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Abstract

This thesis explores foundational questions at the intersection of economics and finance,

combining theoretical modelling with applied econometrics to address long-standing issues

in asset pricing, international macro-finance, and monetary economics.

The first chapter develops a general equilibrium model with multi-asset international

financial intermediaries to study jointly uncovered interest parity (UIP), uncovered equity

parity (UEP), and the hedging role of exchange rates. By allowing intermediaries to take po-

sitions in both global bond and equity markets, the model offers a unified framework where

exchange rate dynamics reflect balance sheet exposures across asset classes. It clarifies the

joint determination of currency risk premia and equity returns, highlighting how currencies

may or may not hedge global portfolios. The model delivers novel testable implications for

the behaviour of exchange rates relative to international equity and bond flows.

The second chapter focuses on financial econometrics, revisiting empirical puzzles sur-

rounding the Euler equation and intertemporal substitution. It shows that official consump-

tion data—typically smoothed and filtered—can severely distort estimations of the Euler

equation, often yielding implausibly low or negative values for the slope. The chapter devel-

ops a flexible method to recover unfiltered consumption data, yielding more stable and eco-

nomically reasonable estimations across specifications, data types, and asset-holder groups.

These findings have direct implications for macro-finance models.

The third chapter addresses empirical challenges in estimating the Phillips curve, a key
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component in macro and finance models with nominal dynamics. It proposes a multi-sector

framework that incorporates heterogeneity in price stickiness, enabling more realistic nom-

inal frictions. By leveraging sectoral variation that is orthogonal to monetary policy shocks

and imposing cross-equation restrictions, the paper delivers robust andmeaningful slope es-

timates. The results reconcile macro and micro evidence on price rigidity and offer insights

into the transmission of monetary policy to nominal variables.
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Chapter 1

Uncovered Interest and Equity Parities: A

Unified Theory of Exchange Rates under

Global Multi-Asset Intermediation

Marcus Vinicius Fernandes Gomes de Castro1

Abstract: This paper develops a unified theory of exchange rate determination that links uncov-

ered interest parity (UIP) and uncovered equity parity (UEP) through the lens of global financial

intermediation. Existing frameworks typically analyse bond and equity flows in isolation, overlook-

ing the endogenous interaction between interest rates, stock returns, and exchange rates. I show that

international intermediaries with heterogeneous exposures across asset classes and currencies play a

central role in shaping deviations from both UIP and UEP. The model delivers a novel decomposition

of UEP deviations into three intuitive components: (i) the UIP deviation, (ii) a hedging motive term

reflecting the exchange rate’s ability to hedge equity risk, and (iii) a volatility asymmetry term driven

by cross-country differences in stock market risk. This relationship is not a model-specific artefact,
1I am especially grateful to my advisor, Dimitri Vayanos, whose guidance was essential in the development

of this paper. I also thank Dmitry Mukhin, Hélène Rey, Ian Martin, Liliana Varela, and Walker Ray for their
valuable feedback and support.
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but rather a general property that also emerges in distinct theoretical environments. Conditional on a

global intermediation portfolio, I derive closed-form asset prices, hedging covariances, and exchange

rate dynamics in a tractable general equilibrium, and show that equity volatility, international equity

co-movement, and intermediaries’ balance sheet composition jointly determine whether a currency ex-

hibits a hedging role. Empirically, I test the model’s predictions both cross-sectionally and in the time

series, using monthly data for 15 currencies. The results confirm that UIP and UEP deviations are

tightly connected, FX hedging roles are stronger for currencies with safer and less correlated equity

markets with respect to the U.S., and carry-trade funding currencies tend to provide better downside

protection endogenously. This paper clarifies the multi-asset transmission mechanisms that shape

global currency valuations and offers new foundations for understanding capital flow asymmetries in

financially integrated markets.

1.1 Introduction

Deviations from the uncovered interest parity (UIP) have long puzzled economists, with

a large empirical literature documenting persistent and systematic return differentials on

risk-free bonds across countries — see, for example, Fama (1984), Vermeulen et al. (2007)

and Brunnermeier, Nagel, and Pedersen (2009). In contrast, the uncovered equity parity

(UEP) — a theoretical negative correlation between a country’s exchange rate and the rela-

tive performance of its equity market, whereby the home currency tends to depreciate when

domestic equities outperform foreign ones, first formalised by Hau and Hélène Rey (2006) —

remains less well understood, despite its structural similarity to the UIP. On the one hand,

existing theories of the UIP typically centre on bond markets, abstracting from equity flows

and multi-asset exposure — Gabaix and Maggiori (2015) being a prominent example. On

the other hand, UEP theories often assume trivial interest rates and incomplete hedging, lim-

iting their ability to speak to the full cross-asset implications of exchange rate movements.

A general framework that jointly accounts for bond and equity flows, and for the risk and
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hedging channels that link them to exchange rates, has remained out of reach.

This paper develops a unified theory of exchange rate determination grounded in global

multi-asset intermediation. I introduce a tractable general equilibrium model in which in-

ternational financiers take joint positions in bonds and equities across countries. In this

environment, deviations from both UIP and UEP — along with the hedging properties of

exchange rates — emerge endogenously from optimal portfolio decisions. A central result

is the UIP–UEP–Hedging relationship, which shows that UEP deviations can be decomposed

into three intuitive components: (i) a UIP deviation, (ii) a hedging term reflecting how ex-

change rates covary with local equity returns, and (iii) a volatility asymmetry term driven

by differences in equity risk across countries. This decomposition, while novel, proves to

be surprisingly general — it arises in other theoretical environments and is also strongly

confirmed empirically.

In doing so, the paper brings together strands of the literature that have largely been

treated in isolation. On the bond side, Gabaix and Maggiori (2015) explain UIP devia-

tions through the lens of intermediary risk-bearing constraints. On the equity side, Hau

and Hélène Rey (2006), Curcuru et al. (2014), Cenedese et al. (2015) and Camanho, Hau,

and Hélène Rey (2022) highlight the role of equity returns in driving currency movements.

Other interesting work such as Corte, Riddiough, and Sarno (2016) explores broader con-

nections between global imbalances and currency risk premia. My contribution synthesises

these perspectives into a single coherent framework, in which UIP and UEP are jointly deter-

mined by a common set of forces— and are shown to obey a common, but highly non-trivial,

empirical structure.

It is worth emphasising that a large share of currency transactions is concentrated in the

hands of a few international banks. For instance, Gabaix and Maggiori (2015) report that

in 2014, the top 10 banks accounted for 80% of all FX flows, with Citigroup and Deutsche

Bank alone responsible for nearly one-third. Despite this, the literature has paid limited at-

tention to how the size and composition of these institutions’ balance sheets — particularly
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their positions in equities — influence exchange rate dynamics. Most models abstract from

the broader asset exposures of intermediaries and the implications these have for pricing

currency risk. A few exceptions study exchange rates alongside other asset prices, such as

Pavlova and Rigobon (2007) and Martin (2011), but their focus is on relative prices rather

than capital flows. More closely related is Pavlova, Dahlquist, et al. (2022), who examine

capital flows through the lens ofwealth redistribution, yet under completemarkets andwith-

out frictions on cross-border asset positions. In contrast, this paper develops a framework

in which the global balance sheet composition of intermediaries — spanning both bond and

equity markets — plays a central role in shaping currency risk premia and hedging dynam-

ics.

The model delivers three core empirical predictions. First, UIP deviations — defined as

the expected dollar return from a carry trade that is long in U.S. bonds and short in foreign

bonds — should increase with the sensitivity of U.S. equity returns (in dollars) to foreign

equity returns (in local currency). This reflects the relative risk exposure embedded in cross-

border portfolio flows. Second, a currency is more likely to exhibit FX hedging properties —

i.e., appreciate when its local equity market underperforms — if it is associated with an equity

market that is both less volatile than theU.S. and less correlatedwith it. Third, UEPdeviations

— defined as the expected dollar return from a zero-investment long–short international

equity strategy with U.S. equity in the long leg and foreign equity in the short leg — should

increase with both the UIP deviation and the strength of the foreign currency’s hedging

role, with volatility asymmetries amplifying or attenuating this relationship depending on

relative equity risk.

These predictions are tested empirically using data on 15 currencies over a period span-

ning May 2007 to October 2024. I construct measures of UIP and UEP deviations, FX hedg-

ing roles, and equity market parameters (correlation and volatility) at both 12-month and

3-month investment horizons. I then examine their relationships across countries (uncondi-

tionally) and over time within each U.S.–foreign bilateral pair (conditionally).
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The evidence strongly supports the model. UIP deviations correlate positively with rela-

tive equity sensitivity, confirming that carry trades favour currencies associatedwithmore re-

active equity markets. FX hedging roles emerge for currencies whose equity market exhibits

relatively low volatility and co-movement with the U.S. equity market. UEP deviations align

with UIP and FX hedging roles in terms of sign, and a decomposition analysis confirms the

joint contribution of all threemodel-implied channels. These results hold across econometric

strategies, sample windows, and horizon lengths. In particular, cross-sectional patterns per-

sist even when excluding the Global Financial Crisis, and panel regressions strongly confirm

the relevance of fixed effects linked to volatility asymmetries.

Additionally, the model provides novel insights into the equilibrium behaviour of carry

trades and currency hedging. It explains why funding currencies in carry trades tend to

appreciate in bad times, while investment currencies fail to hedge, and shows how these

roles are determined by the joint portfolio composition of financiers.

It is worth noting that the term “parity deviation” is used heuristically, to align with

existing terminology in the literature. There is no a priori reason to expect an uncovered

equity parity to hold, and even UIP — despite its empirical prominence — has no claim to

validity beyond a risk-neutral benchmark, as emphasised by Kremens and Martin (2019).

Throughout, I adopt these labels for clarity and comparability, but they can be interpreted

more simply as expected excess returns on international bond and equity positions.

The inherent link betweenUIP, UEP, and FX hedging roles— though previously unrecog-

nised — is, in hindsight, conceptually natural. Existing strands of the literature point in this

direction. On the one hand, Kremens and Martin (2019) shows that UIP deviations can be

understood through (risk-neutral) covariances between exchange rates and equity returns,

particularly from the perspective of dollar-based investors. On the other hand, the UEP lit-

erature, as in Hau and Hélène Rey (2006), interprets currency movements through the lens

of equity return differentials and rebalancing motives, but again, these mechanisms operate

through return covariances between equity and FX. My framework integrates these insights:
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it shows that the same hedging covariances that enter traditional UIP and UEP theories also

serve as the structural conduit between them. Once global intermediaries operate across as-

set classes, FX risk premia must jointly reflect bond- and equity-linked exposures, and the

parity deviations that arise become a function of shared hedging constraints. In this sense,

theUIP–UEP–hedging relationship emerges as a natural consequence ofmulti-asset interme-

diation — an organising principle that, while new in formalisation, is rooted in mechanisms

long embedded in the literature.

In sum, the paper advances a unified and testable theory of exchange rate behaviour un-

der global intermediation, bridging longstanding gaps between the UIP, UEP, and FX hedg-

ing literatures. It offers a new perspective on how currencies relate to international capital

flows, and lays the groundwork for future studies of global risk sharing, macro-financial

spillovers, and the evolution of safe-haven currencies.

Related Literature. This paper connects to several strands of research in international fi-

nance and macroeconomics. On the bond side, Gabaix and Maggiori (2015) explain UIP

deviations through limited arbitrage by financial intermediaries, while Lustig and Verdel-

han (2007a), Menkhoff et al. (2012) and Liao and Zhang (2020) emphasise the role of risk

premia and global volatility in shaping currency returns. Similar to this paper, the last also

emphasises the importance of hedging motives. On the equity side, Hau and Hélène Rey

(2006), Curcuru et al. (2014), Cenedese et al. (2015) and Camanho, Hau, and Hélène Rey

(2022) study how equity returns drive exchange rate dynamics through rebalancing, tactical

reallocations, or hedgingmotives. Mymodel synthesises these views by explicitlymodelling

intermediaries’ joint bond and equity exposures across borders, with a hedging motive term

arising naturally as a result of the UEP decomposition.

Empirically, the structure of my UIP–UEP–Hedging decomposition is also related to the

findings of Della Corte, Riddiough, and Sarno (2016), who document how currency premia

relate to global imbalances, and to the empirical asset pricing work of Colacito and Croce
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(2011), who examine exchange rate behaviour in a long-run risk framework. In terms of

methodology, my approach shares similarities with the structure in Martin (2011), while

the econometric and risk decomposition insights are closely related to ideas in Kremens and

Martin (2019), who show that exchange rate risk premia and UIP deviations reflect (risk-

neutral) covariances with equity returns. More broadly, the paper also resonates with Gour-

inchas and Helene Rey (2007) and Gourinchas, Helene Rey, and Truempler (2012), who

emphasise the interdependence of capital flows, asset returns, and currency adjustment in

global equilibrium. My contribution here lies in formalising a joint mechanism that endo-

genises UIP and UEP deviations as complementary outcomes of multi-asset international

intermediation, offering a unified structure that clarifies the transmission of macro-financial

risk across borders.

This paper also relates closely to recent work exploring how financial intermediaries

transmit risk across borders through their balance sheets. Matteo Maggiori (2017) develop

a general equilibrium model in which international dealers hold both bonds and equities,

and face capital constraints that affect exchange rate determination. Their emphasis is on

reserve currency pricing and asymmetries in global demand for safe and risky assets. My

model complements theirs by highlighting how the interaction between bond and equity

positions drives deviations from both UIP and UEP, and by offering a decomposition that

isolates hedging covariances and volatility asymmetries as key determinants of currency

pricing. Sauzet (2023) takes a different approach, studying howwealth distribution and het-

erogeneity in investor risk tolerance affect cross-border asset flows and exchange rates. While

his framework relies on recursive preferences and consumption dynamics, my model pro-

vides a more transparent link between expected asset returns and exchange rate behaviour

through the lens of intermediary portfolio choice. Both papers underscore the central role

of portfolio composition in global macro-financial transmission.

The paper is organised as follows. Section 1.2 presents the model setup, with global fi-

nancial intermediaries optimising over bond and equity positions. Section 1.3 introduces a
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theoretical breakthrough: the general “UIP–UEP–Hedging” decomposition that links devia-

tions fromparity to risk premia, hedging covariances, and volatility asymmetries. Section 1.4

studies equilibriumoutcomes under financial autarky, bond-only and equity-only intermedi-

ation, and the full model. Section 1.5 tests themodel’s predictions, validating three empirical

implications regarding UIP deviations, UEP deviations, and FX hedging roles. Section 1.6

uses simulations to explore comparative statics under the full model. Section 1.7 concludes.

1.2 Model

Time is indexed by t = 0, 1, and the world consists of two countries of unit mass, denoted

by j ∈ {H,F} for Home and Foreign. For concreteness, think of these as the United States

(H) and Japan (F). In each country resides a unit mass of households, who consume, trade,

and invest. Investment opportunities include local risk-free bonds and local equities, both

denominated in the respective domestic currency.2

Households trade goods in a frictionless internationalmarket. Their standard consumption-

investment decisions give rise to capital flows, which are intermediated by international fi-

nanciers — potentially at a premium. Since these financiers operate across a wide range

of asset classes, the premium they charge reflects not only asset-specific risk, but also the

exposure of their balance sheets to broader financial conditions.

Goods

Each country produces two goods: a distinct non-tradeable good (NT) and a tradeable good.

The tradeable goods are labeled H and F for the home and foreign countries, respectively.

Non-tradeable goods serve as the local numéraires, and their prices are normalized to 1 in
2All variables in the model are real. Hence, the term currency refers to claims on the numéraire of each

country. Similarly, dollar-denominated and yen-denominated quantities are claims to the local numéraires. The
exchange rate should therefore be interpreted as the real exchange rate.
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domestic currency.

Assets and Shocks

Each country has two financial assets: a local risk-free bond and a risky asset, referred to

henceforth as equity or stock. Both bonds are in zero net supply, while households in each

country are endowed with one unit of their own country’s stock.

The U.S. risk-free bond delivers a gross return of R dollars in period 1 for each dollar

invested at t = 0, and the Japanese bond pays R∗ yen for each yen invested. These bonds

trade at prices qb dollars and q∗b yen, respectively. The U.S. equity is traded at a price qs (in

dollars), while the Japanese equity is priced at q∗s (in yen). Each equity pays a period-1

dividend denominated in local non-tradeable goods — that is, in local currency. The U.S.

stock pays a dividend YNT,1 (in dollars), while the Japanese stock pays Y ∗
NT,1 (in yen).

To facilitate the exposition of the results that follow, I assume that dividends follow a joint

log-normal distribution:


log YNT,1

log Y ∗
NT,1

 ∼ N



µ

µ∗

 ,

σ2 ρσσ∗

ρσσ∗ σ∗2


 .

Here, µ and µ∗ denote the expected log dividends, σ and σ∗ their standard deviations, and

ρ the correlation between log dividends across countries. Throughout the paper, I focus on

the empirically relevant case where ρ ∈ [0, 1], reflecting the typically positive correlation

between international equity returns.
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Households

U.S. households derive utility from consumption according to:

ϑ0 lnC0 + β E[ϑ1 lnC1], (1.1)

where the consumption aggregator is:

Ct =
(
Cχt
NT,tC

at
H,tC

ιt
F,t

)1/ϑt
. (1.2)

Here, CNT,t, CH,t, and CF,t denote consumption of the non-tradeable good, the domestic

tradeable, and the foreign tradeable, respectively.3 The weights χt, at, and ιt sum to ϑt, and

are deterministic (though potentially time-varying).4

Households can trade both tradeable goods across borders in frictionless markets but

must consume non-tradeables domestically. They choose consumption, bond holdings b,

and equity holdings x to maximize (1.1), subject to:

qs + PH,0YH,0 = CNT,0 + PH,0CH,0 + PF,0CF,0 + b+ qsx, (1.3)

PH,1YH,1 +Rb+ YNT,1x = CNT,1 + PH,1CH,1 + PF,1CF,1, (1.4)

where all values are in dollars. Households are endowed with a deterministic stream of

domestic tradeables YH,0, YH,1. For tractability, I assume the initial non-tradeable endowment

satisfies YNT,0 = χ0, ensuring marginal utility is stable at t = 0 and emphasising shocks in

period 1, where asset payoffs are determined.

In Appendix A.1, I show that U.S. households’ optimisation yields the dollar value of
3Since the non-tradeable is the numéraire, its price is always 1 in local currency: PNT,t = 1.
4Gabaix and Maggiori (2015) consider stochastic consumption weights. Here, stochasticity in exchange

rates arises endogenously via equity risk, so no such assumption is required.
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imports as:

PF,0CF,0 = ι0,

PF,1CF,1 =
ι1
χ1

YNT,1.

The second expression shows that positive shocks to the U.S. stockmarket increase the dollar

value of imports, as they affect relative prices.5

Japanese households solve an analogous problem, with preferences

ϑ∗
0 lnC

∗
0 + β∗E[ϑ∗

1 lnC
∗
1 ],

and consumption aggregator

C∗
t =

(
C∗
NT,t

χ∗
tC∗

H,t
ξtC∗

F,t
a∗t
)1/ϑ∗t

, where ϑ∗
t = χ∗

t + ξt + a∗t .

Their optimisation (detailed in Appendix A.1) implies yen values of U.S. exports given by:

P ∗
H,0C

∗
H,0 = ξ0,

P ∗
H,1C

∗
H,1 =

ξ1
χ∗
1

Y ∗
NT,1.

Define the exchange rate Et as the number of dollars per yen, so a higher Et implies a

weaker dollar. Then, the dollar value of U.S. exports becomes:

Period 0: E0P
∗
H,0C

∗
H,0 = E0ξ0, Period 1: E1P

∗
H,1C

∗
H,1 = E1

ξ1
χ∗
1

Y ∗
NT,1.

5Suppose a positive shock hits U.S. equity at t = 1. Since equity dividends are paid in non-tradeables,
which become less scarce, the relative price of foreign tradeables (in dollars) rises. The ratio ι1/χ1 amplifies
this response, reflecting the household’s propensity to substitute foreign tradeables for non-tradeables.
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Hence, U.S. net exports (in dollars) are:

NX0 = E0ξ0 − ι0,

NX1 = E1
ξ1
χ∗
1

Y ∗
NT,1︸ ︷︷ ︸

=P ∗
H,1C

∗
H,1

− ι1
χ1

YNT,1︸ ︷︷ ︸
=PF,1CF,1

. (1.5)

All else equal, if U.S. equity receives a positive shock while Japanese equity is hit nega-

tively, thenU.S. imports becomemore valuable in dollar terms, and exports less so— leading

to a U.S. current account deficit in period 1.

Asset Pricing

Households price domestic assets, while international intermediaries (introduced later) are

small and behave competitively. As shown in Appendix A.1, the U.S. household’s optimisa-

tion yields Euler equations for bonds and equity:

qb ≡
1

R
= E

[
βχ1

YNT,1

]
, (1.6)

qs = βχ1. (1.7)

With log utility, the price of equity is independent of its payoff, as the marginal utility of

consumption fully adjusts. However, the U.S. risk premium— the expected excess return on

U.S. equity over the U.S. risk-free rate — is non-zero, and given by:

E[R−R] =
1

βχ1

E[YNT,1]−
1

E
[

1
YNT,1

]
 , (1.8)

where R = YNT,1/qs denotes the gross return on U.S. equity in dollars.
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The same logic applies to Japanese households, whose optimisation implies:

q∗b ≡
1

R∗ = E

[
β∗χ∗

1

Y ∗
NT,1

]
, (1.9)

q∗s = β∗χ∗
1. (1.10)

Financial Intermediation

International financial intermediaries—henceforth, financiers— absorb imbalances in trade

or portfolio flows by taking positions in bonds and equities across countries, earning a pre-

mium in the process. A unit mass of financiers operates competitively, maximising profits in

dollars without initial capital. For tractability, as in Gabaix and Maggiori (2015), I assume

that financiers rebate their period-1 profits to Japanese households in a lump-sum manner.6

At time t = 0, each financier allocates a fixed dollar amount to each asset:

θb : U.S. bonds, θs : U.S. equities,

θ∗b : Japanese bonds, θ∗s : Japanese equities.

These allocations satisfy the zero-investment constraint:

θb + θ∗b + θs + θ∗s = 0,

with negative positions corresponding to short sales.

Carry Trade in Bonds. Consider first a bond-only strategy (θs = θ∗s = 0). A long position

θb in U.S. bonds must be financed by a short position in Japanese bonds, of size θ∗b = −θb.

Since Japanese bonds are denominated in yen, the financier’s liability is θb/E0 yen, where Et
6This assumption simplifies the model significantly without affecting the key equilibrium mechanisms.
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is the dollar–yen exchange rate (dollars per yen). The expected dollar return in period 1 is:

E

[
R−R∗E1

E0

]
θb ≡ ΩUIPθb, (1.11)

where ΩUIP captures the deviation from uncovered interest parity (UIP) and represents the

financier’s expected carry-trade return per dollar invested.

Carry Trade in Equities. Now consider a stock-only strategy (θb = θ∗b = 0). A long position

θs/qs in U.S. equities is offset by a short position θ∗s = −θs, corresponding to θs/(E0q
∗
s) units

of Japanese equities. In period 1, the financier earns YNT,1 dollars per U.S. stock and owes

Y ∗
NT,1E1 dollars per Japanese stock. Hence, the expected dollar return is:

E

[
R− R∗E1

E0

]
θs ≡ ΩUEPθs, (1.12)

where ΩUEP captures the deviation from the uncovered equity parity (UEP) — an “equity

carry trade” analogue to the UIP — and R∗ = Y ∗
NT,1/q

∗
s denotes the gross return on Japanese

equity in yen.

If these strategies are conducted independently (i.e., θb = −θ∗b , θs = −θ∗s), the financier’s

expected profit is:

ΩUIPθb + ΩUEPθs.

Their ability to profit hinges on equilibrium deviations from parity conditions.

On the Term “UEP Deviation”. The term “UEP deviation” is used heuristically. Hau and

Hélène Rey (2006) define the UEP as a negative correlation between foreign stock excess

returns (over home stocks) and foreign exchange rate appreciation. That correlation remains

central to this paper, though the microfoundation differs. Whereas Hau and Hélène Rey

(2006) rely on incomplete hedging and portfolio rebalancing effects, here the hedging role of

exchange rates arises from financiers’ tactical equity allocations, consistent with more recent
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evidence documented in Curcuru et al. (2014).

Financiers’ Problem. More generally, financiers treat bond and equity positions jointly.

Their optimisation problem — detailed in Appendix A.2 — is:

max
θ

E[Π1]−
a

2
Var[Π1], (1.13)

subject to the zero-investment constraint θb + θ∗b + θs + θ∗s = 0, where θ = [θb, θ
∗
b , θs, θ

∗
s ]
T and

Π1 denotes the dollar value of the financier’s portfolio at time t = 1. Since they begin with

no initial wealth, Π0 = 0. Aggregating over the unit mass of financiers yields total demand

functions Θ = [Θb,Θ
∗
b ,Θs,Θ

∗
s]
T .

Exchange Rates

In period 0, U.S. households export tradeables worth ξ0 yen, which they convert into dollars

— creating a demand for E0ξ0 dollars. Conversely, Japanese households receive ι0 dollars

from importing U.S. tradeables and convert this into yen. The net trade balance implies a net

period-0 demand for dollars (against yen) of E0ξ0 − ι0.

Including financiers’ asset purchases, the period-0 dollar market-clearing condition be-

comes:7

E0ξ0 − ι0︸ ︷︷ ︸
Current account

+ Θb +Θs︸ ︷︷ ︸
Capital account

= 0. (1.14)

That is, a U.S. current account surplus (deficit) must be offset by a capital account deficit

(surplus), implemented through financiers’ net purchases of U.S. assets. The composition

of this adjustment — between bonds (Θb) and equities (Θs) — depends on their portfolio

preferences.
7Alternatively, using the zero-investment condition, the identity may be written as E0ξ0− ι0−Θ∗

b −Θ∗
s = 0.
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In period 1, dollar demand reflects trade flows and financiers’ sales of U.S. assets. The

market-clearing condition is:

E1
ξ1
χ∗
1

Y ∗
NT,1 −

ι1
χ1

YNT,1 −RΘb − RΘs = 0. (1.15)

The first two terms represent U.S. net exports, while the last two terms capture financiers

converting the proceeds from their U.S. bond and equity holdings into yen.8

Illustration: Financial Autarky. In the absence of financiers (Θ = 0), trade must balance

period-by-period. Then:

E1 =
ι1
ξ1

· χ
∗
1

χ1

· YNT,1
Y ∗
NT,1

∝ YNT,1
Y ∗
NT,1

. (1.16)

A relatively strong U.S. stock market (higher YNT,1) leads to dollar depreciation. With no

financial intermediation, households bear all equity risk, so their income is fully exposed to

stockmarket fluctuations. Higher U.S. income leads to a greater dollar value of imports from

Japan, both through relative prices and income effects.9 This effect is amplified when ι1 is

large and χ1 is small, reflecting a strong substitution towards foreign tradeables. Similarly,

lower ξ1 and higher χ∗
1 reduce Japanese imports of U.S. goods, reinforcing the depreciation.

Connection to the UEP. Equation (1.16) provides a transparent illustration of the UEP

relationship documented byHau andHélène Rey (2006): a relatively stronger equitymarket

corresponds to a weaker currency. While derived under autarky, this inverse relationship

between equity performance and exchange rate remains a key force in the model — even

when financiers actively shape capital flows and parity conditions become endogenous. I
8Since financiers rebate profits to Japanese households, they must liquidate their U.S. assets in dollars and

convert the proceeds. Bonds yield RΘb dollars; equities yield RΘs, where R = YNT,1/qs.
9With no financiers, households hold all domestic equity. Stock market shocks directly affect their income

and, under homothetic preferences, their consumption. A positive U.S. stock shock raises the dollar value of
imports from Japan through both higher relative prices (as foreign tradeables become relatively scarcer) and
higher consumption (as U.S. households become wealthier).
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return to this broader result in the analysis that follows.

1.3 Global Intermediation with Multi-Asset Exposure

1.3.1 UIP and UEP: A Unifying Theory

The model introduced above allows UIP and UEP to be analysed jointly within a unified

framework— something not possible under the formulations of Hau andHélène Rey (2006)

or Gabaix and Maggiori (2015). In what follows, I show that UEP deviations can be ex-

pressed as a linear function of UIP deviations and a covariance that captures exchange rate

hedging. To simplify exposition, I adopt the following assumption:

Assumption 1. Let β = β∗ = χt = χ∗
t = ξt = 1, for all t.

This assumption clarifies the algebra without altering the economic substance of the

model.10 Under Assumption 1, the following proposition — proved in Appendix A.5 —

defines UIP and UEP deviations:

Proposition 1. The model implies:

ΩUIP =
1

E
[
1
R

] − 1

E
[

1
R∗

]E [E1

E0

]
, (1.17)

ΩUEP = E[R]− E[R∗]E

[
E1

E0

]
− Cov

(
R∗,

E1

E0

)
. (1.18)

If E[1/y] = 1/E[y], then the first two terms in (1.17) and (1.18) would coincide, and

the UEP deviation would simply equal the UIP deviation plus a hedging term. In practice,

Jensen’s inequality implies an additional adjustment. In Appendix A.5, I also show that up

to a second-order approximation, the following relationship holds:
10Trade imbalances are governed by asymmetries in ιt and ξt. With Assumption 1, I focus on the former.

For instance, a rise in ι1 relative to ι0 suffices to induce dollar depreciation pressures via increased U.S. import
demand. A similar assumption appears in Gabaix and Maggiori (2015), though it is more restrictive in their
setting due to the absence of financial risk, which forces R = R∗ = 1 in their paper.
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Proposition 2 (UIP-UEP-Hedging Relationship). UEP deviations can be rewritten as:

ΩUEP = ΩUIP · eσ2 − Cov

(
R∗,

E1

E0

)
+ E[R∗]E

[
E1

E0

]
(eσ

2−σ∗2 − 1). (1.19)

Equation (1.19) shows thatUEPdeviations are shaped by three components: (i) aUIPde-

viation, scaled by U.S. equity volatility (since financiers maximise in dollars); (ii) a hedging

motive term, capturing the extent to which the foreign currency fails (or succeeds) in hedg-

ing its own equity risk; and (iii) a volatility differential term, reflecting how asymmetries in

equity risk affect the pricing of cross-border equity positions. Remarkably, this structure —

previously unexplored in this form— is not unique to the present model. A similar relation-

ship emerges in the two-tree framework of Martin (2011), despite substantial differences in

microfoundations and asset market frictions. I discuss these parallels— and key distinctions

— in greater detail in Appendix A.6.

Why are UEP deviations linked to UIP? The connection follows directly from how ex-

change rates are priced (with further details to follow). If the exchange rate risk premium

leads to a negative UIP deviation — implying that the yen is expected to appreciate (or de-

preciate less) than what interest rate differentials alone would suggest — then this same

expectation affects the relative pricing of equities. Japanese stocks becomemore attractive in

dollar terms, while U.S. stocks become relatively more expensive. As a result, the expected

return on a long–short equity strategy that is long Japanese and short U.S. stocks increases,

lowering ΩUEP. In other words, the same exchange rate risk premium that induces a UIP de-

viation also pushes the UEP deviation in the same direction. This logic is reflected in the

term ΩUIP · eσ2 in equation (1.19).

Why does a hedging motive matter? The UEP deviation measures the expected return on

an international long-short equity strategy: long U.S. stocks, short Japanese. If Japanese eq-

uities tend to perform poorly when the yen depreciates, then they offer poor insurance to
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dollar-based investors. Formally, a positive covariance between Japanese equity returns and

dollar depreciation (Cov(R∗, E1/E0) > 0) signals a weak yen hedging role. This increases

perceived risk, requiring a higher premium for holding Japanese equities — lowering ΩUEP.

Conversely, when the foreign currency strengthens in bad times, it provides insurance, re-

ducing required returns.

Why does cross-country volatility matter? If U.S. equities are more volatile than Japanese

equities (σ2 > σ∗2), then a long–short strategy — long U.S., short Japanese — entails greater

risk. In equilibrium, this additional risk must be compensated by a higher expected return,

which requires the exchange rate to adjust accordingly. The result is a larger UEP deviation,

captured by the volatility differential term in equation (1.19), which is positive if σ2 > σ∗2,

and increasing in σ2 − σ∗2.

1.3.2 Decomposing Deviations Further

Above, I showed that the expected return on an international long–short equity strategy (the

UEP deviation) can be expressed as a function of expected carry-trade profitability (the UIP

deviation) and a currency hedging term. I nowgo a step further by imposingmarket clearing

and characterising the general equilibrium behaviour of deviations.

Specifically, both UIP and UEP deviations can be decomposed into weighted averages of

three distinct effects: (i) the impact of bond flows; (ii) the impact of equity flows; and (iii)

imbalances in trade preferences, which produce current account pressures that are partially

absorbed by exchange rate movements. These three components reflect the key forces that

shape exchange rate pricing in general equilibrium: financial positioning, asymmetries in

asset risk, and underlying international trade (in goods). The following proposition, proved

in Appendix A.7, formalises this decomposition:

Proposition 3 (UIP and UEP Deviations as Weighted Averages). UIP deviations follow, up to
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a second-order approximation:

ΩUIP ≈ Θb

Θb +Θs − ι0

[
2e−σ

2

E(YNT,1)
]

︸ ︷︷ ︸
Bond Flow Effect

+
Θs

Θb +Θs − ι0
E(YNT,1)

[
e−σ

2

+ e−σ
∗2
+ 1− eρσσ

∗−σ∗2
]

︸ ︷︷ ︸
Equity Flow Effect

− ι0
Θb +Θs − ι0

E(YNT,1)

[
e−σ

2 − ι1
ι0

(
e−σ

∗2
+ 1− eρσσ

∗−σ∗2
)]

︸ ︷︷ ︸
Current Account Impact

.

(1.20)

That is, the UIP deviation reflects a weighted average of: (i) the bond flow impact (first term); (ii)

a wedge generated by equity flows and cross-country asymmetries in asset risk (second term); and

(iii) imbalances in trade preferences that would otherwise drive current account surpluses or deficits

(third term).

Analogously, the UEP deviation satisfies:

ΩUEP ≈ Θb

Θb +Θs − ι0
E(YNT,1)

(
2 + e−σ

2 − eσ
∗2−σ2

)
︸ ︷︷ ︸

Bond Flow Effect

+
Θs

Θb +Θs − ι0
· 2E(YNT,1)︸ ︷︷ ︸

Equity Flow Effect

− ι0
Θb +Θs − ι0

E(YNT,1)

(
ι0 − ι1
ι0

)
︸ ︷︷ ︸

Current Account Impact

.

(1.21)

The interpretation is analogous: deviations fromUEP are shaped by financial exposures through bond

and equity markets, as well as underlying trade imbalances, also being a weighted average of the three

effects. When trade preferences are symmetric across periods (i.e., ι0 = ι1 = 1), the final term

disappears.

If financiers do not hold equities (Θs = 0), the equity flow effect vanishes in both expressions.

Similarly, if they do not hold bonds (Θb = 0), the bond flow effect drops out.
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Most UIP-based models attribute deviations to carry-trade incentives and some form of

constraint on risk-bearing. In this model, the latter is governed by the parameters σ, σ∗,

and ρ, which control the volatility and co-movement of equity returns across countries.11

These affect how asset values and exchange rates move together, and thus shape financiers’

aggregate exposure. This logic is captured in the first term of equation (1.20).12 The second

term reflects the influence of equity flows and asymmetries in asset risk. If financial markets

are symmetric (i.e., σ = σ∗ and ρ = 1), then this term vanishes. Finally, if trade preferences

are also balanced (ι0 = ι1 = 1), the current account termdisappears aswell. In that case, both

UIP and UEP deviations collapse to the minimal structure driven by carry-trade incentives

under symmetric fundamentals.

1.3.3 Exchange Rate Hedging Roles

I now turn to how exchange rate hedging roles arise in themodel. FollowingHau andHélène

Rey (2006), define an automatic hedging role of exchange rates as a situation in which:

Cov

(
R− R∗,

E1

E0

)
> 0.

That is, when U.S. equities outperform Japanese ones, the dollar tends to depreciate — off-

setting return differentials and providing insurance. This behaviour arises naturally in the

model via households’ goods trade, as seen in equation (1.16).

Building on this, I define two directional hedging roles. The dollar hedging role is said to

be active when the dollar appreciates during U.S. stock market downturns:

Cov

(
R,
E1

E0

)
> 0.

11Since bond pricing is non-trivial in this model, it will also depend on those parameters.
12Formally, σ∗2 does not appear in the first term because its effect is absorbed through exchange rate adjust-

ments in response to foreign shocks. Similarly, Y ∗
NT,1 does not enter the expression either.
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Likewise, the yen hedging role is present when the yen appreciates in periods when Japanese

equities underperform, i.e.:

−Cov

(
R∗,

E1

E0

)
> 0.

Note that if both the dollar and yen hedging roles hold, the automatic hedging condition

follows by construction.

The following proposition, proved in Appendix A.7, provides analytical expressions for

these covariances up to a second-order approximation.

Proposition 4 (ExchangeRateHedgingCovariances). The covariance determining the automatic

hedging role satisfies:

Cov

(
R− R∗,

E1

E0

)
≈
(

Θb

ι0 −Θb −Θs

)
E[YNT,1]

[
E[YNT,1]
E[Y ∗

NT,1]

(
e−σ

2 − eρσσ
∗−σ2

)
+ eσ

∗2−σ2 − e−σ
2

]

+

(
ι1 +Θs

ι0 −Θb −Θs

)
E[YNT,1]

[
E[YNT,1]
E[Y ∗

NT,1]

(
eσ

∗2 − eρσσ
∗
)
+ eσ

2 − eρσσ
∗

]
.

(1.22)

The dollar hedging role is characterised by:

Cov

(
R,
E1

E0

)
≈
(

Θb

ι0 −Θb −Θs

)
E2[YNT,1]

E[Y ∗
NT,1]

(
e−σ

2 − eρσσ
∗−σ2

)
+

(
ι1 +Θs

ι0 −Θb −Θs

)
E2[YNT,1]

E[Y ∗
NT,1]

(
eσ

∗2 − eρσσ
∗
)
.

(1.23)

The yen hedging role corresponds to:

−Cov

(
R∗,

E1

E0

)
≈
(

Θb

ι0 −Θb −Θs

)
E[YNT,1]

(
eσ

∗2−σ2 − e−σ
2
)

+

(
ι1 +Θs

ι0 −Θb −Θs

)
E[YNT,1]

(
eσ

2 − eρσσ
∗
)
.

(1.24)
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1.4 Equilibrium Characterisation

This section characterises equilibrium outcomes by progressively building intuition through

a sequence of increasingly rich environments. I begin with the case of financial autarky,

where no international asset trade occurs and exchange rates adjust purely through goods

trade. I then introduce international financiers in stages: first allowing them to trade only

bonds, then only equities, and finally both. Emphasis is placed on the bond-only case, which

already captures key mechanisms driving UIP deviations and exchange rate adjustment,

and is analytically self-contained. The equity-only and full-model cases are addressed more

briefly here, with full derivations and additional discussion deferred to Appendix A.8.

1.4.1 Financial Autarky Case

I begin by considering the case of financial autarky, in which international asset markets are

shut down: Θb = Θ∗
b = Θs = Θ∗

s = 0. In this environment, households cannot save or invest

across borders, and all trade imbalancesmust be absorbed by exchange ratemovements. The

following result characterises UIP and UEP deviations in this setting:

Proposition 5. Under financial autarky, UIP and UEP deviations are:

ΩUIP ≈ E(YNT,1)

 e−σ2 − ι1
ι0
e−σ

∗2

︸ ︷︷ ︸
Interest Rate Differential

+
ι1
ι0

eρσσ
∗

eσ∗2 − 1︸ ︷︷ ︸
FX Adjustment

 ,
ΩUEP ≈ E(YNT,1)

(
ι0 − ι1
ι0

)
.

(1.25)

Corollary 1. If trade preferences are symmetric (ι0 = ι1 = 1) and financial markets are symmetric

(ρ = 1, σ = σ∗), then:

ΩUIP = ΩUEP = 0.

More generally, if trade preferences are symmetric but financial markets are not, then ΩUEP = 0 but
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ΩUIP ̸= 0.

Interpretation. When households are fully exposed to domestic equity shocks and cannot

smooth consumption intertemporally, exchange rates adjust to balance trade flows. In this

case, financial asymmetries alone do not generateUEPdeviations, as any equity return differ-

ential is offset by an endogenous FX response— amechanism akin to the automatic hedging

role described by Hau and Hélène Rey (2006). While the model lacks full risk sharing, the

logic mirrors Backus and G. W. Smith (1993): countries with higher relative consumption

face real exchange rate depreciation. Here, that adjustment operates through goods-market

clearing rather than asset markets. Asymmetric trade preferences disrupt this mechanism

by creating current account imbalances, which the exchange rate must also absorb — intro-

ducing a tension that can undermine its hedging role.

The contrast with Gabaix and Maggiori (2015) is instructive: in their model, symmetric

preferences are sufficient to shut down UIP deviations. In this model, however, financial

asymmetries can produce UIP deviations even under balanced trade preferences, as they affect

consumption and import behaviour through endogenous equity risk exposure.

The following proposition completes this intuition by addressing hedging roles:

Proposition 6. Under financial autarky and symmetric financial markets (ρ = 1, σ = σ∗):

Cov

(
R− R∗,

E1

E0

)
= 0.

Mechanism. Under financial symmetry, the only source of exchange rate movements is

trade. Since domestic equity returns are identical across countries, consumption and import

patterns evolve identically, and the exchange rate evolves deterministically: R = R∗ and

E1/E0 = ι1/ι0. In this case, exchange rates do not hedge equity exposures — there is no

return differential to hedge.

To explore more general conditions, define the relative volatility of U.S. and Japanese
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equities as:

κ =
σ

σ∗ ,

with κ < 1 indicating that U.S. equities are “safer”. Using this, I characterise the conditions

under which exchange rates play a hedging role:

Proposition 7. Under financial autarky, the exchange rate always hedges the safer equity market. It

also hedges the riskier market, provided its volatility is not too extreme. Formally:

1. The dollar hedging role is active (i.e., Cov(R, E1/E0) > 0) if κ < 1
ρ
.

2. The yen hedging role is active (i.e., −Cov(R∗, E1/E0) > 0) if ρ < κ.

3. The automatic hedging role is active (i.e., Cov(R− R∗, E1/E0) > 0) if:

ρ < κ <
1

ρ
.

Economic Intuition. In financial autarky, households hold only domestic equity and can-

not smooth consumption. Their imports therefore move in lockstep with equity shocks.

When a country’s stock market is relatively stable, import behaviour is more predictable,

reinforcing the link between equity returns and exchange rate movements — and strength-

ening the currency’s hedging role. By contrast, highly volatile equitymarkets generate erratic

import responses, weakening that link. This creates a tension between the two hedging roles:

when international equities are positively correlated, the exchange rate cannot always hedge

both markets simultaneously. The currency tied to the riskier equity market typically loses

its hedging role, as import behaviour becomes less systematically linked to income shocks.13

Visual Summary. Figure 1.1 shows the regions in (κ, ρ) space where the dollar (left panel)

and yen (right panel) exhibit a hedging role. Figure 1.2 displays the intersection where the
13In the limit, as κ → ∞, U.S. equity becomes purely noise. U.S. households experience large swings

in wealth, and their imports become unpredictable. Exchange rate movements increasingly reflect Japanese
shocks, as Japanese import behaviour is more stable. In this case, the yen exhibits a stronger hedging role.
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automatic hedging role is active.

Figure 1.1: Regions for Dollar and Yen Hedging Roles in Financial Autarky

Figure 1.2: Region for Automatic Hedging Role in Financial Autarky

1.4.2 Bond-Only Intermediation

I now introduce international intermediation via bonds, allowing financiers to take positions

in U.S. and Japanese risk-free bonds (Θb ̸= 0,Θ∗
b ̸= 0), but not in equity (Θs = Θ∗

s = 0). With
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zero initial wealth, the bond positions must satisfy Θb = −Θ∗
b . Financiers enter the market

only if the expected profitability of the carry trade is positive — that is, if ΩUIP ·Θb > 0. They

do not target UEP deviations directly, but may influence them indirectly through their effect

on UIP, as described in Section 1.3.1. The same applies to hedging roles.

The following result – whose proof is in Appendix A.8 – establishes a benchmark under

symmetry:

Proposition 8 (No Carry Trade under Symmetry). Suppose trade preferences are symmetric

(ι0 = ι1 = 1) and financial markets are symmetric (σ = σ∗, ρ = 1). If financiers are restricted

to bonds (Θs = Θ∗
s = 0), the only equilibrium is one in which they opt out: Θb = Θ∗

b = 0, and

ΩUIP = ΩUEP = 0.

Asymmetric Markets. When financial markets are asymmetric (σ ̸= σ∗, 0 < ρ < 1), prof-

itable carry trades can emerge. The following result characterises bounds on feasible bond

positions:

Proposition 9 (Equilibrium Bond Positions under Asymmetry). Suppose financiers trade only

bonds, and Θb = −Θ∗
b . Then:

1. If Θb > 0 and ΩUIP > 0, then:

0 ≤ Θb ≤
1

2

[
ι0 − ι1 + ι1

(
eρσσ

∗ − eσ
∗2
)]
.

2. If Θ∗
b > 0 and ΩUIP < 0, then:

0 ≤ Θ∗
b ≤

1

2

[
ι1 − ι0 + ι1

(
eσ

∗2 − eρσσ
∗
)]
.

Which Currency Financiers Prefer. Under symmetric trade preferences (ι0 = ι1 = 1), the

direction of the carry trade depends onwhich country’s stockmarket is riskier. The following

proposition addresses this — see proof in Appendix A.8.

38



Proposition 10 (UIP, Carry TradeDirection andRelative Equity Risk). Assume financiers trade

only bonds (Θs = Θ∗
s = 0), financial markets are asymmetric (σ ̸= σ∗, 0 < ρ < 1), and trade

preferences are symmetric (ι0 = ι1 = 1). Then, the currency associated with the riskier equity market

— defined in terms of its responsiveness to foreign equity shocks — always lies on the investment side

of the carry trade.

More specifically, let κ = σ/σ∗ and consider the OLS coefficient of a regression of U.S. log-equity

returns on Japanese log-equity returns:

OLS coefficient = Cov(logR, logR∗)

Var(logR∗)
=
ρσσ∗

σ∗2 = ρκ.

Then:

1. If ρκ > 1, i.e., a 1%movement in Japanese stocks is associated with more than a 1% response in

U.S. stocks, financiers are long in U.S. bonds and short in Japanese bonds: Θb > 0, ΩUIP > 0.

2. If ρκ < 1, i.e., U.S. stocks react less than one-for-one to Japanese shocks, the opposite holds:

financiers are long in Japanese bonds and short in U.S. bonds, Θb < 0, ΩUIP < 0.

Connection to Hedging. This result also helps clarify which currency is more likely to

exhibit a hedging role. When ρκ > 1, U.S. equity returns are relatively more sensitive to

common shocks than Japanese returns, making the dollar the riskier currency in equilib-

rium. In this case, financiers fund their carry trades with the yen and invest in dollars. But

because U.S. households are fully exposed to domestic equity and experience more volatile

income, their import demand becomes erratic. The exchange rate can no longer adjust re-

liably to hedge U.S. equity risk — undermining the dollar’s hedging role. In contrast, the

yen, associated with the less volatile equity market, remains more systematically linked to

household imports and income, reinforcing its hedging function. As ρκ falls below one, the

roles reverse: the safer equity market leads to more predictable trade behaviour, enabling its

currency to act as a hedge.
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Yen Hedging Role

To understandwhen exchange rates hedge Japanese equity risk, I now characterise the condi-

tions underwhich the yen hedging role is active. For simplicity, I henceforth assume symmetric

trade preferences: ι0 = ι1 = 1.

From Proposition 4, the yen acts as a hedge when:

−Cov

(
R∗,

E1

E0

)
> 0 ⇐⇒ Θb > g(ρ, κ, σ∗) ≡ eκ

2σ∗2 − eρκσ
∗2

e−κ2σ∗2 − eσ∗2−κ2σ∗2 . (1.26)

The threshold function g(ρ, κ, σ∗) captures how much the financiers’ bond position must

tilt toward U.S. bonds (i.e., be sufficiently positive, or not too negative) in order for the yen

to hedge Japanese equity risk. The numerator reflects the effect of equity co-movements on

exchange rates14; the denominator reflects the effect of relative volatility, and does not depend

on ρ. That is:

g(ρ, κ, σ∗) =
Equity Correlation Effect on FX

Equity Relative Volatility Effect on FX .

Why large Θb supports a yen hedging role. When financiers are long U.S. bonds (Θb >

0), they are short Japanese bonds (Θ∗
b < 0), and must repurchase yen in period 1 to settle

liabilities. This creates asymmetry in how their positions interactwith trade-driven exchange

rate adjustment:

1. When Japanese equities underperform, Japanese households cut imports, leading to

yen appreciation. Financiers must buy yen into strength, reinforcing the appreciation

— amplifying the yen hedging role.

2. When Japanese equities outperform, Japanese households increase imports, and the

yen depreciates. Financiers again buy yen to repay liabilities, counteracting deprecia-

tion — this time mitigating the yen hedging role.
14Note that the slope coefficient of an OLS regression of log(R∗) on log(R) equals ρ/κ. The sign of the nu-

merator of g(·) is determined by ρ− κ.
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The key asymmetry lies in the strength of the exchange rate response. In both cases,

financiers purchase a fixed quantity of yen, but their trades have a larger impact when the

yen is already appreciating (case 1) thanwhen it is depreciating (case 2). Since yen liabilities

are settled at a stronger yen in bad states for Japanese equity, the dollar cost of repayment is

higher, magnifying their effect on the FX market.15 This is why larger values of Θb reinforce

the yen’s hedging role.

Figure 1.3: Regions for the Yen Hedging Role in Model with Bond-Only Financiers

Visual Characterisation. Figure 1.3 plots the regions in (κ,Θb) space where the yen hedg-

ing role is active, for different values of ρ. Lower ρ expands this region, as less co-movement

between equitymarkets allows FX to adjustmore freely. Similarly, higherκ (i.e., safer Japanese

equity) also supports the yen hedging role — consistent with the intuition developed under

financial autarky. If Japanese equity is safer than U.S. equity (κ > 1) and correlation is not
15In other words, FX market clearing reflects the balance between dollar-denominated demand for yen and

yen-denominated demand for dollars. When financiers must post a large dollar amount to obtain a fixed quan-
tity of yen for settlement, the yen tends to appreciate more strongly.
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too high, the yen hedging role is always active, regardless of financiers’ bond positions.

Dollar Hedging Role

I now turn to the conditions under which the dollar acts as a hedge for U.S. equity. From

Proposition 4, and assuming bond-only intermediation (Θs = 0) and trade symmetry (ι0 =

ι1 = 1), the dollar hedging role is active if and only if:

Cov

(
R,
E1

E0

)
> 0 ⇐⇒ Θb · ψ(ρ, κ, σ∗) > ϕ(ρ, κ, σ∗), (1.27)

where:

ψ(ρ, κ, σ∗) ≡ e−κ
2σ∗2 − eρκσ

∗2−σ∗2
,

ϕ(ρ, κ, σ∗) ≡ eρκσ
∗2 − eσ

∗2
,

f(ρ, κ, σ∗) ≡ ϕ

ψ
, κ(ρ) ≡ −ρ+

√
ρ2 + 4

2
.

Hedging Regions. Whether the dollar serves a hedging role depends on both the volatil-

ity ratio κ = σ/σ∗ and the financiers’ bond position Θb. The threshold κ(ρ) characterises

the value of κ at which the sign of ψ switches from positive to negative. This divides the

parameter space into three regimes:

Proposition 11 (Conditions for Dollar Hedging Role). The dollar acts as a hedge for U.S. equity

if one of the following holds:

1. Safe U.S. equity: κ ≤ κ(ρ) < 1, with f < 0. Here, inequality (1.27) always holds regardless

of Θb. Therefore, the dollar hedging role is unconditional.

2. Moderate risk: κ(ρ) < κ ≤ 1/ρ, with f ≥ 0. The dollar hedging role is present if Θb <

f(ρ, κ, σ∗).
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3. High U.S. equity risk: κ > 1/ρ > 1, with f < 0. A sufficiently negative bond position is

required: Θb < f(ρ, κ, σ∗) < 0.

Sketch of Proof (See Appendix A.8 for Full Details). First, determine sign changes in ψ and ϕ

across intervals of κ. The root κ(ρ) solves the inequality κ2 + ρκ − 1 = 0, which determines

the sign of ψ. The threshold κ = 1/ρ determines the sign of ϕ. Accounting for the sign-flip

in the inequality when ψ < 0 gives the bounds for Θb.

Visual Intuition. Figure 1.4 illustrates the regions where the dollar hedging role is active.

The curves represent the function f(ρ, κ, σ∗), while the vertical lines denote the threshold

κ(ρ), plotted for different values of ρ. As in the yen case, the dollar is more likely to serve

as a hedge when U.S. equity is relatively safer. However, dollar hedging is generally more

robust: for instance, when κ < 1 and ρ ∈ {0.25, 0.5}, the dollar hedging role holds across

all feasible values of Θb.16 Everything else equal, the dollar hedging role is more readily

obtained in this model — reflecting the fact that financiers maximise their returns in dollars.

Figure 1.4: Regions for the Dollar Hedging Role in Model with Bond-Only Financiers

16In contrast, for the yen hedging role to be guaranteed under κ > 1 (i.e., when Japanese equity is safer),
this is only true for ρ = 0.25, and not for ρ = 0.5; see Figure 1.3.
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Why a low Θb supports dollar hedging. When financiers are short U.S. bonds (Θb < 0),

they hold long positions in Japanese bonds and must repurchase dollars in period 1 to settle

their liabilities. If U.S. equities underperform, households reduce imports, causing the dol-

lar to appreciate. Financiers then buy dollars into strength, reinforcing the appreciation and

amplifying the dollar’s hedging role. Conversely, if U.S. equities outperform, the dollar de-

preciates as imports rise, and financiers’ dollar purchases partially offset that depreciation.

Crucially, the impact is stronger in the former case: financiers face a more appreciated dollar

when repurchasing it in downturns, meaning their dollar demand—denominated in yen—

is higher. As in the yen case discussed above, this asymmetry makes a dollar hedging more

likely when financiers’ positions in the U.S. bond are sufficiently low.

UIP and Hedging Roles: General Insights. Financiers’ long positions in the bonds of the

riskier equity market—U.S. bonds when ρκ > 1 (ΩUIP > 0), or Japanese bonds when ρκ < 1

(ΩUIP < 0) — tend to eliminate that country’s currency hedging role. This aligns with

empirical findings that carry-trade investment currencies, which are typically riskier, tend

to underperform in bad times and fail to appreciate during global downturns (Lustig and

Verdelhan 2007b; Brunnermeier, Nagel, and Pedersen 2009; Lustig, Roussanov, and Verdel-

han 2011; Menkhoff et al. 2012; Corte, Riddiough, and Sarno 2016). By contrast, when a

country’s equity market is relatively safe, its currency is more likely to hedge local equity

risk— particularly when equity co-movement (ρ) is low. The following proposition, proved

in Appendix A.8, characterises the equilibrium selected by financiers through their bond

positions.

Proposition 12 (Equilibrium Selection, Carry Trade Direction and Hedging Role Asym-

metry). Suppose financiers can only trade bonds, and households’ trade preferences are symmetric

(ι0 = ι1 = 1). Then, there are two possibilities :

• Equilibrium A: If κ ≥ 1
ρ
, financiers choose Θb ≥ 0 and ΩUIP ≥ 0; the dollar lies on the

investment side and the yen on the funding side of the carry trade.
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• Equilibrium B: If κ ∈ (0, 1
ρ
), financiers choose Θb < 0 and ΩUIP < 0; the yen lies on the

investment side and the dollar on the funding side.

In both equilibria, financiers reinforce the hedging role of the currency used on the funding side

of their carry trades. Their positions, however, tend to eliminate the hedging role of the currency used

on the investment side. More specifically:

• In Equilibrium A, where the dollar is on the investment side, a dollar hedging role is never

observed.

• In Equilibrium B, where the yen is on the investment side, a yen hedging role may or may not

emerge, depending on κ and the magnitude of Θb. It is always eliminated when κ ∈ (0, ρ], i.e.,

when Japanese equity is not sufficiently safe.

1.4.3 Equity-Only Intermediation

In the casewhere financiers can only trade equity (Θb = Θ∗
b = 0), themodel behaves similarly

to the financial autarky case. As I show in the appendix, under symmetric trade preferences

and absent bond markets, the only possible equilibrium is one in which financiers opt out

when financial markets are also symmetric, and the equilibrium hedging patterns replicate

those under autarky.

In particular, the presence of equity-only financiers cannot eliminate the exchange rate

hedging roles observed in autarky, as their portfolio effects offset each other: while their

equity trades dampen the trade balance channel, the unwinding of foreign equity positions

generates FX flows that restore it. These results offer a natural transition to the full model

with joint bond and equity intermediation, and clarifywhy the introduction of equity trading

does not substantially modify the model’s core mechanics.
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1.4.4 Full Model – Joint Bond and Equity Intermediation

I now turn to the full model, where financiers trade both bonds and equities across coun-

tries. That is, Θb,Θ
∗
b ,Θs,Θ

∗
s ̸= 0. While this richer environment introduces more flexibility

in portfolio construction, the exchange rate hedging properties remain largely in line with

those already uncovered in the bond-only case. However, the interaction between bond and

equity positions adds nuance to the mechanics — particularly regarding how stock market

exposure shapes the strength and asymmetry of hedging roles.

As in previous cases, the core determinants of hedging roles are the relative volatilities

of equity markets (κ) and their correlation (ρ). The main distinction now is that the bounds

determiningwhether a hedging role emerges also depend on the financiers’ equity positions.

Specifically, the condition for a dollar hedging role becomes:

Cov

(
R,
E1

E0

)
> 0 ⇐⇒ Θb · ψ(ρ, κ, σ∗) > ϕ(ρ, κ, σ∗) · (ι1 +Θs), (1.28)

where ψ and ϕ are as defined in the bond-only model, and Θs reflects financiers’ exposure

to U.S. stocks. This expression generalises the bond-only condition by embedding the eq-

uity side of the balance sheet directly into the hedging threshold. The following proposition

— which closely mimics Proposition 11, derived under bond-only intermediation — sum-

marises results.

Proposition 13 (Conditions for Dollar Hedging Role in the Full Model). The dollar acts as a

hedge for U.S. equity if one of the following holds:

1. Safe U.S. equity: κ ≤ κ(ρ) < 1. Here, ψ > 0, ϕ < 0, so f < 0. Inequality (1.28) becomes

Θb > f(ρ, κ, σ∗) · (ι1+Θs), with f(ρ, κ, σ∗) · (ι1+Θs) < 0. The dollar hedging role is present

provided the financier’s position in the U.S. bond is not too negative.

2. Moderate risk: κ(ρ) < κ ≤ 1/ρ, with f ≥ 0. The dollar hedging role is present if Θb <

f(ρ, κ, σ∗) · (ι1 +Θs), with f(ρ, κ, σ∗) · (ι1 +Θs) ≥ 0.
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3. High U.S. equity risk: κ > 1/ρ > 1, with f < 0. The dollar hedging role holds if Θb <

f(ρ, κ, σ∗) · (ι1 +Θs) < 0.

These results use ι1 +Θs ≥ 0, which always holds — see proof and discussion in Appendix A.8.2.

Figure 1.5 plots the region where the dollar hedging role is active, for two values of ρ. As

before, higher correlation across equitymarkets reduces the scope for hedging. Additionally,

when U.S. equity is not too risky (κ < 1/ρ) and financiers are short in U.S. bonds (Θb < 0),

the dollar is more likely to hedge local equity shocks.

For a given κ, higher values ofΘs expand the regionwhere dollar hedging holds— except

in the limiting case where U.S. equity is much riskier (κ > 1/ρ) and financiers are already

short in U.S. bonds, in which case the effect reverses. The distinction in how financiers’

positions in U.S. stocks affect the dollar’s hedging role— depending on the relative riskiness

of U.S. equity — arises from the following asymmetry.

Suppose the dollar hedging role is active. Then, holding long U.S. equity, financiers will

seek to hedge their dollar exposure by taking a larger long position in U.S. bonds, since the

dollar appreciates in downturns and bond payouts retain their value. However, this same

long bond position works against the emergence of a dollar hedging role — particularly

when U.S. equity is relatively risky — because it reduces the dollar demand that would oth-

erwise arise from short positions in bad states. In other words, the more financiers hedge

their equity exposure through bonds, the more they may dilute or eliminate the very ex-

change rate behaviour that justified the hedge. This dynamic resembles a form of Goodhart’s

Law, whereby optimising behaviour aimed at exploiting the dollar’s hedging properties ul-

timately undermines them through endogenous general equilibrium effects.17

17This endogenous relationship is made explicit in equation (1.28), where the condition for the dollar to act
as a hedge depends jointly on the financier’s bond and equity positions. Suppose we are in the third region
region, where κ > 1/ρ > 1 and the dollar hedging role holds with Θb < f(ρ, κ, σ∗) · (ι1 + Θs) < 0. As Θs

increases, the right-hand side of the inequality becomes more demanding — requiring a more negative Θb

to preserve the hedging role. Thus, attempts to hedge dollar exposure via bond holdings can endogenously
tighten or eliminate the very condition that supports dollar hedging.
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Conversely, if the dollar does not initially serve as a hedge, financiers may respond by

shorting U.S. bonds to offset their long equity exposure. This creates a dollar liability that

must be settled in period 1, reinforcing dollar appreciation in downturns and thereby restor-

ing the dollar’s hedging role. In this way, their attempt to hedge in response to FX risk can

endogenously generate the very hedging property they were seeking.

Figure 1.5: Regions for the Dollar Hedging Role Under the Full Model

A similar condition characterises the yen hedging role:

−Cov

(
R∗,

E1

E0

)
> 0 ⇐⇒ Θb > g(ρ, κ, σ∗) · (ι1 +Θs). (1.29)

Figure 1.6 shows the corresponding region. As in the dollar case, correlation across equities

(ρ) compresses the hedging region. But here, larger values of Θs have the opposite effect:

they tend to shrink the scope for yen hedgingwhen Japanese equity is highly volatile (κ < ρ),

while expanding it when Japanese equity is relatively safe (κ > ρ).
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Figure 1.6: Regions for the Yen Hedging Role Under the Full Model

These patterns reflect a fundamental asymmetry introduced by joint bond–equity expo-

sure. When financiers hold positive U.S. equity (Θs > 0), their wealth is positively correlated

with U.S. stock performance. In good states, they unwind their equity positions by selling

dollars to acquire yen, placing downward pressure on the dollar. This tends to complement

the dollar’s hedging role, as long as U.S. equity is not too risky. By contrast, if they are more

exposed to Japanese equity (Θs < 0) and Japanese stocks outperform, their wealth increases

in yen terms — but they must convert it into dollars. However, the model’s equilibrium

pricing tends to appreciate the dollar in these same states, muting the hedging effect. This

asymmetry arises because financiers maximise in dollars: their balance sheet reacts more

forcefully to dollar asset gains than to yen asset gains.18

In sum, the full model preserves much of the structure found under bond-only interme-

diation but introduces richer interactions between bond and equity exposures. The result-

ing hedging properties depend not just on the direction of trade (funding vs. investment
18This asymmetry is clearly visible when comparing Figure 1.5 and Figure 1.6. When stockmarket volatilities

are relatively balanced — i.e., when ρ < κ < 1/ρ— an increase in Θs expands the region for which the dollar
hedging role holds, but a lower Θs shrinks the region for which the yen hedging role is active.
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currency), but also on how the composition of assets interacts with relative volatility, co-

movement, and the financier’s currency of account. Further discussion is provided in Ap-

pendix A.8.3.

1.5 Empirical Evidence

This section tests the empirical relevance of the model’s key mechanisms using international

data on bonds, equities, and exchange rates. While the theoretical framework generates sev-

eral tightly connected predictions, its core empirical implications can be organised into three

testable propositions:

• Prediction 1 (UIP and Relative Equity Sensitivity): UIP deviations (ΩUIP) should

increase with the relative responsiveness of U.S. equity returns (in dollars) to foreign

equity returns (in local currency), as captured by the product ρκ. That is, we should

observe ↑ ΩUIP when ↑ ρκ.

• Prediction 2 (FX Hedging and Market Asymmetries): The strength of FX hedging

roles should reflect the volatility and co-movement of equity markets. Hedging be-

haviour is more likely for currencies linked to equity markets that are less volatile

than the U.S. (i.e., higher κ) and less correlated with it (lower ρ). In other words,

↑ −Cov(R∗, E1/E0)when ↑ κ and ↓ ρ.

• Prediction 3 (UEP as a Function of UIP andHedging): UEPdeviations (ΩUEP) should

be jointly explained byUIP deviations, FX hedging strength, and volatility differentials.

Specifically,ΩUEP should increase in bothΩUIP and the hedging term−Cov(R∗, E1/E0),

in line with the decomposition in equation (1.19). Moreover, currencies in the funding

end of carry trades — associated with more positive ΩUIP — should exhibit stronger

hedging properties. Finally, the third term in the decomposition — reflecting the im-

pact of volatility asymmetries — should be positive when U.S. equity is more volatile
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than the other country’s, that is, when σ > σ∗, or equivalently, κ > 1.

More details on variable construction and data sources are provided in Appendix A.10.

Throughout the main text, I focus on monthly data and evaluate relationships over a 12-

month horizon. I employ two complementary empirical strategies. First, I test each model-

implied relationship in the cross section of countries by computing moments and deviations

over the full time series. This allows me to assess whether the model’s comparative stat-

ics align with average cross-country patterns. Second, I explore the time-series dimension

by constructing conditional, time-varying versions of the key variables and testing whether

the model’s relationships hold dynamically within each bilateral U.S.–foreign pairing. Ad-

ditional results using a 3-month investment horizon are reported in Appendix A.11.

The countries and regions included in the analysis are: Australia, Brazil, Canada, China,

Denmark, the Euro Area, Japan, Korea, Mexico, New Zealand, Norway, Poland, Sweden,

Switzerland, the United Kingdom (U.K.), and the United States (U.S.). The baseline dataset

covers the period from May 2007 to October 2024. Additional results using alternative sam-

ple windows — for instance, excluding the Global Financial Crisis — are reported in Ap-

pendix A.12.

Prediction 1: UIP and Relative Equity Sensitivity

Cross-Country Evidence on UIP Deviations. Figure 1.7 provides empirical support for

Prediction 1. The left axis plots ρκ− 1, where ρκ corresponds to the coefficient from an OLS

regression of U.S. equity returns (in dollars) on foreign equity returns (in local currency),

as derived in the model section. This captures the relative responsiveness of U.S. equity

(compared to foreign equity) to shocks. The right axis shows unconditional 12-month UIP

deviations (ΩUIP) between the U.S. and each country in the sample. As predicted, UIP de-

viations increase with ρκ: when U.S. equity reacts relatively more aggressively to shocks,

a portfolio with the dollar on the investment side of carry trades delivers higher expected
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returns. The cross-sectional correlation between the two series is 0.59, consistent with the

model’s comparative statics and confirming that equity return sensitivity helps explain per-

sistent UIP deviations across countries.

Taking the bond-only intermediation model at face value, the dollar should occupy the

investment side of carry trades whenever ρκ − 1 > 0; see Proposition 12. Appendices A.11

and A.12 show that this prediction is strongly supported by the data outside the Global

Financial Crisis period, for both 3-month and 12-month investment horizons. Additionally,

results are maintained when analysing κ (i.e., based on relative equity volatility) instead of

ρκ (based on relative equity sensitivity) — see Appendix A.13.

Figure 1.7: 12-month UIP deviations (ΩUIP, right axis) and relative equity sensitivity (ρκ−1,
left axis) across countries. The variable ρκ is constructed as the coefficient from an OLS re-
gression ofU.S. log-equity returns (inUSD) on foreign log-equity returns (in local currency).

Time Series Evidence on UIP Deviations. Figure 1.8 displays the time-series behaviour

of UIP deviations alongside variables ρ and κ for each currency pair relative to the U.S. dol-

lar. Consistent with the model’s predictions, the UIP deviation is positively correlated with
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κ — the relative volatility of U.S. equity returns — in 11 out of 15 currency pairings. This

supports Prediction 1 in the time-series dimension. Results for ρκ − 1 are comparatively

weaker, which is largely due to the absence of clear pattern in equity return correlations (ρ).

Appendix A.13 presents the relevant plots and confirms this pattern. Nevertheless, when

the sample is restricted to more recent years — as shown in Appendix A.12 — the positive

relationship between ρκ and UIP deviations re-emerges more strongly. These findings sug-

gest that volatility asymmetries play a more persistent role in shaping carry trade payoffs,

while the contribution of correlation becomes less prominent during specific windows such

as global crises or policy shocks.

Prediction 2: FX Hedging and Market Asymmetries

FX Hedging Role and Volatility/Co-Movement: The model implies that a currency is

more likely to play a hedging role when its associated equity market is relatively less volatile

and less correlated with the U.S. — that is, when κ is high and ρ is low. Figure 1.9 confirms

this prediction: FX hedging roles — measured as the (negative) covariance between local

equity returns and the exchange rate — correlate positively with κ, with a cross-sectional

correlation of 0.64.

Figure 1.10 shows that the hedging role also correlates positively with ρκ − 1, consis-

tent with model-implied conditions for the equilibrium selection and the shape of hedging

regions under bond-only intermediation. These patterns confirm the model’s second pre-

diction in the cross section. As predicted by the model, FX hedging roles correlate more

strongly with κ than with κρ.

Conditional Evidence for FX Hedging. Figure 1.11 evaluates the time-series version of

Prediction 2 by tracking the relationship between FX hedging strength and the underlying

equity market parameters ρ and κ for each U.S.–foreign pairing. Across the 15 countries
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Figure 1.8: UIPDeviation andHedgingMeasuresAcrossCountries. Each panel plots theUIP
deviation (red), ρ (blue), and relative U.S. equity volatility κ (orange, dashed). Reported
correlations are for UIP deviations with ρ and κ, respectively.

examined, the FX hedging role (shown in red) exhibits a negative correlation with the equity

return correlation ρ in all but one case (Japan), as predicted by themodel. This indicates that
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Figure 1.9: FX Hedging Role and κ, obtained for a 12-month investment horizon.

Figure 1.10: FX Hedging Role and ρκ− 1, obtained for a 12-month investment horizon.

FX hedging properties tend to weakenwhen foreign equities co-movemore closely with U.S.

markets, in line with the mechanism described in Section 1.4. Appendix A.12 confirms this

result using alternative samples.

In addition, the FX hedging role correlates positively with the relative volatility param-
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Figure 1.11: FX Hedging Role and Equity Market Parameters Over Time. 12-month invest-
ment horizon. Hedging roles are in red, ρ is in blue, and relative U.S. equity volatility κ is
represented by the dashed orange line.

eter κ in 9 out of 15 cases. This pattern, though weaker than in the cross section, remains

consistent with model-implied comparative statics, which predict stronger hedging effects
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when foreign equity markets are less volatile than the U.S. market. Once more, Appendix

A.12 confirms this result with alternative samples. In Appendix A.13 I display results for the

dollar hedging role: we should observe a negative correlation between this and κ, which is

also verified empirically.

Prediction 3: UIP and FX Hedging

First, prediction 3 implies that FX hedging roles and UIP deviations should move together

across countries. Specifically, currencies that lie on the funding side of carry trades — char-

acterised by positive UIP deviations — should be more likely to act as hedges for domestic

equity.

Figure 1.12 confirms this mechanism at the cross-country level. The blue line shows the

unconditional 12-month UIP deviation, while the red line captures the FX hedging strength

for each country, measured as−Cov(R∗, E1/E0), so that higher values correspond to stronger

hedging role. A clear positive association emerges: the correlation is 0.56.

The dynamic version in Figure 1.13 reinforces this point using the time-series dimension.

For the vast majority of countries (11 out of 15), the correlation between the UIP deviation

and the FX hedging role is positive over time, consistent with the theoretical mechanism.

When a currency becomes more clearly a funding currency (higher ΩUIP for that bilateral

relation), its hedging behaviour tends to strengthen.

Prediction 3: Testing the Full UIP–UEP–Hedging Relationship

To close the empirical analysis, I test the full decomposition linking UIP deviations, FX hedg-

ing roles, and relative volatility to UEP deviations, as implied by equation (1.19). Themodel

predicts that each component of the decomposition should contribute positively to the UEP

deviation, ΩUEP.
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Figure 1.12: 12-month FX Hedging Role and UIP Deviation Across Countries. Full sample.

First, from the charts above, it is clear that κ > 1 for all countries, so the third term in

the decomposition — which reflects relative equity volatility — is unambiguously positive.

Second, the coefficient on the UIP deviation is equal to exp(σ2) > 0, and should therefore be

positive across all pairings. Finally, the coefficient on the FXhedging term is 1 by construction

in the model, and so should also be positive in all cases.

I implement two complementary econometric strategies:

1. Bilateral Regressions. For each country, I estimate a time-series regression of ΩUEP on

ΩUIP, the FX hedging role and a constant. I check whether the sign of each coefficient

aligns with the model: all three should be positive for all countries .

2. Panel Regressions with Country Fixed Effects. Since the coefficient on the UIP term

depends only on U.S. equity volatility and the hedging coefficient is equal to 1, the

model suggests they should be common across countries. I therefore estimate a panel

specification imposing a common slope on these two regressors and absorbing relative

volatility effects through country fixed effects. If themodel is correct, these fixed effects
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Figure 1.13: 12-month UIP Deviations and FX Hedging Roles Over Time for Each Country.
Full sample.

should all be strictly positive, reflecting the fact that σ > σ∗ in each case.
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Empirical Strategy 1: Bilateral Regressions

Table 1.1 presents the results of bilateral time-series regressions of UEP deviations on UIP

deviations and the FX hedging role, testing the decomposition in equation (1.19). Since the

data is sampled monthly but constructed over a 12-month investment horizon, observations

are overlapping, and the residuals inherit a moving average structure of order 11. To account

for this, I use heteroscedasticity- and autocorrelation-consistent (HAC) standard errors with

11 lags.

The results broadly support the model. First, all constant coefficients are positive, as

predicted by the model (capturing volatility asymmetries), and 12 out of 15 are statistically

significant. Second, the coefficient on the UIP deviation is positive in 12 out of 15 regressions

and statistically significant in four cases. The coefficient on the hedging term ismore variable

—unsurprising given the smallmagnitudes of the covariances in the data—but still positive

in 11 of the 15 regressions. Moreover, although estimates are imprecise, the wide confidence

intervals generally do not reject a value of one. Finally, an F-test of joint significance rejects

the null that all three coefficients equal zero in 8 of the 15 specifications.

In sum, the evidence from bilateral regressions is consistent with the structure imposed

by the model. Results become even stronger when excluding the Global Financial Crisis, as

shown in Appendix A.12.

Empirical Strategy 2: Panel Regression with Fixed Effects

Table 1.2 presents the panel estimates of the UIP–UEP–Hedging relationship, imposing com-

mon slope coefficients on the UIP deviation and FX hedging role while allowing for country

fixed effects to absorb relative volatility differences. As predicted by the model, both slope

coefficients are positive and statistically significant: the coefficient on the UIP deviation is

0.46 (and significant), while that on the FX hedging term is 8.81 (and also significant).

All country fixed effects are positive, consistent with themodel’s implication that relative
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Table 1.1: Bilateral Regressions: UEP Deviation on UIP Deviation and Hedging Role

Country Constant UIP Deviation Hedging Role R2 F-test p-value

Australia 0.129 0.710 12.439 0.236 0.001

[ 0.068, 0.190 ] [ 0.188, 1.233 ] [ 1.146, 23.732 ]

Canada 0.119 -0.326 42.054 0.162 0.004

[ 0.074, 0.165 ] [ -2.330, 1.678 ] [ 17.490, 66.618 ]

Switzerland 0.076 -0.214 38.921 0.018 0.686

[ -0.018, 0.171 ] [ -0.980, 0.551 ] [ -54.576, 132.417 ]

Denmark 0.060 0.375 17.017 0.109 0.001

[ 0.008, 0.113 ] [ -0.538, 1.288 ] [ -3.957, 37.990 ]

Euro Zone 0.101 0.267 30.098 0.086 0.115

[ 0.016, 0.186 ] [ -1.049, 1.583 ] [ -13.276, 73.471 ]

UK 0.120 0.573 17.744 0.116 0.051

[ 0.090, 0.150 ] [ -0.286, 1.431 ] [ -2.337, 37.824 ]

Japan 0.089 -0.034 45.417 0.025 0.546

[ -0.006, 0.185 ] [ -0.787, 0.720 ] [ -53.799, 144.633 ]

Korea 0.115 0.155 20.626 0.138 0.000

[ 0.081, 0.148 ] [ -0.212, 0.523 ] [ 13.305, 27.946 ]

Norway 0.143 1.011 -0.232 0.152 0.069

[ 0.080, 0.207 ] [ 0.020, 2.003 ] [ -10.578, 10.114 ]

Poland 0.147 0.526 -3.577 0.069 0.384

[ 0.077, 0.218 ] [ -0.220, 1.272 ] [ -14.242, 7.088 ]

Sweden 0.106 0.409 23.648 0.213 0.000

[ 0.042, 0.170 ] [ -0.264, 1.082 ] [ 10.397, 36.899 ]

Brazil 0.386 0.643 6.437 0.244 0.001

[ 0.240, 0.533 ] [ 0.293, 0.993 ] [ -10.618, 23.491 ]

New Zealand 0.140 0.444 23.560 0.140 0.020

[ 0.078, 0.202 ] [ -0.041, 0.928 ] [ 2.552, 44.568 ]

China 0.008 -0.447 -78.756 0.149 0.233

[ -0.147, 0.163 ] [ -1.266, 0.372 ] [ -175.653, 18.141 ]

Mexico 0.299 0.913 -1.558 0.247 0.001

[ 0.198, 0.401 ] [ 0.450, 1.375 ] [ -31.170, 28.055 ]

Notes: Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 11 lags. 12-month in-
vestment horizon. Full sample.

61



U.S. equity volatility (σ > σ∗) contributes positively to UEP deviations. Thirteen out of

fifteen country effects are statistically significant at conventional levels.

Further results are provided in Appendix A.14. The coefficient on the UIP deviation is

highly robust across specifications, and fixed effects remain generally positive. As expected,

the coefficient on the hedging term is more sensitive to specification, reflecting the low em-

pirical magnitude of equity–FX covariances in the data.

1.5.1 Further Empirical Patterns

Beyond the primary predictions tested above, the empirical analysis reveals additional pat-

terns that are consistent with themodel’s structure. First, UEP deviations are predominantly

positive across both time and countries when measured at a 12-month investment horizon

(especially after the Global Financial Crisis). This is evident from Figures 1.15 and 1.14, and

the same pattern holds for the 3-month horizon (see Appendix A.11). In other words, a

long-short portfolio that buys U.S. equity and sells foreign equity tends to generate positive

excess returns on average. These figures also reconfirm that UIP and UEP should exhibit a

positive relationship, and the same should apply to the one between UEP and FX hedging

roles.

This systematic return asymmetry involving the UEP deviations may reflect the fact that

U.S. equity is riskier than its foreign counterparts. In the data, the unconditional standardde-

viation of U.S. equity returns is approximately 16%, while the average across foreignmarkets

is just 8%. When analysed separately, the model would imply that this volatility differential

— captured by a higher κ— should lead to higher UEP deviations, since a more volatile U.S.

equity position increases the marginal risk exposure of the long-short portfolio. However, I

verify a negative link both unconditionally (in the cross section) and conditionally (in the

time series); see Appendix A.13.

Alternatively, persistent UEP deviations might be driven by ρ. In this regard, however,
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Table 1.2: Panel Regression: UEP Deviation on UIP Deviation and FX Hedging Role (with
Fixed Effects)

Variable Coefficient Std. Error z-stat p-value [95% CI]

UIP Deviation 0.457 0.095 4.817 0.000 [0.271, 0.643]

FX Hedging Role 8.812 3.161 2.788 0.005 [2.617, 15.008]

Australia 0.106 0.029 3.664 0.000 [0.049, 0.163]

Brazil 0.318 0.049 6.538 0.000 [0.223, 0.413]

Canada 0.094 0.029 3.197 0.001 [0.036, 0.152]

China 0.130 0.035 3.664 0.000 [0.060, 0.199]

Denmark 0.055 0.021 2.651 0.008 [0.014, 0.096]

Euro Zone 0.084 0.026 3.275 0.001 [0.034, 0.134]

Japan 0.066 0.041 1.603 0.109 [–0.015, 0.146]

Korea 0.116 0.018 6.605 0.000 [0.082, 0.151]

Mexico 0.210 0.031 6.706 0.000 [0.148, 0.271]

New Zealand 0.129 0.021 6.028 0.000 [0.087, 0.171]

Norway 0.144 0.031 4.676 0.000 [0.084, 0.205]

Poland 0.161 0.030 5.461 0.000 [0.103, 0.219]

Sweden 0.087 0.022 4.009 0.000 [0.045, 0.130]

Switzerland 0.024 0.031 0.769 0.442 [–0.037, 0.084]

UK 0.115 0.017 6.851 0.000 [0.082, 0.148]

Model fit: R2 = 0.094, Adjusted R2 = 0.089,.
Notes: Number of observations: 3,105. Robust standard errors (HAC, 11 lags) are used to address auto-
correlation due to overlapping 12-month returns. Country dummies absorb cross-sectional heterogeneity.
The regression imposes homogeneous slopes on UIP deviations and FX hedging roles across countries,
allowing intercepts to vary.
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the model predicts that UEP deviations should not be directly explained by the correlation

parameter ρ — see Proposition 3. Empirically, this prediction is borne out in the cross sec-

tion: variation in ρ is not strongly associated with UEP deviations — also documented in

Appendix A.13. It is difficult to pin down exactly what drives persistent returns in the long-

short equity portfolio — I leave this question for future research.

1.6 Comparative Statics: Simulating the Full Model

To illustrate the model’s behaviour across key parameters, I simulate comparative statics

based on the full model’s numerical solution. The calibration is chosen to reflect average

unconditional moments in the data. In particular, the volatility of U.S. equity returns is set

to 16%, and the average volatility of foreign equities to 8% — therefore, we have κ = 2. The

average correlation between U.S. and foreign equity markets is calibrated at ρ = 0.65. For

simplicity and in order to focus on the financial side of the model, I also set ι0 = ι1 = 1. I

explore comparative statics over ρ and σ, holding all else fixed. The vertical dashed lines in

Figures 1.16 and 1.17mark ρ = 0.65 and σ∗ = 0.08, respectively. Hence, for the second charts,

we have κ > 1 for any level of σ that lies on the right side of that dashed line.

The goal of these simulations is not to match real-world asset positions and main vari-

ables in levels — this would be difficult given the two-period nature of the model — but

rather to highlight directional movements that align with theoretical predictions. Notably,

the simulations confirm three core mechanisms. First, hedging properties deteriorate as in-

ternational equity correlations rise (higher ρ), reflecting a weakening of the FX channel dur-

ing global downturns. Second, dollar hedging roles declinewith higher U.S. equity volatility

(i.e., higher κ). Third, when σ is low (i.e., lower κ), the foreign currency’s hedging role also

weakens, consistent with the previous discussions.

Interestingly, both the UIP and UEP deviations exhibit non-monotonicities around the

point where κ = 1/ρ, where financiers switch the sign of their positions in foreign bonds
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Figure 1.14: 12-month UEP Deviations and FX Hedging Role Across Countries. Full sample.

and equity. This mirrors the equilibrium selection logic derived analytically in the bond-

only version of the model (see Proposition 12).

Figure 1.16 also highlights that more volatile exchange rates during global downturns

cannot be attributed to increased equity market co-movement alone — a finding consistent
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Figure 1.15: 12-month UIP and UEP Deviations Across Countries. Full sample.

with earlier discussions. By contrast, Figure 1.17 suggests that the phenomenon may be

explained by spikes in U.S. equity volatility during these episodes. Interestingly, dollar vari-

ance displays a “smile” pattern across values of κ: it narrows when idiosyncratic risks are

balanced, but increases when onemarket— either U.S. or foreign— becomes disproportion-
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ately risky.

Themodel also helps rationalise observed dollar appreciations during global downturns.

These movements are consistent with shifts in ρ, as shown by the downward slope in “Dol-

lar today” in Figure 1.16. Changes in κ can produce similar effects, but only if U.S. equity

becomes markedly safer during crises — a pattern not clearly observed in the cross section.

This reinforces the interpretation that increased global co-movement, rather than shifting

volatility, is the primary driver of dollar strength in bad times.

Finally, the numerical simulations produce negative UIP deviations and positive UEP

deviations for parameter values aligned with the data (κ ≈ 2, ρ ≈ 0.65). These patterns are

in line with the cross-country empirical evidence presented in the previous section.

In Appendix A.9, I demonstrate that the main results are robust to alternative values of

the trade preference parameters ι0 and ι1. That section also explores how shifts in these

household preferences affect the composition of the financiers’ balance sheet, thereby gen-

erating modest differences in the behaviour of the exchange rate relative to the benchmark

case.

1.7 Conclusion

This paper presents a unified framework for understanding deviations from uncovered in-

terest parity (UIP), uncovered equity parity (UEP), and the hedging properties of exchange

rates. By introducing global financial intermediaries with joint exposure to international

bond and equity markets, the model offers a tractable yet flexible structure capable of gen-

erating a rich set of empirical predictions. Central to this approach is the recognition that

exchange rates are shaped not only by trade imbalances or monetary policy, but by the bal-

ance sheet exposures of a set of globally active investors.

The model delivers a decomposition of UEP deviations into three interpretable compo-
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nents: a UIP deviation scaled by U.S. equity volatility, a hedging motive term reflecting the

interaction between currency and equity returns, and a volatility differential term capturing

asymmetries in risk across markets. Each of these forces has a distinct empirical fingerprint,

and jointly they offer a compelling lens through which to interpret exchange rate dynamics

and cross-border asset flows.

Empirically, the model performswell. UIP deviations are directly associatedwith the rel-

ative responsiveness of U.S. equity markets, FX hedging roles emerge in the presence of eq-

uity market asymmetries, and UEP deviations are systematically explained by UIP, hedging

motives, and volatility differentials. These results are robust across countries, time periods,

and investment horizons. Themodel also generates equilibrium predictions for the direction

of carry trades and the presence of currency hedging roles — predictions that are strongly

supported empirically.

Finally, numerical simulations show that the comparative statics of the full model are

consistent with key empirical features of exchange rates in global downturns. While not

intended to match real-world levels, they clarify the equilibrium channels at work and high-

light the internal consistency of the framework.

Taken together, these findings suggest that a multi-asset perspective on financial inter-

mediation is essential for understanding global currency dynamics. The framework offers

a foundation for future work examining the macro-financial transmission of shocks across

borders, and for quantifying the shifting (and hedging) roles of safe-haven currencies in a

world of increasingly integrated capital markets.
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Figure 1.16: Comparative Statics: Varying Equity Correlation (ρ).

69



Figure 1.17: Comparative Statics: Varying Volatility of U.S. Stock Returns (σ).
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Chapter 2

Intertemporal Substitution with

Unfiltered Consumption

Co-authored with Carlos Carvalho and Ruy Ribeiro1

Abstract: Most macro series used in academic research are usually smoothed, filtered and in-

terpolated by official data providers. This paper shows that the use of filtered consumption series

may considerably distort estimates of the Euler equation in consumption-based asset pricing models,

more specifically of its slope, the elasticity of intertemporal substitution (EIS). Once we use unfiltered

consumption, we find that point estimates become more similar and confidence intervals can become

tighter across different settings, data frequencies, as well as for different types of consumption data –

macro and micro. Results also seem less sensitive to the presence of weak instruments, as, for instance,

the completely uninformative weak-IV-robust confidence intervals usually found in the literature be-

come rarer. Generally, we find that the EIS is quite low for macro data, albeit not as close to zero as

commonly suggested in the literature. In this case, we often obtain values in the interval [0, 0.5].

For micro data, we estimate Euler equations conditional on the consumption of asset vs. non-asset
1We are grateful to Christian Julliard for his insightful suggestions. We also thank participants of the In-

ternational Workshop in Financial Econometrics for valuable feedback, especially Tim Bollerslev and Svetlana
Bryzgalova. Finally, we are also thankful to Benjamin Moll.
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holders. With unfiltered consumption, we do not find enough evidence of a different EIS across these

groups. In addition, our estimates for stock holders are positive, but not above 0.3. Estimates for bond

holders are higher, but more uncertain, usually from 0.4 to 1. In contrast, reported consumption seems

unreliable, consistently returning negative estimates across groups.

2.1 Introduction

The Euler equation and the elasticity of intertemporal substitution (EIS, henceforth) play a

central role in models of dynamic choice in macroeconomics and finance, capturing the sen-

sitivity of consumption to the level of expected returns. For example, long-run risks models

– Bansal and Yaron (2004), Bansal, Kiku, et al. (2014), Bollerslev, Tauchen, and Zhou (2009)

and Bansal and Shaliastovich (2013), for instance – depend on the key assumption of an EIS

above 1 to imply a sizeable equity premium, a low and stable risk-free rate and a correct

cyclical behaviour of dividend-price ratios. However, the empirical literature has struggled

to reach an agreement on a reasonable range for that parameter. Estimates seem heavily in-

fluenced by the specification, econometric method, different measures of returns used and

the characteristics of the household considered in the studies2. It is still not clear what value

should be considered as a reasonable guess to calibrate representative-agent models, for ex-

ample. Early evidence fromHall (1988) had pointed to a “strong conclusion that the elastic-

ity is unlikely to be much above 0.1, and may well be zero”, but follow-up papers generally

found mixed results and apparently none of them can provide a useful bridge to reconcile

its empirical findings with values usually adopted in some macro models.

This paper attempts to improve estimates of the EIS by considering the fact that official

consumption data has been filtered, smoothed and interpolated before release. Henceforth,
2See Gomes and Paz (2013) for an example of an alternative return measure constructed to capture the

representative agent’s asset portfolio. Moreover, characteristics of the household are relevant to the extent that
they participate differently in local markets – see Vissing-Jorgensen (2002) and Guvenen (2006), for instance.
Additionally, Havranek et al. (2013) find that distinct estimates of the EIS for different regions or cohorts seem
more related to the specific assets held by different groups and their income than to local preferences.
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we refer to these series as reported consumption. Kroencke (2017) shows that, in order tomit-

igate measurement errors, these statistical procedures undermine those series for research

purposes by lowering their covariances with returns and introducing non-existent persis-

tence. The former finding can be important to the extent that it implies that estimates based

on reported data will be downward biased, what could explain the fact that a reasonable

fraction of the papers in the literature state that the EIS is not statistically different from 0.

Indeed, in the absence of the effects of such transformations, estimates might be higher and

potentially more precise.

Our main findings suggest that unfiltered consumption – i.e., adjusted series that elimi-

nate those noisy statistical procedures present in reported data – can significantly improve

econometric resultswhen estimating the EIS. These findings are confirmed for several econo-

metricmethods, types of consumptiondata (macro andmicro), aswell as for data at different

frequencies. Unfiltered consumption is also important to obtain more precise estimates of

the EIS when considering specific groups of asset holders in the Euler Equation, relevant

issue when testing the limited asset market participation hypothesis (henceforth, LAMP),

for instance.

First, using aggregate expenditures data from theNational Income and Product Accounts

(NIPA), we show that estimates of the EIS tend to increase relatively to cases that use re-

ported consumption instead. Point estimates across different classes of estimators and frame-

works also become more similar, being roughly from 0 to 0.5 in our baseline specifications,

compared to −0.2 to 0.2, when using reported consumption.

Second, those estimates of the EIS seem less affected by the presence of weak instru-

ments. We obtain more stable estimates across econometric methods regardless of whether

unfiltered consumption produces lower first-stage F-statistics, compared to its reported ana-

logue.

Third, while completely uninformativeweak-instrument-robust confidence intervals3 are
3We define uninformative intervals as either empty sets or ones that cover the whole real line.
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quite frequent in the empirical literature of the EIS for macro consumption data, – Yogo

(2004), Ait-Sahalia, Parker, and Yogo (2004), Ascari, Magnusson, and Mavroeidis (2016)

and Gomes and Paz (2013) –, this paper shows that unfiltered consumption can transform

these impractical intervals into more plausible sets. For instance, Yogo (2004) found unin-

formative sets in 66 percent of specifications estimated with reported macro expenditures

data for the US economy. In contrast, for the same framework, we only obtain uninformative

sets in 28 percent of our econometric approaches relying on unfiltered consumption.

Lastly, empirical benefits of unfiltered consumption series are also confirmed using mi-

cro data from the Consumer Expenditures Survey (CEX, henceforth). With this data, it is

also possible to test the LAMP by obtaining distinct estimates of the EIS based on differ-

ent groups of asset holders. We split households between stock and non-stock holders and

between bond and non-bond holders. Unfiltered consumption is once again important. It

produces estimates for stock holders that lie in the interval from 0 to 0.3. The EIS for bond

holders is more uncertain, albeit higher, generally from 0.3 to 1. In contrast, estimations

based on reported consumption exhibit a less clear pattern, consistently returning negative

values across different groups of asset holders.

To construct unfiltered consumptiondata, we adapt the so-called Filtermodel inKroencke

(2017), so that we can use it to estimate the EIS using several types of data at different fre-

quencies, rather than annual macro data only, as in the original model. According to the

method, government statisticians who only collect an admittedly noisy observation for con-

sumption opt to use a Kalman filter to estimate the unobserved level of consumed goods as

precisely as possible – henceforth, we refer to the latter as state consumption4. Consequently,

reported (or filtered) consumption is then defined by fitted values of this Kalman filter,

while unfiltered consumption is obtained by reverse engineering to guess what their first
4Kroencke (2017) used the term true consumption instead. This reflects the fact that unobserved consump-

tion in the model represents what government statisticians classify as true consumption according to their
beliefs. We prefer to use the term state consumption in order to clarify the fact that this variable is modelled as
true consumption only by those statisticians and should not be confused with the true level of consumed goods
in the economy.
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(supposedly noisy) observations were before being subject to the procedure. We propose

a modification to the original model in order to introduce serially correlated measurement

error. Specifically, our variation of the model is possible through the solution of a parallel

quasi-differenced Kalman filter. We then map this solution back onto the original model,

without changing main assumptions. This modification is essential to the extent that seri-

ally correlated measurement error terms are more relevant when either using disaggregated

data or data at higher frequencies – seeWilcox (1992), Bell andWilcox (1993) and the online

appendix of Kroencke (2017)5.

With the modified model in hands, we review identification approaches for the EIS usu-

ally adopted in the established literature, importantly those of Yogo (2004) and Vissing-

Jorgensen (2002). The former addressed the empirical puzzle that estimates of the EIS are of-

ten statistically less than 1, while their reciprocal is not different from 1. He considered L. G.

Epstein and Zin (1989) preferences and eleven developed countries while applying weak-

identification-robust techniques. Although his final conclusions agree with Hall (1988), he

finds point estimates that are rather imprecise across countries, mostly reflecting the pres-

ence of weak instruments. This inaccuracy was particularly true for the US economy, ad-

dressed in our paper6. A sensible explanation for this fact is that limited participation in

asset markets may be plaguing results once Euler equations may no longer hold for the rep-

resentative agent, possibility addressed by Vissing-Jorgensen (2002) and Guvenen (2006).

The former used CEX panel data to verify how estimates of the EIS may differ taking into ac-

count different types of households in asset markets, as bond vs. stock holders vs. non-asset

holders. The latter shows how lower estimates of the EIS are obtained when considering

aggregates that ignore the facts that the majority of households do not participate in stock
5Consistent with that, we found significantly weaker results at higher frequencies when serially correlated

measurement errors were not allowed. This was the case for NIPA consumption at quarterly frequency, for
instance. Simply applying the original model of Kroencke (2017) provided such imprecise estimates of the EIS
that even official data performed better in comparison.

6Yogo (2004) finds many empty and infinite weak-IV-robust confidence intervals for the EIS using US data
independent from the data frequency, indicating that his baseline model is entirely rejected for this country.
We use his framework in section 3 of this paper.
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markets and that most of the wealth is held by a small fraction of population with a high

EIS. Similarly, Ait-Sahalia, Parker, and Yogo (2004) review the so-called Equity Premium

Puzzle – Mehra and Prescott (1985) – and estimate the EIS using not only the consumption

of essential goods, but also that of luxury goods. While Vissing-Jorgensen (2002) finds that

the EIS is not the same for stock and bond holders (0.3-0.4 and 0.8-1, respectively), results

in Ait-Sahalia, Parker, and Yogo (2004) are somewhat inconclusive, albeit they do mention

that the parameter is possibly higher regarding the consumption of luxury goods.

While none of the papers in the EIS empirical literature have considered that inaccurate

estimates might be related to the fact that official data are filtered in order to mitigate mea-

surement errors, there are a few papers in the asset pricing literature accounting for this

fact. In addition to Kroencke (2017), Savov (2011) addressed the Equity Premium Puzzle

and showed that reported consumption performs so poorly in asset pricingmodels that even

the use of garbage data instead provides much better results. In a more complex framework

and relying on Bayesian methods, Schorfheide, Song, and Yaron (2018) present a mixed-

frequency approach that controls for measurement errors and time-varying volatilities7. In

general, it is consensus that is quite hard to track true consumption in the data.

Our paper brings up the question about how the use of unfiltered consumption data

may generate more reliable and precise estimates of the EIS. Indeed, we present evidence

on how filtering out noisy elements present in official releases of consumption data (para-

doxically, due to filtering of the original data) can help us to improve econometric results in

the estimation of that parameter. Furthermore, we evaluate our findings relying on weak-

identification routines. The use of these techniques in the EIS empirical literature does not

seem sufficiently disseminated yet. In addition to Yogo (2004), only a few papers address the

subject. Ascari, Magnusson, and Mavroeidis (2016), Ait-Sahalia, Parker, and Yogo (2004),
7They log-linearise and estimate a state-space representation that simultaneously accounts for consumption

and its correspondingmeasurement errors at different frequencies. We come back to this later, but for nowhave
inmind that the frequency of consumptionmattersmuch for researchers interested in asset pricingmodels that
attempt to track implicit/noiseless consumption data.
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Gomes and Paz (2013) and J. C. Fuhrer and Rudebusch (2002) are examples, albeit the latter

in a more macro-based framework.

This paper is organised as follows. In Section 2.2, we present our modifications of the

model in Kroencke (2017). The details on the complete model are available in the appendix.

Section 2.3 evaluates how unfiltered consumption affects the estimates of the EIS in a frame-

work of L. G. Epstein and Zin (1989) preferences and log-linearised Euler equations, in spirit

of Yogo (2004). In Section 2.4, we feed themethodology into consumptionmeasured by CEX

data to verify the potential effects on estimates of the EIS across different types of asset hold-

ers, testing the LAMP. The last section concludes.

2.2 Model

This section describes how we adapt the filter model in Kroencke (2017), allowing for seri-

ally correlated measurement error. As mentioned earlier, this adaptation makes the model

suitable for different types of data at several frequencies – rather than just for macro annual

data, as in the original model. For the sake of conciseness, in this section we only cover parts

of themodel which aremodified and that are relevant to a smooth reading of this paper. The

complete model and its derivation are presented in the appendix.

We assume that statisticians who prepare the data for release collect a first (primitive)

measure of consumed goods yt, believed to be noisy. They conjecture that yt is formed by

their belief of true consumption ct and an additive measurement error component ξt8:

yt = ct + ξt. (2.1)

Henceforth, we refer to ct as state consumption. We adopt this name to emphasise that the

model captures what statisticians believe to be true consumption (ct), rather than the correct
8You can see yt as a first measure of consumption which has not been affected by filtering, smoothing and

interpolation procedures. Alternatively, you can think of it as the garbage measure of Savov (2011).
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measure of true consumption in the economy9.

These statisticians model state consumption by a random walk representation:

ct = ct−1 + µc,t + ση,tηt, (2.2)

where ηt ∼ N(0, 1) and we assume µc,t = µc = 0. Equation (2.2) does not mean that true

consumption follows a random walk process nor that is has a constant drift. Instead, it only

implies that government statisticians filter the data considering that true consumption fol-

lows that stochastic process, while assuming a constant drift10. We later assume that ση,t

follows a GARCH process.

To generalise the model, we introduce persistent measurement error by relying on the

following AR(1) representation:

ξt = ρξξt−1 + σννt, (2.3)

where νt ∼ N(0, 1). Generally speaking, it is trivial to expand a Kalman filter embedding

(2.3)11. Harvey, Ruiz, and Sentana (1992) discuss how to model and extend these filters

while assuming ARCH or GARCH processes for variance terms. Nonetheless, the model

with (2.3) can not be solved in terms of unfiltered consumption using typical procedures. In

this regard, we follow E. Anderson et al. (1996), rewriting the state-space representation in

terms of a “quasi-difference”:

yt = yt+1 − ρξyt, (2.4)

where yt represents the “quasi-differenced” counterpart of yt12. Once the solution for yt is
9In addition, ct will be the state variable in a Kalman filter, another reason for that name.

10Formally, we remove the mean of the series before calibrating the model, to then add it back to construct
unfiltered consumption. These steps were also adopted in the original model and the use of data at different
frequencies does not alter this part of the model.

11Perhaps the simplest form is to expand the vector of latent variables, now including ξt.
12Typically, a “quasi-difference” involves lags of the variable. We are following the term used in E. Anderson

et al. (1996) here. From (2.4), we have that [yt+1, yt, ..., y0, ĉ0] and [yt, yt−1, ..., y0, ĉ0] span the same space. By
construction, this implies that prediction errors in yt are actually innovations in yt+1. See the appendix and
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obtained, we then use (2.4) to map it back onto yt. This final estimate of the latter (ŷt) is

what we later call unfiltered consumption.

It is worth emphasising that we are not interested in fitted values of state variables after

putting observable data into the filter. Instead, we want to estimate what the original ob-

served data (yt) were once all we have are fitted values of a state variable (ct) tracked by a

Kalman filter. The quasi-differencing approach makes the reverse engineering we have to

deal with when inverting the Kalman filter possible without imposing additional complica-

tions to the way we solve the model13. It also does not mean that statisticians consider (2.4)

when filtering the data. Instead, they solely consider (2.1), (2.2) and (2.3).

Equations (2.1) to (2.4) form together a quasi-differenced Kalman filter whose solution

can be written as14:

ĉt = ĉt−1 +Kc
t (yt−1 − (1− ρξ)ĉt−1), (2.5)

Kc
t =

P c
t (1− ρξ) + σ2

η,t

P c
t (1− ρξ)2 + σ2

η,t + σ2
ν

, (2.6)

P c
t = P c

t−1(1− (1− ρξ)K
c
t−1) + (1−Kc

t−1)σ
2
η,t, (2.7)

where ĉt = Et[ct]denotes reported consumption (conditional time-t estimate of true consump-

tion), P c
t is the conditional variance of ct and σ2

η,t denotes the volatility parameter in (2.2).

Importantly, Kc
t is the Kalman gain associated with true consumption, what directly gov-

erns the persistence of reported consumption. Let (yt−1− (1− ρξ)ĉt−1) = ut be the “re-scaled

prediction error”, a surprise factor15. WhenKc
t is relatively high, statisticians attribute more

weight to the surprise factor than to their past estimate ĉt−1 (reported consumption for the

last period). Consequently, ĉt is less persistent. Kroencke (2017) had also shown that unfil-

tered consumption exhibits higher covariances with expected returns, what we later confirm

E. Anderson et al. (1996) for more details.
13That is, we can solve the model following similar steps as in Kroencke (2017).
14Check the appendix for the derivation.
15This corresponds to the prediction error of the original model, but the term (1 − ρξ) adjusts it for the

presence of the quasi-difference yt − ρξyt−1 instead of yt.
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in our results in terms of the EIS16.

One way to verify consistency of the filter is to check whether Kc
t increases in periods

of economic turbulence (recessions, for example). Intuitively, when the variability of eco-

nomic shocks is high relatively to the volatility of the measurement error, it is optimal for

statisticians to adjust ĉt taking into account surprising data more than their past estimates,

ĉt−1. Consequently, Kc
t is higher and reported consumption less persistent.

Algebraically, such mechanism comes from the analogue of (2.6) in the original model

of Kroencke (2017)17. However, since equation (2.6) is not as simple as his, we must derive

parametric conditions under which the derivatives of Kc
t for P c

t and σ2
η,t are positive as well

(so that more economic turbulence implies a higher Kalman gain).

Fortunately, we find that our model behaves properly in this regard under reasonable

parametric conditions. We present these conditions in proposition 1 below. For expository

reasons, they are written in terms of a homoscedastic version of the model (when σ2
η,t = σ2

η,

while Kc and P
c are also fixed to steady-state values)18. Henceforth, we refer to the base-

line model whenKc
t , P c

t and σ2
η,t are time-varying as heteroscedastic, but we will later present

results for its homoscedastic analogue as well. Importantly, bear in mind that heteroscedas-

ticity in the model does not imply the assumption of heteroscedasticity in our estimations.

The heteroscedastic version of the Filter solely assumes that statisticians model the volatility

of state consumption as time-varying, but it does not impose any restriction whatsoever to

moments of unfiltered consumption, used in our regressions.

Proposition 14. If state consumption is homoscedastic and 4σ
2
ν

σ2
η
> (1 + ρξ)

2σ2
η − (1− ρξ)

2, then its

16When it is the other way around, reported consumption becomes a very persistent and predictable series
and its correlation with asset returns normally lowers in comparison.

17See Kroencke (2017), p. 54, equation (5).
18The same conditions are valid point-to-point in time, but derivatives must hold at any single period. If the

filter converges to steady-state values, that should not be a problem. The formal proof as well as more details
on the homoscedastic model are exhibited in the appendix.
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unconditional variance and Kalman gain follow:

P
c
=

σ2
η

2(1− ρξ)

(
[(1− ρξ)

2σ2
η + 4σ2

ν ]
1
2 − (1 + ρξ)σ

2
η

)
,

K
c
=

P
c
(1− ρξ) + σ2

η

P
c
(1− ρξ)2 + σ2

η + σ2
ν

,

(2.8)

while:

∂K
c

∂P
c > 0;

∂K
c

∂σ2
η

> 0 ⇐⇒ σ2
ν − (1− ρξ)P

c
ρξ > 0. (2.9)

Proof. See appendix.

In practice, a sufficiently small value of ρξ ensures the second part in (2.9). In addition,

we find that (2.9) is easily satisfied for different calibrations of the model.

Next, we need to derive a measure of unfiltered consumption that is compatible with the

quasi-differenced filter above. Adapting the methods in Kroencke (2017) for our model, one

can isolate yt−1 in (2.5) and conduct simple adjustments that account for time-aggregation

bias to find19:

ŷt−1 =
ĉt − (1− (1− ρξ)Ωt)ĉt−1

Ωt

, (2.10)

where Ωt = αKt and we set α = 0.8, as in the original model. Equation (2.10) above rep-

resents “quasi-differenced unfiltered consumption”. Once ŷt−1 has been found, we need to

transform it back into its primitive, unfiltered consumption, ŷt. Based on (2.4), we do this

following:

ŷt = ŷt−1 + ρξŷt−1. (2.11)

More details on how we use (2.11), as well as on how we initialise our model are presented

in the appendix.
19Check the appendix for more details.
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2.2.1 Consumption Volatility

We consider a time-varying consumption volatility in (2.2), which follows a GARCH(1,1)

stochastic process:

σ2
η,t = a0 + a1η

∗2
t−1 + a2σ

2
η,t−1, (2.12)

where η∗t = ση,tηt
20. With (2.12), we let the error term capture the inherent dynamics of the

data, so that the randomwalk hypothesis is not an obstacle21. Furthermore, since we are ulti-

mately interested in unfiltered consumption, it should not matter much if we have a random

walk processwith a data-drivenmodel for its variance or a covariance-stationarymodel with

constant volatility, as far as both generate unfiltered series whose moments are sufficiently

similar. Indeed, we find that different calibrations for the GARCH specification generate

very similar results if moments are relatively matched, so that (2.12) seems to perform well

when applied to the data.

2.2.2 Adjusting Asset Returns

We also need time-aggregation-bias adjustments for returns, such that their timing is com-

patible with that of (2.10). These steps are identical to those in Kroencke (2017) when we

use annual data and are unrelated to the presence of serially correlated measurement error,

(2.3)22. However, we use a (necessary) slight adaptation when working with other data fre-

quencies. Corrections are only performed on the return serieswhen the econometricmethod

applied uses unfiltered consumption. For reported consumption, asset returns need not be

corrected for a different timing since we do not adjust that of reported data23. It is worth

emphasising that these adjustments are not essential to validate the main findings of this
20Equation (2.12) is for the (baseline) heteroscedastic model. Presumably, σ2

η,t = σ2
η for the homoscedastic

version.
21Bymodelling state consumption growth as i.i.d., we let the GARCH component (2.12) absorb the dynamics

of the data, so that the choice for the process itself becomes less fundamental.
22Recall that the original model only handles annual data.
23We follow Kroencke (2017) once more here. Results barely change when we repeat our estimations with

reported consumption while correcting the timing of returns.
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paper, since similar results are found using raw returns data24.

2.2.3 Calibration

We follow similar parameterisation techniques to those in Kroencke (2017). However, the

quasi-differencing approach demands an additional step. Specifically, with the presence of

(2.3) we also need to calibrate ρξ. To the best of our knowledge, Schorfheide, Song, and

Yaron (2018) is the only paper that estimates something similar in the literature. Relying on

Bayesian methods, the analogue of ρξ with monthly consumption data is estimated as 0.06

in their paper, albeit in a much more complex model. Discrepancies apart, when testing our

filter on macro data (NIPA consumption) for different parametric combinations, we found

out that it behaves properly for different values of ρξ in a neighbourhood around 0.06 – such

that Kc
t increases in recessions, in line with the intuition.

Figure 2.1 below presents howKc
t varies for ρξ fixed around that neighbourhood, specif-

ically at 0.03, 0.06 and 0.09. Besides, if remaining parameters are calibrated such that bench-

marked moments of unfiltered consumption are sufficiently aligned, we find that different

values of ρξ in that neighbourhood simply do not matter much25. Therefore, even when not

using data at monthly frequency, we fix ρξ = 0.06 throughout the paper, while adjusting

remaining parameters following steps in Kroencke (2017). The only exception is when we

estimate the EIS using annual macro data. As already mentioned, serially correlated mea-

surement error terms are less relevant for aggregate data at lower frequencies. Hence, we

apply the original model (ρξ = 0) in that case.

Based on Bansal and Yaron (2004), we find that values of ση in a neighbourhood of
√
3×

0.0078 ≈ 1.4% for quarterly NIPA consumption and
√
12 × 0.0078 ≈ 2.7% for annual NIPA

24We repeat our main tables for NIPA consumption (macro data) using raw returns in the appendix.
25In fact, correlations between different generated series of unfiltered NIPA consumption are similar once

we change ρξ while adjusting other parameters taking into account benchmark moments. Hence, the GARCH
component of themodel is perfectly adjustable to capture the consumption dynamics evenwhen ρξ ismodified.
Subsequent unfiltered consumption series are not econometrically distinguishable in terms of estimates of the
EIS.
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Figure 2.1: Kalman Gain Over Time for Different Values of ρξ

Note: Quarterly Kalman gainKc
t in our sample for three different values of ρξ (0.03, 0.06 and 0.09). The chart

shows that consumption is less filtered (higherKc
t ) during the 2009 crisis, the early 2000’s recession and early

90’s and 80’s recessions, for instance.

consumption match our moment requirements quite well26. Kroencke (2017) uses a slightly

lower value of ση = 2.5%, what agrees with results in Dew-Becker (2016), who finds the

same value for the long-run standard deviation of reported NIPA consumption. The small

difference does not change moments substantially and, therefore, we set ση = 1.4% and

ση = 2.5% for quarterly and annual data, respectively.

It is known that measurement error terms tend to cancel out over longer horizons —

e.g. Daniel and Marshall (1996). Because of this, Kroencke (2017) uses a value for σν that

matches 6-year standard deviations of simulated and empirical data (garbage, reported and
26Those values represent the counterparts of ση in the model of Bansal and Yaron (2004), but adjusted for

quarterly and annual data instead (they considered the value of 0.0078 at monthly frequency). The connection
between their paper and the Filter model is not surprising. In fact, Kroencke (2017) used a modified version
of their model to simulate state consumption (referred to as “true” consumption in that paper).
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unfiltered as the latter)27, calibrating the model based on post-war data. We calibrate σν

under the exact same method when using annual NIPA data (as in his paper). When us-

ing quarterly NIPA data, we accumulate quarterly expenditures to get an implied annual

consumption growth measure whose moments satisfy the same procedure. These quar-

terly consumption data are actually benchmarked to annual counterparts before officially

released. Hence, our calibration method is consistent with prevailing procedures conducted

on the data28.

We then choose σν such that the 6-year standard deviation of unfiltered consumption is

approximately 1.2 times the value of its reported counterpart, as in Kroencke (2017). This

also implies that official statisticians do not make mistakes systematically when filtering the

data, so that moments of unfiltered consumption should not considerably exceed those of re-

ported consumption whenmeasured over longer periods. For quarterly NIPA consumption,

following this rule returns different calibrations across models: σν = 3.8% (heteroscedastic)

and σν = 2.5% (homoscedastic). For annual NIPA data, statistical moments do not differ as

much regarding the model and σν = 2.8% is set for both versions.

Table 2.1 compares moments of unfiltered and reported NIPA consumption based on

nondurables and services. In the appendix, Table B.1 displays the same information for

the consumption of nondurables only29. We present other relevant consumption measures

shown in Kroencke (2017): simulated (he simulates state consumption using a long-run risk

model built on Bansal and Yaron (2004)30); garbage (as in Savov (2011)), and; unfiltered

(for which we simply show results in Kroencke (2017)). Moments are displayed both for

the complete sample (1930-2022 for annual and 1947:3-2023-2 for quarterly macro data) and
27He uses that horizon as his benchmark based on considerations involving simulated data.
28Monthly and quarterly official consumption data are based on the monthly retail trade survey (MRTS),

while annual data comes from the annual retail trade survey (ARTS). Since issues of sampling error are more
significant in theMRTS, data from the latter are used to mitigate these problems. Hence, calibrating our model
for quarterly macro data based on corresponding (implied) moments for annual macro data is consistent with
actual steps conducted on the data before release. For more details on how NIPA consumption is generated,
see the online appendix of Kroencke (2017) or the official NIPA handbook: BEA (2017).

29The calibration for this model is discussed in the appendix.
30As mentioned above, he refers to this measure as “true” rather than state consumption.
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Table 2.1: Moments for NIPA Consumption of Nondurables and Services

(Implied) Consumption Growth E(∆Cyear) σ(∆Cyear) σ(
∑6

year=1∆Cyear)/
√
6 Corr(∆Cyear,∆Cyear−1)

Reported (NIPA) 1.94% 1.41% 1.91% 32.01%

Simulated∗ 1.90% 2.48% 2.39% 1.54%

Garbage∗ 1.42% 2.86% 2.44% -14.26%

Unfiltered - APWG∗ (1960-14) 1.85% 2.57% 2.44% 0.56%

Unfiltered - APWG∗ (1928-14) 1.79% 4.07% 3.08% -10.89%

Unfiltered - Our Model (Quarterly Data)

Homoscedastic (1960-14) 1.99% 2.88% 2.43% -3.97%

Heteroscedastic (1960-14) 1.97% 2.30% 2.24% 2.69%

Homoscedastic (1947-23) 1.99% 3.26% 2.36% -20.31%

Heteroscedastic (1947-23) 1.99% 2.49% 2.15% -15.59%

Unfiltered - Our Model (Annual Data)

Homoscedastic (1960-14) 1.30% 3.25% 2.45% -8.22%

Heteroscedastic (1960-14) 1.91% 2.39% 2.26% -0.71%

Homoscedastic (1930-22) 1.59% 5.11% 3.34% -14.41%

Heteroscedastic (1930-22) 2.02% 3.71% 2.50% -5.76%

Note: Moments of reported and unfiltered consumption (our model). We compare these moments with
those of Kroencke (2017) as well: simulated consumption, garbage and unfiltered consumption (APWG stands
for "Asset Pricing Without Garbage"). We have simply copied his results here, writing “∗" next to variables
presented in that paper. Reported and unfiltered consumption are for nondurables and services, from NIPA
tables. We consider the quasi-differencedmodelwith serially correlatedmeasurement errors for quarterly data,
setting ρξ = 0.06. For annual data, the model is the same as in Kroencke (2017).

for the post-war subsample used by Kroencke (2017) to calibrate moments, covering the

period 1960-2014. For unfiltered NIPA consumption, we present results for both variants of

our model: one where state consumption has constant volatility (homoscedastic version)

and another with time-varying volatility (heteroscedastic version, the baseline model).

Regardless of the data frequency, our measures of unfiltered NIPA consumption can re-

produce the mean-reversion behaviour exhibited by garbage. In addition, unfiltered NIPA

consumption is more autocorrelated in the complete sample than in the period comprehend-

ing 1960 to 2014, consistent with results found in Kroencke (2017) – see the first panel in Ta-
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ble 2.1. In contrast to its unfiltered analogue, reported NIPA consumption is quite persistent,

consistent with the idea that the data are heavily filtered before release (lowerKc)31.

Turning to micro (CEX) data, calibrated moments are exhibited in Table 2.2. The same

procedures to calibrate the model are applied. The CEX data is subject to a number of sta-

tistical procedures before release, many of which relatively similar to those applied on NIPA

data – see section 4 and the appendix for a discussion. It is also known that a significant frac-

tion of the CEX consumption categories exhibit a similar behaviour compared to the NIPA

analogues. Other categories do measure different things or have similar definitions but ex-

hibit a CEX/NIPA ratio that is too low (high) over time. In terms of the estimation of the

EIS, it is fundamental for the Filter model to be able to revert second moments and auto-

correlations, as well as to exhibit higher covariation with returns. Inferring how much one

source may be overestimating consumption growth relatively to the other is considerably

less important. If overall there is no substantial change in how much CEX categories over-

estimate (underestimate) its NIPA analogues, then one can apply the same method to both

sources when calibrating the model. In addition, it is a common procedure to aggregate

consumption goods from the CEX taking the NIPA categories as reference32.

As will become clear in section 4, the CEX data allows us to split households between

different types of asset holders – stock holders vs. non-stock holders and bond holders vs.

non-bond holders, for instance. Since official statistical procedures do not distinguish be-

tween different asset holders, we calibrate the model based on the consumption growth se-

ries of all households, imposing the resulting parameterisation to the consumption of the

corresponding groups.

We have to make one small change to the calibration method when working with CEX

data. The time series we construct in section 4 measures semiannual consumption growth,

but at monthly frequency. To equalise scale and frequency, we transform the data into
31In addition, observable means of all variables are similar. This is intuitive since both measurement errors

and treatment procedures made on the data shall cancel over time.
32See Attanasio and Weber (1995) and Vissing-Jorgensen (2002), for instance.
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monthly consumption growth before calibrating the model, to then revert the scale back

into semiannual consumption growth. Since we calibrate the model based on monthly con-

sumption growth at the same frequency, we fix ση = 0.0078, following Bansal and Yaron

(2004), who used monthly data. For the same reason, ρξ = 0.06 is set, motivated by results

in Schorfheide, Song, and Yaron (2018). Finally, the same rule for σν applies, which estab-

lishes that the long-run standard deviation of unfiltered consumption is not higher than 1.2

times that of its reported analogue. It returns σν = 2.7%.

From Table 2.2, it can be seen that unfiltered CEX consumption (for all households) re-

peats the same patterns in Table 2.1, for NIPA data. In fact, unfiltered data are again more

volatile, exhibiting more mean reversion than reported consumption (it is also the case re-

gardless of the group of asset holders considered). Check the appendix for more details on

how we calibrate the model for CEX data.

2.3 EIS Estimates with Unfiltered Consumption Data

In this section, we repeat the estimation approach of Yogo (2004), using unfiltered and re-

ported consumption based on nondurables and services. Our results are also evaluated

based on weak-identification methods. Alternative estimations are presented in the ap-

pendix, broadly reconfirming our main findings33.

Under Epstein-Zin preferences, it is possible to derive typical Euler Equations usually

used in the literature to estimate the EIS. These connect consumption growth with returns
33For instance, those estimations include the consumption of nondurables only, raw data for returns while

using unfiltered consumption or applying the quasi-differenced model with serially correlated measurement
error for annual data as well. In this section, we remove the first three observations (aiming to exclude the
filter’s training period) for estimations that use quarterly data. With annual data, we opt to use the entire
sample, given the limited number of observations available. In the appendix, we also present additional results
based on alternative samples.
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Table 2.2: Moments for CEX Consumption: 1982 to 2013

Consumption Growth Observations per Month

(Annual, Implied) E(∆Cyear) σ(∆Cyear) σ(
∑6

year=1 ∆Cyear)/
√
6 Corr(∆Cyear,∆Cyear−1) (Mean)

NIPA Consumption

Reported 1.65% 1.23% 1.78% 60.57% -

Unfiltered 1.65% 2.13% 2.22% 11.51%

CEX: All Households

Reported 1.98% 5.65% 2.64% −36.40% 246

Unfiltered 2.10% 6.63% 3.17% −55.45%

CEX: Stock Holders

Reported 3.07% 7.36% 4.37% −22.30% 49

Unfiltered 3.10% 10.30% 5.22% −56.66%

CEX: Non-Stock Holders

Reported 1.57% 5.22% 2.50% −35.42% 197

Unfiltered 1.74% 6.34% 2.97% −52.36%

CEX: Bond Holders

Reported 3.14% 6.87% 4.01% −22.69% 70

Unfiltered 3.25% 10.01% 4.96% −58.49%

CEX: Non-Bond Holders

Reported 1.27% 5.03% 2.18% −39.34% 176

Unfiltered 1.45% 6.11% 2.65% −54.42%

Note: Moments of reported and unfiltered based on CEX data (1982-2013). We also exhibit moments of re-
ported and unfiltered consumption based on macro data (NIPA consumption), calculated for the CEX period.
The original CEX data measures semi-annual consumption growth at monthly frequency. We convert these
series into monthly consumption growth to calibrate the model but aggregate the data to obtain moments
for (implied) annual consumption growth – first column – so that these are comparable with moments in
Kroencke (2017). In order to account for the fact that most likely statisticians do not adjust the data splitting
by households, we calibrate moments based on all households. The last column provides the mean number of
(cross-sectional) observations for each month, measured over the sample. Our CEX sample consists of 90,080
households.
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of an asset class i34:

∆ck,t+1 = τi,t + ψri,t+1 + ϵi,t+1, (2.13)

ri,t+1 = ζi,t +Θ∆ck,t+1 + ϱi,t+1, (2.14)

where τi,t and ζi,t encompass mainly terms of second order (conditional variances and co-

variances), related to consumption growth and returns and ϵi,t+1 and ϱi,t+1 also include ex-

pectational error terms. These are correlated with regressors in (2.13) and (2.14), so that

an IV model must be adopted to properly identify their slopes. A standard log-linearisation

shows that theoretically we must have Θ = 1/ψ35. Nonetheless, it is often hard to show this

result when relying on IV methods, regardless of the specification. Yogo (2004) addresses

this puzzle, testing whether ψ̂ = 1 and Θ̂ = 1, when individually estimating (2.13) and

(2.14). He shows a rejection of the null in the first but not in the second estimation, pointing

out that the presence of weak instruments may be substantially affecting these results.

We index consumption growthwith k in (2.13) and (2.14) to emphasise the consumption

series used. In the tables that follow, k can be Reported, Unf-Hom, or Unf-Het, where the last

two refer to unfiltered consumption, constructed from the homoscedastic and heteroscedas-

tic (baseline) models, respectively. The identification approach of this section does not de-

pend on the hypothesis for heteroscedasticity nor on the asset type i36. Specifically, we con-

duct estimations with both stocks and risk-free returns. Second lags of the nominal interest

rate, inflation, consumption growth (the measure relevant in the estimation, either reported

or unfiltered) and log dividend-price ratio are used instruments. One could use the real

interest rate rather than the nominal and inflation as instruments, but we prefer to follow

Yogo (2004) strictly to elucidate the comparison. As in that paper, we lag all instruments

twice to mitigate concerns of invalid moment conditions under conditional heteroscedas-
34We present the recursive form of L. G. Epstein and Zin (1989) preferences and their associated non-linear

Euler Equations in the appendix. Structural forms of (2.13) and (2.14) can be seen in Yogo (2004).
35See Yogo (2004).
36If i is the risk-free rate, for example, only τi,t and ζi,t change and some of their second-order terms become

null.
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ticity in (13) and (14). In addition, instruments that are lagged at least twice ensure that

problems involving time-aggregation in consumption do not affect estimates, as advised by

Hall (1988).

2.3.1 Homoscedastic Framework

Here we present estimates for the EIS (ψ) and its reciprocal (1/ψ) using equations (13) and

(14), respectively, assuming conditional homoscedasticity. We apply three K-class estima-

tors: TSLS, Fuller-K and LIML37. First-stage F-statistics to infer about the relevance of instru-

ments are also reported38. Critical values for them under the null hypotheses in Stock and

Yogo (2002) are presented in the appendix. In general terms, F-statistics above 10 ensure

that the TSLS bias is low enough to be reliable, while the Fuller-K bias is not high enough

when that number is above 6. Under conventional first-order asymptotics, all those three

estimators should converge to the same limit distribution, with the TSLS being the efficient

one. In contrast, under weak instruments, the Fuller-K and LIML are more robust estima-

tors39. Here we present estimations for reported and unfiltered consumption series which

are constructed from the consumption of nondurables and services component, found in the

NIPA tables. Additional estimations for the consumption of nondurables only are provided

in the appendix. They produce similar results.

It is worth reemphasising the difference between a homoscedastic filter and condition-

ally homoscedastic error in the Euler Equation. The former only implies that statisticians

filter the data assuming a constant volatility parameter for state consumption. However, the

homoscedastic model does not imply whatsoever that errors in the Euler Equations will be
37Check the appendix for a better description of those estimators.
38If error terms are not serially correlated and homoscedastic, the first-stage F-statistic is a sample analogue

of the so-called concentration parameter, that captures how relevant instruments are. When the F-statistic (and
the concentration parameter) is sufficiently high, the TSLS is reliable, approximately unbiased and its t-statistic
exhibits a proper convergence towards a standard normal.

39Under weak instruments, the TSLS can be severely biased, compared with the Fuller-K. Additionally, the
Wald test that corresponds to the LIML estimator is less size-distorted than that of the TSLS – see Stock and
Yogo (2002), Stock, Wright, and Yogo (2002) and Murray (2006) for more details.
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conditionally homoscedastic. The more generalised heteroscedastic Filter model is our base-

line, but we also exhibit results for the case unfiltered consumption is constructed using the

homoscedastic model.

Table 2.3 below displays results for quarterly data, where unfiltered consumption consid-

ers the quasi-differenced Filter model (ρξ = 0.06). The first thing to note is that there is much

more agreement on estimates of the EIS (ψ) across different estimators when unfiltered con-

sumption is used. Moreover, negative point estimates are completely absent, broadly in line

with economic intuition.

Our point estimates for the EIS under the heteroscedastic model lie in the range 0.15-

0.38, roughly in line with Hall (1988), Yogo (2004) and L. Epstein and Zin (1991)40. In

addition, higher point estimates can be obtained using the homoscedastic filter, from 0.20

to 0.57. Bansal and Yaron (2004) show that, when consumption volatility is time-varying,

the EIS will be downward biased when regressing consumption growth on the risk-free rate.

Hence, it is interesting to note that, once we fix that volatility (homoscedastic model), esti-

mates of the EIS roughly double, in line with their observation.

In contrast, reported consumption shows quite a different picture, with point estimates

from −0.20 to 0.07. On the one hand, negative estimates are frequent with reported con-

sumption whenwe use stocks, and results indicate that a lower first-stage predictability may

be explaining this fact. On the other hand, unfiltered consumption produces a very narrow

interval of positive point estimates across estimators, roughly from 0.16 to 0.19 under the het-

eroscedastic model, but with a similar first-stage F-statistic. Standard errors are also more

equalised using unfiltered consumption and stocks, suggesting that the former alleviates

problems related to weak instruments. However, it is likely that such issue is still partially

plaguing estimates, given the low first-stage F-statistic, slightly above 4. When the risk-free

is used, these statistics generally exceed critical values of Stock and Yogo (2002), indicating
40Our results lie in the lower end of estimates in the latter (0.17-0.87), albeit their results restricted to con-

sumption of nondurables and services are very similar to ours.
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that weak identification is not an issue41.

The lower part of Table 2.3 confirms that the same improvements observed for the EIS

under unfiltered consumption are valid for its reciprocal. In fact, our estimates of 1/ψ return

a notably wide range using reported consumption (from −5.01 to 18.98), regardless of the

asset class used. The story is once again quite different for unfiltered consumption, with

estimates in the narrower range 0.35 − 5.25 under the heteroscedastic model, implying an

EIS from 0.19 to 2.8642. Considering the more robust Fuller-K and LIML estimators, implied

EIS estimates using that model and quarterly data are in the range 0.19 − 0.70, basically in

line with direct estimates. Although exhibiting lower first-stage F-statistics, the use of the

homoscedastic model returns 1/ψ from 0.33 to 4.25. Under Fuller-K and LIML, this implies

an EIS in the range from 0.17 to 0.97. Differences between the TSLS and the other two esti-

mators are broadly expected since, as mentioned above, the Fuller-K and LIML estimators

aremore robust to weak instruments. Since first-stage F-statistics are decreased by a factor of

three when unfiltered consumption is used, this justifies the gap43. Generally, our estimates

for 1/ψ under (2.14) agree with what we obtain for the EIS (ψ) using (2.13), considering the

more robust estimators44.

Table 2.4 below presents similar results but for annual data, for which we simply re-

calibrate the original Filter model in Kroencke (2017)45. The big picture is very similar to

that of quarterly data. By using unfiltered consumption, we once again get rid of negative
41Gomes and Paz (2013) find the same result, conducting similar estimations for the risk-free rate, but using

an alternative measure of returns, there argued to better capture the portfolio of the representative agent.
42Table B.6 (appendix) exhibits implied estimates of the EIS (ψ) from estimates of its reciprocal (1/ψ) using

(2.14).
43The lower first-stage F-statistic for unfiltered consumption makes sense, once Table 2.1 (appendix) shows

that unfiltered consumption is not as serially correlated as its reported analogue and consumption growth is
the endogenous regressor in (2.14).

44That being said, we could not revert the puzzle that ψ is generally statistically different from 1 but not
its reciprocal. In this regard, Table 2.3 provides unclear results, what can indicate that weak-instruments are
still affecting estimates when unfiltered consumption is used, even though not as heavily as with reported
consumption.

45Recall that serially correlated measurement error is not necessary at annual frequency, so we do not use
(2.3). Consequently, our model is no longer quasi-differenced, being exactly that of Kroencke (2017). We still
present results for annual data imposing the quasi-differenced model (ρξ = 0.06 ̸= 0) in the appendix. We
show that we once more can improve estimates of the EIS, albeit with somewhat weaker results.

93



Table 2.3: Estimates of the EIS Using K-Class Estimators and Quarterly Data

K-Class Estimator

Asset Estimate ∆ck TSLS Fuller-K LIML 1S-F

Risk Free ψ Reported 0.067∗∗∗ 0.053∗∗∗ 0.053∗∗∗ 22.172

(0.078) (0.093) (0.093)

ψ Unf-Hom 0.527 0.566 0.573 22.335

(0.467) (0.481) (0.484)

ψ Unf-Het 0.346∗ 0.379∗ 0.385∗ 22.474

(0.336) (0.350) (0.352)

Stocks ψ Reported 0.006∗∗∗ −0.101∗∗∗ −0.199∗∗∗ 4.575

(0.017) (0.096) (0.213)

ψ Unf-Hom 0.204∗∗∗ 0.221∗∗ 0.235∗∗ 4.462

(0.108) (0.114) (0.120)

ψ Unf-Het 0.156∗∗∗ 0.178∗∗∗ 0.191∗∗∗ 4.310

(0.080) (0.088) (0.093)

Risk Free 1
ψ

Reported 0.438∗ 4.953 18.979 6.630

(0.311) (4.475) (33.660)
1
ψ

Unf-Hom 0.331∗∗∗ 1.031 1.745 1.890

(0.154) (0.683) (1.473)
1
ψ

Unf-Het 0.349∗∗∗ 1.434 2.599 2.268

(0.168) (0.997) (2.380)

Stock 1
ψ

Reported 0.795 −4.150 −5.014 6.630

(2.724) (4.936) (5.346)
1
ψ

Unf-Hom 2.884 3.559 4.251 1.890

(1.372) (1.739) (2.159)
1
ψ

Unf-Het 3.427 4.491 5.247∗ 2.268

(1.601) (2.137) (2.565)

Notes: Estimates of the EIS and its reciprocal using (2.13) and (2.14) and quarterly data. Unfiltered consump-
tion extracted relying on the quasi-differenced Filter model whose measurement errors are serially correlated
(ρξ = 0.06). All consumption series refer to nondurables and services. We apply the same setting of Yogo
(2004), using 3 types of K-class estimators and assuming that errors conditionally follow a martingale differ-
ence sequence. Reported denotes official consumption data from NIPA tables. Unf-Hom and Unf-Het refer
to unfiltered consumption, constructed by the homoscedastic and heteroscedastic models, respectively. When
reported consumption is used, asset returns have not been adjusted for time-aggregation. Standard errors are
presented in parentheses. The null that the estimated coefficient equals 1 has been tested: ***, ** and * denote
rejection of the null hypothesis at 1, 5 and 10 percent significance levels.
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estimates of the EIS, obtaining point values in the limited range 0.09− 0.23. Such stability is

even more surprising considering the fact that first-stage F-statistics are considerably lower

with unfiltered consumption and stock returns (slightly above 1), compared to reported

consumption in the same situation (around 5). The former generates ψ̂ in the narrow interval

0.18 − 0.22. A higher first-stage predictability does not ensure positive estimates of the EIS

using reported consumption: from −0.07 to 0.11. Counter-intuitively, note that estimations

with stocks imply values around −0.05, statistically significant at 1%. Our findings for the

reciprocal 1/ψ approximately repeat those for quarterly data. Unfiltered consumption gives

much more precise results, even with first-stage F-statistics that are noticeably lower than

those of Table 2.3. Using stocks, these estimates imply anEIS in the very tight range 0.22−0.25

– see Table B.6 (appendix). Even with substantially low first-stage F-statistics (lower than

2), note that standard errors are quite aligned across estimators. This suggests that the three

methods converge to the same limit distribution, as in the case of conventional first-order

asymptotics. For the risk-free, implied EIS estimates from 1/ψ are from 0.09 to 0.52, when

excluding the less robust TSLS estimator, not that far from results for stocks.

Generally, it seems that the connection between first-stage predictability and more pre-

cise estimates is not that relevant with unfiltered consumption. Hence, it could be that a

sizeable proportion of the econometric difficulties usually attributed to weak instruments

corresponds instead to weaknesses involving the consumption time series46. In addition,

point estimates of the EIS are generally more close to 1, although still not statistically higher

than it. Overall, under unfiltered consumption the improvement is expressive enough both

quantitatively (higher andmore equalised estimates across estimators, none with the wrong

sign) and qualitatively (closer to usual choices of values, applied to macro models).

The next step is to evaluate how unfiltered compares with reported consumption using
46We still can not rule out that weak instruments are affecting our estimation since estimates and standard

errors – even though more equalised – are still different across estimators (recall that in the absence of weak
instruments, limit distributions under the three estimators should be approximately the same). This is espe-
cially the case for annual data in Table 2.4, as well as for our estimates of 1/ψ in both Table 2.3 and Table 2.4,
for which first-stage F-statistics are essentially lower.
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Table 2.4: Estimates of the EIS Using K-Class Estimators and Annual Data

K-Class Estimator

Asset Estimate ∆ck TSLS Fuller-K LIML 1S-F

Risk Free ψ Reported 0.112∗∗∗ 0.109∗∗∗ 0.108∗∗∗ 11.836

(0.105) (0.111) (0.113)

ψ Unf-Hom 0.099∗∗∗ 0.091∗∗∗ 0.089∗∗∗ 10.727

(0.190) (0.205) (0.208)

ψ Unf-Het 0.097∗∗∗ 0.090∗∗∗ 0.089∗∗∗ 10.727

(0.188) (0.203) (0.205)

Stocks ψ Reported −0.049∗∗∗ −0.061∗∗∗ −0.065∗∗∗ 5.057

(0.034) (0.038) (0.040)

ψ Unf-Hom 0.186∗∗∗ 0.197∗∗∗ 0.226∗∗∗ 1.307

(0.081) (0.088) (0.108)

ψ Unf-Het 0.184∗∗∗ 0.194∗∗∗ 0.222∗∗∗ 1.312

(0.080) (0.086) (0.105)

Risk Free 1
ψ

Reported 1.364 4.592 9.246 1.893

(0.724) (3.364) (9.634)
1
ψ

Unf-Hom 0.388 1.883 11.147 1.826

(0.382) (1.890) (25.868)
1
ψ

Unf-Het 0.394 1.916 11.293 1.822

(0.387) (0.475) (26.190)

Stock 1
ψ

Reported −6.808∗∗ −11.773∗ −15.285∗ 1.893

(3.885) (6.818) (9.365)
1
ψ

Unf-Hom 4.056∗ 4.161 4.415 1.826

(1.835) (1.915) (2.106)
1
ψ

Unf-Het 4.143∗ 4.241∗ 4.502 1.822

(1.863) (1.937) (2.131)

Notes: Estimates of the EIS and its reciprocal using (2.13) and (2.14) and annual data. Unfiltered consumption
extracted relying on the Filtermodelwhosemeasurement errors are not persistent. All consumption series refer
to nondurables and services. We apply the same setting of Yogo (2004), using 3 types of K-class estimators and
assuming that errors conditionally follow a martingale difference sequence. When reported consumption is
used, asset returns have not been adjusted for time-aggregation. Reported denotes official consumption data
from NIPA tables. Unf-Hom and Unf-Het refer to unfiltered consumption, constructed by the homoscedastic
and heteroscedastic models, respectively. Standard errors are presented in parentheses. The null that the
estimated coefficient equals 1 has been tested: ***, ** and * denote rejection of the null hypothesis at 1, 5 and 10
percent significance levels.
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robust inference. For this, we invert Moreira (2003) and T. W. Anderson, Rubin, et al. (1949)

test statistics, creating 95 percent weak-identification-robust confidence intervals. Table 2.5

below summarises results. When it comes to quarterly data, the first thing to note is that

unfiltered consumption effectively reverts an empty set under the Anderson-Rubin statistic.

Using the risk-free, the robust confidence interval with the heteroscedastic model in this case

is in line with estimates of L. Epstein and Zin (1991): from −0.07 to 0.87. Based on the S-

test of Stock and Wright (2000), Ascari, Magnusson, and Mavroeidis (2016) also found an

empty interval, using a baseline Euler Equation as (13) and reported consumption. The S-

test is a generalisation of the Anderson-Rubin test to a GMM setting, being not only robust to

weak instruments but also to heteroscedasticity of arbitrary form. Ascari, Magnusson, and

Mavroeidis (2016) test several Euler Equations, derived from many different assumptions,

and confidence intervals similar to ours are only obtained relying on internal habit formation.

Since habit formation tends to create inertia47, implicitly flattening the relationship between

consumption and returns, our finding is pertinent to the extent that it brings a similar confi-

dence interval to a much simpler Euler Equation, without creating doubts about how habit

formation might be implicitly lowering estimates of the EIS. In addition, as emphasised in

Yogo (2004), uninformative robust sets are a natural consequence of a very weak IV setting,

so that once more our results suggest that unfiltered consumption significantly improves the

identification of the EIS. Even though a little wider, our confidence intervals generated by

the conditional likelihood ratio test tell a similar story. Using stocks broadly confirms our

results with the risk-free, with the additional benefit that it produces narrower intervals and

that the homoscedastic and heteroscedastic models return more similar results.

Table 2.5 also shows that our results for annual data are not as impressive. Unfiltered con-

sumption does increase the upper end of intervals, but confidence sets are generally wider.

This result is more evident when stock returns are used. In this case, EIS values along the

whole real line are possible. It is difficult to infer the reason for this, even though the small
47J. C. Fuhrer (2000).
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Table 2.5: Weak-IV-Robust CIs for the EIS

Quarterly Data Annual Data

Asset ∆ck Anderson-Rubin Likelihood Ratio Anderson-Rubin Likelihood Ratio

Risk Free Reported ∅ [− 0.136, 0.235] [− 0.104, 0.316] [− 0.131, 0.341]

Unf-Hom [− 0.319, 1.525] [− 0.377, 1.591] [− 0.272, 0.442] [− 0.357, 0.523]

Unf-Het [− 0.077, 0.867] [− 0.307, 1.122] [− 0.270, 0.438] [− 0.352, 0.516]

Stocks Reported ∅ (−∞,+∞) [− 0.245, 0.019] [− 0.199, 0.007]

Unf-Hom [− 0.045, 0.921] [0.014, 0.650] (−∞,+∞) (−∞,+∞)

Unf-Het [− 0.009, 0.710] [0.023, 0.536] (−∞,+∞) (−∞,+∞)

Note: Weak-instrument-robust 95% confidence intervals. Sets constructed by inverting statistics of the
Anderson-Rubin and Likelihood Ratio tests. Data used both for reported and unfiltered consumption refer
to the consumption of nondurables and services. For quarterly data, we use our quasi-differenced Filter model
(ρξ = 0.06). For annual data, we use the original version (ρξ = 0). Reported denotes official consumption data
from NIPA tables. Unf-Hom and Unf-Het refer to unfiltered consumption, constructed by the homoscedastic
and heteroscedastic models, respectively.

sample size for annual data could be a possible explanation48. Moreover, recall that com-

pletely uninformative robust intervals for the EIS are frequent in the literature – Yogo (2004),

Ait-Sahalia, Parker, andYogo (2004), Ascari,Magnusson, andMavroeidis (2016) andGomes

and Paz (2013). Indeed, our results are not particularly surprising in this respect.

2.3.2 Heteroscedastic Framework

Recall that the econometric approach mentioned above is still valid in a heteroscedastic set-

ting. In this framework, GMM is the efficient method. Thus, we now turn to this estimator,

using (2.13). In addition to the conventional two-stepGMM(2S-GMM),we also present esti-

mates using the continuously updatedGMMestimator (CUE-GMM) – L. P.Hansen, Heaton,

and Yaron (1996). The latter is less biased, provides confidence intervals with better cover-
48In the appendix, we present results when unfiltered consumption at annual frequency is generated by the

Filter model with serially correlated measurement errors instead. General findings are broadly in line with
those of Table 2.5, suggesting that our hypothesis for measurement error is not causing that problem. Addi-
tionally, there we also re-estimate the Euler equations while further restricting the sample (so that substantially
more observations are removed for early years, related to the Filter’s training period). Results also do not seem
sensitive to such choice.
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age rates and performs better under weak instruments – L. P. Hansen, Heaton, and Yaron

(1996), Stock, Wright, and Yogo (2002) and W. K. Newey and R. J. Smith (2004).

With (2.13), we conduct estimates of the EIS using 2S-GMM and CUE-GMM, with the

risk-free as our measure of returns. In this more general GMM setting, ψ can also be identi-

fied in joint estimation using both the risk-free and stocks:

∆ck,t+1 = τf,t + ψrf,t+1 + ϵf,t+1, ∆ck,t+1 = τm,t + ψrm,t+1 + ϵm,t+1, (2.15)

where indices f and m denote risk-free and market returns, respectively49. The system esti-

mation can improve efficiency from exploiting cross-equation correlations in expectational

errors included in both innovations. Additionally, weak-instrument-robust confidence inter-

vals constructed by inverting the K-test statistic – Kleibergen (2005) – are presented. This test

is robust to weak identification, as well as to autocorrelation and heteroscedastic error terms.

It is similar to the S-test – Stock and Wright (2000) – mentioned above, albeit more compu-

tationally involved. We choose the K-test against the S-test based on several factors. First,

the former applies in the context of non-linear moment conditions. Second, W. K. Newey

and Windmeijer (2009) show that the K-test is valid under many weak moment conditions.

Third, Andrews and Stock (2005) and Kleibergen and Mavroeidis (2009) specifically rec-

ommend it against available alternatives when dealing with heteroscedasticity of arbitrary

form.

Table 2.6 below summarises our estimates for the EIS. First, it generally confirms our pre-

vious findings by showing higher point values for unfiltered consumption. Second, results

with reported consumption are now more in line with those with unfiltered consumption,

relatively to the previous tables. This is especially true for quarterly data, where the former

no longer generates negative estimates: from 0.0 to 0.2. In this case, estimates with unfil-
49Drift termsmust be allowed to differ across equations (given different second-order terms in τi,t depending

on the asset class i) while slopes are restricted to the same value (EIS). Check the appendix for complete
specifications in (15).
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tered consumption under the heteroscedastic model, for instance, do not differ much: from

0.0 to 0.5. In addition, results with unfiltered consumption and the risk-free rate (first two

columns) are broadly in line with those of Table 2.3, suggesting that the homoscedasticity

assumption may be less restrictive when stocks are not considered. This is not the case for

reported data, with which estimates of the EIS are higher when allowing for a heteroscedas-

tic environment. Unfiltered consumption constructed from the homoscedastic model once

more presents higher estimates of the EIS, even though at the cost of higher standard er-

rors for quarterly data. Results for annual data are a little weaker. Comparatively, point

estimates lie closer to zero, both for reported and unfiltered consumption. In spite of that,

the joint estimation using the former once again reaches a negative value, significant at 10%.

Finally, 95% robust intervals still return uninformative sets, suggesting that identification is-

sues related to weak instruments are possibly more relevant at annual frequency, regardless

of the homoscedasticity hypothesis for the errors in the Euler equations50. In contrast, we

again revert completely uninformative robust sets for quarterly data: [0.18, 9.64] based on

the homoscedastic model and [0.05, 8.91] for the heteroscedastic analogue51.

2.4 EIS, Limited Participation and Unfiltered Consumption

The last section demonstrated how important is to account for the fact that macro consump-

tion series are heavily filtered before release, when estimating the EIS. In this section, we aim

to verify whether that is again the case when dealing with other types of consumption data

series. We use micro data at the level of the household to construct the consumption growth

series used in our estimations. These data are extracted from the CEX, a large-scale survey,

designed to represent characteristics of the entire US population. We construct measures
50Recall the previous tables and the lower first-stage F-statistics obtained for annual data.
51In the appendix, we present similar results for the consumption of nondurables only. We again can revert

totally uninformative sets intomore plausible ones using unfiltered consumption on quarterly data, albeit those
intervals still exhibit negative values: [−0.35, 0.84] relying on the homoscedastic model and [−0.62, 0.26] for the
heteroscedastic version.
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Table 2.6: Heteroscedasticity-Robust Estimates of the EIS

Quarterly Data Annual Data

∆ck Two-Step CUE SYS 95% CI Two-Step CUE SYS 95% CI

Reported 0.133 0.189∗∗ 0.001 (−∞,+∞) 0.056 0.022 −0.015∗ (−∞,+∞)

(0.082) (0.085) (0.000) (0.088) (0.087) (0.008)

Unf-Hom 0.601 0.678 0.007 [0.182, 9.639] 0.122 0.136 0.067 (−∞,+∞)

(0.523) (0.525) (0.006) (0.142) (0.142) (0.045)

Unf-Het 0.448 0.512 0.006 [0.053, 8.907] 0.119 0.133 0.066 (−∞,+∞)

(0.374) (0.377) (0.006) (0.141) (0.141) (0.045)

Note: 2S-GMM, CUE-GMM and SYS-GMM estimates of ψ (EIS) using equation (13) with the risk-free rate.
“SYS" presents estimates of the same coefficient under the joint estimation (15), where market returns are also
used (allowing for different drifts across equations). We present 95% confidence intervals that are robust to
both heteroscedasticity and a weak-IV setting. These are constructed by inverting the K-statistic of Kleibergen
(2005). Consumption series are relative to nondurables and services. Reported denotes official consumption
data fromNIPA tables. Unf-HomandUnf-Het refer to unfiltered consumption, constructed by the homoscedas-
tic and heteroscedastic models, respectively. Standard errors are presented in parentheses. The null that the
estimated coefficient equals 0 has been tested using conventional t-statistics: ***, ** and * denote rejection of the
null hypothesis at 1, 5 and 10 percent significance levels.

of consumption growth following the same procedures in Vissing-Jorgensen (2002). Our

sample goes from 1982 to 2013.

The CEX data is subject to a number of statistical transformations, many of which sim-

ilar to those applied to NIPA consumption series. To cite a few: topcoding; suppression;

reallocation, and; imputation procedures. These are all present in the survey. Further, mea-

surement error is so evident in the data that recently the Bureau of Labor Statistics (BLS)

implemented the so-called Gemini project to research and develop a complete redesign of

the CEX, addressing measurement error and respondent burden issues. Mechanically, sta-

tistical procedures in the CEX produce the same effect on final reported data, lowering its

variance and diminishing correlations with different measures of return. We detail the pro-

cedures used in the CEX in the appendix, also comparing with those performed on NIPA

consumption.

An advantage of using CEX data is that we can separate households – and their corre-
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sponding measures of consumption growth – based on their asset-holding status. This is

relevant to test the LAMP, since it is possible to obtain different estimates of the EIS con-

ditional on different groups of households and their participation in specific asset markets.

As noted by Yogo (2004), it is possible that weak instruments are not explaining the whole

story of troublesome estimates of the EIS, usually obtained in the literature. Perhaps limited

participation in asset markets is plaguing results due to Euler equations that do not hold

for the representative agent, as addressed in Vissing-Jorgensen (2002) and Guvenen (2006).

Indeed, estimations that rely on an Euler Equation for some asset, but that use households

that do not hold a position in that asset, will likely bias estimates of the EIS downwards52.

First, let us turn to howwe use data from the survey. The CEX interviewsmore than 7500

households per quarter53. Each household is interviewed five times, but only the last four

interviews are publicly available. Interviews with the same household occur every three

months, when they report consumption for the previous three months. In the last (fifth)

interview, households report their financial information. We use this information to separate

households according to their asset-holding status. Formally, households report holdings for

“stocks, bonds, mutual funds and other securities”, “US savings bonds”, “savings accounts”

and “checking accounts, brokerage accounts, and other similar accounts”. We use responses

for the first two categories to label households as stock (vs. non-stock) or bonds (vs. non-

bond) holders.

We classify households by their asset holding status adopting the same criteria in Vissing-

Jorgensen (2002). As noted in that paper, it is not possible to perfectly separate households

solely by those two categories. There is some overlap between bond and stock holders, but

not between asset and non-asset holders for each type of asset (bonds or stocks). Note that

imperfect separation should bias against finding different estimates of the EIS across these
52See Vissing-Jorgensen (1998).
53Before 2000, that number was slightly lower, around 5000 per quarter. The programme contains two com-

ponents, the Interview Survey and the Diary Survey. Each has its own sample. We compile our data set using
the former.
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groups. Formally, we refer to households with positive responses to “stocks, bonds, mutual

funds and other securities" as stock holders, and to those with positive responses to that

same category or to “US savings bonds" as bond holders.

Additionally, note that anEuler equation thatmeasures consumption from t to t+1 should

hold at the beginning of first period. Therefore, we shall split households across groups

based on their holdings at the beginning of t. To do so, we use twomore items in the survey:

one question that asks whether households have more, less or the same amount of the asset,

relatively to a year ago; and another onewhich asks the estimated dollar difference inmarket

value of that asset last month, compared to a year ago last month. As in Vissing-Jorgensen

(2002), a household is classified as holding asset class i if it: (i) reports the same amount

compared to a year ago, holding a positive position in i when interviewed for the last time;

(ii) reports lower holdings of the asset, relative to a year ago, or; (iii) reports an increase in

its holdings of the asset, but the dollar difference is less than the current value of holdings.

Because some of those questions we use to separate households are no longer available after

March 2013, this is the last month of consumption observations in our data set.

Our final sample consists of 90,080 households, spread over the period from 1982 to

201354. Amongst these households, 19.6% are classified as stock holders and 29.1% as bond

holders55. On average, our sample has 246 households each month, of which 70 are bond

holders and 49 are stock holders56. See Table 2.2.

Our final data set encompasses semiannual consumption growth rates at monthly fre-

quency. To construct consumption growth observations, CEX expenditure categories are

carefully aggregated as to mimic definitions of the NIPA consumption of nondurables and
54The CEX data is available beginning in 1980. However, we follow Vissing-Jorgensen (2002) in dropping

observations for 1980 and 1981. She argues that the quality of the CEX consumption data is considerably lower
for that period.

55In addition, 2154 households report an increase in holdings of some asset, but not the current value. We
classify them as asset holders for the corresponding category – 1593 as stock holders and 561 as bond holders.
In addition, a few households report an increase in holdings that exceeds their response for current values. We
consider them as non-asset holders in the corresponding category.

56Hence, 197 are non-stock holders and 176 are non-bond holders.
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services. We exclude three major categories: health care, education costs and housing ex-

penses (except for housing operations). Cash contributions, personal insurance and pen-

sions are also dropped. Categories in the first group are excluded because they exhibit a

substantial durable component. In the second, for the same reason or because their defini-

tions are considered out of scope relatively to NIPA consumption – see Garner et al. (2003, p.

12). Major categories in our consumption measure are food (at and away from home), bev-

erages, apparel, tobacco, public and private transportation (including gasoline), personal

care services, housing operations, miscellaneous and utilities. Our definition is broadly in

line with that given in Attanasio and Weber (1995), being also similar to the one in Vissing-

Jorgensen (2002).

For each household h, its consumption growth rate is:

Ch,m+6 + Ch,m+7 + Ch,m+8 + Ch,m+9 + Ch,m+10 + Ch,m+11

Ch,m + Ch,m+1 + Ch,m+2 + Ch,m+3 + Ch,m+4 + Ch,m+5

.

As in Vissing-Jorgensen (2002), the aggregate consumption growth observation is the aver-

age of this ratio in the cross section of households of the same group. Since consumption

growth is semiannual, groups are classified based on their holdings at the beginning of the

relevant period in the Euler equation – i.e., m. We refer to Vissing-Jorgensen (2002) for a

formal discussion on how averaging households in the cross section of groups can generate

consistent estimates of the EIS in this framework. In addition, closely following that pa-

per, we drop: (i) extreme outliers (observations for which the consumption growth ratio is

higher than 5 or less than 0.2); (ii) households that report a change in the age of the house-

hold head between two subsequent interviews different from zero or one; (iii) households

living in student housing, and; (iv) non-urban households. To construct the semiannual con-

sumption growth ratio above, we need consumption data for all interviews, 2 to 5. Therefore,

we also drop households for which any of these interviews are missing. As our last step, we

deflate nominal consumption growth observations by the urban CPI for nondurable goods.
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We later use the Filter model on the consumption growth series that corresponds to that

final sample of 90,080 households. There may be reasons to be sceptical about this, arguing

that statistical procedures applied on CEX data probably take those households dropped

from our sample into account. Nonetheless, very similar results are found when estima-

tions in this section are repeated applying and calibrating themodel for the complete sample

(without dropping households), but imposing the calibration to our final data set (which ex-

cludes them). Results are also maintained when we calibrate the model and estimate the EIS

based on the complete sample. Since consumption growth is semiannual but at the monthly

frequency, there is an overlap of five months between observations. To calibrate the model,

we equalise the scale of consumption growth to its frequency (as in the previous estima-

tions), to then transform it back into semiannual. For a more complete discussion on how

we apply the Filter model on the CEX data and different groups of asset holders, check the

appendix.

Two types of returns are used when estimating our Euler equations in this section. When

differentiating between stock holders vs. non-stock holders, we use the value-weighted re-

turn from NYSE, NASDAQ and AMEX. When applying to bond vs. non-bond holders, we

use T-bill returns. An important issue relates to how we compute the relevant asset re-

turn used in the estimations when the consumption growth data is semiannual. We fol-

low Vissing-Jorgensen (2002), using the middle six months from (1 + Rm) to (1 + Rm+10):

(1+Rm+2)(1+Rm+3)...(1+Rm+6)(1+Rm+7). In addition, sinceCh,m is relevant in the consump-

tion growth measure, it follows naturally that lagged instruments are constructed based on

(1 +Rm−1)(1 +Rm−2)...(1 +Rm−5)(1 +Rm−6), also using six months. When we estimate the

Euler equations with unfiltered CEX consumption, we conduct similar adjustments as those

of the last section on these return series. We better detail them in the appendix.

We use three instrument sets for the log stock return or the log T-bill return in the Euler

equations: (i) dividend-price ratio; (ii) dividend-price ratio, lagged stock returns and lagged

T-bill returns, and; (iii) dividend-price ratio, lagged corporate bond default premium and
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lagged government bond horizon premium. The last two take the form 1+R
long-term corporate bonds
t

1+R
long-term government bonds
t

and 1+R
long-term government bonds
t

1+R
short-term government bonds
t

, respectively. We once more refer to the appendix for more details

on these variables. Lastly, returns are deflated by using the urban CPI for total consumption.

As in the last section, we estimate log-linearised Euler equations. For stock holders, for

example, the econometric approach we follow is:

1

Hs
t

Hs
t∑

h=1

∆lnCh,s
t+1 = ψsln(1 +Rs,t) +

1

Hs
t

Hs
t∑

h=1

∆ln(family size)h,st+1

+ αs1D2 + ...+ αs12D12 + ust+1,

(2.16)

where, as before, ψs is the EIS for stock holders, Dm are seasonal dummies and Hs
t denotes

the number of consumption growth observations for stock holders at time t. Euler equation

(16) assumes that seasonality and the family size aremultiplicative factors in the utility func-

tion57. These two variables are included in all the three aforementioned instrument sets58.

Equation (2.16) holds under the Epstein-Zin framework of last section, as well as under

CRRA preferences59.

2.4.1 Results

Results for two samples are presented. The first encompasses data from 1982 to 1996, the

same used in Vissing-Jorgensen (2002). The second uses all the available data, from 1982 to

2013. We do so due to a change in methodology and in the sampling frame around 1996,
57Formally, the family size variable is defined as the change in the log average family size for the last two

interviews (4 and 5), compared to the first two interviews (2 and 3).
58Therefore, it is assumed that family size controls and seasonality factors are exogenous in our estimations.
59Regardless of the assumption for the utility function, generally αs

m involves conditional variances (covari-
ances) of (between) log consumption growth and log returns. In the case of Epstein-Zin preferences, there
are also conditional second-order terms relative to wealth returns, based on the total portfolio of households.
If some of those conditional second-order terms are not constant, stochastic terms enter ust+1 – which already
included expectational and measurement errors (present in the consumption data). These stochastic terms do
not imply inconsistent estimates, as long as they are uncorrelatedwith instruments used. See Vissing-Jorgensen
(1998) and Vissing-Jorgensen (2002) for a formal treatment. Lastly, note that (2.16) can be estimated by instru-
mental variables methods even when using unfiltered consumption. Since returns are assumed uncorrelated
with themeasurement error, auto-correlation in the latter does not invalidate lags of the former as instruments.
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when the CEX was redesigned60.

We begin with results for the period 1982-1996, exhibited in Table 2.761. First, note that

all estimates with reported consumption are negative, many of them statistically significant.

In contrast, unfiltered consumption reverts these into more sensible estimates, when consid-

ering the Euler Equations for stock and bond holders. It suggests an EIS from 0 to 0.3 for the

former, and from 0.4 to 1 for the latter group. Differences between unfiltered and reported

consumption are less substantial when considering non-asset holders, but the former still

provides estimates of the EIS that are slightly less negative. This is also generally the case

when the Euler equation for all households is estimated. Importantly, robust intervals lean

towards positive values with unfiltered consumption. These are also substantially narrower

when estimating the Euler equation for stock holders, suggesting that weak instruments af-

fect these estimations to a lesser extent. For bond holders, results are more uncertain. Al-

though point estimates seem more precisely estimated with unfiltered consumption, robust

intervals are considerably wider.

Unfiltered consumption seems to magnify differences in terms of the EIS between asset

and non-asset holders. Such result is consistent with Table 2.2, which shows, for instance,

that unfiltering theCEXdata introducesmoremean reversion and considerablymore volatil-

ity in the consumption series of bond and stock holders, compared to non-bond and non-

stock holders. Robust sets with unfiltered consumption suggest that the EIS is not above

0.6 for stock holders, nor above 0.2 for non-stock holders. Nonetheless, there is consider-

able overlap between the intervals. Therefore, there seems to be little evidence favouring the

limited asset market participation theory in our results. This finding contrasts with Vissing-
60However, we calibrate the model based on the entire sample (1982-2013). We need enough observations to

calculate the long-run standard deviations of the series. Since these use a horizon of 6 years, calibrating based
on the period 1982-1996 gives weaker results.

61The use of semiannual consumption growth data at monthly frequency generates overlapping observa-
tions for two subsequent months of data. It follows that an MA(5) process enters the error term in (2.16).
Therefore, we use Two-Step GMM with a heteroscedasticity and autocorrelation-consistent (HAC) estimator
for the covariance matrix. Main results of this section do not change when using CUE-GMM, which is more
robust to the presence of weak-instruments.
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Jorgensen (2002), who finds substantial differences across those groups for the same period.

She does not apply weak-IV-robust methods, though62.

Table 2.8 presents results for the entire sample, from 1982 to 2013. Again, reported con-

sumption produces negatives estimates of the EIS for all groups and instrument sets applied.

In contrast, estimations with unfiltered consumption return positive estimates in all but one

of the cases tested. For all households, the EIS is estimated from 0.05 to 0.1 using stock re-

turns. These values shift to 0.4 to 1.2with risk-free returns. Note that reported consumption

provides counter-intuitive estimates in those cases, from−0.1 to−1.3, depending on the type

of return and the instrument set used.

In contrast to Table 2.7, using unfiltered consumption for the entire sample generates

estimates of the EIS that are quite alike, comparing asset and non-asset holders. For stock

holders, for example, we estimate a coefficient in the narrow interval from 0 to 0.1, not dis-

tant from estimates for non-stock holders, around 0.15. Additionally, robust intervals are

also similar. As in the previous table, these sets generally shift from showing negative to

showing positive numbers, as we replace reportedwith unfiltered consumption. Oncemore,

there seems to be more uncertainty involving estimations for bond and non-bond holders,

as, for instance, robust intervals are again considerably wider. In spite of that, higher point

estimates are still obtained with unfiltered consumption. For instrument sets II and III, it

produces estimates around 0.4, the lower bound of results with analogous estimations in the

previous table.

Generally, estimations in Table 2.8 once more produce limited evidence that the EIS dif-

fers substantially between asset and non-asset holders. This is the case even with unfiltered

consumption. Recall that, in the previous section, we concluded that unfiltered consump-

tion offered more reliable estimations, which also seemed less plagued by the presence of

weak instruments. We then mentioned the possibility that commonly distorted estimates of
62Although she does not apply robust methods, our point estimates are considerably distinct from those

reported in Vissing-Jorgensen (2002) (for the same period). The data have been revised several times since
then, so that these revisions may explain the differences.
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Table 2.7: Estimates of the EIS – CEX Data: 1982 to 1996

A. Estimation with Stocks B. Estimation with Treasury Bills

∆ck Households I II III Households I II III

Reported All −0.245∗ −0.243∗∗ −0.425∗∗∗ All −1.065∗∗ −0.933∗ −1.680∗∗∗

(0.145) (0.122) (0.181) (0.505) (0.503) (0.491)

[−0.894,−0.101] [−1.048,−0.087] [−1.045,−0.248] [−3.044, 0.821] [−2.547, 1.573] [−4.141, 0.667]

Stock Holders −0.007 −0.224 −0.341 Bond Holders −0.208 −0.278 −1.064

(0.197) (0.172) (0.228) (0.690) (0.693) (0.676)

[−0.703, 0.221] [−0.943, 0.033] [−1.496,−0.085] [−2.969, 3.481] [−2.867, 5.012] [−6.079, 3.753]

Non-Stock Holders −0.295∗ −0.287∗∗ −0.513∗∗ Non-Bond Holders −1.293∗∗ −1.219 −1.966∗∗∗

(0.155) (0.131) (0.203) (0.510) (0.496) (0.471)

[−0.760,−0.130] [−0.807,−0.112] [−0.816,−0.349] [−3.332, 0.604] [−3.504, 1.523] [−4.947, 0.322]

Unfiltered All −0.066 −0.189 −0.135 All −0.328 −1.017 −0.855

(0.418) (0.226) (0.189) (2.076) (1.714) (1.091)

[−0.286, 0.050] [−0.454,−0.102] [−0.345,−0.051] [−4.930, 4.314] [−14.154, 12.089] [−16.033, 8.073]

Stock Holders 0.151 0.068 0.323 Bond Holders 1.070 0.417 0.765

(0.609) (0.349) (0.363) (2.444) (2.228) (1.745)

[−0.038, 0.311] [−0.338, 0.290] [0.033, 0.663] [−3.719, 8.085] [−19.829, 36.569] [−11.043, 16.187]

Non-Stock Holders −0.091 −0.228 −0.222 Non-Bond Holders −0.590 −1.244 −1.404

(0.501) (0.274) (0.222) (2.600) (2.199) (1.377)

[−0.368, 0.195] [−0.426, 0.235] [−0.391, 0.100] [−5.682, 5.266] [−40.931, 32.163] [−28.711, 8.518]

Notes: Estimates of the EIS using Euler equation (2.16). The sample encompasses semi-annual consumption
growth observations at monthly frequency, from 1982 to 1996. Unfiltered consumption is extracted relying on
the quasi-differenced Filtermodelwhosemeasurement errors are serially correlated. Herewe assume that gov-
ernment statisticians filter the data based on our final sample – in which some households are dropped based
on conditions described in the main text. Reported uses official CEX data. Unfiltered consumption growth
is constructed from the heteroscedastic model. For this case, asset returns are adjusted for time-aggregation
issues for any group of asset holders – see appendix. Instrument set I includes the log dividend-price ratio. Set
II adds the lagged log real value-weighted return (from NYSE, NASDAQ and AMEX) and the lagged log real
T-bill return. Set III replaces the last two by the lagged bond default premium and the lagged bond horizon
premium. All these sets include the family size and seasonal controls as instruments (so that these are assumed
exogenous). Standard errors are presented in parentheses. 95% confidence intervals that are robust to both
heteroscedasticity and a weak-IV setting are shown in brackets. We construct these intervals by inverting the
K-test statistic in Kleibergen (2005). The null that the estimated coefficient equals 0 has been tested: ***, ** and
* denote rejection of the null hypothesis at 1, 5 and 10 percent significance levels.
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Table 2.8: Estimates of the EIS – CEX Data: 1982 to 2013

A. Estimation with Stocks B. Estimation with Treasury Bills

∆ck Households I II III Households I II III

Reported All −0.163∗∗ −0.108∗ −0.161∗∗∗ All −1.340∗∗ −0.389 −0.578∗

(0.065) (0.060) (0.056) (0.519) (0.352) (0.324)

[−0.246,−0.098] [−0.158,−0.003] [−0.249,−0.094] [−7.884, 2.655] [−2.804, 7.158] [−2.594, 7.302]

Stock Holders −0.107 −0.117 −0.175∗∗ Bond Holders −0.916 −0.349 −0.532

(0.103) (0.103) (0.078) (0.646) (0.475) (0.408)

[−0.350, 0.070] [−0.393,−0.039] [−0.390,−0.045] [−8.532, 9.719] [−8.391, 7.065] [−7.732, 7.839]

Non-Stock Holders −0.161∗∗∗ −0.101∗∗ −0.149∗∗∗ Non-Bond Holders −1.362∗∗∗ −0.450 −0.687∗∗

(0.063) (0.056) (0.056) (0.496) (0.335) (0.319)

[−0.305,−0.084] [−0.201, 0.048] [−0.292,−0.069] [−9.163, 2.868] [−6.837, 4.205] [−3.924, 5.542]

Unfiltered All 0.116 0.044 0.065 All 1.181 0.348 0.418

(0.241) (0.205) (0.210) (2.438) (1.287) (0.709)

[−0.022, 0.284] [−0.112, 0.186] [−0.094, 0.218] [−0.514, 9.875] [−2.057, 13.297] [−0.628, 9.138]

Stock Holders 0.000 0.014 0.035 Bond Holders −0.337 0.318 0.423

(0.330) (0.294) (0.325) (2.759) (1.570) (1.083)

[−0.145, 0.145] [−0.128, 0.188] [−0.107, 0.196] [−6.874, 45.645] [−39.949, 41.042] [−28.484, 47.735]

Non-Stock Holders 0.173 0.107 0.143 Non-Bond Holders 2.154 0.967 0.566

(0.263) (0.223) (0.239) (2.774) (1.479) (0.832)

[0.029, 0.369] [−0.025, 0.269] [0.004, 0.331] [−0.072, 31.714] [−1.769, 31.042] [−0.658, 26.812]

Notes: Estimates of the EIS using Euler equation (2.16). Our sample encompasses semi-annual consumption
growth observations at monthly frequency, from 1982 to 2013. Unfiltered consumption is extracted relying on
the quasi-differenced Filtermodelwhosemeasurement errors are serially correlated. Herewe assume that gov-
ernment statisticians filter the data based on our final sample – in which some households are dropped based
on conditions described in the main text. Reported uses official CEX data. Unfiltered consumption growth
is constructed from the heteroscedastic model. For this case, asset returns are adjusted for time-aggregation
issues for any group of asset holders – see appendix. Instrument set I includes the log dividend-price ratio. Set
II adds the lagged log real value-weighted return (from NYSE, NASDAQ and AMEX) and the lagged log real
T-bill return. Set III replaces the last two by the lagged bond default premium and the lagged bond horizon
premium. All these sets include the family size and seasonal controls as instruments (so that these are assumed
exogenous). Standard errors are presented in parentheses. 95% confidence intervals that are robust to both
heteroscedasticity and a weak-IV setting are shown in brackets. We construct these intervals by inverting the
K-test statistic in Kleibergen (2005). The null that the estimated coefficient equals 0 has been tested: ***, ** and
* denote rejection of the null hypothesis at 1, 5 and 10 percent significance levels.
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the EIS may be a consequence of an Euler Equation that does not hold for the representa-

tive agent because of limited participation in asset markets. First, our estimations with the

CEX data indicate that it is not the case. Second, even if it were, accounting for the fact that

reported data are statistically treated before release can once again produce more precise

estimates of the EIS.

2.5 Conclusion

The empirical literature on the elasticity of intertemporal substitution (EIS) is vast, with con-

siderable variation in estimates depending on the specification, econometric method, sam-

ple, and degree of market participation. However, a critical and often overlooked issue lies

in the construction of consumption data itself. Most reported consumption series are fil-

tered and interpolated before release, introducing artefacts that can distort identification

and weaken the reliability of structural estimates.

This paper addresses that gap by proposing a generalised framework for EIS estimation.

Building on the Filter model of Kroencke (2017), we introduce an econometric structure that

allows for persistent distortions in the observed series, effectively ’unfiltering’ consumption

data prior to estimation. This adjustment is non-trivial and yields a flexible methodology

that can be applied to different types of data, at varying frequencies, and under different

asset market participation assumptions.

Our framework is employed in two distinct settings. First, we construct unfiltered macro

series from national accounts data and estimate the EIS using the instrumental variable ap-

proach of Yogo (2004), showing that unfiltered consumption stabilises estimates and nar-

rows confidence intervals, even in the presence of weak instruments. Second, we apply the

samemethodology to disaggregatedmicro survey data (CEX), distinguishing between asset

and non-asset holders. In both cases, the flexibility of ourmodel—particularly its allowance

for serial correlation in the measurement error — proves essential for producing plausible
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and consistent estimates.

Across settings, the use of unfiltered data substantially improves identification. With

macro data, weak-IV-robust intervals become informative, and estimates concentrate in a

more plausible range. With micro data, the EIS estimates shift upward and become more

stable, especially for stock and bond holders, compared to the negative or near-zero values

typically found using reported consumption.
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Chapter 3

Identification of the Phillips Curve using

Sectoral Data

Co-authored with Carlos Carvalho1

Abstract: At the centre of monetary policy mechanism, the Phillips Curve plays a crucial role

in macroeconomic models. Yet, its theoretical importance contrasts with a large empirical debate on

its stability, robustness, and even existence. This paper takes seriously the theoretical implications of

heterogeneity in price stickiness for the estimation of the Phillips Curve. The novel method generates

positive, sizeable and stable slope coefficients across different econometric settings, producing degrees

of stickiness broadly aligned with the micro evidence, both regarding the entire economy and the cross

section of sectors. The degree of robustness exhibited by our estimations contrasts with the empirical

literature, which typically struggles with minor changes in the econometric setting.
1We are grateful for the insightful feedback provided by participants at the Econometric Society World

Congress, with special thanks to James Stock and Randal Verbrugge. For valuable comments and discussions,
we also thank João Victor Issler, Leonardo Rezende, Marcelo Medeiros, Marco Bonomo, Michael McLeay, Ri-
cardo Reis, and Silvana Tenreyro.
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3.1 Introduction

The relationship between inflation and economic slack, measured by the Phillips curve, is es-

sential in macroeconomics, at the center of monetary policy transmission mechanism. Laid

out back in the 80’s and 90’s, theNew-Keynesian Phillips Curve (henceforth, NKPC) is is cur-

rently themostwidespread theory in that design. However, its early success andwidespread

adoption contrast with a series of empirical difficulties, with a pronounced debate on esti-

mated coefficients (Nason and G. W. Smith (2008a), Nason and G. W. Smith (2008b) and

Mavroeidis, Plagborg-Møller, and H. Stock (2014)), stability (Stock and Watson (2007), Al-

buquerque and Baumann (2017), Luengo-Prado, Rao, and Sheremirov (2018), Jorda and

Nechio (2018) and Galí and Gambetti (2019)), robustness (Dufour, Khalaf, and Kichian

(2010)), or even existence (Hooper, Mishkin, and Sufi (2019)).

Most of the empirical literature focuses on specifications justified on the basis of the sim-

plest New-Keynesian models in Woodford (2003) and Galí (2015), or slight variations that

induce a backward-looking component through some form of price-indexation (Christiano,

Eichenbaum, and Evans (2005)), staggered wage contracts (J. Fuhrer and Moore (1995)),

or some backward-looking rule of thumb (Gali and Gertler (1999) and Galí, Gertler, and

López-Salido (2003)). Extensions of the basic theory, however, imply that the NKPC should

have additional terms. For example, models with capital accumulation would imply an

investment-gap term (e.g., Michael Woodford (2005) and Carvalho and Nechio (2016)),

while terms related to trade appear in theNKPC of some open-economymodels (e.g., Mona-

celli (2007) and Zaniboni (2008)).

In this paper, we take seriously the implications of heterogeneity in price stickiness to

address empirical difficulties verified by the literature on the NKPC. More precisely, we pro-

pose a novel estimation method that relies on a system comprised of an aggregate and sec-

toral NKPCs, taken from a multi-sector heterogeneous model. An advantage of this frame-

work is that it brings plenty of additional structure from theory, which we exploit through a
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rich set of cross-equation restrictions in our estimations.

There are more essentially two ways through which a multi-sector heterogeneous econ-

omy improves the identification of the NKPC. First, cross-sector variation can potentially

mitigate a form of simultaneity bias affecting the equation, which pushes its slope towards

zero, or even counter-intuitive negative numbers, caused by the endogenous response of

monetary policy.

Fitzgerald, Nicolini, et al. (2014) and McLeay and Tenreyro (2019) show that result for

regional data, albeit in the absence of stickiness heterogeneity. We not only demonstrate

that the same implications are carried over to the multi-sector case, but also that they are

magnified once we also allow for heterogeneity.

Second, price-setting heterogeneity can potentially enhance the reliability of estimations

due to the presence of strategic complementarities across sectors. A well known difficulty

of the empirical literature on the NKPC is that, even when estimates of the slope are posi-

tive, the implied degree of stickiness in the economy is too high, incompatible with the evi-

dence brought by studies usingmicro (disaggregated) data – e.g., in Bils andKlenow (2004),

Nakamura and Steinsson (2008) and Nakamura and Steinsson (2013). Under price-setting

heterogeneity, the more sticky sectors exert a disproportionate effect on the aggregate price

level –Woodford (2003, Chapter 3). As a result, everything else constant, the price dynamics

of the economy is more staggered under the heterogeneous model compared to its homoge-

neous counterpart, as shown by Carvalho (2006). It follows that the economy behaves as if

it featured more nominal rigidities, allowing a lower and more sensible degree of stickiness

to be recovered from the data.

Some articles attest to the importance of heterogeneity in reconciling macro and micro

estimates of degrees of stickiness – e.g., Cagliarini, Robinson, and Tran (2011), for Australia,

and Imbs, Jondeau, and Pelgrin (2011), for France. However, contrasting with our paper,

the discussion of the former is mostly based on simulated data, while the empirical strategy
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of the latter focuses on the dynamics of sectoral inflation (aggregate inflation is simulated

on the basis of estimates obtained for the sectors). Furthermore, unlike our article, these

authors do not estimate Phillips curves for the US economy.

Our method allows us to separate out the effect of each of the two mechanisms – cross-

sector variation and heterogeneity – over the estimations. With our baselinemodel, whenwe

exploit both, it delivers a sizable, stable and positive slope. This coefficient is significant at 1%

for all of the cases tested in this paper, including a series of robustness checks. Furthermore,

the procedure generates a degree of stickiness that approaches levels evidenced by studies

using disaggregated data. The model implies an aggregate expected duration of price spells

roughly from 7.1 to 8.3 months, while the micro evidence usually delivers estimates in the

interval from 4 to 9months2. We also find that estimates of the slope and stickiness behave as

predicted by theory aswe introducemore or less strategic complementarities in price setting.

When it comes to the cross section of sectors, estimated degrees of stickiness are broadly in

line with the micro evidence, presenting quite narrow standard errors. For example, the

method implies high correlations (around 0.7) between estimated sectoral coefficients that

govern stickiness in themodel and their micro analogues, mapped from disaggregated data.

The degree of robustness exhibited by our estimations with the heterogeneous model is

at odds with the rest of the literature, which, for instance, typically struggles with minor

changes in the econometric setting. We test estimator uncertainties perturbing the para-

metric setting, as the number and which parameters are estimated, calibrated values for

those that are not, the sample, instruments and starting values in the estimation algorithm.

The model we propose, although not tailored to solve specific problems, exhibits little to no

change in terms of performance under those exercises.

Implications for the degree of stickiness are essentially maintained once we switch off

heterogeneity. The slope is reduced by half, but it is still stable, significant and substantially
2Values obtained with micro data can vary substantially depending on whether sales are included or not.

See Bils and Klenow (2004), Nakamura and Steinsson (2008) and Nakamura and Steinsson (2013), for useful
references.
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larger compared to the case when we switch off both heterogeneity and cross-sector varia-

tion.

In the absence of those twomechanisms, the estimations follow simple approaches in the

literature, with a specification based on the canonical New-Keynesianmodel in textbooks. In

this case, it also returns the same puzzling results, namely a counter-intuitive slope, which

is roughly estimated at zero, and a degree of stickiness too high and inconsistent with the

evidence found for micro data.

Among existing studies, the closest in spirit to our approach are McLeay and Tenreyro

(2019) and Hazell et al. (2022). Both papers seek to improve identification of the Phillips

curve by leveraging cross-sectional variation: McLeay and Tenreyro (2019) use regional vari-

ation across U.S. areas, while Hazell et al. (2022) construct a panel of U.S. states using newly

built CPI indices for nontradeables. In contrast, we exploit sectoral heterogeneity in price

stickiness, which has stronger micro foundations and can be more directly mapped to struc-

tural model parameters. Moreover, while both studies rely on reduced-form regressions,

our estimation is based on a fully specified structural system that imposes cross-equation

restrictions from a multi-sector New Keynesian model. This distinction allows us not only

to improve identification but also to isolate the contribution of sector-level heterogeneity to

the slope of the aggregate Phillips curve, under well-defined theoretical assumptions.

This paper differs frommost part of the empirical literature in using the output gap as the

slack variable of the NKPC. In a seminal paper, Gali and Gertler (1999) showed that estima-

tions of the NKPC using the output gap generally return negative values for the slope, and

suggested the use of an alternative specification where that slack variable is replaced with a

proxy for marginal costs (generally the labour share). From there on, the vast majority of ar-

ticles follow that workaround – e.g., Sbordone (2002), Galí, Gertler, and López-Salido (2003)

and Cogley and Sbordone (2008), to cite a few. However, such alternative also faces skepti-

cism3. Results of our paper suggest that it is perfectly possible to obtain reliable and sensible
3Some articles point to a limited empirical evidence that proxies for marginal costs can add any information
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estimations of the NKPC relying on the straightforward slack variable, i.e., the output gap.

We discuss the two mechanisms through which our model potentially improve estima-

tions of the Phillips curve in the next section. In Sections 3.3 and 3.4, we discuss the model

and the empirical approach, respectively. Section 3.5 briefly describes the data set. In Sec-

tion 3.6, we present our main findings, also discussing robustness checks. Finally, Section

3.7 concludes.

3.2 Implications of Heterogeneity in Price Stickiness for Es-

timation of the NKPC

This section illustrates the two main mechanisms through which an estimation strategy that

accounts for heterogeneity in price stickiness across sectors may improve empirical results

for the NKPC. First, heterogeneity and cross-sector variation create a tension between stabi-

lization objectives ofmonetary policy, what, to some degree, alleviates a formof simultaneity

bias in the estimations, caused by the response of monetary policy. Second, under hetero-

geneity, strategic interactions between sectors give rise to an interesting theoretical channel

that helps us to obtain lower and more sensible estimates of the degree of price stickiness in

the economy. We begin by addressing the former point below.

3.2.1 Optimal Policy: Ameliorating the Simultaneity Bias

Contemporary findings suggest that the Phillips curve has considerably flattened in themore

recent decades, what has induced many authors to question whether the curve is actually

dead – e.g., Stock and Watson (2007), Kuester, Müller, and Stölting (2009), Kleibergen and

Mavroeidis (2009) and Galí and Gambetti (2019). However, except for the last, these papers

regarding the dynamics of inflation – e.g., Rudd andWhelan (2005), Rudd andWhelan (2007) andMazumder
(2010).
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generally emphasize drawbacks of the econometric setting rather than giving explanations

based on macroeconomic theory.

A more recent strand of the literature is convenient in linking difficulties to empirically

identify the Phillips curve with theoretical reasons why these complications may arise in

the data. Those papers are built on the argument that identification of the Phillips curve

is blurred at the aggregate level because monetary policy endogenously attempts to offset

sources of exogenous variation that would otherwise help to identify the equation.

Pursuing a goal of minimizing welfare losses, what involves deviations of inflation from

target and output from potential, a Central Bank will tend to act to increase inflation when

output is below potential, inducing a negative correlation between both stabilization objec-

tives and biasing downwards the slope of the Phillips curve. For example, as illustrated by

McLeay and Tenreyro (2019), this point can be seen using the textbook model described

in Galí (2015). There, under discretion, the optimal policy that minimizes a loss function

subject to the NKPC takes the form:

yt = −κ
ϑ
πt, (3.1)

where yt and πt denote the welfare-relevant output gap and inflation, respectively, κ is the

slope of the underlying NKPC and ϑ a function of structural parameters of the model4.

From (3.1), researchers would not be estimating a pure and steeper curve in the data, but

merely obtaining an intersection of the Phillips curve and a monetary policy targeting rule,

a classic situation of simultaneity bias. A straightforward way to see this comes from the

absence of trade-off between stabilization of inflation and the welfare-relevant output gap

in simple New-Keynesian models without real imperfections, referred to in Blanchard and

Galí (2007) as “divine coincidence”. In this case, perfect stabilization of both objectives is
4For expository reasons, equation (3.1) implicitly assumes an efficient steady-state. If a steady-state distor-

tion is sufficiently small, the same negative relationship between output and inflation follows, but a constant
term would also appear in (3.1).
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possible from (3.1), completely blurring the identification of the Phillips curve in the data.

As a result, its slope would be estimated at zero under simple linear regression methods.

These econometric issues motivate a number of articles that attempt to circumvent that

sort of bias by seeking sources of exogenous variation to identify the Phillips relationship,

albeit none of which exploiting heterogeneity in price setting. Jorda and Nechio (2018) rely

on an estimation strategy that benefits from the so-calledmonetary policy trilemma in amulti-

country framework. These authors aim to dissolve the simultaneity bias using the fact that,

under free mobility of capital, countries that rely on a fixed exchange rate regime can not

conduct an independent monetary policy. Fitzgerald, Nicolini, et al. (2014), McLeay and

Tenreyro (2019) andHooper,Mishkin, and Sufi (2019) rely on amulti-region setting to argue

how the use of these sorts of data can help to mitigate the bias to the extent that they are not

influenced by policy. Indeed, if the Central Bank does not respond to idiosyncratic shocks in

the regions, McLeay and Tenreyro (2019) show that regional Phillips curves can be useful to

identify the slope of the aggregate equation, particularly when the variance of these shocks

is sufficiently high.

Alternatively, one can think of the simultaneity bias caused by endogenous policy as in

a textbook approach of simultaneous equations of demand and supply. Note that aggre-

gate demand shocks tend to induce a positive relationship between inflation and the output

gap, whereas cost-push shocks tend to produce the opposite effect. If demand shocks are

completely offset by policy, but cost-push shocks accommodated, estimations of the Phillips

curve will inherit properties of the latter, returning an unrealistic negative slope that fol-

lows the relationship depicted in (3.1) even when the true coefficient is positive and sizable.

Hence, controlling for supply shocks is important to recover the Phillips curve in the data.

This suggests why multi-sector New-Keynesian models can prove handy to mitigate the

impact of the endogenous response of policy. Aoki (2001), for example, constructs a simple

New-Keynesian framework comprised of a flexible-price sector and a sticky-price sector. He

shows how relative prices, terms that measuremisalignments of prices between sectors, play
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an important role in these type of models. First, they arise as an additional objective of

policy. Second, they enter as a shift component in the NKPC, what justifies why these terms

are commonly used as a proxy for supply shocks – e.g., relative prices of food and energy.

However, relative prices may also reflect other factors, as idiosyncratic demand shocks and

elasticities of substitution between goods.

Regardless of their underlying transmissionmechanism, the presence of relative prices in

models with price-setting heterogeneity is not only theoretically meaningful, but also econo-

metrically useful. For example, a second-order approximation of the welfare-relevant loss

function associated with the model we later use in this paper takes the form5:

W ≈ −1

2
E

∞∑
t=0

βtLt,

where:

Lt ≡

{
(σ + φ−1)y2t + (1 + φ−1ϵ)

K∑
k=1

ηk
1

κk
π2
k,t + (1 + φ−1)

K∑
k=1

ηk(pk,t − pt)
2

}
. (3.2)

Lowercase variables denote log-deviations from a zero-inflation steady state, πk,t denotes the

inflation rate in sector k ∈ {1, ..., K}, ηk the weight of that sector in aggregate expenditures

and (pk,t−pt) the relative price of that sector, the difference between its price index and the ag-

gregate price level. As seen later, κk denotes the slope of the NKPC of sector k. Additionally,

σ represents the inverse of the elasticity of intertemporal substitution (EIS) in consumption,

φ is the Frisch elasticity of labor supply and ϵ > 1 is the elasticity of substitution between

goods.

As in a homogeneous model, monetary policy should minimize fluctuations in output,

justifying the first term in (3.2). With price-setting heterogeneity across sectors, price (and
5We present derivations in the appendix. For expository reasons, (3.2) corresponds to the loss function

of a forward-looking model, i.e., where price indexation is not allowed. We later discuss implications for the
more generalized case. In addition, to simplify the algebra, we assume that an appropriate optimal subsidy to
employment is in place, τ . This will neutralize the mark-up distortion generated by the market power of firms
in steady state.
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output) dispersion in each sector explain the second term, here a function of inflation in the

sectors, rather than aggregate inflation, as in the homogeneous case. Undesirable fluctua-

tions in hours worked, mapped through sectoral demand functions, give rise to functions

of sectoral relative prices. These arise specifically from the presence of heterogeneity and

appear in the last term of the loss function, but do not exist in the textbook model used in

McLeay and Tenreyro (2019), for example6.

The presence of the last term in (3.2) generally creates an inability to satisfy all of these ob-

jectives simultaneously – see Woodford (2003, Chapter 6). Consequently, it now produces a

tension between stabilization of aggregate inflation and output. Such trade-off, not featured

in the standard models used in the empirical literature on the NKPC, is econometrically im-

portant to the extent that it attenuates the endogenous response of monetary policy at the

aggregate level. Thus, it also reduces some of the simultaneity bias affecting the estimations

of the aggregate NKPC.

We fix K = 2 to illustrate the analogue of (3.1) for the heterogeneous model. In this

case and under discretion, it is possible to show that the minimization of (3.2) subject to an

aggregate and two sectoral NKPCs produces:

yt =− λπ × (η1κ
−1
1 π1,t + η2κ

−1
2 π2,t) + Λt(ηk, κk, ζk,t, ϵ, φ), (3.3)

where:

λπ ≡ ϵ[η1κ1 + η2κ2 + 2η1η2(κ1 + κ2)Θ
−1], Θ ≡ σ + φ−1

1 + ϵφ−1
, (3.4)

6The welfare-relevant loss function in (3.2) is very similar to those derived in Aoki (2001), Benigno (2004)
and Eusepi, Hobijn, and Tambalotti (2011). However, the last paper exhibits a loss function that also has a
fourth component, a cross term comprised of deviations of output and relative prices. This term does not
appear here since, unlike their model, our framework will not feature heterogeneity in production functions
across sectors.

122



and:

Λt(ηk, κk, ζk,t, ϵ, φ) ≡ ϵ(1 + φ−1ϵ)−1 × [ζ1,tη2κ1 + ζ2,tη1κ2 − 2η1η2ϵ(κ1 + κ2)(ζ1,t + ζ2,t)], (3.5)

a time-varying function of sectoral NKPC slopes, weights, structural parameters and two

Lagrange multipliers ζk,t, one for each sectoral NKPC in the minimization problem7.

Note from the first term in (3.3) that it is now sectoral inflation which affects the outcome

of policy. In addition, the presence of Λt in that equationmakes the relationship between the

output gap and sectoral inflation non-trivial. Results of a number of articles that address op-

timal policy in heterogeneous models, however, imply that the policymaker should respond

more strongly to stabilize inflation rates of the more sticky sectors8. In fact, those are the

sectors with flatter NKPCs, more frictions and larger real distortions9. Besides Aoki (2001),

already cited, see Benigno (2004), Kösem-Alp (2010) and Eusepi, Hobijn, and Tambalotti

(2011), to mention a few.

A direct consequence of the equilibrium relationship in (3.3) is that the complete stabi-

lization of headline inflation is no longer optimal. This attenuates the bias caused by the

endogenous response of policy when one estimates the short-term relationship between ag-

gregate inflation and the output gap. Particularly, identification improvements are generated

by movements in aggregate inflation, which mainly absorbs shifts in the inflation rates of

the more flexible sectors (those with higher κk), less subject to be offset by policy. In this
7We assumed that the policymaker chooses levels of output and inflation in the sectors to derive (3.3) to

(3.5). This is analogous to the textbook model, where monetary policy is assumed to pick levels of aggregate
output and inflation.

8Similarly, one could think of a counterpart of (3.1) to the heterogeneous economy as:

yk,t = −Υπ(κk, κk′)πk,t + ϱt, (3.6)

where Υπ(κk, κk′) is a positive function, decreasing in κk, of NKPC slopes of sectors k and k′ ̸= k.
9Because of the aforementioned tension between alternative stabilization objectives, these are often referred

to as second-best optimal policies. However, it does not mean that the first-best optimal policy can not be well
approximated by these alternatives. For example, Eusepi, Hobijn, and Tambalotti (2011) quantitatively show
how stabilization of a welfare-based price index can produce negligible welfare losses compared to the first-best
optimal policy.
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regard, note that the specific source of the shocks should not matter. Even if demand shocks

represent the main reason behind shifts in sectoral inflation rates of the more flexible sec-

tors, they still contribute to a better identification of the NKPC, as long as the policymaker

accommodates them.

But what if monetary policy does not consider a multi-sector model with price-stickiness

heterogeneity? In this case, we are back to (3.1), where monetary policy attempts to stabi-

lize both aggregate inflation and output. Nonetheless, once again the heterogeneous model

should improve estimations due to the presence of relative prices in its aggregate NKPC. If

the Central Bank is inattentive to welfare-relevant losses related to movements in relative

prices, it shall not attempt to stabilize these terms. Hence, they can be useful as an auxiliary

source of variation that does not relate to policy, improving the identification of the Phillips

curve in a similarmanner. Additionally, even if that is the case, cross-sector variation can still

be used in the estimations to attenuate the simultaneity bias, for the same reasons discussed

by McLeay and Tenreyro (2019) for regional data.

3.2.2 Strategic Complementarities in Price Setting: More Sensible De-

grees of Stickiness

A common difficulty in the empirical literature is that, even when estimates suggest a pos-

itive coefficient for the slope, the implied degree of nominal rigidity in the economy is too

high, being primarily inconsistent with the micro evidence. Studying disaggregated data,

Bils and Klenow (2004) report that half of prices in their sample last less than 5.5 months

when excluding sales. Similarly, Nakamura and Steinsson (2008) report a median duration

of prices from 7 to 9 months (also ignoring sales). In contrast, empirical estimations justified

on the basis of the simplest New-Keynesian model generally imply an expected duration of

price spells of at least 15 months, but often higher10.
10Simple models based on Calvo-pricing usually return a high and rather imprecise Calvo parameter, rarely

lower than 0.8. This gives an expected duration of price spells of at least 5 quarters, or 15 months.
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In contrast to those simpler models used in the empirical literature, the combination of

price-setting heterogeneitywith the presence of strategic interactions across sectors implies a

different price dynamics. Particularly, with strategic complementarity in price-setting decisions

across sectors, firms in the more flexible sectors avoid setting prices that are too disparate

compared to the future aggregate price level11. It follows that the more sticky sectors will

disproportionately influence aggregate prices – Woodford (2003, Chapter 3).

Everything else constant, the price dynamics would be more staggered in the heteroge-

neous economy compared to the homogeneous case. Indeed, for similar degrees of strategic

complementarity, Carvalho (2006) shows that, to replicate the dynamics of the heteroge-

neous economy, its identical-firms counterpart requires a frequency of price changes that is

up to three times lower than the average of the heterogeneous economy.

Following that rationale, by relying on small variations of the simplest New-Keynesian

model, the empirical literature is possibly obtaining estimates of the aggregate degree of

nominal rigidity that are biased upwards. With a trivial inverse relationship between the de-

gree of stickiness and the slope in those simple models, their estimates of the slope are also

biased downwards12. Some articles confirm these findings empirically, but based on simu-

lated data – e.g., Imbs, Jondeau, and Pelgrin (2011), calibrating for France, and Cagliarini,

Robinson, and Tran (2011), for Australia. Piazza (2018) use heterogeneity in sectoral Phillips

curves to construct an estimation strategy that relies on idiosyncratic shocks (purged from

the effect of aggregate shocks), but he does not estimate degrees of stickiness directly (nei-

ther of the economy, nor of the sectors).

Differences between the price dynamics of the heterogeneousmodel and that of its identical-

firms counterpart should be more evident with more strategic complementarity in price set-
11The model we use in this paper is similar to that in Carvalho (2006). It can be calibrated either for the

presence of strategic complementarity or strategic substitutability in price setting, but the latter is only achiev-
able in this type of model under unrealistic calibration values. See Carvalho (2006) and Carvalho and Nechio
(2016) for a more detailed discussion.

12Asdiscussed later, the relationship between the aggregate degree of stickiness and the slope is not so simple
in multi-sector heterogeneous models. The effect of nominal rigidities on the slope will also depend on how
stickiness is distributed across sectors.
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ting. We later test this theoretical implication empirically, using the heterogeneous model.

If strategic complementarities are strong enough, the more flexible sectors adjust their

prices considerably less than they otherwise would, in response to a demand shock. In the

limit, aggregate prices would not change much for a large output effect. A first consequence

is that the slope – which measures such sensitivity – would tend to zero. A second is that

the average degree of stickiness in the economy need not be as high as often estimated in

the literature to provide the same dynamics for inflation. Therefore, the estimated degree of

stickiness exhibited by the heterogeneous economywould be lower, potentially approaching

values observed for micro data.

3.3 Inflation Dynamics in a Multi-Sector Model

The last section discussed the ways through which an estimation strategy that relies on het-

erogeneity in price setting across sectors may circumvent estimation difficulties affecting the

NKPC. Particularly, it should help to revert a downward bias for the slope and an upward

bias for the implied degree of stickiness in the economy. In addition, with solid evidence of

heterogeneity in the frequency of price changes across sectors, – e.g., Bils andKlenow (2004),

Dhyne et al. (2006), Nakamura and Steinsson (2008) and Nakamura and Steinsson (2013) –,

it should also be the method to choose.

We now turn to the heterogeneous model we use in the paper. It is similar to those used

in Carvalho (2006) and Eusepi, Hobijn, and Tambalotti (2011), and it is fully presented

in the appendix, for conciseness reasons. A small difference here is the introduction of a

standard price-indexation scheme. Dropping this indexation rule returns the same (purely

forward-looking) NKPC featured in Carvalho (2006)13. Price indexation should not modify

the implications of the analysis of section 2.1, according to findings in Steinsson (2003) and
13In terms of findings, the model without indexation produces very similar results for the slope compared

to those shown in the paper. Results for the degree of stickiness in the economy would be weaker, though.
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Kösem-Alp (2010)14.

The model features a continuum of firms kj in each sector, each producing the consump-

tion variety of the good j ∈ [0, 1] of sector k. The weight of each sector in aggregate expen-

ditures is represented by ηk, such that
∑K

k=1 ηk = 1. Firms are monopolistically competitive,

hiring labor based on a linear technology function. A representative household, which owns

these firms, also supplies firm-specific labor to them. This type of segmented labor market

is the reason why strategic complementarities in price setting arise in the model. The con-

sumer derives utility from a Dixit-Stiglitz composite of differentiated consumption goods in

the economy. It is assumed that each firm kj fixes its price as in Calvo (1983), but heterogene-

ity arises from a sector-specific probability of a price change, denoted by λk (equivalently,

the Calvo parameter in sector k is θk ≡ 1− λk).

Firms which can not readjust their prices in any given period set them according to:

Pkj,t = Pkj,t−1

(
Pk,t−1

Pk,t−2

)γk
, (3.7)

where γk governs the degree of persistence in sectoral inflation rates. In what follows, we

assume γk = γ. This considerably simplifies the form of the NKPC of the economy, reducing

non-linearities of the moment conditions we estimate. In addition, we later evaluate the

model in the cross section of sectors, comparing estimates of λk with implications from the

micro evidence for each sector. By normalizing for the same γ, we do not affect correlations

in such comparison, regardless of possible bias in γ̂15.

An advantage of (3.7) is that it does not introduce noise in the channel related to strate-

gic complementarities, analysed in Section 3.2.2. For example, if we were to assume an in-
14In a model comprised of a sector that sets prices à la Calvo (1983) and another sector that fixes prices

according to a backward-looking rule of thumb, Steinsson (2003) shows that the main features of optimal
policy in the purely forward-looking case carry over to the hybrid case. Kösem-Alp (2010) shows that the
sectoral slopes of the NKPCs continue to serve as a guide for optimal policy weights, as illustrated in section
2.1, regardless of how degrees of persistence may be distributed across sectors.

15With a sector-specific γk, we could be overestimating (underestimating) λk due to an upward (a down-
ward) bias in γ̂k for some sector. This would affect correlations between these parameters and those implied
by the micro evidence, blurring the evaluation of the model
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dexation scheme on the aggregate price index, then sectors with lower frequencies of price

changes – which, under no indexation, have a disproportionate effect on aggregate prices

– would set prices based on an aggregate index that already reflects price setting decisions

of the more flexible sectors. These flexible sectors would then have a higher impact on the

aggregate price dynamics, attenuating the central role of the more sticky ones and under-

mining empirical benefits generated by the model in terms of the NKPC.

3.3.1 New-Keynesian Phillips curves

As shown in the appendix, the log-linearized version of the model produces an aggregate

NKPC that takes the form:

πt =
β

1 + βγ︸ ︷︷ ︸
≡γf

Etπt+1 +
γ

1 + βγ︸ ︷︷ ︸
≡γb

πt−1 + ψ

Real Rigidities︷ ︸︸ ︷(
σ + φ−1

1 + ϵφ−1

)
︸ ︷︷ ︸

≡κ (Slope)

yt +
ψ

ϵ
gt︸︷︷︸

Shift Term

+ut, (3.8)

where:

ψ =
K∑
k=1

ηk

[
λk

(1− λk)(1 + βγ)
− βλk

(1 + βγ)

]
︸ ︷︷ ︸

Nominal Rigidities

,

gt =
K∑
k=1

η̃k(yk,t − yt), η̃k =

λk
(1−λk)(1+βγ)

− βλk
(1+βγ)∑K

k=1 ηk

[
λk

(1−λk)(1+βγ)
− βλk

(1+βγ)

]ηk,
where β is the discount factor and terms denoted by (yk,t − yt) represent relative gaps, the

difference between sectoral output gaps and the output gap of the economy. In this type of

model, these terms are a direct function of relative prices, depicted in (3.2)16. Pragmatically,
16In this type of model, a similar NKPC featuring relative prices could be derived using sectoral demand

functions: yk,t = yt − ϵ(pk,t − pt).
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they also play the same role, entering the NKPC as a composite shift term, in ψ
ϵ
gt. Note

that (3.8) nests standard forms in the literature, since the shift term would disappear under

homogeneity (λk = λ). This term is proportional to a weighted average of relative gaps.

Each weight η̃k is a transformation of the original weight ηk, but adjusted for the relative

degree of flexibility of the sector compared to that of the entire economy.

An identical-firms economy features a direct inverse relationship between the degree of

stickiness and the slope of its NKPC, no longer the case in (3.8). Heterogeneity in price

setting produces a slope formed by two components. The first, ψ, summarizes the degree of

nominal rigidity in the economy, as well as its distribution across sectors. The second term,

comprised of Θ ≡ σ+φ−1

1+ϵφ−1 , relates to the degree of real rigidities, directly corresponding to

the degree of strategic complementarities in price setting17. As shown by Carvalho (2006),

compared to a homogeneous economy calibrated for the average frequency of price changes,

the former tends to increase the sensitivity of inflation to the output gap, whereas the latter

operates in the opposite direction.

Sectoral NKPCs of the model take the form:

πk,t =
β

1 + βγ
Etπk,t+1 +

γ

1 + βγ
πk,t−1

+

[
λk

(1− λk)(1 + βγ)
− βλk

(1 + βγ)

](
σ + φ−1

1 + ϵφ−1
− 1

ϵ

)
yt

+
1

ϵ

[
λk

(1− λk)(1 + βγ)
− βλk

(1 + βγ)

]
︸ ︷︷ ︸

≡ψk(λk,β,γ)

yk,t + vk,t.

(3.9)

The term ψk(λk, β, γ) plays a crucial role. First, it relates to the degree of nominal rigidity in

each sector, determining the sectoral slope in (3.9) – i.e., κk = ϵ−1 ×ψk(λk, β, γ). Second, it is

also relevant to identify both the slope and composite shift term of the aggregate NKPC in

(3.8), due to its presence in ψ and gt.

17If λk = λ and γ = 0, the coefficient that multiplies the output gap becomes Θ
(

λ
1−λ − βλ

)
, so that Θ

corresponds to the Ball and Romer (1990) coefficient of real rigidities in this model.
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Essentially, this assessment implies that coefficients in (3.8) can be identified through

(3.9). This is the case even under homogeneity (λk = λ), when ψ = ψk and sectoral and

aggregate NKPC slopes would still be linked by the function κ = ϵ × Θ × κk. In addition,

following the discussion of Section 3.2.1, if sectoral NKPCs are not as blurred by the endoge-

nous response of policy as that of the economy (especially those of themore flexible sectors),

there would also be manifest advantages in a strategy that attempts to identify (3.8) using

(3.9). We benefit from this fact in the estimations of the next section.

It is worth emphasising, however, that estimates of the slope, κ, would still be biased

towards zero under any estimation strategy that uses (3.9). This bias arises due to the pres-

ence of yt, and, therefore, of aggregate shocks (ut) in these sectoral equations. Nonetheless,

in the next section we show that our estimations that include (3.9) still produce sizable and

statistically significant estimates of the slope.

3.4 Empirical Approach

With a significant number of sectors, estimating the structural form in (3.8) becomes non-

trivial. It would combine several endogenous variables with a non-linear setting. An alter-

native is to calibrate a number of its deep parameters – eventually, λk for some sectors –while

estimating others. The main disadvantage of this procedure is that it biases the comparison

between the estimated degree of stickiness of the heterogeneous economy and actual micro

data18.

Another option – the one we adopt here – is to jointly exploit the structures of the aggre-

gateNKPC in (3.8) and its sectoral analogues in (3.9), gaining efficiency from cross-equation
18For example, a method that calibrates some of the λk based on the micro evidence would bias the implied

degree of nominal rigidities in the economy,
∑K

k=1 ηk(1− λk), towards that of actual disaggregated data. Ad-
ditionally, in such non-linear setting, final estimates for the sectors that are not parameterized could be highly
sensitive to the adopted values for the ones that are calibrated, depending on the surface of the underlying like-
lihood function. In this sense, a technique that estimates all the parameters related to the degree of stickiness
in the sectors is preferred.
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restrictions. Our strategy relies on estimating all of the parameters associated with degrees

of nominal rigidity in the sectors, λk, while calibrating the remaining parameters, σ, φ and ϵ,

which directly govern the degree of strategic complementarities in price setting (real rigidi-

ties). In addition, we also estimate β and γ19.

We verify how obtained estimates vary based on three alternative degrees of real rigidi-

ties, comparing these results with predictions implied by theory, as motivated in Section

3.2.2. Table 3.1 summarizes these alternatives.

The elasticity of substitution between varieties is set to 8. This value is close to the one

used in Carvalho and Nechio (2016) and lies in the middle of the two calibrations used in

Carvalho (2006). It is also intermediate between typically low elasticities of the IO literature

and comparatively high values found in macroeconomic models. The inverse of the EIS is

set to 1 in the baseline calibration. We add 1/2 to this value to reconcile with small esti-

mates of the EIS found in the empirical literature (< 1), or subtract 1/2 to approach values

often adopted in the macroeconomic literature (≥ 2). Finally, an elasticity of labor supply

from 0.2 to 1.8 meets two opposing observations, from those of the microeconomic literature

(typically very low – e.g., see Pencavel (1986)) to those of the macroeconomic literature (of-

ten around or higher than 2 – e.g., Carvalho (2006), Eusepi, Hobijn, and Tambalotti (2011),

Carvalho and Nechio (2016)). A baseline Frisch elasticity of 1 is motivated by evidence pre-

sented by Chang and Kim (2006), who finds such value relying on a rich model that features

heterogeneity in the workforce.

We estimate the system comprised of (3.8) and (3.9) using General Method of Moments

(GMM). For the aggregate NKPC, the instrument set we adopt is a generalization of the

one used in Gali and Gertler (1999), but for the heterogeneous economy20. In this case,
19It is possible to extend the method by allowing one of the remaining parameters (σ, φ and ϵ) to be free

in the estimation. However, the resulting non-linear structure in the term related to real rigidities (Θ) further
complicates themethod and our estimations when allowingmore than one of those parameters to be estimated
did not improve our results. In addition, choosing which of those parameters should be estimated is clearly
arbitrary. We leave the challenging extension of the method where all structural parameters are estimated for
future research.

20Since the heterogeneous NKPC encompasses a number of additional endogenous variables, for example,
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Table 3.1: Calibration of Parameters Related to Real Rigidities

Parameter Interpretation Baseline ↑ Real Rigidity ↓ Real Rigidity

ϵ elasticity of subst. between varieties 8 8 8

σ inverse of the EIS 1 0.5 1.5

φ (Frisch) elasticity of labour supply 1 0.2 1.8

Notes: Different calibrations of the model. Each implies a different degree of strategic complementarities in
price setting. The first (baseline) implies Θ ≈ 0.22, the second produces Θ ≈ 0.13 and the third, Θ ≈ 0.38.

the aggregate equation is instrumented by the first two lags of the output gap and sectoral

sectoral gaps, the labor share (which proxies aggregate marginal costs), aggregate inflation,

the Fed Funds rate, a Treasury spread and inflation rates of wages and commodities21. For

sectoral NKPCs, we simply apply the first two lags of endogenous variables in (3.9)22. In the

appendix, we show that results presented in the main paper are maintained for alternative

approaches to instruments23.

3.5 Data

We briefly discuss the data set. Our baseline dataset consists of aggregate and sectoral quar-

terly data for the U.S. economy during the interval from 1964:2 to 2021:2. This dataset ex-

cludes the recent inflationary window, so that is aligned with the empirical literature. In

Appendix C.7, we present results while including more recent observations. Whereas iden-

tification becomes inherentlymore challenging in this setting, ourmain findings are stronger

when considering that window.

due to the composite shift term in (3.8).
21The instrument set in Gali and Gertler (1999) encompasses the first four lags of those variables, except for

sectoral output gaps, which are not included since he estimates a homogeneous model. To be able to estimate
the system comprised of (3.8) and (3.9), we reduce the number of lags by half due to the resulting number of
moment conditions in the GMM.

22As for πt−1 in (8), πk,t−1 in (3.9) is considered predetermined.
23As the vast majority of articles in the literature, we adopt a standard approach of exclusion restrictions in

the estimations that follow, replacing forward-looking expectations in theNKPCs by their actual values, so that
innovations also include an expectational error.
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For aggregate data, we use the real gross domestic product (GDP) for output, the pro-

ducer price index (PPI) for all commodities (to construct commodities inflation), a 5-year

Treasury rate spread (over the Fed Funds rate), the effective Fed Funds rate (interest rate),

the non-farm labor share and average hourly earnings of production and non-supervisory

workers (to constructwage inflation). Weuse real personal consumption expenditures (PCE)

for sectoral output and PCE price indices to construct sectoral inflation24. For more details

on the data set, see Table C.1 (appendix).

Table 3.2 below details the fifteen sectors in the economy. It provides weights, calculated

from the share in aggregate expenditures, as well as implied Calvo-pricing probabilities,

calculated from micro data in Bils and Klenow (2004). We adopt these infrequencies as a

benchmark regarding the cross section of sectors to estimations we perform in this paper.

3.6 Results

We turn to results from the estimation of the system comprised of the aggregate NKPC in

(3.8) and the fifteen sectoral NKPC depicted in (3.9). The baseline specification allows for

price-setting heterogeneity, when λk is sector-specific25.

To evaluate the sensitivity of results to the presence of heterogeneity, we also present es-

timations for the same system when heterogeneity is switched off, λk = λ. This is a more

parallel approach to those in Fitzgerald, Nicolini, et al. (2014) and McLeay and Tenreyro

(2019). It still collects some of the empirical advantages caused by the attenuation of the

endogenous response of policy in the sectors, as discussed in Section 3.2.1, but, in the ab-

sence of heterogeneity, not those of Section 3.2.2. Hence, by the comparison between this
24In the absence of data for income at sector level, we proxy it by sectoral consumption. Cyclical components

of aggregate and sectoral outputs are extracted by the Hodrick-Prescott filter (HP), setting λHP = 1600, as
advised for quarterly data. To account for a model with no population growth, we also define variables in per
capita terms, when appropriate.

25Structural parameters λk, β and γ theoretically lie in the range from 0 to 1. We discount 10−3 in each bound
of this interval in order to properly provide the Jacobian matrix to the estimation algorithm.
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Table 3.2: Sectors, Weights and Infrequencies Based on Micro Data

Sector Sectoral Weight Benchmark Infrequency

Motor Vehicles and Parts 5.34% 0.212

Furnishings and Durable Household Equipment 3.61% 0.484

Recreational Goods and Vehicles 2.92% 0.564

Other Durable Goods 1.59% 0.551

Food and Beverages Purchased for Off-Premises Consumption 11.82% 0.327

Clothing and Footwear 5.41% 0.331

Gasoline and Other Energy Goods 3.75% 0.003

Other Nondurable Goods 8.03% 0.541

Housing and Utilities 18.19% 0.212

Health Care 11.79% 0.857

Transportation Services 3.23% 0.375

Recreation Services 3.02% 0.727

Food Services 6.50% 0.590

Financial Services and Insurance 6.44% 0.781

Other Services 8.34% 0.645

Notes: Benchmark infrequencies are implied Calvo-pricing probabilities based on micro data. These come
from amapping between disaggregated PCE price data and evidence exhibited in Bils andKlenow (2004), both
expressed monthly. We convert probabilities into quarterly analogues by compounding them geometrically.

approach and the baseline, described above, we evaluate the importance of the channel re-

lated to strategic complementarities to our findings. Note that, with λk = λ, the composite

shift term completely disappears from (3.8), returning an aggregateNKPC that looks similar

to models estimated in the empirical literature.

We also present results for the naive case, the single-equation estimation of (3.8) when

heterogeneity is once again switched off. In the absence of both heterogeneity and cross-

sector variation, this alternative essentially mimics standard specifications represented in

the literature. Results for this model are completely isolated from the analyses of Sections

3.2.1 and 3.2.2. Therefore, differences in terms of results between this approach and the last

one aremost closely associatedwith attenuation of the simultaneity bias caused bymonetary

policy in the latter, discussed in Section 3.2.1.

134



Table 3.3 summarises our findings. It presents estimates of the aggregate slope, κ, the

implied degree of stickiness in the economy, θ =
∑K

k=1 ηkθk =
∑K

k=1 ηk(1 − λk), β and γ.

Parameters that govern real rigidity (σ, φ and ϵ) are calibrated according to Table 3.1. For the

heterogeneous economy, Table 3.3 also shows correlations between estimated Calvo-pricing

probabilities, 1 − λ̂k and benchmark infrequencies implied by evidence in Bils and Klenow

(2004) – see Table 3.2.

As in the literature, the single-equation estimation of a textbook NKPC under homo-

geneity returns degrees of stickiness that are too high, being primarily incompatible with

the micro evidence. For example, the benchmark infrequencies would imply θmicro = 0.48.

None of the estimations using the single-equation homogeneous model return a value of θ

lower than 0.8. Confidence intervals are also substantially wide, being seemingly uninfor-

mative. When considered together, they suggest an aggregate Calvo probability from 0.7 to

1. With a trivial inverse relationship between this parameter and the NKPC slope, the latter

is roughly estimated at zero. Indeed, we can not reject the hypothesis that the slope is zero

(at 5%) in this case for two out of the three cases tested.

Still under homogeneity, exploiting cross equations restrictions through the introduction

of the sectoral NKPCs in (3.9) generates a slope that is at least five times higher (depending

on calibration) and always statistically significant. Recall that, due to the presence of yt in

sectoral NKPCs, these values are still biased towards zero. The implied degree of stickiness

of the economy is now estimated around 0.6, regardless of calibration, approaching values

found for disaggregated data. With very low standard errors, confidence intervals for these

parameters are also quite narrow. Results also suggest that lower values of θ̂ are not obtained

through an upward bias in γ̂, since the latter is also lower, around 0.3, compared to 0.4-0.5

under the naive approach.

Taken together, these findings agree with McLeay and Tenreyro (2019) by suggesting

that the use of disaggregated data (in our case, sectoral; in their case, regional), can partially

mitigate the simultaneity bias caused by monetary policy. However, Table 3.3 also shows

135



that one obtains even higher estimates of the slope when allowing for price-setting hetero-

geneity, achieving the full potential of the analyses given in Sections 3.2.1 and 3.2.2. In this

case, one obtains sizeable estimates of the slope, between 0.04 and and 0.14, all of these sig-

nificant at 1%. This nearly doubles estimates under the last approach for two out of the three

calibrations applied. Estimates of the remaining parameters maintain their values, with θ̂

around 0.6 and γ̂ being estimated at 0.3. In addition, note that correlations with the micro

benchmark are generally high, around 0.7.

Another interesting finding from Table 3.3 is that, as predicted by theory, we generally

estimate a lower slope and a lower degree of stickiness for the heterogeneous economy as we

introduce more strategic complementarities in price setting – see Section 3.2.226. In contrast,

estimates under the naive (single-equation) approach are counter-intuitive, since we obtain

higher estimates of θ as we introduce more real rigidities in the model.

In Appendix C.3, we evaluate the sensitivity of our results perturbing the instrument set.

Firstly, we apply a data-driven instrument selection routine based on regularisation. Then,

we test three variations of our baseline instrument set that control for potential pitfalls affect-

ing our estimations, namely time-aggregation issues involving macro data and the number

of moment conditions in the GMM (i.e., too many instruments). All of those estimations

reconfirm our main findings.

3.6.1 Behind the Scenes

To confirm that the model captures essential information found in micro data, Figure 3.1

compares θ̂k with micro benchmarks for the same parameters, based on disaggregated data

in Bils and Klenow (2004). The calibration is the baseline in Table 3.1, but very similar find-

ings are generated with other parameterisations of the model. Except for probably two sec-

tors (“motor vehicles and parts” and “financial services”), most part of the parameters are
26The only exception is the estimate of θ̂ in the first line of Table 3.3, slightly higher than that with the baseline

calibration for the same model.
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Table 3.3: Estimates of the Slope and Degree of Stickiness

Parameters

Calibration Model Corr(θk,Micro) κ θ β γ

↑ Real Rigidity Heterogeneous (SYS) 0.77 0.037∗∗∗ 0.64 0.97 0.29

(0.000) [0.63, 0.64] (0.003) (0.002)

Homogeneous (SYS) - 0.033∗∗∗ 0.58 0.98 0.30

(0.000) [0.58, 0.58] (0.003) (0.002)

Homogeneous (SE) - 0.002 0.87 0.96 0.44

(0.003) [0.70, 1.00] (0.010) (0.040)

Baseline Heterogeneous (SYS) 0.65 0.092∗∗∗ 0.55 0.99 0.30

(0.001) [0.54, 0.55] (0.008) (0.004)

Homogeneous (SYS) - 0.052∗∗∗ 0.58 0.97 0.35

(0.000) [0.58, 0.58] (0.004) (0.002)

Homogeneous (SE) - 0.007∗ 0.82 0.96 0.45

(0.003) [0.74, 0.90] (0.011) (0.043)

↓ Real Rigidity Heterogeneous (SYS) 0.74 0.138∗∗∗ 0.58 0.99 0.29

(0.002) [0.58, 0.59] (0.008) (0.004)

Homogeneous (SYS) - 0.070∗∗∗ 0.62 0.98 0.27

(0.001) [0.62, 0.63] (0.008) (0.005)

Homogeneous (SE) - 0.012∗∗∗ 0.81 0.97 0.49

(0.004) [0.77, 0.86] (0.012) (0.048)

Notes: The first column refers to the three different calibration sets exhibited in Table 3.1. We test three dif-
ferent estimation methods. “Heterogeneous (SYS)” denotes the baseline model with sector-specific λk, being
estimated by System-GMM with the aggregate NKPC in (3.8) and the fifteen sectoral NKPCs in (3.9). “Ho-
mogeneous (SYS)” uses the same system, but imposes λk = λ for every sector. In such case, the shift term
disappears from (3.8). “Homogeneous (SE)” mimics the standard approach in the literature, repeating this
last exercise considering solely the aggregate NKPC (3.8), i.e., single-equation estimation. Correlations be-
tween estimated and benchmark infrequencies (1 − λk) that come from the micro data in Bils and Klenow
(2004) are shown in the column “Corr(θk,Micro)”. The micro benchmark implies θmicro ≈ 0.48. κ denotes
the aggregate slope in (8), while θ is the implied degree of stickiness in the economy. When λk varies across
sectors (heterogeneous case), θ =

∑K
k=1 ηkθk =

∑K
k=1 ηk(1−λk). Under homogeneity (λk = λ), this simplifies

to θ = (1− λ). We use a HAC estimator for the covariance matrix. Standard errors are presented in parenthe-
ses. As in theory, structural parameters (λk, β and γ) can assume values in the interval [0, 1]. We test the null
hypothesis of κ = 0: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

137



aligned with the benchmarks.

Figure 3.2 presents individual confidence sets at 95% for the same estimations, show-

ing that intervals are generally narrow for each sector. Analogous charts are exhibited in

appendix D for the remaining calibration sets of Table 3.1.

Figure 3.1: θ̂k vs. Micro Benchmarks

Notes: Estimated Calvo probabilities using the same econometric setting of Table 3.3. Benchmarks are implied
probabilities from evidence in Bils and Klenow (2004) – see Table 3.2. We use the baseline calibration of Ta-
ble 3.1.

3.6.2 Estimator Uncertainty

Parametric Stability

The use of conventional first-order asymptotics in an environment where instruments are

potentiallyweak can bemisleading. This pitfall is evenmore important concerning structural

models, especially with non-linear moment conditions.

To address these uncertainties, weak-instrument-robust methods of inference are com-
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Figure 3.2: θ̂k vs. Micro Benchmarks – Confidence Intervals

Notes: Estimated Calvo probabilities using the same econometric setting of Table 3.3. Blue bars are micro-
based benchmark probabilities implied from evidence in Bils and Klenow (2004) and presented in Table 3.2.
For expository purposes, these are sorted according to their degree of flexibility. 95% confidence intervals are
shown for each θ̂k. We use the baseline calibration of Table 3.1.

monly recommended. Two techniques typically used construct robust confidence intervals

for deepparameters by inverting the test statistics S (Stock andWright (2000)) andK (Kleiber-

gen (2005))27. These tests are based on the empirical assessment that the estimations of para-

metric vectors are generally more meaningful than those of individual parameters. Hence,

they seek to obtain a robust interval for one parameter while restricting the rest of the para-

metric space, usually assuming identification for them.

The problem with robust inference techniques in our setting is that, although they can

be generalized to the presence of multiple endogenous variables, little is known about their
27See Ma (2002), Andrews and Stock (2005), Nason and G. W. Smith (2008a), Kleibergen and Mavroeidis

(2009) andMavroeidis, Plagborg-Møller, andH. Stock (2014), to cite just a few of the examples in the literature.
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implications28. In such case, however, it is well known that they suffer from poor power29.

With seventeen parameters we would have to assume that a subvector of sixteen of them

is identified to construct robust sets (unlikely). Lastly, in order to invert test statistics, the

number of grid points at which we need to evaluate the null hypothesis grows exponentially

with the dimension of the parametric vector.

To circumvent those problems, we rely on an alternativemethod to verify themodel based

on uncertainties involving the estimation. For each of the P = 15 sectoral probabilities λk in

the system formed by (3.8) and (3.9), we fix P − q of them at the original point estimates,

re-estimating q parameters. For q = 4, this generates C15
4 = 1365 re-estimations of the model,

with 365 estimates of λk for each sector.

Figure 3.3 presents confidence intervals for sectoral Calvo-pricing probabilities, constructed

from those restricted estimations. Boxes for each sector represent the interquartile range.

Vertical lines provide the 5%ile − 95%ile interval of the distribution. Note that results are

quite in line with those exhibited in Figure 3.2. The correlation between the median estimate

– horizontal line inside the boxes – of each sector and the corresponding micro-based bench-

mark is also high, approximately 0.5. Cases for q < 4 show similar findings, while repeating

the exercise with q > 4 produces approximately the same chart.

Subsample Stability

Next, we turn to uncertainties involving the sample. A typical practice has been to divide

the sample into two or more periods, commonly splitting it around 1979 – e.g., Gali and

Gertler (1999) and Clarida, Gali, and Gertler (2000). However, our GMM features too many

moment conditions for such separation to be feasible in our environment.
28The use of robust inference in high-dimensional settings is not common. For example, Andrews and Stock

(2005) analyze weak-instrument-robust methods covering a sample of studies published in the American Eco-
nomic Association journals. None of the 230 articles in their sample apply weak-IV methods using more than
four endogenous variables in the estimations. Note that there are sixteen endogenous variables in our model.

29In our case, both the S and the K tests hardly reject the null. This is true for most part of the points in the
parametric space – likely because our GMM features too many moment conditions for such tests to be reliable.
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Figure 3.3: Confidence Sets Constructed from Restricted Estimations

Notes: Parametric stability when 11 sectoral probabilities are fixed. Boxes represent the interval from the
25%ile to the 75%ile of distributions (for each sectoral probability). Horizontal lines are median estimates.
1365 restricted versions of themodel are estimated, 365 estimates for each sector in total (vertically positioned).
Baseline calibration.

To test the subsample stability of our model, we conduct rolling-GMM estimations with

T = 200 observations30. Figure 3.4 presents similar results to those of Table 3.3 for implied

coefficients, such as the aggregate slope, κ, and the aggregate infrequency, θ, based on the

heterogeneousmodel and the system comprised of (3.8) and (3.9)31. Point estimates of these

coefficients are substantially stable throughout the rolling window, with narrow confidence

sets. This is also the case for forward and backward-looking coefficients in the aggregate

NKPC (right panels). Figure 3.4 also presents correlations between estimated sectoral in-
30To reduce the number of moment conditions in the GMM, we remove the second lag of variables in the

instrument set. Thus, instruments are the first lags of the same variables described in Section 3.4.
31We exhibit rolling-GMM estimates of all of the structural parameters of the heterogeneous economy in the

appendix.
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frequencies (1 − λ̂k) and micro benchmarks. These correlations systematically lie around

0.7, approximately their average (horizontal dotted line), agreeing with results exhibited in

Table 3.3.

Figure 3.4: Subsample Stability: Implied Coefficients for the Heterogeneous Model

Notes: Implied cofficients from rolling-GMM estimations of the system comprised of the aggregate NKPC in
(3.8) and the fifteen sectoral NKPCs in (3.9), under heterogeneity (λk ̸= λ). We use a HAC estimator for
the covariance matrix. To reduce the number of moment conditions in the GMM, we remove the second lag
of variables in the instrument set of estimations in Table 3.3. The horizontal axis measures the date of the
last observation in the rolling subsample. The dotted line in the lower-end left panel denotes the time-series
average correlation between estimated sectoral Calvo probabilities and the micro benchmark.

In Figure 3.5, we compare estimations using all models of Table 3.3. Consistent with pre-

vious results, the left panel indicates that the heterogeneous economy systematically implies

a much higher slope for the NKPC. The aforementioned downward bias does not prevent

us from obtaining a sizeable value for such coefficient in any of the estimations conducted

with subsamples. In contrast, the slope is not statistically different from zero throughout the
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rolling window when we estimate the homogeneous economy without considering sectoral

NKPCs. By including them, however, we mitigate some of the impact of the endogenous

response of policy over our estimations, producing a stable slope that lies around 0.03.

For the homogeneous economy, the relationship between the slope and the degree of

stickiness is trivial. As a result, a flat NKPC translates into very high estimates of the Calvo

probability, as shown in the right panel, for single-equation estimations. However, in line

with results of Table 3.3, the presence of sectoral Phillips curves in the estimation pushes

that probability towards more reasonable values, approaching estimates based on the het-

erogeneous economy, as well as the micro evidence.

Figure 3.5: Subsample Stability: Implied Slope (Left) and Infrequency (Right) for All Models

Notes: Implied cofficients from rolling-GMM estimations for each model in Table 3.3. We use a HAC estimator
for the covariance matrix. To reduce the number of moment conditions in the GMM, we remove the second lag
of variables in the instrument set. The horizontal axis measures the date of the last observation in the rolling
subsample.

3.6.3 Additional Robustness Checks

Besides testing different instrument sets, we also conduct two additional robustness checks

with the model. For the sake of conciseness, results are exhibited in the appendix.

First, we benefit from the fact that it is possible to identify the aggregate NKPC without

directly estimating that equation. Since its parameters are also present in the sectoral NKPCs
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in (3.9), it is possible to drop the aggregate equation from the system, regardless of the

presence of heterogeneity in price setting. Results for the slope would still be biased towards

zero – since yt appears in the sectoral NKPCs. In addition, we would likely lose efficiency by

removing important information otherwise exploited through cross-equation correlations in

the errors. Nonetheless, all our main findings are reconfirmed – see Appendix C.5.

Second, it is widely known that non-linear estimation methods can be quite sensitive to

starting values. In the previous estimations, we relied on implied reset probabilities (λk)

from the micro evidence as starting values. It could be that the seemingly reliable estimates

we show are a direct consequence of that choice. For example, the vector of point estimates

could be inherently copying the vector of starting values because of complexities in the mo-

ment conditions.

To verify the sensitivity of our model to initial values, in appendix F we re-conduct struc-

tural estimates while relying on an “agnostic” routine to generate starting values. Under the

heterogeneous model, we individually estimate each sectoral equation, (3.9), and use the

resulting λ̂k as initial value for that sector when estimating the system comprised by (3.8)

and (3.9). Note that there are several complications involving the single estimation of sec-

toral NKPCs32. Such procedure is very conservative, since nothing ensures that resulting

estimates – and, then, starting values – are reliable. We show that our main findings are

maintained for this strategy. Correlations with the benchmark are slightly lower, but still

support the model33.
32First, inflation expectations may not vary much for some of the sectors. Second, we are not using instru-

ments outside of the model to improve the estimations (what could be substantially important for some sectors
– e.g., lags of commodity indices instrumenting the NKPC of “gasoline and other energy goods”). Third, we
find that estimates of λk are very sensitive to the econometric method when sectoral NKPCs are considered
individually, what suggests to be sceptical on the reliability of these values. Lastly, note that a single distorted
estimate of λ̂k for some sector could further complicate the estimation of the system, if sensitivity to initial
values is an issue for the latter.

33Additionally, we conduct tests to verify the underlying rank conditions of the system. For example, seven-
teen parameters are estimated in the system with (3.8) and (3.9), under heterogeneity. We fix fifteen of them,
and generate 2× 2 combinations with the precision of 10−3 for the remaining two in the [0, 1]2 space. The step
is continued until all the possible combinations involving deep parameters are exploited – the Jacobian matrix
is mapped C17

2 = 136 times. We do not reject that the Jacobian matrices for those combinations have full rank
with a tolerance of 2.331468 × 10−14 – this corresponds to the number of rows in the matrix times the default
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3.7 Conclusion

This paper takes seriously the implications of heterogeneity in price setting to address em-

pirical difficulties verified for the Phillips trade-off. Specifically, we propose a novel method

that estimates a system of aggregate and sectoral Phillips curves from a heterogeneousmulti-

sector model. The procedure benefits from additional structure from theory by exploiting a

rich set of cross-equations restrictions in the estimations.

First, bringing cross-sector variation to the estimations should improve identification by

ameliorating the effect of the endogenous response of optimal monetary policy over coef-

ficients. This is the case regardless of whether the policymaker considers the presence of

stickiness heterogeneity across sectors or not. Second, the introduction of heterogeneity in

price setting also has the potential to enhance the reliability of estimations. Specifically, an

interesting channel arises due to strategic interactions between sectors. It should primarily

revert high estimates of the degree of stickiness in the economy found in the literature back

to more sensible levels, approaching the micro evidence. Our empirical strategy allows us

to separate out the effect each of these two mechanisms has on estimations.

When taking benefits that arise fromboth cross-sector variation andheterogeneity to their

full potential, the novel method delivers a sizeable, statistically significant and stable slope.

It also produces degrees of stickiness that substantially approach levels implied by micro

evidence, both regarding the entire economy and the cross section of sectors, with narrow

standard errors.

The reliability of such approachdoes not seemaffected by estimator uncertainties. We test

it perturbing the econometric setting, as the number and which parameters are estimated,

calibration, sample, instrument sets and starting values in the algorithm. Themodel exhibits

no significant change in performance in any of those exercises.

Last but not least, this paper shows that it is indeed possible to obtain disciplined esti-

epsilon inMatlab®.
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mations of the NKPCwith the straightforward slack variable, the output gap. This contrasts

with a tendency in the literature, which normally seeks alternative specifications based on

marginal costs (often proxied by the labour share) to be able to obtain more sensible esti-

mates of structural coefficients.
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Appendix A

Appendix for Chapter 1

A.1 Households’ Optimisation

U.S. Households

The households’ optimisation problem can be divided into two separate problems: static and

dynamic.

In the static problem, households choose, at a given period and history, how to split their

total consumption expenditure between the consumption of different goods. U.S. house-

holds in period 1, for instance, will solve the static optimisation:

max
CNT,1,CH,1,CF,1

χ1 lnCNT,1 + a1 lnCH,1 + ι1 lnCF,1 + µ1 [CE1 − CNT,1 − PH,1CH,1 − PF,1CF,1] .

(A.1)

The static problem for period 0 is defined similarly.

First-order conditions for period 0 are:

χ0

CNT,0
= µ0 =⇒ χ0

χ0

= µ0 =⇒ µ0 = 1, (A.2)
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using market clearing condition CNT,0 = YNT,0 and χt = χ∗
t = 1, ∀t.

a0
CH,0

= µ0PH,0 = PH,0 =⇒ a0 = PH,0CH,0, (A.3)

ι0
CF,0

= µ0PF,0 = PF,0 =⇒ ι0 = PF,0CF,0. (A.4)

For period 1, first-order conditions are:

χ1

CNT,1
= µ1 =⇒ χ1

YNT,1
= µ1, (A.5)

a1
CH,1

= µ1PH,1 =⇒ a1
YNT,1
χ1

= PH,1CH,1, (A.6)

ι1
CF,1

= µ1PF,1 =⇒ ι1
YNT,1
χ1

= PF,1CF,1, (A.7)

using the market clearing condition for the non-tradeable good, CNT,1 = YNT,1.

The Lagrangian of the intertemporal problem of a U.S. household is:

L = χ0 lnCNT,0 + a0 lnCH,0 + ι0 lnCF,0 + β

∫
S

πs [χ1 lnCNT,1 + a1 lnCH,1 + ι1 lnCF,1]

+ λ0[qs · 1 + PH,0YH,0 − CNT,0 − PH,0CH,0 − PF,0CF,0 − b− qs · x]

+

∫
S

λ1,s [PH,1YH,1 +R · b+ YNT,1 · x− CNT,1 − PH,1CH,1 − PF,1CF,1] ,

(A.8)

where πs denotes the probability of reaching history s ∈ S in period 1. Recall that households

are choosing consumption levels for each time and history. In other words, they are solving

a sequential problem1. Therefore, period-1 price, quantities and Lagrange multipliers are
1Alternatively, this problem can be rewritten in standard sequential or Arrow-Debreu form. I also could be

using (heavier) history-specific notation as, for instance, CNT,1(s). However, I opt to simplify the exposition
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history-specific, and the integrals above are over the set of possible paths in period 1.

The first-order conditions associated with the above problem are:

CNT,0 :
χ0

CNT,0
= λ0 =⇒ χ0

χ0

= λ0 =⇒ λ0 = 1,

CH,0 :
a0
CH,0

= λ0PH,0 = PH,0 =⇒ a0 = PH,0CH,0,

CF,0 :
ι0
CF,0

= λ0PF,0 = PF,0 =⇒ ι0 = PF,0CF,0,

CNT,1 : βπs
χ1

CNT,1
= λ1,s, for state s,

CH,1 : βπs
a1
CH,1

= λ1,sPH,1, for state s,

CF,1 : βπs
ι1
CF,1

= λ1,sPF,1, for state s,

b : λ0 = 1 =

∫
S

λ1,sR =⇒
∫
S

λ1,s =
1

R
,

x : λ0 · qs = qs =

∫
S

λ1,sYNT,1.

(A.9)

Using the market clearing condition for the non-tradeable good:

βπs
χ1

YNT,1
= λ1,s.

Integrating this expression over the states we have:

βχ1

∫
S

πs
YNT,1

= E

[
βχ1

YNT,1

]
=

1

R
, (A.10)

the expression for the U.S. bond price in the main text. For the US stock price, we have:

qs =

∫
S

λ1,sYNT,1 =

∫
S

βπs
χ1

YNT,1
YNT,1 = βχ1, (A.11)

the expression in the main text.

here, also following that of the main text.
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Japanese Households

Symmetry implies thatwe canderive analogous conditions from the static problemof Japanese

households:

a∗0 = P ∗
F,0C

∗
F,0, (A.12)

ξ0 = P ∗
H,0C

∗
H,0, (A.13)

a∗1
Y ∗
NT,1

χ∗
1

= P ∗
F,1C

∗
F,1, (A.14)

ξ1
Y ∗
NT,1

χ∗
1

= P ∗
H,1C

∗
H,1, (A.15)

where the right hand side of (A.15), for example, denotes the yen-value of US exports.

The same applies for asset prices, with:

q∗b ≡
1

R∗ = E

[
β∗χ∗

1

Y ∗
NT,1

]
. (A.16)

for the Japanese bond, and:

q∗s = β∗χ∗
1, (A.17)

for the Japanese stock.
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A.2 The Financiers’ Optimisation

This appendix provides details on how international financiers determine their optimal as-

set positions in the model. These agents operate competitively, have no initial wealth, and

choose portfolios subject to a zero-investment constraint. Their objective is to maximise the

expected dollar value of terminal wealth, penalised by its variance.

Problem Statement

Let the vector of tradable assets held by financiers be denoted by:

Θ̂ ≡



Θ∗
b

Θs

Θ∗
s


, (A.18)

whereΘ∗
b is the dollar value invested in Japanese bonds, andΘs, Θ∗

s denote the dollar values

invested in U.S. and Japanese equities, respectively. Note that the U.S. bond position, Θb, is

pinned down by the zero-investment condition:

Θb = −(Θ∗
b +Θs +Θ∗

s). (A.19)

Let the corresponding vector of gross returns on these positions be:

R̂ ≡



R∗ · E1

E0

R

R∗ · E1

E0


, (A.20)
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where:

• R ≡ YNT,1
qs

is the gross return on U.S. equity in dollars,

• R∗ ≡ Y ∗
NT,1

q∗s
is the gross return on Japanese equity in yen,

• E1

E0
converts yen payoffs into dollars.

Let R be the U.S. risk-free rate. Then, the dollar value of terminal wealth (i.e., dollar

payoff at t = 1) is given by:

Π1 = R ·Θb + R̂
⊤
Θ̂. (A.21)

The financier’s mean-variance objective is:

max
Θ̂

E[Π1]−
a

2
Var[Π1], (A.22)

subject to the zero-investment constraint:

Θb +Θ∗
b +Θs +Θ∗

s = 0. (A.23)

A.2.1 Solution Methodology

This optimisation problem is solved numerically via symbolic and numerical computation.

All variables are functions of the model’s underlying parameters, including the volatility of

equity markets, the correlation between equity returns, and the preference parameters of

households. Key steps include:

1. Expressing the objective entirely in terms of Θ̂ using the zero-investment constraint to

eliminate Θb.

2. Substituting for E[Π1] and Var[Π1] based on the log-normal distribution of dividends.
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3. Solving for the vector Θ̂ that satisfies the first-order conditions of the mean-variance

problem, subject to the feasibility constraints implied by such vector — i.e. that ex-

change rates, consumption levels and prices of tradeable goods are non-negative across

the states, evaluated at the financiers’ optimal portfolio. To reduce dimensionality as-

sociated with this problem, I use the Λi’s in Appendix A.4.3 as state variables that must

lie between 0 and 1 — it can be shown that all consumption levels and prices in this

model are positive if, and only if all of these Λi’s lie inside that interval.
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A.3 Solving the Financial Autarky Model

This section solves the model under financial autarky, Θb = Θ∗
b = Θs = Θ∗

s.

Asset prices are defined by the households’ Euler equations and are therefore unaffected

by the absence of international portfolio flows:

qb ≡
1

R
= E

[
βχ1

YNT,1

]
, (A.24)

qs = βχ1, (A.25)

q∗b ≡
1

R∗ = E

[
β∗χ∗

1

Y ∗
NT,1

]
, (A.26)

q∗s = β∗χ∗
1. (A.27)

Exchange rates are such that:

E0 =
ι0
ξ0
,

E1 =
ι1
ξ1

· YNT,1
Y ∗
NT,1

· χ
∗
1

χ1

.
(A.28)

Using market clearing condition YNT,0 = CNT,0, rewrite the U.S. households’ budget con-

straint as:

PH,0YH,0 = PH,0CH,0 + PF,0CF,0 + b+ q · (x− 1),

= a0 + ι0 + b+ q · (x− 1),

= a0 + ι0 + b+ β · χ1 · (x− 1),

(A.29)

where I used (A.3), (A.4), and the price expression for the U.S. stock. For period 1, using
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the market clearing CNT,1 = YNT,1, we can rewrite the period-1 budget constraint as:

PH,1YH,1 +R · b+ YNT,1 · x

=YNT,1 + PH,1CH,1 + PF,1CF,1

=YNT,1 + a1
YNT,1
χ1

+ ι1
YNT,1
χ1

=YNT,1 +
YNT,1
χ1

· (a1 + ι1),

(A.30)

using (A.6) and (A.7).

Substitute (A.24) into this expression and rearrange to get:

PH,1YH,1 =YNT,1

[
a1 + ι1
χ1

+ 1− x

]
− b

β · χ1 · E
[

1
YNT,1

]
=YNT,1

[
a1 + ι1
χ1

]
− b

β · χ1 · E
[

1
YNT,1

] (A.31)

where I used x = 1, the market clearing condition for the U.S. stock in the absence of global

financiers (i.e., U.S. households hold all the U.S. stocks).

Now turning to the Japanese problem, symmetry in period 0 implies:

P ∗
F,0YF,0 = ξ0 + a∗0 + b∗ + β∗χ∗

1 · (x∗ − 1). (A.32)

In period 1, we have for Japanese households:

P ∗
F,1Y

∗
F,1 +R∗ · b∗ + Y ∗

NT,1 · x∗ + Π∗
1︸︷︷︸

Profits (in yen)

= C∗
NT,1 + P ∗

H,1C
∗
H,1︸ ︷︷ ︸

=
ξ1·Y ∗

NT,1
χ∗1

+P ∗
F,1C

∗
F,1︸ ︷︷ ︸

=
a∗1·Y

∗
NT,1
χ∗1

(A.33)

Under financial autarky, rebated profits are 0, so we have a similar expression to that for
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US households:

P ∗
F,1YF,1 =Y

∗
NT,1

[
a∗1 + ξ1
χ∗
1

+ 1− x∗
]
− b∗

β∗χ∗
1E
[

1
Y ∗
NT,1

]
=Y ∗

NT,1

[
a∗1 + ξ1
χ∗
1

]
− b∗

β∗χ∗
1E
[

1
Y ∗
NT,1

] , (A.34)

using the market clearing condition for Japanese stocks, x∗ = 1, in the absence of financiers.

We also have the market clearing conditions for tradeable goods:

CH,0 + C∗
H,0 = YH,0,

CF,0 + C∗
F,0 = Y ∗

F,0,

CH,1 + C∗
H,1 = YH,1,

CF,1 + C∗
F,1 = Y ∗

F,1,

(A.35)

while the law of one price implies:

PH,0 = P ∗
H,0E0,

PF,0 = P ∗
F,0E0,

PH,1 = P ∗
H,1E1,

PF,1 = P ∗
F,1E1.

(A.36)

Use market clearing conditions b = 0 and x = 1 in (A.29):

PH,0YH,0 = a0 + i0, (A.37)
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implying:

PH,0 =
a0 + ι0
YH,0

. (A.38)

Then (A.3) becomes:

CH,0 =
a0

a0 + ι0
YH,0. (A.39)

With b∗ = 0 and x∗ = 1, symmetry in the Japanese household’s problem implies:

P ∗
F,0 =

ξ0 + a∗0
YF,0

. (A.40)

Then use the second equation in (A.36) to get:

PF,0 =P
∗
F,0 · E0 =

ξ0 + a∗0
YF,0

· ι0
ξ0
. (A.41)

Next, (A.4) implies:

CF,0 =
ι0
PF,0

=
ξ0

ξ0 + a∗0
Y ∗
F,0. (A.42)

Then:

PH,0 = P ∗
H,0 · E0 =⇒ P ∗

H,0 =
PH,0
E0

=
a0 + ι0
YH,0

· ξ0
ι0
. (A.43)

And:

C∗
H,0 =

ξ0
P ∗
H,0

=
ι0

a0 + ι0
YH,0, (A.44)
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Finally, (A.35) gives:

CF,0 + C∗
F,0 = Y ∗

F,0 =⇒ ξ0
ξ0 + a∗0

Y ∗
F,0 + C∗

F,0 = Y ∗
F,0 =⇒ C∗

F,0 =
a∗0

ξ0 + a∗0
Y ∗
F,0. (A.45)

Use b = 0 in (A.31):

PH,1 =

[
a1 + ι1
χ1

]
· YNT,1
YH,1

. (A.46)

Fixed the supply of the home tradeable good, states in period 1 for which the US stock pays

better dividends (↑ YNT,1) inflate the price of the home tradeable good (which will become

relatively more scarce).

Next, use (A.6):

CH,1 =
a1
χ1

YNT,1
PH,1

=
a1
χ1

· YNT,1 ·
YH,1
YNT,1

· χ1

a1 + ι1

=
a1

a1 + ι1
· YH,1.

(A.47)

Symmetry implies:

P ∗
F,1 =

[
ξ1 + a∗1
χ∗
1

]
Y ∗
NT,1

Y ∗
F,1

, (A.48)

C∗
F,1 =

a∗1
ξ1 + a∗1

· Y ∗
F,1. (A.49)
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Using the law of one price (A.36):

P ∗
H,1 =

PH,1
E1

=
1

E1

·
[
a1 + ι1
χ1

]
· YNT,1
YH,1

=
ξ1
ι1

·
Y ∗
NT,1

YNT,1
· χ1

χ∗
1

·
[
a1 + ι1
χ1

]
· YNT,1
YH,1

=
ξ1
ι1

·
[
a1 + ι1
χ∗
1

]
·
Y ∗
NT,1

YH,1
.

(A.50)

Then (A.15) gives:

C∗
H,1 =

ξ1
χ∗
1

·
Y ∗
NT,1

P ∗
H,1

=
ξ1
χ∗
1

· Y ∗
NT,1 ·

ι1
ξ1

·
[

χ∗
1

(a1 + ι1)

]
· YH,1
Y ∗
NT,1

=

[
ι1

a1 + ι1

]
· YH,1.

(A.51)

Similarly:

CF,1 =
ξ1

ξ1 + a∗1
· Y ∗

F,1, (A.52)

PF,1 =
ι1
ξ1

·
[
(ξ1 + a∗1)

χ1

]
· YNT,1
Y ∗
F,1

. (A.53)

Equilibrium Conditions. The equilibrium is characterised by (together with b = b∗ = 0

and x = x∗ = 1):

Exchange Rates:

E0 =
ι0
ξ0
, E1 =

ι1
ξ1
· YNT,1
Y ∗
NT,1

· χ
∗
1

χ1
,

Period 0: Non-tradeables

CNT,0 = YNT,0, C∗
NT,0 = Y ∗

NT,0,
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Period 0: Home Tradeables (H), Prices and Quantities for U.S. Households

PH,0 = a0+ι0
YH,0

, CH,0 =
a0

a0+ι0
YH,0,

Period 0: Foreign Tradeables (F), Prices and Quantities for U.S. Households

PF,0 = (ξ0+a∗0)·ι0
ξ0YF,0

, CF,0 =
ξ0

ξ0+a∗0
YF,0,

Period 0: Prices (in Yen) and Quantities for Japanese Households

P∗
H,0 =

(a0+ι0)·ξ0
ι0YH,0

, C∗
H,0 =

ι0
a0+ι0

YH,0,

P ∗
F,0 =

ξ0+a∗0
YF,0

, C∗
F,0 =

a∗0
ξ0+a∗0

YF,0,

Period 1: Non-tradeables

CNT,1 = YNT,1, C∗
NT,1 = Y ∗

NT,1,

Period 1: Home Tradeables (H), Prices and Quantities for U.S. Households

PH,1 = (a1+ι1)
χ1

· YNT,1
YH,1

, CH,1 =
a1

a1+ι1
YH,1,

Period 1: Foreign Tradeables (F), Prices and Quantities for U.S. Households

PF,1 = ι1
ξ1
· ξ1+a

∗
1

χ1
· YNT,1
Y ∗
F,1

, CF,1 =
ξ1

ξ1+a∗1
Y ∗
F,1,

Period 1: Prices (in Yen) and Quantities for Japanese Households

P∗
H,1 =

ξ1
ι1
· (a1+ι1)

χ∗
1

· Y
∗
NT,1

YH,1
, C∗

H,1 =
ι1

a1+ι1
YH,1,

P ∗
F,1 =

(ξ1+a∗1)

χ∗
1

· Y
∗
NT,1

Y ∗
F,1

, C∗
F,1 =

a∗1
ξ1+a∗1

Y ∗
F,1.
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A.4 Solving the Full Model

A.4.1 Market-Clearing Conditions for Assets

With financiers, market clearing conditions for bonds of the two countries become:

b+Θb = 0, (A.1)

b∗ +
Θ∗
b

E0

= 0. (A.2)

And for stocks we have the following:

x+
Θs

qs
= 1, (A.3)

x∗ +
Θ∗
s

E0 · q∗s
= 1. (A.4)

A.4.2 Consumption and Prices of Goods

Solving for the financiers’ optimal portfolio numerically, the remaining part of the model

admits closed-form solution, being solved in a similar fashion to the case of financial autarky.

Using market clearing conditions for U.S. bonds and stocks above, we can rewrite (A.31) as:

PH,1 = PH,1 =
YNT,1

[
a1+ι1
χ1

+ Θs
qs

]
+Θb ·R

YH,1
. (A.5)

Holding the supply of home tradeables constant, YH,1, positive shocks to the U.S. stock mar-

ket, ↑ YNT,1, will push prices of these goods upwards to the extent that tradeables become

relatively more scarce compared with non-tradeables. This effect will be stronger the larger

the share of total U.S. stocks held by financiers in equilibrium – i.e., the lower the fraction

held by the U.S. households, the weaker this relative price mechanism to the extent that a

lower fraction of stock dividends will be retained domestically.
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From the U.S. households’ first-order conditions, it then follows that:

CH,1 =
a1
χ1

· YNT,1
PH,1

=
a1
χ1

· YNT,1

YNT,1

[
a1+ι1
χ1

+ Θs
qs

]
+Θb ·R

· YH,1 ≡ ΛH(YNT,1,Θ) · YH,1. (A.6)

And by using the market clearing condition for U.S. tradeables one can obtain their con-

sumption level by Japanese households:

C∗
H,1 = YH,1 − CH,1 =

1− a1
χ1

· YNT,1

YNT,1

[
a1+ι1
χ1

+ Θs
qs

]
+Θb ·R

 · YH,1

≡(1− ΛH(YNT,1,Θ)) · YH,1.

(A.7)

Next, the history-specific budget constraint of Japanese households in period 1, with asset

market clearing conditions, determines PF,1:

P ∗
F,1 =

Y ∗
NT,1

[
a∗1+ξ1
χ∗
1

+ Θ∗
s

E0·q∗s

]
+R∗ · Θ∗

b

E0
− Π∗

1

YF,1
, (A.8)

where Π∗
1 denotes the financiers’ profits in yen (which are rebated to Japanese households).

This is equal to:

Π∗
1 =

Π1

E1

=
1

E1

[
−ΩUIP ·Θ∗

b +

(
YNT,1
qs

−R

)
·Θs +Θ∗

s

(
Y ∗
NT,1

q∗s

E1

E0

−R

)]
=
Π1

E1

=
1

E1

[
−ΩUIP ·Θ∗

b + (R−R) ·Θs +Θ∗
s

(
R∗E1

E0

−R

)]
=

1

E1

Θ̂
T
(R̂− 1R),

(A.9)
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where:

Θ̂ ≡



Θ∗
b

Θs

Θ∗
s


, R̂ ≡



R∗E1

E0

R

R∗E1

E0


. (A.10)

To show that the Japanese household’s budget constraint binds state by state in period 1,

start by rewriting (A.8) using the results above. After some tedious manipulation, it follows

that:

P ∗
F,1 · YF,1 =Y ∗

NT,1

[
a∗1 + ξ1
χ∗
1

+
Θ∗
s

E0 · q∗s

]
+R∗ · Θ

∗
b

E0

− Π∗
1

=Y ∗
NT,1 ·

a∗1 + ξ1
χ∗
1

−R · Θb

E1

− R · Θs

E1

.

(A.11)

Multiply both sides of this equation by E1:

E1 · P ∗
F,1 · YF,1 = E1 ·

ξ1
χ∗
1

· Y ∗
NT,1 + E1 ·

a∗1
χ∗
1

· Y ∗
NT,1 −R ·Θb − R ·Θs. (A.12)

Combine this with the dollar-flow equation for period 1:

E1 · P ∗
F,1 · YF,1 =E1 ·

a∗1
χ∗
1

· Y ∗
NT,1 +

ι∗1
χ1

· YNT,1 = E1 · P ∗
F,1 · C∗

F,1 + PF,1 · CF,1. (A.13)

Finally, using the law of one price for foreign tradeables in (A.36), we can rewrite it as:

PF,1 (YF,1 − C∗
F,1)︸ ︷︷ ︸

=CF,1

= PF,1 · CF,1, (A.14)

which always holds, given the market-clearing condition for foreign tradeables in (A.35).
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A.4.3 General Representation

Using these results, we can succinctly represent the rules the determine prices and consump-

tion of goods in this model by reduced-form parameters. For example, for consumption, we

have:

CH,1 = ΛH(YNT,1,Θ) · YH,1,

C∗
H,1 = (1− ΛH(YNT,1,Θ)) · YH,1,

CF,1 = (1− ΛF (YNT,1, Y
∗
NT,1,Θ)) · YF,1,

C∗
F,1 = ΛF (YNT,1, Y

∗
NT,1,Θ) · YF,1,

(A.15)

where Λi ∈ [0, 1], for i = {H,F}. I use these boundary conditions on the implied Λi’s to

guarantee that the numerical solutions found for the financiers’ optimality conditions are

feasible and well-behaved.
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A.5 Deriving the UIP-UEP-Hedging Relationship

For expository reasons, consider β = β∗ = χ1 = χ∗
1. Rewrite the UIP deviation as:

ΩUIP ≡ E

[
R−R∗ · E

(
E1

E0

)]
= E

 1

E
[

1
YNT,1

]
− E

 E
[
E1

E0

]
E
[

1
Y ∗
NT,1

]
 =

=
1

E
[

1
YNT,1

] − 1

E
[

1
Y ∗
NT,1

]E

[
E1

E0

]
.

(A.16)

Next, rewrite the UEP deviation as:

ΩUEP ≡ E

[
R− R∗E1

E0

]
= E[YNT,1]− E

[
Y ∗
NT,1

E1

E0

]
= E [YNT,1]− E[Y ∗

NT,1] · E

[
E1

E0

]
− Cov

(
Y ∗
NT,1,

E1

E0

)
.

(A.17)

To account for the Jensen inequality, note that:

E

[
1

YNT,1

]
≈ E

[
1

E[YNT,1]
− 1

E[YNT,1]2
(YNT,1 − E[YNT,1])

+
1

E[YNT,1]3
(YNT,1 − E[YNT,1])

2

]
= E

[
1

E[YNT,1]
+

1

E[YNT,1]3
(YNT,1 − E[YNT,1])

2

]
=

1

E[YNT,1]
+

Var[YNT,1]

E[YNT,1]3

=
1

E[YNT,1]

[
1 +

Var[YNT,1]

E[YNT,1]2

]
=

1

E[YNT,1]
·

E[Y 2
NT,1]

E[YNT,1]2
.

(A.18)

The term E[Y 2
NT,1]

E[YNT,1]2
= 1 +

Var[YNT,1]

E[YNT,1]2
on the right hand side of (A.18) is simple for some distri-

butions of the exponential family:

• If YNT,1 ∼ N(µ, σ2), then 1 +
Var[YNT,1]

E[YNT,1]2
= 1 + σ2

µ2
= µ2+σ2

µ2
.
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• If log(YNT,1) ∼ N(µ, σ2), then 1 +
Var[YNT,1]

E[YNT,1]2
= 1 + eσ

2 − 1 = eσ
2 .

• If YNT,1 ∼ exp(λ), then 1 +
Var[YNT,1]

E[YNT,1]2
= 1 +

1
λ2

( 1
λ
)2

= 1 + 1 = 2.

• If YNT,1 ∼ Beta(α, β), then 1 +
Var[YNT,1]

E[YNT,1]2
= 1+α

α
α+β
α+β+1

.

Therefore, using log-normality, for example, we can approximate the UIP deviation formula

by:

ΩUIP ≈ 1

E
[

1
YNT,1

] − 1

E
[

1
Y ∗
NT,1

]E

[
E1

E0

]

≈ E [YNT,1]
E[YNT,1]2

E[Y 2
NT,1]

− E
[
Y ∗
NT,1

]
E

[
E1

E0

]
E[Y ∗

NT,1]
2

E[Y ∗
NT,1

2]
.

(A.19)

We can further rewrite (A.19) as:

ΩUIP ≈ E [YNT,1]
E[YNT,1]2

E[Y 2
NT,1]

− E
[
Y ∗
NT,1

]
E

[
E1

E0

]
E[Y ∗

NT,1]
2

E[Y ∗
NT,1

2]

=

{
E [YNT,1]− E

[
Y ∗
NT,1

]
E

[
E1

E0

]}
E[YNT,1]2

E[Y 2
NT,1]

+ E
[
Y ∗
NT,1

]
E

[
E1

E0

]{
E[YNT,1]2

E[Y 2
NT,1]

−
E[Y ∗

NT,1]
2

E[Y ∗
NT,1

2]

}
=

{
ΩUEP + Cov

(
R∗,

E1

E0

)}
E[YNT,1]2

E[Y 2
NT,1]

+ E
[
Y ∗
NT,1

]
E

[
E1

E0

]{
E[YNT,1]2

E[Y 2
NT,1]

−
E[Y ∗

NT,1]
2

E[Y ∗
NT,1

2]

}
,

(A.20)

or equivalently:

ΩUEP ≈ ΩUIP E[Y 2
NT,1]

E[YNT,1]2
− Cov

(
R∗,

E1

E0

)
− E

[
Y ∗
NT,1

]
· E

[
E1

E0

]
·
{
1−

E[Y 2
NT,1]

E[YNT,1]2
·

E[Y ∗
NT,1]

2

E[Y ∗
NT,1

2]

}
= ΩUIP · E[R2]

E[R]2
− Cov

(
R∗,

E1

E0

)
− E [R∗] · E

[
E1

E0

]
·
{
1− E[R2]

E[R]2
· E[R∗]2

E[R∗]2

}
.

(A.21)
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Finally, in log-normal terms:

ΩUEP ≈ ΩUIP · eσ2 − Cov

(
R∗,

E1

E0

)
+ E [R∗] · E

[
E1

E0

]
·
(
eσ

2−σ∗2 − 1
)
. (A.22)
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A.6 UIP-UEP-Hedging Relationship in a Lucas Orchard

In this section, I demonstrate how theUIP-UEP-hedging relationship, as outlined in themain

text and derived above, holds more generally. Specifically, I focus on Lucas Orchard models,

which rely on a completely different set of assumptions and pricing mechanisms compared

to the model exhibited in the main text. However, it is important to emphasise that the

generality of this relationship does not imply that it has been explicitly addressed in the

existing literature. In my view, this relationship represents a foundational result – one that

has always existed within the theoretical framework, but has not been directly targeted or

fully explored in prior studies.

Martin (2011) investigates the behaviour of asset prices and exchange rates in a continuous-

time two-tree model built on the Lucas Orchard framework of Martin (2013). In his model,

each country is populated with local households that behave in a hand-to-mouth manner,

therefore not affecting prices. A central group denoted “jetsetters" can consume goods from

both countries.

Jetsetters are themarginal agents pricing both countries’ output claims and riskless bonds.

Therefore, asset prices will exhibit a more significant correlation than outputs, as shocks will

be transmitted from onemarket to the other through their impact on theirmarginal utility. In

this sense, jetsetters in Martin (2011) exert a similar role as intermediaries in this paper. The

two goods are viewed as substitutes by jetsetters, so that changes in relative prices will im-

pact his marginal utilities with respect to each good. Martin (2011), then, defines exchange

rates as a ratio of marginal utilities of this central agent with respect to each good.

In contrast to the model of the main text, the model in Martin (2011) allows prices of

assets to change depending on the positions of jetsetters (financiers here). However, it does

so at the cost of exchange rates that are purely defined by relative prices. In other words, in

that model, there does not exist a flow equation that determines the dollar in equilibrium. I

will now show how a similar relationship between UIP, UEP and hedging arises in this type
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of model, despite key differences involving channels of exchange rate determination.

Jetsetters in Martin (2011) optimise based on:

E
∫ ∞

0

e−ρt
C1−γ
t

1− γ
, (A.23)

with:

Ct =

[
w

1
ηD

η−1
η

1t + (1− w)
1
ηD

η−1
η

2t

] η
η−1

, (A.24)

and where e here denotes the exponential, w governs the relative importance of goods 1 and

2 for jetsetters,D1t andD2t denote dividends from trees of countries 1 and 2 and ηmeasures

intra-temporal substitution between the two goods. Writing:

v(D1t, D2t) ≡
C1−γ
t

1− γ
, (A.25)

as the jetsetters’ felicity function and vi(D1t, D2t) as theirmarginal utilitywith respect to good

i = 1, 2, Martin (2011) defines exchange rates as:

Et ≡
v1(D1t, D2t)

v2(D1t, D2t)
. (A.26)

Martin (2011) treats dividends processes as exogenous. More precisely, he defines

yit − yi0 ≡ logDit − logD0t (A.27)

as a Levy process, for each i.

Next, define a cumulant-generating function (CGF), c(θ1, θ2) as:

c(θ1, θ2) = log Eeθ1(y1,t+1−y1,t)+θ2(y2,t+1−y2,t) = log E

[(
D1,t+1

1, t

)θ1 (D2,t+1

2, t

)θ2]
. (A.28)
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Consider, for expository reasons, that dividend processes follow log-normal processes.

In addition, suppose that countries’ fundamentals are sufficiently linked in such a way that

the CGFs of their dividend processes are supermodular. This rules out the case where divi-

dend processes are negatively correlated, so that one is a hedge for the other, and is a weak

assumption. Formally:

∂2c(θ1, θ2)

∂θ1∂θ2
≥ 0. (A.29)

Under these assumptions and relying on a small-country limit where i = 1 is small and

i = 2 is large, the expressions derived in Martin (2011) imply2:

XS∗
2 −XS1 = XS∗

B,2 + γσ2(1− κ)− 2σ2(1− κ)(1− χ). (A.30)

In (A.30), XS∗
2 denotes the excess return on output claims of country i = 2 denominated in

foreign currency. This is his paper’s equivalent to E
[
R∗E1

E0
−R

]
here. XS1 measures excess

returns on output claims of country i = 1 denominated in their own currency. The analogue

of this variable in the model of the main text would be E [R−R]. Hence, we have thatXS∗
2 −

XS1 in Martin (2011) corresponds to −ΩUEP here.

XS∗
B,2 denotes the risk premium on a perpetuity bond of country i = 2 in foreign cur-

rency. Thismeasures a failure of theUIP to the extent that it denotes the expected returnwith

a carry-trade strategy that goes long in country i = 2. Therefore, in terms of the model of the

main text, this terms would represent −ΩUIP. The variable χ ≡ η−1
η

is just a convenient form

of write so that χ tends to 1 when η → ∞ (perfect substitution) and to 0 when η → 1 (Cobb-

Douglas). The variable σ2 denotes the variance of dividend processes (assumed the same),

while κ denotes the correlation between dividend processes of the two countries (captured

by ρ in the model of the main text).
2See pages 24 and 25 of that paper.
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Let us use these results to rearrange (A.30) while substituting Ω̃UEP ≡ XS1 − XS∗
2 and

Ω̃UIP ≡ −XS∗
B,2, where I am using a tilde to emphasise that these expressions are his model’s

analogues of the parity deviations derived in the main text. Then:

Ω̃UEP = Ω̃UIP − γσ2(1− κ) + 2σ2(1− κ)(1− χ). (A.31)

Relationship (A.31) shows that in the framework of Martin (2011), similarly to what was

shown in A.22, UEP deviations are a direct (and positive) linear function of UIP deviations.

The term 2σ2(1−κ)(1−χ)measures the interaction between howdividends and exchange

rates operate in the model. To see how, consider a negative shock onD2t. The negative shock

in the dividends of country i = 2 makes its good relatively more scarse, or in lower supply,

what tends to push its price upwards compared to the good of country i = 1. This will

produce a force towards appreciation of country i = 2 when it faces negative stock market

shocks, similarly to the role of exchange rates as an automatic hedge for stocks in Hau and

Hélène Rey (2006). The parameter χ will control this impact of stock market shocks on

exchange rate movements to the extent that it controls the jetsetters’ willingness to substitute

between goods. The lower χ (or the lower η), the less jetsetters want to substitute between

goods, the less they will react to negative shocks on D2t by consuming more of good of

country i = 1. As a consequence, the larger the price effect, the more severe exchange rates

will move as a response.

Since κ ∈ [0, 1] from the assumption of linked fundamentals, it follows that 2σ2(1−κ)(1−

χ) > 0, and will be larger the smaller χ is. In this sense, this term captures the same intu-

ition as−Cov
(
R∗, E1

E0

)
in (A.22). In Martin (2011), a lower substitution of jetsetters between

assets linked to the outputs of the two countries will tend to accentuate the negative relation

between stock market shocks in a country and appreciations of its currency, and this impact

will be more severe if dividend processes are less correlated – also aligned with my results

in the main text.
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Finally, the term −γσ2(1 − κ) in (A.31) captures common movements between the two

stocks. This term becomes more negative in situations where stocks move in a more distinct

manner (↓ κ). In my model, this is captured by the term E [R∗] · E
[
E1

E0

]
·
(
eσ

2−σ∗2 − 1
)
.
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A.7 Decomposing UIP, UEP and Hedging Roles

Let me begin with the dollar market clearing conditions under assumption 1. For period 0:

E0 = ι0 −Θb −Θs = ι0 − (−Θ∗
b −Θs −Θ∗

s)−Θs

= ι0 +Θ∗
b +Θ∗

s,

(A.1)

showing that the time-0 dollar market clearing condition can be either written in terms of

dollar positions (in bonds and stocks) or in terms of yen positions (in bonds and stocks).

For period 1:

E1 =
ι1YNT,1 +RΘb + RΘs

Y ∗
NT,1

=
ι1YNT,1 −RΘ∗

b −RΘ∗
s + (R−R)Θs

Y ∗
NT,1

.

(A.2)

Note that I used 0 = Θb +Θs +Θ∗
b +Θ∗

s, assuming zero-investment. Combining both condi-

tions:

E1

E0

=
ι1YNT,1 +RΘb + RΘs

(ι0 −Θb −Θs)Y ∗
NT,1

=
RΘb

ι0 −Θb −Θs

1

Y ∗
NT,1

+
ι1 +Θs

ι0 −Θb −Θs

YNT,1
Y ∗
NT,1

.

(A.3)

Next, use that ΩUIP ≈ E(YNT,1)
E2(YNT,1)

E(Y 2
NT,1)

− E(Y ∗
NT,1)E

(
E1

E0

)
E2(Y ∗

NT,1)

E(Y ∗
NT,1

2)
. Under log-normality:

ΩUIP ≈ E(YNT,1)e
−σ2 − E(Y ∗

NT,1)E

(
E1

E0

)
e−σ

∗2
.

Using the expression for an inter-period dollar depreciation above:

E

(
E1

E0

)
≈ Θb

ι0 −Θb −Θs

E(YNT,1)
E(Y ∗

NT,1)
(eσ

∗2−σ2

) +
ι1 +Θs

ι0 −Θb −Θs

E(YNT,1)
E(Y ∗

NT,1)
(eσ

∗2 − eρσσ
∗
+ 1). (A.4)
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Collecting these results, we get the expression for UIP deviations shown in the main text:

ΩUIP ≈ Θb

Θb +Θs − ι0

[
2e−σ

2

E(YNT,1)
]

︸ ︷︷ ︸
Bond Effect

+
Θs

Θb +Θs − ι0
E(YNT,1)

[
e−σ

2

+ e−σ
∗2
+ 1− eρσσ

∗−σ∗2
]

︸ ︷︷ ︸
Equity Flow Effect

− ι0
Θb +Θs − ι0

E(YNT,1)

[
e−σ

2 − ι1
ι0

(
e−σ

∗2
+ 1− eρσσ

∗−σ∗2
)]

︸ ︷︷ ︸
Current Account Impact

.

(A.5)

To derive the expression for the UEP deviation, start with the following UIP-UEP relation-

ship, proved in the last section:

ΩUEP ≈ ΩUIP eσ
2 − Cov

(
R∗,

E1

E0

)
+ E(R∗)E

(
E1

E0

)
(eσ

2−σ∗2 − 1), (A.6)

Let us work out each of the terms. First:

ΩUIP eσ
2 ≈ Θb

ι0 −Θb −Θs

[2E(YNT,1)]

+
1

ι0 −Θb −Θs

E(YNT,1)
[
(Θs − ι0) + (ι1 +Θs)

(
eσ

2−σ∗2
+ eσ

2 − eρσσ
∗+σ2−σ∗2

)]
.

(A.7)

Second:

−Cov

(
R∗,

E1

E0

)
≈
(

Θb

ι0 −Θb −Θs

)
E[YNT,1]

(
eσ

∗2−σ2 − e−σ
2
)
+(

ι1 +Θs

ι0 −Θb −Θs

)
E[YNT,1]

(
eσ

2 − eρσσ
∗
)
.

(A.8)

Finally, the last is:

E(R∗)E

(
E1

E0

)
(eσ

2−σ∗2 − 1) ≈ Θb

ι0 −Θb −Θs

E(YNT,1)
(
1− eσ

∗2−σ2
)

+
ι1 +Θs

ι0 −Θb −Θs

E(YNT,1)
(
eσ

2 − eσ
∗2
+ eρσσ

∗ − eρσσ
∗+σ2−σ∗2

+ eσ
2−σ∗2 − 1

)
.

(A.9)
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Collecting all of these results and using them in (A.6), we get to:

ΩUEP ≈ Θb

Θb +Θs − ι0
E(YNT,1)

(
2 + e−σ

2 − eσ
∗2−σ2

)
︸ ︷︷ ︸

Bond Effect

+
Θs

Θb +Θs − ι0
2E(YNT,1)︸ ︷︷ ︸

Equity Flow Impact

− ι0
Θb +Θs − ι0

E(YNT,1)

(
ι0 − ι1
ι0

)
︸ ︷︷ ︸

Current Account Impact

,

(A.10)

the expression for UEP deviations in the main text.

Next, I shall derive the expressions for hedging roles in the model. Using the dollar

market clearing conditions, it follows that:

Cov

(
R− R∗,

E1

E0

)
=

(
RΘb

ι0 −Θb −Θs

)(
E

[
YNT,1
Y ∗
NT,1

]
− E[YNT,1]E

[
1

Y ∗
NT,1

])

+

(
ι1 +Θs

ι0 −Θb −Θs

)(
E

[
Y 2
NT,1

Y ∗
NT,1

]
− E[YNT,1]E

[
YNT,1
Y ∗
NT,1

])

−
(

RΘb

ι0 −Θb −Θs

)(
1− E[Y ∗

NT,1]E

[
1

Y ∗
NT,1

])

−
(

ι1 +Θs

ι0 −Θb −Θs

)(
E [YNT,1]− E[Y ∗

NT,1]E

[
YNT,1
Y ∗
NT,1

])
.

(A.11)

Based on this expression, keep relying on second-order approximations around dividend

means to derive:

E

[
YNT,1
Y ∗
NT,1

]
− E[YNT,1]E

[
1

Y ∗
NT,1

]
≈ E[YNT,1]

E[Y ∗
NT,1]

(1− eρσσ
∗
), (A.12)

E

[
Y 2
NT,1

Y ∗
NT,1

]
− E[YNT,1]E

[
YNT,1
Y ∗
NT,1

]
≈ E2[YNT,1]

E[Y ∗
NT,1]

(1 + eσ
2

+ eσ
∗2 − 2eρσσ

∗
), (A.13)
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1− E[Y ∗
NT,1]E

[
1

Y ∗
NT,1

]
≈ 1− eσ

∗2
, (A.14)

E [YNT,1]− E[Y ∗
NT,1]E

[
YNT,1
Y ∗
NT,1

]
≈ E[YNT,1]

(
eρσσ

∗ − eσ
2
)
. (A.15)

Additionally, use: R = E
[

1
YNT,1

]
≈ E[YNT,1]

eσ2
. Collecting all results and simplifying terms, we

can derive the following covariances that govern exchange rate hedging roles:

Cov

(
R− R∗,

E1

E0

)
≈(

Θb

ι0 −Θb −Θs

)
E[YNT,1]

[
E[YNT,1]
E[Y ∗

NT,1]

(
e−σ

2 − eρσσ
∗−σ2

)
+ eσ

∗2−σ2 − e−σ
2

]
+

(
ι1 +Θs

ι0 −Θb −Θs

)
E[YNT,1]

[
E[YNT,1]
E[Y ∗

NT,1]

(
eσ

∗2 − eρσσ
∗
)
+ eσ

2 − eρσσ
∗

]
,

(A.16)

Cov

(
R,
E1

E0

)
≈
(

Θb

ι0 −Θb −Θs

)
E2[YNT,1]

E[Y ∗
NT,1]

(
e−σ

2 − eρσσ
∗−σ2

)
+(

ι1 +Θs

ι0 −Θb −Θs

)
E2[YNT,1]

E[Y ∗
NT,1]

(
eσ

∗2 − eρσσ
∗
)
,

(A.17)

Cov

(
R∗,

E1

E0

)
≈
(

Θb

ι0 −Θb −Θs

)
E[YNT,1]

[
−eσ∗2−σ2

+ e−σ
2
]
+(

ι1 +Θs

ι0 −Θb −Θs

)
E[YNT,1]

[
−eσ2

+ eρσσ
∗
]
.

(A.18)
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A.8 Equilibrium Characterisation: Discussion and Proofs

Proof of Proposition 5. Substitute Θb = Θs = 0 into equations (1.20) and (1.21). This elimi-

nates the bond and equity flow terms, leaving only the current account contributions, which

simplify as stated.

Proof of Proposition 6. Use the expression derived in (1.22) with ρ = 1 and σ = σ∗.

Proof of Proposition 7. Plug Θb = Θs = 0 into equations (1.22), (1.23), and (1.24), and evalu-

ate the sign conditions as functions of κ and ρ.

Proof of Proposition 8. Substitute Θs = Θ∗
s = 0 and Θb = −Θ∗

b into equation (1.20). Under

symmetry, we obtain:

ΩUIP ≈
(

Θ∗
b

1 + Θ∗
b

)
2E(YNT,1)e

−σ2

,

with E0 = 1 +Θ∗
b > 0. Thus, sign(ΩUIP) = sign(Θ∗

b) = − sign(Θb), implying ΩUIP ·Θb < 0. No

profitable trade is possible, and financiers opt out.

Proof of Proposition 9. Use the sign condition on ΩUIP ·Θb and the UIP expression underΘs =

0. For an equilibrium to exist, we must have ΩUIP · Θb > 0. This produces the stated bound

on Θb > 0 if ΩUIP > 0, or on Θ∗
b = −Θb > 0 if ΩUIP < 0.

Proof of Proposition 10. Proposition 9 gives the implicit link between UIP deviations and the

direction of financiers’ carry trades in equilibrium. The result follows from plugging ι0 =

ι1 = 1 and writing κ = σ/σ∗ in the provided bounds, noting how signs of Θb will be linked

to those of ΩUIP.

Proof of Proposition 11. From condition (1.27), we need to find values of κ for which the signs

of ψ and ϕ change. First, it is straightforward to verify that ψ ≥ 0 if, and only if κ2+ρκ−1 ≤ 0

(otherwise, ψ < 0). This represents a quadratic inequality whose only positive root is κ(ρ).

Additionally, note that κ(ρ) is decreasing in ρ, with κ(0) = 1. If κ > κ(ρ), then κ2+ρκ−1 > 0,
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and ψ < 0. If κ ≤ κ(ρ), then κ2 + ρκ − 1 ≤ 0, implying ψ ≥ 0. Second, we have that ϕ ≥ 0

when κ ≥ 1
ρ
and ϕ < 0 otherwise.

Collecting the results while considering the signs of ψ and ϕ for each interval for κ, it

follows that f = ϕ
ψ

≤ 0 when κ ≥ 1
ρ
, and that f = ϕ

ψ
> 0 when κ < 1

ρ
. Next, we need

to have in mind that once we solve condition (1.27) for Θb, the inequality flips for ψ < 0,

i.e., when κ > κ(ρ). Therefore, for κ in this range, we have an upper bound rather than a

lower bound for the financiers’ position in the US bond. Note, however, that for the region in

which the inequality does not flip sign, the lower bound for Θb is irrelevant. This happens

since f(ρ, κ, σ) < −1 in that region and, by construction, Θb ∈ [−1, 1]. When stocks are too

correlated — e.g., global downturns — the region for Θb under which we should observe a

dollar hedging role shrinks.

Proof of Proposition 12. Assume symmetric trade preferences, ι0 = ι1 = 1, and that financiers

can only trade bonds (Θs = 0). Recall from Proposition 10 that the sign of ΩUIP and the

direction of the carry trade depend on whether ρκ is greater or less than one:

• If ρκ > 1, then Θb > 0, ΩUIP > 0: the dollar is on the investment side (Equilibrium A).

• If ρκ < 1, then Θb < 0, ΩUIP < 0: the yen is on the investment side (Equilibrium B).

I now characterise the hedging roles under each equilibrium.

Funding Currency Hedge (General). From the hedging covariance expressions in Propo-

sition 4, the sign of each covariance depends on the underlying parameters (κ, ρ) and the

magnitude of Θb. In both equilibria, financiers settle liabilities in the funding currency, pur-

chasing it in period 1. This demand reinforces currency appreciation in local downturns —

when the funding country’s equity underperforms and imports fall — systematically ampli-

fying the funding currency’s hedging role. This pattern is evident in Figures 1.3 and 1.4.
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In Figure 1.3, the function g(·) crosses the horizontal axis at κ = ρ. When the yen is on

the funding side (Θb > 0), its hedging role is only eliminated if κ ∈ (0, ρ). But Equilibrium

A, which financiers select when κ > 1/ρ, always lies to the right of this interval. Hence, the

yen hedging role remains active throughout this region.

In Figure 1.4, the function f(·) intersects the axis at κ = 1/ρ. When the dollar is the fund-

ing currency (Θb < 0), the dollar hedging role is only eliminated if κ > 1/ρ. Yet Equilibrium

B — characterised by Θb < 0 — is only selected when κ < 1/ρ. Thus, the condition for

elimination is again never satisfied, and the dollar hedging role remains active.

Investment Currency Hedge. Whether the investment currency exhibits a hedging role

depends on model parameters — and is asymmetric across equilibria. For the dollar (Equi-

librium A), the hedging role is never observed; for the yen (Equilibrium B), it may or may

not emerge depending on volatility and correlation.

• In Equilibrium A (Θb > 0), financiers are long U.S. bonds and short yen bonds. Ac-

cording to equation (1.27) and Proposition 11, the dollar hedging role requires 0 <

Θb < f(ρ, κ, σ∗). However, when κ ≥ 1
ρ
, we have f(ρ, κ, σ∗) < 0, so the condition is

never satisfied. A dollar hedging role is therefore ruled out in this region.

• In Equilibrium B (Θb < 0), financiers are long Japanese bonds and short U.S. bonds.

The condition for a yen hedging role is given in equation (1.26). This role is elimi-

nated when Θb < g(ρ, κ, σ∗), and Figure 1.3 shows that g(·) ≥ 0 for κ ∈ (0, ρ]. Hence,

when Japanese equity is not sufficiently safe (i.e., κ ≤ ρ), the yen hedging role is also

eliminated.

In both equilibria, financiers’ positions consistently support the hedging role of the fund-

ing currency, while tending to undermine that of the investment currency.
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A.8.1 Equity-Only Intermediation Case: Discussion and Proofs

This appendix provides the detailed analysis of the model in which financiers can trade eq-

uity but not bonds — that is, where Θb = Θ∗
b = 0 and Θs ̸= 0, Θ∗

s ̸= 0. As I show below, this

case closely mirrors the financial autarky setting. In particular, the presence of equity-only

financiers does not materially alter the hedging behaviour of exchange rates qualitatively. I

begin with a benchmark result analogous to Proposition 8.

Proposition 15. If financiers cannot trade bonds (Θb = Θ∗
b = 0), trade preferences are symmetric

(ι0 = ι1 = 1), and financial markets are symmetric (σ = σ∗, ρ = 1), then there does not exist an

equilibrium in which financiers hold non-zero equity positions and make positive expected profits. The

only possible equilibrium is one in which financiers opt out: Θs = Θ∗
s = 0, and ΩUIP = ΩUEP = 0.

Proof. This follows analogously to the proof of Proposition 8, but applied to the UEP ex-

pression. Under full symmetry and no bonds, the optimal position that equates marginal

expected returns to marginal risk is Θs = 0, and expected profitability is zero. As with the

bond-only case, this implies both ΩUIP = 0 and ΩUEP = 0 in equilibrium.

The next result establishes that the hedging roles of exchange rates under equity-only

intermediation are identical to those in the financial autarky case. In particular, these prop-

erties hold regardless of the exact composition of financiers’ equity portfolios.

Proposition 16. In a model where financiers cannot trade bonds but can trade equity (Θb = 0,Θs ̸=

0), the automatic, dollar, and yen hedging roles coincide with those described in Proposition 7. Hence,

Figures 1.1 and 1.2 apply directly to this case.

Proof. In this model, Θs is bounded by ι1, due to market clearing for U.S. equity and the U.S.

households’ period-1 budget constraint.3 For example, if ι1 = 1, then −1 < Θs < 1, which

implies ι1 + Θs = 1 + Θs > 0. Since E0 = ι0 − Θb − Θs = ι0 − Θs, and Θb = 0, it follows
3Alternatively, the bound can be derived from the market clearing condition for Japanese equity and the

Japanese households’ period-1 budget constraint.
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that the ratio ι1+Θs
E0

is strictly positive for any feasible Θs. Therefore, the signs of the hedging

covariances depend only on the exponential terms governed by (σ, σ∗, ρ)— as in the autarky

case — and are unaffected by the specific value of Θs.

Economic Intuition. The result above is driven by the fact that, when financiers are re-

stricted to trading only equity, their impact on exchange rate dynamicsmimics that of house-

holds’ import behaviour. Recall that financiers enter the equitymarket onlywhenΩUEP·Θs >

0. Suppose that ι0 > ι1, which generates a force for dollar appreciation between periods via

declining U.S. import demand. In the absence of bonds, financiers absorb this intertemporal

imbalance through equity, setting Θs > 0. This can be shown formally by contradiction: if

financiers instead opt out (Θs = 0), then plugging Θs = 0 and ι0 > ι1 into equation (1.21)

yields ΩUEP > 0, which implies a profitable trade opportunity — contradicting the opt-out

decision.

As financiers scale up their position — long U.S. equity, short Japanese equity — the

second term in equation (1.21) becomes increasingly negative, eventually driving expected

profits to zero, tension that determines the equilibrium level of Θs.4

Offsetting Effects on Hedging. In financial autarky (Θs = 0), households fully hold their

domestic equity, so when U.S. equity outperforms, they become wealthier and increase im-

ports. This produces a trade-driven depreciation of the dollar, supporting a dollar hedging

role. When financiers enter with Θs > 0, they partially displace households from their do-

mestic equity, thereby reducing the income channel that drives import changes—weakening

the trade-based hedging mechanism.

However, their equity positions also create a need to unwind their foreign holdings in

period 1. For example, if Θs > 0, financiers are short Japanese equity and must buy yen
4Recall that E0 = ι0 − Θb − Θs > 0, so with Θb = 0, it follows that Θs < ι0. This makes the denominator

of the UEP expression negative, meaning that the second term becomes more negative as Θs becomes more
positive.
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using dollars to settle liabilities. This generates additional dollar depreciation in good states,

reinforcing the same effect created by households’ imports. In other words, the two channels

— trade balance and portfolio unwinding — move in opposite directions, and their effects

cancel out in aggregate. This explains why equity-only intermediation preserves the same

exchange rate hedging patterns as in the financial autarky case.

A.8.2 Full Model: Proofs

Proof of Proposition 13. The starting point is condition (1.28), which states that a dollar hedg-

ing role is observed when:

Θb · ψ(ρ, κ, σ∗) > ϕ(ρ, κ, σ∗) · (ι1 +Θs).

As in the bond-only case, the signs of ψ and ϕ depend on the relative volatility measure

κ = σ/σ∗ and the correlation ρ. The sign of ψ is governed by the inequality:

ψ(ρ, κ, σ∗) ≥ 0 ⇐⇒ κ2 + ρκ− 1 ≤ 0.

This is a quadratic inequality in κ, whose unique positive root is κ(ρ) = −ρ+
√
ρ2+4

2
. Hence:

• ψ > 0 if κ < κ(ρ);

• ψ = 0 if κ = κ(ρ);

• ψ < 0 if κ > κ(ρ).

In turn, ϕ ≥ 0 if and only if κ ≥ 1/ρ, and ϕ < 0 otherwise. Since f ≡ ϕ/ψ, we obtain the

following:

• If κ ≤ κ(ρ), then ψ > 0 and ϕ < 0 =⇒ f < 0;

• If κ(ρ) < κ < 1/ρ, then ψ < 0, ϕ < 0 =⇒ f > 0;
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• If κ ≥ 1/ρ, then ψ < 0, ϕ > 0 =⇒ f < 0.

Now, solving the inequality for Θb gives:

Θb


> f(ρ, κ, σ∗) · (ι1 +Θs) if ψ > 0,

< f(ρ, κ, σ∗) · (ι1 +Θs) if ψ < 0.

This leads to the three cases in Proposition 13 (for simplicity, consider ι0 = ι1 = 1):

1. When κ ≤ κ(ρ), the bound is negative. In the bond-only case, the condition was always

satisfied because Θb ∈ [−1, 1] and the threshold was less than −1. In the full model,

however, the cutoff is scaled by ι1 + Θs, which remains non-negative but can reduce

the magnitude of the bound. As a result, the dollar hedging role may no longer hold

unconditionally — financiers’ portfolios now matter.

2. For κ ∈ (κ(ρ), 1/ρ), the cutoff is positive, but the sign of ψ is negative, so the inequality

reverses: Θb must lie below the threshold.

3. When κ ≥ 1/ρ, the sign of ψ is still negative, so the inequality is the same as above.

However, the bound is now negative, and a sufficiently negative Θb is required for the

dollar to hedge U.S. equity.

The condition ι1 +Θs ≥ 0 always holds for all feasible Θs. This happens because bounds

for Θs are the same as those for Θb, and also governed by ι1. As previously discussed for Θb,

one can combine the budget constraint in period 1 for U.S. households with the market asset

clearing condition (now for the U.S. stock) to get feasible bounds forΘs, under the condition

that period-1 consumption and price of the home tradeable cannot be negative.
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A.8.3 Full Model: Equilibrium Properties

Figures 1.5 and 1.6 offer a detailed visualisation of the regions where dollar and yen hedging

roles are active under the full model. These areas are defined by the interaction between

financiers’ portfolio positions and the structural parameters governing equity volatility (κ),

international comovement (ρ), and asset composition (through Θb, Θs). Below, I unpack

these results and highlight how they connect to model equilibria and previous cases.

Dollar Hedging Role and EquilibriumStructure. Each panel in Figure 1.5 plots the region

where the inequality in equation (1.28) is satisfied— that is, where the dollar acts as a hedge

for U.S. equity risk. The cutoff curves trace values of Θb implied by the threshold f(ρ, κ, σ∗) ·

(ι1 +Θs). Blue regions indicate where the dollar hedging role is active. As expected:

• Higher ρ reduces the dollar hedging region (compare left and right panels), as stronger

international equity co-movement weakens the asymmetric response of exchange rates

to country-specific equity shocks.

• Higher Θs (darker lines) increases the likelihood of dollar hedging when κ < 1/ρ, but

the effect reverses when κ > 1/ρ.

This reversal reflects the asymmetry in the financier’s balance sheet: when they are long

both U.S. bonds and stocks, their dollar exposure increases, and unless the bond position

becomes more negative, the dollar hedging role may vanish. As discussed in the main text,

this reflects an endogenous tension between optimal hedging behaviour and the persistence

of hedging properties in equilibrium.5

Equilibrium Selection and Hedging Roles. From an equilibrium perspective, if we as-

sume that financiers’ positions in the U.S. bond continue to align with the sign of ΩUIP — as
5See equation (1.28). The left-hand side reflects the hedging strength; the right-hand side links to the port-

folio composition. A shift in equity exposure raises the required bond offset.
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they did under bond-only intermediation — then:6

• For κ > 1/ρ, we expectΘb > 0, consistent with equilibriumA. In this region, the model

predicts no dollar hedging role, which aligns with the figure.

• For κ < 1/ρ, we expect Θb < 0, as in equilibrium B. Here, the dollar typically acts as a

hedge — particularly when the bond short position offsets equity exposure.

Yen Hedging Role and Mirrored Asymmetry. Figure 1.6 plots the analogous region for a

yen hedging role, defined by the inequality in equation (1.29). Red regions indicate the set

of (κ,Θb) pairs for which the yen hedging role is active.

This region again shrinks with higher ρ, as co-movement undermines the segmentation

needed for currency-specific hedging. But compared to the dollar case, the effect of Θs is

reversed:

• When κ > ρ, larger Θs supports yen hedging.

• When κ < ρ, larger Θs works against it.

This reflects a fundamental asymmetry driven by the financier’s currency of account.

Since they maximise in dollars, a positive shock to Japanese equity — while increasing their

yen asset value — does not necessarily translate into dollar wealth gains. The model equi-

librium naturally counteracts this by appreciating the dollar and depreciating the yen, neu-

tralising the hedge.

Summary of Equilibrium Dynamics. To synthesise, the full model resembles the dynam-

ics verified for the bond-only intermediation case:
6In the bond-only case, the sign of Θb is directly determined by the sign of ΩUIP. In the full model, where

financiers also hold equity, this relationship becomes more complex. However, the qualitative pattern appears
to hold under a wide range of parameter values — as discussed in Section 1.6.
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• Funding currency hedging roles (i.e., the currency that financiers must purchase to

settle their bond liabilities) are robust across equilibria. As shown before for the bond-

only intermediation case, the act of unwinding a bond liability in bad states reinforces

the appreciation of the funding currency. This always holds if the equity market asso-

ciated with the funding currency for bonds is not too risky, regardless of the financiers’

bond positions.

• Investment currency hedging roles depend on whether the financiers’ bond positions

neutralise or reinforce the trade balance mechanism. Again, as previously illustrated,

when the investment-side currency belongs to the riskier equity market, financiers’

bond holdings often dilute its hedging properties.
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A.9 Asymmetric Trade Preferences and the Full Model

I now test the model’s simulated properties under asymmetric trade preferences, setting

ι0 = 1 and ι1 = 2. This introduces a dollar depreciation pressure between periods 0 and 1, as

U.S. households exhibit a stronger taste for foreign goods, generating trade-driven current

account imbalances. Figures A.1 and A.2 confirm that the core patterns for hedging roles

documented in the main text remain intact: hedging behaviour deteriorates with greater

equity market correlation (ρ), while an increase in κ (i.e., relatively riskier U.S. equity) im-

proves the foreign currency’s hedging role and weakens the dollar’s.

The dollar depreciation pressure induced by asymmetric preferences lowers both UIP

andUEPdeviations. These are nowgenerally negative— consistentwith investors favouring

long bond and equity positions in the foreign market — and larger in magnitude than those

found under balanced trade preferences. This shift is intuitive and in line with the model’s

closed-form expressions (see equation 1.20).

There are two notable differences in exchange rate behaviour under ι0 = 1, ι1 = 2:

1. In Figure A.1, the dollar is not only more depreciated in expectation, but becomes in-

creasingly depreciated as equity market correlation rises — the opposite pattern from

the baseline case.

2. In Figure A.2, expected dollar depreciation now declines with κ, whereas it increased

under symmetric preferences.

These differences stem from the altered incentive structure faced by intermediaries. With

stronger import preferences (ι1 > ι0), financiers have greater incentive to hold yen-denominated

risk. Their balance sheets exhibit increased exposure to Japanese assets — as confirmed by

the top panels of both figures, which show net long positions in both Japanese bonds and

equities.

As equity correlation increases, financiers reduce their exposure to Japanese stocks (due
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to diminished diversification benefits) and shift toward Japanese bonds. Yet, because they

price risk in dollars, they also retrench globally. This retrenchment lowers the risk premium

on the yen, strengthening the yen today and depreciating the dollar — explaining point (i)

above.

Finally, since financiers are generally long in yen bonds and short in dollar bonds, their

balance sheet increasingly contributes to a dollar hedging role — as explained in the main

paper. WhenU.S. equity becomes especially risky (i.e., κ rises), this position sustains a dollar

appreciation in bad states more robustly than in the symmetric benchmark. As a result, the

dollar tends to appreciate more sharply in downturns and is expected to appreciate more

tomorrow — explaining point (ii).

188



Figure A.1: Comparative Statics: Varying Equity Correlation (ρ). ι0 = 1 and ι1 = 2. Remain-
ing parameters follow the same calibration of the main paper.
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Figure A.2: Comparative Statics: Varying Volatility of U.S. Stock Returns (σ). ι0 = 1 and
ι1 = 2. Remaining parameters follow the same calibration of the main paper.
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A.10 Data Construction and Alternative Approaches

This appendix provides additional information on the construction and treatment of the

dataset used throughout the empirical analysis.

Equity Returns

To ensure cross-country comparability, I useMSCI total return equity indices for all countries

and regions. These indices reflect local equity market performance, inclusive of dividends,

and are constructed in local currency terms.

Monthly log returns are computed using end-of-month index values. For 3-month and

12-month investment horizons, returns are constructed as rolling cumulative log returns

over the corresponding horizons.

Interest Rates

Short-term interest rates are taken as effective interbank rates, using both 3-month and 12-

month maturities to match the investment horizons. For the U.S., I use the effective Federal

Funds Rate and U.S. Treasury yields. For other countries, I use central bank or IMF-sourced

interbank lending rates, with a preference for consistently available series. These interest

rates are used to compute interest differentials for the construction of UIP deviations.

Exchange Rates

Nominal bilateral spot exchange rates are sourced fromBloomberg, expressed as U.S. dollars

per unit of the foreign currency. All FX rates are taken at the last trading day of each month

to align with equity and interest rate observations.

To assess robustness, I also constructed real exchange rates using CPI indices. All main
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results were replicated using real returns, and differences were negligible in terms of sign,

magnitude, and statistical significance.

Alternative FX Construction: Isolating Trade Effects

Because exchange rates can reflect both trade and financial flows, I implement a complemen-

tary approach to isolate the portfolio-driven component of exchange rates.

I use the BIS’s broad trade-weighted exchange rate indices (TWIs) to filter out the trade-

driven component of each country’s FX movement. For each country, I regress the nominal

spot exchange rate on its BIS trade-weighted index:

Spot FXt = α + β · TWIt + εt.

The residuals εt capture deviations in FX that are orthogonal to the trade-weighted compo-

nent. I construct residual-based FX indices from the cumulative sum of these residuals and

then use bilateral ratios of these indices to derive pairwise exchange rate series that aim to

strip out trade-induced movements. These filtered FX series are then used to compute UIP

and UEP deviations.

I use this method as an (imperfect) proxy for isolating portfolio effects, which is the main

focus on the paper. It is also guided by themodel’s decomposition of exchange rate drivers—

where trade preferences directly affect FX, for example showing in the expressions derived

for UIP and UEP deviations in the main text — see Proposition 3. I evaluate this approach

considering the cross section of countries, unconditionally. The key empirical relationships

(UIP deviations, FX hedging roles, and the UIP–UEP–hedging link) remained robust under

this alternative FX construction, reinforcing the validity of the main findings.
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Sample and Frequency

All data are sampled at a monthly frequency. The full sample spans fromMay 2007 to Octo-

ber 2024— it is possible to extent the sample substantially focusing on only 12 instead of the

15 countries presented in the main text, but little change was observed in terms of findings.

The investment horizons used throughout the analysis are 3 and 12 months. Time-series re-

lationships are estimated using overlapping observations (e.g., monthly updating 12-month

returns), and standard errors are adjusted accordingly to account for induced serial correla-

tion.

Countries and Regions

The analysis covers the following economies: Australia, Brazil, Canada, China, Denmark,

the Euro Area, Japan, Korea, Mexico, New Zealand, Norway, Poland, Sweden, Switzerland,

the United Kingdom (U.K.), and the United States (U.S.).
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A.11 Unconditional Model, 3-Month Horizon

I now display results considering a 3-month investment horizon. I start by first focusing on

the window that excludes the Global Financial Crisis.

A.11.1 3-Month Horizon, Excluding the Global Financial Crisis

The results below confirm those of the main text. First, UIP deviations are positively associ-

atedwith aU.S. equity that is relativelymore sensitive. Second, the same happenswhen con-

sider relative U.S. equity volatility only. Third, foreign FX hedging roles are also positively

related to U.S. equity sensitivity (and volatility), what directly implies that UIP deviations

and foreign FX hedging roles are equally positively related — in this case, the correlation

between UIP deviations and foreign FX hedging roles is 84%.

Figure A.3: 3-month UIP deviations (ΩUIP, right axis) and relative equity sensitivity (ρκ− 1,
left axis) across countries, using data that excludes the Global Financial Crisis (2007–2009).
The variable ρκ is constructed as the coefficient from an OLS regression of U.S. log-equity
returns (in USD) on foreign log-equity returns (in local currency).

194



Figure A.4: 3-month UIP deviations (ΩUIP, right axis) and relative equity volatility (κ, left
axis) across countries, using data that excludes the Global Financial Crisis (2007–2009).

Figure A.5: 3-month FX hedging roles (right axis) and relative equity sensitivity (ρκ − 1,
left axis) across countries, using data that excludes the Global Financial Crisis (2007–2009).
The variable ρκ is constructed as the coefficient from an OLS regression of U.S. log-equity
returns (in USD) on foreign log-equity returns (in local currency).
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Figure A.6: 3-month FX hedging roles (right axis) and relative equity volatility (κ, left axis)
across countries, using data that excludes the Global Financial Crisis (2007–2009).

FigureA.7: 3-month FX hedging roles (right axis) andUIP deviations (left axis) across coun-
tries, using data that excludes the Global Financial Crisis (2007–2009).
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A.11.2 3-Month Horizon, Full Sample

The exact same findings as above are reconfirmed when the full sample is considered.

Figure A.8: 3-month UIP deviations (ΩUIP, right axis) and relative equity sensitivity (ρκ −
1, left axis) across countries, using the full sample. The variable ρκ is constructed as the
coefficient from an OLS regression of U.S. log-equity returns (in USD) on foreign log-equity
returns (in local currency).
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Figure A.9: 3-month UIP deviations (ΩUIP, right axis) and relative equity volatility (κ, left
axis) across countries, using the full sample.

Figure A.10: 3-month FX hedging roles (right axis) and relative equity sensitivity (ρκ−1, left
axis) across countries, using the full sample. The variable ρκ is constructed as the coefficient
from an OLS regression of U.S. log-equity returns (in USD) on foreign log-equity returns
(in local currency).
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Figure A.11: 3-month FX hedging roles (right axis) and relative equity volatility (κ, left axis)
across countries, using the full sample.

Figure A.12: 3-month FX hedging roles (right axis) and UIP deviations (left axis) across
countries, using the full sample.
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A.12 Alternative Sample Windows, 12-Month Horizon

In this section, I present results based on alternative sample windows. As in the main text, I

consider 12-month investment horizons.

A.12.1 Excluding the Global Financial Crisis

Unconditional Model: Exploring the Cross Section

First, I focus on the sample that excludes the Global Financial Crisis (2007-2009). The fol-

lowing figures show results for the unconditional model, evaluating the model in the cross

section of currencies. All the results shown in the main paper are maintained.

Figure A.13: 12-month UIP deviations (ΩUIP, right axis) and relative equity sensitivity (ρκ−
1, left axis) across countries, using data that excludes theGlobal Financial Crisis (2007–2009).
The variable ρκ is constructed as the coefficient from an OLS regression of U.S. log-equity
returns (in USD) on foreign log-equity returns (in local currency).
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Figure A.14: 12-month UIP deviations (ΩUIP, right axis) and relative equity volatility (κ, left
axis) across countries, using data that excludes the Global Financial Crisis (2007–2009).
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Figure A.15: 12-month FX hedging roles (right axis) and relative equity sensitivity (ρκ− 1,
left axis) across countries, using data that excludes the Global Financial Crisis (2007–2009).
The variable ρκ is constructed as the coefficient from an OLS regression of U.S. log-equity
returns (in USD) on foreign log-equity returns (in local currency).

Figure A.16: 12-month FX hedging roles (right axis) and relative equity volatility (κ, left
axis) across countries, using data that excludes the Global Financial Crisis (2007–2009).
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Figure A.17: 12-month FX hedging roles (right axis) and UIP deviations (left axis) across
countries, using data that excludes the Global Financial Crisis (2007–2009).

Conditional Model: Exploring the Time Series

I now present results for the same sample, but focusing on the time series behaviour of ex-

change rates. The following figures confirm results exhibited in the main paper while eval-

uating the model conditionally.
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Figure A.18: UIP Deviation and Hedging Measures Across Countries. Each panel plots the
UIP deviation (red), ρ (blue) and κ (orange, dashed) for 12-month investment horizons.
Sample excludes the Global Financial Crisis (2007-2009).
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Figure A.19: FX Hedging and Hedging Measures Across Countries. Each panel plots the
FX hedging role (red), ρ (blue) and κ (orange, dashed) for 12-month investment horizons.
Sample excludes the Global Financial Crisis (2007-2009).
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Figure A.20: UIP and UEP Deviations Across Countries. Each panel plots the UEP devia-
tions (red) alongside the UIP deviations (blue) for 12-month investment horizons. Sample
excludes the Global Financial Crisis (2007-2009).
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A.12.2 2012 Onwards

I now present additional results for a more recent sample, for which correlations between

equity markets and exchange rate have been more substantial — in line with what is docu-

mented in Lilley andRinaldi (Working Paper). All my previous findings are alsomaintained

when focusing on this window.

Figure A.21: 12-month UIP deviations (right axis) and relative equity sensitivity (ρκ−1, left
axis) across countries. The variable ρκ is constructed as the coefficient from an OLS regres-
sion of U.S. log-equity returns (in USD) on foreign log-equity returns (in local currency).
Sample starts in January 2012.
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Figure A.22: FX hedging roles (right axis) and relative equity sensitivity (ρκ − 1, left axis)
across countries. The variable ρκ is constructed as the coefficient from an OLS regression of
U.S. log-equity returns (in USD) on foreign log-equity returns (in local currency). Invest-
ment horizon is 12 months. Sample starts in January 2012.

Figure A.23: FX hedging roles (right axis) and UIP deviations (left axis) across countries.
Investment horizon is 12 months. Sample starts in January 2012.
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Figure A.24: UIP Deviation and Hedging Measures Across Countries. Each panel plots the
UIP deviation (red) and ρκ − 1 (blue) for 12-month investment horizons. Sample starts in
January 2012.
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A.13 Complementary Charts

The main paper shows the relationship between UIP deviations and relative equity sensi-

tivity. Figure A.25 below complements that result, demonstrating that the same result also

applies in terms of relative equity volatility.

Figure A.26 confirms that UIP is also generally directly related to relative equity sensitiv-

ity in the time series. This once more confirms predictions of the main text.

Finally, Figure A.27 shows that the same intuition of the main text applied to foreign FX

hedging roles also applies to the dollar hedging role — here, we should observe a negative

relationship between κ and the dollar hedging role, in the sense that a saferU.S. equitymarket

contributes to a stronger dollar hedging role.

Figure A.25: 12-month UIP deviations (ΩUIP, right axis) and relative equity volatility (κ, left
axis) across countries. Full sample.

210



Figure A.26: UIP Deviation and Hedging Measures Across Countries. Each panel plots the
UIP deviation (red) and ρκ− 1 (blue) for 12-month investment horizons. Full sample.

211



Figure A.27: Dollar Hedging Role and κ, obtained for a 12-month investment horizon.
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A.14 Complementary Tables

Robustness: Excluding the Global Financial Crisis

Panel Regression with Fixed Effects

Table A.1 presents results from a panel regression identical to the baseline specification, but

excluding the Global Financial Crisis period (2007–2009). As before, this subsample is in-

tended to assess whether the baseline findings are disproportionately driven by the extreme

dislocations observed during that time. The regression specification remains unchanged,

including country fixed effects, and robust standard errors are again computed using HAC

estimators with 11 lags.

The results are broadly consistent with those in the main text. The coefficient on the UIP

deviation remains positive and statistically significant at the 1% level, as expected under the

theoretical framework. This reinforces the core prediction that deviations from uncovered

interest parity are systematically associated with deviations from uncovered equity parity.

The estimated coefficient is slightly lower than in the full-sample regression (0.232 vs. 0.457),

but the direction and statistical significance are preserved, suggesting robustness to the ex-

clusion of crisis dynamics.

The coefficient on the hedging term flips sign and becomes mildly negative, but it is not

statistically significant, and the confidence interval remains wide. Importantly, the theoretical

benchmark value of 1 continues to fall well within the 95% confidence band, which spans

from approximately –18 to 14. This suggests that while the precision of the estimate deteri-

orates in the reduced sample, the result is not inconsistent with the model’s prediction. The

sign flip may simply reflect increased noise due to the exclusion of a high-volatility period

that likely contained valuable identifying variation.

All country fixed effects remain positive and statistically significant, with tight confidence

intervals across the board. These estimates reflect country-specific average deviations in the
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dependent variable, and their statistical significance ismechanically implied by the inclusion

of a full set of country fixed effects in the regression. Since the fixed effects soak up persistent

country-level heterogeneity, their significance indicates systematic cross-sectional variation

in the level of the UEP deviation not explained by the twomain regressors— this is, the third

term in 1.19, associated with relative equity volatility.

Overall, these findings provide further support for the robustness of the main results.

Excluding the Global Financial Crisis does not alter the qualitative interpretation.

Bilateral Regressions

The bilateral regression results in Table A.2 further corroborate the findings from the panel

analysis. While estimates vary across countries, several key patterns are preserved. First,

the coefficient on the UIP deviation is positive in many cases, consistent with the theoretical

prediction. Second, the coefficient on the FX hedging role often exhibits large standard er-

rors andwide confidence intervals, mirroring the imprecise estimation observed in the panel

regressions. Notably, in only one case (Mexico) the model-implied value of one can be sta-

tistically rejected based on the 95% confidence bands. This reinforces the conclusion that,

despite limited precision in some cases, the results are broadly consistent with the model’s

predictions. Finally, all regression constant coefficients are positive and significant, in linewith

model predictions.
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Table A.1: Panel Regression: UEP Deviation on UIP Deviation and FX Hedging Role (Ex-
cluding GFC, with Fixed Effects)

Variable Coefficient Std. Error z-stat p-value [95% CI]

UIP Deviation 0.232 0.088 2.643 0.008 [0.060, 0.404]

FX Hedging Role –1.836 8.277 –0.222 0.824 [–18.059, 14.387]

Australia 0.111 0.027 4.141 0.000 [0.058, 0.163]

Brazil 0.256 0.043 5.928 0.000 [0.171, 0.341]

Canada 0.122 0.023 5.295 0.000 [0.077, 0.167]

China 0.156 0.017 8.962 0.000 [0.122, 0.190]

Denmark 0.080 0.018 4.571 0.000 [0.046, 0.115]

Euro Zone 0.117 0.020 5.855 0.000 [0.078, 0.156]

Japan 0.128 0.029 4.338 0.000 [0.070, 0.185]

Korea 0.120 0.015 7.918 0.000 [0.090, 0.150]

Mexico 0.175 0.028 6.189 0.000 [0.120, 0.231]

New Zealand 0.125 0.022 5.650 0.000 [0.081, 0.168]

Norway 0.154 0.027 5.763 0.000 [0.102, 0.206]

Poland 0.153 0.026 5.877 0.000 [0.102, 0.204]

Sweden 0.110 0.021 5.352 0.000 [0.070, 0.150]

Switzerland 0.070 0.023 3.102 0.002 [0.026, 0.114]

UK 0.130 0.016 8.118 0.000 [0.099, 0.161]

Model fit: R2 = 0.059, Adjusted R2 = 0.054.
Notes: Number of observations: 2,655. Robust standard errors (HAC, 11 lags) are used to address auto-
correlation due to overlapping 12-month returns. Country dummies absorb cross-sectional heterogene-
ity. The regression excludes the Global Financial Crisis period (2007–2009). Homogeneous slopes are
imposed across countries.
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Table A.2: Bilateral Regressions: UEP Deviation on UIP Deviation and FX Hedging Role

Country UIP Deviation FX Hedging Role Constant R2 p-value (F-test)

Australia 0.404 –7.596 0.113 0.065 0.338

[–0.135, 0.942] [–45.181, 29.990] [0.053, 0.173]

Canada –1.169 28.940 0.128 0.074 0.297

[–2.633, 0.296] [–50.039, 107.918] [0.069, 0.186]

Switzerland –0.468 13.165 0.119 0.057 0.382

[–1.173, 0.237] [–49.216, 75.546] [0.063, 0.176]

Denmark –0.514 16.375 0.105 0.094 0.155

[–1.033, 0.005] [–42.567, 75.317] [0.078, 0.132]

Euro Zone –0.931 29.146 0.169 0.182 0.053

[–1.682, –0.180] [–23.445, 81.737] [0.117, 0.222]

UK –0.499 3.864 0.136 0.033 0.412

[–1.357, 0.359] [–103.429, 111.157] [0.113, 0.158]

Japan –0.142 22.781 0.144 0.026 0.621

[–0.823, 0.539] [–77.816, 123.379] [0.068, 0.219]

Korea 0.076 29.550 0.133 0.032 0.499

[–0.275, 0.427] [–24.194, 83.294] [0.088, 0.178]

Norway 0.202 –20.482 0.129 0.029 0.405

[–0.659, 1.064] [–50.282, 9.317] [0.068, 0.190]

Poland 0.017 18.948 0.158 0.036 0.590

[–0.603, 0.637] [–24.553, 62.449] [0.089, 0.228]

Sweden –0.035 47.258 0.155 0.175 0.025

[–0.690, 0.620] [10.352, 84.163] [0.090, 0.220]

Brazil 0.431 –10.805 0.315 0.212 0.008

[0.105, 0.757] [–35.486, 13.877] [0.160, 0.470]

New Zealand 0.023 12.474 0.122 0.005 0.892

[–0.638, 0.684] [–47.251, 72.199] [0.062, 0.182]

China 0.184 14.846 0.160 0.032 0.388

[–0.116, 0.485] [–7.247, 36.938] [0.112, 0.208]

Mexico 1.063 –47.372 0.327 0.503 0.000

[0.620, 1.507] [–61.938, –32.806] [0.241, 0.413]

Notes: Each row corresponds to a separate OLS regression of the UEP deviation on the UIP deviation
and FX hedging role, estimated at the bilateral country level. Confidence intervals (95%) are reported in
brackets. HAC standard errors with 11 lags are used. The table illustrates cross-country heterogeneity
and complements the panel regressions by allowing coefficients to vary across countries.
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Appendix B

Appendix for Chapter 2

B.1 Data

B.1.1 Section 3: More Details

Returns data are compiled from the Kenneth French’s online library, which uses CRSP data

for stocks and the one-month Treasury bill rate (from Ibbotson Associates) for risk-free re-

turns. We transform these series into real terms adjusting for CPI inflation (explained be-

low). Adjustments described in the main paper are performed on each of these datasets

– see more details below in this appendix. Ignoring observations lost by applying lagged

instruments in the estimation, our initial dataset covers the period between 1931 to 2022

for annual and between 1947:3 to 2023:2 for quarterly data. Our original consumption data

(or equivalently, reported consumption) come from NIPA tables, available on BEA’s web-

site. We use two time series: consumption of nondurables and services and consumption

of nondurables (only). As explained in the main paper, unfiltered consumption has been

constructed from these two series under distinct calibrations. For annual data, we construct

unfiltered consumption from the original model in Kroencke (2017), which does not feature

serially correlated measurement errors. For quarterly data, these are relevant, so that we in-
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troduce such form of persistence relying on the quasi-differenced filter described in section 2

of chapter 2. For more details on howwe calibrate themodel, see section “calibration" below.

For other series, inflation rate uses quarter-over-quarter and year-over-year CPI data,

the nominal interest rate is the same used above (from Kenneth French’s website) and the

dividend-price ratio has been taken from Robert Shiller’s online data source. Recall that we

take logs of the latter.

B.1.2 Section 4: More Details

For stocks, we use value-weighted returns that consider NYSE, NASDAQ and AMEX. For

T-bill returns, we rely on the same dataset of section 3 of chapter 2. To calculate the bond

default premium, we use theMoody’s Seasoned BAACorporate Bond Yield (which is based

on bondswithmaturities of 20 years and above) as the long term corporate yield. To compute

the bond horizon premium, we rely on 20-year and 1-month T-bill rates (Federal Reserve).

From January 1984 to September 1993, the 20-year data are not available, so we use the 10-

year analogue instead.

As indicated in the main paper, consumption growth data is constructed from the CEX

interviews. These are deflated using the CPI deflator for nondurables considering urban

households. To deflate return series mentioned above we use the CPI for total consumption

(also for urban households).

B.1.3 A FewNotes on Data Sources involving Consumption, Frequencies

and Measurement Errors

The CEX encompasses two major data sources, the interview and the diary surveys. They

do not share the same sample. We use the former to construct our consumption data series

for the groups of asset holders. Data in the diary survey is much more detailed, and likely
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more prone tomeasurement error andmisreporting issues. However, the interview survey is

also prone to such problems. Indeed, data that are probablymisreported is easily verified for

several of the questions used to construct consumption in section 4. For instance: households

that report twodistinct quantities for the consumption of the same item, in the samemonth of

the same year; households that report negative values for some item; or even households that

do not report consumption for some quarter (or, some interview), but that report numbers to

other questions, not related to consumption (these households are included in our sample).

The BLS has been systematically attempting to change the methodology, so that respon-

dent burden and measurement errors are less significant. The Gemini project, which was

mentioned in the main paper, is an example.

Data Sources Comparison: NIPA vs. CEX

There are many methodological differences between consumption measured by the PCE (or

NIPA, from BEA) and the CEX (from BLS).

First, consumption measured by the BLS takes into account that the data source varies

with the sampling frequency of consumption data. For example, monthly and quarterly

data in the PCE are based on the monthly retail trade survey (MRTS), while annual data

comes from the annual retail trade survey (ARTS). It is known that sampling errors are

more problematic in the former, and the BEA takes this into account. In so far as we can tell,

adjustments applied by the BLS are not specific to any major data source in the CEX. Hence,

even though the interview and the diary survey have distinct samples, the Filtermodel could

be also applied to the latter.

Second, the BEA benchmarks quarterly and annual data to “the best available source

data", which happens to be the quinquennial – see BEA (2017). It follows that quarterly and

annual frequency data are interpolated, so that they are compatible with benchmark years.

In a second step, quarterly estimates are benchmarked to their annual counterparts. Bell

219



andWilcox (1993) argue that benchmark procedures reducemeasurement errors, inherently

affecting the autocorrelation in the consumption series. Contrasting with the PCE, the CEX

does not benchmark the data. Instead, the survey is continuously redesigned to circumvent

issues of measurement error.

Imputation is present in both the PCE and the CEX data. BEA and BLS rely on statisti-

cal models for non-response to predict missing values. These are considerably in the ARTS,

about 8%. The CEX did not apply imputation to asset data, but began to do in 2004. Alloca-

tion routines are also common across both sources. The CEX applies tabulation corrections

before and after other adjustment routines.

Residual methods are applied by the BEA to measure the consumption of some cate-

gories. They use “residuals” from government expenditures to do so. As far as we can tell,

these routines are absent in the CEX.

Finally, the BLS applies smoothing techniques over the data. Direct forms of smooth-

ing are absent in the CEX, albeit topcoding routines are present, generating similar effects.

Topcoding techniques modify the consumption, positions in assets and the income data of

outliers, so that these can not be identified from the public micro-files. Thresholds applied

are also constantly under revision, aiming to correctly disentangle “true” outliers from mis-

respondents or coding errors.

B.2 Fully Specified Quasi-Differenced Filter Model

As mentioned before, when we referred to annual consumption in section 3 of the main text

wewere using the canonical filter model in Kroencke (2017). The only difference in that case

relates to calibration (since different time series are used). Specifically, measurement errors

followed a simple white noise stochastic process with no form of persistence introduced.

The quasi-differenced filter model (that accounts for such persistence) is only used when
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handling quarterly data in section 3, and semi-annual data (but at monthly frequency), in

section 4. This follows for the reasons described in the main text. In this section, we provide

the complete specification of this quasi-differenced version and better detail howwemodify

the original Filter model in Kroencke (2017).

Recall that a Filter model without persistence in measurement error is not suitable for

data at monthly or quarterly frequencies. The more frequent the data (or the smaller the

level of aggregation) themore likely accounting for a serially correlated error becomes essen-

tial since sampling errors are probably autocorrelated – see the online appendix of Kroencke

(2017). In our estimations, unfiltered consumption performedpoorly in terms of estimates of

the EIS when serially correlated measurement error terms are not considered in the model

and the data frequency is either monthly or quarterly. Comparatively, even reported con-

sumption provided more precise estimates in those cases.

Turning to the model, assume a simple state-space representation:

xt+1 = Fxt +Rηt+1, (B.1)

yt = Hxt + ξt, (B.2)

those representing the state and measurement equations of a simple Kalman filter, respec-

tively. xt represents a vector of state variables and the last term is its corresponding dis-

turbance. yt is observed consumption (it can be the garbage measure in Savov (2011), for

instance). Unfiltered consumption is our estimate of this time series, while ξt represents

measurement errors.

By permitting serially correlatedmeasurement error termswe introduce (2.3) of themain

text in the system:

ξt = ρξξt−1 + νt,
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where νt is a simple white noise process. Generally, the usual assumption is E[ξtη′t+h] =

E[ηtη
′
s] = E[ξtξ

′
s] = 0, for t ̸= s and h > 0 – see Hamilton (1994), for example. We relax this

hypothesis in order to introduce the possibility of (2.3). Particularly, let us assume that the

innovation of state consumption and that of measurement errors are conditionally normally

distributed: 
ηt+1

ξt

 ∼ N



0

0

 ,

Rσ2

η,t+1R
′ Rωη,ν

ων,ηR
′ σ2

ν


 , (B.3)

where we are not assuming any zeros in the covariance matrix, but we allow for a time-

varying element in its upper left corner.

Next, define:

Pt+1|t = E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
′|Ft], (B.4)

where the information set Ft tracks data realisations conditional on period t and Pt+1|t is

the covariance of prediction errors conditional on the same period (a priori). With a small

abuse of notation, we denoted its first element (relative to consumption) by P c
t in section 2

of chapter 2 – we turn back to this below. In addition, x̂t+1|t = E[xt+1|Ft], as usually. Note

that xt+1|t−1 ∼ N(x̂t+1|t−1, Pt+1|t−1), and:

x̂t+1|t−1 = Fx̂t|t−1, (B.5)

by (1). In a similar vein and using E[xtη′t+1] = E[x̂t|t−1η
′
t+1] = 0:

Pt+1|t−1 = E[(F (xt − x̂t|t−1) +Rηt+1)(F (xt − x̂t|t−1) +Rηt+1)
′|Ft−1] = FPt|t−1F

′ +Rσ2
η,t+1R

′,

(B.6)

Likewise:

ŷt|t−1 = Hx̂t|t−1, St|t−1 = HPt|t−1H
′ + σ2

ν , (B.7)
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where St|t−1 = E[(yt − ŷt|t−1)(yt − ŷt|t−1)
′|Ft−1], the covariance of pre-fit prediction errors.

Finally, if Σt|t−1 = E[(yt − ŷt|t−1)(xt+1 − x̂t+1|t)
′|Ft−1] is the cross-correlation matrix between

state and observable variables, then:

Σt|t−1 = FPt|t−1H
′ + ων,ηR

′, (B.8)

so that:


xt+1|Ft−1

yt|Ft−1

 ∼ N



Fx̂t|t−1

Hx̂t|t−1

 ,

Pt+1|t−1 Σt|t−1

Σ′
t|t−1 St|t−1


 . (B.9)

From (B.8), one can thus express the distribution of xt+1|Ft by marginalising xt+1|Ft−1 in

terms of yt|Ft−1. Hence, relying on the multivariate normal:

x̂t+1|t = Fx̂t|t−1 + Σt|t−1S
−1
t|t−1(yt −Hx̂t|t−1)

= Fx̂t|t−1 + (FPt|t−1H
′ +Rωη,ν)(HPt|t−1H

′ + σ2
ν)

−1(yt −Hx̂t|t−1),

(B.10)

using (B.6) and (B.7). In a similar fashion:

Pt+1|t = Pt+1|t−1 − Σt|t−1S
−1
t|t−1Σ

′
t|t−1

= FPt|t−1F
′ +Rσ2

η,t+1R
′ − (FPt|t−1H

′ +Rωη,ν)(HPt|t−1H
′ + σ2

ν)
−1(FPt|t−1H

′ + ωη,νR
′)′

(B.11)

Finally, the Kalman gain is simply:

Kt = Σt|t−1S
−1
t|t−1 = (FPt|t−1H

′ +Rωη,ν)(HPt|t−1H
′ + σ2

ν)
−1 (B.12)

One can derive the original filter in Kroencke (2017) with the system above. However,

up to this point, we have not allowed for serially correlated measurement errors – equation
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(2.3) of the main text – yet. Perhaps the easiest way to introduce this possibility in a Kalman

filter is to expand the model so that measurement errors are defined as a new state variable.

Harvey, Ruiz, and Sentana (1992) present different forms ofmodelling thatwhile still relying

on ARCH or GARCH processes to express variances (as we do here). However, note that

we actually aim to invert a Kalman filter. This is, we are not interested in tracking state

variables given observables. Instead, we aim to infer what would those observables were

once we (researchers) only know estimates of state variables that supposedly took those

into account to be constructed. As in Kroencke (2017), we do not use simple recursions

of a Kalman filter but instead their reverse counterparts. With that in mind, re-scaling the

system is much simpler than developing alternative methods of “reverse engineering” that

support an expanded system that includes (2.3). We then opt to re-scale the original Kalman

filter above, expressing it in terms of a quasi-differenced system. This re-scaled filter does

not modify the standard interpretation given in Kroencke (2017).

In the following, we blend findings of E. Anderson et al. (1996) with the original Filter

model, establishing our quasi-differencing approach. Assume that νt ∼ N(0, σ2
ν), the error

term in equation (2.3). Next, we define observables in terms of a quasi-difference:

yt ≡ yt+1 − ρξyt, (B.13)

where yt is referred here as “quasi-differenced observable consumption”. Note that the state

equation (2.1) does not change with this modification, but the measurement equation is

transformed into1:

yt = (HF − ρξH)xt +HRηt+1 + νt+1 ≡ Hxt + ξt. (B.14)

It is worth mentioning that by rewriting the Filter model in terms of a quasi-differenced
1Write the measurement equation one period forward. Use the state equation in xt+1. Then, subtract ρξ×yt

from this, using the measurement equation in the current period as yt.
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observable we are not assuming that the raw data first observed by official statisticians is yt.

Instead, we are only re-scaling the system in order to solve it, to then mapping back yt onto yt. This

will probably become more clear below.

By following similar developments, we can rewrite covariances in terms of the new com-

posite error term in (13). Particularly, if Rηt+1 ≡ ηt+1, it follows that σ2
ξ
= HRσ2

η,t+1R
′H ′+σ2

ν

and ωη,ξ = Rσ2
η,t+1R

′H ′. Applying the same algebra as above:

x̂t+1|t =Fx̂t|t−1

+ (FPt|t−1H
′
+Rσ2

η,t+1R
′H ′)(HPt|t−1H

′
+HRσ2

η,t+1R
′H ′ + σ2

ν)
−1(yt −Hx̂t|t−1)

(B.15)

Pt+1|t =FPt|t−1F
′ +Rσ2

η,t+1R
′

− (FPt|t−1H
′
+Rσ2

η,t+1R
′H ′)(HPt|t−1H

′
+HRσ2

η,t+1R
′H ′ + σ2

ν)
−1

(HPt|t−1F
′ +HRσ2

η,t+1R
′),

(B.16)

with the Kalman gain vector following:

Kt = (FPt|t−1H
′
+Rσ2

η,tR
′H ′)(HPt|t−1H

′
+HRσ2

η,tR
′H ′ + σ2

ν)
−1 (B.17)

Note that [yt, yt−1, ..., y0, x̂0] and [yt+1, yt, ..., y0, x̂0] span the same space since:

yt − E[yt|yt−1, ..., y0, x̂0] = (yt+1 −Dyt)

− E[yt+1 −Dyt|yt −Dyt−1, yt−1 −Dyt−2, ..., y0, x̂0]

= yt+1 −Dyt +Dyt − E[yt+1|yt, yt−1, yt−2, ..., y0, x̂0]

= yt+1 − E[yt+1|yt, yt−1, yt−2, ..., y0, x̂0]

(B.18)

Equations (B.14) to (B.16) express the algorithm in the quasi-differenced Kalman filter.
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The next step is to invert those equations to isolate quasi-differenced unfiltered consumption.

Before, let’s identify our system in terms of our findings above. State variables are defined

as:

xt =



ct

ct−1

η∗t


, F =



1 0 0

1 0 0

0 0 0


, R =



1

0

1


η∗t = σ2

η,tηt, (B.19)

while we assume, as in Kroencke (2017), that its variance follows a GARCH(1,1) stochastic

process given by:

σ2
η,t = a0 + a1η

∗2
t−1 + a2σ

2
η,t−1 (B.20)

We can express the variance of prediction errors as:

St|t−1 =

[
1− ρξ 0 0

]
Pt|t−1



1− ρξ

0

0


+ σ2

η,t + σ2
ν

= (1− ρξ)
2P c

t|t−1 + σ2
η,t−1 + σ2

ν ,

(B.21)

where P c
t|t−1 denotes the element (1,1) – related to the state variable ct – of covariance matrix

Pt|t−1, and we have used the fact that H =

[
1 0 0

]
and then H =

[
1− ρξ 0 0

]
. One can
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then obtain the first component of the Kalman gain in (16):

Kt =





1

0

1


[
1 0 1

]


1

0

0


σ2
η,t +



1 0 0

1 0 0

0 0 0


Pt|t−1



1− ρξ

0

0




[(1− ρξ)

2P c
t|t−1 + σ2

η,t + σ2
ν ]

−1,

(B.22)

where the matrix pre-multiplying Pt|t−1 is F . Solving (B.22) for its first element, we obtain

the Kalman gain – relative to consumption – described in the main text, equation (2.6):

Kc
t =

(1− ρξ)P
c
t|t−1 + σ2

η,t

(1− ρξ)2P c
t|t−1 + σ2

η,t + σ2
ν

,

and in section 2 we used the notation P c
t instead than P c

t|t−1.

Next, use (B.16), writing it in terms of our model:

Pt|t−1 =



1 0 0

1 0 0

0 0 0


Pt−1|t−2



1 1 0

0 0 0

0 0 0


+ σ2

η,t



1 0 1

0 0 0

1 0 1



−Kt−1



[
1− ρξ 0 0

]
Pt−1|t−2



1 1 0

0 0 0

0 0 0


+

[
1 0 0

]


1 0 1

0 0 0

1 0 1


σ2
η,t


,

(B.23)
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whose first element is:

P c
t|t−1 = P c

t−1|t−2(1− (1− ρξ)K
c
t−1) + (1−Kc

t−1)σ
2
η,t,

Recall that P c
t ≡ P c

t|t−1, in our notation of section 2.

Our quasi-differenced Filter model is almost completely described now. The next step is

to obtain our best guess of yt−1. In order to do that, write (B.15) for the update phase (x̂t|t).

Substituting relevant matrices (B.19), the first element of x̂t|t is:

ĉt = ĉt−1 +Kc
t (yt−1 − (1− ρξ)ĉt−1), (B.24)

where ĉt ≡ E[ct|Ft]. Isolating yt−1:

ŷt−1 =
ĉt − (1− (1− ρξ)K

c
t )ĉt−1

Kc
t︸ ︷︷ ︸

Unfiltered Quasi-Differenced Consumption

(B.25)

Equation (B.25) is not ready to be mapped back onto original unfiltered consumption yet.

We still need a few adjustments, described in the following.

B.2.1 Adjusting Unfiltered Consumption for Time-Aggregation Bias

First, we adapt (B.25), so that it accounts for time-aggregation bias. Hall (1988) addressed

this using anAR(2) representation. In a similar fashion and adapting adjustments inKroencke

(2017) to your model, we have2:

∆cadTAt =
[∆cTAt − (1− (1− ρξ)α)∆c

TA
t−1]

α
, (B.26)

2See Kroencke (2017) for more details.
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where ∆cadTAt denotes the time-aggregation bias-adjusted estimate of consumption growth

and ∆cTAt represents its time-aggregated counterpart. The parameter α guarantees that the

second moment of ∆cadTAt is the same of point-to-point consumption. It is set to the same

value of Kroencke (2017), 0.83. Adapting (B.25) to our model gives:

ŷt−1 =
ĉt − (1− (1− ρξ)Ωt)ĉt−1

Ωt

, (B.27)

where Ωt = αKt.

B.2.2 Adjusting the Timing of Asset Returns

By construction, the variable in (B.27) has its second moment perfectly compatible with

consumption measured point-to-point in time. However, the timing of asset returns is mis-

aligned. We correct for this in section 3 by adapting adjustments in Kroencke (2017) – which

was based on Cochrane (1996) – for the use of quarterly series.

First, we sumend-of-month levelsΠi,m,t+1 to obtain ameasure of quarterly time-aggregated

stock returns:

∆RTA
i,t+1 =

∑3
m=1Πi,m,t+1∑3
m=1Πi,m,t

− 1, (B.28)

where i represents the asset class andm is the corresponding month of quarter t.

Second, we bring first and second moments of this series back to point-to-point counter-

parts to make it compatible with (B.27). We conduct this adjustment using returns for the

last quarter of the year. The motivation is in Jagannathan and Wang (2007), who argued

that investors are more prone to adjust their investment portfolios in the fourth quarter of
3It solves V ar(∆cTA

t ) = α
2−αV ar(∆c

adTA
t ) = 2

3V ar(∆c
adTA
t ). The former equality is implied from (34)

setting ρξ = 0 while the latter uses results in Working (1960) and Breeden, Gibbons, and Litzenberger (1989).
The approximation for ρξ does not distort results sensibly since we have set that parameter to a value very
close to zero in our estimations. The first equality does not change in comparison with Kroencke (2017) since
our model still relies on a random-walk representation for state consumption whose conditional variances are
modelled through a GARCH(1,1).

229



the year.

∆RadTA
i,t+1 =

∆RTA
i,t+1 − E(∆RTA

i,t+1)

σ(∆RTA
i,t+1)

σ(∆RQ4−Q3
i,t+1 ) + E(∆RQ4−Q3

i,t+1 ), (B.29)

where ∆RQ4−Q3
i,t+1 = Πi,12,t+1/Πi,9,t+1, returns measured for the last quarter4.

Step (B.27) is not necessary in section 4 since datawere atmonthly frequency. This simply

implies that ∆RTA
i,t+1 is equal to (raw) monthly returns used. When it comes to (27), we do

the following, for section 4:

∆RadTA
i,t+1 =

∆RTA
i,m+1 − E(∆RTA

i,m+1)

σ(∆RTA
m,t+1)

σ(∆Ri,December) + E(∆Ri,December), (B.30)

where sub-index “December” denotes monthly returns in December of the relevant year.

Results of section 4 do not change if we use October or November instead.

Finally, ∆RadTA
i,t+1 in (B.29) is aggregated to represent semi-annual returns as described in

the main text – this is, we used Ri,t+1 instead of ∆RadTA
i,t+1 for simplicity reasons in section 4.

B.2.3 MappingUnfilteredQuasi-DifferencedConsumptionBack ontoUn-

filtered Consumption

The last step is the simplest one. In order to map ŷt−1 back onto ŷt – unfiltered consumption

– we perform:

ŷt︸︷︷︸
Unfiltered Consumption

= ŷt−1 + ρξŷt−1 (B.31)

4Kroencke (2017) conducted a similar adjustment but for annual series, using the first two moments of
December-to-December consumption growth as his correction in a similar fashion. Note that by usingmoments
of the last quarter components E(∆RQ4−Q3

i,t+1 ) and σ(∆RQ4−Q3
i,t+1 ) change every 4 observations (or equivalently,

every 4 quarters) - contrasting with corrections in Kroencke (2017), that change for each observation (since
described in annual terms). This could imply an unnecessary persistence for the series ∆RadTA

i,t+1 . However,
by comparing return series generated by (28) and (29) with their raw analogues – and repeating the same
experiment for annual series, using the method in Kroencke (2017) – we have found that the impact of those
modifications for our estimates is minimal. Hence, we evaluate that our adjustments for quarterly data do not
perform considerably different from those of the original model. For complete results involving raw returns
data, see section 6.4.5 below.
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The fact that ŷt−1 appears in the right hand side of (B.31) implies we can not identify y0. We

turn back to this and how we initialise the model below.

B.2.4 Consumption Volatility

Motivated by results in Harvey, Ruiz, and Sentana (1992), we use the approximation η∗2t−1 ≈

Et−1(η
∗2
t−1). It follows that Et(η∗2t ) – and hence Et−1(η

∗2
t−1) – is obtained by:

Et(η
∗2
t ) = P η

t|t + η∗2t|t

=

(
1−

σ2
η,t−1

P c
t|t−1(1− ρξ)2 + σ2

η,t−1 + σ2
ν

)
σ2
η,t−1

+

(
σ2
η,t−1

P c
t|t−1(1− ρξ)2 + σ2

η,t−1 + σ2
ν

)2

u2t ,

(B.32)

where ut ≡ yt−1 − (1− ρξ)ĉt−1, the re-scaled prediction error.

B.2.5 Homoscedastic Counterpart and Proof of Proposition 1

It is simple to derive a version of the model that features homoscedasticity in state consump-

tion. This not only implies σ2
η,t = σ2

η, but also Kc
t = K

c and P c
t|t−1 = P

c.

Under homoscedasticity, we have:

P
c
= P

c
(1− (1− ρξ)K

c
) + (1−K

c
)σ2

η, (B.33)

and the Kalman gain becomes:

K
c
=

(1− ρξ)P
c
+ σ2

η

(1− ρξ)2P
c
+ σ2

η + σ2
ν

. (B.34)

By plugging (B.34) in (B.33) and after some algebraic manipulations, one can finally find
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the second order equation:

{P c}2 + σ2
η

(
1 + ρξ
1− ρξ

)
P
c −

σ2
ησ

2
ν

(1− ρξ)2
= 0 (B.35)

After rewriting terms, it is possible to show that the roots of (B.35) are given by:

P
c
=

σ2
η

2(1− ρξ)

{
±
[
(1− ρξ)

2σ2
η + 4σ2

ν

] 1
2 − (1 + ρξ)σ

2
η

}
, (B.36)

so that the only sensible solution is (recall that 1− ρξ > 0):

P
c
=

σ2
η

2(1− ρξ)

{[
(1− ρξ)

2σ2
η + 4σ2

ν

] 1
2 − (1 + ρξ)σ

2
η

}
(B.37)

Given (B.37), our model exhibits the expected behaviour if:

4
σ2
ν

σ2
η

> (1 + ρξ)
2σ2

η − (1− ρξ)
2. (B.38)

Equations (B.33) and (B.34) characterise the homoscedastic model. Those are also useful

when initialising the heteroscedastic Filter model – see more details below, in this appendix.

For our parameterisation, it follows that the right hand side of (B.38) is negative and even if

otherwise a sizeable σ2
ν compared with σ2

η would do the trick. Generally, we have found that

(B.37) is met under an ample set of realistic parameterisations.

As mentioned in the main paper, one can evaluate how well a Filter model behaves by

checking whether its corresponding Kalman gain increases during a period of economic tur-

bulence (recessions, for instance). This generates an unfiltered series less persistent and

probably more connected with movements in the assets market.

The Kalman gain in our model is more complicated than that in Kroencke (2017), but we

can still see that a more volatile measurement error lowers Kc and expectations of the state

of consumption do not change much, in line with the intuition. Now we must ensure that
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reported consumption is less filtered when P c and(or) σ2
η are higher. By taking derivatives

of the Kalman gain, it is possible to show that:

∂K
c

∂P
c =

{
(1− ρξ)Φ− (1− ρξ)

2[(1− ρξ)P
c
+ σ2

η]
}
Φ−2, (B.39)

∂Kt

∂σ2
η

=
{
Φ− (1− ρξ)P

c
+ σ2

η

}
Φ−2, (B.40)

whereΦ = (1−ρξ)2P
c
+σ2

η+σ
2
ν > 0. It is straightforward to see that (B.39) is always positive

while (B.40) is positive for ρξ small enough, so that σ2
ν − (1 − ρξ)P

c
ρξ > 0. Our calibration

– when ρξ = 0.06 – easily meets this condition. The fact that (B.39) and (B.40) hold in our

model then ensures its validity. We have also found that both conditions are also met in the

heteroscedastic model – when derivatives those are time-dependent.

B.2.6 Initialising the Model

We start the model using its homoscedastic analogue described above, so that P c
t=1 = P

c and

Kc
t=1 = K

c. In addition, based on the long term representation of the GARCH process in

(12): σ2
η,t=1 = α0/(1− α1 − α2)

5. As mentioned earlier, by construction we are not able to

identify ŷ0 when using the quasi-differenced Filter model. Therefore, we initialise the filter

assuming that∆yt=1 = 0, then burning the first observations for which consumption growth

seems to exhibit an abrupt and unrealisticmovement. It follows thatwe burned the first three

observationswhen dealingwith quarterly data in section 3 but nonewhen using annual data

– the latter justified by the low number of observations available. Below we repeat methods

in section 3, while restricting the sample to 1960:1–2023:2 (1940–2022) for quarterly (annual)

data. In section 4, we burned the first 7 months of data – recall that consumption growth is

semi-annual but the frequency is monthly.
5Being more specific, we do σ2

η,t=1 = σ2
η and calibrate a1 and a2 based on bechmark moments of section 2

such that a0 is uniquely determined.
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Notes on Calibration

Recall that for quarterly data in section 3, we use the quasi-differenced Filter model shown in

section 2. In that case we fix ση = 0.0078 ∗
√
3 ≈ 1.4%, adapting similar results with monthly

data presented in Bansal and Yaron (2004) for that frequency. Kroencke (2017) noted that

his model seems little sensitive to choices of a1 and a2 (GARCH process), once remaining

parameters are correctly calibrated to the samemoments. We confirmed the same finding for

ourmodel. We choose a1 = 0.22 and a2 = 0.56. Since the services component of consumption

is quite more imprecise (and volatile) than its nondurables analogue, we fix different values

for σν based on each type of consumption: nondurables and services or nondurables only.

Specifically, we use σν = 3.8% for the former and σν = 2.2% for the latter when applying the

heteroscedastic model. For its homoscedastic analogue, we use σν = 2.5% and σν = 2.0%,

repectively. These values not only match our benchmark moments quite well but also the

difference itself makes sense, given the imprecision of the services component mentioned

above (implying a lower value of σν when that group is removed from themeasure). Finally,

recall that we establish ρξ = 0.06 regardless of the consumption type.

For results involving annual data in section 3 our model does not feature persistent mea-

surement error. Therefore, we follow the exact same steps in Kroencke (2017), with mere al-

ternations in calibration to account for an updated time series (until 2017 instead of 2014)7.

There we set ση = 2.5%, a1 = 0.01 and a2 = 0.85. The former is the same value used in

Kroencke (2017). We do not adapt it to our time series since by following the same logic

we use for quarterly data would give a very similar value (0.0078 ∗
√
12 ≈ 2.7%) and very

similar results. In addition, we fix σν = 2.8% (nondurables and services) and σν = 1.9%

(nondurables only – see section 6.4.3 below) when using annual data. These values do not
6That implies a0 = 0.00005.
7Technically, we start our Filter model in 1930 and its first observation generated for unfiltered consumption

relates to 1931. Kroencke (2017) expanded the original time series provided in NIPA tables to the period that
1927-30, so that it encompasses the Great Depression period. He used data available in Robert Shiller’s website
for that, with the implicit assumption that the representative statistician does not change the hypothetical Filter
model across different datasets. We do not use data from that period, so that all our consumption observations
come from BEA (NIPA).
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change depending on the model used to unfilter consumption.

As in Kroencke (2017), we ensure that the long-term standard deviation (over 6 years) of

annual unfiltered consumption is not much more than 1.2 times that of reported consump-

tion (we impose this condition when calibrating σν). It is intuitive that this gap should not

be considerably high since: (i) measurement errors should cancel out when consumption is

measured over longer horizons, – see Daniel andMarshall (1996) –, and; (ii) filtering proce-

dures should be smart enough such that in reported data is not considerably more volatile

than unfiltered data in the long run – presumably, the implicit algorithm would be other-

wise corrected to take new evidence and perceived errors into account. That being said, it

is clear that the intuition behind that rule does not change regardless of the nature of the

stochastic process for the measurement error. For example, for nondurables and services

we have that the ratio between long-run standard deviations of unfiltered and reported con-

sumption are 1.12 and 1.23 for quarterly and annual data, respectively. For completeness, in

Table B.1 below we present similar results as those shown in Table 2.1 but for consumption

of nondurables only. The 1.2 times rule is still valid.

Table 2.2 summarises semi-annual consumption growthmoments for CEX data – see sec-

tion 4. Although we use data from that survey, we benchmark moments to results obtained

for unfiltered NIPA consumption in section 3. We restrict moments of the latter to the avail-

able sample period of the former accordingly.

It is well known that a large fraction of CEX consumption categories reproduce a similar

behaviour compared to NIPA counterparts. Other categories do measure different things

or have similar definitions but exhibit a ratio CEX/NIPA that is too low (high) overtime.

However, in terms of the estimation of the EIS, it is more central for the Filter model to be

able to revert second moments and auto-correlations than to infer how much one source

may be overestimating consumption compared to the other. Indeed, if overall there is no

considerable change in how much CEX categories overestimate (underestimate) its NIPA

analogues, then one can benchmark CEX aggregates to NIPA counterparts to calibrate the
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Table B.1: Calibrated Moments for NIPA Consumption of Nondurables Only

(Implied) Consumption Growth E(∆Cyear) σ(∆Cyear) σ(
∑6

year=1∆Cyear)/
√
6 Corr(∆Cyear,∆Cyear−1)

Reported (NIPA) 1.38% 2.60% 2.34% 32.09%

Unfiltered - APWG∗ (1960-14) - 2.68% 2.30% 0.77%

Unfiltered - APWG∗ (1928-14) - 4.15% 3.12% -11.31%

Unfiltered - Our Model (Quarterly Data)

Homoscedastic (1960-14) 1.40% 3.38% 2.13% -29.93%

Heteroscedastic (1960-14) 1.34% 2.16% 1.88% -11.53%

Homoscedastic (1947-23) 1.34% 3.75% 2.10% -32.34%

Heteroscedastic (1947-23) 1.29% 2.30% 1.78% -21.80%

Unfiltered - Our Model (Annual Data)

Homoscedastic (1960-14) 1.29% 2.62% 2.23% -0.66%

Heteroscedastic (1960-14) 1.29% 2.63% 2.23% -0.66%

Homoscedastic (1930-22) 1.51% 4.10% 2.89% -7.22%

Heteroscedastic (1930-22) 1.51% 4.02% 2.87% -6.48%

Note: Moments of reported and unfiltered consumption (our model). We compare these moments with those
of unfiltered consumption in Kroencke (2017) as well (APWG stands for "Asset Pricing Without Garbage").
We have simply copied his results here, writing “∗" next to variables presented in that paper. Reported and
unfiltered consumption are for nondurables only, from NIPA tables. We consider the quasi-differenced model
with serially correlated measurement errors of section 2 for quarterly data, while setting ρξ = 0.06. For annual
data, the model is the same as in Kroencke (2017). See section 2.3 for more details on calibration.
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model.

Since official statistical procedures do not differentiate between different asset holders,

we calibrate the model based on the consumption growth series for all households. Recall

that, even though consumption growth is semi-annual, its frequency is monthly. Therefore,

to suit its scale for its frequency we convert the series into monthly consumption growth,

and then calibrate the model based on the latter. Once unfiltered consumption is obtained,

we transform the series back into semi-annual growth terms. This series is then comparable

with the original input in the model – reported (CEX) consumption. We repeat this procure

imposing the calibration of the model for all households to each type of asset holder. This

generates unfiltered consumption growth series associated with each group.

Given that we calibrate the model based on monthly consumption growth at the same

frequency, we fix ση = 0.0078 in section 4 – the same value in Bansal and Yaron (2004), for

the same scale and frequency. We once more parameterise σν such that the long-term (6-

years) standard deviation is not greater than 1.2 times that of reported consumption. This

rule gives us σν = 2.0%. Wemaintain ρξ = 0.06 in section 48. Therewe also establish a1 = 0.20

and a2 = 0.309.

Note that patterns observed in Table 2.2 for CEX data are similar to those of Table 2.1

for NIPA consumption. Unfiltered consumption once more is more volatile and less auto-

correlated than official data. In addition, note that this also holds true for most cases shown

in Table 2.2 when we split the sample between different types of asset holders. Particularly,

unfiltered consumption pictures a strongmean reversion pattern for stock and bond holders.

Ourmeasures of consumption based onCEXdata have awindowof 10 periods ofmissing

observations. This happens due to a methodological change, at the end of 1985. The BLS

replaced the households IDs, so that we can not match households across that change. To

construct unfiltered consumption, we need to imput values to those missing observations.
8We will test the stability of our model for different values of ρξ in a future version of this paper.
9Such that a0 = 0.00003.
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We use the final consumption series for each group to estimate the observation for the next

period (out of sample), based on a simple AR(1) model. We then apply and calibrate the

model, but exclude those observations associated with the window. To isolate the effect of

the training period around the imputation, we remove 6 observations before and after the

period.

B.3 Epstein-Zin Preferences Framework

This section gives auxiliary algebra and complementary results for section 3.

B.3.1 Euler Equations

Consider L. G. Epstein and Zin (1989) recursive preferences defined by:

Ut =
[
(1− δ)C

1−γ
θ

t + δ(EtU
1−γ
t+1 )

1
θ

] θ
1−γ

, (B.41)

where θ = (1 − γ)/(1 − ψ−1), δ is the discount factor, γ denotes the relative risk aversion

coefficient and Ck,t is real consumption of type k (unfiltered or reported) in period t. De-

note w as the household’s wealth and 1 + Rw,t+1 as the gross real return on wealth. If

the representative household combines it with the implicit inter-temporal budget constraint

Wt+1 = (1+Rw,t+1)(Wt−Ck,t), it is possible to show that the following Euler Equation holds10:

1 = Et

(δ(Ck,t+1

Ck,t

)− 1
ψ

)θ (
1

1 +Rw,t+1

)1−θ
(1 +Rf,t+1)

 , (B.42)

where 1 +Rf,t+1 denotes the gross real returns on risk-free bonds.

Following Campbell (2003) but allowing for time-varying second-order variables as in

Yogo (2004) and Campbell, Viceira, Viceira, et al. (2002), if we assume that returns and
10See L. Epstein and Zin (1991).
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consumption are jointly log-normal, this implies that the riskless real interest rate is11:

rf,t+1 = −log(δ)+ 1

ψ
Et[∆ck,t+1] +

θ − 1

2
V art[rw,t+1−Etrw,t+1]−

θ

2ψ2
V art[∆ck,t+1−Et∆ck,t+1],

(B.43)

Equation (B.43) above is used to estimate (2.14) of the main text with the risk-free rate. In

addition, as in Yogo (2004), we obtain (2.14) of the main text, for market returns (i = m),

by properly defining ri,t+1 − Etri,t+1 − 1
ψ
(∆ck,t+1 − Et∆ck,t+1) ≡ ϱi,t+1 under a similar log-

linearisation:

ri,t+1 = −log(δ) + 1

ψ
Et[∆ck,t+1] +

θ − 1

2
V art[rw,t+1 − Etrw,t+1]−

θ

2ψ2
V art[∆ck,t+1 − Et∆ck,t+1]

− 1

2
V art[ri,t+1 − Etri,t+1] +

θ

ψ
Covt[ri,t+1 − Etri,t+1,∆ck,t+1 − Et∆ck,t+1]

+ (1− θ)Covt[ri,t+1 − Etri, rw,t+1 − Etrw,t+1]

(B.44)

Finally, (2.13) of the main text is obtainable from (B.44) by rearranging terms while defining

∆ck,t+1 − Et∆ck,t+1 − ψ(ri,t+1 − Etri,t+1) ≡ ϵi,t.

B.4 K-Class Estimators and Critical Values

Consider the standard simultaneous equations system12:

y = Y β +Xγ + u (B.45)

Y = ZΠ+XΦ + V (B.46)
11Where rf,t = ln(1 +Rf,t), for instance.
12Where y denotes the dependent variable, Y is a matrix constructed from n endogenous variables,X is the

matrix ofK1 exogenous regressors and Z hasK2 instruments. All variables have dimension T .
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As in Yogo (2004), the three K-class estimators used can be synthesised by13:

β̂ = [Y ⊥′
(I − kMz⊥Y

⊥)Y ⊥]−1[Y ⊥′
(I − kMz⊥Y

⊥)y⊥] (B.47)

If k = 1, then we have TSLS. If k is the smallest root of |Y ′
MxY −kY ′

MzY |, then the equation

above is the LIML estimator. Finally, the Fuller-K estimator is obtained when k = kLIML −

1/(T −K1 −K2).

For expository reasons, we repeat critical values of Stock and Yogo (2002) for first-stage

F-statistics under the following null hypotheses:

1 TSLS bias is a fraction not greater than 10 percent that of the OLS: 10.27

2 Size of the TSLS t-test (5% significance) can not be greater than 10 percent: 24.58

3 Fuller-K bias as a fraction of the OLS bias is not greater than 10 percent: 6.37

4 Size of the LIML t-test (5% significance) can not be greater than 10 percent: 5.44

13Where Y ⊥ =MxY , Z = [X,Z], X = [Y,X] and Y = [y, Y ].
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B.5 Consumption: Nondurables Only

In this subsection we repeat tables of section 3 but for consumption series constructed from

nondurables only (excluding the services component). Our main results are maintained.

Two things stand out in results for the homoscedastic framework (Table B.2, Table B.3 and

Table B.4). First, when we estimate 1/ψ using (14), first-stage F-statistics are actually twice

as high for unfiltered consumption (heteroscedastic model) as for its reported analogue. In

contrast, estimates with the former are again similar across estimators, oncemore suggesting

that first-step predictability does not seem especially relevant in generating more sensible

estimates14. Second, with unfiltered consumption our weak-instrument-robust confidence

intervals are mostly in the positive region. Unfortunately, we still have uninformative robust

intervals under the AR and LR tests and unfiltered consumption at annual frequency.

There is nothing particularly different in Table B.5. Although we obtain negative esti-

mates for the EIS using quarterly data and unfiltered consumption, there is still improvement

relative to reported consumption. Again, barely none of those estimates are statistically dif-

ferent from zero15. However, robust intervals from the J-K test are substantially narrower

relative to Table 2.6.

14Other variables apart, Table B.1would suggest that unfiltered consumption is aweaker instrument. In abso-
lute terms, its auto-correlation diminishes roughly by a factor of fivewhenwe use unfiltered instead of reported
consumption, jumping from 32.1% to mere -6.4% (for the complete sample). However, cross-correlations with
asset returns are much more definite for unfiltered consumption. Most probably the second effect prevails on
net, accounting for the more disciplined estimates obtained.

15The only exception is the estimate under SYS-GMM and reported consumption for annual data. However,
the value of -0.003 is sufficiently small and not statistically significant at 5%.
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Table B.2: Estimates of the EIS Using K-Class Estimators and Quarterly Data

K-Class Estimator

Asset Estimate ∆ck TSLS Fuller-K LIML 1S-F

Risk Free ψ Reported −0.082∗∗∗ −0.101∗∗∗ −0.106∗∗∗ 22.120

(0.127) (0.131) (0.132)

ψ Unf-Hom 0.561 0.585 0.590 22.296

(0.588) (0.604) (0.608)

ψ Unf-Het 0.356∗∗ 0.378∗∗ 0.382∗∗ 22.308

(0.281) (0.294) (0.296)

Stocks ψ Reported −0.002∗∗∗ −0.016∗∗∗ −0.020∗∗∗ 4.530

(0.028) (0.034) (0.036)

ψ Unf-Hom 0.246∗∗∗ 0.263∗∗∗ 0.279∗∗∗ 4.405

(0.135) (0.142) (0.148)

ψ Unf-Het 0.125∗∗∗ 0.158∗∗∗ 0.170∗∗∗ 4.306

(0.066) (0.079) (0.084)

Risk Free 1
ψ

Reported −0.819∗∗∗ −3.716 −9.473 1.636

(0.539) (3.100) (11.839)
1
ψ

Unf-Hom 0.247∗∗∗ 0.831 1.694 1.669

(0.122) (0.609) (1.745)
1
ψ

Unf-Het 0.435∗∗∗ 1.660 2.620 2.665

(0.183) (1.036) (2.033)

Stock 1
ψ

Reported −0.311 −11.003 −49.778 1.636

(3.446) (13.680) (90.231)
1
ψ

Unf-Hom 2.416 2.939 3.584 1.669

(1.180) (1.482) (1.901)
1
ψ

Unf-Het 3.354 5.061∗ 5.889∗ 2.665

(1.607) (2.436) (2.901)

Notes: Estimates of the EIS and its reciprocal using (13) and (14) and quarterly data. Unfiltered consumption
extracted relying on the quasi-differenced Filter model whosemeasurement errors are serially correlated (ρξ =
0.06). All consumption series refer to nondurables only. We apply the same setting of Yogo (2004), using 3 types
of K-class estimators and assuming that errors conditionally follow amartingale difference sequence. Reported
denotes official consumption data from NIPA tables. Unf-Hom and Unf-Het refer to unfiltered consumption,
constructed by the homoscedastic and heteroscedastic models, respectively. Standard errors are presented in
parentheses. The null that the estimated coefficient equals 1 has been tested: ***, ** and * denote rejection of
the null hypothesis at 1, 5 and 10 percent significance levels.
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Table B.3: Estimates of the EIS Using K-Class Estimators and Annual Data

K-Class Estimator

Asset Estimate ∆ck TSLS Fuller-K LIML 1S-F

Risk Free ψ Reported −0.088∗∗∗ −0.123∗∗∗ −0.128∗∗∗ 12.498

(0.084) (0.094) (0.096)

ψ Unf-Hom 0.094∗∗∗ 0.051∗∗∗ 0.043∗∗∗ 10.827

(0.208) (0.230) (0.234)

ψ Unf-Het 0.091∗∗∗ 0.049∗∗∗ 0.042∗∗∗ 10.817

(0.204) (0.225) (0.229)

Stocks ψ Reported 0.030∗∗∗ 0.047∗∗∗ 0.051∗∗∗ 6.100

(0.024) (0.030) (0.032)

ψ Unf-Hom 0.199∗∗∗ 0.228∗∗∗ 0.265∗∗∗ 1.469

(0.084) (0.102) (0.128)

ψ Unf-Het 0.195∗∗∗ 0.222∗∗∗ 0.256∗∗∗ 1.482

(0.082) (0.099) (0.123)

Risk Free 1
ψ

Reported −1.224∗∗∗ −5.262∗ −7.792 2.947

(0.775) (3.399) (5.811)
1
ψ

Unf-Hom 0.264∗∗ 0.971 23.076 2.160

(0.307) (1.195) (124.367)
1
ψ

Unf-Het 0.266∗∗ 0.973 24.042 2.147

(0.314) (1.210) (132.284)

Stock 1
ψ

Reported 5.308 15.157 19.669 2.947

(3.448) (8.954) (12.325)
1
ψ

Unf-Hom 3.411 3.587 3.773 2.160

(1.531) (1.675) (1.823)
1
ψ

Unf-Het 3.521 3.703 3.901 2.147

(1.571) (1.715) (1.868)

Notes: Estimates of the EIS and its reciprocal using (13) and (14) and annual data. Unfiltered consumption
extracted relying on the Filter model whose measurement errors are not persistent. All consumption series
refer to nondurables only. We apply the same setting of Yogo (2004), using 3 types of K-class estimators and
assuming that errors conditionally follow a martingale difference sequence. When reported consumption is
used, asset returns have not been adjusted for time-aggregation. Reported denotes official consumption data
from NIPA tables. Unf-Hom and Unf-Het refer to unfiltered consumption, constructed by the homoscedastic
and heteroscedastic models, respectively. Standard errors are presented in parentheses. The null that the
estimated coefficient equals 1 has been tested: ***, ** and * denote rejection of the null hypothesis at 1, 5 and 10
percent significance levels.
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Table B.4: Weak-IV-Robust CIs for the EIS

Quarterly Data

Asset ∆ck Anderson-Rubin Likelihood Ratio

Risk Free Reported [− 0.383, 0.139] [− 0.392, 0.145]

Unf-Hom [− 0.611, 1.838] [− 0.624, 1.851]

Unf-Het [0.143, 0.624] [− 0.204, 0.995]

Stocks Reported [− 0.124, 0.040] [− 0.160, 0.051]

Unf-Hom [− 0.087, 1.135] [− 0.004, 0.786]

Unf-Het [0.015, 0.539] [0.022, 0.503]

Annual Data

Risk Free Reported [− 0.186,−0.075] [− 0.350, 0.045]

Unf-Hom [− 0.236, 0.302] [− 0.482, 0.499]

Unf-Het [− 0.238, 0.299] [− 0.473, 0.489]

Stock Reported [0.015, 0.102] [− 0.005, 0.152]

Unf-Hom (−∞,+∞) (−∞,+∞)

Unf-Het (−∞,+∞) (−∞,+∞)

Notes: Weak-instrument-robust 95% confidence intervals. Sets constructed by inverting statistics of the
Anderson-Rubin and Likelihood Ratio tests. Data used for both reported and unfiltered consumption refer to
the consumption of nondurables only. For quarterly data, we use our quasi-differenced Filtermodel (ρξ = 0.06)
while for annual data we use the canonical version - with no persistence for measurement errors. Reported de-
notes official consumption data from NIPA tables. Unf-Hom and Unf-Het refer to unfiltered consumption,
constructed by the homoscedastic and heteroscedastic models, respectively. The calibration of other parame-
ters described in this section apply in both cases.
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Table B.5: Heteroscedasticity-Robust Estimates of the EIS

Quarterly Data

∆ck Two-Step CUE SYS 95% CI

Reported −0.136 −0.151 0.000 (−∞,∞)

(0.113) (0.114) (0.000)

Unf-Hom 0.125 0.152 0.015 [−0.345, 0.841]

(0.555) (0.555) (0.012)

Unf-Het −0.034 −0.046 0.003 [−0.616, 0.262]

(0.268) (0.268) (0.003)

Annual Data

Reported −0.079 −0.220 −0.003∗ (−∞,∞)

(0.091) (0.103) (0.001)

Unf-Hom 0.089 0.094 0.039 (−∞,∞)

(0.144) (0.143) (0.010)

Unf-Het 0.085 0.091 0.039 (−∞,∞)

(0.142) (0.141) (0.027)

Note: 2S-GMMand CUE-GMMestimates of ψ (EIS) in equation (13) using the risk-free rate. The third column
presents estimates of the same coefficient under the joint estimation (15), where market returns are also used,
while allowing for different drifts across equations. We present 95% confidence intervals that are robust to
both heteroscedasticity and weak-IV settings. These are constructed by inverting the K-statistic of Kleibergen
(2005). Consumption series are relative to nondurables only. Reported denotes official consumption data from
NIPA tables. Unf-Hom and Unf-Het refer to unfiltered consumption, constructed by the homoscedastic and
heteroscedastic models, respectively. Standard errors are presented in parentheses. The null that the estimated
coefficient equals 0 has been tested using conventional t-statistics: ***, ** and * denote rejection of the null
hypothesis at 1, 5 and 10 percent significance levels.
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B.6 Implied EIS from Estimates of Its Reciprocal

This section presents implied EIS estimates from 1/ψ (lower part of Table 2.3 and Table 2.4)

using equation (14). All consumption data refer to nondurables and services and standard

errors have been constructed by Delta method.
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Table B.6: Implied EIS from the Estimation of (14) - Nondurables and Services

Quarterly Data

K-Class Estimator

Asset ∆ck TSLS Fuller-K LIML

Risk Free Reported 2.285 0.202∗∗∗ 0.053∗∗∗

(1.621) (0.182) (0.093)

Unf-Hom 3.021 0.970 0.573

(1.406) (0.643) (0.484)

Unf-Het 2.866 0.697 0.385∗

(1.376) (0.484) (0.352)

Stock Reported 1.258 −0.241∗∗∗ −0.199∗∗∗

(4.308) (0.287) (0.213)

Unf-Hom 0.550 0.242∗∗∗ 0.168∗∗∗

(0.690) (0.218) (0.145)

Unf-Het 0.292∗∗∗ 0.223∗∗∗ 0.191∗∗∗

(0.136) (0.106) (0.093)

Annual Data

Risk Free Reported 0.733 0.218∗∗∗ 0.108∗∗∗

(0.389) (0.160) (0.113)

Unf-Hom 2.577 0.531 0.090∗∗∗

(2.537) (0.533) (0.208)

Unf-Het 2.539 0.522∗∗∗ 0.089∗∗∗

(2.496) (0.129) (0.205)

Stock Reported −0.147∗∗∗ −0.085∗∗∗ −0.065∗∗∗

(0.084) (0.049) (0.040)

Unf-Hom 0.247∗∗∗ 0.240∗∗∗ 0.227∗∗∗

(0.112) (0.111) (0.108)

Unf-Het 0.241∗∗∗ 0.236∗∗∗ 0.222∗∗∗

(0.109) (0.108) (0.105)

Note: Implied ψ (EIS) estimates from (14). Consumption series have been constructed taking into account
the consumption of nondurables and services. Reported denotes official consumption data from NIPA tables.
Unf-Hom and Unf-Het refer to unfiltered consumption, constructed by the homoscedastic and heteroscedastic
models, respectively. Standard values are presented in parentheses. The null that the estimated coefficient
equals 1 has been tested: ***, ** and * denote rejection of the null hypothesis at 1, 5 and 10 percent significance
levels.
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Table B.7: Implied EIS from the Estimation of (14) - Nondurables Only

Quarterly Data

K-Class Estimator

Asset ∆ck TSLS Fuller-K LIML

Risk Free Reported −1.221∗∗∗ −0.269∗∗∗ −0.106∗∗∗

(0.803) (0.225) (0.132)

Unf-Hom 4.049 1.203 0.590

(2.000) (0.882) (0.608)

Unf-Het 2.298 0.602 0.382∗∗

(0.965) (0.376) (0.296)

Stock Reported −3.220 −0.091∗∗∗ −0.020∗∗∗

(35.721) (0.113) (0.036)

Unf-Hom 0.414∗∗∗ 0.340∗∗∗ 0.279∗∗∗

(0.202) (0.172) (0.148)

Unf-Het 0.298∗∗∗ 0.198∗∗∗ 0.170∗∗∗

(0.143) (0.095) (0.084)

Annual Data

Risk Free Reported −0.817∗∗∗ −0.190∗∗∗ −0.128∗∗∗

(0.518) (0.123) (0.096)

Unf-Hom 3.788 1.030 0.043∗∗∗

(4.405) (1.267) (0.234)

Unf-Het 3.766 1.028 0.042∗∗∗

(4.455) (1.278) (0.229)

Stock Reported 0.188∗∗∗ 0.066∗∗∗ 0.051∗∗∗

(0.122) (0.039) (0.032)

Unf-Hom 0.293∗∗∗ 0.279∗∗∗ 0.265∗∗∗

(0.132) (0.130) (0.128)

Unf-Het 0.284∗∗∗ 0.270∗∗∗ 0.256∗∗∗

(0.127) (0.125) (0.123)

Note: Implied ψ (EIS) estimates from (14). Consumption series have been constructed taking into account the
consumption of nondurables only. Reported denotes official consumption data from NIPA tables. Unf-Hom
and Unf-Het refer to unfiltered consumption, constructed by the homoscedastic and heteroscedastic models,
respectively. Standard values are presented in parentheses. The null that the estimated coefficient equals 1 has
been tested: ***, ** and * denote rejection of the null hypothesis at 1, 5 and 10 percent significance levels.
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B.7 Results Using Raw Returns for Both Reported and Un-

filtered Consumption

In themain text, we adjusted return series for potential time-aggregation biaswhen conduct-

ing estimates with unfiltered consumption – see section 2.2. Recall that returns are never

adjusted when reported consumption is used. Here, we present results for the case when

we use raw returns with both reported and unfiltered consumption. In general terms, our

findings are broadly similar to those of section 3. Note that robust intervals constructed from

inverting AR and LR statistics are no longer uninformative with unfiltered consumption and

annual data. However, our results for stock returns are somewhat weaker in comparison. In

addition, we can not revert uninformative sets in the heteroscedasticity-robust framework

(K test).
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Table B.8: EIS Using K-Class Estimators and Quarterly Data – Raw Returns

K-Class Estimator

Asset Estimate ∆ck TSLS Fuller-K LIML 1S-F

Risk Free ψ Reported 0.067∗∗∗ 0.053∗∗∗ 0.053∗∗∗ 22.172

(0.078) (0.093) (0.093)

ψ Unf-Hom 0.521 0.559 0.566 22.335

(0.461) (0.475) (0.478)

ψ Unf-Het 0.342∗∗ 0.375∗ 0.380∗ 22.474

(0.332) (0.346) (0.348)

Stocks ψ Reported 0.006∗∗∗ −0.101∗∗∗ −0.199∗∗∗ 4.575

(0.017) (0.096) (0.213)

ψ Unf-Hom 0.215∗∗∗ 0.234∗∗∗ 0.249∗∗∗ 4.462

(0.114) (0.121) (0.127)

ψ Unf-Het 0.165∗∗∗ 0.189∗∗∗ 0.202∗∗∗ 4.310

(0.084) (0.093) (0.099)

Risk Free 1
ψ

Reported 0.438∗ 4.953 18.979 6.630

(0.311) (4.475) (33.660)
1
ψ

Unf-Hom 0.334∗∗∗ 1.043 1.765 1.890

(0.155) (0.691) (1.491)
1
ψ

Unf-Het 0.353∗∗∗ 1.452 2.630 2.268

(0.170) (1.009) (2.408)

Stock 1
ψ

Reported 0.795 −4.150 −5.014 6.630

(2.724) (4.936) (5.346)
1
ψ

Unf-Hom 2.725 3.362 4.015 1.890

(1.296) (1.643) (2.040)
1
ψ

Unf-Het 3.237 4.242 4.956 2.268

(1.512) (2.019) (2.423)

Notes: Estimates of the EIS and its reciprocal using (13) and (14) and quarterly data. Unfiltered consumption
extracted relying on the quasi-differenced Filter model whosemeasurement errors are serially correlated (ρξ =
0.06). Return series are not adjusted for time-aggregation issues as in section 2.2. All consumption series refer
to nondurables and services. We apply the same setting of Yogo (2004), using 3 types of K-class estimators
and assuming that errors conditionally follow a martingale difference sequence. Reported denotes official
consumption data from NIPA tables. Unf-Hom and Unf-Het refer to unfiltered consumption, constructed by
the homoscedastic and heteroscedasticmodels, respectively. When reported consumption is used, asset returns
have not been adjusted for time-aggregation. Standard errors are presented in parentheses. The null that the
estimated coefficient equals 1 has been tested: ***, ** and * denote rejection of the null hypothesis at 1, 5 and 10
percent significance levels.

250



Table B.9: EIS Using K-Class Estimators and Annual Data – Raw Returns

K-Class Estimator

Asset Estimate ∆ck TSLS Fuller-K LIML 1S-F

Risk Free ψ Reported 0.112∗∗∗ 0.109∗∗∗ 0.108∗∗∗ 11.836

(0.105) (0.111) (0.113)

ψ Unf-Hom 0.271∗∗∗ 0.289∗∗ 0.293∗∗ 11.699

(0.269) (0.284) (0.288)

ψ Unf-Het 0.121∗∗∗ 0.137∗∗∗ 0.140∗∗∗ 11.707

(0.172) (0.183) (0.186)

Stocks ψ Reported −0.049∗∗∗ −0.061∗∗∗ −0.065∗∗∗ 5.057

(0.034) (0.038) (0.040)

ψ Unf-Hom −0.037∗∗∗ −0.024∗∗∗ −0.022∗∗∗ 11.432

(0.058) (0.063) (0.064)

ψ Unf-Het 0.019∗∗∗ 0.034∗∗∗ 0.038∗∗∗ 9.026

(0.042) (0.046) (0.047)

Risk Free 1
ψ

Reported 1.364 4.592 9.246 1.893

(0.724) (3.364) (9.634)
1
ψ

Unf-Hom 0.574 1.788 3.410 1.689

(0.328) (1.303) (3.345)
1
ψ

Unf-Het 0.613 2.688 7.127 1.764

(0.462) (2.297) (9.426)

Stock 1
ψ

Reported −6.808∗∗ −11.773∗ −15.285∗ 1.893

(3.885) (6.818) (9.365)
1
ψ

Unf-Hom −1.587∗∗ −5.532 −46.488 1.689

(1.187) (5.335) (137.715)
1
ψ

Unf-Het 1.715 10.520 26.585 1.764

(2.085) (9.642) (33.559)

Notes: Estimates of the EIS and its reciprocal using (13) and (14) and annual data. Unfiltered consumption
extracted relying on the Filter model whose measurement errors are not persistent. Return series are not ad-
justed for time-aggregation issues as in section 2.2. All consumption series refer to nondurables and services.
We apply the same setting of Yogo (2004), using 3 types of K-class estimators and assuming that errors condi-
tionally follow a martingale difference sequence. When reported consumption is used, asset returns have not
been adjusted for time-aggregation. Reported denotes official consumption data from NIPA tables. Unf-Hom
and Unf-Het refer to unfiltered consumption, constructed by the homoscedastic and heteroscedastic models,
respectively. Standard errors are presented in parentheses. The null that the estimated coefficient equals 1 has
been tested: ***, ** and * denote rejection of the null hypothesis at 1, 5 and 10 percent significance levels.
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Table B.10: Weak-IV-Robust CIs for the EIS – Raw Returns

Quarterly Data

Asset ∆ck Anderson-Rubin Likelihood Ratio

Risk Free Reported ∅ [− 0.136, 0.235]

Unf-Hom [− 0.315, 1.507] [− 0.372, 1.573]

Unf-Het [− 0.076, 0.857] [− 0.303, 1.109]

Stocks Reported ∅ (−∞,+∞)

Unf-Hom [− 0.048, 0.975] [0.014, 0.688]

Unf-Het [− 0.009, 0.751] [0.024, 0.568]

Annual Data

Risk Free Reported [− 0.104, 0.316] [− 0.131, 0.341]

Unf-Hom [− 0.304, 0.934] [− 0.292, 0.920]

Unf-Het [− 0.203, 0.510] [− 0.233, 0.545]

Stock Reported [− 0.245, 0.019] [− 0.199, 0.007]

Unf-Hom [− 0.131, 0.107] [− 0.143, 0.125]

Unf-Het [− 0.044, 0.148] [− 0.049, 0.158]

Note: Weak-instrument-robust 95% confidence intervals. Sets constructed by inverting statistics of the Anderson-Rubin and Likelihood
Ratio tests. Return series are not adjusted for time-aggregation issues as in section 2.2. Data used both for reported and unfiltered con-
sumption refer to the consumption of nondurables and services. For quarterly data, we use our quasi-differenced Filter model (ρξ = 0.06)
while for annual data we use the canonical version – with no persistence for measurement errors. Reported denotes official consumption
data from NIPA tables. Unf-Hom and Unf-Het refer to unfiltered consumption, constructed by the homoscedastic and heteroscedastic
models, respectively.
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Table B.11: Heteroscedasticity-Robust Estimates of the EIS – Raw Returns

Quarterly Data

∆ck Two-Step CUE SYS 95% CI

Reported 0.133 0.189∗∗ 0.001 (−∞,+∞)

(0.082) (0.085) (0.000)

Unf-Hom 0.594 0.670 0.008 (−∞,+∞)

(0.517) (0.519) (0.006)

Unf-Het 0.443 0.506 0.007 (−∞,+∞)

(0.370) (0.372) (0.001)

Annual Data

Reported 0.056 0.022 −0.015∗ (−∞,+∞)

(0.088) (0.087) (0.008)

Unf-Hom 0.067 0.047 -0.001 (−∞,+∞)

(0.261) (0.261) (0.000)

Unf-Het 0.033 0.025 -0.002 (−∞,+∞)

(0.172) (0.172) (0.001)

Note: 2S- and CUE-GMM estimates of ψ (EIS) in equation (13) using the risk-free. The third column presents
results under the joint estimation (15), where market returns are also used (allowing for different drifts across
equations). We present 95% confidence intervals that are robust to both heteroscedasticity and a weak-IV set-
ting. These are constructed by inverting the K-statistic of Kleibergen (2005). Return series are not adjusted
for time-aggregation issues as in section 2.2. Consumption series are relative to nondurables and services.
Reported denotes official consumption data from NIPA tables. Unf-Hom and Unf-Het refer to unfiltered con-
sumption, constructed by the homoscedastic and heteroscedastic models, respectively. Standard errors are
presented in parentheses. The null that the estimated coefficient equals 0 has been tested using conventional
t-statistics: ***, ** and * denote rejection of the null hypothesis at 1, 5 and 10 percent significance levels.
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B.8 Results with Restricted Sample

In this section, we repeat the estimations of section 3 in the main paper while restricting our

sample. The motivation here is to remove first observations for which the Kalman filter is

still learning.

Our estimations here use the period encompassing 1960:1 to 2023:2 for quarterly and

1940 to 2022 for annual data. Table B.12, Table B.13, Table B.14 and Table B.15 below broadly

confirm our findings in the main paper.

B.9 Results for Annual Data when Measurement Errors are

Persistent

In the main paper, we showed results for annual data considering the original model in

Kroencke (2017), which does not feature serially correlated measurement errors (ρξ = 0).

For completeness, in this section we exhibit results of section 3 for annual data while ρξ =

0.06 ̸= 0. It is worth reemphasising that we have found little sensitiveness of unfiltered

consumption to different values of ρξ once other parameters have been properly calibrated

according to benchmark moments. Hence, we repeat ρξ = 0.06 (as we did with quarterly

data), but other parameters have been changed: ση = 0.0078 ×
√
12 ≈ 2.7%, a1 = 0.05,

a2 = 0.85 and σν = 3.3% (heteroscedastic model) or σν = 2.1% (homoscedastic model)16.

These parametric conditions ensure that moments of annual unfiltered consumption are not

much different from those presented in Table 2.1. All consumption data refer to nondurables

and services. Table B.16, Table B.17 and Table B.18 below exhibit the results. These findings

are weaker than the ones of the main paper, though. This is probably explained by the fact

that persistence in the measurement error is a much more important feature of the model
16We lower σν for the homoscedastic model simply to ensure that the long-term standard deviation of unfil-

tered consumption is not greater than 1.2 times that of reported consumption.
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Table B.12: EIS Using K-Class Estimators and Quarterly Data – 1960:2017

K-Class Estimator

Asset Estimate ∆ck TSLS Fuller-K LIML 1S-F

Risk Free ψ Reported 0.120∗∗∗ 0.083∗∗∗ 0.081∗∗∗ 22.810

(0.075) (0.108) (0.110)

ψ Unf-Hom 0.300∗ 0.321∗ 0.326∗ 23.558

(0.392) (0.404) (0.406)

ψ Unf-Het 0.263∗∗ 0.281∗∗ 0.285∗∗ 23.652

(0.284) (0.293) (0.294)

Stocks ψ Reported 0.017∗∗∗ −0.011∗∗∗ −3.946 3.821

(0.016) (0.069) (46.662)

ψ Unf-Hom 0.135∗∗∗ 0.152∗∗∗ 0.163∗∗∗ 4.133

(0.082) (0.090) (0.094)

ψ Unf-Het 0.117∗∗∗ 0.126∗∗∗ 0.134∗∗∗ 4.025

(0.063) (0.066) (0.069)

Risk Free 1
ψ

Reported 0.498∗∗ 4.978 12.292 12.118

(0.246) (4.168) (16.545)
1
ψ

Unf-Hom 0.299∗∗∗ 1.216 3.071 1.658

(0.169) (0.981) (3.830)
1
ψ

Unf-Het 0.472∗∗ 1.720 3.514 1.768

(0.240) (1.271) (3.632)

Stock 1
ψ

Reported 1.467 −0.093 −0.253 12.118

(2.411) (2.944) (2.997)
1
ψ

Unf-Hom 3.475 4.857 6.144 1.658

(1.819) (2.652) (3.560)
1
ψ

Unf-Het 5.272∗ 6.210∗ 7.440∗ 1.769

(2.569) (3.090) (3.843)

Notes: Estimates of the EIS and its reciprocal using (13) and (14) and quarterly data. We restrict our sam-
ple to the period from 1960:1 to 2017:4. Unfiltered consumption extracted relying on the quasi-differenced
Filter model whose measurement errors are serially correlated (ρξ = 0.06). All consumption series refer to
nondurables and services. We apply the same setting of Yogo (2004), using 3 types of K-class estimators and
assuming that errors conditionally follow a martingale difference sequence. Reported denotes official con-
sumption data from NIPA tables. Unf-Hom and Unf-Het refer to unfiltered consumption, constructed by the
homoscedastic and heteroscedastic models, respectively. When reported consumption is used, asset returns
have not been adjusted for time-aggregation. Standard errors are presented in parentheses. The null that the
estimated coefficient equals 1 has been tested: ***, ** and * denote rejection of the null hypothesis at 1, 5 and 10
percent significance levels.
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Table B.13: EIS Using K-Class Estimators and Annual Data – 1940:2017

K-Class Estimator

Asset Estimate ∆ck TSLS Fuller-K LIML 1S-F

Risk Free ψ Reported 0.012∗∗∗ 0.014∗∗∗ 0.015∗∗∗ 16.600

(0.094) (0.098) (0.099)

ψ Unf-Hom 0.151∗∗∗ 0.149∗∗∗ 0.146∗∗∗ 11.846

(0.146) (0.147) (0.149)

ψ Unf-Het 0.151∗∗∗ 0.150∗∗∗ 0.147∗∗∗ 11.828

(0.146) (0.147) (0.149)

Stocks ψ Reported −0.060∗∗∗ −0.077∗∗∗ −0.088∗∗∗ 2.691

(0.044) (0.051) (0.057)

ψ Unf-Hom 0.051∗∗∗ 0.039∗∗∗ 0.025∗∗∗ 1.500

(0.056) (0.066) (0.077)

ψ Unf-Het 0.051∗∗∗ 0.040∗∗∗ 0.027∗∗∗ 1.506

(0.056) (0.065) (0.076)

Risk Free 1
ψ

Reported 0.208 1.502 68.677 1.694

(0.713) (2.376) (468.18)
1
ψ

Unf-Hom 2.636 3.370 6.848 0.620

(1.632) (2.353) (6.962)
1
ψ

Unf-Het 2.622 3.370 6.826 0.626

(1.620) (2.352) (6.921)

Stock 1
ψ

Reported −5.996∗ −8.842∗ −11.380 1.694

(4.000) (5.681) (7.443)
1
ψ

Unf-Hom 4.800 6.468 39.723 0.620

(3.469) (5.811) (121.877)
1
ψ

Unf-Het 4.867 6.616 37.384 0.626

(3.469) (5.855) (107.139)

Notes: Estimates of the EIS and its reciprocal using (13) and (14) and annual data. We restrict our sample
to the period from 1940 to 2017. Unfiltered consumption extracted relying on the Filter model whose mea-
surement errors are not persistent. All consumption series refer to nondurables and services. We apply the
same setting of Yogo (2004), using 3 types of K-class estimators and assuming that errors conditionally follow
a martingale difference sequence. When reported consumption is used, asset returns have not been adjusted
for time-aggregation. Reported denotes official consumption data from NIPA tables. Unf-Hom and Unf-Het
refer to unfiltered consumption, constructed by the homoscedastic and heteroscedastic models, respectively.
Standard errors are presented in parentheses. The null that the estimated coefficient equals 1 has been tested:
***, ** and * denote rejection of the null hypothesis at 1, 5 and 10 percent significance levels.
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Table B.14: Weak-IV-Robust CIs for the EIS – Restricted Sample

Quarterly Data: 1960:1 – 2017:4

Asset ∆ck Anderson-Rubin Likelihood Ratio

Risk Free Reported ∅ [− 0.136, 0.283]

Unf-Hom [− 0.446, 1.134] [− 0.478, 1.168]

Unf-Het [− 0.262, 0.860] [− 0.295, 0.896]

Stocks Reported ∅ (−∞,+∞)

Unf-Hom [− 0.062, 0.691] [− 0.021, 0.509]

Unf-Het [− 0.033, 0.609] [0.005, 0.393]

Annual Data: 1940 – 2017

Risk Free Reported [− 0.164, 0.196] [− 0.185, 0.218]

Unf-Hom [− 0.367, 0.599] [− 0.186, 0.452]

Unf-Het [− 0.365, 0.600] [− 0.185, 0.453]

Stock Reported [− 2.074, 0.034] [− 0.583, 0.015]

Unf-Hom (−∞,+∞) (−∞,+∞)

Unf-Het (−∞,+∞) (−∞,+∞)

Note: Weak-instrument-robust 95% confidence intervals inverting statistics of the Anderson-Rubin and Like-
lihood Ratio tests. We restrict our estimations to the sample 1960:1-2017:4 (1940-2017) for quarterly (annual)
data. Data used both for reported and unfiltered consumption refer to the consumption of nondurables and
services. For quarterly data, we use our quasi-differenced Filter model (ρξ = 0.06) while for annual data
we use the canonical version – with no persistence for measurement errors. Reported denotes official con-
sumption data from NIPA tables. Unf-Hom and Unf-Het refer to unfiltered consumption, constructed by the
homoscedastic and heteroscedastic models, respectively.
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Table B.15: Heteroscedasticity-Robust Estimates of the EIS – Restricted Sample

Quarterly Data: 1960:1 – 2017:4

∆ck Two-Step CUE SYS 95% CI

Reported 0.123 0.347 0.008 (−∞,+∞)

(0.077) (0.093) (0.002)

Unf-Hom 0.349 0.363 0.002 [0.022, 2.782]

(0.333) (0.333) (0.001)

Unf-Het 0.305 0.312 0.004 [− 0.173, 2.066]

(0.240) (0.240) (0.001)

Annual Data: 1940 – 2017

Reported 0.024 -0.029 -0.008 (−∞,+∞)

(0.087) (0.087) (0.005)

Unf-Hom 0.152 0.175 0.015 (−∞,+∞)

(0.141) (0.141) (0.009)

Unf-Het 0.152 0.173 0.015 (−∞,+∞)

(0.140) (0.140) (0.009)

Note: 2S-GMM and CUE-GMM estimates of ψ (EIS) in equation (13) using the risk-free rate. The third
column presents estimates of the same coefficient under the joint estimation (15), where market returns are
also used, while allowing for different drifts across equations. 95% confidence intervals that are robust to
both heteroscedasticity and a weak-IV setting are also shown in the last column. These are constructed by
inverting the K-statistic of Kleibergen (2005). We restrict our estimations to the sample 1960:1-2017:4 (1940-
2017) for quarterly (annual) data. Consumption series are relative to nondurables and services. Reported
denotes official consumption data from NIPA tables. Unf-Hom and Unf-Het refer to unfiltered consumption,
constructed by the homoscedastic and heteroscedastic models, respectively. Standard errors are presented in
parentheses. The null that the estimated coefficient equals 0 has been tested using conventional t-statistics: ***,
** and * denote rejection of the null hypothesis at 1, 5 and 10 percent significance levels.
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when it is applied to data at higher frequencies.
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Table B.16: Estimates of the EIS – Persistent M.E. and Annual Data

K-Class Estimator

Asset Estimate ∆ck TSLS Fuller-K LIML 1S-F

Risk Free ψ Reported 0.112∗∗∗ 0.109∗∗∗ 0.108∗∗∗ 11.836

(0.105) (0.111) (0.113)

ψ Unf-Hom 0.097∗∗∗ 0.089∗∗∗ 0.088∗∗ 10.727

(0.188) (0.203) (0.205)

ψ Unf-Het -0.030∗∗∗ 0.012∗∗∗ 0.020∗∗∗ 11.096

(0.197) (0.213) (0.216)

Stocks ψ Reported -0.049∗∗∗ -0.061∗∗∗ -0.065∗∗∗ 5.057

(0.034) (0.038) (0.040)

ψ Unf-Hom 0.184∗∗∗ 0.194∗∗∗ 0.222∗∗∗ 1.312

(0.080) (0.086) (0.105)

ψ Unf-Het 0.059∗∗∗ 0.124∗∗∗ 0.168∗∗∗ 1.979

(0.078) (0.115) (0.145)

Risk Free 1
ψ

Reported 1.364 4.592 9.246 1.893

(0.724) (3.364) (9.634)
1
ψ

Unf-Hom 0.394 1.910 11.293 1.822

(0.387) (1.916) (26.190)
1
ψ

Unf-Het -0.115∗∗∗ 0.275 49.474 1.739

(0.358) (1.043) (528.708)

Stock 1
ψ

Reported -6.808∗∗ -11.773∗ -15.285∗ 1.893

(3.885) (6.818) (9.365)
1
ψ

Unf-Hom 4.143∗ 4.241∗ 4.502 1.822

(1.863) (1.937) (2.131)
1
ψ

Unf-Het 1.818 4.137 5.956 1.739

(2.282) (3.734) (5.130)

Note: Estimates of the EIS and its reciprocal using (13) and (14) and annual data. We use 3 types of K-class
estimators while assuming that errors conditionally follow a martingale difference sequence. When reported
consumption is used, we have not adjusted the timing of returns. Reported denotes official consumption data
from NIPA tables. Unf-Hom and Unf-Het refer to unfiltered consumption, constructed by the homoscedastic
and heteroscedastic models, respectively. The quasi-differencedmodel with ρξ = 0.06 has been used, while ad-
justing other parameters to the dynamics and benchmark moments of annual data. All consumption measures
refer to nondurables and services. Standard errors are presented in parentheses. The null that the estimated
coefficient equals 1 has been tested: ***, ** and * denote rejection of the null hypothesis at 1, 5 and 10 percent
significance levels.
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Table B.17: Weak-IV-Robust CIs for the EIS – Persistent M.E. and Annual Data

Asset ∆ck Anderson-Rubin Likelihood Ratio

Risk Free Reported [− 0.104, 0.316] [− 0.131, 0.341]

Unf-Hom [− 0.269, 0.438] [− 0.352, 0.516]

Unf-Het [− 0.334, 0.430] [− 0.395, 0.515]

Stock Reported [− 0.245, 0.018] [− 0.199, 0.007]

Unf-Hom (−∞,+∞) (−∞,+∞)

Unf-Het (−∞,+∞) (−∞,+∞)

Note: Weak-instrument-robust 95% confidence intervals for annual data. Sets constructed by inverting statis-
tics of theAnderson-Rubin and LikelihoodRatio tests. Data used both for reported and unfiltered consumption
refer to consumption of nondurables and services. We set (ρξ = 0.06) while adjusting other parameters to align
benchmark moments. Reported denotes official consumption data from NIPA tables. Unf-Hom and Unf-Het
refer to unfiltered consumption, constructed by the homoscedastic and heteroscedastic models, respectively.

Table B.18: Het-Robust Estimates of the EIS – Persistent M.E. and Annual Data

∆ck Two-Step CUE SYS 95% CI

Reported 0.056 0.022 −0.015∗ (−∞,∞)

(0.088) (0.087) (0.008)

Unf-Hom 0.119 0.133 0.066 (−∞,∞)

(0.041) (0.141) (0.045)

Unf-Het −0.099 −0.399 0.000 (−∞,∞)

(0.201) (0.204) (0.001)

Note: 2S-GMM and CUE-GMM estimates of ψ (EIS) in equation (13) using the risk-free rate. The third
column presents estimates of the same coefficient under the joint estimation (15), where market returns are
also used, while allowing for different drifts across equations. We present 95% confidence intervals that are
robust to both heteroscedasticity and a weak-IV setting. These are constructed by inverting the K-statistic of
Kleibergen (2005). Consumption series are relative to nondurables and services. We set ρξ = 0.06 while
adjusting other parameters to align benchmark moments. Reported denotes official consumption data from
NIPA tables. Unf-Hom and Unf-Het refer to unfiltered consumption, constructed by the homoscedastic and
heteroscedastic models, respectively. Standard errors are presented in parentheses. The null that the estimated
coefficient equals 0 has been tested using conventional t-statistics: ***, ** and * denote rejection of the null
hypothesis at 1, 5 and 10 percent significance levels.
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Appendix C

Appendix for Chapter 3

C.1 The Heterogeneous Economy

C.1.1 Fully Specified Model

The economy is a generalisation of the simple New-Keynesian models described in Wood-

ford (2003) and Galí (2015), but with price-stickiness heterogeneity across firms of different

sectors. When γk = γ = 0 in (7), this framework produces a purely forward-looking model

which is similar to those in Aoki (2001), Benigno (2004), Carvalho (2006), Eusepi, Hobijn,

and Tambalotti (2011) and Carvalho and Nechio (2016).

The representative household, which provides firm-specific labour, solves:

max E0

∞∑
t=0

βt

(
C1−σ
t − 1

1− σ
−

K∑
k=1

ηk

∫ 1

0

L1+φ−1

kj,t

1 + φ−1
dj

)
,

subject to:

PtCt =
K∑
k=1

ηk

∫ 1

0

Lkj,tWkj,tdj + Tt + It−1Bt−1 −Bt,
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where Ct denotes consumption of the composite good, Lkj,t labour in firm kj,Wkj,t nominal

wages related to the latter, Pt is the aggregate price index, Tt are firms’ profits distributed by

lump sum transfers andBt denotes bond holdings that collect a gross interest It each period.

We assume a cashless economy with one-period maturity for those bonds, which are in zero

net supply.

Demand for variety j, produced in sector k, takes the form:

Ykj,t =

(
Pkj,t
Pk,t

)−ϵ

Yk,t, Ykj,t = Ckj,t = Nkj,t,

where Ckj,t and Nkj,t denote the consumption of that variety and the specific labour input,

respectively. In line with the main text, Ykj,t and Yk,t represent respectively the aggregate

output and the output of sector k. A welcome advantage of a linear technology function is

that deep parameters related to the curvature in production are absent in the NKPC, what

implies we have one less parameter to calibrate in the estimations.

Total demand in sector k and in the economy follow:

Yk,t = ηk

[∫ 1

0

Y
ϵ−1
ϵ

kj,t dj

] ϵ
ϵ−1

, Yt =

[
K∑
k=1

η
1
ϵ
k Y

ϵ−1
ϵ

k,t

] ϵ
ϵ−1

.

Usual market clearing conditions in the goods markets imply Yt = Ct, Yk,t = Ck,t and Ykj,t =

Ckj,t.

When firm kj can re-optimise, it sets price Xkj,t by maximising the following expression

for discounted expected future profits:

Et

∞∑
s=0

Qt,t+s(1− λk)
s[Xkj,tYkj,t+s −Wkj,t+sNkj,t+s],
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subject to:

Ykj,t+s = Nkj,t+s, Ykj,t+s =

(
Xkj,t+s

Pt+s

)−ϵ

Yt+s,

where, for instance,Wkj,t+s is the nominal wage in the firm kj for the period t+s, conditional

on time-t information, whileQt,t+s = β(Ct+s/Ct)
σ(Pt/Pt+s) is the stochastic nominal discount

factor between the periods t and t+ s. Additionally:

Pk,t =

[∫ 1

0

P 1−ϵ
kj,t dj

] 1
1−ϵ

, Pt =

[
K∑
k=1

ηkP
1−ϵ
k,t

] 1
1−ϵ

,

representing sectoral and aggregate price indices, respectively.

Defining Πk,τ+s,τ ≡ Pk,τ+s/Pk,τ , the aforementioned price setting decisions, the price-

indexation scheme (7) and first order conditions yield:

Xkj,t =
ϵ

ϵ− 1

Et
∑∞

s=0Qt,t+s(1− λk)
sP ϵ

t+sYk,t+sWkj,t+s

Et
∑∞

s=0Qt,t+s(1− λk)sP ϵ
t+sYk,t+sΠ

γ
k,t+s−1,t−1

,

Finally, the following law of movement for sectoral prices holds:

Pk,t = [λkX
1−ϵ
k,t + (1− λk)(Pk,t−1Π

γ
k,t−1,t−2)

1−ϵ]
1

1−ϵ .

The aggregate NKPC (8) and its sectoral counterparts (9) can be derived from this model

using similar developments to those described in the appendix of Carvalho (2006), for ex-

ample.

One can log-linearise those equations in terms of deviations from steady-state values.

The law of movement becomes:

pk,t = λk(xk,t − pk,t−1) + (1− λk)pk,t−1 + γ(1− λk)πk,t−1.
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Additionally, it follows that:

xk,t = (1− β(1− λk))Et

∞∑
s=0

βs(1− λk)
s[pt+s +Θyt+s − γπk,t+s−1,t−1],

where Θ is defined in the main text. Remaining parts of the model are represented by the

following expressions:

yt = Etyt+1 − σ−1(it − Etπt+1)

yt =
K∑
k=1

ηkyk,t

yk,t = yt − ϵ(pk,t − pt)

ykj,t = yk,t − ϵ(pkj,t − pk,t)

yk,t =

∫ 1

0

ykj,tdj

pt =
K∑
k=1

ηkpk,t

pk,t =

∫ 1

0

pkj,tdj

wkj,t − pt = φ−1lkj,t + σct

bt = 0

ykj,t = ckj,t = nkj,t = lkj,t
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C.1.2 Optimal Policy: Derivation

Following Rotemberg and Michael Woodford (1997), a second-order approximation of the

ex-ante expected utility of such economy yields:

W ≈ ucY

[
yt +

1− σ

2
y2t −

K∑
k=1

ηk

∫ 1

0

(
nkj,t +

1 + φ−1

2
n2
kj,t

)
dj

]
,

where we used the market clearing condition yt = ct, uc denotes the first-order derivative of

the expected utility with respect to consumption and Y represents the output level of steady

state.

Next, use the market clearing condition for labour and that, up to a second-order approx-

imation, yk,t ≈ Ej(ykj,t) +
1
2

(
ϵ−1
ϵ

)
V arj(ykj,t), to find:

W ≈ ucY

[
yt +

1− σ

2
y2t −

K∑
k=1

ηkyk,t −
1 + φ−1

2

K∑
k=1

ηk

∫ 1

0

(
1− ϵ

ϵ
V arj(ykj,t) + y2kj,t

)
dj

]

≈ ucY

[
1− σ

2
y2t −

1 + φ−1

2

K∑
k=1

ηk

∫ 1

0

(
1− ϵ

ϵ
V arj(ykj,t) + y2kj,t

)
dj

]
,

where Ej(ykj,t) =
∫ 1

0
ykj,tdj and V arj(ykj,t) = Ej[(ykj,t − yk,t)

2], the dispersion of output in

sector k. We also used yt =
∑K

k=1 ηkyk,t in the second step above.

Now, use Ej(y2kj,t) ≈ y2k,t + V arj(ykj,t) to find:

W ≈ ucY

[
1− σ

2
y2t +

1

2

ϵ− 1

ϵ

K∑
k=1

ηkV arj(ykj,t)−
1 + φ−1

2

K∑
k=1

ηk
(
y2k,t + V arj(ykj,t)

)]

≈ ucY

[
1− σ

2
y2t −

1

2
(ϵ+ φ−1)

K∑
k=1

ηkV arj(ykj,t)−
1

2
(1 + φ−1)

(
K∑
k=1

ηky
2
k,t

)]
.

With the demand condition faced by each firm, the output dispersion within the sec-

tors can be written as variance of the prices of the varieties in each sector: V arj(ykj,t) =
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ϵ2V arj(pkj,t). Using this:

W ≈ ucY

[
1− σ

2
y2t −

1

2
ϵ(1 + ϵφ−1)

K∑
k=1

ηkV arj(pkj,t)−
1

2
(1 + φ−1)

(
K∑
k=1

ηky
2
k,t

)]

Additionally, it is possible to show that themeasure of sectoral price dispersion, summed

over time, can be approximated up to a second order by – e.g., see Woodford (2003, p. 706):

∞∑
t=0

βtV arj(pkj,t) ≈
[

λk
(1− λk)

− βλk

]−1 ∞∑
t=0

βtπ
2
k,t

≈ ψk(λk, β)
−1

∞∑
t=0

βtπ2
k,t.

With this and a second-order approximation of the sectoral demand function, it is possible to

finally derive (3.2). Simply insert these approximations in the expression forW above. Note

that cross terms involving the product of the output gap and sectoral relative prices – e.g.,

see Eusepi, Hobijn, and Tambalotti (2011, eq. 5) – will cancel out. This happens because,

unlike their model, ours does not feature heterogeneity in the production function across

sectors.
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C.2 Additional Details on the Dataset

Table C.1 below summarises our data set, as well as applied transformations. Sectoral infor-

mation is presented in the main paper – see Table 3.2.

Table C.1: Dataset for the Heterogeneous Economy

Variable Source Aggregate Sectoral Literature HP Filter

Output BEA yes no yes yes

Consumption BEA no yes no yes

Non-Farm Labour Share BLS yes no yes yes

PCE Inflation BEA yes yes yes no

PPI Commodities Inflation BLS yes no yes no

Effective Fed Funds FED yes no yes no

5-Year Treasury Spread FED yes no yes no

Avg. Hourly Earnings Inflation BLS yes no yes no

Notes: Types of aggregate and sectoral data compiled in our data set. Output and consumption aremeasured in

per capita terms to account for a model with no population growth. The PPI, the 5-year spread, the Fed Funds

rate, the labour share as well as the wage inflation are taken from the Federal Reserve Bank of St. Louis’ FRED

economic database. The second column provides the sources of the variables: BEA stands for U.S. Bureau of

Economic Analysis, BLS for U.S. Bureau of Labor Statistics and FED for the Federal Reserve System. The third

and fourth columns give the level of aggregation of the data. The fifth column indicate whether that variable

is usually used in the empirical literature or not. Finally, the last column shows for which of those variables we

extract cyclical components based on the HP filter.
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C.3 Results Perturbing the Instrument Set

Given the number of endogenous variables in the NKPCs and the potential sensitivity of

our results, we also evaluate the model based on four different instrument sets. The first

approach chooses instruments based on a data-driven technique that relies on regularisation.

The three remaining approaches test the sensitivity of our findings to the lag structure of the

variables used as instruments in the main paper.

First, based on results in Berriel, Medeiros, and Sena (2016), we apply instrument selec-

tion in the GMM setting. For each endogenous variable Yt in the aggregate NKPC (8), we

run the AdaLASSO estimator (Zou (2006)):

ρ̂ = argminρ∥Y− Zρ∥22 + Λ
P∑
j=1

wj∥ρj∥1,

where ∥∥p is the ℓp norm, ρ is a P × 1 vector of coefficients, Z is a T ×P matrix of instrument

candidates, {z1, ..., zp, ..., zP}. Λ controls the shrinkage whereas wj = |ρ̃j|−τ is a candidate-

specific penalty weight formed by a preliminary LASSO estimator ρ̃j . Finally, τ = 1 is a

common choice. Candidate zp is selected as instrument if ρ̂p ̸= 0.

The matrix of candidates Z is comprised of the first lags of variables used as instruments

in the main paper. For each zp,t−1 selected, we apply the first two lags of such variable,

{zp,t−1, zp,t−2}. This rule follows the approach with the best results in the framework of

Berriel, Medeiros, and Sena (2016) – there, called “AdaLASSO Observables”. The authors

show how such approach provides more reliable and disciplined estimations of the NKPC

of a homogeneous economy. Our selection routine is just a natural extension of theirs to the

multi-sector heterogeneous economy1. Applying the same rule with similar instruments for

sectoral NKPCs often resulted in under-identification of some equations. Hence, we main-
1Berriel, Medeiros, and Sena (2016) also choose instruments based on the first lag, but apply the first three

lags of selected variables. We apply the first two lags in our setting due to the number of moment conditions
in our GMM.
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tain the instruments applied in the main paper for those. One could extend the method by

including sector-specific candidates (e.g., using oil drilling measures as instrument candi-

dates for the Phillips curve of “gasoline and other energy goods”). We leave these underlying

alternatives to future research.

Table C.2 presents our findings under the instrument selection technique. For estimations

that exploit variation through sectoral NKPCs, results are broadly similar to those exhibited

in themain paper. The data-driven routine seems to improve estimations for the naive single-

equation approach, compared to results of the main paper. Nonetheless, the slope is still at

least seven times smaller under the naivemethod, compared to the estimations that consider

heterogeneity, and the implied Calvo probability still lies too close to 1 to seem reliable.

Next, we conduct estimations with a small variation of the approach used in the main

paper. We apply the second and third lags of the same variables used as instruments in the

baseline estimations of Table 3.3, rather than the first two lags. This variation is intended to

control for the well known time-aggregation bias in macro data – e.g., Hall (1988). In such

case, it is advised to apply instruments that are at least lagged twice. By further lagging

the instruments, some loss of precision is expected, due to potentially lower correlations

between instruments and endogenous variables. However, Table C.3 shows that results of

the main paper are essentially reconfirmed. Compared to results of Table 3.3, changing the

instrument set seems to impact more heavily the identification under the naive approach.

The Calvo probability in such case lies roughly at 1 for two out of the three calibrations

applied.

The remaining two approaches evaluate the sensitivity of our findings to the number of

moment conditions in the GMM. They reflect our best attempt to avoid the common pitfall of

toomany instruments affecting the identification – see Bårdsen, Jansen, andNymoen (2004),

Andrews and Stock (2005) and C. Hansen, Hausman, and W. Newey (2008), for example.

It is well known that the use of too many instruments often biases Two-Stage Least Squares

(TSLS) estimators towards the OLS limit distribution. This is also more evident the weaker
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the instruments are.

In Table C.4, we reduce the number of moment conditions in the GMM by dropping the

second lags of those variables used as instruments in the main paper. The instrument set is

then comprised of the first lags of variables used in the estimations of Table 3.3. Reducing

the number of instruments by half potentially imply lower precision. However, Table C.4

displays results that are moderately similar to those of Table 3.3.

Table C.5 presents results for a similar instrument set, but now using the second lag of

variables applied as instruments in the main paper. Therefore, the instrument set is com-

prised of the second lag of those variables. Results do not differ much from those shown

in the baseline estimations of Table 3.3. Confidence intervals are slightly wider compared

to results of the main paper, potentially related to some loss of precision. However, point

estimates suggest that our main findings are maintained.

271



Table C.2: Estimates of the Slope and Degree of Stickiness using Instrument Selection

Parameters

Calibration Model Corr(θk,Micro) κ θ β γ

↑ Real Rigidity Heterogeneous (SYS) 0.79 0.070∗∗∗ 0.48 0.99 0.85

(0.001) [0.46, 0.50] (0.040) (0.035)

Homogeneous (SYS) - 0.036∗∗∗ 0.56 0.97 0.34

(0.000) [0.56, 0.56] (0.003) (0.002)

Homogeneous (SE) - 0.007∗∗∗ 0.78 0.97 0.34

(0.002) [0.72, 0.84] (0.003) (0.017)

Baseline Heterogeneous (SYS) 0.58 0.075∗∗∗ 0.56 0.99 0.29

(0.001) [0.56, 0.56] (0.006) (0.003)

Homogeneous (SYS) - 0.057∗∗∗ 0.57 0.95 0.36

(0.000) [0.57, 0.57] (0.004) (0.003)

Homogeneous (SE) - 0.009∗∗∗ 0.81 0.95 0.31

(0.002) [0.77, 0.86] (0.004) (0.019)

↓ Real Rigidity Heterogeneous (SYS) 0.30 0.075∗∗∗ 0.66 0.97 0.22

(0.001) [0.65, 0.66] (0.007) (0.004)

Homogeneous (SYS) - 0.066∗∗∗ 0.63 0.98 0.30

(0.000) [0.62, 0.63] (0.006) (0.003)

Homogeneous (SE) - 0.010∗∗∗ 0.86 0.92 0.38

(0.002) [0.83, 0.89] (0.004) (0.017)

Notes: Results under instrument selection based on AdaLASSO. The first column refers to the three different
calibration sets exhibited in Table 3.1. We test three different estimation methods. “Heterogeneous (SYS)”
denotes the baselinemodel with sector-specific λk, being estimated by System-GMMwith the aggregate NKPC
in (8) and the fifteen sectoral NKPCs in (9). “Homogeneous (SYS)” uses the same system, but imposes λk = λ
for every sector. In such case, the shift term disappears from (8). “Homogeneous (SE)” mimics the standard
approach in the literature, repeating this last exercise considering solely the aggregate NKPC (8), i.e., single-
equation estimation. Correlations between estimated and benchmark infrequencies (1 − λk) that come from
the micro data in Bils and Klenow (2004) are shown in the column “Corr(θk,Micro)”. The micro benchmark
implies θmicro ≈ 0.48. κ denotes the aggregate slope in (8), while θ is the implied degree of stickiness in the
economy. When λk varies across sectors (heterogeneous case), θ =

∑K
k=1 ηkθk =

∑K
k=1 ηk(1 − λk). Under

homogeneity (λk = λ), this simplifies to θ = (1 − λ). We use a HAC estimator for the covariance matrix.
Standard errors are presented in parentheses. As in theory, structural parameters (λk, β and γ) can assume
values in the interval [0, 1]. We test the null hypothesis of κ = 0: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table C.3: Estimates of the Slope and Degree of Stickiness – Alternative Instrument Set I

Parameters

Calibration Model Corr(θk,Micro) κ θ β γ

↑ Real Rigidity Heterogeneous (SYS) 0.16 0.032∗∗∗ 0.62 0.99 0.74

(0.000) [0.61, 0.63] (0.007) (0.005)

Homogeneous (SYS) - 0.036∗∗∗ 0.48 0.95 0.44

(0.000) [0.47, 0.48] (0.004) (0.002)

Homogeneous (SE) - 0.000 0.99 0.97 0.48

(0.004) [0.00, 1.00] (0.011) (0.073)

Baseline Heterogeneous (SYS) 0.50 0.101∗∗∗ 0.59 0.99 0.20

(0.001) [0.58, 0.59] (0.009) (0.005)

Homogeneous (SYS) - 0.058∗∗∗ 0.48 0.96 0.42

(0.000) [0.44, 0.52] (0.008) (0.005)

Homogeneous (SE) - 0.000 0.99 0.98 0.54

(0.003) [0.00, 1.00] (0.010) (0.062)

↓ Real Rigidity Heterogeneous (SYS) 0.61 0.114∗∗∗ 0.61 0.97 0.19

(0.002) [0.60, 0.62] (0.022) (0.012)

Homogeneous (SYS) - 0.082∗∗∗ 0.58 0.98 0.48

(0.005) [0.55, 0.61] (0.047) (0.029)

Homogeneous (SE) - 0.002 0.91 0.99 0.61

(0.003) [0.81, 1.00] (0.010) (0.052)

Notes: Results applying the second and third lags of the same variables used as instruments in Table 3.3. The
first column refers to the three different calibration sets exhibited in Table 3.1. We test three different estima-
tion methods. “Heterogeneous (SYS)” denotes the baseline model with sector-specific λk, being estimated by
System-GMM with the aggregate NKPC in (8) and the fifteen sectoral NKPCs in (9). “Homogeneous (SYS)”
uses the same system, but imposes λk = λ for every sector. In such case, the shift term disappears from (8).
“Homogeneous (SE)” mimics the standard approach in the literature, repeating this last exercise considering
solely the aggregate NKPC (8), i.e., single-equation estimation. Correlations between estimated and bench-
mark infrequencies (1−λk) that come from the micro data in Bils and Klenow (2004) are shown in the column
“Corr(θk,Micro)”. The micro benchmark implies θmicro ≈ 0.48. κ denotes the aggregate slope in (8), while
θ is the implied degree of stickiness in the economy. When λk varies across sectors (heterogeneous case),
θ =

∑K
k=1 ηkθk =

∑K
k=1 ηk(1 − λk). Under homogeneity (λk = λ), this simplifies to θ = (1 − λ). We use a

HAC estimator for the covariancematrix. Standard errors are presented in parentheses. As in theory, structural
parameters (λk, β and γ) can assume values in the interval [0, 1]. We test the null hypothesis of κ = 0: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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Table C.4: Estimates of the Slope and Degree of Stickiness – Alternative Instrument Set II

Parameters

Calibration Model Corr(θk,Micro) κ θ β γ

↑ Real Rigidity Heterogeneous (SYS) 0.69 0.033∗∗∗ 0.68 0.99 0.50

(0.000) [0.66, 0.70] (0.039) (0.024)

Homogeneous (SYS) - 0.015∗∗∗ 0.70 0.98 0.15

(0.000) [0.70, 0.70] (0.003) (0.002)

Homogeneous (SE) - 0.000 0.99 0.98 0.36

(0.006) [0.00, 1.00] (0.011) (0.092)

Baseline Heterogeneous (SYS) 0.87 0.086∗∗∗ 0.53 0.99 0.89

(0.006) [0.45, 0.62] (0.122) (0.110)

Homogeneous (SYS) - 0.026∗∗∗ 0.68 0.97 0.33

(0.000) [0.68, 0.69] (0.003) (0.002)

Homogeneous (SE) - 0.001 0.93 0.98 0.41

(0.005) [0.60, 1.00] (0.011) (0.090)

↓ Real Rigidity Heterogeneous (SYS) 0.74 0.173∗∗∗ 0.55 0.99 0.13

(0.010) [0.52, 0.57] (0.036) (0.018)

Homogeneous (SYS) - 0.088∗∗∗ 0.54 0.99 0.42

(0.018) [0.39, 0.69] (0.010) (0.006)

Homogeneous (SE) - 0.001 0.96 0.97 0.47

(0.004) [0.70, 1.00] (0.012) (0.087)

Notes: Results when the second lags of variables used as instruments in Table 3.3 are dropped from the instru-
ment set. Hence, instruments are the first lags of those variables. The first column refers to the three different
calibration sets exhibited in Table 3.1. We test three different estimation methods. “Heterogeneous (SYS)” de-
notes the baseline model with sector-specific λk, being estimated by System-GMM with the aggregate NKPC
in (8) and the fifteen sectoral NKPCs in (9). “Homogeneous (SYS)” uses the same system, but imposes λk = λ
for every sector. In such case, the shift term disappears from (8). “Homogeneous (SE)” mimics the standard
approach in the literature, repeating this last exercise considering solely the aggregate NKPC (8), i.e., single-
equation estimation. Correlations between estimated and benchmark infrequencies (1 − λk) that come from
the micro data in Bils and Klenow (2004) are shown in the column “Corr(θk,Micro)”. The micro benchmark
implies θmicro ≈ 0.48. κ denotes the aggregate slope in (8), while θ is the implied degree of stickiness in the
economy. When λk varies across sectors (heterogeneous case), θ =

∑K
k=1 ηkθk =

∑K
k=1 ηk(1− λk). Under ho-

mogeneity (λk = λ), this simplifies to θ = (1−λ). We use a HAC estimator for the covariance matrix. Standard
errors are presented in parentheses. As in theory, structural parameters (λk, β and γ) can assume values in the
interval [0, 1]. We test the null hypothesis of κ = 0: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table C.5: Estimates of the Slope and Degree of Stickiness – Alternative Instrument Set III

Parameters

Calibration Model Corr(θk,Micro) κ θ β γ

↑ Real Rigidity Heterogeneous (SYS) 0.43 0.115∗∗∗ 0.51 0.99 0.30

(0.021) [0.19, 0.84] (0.147) (0.080)

Homogeneous (SYS) - 0.017∗∗∗ 0.71 0.93 0.74

(0.000) [0.71, 0.71] (0.001) (0.001)

Homogeneous (SE) - 0.000 0.99 0.99 0.31

(0.005) [0.00, 1.00] (0.010) (0.099)

Baseline Heterogeneous (SYS) 0.50 0.096∗∗∗ 0.57 0.99 0.38

(0.008) [0.45, 0.68] (0.071) (0.041)

Homogeneous (SYS) - 0.029∗∗∗ 0.58 0.93 0.78

(0.002) [0.56, 0.61] (0.033) (0.029)

Homogeneous (SE) - 0.000 0.99 0.99 0.33

(0.005) [0.00, 1.00] (0.010) (0.100)

↓ Real Rigidity Heterogeneous (SYS) 0.74 0.173∗∗∗ 0.55 0.99 0.13

(0.010) [0.52, 0.57] (0.036) (0.018)

Homogeneous (SYS) - 0.088∗∗∗ 0.54 0.99 0.42

(0.018) [0.39, 0.69] (0.010) (0.006)

Homogeneous (SE) - 0.000 0.99 0.99 0.35

(0.005) [0.00, 1.00] (0.010) (0.100)

Notes: Resultswhen the first lags of variables used as instruments in Table 3.3 are dropped from the instrument
set. Hence, instruments are the second lags of those variables. The first column refers to the three different
calibration sets exhibited in Table 3.1. We test three different estimation methods. “Heterogeneous (SYS)”
denotes the baselinemodel with sector-specific λk, being estimated by System-GMMwith the aggregate NKPC
in (8) and the fifteen sectoral NKPCs in (9). “Homogeneous (SYS)” uses the same system, but imposes λk = λ
for every sector. In such case, the shift term disappears from (8). “Homogeneous (SE)” mimics the standard
approach in the literature, repeating this last exercise considering solely the aggregate NKPC (8), i.e., single-
equation estimation. Correlations between estimated and benchmark infrequencies (1 − λk) that come from
the micro data in Bils and Klenow (2004) are shown in the column “Corr(θk,Micro)”. The micro benchmark
implies θmicro ≈ 0.48. κ denotes the aggregate slope in (8), while θ is the implied degree of stickiness in the
economy. When λk varies across sectors (heterogeneous case), θ =

∑K
k=1 ηkθk =

∑K
k=1 ηk(1 − λk). Under

homogeneity (λk = λ), this simplifies to θ = (1 − λ). We use a HAC estimator for the covariance matrix.
Standard errors are presented in parentheses. As in theory, structural parameters (λk, β and γ) can assume
values in the interval [0, 1]. We test the null hypothesis of κ = 0: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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C.4 Estimated Sectoral Infrequencies Under the Alternative

Calibrations

FigureC.1 andFigureC.2 present similar findings to those in Figure 3.2, but for the remaining

two calibrations described in the second and third columns of Table 3.1, respectively.

Figure C.1: θ̂k vs. Micro Benchmarks – Confidence Intervals

Notes: Estimated Calvo probabilities using the same econometric setting of Table 3.3. Blue bars are micro-
based benchmark probabilities implied from evidence in Bils and Klenow (2004) and presented in Table 3.2.
For expository purposes, these are sorted according to their degree of flexibility. 95% confidence intervals are
shown for each θ̂k. We use the calibration described in the second column of Table 3.1.
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Figure C.2: θ̂k vs. Micro Benchmarks – Confidence Intervals

Notes: Estimated Calvo probabilities using the same econometric setting of Table 3.3. Blue bars are micro-
based benchmark probabilities implied from evidence in Bils and Klenow (2004) and presented in Table 3.2.
For expository purposes, these are sorted according to their degree of flexibility. 95% confidence intervals are
shown for each θ̂k. We use the calibration described in the third column of Table 3.1.
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C.5 Removing the Aggregate NKPC from the System

In Table C.6 below, we remove the aggregate NKPC from our estimations – i.e., we show

results for the case we estimate the system comprised of the fifteen sectoral NKPCs that

take the form in (3.9). We maintain results of the main paper for the naive single-equation

approach (based on the aggregate NKPC of the homogeneous economy) to facilitate the

comparison. By ignoring information, some loss of precision is expected. However, Table C.6

basically reconfirms findings of the main paper.
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Table C.6: Estimates of the Slope and Degree of Stickiness Dropping (3.8) from the System

Parameters

Calibration Model Corr(θk,Micro) κ θ β γ

↑ Real Rigidity Heterogeneous (SYS) 0.84 0.054∗∗∗ 0.64 0.98 0.31

(0.001) [0.62, 0.66] (0.008) (0.004)

Homogeneous (SYS) - 0.033∗∗∗ 0.58 0.96 0.30

(0.000) [0.58, 0.59] (0.004) (0.002)

Homogeneous (SE) - 0.002 0.87 0.96 0.44

(0.003) [0.70, 1.00] (0.010) (0.040)

Baseline Heterogeneous (SYS) 0.78 0.136∗∗∗ 0.55 0.98 0.26

(0.011) [0.49, 0.59] (0.043) (0.023)

Homogeneous (SYS) - 0.044∗∗∗ 0.65 0.97 0.30

(0.000) [0.64, 0.65] (0.005) (0.002)

Homogeneous (SE) - 0.007∗ 0.82 0.96 0.45

(0.003) [0.74, 0.90] (0.011) (0.043)

↓ Real Rigidity Heterogeneous (SYS) 0.76 0.126∗∗∗ 0.63 0.99 0.21

(0.008) [0.50, 0.76] (0.029) (0.015)

Homogeneous (SYS) - 0.094∗∗∗ 0.59 0.97 0.20

(0.006) [0.56, 0.62] (0.038) (0.020)

Homogeneous (SE) - 0.012∗∗∗ 0.81 0.97 0.49

(0.004) [0.77, 0.86] (0.012) (0.048)

Notes: Estimates when the aggregate NKPC (3.8) is dropped from the system. The first column refers to the
three different calibration sets exhibited in Table 3.1. We test three different estimation methods. “Heteroge-
neous (SYS)” denotes the baseline model with sector-specific λk, being estimated by System-GMM with the
fifteen sectoral NKPCs in (3.9). “Homogeneous (SYS)” uses the same system, but imposes λk = λ for every
sector. “Homogeneous (SE)” mimics the standard approach in the literature and repeats results of Table 3.3.
Correlations between estimated and benchmark infrequencies (1 − λk) that come from the micro data in Bils
andKlenow (2004) are shown in the column “Corr(θk,Micro)”. Themicro benchmark implies θmicro ≈ 0.48.
κ denotes the aggregate slope in (3.8), while θ is the implied degree of stickiness in the economy. When λk
varies across sectors (heterogeneous case), θ =

∑K
k=1 ηkθk =

∑K
k=1 ηk(1− λk). Under homogeneity (λk = λ),

this simplifies to θ = (1−λ). We use a HAC estimator for the covariance matrix. Standard errors are presented
in parentheses. As in theory, structural parameters (λk, β and γ) can assume values in the interval [0, 1]. We
test the null hypothesis of κ = 0: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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C.6 Perturbing Starting Values

Non-linear GMMwith complex moment conditions can be quite sensitive to starting values

in the algorithm. We then shall evaluate the sensitivity of our results to such values. In the

estimations of themain text, we used benchmark probabilities implied frommicro data – Bils

andKlenow (2004) – as initial values. In Table C.6, we replace that approachwith an agnostic

routine that finds starting values based on sectoral data. First, we estimate each sectoral

NKPC in (3.9) individually – relying on the same instruments of Table 3.3. Second, we apply

estimates of this first stage, λ̂Ik, as initial values when estimating the system based on (3.8)

and (3.9). When heterogeneity is switched off, the initial value is calculated using λ̂I =∑K
k=1 ηkλ̂

I
k. For the reasons discussed in the main text, this approach is very conservative.

Thus, some loss of precision is expected.

Table C.6 shows that, once more, the heterogeneous model considerably outperforms its

homogeneous counterpart. The slope from the former is at least twice that of the latter, while

estimated implied infrequencies are also lower for the heterogeneous economy. Correlations

with benchmark probabilities are considerably closer to zero, but this is expected due to a

potential misalignment between first-stage estimates (initial values) and the data.
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Table C.7: Estimates of the Slope and Degree of Stickiness – Alternative Starting Values

Parameters

Calibration Model Corr(θk,Micro) κ θ β γ

↑ Real Rigidity Heterogeneous (SYS) 0.07 0.026∗∗∗ 0.69 0.86 0.50

(0.000) [0.68, 0.69] (0.002) (0.001)

Homogeneous (SYS) - 0.011∗∗∗ 0.74 0.96 0.26

(0.000) [0.73, 0.74] (0.001) (0.001)

Homogeneous (SE) - 0.001 0.78 0.96 0.44

(0.003) [0.68, 1.00] (0.010) (0.041)

Baseline Heterogeneous (SYS) -0.14 0.031∗∗∗ 0.75 0.92 0.35

(0.000) [0.75, 0.76] (0.002) (0.001)

Homogeneous (SYS) - 0.004∗∗∗ 0.87 0.96 0.31

(0.000) [0.87, 0.87] (0.007) (0.004)

Homogeneous (SE) - 0.000 0.99 0.96 0.42

(0.003) [0.18, 1.00] (0.010) (0.041)

↓ Real Rigidity Heterogeneous (SYS) -0.13 0.021∗∗∗ 0.83 0.93 0.41

(0.000) [0.83, 0.84] (0.002) (0.001)

Homogeneous (SYS) - 0.013∗∗∗ 0.83 0.95 0.32

(0.000) [0.83, 0.83] (0.001) (0.001)

Homogeneous (SE) - 0.000 0.99 0.96 0.43

(0.003) [0.52, 1.00] (0.010) (0.040)

Notes: Results perturbing initial values in the algorithm. In a first step, we estimate each sectoral NKPC represented by (8) individually
with the baseline instrument set of the main paper. Next, we apply each estimate λ̂k of this first stage regressions as initial value for that
parameter when estimating the system comprised of (8) and (9). For the homogeneous models, we calculate the aggregate infrequency
implied from estimates of the first stage, using it as the initial value in the algorithm. The first column refers to the three different calibration
sets exhibited in Table 3.1. We test three different estimation methods. “Heterogeneous (SYS)” denotes the baseline model with sector-
specific λk , being estimated by System-GMM with the aggregate NKPC in (8) and the fifteen sectoral NKPCs in (9). “Homogeneous
(SYS)” uses the same system, but imposes λk = λ for every sector. In such case, the shift term disappears from (8). “Homogeneous
(SE)” mimics the standard approach in the literature, repeating this last exercise considering solely the aggregate NKPC (8), i.e., single-
equation estimation. Correlations between estimated and benchmark infrequencies (1 − λk) that come from the micro data in Bils and
Klenow (2004) are shown in the column “Corr(θk,Micro)”. Themicro benchmark impliesθmicro ≈ 0.48. κdenotes the aggregate slope
in (8), while θ is the implied degree of stickiness in the economy. When λk varies across sectors (heterogeneous case), θ =

∑K
k=1 ηkθk =∑K

k=1 ηk(1 − λk). Under homogeneity (λk = λ), this simplifies to θ = (1 − λ). We use a HAC estimator for the covariance matrix.
Standard errors are presented in parentheses. As in theory, structural parameters (λk, β and γ) can assume values in the interval [0, 1].
We test the null hypothesis of κ = 0: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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C.7 Expanded Sample and Alternative Calibrations

In this section, I report results for a sample that includes the recent inflationary period be-

ginning in mid-2021. I also provide robustness checks under alternative calibrations of ϵ.

As expected, elevated inflation strengthens the relationship between prices and real ac-

tivity, resulting in a substantially steeper Phillips curve. These estimates are not directly

comparable to those in the existing literature, however, as prior studies typically exclude

this more recent inflationary episode.

Figure C.3: θ̂k vs. Micro Benchmarks (Extended Sample)

Notes: Estimated Calvo probabilities using the same econometric setting of Table 3.3. Sample is extended until
2024. Benchmarks are implied probabilities from evidence in Bils and Klenow (2004) – see Table 3.2. We use
the baseline calibration of Table 3.1. Correlation with benchmark: 81%.
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Table C.8: Phillips Curve Slope and Correlations for Varying ϵ

ϵ = 3 ϵ = 4 ϵ = 5 ϵ = 8

Slope of Phillips Curve (κ) 0.2740 0.2740 0.2740 0.2740

Correlation with Benchmarks 0.7108 0.7063 0.7018 0.6890

Correlation (Excluding Food) 0.7591 0.7539 0.7488 0.7341

Standard Error 0.0152 0.0152 0.0152 0.0152

Notes: Implied slope of the aggregate Phillips curve constructed from estimated Calvo probabilities using the
same econometric setting of Table 3.3. Sample is extended until 2024. Benchmarks are implied probabilities
from evidence in Bils and Klenow (2004) — see Table 3.2. We test alternative values of ϵ — remaining para-
metric values are those of the baseline calibration in Table 3.1.
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