.

We state the general version of the result:22

Theorem 2.A.1. Let Cw0,F0,ρ be as defined in Definition 2.A.1 and suppose that:

22The structure and the proof are strongly inspired by Theorem 1.2.1 of Politis et al. (1999).
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(i) the set Cw0,F0,ρ contains the sequence {(h0,n, F0)}∞n=1;

(ii) for any sequence {(hn, Fn)}∞n=1 in Cw0,F0,ρ, J̃n(t, hn, Fn) converges weakly to a common

distribution23 J(t, w0, F0);

(iii) for any sequence {(hn, Fn)}∞n=1 in Cw0,F0,ρ:

lim
n−→∞

Ehn,Fn

[(
fn (A

∗ (hn (ξ
∗) , η∗) , ρn, Fn)− f̃n(hn (ξ

∗) , ρn, Fn)
)2]

= 0 (2.26)

where A∗ (hn (ξ
∗) , η∗) denotes an adjacency matrix A∗ based on a vector of observations

of ξ∗
i.i.d.∼ Fn, with Bernoulli probabilities determined by hn (ξ

∗
i ).

If the random sequence {(ĥn, F̂n)}∞n=1 belongs to Cw0,F0,ρ with probability one, i.e. ∀n ∈ N,∀f ∈

f : (ĥn, F̂n) ∈ h ×Fa.s. and EF̂n

(
f
(

ĥn

ρn
(ξ∗), w0(ξ

∗)
))

a.s.−−→ EF0 (f (w0(ξ), w0(ξ))), then:

1. Jn(t, ĥn, F̂n)
a.s.⇒ J(t, w0, F0).

2. If J(t, w0, F0) is continuous in t at t = 1− α and strictly increasing at t = 1− α:

J−1
n (1− α, ĥn, F̂n)

a.s.−−→ J−1(1− α,w0, F0). (2.27)

3. If J(t, w0, F0) is continuous in t at t = 1−α and is strictly increasing at t = 1−α and if

F0 does not enter the function fn directly but only through a parameter24 θ:

fn(A(h0,n(ξ), η), ρn, θ), then the (1− α) confidence interval for θ constructed as:

CIn

(
1− α,A, ĥn, F̂n

)
=
{
θ : J−1

n

(α
2
, ĥn, F̂n

)
≤ fn(A, ρn, θ) ≤ J−1

n

(
1− α

2
, ĥn, F̂n

)}
(2.28)

is asymptotically valid:

Ph0,n,F0

(
θ ∈ CIn

(
1− α,A, ĥn, F̂n

))
a.s.−−→ 1− α. (2.29)

4. If J (t, w0, F0) is continuous in t, then

sup
t

∣∣∣Jn (t, ĥn, F̂n

)
− J̃n (t, h0,n, F0)

∣∣∣ a.s.−−→ 0.

If the random sequence {(ĥn, F̂n)}∞n=1 satisfies the moment conditions for belonging to

Cw0,F0,ρ in probability: EF̂n

(
f
(

ĥn

ρn
(ξ∗), w0(ξ

∗)
))

p−→ EF0 (f (w0(ξ), w0(ξ))), then conclusions

1.-4. above hold with
p⇒ replacing

a.s.⇒ and
p−→ replacing

a.s.−−→.

23This is weaker than Fn converges weakly to F0.
24For example in equation (2.18) we have θ = Eh0,n,F0

(g(A(ι))).
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The above results follow straight from conveniently chosen assumptions, yet they are still

useful because they provides a set of sufficient conditions for the convergence of the bootstrap

distribution to the correct limit, the correctness of bootstrap confidence intervals, and the

consistency of bootstrap.

Proof of Theorem 2.A.1. We start from proving 1.

For any {(hn, Fn)}∞n=1 in Cw0,F0,ρ:

fn (A (hn (ξ
∗) , η∗) , ρn, Fn) = f̃n (hn (ξ

∗) , ρn, Fn)

+
(
fn (A (hn (ξ

∗) , η∗) , ρn, Fn)− f̃n (hn (ξ
∗) , ρn, Fn)

)

By assumption (ii), the distribution of f̃n (hn (ξ
∗) , ρn, Fn) converges weakly to the desired

limit: J̃n(t, hn, Fn)
weakly−−−−→ J(t, w0, F0). By assumption (iii), the second term converges to 0 in

second mean, hence it is op(1) and does not affect the distribution limit.25 For any sequence

{(hn, Fn)}∞n=1 ∈ Cw0,F0,ρ we have:

Jn(t, hn, Fn)
weakly−−−−→ J(t, w0, F0) i.e. d (Jn(t, hn, Fn), J(t, w0, F0)) −→ 0.

The random sequence
{
(ĥn, F̂n)

}∞

n=1
belongs to Cw0,F0,ρ with probability one, hence:

P
(

lim
n−→∞

d
(
Jn(t, ĥn, F̂n), J(t, w0, F0)

)
= 0
)

≥ P
(
{(ĥn, F̂n)}∞n=1 ∈ Cw0,F0,ρ and lim

n−→∞
d
(
Jn(t, ĥn, F̂n), J(t, w0, F0)

)
= 0
)

= P
(
{(ĥn, F̂n)}∞n=1 ∈ Cw0,F0,ρ

)
= 1,

that is: d
(
Jn(t, ĥn, F̂n), J(t, w0, F0)

)
a.s.−−→ 0.

For the case of convergence in probability, we use the following result:

Theorem (Billingsley (1995) Theorem 20.5 (ii)). A necessary and sufficient condition for

Xn
p−→ X is that each subsequence {Xn′} has a further subsequence {Xn′′ } such that Xn′′

a.s.−−→

X.

Given that EF̂n

(
f
(

ĥn

ρn
(ξ∗), w0(ξ

∗)
))

p−→ EF0
(f (w0(ξ), w0(ξ))), for any subsequence in-

25By Theorem 25.4 in Billingsley (1995): Xn
d−→ X and Xn − Yn

p−→ 0, then Yn
d−→ X. Also, if FXn

and FX denote the distribution functions of random variables Xn and X, respectively, then Xn
d−→ X means

FXn

weakly−−−−−→ FX .
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dexed by n′ there is a further subsequence indexed by n′′ which satisfies

EF̂n′′

(
f

(
ĥn′′

ρn′′
(ξ∗), w0(ξ

∗)

))
a.s.−−→ EF0

(f (w0(ξ), w0(ξ))) .

By what we have just shown, applied to Cw0,F0,ρ′′ , where ρ′′ is the subsequence of ρ indexed

by n′′, d
(
Jn′′

(
t, ĥn′′ , F̂n′′

)
, J (t, w0, F0)

)
a.s.−−→ 0. Applying Theorem 20.5 (ii) from Billingsley

(1995) in the other direction, this means that d
(
Jn

(
t, ĥn, F̂n

)
, J (t, w0, F0)

)
p−→ 0. Hence 1.

holds.

The remaining conclusions follow by arguments identical to those in the proof of Theorem

1.2.1 in Politis et al. (1999). For 2. we use the following Lemma:

Lemma (Lemma 1.2.1 of Politis et al. (1999)). Let {Gn} be a sequence of distribution functions

on the real line converging weakly to a distribution function G (i.e. Gn(x) −→ G(x) for all

continuity points of G). Assume G is continuous and strictly increasing at y = G−1(1 − α).

Then,

G−1
n (1− α) = inf{x : Gn(x) ≥ 1− α} −→ G−1(1− α). (2.30)

Proof. See Politis et al. (1999) p.10.

Together with the conclusion from 1. that J̃n(t, hn, Fn)
weakly−−−−→ J(t, w0, F0) for all (hn, Fn)

in Cw0,F0,ρ, the lemma implies that J−1
n (1 − α, hn, Fn) −→ J−1(1 − α,w0, F0) for all (hn, Fn)

in Cw0,F0,ρ. Arguments identical to those in the proof of 1. show that if {(ĥn, F̂n)}∞n=1

belongs to Cw0,F0,ρ with probability one, then J−1
n (1 − α, ĥn, F̂n)

a.s.−−→ J−1(1 − α,w0, F0)

and if {(ĥn, F̂n)}∞n=1 satisfies the moment conditions for belonging to Cw0,F0,ρ in probabil-

ity: EF̂n

(
f
(

ĥn

ρn
(ξ∗), w0(ξ

∗)
))

p−→ EF0 (f (w0(ξ), w0(ξ))), then J−1
n (1 − α, ĥn, F̂n)

p−→ J−1(1 −

α,w0, F0).

In order to show 3., we firstly prove the following Lemma:

Lemma 2.A.1. Let {Gn} be a sequence of distribution functions on the real line converging

weakly to a distribution function G (i.e. Gn(x) −→ G(x) for all continuity points of G). Let

xn be a real-valued sequence converging to x (i.e. xn −→ x). Assume that G is continuous and

strictly increasing at x. Then,

Gn(xn) −→ G(x). (2.31)

Proof. Take any δ > 0. Since G is continuous at x, there exists ε > 0 such that x− ε and x+ ε
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are continuity points of G and

G(x− ε)−G(x) ≥ −δ

2

G(x+ ε)−G(x) ≤ δ

2
.

Since xn −→ x, Gn(x− ε) −→ G(x− ε), Gn(x) −→ G(x) and Gn(x+ ε) −→ G(x+ ε), there exists

an N ∈ N such that for all n ≥ N :

|xn − x| ≤ ε

|Gn(x− ε)−G(x− ε)| ≤ δ

2

|Gn(x)−G(x)| ≤ δ

2

|Gn(x+ ε)−G(x+ ε)| ≤ δ

2
.

Since Gn are weakly increasing for all n:

Gn(x− ε) ≤ Gn(x) ≤ Gn(x+ ε).

Hence for all n ≥ N :

−δ ≤ G(x− ε)−G(x)− δ

2
≤ Gn(x− ε)−G(x) ≤

≤ Gn(x)−G(x) ≤

≤ Gn(x+ ε)−G(x) ≤ G(x+ ε)−G(x) +
δ

2
≤ δ.

i.e. |Gn(xn)−G(x)| ≤ δ.

For 3, we start with any (hn, Fn) in Cw0,F0,ρ. We have:

Ph0,n,F0
(θ ∈ CIn (1− α,A, hn, Fn))

= Ph0,n,F0

(
J−1
n

(α
2
, hn, Fn

)
≤ fn(A, ρn, θ) ≤ J−1

n

(
1− α

2
, hn, Fn

))
= Ph0,n,F0

(
fn(A, ρn, θ) ≤ J−1

n

(
1− α

2
, hn, Fn

))
− Ph0,n,F0

(
fn(A, ρn, θ) < J−1

n

(α
2
, hn, Fn

))
= Jn

(
J−1
n

(
1− α

2
, hn, Fn

)
, h0,n, F0

)
− Jn

(
J−1
n

(α
2
, hn, Fn

)
, h0,n, F0

)
−→ J

(
J−1

(
1− α

2
, w0, F0

)
, w0, F0

)
− J

(
J−1

(α
2
, w0, F0

)
, w0, F0

)
= 1− α.

The convergence follows from Lemma 2.A.1 used with 2. (for the convergence of the argument)
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and Jn (t, h0,n, F0)
weakly−−−−→ J (t, w0, F0) (for the convergence in distribution). Arguments identi-

cal to those in the proof of 1. show that if
{(

ĥn, F̂n

)}∞

n=1
belongs to Cw0,F0,ρ with probability

one, then Ph0,n,F0

(
θ ∈ CIn

(
1− α,A, ĥn, F̂n

))
a.s.−−→ 1− α. If instead

{(
ĥn, F̂n

)}∞

n=1
satisfies

the moment conditions for belonging to Cw0,F0,ρ only in probability, that is:

EF̂n

(
f
(

ĥn

ρn
(ξ∗), w0(ξ

∗)
))

p−→ EF0
(f (w0(ξ), w0(ξ))), then we have

Ph0,n,F0

(
θ ∈ CIn

(
1− α,A, ĥn, F̂n

))
p−→ 1− α.

Finally, 4. follows from 1. and Polya’s Theorem:

Theorem (Polya’s Theorem, Satz I of Pólya (1920)). Let Xn, X be random variables with

distributions Fn(x) and F (x) respectively. If F is continuous

Xn
d−→ X ⇐⇒ sup

x
|Fn(x)− F (x)| −→ 0.

We can now provide more primitive conditions for the special class of fn for which f̃n is a

U-statistic.

Theorem 2.A.2 (Consistency of bootstrap for U-statistics). Let ι be a set of m nodes and

denote the adjacency matrix on the subgraph with nodes in ι and linking probabilities hn(., .) by

A(hn(ξ(ι)), η(ι)). Let g : {0, 1}(
m
2 ) −→ R be a symmetric function from a subgraph on m < ∞

nodes to the real line and let

fn(A(hn(ξ
∗), η∗), ρn, Fn)

=

√
n(

n
m

)
ρ
τ(g)
n

∑
1≤ι1<ι2<···<ιm≤n

(g(A(hn(ξ
∗(ι)), η∗(ι)))− Ehn,Fn

(g(A(hn(ξ
∗(ι)), η∗(ι))))) .

and g̃(h0,n(ξ(ι))) ≡ E(g(A(h0,n(ξ(ι)), η(ι)))|ξ(ι)). There exists a normalisation26 τ(g) and a

function ˜̃g : Supp(ξ)m −→ R such that:

�
g̃(h0,n(ξ(ι)))

ρ
τ(g)
n

= ˜̃g(w0(ξ(ι))) +O (ρn)

� EF0
(|˜̃g(w0(ξ(j)))|) > 0 for some j ∈ Mm

� EF0

(
˜̃g2 (w0 (ξ(j)))

)
< ∞ ∀j ∈ Mm

� V arF0
(EF0

(˜̃g(w0(ξ(ι)))|ξι1)) ≡ σ2
1 < ∞

26For m = 2, if g(0) ̸= 0 we set ρ
−τ(g)
n = 1, ˜̃g (w0 (ξi, ξj)) = g(0) and if g(0) = 0 but g(1) ̸= 0 we set

ρ
−τ(g)
n = 1

ρn
and ˜̃g (w0 (ξi, ξj)) = g(1)w0 (ξi, ξj). More generally, for m ≥ 2, ρ

−τ(g)
n = 1

ρkn
where k is the

smallest number of ones such that g(·) evaluated at a vector of k ones and
(m
2

)
− k zeros is non-zero.
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Suppose that:

σ2
1 > 0

n(
n
m

)
ρ
τ(g)
n

−→ 0.

and let Cw0,F0,ρ be a set of sequences {(hn, Fn)}∞n=1 which satisfy:

1. EFn

((
1
ρn

(
hn(ξ

∗
i , ξ

∗
j )− h0,n(ξ

∗
i , ξ

∗
j )
))2)

−→ 0.

2. EFn
(f (ξ∗(ι))) −→ EF0

(f (ξ(ι))) for all f : Supp(ξ)k −→ R such that EF0
(|f (ξ(ι))|) < ∞

for all ι ∈ Mk, for any k ≤ 2m− 1.

Then {(ĥn, F̂ )}∞n=1 satisfies 1.-2. in probability and we get all conclusions of Theorem 2.A.1 in

probability with J(t, w0, F0) = N(0,m2σ2
1).

Remark. The advantage of stating our condition as in 2. instead of directly showing that it

holds when Fn = F̂n because of SLLN for U-statistics is that it characterises a wider class of

distributions we could resample from. For example, when we adjust the resampling distribution

for the purpose of GMM by adding weights to different observations in a way that ensures the

moment conditions hold in the bootstrap world.

Proof of Theorem 2.A.2. The theorem was stated for a general m < ∞ but for simplicity of

notation we present the proof for the case of m = 2. The structure of the argument remains

identical if we use m > 2.

To show the existence of ˜̃g and τ(g) we start by analysing the form of g̃. Since g is a

function from {0, 1}(
m
2 ) it takes at most 2(

m
2 ) distinct values. Each of those values is taken with

probability that the input submatrix A(ι) matches a given pattern of 0s and 1s. Let Γ(A(ι))

denote the set (of cardinality 2(
m
2 )) of all possible values A(ι) can take. Then:

g̃(h0,n(ξ(ι))) =
∑

γ∈Γ(A(ι))

g(γ)P (A(ι) = γ|ξ(ι)).

Conditional on ξ(ι), the elements of A(ι) are independent and P (Aij = 1|ξ) = h0,n(ξi, ξj) =

ρnw0(ξi, ξj) ∼ ρn while P (Aij = 0|ξ) = 1− h0,n(ξi, ξj) = 1− ρnw0(ξi, ξj) ∼ 1. The probability

of the event that the upper triangle of A(ι) consists of k ones and
(
m
2

)
− k zeros is proportional

to ρkn. The smallest k for which g(·) evaluated at an input γ with k ones and
(
m
2

)
− k zeros

in the upper triangle is non-zero is equal to the normalisation τ(g). By construction, all γs

with fewer ones have a coefficient g(γ) = 0. All γs with more ones happen with probability

proportional to ρln for l > τ(g), i.e. after a normalisation by ρ
−τ(g)
n are O (ρn) and go to zero.
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The terms in the sum proportional to ρ
τ(g)
n are of the form:

g(γ)h0,n(ξι1 , ξι2) . . . h0,n(ξι3 , ξι4)︸ ︷︷ ︸
τ(g) terms

(1− h0,n(ξι5 , ξι6)) . . . (1− h0,n(ξι7 , ξι8)).

After a normalisation by ρ
−τ(g)
n we get:

g(γ)w0(ξι1 , ξι2) . . . w0(ξι3 , ξι4)︸ ︷︷ ︸
τ(g) terms

(1− h0,n(ξι5 , ξι6)) . . . (1− h0,n(ξι7 , ξι8))

we keep the g(γ)w0(ξι1 , ξι2) . . . w0(ξι3 , ξι4) part in ˜̃g and note that the remainder of the previous

term is O (ρn).

To sum up, ˜̃g takes the form of a finite sum of non-zero constant (value of g at a specific

realisation γ) times a product of τ(g) terms of the form w0(ξιi , ξιj ).

The remaining terms in
g̃(h0,n(ξ(ι)))

ρ
τ(g)
n

− ˜̃g(w0(ξ(ι))) vanish at the rate O (ρn).

Since w0(ξi, ξj) is not identically equal to zero and there are non-zero coefficients g(γ)

multiplying products of w0(ξιi , ξιj ) in ˜̃g, there exists j ∈ Mm for which EF0
(|˜̃g(w0(ξ(j)))|) > 0.

Since w0(ξi, ξj) < Mw for all ξi, ξj we have

EF0

(
˜̃g2 (w0 (ξ(j)))

)
<

((m
2

)
τ(g)

)2(
max

γ∈Γ(A(ι))
g2(γ)

)
M2

w < ∞

for all j ∈ Mm (where the first constant says that there are
(
m
2

)
ones and zeros that determine

the value of A(ι), there are
((m2 )
τ(g)

)
ways to place τ(g) ones in them, and after squaring a sum of((m2 )

τ(g)

)
terms we get

((m2 )
τ(g)

)2
terms, each bounded above by the remaining part of the expression).

Finally, since

V ar(E(Y |X)) = V ar(Y )− E(V ar(Y |X)) ≤ V ar(Y ) = E(Y 2)− E(Y )2 ≤ E(Y 2)

we also get that

σ2
1 ≡ V arF0(EF0 (˜̃g(w0(ξ(ι)))|ξι1)) < EF0

(
˜̃g2 (w0 (ξ(ι)))

)
< ∞.

Having established the existence of ˜̃g and τ(g), we now check that the elements of Cw0,F0,ρ

satisfy condition (i)-(iii) of Theorem 2.A.1.

The sequence {(hn, Fn)}∞n=1 = {(h0,n, F0)}∞n=1 satisfies the conditions and belongs to

Cw0,F0,ρ (sequences in 1. and 2. are constant and equal to the desired limit), hence (i) is

satisfied.
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To check condition (iii) we look at:

Ehn,Fn

((
fn(A

∗ (hn (ξ
∗) , η∗) , ρn, Fn)− f̃n(hn (ξ

∗) , ρn, Fn)
)2)

=
n(

n
2

)2
ρ
2τ(g)
n

∑
i∗<j∗

∑
k∗<l∗

Ehn,Fn
((g(Ai∗j∗)− Ehn

(g(Ai∗j∗)|ξ∗)) (g(Ak∗l∗)− Ehn
(g(Ak∗l∗)|ξ∗)))

To simplify the above expression notice that most terms in the summation are zero. In partic-

ular, consider different cases of overlap between the indices:

� if there is no overlap (i∗ ̸= k∗, i∗ ̸= l∗, j∗ ̸= k∗, j∗ ̸= l∗), by the independence assumption

the term inside the sum is:

Ehn,Fn
((g(Ai∗j∗)− Ehn

(g(Ai∗j∗)|ξ∗)))2 = 02 = 0.

� If there is partial overlap (e.g. i∗ = k∗, j∗ ̸= l∗, or any symmetric situation):

Ehn,Fn
((g(Ai∗j∗)− Ehn

(g(Ai∗j∗)|ξ∗)) (g(Ai∗l∗)− Ehn
(g(Ai∗l∗)|ξ∗)))

LIE
= Ehn,Fn

(Ehn,Fn
((g(Ai∗j∗)− Ehn

(g(Ai∗j∗)|ξ∗)) (g(Ai∗l∗)− Ehn
(g(Ai∗l∗)|ξ∗)) |ξ∗i ))

indep
= Ehn,Fn

(
(Ehn,Fn ((g(Ai∗j∗)− Ehn (g(Ai∗j∗)|ξ∗)) |ξ∗i ))

2
)

LIE
= Ehn,Fn

(
(Ehn,Fn

((Ehn
(g(Ai∗j∗)|ξ∗)− Ehn

(g(Ai∗j∗)|ξ∗)) |ξ∗i ))
2
)
= 0.

� If there is full overlap (i∗ = k∗ and j∗ = l∗, or i∗ = l∗ and j∗ = k∗):

Ehn,Fn

(
(g(Ai∗j∗)− Ehn

(g(Ai∗j∗)|ξ∗))2
)
≤ Ehn,Fn

(
g2(Ai∗j∗)

)
.

There are
(
n
2

)
terms of this final form in the sum.

Combining the three cases, we get:

Ehn,Fn

((
fn (A

∗ (hn (ξ
∗) , η∗) , ρn, Fn)− f̃n (hn (ξ

∗) , ρn, Fn)
)2)

≤
2Ehn,Fn

(
g2(Ai∗j∗)

)
(n− 1)ρ

2τ(g)
n

In an analogous way to how we have defined g̃ and the corresponding ˜̃g, we let27

g̃2 (h0,n (ξi, ξj)) ≡ Eh0,n

(
g2(Aij)|ξ

)
, and we can find a function ˜̃g2(w0(ξi, ξj)) with

g̃2(h0,n(ξi,ξj))

ρ
τ(g)
n

= ˜̃g2(w0(ξi, ξj)) +O(ρn), 0 < EF0

(∣∣∣ ˜̃g2(w0(ξi, ξj))
∣∣∣) < ∞ and

27Comparing to the example given earlier:

E(g2(A1,2, A2,3)|ξ) ≡ g̃2(h0,n(ξ1, ξ2), h0,n(ξ2, ξ3))

= g2(0, 0)(1− h0,n(ξ1, ξ2))(1− h0,n(ξ2, ξ3)) + g2(0, 1)(1− h0,n(ξ1, ξ2))h0,n(ξ2, ξ3)

+ g2(1, 0)h0,n(ξ1, ξ2)(1− h0,n(ξ2, ξ3)) + g2(1, 1)h0,n(ξ1, ξ2)h0,n(ξ2, ξ3).

This example illustrates why g̃2(h0,n(ξ1, ξ2), h0,n(ξ2, ξ3)) is proportional to ρ
τ(g)
n , not to ρ

2τ(g)
n .
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0 < EF0

(∣∣∣ ˜̃g2(w0(ξi, ξi))
∣∣∣) < ∞. Then:

Ehn,Fn

(
ρ−τ(g)
n g2(Ai∗j∗)

)
= EFn

(
Ehn

(
ρ−τ(g)
n g2(Ai∗j∗)|ξ∗

))
= EFn

(
ρ−τ(g)
n g̃2

(
hn

(
ξ∗i , ξ

∗
j

)))
= EFn

(
ρ−τ(g)
n g̃2

(
h0,n

(
ξ∗i , ξ

∗
j

))
+ ρ−τ(g)+1

n g̃2
′ (

h̃n

(
ξ∗i , ξ

∗
j

)) 1

ρn

(
hn

(
ξ∗i , ξ

∗
j

)
− h0,n

(
ξ∗i , ξ

∗
j

)))
≤ EFn

(
ρ−τ(g)
n g̃2

(
h0,n

(
ξ∗i , ξ

∗
j

)))
+ ρ−τ(g)+1

n sup
h

∣∣∣g̃2′

(h)
∣∣∣︸ ︷︷ ︸

<∞

EFn

(
1

ρn

(
hn(ξ

∗
i , ξ

∗
j )− h0,n(ξ

∗
i , ξ

∗
j )
))

︸ ︷︷ ︸
=o(1)

= EFn

(
˜̃
g2
(
w0

(
ξ∗i , ξ

∗
j

)))
+O (ρn) + o(1)

a.s.−−→ EF0

(
˜̃
g2(w0(ξi, ξj))

)
< ∞.

Note that since the leading term of g̃2(h0,n) is proportional to the τ(g)th power of h0,n, the

leading term of g̃2
′

(h0,n) has a h0,n to the power τ(g)−1. Given the form of g̃2
′

(h0,n), which is

a sum of finitely many terms of the form of a bounded constant times bounded powers of h0,n,

the whole derivative is bounded. It follows that:

Ehn,Fn

((
fn (A

∗ (hn (ξ
∗) , η∗) , ρn, Fn)− f̃n (hn (ξ

∗) , ρn, Fn)
)2)

≤ O

(
1

nρ
τ(g)
n

)
= o (1) .

Hence (iii) holds.

Checking (ii) is a bit more involved. We start with a Hoeffding’s (martingale) decomposi-

tion28 of f̃n (hn (ξ
∗) , ρn, Fn) for any {(hn, Fn)}∞n=1 in Cw0,F0,ρ:

f̃n (hn (ξ
∗) , ρn, Fn) =

√
n(

n
2

)
ρ
τ(g)
n

∑
i<j

g̃(hn(ξ
∗
i , ξ

∗
j ))− EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))
)

=
2

√
nρ

τ(g)
n

n∑
i=1

EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))|ξ∗i

)
− EFn

(
EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))|ξ∗i

))
+

√
n(

n
2

)
ρ
τ(g)
n

∑
i<j

(
g̃(hn(ξ

∗
i , ξ

∗
j ))− EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))|ξ∗i

)
− EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))|ξ∗j

)
+ EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))
) )

≡ Ũn(hn, Fn) + r̃n(hn, Fn).

We firstly focus on Ũn(hn, Fn), which is a (rescaled) average of i.i.d. terms. We add and

28For more details see Chapter 5 of Serfling (2009), specifically section 5.1.5.
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subtract terms that swap hn for h0,n and Fn for F0:

Ũn(hn, Fn) =
2

√
nρ

τ(g)
n

n∑
i=1

(
EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))|ξ∗i

)
− EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))
)

− EFn

(
g̃(h0,n(ξ

∗
i , ξ

∗
j ))|ξ∗i

)
+ EFn

(
g̃(h0,n(ξ

∗
i , ξ

∗
j ))
) )

+
2

√
nρ

τ(g)
n

n∑
i=1

(
EFn

(
g̃(h0,n(ξ

∗
i , ξ

∗
j ))|ξ∗i

)
− EFn

(
g̃(h0,n(ξ

∗
i , ξ

∗
j ))
)

− EF0
(g̃(h0,n(ξ

∗
i , ξj))|ξ∗i ) + EFn

(EF0
(g̃(h0,n(ξ

∗
i , ξj))|ξ∗i ))

)
+

2
√
nρ

τ(g)
n

n∑
i=1

(EF0
(g̃(h0,n(ξ

∗
i , ξj))|ξ∗i )− EFn

(EF0
(g̃(h0,n(ξ

∗
i , ξj))|ξ∗i )))

= T1 + T2 + T3

We deal with these terms one by one.

For T1, we do Taylor expansion of g̃ around h0,n:

g̃(hn(ξ
∗
i , ξ

∗
j ))− g̃(h0,n(ξ

∗
i , ξ

∗
j )) = g̃

′
(
h̃n(ξ

∗
i , ξ

∗
j )
) (

hn(ξ
∗
i , ξ

∗
j )− h0,n(ξ

∗
i , ξ

∗
j )
)

where h̃n(ξ
∗
i , ξ

∗
j ) is between hn(ξ

∗
i , ξ

∗
j ) and h0,n(ξ

∗
i , ξ

∗
j ). We can show that T1 goes to zero in

second mean, hence also in probability. Let:

T1 =
2

√
nρ

τ(g)
n

n∑
i=1

(
EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))− g̃(h0,n(ξ

∗
i , ξ

∗
j ))|ξ∗i

)
− EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))− g̃(h0,n(ξ

∗
i , ξ

∗
j ))
) )

=
2

√
nρ

τ(g)
n

n∑
i=1

bi∗ .

Note that the terms inside the sum are independent and have zero expectation:

EFn(bi∗) = EFn

(
EFn (g̃(hn(ξ

∗
i , ξ

∗
k))− g̃(h0,n(ξ

∗
i , ξ

∗
k))|ξ∗i )

− EFn
(g̃(hn(ξ

∗
k, ξ

∗
l ))− g̃(h0,n(ξ

∗
k, ξ

∗
l )))

)
LIE
= EFn

(g̃(hn(ξ
∗
k, ξ

∗
l ))− g̃(h0,n(ξ

∗
k, ξ

∗
l )))− EFn

(g̃(hn(ξ
∗
k, ξ

∗
l ))− g̃(h0,n(ξ

∗
k, ξ

∗
l ))) = 0
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Hence in the expansion of the square all terms with i ̸= j are zero:

E
(
T 2
1

)
= E

( 2
√
nρ

τ(g)
n

n∑
i=1

bi∗

)2


= 4
1

nρ
2τ(g)
n

n∑
i=1

EFn

(
b2i∗
)
+ 8

1

nρ
2τ(g)
n

∑
i<j

EFn
(bi∗bj∗)

i.i.d.
= 4ρ−2τ(g)

n EFn

(
b2i∗
)
+ 8

1

nρ
2τ(g)
n

∑
i<j

EFn (bi∗)EFn (bj∗)

= 4ρ−2τ(g)
n EFn

(
b2i∗
)

= 4ρ−2τ(g)
n EFn

((
EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))− g̃(h0,n(ξ

∗
i , ξ

∗
j ))|ξ∗i

)
− EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))− g̃(h0,n(ξ

∗
i , ξ

∗
j ))
))2)

= 4ρ−2τ(g)
n EFn

((
EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))− g̃(h0,n(ξ

∗
i , ξ

∗
j ))|ξ∗i

))2)
− 4ρ−2τ(g)

n

(
EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))− g̃(h0,n(ξ

∗
i , ξ

∗
j ))
))2

≤ 4ρ−2τ(g)
n EFn

((
EFn

(
g̃

′
(
h̃n(ξ

∗
i , ξ

∗
j )
) (

hn(ξ
∗
i , ξ

∗
j )− h0,n(ξ

∗
i , ξ

∗
j )
)
|ξi
))2)

≤ 4

(
ρ−τ(g)+1
n sup

h∈[0,Mwρn]

∣∣∣g̃′
(h)
∣∣∣)2

︸ ︷︷ ︸
<∞

EFn

((
1

ρn

(
hn(ξ

∗
i , ξ

∗
j )− h0,n(ξ

∗
i , ξ

∗
j )
))2

)
︸ ︷︷ ︸

=o(1)

−→ 0

In the first inequality we use the fact that the second term is negative and smaller in magnitude

than the first. We then pull the supremum over derivatives of g̃ out of the expectation, use

Jensen’s inequality to put the square inside the inner expectation, apply the law of iterated

expectations, and use the assumption 1. to get the conclusion.

As mentioned before, the derivative of g̃ is bounded for any choice of g, and as we take a

derivative with respect to h the leading term of the g̃
′
becomes proportional to power one lower

than g̃, i.e. ρ
−τ(g)+1
n g̃

′
= Op(1).

For the middle term, T2, we show that it goes to zero in mean squared. To simplify notation,

let T2 = 2√
nρ

τ(g)
n

∑n
i=1 ai∗ and notice that:

EFn (ai∗) = EFn

(
EFn

(
g̃(h0,n(ξ

∗
i , ξ

∗
j ))|ξ∗i

))
− EFn

(
g̃(h0,n(ξ

∗
i , ξ

∗
j ))
)︸ ︷︷ ︸

=0

−EFn
(EF0

(g̃(h0,n(ξ
∗
i , ξj))|ξ∗i )) + EFn

(EF0
(g̃(h0,n(ξ

∗
i , ξj))|ξ∗i ))︸ ︷︷ ︸

=0

= 0.
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Then we have:

E
(
T 2
2

)
= E

( 2
√
nρ

τ(g)
n

n∑
i=1

ai∗

)2


= 4
1

nρ
2τ(g)
n

n∑
i=1

EFn

(
a2i∗
)
+ 8

1

nρ
2τ(g)
n

∑
i<j

EFn
(ai∗aj∗)

i.i.d.
= 4ρ−2τ(g)

n EFn

(
a2i∗
)
+ 8

1

nρ
2τ(g)
n

∑
i<j

EFn (ai∗)EFn (aj∗)

= 4ρ−2τ(g)
n EFn

(
a2i∗
)

= 4EFn

((
EFn

(
˜̃g(w0(ξ

∗
i , ξ

∗
j ))|ξ∗i

)
+ EFn

(
˜̃g(w0(ξ

∗
i , ξ

∗
j ))
)
− EF0

(˜̃g(w0(ξ
∗
i , ξj))|ξ∗i )

+ EF0 (˜̃g(w0(ξi, ξj)))− EF0 (˜̃g(w0(ξi, ξj))) + EFn (EF0 (˜̃g(w0(ξ
∗
i , ξj))|ξ∗i ))

)2)
+O (ρn)

≤ 8EFn

((
EFn

(
˜̃g(w0(ξ

∗
i , ξ

∗
j ))|ξ∗i

))2)︸ ︷︷ ︸
−→EF0

((
EF0

(
˜̃g(w0(ξi,ξj))|ξi

))2
)

+8EFn

(
(EF0

(˜̃g(w0(ξ
∗
i , ξj))|ξ∗i ))

2
)

︸ ︷︷ ︸
−→EF0

((
EF0

(
˜̃g(w0(ξi,ξj))|ξi

))2
)

− 16EFn

(
EFn

(
˜̃g(w0(ξ

∗
i , ξ

∗
j ))|ξ∗i

)
EF0

(˜̃g(w0(ξ
∗
i , ξj))|ξ∗i )

)︸ ︷︷ ︸
−→EF0

((
EF0

(
˜̃g(w0(ξi,ξj))|ξi

))2
)

+ 8
(
EFn

(
˜̃g(w0(ξ

∗
i , ξ

∗
j ))
)
− EF0

(˜̃g(w0(ξi, ξj)))
)2︸ ︷︷ ︸

−→0

+ 8 (EF0 (˜̃g(w0(ξi, ξj)))− EFn (EF0 (˜̃g(w0(ξ
∗
i , ξj))|ξ∗i )))

2︸ ︷︷ ︸
−→0

+O (ρn)

−→ 0

In the 5th equality we plug in the definition of ai∗ , we add and subtract the term

EF0
(˜̃g(w0(ξi, ξj))), we bring the normalisation by ρ

−2τ(g)
n inside the expectation and use

g̃(ξi,ξj)

ρ
τ(g)
n

= ˜̃g (w0 (ξi, ξj)) + O (ρn). In the next step, we apply (a + b)2 ≤ 2a2 + 2b2, where a

corresponds to the first four terms in the previous summation, for which we expand the square,

and b corresponds to the last two terms. We now verify that we can apply property 2. to all

resulting terms:

� By the independence between ξ∗j and ξ∗k when j ̸= k and the law of iterated expectations

we can rewrite the first term as:

EFn

((
EFn

(
˜̃g(w0(ξ

∗
i , ξ

∗
j ))|ξ∗i

))2)
= EFn

(
EFn

(
˜̃g(w0(ξ

∗
i , ξ

∗
j ))|ξ∗i

)
EFn

(˜̃g(w0(ξ
∗
i , ξ

∗
k))|ξ∗i )

)
= EFn

(
˜̃g(w0(ξ

∗
i , ξ

∗
j ))˜̃g(w0(ξ

∗
i , ξ

∗
k))
)
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We now check the conditions for 2. when all indices are unique:

EF0
(|˜̃g(w0(ξi, ξj))˜̃g(w0(ξi, ξk))|)

LIE
= EF0

(EF0
( |˜̃g(w0(ξi, ξj))˜̃g(w0(ξi, ξk))|| ξi))

≤ EF0
(EF0

( |˜̃g(w0(ξi, ξj))|| ξi)EF0
( |˜̃g(w0(ξi, ξk))|| ξi))

= EF0

(
EF0

( |˜̃g(w0(ξi, ξj))|| ξi)
2
)

≤ EF0

(
EF0

(
˜̃g2(w0(ξi, ξj))

∣∣ ξi))
LIE
= EF0

(
˜̃g2(w0(ξi, ξj))

)
< ∞.

When two indices are repeated we use Cauchy-Schwarz inequality:

EF0
(|˜̃g(w0(ξi, ξj))˜̃g(w0(ξi, ξi))|) ≤

√
EF0

(˜̃g2(w0(ξi, ξj)))EF0
(˜̃g2(w0(ξi, ξi))) < ∞.

And when all indices are equal the condition EF0

(
˜̃g2(w0(ξi, ξi))

)
< ∞ follows straight

from the assumptions. Hence we have

EFn

((
EFn

(
˜̃g(w0(ξ

∗
i , ξ

∗
j ))|ξ∗i

))2) −→ EF0
(|˜̃g(w0(ξi, ξj))˜̃g(w0(ξi, ξk))|)

= EF0

(
(EF0

(˜̃g(w0(ξi, ξj))|ξi))
2
)
.

� For the second term, we can verify the condition for 2. when the indices are unique:

EF0

(∣∣∣EF0 (˜̃g(w0(ξi, ξj))|ξi)
2
∣∣∣) = EF0

(
EF0 (˜̃g(w0(ξi, ξj))|ξi)

2
)

≤ EF0

(
EF0

(
˜̃g2(w0(ξi, ξj))|ξi

))
LIE
= EF0

(
˜̃g2(w0(ξi, ξj))

)
< ∞,

where the inequality follows from Jensen’s inequality. When the indices are repeated:

EF0

(∣∣∣EF0
(˜̃g(w0(ξi, ξi))|ξi)

2
∣∣∣) = EF0

(
˜̃g2(w0(ξi, ξi))

)
< ∞.

hence EFn

(
(EF0 (˜̃g(w0(ξ

∗
i , ξj))|ξ∗i ))

2
)
−→ EF0

(
(EF0 (˜̃g(w0(ξi, ξj))|ξi))

2
)
.

� The third term can be rewritten as:

EFn

(
EFn

(
˜̃g(w0(ξ

∗
i , ξ

∗
j ))|ξ∗i

)
EF0

(˜̃g(w0(ξ
∗
i , ξj))|ξ∗i )

)
= EFn

(
˜̃g(w0(ξ

∗
i , ξ

∗
j ))EF0

(˜̃g(w0(ξ
∗
i , ξj))|ξ∗i )

)
.
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Using Jensen’s inequality, we verify the condition for 2. when the indices are unique:

EF0
(|˜̃g(w0(ξi, ξj))EF0

(˜̃g(w0(ξi, ξk))|ξi)|)

≤ EF0
(|˜̃g(w0(ξi, ξj))|EF0

(|˜̃g(w0(ξi, ξk))| |ξi))

LIE
= EF0

(EF0
(|˜̃g(w0(ξi, ξj))| |ξi)EF0

(|˜̃g(w0(ξi, ξk))| |ξi))

= EF0

(
EF0 (|˜̃g(w0(ξi, ξj))| |ξi)

2
)

≤ EF0

(
EF0

(
˜̃g2(w0(ξi, ξj))|ξi

))
LIE
= EF0

(
˜̃g2(w0(ξi, ξj))

)
< ∞

and using Jensen’s and Cauchy-Schwarz inequalities we verify it when the indices are

equal:

EF0 (|˜̃g(w0(ξi, ξi))EF0 (˜̃g(w0(ξi, ξj))|ξi)|) ≤ EF0 (EF0 (|˜̃g(w0(ξi, ξi))˜̃g(w0(ξi, ξj))| |ξi))

LIE
= EF0

(|˜̃g(w0(ξi, ξi))˜̃g(w0(ξi, ξj))|)

≤
√
EF0

(˜̃g2(w0(ξi, ξj)))EF0
(˜̃g2(w0(ξi, ξi)))

< ∞.

hence

EFn

(
EFn

(
˜̃g(w0(ξ

∗
i , ξ

∗
j ))|ξ∗i

)
EF0

(˜̃g(w0(ξ
∗
i , ξj))|ξ∗i )

)
−→ EF0 (˜̃g(w0(ξi, ξj))EF0 (˜̃g(w0(ξi, ξj))|ξi)) = EF0

(
(EF0 (˜̃g(w0(ξi, ξj))|ξi))

2
)

� For the fourth term we can verify that

EF0
(|EF0

(˜̃g(w0(ξi, ξj))|ξi)|) ≤
√

EF0
(EF0

(˜̃g2(w0(ξi, ξj))|ξi))

LIE
=
√

EF0
(˜̃g2(w0(ξi, ξj))) < ∞,

EF0
(|EF0

(˜̃g(w0(ξi, ξi))|ξi)|) = EF0
(|˜̃g(w0(ξi, ξi))|) ≤

√
EF0

(˜̃g2(w0(ξi, ξi))) < ∞.

hence EFn

(
˜̃g(w0(ξ

∗
i , ξ

∗
j ))
)
−→ EF0

(˜̃g(w0(ξi, ξj))).

We combine all terms using continuous mapping theorem and see that they all cancel out and

the limit is zero.
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For T3, we can write:

T3 = 2ρ−τ(g)
n

√
V arFn

(EF0
(g̃(h0,n(ξ∗i , ξj))|ξ∗i ))

×
n∑

i=1

EF0 (g̃(h0,n(ξ
∗
i , ξj))|ξ∗i )− EFn (EF0 (g̃(h0,n(ξ

∗
i , ξj))|ξ∗i ))√

n
√
V arFn(EF0 (g̃(h0,n(ξ∗i , ξj))|ξ∗i ))

.

Denote the terms inside the sum by Xin. They have zero expectation:

EFn (Xin) =
EFn

(EF0
(g̃(h0,n(ξ

∗
i , ξj))|ξ∗i )− EFn

(EF0
(g̃(h0,n(ξ

∗
i , ξj))|ξ∗i )))√

n
√
V arFn

(EF0
(g̃(h0,n(ξ∗i , ξj))|ξ∗i ))

= 0.

Their variances sum to 1 for each n:

n∑
i=1

V arFn
(Xin) = n

V arFn
(EF0

(g̃(h0,n(ξ
∗
i , ξj))|ξ∗i ))

nV arFn(EF0 (g̃(h0,n(ξ∗i , ξj))|ξ∗i ))
= 1.

And for all n when i ̸= j the terms Xin and Xjn are independent and identically distributed.

Hence by Lindeberg-Levy CLT for triangular arrays their sum converges in distribution to a

standard normal random variable.

For the multiplier term we have:

ρ−2τ(g)
n V arFn

(EF0
(g̃(h0,n(ξ

∗
i , ξj))|ξ∗i )) = V arFn

(
EF0

(
ρ−τ(g)
n g̃(h0,n(ξ

∗
i , ξj))|ξ∗i

))
= V arFn (EF0 (˜̃g(w0(ξ

∗
i , ξj))|ξ∗i )) +O(ρn)

= EFn

(
EF0

(˜̃g(w0(ξ
∗
i , ξj))|ξ∗i )

2
)
− (EFn

(EF0
(˜̃g(w0(ξ

∗
i , ξj))|ξ∗i )))

2
+O(ρn)

−→ EF0

(
EF0

(˜̃g(w0(ξi, ξj))|ξi)
2
)
− (EF0

(EF0
(˜̃g(w0(ξi, ξj))|ξi)))

2

= V arF0(EF0 (˜̃g(w0(ξi, ξj))|ξi)) ≡ σ2
1 < ∞.

The first equality is pulling the normalisation inside the variance. The second equality applies

the definition og ˜̃g. The third equality is rewriting variance in terms of expectations. The limit

follows from 2. (we have already checked that the relevant absolute moments are finite when

we were checking conditions for convergence of T2, terms two and four) and the continuous

mapping theorem. The final line is by definition. Hence T3
d−→ N(0, 4σ2

1).

It remains to show that r̃n(hn, Fn) = op(1). We can check that the expression is
√
n times

a U-statistic with a kernel function G(ξ∗i , ξ
∗
j ) = ρ

−τ(g)
n

(
g̃(hn(ξ

∗
i , ξ

∗
j ))−EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))|ξ∗i

)
−

EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))|ξ∗j

)
+ EFn

(
g̃(hn(ξ

∗
i , ξ

∗
j ))
) )

. Note that E(G(ξ∗i , ξ
∗
j )) = E(G(ξ∗i , ξ

∗
j )|ξ∗i ) = 0,

i.e. it is a degenerate U-statistic with V ar(E(G(ξ∗i , ξ
∗
j )|ξ∗i )) = 0. We could show that the whole

term is negligible by convergence in second mean from definition, or rely on a Theorem from

section 5.3.2 in Serfling (2009) which, in the present setting, can be stated as:
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Lemma (Theorem 5.3.2 in Serfling (2009)). If EFn

((
G(ξ∗i , ξ

∗
j )
)2)

< ∞ then

EFn

(
(r̃n(hn, Fn))

2
)
= O

(
1

n

)
= o(1).

By Jensen’s inequality and the law of large numbers, ρ
−2τ(g)
n EFn

(
g̃2
(
hn

(
ξ∗i , ξ

∗
j

)))
is an

upper bound for all terms in the expansion of EFn

((
G(ξ∗i , ξ

∗
j )
)2)

. Hence the sufficient condition

is implied by:

ρ−2τ(g)
n EFn

(
g̃2
(
hn

(
ξ∗i , ξ

∗
j

)))
≤ 2EFn

(
˜̃g2
(
w0

(
ξ∗i , ξ

∗
j

)))︸ ︷︷ ︸
−→EF0

(
˜̃g2(w0(ξi,ξj))

)
<∞

+O(ρn)

+ 2

(
sup

h∈[0,Mwρn]

∣∣∣∣∣ g̃
′
(h)

ρ
τ(g)−1
n

∣∣∣∣∣
)2

︸ ︷︷ ︸
<∞

EFn

((
1

ρn

(
hn

(
ξ∗i , ξ

∗
j

)
− ĥn

(
ξ∗i , ξ

∗
j

)))2
)

︸ ︷︷ ︸
−→0

≤ 2EF0

(
˜̃g2 (w0 (ξi, ξj))

)
+ o(1).

Hence for any ε > 0 we can find an N sufficiently large so that the condition is satisfied:

EFn

((
G(ξ∗i , ξ

∗
j )
)2)

< 8EF0

(
˜̃g2 (w0 (ξi, ξj))

)
+ ε < ∞ for all n > N .

Moving on to the second part of the proof, we check that the sequence
{
ĥn, F̂n

}∞

n=1
satisfies

assumptions 1. and 2. in probability:

1. Follows from Theorem 1:

EF̂n

((
1

ρn

(
ĥn(ξ

∗
i , ξ

∗
j )− h0,n(ξ

∗
i , ξ

∗
j )
))2

)

=
1

n2

n∑
i=1

n∑
j=1

(
1

ρn

(
ĥn(ξi, ξj)− h0,n(ξi, ξj)

))2

≤

(
max
i,j

∣∣∣∣∣ ĥn(ξi, ξj)− h0,n(ξi, ξj)

ρn

∣∣∣∣∣
)2

= op(1)
2 = op(1).

2. Let f : Supp(ξ)3 −→ R be any symmetric function for which EF0
(|f (ξi, ξj , ξk)|) < ∞,
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EF0
(|f (ξi, ξi, ξj)|) < ∞ and EF0

(|f (ξi, ξi, ξi)|) < ∞. We have:

EF̂n

(
f(ξ∗i , ξ

∗
j , ξ

∗
k)
)
=

1

n3

n∑
i=1

n∑
j=1

n∑
k=1

f(ξi, ξj , ξk)

=
(n− 1)(n− 2)

n2︸ ︷︷ ︸
−→1

1(
n
3

) ∑
i<j<k

f(ξi, ξj , ξk)︸ ︷︷ ︸
a.s.−−→EF0

(f(ξi,ξj ,ξk))<∞

+
3(n− 1)

n2︸ ︷︷ ︸
−→0

1(
n
2

) ∑
i<j

f(ξi, ξi, ξj)︸ ︷︷ ︸
a.s.−−→EF0

(f(ξi,ξi,ξj))<∞

+
1

n2︸︷︷︸
−→0

1

n

n∑
i=1

f(ξi, ξi, ξi)︸ ︷︷ ︸
a.s−−→EF0

(f(ξi,ξi,ξi))<∞

a.s.−−→ EF0 (f(ξi, ξj , ξk))

The first equality follows from the definition of the empirical distribution function F̂n. The

convergence of the two terms in the second line follows from the SLLN for U-statistics (see

e.g. Theorem A. in section 5.4 of Serfling (2009), p.190) given that EF0 (|f (ξi, ξj , ξk)|) <

∞ and EF0
(|f (ξi, ξi, ξj)|) < ∞. The convergence of the term in the third line follows from

Kolmogorov’s SLLN for i.i.d. random variables which applies under the assumption that

EF0 (|f (ξi, ξi, ξi)|) < ∞. The final line is by continuous mapping theorem for almost sure

convergence. Condition 2. holds almost surely (hence also in probability), but because

we only get condition 1. in probability the overall result is for convergence weakly in

probability.

The above result was stated for a normalisation using the unknown ρn. We now show that

the conclusions remain true when we replace it with an estimate.

Corollary 2.A.1. Under the assumptions of Theorem 2.A.2

ρ̂n − ρn = op(ρn),

hence

fn

(
A
(
ĥn(ξ

∗), η∗
)
, ρ̂n, F̂n

)
= fn

(
A
(
ĥn(ξ

∗), η∗
)
, ρn, F̂n

)
+ op(1)

and we get all conclusions of Theorem 2.A.1 in probability with J(t, w0, F0) = N(0,m2σ2
1) for

fn

(
A
(
ĥn (ξ

∗) , η∗
)
, ρ̂n, F̂n

)
=

√
n(

n
m

)
ρ̂
τ(g)
n

∑
1≤ι1<···<ιm≤n

(
g
(
A
(
ĥn (ξ

∗ (ι)) , η∗ (ι)
))

− Eĥn,F̂n

(
g
(
A
(
ĥn (ξ

∗ (ι)) , η∗ (ι)
))))

.
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Proof of Corollary 2.A.1. Let ρ∗n denote the density of a bootstrap adjacency matrix formed

by ξ∗ ∼ Fn with linking probabilities hn. We can write

fn (A (hn (ξ
∗) , η∗) , ρ∗n, Fn) =

(
ρn
ρ̂∗n

)τ(g)

fn (A (hn (ξ
∗) , η∗) , ρn, Fn)

hence it is sufficient to show ρ∗n−ρn = op(ρn) which, by Slutsky’s theorem, implies
(

ρn

ρ∗
n

)τ(g) p−→

1.

Applying Theorem 2.4.2 to g(Aij) = Aij , for which m = 2 and τ(g) = 1, we have:

√
n(

n
2

)
ρn

∑
1≤i∗<j∗≤n

(Ai∗j∗ − Ehn,Fn(Ai∗j∗)) = Op(1)

where the expression is bounded in probability because it has a well-defined limiting distribu-

tion.

Hence

ρ∗n =
1(
n
2

) ∑
1≤i∗<j∗≤n

Ai∗j∗

= Ehn,Fn(Ai∗j∗) +
ρn√
n
Op(1)︸ ︷︷ ︸

= 1√
n
Op(ρn)=op(ρn)

= EFn
(Ehn

(Ai∗j∗ | ξ∗)) + op(ρn)

= EFn

(
Ehn

(
hn(ξ

∗
i , ξ

∗
j )
∣∣ ξ∗))+ op(ρn)

= ρn

(
EFn

(
1

ρn

(
hn(ξ

∗
i , ξ

∗
j )− h0,n(ξ

∗
i , ξ

∗
j )
))

+ EFn

(
1

ρn
h0,n(ξ

∗
i , ξ

∗
j )

))
+ op(ρn)

≤ ρn


√√√√EFn

((
1

ρn

(
hn(ξ∗i , ξ

∗
j )− h0,n(ξ∗i , ξ

∗
j )
))2

)
+ EFn

(
w0(ξ

∗
i , ξ

∗
j )
)+ op(ρn)

= ρn (o(1) + EF0 (w0 (ξi, ξj) + o(1))) + op(ρn)

= ρn(o(1) + 1 + o(1)) + op(ρn)

= ρn + op(ρn)

The first equality is by definition, the second follows from the above expression and result from

Theorem 2.4.2. The third equality uses the law of iterated expectations. The fourth equality is

by definition of A. For the fifth equality we add and subtract EFn

(
h0,n(ξ

∗
i , ξ

∗
j )
)
and pull ρn out

of the bracket. The inequality is due to Jensen’s inequality where the final term is transformed

according to the definition of w0. The sixth equality uses assumptions 1. and 2.. The seventh

equality is due to the definition of w0 which is assumed to integrate to 1.

The above derivation applies to the case of ρ∗n = ρ̂n (for hn = h0,n and fn = F0), proving
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that fn (A (h0,n (ξ) , η) , ρ̂n, F0) and fn (A (h0,n (ξ) , η) , ρn, F0) have the same asymptotic limit.

If we replaces ρ∗n with ρ̂∗n the o(1) terms in the derivation are replaced by op(1), which does

not affect the overall result. Hence we also get the same limit of fn

(
A
(
ĥn (ξ

∗) , η∗
)
, ρ̂∗n, F̂n

)
.

We note that all conclusions of Theorem 2.4.2, Lemma 2.4.1 and Corollary 2.4.1 follow from

Theorem 2.A.2 and Corollary 2.A.1, hence they have also been proven.

Appendix 2.B Additional tables, plots, codes

Subsection 2.B.1 Codes

In this section we present some of the codes used for simulations. A full package should

eventually become available online.

Note that these codes are used together with those given in Chapter 1 in Section 1.B.2.

Code for running bootstrap:

def boot_HK1h(A,h,B):

#outputs B bootstrapped adjacency matrices based on matrix A with bandwidth

h using linking function estimate

HK1

n=len(A)

H_true = HK1h(D2(A),A,h)

#choose nodes for bootstrap villages:

v = np.random.randint(0, n, size=(B,n))

#generate new adjacency matrices

row = np.tensordot(v,np.ones(n),0).astype(int)

column = np.tile(np.array(v),n).reshape(B,n,n)

G = H_true[row ,column]

u = np.random.rand(B, n, n)

m = np.tril(u) + np.transpose(np.tril(u, -1),[0,2,1])

A_boot = (m < G)*1

[np.fill_diagonal(A_boot[i], 0) for i in range(B)]

return A_boot

A sample Monte Carlo simulation code using the above definitions and the WARP procedure

from Giacomini, Politis, and White (2013) to obtain the confidence interval coverage:

#define the output data frame:

df_loo = pd.DataFrame(columns=[’S’, ’B’, ’n’, ’rho’,’average for true graphs ’, ’

true value’, ’alpha ’, ’proportion of

bootstrap CI that cover truth ’, ’average

length of bootstrap CI’, ’statistic ’,’h

’])
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#run the simulations :

ALPHA = [0.01, 0.05 , 0.1, 0.15, 0.2, 0.3] #sizes of confidence intervals

NN = [25 , 50 , 100 , 150 , 200 , 300] #sample sizes

SS = [1000] #number of true graphs

RR = [1, 0.75,0.5,0.25,0.1] #sparsity level

for n in NN:

for r in RR:

S_max = max(SS)

(A_true , h_true , xi_true) = product_generate_A_h_xi(n, r, S_max)

A_boot = []

h_list = []

B=1 #because of WARP we only need one bootstrap replication

true_density = r*0.25

for A in A_true[0:min(len(A_true),S_max)]:

#find the optimal bandwidth by minimising the leave -one -out log -

likelihood

h_guess = 0.2090189845643738*true_density **1.38258532*n **(-1.

55268817)*np.log(n)**1.

82661653

res = minimize(ll , h_guess , args=A, method = ’Nelder -Mead’, tol=1e-7

, bounds=((0,1.1),))

h = res.x[0]

#do bootstrap for matrix A using the optimal bandwidth

Ab = boot_HK1h(A,h,B)

#save the bootstrapped adjacency matrices and the bandwidth

A_boot.append(Ab)

h_list.append(h)

#estimate the statistic of interest for true and bootstrapped graphs

true_density_all = [nx.density(nx.from_numpy_array(A_true[s])) for s in

range(S_max)]]

true_density_mean = np.mean(true_density_all)

boot_density_all = [nx.density(nx.from_numpy_array(A_boot[s][0])) for s

in range(S_max)]

#find the confidence interval coverage using WARP

for S in SS:

if (S<=len(A_true)):

true_density_vec = true_density_all[0:S]

boot_density = boot_density_all[0:S]
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stat = ’density ’

density_minus_true = np.array(boot_density) - np.array(

true_density_vec)

for alpha in ALPHA:

qu= np.percentile(density_minus_true , 100*(1-alpha/2))

ql= np.percentile(density_minus_true , 100*(alpha/2))

bl = true_density_vec - qu

bu = true_density_vec - ql

co= np.mean([bl[i] <= true_density <= bu[i] for i in range(S

)])

me = np.mean(bu-bl)

df_loo = df_loo._append({’S’: S, "B": B, ’n’: n, "rho": r, ’

average for true

graphs ’:

true_density_mean , ’

true value’:

true_density , ’alpha

’: alpha , ’

proportion of

bootstrap CI that

cover truth’: co , ’

average length of

bootstrap CI’: me , ’

statistic ’: stat , ’h

’: np.mean(h_list)},

ignore_index = True

)

#save the output

df_loo.to_csv(’df_loo_product_n_25_300_true_dens.csv’)

Subsection 2.B.2 Monte Carlo simulations: tables and a sensitivity

check

Since we are using the WARP procedure instead of traditional Monte Carlo simulations, we

test its sensitivity by checking the effect of varying the number of simulated true graphs S

rather than the number of bootstrap replications B, which is always kept at B = 1. Fig. 2.11a

shows that the predictions for different statistics stabilise above S around 750 or higher. This

is true in most simulations (see Table 2.4, Table 2.5), with the exception of networks with high

density such as that in Fig. 2.11b (and Table 2.6) in which the predictions do not stabilise until

S = 1250 or even S = 1500. In all other sections we use S = 1000. Running more repetitions is
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computationally expensive and provides little advantage in terms of accuracy in the majority

of cases.

(a) Confidence interval coverage for density us-
ing the product generating function at n = 500
and ρn = 0.1875.

(b) Confidence interval coverage for transitiv-
ity using the high density generating function
at n = 500 and ρn = 0.759.

Figure 2.11: Confidence interval coverage for different number of simulated true graphs S based
on Monte Carlo simulations.
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average for Proportion of bootstrap CI that cover truth for
n statistic ρn true graphs α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

500 λ1 0.024 17.116 1.000 0.971 0.925 0.858 0.804 0.660
0.078 52.502 0.998 0.961 0.900 0.854 0.811 0.706
0.139 93.282 0.997 0.956 0.884 0.844 0.799 0.685
0.250 166.453 0.995 0.954 0.887 0.825 0.778 0.692

λ3 0.024 7.823 0.005 0.000 0.000 0.000 0.000 0.000
0.078 12.825 0.000 0.000 0.000 0.000 0.000 0.000
0.139 15.582 0.000 0.000 0.000 0.000 0.000 0.000
0.250 17.042 0.000 0.000 0.000 0.000 0.000 0.000

λ10 0.024 7.022 0.997 0.985 0.943 0.876 0.803 0.596
0.078 11.627 0.391 0.058 0.018 0.008 0.004 0.002
0.139 14.197 0.082 0.000 0.000 0.000 0.000 0.000
0.250 15.667 0.000 0.000 0.000 0.000 0.000 0.000

Louvain CDA modularity 0.024 0.243 0.000 0.000 0.000 0.000 0.000 0.000
0.078 0.119 0.001 0.000 0.000 0.000 0.000 0.000
0.139 0.082 0.015 0.001 0.001 0.001 0.000 0.000
0.250 0.052 0.198 0.061 0.021 0.008 0.006 0.002

density 0.024 0.024 0.405 0.177 0.096 0.059 0.044 0.024
0.078 0.078 0.989 0.909 0.811 0.752 0.699 0.620
0.139 0.139 0.993 0.955 0.889 0.827 0.771 0.672
0.250 0.250 0.992 0.953 0.897 0.839 0.788 0.659

max betweenness centrality 0.024 0.019 0.304 0.058 0.033 0.023 0.013 0.010
0.078 0.011 1.000 0.965 0.809 0.692 0.591 0.439
0.139 0.009 1.000 0.995 0.981 0.923 0.847 0.668
0.250 0.008 1.000 0.997 0.969 0.901 0.835 0.713

transitivity 0.024 0.043 1.000 1.000 1.000 0.997 0.993 0.952
0.078 0.138 1.000 0.967 0.928 0.899 0.864 0.774
0.139 0.247 0.985 0.954 0.903 0.859 0.818 0.719
0.250 0.443 0.991 0.947 0.890 0.835 0.779 0.672

triangle density 0.024 0.000 0.990 0.852 0.706 0.563 0.456 0.309
0.078 0.001 0.998 0.965 0.905 0.845 0.798 0.701
0.139 0.006 0.991 0.959 0.902 0.840 0.794 0.692
0.250 0.037 0.992 0.956 0.882 0.828 0.779 0.678

1000 λ1 0.013 18.974 0.894 0.677 0.470 0.379 0.270 0.157
0.058 77.998 0.991 0.951 0.886 0.847 0.812 0.715
0.120 160.817 0.988 0.959 0.911 0.859 0.814 0.749
0.250 332.967 0.987 0.959 0.904 0.852 0.810 0.747

λ3 0.013 8.573 0.000 0.000 0.000 0.000 0.000 0.000
0.058 16.482 0.000 0.000 0.000 0.000 0.000 0.000
0.120 21.588 0.000 0.000 0.000 0.000 0.000 0.000
0.250 24.642 0.000 0.000 0.000 0.000 0.000 0.000

λ10 0.013 8.002 0.044 0.000 0.000 0.000 0.000 0.000
0.058 15.493 0.000 0.000 0.000 0.000 0.000 0.000
0.120 20.377 0.000 0.000 0.000 0.000 0.000 0.000
0.250 23.414 0.000 0.000 0.000 0.000 0.000 0.000

Louvain CDA modularity 0.013 0.234 0.000 0.000 0.000 0.000 0.000 0.000
0.058 0.100 0.000 0.000 0.000 0.000 0.000 0.000
0.120 0.064 0.000 0.000 0.000 0.000 0.000 0.000
0.250 0.037 0.000 0.000 0.000 0.000 0.000 0.000

density 0.013 0.013 0.000 0.000 0.000 0.000 0.000 0.000
0.058 0.058 0.937 0.849 0.777 0.705 0.669 0.576
0.120 0.120 0.984 0.943 0.892 0.836 0.800 0.725
0.250 0.250 0.992 0.953 0.896 0.846 0.800 0.732

max betweenness centrality 0.013 0.011 0.101 0.010 0.006 0.004 0.003 0.001
0.058 0.006 1.000 0.960 0.872 0.776 0.690 0.531
0.120 0.005 0.998 0.994 0.975 0.957 0.916 0.775
0.250 0.004 1.000 0.993 0.982 0.947 0.899 0.791

transitivity 0.013 0.024 1.000 1.000 0.998 0.982 0.955 0.880
0.058 0.103 0.997 0.980 0.942 0.906 0.864 0.778
0.120 0.214 0.983 0.952 0.913 0.868 0.835 0.733
0.250 0.444 0.988 0.959 0.922 0.880 0.827 0.716

triangle density 0.013 0.000 0.385 0.144 0.064 0.040 0.027 0.011
0.058 0.000 0.991 0.946 0.884 0.846 0.804 0.714
0.120 0.004 0.988 0.967 0.921 0.857 0.809 0.745
0.250 0.037 0.984 0.966 0.910 0.856 0.807 0.746

Table 2.1: Confidence interval coverage for different densities based on Monte Carlo simulations using the product
generating function when S = 1000.
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average for Proportion of bootstrap CI that cover truth for
n statistic ρn true graphs α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

250 λ1 0.127 33.515 0.993 0.961 0.885 0.805 0.744 0.614
0.307 79.477 0.995 0.965 0.932 0.892 0.851 0.754
0.476 122.926 0.992 0.976 0.938 0.901 0.845 0.748
0.740 190.475 0.989 0.970 0.932 0.886 0.838 0.732

λ3 0.127 10.044 0.000 0.000 0.000 0.000 0.000 0.000
0.307 13.573 0.000 0.000 0.000 0.000 0.000 0.000
0.476 14.350 0.000 0.000 0.000 0.000 0.000 0.000
0.740 12.038 0.608 0.107 0.020 0.004 0.000 0.000

λ10 0.127 8.891 0.000 0.000 0.000 0.000 0.000 0.000
0.307 12.043 0.000 0.000 0.000 0.000 0.000 0.000
0.476 12.728 0.000 0.000 0.000 0.000 0.000 0.000
0.740 10.505 0.996 0.972 0.947 0.886 0.839 0.722

Louvain CDA modularity 0.127 0.137 0.000 0.000 0.000 0.000 0.000 0.000
0.307 0.074 0.000 0.000 0.000 0.000 0.000 0.000
0.476 0.049 0.000 0.000 0.000 0.000 0.000 0.000
0.740 0.024 0.981 0.900 0.787 0.716 0.610 0.440

density 0.130 0.130 1.000 1.000 0.991 0.977 0.959 0.885
0.314 0.314 0.998 0.986 0.964 0.930 0.886 0.802
0.488 0.488 0.996 0.980 0.946 0.902 0.858 0.744
0.759 0.759 0.993 0.968 0.927 0.887 0.840 0.741

max betweenness centrality 0.127 0.009 0.750 0.271 0.119 0.079 0.067 0.040
0.307 0.005 1.000 0.813 0.605 0.466 0.390 0.249
0.476 0.003 0.997 0.852 0.761 0.639 0.533 0.379
0.740 0.001 0.994 0.930 0.882 0.821 0.766 0.651

transitivity 0.127 0.132 0.999 0.990 0.971 0.923 0.886 0.771
0.307 0.318 0.995 0.970 0.931 0.893 0.856 0.749
0.476 0.494 0.992 0.976 0.944 0.907 0.857 0.745
0.740 0.768 0.993 0.970 0.943 0.884 0.824 0.728

triangle density 0.127 0.002 0.999 0.991 0.968 0.910 0.844 0.769
0.307 0.032 0.995 0.975 0.948 0.917 0.871 0.783
0.476 0.119 0.994 0.981 0.944 0.903 0.854 0.755
0.740 0.446 0.989 0.971 0.934 0.893 0.836 0.731

500 λ1 0.071 37.783 0.966 0.846 0.712 0.602 0.504 0.325
0.230 119.330 0.998 0.977 0.933 0.907 0.859 0.787
0.413 213.258 0.999 0.980 0.947 0.904 0.864 0.781
0.740 381.727 0.999 0.960 0.926 0.879 0.833 0.752

λ3 0.071 11.362 0.000 0.000 0.000 0.000 0.000 0.000
0.230 18.167 0.000 0.000 0.000 0.000 0.000 0.000
0.413 20.806 0.000 0.000 0.000 0.000 0.000 0.000
0.740 17.709 0.000 0.000 0.000 0.000 0.000 0.000

λ10 0.071 10.551 0.000 0.000 0.000 0.000 0.000 0.000
0.230 16.902 0.000 0.000 0.000 0.000 0.000 0.000
0.413 19.377 0.000 0.000 0.000 0.000 0.000 0.000
0.740 16.336 0.000 0.000 0.000 0.000 0.000 0.000

Louvain CDA modularity 0.071 0.135 0.000 0.000 0.000 0.000 0.000 0.000
0.230 0.066 0.000 0.000 0.000 0.000 0.000 0.000
0.413 0.041 0.000 0.000 0.000 0.000 0.000 0.000
0.740 0.018 0.671 0.153 0.038 0.019 0.005 0.002

density 0.073 0.073 1.000 0.998 0.990 0.975 0.946 0.882
0.236 0.236 0.999 0.992 0.977 0.938 0.905 0.839
0.423 0.423 0.999 0.984 0.953 0.915 0.885 0.791
0.759 0.759 0.998 0.965 0.921 0.883 0.845 0.755

max betweenness centrality 0.071 0.005 0.097 0.031 0.012 0.009 0.006 0.002
0.230 0.003 0.959 0.643 0.462 0.352 0.269 0.190
0.413 0.002 0.995 0.902 0.764 0.630 0.517 0.344
0.740 0.001 0.988 0.943 0.891 0.846 0.791 0.671

transitivity 0.071 0.074 1.000 0.999 0.979 0.953 0.887 0.772
0.230 0.239 0.998 0.987 0.952 0.906 0.872 0.792
0.413 0.428 0.999 0.986 0.959 0.921 0.882 0.808
0.740 0.769 0.997 0.962 0.930 0.897 0.835 0.754

triangle density 0.071 0.000 0.998 0.977 0.911 0.849 0.809 0.668
0.230 0.013 0.998 0.988 0.957 0.927 0.890 0.811
0.413 0.077 0.999 0.983 0.956 0.920 0.862 0.797
0.740 0.446 0.999 0.957 0.928 0.885 0.833 0.754

Table 2.2: Confidence interval coverage for different densities based on Monte Carlo simulations using the high density
generating function when S = 1000.
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average for Proportion of bootstrap CI that cover truth for
n statistic ρn true graphs α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

750 λ1 0.008 7.696 0.981 0.899 0.700 0.563 0.446 0.311
0.029 25.866 0.991 0.936 0.890 0.841 0.786 0.673
0.058 49.481 0.985 0.944 0.880 0.828 0.794 0.696
0.113 95.648 0.983 0.946 0.897 0.829 0.779 0.681

λ3 0.008 5.338 0.000 0.000 0.000 0.000 0.000 0.000
0.029 12.664 0.758 0.567 0.431 0.333 0.279 0.209
0.058 22.937 0.979 0.898 0.825 0.764 0.709 0.619
0.113 43.090 0.984 0.902 0.833 0.759 0.705 0.610

λ10 0.008 4.773 0.698 0.171 0.052 0.017 0.012 0.004
0.029 8.859 0.000 0.000 0.000 0.000 0.000 0.000
0.058 11.656 0.000 0.000 0.000 0.000 0.000 0.000
0.113 14.127 0.989 0.937 0.876 0.831 0.793 0.701

Louvain CDA modularity 0.008 0.436 0.000 0.000 0.000 0.000 0.000 0.000
0.029 0.323 0.891 0.806 0.712 0.646 0.585 0.494
0.058 0.307 0.974 0.915 0.836 0.756 0.689 0.589
0.113 0.294 0.988 0.948 0.903 0.842 0.754 0.673

density 0.008 0.008 0.007 0.000 0.000 0.000 0.000 0.000
0.029 0.029 0.952 0.719 0.569 0.413 0.317 0.203
0.058 0.058 0.980 0.932 0.876 0.821 0.758 0.678
0.113 0.113 0.993 0.948 0.905 0.855 0.802 0.710

max betweenness centrality 0.008 0.023 0.806 0.334 0.176 0.125 0.094 0.062
0.029 0.008 1.000 0.990 0.885 0.797 0.692 0.508
0.058 0.006 1.000 0.969 0.869 0.713 0.586 0.464
0.113 0.005 1.000 0.996 0.960 0.890 0.811 0.665

transitivity 0.008 0.010 1.000 1.000 1.000 0.998 0.995 0.973
0.029 0.039 0.987 0.946 0.901 0.848 0.794 0.714
0.058 0.076 0.983 0.945 0.884 0.840 0.809 0.699
0.113 0.148 0.976 0.926 0.870 0.824 0.782 0.668

triangle density 0.008 0.000 1.000 0.998 0.992 0.972 0.935 0.869
0.029 0.000 0.998 0.961 0.920 0.883 0.835 0.743
0.058 0.000 0.992 0.930 0.894 0.846 0.800 0.709
0.113 0.002 0.976 0.930 0.876 0.824 0.771 0.682

1000 λ1 0.006 8.002 0.977 0.788 0.611 0.472 0.332 0.204
0.026 30.381 0.998 0.941 0.894 0.844 0.787 0.689
0.054 61.907 0.998 0.942 0.886 0.831 0.792 0.694
0.113 127.414 0.996 0.950 0.900 0.844 0.781 0.672

λ3 0.006 5.528 0.000 0.000 0.000 0.000 0.000 0.000
0.026 14.699 0.903 0.682 0.563 0.461 0.416 0.333
0.054 28.486 0.986 0.947 0.891 0.846 0.789 0.678
0.113 57.194 0.989 0.934 0.887 0.836 0.776 0.694

λ10 0.006 5.000 0.141 0.001 0.000 0.000 0.000 0.000
0.026 9.885 0.000 0.000 0.000 0.000 0.000 0.000
0.054 13.380 0.000 0.000 0.000 0.000 0.000 0.000
0.113 16.554 0.995 0.972 0.914 0.848 0.801 0.697

Louvain CDA modularity 0.006 0.425 0.000 0.000 0.000 0.000 0.000 0.000
0.026 0.319 0.958 0.898 0.834 0.786 0.731 0.604
0.054 0.302 0.971 0.881 0.804 0.747 0.643 0.557
0.113 0.291 0.998 0.969 0.924 0.875 0.834 0.707

density 0.006 0.006 0.000 0.000 0.000 0.000 0.000 0.000
0.026 0.026 0.810 0.537 0.366 0.285 0.173 0.101
0.054 0.054 0.980 0.895 0.828 0.776 0.735 0.605
0.113 0.113 0.988 0.966 0.909 0.869 0.793 0.690

max betweenness centrality 0.006 0.018 0.658 0.210 0.104 0.066 0.045 0.028
0.026 0.006 1.000 0.995 0.897 0.776 0.697 0.507
0.054 0.004 1.000 0.936 0.765 0.643 0.522 0.370
0.113 0.003 1.000 0.997 0.918 0.874 0.843 0.706

transitivity 0.006 0.008 1.000 1.000 1.000 0.998 0.993 0.968
0.026 0.034 0.993 0.957 0.898 0.846 0.794 0.685
0.054 0.071 0.991 0.945 0.888 0.815 0.763 0.654
0.113 0.147 0.992 0.944 0.868 0.800 0.747 0.625

triangle density 0.006 0.000 1.000 0.996 0.974 0.946 0.906 0.800
0.026 0.000 0.998 0.980 0.937 0.872 0.818 0.716
0.054 0.000 0.993 0.957 0.875 0.832 0.765 0.649
0.113 0.002 0.994 0.943 0.886 0.805 0.737 0.606

Table 2.3: Confidence interval coverage for different densities based on Monte Carlo simulations using the horseshoe
generating function when S = 1000.
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average for Proportion of bootstrap CI that cover truth for
n average â statistic true graphs S α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

300 0.000105 density 0.187 100 1.000 0.990 0.930 0.880 0.880 0.760
200 0.995 0.950 0.910 0.870 0.840 0.770
300 0.993 0.947 0.910 0.850 0.803 0.740
500 0.996 0.950 0.916 0.854 0.806 0.726
750 0.996 0.943 0.897 0.835 0.795 0.709
1000 0.996 0.939 0.897 0.847 0.812 0.712
1250 0.993 0.941 0.902 0.845 0.811 0.714
1500 0.995 0.945 0.901 0.846 0.807 0.713
2000 0.995 0.949 0.900 0.849 0.809 0.719

λ1 75.206 100 1.000 0.990 0.920 0.890 0.840 0.700
200 0.995 0.955 0.905 0.870 0.815 0.730
300 0.993 0.950 0.890 0.853 0.820 0.733
500 0.996 0.944 0.894 0.860 0.824 0.722
750 0.996 0.941 0.892 0.843 0.819 0.719
1000 0.994 0.942 0.898 0.843 0.813 0.725
1250 0.993 0.941 0.897 0.850 0.818 0.721
1500 0.993 0.949 0.899 0.853 0.815 0.724
2000 0.995 0.952 0.899 0.851 0.815 0.719

transitivity 0.332 100 1.000 0.980 0.940 0.890 0.810 0.700
200 1.000 0.965 0.925 0.890 0.825 0.680
300 0.997 0.947 0.917 0.870 0.817 0.700
500 0.992 0.946 0.896 0.836 0.796 0.702
750 0.991 0.949 0.904 0.841 0.815 0.715
1000 0.990 0.946 0.888 0.847 0.812 0.712
1250 0.990 0.946 0.890 0.839 0.806 0.712
1500 0.989 0.946 0.893 0.845 0.809 0.718
2000 0.990 0.949 0.905 0.848 0.805 0.712

500 0.000059 density 0.188 100 0.950 0.910 0.890 0.830 0.790 0.640
200 0.975 0.925 0.890 0.845 0.790 0.630
300 0.983 0.953 0.897 0.850 0.803 0.663
500 0.982 0.954 0.914 0.848 0.804 0.692
750 0.983 0.948 0.897 0.849 0.809 0.707
1000 0.982 0.949 0.905 0.852 0.812 0.712
1250 0.989 0.957 0.917 0.865 0.825 0.713
1500 0.991 0.958 0.919 0.876 0.829 0.715
2000 0.993 0.960 0.919 0.869 0.827 0.722

λ1 125.416 100 0.940 0.910 0.860 0.790 0.780 0.660
200 0.990 0.920 0.890 0.840 0.790 0.670
300 0.990 0.947 0.910 0.867 0.817 0.670
500 0.986 0.954 0.928 0.858 0.828 0.668
750 0.991 0.951 0.913 0.863 0.815 0.696
1000 0.988 0.951 0.915 0.866 0.811 0.709
1250 0.990 0.954 0.914 0.872 0.820 0.716
1500 0.991 0.955 0.919 0.875 0.817 0.719
2000 0.995 0.959 0.920 0.881 0.816 0.716

transitivity 0.333 100 0.990 0.960 0.800 0.770 0.710 0.630
200 0.990 0.950 0.935 0.820 0.775 0.660
300 0.987 0.953 0.930 0.863 0.803 0.717
500 0.986 0.964 0.926 0.874 0.814 0.706
750 0.988 0.969 0.931 0.875 0.825 0.727
1000 0.982 0.957 0.922 0.865 0.812 0.722
1250 0.993 0.962 0.921 0.862 0.815 0.720
1500 0.990 0.961 0.917 0.862 0.815 0.713
2000 0.997 0.963 0.923 0.874 0.824 0.713

Table 2.4: Confidence interval coverage for different number of simulated true graphs S based on Monte Carlo simu-
lations using the product generating function when n = 300 or n = 500 and ρn = 0.1874.
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average for Proportion of bootstrap CI that cover truth for
n average â statistic true graphs S α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

300 0.000046 density 0.112 100 0.990 0.990 0.960 0.960 0.950 0.770
200 0.990 0.980 0.955 0.945 0.925 0.850
300 0.990 0.983 0.963 0.940 0.903 0.827
500 0.992 0.976 0.952 0.922 0.880 0.802
750 0.992 0.972 0.948 0.905 0.860 0.780
1000 0.994 0.974 0.945 0.901 0.866 0.781
1250 0.995 0.975 0.943 0.898 0.858 0.775
1500 0.995 0.975 0.937 0.899 0.859 0.774
2000 0.998 0.973 0.940 0.901 0.855 0.761

λ2 25.306 100 0.970 0.960 0.810 0.720 0.700 0.630
200 0.980 0.965 0.910 0.875 0.800 0.665
300 0.990 0.963 0.930 0.900 0.830 0.680
500 0.994 0.954 0.910 0.876 0.818 0.662
750 0.991 0.953 0.905 0.861 0.800 0.669
1000 0.995 0.959 0.911 0.859 0.805 0.669
1250 0.995 0.957 0.912 0.866 0.819 0.674
1500 0.995 0.965 0.917 0.871 0.821 0.682
2000 0.997 0.963 0.919 0.869 0.819 0.693

transitivity 0.146 100 0.980 0.850 0.810 0.780 0.750 0.670
200 1.000 0.910 0.845 0.790 0.755 0.685
300 0.987 0.873 0.820 0.793 0.743 0.663
500 0.986 0.912 0.846 0.802 0.772 0.690
750 0.983 0.920 0.856 0.809 0.772 0.667
1000 0.995 0.932 0.881 0.813 0.777 0.674
1250 0.994 0.934 0.885 0.818 0.779 0.674
1500 0.995 0.943 0.889 0.830 0.791 0.685
2000 0.994 0.945 0.885 0.822 0.776 0.681

500 0.000031 density 0.112 100 0.970 0.910 0.860 0.830 0.810 0.750
200 0.985 0.955 0.890 0.855 0.815 0.750
300 0.990 0.953 0.937 0.873 0.820 0.773
500 1.000 0.962 0.946 0.892 0.836 0.746
750 0.999 0.961 0.949 0.896 0.848 0.761
1000 0.998 0.961 0.936 0.878 0.832 0.748
1250 0.997 0.966 0.940 0.890 0.843 0.746
1500 0.996 0.966 0.937 0.886 0.831 0.731
2000 0.998 0.964 0.931 0.883 0.834 0.743

λ2 41.732 100 0.990 0.940 0.900 0.830 0.770 0.710
200 1.000 0.970 0.905 0.795 0.765 0.695
300 0.997 0.943 0.887 0.817 0.783 0.717
500 0.998 0.948 0.910 0.844 0.802 0.734
750 0.999 0.955 0.897 0.829 0.797 0.727
1000 0.998 0.960 0.905 0.834 0.801 0.725
1250 0.998 0.962 0.900 0.842 0.806 0.731
1500 0.998 0.958 0.896 0.834 0.797 0.715
2000 0.998 0.956 0.905 0.848 0.804 0.726

transitivity 0.147 100 0.990 0.950 0.890 0.860 0.750 0.690
200 0.985 0.960 0.940 0.880 0.845 0.720
300 0.983 0.947 0.930 0.850 0.807 0.700
500 0.988 0.958 0.908 0.838 0.790 0.670
750 0.989 0.953 0.896 0.843 0.795 0.676
1000 0.989 0.955 0.898 0.855 0.812 0.697
1250 0.990 0.958 0.904 0.859 0.813 0.701
1500 0.991 0.951 0.901 0.859 0.806 0.703
2000 0.991 0.956 0.890 0.846 0.792 0.684

Table 2.5: Confidence interval coverage for different number of simulated true graphs S based on Monte Carlo simu-
lations using the horseshoe generating function when ρn = 0.1125.
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average for Proportion of bootstrap CI that cover truth for
ρn statistic true graphs S α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

0.569 density 0.570 100 1.000 0.990 0.970 0.950 0.910 0.810
200 1.000 0.980 0.955 0.930 0.855 0.760
300 1.000 0.980 0.947 0.913 0.843 0.757
500 1.000 0.980 0.946 0.890 0.832 0.754
750 1.000 0.975 0.925 0.855 0.815 0.715
1000 0.996 0.975 0.928 0.858 0.821 0.733
1250 0.998 0.970 0.918 0.851 0.815 0.718
1500 0.997 0.969 0.924 0.863 0.820 0.723
2000 0.994 0.970 0.924 0.862 0.820 0.722

λ1 286.543 100 1.000 0.940 0.800 0.740 0.730 0.590
200 0.985 0.960 0.905 0.840 0.770 0.650
300 0.983 0.940 0.910 0.840 0.750 0.623
500 0.984 0.940 0.898 0.822 0.742 0.638
750 0.992 0.948 0.907 0.841 0.792 0.687
1000 0.993 0.944 0.903 0.842 0.784 0.701
1250 0.996 0.962 0.908 0.848 0.796 0.700
1500 0.997 0.963 0.907 0.862 0.797 0.699
2000 0.998 0.966 0.910 0.868 0.814 0.708

transitivity 0.576 100 1.000 0.920 0.870 0.730 0.650 0.580
200 0.985 0.955 0.900 0.840 0.795 0.670
300 0.983 0.927 0.903 0.803 0.753 0.630
500 0.986 0.940 0.886 0.834 0.760 0.652
750 0.999 0.949 0.908 0.856 0.795 0.688
1000 0.998 0.948 0.901 0.855 0.800 0.699
1250 0.998 0.967 0.909 0.866 0.806 0.698
1500 0.997 0.967 0.911 0.869 0.807 0.691
2000 0.998 0.969 0.912 0.869 0.821 0.703

0.759 density 0.759 100 0.990 0.990 0.920 0.920 0.910 0.770
200 0.995 0.970 0.925 0.900 0.840 0.690
300 0.990 0.977 0.917 0.870 0.840 0.723
500 0.988 0.974 0.918 0.882 0.842 0.712
750 0.996 0.977 0.928 0.893 0.849 0.747
1000 0.990 0.970 0.926 0.895 0.861 0.748
1250 0.992 0.965 0.928 0.890 0.855 0.739
1500 0.990 0.958 0.915 0.873 0.827 0.707
2000 0.990 0.957 0.906 0.861 0.818 0.700

λ1 381.690 100 0.960 0.940 0.860 0.850 0.800 0.680
200 0.970 0.945 0.900 0.895 0.870 0.675
300 0.987 0.957 0.910 0.897 0.813 0.710
500 0.992 0.964 0.918 0.882 0.834 0.732
750 0.987 0.967 0.907 0.863 0.832 0.737
1000 0.989 0.962 0.912 0.874 0.833 0.739
1250 0.990 0.958 0.903 0.845 0.809 0.710
1500 0.990 0.961 0.908 0.850 0.813 0.711
2000 0.989 0.957 0.902 0.849 0.814 0.708

transitivity 0.768 100 0.950 0.940 0.870 0.840 0.760 0.690
200 0.965 0.930 0.900 0.885 0.830 0.700
300 0.983 0.957 0.910 0.890 0.850 0.693
500 0.992 0.968 0.914 0.886 0.854 0.722
750 0.987 0.967 0.915 0.881 0.837 0.735
1000 0.988 0.962 0.917 0.878 0.836 0.734
1250 0.990 0.956 0.896 0.854 0.802 0.706
1500 0.989 0.958 0.903 0.860 0.805 0.711
2000 0.990 0.957 0.900 0.855 0.807 0.711

Table 2.6: Confidence interval coverage for different number of simulated true graphs S based on Monte Carlo simu-
lations using the high density generating function when n = 500.
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average for Proportion of bootstrap CI that cover truth for
n statistic true graphs method α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

100 λ1 17.222 HK1 0.998 0.982 0.940 0.895 0.854 0.775
HK2 0.998 0.986 0.939 0.894 0.861 0.769
HNN1 0.947 0.777 0.648 0.590 0.507 0.397
emp 0.999 0.953 0.912 0.877 0.842 0.742

λ2 6.418 HK1 0.974 0.858 0.704 0.599 0.504 0.341
HK2 1.000 0.947 0.879 0.796 0.679 0.514
HNN1 0.966 0.896 0.771 0.675 0.612 0.537
emp 0.343 0.057 0.012 0.004 0.002 0.000

transitivity 0.220 HK1 0.999 0.992 0.971 0.938 0.907 0.847
HK2 0.998 0.984 0.963 0.933 0.901 0.831
HNN1 0.986 0.937 0.838 0.785 0.739 0.665
emp 0.992 0.966 0.897 0.839 0.800 0.703

300 λ1 50.535 HK1 0.995 0.959 0.918 0.876 0.836 0.739
HK2 0.994 0.958 0.923 0.889 0.859 0.765
HNN1 0.936 0.847 0.724 0.647 0.597 0.509
emp 0.990 0.953 0.900 0.859 0.824 0.733

λ2 11.778 HK1 0.000 0.000 0.000 0.000 0.000 0.000
HK2 0.001 0.000 0.000 0.000 0.000 0.000
HNN1 0.978 0.915 0.857 0.814 0.754 0.651
emp 0.000 0.000 0.000 0.000 0.000 0.000

transitivity 0.221 HK1 0.997 0.982 0.940 0.897 0.859 0.759
HK2 0.996 0.984 0.954 0.904 0.860 0.782
HNN1 0.981 0.919 0.872 0.823 0.747 0.629
emp 0.988 0.947 0.897 0.847 0.781 0.678

500 λ1 83.925 HK1 0.983 0.955 0.904 0.849 0.782 0.680
HK2 0.986 0.944 0.902 0.858 0.791 0.701
HNN1 0.950 0.860 0.773 0.682 0.633 0.534
emp 0.981 0.937 0.888 0.851 0.817 0.708

λ2 15.448 HK1 0.000 0.000 0.000 0.000 0.000 0.000
HK2 0.000 0.000 0.000 0.000 0.000 0.000
HNN1 0.982 0.915 0.854 0.814 0.753 0.658
emp 0.000 0.000 0.000 0.000 0.000 0.000

transitivity 0.222 HK1 0.986 0.945 0.899 0.867 0.814 0.708
HK2 0.987 0.956 0.911 0.851 0.812 0.734
HNN1 0.982 0.920 0.838 0.780 0.734 0.630
emp 0.982 0.968 0.905 0.837 0.772 0.692

Table 2.7: Confidence interval coverage based on Monte Carlo simulations for different bootstrap methods for the
true graphs from the product generating function with density ρn = 0.125, S = 1000 true graphs, with sample size n
ranging from 100 to 500. The methods are: HK1 (our main method based on ĥ ≡ ĥ(K1) with â), HK2 (our bootstrap

method but using the linking function estimator ĥ(K2) with a(optK2) based on ĥ(K2) ), HNN1 (our bootstrap method

but but using the linking function estimator ĥ(NN1) from Zhang, Levina, and Zhu (2017) with their optimal choice
of neighbourhood size), emp (empirical bootstrap from Green and Shalizi (2022)), dot prod k (the bootstrap method
from Levin and Levina (2019) based on assuming a k-dimensional ξi).
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Proportion of bootstrap CI that cover truth for
α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

statistic n average for true graphs method

density 250 0.160767 HK1 0.991 0.959 0.914 0.874 0.823 0.736
HK2 0.993 0.956 0.908 0.868 0.826 0.721
HNN1 0.981 0.914 0.873 0.818 0.762 0.636
LLS L 1.000 1.000 1.000 0.999 0.999 0.990
asymp estimated var 0.993 0.973 0.948 0.909 0.864 0.781
asymp infeasible var 0.990 0.943 0.895 0.846 0.795 0.701
dot prod 1 1.000 0.999 0.998 0.990 0.973 0.913
dot prod 3 1.000 0.999 0.998 0.991 0.967 0.906
emp 0.990 0.961 0.910 0.871 0.828 0.742

500 0.139211 HK1 0.993 0.955 0.889 0.827 0.771 0.672
HK2 0.993 0.954 0.872 0.816 0.753 0.667
HNN1 0.987 0.896 0.795 0.730 0.675 0.590
asymp estimated var 0.998 0.978 0.948 0.907 0.868 0.770
asymp infeasible var 0.993 0.952 0.900 0.855 0.797 0.676
dot prod 1 1.000 1.000 0.996 0.988 0.979 0.920
dot prod 3 1.000 1.000 0.997 0.991 0.985 0.936
emp 0.991 0.942 0.891 0.841 0.784 0.677

750 0.127979 HK1 0.979 0.937 0.877 0.842 0.788 0.684
HK2 0.973 0.928 0.873 0.824 0.774 0.665
HNN1 0.944 0.866 0.775 0.721 0.659 0.556
asymp estimated var 0.994 0.980 0.953 0.914 0.883 0.799
asymp infeasible var 0.989 0.948 0.901 0.852 0.803 0.704
dot prod 1 1.000 0.999 0.993 0.982 0.964 0.920
dot prod 3 1.000 0.999 0.993 0.982 0.965 0.923
emp 0.978 0.933 0.887 0.835 0.795 0.691

triangle 250 0.009854 HK1 0.990 0.969 0.942 0.886 0.852 0.745
density HK2 0.990 0.974 0.941 0.902 0.869 0.749

HNN1 0.990 0.946 0.902 0.839 0.788 0.675
LLS L 1.000 0.999 0.995 0.983 0.968 0.925
LLS Q 1.000 0.999 0.995 0.983 0.966 0.923
asymp infeasible var 0.987 0.953 0.905 0.852 0.794 0.697
dot prod 1 1.000 0.999 0.997 0.983 0.975 0.930
dot prod 3 1.000 0.999 0.999 0.983 0.976 0.933
emp 0.994 0.966 0.935 0.871 0.821 0.732

500 0.006402 HK1 0.991 0.959 0.902 0.840 0.794 0.692
HK2 0.997 0.960 0.896 0.847 0.790 0.700
HNN1 0.986 0.929 0.826 0.760 0.704 0.606
asymp infeasible var 0.993 0.951 0.889 0.852 0.797 0.695
dot prod 1 1.000 1.000 0.997 0.987 0.970 0.911
dot prod 3 1.000 1.000 0.998 0.993 0.973 0.921
emp 0.996 0.951 0.882 0.839 0.789 0.692

750 0.004970 HK1 0.987 0.946 0.898 0.854 0.805 0.695
HK2 0.987 0.943 0.892 0.852 0.793 0.697
HNN1 0.962 0.904 0.820 0.752 0.703 0.598
asymp infeasible var 0.987 0.940 0.900 0.852 0.803 0.703
dot prod 1 1.000 1.000 0.995 0.985 0.965 0.919
dot prod 3 1.000 1.000 0.995 0.985 0.967 0.922
emp 0.977 0.938 0.900 0.841 0.804 0.709

Table 2.8: Confidence interval coverage based on Monte Carlo simulations for different bootstrap methods for the true

graphs from the product generating function with density ρn ∼ 4

√
log(n)

n , S = 1000 true graphs. The methods are: HK1

(our main method based on ĥ ≡ ĥ(K1) with â), HK2 (our bootstrap method but using the linking function estimator

ĥ(K2) with a(optK2) based on ĥ(K2) ), HNN1 (our bootstrap method but but using the linking function estimator ĥ(NN1)

from Zhang, Levina, and Zhu (2017) with their optimal choice of neighbourhood size), emp (empirical bootstrap from
Green and Shalizi (2022)), dot prod k (the bootstrap method from Levin and Levina (2019) based on assuming a k-
dimensional ξi), asymp estimated var (the asymptotic distribution from Bickel, Chen, and Levina (2011) with variance
estimated according to the formula in Green and Shalizi (2022)), asymp infeasible var (the asymptotic distribution
from Bickel, Chen, and Levina (2011) with the true theoretical variance), LLS L and LLS Q (the linear and quadratic
methods from Lin, Lunde, and Sarkar (2020)).
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average for Proportion of bootstrap CI that cover truth for
ρn statistic true graphs method α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

0.056 density 0.056 HK1 0.989 0.927 0.864 0.786 0.721 0.634
HK2 0.968 0.825 0.654 0.514 0.419 0.346
HNN1 0.253 0.066 0.034 0.017 0.005 0.001
dot prod 1 0.005 0.000 0.000 0.000 0.000 0.000
dot prod 3 1.000 0.998 0.985 0.973 0.955 0.901
emp 0.999 0.985 0.960 0.920 0.875 0.800

λ1 32.530 HK1 0.988 0.968 0.931 0.866 0.820 0.722
HK2 0.996 0.977 0.945 0.898 0.849 0.767
HNN1 0.925 0.751 0.631 0.522 0.440 0.332
emp 0.979 0.925 0.871 0.813 0.763 0.669

λ2 21.481 HK1 0.997 0.957 0.903 0.860 0.827 0.729
HK2 0.991 0.911 0.807 0.748 0.686 0.589
HNN1 0.970 0.845 0.696 0.585 0.507 0.409
emp 0.935 0.811 0.694 0.631 0.560 0.480

transitivity 0.073 HK1 0.997 0.938 0.890 0.848 0.800 0.672
HK2 0.970 0.930 0.867 0.826 0.781 0.688
HNN1 0.966 0.901 0.818 0.767 0.702 0.590
emp 0.993 0.956 0.904 0.851 0.786 0.692

0.084 density 0.084 HK1 0.990 0.953 0.914 0.874 0.833 0.722
HK2 0.990 0.950 0.909 0.861 0.794 0.650
HNN1 0.910 0.854 0.732 0.619 0.563 0.436
dot prod 1 0.000 0.000 0.000 0.000 0.000 0.000
dot prod 3 0.999 0.996 0.987 0.970 0.948 0.903
emp 0.996 0.986 0.957 0.914 0.875 0.797

λ1 48.240 HK1 0.997 0.971 0.912 0.863 0.817 0.705
HK2 0.998 0.976 0.934 0.875 0.821 0.721
HNN1 0.973 0.919 0.843 0.809 0.760 0.638
emp 0.997 0.967 0.900 0.837 0.786 0.681

λ2 31.542 HK1 0.996 0.971 0.931 0.876 0.827 0.730
HK2 0.993 0.951 0.896 0.854 0.797 0.672
HNN1 0.989 0.959 0.902 0.834 0.805 0.694
emp 0.991 0.941 0.876 0.824 0.780 0.663

transitivity 0.110 HK1 0.997 0.949 0.886 0.825 0.779 0.669
HK2 0.996 0.950 0.896 0.845 0.796 0.702
HNN1 0.955 0.885 0.814 0.761 0.688 0.578
emp 0.998 0.965 0.922 0.874 0.819 0.738

0.113 density 0.113 HK1 0.993 0.975 0.922 0.866 0.823 0.732
HK2 0.989 0.970 0.914 0.869 0.829 0.718
HNN1 0.990 0.937 0.875 0.827 0.777 0.661
dot prod 1 0.000 0.000 0.000 0.000 0.000 0.000
dot prod 3 1.000 0.993 0.985 0.975 0.958 0.898
emp 0.993 0.982 0.955 0.918 0.870 0.792

λ1 63.879 HK1 0.997 0.968 0.908 0.856 0.781 0.662
HK2 1.000 0.973 0.916 0.874 0.807 0.690
HNN1 0.989 0.937 0.879 0.789 0.738 0.654
emp 0.993 0.958 0.899 0.839 0.798 0.693

λ2 41.713 HK1 0.994 0.961 0.909 0.855 0.810 0.694
HK2 0.994 0.941 0.898 0.845 0.793 0.697
HNN1 0.988 0.955 0.901 0.857 0.799 0.686
emp 0.994 0.945 0.883 0.814 0.749 0.643

transitivity 0.147 HK1 0.996 0.956 0.895 0.820 0.766 0.672
HK2 1.000 0.957 0.902 0.837 0.784 0.661
HNN1 0.956 0.846 0.771 0.694 0.655 0.550
emp 0.989 0.944 0.891 0.846 0.792 0.682

Table 2.9: Confidence interval coverage based on Monte Carlo simulations for different bootstrap methods for the true
graphs from the horseshoe generating function with sample size n = 500, S = 1000 true graphs, and different values
of density ρn ranging from 0.056 to 0.1125. The methods are: HK1 (our main method based on ĥ ≡ ĥ(K1) with â),

HK2 (our bootstrap method but using the linking function estimator ĥ(K2) with a(optK2) based on ĥ(K2) ), HNN1

(our bootstrap method but but using the linking function estimator ĥ(NN1) from Zhang, Levina, and Zhu (2017) with
their optimal choice of neighbourhood size), emp (empirical bootstrap from Green and Shalizi (2022)), dot prod k
(the bootstrap method from Levin and Levina (2019) based on assuming a k-dimensional ξi).
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average for Proportion of bootstrap CI that cover truth for
ρn statistic true graphs method α =0.01 α =0.05 α =0.1 α =0.15 α =0.2 α =0.3

0.380 density 0.380 HK1 0.998 0.984 0.964 0.928 0.879 0.800
HK2 0.995 0.978 0.954 0.931 0.888 0.795
HNN1 0.982 0.921 0.859 0.783 0.735 0.643
dot prod 1 1.000 0.996 0.987 0.975 0.948 0.873
dot prod 3 1.000 0.996 0.986 0.973 0.944 0.873
emp 0.998 0.983 0.948 0.932 0.885 0.772

λ1 114.861 HK1 0.994 0.964 0.937 0.892 0.851 0.777
HK2 0.999 0.970 0.939 0.907 0.869 0.793
HNN1 0.990 0.973 0.926 0.878 0.834 0.728
emp 1.000 0.984 0.957 0.935 0.902 0.817

λ2 15.962 HK1 0.000 0.000 0.000 0.000 0.000 0.000
HK2 0.000 0.000 0.000 0.000 0.000 0.000
HNN1 1.000 0.992 0.980 0.952 0.929 0.847
emp 0.000 0.000 0.000 0.000 0.000 0.000

transitivity 0.384 HK1 0.994 0.973 0.937 0.902 0.868 0.786
HK2 1.000 0.981 0.937 0.897 0.859 0.775
HNN1 0.997 0.973 0.948 0.915 0.880 0.774
emp 0.998 0.973 0.888 0.839 0.778 0.694

0.570 density 0.570 HK1 0.994 0.969 0.945 0.904 0.849 0.756
HK2 0.993 0.973 0.923 0.882 0.827 0.713
HNN1 0.994 0.964 0.926 0.889 0.836 0.731
dot prod 1 1.000 0.996 0.991 0.973 0.947 0.886
dot prod 3 1.000 0.996 0.987 0.963 0.939 0.857
emp 0.991 0.945 0.915 0.863 0.814 0.723

λ1 171.787 HK1 0.999 0.978 0.941 0.905 0.852 0.767
HK2 0.999 0.978 0.941 0.900 0.857 0.779
HNN1 0.990 0.972 0.939 0.884 0.838 0.740
emp 0.990 0.971 0.937 0.887 0.850 0.757

λ2 15.963 HK1 0.000 0.000 0.000 0.000 0.000 0.000
HK2 0.000 0.000 0.000 0.000 0.000 0.000
HNN1 1.000 0.993 0.977 0.949 0.895 0.832
emp 0.000 0.000 0.000 0.000 0.000 0.000

transitivity 0.576 HK1 0.998 0.979 0.934 0.908 0.864 0.770
HK2 0.997 0.978 0.940 0.902 0.867 0.776
HNN1 0.987 0.969 0.920 0.877 0.830 0.730
emp 0.985 0.938 0.891 0.819 0.787 0.652

0.759 density 0.759 HK1 0.994 0.963 0.911 0.872 0.841 0.737
HK2 0.992 0.961 0.919 0.870 0.825 0.747
HNN1 0.986 0.942 0.902 0.859 0.809 0.694
dot prod 1 1.000 0.998 0.990 0.975 0.945 0.881
dot prod 3 1.000 0.997 0.986 0.959 0.922 0.850
emp 0.985 0.947 0.890 0.835 0.810 0.706

λ1 228.714 HK1 0.996 0.965 0.926 0.884 0.842 0.731
HK2 0.993 0.959 0.926 0.877 0.841 0.734
HNN1 0.991 0.962 0.931 0.865 0.819 0.702
emp 0.983 0.953 0.914 0.864 0.813 0.702

λ2 13.730 HK1 0.020 0.000 0.000 0.000 0.000 0.000
HK2 0.978 0.817 0.615 0.498 0.379 0.217
HNN1 0.999 0.988 0.965 0.932 0.892 0.784
emp 0.000 0.000 0.000 0.000 0.000 0.000

transitivity 0.768 HK1 0.994 0.961 0.916 0.885 0.833 0.720
HK2 0.993 0.961 0.916 0.886 0.829 0.732
HNN1 0.992 0.965 0.932 0.864 0.815 0.712
emp 0.970 0.920 0.872 0.814 0.776 0.643

Table 2.10: Confidence interval coverage based on Monte Carlo simulations for different bootstrap methods for the
true graphs from the high density generating function with sample size n = 300, S = 1000 true graphs, and different
values of density ρn ranging from 0.38 to 0.79. The methods are: HK1 (our main method based on ĥ ≡ ĥ(K1) with

â), HK2 (our bootstrap method but using the linking function estimator ĥ(K2) with a(optK2) based on ĥ(K2) ), HNN1

(our bootstrap method but but using the linking function estimator ĥ(NN1) from Zhang, Levina, and Zhu (2017) with
their optimal choice of neighbourhood size), emp (empirical bootstrap from Green and Shalizi (2022)), dot prod k
(the bootstrap method from Levin and Levina (2019) based on assuming a k-dimensional ξi).
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Proportion of bootstrap CI that cover truth for
true value c average â α=0.01 α=0.05 α=0.1 α=0.15 α=0.2 α=0.3

0.1109 0.10 1.045577e-06 0.990 0.962 0.936 0.857 0.818 0.736
0.25 2.613943e-06 0.997 0.987 0.949 0.913 0.862 0.783
0.50 5.227885e-06 0.999 0.984 0.956 0.927 0.887 0.790
0.75 7.841828e-06 0.995 0.976 0.950 0.912 0.865 0.767
0.90 9.410194e-06 0.999 0.987 0.961 0.926 0.880 0.778
1.00 1.045577e-05 0.996 0.989 0.961 0.947 0.912 0.834
1.10 1.150135e-05 0.999 0.985 0.971 0.948 0.912 0.829
1.25 1.306971e-05 0.998 0.979 0.947 0.913 0.842 0.743
2 2.091154e-05 0.477 0.223 0.117 0.071 0.051 0.032
4 4.182308e-05 0.000 0.000 0.000 0.000 0.000 0.000
10 1.045577e-04 0.000 0.000 0.000 0.000 0.000 0.000

0.2218 0.10 3.524835e-06 0.987 0.941 0.886 0.849 0.791 0.704
0.25 8.812088e-06 0.997 0.956 0.908 0.862 0.826 0.715
0.50 1.762418e-05 0.996 0.973 0.926 0.903 0.853 0.771
0.75 2.643626e-05 0.993 0.953 0.913 0.878 0.806 0.713
0.90 3.172352e-05 0.984 0.955 0.930 0.903 0.869 0.769
1.00 3.524835e-05 0.995 0.969 0.947 0.905 0.856 0.745
1.10 3.877319e-05 0.991 0.959 0.941 0.891 0.850 0.743
1.25 4.406044e-05 0.995 0.968 0.940 0.900 0.860 0.763
2 7.049670e-05 0.992 0.939 0.883 0.819 0.768 0.691
4 1.409934e-04 0.785 0.473 0.390 0.317 0.258 0.171
10 3.524835e-04 0.012 0.003 0.002 0.000 0.000 0.000

0.3327 0.10 5.842118e-06 0.990 0.935 0.883 0.837 0.784 0.676
0.25 1.460529e-05 0.974 0.935 0.881 0.816 0.769 0.667
0.50 2.921059e-05 0.991 0.968 0.909 0.865 0.802 0.674
0.75 4.381588e-05 0.992 0.966 0.927 0.893 0.834 0.722
0.90 5.257906e-05 0.990 0.956 0.907 0.873 0.830 0.700
1.00 5.842118e-05 0.991 0.958 0.921 0.874 0.829 0.716
1.10 6.426330e-05 0.993 0.965 0.929 0.881 0.835 0.720
1.25 7.302647e-05 0.993 0.955 0.899 0.868 0.818 0.690
2 1.168424e-04 0.990 0.955 0.923 0.876 0.824 0.710
4 2.336847e-04 0.969 0.917 0.854 0.808 0.739 0.647
10 5.842118e-04 0.732 0.509 0.384 0.312 0.277 0.195

0.4436 0.10 7.561251e-06 0.995 0.955 0.903 0.852 0.788 0.708
0.25 1.890313e-05 0.994 0.954 0.903 0.852 0.805 0.719
0.50 3.780625e-05 0.990 0.949 0.894 0.857 0.823 0.722
0.75 5.670938e-05 0.994 0.969 0.921 0.853 0.811 0.712
0.90 6.805126e-05 0.993 0.962 0.900 0.862 0.839 0.763
1.00 7.561251e-05 0.991 0.954 0.887 0.848 0.803 0.691
1.10 8.317376e-05 0.986 0.948 0.899 0.861 0.820 0.715
1.25 9.451564e-05 0.990 0.952 0.906 0.868 0.830 0.749
2 1.512250e-04 0.989 0.937 0.884 0.849 0.806 0.715
4 3.024500e-04 0.989 0.955 0.911 0.851 0.796 0.707
10 7.561251e-04 0.951 0.875 0.792 0.731 0.673 0.573

Table 2.11: Confidence interval coverage for transitivity at different bandwidths c × â and at different densities ρn,
based on Monte Carlo simulations using the product generating function when n = 500 and S = 1000.
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Proportion of bootstrap CI that cover truth for
ρn c average â α=0.01 α=0.05 α=0.1 α=0.15 α=0.2 α=0.3

0.028125 0.01 1.402691e-08 1.000 0.991 0.979 0.962 0.935 0.854
0.10 1.402691e-07 1.000 0.988 0.976 0.960 0.931 0.843
0.25 3.506728e-07 1.000 0.992 0.978 0.965 0.944 0.870
0.50 7.013456e-07 0.999 0.989 0.970 0.949 0.918 0.842
0.75 1.052018e-06 0.999 0.945 0.884 0.831 0.778 0.666
0.90 1.262422e-06 0.986 0.831 0.733 0.570 0.450 0.317
1.00 1.402691e-06 0.853 0.538 0.370 0.256 0.194 0.102
1.10 1.542960e-06 0.687 0.325 0.174 0.105 0.064 0.025
1.25 1.753364e-06 0.355 0.092 0.026 0.008 0.005 0.001
2 2.805383e-06 0.000 0.000 0.000 0.000 0.000 0.000
4 5.610765e-06 0.020 0.005 0.001 0.000 0.000 0.000
10 1.402691e-05 0.853 0.706 0.593 0.519 0.457 0.379
20 2.805383e-05 0.979 0.931 0.848 0.796 0.746 0.634
100 1.402691e-04 0.981 0.949 0.887 0.829 0.755 0.658

0.056250 0.01 6.201768e-08 0.997 0.985 0.964 0.921 0.887 0.807
0.10 6.201768e-07 0.997 0.984 0.957 0.929 0.877 0.799
0.25 1.550442e-06 0.998 0.979 0.956 0.926 0.883 0.789
0.50 3.100884e-06 0.997 0.988 0.966 0.931 0.897 0.808
0.75 4.651326e-06 0.997 0.983 0.958 0.916 0.880 0.800
0.90 5.581592e-06 0.996 0.969 0.930 0.856 0.810 0.704
1.00 6.201768e-06 0.985 0.930 0.864 0.806 0.751 0.647
1.10 6.821945e-06 0.986 0.876 0.799 0.720 0.654 0.543
1.25 7.752210e-06 0.939 0.814 0.720 0.610 0.502 0.313
2 1.240354e-05 0.835 0.465 0.268 0.185 0.126 0.067
4 2.480707e-05 0.641 0.363 0.202 0.139 0.111 0.067
10 6.201768e-05 0.767 0.638 0.525 0.466 0.428 0.343
20 1.240354e-04 0.930 0.825 0.771 0.702 0.657 0.577
100 6.201768e-04 0.969 0.871 0.802 0.745 0.698 0.599

0.084375 0.01 1.469518e-07 0.997 0.982 0.947 0.917 0.867 0.774
0.10 1.469518e-06 0.992 0.977 0.947 0.910 0.867 0.764
0.25 3.673796e-06 0.992 0.977 0.950 0.922 0.886 0.792
0.50 7.347591e-06 0.995 0.984 0.945 0.909 0.861 0.787
0.75 1.102139e-05 0.992 0.980 0.953 0.918 0.882 0.774
0.90 1.322566e-05 0.988 0.959 0.933 0.888 0.835 0.723
1.00 1.469518e-05 0.992 0.965 0.933 0.900 0.849 0.750
1.10 1.616470e-05 0.982 0.943 0.906 0.857 0.786 0.695
1.25 1.836898e-05 0.990 0.953 0.903 0.813 0.772 0.653
2 2.939036e-05 0.982 0.920 0.819 0.766 0.705 0.593
4 5.878073e-05 0.965 0.862 0.741 0.666 0.610 0.439
10 1.469518e-04 0.829 0.668 0.581 0.485 0.412 0.323
20 2.939036e-04 0.902 0.783 0.722 0.655 0.607 0.520
100 1.469518e-03 0.944 0.852 0.784 0.718 0.666 0.550

0.112500 0.01 3.076687e-07 0.997 0.978 0.926 0.885 0.850 0.744
0.10 3.076687e-06 0.997 0.961 0.926 0.885 0.845 0.732
0.25 7.691717e-06 1.000 0.967 0.923 0.882 0.847 0.754
0.50 1.538343e-05 0.997 0.971 0.927 0.891 0.849 0.731
0.75 2.307515e-05 0.997 0.964 0.925 0.884 0.844 0.740
0.90 2.769018e-05 0.994 0.966 0.921 0.884 0.849 0.741
1.00 3.076687e-05 0.996 0.954 0.911 0.871 0.823 0.738
1.10 3.384355e-05 0.997 0.960 0.911 0.878 0.809 0.725
1.25 3.845858e-05 0.996 0.949 0.904 0.861 0.792 0.715
2 6.153373e-05 0.992 0.951 0.894 0.850 0.806 0.714
4 1.230675e-04 0.987 0.933 0.866 0.805 0.748 0.657
10 3.076687e-04 0.884 0.729 0.634 0.555 0.499 0.418
20 6.153373e-04 0.843 0.773 0.679 0.604 0.529 0.462
100 3.076687e-03 0.909 0.823 0.760 0.673 0.626 0.525

Table 2.12: Confidence interval coverage for density at different bandwidths c× â and at different densities ρn, based
on Monte Carlo simulations using the horseshoe generating function when n = 500 and S = 1000.
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Proportion of bootstrap CI that cover truth for
ρn c average â α=0.01 α=0.05 α=0.1 α=0.15 α=0.2 α=0.3

0.37950 0.001 9.252546e-08 0.000 0.000 0.000 0.000 0.000 0.000
0.01 9.252546e-07 0.000 0.000 0.000 0.000 0.000 0.000
0.1 9.257237e-06 0.000 0.000 0.000 0.000 0.000 0.000
0.25 2.314309e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.5 4.628619e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.75 6.942928e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.9 8.331514e-05 0.000 0.000 0.000 0.000 0.000 0.000
1 9.257237e-05 0.000 0.000 0.000 0.000 0.000 0.000
1.1 1.018296e-04 0.000 0.000 0.000 0.000 0.000 0.000
1.25 1.157155e-04 0.000 0.000 0.000 0.000 0.000 0.000
2 1.851447e-04 1.000 0.990 0.983 0.956 0.920 0.852
4 3.702895e-04 0.999 0.993 0.981 0.953 0.897 0.820
10 9.257237e-04 0.999 0.987 0.941 0.896 0.845 0.765
100 9.252546e-03 0.997 0.959 0.899 0.828 0.773 0.661
1000 9.252546e-02 0.997 0.955 0.899 0.833 0.791 0.668

0.56925 0.001 1.108253e-07 0.000 0.000 0.000 0.000 0.000 0.000
0.01 1.108253e-06 0.000 0.000 0.000 0.000 0.000 0.000
0.1 1.107591e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.25 2.768978e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.5 5.537956e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.75 8.306935e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.9 9.968322e-05 0.000 0.000 0.000 0.000 0.000 0.000
1 1.107591e-04 0.000 0.000 0.000 0.000 0.000 0.000
1.1 1.218350e-04 0.000 0.000 0.000 0.000 0.000 0.000
1.25 1.384489e-04 0.000 0.000 0.000 0.000 0.000 0.000
2 2.215183e-04 1.000 0.990 0.974 0.956 0.936 0.853
4 4.430365e-04 0.998 0.976 0.938 0.889 0.837 0.744
10 1.107591e-03 0.983 0.931 0.842 0.771 0.705 0.585
100 1.108253e-02 0.907 0.738 0.505 0.435 0.346 0.259
1000 1.108253e-01 0.885 0.640 0.495 0.437 0.380 0.259

0.75900 0.001 9.286943e-08 0.000 0.000 0.000 0.000 0.000 0.000
0.01 9.286943e-07 0.000 0.000 0.000 0.000 0.000 0.000
0.1 9.277168e-06 0.000 0.000 0.000 0.000 0.000 0.000
0.25 2.319292e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.5 4.638584e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.75 6.957876e-05 0.000 0.000 0.000 0.000 0.000 0.000
0.9 8.349452e-05 0.000 0.000 0.000 0.000 0.000 0.000
1 9.277168e-05 0.000 0.000 0.000 0.000 0.000 0.000
1.1 1.020489e-04 0.030 0.001 0.000 0.000 0.000 0.000
1.25 1.159646e-04 0.860 0.650 0.449 0.303 0.221 0.133
2 1.855434e-04 0.999 0.982 0.954 0.926 0.879 0.787
4 3.710867e-04 1.000 0.981 0.952 0.910 0.856 0.755
10 9.277168e-04 0.982 0.914 0.867 0.793 0.735 0.650
100 9.286943e-03 0.929 0.865 0.738 0.648 0.595 0.479
1000 9.286943e-02 0.906 0.772 0.659 0.605 0.535 0.444

Table 2.13: Confidence interval coverage for λ10 at different bandwidths c× â and at different densities ρn, based on
Monte Carlo simulations using the high density generating function when n = 500 and S = 1000.
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Subsection 2.B.3 Plots

The linking functions we consider are:

Figure 2.12: Dot product linking function: h(ξi, ξj) = ρn × 4ξiξj .

Figure 2.13: Horseshoe linking function:

h(ξi, ξj) = ρn × 4.44286
(
e−200(ξi−ξ2j )

2

+ e−200(ξj−ξ2i )
2)

.
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Figure 2.14: High-density linking function:
h(ξi, ξj) = ρn × 1.35

(
1− 1

(∣∣ 1
2 − ξi

∣∣ ≤ 0.05
)
1
(∣∣ 1

2 − ξj
∣∣ ≤ 0.05

)) (
1− 1

2

(∣∣ 1
2 − ξi

∣∣+ ∣∣ 12 − ξj
∣∣)).

Appendix 2.C Extensions and alternative specifications

Subsection 2.C.1 Possible extensions of application

On a technical level, one possible extension would be analysing different ways of aggregating the

twelve observed types of household interactions into the adjacency matrix. Like the original

paper, we have used the union of the twelve characteristic-specific adjacency matrices, but

there are many other possible choices, e.g. taking an intersection (this may be less desirable

as it leads to a significantly sparser network) or an average (which gives a weighted adjacency

matrix). Our method allows for comparison of the adjacency matrices achieved though different

aggregating functions and checking if they lead to different structures. For example, we can

compare the largest eigenvalues λ1 obtained for villages using different aggregating functions

and check if they have overlapping confidence intervals. If they do not, this shows that the

choice of the aggregating function is not without loss of generality.

Another possible modification of our procedure would be estimating the linking function un-

der the assumption that each of the twelve characteristics is a separate draw from the Bernoulli

distribution. We could redefine the distance function to depend directly on the twelve char-

acteristics instead of a single aggregate adjacency matrix. Let Aij denote a 12 × 1 vector of

indicators whether households i and j are related according to the twelve characteristics. Let

∥.∥ be some vector norm (e.g. max norm, min norm, a weighted norm,29 or a Euclidean norm).

Then we can define

d
(∥.∥,2)
ij −

 1

n

n∑
t=1

(
1

n

n∑
s=1

∥diag (Ats) (Ais −Ajs)∥

)2
 1

2

29A weighted norm could be of the form ∥x∥ =
√
x′Wxx, with a weight matrix Wx that may depend on the

adjacency matrices, e.g. Wx =
(
1
n

∑n
v=1 xvx

′
v

)−1
.
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where diag(v) is a diagonal matrix with diagonal entries from a vector v. To obtain the boot-

strap version of adjacency matrices A we could draw from a joint Bernoulli distribution with

probabilities estimated using ĥn based on the distance d
(∥.∥,2)
ij and the adjacency matrices for

individual characteristics, and a covariance matrix equal to the sample covariance between

different characteristics.

Subsection 2.C.2 Sensitivity checks in application

We rerun the estimation for a subset of villages using 300 repetitions of the simulated informa-

tion spreading through the network to estimate the simulated moments instead of the original

75. The outcomes (middle panel in Fig. 2.15) for that subsample were very similar to the

outcomes based on the original specification (left panel in Fig. 2.15). We conclude that 75

simulations are sufficient for the estimation of simulated moments.

Figure 2.15: A comparison of the estimates of qP − qN for a subset of villages with 95%
confidence intervals based simulated moments estimated using the original specification with
75 simulations and β estimated using all villages (left), 300 simulations and β estimated using
all villages (middle), and 75 simulations and β estimated using village-specific data only (right).

We also tried to estimate the β coefficients using village-specific data (rather than aggre-

gating over all villages). This did make a difference for the estimates and confidence intervals

(right panel of Fig. 2.15), though the conclusions remain similar. However, since the regression

used to identify β is run using only the information about the leaders, we found the sample sizes

for individual villages too small to give reliable estimates. Hence we chose to use aggregate β

in our main simulations.

Subsection 2.C.3 Alternative bootstrap procedure: links only

Instead of the procedure we use in the main paper, we could skip the step 2. of resampling nodes

from the original graph and go straight into resampling links according to ĥn for the original

set of nodes. The motivation for this procedure is similar to the one we use: the original sample
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comes from the true data generating distribution, we have a good estimate for the distribution

of the adjacency matrix, hence the networks simulated this way should preserve the structure

of the original network. Skipping one step in the simulation simplifies the procedure, improves

computational time and would also simplify the proofs. We run some simulations using this

method and found that, unfortunately, it does not perform as well as our main approach. Table

Table 2.14 shows the results of some of our simulations. We see that the confidence interval

coverage is very poor, other than for a few special cases where the sample size is small (n = 25,

in which case the bias is small relative to variance and the true value may still be included in

the confidence interval) or we are estimating a statistic which is relatively tricky to estimate

(e.g. λ2) and hence measured with more variation than e.g. λ1 or density.

95% CI coverage for
generating function n ρn density transitivity λ1 λ2

high density 25 0.379500 0.803 0.848 0.791 0.978
0.569250 0.803 0.788 0.776 0.979
0.759000 0.755 0.730 0.752 0.973

100 0.379500 0.541 0.537 0.495 0.824
0.569250 0.509 0.554 0.528 0.925
0.759000 0.532 0.518 0.529 0.963

300 0.379500 0.168 0.144 0.156 0.662
0.569250 0.211 0.222 0.227 0.824
0.759000 0.340 0.337 0.339 0.947

500 0.379500 0.068 0.059 0.058 0.410
0.569250 0.087 0.110 0.092 0.673
0.759000 0.251 0.282 0.260 0.950

horseshoe 25 0.056250 0.727 0.920 0.838 0.956
0.084375 0.776 0.910 0.770 0.936
0.112500 0.745 0.757 0.715 0.916

100 0.056250 0.530 0.520 0.406 0.819
0.084375 0.616 0.419 0.387 0.717
0.112500 0.686 0.365 0.359 0.679

200 0.056250 0.430 0.344 0.243 0.659
0.084375 0.585 0.308 0.302 0.606
0.112500 0.592 0.270 0.287 0.501

300 0.056250 0.433 0.285 0.215 0.575
0.084375 0.589 0.266 0.227 0.504
0.112500 0.568 0.237 0.240 0.460

500 0.056250 0.407 0.213 0.158 0.498
0.084375 0.530 0.215 0.221 0.413
0.112500 0.490 0.217 0.218 0.326

product 25 0.125000 0.562 0.907 0.652 0.911
0.250000 0.484 0.785 0.513 0.963

100 0.125000 0.331 0.567 0.366 0.887
0.250000 0.263 0.423 0.298 0.957

300 0.125000 0.203 0.253 0.164 0.867
0.250000 0.124 0.177 0.136 0.914

500 0.125000 0.156 0.165 0.140 0.836
0.250000 0.089 0.126 0.090 0.865

Table 2.14: 95% confidence interval coverage for density, transitivity, λ1 and λ2 for different
generating functions, different sample sizes n from 25 ot 500 and at different densities ρn, based
on Monte Carlo simulations using a version of the algorithm which keeps the original set of
nodes and only resamples the links between them.

Our hypothesis for why the performance is so poor is that if the bandwidth an is small,

or if for some individuals there are no close neighbours, our procedure becomes similar to the

empirical bootstrap of Green and Shalizi (2022): we draw a link between two individuals if and
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Figure 2.16: Comparison of histograms for our main bootstrap approach (in blue) and for
the links-only version (in orange) from estimation of one specific network from the horseshoe
generating function with n = 300 and ρn = 0.1125. The estimated statistics are, from top to
bottom: density, transitivity, λ1 and λ2. The red solid line denotes the population true value of
the statistic while the black dashed line denotes the value of the statistic in the bootstrapped
graph.

only if they were linked in the original graph. Hence if we do not resample individuals, the

bootstrapped graph may become too similar to the original graph, at least on the subgraphs

consisting of individuals with few neighbours. This can lead to insufficient variation in the

bootstrapped graphs and worse performance of the bootstrap procedure. Fig. 2.16 and Fig. 2.17

shows a comparison of our original method (in blue) and the version which only resamples links

while keeping the original nodes (in orange). While both do a good job of replicating the

statistic values in the bootstrapped graph (dashed black line), the version which only resamples

links is too concentrated around the value in the bootstrapped graph and often misses the

population value of the statistic (red solid line), leading to poor confidence interval coverage of

the links-only procedure.

This indicates that if one is interested in uncovering the population values, our main pro-

cedure is more reliable. However, in applications where we are only interested in confidence

intervals for a specific sample, bootstrapping links only does provide narrower confidence inter-

vals and would be preferred.
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Figure 2.17: Comparison of histograms for our main bootstrap approach (in blue) and for
the links-only version (in orange) from estimation of one specific network from the horseshoe
generating function with n = 50 and ρn = 0.05625. The estimated statistics are, from top to
bottom: density, transitivity, λ1 and λ2. The red solid line denotes the population true value of
the statistic while the black dashed line denotes the value of the statistic in the bootstrapped
graph.
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Chapter 3

Understanding regression shape changes

through nonparametric testing

Abstract

We propose a procedure for testing whether a nonparametric regression mean satisfies a shape

restriction that varies within the domain of the regressor. Notably, the change points of these

shape restrictions are unknown and must be estimated. Our test statistic is based on the

empirical process, drawing inspiration from Khmaladze (1982). This paper extends the non-

parametric methodology of Komarova and Hidalgo (2023) by proposing a method to estimate

the shape change points and consequently addressing the additional estimation errors intro-

duced by that stage. We analyse strategies for managing these errors and adapting the testing

approach accordingly. Our framework accommodates various common shapes, such as (inverse)

U-shapes, S-shapes, and W-shapes. Furthermore, our method is applicable to partial linear

models, thereby encompassing a broad spectrum of applications. We demonstrate the efficacy

of our approach through application to several economic problems and data.

151



3.1 Introduction

This paper proposes a nonparametric procedure for testing shape constraints of the regression

mean when the shape changes within the domain of the regressor. We allow the shape to po-

tentially change not just once but multiple times. In economics and other disciplines changing

shape patterns are encountered frequently. There is seizable empirical literature analysing or at-

tempting to establish U-shaped or hump-shaped relations. S-shape relations are also frequently

encountered in economics in the context of poverty traps or innovations. If U-shapes can be

described as changing a shape pattern only once in the domain – from decreasing to increasing,

the S-shapes in a certain interpretation may involve a more complicated characterisation as

there are not just three different monotonicity patterns (down, then up, then down again) but

also a switch from convex to concave.

A common empirical practice in cases of U-shapes or hump-shapes has often relied on

quadratics despite some recognising a potential need for nonparametric approaches1. The use of

quadratic specifications, however, remains a widespread practice. It is intuitive why – quadratics

may be appealing to researchers due to the simplicity of interpretation and ability to model

both convex and concave responses. It is evident, however, that just using quadratics is a

restrictive way to model nonlinearities, as: (a) it imposes symmetry around the turning point;

(b) it has to be concave (convex) everywhere; (c) if it is concave (convex), it first has to decrease

(increase) and then increase (decrease). In reality, nonlinear relationships may be much more

complicated than that. We refer the reader to Section 3.A, where we present examples of

nonlinear relationship which will be either completely missed or largely misrepresented by the

use of quadratics. This will be further confirmed and illustrated in our applications. We believe

that the main reason why applied researchers have relied extensively on quadratic specifications

has been the absence of a unifying nonparametric methodology that can be used for estimation

and testing of nonlinear shapes in a variety of models, including partially linear models. This

is precisely where our paper makes its contribution.

Some important and welcome developments in the context of U-shaped or inverse U-shaped

relations have been made in the work of Lind and Mehlum (2010), Simonsohn (2018), Kostyshak

(2017) and Ganz (2024). These works are discussed in more detail below. Komarova and

Hidalgo (2023) discuss U-shapes and S-shapes as some of the applications of their method

but they rely on the shape changing point(s) to be known which may be unrealistic in practice.

Even though this paper builds to a certain extent on the methodology in Komarova and Hidalgo

(2023), it makes an important step forward in allowing the turning points to be unknown. This

1For example, nonparametric fits for some of their specification were explored in Aghion, Van Reenen, and
Zingales (2013) through their Lowess smoother in Figure 1, or Ashraf and Galor (2013) nonparametric fit in
Figure 3, or Aghion et al. (2005) spline fit in Figure II.
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implies the needs to estimate them and incorporate the extra estimation steps into the testing

methodology, which is a nutshell description of the contributions of our paper. Our extension of

the method in Komarova and Hidalgo (2023) is far from trivial. Theoretically, we have to make

sure that the turning points are estimated in a way that their interference with the statistical

properties of the test statistics is limited in a sample and is also asymptotically negligible.

Practically, allowing the turning points to be found adaptively from the data adds robustness

to the hypothesis testing and credibility to the conclusions from the test. It is worth emphasising

that our testing method applies to a very general class of regression function changing shapes

which goes beyond just U-shapes and S-shapes. Additionally, our paper makes it explicit how

to apply the testing methodology to partially linear model where the shape constraints enter

through the nonparametric part and the effect of other variables is allowed through a linear

index.

The paper proceeds as follows. Section 3.2 gives a literature review. Section 3.3 discusses the

basic setting and gives a brief overview of our testing methodology. Section 3.4 gives details of

the estimation procedure and the test specification. Section 3.5 describes our testing approach

in detail. Section 3.6 presents Monte Carlo simulations. Section 3.7 contains applications.

Section 3.8 concludes. Section 3.A describes additional motivating examples and Section 3.B.1

includes proofs.

3.2 Literature review

Even though there is no general approach in the literature to estimate and test regression shape

changes for various shapes, there is some literature that attempts to address some special cases

of this, such as U-shapes and hump-shapes.

The existing literature on testing U-shape constraints is relatively small. Although the

shape appears in many settings in economics and social sciences, researchers usually use tests

based on quadratic specification. Lind and Mehlum (2010), Simonsohn (2018) and Kostyshak

(2017) all give compelling arguments for why tests based on quadratic approximations are not

appropriate when testing for a U-shaped or hump-shaped relationship.

Lind and Mehlum (2010) was the first to explicitly highlight the problems with using “U-

shaped” and “quadratic” as synonyms. They propose a joint inequality test on the signs of

first derivatives estimated at two points in the support. It is a parametric test and it relies on

knowing the true functional form. As pointed out by Simonsohn (2018), that test is only valid

if the correct functional form is used and is likely to suffer from a high false-positive rate when

the model is misspecified.
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Simonsohn (2018) proposes a simple test based on estimating two regression lines: for low

and high values. He does not assume any functional form but instead tests if the average slope

on either side of a switch point is significant, and if the slopes have opposite signs. The switch

point is estimated from the data and is chosen to maximise the power of the test (instead of

getting the best fit for the data like in our paper) using what the paper calls a “Robin Hood”

algorithm, “for it takes away observations from the more powerful line and assigns them to

the less powerful one”. This test is simple to use but it does have some drawbacks: it does

not distinguish between single and multiple changes in the sign of derivative (would classify a

W-shape or an N-shape as a U-shape) and its asymptotic properties have not been analysed.

In particular, the implication of estimating the switch point to maximise power rather than fit

the data are not clear (potentially, this may result in high Type I error).

Kostyshak (2017) uses a non-parametric test, where the test statistic is the smallest band-

width such that a local polynomial regression is quasi-convex (i.e. U-shaped or monotone),

followed by a test for monotonicity. This specification allows for the switch point to be un-

known and for the presence of covariates, just like in our model. The test statistic is consistent

but further asymptotic theory of the test is not provided. The testing algorithm relies on boot-

strap (our test has a nice asymptotic distribution, but to improve the finite sample performance

of our test we also resort to bootstrap in this paper). Kostyshak (2017) applies his test to life

satisfaction in age and finds that much of the U-shape can be explained by the increase in

financial satisfaction typically occurring later in life. A very interesting aspect of that applica-

tion is that this finding would be completely missed by quadratic specifications. This resonates

with our applications too, where we show that a quadratic specification may completely miss

a U-shaped or hump-shaped relation. It appears that the idea of the test in Kostyshak (2017)

may be extended to other shapes and multiple switch points by relying on more general tests

for the number of peaks and valleys in the regression function and its derivatives, but it would

require running a series of tests instead of a single test, and would give a researcher less control

over the exact choice of a shape than our method.

An approach in a recent work Ganz (2024) is also designed towards testing for U-shape

or inverse U-shape relations. The regression function is modelled using linear (first-degree)

splines or quadratic I-splines and a candidate switch point is taken as one of the knots (in our

approach the switch point is adaptively found first and then the system of knots is driven by

the estimated switch point). The idea of Ganz (2024) is to estimate three models – one model is

very flexible (not enforcing any constraints), the second one estimates a monotonic relationship,

and the third one permits one switch point in line with an (inverse) U-shape relationship. If

the fit of the first model is close to that of the third and better than the second, we conclude
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the relation is (inverse) U-shaped, otherwise we reject the (inverse) U-shaped relation. While

the procedure performs well in simulations, the formal statistical properties of this test have

not yet been established. It seems that, to ensure a flexible choice of switch point, the number

of knots must increase with the sample size, but it is not clear how this affects the asymptotic

behaviour of the test.

For more complex changing shapes – those beyond (inverse) U-shapes – to the best of our

knowledge, there are no existing statistical testing procedures that allow unknown switch points

(Komarova and Hidalgo (2023) can be used when such points are known).

The theoretical and empirical literature has, of course, dealt with non-linear shapes. For

examples of U-shaped relationships in economics and other disciplines see e.g.Weiman (1977),

Goldin (1995), Calabrese and Baldwin (2001), Groes, Kircher, and Manovskii (2014), Sutton

and Trefler (2016) (also see discussions in Lind and Mehlum (2010), Simonsohn (2018) and

Kostyshak (2017)). Inverse U-shaped relationships include the case of the so-called single-

peaked preferences, which is an important class of preferences in psychology and economics. In

empirical research, U-shaped functions e.g. often appear in environmental economics, particu-

larly in studies relating electricity consumption to temperature. Typically, the switch between

heating and cooling is set around 18.3°C (65°F). Traditionally, this non-linear relationship be-

tween temperature and electricity consumption is modelled using heating degree-days (HDD)

and cooling degree-days (CDD) in least squares regressions, as in Pardo, Meneu, and Valor

(2002). More advanced techniques, like panel threshold regression (Bessec and Fouquau (2008))

or semiparametric spline models (Engle, Granger, Rice, and Weiss (1986)), have also been used.

Another area where U-shaped relationships are found is in the study of happiness across the

lifespan. Research by Blanchflower (2020) and others (e.g., Clark (2007)) shows that, after

controlling for factors like gender, education, marital status, and employment, happiness fol-

lows a U-shape, with a minimum around age 48. This pattern has been observed in both

developed and developing countries, and similar findings have been confirmed for apes (Weiss

et al. (2012)). However, these studies rely on quadratic specifications in age to test the rela-

tionship even when graphical evidence (like in Blanchflower (2020))) a more consistent with

an asymmetric U-shape relationship. More advanced techniques, like semiparametric splines

(Wunder, Wiencierz, Schwarze, and Küchenhoff (2013)), show a U-shape below age 60 but a

downward trend beyond that. In happiness research, identifying the turning point in age is key

and, thus, techniques like our would be most suitable also for that reason.

Some literature in accounting documented S-shaped relationships – when e.g. stock price

response to unexpected earnings is first convex and then becomes concave after a switch point

(and is monotonic throughout the domain). For specific examples see Freeman and Tse (1992)
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or Das and Lev (1994), among others. S-shaped growth curves of the adopted population in a

large society is a generally accepted empirical feature of innovation diffusion (see discussions in

Utterback (1996), Rogers (2003)). Thus, testing for an S-shape in this case would allow one to

conclude whether technology evolves as one would expect. Newell, Genschel, and Zhang (2014)

uses S-shaped curves to model decays in the availability or usage of traditional media. We have

not been able to find a formal statistical test in the literature for this type of shape.

An important part of our analysis is estimating switch points between different shape patters

(this is formally defined later). There are a few papers using a kernel approximation to estimate

a minimum (or maximum) of an unknown function, starting with Parzen (1962) who describes

a procedure for finding a mode of a probability density function. Eddy (1980) improves his

method to achieve better convergence rate, he shows that the mean squared error of the mode

estimator can converge to zero at rate n−1−ε for any ε > 0. Muller (1989) describes a similar

procedure for finding a peak of a regression function. We are not aware of similar procedures

using splines.

There is also a large literature on identifying break points in regression functions, i.e. points

at which the function is either discontinuous or has a discontinuity in one of its derivatives. For

example Feder (1975) develops asymptotic theory for linear estimators of segmented regressions,

where the parameters of interest are both the parameters in each segment and points at which

the behaviour of the function changes. Estimates of these kinds of break points are typically

faster than n−1/2 (see e.g. Muller (1992)), making them very attractive, but in this paper we

avoid making any assumptions about a level of discontinuity (if any) at the switch points so

we don not rely on any result of that kind. Other important papers in this strand of literature

on structural breaks include Delgado and Hidalgo (2000), who suggest estimators of location

and size of structural breaks in a nonparametric regression model and is applicable in both

cross sectional and time series models. Hidalgo, Lee, and Seo (2019) give robust inference in

threshold regression models when it is not known a priori whether at the threshold point the

true specification has a kink or a jump and the threshold itself is unknown. In a related work,

Hidalgo, Lee, Lee, and Seo (2023) propose a continuity test for the threshold regression model

based on the findings about a risk lower bound in estimating the threshold parameter without

knowing whether the threshold regression model is continuous or not.

Our model also involves a semi-parametric specification combining B-spline approximation

with linear components, which has been analysed in a number of papers, e.g. Speckman (1988),

Heckman (1986). Rice (1986) analyses convergence rates for semiparametric model combin-

ing splines and linear terms, under particular assumptions on variables. The main difference

between his approach and ours is that he uses an n-dimensional space of splines with all the
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observations of the regressor treated as knots, whereas we use a space of splines smaller than

the number of observations and we can define the knots independently of the data. The basis

splines in his case are orthogonal, simplifying derivations, but because of the more dense spline

system his model is more prone to overfitting, which he avoids by adding a penalty term. In

our case the number of splines grows slower than the number of observations, allowing us to

achieve consistency without adding a smoothing penalty term. In his model he shows that the

estimate of the linear component is biased, with rate depending on the size of the penalty, and

that to decrease bias one needs to use lower penalty than optimal. Under our assumptions we

can use the results from Newey (1997) which show that the parametric component achieves

root n consistency and is asymptotically unbiased.

3.3 Setting and a brief outline of main ideas

Our leading case in Sections 3.3-3.5 can be described by the following setting:

y = m(x) + z′γ0 + u, (3.1)

E[u|x, z] = 0, (3.2)

where m ∈ C1 [x, x] where C1 denotes the class of smooth functions. The function m(·) and

parameter γ0 is unknown.2

To characterise the property of m(·) as that of a changing shape, we start with an illustration

of a function that changes shape once.

Let us, first, denote m|[a,b] as m(·) restricted to the interval [a, b] and, second, suppose that

for some s01 ∈ [x, x],

m|[x,s01] ∈ M1

(
[x, s01]

)
, m|[s01,x] ∈ M2

(
[s01, x]

)
, (3.3)

where M1 and M2 are two classes of functions that describe functional properties that can be

localised in the sense that

m|[a,b] ∈ Mj ([a, b]) ⇒ m|[c,d] ∈ Mj ([c, d]) ∀[c, d] ⊆ [a, b], j = 1, 2. (3.4)

We also assume that

M1 ([a, b]) ∩M2 ([a, b]) = ∅ ∀[a, b]. (3.5)

2This setting can be easily extended to allow for ψ(z, γ0) instead of z′γ0 for a known nonlinear function
ψ(z, ·) and unknown γ0.
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We interpret s01 as the turning or switch point as at that point the regression function

changes its pattern from class M1 to class M2. We are ultimately interested in a scenario

where s01 is not known and has to be estimated from the data.

Consider the following two examples.

Example 1 (U-shape, inverse U-shape, quasi-convexity, quasi-concavity). To the best of our

knowledge, there is no general agreement in the literature on how to define U-shaped relation-

ships mathematically. On of the most common definitions is that the function first decreases till

some switch point and then increases. However, some authors would also incorporate convexity

requirements into this property. To avoid any ambiguity, below we state explicitly what we mean

by U-shape. Our testing procedures can, of course, allow additional convexity requirements.

A (strict) U-shaped function m(·) is first (strictly) decreasing on some interval [x, s01] and

then on [s01, x] it is (strictly) increasing. Clearly then

M1 ([a, b]) =
{
m|[a,b] : m′(x) < 0 a.e. on [a, b]

}
,

M2 ([a, b]) =
{
m|[a,b] : m′(x) > 0 a.e. on [a, b]

}
.

It is easy to see that M1 and M2 satisfy conditions (3.4) and (3.5) above. In the case of an

inverse U-shape (also often called hump-shape), the roles of M1 and M2 are reversed.

A non-strict version of U-shape may involve intervals of constancy and can be formulated

as non-strict inequalities on the signs of the derivatives.

Related to U-shape is the class of quasi-convex functions which is defined as

{
m(·) : ∀x1, x2 ∈ [a, b] ∀λ ∈ [0, 1] m(λx1 + (1− λ)x2) ≤ max

{
m(x1),m(x2)

}}
.

Function m is quasi-concave if and only if −m is quasi-convex. A smooth function is quasi-

convex (-concave) if and only if it first decreases (increases) up to some point and then increases

(decreases) incorporating a special case of monotonicity when a switch point is located at one

of the boundary points of the interval. For quasi-convex (-concave) functions this switch point

may not be known a priori, and thus, it would have to be estimated. This description can be

changed to a strict version.

When considering a U-shape property a researcher may want to make further restriction on

the function being convex. It is easy to do by adding an inequality m′′(x) > 0 to the definition

of classes M1 and M2.

Example 2 (S-shape). There is no generally agreed on definition of S-shape. E.g. one inter-

pretation defines a (strict) S-shaped as m(·) which is first (strictly) convex and increasing on
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some interval [x, s01] and then on [s01, x] it is (strictly) concave and increasing. In our setting

this means

M1 ([a, b]) =
{
m|[a,b] : m′′(x) > 0 and m′(x) > 0 a.e. on [a, b]

}
,

M2 ([a, b]) =
{
m|[a,b] : m′′(x) < 0 and m′(x) > 0 a.e. on [a, b]

}
,

if m(·) is twice differentiable (if not, convexity and concavity can be formulated without involving

the derivatives). It is easy to see that M1 and M2 satisfy conditions (3.4) and (3.5) above. This

interpretation of S-shape is close to prospect theory in behavioural economics (see Kahneman

and Tversky (1979).)

Other fields may understand S-shape differently. E.g., another way to interpret it would

be as the regression function first strictly decreasing then strictly increasing and then strictly

decreasing again. This interpretation would require two interiors switch points s01 < s02 and

three classes M1([x, s
0
1]), M2([s

0
1, s

0
2]) and M3([s

0
2, x]) with

M1 ([a, b]) = M3 ([a, b]) =
{
m|[a,b] : m′(x) < 0 a.e. on [a, b]

}
,

M2 ([a, b]) =
{
m|[a,b] : m′(x) > 0 a.e. on [a, b]

}
.

More generally, we have an ordered sequence of interior switch points s01, s
0
2 . . . , s

0
J such as

s00 ≡ x < s01 < s02 . . . < s0J < x ≡ s0J+1

(where the support boundaries are denoted as s00 and s0J+1 for notational convenience) and a

sequence of properties Mj , j = 1, . . . , J + 1, such that

m|[s0j ,s0j+1]
∈ Mj+1

(
[s0j , s

0
j+1]

)
, j = 0, . . . , J, (3.6)

It is important that the ordering of Mj , j = 1, . . . , J is predetermined – that is, we know the

order in which the properties of the regression function change.

Condition C1. (a) Classes Mj, j = 1, . . . , J + 1, describe functional properties that can be

localised in the sense that

m|[a,b] ∈ Mj ([a, b]) ⇒ m|[c,d] ∈ Mj ([c, d]) ∀[c, d] ⊆ [a, b], j = 1, 2. (3.7)
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(b) We also assume that

Mj ([a, b]) ∩Mj+1 ([a, b]) = ∅ ∀[a, b], j = 1, . . . , J. (3.8)

Part (a) of Condition C1 refines the notion of what it means for a class to capture shape –

this is a property that extends to subintervals. Part (b) gives a general condition for a change

in shape that is formulated for any two consecutive classes.

We can establish the identification of s0j , j = 1, . . . , J . Henceforth, s1 < s2 < . . . < sJ will

denote a generic ordered sequence of switch points located in the interior of [x, x].

Proposition 1 (Identification). In the model (3.6) with a given ordering s01 < s02 < . . . < s0J

of switch points, the switch points s0j , j = 1, . . . , J , are identified under Condition C1.

Below is an example of a situation with multiple switch points.

Example 3 (two local regression peaks). Consider the case when the smooth regression func-

tion has two local regression peaks. Then, in addition to estimating the two locations of local

regression peaks we have to estimate another point between them where the regression function

has a local minimum and turns from the decreasing pattern to the increasing one.

m(x)

x
x = s00 s01 s02 s03 x = s04

Figure 3.1: Two local regression peaks

Formally we have three interior switch points s01, s
0
2, s

0
3 such that s00 ≡ x < s01 < s02 < s03 <

x ≡ s04, with the corresponding sets

M1 ([a, b]) = M3 ([a, b]) :=
{
m|[a,b] : m′(x) > 0 a.e. on [a, b]

}
,

M2 ([a, b]) = M4 ([a, b]) :=
{
m|[a,b] : m′(x) < 0 a.e. on [a, b]

}
.

Points s01 and s03 are locations of the two local regression peaks whereas s02 describes the location

of the inevitable local minimum between s01 and s03.
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It is easy to see that Mj, j = 1, . . . , 4, satisfy conditions (3.7) and (3.8).

Let M0 denote the class of all smooth regression functions m that satisfy (3.6):

M0 =
{
m : m satisfies (3.6) for some s01 < s02 < . . . < s0J

}
.

Our null hypothesis is

H0 : m ∈ M0 vs. H1 : m /∈ M0 (3.9)

(with the smoothness of functions in M0 being the maintained hypothesis).

The first step of our testing procedure will be to estimate m by a smooth join of B-splines

of degree qj defined on each estimated shape interval [ŝj , ŝj+1], with ŝ0 = x, ŝJ+1 = x. Suppose

that the B-spline on [ŝj , ŝj+1] is build on Lj+1 base B-splines (further details are in the next

section). Our estimation will guarantee that as the sample size increases and all Lj+1, j =

0, . . . , J , increase with it our estimator will be a consistent estimator of m under H0.

Before advancing to the detailed technical description of that step, as well as the subsequent

steps in testing, let us indicate what will differentiate our method from some other methods

available in the literature.

From a big picture perspective, our methodology, just as in Komarova and Hidalgo (2023),

is related to methods used in goodness of fit tests. Following Stute (1997) or Andrews (1997)

and Komarova and Hidalgo (2023), we base the testing procedure on functionals of the partial

sums empirical process

Kn (x) =
1

n

n∑
i=1

ûi1(xi < x), x ∈ [x, x] (3.10)

where 1 (·) is the indicator function. Here

ûi = yi − m̂B (xi; ŝ)− z′iγ̂, i = 1, . . . , n,

are the residuals obtained afterm has been estimated by the nonparametric estimator m̂B (xi; ŝ)

by means of B-splines briefly described above and γ0 has been estimated by γ̂ found simultane-

ously with m̂B (xi; ŝ), see Section 3.4 for more detail (in a nutshell, mB(x; ŝ) + z′γ̂ denotes the

best approximation of m(x) + z′γ0 using the sum of the join of B-splines based on estimated

switch points ŝ for m and an additive separable linear function in z.) .

Unfortunately, after normalisation, the limit covariance structure of Kn (x) depends on M0,

making inferences based on Kn (x) very difficult to perform, if at all possible. For the simplicity
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of an illustration, consider the case of having no zi on the right-hand side. Then

Kn (x) =
1

n

n∑
i=1

ui1(xi < x) +
1

n

n∑
i=1

(mB(xi; ŝ)− m̂B(xi; ŝ))1(xi < x)

+
1

n

n∑
i=1

(m(xi)−mB(xi; ŝ))1(xi < x). (3.11)

In this decomposition the first term can be shown to be
√
n-convergent in distribution to the

standard Brownian motion. The second term is also Op

(
1√
n

)
, which means that the asymptotic

distribution of Kn (x) might not be Gaussian and is difficult to characterise, making inferences

very cumbersome. The third term in its turn can be represented as

1

n

n∑
i=1

(m(xi)−mB(xi; ŝ))1(xi < x) =
1

n

n∑
i=1

(
m(xi)−mB(xi; s

0)
)
1(xi < x)

+
1

n

n∑
i=1

(
mB(xi; s

0)−mB(xi; ŝ)
)
1(xi < x), (3.12)

where the asymptotic behaviour of first sub-term can be made asymptotically negligible with

the choice of rates of Lj , j = 1, . . . , J , relative to n and the asymptotic behaviour of the second

sub-term depends on the rate of convergence of ŝ to s0 and may be of order Op

(
1√
n

)
, same

order of magnitude as the leading term and non-pivotal. When we do include a term linear in

z, it creates another non-trivial Op

(
1√
n

)
component in the test statistic.

In contrast to our method, the approach in Komarova and Hidalgo (2023) would assume the

turning points in s0 to be known (effectively making ŝ = s0 in the decomposition above) and,

thus, the right-hand side of (3.12) would only have the first sub-term significantly simplifying

the ability to control the asymptotic behaviour of that whole term. Our setting is more realistic

as the turning points s0 are taken to be unknown. This is a fundamental difference between

this paper and Komarova and Hidalgo (2023) which results in very non-trivial theoretical and

empirical challenges.

With estimates ŝ and m̂B(xi; ŝ) in hand we apply the transformation of Kn (x) similar to

the one used in Komarova and Hidalgo (2023) and based on ideas of Khmaladze (1982) as

well as related to the CUSUM of recursive residuals proposed by Brown, Durbin, and Evans

(1975). This leads to the asymptotic behaviour of the transformation to be
√
n-convergent to

a standard Brownian motion. Then testing is implemented using standard functionals such as

Kolmogorov-Smirnov, Cramér -von-Mises or Anderson-Darling. In the next section we give the

details of the estimation and testing procedure.
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3.4 Modified null hypothesis and estimation methodology

We start with the discussion of estimating m under the null in line with our outline in Section

3.3.

For a given collection of switch points in the vector s, we can consider individual intervals

[sj−1, sj ]. On each of these intervals we consider a B-spline of degree qj with knots that split

[sj−1, sj ] into L′
j equally spaced intervals:3

mB;j(x; s) ≡
Lj∑
ℓ=1

βℓ,jpℓ,Lj ,[sj−1,sj ],qj (x) , where Lj = L′
j + qj , (3.13)

and
{
pℓ,Lj ,[sj−1,sj ],qj (·)

}Lj

ℓ=1
is the collection of the base B-splines base for the chosen system

of knots and the chosen degree qj (will be described shortly).

Then we can define

mB(x; s) =

J∑
j=1

mB;j(x; s) · 1[sj−1, sj) +mB;J+1(x) · 1[sJ , sJ+1], x ∈ [x, x]. (3.14)

Now we want to delve in more detail in the properties of B-splines in (3.13). These B-splines

are constructed from polynomial pieces joined at some specific points called knots. In (3.14) we

use B-splines whose domain and the system of knots differ on different sides of switch points.

Generally, let q be the degree of a spline, L′ be the number of subintervals of [s, s] on which

we define the spline (i.e. the number of polynomial pieces), then L = L′ + q is the number of

B-splines in the basis.

We define the system of knots which split [s, s] into L′ equally spaced intervals. When

defining B-spline of degree q we repeat the knots at the end points of the domain q + 1 times.

To be precise, we let

t = (tℓ)
L+2q+1
ℓ=1 =

 s, . . . , s︸ ︷︷ ︸
q+1 times

, s+
s− s

L′ , s+ 2
s− s

L′ , . . . , s, . . . , s︸ ︷︷ ︸
q+1 times

 .

be the knot sequence. Then the ℓth B-spline of degree q defined on the knots t is a function of

x we denote by pℓ,L,[s,s],q(x). B-splines are defined recursively (see De Boor 1978) as follows:

pℓ−q,L−q,[s,s],0(x) = 1 (x ∈ [tℓ, tℓ+1)) =


1 if tℓ ≤ x < tℓ+1

0 otherwise

3The condition that these intervals are equally spaced is not important and is only imposed for the simplicity
of the exposition. We only need that the system of knots has to become increasingly dense in [sj−1, sj ].
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and for 0 < k ≤ q − 1:

pℓ,L−k,[s,s],q−k =
x− tℓ

tℓ+q − tℓ
pℓ−1,L−k−1,[s,s],q−k−1(x) +

tℓ+q+1 − x

tℓ+q+1 − tℓ+1
pℓ,L−k−1,[s,s],q−k−1(x).

By convention, anything divided by zero is zero.

An example of the steps in the construction of base B-splines for q = 3, L = 8, [s, s] = [0, 1]

is given in Figure 3.2.

Below is the list of some properties of base B-splines.

� pℓ,L,[s,s],q(x) is non-negative and is positive over a domain spanned by q + 2 adjacent

knots, and is zero everywhere else;

� between each pair of consecutive knots pℓ,L,[s,s],q(x) is a polynomial of degree q;

� at a knot which is repeated m times pℓ,L,[s,s],q(x) has q −m continuous derivatives;

� at any given x, at most q + 1 B-splines are non-zero;

� at any given x, the values of all B-splines sum to 1: ∀x ∈ [s, s]
∑L

ℓ=1 pℓ,L,[s,s],q(x) = 1.

The derivative of a B-spline is composed of polynomial sections of degree q− 1 defined over

the same set of knots (with boundary knots having one less multiplicity), and is itself a B-spline

of degree one lower. In particular, one can show, e.g. by induction (see e.g. De Boor (1978) or

Procházková (2005)), that for a base B-spline,

∂pℓ,L,[sj−1,sj ],q

∂x
=

q

tℓ+q − tℓ
pℓ−1,L−1,[sj−1,sj ],q−1(x)−

q

tℓ+q+1 − tℓ+1
pℓ,L−1,[sj−1,sj ],q−1(x),

(3.15)

which means that the derivative of the spline mB;j(x; s) ≡
∑L

ℓ=1 βℓpℓ,L,[sj−1,sj ],q(x) is

∂mB;j(x; s)

∂x
= q

L∑
ℓ=2

∆βℓ

tℓ+q − tℓ
pℓ−1,L−1,[sj−1,sj ],q−1(x). (3.16)

Note that in the final expression the knots t are still based on the original q, not q − 1.

Approximation and estimation of the regression mean m(·) by B-splines are appealing due

to a convenient way to capture shape properties of interest, particularly those based on the

derivatives of the regression function (such as U-shape, S-shape, etc.). In other words, the use

of B-splines helps us to write the class M0 in (3.9) in terms of restrictions on the coefficients

of the base B-splines in an approximation to m (·) (this requirement captured formally in

Condition C2 below). With Lj → ∞ as n → ∞, j = 1, . . . , J + 1, the number of coefficients of

the B-splines and the number of constraints will increase to infinity.
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1
5 ,

2
5 ,

3
5 ,

4
5 ,(0, 0, 0, 0, 1, 1, 1, 1)t =

x1
5

2
5

3
5

4
5

0 1

p1,5,[0,1],0(x) p2,5,[0,1],0(x) p3,5,[0,1],0(x) p4,5,[0,1],0(x) p5,5,[0,1],0(x)

x1
5

2
5

3
5

4
5

0 1

p1,6,[0,1],1(x)

p2,6,[0,1],1(x) p3,6,[0,1],1(x) p4,6,[0,1],1(x) p5,6,[0,1],1(x)

p6,6,[0,1],1(x)

x1
5

2
5

3
5

4
5

0 1

p1,7,[0,1],2(x)

p2,7,[0,1],2(x)
p3,7,[0,1],2(x) p4,7,[0,1],2(x) p5,7,[0,1],2(x) p6,7,[0,1],2(x)

p7,7,[0,1],2(x)

x1
5

2
5

3
5

4
5

0 1

p1,8,[0,1],3(x)

p2,8,[0,1],3(x)

p3,8,[0,1],3(x)
p4,8,[0,1],3(x) p5,8,[0,1],3(x) p6,8,[0,1],3(x)

p7,8,[0,1],3(x)

p8,8,[0,1],3(x)

Figure 3.2: An example of base B-spline functions construction for q = 3.

165



It is well understood that the choice of the number of knots determines the trade-off between

overfitting and underfitting when there are respectively too many or too few knots. The main

difference between B-splines and P-splines is that the latter tend to employ a large number

of knots, but to avoid oversmoothing they incorporate a penalty function based on the τ -th

difference △τβℓ, where △βℓ = βℓ−βℓ−1, with τ = 2 being the most common choice. It is worth

mentioning that other sieve estimators might be used, see the survey in Chen (2007), but we

found B-splines particularly useful for our purposes.

Since our ultimate goal is to develop a nonparametric statistical test for (3.9) using the

consistent estimators ŝ1, ŝ2 . . . , ŝJ , we want to be sure that functional properties in each class

Mj , j = 1, . . . , J+1, can be captured by the properties of coefficients of B-splines approximating

m on the respective interval [sj−1, sj ] in the partition of [x, x], and that this representation by

the properties of coefficients of approximating B-splines becomes both necessary and sufficient

as the number of knots on [sj−1, sj ] goes to infinity.

Formally, this is stated in Condition C2 below. Before we formally introduce this condition,

let us introduce some helpful notations. Let Bj(qj , Lj) denote the set of all B-splines of degree

qj with knots that split [sj−1, sj ] into L′
j equally spaced intervals. A generic element in this

set is written as a linear combination in (3.13). Thus, any element in Bj(qj , Lj) can be fully

characterised by the vector βall,j ≡ (β1,j , . . . , βLj ,j)
′ ∈ RLj and constraints on this vector can be

mapped into constraints on the B-spline. We consider each vector βall,j ∈ RLj to be embedded

into the long vector βall = (β′
all,1, . . . , β

′
all,J+1)

′ ∈ R
∑J+1

j=1 Lj .

Let T{(qj ,Lj)}J+1
j=1 ,s ⊂ R

∑J+1
j=1 Lj denote a set that describes constraints on the vector of

coefficients βall for a given vector s pf ordered switch points. We can subsequently define

M{(qj ,Lj)}J+1
j=1 ,s =

{
mB(x; s) in the form of (3.14) | βall ∈ T{(qj ,Lj)}J+1

j=1 ,s

}
.

M{(qj ,Lj)}J+1
j=1 ,s is, thus, a collection of functions that are joins of B-splines defined individ-

ually on the intervals [sj−1, sj ]. T{(qj ,Lj)}J+1
j=1 ,s can contain restrictions that will guarantee that

the whole mB(·; s) defined in such a piece-wise way is continuous, or, additionally, smooth or,

more generally, r times continuously differentiable (the choice of r would depend on the degrees

qj , j = 1, . . . , J+1 of the B-splines). E.g., the continuity of the whole piece-wise approximation

is ensured by the constraints

βLj ;j = β1;j+1, j = 1, . . . , J. (3.17)

In order to guarantee the smoothness of the approximation mB(·; s), in addition to (3.17) we
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have to impose that4

qjL
′
j

(
βLj ;j − βLj−1;j

)
sj − sj−1

=
qj+1L

′
j+1 (β2;j+1 − β1;j+1)

sj+1 − sj
, j = 1, . . . , J, (3.18)

which simplifies to

βLj ;j − βLj−1;j = β2;j+1 − β1;j+1 = 0, j = 1, . . . , J (3.19)

in the case when the switch point is a local minimum or a local maximum. Further restrictions

can be derived to enforce the continuity of the second derivative, etc. shall a researcher want

to impose higher order restrictions.

In the regularity conditions in Section 3.5.1 we require the regression function to be r times

continuously differentiable, therefore it is natural to narrow down M0 to include only those

regression functions that satisfy this smoothness condition. We will denote this class as M∗
0.

Condition C2 below formalises our idea of approximating the properties inM∗
0 by constraints

on coefficients in the approximation mB(·; s) in a necessary and sufficient fashion.

Condition C2. For each s there is a set T{(qj ,Lj)}J+1
j=1 ,s ⊂ R

∑J+1
j=1 Lj that satisfies the following

properties:

(i) For a given s, T{(qj ,Lj)}J+1
j=1 ,s does not depend on data {xi}i∈Z and, thus, is non-stochastic;

(ii) For any s, the boundary of T{(qj ,Lj)}J+1
j=1 ,s consists of a finite number of smooth surfaces;

(iii) Let MT
{(qj,Lj)}

J+1
j=1

denote the union of MT
{(qj,Lj)}

J+1
j=1

,s
over all possible s and let H be the

Hausdorff distance in the supremum norm in the space of continuous functions. Then

H
(
M∗

0,MT
{(qj,Lj)}

J+1
j=1

)
= O

 1(
min

j=1,...,J+1
Lj

)r

 (3.20)

for r > 2 and min
j=1,...,J+1

Lj → ∞.

(iv) Let f(xi, s) = m(xi) − mB(xi, s) where mB(xi, s) is the best possible B-spline approxi-

mation to m(xi) which satisfies the constraints under HB
0 . If s ̸= s0 and xi is within a

neighbourhood of the misspecified switch point in which the incorrect constraint is binding,

the f(xi, s) is proportional to ∥s0−s∥. It follows that if M∗
0,s0 denotes the set of functions

in class M∗
0 with switch points s0. For any pair (s0, s)

H
(
M∗

0,s0 ,MT
{(qj,Lj)}

J+1
j=1

,s

)
= Ω

(
∥s0 − s∥∞

)
. (3.21)

4This is in case the interior knots are equidistant within each [sj−1, sj ].
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Condition C2(i) ensures that the constraints in the estimation can be constructed in a generic

fashion and we can talk about a deterministic approximation of class M∗
0 by MT

{(qj,Lj)}
J+1
j=1

,s.

Condition C2(ii) guarantees that for a given s the implementation of conditions T{(qj ,Lj)}J+1
j=1 ,s

comes down to enforcing a finite number of constraints on coefficients in βall. In practice, defi-

nitions of T{(qj ,Lj)}J+1
j=1

will often be sufficient to guarantee functional properties of M∗
0. Condi-

tion C2(iii) ensures that these conditions become asymptotically necessary. Condition C2(iv)

puts a lower bound on the quality of fit when we use a set of constraints which misspecify the

switch point: we need the loss in fit to be large enough to allow us to estimate ŝ. We can think

of this condition as saying that, when we use s instead of the true s0, on the region on which

we impose the incorrect constraint, the gap between the best possible fit and the true function

is proportional to ∥s − s0∥∞. Combined Condition C2(iii) and Condition C2(iv) ensure that,

as long as s −→ s0, the constraints in T{(qj ,Lj)}J+1
j=1 ,s capture constraints in M∗

0,s0 in a necessary

and sufficient way as the number of knots grows to infinity, and if the convergence of s to s0

is sufficiently fast, the approximation rate in the constrained approximation with the enforced

T{(qj ,Lj)}J+1
j=1 ,s is the same as the rate in the unconstrained B-spline approximation. We can

interpret r as the number of continuous derivatives elements of M∗
0.

Given Condition C2, our idea is to test the null hypothesis

HB
0 : βall ∈ T{(qj ,Lj)}J+1

j=1 ,s for some s vs. HB
1 : (negation of null) (3.22)

formulated in terms of the approximation for m. Note that under the alternative we are still

only considering smooth functions within M∗
0.

Let us now illustrate Condition C2 and the approximation for the U-shape in Example 1.

Example 1 (continued). In the case of the U-shape property the approximation consists of

two B-spline joined at s0:

mB(x; s
0) =

L∑
ℓ1=1

βℓ1;1pℓ1,L,[x,s0],q(x)︸ ︷︷ ︸
mB;1(x;s0)

·1[x, s0) +
L∑

ℓ2=1

βℓ2;2pℓ2,L,[s0,x],q(x)︸ ︷︷ ︸
mB;2(x;s0)

·1[s0, x],

where for simplicity we took q1 = q2 = q (same degree of B-splines on both sides of s0) and L1 =

L2 = L (same number of knots on both sides of s0) and assume m(·) is three times continuously

differentiable. To capture monotonicity patterns and also smoothness at s0 described by (3.17)-
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(3.19), we take

T{(q,L)} =

{
(βall,1, βall,2) |βℓ1;1 ≥ βℓ1+1;1, ℓ1 = 1, . . . , L− 1,

βℓ2;2 ≤ βℓ2+1;2, ℓ2 = 1, . . . , L− 1,

βL;1 = βL−1;1 = β1;2 = β2;2, βLj−2;j = β3;j+1.}
}

Inequalities βℓ1;1 ≥ βℓ1+1;1, ℓ1 = 1, . . . , L−1, capture the fact that the function is decreasing

on [x, s0], while βℓ2;2 ≤ βℓ2+1;2, ℓ2 = 1, . . . , L − 1, capture the fact that it is increasing on

[x, s0]. Equality βL;1 = βL−1;1 for the continuity of the approximation at s0, and the equalities

∆βL;1 = ∆β2;2 = 0 for smoothness of the approximation at s0 as well as for the minimum of

the approximation at s0 together give us βL;1 = βL−1;1 = β1;2 = β2;2.

Now let us show that C2 (iii) holds. From the B-spline theory we know (e.g. from De Boor

(1978)) that the approximation of three times differentiable m|[x,s0] and m|[s0,x] by unconstrained

B-splines on the respective intervals [x, s0] and [s0, x] can be attained at the rate O
(

1
L3

)
. Let

us denote such approximations as m̃B;1(·) and m̃B;2(·), respectively:

m̃B;1(·; s0) =
L∑

ℓ1=1

β̃ℓ1;1pℓ1,L,[x,s0],q(x), m̃B;2(·; s0) =
L∑

ℓ2=1

β̃ℓ2;2pℓ2,L,[s0,x],q(x).

Let us show that because of m|[x,s0] strictly decreasing we can without a loss of generality take

β̃ℓ1;1 ≥ β̃ℓ1+1;1 for all ℓ1 = 1, . . . , L− 1, in m̃B;1(·), and analogously without a loss of generality

take β̃ℓ2;2 ≤ β̃ℓ2+1;2 for all ℓ2 = 1, . . . , L− 1, in m̃B;2(·) Indeed, from the approximation theory

we know that

sup
x∈[x,s0]

∣∣∣∣∣
L∑

ℓ1=1

β̃ℓ1;1p
′
ℓ1,L,[x,s0],q(x)−m′|[x,s0](x)

∣∣∣∣∣ = O

(
1

L2

)
, (3.23)

sup
x∈[s0,x]

∣∣∣∣∣
L∑

ℓ2=1

β̃ℓ2;2p
′
ℓ2,L,[s0,x],q(x)−m′|[s0,x](x)

∣∣∣∣∣ = O

(
1

L2

)
. (3.24)

Using the formula for the derivative of B-spline, obtain

L∑
ℓj=1

β̃ℓj ;jp
′
ℓj ,L,[sj−1,sj ],q

(x) = q

L−1∑
ℓj=1

△β̃ℓj+1′j

tlj+1+q;j − tlj+1;j
pℓj+1,L,[sj−1,sj ],q−1 (x) , j = 1, 2,

(3.25)

where tlj ;j denotes a knot on [x, s0] for j = 1 and on [s0, x] for j = 2.

Taking into account (3.23)-(3.25), the fact that
K1

L tlj+1+q;j−tlj+1;j ≤ K̄1

L for some constant
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K1, K̄1 > 0 as well as the facts that m′|[x,s0](x) ≥ 0 and m′|[s0,x](x) ≤ 0 and

L∑
ℓj=1

pℓj ,L,[sj−1,sj ],q (x) = 1 for all x in the respective interval, (3.26)

we conclude that

△β̃ℓ1+1;1 ≤ K2

L3
, △β̃ℓ2+1;2 ≥ −K2

L3
,

for some constant K2 > 0. Thus, to ensure that β̃ℓ1+1;1 ≤ 0, ℓ1 = 1, . . . , L−1, and β̃ℓ2+1;2 ≥ 0,

ℓ2 = 1, . . . , L− 1, which will guarantee the desired monotonicity patterns in the approximation,

we have to change each coefficient β̃ℓ1+1;1 by at most K2

L3 . Because of the partitioning property

(3.26), the B-splines with such potentially new coefficients that satisfy the desired inequalities

will approximate functions m|[x,s0](·) and m|[s0,x](·) at the same rate O
(

1
L3

)
as before.

Now let us show that imposing restrictions β̃L−1;1 = β̃2;2 = β̃L;1 = β̃1;2 , β̃Lj−2;j = β̃3;j+1

that ensure suitable smoothness of the approximation as well as the zero derivative at s0, does

not change the approximation rate.

Indeed, using the approximation properties of the B-splines as well as their derivatives, we

have the following sets of properties:

∣∣∣∣∣∣
L∑

ℓj=1

β̃ℓj ;jpℓj ,L,[sj−1,sj ],q(s
0)−m(s0)

∣∣∣∣∣∣ = O

(
1

L3

)
, j = 1, 2,

∣∣∣∣∣∣
L∑

ℓj=1

β̃ℓj ;jp
′
ℓj ,L,[sj−1,sj ],q

(s0)

∣∣∣∣∣∣ = O

(
1

L2

)
, j = 1, 2,

∣∣∣∣∣∣
L∑

ℓj=1

β̃ℓj ,[sj−1,sj ],qp
′′
ℓj ,L;j(s

0)−m′′(s0)

∣∣∣∣∣∣ = O

(
1

L

)
, j = 1, 2,

where the second property also takes into account that m′(s0) = 0.
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Note that

L∑
ℓ1=1

β̃ℓ1;1pℓ1,L,[x,s0],q(s
0) = β̃L;1,

L∑
ℓ2=1

β̃ℓ2;2pℓ2,L,[s0,x],q(s
0) = β̃L;2,

L∑
ℓ1=1

β̃ℓ1;1p
′
ℓ1,L,[x,s0],q(s

0) =
L△β̃L;1

K3
,

L∑
ℓ2=1

β̃ℓ2;2p
′
ℓ2,L,[s0,x],q(s

0) =
L△β̃2;2

K4
,

L∑
ℓ1=1

β̃ℓ1;1p
′′
ℓ1,L,[x,s0],q(s

0) =
L2(2△β̃L;1 −△β̃L−1;1)

K5
,

L∑
ℓ2=1

β̃ℓ2;2p
′′
ℓ2,L,[s0,x],q(s

0) =
L2(△β̃3;2 − 2△β̃2;2)

K6
,

for some constants K3 > 0, K4 > 0, K5 > 0, K6 > 0.

These imply that we may have to change the values of coefficients of β̃ℓ1;1, ℓ1 = L− 2, L−

1, L, and β̃ℓ2;2, ℓ2 = 1, 2, 3, by at most K7

L3 for some K7 > 0 to ensure the desired equality

constraints as well as to preserve the monotonicity patterns of the approximation. This means

(taking into account Eq. (3.26) once again) that with coefficients possibly changed once again,

the approximation rate of B-splines is still O
(

1
L3

)
. □

3.4.1 Estimation methodology

We consider the objective function

Q̂∗ (s, βall, γ) =
1

n

n∑
i=1

(yi −mB(xi; s)− z′iγ)
2

and solve the problem

min
s,βall,γ

Q̂∗ (s, βall, γ) (3.27)

subject to the constraints

s1 < s2 < . . . < sJ , (3.28)

βall ∈ T{(qj ,Lj)}J+1
j=1 ,s. (3.29)

In our transformed test statistics, we normalise by the estimate of the variance σ2
u of ui,
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defined as follows:

σ̆2
u =

1

n

n∑
i=1

ŭ2
i , (3.30)

where ŭi are unconstrained residuals ŭi = yi − m̆B (xi; s̆)− z′iγ̆ from solving

min
βall,γ

Q̂∗ (ŝ, βall, γ)

subject to only suitable smoothness constraints in (3.29), without the shape constraints, and

with ŝ taken from the constrained estimation.

3.5 Testing methodology

3.5.1 Properties of the estimators

To formally prove that our testing procedure works, we need to establish the properties of our

estimators. We start by listing regularity conditions.

Condition C3. (i) {(xi, z
′
i, ui)

′}ni=1 are i.i.d. random vectors. The support of x is nor-

malised to [0, 1] and its density function fX(x) is bounded away from zero on the whole

support. E(ui|xi, zi) = 0, E(u2
i |xi, zi) = σ2

u < ∞, ui has finite 4th moments, there exists

ν > 0 such that E(|zi|2+ν) < ∞, and E((zi − E(zi|xi))(zi − E(zi|xi))
′) ̸= 0.

(ii) m(x) is r ≥ 3 times continuously differentiable.5

(iii)
(minj=1,...,J+1 Lj)

4

n −→ 0,
(minj=1,...,J+1 Lj)

2r

n −→ ∞ as n −→ ∞.

Condition E
(
(zi − E(zi|xi)) (zi − E(zi|xi))

′) ̸= 0 in C3(i) ensures that no linear combina-

tion of zi can be perfectly predicted by xi in the least squares sense (we can think of it as

no perfect multicollinearity condition: we cannot perfectly substitute between fitting mB(xi)

and γ′zi; adjusting γ cannot fully correct the overall fit if we chose an incorrect switch point).

This assumption is needed for identification and root n consistency of the coefficients on zi.

One implication of this assumption is that zi cannot include a constant. The homoskedasticity

assumption could be weakened in a similar way as in Komarova and Hidalgo (2023). Condition

C3(ii) on the smoothness of the estimated function determines the quality of B-spline approxi-

mation. Condition C3(iii) provides the rates at which the number of knots increases to infinity

relative to n. This ensures that the bias term (due to the approximation using B-splines) is

asymptotically negligible.

5We could relax this assumption to r = 2 and the second derivative is Hölder-continuous.
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Consistency

We first show that under the null (3.9) the constrained estimator defined in (3.27)-(3.29) is

consistent. To establish this, we consider the regression function m(·) to be a part of a certain

compact set and we supplement (3.29) by additional constraints on coefficients βℓ−j,js (even

though in practice such additional constraints most of the time will not be necessary). We rely

on the consistency theorem in Newey and Powell (2003).

Since m(·) is smooth, it is bounded and has a finite Lipschitz constant. We take a very large

pointwise bound A1 > 0 and a very large Lipschitz constant A2 on all the candidate regression

functions under consideration (of course, these bounds should be large enough to be true for

the underlying regression mean E[y|x]). In other words, we take the intersection

Θ0 = M0 ∩
{
m(·) : sup

x∈[x,x]

|m(x)| ≤ A1, sup
[x,x]

|m′(x)| ≤ A2

}
. (3.31)

Proposition 2. Suppose that conditions C1-C3 hold, m ∈ Θ0 and Lj → ∞, j = 1, . . . , J + 1,

as n → ∞. Then the estimator m̂B(·; ŝ) obtained by solving (3.27)-(3.29) is consistent in the

sense that

sup
x∈[x,x]

|m̂B(x; ŝ)−m(x)| p→ 0 as n → ∞.

The consistency of m̂B(·; ŝ) guarantees the consistency of the switch points, as established

in the proposition below.

Corollary 3.5.1. Under conditions of Proposition 2, the estimators ŝj of switch points are

consistent for sj, j = 1, . . . , J .

We can also derive the rates at which the estimators converge to their limits:

Proposition 3. Under conditions C1-C3:

β̂ − β0 = Op

(√
L

n

)
, γ̂ − γ0 = Op

(√
1

n

)
, ŝ− s0 = Op

(
L√
n

)
.

3.5.2 The test statistic

Testing procedure and the justification of the need for a transformation

We use a Lagrange multiplier type test.6 From Assumption 3.2, we know that the true error

terms are uncorrelated with any function of the regressors, i.e. E(uif(xi)) = 0 for any function

f(·). The idea of the test is to check if a similar property is satisfied by the regression residuals:

ûi = yi − m̂B(xi; ŝ)− γ̂zi. (3.32)

6For more motivation behind this testing design see the discussion in Komarova and Hidalgo (2023).
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A common choice of the function f(·) used in this type of tests, see e.g. Stute (1997), is

f(xi) = 1(xi < x) for some x ∈ [0, 1], which results in a test statistic of the form:

K(x) =
1

n

n∑
i=1

1(xi < x)ûi. (3.33)

Under the null hypothesis, K(x) should be close to zero. However, finding the limiting distri-

bution of this statistic turns out to be problematic. Consider the following expansion:

K(x) =
1

n

n∑
i=1

1(xi < x)ui︸ ︷︷ ︸
T0

+
1

n

n∑
i=1

1(xi < x) (m(xi)−mB(xi; ŝ))︸ ︷︷ ︸
T1

+
1

n

n∑
i=1

1(xi < x) (mB(xi; ŝ)− m̂B(xi; ŝ))︸ ︷︷ ︸
T2

+(γ − γ̂)
′ 1

n

n∑
i=1

1(xi < x)zi︸ ︷︷ ︸
T3

.

It can be shown that

�
√
nT0

d−→ σB(FX(x)), where B(·) denotes the standard Brownian motion and FX(x) is

the cdf of x. This term has a well-defined limit which does not depend on the estimates.

If this term dominated, we would be able to easily perform tests using standard critical

values.

� T1 = Op

(
1√
n

)
(follows from Lemma 3.B.6), which implies that this term is not negligible

compared to T0. This is a major difference between our case and that in Komarova

and Hidalgo (2023), for whom the term of this form based on the known true s0 was of a

smaller order of magnitude than T0. We need to modify their transformation to make sure

we remove this term as well. An additional complication is that this term is non-linear in

parameters, and the Khmaladze transformation relies on linear projections. Because of

that, we do not remove this term entirely, but only up to a linear approximation. This is

sufficient to ensure that the part which remains after the transformation is of a smaller

order and does not affect the limiting distribution.

� T2 = Op

(
1√
n

)
(follows from Lemma 3.B.5). This is the same rate of convergence as

T0, but unlike T0 this term does not have a standard known distribution. Instead, the

distribution depends on the estimated function in a non-trivial way. The presence of this

term motivated the need for a transformation in Komarova and Hidalgo (2023).

� T3 = Op

(
1√
n

)
by the standard results on root n convergence of the linear part of a

partially linear model, see e.g. Robinson (1988). Hence T3 has the same convergence rate

as the other terms, and its distribution depends on the function we are estimating. We
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add another modification to the transformation from Komarova and Hidalgo (2023) to

remove this term as well.

The last three terms are problematic because their asymptotic distributions depend on the

estimated function. As a result, the limiting distribution of the test statistic is not standard. In

order to achieve a limiting distribution which would allow us to perform testing using standard

techniques, we would like to transform the test statistic in a way which removes the last three

terms while leaving the asymptotic behaviour of the first term unchanged. We describe a

transformation which achieves this goal in the next section.

The Khmaladze’s Transformation

The transformation which removes the problematic terms from K(x) while keeping enough

structure of the original statistic to allow for testing is a special case of a martingale transfor-

mation introduced by Khmaladze (1982). It can remove all terms linear in some P̃ we choose,

hence we define P̃ to include: B-splines basis functions (these are terms linear in βs, or in

other words derivatives with respect to βs: ∂m̂B(xi;ŝ)
∂βl

, these will remove T2), zs (derivatives of

the linear part with respect to γk, these will remove T3) and linear approximation with respect

to s: ∂m̂B(xi;ŝ)
∂s (this will remove the leading linear component in T1). All of these are functions

of the regressors (x, z), and we assume E(ui|xi, zi) = 0, so the residual from regressing ui on

functions of zi should be very close to ui, hence the limiting behaviour of the first term should

be the same as without a transformation.

In Lemma 3.B.2 we show that:

∂m̂B(xi; ŝ)

∂sk
= 1 [ŝk−1, ŝk)

ŝk−1 − xi

ŝk − ŝk−1

∂m̂B(xi; ŝ)

∂x
+ 1 [ŝk, ŝk+1)

xi − ŝk+1

ŝk+1 − ŝk

∂m̂B(xi; ŝ)

∂x

where the derivative of B-spline is:

∂m̂B(xi; ŝ)

∂x
=

L∑
ℓj=1

β̂ℓjp
′
ℓj ,L,[ŝj−1,ŝj ],q

(x)

We letPLj ;j(x) denote the Lj-dimensional vector of base B-splines on [ŝj−1, ŝj ], j = 1, . . . , J+1,

computed at x. The estimation uses the long system P ≡ (PL1;1(x)
′, . . . ,PLJ+1;J+1(x)

′)′.

However, the constrained estimation under HB
0 results in some binding constraints. Once the

binding constraints are enforced, we end up with a smaller system of relevant base B-splines.7

7e.g. we can enforce an equality constraint of the form βk = βk+1 by replacing the two B-spline basis
functions pk and pk+1 with a single term of the form pk + pk+1.
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We can refer to it as the system of “effective polynomials”and denote it as P̃(x). Let

P̃ k ≡
(
P̃(xk)

′, z′k,
∂m̂B(xk; ŝ)

∂s

)′

.

Note that the elements of P̃ are defined based on the estimates β̂, ŝ estimated using the

entire sample, under the constraints of HB
0 .

In our setting, a transformation T of a function W (x) can be defined as:

(T W )(x) = W (x)−
∫ x

0

P̃′(y)

(∫ 1

x

P̃(v)P̃′(v)fX(v)dv

)+(∫ 1

y

P̃(w)W (dw)

)
fX(y)dy (3.34)

where A+ denotes the Moore-Penrose generalised inverse of A. In practice, we cannot evaluate

this transformation and instead we use its sample equivalent, Tn. For technical reasons, we add

a trimming which removes observations that fall just below knots. Let 1
2 < ζ < 1 and

G ≡

{
i : xi ∈ [0, 1] \

L⋃
ℓ

(
tℓ − n−ζ , tℓ

]}
. (3.35)

where {tℓ}Lℓ=1 is the set of knots we use to define our constrained B-spline basis functions. We

are now ready to define the transformation:

(TnW )(x) = W (x)− 1

n

∑
i∈G

P̃
′
i

(
1

n

n∑
k=1

P̃ kP̃
′
k1(xk ≥ xi)

)+ ∫ 1

xi

P̃(w)W (dw)1(xi < x). (3.36)

How the transformation removes the problematic terms

Suppose we apply the transformation to a step function W (x) of the following form:

W (x) =
1

n

n∑
i=1

g(xi, zi)1(xi < x)

where g(xi, zi) is some known function. By the properties of a Riemann-Stieltjes integrals with

a step function as the integrator:

∫ 1

xi

P̃(w)W (dw) =

n∑
k=1

P̃ k

(
1

n
g(xk, zk)

)
1(xk ≥ xi) =

1

n

n∑
k=1

P̃ kg(xk, zk)1(xk ≥ xi).
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Then:

(TnW )(x) =

= W (x)− 1

n

∑
i∈G

P̃
′
i

(
1

n

n∑
k=1

P̃ kP̃
′
k1(xk ≥ xi)

)+(
1

n

n∑
k=1

P̃ kg(xk, zk)1(xk ≥ xi)

)
1(xi < x)

=
1

n

∑
i∈G

g(xi, zi)− P̃
′
i

(
1

n

n∑
k=1

P̃ kP̃
′
k1(xk ≥ xi)

)+
1

n

n∑
k=1

P̃ kg(xk, zk)1(xk ≥ xi)

1(xi < x)

+
1

n

∑
i/∈G

g(xi, zi)1(xi < x)

=
1

n

∑
i∈G:xi<x

g(xi, zi)− P̃
′
i

 1

n

∑
k:xk≥xi

P̃ kP̃
′
k

+

1

n

∑
k:xk≥xi

P̃ kg(xk, zk)


+

1

n

∑
i/∈G:xi<x

g(xi, zi)

The term in the first summation is a residual from regressing g(xi, zi) on P̃ i, where the estimator

is evaluated using only observations above xi (i.e. xk such that xk ≥ xi). The transformed

TnW at a point x has a similar form to the original W , i.e. it is a weighted sum of functions

of the observations xi below x, but for the majority of indices which fall in G we use the part

of g(xi, zi) which cannot be explained by B-splines and zs for observations above xi instead of

the whole g(xi, zi).

Consider the case where g(xi, zi) = P̃
′
ia for some constant vector a, i.e. where g(xi, zi) is a

linear combination the constrained B-spline functions evaluated at xi, of zi and of derivatives

of the constrained B-spline with respect to the switch point. In this case

W (x) =
1

n

n∑
i=1

P̃
′
ia1(xi < x).

Then the transformed version of W is:

(TnW )(x) =
1

n

∑
i∈G:xi<x

P̃
′
ia− P̃

′
i

 1

n

∑
k:xk≥xi

P̃ kP̃
′
k

+

1

n

∑
k:xk≥xi

P̃ kP̃
′
ka

+
1

n

∑
i/∈G:xi<x

P̃
′
ia

=
1

n

∑
i∈G:xi<x

P̃
′
i − P̃

′
i

 1

n

∑
k:xk≥xi

P̃ kP̃
′
k

+

1

n

∑
k:xk≥xi

P̃ kP̃
′
k

 a+
1

n

∑
i/∈G:xi<x

P̃
′
ia︸︷︷︸

≤C︸ ︷︷ ︸
=Op(n1−ζ)

= 0 +Op

(
n−ζ

)
= op

(
n− 1

2

)
.

The term inside the bracket in the second line is the residual from regressing P̃ i on itself, and
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that residual is identically equal to zero8 for every i.

This shows that the transformation removes all terms that are linear combinations of con-

strained B-splines, zs and terms linearised in the switch point for i ∈ G, and as the sample size

increases, the number of i /∈ G becomes insignificant. This proves the following results:

Proposition 4. Let T2,3(x) =
1
n

∑n
i=1 1(xi < x)

(
mB(xi; ŝ)− m̂B(xi; ŝ) + (γ − γ̂)

′
zi
)
. Then

(TnT2,3)(x) = op

(
n− 1

2

)
.

The distribution of the test statistic

We have shown that the transformation removes the last two terms. The next two results show

that the second term becomes negligible and the first term’s distribution remains unchanged.

Proposition 5. Let T4(x) =
1
n

∑n
i=1 1(xi < x)

(
∂m̂B(xi;ŝ)

∂s (ŝ− s0)
)
. Then

(TnT4)(x) = op

(
n− 1

2

)

and

(TnT1)(x) = op

(
n− 1

2

)
.

Proposition 6. Under C1-C3, the transformation does not affect the limit of
√
nT0(x):

√
n(TnT0)(x)

weakly
=====⇒ σB(FX(x))

for any x ∈ [0, 1].

Combining all of these results, we arrive at the pivotal asymptotic distribution of the trans-

formed test statistic.

Theorem 3.5.1. Under H0 and conditions C1-C3:

√
n (T K(x))

weakly
=====⇒ σuB(FX(x)),

σ̆2
u

p−→ σ2
u.

In order to implement tests based on this asymptotic distribution, we rely on functionals

such as Kolmogorov-Smirnov, Cramér-von-Mises and Anderson-Darling, as described in Sec-

8For any generalised inverse we can define PX = X(X′X)−+X′, which is a matrix projecting onto the span
of X. It has the property that PXX = X, i.e. the projection of X onto X is X. For a given i we let X be the
matrix containing columns P̃ i, P̃ i+1, . . . , P̃n and think of the residual vector from a projection (regression) of
X onto itself. The residuals from this regression are zero: X − PXX = 0. The term in the bracket is just the
first entry in the residual vector.
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tion 3.5.3. The statistics achieve their respective distributions by Theorem 3.5.1 and continuous

mapping theorem.

3.5.3 Algorithm outline

STEP 1 Order the sample {(xi, zi, yi)}ni=1 in the ascending order of x. Without a loss of

generality, we will assume that the original sample is already ordered in this way.

STEP 2 Find a constrained estimator m̂B(·, ŝ) under HB
0 in (3.22) together with estimator γ̂

of γ0 and compute the residuals ûi = yi − m̂B (xi; ŝ)− z′iγ̂, i = 1, ..., n.

Let

P̃ k ≡
(
P̃(xk)

′, z′k,
∂m̂B(xk; ŝ)

∂s

)′

.

where P̃(x) denotes the system of “effective polynomials” obtained after enforcing the

binding constraints.

STEP 3 For each i = 1, . . . , n, compute the new residual

v̂i = ûi − P̃
′
i

(
n∑

k=1

P̃ kP̃
′
k1(xk ≥ xi)

)+ n∑
k=1

P̃ k1(xk ≥ xi)ûk. (3.37)

STEP 4 Compute the estimate of the variance of ui, σ
2
u, as σ̆2

u = 1
n

∑n
i=1 ŭ

2
i , where ŭi are

unconstrained residuals ŭi = yi − m̆B (xi; s̆)− z′iγ̆.

STEP 5 Compute M̃ñ(xi) = 1√
ñ

∑ñ
k=1 v̂k1(xk ≥ xi) and calculate the values of standard

functionals such as the Kolmogorov-Smirnov, Cramér-von-Mises and Anderson-Darling9

defined respectively as

KSñ = sup
i=1,..,n

∣∣∣∣∣M̃n(xi)

σ̆u

∣∣∣∣∣ , CvMñ =

ñ∑
i=1

M̃n(xi)
2

nσ̆2
u

, ADñ =

n∑
i=1

M̃n(xi)
2/n

σ̆2
uF̂X(xi)

, (3.38)

where F̂X denotes the empirical c.d.f. ofX. Compare them to the critical values KS∗
ñ(α0),

CvM∗
ñ(α0), AD∗

ñ(α0), respectively, for a chosen significance level α0. If. e.g., KS ñ >

KS∗
ñ(α0), reject the null by Kolmogorov-Smirnov at the significance level α0.

Conducting STEP 1 In the first step we estimate the regression function m under the

null hypothesis (3.22). For that we approximate m on each subinterval [sj−1, sj ] by B-spline

mB;j as defined in (3.13) and the approximation on the whole domain is described by a join

9One could, of course, center the process M̃ñ(x) to ensure that it converges to a Brownian bridge in-
dexed by the empirical c.d.f. of X. Then ADñ would be defined in a standard manner as follows:

ADñ =
∑ñ

i=1
M̃ñ(xi)

2/ñ

σ̆2
uF̂X (xi)(1−F̂X (xi))

.
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in (3.14). The constraints in T{(qj ,Lj)}J+1
j=1 ,s incorporate (3.17)-(3.18) which guarantee sufficient

smoothness.

The fundamental difference between our approach and the approach in Komarova and Hi-

dalgo (2023) is that here we do not take switch points sj , j = 1, . . . , J + 1, as known but

estimate them as well.

Due to the requirement (3.7) on the functional properties in classes Mj , j = 1, . . . , J + 1,

in the overwhelming majority of applications, the properties in each Mj will be described

by conditions on the derivatives of m (potentially on combinations of several derivatives). In

cases when each Mj is described by inequalities on linear combinations of derivatives, all the

constraints in T{(qj ,Lj)}J+1
j=1 ,s are linear inequalities.10 This was illustrated earlier in the context

of the U-shape property in Example 1. Thus, constraints (3.29) in such scenarios are especially

easy to implement. However, the optimisation is complicated by the fact that the switch points

are unknown. The locations of switch points determine knots points on each subinterval and

the values of the polynomials on the B-spline bases.

We can see two main approaches to such optimisation. The first approach would be to

use the closed-form expressions for B-spline base polynomials when programming the objective

function in (3.27). These closed form expressions would explicitly account for the knots points

which, in their turn, depend on the choice of switch points. Then non-linear optimisation tools

can be used.

Another approach, which may especially be convenient when dealing with a small number J

of switch points, would be to conduct the grid search. Choose a grid on [x, x], say of R points,

and select all possible J-dimensional subsets from these R points. In these selected subsets J

points are naturally ordered and can be treated as candidates for the set of switch points. Then

the approximation (3.14) is constructed taking these points as candidate points for partitioning

and then the problem (3.27) is solved subject to (3.29) only. In the end we select the sequence

of switch point that delivers the smallest value of the objective function. Of course, such a grid

search would result in a program conducting the estimation for
(
R
J

)
subsets but, again, may be

feasible for small values of J and especially in situations when there is only one switch point.

Conducting STEP 2 In this step we need to define the system of “effective polynomials”

by enforcing the biding constraints. Once again, this may be convenient to illustrate using

U-shape as an main example. In this case if in the constrained estimate b̂all of βall we have

b̂all,h1
= b̂all,h1+1 = . . . = b̂all,h2

10Equalities, of course, can be represented through inequalities.
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for some indices h1 < h2, and b̂all,h1−1 ̸= b̂all,h1
, b̂all,h2

̸= b̂all,h2+1, then instead of h2 − h1 + 1

different respective base B-splines we will include the sum of all these h2−h1+1 base B-splines

as one polynomial into P̃(x).

Conducting STEP 3 is straightforward. It comes down to computing the projection of

{vk}nk=i on {P̃(xk)}nk=i and then using the projection coefficient to compute the new residual

for i. This can be conducted by recursive least squares.

Conducting STEP 4 involves finding an unconstrained estimator m̆B(xi). This estimator

can be found e.g. by either solving

min
βall,γ

Q̂∗ (ŝ, βall, γ)

subject to only suitable smoothness constraints in (3.29) and with ŝ taken from the constrained

estimation. Alternatively, one can use just one system of base B-splines on the whole interval

[x, x] and conduct unconstrained nonparametric estimation using that base.

Conducting STEP 5 is straightforward.

3.5.4 Bootstrap

Although our test statistic has a pivotal distribution and allows asymptotic testing, the perfor-

mance may not be the best in small samples. As an alternative, we provide a valid bootstrap

algorithm.

STEP 1 Let m̆B(xi, ŝ) and γ̆ be the estimators analogous to m̂B(xi; ŝ) and γ̂ but evaluated

without the constraints.11 Compute the unconstrained residuals as:

ε̆i = yi − m̆B(xi, ŝ)− γ̆′zi.

STEP 2 Draw a random sample from the empirical distribution of the unconstrained residuals

centred at zero:
{
ε̆i − 1

n

∑n
j=1 ε̆j

}n

i=1
, denote it by {ε∗i }

n
i=1. Construct the bootstrap

outcomes y∗i using the constrained estimators:

y∗i = m̂B(xi; ŝ) + γ̂′zi + ε∗i .

STEP 3 Compute the bootstrap estimators m̂∗
B(xi, ŝ

∗) from (3.5.4). Use them to construct

11Note that we use the same set of knots as in the constrained case.
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the bootstrap residuals

ε̂∗i = y∗i − m̂∗
B(xi, ŝ

∗)− γ̂∗′
zi.

Use them to find the value of the bootstrap statistic:

√
n (T K∗(x))

=
1√
n

∑
i∈G

ε̂∗i − P̃
′
i

(
1

n

n∑
k=1

P̃ kP̃
′
k1(xk ≥ x̃i)

)+
1

n

n∑
k=1

P̃ kε̂
∗
k1(xk ≥ x̃i)

1(xi < x).

Theorem 3.5.2. Under conditions C1-C3:

√
n (T K∗(x))

weakly
=====⇒ σuB(FX(x))

in probability.

3.6 Monte Carlo simulations

In Scenarios 1-3 we consider

y = m(x) + γ′
0z + u, u ∼ N (0, σ2)

Subscenarios labelled A. We will have no additional covariates – thus, we will take it as given

that γ0 = 0. We will take x to be uniformly distributed on [0, 1].

Subscenarios labelled B. We will take γ0 = −2 and treat γ0 as unknown in our estimation.

We will take x and z to be uniformly distributed on [0, 1] and independent.

Subscenarios labelled C. We will take γ0 = −2 and treat γ0 as unknown in our estimation.

We will take x and z to be

x = 0.8w1 + 0.2v,

z = 0.25− 0.25w2 + 0.75v,

where w1, w2 and v are uniformly distributed on [0, 1] and mutually independent. Thus, on

this subscenarios z will be correlated with the base B-splines.

Scenario 1. We consider several sub-scenarios within this scenario. Sub-scenarios 1-j,
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Figure 3.3: Graphs of functions m(·) in Scenarios 1-1 and 1-2.

(a) Function in 1-3. (b) Derivative of function in 1-3.

Figure 3.4: Graphs of function m(·) and it derivative in Scenario 1-3.

j = 1, 2, 3, can be described as

m(x) = −0.75(0.2− x)2 + 0.415 log(1 + x) (1-1),

m(x) = −0.75(x− 0.5)(0.2− x)2 + 0.415 log(1 + x) (1-2),

m(x) = 0.25(0.2− x)3 + 0.415 exp(−80(x− 0.2)2) (1-3),

and σ is taken to be 0.05 (the findings under H0 are quite robust with respect to the value of

σ).

The graphs of the functions in Scenarios 1-1 and 1-2 are given in Figure 3.3. The graphs of

the function in Scenario 1-3 as well as its derivative are given in Figure 3.4.

We start with sub-scenarios 1-jA, j = 1, 2, 3, we have γ0 = 0 (in other words, there is no

control for other covariates).
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A B C
Setting Method B-splines P-splines B-splines P-splines B-splines P-splines

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
L′
1 = L′

2 = 4 h KS 0.076 0.048 0.088 0.042 0.072 0.028 0.08 0.058 0.0675 0.0375 0.0724 0.05
N = 1000 CvM 0.08 0.05 0.092 0.06 0.07 0.02 0.098 0.042 0.0875 0.045 0.09 0.045
σ = 0.05 AD 0.07 0.042 0.09 0.058 0.086 0.026 0.096 0.038 0.0775 0.04 0.1 0.05
L′
1 = L′

2 = 6 KS 0.074 0.03 0.085 0.0325 0.074 0.028 0.1 0.045 0.0575 0.035 0.0825 0.0325
N = 1000 CvM 0.074 0.03 0.085 0.035 0.078 0.028 0.0975 0.0525 0.095 0.0475 0.0975 0.05
σ = 0.05 AD 0.07 0.038 0.0775 0.035 0.07 0.032 0.1 0.0525 0.08 0.04 0.0725 0.045
L′
1 = L′

2 = 9 KS 0.088 0.052 0.085 0.045 0.068 0.03 0.098 0.058 0.0925 0.045 0.0925 0.045
N = 1000 CvM 0.102 0.048 0.095 0.05 0.072 0.038 0.098 0.06 0.095 0.065 0.095 0.065
σ = 0.05 AD 0.088 0.048 0.0875 0.045 0.076 0.034 0.09 0.056 0.0925 0.0575 0.0925 0.575

Table 3.1: Test for an inverse U-shape in Scenario 1-1.

A B C
Setting Method B-splines P-splines B-splines P-splines B-splines P-splines

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
L′
1 = L′

2 = 4 KS 0.052 0.018 0.064 0.024 0.074 0.026 0.095 0.0525 0.0625 0.025 0.08 0.0275
N = 1000 CvM 0.066 0.028 0.084 0.042 0.086 0.038 0.095 0.0425 0.0625 0.035 0.0875 0.0375
σ = 0.05 AD 0.068 0.032 0.094 0.032 0.084 0.03 0.08 0.0525 0.06 0.0225 0.095 0.0425
L′
1 = L′

2 = 6 KS 0.074 0.028 0.0925 0.0425 0.066 0.024 0.09 0.048 0.0825 0.05 0.1075 0.05
N = 1000 CvM 0.078 0.03 0.0925 0.0525 0.056 0.026 0.072 0.034 0.1175 0.0475 0.1 0.0475
σ = 0.05 AD 0.072 0.028 0.085 0.0425 0.054 0.02 0.074 0.046 0.105 0.0525 0.075 0.0375
L′
1 = L′

2 = 9 KS 0.09 0.046 0.09 0.046 0.09 0.05 0.085 0.0475 0.115 0.07 0.1 0.0475
N = 1000 CvM 0.088 0.052 0.088 0.052 0.106 0.048 0.0875 0.045 0.1225 0.0725 0.0925 0.0475
σ = 0.05 AD 0.09 0.05 0.09 0.05 0.086 0.062 0.0925 0.05 0.1325 0.08 0.0975 0.0425

Table 3.2: Test for an inverse U-shape in Scenario 1-2.

We apply our B-spline and P-spline methodology to test an inverse U-shape in m. Results

are given in Tables 3.1-3.3.

A particularly interesting case in this setting is the testing result in Table 3.3 where we

see drastically different results for L′
1 = L′

2 = 4 compared to other cases of L′
1 = L′

2 = 6

and L′
1 = L′

2 = 9. The intuition for this can be obtained from Figure 3.4, where we see that

the derivative of function m is close to constant on a subinterval. Since our bootstrap draws

residuals from the unconstrained B-splines fit, the drastic differences between unconstrained

and constrained fits in that subinterval can create the high rejection rate. The typical B-splines

fits with an adaptive choice of the turning point for our three cases of (L′
1, L

′
2) are given in

Figure 3.5. What we see is that for the case L1 = L′
2 = 4 the unconstrained B-splines typically

A B C
Setting Method B-splines P-splines B-splines P-splines B-splines P-splines

10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
L′
1 = L′

2 = 4 KS 1 1 0.745 0.4675 1 0.998 0.72 0.5025 1 1 0.33 0.0675
N = 1000 CvM 1 1 0.6075 0.4275 1 0.998 0.5425 0.365 1 1 0.295 0.0575
σ = 0.05 AD 1 0.996 0.62 0.4375 1 1 0.5 0.2925 1 0.995 0.1025 0.0375
L′
1 = L′

2 = 6 KS 0.082 0.028 0.1 0.044 0.086 0.042 0.095 0.06 0.1025 0.05 0.0975 0.045
N = 1000 CvM 0.084 0.04 0.098 0.048 0.078 0.038 0.0925 0.045 0.1 0.045 0.1 0.045
σ = 0.05 AD 0.084 0.044 0.096 0.044 0.076 0.024 0.0975 0.04 0.0775 0.05 0.0825 0.0475
L′
1 = L′

2 = 9 KS 0.124 0.052 0.08 0.0375 0.084 0.036 0.0775 0.035 0.085 0.0275 0.0875 0.0425
N = 1000 CvM 0.132 0.052 0.095 0.0425 0.092 0.054 0.09 0.0525 0.0625 0.04 0.0875 0.055
σ = 0.05 AD 0.118 0.058 0.09 0.05 0.092 0.04 0.09 0.0475 0.065 0.025 0.0925 0.04

Table 3.3: Test for an inverse U-shape in Scenario 1-3.
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(a) L′
1 = L′

2 = 4 (b) (c) L′
1 = L′

2 = 9

Figure 3.5: Typical B-spline fits of function m(·) in Scenario 1-3.

(a) a = 0.05. (b) a = 0.1.

Figure 3.6: Graphs of functions in Scenario 2.

estimates the function as being increasing on a part of the subinterval with the derivative close

to zero, which explains rejection rates for that case in Table 3.3. This situation is no longer the

case when L′
1 = L′

2 = 6 or L′
1 = L′

2 = 9, as can be seen from typical fits in 3.5 as well.

Scenario 2. In Scenario 2 we use m(x) = x − a − 6(x − a)2 + 8(x − a)3. The graphs of

this function for a = 0.05 and a = 0.1 are given in Figure 3.6. As we can see, the functions

are not U-shaped but it is a difficult case to reject U-shape as its violations only happen in a

small domain near one of the support ends. It is harder to reject U-shape for a = 0.05 than for

a = 0.1.

3.7 Applications

3.7.1 “The ‘Out of Africa’ Hypothesis, Human Genetic Diversity, and

Comparative Economic Development”, by Q.Ashraf and O. Ga-

lor, American Economic Review, 2013

In our first application we look at the data from Ashraf and Galor (2013). The paper argues

that in the course of the prehistoric exodus of Homo Sapiens out of Africa, genetic diversity

has had a persistent hump-shaped effect on the the logarithm of population density and on

comparative economic development. The paper contains many findings related to the presence
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a = 0.05 a = 0.1
Setting Method B-splines P-splines B-splines P-splines

10% 5% 10% 5% 10% 5% 10% 5%
L′
1 = 4, L′

2 = 4 KS 1 1 1 1 1 1 1 1
N = 1000 CvM 0.998 0.992 1 1 1 1 1 1
σ = 0.05 AD 1 1 1 1 1 1 1 1
L′
1 = 6, L′

1 = 6 KS 1 1 1 1 1 1 1 1
N = 1000 CvM 1 1 1 1 1 1 1 1
σ = 0.05 AD 1 1 1 1 1 1 1 1
L′
1 = 9, L′

2 = 9 KS 1 1 1 1 1 1 1 1
N = 1000 CvM 1 1 1 1 1 1 1 1
σ = 0.05 AD 1 1 1 1 1 1 1 1

L′
1 = 4, L′

2 = 4 KS 0.792 0.654 0.8475 0.795 1 1 1 1
N = 1000 CvM 0.636 0.448 0.7425 0.64 1 1 1 1
σ = 0.1 AD 0.908 0.812 0.92 0.88 1 1 1 1
L′
1 = 6, L′

1 = 6 KS 0.858 0.756 0.89 0.785 1 1 1 1
N = 1000 CvM 0.786 0.664 0.83 0.755 1 1 1 1
σ = 0.1 AD 0.95 0.904 0.95 0.925 1 1 1 1
L′
1 = 9, L′

2 = 9 KS 0.874 0.78 0.865 0.8025 1 1 1 1
N = 1000 CvM 0.8 0.678 0.8325 0.77 1 0.992 1 1
σ = 0.1 AD 0.964 0.934 0.9525 0.94 1 1 1 1

L′
1 = 4, L′

2 = 4 KS 0.132 0.066 0.164 0.096 0.748 0.536 0.732 0.55
N = 1000 CvM 0.144 0.084 0.186 0.1 0.688 0.486 0.668 0.564
σ = 0.25 AD 0.25 0.152 0.262 0.158 0.876 0.714 0.872 0.764
L′
1 = 6, L′

1 = 6 KS 0.188 0.086 0.198 0.136 0.794 0.62 0.8075 0.6725
N = 1000 CvM 0.196 0.11 0.246 0.16 0.73 0.544 0.73 0.5675
σ = 0.25 AD 0.286 0.17 0.32 0.228 0.876 0.738 0.8625 0.7675
L′
1 = 9, L′

2 = 9 KS 0.17 0.106 0.208 0.136 0.65 0.526 0.672 0.532
N = 1000 CvM 0.2 0.102 0.24 0.166 0.576 0.39 0.548 0.438
σ = 0.25 AD 0.278 0.202 0.324 0.222 0.728 0.58 0.728 0.596

Table 3.4: Test for U-shape in Scenario 2.

a = 0.05 a = 0.1
Setting Method B-splines P-splines B-splines P-splines

10% 5% 10% 5% 10% 5% 10% 5%
L′
1 = 4, L′

2 = 4 KS 1 1 1 1 1 1 1 1
N = 1000 CvM 0.996 0.992 1 1 1 1 1 1
σ = 0.05 AD 1 1 1 1 1 1 1 1
L′
1 = 6, L′

1 = 6 KS 1 1 1 1 1 1 1 1
N = 1000 CvM 0.998 0.998 1 1 1 1 1 1
σ = 0.05 AD 1 1 1 1 1 1 1 1
L′
1 = 9, L′

2 = 9 KS 1 1 1 1 1 1 1 1
N = 1000 CvM 0.99 0.9475 1 1 1 1 1 1
σ = 0.05 AD 1 1 1 1 1 1 1 1

L′
1 = 4, L′

2 = 4 KS 0.796 0.65 0.904 0.83 1 1 1 1
N = 1000 CvM 0.672 0.486 0.864 0.752 1 1 1 1
σ = 0.1 AD 0.91 0.814 0.954 0.902 1 1 1 1
L′
1 = 6, L′

1 = 6 KS 0.78 0.662 0.8725 0.8075 1 1 1 1
N = 1000 CvM 0.66 0.522 0.8175 0.7625 1 0.998 1 1
σ = 0.1 AD 0.888 0.822 0.9475 0.9175 1 1 1 1
L′
1 = 9, L′

2 = 9 KS 0.648 0.448 0.71 0.535 1 1 1 1
N = 1000 CvM 0.544 0.366 0.6775 0.4825 1 1 1 1
σ = 0.1 AD 0.816 0.676 0.8325 0.7057 1 1 1 1

L′
1 = 4, L′

2 = 4 KS 0.162 0.09 0.195 0.1125 0.662 0.484 0.7725 0.65
N = 1000 CvM 0.184 0.118 0.2075 0.1375 0.662 0.468 0.6825 0.5575
σ = 0.25 AD 0.276 0.16 0.2575 0.19 0.818 0.684 0.8225 0.75
L′
1 = 6, L′

1 = 6 KS 0.138 0.068 0.195 0.1 0.622 0.406 0.6775 0.4475
N = 1000 CvM 0.15 0.096 0.1875 0.105 0.594 0.352 0.6075 0.4675
σ = 0.25 AD 0.214 0.122 0.245 0.14 0.722 0.47 0.7725 0.6125
L′
1 = 9, L′

2 = 9 KS 0.184 0.086 0.245 0.1725 0.6 0.436 0.6475 0.5175
N = 1000 CvM 0.172 0.1 0.2625 0.1725 0.422 0.314 0.5725 0.4775
σ = 0.25 AD 0.278 0.162 0.31 0.185 0.62 0.47 0.6775 0.5725

Table 3.5: Test for U-shape in Scenario 2-B.
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Figure 3.7: Table 4 from Ashraf and Galor (2013).

or absence of hump-shaped effects. The authors use quadratics in all their specifications to

establish the presence or absence of hump shapes.

We apply our method and compare our results to Ashraf and Galor (2013) Table 4, which

contains robustness checks to using alternative distances. It is given in Figure 3.7. The authors’

conclusion is that “the results presented in Table 4 indicate that migratory distance from East

Africa is the only concept of distance that confers a significant nonmonotonic effect on log

population density.” We want to analyse and assess these findings using our methodology.

Our first series of tests is about the specification

ln pd1500 = α+ βdist+ γdist2 + z′δ + u, (3.39)

where dist is a distance notion from Figure 3.7, z is the set of 4 controls used there in every

column, and u is the error term.
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Kolmogorov-Smirnov Cramer-von-Mises Anderson-Darling
90% 95% 99% 90% 95% 99% 90% 95% 99%

Column (1) < < < < < < < < <
Column (2) < < < > > > > > <
Column (3) > > > > > > > > >
Column (4) < < < > > > > < <
Column (5) > > < > > < < < <

Table 3.6: Ashraf and Galor (2013). Test for quadratic specifications in Table 4 in Ashraf and Galor

(2013). The percentages (90%, 95%, 99%) stand for the different critical values. All critical values are

based on 1000 bootstrap draws. > (<) means that the test statistic for the functional indicated in the

first row is greater (is less) than the respective critical value for that functional.

Finding 1, The quadratic specification in (3.39) is rejected at the 5% significance level for

Columns 2-5 in Table 4 in Ashraf and Galor (2013).

For this finding we use an approach based on Khmaladze’s transformation but within the

context of a semiparametric regression (rather than a nonparametric one) as discussed in Stute,

Thies, and Zhu (1998). Based on that approach, quadratic specifications in distance (plus other

covariates) in Table 4 in Ashraf and Galor (2013) are rejected for Columns (2)-(5) at the 5%

level by at least one of our testing functionals. More detailed results are given in Table 3.6,

where we can see that for Columns (2), (3) and (5) the quadratic specifications are rejected

by at least two functionals we employ (for Column (3) it is rejected by all three functionals).

Results for Column (1), thus, can be taken as supportive of Ashraf and Galor (2013) findings

for that particular specification, which cannot be said for specifications in other columns used

to justify the use of one particular migratory distance in Column (1).

An immediate conclusion here is that robustness to alternative distances needs to be analysed

through more general hump-shapes that go beyond quadratics. This naturally brings us to using

our method.

For a distance of interest in a respective column we choose cubic B-splines on both sides of a

candidate switch point with intervals on both sides being uniformly divided into 4 subintervals.

This results in 12 base splines overall but the constraints of smoothness of the function at the

switch point effectively reduce this number of unknown parameters with respect to the distance

variable to 9 (for comparison, in the quadratic specification it is 3 unknown parameters). Table

3.7 shows the results of performing the test using our method with B-splines. As we can see,

for models analogous to those in Ashraf and Galor (2013) Table 4 which differ from them only

in a more general specification with respect to a distance variables, a hump-shape relation with

respect to distance is not rejected for distances and in all of the columns.

These conclusions are very different from those reached by quadratic specifications used in

Ashraf and Galor (2013). Namely, the aerial distance from East Africa and migratory distance
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Kolmogorov-Smirnov Cramer-von-Mises Anderson-Darling
90% cv 95% cv 99% cv 90% cv 95% cv 99% cv 90% cv 95% cv 99% cv

Column (1) < < < < < < < < <
Column (2) > < < < < < < < <
Column (3) < < < < < < < < <
Column (4) < < < < < < < < <
Column (5) < < < < < < < < <

Table 3.7: Ashraf and Galor (2013) data. B-splines based test for hump-shaped specifications in Table

4 in Ashraf and Galor (2013). All critical values are based on 1000 bootstrap draws. > (<) means

that the test statistic for the functional indicated in the first row is greater (is less) than the respective

critical value for that functional.

difference 1 95% CI difference 2 95% CI
Column (1) 1.3061 (0.3611,2.8020) -3.2675 (-4.1464, -2.2730)
Column (2) 0.9621 (0.1208, 2.4071) -1.2410 (-2.2153,-0.8581)
Column (3) 0.2132 (1.7 · 10−13, 1.0135) -2.9977 (-3.8233,-2.0648)
Column (4) 0.4352 (0.0044,1.8457) -3.3684 (-4.7242,-2.2614)
Column (5) 1.3980 (1.0919,2.7541) -0.4366 (−2.2800,−1.5 · 10−13)

Table 3.8: Ashraf and Galor (2013) data. Analysis whether there are statistically significant changes

in the hump-shaped B-splines fit before the estimated switch point and also after it. All critical values

are based on 1000 bootstrap draws.

from Tokyo have systematic hump-shaped effect on the logarithm of population density in 1500

CE.

A reader may say that our approach to testing hump-shaped relationship potentially allows

only weak monotonicity on both sides of the turning points and, thus, potentially hump-shaped

relations we find could exhibit a constant effect before or after the estimated turning point.

To address this, we look at our B-splines hump-shaped fit, compute (a) the difference between

the fitted value at the lowest value of the distance and the fitted value at the switch point; (b)

the difference between the fitted value at the switch point and the fitted value at the largest

value of the distance, and then we construct a 95% bootstrap confidence intervals for both these

differences. The results are given in Table 3.8 and allow us to conclude that for Columns (1),

(2) and (4) both parts of the fitted curve are strictly monotone at the 5% significance level.

For column (3) the first part (increasing) is not rejected to be constant and for Column (5)

the second part (decreasing) is not rejected to be constant. Since our constrained estimation

imposes difference 1 to be non-negative and difference 2 to be non-positive, what what be more

informative for Columns (3) and (5) is the percentage of analogous bootstrap differences that

are close to 0. In the case of Column (5), difference 2 is within 10−6 distance from 0 in 5.9%

samples (so, 90% CI would have 0 on the boundary as well). At the 5% significance level ,the

fitted function has a strict increase over the domain before the estimated switch point and a

strict decreases after it.
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Kolmogorov-Smirnov Cramer-von-Mises Anderson-Darling
90% cv 95% cv 99% cv 90% cv 95% cv 99% cv 90% cv 95% cv 99% cv

Column (1) < < < < < < < < <
Column (2) < < < < < < < < <
Column (3) > < < < < < < < <
Column (4) < < < < < < < < <
Column (5) < < < < < < < < <

Table 3.9: Ashraf and Galor (2013) data. P-splines based test for hump-shaped specifications in Table

4 in Ashraf and Galor (2013). All critical values are based on 1000 bootstrap draws. > (<) means

that the test statistic for the functional indicated in the first row is greater (is less) than the respective

critical value for that functional.

Finally, taking into account the small size of the sample (just 145 observations) and the

presence of additional controls in some specifications in Table 4, we use P-splines that is an

effective tool for dealing with potential overfitting and avoiding fitted lines that are “too wig-

gly.” For P-splines, we penalise second differences of coefficients choosing the same penalty on

different sides of the switch point. The penalty is chosen by the cross validation approach in

Eilers and Marx (1996). If for a model the penalty is rather large, then the fitted regression

mean would have a shape closer to a quadratic one.

Test results using P-splines are given in Table 3.9. The substantive conclusions are largely

similar to those in Table 3.7.

Finally, we present the following fitted curves for all the columns: first, obtained by quadratic

specification in Ashraf and Galor (2013); second, obtained by our B-spline methodology under

the hump-shape constraint; third, obtained by our P-splines methodology with cross-validated

penalties enforcing the hump-shape constraint, these are contained in Figure 3.8.

As we can see for the model in Column (1), the fit by P-splines is similar to the one provided

by the quadratic function. However, for other columns the results are very different. For the

model in Column (2), the quadratic specification gives us a monotonically decreasing fit on the

domain of the distance, whereas both nonparametric fits indicate a hump-shaped pattern (recall

that they are not rejected by either B-splines or P-splines) with visible asymmetries around the

turning point. For the model in Column (4) both non-parametric fits indicate a turning point

much further to the right than that given by the quadratic fit. Also, in either non parametric fit

the decrease after the turning point is much sharper compared to the increase before that (for

P-splines the curve before the turning point looks almost flat even though statistically it is not).

For the model in Column (5), the quadratic specification fit is U-shaped rather than hump-

shaped (recall that in Table 4 in Ashraf and Galor (2013) that it is statistically insignificant at

the 5% level) which is drastically different from the hump-shaped nonparametric fits exhibiting

visible asymmetry around the turning point.
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(a) Column (1) (b) Column (2)

(c) Column (3) (d) Column (4)

(e) Column (5)

Figure 3.8: Fitted curves for models in AG Table 4.

In summary, our methodology finds relationship between migratory distance and the log

population density in 1500 CE in to be monotonic for specifications in Columns (3) and (5)

(at the 5% level). Our findings for Column (1), including the estimation results by P-splines,

are largely consistent with Ashraf and Galor (2013). Our findings for models and distances in

Columns (2)-(5) are different from those in Ashraf and Galor (2013). Namely, in columns (2)

and (4) we find hump-shaped relationship between migratory distances and the log population

density in 1500 CE and they are different from quadratic ones. In Column (3) we do not

reject at 5% level that find a monotonic weakly decreasing relationship, which is consistent
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with Ashraf and Galor (2013). However, we do have a statistically significant change in the

monotonic relationship if we compare the values of our fitted function at the lower and upper

support points (this is different from lack of statistical significance conclusions in Ashraf and

Galor (2013)). In Column (5) we do not reject at 5% level that find a monotonic weakly

increasing relationship and we also find the change in this monotone function over the domain

to be statistically significant, with both of these features being different from findings in Ashraf

and Galor (2013). These differences are best explained by the fact that in Columns (2)-(5)

the best fitted curves under the null of a hump-shape exhibit striking asymmetries around the

turning points which is not allowed by quadratic specifications.

3.7.2 Child penalty

We consider the country-level model:12

Child Penaltyi = m(log(GDP per capitai)) + βEmployment Gapi + ui (3.40)

E[ui| log(GDP per capitai), Employment Gapi] = 0,

and test

H0 : m is hump-shaped.

The employment gap between women and men can reflect societal norms, policies, and

labour market dynamics that influence the child penalty. Larger employment gaps e.g. might

indicate less support for working mothers, which could exacerbate the child penalty.

The left panel of Figure 3.9 plots the data (log(GDP per capita), Child Penalty) and the

right hand plots the fitted curves m(log(GDP per capita)) obtained by (a) a quadratic spec-

ification m(log(GDP per capita)) = γ0 + γ1Child Penalty + γ2Child Penalty2, (b) B-spline

specification for m(·), and (c) B-spline specification for m(·) estimated with the use of penalty

on the second-differences of coefficients as explained earlier (so P-splines).

As we can see, the quadratic specification finds a strictly increasing curve within the domain

of log of GDP per capita. We start by applying our test for testing the quadratic specification

of m(·) in (3.40) analogously to how it was conducted in the previous application. The results

are in Table 3.10. As we can see, all three types of tests reject a quadratic form of m(·) at the

5% significance level. Therefore, quadratics do not look like a suitable approach in capturing a

nonlinear relationship between log of GDP per capita and child penalty.

Our next step is to test the null hypothesis of hump-shape using B-splines and P-splines

approach. We choose quadratic B-splines on both sides of a candidate switch point with

12We are grateful to Camille Landais and Gabriel Leite-Mariante for providing us with the data.
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(a) Data (b) Fitted curves

Figure 3.9: Left panel: data on log of GDP per capita and child penalty. Right panel: Fitted
curves for the model (3.40).

Kolmogorov-Smirnov Cramer-von-Mises Anderson-Darling
90% cv 95% cv 99% cv 90% cv 95% cv 99% cv 90% cv 95% cv 99% cv

> > > > > > > > <

Table 3.10: Child penalty data. Test for a quadratic form of m(·) in (3.40). “cv” stands for the critical

value. All critical values are based on 1000 bootstrap draws. > (<) means that the test statistic for

the functional indicated in the first row is greater (is less) than the respective critical value for that

functional.

intervals on both sides being uniformly divided into 4 subintervals. This results in 10 base

splines overall but the constraints of smoothness of the function at the switch point effectively

reduce this number of unknown parameters with respect to the distance variable to 7 (compared

to three unknown parameters in a quadratic specification). The results are given in 3.11.

As we can see, the null of a hump-shaped relationship is not rejected at the 10% significance

level. The switch point is found to be 10.67 (on the grid of equidistant 1001 grid points in the

domain of log of GDP per capita).

3.8 Conclusion

This paper develops a robust nonparametric methodology for testing shape constraints in re-

gression analysis, accommodating multiple shape changes across the domain of the regressor.

Kolmogorov-Smirnov Cramer-von-Mises Anderson-Darling
90% cv 95% cv 99% cv 90% cv 95% cv 99% cv 90% cv 95% cv 99% cv

B-splines < < < < < < < < <
P-splines < < < < < < < < <

Table 3.11: Child penalty data data. B-splines and P-splines based tests for hump-shaped m(·) in

(3.40). All critical values are based on 1000 bootstrap draws. > (<) means that the test statistic for

the functional indicated in the first row is greater (is less) than the respective critical value for that

functional.
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Our approach extends beyond conventional U-shaped or hump-shaped patterns to a broad class

of nonlinear shapes, including S-shapes, W-shapes, etc. Unlike previous methods that rely on

parametric assumptions or require predetermined switch points, our approach identifies turn-

ing points adaptively within the data. This allows for greater flexibility and more accurate

representation of complex nonlinear relationships, which are often misrepresented by simplistic

parametric polynomial (in particular, quadratic) models.

The theoretical contributions of this paper include ensuring that the adaptive estimation

of turning points does not compromise the statistical properties of the test statistics, both in

finite samples and asymptotically. Practically, the methodology improves the power and in-

terpretability of shape testing by reducing reliance on restrictive parametric forms. As our

applications demonstrate, standard parametric approximations can miss or distort true under-

lying relationships, while our method captures these dynamics more precisely.

In summary, this paper provides a valuable tool for researchers across disciplines who require

a flexible, rigorous approach to testing complex shape constraints. The methodology broadens

the scope of nonparametric analysis in regression contexts, offering a unified framework that

can be applied to partially linear models (or partially parametric models more generally) and

expanded to incorporate multiple turning points. Future research may build on this work by

further refining the estimation of turning points and exploring additional applications in diverse

empirical settings.
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Appendix

Appendix 3.A Nonparametric vs quadratic fits,

The purpose of this Appendix is to illustrate that the choice of quadratic specifications can

be very misleading when one tries to estimate (inverse) U-shaped relations. Here we outline

several scenarios.

We use the following setting: y = m(x) + ε, where ε ∼ N (0, σ2), x ∼ U [0, 1], and ε is

independent of x.

Scenario 1. m(x) = (x1/4 − 0.5)2, σ = 0.01. The switch point for this regression function

is 1/16 = 0.0625, but it is not symmetric around this point. This can be seen in Figure 3.10

which shows one set of generated data (1,000 points) from this model and a fitted line using a

quadratic specification.

Figure 3.10: Scenario 1.

As can be seen in 3.10, the fitted line is monotonic on the whole domain. Indeed, it turns

out that the use of quadratic specification results in the estimated turning point being negative

with probability almost 1. Figure 3.11 gives histograms for the estimated turning point in

500 simulations as well the basic summary statistics for those turning points in every sub-

case (see the caption[ ]s), including the quadratic specification subcase in Panel (a). B-spline

specifications have a vastly superior performance to quadratic specifications, even though they

seem to exhibit a negative finite sample bias when estimating the switch point. This is not
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(a) quadratic specification, n = 500.
mean = −2.8370, std = 1.3143
50th, 95th, 99th percentiles:
−2.5402, −1.5200, −1.2384

(b) cubic splines, 8 base splines on each side of
the turning point, n = 500.
mean = 0.0448, std = 0.0106
50th, 95th, 99th percentiles:
0.0433, 0.0636, 0.0784

(c) 5th degree splines, 13 base splines on each
side of the turning point, n = 2000
mean = 0.0522, std = 0.0180
50th, 95th, 99th percentiles:
0.0484, 0.0789, 0.0891

(d) cubic splines, 11 splines on each side of the
turning point, n = 2000
mean = 0.0482, std = 0.01
50th, 95th, 99th percentiles:
0.0473, 0.0651, 0.0744

Figure 3.11: Histograms and summary statistics of estimated switching points in Scenario 1
using various specifications,. Results are obtained in 500 simulations.

surprising given the closeness of the switch point to the boundary. Also, with the sample

size increase and the suitable increase in the number of knots the estimated switch points will

converge in probability to the true switch point 1/16.

Scenario 2. m(x) = Φ(x−0.5
5 ) · 11(x ≤ 0.5)

(
1− Φ(x−0.1

0.1 )
)
· 11(x > 0.5), σ = 0.01. The

turning for this regression function is 0.5 and the function is not symmetric around this point.

It is continuous at that point but not differentiable (the left and the right derivatives exist and

are finite, but they take different values). This can be seen in Figure 3.12 which shows one set

of generated data (500 points) from this model and a fitted line using a quadratic specification

and a B-splines specification with an adaptive choice of a switch point.
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(a) quadratic specification, n = 500.
mean = 0.0524, std = 0.0497
50th, 95th, 99th percentiles:
−0.0449, 0.0116, 0.0413

(b) cubic splines, 8 base splines on each side of
the turning point, n = 500.
mean = 0.4998, std = 0.0017
50th, 95th, 99th percentiles:
0.4999, 0.5023, 0.5035

Figure 3.13: Histograms and summary statistics of estimated switching points in Scenario 2
using quadratic and then B-splines specifications. Results are obtained in 500 simulations.

Figure 3.12: Scenario 2.

Figure 3.13 gives histograms for the estimated turning point in 500 simulations as well

the basic summary statistics for those turning points in every sub-case (see the caption[ ]s),

including the quadratic specification subcase in Panel (a) and the B-spline specification in

Panel (b). When fitting B-splines, we connect two pieces on each side of a turning point as

to, first, ensure continuity only (consistent with the property of the original function) and,

second, to ensure continuity and differentiability at the switch point. B-spline fit also ensures

a hump-shaped relation.

Appendix 3.B Proofs

Subsection 3.B.1 Proofs of main results

Proof of Proposition 1.
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By Robinson (1988), γ is identified under Condition C3(i), hence the function m(·) is identi-

fied as the difference between regression means: m(x) = E[y|x]−γ′E[z|x]. Suppose, contrary to

the statement of the proposition that there are two different ordered sequences s1 < s2 < . . . sJ

and s̃1 < s̃2 < . . . s̃J of switch points such that in addition to (3.6) it holds that

m|[s̃j ,s̃j+1] ∈ Mj+1 ([s̃j , s̃j+1]) , j = 0, . . . , J, . (3.41)

let j0 be the minimum index such that sj0 ̸= s̃j0 . Without a loss of generality, suppose that

sj0 < s̃j0 . Using condition (3.7), we then have that on [sj0 , s̃j0 ] the regression function m(·)

belongs to Mj0 ([sj0 , s̃j0 ]) (as implied by (3.41)) and also to Mj0+1 ([sj0 , s̃j0 ]) (as implied by

(3.6)). But according to (3.8) the intersectionMj0 ([sj0 , s̃j0 ])∩Mj0+1 ([sj0 , s̃j0 ]) is empty, which

gives us a contradiction. Thus, we can conclude that the ordered sequence of switch points with

the properties given in (3.6) is unique. □

Proof of Proposition 2. By Arzela-Ascoli theorem, Θ0 is relatively compact in the

uniform metric. Therefore, its closure Θ0 in the uniform metric is compact. We take Θ0 as our

parameter set, and, clearly, m(x) = E[y|x]− γ′E[z|x] ∈ Θ0.

To ensure the compactness of the sample parameter space, as required in the Newey and

Powell (2003) (see Section 3.B.3), we use the Arzela-Ascoli theorem once again and obtain the

relatively compact set by imposing conditions on the parameters in the B-spline approximation

captured in the following definition13 of Θ̂:

Θ̂ =

{
mB ∈ MT

{(qj,Lj)}
J+1
j=1

: |βℓj ,j | ≤ A1 +∆1,
Lj |βℓj+1,j − βℓj ,j |

sj − sj−1
≤ A2 +∆2, ∀ℓj ∀j

}

for some positive constants ∆1 > 0 and ∆2 > 0.

As the sample parameter space, we consider the closure Θ̂ of Θ̂ in the uniform norm. The

proof of this proposition establishes, among other things, that every function from Θ0 can be

well approximated asymptotically in the uniform metric by functions from Θ̂.

We prove this consistency result by applying Lemma A.1 from Newey and Powell (2003)

(see Section 3.B.3). Let us verify all of its conditions. Our population and sample objective

functions for the purpose of this proof are, respectively,14

Q(m(·)) = E[(y −m(x)− γ′z)2], Q̂ (mB(·; s)) =
1

n

N∑
i=1

(y −mB(xi; s)− γ′zi)
2
.

Condition (i) in Newey and Powell (2003) (Section 3.B.3) about m(·) being the unique

13The second condition in this definition is specific to having uniform knots inside each [sj−1, sj ] but could,
of course, be easily extended to allow for a different choice of knots.

14Q̂(·) is, of course, Q̂∗(·) rewritten as a function of the approximation itself.
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argmin of Q (up to almost everywhere) in Θ0 follows from the property of the conditional mean

as an optimiser and the fact that m(x) = E[y|x] a.e..

For condition (ii) in Newey and Powell (2003) (Section 3.B.3), note that both Q and Q̂ are

obviously continuous in m and mB, respectively. Let us show that supm∈Θ0
|Q(m)− Q̂ (m) | =

op(1). For that, we can use Lemma A.2 in Newey and Powell (2003) (Section 3.B.3) and note

that for any m̃, ˜̃m ∈ Θ0

∣∣∣Q̂(m̃)− Q̂
( ˜̃m)∣∣∣ = ∣∣∣∣∣ 1n

n∑
i=1

(
m̃(xi)− ˜̃m(xi)

)(
2m(xi) + 2ui − m̃(xi)− ˜̃m(xi)

)∣∣∣∣∣
≤ sup

[x,x]

∥m̃(x)− ˜̃m(x)∥ ·

(
4A1 +

1

n

n∑
i=1

|ui|

)
,

and of course, 1
n

∑n
i=1 |ui| = Op(1) implied by the assumption that ui has finite fourth moment.

Thus, by Lemma A.2 in Newey and Powell (2003) (see Section 3.B.3) we can conclude that

sup
m∈Θ0

∣∣∣Q(m)− Q̂ (m)
∣∣∣ = op(1). (3.42)

Finally, for condition (iii), we want to show that for every m ∈ Θ0 there is a sequence

of mB ∈ Θ̂ such that supx |mB(x; s)−m(x)| = o(1). Note that Condition C2 automati-

cally implies that for every m ∈ Θ0 we can find an approximation mB ∈ MT
{(qj,Lj)}

J+1
j=1

such that supx |mB(x; s)−m(x)| = O
(

1
(minj=1,...,J+1 Lj)

r

)
for some r > 1, which implies

supx |mB(x; s)−m(x)| = o(1). Let us show that we can take such an approximation mB

to satisfy constraints in the definition of Θ̂.

First, by B-spline properties,

∣∣∣∣βℓj ,j −
dj+dj

2

∣∣∣∣ ≤ Dqj ,∞
dj−dj

2 , where [dj , dj ] is the range of

values of mB(·; s) on [tℓj+1,j , tℓj+qj−1,j ] (see De Boor (1978), p. 133), where tℓj ,j denotes the

ℓj ’s knot on the interval [sj , sj+1] and Dqj ,∞ is a universal constant that does not depend on

the system of knots and only depends on the degree of B-splines on [sj , sj+1]. Since

∣∣dj − dj
∣∣ ≤ O

(
1

Lr
j

)
+A2O

(
1

Lj

)
,

∣∣dj + dj
∣∣ ≤ 2A1 +O

(
1

Lr
j

)
,

then ∣∣βℓj ,j

∣∣ ≤ A1 +O

(
1

Lj

)
≤ A1 +∆1

for large enough Lj .
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Analogously, we can use the same property for the derivative of the B-spline. We now have

∣∣∣∣ qj(βℓj+1,j − βℓj ,j)

tℓj+1+qj ,j − tℓj+1,j
−

ej + ej

2

∣∣∣∣ ≤ Eqj−1,∞
ej − ej

2
,

where [ej , ej ] is the range of values of m′
B(·) on [tℓj+1,j , tℓj+qj−2] and Eqj ,∞ is a universal

constant that does not depend on the system of knots. Once can show that

|cj − cj | = O

(
1

Lr−1
j

)
, |cj + cj | ≤ 2A2 +O

(
1

Lr−1
j

)
.

Since tℓj+1+qj ,j − tℓj+1,j is proportional to 1
Lj

(tℓj+1+qj ,j − tℓj+1,j takes possible values of

sj−sj−1

Lj
, 2

sj−sj−1

Lj
, . . . , qj

sj−sj−1

Lj
), then

Lj |βℓj+1,j − βℓj ,j |
sj − sj−1

≤
∣∣∣∣ qj(βℓj+1,j − βℓj ,j)

tℓj+1+qj ,j − tℓj+1,j

∣∣∣∣ ≤ A2 +∆2

for large enough Lj .

Now it is only left to consider m ∈ Θ0\Int(Θ0), where Int(Θ0) denotes the interior of the

set Θ0. For such m we can always find m̃ ∈ Int(Θ0) such that

sup
x

|m(x)− m̃(x)| ≤ K0

(minj=1,...,J+1 Lj)
r

for some K0 > 0 (and even a faster rate by the definition of the boundary). Then, according

to the discussion above, we can find mB ∈ Θ̂ such that

sup
x

|m̃(x)−mB(x; s)| = O

(
1

(minj=1,...,J+1 Lj)
r

)
,

implying thus that supx |m(x)−mB(x; s)| = O
(

K̃0

(minj=1,...,J+1 Lj)
r

)
= o(1) as min

j=1,...,J+1
Lj →

∞. □

Proof of Corollary 3.5.1. Suppose at least one ŝj is not consistent for sj . Let j0 be the

smallest index such that ŝj0 − sj0
p↛ 0. This means that there is ε1 > 0 and ε2 > 0 we have

P (|ŝj − sj | > ε1) ≥ ε2 on a subsequence of ŝj . Without a loss of generality, we can take that

P (ŝj0 < sj0 − ε1) ≥ ε2. But we then conclude that on the interval [sj0−ε1, sj0 ] the subsequence

of m̂B(·) with a probability bounded away from zero uniformly approximates the property of

the class Mj0+1, which contradicts the fact that the whole sequence m̂B(·) on [sj0 − ε1, sj0 ]

converges uniformly in probability to m(·) and on that interval m(·) has property Mj0 . Since

classes Mj0 and Mj0+1 do not intersect, we obtain a contradiction. Hence, all ŝj are consistent.

□
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Proof of Proposition 3.

The rates of convergence of B-spline coefficients and the coefficients of the partial linear

model are standard (see e.g. Newey (1997), Robinson (1988)). We focus on the rate of conver-

gence of the switch point estimator.

In order to derive the rates, we split the estimation procedure into two steps: in the first

step we fix s and find the parameters β̂(s), γ̂(s) which minimise the constrained optimisation

problem treating the given value of s as a parameter, and in the second step we minimise the

redefined objective function Q̂(s) = Q̂∗(s, β̂(s), γ̂(s)) with respect to s only. Since ŝ minimises

Q̂(s):

∂Q̂(s)

∂s′

∣∣∣∣∣
s=ŝ

= 0 (3.43)

and by Taylor expansion around the true s0:

0 =
∂Q̂(ŝ)

∂s′
=

∂Q̂(s0)

∂s′
+

∂2Q̂(s0)

∂s∂s′
(ŝ− s0) + op

(∣∣ŝ− s0
∣∣) . (3.44)

Then:

ŝ− s0 =

(
∂2Q̂(s0)

∂s∂s′
+ op(1)

)−1
∂Q̂(s0)

∂s′
. (3.45)

We show that ∂Q̂(s0)
∂s′ is Op

(
1√
n

)
and ∂2Q̂(s0)

∂s∂s′ = Ωp

(
1
L

)
, hence the rate of convergence15 of ŝ to

s0 is Op

(
L√
n

)
.

Let

L(s, β, γ, λ) = Q̂∗(s, β, γ) + λg(β)

be the Lagrangian of the constrained minimisation problem, where the inequality constraints

are listed as g(β) ≥ 0 and λ are the corresponding Lagrange multipliers. By the envelope

theorem:

∂Q̂(s)

∂s′
=

∂L(β̂(s), γ̂(s), s, λ̂(s), µ̂(s))
∂s′

=
∂Q̂∗(β̂(s), γ̂(s), s)

∂s′
,

so to find the first derivative we only need to differentiate Q̂∗(s, β, γ) directly with respect to s

15A faster rate of convergence can be achieved in the case where the estimated function has a discontinuity
(or discontinuity in a derivative) at the switch point, see e.g.Muller (1992). In applications where the researcher
has knowledge of these kinds of changes in behaviour at ŝ alternative methods of estimation can be used to find
the switch point before estimating the remaining parameters.
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and evaluate at β̂(s), γ̂(s). For any j ∈ {1, 2, . . . , J}:

∂Q̂(s0)

∂sj
=

1

n

n∑
i=1

−2
(
yi − m̂B(xi; s

0)− γ̂′ (s0) zi) ∂m̂B(xi; s
0)

∂sj

=
1

n

n∑
i=1

−2

(
m(xi)− m̂B(xi; s

0) +
(
γ − γ̂

(
s0
))′

zi + ui

)
∂m̂B(xi; s

0)

∂sj︸ ︷︷ ︸
=Op(1)︸ ︷︷ ︸

Op

(
1√
n

)
= Op

(
1√
n

)
.

We now justify the rates listed above.

Using derivation in Lemma 3.B.2 and Lemma 3.B.3, and remembering that due to the

envelope theorem we only take the derivative with respect to the B-spline basis functions and

not with respect to β̂(s):

∂m̂B(x; s
0)

∂sj
=

∂m̂B(x; s
0)

∂x

((
s0j−1 − x

s0j − s0j−1

)
1
(
x ∈ [s0j−1, s

0
j )
)
+

(
x− s0j+1

s0j+1 − s0j

)
1
(
x ∈ [s0j , s

0
j+1)

))

= Op(1).

This term is stochastically bounded because the derivative of the spline function with respect

to x is bounded (we allow coefficients β̂(s) from a space Θ̂ which imposes a common bound of

A2 + ∆2 < ∞ on the derivative of mB(·, s0) across all n and all possible values of x) and the

ratios
(

s0j−1−x

s0j−s0j−1

)
1
(
x ∈ [s0j−1, s

0
j )
)
and

(
x−s0j+1

s0j+1−s0j

)
1
(
x ∈ [s0j , s

0
j+1)

)
are in [0, 1].

The fact that 1
n

∑n
i=1 m(xi)− m̂B(xi; s

0) = Op

(
1√
n

)
is shown in Lemma 3.B.5.

Finally, 1
n

∑n
i=1

(
γ − γ̂

(
s0
))′

zi+ui = Op

(
1√
n

)
by standard results for rates of convergence

of the linear part of a partly linear model (e.g. Robinson (1988), this could also be shown directly

by the same arguments as in Lemma 3.B.5) and of i.i.d. random variables with bounded second

moments (e.g. Lindeberg-Levy CLT).

To find the expression for the second derivative of the objective function we introduce the

shorthand notation for the residual:

ε̂i ≡ yi − m̂B (xi; s)− γ̂′zi. (3.46)

We have Q̂(s) = 1
n

∑n
i=1 ε̂

2
i and ∂Q̂(s)

∂s′ = 2
n

∑n
i=1 ε̂i

∂ε̂i
∂s′ , hence

∂2Q̂(s)

∂s∂s′
=

2

n

n∑
i=1

∂ε̂i
∂s′

∂ε̂i
∂s

+ ε̂i
∂2ε̂i
∂s∂s′
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The second term is negligible compared to the first one. The first term captures how much

the fit worsens when we use an incorrect switch point. It can be shown that

∂2Q̂(s0)

∂s∂s′
≃ Ωp

(
1

L

)
.

We impose an incorrect constraint when s is different from s0. As s approaches s0, their

distance becomes smaller than 1
L , yet we are still imposing the incorrect constraints based on B-

splines, which worsens the fit over a region proportional to 1
L . Within that region the loss of fit

is proportional to |s−s0|(see Condition C2): after we take a derivative with respect to s, the loss

of fit simplifies to a constant over a region proportional to 1
L . Hence 2

n

∑n
i=1

∂ε̂i
∂s′

∂ε̂i
∂s = Ωp

(
1
L

)
.

Finally, by applying the above results to equation (3.45):

|ŝ− s0| =
(
Ωp

(
1

L

))−1

Op

(
1√
n

)
hence

|ŝ− s0| = Op

(
L√
n

)
.

□

Proof of Proposition 4

This follows from the discussion in the main text, in Section 3.5.2. □

Proof of Proposition 5

We wish to show that, after the transformation, the following term is small (i.e. op

(
1√
n

)
):

T1 =
1

n

n∑
i=1

1(xi < x) (m(xi)−mB(xi; ŝ)) .

The transformation removes the terms linear in ∂mB(xi;ŝ)
∂sk

.

By Taylor expansion, we have:

mB(xi; ŝ) = mB(xi; s
0) +

∂mB(xi; s̃)

∂s
(s0 − ŝ)
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for s̃ between ŝ and s0 (element-wise). The term inside the average in T1 can be written as:

m(xi)−mB(xi; ŝ) = m(xi)−mB(xi; s
0)︸ ︷︷ ︸

=O(L−r)

+mB(xi; s
0)−mB(xi; ŝ)

= O
(
L−r

)
+

∂mB(xi; s̃)

∂s
(ŝ− s0)

= O
(
L−r

)
+

∂m̂B(xi; ŝ)

∂s
(ŝ− s0)

+

(
∂mB(xi; s̃)

∂s
− ∂mB(xi; ŝ)

∂s︸ ︷︷ ︸
=(ŝ−s̃)′

∂2mB(xi;š)

∂s∂s′ =O(∥ŝ−s0∥∞)

+
∂mB(xi; ŝ)

∂s
− ∂m̂B(xi; ŝ)

∂s︸ ︷︷ ︸
=O(L−(r−1))

)
(ŝ− s0)

= O
(
L−r + L−(r−1)

∥∥ŝ− s0
∥∥
∞ +

∥∥ŝ− s0
∥∥2
∞

)
+

∂m̂B(xi; ŝ)

∂s
(ŝ− s0)

We have used the fact that the best B-spline approximation of kth derivative of r-times dif-

ferentiable function is within O
(
Lk−r

)
of the approximated function. We also rely on Taylor

expansion (of the B-spline itself, as shown above, and of its derivative), where š is another

vector between ŝ and s0 (element-wise).

The final term is linear in ∂m̂B(xi;ŝ)
∂s and gets removed by the Khmaladze transformation.

The first part is a common upper bound over all xi: the second derivative of the B-spline

with respect to the switch points is bounded over the whole domain of xi, the bound on the fit

is also taken uniformly over the whole domain of xi. Given Proposition 3 and Condition C3:

L−r + L−(r−1)
∥∥ŝ− s0

∥∥
∞ +

∥∥ŝ− s0
∥∥2
∞ = Op

(
L−r +

1

Lr−2
√
n
+

L2

n

)
= op

(
1√
n

)

These terms are small before the transformation, and the transformation takes the form of

a projection which can only make the terms smaller. Hence, the transformed term goes to zero

faster than 1√
n
. □

Proof of Proposition 6.

The proof follows the same steps as the proof of Theorem 1 in Komarova and Hidalgo (2023)

and is omitted. The only differences are

1. We add regressors of the form zk and ∂m̂B(xk;ŝ)
∂sl

. The first type takes non-zero16 values

over the whole domain, the second over (ŝl−1, ŝl+1). Both of these regions remain bounded

away from zero as sample size increases (unlike the basis functions which have support

proportional to 1
L that goes to zero, causing issues with eigenvalues of the matrix we use

16The only case in which the term could be zero is if the true function m is flat within the domain. In this
case we can omit the derivative in switch point, or we can introduce trimming of this term if its realised size is
too small. Note that the estimator of the derivative with respect to the switch point is consistent, and if the
true underlying value is zero we do not need to remove this term and it can be omitted from the transformation.
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in the transformation). This addition does not cause any complications.

2. We use regressors based on the estimates β̂, ŝ derived from the whole sample. This is

again not an issue because they are consistent for the true values β0, s
0: we can show that

the limiting behaviour is the same when we use estimates as if we used the true values.

□

Proof of Theorem 3.5.1.

The first statement follows straight from Proposition 4-6 and continuous mapping theorem.

The second statement follows by the same arguments as in Proposition 1 in Komarova and

Hidalgo (2023). □

Proof of Theorem 3.5.2. This follows by the same arguments as in Theorem 4 in Ko-

marova and Hidalgo (2023) hence the proof is omitted. □

Subsection 3.B.2 Proofs of supporting results

Lemma 3.B.1. B-splines are continuous in the switch point almost everywhere.

Proof. We want to analyse continuity of Pi in s. Each element of the vector Pi is of the form

pℓ,Lj ,[sj−1,sj ],q(xi). The value of pℓ,Lj ,[sj−1,sj ],q(x) does not depend on sk for k /∈ {j − 1, j},

hence pℓ,Lj ,[sj−1,sj ],q(x) is continuous in sk for k /∈ {j − 1, j}.

To show continuity of pℓ,Lj ,[sj−1,sj ],q(x) in sj−1 at sj−1 = s we want to show that for almost

all x ∈ [0, 1]: lims̃−→s pℓ,Lj ,[s̃,sj ],q(x) = pℓ,Lj ,[s,sj ],q(x). We use the fact that B-splines are

invariant under a translation and scaling of the knot sequence (see the result from e.g. Lyche,

Manni, and Speleers (2017) restated in Lemma 3.B.7). pℓ,Lj ,[sj−1,sj ],q(xi) is defined on the knot

sequence

t[sj−1,sj ],L
′
j ,q =

sj−1, . . . , sj−1︸ ︷︷ ︸
q+1 times

, sj−1 +
sj − sj−1

L′
j

, sj−1 + 2
sj − sj−1

L′
j

, . . . , sj , . . . , sj︸ ︷︷ ︸
q+1 times

 .

and moving from sj−1 = s̃ to sj−1 = s is equivalent to scaling by
sj−s
sj−s̃ and shifting by − (s̃−s)sj

sj−s̃ :

t[s,sj ],L
′
j ,q =

(
sj−s
sj−s̃

)
t[s̃,sj ],L

′
j ,q − (s̃−s)sj

sj−s̃ . Hence for x ∈ [0, 1] \ {s, sj}:

lim
s̃−→s

pℓ,Lj ,[s̃,sj ],q(x) = lim
s̃−→s

pℓ,Lj ,[s,sj ],q

((
sj − s

sj − s̃

)
x− (s̃− s) sj

sj − s̃

)
= pℓ,Lj ,[s,sj ],q (x)

by continuity of pℓ,Lj ,[s,sj ],q (x) in x on x ∈ [0, 1] \ {s, sj} and the fact that regardless of the

sequence of s̃ the points
(

sj−s
sj−s̃

)
x − (s̃−s)sj

sj−s̃ will eventually fall in (s, sj) if x ∈ (s, sj) or in

[0, s) ∪ (sj , 1] if x ∈ [0, s) ∪ (sj , 1] (where the B-spline is identically equal to zero).
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Similarly, for continuity in sj at sj = s, we have t[sj−1,s],L
′
j ,q =

(
s−sj−1

s̃−sj−1

)
t[sj−1,s̃],L

′
j ,q −

(s̃−s)sj−1

s̃−sj−1
. Hence for x ∈ [0, 1] \ {sj−1, s}:

lim
s̃−→s

pℓ,Lj ,[sj−1,s̃],q(x) = lim
s̃−→s

pℓ,Lj ,[sj−1,s],q

((
s− sj−1

s̃− sj−1

)
x− (s̃− s) sj−1

s̃− sj−1

)
= pℓ,Lj ,[sj−1,s],q (x)

by continuity of pℓ,Lj ,[sj−1,s],q (x) in x on x ∈ [0, 1] \ {sj−1, s} and the fact that regardless of

the sequence of s̃ the points
(

sj−s
sj−s̃

)
x − (s̃−s)sj

sj−s̃ will eventually fall in (sj−1, s) if x ∈ (sj−1, s)

or in [0, sj−1) ∪ (s, 1] if x ∈ [0, sj−1) ∪ (s, 1].

We have shown that the individual elements of Pi are continuous in s on almost all x. The

only potential points of discontinuity are x = sj , but this is not a problem given that we are

interested in β′Pi and the β coefficients are constrained to give continuity at x = sj (only the

last B-spline on [sj−1, sj ] and the first on [sj , sj−1] have a discontinuity at x = sj , they both

take the value of 1 at that point, and we constrain their corresponding coefficients to be equal:

βLj ,j = β1,j+1).

Lemma 3.B.2. The first derivative of a B-spline basis function pℓ,Lj ,[sj−1,sj ],q(x) with respect

to sk is:

∂pℓ,Lj ,[sj−1,sj ],q(x)

∂sk
=

=
∂pℓ,Lj ,[sj−1,sj ],q(x)

∂x

((
sk−1 − x

sk − sk−1

)
1 (x ∈ [sk−1, sk)) +

(
x− sk+1

sk+1 − sk

)
1 (x ∈ [sk, sk+1))

)
(3.47)

= q

 pℓ,Lj ,[sj−1,sj ],q−1(x)

t
[sj−1,sj ],L′

j ,q

ℓ+q − t
[sj−1,sj ],L′

j ,q

ℓ

−
pℓ+1,Lj ,[sj−1,sj ],q−1(x)

t
[sj−1,sj ],L′

j ,q

ℓ+q+1 − t
[sj−1,sj ],L′

j ,q

ℓ+1

×

×
((

sk−1 − x

sk − sk−1

)
1 (x ∈ [sk−1, sk)) +

(
x− sk+1

sk+1 − sk

)
1 (x ∈ [sk, sk+1))

)
.

Proof. Let

t[0,1],K,q =

 0, . . . , 0︸ ︷︷ ︸
q+1 times

,
1

K
,
2

K
, . . . , 1, . . . , 1︸ ︷︷ ︸

q+1 times

 (3.48)

be the set of knots on [0, 1] with K equally spaced intervals and endpoints repeated q+1 times.

The degree q B-splines defined on this set of knots are
{
pℓ,K+q,[0,1],q(x)

}K+q

ℓ=1
. Let us consider

a set of knots t which can be written as

t[0,1],K,q = α(s)t− β(s)

with the corresponding set of degree q B-splines {pℓ,t,q(x)}K+q
ℓ=1 . By the invariance of B-splines
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to translation/scaling (see Lemma 3.B.7), for any x in the support of t:

pℓ,t,q(x) = pℓ,K,[0,1],q(α(s)x+ β(s))

where by construction α(s)x + β(s) is in [0, 1], the support of t[0,1],K,q. Then for any sk and

any x in the support of t:

∂pℓ,t,q(x)

∂sk
=

∂pℓ,K,[0,1],q (α(s)x+ β(s))

∂sk

=
∂pℓ,K,[0,1],q (y)

∂y

∣∣
y=α(s)x+β(s)

∂(α(s)x+ β(s))

∂sk

= q

(
pℓ,K,[0,1],q−1 (α(s)x+ β(s))

t
[0,1],K,q
ℓ+q − t

[0,1],K,q
ℓ

−
pℓ+1,K,[0,1],q−1 (α(s)x+ β(s))

t
[0,1],K,q
ℓ+q+1 − t

[0,1],K,q
ℓ+1

)

×
(
∂α(s)

∂sk
x+

∂β(s)

∂sk

)
= q

(
pℓ,K,[0,1],q−1 (α(s)x+ β(s))

α(s)tℓ+q + β(s)− α(s)tℓ − β(s)
−

pℓ+1,K,[0,1],q−1 (α(s)x+ β(s))

α(s)tℓ+q+1 + β(s)− α(s)tℓ+1 − β(s)

)
×

×
(
∂α(s)

∂sk
x+

∂β(s)

∂sk

)
= q

(
pℓ,t,q−1 (x)

tℓ+q − tℓ
− pℓ+1,t,q−1 (x)

tℓ+q+1 − tℓ+1

)
1

α(s)

(
∂α(s)

∂sk
x+

∂β(s)

∂sk

)
=

∂pℓ,t,q(x)

∂x

1

α(s)

(
∂α(s)

∂sk
x+

∂β(s)

∂sk

)
.

For the set of knots defined on [sj−1, sj ]:

t[sj−1,sj ],L
′
j ,q =

sj−1, . . . , sj−1︸ ︷︷ ︸
q+1 times

, sj−1 +
sj − sj−1

L′
j

, sj−1 + 2
sj − sj−1

L′
j

, . . . , sj , . . . , sj︸ ︷︷ ︸
q+1 times

 .

we can write

t[0,1],L
′
j ,q =

1

sj − sj−1
t[sj−1,sj ],L

′
j ,q − sj−1

sj − sj−1
,

i.e. α(s) = 1
sj−sj−1

and β(s) = − sj−1

sj−sj−1
. Then:

1

α(s)

(
∂α(s)

∂sk
x+

∂β(s)

∂sk

)
=



x−sj
sj−sj−1

if sk = sj−1

sj−1−x
sj−sj−1

if sk = sj

0 if sk /∈ {sj−1, sj}.

Since for x ∈ [sk−1, sk] only the pℓ,Lj ,[sk−1,sk],q(x) take non-zero values, for
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x ∈ [0, 1] \ {s1, s2, . . . , sJ}:

∂pℓ,Lj ,[sj−1,sj ],q(x)

∂sk

=
∂pℓ,Lj ,[sj−1,sj ],q(x)

∂x

((
sk−1 − x

sk − sk−1

)
1 (x ∈ [sk−1, sk)) +

(
x− sk+1

sk+1 − sk

)
1 (x ∈ [sk, sk+1))

)
.

Note that
(

sk−1−x
sk−sk−1

)
1 (x ∈ [sk−1, sk)) +

(
x−sk+1

sk+1−sk

)
1 (x ∈ [sk, sk+1)) is continuous for all

x ∈ [0, 1], but due to potential discontinuity in
∂pℓ,Lj,[sj−1,sj ],q

(x)

∂x at the switch points we need

to rule out x ∈ {s1, s2, . . . , sJ}.

While the derivatives of specific B-spline basis functions may be discontinuous at switch

points, this is not a problem in our setting because of the continuity and smoothness constraints

which ensure that the derivative with respect to x of the constrained B-spline

mB(x; s) ≡
∑J

j=1

∑Lj

ℓ=1 βℓ,jpℓ,Lj ,[sj−1,sj ],qj (x) at x = sk is well-defined and continuous.

Lemma 3.B.3. Q̂(θ) is continuously differentiable.

Proof. The derivatives with respect to βℓ and γk are clearly continuous:

∂Q̂(θ)

∂βℓ,j
=

1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi) pℓ,Lj ,[sj−1,sj ],qj (xi)

∂Q̂(θ)

∂γk
=

1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi) zik

as the first bracket is continuous in β, s (see Lemma 3.B.1) and γ, and pℓ,Lj ,[sj−1,sj ],qj (xi) and

zik are constant. The derivative with respect to s is a bit more involved, but using Lemma
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3.B.2 we can show that it is:

∂Q̂(θ)

∂sk
=

1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi)
∂mB(xi)

∂sk

=
1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi)

 J∑
j=1

Lj∑
ℓ=1

βℓ,j

∂pℓ,Lj ,[sj−1,sj ],qj (xi)

∂sk


=

1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi)

(
J∑

j=1

Lj∑
ℓ=1

βℓ,j

∂pℓ,Lj ,[sj−1,sj ],qj (xi)

∂x
×

×
((

sk−1 − x

sk − sk−1

)
1 (x ∈ [sk−1, sk)) +

(
x− sk+1

sk+1 − sk

)
1 (x ∈ [sk, sk+1))

)
︸ ︷︷ ︸

≡Ask
(xi)

)

=
1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi)

J∑
j=1

Lj∑
ℓ=1

βℓ,j

∂pℓ,Lj ,[sj−1,sj ],qj (xi)

∂x
Ask(xi)

=
1

n

n∑
i=1

−2 (yi −mB(xi)− γ′zi)
∂mB(xi)

∂x
Ask(xi).

mB is continuously differentiable in x (by properties of spline functions and by the assumption of

smoothness at the minimum), hence ∂mB(xi)
∂x is well-defined for all xi, and Ask(xi) is continuous

in both s and x ∈ [0, 1]. Hence the derivatives with respect to all inputs are continuous.

Lemma 3.B.4. Let x be a k-dimensional vector of random variables. The matrix E (xx′) is

invertible if and only if the elements of x are not linearly dependent, i.e. there does not exist a

constant vector v ∈ Rk \ {0} such that x′v = 0 a.s..

Proof. For necessity, suppose ∃v ∈ Rk such that v ̸= 0 and x′v = 0 a.s.. Then with probability

one

0 = E (xx′v) = E (xx′) v

for v ̸= 0, i.e. rank (E (xx′)) < k and E (xx′) is not invertible.

For sufficiency, suppose E (xx′) is not invertible. Then there must exist a constant vector

v ∈ Rk \ {0} such that E (xx′) v = 0. Then we also have

0 = v′0 = v′E (xx′) v = E (v′xx′v) = E
(
(v′x)

2
)

which implies that v′x = 0 a.s..

Lemma 3.B.5. 1
n

∑n
i=1 m̂B(xi; s

0)−m(xi) = Op

(
1√
n

)
.

Proof. This is stated for the case without additional covariates and when we use the true switch

point s0. The argument is identical if we look at the version where instead of m̂B(xi; s
0) we use
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m̂B(xi; s
0) + γ̂′zi and instead of m(xi) we use m(xi) + γ′zi.

Let P denote the matrix of effective B-splines (i.e. after imposing all binding constraints)

based on switch points s0 and evaluated at all points {xi}ni=1. Let m, mB
(
s0
)
and m̂B

(
s0
)

denote the vectors of the three functions evaluated at all points {xi}ni=1, and let β̂ and β0 be

vectors of coefficients such that m̂B
(
s0
)
= P β̂ and mB

(
s0
)
= Pβ0.

The term of interest is:

1

n

n∑
i=1

m̂B(xi; s
0)−m(xi) =

1

n
ι′(m̂B −m)

where ι is a vector of n 1s.

We use the property17 that for a scalar random variable Xn:

Xn − E(Xn) = Op

(√
V (Xn)

)
.

For Xn = 1
n

∑n
i=1 m̂B(xi; s

0)−m(xi) we start by looking at the expectation. We firstly find

an expression for m̂B
(
s0
)
−mB

(
s0
)
:

m̂B
(
s0
)
= P β̂ = P (P ′P )+P ′(m+ u)

= P (P ′P )+P ′(Pβ0 +m− Pβ0 + u)

= Pβ0 + P (P ′P )+P ′(m− Pβ0 + u)

= mB
(
s0
)
+ P (P ′P )+P ′(m−mB

(
s0
)
+ u).

Each element of the m − mB
(
s0
)
vector is bounded above by ∥m(xi) − mB(xi; s

0)∥∞ =

O (L−r), hence we have:

1

n
ι′(mB

(
s0
)
−m) =

1

n

n∑
i=1

mB(xi; s
0)−m(xi)

≤ 1

n

n∑
i=1

∥m(xi)−mB(xi; s
0)∥∞

= ∥m(xi)−mB(xi; s
0)∥∞ = O

(
L−r

)
.

17This follows from Markov’s inequality: ∀ε > 0 there exists C = C(ε) > 0 such that

P

(
|Xn| > C

√
E (X2

n)

)
≤

E
(
X2

n

)
C2E (X2

n)
= C−2 < ε.
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We can find an upper bound on the length of the vector m−mB
(
s0
)
as:

∥m−mB
(
s0
)
∥ =

√√√√ n∑
i=1

(m(xi)−mB(xi; s0))2

≤
√
n∥m(xi)−mB(xi; s0)∥2∞

=
√
n∥m(xi)−mB(xi; s

0)∥∞

It follows that:

1

n
ι′P (P ′P )−1P ′(m−mB

(
s0
)
) ≤ 1

n
∥ι∥∥P (P ′P )−1P ′(m−mB

(
s0
)
)∥

≤ 1

n

√
n∥m−mB

(
s0
)
∥

≤ 1

n

√
n
√
n∥m(xi)−mB(xi; s

0)∥∞

= ∥m(xi)−mB(xi; s
0)∥∞ = O

(
L−r

)
.

The first inequality is by the Cauchy-Schwarz inequality and the second comes from the fact

that projecting a matrix can only make it shorter.

Combining all of these facts, we have:

E

(
1

n
ι′(m̂B

(
s0
)
−m)

∣∣∣∣X) =
1

n
ι′E(m̂B

(
s0
)
−mB

(
s0
)
|X) +

1

n
ι′
(
mB

(
s0
)
−m

)
︸ ︷︷ ︸

=O(L−r)

=
1

n
ι′P (P ′P )−1P ′(m−mB

(
s0
)
+

1

n
ι′ E(u|X)︸ ︷︷ ︸

=0

) +O
(
L−r

)
=

1

n
ι′P (P ′P )−1P ′(m−mB

(
s0
)
)︸ ︷︷ ︸

=O(L−r)

+O
(
L−r

)

= O
(
L−r

)
.

Note that the bound of 2∥m(xi) −mB(xi; s
0)∥∞ does not depend on X, it is the same for all

X, hence by the law of iterated expectations we also have:

E

(
1

n
ι′(mB

(
s0
)
−m)

)
= E

(
E

(
1

n
ι′(mB

(
s0
)
−m)

∣∣∣∣X)) = O
(
L−r

)
.
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For variance:

V

(
1

n
ι′(m̂B

(
s0
)
−m)

∣∣∣∣X) =
1

n2
ι′V

(
P (P ′P )−1P ′(m−mB

(
s0
)
+ u) +mB

(
s0
)
−m

∣∣X) ι
=

1

n2
ι′P (P ′P )−1P ′V (u|X)P (P ′P )−1P ′ι

=
1

n2
ι′P (P ′P )−1P ′σ2IP (P ′P )−1P ′ι

=
σ2

n2
ι′P (P ′P )−1P ′P (P ′P )−1P ′ι︸ ︷︷ ︸

=∥P (P ′P )−1P ′ι∥2≤∥ι∥2=n

≤ σ2

n
.

For the second equality we use the fact that mB
(
s0
)
, m and P are deterministic functions

of X. The final inequality comes from the fact that P (P ′P )−1P ′ is a projection matrix, and

projecting a vector can only make it shorter.18 This is again a common bound for any choice

of X.

By the law of total variance:

V

(
1

n
ι′(m̂B

(
s0
)
−m)

)
= E

(
V

(
1

n
ι′(m̂B

(
s0
)
−m)

∣∣∣∣X))
+ V

(
E

(
1

n
ι′(m̂B

(
s0
)
−m)

∣∣∣∣X))
= E

(
σ2

n

)
+ V

(
O
(
L−r

))
= O

(
1

n
+ L−2r

)
.

Finally, using L−r ≺ 1√
n
:

1

n

n∑
i=1

m̂B
(
xi; s

0
)
−m (xi) = Op

(
1√
n
+ L−r

)
= Op

(
1√
n

)
.

Lemma 3.B.6.

1

n

n∑
i=1

1(xi < x) (m(xi)−mB(xi; ŝ)) = Op

(
1√
n

)
.

Proof. As in Condition C2(iv), Let f(xi, s) = m(xi) − mB(xi, s) where mB(xi, s) is the best

possible B-spline approximation to m(xi) which satisfies the constraints under HB
0 . f(xi, s) is

of order O (L−r) if s = s0 or xi is sufficiently far from a misspecified switch point. If s ̸= s0 and

18In fact, B-splines sum to 1, so the vector if 1s is in the span of P and the projection should leave ι unchanged.
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xi is within a neighbourhood of the misspecified switch point, the f(xi, s) is separated away

from zero and does not go to zero as n −→ ∞, at least for xi between the true switch point and

the switch point used to impose constraints.19

In the proof of Proposition 3 we rely on the Taylor-expansion of the objective function

around the true switch point:

∥ŝ− s0∥ =

(
∂2Q̂(s0)

∂s∂s′
+ op(1)

)−1
∂Q̂(s0)

∂s′

=

(
∂2Q̂(s0)

∂s∂s′

)−1

Op

(
1√
n

)
.

It can be shown that

∂2Q̂(s0)

∂s∂s′
≃ 1

n

n∑
i=1

∂f(xi, s
0)

∂s

∂f(xi, s
0)

∂s′
≃
∫

∂f(x, s0)

∂s

∂f(x, s0)

∂s′
dx ∼ max

k

∫ (
∂f(x, s0)

∂sk

)2

dx.

At the same time, the term of interest is:

1

n

n∑
i=1

1(xi < x)f(xi, ŝ) ≃
∫ x

0

f(xi, ŝ)dx

≃
∫ x

0

f(xi, s
0)︸ ︷︷ ︸

∼L−r

+
∂f(xi, ŝ)

∂s
(ŝ− s0)dx

≃ Op

(
L−r

)
+

∫ x

0

∂f(xi, ŝ)

∂s
dx

Op

(
1√
n

)
maxk

∫ (∂f(x,s0)
∂sk

)2
dx

= Op

(
1√
n

)
.

The last equality is because
∫ (∂f(x,s0)

∂sk

)2
dx and

∫ ∂f(x,s0)
∂sk

dx are proportional to each other

(both are O(1) over the same region). And the whole term is close to 0 if x is below the

misspecified switch point.

Subsection 3.B.3 Useful results

Lemma 3.B.7 (B-splines are invariant under a translation and/or scaling of the knot sequence

(see e.g. Lyche, Manni, and Speleers (2017)).). Let pℓ,t,q(x) be the lth B-spline function of

order q based on the knot vector t evaluated at x, and let α, β ∈ R with α ̸= 0. Then

pℓ,αt+β,q(αx+ β) = pℓ,t,q(x). (3.49)

19e.g. when we use an incorrect switch point and impose a constraint of increasing function when the true
one is decreasing, the best we can do is choose a constant function at some level between m(s) and m(s0).
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Lemma NP.A1. (Newey and Powell 2003) based on Gallant (1987): Consistency of an ex-

tremum estimator. Let

θ̂n = argmin
θ∈Θ̂

Q̂(θ)

be an extremum estimator based on a sample of size n and assume that there exists a function

Q(θ) and a set Θ such that:

(i) Q(θ) has a unique minimum on Θ at θ0;

(ii) Q̂(θ) and Q(θ) are continuous, Θ is compact, and maxθ∈Θ

∣∣∣Q̂(θ)−Q(θ)
∣∣∣ p−→ 0;

(iii) Θ̂ are compact subsets of Θ such that for any θ ∈ Θ there exists θ̂ ∈ Θ̂ such that θ̂
p−→ θ.

Then

θ̂n
p−→ θ0.

Lemma NP.A2. (Newey and Powell 2003): Uniform convergence. If

(i) Θ is a compact subset of a space with norm ∥θ∥;

(ii) Q̂(θ)
p−→ Q(θ) for all θ ∈ Θ;

(iii) there is a δ > 0 and Bn = Op(1) such that for all θ, θ̃ ∈ Θ, |Q̂(θ)− Q̂(θ̃)| ≤ Bn∥θ − θ̃∥δ,

then Q(θ) is continuous and

sup
θ∈Θ

|Q̂(θ)−Q(θ)| p−→ 0. (3.50)
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