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Abstract

This thesis examines how climate-related risks and responses ranging from natural dis-

asters to green transition and public mobilization, shape economic behavior, perceptions,

and political outcomes. It highlights how climate risks and social responses shape both

market outcomes and politics, with implications for designing effective climate policy.

The first chapter examines the economic effects of flooding in Indonesia, focusing on

its impact on firm behavior and regional economic variables. Using granular firm-level

data and spatial data on historical floods, I estimate the short-run effects of flood events

and find that more severe floods significantly reduce aggregate output, hinder business

formation, and erode firm-level capital. A model of firm entry under climate risk reveals

that these effects are largely driven by perceived flood risk, thereby emphasizing the an-

ticipatory behavior of firms and the importance of flood mitigation infrastructure, such

as flood defenses.

The second chapter addresses the environmental implications of coal-fired power plants.

Combining geocoded survey data from 51 countries with plant-level information, we

document that individuals living within 40 km of coal plants are systematically more dis-

satisfied with local air quality. Employing equivalent variation measure, we show that

replacing coal plants with renewable technology is feasible even if the gains from im-

proved air quality are only considered in the benefits calculations.

The third chapter explores the political consequences of climate-related protests. Analyz-

ing large-scale protests, such as the Fridays for Future, we find that protests significantly

increase climate awareness in the short run, as evidenced by spikes in Google search

trends and media coverage. These shifts also translate into increased electoral support

for Green parties in Europe and influence political discourse within the UK Parliament.
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Chapter 1

Economic Consequences of Flooding in

Indonesia

1.1 Introduction

This chapter examines the effects of flooding on firms in a low- and middle-income coun-

try, Indonesia. Given that the Global South is expected to experience heightened direct

and indirect consequences of climate change (Cruz and Rossi-Hansberg 2021), the man-

ifestation of such changes through extreme weather events is increasingly evident (IPCC

2023). Therefore, it is crucial to investigate how such events affect firms in different re-

gions to better understand the response of production activities amid climate change. The

insights gained through this investigation would be instrumental in designing appropri-

ate adaptation strategies, such as reforming industrial zoning policies, for the changing

world.

There is a negative contemporaneous relationship between flooding and measures of

regional economic activity. When a region is hit by a flood, characterized by its spatial

coverage and temporal extent, it shows an immediate reduction in aggregate value-added,

a measure of economic output, and capital stock and labor employment. This negative

relationship is partly driven by the reduced entry of firms in flood-affected regions. At
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the firm level, flooding has a more pronounced negative effect on capital stock and pos-

itive effect on temporary labor hiring. Although this analysis sheds light on the costs

associated with floods, it is unclear how floods interact with firm-level decision-making.

In particular, due to the persistent nature of flood shocks in areas with high economic

activity within Indonesia, the flood measure partially captures the evolving flood risk that

firms perceive.

To address this, I introduce a quantitative framework where firms’ input choices are

influenced by different aspects of flooding. Specifically, firms choose their capital levels

before flood shocks, taking flood risk into account, whereas labor is chosen afterward,

once the actual flood shock has realized. The framework offers a novel microfoundation

for understanding how perceived flood risk and actual flood shocks interact with firm

behavior. The main findings indicate that perceived flood risk, rather than the occurrence

of actual flooding, plays a more significant role in influencing firms’ input decisions. I

also conduct a counterfactual analysis in the spirit of building flood defenses to secure

flood-prone areas. Building flood defenses has a direct positive impact on aggregate

output, as protected areas become less vulnerable to flooding. However, these gains are

partially offset by the entry of less productive firms into the now-safer areas, along with

an upward pressure on equilibrium wages due to increased competition for scarce labor

inputs.

The case in point is Indonesia, the world’s tenth largest economy, which has main-

tained a high disaster risk profile mainly due to catastrophic flooding and accelerated

sea-level rise affecting its major economic centers (World Risk Report 2023). As Fig-

ure 1.1 shows, flood events frequently affect areas in the southern islands of Java and

Sumatra, where a disproportionately large share (> 90%) of manufacturing firms are lo-

cated. This persistence of flood shocks potentially drives firms to update their perceived

flood risk over time. Furthermore, as Figure 1.2 indicates, flooding is not just a recur-

ring challenge but an escalating threat over time in Indonesia. Floods are the single most

catastrophic natural disaster in terms of economic damage and human loss that Indone-
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sia faces today (Government of Republic of Indonesia 2007). This confluence of factors

makes Indonesia a prime case for examining the impacts of flooding.

In the first part of the chapter, I provide reduced-form evidence on the contempora-

neous effects of flooding on economic variables at both aggregate and firm levels using

a static difference-in-differences research design. I propose and develop a regional flood

index based on the spatial and temporal expanse of flooding. Since the index is contin-

uous, I can analyze the effects by varying the intensity of flooding. I find that a 90th

percentile flood leads to 20%, 25%, and 15% declines in aggregate value-added, capi-

tal stock, and labor employment, respectively, at the sector-region level. Estimating the

same relationship at the firm level suggests that a 90th percentile flood is associated with

a 5.7% reduction in the value of capital stock for a typical firm, with significant hetero-

geneity across sectors, more capital-intensive sectors, such as Iron and Steel, show more

significant decline. Notably, the association of floods with firm exit is limited, while a

firm’s decision to enter a sector within a region is affected by floods in that region. Specif-

ically, a 90th percentile flood is associated with 20% less firm entry at the sector-region

level in the year of flooding. Given the spatial concentration of firms in areas prone to

persistent flood shocks, these effects are partly driven by firms’ evolving perceptions of

flood risk.

The reduced-form findings yield estimates that capture both the actual damages from

flooding and the adjustments that firms make in response to their evolving perception

of flood risk over time. However, these findings do not provide a framework for under-

standing the mechanisms through which flooding influences firm behavior. In particular,

capital installation decisions are typically made well in advance of the realization of flood

shocks, and firms would anticipate these shocks and choose capital accordingly. In this

context, the second part of the chapter introduces a quantitative framework with flood

risk and endogenous entry decisions to study the anticipatory effects of flooding. The

time-varying parameters governing the regional flood exposure are estimated using the

empirical distribution of firm-level production capacity utilization, which is negatively

16



affected by flooding. The model builds on the seminal work by Lucas (1978) on under-

standing the impact of managerial talent on the distribution of firms. The foundational

elements of the model find roots in more recent misallocation research, such as Hsieh

and Klenow (2009) and Besley, Roland, and Reenen (2020), particularly using a gen-

eral equilibrium framework to analyze firm behavior. The model transcends further by

integrating firm entry and exit along the lines of Hopenhayn (1992).

Firms use a production technology that combines capital and labor inputs with firms’

idiosyncratic productivity to produce output. Decisions regarding the amount of capital

to install are made before the realization of flood shocks and take into account the un-

certainty surrounding its utilization based on the flood risks associated with the firms’

locations. Labor adjusts flexibly after the realization of flood shocks; however, it is in-

directly influenced by flood risk through prior capital investment decisions. Risk-neutral

firms maximize expected profits, where the expectations are based on the share of capital

that can be utilized in a given year. This results in time-varying flood risk that differs

across regions and sectors, acting as aggregate misallocation force that impacts capital

allocation and ultimately output in equilibrium. Additionally, firms exhibit variations in

their idiosyncratic productivity levels, which remain constant over time and are drawn

from a common regional distribution. To enter a market, firms must incur a one-time

fixed cost, making their entry decision contingent upon expected profits net of this fixed

cost. This creates a productivity cutoff below which firms opt not to enter certain sectors

within a region. This cutoff productivity, combined with labor market clearing, deter-

mines the mass of firms, their allocations, and the equilibrium wages in the market.

I estimate key model parameters to conduct quantitative analysis of the equilibrium.

The novel regional shape parameters of the distribution of the share of capital utilized in

a given year are estimated using the empirical distribution of production capacity utiliza-

tion across firms located in a region. Production capacity utilization is the percentage of

actual production over the planned production by a firm in a given year. Firms in flood-

affected regions report lower production capacity utilization. Based on this finding, the
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share of capital that can be utilized in a given year is proxied by its production capacity

utilization. Using such an objective measure that remains unaffected by prices and other

short-run equilibrium adjustments ensures a more accurate assessment of the impact of

flooding on firms. Additionally, the parameters governing the regional component of

flood risk are strongly correlated with the empirical flood index used in the reduced-form

analysis. I further estimate sector-specific production function parameters and the pa-

rameters that govern the distribution of firm productivity using standard methods from

the literature.

In the analysis section, I start by disentangling the effects of flood risk and flood

shocks on firm behavior. I employ firm-level equilibrium conditions for optimal capital

and labor allocation to create a linear specification that can be estimated using ordinary

least squares. The results indicate that firms reduce their capital investment and increase

labor hiring in response to flood risk. In contrast, the impact of flood shocks, which

affect equilibrium input allocations directly, is found to be limited. As an experimental

counterfactual exercise in the spirit of flood defense systems used across the world, I

compare observed outcomes with those generated after bringing the top 20th percentile

of flood-prone regencies to the median value of the distribution by constructing flood

defenses there. This intervention benefits all sectors and regions, but the benefits are

larger for more capital-intensive sectors. The direct impact of the intervention increases

annual aggregate output across sectors (regions) by 7% (16%). However, allowing for

the entry of new firms reduces the gains by almost half, as less productive firms are now

able to enter into these safer areas. The influx of new firms consumes scarce production

resources, intensifying competition and ultimately driving wages upward. This under-

scores the potential downsides of such costly protective investments that are prevalent

worldwide, particularly in low- and middle-income countries.

The chapter relates to a strand of literature that studies the impact of climate change

and natural disasters on the distribution of economic activity within and across regions

(see, for example, Castro-Vincenzi 2024; Balboni 2024; Hsiao 2024; Nath 2024; Bilal
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and Rossi-Hansberg 2023; Desmet et al. 2021; Jia, Ma, and Xie 2022; Kocornik-Mina

et al. 2020; Cruz and Rossi-Hansberg 2021; Balboni, Boehm, and Waseem 2023). I con-

tribute to this literature in various ways. First, I employ a continuous measure of regional

flooding that allows me to establish the relationship between flooding and economic vari-

ables at different flood intensities. Second, I provide a microfoundation for understand-

ing how flooding affects firm decision-making by integrating the former within the firms’

production function. I demonstrate how firms in low- and middle-income countries adjust

their production inputs in response to threats posed by flooding. Specifically, they reduce

investment in capital stock and increase temporary labor hiring, a more readily avail-

able resource in these settings, thus highlighting both production resilience and a form

of adaptation to deal with such disruptions. Third, I develop a time-varying measure of

flood risk, which is perceived by the firms. The literature has mostly employed time-

invariant measures of flood risk, which is informed through atmospheric and hydrology

models.1 However, firms’ decision-making is responsive to the actual flood events, and

thus the perceived flood risk should evolve over time. Fourth, I examine the sectoral het-

erogeneity in the impact of flooding on both the intensive and extensive margins. On the

methodological side, the chapter is related to the literature on firm dynamics, misalloca-

tion, and their aggregate productivity effects (see, for example, Hsieh and Klenow 2009;

Besley, Roland, and Reenen 2020; Midrigan and Xu 2014; Bento and Restuccia 2017;

Bartelsman, Haltiwanger, and Scarpetta 2013; Hopenhayn 2014; Gopinath et al. 2017;

Restuccia and Rogerson 2008; Banerjee and Duflo 2005)). I contribute to this literature

by applying the methodology in the context of flooding, which generates distortions for

firm-level capital decisions. I also integrate firm entry and exit dynamics along the lines

of Hopenhayn (1992) and solve the model equilibrium analytically.

The remainder of the chapter is organized as follows. The next section provides

details on the data used. Section 1.3 presents the reduced-form findings on the contem-

poraneous effects of flooding. Section 1.4 develops the theoretical model for studying the

1. See, for example, Fathom Global Flood Map
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effects of flood shocks and flood risk. Section 1.5 discusses the estimation of key model

parameters, and Section 1.6 presents the analysis. Section 1.7 contains some concluding

remarks.

1.2 Data

There are two main datasets used in the chapter. The first is an extract of historical

floods with various pieces of information to facilitate the construction of a flood index.

The data on outcomes is derived from the census of medium and large manufacturing

establishments located in Indonesia.

1.2.1 Large Flood Events

The data on floods is obtained from the Dartmouth Flood Observatory (DFO), which is

a global, dynamic archive of large flood events starting in the year 1985 (Kocornik-Mina

et al. 2020). The data provides start and end dates along with the extent of affected area

for each flood event. Polygons representing the areas affected by flooding are drawn in a

GIS program based upon information acquired from governmental, instrumental, news,

and remote-sensing sources. Considering a longer time frame and the reliance on me-

dia reports, there could be concerns around plausible spatial and temporal bias in the

reporting of flood events. For example, media reporting has improved over the years due

to the development of technology and transportation infrastructure, and floods are more

likely to be reported in areas with large population settlements and economic activity. In

an extreme case, Figure 1.1 could merely reflect population settlement patterns across

regencies in the Indonesian archipelago, rather than the actual number of flood events

hitting them. To rule out this possibility, I redraw the map using only flood events con-

firmed through satellite observations, which are not subject to such biases. Specifically, I

use inundation maps from 41 individual flood events across Indonesia during the period

2002–2018, as identified by Tellman et al. (2021). These maps are based on satellite
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imagery captured by the Moderate-Resolution Imaging Spectroradiometer (MODIS) on

NASA’s Terra and Aqua satellites, which image the globe daily at a spatial resolution of

250 meters.2 The spatial pattern of flooding derived from these objective satellite-based

measures aligns closely with the pattern depicted in Figure 1.1. This consistency is illus-

trated in Figure 1.3, which confirms the robustness of the observed spatial distribution of

floods. Although 30% of the reported flood events in Indonesia last three days or less,

media reporting could still miss some small flood events, particularly due to the low- and

middle-income country setting (see, for example, Patel 2024, for estimates of such biases

in Bangladesh). Following variables are then constructed from this data:

• FloodAreaSharert : It is the share of the flood-affected area of regency3 r in year

t. For a few cases where a regency witnessed multiple flooding episodes in a year,

this is the average of all those flood-affected area shares. As discussed earlier, this

variable captures the extent of geographic regions affected by a flood event, rather

than just the extent of inundation. Flood-affected area is usually larger than the

inundated area, and is a more relevant measure for studying the effect of flooding

on economic activities. Using inundation maps of individual flood events from

Tellman et al. (2021), I study the relationship between inundated area share and

flood-affected area share at the regency level for these specific events using both

non-parametric and parametric methods.4 Table 1.4 in the Appendix report mea-

2. MODIS is well-suited for detecting large, slow-moving flood events but has limited capacity to re-
solve urban floods.

3. A regency is an administrative level-2 unit located within a province in Indonesia. As of 2020, there
were 34 provinces containing a total of 522 regencies. However, many of these provinces and regencies
were born out of administrative divisions among the existing ones through the years 1990-2010. Since
the analysis starts in 1990, I merge some of these divisions to be representative of the 1990 administrative
boundaries. Moreover, I drop four provinces on the Eastern islands namely, Papua, Papua Barat, Maluku,
and Maluku Utara, as these provinces are sparsely populated by mainly indigenous tribes, and are predomi-
nantly engaged in activities such as forestry and fishing. After implementing all these changes, the analysis
is representative of approximately 270 regencies that cover the entire economic map of the Indonesian
archipelago.

4. Several areas within a regency could not be observed due to cloud cover on some days. In addition,
to prevent misclassification of terrain shadows as water, areas with gradient larger than 5◦ were masked out
in the maps. This means that the flooded area share is calculated out of the observed pixels, which do not
necessarily cover the whole regency. Flooded areas would also be missed if they happen to lie within the
masked areas.
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sures of association between the two variables using two non-parametric methods

and a regression analysis. Column 1 reports the Kendall’s Tau-b coefficient and

Column 2 reports the Somers’ D coefficient, both of which range from -1 (perfect

inversion) to +1 (perfect agreement), with 0 indicating no association. Clearly,

the two variables are positively related. Using estimates of regression analysis re-

ported in Column 3, a unit increase in flooded area increases the flood-affected area

by 1.42 units.

• FloodDaysSharert : It is the share of days in year t that a regency r remains affected

by flooding. It is calculated using the total duration (end date - start date + 1) of all

flood events in a year. In most cases, these dates are derived from news reports. In

a few cases for which beginning dates could not be determined, the starting dates

are assumed to be the 15th day of the respective months.5 Ending dates can either

be exact, based on dates on which flood water starts to recede as per the news

reports or estimated, based on a qualitative judgment concerning the flood event.

Najibi and Devineni (2018) analyzed the issue of misreporting of duration using all

flood events in the DFO catalogue for 1985–2015 time period. Their comparative

analysis using the in situ streamflow observations obtained from the gauge stations

suggests that the flood duration data from DFO is reliable and does not suffer from

misreporting issues.

Figure 1.19 in the Appendix shows the distribution of above variables by pooling all

regency-year observations used in the analysis. Flood index is then generated by taking

a simple product of the above two variables and rescaling the product by its maximum

value so that it lies in the interval [0,1]. Thus, the index provides a measure of the inten-

sity of floods by capturing both the spatial and temporal extents of each flood episode.

Considering the spatial and temporal extent of flooding helps capture aspects of flood

risk that both affected and unaffected firms may internalize in their decision-making.

5. Only around 2.5% of the flood events that occurred in Indonesia during the 1985-2012 period have a
starting date as the 15th day of a month.
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This approach acknowledges that firms, regardless of direct impact, could adjust their

decisions based on the potential threat posed by flooding in their locations over time. As

shown in Figure 1.20 in the Appendix that includes all regency-year pairs (even those

without floods), the flood index has a Pareto-like distribution with a long tail of extreme

values. This is intuitive since extreme flood events are rare. Table 1.5 reports the sum-

mary statistics on the flood index by utilizing only those regency-year pairs for which

the index takes non-zero values. In the reduced-form analysis, the 25th, 50th, 75th, and

90th percentiles are used to capture and report the differential effects of flooding across

various intensities. For example, at the 50th percentile, the estimated coefficients would

represent the relationship between an outcome variable and a flood event at the median

intensity level, an event more severe than 50% of all observed flood events in Indonesia

from 1990 to 2012.

1.2.2 Information on Manufacturing Establishments

Data on the manufacturing establishments is obtained from the Annual Census of Medium

and Large Manufacturing Establishments in Indonesia, also known as Statistik Industri.

This data collection exercise was initiated by the Government of Indonesia in 1975 to sur-

vey all the manufacturing establishments with twenty or more workers annually. The cen-

tral statistical agency, Statistics Indonesia, manages the collection and distribution of this

data across different public departments and research organizations. Statistics Indonesia

sends a questionnaire (asking details about previous year’s operations), containing 150+

questions in a typical year, annually to all registered manufacturing establishments. In

case of no response, field agents attempt to visit these establishments to either encourage

compliance or confirm that the establishment has ceased operations (Blalock and Gertler

2008).

The establishment-level data include information on industrial classification (5-digit

ISIC), first year of commercial production, ownership structure, assets, income, output,

value-added, expenses, capital stock, and other specialized information specific to a year
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for each establishment.6 The main variables used in the analysis include measures on

value-added, capital stock, labor employment, age (based on reported birth year), and

location (regency where plant is located). All monetary variables are reported in nominal

terms and are deflated using the wholesale price index at the 5-digit ISIC level to obtain

their real values. Establishments are expected to report both market and book values of

their capital stock, broken down by categories such as land, buildings, and equipment.

However, book values are missing for most observations, and not all categories of capital

are consistently reported over time. Therefore, I use the market value of capital stock in

all cases, unless it is unavailable and the book value is reported for those observations.

All variables are winsorized at the 1% level on both the lower and upper tails each year to

help mitigate potential measurement error concerns. To prevent compositional changes

across variables from influencing the estimates, I include only plant-year observations

with complete data on all three variables viz., value added, total capital stock, and labor

employment after the final data cleaning step. Finally, I exclude all state-owned estab-

lishments, which represent less than 3% of the total establishments in any given year, to

avoid potential bias related to the implicit government insurance available to this group.

In a typical year, around 21,000 establishments are surveyed, with locations identified

up to the regency where they are located. This establishment-level data is representative

of firm-level analysis, as more than 95% of surveyed establishments are single-branch

entities. Therefore, hereafter, I use the term “firm” instead of establishment to refer

to these manufacturing enterprises. Although these firms represent only about 2% of

the total number of manufacturing firms operating in Indonesia in any given year, they

contribute approximately 80% of the total value-added in the country’s manufacturing

sector. In terms of spatial distribution, these firms are primarily concentrated on the

6. Statistics Indonesia checks the reported values for inconsistencies and missing values and tries to
make in-house corrections and imputations using the previous rounds of data before releasing it to the
users. I do some additional data cleaning to match location identifiers consistently across years, impute
some variables to correct for non-reporting in just one or two years, fix outliers identified at the firm and
industry levels by interpolating between years, and fix a few obvious mistakes made in the data entry
process.
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southern islands of Java and Sumatra, where flooding episodes are also more frequent

and intense (Asian Development Bank 2019).

1.3 Reduced-form Evidence

This section presents reduced-form results on the immediate impact of floods on aggre-

gate and firm-level value-added, capital stock, and labor employment. It then examines

the extensive margin by estimating the impact of flooding on firm entry and exit. Given

the unique setting in this study where manufacturing hubs, primarily located in the flood-

prone regions, contend with recurrent large flood events, it becomes challenging to isolate

and interpret the long-run impact of individual flood occurrences without introducing po-

tential biases.7 Therefore, to examine the long-run consequences of flooding in such a

context, one could use some kind of cumulative measure of flooding that integrates floods

over an extended period of time. However, the focus of this chapter is on estimating the

contemporaneous effects of flooding and learning about firms’ reaction towards regional

flood risk. Therefore, one such analysis is included in the Appendix Section 1.8 where I

estimate the effects of cumulative flood innovations on economic variables.

1.3.1 Effect of Flooding on Economic Variables

Econometric Model

I estimate the contemporaneous effects of flooding on aggregate (sector-regency) out-

comes i.e., logarithm of total (labor share-weighted) value-added, capital stock, and labor

7. Figure 1.21 in the Appendix shows that most of the regencies located on the islands of Java and
Sumatra, which account for more than 95% of the manufacturing value-added, are affected by a large
flood every alternate year. Figure 1.22 in the Appendix shows the effect of the first flood on the logarithm
of aggregate value-added, capital stock, and labor employed using the imputation-based difference-in-
differences estimator proposed by Borusyak, Jaravel, and Spiess (2024). The estimated coefficients are not
only less representative and far from what I would want to estimate but are also difficult to interpret. This
is because the focal manufacturing regencies are not represented in the estimation of most of the dynamic
effects coefficients as they get dropped too early because of the immediate second flooding episode.
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employed at sector-regency level using the following specification:

ysrt = υ +β
JFloodJ

rt +ζr +νst + εsrt (1.1)

where, ysrt is the logarithm of total (labor-share weighted) value-added, capital stock, or

labor employment in sector s located in regency r in year t. FloodJ
rt is a dummy variable

that is assigned value 1 when the flood index in a regency-year exceeds the Jth percentile

value for each J ∈ {25,50,75,90}. Therefore, β J captures the effect of Jth percentile

flood on ysrt . ζr controls for time-invariant regency level characteristics, such as pre-

existing differences in flood exposure and industrial settlements across regencies. νst

controls for sectoral growth over time, where s denotes 2-digit ISIC sector. Where appli-

cable, the outcome variables have been deflated by using 5-digit ISIC industry wholesale

price index, and trimmed by 1% on both the tails for each year before being collapsed at

the aggregate level.

Next, I conduct the firm-level estimation using the following specification:

yisrt = υ +β
JFloodJ

rt + ιXisrt +ζi +νst +ψpt + εisrt (1.2)

where, yisrt is the logarithm of value-added, capital stock, and (permanent and temporary)

labor employed for firm i, belonging to sector s, located in regency r, in year t. FloodJ
rt

has the same definition as earlier. Xisrt includes time-varying, firm-level controls. Given

the extensive impact of floods on firms, there are few suitable candidates for valid control

variables. Consequently, only the logarithm of firm age and its squared term are included

as firm-level controls. Firm fixed effects are controlled for as represented by parameter

vector ζi. Similar to Equation (1.1), sector × year fixed effects are included. Since spatial

margin is a key component in the flood index, with more statistical power available,

province × year fixed effects denoted by ψpt are also included to control for removing

differential geographic trends in flooding and outcome variables. In both estimations,

control observations are defined by regency-year pairs that are not affected by flooding,
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meaning that the flood index is zero for control observations.

Different manufacturing sectors within the economy may be affected differently by

flooding, depending on their production characteristics, such as input mix. To examine

sectoral heterogeneity in the impact of flooding, I estimate an interaction version of the

firm-level specification. This involves interacting the 2-digit ISIC sector dummies with

flood dummies for different percentiles. The resulting specification is as follows:

yisrt = υ +β
JFloodJ

rt + γ
J
s 1{Sector = s}×FloodJ

rt + ιXisrt +ζi +ψpt + εisrt (1.3)

Here, γJ
s captures the estimated effect of the flood dummy J on firm-level economic

variables, while all other symbols retain the same definitions as in Equation (1.2). When

presenting the results, I report the combined main and interaction effects, that is, β J +γJ
s .

Results and Discussion

Figure 1.4 reports the results from estimating Equation (1.1). The contemporaneous ef-

fects of flooding on aggregate value-added (left), capital stock (centre), and labor em-

ployed (right) are negative, and the effects become stronger as the flood intensity in-

creases. A 90th percentile flood is associated with 20%, 25%, and 15% decline in the

sector-regency value-added, capital stock, and labor employment respectively.8

Figure 1.5 reports the results of estimating the firm-level specification outlined in

Equation (1.2). Keeping everything else constant, a 90th percentile flood leads to a 5.7%

decrease in the firm-level capital stock. While permanent labor employment does not

respond to flood shocks, firms tend to increase their hiring of temporary workers during

flood events. In addition, the effects on capital are driven by a few fixed capital categories,

as reported in Figure 1.6.9 The estimates indicate that the negative effects on the total

8. Though most of the regencies are observed for the entire 23 years of study period, to avoid com-
positional changes driving the estimates, I conduct a robustness check by using only those regencies for
which at least 20 years of data are available. Results are robust to using this more balanced sample, and is
reported in Figure 1.23 in the Appendix.

9. As mentioned in the data section, the reporting on different capital categories is not consistent over
time, so the number of observations used in the estimation of coefficients are different across the four
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capital stock are primarily driven by structures and land, which are more susceptible

to lose their values due to the anticipatory effects of flooding, as firms preemptively

reduce investments in response to the expected flooding. In contrast, machinery and

other equipment, which are more vulnerable to the direct destruction effects of flooding,

do not respond significantly to floods. This suggests that the perceived risk of flooding

instead of actual flood shocks could be more important for capital investment decisions.10

The temporal resolution of the analysis may also influence these results. Firms may

be able to quickly rebuild some of their destroyed capital within a year, meaning such

effects may not be captured in the annual analysis. There is evidence suggesting that

firms often return to their initial production levels relatively quickly after floods (see,

for example, Balboni, Boehm, and Waseem 2023, which examines firm responses to

flooding in Pakistan). However, the impact on the capital stock in these cases remains

unclear. Even if firms can quickly replace some of their damaged capital, the remaining

capital that remains affected over a longer time horizon would influence the long-term

development trajectory.11

Figure 1.7 reports the results of the heterogeneity analysis across sectors by esti-

mating Equation (1.3) for the 90th percentile flood dummy.12 The findings reveal two

key patterns. First, the sector-specific results are qualitatively consistent with the overall

trends shown in Figure 1.5, indicating that a typical firm experiences a decline in cap-

ital stock and increases temporary labor hiring after floods. Second, capital-intensive

sectors—such as food processing, iron and steel, and ceramics, glass, and clay prod-

ucts—exhibit a more significant reduction in capital stock. This suggests that the impact

of flooding on the capital margin is particularly pronounced in sectors that depend heavily

categories.
10. Similar to the aggregate results, firm-level results are robust to using a more balanced sample. Results

using only those firms for which data is available for at least 20 years are reported in Figure 1.24 in the
Appendix.

11. In 2023, 2,955 firms across the manufacturing, services, and retail sectors were surveyed in Indonesia
between December 2022 and September 2023. Approximately 16% of these firms reported being impacted
by a natural disaster during that period, but only about one-fourth of the affected firms experienced damage
to their physical assets. Source: World Bank Enterprise Surveys, www.enterprisesurveys.org.

12. Results for flood dummies at other percentiles are provided in the Appendix.
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on capital for their production processes.

1.3.2 Effect of Flooding on Firm Exit and Entry

Changes in the number of operational firms across years would contribute to the effects of

flooding on aggregate economic variables. For example, reduced entries and/or increased

exits could explain the negative effects obtained. Similarly, sample attrition owing to

exiting firms could potentially bias the firm-level results. Firms that survive negative

shocks, such as floods, are not only more adapted to deal with these shocks but are also

more adept in their operations.13 Therefore, if some small and less efficient firms are

shutting down after floods, then the firm-level estimates are the lower bounds of total

effects.

Econometric Model

To estimate the contemporaneous effect of flooding on firm exit, I employ the following

econometric specification on the firm-level data:

yisrt = υ +β
JFloodJ

rt + ιXisrt +ζr +νst +ψpt + εisrt (1.4)

where yisrt is an exit dummy for firm i, belonging to 2-digit ISIC sector s, located in

regency r, in year t and other terms have the same interpretation as the previous specifi-

cations.14

Results and Discussion

The left plot in Figure 1.8 reports the results of estimating Equation (1.4) on all the firms

in the data. The results suggest that floods are not associated with firm exits. This might

13. Figure 1.28 in the Appendix suggests that exiting firms, on average, have lower value-added, capital
stock, and labor employment, compared to both new entrants and survivors.

14. The exit dummy is an “implied” variable in the sense that they are backed out from the longitudinal
observation of a firm in the data. A firm’s last year in the data is taken as its exit year.

29



not be a surprising result considering that the sample comprises of medium and large

manufacturing firms that are likely more adept at dealing with such shocks. Null results

on the exit margin also indicate that the biases introduced in the previous analysis on

firm-level variables are small.

The right plot in Figure 1.8 reports the results from estimating Equation (1.1) on the

logarithm of number of new firms entering into a sector-regency in a given year. A 90th

percentile flood leads to a 20% reduction in the number of new firms entering in a sector

within a regency. This evidence suggests that firms avoid flood-affected regencies when

setting up their operations.15 Entry is typically a costly decision requiring investments,

so firms would typically enter if they expect to make some profits net of entry costs.

However, the results on entry indicate lack of good foresight on floods, as firm entry is

reduced in the year of flooding. This very fact motivates the modeling assumptions in

the firm entry part of the theoretical framework, in particular, an entrant’s decision to

enter depends on its expected profits in the current period only. Additionally, similar to

the findings related to capital, these extensive margin results point towards the role of

perceived flood risk at the firm level due to the evolving distribution of flood shocks.

1.3.3 Scope of the Reduced-form Approach and Way Forward

The reduced-form findings capture both the elements of destruction by flooding and an-

ticipation due to the evolving flood risk across regencies. Firms located in regencies

where floods are more persistent will take more anticipatory actions aimed at mitigat-

ing the effects of flooding, thereby reducing the actual destruction resulting from floods.

Therefore, the reduced-form approach fails to offer a framework for understanding the

mechanisms leading to the impact, particularly in linking to the literature on misalloca-

15. I validate this result using a more direct measure of flood risk made available for year 2013 by Indeks
Risiko Bencana Indonesia (IRBI). I use regency-level average flood index (over the period 1990-2012) and
the flood risk data available for the year 2013 to estimate their impact on average firm entry rate and firm
entry rate in 2012 respectively by employing the specification: yr = υ +βFloodr +εr. Entry rate is defined
as the count of new firms in the current year over the total count of firms in the previous year for a given
regency. Table 1.6 in the Appendix suggests that regencies with high flood index and high flood risk profile
witness lower firm entry rates.
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tion. The capital installation decisions are usually taken well in advance of such shocks,

and firms can use some available signals on these shocks to inform their decision on the

current level of capital to install. In addition, the approach becomes unreliable for investi-

gating some sources of heterogeneity across firms that could drive the impact of flooding.

Since floods are evolving shocks that are heterogeneous across space, any policy analysis

would be considered incomplete without the evaluation of meaningful counterfactual sce-

narios beyond the existing flood experiences. A model-based approach could potentially

address some of these issues.

To get to the anticipatory element of flood shocks, I exploit the uncertainty that firms

face due to regional flooding when choosing the optimal capital to install in a given pe-

riod. Capital installation decisions are taken in anticipation of floods experienced by

the regencies where firms are located. This generates a time-varying flood risk variable,

which vary across regencies and also across industries located within a regency. Model-

ing floods in this manner links them closely with the firm’s production enterprise, thereby

offering a microfoundation for understanding how perceived flood risk interacts with firm

behavior.

The share of installed capital that can be utilized in a regency in a given year is proxied

by the firm-level production capacity utilization (PCU) for that year. PCU is the percent-

age of available production capacity that a firm is able to utilize in a given year.16 Figure

1.9 reports the results of estimating Equation (1.2) with PCU as dependent variable; a

90th percentile flood is associated with a 3.6% decline in the firm-level PCU.17 There-

fore, the empirical distribution of firm-level PCU could be used to calibrate a measure of

flood risk, which captures the anticipatory effects of flooding on firms. Unlike other mea-

sures of flood risk that are generated using climate and atmospheric models and might

16. Figure 1.29 shows that the share of firms reporting lower PCU levels tend to be higher in the flood-
prone regencies, thereby providing a suggestive evidence for the impact of flooding on PCU.

17. There are some firm-year observations that report zero capacity utilization even when the output is
non-zero. Since the data primarily comprises of manufacturing firms, it is less likely that they engage in
other businesses to generate output, therefore, these observations could be excluded from the estimation.
The reported estimates use all available observations, but the results remain qualitatively unchanged if
those observations are excluded.
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not capture local conditions, this measure is informed from the firm-level decisions itself,

and is therefore more relevant for studying the effects of flooding on firms. Given that

capital installation decisions are made in anticipation of current flooding, firms account

for flood risk when choosing the optimal level of capital. Firms located in flood-affected

regencies are able to utilize a lower share of their installed capital, which in turn impacts

the level of capital that they install to start with. The potential entrants in these markets

face similar constraints due to the stochastic nature of flooding and their entry decisions

are driven by expected profits. Below, I propose a model with heterogeneous firms to

study the effects of flood risk and flood shocks on the production side of the economy.

1.4 Theoretical Framework

The multi-sector, multi-region general equilibrium model captures the interaction be-

tween regency-level flooding and firm-level economic variables. Central to the model are

parameters that account for flood exposure at the regency level and firm selection based

on the idiosyncratic productivity that each firm is endowed with. The investigation of

the impact of flooding on firms employs a within production function approach in which

anticipation of floods affect firms’ optimal capital installation decision. Specifically, in-

cumbent firms internalize the constraint that flooding at their location will render only a

fraction of their installed capital usable in each period. Firms are modeled as risk-neutral

agents, so only the expected values of these shares matter for their decision-making. The

flood risk arising from the anticipatory element of flooding also varies by industries, in

particular, the capital intensity of their respective production technologies. Firms are

price-takers, taking wages and rental price of capital as given. The fixed differences in

productivity across firms, combined with decreasing returns to scale, generate rents for

individual firms. Consequently, even though all firms within a sector are price-takers and

produce a homogeneous product, the equilibrium features a distribution of firms differ-

entiated by their idiosyncratic productivity levels.
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On the extensive margin, firm entry is affected by flood risk. Each firm is born with

an idiosyncratic productivity that remains constant over time. To enter a market and start

production, each firm pays a one-time fixed cost. Entrants use their expected profits for

the current year to decide if they should enter the market. This structure on entry decision

generates firm selection, where only firms with large enough productivity decide to enter

into a sector within a region.

Below is a schematic life-cycle diagram of a typical firm in the model that is born at

t = 0 and has options to either stay out of market or pay a one-time fixed cost f to be able

to choose the capital stock for period t = 0. The flood shock is then realized, and the firm

chooses the flexible input, labor, to produce output in period t = 0. This three-step cycle

of capital installation, flood shock realization, and flexible labor choice continues in this

order with probability (1− δ ), as the firm can exit the market with probability δ in any

period t ≥ 0 for some exogenous reasons.

t = 0 t ≥ 0

Firm is born with θ

Stays out

Pay f
Choose K

x realize
Choose L Produce Y

δ

1−δ

Exit

1.4.1 Technology

The production technology of a risk-neutral firm i located in regency r at time t is Cobb-

Douglas in labor L and capital K, with the sector-specific output elasticity of capital and

returns to scale parameters denoted by αs and ηs respectively. The firm can only utilize a

stochastic share xit ∈ [1,∞) of the installed capital because of floods at time t, so it forms

expectations on this random variable. Idiosyncratic productivity θ remains constant over

time and has an ex-ante regency-specific distribution with c.d.f. (p.d.f.) denoted by Hr

(hr), which has full support in the domain [1,∞). The production function is defined as
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below:

Yit(θ ,x,K,L) = θi

{(
Kit

xit

)αs

L1−αs
it

}ηs

(1.5)

Labor hiring decision is made after the realization of xit , so the labor demand adjusts

flexibly based on the capital input demand and the realized value of xit . Firms take prices

as given, so with wage rate wt , the optimal choice of labor after maximizing the profit

function can be written as follows:

Lit(θ ,x,K,w) =
{

wt

(1−αs)ηsθi (Kit/xit)
αsηs

}− 1
1−(1−αs)ηs

(1.6)

Putting the optimal labor choice above back into the production function, the firm-level

conditional (on capital) profit function can be written as follows:

πit(θ ,x,K,z) = Γit

(
Kit

xit

) αsηs
1−(1−αs)ηs

(1.7)

where Γit(θ ,w) ≡ [1− (1−αs)ηs]θ
1

1−(1−αs)ηs
i

{
wt

(1−αs)ηs

}− (1−αs)ηs
1−(1−αs)ηs is the product of ag-

gregate, sector-, and firm-level parameters. zt denotes the input price vector (wt ,ρ).

Firms make their decision on the optimal capital to install before xit is realized, so being

risk-neutral, they maximize expected profits when making this choice under uncertainty.

1.4.2 Flood Shocks and Flood Risk

Firms anticipate flood shocks in a given year and choose capital accordingly. Firms

internalize the fact that flooding can reduce the share of installed capital that they could

utilize in a given year. Firms do not know this share precisely but have knowledge of the

distribution from which the share is drawn. By maximizing the expected profits, firms

choose the optimal capital to be installed in each period.

The share variables, x∈ [1,∞), follow Pareto distributions with time-varying, regency-
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specific shape parameters φrt . The general form of the distribution is as follows:

Grt (x) =


1−
(

1
x

)φrt

x ≥ 1

0 x < 1

The above assumption on the distribution of flood impact on firms is natural and is moti-

vated by the fact that some regencies are more flood-prone than others. Firm’s expected

share of capital that they can utilize in a given year would be lower for those regencies

that experience more extreme flood events i.e., regencies with heavier Pareto tails.

Capital is perfectly mobile, so the rental price of capital ρ , does not vary across regen-

cies. This assumption is made because the central bank of Indonesia, Bank Indonesia,

sets a national interest rate that influences lending rates across the country. Integrated

financial markets within the country ensure that the no-arbitrage condition holds, lead-

ing to convergence of interest rates across regions.18 Going back to the profit function

defined in Equation (1.7), the net expected profit function can be written as follows:

Πit(θ ,x,K,z) = ΓitE

[(
Kit

xit

) αsηs
1−(1−αs)ηs

]
−ρKit (1.8)

Using the distribution function of share variable defined above, the objective function for

the optimal capital can then be written as follows:19

Kit = argmax
{

ΓitτsrtK
αsηs

1−(1−αs)ηs
it −ρKit

}
(1.9)

where τsrt(φ)≡
φrt

φrt+αsηs/(1−(1−αs)ηs)
is a measure of flood risk, which captures

distortions introduced in capital decisions due to flooding. This measure at the sector-

18. There could still be some regional differences in the price of capital due to a multitude of factors,
including regional flood risk. Ridhwan et al. (2012) show the map of these differences for rural and regional
bank interests rates for the period 2000-08. First, the total assets held by these two categories of non-central
banks combined is less than 10% of the total assets in the Indonesian banking industry (Financial Services
Authority of Indonesia 2024). Second, the spatial pattern of deviations in interest rates reported in Figure
1 of Ridhwan et al. (2012) does not correspond to the pattern of flooding shown in Figure 1.1.

19. Detailed derivations are shown in the Appendix Section 1.10
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regency level account for both the spatial differences in flood exposure and the differ-

ences arising due to sectoral characteristics, in particular, heterogeneity in capital inten-

sity across industries. Note that τsrt is an increasing function of φrt , but decreasing in ηs

and also αs in case of a decreasing return to scale technology.20 Also, by the properties of

Pareto distribution, increasing φrt decreases the probability of realization of larger values

of xit , that is, increases the probability of observing higher shares. Therefore, regencies

experiencing more extreme floods on average, would have lower values of respective tail

parameters. Finally, solving for the optimal capital choice using Equation (1.9) delivers

the equilibrium value of capital installed as outlined below:

Kit(θ ,φ ,z) =
αsηs

ρ
τ

1−ηs+αsηs
1−ηs

srt Λstθ
1

1−ηs
i (1.10)

where Λst(z) ≡
{

wt
(1−αs)ηs

}− (1−αs)ηs
1−ηs

{
ρ

αsηs

}− αsηs
1−ηs is the product of aggregate and sector-

level parameters. To be precise, this is the stock of capital installed by a firm, but the

amount capital that is eventually utilized will depend on the realization of xit . More

precisely, the part of capital stock that is utilized in production will be (Kit/xit), as the

remaining capital gets destroyed in flood. Using Equation (1.6), the equilibrium value of

labor demanded can then be written as follows:

Lit(θ ,φ ,z,x) =
(1−αs)ηs

wt
τ

αsηs
1−ηs
srt Λstθ

1
1−ηs

i x
− αsηs

1−(1−αs)ηs
it (1.11)

Due to the multi-stage setup that firms use for choosing inputs within a period, the ex-

ante (before realization of flood shocks) values of output and profit would differ from the

respective ex-post (after realization of flood shocks) values. However, the entry decision

of new firms will be based on the expected value of profit. Below are the expected values

20. The setup is similar to Lucas (1978) in which the source of decreasing returns is managerial limits on
the production side. Alternatively, the origin of decreasing returns could be on the demand side as shown
in Hopenhayn (2014). The equivalence of results obtained from these two different approaches can be
ensured by calibrating the demand elasticity, ε , in the latter to be equal to (1/(1−η)).
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of output and profit in equilibrium:

Yit(θ ,φ ,z) = τ

αsηs
1−ηs
srt Λstθ

1
1−ηs

i (1.12)

Πit(θ ,φ ,z) = [1− (1−αs)ηs −αsηsτsrt ]τ
αsηs
1−ηs
srt Λstθ

1
1−ηs

i = [1− (1−αs)ηs −αsηsτsrt ]Yit

(1.13)

1.4.3 Firm Entry and Exit

Firm exit from the market is simple in that it is assumed to be exogenous and is param-

eterized by a constant probability of exit δ , which is independent of sector-, regency-,

and firm-level variables.21 The entry decision of firms has more subtleties involved. The

pool of potential (identical) entrants is unbounded. Each entrant is born with a (con-

stant) idiosyncratic productivity θ , which is drawn from a common regency-specific,

time-invariant distribution Hr(θ). A potential entrant decides to stay out of the market

in any given year if its productivity is too low. It is because each potential entrant needs

to pays a one-time fixed cost, f to enter the market. Therefore, an entrant in period t

would have its expected profit in period t exceed the fixed cost of entry. This generates a

time-varying sector-region cutoff productivity θ ∗
srt , below which potential entrants do not

enter into sector s within regency r in year t. Combining all of the above, the expected

net profit function of a potential entrant i at time t can be written as follows:

σit(θ) = max{0,Πit(θ)− f} (1.14)

where Πit(θ) is the expected profit function defined in Equation (1.13).

21. Once a firm has entered, it cannot endogenously exit the market. Equation (1.13) supports this
assumption as follows. A firm can exit if its profit becomes negative in any period i.e., 1− (1−αs)ηs −
αsηsτsrt < 0, but this is not plausible in a decreasing returns to scale technology, where η < 1.
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Aggregation

Owing to the above entry and exit dynamics, the equilibrium productivity distribution,

µsrt(θ) could differ from the ex-ante distribution, hr(θ). However, the exogeneity of

exit decisions ensures that it does not affect the equilibrium distribution. In addition,

all entrants with θ < θ ∗
srt stay out of the market, so the equilibrium distribution depends

only on the productivity of entrants. That is, the equilibrium productivity distribution is

a truncated version of the ex-ante distribution, as outlined below:

µsrt (θ) = hr(θ |θ ≥ θ
∗
srt) =


hr(θ)

1−Hr(θ ∗
srt)

θ ≥ θ
∗
srt

0 θ < θ
∗
srt

(1.15)

where the probability of successful entry into sector s in regency r is pe
srt ≡ 1−Hr(θ

∗
srt).

22

Studies have shown that the Zipf’s law seems to be an empirical regularity for the

firm size distribution; the results get even tighter at the upper tail, which tends to be

well-approximated by a Pareto distribution (Geerolf 2017).23 Using this information, the

distribution of productivity is assumed to have the following form:

Hr (θ) =


1− (θ r/θ)ξ

θ ≥ θ r

0 θ < θ r

where θ r is a regency-specific scale parameter that reflects the spatial differences in firm

productivity. For example, a firm born in Jakarta might be more or less productive due to

competing agglomeration and congestion externalities existing there. Without firm entry

and exit, the equilibrium productivity distribution is same as the initial distribution, hr(θ).

But when firms are allowed to enter and exit the markets, the equilibrium distribution

takes the form defined in Equation (1.15). I now define the expected aggregate output

22. Hopenhayn (1992) discusses the assumptions under which law of large numbers could be applied to
determine the equilibrium distribution, µsrt(θ) from the initial distribution, hr(θ).

23. Since, the data comprises only of medium and large manufacturing firms, the Pareto assumption on
firm productivity distribution is even more innocuous.
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for sector s in regency r at time t, Y srt ≡
∫

∞

θ∗
srt

Yit(θ)µsrt(θ)dθ , which is a total weighted

output of all surviving firms, where the weights are mass of firms at each productivity

level in the equilibrium distribution. Combining the definition of equilibrium distribution

from Equation (1.15) with the firm-level expected output defined in Equation (1.12), the

expected aggregate output can be written as follows:24

Y srt = τ

αsηs
1−ηs
srt

ξ (1−ηs)

ξ (1−ηs)−1
Λst (θ

∗
srt)

1
1−ηs (1.16)

The only parameter restriction that needs to be imposed here is that (ξ (1−ηs) > 1),

which, as would be seen later in the estimation part, is true for all the 3-digit ISIC man-

ufacturing sectors in the economy. Also, since (θ ∗
srt > 1) and (ξ > 0), given constant

wages, the expected aggregate output and thereby expected aggregate profit increase af-

ter considering the firm selection above. Similar to the above, expressions for all other

expected aggregate variables could be derived using Equations (1.12) and (1.13)

One key object is the cutoff productivity θ ∗
srt , which is the productivity of least pro-

ductive firm deciding to enter into sector s in regency r at time t. This can be pinned

down using the firm-level expected profit function as described next.

Zero Cutoff Net Profit Condition

Each entrant needs to pay a one-time fixed cost, f to enter into any market. This fixed

cost can be thought of as a permit or license fee that each new firm needs to pay to a

centralized authority. An entrant would be willing to pay this fee if it can make a non-

negative expected net profit, that is, the cutoff productivity, θ ∗
srt ≡ inf{θ : σit(θ)> 0},

where the net expected profit of entrant is defined in Equation (1.14). Using the firm

profit function defined in Equation (1.13) delivers the expression for cutoff productivity

below:

θ
∗
srt =

 f

[1− (1−αs)ηs −αsηsτsrt ]τ
αsηs
1−ηs
srt Λst


1−ηs

(1.17)

24. The intermediate steps for getting to this final expression are outlined in the Appendix Section 1.10.
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Keeping wages fixed, θ ∗
srt is a decreasing function of τsrt ,25 so, the cutoff productivity

level is larger for more vulnerable sectors and flood-prone regencies, that is, the idiosyn-

cratic productivity needs to be high enough for firms belonging to these sectors if they

intend to establish operations in the flood-prone regencies, thereby suggesting that the

firm selection effects would be stronger in these cases.

1.4.4 Equilibrium

The definition of equilibrium is standard, with the labor market clearing at the aggregate

level each year. Like capital, labor is mobile across regencies, so wages are constant in

space, but they do adjust over time in response to flooding. Therefore, the equilibrium is

pinned down by the wages wt and the cutoff productivity levels θ ∗
srt . The aggregate labor

endowment, L is assumed to be exogenous and constant over years. The labor market

clearing condition delivers the equilibrium wage equation as follows:26

wt =
f
L

R

∑
r=1

S

∑
s=1

(1−αs)ηsτsrt

1− (1−αs)ηs −αsηsτsrt

ξ (1−ηs)

ξ (1−ηs)−1
(1.18)

It is easy to see that wages increase when the fixed cost of entry rises. It is because

with increase in the fixed cost, the firm selection also gets stronger, that is, fewer and

more productive firms are able to enter the markets. Since, the marginal product of labor

depends on firm’s productivity, when labor is reallocated to higher productivity firms,

the marginal product of labor increases. Thus, wages also rise to match this increased

marginal product in equilibrium.

Also, the sign of first derivative of wage equation w.r.t τsrt , which quantifies the over-

all effect of flooding for sector s located in regency r at time t, is positive. This means

that equilibrium wages go down as the impact of flooding increases. To get to the intu-

ition behind this result, first, remember that flood shocks reduce the utilization of capital

25. For this to hold with certainty, ηs needs to be smaller than unity, that is, the production technology
should have decreasing returns to scale.

26. Detailed derivation in the Appendix Section 1.10
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and that reduces the returns on capital in areas affected by flooding. In the model, firms

rely on both capital and labor to maximize output net of input costs. When capital is

less productive, the marginal productivity of labor also declines, since firms cannot use

labor as effectively without undistorted capital. This lower productivity reduces firms’

demand for labor at any given wage, as they need to scale down operations in response

to flooding. With a reduced demand for labor, the equilibrium wages undergo downward

adjustment to clear the labor markets. Wages also decrease due to an increase in flood

risk that is captured by a decline in τsrt . It is because with increased risk, less firms will

enter into these markets, decreasing the competition for labor, and eventually driving the

wages downwards to clear the labor market.

With the equilibrium wages in hand, using Equation (1.17), the equilibrium values

of cutoff productivity levels can be derived to follow the general analytical expression

below:

θ
∗
srt =

f 1−ηs

((1−αs)ηs)
(1−αs)ηs

(
ρ

αsηsτsrt

)αsηs

×
{

1
1− (1−αs)ηs −αsηsτsrt

}1−ηs

× f
L

{
R

∑
r=1

S

∑
s=1

(1−αs)ηsτsrt

1− (1−αs)ηs −αsηsτsrt

ξ (1−ηs)

ξ (1−ηs)−1

}(1−αs)ηs

(1.19)

The derivative of the above expression w.r.t. τsrt has a negative sign, thereby suggesting

that even after accounting for equilibrium wage adjustments, the cutoff productivity level

for entering into more vulnerable sectors located in flood-prone regencies needs to be

higher.

The set of parameters:
(
{{φrt}R

r=1}T
t=1,{αs}S

s=1,{ηs}S
s=1,ξ ,{θ r}R

r=1,ρ, f ,δ ,L
)

would

need to be estimated or calibrated to compute each equilibrium object in levels. However,

the subsequent analyses will require estimates for most—but not all—of these parame-

ters. Specifically, estimates for the last four parameters, which represent the rental price

of capital, fixed cost of entry, exit probability, and aggregate labor supply, will not be
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needed.

1.5 Estimation

This section describes the estimation of some of the parameters in the model. Table

1.1 reports the summary on these parameters along with the estimation and calibration

techniques employed.

1.5.1 Flooding Shape Parameters (φrt)

To estimate the shape parameters of the Pareto distributions of the share of installed

capital that can be utilized in a regency in a given year, I use the empirical distribution of

PCU for firms located in the regency in that year. One key advantage of using an objective

measure, such as PCU, is that it is immune to price changes and market adjustments due

to new firm entries. Other similar measures, such as output and value of capital stock,

would potentially be impacted by these equilibrium adjustments. Additionally, PCU is

a relative measure based on what firms were able to produce relative to what they had

planned in a given year, so it can be used as a proxy for flood shocks at the firm level.

With this, the maximum likelihood estimator of the shape parameter can be derived and

that has the following form:27

φ̂rt =
Nrt

∑
Nrt
i=1 ln(xit)

where xit is the reciprocal of PCU for firm i in year t and Nrt is the number of firms

located in regency r in year t. Under the assumption that firms’ expectations are informed

only by past events, one could alternatively use the past realizations of PCU to estimate

this parameter. However, the current realizations would have elements from the past

floods due to the auto-correlated nature of flood shocks. In the model, due to the multi-

stage decision process within a period, entrants would not know the realized flooding

27. Detailed derivation of the estimator is in the Appendix Section 1.10.
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before they enter nor the incumbents can choose capital under perfect information about

flooding.

Figure 1.10 shows the distribution of average (over years) estimated flood exposure,

φrt for each regency in the data. Due to the property of Pareto distribution, lower the

value of shape parameter, higher is the exposure of regency to extreme flooding. Clearly,

regencies in the West Java province, including Jakarta, are some of the most exposed

regencies in Indonesia.

Figure 1.11 shows the correlation between the average (over years) shape parameters

with the empirical flood index across regencies. The relationship is statistically signif-

icant and suggests that flood-prone regencies experience more severe flooding (thicker

Pareto tails) on average. Therefore, regency-level flood index and model-based flood

exposure are related, and the relationship is in the expected direction.

1.5.2 Firm Productivity Parameters (θ r,ξ )

I calibrate the scale parameter, θ r to match the logarithm of aggregate regency value-

added (akin to regional GDP) that is computed using the data I have on medium and

large manufacturing firms in Indonesia. The shape parameter ξ , is then estimated using

the following maximum likelihood estimator:28

ξ̂ =
Nr

∑
Nr
i=1 ln(θi/θ r)

where Nr is the number of firms in regency r and θi is the logarithm of average value-

added for firm i located in regency r. The point estimate is 4.514 with a robust standard

error of 0.0237.29

28. I use the logarithm of average value-added over the entire period for which a firm has been operational
in the data. This averaging exercise fixes each firm’s productivity to a constant, but alleviates some concerns
around measurement error in the reported figures.

29. One potential concern here could be that the equilibrium distribution, µsrt(θ), is related to the ex-ante
distribution, hr(θ), but it is not the same distribution. This issue becomes important when we are dealing
with small samples within sector-region pairs because the non-applicability of the law of large numbers
will not let us approximate the equilibrium distribution from the ex-ante distribution.
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Given that the production function parameters, αs and ηs are already estimated, one

could compute the Solow residuals as a measure of productivity. However, this approach

could be problematic for two reasons. First, flood risk can affect productivity. I follow an

approach that closely mirrors Besley, Roland, and Reenen (2020) to show that this case

does not arise here, owing to the aggregate nature of shocks. Second, measurement error

in firm-level data, especially with respect to capital, could severely bias the productivity

estimates (Collard-Wexler and De Loecker 2016). However, the impact of measurement

error on the estimates of production function parameters should be minimal due to their

aggregate nature.

The output share of firm i, belonging to sector s and located in regency r, κit ≡

Yit/Y srt , will be equal to the relative productivity of firm, ωit in a world without friction.

However, in the presence of distortions due to flooding, the relative productivity could

also change. Using Equation (1.12), the productivity terms can be written as follows:

θ

1
1−ηs

i =
Yit

Y srt

Y srt

τ

αsηs
1−ηs
srt Λst

Further, including the general expression for aggregate output in the above, one gets ωit

to be equal to κit . Therefore, productivity is not affected by flood risk.

1.5.3 Production Function Parameters (αs,ηs)

I employ the production function estimation approach using the technique proposed in

Levinsohn and Petrin (2003) for each 3-digit ISIC sector. The method uses similar iden-

tification ideas as in a control-function setup to address the issue of endogeneity of input

choices. Unlike the seminal work Olley and Pakes (1996), which uses investment as a

proxy to control for unobserved productivity shocks, Levinsohn and Petrin (2003) uses

intermediate inputs, such as materials or energy, as proxies for unobserved productivity

shocks. Intermediate inputs are often more flexible and can adjust more quickly to pro-

ductivity changes than investment, which also suffers from issues such as lumpiness in
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choice and a lot of zero entries in the data. In the estimation, logarithms of real value-

added, real capital stock, quantity of labor employed, and real material costs are used as

left-hand side, state, static input, and productivity proxy variables respectively.

Table 1.2 reports the computed production function parameters for each 3-digit ISIC

sector; some of the capital-intensive sectors are Industrial Chemical Products, Basic Iron

and Steel, and Machines and Repairs.30 With the production function parameters in hand,

I can compute the flood risk, represented by τsrt in Equation (1.9), for each sector within

a given regency. Figure 1.12 shows the distribution of average (over years and sectors)

flood risk across regencies. Lower value of flood risk point to larger capital distortions

caused by flooding. Additionally, the spatial distribution of flood risk has noticeable

differences from the flood exposure map shown in Figure 1.10, thereby highlighting sig-

nificant sectoral variations in industrial settlement patterns across regencies.

With the parameter estimates in hand, I show some analysis on flood risk and flood

shocks using the equilibrium conditions derived from the model. Due to the exogenous

nature of flood shocks, one could look at the effects of flooding on output both with and

without equilibrium adjustments. The next section delves into the details.

1.6 Analysis

This section delineates the results of the analysis conducted using the structure of model

and parameter estimates from the previous two sections. In the first part, I use the equi-

librium conditions from the model to disentangle the effects of flood and flood risk. Next,

I conduct a counterfactual analysis on flood defenses and disentangle effects due to dif-

ferent margins.

30. Table 1.7 reports the estimated output elasticities of capital and labor for each 3-digit ISIC sector.
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1.6.1 Flood Shocks and Flood Risk

In the model, flood risk directly affect the optimal capital installation decision, while

labor hiring decision is affected by flood shocks. However, the installed capital could

suffer destruction ex-post due to realized flood shocks. So, I can use the expressions for

firm-level equilibrium capital stock (accounting for destruction) and labor to understand

how each gets impacted by different elements of flooding. Taking logs of Equations

(1.10) and (1.11) delivers the following two equations:

lnKit = ln
(

αsηs

ρ

)
+ lnΛst︸ ︷︷ ︸

sector × year fixed effect

+
1−ηs +αsηs

1−ηs
lnτsrt +

1
1−ηs

lnθi︸ ︷︷ ︸
firm fixed effect

lnLit = ln
(
(1−αs)ηs

wt

)
+ lnΛst︸ ︷︷ ︸

sector × year fixed effect

+
αsηs

1−ηs
lnτsrt +

1
1−ηs

lnθi︸ ︷︷ ︸
firm fixed effect

− αsηs

1− (1−αs)ηs
lnxit

One could compute the coefficients on τsrt and xit directly using the estimated parameters

but it would be subject of endogeneity concerns. Therefore, to estimate the elasticities

of capital and labor with respect to flood risk and actual flood shock, I employ the fol-

lowing econometric specifications based on the above two equations, accounting for the

destruction effect of flood shocks on capital:

lnKit = νst +β
K lnτsrt +ζi + γ

K lnxit + ε
K
it (1.20)

lnLit = νst +β
L lnτsrt +ζi + γ

L lnxit + ε
L
it (1.21)

In the above specifications, τsrt is a measure of flood risk. The reason why this variable

captures only flood risk and not the combined effects of flood risk and actual flooding

is that it reflects average disruptions in production capacity under expected flooding.

Therefore, the effect of flood risk is identified by the cross-regency differences in the

mean probability of flooding, while the effects of actual flood shocks uses the variation

induced by annual flood events. There is a plausible endogeneity concern with this setup
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if PCU is itself influenced by labor and capital levels. For example, firms with less la-

bor or capital might experience less or more production disruptions during floods, which

would impact capacity utilization. One way to address this concern is to instrument the

flood risk and actual flooding with some relevant objective measures of flooding. For

example, flood index could be a potential IV in this case. However, as discussed in the

reduced-form section, flood index potentially captures both the effects, so it will not be

a valid IV for either of the two variables. It is also a coarser variable as it only varies

across regencies over time, so the analysis could potentially suffer from weak instrument

problem (Angrist and Pischke 2009). To partially alleviate the concerns around endo-

geneity, I look at whether there is heterogeneous effect of flooding on PCU due to the

firm size, where the firm size is calculated based on both the labor employment and cap-

ital stock measure. The results reported in Table 1.8 in the Appendix suggests that such

a heterogeneity in the impact of flooding on PCU is non-existent.

The flood risk variable above uses the estimated parameter values of regency-level

flood exposure based on the distribution of firm-level PCU from past years only. This

is essential for the analysis to have enough statistical power to identify both β and γ

parameters capturing effects of flood risk and flood shocks respectively. Table 1.3 report

the results of estimating Equations (1.20) and (1.21) in Columns 5 and 6 respectively.

Result in Column 5 suggests that an increase in τsrt , that is, a decrease in flood risk leads

to an increase in the capital stock at firm level. In terms of magnitude, a 1% decrease

in τsrt leads to a 0.25% decrease in the value of capital stock. Coefficient estimates on

flood risk variable in Column 6 suggests that the labor demand increase in response to

an increase in flood risk. More precisely, a 1% decrease in τsrt leads to a 0.13% increase

in labor employment. Firms tend to reduce investment in capital, which is less flexible

and more vulnerable to the effects of flooding, and increase hiring of labor, which is

a relatively more flexible input in production. The coefficients on flood shock variable

suggests that its impact on both capital and labor inputs is small relative to flood risk.

Flood shock affect labor and capital directly, while flood risk enters in the labor decision
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only through the capital margin. The results highlight that controlling for the indirect

effects of flooding operating through flood risk, the direct impact of flooding on firm-

level capital stock and labor employment is limited.

1.6.2 Flood Defenses

One counterfactual exercise that is natural in this setting is the installation of flood de-

fense systems, such as flood barriers and fences in flood-prone areas. This exercise is in

the spirit of various mitigation efforts undertaken by both local and central governments

in Indonesia through both in-house and international support (Islam et al. 2019). For this

experimental exercise, I assume installation of flood defenses in the most-affected regen-

cies of Indonesia in terms of flooding. The metric used for classifying these regencies is

the average flood exposure, which is estimated using the empirical distribution of firm-

level PCU, across years. Flood defense systems reduce the flood exposure of regencies

where they are installed by bringing the exposure level down to a lower level.

Flooding is an exogenous event, and the parameter governing it is also independent of

equilibrium effects in the model viz. wage adjustments and endogenous entry decisions.

Thus, one can quantify the direct effects of flood risk and then examine how these effects

change once equilibrium forces viz. wage adjustments and endogenous firm entry, are

taken into account. For this reason, the analyses are reported in two distinct scenarios

outlined below:

1. Flood Risk Only: This scenario quantifies the change in direct effects of flood

risk before and after the installation of flood defenses. Due to the exogeneity of

parameter governing the direct effects of flood risk, it can be inspected separately

from the equilibrium adjustments that occur as a result of it.

2. Equilibrium With Entry: This scenario quantifies the total change, including both

direct and indirect effects of flood risk, before and after the installation of flood

defenses. Flood risk affect firm entry decision and equilibrium wage, so account-
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ing for these adjustments is essential for capturing the overall benefits of flood

defenses.

To quantify the effects of flood defenses on the aggregate output, I compare the ag-

gregate output after the installation of flood defenses to the observed aggregate output.

In this thought experiment, flood defenses reduce the flood exposure of the top 20th

percentile of regencies by bringing them down to the median level of flood exposure dis-

tribution. The flood exposure distribution is generated using average (over years) flood

exposure of all the regencies in Indonesia. The counterfactual assigns same flood ex-

posure level to the most-affected regencies in all the years, but different sectors within

a regency would still be impacted differently due to their sectoral characteristics. The

motivation for using the median benchmark is firstly to be realistic that flooding cannot

be completely eliminated, so all regencies should experience some level of flooding in

the constrained best-case scenario. Secondly, flooding, being a spatial shock by design,

primarily creates differences across regencies, and switching off this channel by bringing

all treated regencies to the same level could provide insights on the spatial misallocation

effects of flooding.

To operationalize this experimental exercise, consider an exogenous change in the

flood exposure of regency r from φrt to φ̃r, where φ̃r is the median value of regency-

level flood exposure. Only the top 20th percentile regencies undergo this change in flood

exposure from the start of the period, while the remaining regencies remain unaffected in

all the years. Figure 1.13 shows the spatial distribution of flood exposure following the

installation of flood defenses. As the most-exposed regencies are now more secure from

flooding, the minimum value of average φ increases for 53 treated regencies out of a total

of 266 regencies in the sample. Similarly, Figure 1.14 depicts the spatial distribution of

flood risk, which decreases for the top 20th percentile of the most-exposed regencies.

For the observed outcomes, Equation (1.16) delivers the expected equilibrium value of

aggregate output. The same equation can then be used to write the counterfactual output

49



after the installation of flood defenses as below:

Ỹ srt = τ̃

αsηs
1−ηs
srt

ξ (1−ηs)

ξ (1−ηs)−1
Λ̃st

(
θ̃
∗
srt

) 1
1−ηs

There are various ways in which the above output could be compared to the observed

output. In the most comprehensive analysis, one can ideally calibrate or estimate all

the parameters involved in both the objects and compute the objects in levels. However,

this exercise would require imposing additional assumptions on the model structure and

would also be prone to measurement errors. Therefore, I take the ratio of the two objects,

which cancels all the fixed terms that are assumed to not change in the counterfactual

world.31 The ratio can be written as follows:

Ỹ srt

Y srt
=

(
τ̃srt

τsrt

) αsηs
1−ηs Λ̃st

Λst

(
θ̃ ∗

srt
θ ∗

srt

) 1
1−ηs

Taking the log of the above ratio, I derive the (log) change in aggregate output as follows:

Ω̃srt =
αsηs

1−ηs
ln
(

τ̃srt

τsrt

)
︸ ︷︷ ︸

flood risk

+ ln

(
Λ̃st

Λst

)
+

1
1−ηs

ln

(
θ̃ ∗

srt
θ ∗

srt

)
︸ ︷︷ ︸

wage and entry adjustments

(1.22)

Ω̃ captures the change in (log) aggregate output in the counterfactual with respect to

the real world. So, a positive Ω̃ would mean that the aggregate counterfactual output is

higher, and for small changes, the magnitude would represent the percentage increase

in output relative to the observed output. The total change in aggregate output can be

decomposed into two parts: (A) flood risk and (B) wage and entry adjustments. The first

part captures the direct impact of flood risk, while the second part provides estimates of

indirect effects due to the equilibrium forces in place. In the results that follow, Flood

Risk Only scenario reports estimates of (A), while Equilibrium With Entry scenario re-

31. The assumption imposed on the equilibrium is that the exogenous change in flood exposure does not
affect the production function, entry fixed cost, and productivity distribution parameters.
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ports the sum of (A) and (B).

Flood Risk Only. In this scenario, the estimates of the first term in Equation (1.22) is

reported. Given that there are two key margins of variation viz. sector and regency, I

report results on both the margins.32 Although flooding is inherently a regional shock, its

impact can vary significantly across economic sectors, depending on each sector’s spe-

cific vulnerabilities to flood risk and flood events. For example, an iron and steel firm

and a furniture producer might both be located on the same floodplain in Jakarta, yet

the impact of flood events—and how each firm perceives these events to inform their

flood risk—could differ greatly owing to their sectoral characteristics. For the aggrega-

tion step, I take simple average across all qualifying observations. Figure 1.15 shows

the distribution of change in aggregate output due to flood risk across sectors, where the

sectors are ordered in increasing order of their capital intensities from left to right. First,

on average, all sectors derive direct benefits in terms of aggregate output from the in-

stallation of flood defenses in the top 20th percentile of most flood-affected regencies in

Indonesia. This confirms a well-known empirical fact that industries in Indonesia are pri-

marily clustered in flood-prone areas. Such clustering in high-risk zones is due to various

factors, including historical path dependence, agglomeration externalities, and higher de-

mand due to richer population. Second, the benefits increase moving from left to right

on the graph, thereby suggesting that the sectors using capital-intensive technology for

production reap more direct rewards from such protective investments. This is because

the sectors that rely on capital heavily face more distortions in their production decisions

because of flood risk, and flood defenses help alleviate those distortions. On average, the

aggregate annual sector-level output increases by 7%, but with significant heterogene-

ity across sectors. Figure 1.16 illustrates the spatial distribution of changes in aggregate

output resulting from reduced flood risk across regencies. On average, the aggregate an-

nual output increases by 16% in the treated regencies, though the range is considerable,

32. There is also time variation but it is not key part of the analysis as all flood defense systems every-
where are installed at the start of the period.
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varying from 9% to 30%. The sectoral composition of each regency plays a significant

role in shaping these outcomes; for instance, regencies with a higher concentration of

capital-intensive sectors tend to experience greater gains in aggregate output compared

to those with a higher proportion of less capital-intensive sectors. For example, regencies

in the West Java province, including Jakarta, see disproportionately higher gains in their

expected aggregate output.

Equilibrium With Entry. This scenario captures the total change in aggregate output,

the sum of the two parts outlined in Equation (1.22) after the flood defenses intervention.

Understanding the direct effects of protective investments, such as flood defenses, is

important to justify the monetary costs involved in their construction and maintenance.

However, the indirect effects could potentially increase these benefits further or decrease

them depending on the margin looked at in calculating these effects. One such margin

that is important to consider before such interventions are commissioned is how potential

firms, which are still out of the market, would respond to the changes resulting from

interventions. Installation of flood defenses potentially increase the pool of new firms

entering into these safer areas, but that would also increase competition among incumbent

firms for the scarce resources employed in the production of final goods.

Figure 1.17 shows the distribution of total change in aggregate output across man-

ufacturing sectors; results of the previous scenario are also included side-by-side for

comparison. The sum of direct and indirect effects is positive for all the sectors. On aver-

age, aggregate output increases by 4% from the observed outcome after the installation of

flood defenses. However, accounting for the equilibrium forces of wage adjustment and

firm selection on entry decreases the aggregate gains for all the manufacturing sectors

relative to the previous scenario, which captures only the direct effects of flood defenses.

Flood defenses, by design, make risky regencies safer for economic operations. Since

the potential market entrants make their entry decision on the expected profits, which

depend on the anticipation of flooding, installation of flood defenses increase these ex-

52



pected profits. This means that less productive firms, which were unable to enter earlier

due to high flood risk, would be able to enter into these markets now. Due to the larger

mass of incumbent firms in equilibrium, the competition for the scarce labor inputs also

increases, thereby exerting an upward pressure on the equilibrium wages. Therefore, the

increased competition driving wages upwards combined with the reduction in firm selec-

tion on entry decreases the aggregate output in equilibrium relative to the direct impact

on aggregate output due to flood risk after the installation of flood defenses.33 Figure

1.18 shows the distribution of total change in aggregate output across treated regencies.

Similar to the sectoral distribution above, total benefits of flood defenses decrease for

all regencies when indirect equilibrium effects are accounted in the change calculation.

Overall, the yearly aggregate output increases by 9%, which is about half of the gains

from considering direct effects only.

1.7 Conclusion

This chapter investigates the impact of flooding on the manufacturing sector of a low-

and middle-income country. Using historical data on floods, I show that severe floods

are associated with significant reductions in aggregate measures of production inputs and

economic output. Though at the firm level, the value of capital stock declines and hiring

of temporary labor increases, with the risk of floods also acting as a deterrent to firm

entry. However, in regions with persistent flood shocks, both the actual damages from

floods and the anticipatory adjustments in response to evolving perception of flood risk,

could play a significant role in generating these results. To address this, I develop a model

of firms with endogenous entry and flood risk affecting capital installation decisions, to

assess the effects of different elements of flooding on firm behavior. I provide a micro-

33. One concern might be that the results are driven by regency characteristics where the sectors are
located. To address this issue, I plot the same figures keeping regencies constant across sectors. There
are only six regencies where all 25 3-digit ISIC sectors are located, so the average is taken over these six
regencies only. Figures 1.30 and 1.31 show the new graphs, which point to the same qualitative findings as
reported in the main figures.
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foundation for understanding how flood risk and flood shocks interact with firm behavior

by linking them to entry decision and input choice. The equilibrium analysis reveals that

perceived flood risk, rather than actual flood shocks, has more significant impact on firm

behavior. I conduct a counterfactual analysis in the spirit of building flood defenses to se-

cure flood-prone regions and find that there are large gains in aggregate output from such

an intervention, but equilibrium adjustments, in particular, upward pressure on wages and

the entry of less productive firms, reduce these gains by half.

The theoretical framework developed in this chapter could be adapted to examine

other aggregate and firm-level distortions generated by anticipation, such as AI adoption,

technological disruptions, and policy-induced market frictions. Incorporating firm entry

and exit dynamics into the model, while maintaining its tractability for policy analysis,

could be useful in various contexts, such as assessing the impact of global trade disrup-

tions, regional economic integration, and industry regulations.
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Gopinath, Gita, Şebnem Kalemli-Özcan, Loukas Karabarbounis, and Carolina Villegas-

Sanchez. 2017. “Capital Allocation and Productivity in South Europe*.” The Quar-

terly Journal of Economics 132 (4): 1915–1967.

Government of Republic of Indonesia. 2007. Indonesia Country Report: Climate Vari-

ability and Climate Changes, and Their Implication. Technical report. Ministry of

Environment, Jakarta.

Hopenhayn, Hugo A. 1992. “Entry, Exit, and Firm Dynamics in Long Run Equilibrium.”

Econometrica 60 (5): 1127–1150.

. 2014. “Firms, Misallocation, and Aggregate Productivity: A Review.” Annual

Review of Economics 6:735–770.

Hsiao, Allan. 2024. “Sea Level Rise and Urban Adaptation in Jakarta.” Working Paper.

Hsieh, Chang-Tai, and Peter J. Klenow. 2009. “Misallocation and Manufacturing TFP in

China and India.” The Quarterly Journal of Economics 124 (4): 1403–1448.

IPCC. 2023. Climate Change 2023: Synthesis Report Summary for Policymakers. Tech-

nical report. Intergovernmental Panel on Climate Change.

Islam, S., C. Chu, J. C. R. Smart, and L. Liew. 2019. “Integrating Disaster Risk Reduc-

tion and Climate Change Adaptation: A Systematic Literature Review.” Climate and

Development 12 (3): 255–267.

Jia, Ruixue, Xiao Ma, and Victoria Wenxin Xie. 2022. “Expecting Floods: Firm Entry,

Employment, and Aggregate Implications.” NBER Working Paper 30250.

Kocornik-Mina, Adriana, Thomas K. J. McDermott, Guy Michaels, and Ferdinand Rauch.

2020. “Flooded Cities.” American Economic Journal: Applied Economics 12 (2):

35–66.

57



Levinsohn, James, and Amil Petrin. 2003. “Estimating Production Functions Using In-

puts to Control for Unobservables.” The Review of Economic Studies 70 (2): 317–341.

Lucas, Robert E. 1978. “On the Size Distribution of Business Firms.” The Bell Journal

of Economics 9 (2): 508–523.

Midrigan, Virgiliu, and Daniel Yi Xu. 2014. “Finance and Misallocation: Evidence from

Plant-Level Data.” American Economic Review 104 (2).

Najibi, Nasser, and Naresh Devineni. 2018. “Recent Trends in the Frequency and Dura-

tion of Global Floods.” Earth System Dynamics 9 (2): 757–783.

Nath, Ishan. 2024. “Climate Change, the Food Problem, and the Challenge of Adaptation

through Sectoral Reallocation.” Journal of Political Economy forthcoming.

Olley, G. Steven, and Ariel Pakes. 1996. “The Dynamics of Productivity in the Telecom-

munications Equipment Industry.” Econometrica 64 (6): 1263–1297.

Patel, Dev. 2024. “Floods.” Working Paper.

Restuccia, Diego, and Richard Rogerson. 2008. “Policy Distortions and Aggregate Pro-

ductivity with Heterogeneous Establishments.” Review of Economic Dynamics 11

(4): 707–720.

Ridhwan, Masagus M., Henri L.F. de Groot, Piet Rietveld, and Peter Nijkamp. 2012.

“Regional Interest Rate Variations: Evidence from the Indonesian Credit Markets.”

Tinbergen Institute Discussion Papers 12-073/3.

Tellman, B., J. A. Sullivan, C. Kuhn, A. J. Kettner, C. S. Doyle, G. R. Brakenridge,

T. A. Erickson, and D. A. Slayback. 2021. “Satellite Imaging Reveals Increased

Proportion of Population Exposed to Floods.” Nature 596:80–86.

World Risk Report. 2023. World Risk Report 2023. Technical report. Bündnis Entwick-

lung Hilft, Ruhr University Bochum – Institute for International Law of Peace and

Conflict.

58



Main Figures and Tables

Figure 1.1: Total count of large floods affecting regencies in 1985-2012 period

Notes: The map shows the total number of large flood events (as per the DFO archive of large flood
events) that each Indonesian regency got affected by during the period 1985-2012. The internal bound-
aries are regency boundaries, and the legend entries represents number of large flood events experi-
enced during the period 1985-2012. Regency boundaries correspond to the administrative divisions
for the year 2020.
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Figure 1.2: Number of flood-affected regencies and average count of flood days
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Notes: The graphs show the flooding trends within Indonesia using the information from the DFO
archive of large flood events. The left (right) figure plots the count of flood-affected regencies (days)
in each year for the period 1985-2012. Both the variables are trending positively over the years.
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Figure 1.3: Total count of large floods based on satellite observation for 2002-18

Notes: The map shows the total number of large flood events from the DFO archive of large flood
events, which are confirmed using satellite observations in Tellman et al. (2021) for the period 2002-
18. The internal boundaries are regency boundaries, and the legend entries represents number of
large flood events experienced during the period 2002-18. Regency boundaries correspond to the
administrative divisions for the year 2020.

61



Figure 1.4: Effect of flooding on sector-regency-level variables
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Notes: The graph presents the results of estimating Equation (1.1) for aggregate variables i.e., loga-
rithms of value-added (left), capital stock (second-left), permanent labor employment (second-right),
temporary labor employment (right). To get to the aggregate variables from firm-level information,
following steps are undertaken. First, The un-logged version of all the monetary variables are deflated
by the wholesale price index at the 5-digit ISIC level to reflect their real values. Second, the tails on
both ends of the resulting variables are trimmed by 1% for each year to address measurement error
issues. Third, the variables are then summed across sector-regency for each year using labor share
weights. Finally, the variables are log-transformed and used in the regressions. The labels on y-axis
represent the percentiles of flood index for which dummy is used in the regression. The control obser-
vations in all cases are regency-year pairs that are not flooded. 90 and 95% confidence intervals are
shown in thick and thin blue lines respectively over the point estimates. Standard errors are clustered
at the regency level.
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Figure 1.5: Effect of flooding on firm-level variables
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Notes: The graph presents the results of estimating Equation (1.2) for firm-level variables i.e., loga-
rithms of value-added (left), capital stock (second-left), permanent labor employment (second-right),
temporary labor employment (right). The un-logged version of all the monetary variables have been
deflated by the wholesale price index at the 5-digit ISIC level to reflect their real values and the log-
transformed variables are trimmed by 1% for each year to address measurement error issues. The
labels on y-axis represent the percentiles of flood index for which dummy is used in the regression.
The control observations in all cases are regency-year pairs that are not flooded. 90 and 95% confi-
dence intervals are shown in thick and thin blue lines respectively over the point estimates. Standard
errors are clustered at the regency level.
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Figure 1.6: Effect of flooding on firm-level capital categories
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Notes: The graph presents the results of estimating Equation (1.2) for four different capital categories
at the firm level. The un-logged version of all the monetary variables have been deflated by the
wholesale price index at the 5-digit ISIC level to reflect their real values and the log-transformed
variables are trimmed by 1% for each year to address measurement error issues. Going left to right, first
plot reports the results for value of structures, which include buildings and all man-made constructions
to support the manufacturing activities within the firm. Second plot shows results on land, which is
the total value of land occupied by the manufacturing firm. Third plot reports results on the value of
vehicles and other transportation equipment owned by the firm. Last plot shows results for value of
machinery and other production equipment employed in the firm. As mentioned in the data section,
the reporting on different capital categories is not consistent over time, and that is why the number
of observations are different across all four columns. The labels on y-axis represent the percentiles
of flood index for which dummy is used in the regression. The control observations in all cases are
regency-year pairs that are not flooded. 90 and 95% confidence intervals are shown in thick and thin
blue lines respectively over the point estimates. Standard errors are clustered at the regency level.
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Figure 1.7: Effect of 90th percentile floods on firm-level variables by sectors
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Notes: The graph presents the results of estimating Equation (1.3) for firm-level variables i.e., loga-
rithms of value-added (left), capital stock (second-left), permanent labor employment (second-right),
temporary labor employment (right) using the 90th percentile flood dummy. The un-logged version of
all the monetary variables have been deflated by the wholesale price index at the 5-digit ISIC level to
reflect their real values and the log-transformed variables are trimmed by 1% for each year to address
measurement error issues. The labels on y-axis represent the 2-digit ISIC manufacturing sectors. The
control observations in all cases are regency-year pairs that are not flooded. 90 and 95% confidence
intervals are shown in thick and thin blue lines respectively over the point estimates. Standard errors
are clustered at the regency level.

65



Figure 1.8: Effect of flooding on firm exit and entry
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Notes: The graphs present results on firm exit and entry. Left graph presents the results of estimating
Equation (1.4) for firm exit dummy, where the dummy variable takes a value of 1 in the last year
of firm observation in the data. Right graph presents the results of estimating Equation (1.1) with
the logarithm of number of new firms entering in a sector-regency in a given year as the dependent
variable. The labels on y-axis represent the percentiles of flood index for which dummy is used in the
regression. The control observations in all cases are regency-year pairs that are not flooded. 90 and
95% confidence intervals are shown in thick and thin blue lines respectively over the point estimates.
Standard errors are clustered at the regency level.
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Figure 1.9: Effect of flooding on firm capacity utilization
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Notes: The graph presents the results of estimating Equation (1.2) for firm-level production capacity
utilization (PCU). PCU measures the percentage of the potential firm capacity, in terms of production,
that is realized in a given year. The labels on y-axis represent the percentiles of flood index for which
dummy is used in the regression. The control observations in all cases are regency-year pairs that are
not flooded. 90 and 95% confidence intervals are shown in thick and thin blue lines respectively over
the point estimates. Standard errors are clustered at the regency level.
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Table 1.1: Summary of model parameters

(1) (2) (3) (4)
Parameter Level Value Method/Source

φ Flooding shape Regency-Year - MLE on firm-level PCU data

α Output elasticity Sector - PF estimation (Levinsohn and Petrin (2003))

η Returns to scale Sector - PF estimation (Levinsohn and Petrin (2003))

θ Productivity scale Regency - Aggregate regency manufacturing value-added

ξ Productivity shape Aggregate 4.514 MLE on firm-level value-added data

Notes: The table presents the summary of model parameters’ estimation or calibration exercise. Values
of some of the parameters are not included in the above table as they are too many in number to report.
However, their estimation method/ calibration source is discussed in detailed in the Estimation section.
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Figure 1.10: Distribution of flood exposure across regencies

Notes: The map shows the distribution of average (over years) regional flood exposure as captured by
the regency-level shape parameters, φrt , estimated using the firm-level production capacity utilization
data. In line with the properties of Pareto distribution, smaller value for a regency suggests that the
regency, on average, faces more extreme flooding over time. The regencies for which flood exposure
could not be estimated are shaded in pink and coded as “No data”. Regency boundaries correspond to
the administrative divisions for the year 1990.
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Figure 1.11: Pareto tail exponent versus flood index across regencies
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Notes: The graph plots the regency-level average regional flood exposure as captured by the regency-
level shape parameters, φrt against the average regency-level flood index. The averages are taken
across all the years in sample i.e., 1990-2012. Each dot represents one regency in Indonesia.
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Table 1.2: Sectoral production function parameters

Industry name 3-digit ISIC αs ηs
Food Processing 311 0.213 0.700
Food Processing 2 312 0.261 0.662
Cigarettes and Tobacco 314 0.253 0.487
Textiles 321 0.204 0.613
Leather Products 323 0.188 0.770
Manufacture of Footwear 324 0.150 0.668
Wood Products 331 0.230 0.710
Furniture 332 0.134 0.693
Paper Products 341 0.267 0.562
Paper Products, Finished 342 0.114 0.704
Chemical Products, Industrial 351 0.304 0.546
Chemical Products, Household 352 0.180 0.596
Rubber Products 355 0.104 0.625
Plastic Wares 356 0.229 0.652
Ceramics 361 0.341 0.593
Glass Products 362 0.295 0.705
Cement and Lime 363 0.223 0.687
Structural Clay Products 364 0.193 0.773
Other Non Metal Mineral Products 369 0.201 0.646
Basic Iron and Steel 371 0.265 0.742
Metal Products, Finished 381 0.194 0.744
Machines and Repair 382 0.289 0.707
Electronics 383 0.138 0.718
Motor Vehicles 384 0.268 0.601
Other Manufacturing 390 0.172 0.778

Notes: The table reports the computed values of production function parameters for each 3-digit ISIC
sector. Using data from Table 1.7, the computation uses the following formulae for scale parameter,
ηs = ln(L)coe f f + ln(K)coe f f and index on capital, αs =

ln(K)coe f f
ηs

.
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Figure 1.12: Distribution of flood risk across regencies

Notes: The graph plots the distribution of flood risk as captured by τsrt variable, where τsrt(φ) ≡
φrt

φrt+αsηs/(1−(1−αs)ηs)
captures distortions introduced in the optimal capital installation decisions due

to flooding. Both the regency-level flood exposure, φrt and production function parameters for each
3-digit ISIC sector (αs,ηs) are estimated. Lower values of τsrt suggest larger capital distortions due to
flooding. The regencies for which flood exposure could not be estimated are shaded in pink and coded
as “No data”. Regency boundaries correspond to the administrative divisions for the year 1990.
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Table 1.3: Effect of flood shock and flood risk on capital and labor

(1) (2) (3) (4) (5) (6)
ln(K) ln(L) ln(K) ln(L) ln(K) ln(L)

ln(τ) 0.259*** -0.127*** 0.249*** -0.129***
(0.082) (0.036) (0.082) (0.036)

ln(x) -0.008*** -0.002*** -0.007*** -0.002***
(0.001) (0.000) (0.001) (0.000)

Observations 316,788 316,788 330,577 330,577 316,610 316,610
Dep. var mean 8.656 4.131 8.659 4.131 8.656 4.132
Firm FE Y Y Y Y Y Y
3-digit ISIC × year FE Y Y Y Y Y Y
Standard errors clustered at the sector-regency level are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table presents the results of estimating Equations (1.20) and (1.21) in Column 5 and
6 respectively. The regency-level flood exposure component of flood risk are estimated using the
empirical distribution of PCU across firms within a regency for the past years. The un-logged version
of value of capital stock has been deflated by the wholesale price index at the 5-digit ISIC level to
reflect its real values and the log-transformed variables are trimmed by 1% for each year to address
measurement error issues. Results reported both columns control for firm and sector × year fixed
effects. Standard errors are clustered at the sector-regency level.
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Figure 1.13: Distribution of flood exposure across regencies after flood defenses

Notes: The map shows the distribution of average (over years) regional flood exposure as captured by
the regency-level shape parameters, φ̃rt , estimated using the firm-level production capacity utilization
data after the installation of flood defenses. In line with the properties of Pareto distribution, smaller
value for a regency suggests that the regency, on average, faces more extreme flooding over time. The
regencies for which flood exposure could not be estimated are shaded in pink and coded as “No data”.
Regency boundaries correspond to the administrative divisions for the year 1990.
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Figure 1.14: Distribution of flood risk across regencies after flood defenses

Notes: The graph plots the distribution of flood risk as captured by τ̃srt variable, where τ̃srt(φ) ≡
φ̃rt

φ̃rt+αsηs/(1−(1−αs)ηs)
captures distortions introduced in the optimal capital installation decisions due

to flooding after the installation of flood defenses. Both the regency-level flood exposure, φ̃rt and
production function parameters for each 3-digit ISIC sector (αs,ηs) are estimated. Lower values of
τ̃srt suggest larger capital distortions due to flooding. The regencies for which flood exposure could
not be estimated are shaded in pink and coded as “No data”. Regency boundaries correspond to the
administrative divisions for the year 1990.
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Figure 1.15: Change in output across sectors due to flood risk
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Notes: The graph plots the (log) change in aggregate output due to flood risk as outlined in Equation
(1.22) across 3-digit ISIC sectors. This represents the Flood Risk Only scenario where in the coun-
terfactual world with flood defenses, all the regencies above 80th percentile on the flood exposure
distribution are assigned the median value of the distribution. The sectors are ranked from left to right
in the increasing order of their respective capital intensities.
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Figure 1.16: Change in output across regencies due to flood risk

Notes: The map shows the (log) change in aggregate output due to flood risk as outlined in Equation
(1.22) across regencies. This represents the Flood Risk Only scenario where in the counterfactual
world with flood defenses, all the regencies above 80th percentile on the flood exposure distribution
are assigned the median value of the distribution. The regencies for which flood exposure could not
be estimated are shaded in pink and coded as “No data”, while those regencies that remain unaffected
by the flood defenses installation are shaded in blue and coded as “No change”. The remaining legend
values represent percentage change in aggregate output due to reduction in flood risk after the instal-
lation of flood defenses. Regency boundaries correspond to the administrative divisions for the year
1990.
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Figure 1.17: Change in output across sectors due to flood risk and equilibrium
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Flood Risk Only Equilibrium With Entry

Notes: The graph plots the (log) change in aggregate output due to flood risk in blue and sum of (log)
change in aggregate output due to flood risk and (log) change in aggregate output due to equilibrium
wage adjustments and firm entry in red as outlined in Equation (1.22) across 3-digit ISIC sectors.
In the counterfactual world with flood defenses, all the regencies above 80th percentile on the flood
exposure distribution are assigned the median value of the distribution. The sectors are ranked from
left to right in the increasing order of their respective capital intensities.
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Figure 1.18: Change in output across regencies due to flood risk and equilibrium

Notes: The map shows the sum of (log) change in aggregate output due to flood risk and (log) change
in aggregate output due to equilibrium wage adjustments and firm entry as outlined in Equation (1.22)
across regencies. This represents the Equilibrium With Entry scenario where in the counterfactual
world with flood defenses, all the regencies above 80th percentile on the flood exposure distribution
are assigned the median value of the distribution. The regencies for which flood exposure could not
be estimated are shaded in pink and coded as “No data”, while those regencies that remain unaffected
by the flood defenses installation are shaded in blue and coded as “No change”. The remaining legend
values represent percentage change in aggregate output due to reduction in flood risk and accounting
for equilibrium adjustments after the installation of flood defenses. Regency boundaries correspond to
the administrative divisions for the year 1990.
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Appendix

1.8 Appendix: Long-run Effects of Flooding

1.8.1 Effect of Flooding on Economic Variables

Econometric Model

As discussed in the main section of the chapter, employing an event-study framework

to estimate the long-term effects of flooding is not suitable in this context. Moreover,

our interest lies not in assessing the impact of individual flood shocks, but rather in un-

derstanding the collective effects of flooding experienced by a region over an extended

period of time. To achieve this objective, I look at the relationship between cumulative

flooding and the long-term differences in aggregate variables and firm entry and exit. The

long-run period is defined as starting from 1994 and ending in 2008, so it is representative

of 15 years duration.34

First, cumulative flood shocks are obtained by aggregating innovations in flood index

at the regency level over 1994-2008 period. Flood innovations are residuals obtained

34. There is no particular reason for choosing this epoch, except that it coincides with some of the major
flood events in Indonesia, including the 2000 Sumatra floods, which killed 120 and affected around 600,000
people and 2007 Jakarta Floods, which resulted in $850 million worth of monetary loss, 80 deaths, and
over 500,000 human displacements. Results are robust to choosing alternate epochs.
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from the following linear regression on flood data for 1985-2012 period:35

FloodIndexrt = ζr +χt + εrt (1.23)

The residuals, ε̂rt , are then summed across regencies over the period 1994-2008 to com-

pute regency-level cumulative flood shocks as below:

CumulativeFloodr =
2008

∑
t=1994

ε̂rt

I employ the first-difference (FD) estimator on the aggregate variables in 1994 and 2008,

where the treatment variable is cumulative flood that takes zero as its initial value in 1994.

I estimate the following econometric specification at the sector-regency or regency level:

∆ysr = υ +β∆CumulativeFloodr +νs + εsr (1.24)

where ∆ysr denotes the difference in the logarithm of regency or sector-regency level

value-added, capital stock, or labor employed between the years 1994 and 2008. β is the

coefficient capturing relationship between the change in the cumulative flood shock from

0 to its end-of-period value and change in the aggregate variable. υ captures the linear

time trend.36

Results and Discussion

I use the value at the 90th percentile from Table 1.9 for interpreting the strength of the

relationship in all cases. Table 1.10 reports the results from estimating Equation (1.24).

35. This formulation is simply used to match the specifications employed for studying contemporaneous
effect of flooding on economic variables. Results are robust to adding lags of flood index or regency-level
linear time trends.

36. The estimation leverages cross-sectional variation in cumulative flood exposure across regencies.
Since, the flood innovations always sum to zero for each regency over the complete 1985-2012 period, the
realizations over the block of period 1994-2008 randomly sort regencies based on the realized exposures
within this period. Figure 1.32 illustrates this point by showing the realized values of flood innovations in
circles and their moving sums for different years.
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Interpreting the magnitude using estimates from Columns 4-6, a 90th percentile cumula-

tive flood shock at the regency level is associated with 18.9%, 20.9%, and 16.2% decrease

in the aggregate value-added, capital stock, and labor employment respectively.

1.8.2 Effect of Flooding on Firm Exit and Entry

Econometric Model

To estimate the relationship between cumulative flood shocks and the exit decision of

firms, I first define a cumulative flood shock at firm level by aggregating the flood index

over the long-run analysis period for each firm. Obviously, a typical firm does not con-

tinue operating in all these years, so the last year of its observation in data is assumed

to be the exit year. Under these assumptions, the firm-specific cumulative flood shock is

defined as below:

CumulativeFloodirt =
1

t −T i
start +1

t≤T i
end

∑
s=T i

start

FloodIndexrs

where T i
start and T i

end are the entry and exit years for firm i.37 I then estimate the following

relationship:

yisrt = υ +βCumulativeFloodirt + ιXisrt +ζr +νst +ψpt + εisrt (1.25)

where yisrt is an exit dummy for firm i, belonging to 2-digit ISIC sector s, located in

regency r, in year t and other terms have the same interpretation as Equation (1.4). Below

is the summary statistics table on the cumulative shock variable.

37. Only those firms, which have their start and end years fall in the period 1994-2008 are included in
the analysis.
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Results and Discussion

Column 1 of Table 1.11 reports the results from estimating Equation (1.25) for all the

firms that start and end their life in the period 1994-2008. Unlike temporary shocks, cu-

mulative flood shocks do lead to firm exits in the long run. In particular, a 90th percentile

cumulative flood shock increases the firm exit probability by 0.26%.

Columns 2 and 3 of Table 1.11 report the results from estimating Equation (1.24) with

difference in the logarithm of number of firms operating in a regency or sector-regency

between 2008 and 1994 as the dependent variable. Similar to the contemporaneous anal-

ysis, the evidence points towards the firms avoiding flood-prone locations when setting

up their operations, a 90th percentile cumulative flood shock decreases the number of

firms at the sector-regency (regency) level by 6.6% (8.5%).
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1.9 Appendix: Figures and Tables

Table 1.4: Relationship between flooded-affected and flooded area share

(1) (2) (3)
Affected area Affected area Affected area

Flooded area 0.300 0.513*** 1.422***
(0.026) (0.240)

Observations 21,074 21,074 21,074
Regency FE - - Y
Flood FE - - Y
Standard errors clustered at the regency level are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table presents results on establishing relationship between flooded and flood-affected area
in Indonesia. Flooded area metric at the regency level is constructed using detailed inundation maps
available for 41 flood events within Indonesia. Flood-affected area within regencies for these 41
events are obtained from the polygons available in the DFO archive. Both these variables are then
normalized by the total area of regency to represent area shares. Column 1 reports the Kendall’s Tau-b
coefficient of association between flooded and flood-affected area share. The coefficient ranges from
-1 (perfect inversion) to +1 (perfect agreement) with 0 indicating no association. Column 2 reports the
Somers’ D coefficient, which also has the same range as Tau-b coefficient, but additionally it comes
with standard errors on the coefficient of association that are generated using the jackknife variance
calculation method. Column 3 reports the result of following a parametric approach by using fixed-
effects regression analysis in which the flood-affected area is regressed on the flooded area share.
Standard errors are clustered at the regency level.
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Figure 1.19: Distribution of regencies on flood-affected area and days share
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Notes: The graphs show the distribution of components of flood index across regency-year pairs. The
left graph presents the distribution of regency-level flood-affected area share that is computed using
the polygons provided in the DFO archive of large flood events. The right graph presents the share
of days in a year that a regency remains flooded, where the number of days are computed using the
start and end dates for each flood event. In case of multiple flood events affecting a regency in a year,
the flood-affected area is the average across all flooding episodes and the flood days are total count of
days that any area in the regency remains flooded.
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Figure 1.20: Distribution of flood index across regency-year pairs
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Notes: The graph shows the distribution of flood index across all regency-year pairs. Flood index
is a rescaled product of flood-affected area share in a regency and flood days share in a year. The
rescaling is done so that the index lies in the range 0 to 1. Most of the regency-year pairs remain
unaffected by flooding with some extreme flood events affecting few of them located on the right tail
of the distribution.
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Table 1.5: Summary statistics on flood index

(1) (2) (3) (4) (5) (6)
Mean Std. Dev. 25th Pctile 50th Pctile 75th Pctile 90th Pctile
0.186 0.235 0.04 0.098 0.219 0.455

Notes: The table presents the summary statistics on flood index at the regency level that is defined
by the rescaled product of flood-affected area share in a regency and flood days share in a year. Only
those regency-year pairs that have non-zero flood index values are considered to derive these statistics.
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Figure 1.21: Average time interval between two successive floods

Notes: The map shows the average time interval in terms of years between two successive flood events
in a regency during the period 1985-2012. The internal boundaries are regency boundaries, with the
legends denoting the number of years between two successive flooding episodes. Most of the regencies
located on the islands of Java and Sumatra witness a large flood almost every alternate year.
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Figure 1.22: Effect of first flood on aggregate variables
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Notes: The graphs show the effect of “first” flood on the regency-level aggregate variables i.e.,
logarithms of total value-added (left), capital stock (middle), and labor employment (right) using
the imputation-based difference-in-differences estimator proposed by Borusyak, Jaravel, and Spiess
(2024). The first flood for a regency is defined as the first year in which the regency witnessed a flood-
ing episode in the sample. Since the outcomes data starts in 1990 but the floods can be tracked since
1985, only those regencies that did not witness any flood event in the period 1985-89 are included in
the analysis. To get to the aggregate variables from firm-level information, following steps are under-
taken. First, The un-logged version of all the monetary variables are deflated by the wholesale price
index at the 5-digit ISIC level to reflect their real values. Second, the tails on both ends of the resulting
variables are trimmed by 1% for each year to address measurement error issues. Third, the variables
are then summed across regency for each year using labor share weights. Finally, the variables are
log-transformed and used in the estimation. Standard errors are clustered at the regency level and
whiskers on the point estimates show 90% confidence intervals.
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Figure 1.23: Effect of flooding on sector-regency-level variables
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Notes: The graph presents the results of estimating Equation (1.1) for aggregate variables i.e., loga-
rithms of value-added (left), capital stock (second-left), permanent labor employment (second-right),
temporary labor employment (right) at the sector-regency level using only those regencies for which
data is available for at least 20 years. To get to the aggregate variables from firm-level information,
following steps are undertaken. First, The un-logged version of all the monetary variables are deflated
by the wholesale price index at the 5-digit ISIC level to reflect their real values. Second, the tails on
both ends of the resulting variables are trimmed by 1% for each year to address measurement error
issues. Third, the variables are then summed across sector-regency for each year using labor share
weights. Finally, the variables are log-transformed and used in the regressions. The labels on y-axis
represent the percentiles of flood index for which dummy is used in the regression. The control obser-
vations in all cases are regency-year pairs that are not flooded. 90 and 95% confidence intervals are
shown in thick and thin blue lines respectively over the point estimates. Standard errors are clustered
at the regency level.
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Figure 1.24: Effect of flooding on firm-level variables
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Notes: The graph presents the results of estimating Equation (1.2) for firm-level variables i.e., loga-
rithms of value-added (left), capital stock (second-left), permanent labor employment (second-right),
temporary labor employment (right) using only those firm observations for which data is available for
at least 20 years. The un-logged version of all the monetary variables have been deflated by the whole-
sale price index at the 5-digit ISIC level to reflect their real values and the log-transformed variables
are trimmed by 1% for each year to address measurement error issues. The labels on y-axis represent
the percentiles of flood index for which dummy is used in the regression. The control observations
in all cases are regency-year pairs that are not flooded. 90 and 95% confidence intervals are shown
in thick and thin blue lines respectively over the point estimates. Standard errors are clustered at the
regency level.
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Figure 1.25: Effect of 25th percentile floods on firm-level variables by sectors
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Notes: The graph presents the results of estimating Equation (1.3) for firm-level variables i.e., loga-
rithms of value-added (left), capital stock (second-left), permanent labor employment (second-right),
temporary labor employment (right) using the 25th percentile flood dummy. The un-logged version of
all the monetary variables have been deflated by the wholesale price index at the 5-digit ISIC level to
reflect their real values and the log-transformed variables are trimmed by 1% for each year to address
measurement error issues. The labels on y-axis represent the 2-digit ISIC manufacturing sectors. The
control observations in all cases are regency-year pairs that are not flooded. 90 and 95% confidence
intervals are shown in thick and thin blue lines respectively over the point estimates. Standard errors
are clustered at the regency level.
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Figure 1.26: Effect of 50th percentile floods on firm-level variables by sectors
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Notes: The graph presents the results of estimating Equation (1.3) for firm-level variables i.e., loga-
rithms of value-added (left), capital stock (second-left), permanent labor employment (second-right),
temporary labor employment (right) using the 50th percentile flood dummy. The un-logged version of
all the monetary variables have been deflated by the wholesale price index at the 5-digit ISIC level to
reflect their real values and the log-transformed variables are trimmed by 1% for each year to address
measurement error issues. The labels on y-axis represent the 2-digit ISIC manufacturing sectors. The
control observations in all cases are regency-year pairs that are not flooded. 90 and 95% confidence
intervals are shown in thick and thin blue lines respectively over the point estimates. Standard errors
are clustered at the regency level.
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Figure 1.27: Effect of 75th percentile floods on firm-level variables by sectors
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Notes: The graph presents the results of estimating Equation (1.3) for firm-level variables i.e., loga-
rithms of value-added (left), capital stock (second-left), permanent labor employment (second-right),
temporary labor employment (right) using the 75th percentile flood dummy. The un-logged version of
all the monetary variables have been deflated by the wholesale price index at the 5-digit ISIC level to
reflect their real values and the log-transformed variables are trimmed by 1% for each year to address
measurement error issues. The labels on y-axis represent the 2-digit ISIC manufacturing sectors. The
control observations in all cases are regency-year pairs that are not flooded. 90 and 95% confidence
intervals are shown in thick and thin blue lines respectively over the point estimates. Standard errors
are clustered at the regency level.
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Figure 1.28: Aggregate variables for entering, exiting, and surviving firms
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Notes: The graphs plot the average of the three variables viz. logarithm of value-added (left), capital
stock (middle), and labor employment (right) across regencies over time for three groups of firms:
exiters, entrants, and survivors. A firm’s year of exit is its last year of observation in the data, entry
year is its first year of observation, and all the years in between are its years of survival.
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Table 1.6: Relationship between flooding and firm entry rate

(1) (2)
Plant entry Plant entry

FloodIndex -0.299**
(0.144)

FloodRisk -0.247*
(0.131)

Observations 273 211
R-squared 0.025 0.031
Standard errors clustered at the regency level are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table presents the relationship between flood variables and regency-level firm entry rates.
The entry rate is defined as the ratio of count of entrants in the current year over the count of survivors
for the previous year. FloodIndex is the average flood index at the regency level for the period 1990-
2012 and has been rescaled to lie in the interval [0,1]. FloodRisk variable reflects regency-level flood
risk for the year 2013 as published by the IRBI in their annual report and also lie in the interval [0,1].
Each regency is given a risk score between 0 and 1 depending on its hazard profile, vulnerability
index, and resilience to deal with destructive effects of flooding. The total number of regencies used
in the flood risk analysis are smaller because the flood risk scores are unavailable for some regencies.
However, the omission seems to be orthogonal to the flood risk, since some of the omitted regencies
are also at high flood risk as outlined in the published report (IRBI 2013). Standard errors are clustered
at the regency level.

96

https://inarisk.bnpb.go.id/PDF/BUKU%20IRBI%202013.PDF


Figure 1.29: Firm capacity utilization across low and high flood-prone regencies
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Notes: The graph plots the distribution of firm-level production capacity utilization (PCU) across low
and high flood-prone regencies in Indonesia. PCU is defined as the percentage of available production
capacity utilized by a firm in each year. Flood exposure of a regency is the average flood index over
the period 1990-2012. The distribution of regencies on average flood index is split into 20 quintiles.
The last quintile is defined as high flood exposure and the first 10 quintiles are defined as low flood
exposure regencies. This sampling choice ensures that around 20% of regencies fall in each of the two
bins. The core qualitative finding in the above graph is robust to changing this sampling criteria.
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Table 1.7: Sectoral output elasticities of capital and labor

(1) (2) (3) (4) (5) (6) (7) (8)
Industry name 3-digit ISIC log(L) coeff log(L) se log(K) coeff log(K) se #Observations #Plants #Years (avg)
Food Processing 311 .551 .0002 .149 .0001 40914 5955 6.9
Food Processing 2 312 .489 .0003 .173 .0002 31821 4391 7.2
Cigarettes and Tobacco 314 .364 .0008 .123 .0011 16494 2638 6.3
Textiles 321 .488 .0003 .125 .0002 34911 4855 7.2
Leather Products 323 .625 .0011 .145 .0015 3094 469 6.6
Manufacture of Footwear 324 .568 .0007 .1 .0007 5491 886 6.2
Wood Products 331 .547 .0002 .163 .0001 22945 3877 5.9
Furniture 332 .6 .0003 .093 .0001 20661 3421 6
Paper Products 341 .412 .0018 .15 .001 5162 660 7.8
Paper Products, Finished 342 .624 .0011 .08 .0003 8522 1139 7.5
Chemical Products, Industrial 351 .38 .0016 .166 .0006 5706 781 7.3
Chemical Products, Household 352 .489 .0008 .107 .0004 8897 1006 8.8
Rubber Products 355 .56 .0008 .065 .0004 6494 734 8.8
Plastic Wares 356 .503 .0004 .149 .0002 14934 1979 7.5
Ceramics 361 .391 .0036 .202 .0026 1282 142 9
Glass Products 362 .497 .0026 .208 .0064 945 128 7.4
Cement and Lime 363 .534 .0014 .153 .0006 7965 1221 6.5
Structural Clay Products 364 .624 .0007 .149 .0002 15704 1983 7.9
Other Non Metal Mineral Products 369 .516 .0018 .13 .0007 4499 700 6.4
Basic Iron and Steel 371 .545 .003 .197 .002 2685 346 7.8
Metal Products, Finished 381 .6 .0006 .144 .0003 13941 1910 7.3
Machines and Repair 382 .503 .0025 .204 .0034 4475 593 7.5
Electronics 383 .619 .0011 .099 .0015 4389 736 6
Motor Vehicles 384 .44 .0012 .161 .0006 7959 1070 7.4
Other Manufacturing 390 .644 .0005 .134 .0004 8111 1272 6.4

Notes: The table presents the production function estimation results for each 3-digit ISIC sector by
employing the Levinsohn and Petrin (2003) methodology in Stata through the prodest package.
Columns 2 & 3 (4 & 5) report output elasticity of labor (capital) coefficient and standard errors respec-
tively. Column 6 reports the total number of observations used in the estimation with Column 7 and
8 reporting statistics on number of firms used and average number of years observed for each firm in
the estimation.
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Table 1.8: Effect of flooding on firm capacity utilization by firm size

(1) (2)
% PCU % PCU

FloodIndex -3.064** -3.078**
(1.268) (1.301)

Large (L) Firm × FloodIndex 0.960
(0.648)

Large (K) Firm × FloodIndex 1.080
(0.777)

Observations 330,580 330,580
Adj R-squared 0.296 0.296
Dep. var mean 68.349 68.349
Firm FE Y Y
Province × year FE Y Y
2-digit ISIC × year FE Y Y
Plant-level controls Y Y
Standard errors clustered at the regency level are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table presents the results of estimating an interaction version of Equation (1.2) for firm-
level production capacity utilization (PCU), where the flood index is interacted with the firm size
dummy. The firm size dummy in Column 1 (2) uses average (over years) labor employment (capital
stock) for each firm. PCU measures the percentage of the potential firm capacity, in terms of produc-
tion, that is realized in a given year. Results reported in both the columns control for firm age controls,
firm, province × year, and sector × year fixed effects. Standard errors are clustered at the regency
level.
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Figure 1.30: Change in aggregate output across sectors due to flood risk
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Notes: The graph plots the (log) change in aggregate output due to flood risk as outlined in Equation
(1.22) across 3-digit ISIC sectors, keeping only six regencies in which all 25 3-digit ISIC sectors are
situated. This represents the Flood Risk Only scenario where in the counterfactual world with flood
defenses, all the regencies above 80th percentile on the flood exposure distribution are assigned the
median value of the distribution. The sectors are ranked from left to right in the increasing order of
their respective capital intensities.
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Figure 1.31: Change in output across sectors due to flood risk and equilibrium
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Flood Risk Only Equilibrium With Entry

Notes: The graph plots the (log) change in aggregate output due to flood risk in blue and sum of (log)
change in aggregate output due to flood risk and (log) change in aggregate output due to equilibrium
wage adjustments and firm entry in red as outlined in Equation (1.22) across 3-digit ISIC sectors,
keeping only six regencies in which all 25 3-digit ISIC sectors are situated. In the counterfactual
world with flood defenses, all the regencies above 80th percentile on the flood exposure distribution
are assigned the median value of the distribution. The sectors are ranked from left to right in the
increasing order of their respective capital intensities.
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Figure 1.32: Flood innovations and cumulative flood shocks
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Notes: The graph presents the evolution of cumulative flood shock variable over the years for two
sample regencies in Indonesia. Circles represent flood innovations, which are generated as residuals
from estimating Equation (1.23) for all the regencies in the period 1985-2012. The lines show the
running sum of these flood innovations for each regency over time. Red (hollow circle and dashed
line) represents the Bogor regency, which experienced runs of low flooding during this period. One
the other hand, Yogyakarta city, represented in blue (solid circle and solid line) experienced runs of
high flooding.
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Table 1.9: Summary statistics on cumulative flood variables

(1) (2) (3) (4) (5)
Mean Std. Dev. 50th Pctile 90th Pctile 95th Pctile
Panel 1: Regency-level Cumulative Flood Shocks
0.009 0.36 -0.027 0.348 0.69
Panel 2: Firm-level Cumulative Flood Shocks
0.07 0.092 0.041 0.197 0.252

Notes: The table presents the summary statistics on cumulative flood variables used in the reduced-
form analysis of long-run effects of flooding. Panel 1 and Panel 2 report statistics on cumulative flood
variables at the regency and plant level respectively.
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Table 1.10: Long-run effect of flooding on aggregate variables

(1) (2) (3) (4) (5) (6)
D.ln(VA) D.ln(K) D.ln(L) D.ln(VA) D.ln(K) D.ln(L)

D.CumulativeFlood -0.563** -0.703*** -0.803*** -0.544*** -0.600*** -0.464***
(0.229) (0.253) (0.172) (0.146) (0.166) (0.123)

Observations 246 246 246 1,320 1,320 1,320
R-squared 0.012 0.017 0.042 0.062 0.058 0.073
2-digit ISIC FE - - - Y Y Y
Standard errors clustered at the regency level are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table presents the results of estimating Equation (1.24) using the first-difference estimator
for aggregate variables i.e., logarithms of total value-added, capital stock, and labor employment at
the regency or sector-regency level for the years 1994 and 2008. To get to the aggregate variables
from firm-level information, following steps are undertaken. First, The un-logged version of all the
monetary variables are deflated by the wholesale price index at the 5-digit ISIC level to reflect their
real values. Second, the tails on both ends of the resulting variables are trimmed by 1% for each
year to address measurement error issues. Third, the variables are then summed across regency or
sector-regency for each year. Finally, the variables are log-transformed and used in the regressions.
Columns 1, 2 and 3 (4, 5, and 6) show the results for value-added, capital stock, and labor employment
respectively when the firm data is collapsed at the regency (sector-regency) level. Standard errors are
clustered at the regency level.
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Table 1.11: Long-run effect of flooding on firm exit and entry

(1) (2) (3)
Pr(exit) D.ln(#Plants) D.ln(#Plants)

CumulativeFlood 0.013*
(0.007)

D.CumulativeFlood -0.189*** -0.245***
(0.070) (0.085)

Observations 166,176 1,474 254
Adj R-squared 0.076 0.049 0.011
Regency FE Y - -
2-digit ISIC FE - Y -
Province × year FE Y - -
2-digit ISIC × year FE Y - -
Standard errors clustered at the regency level are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: Column 1 presents the results of estimating Equation (1.25) for firm exit dummy where the
dummy variable takes a value of 1 in the last year of the firm observation in the data. All the firms
that start and end their operations in the period 1994-2008 are included in the estimation. Columns 2
and 3 present the results of estimating Equation (1.24) with the difference in the logarithm of number
of firms operating in a regency or sector-regency for years 1994 and 2008 as the dependent variable.
Column 1 controls for regency, province × year, and sector × year fixed effects. Column 2 controls
for industry fixed effects. Standard errors are clustered at the regency level.
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1.10 Appendix: Detailed Proofs of the Theory

1.10.1 Flood Risk (τsrt)

The distribution of the share variable x is as follows:

Grt (x) =


1−
(

1
x

)φrt

x ≥ 1

0 x < 1

Firms maximize expected profits by choosing the optimal capital to install in a given

period taking expectations on the random variable xit . Firm’s optimization problem is as

below:

Kit = argmax

{
ΓitE

[(
Kit

xit

) αsηs
1−(1−αs)ηs

]
−ρKit

}

where Γit(θ ,w)≡ [1− (1−αs)ηs]θ
1

1−(1−αs)ηs
i

{
wt

(1−αs)ηs

}− (1−αs)ηs
1−(1−αs)ηs .

The above problem can be written as:

Kit = argmax
{

ΓitK
αsηs

1−(1−αs)ηs
it

∫
∞

1
x
− αsηs

1−(1−αs)ηs
it g(xit)dxit −ρKit

}

Putting the p.d.f of share distribution follows:

Kit = argmax
{

ΓitK
αsηs

1−(1−αs)ηs
it

∫
∞

1
x
− αsηs

1−(1−αs)ηs
it φrtx

−φrt−1
it dxit −ρKit

}

= argmax
{

ΓitK
αsηs

1−(1−αs)ηs
it φrt

∫
∞

1
x
− αsηs

1−(1−αs)ηs
−φrt−1

it dxit −ρKit

}

= argmax

{
φrt

φrt +
αsηs

1−(1−αs)ηs

ΓitK
αsηs

1−(1−αs)ηs
it −ρKit

}

= argmax
{

τsrtΓitK
αsηs

1−(1−αs)ηs
it −ρKit

}
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1.10.2 Expected Aggregate Equilibrium Output (Y srt)

The general expression for aggregate output is as follows:

Y srt =
∫

∞

θ∗
srt

Yit(θ)µsrt(θ)dθ

Putting the expression for equilibrium firm-level output from Equation (1.12):

Y srt = Λstτ
αsηs
1−ηs
srt

∫
∞

θ∗
srt

θ
1

1−ηs µsrt(θ)dθ

Adding the equilibrium productivity distribution from Equation (1.15):

Y srt = Λstτ
αsηs
1−ηs
srt

ξ θ
ξ

r
1−Hr(θ ∗

srt)

∫
∞

θ∗
srt

θ
1

1−ηs −ξ−1dθ

Integrating the above, follows:

Y srt = Λstτ
αsηs
1−ηs
srt

ξ θ
ξ

r (1−ηs)

ξ (1−ηs)−1
(θ ∗

srt)
1

1−ηs −ξ

1−Hr(θ ∗
srt)

Using the initial productivity distribution to compute (1−Hr(θ
∗
srt)) and assuming (ξ (1−

ηs)> 1), the formula for aggregate output in Equation (1.16) is obtained as below:

Y srt = Λstτ
αsηs
1−ηs
srt

ξ (1−ηs)

ξ (1−ηs)−1
(θ ∗

srt)
1

1−ηs

1.10.3 Labor Market Clearing (wt)

The labor market clearing takes place at the regency level with the total labor employed

by all the firms equal to the aggregate (exogenous, time-invariant) labor supply in the

regency as follows:

Lt =
∫

i∈t
Ldi
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Using Equation (1.11), LHS can be expanded as follows:

Lt =
R

∑
r=1

S

∑
s=1

∫
(1−αs)ηs

wt
τ

αsηs
1−ηs
srt Λstθ

1
1−ηs

i x
− αsηs

1−(1−αs)ηs
it f (x,θ)dxdθ

Using the independence of stochastic processes for θ and x, f (x,θ) can written as the

product of respective densities as follows:

L =
R

∑
r=1

S

∑
s=1

∫
∞

θ∗
srt

∫
∞

1

(1−αs)ηs

wt
τ

αsηs
1−ηs
srt Λstθ

1
1−ηs

i x
− αsηs

1−(1−αs)ηs
it g(x)µsrt(θ)dxdθ

=
R

∑
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S

∑
s=1

(1−αs)ηs
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1−ηs
srt Λst

(∫
∞
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srt

θ

1
1−ηs

i µsrt(θ)dθ

)(∫
∞

1
x
− αsηs

1−(1−αs)ηs
it g(x)dx

)
Using the definitions of the respective distributions, the above can be written as follows:

L=
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∑
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Expanding the θ ∗
srt using Equation (1.17) follows:

Lt =
R

∑
r=1

S

∑
s=1

(1−αs)ηs

wt
τ

1−η+αsηs
1−ηs

srt Λst
ξ (1−ηs)

ξ (1−ηs)−1

 f

[1− (1−αs)ηs −αsηsτsrt ]τ
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=

R

∑
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S

∑
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{
f

1− (1−αs)ηs −αsηsτsrt

}
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The above delivers the equilibrium wage equation as follows:

wt =
f
L

R

∑
r=1

S

∑
s=1

(1−αs)ηsτsrt

1− (1−αs)ηs −αsηsτsrt

ξ (1−ηs)

ξ (1−ηs)−1

The expression for cutoff productivity derived in Equation (1.17) combined with the def-

inition of Λst gives:

θ
∗
srt =


f

[1− (1−αs)ηs −αsηsτsrt ]τ
αsηs
1−ηs
srt

{
wt

(1−αs)ηs

}− (1−αs)ηs
1−ηs

{
ρ

αsηs

}− αsηs
1−ηs


1−ηs

=
f 1−ηsραsηsw(1−αs)ηs

t

(1− (1−αs)ηs −αsηsτsrt)
1−ηs τ

αsηs
srt ((1−αs)ηs)

(1−αs)ηs (αsηs)
αsηs

Endogenizing wages using the equilibrium expression derived above:

θ
∗
srt =

f 1−ηsραsηs

(1− (1−αs)ηs −αsηsτsrt)
1−ηs τ

αsηs
srt ((1−αs)ηs)
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αsηs

×

{
f
L

R

∑
r=1

S

∑
s=1

(1−αs)ηsτsrt

1− (1−αs)ηs −αsηsτsrt

ξ (1−ηs)

ξ (1−ηs)−1

}(1−αs)ηs

Simplifying further delivers the equilibrium cutoff productivity expression:

θ
∗
srt =

f 1−αsηs(
(1−αs)ηsL

)(1−αs)ηs

(
ρ

αsηsτsrt

)αsηs

×
{

1
1− (1−αs)ηs −αsηsτsrt

}1−ηs

×

{
R

∑
r=1

S

∑
s=1

(1−αs)ηsτsrt

1− (1−αs)ηs −αsηsτsrt

ξ (1−ηs)

ξ (1−ηs)−1

}(1−αs)ηs
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1.10.4 MLE Estimator for Regency Flood Exposure (φrt)

The distribution of the share variable x is as follows:

Grt (x) =


1−
(

1
x

)φrt

x ≥ 1

0 x < 1

This gives the p.d.f.

grt (x) =
φrt

xφrt+1

The likelihood function for a sample of firms in period t (x1t ,x2t ,x3t , · · · ,xNt) located in

regency r can be written as:

L(φ) =
Nrt

∏
i=1

φrt

xφrt+1
it

The log-likelihood function becomes:

ln(L(φ)) = Nrt ln(φrt)− (φrt +1)
Nrt

∑
i=1

ln(xit)

To find the MLE for φrt , take the derivative of the log-likelihood with respect to φrt :

d ln(L(φ))
dφ

=
Nrt

φrt
−

Nrt

∑
i=1

ln(xit)

Setting the derivative to zero delivers the estimator:

φ̂rt =
Nrt

∑
Nrt
i=1 ln(xit)
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Chapter 2

Air Pollution and the Case for a Green

Transition

2.1 Introduction

There is now widespread recognition that phasing out coal-fired power is a central plank

of the green transition towards renewable energy. But there is also much concern that the

pace of change is too slow, most often blamed on the failure of political will. Moreover,

some countries continue to invest in coal-fired power plants and are even building new

ones. Coal-fired power is not just bad for carbon emissions, it is detrimental to air quality

with negative consequences for public health (see, for example, Lelieveld et al. 2015).

This is worse when plants are located near dense population centers.1 But it also implies

that some benefits from closing coal-fired power should be both rapid and local so that

local political processes can play a role in spearheading the green transition.

However, even though individual citizens may suffer the consequences of air pollu-

tion, it has long been argued that without increasing the political salience of the issue,

public action may not take place (e.g. Crenson 1971; Singh and Thachil 2023, for the

1. There are at least ten thermal power plants in states of Punjab, Haryana, and Uttar Pradesh that are
located in the vicinity of New Delhi, which is the most densely populated city of India. Source: Economic
Times - Energy News, 4 June, 2021.
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US and India respectively). Moreover, one way to galvanize such action is to provide ev-

idence of collective benefits from closing down coal-fired power plants. This links to the

increased interest in measuring environmental damages alongside studying ways to adapt

to and mitigate their consequences (see, for example, Stern 2007; Aghion et al. 2019).

Research in environmental psychology tries to uncover relationships between individual

characteristics and incentives, location attributes, and perceptions towards damages, and

how these interact with governance and politics (Whitmarsh 2008; Egan and Mullin

2017; Poortinga et al. 2019). Some of these studies have established correlations us-

ing variations in existing datasets at the state or city level (Howe et al. 2015; Konisky,

Hughes, and Kaylor 2016) and others have leveraged more granular analysis using be-

spoke local surveys (Kaiser 2006; Bogner and Wiseman 1999).

However, such issues are rarely studied in low- and middle-income countries where

data availability is more limited. Yet, the damages due to air pollution and climate change

are argued to be disproportionately higher in the Global South (Cruz and Rossi-Hansberg

2021). Furthermore, the growth in coal-fired power in recent years has also predomi-

nantly been in the middle-income countries. This makes studying such contexts even

more relevant.

This chapter has two main aims. First, we study the link between air quality per-

ceptions and coal-fired power to show that citizens do appear to notice the detrimental

effects of this polluting technology. Second, we use data on life satisfaction to construct

a measure of the benefits of closing down coal-fired power stations and replacing them

with renewables. We show that air quality benefits alone can be used to make the case

for a green transition.

The chapter takes advantage of a unique dataset, which provides geocodes of the lo-

cations of survey respondents in 51 countries covered in the Gallup World Poll, most of

which are low- and middle-income countries. Using the precise locations of interviews,

we could construct a measure of proximity to coal-fired power stations. We find robust

evidence that those respondents who live closer to an operational coal-fired power plant
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express greater air quality dissatisfaction compared to others in the same country/region

who are farther away from an operational coal-fired power plant. The link between dis-

satisfaction and proximity to coal-fired power cannot be explained by a priming effect

since respondents were not asked about coal-fired power prior to answering the air qual-

ity question.

We then construct an equivalent variation (EV) measure by combining questions on

life and air quality satisfaction with income to construct a monetary value of the benefit

of switching to renewable technologies with the same electricity-generating capacity.

This is motivated by on-going programs of investment in renewables as an alternative

to coal-fired power plants either towards retirement or conversion into natural gas plants

(Davis, Holladay, and Sims 2022).2 Moreover, since R&D investments in energy storage

technologies promise finding a way of balancing out supply and demand,3 the transition

looks technologically feasible in the near future. We find that just looking at air quality

benefits yields a strong case for replacing coal-fired power with clean energy.

We use these estimates to show that the air quality satisfaction benefits from closing

the “top” 25 coal-fired power stations in our sample of countries are large enough to

justify their closure, even without factoring in the carbon-reduction benefits. We also use

our estimated benefits “out of sample”, i.e., for countries that are not in our survey data,

projecting the valuations of air quality and finding a similarly strong case for closing

coal-fired power stations elsewhere based solely on the air quality benefits.

These findings provide a new window on the case for phasing out coal-fired power

since it stresses that this is coming from citizens’ own perceptions rather than expert

opinion. It therefore compliments approaches that estimate public health benefits from

reducing reliance on coal-fired power, such as Lelieveld et al. (2019) which attributes

65% of excess global mortality to fossil fuel-related emissions, with significant hetero-

2. Coal will account for 85% of U.S. electricity generating capacity retirements in 2022. Source: US
Energy Information Administration

3. In 2019, around 80% of all public energy R&D spending was on low-carbon technologies – energy
efficiency, CCUS, renewables, nuclear, hydrogen, energy storage, and cross-cutting issues such as smart
grids. Source: IEA World Energy Investment Report, 2020
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geneity across regions.

Those who focus on climate change imperatives often refer to air quality improve-

ment as a co-benefit from low-carbon investments (see, for example, Stern 2016) and

that coal generation has a negative value added when accounting for the external social

costs of the air pollution it produces (Muller, Mendelsohn, and Nordhaus 2011). But,

when it comes to politics, it can be first-order due to its visibility. However, individuals

might be aware of poor ambient air quality without being able to attribute it to their prox-

imity to a coal-fired power station and, even if they are aware of it, they need not know

about collective benefits, which are obtained by aggregating across individuals, as we

do here. Ultimately, domestic and international policies to reduce carbon emissions are

likely to be encouraged if citizens, firms, and civil society demand change. As stressed

in Besley and Persson (2023), facilitating a green transition requires citizens as voters

and consumers to embrace green values. Citizens’ perceptions of the need for change are

likely to be the key drivers in increasing the salience of policy issues in this area where

global debates about abstract notions, like climate change, may not readily cut through.

The remainder of the chapter is organized as follows. In the next section, we discuss

the data that we use. In Section 2.3, we establish a robust empirical link between a survey

respondent’s proximity to a coal-fired station and their satisfaction with air quality. The

policy implications of these findings are developed in Section 2.4. Section 2.5 contains

some concluding comments.

2.2 Data

2.2.1 Geocoded Gallup World Poll

The outcomes data is taken from the Gallup World Poll, a nationally-representative an-

nual survey of citizens which began data collection in 2006 and represents around 99%

of the world’s adult population living in more than 160 countries. We only use the 2019

data in which we are given access to geocoded data for a sample of countries where
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face-to-face interviews were undertaken. This excludes the US and a majority of West-

ern European countries with phone surveys as shown in the top panel of Figure 2.5 in

the Appendix. For the sample countries, we have exact latitudes and longitudes of the

interview clusters and we use them to measure the distance of survey locations from the

nearest coal-fired power plant. This gives a sample of 17,964 surveys from 51 countries

listed in Table 2.11 and mapped in the bottom panel of Figure 2.5 in the Appendix. The

main outcome variable is a binary indicator of the survey respondent’s dissatisfaction

with ambient air quality. The exact question (translated into English) is: “In the city or

area where you live, are you satisfied or dissatisfied with the quality of air?”

We also use survey responses to a question on current life satisfaction as a proxy

for overall wellbeing. It asks respondents to rate their present life on an eleven-point

scale from 0 (“the worst possible life”) to 10 (“the best possible life”). This mea-

sure of life satisfaction is popular among researchers and has been used extensively to

make cross-country comparisons of wellbeing, particularly for less-developed countries

(Deaton 2008; Kahneman and Deaton 2010). Apart from these two “outcome” variables,

we also use controls for education, age, income, gender, and whether or not they have

children under 15 years of age (also from the Gallup World Poll). We also make use of

a different, but related, attitudinal survey based on a subset of countries included in the

Gallup World Poll: the Lloyd’s Register Foundation World Risk Poll.4 Here also, we

restrict the sample to 51 countries of the main analysis.

2.2.2 Global Energy Monitor Coal Plants Tracker

Data on coal-fired power plants come from the Global Coal Plant Tracker (GCPT) database

released by the Global Energy Monitor (GEM).5 This is freely-available data that tracks

all coal-fired generating units, which are 30 MW or larger, in different stages of operation

4. In this survey, 150,000 interviews were done by Gallup in 142 countries in 2019 to measure the risk
perceptions around climate change, pollution, food, cyber security, etc. (LRF 2020).

5. GCPT provides information on coal-fired power units from around the world generating 30
megawatts and above. It catalogues every operating coal-fired generating unit, every new unit proposed
since 2010, and every unit retired since 2000. Source: Global Coal Plant Tracker - Global Energy Monitor
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across the world and provides units’ precise locations in terms of latitudes and longitudes

and other characteristics, such as capacity, annual CO2 emissions, etc. At present, it has

detailed information on 13,412 coal units located in 108 countries. Of the total reported

units, 6,613 units are operational, and these generate more than 2 million megawatts of

power and produce 12 trillion kilograms of CO2 each year. The database makes available

rich data on other energy sources also, such as natural gas, wind, and solar and heavy in-

dustries, such as iron and steel. Figures 2.6 and 2.7 in the Appendix show the distribution

of operational and planned units respectively for coal, solar, and wind energy generation

across 51 countries that constitute our main analysis sample.

We also use remote-sensing data on vegetation cover and pollutant concentration from

the NASA Earth Observations project for each survey location and a 1 km × 1 km grid

population count from the Gridded Population of the World v4 (GPWv4) database for the

year 2020 to compute the population estimates.

2.3 Air Quality Dissatisfaction and Coal-Fired Power

Our first step is to show that there is a robust link between air quality dissatisfaction and

proximity to coal-fired power plants. This observation underpins the policy exercise that

we turn to in the next section. We first lay out the empirical approach, and then develop

some core results and explore their robustness.

2.3.1 Approach

Suppose that air quality dissatisfaction, AirDiss, for an individual, i, located near a coal

plant, c, surveyed in location, ℓ, can be explained as follows:

AirDissiℓ = αδic + τi + εiℓ (2.1)

where δic is i’s distance to the nearest operating coal-fired power plant, c, and τi represents
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unobserved idiosyncratic distaste for air pollution. Obviously, we cannot estimate this

exact relationship in practice because we observe each individual only once in the data,

but it has value for the discussion to go forward.

If coal plants were randomly assigned to different locations, or equivalently, if indi-

viduals chose to locate randomly across different locations, then OLS would give us an

unbiased estimate of α , i.e., how, on average, distance from the nearest coal-fired power

plant is related to perceived ambient air quality.

If policymakers may choose to locate coal-fired power stations where opposition is

lowest, i.e., where people are less concerned about pollution or people who care strongly

about pollution move away from locations where there is heavy air pollution then OLS

could underestimate the negative impact of coal-fired power on the general population.

So we think of our results as a lower bound on the effect.6

Our core results come from supposing that τi = βXiℓ + ηℓ, where X contains the

geocode (latitude×longitude)-level and individual-level controls, and where ηℓ are region

fixed effects, either at the country (admin 0) or state/province (admin 1) level. We then

estimate the following core equation using OLS:

AirDissiℓ = αδic +βXiℓ+ηℓ+ εiℓ (2.2)

Prior research on perceptions and actual impacts lead us to expect a larger effect on

households, which are closer to coal-fired power stations (Zhang et al. 2022; Datt et

al. 2023). We therefore present our main findings for three distance bands: 0-40 km,

6. More formally, note that

α̂OLS =
cov(AirDissiℓ,δic)

var (δic)
=

cov(αδic + τi + εiℓ,δic)

var (δic)
= α +

cov(τi,δic)

var (δic)

If cov(εiℓ,δic) = 0, then any bias in OLS comes from the final term representing the correlation between
unobserved tolerance for air pollution and the location of coal-fired power stations. The two sources of
biases that we have mentioned would lead use to expect that cov(τi,δic) > 0, implying that the estimate
of α is, if anything, biased downwards as an estimate of the average relationship between being located
close to a coal-fired power station and air quality dissatisfaction. In the Appendix Section 2.6, we report
results from an instrumental variables strategy which, consistent with this, finds much larger estimates of
the relationship between coal-fired power and air quality perceptions.
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40-80 km, and 80-120 km, which are distances between a survey location and the nearest

coal-fired power plant.7

2.3.2 Core Findings

Table 2.1 reports the results.8 In Columns 1, 2, and 3 we use country fixed effects while

those in Columns 4, 5, and 6 use state/province fixed effects. Columns 1 and 4 are for

distance band 0-40 km, 2 and 5 for 40-80 km, and 3 and 6 for 80-120 km. The results in

Columns 1 and 4 confirm our hypothesis that α is negative, i.e., air quality dissatisfaction

is negatively correlated with distance from the nearest coal plant for respondents located

within 40 km of a coal-fired power plant.9

The core results are robust to changing the range of distance i.e., starting from 0 km

and ending at 60 km as the upper limit of domain. However, there is no effect of distance

on perception when using 40-80 km or 80-120 km distance bins, thereby suggesting that

the “immediate” effect is local (Ha et al. 2015).10

Table 2.1 also gives suggestive evidence that “elite” opinion is geared towards some

form of climate action as evidenced in the gradient on education level; individuals with

higher education levels tend to be significantly more dissatisfied compared to the less

educated ones, ceteris paribus. This significant result, along with mixed patterns on age

7. We look at the concentration of pollutants around the operational coal-fired power plants to check if
people’s perceptions are not totally off the actual level of air pollution. We rely on remote-sensing data
on pollutant concentration from NASA Earth Observations and Donkelaar et al. (2021). Figure 2.8 in the
Appendix reports the mean PM2.5 and NO2 concentration in different distance bins relative to a coal power
plant. The pollutant level goes down as one moves away from coal plant locations.

8. The OLS estimation uses a linear probability model, which might be a strong assumption given the
binary nature of the dependent variable. We test the robustness of OLS results by estimating a logistic
regression model with region fixed effects alongside the same controls as in the OLS specification. Results
reported in Table 2.12 in the Appendix suggest that the OLS estimates are robust to relaxing the linearity
assumption.

9. We also run a specification using Equation (2.2) with a general measure of health problems as the
dependent variable. The exact survey question is: Do you have any health problems that prevent you from
doing any of the things that people of your age normally can do? This is a portmanteau health question,
and as expected, we do not detect any significant effect of our main regressor, δ .

10. Throughout the chapter, we report region-clustered heteroskedasticity-robust standard errors. How-
ever, following Conley (1999); Conley (2008), which allow for spatial correlation in the errors across
neighboring areas with distances less than a specified threshold, we report results in Table 2.13 in the Ap-
pendix with spatial clusters defined at 5 km distance threshold. The results are essentially identical with
slightly smaller standard errors.
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group and income, has been documented in other studies, which use different attitudes

datasets (Dechezleprêtre et al. 2022).

Taken together these results suggest that the mere existence of coal-fired power sta-

tions nearby do indeed affect perceptions of air quality negatively.11 Also, to reiterate,

we expect these to be lower bound estimates, so the actual effects could be much larger.

2.3.3 Robustness and Additional Findings

We now present a range of additional results that explore the validity of our core find-

ings. We first show that the granularity from using geocoded data is essential to our

findings. We then ask whether the core results are reflected in individual climate risk

perceptions rather than air quality satisfaction. As a “placebo” test, we check whether

non-operational power stations have a similar effect on air quality perceptions to those

that are operational. To ensure that this effect is coming from coal-fired power plants, we

also check whether the location of other polluting industries, such as iron and steel pro-

duction, have similar links to air quality dissatisfaction. We also look for heterogeneous

effects based on whether survey respondents are located upwind or downwind from op-

erational coal-fired power plants. Finally, we use a semi-parametric approach to examine

the validity of the distance cutoff used in our core results.

Data aggregated at regional level

A unique feature of the analysis is being able to use spatially granular data. Most previous

work has used much less granular data. To show that this is important, we contrast our

core findings with results using data aggregated to the region level. While we have a less

clear-cut way of measuring survey respondents’ proximity to coal-fired power stations, it

does permit a longer time period to be studied since we can now use the World Poll for

11. To see if there is a relationship between the level of emissions and air quality dissatisfaction condi-
tional on distance, we estimate Equation (2.2) and include an interaction of the distance regressor and the
nearest plant-level annual CO2 emissions. We find that the interaction term is not statistically significant, as
reported in Table 2.14 in the Appendix. This highlights that, in our case, distance is a “sufficient statistic”
to explain the effect of coal plants on people’s perceptions.
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all years rather than just 2019, the year for which we have geocoded data. However, to

maintain comparability, we will use the same 51 countries as in our main analysis.

We experiment with different ways of defining exposure at a regional level. Our first

measure is the number of operational coal-fired plants in a region in a given year divided

by the total area of the region. This can be constructed without knowing specifically

where a respondent lives. The second measure is closer to what we use in Equation (2.2),

and is the logarithm of the average distance between all survey geocodes and the nearest

operational coal-fired power plant at the region level for survey locations that are within

40 km of the plant in 2019.12

Results using aggregated data, which is reported in Table 2.2, show no significant

relationship between any of the two measures of exposure to coal-fired power defined at

the regional level and the average air quality dissatisfaction in a region. Even though the

coefficients are not statistically significant, it is interesting to note that the coefficient on

the second exposure variable, which is our closest counterpart to the main results reported

in Table 2.1, is of the same order of magnitude as in the core results.13

These findings underline the value of using spatially granular data to assess the impact

of coal-fired power on air quality dissatisfaction. Even our best estimate of exposure to

coal-fired power based on aggregation to the region level is much less precisely estimated

than what we find with precise locations.

Risk perceptions

Data from the World Risk Poll allow us to estimate a similar specification to Equation

(2.2) but with the left-hand side variable now being individual risk assessments on pollu-

tion and climate. Table 2.3 reports the results.

12. For this to be an accurate exposure measure for all years, the locations of the sample collected in
2019 needs to be similar to that in other years.

13. The results in Table 2.2 also show that the magnitude of the coefficient on the exposure to coal-
fired power is not sensitive to the inclusion of year fixed effects. This is also shown in Figure 2.9 in the
Appendix. It suggests stable air quality perceptions over time across sample countries, thereby allaying
some concerns around using only a single cross-section for 2019 for our core results.
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Whether we use admin-0 or admin-1 fixed effects, we find that, as before, a significant

negative relationship exists between an individual’s location relative to the nearest coal

power plant and their pollution risk perception when they are located within the 0-40 km

distance band. However, there is no such relationship when we look at perception of risk

of climate change damages.14 This suggests that air quality perception is more linked to

a visible source of risk and not linked to climate change per se, something that we return

to when think of possible political economy implications.

Placebo tests

We report two kinds of placebo test. First, we should not expect a relationship between

perceptions of air quality and retired (closed) or planned (for the future) coal-fired power

plants in new locations i.e., plants that are no longer operational15 or have been an-

nounced, at a pre-permit or permit stage of commissioning. Second, we do not expect the

proximity to coal-fired power plants to be associated with reduced perceptions of other

environmental amenities, such as water quality.

The results are in Table 2.4 and, as expected, the coefficients on distance are not

significantly different from zero. Similarly, the effect of distance from the nearest opera-

tional coal-fired power plant on water quality dissatisfaction is also insignificant, thereby

confirming our placebo hypothesis.16

Other polluting industries

Iron and steel production plants tend to be located near coal-fired power plants and are

also a major source of local air pollution. We now see whether they have similar effects

on air quality dissatisfaction.

We use the GEM database as a source of geolocation for iron and steel plants around

14. Results for 40-80 km and 80-120 km distance band are reported in Table 2.15 in the Appendix.
15. Units that have been permanently decommissioned or converted to another fuel are classified as

retired while units that have been deactivated or put into an inactive state but are not retired are called
mothballed units.

16. Results for 40-80 km and 80-120 km distance band are reported in Table 2.16 in the Appendix.
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the world. In our core specification, we add the logarithm of the straight-line distance

between an operational coal-fired power plant in the analysis and the nearest iron and

steel plant, when estimating Equation (2.2). Table 2.5 reports the results. The point

estimates for distance between the survey locations and coal plants remain same as from

Table 2.1. In addition, the coefficient estimates for the new control variable, though

smaller in magnitude, are also negative, suggesting that iron and steel plants affect air

quality perceptions, but with smaller magnitude compared to coal-fired power plants.

Wind direction

Wind transports air pollutants across space and previous work has found it to be a source

of heterogeneity when looking at the effects of pollution (see, for example, Deryugina

et al. 2019). In the case of coal-fired power plants, we expect that areas lying downwind

from the plants will receive more pollution.

We exploit cross-sectional variation in the wind direction to see whether this is a

source of heterogeneity. To do so, we use the so-called u- and v-component of wind,

which are wind velocities in two orthogonal directions, to derive the resultant wind di-

rection vector at each coal-fired power plant location for all the survey geocodes located

in its domain of influence.17

We re-estimate Equation (2.2) with the distance variable interacted with a downwind

dummy that takes a value of 1 if a survey geocode is located in the domain of influence

of a coal-fired power plant. Table 2.6 reports the regression results. The estimates on the

downwind dummy suggest that being in the downwind direction of an operational coal

power plant does not have a significant effect on local air pollution perceptions. However,

17. We use the monthly averaged u- and v-component of wind at 10 meter elevation from ground surface
for single pressure level using the global version from ERA5 Climate Data Store. We do the further
averaging over the monthly data for years 2015-19 to arrive at one u- and v-component for each coal plant
location. To define the domain of influence i.e., wind buffer zones for each coal plant, we use the 0-40 km
distance band, same as earlier, but also employ angular restriction viz. 60◦, 90◦ and 120◦ angular width
with the wind direction vector defining the central azimuth. All the survey geocodes that fall in the buffer
zone are classified as downwind points. Figure 2.10 in the Appendix shows the buffer zones for 60◦ angular
restriction and 40 km distance band for operational coal power plants located in some parts of the Indian
subcontinent.
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under strong restrictions on the domain of influence i.e., within a 0-40 km distance band

and 60◦ angle, individuals located in downwind areas do show some tendency to express

more dissatisfaction with ambient air quality, as Column 4 shows.18 We have also looked

at whether wind direction affects actual pollution measured using the PM2.5 concentration

at the geocode level. Here we also find no significant effect.19

Distance cutoff

Our core measure of distance focused on survey respondents residing in areas, which

are less than 40 km from the nearest operational coal-fired power plant. Those who live

further away do not appear to show higher levels of air quality dissatisfaction.

To explore the validity of the 40 km cutoff, Figure 2.1 shows the result of estimating

a semi-parametric locally-smoothed polynomial to show how air quality dissatisfaction

varies with distance. It demonstrates that air quality dissatisfaction decays, essentially to

zero at around 20 km from coal power plants. Using this as our core distance measure

would, however, give us a much smaller number of survey respondents, only 6% of the

survey respondents live within 20 km of a coal-fired power plant compared to 13% living

within 40 km. So, we are likely to get more statistical power at 40 km.20

2.4 Policy Implications

We have now established that perceptions of ambient air quality are indeed related to the

proximity to coal-fired power plants. We use this observation to calibrate a measure of the

18. Note that we are using annual averages on wind direction, thereby removing seasonal and almost
entire idiosyncratic variations that could be more important for shaping perceptions. Wind direction pre-
dictions at coal plant locations may also be measured with error due to intervening convection and radiation
currents due to coal plants’ operations itself (see, for example, Balboni, Burgess, and Olken 2021, which
reports null effects on the propagation of forest fires.).

19. See Table 2.17 in the Appendix where we use actual pollution levels i.e. PM2.5 concentration, and
still find null effects.

20. As a further robustness check, we run our main regressions for the 0-20 km bandwidth to see whether
our results continue to hold. Table 2.18 in the Appendix shows that both the main and placebo results do
continue to hold even though we lose some statistical significance on the main results due to the smaller
number of observations from which we are trying to identify the effect.
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air quality satisfaction benefits of closing down coal-fired power stations for the approx-

imately 1.12 billion people living within 40 km of an operational coal-fired power plant

in our sample of countries and the 2.18 billion (about one-third of the global population)

in the world as a whole.

The policy analysis proceeds in three steps. First, we construct the equivalent varia-

tion (EV) of increasing air quality satisfaction from the survey data using life satisfaction

responses. Second, we aggregate this across the affected population. Third, we obtain a

ballpark measure of the cost of replacing coal-fired power generation with a non-polluting

source, such as solar or wind energy, and compare this to the benefits.

This approach builds on the large existing literature that links life satisfaction to the

value of “amenities”, for example, Layard, Mayraz, and Nickell (2008); Kahneman and

Deaton (2010), a sub-strand of which has focused on valuing natural disasters and en-

vironmental amenities (Luechinger and Raschky 2009; Frey and Stutzer 2002; Frey,

Luechinger, and Stutzer 2010; Welsch 2006). Data limitations mean that the scope of

these studies has been limited to the US and parts of Europe.21

To construct an EV measure, we first show a negative correlation between a stan-

dard life-satisfaction measure from the Gallup survey data and air quality dissatisfaction.

Since income and well-being are correlated, this can be used to calibrate the marginal rate

of substitution between money and air quality dissatisfaction that can be used to create

a benefit measure, which can be compared with the cost of clean energy transition. This

method can be used to measure aggregate benefits but could also be deployed to gauge

much more disaggregated, plant-level benefits, based on the affected local population.

21. The correlation between objective and perceived air quality is not always strong (Liu, Cranshaw, and
Roseway 2020), and, arguably, it is the latter that matters most for economic decision-making and political
activism (Chasco and Gallo 2013).
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2.4.1 Approach

We first estimate the determinants of life satisfaction by OLS using the following econo-

metric specification:22

Li f eSatiℓ = ψ log(AirDissiℓ)+φ log(Incomeiℓ)+βXiℓ+ηℓ+ εiℓ (2.3)

where the dependent variable, Li f eSatiℓ, is the life satisfaction score on a 0-10 Cantril

ladder for individual i in location ℓ, ηℓ controls for region fixed effects, Income stands

for household income in 1000 USD, AirDiss is air quality dissatisfaction that takes value

2 (1) if individual is dissatisfied (satisfied) with ambient air quality, and X is a vector of

controls, which are the same as in our previous specifications.

We use the estimates of φ and ψ to quantify the relationship between income and

air quality dissatisfaction with life satisfaction. Equation (2.3) is estimated for all 51

countries in our sample.23 The results are reported in Table 2.7.24 To be cautious, we

consider upper and lower bound estimates, from a 95% confidence interval, rather than

just point estimates.25

Our EV measure, denoted by e, uses a reference level of air quality based on a Cobb-

Douglas utility function and is defined in a standard way, as the amount of money that an

individual would need to obtain the reference air quality dissatisfaction level, ˜AirDiss <

AirDiss. This is given by:

22. There is no consensus in the literature on the exact econometric equation that should be used here,
but the majority of previous work in this vein has used a specification similar to ours. The coefficient on
logarithm of income is precisely estimated and is around 0.5, which lies well-within the bounds estimated
in the existing literature (Layard, Mayraz, and Nickell 2008).

23. As in Section 2.3, there is a potential concern about downward bias due to selection issues here also.
Some studies using a life satisfaction approach for air pollution have used IV approaches and tend to find
IV estimates that are significantly larger than those found using OLS (Luechinger 2010).

24. We also estimate Equation (2.3) using actual pollution level i.e., PM2.5 concentration at the geocode
level to see whether respondents’ perceptions appear “misguided”. Results reported in Table 2.19 in the
Appendix suggest that they are not, as the coefficient on actual pollutant level is also negative.

25. Figure 2.11 in the Appendix shows 95% confidence interval bounds on φ and ψ estimates for each
of the 51 countries in our main sample. There appears to be a fair amount of heterogeneity in preferences
across countries (Falk et al. 2018). However, this is less true for air quality preferences than income
preferences.
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ψ log( ˜AirDiss)+φ log(Income− e) = ψ log(AirDiss)+φ log(Income)

which implies that the equivalent variation is:

e = Income

[
1− exp

{
ψ

φ
log
(

AirDiss˜AirDiss

)}]
(2.4)

To estimate e in Equation (2.4), we use the parameter estimate for ψ

φ
from Column 2 of

Table 2.7.26 and the average level of dissatisfaction outside the 0-40 km distance band

for the 51 countries in the core sample. The results are in Column 6 of Table 2.8 where

we report results for both point estimates and at the upper and lower bounds of the 95%

confidence interval from Column 2 of Table 2.7.

An attractive feature of our approach compared to standard stated preference evalu-

ations is that it is not based on any kind of proposed hypothetical change in air quality.

Hence, we believe that these estimates are less susceptible to concerns about hypothetical

bias using such approaches.27

To obtain an Aggregate Equivalent Variation (AEV hereafter), we scale up the indi-

vidual values using the measure of affected population i.e., those located within 40 km

of operational coal-fired power plants. Our core results are for the world and use the

population figures reported in Column 7 of Table 2.8, adjusted for the household-size to

get to the total residences within 40 km of coal-fired plants. Multiplying this by e, we

obtain our estimate of the global AEV, which we report in Column 9 of Table 2.8. We

will also produce plant-level AEVs using the population that resides within 40 km of any

given plant.

26. Since life satisfaction has no obvious cardinality, we follow Ferreri-Carbonell and Frijters (2004) and
test the robustness of our results by estimating ordered logit models with region fixed effects alongside the
same controls as in the OLS specification. The results from this exercise are in Table 2.20 in the Appendix.
Our estimate of ψ

φ
in this case is -1.047 which is close to the value of -0.989 that we get from the OLS

estimation. We use the OLS estimates in the analysis that follows.
27. Such biases have been widely studied (see, for example, Murphy et al. 2005; Penn and Hu 2018).
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To represent a green transition, we consider a thought experiment in which coal-

fired power plants are replaced with either solar or wind farms of equivalent generation

capacity over a certain period of time. To give a ballpark estimate of the costs involved,

we use the total power generation capacity of coal plants and the source-specific average

global Levelized Cost of Energy (LCOE).28 We extract country-level LCOE estimates

of coal, solar, and onshore wind energy from a variety of sources, which include the

International Renewable Energy Agency, International Energy Agency, country reports,

etc. We assume a gradual “linear” transition over twenty-five years where 4% of coal-

fired power production is replaced by solar or wind in each year.29 30

2.4.2 Findings

Global benefits

In Figure 2.2, we show the aggregate benefits over time for the twenty-five year time

horizon for the entire world, discounted at a constant rate of 2% per year.31 As well as

point estimates, we give a shaded area for the upper and lower bounds of the global AEV.

It is striking that, even at the lower bound, and only considering air quality benefits, a

28. LCOE is a popular measure to estimate the costs associated with renewables technology projects. It
measures lifetime costs divided by energy production and accounts for the present value of the total cost
of building and operating a power plant over an assumed lifetime. This measure allows a comparison of
different technologies of unequal life spans, project size, different capital cost, risk, return, capacity factor,
and capacity for each of the respective sources. Figure 2.12 in the Appendix shows the LCOE for all 51
countries in our sample; the per unit cost of energy generation is highest in the coal sector for most of the
countries.

29. Fulfilling highly variable grid demand requires reliable sources of energy, such as coal and natu-
ral gas, which can supply just enough power to match both peak and off-peak demands without wasting
energy whereas renewable sources suffer from uncertain fluctuations due to weather conditions. Advance-
ment in energy storage technology is important and, apart from advancement in electrochemical storage
technology, R&D investments are being made in less conventional ways to store energy, such as mechanical
storage using liquid CO2, thermal storage, and chemical storage using hydrogen. Source: The Economist,
Technology Quarterly, June 25, 2022.

30. In light of “excess” coal power capacity in many countries, including China (Lin, Kahrl, and Liu
2018), making a transition could also pay dividends in other forms also i.e., by overcoming the sunk cost
fallacy around investments in coal-fired power. Indonesia’s path to green transition is getting blocked
due to large sunk investments from Japan and China on coal-fired power plants in the country. Source:
IEEFA.org

31. Following Stern (2007), there is also a debate about the correct discount rate; using 2% annual dis-
count rate is in line with many existing studies such as Hassler, Krusell, and Nycander (2016); Nordhaus
(2014).
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green energy transition on the global scale is worthwhile. Moreover, these results are not

particularly sensitive to the exact choice of discount factor.32

We have made no adjustment for the possibility that any additional fiscal burden could

be costly if the transition were publicly financed. However, we do not view this as a major

issue since the cost is of the order of only 1% of annual household income.33 Hence, even

as a tax-financed proposition, our proposed green transition looks feasible.

Plant-specific benefits

In practice, the decisions that policymakers will have to make to bring about a green

transition will involve deciding whether to decommission specific coal-fired power plants

(see, for example, Tong et al. 2021, for a discussion of the strategic importance of pop-

ulation density in scheduling plant retirements). Our approach allows us to construct

plant-specific benefits using the AEV for those living within 40 km of any given plant.

Hence, Table 2.9 presents a “league table” of the “top” 25 coal-fired power plants based

on the affected population for our sample of 51 countries ranked by the total population

affected by poor air quality. It is noteworthy that most of the plants on this list are in

India and China, the two most populous countries in the world.34

Table 2.9 also presents the benefits and the costs of closing down each power station

while replacing them with either wind or solar farms of equivalent generation capaci-

ties. In line with the country-level results, we find that for these highly polluting power

stations, air quality benefits alone are in excess of the costs even at the lower bound

estimates for gross benefits of closing them.

We can also look at the benefits from closing coal-fired power stations in countries,

which are not in our sample of 51 countries by using our estimates of ψ

φ
to estimate

32. We have established the robustness using alternative discount rates. Please see Figure 2.13 in the
Appendix.

33. Figure 2.14 in the Appendix shows the values over the transition period of 25 years.
34. Table 2.21 in the Appendix looks at the plants by affected population for the world as a whole. Most

of the plants are again located in China and India, and 16 out of 25 plants repeat from the previous list.
Moreover, all the new plants, which are now on the list, are located in China.
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benefits for these countries. Specifically, we take operational coal power plants across

the globe in 2019 outside of the 51 countries in our survey sample with Table 2.10 giving

a list of the top 25 most polluting coal plants for this sample. It is notable that most of

the plants in this sample are located in Germany and Japan. Although the plant-level

gross benefits are somewhat smaller for these plants compared to those in Table 2.9, the

air quality benefits at the lower bound estimates are still able to generate positive net

benefits for all plants. Thus, our finding about ambient air quality provides a potentially

compelling case to close these power stations too.

As a final step, Figure 2.3 gives the plant-level net benefits for all operational coal-

fired power plants across the world in 2019. It gives a good sense of the distribution of

benefits and makes it clear that replacing coal plants with solar and wind generation units

would be beneficial in almost all cases, even if we use the lower bound estimates of the

net benefits of air quality improvement.35

2.4.3 Lessons for Political Economy

Creating a green transition that moves away from coal-fired power requires a political

process, and whether having a high net benefit, as represented by our AEV measures, is

sufficient to generate public action depends on the politics of decision-making. Our find-

ings on aggregate benefits can be thought of as an input into policymaking via whatever

process is in place.

To sharpen things further, we consider two countries, China and India, which. as we

saw earlier, are home to most of the plants with large affected populations. For these two

large countries, it makes sense to look at benefits using country-specific parameters.36

35. There is a growing evidence base in the engineering literature on estimating the costs of replacing
fossil fuels with renewable energy generation. It suggests that the transition is unlikely to be one-to-one.
Bolsona, Prieto, and Patzeka (2022) estimates that replacing 1W of fossil fuel is equivalent to installing
4W of solar capacity or 2W of wind power. We use these estimates to inflate our global LCOE values and
re-plot Figure 2.3. The new plot in Figure 2.15 in the Appendix suggests that, though smaller, net benefits
continue to be positive for the majority of coal plants around the world. Also, the net benefits for more
plants are now negative.

36. Please see Table 2.22 in the Appendix for country-specific parameters values.
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We now find that the gains from a green transition based on air quality dissatisfaction are

lower in India than China mainly due to differences in estimated preference parameters.37

This finding could explain why even if they have a political voice, Indian citizens may

put less pressure on their government to reduce dependence on coal-fired power, while

policy action by Chinese political elites could be justified to their citizens more easily

given our finding. Either way, drawing conclusions on the potential for public action

based on the findings depends critically on how such findings land in policy discussions,

and the political salience of air pollution is an issue (see, for example, Crenson 1971;

Singh and Thachil 2023).

Heterogeneity by education level is also interesting since those who are politically

active in all kinds of governance systems tend to be more educated. Our main findings

assume that AirDiss˜AirDiss
is common across all education categories and is set at the global

level. The differences in EV are mostly guided by differences in income levels across

education categories, with only small proportions of these differences explained by vari-

ation in preferences, i.e., ψ

φ
ratio across the categories as reported in Table 2.25 in the

Appendix. Again, using Equation (2.4), we find that the EV for better air quality satis-

faction among highly educated individuals is more than double that of those with only

primary or intermediate-level education, as reported in Table 2.26 in the Appendix. This

too may be relevant in political economy terms across a range of political systems given

how important elite opinion is in policymaking.

2.4.4 Further Issues

Comparison to alternative approaches We now compare our estimates to those that

are obtained using Contingent Valuation Methods (CVM) and Revealed Preference (RP)

approaches. We find that our estimates lie in between these two.

37. Please see Table 2.23 in the Appendix for country-specific AEV values. Figure 2.16 in the Appendix
gives the benefits and costs over time for each country. Note though that the air quality benefits tend to
go up substantially in India when we re-compute benefits with global preference parameters as reported in
Panel 2 of Table 2.24 in the Appendix.

130



CVM methods, relying on survey responses, are widely used in environmental impact

assessment more generally (Arrow et al. 1993; Hanemann 1994).38 One well-known

critique of such methods is that by asking directly about negative impacts of something

like coal-fired power survey respondents are “primed” to think about something negative.

However, the Gallup World Poll surveys do not even mention coal-fired power in the

survey instruments, let alone prime respondents about it. Due to this fact, our study does

not suffer from various issues raised in Diamond and Hausman (1994). To benchmark

our findings against CVM studies, we use a value of $247.95 per tonne of CO2 emissions,

taken from a survey of CVM studies (Mitchell and Carson 1989).39 Using this, we find

that the aggregate benefit from eliminating coal-fired power is about 1.828 trillion USD,40

which is 42% (215%) higher than the upper (lower) bound of our global AEV estimates

reported in Table 2.8.

There is also a body of work that estimates the value of clean air using RP approach

(Chay and Greenstone 2005; Ito and Zhang 2020). To compare our AEV estimates to the

those obtained using RP methods, we use the lower bound estimates valued at $19.84 per

tonne of CO2 emissions from Rodemeier (2023).41 Using this, we obtain the aggregate

global benefits to be about 0.146 trillion USD,42 which is about a quarter of the lower

bound aggregate AEV estimates reported in Table 2.8. Nonetheless, with the estimates

of the social cost of carbon being revised upwards, more than quadrupling in the last 10

years (Tol 2022), we expect estimates based on RP approaches to be larger in the future.

38. Such studies have also been used to study coal-fired power, e.g. Chikkatur, Chaudhary, and Sagar
(2011); Wang and Mullahy (2006).

39. The average social cost of carbon is 200 EUR per ‘ton’ of CO2 emitted, which when converted to
USD per ‘tonne’ using the average 2020 EUR-USD exchange rate of 1.125 and the tonne-to-ton conversion
factor of 1.102, comes out to be $247.95 per tonne of CO2 emissions.

40. The total annual emissions in 2019 from the operational coal-fired power plants located in the sample
of 51 countries was 7.371 billion tonnes. We take the product of these total emissions and $247.95 to get
to the aggregate monetary benefits.

41. The lower bound of the social cost of carbon emissions is 16 EUR per ‘ton’ of CO2 emitted, which
when converted to USD per ‘tonne’ using the average 2020 EUR-USD exchange rate of 1.125 and the
tonne-to-ton conversion factor of 1.102, comes out to be $19.84 per tonne of CO2 emissions.

42. The total annual emissions in 2019 from the operational coal-fired power plants located in the sample
of 51 countries was 7.371 billion tonnes. We take the product of this these emissions and $19.84 to get to
the monetary equivalent of RP-based aggregate benefits.
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Adding carbon benefits Coal-fired power generation is one of the biggest sources of

CO2 emissions across the world, accounting for nearly 30% of total annual global emis-

sions with the lion’s share coming from Asia.43 Therefore, shutting down coal-fired

power plants has an additional dividend in terms of carbon-reduction benefits that could

help mitigate the climate change problem (Greenstone and Looney 2012).

There is much debate about the appropriate Social Cost of Carbon (SCC) to use, with

widely different numbers available (Tol 2022).44 We therefore assume lower and upper

bound values of $20 and $100 per ton of CO2 for our estimated benefits. Recent work

estimates that the carbon benefits from a global closure of coal-fired plants is of the order

of 80 trillion USD (Adrian, Bolton, and Kleinnijenhuis 2022) using a SCC value of $75

per ton of CO2 (Parry, Black, and Vernon 2021).

Figure 2.4 adds in the carbon-reduction benefits for a twenty-five year horizon using

a 2% annual discount rate. The area covered by the upper and lower bounds on air quality

benefits are shaded, but we have not shown the upper bound of carbon-reduction benefits

since this, combined with air quality benefits, dwarfs other estimates. Not surprisingly,

this further strengthens the case for a green energy transition.45

The cost of air quality deterioration, using our measure of benefits, may be lower in

the future if governments move coal-fired plants away from densely populated areas to

please voters. There is some evidence that this is happening: planned (future) coal plants

are, on average, located farther away from large population centers when compared to

the existing ones.46

43. Global energy-related emissions was around 33.1 Gt CO2 in 2018; the power sector accounted for
nearly two-thirds of emissions growth. Coal use in power alone surpassed 10 Gt CO2. China, India, and
the US accounted for 85% of the net increase in emissions, while emissions declined for Germany, Japan,
Mexico, France and the UK. Source: Global Energy & CO2 Status Report 2019

44. Although there has been more recent work on estimating these costs for specific cases, such as on hu-
man mortality and labor productivity, we do not use them as they are only partial SCC estimates (Carleton
et al. 2022).

45. We can also look at plant-level net benefits after adding the carbon-reduction benefits; please see
Figure 2.17 in the Appendix. The net benefits from closing almost every coal-fired power plant on the
earth is positive.

46. On average, an existing operational coal plant affects 3,457,731 individuals, while a typical planned
plant, which was non-existent in 2019, is expected to affect 1,328,480 individuals.
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Other effects Those who depend on the coal economy, directly or indirectly, tend to

express lower dissatisfaction with its existence (Eyer and Kahn 2020). Employment con-

cerns could be important for shaping citizens’ debates and policy design around a green

energy transition. However, as Table 2.27 shows, it is unclear that clean energy would

lead to aggregate job losses, which would depend, in part, on whether the cost of en-

ergy is higher or lower in an age of renewables as new firms tend to locate in areas with

lower energy prices and where labor is available (Kahn and Mansur 2013). Nonetheless,

the employment effects could still be distortionary at the local level, especially when

low-skilled individuals are dependent on coal sector and allied activities. There is also

a potential threat of intensive mining of aluminium, silicon, lithium, and cobalt, which

are used in many forms of renewable energy generation. One also cannot discount the

adverse health effects of some renewables, such as noise pollution generated by wind

turbines (Zou 2017).

2.5 Conclusion

Some, but not all, countries are phasing out coal-fired electricity generation. This is,

in part, motivated by concerns about climate change, but air pollution concerns are also

important. As well as showing a direct link to air quality dissatisfaction, we find that

citizens are more attentive to risk being framed as “pollution risk” rather than “climate

risk” when they live in proximity to coal-fired power plants. Together these findings

suggest that downgrading air quality to the status of a “secondary” benefit may be an

error when analyzing drivers of the political economy of climate change, since air quality

and local pollution may be more tangible issues.

To reinforce this message, we have used survey data to construct measures of benefits

from improving air quality. By using geocoded perceptions data that we match to the

location of coal-fired power stations, we have computed estimates of the benefit from

phasing out coal-fired power plants based on air quality dissatisfaction. Being able to do
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this for countries in the Global South, where expanding generation capacity is likely to

be greatest in the years to come, is particularly important. These findings are particu-

larly relevant to countries like China and India, which are home to many of the largest

coal-fired power systems. The analysis suggests that air quality benefits alone (without

factoring in carbon-reduction benefits) can make a credible case for phasing out coal-fired

power in such places.
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Main Figures and Tables

Table 2.1: Results for air quality dissatisfaction and operational plants location

(1) (2) (3) (4) (5) (6)
Air Diss Air Diss Air Diss Air Diss Air Diss Air Diss

Geocode’s log dist from nearest plant -0.044∗∗∗ -0.056 -0.094 -0.039∗∗∗ -0.020 -0.111
(0.0106) (0.0407) (0.0617) (0.0106) (0.0372) (0.0837)

Geocode’s vegetation index -0.097∗∗ -0.097∗ -0.084 -0.063∗ -0.104∗∗ -0.139∗

(0.0327) (0.0455) (0.0473) (0.0297) (0.0395) (0.0580)

Geocode area is urban 0.106∗∗∗ 0.144∗∗∗ 0.142∗∗∗ 0.089∗∗∗ 0.120∗∗∗ 0.125∗∗∗

(0.0215) (0.0248) (0.0359) (0.0203) (0.0172) (0.0261)

Respondent’s age is 26-60 years 0.020 0.016 0.027∗∗ 0.015 0.022∗ 0.030∗∗

(0.0104) (0.0101) (0.0082) (0.0099) (0.0090) (0.0099)

Respondent’s age is more than 60 years -0.022 0.011 0.018 -0.020 0.017 0.027∗

(0.0150) (0.0123) (0.0125) (0.0128) (0.0119) (0.0132)

Respondent’s gender is male -0.018∗ -0.020∗ -0.016∗ -0.015∗ -0.015∗ -0.012
(0.0089) (0.0081) (0.0064) (0.0072) (0.0068) (0.0071)

Respondent’s education is intermediate 0.057∗∗∗ 0.039∗ 0.037∗∗ 0.059∗∗∗ 0.036∗∗∗ 0.035∗∗∗

(0.0102) (0.0150) (0.0131) (0.0100) (0.0103) (0.0100)

Respondent’s education is high 0.089∗∗∗ 0.066∗∗∗ 0.059∗∗ 0.089∗∗∗ 0.059∗∗∗ 0.062∗∗∗

(0.0151) (0.0173) (0.0217) (0.0142) (0.0169) (0.0159)

Log annual hh income in ’000 USD -0.006 -0.003 -0.009 -0.004 -0.006 -0.010∗

(0.0054) (0.0052) (0.0049) (0.0050) (0.0042) (0.0047)

Respondent has children under 15 yrs 0.004 0.000 0.010 0.001 0.001 0.008
(0.0077) (0.0093) (0.0111) (0.0077) (0.0078) (0.0091)

Number of observations 17,964 16,461 13,137 17,964 16,461 13,137
Adj R-squared 0.128 0.092 0.110 0.179 0.167 0.162
Mean of dependent variable 0.327 0.249 0.240 0.327 0.249 0.240
Region fixed effects Admin-0 Admin-0 Admin-0 Admin-1 Admin-1 Admin-1
Distance band 0-40 km 40-80 km 80-120 km 0-40 km 40-80 km 80-120 km
Region-clustered robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (2.2) for operational
coal-fired power plants. The sample used in each column is defined by the distance band i.e., how far
the survey location is relative to the nearest coal power plant. Table 2.11 provides the list of coun-
tries that are used in the main specification i.e., 0-40 km distance band and results are reported in
Columns 1 and 4. Standard errors, which are reported in parentheses, are clustered at country/admin-0
level for first three columns and state/province/admin-1 level for last three columns. Columns 1-3 and
Columns 4-6 control for admin-0 and admin-1 fixed effects respectively. The dependent variable, Air
Diss, is a shorthand for Air Quality Dissatisfaction, which takes value 1 (0) if the surveyed individual
is dissatisfied (satisfied) with the ambient air quality. The main variable of interest is geocode’s log-
arithm of distance from the nearest plant, which is the straight-line distance between the survey and
nearest coal plant location. Vegetation index measures green cover for survey location and urban is
a dummy variable for urban area classification. The regression also controls for the respondent’s age
group (young/middle-aged/old), gender (male/female), education level (primary/intermediate/high),
logarithm of household income in 1000 USD, and whether the respondent has children under 15 years
of age.
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Table 2.2: Results for regional exposure to operational plants

(1) (2) (3) (4)
Air Diss Air Diss Air Diss Air Diss

#Coal plants over total area of region -2.337 -1.870
(1.7254) (1.4962)

Log avg. region-level distance from coal plant -0.015 -0.015
(0.0112) (0.0111)

Regional vegetation index -0.299∗ -0.046 -0.124 -0.101
(0.1247) (0.1219) (0.0752) (0.0770)

Area is urban 0.150∗∗∗ 0.149∗∗∗ 0.180∗∗∗ 0.180∗∗∗

(0.0103) (0.0103) (0.0206) (0.0204)

Respondent’s age is 26-60 years 0.003 0.003 0.003 0.003
(0.0025) (0.0025) (0.0033) (0.0034)

Respondent’s age is more than 60 years -0.033∗∗∗ -0.032∗∗∗ -0.032∗∗∗ -0.031∗∗∗

(0.0041) (0.0040) (0.0059) (0.0057)

Respondent’s gender is male -0.016∗∗∗ -0.016∗∗∗ -0.018∗∗∗ -0.018∗∗∗

(0.0027) (0.0027) (0.0047) (0.0046)

Respondent’s education is intermediate 0.032∗∗∗ 0.033∗∗∗ 0.034∗∗ 0.036∗∗

(0.0040) (0.0041) (0.0101) (0.0105)

Respondent’s education is high 0.072∗∗∗ 0.074∗∗∗ 0.076∗∗∗ 0.079∗∗∗

(0.0055) (0.0055) (0.0123) (0.0129)

Log annual hh income in ’000 USD -0.001 -0.000 0.002 0.003
(0.0018) (0.0018) (0.0043) (0.0047)

Respondent has children under 15 yrs -0.001 -0.001 -0.001 -0.002
(0.0024) (0.0024) (0.0028) (0.0027)

Number of observations 340,657 340,657 340,657 340,657
Adj R-squared 0.141 0.142 0.118 0.119
Mean of dependent variable 0.288 0.288 0.288 0.288
Region fixed effects Admin-1 Admin-1 Admin-0 Admin-0
Time fixed effects - Year - Year
Years included 2009-20 2009-20 2009-20 2009-20
Region-clustered robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (2.2) for operational coal-
fired power plants where δ is replaced by an “exposure” variable, which is either (i) the number of coal
plants per square kilometers of area of region or (ii) logarithm of average distance of survey geocodes
from the nearest operational coal-fired power plant at the region level in 2019. Columns 1-2 and 3-4
use exposure variable (i) and (ii) respectively. All the regressions use the sample of 51 countries in
the main analysis, as given in Table 2.11. Standard errors, which are reported in parentheses, are
clustered at admin-1 level for Columns 1-2 and at admin-0 level for the remaining ones. Columns 2
and 4 control for year fixed effects. The dependent variable, Air Diss, is a shorthand for Air Quality
Dissatisfaction, which takes value 1 (0) if the surveyed individual is dissatisfied (satisfied) with the
ambient air quality. Please refer to Table 2.1 notes for details on other variables.

143



Table 2.3: Risk assessment results for operational plants

(1) (2) (3) (4)
Poll Risk Poll Risk Clim Risk Clim Risk

Geocode’s log dist from nearest plant -0.005∗∗ -0.006∗ 0.005 0.006
(0.0018) (0.0027) (0.0044) (0.0054)

Geocode’s vegetation index 0.004 0.010∗ 0.023 0.021
(0.0036) (0.0050) (0.0183) (0.0181)

Geocode area is urban -0.002 -0.004 -0.021∗ -0.016∗

(0.0032) (0.0043) (0.0098) (0.0080)

Respondent’s age is 26-60 years 0.000 -0.001 0.008 0.006
(0.0029) (0.0029) (0.0068) (0.0049)

Respondent’s age is more than 60 years -0.004 -0.004 0.012 0.014∗

(0.0044) (0.0037) (0.0083) (0.0067)

Respondent’s gender is male -0.003 -0.003 -0.003 -0.004
(0.0020) (0.0022) (0.0057) (0.0046)

Respondent’s education is intermediate 0.003 0.003 -0.003 -0.004
(0.0023) (0.0025) (0.0082) (0.0062)

Respondent’s education is high 0.008∗ 0.008∗ 0.009 0.006
(0.0042) (0.0040) (0.0070) (0.0081)

Log annual hh income in ’000 USD -0.000 -0.000 0.002 0.004
(0.0016) (0.0016) (0.0031) (0.0023)

Respondent has children under 15 yrs 0.001 0.002 -0.001 -0.001
(0.0022) (0.0025) (0.0043) (0.0047)

Number of observations 15,117 15,117 15,117 15,117
Adj R-squared 0.031 0.030 0.036 0.061
Mean of dependent variable 0.016 0.016 0.062 0.062
Region fixed effects Admin-0 Admin-1 Admin-0 Admin-1
Distance band 0-40 km 0-40 km 0-40 km 0-40 km
Region-clustered robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (2.2). The sample used
in each column is defined by the distance band i.e., how far the survey location is relative to the
nearest coal power plant. Table 2.11 provides the list of countries that are used in the main specifica-
tion i.e., 0-40 km distance band. Standard errors, which are reported in parentheses, are clustered at
country/admin-0 level for Columns 1 and 3 and state/province/admin-1 level for remaining columns.
Columns 1 and 3 and Columns 2 and 4 control for admin-0 and admin-1 fixed effects respectively.
The dependent variables, Poll Risk and Clim Risk, are shorthands for Pollution Risk and Climate Risk
respectively. Poll Risk/Clim Risk take value 1 (0) if the surveyed individual does (does not) considers
pollution/climate as one of the two major sources of risks to their safety in daily life. The main vari-
able of interest is the geocode’s logarithm of distance from the nearest plant, which is the straight-line
distance between the survey and nearest coal plant location. Please refer to Table 2.1 notes for details
on other variables.
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Table 2.4: Placebo results for non-operational plants and water quality perception

(1) (2) (3) (4) (5)
Air Diss Air Diss Air Diss Air Diss Water Diss

Geocode’s log dist from nearest plant 0.004 -0.001 -0.045 -0.015 -0.012
(0.0162) (0.0199) (0.0344) (0.0290) (0.0099)

Geocode’s vegetation index -0.141∗ -0.039 -0.479∗∗ -0.420 -0.023
(0.0612) (0.0774) (0.1178) (0.2328) (0.0450)

Geocode area is urban 0.108∗ 0.117∗∗ 0.046 0.070 0.011
(0.0401) (0.0390) (0.0320) (0.0645) (0.0160)

Respondent’s age is 26-60 years 0.026 0.011 -0.006 0.009 0.036∗∗∗

(0.0244) (0.0261) (0.0194) (0.0324) (0.0094)

Respondent’s age is more than 60 years 0.021 0.010 -0.047 -0.026 0.001
(0.0240) (0.0347) (0.0275) (0.0322) (0.0117)

Respondent’s gender is male -0.022 -0.019 -0.027∗ -0.029 -0.019∗∗

(0.0183) (0.0241) (0.0090) (0.0200) (0.0071)

Respondent’s education is intermediate 0.023 0.015 0.068∗ 0.073∗∗ 0.036∗∗∗

(0.0274) (0.0231) (0.0295) (0.0224) (0.0100)

Respondent’s education is high -0.002 -0.015 0.077∗ 0.066 0.057∗∗∗

(0.0378) (0.0323) (0.0253) (0.0351) (0.0134)

Log annual hh income in ’000 USD -0.022 -0.015 -0.015 -0.015 -0.006
(0.0132) (0.0124) (0.0081) (0.0097) (0.0050)

Respondent has children under 15 yrs -0.000 0.009 -0.016 -0.041 -0.005
(0.0236) (0.0190) (0.0231) (0.0303) (0.0079)

Number of observations 2,948 2,948 2,317 2,317 18,027
Adj R-squared 0.059 0.114 0.125 0.192 0.106
Mean of dependent variable 0.284 0.284 0.291 0.291 0.280
Region fixed effects Admin-0 Admin-1 Admin-0 Admin-1 Admin-1
Distance band 0-40 km 0-40 km 0-40 km 0-40 km 0-40 km
Status of plant operation Planned Planned Retired Retired Operational
Region-clustered robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (2.2) separately for
planned and retired and mothballed coal-fired power plants and for water quality dissatisfaction. The
sample used in each column is defined by the distance band i.e., how far the survey location is relative
to the nearest coal power plant. Table 2.11 provides the list of countries that are used in the main
specification i.e., 0-40 km distance band. Columns 1-2 and Columns 3-4 report results for planned
and retired plants respectively and Column 5 reports results for water quality instead of air quality
dissatisfaction. Standard errors, which are reported in parentheses, are clustered at country/admin-0
level for Columns 1 and 3 and at state/province/admin-1 level for remaining columns. Columns 1
and 3 control for admin-0 fixed effects and remaining columns control for admin-1 fixed effects. The
dependent variable, Air (Water) Diss, is a shorthand for Air (Water) Quality Dissatisfaction, which
takes value 1 (0) if the surveyed individual is dissatisfied (satisfied) with the ambient air(water) quality.
The main variable of interest is geocode’s logarithm of distance from the nearest plant, which is the
straight-line distance between the survey and nearest coal plant location. Please refer to Table 2.1
notes for details on other variables.
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Table 2.5: Results for operational plants with iron and steel plants’ distance control

(1) (2)
Air Diss Air Diss

Geocode’s log dist from nearest plant -0.045*** -0.038***
(0.0122) (0.0107)

Coal plant’s log dist from nearest steel plant -0.023*** -0.018*
(0.0081) (0.0108)

Geocode’s vegetation index -0.094*** -0.062**
(0.0313) (0.0295)

Geocode area is urban 0.100*** 0.084***
(0.0211) (0.0207)

Respondent’s age is 26-60 years 0.019* 0.016
(0.0102) (0.0099)

Respondent’s age is more than 60 years -0.021 -0.020
(0.0149) (0.0128)

Respondent’s gender is male -0.017* -0.016**
(0.0090) (0.0072)

Respondent’s education is intermediate 0.055*** 0.059***
(0.0099) (0.0100)

Respondent’s education is high 0.089*** 0.090***
(0.0147) (0.0141)

Log annual hh income in ’000 USD -0.008 -0.004
(0.0055) (0.0050)

Respondent has children under 15 yrs 0.005 0.001
(0.0076) (0.0077)

Number of observations 17,964 17,964
Adj R-squared 0.131 0.179
Mean of dependent variable 0.327 0.327
Region fixed effects Admin-0 Admin-1
Distance band 0-40 km 0-40 km
Region-clustered robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table presents OLS estimates using the specification in Equation (2.2) but including an ad-
ditional control variable for logarithm of distance between coal plants and iron and steel plant i.e., how
far an operational coal power plant is from the nearest iron and steel production unit, for the distance
band 0-40 km. Standard errors, which are reported in parentheses, are clustered at country/admin-0
level for Columns 1 and at state/province/admin-1 level for Column 2. Columns 1 control for admin-0
fixed effects and Column 2 for admin-1 fixed effects. The dependent variable, Air(Water) Diss, is a
shorthand for Air(Water) Quality Dissatisfaction, which takes value 1 (0) if the surveyed individual is
dissatisfied (satisfied) with the ambient air(water) quality. The main variable of interest is geocode’s
logarithm of distance from the nearest plant, which is the straight-line distance between the survey and
nearest coal plant location. Please refer to Table 2.1 notes for details on other variables.
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Table 2.6: Results for operational plants with wind direction interaction

(1) (2) (3) (4) (5) (6)
Air Diss Air Diss Air Diss Air Diss Air Diss Air Diss

Geocode’s log dist from nearest plant -0.050∗∗∗ -0.047∗∗∗ -0.051∗∗∗ -0.049∗∗∗ -0.047∗∗∗ -0.051∗∗∗

(0.0124) (0.0124) (0.0124) (0.0123) (0.0127) (0.0130)

Downwind of plant -0.046 -0.009 -0.029 -0.097 -0.064 -0.073
(0.0645) (0.0630) (0.0585) (0.0523) (0.0521) (0.0469)

Downwind of plant × Geocode’s log dist from nearest plant 0.026 0.014 0.017 0.040∗ 0.027 0.025
(0.0225) (0.0221) (0.0207) (0.0188) (0.0185) (0.0163)

Geocode’s vegetation index -0.096∗∗ -0.098∗∗ -0.097∗∗ -0.060∗ -0.061∗ -0.063∗

(0.0319) (0.0322) (0.0330) (0.0294) (0.0295) (0.0299)

Geocode area is urban 0.107∗∗∗ 0.106∗∗∗ 0.107∗∗∗ 0.089∗∗∗ 0.089∗∗∗ 0.089∗∗∗

(0.0216) (0.0215) (0.0215) (0.0204) (0.0203) (0.0204)

Respondent’s age is 26-60 years 0.020 0.020 0.019 0.016 0.016 0.015
(0.0104) (0.0105) (0.0104) (0.0099) (0.0099) (0.0099)

Respondent’s age is more than 60 years -0.021 -0.021 -0.022 -0.020 -0.020 -0.020
(0.0152) (0.0152) (0.0151) (0.0128) (0.0128) (0.0128)

Respondent’s gender is male -0.018∗ -0.018∗ -0.018∗ -0.016∗ -0.016∗ -0.016∗

(0.0088) (0.0088) (0.0088) (0.0072) (0.0072) (0.0072)

Respondent’s education is intermediate 0.057∗∗∗ 0.057∗∗∗ 0.057∗∗∗ 0.059∗∗∗ 0.059∗∗∗ 0.059∗∗∗

(0.0101) (0.0100) (0.0102) (0.0100) (0.0100) (0.0100)

Respondent’s education is high 0.088∗∗∗ 0.089∗∗∗ 0.089∗∗∗ 0.089∗∗∗ 0.089∗∗∗ 0.089∗∗∗

(0.0150) (0.0149) (0.0149) (0.0142) (0.0142) (0.0142)

Log annual hh income in ’000 USD -0.006 -0.006 -0.006 -0.004 -0.004 -0.004
(0.0054) (0.0054) (0.0054) (0.0050) (0.0050) (0.0050)

Respondent has children under 15 yrs 0.003 0.003 0.003 0.001 0.001 0.001
(0.0076) (0.0077) (0.0077) (0.0077) (0.0077) (0.0077)

Number of observations 17,964 17,964 17,964 17,964 17,964 17,964
Adj R-squared 0.129 0.129 0.128 0.179 0.179 0.179
Mean of dependent variable 0.327 0.327 0.327 0.327 0.327 0.327
Region fixed effects Admin-0 Admin-0 Admin-0 Admin-1 Admin-1 Admin-1
Distance band 0-40 km 0-40 km 0-40 km 0-40 km 0-40 km 0-40 km
Wind direction angular buffer 60◦ 90◦ 120◦ 60◦ 90◦ 120◦

Region-clustered robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (2.2) for operational
coal-fired power plants but interacting δ with a dummy for downwind direction of coal-fired power
plant. The sample used in each column is defined by the distance band 0-40 km and the angular
buffer around the coal-fired power plant i.e., all survey locations that are located within 40 km and
falling in the angular buffer of either 60◦, 90◦ or 120◦ of an operational coal power plant. Standard
errors, which are reported in parentheses, are clustered at country/admin-0 level for Columns 1-3 and
state/province/admin-1 level for remaining columns. Columns 1-3 control for admin-0 fixed effects
and remaining columns control for admin-1 fixed effects. The dependent variable, Air Diss, is a short-
hand for Air Quality Dissatisfaction, which takes value 1 (0) if the surveyed individual is dissatisfied
(satisfied) with the ambient air quality. Geocode’s logarithm of distance from the nearest plant is a
measure of straight-line distance between the survey location and nearest coal plant location. Wind
direction is a dummy, which takes value of 1 if the survey geocode falls in the downwind buffer region
of a coal-fired power plant, and that varies based on the angular threshold used. Please refer to Table
2.1 notes for details on other variables.
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Figure 2.1: Effect of distance from operational plants on air quality dissatisfaction
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Notes: The graph above shows local polynomial regression results with 90% confidence intervals
spikes for the effect of logarithm of distance of geocode from an operational coal plant on the resid-
ualized value of air quality dissatisfaction that is obtained after running an OLS similar to Equation
(2.2) but without the distance regressor. The red line shows our chosen distance threshold of 40 km.
We censor the distance values, which are less than “e” i.e., 2.718 km to avoid issues due to small
sample in the left tail of the distance distribution. The dependent variable, Air Diss, is a shorthand for
Air Quality Dissatisfaction, which takes value 1 (0) if the surveyed individual is dissatisfied (satisfied)
with the ambient air quality. The main regressor, geocode’s logarithm of distance from the nearest
plant, is the straight-line distance between the survey and nearest coal plant location.
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Table 2.7: Life satisfaction regression results for operational plants

(1) (2)
Life Sat Life Sat

Log air quality dissatisfaction -0.482∗∗∗ -0.469∗∗∗

[-0.643,-0.321] [-0.611,-0.326]

Geocode’s vegetation index -0.041 0.010
[-0.310,0.227] [-0.226,0.247]

Geocode area is urban 0.097 0.107
[-0.037,0.232] [-0.041,0.255]

Respondent’s age is 26-60 years -0.331∗∗∗ -0.377∗∗∗

[-0.454,-0.209] [-0.481,-0.272]

Respondent’s age is more than 60 years -0.431∗∗ -0.467∗∗∗

[-0.746,-0.115] [-0.623,-0.311]

Respondent’s gender is male -0.166∗ -0.159∗∗∗

[-0.317,-0.016] [-0.252,-0.067]

Respondent’s education is intermediate 0.313∗∗∗ 0.328∗∗∗

[0.158,0.468] [0.203,0.452]

Respondent’s education is high 0.669∗∗∗ 0.703∗∗∗

[0.523,0.815] [0.543,0.863]

Log annual hh income in ’000 USD 0.489∗∗∗ 0.474∗∗∗

[0.357,0.620] [0.404,0.543]

Respondent has children under 15 yrs -0.023 0.031
[-0.161,0.115] [-0.062,0.124]

Number of observations 17,701 17,701
Adj R-squared 0.203 0.238
Mean of dependent variable 5.411 5.411
Mean household income in USD 14855 14855
Region fixed effects Admin-0 Admin-1
Countries included Global Global
95% confidence interval in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents estimates using the specification in Equation (2.3) for operational coal-
fired power plants. The sample used in each column is defined by distance band 0-40 km i.e., survey
locations that are located within 40 km distance from the nearest coal power plant. Table 2.11 provide
the list of countries from which sample surveys are used in this specification. 95% confidence interval
bounds are reported in square brackets. Column 1 controls for admin-0 fixed effects while Column 2
controls for admin-1 fixed effects. The dependent variable, Life Sat, is a shorthand for life satisfaction,
which takes values between 0 (“the worst possible life”) and 10 (“the best possible life”) based on
what surveyed individuals report as their current life satisfaction. The main variables of interest are
logarithm of air quality dissatisfaction and logarithm of annual household income. The first variable
takes value 2 (1) if an individual is dissatisfied (satisfied) with ambient air quality and the second
variable is logarithm of household reported total annual income in 1000 USD. Please refer to Table
2.1 notes for details on other variables.

149



Table 2.8: Aggregate equivalent variation results

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Estimate ψ φ y AirDiss/ ˜AirDiss e Affected HH Size AEV

Type (in $) (in $) Population (# persons) (in tril. $)
Point estimate -0.469 0.474 14855 1.37 3948 1,120,626,356 4.9 0.903
Lower bound -0.326 0.543 14855 1.37 2539 1,120,626,356 4.9 0.581
Upper bound -0.611 0.404 14855 1.37 5591 1,120,626,356 4.9 1.279

Notes: The three rows correspond to point estimates and lower and upper bounds of 95% confidence
intervals of ψ and φ parameters respectively. Estimates on logarithm of annual household income, φ ,
logarithm of air quality dissatisfaction, ψ , and average income, y, are taken from Table 2.7. AirDiss˜AirDiss
is the ratio of air quality dissatisfaction level in the 0-40 km distance band and that outside of the
band. e is the equivalent variation computed using Equation (2.4). The population data comes from
the Gridded Population of the World, v4 (GPWv4) database for year 2020. AEV is generated by
multiplying e with the population estimate downscaled by the number of persons living in a typical
household, which is taken from the Area Database v4.1 of the Global Data Lab.
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Figure 2.2: Aggregate air quality benefits and costs of closing operational plants
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Notes: Chart shows the cost-benefit analysis results for all 51 countries combined as listed in Table
2.11. The policy experiment entails phasing out coal-fired power at a constant rate of 4% per year and
replacing that freed capacity with solar or wind generation over a period of 25 years. The blue line
represents point estimates of air quality benefits with the shaded area showing upper and lower bounds
on the estimates. The costs of solar and wind energy generation are calculated by multiplying their
respective source-specific average global LCOE values in USD/kWh with the total excess energy de-
mand because of closing of coal plants. All the costs and benefits are expressed in present-discounted
value terms with the annual discount rate set at 2% per year.
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Figure 2.3: Plant-level net air quality benefits from closing operational plants
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Notes: Chart shows the net benefits from closing all the operational coal-fired power in 2019 located
across the whole world. The parameter values for ψ , φ , AirDiss˜AirDiss

, and y are taken from the global
estimates using all 51 countries combined. The policy experiment entails phasing out coal-fired power
and replacing that freed capacity with 50% solar and 50% wind generation. The costs of solar and
wind energy generation are calculated by multiplying respective source-specific global average LCOE
values in USD/kWh with the total energy demand.
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Figure 2.4: Aggregate benefits and costs of closing operational plants
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Notes: Chart shows the cost-benefit analysis results after accounting for carbon-reduction benefits.
The green line shows the lower bound of carbon benefits added to the air quality benefits. Please refer
to Figure 2.2 notes for more details.
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Appendix

2.6 Appendix: Instrumental Variables Strategy

We discuss how an IV approach may address the concerns about the selection of power-

plant locations and/or migration patterns of citizens based on air quality preferences.

We propose two instruments for coal-fired power station locations based on the need to

supply such power stations with coal. They are (i) the logarithm of distance of survey

locations from the nearest railroad and (ii) the logarithm of distance of survey locations

from the nearest body of water, such as a lake, river, or sea. The first instrument picks up

an important transportation linkage since the majority of coal worldwide is transported

using railways. A small but significant fraction of coal transportation uses coal barges

and other sea vessels (National Research Council 2007). This is picked up in our second

instrument. Proximity to water may also increase the reliability of water supply and eases

waste treatment. We show below that these variables are strongly predictive of coal-fired

power station locations.

To construct these instruments, we use global geo-referenced data on railways and

locations of water-bodies. The source of the railways network shapefile is the World

Food Program-Logistics Cluster47, which brings together various sources such as Open-

StreetMap, American Digital Cartography, Global Discovery, etc. To get the location of

water-bodies, we combine data from multiple sources48 to create an “amalgam” water-

47. This program works to ensure effective and efficient humanitarian response by optimizing logistics
during times of disasters and other emergencies. It also acts as a provider of last resort for shared logistics
services across the world.

48. Three data layers: (i) linear water showing lines of rivers, streams, and canals from ESRI, (ii) a shape-
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bodies shapefile.

We also need a plausible exclusion restriction, i.e., that these two instrumental vari-

ables predict perceptions of pollution, conditional on covariates, only through the first-

stage channel. Given that we have two instruments, we can use a formal test of over-

identification. However, beyond this formal approach, we believe that it is plausible a

priori to think that the exclusion restriction holds as there is no obvious reason to expect

proximity to railroads or water-bodies to affect air quality perceptions. Railways that run

on diesel are much less polluting than coal-fired power, and nearly 30% of the global

railways network has now been electrified. So, it is highly unlikely that there is a direct

effect of railway locations on air quality.49

More formally, we write the selection equation for δ as follows:

δic = λτi + γizℓ+νic (2.5)

where z are factors, which affect distance other than taste for pollution, i.e., “instruments”

for δic. We allow γ , the relationship between zℓ and δic, to be heterogeneous. We cannot

estimate this relationship in practice because we only observe an individual once.

Now consider an IV estimator of α where we put in δ̂ic, as in the first-stage prediction

of δ , under the 2SLS routine. Then, using Equations (2.1) and (2.5)

α̂IV =
cov(zℓ,AirDissiℓ)

cov(zℓ,δic)
=

cov(zℓ,α [λτi + γizℓ+νic]+ τi + εiℓ)

cov(zℓ,λτi + γizℓ+νic)
= α (2.6)

as long as cov(τi,zℓ) = 0. Then the difference between OLS and IV is

α̂OLS − α̂IV =
cov(τi,δic)

var (δic)
(2.7)

file for major rivers from UNESCO World-wide Hydrogeological Mapping and Assessment Program, and
(iii) an ocean coastline shapefile from the North American Cartographic Information Society are merged
using the spatial join tool in ArcGIS software.

49. Railways emit less than 1% of all transport NO2 emissions and less than 0.5% of transport PM10
emissions. Source: European Environment Agency
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Given α < 0, a larger magnitude IV coefficient (relative to OLS) is plausible if cov(τi,δic)>

0, i.e., those with more distaste for air pollution are less likely to locate to areas with high

pollution, the selection issue at hand.

Having explained how an IV strategy could remove the OLS bias towards finding null

effects, we estimate the following specification for households located in distance band

0-40 km from an operational coal-fired power plant:

AirDissiℓ = αIV δ̂ic +βXiℓ+ηℓ+ εiℓ (2.8)

where X contains geocode (latitude×longitude)-level and individual-level controls and

δ̂iℓ is predicted from the first-stage using the vector of instruments, Ω:

δic = θΩiℓ+ξ Xiℓ+ζℓ+νiℓ. (2.9)

In this case, we expect αIV to be negative and larger in magnitude compared to α .

The results are reported in Table 2.28. Columns 1 and 2 use country fixed effects and

Columns 3 and 4 use state fixed effects. Columns 1 and 3 employ only the survey loca-

tion’s logarithm of distance from nearest railroad as an instrument, while Columns 2 and

4 use both nearest railroad and body of water distances as instruments. As hypothesized,

αIV is negative in all four specifications and has a magnitude nearly eight times that of

α , which is reported in Table 2.1 and obtained by estimating Equation (2.2) using OLS.

Large values of first-stage Kleibergen-Paap F-statistics and Kleibergen-Paap LM statis-

tics suggest that these are strong instruments. Moreover, for over-identified cases with

two instruments, the over-identifying restrictions are valid as evidenced from low Hansen

J-test statistics.50 As a robustness test, we do the same IV estimation for retired plants.

First-stage and reduced-form results are reported in Table 2.30 in the Appendix. As ex-

pected, the first-stage results are significant i.e., railroads and water-bodies predict retired

coal plants locations, but reduced-form results are insignificant, meaning that distance

50. The first-stage and reduced-form results are presented in Table 2.29 in the Appendix.
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from railroads and water-bodies does not impact air quality perceptions.

These findings give credence to a causal interpretation of a link between air quality

perception and proximity to coal-fired power plants. The difference in magnitude be-

tween OLS and IV estimates also highlights the potential importance of selection-bias if

citizens who value air quality choose to locate further away from coal plants even though

these areas are likely to be richer neighborhoods with higher overall life satisfaction.51

This is plausible since, once a government sets up a coal plant in an area, it could bring

other socio-economic and cultural activities into the area.

51. Please see Figures 2.18 and 2.19 in the Appendix.
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2.7 Appendix: Figures and Tables

Figure 2.5: 2019 Gallup World Poll survey geocodes

Notes: Top map shows all the surveys (in orange dots) where precise GPS coordinates were recorded
in the 2019 round of the Gallup World Poll, a total of 138,242 surveys spread across 140+ countries
worldwide. Bottom map shows the subset of surveys (in green dots) that are located in the 0-40 km
distance band from an operational coal-fired power plant and this subset has been used in the main
analysis, a total of 17,964 surveys, covering 51 countries listed in Table 2.11.
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Table 2.11: List of countries in the main analysis

No. ISO Country
1 ARG Argentina
2 BGD Bangladesh
3 BIH Bosnia and Herzegovina
4 BWA Botswana
5 BRA Brazil
6 BGR Bulgaria
7 KHM Cambodia
8 CHL Chile
9 CHN China
10 COL Colombia
11 HRV Croatia
12 DOM Dominican Republic
13 GRC Greece
14 GTM Guatemala
15 HND Honduras
16 HUN Hungary
17 IND India
18 IDN Indonesia
19 ISR Israel
20 KAZ Kazakhstan
21 KOS Kosovo
22 KGZ Kyrgyzstan
23 MYS Malaysia
24 MDA Moldova
25 MNG Mongolia
26 MNE Montenegro

No. ISO Country
27 MAR Morocco
28 MMR Myanmar
29 NAM Namibia
30 NPL Nepal
31 MKD North Macedonia
32 PAK Pakistan
33 PSE Palestine
34 PAN Panama
35 PER Peru
36 PHL Philippines
37 POL Poland
38 ROU Romania
39 RUS Russia
40 SEN Senegal
41 SRB Serbia
42 SVK Slovakia
43 ZAF South Africa
44 LKA Sri Lanka
45 TJK Tajikistan
46 THA Thailand
47 TUR Turkey
48 UKR Ukraine
49 UZB Uzbekistan
50 VNM Vietnam
51 ZMB Zambia

Notes: These countries contain the sample of surveys that are used in the main analysis. Some of the
survey locations within these countries qualify under the distance band 0-40 km i.e., survey locations
that are located within 40 km of the nearest operational coal-fired power plants. Bottom panel of
Figure 2.5 maps the geocodes of these survey locations.
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Figure 2.6: Distribution of operational energy sources in sample countries
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Notes: The graph shows the count of operational coal plants (top), solar farms (middle), and wind
farms (bottom) for 51 countries in the main sample as listed in Table 2.11. The number of units have
been capped at 900 for display purpose, thereby censoring all units counts for China (CHN). The
actual count of operational coal, solar, and wind units for CHN are 2990, 3782, and 2663 respectively.
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Figure 2.7: Distribution of planned energy sources in sample countries
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Notes: The graph shows the count of planned coal plants (top), solar farms (middle), and wind farms
(bottom) for 51 countries in the main sample as listed in Table 2.11. The planned category includes
plants/farms which are in the “announced”, “pre-permit”, or “permitted” stage of commissioning. The
number of units have been capped at 90 for display purpose, thereby censoring coal units count for
China (CHN). The actual count of planned coal units for CHN is 292.
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Figure 2.8: Air pollution level indicators around operational plants
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Notes: The label on x-axis should be multiplied by 20 to get the distance bin of the survey location
from the nearest coal plant. Top panel charts present raw means from the data using the pollutant
concentration at each geocode in the respective distance bin and the bottom panel demeans all those
observations of the country fixed effects.
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Table 2.12: Conditional logit estimation results for operational plants

(1) (2) (3) (4) (5) (6)
Air Diss Air Diss Air Diss Air Diss Air Diss Air Diss

Geocode’s log dist from nearest plant -0.230∗∗∗ -0.349 -0.621 -0.225∗∗∗ -0.137 -0.827
(0.0493) (0.2423) (0.3918) (0.0594) (0.2426) (0.5689)

Geocode’s vegetation index -0.493∗∗ -0.514∗ -0.531∗ -0.349∗ -0.635∗∗ -0.955∗∗

(0.1677) (0.2375) (0.2636) (0.1623) (0.2320) (0.3363)

Geocode area is urban 0.536∗∗∗ 0.765∗∗∗ 0.768∗∗∗ 0.473∗∗∗ 0.691∗∗∗ 0.724∗∗∗

(0.1008) (0.1163) (0.1885) (0.1037) (0.0935) (0.1480)

Respondent’s age is 26-60 years 0.097 0.093 0.170∗∗∗ 0.079 0.140∗ 0.199∗∗

(0.0548) (0.0621) (0.0493) (0.0547) (0.0582) (0.0663)

Respondent’s age is more than 60 years -0.112 0.066 0.114 -0.119 0.105 0.174∗

(0.0806) (0.0730) (0.0769) (0.0715) (0.0769) (0.0885)

Respondent’s gender is male -0.095∗ -0.118∗ -0.096∗ -0.088∗ -0.093∗ -0.076
(0.0439) (0.0458) (0.0405) (0.0398) (0.0439) (0.0466)

Respondent’s education is intermediate 0.312∗∗∗ 0.246∗∗ 0.231∗∗ 0.335∗∗∗ 0.236∗∗∗ 0.237∗∗∗

(0.0560) (0.0874) (0.0758) (0.0575) (0.0676) (0.0644)

Respondent’s education is high 0.453∗∗∗ 0.374∗∗∗ 0.342∗∗ 0.484∗∗∗ 0.361∗∗∗ 0.391∗∗∗

(0.0724) (0.0934) (0.1210) (0.0749) (0.1009) (0.0943)

Log annual hh income in ’000 USD -0.025 -0.013 -0.053 -0.018 -0.038 -0.063∗

(0.0283) (0.0316) (0.0305) (0.0273) (0.0267) (0.0295)

Respondent has children under 15 yrs 0.017 -0.001 0.059 0.007 0.009 0.050
(0.0396) (0.0546) (0.0685) (0.0430) (0.0498) (0.0593)

Number of observations 17,964 16,452 13,108 17,729 16,033 12,567
Pseudo R-squared 0.028 0.027 0.024 0.018 0.017 0.020
Log likelihood -9,994 -8,310 -6,353 -8,969 -7,206 -5,527
Region fixed effects Admin-0 Admin-0 Admin-0 Admin-1 Admin-1 Admin-1
Distance band 0-40 km 40-80 km 80-120 km 0-40 km 40-80 km 80-120 km
Region-clustered robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The table above reports results for conditional logistical model estimation with fixed effects
corresponding to OLS estimation results reported in Table 2.1. We implement a robust estimation for
fixed effects conditional logit models using the estimator proposed by Baetschmann et al. (2020).
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Table 2.13: Results with spatial clustering for operational plants

(1) (2) (3) (4) (5) (6)
Air Diss Air Diss Air Diss Air Diss Air Diss Air Diss

Geocode’s log dist from nearest plant -0.044∗∗∗ -0.056 -0.094 -0.039∗∗∗ -0.020 -0.111
(0.0095) (0.0325) (0.0621) (0.0090) (0.0317) (0.0648)

Geocode’s vegetation index -0.097∗∗ -0.097∗∗ -0.084∗ -0.063∗ -0.104∗∗ -0.139∗∗

(0.0327) (0.0373) (0.0402) (0.0287) (0.0342) (0.0491)

Geocode area is urban 0.106∗∗∗ 0.144∗∗∗ 0.142∗∗∗ 0.089∗∗∗ 0.120∗∗∗ 0.125∗∗∗

(0.0152) (0.0157) (0.0200) (0.0166) (0.0147) (0.0194)

Respondent’s age is 26-60 years 0.020∗ 0.016 0.027∗∗ 0.015 0.022∗∗ 0.030∗∗

(0.0091) (0.0088) (0.0095) (0.0090) (0.0082) (0.0094)

Respondent’s age is more than 60 years -0.022 0.011 0.018 -0.020 0.017 0.027∗

(0.0122) (0.0122) (0.0130) (0.0117) (0.0119) (0.0126)

Respondent’s gender is male -0.018∗ -0.020∗∗ -0.016∗ -0.015∗ -0.015∗ -0.012
(0.0071) (0.0073) (0.0070) (0.0069) (0.0068) (0.0070)

Respondent’s education is intermediate 0.057∗∗∗ 0.039∗∗∗ 0.037∗∗∗ 0.059∗∗∗ 0.036∗∗∗ 0.035∗∗∗

(0.0092) (0.0092) (0.0098) (0.0089) (0.0087) (0.0091)

Respondent’s education is high 0.089∗∗∗ 0.066∗∗∗ 0.059∗∗∗ 0.089∗∗∗ 0.059∗∗∗ 0.062∗∗∗

(0.0132) (0.0155) (0.0150) (0.0129) (0.0139) (0.0135)

Log annual hh income in ’000 USD -0.006 -0.003 -0.009 -0.004 -0.006 -0.010∗

(0.0047) (0.0046) (0.0049) (0.0045) (0.0043) (0.0048)

Respondent has children under 15 yrs 0.004 0.000 0.010 0.001 0.001 0.008
(0.0077) (0.0083) (0.0087) (0.0074) (0.0079) (0.0088)

Number of observations 17,964 16,461 13,137 17,964 16,461 13,137
Adj R-squared 0.032 0.030 0.025 0.018 0.016 0.018
Region fixed effects Admin-0 Admin-0 Admin-0 Admin-1 Admin-1 Admin-1
Distance band 0-40 km 40-80 km 80-120 km 0-40 km 40-80 km 80-120 km
Heteroskedasticity- and Autocorrelation-Consistent standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (2.2) for operational
coal-fired power plants. The sample used in each column is defined by the distance band i.e., how far
the survey location is relative to the nearest coal power plant. Table 2.11 provides the list of countries
that are used in the main specification i.e., 0-40 km distance band and results are reported in Columns
1 and 4. Standard errors, which are reported in parentheses, are clustered spatially using the distance
threshold of 5 km, following Conley (1999) and Conley (2008). Columns 1-3 and Columns 4-6 control
for admin-0 and admin-1 fixed effects respectively. The dependent variable, Air Diss, is a shorthand for
Air Quality Dissatisfaction, which takes value 1 (0) if the surveyed individual is dissatisfied (satisfied)
with the ambient air quality. The main variable of interest is geocode’s logarithm of distance from the
nearest plant, which is the straight-line distance between the survey and nearest coal plant location.
Please refer to Table 2.1 notes for details on other variables.
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Table 2.14: Results with CO2 interaction for operational plants

(1) (2) (3) (4)
Air Diss Air Diss Air Diss Air Diss

Geocode’s log dist from nearest plant -0.042∗∗ -0.046∗∗∗ -0.036∗ -0.039∗∗

(0.0128) (0.0136) (0.0143) (0.0148)

Annual CO2 emission 0.005 -0.008
(0.0102) (0.0087)

Geocode’s log dist from nearest plant × Annual CO2 emission -0.001 0.003
(0.0030) (0.0027)

High CO2 emission 0.070 0.021
(0.0745) (0.0676)

High CO2 emission × Geocode’s log dist from nearest plant -0.017 0.001
(0.0234) (0.0221)

Geocode’s vegetation index -0.097∗∗ -0.064∗ -0.097∗∗ -0.063∗

(0.0330) (0.0300) (0.0324) (0.0299)

Geocode area is urban 0.107∗∗∗ 0.088∗∗∗ 0.107∗∗∗ 0.089∗∗∗

(0.0219) (0.0205) (0.0216) (0.0204)

Respondent’s age is 26-60 years 0.020 0.015 0.019 0.015
(0.0103) (0.0099) (0.0103) (0.0098)

Respondent’s age is more than 60 years -0.021 -0.021 -0.021 -0.020
(0.0149) (0.0128) (0.0149) (0.0127)

Respondent’s gender is male -0.018 -0.015∗ -0.018∗ -0.016∗

(0.0090) (0.0073) (0.0091) (0.0073)

Respondent’s education is intermediate 0.057∗∗∗ 0.058∗∗∗ 0.057∗∗∗ 0.058∗∗∗

(0.0102) (0.0100) (0.0102) (0.0100)

Respondent’s education is high 0.089∗∗∗ 0.089∗∗∗ 0.090∗∗∗ 0.089∗∗∗

(0.0152) (0.0142) (0.0149) (0.0142)

Log annual hh income in ’000 USD -0.006 -0.004 -0.006 -0.004
(0.0054) (0.0050) (0.0054) (0.0050)

Respondent has children under 15 yrs 0.004 0.001 0.004 0.001
(0.0076) (0.0077) (0.0077) (0.0077)

Number of observations 17,964 17,964 17,964 17,964
Adj R-squared 0.128 0.179 0.128 0.179
Mean of dependent variable 0.327 0.327 0.327 0.327
Region fixed effects Admin-0 Admin-1 Admin-0 Admin-1
Region-clustered robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (2.2) for operational
coal-fired power plants but interacting δ with either a discrete or continuous measure of annual CO2
emission from all the units of the nearest coal power plant. The sample used in each column is defined
by the distance band 0-40 km i.e., all survey locations that are located within 40 km of an operational
coal power plant. Standard errors, which are reported in parentheses, are clustered at country/admin-0
level for Columns 1 and 3 and state/province/admin-1 level for remaining columns. Columns 1 and
3 control for admin-0 fixed effects and remaining columns control for admin-1 fixed effects. The
dependent variable, Air Diss, is a shorthand for Air Quality Dissatisfaction, which takes value 1 (0)
if the surveyed individual is dissatisfied (satisfied) with the ambient air quality. Geocode’s logarithm
of distance from the nearest plant is a measure of straight-line distance between the survey location
and nearest coal plant location. Annual CO2 emission is measured in million tonnes per year and high
(low) CO2 emission correspond to above (below) median plant-level emissions. Please refer to Table
2.1 notes for details on other variables.
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Figure 2.9: Air quality dissatisfaction trends across sample countries
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Notes: Each gray line represents one country from the list of countries in Table 2.11. Each point on the
line is generated by taking the average of all individuals in a country-year. The black line represents
the average across all the 51 countries for each year.
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Figure 2.10: Wind buffer zones for operational plants

Notes: The figure shows buffer zones for influence of wind using an angular restriction of 60◦ and a
distance restriction of 40 km. The direction of the central azimuth through red sectors indicates the
annual wind direction for the plants located at specific geolocations on the map.
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Table 2.17: Results for wind direction using PM2.5 concentration

(1) (2) (3) (4) (5) (6)
PM2.5 Conc. PM2.5 Conc. PM2.5 Conc. PM2.5 Conc. PM2.5 Conc. PM2.5 Conc.

Downwind of plant 2.793 2.712 2.698 0.158 0.514 1.186
(1.6611) (1.5273) (1.4113) (0.6451) (0.5481) (0.6112)

Geocode’s vegetation index -1.235 -1.265 -1.096 -0.897 -0.893 -0.800
(1.6470) (1.6092) (1.6285) (0.9519) (0.9533) (0.9271)

Geocode area is urban -0.251 -0.230 -0.149 0.631∗ 0.622∗ 0.628∗

(0.8499) (0.8325) (0.8057) (0.3115) (0.3107) (0.3102)

Respondent’s age is 26-60 years -0.360 -0.377 -0.413 0.131 0.132 0.127
(0.6591) (0.6723) (0.6888) (0.1228) (0.1224) (0.1192)

Respondent’s age is more than 60 years -0.006 0.017 -0.042 0.171 0.171 0.151
(0.2807) (0.2670) (0.2889) (0.1692) (0.1690) (0.1625)

Respondent’s gender is male 0.180 0.163 0.175 -0.078 -0.080 -0.079
(0.2972) (0.2961) (0.2915) (0.0772) (0.0766) (0.0770)

Respondent’s education is intermediate 0.330 0.332 0.353 0.185∗ 0.186∗ 0.195∗

(0.2521) (0.2400) (0.2456) (0.0917) (0.0921) (0.0928)

Respondent’s education is high 0.142 0.162 0.161 0.007 0.008 0.005
(0.1899) (0.1916) (0.1900) (0.1192) (0.1180) (0.1182)

Log annual hh income in ’000 USD -0.335 -0.322 -0.332 0.113 0.113 0.109
(0.2466) (0.2452) (0.2453) (0.0933) (0.0932) (0.0910)

Respondent has children under 15 yrs 1.161 1.166 1.169 -0.065 -0.067 -0.072
(0.9607) (0.9749) (0.9771) (0.0956) (0.0948) (0.0940)

Number of observations 18,147 18,147 18,147 18,147 18,147 18,147
Adj R-squared 0.703 0.704 0.704 0.949 0.949 0.949
Mean of dependent variable 32.026 32.026 32.026 32.026 32.026 32.026
Region fixed effects Admin-0 Admin-0 Admin-0 Admin-1 Admin-1 Admin-1
Distance band 0-40 km 0-40 km 0-40 km 0-40 km 0-40 km 0-40 km
Wind direction angular buffer 60◦ 90◦ 120◦ 60◦ 90◦ 120◦

Region-clustered robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates by regressing PM2.5 concentration at geocode level on the
downwind dummy for operational coal-fired power plants. The sample used in each column is defined
by the distance band 0-40 km and the angular buffer around the coal-fired power plant i.e., all survey
locations that are located within 40 km and falling in the angular buffer of either 60◦, 90◦ or 120◦

of an operational coal power plant. Standard errors, which are reported in parentheses, are clustered
at country/admin-0 level for Columns 1-3 and state/province/admin-1 level for remaining columns.
Columns 1-3 control for admin-0 fixed effects and remaining columns control for admin-1 fixed ef-
fects. “Downwind of plant” is a dummy, which takes value of 1 if the survey geocode falls in the
downwind buffer region of a coal-fired power plant, and that varies based on the angular threshold
used. Please refer to Table 2.1 notes for details on other variables.
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Table 2.18: Results for 0-20 km distance band

(1) (2) (3) (4) (5) (6)
Air Diss Air Diss Air Diss Air Diss Air Diss Air Diss

Geocode’s log dist from nearest plant -0.037∗ -0.038∗ -0.001 -0.035 -0.066 -0.034
(0.0147) (0.0150) (0.0233) (0.0283) (0.0534) (0.0401)

Geocode’s vegetation index -0.019 -0.009 -0.115 0.081 -0.492∗∗ -0.503
(0.0289) (0.0376) (0.0833) (0.0807) (0.1190) (0.2773)

Geocode area is urban 0.092∗∗ 0.074∗ 0.071 0.035 0.077 0.115
(0.0318) (0.0322) (0.0402) (0.0599) (0.0459) (0.1048)

Respondent’s age is 26-60 years 0.031∗ 0.023 0.032 0.030 -0.015 0.023
(0.0122) (0.0153) (0.0326) (0.0377) (0.0237) (0.0382)

Respondent’s age is more than 60 years -0.003 -0.003 0.082 0.084 -0.053 0.006
(0.0147) (0.0188) (0.0474) (0.0517) (0.0289) (0.0400)

Respondent’s gender is male -0.025 -0.021∗ -0.028 -0.024 -0.015 -0.019
(0.0128) (0.0099) (0.0297) (0.0314) (0.0206) (0.0308)

Respondent’s education is intermediate 0.064∗∗∗ 0.069∗∗∗ 0.052 0.045 0.068 0.081∗

(0.0131) (0.0144) (0.0447) (0.0367) (0.0459) (0.0322)

Respondent’s education is high 0.090∗∗∗ 0.094∗∗∗ 0.037 0.032 0.079 0.075
(0.0166) (0.0155) (0.0736) (0.0563) (0.0452) (0.0417)

Log annual hh income in ’000 USD -0.012 -0.011 -0.020 -0.011 -0.001 0.003
(0.0062) (0.0070) (0.0245) (0.0255) (0.0027) (0.0126)

Respondent has children under 15 yrs 0.008 0.008 -0.001 0.011 -0.019 -0.061
(0.0094) (0.0110) (0.0220) (0.0345) (0.0348) (0.0420)

Number of observations 8,356 8,356 1,032 1,032 1,352 1,352
Adj R-squared 0.169 0.230 0.066 0.115 0.172 0.253
Mean of dependent variable 0.383 0.383 0.249 0.249 0.352 0.352
Region fixed effects Admin-0 Admin-1 Admin-0 Admin-1 Admin-0 Admin-1
Distance band 0-20 km 0-20 km 0-20 km 0-20 km 0-20 km 0-20 km
Status of plant operation Operational Operational Planned Planned Retired Retired
Region-clustered robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents OLS estimates using the specification in Equation (2.2) for operational,
planned, and retired and mothballed coal-fired power plants. The sample used in each column is de-
fined by the distance band 0-20 km. Columns 1-2, Columns 3-4, and Columns 5-6 report the results
for operational, planned, and retired plants respectively. Standard errors, which are reported in paren-
theses, are clustered at country/admin-0 level for Columns 1, 3 and 5 and at state/province/admin-1
level for remaining columns. Columns 1, 3 and 5 control for admin-0 fixed effects and remaining
control for admin-1 fixed effects. Refer to Table 2.4 notes for more details.
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Table 2.19: Life satisfaction results using PM2.5 concentration

(1) (2)
Life Sat Life Sat

Geocode’s PM2.5 concentration in µg/m3 -0.007 -0.015∗∗

[-0.018,0.003] [-0.027,-0.004]

Geocode’s vegetation index -0.014 0.044
[-0.293,0.265] [-0.196,0.284]

Geocode area is urban 0.061 0.087
[-0.076,0.198] [-0.063,0.237]

Respondent’s age is 26-60 years -0.334∗∗∗ -0.372∗∗∗

[-0.453,-0.214] [-0.477,-0.268]

Respondent’s age is more than 60 years -0.429∗∗ -0.464∗∗∗

[-0.744,-0.114] [-0.621,-0.307]

Respondent’s gender is male -0.154∗ -0.152∗∗

[-0.303,-0.006] [-0.243,-0.060]

Respondent’s education is intermediate 0.300∗∗∗ 0.316∗∗∗

[0.135,0.465] [0.191,0.441]

Respondent’s education is high 0.644∗∗∗ 0.676∗∗∗

[0.492,0.795] [0.518,0.835]

Log annual hh income in ’000 USD 0.487∗∗∗ 0.477∗∗∗

[0.358,0.615] [0.408,0.546]

Respondent has children under 15 yrs -0.020 0.022
[-0.145,0.105] [-0.071,0.115]

Number of observations 17,869 17,869
Adj R-squared 0.199 0.234
Mean of dependent variable 5.405 5.405
Mean household income in USD 14810 14810
Region fixed effects Admin-0 Admin-1
Countries included Global Global
95% confidence interval in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents estimates using the specification in Equation (2.3) for operational coal-
fired power plants. The sample used in each column is defined by distance band 0-40 km i.e., survey
locations that are located within 40 km distance from the nearest coal power plant. Table 2.11 provide
the list of countries from which sample surveys are used in this specification. 95% confidence interval
bounds are reported in square brackets. Column 1 controls for admin-0 fixed effects while Column 2
controls for admin-1 fixed effects. The dependent variable, Life Sat, is a shorthand for life satisfaction,
which takes values between 0 (“the worst possible life”) and 10 (“the best possible life”) based on what
surveyed individuals report as their current life satisfaction. The main variables of interest are PM2.5
concentration at the geocode level and logarithm of annual household income. The first variable takes
value 2 (1) if an individual is dissatisfied (satisfied) with ambient air quality and the second variable is
logarithm of household reported total annual income in 1000 USD. Please refer to Table 2.1 notes for
details on other variables.
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Figure 2.11: Estimates of φ and ψ parameters for sample countries
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Notes: The chart shows 95% confidence interval for φ and ψ estimates for each of the 51 countries in
the main sample by running a pooled regression with country interactions corresponding to Equation
(2.3). Equality of slopes across countries for both φ and ψ is rejected at 1% significance level, thereby
highlighting the heterogeneous effect of both income and air quality satisfaction on overall life satis-
faction across countries.
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Table 2.20: Ordered logit estimation results for life satisfaction

(1)
Life Sat

Log air quality dissatisfaction -0.395∗∗∗

[-0.511,-0.279]

Geocode’s vegetation index 0.020
[-0.155,0.195]

Geocode area is urban 0.093
[-0.029,0.215]

Respondent’s age is 26-60 years -0.301∗∗∗

[-0.384,-0.219]

Respondent’s age is more than 60 years -0.397∗∗∗

[-0.529,-0.264]

Respondent’s gender is male -0.133∗∗∗

[-0.210,-0.057]

Respondent’s education is intermediate 0.247∗∗∗

[0.146,0.348]

Respondent’s education is high 0.608∗∗∗

[0.472,0.744]

Log annual hh income in ’000 USD 0.377∗∗∗

[0.318,0.436]

Respondent has children under 15 yrs 0.031
[-0.047,0.108]

Number of observations 163,029
Pseudo R-squared 0.034
Log likelihood -61,047
Mean of dependent variable 5.411
Mean household income in USD 14855
Region fixed effects Admin-1
Countries included Global
95% confidence interval in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The table above reports results for ordered logistical model estimation with fixed effects corre-
sponding to OLS estimation results reported in Table 2.7. We implement a robust estimation for fixed
effects ordered logit models using the estimator proposed by Baetschmann et al. (2020).
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Figure 2.12: Unit cost of energy for different generation technologies
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Notes: The graph shows LCOE values for all 51 countries in the main sample as listed in Table
2.11. LCOE measures lifetime costs divided by energy production. It accounts for present value
of the total cost of building and operating a power plant over an assumed lifetime. This measure
allows comparison of different technologies (e.g., wind, solar, coal) of unequal life spans, project
size, different capital cost, risk, return, and capacities for each of the respective sources. LCOE also
accounts for different capacity factors across energy sources and plants.
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Figure 2.13: Cost-benefit analysis for alternate discount rates
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Notes: Top/mid/bottom row show results for 1.5/3/5% discount rate. Refer to Figure 2.2 for more
details.
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Figure 2.14: EV and EV/Income during transition project life cycle
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Notes: The chart shows the present-discounted value of estimated EV and EV to annual household
income ratio in left and right plots respectively assuming an annual discount rate of 2% for an energy
transition project life cycle of 25 years.
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Figure 2.15: Plant-level net air quality benefits from closing operational plants
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Notes: Chart shows the net benefits from closing all the operational coal-fired power in 2019 located
across the whole world. The parameter values for ψ , φ , AirDiss˜AirDiss

, and y are taken from the global
estimates using all 51 countries combined. The policy experiment entails phasing out coal-fired power
and replacing that freed capacity with 50% solar and 50% wind generation. The costs of solar and
wind energy generation are calculated by multiplying respective source-specific global average LCOE
values in USD/kWh with the total energy demand. The LCOE values for solar and wind are inflated
by a factor of 4 and 2 respectively.
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Table 2.22: Life satisfaction regression results for India and China

(1) (2) (3) (4)
Life Sat Life Sat Life Sat Life Sat

Log air quality dissatisfaction -0.080 -0.803∗∗∗ -0.124 -0.646∗∗

[-0.553,0.393] [-1.137,-0.469] [-0.709,0.461] [-1.051,-0.241]

Geocode’s vegetation index -0.363 -0.973∗∗ -0.038 -0.331
[-1.224,0.497] [-1.635,-0.311] [-1.142,1.066] [-1.430,0.768]

Geocode area is urban 0.352∗ 0.018 0.118 0.130
[0.066,0.637] [-0.219,0.254] [-0.413,0.650] [-0.447,0.708]

Respondent’s age is 26-60 years -0.181 -0.017 -0.414∗∗ -0.121
[-0.475,0.113] [-0.279,0.246] [-0.679,-0.150] [-0.392,0.149]

Respondent’s age is more than 60 years -0.474∗ 0.550∗∗ -0.730∗∗ 0.409∗

[-0.902,-0.047] [0.200,0.899] [-1.174,-0.285] [0.017,0.800]

Respondent’s gender is male -0.345∗∗ 0.142 -0.183 0.187
[-0.604,-0.086] [-0.054,0.337] [-0.484,0.118] [-0.065,0.438]

Respondent’s education is intermediate 0.586∗∗∗ 0.253∗ 0.332∗ 0.267∗

[0.291,0.880] [0.029,0.477] [0.008,0.655] [0.041,0.492]

Respondent’s education is high 0.708∗∗ 0.424∗ 0.545 0.544∗∗∗

[0.200,1.216] [0.075,0.774] [-0.065,1.155] [0.266,0.822]

Log annual hh income in ’000 USD 0.797∗∗∗ 0.427∗∗∗ 0.681∗∗∗ 0.454∗∗∗

[0.649,0.944] [0.317,0.536] [0.512,0.850] [0.309,0.599]

Respondent has children under 15 yrs -0.297∗ -0.122 -0.025 -0.068
[-0.549,-0.045] [-0.324,0.079] [-0.202,0.152] [-0.285,0.149]

Number of observations 2,131 2,099 2,131 2,099
Adj R-squared 0.093 0.072 0.171 0.127
Mean of dependent variable 3.262 5.213 3.262 5.213
Mean household income in USD 4626 19365 4626 19365
Region fixed effects - - Admin-1 Admin-1
Countries included India China India China
95% confidence interval in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents estimates using the specification in Equation (2.3) for operational coal-
fired power plants in India and China. The sample used in each column is defined by distance band
0-40 km i.e., survey locations that are located within a 40 km distance from the nearest coal power
plant. 95% confidence interval bounds are reported in square brackets. Columns 3 and 4 control for
admin-1 fixed effects. The dependent variable, Life Sat, is a shorthand for life satisfaction, which takes
values between 0 (“the worst possible life”) and 10 (“the best possible life”) based on what surveyed
individuals reports as their current life satisfaction. The main variables of interest are logarithm of air
quality dissatisfaction and logarithm of annual household income. The first variable takes value 2 (1)
if an individual is dissatisfied (satisfied) with ambient air quality and the second variable is logarithm
of household reported total annual income in 1000 USD. Please refer to Table 2.1 notes for details on
other variables.
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Table 2.23: Aggregate equivalent variation results for India and China

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Geographical ψ φ y AirDiss/ ˜AirDiss e Affected HH Size AEV

Category (in $) (in $) Population (# persons) (in tril. $)
Panel 1: Point estimates
India -0.124 0.681 4626 1.38 264 375,939,467 5.8 0.017
China -0.646 0.454 19365 1.62 9617 374,225,419 4.4 0.818
Panel 2: γ and β

India -0.709 0.512 4626 1.38 1665 375,939,467 5.8 0.108
China -1.051 0.309 19365 1.62 15612 374,225,419 4.4 1.328
Panel 3: γ and β

India 0.461 0.850 4626 1.38 -883 375,939,467 5.8 -0.057
China -0.241 0.599 19365 1.62 3416 374,225,419 4.4 0.291

Notes: The three rows correspond to point estimates and lower and upper bounds of 95% confidence
intervals of ψ and φ parameters respectively. Estimates on logarithm of annual household income,
φ , logarithm of air quality dissatisfaction, ψ , and average income, y, are taken from Columns 3 and
4 of Table 2.22 for respective countries. AirDiss˜AirDiss

is the ratio of air quality dissatisfaction level in the
0-40 km distance band and that outside of the band for each country. e is the equivalent variation
computed using Equation (2.4). The population is computed by adding the number of individuals
living in a circle of radius 40 km around each coal plant. The population data comes from the Gridded
Population of the World, v4 (GPWv4) database for year 2020. AEV is generated by multiplying e with
population estimates downscaled by the number of persons living in a typical household taken from
the Area Database v4.1 of the Global Data Lab.
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Figure 2.16: Cost-benefit analysis results for India and China
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Notes: Charts show the cost-benefit analysis results for India (top) and China (bottom). The blue line
represents point estimates of air quality benefits with the shaded area showing upper and lower bounds
on the estimates calculated using country-specific parameter values. The costs of solar and wind en-
ergy generation are calculated by multiplying their respective source-geography-specific LCOE values
in USD/kWh with the total excess energy demand because of closing of coal plants. Please refer to
Figure 2.2 for more details.
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Table 2.24: Total benefits of energy transition for different regions

(1) (2) (3) (4) (5)
Geographical Gross Benefits Net Benefits Gross Benefits LB Net Benefits LB

Category (in tril. $) (in tril. $) (in tril. $) (in tril. $)
Panel 1: Actual parameters

Global .903 .605 .581 .283
India .017 -.02 -.057 -.094
China .821 .743 .292 .214

Panel 2: Global preference parameters
Global .903 .605 .581 .283
India .081 .044 .053 .016
China .628 .555 .416 .338

Notes: The table reports gross and net benefits of closing coal plants in different geographical cate-
gories using point estimates for the respective categories in Columns 2 and 3 respectively. Columns
4 and 5 report the lower bound on the benefits. The policy experiment entails phasing out coal-fired
power at a constant rate of 4% per year and replacing that freed capacity with 50% solar and 50%
wind generation over a period of 25 years. The benefits shown here are for the last year i.e., 25th year
of plant operation. The costs of solar and wind energy generation are calculated by multiplying their
respective source-geography-specific LCOE values in USD/kWh with the total excess energy demand
because of closing of coal plants. Panel 1 reports results when respective parameter values for each
category is used to calculate benefits, while in Panel 2, we use Global category parameter values of ψ

and φ for all categories.
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Table 2.25: Life satisfaction regression results for education categories

(1) (2) (3) (4) (5) (6)
Life Sat Life Sat Life Sat Life Sat Life Sat Life Sat

Log air quality dissatisfaction -0.621∗∗∗ -0.447∗∗∗ -0.468∗∗∗ -0.650∗∗∗ -0.407∗∗∗ -0.511∗∗∗

[-0.922,-0.320] [-0.647,-0.247] [-0.734,-0.202] [-0.914,-0.386] [-0.586,-0.229] [-0.771,-0.251]

Geocode’s vegetation index -0.413 0.106 0.006 -0.184 0.036 0.236
[-1.090,0.263] [-0.090,0.303] [-0.440,0.452] [-0.800,0.431] [-0.208,0.280] [-0.206,0.678]

Geocode area is urban -0.043 0.134 0.178 -0.084 0.170∗ 0.233
[-0.244,0.157] [-0.012,0.280] [-0.070,0.426] [-0.340,0.173] [0.014,0.327] [-0.038,0.504]

Respondent’s age is 26-60 years -0.561∗∗∗ -0.305∗∗∗ -0.087 -0.608∗∗∗ -0.335∗∗∗ -0.204∗

[-0.844,-0.277] [-0.426,-0.185] [-0.312,0.138] [-0.816,-0.400] [-0.452,-0.219] [-0.395,-0.013]

Respondent’s age is more than 60 years -0.315 -0.575∗∗∗ -0.426∗∗ -0.353∗∗ -0.615∗∗∗ -0.494∗∗

[-0.669,0.039] [-0.894,-0.255] [-0.732,-0.121] [-0.611,-0.095] [-0.812,-0.418] [-0.809,-0.178]

Respondent’s gender is male -0.227 -0.153 -0.145 -0.219∗ -0.148∗ -0.131
[-0.482,0.027] [-0.317,0.012] [-0.298,0.008] [-0.394,-0.044] [-0.269,-0.028] [-0.275,0.012]

Log annual hh income in ’000 USD 0.565∗∗∗ 0.481∗∗∗ 0.393∗∗∗ 0.549∗∗∗ 0.456∗∗∗ 0.391∗∗∗

[0.418,0.711] [0.344,0.619] [0.204,0.582] [0.452,0.645] [0.361,0.550] [0.248,0.534]

Respondent has children under 15 yrs -0.176∗ 0.043 -0.011 -0.065 0.058 0.022
[-0.312,-0.040] [-0.104,0.190] [-0.204,0.181] [-0.221,0.090] [-0.075,0.192] [-0.133,0.177]

Number of observations 5,572 9,166 2,957 5,547 9,161 2,911
Adj R-squared 0.190 0.155 0.166 0.229 0.182 0.213
Mean of dependent variable 4.665 5.611 6.196 4.666 5.610 6.190
Mean household income in USD 8872 15291 24735 8865 15289 24810
Region fixed effects Admin-0 Admin-0 Admin-0 Admin-1 Admin-1 Admin-1
Countries included Global Global Global Global Global Global
Education level Primary Intermediate High Primary Intermediate High
95% confidence interval in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents estimates using the specification in Equation (2.3) for operational coal-
fired power plants for each education group separately. The sample used in each column is defined
by distance band 0-40 km i.e., survey locations that are located within a 40 km distance from the
nearest coal power plant. Table 2.11 provides the list of countries from which sample surveys are used
in this specification. 95% confidence interval bounds are reported in square brackets. Columns 1-3
control for admin-0 fixed effects while Columns 4-6 control for admin-1 fixed effects. The dependent
variable, Life Sat, is a shorthand for life satisfaction, which takes values between 0 (“the worst possible
life”) and 10 (“the best possible life”) based on what surveyed individuals report as their current life
satisfaction. The main variables of interest are logarithm of air quality dissatisfaction and logarithm of
annual household income. The first variable takes value 2 (1) if an individual is dissatisfied (satisfied)
with ambient air quality and the second variable is logarithm of household reported total annual income
in 1000 USD. Please refer to Table 2.1 notes for details on other variables.

186



Table 2.26: Equivalent variation results for education categories

(1) (2) (3) (4) (5) (6)
Education ψ φ y AirDiss/ ˜AirDiss e
Category (in $) (in $)

Panel 1: Point estimates
Primary -0.650 0.549 8865 1.37 2758
Intermediate -0.407 0.456 15289 1.37 3745
High -0.511 0.391 24810 1.37 8368
Panel 2: ψ and φ

Primary -0.914 0.452 8865 1.37 4175
Intermediate -0.586 0.361 15289 1.37 6117
High -0.771 0.248 24810 1.37 15487
Panel 3: ψ and φ

Primary -0.386 0.645 8865 1.37 1522
Intermediate -0.229 0.550 15289 1.37 1878
High -0.251 0.534 24810 1.37 3413

Notes: The three panels correspond to point estimates and lower and upper bounds of 95% confidence
intervals of ψ and φ parameters respectively. Estimates on logarithm of annual household income,
φ , logarithm of air quality dissatisfaction, ψ , and average income, y, are taken from Columns 4, 5,
and 6 of Table 2.25 for respective education categories. AirDiss˜AirDiss

is the ratio of average air quality
dissatisfaction level in the 0-40 km distance band to that outside of the 40 km band for global category.
e is the equivalent variation computed using Equation (2.4).
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Figure 2.17: Plant-level net benefits from closing operational plants
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Notes: Chart shows the sum of net air quality and carbon benefits from closing all the operational coal-
fired power in 2019 across the whole world. The parameter values for ψ , φ , AirDiss˜AirDiss

, and y are taken
from the global estimates using all 51 countries combined. The policy experiment entails phasing out
coal-fired power and replacing that freed capacity with 50% solar and 50% wind generation. The costs
of solar and wind energy generation are calculated by multiplying respective source-specific average
global LCOE values in USD/kWh with the total energy demand.
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Table 2.27: Employment in energy generation sectors for sample countries

ISO Country Solar Wind Coal
Jobs (000) Capacity (MW) Jobs/MW Jobs (000) Capacity (MW) Jobs/MW Jobs (000) Capacity (MW) Jobs/MW

ARG Argentina 2.2 764.1 2.9 1.7 2623.9 0.6
BGD Bangladesh 110 284 387.3 0.1 2.9 34.5
BIH Bosnia and Herzegovina 0.1 34.9 1.7 0.2 135.0 1.5 2.8
BWA Botswana 0.04 5.9 6.5 0.04 170.2 0.3
BRA Brazil 68 7879.2 8.6 40.2 17198.3 2.3
BGR Bulgaria 1 1097.4 0.9 0.5 702.8 0.8 55.3 3733 14.8
KHM Cambodia 7.1 315.0 22.4 0.005 0.3 20.6
CHL Chile 7.1 3205.4 2.2 7.5 2149 3.5
CHN China 2300 253417.8 9.1 550 282112.7 2 3209 1064400 3
COL Colombia 0.4 85.5 4.2 2.1 18.4 114 44.3 1633.5 27.1
HRV Croatia 0.1 108.5 0.5 2.3 801.3 2.9 2.8
DOM Dominican Republic 0.3 385.6 0.8 0.3 370.3 0.8
GRC Greece 6.1 3287.7 1.9 6.8 4119.3 1.7 6.1 4337 1.4
GTM Guatemala 0.1 100.8 0.8 0.1 107.4 0.8
HND Honduras 0.4 514 0.8 0.2 241.3 0.8
HUN Hungary 8.9 2131 4.2 0.8 321 2.5 2.2 783 2.8
IND India 163.5 39042.7 4.2 44 38558.6 1.1 416.2 231900 1.8
IDN Indonesia 4.2 185.3 22.4 3.2 154.3 20.6 240 40200 6
ISR Israel 2.3 2230 1 0.1 27.3 3.7
KAZ Kazakhstan 5 1718.6 2.9 2.6 486.3 5.3 29.7 12986 2.3
KOS Kosovo 0.1 10 6.3 0.02 32 0.5 2.8
KGZ Kyrgyzstan 0.03 584.3 0.1 0.9 162.5 5.3
MYS Malaysia 54.9 1482.6 37 7.7 374.6 20.6
MDA Moldova 0.01 4.3 2.4 0.1 37 1.6 2.8
MNG Mongolia 0.04 89.6 0.4 0.1 156 0.6
MNE Montenegro 0.01 6 1.7 0.9 118 7.6 2.8
MAR Morocco 1 194 5.2 3.5 1405 2.5
MMR Myanmar 1.9 84.5 22.4 0.0001 0.006 20.6
NAM Namibia 0.5 145 3.2 0.001 5.2 0.3
NPL Nepal 0.1 66.9 2.2 0.0002 0.2 1.0
MKD North Macedonia 0.9 94.2 9.6 0.03 37.0 0.8 2.8
PAK Pakistan 1.9 860.3 2.2 1 1235.9 0.8
PSE Palestine 0.1 116.8 1 0.1 27.3 3.7
PAN Panama 0.2 242.1 0.8 0.2 270 0.7
PER Peru 0.4 334.8 1.1 0.3 409 0.7
PHL Philippines 41 1057.9 38.8 23.8 442.9 53.7
POL Poland 29.4 3955 7.4 9.7 6298.3 1.5 91.4 27244 3.4
ROU Romania 1 1382.5 0.7 2.3 3012.5 0.8 16 4465 3.6
RUS Russia 3.5 1427.8 2.5 12 945.3 12.7 150.1 41800 3.6
SEN Senegal 1.1 171 6.5 0.04 158.7 0.3
SRB Serbia 0.1 30.5 3 0.1 398 0.2 18.4 5314 3.5
SVK Slovakia 0.2 535 0.4 0.007 3 2.2 2.4 926 2.6
ZAF South Africa 21.5 5489.6 3.9 18.8 2516 7.5 74.8 43400 1.7
LKA Sri Lanka 0.8 370.9 2.2 2.7 179 15.1
TJK Tajikistan 0.9 584.3 1.5 0.9 162.5 5.3
THA Thailand 18.7 2982.6 6.3 2 1506.8 1.3 0.9 5933 0.1
TUR Turkey 7.7 6667.4 1.2 23 8832.4 2.6 51.8 19700 2.6
UKR Ukraine 29.8 7331 4.1 3.8 1402 2.7 44.3 21842 2
UZB Uzbekistan 0.005 3.5 1.5 0.004 0.8 5.3
VNM Vietnam 126.3 16660.5 7.6 3.5 518 6.8 86.4 20917 4.1
ZMB Zambia 1.2 96.4 12.4 0.043 170.2 0.3

Notes: The table reports country-level estimates of jobs present in different energy generation sectors.
We could not come up with estimates for the coal sector of all the countries and that is why there
are blanks in the table. Also, estimates for some of the countries are imputed from nearby countries.
For example, for Jobs/MW of wind for Kyrgyzstan, Tajikistan, and Uzbekistan, we use the estimates
for Kazakhstan as it is a neighboring country to all three of them. References used for deriving the
numbers include country-level estimates from different energy accounting estimates from IRENA,
IEA, etc.
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Table 2.28: IV results for air quality dissatisfaction and operational plants location

(1) (2) (3) (4)
Air Diss Air Diss Air Diss Air Diss

Geocode’s log dist from nearest plant -0.441∗∗ -0.324∗∗∗ -0.305∗∗ -0.301∗∗

(0.1413) (0.0889) (0.1057) (0.0978)

Geocode’s vegetation index 0.078 0.026 0.053 0.051
(0.0714) (0.0531) (0.0547) (0.0520)

Geocode area is urban 0.013 0.040 0.023 0.024
(0.0456) (0.0357) (0.0347) (0.0325)

Respondent’s age is 26-60 years 0.023 0.022∗ 0.019 0.019
(0.0116) (0.0109) (0.0107) (0.0108)

Respondent’s age is more than 60 years -0.021 -0.021 -0.018 -0.018
(0.0193) (0.0176) (0.0135) (0.0135)

Respondent’s gender is male -0.010 -0.013 -0.014 -0.014
(0.0123) (0.0110) (0.0077) (0.0077)

Respondent’s education is intermediate 0.054∗∗∗ 0.055∗∗∗ 0.054∗∗∗ 0.055∗∗∗

(0.0123) (0.0111) (0.0106) (0.0106)

Respondent’s education is high 0.064∗∗ 0.071∗∗∗ 0.075∗∗∗ 0.075∗∗∗

(0.0213) (0.0190) (0.0155) (0.0154)

Log annual hh income in ’000 USD -0.009 -0.008 -0.009 -0.009
(0.0087) (0.0074) (0.0058) (0.0057)

Respondent has children under 15 yrs 0.010 0.008 0.007 0.007
(0.0104) (0.0093) (0.0083) (0.0082)

Number of observations 17,964 17,964 17,964 17,964
Under-id LM test statistic 8.743 8.787 13.172 15.084
Under-id LM test p-value 0.003 0.012 0.000 0.001
Weak-id F statistic (first stage) 16.302 11.888 15.872 9.404
Hansen J test statistic 0.000 1.553 0.000 0.006
Hansen J test p-value 0.213 0.939
Mean of dependent variable 0.327 0.327 0.327 0.327
Number of instruments 1 2 1 2
Region fixed effects Admin-0 Admin-0 Admin-1 Admin-1
Region-clustered robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table presents IV estimates using the specification in Equation (2.8) for operational coal-
fired power plants. The two instruments used are: (i) logarithm of distance of survey locations from
nearest railroad and (ii) logarithm of distance of survey locations from nearest water-body. Columns
1 and 3 use instrument (i) only, while Columns 2 and 4 use both instruments. The sample used in
each column is defined by distance band 0-40 km i.e., survey locations that are located within 40 km
distance from the nearest coal power plant. Table 2.11 provides the list of countries for which sample
surveys are used in this specification. Standard errors, which are reported in parentheses, are clustered
at country/admin-0 level for the first two columns and state/province/admin-1 level for the last two
columns. Columns 1-2 and Columns 3-4 control for admin-0 and admin-1 fixed effects respectively.
The dependent variable, Air Diss, is a shorthand for Air Quality Dissatisfaction, which takes value 1
(0) if the surveyed individual is dissatisfied (satisfied) with the ambient air quality. The main variable
of interest is geocode’s logarithm of distance from the nearest plant, which is the straight-line distance
between the survey and nearest coal plant location. Please refer to Table 2.1 notes for details on other
variables. First-stage and reduced-form results are reported in Table 2.29 in the Appendix.
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Table 2.29: First-stage and reduced-form results for operational plants

(1) (2) (3) (4)

Geocode’s log dist from nearest railroad -0.020∗∗∗ -0.020∗∗∗ -0.017∗∗∗ -0.017∗∗∗

(0.0038) (0.0037) (0.0045) (0.0045)

Geocode’s vegetation index -0.118∗∗∗ -0.115∗∗∗ -0.079∗∗ -0.068∗

(0.0313) (0.0325) (0.0283) (0.0282)

Geocode area is urban 0.102∗∗∗ 0.101∗∗∗ 0.086∗∗∗ 0.084∗∗∗

(0.0225) (0.0234) (0.0219) (0.0220)

Respondent’s age is 26-60 years 0.018 0.018 0.015 0.015
(0.0108) (0.0108) (0.0099) (0.0099)

Respondent’s age is more than 60 years -0.023 -0.023 -0.020 -0.020
(0.0154) (0.0154) (0.0128) (0.0128)

Respondent’s gender is male -0.018∗ -0.018∗ -0.016∗ -0.016∗

(0.0090) (0.0091) (0.0072) (0.0072)

Respondent’s education is intermediate 0.055∗∗∗ 0.055∗∗∗ 0.058∗∗∗ 0.058∗∗∗

(0.0103) (0.0103) (0.0100) (0.0100)

Respondent’s education is high 0.090∗∗∗ 0.090∗∗∗ 0.091∗∗∗ 0.091∗∗∗

(0.0157) (0.0158) (0.0145) (0.0145)

Log annual hh income in ’000 USD -0.007 -0.007 -0.003 -0.003
(0.0053) (0.0053) (0.0050) (0.0050)

Respondent has children under 15 yrs 0.004 0.004 0.001 0.001
(0.0075) (0.0075) (0.0078) (0.0078)

Geocode’s log dist from nearest waterbody -0.002 -0.010
(0.0071) (0.0062)

Geocode’s log dist from nearest railroad 0.045∗∗∗ 0.046∗∗∗ 0.056∗∗∗ 0.055∗∗∗

(0.0112) (0.0110) (0.0142) (0.0141)

Geocode’s vegetation index 0.443∗∗ 0.394∗ 0.432∗∗∗ 0.394∗∗∗

(0.1655) (0.1591) (0.0921) (0.0908)

Geocode area is urban -0.202∗∗ -0.189∗∗ -0.208∗∗∗ -0.201∗∗∗

(0.0680) (0.0694) (0.0561) (0.0569)

Respondent’s age is 26-60 years 0.010 0.009 0.015 0.015
(0.0175) (0.0177) (0.0134) (0.0135)

Respondent’s age is more than 60 years 0.004 0.000 0.007 0.006
(0.0255) (0.0260) (0.0190) (0.0191)

Respondent’s gender is male 0.017 0.018 0.005 0.007
(0.0132) (0.0129) (0.0084) (0.0083)

Respondent’s education is intermediate -0.002 -0.001 -0.012 -0.013
(0.0213) (0.0202) (0.0164) (0.0163)

Respondent’s education is high -0.059∗∗ -0.057∗ -0.051∗ -0.051∗

(0.0225) (0.0225) (0.0227) (0.0228)

Log annual hh income in ’000 USD -0.003 -0.004 -0.018∗ -0.018∗

(0.0148) (0.0141) (0.0087) (0.0087)

Respondent has children under 15 yrs 0.013 0.013 0.019 0.018
(0.0146) (0.0141) (0.0118) (0.0117)

Geocode’s log dist from nearest waterbody 0.040∗∗ 0.036
(0.0157) (0.0223)

Observations 17964 17964 17964 17964
Region-clustered robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Top table reports reduced-form results and bottom reports first-stage results of IV regression
using Equation (2.8). The columns correspond to Table 2.28, which reports IV results.
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Table 2.30: First-stage and reduced-form results for retired plants

(1) (2) (3) (4)

Geocode’s log dist from nearest railroad -0.009 -0.009 -0.005 -0.005
(0.0057) (0.0055) (0.0087) (0.0088)

Geocode’s vegetation index -0.551∗∗∗ -0.551∗∗∗ -0.444 -0.450
(0.1248) (0.1403) (0.2403) (0.2449)

Geocode area is urban 0.064 0.064 0.074 0.074
(0.0344) (0.0344) (0.0568) (0.0564)

Respondent’s age is 26-60 years -0.005 -0.005 0.010 0.010
(0.0192) (0.0193) (0.0325) (0.0324)

Respondent’s age is more than 60 years -0.046 -0.046 -0.024 -0.025
(0.0268) (0.0265) (0.0327) (0.0328)

Respondent’s gender is male -0.028∗∗ -0.028∗∗ -0.030 -0.030
(0.0105) (0.0106) (0.0205) (0.0205)

Respondent’s education is intermediate 0.070∗∗ 0.070∗∗ 0.074∗∗∗ 0.074∗∗∗

(0.0269) (0.0265) (0.0219) (0.0217)

Respondent’s education is high 0.078∗∗ 0.078∗∗ 0.067 0.067
(0.0270) (0.0266) (0.0356) (0.0349)

Log annual hh income in ’000 USD -0.016∗ -0.016∗ -0.015 -0.015
(0.0071) (0.0074) (0.0095) (0.0095)

Respondent has children under 15 yrs -0.016 -0.016 -0.042 -0.042
(0.0253) (0.0253) (0.0301) (0.0300)

Geocode’s log dist from nearest waterbody 0.000 0.003
(0.0183) (0.0158)

Geocode’s log dist from nearest railroad 0.153∗∗∗ 0.153∗∗∗ 0.152∗∗ 0.149∗∗

(0.0440) (0.0438) (0.0471) (0.0464)

Geocode’s vegetation index 1.623 1.654 2.150∗∗ 2.264∗∗

(0.9679) (1.0040) (0.7958) (0.8063)

Geocode area is urban -0.432∗∗ -0.432∗∗ -0.365∗∗ -0.370∗∗

(0.1430) (0.1422) (0.1111) (0.1126)

Respondent’s age is 26-60 years -0.027 -0.025 -0.048 -0.048
(0.0488) (0.0505) (0.0430) (0.0433)

Respondent’s age is more than 60 years -0.018 -0.014 -0.088 -0.080
(0.0794) (0.0853) (0.0578) (0.0599)

Respondent’s gender is male 0.031 0.032 0.045 0.048
(0.0470) (0.0462) (0.0297) (0.0296)

Respondent’s education is intermediate -0.044 -0.045 -0.068 -0.071
(0.0359) (0.0352) (0.0517) (0.0501)

Respondent’s education is high -0.033 -0.035 -0.044 -0.054
(0.0570) (0.0545) (0.0517) (0.0486)

Log annual hh income in ’000 USD -0.000 -0.001 0.001 0.001
(0.0313) (0.0294) (0.0248) (0.0246)

Respondent has children under 15 yrs 0.019 0.018 0.055 0.056
(0.0427) (0.0437) (0.0348) (0.0337)

Geocode’s log dist from nearest waterbody -0.015 -0.061
(0.0391) (0.0709)

Observations 2317 2317 2317 2317
Region-clustered robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Top table reports reduced-form results and bottom reports first-stage results of IV regression
using Equation (2.8) for retired plants.
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Figure 2.18: Descriptive plots - I
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Notes: All the variables are taken from the 2019 Gallup World Poll. The label on x-axis should be
multiplied by 20 to get the distance bin of the survey location from the nearest coal plant.
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Figure 2.19: Descriptive plots - II
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Notes: All the variables are taken from the 2019 Gallup World Poll. The label on x-axis should be
multiplied by 20 to get the distance bin of the survey location from the nearest coal plant. The estimates
on y-axis have been demeaned of country fixed effects.
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Chapter 3

Climate Protests, Public Awareness,

and Electoral Outcomes

3.1 Introduction

Mass movements are often precursors to major political change. At times, elites concede

reforms when faced with revolutionary threats to their authority to govern and extract

rents from the population (Acemoglu and Robinson 2006). For example, the extension

of the voting franchise in Europe in the 19th century was caused by several revolutions

in different parts of Europe (Aidt and Jensen 2014). The classic work of Charles Tilly

notes that sustained contentious activity has, on many occasions, led to new policies or

even new regimes (Tilly and Tarrow 2015). However, not all such movements lead to

favorable outcomes for citizens, especially when considering the medium to long run

economic impacts (Collins and Margo 2007). On the other hand, voters could also swing

towards pro-reform political parties if the threat of violence and disruption associated

with such mass protests is significant (Aidt and Franck 2015). Even though participa-

tion in these costly movements could suffer from the free-rider problem and the groups

might not be representative of the population, they continue to be a prominent channel to

express dissent with leadership and policies (Lohmann 1993). The interest in the anal-
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ysis of public demonstration by looking at it as a resource for marginalized groups to

exert influence on policymakers is not new (see, for example, Lipsky 1968). However,

modern day protests are more sophisticated in terms of their planning and organization

due to a range of communication channels and other resources readily available to the

protesters. Moreover, conditional on the the size of actual crowd joining a protest, the

degree of interaction with the Internet and other mass media channels also decides how

impactful a protest would be (McCarthy, McPhail, and Smith 1996). One form of such

protests that has seen rapid growth in the 21st century is related to environmental issues,

such as pollution and climate change. As depicted in Figure 3.1, climate protests have

become more frequent and widespread globally. These protests appear to coincide with

the growing public interest in climate change and corresponding media coverage. Specif-

ically, Figure 3.2 demonstrates a clear co-movement between key environmental events

and the frequency of Google searches, US news media coverage, and TV airtime focused

on climate change. While a correlation is evident, the establishment of a causal link be-

tween protest, public attitudes, and policy preferences remains elusive for researchers.

Moreover, evidence on the ability of climate protests to engender any form of climate ac-

tion is particularly limited. Identifying a causal relationship between protests and these

outcomes would pave the way for exploring the conditions, forms, and channels through

which climate protests might effectively raise public awareness and influence policymak-

ers to take a pro-environment stance. This chapter delves into these questions.

We first examine whether climate protests in a given location increase climate aware-

ness among individuals who live in that location using instances of several thousand

protests across the United States. We utilize data on search queries from Google Trends

and media coverage from the Global Database of Events, Language, and Tone (GDELT)

project to construct measures of climate awareness and activism. Our findings suggest

that following a climate-related protest, there is a significant increase in search queries

and media attention on climate change-related topics. This finding suggests protests can

elevate climate change as a salient public issue and raise awareness. However, the short-
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term nature of these outcome variables raises questions about the lasting impact of the

heightened awareness and its potential to translate into concrete policy changes.

To address this limitation, we next present evidence suggesting that climate-related

protests influence citizens’ electoral voting decisions (Fabel et al. 2022). More precisely,

in the wake of the widespread Fridays for Future protests in March of 2019, voters in

Europe showed more support for the local Green parties in their respective regions dur-

ing the European Parliamentary (EP) elections held in May of 2019. Interestingly, we

also observe a rise in support for the radical-right parties, aligning with the notion that

protests, while raising awareness and support for climate concerns, can simultaneously

polarize opinions (Djourelova et al. 2024). The support could come from individuals

who oppose the protesters’ methods and demands or those whose daily lives are directly

affected by the protests, thereby potentially deepening societal divisions over climate

issues.

Finally, we investigate the impact of protests on policymaking. Through textual anal-

ysis of speeches by elected UK Members of Parliament (MPs), we find a positive corre-

lation between protest frequency and the intensity of climate-related discussions among

MPs. This finding highlights the power of protests to elevate climate issues on the leg-

islative agenda, ensuring they receive due attention from policymakers. By bringing

public pressure to the forefront, protests can encourage legislators to address previously

neglected environmental concerns.

Protests are coordinated expressions of dissatisfaction with certain elements or phe-

nomena in society, but they are also costly due to economic losses caused by disruptions.

Previous research in this vein has found that political protests could be instrumental in

reforming policies, but the effects could be conditional on the scope of these protests. For

example, Madestam et al. (2013) finds that larger initial Tea Party protests led to greater

local movement organization, increased public support for Tea Party positions, higher

voter turnout and Republican vote shares, and even made incumbent Congress members

vote more conservatively. However, Gethin and Pons (2024) conduct a comprehensive
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study of 14 social movements in the U.S. (2017–2022) and find that most protests gen-

erated online engagement but produced only modest, often negligible, changes in aggre-

gate public opinion or political attitudes; only exceptionally large movements (e.g. Black

Lives Matter) had discernible impacts. We complement these studies by exploiting rich

media coverage databases available now to draw more robust inferences. Moreover, our

focus is on climate-related protests, which are different from general protests, in the sense

that the rank-and-file opinion is still not fully geared towards pro-environment policies

(Besley and Hussain 2023). The research is also related to the work on understanding the

importance of electronic media in changing social outcomes (Kearney and Levine 2015).

In addition, papers highlighting issue attention on climate action across geography and

culture suggest that a one-size-fits-all policy is neither optimal nor feasible for tackling

climate change (Hase et al. 2021). The findings in this chapter shed some light on this

point also by exploiting media attention measures.

Numerous global movements that have sparked political change seem to occur in tan-

dem with protests, yet it remains initially unclear whether these protests merely mirror

broader societal unrest or actively contribute to instigating change. In this chapter, we

demonstrate the efficacy of climate activism, particularly protests, in eliciting tangible

climate action. We examine diverse indicators, including heightened civil society re-

sponse (reflected in media and internet activity), increased support for pro-environment

parties, and even potential backlash in the form of support for the radical-right groups.

Additionally, we analyze parliamentary speeches, finding a greater likelihood of legisla-

tors addressing climate-related topics after protests.

The remainder of the chapter is organized as follows. In the next section, we dis-

cuss the data that we use. In Section 3.3, we establish a robust empirical link between

awareness about climate change and protests. The implications on voting and policy

discussions are developed in Sections 3.4 and 3.5 respectively. Section 3.6 offers some

concluding remarks.
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3.2 Data

This section outlines the datasets used in the analysis, which focuses on climate protests

within the US and Europe, where climate issues are particularly prominent.

Climate Protests: We utilize several datasets on climate protests, each with its own

strengths and limitations:

• CountLove: This dataset is a comprehensive record of protests across the United

States, providing details such as date, location, cause, and estimated number of

attendees for each event. It spans from January 20, 2017, to January 31, 2021, pro-

viding a broad temporal window to analyze protest activities and their implications

on public engagement with various causes, including climate change.

• ACLED: The Armed Conflict Location and Event Data (ACLED) project database

covers a wider geographical area, covering both the United States and Europe, from

January 2020 to the present. It tracks a variety of political violence and protest

events, offering detailed information, such as date, location, participating group,

and type of each event. One limitation of this database is that the attendance figures

are not reported, thereby inhibiting any analysis using this margin.

• Fridays for Future (FFF) Protests: In the latter part of our analysis, particularly

when examining the influence of protests on voting behavior, we focus on world-

wide climate protests organized under the Fridays for Future movement on March

15, 2019.1 Covering 131 countries and 2350 cities, it is a rich source of data on

climate protests held about two months before the 2019 EP elections voting. The

reporting rate on protest intensity (the number of attendees gathered at each protest

location), however, is low (less than 38%). We aggregate this protest occurrence

1. A youth-led, global climate-strike movement, Fridays for Future organizes climate strikes across the
world to put moral pressure on policymakers to take action against global warming.
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data at the EU NUTS 3 region level. Out of 12,955 NUTS 3 regions, 6,967 had at

least one protest organized in one of their constituent towns.

Google Trends: We leverage Google Trends, a tool that tracks the popularity of Google

search queries across different regions and languages over time. We use the daily and

weekly search intensity for the ‘climate change’ topic2 to gauge public interest and con-

cerns regarding environmental issues. Using this footprint of the populace’s environmen-

tal concerns, we can look at how societal interest in this area fluctuates in response to

climate protests and broader environmental movements.

GDELT Media Coverage: The Global Database of Events, Language, and Tone (GDELT)

is a comprehensive archive, cataloging a vast spectrum of media outputs worldwide to

track events, linguistic patterns, and emotional tones across many languages. Leveraging

this resource, we craft two specific indicators to assess climate salience, awareness, and

activism within the US. First, we develop a measure of the presence of ‘climate change’

and ‘global warming’ terms in print media by using the proportion of news articles that

address these topics; we call this “coverage”. Second, we use television news broadcasts,

measuring the percentage of airtime devoted to these issues, with the GDELT data al-

lowing for a precise breakdown into 15-second intervals, we call this “airtime”. These

measures collectively offer a granular view of media engagement with climate change

issues.

Parliamentary Speeches: To analyze the parliamentary discourse on climate change,

we utilize the Hansard records, which are the official transcripts of UK parliamentary

debates available on the Hansard website3. We use the complete set of these records,

as collected, harmonized, and compiled by Shamsi (2024). Hansard provides a near-

2. Google Trends offers two distinct search options: topic and keyword. A keyword search targets exact
matches within search queries, focusing on the specific word or phrase as it appears. In contrast, a topic
search interprets the keyword as a broader concept, capturing related terms, synonyms, and relevant queries
that fall under the same general subject.

3. https://hansard.parliament.uk
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verbatim account of parliamentary discussions with minor edits for clarity and accuracy.

Through textual analysis of these records, we aim to uncover the prominence and evolu-

tion of climate change discussions among policymakers.

European Parliamentary Elections Voting: Data on vote shares for different political

parties and voter turnout in the 2019 European Parliamentary elections comes from the

European NUTS level Election Dataset (EU-NED).4 This dataset contains reports on

the national parliamentary elections in all current EU member-states, the UK, Norway,

Turkey, and Switzerland over the period 1990-2020. It also includes coverage of the

European parliamentary elections for all the EU member states and the UK. Election

results are reported at the lowest level of aggregation (i.e., NUTS 3) wherever possible.

Using this data, we construct vote shares obtained by 300 political parties across 1085

NUTS 3 regions.

Precipitation: We obtain the data on precipitation from the ERA5-Land dataset, which

is a gridded reanalysis product and records hourly precipitation at a spatial resolution of

0.1° × 0.1°.5 To construct the rainfall variable used in the analysis, we compute the av-

erage precipitation between 12PM and 4PM local time on the day of the FFF protest i.e.,

March 15, 2019, two months before the EP election voting dates i.e., May 23-26, 2019.

We also construct a long-run average precipitation variable by computing the average

monthly precipitation in March through the years 2005 to 2018.

3.3 Awareness and Attitudes

Protest is a potential channel that drives public opinion and attitudes on range of is-

sues, including politics, government performance, and policy (Garcia 2023). Moreover,

4. The European NUTS Level Election Database provides national and European parliamentary election
results on the level of Eurostat’s NUTS 2 and NUTS 3 administrative units. It is optimized for combination
with Eurostat’s Regional Database. Source: EU-NED.

5. Data can be accessed here.
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these effects could be persistent in the long run, thereby impacting future policymak-

ing and electoral outcomes (Mazumder 2018). In this section, we explore the first link

in the chain of impact by looking at whether climate protest events are associated with

increased online search activity and media coverage related to climate change. We be-

gin by examining potential co-movement at the national level between protest dates and

measures of public awareness of climate change. Specifically, we estimate the following

econometric relationship for protests in the US:

yt = α +βProtestt + γXt + εt (3.1)

where, yt is either Google search intensity or media coverage outcome variables in

week t. Protestt is either the number of climate-related protests or the number of atten-

dees in climate-related protests in week t across the US. Xt are controls, which include

linear and quadratic time trends, and seasonal effects captured by month-fixed effects.

Data on protests is from CountLove. The findings are presented in Table 3.1.

The outcome variable in the first two columns is the Google search intensity for the

climate change topic. Columns 3-4 and 5-6 look at the print media coverage and televi-

sion news airtime respectively of climate change-related news. In terms of magnitude,

using estimates from Columns 1 and 2, an additional protest event leads to a 0.02 standard

deviation increase in the Google search intensity, while an additional attendee increases

it by 0.16 standard deviation. Similarly, using Columns 3, 4, 5 and 6, each additional

protest event increases news coverage and TV airtime by 0.01 standard deviation, while

an additional attendee increases them by 0.08 and 0.09 standard deviation respectively.

The outcome variable for the final four columns assesses the coverage in print media

and television news without reference to “protests” or similar events. This distinction

aims to determine if increases in news or TV coverage are attributable solely to report-

ing on protests or if they transcend beyond those news stories. Previous research has

found evidence of strong complementarities between protests and media attention when

looking at the “success” of a protest (McCarthy, McPhail, and Smith 1996), even when
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those protests take place under authoritarian regimes (Tertytchnaya and Lankina 2020).

Moreover, it’s not just whether protests get covered, but how that coverage unfolds and

redirects public conversation leads to an “agenda-setting” (Wasow 2020). The analysis

suggests that protests, measured by the total number of protests or attendee counts, are

strongly associated with various indicators of climate change awareness. Moreover, even

after excluding direct protest coverage news, protests influence mass media coverage,

thereby suggesting that protests influence media independently of the mention of events

itself.

Additionally, we examine the responsiveness of media to protests broken down by

various media outlets. As depicted in Figure 3.3, outlets with a more liberal editorial

stance, such as the BBC, MSNBC, and Al Jazeera, appear more inclined to cover these

events. These analyses suggest that climate protests lead to increased public awareness

of the climate change phenomenon.

However, this relationship is not necessarily causal, as both protests and coverage

could be driven by a third variable such as broader political, social, or environmental

events (e.g., natural disasters, policy changes) that independently increase both the like-

lihood of protests and public interest in climate change. Alternatively, it is possible that

heightened public awareness and concern about climate change might lead to the orga-

nization of climate protests. In this reverse causality scenario, increased media coverage

could signal a growing public concern, which motivates activists to stage protests.

To better identify a causal link and address some of these concerns, we refine our

analysis by shifting from the national level to a more granular geographical level, specif-

ically the Designated Market Area (DMA) in the US. A DMA is a region where the

population has access to the same set of television and radio stations, thereby forming

a distinct media market.6 This approach enables controlling for time fixed effects and

6. Defined by Nielsen, DMAs categorize specific areas where individuals receive identical media con-
tent, which is crucial for television advertising and audience measurement. Advertisers and marketers
leverage DMAs to tailor their advertising campaigns to specific geographic locales, ensuring that messages
reach the designated audience within those areas. The United States comprises over 200 DMAs, ranging
from small rural communities to extensive metropolitan areas.
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location fixed effects. The time fixed effects account for national-level shocks, such as

macroeconomic shocks and federal policy changes that could simultaneously influence

both the occurrence of protests and the outcome variables, while the location fixed effects

control for time-invariant characteristics specific to a location, such as long-standing po-

litical preferences, socio-economic status, and cultural forces in place. By doing so, the

analysis facilitates a “within” region and “across” time comparison, thereby addressing

some of the potential confoundedness in the previous analysis.

One potential concern with this new two-way fixed effects approach is the presence of

transient, unobserved regional shocks, which could simultaneously drive the likelihood

of protests in a region and affect the outcome variable. To tackle this issue, we draw from

the methodology proposed by Madestam et al. (2013), which utilizes variations in rainfall

intensity on protest days as a source of exogenous variation affecting protest attendance.

The underlying premise is that, given an expected probability of rainfall, the actual oc-

currence of rain acts as an external factor that likely diminishes protest attendance.

The CountLove dataset, however, is unsuitable for this type of analysis for two main

reasons. First, it lacks attendance data, i.e., the number of people attending the protest,

for most protests. Second, it does not provide precise location data, preventing us from

accurately determining whether it rained at the protest site on the day of the protest.

Despite these limitations, we can still validate the negative correlation between rainfall

and attendance, which is the key idea behind this identification strategy, using a subset

of the Fridays for Future protests that report attendance (Figure 3.4). This correlation

suggests that rainfall could serve as a viable instrument for measuring attendance.

Given the limitations of the CountLove dataset, we turn to the ACLED dataset, which,

although, does not provide attendance figures, employs a more systematic data collection

methodology and includes geolocation information. The geolocation allows us to match

protest events with rainfall data. While the absence of attendance data precludes a direct

instrumental variables (IV) approach, we can instead examine whether protests that occur

on rainy days have a different impact compared to those on non-rainy days. This approach
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treats rainfall as a quasi-experimental instrument to induce variation in protest intensity,

allowing us to explore its causal effect even without directly observing attendance. This

alternative approach maintains the core logic of the original method but limits our ability

to precisely interpret the coefficient magnitudes. We estimate the following econometric

specification for DMA i in day t:

yit = αi +ηt +βProtestit +δProtestit ×Precipitationit + εit (3.2)

Results are reported in Table 3.2. The regression analysis is conducted on a daily

basis. The dependent variable is akin to the Google search intensity defined in the previ-

ous analysis but this time it is constructed at the daily frequency. The treatment variable,

Protestit , is the number of climate protests during day t in location i. The results suggest

a diminished effect of protests on search intensity during increased rainfall, as evidenced

by a negative coefficient for the interaction between precipitation and the occurrence of

protests. This finding supports the hypothesis that protests significantly affect public

interest in climate change-related information.

Our analysis thus far emphasizes the immediate impact of protests on public aware-

ness and attitudes. However, a more critical question remains: do protests ultimately

influence policy? On one hand, protests that garner significant public interest and me-

dia coverage can exert pressure on policymakers and corporations, potentially leading

to meaningful outcomes, such as new legislation, regulatory changes, or corporate com-

mitments (see, for example, Wasow 2020). On the other hand, while protests may raise

public engagement with climate-related issues, they do not always translate into concrete

actions or policy shifts, particularly when political will is lacking, the protests are not

sustained, or they face strong opposition from powerful interests. The effectiveness of

protests in driving policy change often hinges on a complex interplay of factors, includ-

ing the political context, the responsiveness of institutions, and the strategic actions of

the protesters.

The next section examines whether protests influence citizens’ voting decisions and
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policy discussions. This analysis will help determine whether protests can move beyond

generating short-term public interest to drive long-term policy changes.

3.4 Election Voting

The literature has argued for the agenda-setting power of protest i.e., parliamentary, gov-

ernmental, and legislative actions are impacted by the number and size of demonstrations

(see, for example, Walgrave and Vliegenthart 2012, a study on 1993-2000 Belgium).

However, other studies, such as Gethin and Pons (2024), have found limited impact of

protest activities on electoral behavior and outcomes. Along these lines, this section in-

vestigates the effect of protests on voting behavior. To conduct this analysis, our previous

research design requires some modification. While the hypothesis that rainfall reduces

protest attendance is logical and supported by our previous findings, it presents a chal-

lenge when examining long-term outcomes or those that are averaged over a longer time

frame. While rainfall may affect the likelihood of a specific protest, but over a longer

time frame it could also influence the likelihood and timing of subsequent protests. That

is, if sudden rain leads to low attendance, organizers may reschedule the protest for a

later date. In an extreme case, every rainfall-hampered protest is offset by another one

later in time, thereby challenging the use of rainfall as a reliable instrumental variable for

protests. To overcome this problem, we concentrate on protests that were pre-announced

at the national level and were shortly followed by an election. This approach ensures that

rainfall will not affect the probability of future protests, thereby strengthening our results.

In line with this approach, we use the widespread protests organized under FFF across

all of Europe. These were a set of international demonstrations to demand action from

political leaders to prevent climate change and to phase out subsidies for fossil fuel indus-

tries. The largest set of protests on March 15, 2019 gathered over one million protesters

in 2,200 strike instances organized in major cities across 125 countries.7 Conveniently

7. The set of protests is available https://fridaysforfuture.org/what-we-do/strike-statistics/.
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for our analysis, the timing of these demonstrations aligned with the 2019 EP elections.

This presents a unique opportunity to investigate whether these climate-related protests,

which engulfed the whole of Europe, had any tangible effect on the electoral performance

of pro-environment political parties. The act of voting is a citizen-driven expression of

definitive action with significant implications for both present and future policymaking.

Therefore, this offers us an opportunity to estimate the effects of protests on a more sub-

stantive indicator of public activism.

Using voting data at the level of NUTS 3 regions, we estimate the effect of climate

protests on the vote shares of different political parties. In particular, we estimate the

following econometric specification:

yi = α +βProtesti +δProtesti ×Precipitationi + γXi + εi (3.3)

Results are reported in Table 3.3. In terms of magnitude, an FFF protest on a non-

rainy day in a given NUTS3 region increases vote share of Green party by 5.2 percentage

points, but an average rainfall (of 2.9 mm) during the 12PM to 4PM time period reduces

this gain by 1 percentage point. Now, we do a qualitative analysis of these numbers in

more detail. First, the estimate of β aligns with our expectations. Climate protests are

more likely in areas with strong Green Party support, as these regions typically share the

environmental focus of the protests. They are less common in Conservative or Christian

Democrat areas, where priorities may differ or focus on other social issues. Conversely,

in liberal regions, the alignment with progressive environmental policies encourages such

activism. Interestingly, areas with higher radical-right support might also see more cli-

mate protests, plausibly as expressions of retaliation to the radical right’s strong stance

against pro-environment policies.

However, the focal point of our analysis is the interaction coefficient δ , which shows a

negative value for both Green and radical-right parties. This implies that in regions with

less rain, where protests are likely to have higher attendance, support for these groups

tends to increase. This trend might be explained by the direct emphasis on environmental
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issues in such protests, which aligns with and bolsters support for Green parties. Con-

versely, increased backing for radical right parties could be due to a perception of these

protests as disruptive and a challenge to the social order and traditional values, resonat-

ing with the radical right’s focus on stability and nationalism (Ketchley and El-Rayyes

2021). This kind of polarizing effect of demonstrations has been noted in other contexts

also. For example, March for Science rallies in the United States polarized the support

for scientists and their research, where liberals’ attitudes became more positive and con-

servatives’ attitudes became more negative after the rallies (Motta 2018). Radical right

parties leverage these protests to highlight issues of national sovereignty and traditional

values, aligning with their agenda and possibly increasing their vote share. This inter-

play illustrates the dual impact of environmental activism: it can galvanize support for

pro-environment policy but simultaneously polarize other voters, something that is also

highlighted in Djourelova et al. (2024). In addition, the data indicates that protests also

increase overall voter turnout.

These regressions also control for the probability of rainfall in NUTS 3 regions. This

is to exploit weather variation across counties with similar baseline likelihoods of rain-

fall on the protest day. We can control for the rainfall probability flexibly by including

dummy variables corresponding to the deciles in the historical rainfall probability dis-

tribution. Employing rainfall percentiles as a measure instead of absolute rainfall in

millimeters yields results that are qualitatively consistent with our primary findings. Re-

sults are reported in Table 3.5 in the Appendix. One potential concern might be that the

results are driven by compositional changes across parties i.e., due to different NUTS3

regions used in each analysis. To address this concern, we rerun the analysis with only

those NUTS3 regions that consists of candidates from all the three major parties: Green,

Radical Left, and Radical Right. Results reported in Table 3.6 in the Appendix show that

the findings hold even in this balanced case.8

8. The number of observations across the columns in Table 3.6 varies due to multiple candidates from
the same party type in each NUTS3 region. We address this concern by using the average vote share across
all candidates for each party type. Results reported in Table 3.7 suggest that the results are robust to this
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The findings thus far suggest that climate protests have the potential to generate public

interest on climate issues. In the long run, protests affect the vote shares of political

parties, particularly increasing those of the Green parties. Nevertheless, protest advocates

often theorize that protests can also directly pressure policymakers – an aspect we are

yet to examine. Demonstrating how protests can directly impact the supply of politics

would provide a more comprehensive understanding of their impact. We explore this

in the following section, while acknowledging that the relationship between voters and

policymakers is inherently intertwined: voters influence policymakers through electoral

pressure, while policymakers shape voter preferences through their policy choices and

the options they present.

3.5 Parliamentary Discussions

In the previous section, we studied the impact of climate protests on electoral behavior.

However, even if these protests could aid pro-environment parties to win elections, it is

non-trivial that environment-friendly policies would follow through, a key objective of

such protests. Research has documented instances where such activities have won sup-

port in the legislature (see, for example, Walgrave and Vliegenthart 2012; Gillion 2012)

and facilitated institutionalized grievance redressal (Robertson and Teitelbaum 2011).

Berry and Sobieraj (2014) note that U.S. Congress members often reference high-profile

protests, such as climate marches, in speeches to signal responsiveness and Porta (2013)

report evidence of European anti-austerity protests leading to policy debates. To this

end, in this section, we explore the relationship between the occurrence of protests in a

constituency and the degree to which its MP discusses climate-related issues in the leg-

islature. To implement this, we leverage textual analysis on the speeches made by MPs

within the UK Parliament by creating two indicators for each constituency that shed light

on the nuances of political rhetoric circulating in policy circles regarding climate change

change.
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issues.

Discussion density: This indicator measures the frequency of climate-related keywords

in MPs’ parliamentary speeches, capturing the focus on environmental issues. Keywords

and bigrams are selected to cover a wide range of climate terms 9. Their occurrences are

counted and normalized against the total word count of the MP’s annual speeches, creat-

ing a standardized frequency measure. This metric objectively assesses MPs’ emphasis

on climate topics in their legislative discussions, acting as a gauge for thematic focus.

Valence measure: This metric evaluates the sentiment in parliamentary discourse by

analyzing the context around relevant keywords and bigrams in MPs’ speeches. Using the

NLTK library’s SentimentIntensityAnalyzer, each identified segment (10 words be-

fore and after a keyword or a bigram) is scored for sentiment, ranging from -1 (negative)

to +1 (positive). This approach provides a nuanced understanding of the emotional and

evaluative tones in parliamentary discussions on climate, offering an aggregate sentiment

score that reflects MPs’ attitudes towards climate issues.

Upon constructing these indicators, we proceed to perform regression analysis, em-

ploying these metrics as dependent variables against the annual count of protests in the

constituency, with a focus on data post 2019, the period for which protest data is avail-

able. We also incorporate a control for the baseline average discussion density measure.

This adjustment is made to account for the preexisting levels of awareness and interest

in climate-related issues within a constituency, acknowledging that such a baseline could

influence both the occurrence of protests and the frequency of parliamentary discussions

on environmental issues (for instance, by leading to the election of MPs with a stronger

environmental agenda). We estimate the following econometric specification:

yi = α +β ·Protest counti + γXi + εi (3.4)

9. Keywords include environment, climate change, global warming, biodiversity, carbon footprint, sus-
tainability, greenhouse effect, carbon emissions, climate policy, fossil fuels, energy efficiency, renewable
energy, carbon neutral, and paris agreement.
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Results are reported in Table 3.4. Column 1 suggests a strong positive impact of

protests on the discussion density of climate-related issues. The subsequent Columns 2-4

report disaggregated results by the MPs’ party affiliation, and suggest that Labor MPs

exhibit the highest level of responsiveness towards protests. Columns 5-8 extend this

examination to the valence measure, analyzing the emotional and evaluative tone of MPs’

discussions on climate issues. A clear pattern emerges here, suggesting a positive shift

in the sentiment surrounding climate discussions in correlation with increased protest

activity, with Labor MPs again showing a more pronounced reaction compared to others.

These results suggest that protests can serve as a vital mechanism for elevating cli-

mate issues on the political agenda, particularly within parties and regions more predis-

posed to environmental activism. Such findings underscore the potential of grassroots

activism to shape political discourse and action on climate change, influencing political

agenda and priorities. The differential responsiveness highlights the importance of un-

derstanding party-specific dynamics when assessing responsiveness within this party to

public demands for action on environmental issues.

However, these findings should be interpreted with caution, as the analysis lacks a

robust method to isolate exogenous variation in the frequency of protests at the con-

stituency level. In this context, the use of exogenous variation, such as rainfall shocks, is

not feasible. While rainfall may influence immediate protest turnout, its broader impact

on protest dynamics and the number of protests over an extended period is less certain

and could introduce confounding variables into the analysis.

3.6 Conclusion

The frequency of protests against climate change and human-induced environmental

damages has been rising in both the US and Europe. However, it is far from clear whether

this form of climate activism could induce or aid pro-environmental policy reforms. In

this chapter, using Google Trends search intensity and GDELT media coverage measures,
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we first document that protests generate significant public engagement and media atten-

tion in the short-run. Then, to look at more long-run effects, we leverage the exogenous

variation induced by rainfall shocks around Fridays for Future strikes and see their im-

pact on the vote shares of different political parties in the 2019 European Parliamentary

elections. We find that vote shares of Green parties in different NUTS 3 regions saw a sig-

nificant increase following the strikes. Furthermore, we provide suggestive evidence that

these protests influence policy discussions at the constituency level in the UK Parliament,

as reflected in the content of speeches by Members of Parliament.

The findings highlight the potent role of climate protests in not only increasing public

awareness and media discourse on climate issues, but also influencing tangible political

outcomes. The observed increase in Green Party vote shares following the Fridays for Fu-

ture strikes indicates a shift in voter preferences toward environmental priorities, driven

by grassroots activism. However, the concurrent rise in support for radical right parties

suggests that these movements may also provoke a backlash among certain segments

of the electorate, highlighting the importance for organizers to consider strategies that

mitigate potential counterproductive effects. Additionally, the observable shift in parlia-

mentary discussions towards more climate-focused narratives suggests that the echoes of

the streets are reaching the halls of power, potentially paving the way for more robust

climate policies.

These results contribute to a better understanding of the relationship between public

mobilization, grassroots activism, and policy formation, emphasizing the role of civic

engagement in addressing global climate challenges.
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Main Figures and Tables

Figure 3.1: Monthly Count of Protests in Europe and North America
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Notes: This graph, derived from ACLED dataset, displays the count of protests per month. Each point
represents the total number of protests in a given month, with those exceeding 300 protests omitted for
clarity. The scatter plot points depict monthly protest frequencies, while the line illustrates the linear
fit, indicating the overall trend.
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Figure 3.2: Climate Change Engagement in Google Trends, Print Media, and TV
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Notes: Panel A illustrates trends in Google search intensity for the term ’climate change’ in the UK,
extracted from Google Trends. Key events, such as Trump’s withdrawal from the Paris Agreement and
COP 26, are marked, indicating their potential influence on public interest. Panel B focuses on news
media coverage in the US, showing the proportion of news items featuring ’climate change’ or ’global
warming’, with data sourced from the GDELT project. Panel C explores television news coverage,
showing the percentage of airtime allocated to discussing these issues, also based on the GDELT data.
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Table 3.1: US national-level weekly analysis

Search Intensity
News

Climate
TV

Climate
News

Climate Exc. Protest
TV

Climate Exc. Protest

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
No. Protests .022∗∗∗ .013∗∗∗ .015∗∗∗ .0083∗∗∗ .013∗∗∗

(.0025) (.003) (.003) (.0031) (.0031)

No. Attendees .16∗∗∗ .076∗∗∗ .094∗∗∗ .04 .08∗∗∗

(.023) (.027) (.027) (.027) (.027)
N 199 199 212 212 212 212 212 212 212 212
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 .487 .423 .236 .196 .23 .189 .212 .193 .215 .178
Robust standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table presents findings from eleven regression analyses utilizing weekly data from Count-
Love to examine the impact of protests on various indicators of public engagement with climate
change. The regressions correlate national-level metrics for a given week with the quantity of protests
or participants during that week. Models 1-2 analyze Google Trends search intensity for ’climate
change’, Models 3-4 and 7-8 examine the percentage of news coverage on ’climate change’ and ’cli-
mate change excluding protests’ respectively, while Models 5-6 and 9-10 focus on the same metrics
in TV coverage. The dependent variables in columns 3 to 10 are sourced from GDELT. All dependent
variables are standardized to have a mean of zero and a variance of one. The primary independent
variables are the number of protests and attendees. The first column sources data from the ACLED
and encompasses the period from January 1, 2020, to May 1, 2022, while subsequent columns draw
on data from CountLove and cover from April 1, 2017, to January 31, 2021. Each model controls for
linear and quadratic time trends, and seasonal effects captured by month fixed effects.
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Figure 3.3: Protest coverage across different TV stations
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Notes: This graph illustrates the estimated coefficients for protest coverage on various TV news net-
works, each represented by a distinct regression model. These are Combined (aggregate of all stations),
CNN, FOX News, MSNBC, Al Jazeera, and BBC News. The coefficient for each network, depicted
on the Y-axis, measures the extent to which protests influenced TV coverage of climate change.
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Table 3.2: US DMA-level daily analysis

(1) (2) (3) (4)
Search Intensity Search Intensity Search Intensity Search Intensity

Protest × Precip -4.5081∗∗∗ -2.6866∗∗∗ -2.3467∗∗∗ -0.9595∗

(1.6089) (0.5286) (0.4322) (0.5600)

Protest 26.3063∗∗∗ 1.8394 0.8064 0.5046
(1.0830) (1.6634) (1.4304) (1.6707)

DMA FE No Yes Yes Yes
Date FE No No Yes Yes
Linear Time Trend No No No Yes
Observations 163876 163876 163876 163876
Robust standard errors clustered at the DMA level in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table displays regression results on the influence of protests and weather on Google Trends
search intensity, using data from Google Trends combined with ACLED post-January 1, 2020. It
introduces an interaction term for protests in DMAs and rainfall, differentiating the impact of the
protest between rainy and dry weather conditions. We compute the average rainfall between 12PM
and 4PM on the day of the protest to construct the precipitation variable. In cases of multiple protests
in the same DMA on the same day, the aggregate number of protests is used. The analysis is conducted
at a daily frequency.
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Table 3.3: Protest and vote shares in EP elections

Green Party Conservative Socialist Agrarian/Centre Christian Democrats

Protest × Precip -0.357*** 0.502 -0.144 1.274 -0.145
(0.125) (0.413) (0.134) (1.032) (0.292)

Protest 5.208*** -2.128** 1.164 -1.028 -3.209**
(0.635) (1.080) (0.805) (2.168) (1.427)

Observations 957 906 1314 113 1067
Mean 6.100 8.854 14.25 8.135 14.92
Standard Deviation 6.989 9.468 10.14 8.652 15.64

Liberal Radical Left Radical Right Regionalist Voter Turnout

Protest × Precip 0.161 0.155** -0.881*** 0.0433 -0.744***
(0.133) (0.0631) (0.165) (0.147) (0.189)

Protest 2.605*** -0.654 6.243*** -0.738 4.366***
(0.755) (0.423) (1.024) (1.048) (1.001)

Observations 1186 1508 1279 680 1064
Mean 9.352 4.676 14.97 3.396 52.57
Standard Deviation 8.906 4.866 14.18 7.438 11.51
Robust standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table presents OLS regression results from Europe at the NUTS3 level. The first explana-
tory variable is an interaction between protest occurrence and average precipitation between 12 noon
and 4 p.m. on the day of the protest, i.e., March 15, 2019. Protest is an indicator variable that takes
a value of 1 if a Fridays for Future protest was held in the NUTS3 region prior to the EP elections.
Different political parties in each country are categorized into party families on the basis of their ide-
ology using data from the Chapel Hill Expert Survey. Controls include the share of population having
tertiary education (at the NUTS2 level) and the long-run average precipitation in the month of March,
calculated using precipitation data in the years 2005-2018 (at the NUTS3 level).
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Table 3.4: Hansard textual analysis

Discussion Density Valence Measure

(1) (2) (3) (4) (5) (6) (7) (8)
Number of Protests 0.0111∗∗ 0.0204∗ 0.0035 0.0262 0.0116∗∗∗ 0.0146∗∗ 0.0106∗∗ 0.0188∗∗

(0.0028) (0.0064) (0.0026) (0.0192) (0.0009) (0.0042) (0.0016) (0.0047)
Constituencies All Labour Conservative Other All Labour Conservative Other
Observations 753 253 368 132 753 253 368 132
Robust standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table was generated using data from the Hansard dataset and the ACLED protest data.
The Hansard dataset provides counts of Member of Parliament (MP) mentions of “climate change” or
similar words in parliamentary records, while the ACLED dataset offers information on protest events
in the UK. The table presents regression results examining the relationship between the number of
protests in a constituency and the frequency of MP mentions post-2019 in parliamentary records. The
analysis considers different models, including controls for pre-2019 mentions and separate analyses
for Conservative and Labor MPs. All regressions control for the level of frequency of mentions of
“climate change” and related keywords in the constituency before 2019. Robust standard errors are
clustered at the country level.
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Appendix

3.7 Appendix: Figures and Tables

Figure 3.4: Attendance and precipitation on the day of protest

Notes: The residuals on y-axis are generated by regressing log of attendance at the protests on March
15, 2019 (as reported on the Fridays for Future website) on the long-run average precipitation in
each NUTS3 region. Similarly, the residuals on the x-axis are generated by regressing precipitation
between 12PM and 4PM on the day of the protest on the long-run average precipitation in each NUTS3
region (both obtained from the ERA5-Land dataset). Since the reporting on attendance is incomplete
and unreliable, we also restrict the specification to include protests attended by at least 75 people,
i.e., protests large enough to gather some attention in the media. Results are qualitatively robust to
changing this threshold up and down.
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Table 3.5: Protest and vote shares in EP elections with rainfall percentiles

Green Party Conservative Socialist Agrarian/Centre Christian Democrats

Protest × Precip (percentile) 0.0457** -0.0736** 0.0175 -0.138 0.0155
(0.0148) (0.0274) (0.0205) (0.0901) (0.0398)

Protest 1.455* 3.018 -0.438 9.570 -4.293*
(0.593) (1.603) (0.946) (6.389) (1.903)

Observations 957 906 1314 113 1067
Mean 6.100 8.854 14.25 8.135 14.92
Standard Deviation 6.989 9.468 10.14 8.652 15.64

Liberal Radical Left Radical Right Regionalist Voter Turnout

Protest × Precip (percentile) -0.0218 -0.0300** 0.178*** -0.00747 0.112***
(0.0176) (0.00973) (0.0256) (0.0208) (0.0238)

Protest 4.098*** 0.949** 5.069*** -0.232 3.004**
(0.780) (0.349) (1.440) (0.565) (1.149)

Observations 1186 1508 1279 680 1064
Mean 9.352 4.676 14.97 3.396 52.57
Standard Deviation 8.906 4.866 14.18 7.438 11.51
Robust standard errors in parentheses
* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: This table is similar to Table 3.3 but uses inverse percentiles of precipitation instead of continu-
ous values. The first explanatory variable is an interaction between protest occurrence and the inverse
of precipitation percentiles between 12 noon and 4 p.m. on the day of the protest, i.e., March 15, 2019.
Protest is an indicator variable that takes a value of 1 if an FFF protest was held in the NUTS3 region
prior to the EP elections. Different political parties in each country are categorized into party families
on the basis of their ideology using data from the Chapel Hill Expert Survey. Controls include the
share of population having tertiary education (at the NUTS2 level) and the long-run average precipita-
tion in the month of March, calculated using precipitation data in the years 2005-2018 (at the NUTS3
level).
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Table 3.6: Protest and vote shares in EP elections with same party composition

Green Party Radical Left Radical Right Turnout

Protest × Precip -0.389*** 0.270*** -0.428** -0.700***
(0.106) (0.0625) (0.179) (0.183)

Protest 4.972*** -1.765*** 5.006*** 3.499***
(0.642) (0.437) (1.130) (1.008)

Observations 677 1312 929 677
Mean 4.872 4.490 12.65 55.82
Standard Deviation 5.723 4.815 10.96 8.633
Robust standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table is similar to Table 3.3 but looks at the subset of NUTS3 regions that have a Green
party, a Radical Left party, and a Radical Right party. The first explanatory variable is an interaction
between protest occurrence and the inverse of precipitation percentiles between 12 noon and 4 p.m. on
the day of the protest, i.e., March 15, 2019. Protest is an indicator variable that takes a value of 1 if an
FFF protest was held in the NUTS3 region prior to the EP elections. Different political parties in each
country are categorized into party families on the basis of their ideology using data from the Chapel
Hill Expert Survey. Controls include the share of population having tertiary education (at the NUTS2
level) and the long-run average precipitation in the month of March, calculated using precipitation data
in the years 2005-2018 (at the NUTS3 level).
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Table 3.7: Protest and vote shares in EP elections with full balanced sample

Green Party Radical Left Radical Right Turnout

Protest × Precip -0.389*** 0.260*** -0.567*** -0.700***
(0.106) (0.0530) (0.131) (0.183)

Protest 4.972*** -1.366*** 5.083*** 3.499***
(0.642) (0.316) (0.947) (1.008)

Observations 677 677 677 677
Mean 4.872 4.237 12.82 55.82
Standard Deviation 5.723 2.535 7.619 8.633
Robust standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table is similar to Table 3.6 but takes the average of the vote shares of Radical Left
and Radical Right parties if more than one contested the election from that NUTS3 region. The
first explanatory variable is an interaction between protest occurrence and the inverse of precipitation
percentiles between 12 noon and 4 p.m. on the day of the protest, i.e., March 15, 2019. Protest is
an indicator variable that takes a value of 1 if an FFF protest was held in the local authority prior to
the EP elections. Different political parties in each country are categorized into party families on the
basis of their ideology using data from the Chapel Hill Expert Survey. Controls include the share of
population having tertiary education (at the NUTS2 level) and the long-run average precipitation in
the month of March, calculated using precipitation data in the years 2005-2018 (at the NUTS3 level).
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