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Abstract

This thesis investigates how flood management interventions and flood

events shape the spatial distribution of economic development, firm adaptation,

and innovation in China— one of the most flood-prone countries in the world. It

examines both deliberate, policy-driven reallocations of flood risk and economic

adaptations triggered by actual flooding. Chapters 1 and 2 analyze the impacts

of China’s national Flood Detention Basin (FDB) policy, which redirects flood-

waters into designated rural areas to protect downstream urban centers. Chapter

1 uses reduced-form empirical methods to quantify the economic costs taken

by FDB-designated counties, while Chapter 2 develops a spatial general equi-

librium model to assess the broader economic benefits of the policy. Chapter

3 investigates the role of floods in shaping the geographical pattern of patent-

ing activities. Together, the three chapters provide a comprehensive analysis of

how both flood risks and flood management strategies influence the geography

of economic activity and adaptive responses in China.

Chapter 1 examines the economic costs of China’s Flood Detention Basin

(FDB) policy, implemented in 2000. Under this national policy, the government

designated 96 counties to host FDBs — low-lying areas intended to absorb ex-

cess floodwater during extreme weather events. While protecting downstream

urban centers, this policy imposes concentrated flood risks on rural counties.

Using difference-indifferences methods, the chapter documents significant eco-

nomic costs for FDB counties: a 10.7% reduction in nighttime light intensity, a

15.9% decline in new firm entries, and a 19.7% drop in fixed asset investment.



Abstract 4

These losses are persistent and primarily driven by firms ’ aversion to locating

in high-risk areas, rather than migration responses by individuals. Overall, us-

ing causal identification tools, this chapter shows that FDB policy has led to a

substantial economic cost in counties selected to take more flood risks.

Chapter 2 builds a structural spatial general equilibrium model to quantify

both the aggregate benefits of the FDB policy. The model captures trade link-

ages across FDB counties, protected cities, and the rest of the country. Coun-

terfactual simulations reveal that the policy indeed enhances national output by

protecting high-productivity urban centers. Overall, the benefit to cost ratio of

the Flood Detention Basin policy exceeds one. However, these gains come at

the expense of lower-productivity rural areas bearing theflood risk. The model

shows that removing high-productivity counties from the FDB list would not

substantially reduce output gains, while greatly improving equity. These find-

ings suggest that the current FDB configuration may overprioritize output over

equality. The results indicate the necessity for a more balanced compensation

scheme to support vulnerable regions.

Chapter 3 explores how floods shape the spatial distribution of innovation

in China. Using satellite-derived flood maps and detailed patent data, I cre-

ated a dataset to measure collaborative patents among different regions. The

chapter finds that floods decrease local patenting activity but simultaneously en-

courage cross-county collaboration in innovation. A one-day increase in aver-

age flood duration is related to a 12% increase in collaborative patents between

counties. These partnerships are especially strong between counties that share

similar flood histories and are more likely to yield disaster mitigation technolo-

gies. Mechanism analysis shows that historical flood experience—rather than

unexpected shocks—drives the shift toward collaboration, suggesting a strate-

gic adaptation to long-term climate risks.
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Chapter 1

Government and Nature: Evidence

from the Distribution of Flood

Damages in China

With increasing disaster risks, it is increasingly important to understand the im-

pact of government interventions that reallocate environmental damages. In 2000, the

Chinese government designated 96 Flood Detention Basin (FDB) counties, allocating

lower-elevation areas within these counties for temporary floodwater storage. During

severe flood events, floodwater may be diverted to these FDB counties to protect down-

stream urban centers. We evaluate the aggregate and distributional impacts of the FDB

policy. Difference-in-differences results show that if a county is selected to the FDB

list, county-level firm entry and firm-level fixed asset investments would decrease by

15.9% and 19.7%, respectively. Overall, FDB designation results in a 10.7% reduction

in county-level nighttime light intensity.
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1.1 Introduction

A key challenge in natural disaster management is determining how to allocate en-

vironmental damages. Should government intentionally expose certain areas to higher

risks to protect broader regions from severe damages? Similar to environmental poli-

cies that often create winners and losers (e.g., He et al. 2020, Taylor and Druckenmiller

2022), flood management interventions could have uneven distributional impacts. For

instance, building dams and levees would lead to uneven effects across different regions

(Duflo and Pande 2007, Bradt and Aldy 2023). Currently, floods impact more than 1.8

billion people globally (Tellman et al. 2021), and by 2050, severe flooding events are

projected to double in frequency across 40% of the world (Arnell and Gosling 2016).

As the threat of severe floods intensifies, it is increasingly important for policymakers

in high-risk countries to understand the impact of flood management policies that lead

to reallocation of flood damages.

This paper explores the aggregate and distributional impacts of Flood Detention

Basins (FDBs), the last-resort solution in flood management. In extreme flood events,

when reservoirs reach capacity, governments divert floodwaters into FDBs, which are

regular lands during non-flooding periods, to protect a broader region from severe flood

damages. A well-known example of an FDB is the Birds Point - New Madrid Floodway,

located on the west bank of the Mississippi River in the United States.1 In our paper,

we focus on the world’s largest FDB program: Flood Detention Basins in China, for

two primary reasons. First, China ranks among the top three countries in terms of flood

risk globally, with more than 395 million people exposed to floods. Floods also result

in significant and persistent economic losses in China (Kocornik-Mina et al. 2020).

Second, the FDB policy in China is a large-scale and explicitly designed national flood

control policy, which has been in place for over two decades. Hence, we are able to

clearly analyze its persistent impacts.

In 2000, the Chinese government officially implemented the Flood Detention

1The Birds Point-New Madrid Floodway in Missouri is engineered to divert up to 550,000
cubic feet per second from the Mississippi River during an extreme flood event. According to
the US Army Corps of Engineers, “the purpose of the floodway is to lower flood stages upstream
and adjacent to the floodway during major flood events.”
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Basin (FDB) policy, designating 98 low-lying wetlands in 96 counties as flood detention

basins, covering over 30,000 km2 and directly affecting more than 15 million residents.

Over the past two decades, the government has used FDBs, which are mainly located

in rural counties, to absorb floodwaters in nine different years. According to the Min-

istry of Water Resources in China, residents in FDB counties—counties designated for

floodwater storage—make significant sacrifices to protect collective social welfare and

improve economic resilience against floods.

In this paper, we ask the research question: What are the aggregate and distribu-

tional impacts of Flood Detention Basin policy in China? Regarding the distributional

impact of the policy, we quantify the economic costs on counties where FDBs are lo-

cated. It allows us to examine the extent to which rural FDB counties, which are ini-

tially more economically vulnerable, have made sacrifices to enhance overall economic

resilience against floods. In terms of the aggregate impact of the policy, we evaluate

whether the policy has resulted in a net gain in total output by extending our analysis to

a general equilibrium context.

First, we find that the FDB policy has effectively redistributed flood exposures

across different regions. Using the Global Flood Database (Tellman et al. 2021), a

satellite-based flood dataset, we construct proxies to measure county-level flood expo-

sures. Through a fixed-effect regression, we find that the size of flood inundation in

FDB counties is over 50% larger compared to other counties, after controlling for key

geographical attributes. Additionally, we use a hydro-dynamic engineering model to

simulate a counterfactual scenario without FDBs absorbing excess floodwaters. In one

case study, we find that an economically important city, Wuhan, would experience 45%

more flooding during a severe flood event.

Second, we find that the FDB designation has had a negative and persistent im-

pact on the economic development of FDB counties. Using a difference-in-differences

approach, we compare the economic development of FDB counties with that of coun-

ties not affected by the FDB policy. However, FDBs are not randomly distributed.

According to the Chinese government, FDBs should be low-lying areas that are hy-

drologically feasible for absorbing floodwater. To address this selection issue, we em-

ploy the synthetic difference-in-differences estimation method proposed by Arkhangel-
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sky et al. (2021) for the main analysis, while also providing traditional and alternative

DID estimations for robustness (Callaway and Sant’Anna 2021, de Chaisemartin and

D’Haultfœuille 2020, Gardner 2022). Overall, we find a negative and statistically sig-

nificant impact of FDB designation on economic development: the FDB designation re-

duces annual nighttime light intensity by approximately 10%. Henderson et al. (2012)

and Martinez (2022) estimate the elasticity of GDP to nighttime light at around 0.3.

Hence, we are able to translate the reduction in light intensity to an approximate 3%

annual GDP loss. This cost estimation is also consistent with findings from hydrolo-

gists (e.g., Wang et al. 2021). Event studies using a 20-year window centered around

the year of FDB designation further support the validity of our identification methods.

To investigate the mechanism behind the reduction in nighttime light intensity, we

examine the impact of the 2010 policy change in which the Chinese government added

20 counties to the FDB list and removed 10 counties from it. This policy change allows

us to compare the treatment effect of being selected into the FDB list and that of being

removed from the list. We first examine whether people make location decisions in

response to the FDB policy. However, unlike previous studies that provide evidence of

migration following floods (e.g., Hornbeck and Naidu 2014), our findings do not find

evidence of migration in response to this policy, possibly due to the mobility restriction

in China. Instead, our findings suggest that the firm-response effect is the major mecha-

nism, as firms are reluctant to enter and invest in FDB counties with higher flood risks.

Our empirical analysis supports the firm-response mechanism as follows:

(i) On average, the number of new firm entries has declined by 15.9% in the newly

designated FDB counties after the 2010 policy change. Focusing on larger man-

ufacturing firms with a turnover above $3 million, the number of such firms has

declined by 21.7% in newly designated FDB counties following the policy change.

This result is also consistent with Jia et al. (2022) and Balboni et al. (2023), which

find that firms make location decisions in response to flood risk change;

(ii) Using detailed firm investment data, we apply a spatial regression discontinuity

approach (Imbens and Wager 2019 and He et al. 2020) to compare firm invest-

ments in FDB counties versus neighboring counties. We find that investment in
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fixed assets is 19.7% lower in FDB counties compared to neighboring counties,

with this gap in fixed asset investment only emerging after the 2010 policy change;

(iii) In contrast, we find significant evidence that firm entries and firm investments have

increased in counties that were removed from the FDB list in 2010. Specifically,

the number of new firm entries has increased by 16.8%, and investments in fixed

assets have increased by 25.7%. Compared to the treatment of being selected

into the list, we view the balanced and symmetrical effect of being removed from

the list as compelling evidence that the FDB policy significantly influences firms’

decision-making.

This paper makes three key contributions. First, we contribute to the discussion

on flood costs by illustrating that flood management policies, while aimed at reducing

damage, can also lead to significant economic costs. We find that governments have

incentives to mitigate floods by shifting flood damages onto regions of lower economic

values. Kocornik-Mina et al. (2020) finds that while urban areas experience frequent

flooding, lower-elevation cities tend to recover as quickly as higher-elevation cities. Our

paper helps explain this phenomenon by suggesting that governments may strategically

channel flood damages to rural areas. Also, our findings are consistent with prior stud-

ies that report negative impacts of floods on economic development in both developing

(e.g., Patel 2023) and developed countries (e.g., Strobl 2011). A cross-country study

by Hsiang and Jina (2014) also demonstrates the causal effect of cyclones on long-term

economic growth across various regions, while Desmet et al. (2021) predicts that per-

manent flooding due to climate change could reduce global real GDP by 0.19 percent.

For studies focusing on China, Elliott et al. (2015) identifies that typhoons impose a

significant but short-lived negative impact on local economic activity in China. Our

study contributes to this relatively limited literature on the economic costs of floods in

China—a country with severe flood risk, where approximately 395 million people are

exposed to floods.

Second, our study contributes to the literature on how individuals and firms adapt

to both natural disasters and government interventions. We find that firms adjust their

entry and investment decisions in response to changes in flood risk. Balboni et al. (2023)
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observes a similar trend, with firms in Pakistan relocating from flood-affected areas to

less flood-prone regions. Similarly, Jia et al. (2022) also finds that flood risk will affect

firm location decisions in the United States. Our study further expands the discussion

by examining how firms adapt to government interventions. We find that environmental

damages tend to be disproportionately concentrated in economically less valuable ar-

eas. Meanwhile, economic activity becomes more concentrated in urban centers. This

aligns with recent findings by Hsiao (2023) that government interventions may create

moral hazard, encouraging greater economic concentration in coastal regions. In terms

of individual response, we find no evidence of migration in reaction to the policy, which

is different from previous studies (e.g., Boustan et al. 2012; Hornbeck and Naidu 2014;

Gröger and Zylberberg 2016; Boustan et al. 2020). Understanding the underlying rea-

sons will be an important area for future research.

Third, our research contributes to the discussion on the aggregate and distribu-

tional impacts of environmental policies and government interventions. Environmental

policies often have distributional impacts. He et al. (2020) shows that firms located up-

stream of pollutant monitoring stations in China experience larger reductions in produc-

tivity than downstream firms. Similarly, Taylor and Druckenmiller (2022) finds spatial

heterogeneity in benefits from the Clean Water Act in the United States. With climate

change intensifying, the allocation of environmental damages becomes an increasingly

important topic. For instance, Duflo and Pande (2007) finds that residents upstream

of dams in India face greater constraints in economic mobility than those downstream.

For example, Balboni (2019) examines the spatial distribution of large infrastructure in-

vestments in Vietnam, a country highly threatened by sea-level rise. Hsiao (2023) also

assesses the spatial distributional impacts of constructing sea walls. We contribute to

this strand of literature by incorporating Flood Detention Basins (FDBs) into the dis-

cussion. Consistent with prior findings, we observe substantial distributional impacts of

these policies. Meanwhile, while much of the literature on flood management policy has

focused on flood insurance programs in the United States (e.g., Gallagher 2014, Mulder

2021, Georgic and Klaiber 2022), our study extends this discussion by investigating the

impact of FDB policy that intentionally reallocates flood damages.
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1.2 Research Background

1.2.1 Substantial Flood Risk in China

China ranks among the top countries globally for flood risk, due to its large popula-

tion exposed to both coastal and river flooding. According to the Aqueduct Global Flood

Risk Country Rankings, China ranks third in the world for the absolute number of peo-

ple exposed to flood risks, with approximately 395 million people at risk annually. This

places China among the most flood-exposed countries, alongside India and Bangladesh.

About 27.5% of China’s population is vulnerable to flooding, driven by river floods in

the Yangtze, Huai, and Yellow River basins, as well as coastal areas prone to typhoons

and rising sea levels. From 2000 to 2017, floods caused economic damage exceeding

$150 billion, according to the EM-DAT International Disaster Database. Furthermore,

Arnell and Gosling (2016) predicts that the likelihood of a 100-year flood occurring in

China could increase by 33-67% by 2050.

(a) Flood Risk Distribution in China (b) Nighttime Light in China

Figure 1.1: Richer regions in China face higher river flood risk.

A key feature of China’s floods is their disproportionate impact on economically

important regions. Jiangsu Province, for instance, ranks second in GDP among China’s

provinces, yet faces severe flood risks due to its location along the Yangtze River and

Huai River. As shown in Figure 1.1, regions with higher flood risks, identified by

Zhang and Song (2014), are also more economically significant, as indicated by higher

nighttime light intensity. For instance, the Yangtze River Basin, home to one-third
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of China’s population, is a crucial economic hub. Frequent flooding, exacerbated by

seasonal rainfall and extreme weather events, poses significant risks to infrastructure

and livelihoods in these areas. Similarly, the Huai River Basin, another key region,

faces recurring flood threats. Flooding in these economically vital regions could hinder

China’s overall economic growth, making flood management a critical concern for the

government.

Due to rapid urbanization, urban populations in major cities (e.g., Beijing, Wuhan,

and Nanjing) are increasingly exposed to severe flood risks. The urbanization rate

surged to 64.72% in 2021, up from 36.00% in 2000, which has significantly height-

ened the vulnerability of urban areas to flooding. For instance, the 2012 Beijing flood,

triggered by extreme rainfall, resulted in over 79 fatalities and caused approximately

$2 billion in economic damage. The 2021 Zhengzhou flood led to over 350 deaths and

caused around $6 billion in economic losses. This underscores the severe impact of

urban flooding on densely populated areas.

1.2.2 Flood Detention Basins: the Last Resort of Managing

Floods

Flood Detention Basins (FDBs) are areas designated for the temporary storage

of floodwater to protect broader regions from flood damage. FDBs are an essential

component of the flood management strategy, particularly when other measures are

insufficient to mitigate severe flood impacts. A famous example of such an approach

is the Birds Point-New Madrid Floodway in Missouri, USA, where controlled flooding

mitigates the risk of severe damage to surrounding communities. The Birds Point-

New Madrid Floodway, established in 1928 after the Great Mississippi Flood, spans

approximately 130,000 acres and is part of the Mississippi River and Tributaries Project.

During times of extreme flooding, levees are intentionally breached to divert water away

from populated areas, thereby reducing flood risks to downstream communities such as

Cairo, Illinois. This floodway has been activated multiple times, most recently in 2011,

to protect both urban and rural areas from catastrophic flood damage.

The Flood Control Law of the People’s Republic of China, implemented in 2000,
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Figure 1.2: FDB Counties and FDB-Protected Counties
Note: (1) FDB counties are marked using color yellow, and FDB-protected
counties are marked using color red; (2) FDB counties are located near the
river, and FDB-protected counties are located to the downstream of FDB

counties.

is the country’s first piece of legislation specifically governing flood management. This

law officially designates certain areas as Flood Detention Basins (FDBs). According to

the law, FDBs are low-lying lands and lakes used for the temporary storage of flood-

waters. To facilitate floodwater diversion, the Chinese government constructs dams

and dikes in these FDB counties, enabling effective flood management during extreme

events. The law specifies that the purpose of establishing FDBs is to “safeguard the

interests of pivotal regions and the whole watershed.” Additionally, the government

acknowledges that residents in these FDBs make significant sacrifices for the greater

collective welfare. As shown in Table A1, the FDB policy directly affects about 1.1%
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of China’s total population. The aggregate area of FDBs is 30,443 km2 (0.3% of China’s

total land), which is comparable with the entire territory of Switzerland.

FDB counties protect downstream urban areas from severe flood impacts and play

a key role in diverting floodwaters to protect downstream areas. As illustrated in Fig-

ure 1.2, FDB counties are located in the upstream so that urban cities to the down-

stream could be protected from being severely damaged during floods. For example,

the Mengwa Flood Detention Basin, located in Funan County, Anhui Province, has been

activated more than 16 times since its establishment. During flood detention, more than

200,000 residents in the Mengwa Flood Detention Basin are temporarily relocated to

neighboring counties. More details about this case study can be found in Appendix

A.1.2.

Policy Change

According to the 2000 Flood Control Law, 96 counties were designated as FDB

counties, the first time that the specific locations of these basins for flood detention

were officially confirmed. In 2010, the Ministry of Water Resources revised the earlier

law in the National Flood Detention Basin Construction and Management Plan. As

indicated in Table A2, under this new plan 13 FDBs were added and 12 were removed.

Consequently, the specific counties classified as FDB counties changed, with 20 new

additions to the list and 10 removed. Table A1 and Table A2 offer an overview of the

FDBs in China’s major river basins in 2000 and 2010.

1.2.3 Key Features of Flood Detention Basins in China

Selection

According to national law, detention basins are typically placed in topographically

low areas conducive to floodwater containment, as these areas naturally accumulate wa-

ter, making them ideal for mitigating flood impacts. The selection of FDB counties

is determined by the Ministry of Water Resources, indicating a centralized decision-

making process. Among all factors, hydrological feasibility for absorbing floodwater

is the most critical determinant in this decision-making process. Key considerations
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include soil permeability, water retention capacity, and the ability to minimize adverse

downstream effects. Research in hydrology has consistently emphasized the impor-

tance of these factors in optimizing FDB selection.2 In Table A4, we also present a lin-

ear proabability regression model to identify factors influencing the selection of Flood

Detention Basin locations. Our findings indicate that the choice of FDB sites is predom-

inantly influenced by hydrological and geographical characteristics. This is consistent

with the official stance of the Chinese government, which defines FDBs as “low-lying

lands and lakes that are hydrologically suitable for temporary storage of floodwaters.”

Migration

During the flood detention period, residents are temporarily relocated to neighbor-

ing counties or ‘zhuangtai’—areas with higher elevation that remain unflooded during

floodwater diversion. Unlike the case of building reservoirs, the government does not

force residents in FDB counties to leave. Although the government may encourage lo-

cal residents to relocate, the financial incentives provided are insufficient. According to

a survey conducted in a Flood Detention Basin, 73% of local residents are dissatisfied

with the current migration incentive scheme, and 94% are dissatisfied with the migra-

tion destinations offered by the government. Overall, 69% of participating residents are

unwilling to leave the FDB county. We present more empirical findings about migration

in Section 1.6.1.

Compensation

Subsidies to FDB counties during normal periods, when there is no floodwater

diversion, are limited. However, according to the Temporary Measures for the Use of

2Mays and Bedient (1982) developed an optimal model based on dynamic programming,
aiming to determine the ideal size and location of detention basins to maximize flood absorp-
tion while minimizing construction costs. This model was further refined by Bennett and Mays
(1985) by incorporating the cost implications of detention basin structures and downstream
channel designs. Using this refined model, Taur et al. (1987) optimized the detention basin sys-
tem in Austin, Texas, highlighting the significance of hydrological suitability in site selection.
Mays and Bedient (1982) advanced this research by optimizing the placement and sizing of
retention basins in a watershed, specifically targeting reductions in aggregated costs related to
construction, maintenance, and sediment removal, while considering hydrological efficiency.
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Compensation in Flood Storage and Detention Areas initiated by the Chinese govern-

ment in 2000, the government is supposed to compensate up to 70% of damages caused

by direct floodwater diversion. The specific compensation standards are determined by

the provincial-level government and are based on the actual damage caused by the flood

within these parameters. However, the requirements for receiving compensation are

not clearly specified. For example, the government will not compensate for livelihood

losses if assets could have been relocated according to government orders but were not.

But there is no clear specification regarding how to assess whether the asset could or

could not have been transferred.

Due to increasing flood risk, the Chinese government has emphasized using fi-

nancial tools to help alleviate flood risk. For instance, in 2024, the People’s Bank of

China allocated an additional $15 billion in relending funds for agricultural and small

business support in 12 provinces (regions, municipalities). These funds are intended

to support flood prevention, disaster relief, and post-disaster reconstruction efforts in

severely affected areas. However, during the period of this research, this type of sub-

sidy or compensation remains limited. A more detailed discussion on compensation can

be found in Appendix A.1.4, along with an example of actual compensation from the

2023 floodwater diversion in Zhuozhou County, Hebei Province.
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1.3 Data and Empirical Strategies

1.3.1 Data

FDB List - The Ministry of Water Resources officially announced the list of Flood

Detention Basins (FDB) in 2000, and revised the list in 2010. We then define counties

that hold flood detention basins as FDB counties. The original policy document can be

found in Appendix A.1.1.

Data on Light - Given possible threats to GDP estimation in datasets provided

by the National Bureau of Statistics (NBS), as suggested by Martinez (2022), we use

nighttime light data as a proxy of economic activity. Specifically, we use the 1984-2020

‘Prolonged Artificial Nighttime-light Dataset of China’ data by Zhang et al. (2024).

Data on Firm-level Outcomes - Firm-level data is collected from National En-

terprise Credit Information Publicity System (NECIPS) and Annual Survey of Indus-

trial Enterprises (ASIE). NECIPS, administered by China’s State Administration for

Market Regulation (SAMR), provides annual registration records for all Chinese enter-

prises spanning from 1960 to 2023. This dataset is rich in detail, encompassing key

information such as the date of establishment, ownership type, and geographical lo-

cation of each firm. Using the geo-located data within this resource, we are able to

accurately track the entry of firms in counties and towns designated as Flood Deten-

tion Basins (FDB). The firm-level data derived from ASIE spans from 1998 to 2014.

ASIE encompasses private industrial enterprises with annual sales exceeding 5 mil-

lion RMB (approximately 0.7 million USD) and all state-owned industrial enterprises

(SOEs). Compiled and maintained by the National Bureau of Statistics (NBS), this

dataset offers an extensive array of information sourced from the accounting records of

these firms. It includes data on inputs, outputs, sales, taxes, and profits. This dataset

contrasts with the National Enterprise Credit Information Publicity System (NECIPS)

in two key aspects. Firstly, ASIE’s temporal scope is confined to the period between

1998 and 2014, whereas NECIPS provides a wider temporal range for analysis (1960

to 2023). Secondly, ASIE primarily concentrates on collecting comprehensive details

about firm activities, whereas NECIPS is oriented towards the registration of new firms.
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Data on Other Socio-economic Outcomes - Other county level data is collected

from the County-level Statistical Annual Yearbooks from 1999 to 2022. The National

Bureau of Statistics (NBS) conducts county-level survey each year. It is a longitudinal

survey that collects county-level socio-economic data for all counties in China. County-

level variables include local output (disaggregated by sector), number of firms, fiscal

income, fiscal expenditure, savings and etc.

Geographical Data - Elevation and gradient information is obtained from the

NASA ASTER Global Digital Elevation Model (GDEM). The GDEM, with its exten-

sive coverage from 83 degrees north to 83 degrees south latitude, encompasses 99 per-

cent of the Earth’s landmass. This comprehensive database enabled us to gather detailed

elevation and gradient data for all counties and towns across China. For precipitation

data, we turned to the Global Surface Summary of the Day (GSOD), sourced from the

Integrated Surface Hourly (ISH) dataset. GSOD provides daily summaries typically

within 1-2 days of the observation date. It encompasses data from over 9,000 stations

worldwide, offering historical records from 1929 onwards, with the period from 1973

to the present being the most complete. Utilizing this resource, we calculated the mean

monthly precipitation for each village and town in China.

1.3.2 Descriptive Statistics

In Table A3, we compare several descriptive statistics of FDB counties and non-

FDB counties. FDB counties, compared to non-FDB counties, exhibit differences in

geographical, flood, and socio-economic characteristics. Geographically, FDB counties

have lower elevations and slopes but more permanent water pixels. This is consistent

with the government claim that flood detention basins are typically low-lying lands and

lakes used for temporary storage of floods. In descriptive results, we find that FDB

counties experience higher flood exposure and larger areas of flood inundation. Con-

trary to the claim that FDB counties should hold less population and be poorer, the data

demonstrates that FDB counties actually have larger populations and higher nighttime

light intensity, which is often an indicator of greater economic activity. Additionally,

FDB counties have a slightly greater number of firms compared to non-FDB counties.
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These socio-economic indicators suggest that FDB counties are not poorer; rather, they

have significant economic activities. This evidence contradicts the assumption that FDB

counties are less populated and economically disadvantaged.

1.3.3 Empirical Strategies

Identification Challenge: FDB Location Choice

From a geographical perspective, detention basins are typically placed in topo-

graphically low areas conducive to floodwater containment. The field of hydrology

has provided a wealth of research on optimizing the selection of flood detention basins.

Mays and Bedient (1982) developed an optimal model based on dynamic programming,

aiming to determine the ideal size and location of detention basins, with the goal of min-

imizing system construction expenditures. This model was further refined by Bennett

and Mays (1985) by incorporating the cost implications of detention basin structures

and downstream channel designs. Utilizing this evolved model, Taur et al. (1987) op-

timized the detention basin system in Austin, Texas. Travis and Mays and Bedient

(1982) advanced this line of research by optimizing the placement and sizing of reten-

tion basins in a watershed, targeting the reduction of aggregated costs encompassing

construction, maintenance, and sediment removal. Subsequent studies have integrated

various optimization techniques, such as genetic algorithms and simulated annealing,

and incorporated detailed engineering cost assessments into the design frameworks for

detention basin-river-protected region systems (e.g., Perez-Pedini et al. 2005; Park et al.

2014).

However, potentially non-random FDB location choice remains the major chal-

lenge in identifying the effects of the Flood Detention Basin (FDB) policy. The selec-

tion or removal of counties from the FDB list is likely influenced by factors other than

geographical factors. For instance, the government may designate less economically

developed counties to host those basins, or conversely, remove a county from the FDB

list due to its better economic performance.

In Table A4, we apply a logit regression model to identify the determinants influ-

encing the selection of Flood Detention Basins (FDB) locations. Our findings suggest
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that the choice of FDB sites is predominantly influenced by geographical character-

istics. This aligns with the official stance of the Chinese government, which defines

FDBs as ‘low-lying lands and lakes situated beyond the back scarps of dikes, inclusive

of flood diversion outfalls, utilized for the temporary storage of floodwaters.’ Our anal-

ysis corroborates this definition, revealing a significant tendency for counties with lower

elevation levels to be selected as FDBs. We do not find empirical evidence to claim that

the Chinese government intentionally selected relatively poorer counties as FDBs.

Two-Way-Fixed-Effects (TWFE) Difference-In-Differences

Our logit regression results, as shown in Table A4, reveal no significant corre-

lation between a county’s FDB status and its GDP, which suggests that FDB policy

implementation may not be directly related to economic output. However, this does

not entirely rule out the possibility that socioeconomic factors influence FDB selection

decisions.To address the endogeneity concern, we use three identification strategies:

traditional TWFE Difference-in-Differences, the Synthetic Difference-In-Differences

(SDID) and spatial regression discontinuity (SRD).

We first use the most traditional Two-Way-Fixed-Effects (TWFE) Difference-In-

Differences approach to investigate the imapct of FDB policy. The regression specifi-

cation takes the form of:

ln(Y )it = α +β1FDBit + γi +λt + εi

where Yit measures the outcome of interest of county i in year t, FDBit is a dummy

variable that equals 1 if the county i is an FDB county in year t, and 0 if not. γi, and λt

indicate county and year fixed effects, respectively. Standard errors are clustered at the

county level. In this regression specification, β1 is the difference-in-difference estimate

that measures the impact of FDB policy on outcomes of interests.

Synthetic Difference-In-Differences (SDID)

Considering recent discussions on the properties of the staggered Difference-in-

Differences (DID) approach, particularly regarding potential biases stemming from the
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weighting problem as highlighted by Borusyak et al. (2024), we argue that the Synthetic

Difference-in-Differences (SDID) method, proposed by Arkhangelsky et al. (2021).

Central to the SDID framework is its ability to derive a counterfactual for each treated

entity by computing a weighted average from a comprehensive set of potential controls.

We argue that SDID is well-suited for our empirical setting for several reasons.

First, constructing a counterfactual group using synthetic weights, as proposed by

Abadie et al. (2010), effectively addresses concerns about the weighting problem in-

herent in traditional TWFE DID. SDID ensures that the synthetic control group closely

mirrors the treatment group’s pre-treatment characteristics, thereby enhancing the va-

lidity of causal inferences.

Second, Roth et al. (2023) suggest that clustering at the unit level is inappropriate

when the number of treated groups is small. In our context, the 2010 policy change

by the Chinese government, which added 20 new counties to the list and removed 10,

involves a limited number of treated clusters. Given this small sample size, employing

bootstrap standard errors, as facilitated by the SDID approach, provides a more reliable

measure.

Third, the construction of synthetic weights mitigates potential threats to exogene-

ity by ensuring that the counterfactual group exhibits pre-treatment outcomes that are

parallel to those of the treatment group. This parallel trend assumption is crucial for the

validity of DID estimates, and the SDID method’s ability to create a closely matched

synthetic control group strengthens this assumption.

In summary, the SDID approach offers a robust solution to the potential biases

associated with traditional DID methods, particularly in settings with small numbers of

treated units and concerns about weighting and exogeneity. This makes it a particularly

suitable choice for our analysis of the economic impacts of the 2010 policy change

in China. Following Arkhangelsky et al. (2021), the average treatment effect on the

treated, or ATT, is denoted as τ . Estimation of the ATT proceeds as follows:

(
τ̂

sdid , µ̂, α̂, β̂
)
= argmin

τ,µ,α,β

{
N

∑
i=1

T

∑
t=1

(Yit −µ −αi −βt −Witτ)
2

ω̂
sdid
i λ̂

sdid
t

}
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weights ω̂sdid
i and λ̂ sdid

t are optimally chosen given the design by Arkhangelsky

et al. (2021). Time fixed effects are denoted by βt and unit fixed effects are denoted by

αi. Yit is the outcome of a county i at year t. Wit is the treatment dummy that equals 1 if

county i is treated in year t, and 0 if not. µ is the constant term.

Spatial Regression Discontinuity (SRD)

We also employ a spatial regression discontinuity design based on a firm-level

dataset, the Annual Survey of Industrial Enterprises (ASIE). Both parametric and non-

parametric methods can estimate the discontinuity. Imbens and Wager (2019) demon-

strated that the parametric RD method, employing a polynomial function of the running

variable as a regression control, often produces RD estimates sensitive to the polyno-

mial’s degree and exhibits several other unfavorable statistical characteristics. Conse-

quently, we adopt the advised local linear method and proceed to estimate the equation

below.:

Yi j = α1 FDB i j +α2 Dist i j +α3 FDB i j · Dist i j

+εi j s.t. −h ⩽ Dist i j ⩽ h,

where Yi j is the assets per worker of firm i in county j. FDB i j is an indicator vari-

able that equals 1 if firm i is treated by policy shock (in the new FDB region or in the

newly abolished FDB region), and 0 otherwise. Dist i j measures the distance between

firm i and new FDB county border (or abolished FDB county border) j (negative if

outside the county and positive within the county), and h is the estimated MSE-optimal

bandwidth following Calonico, Cattaneo, and Farrell (2018). The standard error is clus-

tered at the county level to deal with the potential spatial correlation of the error term,

as suggested by Cameron and Miller (2015).

1.3.4 Counties as the Unit of Analysis

In this study, we concentrate on the county level rather than the town level within

China’s administrative hierarchy. Counties, situated between prefectures and townships,

form the third tier of the administrative structure. Mainland China comprises 2,851
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county-level divisions. According to 2000 and 2010 FDB policy, in total, 96 and 106

counties could be identified as a FDB county, respectively. We focus on counties for

two reasons. First, county-level data is more comprehensive. The National Bureau of

Statistics (NBS) provides the most extensive collection of socioeconomic variables at

the county level. By focusing our analysis here, we can more effectively examine the

impact of policies on crucial socioeconomic indicators, such as the output of various

sectors. Second, flood detention typically will impact most towns in a county. Although

dams are situated in towns, we observed that in the event of a flood, the impact typically

extends to encompass the entire county.
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1.4 FDB Policy and Flood Redistribution

Before analyzing the economic impacts of the Flood Detention Basin (FDB) pol-

icy, this section presents the first-stage results on whether the policy has successfully

redistributed floodwaters. Using fixed effects regression and hydrological dynamic

model, we aim to quantify the extent to which FDB counties have absorbed excess

floodwaters due to the policy.

1.4.1 Measuring Floods

We gathered data on each flood event from the Global Flood Database (GFD),

which provides comprehensive tracking of floods in China from 2000 to 2018. This

database documents a total of 189 flood events within China. Given GFD offers satel-

lite maps that record flood events for every county, we are able to collect data regard-

ing the length of flooding experienced by each pixel (30m × 30m). Additionally, the

database allows us to identify whether a pixel includes permanent water bodies, which

“are consistently identified with the presence of surface water for the majority of obser-

vations in 2000-2018 at 30 meter resolution which was resampled to 250m resolution

in Google Earth Engine using nearest neighbor resampling.”, according to GFD. Using

Global Flood Database (GFD), we are able to construct three county-level proxies of

flood exposures.

Size of Flood Inundation (total size of inundation in a flood event in a county)

Size of Inundationi f t = ∑
j∈Ai

I(Flood Duration j f t)> 0

where Ai represents pixels that have not contained permanent water in county i,

Flood Duration j f t indicates the flood duration in a non-permanent water pixel j in flood

event f at time t.

Flood Duration (total flood duration experienced by all non-permanent water pix-

els in a flood event in a county)

Total Flood Durationi f t = ∑
j∈Ai

Flood Duration j f t
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Size-Adjusted Flood Exposure (average flood duration of each non-permanent wa-

ter pixel in a flood event in a county)

First, we identify all the pixels within a county that are not occupied by perma-

nent water bodies. Next, we look at every flood event individually, adding together the

duration of flooding for each non-permanent water pixel to get the county’s total flood

duration for each flood event. Finally, to proxy flood risk of each county, we divide the

county’s flood duration by the count of non-permanent water pixels. We believe that

this index provides a nuanced quantification of flood risk, adjusted for the spatial extent

of the county’s land area susceptible to flooding.

Following this thought, we define the size-adjusted flood duration as

Ad justedFloodExposurei f t =
∑ j∈Ai FloodDuration f jt

|Ai|

where Ad justedFloodExposurei f t indicates the size-adjusted flood exposure at

flood event f that happened at time t. Ai represents pixels that have not contained

permanent water in county i. FloodDuration f jt is the number of flooded days expe-

rienced by non-permanent water pixel j at the flood event f of time t. It will be 0

if the non-permanent water pixel has not been flooded at the flood event. And it will

take a positive value if that non-permanent water pixel has been flooded at the flood

event. Here, we define a pixel as a flood-pixel at a flood event f if that pixel: (i)

has not contained permanent water previously, which means j ∈ Ai; (ii) but has been

marked as flooded by Global Flood Database in the flood event f of time t. Hence,

∑ j∈Ai FloodDuration f jt measures the total sum of flood duration experienced by non-

permanent water pixels in county i at flood event f of time t. By dividing this sum

by total number of non-permanent water pixels |Ai|, we adjust the total sum of flood

duration by the size of non-permanent water in county i. Figure 1.3 demonstrates that

size-adjusted flood exposure is higher in FDB counties. From 2000 to 2018, FDB coun-

ties consistently experience higher levels of flood exposure. Notably, the peaks in the

graph around 2003, 2006, 2010, and 2014 highlight periods where FDB counties face

substantially increased flood risks, due to flood water detention.
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Figure 1.3: Size-Adjusted Flood Exposure in FDB and non-FDB Counties
Note: The size-adjusted flood exposure is calculated using Global Flood
Database and measures the average days of inundation experienced by a

non-permanent water pixel in a county.

1.4.2 Quantify the Flood Exposure Redistribution Rate

Figure 1.3 straightforwardly demonstrates that the size-adjusted flood exposure

is much higher in FDB counties, compared to non-FDB counties. We then use the

following specification to determine whether the flood exposure in FDB counties is

significantly higher than non-FDB counties.

ln(Exposurei jt) = α +β1FDBi jt +β2Xi jt + γ j +θt + εi

where ln(Exposurei jt) is the proxy of flood risk in county i, city j, at year t. In our

setting, we use two proxies to investigate the impact of FDB policy on flood exposure.

The first proxy is the size of inundation area. And the second one is the size-adjusted

flood exposure (detailed explanation can be found in Section 1.3.1), which measures

the average days of flood inundation of a county in a flood event. FDBi jt is a dummy

that equals 1 if the county i is a FDB county, and 0 if not. γ j represents the city fixed

effect, and θt represents time fixed effect. εi is the standard error that is clustered at city
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level. Xi jt contains geographical controls (precipitation, elevation and slope), which

are important determinants of floods. β1 then measures whether FDB counties have a

higher flood exposure than other counties in a given city, holding geographical factors

constant.

As indicated in Column (1) and (2) of Table 1.1, we find that after controlling for

important geographical controls, the size of flood inundation area in FDB counties is

more than 50% higher in FDB counties than other counties in the same city. Column

(5) and (6) also suggest that the size-adjusted flood exposure is 5% higher in FDB

counties, compared to other counties in the same city. This empirical evidence supports

the claim that FDB policy induces flood risk redistribution across different regions. In

other words, FDB counties tend to absorb more flood water according to the policy

design.
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Table 1.1: Impacts of FDB Policy on Flood Exposure

Sample Period: Flood Size Flood Duration Flood Exposure per Pixel

2000-2020 (1) (2) (3) (4) (5) (6)

FDB 0.602*** 0.547*** 0.662*** 0.574*** 0.050*** 0.043***
(0.090) (0.087) (0.096) (0.090) (0.010) (0.010)

N(obs) 52,307 52,307 52,307 52,307 52,307 52,307

Controls
Precipitation N Y N Y N Y
Slope N Y N Y N Y
Elevation N Y N Y N Y

Fixed Effects
Year Y Y Y Y Y Y
City Y Y Y Y Y Y

Note: (1) This table presents results of fixed-effect regression: ln(Floodi jt) = α +β1FDBi jt +β2Xi jt + γ j +θt +εi, ln(Flood)i jt indi-
cates flood-related outcomes in county i, city j, at year t, FDBi jt is a dummy variable that equals 1 if the county i is an FDB county
in year t, and 0 if not, Xi jt are geographical controls, γ j is city fixed effect, λt is time fixed effect, standard errors are clustered at the
county level; (2) We have three types of flood-related outcomes. ‘Size of Flood Inundation’ measures the area of flood inundation
in each county, ‘Total Flood Duration’ measures the total flooded day experienced by all non-permanent while ‘Size-Adjusted Flood
Exposure’ measures the average days of flood inundation experienced by a non-permanent water pixel in a county. Detailed calcula-
tion is introduced in Section 1.3.1.
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1.4.3 Hydrological Analysis based on Hydro-Dynamic Model

According to a hydro-logical research by Mingkai and Kai 2017, “inundated farm-

land in the downstream would be increased to 2530 hectares, with an increased area of

1340 hectares more than the use of the Mengwa Detention Basin.” To rigorously quan-

tify the level of floodwater redistribution, we incorporate an interdisciplinary approach

and employ a hydro-dynamic engineering model developed under the supervision of

the Danish Hydraulic Institute (DHI) to measure the flood exposure redistribution rate

during a real flood event. The hydro-dynamic model is a sophisticated tool used for

simulating water flow, particularly in river basins and floodplain areas. It accounts

for variables such as topography, water velocity, flow rates, and human interventions,

making it highly suitable for assessing the impacts of floodwater management policies

like the Flood Detention Basin (FDB) policy. We specifically choose Wuhan for this

analysis because of its economic importance, and its size is comparable to that of the

FDB counties. This makes it easier to translate the flood protection benefits observed in

Wuhan to the flood water absorbed by the FDB regions.

The process of implementing the model consists of several key steps. First, we

collect high-resolution geographical shape data, river runoff data, and detailed policy

information on floodwater diversion. These inputs are essential to build an accurate

representation of the river system and floodplain in question, including the areas des-

ignated as FDB zones. The geographical data defines the physical characteristics of

the region, while the runoff data provides insight into how much water the rivers and

floodplains can handle during heavy rainfall or extreme flood events. The FDB policy

details, on the other hand, establish the parameters of water diversion in our model.

Next, we calibrate the model using historical flood data to ensure its accuracy. This

involves adjusting model parameters until the simulated outcomes closely match the

observed data from past flood events. Calibration is a crucial step because it ensures that

the model is reliable and that its predictions reflect real-world conditions. By checking

the consistency of model predictions with actual flood patterns, we validate the model’s

capacity to predict the effects of floodwater redistribution accurately.

After calibration, we simulate a counterfactual scenario where the floodwaters are
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not diverted to the FDB areas. This simulation allows us to assess what would happen

in the absence of the flood diversion policy. The model predicts how floodwaters would

behave if allowed to flow freely without the designated intervention, providing us with

a comparison between the actual and hypothetical scenarios.

Finally, we compare the size of the inundation area in Wuhan City between the

actual scenario, where floodwaters are diverted into the FDB regions, and the coun-

terfactual scenario without diversion. As shown in Figure 1.4, the inundation area in

Wuhan, an important city intended to be protected by the FDB policy, increases by 45%

in the absence of floodwater diversion. This significant increase in the flooded area

highlights the crucial role that the FDB policy plays in mitigating flood risks for urban

centers.

(a) Actual Case: with FDB (b) Counterfactual Case: without FDB

Figure 1.4: Inundation Map in Wuhan City (Actual v.s. Counterfactual)
Note: (1) The map is drawn using MIKE hydrological modelling software
launched by Danish Hydraulic Institute (DHI); (2) Model: hydro-dynamic

model; (3) We select Wuhan city because this city is a major protected city by
FDBs in Yangtze Rivers; (4) The flood exposure redistribution rate based on

this estimation is 45%.
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1.5 Economic Costs on FDB Counties

After confirming that flood exposures in FDB counties are significantly higher

than other counties, we extend our analysis into economics. In this section, we aim

to quantify the economic impact of FDB policy on selected FDB counties. Here, we

mainly focus on nighttime light intensity, a proxy of GDP. However, in future research,

we plan to extend our analysis to more individual level outcomes, for example, educa-

tion and health outcomes.

1.5.1 Main Result: Impacts of FDB Selection on Nighttime

Light

To quantify the economic costs on FDB counties, we examine the impact of FDB

policy on nighttime light intensity. We choose nighttime light as a proxy for economic

activity over GDP for two reasons. First, county-level GDP data before 2000 is unavail-

able, making it impossible for us to compare pre-treatment and post-treatment outcomes

of the 2000 policy change. Second, nighttime light is a more credible indicator of eco-

nomic activity in China in that Chinese GDP figures announced by the government may

not be accurate (Martinez 2022), and Zeng and Zhou 2024).

In our Difference-in-Differences approach, the treatment is the designation of a

county as an FDB site. Since the government first announced the FDB list in 2000, and

made revisions in 2010. In other words, if a county is selected into the FDB list in 2000

(2010), then this county would be considered as treated in and after 2000 (2010). For the

control group, we exclude four types of counties: (1) counties located within protected

urban areas, as these counties receive a different treatment by being protected through

FDBs; (2) counties that were removed from the FDB list in 2010, as the treatment status

has changed across time; (3) counties adjacent to FDB counties, since floodwaters may

flow into these neighboring areas; and (4) counties adjacent to protected cities, as these

counties may receive implicit protection. Thus, our control group includes counties that

are not directly targeted by the FDB policy. An illustrative explanation can be found in

Figure 1.5. We also label different counties in Figure 1.6.
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Figure 1.5: Treatment Group, Spillover Group, and Control Group

(a) FDB (& Spillover), and Protected (b) FDB, and Protected (& Spillover)

Figure 1.6: FDB Counties, FDB-Protected Counties, and Spillover Counties
Note: (1) In Figure a, FDB counties are marked using color yellow,

FDB-protected counties are marked using color red, and FDB-Spillover
counties are marked using color green; (2) In Figure b, FDB counties are

marked using color yellow, FDB-protected counties are marked using color
red, and FDB-Spillover counties are marked using color gray;
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Table 1.2 presents the main empirical result. Panel A of Table 1.2 presents results

using traditional two-way fixed-effect difference-in-differences (TWFE DID) estimates

without any controls. In Column (1), we find that county-level nighttime light intensity

would decrease by 17.6% if a county is selected into the FDB list. Considering re-

cent discussions on the properties of the staggered DID approach (e.g., Borusyak et al.

2024), potential biases may arise from the weighting problem. Therefore, we separately

investigate the impacts of the 2000 and 2010 policy changes in Columns (2) and (3).

Column (2) shows that county-level nighttime light intensity would decrease by 17.6%

(7.8%) if a county is selected into the 2000 (2010) FDB list, respectively.

Panel B of Table 1.2 reports results using the synthetic difference-in-differences

(SDID) approach proposed by Arkhangelsky et al. (2021). We believe SDID is ap-

propriate for our empirical setting for three reasons. First, constructing a counterfactual

group using synthetic weights (Abadie et al. 2010) addresses concerns about the weight-

ing problem in traditional TWFE DID. Second, as suggested by Roth et al. (2023), clus-

tering at the unit level is not suitable when the number of treated groups is small. In the

2010 policy change, the Chinese government selected 20 new counties and removed 10

from the list. Given the small size of treated clusters, using bootstrap standard errors

offered by the SDID approach is more appropriate. Third, synthetic weight construction

helps mitigate potential threats to exogeneity by creating a counterfactual whose pre-

treatment outcomes are parallel to the treatment group. Results in Panel B are robust

and indicate a negative impact of being selected into the FDB list on nighttime light

intensity, with magnitudes similar to those in Panel A.

In Column (4) of both Panels A and B, we focus on the impact of removal from

the FDB list in 2000. The results in both panels are not significant, indicating that being

removed from the FDB list does not lead to significant economic recovery. We interpret

this as a ‘scarring effect,’ where counties once selected into the FDB list struggle to

recover even after removal. We consider the result in Column (4) of Panel B to be more

credible than that in Panel A, given the small number of counties removed from the list,

making SDID more appropriate than TWFE.

Figure 1.7 illustrates the dynamic impacts of the FDB policy on nighttime light

intensity using an event-study approach. Before the treatment, there is no significant
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difference between the treated and control groups. This suggests that the treated and

control groups followed similar trends in nighttime light intensity prior to the policy in-

tervention, validating the parallel trend assumption. Immediately after the implementa-

tion of the FDB policy, we observe a noticeable and persistent decline in nighttime light

intensity for the treated counties. This indicatres both immediate and lasting adverse

effects of the FDB policy on economic activity as proxied by nighttime light intensity.

We present the SDID event-study results in Figure B1.

1.5.2 Interpreting Effect Size: from Light to GDP

According to column (2) in Panel B of Table 1.2, being selected into the FDB

list in 2000 results in a 10.7% decrease in nighttime light intensity. Various studies

have examined the elasticity between nighttime light intensity and GDP, allowing us

to translate this reduction into a loss in real GDP. Henderson et al. (2012) find that

the elasticity of GDP with respect to nighttime lights is 0.277, which is supported by

Martinez (2022), who finds an elasticity of 0.296. Additionally, Martinez (2022) notes

that elasticity is higher in non-democratic regimes, estimating an elasticity of 0.312 for

China. This translates into an annual GDP loss of 2.96%, 3.17%, and 3.34%, respec-

tively. Using real GDP data from Chen et al. (2022), we estimate the GDP loss to be

$9.84 billion, $10.54 billion, and $11.13 billion, respectively, based on the elasticities

from Henderson et al. (2012) and Martinez (2022). On average, an FDB county tends

to lose $0.10-0.12 billion per year due to being selected into the FDB list. To validate

these findings, we conducted an interdisciplinary cross-check. Our results align with

a hydrological case study by Wang et al. (2021), published in the leading hydrologi-

cal journal Journal of Hydrology, which also reports an annual economic loss of $0.1

billion for an FDB county in Yangtze River.
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Figure 1.7: Dynamic Impacts of FDB on Nighttime Light Intensity
Note: (1) Black dot represents the policy effect (ATT) estimated using

TWFE-DID, while red dot represents the policy effect (ATT) estimated using
DiD with synthetic weights; (2) Data: 1990-2020 Nighttime Light Intensity

data; (3) 96 counties were selected into the FDB list in 2000, while 20 counties
were selected into the FDB list in 2010; (3) The event-study regression

includes county and year fixed effects, standard errors are clustered at county
level; (4) We report the confidence interval at 95% confidence level.
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Table 1.2: Main Results: Impacts of FDB on Nightime Light Intensity

Selection into FDB Removal from FDB

(ln) All 2000 Cohort 2010 Cohort
Panel A: Method - Traditional TWFE Difference-in-Differences

(1) (2) (3) (4)
β TWFE

Selection −0.176*** −0.137*** −0.078*
(0.056) (0.035) (0.045)

β TWFE
Removal −0.052

(0.074)
Panel B: Method - Synthetic Difference-in-Differences (Arkhangelsky et al. 2021)

(1) (2) (3) (4)
β SDID

Selection −0.156*** −0.107*** −0.078**
(0.025) (0.015) (0.039)

β SDID
Removal −0.003

(0.064)

Sample Period 1990-2020 1990-2010 2000-2020 2000-2020
N(obs) 70,463 46,680 47,208 50,148
N(Treated Counties) 106 86 20 10
Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) ‘Selection into FDB’ indicates the treatment of selecting counties into the FDB list in both
2000 and 2010, ‘Removal from FDB’ indicates the treatment of removing counties from the FDB
list, solely in 2010; (2) ‘All’ includes two treated groups: counties selected into the FDB list in 2000,
and in 2010, ‘2000 Cohort’ focuses only on one treated group: counties selected into the FDB list in
2000, ‘2010 Cohort’ focuses only on one treated group: counties selected into the FDB list in 2010;
(3) We deliberately select control groups to remove possibly spillover groups and groups that receive
other treatments, as indicated in Figure 1.5.
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1.5.3 Heterogeneity Analysis

We then examine the heterogeneous impacts of the FDB policy on nighttime light

intensity across different FDB classifications established by the Chinese government:

Important FDB counties, General FDB counties, and Reserved FDB counties. These

classifications are based on each FDB’s hydrological capacity to absorb floodwaters.

Due to historically high flood risks in China, Important FDBs may have already served

as de facto FDBs prior to the policy announcement, while Reserved FDBs are likely

regarded as designated areas for floodwater diversion following the policy’s implemen-

tation.

Our findings in Figure 1.8 and Table 1.6 reveal that nighttime light intensity de-

creases the least in Important FDB counties (11.6%). On the other hand, light has

decreased by 30.8% and 16.6% in Reserved and General FDB counties. The findings

suggest that counties historically exposed to frequent flooding, like Important FDBs,

have developed better expectations for flood events. As a result, while nighttime light

intensity decreases in Important FDB counties, the decline is less significant than in

other FDB categories. In contrast, General and Reserved FDB counties, which lack a

history of frequent flooding, face a more substantial reduction in light intensity, as the

FDB designation introduces an unexpected economic shock. This sudden risk leaves

these regions more vulnerable, leading to greater negative impacts on economic activ-

ity. The key difference lies in the anticipation effect: Important FDBs, having estab-

lished flood expectations and adaptive measures, experience a moderated impact, while

General and Reserved FDBs suffer more severe economic setbacks due to the policy-

induced risks. This analysis indicates our cost estimates may underestimate total costs

by not accounting for the costs on important FDBS befor the policy announcement.
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Figure 1.8: Heterogeneous Impact of 2010 Policy Change on Nighttime Light
Intensity

Method: SDID (Arkhangelsky et al. 2021)
Note: (1) Each dot represents the policy effect (ATT) estimated using the

event-study approach; (2) Data: 1990-2020 Nighttime Light Intensity data; (3)
96 counties were selected into the FDB list in 2000, while 20 counties were
selected into the FDB list in 2010; (3) The event-study regression includes

county and year fixed effects, standard errors are clustered at county level; (4)
We report the confidence interval at 95% confidence level; (5) We classify FDB
counties into three categories: Important, General, and Reserved according to
the government classification. The likelihood of being flooded is the highest

for Important FDBs, and the lowest for Reserved FDBs.
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Table 1.3: Heterogeneous Impacts of FDB on Nightime Light Intensity

Type of FDBs

All Sample Reserved FDB General FDB Important FDB
Sample Period: 1900-2020 (1) (2) (3) (4)

β SDID
Selection −0.156*** −0.308*** −0.166*** −0.116***

(0.025) (0.079) (0.043) (0.043)

N(obs) 70,463 69,316 69,998 69,657
N(Treated Counties) 106 16 46 44

Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) We use the SDID appraoch proposed by Arkhangelsky et al. (2021); (2) Data: 1990-2020 Night-
time Light Intensity data; (3) 96 counties were selected into the FDB list in 2000; (4) Standard Error: Boot-
strap; (5) We also report the confidence interval at 95% confidence level; (6) We classify FDB counties into
three categories: Important, General, and Reserved according to the government classification. The likeli-
hood of being flooded is the highest for Important FDBs, and the lowest for Reserved FDBs.
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1.5.4 Robustness and Placebo

In Figure B2 and Table B2, we report our results using other difference-in-

differences methods. Although we believe that synthetic difference-in-differences

(Arkhangelsky et al. 2021) is the most suitable method in our setting, we report

the event-study results using different methods proposed by De Chaisemartin and

d’Haultfoeuille (2020), Gardner (2022), and Callaway and Sant’Anna (2021). The

robustness checks demonstrate that our main findings are consistent across these al-

ternative methodologies. Specifically, the results in Table 1.2 are robust in terms of

both statistical significance and magnitude when using other difference-in-differences

approaches. Overall, the consistency of our findings across multiple methodologies

underscores the validity of our results and the robustness of our conclusions.

In Figure B3, we conduct three distinct types of placebo tests: the in-time placebo

test, the in-space placebo test, and the mixed placebo test. In the in-time placebo tests,

we forward the treatment time by several years, using fake treatment times to assess if

our results are driven by temporal trends rather than the actual intervention. This result

is consistent with our event-study analysis (Figure 1.7) that we do not find significant

evidence that argue against the parallel trend assumption. For the in-space placebo tests,

we assign treatment to randomly selected units that did not receive the intervention. By

assigning fake treated units, we are able to test the robustness of our findings against

spatial confounding factors. Lastly, the mixed placebo tests combine both approaches

by randomly assigning fake treatment units and times. The results shown in Figure

B3 indicate that our main findings hold up under these placebo tests, as the estimated

effects do not show significant deviations from zero, thus confirming the robustness and

validity of our original results.

1.5.5 Individual-Level Outcomes

A comprehensive analysis of the costs associated with the FDB policy requires

more than just evaluating total outputs, as we demonstrate in this section. To fully assess

these costs, it is crucial to account for socio-economic factors affecting individual well-

being. Unfortunately, data limitations in China prevent us from conducting a thorough



1.6. Exploring Mechanisms of Costs on FDB Counties 53

examination of key outcomes such as health and education. To address this gap, we

use data from the 2010, 2012, 2014, 2016, 2018, and 2020 waves of the China Family

Panel Study (CFPS). Our correlation analysis reveals that, after controlling for city and

time fixed effects, residents of FDB counties earn approximately 20% less than those in

non-FDB counties. This result further highlights the economic disadvantage faced by

individuals in FDB areas. We describe our detailed results in Appendix A.2.2.

1.6 Exploring Mechanisms of Costs on FDB Coun-

ties

In this section, we examine the primary factors contributing to economic under-

development in FDB counties, focusing on three key channels: (1) migration, (2) agri-

culture, and (3) manufacturing. Ultimately, we identify firm responses as the main

mechanism driving economic underdevelopment in these regions.

1.6.1 Migration Channel

A natural hypothesis is that rational individuals will leave FDB counties, leading

to a loss of labor which results in economic underdevelopment. However, as shown

in Figure 1.9, we do not find significant evidence of people leaving FDB counties.

Although there is a downward (upward) trend of registered population after counties

being selected (removed) from the FDB list, we do not find the estimate being neither

economically significant nor statistically significant, indicating that migration decision

is not sensitive to FDB policy. Extensive literature has demonstrated the difficulty of

individuals in developing countries to make rational migration decisions, as summarized

in Lagakos (2020). For China specific studies, we would like to propose several possible

reasons that people do not migrate in response to FDB policy.

First, according to the seminal work of Zhao (1999), the existing arrangement of

land management is a major reason why rural people in China choose not to migrate in

spite of the incentive and ability to migrate. In the early 1980s, the Chinese government
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Figure 1.9: Dynamic Impacts of 2010 FDB Policy Change on Registered Population
Note: (1) Each dot represents the policy effect (ATT) estimated using the SDID
event-study approach by Arkhangelsky et al. (2021)); (2) Data: 2000-2020
county-level statistical yearbook; (3) 20 counties were selected into the FDB
list in 2010, while 10 counties were removed from the FDB list in 2010; (3) The
event-study regression includes county and year fixed effects; (4) Standard Er-
ror: Bootstrap; (5) ‘Registered population’ refers to the population who registers
as the official resident of the county.

introduced the Household Responsibility System that grants rural households land use

rights and income rights over lands. Although land belongs to the village, land alloca-

tion within villages was highly egalitarian, resulting in minimal per capita differences in

landholdings among households within a village. A recent paper by Adamopoulos et al.

(2024) also indicates that the land system is a major friction of rural-urban migration.

Second, the Chinese government has not designed a suitable incentive scheme

to motivate FDB residents to leave. According to the latest migration subsidy plan in

2017, the government compensates $2.4k per person, which is significantly less than the

$8.1k per person provided under the Relocation for Poverty Alleviation program and is

insufficient to cover migration costs. According to a survey conducted by the Huai

River Regulation Commission of the Ministry of Water Resources, 93% of residents in

the Mengwa Flood Detention Basin are dissatisfied with the migration subsidy provided

by the government, and 94% are unhappy with the proposed migration destinations.
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Table 1.4: Impacts of 2010 FDB Policy Change on Registered Population

Selection into FDB List Removal from FDB List

Sample Period: 2000-2020 (1) (2) (3) (4)

β SDID
Selection −0.020 −0.020

(0.039) (0.030)

β SDID
Removal 0.021 0.021

(0.019) (0.052)

Standard Error Bootstrap Placebo Bootstrap Placebo
N(obs) 43,050 43,050 43,050 43,050
N(Treated Counties) 20 20 10 10
Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) We use SDID approach by Arkhangelsky et al. (2021); (2) Data: 2000-
2020 county-level statistical yearbook; (3) 20 counties were selected into the FDB
list in 2010, while 10 counties were removed from the FDB list in 2010; (3) We use
two types of standard errors (bootstrap and placebo), county and year fixed effects
are included; (4) ‘Registered population’ refers to the population who registers as
the official resident of the county.

This dissatisfaction reflects broader issues in the policy’s design, including inadequate

financial support and poorly planned relocation sites, which fail to meet the needs and

preferences of the affected residents. Consequently, the lack of proper incentives and

satisfactory relocation plans has resulted in non-optimal migration from FDB counties.

1.6.2 Loss in Agriculture or Manufacturing?

We also investigate whether the costs associated with flooding are predominantly

caused by its impact on agriculture. Given that FDB counties primarily depend on

agriculture, it is plausible that floods would incur significant costs by damaging agri-

cultural crops. However, our findings (Figure 1.10) do not show significant evidence

of a decline in agricultural output, with the observed change being minimal (0.3%).

This resilience in agricultural output could be possibly attributed to the geographical

conditions of China’s agricultural land. For instance, in Hunan Province, the quality
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Figure 1.10: Dynamic Impacts of 2010 FDB Policy Change on Manufacturing and
Agricultural Output

Note: (1) Each dot represents the policy effect (ATT) estimated using the SDID
event-study approach by Arkhangelsky et al. (2021); (2) Data: 2000-2020

county-level statistical yearbook; (3) 20 counties were selected into the FDB
list in 2010; (3) The event-study regression includes county and year fixed

effects; (4) Standard Error: Bootstrap.

Table 1.5: Impacts of 2010 FDB Policy Change on Agricultural and Manufacturing Output

ln(Agricultural Output) ln(Manufacturing Output)

Sample Period: 2000-2020 (1) (2) (3) (4)

β SDID
Selection 0.003 0.003 −0.182*** −0.182***

(0.059) (0.054) (0.087) (0.081)

Standard Error Bootstrap Placebo Bootstrap Placebo
N(obs) 39,354 39,354 39,354 39,354
N(Treated Counties) 20 20 20 20
Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) We use SDID approach by Arkhangelsky et al. (2021); (2) Data: 2000-2020 county-
level statistical yearbook; (3) 20 counties were selected into the FDB list in 2010; (3) We use
two types of standard errors (bootstrap and placebo), county and year fixed effects are included.
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of arable land tends to improve after floods, which may mitigate the adverse effects.

Additionally, farmers in the southern region can harvest three times a year, so even if

they suffer flood damage during the rainy season, they can partially compensate for the

losses through winter crops.

In contrast, manufacturing output experiences a substantial and significant de-

crease of 18.2%. Specifically, there was a sustained output reduction of about 20%

during the initial five years (2010-2015), which widened to approximately 40% post-

2016. This suggests that the FDB policy has a lasting negative impact on manufactur-

ing activities within FDB counties. This stark decline underscores the lag in structural

transformation within FDB counties. While farmers adapt to new policies, they remain

largely confined to agriculture due to limited opportunities for transitioning into the

manufacturing sector.

1.6.3 Firm Response Effect

We propose the ‘firm response effect,’ suggesting that firms have less incentive

to enter and invest in counties with higher flood risk, leading to an underdeveloped

manufacturing sector in FDB counties. This hypothesis has two empirical implications.

First, when a county is added to the FDB list, firms are less likely to enter and invest

in that county. Second, when a county is removed from the FDB list, firms begin to

reenter and invest. In 2010, the Chinese government added 20 counties to the FDB

list and removed 10 counties from it, allowing us to empirically test the ‘firm response

effect’ hypothesis.

In this section, we present balanced and symmetric results of three different out-

comes that show both the impact of being added to the FDB list and the impact of being

removed from the list. By comparing these two scenarios, we can confirm that the FDB

policy significantly influences firms’ entry and investment decisions. Specifically, we

find a decline in firm entry and investment in counties added to the list, and an increase

in firm entry and investment in counties removed from the list. These balanced and

symmetric findings serve as strong evidence to rule out other possible mechanisms and

underscore the exclusive impact of FDB policy on firms’ decision making.
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It would be ideal for us to study the causal impact of both 2000 policy and 2010

policy, especially the 2000 policy given its importance. However, the unavailability of

firm-level data prior to 2000 makes us impossible to construct pre-treatment counter-

factual control groups. Hence, we have to restrict our examination to the causal impacts

of 2010 policy on various firm level outcome variables.

Firm Entry - The increased flood risk in FDB counties necessitates higher ex-

pected returns on investment for firms considering entry into these areas. Consequently,

firms have less incentive to enter FDB counties. In other words, the increase in flood

risk acts as a deterrent for new firm entry. To explore this intuition, we examine the im-

pact of the 2010 FDB policy change on firm entry using the Annual Registration Data

of Chinese Enterprises from 2000 to 2020. In Panel A of Figure 1.11, we find balanced

and symmetric impacts of selection into and removal from the FDB list. Each dot in the

figure represents a point estimate, showing the difference between actual FDB coun-

ties and their synthetic counterparts. Prior to 2010, the proximity of these estimates

to zero, coupled with their statistical insignificance, confirms that our synthetic group

effectively mirrors the counterfactual FDB counties.

The negative impact on firm entry in these counties is immediate and persists over

a decade, as evidenced by the consistently negative and significant coefficients observed

even in 2020. One year after the policy implementation, in 2011, firm entry in FDB

counties decreased by approximately 10.9%. In 2012, this decrease grew to around

25.2%. The negative impact then persists from 2013 to 2021, stabilizing at around

15%. This empirical evidence supports our theory that firms lack incentives to enter

counties newly designated as FDB-county. Conversely, we also find that firms begin to

reenter counties removed from the FDB list. Although the impact is not immediate, by

2013 we observe a significant increase in firm entry, with a magnitude of 29.2%. This

positive impact persists until 2020.

Regarding the average treatment effect, we find that firm entry tends to signifi-

cantly decrease by 15.9% after a county is selected into the FDB list. This indicates

that selection into the FDB list diminishes the county’s attractiveness for the entry of

manufacturing firms. On the other hand, firm entry tends to significantly increase by

16.8% after a county is removed from the FDB list. The balanced and symmetric result
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indicate the importance of FDB policy in affecting firms’ entry decisions.

Number of Large Manufacturing Firms - In Panel B of Figure 1.11, we present

robust evidence that the FDB policy influences firm entry decisions, focusing specifi-

cally on the number of larger manufacturing firms. Using county-level statistical year-

book data from 2000 to 2010, we find that the average number of larger manufacturing

firms in a county significantly decreases by 21.7% after the county is included in the

FDB list in 2010. Conversely, when a county is removed from the FDB list, the number

of larger manufacturing firms increases by 14.1%, although this change is not statisti-

cally significant. Comparing the results of Panel B with those of Panel A, we observe

that the impact of being added to the FDB list is more pronounced for larger man-

ufacturing firms compared to all firms. However, when a county is removed from the

FDB list, larger manufacturing firms show more hesitation in re-entering these counties,

while all firms tend to respond more sensitively to the policy change. This suggests that

larger manufacturing firms are more cautious in their entry decisions, possibly due to

their higher position in fixed asset investments.

Combining the findings from Panel A and Panel B, we conclude that: (i) being in-

cluded in the FDB list tends to decrease a county’s attractiveness for firm entry, whereas

removal from the list tends to increase it; (ii) larger manufacturing firms, compared to

other firms, are more cautious in their entry decisions.
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(a) Outcome: ln(Number of Registered Firms)

(b) Outcome: ln(Number of Large Manufacturing Firms)

Figure 1.11: Dynamic Impacts of 2010 FDB Policy Change on Firm Entry
Note: (1) Each dot represents the policy effect (ATT) estimated using the SDID

event-study approach by Arkhangelsky et al. (2021)); (2) Panel A Data:
2000-2020 National Enterprise Credit Information Public System (NECIPS);
Panel B data: 2000-2020 county level statistical yearbooks; (3) 20 counties

were selected into the FDB list in 2010, while 10 counties were removed from
the FDB list in 2010; (3) The event-study regression includes county and year
fixed effects; (4) Standard Error: Bootstrap; (5) Larger Manufacturing Firms

refer to firms whose annual revenue exceeds US$ 3million.
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Table 1.6: Impacts of 2010 FDB Policy Change on Firm Entry

Selection into FDB List Removal from FDB List

Sample Period: 2000-2020 (1) (2) (3) (4)

Panel A: Outcome - ln(Number of Registered Firms)
β SDID

Selection −0.159*** −0.159***
(0.059) (0.071)

β SDID
Removal 0.168* 0.168

(0.095) (0.138)

Standard Error Bootstrap Placebo Bootstrap Placebo
N(obs) 58,191 58,191 58,191 58,191
N(Treated Counties) 20 20 10 10

Panel B: Outcome - ln(Number of Larger Manufacturing Firms)
β SDID

Selection −0.217*** −0.217***
(0.088) (0.117)

β SDID
Removal 0.141 0.141

(0.107) (0.116)

Standard Error Bootstrap Placebo Bootstrap Placebo
N(obs) 41,160 41,160 41,160 41,160
N(Treated Counties) 20 20 10 10

Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) We use SDID approach by Arkhangelsky et al. (2021); (2) Panel A Data: 2000-
2020 National Enterprise Credit Information Public System (NECIPS); Panel B data: 2000-2020
county level statistical yearbooks; (3) 20 counties were selected into the FDB list in 2010, and
10 counties were removed from the FDB list in 2010; (3) We use two types of standard errors
(bootstrap and placebo), county and year fixed effects are included; (4) Larger Manufacturing
Firms refer to firms whose annual revenue exceeds US$ 3million.
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Fixed Assets Investment - By using spatial Regression Discontinuity (SRD), we

provide evidence to indicate that the FDB policy affects firms’ investment decision. We

specifically focus on fixed assets investment because fixed assets are especially prone

to suffering from flood damage because they are either immovable or it is highly chal-

lenging to relocate them. Given the data availability constraints that prevent tracking

post-2013 data, we concentrate on outcomes likely to be immediately influenced by the

FDB policy. We hypothesize that the considerable financial costs associated with either

repairing or replacing these assets makes entrepreneurs hesitate to invest in fixed assets

situated in FDB counties with higher flood risk.

Figure 1.12 displays the logarithm of fixed asset investment, adjusting for both

county fixed effects and industry fixed effects, plotted against the distance to the corre-

sponding FDB county boundary. Each point on the graph represents the average loga-

rithmic fixed asset investment for firms within specific distance intervals. And the 95%

confidence intervals for these averages are also indicated in the figure. To highlight

the policy’s impact at the FDB county boundary, a curve fitting these data points is

presented on the plot, clearly demonstrating the discontinuity at the boundary of FDB

counties.

Panel A of Figure 1.12 presents a regression discontinuity (RD) plot of the residual

logarithm of fixed asset investment. In the left sub-figure of Panel A, we explore how

being designated as an FDB county influences fixed asset investment. This plot reveals a

pronounced decline in fixed asset investment exactly at the boundary of counties newly

included in the FDB list. This observation implies that within firms of these newly

designated FDB counties, fixed asset investment is substantially lower compared to

firms in adjacent counties. Conversely, the right sub-figure of Panel A in Figure 1.12

examines the effects on fixed asset investment following a county’s removal from the

FDB list. Contrary to Panel A, we observe a significant jump in fixed asset investment

right at the boundary of counties recently excluded from the FDB list. This suggests

that after being removed from the FDB list, firms in these counties exhibit considerably

higher fixed asset investment relative to those in neighboring counties.

Following the work by He et al. (2020), we investigate the dynamics in fixed assets

investment in Panel B of Figure 1.12. This SRD approach hinges on comparing firms
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located within FDB-designated areas to those in geographically adjacent but non-FDB

counties. A critical assumption of SRD is the similarity in pre-treatment outcomes be-

tween neighboring FDB and non-FDB counties. For newly-selected FDB counties, we

find that the fixed assets discontinuity was close to zero before 2010, but became signif-

icantly larger in 2011.3 This negligible and insignificant effect prior to 2010 supports

our foundational assumption: absent the FDB policy, manufacturing firms in FDB and

non-FDB counties would have similar trends for fixed asset investment.

Table 1.7 quantifies the graphical evidence depicted in Figure 1.12, examining

the impact of counties entering and exiting the FDB list. Panel A presents the SRD

analysis without control variables. Columns (1) to (3) show that firms in counties newly

included in the FDB list exhibit lower levels of fixed asset investment compared to

firms in geographically adjacent counties. Conversely, columns (4) to (6) indicate that

firms in counties recently removed from the FDB list demonstrate higher fixed asset

investments than their counterparts in neighboring counties. To further validate our

findings, we conduct robustness tests in Panel B, incorporating both county and industry

fixed effects, and in Panel C, incorporating county-by-industry fixed effects. Panel B

assesses differences in fixed asset investment across counties and industries, while Panel

C provides a more detailed comparison by evaluating firms within the same industries

but located in proximate geographical areas, thus eliminating potential industry-specific

confounding factors. Our analyses yield significant results across Panels A, B, and C,

with consistent effect sizes in Panels B and C. Additionally, the SRD estimates exhibit

strong robustness across various kernel function selections. Findings from Panels B and

C underscore the significant influence of the FDB policy on firms’ investment decisions.

3Due to data availability, unfortunately, we can only track the impact to the year of 2013.
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(a) Spatial Regression Discontinuity (Imbens and Wager 2019)

(b) Dynamic Spatial Regression Discontinuity

Figure 1.12: FDB v.s. Neighboring non-FDB Counties: Firm-Level Fixed Assets In-
vestment

Note: (1) A positive distance indicates firms located within FDB counties,
while a negative distance indicates firms located outside the border of FDB

counties; (2) Industry and county fixed effects are absorbed before plotting the
regression discontinuities; (3) FDB counties refer to those selected into the

FDB list in 2010.
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Table 1.7: Spatial Regression Discontinuity: Fixed Assets Gap

ln(Gap in Fixed Assets Investment)

Selection into FDB List: Removal from FDB List:

(1) (2) (3) (4) (5) (5)

Panel A: No Control
RD −0.403*** −0.315*** −0.368*** 0.553*** 0.593*** 0.631***

(0.100) (0.111) (0.126) (0.146) (0.147) (0.149)
Bandwidth 4.387 3.707 2.863 4.751 4.435 3.894

Panel B: County FE + Industry FE Absorbed
RD −0.217*** −0.166** −0.179* 0.279** 0.285** 0.257*

(0.078) (0.084) (0.097) (0.129) (0.131) (0.148)
Bandwidth 4.883 4.294 3.360 4.629 4.314 3.516

Panel C: County by Industry FE Absorbed
RD −0.190*** −0.203*** −0.197*** 0.258** 0.271** 0.276**

(0.065) (0.071) (0.077) (0.124) (0.124) (0.127)
Bandwidth 5.933 5.155 4.189 4.659 4.405 3.834

N(obs) 46,044 46,044 46,044 16,759 16,759 16,759
Kernel Triangle Epanech Uniform Triangle Epanech Uniform

Note: (1) Each coefficient represents a separate RD regression; (2) The running variable is the distance between a firm and the bor-
der of a corresponding FDB county, where negative (positive) means firms are located outside (within) FDB counties; (3) Negative
coefficients indicate a negative gap between newly selected FDB counties and neighboring counties, positive coefficients indicate a
positive gap between newly delisted FDB counties and neighboring counties; (4) The discontinuities are estimated using local linear
regressions and MSE-optimal bandwidth proposed by Calonico et al. (2014); (5) Standard errors are clustered at the county level.



Chapter 2

Assessing a Flood Management

Policy - A Spatial General

Equilibrium Framework

In this chapter, we develop a spatial general equilibrium model that captures trade

linkages among FDB counties, protected cities, and other regions. By comparing the

actual output to a counterfactual scenario without FDBs, we find that as FDBs absorb

more floodwater, the policy’s output gains increase; however, this comes at the cost of

growing inequality between FDB counties and others. In summary, FDBs may improve

economic resilience against floods, but the economic cost is taken disproportionately by

rural counties.



2.1. Introduction 67

2.1 Introduction

Chapter 1 presents empirical evidence on the economic cost of the FDB policy.

Most importantly, Chapter 1 reveal two primary findings: 1. the FDB policy has ef-

fectively redistributed flood exposures across different regions; 2. the FDB designation

has had a negative and persistent impact on the economic development of FDB coun-

ties. They further show that the firm-response mechanism is primary reason behind the

negative impacts of the policy - firms are reluctant to enter and invest in FDB counties

with higher flood risks.

Motivated by the empirical findings in Chapter 1, in this chapter we use a spatial

general equilibrium model to quantify the net output gain brought by the FDB policy.

We need a general equilibrium model for two reasons. First, it is difficult to empirically

identify the impact of the FDB policy on protected cities, as these economically impor-

tant cities are targeted by numerous policies, with the FDB policy being just one among

many. Second, as indicated by Redding and Turner (2015) and Allen and Arkolakis

(2022), infrastructure investments (e.g., dams) could reshape the spatial distribution of

economic activity and have general equilibrium effects. We need a general equilibrium

model to analyze the impact of changing flood water flow on the broader region, so that

we can quantify spillover effects and understand whether other counties benefit from

protecting the manufacturing sector in economically important cities. Following the

approach of Fajgelbaum et al. (2019), manufacturing goods are assumed to be tradable

across different regions. Firms of rational expectations make entry decisions prior to

flood events. After calibrating the model to fit real-world data, we construct a counter-

factual scenario in which FDB counties did not protect urban cities from floods. In this

counterfactual scenario, without FDBs, flood risk in FDB counties (protected cities)

would decrease (increase). Comparing the counterfactual output with the actual output,

we find that as FDBs absorb more flood water, the net output gain would be higher,

although the inequality between FDB counties and urban cities would be exacerbated.

Based on the general equilibrium framework, we also conduct another counterfac-

tual practice, in which FDB counties of different productivity levels would be removed

from the list, successively. We find that (i) higher-productivity counties contribute min-
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imally to overall output gains; and (ii) lower-productivity and more economically vul-

nerable counties contribute significantly to output gains but experience greater flood

exposure. These findings imply two key policy considerations. First, the Chinese gov-

ernment may be overprotecting urban cities, as similar output gains could be realized

by excluding higher-productivity counties from the FDB list. Second, a more equitable

compensation scheme that transfers surplus from protected urban areas to FDB counties

could significantly improve social equity.

2.2 Spatial General Equilibrium Model to Quan-

tify the Net Output Gain

To quantify the net output gain from the FDB policy, we develop a spatial general

equilibrium model where manufacturing firms enter the market and capital owners make

optimal investment decisions, both based on their rational expectations of flood risk,

and flood risk may also change in response to FDB policies. This general equilibrium

framework allows us to systematically analyze how the FDB policy protects urban areas,

compare the magnitude of output loss in FDB-treated counties with the output gain

in FDB-protected counties, and account for spillover effects and trade flows between

different counties.

2.2.1 Model Purpose

To quantify the aggregate impact of the Flood Detention Basin (FDB) policy on

a broader region, we develop a spatial general equilibrium model. This approach is

necessary because reduced-form estimations cannot fully capture the aggregate effects

of the FDB policy. These effects can be decomposed into three components: (i) the

sacrifice effect, (ii) the protection effect, and (iii) the spillover effect.

The sacrifice effect represents the economic costs on FDB counties due to the

policy design, or the extent of economic sacrifices made by these counties. Using a

difference-in-differences approach, Chapter 1 estimate that nighttime light intensity de-

creases by approximately 10% in counties selected into the FDB list. The protection
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effect refers to the benefits urban areas receive from being protected from floods. This

effect has two components: the direct protection effect and the indirect protection effect.

The direct protection effect occurs during severe flood events when floodwaters are

diverted to FDB counties, thereby reducing damage in protected urban areas. Reduced-

form analysis shows that compared to the control group, flood damage in protected

counties decreases by around 10%, while flood damage in FDB counties increases by

approximately 18%. These findings confirm that FDB-protected counties experience

significant direct protection during floods. The indirect protection effect, however, gen-

erates from reduced flood risk in protected counties during normal (non-flood) periods.

This reduced risk makes these counties more attractive to firms, leading to increased

economic activity even outside flood events. Unlike the direct effect, the indirect pro-

tection effect cannot be easily estimated through reduced-form approaches because pro-

tected counties benefit from various policies, making it difficult to isolate the FDB pol-

icy’s contribution. Thus, our general equilibrium model is essential to capturing this

indirect effect.

Finally, the spillover effect captures the broader regional benefits from trade link-

ages. Urban areas that gain from the FDB policy can increase their manufacturing out-

put, indirectly benefiting other regions through trade. For instance, higher production in

urban areas leads to increased consumption of their goods in neighboring counties. Like

the indirect protection effect, this spillover effect is difficult to estimate using reduced-

form methods alone. Hence, we also need a general equilibrium framework to evaluate

the spillover effect.
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Figure 2.1: Three Effects of FDB Policy
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2.2.2 Model Environment and Equilibrium Conditions

Model Framework

Consider an economy with N regions, each region n ∈ N has one representative

capital owner who cannot move across regions and makes optimal investment decisions

to determine the amount of capital to be used for production. Before the flood events s j

occur, capital owners in each region anticipate future flood risks and decide their optimal

investment an,t+1 for the next period. This enables us to capture the mechanism by

which higher flood risk in a region leads to reduced investment. The consumption goods

in this economy include agricultural goods, manufacturing goods, and service goods.

Agricultural and service goods are not tradable, while manufactured goods are tradable

(Fajgelbaum et al. 2019) and subject to an iceberg trade cost, dni, which represents

the cost of shipping one unit of goods from region n to destination region i. Firms

hire workers to produce goods, and we assume workers are hand-to-mouth and cannot

migrate across regions, consistent with our empirical evidence showing no significant

migration. Before the realization of the flood event s j, in each region, manufacturing

firms1 anticipate future flood risks and can decide to enter the market, subject to an

entry cost. When firms expect to see a higher future flood risk, they will choose to not

enter the market, leading to a reduced number of manufacturing firms. After the flood

realization, workers and capital owners choose optimal consumption bundles, and firms

maximize their profits accordingly. We will elaborate each agent’s decision in detail in

the following sections.

Floods

We assume that at every time t, a flood event s j
t is determined by nature, and

some regions may be flooded while others may not (it could also be the case that no

regions are flooded, leading to an event with no flooding). Therefore, a flood event

s j
t = { f j

1,t , f j
2,t , . . . , f j

N,t} is a vector of zeros and ones, where zero indicates no flood and

one indicates being flooded. Each element f j
n,t describes whether region n is flooded

1For simplicity, we assume a single aggregate agricultural sector and a single aggregate
service sector, without explicitly modeling potential firm entry and exit in these sectors.
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(=1) or not (=0) at time t in event j2. We define S = {s1
t ,s

2
t , . . . ,s

j
t } as the set of all

possible flood events, with each flood event occurring with a probability pr(s j
t )

3.

We assume that, in a flood event s j
t , if region n is flooded, the flooding will

negatively affect the productivity of local manufacturing firms. We model the flood-

contingent productivity zM
n (s j

t ) as:

zM
n (s j

t ) = z̄M
n exp(−εM f j

n,t) (2.1)

where z̄M
n denotes the region-specific productivity during non-flooding times f j

n,t =

0, and εM denotes the percentage productivity loss when a region is flooded f j
n,t = 1. At

any time t, only one specific type of flood event can occur; hence, we suppress the event

subscript j, and we will use st instead of s j
t in the following sections.

Workers

In each region n, there is a unit mass of hand-to-mouth workers Ln, who are im-

mobile across regions4. Workers supply one unit of labor inelastically in the region

where they live. After observing the flood event st , workers choose their consumption

on Cw,A
n (st) (agricultural goods), Cw,M

n (st) (manufacturing goods), and Cw,S
n (st) (service

goods) to maximize their utility, subject to the budget constraint.

max
{Cw,A

n (st),C
w,M
n (st),C

w,S
n (st)}

U(Cw,A
n (st),Cw,M

n (st),Cw,S
n (st))

s.t. PA
n (st)Cw,A

n (st)+PM
n (st)Cw,M

n (st)+PS
n (st)Cw,S

n (st) = wn(st)

(2.2)

The utility U(·) takes a Cobb-Douglas form such that U(·) = ξAlog(Cw,A
n (st))+ (1−

ξA −ξS)log(Cw,M
n (st))+ξSlog(Cw,S

n (st)) where ξA is the share of income spent on agri-

cultural goods, ξS is the share of income spent on service goods, and 1−ξA −ξS is the

share of income spent on manufacturing goods. wn(st) is the wage rate in region n,

2If no regions are flooded, the vector will consist entirely of zeros.
3In theory, the cardinality of the set is 2N . However, many flood events are naturally im-

possible. For example, it is unlikely to have floods in regions located in deserts. Therefore, in
the calibration and counterfactual sections, we only consider flood events observed in historical
data.

4Without loss of generality, we normalize the population such that ∑
N
n=1 Ln = 1
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and PA
n (st), PM

n (st), and PS
n (st) represent the prices of agricultural goods, manufactur-

ing goods, and service goods, respectively, in region n. All of wage wn, price Pn, and

consumption Cw
n are contingent on flood event st because, in different flood events, the

equilibrium wage, prices, and people’s optimal consumption may change in response to

flood shocks.

Capital Owners

During time period t, capital owners in region n decide how much to invest for

the next period, an,t+1, before the realization of the flood event st . Hence, the asset

position decision is independent of st , capturing the fact that investment only respond

to long-term flood risk changes and is irrelevant to whether a flood occurs in a given

period.

V o
n (an,t) = max

{Co,A
n (st),C

o,M
n (st),C

o,S
n (st),an,t+1}

EstU(Co,A
n (st),Co,M

n (st),Co,S
n (st))+βV o

n (an,t+1)

s.t. PA
n (st)Co,A

n (st)+PM
n (st)Co,M

n (st)+PS
n (st)Co,S

n (st)+an,t+1 = (1+ r(st))an,t + In,tπn(st)

(2.3)

The income of capital owners come from two sources. On the one hand, they get

their return from the last period investment (1+ r(st))an,t , where r(st) is the national

interest rate. One the other hand, capital owners obtains all the profits of manufac-

turing firms In,tπn(st), where In,t is the number of manufacturing firms and πn(st) is

the the average profit of manufacturing firms in region n. After the realization of the

flood event st , capital owners optimize their consumption bundles subject to the bud-

get constraint, and their preferences are identical to those of the workers, such that

U(·) = ξAlog(Co,A
n (st))+(1−ξA −ξS)log(Co,M

n (st))+ξSlog(Co,S
n (st)).

Production

In this economy, there are three sectors producing distinct consumption goods:

agriculture, manufacturing, and services. These sectors produce agricultural goods

Y A
n (st), manufacturing goods Y M

n (st), and service goods Y S
n (st), respectively. The agri-

cultural sector uses labor lA
n (st) as the only input, supplying non-tradable agricultural
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goods with linear production technology to the local market. It operates in a perfectly

competitive way, so the price of agricultural goods equals the local wage. The profit

maximization problem for the agricultural sector during flood event st is given by:

max
{lA

n (st)}
PA

n (st)Y A
n (st)−wn(st)lA

n (st)

s.t. Y A
n (st) = zA

n (st)lA
n (st)

(2.4)

We assume the service sectors also supply non-tradable goods in the local market

in a perfectly competitive way. However, unlike the agricultural sector, the service sec-

tors use both labor lS
n(st) and capital kS

n(st) in a Cobb-Douglas production technology,

with the factor share of labor denoted by α . The maximization problem for the service

sector is given by:

max
{lS

n (st),kS
n(st)}

PS
n (st)Y S

n (st)−wn(st)lS
n(st)− rn(st)kS

n(st)

s.t. Y S
n (st) = zS

n(st)lS
n(st)

αkS
n(st)

1−α

(2.5)

The manufacturing sector is the key focus of this paper, and therefore, we model

this sector in greater detail to better capture the mechanisms identified in the empirical

results. Firstly, we describe the demand for manufacturing goods and model consumers

in region n as consuming a variety of manufacturing goods produced by heterogeneous

firms from different regions, using a CES aggregator:

Y M
n (st) =

[ N

∑
i=1

Ii,tyM
in(st)

σ−1
σ

] σ

σ−1

(2.6)

where σ measures the elasticity of substitution across manufacturing goods pro-

duced by different regions, yM
in(st) is the quantity of manufacturing good produced in

region i and sold to region n, and Ii,t is the number of manufacturing firms in region i.

Denote PM
in (st) as the price of manufacturing goods produced by region i and sold to

region n. Then, one can easily show that the price index of manufacturing goods sold

in region n is PM
n (st) =

[
∑

N
i=1 Ii,tPM

in (st)
1−σ

] 1
1−σ

.

On the supply side, firms in region n hire labor lM
ni (st) and capital kM

ni (st) to produce

manufacturing goods yni using a Cobb-Douglas technology with productivity zM
n (st).
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Manufacturing goods can be traded from region n to region i, subject to the iceberg cost

dni, meaning that to ship one unit of goods, firms need to produce dni unit. The profit

for each firm in region n is given by:

πn(st) = max
{lM

ni (st),kM
ni (st)}N

i=1

N

∑
i=1

[
PM

ni (st)yM
ni(st)−wn(st)lM

ni (st)− r(st)kM
ni (st)

]
s.t. dniyM

ni(st) = zM
n (st)lM

ni (st)
αkM

ni (st)
1−α ∀i

(2.7)

To operate and earn profit πn(st) at time t, manufacturing firms must first decide

whether to enter the market before the realization of the flood event st . We also assume

there is a probability η that the manufacturing firm will exit the market in the next

period. Therefore, the value of a manufacturing firm in region n is the expected profit in

period t plus the discounted value (with discount rate β ) of the firm in the next period,

conditional on survival:

V s
n,t = Est πn(st)+β (1−η)V s

n,t+1 (2.8)

The free entry condition requires that the value of manufacturing firms should

equal to the entry cost cs
n.

V s
n,t = cs

n (2.9)

Market Clearing Conditions

There are three sets of market clearing conditions.

1. National capital market: The flood-event-specific interest rate r(st) require asset

positions equal flood-event-specific capital demands in all regions:

N

∑
n=1

In

N

∑
i=1

kM
ni (st)+

N

∑
n=1

kS
n(st) =

N

∑
n=1

an,t (2.10)

2. Local labor markets: The flood-event-specific wage rates wn(st) require labor
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supply equal flood-event-specific labor demands in all regions:

lA
n (st)+

N

∑
i=1

lM
ni (st)+ lS

n(st) = Ln ∀n (2.11)

3. Local final good markets: The final good markets are assumed to be perfectly

competitive, so prices PA
n (st), PM

ni (st) and PS
n (st) satisfy that the final good de-

mands and supplies are equalized in all regions:

LnCw,A
n (st)+Co,A

n (st) = Y A
n (st) ∀n (2.12)

LnCw,S
n (st)+Co,S

n (st) = Y S
n (st) ∀n (2.13)

PM
ni (st) =

[
LiC

w,M
i (st)+Co,M

i (st)

] 1
σ

PM
i (st)yM

ni(st)
− 1

σ ∀i,n (2.14)

PM
n (st) =

[ N

∑
i=1

Ii,tPM
in (st)

1−σ

] 1
1−σ

∀n (2.15)

Model Timeline

The figure below provides an illustration of the model’s timeline. It shows the

sequence of events and decisions made by capital owners, manufacturing firms, and

workers, both before and after the realization of a specific flood event. It also outlines

the market clearing conditions for national capital market, local labor markets, and local

product markets.
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Equilibrium

The spatial general equilibrium consists of capital owners’ asset positions {an,t}

and consumption bundles {Co,A
n (st), Co,M

n (st), Co,S
n (st)}, workers’ consumption bun-

dles {Cw,A
n (st), Cw,M

n (st), Cw,S
n (st)}, sector-specific factor demands and outputs {lA

n (st),

lM
n (st), lS

n(st), kM
n (st), kS

n(st), Y A
n (st), Y M

n (st), Y S
n (st)}, manufacturing firms counts {In,t},

and prices {wn(st), r(st), PA
n (st), PM

n (st), PS
n (st)}, such that given the distribution of

workers {Ln}

1. Before the realization of flood events st

(i) {an,t} satisfy capital owners’ optimal investment decisions in Equation 2.3;

(ii) {In,t} satisfy the free entry condition in Equation 2.9;

2. After the realization of flood event st

(i) {Co,A
n (st), Co,M

n (st), Co,S
n (st)} and {Cw,A

n (st), Cw,M
n (st), Cw,S

n (st)} satisfy cap-

ital owners’ and workers’ utility maximization problems in Equation 2.2

and 2.3;

(ii) {lA
n (st), lM

n (st), lS
n(st), kM

n (st), kS
n(st), Y A

n (st), Y M
n (st), Y S

n (st)} satisfy sec-

tors’ profit maximization problems in Equation 2.4, 2.5, and 2.7;

(iii) {wn(st), r(st), PA
n (st), PM

n (st), PS
n (st)} clear the factor and product markets

in Equation 2.10 - 2.15.

2.2.3 Calibration and Simulation

In this section, we calibrate our model to match Chinese counties in Huai River

Basin, the basin with the highest river flood risk, between 2000 and 2010.

Exogenously Calibrated Parameters

Panel A of Table 2.1 shows parameter values obtained directly from literature and

data. We treat each region as a county, and there are N = 176 counties in Huai River

Area. We standardize labor force L̄ to be 1. Following previous literature (Head et al.
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2014 & Jia et al. 2022), we set the elasticity of substitution across varieties, σ , as 5.

We choose a discount factor, β , to be 0.95 to generate an aggregate steady-state interest

of 5%. We further match the shares of sector-specific consumption with the real data

provided by 2000-2010 Chinese National Bureau of Statistics. To be specific, the share

of agricultural consumption, ξA, is 11.7%, and the share of service consumption, ξS, is

42.2%. We choose a factor share of capital, 1−α , to be 0.5 for both the manufacturing

and service industry. This is consistent of the national-level sector specific factor share

in China, calculated by Chinese input and output tables and national accounts, sourced

from Chinese National Bureau of Statistics.

Transportation Cost - The calculation of transportation costs, dni, is based on

geodesic distances across different counties. For the transportation cost within a county,

we adopt a similar approach as existing literature (e.g., Redding and Venables 2004, Au

and Henderson 2006, and Balboni 2019). Specifically, we calibrated trade costs by

approximating intra-unit trade costs based on the average distance traveled to the center

of a circular unit of the same area from evenly distributed points, given by 2
3(area/π)1/2.

We standardize the smallest transportation costs to be 1.

Probability of Each Flood Type - In 2000 and 2010, there were 5 major floods in

Huai River Basin, which happened in 2002, 2003, 2005, 2007, and 2010, respectively.

The list of counties being affected is different across different events. For example,

the 2003 flood caused damages to 61 counties out of 176 counties in Huai river, while

the 2010 flood caused damages to 25 counties. Based on the level of precipitation, we

divide the monthly-averaged precipitation during flood seasons (June to September) into

two categories: (i) < 120 mm; (ii) > 120 mm. We then calculated the region-specific

flooding probability based on both historical data on monthly precipitation and actual

flood event.

Productivity Loss - We estimate productivity loss in agriculture sector, manufac-

turing sector and service sector based on the estimation below.

Yict = α +βFloodExposureict + γt +λc +ηt + εict

In this estimation, Yict represents the average productivity in county i, city c
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and year t, which is measured as the ratio of output per worker in an industry.

FloodExposureic jt indicates the size-adjusted flood exposure, which is the average days

of flood5 in county i in year t. λc and ηt represent city and time fixed effects. Standard

errors are clustered at city level. Reduced form results suggest that when the average

days of flood in county increases by one day6, then the productivity in manufacturing

sector would decrease by 5.9%.

Internally Calibrated Parameters

In Panel B of Table 2.1, we calibrate the flood-free productivity of agriculture,

manufacturing and service industry in different counties, to match county-level data

on real outputs and labor force share in different sectors. Although we estimate all

parameters jointly, we can pinpoint which parameter influences a specific outcome. For

instance, sector-specific real outputs at the county level are influenced by sector-specific

productivity, while regional amenities are determined by the labor force in each area.

To maintain consistency, we standardize the total national GDP and population to 1 in

our baseline calibration, as these factors do not impact our baseline calibration.

5the flood data is further processed by excluding permanent water pixels
6Note: insert the expression for the flood days to explain what does one flood day mean
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Table 2.1: Calibration Targets

Parameter Numbers Value Source/Targeted Moments
Panel A: Exogenously Calibrated Parameters Source:
N - Number of regions 1 176 Number of counties in Huai River Basin
L̄ - Labour force 1 1 Standardized to 1
σ - Elasticity of substitution across varieties 1 5 Head et al. (2014)
β - Discount factor 1 0.95 Steady-state interest of 5%
ξA - Share of agricultural consumption 1 0.117 Chinese National Bureau of Statistics
ξS - Share of service consumption 1 0.422 Chinese National Bureau of Statistics
pr(st) - Flooding event probability 7 0.12(0.21) Precipitation and flood event (2000-2009)
dni - Transportation costs N2 1.23(0.04) Geodesic distances
1−α - Factor share of capital 1 0.5 Factor shares of manufacturing and service industries
εM - Productivity loss when flooded 1 -0.059 Estimation (Table A2)

Panel B: Internally Calibrated Parameters Targeted Moments:
z̄A

n - County-level agriculture productivity N 0.83(0.34) County-level agriculture outputs
¯zM
n - County-level manufacturing productivity N 0.29(0.12) County-level manufacturing outputs

z̄S
n - County-level service productivity N 0.21(0.22) County-level service outputs

Bn - Local amenity N 5.05(0.23) County-level labor force share

Note: for flooding event probability, transportation costs, internally calibrated productivity and local amenity, the value in the table
indicates the average value across all regions, and the standard error is in the parenthesis
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Table 2.2: Comparison of Actual and Model-generated Re-
gression Results

Actual Data: Model Simulation:

(in logarithm) Fixed Assets/Worker Capital/Worker
(1) (2)

FDB -0.197*** -0.175***
(0.077) (0.036)

N(obs) 46,044 1,936

Note: (1) Column 1 is extracted from Column (3) in Panel C
of our regression discontinuity regression in Table Chapter 1;
(2) Column 2 is based on our model prediction; (3) The con-
sistency between those two estimates indicate that our model
can well predict the fixed assets per worker.

2.2.4 Model Prediction

In this section, we conduct a comparative analysis to illustrate the consistency

between the empirical findings and the predictions of our general equilibrium model.

Our objective is to validate the model’s capability to accurately reflect the reality of FDB

counties, demonstrating its robustness and reliability as a tool for simulating real-world

economic scenarios. Column 1 in Table 2.2 reports the regression result we gained in

Chapter 1, while Column 2 reports the result we gain based on model simulation. The

magnitudes do not differ significantly, and each of them falls within the other’s 95%

confidence interval, indicating that our model closely matches even the non-targeted

moments and achieves a good fit.

2.2.5 Counterfactual Practice 1: FDB-Induced Net Output

Gain

In this section, we quantify three different effects: (1) the sacrifice effect, repre-

senting the cost incurred by FDB counties due to the FDB policy, which we can compare

to our reduced-form results; (2) the protection effect, capturing the benefits gained by

FDB-protected counties from the FDB policy; and (3) the total output effect, reflecting
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the net output gain for the economy as a result of the FDB policy. In the counterfactual

scenario, where the FDB policy is absent and FDB counties no longer protect urban

cities, flood exposure in FDB counties would decrease, while flood exposure in pro-

tected areas would increase. Therefore, an important parameter for constructing the

counterfactual scenario is the flood redistribution rate between FDB counties and FDB-

protected counties.

Constructing the Counterfactual Practice

We construct the counterfactual scenario, in which FDB counties do not protect

urban cities, based on the following steps. First, we calculate the total flood size in

each county by aggregating flooded areas (pixels) over flooded days (duration) in each

year between 2000 and 2010, indicating the total amount of floodwater in each county.

Second, in the counterfactual scenario without the FDB policy, 45% (as estimated from

the hydrological analysis in Section Chapter 1) of the floodwater in the current FDB

counties is equally redistributed to the currently protected counties. This process allows

us to construct a set of counterfactual flood events, S′ = {s′1,s
′
2, . . . ,s

′
J}, reflecting the

counterfactual distribution of flood risk. In the third step, we translate the changes in

flood exposure into changes in manufacturing output. Specifically, under the counter-

factual scenario, flood damage would increase in protected urban cities while decreas-

ing in FDB counties compared to the baseline case. Figure 2.2 provides a mind map

illustrating how we construct the counterfactual scenario.

Sacrifice Effect

In Table 2.3, we quantify the sacrifice effect on FDB counties by collecting βFDB

in the calibrated case and the counterfactual case from running the regression

lnYicpt = α +βFDBFDBicpt + γpt +ηt +λc + εc

where FDBicpt is a dummy variable that equals 1 if the county i in city c, province p, at

time t, is an FDB-county, and 0 if not. γpt is province-year fixed effect, ηt is time fixed

effect, and λc is city fixed effect. εc is the standard error, which is clustered at the city
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Figure 2.2: Mind Map: Constructing the Counterfactual Scenario

(a) Actual Case: With Flood Detention Basin

(b) Counterfactual Case: Without Flood Detention Basins
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level.

Column 3 reports the magnitude of change in βFDB in the calibrated case and

counterfactual case (flood exposure redistribution rate: 45%). We compare the results

on total output with the result presented in Table Chapter 1. As shown in Chapter 1, the

average treatment effect of FDB policy on nighttime light in FDB counties is around

-10%. According to the work of Henderson et al. (2012) on estimating the elasticity

between light and GDP, we can then translate this impact to around -3%, which is

consistent with the result presented in Column 3 of Table 2.3. This consistency further

validates our methods of constructing the counterfactual scenario.

Table 2.3 then helps us to overcome the limitation of data availability and provides

us with more results on the sacrifice effect. We find that the manufacturing output, total

capital, manufacturing capital, share of manufacturing labor, and wage decreases by

9.62%, 5.11%, 8.49%, 10.86%, and 3.76%, respectively, because of the policy given a

flood exposure redistribution rate of 45%. More results on sacrifice effect of different

flood exposure redistribution rates are presented in Figure 2.3.

Protection Effect

When examining the impact of the FDB policy on FDB-protected counties, we

divide the protection effect to two main sources: (1) a direct protection effect, where

protected counties experience less damage during flood events; and (2) an indirect pro-

tection effect, where protected counties benefit from a decreased flood risk. We find that

a protected county tends to suffer approximately 10% less damage when hit by floods,

while an FDB county tends to suffer around 18% more. This finding indicates that

FDB-protected counties are indeed directly protected during flood events. However,

in our general equilibrium framework, we focus more on the indirect protection effect,

whereby reduced flood risk encourages firms to enter and invest in these protected coun-

ties. Consequently, compared to the counterfactual scenario in which FDB counties do

not protect urban cities, manufacturing output in these protected urban areas is higher

in reality.

To understand the magnitude of protection effect, in Table 2.4, we quantify the to-

tal protection effect on FDB-protected counties by collecting βProtected in the calibrated
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Figure 2.3: Sacrifice Effect and Protection Effect

case and the counterfactual case from running the regression

lnYicpt = α +βProtected ∗Protectedicpt + γpt +ηt +λc + εc

where FDBicpt is a dummy variable that equals 1 if the county i in city c, province p, at

time t, is an FDB-protected county, and 0 if not. γpt is province-year fixed effect, ηt is

time fixed effect, and λc is city fixed effect. εc is the standard error, which is clustered

at the city level.

Table 2.4 presents the results on the protection effect. We find that, if we assume

that the flood exposure redistribution rate at 45%, then the FDB policy would lead to

an increase in total output, manufacturing output, total capital, manufacturing capital,

share of manufacturing labor, and wages by 1.74%, 3.92%, 2.51%, 3.30%, 4.40%, and

4.17%, respectively. Additional results on the protection effect across different flood

exposure redistribution rates are shown in Figure 2.3

Net Output Gains of the FDB Policy

Finally, in Table 2.5, we quantify the net output gain brought by the FDB policy

by comparing the total output in the calibrated case and the counterfactual scenario.

Overall, we find a 0.06% increase in total output due to the FDB policy, which equates

to an annual net increase in output of around US$3billion in Huai River Basin. Accord-
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Table 2.3: Quantification of Sacrifice Effect (Actual v.s. Counterfactual)

βFDB :

A.Calibration B.Counterfactual |Diff/A|(%)
(1) (2) (3)

Output: Total −0.030*** −0.029*** 3.46%
Output: Manufacturing −0.468*** −0.427*** 9.62%

Capital: Total −0.251*** −0.239*** 5.11%
Capital: Manufacturing −0.373*** −0.344*** 8.49%

Share of Manufacturing Labor −0.052*** −0.048*** 10.86%
Wage −0.373*** −0.359*** 3.76%

Note: (1) In the counterfactual case, we redistribute 45% of the flood risk to FDB-
protected counties; (2) We collect βFDB from running the regression ln(Out put)icpt =
α +βFDB ∗FDBicpt +γpt +ηt +λc+εicpt , where FDBicpt is a dummy that equals 1 if the
county is an FDB-county, and 0 if not, γpt is province-year fixed effect, ηt is time fixed
effect, and λc is city fixed effect; (3) The ‘|Diff/A|(%)’ can be interpreted as the ‘sacrifice
effect’, which is the impact of FDB policy on different outcomes in FDB counties.

Table 2.4: Quantification of Protection Effect (Actual v.s. Counterfactual)

βProtected :

A.Calibration B.Counterfactual |Diff/A|(%)
(1) (2) (3)

Output: Total 0.983*** 0.967*** 1.74%
Output: Manufacturing 1.304*** 1.255*** 3.92%

Capital: Total 0.750*** 0.732*** 2.51%
Capital: Manufacturing 1.044*** 1.011*** 3.30%

Share of Manufacturing Labor 0.138*** 0.132*** 4.40%
Wage 0.544*** 0.522*** 4.17%

Note: (1) In the counterfactual case, we redistribute 50% of the flood risk to FDB-
protected counties; (2) We collect βProtected from running the regression ln(Out put)icpt =
α +βProtected ∗Protectedicpt + γpt +ηt +λc + εicpt , where Protectedicpt is a dummy that
equals 1 if the county is an FDB-protected county, and 0 if not; (3) The ‘|Diff/A|(%)’ can
be interpreted as the ‘protection effect’, which is the impact of FDB policy on different
outcomes in FDB-protected counties.
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Figure 2.4: Net Output Gains of the FDB Policy

ing to EM-DAT International Disaster Database, the average flood damage in China is

around US$8billion every year in China. Hence, we believe that the FDB policy has

substantially mitigated the economic threat posed by floods.

Figure 2.4 illustrates the benefit-to-cost ratio across various flood exposure re-

distribution rates. Our findings indicate that the benefit-to-cost ratio exceeds 1 at all

redistribution rates, suggesting that intentionally flooding certain counties to protect

urban areas results in a net gain in output. Moreover, as the redistribution rate in-

creases, the benefit-to-cost ratio also rises, indicating that the net output gain from the

policy increases as FDBs absorb more floodwater. However, as shown in Figure 2.3, the

cost borne by FDB counties also intensifies with increased floodwater absorption. This

highlights a tradeoff in policy design between mitigating flood risks and exacerbating

inequality.

We also examine the potential policy implications under two future scenarios with

increased flood damages, due to climate change. In these scenarios, we simulate a

50% and 100% increase in flood risk, in which the elasticity between flood and man-

ufacturing productivity would increase by 50% and 100%, respectively. According to

Table 2.5, under these projected conditions, the overall total output is expected to rise

by 0.08% and 0.11%, respectively. The results also show that the sacrifice effect on

FDB counties intensifies, with the gap reaching 4.79% and 5.84% under the 50% and

100% risk increase scenarios, respectively. Conversely, the protection effect for FDB-
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Table 2.5: Total Output in Actual and Counterfactual Case

Current Case: Future Flood Risk Increases by:

Actual - Counterfactual: 50% 100%
(1) (2) (3)

Sacrifice Effect on FDB Counties (βFDB < 0)
∆(βFDB) 3.46% 4.79% 5.84%

Protection Effect on FDB-protected Counties (βProtected > 0)
∆(βProtected) 1.74% 2.51% 3.15%

Overall Economy:
∆(Total Output) 0.06% 0.08% 0.11%

Note: (1) We collect βFDB from running the regression ln(Out put)icpt = α +
βFDB ∗FDBicpt + γpt +ηt +λc + εicpt , where FDBicpt is a dummy that equals 1
if the county is an FDB-county, and 0 if not, γpt is province-year fixed effect, ηt

is time fixed effect, and λc is city fixed effect; (2) We collect βProtected from run-
ning the regression ln(Out put)icpt = α +βProtected ∗FDB-Protectedicpt + γpt +
ηt +λc +εicpt , where FDB-Protectedicpt is a dummy that equals 1 if the county
is an FDB-protected county, and 0 if not; (3) The coefficient in Column (1) is
the same as the coefficient in Column (3) in Table 2.3 and Table 2.4.

protected counties grows, with output gains of 2.51% and 3.15% in these scenarios.

This counterfactual analysis indicates that as the severity of floods increases, FDBs

would play an increasingly important role in managing flood damages. However, FDB

counties would bear more costs because of the policy design.

2.2.6 Counterfactual Practice 2: Relative Contribution of

Different FDB Counties

In the second counterfactual practice, we extend our discussion to think about

whether the policy is optimal. It would be ideal for us to provide a list of counties

that are most suitable for flood water detention. But we are not able to complete this

task, in the current stage, because of hydrological challenges. The optimal design given

economic criteria may not be feasible if we take geographical factors into account.

Consider an extreme example. Under economic criteria, we may assign a county far
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away from river as an FDB county. Even we incorporate some geographical factors

(e.g., elevation) into an economic model, the result may not be hydrologically feasible.

Despite of the challenge, the discussion on policy optimality is intrinsically im-

portant. We take a second-best approach by considering whether the government is

over-protecting urban cities by designating too many FDB counties. In the first step,

we rank FDB counties in terms of their exposure-standardized productivity, which is

consistent with the proposition we have in Chapter 1. In the second step, we succes-

sively remove FDB counties of higher productivity from the FDB list and calculate the

total output in each counterfactual scenario. In the third step, we calculate the relative

contribution of each productivity group by comparing the counterfactual with the actual

case.

In Figure 2.5, we present the net output gain of successively adding counties of

higher productivity. Overall, we find that the net output gain increases as we add more

counties to the list. However, according to Chapter 1, we find that the relative contri-

bution is much higher in lower productivity groups than in higher productivity groups.

County groups ranking 0-10%, 10-20%, 25-40%, and 40-50% in terms of productiv-

ity contribute more than 10%. Specifically, county group with a rank of 10-25% and

25-40% contribute the most to the net output gain, all above 25%. However, we find

that the relative contribution of higher productivity group is low. County group ranking

75-80% and 85-100% contribute 0% and 3%, respectively.

On the one hand, we do not find counter-evidence to indicate that the inclusion

of higher productivity counties is imposing negative effects on total outputs as the net

output gain is increasing with the number of included FDB counties. On the other hand,

however, the relative contribution of adding higher productivity counties is small. In

terms of total outputs, it may be cost beneift efficient. However, if considering other

non-monetary costs, then it may not be efficient because those counties may experience

other costs that we are not able to measure in this study.

Overall, we suggest that the Chinese government is over protecting urban areas

from floods by designating too many counties as FDB counties. Removing counties

of higher productivity will not cause significant losses in output, but may save those

counties from suffering both monetary and non-monetary costs.
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Figure 2.5: Counterfactual Outputs with Different Numbers of FDBs

Figure 2.6: Relative Contribution of Different Productivity Groups

2.3 Conclusions

Flood disasters, especially common in developing countries like China and India,

have profound impacts on the overall economy. In China, one approach to mitigating

severe river floods is the construction of Flood Detention Basins (FDBs). Strategically

located in low-lying areas, FDBs are designed to temporarily hold excess floodwaters,

thereby protecting downstream regions but increasing flood risk for those within the

designated basins. While this policy may increase economic resilience against floods,

it requires a closer examination of the economic costs and its uneven distributional
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impacts.

Chinese government states that residents living in FDB counties have made sub-

stantial sacrifice for the greater good. Our study quantitatively examines the economic

costs and output gains of the FDB policy. We find that although the policy has improved

the economic resilience against floods, it has also induced economic inequality between

between FDB counties and their non-FDB counterparts. The empirical results of Chap-

ter 1 show that counties designated as FDB counties by the Chinese government in 2000

experience persistent negative effects on their economic development. In studying the

mechanism, Chapter 1 find that firms have less incentives to enter and invest in FDB

counties due to their increased flood risks. In this project, we build a general equilib-

rium model to assess whether the FDB policy has yielded an overall increase in net

output. Our counterfactual practice indicates that as FDBs absorb more floodwater, the

total output gain brought by the policy would increase, though at the cost of widening

inequality between FDB and other counties.

Our research has two major policy implications. First, our research highlights

a critical insufficiency in the Chinese government’s compensation on FDB counties.

Since 2000, many counties has started to absorb floodwaters, thereby protecting other

regions from flood damage. The compensation, however, focuses solely on compensat-

ing for direct losses caused by flood inundation, such as damage to agricultural crops.

Our findings suggest that this compensation falls markedly short of addressing the total

economic costs induced by the FDB policy. The substantial long-term economic costs

have not been adequately compensated by the Chinese government. Based on our anal-

ysis, we recommend Chinese government to transfer the surplus taken by urban cities

to rural counties.

Second, the findings of our study on China’s Flood Detention Basin (FDB) policy

offer insights for other nations contemplating similar flood risk management strategies.

The evidence suggests that while such policies can provide broader regional protection

from floods, they may come with significant long-term economic costs for the areas des-

ignated to absorb flood risks. For countries considering the adoption of similar policies,

it is crucial to recognize the potential for creating economic disparities and to weigh

these against the intended benefits of reduced flood risk. Policymakers should ensure



2.3. Conclusions 93

that compensatory mechanisms are in place to support affected regions, mitigating the

economic sacrifices made by FDB-designated areas. In sum, while such policies can be

an effective component of a comprehensive flood risk management strategy, they should

be implemented with careful consideration of the tradeoff between envrionmental jus-

tice and economic efficiency.



Chapter 3

Floods and Geographical

Distribution of Patents

This chapter examines whether and how floods reshape the geography of inno-

vation in China—a country highly exposed to flood risk, with a substantial share of

its innovation activity concentrated in flood-prone areas. We develop a search-and-

matching theoretical framework that emphasizes two key mechanisms: risk sharing

and mutual support. Under the risk-sharing mechanism, firms in flooded counties seek

collaborative partners in other regions to mitigate future flood risks. Under the mutual-

support mechanism, firms with shared flood experiences are more likely to co-develop

flood-resilient technologies. Leveraging detailed patent records and satellite-derived

flood data from 2008 to 2018, we construct a novel dataset on cross-county patent col-

laborations. Our empirical findings support both mechanisms: while local innovation

declines in flooded counties, firms in these areas increasingly collaborate with part-

ners in other counties. Additionally, flooded counties are more likely to co-innovate on

flood-resilient technologies with other similarly affected regions. Together, these results

suggest that floods reshape the spatial dynamics of knowledge production by promoting

broader inter-regional collaboration.
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3.1 Introduction

Floods are among the most disruptive natural disasters globally, affecting more

than 1.8 billion people to date and posing rising risks under climate change scenarios

(Tellman et al. 2021). By 2050, the frequency of severe flooding events is projected to

double across 40% of the world’s land area (Arnell and Gosling 2016). Existing liter-

ature has thoroughly examined the economic consequences of floods, including direct

damages to infrastructure and productivity (e.g., Kocornik-Mina et al. 2020) as well as

changes in firms’ investment and entry decisions in response to flood risks (e.g., Jia

et al. 2022; Balboni et al. 2023; Hsiao 2024). However, much less is known about

how natural disasters influence the geography of knowledge production. In particular,

it remains an open question whether and how firms adjust their innovation strategies in

response to increasing exposure to flood risk.

To address this question, we study China—a country that is not only one of

the most flood-exposed globally, with approximately 395 million people at risk each

year—but also a major player in global innovation. Many of China’s leading innova-

tion hubs are situated in regions with high flood exposure, making the country an ideal

case for understanding the interaction between climate shocks and spatial patterns of

technological advancement. Drawing on rich patent and satellite-derived flood data, we

investigate whether floods reshape where and how innovation occurs, with a particular

focus on inter-regional patent collaborations.

Descriptive patterns suggest that such a relationship may indeed exist. As illus-

trated in Figure 3.1, a large share of patenting activity in China is concentrated in flood-

prone areas. However, Panel A of Figure 3.2 shows a marked inland shift in the spatial

distribution of patent applications between 2008 and 2018. Initially concentrated in

coastal provinces, patent activity gradually expanded to inland regions. Panel B reveals

a concurrent increase in cross-county collaborations during the same period, with col-

laborative networks growing outward from a few coastal hubs to include a broader set of

inland regions. These trends suggest that while floods may harm local innovation, they

may also prompt firms to collaborate across regions—potentially altering the spatial

distribution of innovation in the long run.
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Figure 3.1: China’s patent activities are more concentrated in flood zones.

(a) Patents are gradually shifting inlands.

(b) Patent collaborations are increasingly prevalent over time.

Figure 3.2: Spatial Distribution of Patents and Patent Collaborations in 2008, 2013,
and 2018

Following these motivating facts, we ask: Do floods affect the geography of in-

novation in China? If so, through what mechanisms? To answer these questions, we

construct a novel dataset that combines flood exposure measures from the Global Flood

Database (GFD) with detailed patent records from the China National Intellectual Prop-

erty Administration (CNIPA) and firm location data from Tianyancha. We use two

complementary measures of flood exposure: Cumulative Flood Duration (CFD), which

captures the total number of flood-experienced days per county, and Pixel-Adjusted
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Flood Duration (PFD), which adjusts for county size and normalizes flood intensity.

We follow the existing literature (e.g., Wu et al. 2022, and König et al. 2022) and focus

on a unique episode of rapid expansions of China’s patenting activities from 2008 to

2018. Figure A2 shows that China’s total number of patent applications increased from

828,328 to 4323,112 during that period. For innovation outcomes, we identify 452,734

collaborative patents that involve 29,620 unique county pairs during the 2008–2018

period.

We develop a search-and-matching model to provide a theoretical foundation for

understanding how firms respond to flood events in their innovation decisions. In our

model, firms can invest either in general-purpose technologies or in flood-resilience in-

novations. After a flood realization, firms decide whether to collaborate with local or

non-local partners. Two key mechanisms emerge from the model. The risk-sharing

hypothesis posits that floods act as negative productivity shocks, reducing the expected

returns to local innovation and prompting firms to seek external partners as a form of in-

surance against future disruptions. The mutual-support hypothesis, in contrast, suggests

that firms in flooded counties may have stronger incentives to partner with others who

share similar experiences in order to co-develop flood-resilient technologies. Together,

these mechanisms offer a framework for understanding how floods shape collaboration

networks and influence the geography of knowledge production.

We empirically test the two central hypotheses—risk-sharing and mutual-

support—using a two-way fixed effects (TWFE) design that controls for both county

and year fixed effects. This empirical strategy allows us to isolate the effect of flood

exposure on innovation outcomes while accounting for time-invariant county charac-

teristics and nationwide temporal shocks. Our analysis begins by examining the direct

effect of floods on local innovation activity. We find that floods significantly hinder

innovation within affected counties. Specifically, a one-day increase in Pixel-Adjusted

Flood Duration (PFD) is associated with a 9.7% decline in county-level patent appli-

cations. And a standard deviation increase in PFD is associated with a 1.7% decline

in county-level patent applications. This result underscores the disruptive nature of

flooding, which interrupts ongoing R&D processes.

Next, we test the risk-sharing hypothesis, which suggests that firms respond
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to flood-induced productivity shocks by engaging in cross-regional collaborations to

hedge against future disruptions. We find robust evidence supporting this mechanism.

We find that a standard deviation increase in Pixel-Adjusted Flood Duration (PFD) is

associated with a 2.1% increase in the number of county-pair level collaborative patent

applications. Compared to the impact of floods on overall patenting activity, the pos-

itive effect on collaboration is notably large. While a standard deviation increase in

Pixel-Adjusted Flood Duration (PFD) is associated with a 1.7% decline in county-level

patent applications, it is also associated with a 2.1% increase in county-pair collabora-

tive patenting. This suggests that counties not only respond to flood shocks by maintain-

ing innovation through collaboration, but that the compensatory effect via collaboration

may even outweigh the direct negative impact on local patenting activity.

To explore whether the magnitude of flood exposure amplifies this effect, we con-

duct a heterogeneity analysis that focuses on more severe flood events. We define a

county-pair as experiencing a “major flood” if at least one county within the pair records

a Pixel-Adjusted Flood Duration (PFD) above the 60th percentile of the national dis-

tribution. Under this definition, we observe that such county-pairs experience an 8%

increase in collaborative patenting in the aftermath of major floods. This larger effect

suggests that experiencing major floods more strongly motivates firms to seek collab-

orative partners. We then investigate the role of expectations of future flood risk in

affecting collaborations. Using historical flood patterns, we decompose observed flood

exposure into expected and unexpected components. The results suggest a standard

deviation increase in expected Pixel-Adjusted Flood Duration (PFD) is associated with

an at least 4.5% increase in cross-county collaborations, while unexpected flood shocks

are found to have a negative and significant effect. This highlights the dominant role

of flood expectations in shaping cross-regional collaborations: firms decide whether to

collaborate based on their anticipated flood risks, which are informed by their historical

exposure to flooding.

We then turn to the mutual-support hypothesis, which posits that shared flood ex-

periences between regions encourage deeper and more targeted collaborations aimed

at enhancing flood resilience. To test this mechanism, we classify county-pairs into

three categories based on their flood exposure: (1) both counties experienced floods,
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(2) only one county experienced a flood, and (3) neither county experienced a flood.

We find that the collaborative response is significantly stronger among county pairs in

which both counties have been exposed to flooding. Specifically, for these pairs, a one

standard deviation increase in the average Pixel-Adjusted Flood Duration (PFD) is asso-

ciated with a 1.2% increase in disaster-related collaborative patent applications. While

this effect is smaller than the corresponding estimate for all patent types, it remains

economically meaningful. In contrast, we find no significant increase in disaster-related

collaborative patents among county pairs where only one county experienced flood-

ing. These findings provide support for the mutual-support mechanism: only when

both counties share similar flood experiences do they have strong incentives to jointly

develop disaster-resilient technologies.

In summary, this paper demonstrates that floods could reshape the geography of

innovation. On one hand, they reduce localized innovation in directly affected areas.

On the other hand, they simultaneously stimulate inter-regional collaboration. These

patterns are consistent with the dual mechanisms proposed in our theoretical frame-

work: the risk-sharing mechanism, whereby firms hedge against localized shocks by

collaborating with other counties, and the mutual-support mechanism, whereby shared

experiences of floods tend to motivate cooperative innovation targeted at improving dis-

aster resilience. Overall, our study contributes to a growing literature on the intersection

of climate risk and innovation, and provides a framework for understanding the role of

floods on reshaping the geographical distribution of innovations.

The remainder of the paper is organized as follows. Section 3.2 outlines the re-

search background. Section 3.3 develops a theoretical framework to examine the role

of floods. Section 3.4 describes the data sources and measurement strategies. Section

3.5 presents the empirical findings that test the two hypotheses. Finally, Section 3.6

concludes the paper.
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3.2 Research Background

3.2.1 Floods in China

China ranks among the top countries globally for flood risk, due to its large popula-

tion exposed to both coastal and river flooding. According to the Aqueduct Global Flood

Risk Country Rankings, China ranks third in the world for the absolute number of peo-

ple exposed to flood risks, with approximately 395 million people at risk annually. This

places China among the most flood-exposed countries, alongside India and Bangladesh.

About 27.5% of China’s population is vulnerable to flooding, driven by river floods in

the Yangtze, Huai, and Yellow River basins, as well as coastal areas prone to typhoons

and rising sea levels. From 2000 to 2017, floods caused economic damage exceeding

$150 billion, according to the EM-DAT International Disaster Database. Furthermore,

Arnell and Gosling (2016) predicts that the likelihood of a 100-year flood occurring in

China could increase by 33-67% by 2050.

A key feature of China’s floods is their disproportionate impact on economically

important regions. Jiangsu Province, for instance, ranks second in GDP among China’s

provinces, yet faces severe flood risks due to its location along the Yangtze River and

Huai River. Fegions with higher flood risks are also more economically significant. For

instance, the Yangtze River Basin, home to one-third of China’s population, is a crucial

economic hub. Frequent flooding, exacerbated by seasonal rainfall and extreme weather

events, poses significant risks to infrastructure and livelihoods in these areas. Similarly,

the Huai River Basin, another key region, faces recurring flood threats. Flooding in

these economically vital regions could hinder China’s overall economic growth, making

flood management a critical concern for the government.

Due to rapid urbanization, urban populations in major cities (e.g., Beijing, Wuhan,

and Nanjing) are increasingly exposed to severe flood risks. The urbanization rate

surged to 64.72% in 2021, up from 36.00% in 2000, which has significantly height-

ened the vulnerability of urban areas to flooding. For instance, the 2012 Beijing flood,

triggered by extreme rainfall, resulted in over 79 fatalities and caused approximately

$2 billion in economic damage. The 2021 Zhengzhou flood led to over 350 deaths and
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caused around $6 billion in economic losses. This underscores the severe impact of

urban flooding on densely populated areas.

3.2.2 Patents in China

China has sustained a fairly long period of rapid economic growth over the past

decade, to which the contributions from innovation have become increasingly impor-

tant. Among numerous measurements, patents are often considered an indicator of

technological change, which play a central role in research on innovation (Basberg,

1987; He et al., 2018) and attract considerable attention from researchers. The Early

phase of innovation development was marked by Chinese representatives attending all

international IPR conventions in the 1980s and 1990s1. And in April 1985, Patent Law

of China was officially implemented, marking the beginning of patent modernization.

Since then, it took about 15 years for China to reach the first one million patent ap-

plications, but merely 1 year and 4 months to reach the fifth million patent applications

in 2008 from the fourth million. After that period, China’s patent applications began to

experience an extraordinary surge. Specifically, China overtook the U.S. and Japan in

terms of patent applications in 2009 and 2010, respectively (Hu et al., 2017). Further-

more, China in 2019 surpassed the U.S. to become the leading source of international

patent applications filed with the WIPO2.In 2023, the number of patent applications in

China exceeded 5.5 million3.

Figure 3.3 illustrates a more detailed picture of patent application. Among China’s

provinces and municipalities directly under the central government, the number of

patent applications in Guangdong province has always ranked the top 1, and the number

of patent applications has reached 0.96 million in 2023. Jiangsu, Zhejiang, Shandong,

and Shenzhen follow closely. In addition, Beijing and Shanghai are another two munic-

ipalities directly under the central government ranking in the Top 10.

1For example, in June 1980, the Chinese government rode the wave of reform and became
a member of the World Intellectual Property Organization (WIPO)

2See https://www.wipo.int/pressroom/en/articles/2020/article_
0005.html for more details.

3See https://www.cnipa.gov.cn/tjxx/jianbao/year2023/a.html for
more details.

https://www.wipo.int/pressroom/en/articles/2020/article_0005.html
https://www.wipo.int/pressroom/en/articles/2020/article_0005.html
https://www.cnipa.gov.cn/tjxx/jianbao/year2023/a.html
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Both the quantity and quality of patent applications in China have significantly

increased recently, while a single entity often faces problems such as high R&D invest-

ment, high risks, and a low achievement transformation rate under the fierce technolog-

ical competition. In order to sustain the robust growth in patents, we need to further un-

derstand the importance of collaboration (Anderson and Richards-Shubik, 2022), which

can stimulate knowledge creation and innovation. Patent collaboration not only helps

to integrates advantageous resources, but also promotes the efficient transformation and

utilization of intellectual property rights. Therefore, conducting deep research on patent

collaboration mechanism is an important aspect to achieve high-quality patent develop-

ment.

Figure 3.3: Patent Applications of Top 10 Provinces or Municipalities in 2023.
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3.3 Theoretical Framework

3.3.1 Model Intuition

The timeline in Figure 3.4 illustrates the sequence of events in a typical period t

for a representative firm. At the beginning of the period, the firm is endowed with two

key attributes: its productivity level zi,t and its flood resilience level θi,t .

1. Flood Realization. At the start of the period, the firm observes whether a

flood occurs in its county. If a flood event takes place, it affects the firm’s productivity

through a damage function. Firms with higher flood resilience θi,t suffer less from the

flood.

2. Production. Given its post-shock productivity ẑi,t , the firm produces output

and earns profit πi,t during the production stage.

3. Innovation Decision. Following production, the firm decides whether to invest

in general technology (to enhance productivity) or in flood resilience (to mitigate future

flood damage). It also chooses the region c′ in which to search for a collaboration

partner.

4. Matching. The firm enters a search-and-matching process with potential part-

ners in county c′. The likelihood of finding a collaborator depends on the size of the

search pools in both counties and is given by the matching rates f c,c′
gen,t for general inno-

vation and f c,c′
f lood,t for flood resilience innovation.

5. Innovation Outcome. Conditional on matching, the probability of successful

innovation depends on the characteristics of both the firm and its partner. For general

innovation, success is increasing in the realized productivities of both parties, modeled

by the function g(ẑi,t , ẑ j,t). For flood resilience innovation, the probability of success de-

pends on whether both firms have experienced flooding, as captured by g(IFlood
i,t , IFlood

j,t ).

Here, we believe that a commond experience of floods will shape the foundation of col-

laboration on developing flood resilient technologies.

6. State Update. At the end of the period, the firm updates its state variables. If

general innovation is successful, its productivity increases to zi,t+1. If flood innovation

is successful, its resilience improves to θi,t+1. These updated states become the inputs
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for the following period.

Figure 3.4: Model Timeline

3.3.2 Model Setup

Consider an economy with three counties, indexed by c = 1,2,3, which differ in

both local demand (Ac) and flood risk (ηc). We impose two key assumptions. First, only

counties 1 and 2 face a positive risk of flooding, such that η1,η2 > 0, while county 3 is

flood-free with η3 = 0. Second, counties 1 and 2 have stronger local demand relative to

county 3, i.e., A1 = A2 > A3. In each county, there is a unit mass of firms indexed by

i ∈ [0,1]. Firms within the same county are heterogeneous in terms of productivity zi,t

and flood resilience θi,t . Let Gc(z,θ) denote the joint cumulative distribution function

(CDF) of productivity and resilience among firms in county c. Then, the distribution

satisfies the normalization condition:

∫∫
dGc(z,θ)dzdθ = 1. (3.1)

3.3.2.1 Firm Behavior and Profit Maximization

The static profit maximization problem of firm i in county c is given by:

π(ẑi,t) = max
q

[
Acq1−σ − q

ẑi,t

]
, (3.2)

where Ac denotes the local demand shifter, σ > 1 is the elasticity parameter, and ẑi,t

represents the firm’s actual productivity at time t after accounting for any flood-related
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damages. Actual productivity is defined as ẑi,t = zi,te−τθi,tIFlood
c,t , where zi,t is the firm’s

intrinsic productivity, τ > 0 captures the proportional damage to productivity caused by

a flood, and IFlood
c,t is an indicator variable equal to 1 if a flood occurs in county c at time

t, which happens with probability ηc. The term θi,t ∈ [0,1] measures the firm’s flood

resilience, such that higher θi,t corresponds to greater damage mitigation. Thus, firms

with higher resilience suffer less productivity loss when a flood occurs.

3.3.2.2 Technology Evolution and Innovation

The evolution of firm i’s general technology-driven productivity is governed by

the following process:

zi,t = (1−δ +ρ1IInn
i,t )zi,t−1, (3.3)

where δ ∈ (0,1) denotes the obsolescence rate of existing technology, and ρ1 > 0 rep-

resents the proportional productivity gain from a successful innovation. The binary

indicator IInn
i,t = 1 if the firm successfully innovates in period t, and 0 otherwise. In-

novation occurs through collaboration: when firm i successfully forms a partnership

with another firm j, the probability of a successful innovation is given by the function

g(ẑi,t , ẑ j,t), which depends on the actual productivity levels of both firms at time t. This

specification captures the idea that more productive firms are more likely to generate

valuable innovations when collaborating.

3.3.2.3 Search and Matching

Let Ω
c,c′
gen,t denote the set of firms in county c that are searching for general tech-

nology innovation partners in county c′ at time t. The process of forming innova-

tion collaborations between counties c and c′ is governed by a matching function

M(|Ωc,c′
gen,t |, |Ω

c′,c
gen,t |), which depends on the number of firms searching in both direc-

tions. The probability that a firm in county c successfully matches with a firm from

county c′ is then given by:

f c,c′
gen,t =

M(|Ωc,c′
gen,t |, |Ω

c′,c
gen,t |)

|Ωc,c′
gen,t |

. (3.4)
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Conditional on a successful match, the probability that firm i in county c successfully

innovates is determined by the quality of the match. Specifically, the probability of a

successful innovation is given by:

Pr(IInn
i,t = 1) = f c,c′

gen,t

∫
Ω

c′,c
gen,t

g(ẑi,t , ẑc′,t)dGc′,t , (3.5)

where g(ẑi,t , ẑc′,t) captures the likelihood of innovation success based on the productivity

of firm i and the matched partner from county c′, and Gc′,t is the distribution of actual

productivity in the pool of potential partners from county c′.

Let Ω
c,c′
f lood,t denote the set of firms in county c that are actively searching for part-

ners in county c′ to collaborate on flood resilience innovation at time t. The formation of

such collaborations is governed by a matching function M(|Ωc,c′
f lood,t |, |Ω

c′,c
f lood,t |), which

depends on the number of firms searching in both counties. The probability that a firm

in county c successfully matches with a partner from county c′ is given by:

f c,c′
f lood,t =

M(|Ωc,c′
f lood,t |, |Ω

c′,c
f lood,t |)

|Ωc,c′
f lood,t |

. (3.6)

Conditional on a successful match, the probability that firm i achieves a successful flood

resilience innovation is determined by the extent to which both it and its partner from

county c′ have experienced flooding. Formally, this probability is given by:

Pr(IInn f lood
i,t = 1) = f c,c′

f lood,t

∫
Ω

c′,c
f lood,t

g(IFlood
i,t ,IFlood

j,t )dGc′,t , (3.7)

where g(·, ·) captures the probability of successful innovation as a function of both

firms’ flood exposure, and Gc′,t is the distribution of potential partners’ characteristics

in county c′.

3.3.2.4 Dynamic Optimization Problem

Firm i in county c chooses between two types of collaboration—general technol-

ogy innovation or flood resilience innovation—to maximize its expected value given the
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current flood realization Floodt . The firm’s value function is defined as:

V (zi,t ,θi,t ,Floodt) = max
{

V c,c′
gen (zi,t ,θi,t ,Floodt),V

c,c′
f lood(zi,t ,θi,t ,Floodt)

}
, (3.8)

where V c,c′
gen is the continuation value associated with collaboration on general innova-

tion, and V c,c′
f lood represents the value of flood resilience collaboration.

General Innovation Value Function

V c,c′
gen (zi,t ,θi,t ,Floodt) =π(ẑi,t)−κc,c′ +β (1− s)EV (zi,t+1,θi,t+1,Floodt+1)

s.t. ẑi,t = zi,te−τθi,tIFlood
c,t ,

Pr(IInn
i,t = 1) = f c,c′

gen,t

∫
Ω

c′,c
gen,t

g(ẑi,t , ẑc′,t)dGc′,t ,

zi,t+1 = (1−δ +ρ1IInn
i,t )zi,t ,

θi,t+1 = θi,t .

(3.9)

Flood Innovation Value Function

V c,c′
f lood(zi,t ,θi,t ,Floodt) =π(ẑi,t)−κc,c′ +β (1− s)EV (zi,t+1,θi,t+1,Floodt+1)

s.t. ẑi,t = zi,te−τθi,tIFlood
c,t ,

zi,t+1 = (1−δ )zi,t ,

Pr(IInn f lood
i,t = 1) = f c,c′

f lood,t

∫
Ω

c′,c
f lood,t

g(IFlood
i,t ,IFlood

j,t )dGc′,t ,

θi,t+1 = (1−ρ2IInn f lood
i,t )θi,t .

(3.10)

3.3.3 Hypotheses

Based on the model set-up, we then propose two key mechanisms drive firms’

collaborative behavior in response to flood events: the risk sharing channel and the

mutual support channel. Correspondingly, we propose two hypotheses.

Hypothesis 1 (Risk Sharing Mechanism): Under the risk-sharing mechanism,

when county c experiences a flood, firms in that county suffer from reduced realized

productivity, which lowers the probability of successful general innovation within the
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county, i.e., g(ẑc,t , ẑc,t). This reduction in innovation success lowers the expected value

from local general innovation collaboration, V c,c
gen, and thereby increases the incentive

for firms to seek general innovation partners in other counties, leading to an expansion

in the cross-county collaboration set, Ω
c,c′
gen.

Hypothesis 2 (Mutual Support Mechanism): Under the mutual-support mech-

anism, When county c is flooded, the value of collaborating with firms that have also

experienced flooding rises, as the probability of a successful flood resilience innovation

increases, i.e., g(IFlood
i,t ,IFlood

j,t ). However, the expected continuation value of resilience

innovation, V c,c′
f lood , may fall due to immediate damages. This trade-off encourages a

higher propensity for firms to search for flood resilience partners in other counties, in-

creasing the size of the set Ω
c,c′
f lood . Together, these mechanisms explain how flood events

dynamically shape inter-county collaboration patterns in both general and resilience-

focused innovation.

3.3.4 An Illustrative Example

To illustrate the risk-sharing mechanism in our theoretical framework, we con-

sider a simplified example in which the productivity distribution in county c follows a

log-normal distribution. County c′ serves as a potential collaboration partner, with its

characteristics held constant throughout the analysis: the number of collaborators and

their productivity levels are fixed. This setup ensures that any change in firm behav-

ior stems solely from productivity shocks in county c, rather than changes in external

conditions.

Figure 3.5 displays the value functions of firms across different productivity lev-

els under two scenarios: a benchmark scenario without floods (Panel A) and a flood

scenario (Panel B). The value function is normalized relative to the value of the no-

innovation option. The x-axis represents firm productivity, and the y-axis represents the

corresponding value function. The three lines represent different innovation strategies:

no innovation (flat yellow line), within-county collaboration (red line), and cross-county

collaboration (blue line).



3.3. Theoretical Framework 109

Panel A: Benchmark (No Flood) Scenario We observe a non-linear relationship

between firm productivity and collaboration choices:

(i) Low productivity: Firms choose not to establish collaborations or only collabo-

rate within county c because their productivity is too low to offset the fixed cost

of innovation, denoted κ .

(ii) Medium productivity: Firms choose to collaborate with partners from county c′,

seeking higher-productivity collaborators to increase the likelihood of successful

innovation.

(iii) High productivity: Firms prefer to collaborate within their own county. Since

their own productivity is already high, the success probability of innovation is

sufficiently large without needing to incur the additional search cost of finding

external partners.

This pattern is consistent with empirical observations: for example, firms lo-

cated in coastal regions—often with higher productivity—tend to collaborate less across

counties, as shown in Figure 3.1.

Panel B: Flood Scenario When a flood hits county c, it reduces the realized pro-

ductivity of firms. As a result:

• Firms that previously belonged to the high-productivity group now find them-

selves in the medium-productivity range. To maintain innovation success, they

switch from within-county to cross-county collaboration.

• Firms with low initial productivity must seek even more productive external col-

laborators to ensure innovation succeeds, which implies bearing higher search

costs.

This behavioral shift reflects the risk-sharing mechanism posited by the model:

after a negative productivity shock, firms seek external collaboration to hedge against

local shocks and maintain innovation performance.
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(a) Benchmark Scenario: without Floods

(b) Flood Scenario

Figure 3.5: Innovation Decisions in Benchmark Scenario (without Floods) and Flood
Scenario

Note: (1) The Y-axis represents the firm’s value function, while the X-axis
represents firms’ productivity levels; (2) The blue line represents the value
function if firms in county c collaborate firms in county c′, the orange line

represents the value function if firms in county c only collaborate with firms
within county c, while the yellow line represents the value function if firms do
not collaborate; (3) Compared to the Benchmark Scenario, firms in the Flood

Scenario experience a negative productivity shock caused by flooding.
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3.4 Data

3.4.1 Measuring Floods

We gather data on flood events from the Global Flood Database (GFD), which

provides comprehensive tracking of floods in China from 2000 to 2018. This database

documents a total of 189 flood events across the country. Since the GFD offers satellite-

derived flood maps at the county level, we are able to collect data on the duration of

flooding for each 30m × 30m pixel. Additionally, the database identifies whether a pixel

contains permanent water bodies, which are defined by the GFD as pixels that “are con-

sistently identified with the presence of surface water for the majority of observations in

2000-2018 at 30-meter resolution, which was resampled to 250m resolution in Google

Earth Engine using nearest neighbor resampling.” Using this dataset, we construct two

county-level proxies to quantify flood exposure:

Cumulative Flood Duration (CFD) captures the extent of flood exposure in a given

county. It quantifies the total number of flood-experienced days across all pixels within

a county in a given year. Specifically, CFD is measured in pixel-days, meaning that it

accounts for both the spatial distribution and temporal persistence of floods. A higher

CFD value indicates a more severe and prolonged presence of floods. It is constructed

using the following equation:

CFDit = ∑
j∈Ai

FloodDuration jt (3.11)

where CFDit denotes the cumulative flood duration for county i in year t. Ai repre-

sents the set of non-permanent water pixels, excluding permanent water bodies such as

lakes and reservoirs. Hence, FloodDuration jt refers to the number of days that non-

permanent water pixel j experiences flooding in year t.

Pixel-Adjusted Flood Duration (PFD) captures the average flood exposure per

pixel within a given county. It is calculated as the cumulative flood duration (CFD)

divided by the total number of non-permanent water pixels in the county. Unlike CFD,

which reflects the total flood exposure in pixel-days, PFD normalizes this measure by

county size and provides a standardized metric of flood exposure that is comparable
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across regions. A higher PFD value indicates that, on average, each pixel in a county

experiences flooding for a greater number of days. It is constructed using the following

equation:

PFDit =
CFDit

|Ai|
=

∑ j∈Ai FloodDuration jt

|Ai|
(3.12)

where PFDit indicates the pixel-adjusted flood exposure of county i at year t, |Ai| rep-

resents the total number of non-permanent water pixels in county i. By adjust the total

sum of flood duration by the size of non-permanent water pixels, we are able to mea-

sure the average number of flooded days experienced by non-permanent water pixels in

county i at year t.

3.4.2 Measuring Collaborative Patents

Our primary data source is the China National Intellectual Property Administration

(CNIPA). Patents are typically categorized into three types: invention, design patents,

and utility models4. Invention patents are called “invention applications” initially, and

some of them are approved eventually, which are called “invention grants”. In our

study, we focus on invention patent applications while using design patents and utility

models as robustness checks. In the subsequent empirical results of this paper, we will

refer “patent applications” as “invention patents application” for short. For each patent,

we record a unique patent identifier number, along with the dates of application and

publication, International Patent Classification (IPC) codes, the names of applicant(s)

and inventor(s), and an associated address. We use the application date because it more

accurately reflects when new knowledge was created and formalized (Moretti, 2021).

Moreover, since inventors are mainly individuals while applicants can be firms, research

institutes, individuals, or other types of entities, and patents assigned to firms usually

take up a dominant share in recent decades (Akcigit et al., 2022), we finally adopt

4According to the definition of CNIPA, an invention patent is a new technical solution re-
lated to a product, a process, or an improvement; An utility model is a new technical solution
related to a product’s shape, structure, or a combination thereof fit for practical use; A design
patent is a new design of the shape, pattern, or a combination thereof. More detailed informa-
tion about patents can be found at https://english.cnipa.gov.cn/col/col2995/
index.html

https://english.cnipa.gov.cn/col/col2995/index.html
https://english.cnipa.gov.cn/col/col2995/index.html
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“applicants” as the proxy for innovators in our empirical analysis (Koh et al., 2024).5

To identify cross-county patent collaborations, a central challenge with our anal-

ysis is to identify the county in which all applicants are located. The CNIPA database

only reports the first-listed applicant’s exact address, and the address of other applicants

is not reported. Hence, we are not able to identify the address of all applicants using

only CNIPA database. To solve this issue, we constructed a search database following

the work of Koh et al. (2024) and used Tianyancha, a firm-level database with detailed

firm location data, to manually cross-check our identification. Specifically, we address

this issue using two approaches following Koh et al. (2024).

Firstly, we construct a search database that includes accurate county-level ad-

dresses for applicants of solo patent applications and for first-listed applicants of collab-

orative patents. Although our sample period covers 2008-2018, we can retrieve patent

addresses from the CNIPA database for the years 2000 to 2022 to extend our search

database. To prevent the misidentification of distinct entities that may share identical

applicant names, we limit the extension of the time range. Then, we standardize all

applicant names in a consistent format and get approximately 600,000 unique names.

And we search patents in both earlier and later years6.

Secondly, we obtain approximately 60,000 firms’ addresses from the Tianyancha

database, which we use both to match firms that are not identified in the first step and to

double-check the addresses provided by the patent database. Finally, we have addresses

for 452,734 collaborative patents and 29,620 county-pairs.

The primary outcome of interest is patent collaborations over time and across re-

gions. We classify a patent with multiple applicants as a “collaborated patent.” Our

key outcome variables are: (1) CollabPatentsi j,t , the count of patents in which appli-

cants are located in both paired counties in a given year t for the county level and

county-pair level data. For example, suppose a patent has 3 applicants located in coun-

5We would like to note that for each patent, we exclude individual applicants from the
applicant list using both automated and manual methods. That is because it is difficult to obtain
the address of an individual applicant. For example, if a patent application lists two applicants
- one is a company and another is an individual - we treat it as a single application. And if a
patent only has an individual applicant, then we remove this observation from our database.

6For example, we have a patent in 2008, we search sequentially in 2008, 2007,...,2000, then
2011, 2012,..., up to 2022.
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ties A, B, C, respectively, in year 2008. Then this patent would be counted in the

variable CollabPatents for the county pairs (A, B), (B, C), (A, C) in year 2008; (2)

D CollabPatentsi j,t , a dummy variable for the patent level data that equals 1 if counties

i and j engage in collaboration in year t, and 0 otherwise.

3.4.3 Descriptive Statistics

Our sample covers the period from 2008 to 2018. Table 3.1 reports the descriptive

statistics for the main variables used in our analysis. This table presents three datasets

used in this paper: county level, county pair level, and patent level data, respectively.

Besides patents applications and relevant measurements of flood above, there are other

county-level control variables. County characteristics include the logarithm of the pop-

ulation, GDP, loan balance of financial institutions, the number of industrial firms above

state designated scale, and the value-added of the tertiary industry.

Table 3.1 shows that, on average, each county has approximately 155 patent appli-

cations per year, and 140 of them only have 1 non-individual applicant. Among all the

patents, there are about 4 disaster mitigation patents. In terms of patent collaborations,

the county pairs in the sample produce about 8 patents together each year, and 1.8% of

them are disaster mitigation patents. And in those collaborative patents, 76% of them

are cross-county collaborations. We also show the time pattern of patent applications

and collaborations in Figure B3.
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Table 3.1: Descriptive Statistics

County Level
Patent Applications 28,867 155.377 651.047 0.000 8.000 723.000
Single Applications 28,867 139.067 585.210 0.000 7.000 639.000
Disaster Patents 28,867 3.742 21.474 0.000 0.000 15.000
ln(L1(CFD)) 28,867 0.834 2.191 0.000 0.000 6.483
L1(PFD) 28,867 0.014 0.179 0.000 0.000 0.010
ln(Population) 28,867 3.591 0.883 1.809 3.717 4.745
ln(GDP) 28,867 13.807 1.179 11.716 13.888 15.618
ln(Loan) 28,867 13.074 1.389 10.778 13.122 15.282
ln(# of Firms) 28,867 3.989 1.422 1.386 4.094 6.127
ln(Third) 28,867 12.753 1.238 10.665 12.769 14.795
County Pair Level
Collaborative Patents 65,828 7.771 47.303 1.000 2.000 22.000
Disaster Patents 65,828 0.140 1.556 0.000 0.000 1.000
ln(L1(CFD)) 65,828 0.788 2.098 0.000 0.000 6.492
L1(PFD) 65,828 0.012 0.097 0.000 0.000 0.036
Patent Level
Collaborative Dummy 452,734 0.764 0.425 0.000 1.000 1.000

Note: This table reports the summary statistics, including county level, county pair level, and patent
level variables. Detailed variable definitions are presented in Table A1.
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3.5 Empirical Results

Building on the theoretical framework outlined in Section 3.3, we present empir-

ical evidence to test the corresponding hypotheses. First, we examine whether floods

negatively affect local patenting activity. Second, we investigate the risk-sharing mech-

anism by analyzing whether firms are more likely to form collaborations with partners

in other counties. Third, we assess the mutual-support mechanism by testing whether

firms tend to co-develop flood-resilient patents with partners from counties that have

also experienced floods.

3.5.1 Impacts of Floods on Patent Applications

We first conduct a county-level analysis to understand the impact of floods on

county-level patent applications. The regression is as follows:

Yit = β1 +β2FloodProxyi,t−1 +λt +ηi + εit (3.13)

where Yit represents the logarithm of the number of patent applications in county i. We

examine three types of patents: all patents, patents with single applicant, and disaster

mitigation patents. FloodProxyi,t−1 denotes either ln(CFD)i, t −1, the lagged cumu-

lative flood duration of county i, or ln(PFD)i, t −1, the lagged pixel-adjusted flood

duration of county i. λt represents time fixed effects, ηi denotes county fixed effects,

and εit is the standard error, clustered at the county level. Accordingly, β2 captures the

impact of floods on county-level patent applications.

Table 3.2 presents the estimated impacts of floods on patent applications at the

county level, with a focus on different types of patents. Independent variables in this

table are logarithm cumulative flood duration (CFD) and pixel-adjusted flood duration

(PFD). Across all columns, year and county fixed effects are included to control for

time-invariant characteristics and temporal trends. The results indicate that flood expo-

sure leads to a decline in number of patent applications. Columns (1) and (2) report the

effects on total patent applications, while columns (3) and (4) focus on patents filed by

single applicants. The estimates suggest that a 1% increase in Cumulative Flood Du-
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ration (CFD) reduces the number of total patents by 1.7% and single-applicant patents

by 2.8%, respectively. These findings suggest the negative effect of floods on local

innovation.

Columns (5) and (6) provide evidence of a compensatory effect in disaster-related

innovation. We use the China Meteorological Disaster Yearbook and the National

Emergency Response Plan to manually extract a total of 34 keywords from the sections

that cover flood-related content and general disaster prevention and control. Figure C4

provide the keywords of flood patents. Then, we search through the abstracts of indi-

vidual patents to determine whether they contain these keywords. If a patent abstract

includes any of the keywords, it is classified as a disaster mitigation patent. While to-

tal patenting declines, patents specifically related to disaster mitigation increase after

a county experiences floods. Importantly, these results also serve as a placebo test for

the main findings, which verify that the observed negative impact of flooding on over-

all patent applications is not simply a result of general changes in innovation trends or

unobserved confounding factors. If floods were simply discouraging all forms of inno-

vation, we would expect to see a uniform decline across all patent categories, including

disaster-related patents. However, the fact that disaster mitigation patents increase sug-

gests that the observed decline in total patents is not driven by a general downturn in

patenting activity but rather by a reallocation of innovation efforts.

Overall, these findings highlight how firms respond to natural disasters by real-

locating their innovation efforts. While floods lead to a decline in overall patenting

activity, they simultaneously stimulate innovation in disaster mitigation technologies.
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Table 3.2: Impacts of Floods on Number of Patent Applications
- County Level Analysis

ln(Number of Patent Applications)

Type of Patents: All Single Applicant Disaster Mitigation

(1) (2) (3) (4) (5) (6)

ln(L1(CFD)) −0.017*** −0.028*** 0.003***
(0.003) (0.004) (0.002)

L1(PFD) −0.097*** −0.095*** 0.024***
(0.035) (0.034) (0.011)

R-squared 0.879 0.878 0.871 0.871 0.747 0.747
N(obs) 28,867 28,867 28,867 28,867 28,867 28,867

Fixed Effects
Year Y Y Y Y Y Y
County Y Y Y Y Y Y

Note: (1) ‘CFD’ denotes Cumulative Flood Duration, and ‘PFD’ denotes Pixel-Adjusted Flood Duration (see Section 3.4.1 for details).
(2) The regression specification is: Yit = β1 +β2FloodProxyi,t−1 +λt +ηi + εit where FloodProxyi,t−1 is either ln(L1(CFD)), the log-
arithm of lagged CFD (lagged by one year), or L1(PFD), the lagged PFD (lagged by one year). (3) ‘All’ includes all patents, ‘Single
Applicant’ refers to patents filed by applicants with only one application. ‘Disaster Mitigation’ patents are those related to disaster al-
leviation and are identified using China Meteorological Disaster Yearbook and the National Emergency Response Plan; (4) Standard
errors are clustered at the county level.
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3.5.2 Testing the Risk-Sharing Hypothesis

We then test the risk-sharing mechanism by examining whether firms in flood-

affected counties are more likely to collaborate with partners in other counties to dis-

tribute the flood risks.

3.5.2.1 Baseline Results

We first conduct a patent-level analysis to understand the impact of floods on

cross-county patent collaborations. The regression is as follows:

DCollabi jt = α +β1FloodProxyi j,t +λt +ηi +π j + εi jt (3.14)

where DCollabi j,t is a dummy variable that equals 1 if county i and county j have

formed patent collaborations at time t, and 0 if not. FloodProxyi jt−1 represents either

ln(L1CFD)i j,t−1, the lagged average cumulative flood duration of county i and county j,

or L1PFDi j,t−1, the lagged average pixel-adjusted flood duration of county i and county

j. Additionally, we incorporate time fixed effects λt , county fixed effects ηi and π j into

the regression. Standard errors are clustered at the county-pair level.

Table 3.3 and Table 3.4 examine the relationship between flood exposure and

patent collaborations at the patent and county-pair level, respectively. In Table 3.3,

the outcome variable is a dummy indicating whether a patent was filed collaboratively.

Column (1) estimates the effect of cumulative flood duration (CFD), while column (2)

presents results using pixel-adjusted flood duration (PFD). The estimates suggest that

flood exposure is positively associated with an increase in patent collaborations. Specif-

ically, a 1% increase in cumulative flood exposure raises the likelihood of a patent being

collaborative by 1.3%, while one day increase in pixel-adjusted flood exposure increases

this likelihood by 3.7%. These findings suggest that firms or inventors respond to flood-

induced disruptions by engaging in more cross regional collaborative innovation efforts.

We also present a robustness check in Table C2.
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Table 3.3: Impacts of Floods on Patent Collaborations
- Patent Level Analysis

Dependent Variable: Collaborative Patent Dummy

(1) (2)

ln(L1(Cumulative Flood Duration)) 0.013***
(0.001)

L1(Pixel-Adjusted Flood Duration) 0.037***
(0.011)

R-squared 0.395 0.393
N(obs) 452,734 452,734

Fixed Effects
Year Y Y
County 1 Y Y
County 2 Y Y
Patent Type Y Y

Note: (1) Detailed definition of Cumulative Flood Duration and Pixel-
Adjusted Flood Duration can be found in Section 3.4.1; (2) The regression
specification is: DCollabi jt = α + β1FloodProxyi j,t + λt + ηi + π j + εi jt

where FloodProxyi,t−1 is either ln(L1(Cumulative Flood Duration)),
the logarithm of lagged CFD (lagged by one year), or
L1(Pixel-Adjusted Flood Duration), the lagged PFD (lagged by one year).
(3) Standard errors are clustered at the county level.

We then conduct a county-pair analysis to understand the impact of floods on

cross-county patent collaborations. And the results remain robust when conducting a

similar regression at the county-pair level. The regression is as follows:

Yi jt = α +β1FloodProxyi j,t +λt + γi j +ηi +π j + εi jt (3.15)

where Yi j,t denotes the logarithm of the number of patent applications between county

i and county j at time t. FloodProxyi jt−1 represents either ln(CFD)i j,t−1, the lagged

average cumulative flood duration of county i and county j, or PFDi j,t−1, the lagged

average pixel-adjusted flood duration of county i and county j. Additionally, we incor-

porate time fixed effects λt , county-pair fixed effects γi j, county fixed effects ηi and π j,
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and time fixed effects λt . Standard errors are clustered at the county-pair level.

In Table 3.4, the outcome variable is the logarithm of the number of patents jointly

filed by inventors from two different counties. Column (1) reports estimates using cu-

mulative flood duration (CFD), while column (2) relies on pixel-adjusted flood duration

(PFD). The findings indicate a positive relationship between flood exposure and cross-

county patent collaborations. Specifically, a 1% increase in cumulative flood exposure

is associated with a 1.1% increase in county-pair collaborative patents, while an addi-

tional standard deviation increase of pixel-adjusted flood duration (PFD) corresponds

to a 2.1% increase. These results suggest that, although floods negatively impact lo-

cal innovation activities (Table 3.2), they also stimulate interregional collaboration in

innovation.

Table 3.4: Impacts of Floods on Patent Collaborations
- County Pair Level Analysis

ln (Number of County-Pair Collaborative Patents)

(1) (2)

ln(L1(Cumulative Flood Duration)) 0.011***
(0.003)

L1(Pixel-Adjusted Flood Duration) 0.120**
(0.059)

R-squared 0.434 0.434
N(obs) 65,828 65,828

Fixed Effects
Year Y Y
County-Pair Y Y
County 1 Y Y
County 2 Y Y

Note: (1) Detailed definition of Cumulative Flood Duration and Pixel-Adjusted
Flood Duration can be found in Section 3.4.1; (2) The regression specification is:
Yi jt = α + β1FloodProxyi j,t + λt + γi j + ηi + π j + εi jt where FloodProxyi,t−1 is either
ln(L1(Cumulative Flood Duration)), the logarithm of lagged CFD (lagged by one year), or
L1(Pixel-Adjusted Flood Duration), the lagged PFD (lagged by one year); (3) Standard er-
rors are clustered at the county-pair level.
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3.5.2.2 Heterogeneity Analysis: the Impact of Larger Floods

We then extend our analysis to identify the impacts of larger floods on cross-

county patent collaborations using a specification as below:

Yi j,t = α +β1Floodi j,t +β2Xi j,t +λt + γi j +ηi +π j + εi j,t (3.16)

where Yi j,t denotes the logarithm of the number of patent applications between

county i and county j at time t. Our treatment variable, Floodi j,t is a binary indicator

that equals 1 if, at time t, the Pixel-Adjusted Flood Duration (PFD) in either county i

or county j exceeds 60% of the nation’s historical record, and 0 otherwise. By defining

the treatment in this way, we ensure that our analysis captures only large flood events

that are likely to cause substantial impacts on economic activities. This threshold helps

distinguish severe floods from minor inundations but we also conduct robustness checks

using other thresholds. The control variable is represented by Xi j,t . Additionally, we

incorporate county-pair fixed effects γi j, county fixed effects ηi and π j, and time fixed

effects λt . Standard errors are clustered at the county-pair level.

To illustrate the time trend of the impacts of floods, we also conduct an event study

following this specification:

Yi j,t =
n=3

∑
n=1

αnFloodi j,t−n+
m=3

∑
m=0

αmFloodi j,t+m+α2Xi j,t +λt +γi j+ηi+π j+εi j,t (3.17)

Floodi j,t−n represents the nth lag, while Floodi j,t+m denotes the mth lead. This spec-

ification enables us to examine the impact of floods on innovation collaboration both

before and after their occurrence. It allows us to investigate the dynamic effects of

floods over time. Additionally, it allows us to test the parallel trends assumption by

evaluating whether pre-flood trends in innovation activity differ significantly between

treated and untreated county pairs.

Table 3.5 examines the impact of severe flooding on county-pair patent collabo-

rations, using two flood intensity thresholds: when the Pixel-Adjusted Flood Duration

(PFD) exceeds 60% and 70% of its historical record. The results show that flooding in-

creases patent collaborations by 8.4% and 10.1% at these thresholds, respectively, with
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both effects statistically significant at the 1% level. This suggests that severe floods

prompts inventors to seek collaborations across counties. The stronger effect at the 70%

threshold implies that extreme disasters have a greater impact on innovation networks.

Table 3.5: Causal Impacts of Floods on Patent Collaborations
- County Pair Level Analysis

ln (Number of County-Pair Collaborative Patents)

Flood Threshold: PFD > 60% PFD > 70%
(1) (2)

Estimated Flood Impact (β̂1) 0.084*** 0.101***
(0.030) (0.033)

R-squared 0.413 0.413
N(obs) 65,828 65,828

Fixed Effects
Year Y Y
County-Pair Y Y
County 1 Y Y
County 2 Y Y

Note: (1) ‘PFD’ refers to Pixel-Adjusted Flood Duration, and the detailed description
can be found in Section 3.4.1; (2) The difference-in-differences regression specifica-
tion is: Yi j,t = α +β1Floodi j,t +β2Xi j,t +λt + γi j +ηi +π j + εi j,t where Floodi j,t is a
binary indicator that equals 1 if, at time t, the Pixel-Adjusted Flood Duration (PFD) in
either county i or county j exceeds 60% or 70% of the nation’s historical record, and
0 otherwise; (3) Standard errors are clustered at the county-pair level.

The event study analysis, presented in two panels in Figure 3.6, examines the

impact of severe flooding on county-pair patent collaborations, using two flood intensity

thresholds: PFD > 60% (left panel) and PFD > 70% (right panel). Both figures show

similar patterns, with no significant differences in patent collaboration trends before

the flood, supporting the parallel trends assumption in the specification. In both cases,

collaborations increase starting in the year of the flood (Year 0) and persist for at least

three years post-flood, indicating a long-term effect. The similarity in results across the

two thresholds demonstrates the robustness of the findings.
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Figure 3.6: Dynamic Impacts of Floods on Cross-County Patent Collaborations
Note: (1) The event-study regression is specified as:Yi j,t =

∑
3
n=1 αnFloodi j,t−n +∑

3
m=0 αmFloodi j,t+m +α2Xi j,t +λt + γi j +ηi +π j + εi j,t

The black dots represent the policy effect (ATT), corresponding to αn and αm;
(2) In the left figure, the treatment variable Floodi j,t equals 1 if, at time t, the
Pixel-Adjusted Flood Duration (PFD) in either county i or county j exceeds

60%. In the right figure, the threshold is set at 70%; (3) The confidence
intervals are reported at the 95% confidence level.
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3.5.2.3 Mechanism Analysis: the Role of Flood Expectation

We then investigate the role of flood expectations in shaping cross-region collab-

oration patterns. Our hypothesis is that flood events can motivate firms to engage in

collaborative activities as a form of adaptive response. Specifically, when firms expe-

rience floods, they may seek to reduce their exposure to future risks by forming part-

nerships with firms in other counties—effectively sharing risk across geographic areas.

As such, the expectation of future flooding, shaped by a county’s historical flood expe-

riences, becomes a critical factor in driving these collaborations. If firms anticipate a

higher likelihood of future flooding based on recent trends, they may be more proactive

in building collaborative networks that enhance resilience. Therefore, we expect that

a stronger history of flooding, particularly recent flooding, will be associated with a

greater propensity to form collaborative links with external partners.

Decomposing Floods: Expected and Unexpected Component

To investigate the role of floods, we first tend to decmpose floods into the expected

part and the unexpected part. In each year, we use high-frequency data on flood risk to

estimate, for each county, a, expected flood duration as the predicted flood shock:

F̂it = f (Fi,t−5, . . . ,Fi,t−1) (3.18)

We then decompose the actual flood duration in year t, denoted by Fit , into a predictable

component—the expected flood duration F̂it—and an unpredictable flood shock, defined

as the difference between the observed and expected flood durations:

Flood Shockit = Fit − F̂it . (3.19)

where f (·) denotes a general prediction function that can take various forms. In

our benchmark analysis, the prediction function is specified as either the unweighted or

weighted average of flood durations over the previous five years. Specifically, for the

unweighted case, we define the expected flood duration as

F̂it,unweighted =
Fi,t−5 +Fi,t−4 +Fi,t−3 +Fi,t−2 +Fi,t−1

5
. (3.20)
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The economic intuition behind this specification is that all past flood events are assumed

to have an equal influence in shaping expectations. For the weighted case, we define

F̂it,weighted =
0.03125Fi,t−5 +0.0625Fi,t−4 +0.125Fi,t−3 +0.25Fi,t−2 +0.5Fi,t−1

5
.

(3.21)

Here, the economic intuition is that more recent flood events exert a stronger influence

on expectations, while older events have progressively less impact. We then decompose

the actual flood duration in year t, Fit , into a predictable component, or expected flood

duration, F̂it , and an unpredictable flood shock, defined as the difference between the

observed flood duration and expected flood duration:

Si = Fit − F̂it (3.22)

Since we have two proxies to measure floods, Cumulative Flood Duration (CFD)

and Pixel-Adjusted Flood Duration (PFD), following the approach above, we will have

expected and unexpected CFD and PDF, respectively.

Flood Expectation and County-Level Patent Applications

To understand the impact of flood expectation on patent collaborations, we then

conduct a regression similar to Equation 3.13:

Yit = β1 +β2ExpectedFloodProxyi,t−1 + γt +λi + εit (3.23)

where ExpectedFloodProxyi,t−1 denotes either ln(ExpectedCFD)i,t−1, the

lagged expected cumulative flood duration of county i, or ExpectedPFDi,t−1, the

lagged expected pixel-adjusted flood duration of county i. Other notations are the same

as Equation 3.14.

Table 3.6 reports the impact of expected flood duration on county-level patent ap-

plications. Panel A presents results using Expected Cumulative Flood Duration (ECFD)

as the independent variable, while Panel B uses Expected Pixel-Adjusted Flood Dura-

tion (EPFD). The estimates indicate that greater expected flood exposure is negatively

associated with county-level patent applications. Specifically, a 1% increase in ECFD is

associated with a 2.9% to 3.2% decline in patent applications, as shown in columns (1)
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Table 3.6: Impacts of Flood Expectation on Patent Applications
- County Level Analysis

ln(Number of Patent Applications)

(1) (2) (3) (4)

Panel A: Independent Variable - Expected Cumulative Flood Duration (ECFD)

ln(ECFD) −0.032***
(0.004)

ln(Weighted ECFD) −0.035***
(0.004)

Panel B: Independent Variable - Expected Pixel-Adjusted Flood Duration (EPFD)

EPFD −0.572***
(0.106)

Weighted EPFD −0.290***
(0.086)

R-squared 0.879 0.879 0.878 0.878
N(obs) 28,867 28,867 28,867 28,867

Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) ‘ECFD’ refers to Expected Cumulative Flood Duration, and ‘EPFD’ refers to Expected
Pixel-Adjusted Flood Duration, and the detailed construction can be found in Section 3.5.2.3;
(2) The regression takes the form of Yit = β1 + β2ExpectedFloodProxyi,t−1 + γt + λi + εit where
ExpectedFloodProxy is either Expected Cumulative Flood Duration or Pixel-Adjusted Flood Du-
ration; (3) standard errors are clustered at the county level.

and (2). And one standard deviation increase in expected pixel-adjusted flood duration

reduces patent applications by at least 5%. These results suggest that anticipated flood

risks discourage innovation at the county level, likely due to firms adjusting their R&D

investments and resource allocations in response to expected climate disruptions.



3.5. Empirical Results 128

Flood Expectation and Patent Collaborations

We then conduct regressions similar to Equation 3.25 and Equation 3.16 to un-

derstand the impact of flood expectations on cross-county patent collaborations. At the

patent level, the regression is similar to Equation 3.25 and takes the following form:

DCollabi jt = α +β1ExpectedFloodProxyi j,t +λt +ηi +π j + εi jt (3.24)

where ExpectedFloodProxyi j,t−1 denotes either ln(ExpectedCFD)i j,t−1, the lagged

expected average cumulative flood duration of county i and county j, or ExpectedPFDi,t−1,

the lagged expected average pixel-adjusted flood duration of county i and county j.

Other notations remain the same as Equation 3.14.

The results in Tables 3.7 and Table 3.2 provide strong evidence that expected flood

exposure increases interregional patent collaborations across counties. At the patent

level (Table 3.7), one standard deviation increase in Expected Pixel-Adjusted Flood

Duration (EPFD) is associated with an even larger 2.9% to 3.8% increase. Similarly, at

the county-pair level (Table 3.2), one standard deviation increase in EPFD is associated

with at least a 4.5% increase. These findings suggest that firms anticipating floods are

more likely to collaborate across regions.

While previous results (e.g., Table 3.6) show that expected floods reduce overall

innovation, the evidence here suggests that firms adjust their innovation strategies by

forming collaborations across counties. The increase in cross-county patenting reflects

how firms adapt to floods, where firms and inventors seek partners beyond their local

areas to mitigate the negative effects of floods. This highlights how flood risks influ-

ence the geographic distribution of innovation. In response to floods, firms increasingly

engage in interregional cooperation.

The county-pair analysis is as follows:

Yi jt = α +β1ExpectedFloodProxyi j,t +λt + γi j +ηi +π j + εi jt (3.25)

where ExpectedFloodProxyi j,t−1 denotes either ln(ExpectedCFD)i j,t−1, the

lagged expected average cumulative flood duration of county i and county j, or
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ExpectedPFDi,t−1, the lagged expected average pixel-adjusted flood duration of county

i and county j. Other notations remain the same as Equation 3.16

Placebo: Unexpected Flood Shock and Patent Collaborations

The results in Table 3.9 and Table 3.10 serve as a placebo test to verify that only

expected floods will foster interregional collaborations cross counties, whereas unex-

pected floods have a negative effect on patent collaborations. This placebo test is crucial

because if the observed increase in collaboration were driven by external factors unre-

lated to flood anticipation—such as general innovation trends or random shocks—then

both expected and unexpected floods should yield similar results. However, the find-

ings indicate a stark contrast: while expected floods increase collaboration (as shown

in Table 3.6 and Table 3.8), unexpected floods has a negative direct effect to reduce in-

terregional collaborations. This confirms that firms shape flood expectations and adapt

strategically in accordance to the expectation.

At the patent level (Table 3.9) and at the county-pair level (Table 3.10), we all

find a much smaller and less significant impacts of unexpected floods on collaborative

patents. These results suggest that unexpected floods have a direct and negative impact

on local innovation networks. Unlike expected floods, which allow firms to proactively

establish partnerships to mitigate risks, unexpected floods occur as sudden shocks that

disrupt economic activities and make it more difficult for firms to coordinate joint in-

novation efforts. The finding that only expected floods lead to increased collaboration

further supports the idea that firms adjust their innovation strategies in anticipation of

flood risks, rather than reacting to sudden, unpredictable events. The contrast between

expected and unexpected floods supports the argument that expected flood risk, rather

than the occurrence of unexpected floods, is the primary driver of interregional innova-

tion collaboration.
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Table 3.7: Impacts of Flood Expectation on Patent Collaborations
- Patent Level Analysis

Collaborative Patent Dummy

(1) (2) (3) (4)

Panel A: Independent Variable - Expected Cumulative Flood Duration (ECFD)

ln(ECFD) 0.031***
(0.001)

ln(Weighted ECFD) 0.034***
(0.001)

Panel B: Independent Variable - Expected Pixel-Adjusted Flood Duration (EPFD)

EPFD 0.221***
(0.032)

Weighted EPFD 0.164***
(0.025)

R-squared 0.408 0.407 0.393 0.393
N(obs) 452,734 452,734 452,734 452,734

Fixed Effects
Year Y Y Y Y
County 1 Y Y Y Y
County 2 Y Y Y Y
Patent Type Y Y Y Y

Note: (1) ‘ECFD’ refers to Expected Cumulative Flood Duration, and ‘EPFD’ refers to Expected
Pixel-Adjusted Flood Duration, and the detailed construction can be found in Section 3.5.2.3; (2)
The regression takes the form of DCollabi jt = α +β1ExpectedFloodProxyi j,t +λt +ηi +π j + εi jt

where ExpectedFloodProxy is either Expected Cumulative Flood Duration or Pixel-Adjusted Flood
Duration; (3) standard errors are clustered at the county level.
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Table 3.8: Impacts of Flood Expectation on Patent Collaborations
- County Pair Level Analysis

ln(Number of Collaborative Patents)

(1) (2) (3) (4)

Panel A: Independent Variable - Expected Cumulative Flood Duration (ECFD)

ln(ECFD) 0.008***
(0.003)

ln(Weighted ECFD) 0.010***
(0.003)

Panel B: Independent Variable - Expected Pixel-Adjusted Flood Duration (EPFD)

EPFD 0.197
(0.149)

Weighted EPFD 0.253***
(0.105)

R-squared 0.434 0.434 0.434 0.434
N(obs) 65,828 65,828 65,828 65,828

Fixed Effects
Year Y Y Y Y
County-Pair Y Y Y Y
County 1 Y Y Y Y
County 2 Y Y Y Y

Note: (1) ‘ECFD’ refers to Expected Cumulative Flood Duration, and ‘EPFD’ refers to Ex-
pected Pixel-Adjusted Flood Duration, and the detailed construction can be found in Section
3.5.2.3; (2) The regression takes the form of Yi jt = α +β1ExpectedFloodProxyi j,t +λt +γi j +
ηi + π j + εi jt where ExpectedFloodProxy is either Expected Cumulative Flood Duration or
Pixel-Adjusted Flood Duration; (3) standard errors are clustered at the county-pair level.
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Table 3.9: Impacts of Unexpected Floods on Patent Collaborations
- Patent Level Analysis

Collaborative Patent Dummy

(1) (2) (3) (4)

Panel A: Independent Variable - Unexpected Cumulative Flood Duration (UCFD)

ln(UCFD) −0.010***
(0.000)

ln(Weighted UCFD) −0.009***
(0.000)

Panel B: Independent Variable - Unexpected Pixel-Adjusted Flood Duration (UPFD)

UPFD −0.015*
(0.009)

Weighted UPFD −0.015*
(0.008)

R-squared 0.396 0.396 0.393 0.393
N(obs) 452,734 452,734 452,734 452,734

Fixed Effects
Year Y Y Y Y
County 1 Y Y Y Y
County 2 Y Y Y Y
Patent Type Y Y Y Y

Note: (1) ‘UCFD’ refers to Unexpected Cumulative Flood Duration, and ‘UPFD’
refers to Unexpected Pixel-Adjusted Flood Duration, and the detailed construction can
be found in Section 3.5.2.3; (2) The regression takes the form of DCollabi jt = α +
β1UnexpectedFloodProxyi j,t + λt + ηi + π j + εi jt where UnexpectedFloodProxy is either
Unexpected Cumulative Flood Duration or Unexpected Pixel-Adjusted Flood Duration; (3)
standard errors are clustered at the county level.
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Table 3.10: Impacts of Unexpected Floods on Patent Collaborations
- County Pair Level Analysis

ln(Number of Collaborative Patents)

(1) (2) (3) (4)

Panel A: Independent Variable - Unexpected Cumulative Flood Duration (UCFD)

ln(UCFD) −0.003**
(0.002)

ln(Weighted UCFD) −0.004**
(0.002)

Panel B: Independent Variable - Unexpected Pixel-Adjusted Flood Duration (UPFD)

UPFD −0.006
(0.049)

Weighted UPFD −0.032
(0.040)

R-squared 0.434 0.434 0.434 0.434
N(obs) 65,828 65,828 65,828 65,828

Fixed Effects
Year Y Y Y Y
County-Pair Y Y Y Y
County 1 Y Y Y Y
County 2 Y Y Y Y

Note: (1) ‘ECFD’ refers to Unxpected Cumulative Flood Duration, and ‘EPFD’ refers to Unx-
pected Pixel-Adjusted Flood Duration, and the detailed construction can be found in Section
3.5.2.3; (2) The regression takes the form of Yi jt = α +β1UnexpectedFloodProxyi j,t +λt +
γi j+ηi+π j+εi jt where UnexpectedFloodProxy is either Unexpected Cumulative Flood Du-
ration or Unexpected Pixel-Adjusted Flood Duration; (3) standard errors are clustered at the
county-pair level.
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3.5.3 Testing the Mutual-Support Hypothesis

We then focus exclusively on counties that have engaged in cross-county collabo-

rations, which can be classified into three types: Type A (flooded and flooded), Type B

(flooded and non-flooded), and Type C (non-flooded and non-flooded). We use county

pairs in Type C as the control group, as they provide a benchmark for collaboration

patterns in the absence of flood exposure.

In Columns (1) and (2), we compare the collaborative patterns of county pairs in

which at least one county has experienced floods (Types A and B) with those in the

control group (Type C). We find that a standard deviation increase in pixel-adjusted

flood duration is associated with a 2.1% increase in collaborative patents, and a 3.5%

increase in collaborative patents among counties that have all experienced floods. Fi-

nally, in Columns (5) and (6), we analyze the collaborative patterns of county pairs in

which only one county has experienced floods (Type B), again using Type C as the con-

trol group. The smaller and less significant coefficients in these columns suggest that

flood exposure does not substantially increase cross-county collaboration when only

one county in the pair has experienced floods.
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Table 3.11: Heterogeneous Impacts of Floods on Patent Collaborations
- County Pair Level Analysis

ln (Number of County-Pair Collaborative Patents)

Sample: Type A+B+C Type A+C Type B+C

(1) (2) (3) (4) (5) (6)

ln(CFD) 0.011*** 0.018*** 0.008**
(0.003) (0.004) (0.003)

L1(PFD) 0.120** 0.193** 0.089
(0.059) (0.086) (0.086)

R-squared 0.434 0.434 0.438 0.438 0.438 0.438
N(obs) 65,828 65,828 58,760 58,760 62,410 62,410

Fixed Effects
Year Y Y Y Y Y Y
County-Pair Y Y Y Y Y Y
County 1 Y Y Y Y Y Y
County 2 Y Y Y Y Y Y

Note: (1) Detailed definition of CFD (Cumulative Flood Duration) and PFD (Pixel-Adjusted Flood Duration) can be
found in Section 3.4.1; (2) The regression specification is: Yi jt =α+β1FloodProxyi j,t +λt +γi j+ηi+π j+εi jt where
FloodProxyi,t−1 is either ln(L1(CFD))), the logarithm of lagged CFD (lagged by one year), or L1(PFD), the lagged
PFD (lagged by one year); (3) ‘Type A’ refers to collaborations between flooded counties, ‘Type B’ refers to col-
laborations between flooded and non-flooded counties, while ‘Type C’ refers to collaborations between non-flooded
counties; (4) Through Column (1) - (6), the control group is C Type cross-county collaborations; (5) Standard errors
are clustered at the county-pair level.
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The results in Table 3.12 further reinforce the finding that shared flood experiences

play a crucial role in fostering inter-county collaboration on patents. Across all spec-

ifications, we find that increased flood exposure is associated with a higher likelihood

of patent collaborations. Notably, in columns (3) and (4), where we focus on collabo-

rations exclusively among flooded counties, the effect is particularly strong — an addi-

tional standard deviation increase of pixel-adjusted flood exposure is associated with a

8.4% increase. This indicates that counties facing similar flood-related challenges are

significantly more likely to engage in joint innovation efforts. In contrast, when we

examine collaborations between flooded and non-flooded counties in columns (5) and

(6), we still find positive and significant effects, though they are relatively smaller in

magnitude. It suggests thatt while floods can facilitate collaboration across different

types of counties, the strongest cooperative responses occur when both counties have

directly experienced flooding.

Overall, we find that collaboration is more pronounced between counties that have

both experienced floods, highlighting the critical role of shared flood experiences in

fostering inter-county cooperation. Counties in which both members of a pair have

faced flooding (Type A) exhibit significantly stronger collaborative responses compared

to those where only one county has been affected (Type B). This pattern suggests that

mutual exposure to flood risks creates a stronger foundation for joint collaboration.

These findings indicate that floods have reshaped the geographical distribution of patent

collaborations, particularly among counties with similar flood histories.
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Table 3.12: Heterogeneous Impacts of Floods on Patent Collaborations
- Patent Level Analysis

Collaborative Patent Dummy

Type of Collaboration: No Restriction among Flooded Flooded and non-Flooded

(1) (2) (3) (4) (5) (6)

ln(L1(CFD)) 0.013*** 0.037*** 0.067***
(0.001) (0.001) (0.001)

L1(PFD) 0.058*** 0.471*** 0.229***
(0.014) (0.027) (0.023)

R-squared 0.395 0.393 0.466 0.421 0.414 0.297
N(obs) 452,734 452,734 452,734 452,734 452,734 452,734

Fixed Effects
Year Y Y Y Y Y Y
County 1 Y Y Y Y Y Y
County 2 Y Y Y Y Y Y
Patent Type Y Y Y Y Y Y

Note: (1) Detailed definition of CFD (Cumulative Flood Duration) and PFD (Pixel-Adjusted Flood Duration) can be found in Sec-
tion 3.4.1; (2) The regression specification is: DCollabi jt = α + β1FloodProxyi j,t + λt + ηi + π j + εi jt FloodProxyi,t−1 is either
ln(L1(Cumulative Flood Duration)), the logarithm of lagged CFD (lagged by one year), or L1(Pixel-Adjusted Flood Duration), the lagged
PFD (lagged by one year); (3) ‘among Flooded’ refers to collaborations between flooded counties, ‘Flooded and non-Flooded’ refers to col-
laborations between flooded and non-flooded counties; (4) Standard errors are clustered at the county level.
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The results in Table 3.13 suggest that counties tend to collaborate on disaster mit-

igation patents following flood events. When we restrict our analysis to Sample A,

where we exclude collaborations between flooded and non-flooded counties, the effect

on disaster mitigation patents becomes even more pronounced. In this subset, as shown

in column (4), a standard deviation increase in cumulative flood duration corresponds to

a roughly 1.2% increase in county-pair collaborative disaster-mitigation patents. These

results suggest that counties with similar flood experiences are more likely to engage

in joint innovation efforts to develop disaster-mitigation technologies. However, we do

not find significant evidence that flood exposure fosters collaborations between flooded

and non-flooded counties.
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Table 3.13: Impact of Floods on Disaster Mitigation Patents
- County Pair Level Analysis

ln (Number of County-Pair Collaborative Disaster-Mitigation Patents)

Sample: Type A+B+C Type A+C Type B+C

(1) (2) (3) (4) (5) (6)

ln(CFD) 0.004*** 0.007*** 0.002
(0.001) (0.002) (0.002)

L1(PFD) 0.015 0.067*** −0.027
(0.018) (0.022) (0.028)

R-squared 0.006 0.005 0.031 0.030 −0.007 −0.007
N(obs) 65,828 65,828 58,760 58,760 62,410 62,410

Fixed Effects
Year Y Y Y Y Y Y
County-Pair Y Y Y Y Y Y
County 1 Y Y Y Y Y Y
County 2 Y Y Y Y Y Y

Note: (1) Disaster mitigation patents are those related to disaster alleviation and are identified using China Me-
teorological Disaster Yearbook and the National Emergency Response Plan; (2) Detailed definition of CFD
(Cumulative Flood Duration) and PFD (Pixel-Adjusted Flood Duration) can be found in Section 3.4.1; (3)
Disater-mitigation patents refer to patents that target disaster alleivation; (4) The regression specification is:
Yi jt = α +β1FloodProxyi j,t +λt + γi j +ηi +π j + εi jt where Yi jt represents the logarithm Number of County-Pair
Collaborative Disaster-Mitigation Patents, FloodProxyi,t−1 is either ln(L1(CFD))), the logarithm of lagged CFD
(lagged by one year), or L1(PFD), the lagged PFD (lagged by one year); (5) ‘Type A’ refers to collaborations be-
tween flooded counties, ‘Type B’ refers to collaborations between flooded and non-flooded counties, while ‘Type
C’ refers to collaborations between non-flooded counties; (6) Through Column (1) - (6), the control group is C
Type cross-county collaborations; (7) Standard errors are clustered at the county-pair level.
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3.6 Conclusion

This paper demonstrates that floods can significantly reshape the geography of

innovation. While severe floods reduce localized innovation in directly affected ar-

eas, they simultaneously stimulate inter-regional collaborations. Using detailed data on

patent applications and satellite-derived flood exposure from 2008 to 2018 in China, we

find strong evidence of a dual response: firms reduce local R&D activities but increas-

ingly turn to external partners.

Our theoretical framework, grounded in a search-and-matching model, highlights

two mechanisms driving this response. First, under the risk-sharing mechanism, firms

collaborate across regions to hedge against localized productivity shocks caused by

flooding. Second, the mutual-support mechanism shows that shared flood experiences

foster cooperation in developing disaster-resilient technologies.

Empirical results validate the hypotheses generated by the theoretical framework.

First, we find that cross-county collaborations increase significantly following flood

events, especially among county pairs with similar flood histories. Importantly, this

response is driven by expectations of future flood risk rather than by sudden, unexpected

flood shocks. Second, we find that firms located in flooded counties tend to collaborate

with each other to develop flood resilient patents.

Overall, our findings contribute to a growing literature on climate adaptation and

innovation. They suggest that environmental shocks—while disruptive—can also trig-

ger productive reallocation in innovation networks. By encouraging firms to collaborate

more broadly across geographic boundaries, floods may lead to a spatially redistributed

innovation networks.
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Appendix of Chapter 1

A.1 Supplementary Materials of Research Back-

ground

A.1.1 List of Flood Detention Basins
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Figure A1: Flood Detention Basins in 2000 (Original Policy Document)
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Figure A2: Flood Detention Basins in 2010 (Original Policy Document)
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Figure A3: Flood Detention Basins in 2010 (Original Policy Document), continued
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Table A1: Flood Detention Basins in the Main River Basins of China (2000)

River Basin Number of FDBs Affected Population Total Area Storage Capacity
(million) (km2) (billion m3)

Yangtze 40 6.12 11,959 63.6
Yellow 5 3.18 5,212 12.9
Hai 26 4.40 9,597 17.2
Huai 26 1.61 3,674 14.1

Total 97 15.3 30,443 107.7
% of China 1.1% 0.3%

Note: (1) This table reports the number of FDBs, affected population, total FDB areas,
and the storage capacity of FDBs in 2003; (2) ‘% of China’ refers to the percentage of af-
fected population to the whole population in China and the percentage of total area to the
total area of China.
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Table A2: Number of FDBs under 2000 and 2010 Policy

FDBs Located in:

Rivers N(FDBs) N(Provinces) N(Municipalities*) N(Cities) N(Counties)

2000 Policy
Yangtze 40 4 0 10 28
Hai 26 3 2 11 37
Huai 26 2 0 9 19
Yellow 5 2 0 6 12
Total 97 8 2 36 96

2010 Policy
Yangtze 44 5 0 11 31
Hai 28 3 2 11 39
Huai 21 3 0 14 24
Yellow 2 2 0 5 8
Songhua 2 1 0 2 3
Zhu 1 1 0 1 1
Total 98 11 2 44 106
∆(2010-2000) 1 3 0 8 10

Note: (1) The term ‘2000 Policy’ refers to the National Flood Control Law implemented by
China’s Ministry of Water Resources in 2000, and ‘2010 Policy’ to its subsequent update in
2010; (2) The ‘Total’ number might differ from the sum because some basins span multiple
provinces, cities, and counties; (3) The term ‘Municipalities*’ denotes municipalities directly
governed by China’s Central Government, specifically Beijing and Tianjin in this study; (4)
Under the 2000 Policy, provinces designated as Flood Detention Basin (FDB) regions in-
cluded Hunan, Hubei, Anhui, Henan, Hebei, Shandong, Jiangxi, and Jiangsu. The 2010 Pol-
icy expanded this list to include Heilongjiang, Jilin, and Guangdong.
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Table A3: Descriptive Statistics: FDB Counties and non-FDB Counties

Mean Unit FDB Counties non-FDB Counties
N(Counties) 116 2,363
N(obs) 2,709 55,729
Geographical Factors:
Slope 6.14 12.46
Elevation 45.24 561.28
N(Permanent Water Pixels) 1136.33 388.77
Floods:
Size-Adjusted Flood Exposure days 0.126 0.020
Size of Flood Inundation pixels 5,024.44 679.98
Socio-Economic Variables:
Population thousands 853.41 632.80
Nighttime Light Intensity 1,676,066 1,259,737
Number of Firms 5,669.49 5,496.63

Note: (1) We use a county panel of 20 years (2000 - 2020); (2) Detailed introduction
of data used in this research can be found in Section 1.3.1; (3) From 2000 to 2020, a
total of 116 counties have been designated as FDB counties. In 2000, the government
selected 96 FDB counties. In 2010, the government selected another 20 counties into
the FDB list, but removed 10 from the list.

A.1.2 Example of FDB Implementation (Mengwa FDB)

To illustrate the function of FDBs, we look at flood management in the Huai River

Basin (HRB). Located in the transition zone between the southern and northern cli-

mates of China, the Huai River Basin experiences dramatic climate changes, resulting

in precipitation that varies both spatially and temporally. 70% of the precipitation is

concentrated in the flood season from June to September. Due to the unique geograph-

ical condition of the HRB, flooding is frequent. For example, the HRB has seen floods

in six years in the 1990s.

In 2007, a high-intensity rainfall hit the HRB and the average rainfall reached 465

mm. The precipitation led to multi-peak flooding in the Huaihe River and threatened

the downstream areas of the Flood Detention Basin. When the water level reached

29.3m on July 10, the government raised the flood severity level to the highest and

operated the Wangjiaba Dentention Basin. The basin diverted water for 46 hours and

stored flood with a volume of 250 million cubic meters. Even though the downstream
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Figure A4: FDB Counties and FDB-Protected Districts in Huai River Basin

Figure A5: Wangjiaba Location (Source: Zhang and Song 2014)

land is protected, the use of Mengwa resulted in a forced migration of more than 3,000

people, an inundation of more than 12,000 hectares of farmland, and destruction of all

Wangjiaba infrastructure. According to Chinese government, the 2007 flood affected

around 2.5 million hectares of crops and caused a direct economic loss of around 2.5

billion USD, which is around 50 % less than the flood loss in 1991. The decrease in

economic loss is largely contributed to the operation of FDBs.
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Figure A6: Before and After Flood Water Diversion of Mengwa Flood Detention Basin
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A.1.3 Empirical Analysis of FDB Selection

To understand determinants of FDB selections, we run a linear probability regres-

sion model:

FDBict = α +β1Geoict +β2ln(Light)ict + γc +λt + εict

where FDBicut is a dummy variable that equals 1 if the county i in city c is designated as

an FDB county in 2000, and 0 otherwise. Geoict represents geographical controls (ele-

vation, gradient, and precipitation), which are key factors that affect floods. ln(Light)ict

represents the logarithm nighttime light intensity. γc, λt are city and time fixed effects,

respectively. εict is the standard error, that clustered at city level.

According to the Chinese government, FDBs are located in low-lying lands that

are hydrologically feasible to collect flood water. Table A4 provides supportive evi-

dence that the FDB selection is mainly based on geographical factors, especially, ele-

vation. However, we do not find evidence that FDB selection is significantly correlated

with economic factors, for example, nighttime light intensity.
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Table A4: FDB Selection Criteria: Linear Probability Model

(in logarithm) (1) (2) (3) (4) (5)
Elevation −0.059*** −0.052***

(0.017) (0.015)
Gradient −0.043*** 0.011

(0.010) (0.025)
Precipitation −0.003 0.000

(0.005) (0.005)
Nighttime Light 0.006* 0.007

(0.004) (0.004)

N(obs) 48,280 48,280 48,280 48,280 48,280
R2 0.350 0.358 0.343 0.344 0.365

Fixed Effects
Year Y Y Y Y Y
City Y Y Y Y Y

Note: (1) We use a county panel of 10 years (1990-2000); (2) The dependent variable is a dummy FDBi

that equals 1 if the county i has a Flood Detention Basin, and equals 0 if not; (3) All regressions control
for city fixed effects and year fixed effect; (4) Standard errors are clustered at the city level.

A.1.4 Compensation

According to Temporary Measures for the Use of Compensation in Flood Storage

and Detention Areas, for crops, specialized farming, and economic forests, compen-

sation will be provided at 50-70%, 40-50%, and 40-50% of the average annual output

value over the three years prior to the flood detention, respectively. For housing, com-

pensation will be provided at 70% of the flood damage loss. For household agricultural

machinery, draft animals, and major durable household goods, compensation will be

provided at 50% of the flood damage loss. However, if the total registered value of

household agricultural machinery, draft animals, and major durable household goods is

less than 2,000 yuan, compensation will be provided at 100% of the flood damage loss.

If the flood damage loss exceeds 2,000 yuan but is less than 4,000 yuan, compensation

will be provided at 2,000 yuan.

However, compensation will not be provided if satisfying either conditions:

(i)losses from flood damage caused by refusal to abandon farmland that should be aban-

doned, refusal to relocate when required by national regulations, or losses resulting from
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unauthorized farming or returning after abandoning farmland or relocation; (ii) losses

from flood damage to housing built in violation of safety construction plans or schemes

for the flood detention area; (iii) kosses from flood damage to household agricultural

machinery, draft animals, and major durable household goods that could have been

transferred according to relocation orders but were not.

Figure A7: FDB Compensation According to Temporary Measures for the Use of Com-
pensation in Flood Storage and Detention Areas (original policy document)

Zhuozhou was used for flood water diversion in 2023. According to the compen-

sation regulation, each person will receive no less than 30 RMB (5 USD) per day for

basic living assistance during the emergency period, which will last no more than 15

days. For those unable to meet their basic living needs due to a disaster, each person will

receive no less than 30 RMB (5 USD) per day, for a period not exceeding 3 months. For

those who need temporary relocation, each person will receive no less than 2,000 RMB
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(300 USD) as standard assistance during the period of resettlement. For agricultural

households, 70% of the cost will be compensated, and for non-agricultural households,

40% of the cost will be compensated. In the case of death due to a disaster in designated

flood storage areas (including regular residents), each affected household will receive a

compensation of 20,000 RMB (3,000 USD).

Figure A8: Actual FDB Compensation for Flood Detention in Baoding, Hebei
Province in 2023 (original policy document)
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A.2 Supplementary Materials of Economic Costs

on FDB Counties

A.2.1 Supplementary Materials of Synthetic-DiD Results

Figure B1: Dynamic Impacts of 2000 and 2010 FDB Policy Change on Light Intensity
Note: (1) Each dot represents the policy effect (ATT) estimated using the SDID

event-study approach by Arkhangelsky et al. (2021)); (2) Data: 1990-2020
Nighttime Light Intensity data; (3) 96 counties were selected into the FDB list

in 2000, while 20 counties were selected into the FDB list in 2010; (3) The
event-study regression includes county and year fixed effects; (4) Standard

Error: Bootstrap.

A.2.2 Individual Outcomes

A.2.2.1 Data Source: China Family Panel Studies (CFPS)

The China Family Panel Studies (CFPS) is a nationally representative, biennial

longitudinal survey initiated in 2010 by the Institute of Social Science Survey (ISSS)

at Peking University. This survey is designed to capture individual-, family-, and

community-level data across a broad range of topics in contemporary China. It pro-

vides rich insights into both economic and non-economic aspects of well-being, cover-



A.2. Supplementary Materials of Economic Costs on FDB Counties 155

ing areas such as economic activities, education outcomes, family dynamics, migration,

and health. Funded by the Chinese government through Peking University, the CFPS

aims to offer the academic community one of the most comprehensive and high-quality

datasets available on modern China.

A.2.2.2 Empirical Strategy

To compare the individual income in FDB and non-FDB counties, we conduct the

regression below:

ln(income)ic jt = α +β1FDBic jt + γ j +λt + ε j

where ln(income)ic jt indicates the logarithm income of individual i residing in county

c and city j, in year t, FDBic jt is a dummy variable that equals 1 if the county c is an

FDB county in year t, and 0 if not, gamma j is city fixed effect, λt is time fixed effect,

standard errors are clustered at the city level.

Here, β1 measures the difference in individual income in FDB counties and other

counties. If it is negative, then individual income in FDB counties is lower than other

counties, holding city and year constant. Note that we are not presenting a casual result

because we do not have data before 2010 (the treatment year).

A.2.2.3 Result

Table B1 shows that individual income is lower in FDB counties, further support-

ing the argument that these counties bear long-term economic costs, as we present in

Section 1.5. Specifically, Columns (2) and (4) indicate that, after controlling for key

socio-economic factors, individuals in FDB counties earn approximately 18% less than

those in other counties within the same city and year. However, due to data limita-

tions, our analysis is based on residents from only six FDB counties. A comprehen-

sive understanding of the living condition of residents in FDB counties require better

individual-level data.
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Table B1: Impacts of FDB Policy on Individual Income

Sample Selection

All Counties Excluded Spillover Counties

Outcome: ln(Income) (1) (2) (3) (4)

FDB −0.249*** −0.176*** −0.249*** −0.175***
(0.007) (0.006) (0.008) (0.006)

N(Obs) 70,652 70,652 68,853 68,853
N(FDB Residents) 3,012 3,012 3,012 3,012
N(Provinces) 25 25 25 25
N(Cities) 127 127 123 123
N(Counties) 162 162 158 158
N(FDB Counties) 6 6 6 6
Controls N Y N Y
Fixed Effects
Year Y Y Y Y
City Y Y Y Y

Note: (1) Data source: 2010, 2012, 2014, 2016, 2018 and 2020 China Family Panel Studies (CFPS);
(2) This table presents results of fixed-effect regression: ln(income)ic jt =α+β1FDBic jt +γ j+λt +ε j,
ln(income)ic jt indicates the logarithm income of individual i residing in county c and city j, in year
t, FDBic jt is a dummy variable that equals 1 if the county c is an FDB county in year t, and 0 if not,
gamma j is city fixed effect, λt is time fixed effect, standard errors are clustered at the city level; (3)
‘Spillover Counties’ refers to those counties geographically adjacent to FDB counties; (4) Controls:
age, married, gender, year of education, and urban status.

A.2.3 Robustness and Placebos
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Figure B2: Event Study Robustness Check
Note: (1) Each dot represents the policy effect (ATT) estimated using different

event-study approach; (2) ‘TWFE’ represents the traditional
two-way-fixed-effects approach, ‘C&D’ refers to the two-way fixed effects

estimators with heterogeneous treatment effects proposed by de Chaisemartin
and D’Haultfœuille (2020), ‘Gardner’ refers to the two-stage DID approach by

Gardner (2022), ‘C&S’ refers to the DID with multiple time periods by
Callaway and Sant’Anna (2021); (3) Data: 1990-2020 Nighttime Light

Intensity data; (4) 96 counties were selected into the FDB list in 2000, while 20
counties were selected into the FDB list in 2010; (5) The event-study

regression includes county and year fixed effects, standard errors are clustered
at county level; (6) We report the confidence interval at 95% confidence level.
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Table B2: Robustness Check using Different DID Methods

TWFE SDID C&D Gardner C&S
(1) (2) (3) (4) (5)

FDB −0.176*** −0.156*** −0.115*** −0.182*** −0.147***
(0.056) (0.025) (0.030) (0.064) (0.040)

N(obs) 70,463 70,463 70,463 70,463 70,463

Fixed Effects
Year Y Y Y Y Y
County Y Y Y Y Y

Note: (1) Each point estimate represents the policy effect (ATT) estimated using different difference-in-
differences (DID) approach, ‘TWFE’ represents the traditional two-way-fixed-effects approach, ‘SDID’
refers to the synthetic DID proposed by Arkhangelsky et al. (2021), ‘C&D’ refers to the two-way fixed
effects estimators with heterogeneous treatment effects proposed by de Chaisemartin and D’Haultfœuille
(2020), ‘Gardner’ refers to the two-stage DID approach by Gardner (2022), ‘C&S’ refers to the DID with
multiple time periods by Callaway and Sant’Anna (2021); (2) Data: 1990-2020 Nighttime Light Intensity
data; (3) 96 counties were selected into the FDB list in 2000, while 20 counties were selected into the
FDB list in 2010; (3) All regressions includes county and year fixed effects, standard errors are clustered
at county level in Column (1), and (3) - (5), standard errors in Column (2) is set to be bootstrap; (4) The
selection of control group is consistent with Column (1) in Table 1.2.
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Figure B3: Placebo Test
Note: (1) This figure presents results of three distinct types of placebo tests of
the traditional TWFE DID: the in-time placebo test, the in-space placebo test,

and the mixed placebo test; (2) In the in-time placebo tests, we forward the
treatment time by several years, using fake treatment times to assess if our

results are driven by temporal trends rather than the actual intervention; (3) For
the in-space placebo tests, we assign treatment to randomly selected units that
did not receive the intervention, testing the robustness of our findings against

spatial confounding factors; (4) The mixed placebo tests combine both
approaches by randomly assigning fake treatment units and times.
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Appendix of Chapter 2

B.1 Supplementary Materials of General Equilib-

rium Framework

B.1.1 An Illustrative Partial Equilibrium Model

We begin by concretizing the ‘firm response effect’ using an illustrative partial

equilibrium model. While our comprehensive general equilibrium model accounts for

interactions between different counties by including the flow of capital and manufactur-

ing goods, this simpler model offers more straightforward economic intuitions regard-

ing the trade-off between equality and efficiency in designing this flood risk redistribu-

tion policy. We then extend our analysis to the full general equilibrium model, which we

use for counterfactual scenarios and to assess the benefit to cost ratio of FDB policies.

Flood Risk and Firm Investment Decision

In a two-period model, we assume that there are two types of counties, i = s, p.

County s represents FDB counties that are sacrificed for protecting other counties,

county p represents counties that are protected by FDB counties.

In period 1, the risk-neutral investor is endowed with an initial wealth, W , that can

be used for consumption, investments in different counties, and investment in bonds. In
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period 2, investors consume the investment returns from the first period. The optimiza-

tion problem is characterized below.

max
c0,c1,as,ap,b

c0 +βEµc1

s.t. c0 + ∑
i=s,p

ai +b =W

c1 = ∑
i=s,p

(1+ ri)ai +(1+ r f )b

Here, c0 and c1 represent the consumption at period 1 and period 2, respectively. as

and ap represent investors’ period-one investment in sacrificed county and in protected

county. b represents the bond investment. ri is the return of assets, or the marginal

benefit of investing in assets. r f is the risk-free interest rate.

The production problem is characterized as:

max
ki

zikα
i − r̄iki

Here, ki is the capital input in county i. zi represents the productivity in county i. r̄i

represents the effective cost of investment in county i.

At each flood event, µ = {τs,τp}, where τi is a dummy that equals 1 if the county

is flooded at the flood event, and 0 if not. We consider flood as independent event in

two types of counties. The flood probability of each county is Pr(τi = 1) = pi. Flood

event will create a wedge between return of asset, ri, and effective cost of investment,

r̄i such that

ri = r̄i − τid

where d is the damage per asset caused by flood. Here, we assume that flood will

cause proportional damages per asset that are identical across sacrificed and protected

county.

The market clearing condition requires ri,t to clear the local capital market such

that:
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ki = ai

Following the above conditions, the optimal investment can be characterized as

below:

αziaα−1
i − r f = pid

We can also consider the optimally condition as the characterization of flood risk

premium. Here, the marginal product of capital is MPKi = αziaα−1
i . Hence, the differ-

ence between MPKi and r f can be interpreted as the flood risk premium, which equals

the expected damage caused to the county i. Hence, the optimal investment ai is de-

termined by the flood probability pi. Specifically, when flood probability increases, the

amount of investment will decrease.

Impact of FDB Policy

We believe that the key function of FDB policy is to redistribute flood risk. To

be more specific, the FDB policy aims to increase the flood risk in sacrificed county by

∆p and decrease the flood risk in protected county by ∆p. Hence, in sacrificed county,

the FDB-adjusted flood probability will be p′s = ps +∆p. And in protected county, In

protected county, the FDB-adjusted flood probability will be: p′p = pp −∆p. In Section

1.4, we find empirical evidence to confirm the validity of this assumption. Holding

geographical conditions constant, we find that flood inundation area in sacrificed FDB

counties is more than 50% higher, and the size adjusted flood exposure is around 5%

higher in FDB counties (see Table 1.1).

Proposition 1 (Trade-off in Equality and Efficiency ) Assume zp
(ppd+r f )2−α > zs

(psd+r f )2−α ,

then we have: d(ap+as)
d p > 0 and d(ap−as)

d p < 0.

zp
(ppd+r f )2−α > zs

(psd+r f )2−α indicates that the damage standardized productivity in

protected county is higher than that in sacrificed county. In other words, it specifies

that a government that prioritizes efficiency has correctly identified counties worth to

be protected.
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The implication of this proposition are twofolds. First, FDB policy will bring an

increase in total investment and will improve the economic resilience towards floods.

The flood risk redistribution from protected to sacrificed counties will increase the total

investment ap + as. Second, FDB policy will also bring the inequality between sacri-

ficed counties and protected counties because the investment gap ap − as will increase

as well. We provide proof of this proposition in the Appendix B.1.2.

B.1.2 Proof of Proposition 1

Given flood event µ = {τs,τp}, we can rewrite the investor’s optimization problem

in state-contingent form:

max
c0,as,ap,b,c1(µ)

c0 +βEµc1(µ)

s.t. c0 + ∑
i=s,p

ai +b =W

c1(µ) = ∑
i=s,p

(1+ ri(µ))ai +(1+ r f )b

The first-order conditions of the optimization problem yields the optimal asset

positions {ai}i=s,p:

∑
µ

Pr(µ)[1+ ri(µ)] = 1+ r f

where the actual investment returns ri(µ) are determined by intrinsic capital pro-

ductivity in the local area r̄i and flood damage under event µ:

ri(µ) = r̄i −FloodDamage(µ)

Plugging the actual investment return expressions into the Euler equation yields:

r̄i − r f = ∑
µ

Pr(µ)FloodDamage(µ)

Assume that the county-specific events τi are independently distributed, then we

get the pricing functions for county-specific assets {ai}i=s,p are given by:
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r̄i − r f = pid (B.1)

The intrinsic capital productivity of county i is given by the following optimization

problem:

max
ki

zikα
i − r̄iki

Combined with market clearing conditions ki = ai, the intrinsic capital return r̄i is

given by:

r̄i = αziaα−1
i

Plugging it into equation (21), it yields:

ai =
αzi

r f + pid

1
1−α

Consider a FDB policy that reallocates d p > 0 flood risk from protected county

d pp =−d p to sacrificed county d ps = d p. Assume that zp
(ppd+r f )2−α > zs

(psd+r f )2−α . The

impacts on aggregate capital investments and investment gap can be described by:

d(ap +as)

d p
=

d
1−α

[
αzp

(r f + ppd)2−α

1
1−α − αzs

(r f + psd)2−α

1
1−α

]
> 0

d|ap −as|
d p

=
d

1−α

[
αzp

(r f + ppd)2−α

1
1−α

+
αzs

(r f + psd)2−α

1
1−α

]
> 0

B.1.3 Direct Protection Effect

In Table A1, we first estimate the direct protection effect by running the regression

lnLighticpt =α+β1Floodedicpt +β2Flooded×FDBicpt +β3Flooded×Protectedicpt +Xicpt +γpt +λc+εc
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where lnLighticpt is the ln(nighttime light intensity) of county i in city c, province p, at

time t. Floodedicpt is a dummy variable that equals 1 if the county is flooded in year t,

and 0 if not. FDBicpt is a dummy variable that equals 1 if the county is an FDB county,

and 0 if not. Protectedicpt is a dummy variable that equals 1 if the county is an FDB-

protected county, and 0 if not. Xicpt are controls. γpt is province-year fixed effect, ηt is

time fixed effect, and λc is city fixed effect. εc is the standard error, which is clustered

at the city level.

Following this specification, β2 measures the impact of a county being designated

as FDB county, while β3 measures the impact of a county being protected by FDB

counties. As shown in Table A1, we find that a protected county tends to suffer around

10% less when being hit by floods. However, an FDB county tends to suffer around

18% more when being hit by floods. This results indicates that FDB-protected counties

are directly protected in flood events.
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Table A1: Reduced Form: Direct Protection Effect

ln(Nighttime Light Intensity)

Flooded −0.053** −0.048* −0.055* −0.059*
(0.027) (0.027) (0.031) (0.032)

Flooded × FDB −0.177* −0.180*
(0.092) (0.067)

Flooded × Protected 0.105* 0.104*
(0.061) (0.067)

N(obs) 5,242 5,242 5,242 5,242
R2 0.888 0.887 0.887 0.888

Fixed Effects
Province-Year Y Y Y Y
City Y Y Y Y
Controls
Demographic Y Y Y Y
Geographical Y N Y N

Note: (1) FDB is a dummy that equals 1 if the county i has once labeled as a Flood
Detention Basin county, and equals 0 if not; (2) All regressions control for city fixed
effects, province-by-year fixed effects, and a set of county-level controls (land area,
population, and precipitation); (3) Standard errors are clustered at the county level.
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B.1.4 Elasticity between Flood and Productivity

Table A2: Flood Impact on Productivity

(ln) Total Productivity Manufacturing Productivity

Size-adjusted Flooded Days −0.043** −0.059*
(0.021) (0.032)

N(obs) 1,283 1,283

Fixed Effects
Year Y Y
City Y Y

Note: (1) FDB is a dummy that equals 1 if the county i has once labeled as a
Flood Detention Basin county, and equals 0 if not; (2) All regressions control for
city fixed effects, province-by-year fixed effects, and a set of county-level controls
(land area, population, and precipitation); (3) Standard errors are clustered at the
county level.
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Appendix of Chapter 3

C.1 Supplementary Materials of Motivation

Figure A1: Centroid Change of Patent (Pink: 2008, Blue: 2013, Red: 2018)
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Figure A2: Patents Application by Year

C.2 Supplementary Materials of Data

Figure B3: Total Patent Applications and Patent Collaborations (2000-2020)
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C.3 Supplementary Materials of Empirical Re-

sults

Figure C4: Keywords of Flood Patents
Note: The five most popular keywords of disaster related patents are: Water

Proof, Drainage, Surface, Water Flow, and Control.
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Table C1: Robustness Check: Flood Expectation and Patent Applications
- County Level Analysis

ln(Number of Patent Applications)

Type of Patents: All Single Applicant Disaster Mitigation

(1) (2) (3) (4) (5) (6)

ln(ECFD) −0.029*** −0.030*** 0.003***
(0.004) (0.004) (0.001)

ln(Weighted ECFD) −0.032*** −0.034*** 0.004***
(0.005) (0.005) (0.001)

R-squared 0.864 0.864 0.856 0.856 0.582 0.582
N(obs) 28,867 28,867 28,867 28,867 28,867 28,867
Fixed Effects
Year Y Y Y Y Y Y
County Y Y Y Y Y Y

Note: (1) Detailed definition of Cumulative Flood Duration and Pixel-Adjusted Flood Duration can be found in Section 3.4.1;
(2) The regression specification is: DCollabi jt = α + β1FloodProxyi j,t + λt + ηi + π j + εi jt where FloodProxyi,t−1 is either
ln(L1(Cumulative Flood Duration)), the logarithm of lagged CFD (lagged by one year), or L1(Pixel-Adjusted Flood Duration), the lagged
PFD (lagged by one year). (3) Standard errors are clustered at the county level.
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Table C2: Robustness Check: Impacts of Floods on Patent Collaborations
- Patent Level Analysis (Changing Fixed Effects)

Dependent Variable: Collaborative Patent Dummy

(1) (2) (3) (4) (5) (6)

ln(L1(CFD)) 0.119***
(0.002)

L1(PFD) 0.084**
(0.037)

ln(ECFD) 0.106***
(0.002)

EPFD 0.456***
(0.084)

ln(L1(UCFD)) −0.067***
(0.001)

L1(UPFD) 0.026
(0.041)

R-squared 0.501 0.480 0.518 0.480 0.500 0.480
N(obs) 452,734 452,734 452,734 452,734 452,734 452,734
Fixed Effects
County 1 × Year Y Y Y Y Y Y
County 2 × Year Y Y Y Y Y Y
Patent Type Y Y Y Y Y Y

Note: (1) Detailed definition of Cumulative Flood Duration and Pixel-Adjusted Flood Duration can be found in Section 3.4.1;
(2) The regression specification is: DCollabi jt = α + β1FloodProxyi j,t + λt + ηi + π j + εi jt where FloodProxyi,t−1 is either
ln(L1(Cumulative Flood Duration)), the logarithm of lagged CFD (lagged by one year), or L1(Pixel-Adjusted Flood Duration), the
lagged PFD (lagged by one year). (3) Standard errors are clustered at the county level.
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Table C3: Heterogeneous Impacts of Flood Expectation on Patent Collaborations
- County Pair Level Analysis

ln (Number of County-Pair Collaborative Patents)

Sample: Type A+B+C Type A+C Type B+C

(1) (2) (3) (4) (5) (6)

ln(ECFD) 0.008*** 0.008** 0.006**
(0.003) (0.003) (0.003)

ln(Weighted ECFD) 0.010*** 0.010** 0.008**
(0.003) (0.004) (0.036)

R-squared 0.434 0.434 0.438 0.438 0.438 0.438
N(obs) 65,828 65,828 58,760 58,760 62,410 62,410

Fixed Effects
Year Y Y Y Y Y Y
County-Pair Y Y Y Y Y Y
County 1 Y Y Y Y Y Y
County 2 Y Y Y Y Y Y

Note: (1) Detailed definition of CFD (Cumulative Flood Duration) and PFD (Pixel-Adjusted Flood Duration) can be found in
Section 3.4.1; (2) The regression specification is: Yi jt = α +β1FloodProxyi j,t +λt + γi j +ηi +π j + εi jt where FloodProxyi,t−1
is either ln(L1(CFD))), the logarithm of lagged CFD (lagged by one year), or L1(PFD), the lagged PFD (lagged by one year); (3)
‘Type A’ refers to collaborations between flooded counties, ‘Type B’ refers to collaborations between flooded and non-flooded
counties, while ‘Type C’ refers to collaborations between non-flooded counties; (4) Through Column (1) - (6), the control group
is C Type cross-county collaborations; (5) Standard errors are clustered at the county-pair level.
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Table C4: Heterogeneous Impacts of Unexpected Floods on Patent Collaborations
- County Pair Level Analysis

ln (Number of County-Pair Collaborative Patents)

Sample: Type A+B+C Type A+C Type B+C

(1) (2) (3) (4) (5) (6)

ln(UCFD) −0.003** −0.003** 0.002
(0.002) (0.002) (0.002)

ln(Weighted UCFD) −0.004** −0.004** −0.003
(0.002) (0.002) (0.002)

R-squared 0.434 0.434 0.438 0.438 0.438 0.438
N(obs) 65,828 65,828 58,760 58,760 62,410 62,410

Fixed Effects
Year Y Y Y Y Y Y
County-Pair Y Y Y Y Y Y
County 1 Y Y Y Y Y Y
County 2 Y Y Y Y Y Y

Note: (1) Detailed definition of CFD (Cumulative Flood Duration) and PFD (Pixel-Adjusted Flood Duration) can be
found in Section 3.4.1; (2) The regression specification is: Yi jt = α +β1FloodProxyi j,t +λt +γi j +ηi+π j +εi jt where
FloodProxyi,t−1 is either ln(L1(CFD))), the logarithm of lagged CFD (lagged by one year), or L1(PFD), the lagged
PFD (lagged by one year); (3) ‘Type A’ refers to collaborations between flooded counties, ‘Type B’ refers to col-
laborations between flooded and non-flooded counties, while ‘Type C’ refers to collaborations between non-flooded
counties; (4) Through Column (1) - (6), the control group is C Type cross-county collaborations; (5) Standard errors
are clustered at the county-pair level.
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